
HAL Id: tel-04566033
https://theses.hal.science/tel-04566033

Submitted on 2 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BIKE implementation : vulnerabilities and
countermeasures

Loïc Demange

To cite this version:
Loïc Demange. BIKE implementation : vulnerabilities and countermeasures. Cryptography and Se-
curity [cs.CR]. Sorbonne Université, 2024. English. �NNT : 2024SORUS035�. �tel-04566033�

https://theses.hal.science/tel-04566033
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
SORBONNE UNIVERSITÉ

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Loïc Demange

Pour obtenir le grade de

DOCTEUR de SORBONNE UNIVERSITÉ

Mise en œuvre de BIKE, vulnérabilités et contre-mesure

soutenue publiquement le 26 janvier 2024

devant le jury composé de :

Nicolas Sendrier Inria de Paris Directeur
Zoé Amblard Thales Encadrante
Daniel Augot Inria Saclay Rapporteur
Pierre Loidreau DGA Rapporteur
Mélissa Rossi ANSSI Examinatrice
Jean-Claude Bajard Sorbonne Université Examinateur

Remerciements

Sortant d’un stage sur les schémas post-quantique à base de réseaux euclidiens, ce n’était
pas quelque chose d’évident d’embrayer sur une thèse traitant d’un schéma à base de
codes. Et pourtant, cela a pu se faire grâce à l’équipe crypto de Thales. Je remercie
donc Thomas et Sylvain d’avoir cru en mes capacités et de m’avoir permis de poursuivre
en doctorat, ainsi que Nicolas de m’avoir proposé un sujet aussi intéressant et de l’avoir
encadré pendant ces 3 ans (et 3 mois). Tout cela était encore moins évident que les
attaques par canaux auxiliaires ne sont clairement pas une spécialité de l’équipe, ni du
côté INRIA ni du côté Thales.
C’est dans cette optique que je remercie aussi très fortement Zoé, Simon et Valentin
de m’avoir autant aidé et encadré durant cette thèse. Merci aussi à Mélissa avec qui la
quasi-intégralité des travaux ont été réalisés, à Agathe pour nos différents échanges ainsi
qu’au CESTI de Toulouse de m’avoir ouvert brièvement leurs portes pour m’expliquer
les rudimentaires des attaques par canaux auxiliaires.

Je remercie également Daniel Augot et Pierre Loidreau d’avoir accepté d’être rapporteurs,
ainsi que Jean-Claude Bajard d’avoir fait partie du jury.

Je remercie grandement l’intégralité de l’équipe crypto de Thales pour ces moments
bien sympas ainsi que l’équipe COSMIQ en globalité avec qui, malheureusement, je n’ai
pas eu tant le temps de sociabiliser ni de partager énormément de choses, mais qui ont
toujours fait preuve d’une très grande sympathie.

Enfin, dans un cadre plus privé, je remercie énormément ma copine pour sa présence
permanente, ainsi que mes chattes et ma chienne d’avoir toujours eu les miaous et les
ouafs pour rire.

i

Introduction

BIKE est un schéma d’encapsulation de clés (KEM) post-quantique sélectionné pour
le quatrième tour de la campagne de standardisation du NIST. Sa sécurité repose sur
la robustesse du problème de décodage du syndrome pour les codes quasi-cycliques et
fournit des performances compétitives par rapport aux autres candidats du 4e tour,
ce qui le rend pertinent pour une utilisation dans des cas concrets. La communauté
scientifique a fortement encouragé l’analyse de sa résistance aux attaques par canaux
auxiliaires et plusieurs travaux ont déjà souligné diverses faiblesses. Pour les corriger,
ces derniers ont proposé des contre-mesures ad hoc. Toutefois, contrairement à la ligne
de recherche bien documentée sur le masquage des algorithmes basés sur les réseaux,
la possibilité de protéger génériquement les algorithmes basés sur des codes par du
masquage n’a été étudiée que de manière marginale dans un article de 2016 de Cong
Chen et al. À ce stade de la campagne de standardisation, il est important d’évaluer la
possibilité de masquer entièrement le schéma BIKE et le coût qui en résulte en termes
de performances.

L’objectif de cette thèse est donc de proposer un algorithme de BIKE dont la sécurité a
été prouvée, en réalisant l’ensemble du processus de manière masquée, et ce sans jamais
manipuler directement les données sensibles. Pour ce faire, nous utilisons des “gadgets”,
qui sont des sortes de fonctions masquées, identifiées par des niveaux de non-interférence
: NI (non-interference) et SNI (strong non-interference). En termes simples, SNI permet
aux gadgets d’être composables : ils peuvent être appelés l’un après l’autre, avec les
mêmes variables. NI, en revanche, exige plus de précautions en termes de variables
manipulées. Les gadgets font l’objet de preuves, basées sur le modèle ISW, permettant
de donner un véritable argument de sécurité et de robustesse à l’algorithmique. Si
l’algorithme est prouvé sûr de bout-en-bout, cela appuie positivement sa résistance
contre des attaques par canaux auxiliaires.
Il convient de noter que le masquage a été initialement développé pour les schémas
symétriques et qu’il était basé sur le masquage booléen. Ce n’est que récemment que
l’on a commencé à s’intéresser aux schémas asymétriques, et en particulier aux schémas
basés sur les réseaux. Dans ce but, le masquage arithmétique a été le principal utilisé,
bien que des conversions booléennes aient pu être effectuées pour réaliser certaines choses
(comparaison de valeurs entre autres).

Aujourd’hui, nous sommes en mesure de proposer une implémentation masquée de

iii

BIKE, basée sur un algorithme prouvé sûr. Comme BIKE manipule des données binaires,
nous nous sommes concentrés sur le masquage booléen. Nous avons dû :

• réutiliser les gadgets existants,

• adapter et optimiser les gadgets de masquage arithmétique existants,

• créer de nouveaux gadgets.

Pour chaque gadget, nous avons dû prouver qu’il répondait bien aux exigences du
modèle ISW et à ce que ses compositions au sein des différentes fonctions de BIKE ne
pose pas de souci, de façon à arriver au masquage du schéma intégral.
Pour rappel, BIKE repose sur des QC-MDPC, et son arithmétique est basée sur des
polynômes denses et creux, il a donc fallu faire des choix concernant la représentation et
la manière dont les calculs sont effectués. Nous avons donc décidé d’explorer deux voies
(entièrement dense et hybride creux-dense) et de voir laquelle était la plus pertinente.
En plus de l’implémentation complète en C, des benchmarks ont été réalisés, ce qui
nous a permis de voir où les performances étaient limitées et où se trouvaient les goulots
d’étranglement.

Pour récapituler, nous proposons ici un algorithme BIKE masqué intégralement et
prouvé sûr, avec son implémentation en C et divers benchmarks permettant de juger de
ses performances.

iv

Contents

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Cryptography . 1

1.1.1 General principle . 1
1.1.2 Quantum computer & post-quantum cryptography 3

1.2 Side-channel attacks . 4
1.3 Masking . 5
1.4 Contributions . 6

2 State of art & preliminary 7
2.1 Coding theory . 7

2.1.1 General introduction . 7
2.1.2 The BIKE scheme . 9
2.1.3 Decoding QC-MDPC codes . 11

2.2 Masking . 14
2.2.1 General introduction . 14
2.2.2 Existing masked gadgets . 18

3 Contributions: End-to-end masked implementation of BIKE 23
3.1 Notation . 25
3.2 Masked gadgets . 26

3.2.1 Auxiliary gadgets . 26
3.2.2 Karatsuba . 30
3.2.3 Bitslicing . 31
3.2.4 Hamming Weight . 33
3.2.5 Cyclic shifting . 34
3.2.6 Fisher-Yates . 34
3.2.7 Sparse-dense operations . 35
3.2.8 Inversion . 36

v

3.3 Masked BIKE . 37
3.3.1 Key generation . 37
3.3.2 Encapsulation . 38
3.3.3 Decapsulation . 40

3.4 Benchmark & pratical testing . 49
3.4.1 Detailed benchmarks . 50

4 Conclusion & prospect 53

Bibliography 55

vi

List of Figures

3.1 Structure of the polynomial inversion algorithm 37
3.2 Sub-structure of the counter algorithm . 42
3.3 Structure of one block . 44
3.4 Structure of the grey zone gadget . 45
3.5 Structure of an iteration . 46
3.6 Structure of the BGF decoder . 47
3.7 Sparse vs dense, SecBGF and SecKeyGen . 49
3.8 The scaling of masked BIKE (with RNG on) 52

vii

List of Tables

2.1 BIKE’s proposed parameters [Ara+22] . 10

3.1 BIKE’s threshold parameters . 41
3.2 Scaling benchmarks on particular gadgets, i7-4710MQ 2.5Ghz gcc 12.2.0 -03,

NIST Level 1, median results on 200 executions 50
3.3 Scaling benchmarks on BIKE, i7-4710MQ 2.5Ghz gcc 12.2.0 -03, NIST Level

1, median results on 100 executions, in million of cycles 51

ix

Chapter1Introduction

Cryptography is used to securely exchange information. In simple terms, this means
protecting the information you communicate with a third party, so that only they can
understand it. This is achieved by modifying the communication with an element that
only the participants can know, making the exchange incomprehensible to anyone else.
To achieve this rigorously, we use mathematical notions.

1.1 Cryptography
Historically, information technology (IT) was based on three pillars that together formed
the CIA triad:

• Confidentiality, to ensure that information is intelligible only to those who have
been authorized to access it.

• Integrity, to ensure that information is not altered and is what it should be.

• Authenticity, to ensure that those who have access to the information are in fact
the intended recipients.

The model has since been updated, and is now called the CIAAN, to further include:

• Availability, to ensure that information is accessible whenever authorized users
want it to be.

• Non-repudiation, to ensure that users cannot deny having sent or received
information.

The purpose of cryptography is to be able to communicate information while respecting
the CIA triad, availability and non-repudiation being criteria that are very difficult to
meet today.

1.1.1 General principle
Encryption ensures that only the sender and legitimate recipient(s) of a message know
its contents. This is achieved by “encrypting” the information with a secret, which

1

2 Chapter 1. Introduction

prevents anyone who does not have the secret from accessing the message.

The security of cryptographic schemes is based on so-called hard problems. A hard
problem is one that cannot, to the best of our knowledge, be solved in polynomial time.
In complexity theory, we refer to the NP class when we talk about difficult problems.
In the case of cryptography, hard problems do not necessarily belong to NP and are not
necessarily related to NP-hard or NP-complete problems, although the problems that
can be reduced to a NP-hard problem provide an additional safety argument.
Indeed, if a cryptographic scheme is to be strong, there must be no algorithm that can
find the solution to a random instance of the cryptographic algorithm. So it is not
enough to have a few robust instances. This is the difference between average and
worst-case complexity.

When the key is the same for encryption and decryption, we call this private-key
encryption (known as symmetric). Otherwise, we have two different keys, one public
and one private, and call this public-key encryption (known as asymmetric).

1.1.1.1 Private-key cryptography

Symmetric encryption involves encrypting and decrypting a message using the same
key. This raises security questions about how to share the key between all the desired
entities. On the other hand, these encryption schemes are highly efficient, and can be
very resource-efficient.

The first public standard scheme was DES [77], developed in 1970 by IBM, which
was based on a type of structure known as a Feistel cipher. It was later superseded
by AES [And97], based on substitution–permutation network (SPN), which remains a
cornerstone of symmetric cryptography to this day.

In the context of limited hardware such as embedded systems, NIST launched a
lightweight symmetrical cryptography competition, which led to the standardization of
the ASCON scheme [Dob+21] in 2023.

1.1.1.2 Public-key cryptography

As mentioned above, public-key cryptography involves encrypting information with a
public key, and decrypting it only with the secret key. Public-key cryptography relies on
trapdoor functions, which are difficult to “inverse” in the average case.

Definition 1.1. A function f is one-way if f can be computed in polynomial time, but
there is no algorithm for computing a preimage in polynomial time.

1.1. Cryptography 3

Definition 1.2. A trapdoor function is a one-way function, which offers the possibility
of calculating the preimages of this function in polynomial time if certain additional
information is known.

Asymmetric cryptography is based on trapdoor one-way functions, which allow a
clear message to be transformed into an encrypted message using public information, for
which it is computationally difficult to recover the original message without the trapdoor.

Although asymmetric cryptography can be based on a variety of mathematical structures
(which we will describe in more detail later), the most widely used scheme is RSA [RSA78].

RSA (for Rivest, Shamir and Adleman) is an asymmetric encryption scheme based
on the difficulty of decomposing large numbers into prime factors. However, the RSA
problem could be solved without factoring. Nowadays, it is still used everywhere,
especially in banking transactions.

TLS As mentioned previously, asymmetric cryptography is much slower and less
resource-efficient than symmetric cryptography. This is why we can combine the two:
use an asymmetric scheme to send the key of a symmetric scheme, and thus protect
end-to-end communication while being faster. This is the case with the TLS protocol,
used in the World Wide Web to secure communications between a client and a web server.

Diffie-Hellman [DH76] was the first key exchange scheme, developed in 1976, and
its counterpart ECDH based on elliptic curves is still used today within TLS. The reason
why we use ECDH instead of the original Diffie-Hellman scheme is because elliptic curves
allow smaller keys to be handled for the same level of security. ECDH is based on the
discrete logarithm problem.

Nowadays, factoring is possible in sub-exponential time and RSA factoring challenges
are regularly beaten [Bou+20]. This is not yet the case for variants based on elliptic
curves, but with the arrival of the quantum computer, other schemes will be favored in
the future.

1.1.2 Quantum computer & post-quantum cryptography
As mentioned above, the security of conventional asymmetric cryptography relies on
mathematical problems that are reputedly difficult to solve: finding a discrete logarithm or
decomposing large numbers into prime factors. However, such cryptography is threatened
by a technological breakthrough: the quantum computer. Indeed, the elementary
operations of quantum and classical computers are of different natures, making the
former capable of solving these problems efficiently thanks to Shor’s quantum algorithm
[Sho94]. This threat has prompted the scientific community to look for alternatives that
can withstand it.

4 Chapter 1. Introduction

A cryptographic primitive is said to be post-quantum if it can run on a classical
computer and if there is no known attack against it even if a sufficiently large quantum
computer becomes available. They are classical primitives that are destined to replace
the asymmetric algorithms currently in use, particularly for signature and key exchange
functions. In this context, the standardization campaign launched by the NIST should
define the next post-quantum standards for these two functions by 2024 (drafts have
already been published), and initiate hybridation, which consists of combining post-
quantum asymmetric schemes with well-known and studied asymmetric schemes based
on factorization or discrete logarithm, by 2025.

Post-quantum cryptography has been around for almost as long as asymmetric
cryptography, and comprises numerous families based on a wide variety of problems and
algorithms, such as:

• lattices, based on the Shortest Vector Problem (SVP, NP-hard, worst case to
average case reductions) and Closest Vector Problem (CVP, same hardness)

• multivariate, based on the difficulty to solving systems of multivariate polynomial
equations (NP-complete)

• hash functions, based on the security of hash functions

• isogenies, based on the difficulty of computing isogenies and endomorphism rings

• error-correcting codes, based on the difficulty of decoding random linear codes
(NP-hard, conjectured hard in average case)

1.2 Side-channel attacks
Side-channel attacks are attacks that compromise a system by exploiting weaknesses
not in its theoretical structure and mathematical robustness, but in its implementation
and infrastructure. More precisely the adversary is able to obtain information about the
secret thanks to the measure of a physical quantity i.e. power, EM radiation, heat, etc.
We differentiate between two types of attack: invasive attacks, where we interact directly
with the device, and non-invasive attacks, where we make external observations of the
device.

Among the non-invasive attacks, two stand out and are widely used:

• the timing attack, where the adversary will use the execution time of the
cryptosystem,

• the power consumption attack where the adversary will use the power consumption
of the cryptosystem.

1.3. Masking 5

Thankfully we can mitigate these attacks by implementing adequate countermeasures.
For the first point, the main countermeasure is to realize constant-time implementation,
which consists in performing operations that have a cost independent of the secret.
For the second point, it is more difficult. In a simplistic way, a device will consume
power at the time of a change of state (bit which passes from 0 to 1 or vice versa).
The objective is to manipulate data that is not directly correlated with the secret, and
therefore to have consumption that is also decorrelated with the secret.

If one does not want to exploit the secret itself, but just want to check that the
information given is identical (password, PIN, etc.), one can keep only its hashed form.
Alternatively, sensitive values can be masked when manipulated.

In this thesis, we will focus on preventing power consumption attacks with the help of
masking techniques.

1.3 Masking
Masking consists in obfuscating sensitive values to prevent them from being recovered
through side-channel attacks. To achieve this, we use randomness to alter the value and
perform operations on the masked value. The mask is only removed once the operations
have been carried out.

There are two ways of doing this:

• use masking only at sensitive points, as a local countermeasure, either as a
preventive measure or after an attack is known,

• mask the entire scheme, and have proof of security to say that, theoretically,
the scheme is secure (under various conditions, starting with a well-executed
implementation).

In the first case, only certain parts are secured, and this does not require a huge sacrifice
in terms of performance or implementation complexity. On the other hand, we play
a cat-and-mouse game with attackers, by securing only the parts newly discovered as
sensitive in the scientific literature. We take the risk to overlook some missing attacks
that may be kept secret by governments or criminal attackers and we let our system
exposed to future attacks that have yet to be discovered.

In the second case, the choice is made to mask the entirety, and thus add operations and
complexity to the original algorithm. However, if it is well done, it provides a solid base
and avoids a large proportion of side-channel attacks. To prove that masking is safe,
models have already been investigated and defined by decades of scientific litterature.
The most commonly used is the ISW model [ISW03], which we will describe in more
detail later in Definition 2.11, and which links theoretical proof with robustness in

6 Chapter 1. Introduction

practice.

Higher order masking was initially implemented on symmetric cryptographic schemes,
where Boolean masking is used. It is only very recently that it has begun to be
more common on asymmetric schemes, in particular lattice-based like qTesla signature
scheme [GR20] (detailed in Section 2.2.1), with adjustments and arithmetic masking.
The subject has grown, and has led to the design of schemes adapted for masking, such
as the Raccoon signature scheme [Pin+23].

Prior to our work, no code-based scheme had been masked from end-to-end. In fact,
some papers have already masked QC-MDPC codes [Che+16], but their approach was
different. Masking was only performed on the decoder, which was a simple bitflipping,
and had a very practical approach since the goal was to make an FPGA implementation.
There is therefore no proof of masking, and the rest of the scheme was not masked.

1.4 Contributions
As a result of this work, we have masked the BIKE scheme in its entirety, with its C
implementation.

This consists of:

• creating and modifying various gadgets,

• proving their security,

• assembling them, and proving their composability,

• coding these elements in C,

• benchmarking different parts of the code, according to security level.

This work was published in the first edition of the CiC journal [DR24].

Chapter2State of art & preliminary

2.1 Coding theory
2.1.1 General introduction
In this section, we develop the notions of coding theory needed to understand the rest
of the work.

Definition 2.1 (Binary linear codes). A binary linear code C of length n and dimension
k is a k-dimensional vector subspace of Fn

2 . Is it possible to represent it in two equivalent
ways:

• either by using a generator matrix G P Fkˆn
2 such that each row of G is an element

of a basis of C,
C “ tm ¨G, m P Fk

2u.

• or with a parity-check matrix H P Fpn´kqˆn
2 such that for any c P C,

c ¨HT “ 0.

Definition 2.2 (Hamming distance). The Hamming distance between two codewords
in a linear code is the number of different coordinates between them.

Definition 2.3 (Weight). The weight of a codeword in a linear code C is its number of
non-zero coordinates.

Definition 2.4 (Minimum distance). The minimum distance of a linear code C is the
minimum weight of the non-zero codewords of C.

Definition 2.5 (Syndrome). Let C be a linear code, H its parity-check matrix and y
the received codeword. We call s “ yHT the syndrome of y.

In fact, the syndrome is used to locate the errors in the codeword.

7

8 Chapter 2. State of art & preliminary

Definition 2.6 (Circulant matrix). An rˆ r matrix A is circulant if each row is a cyclic
shift of the previous row. More precisely, A is of the form

¨

˚

˚

˚

˝

a0 a1 ¨ ¨ ¨ ar´1
ar´1 a0 ¨ ¨ ¨ ar´2

...
...

a1 a2 . . . a0

˛

‹

‹

‹

‚

.

We say that A is generated by the vector pa0, ¨ ¨ ¨ , ar´1q.

Remark 2.1. It is possible to define an isomorphism between the ring of polynomials
F2rXs{pX

r ´ 1q and the set of circulant matrices of order r. To a vector pa0, ¨ ¨ ¨ , ar´1q
generating a circulant matrix, one can associate the polynomial

řr´1
i“0 aiX

i. Multiplica-
tion and inversion can then be performed either with matrix multiplication or polynomial
multiplication.

Definition 2.7 (Quasi-circulant matrix). A matrix is quasi-circulant if it is composed
of circulant blocks.

For example, let

A “

¨

˝

a1 a2 a3
a3 a1 a2
a2 a3 a1

˛

‚ and B “

¨

˝

b1 b2 b3
b3 b1 b2
b2 b3 b1

˛

‚

be two circulant matrices. The matrix C “ rA|Bs defined as the concatenation of A
and B is a quasi-circulant matrix.
Remark 2.2. Similarly to Remark 2.1, it is possible to represent quasi-circulant matrices
as sets of polynomials.

Definition 2.8 (Quasi-cyclic code). A binary code C is quasi-cyclic if and only if it
admits a quasi-circulant generating matrix. We refer to the order as the size of the
circulating blocks, and the index as the number of blocks in a line.

Remark 2.3. Trivially speaking, any code is quasi-cyclic of order 1.

Definition 2.9 (QC-MDPC code). Let n, r, w be integer parameters for length,
dimension and minimum code weight (minimum distance). A rn, r, ws QC-MDPC
code C is a quasi-cyclic code that admits a parity-check matrix H such that H has a
row weight w “ Op

?
nq.

Remark 2.4. An low density parity code (LDPC) admits a parity-check matrix H such
that H has a row weight w “ Op1q. [MRS00] showed that LDPCs were not the most
suitable for cryptography due to the fact that the small-weight words of the dual are too
easy to find. MDPC codes have been designed to balance the hardness of two problems
of finding codewords of small weight in the dual, and of decoding t errors, making them
very poor correcting codes for communication, but secure enough to be used within a
cryptographic scheme.

2.1. Coding theory 9

2.1.2 The BIKE scheme

BIKE (Bit-Flipping Key Encapsulation) [Ara+22] is a key encapsulation scheme based
on QC-MDPC (Quasi-Cyclic Moderate Density Parity-Check) codes as introduced in
Definition 2.9.

BIKE relies on sparse QC-MDPC codes, of order r and index 2. Its private key corresponds
to the parity-check matrix. The security of the scheme reduces to quasi-cyclic variants
of hard problems from coding theory, decoding and codeword finding in an arbitrary
quasi-cyclic code [Ale03; BMT78]. We refer to [Ara+22] for more information about the
security and design rationale.

BIKE’s first building block is a public key encryption scheme (PKE) based on a variant
of the Niederreiter framework [Nie86]. The plaintext is represented by the sparse vector
pe0, e1q, and the ciphertext by its syndrome. The decryption is performed with a decoding
procedure that will be presented below in section 2.1.3. Next, this PKE is converted
into an IND-CCA KEM with the application of the Fujisaki-Okamoto transformation
[FO99; HHK17]. For the scheme to be truly IND-CCA, there must be conditions on
the decoding failure rate (also called DFR), which is the case here with the chosen decoder.

Let us detail the key generation (KeyGen), Encapsulation (Encaps) and Decapsulation
(Decaps) algorithms in more details. In addition to the parameters r and w, let us
define t and ℓ as integer parameters. We denote R “ F2rXs{pX

r ´ 1q the underlying
cyclic polynomial ring. Let us define

Hw “ tph0, h1q P R2 | |h0| “ |h1| “ w{2u,
Et “ tpe0, e1q P R2 | |e0| ` |e1| “ tu,

M “ t0, 1uℓ,
K “ t0, 1uℓ,

as respectively the private key space, the error space, the message space and the shared
key space. In the above, we denote by |h| the Hamming weight of the polynomial h, i.e.
the number of non-zero coefficients of h.
The Fujisaki-Okamoto transformation requires several hash functions: H : M Ñ Et, L :
Et Ñ M and K : Mˆ pRˆMq Ñ K.

In the following, we write a
$
ÐÝ B when a is sampled uniformly at random from B,

and Ð is an assigment of value.

10 Chapter 2. State of art & preliminary

Algorithm 2.1 Keygen
Output: pph0, h1q, σq P Hw ˆ M,

h P R
1: ph0, h1q

$
ÐÝ Hw

2: h Ð h1h´1
0

3: σ
$
ÐÝ M

4: return pph0, h1, σq, hq

Algorithm 2.2 Encaps
Input: h P R
Output: K P K, c P RˆM

1: m
$
ÐÝ M

2: pe0, e1q ÐHpmq
3: c Ð pe0 ` e1h, m‘Lpe0, e1qq
4: K ÐKpm, cq
5: return pK, cq

Algorithm 2.3 Decaps
Input: ph0, h1, σq P Hw ˆM, c “ pc0, c1q P RˆM
Output: K P K

1: e1 “ pe1
0, e1

1q Ð decoderpc0h0, h0, h1q
2: m1 Ð c1‘Lpe1q

3: if e1 “ Hpm1q then
4: K Ð Kpm1, cq
5: else
6: K Ð Kpσ, cq

7: return K

Parameter setting As defined in the specifications, the parameters should satisfy
several constraints. The block length r should be a prime number to avoid folding
attacks [CT19]. The parameter w should be such that w “ 2d «

?
n and the error

weight should be such that t «
?

n to balance the costs of attacks on the key and the
message. d should be odd and 2 should be primitive modulo r for all blocks of h0 to be
invertible. We present the instantiated parameters in Table 2.1.

Table 2.1: BIKE’s proposed parameters [Ara+22]

Level 1 Level 3 Level 5
r 12323 24659 40973
w 142 206 274
t 134 199 264
ℓ 256 256 256

Security proof BIKE’s main security property is its reduction to difficult problems
such as decoding and finding small-weight words in QC code. This ensures that BIKE is
IND-CPA. If we wish to use the scheme with a static key, it must be IND-CCA, since
we can construct error patterns to cause decoding failures, which provide us information

2.1. Coding theory 11

about the secret key [GJS16] (see Section 2.1.3.2 for more details). This is where the
DFR (Decoding Failure Rate) value comes into play. Quantifying DFR is a challenging
problem, so we have to rely on models supported by simulations. We know that keys
with a certain configuration will produce more failures, and avoiding them may be a
viable solution.

2.1.3 Decoding QC-MDPC codes
The choice of the decoder has a crucial impact on the security and the performances of
the scheme. As QC-MDPC codes have sparse parity-check matrices, decoding techniques
usually rely on Bit-Flipping algorithms originally introduced in [Gal62] for low density
parity-check matrices. Bit-Flipping is based on the hard decision decoding version
of “Belief Propagation Decoding”, which is a soft decision decoding and has multiple
implementations, the best-known being the sum-product algorithm and the min-sum
algorithm [FMI99]. By definition, these algorithms are soft-decision decoding, and
therefore are complex to implement. They can be implemented on embedded devices,
but require dedicated circuits, and for MDPCs, the circuit would be much more important
than for LDPCs. Bit-Flipping, requiring much simpler logic and being faster, is more
suitable for cryptographic scheme, while having a limited impact on decoder performance.

Technically, the Bit-Flipping algorithm works as follows: over several iterations, we
compute the syndrome cHT where c is the noisy codeword and HT is the transposed parity
matrix of the code. Next, we count the number of unsatisfied parity-check equations for
each position. If the counter for a position exceeds T , a threshold (computed on the
fly according to the weight of the syndrome), the position is flipped and the syndrome
is recomputed. Let syndromepq be the syndrome computation, counterpq the counter
computation, and thresholdpq the threshold computation function. We refer to [Ara+22]
for details.

Algorithm 2.4 Bit-Flipping algorithm
Input: HT the sparse parity matrix of a r2r, r, ws MDPC code

c P Fn
2 a noisy codeword

Output: A codeword c, cHT “ 0 by def.
1: s Ð syndromepc, Hq
2: while |s| ‰ 0 do
3: T Ð thresholdp|s|q
4: for j P t1, ..., nu do
5: if counterps, j, Hq ě T then
6: cj Ð cj‘1
7: s Ð syndromepc, Hq
8: return c

The authors of BIKE chose a refined Black-Gray-Flip (BGF) technique introduced

12 Chapter 2. State of art & preliminary

in [DGK20b]. This is a bitflipping algorithm that introduces two classification zones,
with two different thresholds: the black zone and the gray zone. Two additional iterations
are performed to verify the choices made during the classification. The BGF decoding
algorithm is presented in algorithm 2.5. This decoder also has a fixed number of iterations
(set at 5), to avoid timing attacks.

Algorithm 2.5 Black-Gray-Flip (BGF)
Parameters: r, w, t, d “ w{2, n “ 2r ; Nbr_Iter, τ , threshold

1: e Ð 0n

2: for i “ 1, . . . ,Nbr_Iter do
3: T Ð thresholdp|s` eHT |, iq
4: e, black, grey Ð BFIterps` eHT , e, T, Hq
5: if i “ 1 then
6: e Ð BFMaskedIterps` eHT , e, black, pd` 1q{2` 1, Hq
7: e Ð BFMaskedIterps` eHT , e, grey, pd` 1q{2` 1, Hq
8: if s “ eHT then
9: return e

10: else
11: return K

12: procedure BFIterps, e, T, Hq
13: for j “ 0, . . . , n´ 1 do
14: if ctrpH, s, jq ě T then
15: ej Ð ej ‘ 1
16: blackj Ð 1
17: else if ctrpH, s, jq ě T ´ τ then
18: greyj Ð 1
19: return e, black, grey

20: procedure BFMaskedIterps, e, mask, T, Hq
21: for j “ 0, . . . , n´ 1 do
22: if ctrpH, s, jq ě T then
23: ej Ð ej ‘maskj

24: return e

There has been a few variants of bit-flipping proposed, such as the backflip in 2019
[SV], which consists in giving a time-to-live to the flip to catch up on mistakes, or
the “Weight Bit-Flipping” in 2021 [Nil+21], but BGF has remained the classical BIKE
decoding algorithm.

2.1. Coding theory 13

2.1.3.1 Existing implementations

The first implementation based on QC-MDPC codes was completed in 2014 [MG14]. It
was intended for Cortex-M4, and had an analysis of possible side-channel attacks, with
proposals for countermeasures, in particular masking some operations of the decoder.
[MOG15] provides optimizations to improve performance. In 2016, an implementation
using Niederreiter for the Cortex-M4 which is efficient and, above all, IND-CCA [MHG16],
is proposed. At the same time, QcBits came into competition with the latter and
was more efficient, offering, among other things, constant-time bitslicing for counter
calculations [Cho16].
Some implementation proposals have been made over the years [DG19; GAB19;
BOG20], and another constant-time C implementation was introduced in 2020 [DGK20b],
especially improving the decoding part, and which is claimed protected against timing
and cache attacks. Cortex-M4 optimized implementations of BIKE have been introduced
later in [CCK21]. Subsequently, optimizations have been proposed in [Che+22].

2.1.3.2 Existing side-channel attacks & counter-measure

The BIKE scheme has already been subject to vulnerabilities. In fact, a first reaction
attack was performed in 2016, where it was found that by causing decoding failures,
information about the error and the secret could be recovered [GJS16]. To do this,
it uses the notion of spectrum, which is the set of differences between the 1’s of a
sparse vector. The idea is that when the error spectrum is correlated with the secret
spectrum, decoding is more likely to fail. This attack led to a concrete timing attack
in 2018 [Eat+18], and on BIKE’s word sampler in 2021 [Guo+22], where the authors
have highlighted the possibility of using timing information of the constant weight word
sampler in the decapsulation in order to apply the reaction attack. Such a vulnerability
has been thwarted by redesigning the word sampler in [Sen21].

On the power-consumption attacks side, several works have outlined various side-channel
weaknesses and proposed ad-hoc countermeasures.
Indeed, while BIKE’s sparse and structured private keys are essential for providing good
performances and compactness, this exact structure and redundancy can be exploited
by side-channel attacks in order to decrease the difficulty of the underlying decoding
problem. For instance, Chou’s implementation has been targeted by a differential power
analysis attack on the syndrome computation in [Ros+17]. Later, an improvement
of the previous attack and a single-trace analysis exploiting leakage in the syndrome
computation were provided in [Sim+19].

Very recently, [Che+23] introduced a new single-trace attack on the most recent
implementation of BIKE. The authors use unsupervised clustering techniques on the
trace during the cyclic shifts computation to recover some bits of the positions of the
ones in the private key. They combine such knowledge with classical information set
decoding techniques to recover the full key.

14 Chapter 2. State of art & preliminary

2.2 Masking

2.2.1 General introduction
The technique known as masking is the most deployed countermeasure against physical
attacks and is widely applied in embedded systems. Masking consists in randomizing
any secret-dependent intermediate variable. Each of these secret-dependent intermediate
variables, say x, is split into d` 1 variables pxiq0ďiďd called "shares". The integer d is
referred to as the masking order. In the context of BIKE, the only necessary type of
masking is Boolean masking.

Definition 2.10 (Shared value (boolean masking)). A sensitive value (or variable) x is
shared in pxiq0ďiďd such that

x “ x0 ‘ ¨ ¨ ¨ ‘ xd. (2.1)

In the following, we will use “masked variable" to define a shared variable, and a
shared variable pxiq0ďiďd will be denoted by JxK for readability.

While F2-linear operations can straightforwardly be applied share-wise, non-linear
operations are more complex and require additional randomness, as shown in [ISW03].
Proving the security of a masked design consists in showing that the joint distribution of
any set of at most d intermediate variables is independent of the secrets. But, the bigger
the algorithm is, the more dependencies to be considered in the proof. Fortunately,
several works have defined intermediate security properties that simplify the security
proofs [RP10; Cor+14; Bar+16]: one can focus on proving the properties on small parts of
the algorithms, denoted gadgets, and it is possible to securely compose the pieces together.

Much effort has been performed on provably masking lattice-based primitives in the past
five years and many challenges have been overcome. For example, [Bar+18] introduced
a new security notion to justify unmasking certain intermediate steps. In [GR20], the
authors proposed a masked implementation of the qTesla signature scheme [Bin+19].
In [Kun+22], a masked Fujisaki-Okamoto transform is introduced for a fully masked
Saber KEM implementation [DAn+20]. The NIST post-quantum finalists Crystals-
Dilithium [Lyu+22] and Crystals-Kyber [Sch+22] have also been masked in [Azo+23]
and [Bos+21].

The picture is less abundant when it comes to code-based schemes. One explanation could
come from the large sparse polynomials leading to potential prohibitive performances
or the complex counter-based decoder. The authors of [Kra+22] propose a first-order
masked inversion in multiplicative masking. Another recent work [Kra+23] presents a
way to mask BIKE’s key generation with a fixed weight polynomial sampling technique
and arithmetic to Boolean conversions.

2.2. Masking 15

Definition 2.11 (d-probing Security or ISW security [ISW03]). An algorithm is d-
probing secure if and only if the joint distribution of any set of at most d internal
intermediate values is independent of the secrets.

Even if d-probing security seems far from realistic side-channel protection, it is
actually backed-up by theoretical model reductions that relate the d-probing security to
side-channel security up to a certain level of noise [DDF14]. Moreover, [Cha+99] showed
that the number of measurements required to mount a successful side-channel attack
usually increases exponentially in the masking order.

In addition to Definition 2.11, other intermediate security properties were introduced
to ease the security proofs [RP10; Cor+14; Bar+16]. The focus can be placed on proving
these properties on small parts of the algorithms, denoted gadgets.

Definition 2.12 (Gadget). A gadget is a probabilistic algorithm that takes shared and
unshared inputs values and returns shared and un-shared values.

Remark 2.5. In practice, a gadget is nothing more than a function, but in the context of
masking.

In fact, we use the notion of NI and SNI to describe gadgets.

Definition 2.13 (Non interference [Bar+16]). A gadget is d-non-interfering (d-NI) if
and only if any set of at most d observations can be perfectly simulated from at most d
shares of each input.

In other words, all combinations of at most d intermediate variables must give at
most d shares of each input variable.

As an example, let us define together a 2-NI gadget for XOR in Boolean masking.
We could build an equivalent gadget for arithmetic masking, using the +. Note that
this is a trivial example, since it is a linear operation.

Algorithm 2.6 XOR
Input: Ja P F2K, Jb P F2K
Output: Jc P F2 “ a‘bK

1: JcK0 “ JaK0‘JbK0
2: JcK1 “ JaK1‘JbK1
3: JcK2 “ JaK2‘JbK2
4: return JcK “ pJcK0, JcK1, JcK2q

To check that this gadget is 2-NI, we will perform all combinations of at most two
intermediate variables, i.e. :

• JcK0, JcK1, JcK2

• pJcK0, JcK1q, pJcK0, JcK2q, pJcK1, JcK2q

16 Chapter 2. State of art & preliminary

These intermediate variables are correlated with input shares:

• pJaK0, JbK0q, pJaK1, JbK1q, pJaK2, JbK2q

• ppJaK0, JbK0q, pJaK1, JbK1qq, ppJaK0, JbK0q, pJaK2, JbK2qq, ppJaK1, JbK1q, pJaK2, JbK2qq

It can be seen that whatever the combinations, there are at most two shares of each
input variable. And since the third part, used to reconstitute the input variables, is
random, the information obtained is independent of the inputs, and therefore of the
secrets. So the gadget is 2-NI.

However, although a proven NI gadget is independently protected, this does not, in most
cases, allow us to compose it. Consider this gadget.

Algorithm 2.7 NI composition issue (dummy)
Input: Ja P F2K
Output: Jc P F2 “ a‘aK

1: JbKÐSHUFFLE(JaK)
2: JcK ÐXOR(JaK, JbK)
3: return JcK

Let SHUFFLE be the 2-NI gadget that shuffles shares such that SHUFFLEpJaK “
tJaK0, JaK1, JaK2uq “ JbK “ tJaK2, JaK1, JaK0u. Individually, the two gadgets are 2-NI.
However, this composition is not. In fact, b depends on shares of a. Let us go back to
the XOR.
With one or two probes, we can observe:

• pJaK0, JbK0q, pJaK1, JbK1q, JaK2, JbK2q

• ppJaK0, JbK0q, pJaK1, JbK1qq, ppJaK0, JbK0q, pJaK2, JbK2qq, ppJaK1, JbK1q, pJaK2, JbK2qq

which is equivalent to

• pJaK0, JaK2q, pJaK1, JaK1q, JaK2, JaK0q

• ppJaK0, JaK2q, pJaK1, JaK1qq, ppJaK0, JaK2q, pJaK2, JaK0qq, ppJaK1, JaK1q, pJaK2, JaK0qq

So we can see that certain combinations allow us to observe all the parts of a, and thus
compromise the secret. We could generalize this example in this way.

Algorithm 2.8 NI composition issue
Input: Ja P F2K
Output: Jc P F2K

1: JbKÐ fpJaKq
2: JcK Ð gpJaK, JbK)
3: return JcK

2.2. Masking 17

Here, depending on what f is going to do, we can observe parts of a via b, and
this can lead to a being compromised when g is executed. The notion of SNI has been
introduced to address the problem of composability. In this example, if f or g is SNI, it
works.

To achieve compositional security, SNI adds a stronger condition, affecting the gadget’s
output variables.

Definition 2.14 (Strong non interference [Bar+16]). A gadget is d-strong non-interfering
(d-SNI) if and only if any set of at most d observations whose dint observations on the
internal data and dout observations on the outputs can be perfectly simulated from at
most dint shares of each input.

Remark 2.6. Here, d = dout + dint.

Proving that a gadget is SNI is very complicated. if you want to prove than your
gadget is 2-SNI, you have to check that:

• with 1 or 2 probes for internal data, we can not observe more than 2 shares of the
input values

• with 1 probe for internal data and 1 probe for output data, we can not observe
more than 1 share of the input values

• with 1 or 2 probes for output data, we can not observe any share of the input
values

It is with this difficulty in mind that a proposition has been made in [Bar+16] that
allows generic construction of NI and SNI gadgets.

Proposition 2.1 ([Bar+16], Prop. 4). An algorithm is d-NI provided all its gadgets are
d-NI, and all variables are used at most once as argument of a gadget call other than
refresh. Moreover the algorithm is d-SNI if it is d-NI and one of the following holds:

• its return expression is JbK and its last instruction is of the form JbK Ð refreshpJbKq

• its sequence of parameters is JaK “ tJa0K, ..., JanKu, its i-th instruction is b Ð
refreshpJaiKq for 1 ď i ď n, and JaiK is not used anywhere else in the algorithm

Remark 2.7. We will take a closer look at the refresh gadget in the next section
(Algorithm 2.10)

So, if we go back to Algorithm 2.8, we note that we only need to refresh JaK to obtain
an NI gadget according to this proposition, since JaK is used twice as an argument.

18 Chapter 2. State of art & preliminary

Algorithm 2.9 NI composition
Input: Ja P F2K
Output: Jc P F2K

1: JbKÐ fpJaKq
2: JdK Ð refreshpJaKq
3: JcK Ð gpJdK, JbK)
4: return JcK

It is this proposition that has helped us build BIKE’s d-NI gadgets.

2.2.2 Existing masked gadgets
In this section, we list all the gadgets known from the literature and which have been
used in our contribution.

2.2.2.1 Refreshing shared value

As we saw earlier, each shared value is made up of a number of shares whose secret value
is the XOR of all of them. To prevent an attacker from reconstructing the secret, care
must be taken to ensure that the shares are modified each time they are used. To do
this, we "refresh" them by drawing some randomness.

The following refresh algorithm was introduced in [Cor14], is d-SNI and is as follows.

Algorithm 2.10 Refresh (refresh)
Input: Jx P F2K
Output: Jx P F2K with refreshed shares

1: for i Ð 0 to d do
2: for j Ð 1 to d do
3: r

$
ÐÝ F2 ▷ Draw one bit

4: JxK0 Ð JxK0‘r
5: JxKj Ð JxKj‘r

6: return JxK

Remark 2.8. Here, to be SNI, the gadget performs a quadratic number of operations,
breaking any correlation between outputs and inputs.

In the signature scheme Raccoon [Pin+23], a quasi-linear-time refresh algorithm
has been proposed. The main idea is to recursively refresh the shares, so as to have a
complexity in Opn logpnqq.

Although very interesting, we have not explored this possibility, for two reasons: the
first being that if we do not have a number of shares to the power of 2 it is not trivial to

2.2. Masking 19

show that it is safe, and secondly because the refresh gadget could easily be interchanged
if we wanted to.

2.2.2.2 Binary AND between two shared values

The sec&[Cor+15; Bar+18] is a gadget that performs the binary & between two
shared values. During the operation, randomness is drawn to prevent an attacker
from obtaining information about the masked values. Since all shares are constantly
subject to randomness, the sec&is d-SNI.

Algorithm 2.11 SecAnd (sec&)
Input: Jx P F2K, Jy P F2K
Output: Jz “ x&y P F2K

1: JzK Ð JxK&JyK
2: for i Ð 0 to d do
3: for j Ð i` 1 to d do
4: r

$
ÐÝ F2 ▷ Draw one bit

5: JzKi Ð JzKi‘r
6: JzKj Ð JzKj‘r‘pJxKi&JyKjq‘pJxKj&JyKiq

7: return JzK

The algorithm is introduced with parameters on F2, but it can easily be applied to
binaries of varying sizes.

2.2.2.3 Addition between two shared values

The sec`[Cor14] is a gadget d-NI that performs the + between two shared values. To do
this, it performs the addition using binary &, XOR and shifts to propagate any carries.
In 2022, [BC22] proposed an algorithm based on bitslicing, which has not been explored
further here, due to lack of time and opportunity.

20 Chapter 2. State of art & preliminary

Algorithm 2.12 SecAdd (sec`)
Input: Jx P ZnK, Jy P ZnK
Output: Jz “ x` y P ZnK

1: JpKÐ JxK‘JyK
2: JgKÐ sec&pJxK, JyKq ▷ sec& between binary representations
3: for i Ð 0 to n´ 1 do
4: JaK Ð JgK ! 2i

5: JbKÐ JpK ! 2i

6: JaK Ð sec&pJaK, JpKq
7: JgKÐ JgK‘JaK
8: JbKÐ sec&pJbK, JpKq
9: JaKÐ JgK ! 2n´1

10: JtKÐ sec&pJaK, JpKq
11: JgKÐ JgK‘JtK
12: JzKÐ JxK‘JyK‘pJgK ! 1q
13: return JzK

We introduce sec`partlymasked which is almost identical to sec` but where the first
operation (sec& between the two masked parameters) has been modified to take an
unmasked element (& between all parts of the masked value and the public one).

2.2.2.4 Masked conditional branch

This gadget chooses between two masked values based on the value of a masked boolean.
It was formalized in [Kra+23].

We define secbitwise
& , which consists in performing a sec& between all the bits of a

value and the single bit of another value. Since it’s just a succession of sec&, which is
itself a d-SNI gadget, secbitwise

& is itself d-SNI.
We also denote by ␣JtK0 the fact of bit-reverse the binary value of the first share of t.

Algorithm 2.13 Choose value (secif)
Input: Ja P ZnK, Jb P ZnK, Jt P F2K
Output: JaK if JtK “ 1, JbK otherwise

1: JcK Ð secbitwise
& pJaK, JtKq

2: JtK0 Ð ␣JtK0
3: JdK Ð secbitwise

& pJbK, JtKq
4: return JcK‘JdK ▷ Coefficient-wise XOR

Since secbitwise
& is d-SNI and the last ‘ is d-NI, we deduce the theorem below.

Theorem 2.1. The choose value algorithm 2.13 is d-NI.

2.2. Masking 21

In the same paper, an alternative way of achieving this is presented. In fact,
a&t‘b&pt‘1q is equivalent to ppa‘bq&tq‘b, and we save a sec&.
However, we have to refresh once more, and experimentally, this does not make any
particular difference to performance.

Algorithm 2.14 Choose value (alt.)
Input: Ja P ZnK, Jb P ZnK, Jt P F2K
Output: JaK if JtK “ 1, JbK otherwise

1: JcK Ð JaK‘JbK
2: JcKÐ secbitwise

& pJcK, JtKq
3: JbKÐ refreshpJbKq
4: return JcK‘JbK ▷ Coefficient-wise XOR

Chapter3Contributions: End-to-end masked
implementation of BIKE

As we saw earlier, BIKE is a post-quantum signature scheme, which was present in
round 4 of the NIST standardization competition. In sections 2.1.3.1 and 2.1.3.2, we
saw that various implementations had been proposed, more or less protected to certain
side-channel attacks, and that these attacks had been mostly protected locally.

The aim here is to propose a BIKE algorithm that has been proven to be secure,
by carrying out the entire process in a masked way, without ever manipulating the
sensitive data directly. To achieve this, we use “gadgets”, which are masked functions
of sorts, identified by non-interference levels: NI, and SNI. In simple terms, SNI allows
gadgets to be composable: they can be called one after the other, with the same variables.
NI, on the other hand, requires greater precaution in terms of the variables manipulated.
Gadgets are the subject of proofs, based on the ISW model, and making it possible
to give a real argument of safety and solidity of the algorithm. If the algorithm is
proven safe from start to finish, we can say it will have a certain level of resistance to
side-channel attacks.
It should be noted that masking was initially developed for symmetric schemes, and
was based on Boolean masking. Research into asymmetric schemes, and lattice-based
schemes in particular, has only recently come to the fore. For this purpose, arithmetic
masking was the main one used, although Boolean conversions could be performed to
achieve certain things (value comparison among others).

In this work we provide the first provable high-order masked implementation of a
code-based algorithm. We detail every masked gadget that is necessary for masking
BIKE’s key generation, encapsulation and decapsulation. The proofs are given in the
d-probing model. Let us detail some aspects of our design.

• No mask conversion Mask-conversion gadgets consist in modifying the underlying
masking operation, e.g. going from ‘ to an addition in Zq. Even if the unmasked
functionality is the identity function, these gadgets are known to be heavy in terms
of computation time. Despite efficiency improvements since their introduction e.g.
in [CGV14; Cor17; Cor+15], current secure mask conversion algorithms run in
time at least Opd2q. Contrary to lattices, BIKE is fundamentally relying on binary
operations. While the authors of [Kra+23] have included mask conversion in their
design, we believe that keeping only Boolean masking would be more natural and

23

24 Chapter 3. Contributions: End-to-end masked implementation of BIKE

efficient. In this work, we give the first evidence that it is possible to completely
mask BIKE without any mask conversion.

• Sparse versus dense representation. BIKE’s intermediate variables are sparse
polynomials with coefficients in F2. An important question arose rapidly when
designing a masked BIKE: Should we represent the masked polynomials in dense
form or keep the sparse structure and mask the indices of the non-zero coefficient
instead? For the dense form, the number of non-zero coefficients is protected but
the multiplication requires a masked Karatsuba-based multiplication algorithm.
For the sparse form, the number of non-zero coefficients is accessible by timing
attacks but a lighter multiplication algorithm based on cyclic shifts is possible. The
sparse representation intuitively seems lighter but some parts necessarily required
the dense form for security. For completeness, we decided to analyze both following
approaches:

1. A fully-dense implementation where the polynomials are masked in dense
form.

2. A hybrid sparse-dense implementation where the polynomials are represented
in sparse form whenever the number of non-zero coefficient is independent
from any secret data.

Interestingly, our experiments showed that a fully-dense approach seems more
relevant, especially for high orders. While (2) and (1) seem equivalent for one or
two shares, (1) looks indeed more relevant for higher orders. This difference might
shrink with more optimizations of the cyclic shift, as it will be discussed in a later
section.

• Many new gadgets. A lot of new gadgets needed to be introduced for masking
BIKE. Although BIKE’s bitslice addition technique turned out to operate well with
Boolean masking, some other parts of the key generation were more challenging
to mask. For example the Fisher-Yates sampling algorithm/technique and the
polynomial inversion required many loops and subroutines. More generally, we
provide all elementary gadgets that are necessary to mask BIKE, since we need to
reuse existing gadgets, adapt and optimize existing arithmetic masking gadgets
and create new gadgets. We believe that they can be of independent interest for
masking future code-based schemes.

We provide an open C-code implementation of the key-generation, encapsulation and
decapsulation algorithms with detailed benchmarks. Although theoretically quadratic
[ISW03], several post quantum masked designs can lead to an experimental scale in
the masking order that tends to be exponential [Bar+18, Table 1]. The scaling we’ve
obtained is very encouraging, as our experiments seem to indicate a quadratic scaling.
We believe that it is even possible to further improve and optimize our code and maybe
reach quasi-linearity in the masking order. We hope that this work, published in [DR24],
can be a first building block towards masked code-based cryptography and could lead to
future analysis and new optimization.

3.1. Notation 25

3.1 Notation
In what follows, we take a closer look at the various gadgets designed to create the
masked version of BIKE. These gadgets include functions, which we define here.

BIKE’s private key H is a sparse polynomial (see remark 2.2). For masking such
polynomials, both approaches are valid: either we represent in its dense form or we
keep the sparse structure and mask the indices of the non-zero coefficients instead.
Since the number of non-zero coefficient is a public parameter, two approaches are
potentially valid. The sparse representation intuitively seems lighter but some part (such
as error generation) will require the dense form for security reasons. For completeness, we
analyze both approaches: (1) an implementation where H is masked in dense form and (2)
a hybrid-sparse-dense implementation where both dense and sparse forms of H are stored.

The private key will then be denoted by h˝
0, h˝

1 when it is represented in sparse form (i.e.
the indices of the non-zero coefficients are masked) and it will be denoted by h0, h1 when
it is represented in dense form. The same convention is applied for other intermediate
variables.

Let sparse_to_densepq be an algorithm that converts the sparse representation into
a dense representation by multiplying the sparse polynomial by a dense polynomial
equal to 1. This procedure is straightforwardly d-NI.

Also, we denote by

• zero_maskingpq an initialization of a shared value, where the XOR of all shares is
zero,

• vector_zero_maskingpq an initialization of a vector of shared values, where each
value of the vector has the XOR of all shares is zero. In fact, we use zero_masking
in each coefficient of the vector,

• matrix_zero_maskingpq an initialization of a d-sharing of a 2-dimensional zero
matrix,

• leftpq (resp. rightpq) the fact of cutting a vector in two and keeping only its left-hand
(resp. right-hand) part,

• subvectorpq the fact of obtaining a sub-vector of the given coordinates,

As a general rule, all coefficient-wise operations are specified in the pseudo-code.

26 Chapter 3. Contributions: End-to-end masked implementation of BIKE

3.2 Masked gadgets

3.2.1 Auxiliary gadgets
In this section, we enumerate all the auxiliary gadgets required for BIKE masking.
We range from the most generic to the most specialized algorithms.

3.2.1.1 Masked equality

The gadget sec“ is a d-NI gadget that outputs a masked Boolean value corresponding
to the equality. The idea is to use Boolean algebra to check if the XOR between the
two inputs is 0. For that, we perform a sec& between the negation of each obtained bit.
Such a procedure has been outlined in the literature e.g. in [DAn+22].

We decided to optimize it in such a way as to dichotomize the operations about the
word binary, and thus achieve better performance.

Algorithm 3.1 Masked equality (sec“)
Input: Jx P Fn

2 K, Jy P Fn
2 K, n a power of 2

Output: Jz P F2K equals 0 if x “ y and 1 if not
1: JzKÐ JxK‘JyK
2: i Ð n

2
3: while i ‰ 0 do
4: JaKÐ leftpJzKq ▷ Cut in length
5: JbKÐ rightpJzKq ▷ Cut in length
6: JaK0 Ð ␣JaK0 ▷ Coefficient-wise not
7: JbK0 Ð ␣JbK0 ▷ Coefficient-wise not
8: JzKÐ sec&pJaK, JbKq ▷ Coefficient-wise sec&
9: JzK0 Ð ␣JzK0 ▷ Coefficient-wise not

10: i Ð i
2

11: return Jz0K

Given that the only operation manipulating the data is sec&, and that it is a d-SNI
function, we can deduce that the algorithm is d-NI.
In fact, as negation only manipulates the first share, it is not able to leak anything
(given that values are updated at each loop turn).

Theorem 3.1. The equality algorithm 3.1 is d-NI.

3.2.1.2 Masked maximum computation

This gadget returns the largest of the two masked values.

3.2. Masked gadgets 27

Remark 3.1. To calculate the negative of a shared value, we bit-reverse the first share
(which will bit-reverse the actual value) and use the sec` gadget to add 1, thus calculating
the 2’s complement.

Algorithm 3.2 Max (secmax)
Input: Ja P ZnK, Jb P ZnK
Output: Jc “ maxpa, bq P ZnK

1: JtKÐ sec`pJaK, J´bKq
2: return secifprefreshpJbKq, refreshpJaKq, sign_bitpJtKqq

Since the variables a and b are used within the sec` gadget, which is d-NI, we need
to refresh them (d-SNI gadget) before reusing them in the call to the secif function. This
yields the following theorem.

Theorem 3.2. The max algorithm 3.2 is d-NI.

3.2.1.3 Filling a matrix in masked form

Our gadget fills each column of a matrix with the binary representation of a masked
value. This gadget is used within the Algorithm 3.23 to fill the matrix with the negative
threshold.

Algorithm 3.3 Fill matrix (secfill)
Input: Jv P ZnK
Output: JX P Fptlog2pnqu`1q

2 ˆ kK a matrix filled with the binary representation of JvK
1: for i Ð 0 to k ´ 1 do
2: for j Ð 0 to tlog2pnqu do
3: JXj,iKÐ JvKrjs
4: JvK Ð refreshpJvKq
5: return JXK

Since we just initialize JXK with JvK binary, we just refresh JvK to avoid to get same
mask in two different lines.

We then get the following theorem.

Theorem 3.3. The fill algorithm 3.3 is d-NI.

28 Chapter 3. Contributions: End-to-end masked implementation of BIKE

3.2.1.4 Adders and carries

Adder gadgets are needed for bitslicing, and therefore for most of BIKE’s calculations.

Algorithm 3.4 Half Adder
SecHalf_Adder
Input: Jx P F2K, Jy P F2K
Output: Jz “ x‘y P F2K, Jc P F2K the

carry
1: JzKÐ JxK‘JyK
2: JcKÐ sec&pJxK, JyKq
3: return JzK, JcK

Algorithm 3.5 Adder SecAdder
Input: Jx P F2K, Jy P F2K, Jc0 P F2K
Output: Jz “ x‘y‘c0 P F2K, Jc P F2K the

carry
1: pJtK, JsKq Ð SecHalf_AdderpJxK, JyKq
2: pJzK, JuKq Ð SecHalf_AdderpJtK, Jc0Kq
3: JcKÐ JsK‘JuK
4: return JzK, JcK

Since the ‘ enjoys the d-NI property and sec& takes the same variables as input but
is d-SNI, their combination leads to an d-NI algorithm. Thus, we introduce the following
stating the probing security of the half adder algorithm.

Theorem 3.4. The half adder algorithm 3.4 is d-NI.

Since the adder uses only two calls to SecHalf_Adder (itself d-NI), handling different
variables, we can infer the following.

Theorem 3.5. The adder algorithm 3.5 is d-NI.

3.2.1.5 Multiplications

Within BIKE, we need to perform multiplication between integers and between
polynomials. First, we look at a gadget for multiplying between a masked and unmasked
value, then at naive multiplication between two masked polynomials, allowing the use of
Karatsuba algorithm.

Algorithm 3.6 Partly masked multiplication (SecMultpartlymasked)
Input: Jx P ZnK, y P Z
Output: Jz “ x ¨ y P ZnK

1: JzK Ð zero_maskingpq
2: JtKÐ JxK
3: for i Ð 0 to tlog2pyqu do
4: if yris “ 1 then ▷ yris “ py " iq & 1
5: JzKÐ sec`(JzK, JtK)
6: JtKÐ refreshpJtKq
7: JtKÐ JtK ! 1
8: return JzK

Theorem 3.6. The partly masked multiplication algorithm 3.6 is d-NI.

3.2. Masked gadgets 29

Proof. There are two possible blocks in the for loop: if yris “ 0, the only operation is
the shift, which enjoys the d-NI property. If yris “ 1, we use the sec` gadget which is
also d-NI. Since we reuse the t in the shift, we need to refresh it before.
So the two blocks are d-NI, and their sequential combination leads to a d-NI algorithm

Algorithm 3.7 SecPolymul: Naive Polynomial multiplication (parameterized by B, the
degree of the polynomials)
Input: Jx P FB

2 K, Jy P FB
2 K

Output: Jz “ x ¨ y P F2B
2 K

1: JzKÐ vector_zero_maskingpq
2: for i Ð 0 to B ´ 1 do
3: for j Ð 0 to B ´ 1 do
4: JuKÐ sec&pJxiK, JyjKq
5: Jzpi`jqKÐ Jzpi`jqK‘JuK

6: return JzK

Since we only use a SNI gadget and we update the z vector on the other hand, the
algorithm is d-NI.

Theorem 3.7. The polynomial multiplication SecPolymul algorithm 3.7 parametered
with B is d-NI.

3.2.1.6 Modular random number
To generate keys and errors, we need to be able to draw random numbers modulo n.
For this, we are using a method formalized by Lemire [Lem19], where we perform the
calculation rˆn

Fp
2

, with r randomly drawn in Fp
2. It is easy to see that the result ranges

from 0 and n ´ 1, with the same distribution as a modulo without performing any
division other than with a power of 2. We will only need the gadgets already introduced
(masked multiplication see Algorithm 3.6) and the shift, which is a linear operation.
Remark 3.2. It is assumed that the bits can be drawn safely, since the p bits can be
drawn on each of the shares of the shared value. In the context of an implementation,
the choice of algorithm for effectively drawing these bits is up to the developer.

Algorithm 3.8 Modular random number (secrand)
Input: n P N˚, p P N˚, 2p ě n

Output: Jr $
ÐÝ ZnK

1: JrK $
ÐÝ F2p ▷ Draw p bits on each share

2: JrKÐ SecMultpartlymaskedpJrK, nq
3: JrKÐ JrK " p ▷ Shift on each share
4: return JrK

30 Chapter 3. Contributions: End-to-end masked implementation of BIKE

Theorem 3.8. The modular random number algorithm 3.8 is d-NI.

Proof. Since p and n are public values, we do not need to mask them.
Since it operates on each share individually, the shift operation is d-NI.
SecMultpartlymasked is d-NI, by the previous proof. Finally, the random draw is also d-NI
since it operates on each share.

The algorithm is d-NI.

3.2.2 Karatsuba

Several multiplication algorithms are necessary for masking BIKE. As opposed to many
other masked designs, the multiplication often takes two masked inputs instead of
only one. In addition, the underlying F2 structure makes NTT-based multiplications
irrelevant in BIKE’s context, because the NTT is only applicable when the characteristic of
the finite field is greater than the degree of the polynomials, which is not the case in BIKE.

We could have considered using a finite field of characteristic greater than the degree of
the polynomials and then returning to F2 when necessary, but this would have prevented
us from using specific techniques. The choice was made to use bitslicing in this case (see
section 3.2.3), allowing us to continue manipulating binary values, and to remain within
Boolean masking. There was also the possibility of using additive FFT, but we did not
go any further.

Let B be a parameter denoting the recursion depth. It is fixed experimentally to
allow performance optimization. In our experiments, we have fixed B “ 64. We also set
a parameter s P N as a power of two corresponding to the degree of the polynomials.
Let split be a subroutine that splits the s{2 high order and s{2 low order bits into two
variables.

3.2. Masked gadgets 31

Algorithm 3.9 Karatsuba multiplication
Input: Jp1 P Fs

2K, Jp2 P Fs
2K

Output: Jz “ p1 ¨ p2 P F2s
2 K

1: if s “ B then
2: return SecPolymulpJp1K, Jp2Kq ▷ Naive polynomial multiplication, see

Algorithm 3.7 in Section 3.2.1.5
3: pJleft1K, Jright1Kq Ð splitpJp1Kq▷ Splitting the s{2 high order and s{2 low order bits
4: pJleft2K, Jright2Kq Ð splitpJp2Kq▷ Splitting the s{2 high order and s{2 low order bits
5: Jz1KÐ SecKaratsubapJright1K, Jright2Kq
6: Jz2KÐ SecKaratsubapJleft1K, Jleft2Kq
7: Jleft1KÐ refreshpJleft1Kq
8: Jright1K Ð refreshpJright1Kq
9: Jleft2KÐ refreshpJleft2Kq

10: Jright2K Ð refreshpJright2Kq
11: Jt1KÐ Jleft1K‘Jright1K ▷ Coefficient-wise XOR
12: Jt2KÐ Jleft2K‘Jright2K ▷ Coefficient-wise XOR
13: Jz3KÐ SecKaratsubapJt1K, Jt2Kq
14: return JzKÐ Jz1K‘pJz2K ! s{4q‘pJz3K ! s{2q ▷ Coefficient-wise

Theorem 3.9. The Karatsuba algorithm is d-NI for any power of two s and any bound
B ď s.

Proof. Let us prove this theorem by induction on the parameter s. If s ď B, the d-NI
property is directly inherited from the d-NI property of SecPolymul (Theorem 3.7 in
Section 3.2.1.5). Let us assume that the Karatsuba algorithm is d-NI for s ą B and let
us sketch a proof that is it d-NI for the next power of two: 2 ¨ s. The algorithm first
computes Jz1K, Jz2K with d-NI gadgets. Then, the dependencies are broken by the d-SNI
refresh before computing Jz3K. Finally, the recombination of Jz1K, Jz2K and Jz3K uses
only coefficient-wise F2-linear operations. Thus, Karatsuba algorithm is d-NI for 2 ¨ s
which concludes the proof.

Remark 3.3 (Generalization to arbitrary s). Note that it is possible to generalize
Karatsuba for multiplying two polynomials of any degree s. This generalization can
be obtained with an extra padding before the multiplication and a modulo application
afterwards. Since the size of polynomials and padding is public and the padding will
itself be masked, this does not raise any security concerns. We use the same notation
"SecKaratsuba".

3.2.3 Bitslicing
Bitslicing for QC-MDPC was introduced in [Cho16] for QcBits, which is a cryptographic
implementation based on QC-MDPC. By way of comparison, BIKE is a much more
complete scheme, especially when it comes to security reductions.

32 Chapter 3. Contributions: End-to-end masked implementation of BIKE

The matrices manipulated by bitslice can be seen as vectors of integers, but where
each integer is decomposed in binary form. Each column of this matrix therefore
represents the binary of a number. The SecBitslice function (Algorithm 3.11) takes two
matrices, and performs an addition between the two matrices, i.e. each integer in the
first matrix is added with the integer corresponding to the same position in the second
matrix. To perform these calculations, we need to use binary operations, hence the use
of adders and half-adders. The SecHalf_Bitslice (Algorithm 3.10) function, on the other
hand, takes a matrix and a vector, and performs the same operation, with the difference
that the vector can be seen as a vector of integers represented on a single bit.
In both cases, we note that the number of rows will be the log2 of the largest integer to
be represented, and that in the case of additions, we need to think about the possibility
of having a carry and having to add a row.

These techniques allow computations to be performed very efficiently and in constant
time by focusing on the binary representation. In Algorithms 3.10 and 3.11, we present
two versions of this BitSlice procedure depending on the type of the input. Both versions
will be used in our implementation.

Algorithm 3.10 SecHalf_Bitslice
Input: JX :“ pX0, ¨ ¨ ¨ , Xlq P Fkˆl

2 K, Jy P Fl
2K

Output: JX P Flˆk
2 K the result of the bitsliced addition between JXK and y

1: for i :“ 0 to ℓ´ 1 do
2: JrK :“ JyiK
3: for j :“ 0 to k ´ 1 do
4: pJXijK, JrKq Ð SecHalf_AdderpJXijK, JrKq

5: return JXK

Algorithm 3.11 SecBitslice
Input: JX :“ pX0, ¨ ¨ ¨ , Xkq P Flˆk

2 K, JY :“ pY0, ¨ ¨ ¨ , Ykq P Flˆk
2 K

Output: JX P Flˆk
2 K the result of the bitsliced addition between JXK and JYK

1: for i :“ 0 to l ´ 1 do
2: JrKÐ zero_maskingpq
3: for j :“ 0 to k ´ 1 do
4: pJXijK, JrKq Ð SecAdderpJXijK, JYijK, JrKq

5: return JXK

Since both SecHalf_Adder and SecAdder are d-NI and all loop iterations use different
or updated variables, their sequential combination leads to a d-NI algorithm. Hence the
following theorem.

3.2. Masked gadgets 33

Theorem 3.10. The SecHalf_Bitslice and SecBitslice algorithms are d-NI.

3.2.4 Hamming Weight
We introduce a masked Hamming weight computation. It has been optimized and
involves the masked bitslice algorithm presented in Algorithm 3.11.

To obtain the Hamming weight, we need to add all the bits together. We can do
this in an optimized way, using bitslice. Indeed, if we split our Fn

2 vector in two and
use bitslice between the left and right parts, we’ll end up with an F2ˆ n

2
2 matrix, each

column of two rows containing the binary resulting from our addition on each of the
positions. Here, position does not matter, as we want the result of the addition of all
bits. Iterating in this way, we will end up with a column vector containing the binary of
the Hamming weight. All we have to do now is reconstitute it.

Similarly to Karatsuba, we denote by right and left the cut in length of the matrix. For
example, if T P Flˆk

2 , rightpTq and leftpTq P Flˆ k
2

2 .

JTK is a matrix that starts with one row, and will gain one more row per loop turn (call
to bitslice). So we initialize JT0K as a vector, then at each iteration, JTK will gain a row.

Algorithm 3.12 Hamming weight (sechw)
Input: Jx P Fn

2 K
Output: Jy P ZnK the hamming weight of x

1: JT0KÐ JxK ▷ We initialize the first line of the JTK matrix with JxK vector
2: j Ð 1
3: i Ð n

2
4: while i ‰ 0 do
5: JTKÐ SecBitslicepleftpJTKq, rightpJTKqq ▷ Cut in length
6: j Ð j ` 1
7: i Ð i

2
8: JyK Ð zero_maskingpq
9: for i Ð 0 to j ´ 1 do

10: JyKÐ JyK‘ pJT0,iK ! iq

11: return JyK

Theorem 3.11. The hamming weight algorithm 3.12 is d-NI.

Proof. Since as SecBitslice has been proved d-NI in Theorem 3.10 and all loops use
updated variables, their composition leads to a d-NI algorithm.

34 Chapter 3. Contributions: End-to-end masked implementation of BIKE

3.2.5 Cyclic shifting
This is a masked version of the barrel shifter algorithm. The principle of the barrel shifter
is to shift the polynomial of each power of 2, and to keep only the shifts corresponding
to a position at 1 in the binary of the number of shifts to be performed.

We define SecCyclic_Shift the function that allows to shift a masked polynomial with a
public value. Since all we need to do to realize this are binary shifts with public values
(linear), & with known masks (to recover the overflowing part and apply the modulo)
and XOR (linear), it is safe and not a concern.

Algorithm 3.13 Secure masked cyclic shift (sec")
Input: Jx P Fn

2 K, Js P NK
Output: JyK “ Jx " s P Fn

2 K
1: JyKÐ JxK
2: for i Ð 0 to tlog2pnqu do
3: JvKÐ JsKris ▷ JsKris “ pJsK " iq & 1
4: JtK Ð SecCyclic_ShiftpJyK, 2iq

5: for j Ð 0 to n´ 1 do
6: Js1KÐ sec&pJtjK, JvKq
7: Js2KÐ sec&pJyjK,␣JvKq
8: JyjKÐ Js1K‘Js2K
9: return JyK

Theorem 3.12. The secure cyclic shift algorithm 3.13 is d-NI.

Proof. In the most nested for loop, we used two sec&, which are d-SNI. The ‘ being
d-NI, the block is d-NI.
Since the i loop is composed by d-NI gadgets, and the y vector is updated in the for i
loop, all of this is d-NI.
So their sequential combination leads to a d-NI algorithm.

3.2.6 Fisher-Yates
The generation of sparse polynomials is performed using the Fisher-Yates technique.
The Fisher-Yates shuffle designed for computer use was first introduced by Richard
Durstenfled in 1964 [Dur64]. It consists in generating a random permutation. It has
been adapted here for use in BIKE, where a vector of n random elements is drawn and
each i position contains a value between 0 and n´ i. Since it is important to avoid any
duplicates, we go through the array backwards and we replace the value by the index i
in case of duplicates. Despite a bias in the distribution, this does not affect the security
of the scheme as proved in [Sen21].

3.2. Masked gadgets 35

This procedure can be masked as presented in Algorithm 3.14. It uses secrand, presented
in Section 3.2.1.6.

Algorithm 3.14 Fisher-Yates (SecFisherYates)
Input: s P N, n P N
Output: Jr P Zs

nK a randomly generated vector without repeated values
1: for i Ð s´ 1 to 0 do
2: JriKÐ secrandpn´ iq
3: Initialize JiK as a Boolean sharing of i
4: JriKÐ sec`partlymaskedpJriK, iq
5: for j Ð i` 1 to s´ 1 do
6: JrjK Ð refreshpJrjKq
7: JbKÐ sec“pJriK, JrjKq
8: JriK Ð refreshpJriKq
9: JiKÐ refreshpJiKq

10: JriK Ð secifpJiK, JriK, JbKqq
11: return JrK

Theorem 3.13. The Fisher-Yates algorithm 3.14 is d-NI.

Proof. The Fisher-Yates algorithm involves many dependency loops. Indeed, each
random JriK is compared to all the previously derived ones. However, each value is
refreshed before being used. Thus, the loop in lines 6 to 10 can be seen itself as a d-SNI
gadget outputting JriK. Besides, the operations in lines 2 to 4 are d-NI. Hence, the outer
loop can be seen as a sequential combination of NI gadgets and a d-SNI gadget for lines
6 to 10. In consequence, the algorithm is d-NI.

3.2.7 Sparse-dense operations

In BIKE, it is often possible to leverage the fact that some masked polynomials are stored
in sparse format. Using the sec" gadget introduced earlier, we can develop a gadget to
perform multiplication between a sparse polynomial and a dense polynomial. The main
idea behind it is that in F2, with y P Zc

n in sparse representation, the multiplication of
the two polynomials x and y is equal to

řc´1
i“0 pxxyiq

36 Chapter 3. Contributions: End-to-end masked implementation of BIKE

Algorithm 3.15 Sparse-dense multiplication (SecMultsparsedense)
Input: Jx P Fn

2 K, Jy P Zc
nK

Output: Jz “ x ¨ y P Fn
2 K

1: JzKÐ vector_zero_maskingpq
2: for i Ð 0 to c´ 1 do
3: JtK Ð sec"pJxK, JyiKq ▷ See Algorithm 3.13 in Section 3.2.5
4: JxKÐ refreshpJxKq
5: JzK Ð JzK‘JtK ▷ Coefficient-wise XOR
6: return JzK

Theorem 3.14. The SecMultsparsedense algorithm 3.15 is d-NI.

Proof. Since the gadgets sec" and ‘ are d-NI. And even though if x is reused in each
loop, x is refreshed (d-SNI).

3.2.8 Inversion
A masked polynomial inversion is needed for inverting h0 inside the key generation. For
this, we use the fast polynomial inversion method introduced in [DGK20a].

We note secpow a d-NI gadget allowing to raise a polynomial to the given (known)
power. Since we only perform elevations of powers of 2, it boils down to permutations
as the underlying ring is F2.

Algorithm 3.16 SecInversion
Input: Jx P Fn

2 K
Output: Jy “ x´1 P Fn

2 K
1: JfKÐ JxK
2: JyKÐ JxK
3: JyKÐ refreshpJyKq
4: for i Ð 0 to tlog2pnqu´ 1 do
5: JgKÐ secpowpJfK, 22i

q

6: JfKÐ refreshpJfKq
7: JfKÐ SecKaratsubapJfK, JgKq
8: if the pi` 1qth bit of n´ 2 is 1 then
9: JtKÐ secpowpJfK, 2pn´2q pmod 2pi`1qqq

10: JyKÐ SecKaratsubapJyK, JtKq
11: JyKÐ secpowpJyK, 2q
12: return JyK

Theorem 3.15. The masked inversion algorithm 3.16 is d-NI.

Proof. The first iteration of the algorithm is presented below. One can graphically
conclude that each iteration is d-NI as all the observations can be simulated with at

3.3. Masked BIKE 37

most d shares of pJfK, JyKq. Thus, the full loop is d-NI. In addition, the final operation is
d-NI. And, since both JfK and JyK are initialized with the same input JxK, one of them
should be refreshed to end up with a full d-NI gadget.

JxK

JfK

JyK

secpow SecKaratsuba

refresh

secpow

refresh SecKaratsuba

JfK

JyK

if the first bit of n´ 2 is 1

one iteration

Figure 3.1: Structure of the polynomial inversion algorithm

3.3 Masked BIKE
In this section, the parameters used are those of the BIKE scheme. You can find them in
Table 2.1.

3.3.1 Key generation
The masked key generation consists of generating private keys h0 and h1, and computing
the public key h. To do this, we use the Fisher-Yates and inversion algorithms presented
above.

Algorithm 3.17 Masked key generation

Output: Jh˝
0 P Z

w
2
r K, Jh˝

1 P Z
w
2
r K, Jh0 P Fr

2K, Jh1 P Fr
2K, Jh P Fr

2K, Jσ⃗ P Fℓ
2K

1: Jh˝
0KÐ SecFisherYatespw

2 , rq ▷ Algorithm 3.14
2: Jh˝

1KÐ SecFisherYatespw
2 , rq

3: Jh0K Ð sparse_to_densepJh˝
0Kq

4: Jh1K Ð sparse_to_densepJh˝
1Kq

5: Jh´1
0 KÐ SecInversionpJh0K, rq ▷ Algorithm 3.16

6: JhK Ð SecKaratsubapJh´1
0 K, Jh1Kq ▷ Algorithm 3.9

7: Jσ⃗K $
ÐÝ Fℓ

2
8: return sk “ pJh˝

0K, Jh˝
1K, Jh0K, Jh1Kq, pk “ JhK, Jσ⃗K

38 Chapter 3. Contributions: End-to-end masked implementation of BIKE

Provided that all the gadgets enjoy the d-NI property, their sequential combination
leads to a d-NI algorithm. Thus we have the following result.

Theorem 3.16. The masked key generation algorithm 3.17 is d-NI.

3.3.2 Encapsulation

In this section, we take a closer look at encapsulation which consists in generating the
error, then encrypting it using the public key. A few additional steps are taken to make
the algorithm IND-CCA.

IND-CCA masked implementation The IND-CCA security of the scheme is
achieved thanks to the Fujisaki-Okamoto transformation. This transformation consists
in XORing the seed used to generate the secret with the hashed secret. This will allow,
during the decryption, to recover the seed and thus to check if the secret has been
honestly generated. This transformation prevents active chosen ciphertext attack. In
BIKE [Ara+22], the K, L and H hash functions (see Algorithm 2.3) are instantiated with
SHAKE256 and SHA384. These functions have already been protected in the masked
implementation of Saber (see [DAn+20] for more information about Saber) in [Kun+22].
This framework is easily adaptable for BIKE without major modification. Masking is
done in a similar way, keeping the same masking order.

3.3.2.1 Error generation

The error generation algorithm is necessary for both encapsulation and decapsulation.
Its masked version is introduced below in Algorithm 3.18. It consists in generating a
masked error vector Je0K, Je1K.

Since we know that |e0| ` |e1| “ t but not |e0| and |e1| individually, representing
them in sparse representation gives information about them. The error must be in dense
representation, to avoid leaking this sensitive information.

3.3. Masked BIKE 39

Algorithm 3.18 Masked Error generation SecErrorGen
Input: JsK P Fℓ

2 the seed for SecFisherYates
Output: Je0K P Fr

2, Je1K P Fr
2

1: Je0KÐ vector_zero_maskingpq
2: Je1KÐ vector_zero_maskingpq
3: Je˝KÐ SecFisherYatespt, 2ˆ rq ▷ algorithm 3.14, t the error weight
4: for i Ð 0 to t´ 1 do
5: JvK Ð sec`partlymaskedpJe˝

i K,´rq ▷ see section 2.2.2.3
6: Je˝

i K Ð refreshpJe˝
i Kq

7: Jt˝KÐ secifpJe˝
i K, JvK, sign_bitprefreshpJvKqqq ▷ see section 2.2.2.4

8: JtK Ð sparse_to_densepJt˝Kq ▷ see section 3.1, polynomial with only one
coefficient

9: Je0KÐ Je0K‘secifpJtK, vector_zero_maskingpq, sign_bitprefreshpJvKqqq
10: Je1KÐ Je1K‘secifpvector_zero_maskingpq, JtK, sign_bitprefreshpJvKqqq
11: return Je0K, Je1K

Remark 3.4. In the context of error generation, we use the JsK seed to generate our JeK
vector using SHAKE256 hash function (see Section 3.3.2) which is then processed in
the same way as Fisher-Yates. Since we have defined Fisher-Yates (Algorithm 3.14)
with random generation within it, this would require us to redefine it to take a random
vector, which would complicate its understanding. This does not change the nature of
the algorithm, so to avoid making it unnecessarily complicated, we call Fisher-Yates
directly.

In this algorithm, the intermediate values are used only once within d-NI gadgets,
the only exception being Je˝

i K, which is refreshed (d-SNI) before its new use. We can
therefore conclude with the following theorem.

Theorem 3.17. The error generation algorithm 3.18 is d-NI.

3.3.2.2 Encapsulation algorithm

Algorithm 3.19 Encapsulation
Input: Jh P Fr

2K
Output: Jc P Fr`ℓ

2 K
1: JmK $

ÐÝ Fℓ
2

2: JeK “ pJe0K, Je1Kq Ð SecErrorGenpJmKq ▷ Algorithm 3.18
3: JmKÐ refreshpJmKq
4: JcKÐ SecKaratsubapJe1K, JhKq
5: JcKÐ JcK‘Je0K ▷ Coefficient-wise XOR
6: JeKÐ refreshpJeKq
7: JcrK Ð LpJeKq‘JmK ▷ see Section 3.3.2, Coefficient-wise XOR
8: return Je0K, Je1K

40 Chapter 3. Contributions: End-to-end masked implementation of BIKE

All the functions used are d-NI.

Since the only variable that has been reused is the seed m and the generated error e, we
have to refresh them. We can conclude that the algorithm is itself d-NI.

Theorem 3.18. The encapsulation algorithm 3.19 is d-NI.

3.3.3 Decapsulation
Finally, we take a closer look at decapsulation. As this is a fairly dense process, it has
been decomposed into lots of smaller gadgets.

• The syndrome computing. The syndrome must be calculated at each decoding
iteration.

• The threshold computing. Like syndrome, it must be calculated at each iteration
and depends on the hamming weight of the syndrome.

• The counters computing. At each iteration, we need to use bitslicing to obtain the
counter of each position.

With these gadgets, we can construct the decoder (and the grey zone, which is an
additional decoding performed at the first decoder iteration).

The decapsulation is composed of the BGF decoder, and a few operations to make
decapsulation IND-CCA.

3.3.3.1 Computing the syndrome

Within decoding, we need to calculate the syndrome, which corresponds to the use of
Karatsuba between the error construction Je0K and Je1K and the private key Jh0K and
Jh1K, which we will XOR with the initial syndrome Jc0KJh0K.

Algorithm 3.20 compute_syndrome
Input: Jh0 P Fr

2K, Jh1 P Fr
2K, Je0 P Fr

2K, Je1 P Fr
2K, Js “ c0h0 P Fr

2K
Output: Js1 “ c0h0 ` e0h0 ` e1h1 P Fr

2K
1: Js2KÐ SecKaratsubapJe0K, Jh0Kq
2: Js3KÐ SecKaratsubapJe1K, Jh1Kq
3: Js1KÐ JsK‘Js2K‘Js3K ▷ Coefficient-wise XOR
4: return Js1K

Since different variables are used in each of the function calls (all d-NI), we get the
following theorem.

Theorem 3.19. The syndrome computing algorithm 3.20 is d-NI.

3.3. Masked BIKE 41

3.3.3.2 Computing the threshold

The threshold is an integer value that needs to be recomputed several times during
decoding. To find out whether a position will be flipped, we need to check whether a
value exceeds a threshold. To calculate this threshold, we need to use the Hamming
weight of the syndrome. Initially, the calculation of the threshold is done with floats,
which is a concern for the masking. We have therefore reduced this to simple operations
on integers such as threshold is equal to maxptT0¨S`T1

2T2 u, T3q (see Table 3.1). With this
formula, we also avoid any worries about division, since we can use a shift.

Table 3.1: BIKE’s threshold parameters

Level 1 Level 3 Level 5
T0 58487 11306501 269987
T1 113497866 32768023488 1199805825
T2 23 31 26
T3 36 52 69

Algorithm 3.21 T computing (secT)
Input: JS P ZrK, T0, T1, T2, T3 fixed parameters of the scheme
Output: JT “ maxptT0¨S`T1

2T2 u, T3q P ZrK
1: JtKÐ SecMultpartlymaskedpJSK, T0q ▷ Algorithm 3.6
2: JT KÐ sec`partlymaskedpJtK, T1q
3: JT KÐ JT K " T2
4: JT KÐ secmaxpJT K, JT3Kq ▷ Algorithm 3.2
5: return JT K

Algorithm 3.22 SecThreshold
Input: Js P Fr

2K
Output: JT P ZrK the threshold calculated from the syndrome

1: JSKÐ sechwpJsKq ▷ Algorithm 3.12
2: JT KÐ secTpJSKq ▷ Algorithm 3.21
3: return JT K

Since we perform a sequence of operations that are d-NI themselves, we can establish
the following theorem.

Theorem 3.20. The algorithm computing the threshold 3.22 is d-NI.

42 Chapter 3. Contributions: End-to-end masked implementation of BIKE

3.3.3.3 Computing the counters
During decoding, it is necessary to compute the number of unsatisfied parity-check
equations for a given position. We present a masked version of this routine in
Algorithm 3.23.
Let us denote by C P pFrˆptlog2p w

2 qu`1q

2 ˆFrˆptlog2p w
2 qu`1q

2 q the matrix containing the binary
representations of the counters of each coefficient. We manipulate this matrix as two
double dimensional matrices, JC0K and JC1K. This algorithm uses a gadget that consists
in filling a matrix with a value, which was previously introduced in Algorithm 3.3.

Algorithm 3.23 Counter computing (SecCounter)

Input: Js P Fr
2K, JT P ZrK, Jh˝

0 P Z
w
2
r K, Jh˝

1 P Z
w
2
r K

Output: JC P pFptlog2p w
2 qu`1qˆr

2 ˆ Fptlog2p w
2 qu`1qˆr

2 qK two masked matrices containing the
binary representations of the counters for each coefficient

1: J´T K Ð SecMultpartlymaskedpJT K,´1q ▷ Algorithm 3.6
2: JC0KÐ matrix_zero_maskingpq
3: JC1KÐ matrix_zero_maskingpq
4: JPKÐ rJh˝

0K, Jh˝
1Ks

5: for i Ð 0 to 1 do
6: for j Ð 0 to w

2 ´ 1 do
7: JsKÐ refreshpJsKq
8: JzK Ð sec"pJsK, JPi,jKq ▷ Algorithm 3.13
9: JCiKÐ SecHalf_BitslicepJCiK, JzKq ▷ Algorithm 3.10

10: JT0KÐ sec_fillpJ´T Kq ▷ Algorithm 3.3
11: JT1KÐ sec_fillprefreshpJ´T Kqq ▷ Algorithm 3.3
12: JC0KÐ SecBitslicepJC0K, JT0Kq ▷ Algorithm 3.11
13: JC1K Ð SecBitslicepJC1K, JT1Kq ▷ Algorithm 3.11
14: returnJCK “ rJC0K, JC1Ks

Theorem 3.21. The counter computing algorithm is d-NI.

Proof. The procedure in lines 7 to 9 of Algorithm 3.23 is depicted in fig. 3.2. One can
see that all the loops are broken with a d-SNI refresh gadget. Thus lines 7 to 9 can be
seen as a d-NI gadget.

SecHalf_BitsliceJCiK

sec"JPi,0K

refreshJsK

SecHalf_Bitslice

sec"JPi,1K

refresh

SecHalf_Bitslice

sec"JPi,2K

refresh

SecHalf_Bitslice

sec"JPi,3K

refresh

¨ ¨ ¨

JCiK

Figure 3.2: Sub-structure of the counter algorithm

3.3. Masked BIKE 43

The rest of the algorithm is a sequence of d-NI gadgets (SecMultpartlymasked, secfill,
SecBitslice), thus the full algorithm is d-NI.

3.3.3.4 BGF decoder & grey zone

We now describe the most important part of the decapsulation: the masked BGF decoder.
The unmasked version of the BGF decoder has been presented in Section 2.1.3, the grey
zone is represented by lines 5 to 7 of Algorithm 2.5. The masked version of Algorithm 2.5
is detailed in Algorithm 3.25.

During decoding, we want to construct Je0K and Je1K such that h0e0 ` h1e1 “ s.
To achieve this, we carry out a fixed number of iterations, in which we calculate the
syndrome, its Hamming weight, and the threshold. Once the matrix of counters minus
the threshold has been obtained, we modify Je0K and Je1K according to the first row of
the matrix, which corresponds to the sign bit of the counter. At the next iteration, the
syndrome will be updated with the modifications made to Je0K and Je1K.

During the first iteration, additional operations are performed: this is the grey zone.
After initial bitflipping, we will recover the positions that would have been in the black
zone (those which were flipped, i.e. which exceeded the threshold) and those which
were in the grey zone (those which were not flipped, but which where at τ units below
the threshold e.g. τ “ 3). We will recalculate the counters, but with the threshold set
at

w
2 `1

2 . If we see that some positions exceed this threshold even though they were
previously flipped, we reflip them in the other direction. Once done, we perform a final
iteration, this time recalculating the counters and flipping positions that exceed the
threshold

w
2 `1

2 but were in the grey zone (i.e. never flipped before).

Let C “ pC0, C1q P pF
rˆptlog2p w

2 qu`1q

2 ˆ Frˆptlog2p w
2 qu`1q

2 q be the same pair of matrices
presented in section 3.3.3.3. The notation C0,tlog2p w

2 qu,˚ represents the entire row of
height tlog2p

w
2 qu.

The grey zone gadget takes as input the black zone T0, which is the matrix containing
the counters minus the threshold. With, we can calculate the grey zone T1, which
contains the counters minus the threshold plus τ .

44 Chapter 3. Contributions: End-to-end masked implementation of BIKE

Algorithm 3.24 SecGreyZone

Input: sk “

´

Jh0 P Fr
2K, Jh1 P Fr

2K, Jh˝
0 P Z

w
2
r K, Jh˝

1 P Z
w
2
r K

¯

, JT0 P pF
rˆptlog2p w

2 qu`1q

2 ˆ

Frˆptlog2p w
2 qu`1q

2 qK, Je0 P Fr
2K, Je1 P Fr

2K, Js P Fr
2K

Output: Je0 P Fr
2K, Je1 P Fr

2K
1: Initialize JτK as a Boolean sharing of 3 ▷ 3 is a fixed parameter
2: JVK Ð secfillpJτKq ▷ Algorithm 3.3
3: JT1,0KÐ SecBitslicepJT0,0K, JVKq ▷ Algorithm 3.11
4: JVKÐ refreshpJVKq
5: JT1,1KÐ SecBitslicepJT0,1K, JVKq ▷ Algorithm 3.11
6: JT0KÐ refreshpJT0Kq
7: JT1,0,tlog2p w

2 qu, ˚KÐ JT0,0,tlog2p w
2 qu,˚K‘JT1,0,tlog2p w

2 qu, ˚K ▷ Coefficient-wise XOR
8: JT1,1,tlog2p w

2 qu, ˚KÐ JT0,1,tlog2p w
2 qu,˚K‘JT1,1,tlog2p w

2 qu, ˚K ▷ Coefficient-wise XOR
9: for l Ð 0 to 1 do

10: JskK Ð refreshpJskKq
11: Js1KÐ SecSyndromepJh0K, Jh1K, Je0K, Je1K, JsKq ▷ Algorithm 3.20
12: JCKÐ SecCounterpJs1K,

w
2 `1

2 , Jh˝
0K, Jh˝

1Kq ▷ Algorithm 3.23
13: Jv0KÐ sec&p␣JC0,tlog2p w

2 qu,˚K, JTl,0,tlog2p w
2 qu,˚Kq ▷ Coefficient-wise sec&

14: Jv1KÐ sec&p␣JC1,tlog2p w
2 qu,˚K, JTl,1,tlog2p w

2 qu,˚Kq ▷ Coefficient-wise sec&
15: Je0K, Je1KÐ refreshpJe0K, Je1Kq
16: Je0K Ð Je0K‘Jv0K ▷ Coefficient-wise XOR
17: Je1KÐ Je1K‘Jv1K ▷ Coefficient-wise XOR
18: return Je0K, Je1K

Theorem 3.22. The grey zone algorithm 3.24 is d-NI.

Proof. We define a particular gadget called "block" for lines 11 to 17.

Je0K, Je1K Je0K, Je1K

JsK Jh0K Jh1K Jh˝
0K Jh˝

1K

SecSyndrome SecCounter sec&

JTK1,ℓ,tlog2p w
2 qu,˚

‘

refresh

Block for ℓ P t0, 1u

Figure 3.3: Structure of one block

The overall details of the dependencies are presented in Figures 3.3 and 3.4. As
illustrated in Figure 3.3, the block gadget is d-NI. Indeed, the only dependency loop is
broken by a d-SNI refresh algorithm. Let us consider the full algorithm. Let us assume
that an attacker has access to δ ď d observations on this gadget. Then, we want to

3.3. Masked BIKE 45

block ℓ “ 0 block ℓ “ 1

refresh

‘refresh

SecBitslice

‘refresh

SecBitslice

refresh

Je0K, Je1K Je0K, Je1K

JsK, JskK

JT0,0K

JVK

JT0,1K

Figure 3.4: Structure of the grey zone gadget

prove that all these δ observations can be perfectly simulated with at most δ shares of
JskK, JT0K, Je0K, Je1K, JsK and JVK (note that the last one can be omitted as it is derived
from a public parameter). To fix notations, let us consider the following distribution of
the attacker’s δ observations:

• δ1 during the bitslice of Line 3
• δ2 during the refreshing of V
• δ3 during the bitslice of Line 5
• δ4 during the refresh of T0 (splitted in two sub-gadgets in the figure)
• δ5 during the ‘ in Line 8,
• δ6 during the ‘ in Line 7,
• δ7 during the refreshing of sk and s,
• δ8 in the block with ℓ “ 0,
• δ9 in the block with ℓ “ 1

By definition of the d-probing model, we have
ř9

j“1 δi ď δ ď d. All the gadgets are
proved d-NI and the refresh gadgets are d-SNI. We skip the progressive part of the proof
and directly claim that all the observations that are made during the execution of the
gadget can be perfectly simulated with

• δ2 ` δ9 ` δ8 ` δ5 ` δ1 ` δ7 shares of JVK
• δ9 ` δ8 ` δ7 shares of JskK and JsK (each)
• δ9 ` δ8 ` δ5 ` δ4 ` δ1 shares of T0,0,
• δ9 ` δ6 ` δ3 ` δ4 shares of T0,1,
• δ9 ` δ8 shares of Je0K and Je1K (each).

This can be verified with the help of the figure. All these numbers of shares are smaller
to δ ď d which concludes the proof.

46 Chapter 3. Contributions: End-to-end masked implementation of BIKE

Algorithm 3.25 BGF decoder

Input: sk “
´

Jh0 P Fr
2K, Jh1 P Fr

2K, Jh˝
0 P Z

w
2
r K, Jh˝

1 P Z
w
2
r K

¯

, Jc0 P Fr
2K

Output: Je0 P Fr
2K, Je1 P Fr

2K such that pc0 ` e0q ¨ h0 “ 0
1: Je0KÐ vector_zero_maskingpq
2: Je1KÐ vector_zero_maskingpq
3: JsKÐ SecKaratsubapJc0K, Jh0Kq ▷ Algorithm 3.9
4: Jh0K Ð refreshpJh0Kq
5: for i Ð 0 to Nbr_Iter ´1 do
6: Js1KÐ SecSyndromepJh0K, Jh1K, Je0K, Je1K, JsKq ▷ Algorithm 3.20
7: JT KÐ SecThresholdpJs1Kq ▷ Algorithm 3.22
8: Js1KÐ refreshpJs1Kq
9: JCKÐ SecCounterpJs1K, JT K, Jh˝

0K, Jh˝
1Kq ▷ Algorithm 3.23

10: Je0KÐ refreshpJe0Kq; Je1KÐ refreshpJe1Kq
11: ▷ JC0,tlog2p w

2 qu,˚K and JC1,tlog2p w
2 qu,˚K are the sign bit of the counters minus the

threshold
12: Je0K Ð ␣ppJe0Kq‘pJC0,tlog2p w

2 qu,˚Kqq ▷ Coefficient-wise XOR
13: Je1K Ð ␣ppJe1Kq‘pJC1,tlog2p w

2 qu,˚Kqq ▷ Coefficient-wise XOR
14: if i “ 0 then
15: JsKÐ refreshpJsKq
16: Je0K, Je1KÐ SecGreyZonepJCK, Jh0K, Jh1K, Jh˝

0K, Jh˝
1K, Je0K, Je1K, JsKq ▷ Algo-

rithm 3.24
17: JskKÐ refreshpJskKq
18: JsKÐ refreshpJsKq
19: return pJe0K, Je1Kq

Theorem 3.23. The BGF decoder algorithm 3.25 is d-NI.

Proof. We represent the whole decoding algorithm in Figures 3.5 and 3.6. To avoid
complex graphs, the content of an iteration for i ‰ 0 can be proved separately (if i ‰ 0,
there is no application of the SecGreyZone algorithm, in Lines 14 to 16).

Je0K, Je1K Je0K, Je1K

JsK Jh0K Jh1K Jh˝
0K Jh˝

1K

SecSyndrome SecThreshold SecCounter l. 12,13

refresh

refresh

Iteration pi ‰ 0q

Figure 3.5: Structure of an iteration

3.3. Masked BIKE 47

SecKaratsubaJc0K

Jh0K
Jh1K
Jh˝

0K
Jh˝

1K

vector_zero_masking iteration SecGreyZone iteration iteration iteration iteration

refresh
refresh refresh refresh refresh refreshJsk, sK

Je0K, Je1K
Je0K, Je1K

JsK

Jh0K

Figure 3.6: Structure of the BGF decoder

Let us first look at one iteration with i ‰ 0. Let us assume that it is a gadget with
inputs Je0K, Je1K, JskK and JsK. And we assume that this iteration’s output is a modified
version of Je0K, Je1K. Let us assume that an attacker has access to δ ď d observations on
this sub-gadget. Thus, we want to prove that all these δ observations can be perfectly
simulated with at most δ shares of JskK, JsK, Je0K and Je1K. To fix notations, let us
consider the following distribution of the attacker’s δ observations:

• δ6 on Lines 12 and 13,
• δ5 during the SecCounter computation,
• δ4 during the SecThreshold computation,
• δ3 during the SecSyndrome computation,
• δ2 when Js1K si refreshed,
• δ1 when Je0K and Je1K are refreshed.

By definition of the d-probing model, we have
ř6

j“1 δi ď δ ď d.
Since Lines 12 and 13 are F2-linear operations performed share by share, this computation
verifies the d-NI property. In addition, all the gadgets are either d-NI or d-SNI as developed
earlier. Finally, all the observations performed during this iteration can be perfectly
simulated with at most

ř6
j“1 δi shares of Je0K, the same amount for Je1K, δ6 ` δ5 shares

of h˝
0, the same for h˝

0,
ř6

j“2 δi shares of h0 and finally the same for h1.
In the end, we have proved that all the probes can be perfectly simulated with at

most δ ď d shares of JskK, JsK, Je0K and Je1K.
Now let us analyze the complete construction in Figure 3.6. The same reasoning

applies. Let us assume that an attacker has access to δ ď d observations on this algorithm.
We consider the following distribution of the attacker’s δ observations:

• δiter,i on each i´ th iteration,
• δSecGreyZone on the SecGreyZone computation,
• δref,i on the i´ th refresh of the secret key and the syndrome,
• δvector_zero_masking on the vector_zero_masking computation,
• δSecKaratsuba on the computation of the syndrome,
• δref on the very first refresh.

48 Chapter 3. Contributions: End-to-end masked implementation of BIKE

By definition,
řNbr_Iter´1

i“0 pδiter,i ` δref,iq`δSecGreyZone`δvector_zero_masking`δSecKaratsuba`
δref ď δ ď d.
All the gadgets are proved d-NI and the refresh gadgets are d-SNI. All the
probes performed after the first iteration (including the grey zone, the key re-
fresh and the other following iterations), can be perfectly simulated with at most
řNbr_Iter´1

i“0 pδiter,i ` δref,iq ` δSecGreyZone shares of JskK, JsK, Je0K and Je1K. Next, we use
the probing security of the refresh, SecKaratsuba and vector_zero_masking. All the
probes performed during the full decoding algorithm can be perfectly simulated with
at most

řNbr_Iter´1
i“0 pδiter,i ` δref,iq ` δSecGreyZone ` δSecKaratsuba ` δref shares of Jc0K, the

same for Jh0K and
řNbr_Iter´1

i“0 pδiter,i ` δref,iq ` δSecGreyZone for the rest of the secret key.
All these numbers are smaller than to δ ď d which concludes the proof.

3.3.3.5 Decapsulation algorithm

Decapsulation consists of first decoding the ciphertext and second checking that it is
correct. We propose below a fully masked version of the decapsulation for completeness
in Algorithm 3.26.

Algorithm 3.26 Decapsulation
Input: Jc P Fr`ℓ

2 K, Jσ⃗ P Fℓ
2K

Output: Jk P Fℓ
2K

1: Je1KÐ SecBGFpJh0K, Jh1K, Jh˝
0K, Jh˝

1K, subvectorpJcK, 0, r ´ 1qq ▷ Algorithm 3.25
2: Jm1K Ð LpJe1Kq ▷ see Section 3.3.2
3: Jm1KÐ Jm1K‘subvectorpJcK, r, r ` ℓq ▷ see Section 3.1, coefficient-wise XOR
4: pJe0K, Je1Kq Ð SecErrorGenpJm1Kq ▷ Algorithm 3.18
5: Jm1KÐ refreshpJm1Kq
6: JvK Ð 1 ▷ Masked value of 1
7: for i Ð 0 to 1 do
8: for j Ð 0 to r ´ 1 do
9: JtKÐ sec“pJei,jK, Je1

i,jKq ▷ see Section 3.2.1.1
10: JtK0 Ð JtK0‘1
11: JvKÐ sec&pJvK, JtKq
12: JtKÐ KpJm1K, JcKq ▷ Section 3.3.3.5
13: Jt1KÐ KpJσ⃗K, JcKq
14: JkKÐ secifpJtK, Jt1K, JvKq ▷ Coefficient-wise secif
15: return JkK

Algorithm 3.26 uses d-NI gadgets, and the only variable that is used twice without
modification is m1. However, the dependancy loop is broken by the d-SNI refresh. Thus,
we introduce the following theorem.

Theorem 3.24. The decapsulation algorithm 3.26 is d-NI.

3.4. Benchmark & pratical testing 49

3.4 Benchmark & pratical testing
All the gadgets introduced have been implemented in complete C-code. Side-channel
attacks are highly dependent on the platform on which the code is executed and it is
true that assembly codes are always the best pratical solution. However, C-code seems
the best option to provide a multi-platform proof of concept. This code could be reused
for future analysis and optimizations. You can find the full code, publicly available for
code-checking and reproducibility, on Github1.

Sparse vs dense representation Since most of the computations are polynomial
operations performed on sparse objects, let us recall that we had two available options:
the fully-dense implementation and the hybrid-sparse-dense one (see Chapter 3). In the
first case, we see the polynomials as dense (with a conversion of the keys during the
SecKeyGen) and we use Karatsuba for the majority of the calculations. In the other
case, since we can represent a number of polynomials in sparse representation, we use
SecMultsparsedense as much as possible. In the algorithms presented, we have focused on
the “fully-dense implementation”, but we have also implemented the “hybrid sparse-
dense” version, which consists of using sparse representations and SecMultsparsedense
instead of Karatsuba where possible. You will find this in the Table 3.2, under the
“sparse” and “dense” labels.

As presented in Figure 3.7, our benchmarks show that while both approaches seem
similar for one or two shares, a fully dense approach is indeed more relevant for higher
orders.

0 1 2 3 4 50

1,000

2,000

3,000

Order

N
um

be
r

of
cy

cl
es

(in
10

6)

SecBGF (sparse)
SecBGF (dense)

SecKeyGen (sparse)
SecKeyGen (dense)

Figure 3.7: Sparse vs dense, SecBGF and SecKeyGen

One can conclude from our work that for the moment (except with potentially
upcoming new optimizations), the dense representation seems more relevant. We will

1https://github.com/loicdemange/masked_BIKE_code

https://github.com/loicdemange/masked_BIKE_code

50 Chapter 3. Contributions: End-to-end masked implementation of BIKE

therefore keep the dense representation for the rest of the benchmarks, as it scales better
when the order exceeds or equals 2.

3.4.1 Detailed benchmarks
The code was benchmarked on an i7-4710MQ running at 2.5Ghz, 8GB of RAM, and
compiling with gcc 12.2.0 -O3 flag. The given performances are obtained for NIST
security level 1 (r “ 12323). Identical experiments can provide data for the other security
levels. Multiple benchmarks were performed and the results are listed in Table 3.2.
We can notice that the performance of the gadgets depends on the performance of the
multiplicative gadgets.

Table 3.2: Scaling benchmarks on particular gadgets, i7-4710MQ 2.5Ghz gcc 12.2.0 -03,
NIST Level 1, median results on 200 executions

Order 0 1 2 3 4 5
SecBGF(Alg. 3.25) (sparse) 1 ˆ9 ˆ22.8 ˆ43 ˆ67.9 ˆ100.2
SecBGF(Alg. 3.25) (dense) 1 ˆ4.9 ˆ11.4 ˆ19 ˆ30 ˆ42.4

SecKeyGen (Alg. 3.17) (dense) 1 ˆ3.5 ˆ7.7 ˆ12.1 ˆ18 ˆ25.6
SecErrorGen (Alg. 3.18) 1 ˆ8.6 ˆ22.3 ˆ40.8 ˆ66 ˆ96.2

SecGreyZone(Alg. 3.24) (sparse) 1 ˆ9 ˆ23.9 ˆ41.9 ˆ67.4 ˆ98.3
SecGreyZone(Alg. 3.24) (dense) 1 ˆ4.8 ˆ11.2 ˆ18.8 ˆ29.2 ˆ42

SecFisherYates(Alg. 3.14) 1 ˆ9.5 ˆ18.5 ˆ29.7 ˆ45.7 ˆ66
SecInversion(Alg. 3.16) 1 ˆ3.5 ˆ7.2 ˆ11 ˆ16.4 ˆ23.6

SecSyndrome(Alg. 3.20) (sparse) 1 ˆ8 ˆ21.3 ˆ42.3 ˆ63.7 ˆ93
SecSyndrome(Alg. 3.20) (dense) 1 ˆ3.3 ˆ7.3 ˆ10.8 ˆ15.7 ˆ22.2

SecThreshold(Alg. 3.22) 1 ˆ8.6 ˆ12.9 ˆ19.1 ˆ30.5 ˆ43.1
SecCounter(Alg. 3.23) 1 ˆ9.4 ˆ23.1 ˆ42.1 ˆ67.3 ˆ97
SecKaratsuba(Alg. 3.9) 1 ˆ3.4 ˆ7.4 ˆ11.1 ˆ16.7 ˆ23.4

SecMultsparsedense(Alg. 3.15) 1 ˆ8.2 ˆ21.3 ˆ40 ˆ64.8 ˆ95.6

Bottlenecks The sparse-dense multiplication seems to be the biggest bottleneck of
our implementation. An optimization of this gadget could lead to big improvements of
the complete scheme’s performance. There is also room for optimization in Karatsuba,
which, although its scaling looks good, is called a large number of times in most BIKE
sections. One idea to improve these gadgets could be to optimize the last recursion
calculation of Karatsuba. In the unmasked implementation, specific instructions are
used, while in our masked implementation, only a naive multiplication is applied. The
problem is that most known optimized techniques require arithmetic operations, thus, a
masked form would require a mask conversion. Given the complexity of such conversions,
this approach may end up to be equivalent to our original naive technique. In the end,

3.4. Benchmark & pratical testing 51

future work is still necessary to innovate and find new optimizations on this instruction.

Similarly, the cyclic shift is performed here directly, while the reference implementation
stores the polynomials in duplicate (contiguously) and just has to change its "window"
to perform the shift. We could not see any way to keep this advantage in a masked form.
This also explains why there is such a difference in performance between the reference
implementation and this implementation when the order equals 0.

General performance for masked BIKE (fully-dense) The performances and
scaling for the scheme are detailed in Table 3.3 and Figure 3.8.

Table 3.3: Scaling benchmarks on BIKE, i7-4710MQ 2.5Ghz gcc 12.2.0 -03, NIST Level
1, median results on 100 executions, in million of cycles

Order 0 1 2 3 4 5
SecKeyGen (RNG off) 55 162 351 477 640 853
SecKeyGen (RNG on) 55 188 409 635 980 1 330

Scaling SecKeyGen (RNG off) 1 ˆ3 ˆ6.4 ˆ8.7 ˆ11.7 ˆ15.5
Scaling SecKeyGen (RNG on) 1 ˆ3.4 ˆ7.4 ˆ11.5 ˆ17.9 ˆ24.2

Encaps (RNG off) 5 24 53 84 120 170
Encaps (RNG on) 5 29 71 122 190 278

Scaling Encaps (RNG off) 1 ˆ4.8 ˆ10.6 ˆ16.8 ˆ24 ˆ34
Scaling Encaps (RNG on) 1 ˆ5.8 ˆ14.2 ˆ24.4 ˆ38 ˆ55.6

Decaps (RNG off) 63 262 559 842 1 220 1 652
Decaps (RNG on) 63 329 723 1 211 1 873 2 693

Scaling Decaps (RNG off) 1 ˆ4.1 ˆ8.9 ˆ13.4 ˆ19.4 ˆ26.2
Scaling Decaps (RNG on) 1 ˆ5.2 ˆ11.5 ˆ19.2 ˆ29.7 ˆ42.7

Remark 3.5. RNG off refers to returning 0 instead of drawing a random integer. This
allows to measure the cost of the number of calls to the RNG, relative to the performance
of the implementation.

52 Chapter 3. Contributions: End-to-end masked implementation of BIKE

0 1 2 3 4 50

10

20

30

40

50

Order

Sc
al

in
g

SecKeyGen + Encaps + Decaps
SecKeyGen

Encaps
Decaps

Figure 3.8: The scaling of masked BIKE (with RNG on)

We can see that the performance of masked BIKE as a function of the order is slightly
above quadratic. This unoptimized implementation is still encouraging as it leaves the
door open for many possible scaling improvements.
In fact, there are still a lot of possible optimizations, in particular on the cyclic shift and
on the naive polynomial multiplication. Once optimized, the scaling will probably be
improved, especially since there is no Boolean arithmetic conversion within the masked
scheme.

Chapter4Conclusion & prospect

Boolean masking was initially developed for symmetric schemes. Recent research
extended these techniques for asymmetric (especially lattice-based) schemes with
arithmetic masking. Here, we propose BIKE masked from end-to-end. We have adapted,
optimized, created, assembled and proven a large number of gadgets to perform the full
range of operations required by the scheme, despite the scant literature on the subject.
We chose Boolean masking, as BIKE manipulates binary objects, and explored two ways
of performing the computations, based on the fact that polynomials in BIKE are sparse:
fully-dense and hybrid-sparse-dense. This has led to a full implementation of the scheme
in C, benchmarking the most essential gadgets as well as the three main steps of the
scheme (key generation, encapsulation and decapsulation).

For future work, there are several possible directions. Firstly, we did not have the
opportunity to formally verify the absence of leaks, with tools such as Test Vector
Leakage Assessment (TVLA). For this, we need a set of representative consumption
traces and to apply statistical tools to them. However, the lack of time and the number
of cycles of the algorithm made it difficult to implement. We can therefore envisage
submitting this implementation to attacks to confirm its resistance.

Secondly, we can look further on the performance aspect. In fact, it is possible to
highly optimize the performance of our implementation by simply optimizing two
important basic gadgets: the naive multiplication (in the last level of the Karatsuba
recursion) and the cyclic shift. As outlined above, these gadgets are the bottleneck of our
implementation. Thus, the impact on the performance to be very high. The relevance
of avoiding mask conversions may also be questioned if such conversions help to gain
orders of magnitude in the performance; even though we do not currently believe that
conversions would significantly help here. In addition, we think that further optimization
could impact the difference between the sparse version and the dense version.
Generally speaking, since the algorithm is broken down into gadgets, it is perfectly
possible to swap some of them with more efficient alternatives, as long as you keep the
same input-output and maintain a proof of composition. For example, the refresh gadget
can be replaced by its quasi-linear alternative [Pin+23].

Also, attacking unprotected implementations with side-channel measurements is often not

53

54 Chapter 4. Conclusion & prospect

the best choice to evaluate practical security. But, until now, no masked implementation
of BIKE and other code-based schemes were available. This masked implementation is
openly accessible and can serve as target for elaborate high order side-channel attacks.

Finally, as BIKE is the first QC-MDPC-based cryptographic scheme to be end-to-end
masked, this work and the gadgets can be reused to mask other schemes, such as HQC
[Agu+22].

Bibliography

[77] Data Encryption Standard. National Bureau of Standards, NBS FIPS PUB
46, U.S. Department of Commerce. Jan. 1977 (cit. on p. 2).

[Agu+22] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti,
Gilles Zémor, Jurjen Bos, Arnaud Dion, Jerome Lacan, Jean-Marc Robert,
and Pascal Veron. HQC. Tech. rep. available at https://csrc.nist.
gov/Projects/post- quantum- cryptography/round- 4- submissions.
National Institute of Standards and Technology, 2022 (cit. on p. 54).

[Ale03] Michael Alekhnovich. “More on Average Case vs Approximation Complex-
ity”. In: 44th FOCS. IEEE Computer Society Press, Oct. 2003, pp. 298–307
(cit. on p. 9).

[And97] Ross Anderson. “Advanced Encryption Standard (Discussion)”. In: FSE’97.
Ed. by Eli Biham. Vol. 1267. LNCS. Springer, Heidelberg, Jan. 1997, pp. 83–
87 (cit. on p. 2).

[Ara+22] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Phillipe Gaborit, Shay Gueron, Tim Guneysu,
Carlos Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas
Sendrier, Jean-Pierre Tillich, Gilles Zémor, Valentin Vasseur, Santosh
Ghosh, and Jan Richter-Brokmann. BIKE. Tech. rep. available at https:
//csrc.nist.gov/Projects/post-quantum-cryptography/round-4-
submissions. National Institute of Standards and Technology, 2022 (cit. on
pp. 9–11, 38).

[Azo+23] Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann,
Yulia Kuzovkova, Joost Renes, Tobias Schneider, Markus Schönauer,
François-Xavier Standaert, and Christine van Vredendaal. “Protecting
Dilithium against Leakage: Revisited Sensitivity Analysis and Improved
Implementations”. In: IACR Transactions on Cryptographic Hardware and
Embedded Systems 2023.4 (Aug. 2023), pp. 58–79 (cit. on p. 14).

[Bar+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. “Strong
Non-Interference and Type-Directed Higher-Order Masking”. In: ACM CCS
2016. Ed. by Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,

55

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions

56 Bibliography

Andrew C. Myers, and Shai Halevi. ACM Press, Oct. 2016, pp. 116–129
(cit. on pp. 14, 15, 17).

[Bar+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi. “Masking the GLP Lattice-
Based Signature Scheme at Any Order”. In: EUROCRYPT 2018, Part II.
Ed. by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10821. LNCS. Springer,
Heidelberg, Apr. 2018, pp. 354–384 (cit. on pp. 14, 19, 24).

[BC22] Olivier Bronchain and Gaëtan Cassiers. “Bitslicing Arithmetic/Boolean
Masking Conversions for Fun and Profit: with Application to Lattice-Based
KEMs”. In: IACR Transactions on Cryptographic Hardware and Embedded
Systems 2022.4 (Aug. 2022), pp. 553–588 (cit. on p. 19).

[Bin+19] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Johannes
Buchmann, Edward Eaton, Gus Gutoski, Juliane Kramer, Patrick Longa,
Harun Polat, Jefferson E. Ricardini, and Gustavo Zanon. qTESLA. Tech.
rep. available at https://csrc.nist.gov/projects/post- quantum-
cryptography/round- 2- submissions. National Institute of Standards
and Technology, 2019 (cit. on p. 14).

[BMT78] E. Berlekamp, R. McEliece, and H. van Tilborg. “On the inherent
intractability of certain coding problems (Corresp.)” In: IEEE Transactions
on Information Theory 24.3 (1978), pp. 384–386 (cit. on p. 9).

[BOG20] Mario Bischof, Tobias Oder, and Tim Güneysu. “Efficient Microcontroller
Implementation of BIKE”. In: Innovative Security Solutions for Information
Technology and Communications. Ed. by Emil Simion and Rémi Géraud-
Stewart. Cham: Springer International Publishing, 2020, pp. 34–49. isbn:
978-3-030-41025-4 (cit. on p. 13).

[Bos+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. “Masking Kyber: First- and Higher-Order Implementations”.
In: IACR TCHES 2021.4 (2021). https://tches.iacr.org/index.php/
TCHES/article/view/9064, pp. 173–214. issn: 2569-2925 (cit. on p. 14).

[Bou+20] Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Em-
manuel Thomé, and Paul Zimmermann. “Nouveaux records de factorisation
et de calcul de logarithme discret”. In: Techniques de l’Ingénieur (Dec.
2020), p. 17 (cit. on p. 3).

[CCK21] Ming-Shing Chen, Tung Chou, and Markus Krausz. “Optimizing BIKE for
the Intel Haswell and ARM Cortex-M4”. In: IACR TCHES 2021.3 (2021).
https : / / tches . iacr . org / index . php / TCHES / article / view / 8969,
pp. 97–124. issn: 2569-2925 (cit. on p. 13).

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala.
“Secure Conversion between Boolean and Arithmetic Masking of Any Order”.
In: CHES 2014. Ed. by Lejla Batina and Matthew Robshaw. Vol. 8731.
LNCS. Springer, Heidelberg, Sept. 2014, pp. 188–205 (cit. on p. 23).

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/8969

Bibliography 57

[Cha+99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
“Towards Sound Approaches to Counteract Power-Analysis Attacks”. In:
CRYPTO’99. Ed. by Michael J. Wiener. Vol. 1666. LNCS. Springer,
Heidelberg, Aug. 1999, pp. 398–412 (cit. on p. 15).

[Che+16] Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Steinwandt.
“Masking Large Keys in Hardware: A Masked Implementation of McEliece”.
In: SAC 2015. Ed. by Orr Dunkelman and Liam Keliher. Vol. 9566. LNCS.
Springer, Heidelberg, Aug. 2016, pp. 293–309 (cit. on p. 6).

[Che+22] Ming-Shing Chen, Tim Güneysu, Markus Krausz, and Jan Philipp Thoma.
“Carry-Less to BIKE Faster”. In: ACNS 22. Ed. by Giuseppe Ateniese
and Daniele Venturi. Vol. 13269. LNCS. Springer, Heidelberg, June 2022,
pp. 833–852 (cit. on p. 13).

[Che+23] Agathe Cheriere, Nicolas Aragon, Tania Richmond, and Benoît Gérard.
BIKE Key-Recovery: Combining Power Consumption Analysis and Information-
Set Decoding. 2023 (cit. on p. 13).

[Cho16] Tung Chou. “QcBits: Constant-Time Small-Key Code-Based Cryptography”.
In: CHES 2016. Ed. by Benedikt Gierlichs and Axel Y. Poschmann. Vol. 9813.
LNCS. Springer, Heidelberg, Aug. 2016, pp. 280–300 (cit. on pp. 13, 31).

[Cor+14] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas
Roche. “Higher-Order Side Channel Security and Mask Refreshing”. In:
FSE 2013. Ed. by Shiho Moriai. Vol. 8424. LNCS. Springer, Heidelberg,
Mar. 2014, pp. 410–424 (cit. on pp. 14, 15).

[Cor+15] Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and Praveen
Kumar Vadnala. “Conversion from Arithmetic to Boolean Masking with
Logarithmic Complexity”. In: FSE 2015. Ed. by Gregor Leander. Vol. 9054.
LNCS. Springer, Heidelberg, Mar. 2015, pp. 130–149 (cit. on pp. 19, 23).

[Cor14] Jean-Sébastien Coron. “Higher Order Masking of Look-Up Tables”. In:
EUROCRYPT 2014. Ed. by Phong Q. Nguyen and Elisabeth Oswald.
Vol. 8441. LNCS. Springer, Heidelberg, May 2014, pp. 441–458 (cit. on
pp. 18, 19).

[Cor17] Jean-Sébastien Coron. “High-Order Conversion from Boolean to Arithmetic
Masking”. In: CHES 2017. Ed. by Wieland Fischer and Naofumi Homma.
Vol. 10529. LNCS. Springer, Heidelberg, Sept. 2017, pp. 93–114 (cit. on
p. 23).

[CT19] Rodolfo Canto-Torres and Jean-Pierre Tillich. “Speeding up decoding a
code with a non-trivial automorphism group up to an exponential factor”.
In: 2019 IEEE International Symposium on Information Theory (ISIT).
2019, pp. 1927–1931 (cit. on p. 10).

58 Bibliography

[DAn+20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik
Vercauteren, Jose Maria Bermudo Mera, Michiel Van Beirendonck, and
Andrea Basso. SABER. Tech. rep. available at https : / / csrc . nist .
gov/projects/post- quantum- cryptography/round- 3- submissions.
National Institute of Standards and Technology, 2020 (cit. on pp. 14, 38).

[DAn+22] Jan-Pieter D’Anvers, Daniel Heinz, Peter Pessl, Michiel Van Beirendonck,
and Ingrid Verbauwhede. “Higher-Order Masked Ciphertext Comparison
for Lattice-Based Cryptography”. In: IACR Transactions on Cryptographic
Hardware and Embedded Systems 2022.2 (Feb. 2022), pp. 115–139 (cit. on
p. 26).

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. “Unifying
Leakage Models: From Probing Attacks to Noisy Leakage”. In: EURO-
CRYPT 2014. Ed. by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441.
LNCS. Springer, Heidelberg, May 2014, pp. 423–440 (cit. on p. 15).

[DG19] Nir Drucker and Shay Gueron. “A toolbox for software optimization of QC-
MDPC code-based cryptosystems”. In: Journal of Cryptographic Engineering
9.4 (Nov. 2019), pp. 341–357 (cit. on p. 13).

[DGK20a] Nir Drucker, Shay Gueron, and Dusan Kostic. “Fast Polynomial Inversion for
Post Quantum QC-MDPC Cryptography”. In: Cyber Security Cryptography
and Machine Learning. Ed. by Shlomi Dolev, Vladimir Kolesnikov, Sachin
Lodha, and Gera Weiss. Cham: Springer International Publishing, 2020,
pp. 110–127. isbn: 978-3-030-49785-9 (cit. on p. 36).

[DGK20b] Nir Drucker, Shay Gueron, and Dusan Kostic. “QC-MDPC Decoders
with Several Shades of Gray”. In: Post-Quantum Cryptography - 11th
International Conference, PQCrypto 2020. Ed. by Jintai Ding and Jean-
Pierre Tillich. Springer, Heidelberg, 2020, pp. 35–50 (cit. on pp. 12, 13).

[DH76] Whitfield Diffie and Martin E. Hellman. “New Directions in Cryptography”.
In: IEEE Transactions on Information Theory 22.6 (1976), pp. 644–654
(cit. on p. 3).

[Dob+21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. “Ascon v1.2: Lightweight Authenticated Encryption and Hashing”.
In: Journal of Cryptology 34.3 (July 2021), p. 33 (cit. on p. 2).

[DR24] Loïc Demange and Mélissa Rossi. “A provably masked implementation
of BIKE Key Encapsulation Mechanism”. In: IACR Communications in
Cryptology 1.1 (Apr. 9, 2024). issn: 3006-5496 (cit. on pp. 6, 24).

[Dur64] Richard Durstenfeld. “Algorithm 235: Random permutation”. In: Commu-
nications of the ACM 7 (1964), p. 420 (cit. on p. 34).

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

Bibliography 59

[Eat+18] Edward Eaton, Matthieu Lequesne, Alex Parent, and Nicolas Sendrier.
“QC-MDPC: A Timing Attack and a CCA2 KEM”. In: Post-Quantum
Cryptography - 9th International Conference, PQCrypto 2018. Ed. by Tanja
Lange and Rainer Steinwandt. Springer, Heidelberg, 2018, pp. 47–76 (cit. on
p. 13).

[FMI99] M.P.C. Fossorier, M. Mihaljevic, and H. Imai. “Reduced complexity iterative
decoding of low-density parity check codes based on belief propagation”. In:
IEEE Transactions on Communications 47.5 (1999), pp. 673–680 (cit. on
p. 11).

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asymmetric
and Symmetric Encryption Schemes”. In: CRYPTO’99. Ed. by Michael J.
Wiener. Vol. 1666. LNCS. Springer, Heidelberg, Aug. 1999, pp. 537–554
(cit. on p. 9).

[GAB19] Antonio Guimarães, Diego F. Aranha, and Edson Borin. “Optimized
implementation of QC-MDPC code-based cryptography”. In: Concurrency
and Computation: Practice and Experience 31.18 (2019), e5089 (cit. on
p. 13).

[Gal62] R. Gallager. “Low-density parity-check codes”. In: IRE Transactions on
Information Theory 8.1 (1962), pp. 21–28 (cit. on p. 11).

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. “A Key Recovery
Attack on MDPC with CCA Security Using Decoding Errors”. In:
ASIACRYPT 2016, Part I. Ed. by Jung Hee Cheon and Tsuyoshi Takagi.
Vol. 10031. LNCS. Springer, Heidelberg, Dec. 2016, pp. 789–815 (cit. on
pp. 11, 13).

[GR20] François Gérard and Mélissa Rossi. “An Efficient and Provable Masked
Implementation of qTESLA”. In: Smart Card Research and Advanced
Applications. Springer International Publishing, Mar. 2020, pp. 74–91. isbn:
978-3-030-42067-3 (cit. on pp. 6, 14).

[Guo+22] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander
Nilsson, and Robin Leander Schröder. “Don’t Reject This: Key-Recovery
Timing Attacks Due to Rejection-Sampling in HQC and BIKE”. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems 2022.3
(June 2022), pp. 223–263 (cit. on p. 13).

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A Modular Analysis
of the Fujisaki-Okamoto Transformation”. In: TCC 2017, Part I. Ed. by
Yael Kalai and Leonid Reyzin. Vol. 10677. LNCS. Springer, Heidelberg, Nov.
2017, pp. 341–371 (cit. on p. 9).

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. “Private Circuits: Securing
Hardware against Probing Attacks”. In: CRYPTO 2003. Ed. by Dan Boneh.
Vol. 2729. LNCS. Springer, Heidelberg, Aug. 2003, pp. 463–481 (cit. on
pp. 5, 14, 15, 24).

60 Bibliography

[Kra+22] Markus Krausz, Georg Land, Jan Richter-Brockmann, and Tim Güneysu.
“Efficiently Masking Polynomial Inversion at Arbitrary Order”. In: Post-
Quantum Cryptography. Ed. by Jung Hee Cheon and Thomas Johansson.
Cham: Springer International Publishing, 2022, pp. 309–326. isbn: 978-3-
031-17234-2 (cit. on p. 14).

[Kra+23] Markus Krausz, Georg Land, Jan Richter-Brockmann, and Tim Güneysu. “A
Holistic Approach Towards Side-Channel Secure Fixed-Weight Polynomial
Sampling”. In: Public-Key Cryptography – PKC 2023. Ed. by Alexandra
Boldyreva and Vladimir Kolesnikov. Cham: Springer Nature Switzerland,
2023, pp. 94–124. isbn: 978-3-031-31371-4 (cit. on pp. 14, 20, 23).

[Kun+22] Suparna Kundu, Jan-Pieter D’Anvers, Michiel Van Beirendonck, Angshuman
Karmakar, and Ingrid Verbauwhede. “Higher-Order Masked Saber”. In: Se-
curity and Cryptography for Networks. Ed. by Clemente Galdi and Stanislaw
Jarecki. Cham: Springer International Publishing, 2022, pp. 93–116. isbn:
978-3-031-14791-3 (cit. on pp. 14, 38).

[Lem19] Daniel Lemire. “Fast Random Integer Generation in an Interval”. In: ACM
Transactions on Modeling and Computer Simulation 29.1 (Jan. 2019), pp. 1–
12 (cit. on p. 29).

[Lyu+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter
Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-
DILITHIUM. Tech. rep. available at https://csrc.nist.gov/Projects/
post - quantum - cryptography / selected - algorithms - 2022. National
Institute of Standards and Technology, 2022 (cit. on p. 14).

[MG14] Ingo von Maurich and Tim Güneysu. “Towards Side-Channel Resistant
Implementations of QC-MDPC McEliece Encryption on Constrained
Devices”. In: Post-Quantum Cryptography - 6th International Workshop,
PQCrypto 2014. Ed. by Michele Mosca. Springer, Heidelberg, Oct. 2014,
pp. 266–282 (cit. on p. 13).

[MHG16] Ingo von Maurich, Lukas Heberle, and Tim Güneysu. “IND-CCA Secure
Hybrid Encryption from QC-MDPC Niederreiter”. In: Post-Quantum
Cryptography - 7th International Workshop, PQCrypto 2016. Ed. by Tsuyoshi
Takagi. Springer, Heidelberg, 2016, pp. 1–17 (cit. on p. 13).

[MOG15] Ingo Von Maurich, Tobias Oder, and Tim Güneysu. “Implementing QC-
MDPC McEliece Encryption”. In: ACM Trans. Embed. Comput. Syst. 14.3
(Apr. 2015). issn: 1539-9087 (cit. on p. 13).

[MRS00] Chris Monico, Joachim Rosenthal, and Amin Shokrollahi A. “Using low
density parity check codes in the McEliece cryptosystem”. In: Sorrento,
Italy, 2000, p. 215 (cit. on p. 8).

[Nie86] H. Niederreiter. “Knapsack-Type Cryptosystems and Algebraic Coding
Theory”. In: Problems of Control and Information Theory 15.2 (1986),
pp. 159–166 (cit. on p. 9).

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

Bibliography 61

[Nil+21] Alexander Nilsson, Irina E. Bocharova, Boris D. Kudryashov, and Thomas
Johansson. “A Weighted Bit Flipping Decoder for QC-MDPC-based
Cryptosystems”. In: 2021 IEEE International Symposium on Information
Theory (ISIT). 2021, pp. 1266–1271 (cit. on p. 12).

[Pin+23] Rafaël del Pino, Thomas Prest, Mélissa Rossi, and Markku-Juhani O.
Saarinen. “High-Order Masking of Lattice Signatures in Quasilinear
Time”. In: 2023 IEEE Symposium on Security and Privacy (SP). 2023,
pp. 1168–1185 (cit. on pp. 6, 18, 53).

[Ros+17] Melissa Rossi, Mike Hamburg, Michael Hutter, and Mark E. Marson. “A Side-
Channel Assisted Cryptanalytic Attack Against QcBits”. In: CHES 2017.
Ed. by Wieland Fischer and Naofumi Homma. Vol. 10529. LNCS. Springer,
Heidelberg, Sept. 2017, pp. 3–23 (cit. on p. 13).

[RP10] Matthieu Rivain and Emmanuel Prouff. “Provably Secure Higher-Order
Masking of AES”. In: CHES 2010. Ed. by Stefan Mangard and François-
Xavier Standaert. Vol. 6225. LNCS. Springer, Heidelberg, Aug. 2010, pp. 413–
427 (cit. on pp. 14, 15).

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method
for Obtaining Digital Signatures and Public-Key Cryptosystems”. In:
Communications of the Association for Computing Machinery 21.2 (1978),
pp. 120–126 (cit. on p. 3).

[Sch+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède
Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien
Stehlé, and Jintai Ding. CRYSTALS-KYBER. Tech. rep. available at https:
//csrc.nist.gov/Projects/post-quantum-cryptography/selected-
algorithms-2022. National Institute of Standards and Technology, 2022
(cit. on p. 14).

[Sen21] Nicolas Sendrier. Secure Sampling of Constant-Weight Words ? Application
to BIKE. Cryptology ePrint Archive, Report 2021/1631. https://eprint.
iacr.org/2021/1631. 2021 (cit. on pp. 13, 34).

[Sho94] Peter W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms
and Factoring”. In: 35th FOCS. IEEE Computer Society Press, Nov. 1994,
pp. 124–134 (cit. on p. 3).

[Sim+19] Bo-Yeon Sim, Jihoon Kwon, Kyu Young Choi, Jihoon Cho, Aesun Park, and
Dong-Guk Han. “Novel Side-Channel Attacks on Quasi-Cyclic Code-Based
Cryptography”. In: IACR TCHES 2019.4 (2019). https://tches.iacr.
org/index.php/TCHES/article/view/8349, pp. 180–212. issn: 2569-2925
(cit. on p. 13).

[SV] Nicolas Sendrier and Valentin Vasseur. Backflip: An improved qc-mdpc
bitflipping decoder. CBC 2019, 2019 (cit. on p. 12).

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2021/1631
https://eprint.iacr.org/2021/1631
https://tches.iacr.org/index.php/TCHES/article/view/8349
https://tches.iacr.org/index.php/TCHES/article/view/8349

	Contents
	List of Figures
	List of Tables
	Introduction
	Cryptography
	General principle
	Quantum computer & post-quantum cryptography

	Side-channel attacks
	Masking
	Contributions

	State of art & preliminary
	Coding theory
	General introduction
	The BIKE scheme
	Decoding QC-MDPC codes

	Masking
	General introduction
	Existing masked gadgets

	Contributions: End-to-end masked implementation of BIKE
	Notation
	Masked gadgets
	Auxiliary gadgets
	Karatsuba
	Bitslicing
	Hamming Weight
	Cyclic shifting
	Fisher-Yates
	Sparse-dense operations
	Inversion

	Masked BIKE
	Key generation
	Encapsulation
	Decapsulation

	Benchmark & pratical testing
	Detailed benchmarks

	Conclusion & prospect
	Bibliography

