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1 CHAPTER 1: INTRODUCTION 

The immune system is a vast and complex network of molecules, cells and organs, tightly 

orchestrated to function as safeguards against self and foreign threats. It involves multitudes of 

specialised cell types such as T cells, B cells, macrophages, and dendritic cells, each with 

distinct functions in maintaining the individual’s homeostasis. The immune system also 

countains diverse set of mediators: antibodies, cytokines, chemokines that effectively 

coordinate immune responses and signals between cells. Immune receptors, whether they are 

dedicated to the recognition of pathogenics patterns or mediators, enable signal transduction to 

immune cells and regulate their functions. Dedicated tissues, called lymphoid organs, function 

as monitoring stations distributed across the body, to mount an effective and quick response. 

From this intricate and multilayer network of cooperating molecules, proteins, cells and tissues, 

emerges the integrative notion of system. 

The immune system complexity requires an almost perfect orchestration of many 

different cellular actors to function and effectively maintain the host’s homeostatic state. 

Because of its complexity and compartmentalisation, a first encounter is always long to address 

(Farber et al., 2016) and complete pathogen clearance can take weeks. However, subsequent 

infections with the same pathogen are resolved much faster, typically in a few days. This 

process called immunological memory highlights the ability of the immune system to “store” 

memories of past encounters. The recognition and rapid response is possible due to pre-

existening cells that are specifically designed to identify and kill the pathogen upon repeated 

encounters. Although this has been known for centuries and in many cultures (Gross and 

Sepkowitz, 1998), immunological memory remained mysterious until science progressed. 

Work of Paul Erlich (1892) demonstrated that immune memory could not be genetically 

heritable in the traditional sense, but instead each individual shape their own immune system 

(Ehrlich and Hübener, 1894). Memory is a very dynamic system, which can “remember” past 

events and rapidly respond to threats previously encountered, while still being able to learn and 

adapt to new encounters. The feature is primarily possessed by cells that are part of the the 

adaptive immune system, although recently the innate immune response has been proposed to 

contain a certain degree of memory, leading to the concept of trained immunity (reviewed by 

Netea et al., 2020).  This concept will not be covered in this introduction. 

The immune system is divided in two main compartments, the innate and the adaptive 

compartment, distinct but deeply interconnected. The latter is called adaptive based on its 



 

5 

ability to constantly evolve and adapt to new threats at the scale of an individual’s lifespan. The 

adaptive immune system consists of two main cell subsets; the B cells and the T cells. At the 

interface of innate and adaptive immune system, antigen-presenting cells are responsible for 

capture and presentation of antigens to other immune cells. Their role fulfils a dual purpose: it 

is crucial for initiating the adaptive immune response, while also modulating and maintaining 

the tolerance to self. In this manuscript, I will focus on the T cell subpopulation, as this has 

been the principal focus of my PhD thesis work. I will detail how it manages to not only 

recognize a specific antigen, but also any new antigen that a pathogen can harbour. 

1.1 T CELLS IN THE IMMUNE SYSTEM 

1.1.1 TCR-bearing cells, or T cells 

T cells are a distinct population from the white blood cells, also called leukocytes. They 

are the major lymphocytes population, representing around 70% of lymphocytes in the 

peripheral blood of healthy adults (Reichert et al., 1991). The main feature/characteristics of T 

cells is their antigen-specific receptor, known as the T cell receptor (TCR), expressed on their 

surface. The TCR exhibits a high affinity for a multi-protein complex consisting of a peptide, 

originating from a pathogen or derived from a host cell, and the major histocompatibility 

complex (MHC). Such complex is expressed at the surface of antigen presenting cells (APCs) 

allowing the presentation of a given peptide, within the context of a particular MHC to T-cells. 

Such peptide in such context is named an antigen, which means a molecule that may have the 

capacity to induce an immune response through the activation of the T-cell upon its recognition 

by the TCR. As such, it is hypothesised that this particular complex is responsible for T-cell 

specificity, as T cells are activated and therefore carry out their functions through the 

TCR/pMHC complex binding. T cells are a diverse population, comprising different 

phenotypical subsets that will accomplish specific roles. T cells can be divided in two major 

groups, effectors and regulator. Effector T cells are experienced, having been activated by the 

presentation of an antigen. They have functions to destroy the threat, whether it is by recruiting 

and activating other cells of the immune system, or directly killing it. In contrast, regulatory T 

cells are present much more restricted quantity and possess this ability to control immune 

response. They play a major role in self-tolerance and preventing the effector compartment to 

wreak havoc. In this chapter, I will cover the plurality of T cells from their phenotypic 
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description, and their functions, to the generation of their TCR that imparts their exceptional 

diversity.    

1.1.1.1 T for thymus 

T cells originate from a unique organ: the thymus. It has long been established that the 

thymus was an organ where lymphocytes were produced, but remained unexplored for a long 

time due to being considered vestigial. It was in 1961 that Jacques Miller showed that the 

thymus was, indeed, critical to mount immune responses. He was the first to demonstrate how 

neonatal thymectomy on mice lead to their inability to fight against viruses or reject skin grafts 

(Miller, 1961a, 1961b). These experiments paved the way to show how the thymus was the 

central organ to mount a thymic-dependant response, with thymic lymphocytes: the T cells. 

Although T cells are generated in the thymus, T cell progenitors, thymocytes, are derived 

from hematopoietic stem cells in the bone marrow (Kondo et al., 1997). Once generated, they 

migrate to the thymus where they undergo different stages of maturation. This process, called 

thymopoiesis, is when T cells will acquire their phenotype and express markers at their surface 

that will determine their role and fate. We can distinguish two main subtypes of T cells, 

depending on the cluster of differentiation (CD) acting as a co-receptor associated to the TCR: 

CD4+ T cells and CD8+ T cells. Each subtype further subdivides into different subsets of 

specialised cells. 

1.1.1.2 CD4+ T cells 

CD4+ T cells represent the majority of T cells in an adult (~60% of T cells). They play a 

major role in orchestrating the immune response and cover a wide range of functions. They 

express a large panel of receptors and ligand, which can activate B and T cells through cognate 

interaction. They also secrete a large range of cytokines such as IFN-γ or GM-CSF, which 

stimulate macrophages and other cells of the innate immune system, as well as non-immune 

cells (Boehm et al., 1997; Pawlak et al., 2020). More than mere activators of other cells, CD4+ 

T cells can fuel inflammation or polarise immune responses (Tuzlak et al., 2021). CD4+ T cells 

are restricted by the MHC-II, meaning their TCR can exclusively recognise peptides bound to 

MHC-II molecules at the surface of APCs. While peptides are presented by cells from the self, 

they can originate from intra-cellular or extra-cellular milieu through dedicated processes 

covered in 1.1.3.1.  
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Distinct CD4+ T cell subtypes accomplish distinct functions, with most of each subtype 

are specialising based on their phenotype. First identified in 1986 by Mosmann et al., T helper 

-1 (Th1) and -2 (Th2) cells are the most common type of helper T cells. They are distinguished 

by their set of secreted molecules, or secretomes (Mosmann et al., 1986). They play a role in 

activating other immune cells, by releasing factors that will orient the immune reponse. Th1 are 

associated to the cellular response. By producing IL-2 and interferon-γ, the Th1 subset drives a 

strong, global inflammatory T cell response that mainly targets intracellular pathogens and 

favour cellular debris clearance by stimulating macrophages (Hsieh et al., 1993; Hwang et al., 

2005; Nathan et al., 1983). Th2, on the other hand, secrete IL-4, IL-5 and IL-13 and are 

associated to extra-cellular pathogens response (Glatman Zaretsky et al., 2009). Mostly known 

for its role in allergic responses, its secretome favours B-cell antibody class switch to 

immunoglobulin E (IgE), specialised in anti-parasite immune responses (Mohrs et al., 2000). 

Interestingly, Th1 and Th2 responses are polarised, meaning one inhibits the other. This 

mechanism reinforces the specialisation of T cells in orchestrating the immune responses 

(Brinkmann et al., 1993).  

In 2005, a series of published studies redefined the well dichotomized world of helper T 

cells with the discovery of Th17 T cells (Harrington et al., 2005; Langrish et al., 2005; Park et 

al., 2005), a pro-inflammatory subtype induced during bacterial infections which secretes IL-

17. Although these specialised T cells were discovered in the gut, their role in inflammatory 

diseases pathogenesis was almost immediately investigated and demonstrated in colitis, uveitis, 

scleritis and rheumatoid arthritis (Amadi-Obi et al., 2007; Hue et al., 2006; Sato et al., 2006; 

Yen et al., 2006). Further studies on patients showed that these cells recirculate in healthy 

conditions and are elevated in inflammatory diseases (Acosta-Rodriguez et al., 2007; Ellul et 

al., 2021; Nistala et al., 2010). 

 

1.1.1.3 CD8 T cells 

CD8+ T cells, also called the cytotoxic T lymphocytes (CTL), are specialised in the 

identification and elimination of infected cells, whether they are viruses, bacteria, or tumoral 

cells (Kägi et al., 1994; Walsh et al., 1994). As opposed to CD4+ T cells, their TCR can 

exclusively recognize peptides bound to MHC-I. At first called cellular antibodies (Govaerts, 

1960), CD8+ T cells are coined cytotoxic as they acquire a cell-killing capacities after their 
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activation in secondary lymphoid organs. As poorly regulated cytotoxicity can cause 

uncontrolled damage, CD8+ T cells leave the thymus as naïve cells. In order to unlock their full 

arsenal, they need to be activated by a presentation of a peptide that complement their TCR in 

secondary lymphoid organs. CTLs rely on three distinct but complementary mechanisms to kill 

cells. First they utilise release of the perforine/granzyme molecules, located in secretory 

granules of CTL (Kägi et al., 1994; Rosenau and Moon, 1961). Upon contact with its target, the 

CTL will release the granules.  Perforin creates pores on target’s surface, allowing granzyme to 

activate a caspase-induced apoptosis of the target cell. Second mechanism relies on the so-

called “cell surface death receptor” Fas molecule and its ligand, FasL. Cross-linking of CTL’s 

FasL to its target Fas leads to a similar apoptosis caspase-dependant cascade signal, effectively 

killing its target. The two mechanism are independent and show synergetic action (Hassin et 

al., 2011). A similar system with the TRAIL molecule completes the artillery of CTLs. 

1.1.1.4 Regulatory T cells 

T helper and CTL are often called conventional T cells, as opposed to regulatory T cells 

(TREG). TREG are a subtype of T cells specialised in the maintenance of self-tolerance and the 

regulation of immune response. The vast majority of TREG exhibit the CD4 co-receptor, 

although some also express the CD8 (Mayer et al., 2011). Additionally, they express the 

forkhead box P3 (FoxP3), a transcription factor that will heavily influence their functionality. 

FoxP3 is the master regulatory factor of T cells (Fontenot et al., 2003). Deleterious mutations 

in FOXP3 gene induce immunodysregulation polyendocrinopathy enteropathy X-linked 

syndrome (IPEX syndrome) (Powell et al., 1982), and murine models are short lived, 

spontaneously developing a wide range of autoimmune disorders (Hadaschik et al., 2015). TREG 

exert an active suppression of the immune system to prevent pathological autoimmunity and 

prevent deleterious consequences of uncontrolled inflammation during infections. Additionally, 

TREG play key roles in cancer development as well on wound healing. TREG use a large array of 

suppressive mechanisms to exert their immunoregulatory functions, with dozens described, 

including both cognate interactions and production of soluble factors. 

The primary impact of TREG is directly on conventional T cells. They were initially 

identified by their high expression of CD25 (Sakaguchi et al., 1995). CD25 is the high affinity 

receptor for IL-2, and TREG outcompete conventional T cells by depriving them of an exogenous 

source of IL-2. TREG cells also express several immune checkpoints ligands on their surface, 

which are key molecules involved in the immunoregulation of T cells. Moreover, T cells 
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promote a shift towards a pro-tolerogenic state in antigen-presenting cells, such as dendritic 

cells (Onishi et al., 2008). More precisely, they express inhibitory molecules, such as the 

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), which will indirectly induce an 

anergic state in conventional T cells. They also secrete immunosuppressive cytokines, such as 

IL-10 or IL35. IL-10 mediates direct suppression on the T compartment, and was found to be 

specifically involved in the regulation of Th17 response (Chaudhry et al., 2011). Finally, TREG 

are heavily implicated in wound healing. Skin-resident TREG show active attenuation of 

inflammation on cutaneous wounds, and reduced pro-inflammatory macrophage accumulation 

(Nosbaum et al., 2016).  

All TREG are not created equal, and they differ depending on their origin. There are native 

TREG, generated in the thymus (tTREG) and peripheral TREG (pTREG), generated in the peripheral 

from the pool of conventional T cells by stimulation with tumour growth factor β (TGF-β) 

(Chen et al., 2003). It was shown that tTREG are more transcriptomically stable than pTREG, the 

latter displaying a “plasticity”, losing their regulatory phenotype in absence of TGF-β (Komatsu 

et al., 2009). 

1.1.2 Origins of the T cell diversity 

T cell are defined by their TCR, which is central for their recognition of foreign and self-

peptides. However, two mysteries puzzled scientists for quite a while. It became clear that T 

cell diversity was immense, and that the potential diversity could not be accounted for by the 

~23 000 coding genes of our genome (Martin et al., 2023). Furthermore, T cells had to be able 

to recognise peptides from yet unknown pathogens whether an individual had yet to encounter 

them, or because they would emerged from the never-ending race of viral mutations. Specificity 

is another black cloud in the TCR sky, as estimates in mice show that it would require more 

than 100 times a mouse volume in T cells alone to hold 1 naïve helper T cell for each possible 

peptide-MHC-II complex (Mason, 1998). From this apparent contradiction, immunologists 

started to unravel the secrets of TCR generation, delving into the modalities of peptide 

presentation and antigen recognition by the TCR.  

1.1.2.1 T cell structural organization 

The T cell receptor was identified in early 1983 by several group concurrently (Kappler 

et al., 1983; Meuer et al., 1983), and lead to a 20 years race to unfold its secrets. Its primary 

structure was resolved in mice in 1984 (Saito et al., 1984a, 1984b) and the αβ chains were 
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structurally resolved at 2.5 Å in 1996 (Garcia et al., 1996) . Expressed by all T cells of the 

periphery, the TCR is a heterodimer made of an α and a β chain, associated to a larger 5-mer 

complex called the CD3 consisting of the γ, δ, ε and ζ subunits, and either the CD4 or CD8 

accessory molecule. This octamer structure, although known for more than 40 years, was only 

structurally resolved in 2019 by De Dong et al. through cryo-electron microscopy (Dong et al., 

2019). TCR final assembled form has a molecular mass of 58 kD, with a 28kD α chain and 30 

kD β chain.  

Extracellular domain: TCR ectodomain is an immunoglobin-like receptor, with a constant 

region (C) and variable region (V) derived from somatic rearrangement of several loci (see 

1.1.2.2). It is composed of six loops, 3 per chain, called complementary determining regions, 

or CDR. The CDR1 and CDR2 sequences are mostly constant, whereas the CDR3 is highly 

variable and is considered to define the specificity of the TCR. The joining of the two CDR3 of 

the heterodimer creates the peptide-binding region with the MHC, which will be described in 

further details. Although CD3 extracellular domains are immunoglobin-like, their role is not 

related to antigen recognition, but rather involved in the signal transduction (Frank et al., 1990; 

Irving and Weiss, 1991).  

Transmembrane domain: Both α and β chains cross the membrane only once. This 

transmembrane (TM), conserved region is necessary for the assembly of the full TCR-CD3 

Figure 1: From the first observation to complete characterization of the TCR complex. (left) Autoradiography of an 
SDS-polyacrylamide gel electrophoresis of a CD8 and CD4 T cell receptor. a : reduced form clone CT8, c : dimerized 
form, e reduced form clone CT4,  : dimerized form CD4. From Meuer et al, 1983. (right) The crystallography resolved 
complete TCR complex, with α and β chain, CD3γ, CD3ε CD3δ, and homodimer CD3ζζ. From Dong et al., 2019 
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complex, as TM-truncated α chains failed to assemble to CD3 subunits (Alcover et al., 1990; 

Manolios et al., 1990), and lead to impaired signalling.  

Cytoplasmic domain: Cytoplasmic region of the αβ TCR is too short to be able to 

transduce the activation signal but rather rely on the CD3. Especially, the CD3-ξξ dimers 

contain ITAMs motifs that will be phosphorylated by the Lck protein. These phosphorylated 

ITAMs will provide docking sites for further adaptor kinases and lead to the transduction of the 

signal (Marie-Cardine and Schraven, 1999). 

1.1.2.2 T cell genetic organization 

The genetic mechanisms responsible for TCR generation are very similar to those of 

antibodies, and literature often refer to them as antibody-like. TCR loci cover a large portion of 

the genome, respectively 930kb and 510kb for the TRA and TRB loci (Martin et al., 2023). 

TCR are the result of somatic recombination during T cell maturation. Akin to antibodies, it 

involves 3 family of genes: the Variable (V), Diversity (D) and Joining (J) genes (Davis and 

Bjorkman, 1988; Siu et al., 1984; Tonegawa, 1983). The considerable work of drawing a 

cartography of the immune receptor (BCR, TCR, MHC) genes has been initiated by Marie-

Paule Lefranc in 1989 (Lefranc et al., 1999) through the international ImMunoGeneTics 

(IMGT) laboratory that hold a database. This online platform enumerates all the Ig of TCR 

genes of vertebrates. As of 2023, the human database indicates that a TCR α chain can be 

assembled from 54 TRAV, 61 TRAJ and 1 TRAC, and the β chain from 64 TRBV, 2 TRBD 

and 14 TRBJ and 2 TRBC genes (Lefranc and Lefranc, 2001). 

The database has remained unchanged since 2003, yet it is still widely considered as the 

primary reference for immunoglobin analysis. Nonetheless, new genome versions keep getting 

refined (Grh38) and gene tables need to be updated. For instance, CellRanger 3.1.0 (10X 

Genomics) single-cell alignment uses a custom TCR reference, which features an adapted 

version the IMGT TCR gene database according to their observations (pseudo-genes, alternate 

splicing versions, custom mutations in mice backgrounds) 

(https://support.10xgenomics.com/single-cell-vdj/software/pipelines/3.1/advanced/built-in-

refs).  

https://support.10xgenomics.com/single-cell-vdj/software/pipelines/3.1/advanced/built-in-refs)
https://support.10xgenomics.com/single-cell-vdj/software/pipelines/3.1/advanced/built-in-refs)
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1.1.2.3 The TCR, from finite elements to virtually infinite diversity 

The V, D and J genes undergo rearrangment into a single DNA sequence prior to their 

expression as a single chain at the surface of T cells. However, we have discussed their 

distribution across several hundreds of kilobases (see 1.1.2.2). The process of somatic 

rearrangements each thymocyte undergoes, called the V(D)J recombination, is crucial for the T 

cell differenciation and for the TCR diversity generation (Figure 2). During this process, one 

V, one D (on the TRB locus only) and one J genes will be randomly selected among the various 

members of each of these three families and joined together to form separately the α and β 

chains of the TCR. This process is regulated through genetic and molecular mechanisms to 

prevent aberrant recombination, and subsequent reediting of these loci. We will detail here the 

mechanisms underlying the fundamental engine driving antigen receptor diversity. 

VDJ recombination 

Each VDJ gene is flanked either by a 12-base pair recombination signal sequence 

(12RSS) or by a 23RSS. An RSS is defined as a 12 or 23 bases “spacer” sequence flanked by a 

palindromic heptamer (CACAGTG) and a palindromic conserved nonamer (ACAAAAACC) 

(Ramsden et al., 1994). Genes can only join between a 12RSS and a 23RSS, a principle known 

as the 12/23 rule (Early et al., 1980; Kurosawa et al., 1981). Vα and Vβ genes feature a 23RSS 

at their 3’, Dβ segments are flanked by 12RSS in 5’, and 23RSS in 3’, Jα and Jβ feature 12RSS 

on 5’ (Figure 3). 

 

 

Figure 2: Schematic mechanisms of the TCRαβ VDJ recombination. α chain is recombined through VJ 
recombination, while β chain by VDJ recombination. Both chain are assembled to form a complete αβ TCR. 
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The RAG1 and RAG2 proteins, acronyms for Recombination-Activating Genes 1 and 2, 

respectively, are two conserved, co-expressed, lymphoid-specific enzymes that are responsible 

for the joining of the V(D)J and C genes (Oettinger et al., 1990). The RAG1/2 complex will 

bind to an RSS and create two single-stranded nicks at the start and end of the RSS (Hirokawa 

et al., 2020). This process leads the cleavage and hairpin formation of a sealed “coding” end, 

and a blunt “signal” end. Hairpins of one 12RSS and 23RSS coding ends will be reopened and 

sealed again. This step involves the terminal deoxynucleotidyl transferase (TdT), a protein that 

performs a non-templated nucleotide enzyme addition, with random deletion of bases during 

the joining step through exonucleolytic activity (Bodger et al., 1983). For the β chain, this 

process is in 2-step to avoid recombining a V segment to a J segment, with a DJ recombined 

first, followed by V-DJ to form a complete VDJ exon. The α chain is a 1 step process and does 

not involve D segment (Figure 3).  

 

Importantly, while this mechanism is highly effective in generating the immense diversity 

of TCRs, it is also highly inefficient since 2/3 of rearrangements will produce non-productive 

chains due to the random addition and deletion of nucleotides happening at each recombination 

event, resulting in out-of-frames chains. Moreover, it presents a mere 1/9 chance to produce 

productive α and β chain. To reduce the chance of producing non-productive TCR, T cells 

successively rearrange their β, then their α loci. In a process called allelic exclusion, a β mono-

allelic rearrangement is initiated. If non-functional, the loci is silenced and a second 

rearrangement occurs on the second copy of the chromosome. Subsequently, the α locus is 

rearranged (Petrie et al., 1993). During the α rearrangement, there is evidence that both 

chromosomes are rearranged simultaneously, with ~25% of cells having both α loci rearranged 

(Malissen et al., 1992). This is true at the genomic, transcriptional (Eltahla et al., 2016; Howie 

Figure 3: Schematic focusing on the initial steps of V(D)J 
recombination. (A) The RAG protein complex binds to the 
12- and 23RSSs (purple and orange triangles, 
respectively) neighboring gene segments (shown as red 
and yellow boxes on the DNA), (B) forming the paired 
complex (PC). At any point when it is bound to an RSS, 
RAG can introduce a nick in the DNA between the 
heptamer and gene segment (shown with the magnified 
12RSS) and must do so to both sites before (C) it cleaves 
the DNA to expose the gene segments. As indicated by the 
magnified gene segment end, the exposed DNA strands of 
the gene segment are connected to form a DNA hairpin. 
(D) Additional proteins join these segments together. In 
this work, the stages subsequent to DNA cleavage are not 
monitored. From Hirokawa et al, 2019 
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et al., 2015) and at the phenotypic scale where T cells with two functional receptors have been 

observed (Heath et al., 1995; Padovan et al., 1993). Multiple rounds of α rearrangement can 

occur, replacing previous Vα-Jα rearrangements (Petrie et al., 1993; Wang et al., 1998). The 

relevance of double TCR cells in the physiopathological context is still debated (Balakrishnan 

and Morris, 2016; Muhowski and Rogers, 2023; Schuldt and Binstadt, 2019).  

In some cases, the 2-step β chain rearrangement can become a 3-step mechanism, with 

evidence of TRBD1-TRBD2 prior to D-J rearrangements in mouse and humans (Hempel et al., 

1998; Smirnova et al., 2023). This mechanism adds another N-addition, which contributes to 

increasing the diversity of the CDR3 region. 

The lack of RAG1/2 enzymes leads to a complete absence of mature B and T cells, called 

the severe combined immunodeficiency (SCID) syndrome (Schwarz et al., 1996), fatal without 

treatment. RAG can recombine any gene that is flanked by this sequence making RSS 

sequences a powerful genetic tool. RSS-like or perfect matched sequences can be observed in 

other loci, and are called cryptic RSS. These “illegitimate” recombination sites were identified 

as linked to T cell acute lymphoid leukaemia and dysregulation of key leukaemia driver genes 

(Aplan et al., 1990). 

The VDJ recombination as a pseudo-random process 

V(D)J recombination is not a perfectly random process. The RAG complex binds to the 

consensus nonamer and heptamer of the 12- and 23RSS. These sequences are highly conserved, 

as mutations affects the probability of generating a hairpin, and ultimately form an exon with 

the corresponding gene (Hirokawa et al., 2020; Lee et al., 2003). Even though  spacers are 

considered to be less important for the binding, their variability could result to several fold 

difference in recombination activity (Akira et al., 1987; Hirokawa et al., 2020; Larijani et al., 

1999). This directly links low VDJ gene usage to RAG binding efficiency, even in cases of a 

single nucleotide mutation. TdT enzyme is also well known for being biased, and having a 

strong preference to adding G nucleotides (Alt and Baltimore, 1982; Gangi-Peterson et al., 

1999). This leads to D regions to be preferentially enriched in G nucleotides. 

Early observations showed skewed gene usage depending on gene distributions on the 

loci. Α chain rearrangement typically biases towards gene segments located at the 5′ end of the 

Jα region, and Vα tends to favour the 3′ end of the Vα region (Pasqual et al., 2002; Thompson 

et al., 1990). Work from Park et al. has leveraged single-cell sequencing to link genetic 

rearrangements to genetic position on loci. They showed that VDJ gene usage was skewed 



 

15 

during pre-mature stages, and revealed that these biases could not be explained by RSS scoring 

alone. These results suggest the importance of a conformational looping structure of the TCR 

loci, already hinted by others (Carico et al., 2017; Hu et al., 2015; Park et al., 2020), favouring 

the pairing of proximal genes together, before any further selection.  

Epigenetic factors also contribute to the gene usage. Enhancers positions on downstream 

3’ position of the TCR locus ensures the transcription of TCR genes (Bories et al., 1996; 

Bouvier et al., 1996), while dynamic methylation of histones ensures only specific portion of 

the genome are accessible at a given stage (Morshead et al., 2003). This also ensures that 

recombination first happens in a DJ, then V-DJ order. On B cells, it was shown that histone 4 

acetylation correlated with V gene usage, while dimethylated H3/K9 correlated with poorly 

rearranged genes (Espinoza and Feeney, 2007).  

Adopting a probabilistic approach, Murugan and colleagues modelled the probability of 

recombination events in non-selected T cell populations (Murugan et al., 2012). They showed 

how V-J combination does not correlate with linear location, and how D genes are constraint 

by J gene choice. However, analysis shows that V gene choice is independent of prior DJ 

rearrangement. Using Markov chains, they demonstrated how nucleotide insertion was not 

random and could be predicted by the previously inserted nucleotide on 5’ strand. Similarly 

deletions were not stochastic, but rather influenced by the rearranged genes, as noted by others 

works previously (Gauss and Lieber, 1996).  

Estimating the theoretical diversity 

In 1988, solid estimates of the TCR theoretical diversity were made by immunologists 

about the three main mechanisms of diversity: i) the genetic VDJ segment diversity, ii) the 

random nucleotide addition and deletion at segment junctions and iii) the αβ chain pairing. 

Mark Davis and Pamela Bjorkman placed at around 1015 the number of possible TCR 

combinations that could be generated in humans, with similar calculations in mice placing it 

around 1020 (Lieber, 1991). These extravagant numbers, on par with astronomical distance 

scales, show how a small set of genes can lead to an enormous number of combinations. These 

numbers were not challenged for more than 30 years, until a team of physicists published an 

entropy-based model, placing the diversity of human TCR to be around 1061 possible 

rearrangements (Mora and Walczak, 2016), later revised to rather be around 1019 (Dupic et al., 

2019). The last estimate emphasised on the existence of other factors influencing the seemingly 

random process of VDJ recombination (see above).  
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This chapter introduced T cell receptor generation as pseudo-random process. With such 

an immense possible number of TCRs, we can define the notion of repertoire; the collection of 

all possible TCRs that can be generated. We can further distinguish the theoretical repertoire, 

defined by Mora and Walczak, which encompasses all possibilities without considering 

impossible rearrangements or pseudogenes, from the virtual repertoire, which comprises all 

viable combinations, and the available repertoire, which is the collection of all TCRs in an 

individual. The theoretical repertoire is distinct from the other two, as it considers all possible 

combinations beforethymic selection. In the following sections, we’ll see the principles of T 

cell antigen-specific recognition through the TCR and its importance during the thymic 

differentiation in driving clonal deletion. 

1.1.3 Modalities of MHC recognition 

Scientists in the 1950’s were trying to understand the principles of tissue rejection in 

transplantation. The discovery of a set of proteins that genetically determined structures on the 

cell surface that regulate immunological reactions, and the associated genetic mapping awarded 

them the Nobel prize in 1980. The study of MHC recognition by the TCR in 1974 rewarded 

Rolf Zinkernagel and Peter Doherty the Nobel prize in 1996 (R. Zinkernagel and Doherty, 1974; 

R. M. Zinkernagel and Doherty, 1974). The major histocompatibility complex, or human 

leukocyte antigen (HLA) in humans, is a polygenic and highly polymorphic set of genes that 

are at the centre of self to non-self-recognition. MHC molecules can be distinguished into two 

major type of genes, class I (MHC-I) and class II (MHC-II) MHC, with distinct expression 

patterns in cells. A third group of MHC molecule will not be covered here as it is not involved 

in antigen presenting and recognition. Likely due to evolution stress, the MHC complex 

contains more than 200 genes, thousands of alleles, spans 4 megabases and more than 20 

different loci (The MHC sequencing consortium, 1999). 

1.1.3.1 Processing of antigens 

MHC-I are expressed by all nucleated cells of the body and platelets, although some cells 

are notoriously known to have low expression of it. The first MHC-I crystal structures 

(Bjorkman et al., 1987; Saper et al., 1991) revealed a heterodimer comprised of three α domains 

(α1 to α3) and an invariant chain called the β2-microglobulin. The α1 and α2 form a groove, 

spacious enough to accommodate a small peptide - the antigen. MHC-I presents peptides from 

the intracellular components, such as self-molecules or altered-self (viruses, cancers). Briefly, 
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antigens are processed by the proteasome, a complex expressed in all cells responsible for the 

pre-processing of peptides before their loading onto the MHC. Proteins tagged for 

ubiquitination (Wei et al., 2017) are sampled by the proteasome, where various families of 

proteolytic molecules will prepare peptides. Peptides are then trafficked outside of the 

endoplasmic reticulum and loaded onto the MHC by the transporter associated complex (TAP) 

(Ortmann et al., 1994). If required, endoplasmic reticulum associated amino peptidase 

(ERAAP) can further trim the peptide to accommodate the binding to the MHC-I (Serwold et 

al., 2002). Final peptides are typically in the 8 to 10 amino-acid range, although the complexity 

of non-covalent interactions and hundreds of polymorphisms allow exceptions. 

On the other hand, the MHC-II is expressed by a restricted subset of cells, coined 

professional antigen presenting cells, or APC. Among them, we can find dendritic cells, naïve 

B cells, and activated macrophages. This limited expression is linked to the source of peptides, 

as MHC-II antigens are not internally produced, but rather captured through various 

mechanisms such as endocytosis or phagocytosis. The processing pathway is also distinct from 

the MHC-I. Native extracellular proteins are directed towards endocytosomes, acidic and 

reducing compartments that facilitate their degradation. MHC-II is assembled in the 

endoplasmic reticulum and transported to endosomes, where the suitable peptides are loaded 

onto the MHC-II and then directed to the cell membrane. Final antigens presented are typically 

in the 13-17 amino-acid range although, far greater were observed (Chicz et al., 1992).  

A dedicated process called cross-presentation allows the presentation of extracellular 

antigens, typically from MHC-II pathway, to be loaded and presented by MHC-I. This process 

happens in healthy conditions, notably through autophagy (Dengjel et al., 2005). Recently, 

Barbet et al. uncovered a novel function of how TAP blockade by viral infection was bypassed 

by non-canonical presentation, allowing an efficient CD8 T cell priming and clearance of the 

infection (Barbet et al., 2021). Thus, cross-presentation elicits balanced CD8+ and CD4+ 

responses. 
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1.1.3.2 TCR, peptide and MHC 

Typical cells express tens of thousands MHC-I molecules simultaneously (Kowalewski 

et al., 2015), with constant renewal of antigen presentations. TCR-pMHC recognition works in 

a multiple step program, where the T cells “scan” the pMHC complex with its TCR. In the 

canonical model, the docking between TCR and pMHC first needs a stabilisation step, 

independent of the peptide, to allow the docking of the TCR and MHC. CDR1 and CDR2 loops 

permit the MHC scaffolding to bind to the TCR with hydrogen bounds and van der Waals 

interactions (Wu et al., 2002). The first MHC recognition step is then followed by the “peptide 

– scanning” phase. The affinity for the peptide is linked with stabilisation energy, where higher 

stability leads to prolonged contact. The whole process is aided by co-receptors CD4 and CD8 

and is highly dynamic (Figure 4). While CDR1 and CDR2 are considered static, CDR3 offer 

the largest range of motion, and large conformational adjustment are observed between the 

bound and unbound states (Garcia et al., 1998). These changes are linked to recognition 

degeneracy, as a single TCR can accommodate multiple peptide bindings, sometimes with very 

different properties. The angle of recognition can also be altered during docking, with reported 

“tilt” of TCR angle to accommodate pMHC binding (Pierce and Weng, 2013). 

MHC presentation is also dependant on the VJ genes usage.  

MHC can influence the V(D)J usage. Indeed, V and J genes are the main contributors to 

the TCR-pMHC complex stabilisation (Garcia et al., 2009; Sim et al., 1996; Zerrahn et al., 

1997). In the immunodominant public TCR to CMV peptide, isoleucine54  located in the CDR2β 

region of the TRBV6-5 is implied in 7 van der Walls contacts with the HLA, the tyrosine31of 

CDR1α in TRAV49 is implicated in 25 contacts with the peptide. This outnumbering of 

contacts by CDR1α and CDR2β exceeds the number from CDR3α and CDR3β (Gras et al., 

2009). CDR1 and CDR2 are germline-encoded in the V region, while we have shown how 

CDR3 diversity was generated through specific mechanisms (see 1.1.2.3). The higher  

Figure 4: (left) A schematic representation of an αβ TCR 
expressed on the surface of a CD4+ cytotoxic T cell, 
supported by a CD4 coreceptor, recognises an antigenic 
peptide presented by an MHC class II molecule at the 
surface of an antigen presenting cell. 
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Figure 5: From primary structure to 3 dimensional structure of docking. 
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contribution of germline-encoded regions to stabilise the TCR-pMHC was later studied 

as the “TCR germline bias”.  (Feng et al., 2007; Garcia et al., 2009). this advocates for a co-

evolution between TCR and MHC (Blackman et al., 1986; Lu et al., 2019). The complete 

intricacies of VDJ recognition,  

from the primary structure of TCR chains to the 3 dimensionnal docking is represented 

in Figure 5. 

1.1.3.3 Cheating recognition with superantigens 

A non classical way of recognition of antigens by TCR is independent of the peptide 

presentation by the MHC. The term 

was proposed by Marrack and 

colleagues (White et al., 1989), after 

they showed that mice administered 

with staphylococcal enterotoxin B 

(SEB) would experience the activation 

of all T cells, both mature and 

immature, bearing Vβ3 and Vβ8 gene 

families.  

Superantigen were demonstrated 

to be linked to MHC-II (Mehindate et 

al., 1995). For the case of 

Staphylococcal enterotoxin A (SEA), 

it would first bind to the MHC-II, then 

bind to Vβ regions. This would results in broad, polyclonal activation of T cells bearing those 

Vβs, of the order of 5 to 20% of T cell population. In humans, this non-specific activation of T 

cells result in a toxic shock syndrome (TSS), caused by endotoxins produced notably from 

Streptococcus pyogenes, Staphylococcus aureus (SA), and others  (Marrack and Kappler, 1990). 

When administered to an immature population, SA induces complete depletion of target T cells 

bearing Vβ in murine models; whereas on mature population it triggers a cytokine storm and T 

cells unresponsiveness (Jenkinson et al., 1990; Kappler et al., 1987; Murphy et al., 1990).   

Figure 6: Example of MHC-independent binding of Staphiloccocus 
endotoxins B and H (SEB, SEH) binding to TCRV beta region. 
Comparison of the ternary TCR–superantigen–MHC complexes with 
SEB and SEH. All proteins are shown in ribbon representation. SEB (left 
panel) is shown in orange and SEH (right panel) in yellow, the TCR a-
chain in purple, the TCR b-chain in blue, and MHC class II in green. 
From Rödström, 2014 
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1.1.4 Autoimmunity, a necessary evil 

The Nobel recipient and father of Immunology, Paul Erlich (Nobel prize, 1908) 

postulated the “horror autotoxicus”, a theory suggesting that the human body was incapable of 

mounting an immune response against itself. MHC was identified early on as the molecule 

binding to the TCR and presenting the peptide by their hypervariable regions (Chothia et al., 

1988; Davis and Bjorkman, 1988). However, given the very high number of possible T cell 

structures, some of the generated T would inevitably react to self-peptides. Indeed, mechanisms 

of tolerance exist in the immune system to avoid such a tragic fate. Kappler and colleagues 

demonstrated that immature, autoimmune thymocytes would be deleted in the thymus during 

their maturation process (Huseby et al., 2003; Kappler et al., 1987). I will detail now how the 

selection processes in the thymus limits the egress of autoreactive clones, and the mechanisms 

involved in the establishment of tolerance. 

1.1.4.1 The thymus, deadly school for T cells 

Every day, millions of thymocytes migrate to the thymus, but only a small fraction of 

them actually survive its supposedly strict selection. Both experimental (Egerton et al., 1990) 

and mathematical approaches (Thomas-Vaslin et al., 2008) estimate that around 95% of 

thymocytes die before reaching maturity. This figure is significantly higher than the theoretical 

prediction of 70% producing a non-productive TCR (see 1.1.2.3). Indeed, T cells undergo two 

highly selective rounds of selection that profoundly shape the available repertoire of TCR as 

they leave the thymus and enter the periphery. Predicted by Burnett in 1959 (Nobel Prize 1960) 

(Burnet, 1959), this process known as the thymic positive and negative selection, addresses the 

need to select T cells that can interact with an MHC molecule, but also do not react to self-

peptides. Indeed, an effective selection would only allow cells that can recognise the self (self 

MHC molecules) but also distinguish foreign peptides, preventing auto-reactive disorders and 

therefore supporting tissue and organism integrity.  

The thymus located in the anterior superior mediastinum is composed of two pyramidal 

lobes, each comprising of a central medulla and an outer cortex. Immature thymocytes produced 

in the bone marrow enter the thymus through the blood circulation at the corticomedullary 

junction, before joining the cortex region. Thymocytes are a heterogeneous population, where 

their phenotype characterises the steps of their maturation. When they enter the thymus, they 

do not express the lineage marker of mature T cells, CD4 and CD8, and are called double 
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negative (DN). DN will undergo the rearrangement of their TCRβ locus, during four stages of 

maturation, ranging from DN1 to DN4. Thymocytes will express both CD4 and CD8 after 

successfully rearranging their β chain. These CD4+ CD8+ double positive cells (DP) migrate to 

the thymic cortex and rearrange their TCRα locus. DP cells with a functional αβ TCR will be 

challenged by central thymic epithelial cells (cTec) with self-peptide-MHC complexes. DP 

unable to recognise a pMHC will undergo apoptosis, also called death by neglect (Bertolino et 

al., 1999). T cells that react with a high affinity to pMHC will also go through apoptosis, a 

process called clonal deletion. This step, called positive selection, is also the first one to initiate 

the lineage commitment to CD4 or CD8 single positive (SP) cells. SP cells then migrate to the 

medulla where they will be challenged by medullary TEC (mTEC) to recognise self-peptide-

MHC complexes. T cell bearing a TCR with a high affinity for self will be clonally deleted in 

a similar manner as during positive selection. In the CD4+ thymocytes however, T cells with an 

intermediate/high affinity for self-peptide will be selected and enter in a distinct, specific 

program and commit to the CD4+ TREG cell subset (Coutinho, 2005) . After 4 days of medullary 

challenge (McCaughtry et al., 2007), SP thymocytes will express the sphingosine-1-phosphate 

receptor (S1PR1) and CD62L (Carlson et al., 2006), which will allow their egress to the blood 

vessel and their new journey into the periphery and be locked into a quiescent, G0 state (Zhang 

et al., 2018) until their reactivation. 

This schematic view of the thymus highlights its role as a very strict selective school for 

T cells. The multiple rounds of selection are here to ensure that all T cells can interact with self-

MHC, but not necessarily get activated to self-peptides, unless for a restricted subtype of 

regulatory T cells. From this step, emerges the concept of tolerance, or how the immune system 

controls the unavoidable autoimmunity imposed by the diversity of TCR, MHC, and peptides. 

1.1.4.2 Central tolerance and its imperfections 

During their generation in the thymus, T cells arising with reactivity to self-antigens are 

deleted. This process prevents autoimmunity and has been coined central tolerance. We have 

mentioned in 1.1.4.1 how clonal deletion ensured that TCR with high affinity would undergo 

apoptosis. I will detail here how TECs are the key actors of central tolerance.  

Cortical TECs are responsible for positive selection, ensuring TCRs can recognise the 

MHC. DP thymocytes  survive the positive selection by repetitive engagement of their newly 

rearranged TCR (Sakaguchi et al., 2003). TCR engagement restores the transcriptional activity 
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of those thymocytes, while those cells dying by neglect would engage in caspase-3 mediated 

apoptosis (Mingueneau et al., 2013). Evidence exists for clonal deletion at this stage but it 

accounts for a small part of the total(McCaughtry et al., 2008). 

Medullary TEC are crucial for the negative selection. mTEC express the autoimmune 

regulator (AIRE) gene. The AIRE gene (Autoimmune Regulator) is critically important for the 

development of central immune tolerance in the thymus. Indeed, thymic selection would require 

thymocyte export the periphery for them to encounter MHC bound to tissue-specific antigen 

(TSA) and comprehensively sample the self-peptidome.  This process was not retained during 

evolution, probably because it would allow autoreactive antigens to roam freely, instead of 

having them trapped and centralised in an organ.  Instead, evolution selected this unique 

mechanism of ectopic expression of self-antigens (Saltis et al., 2008). Chromatin analysis 

revealed how AIRE regulates ectopic gene expression through histone modifications and 

activates the RNA polymerase II recruitment (Kumar et al., 2001; Org et al., 2009), and its 

transcriptional targets could be modified by its microenvironment (Guerau-de-Arellano et al., 

2008). AIRE-expressing mTEC display a high renewal and form a sponge-like network in the 

medulla, optimised with their presentation functions (Gray et al., 2007). Each mTEC shows a 

high single-cell heterogeneity. Genes are expressed in modules in a semi-random fashion 

(Brennecke et al., 2015; Dhalla et al., 2020; Meredith et al., 2015) and the proteome they 

express can change during their lifespan (Pinto et al., 2013; Tykocinski et al., 2010). As such, 

AIRE-expressed genes seem to work in small clusters of co-expression. Authors have 

hypothesised that it could be related to organ-expression patterns, and mTEC would be 

specialised cell types from deep tissues, however this was not supported by confronting 

transcriptomes of mTEC to known cell atlases (Meredith et al., 2015). 

mTEC also guide the fate of regulatory T cells, crucial actors of peripheral tolerance. 

AIRE-deficient mice are unable to redirect TREG biased clones to a regulatory phenotype 

(Malchow et al., 2016, 2013), which will harbor a typical CD4+ effector phenotype, leading to 

systemic autoimmune disorders. 

Altogether, TEC are professional self-peptides presenting factories, either through i) 

optimal peptide generation or ii) efficient self-proteome sampling and presentation to 

thymocytes. They efficiently suppress autoreactive TCRs bearing cells with high affinity 

contact to MHCs or self-peptides antigens by triggering apoptosis on immature thymocytes. 
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1.1.4.3 The issue of leaky central tolerance 

It was quickly observed that the thymic quality control is not perfect and autoreactive 

clones manage to escape to the periphery (Gammon and Sercarz, 1989). This observation was 

expected given the prevalence of autoimmune diseases in the population.  

Eventually, negative selection cannot stop all autoreactive clones, as it may only spot the 

most reactive ones, but let the low avidity ones escape (Zehn and Bevan, 2006). Don Mason 

(Mason, 1998) estimated there are more than 1017 “presentable” peptides on a MHC-II. If the 

number of genes expressed in a tissue is around 11 000, AIRE allows the ectopic expression of 

more than 19 000 genes out of the >25 000 coding genes in the genome, but only a fraction at 

a time (Meredith et al., 2015; Ramsköld et al., 2009; Sansom et al., 2014). The difference in 

these numbers suggests that i) AIRE cannot express all the self-peptides, ii) each thymocyte is 

unlikely to encounter every peptide during its 4 days span and be actively deleted. 
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1.1.4.4 Peripheral tolerance 

At 20 years old, there are more than 300 million mature T cells produced from the thymus 

every day (Bains et al., 2009). To account for the likely massive flow of autoreactive clones 

egressing from the thymus, a second type of tolerance has been selected during evolution and 

take place in the peripheral organs. This highly distributed and efficient immune surveillance 

system ensures that those uninvited guests do not cause uncontrolled havoc. Peripheral 

tolerance relies on 5 main mechanisms: quiescence, ignorance, anergy, exhaustion, and 

peripheral induction of TREG (reviewed by ElTanbouly and Noelle, 2021) happening at the 

different stages of T cell life (Figure 7).  

Quiescence: Recent thymic emigrant T cells (RTE) have been shown to be quiescent, a state 

that is tightly regulated by overlapping  genetic pathways (Zhang et al., 2018). Such programs 

set a threshold for activation of naïve T cells, meaning that only those that will receive a 

sufficient signal through their TCR will effectively leave this resting state. Therefore, 

quiescence prevents T-cell spontaneous activation. Disruption of the genetic pathways involved 

in quiescence such as transcription factors Runx1 or c-Rel leads to autoimmune diseases in 

mice models (Chang et al., 2011; Wong et al., 2012).  

Figure 7: Temporal schematic integrating the tolerance checkpoints at each stage of the peripheral T cell 
lifespan. Six tolerance checkpoints exist and integrate to regulate T cell responses at all stages. These T cell 
regulatory checkpoints start at the naive T cell stage, where quiescence and ignorance enforce T cell tolerance. 
These checkpoints occur before T cell activation by cognate antigen encounter and priming. After antigen-specific 
T cell activation, co-stimulation-deficient T cell receptor (TCR) signalling can trigger anergy, which enforces T 
cell hyporesponsiveness and limits T cell responses to inappropriate stimuli (such as self-antigens). Such 
tolerogenic activation can also induce peripheral T cell deletion, known as tolerance-induced cell death. In 
periphery, effector T cells can be converted to peripheral TREG under specific signals. Adapter from ElTanbouly 
and Noelle (2021) 
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Ignorance : Transgenic murine models expressing a viral protein failed to elicit an autoimmune 

response (Jolicoeur et al., 1994). However, tolerance was removed if mice were then inoculated 

with the virus and T cells would eventually destroy β-islets (Ohashi et al., 1991; Oldstone et 

al., 1991). These early experiments showed how the immune system would ignore antigens not 

filtered by central tolerance, Ignorance is the absence of immune response of T cells against an 

antigen that would normally, given a specific context such as inflammation, trigger their 

activation. It does not affect their capacity to activate, would it be in the presence of the correct 

co-stimulation signals or cytokines (Cao et al., 2015; Heath et al., 1992; Mamula et al., 1992; 

Zehn and Bevan, 2006).  

Anergy : Distinct from ignorance and quiescence, anergy is the induced unresponsiveness of a 

T cell after the delivery of a strong TCR signal mediated by other cells (Jenkins and Schwartz, 

1987; Schwartz, 2003). This state is reversible in the presence of IL-2 (Beverly et al., 1992; 

Essery et al., 1988), but also integrates many other signal with other co-stimulatory molecules 

such as CD28, CTLA-4, or Ox40 (Krummel, 1995; Lathrop et al., 2004). 

Exhaustion: Extensively covered because of its major role in tumor escape, T cell exhaustion 

does not play a role in pathogenesis of autoimmune diseases. Rather, exhaustion is used as a 

marker of T cell activation in the immune response in systemic lupus erythematous (SLE), type 

1 diabetes (T1D) or multiple sclerosis (MS) (Lima et al., 2021; Pender et al., 2017; Wiedeman 

et al., 2020). Occurring after their continuous activation, T cell will gradually lose their effector 

functions and enter in an exhausted state. Often seen through the prism of cancer, and thus 

detrimental, exhaustion has been demonstrated beneficial for maintaining tissue integrity in 

case of prolonged inflammation.  

Peripheral TREG induction: mechanisms uncovered was the extra-thymic generation of TREG. 

CD4 T cells display a phenomenal plasticity, and can transdifferentiate into many subsets (see 

1.1.1). De novo generation of TREG happens in the periphery, where conventional T cells will 

acquire a partial TREG transcriptional and functional signature (Feuerer et al., 2010; Kretschmer 

et al., 2005). Albeit not as fully suppressive as their native, thymic counterparts, induced TREG 

are nevertheless critical for tissue homeostasis, notably gut (Lathrop et al., 2008), as well as 

several allergic (Curotto de Lafaille et al., 2008; Josefowicz et al., 2012) and autoimmune 

context (Huter et al., 2008; Lombardi et al., 2012; Mottet et al., 2003). 

Understanding T cell control of autoimmunity in the periphery provides a foundational 

insight into the intricate mechanisms that regulate our immune system's responses. This 
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knowledge not only sheds light on the prevention and management of various autoimmune 

disorders but also carries significant implications for the field of cardiovascular health. By 

exploring how T cell dysregulation can extend its influence into the cardiovascular system, we 

can uncover the intricate interplay between immunity and heart health. 
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1.2 CIRCULATING T CELLS IN CARDIOVASCULAR DISEASES 

1.2.1 Current state of cardiovascular diseases 

Cardiovascular diseases (CVD) is a general term that encompass a wide range of 

circulatory or cardiac diseases with very different aetiologies. The European Society of 

Cardiology (ESC) conducts an annual survey to describe the evolution of CVD landscape in all 

its 56 member countries. According to the 2022 survey from the European organisation, CVD 

is the leading cause of death in Europe (Timmis et al., 2018). With more than 4 million deaths 

in 2019 (2.2 million death in females and 1.9 million in males), it is far more common than 

cancer (2 million death reported). Among the different CVDs, ischemic heart diseases are the 

major cause of mortality represented, accounting for 45% of these deaths in females and 39% 

in males. This poses a major financial burden on economies with an estimated cost of 210 

billion euros per year in 2015, with more than half of it (110 billion, 53%) due to healthcare 

costs. Inequalities between higher and lower income countries participate to further increase 

the burden of lower income countries, where higher income countries have a better access to 

high quality care with fewer patients.  

An abundant literature review from clinical trials and epidemiologic studies have 

concluded that CVDs were largely preventable, especially for younger people. Indeed, despite 

rare genetic factors, most CVD risk factors are non-heritable. They include poor lifestyle habits, 

such as dietary risk factors, low physical activity, smoking, high systolic blood pressure, high 

cholesterol, or high body mass index (BMI) (Wilkins et al., 2017). Alcohol consumption has 

been reported as not impacting, or even associated to protective effect in some countries, 

however it is not recommended (Suliga et al., 2019).  

Ischemic heart diseases are heritable. These complex diseases are not monogenetic, but 

rather very polygenic. The 1000 genome project (McVean et al., 2012), massive sequencing of 

14 populations and 1092 complete human genomes, set the ground for genome-wide association 

studies (GWAS). The CARDIoGRAMplusC4D Consortium identified 44 loci across the 

genome linked to coronary artery disease, where mutations in these loci were found associated 

to vessels walls, lipid metabolism or inflammation (Nikpay et al., 2015). Similar studies were 

conducted for ischemic stroke (Malik et al., 2018) or peripheral artery disease (Klarin et al., 

2019). They highlighted the complexity of circulatory diseases, where the inheritance of genetic 

factors is aggravated in presence of behavioural factors. In peripheral artery disease (PAD), 

tobacco consumption has been directly linked to thrombotic sequelae (Holst et al., 2010), and 
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carriers of factor V coagulation variant (F5 p.R506Q) had greater effects of PAD on smokers 

than non-smokers. This is even more conspicuous when seemingly innocent habits can have 

long time impacts patients’ health. It was demonstrated how nuts consumption had a beneficial 

effect on CVDs, where walnut intake was associated to 17% reduce risk of strokes, and global 

intake of nuts is beneficial for individuals in reducing CVD (Guasch-Ferré et al., 2017). 

1.2.2 Immunological basis of CVDs: example of myocardial infarction 

The CVD landscape is very large and encompasses many aetiologies. Here, I will focus 

on how the immune system, and especially T cells, are involved in acute myocardial infarction 

as an example, before diving into the other CVDs. I will detail here what are the origins of this 

disease, and what are the immunological mechanisms for its onset and resolution, and how we 

can extrapolate these findings to other diseases. 

1.2.2.1 Myocardial infarction 

Acute myocardial infarction is a circulatory incident happening after one or more of the 

coronary arteries stop perfusing the heart. Blood flow interruption is often caused by the 

obstruction of the coronary arteries, followed by blood clot or rupture of atherosclerosis 

plaques, the fatty deposits that build up on vessel walls and can break off suddenly.  

During infarction, oxygenated blood does not perfuse the heart anymore of a prolonged 

period of time. Affected cardiac cells die en masse under these hypoxic conditions, around a 

damaged darker zone of necrotic cells called the infarcted area. Size of initial infarct varies 

greatly between patients, and impacts further recovery.  

The heart however, is a unique tissue. In adult mammals, myocardium displays poor 

regeneration functions. The cardiomyocytes, crucial for the pumping function, are non-mitotic 

after birth, which explains how rare primary cardiac tumours are. Estimates from 14C tracking 

showed how only 0.5 to 1% of cardiomyocytes are regenerated a year (Bergmann et al., 2009). 

Due to this limited proliferation, injuries are not healed through regeneration but with scarring. 

The process is far less efficient than restoring the initial cells, as scarring involves fibrosis, a 

collection of cross-linked collagen fibres. This makeshift repair offers diminished cardiac 

contractility, and ultimately leads to complications in surviving patients (Bayat et al., 2022). 

A massive inflammation arises from the massive, sudden death of cardiomyocytes, 

fibroblasts and other cells from the myocardium. Indeed, hypoxia-mediated necrosis releases 
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many pro inflammatory factors, triggering the Toll-like receptors of surrounding cells and 

switching them toward a pro-inflammatory state (Chong et al., 2004; Fu et al., 2018; Heidt et 

al., 2014). This early response is necessary for the recruitment of the innate immune system and 

the rapid clearance of debris by macrophages. Dying cells will secrete and activate matrix 

metalloproteinases (MMPs). These proteinases play a role in breaking down cellular and matrix 

components, assisting phagocytic macrophages in the removal of necrotic tissue (Spinale, 

2002). This highly inflammatory environment activates monocytes that differentiates into pro-

inflammatory macrophages, which further fuels inflammation for several days. Cell recruitment 

is at peak during days 3 to 7, where the myocardium infiltrate slowly switches towards pro-

repair cells, such as tissue macrophages or TREG.  (Yan et al., 2013). 

1.2.3 An ambiguous role for T cells in CVD, example in myocardial infarction 

Despite research heavily focusing on myeloid populations such as neutrophils or 

monocytes, T cells are key actors in myocardial infarction. T cells are present in relatively low 

numbers compared to other immune cell types in the myocardium, even after myocardial 

damage (Yan et al., 2013). Their contribution is however crucial, as abundance does not 

correlate with function here, as they will rather interact and shape surrounding cells, rather than 

exert direct functions on the tissue (reviewed by Hofmann and Frantz, 2015). One hallmark of 

lymphocytes implication here is the expansion of cardiac draining lymph nodes. In multiple 

models, myocardial injury leads to enlargement of mediastinal lymph nodes, whether it is 

murine (Ramos et al., 2017), rats (Ramos et al., 2012), or humans (Rieckmann et al., 2019; 

Sintou et al., 2020). 

T cells are observed in the infarcted area minutes after restoration of blood flow, likely 

brought from the circulating population (Hoffmann et al., 2012; Yang et al., 2006). Their 

migration toward the injured organ is helped with the upregulation of adhesion molecules, 

notably ICAM-1, by local myocardial cells caused by inflammation (Devaux et al., 1997). T 

cells will localise around vessels and extravascular space; In a murine model of transversal 

aorta constriction (TAC), global T cell depletion by TCRα knock-out (KO) mice did not 

develop heart failure compared to sham controls. Similar results were obtained independently 

by depleted B and T cells. In RAG2-KO mice, depletion of adaptive immune populations 

prevented cardiac dilation and attenuated cardiac dysfunction at 6 weeks post intervention 

(Laroumanie et al., 2014). T cell subsets contribution to the immune response is still debated 

among T subsets.  
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1.2.3.1 CD4+  effector T cells 

Investigating the role of CD4+ T cells in myocardial infarction was done by several 

groups. Using MHC-II KO mice, Stefan Frantz’s group showed that absence of CD4+ T cells 

leads to increased mortality in mice at 56 days (Hofmann et al., 2012). The poorer cardiac repair 

in CD4 depleted mice was linked with an increased pro-inflammatory monocyte infiltration, 

suggesting a beneficial role for CD4 T cells in modulating the innate response. Two other 

experimental studies on the same model found a detrimental role of T cells  after their depletion, 

showing that CD4+ T cells in TAC model was associated with adverse cardiac remodelling, 

increased fibrosis, increased macrophage infiltration and worsening of cardiac contractility 

(Laroumanie et al., 2014; Nevers et al., 2015). This opposition between positive and detrimental 

inflammation can be attributed to the different dynamics of the chronic (TAC) or acute (MI) 

damage. Nevertheless, these results confirm the highly crucial role of CD4+ T cells in the 

myocardial immune response. 

Authors suggested distinct roles of T cell subsets, notably Th1, Th2 and Tregs, which 

may explain the contradicting results. Th1 subset has been involved in atherosclerosis, an 

inflammatory driven CVD, where they have been shown to secrete pro-inflammatory IFN-γ 

Figure 8: Interplay between the cardiac and draining lymph nodes compartments. At the steady state, cardiac tissue and 
infiltrating macrophages present self-antigens to naïve T cells, contributing to peripheral tolerance. During infarction 
(right), self-antigens and inflammatory signals are released. It activates dendritic cells and macrophages, which in turn can 
present cardiac antigens to infiltrating T cells. Antigen can also be transported to lymph nodes where they can be presented 
to T cells. Activated T cells can then move to the infarcted zone by chemotaxis. 
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and fuel tissue damage (Frostegård et al., 1999). In patients with inflamed hearts, IFN-γ levels 

are increased and Th1 imbalance is associated with adverse cardiac remodelling and poorer 

prognostic (Cheng et al., 2005; Fukunaga et al., 2007). IFN-γ-related deleterious effect of Th1 

has been confirmed in murine TAC models, where they were shown to transition myofibroblast 

towards a pro-fibrotic profile (Nevers et al., 2017). IFN-γ secretion also drives the polarisation 

of macrophages towards a pro-inflammatory profile (Sica and Mantovani, 2012). 

Overabundance of inflammatory macrophages, or lack of switch towards regulatory profile, is 

associated with cardiac dysfunction (Shaojun Liu et al., 2020). 

Th2 cells have classically been reported as beneficial for cardiac repair. While no specific 

mechanism has been demonstrated, the results focus on the dampening of negative outcomes 

induced by the polarisation towards a pro-inflammatory Th1 response. Of note, one study found 

that Th2 response could be considered as pro-inflammatory, and failing murine hearts induced 

local damage from Th2 cytokines (Bansal et al., 2017).  

Pro-inflammatory Th17 cells have been described with ambivalent role in atherosclerosis 

(Taleb et al., 2015), or promoting heart failure in human myocarditis (Myers et al., 2016). 

Expanded after MI in the peripheral blood, with all other T cell subsets (Bansal et al., 2017), 

Th17 also infiltrate the infarcted tissue after their activation. Interestingly, IL-17A, Th17 

signature cytokine, has been associated with being proapoptotic in cardiomyocytes, profibrotic 

in cardiac fibroblast, and proinflammatory in macrophages in vitro (Yan et al., 2012). Authors 

noted however that 90% of IL-17A producing cells are γδ CD4- T cells, suggesting a modest 

contribution of Th17. A rare study in neonatal mice investigated how Th17 cells prevented 

cardiomyocytes proliferation in vitro (Li et al., 2020).  

1.2.3.2 Regulatory T cells 

Although T effector role is subject to debate, there seem to be a scientific consensus on 

the contribution of TREG. Abundantly present in circulating blood and as tissue-residents, they 

display specific phenotype and functions depending on the target organ, whether it is in muscle 

(Burzyn et al., 2013), aorta (Li et al., 2022), heart (Xia et al., 2020), their unique properties 

confer a protective effect on tissues. TREG play a central role in myocardial repair, as they 

regulate inflammation, provide cytokines for phenotype switch of macrophages and dendritic 

cell, and induce neo-angiogenesis. Depletion of TREG has been extensively done and reported. 

Frangogiannis group reported a modest but positive anti-inflammatory role (Saxena et al., 2014) 
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on fibroblast by secreting immunomodulatory proteins IL-10 and transforming growth factor β 

(TGF-β). TREG also exert paracrine effects on cardiomyocytes through the secretion of 6 other 

molecules, promoting their proliferation in vivo (Zacchigna et al., 2018). Non-specific 

activation of TREG following infarction showed improved healing and survival in mice 

compared to sham, where TREG fostered M2 polarisation of macrophages population and 

myofibroblast activation (Weirather et al., 2014). Confirming the beneficial role of activated 

TREG, the peripheral induction of TREG (iTREG) by pro-tolerogenic dendritic cells or cardiac 

progenitor cells has been reported as beneficial for cardiac repair (Choo et al., 2017; Mishra et 

al., 2022). In line with their diverse arsenal, TREG phenotype characterisation showed all cells 

do not contribute equally, as CD69+ were positively correlated with patient outcome by 

dampening IL-17 pro-inflammatory role (Blanco-Domínguez et al., 2022).  Investigating 

specificity, Delgobo and colleagues showed how the injection of monoclonal TREG specific to 

α-myosin lead to rapidly blunted inflammation, improved fibrotic repair and re-vascularisation 

(Delgobo et al., 2023).  

An ongoing, promising, clinical trial has been started, harnessing the positive impact of 

TREG in myocardial repair. The Low dose interleukin-2 in patients with stable ischaemic heart 

disease and acute coronary syndrome (LILACS) trial is using the autologous expansion of TREG 

to patients with stable ischaemic heart disease by providing low-dose IL-2 (Zhao et al., 2020).  

1.2.3.3 CD8+ T cells 

CD8+ T cells might be the most intriguing subset today. They were reported early on as 

activated after MI and able to kill cardiomyocytes in vitro. Even if present in large numbers 

after the infarct, they were initially reported as bystanders, without much importance. Indeed, 

studies have shown that depletion of CD8 T cells had no impact on cardiac functions or mice 

survival in various cardiovascular contexts (Elhage et al., 2004; Laroumanie et al., 2014; Li et 

al., 2020). Recently, a new interest has been found in dissecting CD8+ T cells role in cardiac 

diseases. A thorough, multi-model study demonstrated however how CD8 T cells drive adverse 

post-ischemic cardiac remodelling (Santos-Zas et al., 2021). Ait-Fella and colleagues 

experimentally determined that activated CD8+ T cells infiltrated the myocardium after MI. 

They demonstrated that granzyme B-mediated cytotoxicity was the main mechanism for cardiac 

destruction from CD8+ T cells, and ablation of T cells or granzyme B deficiency was protective 

in mice. Similar results were obtained in pig models of cardiac ischemia. Authors further proved 

clinical relevance by showing that patients with elevated granzyme B had poorer prognostic. 
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Single-cell observations in human failing hearts suggested that most CD8+ T cell rapidly 

become exhausted, a positive outcome given their cytotoxic functions (Rao et al., 2021). CD8+ 

T cells have been more broadly associated with CVD. A subset of CD8+ T cells,  CD95+CD8+ 

stem cell memory T (CD8 TSCM) cells, have been linked with CVD risk at large, estimated by 

Gensini score (Padgett et al., 2020). In this cohort of patients, authors could positively correlate 

the amount of TSCM to higher risks of strokes, myocardial infarction or atherosclerosis. 

1.2.4 T antigens in cardiovascular diseases 

1.2.4.1 Cardiac antigens 

CVDs are inflammatory driven diseases with antigen specific responses identified. In the 

heart, α-myosin has been described very early on autoimmune target (Donermeyer et al., 1995; 

Pummerer et al., 1996). Specifically, these studies highlighted the cardiac myosin heavy chain 

alpha (Myhca) residues 334-352 to elicit autoimmune myocarditis by MHC-II restricted 

presentation. Other positions have been described in autoimmune contexts (Axelrod et al., 

2022; Krebs et al., 2007; Nindl et al., 2012). Screening for other cardiac epitopes in mice has 

been unsuccessful. Rickemann and colleagues identified a collection of 8 heart-enriched 

proteins and tested their immunogenicity (Rieckmann et al., 2019). They generated 15 mers, 

MHC-II restricted from the putative autoantigens and cultured them with splenocytes, however 

only Myhca lead to IFN-γ and IL-2 production from T cells. Interestingly, Myhca was also 

found to activate T cells in vitro in sham mice, confirming the natural immunogenicity of the 

protein. The same group investigated a MI cohort and identified cardiac-specific isoform 

adrenergic receptor β1(ADRB-1) as a target in patients but not in healthy volunteers (Hapke et 

al., 2022). Cardiac-specific T cells seems to target native proteins normally expressed by cells, 

but not neo-antigen or shock proteins. Administration of α-myosin specific CD4+ T cells (TCR-

M) in mice has shown to improve post-MI cardiac remodelling by in vivo reconversion of Th 

cells towards iTREG profile (Nindl et al., 2012; Rieckmann et al., 2019). α-myosin specific T 

cells are not restricted to the injured organ and can be found in the circulation of patients with 

cardiac diseases (Fanti et al., 2022).  

Neoantigens formed during oxidative stress have also been identified.  Isolevuglandins 

(isoLV) are arachidonic acid derivative formed under oxidative stress that were known to 

activate pro-inflammatory DC and T cells, and promote hypertension (Kirabo et al., 2014). In 
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non-ischaemic infarction, the same group demonstrated how isoLVs acted as MHC-II 

neoantigens in cardiac pressure overload models (Ngwenyama et al., 2021).  

1.2.4.2 Vascular antigens 

Atherosclerosis is another CVD where T cell autoantigens were investigated, as T cells 

dominate the atherosclerotic plaque immune landscape (Fernandez et al., 2019; Jonasson et al., 

1986). There is active presentation of peptide in plaque, with many APC infiltration, and 

evidence of recent TCR engagement in activated plaque T cells (Depuydt et al., 2023). There 

is document basis for of an autoimmune, T specific driven response in atherosclerosis. 

Atherosclerotic infiltrating T cells reactive to oxidised lipoproteins and heat shock proteins have 

been identified in murine Apoe-KO mice by Immunoscope (Paulsson et al., 2000). TREG specific 

T cells specific to ApoB-100 protein, promoter of atherosclerosis, have shown to be linked to 

worsening of the disease (Wolf et al., 2020). Zinc transporter protein 9 (Zip9) protein, an 

androgen receptor and atherosclerosis promoter, was found to be expressed in the 

cardiovascular endothelium (Thomas et al., 2014). Chowdbhury and colleagues showed how 

APC presenting Zip9 peptides APC induced CD4+ T cell activation in vitro.  Tetraspanin 17, 

another endothelial transmembrane protein, was also found to be an autoantigen in 

atherosclerotic plaques (Chowdhury et al., 2022).  

1.2.4.3 No tolerance policy 

The number of cardiac or endothelial autoantigens identified demonstrates how most 

inflammatory diseases could be branded as autoimmune. The basis for tolerance rupture do not 

seem to be identical across aetiologies, however.  

One main driver identified has been molecular mimicry, where a pathogen and a host 

display similar peptides. It was described for coxsackie B3 virus induced myocarditis. In this 

example, molecular similarities between the M protein of coxsackie capsid protein and several 

cardiac myosin lead to myocarditis in patient and murine models (Manjula et al., 1985). Other 

viruses have been reported to induce myocarditis by similar mimicry mechanisms such as 

influenza viruses or myxovirus infection. In atherosclerosis, Chlamydia pneumoniae proteins 

are suspected to fuel immune response (Kuo et al., 1993). Expansion of CD8+ T cells specific 

to common viral antigens influenza, cytomegalovirus, or severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) were reported inside coronary plaques by Chowdbhury and 
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colleagues, but not by Depuydt et al. (2023). The protozoan parasite Trypanosoma cruzi 

responsible of Chagas disease induces a cross-reactive T cell immune response targeting 

myosin-B13 (Coatnoan et al., 2009; Cunha-Neto et al., 1996), eventually leading to 

myocarditis. 

Activation of T cells does not necessarily require the recognition of an epitope by the 

TCR, as they can be activated by bystander effect (Unutmaz et al., 1994). This is a known 

mechanism of activation in very inflammatory conditions such as hepatitis (Kim et al., 2018) 

or coxsackie-induced type I diabetes (Horwitz et al., 1998). Several reports have linked 

superantigen and autoimmune diseases. In CVDs, such mechanisms were reported as 

contributing but not founding events. For instance, viral infections have been reported as 

detrimental in atherosclerosis, by fuelling inflammation from the inflammatory cytokines 

released to fight the infection (reviewed by Libby et al., 1997).  

1.2.4.4 Super antigens 

Although superantigens not being strict antigen responses, there are documented 

superantigen responses implied in CVD aetiologies. Kawasaki syndrome is an acute systemic 

inflammation affecting primarily children under 5 (McCrindle et al., 2017). It often implies 

cardiovascular inflammatory complications, such as myocarditis or polyarteritis potentially 

leading to coronary artery aneurysms. Although the causative agents are, as of today, not 

completely understood, there is strong suspicion of an SA trigger. Indeed, the circulating T cells 

in Kawasaki syndrome represent abnormal elevation of certain Vβ families, where Vβ2 is 

consensual (Abe et al., 1992; Curtis et al., 1995; Pietra et al., 1994). Vβ2+ CD4+ and CD8+ will 

also preferably  infiltrate the inflamed organs such as the myocardium or coronary arteries, 

suggesting a sustained superantigen activation in those organs (Curtis et al., 1995). As typically 

observed in SA responses, Vβ2+ cells are highly polyclonal (Abe et al., 1993). 

Risk factors meta-analysis identified genetic polymorphisms associated with Kawasaki 

diseases, most of them being linked to immune system activation. Authors identified for 

instance secreted cytokines IL-6,  IL-10, TNF, lymphocytes activating factors CD40, PD1 or 

HLA genes (Onouchi et al., 2007; Xie et al., 2018), confirming the instrumental role of T cells. 

Single-cell sequencing has been recently performed on circulating immune cells of Kawasaki 

patients before and after therapy, confirming most of the GWAS observations made above 

(Wang et al., 2021). Although the authors used single-cell sequencing to do TCR tracking 
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between timepoints, they discarded clonotypes with counts below 3, which does not capture the 

expected diversity of a polyclonal response.  

Superantigens were also associated to endocarditis. Infective endocarditis is a 

transmittible disease caused by Staphylococcus aureus. It brought concern to the scientific 

community as being linked to multi drug resistance. In a rabbit model, it was shown that 

infective endocarditis was dependant on the SEC produced by Staphylococcus aureus (Salgado-

Pabón et al., 2013). Investigation of the presence of SA expression in strains from sepsis shock 

with endocarditis patients found the presence of several expressed genes, but could not conclude 

on their definitive association with the pathology (Chung et al., 2014). 

I have highlighted how pivotal T cells are for the progression and resolution of CVD, 

including myocardial infraction, as well as in the initiation of autoimmune myocarditis (Anzai 

et al., 2019; Won et al., 2022). The multiple T cell antigen described confirms the mounting of 

an effective immune response. Several studies have employed T cell repertoire sequencing to 

dissect the diversity, specificity and dynamics of T cells in patients with CVD. In 

atherosclerosis, TCR sequencing was used to demonstrate expansions of autoimmune clones. 

In immune checkpoint inhibitors treated patients, it identified cardiac-specific clones (Axelrod 

et al., 2022), while in ischaemic hearts, it found diversity differences between healthy and 

diseased hearts (Rieckmann et al., 2019; Tang et al., 2019).  
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1.3 DECIPHERING THE TCR LANDSCAPE – A METHODOLOGICAL OVERVIEW 

One complex, uncertain, profoundly stochastic object would remain hardly explored: the 

TCR repertoire. It can be defined as the collection of all possible TCR that can be generated, 

and then further declined between the theoretical and effectively selected one (see 1.1.2.3). The 

issues were mainly technical, as its vast diversity could not be easily studied by cloning each 

individual T cells. From the pioneering breakthrough in molecular biology and miniaturisation 

emerged new technologies that will ultimately unleash the potential of TCR repertoire 

sequencing, making possible to sequence billions of DNA reads in less than a week. From the 

first experimental proofs to high throughput sequencing, I will detail the methods employed, 

and the consecutive improvements brought to them that lead to the current state of the art 

methods to dissect large-scale repertoires. In a constantly evolving field, analysis methods 

paradigm opened the molecular-biology-centred TCR niche to ecology, mathematics and 

informatics.  

1.3.1 From T cells to TCR before NGS 

1.3.1.1 The early days of TCR discovery 

The first TCR observations were done on monoclonal murine and human “monospecific” 

T cell lines, exploiting hybridomas technique (Baker et al., 1979; Gillis et al., 1978). T cells 

were first identified by their reactivity to antibodies. The targets of antibodies derived from 

clones OKT3, OKT4, OKT8 (Reinherz et al., 1980b, 1980a) would later become CD3, CD4 

and CD8 proteins. First experimental isolation of the TCR was made using monoclonal 

antibodies directed against an MHC-I specific human T-cell clone, CT8III (Meuer et al., 1983). 

Immunoprecipitation of 125I radiolabelled CT8III TCR were then electrophoresed on reducing 

and non-reducing SDS-PAGE. This would reveal the α and β chains of the heterodimer TCR 

(see Figure 1). From a murine TCR clone, Saito and colleagues (Saito et al., 1984b) published 

the very first TCR complementary DNA (cDNA) complete sequences with the Maxam–Gilbert 

method (Maxam and Gilbert, 1980) using radioactive labelling of bases. 

The process got quickly refined and by 1990, the method used was already very similar 

to current ones (Bragado et al., 1990). Retro-transcription (RT) of RNA of T cell clones was 

performed, followed by polymerase chain reaction. Bragado et al. methods used a multiplex 

approach, using the common constant β chain as their first primer, and a combination of 20 
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oligonucleotides for each V-β family described. Direct 

Sanger sequencing (Sanger et al., 1977), instead of 

relying on long and hazardous bacterial cloning, came 

as a relief as it was a faster and more reliable sequencing 

approach (Bhardwaj et al., 1993). Indeed, the use of 

multiple primers scaled poorly, and in 1993 Bhardwaj et 

al. introduced the very first challenge to multiplex 

approach.  Rather than relying on 20 V-β primers, they 

designed a single universal Vβ-primer. Abstraction 

comes at the cost of specificity, with 1/3rd of the N-

terminal Vβ sequence not being recovered. Authors 

noted that “residual two-thirds of the Vβ gene analysed 

in this study would give enough sequence information to 

identify Vβ genes at the level of their subfamily members 

in most cases (62 of 71 known Vβ members), providing 

that the unanalysable N-terminal sequences are 

identical to the known Vβ sequences”.  Using universal 

Vβ primers, it could be demonstrated how a single T cell 

could rearrange two TCR β chains (Obata et al., 1993). As shown in Figure 9, amplification of 

the region spanning the Vβ-Cβ region of a T cell clone in lane 2 is very blurry. Authors 

hypothesised it was likely due to multiple TCRβ being rearranged. By using two different J 

primers (in lane 3 and 4) instead of the Cβ, they could demonstrate how the clone in lane 2 

rearranged two β chains. 

1.3.1.2 Proteomic to molecular biology transition: the immunoscope era  

These methods however, did not alleviate the need for more comprehensive data. Indeed, 

with millions of T cells per mL of blood, manually sequencing dozens of TCR would reveal 

too weak to observe large, dynamic immune responses. Fluorescent-conjugated antibodies 

specific to each Vβ were first used in mice to demonstrate how negative selection lead to the 

whole deletion of Vβ8.1 (Kappler et al., 1988), used in cytometry to quantify expansions of 

TCRs using these Vβ segments. Although rather limited as it confounds abundance and 

clonality, this approach requires minimal preparation of sample while providing solid insights 

on some specific diagnosis. Vβ cytometry is used in many clinical contexts : in haematology, 

Figure 9: Direct sequencing of TCRβ cDNA 
amplified with the Vβ-universal primer. Lane I, 
T-cell clone 341-1 with Cβ sequence primer. 
Lane 2, T-cell clone 341-62 with Cβ sequence 
primer. Arrows indicate the positions where 
Jβ1.5 and JB2.3 segments formed the mixed 
ladder. Lane 3, T-cell clone 341-62 with Jβ1.5 
sequence primer; and lane 4, T-cell clone 341-
62 with JB2.3 sequence primer. From Obata et 
al, 1993) 
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where T cell lymphoma can be detected by abnormally high Vβ usage in T cell (Potoczna et al., 

1996; Puisieux et al., 1996); or during the first HIV experiments where major oligoclonal 

expansions could be observed (Pantaleo et al., 1994). Still relevant today, Vβ cytometry can 

detect abnormal expansion of T cells restricted to a specific TRBV as a fast and relatively cheap 

alternative to sequencing. Due to its limitation (limitation of coverage of VJ genes and 

simultaneous colors), it must be confirmed by molecular techniques (Langerak et al., 2001). Vβ 

cytometry has been used to investigate multiple-inflammatory syndrome in children (MIS-C) 

which harbour a high percentage of Vβ21.3+ cells (Moreews et al., 2021), X-linked 

immunodeficiency (Goldman et al., 1992), multiple sclerosis (Hafler et al., 1996) or rheumatoid 

arthritis (Struyk et al., 1995). 

Nevertheless, single cytometry does not cover α chains, as very few antibodies directed 

against Vα families exist. Moreover, TRV cytometry does not provide information on the 

clonality. To tackle this issue, a French laboratory lead by the immunologist Philippe Kourilsky 

harnessed the properties of VDJ recombination and immune expansion. Given the varying size 

of CDR3, he studied the TCR repertoire changes through its CDR3 length distributions (Cochet 

et al., 1992; Pannetier et al., 1993). Integrating the intensity of CDR3 length fragments sizes on 

a gel, they were able to estimate what they called the relative index of stimulation (RIS), for 

which they derived a reliable indication of the emergence of a specific T cell clone. This 

technique initially called Immunoscope, based on the software used to integrate peaks, allowed 

for instance to identify oligoclonality in T lymphomas (Puisieux et al., 1996). Other groups 

developed similar scores based on the same approach, but maintaining the important notion of 

perturbation (Bomberger et al., 1998; Collette et al., 2004; Collette and Six, 2002; Gorochov et 

al., 1998; Mariotti-Ferrandiz et al., 2016). 

1.3.2 Emergence of NGS and ready-to-use kits 

Usage of fluorescent compounds rather than radiolabelled di-deoxyribonucleotides 

(ddNTP) (Smith et al., 1986) and capillary electrophoresis (Gocayne et al., 1987) opened new 

perspectives for large-scale sequencing. Although the Sanger method was considered robust 

(99,99% accuracy), it proved its limit for scalability. Indeed, the Human Genome Project, which 

goal was to sequence the whole human genome, was heavily relying on it.  It offered a solid 

incentive for the development of better methods and is considered instrumental in the 

development of NGS (Gibbs, 2020).  
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1.3.2.1 2nd generation sequencing 

NGS is a misleading term, as it refers to pretty much any technology that is done at scale. 

Instead, we will refer to it as nth-generation sequencing. TCR studies, as of now, are all based 

on second-generation sequencing (SGS). SGS is based on the synthesis-based sequencing 

(SBS) (Nyren et al., 1993), an assay where the addition of a labelled base could be detected on 

an elongated DNA strand. This technique brought many industrials to race and develop SBS-

based sequencers, where Illumina (Illumina Inc.) is now leader and provides most sequencing 

services for the TCR community. 

Illumina developed a 4 channel SBS on their platforms HiSeq and MiSeq, based on 

academic breakthrough (Bentley et al., 2008; Shendure et al., 2005). DNA templates extremities 

are fixed on a solid surface and extended in a bridge-fashion (Adessi et al., 2000; Nyren et al., 

1993). During sequencing, 3′-modified nucleotides are used to elongate millions of DNA 

strands in parallel. This prevents the elongation of multiple bases, until the addition of a reagent 

restores the missing -OH, allowing a new cycle of 1 base elongation step. The terminator can 

be removed enzymatically, hence termed reversible. This technology allows the synchronous 

sequencing of millions of DNA bases simultaneously. Analysing the laser-excitation imaging 

from single-molecule laser of the sequencing flowcells of every elongation step determines 

which bases are incorporated for each cluster on the flowcell (Lundquist et al., 2008).  

This offers four main advantages compared to previous methods, in the sense that is -

relatively- cheap, fast, reliable and highly scalable.  

Illumina will further refine its method by using patterned flowcell. By having evenly 

spaced and defined clusters, this greatly improves yield and better resolution of elongation 

clusters. Illumina also introduced exclusion amplification (ExAmp) to this generation of 

sequencer (Shen et al., 2014). Brought to HiSeq 4000, and above, and NovaSeq series, ExAmp 

only needs two channels to call the four bases based on their binary detection leveraging the 

kinetic properties of elongation.  

1.3.2.2 Multiplex, RACE, DNA 

Most of the current protocols to sequence TCR start from RNA transcripts. As Illumina’s 

technology requires DNA templates, it would be required to retro-transcribe (m)RNA to DNA 

first. TCR however, is made from semi-random rearrangements and although it would be 
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possible to obtain full length TRC extremities, the TRV would require either i) a universal 

primer before the TRV, ii) one primer for each known TRV, or iii) use a common V portion, at 

the cost of not covering the complete V gene as already done in the past. Groups from the 90’s 

used either ii) or iii).  

One more approach was developed from (Frohman et al., 1988) looking to obtain full 

length cDNA from variants mRNA, such as alternative splicing, they had to devise a method 

that could capture all mRNA based on their poly-A tail, and then used a single primer to amplify 

the different variants of a gene. The method, called rapid amplification of complementary ends 

(RACE), was quickly used to analyse and discover TCR genes (Loh et al., 1989). Another 

improvement came from template oligo switching (SMART technology), a reverse 

transcriptase adding a custom anchor at the end of its first strand (Zhu et al., 2001). The most 

common 5’RACE TCR sequencing kit is now acquired and developed by Takara Bio, using 

both 5’-RACE and templated oligo-switching. Many other commercial kits exist, all with 

specific constructs. An extensive list of all major protocols are listed and documented by 

MiLaboratories (https://mixcr.com). 

The biggest competitor to 5’-RACE has been multiplex PCR. A multi-center project lead 

by our laboratory (Barennes et al., 2021) offered an overview of different methods used to 

sequence repertoires. In a thorough investigation, all partnered laboratories amplified and 

sequenced TCRαβ from standardised input samples. This showed the superiority of the 5’-

RACE approach in both coverage and reproducibility when starting from RNA. In house 

multiplex methods have also been developed independently, showing the interest of the 

community and the accessibility of the method (Montagne et al., 2020). 

A big concern of multiplex based is the amplification bias due the high multiplexing of 

primers (Okino et al., 2016). A similar doubt can be casted on RACE methods, which can also 

be subject to early termination (Scotto–Lavino et al., 2006) or poor efficiency of the template 

switch that adds the 5′ adapter in only 20%–60% of RNA molecules (Wulf et al., 2019).  

To alleviate PCR biases, the addition of unique molecular barcodes (UMI) to DNA 

fragments extremities before the amplification steps has been developed (Kivioja et al., 2012). 

In short, UMI are small, random sequences used to track single cDNA molecules introduced at 

early steps, so that each cDNA is tagged with a unique UMI through the complete protocol. 

During preprocessing, sequences are first aligned to a reference genome and sequences with a 

same UMI are merged, as they were amplified from the same original cDNA. UMI length vary 

https://mixcr.com/
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between methods and manufacturers. For instance, TaKaRa uses 12 random nucleotides, with 

a fixed 4 bases linker, along with their 8 base long indexing (SMART-Seq® Human TCR, 

TaKaRa Bio), which would allow a maximum of ~104 unique molecules barcoding with single-

end sequencing (Best et al., 2015).  

In the case of the TCR, the addition of UMI is at a trade-off with the depth, as UMI-based 

amplifications tend to retrieve a lower amount of sample’s diversity (Barennes et al., 2021), but 

offers a better quantification. The methods, however, showed poor reproducibility compared to 

some 5’RACE protocols. 

The main pitfall of those high throughput methods is the loss of cell identity information. 

Indeed, all the aforementioned PCR-based methods are mainly applied to bulk T cells. They 

cannot recover the αβ pairing, as all sequences get pooled. A dedicated pipeline would require 

the cell-level barcoding of transcripts before their amplification to attempt the recovery. 

Another issue is the read length: with maximum 300bp per read, it is not possible to cover the 

whole TCR. Other attempts on IonTORRENT, a sequencing device tailored for long reads 

(>10kbp) were recorded, but authors used 200bp paired sequencing (Fang et al., 2014). 

1.3.2.3 Alignment of sequences 

Alignment refers to the pairing of raw nucleotides sequences to known sequences from a 

reference genome. As sequencing throughput increased, new methods have been developed and 

published. There is now an extensive number of methods optimised for different applications, 

whether it is bacterial unknown transcripts (Marçais et al., 2018), whole human genome 

(Altschul et al., 1990; Thompson et al., 1994), or RNA-seq focused data (Dobin et al., 2013). 

Adaptive immune receptor repertoires (AIRR) data is no different, and multiple suites have 

been designed to optimise TCR data alignment. Indeed, contrary to most genomic constructs, 

Adaptive immune repertoires (AIR) structure is very different in the sense that the tools need 

to correctly annotate each read to a V, D, J and C gene, with vastly different anchor points to 

determine the highly polymorphic CDR3. The most common tool to date is MiXCR (Bolotin et 

al., 2015), a constantly updated program specifically designed to align TCR datasets, with built-

in quality control and standardised outputs based on IMGT conventions (Lefranc et al., 2003). 

It has been adapted to current constraints of kits and sequencers that cannot sequence full length 

with a seed-and-vote approach to map genes (Liao et al., 2013). When multiple genes can be 

mapped to a single-read, as it is the case with very homologous TCR genes, a collection of 
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subreads (seed) is used to determine the optimal mapping by consensus (vote). These 

approaches are preferred over k-aligners as they do not have sources of randomness. Other 

suites provide similar outputs, for instance Decombinator is the 4th iteration of a TCR-focused 

python pipeline that handles raw data demultiplexing, including UMI, standart compliant 

annotation of reads (Peacock et al., 2021). On the other hand, pRESTO is a more general toolkit 

for AIR alignment, with deep possible customisation of alignments parameters, and many sub-

tools for BCR downstreams alignment (Vander Heiden et al., 2014). 

The main feature of these tools is how they handle amplification errors, with built-in PCR-

error correction and clonotype aggregation algorithm. Briefly, these algorithms will “rescue” 

reads with low quality initially discarded during alignment by aggregating them to high count, 

high quality clonotypes. MiXCR uses hierarchical clustering and fuzzy matching criteria 

(Bolotin et al., 2015).  

Other open-source aligners are available, especially in the field of RNA-seq without 

amplification of TCR. Among them, TRUST4 is specialised in reconstructing TCR from bulk 

and single cell RNA-seq (Song et al., 2021) and has been found the most reliable current 

available tool, outperforming MiXCR in the recovery of full length TCR sequences from 

transcriptomes. Other alternatives such as ImRep (Mandric et al., 2020) or CATT (Chen et al., 

2020) are available as well. Recent comparison of alignment tools  (MiXCR, TRUST4, CATT 

and ImReP) to recover reads from single-cell or RNA-seq from tissues have been published, 

but stirred controversy on the methodology used (Davydov et al., 2023; Huang et al., 2023; 

Peng et al., 2023). 

1.4 MEASURING THE TCR REPERTOIRE 

1.4.1 What is the unit in TCR repertoire analysis 

T cell clonality is a tricky aspect of their biology. A "clone" refers to a population of 

immune cells with identical TCR that originated from a single precursor cell, whereas a 

"clonotype" refers to the specific sequence of an antigen receptor on a T cell within that clone. 

The latter is the most commonly used definition, defined by final product of the somatic 

rearrangements following VDJ recombination, with the V, CDR3 and J genes used. All clones 

bear the same clonotypes, but not all clonotypes are derived from the same clones. For the sake 

of simplicity and standardisation, a nomenclature has been proposed that defines the TCR 

clonotype as “a unique nucleotide sequence that arises during the gene rearrangement process 
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for that receptor” (Yassai et al., 2009). When working with paired chain receptor, the final 

rearrangement of both chain is called a cell clonotype. In AIRR analysis, immunologists often 

go by the clonotype definition, although older records might use different wordings.  

1.4.1.1 VntJ, VaaJ, CDR3, a definition for a question? 

As we have covered in the 1st part of the introduction, TCR specificity is defined by the 

interaction of the TCR with a peptide loaded on an MHC and the product of the V(D)J 

rearrangements, fused to a constant region. Therefore, to describe a TCR, portion in contact 

with the MHC and its complementary chain, one should describe the genes of the rearrangement 

and the CDR3 region that is not hardcoded in the germline. We define a clonotype as a V-

CDR3-J. Then comes the choice of the level at which we define the clonotype, whether at the 

nucleotide (nt) or at the amino acid (aa) level. Hence V-CDR3NT-J, or V-CDR3AA-J. The latter 

is the classic clonotype definition, as it conveys the sense of the TCR specificity. V-CDR3NT-J 

can also be used in specific contexts, such as clone tracking. In fact, two clonotypes with similar 

CDR3s can be made from different nucleotides sequences, discriminating convergence from 

clonality. Indeed, the genetic code is redundant, and a single amino acid can be derived from 

several codons. Cysteine (C) can be encoded by the codons UGU and UGC, while leucine (L) 

can be coded by six different ones (CUU, CUC, CUA, CUG, UUA, UUG). Thus, if we consider 

for example an HIV-specific CDR3, consisting of the following 14 bases 

“CASSALASLNEQFF”, based on the genetic-code redundancy it can theoretically be derived 

from 2 *4* 6* 6* 4* 6* 4* 6* 6* 2* 2* 2* 2* 2 = 31,850,496 distinct nucleotide combinations. 

This concept is widely used in B cell repertoire analysis, where B cell receptor will undergo 

iterative random mutations to improve their affinity to an antigen (Maul and Gearhart, 2010). 

From this, it is possible to map the phylogeny of each antibody (Nouri and Kleinstein, 2018; 

Shlomchik et al., 1987). 

Aggregating TCR repertoires by their CDR3 alone is rarely used. CDR3 is the main 

contact point of the TCR with the pMHC complex (Dong et al., 2019), and predominantly drives 

antigen specificity. Studies focusing on CDR3 alone often only consider the specificity 

associated to the CDR3, and not at the clonotype level. This point will be further elaborated in 

1.5.2.2. 
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1.4.2 The grand ecological robbery 

The T cell receptor repertoire is the collection of all TCR that can be observed at a given 

time. There are many different scales of the repertoire, whether it is theoretical during 

generation, observable in an individual, or sampled during experimentation. If we consider 

TCRs as species, AIRR analysis is strikingly similar to ecology; birds’ species are now TCRs, 

forests are organs, biomes are individuals, cytokines are nutrients. Many authors have already 

developed this theory, comparing the T cell repertoire as an ecological niche, in a competing 

environment (Bautista et al., 2009; Freitas and Rocha, 2000; Schulenburg et al., 2009). 

These similarities also lead to the same question: how do I measure diversity? TCR are 

diverse, with sequences similarity that can be objectively measured and quantified. TCR 

repertoire are distinct at the scale of a cell subset, an organ, an individual, a population. 

Repertoires are dynamic, as they evolve in response to infections, vaccinations, much like to 

ecosystems. These properties have been widely conceptualised and developed by ecologists, 

from whom many tools have been adapted to TCR diversity studies. 

1.4.2.1 Indices for diversity 

Ecology distinguishes 3 types of diversity, α, β and γ (Whittaker, 1972). α-diversity is the 

diversity of a single sample, β-diversity is the evaluation of an assemblage of samples, and γ 

for comparing assemblages of several groups of samples. 

α-diversity is now widely used to evaluate repertoire diversity, and uses the notion of 

entropy to convey the idea of quantity of information contained in a repertoire. The Rényi 

entropy formula uses a parameter α on the exponent to quantify the number of species (α=0, 

Hill index), the relative evenness (α=1, Shannon index), the probability of interspecies collision 

(α=2, Simpson index), or the contribution of the main species (α=inf, Berger-Parker index). 

Although abstract, or even simplistic as it reduces a whole repertoire to a single value (Laydon 

et al., 2015), the Renyi entropy is a powerful tool that finds various relevant applications. Intra-

tumoral diversity has an abundant literature on the use of α-diversity to assess for the success 

of immunotherapies, predict diagnosis or disease outcome in patients (reviewed by Porciello et 

al., 2022).  

β-diversity in TCR repertoire analysis is studied through the similarity of two samples 

composition. Three approaches exist, either presence/absence based or abundance based, or 

similarity based. Presence/absence-based methods see data as binary, either the species have 
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been seen, or not. The Jaccard index, from the botanist Paul Jaccard (Jaccard, 1901), computes 

the overlap between two samples, and normalise it by the union of them. This is often contrasted 

with the abundance-based method which take into account the distribution of samples to the 

computation. The Morisita-Horn index, for instance, weights the similarity of frequencies 

between the repertoires to define similarity. Schober et al. (2020) used the Morisita-Horn index 

to track immune response convergence of mice after CMV infection, where they showed that 

T cell repertoire stabilisation occurred in 3 months after inoculation. The final approach 

considers the relative distance between species. Originally used for taxonomic or phylogenetic 

data, it can work from any pairwise distance matrix coupled with abundance data. Several 

methods have been proposed (Olson et al., 2022; Yokota et al., 2017) but their poor scaling due 

to quadratic complexity in NGS has hindered their use and development. 

Each of these β-diversity approaches has its pros and cons, Jaccard similarity is sensitive 

to rare clonotypes and sample size, while Morisita-Horn is less sensitive to these. Distance-

based approaches rely on a pairwise distance matrix, which can be computationally intensive 

and biased depending on the chosen downstream representation (Chari and Pachter, 2023; 

Wang et al., 2023). 

1.4.3 To normalise or not normalise, that is the question 

Counts normalisation is a sensitive topic in the AIRR analysis. Even if implementation 

of technical solutions such as UMI or single-cell barcoding greatly improve count precision, it 

does not alleviate the issue of highly unequal sampling sizes. There is no consensus yet on 

whether or not to perform normalisation, and the methods used often differ between research 

groups, studies and topics involved. This plethora of approaches is not bad per se, but rather 

reflects the necessity to tailor normalisation to each dataset specificity.  Whether they are 

original methods, or derived from other fields such as ecology or transcriptomics, they all carry 

strong assumptions on the data and its outcome. 

1.4.3.1 Ecology 

Ecology is the biggest contributor to normalisation in the TCR field. As a science bridging 

mathematics and biology, ecologists have been interested in the differences in samplings in an 

ecosystem for decades. The oldest, and perhaps most intuitive approach is to transform counts 

into frequencies, a method going with the fancy name of “Total Sum Normalisation”, which 

yields “normalised counts” or frequencies. Simple, yet powerful, the pitfalls of this method 
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when performing correlations are extensively covered by Jackson (Jackson, 1997). As an 

ecologist, Jackson criticises the use of compositional data (frequencies, percentages, 

proportions), as it changes the covariance and correlation matrices. He notes how switching 

from abundances to frequencies can create spurious relationships between variables. Another 

commonly used method is the random subsampling of an assemblage of datasets to the smallest, 

at the cost of discarding many potentially useful rare species.  

In bulk TCR analysis, converting counts to frequencies is widely used, although 

sometimes with additional filters to account for technical biases (Greiff et al., 2015b). 

Subsampling on the other hand, has been performed for different reasons. Zhang and colleagues 

downsampled mice repertoires, before aggregating them by condition and computing similarity 

matrices (J. Zhang et al., 2021), while (Vujović et al., 2023) used it to reduce computational 

load during pairwise comparisons. In a sense, the concept of pooling individuals before 

sequencing (meta-individual) is analogous to a pre-hoc normalisation. 

1.4.3.2 TCR-seq 

The TCR-seq community has not yet validated a widely consensual approach for 

normalisation yet, but several attempts were recorded. They can be divided into 2 categories, 

experimental or computational. Experimental occurs during the library preparation, while the 

latter focuses on aligned data. Normalisation performed by aligner has been covered in 1.3.2.3 

. 

Experimental approaches are the least biased, but probably the most difficult to set up. 

They rely on the introduction of a known, quantifiable quantity to allow correction further on 

the analysis pipeline. We have described how UMI introduction in pipeline can be a robust 

addition (Barennes et al., 2021; Kivioja et al., 2012), but other relevant methods have been 

described. In a multiplexed PCR targeting TCRG genes, Carlson et al. (Carlson et al., 2013) 

were adding equimolar synthetic DNA templates of all primers to their pool. They would then 

normalise downstream data by removing computationally the residual differences in 

amplification efficiency. In TCRpower (Dahal-Koirala et al., 2022), authors amplified by 

5’RACE peripheral blood mononuclear cells (PMBC) samples spiked with a collection of 45 

known TCRs. Detection of the various spike-ins of known concentrations would then allow 

them to evaluate the replicability of experiments and set threshold for false discovery rates 
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(Howie et al., 2015). Such methods, although providing useful experimental standards, require 

a careful experimental design and access to those biological controls.  

Downstream normalisation without ground truth controls performed after datasets 

alignment is the most common version. Many groups have adopted the removal of “singletons”, 

clonotypes with a count of one (Greiff et al., 2015a; Mhanna et al., 2021; Peng et al., 2023). 

The argumentation around this filter is that these clonotypes seen only once are artefacts, due 

to faulty PCR or error during library production, or errors during sequencing (Greiff et al., 

2015b). Two methods are possible, either completely filter out singletons, leaving the lowest 

count at two, or decrement one to each clonotype and filter clonotypes with null counts, which 

bear limited impact to downstream analysis. However, other groups are however confident in 

their pipeline and integrate them to their analysis (Britanova et al., 2014; Ronel et al., 2021; 

Sheng et al., 2021; Singleton et al., 2016). Singletons removal has been criticised by others in 

a comment to Peng et al. methods comparison (Davydov et al., 2023). 

Most authors rely on converting sums to frequencies and comparing them as is. Other 

teams prefer to focus on top clones (Amoriello et al., 2020; Poran et al., 2020). Other dedicated 

methods have been described. Chaara et al., (2018) propose an entropy-based threshold for 

normalisation, where multiple subsamplings are done at the Shannon entropy level and a 

“consensus” repertoire from the multiple subsampling is then used for subsequent analysis. A 

robust benchmark of low-read sample normalisation has demonstrated how correcting Shannon 

entropy estimates yields better results when performing downsampling (Bortone et al., 2021). 

However, the low traction gained by these studies highlights how reluctant are research groups 

to perform normalisation. One argument is that subsampling is at the cost of rare TCR coverage, 

as sample rarefaction profits to large clonotypes.  

1.4.4 Estimating the T cell diversity 

There have been numerous estimations of the relationship between T cells in an individual 

and TCR repertoire diversity. From these first observations refined thanks to technological 

improvements, the TCR field slowly progressed from naïve estimations to complex modelling 

of the virtually infinite TCR repertoire possibilities.  

First estimates did not take into account the number of clonotypes, but rather the number 

of T cells in an individual. The first estimates in humans date back to the 70’s. A 200g rat was 

estimated to hold 4-5 × 109  T cells (Trepel, 1974). From extrapolation using density ratios, a 

70kg human was estimated to contain 3.3 × 1011 T cells. Main tissue holders are lymph nodes 
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(41.2%), spleen (15.2%), thymus and bone marrow (10.8% each). Blood accounted for 2.2% of 

circulating T cells. 20 years later, a similar estimate will be produced, distinguishing CD4 and 

CD8 compartment, but placing the total of number of T cells in an adult human at 3.5 x 1011, 

of which 2.5 x 1011 CD4 T cells, and 1 x 1011 CD8+ T cells (Clark et al., 1999). In line with 

these results, another group reported that a mouse contain 108 T cells, without publishing their 

method, and estimated the human body to hold 4.5 × 1011 T cells (Jenkins et al., 2010). 

Assessment in mice through extensive counting puts the estimate at 6 x 107 T cells in a 25g 

individual mouse (Boyer et al., 2019), while a recent meta-analysis re-evaluated at 7 x 1011 T 

cells in an adult human (Sender and Milo, 2021; Westermann and Pabst, 1992). 

After developing Immunoscope (Pannetier et al., 1993), Philippe Kourilsky made several 

estimations of the link between T cell and TCR clonality. Sequencing the circulating T cell 

repertoire of adult donors showed that TRB diversity was about 106 clonotypes, and overall 

diversity of 108 TCRs (Arstila et al., 1999). In a response to Arstila’s findings, Keşmir, 

Borghans and de Boer (Keşmir et al., 2000) argued that these results should rather place total 

diversity at 1011. Further work on mice spleens revealed the same trend with 106 TRB chain in 

an individual (Casrouge et al., 2000). Robins et al. (Robins et al., 2009) also used Immunoscope 

to estimate the TCRβ repertoire of activated T cells to account for at least 3-4 x 105 TCRβ 

CDR3 in an adult human, which places the number of unique TRB in an individual at around 

3-4 x 106 according to their estimations.  

NGS has again revolutionised the field by making easily accessible the use of rarefaction 

and extrapolation models, and revise upwards previous estimates. (Britanova et al., 2014) 

estimated at 4 - 7 x 106 the number of TRB in a donor. A much bolder estimate was made using 

Chao2 estimation, placing at 0.1-1 x 108 the number of unique TCR β clonotypes in an 

individual (Qi et al., 2014). This method has been criticised by others (Laydon et al., 2015), 

showing that the Chao2 index method was not robust with varying sampling size. Complex 

modelling approaches were developed based on thymic output and observed diversity (Bains et 

al., 2009; Baltcheva et al., 2012, 2012; Thomas-Vaslin et al., 2008). This estimated the number 

of unique TCRs in the body to 1010 (Lythe et al., 2016). An even higher estimate of 108 to 109  

unique TRB clones was reached by Mora and Walczak (Mora, 2019) with probabilistic 

Bayesian modelling, which would be consistent with the 19 years old remarks from Keşmir and 

colleagues (Keşmir et al., 2000). 
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1.5 TRANSLATIONAL ASPECTS OF MODELLING 

The evolution of quantification methods of the T cell repertoire demonstrated how the 

TCR field has slowly evolved from a bench sided science towards an integrative one, bridging 

and immunology, mathematics and bioinformatics. Systems biology seeks to model, theorise, 

simulate how life works. It administers drugs with algorithms, dissects animals with 

mathematical models, and evolve with a constant flow of input data. Here, we will describe 

how the T cell repertoire has been modelled as a system, rather than a static object. 

1.5.1 The TCR repertoire: the top model 

1.5.1.1 Captivating equations 

Modelling the TCR repertoire has been a fundamental step in our understanding of the 

immune system. Although the genetic machinery producing the immense diversity of TCR 

repertoire has been thoroughly studied, a generative model of the thymic generation is still 

needed. Naïve attempts of in silico TCR generation have been recorded (Venturi et al., 2008) 

with random drawing of nucleotides, but did not reflects the genetic complexity of the complete 

VDJ recombination. Alexandra Walczak and Thierry Mora, two physicists, took an interesting 

approach by studying the TCR generation as a probabilistic process. Their reasoning is as 

follows: VDJ recombination is a stochastic process involving the probability of a V, D, J genes 

to be rearranged with one (alpha) or 2 processes of addition or deletion of nucleotides. If it 

cannot be deduced from a sequence which particular event led to its generation, the probability 

of the final outcome to happen is the sum of each path that led to it (Murugan et al., 2012). 

From here, probabilistic approach is used to estimate each parameter from empirical set of 

sequences (V, D, J gene usage, probability of N insertions or deletions). TCR observed in 

peripheral T cells are the product of selection after VDJ recombination, also authors used non-

productive TCR to exclude the impact of selection. The final probability of generating a TCR 

(Pgen) was dissociated from the probability of observing a sequence after selection (Ppost), 

with Q called the selection factor (Elhanati et al., 2014). This work brought i) a generation 

model for any sequence in the thymus plus ii) a generation model post selection (Marcou et al., 

2018; Sethna et al., 2019). Other improvements of this model were brought, by allowing the 

inference of new generative models from custom repertoires and support from other animal 

model such as a complete mouse or chicken models (Marcou et al., 2018). The theoretical model 

does not take into account the TRBD1-TRBD2 anecdotal rearrangement (see 1.1.2.3), nor the 
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downregulation of TdT in foetal stages (Bodger et al., 1983), and might require fine tuning for 

some specific use case. Nevertheless, comparison of Pdata and Pgen in large datasets have 

shown the robustness of the approach (Murugan et al., 2012).  

1.5.1.2 Curves that make you blush 

T cell populations have been extensively studied through mathematics in a field called 

quantitative immunology, in various context such as thymic export, T cell proliferation or 

lymphocyte turnover (De Boer and Perelson, 2013; Sidorov and Romanyukha, 1993; Thomas-

Vaslin et al., 2008). Mathematical models have also been used to describe AIRR, such as B and 

T repertoire. AIRR typically display an asymmetrical distribution where a few top clones will 

dominate and the majority of them will not be expanded. As such, clonotypes distribution are 

often modelled as a power-law, Zipf-like distribution (Desponds et al., 2016; Greiff et al., 

2015a; Mora et al., 2010) or Poisson distribution (Laydon et al., 2015). Modelling of the 

distribution has many useful applications, especially for the simulation of new repertoires. 

Greiff’s lab has developed ImmuneSim (Weber et al., 2020), an R package designed to generate 

random in silico AIRR repertoires with tuneable parameters for power-law or VDJ gene usages.  

1.5.1.3 The centralised architecture of TCR networks 

TCR repertoires are an ensemble of discrete values (TCR) that are independently 

produced and exported to the periphery. Nevertheless, the selected or expanded clones are not 

random, obeying to complex dynamics of competition for the pMHC niche (Freitas and Rocha, 

2000; Stirk et al., 2008). Working on mice, Nir Friedman’s group showed how TCR repertoires 

are structured in networks of CDR3s. By studying public (shared) versus private (non-shared) 

CDR3β in mice, the group showed how public CDR3β are found at higher frequencies in 

individuals (Madi et al., 2014). By clustering together CDR3β distant by at most 1 amino acid, 

they further demonstrated how public CDR3β wtih similar specificities were linked in the same 

clusters, and obtained similar results in human cohorts (Madi et al., 2017). The immune 

repertoire is imprinted with this network structure during its differentiation in the thymus. 

Quinou et al. showed how CD8+ mature thymic T cells selection drives the selection of related 

CDR3s (Quiniou et al., 2023).  

Far from being a theory or an abstract relationship, the paratope network has been directly 

linked to functionality of T cells. First evidences come from studies in mice. After infecting 



 

53 

mice with Listeria monocytogenes Jenkin’s lab demonstrated how CD4 T cells differentiation 

into effectors subsets was biased based on T cell specificity. When presented two peptides 

derived from Listeria monocytogenes , CD4+ T cells specific to an I-Aa MHC-II restricted 

peptide would differentiate into a Th1, while I-Ab would be biased towards T follicular helper 

profile (Tubo et al., 2013). In an extensive research paper, Zhang and colleagues further 

complimented this work, similar to the Hebbian theory of neural networks, cells that wire 

together, fire together.  By modelling together TCR CDR3 and transcriptional profiles, they 

showed T cell networks of closely related TCRs were correlated to transcriptional profile (J. 

Zhang et al., 2021)1. Moreover, they hinted toward a “wisdom of the crowd” mechanism of T 

cells, where the TCR clonotype that is closest to the ‘average’ of all the clonotypes, within the 

same network, have a better antigen targeting efficiency to a known antigen, and tend to be 

more expanded. 

1.5.2 Specificity and the limits of modelling 

1.5.2.1 Experimental efforts from a community 

Predicting T cells specificity has been major challenge of the past decades due to its 

complexity, but the reports of T cell specificities in the literature are scarce. Specificity is often 

collected from different methods and reported by groups independently. Facing this, a strong 

push from the TCR scientific community has been deployed to provide databases of TCR-

peptide-MHC complexes. In the form of open online resources, several datasets of curated, 

annotated TCR specificities were made public, from which we can distinguish the generic 

VDJdb (Shugay et al., 2018),  the structural-focused iEDB (Dhanda et al., 2019) or the 

pathology focused Mc-PAS (Tickotsky et al., 2017). These databases contain thousands of 

reported TCR-peptide specificities, often obtained through unreliable methodologies, which 

can be filtered. These databases reflect the recent topics of interest, hence being biased woth 

high reports of β and viral specificities of a restricted pool of antigens (Figure 10). Although 

not being ground truth, these remain widely used by the community to study the TCR repertoire. 

 

 
1 (Schattgen et al., 2022) would later report similar results on the correlation between TCR similarity and 

gene expression profiles of T cells  
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Figure 10: Can we predict T cell specificity with digital biology and machine learning? a, Number of T cell receptors (TCRs) 
containing α-chains, β-chains or paired chains, showing variation in numbers according to the data set (manually curated 
catalogue of pathology-associated TCR sequences (McPas-TCR), VDJ database (VDJdb), Immune Epitope Database (IEDB) 
and multiplex identification of TCR antigen specificity (MIRA)). b, Number of TCRs per antigen species of origin, showing that 
the majority of all antigens reported as binding a TCR are of viral origin. c, Cumulative frequency of antigens, showing that a 
group of 100 antigens makes up 70% of TCR–antigen pairs. From Hudson et al, 2023. 

1.5.2.2 In silico prediction of HTS 

With thousands of T cells reported in the databases, and with 1018 possible TCRs, several 

groups have proposed to infer the specificity of unknown T cells based on already described 

known. Leveraging the fact that TCR sharing similar properties do share similar specificities, 

an increasing number of approaches have been published to tackle the issue of specificity 

inference. Levenstein distance and its length restricted version, the Hamming distance, have 

been used to cluster CDR3 and infer specificity from neighbors (Chronister et al., 2021; Madi 

et al., 2017; Valkiers et al., 2021). Physico-chemical properties of amino acid in the CDR3 have 

been extrapolated to simulate similar docking to pMHC complex (Beshnova et al., 2020; 

Chronister et al., 2021; De Neuter et al., 2018; Gielis et al., 2019; Ostmeyer et al., 2019; Sidhom 

et al., 2021; Tong et al., 2020; Xu et al., 2022; Zhang et al., 2020), or a combination of both 

approaches (Glanville et al., 2017; Huang et al., 2020; Mayer-Blackwell et al., 2022). Other use 

structural data from the epitope to predict specificity of unknown T cell (H. Zhang et al., 2021) 

or leverage multi-omics from single-cell datasets (Fischer et al., 2020; Schattgen et al., 2022; 

Z. Zhang et al., 2021). 

The plurality of tools highlights the complexity of the TCR specificity, but also how this 

allows different approaches from modelling. GLIPH2 (Huang et al., 2020) was originally 

developed to identify sets of TCR specific to Mycobacterium tuberculosis (Mtb) epitopes. The 

original paper also described how single amino acid mutations of key positions lead to 

drastically decreased affinity for binding, as predicted by GLIPH2 and confirmed in vitro. 

Studying the circulating T cells from two groups of Mtb infected patients, progressor and non-

progressor, the group associated GLIPH2 with an experimental epitope screening approach 

(Musvosvi et al., 2023). They identified a cluster of CDR3 harboring a common pattern 

“S%LAAGQET”, and associated to the Mtb-progressor group. In vitro cloning of TCR and 
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challenge with Mtb lysates confirmed the specificity of T cells. These results demonstrate how 

in silico modelling has become a viable method to extract epitope-specific TCRs from large 

and noisy datasets. 
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2 CHAPTER 2: OBJECTIVE AND EXPERIMENTS 

2.1 OBJECTIVES 

Cardiovascular diseases are more than just inflammatory diseases, but are also at the 

centre of active immune adaptive responses, whether it is at the initiation, or the worsening of 

the disease. The nascent interest for immuno-cardiology has proven that T cells were heavily 

involved in the pathophysiology of most CVD and that they represent a promising reservoir of 

biomarkers. Hence, there is an unmet need for biomarkers to monitor the ongoing myocardial 

repair before it reaches a critical point. Moreover, harnessing T cells and their specificities in 

CVD is a relevant target to develop new therapies and enhance cardiac repair. 

However it is difficult to access to the damaged tissues in living humans, whether is it 

because the organs are hardly accessible such as the heart, or procedures are restricted to 

particular clinical situations. Therefore, there is a strong benefit to develop methods that can 

deliver an accurate picture of the cardiac repair without sampling the actual myocardium. There 

is compelling evidence that the T cell compartment foster myocardial repair and circulating T 

cells can reflect the tissue specific response happening in the heart. Circulating T cells, easily 

accessible from a blood sampling and in abundant numbers, appears as a promising tool for the 

diagnostic and exploration of the underlying immune processes in a quick, reliable, and non-

invasive procedure.  

The general objectives of this thesis are to i) identify biomarkers and ii) better understand 

the pathophysiology of CVD using TCR repertoire modelling of circulating T cells in CVD To 

reach these objectives, we defined specific objectives; 

1. Establish a quality control protocol to ensure high-dimensional TCR data reliability –

Objective 1 

2. Promises of TCR sequencing in pathophysiology understanding - an application to 

MISC –Objective 2   

3. Identification of the minimal TCR feature that could serve as biomarker –Objective 3 

 

Objective 1: TCR repertoire sequencing is a recent field and very few tools exist to 

assess the quality of downstream data alignment. By using new generation sequencing 
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technologies, my work first consisted in evaluating and developing the robustness of 

highly multiplexed data from massive sequencing. More precisely, my work aimed at 

designing and developing an extensive control quality tool tailored for TCR-seq data, 

and determine the impact of sequencing platform changes imposed by providers’ race 

for speed, depth and cost. This has been possible, thanks to a massive dataset of 1762 

samples obtained by the host laboratory using with two sequencing platforms, HiSeq 

and NovaSeq. Chapter 2 of this manuscript will be dedicated to the description of the R 

package Quality control for TCR Repertoires (QtCR) and how it led to strategies to 

identify reads contamination biases and correct them. 

 

Objective 2: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral 

agent with a pulmonary tropism. In some rare paediatric cases, infection leads to an 

acute multi-organ inflammatory syndrome with similar characteristics with Kawasaki 

disease and toxic shock syndrome, two diseases mediated by superantigens. From a 

paediatric cohort of patient with Multisystem Inflammatory Syndrome in Children 

(MIS-C), we used non-invasive whole blood sequencing to assess the polyclonality of 

TRBV12-3 expansions, confirming its relevance with partial results obtained with 

cytometry and multiplex nucleic acid hybridisation methods. This work, covered in 

Chapter 3, highlighted that COVID-19 elicited a superantigen T cell immune response 

in patients with recent SARS-CoV2 infection. 

 

Objective 3: Results obtained from objective 2 showed how TCR sequencing can allow 

to confirm the pathophysiology mechanism in a context of superantigen stimulation. 

However, this is one specific case with a strong impact of TCR repertoire perturbation 

(%TRBV11-2 usage and contraction). As introduced in section 1.2.4, CVD are 

associated with different type of antigens, some of them being directed against the self. 

Therefore, the alterations of the repertoire before or after the CVD development might 

be subtle, and TCR sequencing promise for pathophysiology understanding might be 

challenging. To start tackling this challenge and determine whether TCR sequencing 

could be used as a biomarker of CVD, we analysed the TCR sequencing of 28 patients 

from frozen whole blood, we describe an innovative method to identify a signature of 

CDR3 that classifies our patients based on their cardiac repair recovery outcome. We 

confirmed our results on control patients and demonstrate how a distinct set of CDR3 is 

enriched in the circulating repertoire of patients with good healing outcome. 
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Objective 4: Chapter 3 identified a circulating T cell signature of myocardial repair 

associated with good healers. In this part, we sought to find this T cell signature on two 

other cohorts. First, in cardiac biopsies of patients who died from myocardial infarction. 

Second, on a cohort of 69 patients with type II diabetes that just suffered myocardial 

infarction. Here, we show how clustering approaches can be leveraged for repertoires 

with limited amount of material. 
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2.2 METHODS AND COHORTS 

2.2.1 Cohorts 

2.2.1.1 TRiPoD project 

The Treg repertoire in Physiology or Diseases (TRiPoD) is a dataset of 1872 murine 

repertoire from 4 T-cell population and 8 different organs. Samples were all prepared by our 

lab using the UMI-free SMARTer Human TCR a/b Profiling Kit v1 (TaKaRa Bio). n= 509 

samples were sequenced using HiSeq 2500 with 300bp, single-end sequencing. n= 1363 using 

NovaSeq 6000 with 250bp, paired-end sequencing (see table). Demultiplexing was performed 

by the facilities and raw FASTQ were aligned using MiXCR on our servers.  TriPod murine 

project represent more than 1700 sequenced TCR libraries, sequenced on 23 batches, spanning 

an 8 years period. As NovaSeq uses a different chemistry (ExAmp, see 1.3.2), read layout 

(single-end vs paired-end), the murine TriPoD project was used as a robust benchmark to ensure 

the reproducibility of sequencing across different platforms. 

 HiSeq 2500 NovaSeq 

Read length (bp) 300 250 

Read layout single-end paired-end 

Sequencing depth 200GB 400GB 

Flow Cell splitting Yes (2) Yes (2) 

Samples processed 192 192 

Theoretical 
Reads/sample ~1 x 106 ~2 x 106 

 

Table 1: Comparison of HiSeq and NovaSeq parameters. 

2.2.1.2 The AIR-MI Project 

The autoimmune repertoire in myocardial infarction (AIR-MI) is a transnational projects 

between French (Leader Dr Mariotti-Ferrandiz), Austrian (Pr Peter Rainer) and German 

laboratories (Dr Gustavo Ramos). AIR-MI project is built on the hypothesis that T cell shaped 
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adaptive immune processes crucially regulate cardiac repair after injury. The project framework 

allowed to exploit data from 3 cohorts: 

The Etiology, Titre-Course, and Survival (ETiCS) study is an investigator-initiated, 

prospective multicentre  diagnostic  study  under  the  auspices  of  the  CNHF (Deubner et al., 

2010b). Among the 400 patients, we had access to 150 patients with initial acute myocardial 

infarction. Patients were followed for 12 months during 4 visits: initial inclusion, 3-, 6- and 12-

months. Participants were defined into STEMI or non STEMI according to the observation of 

acute ST elevation at inclusion following guidelines (Antman et al., 2004). At each timepoints, 

a comprehensive cardiac assessment is collected. Baseline assessment includes clinical status, 

results from cardiac catheterisation (left and right heart pressures / haemodynamic), 

echocardiography, electrocardiogram (ECG), Holter-ECG and blood sampling. 

We selected patients with a sufficient initial infarct to assess the clinical recovery, with 

baseline EF < 50%. Patients were further grouped into two outcomes, good healer and poor 

healers depending out their cardiac recovery outcome. Patients with %δLVEF < 13% between 

index hospitalisation and 12-month follow-up were considered poor healers, while %δLVEF > 

13% is classified as good healer. Healthy volunteers obtained from Etablissement Français du 

Sang were collected, with regard to age and sex. Stratification strategy and demographics data 

are presented in Figure 11. 

In addition to the ETiCS cohort, we had access to n=30 cardiac biopsies from Institute of 

Pathology biobank (Medical University of Graz), with matched non control tissue (n=30), in 

Figure 11: (Left) Patient stratification as good or bad healers from the ETiCS cohort. Post-hoc 
analysis/stratification scheme of Würzburg patients according to the longitudinal change in their LVEF within 12 
months after MI (ΔEF). (Top Right) Sex ratio among patients in cohort. (Bottom right)Age distribution among 
groups. 
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this case lungs. Biopsies were collected from post-MI patients over the last 10 years, and 

preserved in formalin-fixed paraffin embedding (FFPE). Cardiac biopsies represent fatal early 

MI events, with matched lungs. Data were prepared and sequenced by collaborators. The role 

of these samples is not to stratify outcomes of infiltrating T cells, but rather explore the overlap 

between the circulating cardiac signatures obtained with the ETiCS cohort for comparison. 

Lastly, I determined whether our signature obtained with the ETiCS cohort could be 

generalisable to other patients. To this end, we had access to frozen blood samples of patients 

from the Empagliflozin in patients with acute Myocardial infarction (EMMY) (Tripolt et al., 

2020; von Lewinski et al., 2022). Participants in the EMMY trial either received a 10mg 

Empagliflozin daily dose, or a placebo (NCT03087773).  Similarly, to ETiCS, patient’s blood 

was collected at hospital admission, and cardiac functions were assessed. At 6-month follow-

up (Visit 4, furthest timepoint), we determined the change in %δLVEF and stratified patients 

in poor and good healers groups. Among the 199 samples sent, we sequenced 116 samples with 

sufficient quality on MiniSeq (Illumina), 300bp single-end. 

2.2.1.3 MIS-C paediatric patients 

As a part of a national collaboration emerging from the rise of Kawasaki-like syndromes 

after COVID-19, we investigated the circulating T cell repertoire of paediatric patients. 

Paediatric patients with north African ethnicities were reporting Kawasaki-like manifestations 

after COVID-19 infection, called MIS-C, prompting suspicion of a similar superantigen effect. 

Our collaborators recruited of a cohort of patients with Kawasaki-like clinical symptoms and 

we performed deep sequencing of their T cell receptor at baseline hospitalisation and ~6 weeks 

after. We obtained n=16 MIS-C patients’ repertoires, with 1- or 2 time-points (hospitalisation 

or 6-8 week follow-up). In parallel, we obtained the cytometry Vβ profiling or circulatory T 

cells at hospitalisation, along with Nanostring TRBV profiling.  

2.2.2 Methods 

2.2.2.1 RNA extraction from frozen whole blood  

Cryopreserved whole blood is a very easy way to collect material in patients which comes 

with great challenges in its handling. Whole blood is a tricky material to work with because of 

the amount of RNA degrading enzymes (RNAse) it contains, and the labile feature of some 
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immune cells, such as neutrophils, who tend to die rapidly after collection, releasing RNAse 

and inducing cell death. Multiple commercial methods have been developed to directly address 

this issue. One the most popular, PAXgene tubes (PreAnalytix), contains reagents that directly 

stabilise intracellular RNA upon collection and reduce the risks of losing material (Chai et al., 

2005). Other methods consist of separating peripheral blood mononucleated cells (PBMC) and 

freezing them, to isolate immune cells from granulocytes (neutrophils, basophils and 

eosinophils) and blood components (erythrocytes and platelets). This prevent the degradation 

of sample RNA, and enrich blood in T cells. Indeed, T cells make up around 20% of circulating 

cells in humans, with about 1 x 106 T lymphocytes per mL of blood in healthy adults, although 

it can vary greatly during life events such as active infections or treatments.  

Red blood cells globin can take up to 76% of of total mRNA transcripts. A whole 

trancriptome study from the Genotype-Tissue Expression (GTEx) Consortium have shown red 

blood cells globin expression from blood samples take ~60% of the transcriptome (Melé et al., 

2015). Studies focusing on transcripts have found that β-globins could take up to 76% of mRNA 

in total blood (Mastrokolias et al., 2012). Benchmarks performed in the lab have shown that β-

globin depletion does not affect TCR recovery, or downstream repertoire diversity (results not 

shown).  

Moreover, TCR 

genes are not among the 

most expressed genes of 

T cells. As shown in 

Figure 12, constant beta 

chain of the TCR 

(TRBC2) is expressed 

between 200 and 400 

transcripts per million 

(TPM) in mature 

peripheral T cells 

(Adams et al., 2012), lower than actin-β gene with 700-4000 TPM. As a comparison, β-globin 

(HHB gene) is expressed at 14200 TPM in erythrocytes in this dataset. This is in-par with 

other’s estimation made of about 500TPM in “pure lymphocyte population” (Brown et al., 

2015).  This stresses the need to collect RNA of the best quality possible, as degradation will 

drastically influence the capture of T cell diversity in a sample, both quantitatively and 

Figure 12: Expression levels of TRBC1-2 gene in circulating populations, 
expressed in transcript per millions (TPM). Gene expression from 
BLUEPRINT dataset (Adams et al., 2012) 
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qualitatively. Indeed, increasing state of degradation of RNA samples lead to poorer 

performance of RT and amplification steps, and hence recovery of full length TCR prior to 

alignment (Shen et al., 2018). Genolet et al. also have shown how RNA degradation 

preferentially affects TCRα, hence biasing poor quality library towards TCRβ recovery 

(Genolet et al., 2023).  

RNA quality is computed using the RNA Integrity Number (RIN), assigning integrity 

value to RNA peaks measurements of ribosomal peaks 18S and 28S (Schroeder et al., 2006). 

ETiCS cohort was used to benchmark our ability to capture T cell receptor in the worse 

conditions. Indeed, samples were collected more than 10 years ago, and whole blood was 

directly stored at -80°C without any preparation. Thawing samples resulted in a very low RNA 

quality. Thawing cells ruptures their plasma membrane due to ice crystal formation (Pegg, 

2010), resulting in the release of RNA of interest in the extracellular medium, where there is an 

intense RNAse activity. Several studies have benchmarked the best kits and methods to extract 

RNA from this kind of samples (Kim et al., 2014; Yamagata et al., 2021). They concluded that 

fast thawing and NucleoSpin RNA blood kit (Macherey-Nagel) were the best combination for 

yield and RNA purity. Healthy volunteers 

obtained from EFS were prepared in a similar 

fashion limit bias, and whole blood was stored 

at -80°C upon collection for a year prior to 

library preparation. Despite similar 

preparation, we obtained low RIN for samples 

from biobanks.  Distribution of RIN numbers 

obtained from this protocol is shown in Figure 

13. RIN scores and dosage were obtained 

from BioAnalyser 2100 (Agilent) or 

TapeStation 4200 (Agilent). 

2.2.2.2 Preparation of DNA TCR libraries and sequencing and validation 

300ng of RNA template was used for the preparation of libraries from whole blood TCR. 

TCR amplification and barcoding was made with SMARTer Human TCR a/b Profiling Kit 

version 1 (TakaraBio) following their protocol. Experiments were automatised on pipetting 

robot, when possible, to ensure reproducibility. One minor optimisation was made to the 

protocol, using twice more DNA template than recommended during second round of PCR 

Figure 13: RNA Integrity Numbers obtained from extracted 
RNA of healthy volunteers or samples of patients. RIN 
thresholds: poor <3, 3<bad<7, good >7 
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(barcoding step, 2µL of DNA instead of 1). Individual libraries were purified using AMPure 

XP beads (Agencourt), before qualification on TapeStation 4200. Libraries sequenced in 

Miniseq were further purified on agarose gel electrophoresis migration (1% agarose), and DNA 

purified using NucleoSpin Gel and PCR Clean-up (Macherey-Nagel).  

We stress on the purification part, as it is a crucial and often overlooked step before 

sequencing. We noticed striking improvements when performing pool purification before 

sequencing, in all systems used in this thesis (MiniSeq, HiSeq or NovaSeq). Pool purification, 

although not performed usually in our pipeline, showed important improvement of yield when 

done with care (results not shown). 

Equimolar pooling of libraries was done before sequencing on dedicated platforms 

(MiniSeq, HiSeq or NovaSeq). Demultiplexing was done by platforms (LIGAN, Institut du 

Cerveau et de la Moelle, or Institut Pasteur). Raw sequence quality was assessed using FastQC 

(Andrews, 2010). TCR sequence alignment was performed using MiXCR v3.0.13 (Bolotin et 

al., 2015) using recommended parameters for TaKaRa 5’ RACE kit strategy. Validation of TCR 

data in accordance with initial material is performed using our QtCR package, developed in 

Chapter 0. 
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3 RESULTS 

3.1 CHAPTER 3: IDENTIFICATION AND CORRECTION OF INDEX HOPPING THROUGH 

(DEEP) QUALITY CONTROL OF TCR REPERTOIRES 

The TCR sequencing field is in constant evolution with rapidly evolving methods. The 

race to increasing multiplexing, deeper sequencing is often at the cost of a thorough quality 

control (QC). Indeed, QC is a critical step in data analysis to avoid drawing compromised 

conclusion based on experimental biases. In TCR-seq, poor data quality can be attributed to 

initial sample retrieval, library preparation or sequencing parameters. So far, there is no 

dedicated tool to integrate these information. To this end, I have developed Quality Control for 

T cell Repertoires (QtCR), an integrative pipeline that aggregates the relevant information from 

all steps prior to sequencing to identify discrepancies and batch effects.  

A recent benchmark published by our team showed how the different commercially 

available methods for TCR repertoire library preparation could yield biases in downstream 

analysis (Barennes et al., 2021). Moreover, another critical step during repertoire data 

production is the sequencer. Each generation of sequencer brought deeper sequencing. For 

instance, Illumina’s ExAmp technology came with their NovaSeq series (Shen et al., 2014) . 

However, most datasets produced in the laboratory were sequenced using HiSeq 2500, which 

featured different read length, non-paired data and a lower depth. 

To evaluate how these parameters could affect gene mapping and downstream analysis 

such as diversity metrics, I had access to a dataset of a murine atlas of more than 1762 TCR 

samples produced by the laboratory in the last 6 years. Libraries were all produced using the 

same protocol, but were sequenced on two different platforms: HiSeq 2500 and NovaSeq 6000, 

which featured the ExAmp technology. 

The QtCR tool and its demonstration are detailed as a manuscript submitted for 

publication. In brief, we showed how different depth of sequencing did not affect global 

clustering of sample nor diversity metrics in this dataset. In contrast, we demonstrated how 

single- and paired-end read layouts affected the MiXCR gene alignment, along with the 

different reads. Applying a normalisation of read length and layouts, we showed that the 

observed batch effects were corrected. Finally, the analysis of samples sequenced with NovaSeq 

6000 showed unexpected clustering of samples sharing same sequencing index. This 



 

69 

observation suggested a well-known phenomenon associated with the recent Illumina 

sequencing chemistry, namely index hopping, that lead us develop a novel method to remove 

such contamination in batches of samples produced with the NovaSeq sequencer.  
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3.1.1 Abstract 1 

Integration of high quality T cell receptor sequencing (TCR-seq) datasets is necessary to 2 

build large-scale atlases of immune receptors. Yet, there is no specialized tools ensuring a 3 

thorough quality control (QC) of the data. We thus developed QtCR, an integrative R package 4 

designed to identify and quantify discrepancies in TCR-seq data on a multi-scale level.  We 5 

tested QtCR in a murine dataset of 1762 samples generated with variations in the protocol due 6 

to technology evolution. We found that read length, but not sequencing depth, introduces strong 7 

batch effects that can be mitigated by harmonizing sequencing and alignment layouts. We also 8 

showed that NovaSeq 6000 sequencing introduces index hopping contamination and how it 9 

affect on sample similarity. To tackle this issue, we developed a prior-free algorithm to filter 10 

signal from noise and established its performance by restoring a biologically relevant clustering 11 

in highly contaminated data. 12 

  13 



 

72 

3.1.2 Introduction  14 

The widespread use of high throughput sequencing and the ever-increasing depth of the new 15 

sequencers have recently revolutionised the field of adaptive immune receptor repertoire 16 

(AIRR). This increase in popularity has been pushed with the help of the development and 17 

commercialization of ready-to-use kits with efficient primers, which allowed relatively robust 18 

and consistent results1. Recent developments in sequencing platforms offer multiplexing 19 

through dual indexing of reads, which allowed an increasing number of simultaneously 20 

sequenced samples in a single run, with up to 96 for most of the TCR kits. The constant 21 

evolution of how AIRR sequencing (AIRR-seq) data are produced, processed and analysed 2 22 

stresses the need to harmonise pipelines of data production through robust benchmarking1. As 23 

such, a scientific society, the AIRR community, has been founded and is leading several studies 24 

to compare and set guidelines on the good practices of AIRR-seq data3–5  25 

However, these good practices may not alleviate the main issue of the reliability of the data 26 

production. AIRR-seq, just like any other sequencing approach, is very sensitive to data 27 

production issues6,7. Sample collection, extraction, and preparation before sequencing are often 28 

carried out by multiple experimenters, who can also be different from the ultimate end-user (the 29 

bioinformatician) analysing the data. This compartmentalisation of data production and analysis 30 

further complexifies the identification of library preparation issues. To mitigate these issues, 31 

authors have proposed to use technical replicates 8  or spike-ins controls9,10, but this comes at a 32 

prohibitive cost, especially for large cohorts. Thorough quality control and data collection at 33 

every step of the library production then appear as a critical step towards data analysis to avoid 34 

drawing compromised conclusions on technical biases4.  35 

To date, very few solutions exist to assess the quality of AIRR-seq. FastQC is a widely used 36 

tool to check for poor raw output from the sequencer but was not developed to handle alignment 37 

and mapping metrics11. On the other hand, the most popular AIRR-focused alignment tool, 38 

MiXCR, was recently updated and offers AIRR-tailored QC functions related to the mapping 39 

and alignment12. However, these tools do not take into account the many technical and 40 

experimental parameters that may have influenced these metrics. Notably, contamination is a 41 

very important issue that is hardly solved, as many factors can lead to it, whether it happens 42 

during collection, storage, library preparation or during sequencing6,13–15. The latter is often due 43 

to a recently introduced phenomenon called index hopping16, where sequencing reads are not 44 

correctly attributed to samples due to misassigned indexes and identified in many other 45 

applications17–20. A widely used technique is singleton removal21, accounting for errors in 46 

https://www.zotero.org/google-docs/?Nw9Y7o


 

73 

sequencing, but remains limited for mid- or high-level contamination. Although a recent 47 

approach has been developed to tackle the issue of T-cell receptor sequencing (TCR-seq), it 48 

requires extensive a priori knowledge and assumptions of the contamination, such as control 49 

“clean” datasets, which hinders its potential uses22.  50 

Therefore, given the widespread use of AIRR-seq for pathophysiology study and disease 51 

diagnosis, we believe it is of utmost importance to have efficient quality control tools that 52 

should enable the detection of contamination, but also technical issues to identify technical 53 

outliers from biological outliers. To this end, we first focused on TCR-seq as our main field of 54 

research and developed the Quality control for T cell receptor Repertoire, QtCR, an integrative 55 

tool to aggregate relevant data from the library preparation to sequencing output of TCR-seq 56 

data. QtCR aggregates all the data collected by experimenters during the library preparation, 57 

along with alignment and TCR-seq specific metrics. QtCR offers a wide range of QC metrics 58 

with absolute and relative thresholds to identify abnormal data and outliers about the input 59 

material identifying source of contamination, batch effects or meta-batch effects.  60 

We validated the performance of our tool with a large dataset of a murine TCR atlas covering 61 

eight years of continuous production, multiple alignment references version, different 62 

sequencer platforms and sequencing facilities, as well as various mouse genetic backgrounds 63 

and sorted T cell subsets. 64 

3.1.3 Methods 65 

Mouse experiments 66 

Six- to 80-week-old male and female C57BL/6- and NOD-Foxp3-EGFP transgenic mice 67 

expressing GFP under the control of the Foxp3 gene promoter were, respectively, provided by 68 

B. Malissen (Luminy, Marseille, France) and V. Kuchroo (Brigham and Women’s Hospital, 69 

Boston, MA). All animals were maintained at the Sorbonne Université Centre 70 

d’Expérimentation Fonctionnelle animal facility under specific pathogen-free conditions in 71 

agreement with the current European legislation on animal care, housing, and scientific 72 

experimentation (agreement number A751315). All procedures were approved by the local 73 

animal ethics committee (Paris, France) 74 

Cell preparation 75 

As detailed in a previous study23, cells from various lymphoid organs were harvested and 76 

incubated with fluorescent antibodies prior to being sorted on a FACSAria II cytometer (BD 77 
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Biosciences) with >95% purity into the four subsets: CD4+ FoxP3+ (Tregs), CD4+ FoxP3- 78 

(Teffs), CD8+ FoxP3- (CD8 T cells) and thymic CD4+ CD8+ (precursors). RNA was extracted 79 

using the RNAqueous Total RNA Isolation Kit (Invitrogen). 80 

Library preparation 81 

Starting from 100 ng of RNA quantified with NanoDrop (ThermoFisher Scientific), 1762 TCR 82 

librairies were prepared with the SMARTer Mouse TCRa/b Profiling Kit V1 (Takara Bio), 83 

assisted with a pipetting robot Ascia (PRIMADIAG) allowing the simultaneous preparation of 84 

96 libraries on PCR plates. Importantly, library position on 96-well plates were randomised 85 

prior to library preparation. Libraries were then quantified prior to sequencing using 86 

BioAnalyzer 2100 (Agilent) or TapeStation 4200 (Agilent).   87 

Sequencing and pre-processing of TCR seq data  88 

TCR libraries were sequenced with either HiSeq 2500 single-end (300 bp) (Illumina) or 89 

NovaSeq 6000 paired-end (250 bp) (Illumina) and demultiplexed by the different facilities.   90 

 91 

First, we used FastQC11 v0.11.9 to assess the reads and overall runs quality. Qualified raw 92 

FASTQ files were originally aligned using MiXCR12 v3.0.3 (HiSeq 2500) or MiXCR v3.0.13 93 

(NovaSeq 6000), reflecting evolution of tools over time. Non-productive or ambiguous TCR 94 

were filtered out, along with TCRs with CDR3 between 14 ± 8 amino-acid lengths. When 95 

mentioned, clonotypes with counts of 1 (singletons) were removed. 96 

Sample metadata  97 

We collected and compiled several variables for each samples for the investigation of biases in 98 

murine models that can be characterized in four large categories: murine models (genetic 99 

background, intervention), biological material (organ, cell type, number of sorted cells), library 100 

production (barcodes, RNA concentration, cDNA concentration), or sequencer related (type of 101 

sequencer, run, flowcell lane).  102 

Generation of the QtCR objects 103 

Original metadata file, FastQC files, MiXCR alignment reports and MiXCR alignment files 104 

were loaded into QtCR. For all samples, sequenced reads, aligned reads, percentage of aligned 105 

reads were parsed from MiXCR reports. Similarity matrices (Jaccard and Morisita-Horn) and 106 

Renyi profiles were computed from aligned files using the vegan package24 based on clonotypes 107 
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incidence matrix, along with TRV and TRJ gene usage. Principal Component Variance 108 

Analysis (PVCA) was computed using a slightly adapted code from the pvca Bioconductor 109 

package25 to make it more flexible.  Principal Variance Component of indicated meta-variables 110 

are computed from raw matrices of either similarity or gene usage. Matrices are then centred 111 

but not scaled, and PVCA is performed with a variance threshold of 0.3 We used either the non-112 

linear uniform manifold approximation and projection (UMAP) algorithm or the linear 113 

principal component analysis (PCA) for reduction of high dimensions matrices into two 114 

dimensions. Low dimension projections on the 2D space are computed from TRV and TRJ gene 115 

usage matrices, Jaccard and Morisita-Horn similarity matrices for TRA and TRB chain 116 

separately and plotted using ggplot226. 117 

Detection of diversity outliers  118 

Outliers are detected using the Local Outlier Factor (LOF), an algorithm identifying distant 119 

points in high dimensional space. LOF is determined as the mean reachability of a point A 120 

across its k nearest neighbours27. Single LOF score interpretation is limited, so we summed it 121 

across multiple values of k to encompass multiple scales of seclusion. For a set of n samples, 122 

the total LOF score of a point A is as follows:  123 

𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐴𝐴)  =  �𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘(𝐴𝐴)

[�𝑛𝑛]

𝑘𝑘 =3

   124 

Using Tukey definition of an outlier, we used the 1st quartile and interquartile range to define 125 

the outlier threshold 126 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑄𝑄1 +  1.5 ∗  𝐼𝐼𝐼𝐼𝐼𝐼 127 

Samples for which LOFtotal(A) > Outlier threshold are considered outliers.  128 

Decontamination of TCR repertoires using DeconTCR 129 

DeconTCR is an original method that uses alignment data to find enriched clonotypes in 130 

samples sharing a feature (here, indexes). Two clonotypes with different nucleotide sequences 131 

can lead to the same amino acid sequence. This creates similarity between samples despite 132 

sequences arising from different clones. We define this process as collision, which generates 133 

false positives during decontamination. Collision is less likely to happen using nucleotide 134 

sequences rather than amino acid. Indeed, the 14 bases long example CDR3 135 

“CASSALASLNEQFF” can be derived from 2 *4* 6* 6* 4* 6* 4* 6* 6* 2* 2* 2* 2* 2 = 136 
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31,850,496 distinct nucleotide combinations. To mitigate false positives due to collision, a 137 

clonotype is defined as TRV-CDR3nt-TRJ. The DeconTCR method first selects clonotypes 138 

shared by at least 30% of samples in a given index. It then computes the enrichment of each 139 

clonotype based on presence/absence per index using a Fisher-test score. For each enriched 140 

clonotype, a Shannon filter threshold is applied to its count distribution among all other samples 141 

of the same index. Samples for which their counts are considered as noise are discarded. 142 

DeconTCR performs a benchmark across different thresholds for the sharing fraction and fisher 143 

enrichment score. An extensive comparison of each combination is evaluated by the user, which 144 

defines the best trade-off between sensitivity and specificity of the filters.  145 

DeconTCR Shannon filters were computed using the vegan package24. Determination of the 146 

contamination threshold is done by computing the Shannon entropy (H’). For a given 147 

clonotype X shared by n samples with p counts, the formula is as follows. 148 

𝐻𝐻′(𝑋𝑋)  =  �𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖
𝑝𝑝𝑝𝑝)

𝑛𝑛

𝑖𝑖

 149 

Computing the exponential of this formula gives the rank of the threshold to discriminate signal 150 

from noise. A list of dummy distributions is shown in Supplemental figure 8 to show its 151 

performance. 152 

Decontamination performance is assessed on the amino acid clonotype definition to compare 153 

the results with previous analysis. Jaccard and Morisita-Horn similarity matrices were 154 

computed, along with their low-dimension projections as described in the “Generation of QtCR 155 

objects” methods section. The number of clonotypes filtered and corresponding number of 156 

counts filtered for each sample are collected to assess performance.  157 

Statistical tests 158 

Parametric student t-test and non-parametric Wilcoxon U-test p-values were computed using 159 

R. P-values were considered significant for p ≤0.05. For effect size, parametric Cohen’s d and 160 

non-parametric Cliff’s delta (δ) were used to assess the magnitude of differences between 161 

conditions.162 
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3.1.4 Results (1600 words) 

3.1.4.1 Dataset presentation 

A comprehensive atlas of 1872 TCR-seq repertoires was used for this study. Due to sequencing 

platforms evolution, 509 (27%) repertoires were sequenced with HiSeq 2500 and 1363 (73%) 

with NovaSeq 6000 (Illumina) on 22 batches of up to 96 samples (Fig. 1). Samples contained 

alpha (TRA) and beta (TRB) sequences from 2 genetic backgrounds (NOD, C57Bl/6) and 16 

projects (combination of genetic backgrounds, sex, age and treatment), sorted T cells in 4 main 

subsets, CD4+ T cells (Teff), CD8 T cells, CD4 regulatory T cells (Tregs) and thymic immature 

T cells (precursors). For each sample, genetic background, organ of origin, sorted cell number, 

nucleic acid concentration after extraction and library preparation as well as library preparation 

and sequencing batches, plate position and Illumina indexes, sequencer platform, and finally 

experimenter identification for each of the steps were compiled into a metadata file (Table 2). 

In parallel, TCR-seq data were aligned as described in the material section. Both metadata file 

and TCR aligned files were merged using QtCR. Among the additional relevant parsed 

parameters, FastQC sample quality, MiXCR version were collected and used in further 

analysis.  

3.1.4.2 Differences of sequencing depth does not impact sample clustering 

When using this massive dataset with samples collected and processed over a span of several 

years (Supp. Fig. 1), we initially assessed the reliability of our approach between the two 

sequencer platforms. Indeed, HiSeq 2500 was discontinued in 2021, and we switched to 

NovaSeq 6000, which offered twice more reads per sample but with a different read length 

(Table 1). We compared the amount of sequenced and processed material between HiSeq and 

NovaSeq (Fig. 2A). As expected, NovaSeq yielded significantly more raw reads and resulted 

in more reads aligned (p < 0.001, Cohen’s d = 0.58). Interestingly, the better yield of reads was 

accompanied by a significantly lower percentage of aligned reads and strong effect size of the 

aligner for the NovaSeq (p < 0.001, Cohen’s d = 0.41) (Fig. 2B). This quantitative difference 

was not associated with a qualitative imbalance between TRA and TRB mapped reads (δ Cliff 

= 0.10). We looked further into the difference between the alignment performance and 

observed that the percentage of aligned sequences varied between batch, suggesting external 
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factors associated with the library preparation or the sequencing run? (Fig. 2C). To assess 

whether this quantitative difference was associated with differences in generated data, we 

compared the diversity of TRA and TRB chain rearrangements and found no major differences 

for both chains when comparing the Shannon entropy (δ Cliff = 0.11 and 0.13 respectively) 

(Fig. 2D). As gene usage is highly linked to cell subsets and genetic backgrounds, we 

investigated whether the differences of technologies resulted in a sequencer-driven clustering. 

To measure this, we used principal variance component analysis (PVCA) on the gene 

frequency matrices to quantify the amount of variance associated with a set of variables from 

the QtCR-compiled metadata (meta-variable). Sequencers accounted for less than 5% of the 

weighted variance, confirming that at the global scale of our dataset, the sequencer used had 

no impact on clustering (Fig. 2E). Interestingly, we found that the genetic background was the 

major driver of variance for the TRA chain, whereas cell type was the main contributor for the 

TRB chain. We confirmed this result by projecting the TRBV usage on a 2-dimension space 

using principal component analysis (PCA) or UMAP projection, confirming no visible bias 

(Fig. 2F). 

To evaluate the impact of the sequencer platform on the clone distribution and sharing, we 

computed the Jaccard and Morisita-Horn (MH) similarity indices on the list of clonotypes, 

which respectively measure the overlap and similarity of distribution of a variable, here a 

clonotype, between series of samples. Again, we found no association between sample 

similarity and the sequencing technology for both chains (Fig. 2G-H).  

3.1.4.3 Read length alignment partially drives T cell subsets’ clustering 

We then investigated the sequencer impact on single population of cells. If the sequencer had 

no impact on the global variance of four populations and two genetic backgrounds, it might 

have been “diluted” by the samples’ heterogeneity. To observe more subtle differences the 

sequencer might have introduced, a subset of a homogeneous population of CD8+ T cells of 

C57Bl/6 was selected from the whole dataset (Fig. 3A). Local Outlier Factor (LOF) was used 

to remove samples with abnormal diversity, which might introduce unwanted variation (Fig. 

3B). This method accurately detected and removed under-sequenced samples (Supp. 2). Only 

samples within boundaries in both TRA and TRB chains were used for the subsequent analysis. 

We then computed PVCA on three experimental variables associated with the dataset,:the 
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harvested organ, the lane and the sequencer platform. Strikingly, almost 100% of TRA 

Morisita-Horn and TRAV gene usage variability was attributed to the sequencer platform 

variable (Fig. 3C). This has been further confirmed on a 2D projection of those two matrices  

by PCA (Supp. 3A-B). We obtained similar results in the NOD background and in the Teff 

subset (Supp. S4). Given the specific impact of sequencer platform on the TRA 

rearrangements, we hypothesised that incorrect TRAV genes mapping lead to the high 

differences in MH index, and was likely due to the alignment parameters. As the main 

difference between the two sequencers parameters is the read layout (300bp single-end for 

HiSeq, 250bp paired-end for NovaSeq), we realigned all the samples by varying the read 

length, using paired-end reads or single-end reads and two distinct version of the aligner. As 

such, the NovaSeq 250bp paired-end read samples (n=21) with were realigned as 250bp single-

end reads using MiXCR version 3.0.13 (SE_250_NS_3.0.13). The 300bp HiSeq single-end 

read samples (n=32) were realigned with the newer aligner version 3.0.13 of MiXCR 

(SE_300_HS_3.0.13), or trimmed single-end read to 250bp (SE_250_HS_3.0.13) (Fig. 3D). 

We compared these conditions with the original ones, namely 250bp paired-end NovaSeq 

(PE_250_NS_3.0.13) and 300bp single-end HiSeq (SE_300_HS_3.0.3).  We computed the 

pairwise Jensen-Shannon divergence (JSD) matrix between TRAV genes usage in these 

different conditions to find the most robust method for both NovaSeq and HiSeq data and 

projected samples on the UMAP low dimension space (Fig. 3E). Paired-end layout features 

the most dissimilar TRAJ usage of all methods. Interestingly, both 250bp-SE sets of samples 

showed the most similarity, even more similar than the duplicated 300bp vs 250trimmed bp HiSeq 

samples. To measure how overlapping the distributions were, we defined the identity score of 

the TRAV distributions by computing the sum of the absolute frequencies’ differences between 

our reference (SE_250_HS_3.0.13) and all the others (Fig. 3G). NovaSeq 250bp SE alignment 

scored the highest identity (92% identity), confirming its relevance. Paired-end alignment not 

only has the lowest identity score, this analysis also revealed that paired-end alignment 

identified TRA genes that were not observed in the other methods. These genes can be seen at 

the tail of the gene usage distribution. We computed the gene usage and similarity PVCA on 

the HiSeq and NovaSeq samples aligned with SE-250bp (Fig. 3G). We completely removed 

the sequencer effect on this homogeneous set of samples, without affecting much of the other 

meta-variables. These results show that different sequencing technologies with different read 
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layouts lead to unexpected gene mapping, which can be circumvented by realigning raw 

repertoires on the harmonised layouts.  

3.1.4.4 Index hopping introduced by NOVAseq is detected by QtCR 

To determine the extent of individual batch effects, we computed the PVCA of each batch 

separately on a set of relevant variables: project, cell type, and the Illumina reverse and forward 

indexes corresponding to the lines and column of our plates (Fig. 4A). As expected, HiSeq 

batches showed a very strong contribution of the cell type to the clustering. However, NovaSeq 

rather exhibits a concerning domination of the reverse index impact on the variance, with up 

to 80% of the total Jaccard matrix variance, but not in MH. This result suggested that a high 

amount of low-counts clonotypes were shared between samples with the index, as Jaccard gives 

the same weight to all clonotypes, no matter their abundance. To better understand these results, 

we focused on the Batch 19, featuring almost 80% of cumulative index-attributed variance for 

the Jaccard TRB index (Fig. 4B) and TRA chain (Supp. 5). Hierarchical clustering of the TRB 

Jaccard index showed a clearly defined reverse clustering, confirming the results from the 

PVCA (Fig. 4C). These patterns of high similarity between the reverse index were not found 

in the MH matrix (Fig. 4D), where sample clustering were more likely influenced by the cell 

subset of origin. Sequencing plate layout was designed randomly ruling out that observed 

similarity was due to comparable samples being placed on the same lines or column (Fig. 4E). 

However, when looking at the individual Jaccard scores of a random sample on a plate (e.g., 

position E11), we observed a very characteristic crosshair pattern (Fig. 4F) described by other 

groups and attributed to index hopping28,29. We also confirmed the PVCA results by showing 

that samples from the same reverse (8/8) or forward (11/12) had a significantly higher score 

than samples from different indexes (Fig. 4G). Altogether, these results are consistent with an 

index hopping contamination due to the switch from HiSeq to NovaSeq sequencing. As index 

hopping is a random phenomenon, it should be correlated with the number of reads17,29. To 

confirm this, we computed the correlation between raw sequenced reads and Jaccard index 

between two repertoires, and found that repertoires sharing a sequencing index had positively 

correlated Jaccard index (same reverse: R = 0.47, same forward: R = 0.55, no common index: 

R = 0.18) (Fig. 4H). These results could be extended to all batches, as the mean contribution 

of reverse is positively correlated to the amounts of reads on NovaSeq (R=0.45) (Supp. 6). 
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3.1.4.5 Correction of index hopping using information theory 

Index hopping appeared to be a random process at the sequence/read/template level leading to 

the index being exchanged between reads. In the case of redundant dual indexing (RDI), it 

means assigning them to another sample on the same line or column (Supp 7). Thus, we 

hypothesised that the more common a read is, the more likely it is to be found on all the samples 

of a same line or a same column, with the fold change equal to the probablility of index hopping 

(Phop) * the number of indexes. Estimations of Phop are in the range of 1/10 and 1/1000 16,29. In 

line with these estimates, in our data, the Phop was estimated at about 1% (Supp 11). This 

contamination results in high frequency clonotypes more likely to be spread among indexes, 

with several logs of magnitude lower than in the original sample. Index hopping can then be 

assimilated to noise, spreading from an original source of signal. In order to remove artificial 

similarity between samples due to index-hopping, we developed DeconTCR, an algorithm that 

relies on information theory entropy to identify noise from the original signal (Fig. 5A). First, 

we identified the TCRs that were significantly enriched for a reverse or a forward, and shared 

by at least 30% of all samples with the same index. Each enriched clone count is then ranked 

against all the other clones of the same index. To determine a filter threshold, Shannon entropy 

is computed on the count distributions. Decontamination performance was then benchmarked 

based on the balance diminution of same index similiarity and the number of sequences filtered. 

This allowed to determine that a filter threshold of 0.01 was an optimal trade-off (Supp. 9A-

D). 

Applied on the 95 samples of “Batch 19”, we show that the original UMAP projection 

clustering was driven by reverse indexing (Fig. 5C-D). Removing singleton did not affect 

clustering. A combination of DeconTCR + singletons removal offers the best performance to 

restore the expected cell type clustering, Supp 10).  

3.1.5 Discussion 

In this work, we described how QtCR, an integrative quality control pipeline featuring tools 

for identifying variables contributing to variance, is used to identify biases from data of 

different production source in TCR-seq sequences. From a set of samples of one cell 

population, to 96 multiplexed samples in a single run of multiple T subsets, to an aggregation 

of thousands of repertoires from different runs, QtCR efficiently identified expected and 

unexpected technical impacts of sequencing.  
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Currently, there is no dedicated tool to measure and assess biases introduced by technical and 

experimental factors. Here we provide a toolbox to analyse the impact of metadata on data. The 

package can be used on the command line for the most advanced functions, but it also features 

a user-friendly web interface. Metadata MiAIRR5,30,31 compliant and can also accept any other 

type of information, such as plate position or the nucleic acid concentration of the sample. The 

detailed information of how this is processed by QtCR is described in the online 

documentation. 

Evaluated on 1872 samples sequenced in 96 multiplexed-sample batches, we showed how 

differences in sequencing depth did not affect large scale analysis between repertoires. 

Although HiSeq 2500 featured fewer reads than NovaSeq 6000, when we computed high 

granularity metrics such as clonotypes diversity, TCR gene usage or similarity distances at the 

scale of a large dataset, we found that integrating data obtained from both sequencers did not 

critically impact the sample clustering.  

When then investigating in more detail how the read length difference between HiSeq 2500 

(250bp, single-end) and NovaSeq (300bp, paired-end) could influence the downstream 

analysis. We first showed how QtCR accurately detected and removed outliers. We then 

demonstrated on the curated dataset of CD8 T cells how murine TRAV gene mapping was 

flawed between paired-end and single-end read pairing. A benchmark of read modifications 

before alignment and MiXCR12 versions demonstrated that an harmonisation of alignment 

methods dramatically reduces the gap between the repertoires. This result highlights how a 

consistent alignment procedure is required for clonotype mapping, and stresses the need for an 

open alignment method description to ensure robust reproducibility and future reuse of data by 

other scientists.  

Finally, QtCR identified a pattern of contamination due index hopping in our dataset. Index 

hopping is not a new issue, and recent kits were developed with unique dual indexing (UDI) to 

drastically reduce the possibilities of hopping through impossible combinations32. However, 

any dataset that has been produced using redundant dual indexing (RDI) needs to address these 

issues, especially for reuse in further studies. Single-cells datasets are also on the hook. Indeed, 

most commercial kits use 96 UDI, but it does not completely alleviate the problem and leads 

to “phantom” cells33, which can also lead to the false discovery of TCRs.  This is of the utmost 
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concern as most of the new strategies developed heavily rely on the sharing of TCR to infer 

clinical conclusions34. 

In order to mitigate with index hopping, we designed DeconTCR, an unbiased method for 

decontaminating data based on shared features. Using this novel and efficient method, we 

showed how DeconTCR restored a biologically accurate clustering after removing the index-

induced contamination with minimal alteration of the data.  DeconTCR works best in a random 

distribution of samples to limit possible confounding factors; hence, it might not be as efficient 

with all datasets. Randomising samples is a recommended practice for any experimental 

design35–38, and our method confirms that TCR multi-batch projects also need careful planning.  

Our work focused on TCR-seq, but can also be ported to any AIRR-seq. BCR-seq shares many 

common characteristics with TCR-seq, such as the need to capture a full-length receptor 

through specific primers, an immense diversity of possible receptors generated, and very 

similar analysis methods2,10,21,39. BCR-seq and TCR-seq are often pre-processed in a 

comparable fashion 12,40,41, thus QtCR could be adapted and optimised to support BCR-QC 

with minimal modifications. 

This study emphasises the importance of providing a comprehensive metadata with publicly 

available datasets. We also stress the importance of specifying the parameters used for 

alignment. AIRR community Minimal Standards Working Group set standards for metadata in 

collaboration with NCBI to facilitate the sharing of such information30. This practice is 

imperative for upcoming research initiatives as it will enhance our capacity to comprehend and 

effectively compare NGS derived datasets. Our findings strongly encourage thorough quality 

control before any AIRR-seq integration of data from different origins (batches, protocols, 

labs…). 

Our investigations show the importance of collecting experimental metadata, since repertoires 

produced with different sequencing methods or aligned differently cannot be compared without 

adjustment. Metadata should be as standardised as possible to facilitate data sharing and 

comparisons5. However, reality shows that overly comprehensive or technical standards are a 

barrier to correct metadata filling (Supp 12). This points to the need for a simple tool, 

accessible to all, to fill in metadata as experiments progress (and thus avoid disconnection 

between those who produce the data and those who analyse it42.  
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Furthermore, with QtCR we identified the impact of the alignment procedure on data 

comparison.. Therefore, although obvious, these results emphasize the critical need of sharing 

raw data rather than processed ones. This will not only allow evaluating how comparable 

datasets could be, but also ensure accurate comparison especially when gene reference change. 

Altogether, QtCR is a user-friendly and flexible tool that should enable advanced quality 

control, identification of real outliers and allow intervention when contaminations are 

suspected. The flexibility of the tool should allow it to identify other sources of bias or 

contaminations not covered in this study simply by adding additional variables in the metadata. 

This tool should permit a better integration of AIRR datasets from various platforms and 

experimental design by determining the impact of technical bias on biological interpretations, 

opening data sharing to a new era of data reuse and comparison. 
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3.1.6 Figures and legends 

3.1.6.1 Legends 

Figure 1 : QtCR workflow and dataset presentation 
A : QtCR workflow overview. Experimental metadata is collected during all all TCR libraries 
production steps. We use QtCR to aggregate all the data and compute TCR-related metrics. 
These metrics are then compared to experimental metadata to identify i) outliers based on 
discrepancies between aligned and expected output, and ii) experimental or biological 
features associated with sample clustering. 

 

Figure 2 : Differences of sequencing depth does not impact sample clustering 
A : Violin plots of the amounts of raw reads (left) or aligned reads (right) between HiSeq 
2500 (n=509) and NovaSeq 6000 (n=1363) TCR-seq samples. 
B : Violin plot of the percentage of aligned reads out of the sequenced reads (left), or the 
proportion of TRB reads (right) between HiSeq 2500 and NovaSeq 6000 TCR-seq samples.  
C : Violin plot of the percentage of aligned reads per batch.  
D : Shannon index diversity between HiSeq and NovaSeq samples, TRA (left) and TRB 
(right).  
E : proportion of gene usage variance explained by each meta-variable. 
F : PCA (left) and UMAP (right) projection of sample TRBV gene usage. 
G : Proportion of similarity matrix variance explained by each meta-variable. 
H : PCA (left) and UMAP (right) projection of sample TRA jaccard index. 
 
 
Figure 3 : Read length alignment partially drives T cell clustering 
A : Highlighted C57Bl/6 young females CD8 T cells repertoires PCA projection of the 
complete murine dataset.  
B : Distribution of TRA and TRB LOF scores of C57Bl/6 young females CD8 T cells 
repertoires with inliers (green) and outliers (red). Dashed red lines correspond to the outlier 
threshold.  
C : Proportion variance explained by each meta-variable in similarity matrix and genes usage. 
D : Jensen-Shannon Divergence of TRAV genes usages between conditions.  
E : Identity score between TRAV usage distributions compared to HiSeq 2500 samples 
aligned with 250pb, single-end and 3.0.13 version of MiXCR. TRAV genes are ordered by 
decreasing frequencies found in condition SE_250_HS_3.0.13 (green). 
 
 
Figure 4 : Unexpected index hopping introduced by NOVAseq is detected by QtCR 
A : PVCA contribution of meta-variables among all batches, for Jaccard and MH indexes. 
Batches with less than X samples were discarded as we could not properly evaluate dual 
indexing impact. 
B : PVCA scores of “Batch 19”. 
C-D : Heatmap of the scores of Jaccard (C) and MH (D) index between the Batch 19 samples 
(n=95) 
E : Distribution of cell subsets in the original plate sent to sequencing.  
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F : Jaccard overlap scores of Batch 19 compared to sample S0 (red). 
G :Jaccard means score of Batch 19 sample sharing a reverse (top) or a forward index 
bottom). Confidence intervals expressed in standard deviation. Wilcoxon U-test. 
H : Amount of reads in a sample and associated Jaccard score 
 
 
Figure 5 : Correction of index hopping using DeconTCR 
A : Index hopping mechanism. On redundant dual indexing (RDI), reverse index (i5) and 
forward (i7) are used to individually barcode each sample. In a 96 well plate, the 8 reverse 
and 12 forward correspond to lines and columns, respectively. During sequencing, non-
specific annealing of barcodes happen at a random rate and introduce incorrect read 
assignments.  
B : DeconTCR workflow. 1) Reads enriched for each barcode are identified. 2)We use the 
Shannon entropy to identify the source of contamination (true signal) from contaminated 
samples (noise). This process is repeated for clonotype across all indexes. 3) Freshly filtered 
samples are then reanalysed to qualify the amount of contamination eliminated and 
improvement of biologically-related clustering. 
C : Projection of the contaminated dataset after removing singletons, going through 
DeconTCR, or both. Top panels indicate cell type clustering, bottom panels indicate reverse 
clustering. 
D : Jaccard similarity matrix of Batch 19 prior and after going through DeconTCR and 
singletons removal. Samples were arranged either based on their cell type (top) or reverse 
(bottom).    
E : Percentage of clone counts remaining in samples after using DeconTCR for decreasingly 
stringent fisher thresholds compared to the original unfiltered dataset. 
F : Percentage of clone counts remaining in samples after using DeconTCR for decreasingly 
stringent fisher thresholds compared to the original unfiltered dataset. 
G-H : For each reverse (G) or forward (H), we computed the mean intra- and extra-cluster 
distances (respectively dotted and full lines) for the Jaccard TRB matrix. 
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3.1.6.2 Figures 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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3.1.6.3 Tables 

 
Table 1: Specifications of sequencers HiSeq 2500 and NovaSeq 6000 used in this study 

 HiSeq 2500 NovaSeq 

Read length (bp) 300 250 

Read layout single-end paired-end 

Sequencing depth 200GB 400GB 

Flow Cell splitting Yes (2) Yes (2) 

Samples processed 192 192 

Theoretical 
Reads/sample ~1 x 106 ~2 x 106 

 

Table 2: Description of metavariables used in the murine dataset analysis in QtCR 
 

  
sample_id unique identifying name for each library 
project Category combining both intervention and genetic background 
run sequencing run unique ID 
lane sequencing run unique ID + flowcell lane (1 or 2) 
species Mus Musculus 
reverse Illumina D50X index 
forward Illumina D7XX index 
techno Sequencer used (HiSeq 2500 or NovaSeq 6000) 
organ Organ from which cells were sorted 
cell_number Number of sorted cell before lysis 
genetic_bakgroun
d 

Mouse genetic background 

rna_conc Concentration of libraries before preparation 
cell_type Sorted cell types were aggregated into precursors, CD4, CD8 and 

Treg 
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3.1.6.4 Supplementary figures 

 

  

Supplemental 2 : Outliers based on the TCR diversity Renyi profile that were further removed 
from the analysis of Figure 2. QtCR uses Local Outlier Factor (LOF) to detect samples that are 
isolated to other when projected onto a space. Please refer to the Methods section for more details 
on the approach.     

Supplemental 1 : Timeline of production of Tripod samples. The dataset we used features 
cells that were sorted back in 2015 and sequenced until mid 2022. Most samples were sorted 
before 2020, year at which the facility stopped supporting HiSeq 2500 sequencers and 
swithed to NovaSeq 6000 (red line).  
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Supplemental 4 : A : Highlighted C57Bl/6 young CD4 T cells repertoires PCA projection of the 
complete murine dataset.  
B : Distribution of TRA and TRB LOF scores of C57Bl/6 young females CD4 T cells repertoires 
with inliers (green) and outliers (red). Dashed red lines correspond to the outlier threshold.  
C : Proportion of variance explained by each meta-variable in similarity matrix and genes usage 

Supplemental 3: Principal Component Analysis of C57Bl/6 young females CD8 cells  
A : PCA of the Morisita-Horn similarity of TRA clonotypes on samples sequenced using HiSeq 2500 
(blue) or NovaSeq (red) 
B : PCA of the TRAV usage on samples sequenced using HiSeq 2500 (blue) or NovaSeq (red) 
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Supplemental 5 : UMAP of Jaccard index, TRB. Clustering of samples is driven 
by the reverse index. Samples from TRA chain are also clustered by reverse.  

Supplemental 6 : Correlation between the total amounts of raw reads in a batches compared 
to PVCA contribution of each meta-variable (cell type, organ, forward and reverse) to the 
overall variance of Jaccard or Morisita Horn similarity Matrix. Pearson coefficient. 
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Supplemental 7: Mechanism for dual indexing hopping and line/column 
contamination. In this example, a DNA fragment has been hybridised to the flowcell. 
(left) Priming of the reverse results in elongation of the read and correct barcode 
sequencing. (right) Free indexes remaining in the sample after poor purification of 
libraries or non-specific hybridisation results in elongation of a read with another 
barcode.  During multiplexing, this will lead to the wrong assignment of reads. In 
this example, this lead to initial read in A01 to be assigned the sample in G01.  
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Supp 9: Evaluation of different threshold performance on decontamination of Batch 19 (n=95 
samples). X axis represent the Fisher test pvalue used for considering significant contamination. A 
higher pvalue indicates less stringent threshold, and thus more read to be filtered. For each analysis, 
we plotted the results with (left) or removed singletons (right) after decontamination.  
E: Amount of the cumulative frequencies of clonotypes filtered per index. Each point is a sample, 
colored by reverse. 
F: Percentage of unique clonotypes remaining in samples after decontamination. Each point is a 
sample, colored by reverse. 
G: Mean Jaccard reverse score across samples. Jaccard distance between samples sharing a same 
reverse (solid) or using different (dashed) reverse were plotted. Ideally, there should not be a 
difference between those two lines, as samples are placed randomly. We see an optimal of clustering at 
0.01 
H: Similar plot as G, but using forward primers. 

Supplemental 8 : 4 examples of counts distribution and the Shannon threshold defined to 
filter noise from signal. In all examples, the Shannon threshold was able to correctly 
distinguish between a strong signal and background noise, even when confronted to more 
subtle differences (distr4).  
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Supplemental 10 : Sample “tripod-51-1479” similarity after decontamination of Batch 19 
with DeconTCR. Similarity was performed using Jaccard index. 

 

Supplemental 11: Index hopping probability calculation. To estimate Phop, we used a spiked-in library 
from a 96 well batch sequenced with NovaSeq. On position H9, we sequenced a unique clone (TRBV2 
CASEDGLATYEQYF TRBJ2-7) with 106 counts associated.  
A : distribution of counts in the plate. A very typical cross pattern is observed in line H and column 9.  
B: Assuming this is only due to contamination, the ratio between contamination and original signal can 
be estimated to Phop.   
C : we confirmed DeconTCR performance in identifying noise. DeconTCR confidently identified that 
only the 1st clone was true signal. 
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Supplemental 12 : iReceptor metadata investigation reveals incomplete filling.  
We analyzed the user-filled metadata from online iReceptor database. The percentage indicates the 
proportion of correct information for each data item. We classified information as good if they were 
both correctly named and relevant. In the 5 columns analogous of our study, we found that only 16% 
of samples have correctly filled sequencing platform column. More surprisingly, for 59.2% of 
samples, the cell population was not specified. 
 
Database was downloaded on 2023-09-07. It includes 9876 samples from 91 studies. 
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3.2 CHAPTER 4: POLYCLONAL EXPANSION OF TCR VBETA 21.3+ CD4+ AND CD8+ 

T CELLS IS A HALLMARK OF MULTISYSTEM INFLAMMATORY SYNDROME IN 

CHILDREN 

The second aim of my PhD was to reveal the promises of TCR sequencing in 

pathophysiology understanding. This objective took place during the 2019 SARS-CoV-2 

pandemic. Early reports showed how children were as much subject to COVID-19 symptoms 

compared to adults (W. Liu et al., 2020; Lu et al., 2020). Children displayed typically milder 

symptoms and lower number of cases. However, clinicians reported a large outbreak of 

children with symptoms analogous to Kawasaki or toxic shock syndrome, diseases mediated 

by superantigen effects. This acute disease was named multiple inflammatory symptom disease 

in children, or MIS-C, due to the clinical manifestations in patients.  

MIS-C patients harboured high percentage of circulating T cells with some Vβ as shown 

in cytometry. As part of a collaboration between French hospitals to investigate this emerging 

disease, we sought to confirm the role of SARS-CoV-2 as a superantigen. To this end, we had 

access to peripheral blood repertoires of MIS-C paediatric patients. We performed massive 

parallel sequencing on the TCR genes to assess the clonal expansion level of TCRs using the 

TRBV12 genes, identified from cytometry. 

As part of this collaborative work, I was dedicated to the production and analysis of TCR 

sequencing data from whole blood paediatric patients. In the results presented as a published 

article in Science Immunology, we demonstrated how TRBV12 expansions were oligclonal, 

and did not persist in time. In line with this result, we confirmed that TRBV11-2 expansions 

were not preferentially associated to a particular TRVJ gene. We show here how TCR-seq can 

complement cytometry or gene expression profiling approaches to confirm the superantigen 

effect, and provide additional information on the non-specificity of the response.  
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Polyclonal expansion of TCR Vb 21.3+ CD4+ and CD8+ T 
cells is a hallmark of multisystem inflammatory 
syndrome in children
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Multisystem inflammatory syndrome in children (MIS-C) is a delayed and severe complication of severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) infection that strikes previously healthy children. As MIS-C combines 
clinical features of Kawasaki disease (KD) and toxic shock syndrome (TSS), we aimed to compare the immunolog-
ical profile of pediatric patients with these different conditions. We analyzed blood cytokine expression and the 
T cell repertoire and phenotype in 36 MIS-C cases, which were compared with 16 KD, 58 TSS, and 42 coronavirus 
disease 2019 (COVID-19) cases. We observed an increase of serum inflammatory cytokines (IL-6, IL-10, IL-18, 
TNF-, IFN-, sCD25, MCP1, and IL-1RA) in MIS-C, TSS, and KD, contrasting with low expression of HLA-DR in 
monocytes. We detected a specific expansion of activated T cells expressing the V21.3 T cell receptor  chain 
variable region in both CD4 and CD8 subsets in 75% of patients with MIS-C and not in any patient with TSS, KD, or 
acute COVID-19; this correlated with the cytokine storm detected. The T cell repertoire returned to baseline 
within weeks after MIS-C resolution. V21.3+ T cells from patients with MIS-C expressed high levels of HLA-DR, 
CD38, and CX3CR1 but had weak responses to SARS-CoV-2 peptides in vitro. Consistently, the T cell expansion 
was not associated with specific classical HLA alleles. Thus, our data suggested that MIS-C is characterized by a 
polyclonal V21.3 T cell expansion not directed against SARS-CoV-2 antigenic peptides, which is not seen in 
KD, TSS, and acute COVID-19.
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INTRODUCTION
At the end of April 2020, European clinicians warned public health 
agencies about an abnormal increase of Kawasaki-like diseases and 
myocarditis requiring critical care support in the context of the 
ongoing coronavirus disease 2019 (COVID-19) epidemic in chil-
dren (1–3). American clinicians also reported a large outbreak of 
severe inflammation in children after COVID-19 infection, a condi-
tion that is now named pediatric inflammatory multisystemic syn-
drome or MIS-C (4–6). The clinical phenotype of this emerging 
disease is broad and encompasses features of Kawasaki disease (KD) 
and toxic shock syndrome (TSS). Many cases require intensive care 
support, making MIS-C one of the most severe manifestation of 
COVID-19 in children. MIS-C occurs 3 to 4 weeks after acute COVID-19 
in children (3, 5–7).

To date, reports on MIS-C show slight differences in cytokine 
profiling and immunophenotype between MIS-C and KD or pedi-
atric COVID-19 (8, 9). Analysis of T cells reveals a lower number of 
T cells in MIS-C with no or subtle signs of activation (10). Multi-
dimensional immune profiling on small numbers of patients shows 
differences between acute COVID-19 and prepandemic KD (8, 11). 
A subset of activated CD8 T cells expressing the CX3C chemokine 
receptor (CX3CR1) is observed in MIS-C (12), and both CD8 and 
natural killer (NK) cells demonstrate an elevated expression of cyto-
toxicity genes (13). Anti–severe acute respiratory syndrome corona
virus 2 (SARS-CoV-2) antibodies (Abs) are equally produced in 
pediatric COVID-19 and MIS-C. Autoantibodies are uniquely 
found during MIS-C or KD, which supports the contribution of the 
humoral response to both diseases (8, 11). Last, a role for genetic 
factors is evocated in MIS-C pathogenesis because it occurs more 
frequently in Hispanic or African children (14–16). Despite these 
pioneer studies, the immunological mechanism underlying MIS-C 
remains unknown.

To address this question, we compared the immune profile of 
patients with MIS-C with that of patients with COVID-19 and that 
of patients with other clinically similar entities such as KD and 
TSS. For this, we explored the cytokine and cellular immune profile 
using different techniques. Using flow cytometry and transcriptom-
ic analyses, we uncovered a specific V21.3+ T cell expansion in 
24 of 32 tested patients with MIS-C when assessed in the first month 
after onset. T cell receptor (TCR) sequencing revealed the polyclonal 
nature of the V21.3+ expansion. No specific human leukocyte 
antigen (HLA) bias was identified in patients, but we found a specific 
activation profile within V21.3+ T cells. This activation was tran-
sient with a normalization of the repertoire within days to weeks 
after the inflammatory episode. Together, our findings provide an 
immunological signature in MIS-C with potential implication in 
the diagnosis and treatment of this rare disease.

RESULTS
MIS-C presentation overlapped with TSS and KD
We took a cohort of 36 children with MIS-C and compared them 
with 16 KD cases diagnosed during and before the pandemic, 
58 retrospective cases of patients with TSS, and 42 patients with 
acute COVID-19 (11 children and 31 adults). This comparison was 
motivated by previous descriptions of MIS-C in Europe and in the 
United States, showing a clinical overlap between staphylococcal 
toxin–mediated TSS and KD in patients with MIS-C (1–3). Figure 1A 
outlines the study flowchart and the clinical and biological 

parameters we evaluated. Patients diagnosed for MIS-C, classical 
KD, TSS, or acute COVID-19 were included. Patients were then 
subjected to deep immunological analyses combining cytokine 
profiling, TCR V analysis, and T cell stimulation assays (Fig. 1A). 
We confirmed the strong clinical overlap between MIS-C, TSS, 
and KD. Many patients in the MIS-C group also fulfilled some of 
the five major criteria for TSS and KD, respectively (Fig. 1B). Con-
sidering the clinical parameters, the most frequent features of pa-
tients with MIS-C in our cohort were fever, cardiac dysfunction, 
gastrointestinal symptoms, coagulopathy, and systemic inflamma-
tion (table S1). Additional clinical data are presented in table S2 for 
KD, TSS, and acute COVID-19 and in table S3 for all patients. 
Moreover, table S4 gives a list of the patients analyzed in each of the 
following figure panels.

High levels of proinflammatory cytokines in MIS-C 
contrasted with lymphopenia and low HLA-DR expression 
in monocytes
SARS-CoV-2 can cause fatal acute respiratory distress syndrome in 
patients at risk. This manifestation is caused by delayed and poorly 
controlled immune responses, with a deleterious role of inflamma-
tory cytokines. Moreover, we and others have identified a subgroup 
of severe COVID-19 patients with impaired type I interferon (IFN) 
production (17–20). Thus, a regulated production of cytokines is 
paramount for control of SARS-CoV-2 infection. This prompted us 
to investigate how cytokines could contribute to MIS-C pathogene-
sis. We compared the serum levels of IFN-, IFN-, tumor necrosis 
factor– (TNF-), interleukin 10 (IL-10), soluble CD25 (sCD25), 
monocyte chemoattractant protein 1 (MCP1), IL-1 receptor antag-
onist (IL-1Ra), IL-6, and IL-18 between healthy controls and MIS-C, 
KD, TSS, and different forms of COVID-19 (mild pediatric, mild, 
or severe adult-onset COVID-19; see table S2 for a list of clinical 
features in the different patients’ groups).

The expression of IFN-stimulated genes (ISGs) in blood cells 
was significantly higher in MIS-C compared with controls but rath-
er low compared with patients with COVID-19 (Fig. 2, A to C). The 
level of serum IFN-2 followed the same trends, whereas serum 
IFN- was variable among patients with MIS-C, with very high lev-
els in a few patients. The expression of the other cytokines mea-
sured (IL-6, IL-10, IL-18, TNF-, MCP1, IL-1RA, and sCD25) was 
very high in patients with MIS-C compared with controls and very 
similar to that of patients with KD, TSS, and severe COVID-19 
(Fig.  2,  B  and  C). The level of sCD25 was significantly higher in 
patients with TSS than in patients with MIS-C and significantly 
lower in patients with severe COVID-19 than in patients with 
MIS-C (Fig. 2, B and C). A previous study found higher levels of 
serum IL-6 in patients with KD than in patients with MIS-C, con-
trasting with our data (8).

To further explore the MIS-C immunological profile, we quanti-
fied the number of peripheral lymphocytes of different types and 
the expression of HLA-DR in patients’ monocytes. T and NK cell 
counts were, on average, very low in patients with MIS-C and KD, 
whereas B cell counts were normal (Fig. 2D and fig. S1). We found 
a decreased expression of HLA-DR in monocytes in both patients 
with KD and MIS-C compared with controls (Fig. 2E and fig. S1). 
Together, our data show a strong similarity in cytokine profiles be-
tween MIS-C, KD, and TSS and highlight the decreased lymphocyte 
counts and low HLA-DR expression in monocytes in patients with 
MIS-C compared with controls.
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Expansion of V21.3+ peripheral T cells in a large fraction 
of patients with MIS-C
TSS toxin 1 (TSST1)–related TSS is associated with a skewing of the 
T cell repertoire toward V2 as a result of TSST1 superantigen–
induced proliferation of V2+ T cells (21). Every other Staphylococcus 
aureus superantigenic toxin induces the expansion of specific TCR 
V subsets, i.e., V 5.2, 5.3, 7.2, 9, 16, 18, and 22 for staphylococcal 
enterotoxin A (SEA) or V 3, 12, 13.2, 14, 17, and 20 for SEB (22). 
Given the similarities between TSS and MIS-C, we explored the 
possibility that MIS-C was also associated with specific T cell ex-
pansions. To explore the T cell repertoire in MIS-C, we first used 
flow cytometry to assess the distribution of V subunits in T cells 
from patients with MIS-C, in comparison with patients with KD, 
TSS, and COVID-19 (Fig. 3A and fig. S2A). As expected, patients 
with TSS displayed the hallmark expansion of the V2+ subset. 
Several V-specific expansions were also visible in patients with 
MIS-C and, in most cases, V21.3+ expansions (Fig.  3A) in both 
CD4 and CD8 T subsets (fig. S3A). These expansions had similar 
amplitudes as the V2+ expansions in TSS (Fig. 3A). A principal 
components analysis (PCA) of the V distribution in CD4 and CD8 
T cells showed that the main parameters separating the different 
patients were the frequency of V2+ and of V21.3+ cells (fig. S3, 
B and C). Overall, the expansion of V21.3+ T cell subsets was seen 
in 15 of 26 (58%) patients with MIS-C and in none of the other 

conditions analyzed by flow cytometry, i.e., KD, TSS, and COVID-19 
(Fig. 3A). Next, we wanted to use a different technique to test the 
specificity of this expansion, and we therefore performed transcrip-
tomic analyses of V expression in peripheral blood mononuclear 
cells (PBMCs) using the NanoString technology. This technique also 
requires much less material than flow cytometry, which allowed 
us to run lymphopenic samples from severe COVID-19 cases. This 
transcriptomic analysis firmly established that the V21.3+ T cell expan-
sion is a hallmark of MIS-C because it was seen in 18 of 23 patients 
with MIS-C tested (fig. S3D). Thus, taking together flow cytometry 
and NanoString analyses, we found that 24 of 32 (75%) patients 
with MIS-C and none in the other clinical groups displayed T cell 
receptor beta variable genes 11-2 (TRBV11-2)/V21.3+ expansions.

We then compared the level of serum cytokines between MIS-C 
patients with and without V21.3+ T cell expansions at the time of 
the acute episode. The levels of IL-18 and IL-1RA (Fig. 3, C and D) 
were associated with the polyclonal V21.3 expansions, but not 
those of the other cytokines tested (fig. S4, A and B), suggesting that 
V21.3+ T cells were associated with the cytokine storm.

TCR sequencing highlighted the polyclonal nature of TCR 
V21.3 expansions
To investigate the clonality of V21.3+ expanded cells, we analyzed 
the TCR repertoire of 11 patients with MIS-C for whom whole-blood 

* TSS major criteria according to wwwn.cdc.gov/nndss/conditions/toxic-
shock-syndrome-other-than-streptococcal/case-de�nition/2011/ 

**Kawasaki principle criteria other than fever: Brian W. et al., 2017
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Fig. 2. Systemic inflammation and signs of immune paralysis in patients 
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(G), the CDR3 length distribution of 
clonotypes using TRBV11-2 is shown 
as a histogram graph. Each clono-
type is represented as a gray line. 
The thickness of the line represents 
the frequency of the clonotype 
within each repertoire. Because 
most of the clonotypes are not abun-
dant, all the gray lines are stacked 
together and appear as a unique 
gray bar, which reflects the lack of 
expansion. Expanded clonotypes 
identified as detailed in Materials 
and Methods are shown in red. In 
(F) and (G), the same four patients 
are shown during the MIS-C epi-
sode (F) and after resolution (G). 
(H) Frequency of V21.3+ T cells at 
different time points during and after the MIS-C episode in different patients, as assessed by flow cytometry. (I) Annexin-V staining of T cells in the indicated patients’ 
groups. Results show the ratio of the annexin-V fluorescence in V21.3+ versus V21.3− T cells. See table S4 for subject numbers per panel. (B) Statistical test: Kruskal-Wallis test 
between MIS-C and all other groups with adjustment for multiple comparisons using Benjamini-Hochberg correction and (C, D, and I) unpaired Wilcoxon test comparing 
two groups. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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RNA was available by TCR sequencing. We analyzed the composi-
tion of the TCR  rearrangements involving the TRBV11-2 gene 
(which corresponds to V21.3). First, by representing the TRBV11-2/ 
T cell receptor beta joining genes (TRBJ) combination usage as chord 
diagrams (Fig. 3, E and F), we confirmed the expansion of T cells 
using TRBV11-2 in 7 of 11 patients. These TRBV11-2 rearrange-
ments were associated with multiple TRBJ genes, suggesting the 
polyclonal nature of the expansions. To further evaluate polyclonal-
ity, we analyzed the hypervariable sequence CDR3 length distribu-
tion of TRBV11-2 clonotypes (bar plots, Fig. 3, E to G). The CDR3 
size distributions showed a bell-shaped Gaussian distribution as 
expected in polyclonal repertoires (23–25). To evaluate the degree 
of polyclonality, we identified the expanded clonotypes by setting a 
threshold based on the binomial distribution of the clonotype 
frequencies per sample (see Materials and Methods and fig. S5A). 
No major monoclonal expansions (red lines in the CDR3 spectra-
types) explaining the global TRBV11-2 expansion were detected. 
Instead, most of the clonotypes were found at low frequencies (gray 
lines), typical of a polyclonal diverse repertoire. The percentages of 
expanded clonotypes were not significantly different between patients 
with or without TRBV11-2. We calculated the cumulative frequencies 
of these expanded clonotypes within the full repertoire and found 
that they were always far below the frequency of the full TRBV11-2 
expansion in patients with expansions, representing, on average, 
0.51% of the total repertoire. Last, these limited expansions repre-
sented, on average, 4.47% of the TRBV11-2 repertoire in patients 
with TRBV11-2 expansions and 6.31% in patients without TRBV11-2 
expansions (table S6 and fig. S5B). To confirm the polyclonality of 
the TRBV11-2 expansion, we computed the Berger-Parker index 
(BPI) on TRBV11-2 clonotype for patients with MIS-C harboring or 
not TRBV11-2 expansions (fig. S5C). This index measures the 
proportional abundance of the most frequent clonotypes within 
TRBV11-2 clonotypes. There were no significant differences when 
we compared the BPI on TRBV11-2 clonotypes between patients 
with or without TRBV11-2 expansions, further confirming that 
TRBV11-2 expansions in the seven patients were not explained by 
monoclonal expansions.

Next, to address whether the V21.3+ T cell expansion persisted 
overtime, we repeated the TCR sequencing and the flow cytometry 
V analyses in a group of patients for which blood samples were 
available during and after the acute inflammatory episode. As 
shown in Fig. 3 (F to H), the Vb21.3/TRBV11-2 distributions for all 
the patients returned to normal within days to weeks after MIS-C.  
When we compared the CDR3 length distributions by calculating 
the perturbation score using the ISEApeaks tool between reper-
toires obtained during and after the acute response, we found no 
differences between the two groups, further supporting the poly-
clonal expansion profile of TRBV11-2 during the acute response 
(fig. S5D). Last, this transient expansion suggested a proapoptotic 
phenotype of V21.3+ T cell. To test this hypothesis, we stained PBMCs 
from patients with MIS-C with annexin-V that marks early apoptot-
ic cells. A higher fraction of V21.3+ compared with V21.3− T cells 
were stained with annexin-V in MIS-C patients with V21.3+ ex-
pansions (Fig. 3I and fig. S2B), which substantiated our hypothesis.

V21.3+ T cells had an activated phenotype but did not react 
against SARS-CoV-2 peptides
Because V21.3+ T cells expand in patients with MIS-C, we investi-
gated their activation status and the mechanisms underlying their 

proliferation. We found that the activation markers HLA-DR and 
CD38 were expressed at high levels in both CD4 and CD8 T cells 
from MIS-C patients with V21.3+ expansions compared with those 
without expansions and to healthy controls (Fig. 4, A and B). This 
was due to a specific up-regulation of CD38 and HLA-DR in V21.3+ 
CD4 and CD8 T cells in MIS-C patients with V21.3 expansions 
compared with those without V21.3 expansions (Fig. 4, C and D). 
A recent paper reports a specific activation of CX3CR1+ CD4 and 
CD8 T cells in patients with MIS-C, as assessed by HLA-DR/CD38 
levels (12). This prompted us to measure CX3CR1 levels in V21.3+ 
T cells. As shown in Fig. 4E and fig. S6A, V21.3+ T cells overex-
pressed CX3CR1 in both CD4 and CD8 T cells in MIS-C patients 
with V21.3+ expansions compared with those without expansions, 
although the percentage of CX3CR1+ cells was not higher in MIS-C 
than in control patients (fig. S7A). Moreover, in patients with MIS-C, 
a large frequency of non-naïve CX3CR1+ CD4 and CD8 T cells had 
an activated phenotype as previously reported (fig. S7B) (12).

Given that MIS-C came about weeks after COVID-19, we won-
dered whether V21.3+ T cells were raised against SARS-CoV-2 an-
tigens. To test this possibility, we stimulated PBMCs from patients 
with MIS-C or convalescent COVID-19 with a commercial cocktail 
of SARS-CoV-2 peptides spanning S, N, and M viral proteins. T cells 
from patients with MIS-C responded poorly to stimulation with 
viral peptides, regardless of V21.3 expansion, compared with T cells 
from patients with convalescent COVID-19 that responded well 
(Fig. 4, F and G, and fig. S6, B and C). This was not due to a lack of 
adaptive anti–SARS-CoV-2 response, because all patients with 
MIS-C tested had high SARS-CoV-2–specific Ab levels (fig. S7, C 
and E). Last, we could not identify any specific allele nor mutations 
of classical HLA class I or class II genes associated with TRBV11-2 
expansions by genomic sequencing of the HLA loci of 13 patients 
with MIS-C (table S4). Together with the lack of V21.3+ expansion 
in patients with COVID-19, these data showed that V21.3+ T cells 
were not specific for HLA-restricted SARS-CoV-2 peptides. To-
gether, these data revealed that the V21.3+ CD4 and CD8 T cell 
expansion were highly activated and expressed CX3CR1 but had 
poor responsiveness to SARS-CoV-2 antigens.

DISCUSSION
Here, we confirmed the strong overlap in clinical phenotype be-
tween KD, MIS-C, and TSS; MIS-C and TSS had similar defining 
features, specifically cardiac dysfunction, hypotension, maculopap-
ular skin rash, and conjunctivitis. We recently identified the critical 
importance of early steroid therapy in the management of MIS-C, 
similarly to what has been previously shown in TSS (26, 27). MIS-C 
and TSS are obviously linked to infections, whereas many KD fea-
tures suggest an infectious cause for KD as well (28). The epidemic 
of a novel coronavirus in 2005 (New Haven) was associated to KD 
and linked the viral infection to vascular inflammation (29).

We found important similarities in terms of cytokine expression 
between MIS-C, TSS, and KD, such as high TNF-, IL-6, IL-18, and 
IL-1Ra levels. A previous study noted that a subgroup of patients 
with severe MIS-C had higher levels of IFN-, IL-18, GM-CSF 
(granulocyte-macrophage colony-stimulating factor), RANTES (regu-
lated upon activation, normal T cell expressed and secreted), IP-10 
(interferon gamma-​induced protein 10), IL-1, and SDF-1 (stromal 
cell–derived factor 1) than patients with mild MIS-C or KD (30). 
We also observed a subset of patients with MIS-C with high serum 
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IFN-, IL-18, and sCD25. These observations confirm previous re-
ports showing a clinical and biological overlap between MIS-C and 
macrophage activation syndrome (3) and suggest the importance of 
IFN- in the disease.

Here, we reported the expansion of a TCR V21.3+ T cell subset 
with an activated phenotype in as many as 75% of patients with 
MIS-C. V21.3+ T cell expansions were also reported in smaller 

numbers of patients with MIS-C in two recent studies (13, 31). 
In both Porritt et al. (31) and our study, V21.3+ T cell expansions 
appeared polyclonal as judged by the large number of TRBJ gene 
segments associated with TRBV11.2 and by the even distribution of 
the CDR3 domain. Our study further showed that V21.3+ CD4 
and CD8 T cell expansions are a discriminating feature of patients 
with MIS-C compared with patients with KD, TSS, and COVID-19.
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Fig. 4. T cell activation within 
V21.3 and stimulation of T cells 
with viral peptides in vitro. 
(A to D) Flow cytometry analy-
sis of CD38 and HLA-DR expres-
sion in CD4 or CD8 T cells from 
the indicated patients’ groups 
(exp: V21.3+ T cell expansion). 
(A) A representative staining 
and (B) the mean ± SD frequency 
of CD38+HLA-DR+ CD4 (top) and 
CD8 (bottom) T cells. (C and D) A 
V21.3+ Ab was also included in 
the flow cytometry panel used 
in (A) and (B), allowing a specific 
comparison of the V21.3− and 
V21.3+ T cells in patients with 
MIS-C. (C) A representative dot 
plot of CD38 and HLA-DR ex-
pression in the indicated sub-
sets; (D) means ± SD frequency 
of CD38+HLA-DR+ in the indicated 
CD4 (top) and CD8 (bottom) T cell 
subsets. (E) Frequency of CX3CR1+ 
cells in gated V21.3− and V21.3+ 
CD4+ (left) and CD8+ (right) T cells 
in MIS-C without and MIS-C with 
expansion. (F) PBMCs from con-
trol, patients with COVID-19 (adults, 
6 months after infection, Late-AM-
COVID), or patients with MIS-C 
(with or without V21.3+ T cell 
expansions) were stimulated for 
6 hours with a commercial cock-
tail of synthetic peptides from S, 
N, and M SARS-CoV-2 proteins in 
the presence of Golgi secretion 
inhibitors for the last 5 hours. 
Intracellular IFN- expression 
was then measured in T cells by 
flow cytometry. The fold increase 
was calculated as the ratio between 
the stimulated and the unstimu-
lated conditions. (G) The frequen-
cy of V21.3+ and V21.3− T cells 
expressing IFN- after stimula-
tion with S, N, and M SARS-CoV-2 
peptides in the different patient 
groups as indicated (one dot, one pa-
tient). See table S4 for subject num-
bers per panel. (B) Kruskal-Wallis 
test between three groups with 
adjustment for multiple compari-
sons using Benjamini-Hochberg 
correction and (D to G) Wilcoxon test 
comparing two groups. *P < 0.05.

D
ow

nloaded from
 https://w

w
w

.science.org at IN
SE

R
M

 on O
ctober 22, 2023



Moreews et al., Sci. Immunol. 6, eabh1516 (2021)     25 May 2021

S C I E N C E  I M M U N O L O G Y  |  R E S E A R C H  A R T I C L E

8 of 11

We observed a correlation between V21.3+ T cell expansions and 
the level of serum cytokines IL-18 and IL-1RA from matching samples, 
confirming a previous study (31) and indicating that V21.3+ T cell 
expansions were associated with the cytokine storm. Our data also 
showed that V21.3+ T cells have an activated phenotype, with high 
HLA-DR and CD38 expression, and that activated V21.3+ T cells 
expressed high levels of CX3CR1, a marker of patrolling monocytes 
and of cytotoxic lymphocytes. CX3CR1 binds to CX3CL1, a membrane-
bound chemokine induced on vascular endothelial cells upon inflam-
mation (12). The CX3CL1-CX3CR1 axis is thought to have an important 
role in vascular inflammation in different inflammatory diseases 
(32) and could contribute to MIS-C pathogenesis. This interaction 
could promote the cytotoxic action of different lymphocyte pop-
ulations, which fits with the reported elevated expression of cyto-
toxicity genes in NK and CD8+ T cells in patients with MIS-C (13).

We demonstrated that both TSS and MIS-C were marked by the 
polyclonal proliferation of a specific V subset, i.e., V2+ cells for 
TSS related to TSST1 and V21.3+ cells for MIS-C. The amplitude 
of the expansion was also similar in both syndromes. Considering 
the other clinical phenotype similarities between MIS-C and TSS 
shown in this study, cytokine production and treatment, this raises 
the hypothesis that V21.3+ cell expansions are caused by a super-
antigen structure in MIS-C. The term superantigen has been coined 
by Kappler and Marrack as an operational definition of various 
T cell–activating substances with specificity for T cell antigen re-
ceptors V subunits regardless of the rearrangement and antigen 
specificity (33). Superantigens bind external regions of TCR and 
MHC molecules (34) and can induce massive expansions of T cells 
expressing one specific TCR V chain, whereas classical antigens 
induce the expansion of T cells bearing different V. Previous 
papers have suggested that the SARS-CoV-2 spike protein could 
behave as a superantigen structure (35). Using in silico modeling, 
Porritt et al. identified a putative interaction between V21.3 and a 
superantigen-like motif in spike. However, V21.3+ T cell expan-
sions occur in a delayed manner relative to SARS-CoV-2 infection, 
and the virus is often undetectable in patients with MIS-C at the 
time of the acute inflammation. The kinetics of MIS-C relative to 
COVID-19 is compatible with a causal role of anti–SARS-CoV-2 
Abs. One can hypothesize that immune complexes composed of 
SARS-CoV-2 bound to Abs may act as superantigen structures. 
However, a previous study failed to detect these immune complexes 
in patients with MIS-C (30). In addition, V-restricted T cells 
adhere to endothelial cells after superantigen activation (36), and, 
thus, the CX3CR1+ V21.3–expanded T cells may play a role in vas-
cular injury in MIS-C. Alternative mechanisms may be put forward, 
such as secondary autoimmune reactions. Several studies have in-
deed reported the appearance of autoantibodies in patients with 
MIS-C, some of which directed against endothelial antigens (8, 11), 
whereas others have reported immune events consistent with auto-
immunity, such as the expansion of proliferating plasmablasts (13) 
or the persistence of functional SARS-CoV-2–specific monocyte-
activating Abs (37). How B cell–mediated autoimmunity would be 
linked to V-specific T cell expansions is, however, unclear. One 
could speculate that immune complexes composed of autoantibodies 
and endogenous antigens could behave as superantigens.

Last, given the rarity of MIS-C, there could be a genetic suscep-
tibility to this postinfectious disease, promoting hyperinflammato-
ry reaction of adaptive immunity in response to SARS-CoV-2 (16). 
We limited our analysis to classical HLA alleles but did not find any 

significant association, although a previous study reported an HLA-I 
bias in a smallest group of patients with MIS-C (31). Our MIS-C 
samples were obtained in most of cases after anti-inflammatory 
treatments (see table S3), and it is likely that those treatments affect 
the level of serum cytokines, which could have affected the com-
parisons we made between clinical conditions and the associations 
between cytokines and T cell expansions. Together, MIS-C shared 
clinical and immunological anomalies with KD and TSS but was 
specifically characterized by a polyclonal V21.3 expansion in CD4 
and CD8 T cells associated to activation and CX3CR1 expression.

MATERIALS AND METHODS
More information for all of these protocols can be found in the Sup-
plementary Materials.

Study design and human subjects
The immunological profiles of 36 MIS-C, 16 KD, 58 TSS, and 
42 non–MIS-C COVID-19 cases were included (Fig. 1A). Samples 
were collected within the first week of symptoms and analyzed for 
cytokine immunoprofiling, standard immunophenotyping, V ex-
pression, TCR sequencing, and SARS-CoV-2–dependent T cell re-
sponse. Because of low-volume sampling of pediatric patients, we 
did not have the same availability for research blood draws. The 
samples used for each experiment are detailed in table S4. The main 
clinical features are summarized in tables S1 to S3. Written in-
formed consent was obtained for all data collection and blood sam-
pling as detailed in the Supplementary Materials.

Immunological analyses
Cytokines and IFN score assessment
Plasma concentrations of IL-6, TNF-a, IFN-, IL-10, IL-18, MCP-1, 
IL-1RA, and sCD25 were measured by Simple Plex technology 
using an enzyme-linked lectin assay instrument (ProteinSimple). 
Plasma IFN- concentrations were determined by single-molecule 
array (Simoa) on an HD-1 analyzer (Quanterix) using a commercial 
kit for IFN-2 quantification (Quanterix). RNA was extracted from 
whole blood, and IFN score was obtained using nCounter analysis 
technology (NanoString Technologies) by calculating the median of 
the normalized count of six ISGs as previously described (38).
T cell V repertoire analysis and immunophenotyping
PBMCs were stained with surface markers, CD3, CD4, CD8, CD14, 
CD16, CD19, CCR7, CD38, V21.3, HLA-DR, CX3CR1, and 
CD45RA (further details on these stains are included in the Supple-
mental Materials). Cell apoptosis was assessed by annexin-V 
staining. All samples were acquired on a BD LSRFortessa (BD 
Biosciences) flow cytometer and analyzed using FlowJo version 
10 software. Monocyte HLA-DR expression was determined on 
EDTA-anticoagulated peripheral whole blood as previously de-
scribed (39). The phenotypic analysis of T cell V repertoire was 
performed on whole blood sample using the IOTest Beta Mark kit 
(Beckman Coulter). Whole-blood cells were stained for CD3, CD4, 
CD8, and each combination of three fluorescein isothiocyanate (FITC)–, 
phycoerythrin (PE)–, and FITC/PE–conjugated anti–V monoclo-
nal Abs (mAbs) (Beckman Coulter) in eight sample tubes. Expan-
sions were defined, respectively, for values above the mean + 2 SD or 
below the minimum reference values of the corresponding fam-
ily. Additional samples were analyzed for TRBV from total RNA 
with NanoString technology (Supplementary Materials).
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TCR sequencing and analysis
TCR a/b libraries were prepared from 300 ng of RNA from each 
sample with the SMARTer Human TCR a/b Profiling Kit (Taka-
ra Bio) (40). The sequencing was carried out on a MiSeq Illumina 
sequencer using the MiSeq v3 PE300 protocol at the Biomics Plat-
form (Institut Pasteur, Paris, France). Single-end sequences were 
aligned and annotated using MiXCR 3.0.13 (41), providing a list of 
clonotypes. Analyses were performed in R 4.0.3 on the TRB clono-
type lists obtained with MiXCR. For each clonotype, read count was 
recorded. Frequencies for TRBV, TRBJ, and clonotypes were calcu-
lated on the basis of the total read counts per sample. Chord dia-
grams were made using the circlize package (42) on TRBVBJ 
frequencies, and CDR3 length spectratypes were made using gg-
plot2 (43) using clonotype frequencies. To identify TRBV11-2 ex-
panded clonotypes, the first (Q1) and third (Q3) quartiles and the 
interquartile range (IQR) were computed for all patients without 
TRBV11-2 expansion. Expanded clonotypes are defined as those 
with counts superior to Q3 + (1.5*IQR).
Stimulation with SARS-CoV-2 overlapping peptide pools 
and flow cytometry
PBMCs were stimulated with SARS-CoV-2 PepTivator pooled S, N, 
and M peptides (Miltenyi Biotec) at a final concentration of 2 g 
ml−1 for 1 hour in the presence of 2 g ml−1 of mAbs CD28 and 
CD49d and then for an additional 5 hours with GolgiPlug and 
GolgiStop (BD Biosciences). Similar surface markers were stained. Cells 
were then washed, fixed with Cytofix/Cytoperm (BD Biosciences), 
and stained with V450-conjugated anti–IFN-. All samples were 
acquired on a BD LSRFortessa (BD Biosciences) flow cytometer and 
analyzed using FlowJo version 10 software.
Serology
Serum samples were tested with three commercial assays: the Wantai 
Ab assay detecting total Abs against the receptor binding domain 
(RBD) of the S protein, the bioMérieux VIDAS assay detecting 
immunoglobulin G (IgG) to the RBD, and the Abbott ARCHITECH 
assay detecting IgG to the N protein.

Statistical analyses
All tests were performed two sided with a nominal significance 
threshold of P < 0.05. We used nonparametric tests appropriated to 
the low number of observations in each of our experimental condi-
tions, i.e., the Wilcoxon or Kruskal-Wallis test depending on whether 
we have two or more conditions to compare, respectively. Multiple 
comparisons performed with the Dunn’s all-pairs comparison for 
Kruskal-type ranked data were corrected by the false discovery rate 
method of Benjamini-Hochberg (44). PCA was made in R with stats 
package and visualized with ggplot2 (43) for Vb frequencies ob-
tained by flow cytometry. All statistical analyses were performed 
using GraphPad with the help of a professional biostatistician.

SUPPLEMENTARY MATERIALS
immunology.sciencemag.org/cgi/content/full/6/59/eabh1516/DC1
Methods
Figs. S1 to S7
Tables S1 to S7

View/request a protocol for this paper from Bio-protocol.
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MIS-C’s unique TCR repertoire
Multisystem inflammatory syndrome in children (MIS-C) is a severe complication that develops in children previously
infected with SARS-CoV-2, with similar features to Kawasaki disease (KD) and toxic shock syndrome (TSS). It is
still unclear what immunologic correlates differentiate MIS-C from KD and TSS. Here, Moreews et al. looked at the
circulating T cell repertoire and phenotype of 36 patients with MIS-C, 16 with KD, 58 with TSS, and 42 with COVID-19.
They found that 75% of patients with MIS-C, and none from the other groups, expressed the V#21.3 T cell receptor
# chain variable region in both CD4 and CD8 T cells. These cells had an activated and vascular patrolling phenotype
but were not specific to SARS-CoV-2. Together, this work shows unique T cell responses in patients with MIS-C after
convalescence.
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Methods:  

Study design and Human subjects 

The 36 MIS-C patients were included from April 2020 to April 2021 from French 

participating centers (HPI COVID). We took advantage of previous collection of KD 

from Necker’s Hospital and additional patients with KD or TSS previously included 

into a study on toxic shock syndrome (approved by the Ethical review board Sud Est 

IV, DC-2008-176). Acute COVID-19 patients were derived from either HPI project on 

pediatric COVID-19 (HPI COVID), n=11 or from two ongoing project on mild adult 

COVID-19 in health care providers (COVID-SER), n=21 or severe adult COVID-19 in 

critical care unit (COVID-Rea), n=10. All patients could not be included in all analysis, 

this information is provided in Table S1.  

HPI COVID: Written informed consent was obtained for data collection and blood 

sampling relating to patients and healthy control subjects. The clinical study for 

children has been registered on ClinicalTrial.gov(NCT04376476) and approved by 

the national review board for biomedical research in April 2020 (Comité de Protection 

des Personnes Sud Méditerranée I, Marseille, France) (ID-RCB: 2020-A01102-37).  

COVID-SER: For the mild adult COVID-19 cohort, the clinical study registered on 

ClinicalTrial.gov (NCT04341142) has been fully detailed 48. In the present study, 

only patients with mild symptoms of COVID-19 were included. Written informed 

consent was obtained from all participants and approval was obtained from the 

national review board for biomedical research in April 2020 (Comité de Protection 

des Personnes Sud Méditerranée I, Marseille, France; ID RCB 2020-A00932-37). 

COVID-rea: For the severe adult COVID-19 cohort, the study was registered to the 

French National Data Protection Agency under the number 20-097 and was 

approved by an ethical committee for biomedical research (Comité de Protection des 

Personnes HCL) under the number N°20-41. In agreement with the General Data 

Protection Regulation (Regulation (EU) 2016/679 and Directive 95/46/EC) and the 

French data protection law (Law n°78-17 on 06/01/1978 and Décret n°2019-536 on 

29/05/2019), we obtained consent from each patient or his next of kin.  

Cytokines and IFN score assessment 



Whole blood was sampled on EDTA tubes and plasma was frozen at -20°C within 4 

hours following blood collection. Plasma concentrations of IL-6, TNF-a, IFN-g, IL-10, 

MCP-1, IL-1ra and CD25s were measured by Simpleplex technology using ELLA 

instrument (ProteinSimple), following manufacturer’s instructions. Plasma IFN-α 

concentrations were determined by single-molecule array (Simoa) on a HD-1 

Analyzer (Quanterix) using a commercial kit for IFN-α2 quantification (Quanterix). 

Whole blood was collected on PAXgene blood RNA tubes (BD Biosciences) or on 

EDTA tubes for IFN signature, RNA extraction was performed with the kit maxwell 16 

LEV simply RNA blood associated with the Maxwell extractor (Promega)  and 

quantified by absorbance (Nanovue). IFN score was obtained using nCounter 

analysis technology (NanoString Technologies) by calculating the mediane of the 

normalized count of 6 ISGs as previously described(45) 

Lymphocytes immunophenotyping 

CD3, CD4 and CD8 T lymphocyte subsets were enumerated on EDTA-

anticoagulated peripheral whole blood by single-platform the fully automated 

volumetric single plateforme technology flow cytometer AQUIOS CL (Beckman-

Coulter) as previously described(46). The phenotypic characterization of B, NK and T 

activated lymphocyte subsets were performed on EDTA-anticoagulated whole blood 

using the following combination of monoclonal antibodies: APC-Alexa Fluor 750-

conjugated anti-CD3, Pacific Blue-conjugated anti-CD4, Krome Orange-conjugated 

anti-CD8, FITC-conjugated anti-HLA-DR, APC-conjugated anti-CD19, Krome 

Orange-conjugated anti-CD16 and ECD-conjugated anti-CD56 (Beckman-Coulter). 

The preparations were lysed and fixed by thoroughly mixing and incubating for 10 

min successively with 500µL of OptiLyse C reagent (Beckman-Coulter) and 1mL of 

PBS. The cells were centrifuged for 5min at 400g, resuspended in 500µl of PBS and 

acquired on a NAVIOS flow cytometer (Beckman-Coulter).  

Monocyte HLA-DR expression assessment 

Monocyte HLA-DR expression was evaluated on EDTA-anticoagulated blood 

processed within 3 hours after withdrawal. The expression of mHLA-DR was 

determined using the Anti-HLA-DR/Anti-Monocyte Quantibrite assay (BD 

Biosciences, San Jose, USA) on a Navios flow cytometer (Beckman Coulter, 

Hialeah, FL) and flow data were analysed using Navios software (Beckman Coulter). 



Total number of antibodies bound per cell (AB/C) were quantified using calibration 

with a standard curve determined with BD Quantibrite phycoerythrin (PE) beads (BD 

Biosciences) as described previously (47). 

T-cell Vβ repertoire analysis and immunophenotyping 

The phenotypic analysis of T-cell Vβ repertoire was performed on whole blood 

sample using the IOTest Beta Mark kit (Beckman-Coulter) containing 24 monoclonal 

antibodies (mAbs) identifying ~ 70% of the T cell repertoire. Whole blood cells were 

stained with APC-Alexa Fluor 750-conjugated anti-CD3, Pacific Blue-conjugated anti-

CD4, Krome Orange-conjugated anti-CD8 and each combination of 3 FITC-, PE- and 

FITC/PE-conjugated anti-Vβ mAbs (Beckman-Coulter) in 8 sample tubes. Whole 

blood sample were lysed with OptiLyse C Lysing Solution (Beckman-Coulter), 

washed and fixed in 0.5% formaldehyde in PBS. 0.5 to 104 T cells were acquired on 

a NAVIOS flow cytometer and data were analyzed using NAVIOS software. 

Lymphocytes were first gated according to FSC/SSC parameter, then by selection of 

CD3+, CD4+ and CD3+CD4- positive cells. The proportion of each Vβ family was 

compared to the minimum and the mean+2SD of each reference values obtained 

from data from IOTest Beta Mark® kit to evaluate expanded or restricted Vβ family. 

Expansions or restrictions were defined respectively for values above the mean+2SD 

or below the minimum reference values of the corresponding family. Additional 

samples were analyzed for TRBV from total RNA with Nanostring technology 

(Supplemental Material). 

Nanostring TCR expression analysis 

Total RNA was extracted from PAXgene™ tubes using the Maxwell® 16 LEV 

simplyRNA Blood kit (Promega), following the manufacturer's guidelines. The RNA 

quantity was determined using a Nanodrop (Thermo Scientific). 200 ng total RNA 

were hybridized with the nCounter® T cell repertoire panel (Nanostring©, #LBL-

10805-01) and counted on an nCounter® FLEX platform according to the 

manufacturer's guidelines. Raw counts were normalized using internal positive 

standards and 12 housekeeping genes. Raw counts of TRBV genes were expressed 

as a proportion among total TRBV gene counts for each patient and normalized 

using the median value from the healthy control group. 

TCR-sequencing 



RNA was extracted from whole blood as reported above. T cell receptor (TCR) 

alpha/beta libraries were prepared from 300ng of RNA from each sample with 

SMARTer Human TCR a/b Profiling Kit (Takarabio) following provider protocol as 

previously described (32). Briefly, the reverse transcription was performed using a 

mixture of TRBC and TRAC reverse primers and further extended with a template-

switching oligonucleotide (SMART-Seq v4). cDNAs were then amplified following two 

semi-nested PCR: a first PCR with TRBC and TRAC reverse primers as well as a 

forward primer hybridizing to the SMART-Seq v4 sequence added by template-

switching and a second PCR targeting the PCR1 amplicons with reverse and forward 

primer including Illumina Indexes allowing for sample barcoding. PCR2 are then 

purified using AMPUre XP beads (Beckman-Coulter). The sequencing was then 

carried out on a MiSeq Illumina sequencer using the MiSeq v3 PE300 protocol at the 

Biomics Platform (Institut Pasteur, Paris, France). Single end sequences were 

aligned and annotated using MiXCR 3.0.13 (48), providing a list of clonotypes, each 

of which is defined as a unique combination of one TRBV gene with one CDR3 

amino-acid sequence and one TRBJ gene. 

TCR-Seq repertoire analysis 

Analyses were performed in R 4.0.3 on the TRB clonotype lists obtained with MiXCR. 

For each clonotype, read count was recorded. Frequencies for TRBV, TRBJ and 

clonotypes were calculated based on the total read counts per sample. Chord 

diagrams were made using the circlize package(49) on TRBVBJ frequencies, CDR3 

length spectratypes were made using ggplot2 (43) using clonotype frequencies. To 

identify TRBV11-2 expanded clonotypes, first (Q1) and third (Q3) quartiles and the 

interquartile range (IQR) were computed for all patients without TRBV11-2 

expansion. Expanded clonotypes are defined as those with counts superiors to 

Q3+(1.5*IQR). 

Immunophenotyping of Vβ 21.3+ T cells 

Thawed PBMC were labeled labeled using Fixable Viability Dye eFluor™ 506 from 

Thermo Fisher. PBMCs were stained with surface markers, APC-conjugated anti-

CD3, BUV486- conjugated anti-CD4, PE-Cy7-conjugated anti-CD8, APC-Cy7-

conjugated anti-CD14, APC-Cy7-conjugated anti-CD16, APC-Cy7-conjugated anti-

CD19, BV711-conjuagetd anti-CCR7 and BV421-conjugated anti-CD38 (BioLegend), 



FITC-conjugated anti-Vb21.3 (Miltenyi), Biotin-conjugated anti-HLA-DR, APC-

conjugated CX3CR1 (Ebiosciences), BV605-conjugated anti-CD45RA and 

streptavidine-conjugated PE-texas Red (BD). Cells were then washed, fixed with 

PBS/Formalin 2%(Sigma-Aldrich).  Cell apoptosis was assessed by annexin V 

staining with the PE Annexin V Apoptosis Detection Kit I (BD). All samples were 

acquired on a BD LSRFortessa (BD Biosciences) flow cytometer and analyzed using 

FlowJo version 10 software. 

Stimulation with SARS-CoV-2 overlapping peptide pools and flow cytometry 

Briefly, overnight-rested PBMCs were stimulated with SARS-CoV-2 PepTivator 

pooled peptides (Miltenyi Biotec) at a final concentration of 2 μg ml−1 for 1 h in the 

presence of 2 μg ml−1 monoclonal antibodies CD28 and CD49d, and then for an 

additional 5 h with GolgiPlug and GolgiStop (BD Biosciences). Dead cells were 

labeled using LIVE/DEAD Fixable near IR dye from Invitrogen. Surface markers, 

including APC-conjugated anti-CD3, BUV486- conjugated anti-CD4, PE-Cy7-

conjugated anti-CD8, APC-Cy7-conjugated anti-CD14, APC-Cy7-conjugated anti-

CD16 and APC-Cy7-conjugated anti-CD19 (BioLegend) and FITC-conjugated anti-

Vb21.3 (Miltenyi) were stained. Cells were then washed, fixed with Cytofix/Cytoperm 

(BD Biosciences) and stained with V450- conjugated anti-IFNγ (eBioscience). 

Negative controls without peptide stimulation were run for each sample. All samples 

were acquired on a BD LSRFortessa (BD Biosciences) flow cytometer and analyzed 

using FlowJo version 10 software. 

Serology 

Serum samples were tested with three commercial assays: the Wantai Ab assay 

detecting total antibodies against the receptor binding domain (RBD) of the S protein, 

the bioMérieux Vidas assay detecting IgG to the RBD and the Abbott Architect assay 

detecting IgG to the N protein. 

 

  



�g.S1

A
Cells CD45+

CD45+

CD8

CD
4

CD3
Co

un
t

CD3+

CD3+

CD45

SS
-C

B

C

CD14 HLA-DR

Co
un

t

Co
un

t

monocytes

monocytes

CD45

SS
-C

CD45+

FS-C

SS
-C

CD45+

Co
un

t

CD19 CD19

CD
20

lymphs

Lymphs

CD19+

CD19+

Lymphs

CD19

CD
3

CD16

CD
56

B cells

CD3- CD19-

CD3- CD19-

Cells

Cells

NK cells

CD8+

CD4+

Supplementary Figures



Figure S1: Assessment of T, B, NK cells and HLA-DR monocytes.  

Gating strategy and representative flow cytometry plots for immune populations from 

whole blood stain of CD4+ and CD8+ T cells (A), NK cells and B cells (B) and for 

HLA-DR expression in monocytes (C). 
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Figure S2: Assessment of T-cell receptor repertoire and T cell apoptosis by flow 

cytometry 

(A) Representative flow cytometry plots of total CD3+ T cells expressing the indicated 

V-beta (Vβ) chains using specific antibodies against the corresponding Vβ within 

PBMCs of one patient (KD-12) as shown in Figure 3A.  

(B) Annexin-V staining of T cells in the indicated patients’ groups as determined by 

flow cytometry. Results show the the Annexin-V fluorescence in Vβ21.3+ vs Vβ21.3- 

T cells. 
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Figure S3: Vβ TCR repertoire analysis 

(A) Vβ21.3 TCR expansions in CD4 and CD8 T cells from MIS-C patients as 

determined by flow cytometry. (B-C) Principal component analysis of the V 

distribution of CD3 T cells in the different clinical groups. Black vectors correspond to 

the contribution of V2+, V3+ and V21.3+ cells to the representation. Percentages 

correspond to the variance captured by each axis. (B) highlights the different clinical 

conditions while (C) highlights the MIS-C patients during the acute episode (peak) 

and after (distant). One patient (MISC-15) for which 2 time points were available, was 

added to the same representation. (D) Transcriptomic analysis of TRBV genes 

expression in MIS-C patients, mild COVID19 patients at diagnosis and 6 months after 

infection, COVID19 patients hospitalized in intensive care units and healthy controls 

using the TCR diversity panel from Nanostring. Results are expressed relative to the 

median of healthy controls for each gene expression. Red spikes represent TRBV 

genes with ratio > 4. N=23 in MIS-C patients, N=5 in mild COVID19 group and 

COVID19 patients hospitalized in intensive care unit and N=16 in healthy controls. 

TRBV11-2 is the transcript encoding for Vβ21.3. 
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Figure S4: Cytokine assessment in MIS-C 

(A-B) Blood ISG score, as described in Fig.2 legend, or serum cytokine levels in MIS-

C patients with or without Vβ21.3 expansion. N=6 to 11 per group, as indicated in 

Table S2; Statistical test: Mann-Withney. 
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Figure S5: TRBV11-2 polyclonality assessment 

(A) Comparison of TRBV11-2 clonotype distribution between MIS-C patients with 

TRBV11-2 expansion (light green) and without TRBV11-2 expansion (dark green).  

TRBV11-2 clonotypes are plotted by increasing ranks as a function of their frequency 

in the repertoire. The red line indicates the expansion threshold determined as 

described in the method section. (B) Percentage of expanded clonotypes among 

TRBV11-2 clonotypes. (C). Berger-Parker index computed on TRBV11-2 clonotypes. 

(D) Perturbation score of the TRBV11-2 CDR3 length distribution during and after the 

inflammatory response of MIS-C patients with TRBV11-2 expansions during the 

acute phase. Statistics were calculated using the Mann-Whitney test. 
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Figure S6:  Analysis of T cell activation within Vβ21.3 by flow cytometry 

(A) Representative flow cytometry plots of CX3CR1 expression in Vβ21.3- and 

Vβ21.3+ CD4 or CD8 T cells of one patient in each group as shown in Figure 4E. (B-

C) Representative flow cytometry plots of IFNg-expressing T cells following SARS-

CoV2 peptide stimulation within CD3+ T cells (B) and within Vβ21.3+ and Vβ21.3- T 
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Figure S7:  T cell phenotyping and SARS-CoV2 serology 

(A) CX3CR1 expression in non-naive (nn) CD4 or CD8 T cells. (B) HLA-DR and 

CD38 expression in nn CD4 or CD8 T cells expressing or not CX3CR1 in healthy 

donors (black) and MIS-C (green). N=4 to 6 per group, as indicated in Table S2; 

Statistical test: paired or unpaired Mann-Withney.  (C-E) SARS-CoV-2 serology (as 

indicated) of patients with MIS-C or mild COVID-19 that were explored for SARS-Cov 

2 T cell activation in Figure 4F-G Dotted lines represent positive threshold 

recommended by each manufacturer.  

 

  



Table S1: Clinical description of all MIS-C patients included in the study. 

MIS-C patient characteristics:  
N=36  

Age, median [Min-Max]  
 
Sex Ratio (Male/Female)  

7.8 [1.2-15.2] 
 
26/10 

Main Ethnicity (n, %)  
White 
Afro-Caribbean  
Middle Eastern  

 
14 (40%) 
20 (54%) 
2 (6%) 

WHO MIS-C criterias* (n, %)  
-fever > 3 days 
-Rash 
-Conjunctivitis 
-Muco-cutaneous inflammation signs (oral, hands or feet)  
-Gastrointestinal symptoms (diarrhoea, vomiting, or 
abdominal pain)  
-Hypotension/shock 
-Cardiac dysfunction or abnormalities  
    elevated Troponin  
    elevated NT-pro-BNP  
-Coagulopathy  
     elevated D-Dimers 
-Inflammatory markers  
     elevated C-reactive protein  

 
36 (100%) 
25 (69%) 
22 (61%) 
24 (67%) 
35 (97%) 
 
16 (44%) 
 
26 (72%) 
32 (89%) 
 
34 (94%) 
 
36 (100%) 

Evidence of COVID-19 (n, %)  
-SARS-Cov-2 PCR  
-SARS-Cov-2 serology  

36 (100%) 
11 (31%) 
33 (92%) 

Vasoactive medications 14 (40%) 

Intensive care unit (ICU) admission 31 (86%) 

 

 

 
  



Table S2: Demographic and clinical data of pediatric patients with Kawasaki Disease 
or Toxic shock syndrome (S.aureus or S. pyogenes) or COVID-19 and adult patients 
with mild or severe COVID-19 
 
 

pediatric 
COVID-
19 

children 
with 
Kawasaki 
Disease 

children with 
Toxic shock 
syndrome 
(S.aureus) 

children 
with 
Toxic 
shock 
syndrome 
(S.pyoge
nes) 

adult with 
mild 
COVID-
19 

adult 
severe 
COVID-
19 

 N=11 N=16 N=39 N=19 N=21 N=10 

Age (y). 
median 
[Min-Max] 

2.5 [0.1-
17.6] 

2.9 [0.1-
15.8] 

14.7 [0.4-18] 4.1 [0.7-18] 
42 [29.2-
57.3] 

60.8 
[42.3-
78.8] 

Sex ratio 
(M/F) 

8/3 7/9 10/29 9/10 3/18 5/5 

ICU 
admission 

3 (27%) 3 (18%) 
36 (100%) 
(n=36) 

19 (100%) 0 (0%) 
10 
(100%) 

Vasoactive 
medications 

0 (0%) 1 (6%) 
19 (65%) 
(n=29) 

15 (83%) 0 (0%) 3 (30%) 

 
 

Table S3: Patients clinical characteristics 

Patient 
Age 
(y) 

Sex 
ICU 
admission 

Vasoactive 
medication 

TCR 
Vbeta 
repertoire 
analysis 
by flow 
cytometry 

TCR 
repertoire 
sequencing 

Cytokines 
analysis 
or IFN 
signature 

Treatment 
(IVIG or 
Systemic 
glucocorticoids 
(SGCs)) 

MISC-1 4.3 M Yes Yes Yes No Yes 
IVIG 2 doses 
+ SGCs 

MISC-2 12.4 F Yes Yes Yes Yes Yes IVIG 1 dose 

MISC-3 11.3 F Yes Yes Yes Yes Yes 
IVIG 2 doses 
+ SGCs 

MISC-4 2.9 M No No Yes No No 
IVIG 2 doses 
+ SGCs 

MISC-5 1.5 M No Yes Yes No Yes IVIG 1 dose 

MISC-6 4.0 F Yes Yes Yes Yes Yes 
IVIG 2 doses 
+ SGCs 

MISC-7 5.8 M Yes Yes Yes Yes Yes 
IVIG 1 dose + 
SGCs 

MISC-8 14.3 F Yes Yes Yes Yes Yes 
IVIG 2 doses 
+ SGCs 

MISC-9 9.8 M Yes No Yes Yes Yes 
IVIG 2 doses 
+ SGCs 

MISC-10 8.8 M Yes No Yes Yes Yes 
IVIG 1 dose + 
SGCs 

MISC-11 5.8 F No No Yes Yes Yes SGCs 

MISC-12 10.3 F Yes Yes Yes No Yes IVIG 2 doses 

MISC-13 5.1 M Yes No Yes Yes Yes 
IVIG 2 doses 
+ SGCs 

MISC-14 5.0 M Yes Yes Yes No No 
IVIG 2 doses 
+ SGCs 

MISC-15 12.4 M Yes No Yes Yes Yes 
IVIG 1 dose + 
SGCs 

MISC-16 13.2 M Yes Yes Yes Yes Yes IVIG 2 doses 

MISC-17 6.8 M Yes No Yes No No 
IVIG 2 doses 
+ SGCs 

MISC-18 9.4 M Yes Yes No Yes Yes IVIG 2 doses 



+ SGCs 

MISC-19 3.8 M Yes No No Yes Yes IVIG 1 dose 

MISC-20 7.1 M Yes No Yes No Yes 
IVIG 2 doses 
+ SGCs 

MISC-21 12.4 F Yes No Yes No No 
IVIG 2 doses 
+ SGCs 

MISC-22 1.2 M Yes No No Yes Yes 
IVIG 2 doses 
+ SGCs 

MISC-23 12.6 M Yes No Yes Yes Yes 
IVIG 2 doses 
+ SGCs 

MISC-24 10.6 M Yes No Yes Yes Yes 
IVIG 2 doses 
+ SGCs 

MISC-25 15.2 M Yes Yes Yes Yes Yes 
IVIG 2 doses 
+ SGCs 

MISC-26 10.3 M Yes No Yes Yes Yes 
IVIG 2 doses 
+ SGCs 

MISC-27 10.3 F Yes No Yes No Yes 
IVIG 2 doses 
+ SGCs 

MISC-28 2.3 M Yes No Yes No Yes 
IVIG 2 doses 
+ SGCs 

MISC-29 10.0 M Yes No Yes No Yes 
IVIG 2 doses 
+ SGCs 

MISC-30 4.6 M Yes No Yes No Yes 
IVIG 2 doses 
+ SGCs 

MISC-31 7.5 M Yes Yes Yes No Yes 
IVIG 2 doses 
+ SGCs 

MISC-32 6.8 M Yes Yes Yes No Yes 
IVIG 1 dose + 
SGCs 

MISC-33 9.6 F No No Yes No Yes 
IVIG 2 doses 
+ SGCs 

MISC-34 8.8 M No No Yes No No 
IVIG 2 doses 
+ SGCs 

MISC-35 7.7 F Yes No Yes No Yes 
IVIG 2 doses 
+ SGCs 

MISC-36 4.0 M Yes No Yes No Yes 
IVIG 2 doses 
+ SGCs 

KD-1 4.0 F No No Yes Yes Yes 
IVIG 1 dose + 
SGCs 

KD-2 8.0 M Yes Yes Yes No No 
IVIG 1 dose + 
SGCs 

KD-3 2.9 F No No No Yes Yes IVIG 1 dose 

KD-4 1.6 F No No No Yes Yes IVIG 1 dose 

KD-5 2.5 M Yes No Yes No No - 

KD-6 15.8 F No No Yes No No - 

KD-7 6.8 F No No Yes No No - 

KD-8 0.7 F No No Yes No No - 

KD-9 6.2 F No No Yes No No - 

KD-10 2.8 F No No Yes No No IVIG 1 dose 

KD-11 1.2 F Yes No Yes No Yes IVIG 1 dose 

KD-12 2.2 M No No Yes No Yes IVIG 1 dose 

KD-13 0.1 M No No Yes No Yes IVIG 1 dose 

KD-14 1.3 F No No Yes No Yes IVIG 1 dose 

KD-15 5.3 F No No Yes No Yes IVIG 1 dose 

KD-16 3.8 M No No Yes No Yes IVIG 1 dose 

TSS-Sta-1 11.4 F Yes Yes Yes No No - 

TSS-Sta-2 7.3 M Yes Yes Yes No No - 

TSS-Sta-3 14.3 F Yes Yes Yes No No - 

TSS-Sta-4 15.8 F Yes Yes Yes No No - 

TSS-Sta-5 14.2 F Yes No Yes No No - 

TSS-Sta-6 18.2 F Yes Yes Yes No No IVIG 1 dose 

TSS-Sta-7 12.7 F Yes Yes Yes No No IVIG 1 dose 

TSS-Sta-8 16.1 F Yes Yes Yes No Yes - 

TSS-Sta-9 14.2 F Yes Yes Yes No Yes IVIG 1 dose 

TSS-Sta-10 4.5 M Yes Yes Yes No Yes - 

TSS-Sta-11 4.8 M Yes No Yes No Yes IVIG 1 dose 

TSS-Sta-12 16.0 F Yes Yes Yes No No - 

TSS-Sta-13 14.0 F Yes Yes Yes No No IVIG 1 dose 

TSS-Sta-14 17.4 M Yes Yes Yes No No - 

TSS-Sta-15 18.0 M Yes NA Yes No No NA 

TSS-Sta-16 12.3 F Yes Yes Yes No No IVIG 1 dose 

TSS-Sta-17 15.6 F Yes No Yes No No - 

TSS-Sta-18 16.6 F Yes No Yes No No - 

TSS-Sta-19 16.7 F Yes Yes Yes No No - 



TSS-Sta-20 16.3 F Yes NA Yes No No NA 

TSS-Sta-21 11.8 F Yes Yes Yes No No - 

TSS-Sta-22 14.7 F Yes NA Yes No No NA 

TSS-Sta-23 14.3 F Yes No Yes No No - 

TSS-Sta-24 17.3 F Yes No Yes No No - 

TSS-Sta-25 16.7 F Yes Yes Yes No No IVIG 1 dose 

TSS-Sta-26 7.8 F Yes Yes Yes No No - 

TSS-Sta-27 17.4 F Yes NA Yes No No NA 

TSS-Sta-28 17.5 F Yes No Yes No No - 

TSS-Sta-29 4.3 M Yes NA Yes No No NA 

TSS-Sta-30 4.9 M Yes No Yes No No - 

TSS-Sta-31 0.4 M Yes Yes Yes No No - 

TSS-Sta-32 12.8 M Yes No Yes No No - 

TSS-Sta-33 14.2 M Yes Yes Yes No No IVIG 1 dose 

TSS-Sta-34 12.8 F Yes NA Yes No No NA 

TSS-Sta-35 18.2 F Yes NA Yes No No NA 

TSS-Sta-36 18.0 F Yes No Yes No No - 

TSS-Sta-37 13.5 F NA NA Yes No Yes NA 

TSS-Sta-38 17.8 F NA NA Yes No Yes NA 

TSS-Sta-39 18.0 F NA NA YEs No Yes NA 

TSS-Str-1 3.4 F Yes No Yes No No IVIG 1 dose 

TSS-Str-2 0.7 F Yes Yes Yes No Yes - 

TSS-Str-3 1.3 F Yes Yes Yes No Yes IVIG 1 dose 

TSS-Str-4 3.3 M Yes Yes Yes No Yes IVIG 1 dose 

TSS-Str-5 4.1 M Yes Yes Yes No Yes IVIG 1 dose 

TSS-Str-6 0.8 F Yes Yes Yes No Yes - 

TSS-Str-7 18.0 F Yes Yes Yes No No -  

TSS-Str-8 7.6 F Yes Yes Yes No No IVIG 2 doses 

TSS-Str-9 12.7 F Yes No Yes No No - 

TSS-Str-10 2.0 M Yes No Yes No No - 

TSS-Str-11 18.0 M Yes Yes Yes No No - 

TSS-Str-12 15.4 F Yes Yes Yes No No - 

TSS-Str-13 18.0 M Yes No Yes No No - 

TSS-Str-14 0.8 M Yes Yes Yes No No IVIG 1 dose 

TSS-Str-15 5.3 F Yes Yes Yes No No - 

TSS-Str-16 13.8 F Yes Yes Yes No No - 

TSS-Str-17 0.4 M Yes Yes Yes No No IVIG 1 dose 

TSS-Str-18 18.0 F Yes Yes Yes No No - 

TSS-Str-19 1.0 M Yes Yes Yes No No IVIG 1 dose 

C-COVID1 0.1 M No No Yes No Yes -  

C-COVID2 1.3 M Yes No Yes No Yes -  

C-COVID3 16.8 F Yes No Yes No Yes SGCs 

C-COVID4 6.7 F Yes No Yes No Yes SGCs 

C-COVID5 0.5 M No No Yes No Yes - 

C-COVID6 2.5 M No No Yes No Yes SGCs 

C-COVID7 17.6 M No No Yes No Yes - 

C-COVID8 14.8 F No No Yes No Yes SGCs 

C-COVID9 0.1 M No No Yes No Yes - 

C-COVID10 0.1 M No No Yes No Yes - 

C-COVID11 14.2 M No No Yes No Yes - 

mild-
COVID1 

28.7 F No No Yes No Yes - 

mild -
COVID2 

56.7 F No No Yes No Yes - 

mild -
COVID3 

51.3 F No No Yes No Yes - 

mild -
COVID4 

45.5 F No No Yes No Yes - 

mild -
COVID5 

37.3 F No No Yes No Yes - 

mild -
COVID6 

41.1 F No No No No Yes - 

mild -
COVID7 

29.2 M No No No No Yes - 

mild -
COVID8 

31.0 F No No No No Yes - 

mild -
COVID9 

33.9 M No No No No Yes - 

mild -
COVID10 

31.2 F No No No No Yes - 

mild -
COVID11 

57.2 F No No No No Yes - 



mild -
COVID12 

57.3 F No No No No Yes - 

mild -
COVID13 

43.0 F No No No No Yes - 

mild -
COVID14 

35.1 F No No No No Yes - 

mild -
COVID15 

29.3 F No No No No Yes - 

mild -
COVID16 

48.1 F No No No No Yes - 

mild -
COVID17 

31.2 F No No No No Yes - 

mild -
COVID18 

29.4 M No No No No Yes - 

mild -
COVID19 

48.0 F No No No No Yes - 

mild -
COVID20 

48.7 F No No No No Yes - 

mild -
COVID21 

47.4 F No No No No Yes - 

sev-COVID1 70.7 M Yes No Yes No Yes SGCs 

sev-COVID2 60.2 M Yes No Yes No Yes SGCs 

sev-COVID3 55.8 F Yes Yes Yes No Yes SGCs 

sev-COVID4 58.1 F Yes No Yes No Yes SGCs 

sev-COVID5 78.8 F Yes No Yes No Yes SGCs 

sev-COVID6 53.5 M Yes No No No Yes SGCs 

sev-COVID7 61.3 F Yes No No No Yes SGCs 

sev-COVID8 64.8 M Yes Yes No No Yes SGCs 

sev-COVID9 65.4 M Yes Yes No No Yes SGCs 

sev-COVID10 42.3 F Yes No No No Yes SGCs 

 

 

  



Table S4: Sample distribution as used for each experiment and figure panels 

 
  

 

Figure  
 

Number of patients 
analyzed 

 

2 

A 

19-30 MIS-C, 3-9 KD, 3 
TSS-Sta, 11 ped-COVID, 

5-21 mild-COVID, 4-5 
sev-COVID, 31 HD 

MIS-C 1-3, 5-13, 15-16, 18-20, 22-33, -35; KD -1,3-4, 11-16; TSS-Sta -12, 37-39; 
ped-COVID 1-11; mild-COVID 1-21; sev-COVID 6-10, 31 HD 

B 

29-30 MIS-C, 5 TSS-Str, 
8 TSS-Sta, 11 ped-

COVID, 10 mild-COVID, 
5-10 sev-COVID, 17 HD 

MIS-C 1-3, 5-13, 15-16, 18-20, 22-33, -36; KD -1,3-4, 11-16; TSS-Str 2-6; TSS-
Sta 8-12, 37-39; ped-COVID 1-11; mild-COVID 1-10; sev-COVID 1-10 ,17 HD 

C 21 MIS-C, 4 KD 
MIS-C 1-12, 14-17, 20-24 ; KD 1-4 

D 13 MIS-C, 3 KD 
MIS-C 1-3, 6-13, 16-17 ; KD -1,-2, -4 

3 

A 
18 MIS-C, 14 KD, 7 ped-
COVID, 5 mild-COVID, 4 

TSS-Str, 4 TSS-Sta 

MIS-C -1, 3-10, 13-15, -17, 20-24; KD 1-2, 5-16; ped-COVID 1-7; mild-COVID 1-5, 
TSS-Str 3-6, TSS-Sta 8-10, -12 

B 

26 MIS-C, 14 KD, 7 ped-
COVID, 5 mild-COVID, 5 
sev-COVID, 36 TSS-Sta, 

19 TSS-Str 

MIS-C -1, 3-10, 13-15, 17-24, -26, MIS-C 30-36; KD 1-2, KD 6-16; ped-COVID 1-
7; mild-COVID 1-5; sev-COVID 1-5; TSS-Sta 1-36; TSS-Str 1-19 

C-D 20 MIS-C 
MIS-C 1-3, -6, 8-9, 12-13, -16, 19-20, 22-26, 30-33 

E 8 MIS-C 
MIS-C -5, -7, 12-13-, -22, -24, -26 

F-G 4 MIS-C 
MIS-C -3, 8-9, -23 

H 11 MIS-C 
MIS-C -1, -3, -7, -9, -15, 20-21, 25-26, 30-31 

I 6 MIS-C, 4 HD 
MIS-C -5, -7, -22, -25, 31-32, 4 HD 

4 
A-E 7 MIS-C, 4 HD 

MIS-C -5, -7, 22-23, -25, 31-32, 4 HD 

F 
14 MIS-C, 7 late-AM-

COVID, 6 HD 
MIS-C -3, -5, 7-12, -15, -20, -22, -26, -28, -32; late-AM-COVID 1-7, 6 HD 

G 
9 MIS-C, 4 late-AM-

COVID 
MIS-C -3, -5, -7, -9, -20, -22, -26, -28, -32; late-AM-COVID 4-7 

S1 
A 1 MIS-C  

MIS-C -36 

 B 1 MIS-C 
MIS-C -36 

 C 1 MIS-C 
MIS-C -16 

S2 A 1 KD 
KD-12 

B 2 MIS-C, 1 HD 
MIS-C -5, -31 

S3  

A 18 MIS-C 
MIS-C -1, 3-10, 13-15, -17, 20-24 

B 
21 MIS-C, 14 KD, 7 ped-
COVID, 5 mild-COVID, 4 

TSS-Str , 5 TSS-Sta 

MIS-C 1-15, -17, 21-24; KD 1-2, 5-16; ped-COVID 1-7; mild-COVID 1-5, TSS-Str 
3-6; TSS-Sta 8-12 

C 6 MIS-C 
MIS-C -3, 8-10, -15- 23 

D 
25 MIS-C, 5 Early and 

late Mild-COVID, 5 Sev-
COVID, 1-16 HD 

MIS-C 1-12, 15-16, 18-20, 22-26, -30, -32, -36; Early and late COVID 1-5; Sev-
COVID 1-5; 16 HD 

S4 A-B 20 MIS-C 
MIS-C 1-3, -5, 8-9, 12-13, -16, 19-20, 22-26, 30-31, -33 

S5 B-D 18 MIS-C 
MIS-C -1, 3-10, 13-15, -17, 20-24 

S6 
A 2 MIS-C 

MIS-C 22-23 

B 
2 MIS-C, 1 late-AM-

COVID, 1HD 
MIS-C -5, -9; late-AM-COVID -4 

C 
2 MIS-C, 1 late-AM-

COVID, 1HD 
MIS-C -5, -9; late-AM-COVID -4 

S7 A-B 6 MIS-C, 4 HD 
MIS-C -5, -7, 22-23, -25, 31-32, 4 HD 

C-E 
11 MIS-C, 6 late-AM-

COVID 
MIS-C -5, 7-12, -15, -20, -28, -32; late-AM-COVID 1-3, 5-7 

 

  



Table S5: HLA sequencing in 13 MIS-C patients 

 
 
 
 
 
 
  

 

 

  MHC Class I MHC Class II 

  HLA-A HLA-B HLA-C HLA-DRB1 HLA-DQA1 HLA-DQB1 HLA-DPB1 

Patient 
Vbeta 21.3 
expansion 

allele 1 allele 2 allele 1 allele 2 allele 1 allele 2 allele 1 allele 2 allele 1 allele 2 allele 1 allele 2 allele 1 allele 2 

MISC-1 Yes 02:01 24:02 27:05 51:01 02:02 15:02 11:04 13:01 01:03 05:05 03:01 06:03 04:01 04:02 

MISC-3 Yes 01:01 02:01 39:24 51:01 01:02 07:01 15:54 16:01 01:02 01:04 05:02 05:03 02:01 03:01 

MISC-8 Yes 02:01 02:01 35:01 44:02 02:10 05:01 04:02 15:03 01:02 03:01 03:02 06:03 01:01 05:01 

MISC-10 Yes 02:01 02:01 44:02 57:01 05:01 06:02 07:01 16:01 01:02 02:01 03:03 05:02 04:01 104:01 

MISC-15 Yes 03:01 68:01 15:01 51:01 03:03 15:02 03:01 04:01 03:03 05:01 02:01 03:01 03:01 04:01 

MISC-16 Yes 23:01 30:02 35:01 39:10 06:02 12:03 03:02 07:01 02:01 04:01 02:02 04:02 01:01 01:01 

MISC-23 Yes 03:01 11:01 07:02 44:03 07:02 16:01 07:01 15:01 01:02 02:01 02:02 06:02 02:01 04:01 

MISC-24 Yes 01:01 24:02 15:17 57:01 06:02 07:01 04:02 13:02 01:02 03:01 03:02 05:01 04:01 17:01 

MISC-2 No 01:01 29:02 14:02 41:01 07:01 08:02 01:02 13:05 01:01 05:05 03:01 05:01 04:01 04:01 

MISC-12 No 34:02 74:01 07:02 35:01 04:01 07:02 13:01 15:03 01:02 01:03 06:02 06:08 02:01 18:01 

MISC-13 No 03:01 23:01 15:03 18:01 02:10 05:01 07:01 15:03 01:02 02:01 02:02 06:02 01:01 01:01 

MISC-18 No 24:02 31:01 51:01 55:01 01:02 15:02 13:01 13:01 01:03 01:03 06:03 06:03 01:01 14:01 

MISC-27 No 02:01 23:01 44:02 44:03 04:01 05:01 04:02 07:01 02:01 03:01 02:02 03:02 02:01 17:01 

 

HLA haplotypes in MIS-C patients 



Table S6: TRBV11-2 clonotype expansions 

 
a For each column, values have been compared between the two groups, MIS-C patients 
with and without TRBV11-2 expansion. The p-values have been obtained using a Mann-
Whitney test. bThe statistical significance of the Mann-Whitney test is shown. *** : 
p<0,0001; ns: non-significant. 

 
Table S7: Raw Data File (excel spreadsheet)  

 Patients 
Cumulative 
frequency 
of TRBV11-2 
clonotypes 

% of TRBV11-2 
expanded 
clonotypes within 
TRBV11-2 

Cumulative frequency 
of TRBV11-2 expanded  
clonotypes 
within TRBV11-2 

Cumulative frequency 
of TRBV11-2 expanded  
clonotypes 
within the full 
repertoire 

M
IS

-C
 w

ith
 T

R
BV

11
-2

 e
xp

an
si

on
 MISC-9a 43.61 0.50 2.79 1.25 

MISC-3a 28.35 0.04 0.00 0.00 
MISC-7 25.95 0.05 0.67 0.18 
MISC-26 19.42 0.05 0.00 0.00 
MISC-8a 13.37 0.18 15.19 2.40 
MISC-6 7.13 0.01 0.00 0.00 
MISC-23a 6.64 0.01 4.70 0.33 
MISC-13 5.74 0.01 2.56 0.15 
MISC-25 3.97 1.19 5.61 0.24 
MISC-19 3.83 0.01 13.18 0.58 

M
IS

-C
 w

ith
ou

t T
R

BV
11

-2
 e

xp
an

si
on

 

MISC-23b 3.07 0.02 5.93 0.19 
MISC-15b 2.73 0.07 0.00 0.00 
MISC-10a 2.60 0.00 0.00 0.00 
MISC-3b 2.24 0.06 0.00 0.00 
MISC-12 2.15 0.03 0.00 0.00 
MISC-9b 2.00 0.03 0.00 0.00 
MISC-24 1.84 0.11 0.00 0.00 
MISC-5 1.75 0.01 0.00 0.00 
MISC-22 1.44 0.00 0.00 0.00 
MISC-10b 1.34 0.06 44.16 1.06 
MISC-8b 1.06 0.05 11.68 0.14 
MISC-15a 0.95 0.20 13.99 0.15 

 p-valuea 3.09 x10-6 0.722 0.378 0.053 
 Significanceb *** ns ns ns 
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3.3 CHAPTER 5: A DISTINCT T CELL RECEPTOR SIGNATURE ASSOCIATES WITH 

CARDIAC OUTCOME IN MYOCARDIAL INFARCTION PATIENTS 

After showing how TCR can help understand the pathophysiology of an emergent 

disease, I aimed to determine whether we could identify a minimal TCR feature that could 

serve as biomarker of disease. This was done in the context of the AIR-MI project in the field 

of cardio-immunology. 

Cardiovascular diseases regroup a large panel of diseases. Myocardial infarction is an 

ischemic disease that leads to the brutal and massive death of cells from the myocardium. This 

very inflammatory context is crucial for the establishment of a myocardial injury repair. 

However, to date, there is no mean to qualitatively assess the ongoing myocardial repair 

process and predict their outcome. 

There are mounting evidences showing that myocardial repair is mediated by T cells 

(Choo et al., 2017; Epelman et al., 2015; Tang et al., 2019). T cells exert their function upon 

their activation through their TCR and we hypothesised that, by looking at the collection of 

TCRs of circulating blood in patients, we could identify signals that can predict the cardiac 

outcome in patients.  

As biopsies repertoire is limited, we used the peripheral blood as a surrogate from the 

damaged tissues to identify early markers of the myocardial repair. From a cohort of 28 patients 

who suffered myocardial infarction, my work first consisted in identifying a cardiac signature 

of TCR that could predict the heart repair outcome, defined as good or poor healing. Patients’ 

classification was defined by the percentage of recuperation of their left ventricular ejection 

fraction (%δLVEF) between their admission at the 12month follow-up. We also sequenced the 

peripheral blood of healthy donors from French donation blood centers (EFS) as controls. 

The work on this project is summarized as a research article currently under review. In 

brief, we found that the classical metrics to evaluate repertoires, such as diversity or gene usage, 

do not provide meaningful result in this context. To tackle this, we developed an innovative 

approach to identify TCRs that are both correlated to selection pressure and disease outcome. 

We focused our study on the CDR3, the TCR region in contact with the peptide, and obtained 

348 CDR3 forming a discriminant signature between good and poor healers. We then compared 
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this signature to the healthy donors’ repertoire and showed that our signature was significantly 

enriched in good healers.  
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Keywords: Myocardial infarction, ejection fraction, T cell, TCR, lymphocytes. 

 

Article type: Rapid communication 

 

List of non-standard abbreviations: 

MRI: cardiac magnetic resonance imaging, ESV: end-systolic volume, EDV: end-diastolic volume 

FUP: follow-up visit, HF: Heart failure, LVEF: left-ventricular ejection fraction, MI: myocardial 

infarction, STEMI: ST-elevation myocardial infarction, TCR: T cell receptor, TRA: T cell receptor, 

alpha chain, TRB: T cell receptor, beta chain  

 

Main text 

Inflammatory processes govern post-myocardial infarction (MI) healing and remodelling. 

Yet, we cannot predict how acute post-MI immune responses shape long-term cardiac 

functional outcomes in individual patients. Previous studies showed that CD4+ and CD8+ 

T cells are key actors of the post-MI repair regulation(1, 2) but did not investigate how 

they could be used as predictors of the cardiac outcome. Here, we sought to identify T 

cell receptor (TCR) signatures predicting cardiac functional outcomes in a well-

characterized MI patient cohort(3).  

TCRs are heterodimeric antigen-specific receptors expressed by T cells, generated 

through somatic recombination of multiple gene segments in a process that generates 

a potential repertoire of 1019 unique receptors(4). Thus, we hypothesised that analysing 

TCR repertoires in patients after MI could provide valuable information on the individual 

immunological status underlying post-MI healing outcomes. 

First, we selected acute ST-elevation MI-patients from the ETiCS cohort (Etiology, Titre-

Course, and effect of autoimmunity on Survival study(3), Würzburg arm) exhibiting 

reduced left ventricular ejection fraction (LVEF) assessed by cardiac magnetic 

resonance (cMRI) on day 4 post-MI (LVEF <50%, 54/150 patients). Amongst those, we 

further selected patients with complete serial cMRI scans at baseline and 12 months of 

follow-up (FU) (38/54 patients) (Figure 1A). Next, we stratified these patients into “good” 

versus “poor” healers based on a priori defined cMRI criteria(5)). In brief, patients 
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showing a ∆LVEF <13% between baseline and follow-up (FUP) were defined as “poor 

healers” (25/38), whereas those showing greater improvement (∆LVEF >13%) were 

considered “good healers” (13/38) (Figure 1B). In addition to lower ∆LVEF values 

(P<0.0001), poor healers had significantly greater ∆ end-systolic volumes (ESV) 

(P<0.0001), whereas ∆ end-diastolic volumes (EDV) did not differ. Age, BMI, infarct size, 

and routine blood biomarkers were similar in poor and good healers at baseline (Figure 
1B). After defining groups of MI-patients with diverging healing phenotypes, we 

extracted RNA of cryopreserved whole blood samples that were collected at hospital 

admission from all 25 poor and 13 good healers (Nucleospin RNA blood kit, Macherey-

Nagel, Düren, Germany). Due to technical limitations inherent to the processing of 

archived biomaterial, we obtained RNA with sufficient quality from 19 poor and 9 good 

healers, which were then used for RT-PCR, amplification of TCR alpha and beta chains 

(TRA and TRB respectively), library preparation and sequencing(6).  

To evaluate potential global changes in the TCR repertoires found in blood 

sampled at baseline, we first measured the diversity of TCRs in each group by 

computing the Shannon entropy and the gene usage frequency (Figure 1C-D), two 

canonical measures of immune repertoire diversity(7). These basic analyses did not 

reveal any significant differences between groups. We then hypothesised that distinct 

TCR repertoire composition may explain healing outcomes. Thus, we devised a refined 

strategy to identify a set of TCRs that effectively differentiates between cardiac 

functional outcomes (Figure 1E). Accordingly, using statistical modelling from Pogorely 

et al.(8) (Figure 1E, panel 1), we computed the probability of each TCR being present 

in the dataset (Pdata) and identified TCRs that were statistically enriched compared to 

their expected generation (Pgen). Additionally, we searched for TCRs that were 

differentially represented between good and bad healers(9) (Figure 1E, panel 2). 

Finally, we selected TCRs that met both criteria: being more represented in one group 

than the other and having a statistically higher probability of being present in the dataset 

than expected (Figure 1E, panel 3). As a result, we discovered a signature of 348 unique 

TCRs (Figure 1F). Hierarchical clustering based on the presence/absence of this 

signature allowed a separation of good from poor healers (cluster purity = 0.93). 

Interestingly, this signature comprising 237 unique TRA and 111 unique TRB was 

primarily present among the good rather than the poor healers. We then assessed the 

relevance of the signature by comparing its cumulative frequency in the ETiCS patients 

versus a group of healthy subjects (n = 27). Figure H shows that the cumulative 
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frequency of the signature is significantly higher in good healers when compared with 

poor healers and healthy volunteers (p<0.001 for both TRA and TRB chains). Moreover, 

the TCR signature was more enriched in healthy subjects when compared with poor 

healers (p<0.001 for TRA and p<0.01 for TRB), suggesting that the clones found in the 

signature are specifically depleted in MI patients with poor cardiac functional recovery 

(Figure 1G).  

In summary, we identified a distinct TCR signature associated with cMRI-assessed post-

MI cardiac healing outcomes. Specifically, we found that MI-patients showing a 

substantial post-MI LVEF improvement were enriched for a set of 348 unique TCRs in 

the peripheral blood already at baseline (hospitalization). These exploratory findings 

provide clinical evidence that the individual TCR profile at early stages post-MI 

contributes to long-term healing outcomes in humans. This supports the notion that 

modulation of T cell responses may eventually help to improve post-MI remodelling(10) 

and further confirms that the circulating T cell compartment is impacted by the ongoing 

cardiac repair. Moreover, the present findings provide a compelling example on the 

value of immune-based diagnostics in cardiology. Still, our study has some important 

limitations. First, it was a rather small - though well stratified and characterized - 

retrospective patient collective. Moreover, since we analysed cryopreserved whole 

blood samples, we were unable to phenotype T cell subsets that might have accounted 

for the identified TCR signature. Furthermore, as it is currently not possible to infer which 

antigens are recognised by the TCRs comprised in this distinct signature, the 

mechanisms underlying their association with the cardiac functional outcomes remain 

unknown. Still, our findings underline the potential predictive value of TCR repertoire 

analyses in MI and might encourage further mechanistic investigations and confirmation 

in larger patient cohorts. 
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Figure 1: A distinct T cell receptor signature associates with cardiac functional 
outcomes in myocardial infarction patients. (A) Patient selection and stratification 

into good vs poor healers based on cMRI findings. The number of patients is indicated 

within the boxes (B) cMRI findings, including LVEF at baseline and FUP 12 months in 

good vs poor healers, ∆LVEF (%), ∆ESV and ∆EDV (mL), and distribution of 

confounding factors between groups (BMI: body-mass index; LDH: lactate 

dehydrogenase; Time: time from pain to intervention; LGE: infarct size assessed by late 

gadolinium enhancement, CRP: C-reactive protein, WBC: white blood cell count; RBC: 

red blood cell count, Hgb: hemoglobin; Plat: platelets count; NTproBNP; N-terminal pro-

brain natriuretic peptide; Chol: cholesterol; Creat: creatinine; SBP: systolic blood 

pressure; Alb: albumin. Values are expressed as fold change from the average levels 

found in the “good healer” group). (C) Shannon index based on clone counts from 

aligned TCR samples for the alpha and beta chain. P-value was computed using 

Wilcoxon U-test. (D) Non-metric dimensional scaling of the TRB variable (TRBV) and 

joining (TRBJ) gene usage frequencies. (E) Strategy used to identify Complementarity-

determining region 3 (CDR3, antigen-binding domain) signature. (F) Heatmap of the 348 

CDR3 signature found in patients. CDR3, by column, were clustered independently by 

chain. (G) Sample’s cumulative frequencies (in %) of the CDR3 from the signature. 

Healthy volunteers are depicted in yellow. 
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In addition to the results shown in the publication manuscript, we further 

characterized the signature obtained. Especially, we were interested in characterizing the 

specificities of the signature, to see if the TCR associated to cardiac outcome were 

already reported in databases of known TCR specificities. To this end, I have aggregated 

the TCR specificity information from 3 public databases: Mc-PAS, VDJdb and iEDB 

(Dhanda et al., 2019; Shugay et al., 2018; Tickotsky et al., 2017). We refined the results 

by filtering reported TCR with sufficient confidence in the methodology (stimulation 

with peptide, protein, or direct peptide-MHC binding (tetramer, dextramers). Studies that 

did not report such TCRs, or typically reported association of TCR with the disease were 

excluded. CDR3 were categorised as “pathogens” when annotated as specific for 

bacterial or viral agents, “autoimmune” if derived from self-reactive TCRs, “cancer” if 

derived from neo-antigens’ reactive TCRs. Other categories (Mc-PAS reports “Allergy” 

for instance) were classified as “others”. We then looked for perfect matches between 

the curated aggregated database and our signature. The results are presented in Figure 

19. Out of the 348 CDR3 of our cardiac outcome signature, 31/348 (9%) of CDR3 were 

also found in the database, of which 29 (94%) were associated to pathogens and only 2 

(6%) were reported to bind autoimmune antigens (Figure 19A). We then sought to 

identify which pathogen specificities were in our signature (Figure 19B). In this UpSet 

diagram, we can see that more than half (15/29) CDR3s present were reported to bind to 

Figure 14: ETiCS signature is associated to viral infections. A: Number of specificity matches from aggregated 
databases of TCR specificities B: UpSet plot of the viral matches from our ETiCS signature.  
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CMV. Second most reported match is Myobacterium tuberculosis with 5/29 CDR3. Of 

note, Epstein Barr virus (EBV) has been found in 2/29 matches. 

These results were also reported by other groups, with some clear links between 

CVD and CMV infection although no clear mechanisms has been proposed. A meta-

analysis of CMV-associated risk to CVD incidence found a significant risk of CMV 

infection to the contribution of CVD (Wang et al., 2017). A more recent study suggested 

that active CMV infection could be associated with poorer prognosis in patient by 

impairing endothelial function (Lebedeva et al., 2020). Supportive evidence of a link 

between myocardial infarction and CMV infection has been reported with a case of CMV 

reactivation leading to myocardial infarction in an immunocompetent individual (Yousaf 

et al., 2021). Atherosclerosis, the most common leading cause of MI, can be initiated by 

CMV infection. Presence of CMV DNA in arterial walls was associated to further 

ischemic heart disease (Horváth et al., 2000; Melnick et al., 1983). On the other hand, 

the link with EBV is still debated. There are reports in the literature of correlation 

between EBV infection and acute coronary events, but it seems related to overall 

inflammation rather than autoimmune mechanisms (Binkley et al., 2013). Actively 

infected patients with EBV can present myocarditis clinical manifestations (Ace and 

Domb, 2019; Walenta et al., 2006; Watanabe et al., 2019), but these reports are 

considered unusual and suggest other underlying phenomenon at play to trigger it.  

Our results, however, do suggest a link between past encounters with viruses and 

myocardial repair. Our signature was identified in the peripheral blood, and not in the 

infarcted tissue. It is possible that all CMV-specific T cells from poor healers were 

already drawn into the myocardium and present in lower numbers in the circulating 

blood. There is also evidence that previous viral infections trigger tissue repair through 

T cell independant mechanisms. For instance H1N1 influenza virus triggers stem cells to 

undergo rapid proliferation and regenerate the pulmonary tract (Kumar et al., 2011). 

There is no evidence in the literature of such a mechanism happening for cardiomyocytes. 
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3.4 CHAPTER 6: IDENTIFYING T CELL ASSOCIATED TO CARDIAC OUTCOME IN 
OTHER DATASETS 
As we have just described, it is possible to identify a CDR3 signature from 

circulating blood of patients MI. We sought to confirm the relevance of these results in 

different contexts using infiltrating T cells from internal or external datasets, or a relevant 

cohort prepared in similar conditions.  

3.4.1 Cardiac biopsies 

Indeed, we hypothesised that T cells from the peripheral blood could be a good 

proxy to study what was happening in the tissues, here the heart. Several studies have 

highlighted how the infiltrating repertoire was perturbed during MI. Murine models of 

MI demonstrated how CD4+ repertoires of heart were distinct from draining lymph nodes 

(Rieckmann et al., 2019). They observed T cell expansions and distinct TRBV usage, 

with high TRBV19. These observations have been evaluated in humans, and suggested 

a similar low sharing of T cells between circulating and infiltrating compartments (Tang 

et al., 2019). The high expansions, and private properties of repertoires, prompted us to 

determine whether the healing signature found in Chapter 5 (p. 146) was linked to 

infiltrating T cells, or was correlated with the outcome and rather bystander immune 

response. To study the overlap between circulating and infiltrating T cells, we had access 

to matched cardiac (n=27) and lungs biopsies (n= 27) from an additional cohort of 

patients suffering from fatal MI. Tissues were stored in FFPE and multiplex PCR on 

DNA sequencing was performed using LymphoTrack TRB assay (PGM Invivoscribe). 

DNA was preferred on these samples as it was considered more stable and more reliable 

to recover TCR from FFPE samples of low infiltrated tissues such as the cardiac or 

pulmonary tissues (Pai and Satpathy, 2021). As these data only cover β chain, we limited 

our analysis to this part of the signature. 

The number of CDR3 recovered from lung and cardiac biopsies ranged from 1 to 

770 unique sequences, with a high variability between samples (Figure 15A). We also 

recovered 3 times more CDR3 per sample in lungs than in cardiac tissues (81 ± 100 for 

cardiac biopsy vs 265±195 CDR3 per lung biopsy). In line with previously published 

studies, yet not neglecting the low throughput, the cardiac infiltrate CDR3 repertoire was 

mostly private (Figure 15B) with 96% (2026/2104 unique CDR3 recovered) CDR3s 
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private to a given individual. There is no evidence for a shared response, as most shared 

CDR3 were found in 3/27 donors.  

We then investigated whether the healing outcome signature found in Chapter 5 (p. 

146) was overlapping with the cardiac infiltrate of fatal cardiac MI. To this end, we 

compared the aggregated CDR3 repertoires of cardiac and pulmonary biopsies with the 

ETiCS signature. The results displayed in Figure 15C show no overlap between the 

cardiac infiltrate CDR3s and the circulating T cell signature.  

Finally, we sought to look whether the T cell infiltrate was found in the circulating 

repertoire of patients. I computed the number of unique CDR3 from circulating T cell 

samples shared with the cardiac infiltrate biopsies, and normalised it by the number of 

total unique CDR3 in patients. The results are presented in Figure 15D. We found here 

that both poor healer and good healer share 0.07% of their total CDR3 repertoire with 

Figure 15: Overlap of cardiac biopsies with circulating blood. A: Boxplot of unique CDR3 collected per 
sample from n=27 cardiac and n=27 patient-matched lung biopsies. Numbers are mean +- standard deviation. 
B: Histogram of the cardiac CDR3 sharing between all cardiac biopsies, logarithmic scale. C: Overlap of 
unique CDR3 from cardiac (heart), pulmonary lungs) and ETiCS signature. D: Normalised sharing of 
infiltrating cardiac CDR3 with repertoire of healthy volunteers, poor healers and good healers. Occurrence 
is expressed as percentage of the total unique CDR3 in the sample. Wilcoxon U-test, significant symbols:  ∗ 
p ≤0.05, ∗∗ p ≤0.01, ∗∗∗ p ≤0.001, ∗∗∗∗ p ≤0.0001 
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the cardiac infiltrate, compared to 0.05% to healthy donors. The overlap increase between 

healthy donors and MI patients is statistically significant (p<0.01 for good healers, 

p<0.0001 for bad healers), which could suggest that circulating T cells in MI patients and 

cardiac infiltrate are not completely distinct compartments. 

Altogether, these results suggest that the signature found in Chapter 5 is mainly 

specific to the circulating T cell compartment. Indeed, the healing signature is not found 

in cardiac biopsies, but the cardiac infiltrate CDR3s can be modestly, yet significantly, 

found in the peripheral blood of patients, regardless of the outcome, as compared with 

healthy donors. We can hypothesise that the TCR involved in the typical myocardial 

infarction are different to the TCR predicting myocardial outcome. 

3.4.2 Circulating blood of Type II diabetes patients after MI 

We have demonstrated how our 348 CDR3 signature was specific of the circulating 

blood and not of the damaged tissues, however we still wanted to confirm its relevance 

in another control cohort. To this end, we had access to another cohort, from the 

academic, multicentre, double-blind EMMY trial (NCT03087773) (Tripolt et al., 2020; 

von Lewinski et al., 2022). EMMY participants are type II diabetes patients with 

myocardial infarction and evidence of significant myocardial necrosis. Patients were 

divided in 2 groups at admission, placebo or treated with Empagliflozin, a sodium-

glucose co-transport 2 inhibitor (SGLT2i). Empagliflozin are used as a first line of 

Figure 16: Impact of Empagliflozin on echocardiographic parameters between treatments groups. a: LVEF between treated 
(blue) and placebo (yellow) participants across time-points of visit 1 (3 days), visit 2 (1 week) and visit 4 (6 months). b: 
Percentage of evolution of LVEF between timepoint and baseline (3 days). Results expressed as mean with standard error, 
Wilcoxon U-test. NS denotes non-significant differences, *: p<0.05. 
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treatments in patient with chronic heart failure (McDonagh et al., 2021) and acute 

myocardial infarction (Heidenreich et al., 2022). SGLT2i have been shown to reduce 

death in patient with or without type II diabetes (Lopaschuk and Verma, 2020). Although 

the mechanisms are not completely understood, it has been hypothesised that SGLT2i 

positive effects on cardiovascular health are mediated though metabolic and anti-

inflammatory effects (García-Ropero et al., 2019; Ye et al., 2018). Since the original 

EMMY study on n=476 concluded in 1.5% improvement of LVEF over the course of the 

study (von Lewinski et al., 2022), we controlled whether it was needed to segregate 

groups based on treatment.  

When comparing the LVEF over the 6 month follow-up of the study, we found no 

difference between treatment and placebo at all time-points (Figure 16A). We found 

similar results when comparing the evolution of LVEF between time-points and baseline 

(Figure 16B). Although not consistent with published results of the clinical trial, these 

data were collected with only 42% of the initial cohort, thus probably limited to observe 

the moderate (1.5%) improvement. Given the absence of difference in LVEF between 

groups or δLVEF and the absence of definitive evidence for immune effect of SGLT2i 

on T cells, we decided to analyse TCR repertoires without taking into account treatments 

subgroups. 

We had access to 199 blood samples at baseline. We used the same threshold as 

previously described (Bulluck et al., 2017b) to diagnose patients into poor healers, with 

δLVEF>13% between baseline and latest timepoint (6-month) and poor healers 

(δLVEF<13%), regardless of treatment. 

Extracted RNA was of exceptionally low 

quality (Figure 13, p. 65), and resulted in technical 

difficulties to optimally amplify samples with 

SMARTer Human TCR a/b Profiling Kit (Takara 

Bio) as in the ETiCS study. Libraries were sequenced 

on a MiSeq sequencing platform using a 300bp 

protocol at the iGenSeq sequencing facility (Institut 

du Cerveau, Paris). Raw FASTQ files were aligned 

with MiXCR v3.0.13. To minimise biases due to the undersequenced samples, we 

Figure 17: EMMY and healthy volunteers 
datasets after sequencing and filtering of 
samples with less than 2000 unique 
clonotypes. 
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removed samples with less than 2000 unique sequences (Figure 17). This leaves a final 

dataset of 93 samples, with n=28 good healers, n=41 poor healers and n=24 healthy 

volunteers. 

This aggregated dataset of 93 samples is highly sparse. When looking at the 

incidence matrix of “samples x CDR3”, more than 98% of the dataset is zero. We found 

that more than 93% of unique CDR3 are private and only 0.7% of CDR3s are sthared by 

four or more patients. Similarly, computed Jaccard index between samples based on 

CDR3 presence/absence shows a very limited sharing between patients (results not 

shown).  

Our previous signature approach was based on similarity between samples. 

However, this low to non-existent sharing between patients make our previous signature 

approach not relevant for this specific type of highly sparse data. We decided to orient 

our analysis between shared features of CDR3s. Indeed, several studies have explored 

how grouping CDR3 by their specificity rather than matching their exact sequence could 

provide solid insight and alleviate the low throughput of some datasets (Glanville et al., 

2017; Montagne et al., 2020; Musvosvi et al., 2023; Ostmeyer et al., 2020). Based on the 

solid rational for this type of approach (see section 1.5.1.3), we designed a pipeline of 

analysis that would not focus on CDR3 but on their shared properties (Figure 18A). This 

approach of TCR data agglomeration would bring several advantages: apart from 

highlighting relevant shared properties, this would remove noise from non-shared 

Figure 18: Pipeline of identification of healing related CDR3 in the highly sparse EMMY cohort. a: Starting 
from highly sparse CDR3 repertoires, we used GLIPH2 tool to find common pattern in CDR3s sharing similar 
properties. Resulting clusters would then be used for feature based clustering, circumventing the absence of shared 
unique CDR3. b: Traditional clustering of CDR3s, by looking at shared CDR3 properties with TCR of Myocardial 
Interest, or using other datasets of cardiac interest, would perform biological validation of CDR3. 
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features and reduce the data complexity by working with a more restricted set of clusters 

of CDR3s. This analysis is however restricted to the β chain, as GLIPH2 authors have 

not yet implemented support for α chains. 

 We used GLIPH2 algorithms on standard internal parameters, with the following 

protocol: to identify group-specific clusters, each group was compared to the two others. 

Each exclusive signature was then merged, and CDR3 identified in clusters were pooled. 

We then filtered out clusters with two or less CDR3s, and selected CDR3s with signing 

patterns between 3 to 6 amino acid, to prevent long patterns that could cover the whole 

CDR3. Selecting clusters was based on GLIPH2 significance scoring < 0.01, enrichment 

of a cluster in any of the group was assessed by a Fisher test p-value <0.01, and an odd 

ratio > 2. 

This strategy selected 237 clusters comprised of 2046 unique CDR3s. Most of the 

clusters signed the Healthy group (136/237, 57%), while 38 (16%) signed the poor 

healers, and 63 (27%) were associated with the good healer outcome. These results are 

similar with the one obtained with the ETiCS cohort, the majority of the signature would 

be associated to better cardiac repair.  

We used this strategy to cluster the patients; results are presented in Figure 19. In 

this heatmap, each column is a patient and each line is a cluster. If a patient finds in its 

repertoire at least one CDR3 of the cluster, we assigned the “presence” value to the 

patient for this cluster, with the assumption that cluster links antigen-specific convergent 

CDR3s. Patients’ and CDR3 clusters were then arranged using ward.D2 hierarchical 

classification algorithm (Murtagh and Legendre, 2014). We observed four metaclusters 

of CDR3 signing the patient groups. Metacluster 1 is associated with the poor healer 

group, metacluster 2 with the good healer, metacluster 3 with the healthy volunteers, 

while the 4th metacluster is shared by several conditions. To determine the contribution 

of each CDR3 metacluster to patient classification, I determined each metacluster 

importance for classification in each of our three classes by building a generalised linear 

model (GLM). From then, I extracted the coefficients associated with each cluster, 

(Figure 19, right panel). A positive value indicates that the CDR3 metacluster is 

associated to the classification of said group. As such, we found that the metaclusters 1, 
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2 and 3 were positively associated with poor healers, good healers and healthy volunteers 

respectively 

3.4.3 ToCIs 

The classification heatmap in 3.4.2 is obtained from clusters of CDR3s. Because 

we wanted to characterize more deeply the patterns and assess their cardiac relevance, 

we sought to link CDR3 clusters to their putative specificity. This strategy to link a 

GLIPH2 cluster to a specificity has been adopted or demonstrated by several other groups 

(Chiou et al., 2021; Higdon et al., 2021; Huang et al., 2020; Quiniou et al., 2023).  

The first step was to identify TCRs of Cardiac Interest. To this end, we identified 

TCR datasets from the literature with relevant CVD. We looked for i) TCR libraries, ii) 

T cell enriched 5’ single-cell or iii) single-cell TCR libraries of cardiac diseases or 

Figure 19: Analysis of CDR3 repertoires using GLIPH2 reveals sets of group-specific clusters. (Left) Heatmap of presence 
absence of clusters identified using GLIPH2. Patient clustering was performed using Ward D2 algorithm. Metaclusters, labelled 
from 1 to 4, were determined based on the hierarchical clustering. (Right) Contribution of each cluster to the clustering observed, 
using generalised linear modelling. A positive value indicates that the cluster contributes to classify samples in this group. 
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healthy controls. Three datasets were selected for this study (Table 2). The massive 

single-cell project “Cells of the Human heart” (Litviňuková et al., 2020) provided data 

consisting of healthy hearts from 25 adult donors, 14 female and 11 males. I used the 

sorted Immune cells2 dataset, from which 10 000 T cells were sequenced. I aligned the 

data to reconstruct complete TCR sequences from the single-cell RNAseq libraries with 

TRUST4 (Song et al., 2021). We identified a second dataset used from ex-vivo expanded 

T cells from patients suffering immune checkpoint inhibitor (ICI)-associated myocarditis 

(Axelrod et al., 2022). Peripheral blood CD8+ T cells were stimulated with α-myosin 

antigens and activated were sequenced using 5’ single cell 10X VDJ. TCRs were 

reconstructed with TRUST4. Last dataset used is from our own cardiac biopsies. For all 

these datasets, I focused on the TRB rearrangments, as it was the one used for identifation 

of the signature in 3.4.2. 

Dataset (short name) Accession 
code Condition Method Cells Unique 

CDR3s 
Cells of the Human 

heart (Atlas) PRJEB39602 Healthy 5’ Single-cell 
10X GEX 

Infiltrating cardiac T 
cells 39 

T cells specific for α 
myosin drive 

immunotherapy related 
myocarditis (Myocarditis) 

SRR21598102 Myocarditis 5’ Single-cell 
10X VDJ 

α-myosin expanded 
circulating T cells 115 

Würzburg biopsies 
(MI) NA MI TCR VDJ Infiltrating cardiac T 

cells 8239 
Table 2: Datasets used for the TCR of Myocardial Interest analysis. 

 

 
2 https://www.heartcellatlas.org/immune 
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There is a striking imbalance in the data, with 

only 115 unique CDR3s recovered in the VDJ 

enriched datasets. Nonetheless, we computed the 

overlap between these datasets and the CDR3s from 

the clusters identified in Figure 20. Clusters were split 

based on the group they signed. Hence, cluster 1 is 

called MI_good_healer, cluster 2 is MI_bad_healer, 

and cluster 3-4 are “Healthy”. Results of overlap are 

shown in Figure 19 in an Euler diagram. As we can 

see, the myocardial infiltrates from failing hearts (MI, 

grey) form larger dataset and is the one sharing most, 

although few, CDR3s with the other datasets. Strikingly, ex vivo expanded T cells from 

myocarditis dataset (Myocarditis) does not share any CDR3 with either of our circulating 

TCR signatures, but shares 2 CDR3 with the MI dataset. Healthy and MI_good_healer 

share CDR3 only with the MI patients (6 and 2 CDR3 respectively), but not with other 

datasets. CDR3 recovered from Cells of the Human heart atlas (Atlas) do not share any 

CDR3 with our signature but share two CDR3s with MI. Finally, there is no overlap 

between the poor healing signature and any other datasets. 

Figure 20: Overlap of EMMY dataset 
CDR3 clusters with the ToCIs datasets 
using perfect match of CDR3 sequences.  
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As we have highlighted previously, 

this analysis is limited due to the constraints 

of poor recovery of CDR3s in biopsies. To 

this end, we used the clustering analysis 

(Figure 18B) and the patterns identified from 

GLIPH2 (results shown in Figure 19) to find 

CDR3 matching these patterns and assign 

them to groups. I first focused on the 

myocarditis dataset, as it was enriched in 

relevant CDR3s with known cardiac impact, 

while MI and Atlas datasets were more 

representative of recirculating T cells. The 

results are shown in Figure 21. To our 

surprise, more than half (30/58) patterns 

associated to good healing outcome were associated with myosin-expanded TCRs, as 

compared with 17% (23/131) and 19% (7/37) of healthy volunteers and poor healer 

groups.  

These results show how TCR signatures from cardiac T cell biopsies or circulating 

T-cells are very private when considering them at the strict sequence level, and show 

almost no overlap. This does not confirm or infirm the presence of absence of 

autoimmunity linked to cardiac outcome, but could rather reflect the lack of information 

due to the low number of sequences recovered from both the EMMY and external 

datasets. Indeed, even during infarct, the heart is not as highly infiltrated by T cells in 

numbers comparable to circulating blood or lymph nodes, with 8 cell per mm² in 

immunostaining of CD3+ (Devaux et al., 1997; Ohta-Ogo et al., 2022), hence limiting 

what can be recovered in small biopsies. To circumvent this, we took advantage of TCR 

similarities to build networks of CDR3s from our datasets and α-myosin expanded T 

cells. We found a significant association between α-myosin expanded TCRs and good 

healer outcome TCR signature compared to healthy volunteers and poor healers, 

suggesting the relevance of myocardium specific T cells during repair. These results 

Figure 21: Myocarditis CDR3s matching signature 
patterns. Number of Myocarditis expanded CDR3s 
matching amino-acid patterns of our signature. Results 
are represented as a percentage of total patterns from 
this group. 
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should however be confirmed in larger cohorts, as we do not know the CD4/CD8 origin 

of the CDR3s, and therefore the MHC-I or MHC-II restriction associated with the 

identified CDR3s. Analysis of samples from fresh, sorted blood T cells should provide 

data of sufficient depth and quality to better characterise the role this signature. High-

throughput single cell analysis should in the future allow to accurately tackling this 

question. These results demonstrate however how analysing TCR as a network of 

similarities can be a powerful tool to leverage data from sparse matrices.   
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4 DISCUSSION 

4.1 THE NECESSITY OF CONTROLLING THE EXPERIMENTAL LAYOUT 

4.1.1 Open data is happy data 

The results I presented stressed the need for experimental controls. Computational 

methods for controlling the data are limited, especially in AIRR-seq, as shown in the 1st 

part. Results obtained from these methods display large variability, due to the 

experimental choices (amplification approach, sequencing layout, depth) and software 

(choice of aligner, genome of reference, definition of a clonotype, downstream 

normalisation).  

These issues are not restricted to the TCR field, but rather influence all fields 

working with NGS, as have highlighted the recent stimmed controversy over microbial 

structures. Indeed, in a 2020 landmark study, Poore et al. analysed 18,116 microbiota 

samples and demonstrated how machine learning could almost perfectly discriminate 

tumours’ types in patients (Poore et al., 2020). The highly cited study (over 600 citations) 

was however flagged as “entirely wrong”. In a long pre-print, Gihawi and colleagues 

reanalysed results from the study, starting from raw data (Gihawi et al., 2023). They 

reported “two fundamental flaws” in the methods, namely normalisation and poor 

contamination removal. They claimed that the original paper used poor normalisation 

that created artificial tumor specific signatures. The normalisation even introduced 

signal, by inferring species abundances if they were missing. A second issue with the 

paper, noted the reply, was the contamination removal. Many reads were aligned to the 

wrong species, doubling the number of bacterial reads for samples, introducing false 

signals and ultimately leading to aberrant results. The reply also identified several papers 

using the same flawed methodology. Original authors provided a quick counter-reply, 

admitting flaw but stating it did not affect overall results (Sepich-Poore et al., 2023). To 

date, the community has provided no definitive answer to this controversial study, but 

called for more oversight of machine learning use in microbiome data (Offord, 2023). 

Confirmation by new experimental data shall shed light on this matter. 
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This investigative work could only be done because of i) a team of dedicated 

experts and ii) a FAIR-compliant open dataset (Wilkinson et al., 2016). The issues raised 

here are similar to what we can observe in the TCR field. One of the most significant 

study in circulating cardiac repertoires is from (Tang et al., 2019). I have been trying to 

replicate their results, without success. They performed TCR-seq on HiSeq-2000, with 

60R1 bp and 50R2 bp paired-end read layout, aligned with BGI software and performed 

in-house normalisation. Although I requested raw data, they could not provide it. FASTQ 

were “unavailable”, as they did not store it, however they instead sent me their processed 

data.  In the light of Chapter 3 results (p. 68), it appears unlikely to be able to replicate 

those results. Indeed, the difference in reads length probably affected the alignment. We 

used MiXCR while they used BGI, and I did not benchmark the differences in alignment 

performance with the aligners. Moreover, the genome references might have impacted 

gene and CDR3 determination. Finally, processed data did not feature raw counts, only 

normalised frequencies, which further complexify the eventual cleaning and quality 

control of the data. Although there is certainly no malicious intent from the laboratory, 

this seems like a hasty data management that could be avoided. For these reasons, it 

appears that integrating the processed data in pipelines will most likely lead to spurious 

results. 

A very interesting initiative from the ecology community investigated how teams 

with the same datasets managed to find different results for a given scientific question 

(Gould et al., 2023). A total of 174 teams of analysts from around the world analysed the 

same dataset of Cyanistes caeruleus (blue tit) nesting. Surprisingly, models provided by 

analysts for the study were not unanimous, but rather lead to heterogeneous, sometimes 

contradictory conclusions. Although several explanations for the widely different results 

were provided in the final manuscript, no definitive answer was formulated. Rather, 

authors defend how analytical choices, which may lead to diverging results, are the path 

toward the consensus. It is the replicability, and confrontations of data, methods and 

opinions that pushes the community towards the good answer.   

4.1.2 The use of experimental controls 

This advocates for the use of technical controls in every bulk TCR sequencing to 

ensure that, in each study/batch, a set of known TCRs is correctly aligned and counted. 
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This also ensures that any new protocol, sequencer or aligner will yield the same results. 

If every TCR sequencing run would add one sample, with known complete TCR 

sequences and VJ joining, it would ensure the reliability of i) the method used and ii) the 

experimentation. Such approaches would allow a fair and unbiased benchmark of any 

new methods developed. This issue has been greatly documented in the survey of the 

AIRR community, where the use of use of spike-ins could solve most (8/9) common 

documented errors arising during AIRR-seq workflows (Trück et al., 2021).  

Global suppliers have already started to explore this topic. TaKaRaBio adds in each 

of its TCR kits a “positive control” corresponding to PBMC from healthy volunteers; 

however, this does not constitute a good control. Since donors differ between batches of 

kits, it becomes challenging to compare experiments conducted using different batches. 

This also complicates the process of comparing results across various laboratories, unless 

the control batch is specified. Moreover, complete sequences of all TCR in this type of 

positive control is unknown, which is required to assess annotation reliability. I would 

rather advocate for a set of spike-ins TCR in Jurkat cells for instance, with known, 

complete sequences, that would cover a wide array of V-J combinations and fixed 

concentrations, similar to what has been done in the TCRpower paper (Dahal-Koirala et 

al., 2022). Cellecta currently offers this strategy for human TCR, covering 10 TRBV-

TRBJ combinations, one TRAV-TRAJ, one TRGV-TRGJ and one  TRDV-TRDJ with 3 

variations of each CDR3 for a total of 39 spike-ins (Synthetic Spike-in Controls for 

Immune Repertoire Profiling, Cellecta). Although most manufacturers do not provide 

this kind of controls, this is a step towards a better validation of experimental sequencers. 

In contrast to openly available raw data, a significant limitation arises when data 

suppliers, operating in a closed-source manner, do not disclose raw data and instead apply 

their proprietary or undisclosed methods, such as Adaptive Biotechnologies. This issue 

of replicability and inability to re-process data from raw reads is problematic (Miyakawa, 

2020) and of utmost concern. Indeed, as I have observed, results from TCR annotation 

drastically vary simply by going from 300bp to 250bp. It also hinders data reuse, a 

hallmark of FAIR standards (Wilkinson et al., 2016). These issues are still a point of 

concern. As such, a meta-analysis of 134 studies conducted between 2006 and 2022 

found that “only 38.1% had made publicly available raw TCR-seq data in public 
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repositories” (Huang et al., 2022). To make matters worse, an astonishing 70% of non-

public datasets remained unshared even after requesting them from the authors. 

 

4.2 CIRCULATING CARDIAC SIGNATURES IN LIGHT OF PUBLISHED DATA 

4.2.1 Challenges of frozen whole blood TCR sequencing 

Using circulating T cell as a biomarker of cardiac diseases was a bold project when 

it was formulated. Indeed, there was scarce literature about the existing role of T cells in 

myocardial infarction, and the clinical features at our disposal were very limited. The 

biggest challenge has been about capturing the TCR itself (see 2.2.2.1). Indeed, samples 

of both the ETiCS cohort and the EMMY cohort were challenging to amplify. Several 

factors were at play. First, it was whole blood samples, frozen without any preservative 

agent for up to a decade. During the storage period, EMMY samples were placed for a 

few weeks at -20°C rather than -80°C, which played a crucial role in the degradation of 

the samples. As these samples were not originally designed to be used for RNA 

sequencing, hence the suitable temperature for storage was not taken into consideration.   

Additionally, RNA extraction was also a challenging step. The formation of water 

crystals during freezing caused cell damage, likely leading to the release of RNase in the 

samples, which, in turn, contributed to the degradation of the material. One of the EMMY 

cohort recruitment criteria was type II diabetes participants. Blood of these patients was 

especially rich in fatty deposits, and several samples could not be extracted as they 

clogged kits filters. Subsequently, samples with high fatty content resulted in lower 

extraction yields, when successful. This might have affected downstream results, as 

patients with higher circulating fats could not be sequenced. Several samples were so 

degraded they could not give any RIN. Fortunately, even with abysmally low RINs, we 

managed to obtain viable libraries in 34% of samples, proving the relevance of 5’RACE 

in rescuing information from heavily altered samples.  

This poor recovery of samples led to several adjustments from our initial analysis 

pipeline. In the ETiCS cohort, out of the initial 61 samples sent to us, only 28 were of 
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sufficient quality for sequencing. The slight imbalance in groups (n=19 vs n=9) also 

limited what could be done in terms of modelling and statistical approaches. Likewise, 

in the EMMY cohort, only 34% (69/199) of the samples met the quality requirements for 

analysisHowever, this did not result in an imbalance between groups (28 good healers vs 

41 poor healers). 

4.2.2 Circulating cardiac signatures in light of published data 

Murine models experiments published by other groups have demonstrated a 

TRBV19 bias in infarcted mice in the CD4 compartment (Rieckmann et al., 2019). 

Although we investigated the use of VJ usage bias in Chapter 4, we could not confirm 

nor infirm it.  Indeed, the cohort was neither designed nor suitable for this usage, as a 

circulating blood TCR repertoire in humans could not be used to recapitulate results 

obtained from a sorted population in mice. It also showed differences in diversity in 

infiltrating CD4 T cells in infarcted vs non-infarcted myocardium. However, we did not 

had access to cardiac biopsies in the human ETiCS cohort.  

Our results, given the low recovery from peripheral blood T cells, demonstrate how 

even a low input repertoire from circulating blood can be used for prediction. The 

Emerson et al., study, featuring the most comprehensive, deepest assessment of T cell 

repertoire dataset published, managed to find T cell signatures in patients infected with 

CMV in a 666 patient cohort (Emerson et al., 2017). Although their method was simple, 

it was the largest T cell repertoire study conducted in NGS and showed that, it was 

possible to identify signatures in blood. It was even more impressive given that past 

encounter with CMV is a “low signal”, meaning it is not an active infection with a large 

portion of the repertoire dedicated to fighting it. We pushed this even further with a 

smaller cohort (n=666 vs n=28). The major advantage of Emerson study was the 

information on the HLA of each patient, which allowed distinguishing subtypes of 

patients sharing different groups of CDR3 of the CMV signature. Individual sharing of 

the signature was, interestingly, rather low, with the most shared CDR3 only found in 61 

patients, highlighting the huge heterogeneity of the immune response, and most patients 

sharing ~20 CDR3 of the 164 CDR3 complete signature (~12%).  
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Comparing these results to our own signature obtained in good and poor healers 

(see Chapter 5, p. 146), we find very similar sharing of CDR3, highlighting how 

circulating blood signature do not necessarily encompass “universal TCR” shared by all 

patients. As opposed to the Emerson dataset, we did not have access to a validation cohort 

to propose a prediction model. Our results do not give a definitive answer to what 

constitute the healing outcome repertoire, but rather demonstrate how a signal can be 

identified using adequate methods, and pave the way for new studies to validate our 

findings. As we showed in the EMMY cohort, if antigen-specific clones mediate the 

studied disease, one could alleviate the issue by inferring specificities from clones and 

looking directly at pathology-driven T cells, rather than correlating TCR to disease. This 

field however, is still blooming and need further refinements.  

With only one timepoint from a 12-month differential diagnostic in an aseptic 

cardiac disease, a limited cohort, low amount of input material, no HLA information, 

non-sorted cells, the question we asked has certainly been very ambitious. If one of these 

parameters had been to change, having a second timepoint would have probably been the 

best option. Indeed, it would have opened many opportunities such as tracking the 

CDR3s across timepoints. It can be hypothesised that the clones identified are positively 

correlated to patients’ outcome because they fuel the early inflammation, and are not 

expanded at further timepoints, results supported by the presence of TCR with viral 

specificities in the signature. The Antigen-specific Lymphocyte Identification by 

Clustering of Expanded sequences (ALICE) (Pogorelyy et al., 2019) is a dedicated tool 

to track clonal expansions between timepoints. It was developed in a collaboration with 

the same group that developed the tool we used to identify the original signature; further 

confirming its relevance to associate the two.  

ETiCS cohort really showed how TCR specificity inference is not difficult, as we 

have matched CDR3 to reported ones. In the ETiCS cohort, we found that the good healer 

outcome signature was enriched for TCR binding to viral peptides, especially CMV. 

These results are surprising in light of the existing literature, as reports of recent viral 

exposition was a marker associated with an increased risk of CVD (Lebedeva et al., 2020; 

Wang et al., 2017; Yousaf et al., 2021). However, the challenge lies in the validation of 

this specificity.Indeed, without HLA or MHC restriction, we can only rely on published, 
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public data compiled into databases, and ignore the CD4-CD8 antigen restriction of the 

identified CDR3. Moreover, even if we actually find CDR3 linked to viral antigen, we 

could not infer a role for them. As TREG and TEFF/CTL have antagonist roles, our 

signature could very well be driven either by inflammatory T cells, which would make 

sense in the context of a 3-days’ inflammation, or by anti-inflammatory driven with TREG. 

Finally, this signature has been observed in the circulating blood. We do not have 

matching biopsies from the heart of the good healer patients to confirm that the 

infiltrating T cells also bear enriched viral (CMV/EBV) specificities. By having access 

to matched tissues and circulating blood in a new cohort, it could both confirm the 

preliminary results obtained here and further explore the specificity of the early cardiac 

infiltrate associated to patient outcome.   

Indeed, by mobilising earlier a pro-inflammatory environment, the T cells can 

recruit more macrophages, DCs and other parts of the immune system, as well as other 

T cells. This massive mobilisation allows the rapid clearance of debris and starting the 

collage scar formation, limiting cardiac chronic insufficiency. On the other hand, TREG 

would dampen inflammation, reduce initial cardiac damage, and overall switch the 

inflammatory microenvironment towards a steady-state one faster. Mathematical 

modelling to infer the CD4 to CD8 ratio from repertoires have been reported, but we 

could not apply to our data (R. Emerson et al., 2013). Similarly, inferring the the MHC-

I or MHC-II restriction from a TCR sequence (and hence, the CD4 or CD8 subtype 

associated) was attempted, but showed poor performance in a single-chain setting (Carter 

et al., 2019; Hou et al., 2020). Seeking to identify the factors promoting TCR towards a 

TREG fate, Lagattuta et al. presented a model where they developed the TCR-intrinsic 

regulatory potential (TiRP) score (Lagattuta et al., 2022). TiRP could provide additional 

information in screening patients with TREG associated parts of the signature. 

4.2.3 HLA is not just another clinical parameter in CVDs 

HLA typing would have greatly helped in differentiating our subgroups of patients. 

For instance, the HLA-DRB1 haplotypes have been identified as a predisposing factor 

for multiple cardiovascular diseases such as coronary heart disease (Sun et al., 2011), 

myocardial infarction (Björkbacka et al., 2010; Paakkanen et al., 2012; Sengar et al., 

1985), cardiovascular mortality in inflammatory polyarthritis (Sharma et al., 2022), 
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cardiomyopathies after hepatitis C virus infections (Matsumori, 2005). In a broader 

extent, other groups have demonstrated how MIS-C was linked to a set of class I HLA 

(Porritt et al., 2021), while cardiovascular remodelling was associated with arterial blood 

pressure in several populations (Diamantopoulos et al., 2003; Luque Otero et al., 1983). 

Novel ongoing work from a german group has identified HLA alleles with different 

levels of risks in patient with chronic heart failure (Merten et al, personnal 

communication). With over 120 patients and their complete HLA information, they 

showed how HLA characterisation in failing hearts could be used to stratify patients’ 

prognostic. Specifically, the analysis demonstrated that the presence of HLA-DR2 

conferred a protective effect in this patient population, whereas the presence of HLA-

DR5 was associated with a 4-fold increased odds ratio of mortality following myocardial 

infarction (MI). HLA could then be seen as an etiologic factor, rather than a risk factor. 

Patient bearing those immunogenic HLA might trigger more inflammatory response, 

ultimately leading to cardiovascular complications. Alternatively, those without the 

predisposing HLA could have triggered the autoimmunity through other unknown 

means. This opens some new perspectives on further research. 

4.2.4 “Healthy” volunteers, or is it? 

Healthy volunteers’ recruitment is 

also a source of variation that can be 

looked into. Indeed, I used blood 

sampling from French Blood Centres 

donations, spanning the 2021-2022 

years. We selected donors to match age 

and sex of the ETiCS cohort to not 

introduce bias, but we do not have 

access to similar level of information. 

Especially, patients could have 

atherosclerosis, the primary underlying 

disease process of myocardial infarction (Timmis et al., 2018), which does not exclude 

you from donation in French Centres. Moreover, our recruitment did not take into 

account the seasonality of CVD, where we see a higher risk for CVD during the cold 

Figure 22: Myocardial infarction per month in the ETiCS 
cohort (n = 38). Gray line: ETiCS patients MI inclusion, red 
line: smoothed approximation. Blue; healthy volunteers 
recruitment window 
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months (reviewed by Stewart et al., 2017),  consistent with observations in our cohort 

(Figure 22). On the other hand, our “healthy volunteers” cohort been constituted between 

the months of April to September, which would also correlate to the lowest occurrences 

of MI. Among the seasonal factors involved in increased cardiovascular risks, IL-6 was 

found to contribute to disease onset (Sartini et al., 2017), results corroborated by other 

large scale clinical studies (Sattar et al., 2009). The clinical relevance of IL-6 compared 

to the fattier diet, increased blood pressure and more sedentary lifestyles might be 

anecdotal, although it may be related to impaired response to winter viruses (Nguyen et 

al., 2016). The link between myocardial infarction seasonality and T cell repertoire has 

however not been investigated.  SARS-CoV2 pandemic is another major factor that must 

be taken into account in our “healthy” cohort. Indeed, a large proportion of the french 

population contracted the virus or was subject to several rounds of vaccination against 

spike-proteins. At the end of December 2021, it was estimated that 80% of the population 

has received at least one dose of vaccine (Haugomat, 2022). This brings a substantial 

bias in circulating repertoire. Even if SARS-CoV2 specific T cell clones pre-exist in 

healthy population (Shimizu et al., 2021), vaccinated patients share a higher proportion 

of the virus T signature (Gittelman et al., 2022). Moreover, SARS-CoV can penetrate the 

myocardium through ACE2 and induce myocarditis (Lindner et al., 2020; Nägele et al., 

2022). The risk of CVDs such as MI or stroke has been considered safe in light of 

vaccination (Botton et al., 2022; Jabagi et al., 2023). We indeed thought about using 

already published datasets from healthy volunteers datasets from the pre-COVID-19 era.  

However, they either did not match our experimental protocol (unsorted, poorly stored T 

cells) or sequencing layout, thus were not comparable to our cohort. 

4.3 SPEAKING ABOUT SPECIFICITY 

Despite multiple T cell epitopes described in CVDs (see section 1.2.4), few to none 

TCR of cardiovascular interest (ToCI) have been reported in human databases of TCR 

binding, at least with sufficient confidence. Screening of cardiac epitopes has been 

performed in mice (Rieckmann et al., 2019), but this work was not reported in humans. 

Datasets of T cells with ToCI are scarce and not annotated. My effort to recover TCR 

from infiltrating cardiac T cells in healthy (Litviňuková et al., 2020) or failing (Tang et 
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al., 2019) hearts, or ex-vivo stimulated CD8+ T cells in autoimmune context (Axelrod et 

al., 2022) revealed itself limited in both number of T cells recovered and what I could 

computationally do from it.  

This topic goes beyond CVDs epitopes. Inferring specificity of T cells might be an 

even more challenging task than currently thought. Authors have recently pointed TCR-

epitope prediction as the “holy grail of immunology” (Hudson et al., 2023). When I 

started my thesis in 2019, existing methods to predict specificity were based on sequence 

clustering (GLIPH2, tcrdist…) with already annotated TCR. Since then, two things 

changed. First, single-cell studies became much more affordable, with the possibility of 

coupling dextramers to explore the specificity along with transcriptome  (Boutet et al., 

2019). This has been greatly popularised with COVID-19 studies, looking for SARS-

CoV2 specificities. Second major advance arrived with new deep learning approaches. 

Previous distance-based methods were somewhat simple, and intelligible, but required a 

lot of knowledge to bring something. Indeed, models were based on observed data and 

knowledge of the mechanisms lying behind TCR recognition. On the other hand, deep 

learning requires data and self-trains itself. This method can be called intuitive, as it does 

not require prior knowledge of the topic: the model finds by itself the best weight and 

parameters. This intuitive reasoning can be at the cost of transparency, as this type of 

black-box models is unable to justify mechanistic basis of its predictions (Yeo and 

Selvarajoo, 2022). This accelerated the process of developing new prediction tools and 

allowed to a large panel of new approaches to be published in the last years.  

The absence of consensual dataset or requirement to publish TCR specificity 

prediction methods have led to a prolific publishing, with dozens of papers and preprint 

in the last 3 years dedicated to this topic. Although competition is always the better 

alternative, this multiplicity of poorly designed, or biased comparisons3, is a tedious 

work. Indeed, authors that compare their method to outdated or irrelevant tools, or use 

interesting metrics for their benchmark can be deemed unfair. This feeling is shared by 

other researchers, which decided to take action. A community driven effort to benchmark 

 
3 Meysman et al. (2023) note that “[It is a] commonly accepted phenomenon that a method will 
always score best when applied by its own authors and on the data set in the paper where it is 
introduced”  
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23 methods original and published has been carried on (Meysman et al., 2023) to 

determine the good practices to observe when developing TCR prediction tools. This 

work could define the different advantages and weakness of some methods. However, 

authors noted how this remains largely insufficient, because of i) the multiplicity of tools 

published in the literature and ii) the lack of accessible code or tunability of tools. Several 

issues were raised by this community study, notably the lack of benchmark datasets, 

which become necessary with the current surge of prediction tools, along with the 

training data issue. These issues, and notably the negative data bias, need to be addressed 

as it stirs controversy in high impact journals (Dens et al., 2023; Gao et al., 2023b, 

2023a). 

In a few words, negative data bias is the fundamental flaw that lies in TCR 

specificity modelling. To build a TCR model, you need both positive and negative labels, 

and a continuous metric to assess the response (binding strength, interferon production, 

or any other biological output). The TCR repertoire however, possess this powerful 

property to be highly cross-reactive, with estimates of a single TCR being able to 

recognise 106 peptides (Mason, 1998). Hence, except in rare demonstration of a large 

cross-reactivity of T cells (Quiniou et al., 2023; Verhoeven et al., 2008), usually authors 

that indicate that TCR X does bind to epitope 1, did not test whether or not this TCR 

could bind to other epitopes.  If they did test it, and the TCR did not bind, it would often 

go unreported as the protocol would focus on binding-positive cells. This happens in cell-

sorting studies, where labs would only sequence (or report) tetramer positive cells, or in 

antigen stimulation protocols where T cells that do not recognise the antigen do not 

survive or get outnumbered. Moreover, single-chain (α or β) would often be reported as 

“specific” although their association with their complementary chain might define their 

specificity. Hong et al showed how pairing of αβ TCR was critical, as screening of a 6 

TCRα paired to 6 TCRβ chains would yield a responsive TCR in 5/36 combinations 

(Hong et al., 2022). These results should be compared to those of Quiniou and colleagues 

which showed how in some cases, TCRβ was the main contributor to specificity, with 1 

β chain paired with 131 different α, was able to bind different viruses (Quiniou et al., 

2023), with the α chain fine tuning the binding strength to some epitopes. These 

observations have been confirmed by multiple TCR-epitope specificity prediction tools 
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that found better results when having pairing information than just α or β chain (Jokinen 

et al., 2022). These data demonstrate how we should remain cautious about reported 

specificity, and experimentally confirm it when possible. 

 

4.4 SO, WHAT IS NEXT FOR CIRCULATING T CELLS SCREENING? 

4.4.1 The circulating repertoire as biomarker 

Using circulating T cells as a biomarker, or a proxy of a tissue-specific response, 

is however a powerful idea that has been formulated and investigated through cytometry 

(Blum and Pabst, 2007; Westermann and Pabst, 1990). Indeed, one could draw a parallel 

with circulating antibodies levels screening in patients to circulating T cells, as they are 

all immunoglobulins after all. However, as opposed to antibodies, which are circulating 

proteins, T cells are cells with a complete set of functions and cover much more potential. 

Circulating repertoire has been harnessed in multiple contexts to monitor patient 

health. In advanced lung cancer patient, circulating β repertoire could predict prognosis 

of patients (Liu et al., 2019). Same results were obtained for renal cell carcinoma (Guo 

et al., 2020), but the repertoire was not different from healthy volunteers in ovarian 

cancer (R. O. Emerson et al., 2013) or pancreatic cancer (Bai et al., 2015). T cell diversity 

in peripheral blood has been used to predict patient’s response to personalised treatment 

with neoantigen therapy and anti-PD1 (Bortone et al., 2021; Poran et al., 2020), anti-

CTLA4 (Postow et al., 2015) or anti-neoantigen (Kansy et al., 2018). More recently, 

circulating CDR3β repertoire was used to detect high grade serous ovarian cancer before 

conventional diagnostic (X. Yu et al., 2023, preprint) 

Although cancer studies provides a large spectrum of applications, similar studies 

were performed in autoimmune context such as type 1 diabetes (Tong et al., 2016), 

systemic lupus erythematosus (Thapa et al., 2015), multiple sclerosis (Amoriello et al., 

2021), or cardiovascular diseases such as acute myocardial infarction or unstable angina 

(Sudong Liu et al., 2020) or ischemic heart failure (Tang et al., 2019).  
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All of these studies however have low impact, due to their incapacity to draw a 

clear link between T cells and either i) function or ii) specificity of T cells. Studies that 

can do both have a much better impact. This is the case for the lab that designed GLIPH2 

and used their knowledge to infer disease progression following Mycobacterium 

tuberculosis infection based on blood sampling, by looking at clusters of T cells 

associated with previously published Mtb antigens (Musvosvi et al., 2023).  

This kind of work, which does not only rely on sequencing data, but can confidently 

associate TCR with specificity, function, and predict the progression of multifactorial 

diseases, are probably the high impact papers of the future. However, such studies are 

costly, as they require a lot of input data to accurately identify sometimes subtle 

signatures. The recent partnership between Adaptive Biotechnologies and Microsoft to 

provide this very type of patient diagnostic, with the aim of monitoring patient health 

through peripheral blood sampling and TCR sequencing, confirms the growing interest 

of large pharma players to the “niche” field that is T cell repertoire analysis. 

4.4.2 Bulk TCR sequencing: has the ship sailed? 

Massive sequencing has revolutionised the T cell repertoire field. Nonetheless, this 

paradigm is quickly changing; multimodal studies, previously requiring consequent 

amounts of money and input data, has been completely revamped by single-cell 

technologies. With one experiment, you can now have access simultaneously to 

transcriptome, epigenetic modifications (Kakaradov et al., 2017), surface molecules 

expression, proteome (Specht et al., 2021) and epitope binding (Son et al., 2021). From 

this, you can infer MHC allelic information (Darby et al., 2020), single-nucleotide 

variants (Schnepp et al., 2019) or T cell activation (Deering et al., 2023). This can be 

coupled with spatial information of dissected tissues (Liu et al., 2022) and multiple 

timepoints (Yang et al., 2021). Their obvious limitation for whole blood screening, apart 

from affordability, is the low number of cells that can be simultaneously sequenced. With 

only thousands or tens of thousands of cells per experiment that can be recovered, this 

remains largely inefficient to accurately sample subtle differences in blood, where there 

is typically 1 x 106 T cells per mL. Thus, exploring T cell diversity in single-cell 

experiments through entropy measures or similarity indices could generate inaccurate 

results. Repetitive sampling of 10 000 most abundant circulating TCR clonotypes in bulk 
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sequencing showed that 1 sample captured 75% of top clonotypes from a pool of 10 

replicates (Simon et al., 2018).  Models of rarefaction have shown that 1 x 103 T cells 

could accurately represent the richness and evenness of a 103 bigger repertoire, but 

uncertainty remains on how representative a 103 TCR repertoire could be of circulating 

blood, which is estimated to contain more than 1010 T cells (Clark et al., 1999).  

Although bulk TCR does not offer the multidimensional possibilities of single-cell, 

interesting approaches were employed that went tangent from the classical V-CDR3-J 

paradigm. Exploring the hypothesis that immunogenicity of certain self-antigens could 

be encoded in the T cell genes, several studies have demonstrated how some TRBV were 

poised for autoimmunity. TRBV polymorphisms were identified in immune-related 

adverse events during checkpoint blockade immunotherapy (Khan et al., 2019; Stephen 

et al., 2023), diabetes onset (Pierce et al., 2013), and variability of susceptibility to 

Epstein-Barr virus infection (Gras et al., 2010). Although these polymorphisms were not 

identified in previous GWAS studies on cardiac infarction, they probably flew under the 

radar due to the poor annotation of those genes. Indeed, immunoglobulins are highly 

polymorphic and poorly annotated (Lees et al., 2023; Omer et al., 2022). Despite the 

massive work of IMGT, we have mentioned a few issues of solely relying on their work 

(see 1.1.2). To this extent, the AIRR consortium launched the Open Germline Receptor 

Database (OGRDB), a curated database dedicated to list all known alleles, focused on 

documenting less studied populations (Collins et al., preprint). Although it is unlikely 

that TCR genes polymorphisms could be the sole driver for myocardial repair, it could 

be used to further stratify patients or identify outliers in the repair.  

4.4.3 A bright future for paired-end bulk sequencing? 

As we have covered so far in this introduction, the weakness of TCR diagnostic  

predictions can be due to unpaired TCRαβ bulk sequencing (see 4.3), paucity of literature 

about reported specificities of TCRs (see 4.2.2 and 4.3), and the limited throughput of 

single-cell methods along with their prohibitive price (see 4.4.2). 

Single-cell sequencing focusing only on TCR reads could offer a seducing 

compromise between high throughput and paired αβ chains (DeKosky et al., 2015; 

McDaniel et al., 2016). Technology is already ready and mature for efficient single cell 
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encapsulation (Zheng et al., 2017) and unique barcoding of a large number of cells (> 

107) has already been proposed several years ago (Bhang et al., 2015). Single-cell 

barcoding for targeted TCR sequencing could also offer efficient counting, as reads 

would be identified with unique cell identifier and not unique molecular identifiers 

(although both techniques could be combined).The large number of unique barcodes 

(>1018 for a 30bp-long sequence) allows robust multiplexing without barcode collusion 

(Smith et al., 2017). Improvement of the current inDrop approach4 (Klein et al., 2015) 

allows the fast preparation of 106 cells in a couple of hours (Juzenas et al., 2023, 

preprint). The development of these methods has been ported to commercial use for large 

public. Omniscope OS-T technology (Omniscope) offers a 1 x 106 single-cell TCR 

sequencing, without transcriptome (Nadeu et al., 2022). It uses RNA reverse 

transcription and multiplex PCR, along with UMI.  

Other methods relying on single-cell tracking through creative use of TdT to 

individually track cell fate at the genomic level as also been recently proposed, although 

it is limited by the murine model used (Li et al., 2023). For spatial tracking of T cells in 

biopsies, molecular barcoding with photon emission (Light-seq) has been developed, 

which could be useful to dissect T cell repertoires distribution in cardiac infiltrates (Kishi 

et al., 2022) 

Large-scale single-cell TCR sequencing would not only bring better understanding, 

but also more accurate information of T cells. The precise unique cell identifiers would 

be superior to UMI for quantifying clonality, which provides better assessment of T cell 

diversity. The pairing of full-length αβ chains along with HLA information will pave 

new ways to screen epitope banks with unprecedented precision. As previously 

emphasised, it is imperative not to overlook the preliminary cell-sorting step in this 

context. The comprehensive characterisation of cells requires the consideration of both 

their phenotypical and functional attributes. Notably, sorting of cells into main 

compartments, such as CD4/CD8 and effector/regulator subsets, proves indispensable to 

prevent the pitfalls of failing to infer specificity effectively. This higher throughput 

coupled with new TCR-pMHC modelling strategies coming from artificial intelligence 

 
4 from which the 10X Chromium (10X Genomics) is based on 
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breakthrough (Bradley, 2023; Jokinen et al., 2022) are likely to be the new disruptive 

innovation in T cell repertoire analysis.  

 



 

 

186 

  



 

 

187 

REFERENCES 

1. Abe J, Kotzin BL, Jujo K, Melish ME, Glode MP, Kohsaka T, Leung DY. 1992. 
Selective expansion of T cells expressing T-cell receptor variable regions V beta 
2 and V beta 8 in Kawasaki disease. Proceedings of the National Academy of 
Sciences 89:4066–4070. doi:10.1073/pnas.89.9.4066 

2. Abe J, Kotzin BL, Meissner C, Melish ME, Takahashi M, Fulton D, Romagne F, 
Malissen B, Leung DY. 1993. Characterization of T cell repertoire changes in 
acute Kawasaki disease. Journal of Experimental Medicine 177:791–796. 
doi:10.1084/jem.177.3.791 

3. Ace O, Domb S. 2019. Myocarditis as the initial presentation of Epstein-Barr 
virus infection in a 17-year-old male patient. Can Fam Physician 65:897–899. 

4. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, 
Lanzavecchia A, Sallusto F, Napolitani G. 2007. Surface phenotype and antigenic 
specificity of human interleukin 17–producing T helper memory cells. Nat 
Immunol 8:639–646. doi:10.1038/ni1467 

5. Adams D, Altucci L, Antonarakis SE, Ballesteros J, Beck S, Bird A, Bock C, 
Boehm B, Campo E, Caricasole A, Dahl F, Dermitzakis ET, Enver T, Esteller M, 
Estivill X, Ferguson-Smith A, Fitzgibbon J, Flicek P, Giehl C, Graf T, Grosveld 
F, Guigo R, Gut I, Helin K, Jarvius J, Küppers R, Lehrach H, Lengauer T, 
Lernmark Å, Leslie D, Loeffler M, Macintyre E, Mai A, Martens JH, Minucci S, 
Ouwehand WH, Pelicci PG, Pendeville H, Porse B, Rakyan V, Reik W, Schrappe 
M, Schübeler D, Seifert M, Siebert R, Simmons D, Soranzo N, Spicuglia S, 
Stratton M, Stunnenberg HG, Tanay A, Torrents D, Valencia A, Vellenga E, 
Vingron M, Walter J, Willcocks S. 2012. BLUEPRINT to decode the epigenetic 
signature written in blood. Nat Biotechnol 30:224–226. doi:10.1038/nbt.2153 

6. Adessi C, Matton G, Ayala G, Turcatti G, Mermod J, Mayer P, Kawashima E. 
2000. Solid phase DNA amplification: characterisation of primer attachment and 
amplification mechanisms. Nucleic acids research 28. doi:10.1093/nar/28.20.e87 

7. Akira S, K O, H S. 1987. Two pairs of recombination signals are sufficient to 
cause immunoglobulin V-(D)-J joining. Science (New York, NY) 238. 
doi:10.1126/science.3120312 

8. Alcover A, Mariuzza RA, Ermonval M, Acuto O. 1990. Lysine 271 in the 
transmembrane domain of the T-cell antigen receptor beta chain is necessary for 
its assembly with the CD3 complex but not for alpha/beta dimerization. J Biol 
Chem 265:4131–4135. 

9. Alt FW, Baltimore D. 1982. Joining of immunoglobulin heavy chain gene 
segments: implications from a chromosome with evidence of three D-JH fusions. 



 

 

188 

Proceedings of the National Academy of Sciences 79:4118–4122. 
doi:10.1073/pnas.79.13.4118 

10. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local 
alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-
2836(05)80360-2 

11. Amadi-Obi A, Yu C-R, Liu X, Mahdi RM, Clarke GL, Nussenblatt RB, Gery I, 
Lee YS, Egwuagu CE. 2007. TH17 cells contribute to uveitis and scleritis and are 
expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med 13:711–718. 
doi:10.1038/nm1585 

12. Amoriello R, Chernigovskaya M, Greiff V, Carnasciali A, Massacesi L, Barilaro 
A, Repice AM, Biagioli T, Aldinucci A, Muraro PA, Laplaud DA, Lossius A, 
Ballerini C. 2021. TCR repertoire diversity in Multiple Sclerosis: High-
dimensional bioinformatics analysis of sequences from brain, cerebrospinal fluid 
and peripheral blood. EBioMedicine 103429. doi:10.1016/j.ebiom.2021.103429 

13. Amoriello R, Greiff V, Aldinucci A, Bonechi E, Carnasciali A, B P, Am R, A M, 
R S, B M, L M, C B. 2020. The TCR Repertoire Reconstitution in Multiple 
Sclerosis: Comparing One-Shot and Continuous Immunosuppressive Therapies. 
Frontiers in immunology 11. doi:10.3389/fimmu.2020.00559 

14. Andrews S. 2010. FASTQC. A quality control tool for high throughput sequence 
data. 

15. Antman E, Anbe D, Armstrong P, Bates E, La G, M H, Js H, Hm K, Fg K, Ga L, 
Cj M, Jp O, Dl P, Ma S, Sc S, Js A, Jl A, Dp F, V F, Rj G, G G, Jl H, Lf H, Sa H, 
Jacobs A. 2004. ACC/AHA guidelines for the management of patients with ST-
elevation myocardial infarction--executive summary: a report of the American 
College of Cardiology/American Heart Association Task Force on Practice 
Guidelines (Writing Committee to Revise the 1999 Guidelines for the 
Management of Patients With Acute Myocardial Infarction). Circulation 110. 
doi:10.1161/01.CIR.0000134791.68010.FA 

16. Anzai A, Mindur JE, Halle L, Sano S, Choi JL, He S, McAlpine CS, Chan CT, 
Kahles F, Valet C, Fenn AM, Nairz M, Rattik S, Iwamoto Y, Fairweather D, 
Walsh K, Libby P, Nahrendorf M, Swirski FK. 2019. Self-reactive CD4+ IL-3+ 
T cells amplify autoimmune inflammation in myocarditis by inciting monocyte 
chemotaxis. J Exp Med 216:369–383. doi:10.1084/jem.20180722 

17. Aplan PD, Lombardi DP, Ginsberg AM, Cossman J, Bertness VL, Kirsch IR. 
1990. Disruption of the Human SCL Locus by “Illegitimate” V-(D)-J 
Recombinase Activity. Science 250:1426–1429. doi:10.1126/science.2255914 

18. Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. 1999. A 
Direct Estimate of the Human αβ T Cell Receptor Diversity. Science 286:958–
961. doi:10.1126/science.286.5441.958 



 

 

189 

19. Axelrod ML, Meijers WC, Screever EM, Qin J, Carroll MG, Sun X, Tannous E, 
Zhang Y, Sugiura A, Taylor BC, Hanna A, Zhang S, Amancherla K, Tai W, 
Wright JJ, Wei SC, Opalenik SR, Toren AL, Rathmell JC, Ferrell PB, Phillips 
EJ, Mallal S, Johnson DB, Allison JP, Moslehi JJ, Balko JM. 2022. T cells 
specific for α-myosin drive immunotherapy-related myocarditis. Nature 
611:818–826. doi:10.1038/s41586-022-05432-3 

20. Bai X, Zhang Q, Wu S, Zhang X, Wang M, He F, Wei T, Yang J, Lou Y, Cai Z, 
Liang T. 2015. Characteristics of Tumor Infiltrating Lymphocyte and Circulating 
Lymphocyte Repertoires in Pancreatic Cancer by the Sequencing of T Cell 
Receptors. Sci Rep 5:1–9. doi:10.1038/srep13664 

21. Bains I, Antia R, Callard R, Yates AJ. 2009. Quantifying the development of the 
peripheral naive CD4+ T-cell pool in humans. Blood 113:5480–5487. 
doi:10.1182/blood-2008-10-184184 

22. Baker PE, Gillis S, Smith KA. 1979. Monoclonal cytolytic T-cell lines. The 
Journal of experimental medicine 149:273–278. doi:10.1084/jem.149.1.273 

23. Balakrishnan A, Morris GP. 2016. The highly alloreactive nature of dual TCR T 
cells. Curr Opin Organ Transplant 21:22–28. 
doi:10.1097/MOT.0000000000000261 

24. Baltcheva I, Veel E, Volman T, Koning D, Brouwer A, Le Boudec J, Tesselaar 
K, de Boer R, Borghans J. 2012. A generalized mathematical model to estimate 
T- and B-cell receptor diversities using AmpliCot. Biophysical journal 103. 
doi:10.1016/j.bpj.2012.07.017 

25. Bansal SS, Ismahil MA, Goel M, Patel B, Hamid T, Rokosh G, Prabhu SD. 2017. 
Activated T Lymphocytes are Essential Drivers of Pathological Remodeling in 
Ischemic Heart Failure. Circ Heart Fail 10:e003688. 
doi:10.1161/CIRCHEARTFAILURE.116.003688 

26. Barbet G, Nair-Gupta P, Schotsaert M, Yeung ST, Moretti J, Seyffer F, Metreveli 
G, Gardner T, Choi A, Tortorella D, Tampé R, Khanna KM, García-Sastre A, 
Blander JM. 2021. TAP dysfunction in dendritic cells enables noncanonical 
cross-presentation for T cell priming. Nat Immunol 22:497–509. 
doi:10.1038/s41590-021-00903-7 

27. Barennes P, Quiniou V, Shugay M, Egorov ES, Davydov AN, Chudakov DM, 
Uddin I, Ismail M, Oakes T, Chain B, Eugster A, Kashofer K, Rainer PP, Darko 
S, Ransier A, Douek DC, Klatzmann D, Mariotti-Ferrandiz E. 2021. 
Benchmarking of T cell receptor repertoire profiling methods reveals large 
systematic biases. Nat Biotechnol 39:236–245. doi:10.1038/s41587-020-0656-3 

28. Bautista JL, Lio C-WJ, Lathrop SK, Forbush K, Liang Y, Luo J, Rudensky AY, 
Hsieh C-S. 2009. Intraclonal competition limits the fate determination of 
regulatory T cells in the thymus. Nat Immunol 10:610–617. doi:10.1038/ni.1739 



 

 

190 

29. Bayat S, Hashemi Nazari SS, Mehrabi Y, Sistanizad M. 2022. Long-term 
Survival Rate Following Myocardial Infarction and the Effect of Discharge 
Medications on the Survival Rate. J Res Health Sci 22:e00567. 
doi:10.34172/jrhs.2022.102 

30. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, 
Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, 
Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, 
Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, 
Obradovic B, Ost T, Parkinson ML, Pratt MR, Rasolonjatovo IMJ, Reed MT, 
Rigatti R, Rodighiero C, Ross MT, Sabot A, Sankar SV, Scally A, Schroth GP, 
Smith ME, Smith VP, Spiridou A, Torrance PE, Tzonev SS, Vermaas EH, Walter 
K, Wu X, Zhang L, Alam MD, Anastasi C, Aniebo IC, Bailey DMD, Bancarz IR, 
Banerjee S, Barbour SG, Baybayan PA, Benoit VA, Benson KF, Bevis C, Black 
PJ, Boodhun A, Brennan JS, Bridgham JA, Brown RC, Brown AA, Buermann 
DH, Bundu AA, Burrows JC, Carter NP, Castillo N, Chiara E. Catenazzi M, 
Chang S, Neil Cooley R, Crake NR, Dada OO, Diakoumakos KD, Dominguez-
Fernandez B, Earnshaw DJ, Egbujor UC, Elmore DW, Etchin SS, Ewan MR, 
Fedurco M, Fraser LJ, Fuentes Fajardo KV, Scott Furey W, George D, Gietzen 
KJ, Goddard CP, Golda GS, Granieri PA, Green DE, Gustafson DL, Hansen NF, 
Harnish K, Haudenschild CD, Heyer NI, Hims MM, Ho JT, Horgan AM, 
Hoschler K, Hurwitz S, Ivanov DV, Johnson MQ, James T, Huw Jones TA, Kang 
G-D, Kerelska TH, Kersey AD, Khrebtukova I, Kindwall AP, Kingsbury Z, 
Kokko-Gonzales PI, Kumar A, Laurent MA, Lawley CT, Lee SE, Lee X, Liao 
AK, Loch JA, Lok M, Luo S, Mammen RM, Martin JW, McCauley PG, McNitt 
P, Mehta P, Moon KW, Mullens JW, Newington T, Ning Z, Ling Ng B, Novo 
SM, O’Neill MJ, Osborne MA, Osnowski A, Ostadan O, Paraschos LL, Pickering 
L, Pike Andrew C., Pike Alger C., Chris Pinkard D, Pliskin DP, Podhasky J, 
Quijano VJ, Raczy C, Rae VH, Rawlings SR, Chiva Rodriguez A, Roe PM, 
Rogers John, Rogert Bacigalupo MC, Romanov N, Romieu A, Roth RK, Rourke 
NJ, Ruediger ST, Rusman E, Sanches-Kuiper RM, Schenker MR, Seoane JM, 
Shaw RJ, Shiver MK, Short SW, Sizto NL, Sluis JP, Smith MA, Ernest Sohna 
Sohna J, Spence EJ, Stevens K, Sutton N, Szajkowski L, Tregidgo CL, Turcatti 
G, vandeVondele S, Verhovsky Y, Virk SM, Wakelin S, Walcott GC, Wang J, 
Worsley GJ, Yan J, Yau L, Zuerlein M, Rogers Jane, Mullikin JC, Hurles ME, 
McCooke NJ, West JS, Oaks FL, Lundberg PL, Klenerman D, Durbin R, Smith 
AJ. 2008. Accurate whole human genome sequencing using reversible terminator 
chemistry. Nature 456:53–59. doi:10.1038/nature07517 

31. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, 
Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J. 2009. Evidence 
for Cardiomyocyte Renewal in Humans. Science 324:98–102. 
doi:10.1126/science.1164680 

32. Bertolino P, Trescol-Biémont M-C, Thomas J, de St Groth BF, Pihlgren M, 
Marvel J, Rabourdin-Combe C. 1999. Death by neglect as a deletional 
mechanism of peripheral tolerance. International Immunology 11:1225–1238. 
doi:10.1093/intimm/11.8.1225 



 

 

191 

33. Beshnova D, Ye J, Onabolu O, Moon B, Zheng W, Fu Y-X, Brugarolas J, Lea J, 
Li B. 2020. De novo prediction of cancer-associated T cell receptors for 
noninvasive cancer detection. Science translational medicine 12. 
doi:10.1126/scitranslmed.aaz3738 

34. Best K, Oakes T, Heather JM, Shawe-Taylor J, Chain B. 2015. Computational 
analysis of stochastic heterogeneity in PCR amplification efficiency revealed by 
single molecule barcoding. Sci Rep 5:14629. doi:10.1038/srep14629 

35. Beverly B, Kang SM, Lenardo MJ, Schwartz RH. 1992. Reversal of in vitro T 
cell clonal anergy by IL-2 stimulation. Int Immunol 4:661–671. 
doi:10.1093/intimm/4.6.661 

36. Bhang HC, Ruddy DA, Krishnamurthy Radhakrishna V, Caushi JX, Zhao R, 
Hims MM, Singh AP, Kao I, Rakiec D, Shaw P, Balak M, Raza A, Ackley E, 
Keen N, Schlabach MR, Palmer M, Leary RJ, Chiang DY, Sellers WR, Michor 
F, Cooke VG, Korn JM, Stegmeier F. 2015. Studying clonal dynamics in 
response to cancer therapy using high-complexity barcoding. Nat Med 21:440–
448. doi:10.1038/nm.3841 

37. Bhardwaj V, Kumar V, Geysen HM, Sercarz EE. 1993. Degenerate recognition 
of a dissimilar antigenic peptide by myelin basic protein-reactive T cells. 
Implications for thymic education and autoimmunity. The Journal of 
Immunology 151:5000–5010. doi:10.4049/jimmunol.151.9.5000 

38. Binkley PF, Cooke GE, Lesinski A, Taylor M, Chen M, Laskowski B, Waldman 
WJ, Ariza ME, Williams MV, Knight DA, Glaser R. 2013. Evidence for the Role 
of Epstein Barr Virus Infections in the Pathogenesis of Acute Coronary Events. 
PLoS One 8:e54008. doi:10.1371/journal.pone.0054008 

39. Björkbacka H, Lavant EH, Fredrikson GN, Melander O, Berglund G, Carlson JA, 
Nilsson J. 2010. Weak associations between human leucocyte antigen genotype 
and acute myocardial infarction. Journal of Internal Medicine 268:50–58. 
doi:10.1111/j.1365-2796.2009.02209.x 

40. Blackman M, Yagüe J, Kubo R, Gay D, Coleclough C, Palmer E, Kappler J, 
Marrack P. 1986. The T cell repertoire may be biased in favor of MHC 
recognition. Cell 47:349–357. doi:10.1016/0092-8674(86)90591-X 

41. Blanco-Domínguez R, Fuente H de la, Rodríguez C, Martín-Aguado L, Sánchez-
Díaz R, Jiménez-Alejandre R, Rodríguez-Arabaolaza I, Curtabbi A, García-
Guimaraes MM, Vera A, Rivero F, Cuesta J, Jiménez-Borreguero LJ, Cecconi A, 
Duran-Cambra A, Taurón M, Alonso J, Bueno H, Villalba-Orero M, Enríquez 
JA, Robson SC, Alfonso F, Sánchez-Madrid F, Martínez-González J, Martín P. 
2022. CD69 expression on regulatory T cells protects from immune damage after 
myocardial infarction. J Clin Invest 132. doi:10.1172/JCI152418 



 

 

192 

42. Blum KS, Pabst R. 2007. Lymphocyte numbers and subsets in the human blood. 
Do they mirror the situation in all organs? Immunol Lett 108:45–51. 
doi:10.1016/j.imlet.2006.10.009 

43. Bodger MP, Janossy G, Bollum FJ, Burford GD, Hoffbrand AV. 1983. The 
Ontogeny of Terminal Deoxynucleotidyl Transferase Positive Cells in the Human 
Fetus. Blood 61:1125–1131. doi:10.1182/blood.V61.6.1125.1125 

44. Boehm U, Klamp T, Groot M, Howard JC. 1997. CELLULAR RESPONSES TO 
INTERFERON-γ. Annu Rev Immunol 15:749–795. 
doi:10.1146/annurev.immunol.15.1.749 

45. Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva 
EV, Chudakov DM. 2015. MiXCR: software for comprehensive adaptive 
immunity profiling. Nature Methods 12:380–381. doi:10.1038/nmeth.3364 

46. Bomberger C, Singh-Jairam M, Rodey G, Guerriero A, Yeager AM, Fleming 
WH, Holland HK, Waller EK. 1998. Lymphoid Reconstitution After Autologous 
PBSC Transplantation With FACS-Sorted CD34+ Hematopoietic Progenitors. 
Blood 91:2588–2600. doi:10.1182/blood.V91.7.2588 

47. Bories JC, Demengeot J, Davidson L, Alt FW. 1996. Gene-targeted deletion and 
replacement mutations of the T-cell receptor beta-chain enhancer: the role of 
enhancer elements in controlling V(D)J recombination accessibility. Proc Natl 
Acad Sci U S A 93:7871–7876. doi:10.1073/pnas.93.15.7871 

48. Bortone DS, Woodcock MG, Parker JS, Vincent BG. 2021. Improved T-cell 
Receptor Diversity Estimates Associate with Survival and Response to Anti–PD-
1 Therapy. Cancer Immunology Research 9:103–112. doi:10.1158/2326-
6066.CIR-20-0398 

49. Botton J, Jabagi MJ, Bertrand M, Baricault B, Drouin J, Le Vu S, Weill A, 
Farrington P, Zureik M, Dray-Spira R. 2022. Risk for Myocardial Infarction, 
Stroke, and Pulmonary Embolism Following COVID-19 Vaccines in Adults 
Younger Than 75 Years in France. Ann Intern Med 175:1250–1257. 
doi:10.7326/M22-0988 

50. Boutet SC, Walter D, Stubbington MJT, Pfeiffer KA, Lee JY, Taylor SEB, 
Montesclaros L, Lau JK, Riordan DP, Barrio AM, Brix L, Jacobsen K, Yeung B, 
Zhao X, Mikkelsen TS. 2019. Scalable and comprehensive characterization of 
antigen-specific CD8 T cells using multi-omics single cell analysis. The Journal 
of Immunology 202:131.4. doi:10.4049/jimmunol.202.Supp.131.4 

51. Bouvier G, Watrin F, Naspetti M, Verthuy C, Naquet P, Ferrier P. 1996. Deletion 
of the mouse T-cell receptor beta gene enhancer blocks alphabeta T-cell 
development. Proc Natl Acad Sci U S A 93:7877–7881. 
doi:10.1073/pnas.93.15.7877 



 

 

193 

52. Boyer SW, Rajendiran S, Beaudin AE, Smith-Berdan S, Muthuswamy PK, Perez-
Cunningham J, Martin EW, Cheung C, Tsang H, Landon M, Forsberg EC. 2019. 
Clonal and Quantitative In Vivo Assessment of Hematopoietic Stem Cell 
Differentiation Reveals Strong Erythroid Potential of Multipotent Cells. Stem 
Cell Reports 12:801–815. doi:10.1016/j.stemcr.2019.02.007 

53. Bradley P. 2023. Structure-based prediction of T cell receptor:peptide-MHC 
interactions. eLife 12:e82813. doi:10.7554/eLife.82813 

54. Bradley P, Thomas PG. 2019. Using T Cell Receptor Repertoires to Understand 
the Principles of Adaptive Immune Recognition. Annu Rev Immunol 37:547–570. 
doi:10.1146/annurev-immunol-042718-041757 

55. Bragado R, Lauzurica P, López D, López de Castro JA. 1990. T cell receptor V 
beta gene usage in a human alloreactive response. Shared structural features 
among HLA-B27-specific T cell clones. Journal of Experimental Medicine 
171:1189–1204. doi:10.1084/jem.171.4.1189 

56. Brennecke P, Reyes A, Pinto S, Rattay K, Nguyen M, Küchler R, Huber W, 
Kyewski B, Steinmetz LM. 2015. Single-cell transcriptome analysis reveals 
coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. 
Nat Immunol 16:933–941. doi:10.1038/ni.3246 

57. Brinkmann V, Geiger T, Alkan S, Heusser CH. 1993. Interferon alpha increases 
the frequency of interferon gamma-producing human CD4+ T cells. Journal of 
Experimental Medicine 178:1655–1663. doi:10.1084/jem.178.5.1655 

58. Britanova OV, Putintseva EV, Shugay M, Merzlyak EM, Turchaninova MA, 
Staroverov DB, Bolotin DA, Lukyanov S, Bogdanova EA, Mamedov IZ, 
Lebedev YB, Chudakov DM. 2014. Age-Related Decrease in TCR Repertoire 
Diversity Measured with Deep and Normalized Sequence Profiling. The Journal 
of Immunology 192:2689–2698. doi:10.4049/jimmunol.1302064 

59. Brown SD, Raeburn LA, Holt RA. 2015. Profiling tissue-resident T cell 
repertoires by RNA sequencing. Genome Med 7:125. doi:10.1186/s13073-015-
0248-x 

60. Bulluck H, Go YY, Crimi G, Ludman AJ, Rosmini S, Abdel-Gadir A, Bhuva AN, 
Treibel TA, Fontana M, Pica S, Raineri C, Sirker A, Herrey AS, Manisty C, 
Groves A, Moon JC, Hausenloy DJ. 2017a. Defining left ventricular remodeling 
following acute ST-segment elevation myocardial infarction using cardiovascular 
magnetic resonance. Journal of Cardiovascular Magnetic Resonance 19:26. 
doi:10.1186/s12968-017-0343-9 

61. Bulluck H, Go YY, Crimi G, Ludman AJ, Rosmini S, Abdel-Gadir A, Bhuva AN, 
Treibel TA, Fontana M, Pica S, Raineri C, Sirker A, Herrey AS, Manisty C, 
Groves A, Moon JC, Hausenloy DJ. 2017b. Defining left ventricular remodeling 
following acute ST-segment elevation myocardial infarction using cardiovascular 



 

 

194 

magnetic resonance. J Cardiovasc Magn Reson 19:26. doi:10.1186/s12968-017-
0343-9 

62. Burnet M. 1959. Auto-immune disease. I. Modern immunological concepts. Br 
Med J 2:645–650. doi:10.1136/bmj.2.5153.645 

63. Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, 
Tan TG, Wagers AJ, Benoist C, Mathis D. 2013. A Special Population of 
Regulatory T Cells Potentiates Muscle Repair. Cell 155:1282–1295. 
doi:10.1016/j.cell.2013.10.054 

64. Cao Y, Goods BA, Raddassi K, Nepom GT, Kwok WW, Love JC, Hafler DA. 
2015. Functional inflammatory profiles distinguish myelin-reactive T cells from 
patients with multiple sclerosis. Sci Transl Med 7:287ra74. 
doi:10.1126/scitranslmed.aaa8038 

65. Carico Z, K RC, B Z, Y Z, Ms K. 2017. Tcrd Rearrangement Redirects a 
Processive Tcra Recombination Program to Expand the Tcra Repertoire. Cell 
reports 19. doi:10.1016/j.celrep.2017.05.045 

66. Carlson CM, Endrizzi BT, Wu J, Ding X, Weinreich MA, Walsh ER, Wani MA, 
Lingrel JB, Hogquist KA, Jameson SC. 2006. Kruppel-like factor 2 regulates 
thymocyte and T-cell migration. Nature 442:299–302. doi:10.1038/nature04882 

67. Carlson CS, Emerson RO, Sherwood AM, Desmarais C, Chung M-W, Parsons 
JM, Steen MS, LaMadrid-Herrmannsfeldt MA, Williamson DW, Livingston RJ, 
Wu D, Wood BL, Rieder MJ, Robins H. 2013. Using synthetic templates to 
design an unbiased multiplex PCR assay. Nat Commun 4:2680. 
doi:10.1038/ncomms3680 

68. Carter JA, Preall JB, Grigaityte K, Goldfless SJ, Jeffery E, Briggs AW, Vigneault 
F, Atwal GS. 2019. Single T Cell Sequencing Demonstrates the Functional Role 
of αβ TCR Pairing in Cell Lineage and Antigen Specificity. Frontiers in 
Immunology 10. 

69. Casrouge A, Beaudoing E, Dalle S, Pannetier C, Kanellopoulos J, Kourilsky P. 
2000. Size Estimate of the αβ TCR Repertoire of Naive Mouse Splenocytes. The 
Journal of Immunology 164:5782–5787. doi:10.4049/jimmunol.164.11.5782 

70. Chaara W, Gonzalez-Tort A, Florez L-M, Klatzmann D, Mariotti-Ferrandiz E, 
Six A. 2018. RepSeq Data Representativeness and Robustness Assessment by 
Shannon Entropy. Front Immunol 9:1038. doi:10.3389/fimmu.2018.01038 

71. Chai V, Vassilakos A, Lee Y, Wright JA, Young AH. 2005. Optimization of the 
PAXgene blood RNA extraction system for gene expression analysis of clinical 
samples. J Clin Lab Anal 19:182–188. doi:10.1002/jcla.20075 

72. Chang M, Jin W, Chang J-H, Xiao Y, Brittain GC, Yu J, Zhou X, Wang Y-H, 
Cheng X, Li P, Rabinovich BA, Hwu P, Sun S-C. 2011. The ubiquitin ligase Peli1 



 

 

195 

negatively regulates T cell activation and prevents autoimmunity. Nat Immunol 
12:1002–1009. doi:10.1038/ni.2090 

73. Chari T, Pachter L. 2023. The specious art of single-cell genomics. PLOS 
Computational Biology 19:e1011288. doi:10.1371/journal.pcbi.1011288 

74. Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich J-M, Jack 
RS, Wunderlich FT, Brüning JC, Müller W, Rudensky AY. 2011. Interleukin-10 
signaling in regulatory T cells is required for suppression of Th17 cell-mediated 
inflammation. Immunity 34:566–578. doi:10.1016/j.immuni.2011.03.018 

75. Chen S-Y, Liu C-J, Zhang Q, Guo A-Y. 2020. An ultra-sensitive T-cell receptor 
detection method for TCR-Seq and RNA-Seq data. Bioinformatics 36:4255–
4262. doi:10.1093/bioinformatics/btaa432 

76. Chen W, Jin W, Hardegen N, Lei K-J, Li L, Marinos N, McGrady G, Wahl SM. 
2003. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ 
regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp 
Med 198:1875–1886. doi:10.1084/jem.20030152 

77. Cheng X, Liao Y-H, Ge H, Li B, Zhang Jinying, Yuan J, Wang M, Liu Y, Guo 
Z, Chen J, Zhang Jin, Zhang L. 2005. Th1/Th2 Functional Imbalance After Acute 
Myocardial Infarction: Coronary Arterial Inflammation or Myocardial 
Inflammation. J Clin Immunol 25:246–253. doi:10.1007/s10875-005-4088-0 

78. Chicz R, Rg U, Ws L, Jc G, Lj S, Da V, Jl S. 1992. Predominant naturally 
processed peptides bound to HLA-DR1 are derived from MHC-related molecules 
and are heterogeneous in size. Nature 358. doi:10.1038/358764a0 

79. Chiou S-H, Tseng D, Reuben A, Mallajosyula V, Molina IS, Conley S, Wilhelmy 
J, McSween AM, Yang X, Nishimiya D, Sinha R, Nabet BY, Wang C, Shrager 
JB, Berry MF, Backhus L, Lui NS, Wakelee HA, Neal JW, Padda SK, Berry GJ, 
Delaidelli A, Sorensen PH, Sotillo E, Tran P, Benson JA, Richards R, Labanieh 
L, Klysz DD, Louis DM, Feldman SA, Diehn M, Weissman IL, Zhang J, Wistuba 
II, Futreal PA, Heymach JV, Garcia KC, Mackall CL, Davis MM. 2021. Global 
analysis of shared T cell specificities in human non-small cell lung cancer enables 
HLA inference and antigen discovery. Immunity 54:586-602.e8. 
doi:10.1016/j.immuni.2021.02.014 

80. Chong AJ, Shimamoto A, Hampton CR, Takayama H, Spring DJ, Rothnie CL, 
Yada M, Pohlman TH, Verrier ED. 2004. Toll-like receptor 4 mediates 
ischemia/reperfusion injury of the heart. The Journal of Thoracic and 
Cardiovascular Surgery 128:170–179. doi:10.1016/j.jtcvs.2003.11.036 

81. Choo EH, Lee J-H, Park E-H, Park HE, Jung N-C, Kim T-H, Koh Y-S, Kim E, 
Seung K-B, Park C, Hong K-S, Kang K, Song J-Y, Seo HG, Lim D-S, Chang K. 
2017. Infarcted Myocardium-Primed Dendritic Cells Improve Remodeling and 
Cardiac Function After Myocardial Infarction by Modulating the Regulatory T 



 

 

196 

Cell and Macrophage Polarization. Circulation 135:1444–1457. 
doi:10.1161/CIRCULATIONAHA.116.023106 

82. Chothia C, Boswell DR, Lesk AM. 1988. The outline structure of the T-cell alpha 
beta receptor. The EMBO Journal 7:3745–3755. doi:10.1002/j.1460-
2075.1988.tb03258.x 

83. Chowdhury RR, D’Addabbo J, Huang X, Veizades S, Sasagawa K, Louis DM, 
Cheng P, Sokol J, Jensen A, Tso A, Shankar V, Wendel BS, Bakerman I, Liang 
G, Koyano T, Fong R, Nau AN, Ahmad H, Gopakumar J, Wirka R, Lee AS, Boyd 
J, Woo YJ, Quertermous T, Gulati GS, Jaiswal S, Chien Y-H, Chan CKF, Davis 
MM, Nguyen PK. 2022. Human Coronary Plaque T Cells Are Clonal and Cross-
React to Virus and Self. Circ Res 130:1510–1530. 
doi:10.1161/CIRCRESAHA.121.320090 

84. Chronister WD, Crinklaw A, Mahajan S, Vita R, Koşaloğlu-Yalçın Z, Yan Z, 
Greenbaum JA, Jessen LE, Nielsen M, Christley S, Cowell LG, Sette A, Peters 
B. 2021. TCRMatch: Predicting T-Cell Receptor Specificity Based on Sequence 
Similarity to Previously Characterized Receptors. Front Immunol 12. 
doi:10.3389/fimmu.2021.640725 

85. Chung J-W, Karau MJ, Greenwood-Quaintance KE, Ballard AD, Tilahun A, 
Khaleghi SR, David CS, Patel R, Rajagopalan G. 2014. Superantigen profiling of 
Staphylococcus aureus infective endocarditis isolates. Diagnostic Microbiology 
and Infectious Disease 79:119–124. doi:10.1016/j.diagmicrobio.2014.03.009 

86. Clark DR, de Boer RJ, Wolthers KC, Miedema F. 1999. T Cell Dynamics in HIV-
1 Infection In: Dixon FJ, editor. Advances in Immunology. Academic Press. pp. 
301–327. doi:10.1016/S0065-2776(08)60789-0 

87. Coatnoan N, Berneman A, Chamond N, Minoprio P. 2009. Proline racemases: 
insights into Trypanosoma cruzi peptides containing D-proline. Memorias do 
Instituto Oswaldo Cruz 104 Suppl 1. doi:10.1590/s0074-02762009000900039 

88. Cochet M, Pannetier C, Regnault A, Darche S, Leclerc C, Kourilsky P. 1992. 
Molecular detection and in vivo analysis of the specific T cell response to a 
protein antigen. European Journal of Immunology 22:2639–2647. 
doi:10.1002/eji.1830221025 

89. Collette A, Bagot S, Ferrandiz ME, Cazenave P-A, Six A, Pied S. 2004. A 
Profound Alteration of Blood TCRB Repertoire Allows Prediction of Cerebral 
Malaria1. The Journal of Immunology 173:4568–4575. 
doi:10.4049/jimmunol.173.7.4568 

90. Collette A, Six A. 2002. ISEApeaks: an Excel platform for GeneScan and 
Immunoscope data retrieval, management and analysis. Bioinformatics (Oxford, 
England) 18. doi:10.1093/bioinformatics/18.2.329 



 

 

197 

91. Collins AM, Ohlin M, Corcoran M, Heather JM, Ralph D, Law M, Martínez-
Barnetche J, Ye J, Richardson E, Gibson WS, Rodriguez OL, Peres A, Yaari G, 
Watson CT, Lees WD. 2023. AIRR-C Human IG Reference Sets: curated sets of 
immunoglobulin heavy and light chain germline genes. 
doi:10.1101/2023.09.01.555348 

92. Coutinho A. 2005. The Le Douarin phenomenon: a shift in the paradigm of 
developmental self-tolerance. 

93. Cunha-Neto E, Coelho V, Guilherme L, Fiorelli A, Stolf N, Kalil J. 1996. 
Autoimmunity in Chagas’ disease. Identification of cardiac myosin-B13 
Trypanosoma cruzi protein crossreactive T cell clones in heart lesions of a 
chronic Chagas’ cardiomyopathy patient. J Clin Invest 98:1709–1712. 
doi:10.1172/JCI118969 

94. Curotto de Lafaille MA, Kutchukhidze N, Shen S, Ding Y, Yee H, Lafaille JJ. 
2008. Adaptive Foxp3+ regulatory T cell-dependent and -independent control of 
allergic inflammation. Immunity 29:114–126. doi:10.1016/j.immuni.2008.05.010 

95. Curtis N, Zheng R, Lamb JR, Levin M. 1995. Evidence for a superantigen 
mediated process in Kawasaki disease. Arch Dis Child 72:308–311. 

96. Dahal-Koirala S, Balaban G, Neumann RS, Scheffer L, Lundin KEA, Greiff V, 
Sollid LM, Qiao S-W, Sandve GK. 2022. TCRpower: quantifying the detection 
power of T-cell receptor sequencing with a novel computational pipeline 
calibrated by spike-in sequences. Briefings in Bioinformatics 23:bbab566. 
doi:10.1093/bib/bbab566 

97. Darby CA, Stubbington MJT, Marks PJ, Martínez Barrio Á, Fiddes IT. 2020. 
scHLAcount: allele-specific HLA expression from single-cell gene expression 
data. Bioinformatics 36:3905–3906. doi:10.1093/bioinformatics/btaa264 

98. Davis MM, Bjorkman PJ. 1988. T-cell antigen receptor genes and T-cell 
recognition. Nature 334:395–402. doi:10.1038/334395a0 

99. Davydov AN, Bolotin DA, Poslavsky SV, Chudakov DM. 2023. Comment on 
‘rigorous benchmarking of T cell receptor repertoire profiling methods for cancer 
RNA sequencing.’ Briefings in Bioinformatics 24:bbad354. 
doi:10.1093/bib/bbad354 

100. De Boer RJ, Perelson AS. 2013. Quantifying T lymphocyte turnover. 
Journal of Theoretical Biology 327:45–87. doi:10.1016/j.jtbi.2012.12.025 

101. De Neuter N, Bittremieux W, Beirnaert C, Cuypers B, Mrzic A, Moris P, 
Suls A, Van Tendeloo V, Ogunjimi B, Laukens K, Meysman P. 2018. On the 
feasibility of mining CD8+ T cell receptor patterns underlying immunogenic 
peptide recognition. Immunogenetics 70:159–168. doi:10.1007/s00251-017-
1023-5 



 

 

198 

102. Deering RP, Blumenberg L, Li L, Dhanik A, Jeong S, Pourpe S, Song H, 
Boucher L, Ragunathan S, Li Y, Zhong M, Kuhnert J, Adler C, Hawkins P, Gupta 
NT, Moore M, Ni M, Hansen J, Wei Y, Thurston G. 2023. Rapid TCR:Epitope 
Ranker (RAPTER): a primary human T cell reactivity screening assay pairing 
epitope and TCR at single cell resolution. Sci Rep 13:8452. doi:10.1038/s41598-
023-35710-7 

103. DeKosky BJ, Kojima T, Rodin A, Charab W, Ippolito GC, Ellington AD, 
Georgiou G. 2015. In-depth determination and analysis of the human paired 
heavy- and light-chain antibody repertoire. Nat Med 21:86–91. 
doi:10.1038/nm.3743 

104. Delgobo M, Weiß E, Ashour D, Richter L, Popiolkowski L, Arampatzi P, 
Stangl V, Arias-Loza P, Mariotti-Ferrandiz E, Rainer PP, Saliba A-E, Ludewig 
B, Hofmann U, Frantz S, Campos Ramos G. 2023. Myocardial Milieu Favors 
Local Differentiation of Regulatory T Cells. Circulation Research 132:565–582. 
doi:10.1161/CIRCRESAHA.122.322183 

105. Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Müller M, Kreymborg 
K, Altenberend F, Brandenburg J, Kalbacher H, Brock R, Driessen C, 
Rammensee H-G, Stevanovic S. 2005. Autophagy promotes MHC class II 
presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U 
S A 102:7922–7927. doi:10.1073/pnas.0501190102 

106. Dens C, Laukens K, Bittremieux W, Meysman P. 2023. The pitfalls of 
negative data bias for the T-cell epitope specificity challenge. Nat Mach Intell 1–
3. doi:10.1038/s42256-023-00727-0 

107. Depuydt MAC, Schaftenaar FH, Prange KHM, Boltjes A, Hemme E, 
Delfos L, de Mol J, de Jong MJM, Bernabé Kleijn MNA, Peeters JAHM, 
Goncalves L, Wezel A, Smeets HJ, de Borst GJ, Foks AC, Pasterkamp G, de 
Winther MPJ, Kuiper J, Bot I, Slütter B. 2023. Single-cell T cell receptor 
sequencing of paired human atherosclerotic plaques and blood reveals 
autoimmune-like features of expanded effector T cells. Nat Cardiovasc Res 
2:112–125. doi:10.1038/s44161-022-00208-4 

108. Desponds J, Mora T, Walczak AM. 2016. Fluctuating fitness shapes the 
clone-size distribution of immune repertoires. Proceedings of the National 
Academy of Sciences 113:274–279. doi:10.1073/pnas.1512977112 

109. Deubner N, Berliner D, Schlipp A, Gelbrich G, Caforio ALP, Felix SB, 
Fu M, Katus H, Angermann CE, Lohse MJ, Ertl G, Störk S, Jahns R, Etiology, 
Titre-Course, and Survival-Study Group. 2010a. Cardiac beta1-adrenoceptor 
autoantibodies in human heart disease: rationale and design of the Etiology, Titre-
Course, and Survival (ETiCS) Study. Eur J Heart Fail 12:753–762. 
doi:10.1093/eurjhf/hfq072 



 

 

199 

110. Deubner N, Berliner D, Schlipp A, Gelbrich G, Caforio ALP, Felix SB, 
Fu M, Katus H, Angermann CE, Lohse MJ, Ertl G, Störk S, Jahns R, Group  on 
behalf of the Et-S. 2010b. Cardiac β1-adrenoceptor autoantibodies in human heart 
disease: rationale and design of the Etiology, Titre-Course, and Survival (ETiCS) 
Study. European Journal of Heart Failure 12:753–762. 
doi:10.1093/eurjhf/hfq072 

111. Devaux B, Scholz D, Hirche A, Klövekorn WP, Schaper J. 1997. 
Upregulation of cell adhesion molecules and the presence of low grade 
inflammation in human chronic heart failure. Eur Heart J 18:470–479. 
doi:10.1093/oxfordjournals.eurheartj.a015268 

112. Dhalla F, Baran-Gale J, Maio S, Chappell L, Holländer GA, Ponting CP. 
2020. Biologically indeterminate yet ordered promiscuous gene expression in 
single medullary thymic epithelial cells. The EMBO Journal 39:e101828. 
doi:10.15252/embj.2019101828 

113. Dhanda SK, Mahajan S, Paul S, Yan Z, Kim H, Jespersen MC, Jurtz V, 
Andreatta M, Greenbaum JA, Marcatili P, Sette A, Nielsen M, Peters B. 2019. 
IEDB-AR: immune epitope database—analysis resource in 2019. Nucleic Acids 
Research 47:W502–W506. doi:10.1093/nar/gkz452 

114. Diamantopoulos EJ, Andreadis EA, Vassilopoulos CV, Vlachonikolis IG, 
Tarassi KE, Chatzis NA, Tsourous GI, Papasteriades CA. 2003. HLA phenotypes 
as promoters of cardiovascular remodelling in subjects with arterial hypertension. 
J Hum Hypertens 17:63–68. doi:10.1038/sj.jhh.1001502 

115. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, 
Chaisson M, Gingeras TR. 2013. STAR: ultrafast universal RNA-seq aligner. 
Bioinformatics 29:15. doi:10.1093/bioinformatics/bts635 

116. Donermeyer DL, Beisel KW, Allen PM, Smith SC. 1995. Myocarditis-
inducing epitope of myosin binds constitutively and stably to I-Ak on antigen-
presenting cells in the heart. Journal of Experimental Medicine 182:1291–1300. 
doi:10.1084/jem.182.5.1291 

117. Dong D, Zheng L, Lin J, Zhang B, Zhu Y, Li N, Xie S, Wang Y, Gao N, 
Huang Z. 2019. Structural basis of assembly of the human T cell receptor–CD3 
complex. Nature 573:546–552. doi:10.1038/s41586-019-1537-0 

118. Dupic T, Marcou Q, Walczak AM, Mora T. 2019. Genesis of the αβ T-
cell receptor. PLoS Computational Biology 15. 
doi:10.1371/journal.pcbi.1006874 

119. Early P, Huang H, Davis M, Calame K, Hood L. 1980. An 
immunoglobulin heavy chain variable region gene is generated from three 
segments of DNA: VH, D and JH. Cell 19:981–992. doi:10.1016/0092-
8674(80)90089-6 



 

 

200 

120. Egerton M, Scollay R, Shortman K. 1990. Kinetics of mature T-cell 
development in the thymus. Proc Natl Acad Sci U S A 87:2579–2582. 
doi:10.1073/pnas.87.7.2579 

121. Ehrlich P, Hübener W. 1894. Ueber die Vererbung der Immunität bei 
Tetanus. Zeitschr f Hygiene 18:51–64. doi:10.1007/BF02216834 

122. Elhage R, Gourdy P, Brouchet L, Jawien J, Fouque M-J, Fiévet C, Huc X, 
Barreira Y, Couloumiers JC, Arnal J-F, Bayard F. 2004. Deleting TCR alpha 
beta+ or CD4+ T lymphocytes leads to opposite effects on site-specific 
atherosclerosis in female apolipoprotein E-deficient mice. Am J Pathol 
165:2013–2018. doi:10.1016/s0002-9440(10)63252-x 

123. Elhanati Y, Murugan A, Callan CG, Mora T, Walczak AM. 2014. 
Quantifying selection in immune receptor repertoires. Proceedings of the 
National Academy of Sciences 111:9875–9880. doi:10.1073/pnas.1409572111 

124. Ellul P, Rosenzwajg M, Peyre H, Fourcade G, Mariotti-Ferrandiz E, 
Trebossen V, Klatzmann D, Delorme R. 2021. Regulatory T lymphocytes/Th17 
lymphocytes imbalance in autism spectrum disorders: evidence from a meta-
analysis. Molecular Autism 12:1–7. doi:10.1186/s13229-021-00472-4 

125. Eltahla AA, Rizzetto S, Pirozyan MR, Betz-Stablein BD, Venturi V, 
Kedzierska K, Lloyd AR, Bull RA, Luciani F. 2016. Linking the T cell receptor 
to the single cell transcriptome in antigen-specific human T cells. Immunol Cell 
Biol 94:604–611. doi:10.1038/icb.2016.16 

126. ElTanbouly MA, Noelle RJ. 2021. Rethinking peripheral T cell tolerance: 
checkpoints across a T cell’s journey. Nat Rev Immunol 21:257–267. 
doi:10.1038/s41577-020-00454-2 

127. Emerson R, Sherwood A, Desmarais C, Malhotra S, Phippard D, Robins 
H. 2013. Estimating the ratio of CD4+ to CD8+ T cells using high-throughput 
sequence data. J Immunol Methods 391:14–21. doi:10.1016/j.jim.2013.02.002 

128. Emerson RO, DeWitt WS, Vignali M, Gravley J, Hu JK, Osborne EJ, 
Desmarais C, Klinger M, Carlson CS, Hansen JA, Rieder M, Robins HS. 2017. 
Immunosequencing identifies signatures of cytomegalovirus exposure history 
and HLA-mediated effects on the T cell repertoire. Nat Genet 49:659–665. 
doi:10.1038/ng.3822 

129. Emerson RO, Sherwood AM, Rieder MJ, Guenthoer J, Williamson DW, 
Carlson CS, Drescher CW, Tewari M, Bielas JH, Robins HS. 2013. High-
throughput sequencing of T-cell receptors reveals a homogeneous repertoire of 
tumour-infiltrating lymphocytes in ovarian cancer. The Journal of Pathology 
231:433–440. doi:10.1002/path.4260 



 

 

201 

130. Epelman S, Liu PP, Mann DL. 2015. Role of innate and adaptive immune 
mechanisms in cardiac injury and repair. Nature Reviews Immunology 15:117–
129. doi:10.1038/nri3800 

131. Espinoza CR, Feeney AJ. 2007. Chromatin accessibility and epigenetic 
modifications differ between frequently and infrequently rearranging VH genes. 
Molecular Immunology 44:2675–2685. doi:10.1016/j.molimm.2006.12.002 

132. Essery G, Feldmann M, Lamb JR. 1988. Interleukin-2 can prevent and 
reverse antigen-induced unresponsiveness in cloned human T lymphocytes. 
Immunology 64:413–417. 

133. Fang H, Yamaguchi R, Liu X, Daigo Y, Yew PY, Tanikawa C, Matsuda 
K, Imoto S, Miyano S, Nakamura Y. 2014. Quantitative T cell repertoire analysis 
by deep cDNA sequencing of T cell receptor α and β chains using next-generation 
sequencing (NGS). OncoImmunology 3:e968467. 
doi:10.4161/21624011.2014.968467 

134. Fanti S, Stephenson E, Rocha-Vieira E, Protonotarios A, Kanoni S, Shahaj 
E, Longhi MP, Vyas VS, Dyer C, Pontarini E, Asimaki A, Bueno-Beti C, De 
Gaspari M, Rizzo S, Basso C, Bombardieri M, Coe D, Wang G, Harding D, 
Gallagher I, Solito E, Elliott P, Heymans S, Sikking M, Savvatis K, Mohiddin 
SA, Marelli-Berg FM. 2022. Circulating c-Met–Expressing Memory T Cells 
Define Cardiac Autoimmunity. Circulation 146:1930–1945. 
doi:10.1161/CIRCULATIONAHA.121.055610 

135. Farber DL, Netea MG, Radbruch A, Rajewsky K, Zinkernagel RM. 2016. 
Immunological memory: lessons from the past and a look to the future. Nat Rev 
Immunol 16:124–128. doi:10.1038/nri.2016.13 

136. Feng D, Bond CJ, Ely LK, Maynard J, Garcia KC. 2007. Structural 
evidence for a germline-encoded T cell receptor–major histocompatibility 
complex interaction “codon.” Nat Immunol 8:975–983. doi:10.1038/ni1502 

137. Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir ED, 
Amadori L, Khan NS, Wong CK, Shamailova R, Hill CA, Wang Z, Remark R, 
Li JR, Pina C, Faries C, Awad AJ, Moss N, Bjorkegren JLM, Kim-Schulze S, 
Gnjatic S, Ma’ayan A, Mocco J, Faries P, Merad M, Giannarelli C. 2019. Single-
cell immune landscape of human atherosclerotic plaques. Nat Med 25:1576–
1588. doi:10.1038/s41591-019-0590-4 

138. Feuerer M, Hill JA, Kretschmer K, von Boehmer H, Mathis D, Benoist C. 
2010. Genomic definition of multiple ex vivo regulatory T cell subphenotypes. 
Proc Natl Acad Sci U S A 107:5919–5924. doi:10.1073/pnas.1002006107 

139. Fischer DS, Wu Y, Schubert B, Theis FJ. 2020. Predicting antigen 
specificity of single T cells based on TCR CDR3 regions. Molecular Systems 
Biology 16:e9416. doi:10.15252/msb.20199416 



 

 

202 

140. Fontenot JD, Gavin MA, Rudensky AY. 2003. Foxp3 programs the 
development and function of CD4+CD25+ regulatory T cells. Nat Immunol 
4:330–336. doi:10.1038/ni904 

141. Forte E, Perkins B, Sintou A, Kalkat HS, Papanikolaou A, Jenkins C, 
Alsubaie M, Chowdhury RA, Duffy TM, Skelly DA, Branca J, Bellahcene M, 
Schneider MD, Harding SE, Furtado MB, Ng FS, Hasham MG, Rosenthal N, 
Sattler S. 2021. Cross-Priming Dendritic Cells Exacerbate Immunopathology 
After Ischemic Tissue Damage in the Heart. Circulation 143:821–836. 
doi:10.1161/CIRCULATIONAHA.120.044581 

142. Frank SJ, Niklinska BB, Orloff DG, Merćep M, Ashwell JD, Klausner 
RD. 1990. Structural Mutations of the T Cell Receptor ζ Chain and Its Role in T 
Cell Activation. Science 249:174–177. doi:10.1126/science.2371564 

143. Freitas AA, Rocha B. 2000. Population Biology of Lymphocytes: The 
Flight for Survival. Annu Rev Immunol 18:83–111. 
doi:10.1146/annurev.immunol.18.1.83 

144. Frohman MA, Dush MK, Martin GR. 1988. Rapid production of full-
length cDNAs from rare transcripts: amplification using a single gene-specific 
oligonucleotide primer. Proc Natl Acad Sci U S A 85:8998–9002. 
doi:10.1073/pnas.85.23.8998 

145. Frostegård J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson 
U, Hansson GK. 1999. Cytokine expression in advanced human atherosclerotic 
plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating 
cytokines. Atherosclerosis 145:33–43. doi:10.1016/s0021-9150(99)00011-8 

146. Fu X, Khalil H, Kanisicak O, Boyer JG, Vagnozzi RJ, Maliken BD, 
Sargent MA, Prasad V, Valiente-Alandi I, Blaxall BC, Molkentin JD. 2018. 
Specialized fibroblast differentiated states underlie scar formation in the infarcted 
mouse heart. J Clin Invest 128:2127–2143. doi:10.1172/JCI98215 

147. Fukunaga T, Soejima H, Irie A, Sugamura K, Oe Y, Tanaka T, Kojima S, 
Sakamoto T, Yoshimura M, Nishimura Y, Ogawa H. 2007. Expression of 
interferon-g and interleukin-4 production in CD4+ T cells in patients with chronic 
heart failure. Heart Vessels 22:178–183. doi:10.1007/s00380-006-0955-8 

148. Gammon G, Sercarz E. 1989. How some T cells escape tolerance 
induction. Nature 342. doi:10.1038/342183a0 

149. Gangi-Peterson L, Sorscher DH, Reynolds JW, Kepler TB, Mitchell BS. 
1999. Nucleotide pool imbalance and adenosine deaminase deficiency induce 
alterations of N-region insertions during V(D)J recombination. J Clin Invest 
103:833–841. doi:10.1172/JCI4320 



 

 

203 

150. Gao Yicheng, Gao Yuli, Dong K, Wu S, Liu Q. 2023a. Reply to: The 
pitfalls of negative data bias for the T-cell epitope specificity challenge. Nat 
Mach Intell 1–3. doi:10.1038/s42256-023-00725-2 

151. Gao Yicheng, Gao Yuli, Fan Y, Zhu C, Wei Z, Zhou C, Chuai G, Chen 
Q, Zhang H, Liu Q. 2023b. Pan-Peptide Meta Learning for T-cell receptor–
antigen binding recognition. Nat Mach Intell 5:236–249. doi:10.1038/s42256-
023-00619-3 

152. Garcia K, Adams JJ, Feng D, Ely LK. 2009. The molecular basis of TCR 
germline bias for MHC is surprisingly simple. Nat Immunol 10:143–147. 
doi:10.1038/ni.f.219 

153. Garcia KC, Degano M, Pease LR, Huang M, Peterson PA, Teyton L, 
Wilson IA. 1998. Structural Basis of Plasticity in T Cell Receptor Recognition of 
a Self Peptide-MHC Antigen. Science 279:1166–1172. 
doi:10.1126/science.279.5354.1166 

154. Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR, Peterson 
PA, Teyton L, Wilson IA. 1996. An αβ T Cell Receptor Structure at 2.5 Å and Its 
Orientation in the TCR-MHC Complex. Science 274:209–219. 
doi:10.1126/science.274.5285.209 

155. García-Ropero Á, Santos-Gallego CG, Badimon JJ. 2019. The anti-
inflammatory effects of SGLT inhibitors. Aging (Albany NY) 11:5866–5867. 
doi:10.18632/aging.102175 

156. Gauss G, Lieber MR. 1996. Mechanistic Constraints on Diversity in 
Human V(D)J Recombination. Molecular and Cellular Biology 16:258–269. 
doi:10.1128/MCB.16.1.258 

157. Genolet R, Bobisse S, Chiffelle J, Arnaud M, Petremand R, Queiroz L, 
Michel A, Reichenbach P, Cesbron J, Auger A, Baumgaertner P, Guillaume P, 
Schmidt J, Irving M, Kandalaft LE, Speiser DE, Coukos G, Harari A. 2023. TCR 
sequencing and cloning methods for repertoire analysis and isolation of tumor-
reactive TCRs. Cell Rep Methods 3:100459. doi:10.1016/j.crmeth.2023.100459 

158. Gibbs RA. 2020. The Human Genome Project changed everything. Nat 
Rev Genet 21:575–576. doi:10.1038/s41576-020-0275-3 

159. Gielis S, Moris P, Bittremieux W, De Neuter N, Ogunjimi B, Laukens K, 
Meysman P. 2019. Detection of Enriched T Cell Epitope Specificity in Full T 
Cell Receptor Sequence Repertoires. Frontiers in Immunology 10. 

160. Gihawi A, Cooper CS, Brewer DS. 2023. Caution Regarding the 
Specificities of Pan-Cancer Microbial Structure. doi:10.1101/2023.01.16.523562 



 

 

204 

161. Gillis S, Baker PE, Ruscetti FW, Smith KA. 1978. Long-term culture of 
human antigen-specific cytotoxic T-cell lines. Journal of Experimental Medicine 
148:1093–1098. doi:10.1084/jem.148.4.1093 

162. Gittelman RM, Lavezzo E, Snyder TM, Zahid HJ, Carty CL, Elyanow R, 
Dalai S, Kirsch I, Baldo L, Manuto L, Franchin E, Vecchio CD, Pacenti M, 
Boldrin C, Cattai M, Saluzzo F, Padoan A, Plebani M, Simeoni F, Bordini J, Lorè 
NI, Lazarević D, Cirillo DM, Ghia P, Toppo S, Carlson JM, Robins HS, Crisanti 
A, Tonon G. 2022. Longitudinal analysis of T cell receptor repertoires reveals 
shared patterns of antigen-specific response to SARS-CoV-2 infection. JCI 
Insight 7. doi:10.1172/jci.insight.151849 

163. Glanville J, Huang H, Nau A, Hatton O, Wagar LE, Rubelt F, Ji X, Han 
A, Krams SM, Pettus C, Haas N, Arlehamn CSL, Sette A, Boyd SD, Scriba TJ, 
Martinez OM, Davis MM. 2017. Identifying specificity groups in the T cell 
receptor repertoire. Nature 547:94–98. doi:10.1038/nature22976 

164. Glatman Zaretsky A, Taylor JJ, King IL, Marshall FA, Mohrs M, Pearce 
EJ. 2009. T follicular helper cells differentiate from Th2 cells in response to 
helminth antigens. J Exp Med 206:991–999. doi:10.1084/jem.20090303 

165. Gocayne J, Robinson D, FitzGerald M, Chung F, Kerlavage A, Ku L, J L, 
Cd W, Cm F, Jc V. 1987. Primary structure of rat cardiac beta-adrenergic and 
muscarinic cholinergic receptors obtained by automated DNA sequence analysis: 
further evidence for a multigene family. Proceedings of the National Academy of 
Sciences of the United States of America 84. doi:10.1073/pnas.84.23.8296 

166. Goldman AS, Palkowetz KH, Rudloff HE, Brooks EG, Schmalstieg FC. 
1992. Repertoire of Vα and Vβ regions of T cell antigen receptors on CD4+ and 
CD8+ peripheral blood T cells in a novel X-linked combined immunodeficiency 
disease. European Journal of Immunology 22:1103–1106. 
doi:10.1002/eji.1830220435 

167. Gorochov G, Neumann AU, Kereveur A, Parizot C, Li T, Katlama C, 
Karmochkine M, Raguin G, Autran B, Debré P. 1998. Perturbation of CD4+ and 
CD8+ T-cell repertoires during progression to AIDS and regulation of the CD4+ 
repertoire during antiviral therapy. Nat Med 4:215–221. doi:10.1038/nm0298-
215 

168. Gould E, Fraser HS, Parker TH, Nakagawa S, Griffith SC, Vesk PA, 
Fidler F, Hamilton DG, Abbey-Lee RN, Abbott JK, Aguirre LA, Alcaraz C, Aloni 
I, Altschul D, Arekar K, Atkins JW, Atkinson J, Baker C, Barrett M, Bell K, Bello 
SK, Beltrán I, Berauer BJ, Bertram MG, Billman PD, Blake CK, Blake S, Bliard 
L, Bonisoli-Alquati A, Bonnet T, Bordes CNM, Bose APH, Botterill-James T, 
Boyd MA, Boyle SA, Bradfer-Lawrence T, Bradham J, Brand JA, Brengdahl MI, 
Bulla M, Bussière L, Camerlenghi E, Campbell SE, Campos LLF, Caravaggi A, 
Cardoso P, Carroll CJW, Catanach TA, Chen X, Chik HYJ, Choy ES, Christie 
AP, Chuang A, Chunco AJ, Clark BL, Contina A, Covernton GA, Cox MPC, 



 

 

205 

Cressman KA, Crouch CD, D’Amelio PB, Sousa AA de, Döbert TF, Dobler R, 
Dobson AJ, Doherty TS, Drobniak SM, Duffy AG, Duncan AB, Dunn RP, 
Dunning J, Dutta T, Eberhart-Hertel L, Elmore JA, Elsherif MM, English HM, 
Ensminger DC, Ernst UR, Ferguson SM, Fernández-Juricic E, Ferreira-Arruda 
TF-A, Fieberg J, Finch EA, Fiorenza EA, Fisher DN, Fontaine A, Forstmeier W, 
Fourcade Y, Frank GS, Freund CA, Fuentes-Lillo E, Gandy SL, Gannon DG, 
García-Cervigón AI, Garretson AC, Ge X, Geary WL, Géron C, Gilles M, Girndt 
A, Gliksman D, Goldspiel HB, Gomes DGE, Good MK, Goslee SC, Gosnell JS, 
Grames EM, Gratton P, Grebe NM, Greenler SM, Griffioen M, Griffith DM, 
Griffith FJ, Grossman JJ, Güncan A, Haesen S, Hagan JG, Hager HA, Harrison 
ND, Hasnain SS, Havird JC, Heaton A, Herrera-Chaustre ML, Howard TJ, Hsu 
B-Y, Iannarilli F, Iranzo EC, Iverson ENK, Jimoh SO, Johnson DH, Johnsson M, 
Jorna J, Jucker T, Jung M, Kačergytė I, Kaltz O, Ke A, Kelly CD, Keogan K, 
Keppeler FW, Killion AK, Kim D, Kochan DP, Korsten P, Kothari S, Kuppler J, 
Kusch JM, Lagisz M, Lalla KM, Larkin DJ, Larson CL, Lauck KS, Lauterbur 
ME, Law A, Léandri-Breton D-J, Lembrechts J, L’Herpiniere K, Lievens EJP, 
Lima DO de, Lindsay S, Luquet M, Macphie KH, Mair MM, Malm LE, 
Mammola S, Mandeville CP, Manhart M, Manrique-Garzon LM, Mäntylä E, 
Marchand P, Marshall BM, Martin CA, Martin DA, Martin JM, Martinig AR, 
McCallum ES, McCauley M, McNew SM, Meiners SJ, Merkling T, Michelangeli 
M, Moiron M, Moreira B, Mortensen J, Mos B, Muraina TO, Murphy PW, Nelli 
L, Niemelä P, Nightingale J, Nilsonne G, Nolazco S, Nooten SS, Novotny JL, 
Olin AB, Organ CL, Ostevik KL, Palacio FX, Paquet M, Parker DJ, Pascall DJ, 
Pasquarella VJ, Paterson JH, Payo-Payo A, Pedersen KM, Perez G, Perry KI, 
Pottier P, Proulx MJ, Proulx R, Pruett JL, Ramananjato V, Randimbiarison FT, 
Razafindratsima OH, Rennison DJ, Riva F, Riyahi SR, Roast MJ, Rocha FP, 
Roche DG, Román-Palacios C, Rosenberg MS, Ross J, Rowland FE, Rugemalila 
D, Russell AL, Ruuskanen S, Saccone P, Sadeh A, Salazar SM, Sales K, Salmón 
P, Sanchez-Tojar A, Santos LP, Santostefano F, Schilling HT, Schmidt M, 
Schmoll T, Schneider AC, Schrock AE, Schroeder J, Schtickzelle N, Schultz NL, 
Scott DA, Shapiro JT, Sharma NS, Shearer CL, Simón D, Sitvarin MI, Skupien 
FL, Slinn HL, Smith GP, Smith JA, Sollmann R, Whitney KS, Still SM, Stuber 
EF, Sutton GF, Swallow B, Taff CC, Takola E, Tanentzap AJ, Tarjuelo R, Telford 
RJ, Thawley CJ, Thierry H, Thomson J, Tidau S, Tompkins EM, Tortorelli CM, 
Trlica A, Turnell BR, Urban L, Vondel SV de, Wal JEM van der, Eeckhoven JV, 
Oordt F van, Vanderwel KM, Vanderwel MC, Vanderwolf KJ, Vergara-Florez 
DC, Verrelli BC, Vieira MV, Villamil N, Vitali V, Vollering J, Walker XJ, Walter 
JA, Waryszak P, Weaver RJ, Wedegärtner REM, Weller DL, Whelan S, White 
R, Wolfson DW, Wood A, Yanco SW, Yen JDL, Youngflesh C, Zilio G, Zimmer 
C, Zimmerman GM, Zitomer RA. 2023. Same data, different analysts: variation 
in effect sizes due to analytical decisions in ecology and evolutionary biology. 

169. Govaerts A. 1960. Cellular Antibodies in Kidney Homotransplantation1. 
The Journal of Immunology 85:516–522. doi:10.4049/jimmunol.85.5.516 

170. Gras S, Chen Z, Miles JJ, Liu YC, Bell MJ, Sullivan LC, Kjer-Nielsen L, 
Brennan RM, Burrows JM, Neller MA, Khanna R, Purcell AW, Brooks AG, 
McCluskey J, Rossjohn J, Burrows SR. 2010. Allelic polymorphism in the T cell 



 

 

206 

receptor and its impact on immune responses. Journal of Experimental Medicine 
207:1555–1567. doi:10.1084/jem.20100603 

171. Gras S, Saulquin X, Reiser J-B, Debeaupuis E, Echasserieau K, 
Kissenpfennig A, Legoux F, Chouquet A, Le Gorrec M, Machillot P, Neveu B, 
Thielens N, Malissen B, Bonneville M, Housset D. 2009. Structural Bases for the 
Affinity-Driven Selection of a Public TCR against a Dominant Human 
Cytomegalovirus Epitope1. The Journal of Immunology 183:430–437. 
doi:10.4049/jimmunol.0900556 

172. Gray D, Abramson J, Benoist C, Mathis D. 2007. Proliferative arrest and 
rapid turnover of thymic epithelial cells expressing Aire. J Exp Med 204:2521–
2528. doi:10.1084/jem.20070795 

173. Greiff V, Bhat P, Cook SC, Menzel U, Kang W, Reddy ST. 2015a. A 
bioinformatic framework for immune repertoire diversity profiling enables 
detection of immunological status. Genome Med 7:1–15. doi:10.1186/s13073-
015-0169-8 

174. Greiff V, Miho E, Menzel U, Reddy ST. 2015b. Bioinformatic and 
Statistical Analysis of Adaptive Immune Repertoires. Trends in Immunology 
36:738–749. doi:10.1016/j.it.2015.09.006 

175. Gross CP, Sepkowitz KA. 1998. The myth of the medical breakthrough: 
smallpox, vaccination, and Jenner reconsidered. Int J Infect Dis 3:54–60. 
doi:10.1016/s1201-9712(98)90096-0 

176. Guasch-Ferré M, Liu X, Malik VS, Sun Q, Willett WC, Manson JE, 
Rexrode KM, Li Y, Hu FB, Bhupathiraju SN. 2017. Nut Consumption and Risk 
of Cardiovascular Disease. Journal of the American College of Cardiology 
70:2519–2532. doi:10.1016/j.jacc.2017.09.035 

177. Guerau-de-Arellano M, Mathis D, Benoist C. 2008. Transcriptional 
impact of Aire varies with cell type. Proc Natl Acad Sci U S A 105:14011–14016. 
doi:10.1073/pnas.0806616105 

178. Guo L, Bi X, Li Y, Wen L, Zhang W, Jiang W, Ma J, Feng L, Zhang K, 
Shou J. 2020. Characteristics, dynamic changes, and prognostic significance of 
TCR repertoire profiling in patients with renal cell carcinoma. The Journal of 
Pathology 251:26–37. doi:10.1002/path.5396 

179. Hadaschik EN, Wei X, Leiss H, Heckmann B, Niederreiter B, Steiner G, 
Ulrich W, Enk AH, Smolen JS, Stummvoll GH. 2015. Regulatory T cell-deficient 
scurfy mice develop systemic autoimmune features resembling lupus-like 
disease. Arthritis Research & Therapy 17. doi:10.1186/s13075-015-0538-0 

180. Hafler DA, Saadeh MG, Kuchroo VK, Milford E, Steinman L. 1996. TCR 
usage in human and experimental demyelinating disease. Immunology Today 
17:152–159. doi:10.1016/0167-5699(96)80611-6 



 

 

207 

181. Hapke N, Heinrichs M, Ashour D, Vogel E, Hofmann U, Frantz S, 
Campos Ramos G. 2022. Identification of a novel cardiac epitope triggering T-
cell responses in patients with myocardial infarction. Journal of Molecular and 
Cellular Cardiology 173:25–29. doi:10.1016/j.yjmcc.2022.09.001 

182. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy 
KM, Weaver CT. 2005. Interleukin 17–producing CD4+ effector T cells develop 
via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 
6:1123–1132. doi:10.1038/ni1254 

183. Hassin D, Garber OG, Meiraz A, Schiffenbauer YS, Berke G. 2011. 
Cytotoxic T lymphocyte perforin and Fas ligand working in concert even when 
Fas ligand lytic action is still not detectable. Immunology 133:190–196. 
doi:10.1111/j.1365-2567.2011.03426.x 

184. Haugomat T (DREES/OSAM/LABSANTE). 2022. Les taux de personnes 
vaccinées et non vaccinées  contre le Covid-19  en France. 

185. Heath WR, Allison J, Hoffmann MW, Schönrich G, Hämmerling G, 
Arnold B, Miller JF. 1992. Autoimmune diabetes as a consequence of locally 
produced interleukin-2. Nature 359:547–549. doi:10.1038/359547a0 

186. Heath WR, Carbone FR, Bertolino P, Kelly J, Cose S, Miller JF. 1995. 
Expression of two T cell receptor alpha chains on the surface of normal murine 
T cells. Eur J Immunol 25:1617–1623. doi:10.1002/eji.1830250622 

187. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, 
Deswal A, Drazner MH, Dunlay SM, Evers LR, Fang JC, Fedson SE, Fonarow 
GC, Hayek SS, Hernandez AF, Khazanie P, Kittleson MM, Lee CS, Link MS, 
Milano CA, Nnacheta LC, Sandhu AT, Stevenson LW, Vardeny O, Vest AR, 
Yancy CW. 2022. 2022 AHA/ACC/HFSA Guideline for the Management of 
Heart Failure: A Report of the American College of Cardiology/American Heart 
Association Joint Committee on Clinical Practice Guidelines. Circulation 
145:e895–e1032. doi:10.1161/CIR.0000000000001063 

188. Heidt T, Courties G, Dutta P, Sager HB, Sebas M, Iwamoto Y, Sun Y, Da 
Silva N, Panizzi P, van der Laan AM, Swirski FK, Weissleder R, Nahrendorf M. 
2014. Differential Contribution of Monocytes to Heart Macrophages in Steady-
State and After Myocardial Infarction. Circulation Research 115:284–295. 
doi:10.1161/CIRCRESAHA.115.303567 

189. Hempel WM, Stanhope-Baker P, Mathieu N, Huang F, Schlissel MS, 
Ferrier P. 1998. Enhancer control of V(D)J recombination at the TCRbeta locus: 
differential effects on DNA cleavage and joining. Genes Dev 12:2305–2317. 
doi:10.1101/gad.12.15.2305 

190. Higdon LE, Schaffert S, Huang H, Montez-Rath ME, Lucia M, Jha A, 
Saligrama N, Margulies KB, Martinez OM, Davis MM, Khatri P, Maltzman JS. 
2021. Evolution of cytomegalovirus-responsive T cell clonality following solid-



 

 

208 

organ transplantation. J Immunol 207:2077–2085. 
doi:10.4049/jimmunol.2100404 

191. Hirokawa S, Chure G, Belliveau NM, Lovely GA, Anaya M, Schatz DG, 
Baltimore D, Phillips R. 2020. Sequence-dependent dynamics of synthetic and 
endogenous RSSs in V(D)J recombination. Nucleic Acids Research 48:6726–
6739. doi:10.1093/nar/gkaa418 

192. Hoffmann J, Fiser K, Weaver J, Dimmick I, Loeher M, Pircher H, Martin-
Ruiz C, Veerasamy M, Keavney B, von Zglinicki T, Spyridopoulos I. 2012. High-
Throughput 13-Parameter Immunophenotyping Identifies Shifts in the 
Circulating T-Cell Compartment Following Reperfusion in Patients with Acute 
Myocardial Infarction. PLoS ONE 7:e47155. doi:10.1371/journal.pone.0047155 

193. Hofmann U, Beyersdorf N, Weirather J, Podolskaya A, Bauersachs J, Ertl 
G, Kerkau T, Frantz S. 2012. Activation of CD4+ T lymphocytes improves 
wound healing and survival after experimental myocardial infarction in mice. 
Circulation 125:1652–1663. doi:10.1161/CIRCULATIONAHA.111.044164 

194. Hofmann U, Frantz S. 2015. Role of Lymphocytes in Myocardial Injury, 
Healing, and Remodeling After Myocardial Infarction. Circulation Research 
116:354–367. doi:10.1161/CIRCRESAHA.116.304072 

195. Holst A, Jensen G, Prescott E. 2010. Risk factors for venous 
thromboembolism: results from the Copenhagen City Heart Study. Circulation 
121. doi:10.1161/CIRCULATIONAHA.109.921460 

196. Hong C-H, Pyo H-S, Baek I-C, Kim T-G. 2022. Rapid identification of 
CMV-specific TCRs via reverse TCR cloning system based on bulk TCR 
repertoire data. Front Immunol 13:1021067. doi:10.3389/fimmu.2022.1021067 

197. Horváth R, Cerný J, Benedík J, Hökl J, Jelínková I, Benedík J. 2000. The 
possible role of human cytomegalovirus (HCMV) in the origin of atherosclerosis. 
J Clin Virol 16:17–24. doi:10.1016/s1386-6532(99)00064-5 

198. Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N. 
1998. Diabetes induced by Coxsackie virus: initiation by bystander damage and 
not molecular mimicry. Nat Med 4:781–785. doi:10.1038/nm0798-781 

199. Hou X, Chen W, Zhang X, Wang G, Chen J, Zeng P, Fu X, Zhang Q, Liu 
X, Diao H. 2020. Preselection TCR repertoire predicts CD4+ and CD8+ T-cell 
differentiation state. Immunology 161:354–363. doi:10.1111/imm.13256 

200. Howie B, Sherwood AM, Berkebile AD, Berka J, Emerson RO, 
Williamson DW, Kirsch I, Vignali M, Rieder MJ, Carlson CS, Robins HS. 2015. 
High-throughput pairing of T cell receptor α and β sequences. Sci Transl Med 7. 
doi:10.1126/scitranslmed.aac5624 



 

 

209 

201. Hsieh C-S, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. 
1993. Development of TH1 CD4+ T Cells Through IL-12 Produced by Listeria-
Induced Macrophages. Science 260:547–549. doi:10.1126/science.8097338 

202. Hu J, Zhang Y, Zhao L, Frock RL, Du Z, Meyers RM, Meng F, Schatz 
DG, Alt FW. 2015. Chromosomal Loop Domains Direct the Recombination of 
Antigen Receptor Genes. Cell 163:947–959. doi:10.1016/j.cell.2015.10.016 

203. Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM. 2020. Analyzing the 
Mycobacterium tuberculosis immune response by T-cell receptor clustering with 
GLIPH2 and genome-wide antigen screening. Nature Biotechnology 38:1194–
1202. doi:10.1038/s41587-020-0505-4 

204. Huang Y-N, Patel NA, Mehta JH, Ginjala S, Brodin P, Gray CM, Patel 
YM, Cowell LG, Burkhardt AM, Mangul S. 2022. Data Availability of Open T-
Cell Receptor Repertoire Data, a Systematic Assessment. Frontiers in Systems 
Biology 2. 

205. Huang Y-N, Vahed M, Peng K, Alachkar H, Mangul S. 2023. Response 
to ‘comment on rigorous benchmarking of T cell receptor repertoire profiling 
methods for cancer RNA sequencing’ by Davydov A.N.; Bolotin D.A.; Poslavsky 
S. V. and Chudakov D.M. Briefings in Bioinformatics 24:bbad355. 
doi:10.1093/bib/bbad355 

206. Hudson D, Fernandes RA, Basham M, Ogg G, Koohy H. 2023. Can we 
predict T cell specificity with digital biology and machine learning? Nat Rev 
Immunol 23:511–521. doi:10.1038/s41577-023-00835-3 

207. Hue S, Ahern P, Buonocore S, Kullberg MC, Cua DJ, McKenzie BS, 
Powrie F, Maloy KJ. 2006. Interleukin-23 drives innate and T cell–mediated 
intestinal inflammation. The Journal of Experimental Medicine 203:2473–2483. 
doi:10.1084/jem.20061099 

208. Huseby ES, Crawford F, White J, Kappler J, Marrack P. 2003. Negative 
selection imparts peptide specificity to the mature T cell repertoire. Proceedings 
of the National Academy of Sciences 100:11565–11570. 
doi:10.1073/pnas.1934636100 

209. Huter EN, Punkosdy GA, Glass DD, Cheng LI, Ward JM, Shevach EM. 
2008. TGF-beta-induced Foxp3+ regulatory T cells rescue scurfy mice. Eur J 
Immunol 38:1814–1821. doi:10.1002/eji.200838346 

210. Hwang ES, Hong J-H, Glimcher LH. 2005. IL-2 production in developing 
Th1 cells is regulated by heterodimerization of RelA and T-bet and requires T-
bet serine residue 508. J Exp Med 202:1289–1300. doi:10.1084/jem.20051044 

211. Irving BA, Weiss A. 1991. The cytoplasmic domain of the T cell receptor 
ζ chain is sufficient to couple to receptor-associated signal transduction pathways. 
Cell 64:891–901. doi:10.1016/0092-8674(91)90314-O 



 

 

210 

212. Jabagi M-J, Bertrand M, Botton J, Le Vu S, Weill A, Dray-Spira R, Zureik 
M. 2023. Stroke, Myocardial Infarction, and Pulmonary Embolism after Bivalent 
Booster. N Engl J Med 388:1431–1432. doi:10.1056/NEJMc2302134 

213. Jaccard P. 1901. Distribution de la flore alpine dans le bassin des Dranses 
et dans quelques régions voisines. Rouge. 

214. Jackson DA. 1997. Compositional Data in Community Ecology: The 
Paradigm or Peril of Proportions? Ecology 78:929–940. doi:10.1890/0012-
9658(1997)078[0929:CDICET]2.0.CO;2 

215. Jenkins MK, Chu HH, McLachlan JB, Moon JJ. 2010. On the 
Composition of the Preimmune Repertoire of T Cells Specific for Peptide–Major 
Histocompatibility Complex Ligands. Annu Rev Immunol 28:275–294. 
doi:10.1146/annurev-immunol-030409-101253 

216. Jenkins MK, Schwartz RH. 1987. Antigen presentation by chemically 
modified splenocytes induces antigen-specific T cell unresponsiveness in vitro 
and in vivo. J Exp Med 165:302–319. doi:10.1084/jem.165.2.302 

217. Jenkinson EJ, Kingston R, Owen JJ. 1990. Newly generated thymocytes 
are not refractory to deletion when the alpha/beta component of the T cell receptor 
is engaged by the superantigen staphylococcal enterotoxin B. Eur J Immunol 
20:2517–2520. doi:10.1002/eji.1830201125 

218. Jokinen E, Dumitrescu A, Huuhtanen J, Gligorijević V, Mustjoki S, 
Bonneau R, Heinonen M, Lähdesmäki H. 2022. TCRconv: predicting recognition 
between T cell receptors and epitopes using contextualized motifs. 
Bioinformatics btac788. doi:10.1093/bioinformatics/btac788 

219. Jolicoeur C, Hanahan D, Smith KM. 1994. T-cell tolerance toward a 
transgenic beta-cell antigen and transcription of endogenous pancreatic genes in 
thymus. Proc Natl Acad Sci U S A 91:6707–6711. doi:10.1073/pnas.91.14.6707 

220. Jonasson L, Holm J, Skalli O, Bondjers G, Hansson G. 1986. Regional 
accumulations of T cells, macrophages, and smooth muscle cells in the human 
atherosclerotic plaque. Arteriosclerosis (Dallas, Tex) 6. 
doi:10.1161/01.atv.6.2.131 

221. Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y, 
Umetsu DT, Rudensky AY. 2012. Extrathymically generated regulatory T cells 
control mucosal TH2 inflammation. Nature 482:395–399. 
doi:10.1038/nature10772 

222. Juzenas S, Kiseliovas V, Goda K, Zvirblyte J, Quintinal-Villalonga A, 
Nainys J, Mazutis L. 2023. inDrops-2: a flexible, versatile and cost-efficient 
droplet microfluidics approach for high-throughput scRNA-seq of fresh and 
preserved clinical samples. doi:10.1101/2023.09.26.559493 



 

 

211 

223. Kägi D, Ledermann B, Bürki K, Seiler P, Odermatt B, Olsen KJ, Podack 
ER, Zinkernagel RM, Hengartner H. 1994. Cytotoxicity mediated by T cells and 
natural killer cells is greatly impaired in perforin-deficient mice. Nature 369:31–
37. doi:10.1038/369031a0 

224. Kakaradov B, Arsenio J, Widjaja CE, He Z, Aigner S, Metz PJ, Yu B, 
Wehrens EJ, Lopez J, Kim SH, Zuniga EI, Goldrath AW, Chang JT, Yeo GW. 
2017. Early transcriptional and epigenetic regulation of CD8+ T cell 
differentiation revealed by single-cell RNA sequencing. Nat Immunol 18:422–
432. doi:10.1038/ni.3688 

225. Kansy BA, Shayan G, Jie H-B, Gibson SP, Lei YL, Brandau S, Lang S, 
Schmitt NC, Ding F, Lin Y, Ferris RL. 2018. T cell receptor richness in peripheral 
blood increases after cetuximab therapy and correlates with therapeutic response. 
Oncoimmunology 7:e1494112. doi:10.1080/2162402X.2018.1494112 

226. Kappler J, Kubo R, Haskins K, White J, Marrack P. 1983. The mouse T 
cell receptor: Comparison of MHC-restricted receptors on two T cell hybridomas. 
Cell 34:727–737. doi:10.1016/0092-8674(83)90529-9 

227. Kappler JW, Roehm N, Marrack P. 1987. T cell tolerance by clonal 
elimination in the thymus. Cell 49:273–280. doi:10.1016/0092-8674(87)90568-
X 

228. Kappler JW, Staerz U, White J, Marrack PC. 1988. Self-tolerance 
eliminates T cells specific for Mls-modified products of the major 
histocompatibility complex. Nature 332:35–40. doi:10.1038/332035a0 

229. Keşmir C, Borghans JAM, de Boer RJ. 2000. Diversity of Human αβ T 
Cell Receptors. Science 288:1135–1135. doi:10.1126/science.288.5469.1135a 

230. Khan Z, Hammer C, Guardino E, Chandler GS, Albert ML. 2019. 
Mechanisms of immune-related adverse events associated with immune 
checkpoint blockade: using germline genetics to develop a personalized 
approach. Genome Med 11:1–3. doi:10.1186/s13073-019-0652-8 

231. Kim J, Chang D-Y, Lee HW, Lee H, Kim JH, Sung PS, Kim KH, Hong 
S-H, Kang W, Lee J, Shin SY, Yu HT, You S, Choi YS, Oh I, Lee Dong Ho, Lee 
Dong Hyeon, Jung MK, Suh K-S, Hwang S, Kim W, Park S-H, Kim HJ, Shin E-
C. 2018. Innate-like Cytotoxic Function of Bystander-Activated CD8+ T Cells Is 
Associated with Liver Injury in Acute Hepatitis A. Immunity 48:161-173.e5. 
doi:10.1016/j.immuni.2017.11.025 

232. Kim J-H, Jin H-O, Park J-A, Chang YH, Hong YJ, Lee JK. 2014. 
Comparison of three different kits for extraction of high-quality RNA from frozen 
blood. Springerplus 3:76. doi:10.1186/2193-1801-3-76 

233. Kirabo A, Fontana V, de Faria A, R L, Galindo C, Wu J, Bikineyeva A, 
Dikalov S, Xiao L, Chen W, Saleh M, Trott D, Itani H, Vinh A, Amarnath V, 



 

 

212 

Amarnath K, Guzik T, Bernstein K, Shen X, Shyr Y, Chen S, Mernaugh R, Laffer 
C, Elijovich F, Davies S, Moreno H, Madhur M, Roberts J, Harrison D. 2014. DC 
isoketal-modified proteins activate T cells and promote hypertension. The 
Journal of clinical investigation 124. doi:10.1172/JCI74084 

234. Kishi JY, Liu N, West ER, Sheng K, Jordanides JJ, Serrata M, Cepko CL, 
Saka SK, Yin P. 2022. Light-Seq: light-directed in situ barcoding of biomolecules 
in fixed cells and tissues for spatially indexed sequencing. Nat Methods 19:1393–
1402. doi:10.1038/s41592-022-01604-1 

235. Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, 
Taipale J. 2012. Counting absolute numbers of molecules using unique molecular 
identifiers. Nat Methods 9:72–74. doi:10.1038/nmeth.1778 

236. Klarin D, Lynch J, Aragam K, Chaffin M, Assimes TL, Huang J, Lee KM, 
Shao Q, Huffman JE, Natarajan P, Arya S, Small A, Sun YV, Vujkovic M, 
Freiberg MS, Wang L, Chen J, Saleheen D, Lee JS, Miller DR, Reaven P, Alba 
PR, Patterson OV, DuVall SL, Boden WE, Beckman JA, Gaziano JM, Concato 
J, Rader DJ, Cho K, Chang K-M, Wilson PWF, O’Donnell CJ, Kathiresan S, Tsao 
PS, Damrauer SM. 2019. Genome-wide association study of peripheral artery 
disease in the Million Veteran Program. Nat Med 25:1274–1279. 
doi:10.1038/s41591-019-0492-5 

237. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin 
L, Weitz DA, Kirschner MW. 2015. Droplet barcoding for single cell 
transcriptomics applied to embryonic stem cells. Cell 161:1187–1201. 
doi:10.1016/j.cell.2015.04.044 

238. Komatsu N, Mariotti-Ferrandiz M, Wang Y, Malissen B, Waldmann H, S 
H. 2009. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell 
lineage and an uncommitted minor population retaining plasticity. Proceedings 
of the National Academy of Sciences of the United States of America 106. 
doi:10.1073/pnas.0811556106 

239. Kondo M, Weissman IL, Akashi K. 1997. Identification of Clonogenic 
Common Lymphoid Progenitors in Mouse Bone Marrow. Cell 91:661–672. 
doi:10.1016/S0092-8674(00)80453-5 

240. Kowalewski DJ, Schuster H, Backert L, Berlin C, Kahn S, Kanz L, Salih 
HR, Rammensee H-G, Stevanovic S, Stickel JS. 2015. HLA ligandome analysis 
identifies the underlying specificities of spontaneous antileukemia immune 
responses in chronic lymphocytic leukemia (CLL). Proceedings of the National 
Academy of Sciences of the United States of America 112:E166. 
doi:10.1073/pnas.1416389112 

241. Krebs P, Kurrer MO, Kremer M, De Giuli R, Sonderegger I, Henke A, 
Maier R, Ludewig B. 2007. Molecular mapping of autoimmune B cell responses 



 

 

213 

in experimental myocarditis. Journal of Autoimmunity 28:224–233. 
doi:10.1016/j.jaut.2007.01.003 

242. Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, 
von Boehmer H. 2005. Inducing and expanding regulatory T cell populations by 
foreign antigen. Nat Immunol 6:1219–1227. doi:10.1038/ni1265 

243. Krummel MF. 1995. CD28 and CTLA-4 have opposing effects on the 
response of T cells to stimulation. Journal of Experimental Medicine 182:459–
465. doi:10.1084/jem.182.2.459 

244. Kumar PA, Hu Y, Yamamoto Y, Hoe NB, Wei TS, Mu D, Sun Y, Joo LS, 
Dagher R, Zielonka EM, Wang DY, Lim B, Chow VT, Crum CP, Xian W, 
McKeon F. 2011. Distal airway stem cells yield alveoli in vitro and during lung 
regeneration following H1N1 influenza infection. Cell 147:525–538. 
doi:10.1016/j.cell.2011.10.001 

245. Kumar PG, Laloraya M, Wang CY, Ruan QG, Davoodi-Semiromi A, Kao 
KJ, She JX. 2001. The autoimmune regulator (AIRE) is a DNA-binding protein. 
J Biol Chem 276:41357–41364. doi:10.1074/jbc.M104898200 

246. Kuo C, Shor A, Campbell L, Fukushi H, Patton D, Grayston J. 1993. 
Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary 
arteries. The Journal of infectious diseases 167. doi:10.1093/infdis/167.4.841 

247. Kurosawa Y, von Boehmer H, Haas W, Sakano H, Trauneker A, 
Tonegawa S. 1981. Identification of D segments of immunoglobulin heavy-chain 
genes and their rearrangement in T lymphocytes. Nature 290:565–570. 
doi:10.1038/290565a0 

248. Lagattuta KA, Kang JB, Nathan A, Pauken KE, Jonsson AH, Rao DA, 
Sharpe AH, Ishigaki K, Raychaudhuri S. 2022. Repertoire analyses reveal T cell 
antigen receptor sequence features that influence T cell fate. Nat Immunol 
23:446–457. doi:10.1038/s41590-022-01129-x 

249. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, 
Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ. 2005. IL-23 drives a 
pathogenic T cell population that induces autoimmune inflammation. Journal of 
Experimental Medicine 201:233–240. doi:10.1084/jem.20041257 

250. Larijani M, Cc Y, R G, Ql L, Ge W. 1999. The role of components of 
recombination signal sequences in immunoglobulin gene segment usage: a V81x 
model. Nucleic acids research 27. doi:10.1093/nar/27.11.2304 

251. Laroumanie F, Douin-Echinard V, Pozzo J, Lairez O, Tortosa F, Vinel C, 
Delage C, Calise D, Dutaur M, Parini A, Pizzinat N. 2014. CD4+ T Cells Promote 
the Transition From Hypertrophy to Heart Failure During Chronic Pressure 
Overload. Circulation 129:2111–2124. 
doi:10.1161/CIRCULATIONAHA.113.007101 



 

 

214 

252. Lathrop SK, Huddleston CA, Dullforce PA, Montfort MJ, Weinberg AD, 
Parker DC. 2004. A Signal through OX40 (CD134) Allows Anergic, 
Autoreactive T Cells to Acquire Effector Cell Functions1. The Journal of 
Immunology 172:6735–6743. doi:10.4049/jimmunol.172.11.6735 

253. Lathrop SK, Santacruz NA, Pham D, Luo J, Hsieh C-S. 2008. Antigen-
specific peripheral shaping of the natural regulatory T cell population. J Exp Med 
205:3105–3117. doi:10.1084/jem.20081359 

254. Laydon DJ, Bangham CRM, Asquith B. 2015. Estimating T-cell 
repertoire diversity: limitations of classical estimators and a new approach. Phil 
Trans R Soc B 370:20140291. doi:10.1098/rstb.2014.0291 

255. Lebedeva A, Maryukhnich E, Grivel J-C, Vasilieva E, Margolis L, 
Shpektor A. 2020. Productive cytomegalovirus infection is associated with 
impaired endothelial function in ST-elevation myocardial infarction. Am J Med 
133:133–142. doi:10.1016/j.amjmed.2019.06.021 

256. Lee AI, Fugmann SD, Cowell LG, Ptaszek LM, Kelsoe G, Schatz DG. 
2003. A Functional Analysis of the Spacer of V(D)J Recombination Signal 
Sequences. PLoS Biology 1. doi:10.1371/journal.pbio.0000001 

257. Lees WD, Christley S, Peres A, Kos JT, Corrie B, Ralph D, Breden F, 
Cowell LG, Yaari G, Corcoran M, Karlsson Hedestam GB, Ohlin M, Collins AM, 
Watson CT, Busse CE. 2023. AIRR community curation and standardised 
representation for immunoglobulin and T cell receptor germline sets. 
Immunoinformatics (Amst) 10:100025. doi:10.1016/j.immuno.2023.100025 

258. Lefranc M, Pommié C, Ruiz M, Giudicelli V, Foulquier E, Truong L, 
Thouvenin-Contet V, Lefranc G. 2003. IMGT unique numbering for 
immunoglobulin and T cell receptor variable domains and Ig superfamily V-like 
domains. Developmental and comparative immunology 27. doi:10.1016/s0145-
305x(02)00039-3 

259. Lefranc M-P, Giudicelli V, Ginestoux C, Bodmer J, Müller W, Bontrop 
R, Lemaitre M, Malik A, Barbié V, Chaume D. 1999. IMGT, the international 
ImMunoGeneTics database. Nucleic Acids Research 27:209–212. 
doi:10.1093/nar/27.1.209 

260. Lefranc M-P, Lefranc G. 2001. The T cell receptor factsbook, Factsbook 
series. San Diego, Calif.: Academic Press. 

261. Li J, Liang C, Yang KY, Huang X, Han MY, Li X, Chan VW, Chan KS, 
Liu D, Huang Z-P, Zhou B, Lui KO. 2020. Specific ablation of CD4 + T-cells 
promotes heart regeneration in juvenile mice. Theranostics 10:8018–8035. 
doi:10.7150/thno.42943 

262. Li J, Xia N, Li D, Wen S, Qian S, Lu Y, Gu M, Tang T, Jiao J, Lv B, Nie 
S, Hu D, Liao Y, Yang X, Shi G, Cheng X. 2022. Aorta Regulatory T Cells with 



 

 

215 

a Tissue‐Specific Phenotype and Function Promote Tissue Repair through Tff1 
in Abdominal Aortic Aneurysms. Advanced Science 9. 
doi:10.1002/advs.202104338 

263. Li L, Bowling S, McGeary SE, Yu Q, Lemke B, Alcedo K, Jia Y, Liu X, 
Ferreira M, Klein AM, Wang S-W, Camargo FD. 2023. A mouse model with 
high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic 
profiling in single cells. Cell S0092867423010401. 
doi:10.1016/j.cell.2023.09.019 

264. Liao Y, Smyth GK, Shi W. 2013. The Subread aligner: fast, accurate and 
scalable read mapping by seed-and-vote. Nucleic Acids Research 41:e108. 
doi:10.1093/nar/gkt214 

265. Libby P, Egan D, Skarlatos S. 1997. Roles of Infectious Agents in 
Atherosclerosis and Restenosis1. Circulation 96:4095–4103. 
doi:10.1161/01.CIR.96.11.4095 

266. Lieber MR. 1991. Site-specific recombination in the immune system. The 
FASEB Journal 5:2934–2944. doi:10.1096/fasebj.5.14.1752360 

267. Lima G, Treviño-Tello F, Atisha-Fregoso Y, Llorente L, Fragoso-Loyo 
H, Jakez-Ocampo J. 2021. Exhausted T cells in systemic lupus erythematosus 
patients in long-standing remission. Clin Exp Immunol 204:285–295. 
doi:10.1111/cei.13577 

268. Lindner D, Fitzek A, Bräuninger H, Aleshcheva G, Edler C, Meissner K, 
Scherschel K, Kirchhof P, Escher F, Schultheiss H-P, Blankenberg S, Püschel K, 
Westermann D. 2020. Association of Cardiac Infection With SARS-CoV-2 in 
Confirmed COVID-19 Autopsy Cases. JAMA Cardiology 5:1281–1285. 
doi:10.1001/jamacardio.2020.3551 

269. Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, 
Lindberg EL, Kanda M, Polanski K, Heinig M, Lee M, Nadelmann ER, Roberts 
K, Tuck L, Fasouli ES, DeLaughter DM, McDonough B, Wakimoto H, Gorham 
JM, Samari S, Mahbubani KT, Saeb-Parsy K, Patone G, Boyle JJ, Zhang Hongbo, 
Zhang Hao, Viveiros A, Oudit GY, Bayraktar OA, Seidman JG, Seidman CE, 
Noseda M, Hubner N, Teichmann SA. 2020. Cells of the adult human heart. 
Nature 588:466–472. doi:10.1038/s41586-020-2797-4 

270. Liu S, Iorgulescu JB, Li S, Borji M, Barrera-Lopez IA, Shanmugam V, 
Lyu H, Morriss JW, Garcia ZN, Murray E, Reardon DA, Yoon CH, Braun DA, 
Livak KJ, Wu CJ, Chen F. 2022. Spatial maps of T cell receptors and 
transcriptomes reveal distinct immune niches and interactions in the adaptive 
immune response. Immunity 55:1940-1952.e5. 
doi:10.1016/j.immuni.2022.09.002 

271. Liu Sudong, Zhong Z, Zhong W, Weng R, Liu J, Gu X, Chen Y. 2020. 
Comprehensive analysis of T-cell receptor repertoire in patients with acute 



 

 

216 

coronary syndrome by high-throughput sequencing. BMC Cardiovascular 
Disorders 20:253. doi:10.1186/s12872-020-01538-6 

272. Liu Shaojun, Chen J, Shi J, Zhou W, Wang L, Fang W, Zhong Y, Chen 
X, Chen Y, Sabri A, Liu Shiming. 2020. M1-like macrophage-derived exosomes 
suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial 
infarction microenvironment. Basic Res Cardiol 115:22. doi:10.1007/s00395-
020-0781-7 

273. Liu W, Zhang Q, Chen J, Xiang R, Song H, Shu S, Chen L, Liang L, Zhou 
J, You L, Wu P, Zhang B, Lu Y, Xia L, Huang L, Yang Y, Liu F, Semple MG, 
Cowling BJ, Lan K, Sun Z, Yu H, Liu Y. 2020. Detection of Covid-19 in Children 
in Early January 2020 in Wuhan, China. New England Journal of Medicine 
382:1370–1371. doi:10.1056/NEJMc2003717 

274. Liu Y-Y, Yang Q-F, Yang J-S, Cao R-B, Liang J-Y, Liu Y-T, Zeng Y-L, 
Chen S, Xia X-F, Zhang K, Liu L. 2019. Characteristics and prognostic 
significance of profiling the peripheral blood T-cell receptor repertoire in patients 
with advanced lung cancer. International Journal of Cancer 145:1423–1431. 
doi:10.1002/ijc.32145 

275. Loh EY, Elliott JF, Cwirla S, Lanier LL, Davis MM. 1989. Polymerase 
Chain Reaction with Single-Sided Specificity: Analysis of T Cell Receptor δ 
Chain. Science 243:217–220. doi:10.1126/science.2463672 

276. Lombardi V, Speak AO, Kerzerho J, Szely N, Akbari O. 2012. CD8α+β− 
and CD8α+β+ plasmacytoid dendritic cells induce Foxp3+ regulatory T cells and 
prevent the induction of airway hyper-reactivity. Mucosal Immunol 5:432–443. 
doi:10.1038/mi.2012.20 

277. Lopaschuk GD, Verma S. 2020. Mechanisms of Cardiovascular Benefits 
of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art 
Review. JACC Basic Transl Sci 5:632–644. doi:10.1016/j.jacbts.2020.02.004 

278. Lu J, Van Laethem F, Bhattacharya A, Craveiro M, Saba I, Chu J, Love 
NC, Tikhonova A, Radaev S, Sun X, Ko A, Arnon T, Shifrut E, Friedman N, 
Weng N-P, Singer A, Sun PD. 2019. Molecular constraints on CDR3 for thymic 
selection of MHC-restricted TCRs from a random pre-selection repertoire. Nat 
Commun 10:1019. doi:10.1038/s41467-019-08906-7 

279. Lu X, Zhang L, Du H, Zhang J, Li YY, Qu J, Zhang W, Wang Y, Bao S, 
Li Y, Wu C, Liu H, Liu D, Shao J, Peng X, Yang Y, Liu Z, Xiang Y, Zhang F, 
Silva RM, Pinkerton KE, Shen K, Xiao H, Xu S, Wong GWK, Chinese Pediatric 
Novel Coronavirus Study Team. 2020. SARS-CoV-2 Infection in Children. N 
Engl J Med 382:1663–1665. doi:10.1056/NEJMc2005073 

280. Lundquist PM, Zhong CF, Zhao P, Tomaney AB, Peluso PS, Dixon J, 
Bettman B, Lacroix Y, Kwo DP, McCullough E, Maxham M, Hester K, McNitt 
P, Grey DM, Henriquez C, Foquet M, Turner SW, Zaccarin D. 2008. Parallel 



 

 

217 

confocal detection of single molecules in real time. Opt Lett, OL 33:1026–1028. 
doi:10.1364/OL.33.001026 

281. Luque Otero M, Martell Claros N, Llorente Pérez L, Fernández Pinilla C, 
Fernández-Cruz A. 1983. Severe hypertension in the Spanish population. 
Association with specific HLA antigens. Hypertension 5:V149. 
doi:10.1161/01.HYP.5.6_Pt_3.V149 

282. Lythe G, Callard RE, Hoare RL, Molina-París C. 2016. How many TCR 
clonotypes does a body maintain? Journal of Theoretical Biology 389:214. 
doi:10.1016/j.jtbi.2015.10.016 

283. Madi A, Poran A, Shifrut E, Reich-Zeliger S, Greenstein E, Zaretsky I, 
Arnon T, Laethem FV, Singer A, Lu J, Sun PD, Cohen IR, Friedman N. 2017. T 
cell receptor repertoires of mice and humans are clustered in similarity networks 
around conserved public CDR3 sequences. Elife 6. doi:10.7554/eLife.22057 

284. Madi A, Shifrut E, Reich-Zeliger S, Gal H, Best K, Ndifon W, Chain B, 
Cohen IR, Friedman N. 2014. T-cell receptor repertoires share a restricted set of 
public and abundant CDR3 sequences that are associated with self-related 
immunity. Genome Res 24:1603–1612. doi:10.1101/gr.170753.113 

285. Malchow S, Leventhal DS, Lee V, Nishi S, Socci ND, Savage PA. 2016. 
Aire Enforces Immune Tolerance by Directing Autoreactive T Cells into the 
Regulatory T Cell Lineage. Immunity 44:1102–1113. 
doi:10.1016/j.immuni.2016.02.009 

286. Malchow S, Leventhal DS, Nishi S, Fischer BI, Shen L, Paner GP, Amit 
AS, Kang C, Geddes JE, Allison JP, Socci ND, Savage PA. 2013. Aire-
Dependent Thymic Development of Tumor-Associated Regulatory T Cells. 
Science 339:1219–1224. doi:10.1126/science.1233913 

287. Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, 
Rutten-Jacobs L, Giese A-K, van der Laan SW, Gretarsdottir S, Anderson CD, 
Chong M, Adams HHH, Ago T, Almgren P, Amouyel P, Ay H, Bartz TM, 
Benavente OR, Bevan S, Boncoraglio GB, Brown RD, Butterworth AS, Carrera 
C, Carty CL, Chasman DI, Chen W-M, Cole JW, Correa A, Cotlarciuc I, 
Cruchaga C, Danesh J, de Bakker PIW, DeStefano AL, den Hoed M, Duan Q, 
Engelter ST, Falcone GJ, Gottesman RF, Grewal RP, Gudnason V, Gustafsson S, 
Haessler J, Harris TB, Hassan A, Havulinna AS, Heckbert SR, Holliday EG, 
Howard G, Hsu F-C, Hyacinth HI, Ikram MA, Ingelsson E, Irvin MR, Jian X, 
Jiménez-Conde J, Johnson JA, Jukema JW, Kanai M, Keene KL, Kissela BM, 
Kleindorfer DO, Kooperberg C, Kubo M, Lange LA, Langefeld CD, Langenberg 
C, Launer LJ, Lee J-M, Lemmens R, Leys D, Lewis CM, Lin W-Y, Lindgren AG, 
Lorentzen E, Magnusson PK, Maguire J, Manichaikul A, McArdle PF, Meschia 
JF, Mitchell BD, Mosley TH, Nalls MA, Ninomiya T, O’Donnell MJ, Psaty BM, 
Pulit SL, Rannikmäe K, Reiner AP, Rexrode KM, Rice K, Rich SS, Ridker PM, 
Rost NS, Rothwell PM, Rotter JI, Rundek T, Sacco RL, Sakaue S, Sale MM, 



 

 

218 

Salomaa V, Sapkota BR, Schmidt R, Schmidt CO, Schminke U, Sharma P, 
Slowik A, Sudlow CLM, Tanislav C, Tatlisumak T, Taylor KD, Thijs VNS, 
Thorleifsson G, Thorsteinsdottir U, Tiedt S, Trompet S, Tzourio C, van Duijn 
CM, Walters M, Wareham NJ, Wassertheil-Smoller S, Wilson JG, Wiggins KL, 
Yang Q, Yusuf S, Bis JC, Pastinen T, Ruusalepp A, Schadt EE, Koplev S, 
Björkegren JLM, Codoni V, Civelek M, Smith NL, Trégouët DA, Christophersen 
IE, Roselli C, Lubitz SA, Ellinor PT, Tai ES, Kooner JS, Kato N, He J, van der 
Harst P, Elliott P, Chambers JC, Takeuchi F, Johnson AD, Sanghera DK, 
Melander O, Jern C, Strbian D, Fernandez-Cadenas I, Longstreth WT, Rolfs A, 
Hata J, Woo D, Rosand J, Pare G, Hopewell JC, Saleheen D, Stefansson K, 
Worrall BB, Kittner SJ, Seshadri S, Fornage M, Markus HS, Howson JMM, 
Kamatani Y, Debette S, Dichgans M. 2018. Multiancestry genome-wide 
association study of 520,000 subjects identifies 32 loci associated with stroke and 
stroke subtypes. Nat Genet 50:524–537. doi:10.1038/s41588-018-0058-3 

288. Malissen M, Trucy J, Jouvin-Marche E, Cazenave PA, Scollay R, 
Malissen B. 1992. Regulation of TCR alpha and beta gene allelic exclusion 
during T-cell development. Immunol Today 13:315–322. doi:10.1016/0167-
5699(92)90044-8 

289. Mamula MJ, Lin RH, Janeway CA, Hardin JA. 1992. Breaking T cell 
tolerance with foreign and self co-immunogens. A study of autoimmune B and T 
cell epitopes of cytochrome c. J Immunol 149:789–795. 

290. Mandric I, Rotman J, Yang HT, Strauli N, Montoya DJ, Van Der Wey W, 
Ronas JR, Statz B, Yao D, Petrova V, Zelikovsky A, Spreafico R, Shifman S, 
Zaitlen N, Rossetti M, Ansel KM, Eskin E, Mangul S. 2020. Profiling 
immunoglobulin repertoires across multiple human tissues using RNA 
sequencing. Nat Commun 11:3126. doi:10.1038/s41467-020-16857-7 

291. Manjula BN, Trus BL, Fischetti VA. 1985. Presence of two distinct 
regions in the coiled-coil structure of the streptococcal Pep M5 protein: 
relationship to mammalian coiled-coil proteins and implications to its biological 
properties. Proceedings of the National Academy of Sciences 82:1064–1068. 
doi:10.1073/pnas.82.4.1064 

292. Manolios N, Bonifacino JS, Klausner RD. 1990. Transmembrane Helical 
Interactions and the Assembly of the T Cell Receptor Complex. Science 249:274–
277. doi:10.1126/science.2142801 

293. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. 
2018. MUMmer4: A fast and versatile genome alignment system. PLOS 
Computational Biology 14:e1005944. doi:10.1371/journal.pcbi.1005944 

294. Marcou Q, Mora T, Walczak AM. 2018. High-throughput immune 
repertoire analysis with IGoR. Nat Commun 9:561. doi:10.1038/s41467-018-
02832-w 



 

 

219 

295. Marie-Cardine A, Schraven B. 1999. Coupling the TCR to Downstream 
Signalling Pathways: The Role of Cytoplasmic and Transmembrane Adaptor 
Proteins. Cellular Signalling 11:705–712. doi:10.1016/S0898-6568(99)00047-9 

296. Mariotti-Ferrandiz E, Pham H-P, Dulauroy S, Gorgette O, Klatzmann D, 
Cazenave P-A, Pied S, Six A. 2016. A TCRβ Repertoire Signature Can Predict 
Experimental Cerebral Malaria. PLOS ONE 11:e0147871. 
doi:10.1371/journal.pone.0147871 

297. Marrack P, Kappler J. 1990. The Staphylococcal Enterotoxins and Their 
Relatives. Science 248:705–711. doi:10.1126/science.2185544 

298. Martin FJ, Amode MR, Aneja A, Austine-Orimoloye O, Azov AG, Barnes 
I, Becker A, Bennett R, Berry A, Bhai J, Bhurji SK, Bignell A, Boddu S, 
Branco Lins PR, Brooks L, Ramaraju SB, Charkhchi M, Cockburn A, 
Da Rin Fiorretto L, Davidson C, Dodiya K, Donaldson S, El Houdaigui B, 
El Naboulsi T, Fatima R, Giron CG, Genez T, Ghattaoraya GS, Martinez JG, 
Guijarro C, Hardy M, Hollis Z, Hourlier T, Hunt T, Kay M, Kaykala V, Le T, 
Lemos D, Marques-Coelho D, Marugán JC, Merino GA, Mirabueno LP, Mushtaq 
A, Hossain SN, Ogeh DN, Sakthivel MP, Parker A, Perry M, Piližota I, 
Prosovetskaia I, Pérez-Silva JG, Salam AIA, Saraiva-Agostinho N, Schuilenburg 
H, Sheppard D, Sinha S, Sipos B, Stark W, Steed E, Sukumaran R, Sumathipala 
D, Suner M-M, Surapaneni L, Sutinen K, Szpak M, Tricomi FF, Urbina-Gómez 
D, Veidenberg A, Walsh TA, Walts B, Wass E, Willhoft N, Allen J, Alvarez-
Jarreta J, Chakiachvili M, Flint B, Giorgetti S, Haggerty L, Ilsley GR, Loveland 
JE, Moore B, Mudge JM, Tate J, Thybert D, Trevanion SJ, Winterbottom A, 
Frankish A, Hunt SE, Ruffier M, Cunningham F, Dyer S, Finn RD, Howe KL, 
Harrison PW, Yates AD, Flicek P. 2023. Ensembl 2023. Nucleic Acids Research 
51:D933–D941. doi:10.1093/nar/gkac958 

299. Mason D. 1998. A very high level of crossreactivity is an essential feature 
of the T-cell receptor. Immunology Today 19:395–404. doi:10.1016/S0167-
5699(98)01299-7 

300. Mastrokolias A, den Dunnen JT, van Ommen GB, ’t Hoen PA, van Roon-
Mom WM. 2012. Increased sensitivity of next generation sequencing-based 
expression profiling after globin reduction in human blood RNA. BMC Genomics 
13:1–9. doi:10.1186/1471-2164-13-28 

301. Matsumori A. 2005. Hepatitis C Virus Infection and Cardiomyopathies. 
Circulation Research 96:144–147. doi:10.1161/01.RES.0000156077.54903.67 

302. Maxam AM, Gilbert W. 1980. Sequencing end-labeled DNA with base-
specific chemical cleavages. Methods Enzymol 65:499–560. doi:10.1016/s0076-
6879(80)65059-9 

303. Mayer CT, Floess S, Baru AM, Lahl K, Huehn J, Sparwasser T. 2011. 
CD8+Foxp3+ T cells share developmental and phenotypic features with classical 



 

 

220 

CD4+Foxp3+ regulatory T cells but lack potent suppressive activity. European 
Journal of Immunology 41:716–725. doi:10.1002/eji.201040913 

304. Mayer-Blackwell K, Fiore-Gartland A, Thomas PG. 2022. Flexible 
Distance-Based TCR Analysis in Python with tcrdist3. Methods in molecular 
biology (Clifton, NJ) 2574:309. doi:10.1007/978-1-0716-2712-9_16 

305. McCaughtry TM, Baldwin TA, Wilken MS, Hogquist KA. 2008. Clonal 
deletion of thymocytes can occur in the cortex with no involvement of the 
medulla. J Exp Med 205:2575–2584. doi:10.1084/jem.20080866 

306. McCaughtry TM, Wilken MS, Hogquist KA. 2007. Thymic emigration 
revisited. J Exp Med 204:2513–2520. doi:10.1084/jem.20070601 

307. McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, 
Gewitz M, Baker AL, Jackson MA, Takahashi M, Shah PB, Kobayashi T, Wu 
M-H, Saji TT, Pahl E, null  null. 2017. Diagnosis, Treatment, and Long-Term 
Management of Kawasaki Disease: A Scientific Statement for Health 
Professionals From the American Heart Association. Circulation 135:e927–e999. 
doi:10.1161/CIR.0000000000000484 

308. McDaniel JR, DeKosky BJ, Tanno H, Ellington AD, Georgiou G. 2016. 
Ultra-high-throughput sequencing of the immune receptor repertoire from 
millions of lymphocytes. Nat Protoc 11:429–442. doi:10.1038/nprot.2016.024 

309. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm 
M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-
Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska 
EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, 
Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, 
Kathrine Skibelund A, ESC Scientific Document Group. 2021. 2021 ESC 
Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur 
Heart J 42:3599–3726. doi:10.1093/eurheartj/ehab368 

310. McVean GA, Altshuler (Co-Chair) DM, Durbin (Co-Chair) RM, Abecasis 
GR, Bentley DR, Chakravarti A, Clark AG, Donnelly P, Eichler EE, Flicek P, 
Gabriel SB, Gibbs RA, Green ED, Hurles ME, Knoppers BM, Korbel JO, Lander 
ES, Lee C, Lehrach H, Mardis ER, Marth GT, McVean GA, Nickerson DA, 
Schmidt JP, Sherry ST, Wang J, Wilson RK, Gibbs (Principal Investigator) RA, 
Dinh H, Kovar C, Lee S, Lewis L, Muzny D, Reid J, Wang M, Wang (Principal 
Investigator) J, Fang X, Guo X, Jian M, Jiang H, Jin X, Li G, Li J, Li Y, Li Zhuo, 
Liu X, Lu Y, Ma X, Su Z, Tai S, Tang M, Wang Bo, Wang G, Wu H, Wu R, Yin 
Y, Zhang W, Zhao J, Zhao M, Zheng X, Zhou Y, Lander (Principal Investigator) 
ES, Altshuler DM, Gabriel (Co-Chair) SB, Gupta N, Flicek (Principal 
Investigator) P, Clarke L, Leinonen R, Smith RE, Zheng-Bradley X, Bentley 
(Principal Investigator) DR, Grocock R, Humphray S, James T, Kingsbury Z, 
Lehrach (Principal Investigator) H, Sudbrak (Project Leader) R, Albrecht MW, 
Amstislavskiy VS, Borodina TA, Lienhard M, Mertes F, Sultan M, Timmermann 



 

 

221 

B, Yaspo M-L, Sherry (Principal Investigator) ST, McVean (Principal 
Investigator) GA, Mardis (Co-Principal Investigator) (Co-Chair) ER, Wilson 
(Co-Principal Investigator) RK, Fulton L, Fulton R, Weinstock GM, Durbin 
(Principal Investigator) RM, Balasubramaniam S, Burton J, Danecek P, Keane 
TM, Kolb-Kokocinski A, McCarthy S, Stalker J, Quail M, Schmidt (Principal 
Investigator) JP, Davies CJ, Gollub J, Webster T, Wong B, Zhan Y, Auton 
(Principal Investigator) A, Gibbs (Principal Investigator) RA, Yu (Project 
Leader) F, Bainbridge M, Challis D, Evani US, Lu J, Muzny D, Nagaswamy U, 
Reid J, Sabo A, Wang Y, Yu J, Wang (Principal Investigator) J, Coin LJM, Fang 
L, Guo X, Jin X, Li G, Li Q, Li Y, Li Zhenyu, Lin H, Liu B, Luo R, Qin N, Shao 
H, Wang Bingqiang, Xie Y, Ye C, Yu C, Zhang F, Zheng H, Zhu H, Marth 
(Principal Investigator) GT, Garrison EP, Kural D, Lee W-P, Fung Leong W, 
Ward AN, Wu J, Zhang M, Lee (Principal Investigator) C, Griffin L, Hsieh C-H, 
Mills RE, Shi X, von Grotthuss M, Zhang C, Daly (Principal Investigator) MJ, 
DePristo (Project Leader) MA, Altshuler DM, Banks E, Bhatia G, Carneiro MO, 
del Angel G, Gabriel SB, Genovese G, Gupta N, Handsaker RE, Hartl C, Lander 
ES, McCarroll SA, Nemesh JC, Poplin RE, Schaffner SF, Shakir K, Yoon 
(Principal Investigator) SC, Lihm J, Makarov V, Jin (Principal Investigator) H, 
Kim W, Cheol Kim K, Korbel (Principal Investigator) JO, Rausch T, Flicek 
(Principal Investigator) P, Beal K, Clarke L, Cunningham F, Herrero J, McLaren 
WM, Ritchie GRS, Smith RE, Zheng-Bradley X, Clark (Principal Investigator) 
AG, Gottipati S, Keinan A, Rodriguez-Flores JL, Sabeti (Principal Investigator) 
PC, Grossman SR, Tabrizi S, Tariyal R, Cooper (Principal Investigator) DN, Ball 
EV, Stenson PD, Bentley (Principal Investigator) DR, Barnes B, Bauer M, Keira 
Cheetham R, Cox T, Eberle M, Humphray S, Kahn S, Murray L, Peden J, Shaw 
R, Ye (Principal Investigator) K, Batzer (Principal Investigator) MA, Konkel 
MK, Walker JA, MacArthur (Principal Investigator) DG, Lek M, Sudbrak 
(Project Leader), Amstislavskiy VS, Herwig R, Shriver (Principal Investigator) 
MD, Bustamante (Principal Investigator) CD, Byrnes JK, De La Vega FM, 
Gravel S, Kenny EE, Kidd JM, Lacroute P, Maples BK, Moreno-Estrada A, 
Zakharia F, Halperin (Principal Investigator) E, Baran Y, Craig (Principal 
Investigator) DW, Christoforides A, Homer N, Izatt T, Kurdoglu AA, Sinari SA, 
Squire K, Sherry (Principal Investigator) ST, Xiao C, Sebat (Principal 
Investigator) J, Bafna V, Ye K, Burchard (Principal Investigator) EG, Hernandez 
(Principal Investigator) RD, Gignoux CR, Haussler (Principal Investigator) D, 
Katzman SJ, James Kent W, Howie B, Ruiz-Linares (Principal Investigator) A, 
The 1000 Genomes Project Consortium, Corresponding Author, Steering 
committee, Production group:, Baylor College of Medicine, BGI-Shenzhen, 
Broad Institute of MIT and Harvard, European Bioinformatics Institute, Illumina, 
Max Planck Institute for Molecular Genetics, US National Institutes of Health, 
University of Oxford, Washington University in St Louis, Wellcome Trust 
Sanger Institute, Analysis group:, Affymetrix, Albert Einstein College of 
Medicine, Boston College, Brigham and Women’s Hospital, Cold Spring Harbor 
Laboratory, Dankook University, European Molecular Biology Laboratory, 
Cornell University, Harvard University, Human Gene Mutation Database, Leiden 
University Medical Center, Louisiana State University, Massachusetts General 
Hospital, Pennsylvania State University, Stanford University, Tel-Aviv 



 

 

222 

University, Translational Genomics Research Institute, University of California 
SD, University of California SF, University of California SC, University of 
Chicago, University College London, University of Geneva. 2012. An integrated 
map of genetic variation from 1,092 human genomes. Nature 491:56–65. 
doi:10.1038/nature11632 

311. Mehindate K, Thibodeau J, Dohlsten M, Kalland T, Sékaly RP, Mourad 
W. 1995. Cross-linking of major histocompatibility complex class II molecules 
by staphylococcal enterotoxin A superantigen is a requirement for inflammatory 
cytokine gene expression. Journal of Experimental Medicine 182:1573–1577. 
doi:10.1084/jem.182.5.1573 

312. Melé M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, 
Young TR, Goldmann JM, Pervouchine DD, Sullivan TJ, Johnson R, Segrè AV, 
Djebali S, Niarchou A, Consortium TGte, Wright FA, Lappalainen T, Calvo M, 
Getz G, Dermitzakis ET, Ardlie KG, Guigó R. 2015. The human transcriptome 
across tissues and individuals. Science 348:660–665. 
doi:10.1126/science.aaa0355 

313. Melnick JL, Petrie BL, Dreesman GR, Burek J, McCollum CH, DeBakey 
ME. 1983. Cytomegalovirus antigen within human arterial smooth muscle cells. 
Lancet 2:644–647. doi:10.1016/s0140-6736(83)92529-1 

314. Meredith M, Zemmour D, Mathis D, Benoist C. 2015. Aire controls gene 
expression in the thymic epithelium with ordered stochasticity. Nat Immunol 
16:942–949. doi:10.1038/ni.3247 

315. Merten M. in preparation. HLA alleles as a potential risk stratifier for 
chronic HF and T cell activation. European Journal of Immunology 53:290. 
doi:10.1002/eji.202370300 

316. Meuer SC, Acuto O, Hussey RE, Hodgdon JC, Fitzgerald KA, 
Schlossman SF, Reinherz EL. 1983. Evidence for the T3-associated 90K 
heterodimer as the T-cell antigen receptor. Nature 303:808–810. 
doi:10.1038/303808a0 

317. Meysman P, Barton J, Bravi B, Cohen-Lavi L, Karnaukhov V, Lilleskov 
E, Montemurro A, Nielsen M, Mora T, Pereira P, Postovskaya A, Martínez MR, 
Fernandez-de-Cossio-Diaz J, Vujkovic A, Walczak AM, Weber A, Yin R, 
Eugster A, Sharma V. 2023. Benchmarking solutions to the T-cell receptor 
epitope prediction problem: IMMREP22 workshop report. ImmunoInformatics 
9:100024. doi:10.1016/j.immuno.2023.100024 

318. Mhanna V, Fourcade G, Barennes P, Quiniou V, Pham HP, Ritvo P-G, 
Brimaud F, Gouritin B, Churlaud G, Six A, Mariotti-Ferrandiz E, Klatzmann D. 
2021. Impaired Activated/Memory Regulatory T Cell Clonal Expansion 
Instigates Diabetes in NOD Mice. Diabetes 70:976–985. doi:10.2337/db20-0896 



 

 

223 

319. Miller JF. 1961a. Immunological function of the thymus. Lancet 2:748–
749. doi:10.1016/s0140-6736(61)90693-6 

320. Miller JF. 1961b. Analysis of the Thymus Influence in Leukæmogenesis. 
Nature 191:248–249. doi:10.1038/191248a0 

321. Mingueneau M, Kreslavsky T, Gray D, Heng T, Cruse R, Ericson J, 
Bendall S, Spitzer MH, Nolan GP, Kobayashi K, von Boehmer H, Mathis D, 
Benoist C. 2013. The transcriptional landscape of αβ T cell differentiation. Nat 
Immunol 14:619–632. doi:10.1038/ni.2590 

322. Mishra R, Saha P, Datla SR, Mellacheruvu P, Gunasekaran M, Guru SA, 
Fu X, Chen L, Bolli R, Sharma S, Kaushal S. 2022. Transplanted allogeneic 
cardiac progenitor cells secrete GDF-15 and stimulate an active immune 
remodeling process in the ischemic myocardium. Journal of Translational 
Medicine 20:323. doi:10.1186/s12967-022-03534-0 

323. Miyakawa T. 2020. No raw data, no science: another possible source of 
the reproducibility crisis. Molecular Brain 13:24. doi:10.1186/s13041-020-0552-
2 

324. Mohrs M, Holscher C, Brombacher F. 2000. Interleukin-4 receptor alpha-
deficient BALB/c mice show an unimpaired T helper 2 polarization in response 
to Leishmania major infection. Infect Immun 68:1773–1780. 
doi:10.1128/IAI.68.4.1773-1780.2000 

325. Montagne JM, Zheng XA, Pinal-Fernandez I, Milisenda JC, Christopher-
Stine L, Lloyd TE, Mammen AL, Larman HB. 2020. Ultra-efficient sequencing 
of T Cell receptor repertoires reveals shared responses in muscle from patients 
with Myositis. EBioMedicine 59:102972. doi:10.1016/j.ebiom.2020.102972 

326. Mora T. 2019. How many different clonotypes do immune repertoires 
contain? Current Opinion in Systems Biology. 

327. Mora T, Walczak A, Bialek W, Callan C. 2010. Maximum entropy models 
for antibody diversity. Proceedings of the National Academy of Sciences of the 
United States of America 107. doi:10.1073/pnas.1001705107 

328. Mora T, Walczak AM. 2016. Quantifying lymphocyte receptor diversity. 
doi:10.1101/046870 

329. Moreews M, Gouge KL, Khaldi-Plassart S, Pescarmona R, Mathieu A-L, 
Malcus C, Djebali S, Bellomo A, Dauwalder O, Perret M, Villard M, Chopin E, 
Rouvet I, Vandenesch F, Dupieux C, Pouyau R, Teyssedre S, Guerder M, 
Louazon T, Moulin-Zinsch A, Duperril M, Patural H, Giovannini-Chami L, 
Portefaix A, Kassai B, Venet F, Monneret G, Lombard C, Flodrops H, Guillebon 
J-MD, Bajolle F, Launay V, Bastard P, Zhang S-Y, Dubois V, Thaunat O, 
Richard J-C, Mezidi M, Allatif O, Saker K, Dreux M, Abel L, Casanova J-L, 
Marvel J, Trouillet-Assant S, Klatzmann D, Walzer T, Mariotti-Ferrandiz E, 



 

 

224 

Javouhey E, Belot A. 2021. Polyclonal expansion of TCR Vb 21.3+ CD4+ and 
CD8+ T cells is a hallmark of multisystem inflammatory syndrome in children. 
Science Immunology 6. doi:10.1126/sciimmunol.abh1516 

330. Morshead KB, Ciccone DN, Taverna SD, Allis CD, Oettinger MA. 2003. 
Antigen receptor loci poised for V(D)J rearrangement are broadly associated with 
BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc Natl 
Acad Sci U S A 100:11577–11582. doi:10.1073/pnas.1932643100 

331. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. 
1986. Two types of murine helper T cell clone. I. Definition according to profiles 
of lymphokine activities and secreted proteins. The Journal of Immunology 
136:2348–2357. doi:10.4049/jimmunol.136.7.2348 

332. Mottet C, Uhlig HH, Powrie F. 2003. Cutting edge: cure of colitis by 
CD4+CD25+ regulatory T cells. J Immunol 170:3939–3943. 
doi:10.4049/jimmunol.170.8.3939 

333. Muhowski EM, Rogers LM. 2023. Dual TCR-Expressing T Cells in 
Cancer: How Single-Cell Technologies Enable New Investigation. 
Immunohorizons 7:299–306. doi:10.4049/immunohorizons.2200062 

334. Murphy KM, Heimberger AB, Loh DY. 1990. Induction by antigen of 
intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 
250:1720–1723. doi:10.1126/science.2125367 

335. Murtagh F, Legendre P. 2014. Ward’s Hierarchical Agglomerative 
Clustering Method: Which Algorithms Implement Ward’s Criterion? J Classif 
31:274–295. doi:10.1007/s00357-014-9161-z 

336. Murugan A, Mora T, Walczak AM, Callan CG. 2012. Statistical inference 
of the generation probability of T-cell receptors from sequence repertoires. Proc 
Natl Acad Sci USA 109:16161–16166. doi:10.1073/pnas.1212755109 

337. Musvosvi M, Huang H, Wang C, Xia Q, Rozot V, Krishnan A, Acs P, 
Cheruku A, Obermoser G, Leslie A, Behar SM, Hanekom WA, Bilek N, Fisher 
M, Kaufmann SHE, Walzl G, Hatherill M, Davis MM, Scriba TJ. 2023. T cell 
receptor repertoires associated with control and disease progression following 
Mycobacterium tuberculosis infection. Nat Med 29:258–269. 
doi:10.1038/s41591-022-02110-9 

338. Myers JM, Cooper LT, Kem DC, Stavrakis S, Kosanke SD, Shevach EM, 
Fairweather D, Stoner JA, Cox CJ, Cunningham MW. 2016. Cardiac myosin-
Th17 responses promote heart failure in human myocarditis. JCI Insight 1. 
doi:10.1172/jci.insight.85851 

339. Nadeu F, Royo R, Massoni-Badosa R, Playa-Albinyana H, Garcia-Torre 
B, Duran-Ferrer M, Dawson KJ, Kulis M, Diaz-Navarro A, Villamor N, Melero 
JL, Chapaprieta V, Dueso-Barroso A, Delgado J, Moia R, Ruiz-Gil S, Marchese 



 

 

225 

D, Giró A, Verdaguer-Dot N, Romo M, Clot G, Rozman M, Frigola G, Rivas-
Delgado A, Baumann T, Alcoceba M, González M, Climent F, Abrisqueta P, 
Castellví J, Bosch F, Aymerich M, Enjuanes A, Ruiz-Gaspà S, López-Guillermo 
A, Jares P, Beà S, Capella-Gutierrez S, Gelpí JL, López-Bigas N, Torrents D, 
Campbell PJ, Gut I, Rossi D, Gaidano G, Puente XS, Garcia-Roves PM, Colomer 
D, Heyn H, Maura F, Martín-Subero JI, Campo E. 2022. Detection of early 
seeding of Richter transformation in chronic lymphocytic leukemia. Nat Med 
28:1662–1671. doi:10.1038/s41591-022-01927-8 

340. Nägele F, Graber M, Hirsch J, Pölzl L, Sahanic S, Fiegl M, Hau D, Engler 
C, Lechner S, Stalder AK, Mertz KD, Haslbauer JD, Tzankov A, Grimm M, 
Tancevski I, Holfeld J, Gollmann-Tepeköylü C. 2022. Correlation between 
structural heart disease and cardiac SARS-CoV-2 manifestations. Commun Med 
2:1–8. doi:10.1038/s43856-022-00204-6 

341. Nathan CF, Murray HW, Wiebe ME, Rubin BY. 1983. Identification of 
interferon-gamma as the lymphokine that activates human macrophage oxidative 
metabolism and antimicrobial activity. J Exp Med 158:670–689. 
doi:10.1084/jem.158.3.670 

342. Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, 
Fuchs E, Joosten LAB, van der Meer JWM, Mhlanga MM, Mulder WJM, Riksen 
NP, Schlitzer A, Schultze JL, Stabell Benn C, Sun JC, Xavier RJ, Latz E. 2020. 
Defining trained immunity and its role in health and disease. Nat Rev Immunol 
20:375–388. doi:10.1038/s41577-020-0285-6 

343. Nevers T, Salvador AM, Grodecki-Pena A, Knapp A, Velázquez F, 
Aronovitz M, Kapur NK, Karas RH, Blanton RM, Alcaide P. 2015. Left 
Ventricular T-Cell Recruitment Contributes to the Pathogenesis of Heart Failure. 
Circulation: Heart Failure 8:776–787. 
doi:10.1161/CIRCHEARTFAILURE.115.002225 

344. Nevers T, Salvador AM, Velazquez F, Ngwenyama N, Carrillo-Salinas 
FJ, Aronovitz M, Blanton RM, Alcaide P. 2017. Th1 effector T cells selectively 
orchestrate cardiac fibrosis in nonischemic heart failure. J Exp Med 214:3311–
3329. doi:10.1084/jem.20161791 

345. Nguyen JL, Yang W, Ito K, Matte TD, Shaman J, Kinney PL. 2016. 
Seasonal Influenza Infections and Cardiovascular Disease Mortality. JAMA 
Cardiol 1:274–281. doi:10.1001/jamacardio.2016.0433 

346. Ngwenyama N, Kirabo A, Aronovitz M, Velázquez F, Carrillo-Salinas F, 
Salvador AM, Nevers T, Amarnath V, Tai A, Blanton RM, Harrison DG, Alcaide 
P. 2021. Isolevuglandin-Modified Cardiac Proteins Drive CD4+ T Cell 
Activation in the Heart and Promote Cardiac Dysfunction. Circulation 
CIRCULATIONAHA.120.051889. 
doi:10.1161/CIRCULATIONAHA.120.051889 



 

 

226 

347. Nikpay M, Goel A, Won H-H, Hall LM, Willenborg C, Kanoni S, 
Saleheen D, Kyriakou T, Nelson CP, Hopewell JC, Webb TR, Zeng L, Dehghan 
A, Alver M, Armasu SM, Auro K, Bjonnes A, Chasman DI, Chen S, Ford I, 
Franceschini N, Gieger C, Grace C, Gustafsson S, Huang Jie, Hwang S-J, Kim 
YK, Kleber ME, Lau KW, Lu X, Lu Y, Lyytikäinen L-P, Mihailov E, Morrison 
AC, Pervjakova N, Qu L, Rose LM, Salfati E, Saxena R, Scholz M, Smith AV, 
Tikkanen E, Uitterlinden A, Yang X, Zhang W, Zhao W, de Andrade M, de Vries 
PS, van Zuydam NR, Anand SS, Bertram L, Beutner F, Dedoussis G, Frossard P, 
Gauguier D, Goodall AH, Gottesman O, Haber M, Han B-G, Huang Jianfeng, 
Jalilzadeh S, Kessler T, König IR, Lannfelt L, Lieb W, Lind L, Lindgren CM, 
Lokki M-L, Magnusson PK, Mallick NH, Mehra N, Meitinger T, Memon F-R, 
Morris AP, Nieminen MS, Pedersen NL, Peters A, Rallidis LS, Rasheed A, 
Samuel M, Shah SH, Sinisalo J, Stirrups KE, Trompet S, Wang L, Zaman KS, 
Ardissino D, Boerwinkle E, Borecki IB, Bottinger EP, Buring JE, Chambers JC, 
Collins R, Cupples LA, Danesh J, Demuth I, Elosua R, Epstein SE, Esko T, 
Feitosa MF, Franco OH, Franzosi MG, Granger CB, Gu D, Gudnason V, Hall 
AS, Hamsten A, Harris TB, Hazen SL, Hengstenberg C, Hofman A, Ingelsson E, 
Iribarren C, Jukema JW, Karhunen PJ, Kim B-J, Kooner JS, Kullo IJ, Lehtimäki 
T, Loos RJF, Melander O, Metspalu A, März W, Palmer CN, Perola M, 
Quertermous T, Rader DJ, Ridker PM, Ripatti S, Roberts R, Salomaa V, Sanghera 
DK, Schwartz SM, Seedorf U, Stewart AF, Stott DJ, Thiery J, Zalloua PA, 
O’Donnell CJ, Reilly MP, Assimes TL, Thompson JR, Erdmann J, Clarke R, 
Watkins H, Kathiresan S, McPherson R, Deloukas P, Schunkert H, Samani NJ, 
Farrall M, the CARDIoGRAMplusC4D Consortium. 2015. A comprehensive 
1000 Genomes–based genome-wide association meta-analysis of coronary artery 
disease. Nat Genet 47:1121–1130. doi:10.1038/ng.3396 

348. Nindl V, Maier R, Ratering D, De Giuli R, Züst R, Thiel V, Scandella E, 
Di Padova F, Kopf M, Rudin M, Rülicke T, Ludewig B. 2012. Cooperation of 
Th1 and Th17 cells determines transition from autoimmune myocarditis to dilated 
cardiomyopathy. European Journal of Immunology 42:2311–2321. 
doi:10.1002/eji.201142209 

349. Nistala K, Adams S, Cambrook H, Ursu S, Olivito B, de Jager W, Evans 
JG, Cimaz R, Bajaj-Elliott M, Wedderburn LR. 2010. Th17 plasticity in human 
autoimmune arthritis is driven by the inflammatory environment. Proceedings of 
the National Academy of Sciences 107:14751–14756. 
doi:10.1073/pnas.1003852107 

350. Nosbaum A, Prevel N, Truong H-A, Mehta P, Ettinger M, Scharschmidt 
TC, Ali NH, Pauli ML, Abbas AK, Rosenblum MD. 2016. Cutting Edge: 
Regulatory T Cells Facilitate Cutaneous Wound Healing. The Journal of 
Immunology 196:2010–2014. doi:10.4049/jimmunol.1502139 

351. Nouri N, Kleinstein SH. 2018. A spectral clustering-based method for 
identifying clones from high-throughput B cell repertoire sequencing data. 
Bioinformatics 34:i341–i349. doi:10.1093/bioinformatics/bty235 



 

 

227 

352. Nyren P, Pettersson B, Uhlen M. 1993. Solid Phase DNA Minisequencing 
by an Enzymatic Luminometric Inorganic Pyrophosphate Detection Assay. 
Analytical Biochemistry 208:171–175. doi:10.1006/abio.1993.1024 

353. Obata F, Tsunoda M, Ito K, Ito I, Kaneko T, Pawelec G, Kashiwagi N. 
1993. A single universal primer for the T-Cell receptor (TCR) variable genes 
enables enzymatic amplification and direct sequencing of TCRβ cDNA of various 
T-cell clones. Human Immunology 36:163–167. doi:10.1016/0198-
8859(93)90120-P 

354. Oettinger MA, Schatz DG, Gorka C, Baltimore D. 1990. RAG-1 and 
RAG-2, Adjacent Genes That Synergistically Activate V(D)J Recombination. 
Science 248:1517–1523. doi:10.1126/science.2360047 

355. Offord C. 2023. Key study of cancer microbiomes challenged. Science 
381:590–591. doi:10.1126/science.adk2103 

356. Ohashi PS, Oehen S, Buerki K, Pircher H, Ohashi CT, Odermatt B, 
Malissen B, Zinkernagel RM, Hengartner H. 1991. Ablation of “tolerance” and 
induction of diabetes by virus infection in viral antigen transgenic mice. Cell 
65:305–317. doi:10.1016/0092-8674(91)90164-t 

357. Ohta-Ogo K, Sugano Y, Ogata S, Nakayama T, Komori T, Eguchi K, Dohi 
K, Yokokawa T, Kanamori H, Nishimura S, Nakamura K, Ikeda Y, Nishimura 
K, Takemura G, Anzai T, Hiroe M, Hatakeyama K, Ishibashi-Ueda H, Imanaka-
Yoshida K. 2022. Myocardial T-Lymphocytes as a Prognostic Risk-Stratifying 
Marker of Dilated Cardiomyopathy ― Results of the Multicenter Registry to 
Investigate Inflammatory Cell Infiltration in Dilated Cardiomyopathy in Tissues 
of Endomyocardial Biopsy (INDICATE Study) ―. Circulation Journal 
86:1092–1101. doi:10.1253/circj.CJ-21-0529 

358. Okino ST, Kong M, Sarras H, Wang Y. 2016. Evaluation of bias 
associated with high-multiplex, target-specific pre-amplification. Biomolecular 
Detection and Quantification, Special Issue: Advanced Molecular Diagnostics 
for Biomarker Discovery – Part II 6:13–21. doi:10.1016/j.bdq.2015.12.001 

359. Oldstone MB, Nerenberg M, Southern P, Price J, Lewicki H. 1991. Virus 
infection triggers insulin-dependent diabetes mellitus in a transgenic model: role 
of anti-self (virus) immune response. Cell 65:319–331. doi:10.1016/0092-
8674(91)90165-u 

360. Olson BJ, Schattgen SA, Thomas PG, Bradley P, Iv FAM. 2022. 
Comparing T cell receptor repertoires using optimal transport. PLOS 
Computational Biology 18:e1010681. doi:10.1371/journal.pcbi.1010681 

361. Omer A, Peres A, Rodriguez OL, Watson CT, Lees W, Polak P, Collins 
AM, Yaari G. 2022. T cell receptor beta germline variability is revealed by 
inference from repertoire data. Genome Med 14:1–19. doi:10.1186/s13073-021-
01008-4 



 

 

228 

362. Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. 2008. Foxp3+ natural 
regulatory T cells preferentially form aggregates on dendritic cells in vitro and 
actively inhibit their maturation. Proceedings of the National Academy of 
Sciences 105:10113–10118. doi:10.1073/pnas.0711106105 

363. Onouchi Y, Tamari M, Takahashi A, Tsunoda T, Yashiro M, Nakamura 
Yoshikazu, Yanagawa H, Wakui K, Fukushima Y, Kawasaki T, Nakamura 
Yusuke, Hata A. 2007. A genomewide linkage analysis of Kawasaki disease: 
evidence for linkage to chromosome 12. J Hum Genet 52:179–190. 
doi:10.1007/s10038-006-0092-3 

364. Org T, Rebane A, Kisand K, Laan M, Haljasorg U, Andreson R, Peterson 
P. 2009. AIRE activated tissue specific genes have histone modifications 
associated with inactive chromatin. Human Molecular Genetics 18:4699. 
doi:10.1093/hmg/ddp433 

365. Ortmann B, Androlewicz MJ, Cresswell P. 1994. MHC class l/β2-
microglobulin complexes associate with TAP transporters before peptide 
binding. Nature 368:864–867. doi:10.1038/368864a0 

366. Ostmeyer J, Christley S, Toby IT, Cowell LG. 2019. Biophysicochemical 
Motifs in T-cell Receptor Sequences Distinguish Repertoires from Tumor-
Infiltrating Lymphocyte and Adjacent Healthy Tissue. Cancer Res 79:1671–
1680. doi:10.1158/0008-5472.CAN-18-2292 

367. Ostmeyer J, Lucas E, Christley S, Lea J, Monson N, Tiro J, Cowell LG. 
2020. Biophysicochemical motifs in T cell receptor sequences as a potential 
biomarker for high-grade serous ovarian carcinoma. PLOS ONE 15:e0229569. 
doi:10.1371/journal.pone.0229569 

368. Paakkanen R, Lokki M-L, Seppänen M, Tierala I, Nieminen MS, Sinisalo 
J. 2012. Proinflammatory HLA-DRB1*01-haplotype predisposes to ST-elevation 
myocardial infarction. Atherosclerosis 221:461–466. 
doi:10.1016/j.atherosclerosis.2012.01.024 

369. Padgett LE, Dinh HQ, Wu R, Gaddis DE, Araujo DJ, Winkels H, Nguyen 
A, Taylor AM, McNamara CA, Hedrick CC. 2020. Naive CD8+ T Cells 
Expressing CD95 Increase Human Cardiovascular Disease Severity. 
Arteriosclerosis, Thrombosis, and Vascular Biology 40:2845–2859. 
doi:10.1161/ATVBAHA.120.315106 

370. Padovan E, Casorati G, Dellabona P, Meyer S, Brockhaus M, 
Lanzavecchia A. 1993. Expression of Two T Cell Receptor α Chains: Dual 
Receptor T Cells. Science 262:422–424. doi:10.1126/science.8211163 

371. Pai JA, Satpathy AT. 2021. High-throughput and single-cell T cell 
receptor sequencing technologies. Nat Methods 18:881–892. 
doi:10.1038/s41592-021-01201-8 



 

 

229 

372. Pannetier C, Cochet M, Darche S, Casrouge A, Zöller M, Kourilsky P. 
1993. The sizes of the CDR3 hypervariable regions of the murine T-cell receptor 
beta chains vary as a function of the recombined germ-line segments. 
Proceedings of the National Academy of Sciences 90:4319–4323. 
doi:10.1073/pnas.90.9.4319 

373. Pantaleo G, Demarest JF, Soudeyns H, Graziosi C, Denis F, Adelsberger 
JW, Borrow P, Saag MS, Shaw GM, Sekalytt RP, Fauci AS. 1994. Major 
expansion of CD8+ T cells with a predominant Vβ usage during the primary 
immune response to HIV. Nature 370:463–467. doi:10.1038/370463a0 

374. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang Y-H, Wang Y, 
Hood L, Zhu Z, Tian Q, Dong C. 2005. A distinct lineage of CD4 T cells regulates 
tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141. 
doi:10.1038/ni1261 

375. Park J-E, Botting RA, Domínguez Conde C, Popescu D-M, Lavaert M, 
Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, Wilbrey-Clark A, Roberts 
K, Kedlian VR, Ferdinand JR, He X, Webb S, Maunder D, Vandamme N, 
Mahbubani KT, Polanski K, Mamanova L, Bolt L, Crossland D, de Rita F, Fuller 
A, Filby A, Reynolds G, Dixon D, Saeb-Parsy K, Lisgo S, Henderson D, Vento-
Tormo R, Bayraktar OA, Barker RA, Meyer KB, Saeys Y, Bonfanti P, Behjati S, 
Clatworthy MR, Taghon T, Haniffa M, Teichmann SA. 2020. A cell atlas of 
human thymic development defines T cell repertoire formation. Science 
367:eaay3224. doi:10.1126/science.aay3224 

376. Pasqual N, Gallagher M, Aude-Garcia C, Loiodice M, Thuderoz F, 
Demongeot J, Ceredig R, Marche PN, Jouvin-Marche E. 2002. Quantitative and 
Qualitative Changes in V-J α Rearrangements During Mouse Thymocytes 
Differentiation. J Exp Med 196:1163–1174. doi:10.1084/jem.20021074 

377. Paulsson G, Zhou X, Törnquist E, Hansson GK. 2000. Oligoclonal T cell 
expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. 
Arterioscler Thromb Vasc Biol 20:10–17. doi:10.1161/01.atv.20.1.10 

378. Pawlak M, Ho AW, Kuchroo VK. 2020. Cytokines and transcription 
factors in the differentiation of CD4+ T helper cell subsets and induction of tissue 
inflammation and autoimmunity. Current Opinion in Immunology, 
Autoimmunity 67:57–67. doi:10.1016/j.coi.2020.09.001 

379. Peacock T, Heather JM, Ronel T, Chain B. 2021. Decombinator V4: an 
improved AIRR-C compliant-software package for T-cell receptor sequence 
annotation? Bioinformatics 37:876–878. doi:10.1093/bioinformatics/btaa758 

380. Pegg DE. 2010. The relevance of ice crystal formation for the 
cryopreservation of tissues and organs. Cryobiology 60:S36-44. 
doi:10.1016/j.cryobiol.2010.02.003 



 

 

230 

381. Pender MP, Csurhes PA, Burrows JM, Burrows SR. 2017. Defective T-
cell control of Epstein–Barr virus infection in multiple sclerosis. Clinical & 
Translational Immunology 6:e126. doi:10.1038/cti.2016.87 

382. Peng K, Nowicki TS, Campbell K, Vahed M, Peng D, Meng Y, 
Nagareddy A, Huang Y-N, Karlsberg A, Miller Z, Brito J, Nadel B, Pak VM, 
Abedalthagafi MS, Burkhardt AM, Alachkar H, Ribas A, Mangul S. 2023. 
Rigorous benchmarking of T-cell receptor repertoire profiling methods for cancer 
RNA sequencing. Briefings in Bioinformatics 24:bbad220. 
doi:10.1093/bib/bbad220 

383. Petrie HT, Livak F, Schatz DG, Strasser A, Crispe IN, Shortman K. 1993. 
Multiple rearrangements in T cell receptor alpha chain genes maximize the 
production of useful thymocytes. J Exp Med 178:615–622. 
doi:10.1084/jem.178.2.615 

384. Pierce BG, Eberwine R, Noble JA, Habib M, Shulha HP, Weng Z, 
Blankenhorn EP, Mordes JP. 2013. The Missing Heritability in T1D and Potential 
New Targets for Prevention. J Diabetes Res 2013:737485. 
doi:10.1155/2013/737485 

385. Pierce BG, Weng Z. 2013. A flexible docking approach for prediction of 
T cell receptor–peptide–MHC complexes. Protein Science 22:35–46. 
doi:10.1002/pro.2181 

386. Pietra BA, De Inocencio J, Giannini EH, Hirsch R. 1994. TCR V beta 
family repertoire and T cell activation markers in Kawasaki disease. J Immunol 
153:1881–1888. 

387. Pinto S, Michel C, Schmidt-Glenewinkel H, Harder N, Rohr K, Wild S, 
Brors B, Kyewski B. 2013. Overlapping gene coexpression patterns in human 
medullary thymic epithelial cells generate self-antigen diversity. Proc Natl Acad 
Sci U S A 110:E3497-3505. doi:10.1073/pnas.1308311110 

388. Pogorelyy MV, Minervina AA, Chudakov DM, Mamedov IZ, Lebedev 
YB, Mora T, Walczak AM. 2018. Method for identification of condition-
associated public antigen receptor sequences. eLife 7:e33050. 
doi:10.7554/eLife.33050 

389. Pogorelyy MV, Minervina AA, Shugay M, Chudakov DM, Lebedev YB, 
Mora T, Walczak AM. 2019. Detecting T cell receptors involved in immune 
responses from single repertoire snapshots. PLOS Biology 17:e3000314. 
doi:10.1371/journal.pbio.3000314 

390. Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro S, 
Kosciolek T, Janssen S, Metcalf J, Song SJ, Kanbar J, Miller-Montgomery S, 
Heaton R, Mckay R, Patel SP, Swafford AD, Knight R. 2020. Microbiome 
analyses of blood and tissues suggest cancer diagnostic approach. Nature 
579:567–574. doi:10.1038/s41586-020-2095-1 



 

 

231 

391. Poran A, Scherer J, Bushway ME, Besada R, Balogh KN, Wanamaker A, 
Williams RG, Prabhakara J, Ott PA, Hu-Lieskovan S, Khondker ZS, Gaynor RB, 
Rooney MS, Srinivasan L. 2020. Combined TCR Repertoire Profiles and Blood 
Cell Phenotypes Predict Melanoma Patient Response to Personalized Neoantigen 
Therapy plus Anti-PD-1. Cell Rep Med 1:100141. 
doi:10.1016/j.xcrm.2020.100141 

392. Porciello N, Franzese O, D’Ambrosio L, Palermo B, Nisticò P. 2022. T-
cell repertoire diversity: friend or foe for protective antitumor response? J Exp 
Clin Cancer Res 41:356. doi:10.1186/s13046-022-02566-0 

393. Porritt RA, Paschold L, Noval Rivas M, Cheng MH, Yonker LM, 
Chandnani H, Lopez M, Simnica D, Schultheiß C, Santiskulvong C, van Eyk J, 
McCormick JK, Fasano A, Bahar I, Binder M, Arditi M. 2021. HLA class I-
associated expansion of TRBV11-2 T cells in Multisystem Inflammatory 
Syndrome in Children. J Clin Invest. doi:10.1172/JCI146614 

394. Postow MA, Manuel M, Wong P, Yuan J, Dong Z, Liu C, Perez S, 
Tanneau I, Noel M, Courtier A, Pasqual N, Wolchok JD. 2015. Peripheral T cell 
receptor diversity is associated with clinical outcomes following ipilimumab 
treatment in metastatic melanoma. J Immunother Cancer 3:23. 
doi:10.1186/s40425-015-0070-4 

395. Potoczna N, Boehncke W-H, Nestle FO, Küenzlen C, Sterry W, Burg G, 
Dummer R. 1996. T-cell receptor β variable region (Vβ) usage in cutaneous T-
cell lymphomas (CTCL) in comparison to normal and eczematous skin. Journal 
of Cutaneous Pathology 23:298–305. doi:10.1111/j.1600-0560.1996.tb01301.x 

396. Powell BR, Buist NRM, Stenzel P. 1982. An X-linked syndrome of 
diarrhea, polyendocrinopathy, and fatal infection in infancy. The Journal of 
Pediatrics 100:731–737. doi:10.1016/S0022-3476(82)80573-8 

397. Puisieux I, Bain C, Merrouche Y, Malacher P, Kourilsky P, Even J, Favrot 
M. 1996. Restriction of the T-cell repertoire in tumor-infiltrating lymphocytes 
from nine patients with renal-cell carcinoma relevance of the CDR3 length 
analysis for the identification of in situ clonal T-cell expansions. International 
Journal of Cancer 66:201–208. doi:10.1002/(SICI)1097-
0215(19960410)66:2<201::AID-IJC11>3.0.CO;2-F 

398. Pummerer CL, Luze K, Grässl G, Bachmaier K, Offner F, Burrell SK, 
Lenz DM, Zamborelli TJ, Penninger JM, Neu N. 1996. Identification of cardiac 
myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. 
J Clin Invest 97:2057–2062. doi:10.1172/JCI118642 

399. Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D, Lee J-Y, Olshen RA, 
Weyand CM, Boyd SD, Goronzy JJ. 2014. Diversity and clonal selection in the 
human T-cell repertoire. Proceedings of the National Academy of Sciences 
111:13139–13144. doi:10.1073/pnas.1409155111 



 

 

232 

400. Quiniou V, Barennes P, Mhanna V, Stys P, Vantomme H, Zhou Z, 
Martina F, Coatnoan N, Barbie M, Pham H-P, Clémenceau B, Vie H, Shugay M, 
Six A, Brandao B, Mallone R, Mariotti-Ferrandiz E, Klatzmann D. 2023. Human 
thymopoiesis produces polyspecific CD8+ α/β T cells responding to multiple 
viral antigens. eLife 12:e81274. doi:10.7554/eLife.81274 

401. Ramos GC, Dalbó S, Leite DP, Goldfeder E, Carvalho CR, Vaz NM, 
Assreuy J. 2012. The autoimmune nature of post-infarct myocardial healing: oral 
tolerance to cardiac antigens as a novel strategy to improve cardiac healing. 
Autoimmunity 45:233–244. doi:10.3109/08916934.2011.647134 

402. Ramos GC, van den Berg A, Nunes-Silva V, Weirather J, Peters L, 
Burkard M, Friedrich M, Pinnecker J, Abeßer M, Heinze KG, Schuh K, 
Beyersdorf N, Kerkau T, Demengeot J, Frantz S, Hofmann U. 2017. Myocardial 
aging as a T-cell–mediated phenomenon. Proceedings of the National Academy 
of Sciences 114:E2420–E2429. doi:10.1073/pnas.1621047114 

403. Ramsden DA, Baetz K, Wu GE. 1994. Conservation of sequence in 
recombination signal sequence spacers. Nucleic Acids Research 22:1785–1796. 
doi:10.1093/nar/22.10.1785 

404. Ramsköld D, Wang ET, Burge CB, Sandberg R. 2009. An Abundance of 
Ubiquitously Expressed Genes Revealed by Tissue Transcriptome Sequence 
Data. PLOS Computational Biology 5:e1000598. 
doi:10.1371/journal.pcbi.1000598 

405. Rao M, Wang X, Guo G, Wang L, Chen S, Yin P, Chen K, Chen L, Zhang 
Z, Chen X, Hu X, Hu S, Song J. 2021. Resolving the intertwining of inflammation 
and fibrosis in human heart failure at single-cell level. Basic Res Cardiol 116:55. 
doi:10.1007/s00395-021-00897-1 

406. Reichert T, DeBruyère M, Deneys V, Tötterman T, Lydyard P, Yuksel F, 
Chapel H, Jewell D, Van Hove L, Linden J. 1991. Lymphocyte subset reference 
ranges in adult Caucasians. Clin Immunol Immunopathol 60:190–208. 
doi:10.1016/0090-1229(91)90063-g 

407. Reinherz EL, Kung PC, Goldstein G, Levey RH, Schlossman SF. 1980a. 
Discrete stages of human intrathymic differentiation: Analysis of normal 
thymocytes and leukemic lymphoblasts of T-cell lineage. Proceedings of the 
National Academy of Sciences 77:1588–1592. doi:10.1073/pnas.77.3.1588 

408. Reinherz EL, Moretta L, Roper M, Breard J, Mingari M, Cooper M, 
Schlossman S. 1980b. Human T lymphocyte subpopulations defined by Fc 
receptors and monoclonal antibodies. A comparison. The Journal of experimental 
medicine 151. doi:10.1084/jem.151.4.969 

409. Rieckmann M, Delgobo M, Gaal C, Büchner L, Steinau P, Reshef D, Gil-
Cruz C, Horst EN ter, Kircher M, Reiter T, Heinze KG, Niessen HWM, Krijnen 
PAJ, van der Laan AM, Piek JJ, Koch C, Wester H-J, Lapa C, Bauer WR, 



 

 

233 

Ludewig B, Friedman N, Frantz S, Hofmann U, Ramos GC. 2019. Myocardial 
infarction triggers cardioprotective antigen-specific T helper cell responses. 
Journal of Clinical Investigation 129:4922–4936. doi:10.1172/JCI123859 

410. Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Kahsai 
O, Riddell SR, Warren EH, Carlson CS. 2009. Comprehensive assessment of T-
cell receptor β-chain diversity in αβ T cells. Blood 114:4099–4107. 
doi:10.1182/blood-2009-04-217604 

411. Ronel T, Harries M, Wicks K, Oakes T, Singleton H, Dearman R, 
Maxwell G, Chain B. 2021. The clonal structure and dynamics of the human T 
cell response to an organic chemical hapten. eLife 10:e54747. 
doi:10.7554/eLife.54747 

412. Rosenau W, Moon HD. 1961. Lysis of Homologous Cells by Sensitized 
Lymphocytes in Tissue Culture2. JNCI: Journal of the National Cancer Institute 
27:471–483. doi:10.1093/jnci/27.2.471 

413. Saito H, Kranz DM, Takagaki Y, Hayday AC, Eisen HN, Tonegawa S. 
1984a. Complete primary structure of a heterodimeric T-cell receptor deduced 
from cDNA sequences. Nature 309:757–762. doi:10.1038/309757a0 

414. Saito H, Kranz DM, Takagaki Y, Hayday AC, Eisen HN, Tonegawa S. 
1984b. A third rearranged and expressed gene in a clone of cytotoxic T 
lymphocytes. Nature 312:36–40. doi:10.1038/312036a0 

415. Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T, Yamazaki S, 
Sakihama T, Matsutani T, Negishi I, Nakatsuru S, Sakaguchi S. 2003. Altered 
thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune 
arthritis in mice. Nature 426:454–460. doi:10.1038/nature02119 

416. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. 1995. 
Immunologic self-tolerance maintained by activated T cells expressing IL-2 
receptor alpha-chains (CD25). Breakdown of a single mechanism of self-
tolerance causes various autoimmune diseases. J Immunol 155:1151–1164. 

417. Salgado-Pabón W, Breshears L, Spaulding AR, Merriman JA, Stach CS, 
Horswill AR, Peterson ML, Schlievert PM. 2013. Superantigens Are Critical for 
Staphylococcus aureus Infective Endocarditis, Sepsis, and Acute Kidney Injury. 
mBio 4:10.1128/mbio.00494-13. doi:10.1128/mbio.00494-13 

418. Saltis M, Criscitiello MF, Ohta Y, Keefe M, Trede NS, Goitsuka R, 
Flajnik MF. 2008. Evolutionarily conserved and divergent regions of the 
Autoimmune Regulator (Aire) gene: a comparative analysis. Immunogenetics 
60:105–114. doi:10.1007/s00251-007-0268-9 

419. Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-
terminating inhibitors. Proceedings of the National Academy of Sciences of the 
United States of America 74:5463. doi:10.1073/pnas.74.12.5463 



 

 

234 

420. Sansom SN, Shikama-Dorn N, Zhanybekova S, Nusspaumer G, Macaulay 
IC, Deadman ME, Heger A, Ponting CP, Holländer GA. 2014. Population and 
single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, 
and distribution of self-antigen expression in thymic epithelia. Genome Res 
24:1918–1931. doi:10.1101/gr.171645.113 

421. Santos-Zas I, Lemarié J, Zlatanova I, Cachanado M, Seghezzi J-C, 
Benamer H, Goube P, Vandestienne M, Cohen R, Ezzo M, Duval V, Zhang Y, 
Su J-B, Bizé A, Sambin L, Bonnin P, Branchereau M, Heymes C, Tanchot C, 
Vilar J, Delacroix C, Hulot J-S, Cochain C, Bruneval P, Danchin N, Tedgui A, 
Mallat Z, Simon T, Ghaleh B, Silvestre J-S, Ait-Oufella H. 2021. Cytotoxic CD8 
+ T cells promote granzyme B-dependent adverse post-ischemic cardiac 
remodeling. Nat Commun 12:1483. doi:10.1038/s41467-021-21737-9 

422. Sartini C, Barry SJ, Whincup PH, Wannamethee SG, Lowe GD, Jefferis 
BJ, Lennon L, Welsh P, Ford I, Sattar N, Morris RW. 2017. Relationship between 
outdoor temperature and cardiovascular disease risk factors in older people. Eur 
J Prev Cardiol 24:349–356. doi:10.1177/2047487316682119 

423. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, 
Tanaka S, Kodama T, Akira S, Iwakura Y, Cua DJ, Takayanagi H. 2006. Th17 
functions as an osteoclastogenic helper T cell subset that links T cell activation 
and bone destruction. J Exp Med 203:2673–2682. doi:10.1084/jem.20061775 

424. Sattar N, Murray HM, Welsh P, Blauw GJ, Buckley BM, Cobbe S, de 
Craen AJM, Lowe GD, Jukema JW, Macfarlane PW, Murphy MB, Stott DJ, 
Westendorp RGJ, Shepherd J, Ford I, Packard CJ, Prospective Study of 
Pravastatin in the Elderly at Risk (PROSPER) Study Group. 2009. Are markers 
of inflammation more strongly associated with risk for fatal than for nonfatal 
vascular events? PLoS Med 6:e1000099. doi:10.1371/journal.pmed.1000099 

425. Saxena A, Dobaczewski M, Rai V, Haque Z, Chen W, Li N, 
Frangogiannis NG. 2014. Regulatory T cells are recruited in the infarcted mouse 
myocardium and may modulate fibroblast phenotype and function. Am J Physiol 
Heart Circ Physiol 307:H1233-1242. doi:10.1152/ajpheart.00328.2014 

426. Schattgen SA, Guion K, Crawford JC, Souquette A, Barrio AM, 
Stubbington MJT, Thomas PG, Bradley P. 2022. Integrating T cell receptor 
sequences and transcriptional profiles by clonotype neighbor graph analysis 
(CoNGA). Nat Biotechnol 40:54–63. doi:10.1038/s41587-021-00989-2 

427. Schnepp PM, Chen M, Keller ET, Zhou X. 2019. SNV identification from 
single-cell RNA sequencing data. Hum Mol Genet 28:3569–3583. 
doi:10.1093/hmg/ddz207 

428. Schober K, Voit F, Grassmann S, Müller TR, Eggert J, Jarosch S, 
Weißbrich B, Hoffmann P, Borkner L, Nio E, Fanchi L, Clouser CR, 
Radhakrishnan A, Mihatsch L, Lückemeier P, Leube J, Dössinger G, Klein L, 



 

 

235 

Neuenhahn M, Oduro JD, Cicin-Sain L, Buchholz VR, Busch DH. 2020. Reverse 
TCR repertoire evolution toward dominant low-affinity clones during chronic 
CMV infection. Nat Immunol 21:434–441. doi:10.1038/s41590-020-0628-2 

429. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, 
Lightfoot S, Menzel W, Granzow M, Ragg T. 2006. The RIN: an RNA integrity 
number for assigning integrity values to RNA measurements. BMC Molecular 
Biology 7:3. doi:10.1186/1471-2199-7-3 

430. Schuldt NJ, Binstadt BA. 2019. Dual TCR T Cells: Identity Crisis or 
Multitaskers? The Journal of Immunology 202:637–644. 
doi:10.4049/jimmunol.1800904 

431. Schulenburg H, Kurtz J, Moret Y, Siva-Jothy MT. 2009. Introduction. 
Ecological immunology. Philos Trans R Soc Lond B Biol Sci 364:3–14. 
doi:10.1098/rstb.2008.0249 

432. Schwartz RH. 2003. T Cell Anergy. Annu Rev Immunol 21:305–334. 
doi:10.1146/annurev.immunol.21.120601.141110 

433. Schwarz K, Gh G, L L, U P, Z L, D L, W F, Ra S, Te H-H, S D, Mr L, Cr 
B. 1996. RAG mutations in human B cell-negative SCID. Science (New York, 
NY) 274. doi:10.1126/science.274.5284.97 

434. Scotto–Lavino E, Du G, Frohman MA. 2006. 5′ end cDNA amplification 
using classic RACE. Nat Protoc 1:2555–2562. doi:10.1038/nprot.2006.480 

435. Sender R, Milo R. 2021. The distribution of cellular turnover in the human 
body. Nat Med 27:45–48. doi:10.1038/s41591-020-01182-9 

436. Sengar DPS, Couture RA, Jindal SL, Catching JD. 1985. 
Histocompatibility antigens in essential hypertension and myocardial infarction. 
Tissue Antigens 26:168–171. doi:10.1111/j.1399-0039.1985.tb00954.x 

437. Sepich-Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro 
S, Kosciolek T, Janssen S, Metcalf J, Song SJ, Kanbar J, Miller-Montgomery S, 
Heaton R, Mckay R, Patel SP, Swafford AD, Knight R. 2023. Reply to: Caution 
Regarding the Specificities of Pan-Cancer Microbial Structure. 
doi:10.1101/2023.02.10.528049 

438. Serwold T, F G, J K, R J, N S. 2002. ERAAP customizes peptides for 
MHC class I molecules in the endoplasmic reticulum. Nature 419. 
doi:10.1038/nature01074 

439. Sethna Z, Elhanati Y, Callan C, Walczak A, Mora T. 2019. OLGA: fast 
computation of generation probabilities of B- and T-cell receptor amino acid 
sequences and motifs. Bioinformatics (Oxford, England) 35. 
doi:10.1093/bioinformatics/btz035 



 

 

236 

440. Sharma S, Plant D, Bowes J, Macgregor A, Verstappen S, Barton A, 
Viatte S. 2022. HLA-DRB1 haplotypes predict cardiovascular mortality in 
inflammatory polyarthritis independent of CRP and anti-CCP status. Arthritis 
Research & Therapy 24:90. doi:10.1186/s13075-022-02775-0 

441. Shen M-JR, Boutell JM, Stephens KM, Ronaghi M, Gunderson K, 
Venkatesan BM, Bowen MS, Vijayan K. 2014. Kinetic exclusion amplification 
of nucleic acid libraries. US8895249B2. 

442. Shen Y, Li R, Tian F, Chen Z, Lu N, Bai Y, Ge Q, Lu Z. 2018. Impact of 
RNA integrity and blood sample storage conditions on the gene expression 
analysis. OTT 11:3573–3581. doi:10.2147/OTT.S158868 

443. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum 
AM, Wang MD, Zhang K, Mitra RD, Church GM. 2005. Accurate Multiplex 
Polony Sequencing of an Evolved Bacterial Genome. Science 309:1728–1732. 
doi:10.1126/science.1117389 

444. Sheng J, Wang H, Liu X, Deng Y, Yu Y, Xu P, Shou J, Pan Hong, Li H, 
Zhou X, Han W, Sun T, Pan Hongming, Fang Y. 2021. Deep Sequencing of T-
Cell Receptors for Monitoring Peripheral CD8+ T Cells in Chinese Advanced 
Non–Small-Cell Lung Cancer Patients Treated With the Anti–PD-L1 Antibody. 
Frontiers in Molecular Biosciences 8. 

445. Shimizu K, Iyoda T, Sanpei A, Nakazato H, Okada M, Ueda S, Kato-
Murayama M, Murayama K, Shirouzu M, Harada N, Hidaka M, Fujii S. 2021. 
Identification of TCR repertoires in functionally competent cytotoxic T cells 
cross-reactive to SARS-CoV-2. Commun Biol 4:1–13. doi:10.1038/s42003-021-
02885-6 

446. Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB, Rothstein TL, 
Weigert MG. 1987. The role of clonal selection and somatic mutation in 
autoimmunity. Nature 328:805–811. doi:10.1038/328805a0 

447. Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC, Dolton 
G, Komech EA, Sycheva AL, Koneva AE, Egorov ES, Eliseev AV, Van Dyk E, 
Dash P, Attaf M, Rius C, Ladell K, McLaren JE, Matthews KK, Clemens EB, 
Douek DC, Luciani F, van Baarle D, Kedzierska K, Kesmir C, Thomas PG, Price 
DA, Sewell AK, Chudakov DM. 2018. VDJdb: a curated database of T-cell 
receptor sequences with known antigen specificity. Nucleic Acids Research 
46:D419–D427. doi:10.1093/nar/gkx760 

448. Sica A, Mantovani A. 2012. Macrophage plasticity and polarization: in 
vivo veritas. J Clin Invest 122:787–795. doi:10.1172/JCI59643 

449. Sidhom J-W, Larman HB, Pardoll DM, Baras AS. 2021. DeepTCR is a 
deep learning framework for revealing sequence concepts within T-cell 
repertoires. Nat Commun 12:1605. doi:10.1038/s41467-021-21879-w 



 

 

237 

450. Sidorov IA, Romanyukha AA. 1993. Mathematical modeling of T-cell 
proliferation. Mathematical Biosciences 115:187–232. doi:10.1016/0025-
5564(93)90071-H 

451. Sim B-C, Zerva L, Greene MI, Gascoigne NRJ. 1996. Control of MHC 
Restriction by TCR Vα CDR1 and CDR2. Science 273:963–966. 
doi:10.1126/science.273.5277.963 

452. Simon JS, Botero S, Simon SM. 2018. Sequencing the peripheral blood B 
and T cell repertoire – Quantifying robustness and limitations. Journal of 
Immunological Methods 463:137–147. doi:10.1016/j.jim.2018.10.003 

453. Singleton H, Popple A, Gellatly N, Maxwell G, Williams J, Friedmann 
PS, Kimber I, Dearman RJ. 2016. Anti-hapten antibodies in response to skin 
sensitization. Contact Dermatitis 74:197–204. doi:10.1111/cod.12486 

454. Sintou A, Mansfield C, Iacob A, Chowdhury RA, Narodden S, Rothery 
SM, Podovei R, Sanchez-Alonso JL, Ferraro E, Swiatlowska P, Harding SE, 
Prasad S, Rosenthal N, Gorelik J, Sattler S. 2020. Mediastinal Lymphadenopathy, 
Class-Switched Auto-Antibodies and Myocardial Immune-Complexes During 
Heart Failure in Rodents and Humans. Front Cell Dev Biol 8:695. 
doi:10.3389/fcell.2020.00695 

455. Siu G, Clark SP, Yoshikai Y, Malissen M, Yanagi Y, Strauss E, Mak TW, 
Hood L. 1984. The human T cell antigen receptor is encoded by variable, 
diversity, and joining gene segments that rearrange to generate a complete V 
gene. Cell 37:393–401. doi:10.1016/0092-8674(84)90369-6 

456. Six A, Mariotti-Ferrandiz ME, Chaara W, Magadan S, Pham H-P, Lefranc 
M-P, Mora T, Thomas-Vaslin V, Walczak AM, Boudinot P. 2013. The Past, 
Present, and Future of Immune Repertoire Biology – The Rise of Next-
Generation Repertoire Analysis. Front Immunol 4. 
doi:10.3389/fimmu.2013.00413 

457. Smirnova AO, Miroshnichenkova AM, Belyaeva LD, Kelmanson IV, 
Lebedev YB, Mamedov IZ, Chudakov DM, Komkov AY. 2023. Novel bimodal 
TRBD1-TRBD2 rearrangements with dual or absent D-region contribute to TRB 
V-(D)-J combinatorial diversity. Frontiers in Immunology 14. 

458. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner 
C, Kent SB, Hood LE. 1986. Fluorescence detection in automated DNA sequence 
analysis. Nature 321:674–679. doi:10.1038/321674a0 

459. Smith T, Heger A, Sudbery I. 2017. UMI-tools: modeling sequencing 
errors in Unique Molecular Identifiers to improve quantification accuracy. 
Genome Res 27:491–499. doi:10.1101/gr.209601.116 

460. Son ET, Faridi P, Paul-Heng M, Leong ML, English K, Ramarathinam 
SH, Braun A, Dudek NL, Alexander IE, Lisowski L, Bertolino P, Bowen DG, 



 

 

238 

Purcell AW, Mifsud NA, Sharland AF. 2021. The self-peptide repertoire plays a 
critical role in transplant tolerance induction. J Clin Invest 131. 
doi:10.1172/JCI146771 

461. Song L, Cohen D, Ouyang Z, Cao Y, Hu X, Liu XS. 2021. TRUST4: 
immune repertoire reconstruction from bulk and single-cell RNA-seq data. Nat 
Methods 18:627–630. doi:10.1038/s41592-021-01142-2 

462. Specht H, Emmott E, Petelski AA, Huffman RG, Perlman DH, Serra M, 
Kharchenko P, Koller A, Slavov N. 2021. Single-cell proteomic and 
transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome 
Biology 22:50. doi:10.1186/s13059-021-02267-5 

463. Spinale FG. 2002. Matrix Metalloproteinases. Circulation Research 
90:520–530. doi:10.1161/01.RES.0000013290.12884.A3 

464. Stephen B, Hajjar J, Sarda S, Duose DY, Conroy JM, Morrison C, 
Alshawa A, Xu M, Zarifa A, Patel SP, Yuan Y, Kwiatkowski E, Wang L, Ahnert 
JR, Fu S, Meric-Bernstam F, Lowman GM, Looney T, Naing A. 2023. T-cell 
receptor beta variable gene polymorphism predicts immune-related adverse 
events during checkpoint blockade immunotherapy. J Immunother Cancer 
11:e007236. doi:10.1136/jitc-2023-007236 

465. Stewart S, Keates AK, Redfern A, McMurray JJV. 2017. Seasonal 
variations in cardiovascular disease. Nature Reviews Cardiology 14:654–664. 
doi:10.1038/nrcardio.2017.76 

466. Stirk ER, Molina-París C, van den Berg HA. 2008. Stochastic niche 
structure and diversity maintenance in the T cell repertoire. Journal of 
Theoretical Biology 255:237–249. doi:10.1016/j.jtbi.2008.07.017 

467. Struyk L, Hawes GE, Chatila MK, Breedveld FC, Kurnick JT, Elsen 
PJVD. 1995. T cell receptors in rheumatoid arthritis. Arthritis & Rheumatism 
38:577–589. doi:10.1002/art.1780380502 

468. Suliga E, Kozieł D, Ciesla E, Rebak D, Głuszek-Osuch M, Naszydłowska 
E, Głuszek S. 2019. The Consumption of Alcoholic Beverages and the Prevalence 
of Cardiovascular Diseases in Men and Women: A Cross-Sectional Study. 
Nutrients 11:1318. doi:10.3390/nu11061318 

469. Sun W, Cui Y, Zhen L, Huang L. 2011. Association between HLA-DRB1, 
HLA-DRQB1 alleles, and CD4+CD28null T cells in a Chinese population with 
coronary heart disease. Mol Biol Rep 38:1675–1679. doi:10.1007/s11033-010-
0279-8 

470. Taleb S, Tedgui A, Mallat Z. 2015. IL-17 and Th17 Cells in 
Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 35:258–
264. doi:10.1161/ATVBAHA.114.303567 



 

 

239 

471. Tang T-T, Zhu Y-C, Dong N-G, Zhang S, Cai J, Zhang L-X, Han Y, Xia 
N, Nie S-F, Zhang M, Lv B-J, Jiao J, Yang X-P, Hu Y, Liao Y-H, Cheng X. 2019. 
Pathologic T-cell response in ischaemic failing hearts elucidated by T-cell 
receptor sequencing and phenotypic characterization. Eur Heart J. 
doi:10.1093/eurheartj/ehz516 

472. Thapa DR, Tonikian R, Sun C, Liu M, Dearth A, Petri M, Pepin F, 
Emerson RO, Ranger A. 2015. Longitudinal analysis of peripheral blood T cell 
receptor diversity in patients with systemic lupus erythematosus by next-
generation sequencing. Arthritis Res Ther 17:1–12. doi:10.1186/s13075-015-
0655-9 

473. The MHC sequencing consortium. 1999. Complete sequence and gene 
map of a human major histocompatibility complex. Nature 401:921–923. 
doi:10.1038/44853 

474. Thomas P, Pang Y, Dong J, Berg AH. 2014. Identification and 
Characterization of Membrane Androgen Receptors in the ZIP9 Zinc Transporter 
Subfamily: II. Role of Human ZIP9 in Testosterone-Induced Prostate and Breast 
Cancer Cell Apoptosis. Endocrinology 155:4250–4265. doi:10.1210/en.2014-
1201 

475. Thomas-Vaslin V, Altes HK, de Boer RJ, Klatzmann D. 2008. 
Comprehensive assessment and mathematical modeling of T cell population 
dynamics and homeostasis. J Immunol 180:2240–2250. 
doi:10.4049/jimmunol.180.4.2240 

476. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving 
the sensitivity of progressive multiple sequence alignment through sequence 
weighting, position-specific gap penalties and weight matrix choice. Nucleic 
Acids Research 22:4673. doi:10.1093/nar/22.22.4673 

477. Thompson SD, Pelkonen J, Hurwitz JL. 1990. First T cell receptor alpha 
gene rearrangements during T cell ontogeny skew to the 5’ region of the J alpha 
locus. J Immunol 145:2347–2352. 

478. Tickotsky N, Sagiv T, Prilusky J, Shifrut E, Friedman N. 2017. McPAS-
TCR: a manually curated catalogue of pathology-associated T cell receptor 
sequences. Bioinformatics 33:2924–2929. doi:10.1093/bioinformatics/btx286 

479. Timmis A, Townsend N, Gale C, Grobbee R, Maniadakis N, Flather M, 
Wilkins E, Wright L, Vos R, Bax J, Blum M, Pinto F, Vardas P, ESC Scientific 
Document Group, Goda A, Demiraj AF, Weidinger F, Metzler B, Ibrahimov F, 
Pasquet AA, Claeys M, Thorton Y, Kusljugic Z, Smajic E, Velchev V, Ivanov N, 
Antoniades L, Agathangelou P, Táborský M, Gerdes C, Viigima M, Juhani PM, 
Juilliere Y, Cattan S, Aladashvili A, Hamm C, Kuck K-H, Papoutsis K, Bestehorn 
K, Foussas S, Giannoulidou G, Varounis C, Kallikazaros I, Kiss RG, Czétényi T, 
Becker D, Gudnason T, Kearney P, McDonald K, Rozenman Y, Ziv B, Bolognese 



 

 

240 

L, Luciolli P, Boriani G, Berkinbayev S, Rakisheva A, Mirrakhimov E, Erglis A, 
Jegere S, Marinskis G, Beissel J, Marchal N, Kedev S, Xuereb RG, Tilney T, 
Felice T, Popovici M, Bax J, Mulder B, Simoons M, Elsendoorn M, Steigen TK, 
Atar D, Kalarus Z, Tendera M, Cardoso JS, Ribeiro J, Mateus C, Tatu-Chitoiu G, 
Seferovic P, Beleslin B, Simkova I, Durcikova P, Belicova V, Fras Z, Radelj S, 
Gonzalez Juanatey JR, Legendre S, Braunschweig F, Kaufmann UP, Rudiger-
Sturchler M, Tokgozoglu L, Unver A, Kovalenko V, Nesukay E, Naum A, de 
Courtelary PT, Martin S, Sebastiao D, Ghislain D, Bardinet I, Logstrup S. 2018. 
European Society of Cardiology: Cardiovascular Disease Statistics 2017. 
European Heart Journal 39:508–579. doi:10.1093/eurheartj/ehx628 

480. Tonegawa S. 1983. Somatic generation of antibody diversity. Nature 
302:575–581. doi:10.1038/302575a0 

481. Tong Y, Li Z, Zhang H, Xia L, Zhang M, Xu Y, Wang Z, Deem MW, Sun 
X, He J. 2016. T Cell Repertoire Diversity Is Decreased in Type 1 Diabetes 
Patients. Genomics Proteomics Bioinformatics 14:338–348. 
doi:10.1016/j.gpb.2016.10.003 

482. Tong Y, Wang J, Zheng T, Zhang X, Xiao X, Zhu X, Lai X, Liu X. 2020. 
SETE: Sequence-based Ensemble learning approach for TCR Epitope binding 
prediction. Comput Biol Chem 87:107281. 
doi:10.1016/j.compbiolchem.2020.107281 

483. Trepel F. 1974. Number and distribution of lymphocytes in man. A critical 
analysis. Klin Wochenschr 52:511–515. doi:10.1007/BF01468720 

484. Tripolt NJ, Kolesnik E, Pferschy PN, Verheyen N, Ablasser K, Sailer S, 
Alber H, Berger R, Kaulfersch C, Leitner K, Lichtenauer M, Mader A, Moertl D, 
Oulhaj A, Reiter C, Rieder T, Saely CH, Siller-Matula J, Weidinger F, Zechner 
PM, von Lewinski D, Sourij H. 2020. Impact of EMpagliflozin on cardiac 
function and biomarkers of heart failure in patients with acute MYocardial 
infarction—The EMMY trial. American Heart Journal 221:39–47. 
doi:10.1016/j.ahj.2019.12.004 

485. Trück J, Eugster A, Barennes P, Tipton CM, Luning Prak ET, Bagnara D, 
Soto C, Sherkow JS, Payne AS, Lefranc M-P, Farmer A, Bostick M, Mariotti-
Ferrandiz E. 2021. Biological controls for standardization and interpretation of 
adaptive immune receptor repertoire profiling. eLife 10:e66274. 
doi:10.7554/eLife.66274 

486. Tubo NJ, Pagán AJ, Taylor JJ, Nelson RW, Linehan JL, Ertelt JM, Huseby 
ES, Way SS, Jenkins MK. 2013. Single Naive CD4+ T Cells from a Diverse 
Repertoire Produce Different Effector Cell Types during Infection. Cell 153:785–
796. doi:10.1016/j.cell.2013.04.007 

487. Tuzlak S, Dejean AS, Iannacone M, Quintana FJ, Waisman A, Ginhoux 
F, Korn T, Becher B. 2021. Repositioning TH cell polarization from single 



 

 

241 

cytokines to complex help. Nat Immunol 22:1210–1217. doi:10.1038/s41590-
021-01009-w 

488. Tykocinski L-O, Sinemus A, Rezavandy E, Weiland Y, Baddeley D, 
Cremer C, Sonntag S, Willecke K, Derbinski J, Kyewski B. 2010. Epigenetic 
regulation of promiscuous gene expression in thymic medullary epithelial cells. 
Proc Natl Acad Sci U S A 107:19426–19431. doi:10.1073/pnas.1009265107 

489. Unutmaz D, Pileri P, Abrignani S. 1994. Antigen-independent activation 
of naive and memory resting T cells by a cytokine combination. J Exp Med 
180:1159–1164. doi:10.1084/jem.180.3.1159 

490. Valkiers S, Houcke MV, Laukens K, Meysman P. 2021. clusTCR: a 
Python interface for rapid clustering of large sets of CDR3 sequences. bioRxiv 
2021.02.22.432291. doi:10.1101/2021.02.22.432291 

491. Vander Heiden JA, Yaari G, Uduman M, Stern JNH, O’Connor KC, 
Hafler DA, Vigneault F, Kleinstein SH. 2014. pRESTO: a toolkit for processing 
high-throughput sequencing raw reads of lymphocyte receptor repertoires. 
Bioinformatics 30:1930–1932. doi:10.1093/bioinformatics/btu138 

492. Venturi V, Chin HY, Asher TE, Ladell K, Scheinberg P, Bornstein E, van 
Bockel D, Kelleher AD, Douek DC, Price DA, Davenport MP. 2008. TCR β-
Chain Sharing in Human CD8+ T Cell Responses to Cytomegalovirus and EBV1. 
The Journal of Immunology 181:7853–7862. doi:10.4049/jimmunol.181.11.7853 

493. Verhoeven D, Teijaro JR, Farber DL. 2008. Heterogeneous Memory T 
Cells in Antiviral Immunity and Immunopathology. Viral Immunology 21:99–
114. doi:10.1089/vim.2008.0002 

494. von Lewinski D, Kolesnik E, Tripolt NJ, Pferschy PN, Benedikt M, 
Wallner M, Alber H, Berger R, Lichtenauer M, Saely CH, Moertl D, Auersperg 
P, Reiter C, Rieder T, Siller-Matula JM, Gager GM, Hasun M, Weidinger F, 
Pieber TR, Zechner PM, Herrmann M, Zirlik A, Holman RR, Oulhaj A, Sourij 
H, on behalf of the EMMY Investigators. 2022. Empagliflozin in acute 
myocardial infarction: the EMMY trial. European Heart Journal 43:4421–4432. 
doi:10.1093/eurheartj/ehac494 

495. Vujović M, Marcatili P, Chain B, Kaplinsky J, Andresen TL. 2023. 
Signatures of T cell immunity revealed using sequence similarity with 
TCRDivER algorithm. Commun Biol 6:1–13. doi:10.1038/s42003-023-04702-8 

496. Walenta K, Kindermann I, Gärtner B, Kandolph R, Link A, Böhm M. 
2006. Dangerous Kisses: Epstein-Barr Virus Myocarditis Mimicking Myocardial 
Infarction. The American Journal of Medicine 119:e3–e6. 
doi:10.1016/j.amjmed.2005.11.033 



 

 

242 

497. Walsh CM, Matloubian M, Liu CC, Ueda R, Kurahara CG, Christensen 
JL, Huang MT, Young JD, Ahmed R, Clark WR. 1994. Immune function in mice 
lacking the perforin gene. Proc Natl Acad Sci U S A 91:10854–10858. 

498. Wang F, Huang C-Y, Kanagawa O. 1998. Rapid deletion of rearranged T 
cell antigen receptor (TCR) Vα-Jα segment by secondary rearrangement in the 
thymus: Role of continuous rearrangement of TCR α chain gene and positive 
selection in the T cell repertoire formation. Proceedings of the National Academy 
of Sciences 95:11834–11839. doi:10.1073/pnas.95.20.11834 

499. Wang H, Peng G, Bai J, He B, Huang K, Hu X, Liu D. 2017. 
Cytomegalovirus Infection and Relative Risk of Cardiovascular Disease 
(Ischemic Heart Disease, Stroke, and Cardiovascular Death): A Meta‐Analysis of 
Prospective Studies Up to 2016. J Am Heart Assoc 6:e005025. 
doi:10.1161/JAHA.116.005025 

500. Wang S, Sontag ED, Lauffenburger DA. 2023. What cannot be seen 
correctly in 2D visualizations of single-cell ‘omics data? cels 14:723–731. 
doi:10.1016/j.cels.2023.07.002 

501. Wang Z, Xie L, Ding G, Song S, Chen L, Li G, Xia M, Han D, Zheng Y, 
Liu J, Xiao T, Zhang H, Huang Y, Li Y, Huang M. 2021. Single-cell RNA 
sequencing of peripheral blood mononuclear cells from acute Kawasaki disease 
patients. Nat Commun 12:5444. doi:10.1038/s41467-021-25771-5 

502. Watanabe M, Panetta GL, Piccirillo F, Spoto S, Myers J, Serino FM, 
Costantino S, Di Sciascio G. 2019. Acute Epstein-Barr related myocarditis: An 
unusual but life-threatening disease in an immunocompetent patient. J Cardiol 
Cases 21:137–140. doi:10.1016/j.jccase.2019.12.001 

503. Weber CR, Akbar R, Yermanos A, Pavlović M, Snapkov I, Sandve GK, 
Reddy ST, Greiff V. 2020. immuneSIM: tunable multi-feature simulation of B- 
and T-cell receptor repertoires for immunoinformatics benchmarking. 
Bioinformatics 36:3594–3596. doi:10.1093/bioinformatics/btaa158 

504. Wei J, Zanker D, Carluccio ARD, Smelkinson MG, Takeda K, Seedhom 
MO, Dersh D, Gibbs JS, Yang N, Jadhav A, Chen W, Yewdell JW. 2017. Varied 
Role of Ubiquitylation in Generating MHC Class I Peptide Ligands. Journal of 
immunology (Baltimore, Md : 1950) 198:3835. doi:10.4049/jimmunol.1602122 

505. Weirather J, Hofmann UDW, Beyersdorf N, Ramos GC, Vogel B, Frey 
A, Ertl G, Kerkau T, Frantz S. 2014. Foxp3+ CD4+ T cells improve healing after 
myocardial infarction by modulating monocyte/macrophage differentiation. Circ 
Res 115:55–67. doi:10.1161/CIRCRESAHA.115.303895 

506. Westermann J, Pabst R. 1992. Distribution of lymphocyte subsets and 
natural killer cells in the human body. The Clinical investigator 70. 
doi:10.1007/BF00184787 



 

 

243 

507. Westermann J, Pabst R. 1990. Lymphocyte subsets in the blood: a 
diagnostic window on the lymphoid system? Immunol Today 11:406–410. 
doi:10.1016/0167-5699(90)90160-b 

508. White J, Herman A, Pullen AM, Kubo R, Kappler JW, Marrack P. 1989. 
The Vβ-specific superantigen staphylococcal enterotoxin B: Stimulation of 
mature T cells and clonal deletion in neonatal mice. Cell 56:27–35. 
doi:10.1016/0092-8674(89)90980-X 

509. Whittaker RH. 1972. Evolution and Measurement of Species Diversity. 
Taxon 21:213–251. doi:10.2307/1218190 

510. Wiedeman AE, Muir VS, Rosasco MG, DeBerg HA, Presnell S, Haas B, 
Dufort MJ, Speake C, Greenbaum CJ, Serti E, Nepom GT, Blahnik G, Kus AM, 
James EA, Linsley PS, Long SA. 2020. Autoreactive CD8+ T cell exhaustion 
distinguishes subjects with slow type 1 diabetes progression. J Clin Invest 
130:480–490. doi:10.1172/JCI126595 

511. Wilkins E, Wilson L, Wickramasinghe K, Bhatnagar P, Leal J, Luengo-
Fernandez R, Burns R, Rayner M, Townsend N. 2017. European Cardiovascular 
Disease Statistics 2017. Brussels: European Heart Network. 

512. Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, 
Baak A, Blomberg N, Boiten J-W, da Silva Santos LB, Bourne PE, Bouwman J, 
Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, 
Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa 
J, ’t Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons 
A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S-A, 
Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der 
Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft 
K, Zhao J, Mons B. 2016. The FAIR Guiding Principles for scientific data 
management and stewardship. Sci Data 3:160018. doi:10.1038/sdata.2016.18 

513. Wolf D, Gerhardt T, Winkels H, Michel NA, Pramod AB, Ghosheh Y, 
Brunel S, Buscher K, Miller J, McArdle S, Baas L, Kobiyama K, Vassallo M, 
Ehinger E, Dileepan T, Ali A, Schell M, Mikulski Z, Sidler D, Kimura T, Sheng 
X, Horstmann H, Hansen S, Mitre LS, Stachon P, Hilgendorf I, Gaddis DE, 
Hedrick C, Benedict CA, Peters B, Zirlik A, Sette A, Ley K. 2020. Pathogenic 
Autoimmunity in Atherosclerosis Evolves From Initially Protective 
Apolipoprotein B 100 –Reactive CD4 + T-Regulatory Cells. Circulation 
142:1279–1293. doi:10.1161/CIRCULATIONAHA.119.042863 

514. Won T, Kalinoski HM, Wood MK, Hughes DM, Jaime CM, Delgado P, 
Talor MV, Lasrado N, Reddy J, Čiháková D. 2022. Cardiac myosin-specific 
autoimmune T cells contribute to immune-checkpoint-inhibitor-associated 
myocarditis. Cell Reports 41:111611. doi:10.1016/j.celrep.2022.111611 



 

 

244 

515. Wong WF, Kohu K, Nakamura A, Ebina M, Kikuchi T, Tazawa R, Tanaka 
K, Kon S, Funaki T, Sugahara-Tobinai A, Looi CY, Endo S, Funayama R, 
Kurokawa M, Habu S, Ishii N, Fukumoto M, Nakata K, Takai T, Satake M. 2012. 
Runx1 deficiency in CD4+ T cells causes fatal autoimmune inflammatory lung 
disease due to spontaneous hyperactivation of cells. J Immunol 188:5408–5420. 
doi:10.4049/jimmunol.1102991 

516. Wu LC, Tuot DS, Lyons DS, Garcia KC, Davis MM. 2002. Two-step 
binding mechanism for T-cell receptor recognition of peptide–MHC. Nature 
418:552–556. doi:10.1038/nature00920 

517. Wulf MG, Maguire S, Humbert P, Dai N, Bei Y, Nichols NM, Corrêa IR, 
Guan S. 2019. Non-templated addition and template switching by Moloney 
murine leukemia virus (MMLV)-based reverse transcriptases co-occur and 
compete with each other. Journal of Biological Chemistry 294:18220–18231. 
doi:10.1074/jbc.RA119.010676 

518. Xia N, Lu Y, Gu M, Li N, Liu M, Jiao J, Zhu Z, Li J, Li D, Tang T, Lv B, 
Nie S, Zhang M, Liao M, Liao Y, Yang X, Cheng X. 2020. A Unique Population 
of Regulatory T Cells in Heart Potentiates Cardiac Protection From Myocardial 
Infarction. Circulation 142:1956–1973. 
doi:10.1161/CIRCULATIONAHA.120.046789 

519. Xie X, Shi X, Liu M. 2018. The Roles of Genetic Factors in Kawasaki 
Disease: A Systematic Review and Meta-analysis of Genetic Association Studies. 
Pediatr Cardiol 39:207–225. doi:10.1007/s00246-017-1760-0 

520. Xu Y, Qian X, Zhang X, Lai X, Liu Y, Wang J. 2022. DeepLION: Deep 
Multi-Instance Learning Improves the Prediction of Cancer-Associated T Cell 
Receptors for Accurate Cancer Detection. Front Genet 13:860510. 
doi:10.3389/fgene.2022.860510 

521. Yamagata H, Kobayashi A, Tsunedomi R, Seki T, Kobayashi M, 
Hagiwara K, Chen C, Uchida S, Okada G, Fuchikami M, Kamishikiryo T, Iga J, 
Numata S, Kinoshita M, Kato TA, Hashimoto R, Nagano H, Okamoto Y, Ueno 
S, Ohmori T, Nakagawa S. 2021. Optimized protocol for the extraction of RNA 
and DNA from frozen whole blood sample stored in a single EDTA tube. Sci Rep 
11:17075. doi:10.1038/s41598-021-96567-2 

522. Yan X, Anzai A, Katsumata Y, Matsuhashi T, Ito K, Endo J, Yamamoto 
T, Takeshima A, Shinmura K, Shen W, Fukuda K, Sano M. 2013. Temporal 
dynamics of cardiac immune cell accumulation following acute myocardial 
infarction. Journal of Molecular and Cellular Cardiology 62:24–35. 
doi:10.1016/j.yjmcc.2013.04.023 

523. Yan X, Shichita T, Katsumata Y, Matsuhashi T, Ito H, Ito K, Anzai A, 
Endo J, Tamura Y, Kimura K, Fujita J, Shinmura K, Shen W, Yoshimura A, 
Fukuda K, Sano M. 2012. Deleterious Effect of the IL-23/IL-17A Axis and γδT 



 

 

245 

Cells on Left Ventricular Remodeling After Myocardial Infarction. J Am Heart 
Assoc 1:e004408. doi:10.1161/JAHA.112.004408 

524. Yang H-Q, Wang Y-S, Zhai K, Tong Z-H. 2021. Single-Cell TCR 
Sequencing Reveals the Dynamics of T Cell Repertoire Profiling During 
Pneumocystis Infection. Frontiers in Microbiology 12. 

525. Yang Z, Day Y-J, Toufektsian M-C, Xu Y, Ramos SI, Marshall MA, 
French BA, Linden J. 2006. Myocardial infarct-sparing effect of adenosine A2A 
receptor activation is due to its action on CD4+ T lymphocytes. Circulation 
114:2056–2064. doi:10.1161/CIRCULATIONAHA.106.649244 

526. Yassai MB, Naumov YN, Naumova EN, Gorski J. 2009. A clonotype 
nomenclature for T cell receptors. Immunogenetics 61:493–502. 
doi:10.1007/s00251-009-0383-x 

527. Ye Y, Jia X, Bajaj M, Birnbaum Y. 2018. Dapagliflozin Attenuates 
Na+/H+ Exchanger-1 in Cardiofibroblasts via AMPK Activation. Cardiovasc 
Drugs Ther 32:553–558. doi:10.1007/s10557-018-6837-3 

528. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, Mckenzie B, 
Kleinschek MA, Owyang A, Mattson J, Blumenschein W, Murphy E, Sathe M, 
Cua DJ, Kastelein RA, Rennick D. 2006. IL-23 is essential for T cell–mediated 
colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116:1310–
1316. doi:10.1172/JCI21404 

529. Yeo HC, Selvarajoo K. 2022. Machine learning alternative to systems 
biology should not solely depend on data. Briefings in Bioinformatics 
23:bbac436. doi:10.1093/bib/bbac436 

530. Yokota R, Kaminaga Y, Kobayashi TJ. 2017. Quantification of Inter-
Sample Differences in T-Cell Receptor Repertoires Using Sequence-Based 
Information. Front Immunol 8:1500. doi:10.3389/fimmu.2017.01500 

531. Yousaf Z, Albaz N, Abdelmajid AA, Sabobeh T, Elzouki A. 2021. 
Reactivation cytomegalovirus leading to acute myocardial infarction—A first 
reported case in an immunocompetent patient. Clin Case Rep 9:1958–1963. 
doi:10.1002/ccr3.3914 

532. Yu X, Ye J, Hathaway CA, Tworoger S, Lea J, Li B. 2023. Quantifiable 
TCR repertoire changes in pre-diagnostic blood specimens among high-grade 
ovarian cancer patients. doi:10.1101/2023.10.12.562056 

533. Zacchigna S, Martinelli V, Moimas S, Colliva A, Anzini M, Nordio A, 
Costa A, Rehman M, Vodret S, Pierro C, Colussi G, Zentilin L, Gutierrez MI, 
Dirkx E, Long C, Sinagra G, Klatzmann D, Giacca M. 2018. Paracrine effect of 
regulatory T cells promotes cardiomyocyte proliferation during pregnancy and 
after myocardial infarction. Nat Commun 9:2432. doi:10.1038/s41467-018-
04908-z 



 

 

246 

534. Zehn D, Bevan M. 2006. T cells with low avidity for a tissue-restricted 
antigen routinely evade central and peripheral tolerance and cause autoimmunity. 
Immunity 25. doi:10.1016/j.immuni.2006.06.009 

535. Zerrahn J, Held W, Raulet DH. 1997. The MHC Reactivity of the T Cell 
Repertoire Prior to Positive and Negative Selection. Cell 88:627–636. 
doi:10.1016/S0092-8674(00)81905-4 

536. Zhang H, Liu L, Zhang J, Chen J, Ye J, Shukla S, Qiao J, Zhan X, Chen 
H, Wu CJ, Fu Y-X, Li B. 2020. Investigation of Antigen-Specific T-Cell 
Receptor Clusters in Human Cancers. Clinical Cancer Research 26:1359–1371. 
doi:10.1158/1078-0432.CCR-19-3249 

537. Zhang H, Zhan X, Li B. 2021. GIANA allows computationally-efficient 
TCR clustering and multi-disease repertoire classification by isometric 
transformation. Nat Commun 12:4699. doi:10.1038/s41467-021-25006-7 

538. Zhang J, Wang Y, Yu H, Chen G, Wang L, Liu F, Yuan J, Ni Q, Xia X, 
Wan Y. 2021. Mapping the spatial distribution of T cells in repertoire dimension. 
Molecular Immunology 138:161–171. doi:10.1016/j.molimm.2021.08.009 

539. Zhang S, Zhang X, Wang K, Xu X, Li M, Zhang J, Zhang Y, Hao J, Sun 
X, Chen Y, Liu X, Chang Y, Jin R, Wu H, Ge Q. 2018. Newly Generated CD4+ 
T Cells Acquire Metabolic Quiescence after Thymic Egress. J Immunol 
200:1064–1077. doi:10.4049/jimmunol.1700721 

540. Zhang Z, Xiong D, Wang X, Liu H, Wang T. 2021. Mapping the 
functional landscape of T cell receptor repertoires by single-T cell 
transcriptomics. Nature Methods 18:92–99. doi:10.1038/s41592-020-01020-3 

541. Zhao TX, Sriranjan RS, Lu Y, Hubsch A, Kaloyirou F, Vamvaka E, 
Helmy J, Kostapanos M, Klatzmann D, Tedgui A, Rudd JHF, Hoole SP, Bond 
SP, Mallat Z, Cheriyan J. 2020. Low dose interleukin-2 in patients with stable 
ischaemic heart disease and acute coronary syndrome (LILACS). European 
Heart Journal 41:ehaa946.1735. doi:10.1093/ehjci/ehaa946.1735 

542. Zhao TX, Sriranjan RS, Tuong ZK, Lu Y, Sage AP, Nus M, Hubsch A, 
Kaloyirou F, Vamvaka E, Helmy J, Kostapanos M, Jalaludeen N, Klatzmann D, 
Tedgui A, Rudd JHF, Horton SJ, Huntly BJP, Hoole SP, Bond SP, Clatworthy 
MR, Cheriyan J, Mallat Z. 2022. Regulatory T-Cell Response to Low-Dose 
Interleukin-2 in Ischemic Heart Disease. NEJM Evidence 1:EVIDoa2100009. 
doi:10.1056/EVIDoa2100009 

543. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, 
Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, 
Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin 
M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg 
HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, 
Mikkelsen TS, Hindson BJ, Bielas JH. 2017. Massively parallel digital 



 

 

247 

transcriptional profiling of single cells. Nat Commun 8:14049. 
doi:10.1038/ncomms14049 

544. Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD. 2001. Reverse 
transcriptase template switching: a SMART approach for full-length cDNA 
library construction. Biotechniques 30:892–897. doi:10.2144/01304pf02 

545. Zinkernagel R, Doherty P. 1974. Immunological surveillance against 
altered self components by sensitised T lymphocytes in lymphocytic 
choriomeningitis. Nature 251. doi:10.1038/251547a0 

546. Zinkernagel RM, Doherty PC. 1974. Restriction of in vitro T cell-
mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or 
semiallogeneic system. Nature 248:701–702. doi:10.1038/248701a0 

 

 

  



 

 

248 

FIGURES AND TABLES 

 

FIGURES 

Figure 1: From the first observation to complete TCR complex characterisation. ........ 10 

Figure 2: Schematic mechanisms of the TCRαβ VDJ recombination. .......................... 12 

Figure 3: Schematic focusing on the initial steps of V(D)J recombination.  ................. 13 

Figure 4: A schematic representation of an αβ TCR expressed on the surface of a CD4+ 

cytotoxic T cell, .............................................................................................................. 18 

Figure 5: From primary structure to 3 dimensional structure of docking. ..................... 19 

Figure 6: Example of MHC-independent binding of Staphiloccocus endotoxins B and H 

(SEB, SEH) binding to TCRV beta region. ................................................................... 20 

Figure 7: Temporal schematic integrating the tolerance checkpoints at each stage of the 

peripheral T cell lifespan. ............................................................................................... 25 

Figure 8: Interplay between the cardiac and draining lymph nodes compartments.. ..... 31 

Figure 9: Direct sequencing of TCRβ cDNA amplified with the Vβ-universal primer. 39 

Figure 10: Can we predict T cell specificity with digital biology and machine learning?.

 ........................................................................................................................................ 54 

Figure 11: Patient stratification as good or bad healers from the ETiCS cohort.. ......... 62 

Figure 12: Expression levels of TRBC1-2 gene in circulating populations................... 64 

Figure 13: RNA Integrity Numbers obtained from extracted RNA ............................... 65 

Figure 14: ETiCS signature is associated to viral infections. ...................................... 156 

Figure 15: Overlap of cardiac biopsies with circulating blood .................................... 159 

Figure 16: Impact of Empagliflozin on echocardiographic parameters between treatments 

groups. .......................................................................................................................... 160 

Figure 17: EMMY and healthy volunteers datasets after sequencing and filtering of 

samples with less than 2000 unique clonotypes. .......................................................... 161 

Figure 18: Pipeline of identification of healing related CDR3 in the highly sparse EMMY 

cohort.. ......................................................................................................................... 162 

Figure 19: Analysis of CDR3 repertoires using GLIPH2 reveals sets of group-specific 

clusters.. ....................................................................................................................... 164 

https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274022
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274023
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274024
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274025
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274025
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274026
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274027
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274027
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274028
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274028
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274029
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274030
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274032
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274033
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274034
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274035
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274036
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274037
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274037
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274038
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274038
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274039
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274039
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274040
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274040


 

 

249 

Figure 20: Overlap of EMMY dataset CDR3 clusters with the ToCIs datasets using 

perfect match of CDR3 sequences. .............................................................................. 166 

Figure 21: Myocarditis CDR3s matching signature patterns. ...................................... 167 

Figure 22: Myocardial infarction per month in the ETiCS cohort ............................... 177 

 

 

TABLES 

Table 1: Comparison of HiSeq and NovaSeq parameters. ............................................. 61 

Table 2: Datasets used for the TCR of Myocardial Interest analysis. .......................... 165 

  

https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274041
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274041
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274042
https://dropsu.sorbonne-universite.fr/remote.php/dav/files/legouge/KLG/Manuscript/Plan/Reviewing_version_postrevewing-emf.docx#_Toc152274043


 

 

250 

ABSTRACT 
Modelling the T-cell repertoires of circulating T-cells and its application in 

cardiovascular diseases 

 
Cardiovascular diseases (CVD) are the leading cause of mortality in Europe, surpassing various 
cancers, and are a major current public health concern. The immune system is involved in the 
aetiology of these diseases. Among the many components of the immune system, T lymphocytes 
play a predominant role in the development, progression, or tissue repair of CVD. T lymphocytes 
carry out their function following their activation, which is determined by their ability to 
specifically recognise proteins or antigens, whether they are exogenous, such as those from 
pathogens or allergens, or endogenous, such as those from physiological cell renewal or tumour 
cells. This recognition is mediated by a specific receptor called the TCR, which stands for T-cell 
receptor. Unlike most genes, the TCR is generated through a random somatic recombination 
process involving around a hundred genes belonging to three major families: V for Variable, D 
for Diversity, and J for Junction. This unique mechanism, particular to genes encoding antigen-
specific receptors, takes place in the thymus during the development and differentiation of T 
lymphocytes and results in the production of several billion different TCRs in an individual. This 
diversity forms the TCR repertoire and provides each individual with the ability to recognize any 
antigen, whether exogenous or endogenous, and initiate an immune response. Therefore, the TCR 
repertoire is shaped throughout an individual's life depending on variable and successive 
exposures to the antigenic environment they encounter.  
In the context of my thesis, my goal was to assess the connection between the composition of the 
TCR repertoire and its dynamics with the development and progression of cardiovascular 
diseases.  
First, I evaluated the reliability of sequencing technologies that allow for a detailed analysis of 
the TCR repertoire's composition through the quantification of sequences from thousands of 
TCRs. During this work, I developed a quality control tool that enabled me to identify a 
contamination phenomenon related to the sequencing platform utilizing the exclusion 
amplification technology and devised an algorithm for data detection and decontamination.  
Furthermore, I characterized the TCR repertoire in different cardiovascular disease (MCV) 
situations. Through a national collaboration, I characterized the circulating TCR repertoire in 
paediatric cases of multisystem inflammatory syndrome following COVID-19. This study was 
fundamental in confirming the remote superantigen effect of a Sars-CoV2 infection and 
demonstrating the relevance of TCR sequencing data in addition to clinical observations for 
diagnostic assistance. In an international collaboration, we had access to blood samples from 
patients who had experienced a myocardial infarction. The aim of my work was to identify, from 
the TCRs in these patients' blood, a set of TCRs capable of predicting cardiac repair in these 
patients. These efforts demonstrated the feasibility of a method to identify a TCR signature 
distinguishing good from poor repairers.  
Finally, in a second cohort of myocardial infarction patients, I explored the relevance of network 
analysis of TCRs for low-coverage sequencing data. These studies showed that the signatures 
associated with cardiac repair prognosis were not linked to TCRs known for cardiac specificity. 
Collectively, these results have helped to better define the possibilities that massive TCR 
sequencing can offer in the context of cardiovascular diseases. 
 
Keywords : Cardiovascular diseases (CVD), T-cell receptor, T cell repertoire, 
myocardial infarction, Sars-CoV-2  
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Modélisation des répertoires des lymphocytes T circulants et son application 
aux maladies cardiovasculaires 

Les maladies cardio-vasculaires MCV représentent la première cause de mortalité en Europe, 
devant les différents cancers, et sont un enjeu actuel majeur de santé publique. Le système 
immunitaire est impliqué dans l’étiologie de ces maladies. Parmi les nombreux acteurs du 
système immunitaire, les lymphocytes T jouent un rôle prépondérant dans l’établissement de ces 
maladies, leur progression ou la réparation des tissus endommagés. Les lymphocytes T exercent 
leur fonction suite à leur activation déterminée par leur capacité à reconnaitre de manière 
spécifique des protéines, ou antigènes, soit exogènes, issues par exemple de pathogènes, 
allergènes, ou endogènes issues par exemple du renouvellement physiologique cellulaire ou de 
cellules tumorales. Cette reconnaissance est opérée par un récepteur particulier, appelé le TCR 
pour T-cell receptor. Contrairement à la majorité des gènes, le TCR est généré par un processus 
de recombinaison somatique aléatoire entre une centaine de gènes appartenant à trois grandes 
familles : V, pour Variable, D pour Diversité et J pour Jonction. Ce mécanisme, unique aux gènes 
codant pour les récepteurs spécifiques d’antigènes, a lieu dans le thymus, au cours du 
développement et de la différenciation des lymphocytes T et conduit à la production de plusieurs 
milliards de TCR différents chez un individu. Cette diversité forme le répertoire TCR et confère 
à chaque individu la capacité de reconnaitre tout antigène, exogène ou endogène, et de mettre en 
œuvre une réponse immunitaire. Ainsi, le répertoire TCR va être façonné tout au long de la vie 
d’un individu au gré des expositions variables et/ou successives à l’environnement antigénique 
auquel il se confronte.  
Dans le cadre de ma thèse, j’avais pour objectif d’évaluer quel pouvait être le lien entre la 
composition du répertoire TCR et sa dynamique avec le développement et la progression s 
maladies cardio-vasculaires.  
D’une part, j’ai évalué la fiabilité des technologies de séquençage permettant l’analyse fine de la 
composition du répertoire TCR au travers de la quantification des séquences de plusieurs milliers 
de TCR. Au cours de ces travaux, j’ai développé un outil de contrôle qualité qui m’a permis 
d’identifier un phénomène de contamination dépendant de la gamme de séquenceur utilisant la 
technologie d’amplification par exclusion, et de mettre au point un algorithme de détection et de 
décontamination de nos données.  
D’autre part, j’ai caractérisé le répertoire TCR dans différentes situations de MCV. Au travers 
d’une collaboration nationale, j’ai caractérisé le répertoire TCR circulant de cas pédiatriques du 
syndrome d’inflammation multiple survenus suite à la COVID-19. Cette étude a été 
fondamentale pour confirmer l’effet superantigène à distance d’une infection au Sars-CoV2, et 
de démontrer la pertinence des données de séquençage TCR en complément d’observations 
cliniques pour l’aide au diagnostic. Dans le cadre d’une collaboration internationale, nous avons 
eu accès à des prélèvements sanguins de patients ayant eu un infarctus du myocarde. L’objectif 
de mes travaux était d’identifier, à partir des TCR du sang de ces patients, un ensemble de TCR 
capables de prédire la réparation cardiaque chez ces patients. Ces travaux ont permis de 
démontrer la faisabilité d’une méthode d’identification d’une signature de TCR distinguant les 
bons des mauvais réparateurs.  
Enfin, dans une seconde cohorte de patients ayant fait un infarctus du myocarde, j’ai exploré la 
pertinence de l’analyse en réseau des TCR pour l’analyse de données de séquençage à faible 
couverture. Ces travaux ont permis de montrer que les signatures associées au pronostic de 
réparation cardiaques n’étaient pas liées à des TCR connus pour des spécificités cardiaques.  
Ensemble, ces résultats ont permis de mieux délimiter les possibilités que peuvent apporter le 
séquençage massif de TCR dans le contexte des maladies cardiovasculaires. 
 
Mot-clés : Maladies cardiovasculaires (MCV), Répertoire TCR, infarctus du myocarde, 
Sars-CoV-2 
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