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Thèse de doctorat de l’Institut Polytechnique de Paris
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Résumé

Les systèmes fortement corrélés présentent souvent des diagrammes de phase riches
avec différentes phases ordonnées impliquant des degrés de liberté de spin, de charge,
d’appariement ou d’orbite. La description théorique de la compétition entre les
différentes instabilités dans les systèmes fortement corrélés, qui donne lieu à cette
phénoménologie, reste l’un des Saint-Graal de la théorie moderne de la matière con-
densée. Elle pose un énorme défi de complexité à la fois conceptuelle et informatique, et
l’interaction des fluctuations électroniques concurrentes constitue donc un obstacle à la
compréhension des diagrammes de phase complexes d’une large gamme de matériaux
quantiques corrélés. Cela motive la recherche de méthodes simplifiées pour étudier
l’interaction des fluctuations collectives.

Nous présentons une extension multicanal de l’approche du champ fluctuant
récemment développée pour les fluctuations collectives concurrentes dans les systèmes
électroniques corrélés. La méthode est basée sur une optimisation variationnelle d’une
action d’essai qui contient explicitement les paramètres d’ordre des principaux canaux
de fluctuation. Elle donne un accès direct à l’énergie libre du système, facilitant la
distinction entre les phases stables et métastables du système. Nous appliquons notre
approche au modèle de Hubbard étendu, un modèle de réseau fermionique paradig-
matique, qui occupe une place de choix dans la théorie de la matière condensée en
raison de la pertinence potentielle de ses versions répulsives et attractives pour les
matériaux électroniques et les systèmes artificiels. En utilisant notre technique pour
étudier le régime de couplage faible à intermédiaire de l’interaction répulsive, nous con-
statons qu’elle capture l’interaction de compétition entre la fonction l’onde de densité
de charge en compétition et des fluctuations antiferromagnétiques en accord qualitatif
avec des méthodes plus coûteuses en termes de calcul. En outre, cette méthode per-
met d’accéder aux propriétés de l’état excité par le biais du spectre d’excitation d’une
particule, et aux effets de corrélation à plusieurs corps, par le biais de l’auto-énergie,
directement sur l’axe des fréquences réelles sans utiliser de techniques de continuation
analytique numérique. L’approche du champ fluctuant multicanal offre donc une voie
prometteuse pour un traitement numériquement peu coûteux de l’interaction entre les
fluctuations collectives dans les systèmes de petite et grande taille.

En utilisant l’approche introduite du champ fluctuant multicanal, nous explorons le
diagramme de phase du modèle de Hubbard étendu dans les régimes répulsif et attrac-
tif, en abordant l’interaction des fluctuations dans les canaux antiferromagnétiques, de
l’onde de densité de charge, de l’onde s supraconductrice et de la séparation de phase.
Bien que ce modèle ait été étudié de manière intensive depuis des décennies, notre
nouvelle approche nous permet d’identifier une nouvelle phase caractérisée par la co-
existence de fluctuations collectives de l’onde s supraconductrice et de la séparation de
phase. Ces résultats sont en accord avec les observations précédentes de phases supra-
conductrices et de séparation de phases dans les systèmes électroniques, notamment



dans les supraconducteurs à haute température. En outre, la méthode des champs
fluctuants multicanaux permet de mettre en évidence la quintessence du modèle de
Hubbard étendu grâce à la grande variété de types de compétitions qui émergent de
l’interaction des différentes instabilités. La nature générale de la théorie proposée, qui
permet d’incorporer une grande variété de modes collectifs, en fait un outil prometteur
pour l’étude de l’interaction des fluctuations collectives dans les systèmes fermioniques
fortement corrélés.
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Chapter 1

Introduction

“... in science, we often have predecessors much further

back in time than we think a priori.” - L. Néel [1]

Significant changes in civilisation have been accomplished through the discovery
of materials and their application in the development of tools. While the stone age
was defined by wide usage of stone tools, the advancement of metallurgy in the bronze
and iron ages allowed for the development of intricate tools based on copper alloys and
carbon steel, respectively. An aspect such materials have in common are their function-
ality leading to them display a wide range of different applications. The importance
of functional materials is truly displayed in the multiple periods of human civilisation
being named after them. Even our own era of semiconductor electronics is defined by
a functional material: highly-purified silicon. It has contributed to immense societal
changes under only a few decades, through the application of semiconductor electronics
in information technology. The key properties of functional materials are their com-
plexity, associated with a large number of degrees of freedom, and the possibility of
controlling their emerging properties.

Flexibility in the control of the properties of functional materials such as, e.g.,
structural, electronic, spectral and transport properties, motivate their usage. For
example, semiconductors, a quantum material, are characterised by their unique trans-
port properties emerging from the quantum nature of the electrons within the system.
Semiconductors are characterised by the existence of a sufficiently small band gap, be-
tween the highest occupied electronic states (valence states) and the lowest unoccupied
electronic states (conduction states), to allow for thermal population of the conduc-
tion states. This allows for direct thermal control of the conducting behaviours of
semiconductors. In addition, another important external control parameter is realised
by the controlled introduction of external impurities (doping), which determines the
conducting properties of semiconductors. An important class of properties in quan-
tum materials, emerging due to the quantum nature of electrons and the correlation
between them, are ones linked to collective phenomena. Due to their importance, sig-
nificant amount of research aims to understand and exploit the rich phase diagrams of
correlated quantum materials. An exemplary phase diagram is due to the compound
V2O3 under varying temperature, pressure and doping, see Fig. 1.1. It exhibits two
paramagnetic (PM) phases connected by a metal-to-insulator transition and an an-
tiferromagnetic (AFM) insulating phase [2–9]. In the metallic PM phase, while the
electrons are dressed (renormalised) by their interaction, they remain well-described
as weakly interacting quasi-particles dominated by their kinetic contribution. Cross-
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Figure 1.1: Phase diagram of V2O3 for varying temperature, pressure and chemical
substitution of vanadium (V) by chromium (Cr) or titanium (Ti), which act as a
chemical pressure. Three phases are displayed: a paramagnetic metal, a paramagnetic
insulator and an antiferromagnetic insulator. Image taken from Ref. [6].

ing through the metal-to-insulator transition, the correlation drives the system into
an insulating phase which is drastically different from the behaviour of the indepen-
dent electrons. An intuitive view of a metal-to-insulator transition as a collective
phenomenon follows from considering the dynamics of crowds of pedestrians. Consider
a crowd of walking pedestrians which respect a certain distance of social distancing.
An analogue of a metallic and insulating system may thus be considered a system
with a short and large social distance, respectively. Moving through a crowd with a
short-distance of social distancing is a simple process (metal), associated with nearly
free-moving pedestrians. In contrast, obeying strict social distancing rules significantly
constrains the movement of pedestrians (insulator). For a single pedestrian to move
in the insulating state, the nearest-neighbouring pedestrian is required to move, and
so forth, thus requiring a collective of pedestrians to move whenever a single pedes-
trian wishes to move. This exemplifies collective phenomena to be a general feature of
complex systems with relevance in, e.g., social and biological systems, in addition to
correlated quantum materials. Furthermore, the rigidity associated with the difficulty
of a collective movement of pedestrians in the insulating state is an intuitive example
of the rigidity, and thus stability, displayed by collective phenomena in general [10].

As for functional materials, the discovery of collective ordering phenomena and their
applications have been fundamental in the progression of our understanding of nature.
The importance of the discovery of magnetism, i.e. collective spin ordering, in ancient
history was truly realised by the later invention of the compass and its application for
navigation of naval vessels [11]. In 1620, F. Bacon expressed concisely the historical sig-
nificance of magnetism: “...printing, gunpowder, and the magnet. For these three have
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changed the whole state of things throughout the world; the first in literature, the second
in warfare, the third in navigation; ...” [12]. The theoretical unification of magnetism
and electricity, two and a half centuries later, led to a significant milestone in the field
of physics through the development of Maxwell’s equations and the classical theory
of electrodynamics [13]. The formulation of classical electrodynamics contributed to
significant advancements in the theoretical understanding of nature: special relativity,
as a theoretical description unifying space and time [14], quantum electrodynamics, as
a quantum and relativistic theoretical description of the interaction between light and
matter [15,16], and electroweak theory, as unification of quantum electrodynamics and
weak interaction [17–19].

The discovery of superconductivity, i.e. collective pair ordering, in 1911 is in re-
lation to magnetism a recent discovery [20]. Similar to magnetism, superconductivity
displays significant functionality, e.g. through its application in superconducting mag-
nets employed in nuclear magnetic resonance [21] and its medical counterpart, magnetic
resonance imaging. Furthermore, superconductivity has induced major theoretical de-
velopments, e.g. the triumphant Bardeen-Cooper-Schrieffer theory as a microscopic
theory of the emergence of superconductivity [22,23]. In addition, following the initial
discovery of high-temperature superconductivity in copper oxides in 1986 [24], signif-
icant research into strongly correlated materials has been spurred on by the search
for the basic mechanism of high-temperature superconductivity [25–27]. Unlike mag-
netism and superconductivity, the formation of collective ordering of charges in ma-
terials, i.e. charge density waves, was initially a theoretical prediction by R. Peierls
in the 1930s [28]. The formation of charge density waves allows for stabilisation or
destabilisation of other phases, such as various unconventional superconducting and
magnetic states. This signals the occurrence of an interplay between different order-
ing phenomena. In fact, a hallmark of correlated quantum materials is their typically
extremely rich phase diagrams, exhibiting various kinds of ordering phenomena in-
volving, e.g., charge, spin, orbital or pairing fluctuations, which are in competition.
Through only small changes in external control parameters, correlated materials may
display drastic changes by crossing from one phase to another. This motivates corre-
lated quantum systems as a platform for functional materials, which thus necessitates
a deep understanding of their phase diagrams.

Collective behaviour in materials emerges from the complexity generated by the
macroscopic number of constituent electrons and ions obeying the well-known micro-
scopic laws of nature, thus defining an interacting many-body system. Due to the
interaction introducing correlations between all constituents, the general problem is
untractable and requires intelligently designed approximate techniques. Nearly a cen-
tury ago, P. A. M. Dirac comprehensively and accurately posed the guiding principle
of the field: “The underlying physical laws necessary for the mathematical theory of a
large part of physics ... are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations much too complicated to be soluble.
It therefore becomes desirable that approximate practical methods of applying quantum
mechanics should be developed, which can lead to an explanation of the main features ...
without too much computation.” [29]. Since then, progress in theoretical techniques has
allowed for the successful description of correlated quantum materials. A revolution in
the understanding of materials was born from the development of density functional
theory (DFT) [30, 31], which allows for a description of material ground-state proper-
ties from first principles, i.e. from only the knowledge of the constituent atoms and
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Figure 1.2: Sketch of the collective ordering in an antiferromagnetic (AFM) phase (left)
and a checker-board pattern charge density wave (CDW) (right) phase, with coloured
circle denoting electrons with a spin-polarisation denoted by the up and down arrows.

their arrangement. However, the description of excited state properties and many-
body effects within correlated materials is more naturally framed with many-body
techniques. For weakly to moderately correlated systems, perturbative techniques,
such as the GW method [32], allow for a description of correlation effects and the
excitation spectrum of materials by utilizing DFT as a perturbation theory starting
point. For strongly correlated systems, non-perturbative techniques are required, such
as dynamical mean-field theory (DMFT) [33–36]. These methods are only applicable to
low-energy models, modelling the low-energy physics of the materials. However, many
material properties of interest are primarily determined by the low-energy physics, thus
motivating the usage of low-energy models. The strategy of modelling the low-energy
physics and collective phenomena have been a successful approach in giving an intu-
itive understanding of the underlying physics. For sufficiently accurate downfolding
to the low-energy models, quantitative descriptions of many-body effects in material
properties are a possibility.

The theoretical description of competing collective phenomena in systems with cor-
related fermions remains one of the holy grails of modern condensed matter physics.
It remains a challenging issue of computational complexity [37–39] as well as concep-
tual difficulty, e.g. requiring the enforcement of explicit breaking of symmetries within
methods [40,41]. In this sense, the interplay of competing electronic fluctuations consti-
tutes a roadblock to the understanding of the complex phase diagrams of a wide range
of material systems. Constructing simplified methods to study interplaying collective
fluctuations is thus of crucial importance. Among the fermionic lattice models used
to model the interplay of collective fluctuations, the extended Hubbard model [42–45]
occupies a prime place due to the potential relevance of its repulsive and attractive
versions for both electronic materials and artificial systems. Motivated by the limita-
tions in current approaches for quantum lattice systems capturing competing collective
fluctuations, we seek in this thesis to make progress on the development of computa-
tionally efficient methods with the potential of broad and general usage for the study
of interplaying collective instabilities.

The outline of the thesis is as follows: In chapter 2, we review the full many-body
problem of correlated quantum materials and its reduction to low-energy quantum
lattice models. Particular attention is given to reviewing the paradigmatic Hubbard
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and extended Hubbard models, acting as starting point for the discussion of collective
behaviours and their interplay. In chapter 3, we review a selection of numerical many-
body techniques developed for quantum lattice systems. In chapter 4, we propose a
theoretical technique inspired by the recently introduced fluctuating local field (FLF)
theory for the study of collective magnetic fluctuations. We introduce the multi-channel
fluctuating field (MCFF) theory as a multi-channel generalisation of the fluctuating
field theory, based on the variational optimisation of a trial action incorporating the
main leading collective modes. Through our generalisation, we construct an efficient
approach to collective instabilities in the charge, spin and pairing channels. In chapter
5, we utilise the derived MCFF method to investigate the competing charge and spin
degrees of freedom within the single-orbital extended Hubbard model on a square
lattice at half-filling. Previous extensive research on the phase diagram of the model
allows us to conduct a benchmarking of the strengths and weaknesses of our proposed
theory. We observe the method to efficiently capture qualitative features of the phase
diagram, with some quantitative agreement with numerically more expensive methods,
without any explicit symmetry breaking enforced. In chapter 6, we explore the phase
diagram of the single-orbital extended Hubbard model at half-filling for both repulsive
and attractive interactions by MCFF theory. We explore the interplay between the
charge, spin and s-wave pairing instabilities. Our investigation allows us to display the
quintessential nature of the extended Hubbard model for competing collective ordering,
with the phase diagram displaying multiple exemplary forms of competing behaviours.
Importantly, our novel approach allows us to identify a novel phase that is characterised
by the coexistence of s-wave superconductivity and phase separation fluctuations. The
thesis concludes with chapter 7 which gives a summary of our work, and an outlook on
interesting problems to apply the MCFF theory and viable paths to extend the theory
further.
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Chapter 2

Collective phenomena in correlated
quantum systems

“The progress of science requires the growth of understanding in

both directions, downward from the whole to the parts and upward

from the parts to the whole.” - F. Dyson [46]

Collective phenomena are of fundamental importance within the field of condensed
matter theory. It naturally connects with the aim of the field, to describe macroscopic
(and mesoscopic) properties of matter originating from the well-known microscopic
laws determining the behaviour of its microscopic constituents. In correlated quantum
systems, the intertwined effects of interaction and quantum statistics of the microscopic
constituents is the driving force behind the formation of collective phenomena. Of par-
ticular importance is the correlated quantum system composed of interacting electron
system within solids, which describes the electronic properties of quantum materials.
In this thesis, we seek to study the interplay between different collective phenomena
in correlated quantum systems, specifically in quantum lattice models composed of
electrons. We are interested in investigating the competition between a wide range of
different collective fluctuations, e.g., magnetism, superconductivity and charge order-
ing, which determine the electronic properties.

In this chapter, we review correlation and collective phenomena in the context of
correlated electronic systems in solids. To facilitate our discussion of collective phe-
nomena, the chapter begins with a brief review on the general description of collective
phenomena within Landau theory. It is followed by a section on electronic systems
in solids and a motivation for utilising low-energy quantum lattice models for describ-
ing their low-energy collective behaviour. The chapter concludes with a review of the
properties of two paradigmatic quantum lattice models: the Hubbard and extended
Hubbard model.

2.1 Collective behaviour and Landau theory

A system may display a variety of different phases distinguished by their unique prop-
erties, i.e. the distinct features of the collective phenomena of each phase. The phases
are connected through phase transitions, determined by the competition between their
respective collective phenomena. A phase transition can be conveniently classified
based on their behaviour into two classes: first-order (discontinuous) and second-order
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Figure 2.1: Sketch of the behaviour of the order parameter η(T ) as a function of the
temperature T for a continuous phase transition.

(continuous) phase transitions. For the description of second-order phase transitions,
the order parameter η associated to a phase is a standard concept, acting as a measure
for the different phases. Nevertheless, the concept of an order parameter has usage
for the description of first-order phase transitions as well. By definition, the order
parameter η is a function of the parameter space defining a phase diagram, with the
value of the function being non-zero only in its associate phase, and zero otherwise.
At a second-order phase transition, limiting to only systems in which the temperature
T is a tunable parameter, the transition is associated with an order parameter which
is a continuous function of the temperature T , see Fig. 2.1. Together with the concept
of an order parameter, an exceptionally useful framework for the description of phase
transitions is Landau theory. Landau theory has its origin from a work of L. Landau in
1937 [47], seeking to formulate a general theory for second-order phase transitions. It
allows for an intuitive and quantitative characterisation of both second- and first-order
phase transitions through the construction of the free energy of the system. Since the
original development of Landau theory, significant progress in the description of phase
transitions has occurred due to renormalisation group and scaling theory ideas [48].
Nevertheless, Landau theory remains a useful framework for the description of phase
transitions. In particular, the theoretical description of interplaying collective fluctu-
ations to be developed in this thesis takes partial inspiration from the Landau theory
perspective on phase transitions.

Landau theory is a broad framework with applicability to both classical and quan-
tum systems. The theory lies on two assumptions regarding the behaviour of the free
energy of the system: it is assumed to be an analytic function of the order parameter
and its gradients, and to respect the symmetries of the system Hamiltonian. Consider
a Hamiltonian with a symmetry which is spontaneously broken below a critical tem-
perature, leading to the development of a phase characterised by the order parameter
η. Within Landau theory, a phenomenological expression for the free energy can be
constructed as a Taylor series in the order parameter,

F [η, T ] = F0[T ] + a(T )η2 + b(T )η4 + ... . (2.1)

Only even terms in the order parameter are kept, on the assumption that the symmetry
which is obeyed enforces an invariance of the physical properties under the transfor-
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mation η → −η. For a general system, odd terms in the order parameter may appear,
however, such symmetries will not appear in this thesis. Stability of the system requires
the existence of a global minimum of the free energy, in turn requiring that the coef-
ficient for the highest order term in the series expansion is positive for all values of T .
Limiting our considerations up to fourth-order in η, the normal (symmetry-conserving)
state is associated with a positive a(T ) and the phase transition then occurs as a(T )
becomes negative, see Fig. 2.2(a), due to the development of a global minimum at
η ̸= 0. Note the continuous connection between the global minima at η = 0, in the
normal state, and at η ̸= 0, in the symmetry-broken state, signalling a second-order
phase transition.

0

(a) (b)

Figure 2.2: Sketch of the behaviour of the shifted free energy F − F0 as a function
of the parameter η at different temperatures T for a continuous (a) and discontinuous
(b) phase transition. Note the existence of a local minimum at η ̸= 0 in (b) associated
with a metastable state as a precursor to the first-order phase transition.

To describe a first-order phase transition within Landau theory, one is required to at
least keep terms up to the sixth-order in the Taylor expansion in η in the construction
of the phenomenological expression for the free energy:

F [η, T ] = F0[T ] + a(T )η2 + b(T )η4 + c(T )η6... . (2.2)

Limiting our considerations up to sixth-order in η, the stability of the system requires
the coefficient c(T ) to be positive for all values of T . A simple description of a first-
order phase transition occurs for strictly negative b(T ) coefficient. If a(T ) is negative,
the global minimum occurs at η ̸= 0. In contrast, if a(T ) is positive, multiple types
of scenarios are allowed, see Fig. 2.2(b). For large positive values of a(T ), the only
global minimum is displayed at η = 0. As the positive value of a(T ) decreases with
lowering temperature, a local minimum forms at η ̸= 0 which continuously develops
into a global minimum at sufficiently small positive value of a(T ). However, the global
minimum η = 0 cannot be continuously developed into the global minima at η ̸= 0 due
to the free energy barrier between them. This discontinuity signals the existence of a
first-order phase transition. In addition, a metastable state associated with the local
minima of the free energy is formed as a precursor to the symmetry-broken phase in the
vicinity of the phase transition. Through only essential symmetry arguments, Landau
theory allows for a general framework to describe both continuous and discontinuous
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phase transitions in an intuitive way. Note that no reference has been made to the
underlying system or the specific type of collective phenomena, which will now be the
topic of the remainder of this chapter.

2.2 From solids to quantum lattice models

A diversity of solids appear in nature. Their properties are determined by the con-
stituent atoms from the periodic table of elements and their structural arrangement.
For crystalline solids, the atoms have a periodic arrangement associated with a discrete
translational symmetry, with a plethora of allowed symmetries given by the table of
space groups. For example, through only the arrangement of carbon atoms, a grand
assortment of structures are possible such as, e.g., diamond, graphite, graphene [49,50],
twisted bilayer graphene [51], buckminsterfullerenes [52], see Fig. 2.3. These different
arrangements display various fascinating electronic properties [53–56]. The stability
of a crystal is determined by the energetics associated with the arrangement of the
atoms, determined by the Coulombic interaction between the ions and electrons. As
the electrons propagate through the solids, they observe a potential environment de-
fined by the underlying geometry of the arrangement of ions and the other electrons.
Simultaneously, the ions experience the potential environment of the electrons and the
other ions. Thus, the microscopic laws obeyed by the solids are known: the Coulomb
interaction, describing the interaction between the particles, and quantum mechanics,
describing the quantum statistical properties of the particles.

Figure 2.3: Some forms of carbon appearing in nature: diamond (left), graphite
(middle) and buckminsterfullerenes (right). Graphene corresponds to a single-layer
of graphite, while twisted bilayer graphene consists of two stacked layers of graphene
with a relative twist angle. Images taken from Ref. [57].

2.2.1 Quantum many-body problem

As a crystalline solid is a quantum mechanical system composed of quantum parti-
cles, assumed non-relativistic (which often is a suitable approximation), the system is
determined by the (time-dependent) Schrödinger equation [58]:

iℏ
d

dt
Ψ(t) = ĤΨ(t). (2.3)

All information of the system, as determined by the Hamiltonian Ĥ, is thus accessible
through the wavefunction Ψ(t) solving the Schrödinger equation. With the microscopic
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laws of the constituents being known, the Hamiltonian for the interacting many-body
problem in a solid is given by:

Ĥ =
∑

i

(
−ℏ2∇2

i

2m

)
−
∑

i,α

Zαe
2

|ri −Rα|
+

1

2

∑

i ̸=j

e2

|ri − rj|

+
∑

α

(
−ℏ2∇2

α

2Mα

)
+

1

2

∑

α ̸=β

ZαZβe
2

|Rα −Rβ|
. (2.4)

Here ri specifies the operator giving the location of electron i, with the electron mass
m and the elementary charge e, while Rα specifies the location of nucleus α with the
nuclear massMα and the nuclear charge Zα. The Hamiltonian incorporates the kinetic
energy of the electrons (first term) and the nuclei (fourth term) in addition to the
interaction terms: the electron-nuclei interaction (second term), the electron-electron
interaction (third term) and the nuclei-nuclei interaction (fifth term). This complicated
many-body Hamiltonian is the exact description of any solid without relativistic effects.

Due to the sheer difficulty of this interacting problem, approximations to simplify
the Hamiltonian are desirable. Focusing on the electronic degrees of freedom, a stan-
dard approximation is the Born-Oppenheimer approximation which freeze the positions
of the nuclei [59]. This approximation is based on the assumption that the energy scales
associated with the electronic degrees of freedom and the phononic degrees of freedom,
associated with lattice vibrations, are sufficiently separated, as is commonly applica-
ble due to the heavier mass of the nuclei. Thus, this approximation is unsuitable for
systems with strong electron-phonon coupling which require a more careful treatment
of the phononic degrees of freedom. Freezing the positions of the nuclei, the remaining
electronic degrees of freedom are then determined by the following Hamiltonian of N
interacting electrons:

Ĥ =
N∑

i=1

(
−ℏ2∇2

i

2m
+ V (ri, {R})

)
+

1

2

∑

i ̸=j

e2

|ri − rj|
. (2.5)

Here V (ri, {R}) is an external potential generated by the nuclei of the solid through
the electron-nuclei interaction. Given the knowledge of the nuclei and their positional
arrangement, the external potential is fully known and thus the interacting many-
electron problem is well-defined.

The wavefunction Ψ(r1σ1, ..., rNσN) solving the N interacting electron Hamiltonian
Eq. (2.5), with σi ∈ {↑, ↓} denoting the spin projection of an electron in position ri,
determines all the physics of the electronic system. However, when directly utilizing
the Schrödinger equation in order to study the many-electron problem, in practice, one
arrives at two fundamental issues:

1. In order to solve Eq. (2.3) for a general many-body problem, one is required to
perform the diagonalization of a matrix of an inaccessibly large dimension due to
an exponential scaling with respect to the system size. This limits application of
exact diagonalization techniques, such as Lanczos algorithm [37], to only small
systems.

2. Assuming one is able to solve Eq. (2.3) for a general many-body problem, one
is still required to store the full wavefunction Ψ in the memory on a computer.
However, the amount of memory required to store the full wavefunction of a
general many-particle system is beyond the capability of any physical computer.
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These two fundamental issues within the quantum many-body theory, among others,
go under the name of “the quantum many-body problem”. The source of the dif-
ficulty is the electron-electron interaction term. Due to the correlated behaviour of
the interacting electrons, one cannot in the generic case, a priori, treat the electrons
as independent particles. In order to make progress on the theoretical description
of many-electron systems, an extensive selection of practical approximate and exact
methods have been developed. These methods are based on the idea of evaluating
objects which contain sufficient information about the physical systems, while remain-
ing feasible to store in the memory on a computer. This follows from the majority of
relevant physical observables not requiring the full information contained within the
many-electron wavefunctions.

2.2.2 Solids in the occupation number representation

There are several different paths to treat an interacting electronic system, defined
by the Hamiltonian Eq. (2.5). For many-body techniques, it is suitable to represent
the expressed problem utilising the occupation number representation, i.e., the sec-
ond quantisation representation. Within the occupation number representation, one
promotes the bosonic and fermionic fields themselves to operators endowed with their
respective quantum statistics, i.e., Fermi-Dirac statistics for fermions and Bose-Einstein
statistics for bosons. Working in this representation, one introduces the fermionic or
bosonic field creation ϕ̂†

σ(r) and annihilation ϕ̂σ(r) operators, written in real-space,
which create and annihilate a quantum particle at position r with spin-polarisation σ,
respectively. In the occupation number representation, the fermionic and bosonic fields
operate within Fock space, acting as a direct sum of Hilbert spaces associated with the
particle numbers {0, 1, 2, ...}, in which states are indexed by the occupation number
of each single-particle state. The fermionic field obey the Fermi-Dirac statistics by
satisfying the following anti-commutation relations:

{ϕ̂σ(r), ϕ̂
†
σ′(r

′)} = δ(3)(r− r′)δσσ′ , {ϕ̂σ(r), ϕ̂σ′(r′)} = {ϕ̂†
σ(r), ϕ̂

†
σ′(r

′)} = 0, (2.6)

with the (three-dimensional) Dirac delta distribution δ(3)(r − r′) and the Kronecker
delta function δσσ′ . Equivalently, the bosonic fields obey the Bose-Einstein statistics
by satisfying identical relations with the commutator employed instead of the anti-
commutator. Following the introduction of the fermionic field operators, one may
conveniently rewrite the Hamiltonian in the occupation number representation as:

Ĥ =
∑

σ

∫
drϕ̂†

σ(r)

(
−ℏ2∇2

r

2m
+ V (r, {R})

)
ϕ̂σ(r)

+
1

2

∑

σσ′

∫
drdr′ϕ̂†

σ(r)ϕ̂
†
σ′(r

′)
e2

|r− r′| ϕ̂σ′(r′)ϕ̂σ(r). (2.7)

Note that the kinetic and potential terms are of a single-particle form, expressed as a
single pair of creation and annihilation operators. In contrast, the Coulombic inter-
action is of a two-particle form, expressed as two pairs of creation and annihilation
operators.

Within a solid, electrons may display both itinerant (delocalised) and localised
behaviour. A natural basis for the localised behaviour of electrons is a basis localised
on the atomic orbitals, e.g., a Gaussian basis or the linear combination of atomic
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orbitals basis [60]. Expressing the localised basis centred on the atoms as |jn⟩, with j
specifying the atomic site located at Rj and n specifying the atomic orbital, one may
write the field operators as:

ϕ̂σ(r) =
∑

jn

ψjn(r)ĉjnσ, ϕ̂†
σ(r) =

∑

jn

ψ∗
jn(r)ĉ

†
jnσ. (2.8)

Here, the orbital function ψjn(r) = ⟨r|jn⟩ is introduced, defining a transformation
matrix between the two bases. In the localised basis, the fermionic creation and anni-
hilation operators obey the following anti-commutation relations:

{ĉinσ, ĉ†jmσ′} = δijδnmδσσ′ , {ĉinσ, ĉjmσ′} = {ĉ†inσ, ĉ†jmσ′} = 0. (2.9)

Utilising the localised basis, the many-electron Hamiltonian Eq. (2.7) may be written
in the form:

Ĥ = −
∑

σ,ij
nm

tnmij ĉ
†
inσ ĉjmσ +

∑

σ,i,n

vni ĉ
†
inσ ĉinσ

+
1

2

∑

σσ′,iji′j′
nmn′m′

Unmn′m′
iji′j′ ĉ†inσ ĉ

†
jmσ′ ĉj′m′σ ĉi′n′σ. (2.10)

Here, the hopping parameters tnmij , potential parameters vni and interaction parameters

Unmn′m′
iji′j′ have been introduced:

tnmij ≡
∫
drψ∗

in(r)
ℏ2∇2

r

2m
ψjm(r), (2.11)

vni ≡
∫
drψ∗

in(r)V (r, {R})ψin(r), (2.12)

Unmn′m′
iji′j′ ≡

∫
drdr′ψ∗

in(r)ψ
∗
jm(r

′)
e2

|r− r′|ψj′m′(r′)ψi′n′(r). (2.13)

The hopping parameters describe the kinetic energy of the system, and act as the prob-
ability amplitude of an electron to hop between different sites and orbitals. The on-site
potential determine the single-particle occupation energy for an electron to occupy a
certain site and orbital. Neglecting the interaction term, the hopping and on-site poten-
tial terms define a tight-binding model. Given that the localised basis is complete and
spans the full single-particle Hilbert space, the many-electron Hamiltonian Eq. (2.10)
is an explicit rewriting of the many-electron problem in solids.

For the itinerant behaviour of electrons, it is convenient to work in the momentum
basis instead of the real-space basis. Limiting our considerations to crystalline solids,
the quasi-momentum basis allows together with Bloch’s theorem to naturally exploit
the regular and periodic nature of the underlying crystalline lattice. Bloch’s theorem
was originally formulated by F. Bloch in 1928 [61], seeking to describe the conduction
of electrons in crystalline solids, i.e., electrons with itinerant behaviour. The theo-
rem states that the solution to the single-particle Schrödinger equation for a periodic
potential can be expressed in the form of the wavefunction:

ψnk(r) = eik·runk(r), (2.14)
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with the quasi-momentum vector k, which is a conserved (“good”) quantum num-
ber associated with the discrete translation symmetry of the system, as follows from
Noether’s theorem [62]. In Bloch’s theorem, the wavefunction is factorised into a plane-
wave eik·r and a Bloch function unk(r), which displays an identical periodicity to the
lattice. Following from Bloch’s theorem, one defines, by a discrete Fourier transforma-
tion, the Wannier function as a localised basis in real space [63–65]:

ψnj(r) ≡
1

N

∑

k

e−ik·Rjψnk(r), (2.15)

where Rj are the Bravais lattice vectors defining the discrete points generated by
the translational symmetry of the periodic lattice, and N is the number of primitive
cells in the crystal. The sum over k is restricted to the first Brillouin zone, i.e., the
primitive cell in reciprocal (quasi-momentum) space as determined by the geometry of
the lattice. By the inverse Fourier transform, one may similarly relate the Bloch and
Wannier functions by

ψnk(r) =
∑

j

eik·Rjψnj(r). (2.16)

The localised Wannier basis allows to incorporate the periodic symmetry of the under-
lying crystalline lattice, and thus permits to connect to the quasi-momentum space. In
addition, the local nature of the Wannier function gives an insightful view of electronic
properties due to, e.g., chemical bonding as they act as the solid-state equivalent to
localised molecular orbitals in chemistry [66]. Note that the Bloch functions are only
defined up to an overall phase θk, however, without any consequence on the properties
of the Bloch states. In contrast, the freedom of choice for the global phase θk may
drastically change the Wannier functions [66]. Exploiting the phase freedom in order
to construct the most convenient Wanner basis is therefore standard, such as in the
construction of, e.g., the maximally-localised Wannier functions [66, 67].

Utilising the Fourier transform, the electron creation and annihilation operators in
quasi-momentum space are defined as,

ĉkn ≡
∑

j

e−ik·Rj ĉjn, ĉjn ≡ 1

N

∑

k

eik·Rj ĉnk. (2.17)

This allows to rewrite the many-electron Hamiltonian Eq. (2.10) in the quasi-momentum
basis as

Ĥ =
1

N

∑

σ,k
nm

(ϵnmk + vnkδnm) ĉ
†
knσ ĉkmσ

+
1

2

∑

σσ′,kk′q
nmn′m′

Unmn′m′
q ĉ†knσ ĉ

†
q−k,mσ′ ĉq−k′,m′σ ĉk′n′σ. (2.18)

In quasi-momentum space, the Fourier transform leads to the introduction of the bare
dispersion ϵnmk , defined by:

ϵnmk ≡ −
∑

i,j

tnmij e
−ik·(Ri−Rj). (2.19)
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Similarly, the quasi-momentum forms of the potential vnk and interaction parameters
Unmn′m′
q may be introduced. Note that the bare dispersion is written here in a generic

basis which may display off-diagonal elements in orbital space.

The importance of exploiting symmetries such as, e.g., periodicity and the space
group of crystalline solids is apparent. It allows to account for the symmetries which
restricts the number of degrees of freedom of the many-electron problem in solids. How-
ever, it is worth emphasizing that the many-electron problem defined by the Hamil-
tonian Eq. (2.18) remains beyond the scope of any direct exact treatment. Thus,
approximate methods allowing to calculate electronic properties of solids remain desir-
able.

2.2.3 From band theory to density functional theory

Through the application of Bloch’s theorem, F. Bloch pioneered band structure the-
ory within the field of solid-state physics. The theory seeks to describe a range of
different physical properties of solids within an effective single-particle system, i.e.,
a noninteracting picture. For itinerant electrons, the nearly free electron (NFE) ap-
proximation, associated with neglecting the interaction parameters Unmn′m′

q , appears
as a reasonable approximation to the description of electronic properties given that the
electron-electron interaction is sufficiently screened. Within the NFE approximation,
the single-electron eigenenergies of the noninteracting Hamiltonian, defined by the bare
dispersion ϵnmk and potential vnk, allows to generate well-defined energy bands spanning
the Brillouin zone. The set of energy bands describe the, so called, electronic struc-
ture of the solids, and allow to computed a selection of different physical observables.
Despite band theory being based on the NFE approximation, or similar single-particle
constructions, the theory has been impressively successful in qualitatively describing
many properties of solids. For example, it allows for a simple and intuitive understand-
ing of the characteristic transport properties of large selection of quantum materials:
From metals and semimetals, associated with partially filled bands, to semiconductors
and band insulators, associated with filled bands. In fact, the theoretical basis of all
solid-state devices employed in contemporary information technology originates from
conventional band theory.

Figure 2.4: Sketch of the density of electronic states at equilibrium within a metal,
semimetal, semiconductor and insulator, as a function of band filling or location of the
Fermi energy EF . Image taken from Ref. [68].

15



A particularly appropriate description of metals is given by NFE approximation,
due to the strong screening of the electron-electron interactions within conventional
metals. Nevertheless, incorporating effects of the interaction on the single-particle
level is necessary for improving the description of the electronic structure of quantum
materials. The majority of all electronic structure calculations are today calculated
within density functional theory (DFT) [30,31], which allows to incorporate interaction
effects within a single-particle description. The theory is distinct from mean-field
theory (MFT), e.g., the Hartree-Fock approximation, which also allows to include
interaction effects in the band structure description through the construction of an
effective single-particle system. The foundation of DFT is based two guiding ideas:
The Hohenberg-Kohn theorem [30] and the Kohn-Sham system [31]. The Hohenberg-
Kohn theorem states that the external potential V (r, {R}) is an unique functional
of the ground-state electron density [30, 69, 70]. As the form of the kinetic energy
and Coulombic interaction is fixed by nature, all many-electron observables are thus
determined by the external potential V (r, {R}) and therefore the ground-state electron
density. Unlike the full wavefunction, the ground-state electron density of a many-
electron system is easily storable in the memory of a computer. Thus, the Hohenberg-
Kohn theorem shows a path to tackle the quantum many-body problem. However,
the existence theorem does not itself provide a way to calculate the observables of a
many-electron system from the ground-state density. To make progress, one maps the
many-electron system to a fictitious single-particle system, the Kohn-Sham system,
constrained to display the same ground-state density as the original many-electron
system [31]. This allows to construct a self-consistent description of the fictitious single-
particle system obeying the, so called, Kohn-Sham equations. While the mapping
is exact in theory, it depends on an exchange-correlation functional, which is only
known for a few special cases, such as, e.g., for the free-electron problem [71] and the
Hooke’s atom [72]. Thus, in practice, the exchange-correlation functional is required
to be approximated for modelling of ground-state quantum materials. A wide range of
different approximations of the exchange-correlation functional have been developed,
e.g., local density approximation (LDA) [31, 71], generalised gradient approximation
(GGA) [73], and hybrid functionals [74,75], in ascending accuracy and complexity [76].

The first-principle description of quantum materials has significantly progressed
due to the development of DFT. For example, it reproduces surprisingly well the ex-
perimentally measured form of the single-particle excitation spectrum as measured in,
e.g., angle-resolved photoemission spectroscopy (ARPES). In the ARPES experiment
technique, to be expanded upon in the next chapter, a monochromatic beam of photons
with frequency ℏω is aimed at the surface of a material, leading to the photo-ejection
of electrons. The photo-emitted electrons are then collected, allowing for a measure-
ment of the probability distribution with a resolution of the kinetic energy Ek and
momentum k. It follows that the experimental band structure associated with the
single-particle excitations are accessible with the ARPES technique below the Fermi
energy EF . Impressive agreement between the experimental band structure and the
theoretical Kohn-Sham band structure may occur as exemplified in Fig. 2.5, where
an excellent agreement for the electronic structure of 1T−VSe2 is obtained between
the experimental measurement, obtained by soft X-ray ARPES, and the theoretical
prediction, obtained within GGA [77]. While interpreting the Kohn-Sham eigenener-
gies, which define the electronic structure, as the physical band structure has proven
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Figure 2.5: (a) Sketch of the Brillouin zone of a hexagonal lattice, with high-symmetry
points denoted. (b) Experimental soft X-ray angle-resolved photoemission spectroscopy
(ARPES) intensity is plotted as a colour map along the M′ − Γ−M high-symmetry
path for the hexagonal 1T−VSe2 compound. As comparison, the theoretical prediction
of the electronic structure calculated within GGA is included as blue lines. Image taken
from Ref. [77], with modifications.

immensely useful, strictly speaking, the Kohn-Sham eigenenergies have no physical
interpretation.

Despite the success of DFT, due to the single-particle nature of the technique, it is
inadequate to give a theoretical description of many-body effects in strongly correlated
quantum materials. Limitations of band theory are perhaps most clearly displayed in
the Mott insulator [78–81]. Within band theory, insulators are only associated with
fully filled bands, and thus the interaction-driven Mott insulator associated with par-
tially filled bands cannot be captured. A description of correlation effects requires the
utilisation of many-body techniques. These techniques treat the interaction in a more
explicit fashion in exchange for a higher computational effort. Many-body perturbation
theory techniques, such as the GW method [32], utilizing DFT as a perturbation theory
starting point allows for significant improvements in weakly to moderately correlated
quantum materials by the inclusion of correlation effects. For strongly correlated quan-
tum materials, correlation effects associated with collective phenomena are difficult to
capture within perturbation theory due to the breakdown of the assumption of an adi-
abatic connection of the groundstate between the exact solution and the perturbation
theory starting point. Thus, non-perturbative techniques, such as DMFT [33–36], are
required. Due to the computational effort, the applicability of techniques for strongly
correlated systems are limited to “simple” systems with fewer degrees of freedom which
describe the low-energy observables of the system.

2.2.4 Downfolding to low-energy degrees of freedom

Condensed matter theory seeks to describe the fundamental physics in the limit of
many degrees of freedom. This limit may be compared to the fundamental physics
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associated with the two infinities, i.e. the limit of the smallest and largest scales,
which high-energy particle physics seeks to describe. The interacting electron problem
in correlated quantum materials contains an immense number of degrees of freedom,
however, a large selection of electronic properties of interest are low-energy observables.
This motivates the construction of low-energy model systems describing the low-energy
physics of system. Quantum lattice models are a common class of low-energy models
for correlated quantum materials, allowing to, e.g., describe the low-energy collective
phenomena and their interplay.

The degrees of freedom of interacting many-electron systems of solids may be di-
vided into low- and high-energy degrees of freedom. An explicit connection between
high-energy degrees of freedom to the low-energy ones is enabled by the renormalisa-
tion group technique. It corresponds to the machinery of iteratively integrating out
the high-energy degrees of freedom, defining a flow in parameter space determining the
low-energy model. The parameters flow towards fixed points, which define the form
of the low-energy models. Fixed points of such a flow in parameter space are, e.g.,
the Landau Fermi liquid and the Mott insulator. In particular, within the Landau
Fermi liquid theory, the low-energy physics is described by weakly interacting quasi-
particles [82], which motivates the usage of the NFE approximation. In practice, while
exact, the renormalisation group treatment is unfeasible to implement for the general
interacting electron problem in solids, and thus approximations are used. A commonly
employed approximation for downfolding is the constrained random phase approxi-
mation (cRPA) [83]. Within cRPA, a low-energy model is constructed by allowing
the high-energy degrees of freedom to screen the low-energy interaction parameters,
connecting a many-electron system to the low-energy quantum lattice models. This
concludes a long journey, from the full description of the many-body problem of quan-
tum materials, on the basis of only the microscopic laws obeyed by its constituents, to
the modelling of the low-energy observables by downfolding to quantum lattice models.

2.3 Strong correlation and quantum lattice models

Strong correlation in quantum materials originates due to the localised nature of the
electrons, unlike delocalised electrons which experience significant screening of the
Coulombic interaction. A prevalent group of strongly correlated quantum materials in
nature are the transition metal oxides, with partially filled d- or f-shells of the transition
metals. Due to the localised nature of d- and f-orbitals, relative to the more extended
s- and p-orbitals, strong correlation emerges. The most prominent strongly correlated
quantum materials are probably the high-temperature superconductors, e.g., existing
within three main families of compounds: the copper-oxide compounds (cuprates) dis-
covered in 1986 [24], iron-based superconductors (pnictides) discovered in 2008 [84,85],
and nickel-oxides compounds (nickelates) discovered in 2019 [86]. Here, the copper- and
nickel-oxide compounds together with select iron-based superconductors belong to the
broad class of transition metal oxides. However, a plethora of strongly correlated sys-
tems exists in nature beyond the high-temperature superconductors such as, e.g., heavy
fermion systems [87–90] and multiferroics [91–95]. Nevertheless, high-temperature su-
perconducting systems have all experienced extensive experimental and theoretical re-
search since their discoveries. Important aims has been the fundamental understanding
of the underlying mechanism behind the superconductivity and the search for quantum
materials displaying room-temperature superconductivity at ambient pressures, which
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remain topics under heavy investigation since the initial discovery of the copper-oxide
materials nearly four decades ago. This has motivated significant theoretical effort
in giving a theoretical description of the superconducting pairing mechanism within
different low-energy models. Of particular importance are the quantum lattice models.

Quantum lattice models have their origin in the single-orbital Hubbard model,
independently proposed and studied by J. Hubbard, M. C. Gutzwiller and J. Kanamori
in 1963 [42–44]. It acts as paradigmatic model of a strongly correlated system in
condensed matter theory, as the Drosophila melanogaster (a species of fruitfly) acts
as a model organism in genetics or the Ising model acts as a paradigmatic model for
phase transitions in statistical mechanics. In the Hubbard model, the electrons may
occupy sites on a lattice described by a tight-binding model. The Coulomb interaction
is modelled by a local interaction term, which penalises two electrons occupying the
same site. The physics of the model is thus determined by the “simple” competition
between the kinetic energy and the local interaction term. Due to its simplicity, it
allows for a controlled investigation of fundamental many-body physics. However, the
simplicity should be contrasted with the inherent difficulty of actual computing its
solutions in practice. In fact the model is only analytically solvable in zero, one [96],
and infinite dimensions [33], and numerically exact calculations are restricted in their
applicability. This illustrates the complexity of strongly correlated systems, as even
the paradigmatic single-orbital Hubbard model, remains a hard problem.

The single-orbital Hubbard model is commonly believed to be sufficient to model
the low-energy physics of the CuO2-layers of the copper oxides [25, 26] and is com-
monly utilised to model the low-energy physics of the NiO2-layers of the infinite-layer
nickel oxides [97, 98]. However, the extensions of the Hubbard model are important
to give a more quantitative description, and to take into account effects not captured
within the single-orbital Hubbard model. In fact, non-local interactions in the single-
orbital Hubbard model are commonly implemented in the theoretical description of
the low-energy physics of copper oxide compounds, as they are thought to be impor-
tant [99–103]. The extended Hubbard model [45], which includes local and non-local
interaction parameters, were implicitly considered already in the initial work of J.
Hubbard [42]. The single-orbital representation is not sufficient for describing the
low-energy physics of iron-based superconductors, and possible indications for under-
lying multi-orbital physics in copper- and nickel-oxide compounds exist [27, 104–106].
Multi-orbital physics are incorporated in the Kanamori-Hubbard model studied by J.
Kanamori [44]. Extensions of the Hubbard model, allows for the exploration of a large
parameter space associated with a wide range of different collective phenomena and
their interplay. Within this thesis, our considerations will be limited to two single-
orbital models: the Hubbard and extended Hubbard model. Thus, we seek in the
current section to give a broad overview of these two models.

2.3.1 Hubbard model

The Hubbard model is a single-orbital model defined by the following Hamiltonian

Ĥ = −
∑

ij,σ

tij ĉ
†
iσ ĉjσ + U

∑

i

n̂i↑n̂i↓ − µ
∑

i,σ

n̂iσ. (2.20)

In this expression, ĉ
(†)
iσ operators correspond to the annihilation (creation) of electrons,

where the subscripts denote the position i and spin projection σ ∈ {↑, ↓}. Within
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Figure 2.6: Sketch of the Hubbard model on a two-dimensional square lattice, with
the coloured circles denoting electrons with a spin-polarisation denoted by the up and
down arrows. Note that the hopping parameter t is associated with the probability of
jumping between nearest-neighbour sites and the local U is associated with an energetic
penalty of double-occupation of sites.

Eq. (2.20), the hopping tij is between the lattice sites i and j, and µ is the chemical
potential determining the filling of the system. The Coulomb interaction between
electronic densities n̂iσ = ĉ†iσ ĉiσ is modelled by an on-site interaction parameter U .
Thus, the physics of this model is determined by the competition between the hopping
tij and the local U interaction, for a given lattice geometry and filling of the system,
see Fig. 2.6 for a sketch of the model. We note that it is standard to constrain the
hopping parameter up to nearest- or next-nearest-neighbour hopping, as the longer-
range hopping terms are expected to be subleading. However, long-range hopping terms
tij are required for a realistic description of the band structure in quantum materials.

Repulsive U Hubbard model

Extensive studies have been conducted on the single-orbital Hubbard model at half-
filling with a d-dimensional hypercubic lattice and nearest-neighbour hopping. Fol-
lowing convention, the hopping parameter between the nearest-neighbour sites ⟨i, j⟩
is denoted as t. Constrained to a paramagnetic (PM) state, the Hubbard model ex-
hibits a correlation-driven first-order quantum phase transition without any symmetry-
breaking from a metallic state to a Mott insulating state at an intermediate value of
U and zero temperature [36, 107, 108]. The Mott insulator is characterised by the
repulsive U forbidding transport of the electrons due to the penalty associated with
two charges occupying the same site, thus freezing the charge degrees of freedom. An
exception is the Hubbard model on a one-dimensional chain, which lacks a Mott insu-
lating phase [96]. The metal-to-insulator transition originated due to two underlying
mechanisms: the Mott-Hubbard transition [107,108], describing the opening of a gap at
the Fermi energy due to formation of the incoherent upper and lower Hubbard bands,
and the Brinkman-Rice transition [108,109], describing suppression of spectral weight
of a quasiparticle peak at the Fermi energy. The zero-temperature metal-to-insulator
transition connects to a finite coexistence region of the metallic and insulating phases
at finite temperatures, enclosed between lower Uc1(T ) and higher Uc2(T ) critical inter-
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actions [110]. This behaviour continues up to a critical point [110], where above the
coexistence region a supercritical Widom line emerges continuously from the thermody-
namic metal-to-insulator transition line Uc(T ) within the coexistence region [110–115],
see Fig. 2.7 for a sketch of the phase diagram. Furthermore, in the PM phase diagram,
at low- to intermediate values of U , a coherent quasiparticle peak form at the low tem-
peratures, associated with the formation of a Landau Fermi liquid (FL). However, as
the temperature is increased, the Hubbard model enters an incoherent region without
a well-defined quasiparticle peak at high-temperature.
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Figure 2.7: A sketch of the phase diagram of the half-filled Hubbard model for repulsive
U , near the Mott-Hubbard metal-to-insulator transition within the single-site DMFT
approximation restricted to the PM phase. An orange and blue region denote a metallic
and insulating state. In the vicinity of the thermodynamic first-order phase boundary
Uc(T ) between the metal and insulator, a coexistence region emerges denoted by two
regions with hatched patterns. It is enclosed by Uc1(T ) and Uc2(T ), and is associated
with the occurrence of an insulating or metallic metastable state in addition to the sta-
ble metallic or insulating state, respectively. The coexistence regions ends at a critical
point, followed by a supercritical Widom line signaling the smooth crossover between
the metallic and insulating solutions. All values are given by single-site DMFT con-
strained to a PM solution on a two-dimensional square lattice, with values calculated
in Ref. [110].

Besides the local dynamics driving the Mott physics, the repulsive U stabilises
collective spin fluctuations which emerges as the formation of an AFM phase [116]. The
AFM phase is associated with a long-range and regular pattern of spin with opposite
alignment between nearest-neighbour sites [117,118]. These collective spin fluctuations
are associated with the spin density,

n̂s
Q =

1

N

∑

k,σσ′

ĉ†k+Qσσ
s
σσ′ ĉkσ′ , (2.21)

with the ordering vectorQ = (π, π) for the AFM state, here written for a two-dimensional
square lattice, and where σs are the Pauli spin matrices. As for the spin density, the
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charge density is defined as:

n̂c
Q =

1

N

∑

k,σσ′

ĉ†k+Qσσ
c
σσ′ ĉkσ′ , (2.22)

where σc is the identity, i.e., the Kronecker delta function. While the AFM phase is
associated with an instability in the spin channel and a partial translation symme-
try breaking, the Mott phase is in contrast associated with a charge instability and
does not break any translation symmetries. In the weak-coupling limit, the underlying
mechanism of the AFM state is the Fermi surface nesting, thus leading to a Slater-type
AFM insulator [119, 120] associated with long-range spin fluctuations. In contrast, in
the strong-coupling limit, the half-filled Hubbard model reduces to an effective Heisen-
berg model [120, 121] which forms localised moments, leading to a Heisenberg-type
AFM associated with short-range spin fluctuations. Due to the Mermin-Wagner theo-
rem [122–124], the stability of the AFM state is dependent on the dimensionality. The
theorem states that the magnetic ordering at finite temperature is excluded in a broad
class of one- and two-dimensional systems, including the Hubbard model, due to the
continuous nature of the underlying SU(2) symmetry. Therefore, the Hubbard model
in a one- or two-dimensional lacks an AFM phase at finite-temperature. However, a
true AFM phase emerges at zero temperature within the two-dimensional Hubbard
model [120]. In vicinity of the AFM phase, a region emerges as precursor to AFM
ordering denoted as the pseudogap (PG) state [125–137]. This region is distinguished
by the existence of a partial gap, due to the formation of a gap in the Fermi surface
occurring at different temperatures for different quasi-momentum k. Similarly, the
formation of the FL with a coherent quasiparticle peak at low-temperatures occurs at
different temperatures for different quasi-momentum k [137]. Collectively, these two
intermediate regions in the vicinity of the AFM phase and the incoherent region dis-
play non-Fermi liquid behaviour (NFL) [136]. As summary, a sketch of the AFM phase
diagram is displayed in Fig. 2.8.

At half-filling, the single-orbital Hubbard model displays a varied phase diagram
due to only two tunable parameters: the local interaction U/t and the temperature
T/t. By doping the Hubbard model away from half-filling, the complexity of the phase
diagram increases. Mobile charge carriers are introduced into the Mott insulator by
doping, leading to the formation of a correlated metal replacing the Mott insulator [36].
In addition, a first-order metal-to-metal transition between the weakly correlated metal
and the correlated metal develops [112,139] A PG phase emerges in the PM solution of
the doped Hubbard model in a low-doped region below the correlated metal at larger
doping, with the underlying mechanism being due to spin fluctuations [140]. As the
temperature is lowered, this regime connects to a phase characterised by the formation
of a stripe-ordered ground-state associated with intertwined spin- and charge ordering
at zero temperature [140–143]. Due to reshaping of the Fermi surface as function of
the filling, the nesting may promote incommensurate spin density waves with ordering
vector depending on the filling.

As doping introduces a third tunable parameter, turning on the next-nearest neigh-
bour hopping t′ between the next-nearest-neighbour sites ⟨⟨i, j⟩⟩ introduces an addi-
tional level of complexity. It breaks the particle-hole symmetry of the Hubbard model.
Significant work have focused on the t−t′ Hubbard model on a two-dimensional square
lattice, due to its relevance for the description of the low-energy physics of the high-
temperature copper-oxide superconductors. A non-zero t′-hopping permits the develop-
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Figure 2.8: A sketch of the phase diagram of the half-filled Hubbard model for repulsive
U allowing for AFM ordering. The blue, light-orange and dark-orange regions denotes
the AFM insulator, the FL metal with coherent quasiparticles, and the incoherent
region without quasiparticles, respectively. In addition, an intermediate region emerges,
characterised by NFL behaviour. For comparison, the Slater estimate at weak-U and
the Heisenberg estimate at strong-U for AFM are included. Values for the AFM
phase boundary and incoherent region are given by the single-site DMFT for a two-
dimensional square lattice, with values calculated in Ref. [138] for the AFM phase
boundary and in Ref. [137] for the incoherent region. Values for the NFL region are
qualitative, and take inspiration from the work of Refs. [136, 137] calculated for the
half-filled Hubbard model on a two-dimensional square lattice with nearest-neighbour
hopping. Note, Mott physics is not indicated within the phase diagram for convenience.

ment of various collective behaviour: the development of d-wave superconductivity at
finite-doping and temperature [144–146], the formation of a stripe-ordered phase [147],
and strange metallic transport associated with linear-T resistivity [148]. The d-wave
superconducting state, the stripe-ordered state and the strange metal are topics of rele-
vance in the copper-oxide compounds. This brief review has focused on a d-dimensional
cubic lattice, however, the Hubbard model on other lattice geometries allows for the
introduction of additional collective phenomena due to, e.g., frustration. An underly-
ing lattice geometry of particular attention currently is the triangular Hubbard model
which can be simulated using the low-energy degrees of freedom of the Moiré physics
in twisted bilayer systems [149].

Attractive U Hubbard model

In contrast with the repulsive U regime, less attention has been paid to the regime
of attractive U , dominated by charge and s-wave superconducting (s-SC) fluctuations
rather than spin fluctuations [133,150–173]. The reason is due to the repulsive nature
the Coulomb interaction between electrons. Nevertheless, it is known that coupling
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Figure 2.9: A sketch of the phase diagram of the half-filled Hubbard model for repul-
sive and attractive U allowing for both AFM and s-SC+CDW ordering. The blue,
purple, light-orange and dark-orange regions denotes the AFM ordering, s-SC+CDW
ordering, the FL metal with coherent quasiparticles, and the incoherent region without
quasiparticles, respectively. In addition, an intermediate region emerges, characterised
by NFL behaviour. In weak-coupling regime, the AFM Slater and BCS estimates are
included in the repulsive and attractive U regimes, respectively, for comparison. In
the strong-coupling regime, the AFM Heisenberg and BEC estimates are included in
the repulsive and attractive U regimes, respectively, for comparison. Values for the
AFM phase boundary and incoherent region in the repulsive U regime are given by
the single-site DMFT for a two-dimensional square lattice, with values calculated in
Ref. [138] for the AFM phase boundary and in Ref. [137] for the incoherent region.
Values for the NFL region in the repulsive U regime are qualitative, and take inspi-
ration from the work of Refs. [136, 137] evaluated on a two-dimensional square lattice
with only nearest-neighbour hopping. Exploiting the staggered particle-hole symmetry
allows to construct the s-SC+CDW phase boundary, the incoherent region and the
NFL region in the attractive U regime. Note, Mott physics is not indicated within the
phase diagram for convenience.

electrons to external degrees of freedom, e.g., phonons, may lead to an effective low-
energy electronic system with attractive interactions. Specific examples are doped
fullerenes [174] and one-dimensional copper oxide chains [175], Ba1−xKxBiO3 [176,177],
LaAlO3/SrTiO3 interfaces [178–181], and selected d- and f - transition metals [182,183].
In addition, fermionic systems with attractive local interactions are realizable in cold
atom experiments [173,184–186]. This gives physical motivation to treat the attractive
regime, beyond that of a purely theoretical interest.

For the single-orbital Hubbard model on a bipartite lattice with particle-hole sym-
metry, e.g., with d-dimensional cubic lattice geometry with a nearest-neighbour hop-
ping, a staggered particle-hole symmetry connects the repulsive and attractive U
regimes [158,159]. The staggered particle-hole symmetry of the Hubbard model is asso-
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ciated with η-pairing [158,159]. It displays an underlying SU(2) pseudo-spin symmetry
of the half-filled Hubbard model, combining the s-wave pairing and charge degrees of
freedom in a single Nambu spinor [158, 159]. The Nambu basis, a useful representa-
tion for a unified description of the s-wave pairing in the particle-particle channel and
charge fluctuations in the particle-hole channel, is conveniently written in real-space
as:

ψ̂j↑ = ĉj↑ ψ̂j↓ = (−1)j ĉ†j↓ ψ̂†
j↑ = ĉ†j↑ ψ̂†

j↓ = (−1)j ĉj↓. (2.23)

Equivalently, the Nambu spinors may be written in the quasi-momentum basis:

ψ̂k↑ = ĉk↑ ψ̂k↓ = ĉ†−k+M,↓ ψ̂†
k↑ = ĉ†k↑ ψ̂†

k↓ = ĉ−k+M,↓ (2.24)

where M ≡ (π, π). Analogously to the collective spin fluctuations, the collective
pseudo-spin fluctuations are associated with the pseudo-spin density,

n̂
sp
Q ≡ 1

N

∑

k,σσ′

ψ̂†
k+Q,σσ

sp
σσ′ψ̂kσ′ . (2.25)

Hence, n̂
sp
Q refers to the s-wave pairing (sp ∈ {x, y}) and the charge fluctuations (sp ∈ {z}).

The attractive U stabilizes collective pseudo-spin fluctuations, leading to the devel-
opment of a combined s-wave superconducting (s-SC) and charge-density wave (CDW)
phase (denoted as “s-SC + CDW”) as an analogue of the AFM phase1. The s-SC and
CDW phases are associated with long-range and regular patterns, with the s-SC phase
being associated with formation of Cooper pairs and with the CDW phase being asso-
ciated with charges distributed in a checker-board-like pattern. In the weak-coupling
limit, the Cooper pairs in the s-SC + CDW phase form a Bardeen–Cooper–Schrieffer
(BCS) theory-like state [154, 156, 162, 165, 187], with delocalised Cooper pairs [22, 23],
analogously to the Slater-type AFM state. In the strong-coupling limit, the underlying
mechanism of the the s-SC + CDW phase is the formation of localised Cooper pairs in
the vein of a Bose-Einstein condensate (BEC) [152,162,163,166,171,187,188], as an ana-
logue of the Heisenberg-type AFM state. At intermediate interaction strength, a super-
fluid (SF) region emerges in the crossover between the BCS and BEC physics [166,171].
By exploiting the staggered particle-hole symmetry, we expect at low-temperatures the
emergence of a FL in the weak-coupling limit, which develops into a NFL as a precursor
to the s-SC + CDW and the incoherent regions. As summary, a sketch of the repulsive
and attractive U phase diagram is displayed in Fig. 2.9.

Constraining the phase diagram to the pseudo-spin analogue of the PM state, an
analogue of the Mott-Hubbard first-order metal-to-insulator transition appears as a
transition from a weakly correlated metal to an insulator characterised by local pairs
(LP) [164, 173]. By analogy, as the Mott insulator forms due to freezing of the charge
degrees of freedom, the LP insulator forms due to freezing of the spin−z degrees of
freedom. Alike the Mott insulator, the LP insulator forbid the transport of Cooper
pairs, due to the effective penalty associated with a spin-up electron and spin-down
hole, or a spin-down electron and spin-up hole, occupying the same site. By the
symmetry considerations, we expect a finite coexistence region at finite-temperatures
ending at a critical points, above which a supercritical Widom line appears. We note

1A common misconception is that the attractive U regime is only composed of s-wave pairing
degrees of freedom or the charge degrees of freedom.
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Figure 2.10: A sketch of the phase diagram of the half-filled Hubbard model for at-
tractive U within the single-site DMFT approximation to the LP phase, acting as an
analogue of the Mott-Hubbard metal-to-insulator transition displayed in Fig. 2.7. An
orange and purple region denote a metallic and insulating state. In the vicinity of the
thermodynamic first-order phase boundary Uc(T ) between the metal and insulator, a
coexistence region emerges denoted by two regions with hatched patterns. It is enclosed
by Uc1(T ) and Uc2(T ), and is associated with the occurrence of an insulating or metal-
lic metastable state in addition to the stable metallic or insulating state, respectively.
The coexistence regions ends at a critical point, followed by a supercritical Widom
line signaling the smooth crossover between the metallic and insulating solutions. Ex-
ploiting the staggered particle-hole symmetry, all values are given by single-site DMFT
constrained to a PM solution on a two-dimensional square lattice with a repulsive U ,
with values calculated in Ref. [110].

that the observed SF region seems to be located in the vicinity of the supercritical
Widom-line.

Doping the attractive Hubbard model away from half-filling breaks the SU(2)
pseudo-spin symmetry, decoupling the s-wave pairing and charge degrees of freedom.
This leads to the promotion of the s-wave pairing degrees of freedom to the detriment
of the charge degrees of freedom, which become less stable [153,172]. While the SU(2)
pseudo-spin symmetry is broken, the connection between the attractive and repulsive
Hubbard model remains, with the staggered particle-hole transformation of the doped
attractive Hubbard model being analogous to the half-filled repulsive Hubbard model
with an external Zeeman field [189].
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Figure 2.11: Sketch of the extended Hubbard model on a two-dimensional square lat-
tice, with the coloured circles denoting electrons with a spin-polarisation denoted by the
up and down arrows. Note the hopping parameter t is associated with the probability
of jumping between nearest-neighbour sites, the local U is associated with double-
occupied sites and the non-local V is associated with electrons occupying nearest-
neighbour sites.

2.3.2 Extended Hubbard model

The single-orbital extended Hubbard model extends the single-orbital Hubbard model
through the introduction of a nonlocal interaction V , with the Hamiltonian defined as

Ĥ = −
∑

⟨i,j⟩,σ
tij ĉ

†
iσ ĉjσ + U

∑

i

n̂i↑n̂i↓ +
1

2

∑

⟨i,j⟩,σσ′

Vijn̂iσn̂jσ′ − µ
∑

i,σ

n̂iσ. (2.26)

Thus, the Coulomb interaction between electronic densities n̂iσ = ĉ†iσ ĉiσ is modelled
by an on-site U interaction and a nonlocal Vij interaction. Our considerations, as
commonly is the case, will be restricted to a nonlocal interaction between nearest-
neighbour sites only, denoted as V . For a given lattice geometry and filling, the physics
of this model is thus determined by the competition between two tunable parameters:
U/t and V/t.

Repulsive U, V extended Hubbard model

Considerable insight has been acquired for the repulsive extended Hubbard model,
elucidating the interplay between collective charge and spin fluctuations [150,190–202]
and between collective charge fluctuations and Mott physics [203–207]. In particular,
significant focus has been given to the extended Hubbard model at half-filling with
nearest-neighbour interaction V on a one-dimension (1D) chain [45, 150, 190, 192, 193,
208–210] and on a two-dimensional square lattice [103,194–200,203,205,211–217]. The
earliest considerations of the extended Hubbard model were already implicit in the
initial work of J. Hubbard in 1963 [42]. However, the first studies of the model occurred
in the 1970’s, with studies of the strong [45,150] and weak coupling limits of the half-
filled 1D chain [190,208]. Together with an access to the intermediate coupling regime
by early numerical exact diagonalisation and lattice Monte Carlo calculations [192,193],
the phase diagram of the 1D extended Hubbard model was predicted to be composed of
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regions of strong charge density wave (CDW) and AFM fluctuations, with a CDW-AFM
transition occurring in the vicinity of U = 2V . The transition was later discovered to
be modified in the weak coupling limit by an intermediate bond-order wave (BOW)
state [209,210].

The extended Hubbard model on a two-dimensional square lattice has been found to
display a phase diagram similar to the 1D counterpart, besides the apparent lack of an
intermediate BOW phase. The repulsive U stabilises collective spin fluctuations [116],
which may compete with charge fluctuations driven by a strong repulsive V [45, 218].
In particular, the system reveals a checkerboard CDW pattern, which interplays with
strong AFM fluctuations in the vicinity of a CDW-AFM transition line U = 4V [194,
195, 219]. Furthermore, the competition induces a coexistence region of charge- and
spin-ordered states in the vicinity of the first-order CDW-AFM transition line [199].
In the weak-coupling limit of U and V , the collective orderings give way for a metallic
phase. Depending on the value of temperature and interaction strength, the nature of
the metal is FL- or NFL-like, as discussed for the Hubbard model. Within the weak-
coupling regime, the metallic phase is connected to the regions of strong collective
CDW and AFM fluctuations through second-order phase transitions. The CDW phase
boundary occurs along V = U/8 + cst at weak coupling [213], while the AFM phase
boundary starts at a critical U , which extends to the V = U/4 phase boundary at
intermediate coupling [199]. The behaviour at intermediate coupling is followed by
V ∼ U + cst in the strong coupling limit [203, 204, 214, 216, 220, 221]. We include a
sketch summarising the interplaying collective CDW and AFM fluctuations in the
finite temperature U, V phase diagram of the half-filled extended Hubbard model on
the two-dimensional square lattice in Fig. 2.12.

The extended Hubbard model Eq. (2.26) displays two symmetries of importance
in the repulsive U, V region: the continuous SU(2) symmetry associated with the spin
degrees of freedom and the discrete particle-hole symmetry related to the charge de-
grees of freedom. By the Mermin-Wagner theorem [122–124], the AFM ordering is
excluded in two-dimensional extended Hubbard model on a square lattice, due to the
continuous nature of the underlying symmetry. Thus, the regime of strong collective
AFM fluctuations is, strictly speaking, not a phase. However, in this thesis the AFM
phase will refer to a slightly broader definition of short-range AFM ordering, which
transforms to a true phase for a quasi-two-dimensional system. In contrast, due to
the discrete symmetry nature of the charge degrees of freedom, the CDW phase is not
forbidden by the Mermin-Wagner theorem.

Constraining to a PM solution, the Mott insulating phase is stable with respect to
the nonlocal V interaction. However, the width of the coexistence region associated
with the first-order Mott-Hubbard metal-to-insulator transition decreases with increas-
ing nonlocal V interaction [203,204]. At sufficiently large V , an interplay between the
Mott state and the CDW phase emerges [203, 204]. This leads to the emergence of
a transition between the CDW and the Mott insulator, in addition, to the first-order
Mott-Hubbard metal-to-insulator transition previously reviewed.

In comparison to the half-filled Hubbard model with repulsive interaction U , in-
tricate details of the half-filled extended Hubbard model have not been studied as
extensively. This is even more pronounced in the doped and t− t′ extended Hubbard
models, which is counter to the importance of the doped t−t′ extended Hubbard model
as one of the simplest low-energy models for the correlation effects in the CuO2 layers of
the copper-oxides compounds [99–102]. By doping the extended Hubbard model away
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Figure 2.12: A sketch of the phase diagram of the quasi-two-dimensional half-filled
extended Hubbard model with repulsive interactions U and V at sufficiently low,
but finite, temperature, allowing for antiferromagnetic (AFM) and charge density
wave (CDW) fluctuations. Beyond a critical local interaction, a regime of domi-
nant AFM fluctuations is expected, while strong nonlocal interactions drive the system
into a CDW phase. At low U , V the orderings give way for a normal metal phase.
The schematic phase boundaries of the CDW phase are determined by the asymp-
totic expressions V = U/8 + cst at weak coupling [213], V = U/4 at intermediate cou-
pling [194, 195, 219], and V ≃ U + cst at strong coupling [203, 204, 214, 216, 220, 221].
At weak to intermediate coupling, the AFM regime extrapolates from a critical U at
vanishing V to the V = U/4 phase boundary [199].

from half-filling, the collective charge and spin fluctuations weaken and may develop
incommensurate ordering.

Partially and fully attractive U, V extended Hubbard model

In comparison to the repulsive U, V extended Hubbard model, less research has been
aimed at the interaction regimes with a partially or fully attractive interaction [198,
212, 222–228]. Nevertheless, the regime gives a suitable framework for the investiga-
tion of interplaying charge and pairing degrees of freedom. In addition to the attractive
U driving collective pseudo-spin fluctuations, attractive V stabilises collective phase
separation (PS) fluctuations in the charge channel [225]. Simultaneously, collective
p-wave and d-wave superconducting fluctuations may form in the regime of attractive
V [227,228]. At half-filling, the PS state is associated with the ordering vector Q → Γ,
with Γ = 0, and corresponds to the formation of broad puddles with uniform filling
larger or smaller than the average filling of the system. In the absence of a nonlocal in-
teraction, the SU(2) pseudo-spin symmetry of the half-filled attractive Hubbard model
is conserved. By turning on the nonlocal interaction V , the “CDW + s-SC” coexis-
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tence phase breaks down, with the system entering into a CDW and s-SC phase by
the repulsive and attractive V , respectively. For a finite V , we note that the attractive
U extended Hubbard model at half-filling is analogous, by the staggered particle-hole
transformation, to the repulsive Hubbard model with an additional Vqn

s,z
q ns,z

−q term
describing a nearest-neighbour ferromagnetic (FM) or AFM exchange coupling in the
spin-z direction.

Motivated by the well-controlled nature of the extended Hubbard model as a frame-
work for studying the interplay of collective fluctuations in a strongly correlated sys-
tem, this thesis seeks to conduct an exploration of the phase diagram. To evaluate
the collective properties of the phase diagram, which have been reviewed throughout
this section, many-body techniques are required. Connecting to the quantum lattice
models introduced in the current chapter, the following chapter aims at reviewing the
available many-body methods for describing competing collective fluctuations.
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Chapter 3

Many-body techniques for
describing collective phenomena

“Do to others what you want them to do to you.” - Matthew 7:12

An extensive selection of many-body techniques have been developed to determine
the properties of quantum lattice models. The methods range from approximate to ex-
act techniques, with observables evaluated from different computational objects, e.g.,
the ground-state density, the many-body Green’s function, or the ground-state wave-
function. These methods involve different strengths and weaknesses related to their,
e.g., accuracy, convergence within the parameter space, and possibility to resolve differ-
ent collective phenomena. Throughout this chapter, we seek to give a broad overview
on the available theoretical techniques utilised to study interplaying collective fluctua-
tions in quantum lattice models. Most introduced techniques will be directly relevant
for the theoretical developments in this thesis. However, a few techniques will be briefly
discussed only for completeness.

The chapter begins with a general review on the many-body Green’s function, and
the related susceptibilities, used within many-body approach. It is followed by a section
reviewing mean-field theory, with focus on techniques relevant for the current thesis,
and a section reviewing dynamical mean-field theory and its extensions. The chapter
concludes with a brief review on numerically exact techniques for quantum lattice
systems based on exact diagonalisation, quantum Monte Carlo and tensor network
techniques.

3.1 Many-body Green’s function

Two fundamental issues composes the quantum many-body problem, discussed in the
previous chapter. It is associated with the unfeasible nature of both computing and
storing the exact wavefunction of a general many-electron problem. However, in the
large majority of experimental and theoretical studies, one is not concerned with the
exact form of the wavefunction. One is rather concerned with a selection of observables
associated with single-particle or two-particle operators. In fact, the evaluation of few-
particle observables does not necessitate the full knowledge of the wavefunction, as it
contains significant redundancies. Thus, it becomes desirable to work with computa-
tional objects which allows for the evaluation of only few-particle observables, avoiding
the utilisation of the full wavefunction.
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3.1.1 Observables and correlation functions

From the theoretical perspective, an observable is equivalent to the average value (ex-
pectation value) of its corresponding operator Ô, defined by:

⟨Ô⟩ = Tr
[
Ôρ̂
]

(3.1)

expressed within the density matrix formalism pioneered by von Neumann. Here Tr de-
notes a trace with respect to the states {|Ψn⟩, n = 1, 2, ...} spanning the configuration
space of the quantum system:

Tr[Â] ≡
∑

n

⟨Ψn|Â|Ψn⟩. (3.2)

The density matrix ρ̂ describes the uncertainty of the state occupied by the system,
and is determined by the probabilities λn of the system occupying the different states:

ρ̂ ≡
∑

n

λn|Ψn⟩⟨Ψn|, with
∑

n

λn = 1 and 0 ≤ λn ≤ 1. (3.3)

Potential sources of the uncertainty of the state of the system may be due to, e.g.,
uncertainty in the preparation of the state, or the statistical nature of a system at
thermal equilibrium with a finite temperature.

For a system at thermal equilibrium, the statistical distribution of probabilities is
determined in the grand-canonical ensemble by the Boltzmann probability distribution:

λn =
1

Z e
−β(En−µ), with Z =

∑

n

e−β(En−µ), (3.4)

where En are the eigenenergies for each state |Ψn⟩, β = 1/kBT is the inverse tempera-
ture and kB is Boltzmann’s constant. Governing the thermal properties of the system
is the partition function Z, which is directly connected to the free energy of the system:

F = −kBT lnZ. (3.5)

For a quantum system at finite temperature, an explicit rewriting of Eq. (3.1) gives for
any thermally-averaged observable:

⟨Ô⟩ =
Tr
[
e−β(Ĥ−µN̂)Ô

]

Tr
[
e−β(Ĥ−µN̂)

] , (3.6)

where the Hamiltonian Ĥ is employed to rewrite the form of the density matrix ρ̂,
through the introduction of the particle-number operator N̂ .

A class of convenient functions for calculating any n-particle observable are the
n-particle correlation functions,

⟨ĉ†α1
ĉ†α2
...ĉα′

n−1
ĉα′

n
⟩, (3.7)

defined as the expectation value of 2n number of creation and annihilation opera-
tors. Importantly, computational techniques exist for the direct evaluation of classes
of correlation functions, avoiding the construction of the more complex wavefunction.
A class of correlation functions of fundamental importance within the field of con-
densed matter theory are the many-body Green’s functions. In particular, central to
the many-body Green’s function techniques is the single-particle Green’s function, a
single-particle correlation function.
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3.1.2 Retarded Green’s function

The retarded Green’s function is a particular single-particle correlation function:

Gij(t− t′) = −iθ(t− t′)
〈{

ĉi(t), ĉ
†
j(t

′)
}〉

. (3.8)

Its time-dependence enters through the time-dependence of the creation and annihila-
tion operators:

ĉj(t) ≡ Û(−t)ĉjÛ(t), ĉ†j(t) ≡ Û(−t)ĉ†jÛ(t) (3.9)

in which the time-evolution operator Û(t) has been introduced:

Û(t) ≡ e−i(Ĥ−µN̂)t. (3.10)

In particular, the function is denoted as the retarded one-particle Green’s function
due to causality being enforced through the Heaviside function θ(t − t′). Note that
the Green’s function is formulate within the Heisenberg picture, in which the time-
dependence is incorporated within the operators, while the states are time-independent.
A physically equivalent formulation is the Schrödinger picture, in which the time-
dependence is rather incorporated within the states, while the operators are time-
independent.

Computational techniques exists for the evaluation of the retarded Green’s function,
motivating its usage. However, the utility of the retarded one-particle Green’s function
originates in the information of the system it contains:

• Any thermally-averaged single-particle observable is directly accessible by the
retarded one-particle Green’s function.

• By the Galitskii-Migdal formula, the thermally-averaged energy, as determined
by the Hamiltonian, i.e. a two-particle observable, is accessible.

A particularly important single-particle observable accessible by the Green’s function
is the single-particle excitation spectrum. It allows to give an intuitive view of the
physical interpretation of the Green’s function. The Green’s function describes the
probability amplitude of the creation (or annihilation) of an electron in the position
j at an earlier time t′, which propagates and is subsequently annihilated (or created)
at the position i at the later time t. Therefore, the function captures single-particle
excitations associated with the creation of an electron or hole, and their propagation.
Furthermore, this allows for a natural connection to photoemission spectroscopy (PES)
and inverse photoemission spectroscopy (IPES) techniques, see Fig. 3.1 for a sketch of
an ARPES experiment. The creation of a hole and its subsequent propagation describes
the underlying mechanism of a PES experiment, associated with the photoemission of
electrons through the photoelectric effect, describing the occupied density of states.
Similarly, the IPES experiment measuring the unoccupied density of states, based
on the inverse photoelectric effect by the emission of light by incident electrons, is
described by the underlying mechanism of the creation of an electron and its subsequent
propagation.

Limiting our considerations to a periodic lattice structure and equilibrium for a
system determined by a time-independent Hamiltonian, one may express the retarded
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Figure 3.1: Sketch of the experimental setup of an ARPES experiment. The surface
of material is irradiate with a monochromatic source of photons with the energy hν,
leading to the emission of electrons through the photoelectric effect. Photoemitted
electrons escaping the surface of the materials are then captured by an energy analyser
oriented at a certain angle θ, which measures their kinetic energy Ek. This permits
to evaluate the intensity of electrons in momentum and frequency space. Image taken
from Ref. [229].

Green’s function in quasi-momentum and frequency space by application of the Fourier
transform:

Gk,ω =
∑

rij

∫
dτ e−ik·rij+iωτGrij(τ), with rij ≡ Ri −Rj and τ = t− t′. (3.11)

Here, one exploits that the spatial and temporal dependency of the retarded Green’s
function only enters through the differences rij and τ . Assuming only one-photon
processes, the measured intensity of an ARPES experiment is directly proportional to
the spectral function, in turn related to the retarded Green’s function:

A(k, ω) = − 1

π
Im[Gk,ω]. (3.12)

The spectral function describes the single-particle excitation spectrum, as the function
describes the probability of a single-particle excitation occurring at a certain momen-
tum k and frequency ω.

The retarded Green’s function contains information of the physical system, how-
ever computing the function directly is inconvenient. For example, the evaluation of
the retarded Green’s function at zero-temperature is conventionally performed through
the calculation of time-ordered Green’s function, which allows for an easier evaluation.
While the time-ordered Green’s function is easier to evaluate, it retains sufficient infor-
mation for the construction of the retarded Green’s function. The time-ordered Green’s
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function is a single-particle correlation function defined as

GT
ij(t− t′) = −i

〈
T
(
ĉi(t)ĉ

†
j(t

′)
)〉

, (3.13)

where T is the time-ordering operator, ordering the creation and annihilation operators
from left to right with decreasing time coordinate, with a sign change under interchange
of fermions. A favourable aspect of the time-ordered GT is that it allows for a construc-
tion through perturbation theory. This motivates employing the time-ordered GT . In
perturbation theory, the Hamiltonian Ĥ is separated in a noninteracting Ĥ0 and in-
teraction term V̂ , i.e. Ĥ = Ĥ0 + V̂ . A diagrammatic construction of the interacting
time-ordered GT then follows from a series expansion in the interacting term V̂ and the
noninteracting GT

0 , defined by Ĥ0 and analytically solvable. In contrast, for a system
at finite temperature, the time-ordered GT becomes inconvenient due to the emergence
of difficulties in its construction by a diagrammatic expansion. The origin of the prob-
lem is due to the time-evolution and the density matrix requiring two separate series
expansions, which leads to the introduction of the Matsubara Green’s function.

3.1.3 Matsubara Green’s function

For a system at thermal equilibrium, it is convenient to work on the imaginary-time
τ = it axis, as it allows to exploit the similarity of the density matrix operator and the
time-evolution operator,

Û(τ) ≡ e−(Ĥ−µN̂)τ . (3.14)

Working on the imaginary time axis, one introduces the Matsubara Green’s function
G, a single-particle correlation function defined as:

Gij(τ − τ ′) = −
〈
T
(
ĉi(τ)ĉ

†
j(τ

′)
)〉

. (3.15)

Here, using the time-evolution operator on the imaginary-time axis, the creation and
annihilation operators are written in the modified Heisenberg picture,

ĉj(τ) ≡ Û(−τ)ĉτ Û(τ), ĉ†j(τ) ≡ Û(−τ)ĉ†jÛ(τ). (3.16)

Note the particular property [ĉj(τ)]
† ̸= ĉ†j(τ) along the imaginary-time axis. Acting

identically to its counterpart on the real-time axis, introduced above, T is the imaginary
time-ordering operator. Due to the identical form of the density matrix operator and
the time-evolution operator, the Matsubara Green’s function can be evaluated as a
well-defined series expansion, allowing for an intuitive diagrammatic description.

The Matsubara Green’s function contains several distinct properties. It is a 2β-
periodic function and is an odd (even) function in τ for fermions (bosons). This leads
to G(τ) = ±G(τ − β), with a negative (positive) sign for fermions (bosons). The
periodicity in imaginary time τ allows to express the Matsubara Green’s function as a
Fourier series in odd (even) terms for fermions (bosons):

Gij(τ − τ ′) =
1

β

∞∑

n=−∞
e−iωn(τ−τ ′)Gij,ωn . (3.17)
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Here Gij,ωn are the coefficients of the Fourier series, with the introduction of the bosonic
ωn and fermionic νn Matsubara frequencies:

ωn = 2nπ/β, for bosons, (3.18)

νn = (2n+ 1)π/β, for fermions. (3.19)

In order to avoid confusion, we will in this thesis employ ωn and νn to specify bosonic
and fermionic Matsubata frequencies, respectively. As for the retarded Green’s function
on the real-time axis, one may further exploit the existence of the underlying periodic
lattice structures to Fourier transform from real space to quasi-momentum space.

Diagonalisation of the noninteracting Hamiltonian allows for the construction of
the noninteracting Matsubara Green’s function:

G0
k,νn =

1

iνn + µ− ϵk
, (3.20)

for convenience, written for a single-orbital Hamiltonian with a bare dispersion ϵk.
However, diagonalisation techniques are heavily constrained in their treatment of the
interacting Hamiltonian, motivating the usage of many-body techniques such as, e.g.,
diagrammatic techniques in order to develop the interacting Matsubara Green’s func-
tion. A useful function capturing many-body correlation effects is the self-energy Σk,νn ,
defined by the Dyson equation

Σk,νn =
[
G0
k,νn

]−1 − [Gk,νn ]
−1 , (3.21)

allowing for an explicit connection between the noninteracting and interacting Matsub-
ara Green’s function. Furthermore, it permits for a concise expression of the interacting
Matsubara Green’s function

Gk,νn =
1

iνn + µ− ϵk − Σk,νn

. (3.22)

Evaluation of the self-energy itself is conducted within a wide range of different many-
body techniques (diagrammatic or nonperturbative techniques), in turn determining
the interacting Matsubara Green’s function through the Dyson equation (3.21).

Physical properties of a system is contained within the Matsubara Green’s func-
tion directly and indirectly. Any thermally-averaged single-particle static observable
is directly accessible, however, dynamical observables are only indirectly accessible,
requiring full knowledge of the retarded Green’s function on the real frequency axis.
For example, the spectral function and its description of the single-particle excita-
tion spectrum associated with removal or addition of electrons relevant for PES and
IPES experiments are not directly accessible from the Matsubara Green’s function. A
Wick’s rotation from the Matsubara Green’s function to the retarded Green’s func-
tion is required, associated with an analytic continuation from the real axis to the
complex plane. To illustrate the analytic continuation, we consider the noninteracting
Matsubara and retarded Green’s functions,

G0
k,νn =

1

iνn + µ− ϵk
and G0

k,ω =
1

ω + µ− ϵk + iη
, (3.23)

with an infinitesimal η → 0+ for the retarded Green’s function, associated with the
physical properties being contained within the upper complex plane. The analytic
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continuation from the imaginary frequency iνn to the real frequency ω is identified to
be associated with a simple replacement iνn = ω + iη, which furthermore holds for
their interacting representatives. In practice, however, the analytic form is often not
accessible, thus requiring the usage of numerical procedures to estimate the analytic
continuation. The problem of numerically estimating the analytic continuation is a
difficult one [230–239], and numerical procedures are in general afflicted with an ill-
defined nature.

3.1.4 Susceptibilities

Not all physical properties of a system are described by single-particle observables. The
description above for the single-particle Green’s function can be generalised to the n-
particle Green’s function, which contains information for computing any n-particle ob-
servables. However, in general, the computational complexity in computing n-particle
Green’s function grows significantly with increasing n. However, full knowledge of the
two-particle Green’s function is often not required for the evaluation of two-particle ob-
servables. We limit our considerations to an important class of two-particle observables:
susceptibilities, which governs the response of a system to an external perturbation.

A natural description of the response of a system to small external perturbations
is given by linear response theory. Consider the response/deviation of an observable,
associated with the operator Ô1(t), due to a small external perturbation θ(t)Ô2(t)δh(t),
where θ(t) enforces causality. The response of Ô1(t) due to the small external field δh(t)
is given by the Kubo formula:

δ⟨Ô1(t)⟩ = ⟨Ô1(t)⟩ − ⟨Ô1(t)⟩0 ≈ − i

ℏ

∫ t

0

dt′⟨[Ô1(t), Ô2(t
′)]⟩δh(t), (3.24)

where the expectation values ⟨...⟩ and ⟨...⟩0 refer to the system Hamiltonian with and
without the perturbative field, respectively, and where higher-order terms in δh(t) are
neglected. Applying the Kubo formula to describe the response of the charge density
n̂c
j(t) of a single-orbital system, given by

n̂c
j(t) =

∑

σ

ĉ†j,σ(t)ĉj,σ(t), (3.25)

with respect to a small external field coupling to the charge density, leads to the
following linear response:

δ⟨n̂c
i(t)⟩

δhj(t)
= − i

ℏ

∫ t

0

dt′⟨[n̂c
i(t), n̂

c
j(t

′)]⟩. (3.26)

The linear response of the system is connected to its charge susceptibility χc, defined
as

χc
ij(t− t′) = ⟨n̂c

i(t)n̂
c
j(t

′)⟩. (3.27)

Furthermore, for a system at thermal equilibrium with an underlying periodic lattice,
it is convenient to express the charge susceptibility using the imaginary Matsubara
frequencies and the quasi-momentum:

χc
q,ωn

= ⟨n̂c
q,ωn

n̂c
−q,−ωn

⟩. (3.28)
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Here, the charge density is written in Fourier space as:

n̂c
q,ωn

=
1

βN

∑

k,νn,σ

ĉ†k+q,νn+ωn,σ
ĉk,νn,σ. (3.29)

An important property of the charge susceptibility is the absences of the commutativity
of the limits q → 0 and νn → 0, which is of fundamental importance in our later
treatment of phase separation fluctuations.

The charge susceptibility quantifies the correlation between the charge density at
two coordinates. It allows to define a correlation length, expressing an characteristic
length scale of the correlation within a system. At a second-order phase transition,
associate with a charge instability, the charge susceptibility diverges as the correlation
length becomes infinite following from the formation of long-range ordering. Thus,
there is a close connection between collective phenomena, associated with symmetry
breaking, and the susceptibilities.

The concept of a susceptibility is not limited to the charge channel. Equivalently,
the spin susceptibility χs describing the response of the spin dynamics with respect to
an external field coupling to the spin degrees of freedom can be defined:

χs
q,ωn

= ⟨n̂s
q,ωn

n̂s
−q,−ωn

⟩. (3.30)

Here, the spin component is denoted by s ∈ {x, y, z} and the spin density is written in
Fourier space:

n̂s
q,ωn

=
1

βN

∑

k,νn,σσ′

ĉ†k+q,νn+ωn,σ
σs
σσ′ ĉk,νn,σ′ . (3.31)

Constructions of the susceptibility of single-particle observables associated with other
degrees of freedom can be formulated equivalently. Thus, the fundamental concept of
the susceptibility is important for the theoretical theoretical description of collective
phenomena.

3.2 Mean-field theory

Seeking to develop a theoretical description of the formation of ferromagnetism, P.
Curie [240] and P. Weiss [241] pioneered the development of mean-field theory (MFT).
It is of conceptual importance within the fields of condensed matter theory and statis-
tical mechanics, corresponding to a mapping of the many-body problem to an effective
one-body problem, through the replacement of the interaction of the many-body prob-
lem with an effective external field of a one-body form. This effective external field
is sometimes denotes as the Weiss (molecular) field, and is determined through a self-
consistent procedure. In the current section, we seek to give a review of a selection
of different MFTs, which are unified in their static (time-independent) form of the
effective external field.

3.2.1 Weiss molecular field theory

The paradigmatic Ising model is a suitable model for the introduction of the concept
of a MFT. It is a classical spin model, defined by the Hamiltonian

H(σ) = −
∑

⟨i,j⟩
Jσiσj −

∑

j

hσj, (3.32)
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describing the dynamics of classical spins σj ∈ {−1, 1} with two possible orienta-
tions. The first term in Eq.(3.32) is a two-particle interaction term, determined by a
nearest-neighbour nonlocal interaction J , which determines the magnetic ordering of
the system. A parameter J > 0 (J < 0) corresponds to a FM (AFM) interaction, with
parallel (antiparallel) orientation of adjacent spins being energetically favoured by the
interaction. For the special case of J = 0, the model reduces to a noninteracting Ising
model. In particular, the current considerations will be limited to a FM interaction
with J > 0. The second term in Eq.(3.32) is a one-particle term, describing a uni-
form external field h coupled to the spins, which promotes spins to orient parallel with
respect to the field.

An intuitive application of MFT to the FM Ising model is due to the Weiss molecular
field theory, in which the spin terms are rewrites as,

σj ≡ ⟨σj⟩+ δσj, (3.33)

into an average spin ⟨σj⟩ ≡ mj and a fluctuation δσj around the average. By separating
the spin term into an average term and a fluctuations term, one may rewrite the FM
Ising model Eq.(3.32) as

H(σ) = −J
∑

⟨i,j⟩
[mimj +miδσj + δσimj + δσiδσj]− h

∑

j

σj. (3.34)

The principle idea of MFT corresponds to neglecting the second-order term in the
fluctuations, allowing for the mapping of the many-body system to an effective single-
body system, determined by the Hamiltonian

HMF(σ) = −J
∑

⟨i,j⟩
[mjσi +miσj −mimj]− h

∑

j

σj. (3.35)

Assuming the average spin mj is site-independent, with the uniform average spin de-
noted as m, allows to rewrite the Hamiltonian of the effective single-body system as
noninteracting Ising model with an effective external field:

HMF(σ) =
Jm2Nz

2
− heff

∑

j

σj, with heff = h+mJz, (3.36)

where N is the number of spins and z is the coordination number. The self-consistent
nature of MFT is displayed by the effective external field heff being dependent on the
uniform average spin m, itself determined by the system. The fluctuations neglected
within Weiss molecular field theory become suppressed for systems with a large dimen-
sion d (or large coordination number z), allowing for increasingly accurate theoretical
description for increasing d. In fact, in the limit of d → ∞, the Weiss molecular field
theory gives an exact description of the Ising model. For low-dimensional systems,
however, the fluctuations become more dominant, weakening the predictive power of
the theory.

Formalistion of MFT, extending its applicability beyond the intuitive application
above for the FM Ising model, is based on the Bogoliubov inequality, allowing for a
formulation of MFT through a variational principle. Consider a many-body system
determined by a Hamiltonian Ĥ. Its free energy F obeys the Bogoliubov inequality,

F ≤ F0 + ⟨Ĥ − Ĥ0⟩0, (3.37)
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which gives an upper bound on the free energy F , with the Hamiltonian Ĥ0 defining a
trial system. A mean-field approximation then corresponds to the choice of an uncor-
related trial system, which is variationally optimised with respect to the many-body
system governed by Ĥ by minimisation of the upper bound in the Bogoliubov inequal-
ity. Formulating the MFT mapping of the many-body system to an effective one-body
system on the rigorous grounds of the variational principle and the Bogoliubov inequal-
ity allows for a wide applicability of the MFT concepts.

3.2.2 Hartree-Fock approximation

The Hartree-Fock (HF) approximation, and its associate HF method, was developed in
a series of works of D.R. Hartree [242,243], J.C Slater [244–246], J.A. Gaunt [247] and
V.A. Fock [248,249] in the early years following the discovery of the Schrödinger equa-
tion, with aim of allowing for an ab-initio solution to the many-body time-independent
Schrödinger equation. Within the HF approximation, the many-electron wavefunction
of the time-independent Schrödinger equation is approximated as a Slater determinant,
defined as a determinant of single-electron wavefunctions which enforces the antisym-
metry of the wavefunction. It is a MFT formulated through the variational principle,
based on the minimisation of the energy of the HF wavefunction, leading to a coupled
set of equations to determine the uncorrelated effective single-electron system.

We exemplify the HF approximation by applying it to the single-orbital extended
Hubbard model Eq.(2.26), with the interaction parametrised by a local and nearest-
neighbour nonlocal interaction. Within the HF approximation, the local interaction
term is approximated by the average Hartree and Fock exchange terms, allowing it to
be expressed as

n̂i↑n̂i↓ ≈
1

4
n̂c
i⟨n̂c

i⟩ −
1

4
ˆ⃗ns
i · ⟨ˆ⃗ns

i ⟩, (3.38)

which decouples the local interaction into the charge and spin channels. In contrast,
application of the HF approximation to the nonlocal interaction term,

n̂c
i n̂

c
j ≈

1

2
n̂c
i⟨n̂c

j⟩+
1

2
n̂c
j⟨n̂c

i⟩, (3.39)

only displays a contribution in the charge channel. This defines an effective single-
body system, with the local and nonlocal interactions replaced by an external field
determined through a self-consistent procedure. Here, we limited our considerations
to the charge and spin channels, however, the Cooper pair channel may similarly be
treated within the HF approximation.

Symmetry-broken solutions associated with collective ordering are accessible within
the HF framework, similar to the treatment of magnetic ordering in the Ising model.
Collective ordering described by the mean-field Hamiltonian require an explicit symmetry-
breaking through the introduction of a small perturbative field, which allows for a
simplistic description of formation of collective ordering associated to an extensive se-
lections of different orderings. A beneficial aspect of the HF theory is that it avoids
the Fierz ambiguity in the decoupling of the on-site Coulomb interaction U between
the different collective channels [250–252], which appears, e.g., in MFTs constructed
as the saddle-point approximation of the Hubbard-Stratonovich transformation.

40



3.2.3 Hubbard-Stratonovich transformation and decoupling

The Hubbard-Stratonovich transformation [253, 254] allows for an exact rewriting of
an interacting fermion system as a noninteracting fermion system coupled to addi-
tional auxiliary bosonic degrees of freedom. It is convenient to express the Hubbard-
Stratonovich transformation within the path integral formulation of quantum mechan-
ics, rather than the equivalent operator formulation (described above). To facilitate
the introduction of the Hubbard-Stratonovich transformation, we will begin by giving
a brief reminder on the path integral formalism.

The role of the Hamiltonian Ĥ in determining the physics of a system in the operator
formulation, is within the path integral formulation replaced by the action S, expressed
as a functional of complex numbers rather than operators. Importantly, fermionic and
bosonic particles, represented as creation and annihilation operators endowed with their
respective quantum statistics in the operator formalism, are instead represented by
complex numbers. Bosons are represented by complex variables, naturally obeying the
commutation relations, and fermions are represented by complex Grassmann variables,
which are anticommuting variables. Observables as expressed by the expectation value
of associate operators, are governed by the action of the system:

⟨Ô[ĉ†, ĉ]⟩ = 1

Z

∫
D[c∗, c]O[c∗, c]e−S[c∗,c], with Z =

∫
D[c∗, c]e−S[c∗,c], (3.40)

with the Grassmann variables c(∗) corresponding to the annihilation (creation) of elec-
trons employed. An apparent feature of the path integral formulation of quantum
mechanics, is the exhibition of a deeper connection between quantum mechanics and
statistical mechanics, a distinguishing feature relative the operator formulation.

We exemplify the path integral formalism by considering the single-orbital Hubbard
model, defined by the following action:

S =− 1

βN

∑

k,νn,σ

c∗kνnσG−1
kνn
ckνnσ +

U

βN

∑

q,ωn

nqωn↑n−q,−ωn↓, (3.41)

with the inverse temperature β and number of sites N . The inverse of the bare Green’s
function is denoted by G−1

kνn
= iνn + µ− ϵk, where µ is the chemical potential and ϵk is

the bare dispersion. The local interaction is expressed by the composite variable

nqωnσ =
1

βN

∑

k,νn,σ

c∗k+q,νnσckνnσ, (3.42)

expressing the (spin-resolved) density. As expected, the quartic term is the source of
the difficulty of solving the interacting fermionic system.

The Hubbard-Stratonovich transformation allows for an explicit rewriting of the
quartic term of a fermionic action, through the introduction of an auxiliary bosonic
field. Consider a generic interacting fermionic system, determined by the action

S[c∗, c] =− 1

βN

∑

k,νn,σ

c∗kνnσG−1
kνn
ckνnσ +

1

2βN

∑

q,ωn

nς
qωn

V ς
qωn

nς
−q,−ωn

, (3.43)

with the interaction V ςω
q described by the composite single-particle variables nς

qω with
the channel denoted by ς. In essence, the Hubbard-Stratonovich transformation follows
directly from the Gaussian integral identity in its functional form:

e−S[c∗,c] =
1

N

∫
D[φ]e−S[c∗,c,φ], (3.44)
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with a normalisationN , and with the introduction of the Hubbard-Stratonovich action:

S[c∗, c, φ] =− 1

βN

∑

k,νn,σ

c∗kνnσG−1
kνn
ckνnσ

+
1

βN

∑

q,ω

[
nς
qωn

φς
−q,−ωn

,−1

2
φς
qωn

[
V ς
qωn

]−1
φς
−q,−ωn

]
. (3.45)

The quartic term of the fermionic action Eq.(3.43) is recast by the Hubbard-Stratonovich
transformation as a Gaussian fermionic term, coupled the auxiliary bosonic degrees of
freedom.

Applying the saddle-point approximation to the Hubbard-Stratonovich action, as-
sociated with fixing the bosonic variable to the value φMF which minimises the action,
allows to define a MFT system:

SMF[c∗, c] = S[c∗, c, φ→ φMF]. (3.46)

A particularity emerges for the mean-field treatment of the local interaction U . The
local term can be decoupled between the charge, spin and Cooper pairing channels in a
infinite assortment of way, all associated with different Hubbard-Stratonovich actions.
Each Hubbard-Stratonovich action is an exact reformulations of the true many-fermion
system, however, any approximation of the Hubbard-Stratonovich actions are at risk
of introducing different predictions and thus ambiguities. A well-known example is the
saddle-point approximation being associated with such ambiguity [255], allowing for
an infinite selection of different MFTs, clearly demonstrating the Fierz ambiguity.

3.2.4 Random phase and fluctuating exchange approximations

A common strategy to evaluate the susceptibilities is by a summation of relevant di-
agrammatic contributions in the series expansion of the interacting susceptibility in
terms of the interaction Vq,ω and noninteracting susceptibilities. An important ap-
proximation within this class of strategies is the random phase approximation (RPA),
allowing for a MFT estimate of the charge susceptibility χc. It approximates the charge
susceptibility χc as an infinite sum of bubble diagrams composed of the noninteracting
charge susceptibility Πc and the interaction V c in the charge channel:

χc
q,ωn

= Πc
q,ωn

+Πc
q,ωn

V c
q,ωn

χc
q,ω (3.47)

=
Πc

q,ωn

1− Πc
q,ωn

V c
q,ωn

. (3.48)

The noninteracting system allows for an analytic evaluation of its charge susceptibility
Πc, demonstrating a form of the Lindhard function varity:

Πc
q,ωn

= −2
∑

k,νn

nF (ϵk+q)− nF (ϵk)

ϵk+q − ϵk − iωn

. (3.49)

The factor 2 arises due to spin-degeneracy and ϵk denotes the bare dispersion of the non-
interacting system. With full knowledge of the form of the noninteracting susceptibility
Πc, RPA theory allows for an approximate estimate of the interacting susceptibility χc.

With access to the charge susceptibility χc within RPA theory, the formation of
charge instabilities associated with the development of divergences in the static (ω = 0)
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charge susceptibility can be identified. Divergences in the charge susceptibility for a
given ordering vector q are demonstrated within RPA theory if the following equation
holds:

1− Πc
q,0V

c
q,0 = 0. (3.50)

Thus, RPA theory allows to predict collective charge instabilities associated with the
formation of CDWs with certain ordering vectors q. Importance of the RPA method
is further demonstrated by its fundamental importance for GW theory, allowing to
compute the screen interaction in weakly correlated systems, and the cRPA approach,
utilised for the approximate downfolding to low-energy models.

A limitation in RPA theory is its restriction to the charge channel. This constrains
its applicability for collective instabilities occurring in any other channel such, e.g.,
collective magnetic and Cooper pairing fluctuations. An extension of the main ideas
of RPA theory incorporating the magnetic and Cooper pair channels is the fluctuating
exchange (FLEX) approximation. Given a decoupling of the interaction in different
channels ς, the FLEX approximations allows to express the susceptibilities in each
channel as a sum of an infinite series of diagrams in the vein of RPA

χς
q,ωn

= Πς
q,ωn

+Πς
q,ωn

V ς
q,ωn

χς
q,ωn

(3.51)

=
Πς

q,ωn

1− Πς
q,ωn

V ς
q,ωn

. (3.52)

In FLEX theory, a choice of decoupling of the local interaction U is required, as dis-
cussed in the context of the Fierz ambiguity previously. The conventional choice of
decoupling in the charge and spin channels is within FLEX theory a local charge inter-
action given by U c = U/2 and a local spin interaction given by U s = −U/2, which is a
decoupling choice motivated by its agreement with the results of HF theory, devoid of
the Fierz ambiguity.

3.3 Dynamical mean-field theory

Quantum lattice models are within MFT described utilising effective single-electron
systems, without inclusion of correlation effects. For a theoretical description of the
many-body correlation effects in strongly correlated systems, a natural framework are
the many-body techniques, incorporating an explicitly many-body character. Dynami-
cal mean-field theory (DMFT) is a many-body approach allowing for a non-perturbative
description of local dynamics in quantum lattice models [33–36], acting as quantum
generalisation of the Weiss molecular field theory reviewed above [241]. It corresponds
to a mapping of the paradigmatic single-orbital Hubbard model to an effective Ander-
son impurity model, composed of a single site coupled to an effective bath, which is
solved self-consistently. In fact, the role of the paradigmatic single-orbital Hubbard
model for DMFT, is analogous to the role of the paradigmatic Ising model for the
Weiss molecular field theory.

3.3.1 Hubbard model in the infinite-dimensional limit

Making an analogy with the Weiss molecular field theory, which emerges as an exact
description of the Ising model in the infinite dimensional limit, we seek to give a brief
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review of the solution of the infinite-dimensional Hubbard model [33]. Working in the
path integral formalism, the single-orbital Hubbard model action is defined as

S =

∫ β

0

dτ

[∑

i,σ

c∗iτσ

(
∂

∂τ
− µ

)
ciτσ +

∑

ij,σ

c∗iτσtijcjτσ + U
∑

i

c∗iτ↑ciτ↑c
∗
iτ↓ciτ↓

]
, (3.53)

written in real space and imaginary time. Consider a d-dimensional hypercubic lattice
restricted to a nearest-neighbour hopping t, with the number of nearest-neighbours
given by the coordination number z = 2d. Taking the limit of d→ ∞ requires subtlety,
which is apparent in the density of states (DOS) for the bare dispersion:

D(ω) =
1√

2πt
√
z
e
− 1

2
( ω
t
√
z
)
, (3.54)

derived through the application of the central limit theorem in the limit of d → ∞.
The variance of the Gaussian form of D(ω) is given by σ = t

√
z, thus requiring a

rescaling of the hopping parameter to ensure that the nontrivial competition between
the kinetic and interaction terms of the Hubbard model survives in the limit d → ∞.
The choice of rescaling of t can be divided into three different categories:

• The variance σ → 0 for d→ ∞, leading to the physics being trivially dominated
by the interaction term.

• The variance σ → ∞ for d→ ∞, leading to the physics being trivially dominated
by the kinetic term.

• A nontrivial interplay between the interaction and kinetic terms survives if the
variance σ remains finite for d→ ∞, which is accomplished by the rescaling, e.g.,
t→ t/

√
z.

The choice of a nontrivial limit of the infinite dimensional limit leads to significant
simplification of the description of many-body correlation effects of the Hubbard model.
By scaling arguments, only the local component of the self-energy gives a contribution
to the self-energy in the limit of d→ ∞:

Σij,τ = δijΣ
loc
i,τ , (3.55)

with higher-order diagrams giving a vanishing contribution. It follows by the transla-
tion invariance of the system, that a site-independent self-energy is a natural assump-
tion. Thus, the self-energy of the Hubbard model in the infinite dimensional limit is
momentum-independent:

Σk,νn = Σloc
νn , (3.56)

however, with an explicit frequency-dependence governing the local dynamics. Despite
the local nature of the self-energy, the Matsubara Green’s function retains a nonlocal
contribution due to the hopping parameter:

Gk,νn =
1

iνn + µ− ϵk − Σloc
νn

. (3.57)

which follows from the Dyson equation Eq.(3.21). Due to the importance of the local
dynamics, it is convenient to introduce the local Matsubara Green’s function,

G loc
νn =

1

N

∑

k

Gk,νn , (3.58)

which is of importance in the construction of the self-consistent DMFT equations,
through the mapping of the lattice model to the Anderson impurity model.
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3.3.2 Mapping to Anderson impurity model

To allow for a tractable numerically exact description of the local correlations of the
model, an exact mapping between the Hubbard model and the Anderson impurity
model in the d → ∞ limit is exploited [34–36]. The Anderson impurity model can be
defined by the effective impurity action:

S imp =−
∫ β

0

dτ1

∫ β

0

dτ2
∑

σ

c∗τ1σ
[
G0

σ,τ1−τ2

]−1
cτ2σ + U

∫ β

0

dτc∗τ↑cτ↑c
∗
τ↓cτ↓, (3.59)

describing an interacting impurity coupled to a noninteracting bath, which is integrated
out. The bare propagator G0

σ,νn denotes the, so called, Weiss field

G0
σ,νn = iνn + µ−∆σ,νn (3.60)

describing the propagation of the impurity electrons coupled to an effective bath
through the hybridisation function ∆σ,νn . The benefit of mapping the Hubbard model
onto the Anderson impurity model is the existence of a large selection of numerically
powerful techniques for solving the impurity problem. Impurity solvers have been devel-
oped based on, e.g., quantum Monte Carlo [256–260], exact diagonalisation [261, 262],
renormalisation group [263], and tensor networks [264–267]. A few of these numerical
techniques acting as the basis for the impurity solvers will be briefly reviewed later in
this chapter.

Solving the Anderson impurity model gives access to the local impurity Green’s
function Gσ,νn , which coincides with the local lattice Green’s function G loc

νn in the limit
of d → ∞. The equivalence of the local impurity Green’s function Gσ,νn and the local
lattice Green’s function G loc

νn constitutes the self-consistency condition for DMFT, based
on following self-consistency equations:

1. Given an initial guess for the local lattice self-energy Σloc
νn , the Weiss field G0

σ,νn

(and the associated hybridisation function ∆σ,νn) is accessible by

[
G0

σ,νn

]−1
= Σloc

σ,νn +
1

N

∑

k

1

iνn + µ− ϵk − Σloc
νn

. (3.61)

2. Solving the effective impurity problem, allows access to the local impurity Green’s
function Gσ,νn , giving the local lattice Green’s function by:

G loc
νn = Gσ,νn . (3.62)

3. With knowledge of the local lattice Green’s function G loc
νn and the Weiss field G0

σ,νn ,
an update guess of the local self-energy is generated by the Dyson equation:

Σloc
σ,νn =

[
G0

σ,νn

]−1 −
[
G loc
νn

]−1
. (3.63)

4. With an updated guess for the local self-energy Σloc
νn , the self-consistent procedure

is iterated from step 1 until converges.

The self-consistent equations from DMFT can be derived by a selection of different
methods such as, e.g., the cavity method [35, 36] or from the Baym–Kadanoff func-
tional [268,269]. They allows for an exact solution of the Hubbard model in infinite di-
mensional limit, and for an approximate nonperturbative solution for the d-dimensional
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Hubbard model, in which the spatial fluctuations of lattice self-energy are neglected.
The breakthrough of DMFT is that it allows for a nonperturbative treatment of the
local dynamics, from the nearly-free electron limit to the atomic limit. An important
success of DMFT is its PM solution capturing the Mott-Hubbard metal-to-insulator
phase transition due to increase of local dynamical correlation as the local interaction
U increases.

3.3.3 Extensions of DMFT to nonlocal correlation

A plethora of extensions of DMFT have extended the applicability of the formal-
ism, allowing for the treatment of multi-orbital physics [36, 270], nonlocal interac-
tions [271–277], and out-of-equilibrium physics [278–280]. For the study of quantum
materials, DMFT in combination with DFT [36, 270] or GW [281–284] allows for an
evaluation of the electronic structure in the regime of strong correlation from first prin-
ciples. Nevertheless, an apparent issue of DMFT is the restriction to local correlation,
with nonlocal correlation being neglected. As the formation of collective phenomena
are heavily dependent on the existence of short- and long-range collective fluctuations,
the incorporation of these effects beyond DMFT are of crucial importance. Two main
categories of systematic extensions of DMFT exists for the inclusion of nonlocal corre-
lations: cluster and diagrammatic extensions.

The principle idea behind the cluster extensions of DMFT, such as, e.g., cellular
DMFT [129, 269, 285–288] and dynamical cluster approximation (DCA) [289–291], is
the mapping of the Hubbard model on to a cluster impurity embedded in a dynamical
bath. For a given choice of cluster, the cluster extensions of DMFT allow for a sys-
tematic and unbiased inclusion of any correlation considered “local” with respect to
the cluster. There is significant flexibility in the choice for the structure of the cluster,
regarding the number of sites incorporated and its geometric shape. In the limit of a
cluster composed of a single-site, the conventional DMFT problem is recovered, while in
the opposite limit of an infinite cluster spanning the full lattice, the cluster extensions
of DMFT become an exact treatment of the Hubbard model. In practice, however,
due to heavy numerical cost associated with solving the cluster impurity problem for
large clusters, computations are restricted to small clusters and thus short-range corre-
lations. While any short-range collective fluctuation within the cluster may be treated
accurately, allowing for unambiguous theoretical description of their interplay within
strongly correlated systems [199, 205], the approach is inherently restricted to small
system sizes and thus cannot address long-range collective fluctuations. Thus, if the
correlation length ξ associated with a certain collective fluctuation which extends be-
yond the size of the cluster, the cluster extensions are unable to accurately describe
such a mode.

Advanced diagrammatic extensions of DMFT [292] are able to describe long-range
fluctuations simultaneously in different instability channels. While the principle idea
behind diagrammatic extensions of DMFT is the inclusion of nonlocal correlation
through the summation of Feynman diagrams, their formulations differ significantly. A
class of the diagrammatic extensions of DMFT are approaches based on continuing in
the spirit of DMFT by applying the idea of “locality” to the vertex functions [293–299].
Within the dynamical vertex approximation (DΓA), the irreducible two-particle vertex
is treated as local with full inclusion of dynamical correlation [293–297], while in the
triply irreducible local expansion (TRILEX), a local approximation of the fermion-
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boson vertex is employed [298, 299]. From the quantum impurity models, the local
vertices can be extracted, allowing for a theoretical description of nonlocal correla-
tion. Another class of the diagrammatic extensions of DMFT are the dual approaches,
including the dual fermion (DF) [300–305], dual boson (DB) [204, 214, 306–308] and
dual TRILEX (D-TRILEX) [201, 202, 309–313] theories. Their construction is based
on integrating out the single-impurity DMFT problem, allowing for a diagrammatic
expansion in the propagators dressed by the DMFT self-energy, leading to the in-
clusion of nonlocal correlations. In the presence of the nonlocal interaction V , long-
range fluctuations in multiple instability channels can be treated within the DB the-
ory [204, 214, 216, 307, 308], the DΓA [295, 296], the TRILEX method [314], or the
D-TRILEX approach [202,312,313]. However, these fluctuations are usually treated in
a ladder-like approximation, where different instability channels affect each other only
indirectly via self-consistent renormalization of single- and two-particle quantities.

3.4 Numerically exact techniques

A selection of computationally powerful methods allows for an explicit treatment of
interplaying collective fluctuations, however, all accompanied with their respective lim-
itations. Exact diagonalisation (ED) due to the Lanczos algorithm [37] allows to eval-
uate a set of the lowest/highest eigenstates of a N × N Hermitian matrix, allowing
to decompose a Hamiltonian into the most “important” states. However, ED scales
unfavourably with system size, thus restricting it to small system sizes which cannot
address long-range collective fluctuations, similar to the problem inherent to the clus-
ter extensions of DMFT. The same problem is intrinsic to lattice Monte Carlo [38],
associated with the evaluation of observables through a random sampling of configu-
rations of the lattice, restricting its applicability to small plaquettes. However, due to
their unbiased treatment, both ED and lattice Monte Carlo have been applied to small
plaquettes of the single-orbital extended Hubbard model, which allowed for the earliest
numerical investigations in to the study of the interplay between U and V [192–195].

Limited to one-dimensional systems, tensor network (TN) techniques [315] such
as, e.g., density matrix renormalisation group (DMRG) [39, 316, 317], allows for an
highly efficient and accurate description of ground-state, thermodynamic and low-
energy excited-state properties. TN methods are based on an efficient representation
of quantum states utilising the dominant contributions of a decomposition, commonly
the singular-value decomposition (SVD). While it allows for a very accurate treatment
of one-dimensional systems, the computational cost for TNs for higher-dimensional
systems grows unfavourably with system size. Thus, for two-dimensional systems, the
techniques are restricted to small to intermediate size clusters. Nevertheless, the inter-
mediate cluster sizes accessible by TN techniques are sufficiently large to allow for the
theoretical description of, e.g., stripe-order in the Hubbard model [141–143].

The generality of the stochastic sampling of configuration of the Monte Carlo
method allows grand flexibility in its design. Its application within quantum theory
is denoted as quantum Monte Carlo (QMC), encompassing a diverse and large family
of different methods unified by their stochastic nature. Included within this fam-
ily are, e.g., the variational Monte Carlo (VMC) methods [318,319], the auxiliary-field
QMC (AF-QMC) methods [320,321], continuous-time QMC (CT-QMC) methods [258–
260,321–323] and diagrammatic Monte Carlo (DiagMC) [324–327]. VMC methods are
based on the variational method, seeking to minimise the ground-state energy, allowing
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access to zero-temperature ground-state properties. At finite-temperature, AF-QMC
methods, based on an importance sampling of the auxiliary bosonic field introduced
through the Hubbard-Stratonovich transformation, and CT-QMC, based on a sampling
of diagrammatic contributions, allows for the evaluation of properties of quantum lat-
tice models. An unifying problem of the QMC techniques for fermionic systems is the
numerical sign problem, which restricts the applicability of the technique from access-
ing the full parameter space. For example, the nonlocal interaction V is required to
be sufficiently small within the half-filled single-orbital extended Hubbard model for
convergence [227]. Of particular importance for benchmarking of the current work
are three QMC techniques: AF-QMC, determinant Monte Carlo (DQMC) (within the
family of CT-QMC methods) and diagrammatic Monte Carlo (DiagMC). While both
AF-QMC and DQMC methods are restricted to small system sizes, allowing for an
unbiased treatment of competing of short-range collective fluctuations, DiagMC work
directly in the thermodynamic limit [326], allowing for an accurate treatment of long-
range magnetic fluctuations [136].
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Chapter 4

Fluctuating field theory for
competing collective fluctuations

“... the art of choosing a suitable approximation, of

checking its consistency and finding at least intuitive

reasons for expecting the approximation to be satisfac-

tory, is much more subtle than that of solving an equa-

tion exactly.” - R. Peierls [328]

The tremendous challenges remaining in the theoretical description of interplaying col-
lective fluctuations, motivates searches for constructing simplified methods for studying
interplaying collective instabilities. Progressing on the development of such theoretical
tools is the main aim of the current chapter and thesis. In this chapter, we introduce
a theoretical approach based on the recently developed fluctuating local field (FLF)
approach, originally introduced for the study of collective magnetic fluctuations in the
Ising and Heisenberg models [329, 330] as well as the Hubbard model [331–333]. The
proposed theoretical approach corresponds to a multi-channel generalisation of the FLF
theory, which we call the multi-channel fluctuating field (MCFF) approach. The aim
of the MCFF approach is the study of competing collective fluctuations in quantum
lattice systems. In order to contrast our generalised theory with the prior theory, we
denote the FLF approach as the single-channel fluctuating field (SCFF) approach ap-
plied to the magnetic channel. This chapter follows closely the work in Ref. [334, 335]
by the author of this thesis and collaborators.

4.1 Multi-channel fluctuating field theory

The principle idea behind the SCFF theory is a variational mapping of an initial com-
plex system to a simpler trial system which only incorporates the main leading magnetic
fluctuations. For example, in Ref. [331–333] the variational mapping corresponded to
mapping the Hubbard model action on a simplified trial action including only a single
or a few magnetic modes. The simplicity of the trial action permits a numerically exact
treatment, which allows for inclusion of non-perturbative effects without any explicit
symmetry breaking. In fact, due to the limited number of degrees of freedom in the
SCFF trial action, this numerically exact treatment may performed in a very efficient
manner. However, the SCFF approach is limited to only magnetic fluctuations. Thus,
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the applicability of the approach for systems which are dominated by other fluctuation
channels is limited.

Figure 4.1: Schematic view summarizing the guiding idea behind the MCFF theory.

Taking inspiration of the principle idea of the SCFF approach, our work gener-
alises the approach to the competition between any arbitrary channels described by
order parameters associated with single-particle composite operators. For convenience,
we limit our considerations in the current chapter to the single-orbital extended Hub-
bard model [42–45, 336]. The model provides a suitable framework for investigating
the interplay between collective electronic fluctuations in the spin, charge and pairing
channels. However, we note that our approach can be straightforwardly generalised to
more complex single- and multi-band quantum lattice systems. To summarize, the pro-
posed MCFF theory is a variational mapping of an initial complicated quantum lattice
system to a simpler trial system, allowing to incorporate the main leading collective
instabilities.

4.1.1 Variational mapping of charge and spin fluctuations

We restrict our initial introduction of the MCFF theory to interplaying collective charge
and spin fluctuations following Ref. [334]. Throughout the chapter, the MCFF theory
will be further generalised through the inclusion of a growing number of collective
fluctuations. However, in order to keep the structure clear and transparent, we opt for
slowly complexifying the approach.

We seek to considered the MCFF theory in the context of the single-orbital extended
Hubbard model, defined by the following action:

S =− 1

βN

∑

k,ν,σ

c∗kνσG−1
kν ckνσ +

U

βN

∑

q,ω

ρqω↑ρ−q,−ω↓ +
1

2βN

∑

q,ω,σσ′

Vqρqωσρ−q,−ωσ′ .

(4.1)

Here, the inverse of the bare Green’s function is defined as G−1
kν = iν + µ− ϵk, where

µ is the chemical potential and ϵk = −2t(cos kx + cos ky) is the dispersion relation as
parametrised by the nearest-neighbour hopping t on a two-dimensional square lattice.
For notational simplicity, we will without loss of generality set t = 1 as an unit of energy.
As argued for later in the derivations to follow, it is convenient to write the interac-
tion parts of the action (4.1) using the shifted densities ρqωσ = nqωσ − ⟨nqωσ⟩δq,0δω,0.
In addition, the non-local interaction is limited to only the nearest-neighbour term,
leading to the momentum-space representation for the non-local interaction following
Vq = 2V (cos qx + cos qy). Note that previous applications of the FLF theory to quan-
tum lattice systems only considered the Hubbard model, i.e. a vanishing non-local
interaction V = 0. Thus, the non-local electronic interaction considered in the current
work is an additional novelty within the proposed approach to be derived.
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Trial action

The basis of the fluctuating field theory is the variational mapping of the complicated
system on to a simplified trial system. Within the MCFF theory, the variational
mapping is based on the MCFF trial action, which we define as:

S∗ =− 1

βN

∑

k,ν,σ

c∗kνσG−1
kν ckνσ +

∑

Q,ς

[
ϕς
Qρ

ς
−Q − 1

2

βN

J ς
Q

ϕς
Qϕ

ς
−Q

]
. (4.2)

Within the trial action, collective fluctuations are explicitly incorporated through the
scalar (ς = c) and vector (ς = s ∈ {x, y, z}) fields ϕς

Q coupled to the composite variables
ρςQ, defined by:

ρςQ = nς
Q − ⟨nς

Q⟩δQ,0. (4.3)

These composite variables are associated with static (ω = 0) order parameters of in-
terest, which we initially limit to the charge (ς = c) and spin (ς = s) densities:

nς
Q =

1

βN

∑

k,ν,σσ′

c∗k+Q,νσσ
ς
σσ′ckνσ′ , (4.4)

whereQ is the ordering wave vector, σc is the identity and σs is the Pauli spin matrices.
To retrieve the initial FLF trial action for the magnetic fluctuations, one restricts the
action to only the fields associated with the spin degrees of freedom. By definition,
the bare terms of the original action (4.1) and trial action (4.2) are identical. The
distinguishing feature of the trial action (4.2) is the modelling of the interaction term
which describes the competition of the collective fluctuations through the classical fields
ϕς
Q associated with the main leading instabilities of the system. Determining the form

of the interaction part is a set of stiffness constants J ς
Q associated to each classical field

ϕς
Q. The set of stiffness constants J ς

Q are unknown a priori and will be determined
through a variational principle.

Motivating the form of the MCFF trial action (4.2) is that the structure is iden-
tical to the Hubbard-Stratonovich action with a decoupling of the local interaction
in the charge and spin channels. As the Hubbard-Stratonovich transformation is an
exact rewriting of the fermionic action through the introduction of additional auxiliary
bosonic degrees of freedom, the MCFF theory would be exact if all modes in quasi-
momentum and frequency space are treated explicitly. The Hubbard-Stratonovich
action contains bosonic fields coupled to the leading and sub-leading collective modes.
Instead, in practice, the MCFF theory is restricted to only the main leading insta-
bilities of the system, allowing for a numerically low-cost treatment. Limited to only
a few modes, the MCFF theory will appear to converge in the thermodynamic limit
to a symmetry-conserving sum over symmetry-broken solutions of mean-field theory.
However, for any finite system, the MCFF theory will introduce important corrections
beyond mean-field theory. Furthermore, our choice to keep only the main Q mode for
each fluctuation is motivated by the observation that the momentum-space represen-
tation for the static lattice susceptibility X ς(q, ω = 0) at the transition point between
the normal and the ordered phases usually has the form of a delta-function-like Bragg
peak located at the ordering vectors X ς(q, ω = 0) ∼ δq,Q (see, e.g. Refs. [201, 202]).
Thus, we argue that considering only the leading Q-mode is sufficient for predicting
phase boundaries in the case of strong competing fluctuations.
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By construction, the trial action (4.2) is Gaussian with respect to both the Grass-
mann variables c(∗) and classical fields ϕς . It follows that an effective action for either
the fermionic or classical degrees of freedom may be generated by analytically integrat-
ing out the other degrees of freedom. Integrating out the fermionic degrees of freedom,
the effective action for the classical fields becomes:

Sϕ =− Tr ln

[
G−1
kν δQ,0δσ,σ′ −

∑

ς

ϕς
Qσ

ς
σσ′

]
− 1

2

∑

Q,ς

βN

J ς
Q

ϕς
Qϕ

ς
−Q. (4.5)

Here, the trace is taken over the momenta k,Q, frequency ν, and spin σ, σ′ indices. The
effective action (4.5) depends on a small number of classical fields ϕς

Q which describes
the collective fluctuations and their interplay. In addition, one may construct an effec-
tive fermionic action Sc, corresponding to the trial action (4.2) with the classical fields
ϕς
Q being integrated out. This effective fermionic action Sc is of the following form:

Sc = − 1

βN

∑

k,ν,σ

c∗kνσG−1
kν ckνσ +

1

2

∑

Q,ς

J ς
Q

βN
ρςQρ

ς
−Q. (4.6)

Within our derivation, the action Sc will be suitable to utilize within the variational
principle, as the starting point of the variational mapping is the fermionic action of the
quantum lattice system, i.e. the single-orbital extended Hubbard model action.

Variational principle

Taking inspiration from the FLF theory [331], we use the Peierls-Feynman-Bogoliubov
variational principle [337–339] in order to determine the stiffness parameters J ς

Q. This
allows for a unique and unambiguous construction of the set of stiffness parameters
J ς
Q, through the minimization of the functional:

F(J ς
Q) = Fc(J

ς
Q) +

1

βN
⟨S − Sc⟩Sc

. (4.7)

Minimization of the functional with respect to variation of J ς
Q, corresponds to calcu-

lating:
∂F/∂J ς

Q = 0. (4.8)

Within the functional, the partition function Zc of the action Sc (4.6) is introduced in
order to define the free energy Fc(J

ς
Q) = − ln (Zc)/βN . Our earlier choice of writing

the interaction terms of the initial (4.1) and the trial (4.2) actions using the shifted
densities ρς , allows us now to simplify the variational treatment. The simplification
arises through the bare Green’s function Gkν being of an identical form in both actions,
meaning a shift in the chemical potential is not necessary. Another choice of variables
would have necessitated a shift in the chemical potential in the trial action S∗ relative
to the initial action S. This treatment allows to generalize the derivation of the FLF
theory, which is implicitly defined at half-filling, to any doping.

Evaluating the functional (4.7) corresponds to evaluating the expectation value ⟨S−
Sc⟩Sc appearing within the functional. A convenient way to evaluate the expectation
value is by an explicit rewriting of the expectation value. The expectation value of the
form ⟨. . .⟩Sc , with the interior being a generic composite fermionic operator, can be
explicitly rewrite as (see Ref. [331] for details):

⟨...⟩Sc = ⟨⟨...⟩Se⟩Sϕ
, (4.9)
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with an exterior expectation value taken with respect to the classical field action
Sϕ (4.5) and an interior expectation value taken with respect to an action of the form:

Se = − 1

βN

∑

k,ν,σ

c∗kνσG−1
kν ckνσ +

∑

Q,ς

ϕς
Qρ

ς
−Q. (4.10)

The action Se corresponds to the single-particle terms in the MCFF trial action S∗ (4.2),
and is thus Gaussian with respect to the fermionic degrees of freedom with an effec-
tive field depending on the classical fields ϕς

Q. By separating ⟨. . .⟩Sc into an exterior
and interior expectation value, we may exploit the Gaussian nature of the action Se

with respect to the fermions through the application of Wick’s theorem in the inner
expectation value. In addition, it allows for an intuitive view of the MCFF approach.
Any non-zero value of the classical field ϕς

Q in the term ϕς
Qρ

ς
−Q in the action (4.10)

acts like an effective field which breaks the associate symmetries in the Se sub-system.
However, by taking the exterior expectation value ⟨. . .⟩Sϕ

, the original symmetries of
the full system Sc are retained. Therefore, the effective classical field action Sϕ controls
the distribution of the ensemble of classical fields breaking the associate symmetries
in the Se sub-systems. While mean-field approaches require the introduction of an
explicit symmetry breaking in the system to enter ordered phases, the fluctuating field
approach allows the system to fluctuate in any ordering channel without any explicit
symmetry breaking.

The expectation value appearing in the functional F(J ς
Q) (4.7) may now be explic-

itly written as:

⟨S − Sc⟩Sc
=

U

βN

∑

q,ω

⟨ρqω↑ρ−q,−ω↓⟩Sc
+

1

2

∑

q,ω

Vq
βN

⟨ρqωρ−q,−ω⟩Sc

−
∑

Q,ς

1

2

J ς
Q

βN

〈
ρςQρ

ς
−Q

〉
Sc
. (4.11)

Exploiting the relationship (4.9), we may rewrite the local interaction term explicitly
using Wick’s theorem as:

U ⟨njτ↑njτ↓⟩Sc
=
U

4

〈〈
nc
jτ

〉2
Se

−
〈
n⃗s
jτ

〉2
Se

〉
Sϕ

, (4.12)

where for convenience we have employed a real-space representation for the interaction
term. Rewriting the term in the Fourier basis, we arrive at:

∑

j,τ

U ⟨ρjτ↑ρjτ↓⟩Sc
=

1

βN

∑

q,ω

U

4

〈∣∣∣
〈
ρcqω
〉
Se

∣∣∣
2

−
∣∣∣
〈
ρ⃗ s
qω

〉
Se

∣∣∣
2
〉

Sϕ

. (4.13)

A similar procedure allows us to rewrite the non-local interaction term approximately
using Wick’s theorem as:

1

2
Vij ⟨niτnjτ ⟩Sc

=
1

2
Vij
∑

σσ′

〈〈
c†iτσciτσ

〉
Se

〈
c†jτσ′cjτσ′

〉
Se

−
〈
c†iτσcjτσ′

〉
Se

〈
c†jτσ′ciτσ

〉
Se

〉

Sϕ

≈ 1

2
Vij

〈
⟨nc

iτ ⟩Se

〈
nc
jτ

〉
Se

〉
Sϕ

, (4.14)
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with i ̸= j, and where we have dropped the non-local expectation values which are sub-
leading with the scaling 1/N , see Ref. [331]. Same as for the local interaction term,
rewriting the non-local interaction term in the Fourier basis, we arrive at:

1

2

∑

ij,τ

Vij ⟨ρiτρjτ ⟩Sc
≈ 1

2βN

∑

q,ω

Vq

〈∣∣∣
〈
ρcqω
〉
Se

∣∣∣
2
〉

Sϕ

. (4.15)

Finally, the procedure may be employed to approximately evaluate the expectation
value of the interaction term in the MCFF action as:

1

2

J ς
Q

βN

〈
ρςQρ

ς
−Q

〉
Sc

≈ 1

2

J ς
Q

βN

〈∣∣∣
〈
ρςQ
〉
Se

∣∣∣
2
〉

Sϕ

, (4.16)

in which sub-leading corrections scaling as 1/N have been dropped.
Due to the form of the MCFF trial action Se (4.10), only certain quasi-momentum

and frequency modes of the local and non-local interaction terms (4.13, 4.15) con-
tribute to the functional (4.7). Specifically, only the static (ω = 0) components with
the momenta q = Q contributes to the average of the shifted density: ⟨ρςqω⟩Sc = ⟨ρςQ⟩Sc .
Therefore, by combining Eqs. (4.13, 4.15, 4.16), we may approximately rewrite the
functional (4.7) as:

F(J ς
Q) ≈ Fc(J

ς
Q) +

1

(βN)2

∑

Q

(
U

4
+
VQ
2

− J c
Q

2

)〈∣∣∣
〈
ρcQ
〉
Se

∣∣∣
2
〉

Sϕ

− 1

(βN)2

∑

Q

(
U

4
+
Js
Q

2

)〈∣∣∣
〈
ρ⃗ s
Q

〉
Se

∣∣∣
2
〉

Sϕ

. (4.17)

Identification of the stiffness parameters J ς
Q through the Peierls-Feynman-Bogoliubov

variational principle are now simple to obtain through the minimization of the func-
tional (4.7). We determine the stiffness in the spin channel as Js

Q = −U
2
, in agreement

with previous considerations for the Hubbard model in Ref. [331], while the stiffness
in the charge channel is identified as J c

Q = U
2
+ VQ. Limiting our considerations to

the half-filled extended Hubbard model with repulsive U, V interactions, the leading
collective modes are the AFM and CDW fluctuations. Both modes display an ordering
vector Q = M. This gives us the stiffness parameters Js

M = −U/2 and J c
M = U/2− 4V

for the collective AFM and CDW fluctuations, respectively. By restricting ourselves to
the AFM and CDW fluctuations, the MCFF theory describes the collective AFM and
CDW states and their interplay.

An important property of the variational approach is the lack of a hidden Fierz am-
biguity in the decoupling of the on-site Coulomb interaction U between the different
fluctuating channels [250–252]. The obtained values of the stiffness constants J ς

Q are
identical to the form of the bare interaction in HF theory, which avoid the Fierz ambi-
guity problem [219,340], in the fluctuating exchange (FLEX) approximation [341,342],
and in the diagrammatic D-TRILEX approach, which resolves the Fierz ambiguity
problem in a completely different way [309,310,313]. At the current stage, the MCFF
trial action (4.2) is fully defined which allows for study of competing collective fluctu-
ations.

Free energy

With the MCFF trial action determined through the variational principle, the aim
is to employ the simplified system to compute relevant observables associated with
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Figure 4.2: Schematic view of magnetic fluctuations in a Hubbard plaquette in an
effective Mexican-hat potential. Image taken from Ref. [331].

collective fluctuations and their interplay. Interplay between collective fluctuations
in the extended Hubbard model can be studied through a free energy construction
based on the effective classical field action Sϕ (4.5). We introduce a single-channel free
energy F(ϕa) for a single field of interest ϕa, which fully accounts for the influence
of the collective fluctuations in the other channels ϕb which are integrated out. The
single-channel free energy is defined as:

F(ϕa) ≡ − 1

βN
ln

[∫
dϕb exp

{
− Sϕ[ϕ

b]
}]

, (4.18)

where all classical fields ϕb, except for a single field of interest ϕa, are integrated out
numerically exactly. For a few collective modes, as holds in the current work, the
numerical integration over the fields ϕb may be performed by the trapezoidal rule over
a sufficiently dense grid. By performing the integration exactly, the approach permits
to respect the underlying symmetries of the system and to incorporate non-Gaussian
fluctuations non-perturbatively. For example, the phase transitions can be determined
based on the free energy F(ϕa) of the effective MCFF action (4.5), allowing us to avoid
computing the more complex susceptibilities in the instability channels. Fluctuations
of the relevant order parameters ρa are non-perturbatively incorporated in F(ϕa) by
allowing the development of a global minimum of F(ϕa) to shift away from ϕa = 0
in the vein of the development of an effective Mexican-hat potential. Thus a global
minimum of F(ϕa) lying at ϕa ̸= 0 signals the formation of an ordered phase in the
phase diagram. Besides the global minimum, the free energy may reveal local minima
that indicates the presence of metastable phases.

An important property of the F(ϕa) is the stability requirement Ja < 0. The re-
quirement ensures that F(ϕa) has a global minimum for each ϕa, i.e. the ϕa-mode
is stable. In contrast, the effective fermionic action Eq. (4.6) for Ja > 0 is associ-
ated with an unstable collective mode, as ordering in the ρa-channel is energetically
penalized. This requirement limits the regions in which the different collective fluc-
tuations are incorporated within the MCFF scheme. For example, for the considered
extended Hubbard model at half-filling, the stability requirement for the AFM and
CDW fluctuations are U > 0 and V > U/8, respectively.
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Free energy for interplaying collective CDW and AFM fluctuations

Focusing our attention on the interplay between collective CDW and AFM fluctuations
in the extended Hubbard model, the effective classical field action (4.5) is by definition:

Sϕ[ϕ
c
M, ϕ

s
M] =− Tr ln

[
G−1
kν δM,0δσ,σ′ −

∑

ς=c,s

ϕς
Mσ

ς
σσ′

]
− 1

2

∑

ς=c,s

βN

J ς
M

(ϕς
M)2. (4.19)

Here, the effective action is rotational invariant with respect to ϕs
M, as required by the

spin SU(2) symmetry of the extended Hubbard model. The effective action Sϕ[ϕ
c
M, ϕ

s
M]

allows to introduce the free energy F(ϕc
M) for the classical field ϕc

M with the spin degrees
of freedom ϕs

M numerically exactly integrated out:

F(ϕc
M) = − 1

βN
ln

∫
D[ϕs

M] exp
{
− Sϕ[ϕ

c
M, ϕ

s
M]
}
. (4.20)

Note, the free energy of the classical vector spin field ϕs
M can be obtained equivalently

by instead integrating out the ϕc
M field. Within the logarithm in the free energy F(ϕc

M),
the numerical integration over ϕs

M may be performed by the trapezoidal rule over a
sufficiently dense grid. Here it is convenient to exploit the rotational invariance of the
action Sϕ[ϕ

c
M, ϕ

s
M] with respect to ϕs

M.
In order to compute the free energy F(ϕς

M), the action Sϕ[ϕ
c
M, ϕ

s
M] is required to be

evaluated. An efficient evaluation of the first term in the action (4.5) may be obtained
by rewriting the trace over all internal indices as a trace over k and ν indices over the
logarithm of the determinant of a 4× 4 matrix in a 2× 2 momentum (k,k+M) and
2× 2 spin (↑, ↓) space:

Trk,M,ν,σ ln[. . .] = Trk,ν ln det
Q,σ

[. . .]. (4.21)

Note, that within this rewriting Trk is taken over the reduced (half) Brillouin zone.
We may evaluate the logarithm of the determinant of the 4× 4 matrix appearing in
the action (4.5) at half-filling (µ = 0) as:

ln det
Q,σ

[. . .] = ln det




iν − ϵk 0 −ϕc
M − ϕs,z

M −ϕs,x
M + iϕs,y

M

0 iν − ϵk −ϕs,x
M − iϕs,y

M −ϕc
M + ϕs,z

M

−ϕc
M − ϕs,z

M −ϕs,x
M + iϕs,y

M iν − ϵk+M 0
−ϕs,x

M − iϕs,y
M −ϕc

M + ϕs,z
M 0 iν − ϵk+M




= ln [iν − ϵk,−] + ln [iν + ϵk,−] + ln [iν − ϵk,+] + ln [iν + ϵk,+] (4.22)

where we have exploited ϵk+M = −ϵk and introduced the eigenvalues:

ϵk,± =

√
ϵ2k + (|ϕc

M| ± |ϕ⃗ s
M|)2. (4.23)

Note, that the determinant displays the expected rotational invariance of the action
Sϕ[ϕ

c
M, ϕ

s
M] with respect to ϕs

M. The sum over the Matsubara frequencies ν may now
be performed analytically,

Trν ln det
Q,σ

[. . .] =
∑

α=±

[
ln(1 + eβϵk,α) + ln(1 + e−βϵk,α)

]
, (4.24)
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which allows rewrite the effective action Sϕ[ϕ
c
M, ϕ

s
M] as:

Sϕ[ϕ
c
M, ϕ

s
M] =− Trk

[
ln(1 + eβϵk,α) + ln(1 + e−βϵk,α)

]
− 1

2

∑

ς=c,s

βN

J ς
M

(ϕς
M)2. (4.25)

which leaves the reduced k summation and the integration over ϕs
M to be performed

numerically in the evaluation of the single-channel free energies F(ϕς
M).

Limiting to collective CDW and AFM fluctuations in the extended Hubbard model
without any interplay, i.e. the SCFF theory within the charge or spin channel, allows
to further understand the fluctuating field theory. This regime is a valid approximation
in the weak-coupling regime, where the competition between the two channels is not
expected to be strong. For a single classical field, either in the CDW channel (ϕc

M)
or in the AFM channel (ϕs

M), the effective Sϕ[ϕ
ς
M] may be explicitly written in the

following form:

Sϕ[ϕ
ς
M] = −

∑

k

[
ln
(
1 + e−βϵk,+

)
+ ln

(
1 + e−βϵk,−

)]
− 1

2

βN

J ς
M

ϕς
M

2. (4.26)

Here the k summation is the non-reduced one, and the parameters ϵk,± are the eigen-
values:

ϵk,± =
ϵk + ϵk+M

2
±
√(

ϵk − ϵk+M

2

)2

+ ϕς
M

2, (4.27)

where we have chosen not to exploit ϵk+M = −ϵk in order to later connect to the
charge and spin susceptibilies within RPA and FLEX theories. By performing a Taylor
expansion in the first term of Eq. (4.26),

Sϕ =

{
β
∑

k

[
nF (ϵk)− nF (ϵk+Q)

ϵk − ϵk+Q

]
− 1

2

βN

J ς
Q

}
ϕς
Q
2 +O(ϕς

Q
4), (4.28)

one identifies the structure to be an effective free energy functional of the Landau
theory form for a second-order transition. It follows, that the critical value of the
stiffness parameter for a collective ordering may be identified as a change in the sign
of the ϕς

Q
2 term. This leads to the critical stiffness parameters for both the CDW and

AFM channels respecting the following analytic relationship:

J ς
M = 1/ΠM. (4.29)

Here the (static) noninteracting polarisation ΠM for the momentum transfer q = M
is employed. By allowing for multiple channels in competition, the collective fluctua-
tions describes by effective Mexican-hat potentials are mutually coupled through their
coupling to the electronic degrees of freedom, i.e. through the Tr ln[. . .] term of the
effective action (4.5). Thus, a simple analytic treatment performed here is in general
unfeasible in the case of interplaying collective fluctuations.

Studying the SCFF estimates for the critical stiffness parameters allows to con-
nect the approach to the charge and spin susceptibilies within RPA and FLEX theo-
ries. Within RPA theory, the critical non-local interaction V CDW

U=0 for the CDW phase
boundary is identified by a divergence of the RPA charge susceptibility at the M-point,
leading to the estimate:

VQ = 1/ΠQ. (4.30)
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Analogously, within FLEX theory, the critical local interaction UAFM
V=0 for the AFM

phase boundary is identified by a divergence of the FLEX spin susceptibility at the
M-point, which gives:

U s = 1/ΠQ. (4.31)

Due to the choice of decoupling of the local interaction in the FLEX theory, the local
spin interaction is given by U s = −U/2. Thus, we identify the SCFF theory to be in
exact agreement with the V CDW

U=0 and UAFM
V=0 transition points of RPA and FLEX theory,

respectively.

Order parameters and measure of collective fluctuations

Within our later numerical studies, it will be useful to quantify the strength of the
collective fluctuations within the MCFF approach. Therefore, we introduce a measure
⟨|nς

Q|⟩ to quantify the fluctuations around the minimum of the free energy. The measure
⟨|nς

Q|⟩ is defined as the expectation value of |nς
Q| in a channel of choice nς

Q by performing
a numerical integration over all other classical field degrees of freedom associated with
the collective fluctuations. The numerical integration corresponds to the inclusion
of fluctuations about the saddle-point known to be important, e.g. see work on the
crossover from BCS theory to Bose-Einstein condensate [343, 344]. Our calculations
of the measure ⟨|nς

Q|⟩ may be compared to the saddle-point estimate ⟨|nς
Q|⟩MF, i.e.

the value at the minimum of the free energy, which is equivalent with a conventional
mean-field theory estimate. Thus, the difference between the integrated and saddle-
point measure of collective fluctuations allows to evaluate the differences between the
fluctuating field and mean-field theories. Insight into the interplay between collective
ordering is convenient to calculating through the saddle-point estimate, as it acts as a
natural order parameter.

Interacting Green’s function and self-energy

We seek now to evaluate the Matsubara Green’s function of the fluctuating field theory.
It is accessible by exploiting the explicit rewriting (4.9) of the expectation value, al-
lowing to express the interacting Matsubara Green’s function GI as an integration over
the bare Matsubara Green’s functions Ge[ϕ

ς
M] of the Gaussian action Se Eq. (4.10):

GI,kν =
1

Zϕ

∫
D[ϕς

M]Ge,kν [ϕ
ς
M] exp{−Sϕ[ϕ

ς
M]}. (4.32)

The interacting Matsubara Green’s function GI is thus an ensemble or multi-reference
Green’s function [345–347] corresponding to a weighted ensemble of symmetry-broken
bare Matsubara Green’s functions. Importantly, the exterior expectation value retains
the translational and spin symmetries of the original system. To observe these prop-
erties, we write the symmetry-broken bare Matsubara Green’s functions Ge[ϕ

ς
Q] in the

eigenbasis of the Gaussian action Se Eq. (4.10) as

Ge,αν =
1

iν − ϵα[ϕ
ς
M]
, (4.33)

with the eigenvalues ϵα[ϕ
ς
M], associated with the 4 × 4 matrix in a 2× 2 momentum

(k,k+M) and 2× 2 spin (↑, ↓) space as employed in generating the free energy. To
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retrieve the Ge,αν in momentum and spin space, a transformation from the eigenbasis
to the momentum and spin basis is required. Within the momentum and spin basis,
the bare Matsubara Green’s function Ge[ϕ

ς
Q] becomes

Ge,k1k2,σ1σ2,ν =
∑

α

ψ∗
α:k1,σ1

ψα:k2,σ2

iν − ϵα[ϕ
ς
M]

, (4.34)

where k1,k2 ∈ {k,k+Q} and ψα:ki,σi
are the coefficients of eigenfunctions in the

momentum and spin basis. The bare Matsubara Green’s functions are off-diagonal,
however, by performing the exterior integration over the classical fields, the symmetries
of the full system is enforced. This leads to a vanishing contribution of the off-diagonal
terms to the interacting Matsubara Green’s function GI .

An analytic dependency of the Matsubara frequency dependence in the interacting
Matsubara Green’s function GI is observed. We may thus employ an analytic continu-
ation iν → ω + i0+ to rotate from the imaginary frequency axis to the real frequency
axis, allowing us to calculate the physical retarded Green’s function GR. From the
retarded Green’s function GR, we may calculate the spectral function,

Ak,ω = − 1

π
Im[GR,k,ω], (4.35)

allowing access to spectral properties within the fluctuating field theory. By inverting
the Dyson equation, we have access to the effective self-energy of the fluctuating field
theory,

Σk,ω = G−1
0,R,k,ω −G−1

R,k,ω, (4.36)

where G0,R,k,ω is the bare retarded Green’s function. The spectral function and the self-
energy allows for a convenient framework to discuss the many-body effects captured
within the theory. With the methods for constructing the free energy, the measure
of collective fluctuations, the spectral function and the self-energy within the MCFF
theory, we are sufficiently ready to discuss results in the repulsive U, V phase diagram
for the extended Hubbard model in Chapter 5.

4.1.2 Variational mapping of s-wave pairing fluctuations

By limiting our considerations to repulsive U, V interactions in the extended Hubbard
model on a two-dimensional square lattice, the dominant collective fluctuations are en-
tirely within the particle-hole channel, e.g. the charge and spin channels. However, by
allowing for attractive U, V interactions in the system, dominant collective fluctuations
in the particle-particle channel emerges, e.g. collective s-wave pairing fluctuations. In
order to incorporate s-wave pairing channel, we now seek to generalise the MCFF the-
ory to include collective fluctuations in the particle-particle channel following Ref. [335].

The main structures of the extended Hubbard action S and the MCFF trial action
S∗ remain unchanged with the inclusion s-wave pairing fluctuations. Besides a set of
classical spin (ς = s ∈ {x, y, z}) vector fields ϕs

Q, a novel feature in the trial action is
the introduction of a new set of classical pseudo-spin (ς = sp ∈ {x, y, z}) vector fields
ϕ
sp
Q . These novel fields are coupled to the composite variables ρ

sp
Q , defined by the

pseudo-spin density:

n
sp
Q =

1

βN

∑

k,ν,σσ′

ψ∗
k+Q,νσσ

sp
σσ′ψkνσ′ , (4.37)
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where the expression is written in the Nambu spinor basis introduced for the pseudo-
spin symmetry in a previous chapter. The vector pseudo-spin field ϕ

sp
Q combines col-

lective fluctuations in both the s-wave pairing channel (sp ∈ {x, y}) and the charge
channel (sp ∈ {z}). As in the investigation of interplaying collective charge and spin
fluctuations, a set of stiffness parameters J ς

Q associated to each classical field ϕς
Q de-

termine the form of their interplay. Analytic techniques developed to manipulate the
MCFF trial action in the previous section are applicable for the current considera-
tions as well, allowing to determine the stiffness parameters J ς

Q through the variational
principle.

Variational principle

Allowing for collective fluctuations in the s-wave pairing channel modifies the vari-
ational principle utilized in the determination of the stiffness parameters J ς

Q by the
introduction of additional terms in the functional (4.7). The additional terms enters
only through the local interaction term in the expectation value ⟨S − Sc⟩Sc

appearing
in the functional F(J ς

Q) (4.7). Allowing for charge, spin and s-wave pairing fluctuations
leads to the following local interaction term:

U ⟨njτ↑njτ↓⟩Sc
=
U

4

〈〈
n⃗
sp
jτ

〉2
Se

−
〈
n⃗s
jτ

〉2
Se

〉
Sϕ

, (4.38)

written in a real-space representation. By transforming to the Fourier basis, the gen-
eralised form of the local interaction term (4.13) is given by:

∑

j,τ

U ⟨ρjτ↑ρjτ↓⟩Sc
=

1

βN

∑

q,ω

U

4

〈∣∣∣
〈
ρ⃗ sp
qω

〉
Se

∣∣∣
2

−
∣∣∣
〈
ρ⃗ s
qω

〉
Se

∣∣∣
2
〉

Sϕ

. (4.39)

Remaining terms in the functional F(J ς
Q) (4.7) are unchanged, under the approxi-

mation where all sub-leading terms scaling as 1/N are neglected. Thereby, we may
approximately rewrite the functional F(J ς

Q) (4.7) to obtain:

(βN)2[F(J ς
Q)−Fc(J

ς
Q)] ≈

∑

Q

(
U

4
+
VQ
2

−
J
sp,z
Q

2

)〈∣∣∣
〈
ρ
sp,z
Q

〉
Se

∣∣∣
2
〉

Sϕ

+
∑

i=x,y

∑

Q

(
U

4
−
J
sp,i
Q

2

)〈∣∣∣∣
〈
ρ
sp,i
Q

〉
Se

∣∣∣∣
2
〉

Sϕ

−
∑

i=x,y,z

∑

Q

(
U

4
+
Js,i
Q

2

)〈∣∣∣
〈
ρ s,i
Q

〉
Se

∣∣∣
2
〉

Sϕ

. (4.40)

By symmetry, we observe the stiffness parameters are restricted to three independent
channels: the spin channel with Js

Q = Js,i
Q for i ∈ {x, y, z}, the charge channel with

J c
Q = J

sp,i
Q for i ∈ {z} and the s-wave pairing channel with Js−SC

Q = J
sp,i
Q for i ∈ {x, y}.

By the minimization of the functional (4.7) with respect to variation in the stiffness
parameters J ς

Q, we identify the stiffness in the s-wave pairing channel as Js−SC
Q = U

2
.

The stiffness parameters in the charge and spin channels are in agreement with our
previous considerations. Note the equivalence J c

Q = Js−SC
Q for V = 0, which displays the

emergence of the SU(2) pseudo-spin symmetry in the MCFF trial action for vanishing
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Figure 4.3: Regions associated with different stability requirement for the half-filled
extended Hubbard model with both repulsive and attractive U, V interactions. Dashes
lines separated the different regions, with blue (purple) background colour correspond-
ing to the AFM (s-SC) channel and red (blue) coloured rings corresponding to the
CDW (PS) channel.

non-local interaction. Through the generalisation of the MCFF theory in the current
section, we observe the possibility of incorporating any competing order parameter
expressable as a single-particle fermionic composite variable.

Limiting our considerations to the half-filled extended Hubbard model with both
repulsive and attractive U, V interactions, the leading collective modes within the con-
sidered channels are the AFM, CDW and s-SC fluctuations with an ordering vector
Q = M and PS fluctuations with an ordering vector Q → Γ. We wish to remind the
reader that the PS state, i.e. phase separation, corresponds in our consideration to
the formation of broad puddles with uniform filling larger or smaller than half-filling.
This gives us Js

M = −U/2 for the AFM state, J c
M = U/2− 4V and J c

Γ = U/2 + 4V for
the CDW and PS states, respectively, and Js−SC

M = U/2 for the s-SC state. Restrict-
ing ourselves to those four collective modes, the MCFF theory describes the collective
fluctuations and their mutual interplay. However, due to the stability requirement
J ς
Q < 0 for the collective modes, all four collective modes are not concurrently sta-

ble. Collective AFM (s-SC) fluctuations are restricted to the repulsive (attractive) U
regime, leading to an absence of competing magnetic and s-wave pairing fluctuations.
In the charge channel, collective CDW (PS) fluctuations are limited to the U < 8V
(U < −8V ) regime. Therefore, within the MCFF theory, interplaying collective CDW
and PS fluctuations may only occur at attractive U interactions. A beneficial aspect of
the MCFF theory is the freedom related with the choice of the allowed ordering chan-
nels, permitting a careful study of the different contributions to the interplay between
multiple modes.
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Free energy for interplaying collective charge, spin and pairing fluctuations

We restrict our investigating to competition between collective CDW, AFM, s-SC and
PS fluctuations through the free energy construction within the MCFF theory. The
stability requirement leads to a natural division between the repulsive U regime with
competing CDW, AFM and PS fluctuations, and the attractive U regime with com-
peting CDW, s-SC and PS fluctuations. Thus, treating the repulsive U regime is
conveniently done within the conventional spinor basis, while the attractive U regime
is preferentially studied through the Nambu spinor basis. Extending the previous con-
siderations to the collective modes with the ordering vector Q = M is straightforward.
However, incorporating the collective PS fluctuations with an ordering vector Q → Γ
is a subtle point requiring additional considerations.

Working within the Nambu spinor basis, the interplaying CDW and s-SC modes
are described by the effective classical field action (4.5) defined by:

Sϕ[ϕ
sp
M] =− Tr ln


G−1

kν δM,0δσ,σ′ −
∑

ς=sp

ϕς
Mσ

ς
σσ′


− 1

2

∑

ς=sp

βN

J ς
M

(ϕς
M)2. (4.41)

It follows from our previous considerations for interplay CDW and AFM fluctuations,
that it is convenient to rewrite the trace over all internal indices in the first term of
the effective classical field action Sϕ (4.41) as a trace over k and ν indices over the
logarithm of the determinant of a 4× 4 matrix in a 2× 2 momentum (k,k+M) and
2× 2 pseudo-spin (↑, ↓). For the system at half-filling (µ = 0), the logarithm of the
determinant may be evaluated as:

ln det
Q,σ

[. . .] = ln det




iν − ϵk 0 −ϕsp,z
M −ϕsp,x

M + iϕ
sp,y
M

0 iν − ϵk −ϕsp,x
M − iϕ

sp,y
M +ϕ

sp,z
M

−ϕsp,z
M −ϕsp,x

M + iϕ
sp,y
M iν − ϵk+M 0

−ϕsp,x
M − iϕ

sp,y
M +ϕ

sp,z
M 0 iν − ϵk+M




= 2 ln [iν − ϵ0,k] + 2 ln [iν + ϵ0,k] , (4.42)

where we have exploited ϵk+M = −ϵk and introduced the eigenvalues:

ϵ0,k =

√
ϵ2k + [ϕ⃗

sp
M ]2. (4.43)

As for the repulsive U, V case, the Matsubara summation Trν may be performed ana-
lytically, and the remaining Trk over the reduced (half) Brillouin zone is required to be
taken numerically. Construction of the single-channel free energy (4.18) corresponds
to a numerical integration over the charge or s-wave superconducting degrees of free-
dom. Note that the first term in Sϕ[ϕ

sp
M] displays a rotational invariance with respect

to ϕ
sp
M, associated with the pseudo-spin SU(2) symmetry. In contrast, the second term

in effective classical field action Sϕ[ϕ
sp
M] (4.41) breaks the pseudo-spin symmetry for

any value V ̸= 0. Thus, the pseudo-spin SU(2) symmetry naturally emerges for van-
ishing non-local interaction as the model turns into the two-dimensional square lattice
Hubbard model.

Focusing on the collective PS fluctuations, we expect difficulties to arise at Q → Γ
for any static (ω = 0) order parameter. The origin of the difficulty is the ill-defined
nature of the susceptibility due to the limits ω → 0 and q → 0 being non-commuting.
This leads to a certain ambiguity in the treatment of PS fluctuations. For example,
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if one naively couples the classical PS field ϕz
Γ to the corresponding charge density

component:

nc
Γ ≡ 1

βN

∑

k,ν,σ

c∗kνσckνσ, (4.44)

the field ϕc
Γ behaves as an effective chemical potential of the system. Evaluating the

first term in the effective action Sϕ[ϕ
c
Γ], however, generates both odd and even terms in

orders of ϕz
Γ. Odd terms are problematic, as their presences breaks the particle number

conservation, because the system violates the invariance of Sϕ[ϕ
c
Γ] under a sign change

of the field ϕc
Γ → −ϕc

Γ. To overcome this problem, we couple the collective PS field ϕc
Γ

to the electronic density taken at Q → Γ:

nc
Γ ≡ 1

2βN

∑

k,ν,σ

lim
k′→k

[c∗kνσck′νσ + h.c.] (4.45)

and rewrite the bare term as:

− 1

βN

∑

k,ν,σ

c∗kνσG−1
kν ckνσ = − 1

2βN

∑

k,ν,σ

lim
k′→k

[
c∗kνσG−1

kν ckνσ + c∗k′νσG−1
k′νck′νσ

]
, (4.46)

This procedure leads to an artificial enlargement of the quasi-momentum (k) space to
a 2× 2 matrix form in the (k,k′) space for each momentum k, which results in a “1/2”
prefactor in front of the trace over momentum k:

Trk,ν,σ ln[. . .] =
1

2
Trk,ν,σ lim

k′→k
ln det

(k,k′)
[. . .]. (4.47)

The logarithm of the determinant of the 2× 2 matrix in the momentum (k,k′) space
explicitly reads:

ln det

(
iν − ϵk −ϕz

Γ

−ϕz
Γ iν − ϵk′

)
= ln [iν − ϵk + ϕz

Γ] + ln [iν − ϵk′ − ϕz
Γ] , (4.48)

where the “1/2” prefactor in front of each element of the matrix is dropped out, as it
only gives an irrelevant constant term in the effective action Sϕ[ϕ

c
Γ]. Note, that the

logarithm of the determinant is an even function with respect to the field ϕc
Γ. Thus,

no problematic breaking of particle number conservation occurs in this treatment.
Effectively, the enlargement of the momentum space contributes to the PS fluctuations
capturing the formation of homogeneous regions of positive and negative shifts in the
chemical potential, i.e. electronic puddles of lower and higher filling.

With the treatment of the collective PS mode defined, we may now allow it to
compete with the collective AFM mode for repulsive U or the collective CDW and
s-SC modes for attractive U . Due to the nearly identical procedure in both regimes,
we limit our considerations to the repulsive U regime for convenience. By inclusion of
PS modes, the effective classical field action (4.41) describing the interplaying CDW
and AFM modes is enlarged:

Sϕ[ϕ
c
M, ϕ

s
M, ϕ

c
Γ] = −Tr ln

[
G−1
kν δM,0δσ,σ′ −

∑

ς=c,s

ϕς
Mσ

ς
σσ′ − ϕc

Γσ
c
σσ′

]

− 1

2

∑

ς=c,s

βN

J ς
M

(ϕς
M)2 − 1

2

βN

J c
Γ

(ϕc
Γ)

2. (4.49)
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In order to evaluate the first term of the effective classical field action Sϕ (4.49), we
rewrite the trace over all internal indices as a trace over k and ν indices over the loga-
rithm of the determinant of a 8× 8 matrix in a 4× 4 momentum (k,k′,k+M,k′ +M)
and 2× 2 spin (↑, ↓) spaces. The logarithm of the determinant of the enlarged 8× 8
matrix size may be analytically evaluated as:

1

2
ln det

Q,(k,k′),σ
[. . .] =

1

2
ln det

(
A4×4

k B4×4

B4×4 A4×4
k+M

)

=
1

2

∑

α=±
{ln [(iν − ϵk,α + ϕc

Γ) (iν − ϵk,α − ϕc
Γ)]

+ ln [(iν + ϵk,α + ϕc
Γ) (iν + ϵk,α − ϕc

Γ)]} , (4.50)

where the limit k′ → k has been taken in the expression, and where we have introduced
the 4× 4 matrices:

A4×4
k =




iν − ϵk 0 −ϕc
Γ 0

0 iν − ϵk 0 −ϕc
Γ

−ϕc
Γ 0 iν − ϵk 0

0 −ϕc
Γ 0 iν − ϵk


 , (4.51)

B4×4 =




−ϕs,z
M −ϕs,x

M + iϕs,y
M 0 0

−ϕs,x
M − iϕs,y

M +ϕs,z
M 0 0

0 0 −ϕs,z
M −ϕs,x

M + iϕs,y
M

0 0 −ϕs,x
M − iϕs,y

M +ϕs,z
M


 . (4.52)

The case of competing interplaying CDW, s-SC and PS fluctuations is retrieved by
the following replacement: ϕs

M → ϕ
sp
M for the collective CDW and s-SC fluctuations

and ϕc
Γ → ϕ

sp,z
Γ for the collective PS fluctuations. This completes the evaluation of

the effective classic field actions Sϕ (4.5) required for the computation of the single-
channel free energies (4.18). With details regarding the implementation of collective PS
fluctuations presented, the theoretical basis of the results in the repulsive and attractive
U, V phase diagram for the extended Hubbard model in Chapter 6 has been introduced.

4.2 Summary and perspectives

We have introduced a multi-channel extension of the fluctuating field theory to ad-
dress interplaying collective fluctuations for correlated electronic systems, based on a
variational optimization of a trial action respecting the underlying symmetries of the
system. Our work allows for the application of the fluctuating field theory to interplay
of collective fluctuations associated with arbitrary one-particle composite operators in
the particle-hole or particle-particle channels. In the chapter, we restricted our deriva-
tion to charge, spin and s-wave superconducting fluctuations which will allow us to
extensively study the half-filled extended Hubbard model U − V phase diagram in the
two chapters to follow.

64



Chapter 5

Interplaying charge and spin order
in the fluctuating field theory

“If you know what to do, you should have done it yes-

terday.” - A. I. Lichtenstein

The considerable insight existing for the extended Hubbard model on a 2D square
lattice at half-filling with nearest-neighbour interaction V [194–200,203,205,211–217],
makes it an optimal framework for investigating the strengths and weaknesses of the
introduced MCFF theory. In this chapter, we investigate the repulsive U − V phase
diagram of the extended Hubbard model on a two-dimensional square lattice using the
free energy construction within the MCFF method. We give special attention to the
evolution of the U −V phase diagram from small finite systems to the thermodynamic
limit. In addition, the introduced measure of collective fluctuations allow us to quan-
tify the relevance of collective fluctuations around the saddle-point as a function of the
interaction parameters U, V and the system size. This allows us to contrast the fluctu-
ating field and mean-field theories. Throughout the chapter the MCFF approach will
be compared to a representative selection of theoretical approaches: mean-field theo-
ries (Hartree-Fock, RPA and FLEX) and SCFF, in addition to comparisons to DCA,
which incorporates local dynamical fluctuations, and the numerically exact DiagMC
and QMC. This chapter follows closely the work in Ref. [334] by the author of this
thesis and collaborators.

5.1 Phase diagram in thermodynamic limit

We construct using the MCFF theory the repulsive U − V phase diagram of the half-
filled extended Hubbard model on a square lattice from the free energies F(ϕς

M) (4.20)
of the CDW and AFM fluctuations. Here, we reminder the reader that for notational
simplicity, we continue to set t = 1 as an unit of energy. The phase diagram is
determined through the position of the global minimum of F(ϕς

M). In the normal
phase, the global minimum of F(ϕς

M) lies at ϕς
M = 0. In contrast, the formation of

the ordered phase is signaled by a shift of the global minimum to a ϕς
M ̸= 0 point.

Besides the global minimum, the free energy may reveal local minimum that indicates
the presence of a metastable phase. Through this procedure, we perform calculations
for a plaquette of 128× 128 lattice sites with periodic boundary conditions. We argue
that his may be considered as the thermodynamic limit, as we do not see any difference
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Figure 5.1: Phase diagram for the half-filled extended Hubbard model with repulsive
U, V interactions as predicted by the MCFF approach. The result is obtained at
β = 10 for a plaquette of 128× 128 lattice sites. Red and blue areas depict the CDW
and AFM phases, respectively. The corresponding phase boundaries are shown by
coloured circles. Black dashed lines describe the asymptotic behaviour of the phase
boundaries: V = 0.185 + U/8 for CDW, U = 1.477 for AFM, and V = U/4 for CDW-
AFM transitions. The boundaries of metastable CDW and AFM phases are illustrated
by lines with small square markers. Metastability displays the first-order nature of
the CDW-AFM phase transition, to contrast with the second-order phase transitions
occurring between the normal metal phase (white region) and the CDW and AFM
phases. Yellow stars depict the points at which the free energies shown in Fig. 5.4
were calculated. For comparison, we add the RPA estimate CRPA = 0.185 for the
CDW boundary in the U → 0 limit, and the DiagMC estimate ADiagMC for the AFM
boundary in the limit of V → 0 [136]. The RPA estimate V = 0.185 + U/4 for the
CDW boundary is also shown.

in the results compared to the 256× 256 case. Fig. 5.1 shows the phase diagram of the
system obtained at β = 10. The choice of β is due to convenience in the comparison
to earlier works, as the MCFF method can also be applied at both at much higher and
lower temperatures.

Following the free energy construction, our calculations reveal three phases: a nor-
mal (white colour), a CDW (red colour), and an AFM (blue colour) phase. We find
that in the weak coupling regime U ≤ 1.447 the CDW phase boundary follows the
V = 0.185 + U/8 line. This result is in the exact agreement with the perturbative es-
timation V = CRPA + U/8 [213], where the constant CRPA corresponds to the critical
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value of the non-local interaction for the CDW transition V CDW
U=0 obtained for U = 0

within RPA. The RPA estimate is determined by the critical V CDW
U=0 associate with a

singularity in the RPA construction of the charge susceptibility at the M-point, or
equivalently determined by a vanishing RPA dielectric function. For the considered
system, CRPA = 0.1847, which confirms that the MCFF theory correctly captures the
exact U → 0 limit for the CDW phase boundary. The AFM phase boundary in the
weak coupling regime lies along the U = 1.477 line in the exact agreement with the
FLEX result obtained for V = 0: AFLEX = UAFM

V=0 = 8CRPA. However, FLEX is known
to underestimate the critical interaction for the AFM transition. For instance, in the
thermodynamic limit the exact diagrammatic Monte Carlo (DiagMC) solution gives
ADiagMC ≃ 2.5 for β = 10 [136]. Determination of UAFM

V=0 within FLEX is similar to
the RPA estimate of the critical V CDW

U=0 , associated instead with a divergence of the
FLEX construction of the spin susceptibility at the M-point. We note, that in the
weak-coupling regime close to the obtained phase boundaries either the CDW or AFM
fluctuation is negligibly small. If one neglects one of these two modes within the
MCFF method and applies a saddle-point approximation to the remaining mode, the
theory reduces to a mean-field approach with the form of the bare local interactions
U c/s = ±U/2 used, e.g., in the FLEX approach. Furthermore, the exact agreement for
the phase boundaries in the weak-coupling regime of the fluctuating field and mean-
field theories were shown analytically in the previous chapter by considering the SCFF
theory.

In the moderate interaction regime, where the competition between the CDW and
AFM fluctuations is strong, one has to take both fluctuations into account. Indeed,
if one considers fluctuations only in one channel and completely disregards the other
channel, the SCFF method predicts the CDW and AFM phase boundary to follow
exactly V = CRPA + U/8 and U = 8CRPA, respectively, as depicted by dashed lines in
Fig. 5.1. The SCFF method thus predicts the weak interaction estimate to continue
into the moderate interaction regime. If we now consider both fluctuations, the CDW
and AFM phases are mutually exclusive, with the interplay leading to the system devel-
oping a CDW-AFM phase boundary at V = U/4 in agreement with numerically exact
techniques [194, 195] and the mean-field Hartree-Fock estimate [219], and follows the
mean-field RPA or GW [221] prediction V = U/4 + cst. (except for a constant shift).
An explanation for the simple form of the CDW-AFM phase boundary is rather in-
tuitive. Due to both fluctuations displaying identical ordering vector Q = M, their
contributions to the first term of the effective action (4.5) are analogues. Thus, the
strength of these fluctuations is dominantly determined by the stiffness parameters:
Js
M = −U/2 and J c

M = U/2− 4V . An equal value of the two stiffness parameters thus
arises at V = U/4, i.e. along the CDW-AFM phase boundary. A more non-trivial
competition arises for small system sizes as considered in the next section. In addi-
tion, non-trivial interplay may arise for competing modes characterized by different
ordering vectors Q, due to the coupling of modes through the first term of the effective
action (4.5), as will be considered in the next chapter.

5.2 Free energy and metastability

Our investigation is based on the single-channel free energies F(ϕς
M), and therefore we

aim to elaborate on the structure of the free energy itself. Competition between the
CDW and AFM modes are incorporated in the single-channel free energy F(ϕς

M) by
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performing a numerical integration over one of the fields of the free energy F(ϕc
M, ϕ

s
M),

defined by:

F(ϕc
M, ϕ

s
M) = − 1

βN
ln exp

{
− Sϕ[ϕ

c
M, ϕ

s
M]
}
. (5.1)

Here F(ϕc
M, ϕ

s
M) depends only on the scalar field ϕc

M and radial component of the
vector field ϕs

M. We calculate the free energy F(ϕc
M, ϕ

s
M) along three different cuts

of the U − V phase diagram for a 128 × 128-sized plaquette in Fig. 5.2. The three
cuts of the U − V phase diagram are given by: V = U/4 with U ∈ [1.5, 2.5] (Cut 1),
V = 0.5 with U ∈ [1.5, 2.5] (Cut 2) and U = 2.0 with V ∈ [0.475, 0.625] (Cut 3), see
Fig. 5.3 for a graphical view of the cuts within the U − V phase diagram. Along cut
1, i.e. the transition line, we observe a four-fold rotational symmetric F(ϕc

M, ϕ
s
M) with

a degeneracy of the scalar field ϕc
M and radial vector field ϕs

M components. Increasing
interaction parameters leads to a distancing of the global minima relative origin as the
collective fluctuations becomes stronger. Simultaneously, the stability of the collective
fluctuations increases as the depth of F(ϕc

M, ϕ
s
M) increase. The degeneracy is broken

away from the transition line, e.g. along cuts 2 and 3, as a two-fold rotational symmetry
develops. Along cut 2, we observe dominant CDW (AFM) fluctuations for U < 2.0
(U > 2.0), as the F(ϕc

M, ϕ
s
M) displays global minima in the ϕc

M-channel (ϕs
M-channel).

In addition, F(ϕc
M, ϕ

s
M) is invariant under the transformation U → 4.0 − U together

with the exchange of the scalar field ϕc
M and radial vector field ϕs

M. The invariance
arises due the stiffness parameters, which dominantly determine the strength of the
collective fluctuations as described previously, are themselves invariant under the same
transformation. As an example, the free energy F(ϕc

M, ϕ
s
M) displays similar behaviour

along cut 3 as cut 2, however there is no clear display along cut 3 of the invariance
under the transformation.

Allowing for the CDW and AFM modes to compete, we retrieve the behaviour
of the one channel in the environment of the remaining channel through numerical
integration. A typical behaviour of the introduced free energy F(ϕς

M) is illustrated in
Fig. 5.4. In the normal phase, the global minimum of F(ϕς

M) lies at ϕς
M = 0. The

formation of the ordered phase is signaled by a shift of the global minimum to a
ϕς
M ̸= 0 point. In addition, the free energy may exhibit a local minimum associated

with a metastable (MS) phase. Finally, we observe a non-analyticity appearing as a
kink in the free energy F(ϕς

M). It signals a change of behaviour of F(ϕς
M) between the

region in the vicinity of ϕς
M = 0, where the fluctuations in the integrated channel are

strong, and the region of ϕς
M ̸= 0, where the fluctuations in the considered channel are

strong. Thus, the observed kink is inherently connected to the interplay between the
collective CDW and AFM fluctuations.

We find that in the vicinity of the CDW-AFM phase boundary, some regions in-
side the CDW and AFM phases reveal local minima associated with the presence of
metastable phases. The boundaries of the metastable phases are depicted in Fig. 5.1
by blue (MS AFM) and red (MS CDW) lines with small square markers. In particular,
Fig. 5.4 illustrates an example of the free energy behaviour in the regime of strong com-
peting CDW and AFM fluctuations. In the spin channel (Fig. 5.4 a)), as V is increased
from deep within the AFM phase the global minimum at ϕs

M ̸= 0 in the free energy
F(ϕs

M) turns into a local minimum above the CDW-AFM transition point V = U/4,
where the CDW ordering becomes dominant. The local minimum disappears at the
metastable AFM phase transition point, which for U = 2 corresponds to V = 0.60.
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Figure 5.2: Free energy F(ϕc
M, ϕ

s
M) as a function of the scalar field ϕc

M and radial
component of the vector field ϕs

M is computed along three cuts of the repulsive U, V
phase diagram, displayed in Fig. 5.3. Red (blue) values depict positive (negative)
values of F(ϕc

M, ϕ
s
M). Along the transition line U = 4V (cut 1), we observe a four-

fold rotational symmetry F(ϕc
M, ϕ

s
M) associated with a degeneracy of the ϕc

M and ϕs
M

modes. The degeneracy is broken away from the transition line (cut 2 and 3), with a
two-fold rotational symmetry emerging. Depending on the interaction parameters, the
global minima are positioned within the CDW or AFM channel.

Similar results can be found for the charge channel (Fig. 5.4 b)): as V decreases from
deep within the CDW phase, the metastable CDW phase appears at the AFM-CDW
transition point and vanishes at U = 2, V = 0.46.

We note that at the CDW-AFM transition the minima located at ϕς
M = 0 and

ϕς
M ̸= 0 points correspond to the same value of the free energy F(ϕς

M). On the contrary,
no metastable solution occurs in the vicinity of the phase boundaries that separate
the normal phase from either the CDW or AFM phases. This result suggests that
the transitions in the latter case are of second-order, while the transition between
the competing CDW and AFM phases is of first-order. In addition, the degeneracy
between the spin and charge channels (F(ϕs

M) = F(ϕc
M)) we observe along the CDW-

AFM transition line indicates that the two instabilities are mutually exclusive. If
these free energies were not identical at the transition point, one channel would be
energetically favourable. Fig. 5.5 shows the behaviour of the free energy F(ϕς

M) at the
CDW-AFM transition point U = 2, V = 0.5 for different temperatures. We observe
that at high temperature corresponding to β = 4 the AFM and CDW fluctuations
are suppressed, and the free energy has only one minimum at ϕς

M = 0: the normal
phase. Upon lowering the temperature the second minima develops at ϕς

M ̸= 0 and
propagates to larger values of ϕς

M, corresponding to the increase of the strength of
corresponding fluctuations. We also observe that the free energy barrier between the
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Figure 5.3: Phase diagram of the half-filled extended Hubbard model with repulsive
U, V interaction is replotted from Fig. 5.1, with the inclusion of three cuts of the
phase diagram being displayed: V = U/4 with U ∈ [1.5, 2.5] (Cut 1), V = 0.5 with
U ∈ [1.5, 2.5] (Cut 2) and U = 2.0 with V ∈ [0.475, 0.625] (Cut 3).
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Figure 5.4: Free energy F(ϕς
M) for the spin (a) and charge (b) channels. The results

are obtained for the half-filled extended Hubbard model on a square lattice at β = 10
and U = 2 in the vicinity of the CDW-AFM transition point V = U/4, for a plaquette
of 128× 128 lattice sites. Choice of U, V are denoted as stars in Fig. 5.1.

two minima increases with decreasing temperature. A larger energy barrier allows
for a more stable coexistence of the two phases associated with ϕς

M = 0 and ϕς
M ̸= 0.

It should be emphasized, however, that the two channels are degenerate and that the
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Figure 5.5: Free energy F(ϕc
M) = F(ϕs

M) calculated at the CDW-AFM transition point
U = 2, V = 0.5 for a plaquette of 128 × 128 lattice sites, with different values of the
inverse temperature β.

minima at ϕς
M = 0 and ϕς

M ̸= 0 have the same energy only at the CDW-AFM transition
point. Away from this point one of the two solutions becomes metastable, which means
that one of the CDW or AFM phases always dominates. Distinguishing between stable
and metastable solutions is not a trivial problem, and even the more elaborate DCA
method in the regime of strong competing CDW and AFM fluctuations predicts a
coexistence between these two mutually exclusive phases [199]. Thus, the ability to
distinguish between the stable and the metastable phases is an advantage of the MCFF
method.

5.3 Phase diagram evolving with the system size

The MCFF approach can also be applied to small systems, where it is expected to per-
form significantly better than the conventional mean-field theory [329, 331]. For small
system sizes, the result of the MCFF method can be compared to the exact Monte
Carlo calculations. Fig. 5.6 displays the stable (a) and metastable (b) ordering bound-
aries for AFM and CDW phases for 4× 4, 6× 6 and 8× 8 plaquettes, in addition to
the previously considered 128× 128 plaquette near the thermodynamic limit. For all
system sizes the MCFF approach extrapolates the AFM and CDW ordering boundaries
between weak coupling results obtained respectively on the basis of FLEX calculations
and perturbative estimations, and the asymptotic behaviour of the CDW-AFM phase
boundary at intermediate coupling predicted by mean-field theories. A region of coex-
isting stable and metastable ordering is observed for all system sizes. Phase boundaries
of the coexistence region appears converged for the 128× 128 plaquette, indicating its
stability in the thermodynamic limit. Importantly, we observe for small systems a
more significant modification of the weak coupling CDW and AFM phase boundaries
as predicted by the MCFF approach, due to the interplay of collective fluctuation.
The modification displays itself by a bending of the phase boundaries not only in the
vicinity of V = U/4, a distinct effect beyond conventional mean-field theory estimates.
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Figure 5.6: Stable (a) and metastable (b) AFM (blue) and CDW (red) ordering bound-
aries predicted by the MCFF approach for the half-filled extended Hubbard model on
4× 4, 6× 6, 8× 8, and 128× 128 plaquettes at β = 10. The dashed line specifies the
mean-field estimate for the CDW-AFM phase boundary V = U/4. For comparison,
the RPA estimates CRPA and C8×8

RPA for the CDW boundary in the U → 0 in the ther-
modynamic limit and for a 8× 8 plaquette, respectively, are included. In addition, the
DiagMC estimate ADiagMC, taken from Ref. [136], and the QMC estimate A8×8

QMC for the
AFM boundary in the limit of V → 0 are included in the thermodynamic limit and for
a 8× 8 plaquette, respectively, are included.

In order to gain insight into the performance of the MCFF approach with inclusion
of collective AFM and CDW fluctuations, we now perform a comparison with re-
spect to numerically exact QMC simulations. For a 8× 8 plaquette, QMC simulations
give us A8×8

QMC = 2.05± 0.05 for β = 10. By a comparison to the MCFF prediction of

UAFM
V=0 = 1.225, we find a significant underestimation of the critical interaction U for the

AFM phase boundary. This observation is consistent with our result for the 128× 128
plaquette and can be related to dynamical correlation effects that are not incorporated
within the approach. In contrast, the MCFF method accurately determines the CDW
phase boundary at small U , with the MCFF prediction for the critical interaction
V CDW
U=0 coinciding with the RPA result CRPA for all plaquettes sizes.

5.4 Measure of collective fluctuations

In order to quantify the strength of the collective fluctuations in the MCFF approach
around the minimum of the free energy, we introduce ⟨|nς

Q|⟩ as a measure. The measure
⟨|nς

Q|⟩ is computed by taking the expectation value of |nς
Q| in the respective channel, i.e.

performing a numerical integration over all classical field degrees of freedom associated
with the collective fluctuations. The numerical integration corresponds to the inclusion
of fluctuations about the saddle-point known to be important, e.g. see work on the
crossover from BCS theory to Bose-Einstein condensate [343,344]. Our calculations of
the measure ⟨|nς

Q|⟩ are compared to the saddle-point estimate ⟨|nς
Q|⟩MF, i.e. the value
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Figure 5.7: The measure ⟨|nς
Q|⟩ of collective fluctuations is calculated along V = U/4

in the phase diagram for 4× 4, 6× 6, 8× 8, and 128× 128 plaquettes at β = 10 in
(a). Dashed line in (a) denote the saddle-point (mean-field) measure ⟨|nς

Q|⟩MF. In (b),
the difference ⟨|nς

Q|⟩ − ⟨|nς
Q|⟩MF is plotted. Dashed line in (b) denote the saddle-point

estimate of the phase transition boundaries. Without interplay, the two modes ς = c, s
are degenerate along V = U/4.

at the minimum of the free energy, which is equivalent with a conventional mean-field
theory estimate. Thus, we seek to evaluate the differences between the fluctuating field
and mean-field theories.

Figs. 5.7, 5.8 displays the calculated integrated measure ⟨|nς
M|⟩ and the saddle-

point measure ⟨|nς
M|⟩MF, in addition to their difference ⟨|nς

M|⟩ − ⟨|nς
M|⟩MF, at β =

10 for plaquettes of the size 4 × 4, 6 × 6, 8 × 8, and 128 × 128 along V = U/4.
Specifically, within Fig. 5.7 a, b the measures and their difference is calculated within
the single-channel fluctuating field theory, namely without considering the interplay
between the fluctuations in the competing channel. Note that along V = U/4 the non-
interplaying collective CDW and AFM fluctuations are degenerate. We observe ⟨|nς

M|⟩,
displayed as a solid line in Fig. 5.7 a, to be monotonically increasing function of U . The
measure ⟨|nς

M|⟩ vanishes in the limit of U → 0 and saturates to the mean-field theory
estimate ⟨|nς

M|⟩MF in the limit of large U , displayed as a dashed line in Fig. 5.7 a. We
observe in Fig. 5.7 b the deviation of the measure relative to the saddle-point estimate
is positive and monotonically increasing function of U below the phase boundaries
evaluated within mean-field theory. A sharp decrease in the deviation follows above
the phase boundaries, until a maximal negative deviation is reached in turn followed
by a saturation to zero deviation at large U . The collective fluctuations around the
minimum of the free energy are most relevant in the vicinity of the phase transition,
and especially for small systems. We observe the difference ⟨|nς

M|⟩MF to be suppressed
with increasing the systems size. However, we note that for a plaquette of the size
128× 128 deviations with respect to mean-field theory remain small but non-negligible
close to the phase boundary.

We now consider the measures for interplaying collective CDW and AFM fluctua-
tions within the introduced MCFF theory, displayed in Fig. 5.8. Due to degeneracy of
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Figure 5.8: The measure ⟨|nς
Q|⟩ of collective fluctuations is calculated along V = U/4

in the phase diagram for 4× 4, 6× 6, 8× 8, and 128× 128 plaquettes at β = 10 in
(a, c). Dashed lines in (a, c) denote the saddle-point (mean-field) measure ⟨|nς

Q|⟩MF.
In (b, d), the difference ⟨|nς

Q|⟩ − ⟨|nς
Q|⟩MF is plotted. Dashed lines in (b, d) denote the

saddle-point estimate of the phase transition boundaries. With interplay, displayed in
(a, b) for the CDW mode and (c, d) for the AFM mode, the degeneracy displayed by
the non-competing case is broken. However, due to the degeneracy of the saddle-point
minima of the channels two choices of ⟨|nς

Q|⟩MF exists: zero or non-zero.

the saddle-point minima of the CDW and AFM channels along V = U/4, two choices
of ⟨|nς

M|⟩MF exist. Either ⟨|nc
M|⟩MF is non-zero for vanishing ⟨|ns

M|⟩MF, or vice versa.
We observe that the collective AFM fluctuations (Fig. 5.8 c) dominate over the collec-
tive CDW fluctuations (Fig. 5.8 a) in the regime of study. This naturally follows from
the larger number of degrees of freedom of the AFM mode relative the CDW mode.
A behaviour similar to the single-channel results is observed in the measure ⟨|ns

M|⟩,
displayed as a solid line in Fig. 5.8 c. However, within the multi-channel results the
measure ⟨|ns

M|⟩ is larger for the interplaying treatment due to the additional channel
of fluctuation. In contrast, the measure ⟨|nc

M|⟩ behaves dissimilar to the single-channel
results. We observe the measure ⟨|nc

M|⟩ to display a non-monotonic behaviour: increas-
ing as function of U at small U and decreasing as a function of U at large U . In fact,
the measure ⟨|nc

M|⟩ vanishes in both limits of small and large U . As noted previously,
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the largest deviation with respect to mean-field theory occur in the vicinity of the
phase transition and for small system sizes. In the thermodynamic limit, the collective
CDW and AFM fluctuations appear to saturate to the mean-field theory following the
saddle-point choice associate with a non-zero ⟨|ns

M|⟩MF and vanishing ⟨|nc
M|⟩MF. The

main message remains from the single-channel considerations, contributions from col-
lective fluctuations around the minimum of the free energy are of largest importance
near the phase boundaries evaluated within mean-field theory, with most significant
contributions for small system sizes.

5.5 Excited-state properties and correlation effects

An investigation of many-body correlation effects are naturally expressed using the
spectral function Ak,ω, describing the single-particle excitation spectrum, and the self-
energy Σk,ω, encoding the connection between the noninteracting and interacting sys-
tems. Due to the analytic structure of their dependency of the Matsubara frequency
within our implementation of the MCFF approach, analytic continuation allows for a
direct computation on the real frequency axis. Thus, we have access to the physical
spectral function Ak,ω and self-energy Σk,ω. Through their computation, we seek to
evaluate by which means the excited-state properties and correlation effects emerges
within the MCFF theory.

X

M

Figure 5.9: Sketch of the first Brillouin zone of the square lattice, with the high-
symmetry points denoted: Γ = (0, 0), X = {(π, 0), (π, 0)} and M = (π, π). The
high-symmetry path ΓXMΓ is indicated by the dashed lines.

5.5.1 Many-body effects within the single-channel FF theory

Our investigation focuses initially on the SCFF theory for a single collective mode,
i.e., without any interplay between modes. As a representation of the behaviour of
the collective CDW and AFM fluctuations, we restrict the ourselves along V = U/4 in
the U − V phase diagram, associated with degenerate stiffness parameters J c

M, Js
M. In

fact, our calculations of the spectral function Ak,ω and self-energy Σk,ω for the CDW
and AFM modes gives largely indistinguishable results for the parameters employed,
and for convenience we will mostly limit ourselves to the displayed computations for
the collective CDW fluctuations as a representation for the SCFF theory. However, we
will give clear comment where the results for the CDW and AFM channels differentiate
themselves.
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Figure 5.10: Spectral function Ak,ω of half-filled extended Hubbard model, with β = 10
and system size 128×128, as predicted by the SCFF theory. Calculations are performed
along a high-symmetry path, sketched in Fig. 5.9, for representative values of the
interaction parameters: (a) U = 1.0, V = 0.25 (normal phase), and (b) U = 2.5,
V = 0.625 (symmetry-broken phase). In the normal phase, the spectral function
demonstrates spectral weight at the Fermi energy, which is suppressed by the formation
of a gap in the symmetry-broken phase. As the interaction increases, the gap widens
simultaneously as the spectral weight is transferred to a “mirrored” band.

We perform calculations of the spectral function Ak,ω, with a peak broadening
η = 0.1, for a plaquette of 128 × 128 lattice sites and inverse temperature β = 10.
Fig. 5.10ab shows the spectral function Ak,ω calculated along the high-symmetry path
ΓXMΓ for varying U ∈ {1.0, 2.5}, see sketch of the first Brillouin zone in Fig. 5.9.
Within the normal metal phase, represented in Fig. 5.10a, the spectral function Ak,ω

is largely unchanged from its form in the noninteracting limit. It displays a metallic
behaviour, with spectral weight at the Fermi energy ω = 0 displayed at both the nodal
(N) and antinodal (AN) points along the high-symmetry path, with the nodal point
located atQ = (π

2
, π
2
) and the antinodal point located atQ = X. Transitioning into the

symmetry-broken phase, represented in Fig. 5.10b, a gap ∆ centred ω = 0 emerges at
the N and AN points. Its underlying mechanism can be identified as avoided crossing
of the ϵk and ϵk+M bands due their mixing associated with the field ϕς

M within the
SCFF method. As the nonlocal interaction increases, we observe the gap ∆CDW/AFM

to widen simultaneously as the spectral weight is transferred to a “mirrored” band. The
“mirrored” band originates from band-folding due to the underlying 2× 2 structure in
the momentum space, associated with the M-ordering of the ϕς

M field coupling the ϵk
and ϵk+M bands. Nevertheless, we emphasis that no translational symmetry breaking
is enforced and that the spectral function Ak,ω is calculated within the non-reduced
Brillouin zone.

To visualise the opening of the gap, we evaluated the Fermi surface for two rep-
resentative values, one within the normal metal (U = 1.0) and the other within the
symmetry-broken phase (U = 2.0), displayed in Fig. 5.11ab. We observe the gap to
open through a substantial decrease of the spectral weight. It appears to open uni-
formly in momentum space, without any distinguishing differences between the N and
AN points. This indicates the MCFF theory restricted to the main leading collective
modes with ordering vector Q = M is not sufficent to describe the formation of a
partial gap, associated with NFL and PG physics.
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Figure 5.11: Fermi surface of the half-filled extended Hubbard model, with β = 10
and system size 128× 128, predicted by the SCFF theory for a single fluctuating field
ϕς
M, for two representative values of the interaction parameters: (a) U = 1.0, V = 0.25

(normal phase) and (b) U = 2.0, V = 0.50 (symmetry-broken phase). In the normal
phase, the Fermi surfaces is largely independent of the interaction. However, in the
symmetry-broken phase (CDW and AFM), the spectral weight at the Fermi surface
uniformly decreases as the interaction increases, signaling the formation of the gap as
observed in the spectral function (see Fig. 5.10).

In Fig. 5.12, we include the local spectral function Aloc
ω (Fig. 5.12a) and the spectral

function Ak,ω at the high-symmetry point X (Fig. 5.12b). In particular, these compo-
nents of the spectral function are calculated for select values of interaction parameters
along V = U/4, with U ∈ {0.5, 1.0, 1.5, 2.0}. Universal in both representations of the
spectral function is its near invariance of the interaction parameters within the normal
phase, in agreement with the previous discussion. Entering into the symmetry-broken
phase, all components of the spectral function are renormalised through the interac-
tion. We observe the local spectral function Aloc

ω to display the noninteracting local
DOS (LDOS) of a two-dimensional square lattice in the normal phase, with a broad
distribution of states within the bandwidth ω ∈ [−4, 4] with a peak at ω = 0 associ-
ated with a van Hove singularity. In the symmetry-broken phase, the appearance of
a gap is visible in the local spectral function Aloc

ω , associated with a reduction of the
spectral weight in the vicinity of ω = 0, and the formation of a two-peak structure.
The dramatic changes are concentrated in the vicinity of the Fermi energy, with little
change of Aloc

ω far from the Fermi energy. These observations concur with Ak,ω at the
high-symmetry points. The spectral function Ak,ω at the high-symmetry point X is in
the noninteracting limit composed of a single peak, centred at ω = 0. As the collective
fluctuations strengthen, the component develop a two-peak structure with two equally
weighted peaks positioned symmetrically around ω = 0.

Making a connection to our previous investigation of the evolution of the FF theory
with system size, we calculate the local spectral function Aloc

ω for different plaquette
sizes differentiating the CDW and AFM modes. In Fig. 5.13, the local spectral function
Aloc

ω for 4× 4, 6× 6 and 8× 8 plaquettes for select values of interaction parameters

77



0.00
0.05
0.10
0.15
0.20
0.25

k,

(a)
Local

U = 0.5

U = 1.0

U = 1.5

U = 2.0

4 3 2 1 0 1 2 3 40.0
0.5
1.0
1.5
2.0
2.5
3.0

k,

(b)
X

Figure 5.12: Spectral function Ak,ω of the half-filled extended Hubbard model is dis-
played for a collection of points along V = U/4, with U ∈ {0.5, 1.0, 1.5, 2.0}, as caclu-
lated by the SCFF theory for a single fluctuating field ϕς

M. To represent the spectral
function Ak,ω, the local (a) and X-point (b) components of the spectral function are
displayed. Note, the near identical value for the calculated value of Ak,ω for U = 0.5,
denoted by a solid dark blue line, and U = 1.0, denoted by a dashed light blue line.

along V = U/4, with U ∈ {0.5, 1.0, 1.5, 2.0}, is shown for both the collective CDW and
AFM fluctuations. We observe in the metallic phase, a collection of peaks associated
with the bare dispersion ϵk. In contrast to the calculations performed for the plaquette
of 128×128, acting as the thermodynamic limit, the central peak is noticably affected by
the collective fluctuations within the normal phase. For small plaquettes, the collective
AFM fluctuations in the normal phase visibly suppresses the spectral weight to a larger
degree than the collective CDW fluctuations, due to the larger number of degrees
of freedom of the AFM mode. Passing the critical interaction associated with the
symmetry-broken phase, we observe the central peak at ω = 0 to separate into a
two-peak structure. For the 4× 4 plaquette, associate with well-separated peaks, the
collective CDW fluctuations mainly modify the central peak. However, with increasing
plaquette size the number of peaks in the vicinity of the Fermi energy increases. We
observe the peaks surrounding the central peak to shift away from the Fermi energy
with increasing strength of the collective fluctuations. Note the convergence of the local
spectral function Aloc

ω for the CDW and AFM modes as functions of their respective
stiffness parameter J ς

M with increasing system size.

Through the inversion of the Dyson equation, we have access to the self-energy,
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Figure 5.13: The local spectral function Aloc
ω calculated along V = U/4 in the U − V

phase diagram for varying plaquette size of 4× 4, 6× 6, and 8× 8 as predicted by the
SCFF theory for the CDW and AFM modes respectively.

allowing for a useful description of the correlation effects of the FF theory. For a
plaquette of 128 × 128 lattice sites and inverse temperature β = 10, we perform cal-
culations of the self-energy Σk,ω along the high-symmetry path ΓXMΓ, with the peak
broadening set to η = 0.1. Fig. 5.14 displays the real and imaginary components of
the self-energy Σk,ω for a value of interaction parameters along V = U/4 representing
the self-energy in the symmetry-broken phase. The main features of the self-energy
is observed along ω = −ϵk for all consider values of the interaction parameters, asso-
ciated with a line singularity in the self-energy and a strong momentum-dependence.
The line singularity displays itself within the real part of the self-energy Σk,ω by the
function switching sign, and within the imaginary part of the self-energy Σk,ω as the
emergence of a peak structure. The main effect of the value of the stiffness parameter
J ς
M is determining the magnitude of the self-energy, with an increasing J ς

M enhanc-
ing its magnitude. In contrast, no modification of the location of the line singularity
is observed within our calculations. To further investigate the correlation effects in-
corporated in FF theory, we plot the self-energy Σk,ω at the Fermi energy along the
high-symmetry path ΓXMΓ, see Fig. 5.15. The underlying mechanism of the gap open-
ing, as encoded in the self-energy, is due to the opposite sign of the real component of
the self-energy ReΣk,ω=0 at the Fermi surfaces. Positive values of ReΣk,ω=0 shift the
electronic structure in the direction towards higher energies, and reversibly negative
values shift the electronic structure towards lower energies. This is accompanied with
the emergence of a finite peak width in the spectral function due to the enhanced
imaginary self-energy ImΣk,ω=0, a clear signature of a correlation effect.

Completing our investigation of the correlation effects captured within the SCFF
theory, we perform a scaling analysis by computing the real and imaginary parts of
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Figure 5.14: The self-energy Σk,ω of half-filled extended Hubbard model, with β = 10
and system size 128×128, as predicted by the SCFF theory, with the real and imaginary
parts displayed separately. Red and blue colour denotes positive and negative values,
respectively. Calculations are performed along a high-symmetry path, sketched in
Fig. 5.9, for a representative value of the interaction parameters in the symmetry-
broken phase U = 2.5, V = 0.625. The form of the self-energy is remains the same
for any value of the stiffness parameter J ς

M, however, it demonstrates a substantial
enhancement of its magnitude with an increasing J ς

M.

the local self-energy Σloc
ω for plaquettes of the system size 4× 4, 6× 6, 8× 8 and

128× 128. In Fig. 5.16, the local self-energy Σloc
ω is shown along the V = U/4 line,

which for convenience is restricted to the CDW mode as a representation of the general
behaviour of the SCFF theory with increasing system size. For small systems, we
observe a saw-like structure in the real local self-energy Σloc

ω , with a repeated switching
of signs. However, as system become larger, the saw-like structure is slowly smoothed
out, eventually leading to a broad structure accompanied with a single change of sign
at the Fermi energy. We observe the imaginary local self-energy Σloc

ω to display a peak
structure reminiscent of the spectral function at any plaquette size.

5.5.2 Many-body effects within the multi-channel FF theory

Following the investigation of the excited-state properties and correlation effects incor-
porated within the FF theory, we now consider the prediction of the interplay between
collective CDW and AFM fluctuations. In particular, we calculate the local spectral
function Aloc for a plaquette of 128× 128 lattice sites, an inverse temperature β = 10
and a peak broadening of η = 0.1, see Figs. 5.17a-c. Fig. 5.17a displays the local
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Figure 5.15: Real and imaginary self-energy Σk,ω along the high-symmetry path ΓXMΓ
at the Fermi energy calculated utilising the SCFF theory. The components are eval-
uated along V = U/4 in the U − V phase diagram, with a selection of values of the
interaction parameters, denoted by their colours in Fig. 5.12. Note, only the self-
energies associated with U ∈ {1.5, 2.0} are sufficiently large to be observed.

spectral function Aloc along V = U/4 in the U−V phase diagram, demonstrating both
the behaviour of the one-particle excitation spectrum in the normal phase, and on the
first-order CDW-AFM phase boundary. In agreement with our previous investigation,
the spectral function shows a clear independence of the interaction parameters within
the metallic phase. At the CDW-AFM phase boundary, shown previously to display
significant collective fluctuations, the emergence of a gap is visible in the local spectral
function. Therefore, we are able to observe that the main behaviour of the spectral
function follows closely those considered in the SCFF theory. For completeness, in
Fig. 5.17bc the local spectral function Aloc calculated at two representative points of
the CDW and AFM phases within the U − V phase diagram are displayed.

5.6 Summary and perspectives

Exploiting the numerically low-cost MCFF method, we are able to study competing
CDW and AFM fluctuations in the half-filled extended Hubbard model from small
to large plaquettes. The MCFF method predicts a repulsive U -V phase diagram in
qualitative agreement with more costly methods. Our approach correctly captures the
U → 0 limit for the CDW phase boundary, which is a non-trivial problem for com-
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Figure 5.16: The local self-energy Σloc
ω calculated along V = U/4 in the U − V phase
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the SCFF theory for CDW mode. The values of the interaction parameters are denoted
by their respective colours, as defined in Fig. 5.13. Note the local self-energy Σloc
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the 128 × 128 plaquette is re-scaled by a multiplicative factor of 4 for the purpose of
easier visibility.
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Figure 5.17: The local spectral function Aloc of the half-filled extended Hubbard model,
with a plaquette size of 128 × 128 lattice sites and an inverse temperature β = 10,
evaluated utilising the MCFF theory with interplaying CDW and AFM modes for a
selection of interaction parameters. (a) Aloc is calculated for a collection of points along
the V = U/4 line, representing the normal phase for U < Uc and the first-order CDW-
AFM phase boundary for U > Uc. (b) Aloc is calculated for a U = 1.4, V = 0.375 as a
representative point of the CDW phase near its phase boundary. (c) Similarly, Aloc is
evaluated at U = 1.5, V = 0.35 as a characterisation of the AFM phase near its phase
boundary.

putationally heavy cluster-based DMFT techniques due to the cluster size limitations.
In addition, at intermediate interactions a first-order CDW-AFM transition U = 4V
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is captured in agreement with numerically exact methods. A quantitative agreement
is observed with respect to DCA simulations [199], with both approaches observing a
coexistence region of collective AFM and CDW fluctuations. The coexistence region
display a strength of the MCFF approach, as it allows direct access to distinguishing
between the stable and metastable phases. Studying the evolution of interplaying col-
lective fluctuations, we observe MCFF theory to incorporate effects beyond mean-field
theory which are exceptionally important for treatment in the vicinity of the phase
boundaries for small plaquettes. The chapter concluded with an investigation focus-
ing on the excited-state properties and correlation effects incorporated within the FF
theory. We observed that FF theory allows for a symmetry-conserving construction of
observables such as, e.g., the spectral function and self-energy with translational and
spin symmetries respected.
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Chapter 6

Coexisting s-wave
superconductivity and phase
separation

“It is only slightly overstating the case to say that physics is

the study of symmetry.” - P. W. Andersson [10]

The regime of attractive U, V interactions in the extended Hubbard model promotes
charge fluctuations and superconductivity, allowing the extended Hubbard model to
be a suitable framework for a well-controlled investigation of competing charge, spin
and pairing instabilities. In this chapter, using the introduced MCFF approach, we
seek to address the interplay of charge density wave, s-wave superconductivity, anti-
ferromagnetic and phase separation fluctuations in the attractive extended Hubbard
model. Despite the fact that this model has been intensively studied for decades, our
novel approach will allows us to identify a novel phase that is characterised by the co-
existence of s-wave superconductivity and phase separation fluctuations. Importantly,
we will comment on the relevance of the novel phase in correlated quantum materials
and discuss the experimental realisability of the phase. This chapter follows closely the
work in Ref. [335] by the author of this thesis and collaborators.

6.1 Competing order with repulsive U interaction

In the previous chapter, we investigated the repulsive U − V phase diagram of the ex-
tended Hubbard model on a two-dimensional square lattice using the MCFF theory. In
this regime, the collective AFM fluctuations driven by the repulsive local U interaction
compete with the CDW stabilised by the repulsive nearest-neighbour V interaction.
Extending our previous work to attractive nearest-neighbour V interaction, we seek to
study the regime of interplaying AFM and PS fluctuations.

6.1.1 Interplay of collective AFM and PS fluctuations

Using the MCFF theory, following chapter 3, we construct the repulsive U and attrac-
tive V phase diagram of the half-filled extended Hubbard model on a square lattice
from the free energies F(ϕς

M) (4.20) of the AFM and PS fluctuations. In order to
connect with the results of the previous chapter, we perform the calculations for a
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Figure 6.1: Phase diagram for the half-filled extended Hubbard model with repulsive
U and attractive V interactions as predicted by the MCFF approach. The result is
obtained at β = 10 for a plaquette of 128× 128 lattice sites. Blue and light blue areas
depict the AFM and PS phases, respectively. The corresponding phase boundaries
are shown by coloured circles. Black dashed lines describe the asymptotic behaviour
of the phase boundaries: U = 1.477 for AFM and V = −0.475− U/8 for PS. The
boundaries of metastable AFM and PS phases are illustrated by lines with small square
markers. Metastability displays the first-order nature of the AFM-PS phase transition,
to contrast with the second-order phase transitions occurring between the normal metal
phase (white region) and the AFM and PS phases. For comparison, we add the DB
estimate DDB ≃ −0.54 for the PS boundary in the U → 0 limit [212], and the DiagMC
estimate ADiagMC ∼ 2.5 for the AFM boundary in the limit of V → 0 [136].

plaquette of 128× 128 lattice sites with periodic boundary conditions and inverse tem-
perature β = 10. Unless the contrary is stated, throughout the chapter we will restrict
our considerations to the 128× 128 plaquette at inverse temperature β = 10. Fig. 6.1
shows the computed phase diagram of the system.

Our MCFF calculations reveal three phases: a normal (white colour), an AFM (blue
colour), and a PS (light blue colour) phase. In the weak coupling regime U ≤ 1.447 we
find the PS phase boundary to follow the V = −0.475− U/8 line. This result follows
V = DRPA − U/8 in the weak coupling limit, where the constant DRPA corresponds
to the critical value of the non-local interaction for the PS transition V PS

U=0 obtained
within RPA for U = 0. The RPA estimate is determined by the critical V PS

U=0 associate
with a singularity in the RPA construction of the charge susceptibility in the limit of
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the ordering vector Q → Γ. Keep in mind the order of limits Q → Γ and ω → 0 is
crucial due to their non-commuting nature. For the considered system, DRPA = −0.475
is a slightly overestimation of the PS stability, as an extrapolated U → 0 DB result
for the PS transition point gives V PS

U=0 ≃ −0.54 [212]. Thus, while the U → 0 limit
of the CDW phase boundary is exactly captured, the MCFF theory underestimates
the U → 0 limit for the PS phase boundary. As the predicted PS phase boundary of
EDMFT and DB theory are in agreement [212], our expectation is the origin of the
slight mismatch is due to missing dynamical correlation effects. In the weak coupling
regime, the AFM phase boundary follows the behaviour observed in the repulsive V
regime, i.e. the observed U = 1.477 line is in exact agreement with the FLEX result
obtained for V = 0: AFLEX = UAFM

V=0 = 8CRPA.
Progressing into the intermediate coupling regime, both AFM and PS fluctuations

are required to be accounted for due to their significant interplay. Akin to the interplay
between the CDW and AFM phases in the repulsive regime, the AFM and PS states
are mutually exclusive with a first-order AFM-PS phase transition. Their mutually
exclusive behaviour is accompanied by a region of metastability in the vicinity of the
phase transition. Unlike the simple form of the V = U/4 CDW-AFM phase bound-
ary, a non-trivial bending of the AFM-PS phase boundary occurs. The origin of the
non-trivial behaviour is due to the competing modes being characterised by different
ordering vectors Q, unlike our prior considerations. Near the critical value U = 1.477,
the AFM-PS phase boundary follows V ∝ −U , which transform to V ∝ −xU with
x ∼ 0.25−0.30 in the vicinity of U = 2.5. Therefore, we observe the phase boundary to
not follow a simple behavior defined by the line where Js

M = −U/2 and J c
Γ = U/2 + 4V

are equivalent, i.e. V ∝ −U/4.

6.2 Competing order with attractive U interaction

Our studies of the U − V phase diagram of the extended Hubbard model for repulsive
U interaction is, within the MCFF theory, limited to interplay between charge and
spin degrees of freedom. Seeking to study the attractive U regime, our aim is to now
investigate the interaction between the charge and s-wave pairing degrees of freedom.

6.2.1 Interplay of collective CDW and PS fluctuations

Initially neglecting the collective s-SC fluctuations, we construct the attractive U and
repulsive/attractive V phase diagram of the half-filled extended Hubbard model on a
square lattice from the free energies F(ϕς

M) (4.20) of the CDW and PS fluctuations.
Fig. 6.2 shows the computed phase diagram of the system. Our MCFF method predict
the occurrence of three phases: a normal (white colour), a CDW (red colour), and a
PS (light blue colour) phase. In the weak coupling regime, both the CDW and PS
phase boundaries continue their behaviour observed in the repulsive U regime: with
V = 0.185 + U/8 for CDW and V = −0.475− U/8 for PS.

In the intermediate regime, the CDW and PS fluctuations interact mutually exclu-
sively, leading to the formation of a first-order CDW-PS phase transition surrounded
by a region of metastability. Alike the non-trivial AFM-PS phase boundary observed
previously, we observe the CDW-PS phase boundary is not uniquely determined by
the degeneracy line of the stiffness parameters J c

M = U/2− 4V and J c
Γ = U/2 + 4V .

Thus, we observe a general trend within the MCFF theory with competing collective
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Figure 6.2: Phase diagram for the half-filled extended Hubbard model with attractive
U and repulsive/attractive V interactions as predicted by the MCFF approach. The
result is obtained at β = 10 for a plaquette of 128× 128 lattice sites. Red and light
blue areas depict the CDW and PS phases, respectively. The corresponding phase
boundaries are shown by coloured circles. Black dashed lines describe the asymptotic
behaviour of the phase boundaries: V = 0.185 + U/8 for CDW and V = −0.475− U/8
for PS. The boundaries of metastable CDW and PS phases are illustrated by lines with
small square markers. Metastability displays the first-order nature of the CDW-PS
phase transition, to contrast with the second-order phase transitions occurring between
the normal metal phase (white region) and the CDW and PS phases. For comparison,
we add the RPA estimate CRPA = 0.185 for the CDW boundary in the U → 0 limit,
and the DB estimate DDB ≃ −0.54 for the PS boundary in the U → 0 limit [212].

modes associated with different ordering vector Q leading to non-trivial structures of
their intermediate phase boundaries. In addition, we may compare our MCFF cal-
culations to the DB theory applied to the regime of interplaying collective CDW and
PS fluctuations as computed in Ref. [212]. Within Ref. [212], DB theory is shown to
predicts significant bending of both the CDW and PS phase boundaries as attractive U
increases. Furthermore, by exploiting the staggered particle-hole symmetry of the Hub-
bard model relating the spin and pseudo-spin degrees of freedom [158, 159], the exact
DiagMC solution gives UDiagMC

V=0 ≃ −2.5 value at β = 10 for the CDW phase bound-
ary at V → 0 [136], which displays a significant shift relative the MCFF estimate of
UCDW
V=0 = 1.447. Thus, we expect the inclusion of local dynamics to weaken the interplay

between collective CDW and PS fluctuation relative to the MCFF predictions.
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6.2.2 Interplay of collective CDW and s-SC fluctuations

Within the half-filled extended Hubbard model on a square lattice, the collective s-SC
fluctuations dominate in the region between the collective CDW and PS fluctuations.
Limiting our investigation to the CDW and s-SC modes, we construct the attractive U
and repulsive/attractive V phase diagram of the half-filled extended Hubbard model.
Fig. 6.3 shows the resulting U -V phase diagram.
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Figure 6.3: Phase diagram for the half-filled extended Hubbard model with attractive
U and repulsive/attractive V interactions as predicted by the MCFF approach. The
result is obtained at β = 10 for a plaquette of 128× 128 lattice sites. Red and pur-
ple areas depict the CDW and s-SC phases, respectively. The corresponding phase
boundaries are shown by coloured circles. Black dashed lines describe the asymptotic
behaviour of the phase boundaries: V = 0.185 + U/8 for CDW and U = −1.478 for s-
SC. The yellow line specifies the CDW and s-SC coexistence in the attractive Hubbard
model (V = 0). For comparison, we add the RPA estimate CRPA = 0.185 for the CDW
boundary in the U → 0 limit. In addition, exploiting the staggered particle-hole sym-
metry of the Hubbard model, in the thermodynamic limit the exact DiagMC estimate
gives UDiagMC

V=0 ≃ −2.5 value at β = 10 for the CDW and s-SC coexistence transition
point [136].

It consists of four phases: normal metal (white), CDW (red), s-SC (purple), and one
phase where s-SC coexists with CDW ordering (yellow). At weak coupling (|U | ≲ 1.5),
the CDW phase boundary follow the V = 0.185 + U/8 line as observed previously.
In agreement with the fluctuating exchange (FLEX) result obtained for V = 0, the
MCFF s-SC phase boundary in the weak coupling regime follows the U s−SC

V=0 = −1.477
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line. FLEX is known to overestimate the strength of antiferromagnetic (AFM) fluctu-
ations at V = 0. Therefore, by the staggered particle-hole symmetry of the Hubbard
model relating the spin and pseudo-spin degrees of freedom [158, 159], FLEX is also
expected to overestimate the strength of the coexisting CDW and s-SC fluctuations
at V = 0. Exploiting this symmetry, as performed for the CDW phase above, in the
thermodynamic limit the exact DiagMC solution gives UDiagMC

V=0 ≃ −2.5 value at β = 10
for this transition point [136].
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Figure 6.4: CDW (red) and s-SC (purple) ordering boundaries predicted by the MCFF
approach for the half-filled extended Hubbard model obtained for β = 10: (a) for 4× 4,
6× 6, 8× 8, and 128× 128 plaquettes. (b) for a 4× 4 plaquette with the green region
enclosed by the thin black dashed lines that depict asymptotics for the non-interplaying
CDW and s-SC instabilities, displaying the region, where the CDW and s-SC orderings
stabilise without interplay. Dark green denotes the region where stabilisation of either
the CDW or s-SC phase destroys the other ordering.

Turning to the intermediate coupling regime, the CDW and s-SC fluctuations de-
velop a coexisting phase along the V = 0 line displayed in yellow colour in Fig. 6.3. This
coexistence is associated with the emergent pseudo-spin symmetry between CDW and
s-SC order parameters. Beyond this line the finite non-local interaction V favours the
formation of either the CDW (V > 0) or s-SC (V < 0) phase. Remarkably, we find that
at V ̸= 0 the CDW and s-SC phases are mutually exclusive only in the thermodynamic
limit. For small-size plaquettes of 4× 4, 6× 6, and 8× 8 lattice sites we find that the
CDW and s-SC orderings can coexist also in the vicinity of V = 0, and the coexistence
region decreases with increasing the size of the system (Fig. 6.4 a). This convergence
check allows us to identify that the coexistence region in the vicinity of V = 0 converges
towards a single transition line occurring along V = 0 for U ≤ −1.447 in the thermo-
dynamic limit. Thus, the transition between the CDW and s-SC phases appearing as a
direct first-order phase transition is composed of two first-order phase transitions pass-
ing through the intermediate coexistence phase constrained by the pseudo-spin SU(2)
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symmetry [150].

Another interesting effect can be found in the region of the phase diagram depicted
in Fig. 6.4 b by green colour. It displays a region where CDW or s-SC orderings are sep-
arately stable without interplay between the modes. The dark green area denotes the
overlap region of the non-competing CDW and s-SC orderings. In the MCFF method,
the CDW phase transition in the presence of the s-SC fluctuations is studied by inte-
grating out the s-SC modes and investigating the behaviour of the free energy F(ϕς

M)
for the remaining CDW mode, and vice versa. In the region where the integrated s-SC
mode is ordered, the MCFF analysis of the CDW transition corresponds to the investi-
gation of the stability of the CDW ordering in the presence of the s-SC phase. In this
regard, the integration of an ordered mode can be seen as an observation/measurement
of this ordering in the system. We note that green regions in Fig. 6.4 b lie outside the
CDW and s-SC phases that are obtained considering the interplay between the two
fluctuations. Therefore, our results suggest that stabilising one of the two orderings
in the dark green region immediately destroys the other one, which can be seen as
a destruction of a quantum superposition of the two orderings by an observer. Re-
markably, we find that no such non-trivial “green” phases exist in the thermodynamic
limit, where quantum effects are suppressed. Note the generality of the discuss, as an
analogous discuss may be performed for the study of other interplaying modes. For
example, the finite-size scaling of the competing CDW and AFM modes studied prior
may be viewed from an identical perspective.

6.2.3 Interplay of collective s-SC v PS fluctuations

We complete our investigation of the half-filled extended Hubbard model on a square
lattice in the attractive U − V phase diagram by limiting our considerations to inter-
playing s-SC and PS fluctuations. Within MCFF theory, we compute the U −V phase
diagram displayed in Fig. 6.5. The phase diagram is composed of four phases: nor-
mal metal (white), s-SC (purple), PS (light blue) and one phase where s-SC coexists
with PS ordering (labelled “PS + s-SC”). At weak coupling, the s-SC and PS phase
boundaries follow their behaviour observed above, i.e. U = −1.477 for the s-SC mode
and V = −0.475− U/8 for the PS mode. Therefore the properties of the weak cou-
pling behaviour of the two phases discussed above holds. However, in the intermediate
coupling range, we observe the emergence of a novel phase that comprises coexisting
PS and s-SC orderings, sketched in Fig. 6.6.

The PS+s-SC coexistence phase can be found in the regime of intermediate cou-
plings of the attractive U, V extended Hubbard model (Fig. 6.5). In contrast to the
previously considered coexisting CDW and s-SC orderings, the novel coexistence phase
does not collapse to a single transition line in the thermodynamic limit, thus acquiring
a finite width in V for a given U . We observe the width to be a non-monotonic function
of U , with a maximal width occurring near U = −3. To obtain insight into the inter-
play between PS and s-SC ordering, in Fig. 6.7 a we show the normalised CDW, s-SC,
and PS order parameters ⟨nς

Q⟩ that are computed for U ∈ {−2,−3,−4} over a range of
V . We observe a suppression of PS fluctuations in the weak coupling regime V ≳ −0.3
due to s-SC fluctuations, and vice versa at strong V . The competition between these
two modes originates from the fact that the PS ordering on a lattice corresponds to the
formation of broad puddles with uniform filling larger or smaller than the average filling
of the system. Instead, the pairing process of s-SC fluctuations is energetically most
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Figure 6.5: Phase diagram of the half-filled extended Hubbard model for attractive
U − V . It is obtained from the MCFF method for a 128× 128 square lattice with pe-
riodic boundary conditions at inverse temperature β = 10. This shows the existence of
a novel phase “PS + s-SC” where PS and s-SC coexist, in addition to the conventional
s-SC (purple) and PS (light blue) phases. For comparison, the DB theory estimate
DDB ≃ −0.54 for the PS boundary in the U → 0 limit is included [212]. In addition, we
include the thermodynamic limit of the exact DiagMC estimate gives UDiagMC

V=0 ≃ −2.5
value at β = 10 for the CDW and s-SC coexistence transition point [136].

Figure 6.6: Cartoon picture of the novel phase characterised by the coexistence of
PS and s-SC fluctuations. Within the phase, the collective s-SC fluctuations (Cooper
pairs depicted by black dots) are sufficiently strong to stabilise the superconducting
ordering within the PS puddles with uniform filling larger (left) or smaller (right) than
half-filling, and vice versa.

favourable at half-filling. Due to the stability of the s-SC fluctuations for a relatively
large range of fillings [153,172], the s-SC ordering can be formed inside the PS puddles,
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Figure 6.7: Normalised order parameters ⟨nς
Q⟩ computed for the half-filled 128× 128

system using the MCFF approach. (a) CDW (red), s-SC (purple), and PS (blue) order
parameters are calculated at β = 10 for U ∈ {−2,−3,−4} for a range of V . (b) s-SC
(purple) and PS (blue) order parameters calculated at β ∈ {5, 10, 20, 40} at U = −2
for a range of V .

which results in a novel coexistence phase. Within the phase, the weights of the PS
and s-SC modes vary with U, V . Thus, the phase is characterised by the PS and s-SC
orderings being mutually compatible, i.e. collective s-SC fluctuations are stable in the
environment of PS ordering and vice versa. As U increases, the region of s-SC fluc-
tuations becomes more stable with respect to stronger PS fluctuations, leading to an
increasing width of the coexistence region. However, the opposite trend occurs above a
critical U as strong PS fluctuations leaves the system effectively in an empty or fully-
filled sites configuration with ⟨nPS⟩ = 1, completely suppressing any s-SC fluctuations.
Note, that the CDW ordering on a square lattice corresponds to a checkerboard pattern
of alternating lattice sites with higher and lower electronic densities. This does not
allow for the formation of the s-SC ordering inside the CDW phase due to the strong
inhomogeneity of the filling, except along the degenerate V = 0 line due to symmetry
constraints.

We may connect our results to a recent determinant quantumMonte Carlo (DQMC)
study of the zero-temperature U -V phase diagram of the half-filled extended Hubbard
model [227]. In this work, few points of coexisting PS and s-SC orderings were iden-
tified evidencing our observations. However, due to the sparsity of the grid in the
U -V space, the DQMC results do not allow one to make a definite statement on the
presence of the coexistence phase in the system. In fact, the authors of this work
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interpret this coexistence as a signature of a first-order transition between the s-SC
and PS phases. Indeed, first-order transitions are usually accompanied by regions of
metastable collective fluctuations appearing as coexistence regions [334]. However, in
the current work we do not observe metastable collective fluctuations associated with
any first-order transition, although the MCFF method allows for their detection in
other contexts [334], as observed, e.g., in our study of interplaying CDW and AFM
modes in the prior chapter. This fact allows us to argue for a true coexistence phase
stable in the thermodynamic limit enclosed by two apparent second-order transition
lines. An order parameter for this novel phase may be defined as the product of the
s-SC and PS order parameters. To further connect our finite-temperature calculations
to the zero-temperature DQMC results, we compute the s-SC and PS order parameters
⟨nς

Q⟩ for U = −2 over a range of V at different inverse temperatures β ∈ {5, 10, 20, 40}.
Figure 6.7 b display the increasing stabilisation of the s-SC fluctuations with decreasing
temperature, as PS fluctuations remain nearly independent of the temperature. Thus,
we expect the novel phase of coexisting PS and s-SC ordering to remain stable at zero
temperature and to connect to the results observed in Ref. [227].

6.3 Experimental realizability of novel phase

Interplay between SC and PS fluctuations has been observed in high-temperature su-
perconducting materials, such as copper oxides [24, 348–358] and iron-based super-
conductors [84,359–363], but the microscopic mechanisms of the observed phenomena
remain elusive. In doped copper oxides, it has been argued early on [350, 352] that
dilute holes in an antiferromagnet have a strong tendency to phase-separate. Experi-
mentally, interfaces of La2−xSrxCuO4-La2CuO4 [357] display an intriguing insensitivity
of the critical temperature of the SC phase over an extended range of doping. These
findings have been rationalised by invoking interlayer phase separation [358]. Thus, our
findings of coexisting SC and PS at half-filling give yet another indication hinting at the
possibly very fundamental role of phase separation in the physics of superconducting
correlated fermionic systems.

Exploring the predicted phase diagram experimentally and switching between the
different phases in realistic materials could be performed, e.g., by applying an external
laser field. In the high-frequency regime of the driving, the applied laser field effectively
decreases the hopping amplitude t of electrons [364–370], which effectively enhances the
interactions U and V . In the low-frequency regime, driving phonon degrees of freedom
may enhance the electron-phonon coupling [371], which would increase the strength of
effective attractive electronic interactions [372–374]. This can potentially allow one to
propagate within the U -V phase diagram and access the novel “PS + s-SC” coexistence
phase.

6.4 Summary and perspectives

Through our investigation of the repulsive and attractive U − V phase diagram of the
half-filled extended Hubbard model on a square lattice in the last two chapters, we are
permitted to summarise the phase diagram of interplaying CDW, AFM, s-SC and PS
modes. The combined U − V phase diagram is displayed in Fig. 6.8.
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Figure 6.8: Phase diagram for the half-filled extended Hubbard model with repulsive
and attractive U, V interactions as predicted by the MCFF approach. The result is ob-
tained at β = 10 for a plaquette of 128× 128 lattice sites. Red, blue, purple and light
blue areas depict the CDW, AFM, s-SC and PS phases, respectively. The correspond-
ing phase boundaries are shown by coloured circles. Black dashed lines describe the
asymptotic behaviour of the phase boundaries: V = 0.185 + U/8 for CDW, U = 1.477
for AFM, U = −1.477 for s-SC and V = −0.475− U/8 for PS. The boundaries of
metastable CDW, AFM and PS phases are illustrated by lines with small square mark-
ers.

Determined by only two parameters, the local U and non-local V interactions be-
tween electrons, a complex phase diagram is observed to emerges with interplaying
charge, spin and pairing degrees of freedom. Even restricting our considerations to the
leading CDW, AFM, s-SC and PS modes, we observe the extended Hubbard model to
be a quintessential model for investigating competing instabilities. A mutual exclusive
nature of the collective AFM fluctuations is observed in their interplay with collective
CDW and PS fluctuations. This may be contrasted with the mutually stable nature
of the s-SC state with both CDW and PS fluctuations, leading to the emergence of
coexistence phases: “CDW + s-SC” and “PS + s-SC”. Furthermore, the origin of the
coexistence phases are distinct. One one hand, the “CDW + s-SC” phase is associated
with the emergent SU(2) pseudo-spin symmetry, and appears as a one-dimensional
transition-line in the thermodynamic limit connected to the CDW and s-SC phases
with corresponding first-order phase transitions. On the other hand, the “PS + s-SC”
phase is not associated with any apparent underlying stabilising symmetry, and ap-
pears as a two-dimensional coexistence region in the thermodynamic limit connected
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to the s-SC and PS phases through second-order phase transitions. Thus, a surpris-
ingly complex energy landscape arises due to interplay of only two parameters in a
simple parameter range of the extended Hubbard model. Of an even greater surprise,
despite an extensive effort have been conducted into the study of the model, the novel
“PS + s-SC” coexistence phase has not been reported previously.
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Chapter 7

Conclusions and perspectives

“Goodbye to the Holy Mountain. Real life awaits us.” - A. Jodorowsky [375]

Motivated by the search for novel theoretical tools for the description of collective
phenomena and their interplay within strongly correlated quantum systems, we devel-
oped in this thesis the multi-channel fluctuating field (MCFF) theory [334, 335]. The
basis for the proposed theory is a multi-channel generalisation of the recently introduced
fluctuating local field (FLF) theory, utilised for a numerically low-cost description of
magnetic fluctuations in the Ising, Heisenberg and Hubbard models [329–333]. Within
the MCFF theory, we allow for any collective instabilities which may be formulated
as the fluctuations of a single-particle composite variable, such as, e.g., the charge or
spin densities. The guiding idea behind the MCFF approach is a variational mapping
of the complicated action of a quantum lattice model on to a simplified trial action
including classical fields associated with the main leading collective modes. By limiting
to a few modes, the method allows for a numerically low-cost treatment of interplay-
ing collective fluctuations without the enforcement of any explicit symmetry breaking.
It naturally allows for the study of the phase transition associate with the collective
instabilities through a free energy construction inspired by Landau theory. Through
the free energies of the classical fields, stable and metastable state are distinguished,
permitting a clear signature of the continuous or discrete nature of a phase transition.
In addition, due to the analytic structure of the MCFF theory, observables can be
directly evaluated on the real-frequency axis without utilisation of numerical analytic
continuation. In particular, the spectral function, which describes the single-particle
excitation spectrum, and the self-energy, which encodes the many-body correlation ef-
fects of the method, are accessible in forms respecting the underlying translational and
spin symmetries of the original system.

Utilising the MCFF theory, we initial focused our attention on competing collective
spin and charge fluctuations in the half-filled single-orbital extended Hubbard model
with a repulsive Coulombic interaction. The interaction was modelled by a conven-
tional choice: a local interaction U and a nearest-neighbour nonlocal interaction V ,
allowing for a significant benchmarking of the strengths and weaknesses of the MCFF
method. A qualitative agreement with more computationally heavy methods is found
for the repulsive U -V phase diagram. MCFF theory captures the U → 0 limit for
the CDW phase boundary, which is a nontrivial problem for many-body techniques
with significant size limitations. However, the stability of the V → 0 limit for the
AFM phase boundary is observed to be significantly overestimated, due to the local
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correlation missing within our implementation of the MCFF theory. At intermediate
interactions, a first-order CDW-AFM transition U = 4V is captured with an accom-
panying coexistence region of metastable AFM and CDW states, as observed in recent
DCA calculations [199]. Through an investigation of the phase diagram and a measure
of collective fluctuations as a function of the plaquette size, we observe MCFF theory to
converge to a symmetry-conserving summation of MFTs in the thermodynamic limit.
Nevertheless, important effects beyond MFT are incorporated within MCFF theory for
small plaquettes, in particular in the vicinity of the phase boundaries, where nontrivial
modification of the AFM and CDW phase boundaries are observed due to their mu-
tual interplay. The first-particle excitation spectrum as predicted by the MCFF theory,
displays the emergence of a gap in the spectral function centred at the Fermi energy
due to the influence of the fluctuations of the static CDW and AFM orderings. With
the current implementation of MCFF theory, with two FF fields ϕc

M, ϕs
M associated

with the ordering vector M, the gap is observed to develop uniformly in momentum-
space. Correlation effects encoded in the self-energy are observed to be dominant in
the vicinity of the frequency ω = −ϵk, with ϵk denoting the bare dispersion, leading
to a dominant contribution at Fermi energy. A clear signature of correlation effects,
furthermore, appears in the imaginary self-energy, signalling the formation of a finite
peak width in the spectral function.

Extending the MCFF theory to collective s-wave pairing fluctuations, we expanded
our scope by investigating the competing collective spin, charge and s-wave pairing
fluctuations in the half-filled single-orbital extended Hubbard model with both repul-
sive and attractive U and V interaction parameters. We limited our considerations to
competing CDW, PS, AFM and s-SC ordering, allowing us to express a multitude of
types of competing behaviours, displaying the quintessential nature of the extended
Hubbard model in studying interplaying collective fluctuations. The mutual exclusive
interplay of collective CDW and AFM modes, associated with a first-order phase tran-
sition, is observed in the regime of repulsive U and V . A similar behaviour is observed
in the regime of repulsive U and attractive V , with competing PS and AFM modes,
and in the regime of attractive U and V , with competing PS and CDW modes with the
collective s-SC fluctuations suppressed. In contrast to the trivial competition between
the collective CDW and AFM modes, both examples display a nontrivial bending of
the phase boundary due to the difference in ordering vectors Q.

By allowing for collective s-SC fluctuations, driven by the attractive U , the compe-
tition of the CDW and PS fluctuations is hidden under the s-SC phase. Its introduction
leads to the emergence of two coexistence phases: “CDW + s-SC” and “PS + s-SC”.
The “CDW + s-SC” coexistence phase is connected to the emergent SU(2) pseudo-spin
symmetry of the Hubbard model, and is limited to a one-dimensional transition line
at V = 0 in the thermodynamic limit, acting as an intermediate phase between the
competing CDW and s-SC phases. The “PS + s-SC” coexistence phase forms in the
attractive U , V interaction regime. Unlike the “CDW + s-SC” phase originating due to
an underlying symmetry, the “PS + s-SC” phase is not associated to an apparent emer-
gent symmetry. Rather, the underlying mechanism of the “PS + s-SC” coexistence
phase is the mutual stability of the s-SC modes with respect to the effective fillings of
puddles of the PS fluctuations and, conversely, the stability of the PS fluctuations with
respect to the formation of Cooper pairs. In addition, in the thermodynamic limit,
the novel phase spans a two-dimensional region with a finite width. To the knowledge
of the authors, a “PS + s-SC” coexistence phase has not been reported previously in
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the literature, despite a significant effort in the investigation of the extended Hubbard
model over the course of many decades.

As advertised within this thesis, the principle idea of the FF theory is quite general
and thus allows for a broad selection of possible future applications and directions of
progress. Our considerations have been restricted to the half-filled extended Hubbard
model with leading commensurate modes. However, in fact the generality of MCFF
theory allows for the treatment of collective fluctuations associated with incommensu-
rate ordering vectors emerging away from half-filling. Inclusion of more interplaying
collective fields associated with different quasi-momentum modes is further relevant
for the physics underlying the Mermin-Wagner theorem, with the leading M being
destroyed by the subleading quasimomentum modes in the one- and two-dimensional
system. Incorporating subleading modes might further allow for the formation of a
partial gap in the vein of NFL physics. In the same vein, by inclusion of more sub-
leading Matsubara frequency modes beyond the static one, would allow for treating
dynamical correlations. Another direction of pursuit is the inclusion of nonlocal order
parameters, allowing for, e.g., the stabilisation of BOW and dimerisation. All these
examples are directly applicable to the proposed form of the MCFF theory. It displays
the general applicability of MCFF theory to a wide range of different quantum lattice
models and the theoretical description of the interplay between a selection of different
collective instabilities.

Within the current form of the MCFF theory, inclusion of instabilities without the
existence of a natural order parameter, such as the Mott insulator, remains difficult.
A solution would be to extended the MCFF theory by allowing for a dressing of the
bare Green’s function by the self-energy of DMFT in the spirit of Ref. [331], which
naturally allows for a description of Mott physics. Inclusion of local correlation is
further expected to improve upon the overestimation of the AFM phase boundary.
Ultimately, the general nature of the MCFF theory makes it a promising tool for
studying the interplay of collective fluctuations in strongly correlated fermionic systems.
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[207] M. Schüler, E. G. C. P. van Loon, M. I. Katsnelson, and T. O. Wehling. First-
order metal-insulator transitions in the extended hubbard model due to self-
consistent screening of the effective interaction. Phys. Rev. B, 97:165135, 2018.
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[372] E. Berger, P. Valášek, and W. von der Linden. Two-dimensional Hubbard-
Holstein model. Phys. Rev. B, 52:4806–4814, 1995.

[373] G. Sangiovanni, M. Capone, C. Castellani, and M. Grilli. Electron-Phonon In-
teraction Close to a Mott Transition. Phys. Rev. Lett., 94:026401, 2005.

[374] P. Werner and A. J. Millis. Efficient Dynamical Mean Field Simulation of the
Holstein-Hubbard Model. Phys. Rev. Lett., 99:146404, 2007.

[375] A. Jodorowsky. The Holy Mountain. ABKCO Films, 1973.

125



Titre : Fluctuations collectives dans les systèmes de fermions fortement corrélés

Mots clés : Modèles de fermions sur réseau, transitions de phase, corrélations, fluctuations collectives

Résumé : Les systèmes fortement corrélés
présentent souvent des diagrammes de phase riches
avec différentes phases ordonnées impliquant des
degrés de liberté de spin, de charge, d’apparie-
ment ou d’orbite. La description théorique de la
compétition entre les différentes instabilités dans
les systèmes fortement corrélés, qui donne lieu à
cette phénoménologie, reste l’un des Saint-Graal de
la théorie moderne de la matière condensée. Elle
pose un énorme défi de complexité à la fois concep-
tuelle et informatique, et l’interaction des fluctua-
tions électroniques concurrentes constitue donc un
obstacle à la compréhension des diagrammes de
phase complexes d’une large gamme de matériaux
quantiques corrélés. Cela motive la recherche de
méthodes simplifiées pour étudier l’interaction des
fluctuations collectives.
Nous présentons une extension multicanal de l’ap-
proche du champ fluctuant récemment développée
pour les fluctuations collectives concurrentes dans
les systèmes électroniques corrélés. La méthode est
basée sur une optimisation variationnelle d’une ac-
tion d’essai qui contient explicitement les paramètres
d’ordre des principaux canaux de fluctuation. Elle
donne un accès direct à l’énergie libre du système,

facilitant la distinction entre les phases stables et
métastables du système. Nous appliquons notre ap-
proche au modèle de Hubbard étendu, un modèle de
réseau fermionique paradigmatique. En utilisant notre
technique pour étudier le régime de couplage faible à
intermédiaire de l’interaction répulsive, nous consta-
tons qu’elle capture l’interaction de compétition entre
la fonction l’onde de densité de charge en compétition
et des fluctuations antiferromagnétiques en accord
qualitatif avec des méthodes plus coûteuses en
termes de calcul. En explorant les régimes attractifs
du modèle, nous abordons l’interaction des fluctua-
tions dans les canaux du spin, de la charge et de la
supraconductivité. Bien que ce modèle ait été étudié
de manière intensive depuis des décennies, notre
nouvelle approche nous permet d’identifier une nou-
velle phase caractérisée par la coexistence de fluc-
tuations collectives de l’onde s supraconductrice et
de la séparation de phase. La nature générale de la
théorie proposée, qui permet d’incorporer une grande
variété de modes collectifs, en fait un outil promet-
teur pour l’étude de l’interaction des fluctuations col-
lectives dans les systèmes fermioniques fortement
corrélés.

Title : Interplay of collective fluctuations in strongly correlated fermionic systems

Keywords : Fermionic lattice models, phase transitions, correlations, collective fluctuations

Abstract : Strongly correlated systems often dis-
play rich phase diagrams exhibiting different ordered
phases involving spin, charge, pairing, or orbital de-
grees of freedom. The theoretical description of the
competition between different instabilities in strongly
correlated systems giving rise to this phenomenology,
remains one of the holy grails of modern conden-
sed matter theory. It poses a tremendous challenge
of both conceptual and computational complexity, and
thus the interplay of competing electronic fluctuations
constitutes a roadblock to the understanding of the
complex phase diagrams of a wide range of correla-
ted quantum materials. This motivates the search for
constructing simplified methods to study interplaying
collective fluctuations.
We introduce a multi-channel extension of the re-
cently developed fluctuating field approach to compe-
ting collective fluctuations in correlated electron sys-
tems. The method is based on a variational optimi-
zation of a trial action that explicitly contains the or-
der parameters of the leading fluctuation channels. It

gives direct access to the free energy of the system,
facilitating the distinction between stable and metas-
table phases of the system. We apply our approach to
the extended Hubbard model, a paradigmatic fermio-
nic lattice model. Utilising the technique to study weak
to intermediate coupling regime of the repulsive inter-
action, we find it to capture the interplay of compe-
ting charge density wave and antiferromagnetic fluc-
tuations with qualitative agreement with more com-
putationally expensive methods. Exploring the attrac-
tive regimes of the model, we address the interplay of
fluctuations in the spin, charge, and superconducting
channels. Despite the fact that this model has been in-
tensively studied for decades, our novel approach al-
lows us to identify a novel phase that is characterised
by the coexistence of collective s-wave superconduc-
ting and phase separation fluctuations. The general
nature of the proposed theory, allowing to incorporate
a variety of collective modes, makes it a promising tool
for studying the interplay of collective fluctuations in
strongly correlated fermionic systems.
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