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Abstract 

Supported excavations are mainly concerned with base instability, horizontal wall displacements 

and ground deformations in geotechnical design. Their stability assessment is essential to 

prevent damages to adjacent infrastructures and people’s lives. Uncertainties in soil properties 

are also widely encountered in the field of geotechnical engineering and it is necessary to 

implement a probabilistic analysis to provide more rational and supplementary results. 

This work attempts to assess the excavations stability in deterministic and probabilistic 

frameworks. Two kinds of supported excavations, including rectangular- and circular-shaped 

cross-sections, are considered. For the deterministic part, several models based on the upper 

bound limit analysis and numerical simulations are proposed to evaluate the supported 

excavations stability under (un)drained conditions. For the probabilistic part, the random 

variable and random field approaches are used to model parameter uncertainties. A 

comprehensive and efficient analysis framework based on the surrogate models is then proposed, 

which allows to accurately estimate the excavation failure probability and statistical moments 

within a significantly reduced computational time. Polynomial Chaos Kriging and Sparse 

Polynomial Chaos Expansions are mainly used for the surrogate model construction. Besides, a 

versatile and flexible sample-wised probabilistic method based on the Artificial Neural Network 

is developed to further improve the probabilistic assessments efficiency. In addition, some issues 

that are still unknown or unclear in the field of the supported excavations stability analysis, are 

discussed, mainly including: the soil-wall interface and its uncertainties on the excavations 

stability; the stability analysis of a real great-depth (32 m) excavation case; the soil non-

homogeneity and hydraulic effects on the circular shafts stability; the anisotropy of the hydraulic 

permeability coefficient on the circular shafts stability and a global sensitivity analysis for the 

parameter importance determination. 

This work presents a good supplement to the existing studies on the stability assessment of 

supported excavations. It allows to better understand and design practical geotechnical problems. 

Keywords: Supported excavations; Basal heave stability; Horizontal wall deflection; 

Reliability analysis; Sensitivity analysis; Polynomial Chaos Kriging; Artificial Neural Network 



3 

 

Résumé 

L'excavation soutenue est principalement concernée par l'instabilité de la base, les déplacements 

horizontaux des parois et les déformations du sol dans la conception géotechnique. L'évaluation 

de la stabilité correspondante est essentielle pour prévenir les dommages aux infrastructures 

adjacentes et à la vie des personnes. Les incertitudes dans les propriétés du sol sont également 

largement rencontrées dans le domaine de l'ingénierie géotechnique et il est nécessaire de mettre 

en œuvre une analyse probabiliste pour fournir des résultats plus rationnels et complémentaires. 

Ce travail tente d'évaluer la stabilité des excavations dans des cadres déterministes et 

probabilistes. Deux types d'excavations soutenues, comprenant des sections rectangulaires et 

circulaires, sont considérés. Pour la partie déterministe, plusieurs modèles basés sur l'analyse 

de la limite supérieure et des simulations numériques sont proposés pour évaluer la stabilité des 

excavations soutenues dans des conditions (non)drainées. Pour la partie probabiliste, les 

approches de variables aléatoires et de champs aléatoires sont utilisées pour modéliser les 

incertitudes des paramètres. Un cadre d'analyse complet et efficace basé sur les modèles de 

substitution est ensuite proposé, ce qui permet d'estimer avec précision la probabilité de 

défaillance de l'excavation et les moments statistiques dans un temps de calcul 

considérablement réduit. Le krigeage du chaos polynomial et les expansions du chaos 

polynomial éparses sont principalement utilisés pour la construction du modèle de substitution. 

En outre, une méthode probabiliste polyvalente et flexible basée sur le réseau neuronal artificiel 

est développée pour améliorer l'efficacité des évaluations probabilistes. En outre, certaines 

questions encore inconnues ou peu claires dans le domaine de l'analyse de la stabilité des 

excavations soutenues sont discutées, notamment: l'interface sol-paroi et ses incertitudes sur la 

stabilité des excavations; l'analyse de la stabilité d'un cas réel d'excavation à grande profondeur 

(32 m); la non-homogénéité du sol et les effets hydrauliques sur la stabilité des puits circulaires; 

l'anisotropie du coefficient de perméabilité hydraulique sur la stabilité des puits circulaires; 

l'analyse de sensibilité globale pour la détermination de l'importance des paramètres.  

Ce travail peut constituer un bon complément aux études existantes sur l'évaluation de la 

stabilité des excavations soutenues. Les résultats obtenus devraient permettre de mieux résoudre 

les problèmes géotechniques pratiques. 

Mots clés: Excavations soutenues; Stabilité du soulèvement de la base; Déviation horizontale 

de la paroi; Analyse de fiabilité; Analyse de sensibilité; Krigeage du Chaos Polynomial; Réseau 

de Neurones Artificiels 
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List of symbols 

Acronyms 

ANN Artificial Neural Network 

ASO Atom Search Optimization 

BE Bjerrum & Eide method 

BF Backfill 

b(S)PCE Bootstrap (Sparse) Polynomial Chaos Expansions 

CDF Cumulative Distribution Function 

CK Chalk 

COV Coefficient of Variation 

DA Deterministic Analysis 

DP Design Point 

ED Experimental Design 

FBR Fraction of Bootstrap Replicates 

FIVC Fort d’Issy-Vanves-Clamart 

FELA Finite Element Limit Analysis 

FEM Finite Element Method 

FORM First Order Reliability Method 

GSA Global Sensitivity Analysis 

HL Hard Limestone 

HS Hardening Soil model 

IS Importance Sampling 

K-L expansion Karhunen-Loève expansion 

LA Limit Analysis 

LAR Least Angle Regression 

LB Lower Bound 

LEM Limit Equilibrium Method 

LHS Latin Hypercube Sampling 

LOO Leave-One-Out error 

LSS Limit State Surface 

MCS Monte-Carlo Simulation 
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MBE Modified Bjerrum & Eide method 

MLP Multilayer Perceptron 

MM Meudon Marls 

MT Modified Terzaghi Method 

OCR Over Consolidation Ratio 

PA Probabilistic Analysis 

PC Ypresian Plastic Clay 

PDF Probability Density Function 

PCK Polynomial Chaos Kriging 

RF Random Field 

RV Random Variable  

SC Slip Circle Method 

SLS Serviceability Limit State 

SOCP Second-Order Conic Programming 

SPAA Sample-wised Probabilistic Approach based on the ANN 

SS Subset Simulation 

Std. Standard deviation  

UB Upper Bound 

ULS Ultimate Limit State 
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Notations: Supported excavation 

B Excavation Width 

B1 Distance from the wall to the vertical failure surface fi 

c Cohesion 

D Wall embedment depth 

E Energy dissipation 

Eu Young’s modulus 

E50
ref Secant stiffness 

Eoed
ref Tangent oedometer stiffness 

Eur
ref Unloading/reloading stiffness 

Fs Safety factor 

ft soil tensile strength 

H Excavation Depth 

hw_1 Groundwater level below the ground surface 

hw_2 Groundwater level inside the excavation 

k Undrained shear strength increase gradient 

k0 Initial earth pressure coefficient at rest 

kx Horizontal permeability coefficient 

ky Vertical permeability coefficient  

Rc Circular shaft diameter 

ri Soil wall adhesion factor 

rk Permeability anisotropy coefficient 

rt Tensile strength cut-off coefficient 

Su Undrained shear strength 

Su0 Undrained shear strength at ground surface 

T Depth from the wall bottom tip to the hard stratum 

Tc Critical hard stratum depth from the wall bottom tip 

tw Wall thickness 

v Velocity of plastic flow 

W External work rate 

φ Friction angle 

γ Unit weight 
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γdry Unsaturated unit weight 

γsat Saturated unit weight 

υwall Poisson’s ratio of wall 

υsoil Poisson’s ratio of soil 
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Notations: Probabilistic analysis 

bj Bias of the neural network 

fPCOV  Coefficient of variation of fP  

_LOO tgErr  Threshold values of LOO 

_fP tgErr  Threshold values for failure probability 

Fi Interaction forces in ASO 

Gi Constraint forces in ASO 

Ik Indicator function in MCS 

( )PCKM x  Model output approximation using PCK 

mi Mass of ith atom in ASO 

nij Neuron in the hidden layer 

lN  Number of samples at each level of SS 

P* Design point 

Pf Failure probability 

1( )P F  Failure probability corresponding to the first level of SS 

1( | )i iP F F −  Intermediate conditional failure probability  

Si First-order Sobol index 

St Total Sobol index of input variables 

wij Weight of the neural network 

x Vector with input random variables 

( )Z x  Zero mean, unit variance stationary Gaussian process 

i  Unknown coefficients of polynomials 

( )i x  Multivariate polynomial basis 

2  Variance  

  Hyper-parameter for autocorrelation function 

HL  Hasofer-Lind reliability index 
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General introduction 

Background and motivation 

There is a fast-growing need for transportation with the continued urbanization over these last 

decades. Mass transportation systems operating on the surface may lead to traffic congestion, 

land shortage, noise or air pollution, particularly when the urban population exceeds one million 

(Cui and Nelson, 2019). Underground railway transportation is receiving much attention and 

plays a significant role in relieving traffic congestion. Utilizing the underground space is 

consequently preferred to ease problems without affecting the existing ground surface activities 

and can help people to reach their destinations within a reasonable time. Among the underground 

infrastructures, the supported excavations are necessary as they can facilitate tunnel boring 

machine works and can be used as ventilation systems (Faustin et al., 2018), subway stations 

(Celestino et al., 2009), underground car parks (Marten and Bourgeois, 2006) or emergency exits 

(Le et al., 2019). Rectangular- and circular-shaped cross-sections as shown in Fig. ⅰ(a) and (b) 

are common in practice (Chehadeh et al., 2015; Dias et al., 2015), and will be considered in this 

work. 

  
(a) Rectangular (b) Circular 

Fig. ⅰ Two common types of excavations 

The urban environments complexity and uncertain geological conditions around the excavation 

can pose a threat to public safety. Once construction accidents occur, severe consequences can 

occur. For example, the excavation collapse accident at Xianghu station of Hangzhou metro line 

1 caused 21 deaths, 24 injuries, and a direct economic loss of 49.62 million RMB (Lin et al., 

2021). Safety assessments of the supported excavation stability are thus important to prevent 

damage to adjacent infrastructures. The geotechnical design, which takes into account the soil 

and rock conditions at a construction site, is often considered in the supported excavation 
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engineering designs (Luo et al., 2018b). It includes the Serviceability Limit State (SLS) which 

is related to the excavation-induced maximum lateral wall deflection and maximum ground 

surface settlement and the Ultimate Limit State (ULS) which corresponds to the foundation pit 

stability and can often be evaluated by the basal heave safety factor. The excavation is 

considered safe when the stability indicators (i.e. wall deflection, surface settlement, safety 

factor, etc.) satisfy the requirements specified in design codes or criteria (Zhou et al., 2020). 

Otherwise, the excavations should be strengthened. Besides, undrained and drained conditions 

exist in excavation construction according to the soil type and geological formation. Undrained 

conditions usually govern the excavation stability immediately after construction for clays and 

silts because the pore water in the soil does not dissipate immediately due to the low hydraulic 

conductivity (Faheem et al., 2003), while drained conditions are more common in coarse-grained 

materials. The design strength properties under drained and undrained conditions are different 

(drained: cohesion and friction angle; undrained: undrained shear strength) and the 

corresponding stability performance should be discussed. 

In addition, failures may still occur even though the stability indicators are greater than the 

values specified in design codes (Luo et al., 2012a). This is because the geotechnical engineering 

variability is complex property and can result from many different sources of uncertainty as 

presented in Fig. ⅱ. Among them, the inherent variability (which results from the natural 

geologic processes), measurement error (which is caused by limited amounts of information, 

equipment, operator, and random testing effects), and transformation uncertainty (during the 

transformation from measurements into design soil properties using empirical or other 

correlation models) are the main three primary sources (Phoon and Kulhawy, 1999). 

 

Fig. ⅱ Uncertainty in soil property estimates (Phoon and Kulhawy, 1999) 
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Probabilistic analysis, which can rationally take into account these variabilities, is a more 

rational tool to assess excavation stability (Goh et al., 2019b). Instead of the single safety factor 

(or wall deflection, ground surface settlement) in deterministic analysis, a variety of 

supplementary results can be provided in probabilistic analysis, such as the failure probability 

(Pf), probability density function (PDF), cumulative distribution function (CDF), statistical 

moments of the system response from Monte Carlo Simulation (MCS), or the reliability index 

and design point obtained by the First Order Reliability Method (FORM). A sensitivity analysis 

can also be implemented to provide the importance information about the involved random 

variables. There is no doubt that having more analysis results are beneficial to the designs and 

constructions. For example, a high value of failure probability (or a low value of reliability index) 

corresponds to low-performance level as presented in Table ⅰ, which can result in more casualties 

and economic damages (Zhou et al., 2020). Strengthened measurements should then be 

performed. 

Table ⅰ Target reliability indices (Kamien, 1997) 

Performance level β Pf 

High 5.0 2.87e−7 

Good 4.0 3.17e−5 

Above average 3.0 1.35e−3 

Below average 2.5 6.21e−3 

Poor 2.0 2.28e−2 

Unsatisfactory 1.5 6.68e−2 

Hazardous 1.0 1.59e−1 

It is therefore of interest to investigate the supported excavation stability in deterministic and 

probabilistic frameworks. A general framework is illustrated in Fig. ⅲ. For the deterministic 

analysis, the construction of supported excavation model is essential. The model response (such 

as the basal heave safety factor, wall deflection and ground surface settlement) can then be 

provided. Considering the probabilistic analysis, the considered input parameters and the 

corresponding uncertainties should be identified first. The input samples can be generated based 

on the statistical information (such as the distribution, mean value, and coefficient of variation, 

etc.) and then mapped to the numerical models to obtain the output values. The reliability and 

sensitivity analyses are implemented to give a variety of valuable results. 
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Fig. ⅲ Framework for the deterministic and probabilistic analyses. 

Several related works were done and provided a better understanding of the excavation stability 

assessment. However, there are still some limitations that should be addressed (more 

information about the literature review can be found in Chapter 1), including (1) most of the 

rectangular-shaped excavation studies are related to hypothetical design examples and focus on 

small-depth excavations from 6 m to 20 m, whereas studies on excavations at large depths 

(greater than 30 m) are rarely discussed; (2) there are several analytical solutions for the basal 

heave stability of the excavations under undrained conditions, however, they can be limited 

during the analysis, for instance, the Terzaghi (1943) method may give biased results for narrow 

excavations, the slip circle method (Tang and Kung, 2011) cannot explain the excavation width 

effect. Analytical methods improvements, which can be used in a wide range of applications 

(with consideration of the excavation depth, excavation width, wall penetration depth and soil-

wall interface strength), is thus necessary; (3) the circular shafts are less discussed compared to 

the rectangular-shaped excavations in the literature. It is noted that circular shafts are preferred 

in cases of restricted space or unfavorable ground conditions due to their high structural stiffness 

through hoop forces, which make them inherently stiffer than rectangular cross-sections (Le et 

al., 2019). Circular shafts analyses are also essential; (4) for the reliability analysis, the MCS, 

which lacks computational efficiency, and FORM, which may fail to give accurate estimates for 

non-linear limit state surface cases, are commonly used. There are no studies to improve the 

calculation efficiency of the reliability analyses; (5) there is no Global Sensitivity Analysis (GSA) 

for the determination of the involved random variables contributions. 
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Objectives and outline of the thesis 

The importance of the supported excavations safety assessment and the common limitations of 

the existing studies are detailed in the above section. Motivated by the mentioned points, this 

research work aims to evaluate efficiently the supported excavations stability in deterministic 

and probabilistic frameworks. For the deterministic analysis, the stability of rectangular 

excavations and circular shafts in undrained and drained conditions are respectively analysed by 

considering the great-depth effects, the destabilizing effect of the seepage forces, and of the soil 

non-homogeneity. For the probabilistic analysis, advanced surrogate-model techniques are 

adopted to obtain results in an affordable time. The main objectives of this work can be 

summarized as follows: 

⚫ Some issues that remain unclear for the supported excavation stability analyses are 

discussed. The issues addressed in this work include: Rectangular-shaped Excavation 

(RE) in undrained conditions: improvements of the analytical methods based on the limit 

analysis method; RE in drained conditions: great depth consideration based on a real 

supported excavation case; Circular Shaft (CS) in undrained conditions: non-

homogeneity consideration survey; CS in drained conditions: investigation of the 

hydraulic effects and the anisotropy consideration for the permeability coefficients. 

Besides, as a soil-structure interaction problem, the soil-wall interface interaction effects 

on the supported excavations stability are also discussed, 

⚫ Present a comprehensive and efficient probabilistic analysis for the supported excavations 

by applying surrogate model-based probabilistic methods. Polynomial Chaos Kriging 

(PCK) and Sparse Polynomial Chaos Expansions (SPCE) are introduced for the 

metamodel construction. The Sobol-based GSA is implemented for the parameter 

importance determination, 

⚫ Develop a versatile and flexible sample-wised probabilistic method based on the Artificial 

Neural Network (ANN) to further improve the probabilistic assessments efficiency. 

Based on the obtained results, some recommendations for future studies or practical engineering 

design on supported excavations are provided. The manuscript is organized as follows: 

Chapter 1 provides a brief overview of the deterministic and probabilistic analyses of supported 

excavations (RE and CS). In the deterministic part, the theoretical and empirical methods, 

laboratory tests and field observations, and numerical modellings are given. For the probabilistic 
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part, the methods commonly used in geotechnical engineering are provided first, which is 

followed by the applications on the circular shaft stability analysis. 

Chapter 2 is devoted to the stability analysis of RE under undrained conditions. An improved 

limit analysis mechanism is proposed first based on the existing limit analysis mechanism. A 

comparative study with numerical simulations and existing analytical methods is carried out to 

validate the effectiveness of the proposed mechanism. The Polynomial Chaos Kriging 

metamodel-based probabilistic analysis is then introduced to improve the efficiency of the 

probabilistic results estimation. 

Chapter 3 discusses great depth RE in c-φ soils based on a real case of the Grand Paris Project: 

the Fort d’Issy-Vanves-Clamart (FIVC) excavation. The probabilistic distributions of the wall 

deflection and ground surface settlement are given. The correlation between the maximum wall 

deflection and ground surface settlement is also provided. The probabilistic serviceability 

assessment with different limiting criteria and the sensitivity analysis for the considered 

parameters are followed. 

Chapter 4 explores the circular shaft stability in undrained and non-homogeneous clayey soils. 

The uncertainty influences of the soil undrained shear strength at the ground surface, non-

homogeneity coefficient, unit weight and soil-wall adhesion factor on the circular shaft stability 

are discussed. 

Chapter 5 gives the deterministic and probabilistic analyses of supported circular shafts in clayey 

soils subjected to hydraulic uplifts. The effects of the permeability anisotropy coefficient, the 

soil-wall interface strength coefficient and the soil tension cut-off coefficient are discussed. 

Chapter 6 aims to discuss the supported excavations stability in a probabilistic framework with 

consideration of the soil spatial variability. Great depth supported excavation are discussed. The 

random field generation and an effective surrogate-model based probabilistic framework are 

introduced, followed by a discussion of the spatial variability effects. 

Chapter 7 proposes a sample-wised probabilistic approach SPAA based on the Atom Search 

Optimization (ASO)-ANN. The ASO-ANN surrogate model with self-adaptive convergence and 

high efficiency, is constructed to replace the time-consuming numerical simulations. The initial 

samples are generated by the Latin Hypercube Sampling method and the iterative samples 

enrichment allows searching the most representative points for the ASO-ANN model 
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construction. Two low-dimensional random variable cases and a high-dimensional random field 

problem are then considered and discussed based on the proposed hybrid SPAA approach. 

Chapter 8 summarizes this research work and gives the major findings from each chapter. Some 

recommendations for the future research are also provided. 
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1.1  Introduction 

This chapter aims to provide a comprehensive introduction of the supported excavation stability 

in deterministic and probabilistic frameworks. A general review of deterministic and 

probabilistic methods commonly used in supported excavations analyses and an overview of the 

corresponding previous studies are provided. 

Firstly, the deterministic methods (e.g., field observations, laboratory-scale physical tests, 

analytical/empirical methods and numerical simulations) and previous studies used for two 

kinds of supported excavations, i.e., rectangular excavation (RE) and circular shaft (CS), are 

given. Then, the probabilistic methods are summarized and the previous probabilistic studies of 

supported excavations are reviewed. The advantages and limitations of the existing studies are 

discussed. 

1.2  Deterministic analysis of supported excavations 

1.2.1 Rectangular-shaped excavations 

For rectangular-shaped excavations, there are two major concerns: serviceability assessment of 

excavations and basal heave stability analyses. Previous studies on these two aspects are 

reviewed and the major limitations of previous works are identified. 

1.2.1.1 Serviceability assessment 

The excavation-induced lateral wall deflection and ground surface settlement should be 

considered when the Serviceability Limit State (SLS) is verified. It has been investigated by 

numerous researchers using field investigation, laboratory-scale physical tests, 

analytical/empirical methods, and numerical simulations. 

Field investigation 

A number of case histories have been reported worldwide and well-documented field data, such 

as Chicago (Finno et al., 1989), the UK (Long, 2001), Singapore (Young and Ho, 1994; Zhang 

and Goh, 2016), Paris (Khadija et al., 2021) and Shanghai (Hong et al., 2015a; Liu et al., 2011; 

Ng et al., 2012; Wang et al., 2010, 2005). 
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Clough & O’Rourke (1990) summarized the profiles of lateral wall movement and ground 

surface settlement based on field observations from several case histories. As shown in Fig. 

1.1(a), the cantilever movement can be observed before the installation of the first prop, and the 

corresponding settlement behind the wall can be represented by a triangular shape. The 

deformation profile of the wall changes from cantilever to deep inward (Fig. 1.1(b)) and the 

maximum lateral wall displacement is near the excavation bottom. The settlement also changes 

from a triangular shape to a trapezoidal shape. 

 

Fig. 1.1 Typical deformation profiles for excavations (Clough and O’Rourke, 1990). 

Ou et al. (1998) proposed two types of settlement profiles during excavations based on some 

field observations, including the spandrel shape and the concave shape as presented in Fig. 1.2(a) 

and (b), respectively. The spandrel shape was proposed by 10 cases from Taipei, and the 

maximum settlement occurs close to the wall, while for the concave one, the maximum 

settlement occurs at a certain distance away from the wall. The concave settlement near the wall 

is estimated as 0.5 times the maximum ground surface settlement based on the field data 

(Clough and O’Rourke, 1990) and the primary influence zone of the settlement trough is 

considered as twice the excavation depth. Ou (2006) suggested that the spandrel surface 

settlement profile may occur with the cantilever mode of wall movements, while the concave 

surface settlement profile may occur with the deep inward movement pattern. 
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(a) Spandrel shape (b) Concave shape 

Fig. 1.2 Proposed settlement diagrams behind the wall. 

Long (2001) used a monitoring system consisting of inclinometers attached to the steel cages in 

the piles, levelling stations and ground movement monitoring stations, to monitor the wall 

deflection and ground movement for the National Gallery excavation in London. Several 

numerical simulations with London Clay constitutive model with small strain stiffness model 

and BRICK model were then performed. Fig. 1.3 indicate that the excavation responses are 

considerably over-predicted using these three models. However, the constitutive model BRICK 

can predict a displacement profile that are much closer to the measured results. 

  

(a) Mohr-Coulomb model (b) London Clay constitutive model 
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(c) BRICK model 

Fig. 1.3 Comparison of actual and predicted wall movements. 

Moormann (2004) analysed the lateral wall displacement and ground surface settlement based 

on 530 cases. The results show that the maximum horizontal wall displacement lies between 

0.5%H (H: excavation depth) to 1.0%H, with a mean value of about 0.87H. The maximum 

vertical settlement behind a retaining wall was located between 0.1%H and 10%H, with a mean 

value of about 1.1H. The maximum ground surface settlement usually varies between 0.5~1 

times the maximum wall deflection. Besides, it is also found that the excavation deformation in 

soft clay seems to be largely dependent on the basal heave safety factor compared to the system 

stiffness of the retaining system as shown in Fig. 1.4. Wang et al. (2010) indicated that the ratio 

between the maximum wall deflection and the excavation depth varies considerably (in the range 

of [0.5%, 1.4%]) and the value depends on the soil properties and the retaining structure types. 

 

Fig. 1.4 Relationship between the lateral deformation with the system stiffness and  

basal heave safety factor. 

Tan and Wei (2012) investigated the performance of a long sword-shaped deep excavation in 

soft clay using the cut-and-cover technique in Shanghai, China. Based on the long-term 

comprehensive instrumented field data, the over-excavation, long construction duration, or large 
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exposure period without support would induce significant retaining wall and ground movements; 

Ng et al. (2012) monitored a multi-propped excavation in a greenfield site in Shanghai. The 

lateral wall displacements, lateral ground displacements and surface ground settlements were 

measured. The results show that the ratio between the maximum wall deflection to ground 

surface settlement ranges from 0.2 to 1.2; Xu et al. (2016) present a case study of dynamic 

control of excavation deformations. Various deformation control measures such as 

strengthening the chamfer of the retaining structure, adjusting the excavation sequence and 

strengthening the support nodes were adopted to reduce the horizontal displacement of the 

retaining wall. The monitored excavation performance indicates that these remedial measures 

are feasible and effective in controlling excavation-induced deformation and reducing the 

associated risks; W. Zhao et al. (2019) carried out a long-term field measurement to understand 

the behaviour of an anchored sheet pile wall structure. The field measurements show that the 

soil excavation has a greater effect on the anchored sheet pile deflection than the backfilling 

procedure. 

In general, the wall deflection is usually measured with inclinometers, and the maximum wall 

deflection and surface settlement depend on various factors such as the soil properties, the 

retaining system type and stiffness, the construction method (top-down, bottom-up and open-

cut) and the quality of the workmanship. Field investigation is an effective method, whereas it 

is expensive as it takes a long time to obtain data and the process is not repeatable. In addition, 

it cannot be used for forecasting. 

Laboratory-scale physical tests 

Laboratory tests have the advantage of allowing quantitative control of the factors affecting the 

results. Small-scale centrifuge model tests have been used to study excavation behaviours. 

Takemura et al. (1999) carried out the centrifuge model tests of a vertical excavation in normally 

consolidated soft clay to evaluate the settlements of the ground surface behind the wall, earth 

pressures on the wall and strains along the wall. It was found that the deformation after a certain 

excavation depth is mainly determined by the mechanical properties of the sand. The support 

prevents significant increases in settlement and wall displacement, and once deformation has 

occurred it is difficult to recover by increasing the support (i.e., preload). The non-linear 

behaviour of the soil is one of the main reasons; Lam et al. (2014) conducted the centrifuge 

model tests of deep excavations in slightly over-consolidated soft clay to understand the 

mechanisms involved in soil excavations. The schematic diagram of experimental setup is 



35 

 

presented in Fig. 1.5. The ground surface settlements and changes in pore water pressure are 

monitored. Besides, the effects of prop stiffness, wall rigidity, and excavation geometry on the 

characteristics of ground deformation and soil-structure interaction were discussed. The results 

indicate that a reduction in strut stiffness increases wall deflection above the foundation level; 

Chen et al. (2022) performed a series of centrifuge model tests to investigate the interaction 

between successively constructed adjacent foundation pits. The stress and deformation of 

retaining structures and the settlement of the soil between the two adjacent pits were investigated. 

The results show that the deformation of the retaining structure in the pit constructed first was 

greater than that in the pit constructed later; Shoari Shoar et al. (2023) carried out a series of 

centrifuge tests to evaluate surcharge effects on the behaviour of nailed vertical excavations. 

The mechanism of failure surface development was observed. It is found that the shapes of 

failure surfaces are bilinear and that the surcharge affects on the development of failure surfaces. 

The pull-out mechanism was observed in the nails during failure without bending. 

 

Fig. 1.5 Schematic diagram of experimental setup within-flight excavator (Lam et al., 2014). 

It should be noted that centrifuge modelling allows the provision of a correctly scaled physical 

model to effectively investigate the mechanisms of soil deformation during excavation. 
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Compared to full-scale projects, the tests are valid and can be repeated until they fail. However, 

centrifuge teste also have some limitations and drawbacks, for instance, only relatively simple 

models can be considered, the process is expensive due to the high cost of equipment and the 

specialized operations skills, or the environmental conditions used in centrifuge modelling (such 

as soil moisture, temperature, and chemical conditions) are difficult to control and maintain 

precisely. 

Analytical/empirical methods 

Several analytical/empirical methods were proposed to estimate the wall displacements 

(Addenbrooke et al., 2000; Clough and O’Rourke, 1990; Hashash and Whittle, 1996; O’Rourke, 

1993; Zapata-Medina, 2007; Zhang et al., 2015a) and the ground surface settlements (Hsieh and 

Ou, 1998; Kung et al., 2007c; Ou and Hsieh, 2011; Peck, 1969). 

O’Rourke (1993) assumed the incremental displacement profile of the multi-propped wall in 

soft and undrained clay to be a cosine function as shown in Fig. 1.6, which can be defined as 

 
max 2

(1 cos( ))
2

h y
h

 



= −  (1.1) 

where h  is the incremental wall displacement at any distance below the lowest support, 

maxh  is the maximum incremental displacement, λ is the wavelength of the deformation, 

which is defined as the distance from the lowest support level to the fixed base of the wall. 

 

Fig. 1.6 Incremental displacements in braced excavations (O’Rourke, 1993). 

Osman and Bolton (2006) proposed that the wavelength of the deformation presented in Eq. (1.1) 

depends on the wall end-fixity conditions, and is defined as  

 = s   (1.2) 
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where   is a dimensionless value and s is the length of the wall beneath the lowest support. 

When the wall is embedded into a stiff layer beneath the soft clay, the wall tip is fully fixed, in 

such case,   should be considered as 1. For short walls embedded in deep very soft clay, the 

maximum wall deformation occurs at the tip of the wall and   is equal to 2. For the 

intermediate cases, for instance a wall is embedded in soft or medium stiffness soil where its 

end is not fixed, the maximum displacement often occurs below the excavation level and   is 

set in the range of (1,2); Osman and Bolton (2006) proposed a new approach for ground 

movement estimation that can consider the actual stress-strain data and the undrained shear 

strength profile of the soil on site; Clough et al. (1989) proposed a semi-empirical procedure to 

determine the wall movement. The maximum lateral wall deflection is related to the basal heave 

safety factor and system stiffness. However, the proposed wall movement curves depend on 

good condition and workmanship, and the cantilever deformation of the wall contributes only a 

small fraction of the total movement. 

Hsieh and Ou (1998) considered the concave settlement profile as presented in Fig. 1.2 as the 

bi-linear relationship and the surface settlements in the primary influence zone and the secondary 

influence zone can be predicted by 
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where v  and maxv  are respectively the surface settlement and maximum surface 

settlement, d is the distance from the wall. Ou and Hsieh (2011) further suggested new surface 

settlement patterns to consider the excavation depth, excavation width and the hard stratum 

depth. 

The analytical method is simple and easy to implement. However, this method can only 

represent ground settlement or wall displacement perpendicular to the direction of the retaining 

wall. Besides, due to the assumptions, the methods cannot consider properly the soil non-linear 

properties, specific ground conditions, retaining systems or construction sequence. 

Several empirical methods have been developed. Based on a database of 33 cases and several 

results from finite element analyses, G. T. C. Kung et al. (2007b) developed a semi-empirical 

model to determine the maximum wall deflection and ground surface settlement caused by a 

braced excavation in soft to medium clays; Zhang et al. (2015a) proposed a simple polynomial 
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regression model to estimate the maximum wall deflection considering the excavation geometry, 

soil strength and stiffness, and the wall stiffness. The wall deflections calculated using this 

method are consistent with some field measurements and published records; Goh et al. (2017) 

developed a semi-empirical logarithmic regression model to estimate the maximum wall 

deflection for braced excavations. The soil properties, wall stiffness, excavation length, 

excavation depth, and wall embedment depth are considered in this method. However, it should 

be noted that empirical methods need to capture the isolated effects of various factors, therefore 

a large of field measurements or numerical simulations are necessary. Assessing and analyzing 

such a large amount of comprehensive and detailed data are difficult. 

Numerical analyses 

Numerical simulations, which can consider both the geotechnical and structural aspects (such 

as the wall stiffness, complex soil behaviours, struts and soil-wall interactions), permit to 

provide more accurate and rational information on excavations performance (Sert et al., 2016). 

It can also be used to predict the excavations behaviour and provide guidance for the design 

and construction. Mana and Clough (1981) carried out a numerical parametric study to 

investigate the effects of wall stiffness, prop spacing, stiffness and prestress, and soil stiffness 

on ground deformations. The excavation geometry (such as excavation width and depth) effects 

were also discussed; Clough and O’Rourke (1990) implemented several finite element studies 

and indicated that wall stiffness and prop spacing have a small influence on deformations 

around excavations in stiff clay. Conversely, soil modulus and lateral earth pressure coefficients 

have a greater influence on ground movement than the stiffness of the retaining system; Jen 

(1998) performed numerical parametric studies to study the effects of excavation geometry, 

retaining system and stress history of clay on ground deformations due to excavation. Besides, 

a design chart was proposed to correlate ground settlement to excavation depth, wall length, 

depth of hard stratum and soil profile. With the development of the numerical analysis software, 

more studies are conducted and  It is seen from this table that most of the above excavations 

were mainly at depths of around 20 m, with little discussion of depths above 30 m. However, 

with the urbanization acceleration, the development of underground space is characterized by 

large, deep, fast and dense. Besides, the complexity of the stratigraphy, the surrounding 

structures and the variety of construction procedures may increase the potential risks associated 

with deep excavation construction. The previous experiences and case histories cannot be used 

as a reference due to the small depth. 
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Table 1.1 summarizes some recent numerical studies including the excavation depth, the soil 

constitutive models and the analysis methods. It is seen from this table that most of the above 

excavations were mainly at depths of around 20 m, with little discussion of depths above 30 m. 

However, with the urbanization acceleration, the development of underground space is 

characterized by large, deep, fast and dense. Besides, the complexity of the stratigraphy, the 

surrounding structures and the variety of construction procedures may increase the potential 

risks associated with deep excavation construction. The previous experiences and case histories 

cannot be used as a reference due to the small depth. 

Table 1.1 Summary of numerical analysis of rectangular-shaped excavations. 

No. Case Excavation depth (m) 
Soil constitutive 

models 
Analysis method 

1 

An excavation in 

the UK (Ng et al., 

1998) 

10 Mohr-Coulomb model Numerical method 

2 
O6 station, China  

(Hsiung, 2009) 
19.6 Mohr-Coulomb model FDM 

3 

An excavation in 

Japan (Konda et al., 

2010) 

21.55 Mohr-Coulomb model FEM 

4 

An academic case 

(Baroth and 

Malecot, 2010) 

6 Mohr-Coulomb model FEM 

5 
Formosa case 

(Tang, 2011) 
18.45 

Sands: hyperbolic model 

clays: pseudo-plastic 

model 

FEM (PLAXIS) 

6 
TNEC in Taipei 

(Luo et al., 2011a) 
19.7 

MPP soil model 

(modified pseudo-

plasticity) 

FEM (PLAXIS) 

7 

An academic case 

(Papaioannou and 

Straub, 2012) 

5 Mohr-Coulomb model FEM (SOFiSTiK) 

8 

Bangkok MRT 

(Likitlersuang et 

al., 2013) 

21 

Mohr-Coulomb model, 

Soft Soil Model, 

Hardening Soil model 

Small Strain Stiffness 

model 

FEM (PLAXIS) 

9 
Formosa case (Luo 

and Das, 2015) 
18.45 

Sands: hyperbolic model 

clays: MPP model  
FEM (PLAXIS) 

10 
An academic case 

(Sert et al., 2016) 
5 Hardening Soil model FEM (PLAXIS) 
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11 

An excavation in 

Shanghai (Dong et 

al., 2016) 

24 
Hardening Soil model 

with small strain 
FEM 

12 

An excavation in 

Boston (Rouainia et 

al., 2017) 

13~17 

Mohr-Coulomb model, 

Modified Cam Clay, 

Kinematic Hardening 

Model 

FEM (PLAXIS) 

13 
Formosa case (Luo 

et al., 2018a) 
18.45 

Small-strain stiffness 

model 
FEM (PLAXIS) 

14 

Cashew station 

excavation (W. 

Zhang et al., 2018) 

20 Hardening Soil model FEM (PLAXIS) 

15 
An academic case 

(Luo et al., 2018b) 
6 Hardening Soil model FEM (PLAXIS) 

16 

An excavation in 

Iran (Johari and 

Kalantari, 2021) 

20 Mohr-Coulomb model FDM (FLAC) 

17 

Sukhumvit Station 

in Bangkok 

(Nguyen and 

Likitlersuang, 

2021) 

21 Mohr-Coulomb model FEM (PLAXIS) 

18 

An excavation in 

Shanghai (Yang et 

al., 2022) 

24 Mohr-Coulomb model FEM 

1.2.1.2 Basal heave stability analyses 

Considering the Ultimate Limit State (ULS), the evaluation of safety factors against base heave 

failure is important in excavation designs. Numerical methods are often used since they permit 

to provide a comprehensive framework considering complicated geotechnical and geometrical 

characteristics. Goh (1994) implemented finite element analyses to discuss the effects of the 

thickness of the clay layer beneath the bottom of the excavation, the depth of the wall below the 

bottom of the excavation, the width/height ratio, and wall stiffness; Faheem et al. (2003) 

employed the finite element method with the strength reduction technique to analyse the basal 

heave stability of excavations, and indicated that the base stability is significantly influenced by 

the depth, width of the excavations, the walls depth embedded below the excavation base, and 

the wall stiffness; Goh (2017a) carried out finite element analyses to assess the basal heave 

safety factor for excavations in soft clays supported by jet grout slabs. The results indicate that 

the interface friction between the jet grout slab and the wall is a key component contributing to 
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the resistance of the excavation system to basal heave failure; Goh et al. (2019b) implemented 

different excavation cases with various geometrical properties, wall and soil properties to assess 

the basal heave safety factor using finite element software. 

Alternatively, the analytical methods are also popular for basal heave stability analyses. Several 

limit equilibrium methods were proposed and improved. Terzaghi (1943) proposed a mechanism 

with a soil column outside the excavation as depicted in Fig. 1.7(a). The failure is resisted by 

the weight of the corresponding soil column inside the excavation and the adhesion acting along 

the vertical edges of the mechanism. It is suitable for wide excavations (the excavation width B 

is equal to or larger than the excavation depth H) and the basal heave safety factor (Fs) can be 

expressed as 

 1
T

1

5.7 u
s

u

S B
F

HB S H
− =

−
 (1.4) 

where B1 refers to the distance from the wall to the vertical failure surface and can be determined 

by 1= / 2B B , 
uS  is the undrained shear strength (kPa) and γ is the unit weight of the soil 

(kN/m3). However, it ignores the wall embedment effects. An improved mechanism is then 

proposed with consideration of the embedment wall as shown in Fig. 1.7(b). The resistance of 

the embedment wall is determined from the soil-wall adhesion 
i ur S  (ri: soil-wall interface 

coefficient) and the Fs of the modified Terzaghi method (MT) is (Goh et al., 2019b) 

 1
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where D is the wall embedment depth. 

  

(a) Terzaghi (b) Modified Terzaghi (MT) 

Fig. 1.7 Terzaghi models. 

Bjerrum and Eide (1956) proposed a basal heave stability analysis method for deep excavations 

(H>B) as illustrated in Fig. 1.8 and the safety factor can be determined by 
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where 
cN  is Skempton’s bearing capacity factor and for the case with (H+D)/B<2.5, it can be 

approximated as =5(1 0.2 / ) [1 0.2( ) / ]cN B L H D B+  + + , where L is the excavation length (Goh 

et al., 2008). The modified Bjerrum & Eide method (MBE) which considers the wall embedment 

depth resistance can be determined by 

 
MBE

2 (1 / ) /u c u
s

S N mS D B L B
F

H
−

+ +
=  (1.7) 

 

Fig. 1.8 Bjerrum & Eide method model (BE). 

It is noted that the methods developed by Terzaghi and Bjerrum & Eide are based on the bearing 

capacity theory, which assumes the soil as homogeneous and is difficult to consider soil non-

homogeneity (Wu et al., 2012). The slip circle method is then proposed as shown in Fig. 1.9 

(Chowdhury, 2017; Tang and Kung, 2011). The safety factor can be defined by the ratio of the 

resisting moment to the driving moment and is given by 
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where rM  and dM  are respectively the resisting moment and driving moment (kN·m), R is the 

radius of the slip circle (m), sW  is the weight of clay behind the wall and above the excavation 

level (kN),   is the angle of failure arc in excavation zone and it can be obtained by 

1=cos ( / )h R − , where h is the distance (m) from the lowest strut level to the final excavation 

level, it is set to be 3 m based on engineering practice. 
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Fig. 1.9 Slip circle method model (SC). 

This method allows investigating the influence of soil non-homogeneity. However, it cannot 

account for the excavation width effect on the basal heave stability. 

Another widely used analytical method is the upper bound limit analysis and the safety factor 

can be determined by equating the external work rate to the energy dissipation for assumed 

deformation modes (or velocity fields) that satisfy velocity boundary conditions (Mollon et al., 

2011; Mollon et al., 2010). Several researches about the basal heave stability of excavations 

were based on the limit analysis method (Cai et al., 2018; Chang, 2000). The Prandtl mechanism 

is often used as the failure mechanism and the work rates are then calculated to determine the 

stability (Cai et al., 2018). The corresponding failure mechanism can be found in Fig. 1.10. The 

mechanism consists of a 90o circular arc (jkh) sandwiched between two 45o isosceles wedges 

(ijk and gjh), soil columns efij and mljg. v is the velocity of plastic flow and the safety factor 

can be determined by the ratio of the internal energy dissipation E and the external work rate 

W. It is noted that 1=B B  when a hard stratum is present at a depth of 
cT T , otherwise, 

1= 2B T  ( cT T ), cT  is the critical hard stratum depth from the wall bottom tip and is equal 

to / 2B . The wall is assumed to be fully rigid and the lateral resistance afforded by the wall 

is not considered, which means that the wall moves along the vertical direction while it is 

motionless in the horizontal direction (Faheem et al., 2003; Huang et al., 2018). 
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Fig. 1.10 Limit analysis failure mechanism. 

It should be noted that the triangular wedges ijk and gjh of the existing failure mechanism are 

defined by a constant angle of 45o. However, this angle may change in different excavations 

with different parameters (such as the soil properties). To assess excavation stability more 

accurately, improvements to the failure mechanism are necessary. 

1.2.2 Circular shafts 

The “self-stabilizing effect” of circular excavations is known to exist (Xiao et al., 2022), which 

can give circular shafts an inherent stiffness over rectangular shafts. They are preferred in urban 

areas where space is limited or ground conditions are unfavourable, and have been used for 

underground car parks (Marten and Bourgeois, 2006), metro stations (Celestino et al., 2009), 

tunnel boring machine lunch and electricity infrastructure projects (Aye et al., 2014; Faustin et 

al., 2018; Furlani et al., 2011; Le et al., 2019; Tang, 2020). Some circular shaft cases are given 

in Fig. 1.11. Concerning the stability analyses of circular shafts, most of the existing studies 

focus on ground stresses, ground movements and wall displacements assessments. The field 

investigation (McNamara et al., 2008; Schwamb et al., 2016; Tang, 2020; Wong and Kaiser, 

1988), laboratory-scale physical tests (Le et al., 2019), analytical/empirical methods (Faustin et 

al., 2018) and numerical simulations (Arai et al., 2008; Aye et al., 2014; Dias et al., 2015; Furlani 

et al., 2011; Schwamb and Soga, 2015; Xiao et al., 2022) were implemented for the circular 

shaft analyses. Whereas, the basal heave stability, which is also essential when verifying the 

ULS, is rarely discussed and it will be considered in this study. 
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Fig. 1.11 Circualr shaft construction. 

 

1.2.2.1 Basal heave stability analyses 

There are sevreral analytical methods for the basal heave stability analysis of the rectangular-

shaped excavations, such as the Terzaghi method, Bjerrum and Eide method as presented in 

Section 1.2.1.2. For circular excavations, a modification factor 1.2 is applied to the safety factor 

to consider the shape effect (Cai et al., 2002). However, this method cannot take into account 

the wall stiffness effects and the modification may vary with soil and geometric conditions; M. 

Zhang et al. (2018) proposed an axisymmetric arc sliding method based on the circular arc 

sliding model of the limit equilibrium method to analyse the basal heave stability of braced 

circular excavations. It combined the stiffness of the enclosure structure and considered spatial 

effects. However, the performance of numerical simulations is still required to provide the 

deformation distribution of the enclosure structure during the safety factor calculations.  

The numerical simulations are more reasonable and an axisymmetric model is often used due to 

the circular shape. Cai et al. (2002) implemented the finite element method to analyse the 

circular shaft stability and noted that the substrate stability of circular excavations in soft clay 

soils is expected to be greater than rectangular excavations due to shape effects; Goh (2017b) 

used the finite element method to assess the basal heave stability of diaphragm wall supported 

circular excavations. The results show that the basal heave safety factor is related to the 

undrained shear strength of the clay, the geometrical properties of the excavation system and the 

thickness of the soil stratum; Keawsawasvong and Ukritchon (2019) focused on the stability 
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analysis of braced circular excavations in non-homogeneous clays using the lower bound finite 

element limit analysis. The above-mentioned studies mainly analyse the effects of the excavation 

geometry or soil properties on the shaft stability, and rarely discuss the hydraulic or interface 

effects, which are described in detail in the following sections. 

1.2.3 Basal instability due to an hydraulic uplift 

As the excavation depth increases, the stability and serviceability of the work site and of the 

adjacent buildings would be influenced by water pressure, particularly in coastal cities. The main 

failure mechanisms caused by seepage include heave, uplift, internal erosion or piping. Heave 

occurs when the seepage forces generated by groundwater flow lift the soil on the downstream 

side. Uplift failure can occur when seepage forces act on the subsoil are higher than the effective 

soil weight. Internal erosion or piping may occur with the transport of soil grains within a soil 

layer at the interaction surface (between soil and structure) by groundwater flow (Ouzaid et al., 

2020). The occurrence of seepage failure has the highest distribution (over 60%) among the 

types of excavation accidents, the excavation stability analyses subjected to hydraulic effects 

are thus important (Ye-Shuang et al., 2019). 

Field investigations are often carried out for the excavation stability analysis. Milligan and Lo 

(1970) collected eight case histories in Canada with base instability caused by hydraulic uplift. 

The results indicate that the base instability due to the hydraulic uplift is associated with 

excessive basal heave, wall inward movement and ground surface settlement behind the wall; 

Moore and Longworth (1979) reported an excavation with hydraulic uplift failure in Oxford 

Clay and pointed out that there is a large upheaval displacement on the excavation base due to 

the artesian pressure; Qu et al. (2002) provided a case history in Shanghai and carried out 

pumping tests to study ground settlement induced by artesian release; Shi et al. (2018) conducted 

a comprehensive monitoring program to study the responses of far-field ground and groundwater 

to pumping of artesian water in deep excavations. 

Analytical methods were also proposed for the basal heave stability analysis. The pressure 

balance method (PBM), which indicates that the pore water pressure beneath a low permeability 

stratum is greater than the average overburden pressure, is mainly used (Terzaghi, 1943). The 

improved methods for estimating the basal failure caused by hydraulic uplift were then proposed 

since the traditional PBM ignores the soil strength and leads to conservative results (Milligan 

and Lo, 1970). Further modifications about the clay-wall interface strength or the cohesion of 
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aquitard inside excavation can be found in (Liu and Liu, 2011; Sun, 2016; Yang and Zheng, 

2009). 

A number of experimental and numerical analyses have also been conducted. Hong and Ng 

(2013) conducted centrifuge tests (shown in Fig. 1.12) and finite element analyses to analyse 

multi-propped excavations which are destabilized by hydraulic pressure from an underlying 

sand aquifer. The results indicate that the artesian pressure required to initiate uplift inside the 

excavation is about 1.2 times the overburden pressure of the clay; Ding et al. (2014) performed 

the finite element analysis to analyse the confined water head, length & width size of the pit 

effects on the inrushing plastic deformation failure of the pit; Hong et al. (2015b) investigated 

the initiation and failure mechanism of base instability of excavation in clay subjected to 

hydraulic uplift. The main pattern of damage was found to change from simple shear in narrow 

excavations to a combination of patterns in wide excavations; Koltuk et al. (2019) performed 

experimental and numerical investigations to clarify the seepage failure by heave in sheeted 

excavation pits; Chen et al. (2020) and Lai et al. (2022) employed the finite element limit 

analysis to investigate the base instability triggered by the hydraulic uplift of pit-in-pit braced 

excavations. 

 

Fig. 1.12 Centrifuge model package for the excavation basal heave stability  

against hydraulic uplift. 

The basal heave of excavations subjected to hydraulic uplift has been discussed extensively in 

previous works. However, most of the studies focused on rectangular excavations and there has 

been little discussion about the circular shaft failure induced by hydraulic uplift. 

1.2.3.1 Permeability coefficient 

Soil permeability is a fundamental soil property that is used to understand the water flow in soil 

and the relevant parameter is the permeability coefficient. It can be measured using field 
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measurements (Li et al., 2013; Nagy et al., 2013; Sahin, 2016; Yang et al., 2018) or laboratory-

scale physical tests (Brault and Konrad, 2007; Chapuis, 2002; Daliri, 2011; Huang et al., 1998b; 

Leroueil et al., 2002). In addition, several analytical methods were also proposed for the 

permeability coefficient determination (Chapuis and Aubertin, 2003; Fredlund et al., 1994; 

Huang et al., 1998a). 

The permeability coefficient in most studies (about the basal heave stability of excavations) was 

considered isotropic and uniform for simplicity, which means that the horizontal and vertical 

permeability coefficients (kx and ky respectively) are identical. However, in real projects, it has 

been noted that anisotropic permeabilities are common due to soil stratification, compaction, 

deposition and densification. Hong (2012) implemented the laboratory constant head tests for a 

Shanghai excavation and found that the permeability coefficients in horizontal and vertical 

directions are different for each layer. The horizontal permeability coefficient is varied from 

1.1e-8 m/s to 6.0e-8 m/s whereas the vertical one is in the range of [2.2e-9 m/s, 7.7e-9 m/s]. 

The anisotropy permeability coefficient rk (rk=kx/ky) is varied with the values being respectively 

2.69 (Medium-Soft Clay), 5.71 (Soft Silty Clay), 2.62 (Medium Clay) and 17.5 (Medium Silty 

Clay); Zhang et al. (2016) also provided different values of kx and ky in the analysis of braced 

excavation deformation affected by confined water in soft soil. Therefore, the anisotropy of 

permeability should be considered in the basal heave stability analysis of excavations. 

The anisotropy discussions of hydraulic conductivities can be found in earth dams (Fell, 2005; 

Mouyeaux et al., 2019; Siacara et al., 2022), but are rarely discussed in excavations, which will 

be analysed in this study. Due to the inconvenient, costly, and time-consuming of field 

measurements or laboratory tests, discussions about permeability anisotropy on the excavation 

basal instability are difficult to be implemented. This study will perform numerical simulations 

to investigate the effects of rk on excavation stability. 

1.2.4 Soil-wall interaction 

The interaction between soil and wall is a key issue in geotechnical engineering and can 

significantly affect excavation behaviour (Dong, 2014). A series of field investigations (Ng et 

al., 2012; Tedd et al., 1984) or experimental tests (Boulon, 1989; Lam, 2010; Lam et al., 2014; 

Richards and Powrie, 1998) were performed to investigate the soil-structure interaction effects. 

It is noted that using in-situ tests or laboratory experiments is difficult and costly, in contrast, 
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the numerical analysis makes it easier to study the soil-wall interaction effects on excavation 

stability. 

Interface elements are used to study the interaction between soil and wall in numerical analyses. 

In the last few decades, several types of interface elements were developed, such as zero-

thickness elements, slip elements, connecting elements and thin-layer elements (Desai et al., 

1984; Dong, 2014; Gholampour and Johari, 2019; Herrmann, 1978). 

Powrie and Li (1991) used slip elements, which have nearly zero stiffness in tension and a 

limited elastic shear modulus, to simulate the interface between soil and wall. The Coulomb 

friction criterion was used for the shear resistance of the soil-wall interface; Day and Potts (1998) 

developed a zero thickness interface element with a simple elastoplastic Mohr-Coulomb failure 

criterion. The results indicated that the predicted limiting active and passive pressure on the wall 

are related to the maximum wall friction angle; Hsi and Yu (2005) carried out the finite element 

analysis to analyse a 20 m-deep excavation stability in deep marine soft clays. The interface 

between soil and structural elements was modelled with a strength reduction factor of 0.5 for 

clay and 0.67 for sand materials; Zheng et al. (2014) constructed a soil-fluid coupled finite 

element model to study the mechanism of the dewatering-induced diaphragm wall deflections. 

A zero-thickness interface was used and a friction behaviour is governed by a limiting shear slip 

and friction coefficient with a value of 0.3; Dong (2014) used an extended Coulomb frictional 

contact model to describe the soil-wall interface. The influence of interface properties on the 

excavation behaviour was investigated using 5 cases, which include fully rough contact, fully 

smooth contact, and other three scenarios that lie between these two boundaries. The results 

show that the calculated wall deflections and ground movements are sensitive to the soil/wall 

interface properties; Sun (2016) discussed the excavations under the effects of confined aquifer 

pressures in soft soils. The interface element with zero thickness within the model was used to 

study the interaction between the soil and the retaining structure. The strength properties of the 

interface were linked to the strength properties of the soil layer with a reduction factor. A series 

of parametric analyses with the reduction factor being in a range of [0.4, 1.0] are conducted; 

Goh (2017a) implemented the finite element analyses to analyse the stability of excavations with 

jet grout slab. The interface between the jet grout slab and the wall is considered and the shear 

response of the interface element is controlled by an elastic-perfectly plastic Coulomb shear 

strength criterion. The results indicate that the interface friction is a key component contributing 

to the resistance of the excavation system; Goh et al. (2019b) investigated the excavation basal 

heave stability with different geometrical properties of the excavation, wall and soil properties. 
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A clay-wall adhesion factor is introduced for the interface strength determination; Lai et al. 

(2022) analysed the undrained excavations stability subjected to hydraulic uplift using the Finite 

Element Limit Analysis (FELA) method. The interface elements were used to model the soil-

wall interactions. The corresponding strength was obtained by the product of the strength 

reduction factor and surrounding soils shear strength.  

In general, the soil-wall interface strength is linked to the strength properties of the adjacent soil 

layer and is often reduced due to the disturbance caused by the wall construction. Its effects on 

the deep excavations (with depth being above 30 m) or circular shaft stability are rarely seen 

and will be discussed in this study. 

1.3  Probabilistic analysis of supported excavations 

Once the deterministic model is determined, the probabilistic analysis should be performed to 

take into account the soil variabilities. This section aims to provide some basic concepts and 

common methods of probabilistic analysis. An overview of the former probabilistic studies on 

excavations is then reviewed. 

1.3.1 Reliability theory 

In structural system analysis with uncertainty consideration, the structure can operate outside 

of its nominal range. In such cases, the system encounters a failure. A limit state should be 

defined for the classification of failure & safe domains. 

The system response is related to a random vector (x) which is composed of n random variables 

(x1, x2, …, xn) and there exist two domains (safe domain and failure domain) in the input space 

defined by x. Taking n=2 as an example, a schematic illustration of the domains and Limit State 

Surface (LSS) is depicted in Fig. 1.13. G(x) is called as a limit-state function or performance 

function, which is used to express the relationship between the limit state and the input variables. 

It can be observed that the estimations of function G(x) are related to the system domain 

classification. The system is safe when the function G(x)>0 whereas the G(x)<0 corresponds to 

system failure. Correspondingly, the G(x) is equal to 0 if the x is on the LSS. 

The failure probability (Pf), which is defined as the probability of system response being in the 

failure domain, can be defined as 

 ( ( ) 0)fP P G= x  (1.10) 
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Fig. 1.13 Schematic illustration of the safe/failure region and LSS (Wang et al., 2021). 

In a probabilistic setting, each uncertain parameter can be represented by a Probability Density 

Function (PDF) ( ) ~ XX f x . Several input parameters, including their dependence structure, can 

be grouped in a random vector with a joint PDF ( )XX ~ xf . The Pf can then be determined by 

 
( ) 0

( )
x

x xf X
G

P f d


=   (1.11) 

Considering the parameter distributions, the parametric distributions, which are defined by a 

set of parameters, are often used. Several commonly used parametric distributions (such as the 

Gaussian distribution, the lognormal or the uniform distributions) and the corresponding 

properties (e.g., PDF, cumulative distribution function (CDF), support and moments) are 

summarized in Table 1.2. The parametric distributions can be determined empirically or, when 

data sets are available that are relevant to the input parameters, the parameters of the estimated 

distribution are optimized to find the distribution that best matches the data. 

Table 1.2 Commonly-used univariate probability distributions (Marelli and Sudret, 2014). 

Distribution Notation Support PDF CDF Moments 

Uniform   
 

 

 

 

Gaussian 

(Normal)    
 

 

Lognormal   
 

 
 

Exponential     
 

Gamma     
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Conversely, the non-parametric distribution is a non-parametric method to infer a univariate 

distribution directly from data. Kernel Density Estimation (KDE), also known as kernel 

smoothing, is often used. It aims to approximate the true PDF of a variable by placing a “kernel” 

function at each data point, and then summing these functions to obtain an estimate of the PDF 

(Álvarez et al., 2011). 

In addition, it is noted that a truncated distribution should be considered when the data is 

known to be limited to a certain range and the support of a probability distribution should be 

restricted (Tokmachev, 2018). 

1.3.2 Characterization of the soil variability 

The parameters uncertainties and randomness can be represented by random variables (RV) and 

random fields (RF) approaches as presented in Fig. 1.14. The RV approach assumes the soil as 

homogeneous for one simulation and is easy to generate different samples for a probabilistic 

analysis according to the given random variables’ statistical information as summarized in Table 

1.2. It is simple and was widely implemented in existing probabilistic analyses (Pan et al., 2020; 

T. Zhang et al., 2021b; Zhou et al., 2020). 

  

(a) RV (b) RF 

Fig. 1.14 Comparison of RV and RF generation. 

The RF approach, which can generate different values at different locations according to the 

given statistical properties and autocorrelation structures (autocorrelation function and 

autocorrelation lengths), can consider the soil spatial variability results from complex geological 

conditions (Xue et al., 2021). It is more reasonable to model the soil properties variation as it 

can give more consistent results when dealing with real projects. Several methods were 

developed for the discretization of random fields, including the point discretization methods 

(such as the midpoint and integration point), average discretization methods (such as the spatial 

average and weighted integral) and series expansion methods (such as the Karhunen-Loève 

expansion and expansion optimal linear estimation). Compared to the first two methods, which 
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are sensitive to the finite element mesh size and require a large number of random variables to 

obtain a good field approximation, the series expansion methods, are more efficient and will be 

used in this study. More details can be found in Chapter 6. 

1.3.3 Reliability analysis methods 

After the determination of the parameter uncertainties, a reliability analysis should be performed 

to deal with the quantitative assessment of the probability of failure occurrence. Three strategies 

are mainly used for the reliability analysis, including the approximation method, simulation 

method and active learning method. The corresponding introduction and methods used in this 

study are detailed below. 

1.3.3.1 Approximation methods 

Approximation methods approximate the limit-state function using linear or quadratic 

expansions at the design point P* to estimate the system reliability. Two approximation methods 

are often used, including the First Order Reliability Method (FORM) and the Second Order 

Reliability Method (SORM). 

The FORM includes an iterative gradient-based search for the design point and a local linear 

approximation of the limit-state function. The first step is to transform the input random vector 

X into a standard normal vector U using the iso-probabilistic transformation method as presented 

in Fig. 1.15 (Bourinet et al., 2018; Hamrouni et al., 2019; Wang et al., 2021). 

 
Fig. 1.15 Approximation of the LSS by FORM (Wang et al., 2021). 
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Then it aims at finding the point on the LSS that is closest to the origin in the standard normal 

space. This point is known as the design point in the reliability analysis and can be determined 

by 

  * arg min , ( ) 0U u G u=   (1.12) 

where ( )G u  is the limit-state function evaluated in the standard normal space. Once the design 

point is found, the Hasofer-Lind reliability index HL  can be determined as the norm of the 

design point, which can be expressed as 

 
*

HL U =  (1.13) 

It should be noted that the algorithm is iterated until some stopping criteria (about β, U and G) 

are satisfied as mentioned by Marelli and Sudret (Marelli and Sudret, 2014). The failure 

probability in the framework of FORM can be obtained by 

 ( )f HLP = −   (1.14) 

where   denotes the standard normal cumulative distribution function. 

Besides, the importance factor of each random variable can be defined as the fraction of the 

safety margin, whereas it is only effective for cases with independent input parameters (Marelli 

and Sudret, 2014). 

The SORM is an extension of the FORM solution. It approximates the LSS by a tangent hyper-

paraboloid at the design point identified by FORM as shown in Fig. 1.15. The probability of 

failure is finally computed from the curvatures of the parabola and the first-order reliability 

index (Hu et al., 2021). The commonly used SORM methods include Breitung’s method 

(Breitung, 1984), Tvedt’s method (Tvedt, 1990), Hohenbichler’s method (Hohenbichler et al., 

1987), etc. It is noted that the SORM can improve the results accuracy of FORM, while the 

computational costs associated with this refinement increase rapidly with the input random 

variables dimension (Marelli and Sudret, 2014). 

The approximation methods are efficient since only a relatively small number of model 

evaluations are required for the determination of failure probability (or reliability index, design 

point, importance factor). They are popular due to the efficiency and the abundant analysis 

results which are useful in practical designs. However, the results tend to become unreliable for 

cases with a complex and highly non-linear LSS. 
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1.3.3.2 Sampling methods 

Simulation methods provide more robust estimations compared to the approximation methods 

since this class of methods aim to draw samples randomly or intelligently from the joint PDF 

of input parameters, and the failure probability can be determined based on the corresponding 

system responses (Marelli and Sudret, 2014). The commonly used methods in the field of 

geotechnical reliability analysis encompass the Monte Carlo simulation (MCS), Subset 

Simulation (SS) (Au and Beck, 2001), Importance Sampling and Moment Methods. The MCS 

and SS used in this study are detailed. 

The MCS is a simple sampling method that generates samples crudely as presented in Fig. 1.16(a) 

and evaluates the samples with a computational model to find an estimation of the failure 

probability Pf. It has been widely used in engineering and is often regarded as a standard 

reference to evaluate the accuracy of other probabilistic methods due to its simplicity and 

robustness. Besides, the MCS is independent of the LSS complexity and the problem dimension. 

Pf can be estimated by the fraction of samples that belong to the failure domain over the total 

number of samples, which can be expressed as 

 
1

1 MCSN

f k

kMCS

P I
N =

=   (1.15) 

where MCSN  is the total number of samples, and the indicator function kI  is equal to 1 when 

the failure occurs, i.e. ( ( ) 0) 1kI G x  = , otherwise, the value of kI  is set to 0. It is noted that the 

calculated failure probability is biased when MCSN  is small, and on the contrary, a large number 

of samples can increase the computational effort. In order to balance the computational accuracy 

and efficiency, the coefficient of variation of fP  (
fPCOV ) for MCS is given and can be defined 

by 

 
1

f

f

P

MCS f

P
COV

N P

−
=  (1.16) 
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(a) MCS (b) SS 

Fig. 1.16 Generated samples from MCS and SS (R-S problem) (Guo, 2020). 

An improved sampling method, the Subset Simulation (denoted SS, also known as adaptive 

multilevel splitting), was then proposed by Au and Beck (Au and Beck, 2001) to reduce the 

variance of the MCS estimator with limited evaluations. It expresses a small failure probability 

as a product of larger conditional failure probabilities for some intermediate failure events. The 

probability of the failure can be expressed as 

 1 1

2

( ) ( | )
m

f i i

i

P P F P F F −

=

=   (1.17) 

where m is the necessary number of levels to reach the real failure domain, 1( )P F  is the failure 

probability corresponding to the first level of SS which is often obtained by a direct MCS (blue 

samples presented in Fig. 1.16 (b)), 1( | )i iP F F −  is the intermediate conditional failure probability 

of the event 1|i iF F− , and  = ( )i iF G x t ( 1,2,...,i m= ) is the intermediate failure domains defined 

by a failure threshold ti. In practice, the value of ti is selected to make the estimated results of 

1( )P F  and 1( | )i iP F F −  are equal to a fixed value 0p  which is suggested as 00 0.5p  , herein it 

is defined as a commonly specified value 0.1 (Marelli and Sudret, 2014). N deterministic slope 

stability analyses are required for the m levels of simulations (one direct MCS level and m-1 

levels of conditional simulations):  

 0= ( 1)(1 )l lN N m p N+ − −  (1.18) 

where lN  is the number of samples at each level of SS, and the accuracy can be improved 

when the value of lN  is large enough, while it also makes the computation less efficient. This 

value is taken equal to 1000 based on the trade-off between computational accuracy and 

efficiency as recommended by Papaioannou et al. (2015). 
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1.3.3.3 Active learning methods 

Active Learning Methods (ALM) is increasingly used for reliability analyses in recent years 

with the development of surrogate models as cheap proxies of computational models. The ALM 

aims to construct a surrogate model with an active learning method, which means that the 

experimental design of a surrogate model is sequentially enriched following a so-called learning 

function. The enrichment can then be stopped when the criteria are satisfied, otherwise, the new 

samples should be selected and enriched again. The reliability methods can then be performed 

based on the well-built surrogate models to provide the probabilistic results, such as the failure 

probability, reliability index, etc. The ALM consists of four main different models, which 

include: 

(1) Surrogate model. It is a simplified or approximated model that is used to represent the 

behaviour of a more complex system since it is computationally less expensive to evaluate. They 

can be constructed using various techniques, such as polynomial regression, artificial neural 

networks, and kriging. The common surrogate models used for the probabilistic analysis include 

the Kriging (Guo and Dias, 2020; Schöbi et al., 2017; Zhou et al., 2020), Polynomial Chaos 

Expansions (PCE) (Guo et al., 2019a; Pan and Dias, 2017), Support Vector Machines (Kordjazi 

et al., 2014), etc. 

(2) Learning function. It aims to find which new candidate enrichment points can bring the 

most useful information for the surrogate model construction (namely to reduce the surrogate 

model errors). It is often defined from the characteristics of the surrogate model, such as the 

variance or built-in errors. For instance, the local variance estimator of Kriging can be used for 

the learning process and the U learning function is developed by Echard et al. (2011). Besides, 

the Fraction of Bootstrap Replicates (FBR), which uses the bootstrap resampling technique, is 

also popular when the PCE metamodel is used (Marelli and Sudret, 2018). 

(3) Stopping criterion. It is noted that too strict criteria can lead to more accurate results, 

whereas the enriched experimental design points and computational time will also increase. 

Conversely, overly loose stopping criteria can cause the results to converge prematurely. 

Therefore, the determination of the stopping criteria is an important part for the metamodel 

robustness and efficiency. The commonly used criteria include the stability-based criteria (which 

means that estimated failure probability or reliability index converges), and variance-based 

criteria, which are related to the surrogate-induced uncertainty in the estimates of the Pf or β 

(Marelli and Sudret, 2018). 
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(4) Reliability estimation algorithm. The commonly used approximation methods and 

sampling methods are introduced in Sections 1.3.3.1 and 1.3.3.2. All of them can be performed 

once the surrogate models are constructed well. Besides, the sensitivity analysis, which aims to 

quantify the input variables effects on the model response variability (more details can be found 

in Section 1.3.4), can also be performed benefiting from the high efficiency of surrogate models. 

In this study, the active learning method which is based on the surrogate model construction, is 

mainly used. More detailed introduction and discussion can be found hereafter. 

1.3.4 Sensitivity analysis methods 

In a probabilistic analysis, it is also interesting to study how the input random variables affect 

the model response, which can be achieved by sensitivity analysis. It is often used to identify 

the most/less contributing inputs (or inputs that have the greatest/smallest impact on the output) 

or help the designers to reduce the dimension (model simplification) when the high-dimensional 

problem is discussed (Mishra, 2004). Numerous approaches are available (Marelli and Sudret, 

2014). The local approach is the historical approach. It aims to study the impact of small input 

perturbations on the model output and the small perturbations tend to occur around nominal 

values (such as the mean of random variables). This approach involves estimating the partial 

derivatives of the model at a specific point or using the adjoint methods when there is an explicit 

adjoint formula (Iooss and Lemaître, 2015). However, this approach is not suitable to solve 

problems when a large number of input variables that are simultaneously varied on a wide 

domain or with non-linear behaviours. 

To overcome the limitations of local methods (linearity and normality assumptions, local 

variations), the Global Sensitivity Analysis (GSA) is proposed to consider the entire space of all 

input variables and may refer to different features of the model output, such as variance or 

distribution. A variety of methods are available (Marelli and Sudret, 2014), for instance, the 

Sobol-based GSA (Sobol, 1993), ANCOVA method (Xu and Gertner, 2008), and Kucherenko 

method (Kucherenko et al., 2012). Sobol-based GSA is mainly used in this study since it receives 

much attention and can give accurate sensitivity indices among the GSA methods. Besides, it is 

efficiently post-processed on the PCE coefficients to estimate the Sobol indices without further 

deterministic calculation (Sudret, 2008). 

The Sobol’ indices are based on the variance decomposition of the model output and Sobol’ 

decomposition can be expressed as 
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 1 2 0 1,2... 1 2

1

( , ,... ) ( ) ( , ) ... ( , ,... )
M

M i i ij i j M M

i i j

f x x x f f x f x x f x x x
= 

= + + + +   (1.19) 

where f () is the computational model, M is the input variables number, term f0 is constant and 

equals to the expected value of f(x), fi(xi) is a function only related to xi, fij(xij) is a function 

related to xi, xj, analogously, f1,2…,M(x1, x2,…xM,) is a function of x. The function of fi(xi) represents 

the main effects, whereas the function with higher input dimension f1,2…,M(x1, x2,…xM,) relates to 

interactions. Eq. (1.19) expands the model f () to a series of functions that are related to one or 

more variables and the expansions can be recursively computed by integrals as follows: 

 0
= ( )xf f dx  (1.20) 
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where notation ~ means that variables are excluded and the higher-order summands can then be 

constructed in an analogous way. The total variance can be defined as 

 2 2

0
( )x

t
V f dx f= −  (1.23) 

It can be further decomposed as 
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= + +   (1.24) 

where Y is the model output, ( )
i

V Y  is the partial variance related to variable 
i

x  which can be 

defined by [ ( )]
i

Var E Y x , where ( )
i

E Y x  is the mean of Y with x~I values and constant 
i

x , Var 

is the variance value. The first-order Sobol index, which represents the effect of 
i

x  on the total 

variance, can then be expressed as 

 i

i

t

V
S

V
=  (1.25) 

The higher-order Sobol index (such as Sij) which considers the interaction effects among 

different variables, can also be determined analogously. 

The total Sobol index of input variable xi is the sum of all the Sobol index involving this variable 

(including the main and the interaction effects) and can be written as 

 1......t i ij M

i j

S S S S


= + +  (1.26) 
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It is noted that the input variables are supposed to be independent. For the cases with 

consideration of input variables dependency, the Kucherenko method is recommended 

(Kucherenko et al., 2012). 

1.3.5 Previous studies about probabilistic analysis of supported excavations 

This section aims to provide a literature review of the existing studies about the supported 

excavations stability in a probabilistic framework, which include: (1) probabilistic analysis of 

excavations considering the basal heave stability; (2) probabilistic serviceability assessment of 

excavations; (3) probabilistic analysis of excavations considering spatial variability. 

1.3.5.1 Probabilistic basal heave stability analysis 

Several works were done for the supported excavations basal heave stability analysis in 

probabilistic framework and the existing scientific studies are summarized in Table 1.3. It is 

seen the studies are related to the rectangular-shaped excavations and the deterministic analysis 

is often implemented by the analytical methods as presented in Section 1.2.1, such as the 

Terzaghi method, the Bjerrum & Eide method and the slip circle method. However, the 

probabilistic stability analysis of circular shafts is rarely discussed. Besides, the undrained case 

is often discussed and the undrained shear strength is considered as a random variable. The 

influence of hydraulic effects on the stability of circular shafts and the corresponding 

uncertainties are less discussed. In addition, concerning the probabilistic methods, the FORM 

and MCS are mainly carried out. In order to improve the calculation efficiency, the surrogate 

model-based methods are expected to be provided in this study. The corresponding studies will 

be presented in Chapters 2, 4 and 5. 

Table 1.3 Summary of previous probabilistic basal heave stability analysis. 

No. Case  
Deterministic 

method 

Input 

random 

variables 

Probabilisti

c method 
Research findings 

1 

RE (Goh 

et al., 

2008) 

Terzaghi method, 

Bjerrum & Eide 

method 

Undrained 

shear strength,  

unit weight, 

loading 

FORM 

Same factor of safety can have vastly 

different levels of risk, depending on 

the degree of uncertainty of the design 

parameters 

2 

RE (Tang 

and 

Kung, 

2011) 

Slip circle method 
Undrained 

shear strength 
MCS 

Different design codes can lead 

different failure probabilities 

3 

RE (Wu 

et al., 

2011) 

Slip circle method, 
Undrained 

shear strength 
FORM 

Modified Terzaghi’s equation is the 

least biased with a reasonably small 

model variation 
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Modified Terzaghi 

method, Bjerrum & 

Eide method 

4 

RE (Tang 

and 

Kung, 

2012) 

Slip circle method 
Undrained 

shear strength 
MCS 

Probability of basal heave safety factor 

being higher than 0.95 with respect to 

FS=1.2 when the COV is assumed to 

be in the range of 0-0.3 

5 

RE (Wu 

et al., 

2014) 

Terzaghi method, 

Bjerrum & Eide 

method,  

Slip circle method 

Undrained 

shear strength 
MCS 

Required factor of safety depends on: 

(a) the target reliability index and (b) 

the COV of the calculated safety factor 

6 

RE 

(Chowdh

ury, 

2017) 

Slip circle method 

Undrained 

shear strength,  

unit weight 

FORM 

Effects of undrained shear strength are 

more significant compared to the unit 

weight; Some design tables are 

provided (for different combination of 

the design parameters) 

7 
RE (Goh, 

2017a) 

Finite element 

analyses, Slip circle 

method, modified 

Terzaghi method 

Undrained 

shear strength,  

unit weight, 

loading 

FORM 

Interface between the jet grout slab and 

the wall is a key component of the 

resistance of the excavation system to 

basal heave failure 

8 

RE (Zhou 

et al., 

2018) 

Slip circle method, 

Terzaghi method, 

Bjerrum & Eide 

method  

Undrained 

shear strength,  

unit weight, 

loading 

MCS 

Slip circle method is more economical 

than the other two methods; Terzaghi 

method is more sensitive to the 

penetration depth of the wall than the 

other two methods 

 

1.3.5.2 Probabilistic serviceability assessment 

Concerning the probabilistic serviceability assessment of supported excavations, the maximum 

horizontal wall deflection or ground surface settlement is usually considered of primary 

importance. In order to consider the wall type, the location, the foundation systems and the 

existing condition of the structures, the numerical simulations are often implemented. Zhang et 

al. (2015b) presented a probabilistic assessment of serviceability limit state of diaphragm walls 

for braced excavations. A polynomial regression (PR) model considering the excavation width, 

excavation depth, soft clay thickness, soil unit weight and the system stiffness, is developed 

based on more than 1,000 FEM simulations using the hardening small strain (HSS) model. The 

FORM and MCS are then implemented to give probabilistic results. The effects of threshold 

values on the failure probability are presented in Fig. 1.17(a). It is seen that a small limiting 

value can lead to a higher failure probability, and the failure probability values decrease with 

the increase of thresholds. The threshold values can be determined by the target reliability index 

as presented in Fig. 1.17(b). 
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(a) Threshold influence on failure probability (b) Determination of threshold based on the target 

reliability index 

Fig. 1.17 Influence of threshold values (Zhang et al., 2015b). 

 

Tang (2011) analysed the probabilistic stability of Formosa excavation in Taiwan. The MCS 

was used for the probabilistic analysis and the results indicated that the acceptable number of 

simulations for the excavation-induced deformation analysis is 1000. The exceedance 

probability of wall deflection caused by excavation is estimated. Based on this case, Luo and 

Das (2015) considered the horizontal wall deflection and ground surface settlement in 

probabilistic stability analysis. The deterministic model is constructed by FEM and the 

normalized undrained shear strength and normalized initial tangent modulus are modelled by 

random variables. The relationship between the system failure probability and the limiting wall 

deflection & surface settlement can be observed in Fig. 1.18. It is seen that for a given level of 

ultimate wall deflection, the failure probability initially decreases as the ultimate ground 

settlement increases. Whereas a further increase in limiting ground settlement cannot result in 

any change in the failure probability of the system after the ultimate ground settlement exceeds 

a critical value. 
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Fig. 1.18 System probability of serviceability failure contour at various combinations of limiting wall 

deflection and limiting ground surface settlement (Luo and Das, 2015). 

The excavation depth of above-mentioned studies is in the range of [9 m, 24 m], whereas the 

supported excavations at large depths (above 30 m) are rarely discussed. This study will analyse 

the stability of a great-depth FIVC excavation (32 m) of the Grand Paris project in France and 

is expected to provide some practical suggestions for cases with similar conditions at least in a 

preliminary stage. The corresponding studies can be found in Chapter 3. 

1.3.5.3 Probabilistic analysis with consideration of spatial variability 

Due to complex geological processes (deposition, sedimentation, weathering and biological 

effects), the physical and mechanical soil properties can be significantly different from one 

location to another (T. Zhang et al., 2021a). Probabilistic analyses considering the soil spatial 

variability are becoming increasingly popular in excavation designs and permit to provide more 

accurate results. Some relevant studies have been done in terms of the basal heave stability 

analysis and serviceability assessment. 

Table 1.4 gives a summary of the probabilistic basal heave stability analysis for supported 

excavations with consideration of the spatial variability. Similar to the random variable case, 

the existing studies are related to the rectangular-shaped excavations and the deterministic 

analysis is often implemented by the analytical methods. Most of them used the slip circle 

method since it can easily account for the soil spatial variability and the (normalized) undrained 

shear strength is modelled by the RF approach. Fig. 1.19 depicts a stationary lognormal RFs 

generated by the Cholesky decomposition method (Luo et al., 2012b). Besides, the FORM or 
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MCS are mainly used for the evaluation of the basal heave failures in spatially variable soils. 

All studies indicated that the neglect of spatial variability can make the basal heave stability 

design conservative. 

 

Fig. 1.19 RF realizations of Normalized undrained shear strength for different scales of fluctuation (Luo 

et al., 2012b). 

 

Table 1.4 Summary of probabilistic basal heave analyses considering spatial variability. 

No. Case  
Deterministic 

method 

Input 

random 

variables 

Random field 

consideration 

Probabilisti

c method 
Research findings 

1 

RE+undr

ained 

(Wu et 

al., 2012) 

Slip circle 

method 

Undrained 

shear 

strength 

Vertical MCS 

Ignorance of spatial 

variability can make the 

calibrated required safety 

factor conservative 

2 

RE+undr

ained 

(Luo et 

al., 

2012a) 

Slip circle 

method 

Normalize

d 

undrained 

shear 

strength 

Vertical FORM 

Basal-heave stability 

design will be too 

conservative if the effect 

of spatial variability is 

ignored 

3 

RE+undr

ained 

(Luo et 

al., 

2012b) 

Slip circle 

method 

Normalize

d 

undrained 

shear 

strength, 

unit 

weight, 
loading 

Vertical + 

horizontal 
MCS 

Negligence of the model 

bias of the slip circle 

method leads to an 

overestimation of failure 

probability 
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4 

RE+undr

ained 

(Luo et 

al., 

2012c) 

Slip circle 

method 

Normalize

d 

undrained 

shear 

strength 

Vertical + 

horizontal 
MCS 

Negligence of the 2D 

spatial random effect 

could yield a basal-heave 

design that is over-

conservative 

5 

RE+undr

ained 

(Tang 

and 

Kung, 

2014) 

Slip circle 

method 

Normalize

d 

undrained 

shear 

strength 

Vertical MCS 

Probability of basal 

heave failure tends to be 

overestimated if the 

effect of spatial 

variability is 

neglected. 

6 

RE+undr

ained 

(Goh et 

al., 

2019b) 

Modified 

Terzaghi 

method 

Undrained 

shear 

strength 

- FORM 

Compared to the FEM, 

the predictions based on 

the 

Terzaghi method and the 

slip circle method are 

more conservative and 

the 

reliability index is 

significantly influenced 

by the spatial variability 

of 

the different soil layers 

The studies of probabilistic serviceability assessment considering the spatial variability are 

summarized in Table 1.5. The Random Finite Element Method (RFEM), which combines the 

random field simulation with the finite element method, is often implemented. This is because 

RFEM accounts for the soil inherent randomness and variability, boundary conditions, complex 

geometrical and geological conditions and other parameters that affect the behavior of 

structures (Fenton and Griffiths, 2010). It has also been widely used in foundations (Li et al., 

2016; Pieczyńska-Kozłowska and Vessia, 2022; Selmi et al., 2019), slopes (Burgess et al., 2019; 

Griffiths et al., 2009; Gu et al., 2023; Wijesinghe et al., 2022) and tunnels (Cheng et al., 2019; 

Pan and Lee, 2019). 

Luo et al. (2011b) and Dang et al. (2014) adopted a spatial averaging technique to characterize 

the vertical spatial variations of soil properties. The spatial variability effects on the variability 

of excavation responses (wall deflection and ground settlement) are depicted in Fig. 1.20. It is 

seen that the excavation responses will be overestimated when the spatial variability is ignored. 

The Cholesky decomposition method was implemented by (Luo et al., 2018a, 2018b; Sert et al., 

2016) and vertical random field of soil properties was modelled in these studies; Papaioannou 

and Straub (2012) performed the stochastic discretization of the non-Gaussian random fields to 

represent the spatial variability of the uncertain material parameters. Bayesian updating with 

equality information was applied to handle efficiently reliability problems with a large number 

of random variables; Gholampour and Johari (2019) generated the conditional random fields 
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using the sequential Gaussian simulation to analyse the excavation stability considering rough 

and perfectly smooth interfaces; Nguyen and Likitlersuang (2021) presented the reliability 

analysis of deep excavations using two-dimensional RFEM. The spatial variability of the 

undrained shear strength was simulated by Cholesky decomposition technique. 

 

Fig. 1.20 Spatial variability effects on the variability of excavation responses (Dang et al., 2014). 

 

Table 1.5 Summary of probabilistic serviceability assessment considering spatial variability. 

No. Case  
Deterministic 

method 

Input 

random 

variables 

Random field 

consideration 

Probabilisti

c method 
Research findings 

1 

RE 

(Luo et 

al., 

2011b) 

FEM 

(PLAXIS) 

Normalized 

undrained 

shear strength 

normalized 

initial tangent 

modulus 

Vertical MCS 

Neglecting spatial 

variability of input soil 

parameters can lead 

to an overestimation of 

variation of wall and 

ground responses 

2 

RE 

(Papaio

annou 

and 

Straub, 

2012) 

FEM 

(SOFiSTiK)  

Weight, 

Young’s 

modulus, 

friction angle 

Vertical + 

horizontal 

Bayesian 

updating 

with equality 

information 

Consider different 

deformation 

measurement outcomes 

at an intermediate 

construction stage 

3 

RE 

(Dang 

et al., 

2014) 

FEM  

(PLAXIS) 

Soil stiffness, 

undrained 

shear strength 

Vertical FORM 

With consideration of 

the spatial variability, 

smaller variation and 

COV in the predicted 

responses are observed 

4 

RE 

(Sert et 

al., 

2016) 

FEM 

(PLAXIS) 
Friction angle Vertical MCS 

Neglecting spatial soil 

variability results in 

either overestimation 

or 

underestimation of the 

probability of 

serviceability failure 
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depending on the 

chosen limiting values 

5 

RE 

(Luo et 

al., 

2018b) 

FEM 

(PLAXIS) 

Standard 

penetration 

blow count 

(N1)60 

Vertical MCS 

Spatial variability has 

a significant impact on 

multiple excavation- 

induced responses 

6 

RE 

(Luo et 

al., 

2018a) 

FEM 

(PLAXIS) 

Normalized 

undrained 

shear 

strength, 

normalized 

secant 

modulus 

Vertical MCS 

Spatial variability in 

soil properties is 

ignored, the failure 

probability can be 

either overestimated or 

under- estimated, 

depending on the 

specific limiting 

criteria 

7 

RE 

(Ghola

mpour 

and 

Johari, 

2019) 

FEM 

Bulk density, 

water content, 

fine-grained 

content, 

density, 

cohesion, 

friction angle 

Vertical + 

horizontal 
MCS 

Suction has important 

effects on the 

excavation responses, 

and cannot be 

overlooked 

when conducting a 

reliability assessment 

of braced 

excavation in spatially 

varying unsaturated 

soils. 

8 

RE 

(Nguye

n and 

Likitler

suang, 

2021) 

FEM 

(PLAXIS) 

Undrained 

shear strength 

Vertical + 

horizontal 
MCS 

Spatial variability of 

the undrained shear 

strength has a 

significant influence on 

simulated lateral wall 

movements and ground 

surface settlements. 

These above-mentioned random field studies improve the excavation stability analysis 

considering soil spatial variability, however there are still aspects that should be addressed. The 

major concern is the probabilistic methods, the existing studies mainly used the MCS, which 

lacks computational efficiency, and FORM, which may fail to give accurate estimates for non-

linear limit state surface cases. The active learning methods are necessary for the efficiency 

improvement of probabilistic analyses. The other one is the lack of research on the selection of 

input parameters that are simulated by the random field approach. A sensitivity analysis is 

preferred for the parameters importance determination to select the important parameters that 

have a significant impact on the model response. For the basal heave stability analysis, the 

probabilistic stability analysis of circular shafts considering the spatial variability can be found 

in Chapter 7. For the serviceability assessment, a real case study with great depth will be 

discussed in Chapter 6. 
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1.4  Machine learning-based excavation analyses 

In recent years, with rapid development of scientific computing software, Machine learning 

(ML) has received much attention in geotechnical engineering due to its high efficiency, 

flexibility and predictive capacity. It can be used to find solutions, recognize patterns, classify 

data or predict future events (Gordan et al., 2016; Sasmal and Behera, 2021). It has been 

extensively used in different geotechnical works, such as the slopes (Mahmoodzadeh et al., 

2022), tunnels (He et al., 2023; Qu et al., 2023), underground mines (Li et al., 2021a), footings 

(Zhang et al., 2022) and embankments (Kłosowski and Rymarczyk, 2022). 

ML has also been introduced for the excavation performance assessment and Table 1.6 gives a 

summary of the machine learning methods application on the supported excavations. It can be 

observed that numerous machine learning methods have been developed in existing literatures 

to analyse the excavation stability. Among the methods, the ANN is one of the most popular 

ML methods due to the simplicity and efficiency. Besides, most of the studies are related to the 

predictions of the retaining wall deflections and ground surface settlements for the rectangular-

shaped excavations. However, the circular shafts (axis-symmetrical conditions) stability 

assessments are rarely discussed. 

Table 1.6 Application of the machine learning methods on the supported excavations. 

No. Case Input Parameters Predictions 
Analysis 

method 

Number of 

cases 

1 
RF (Goh et 

al., 1995) 

Excavation width, depth, soil 

stiffness, shear strength, unit 

weight 

Horizontal wall 

deflection 
ANN 253 

2 
RF (Jan et 

al., 2002) 

Wall thickness, excavation depth, 

excavation stages 

Horizontal wall 

deflection 
ANN 1767 

3 

RF (Leu 

and Lo, 

2004) 

Construction method, excavation 

depth 

Ground surface 

settlement 
ANN 146 

4 

RF (Chua 

and Goh, 

2005) 

Soil strength, the soil modulus, the 

in-situ stress condition, the wall 

and support stiffness, the depth 

and width of excavation 

Horizontal wall 

deflection 
EBBP 3844 

5 

RF (Hsiao 

et al., 

2006) 

Soil shear strength, initial stiffness, 

wall thickness and excavation 

width 

Horizontal wall 

deflection 
ANN 720 

6 

RF (Kung 

et al., 

2007b) 

Excavation depth, system stiffness, 

excavation width, shear strength, 

Young’s modulus 

Horizontal wall 

deflection 
ANN 3486 

7 
RF (Jun et 
al., 2009) 

Cohesion, internal friction angle, 

natural gravity, foundation pit’s 
length, foundation pit’s width, 

foundation pit’s depth, 

Ground surface 
settlement 

ANN 23 
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groundwater level, permeability 

coefficient, piles diameter, and 

buried depth 

8 

RF (Cheng 

and Wu, 

2009) 

Wall thickness, excavation depth 
Horizontal wall 

deflection 
SVM 1083 

9 
RF (Zhang, 

2017) 

Excavation depth, width, system 

stiffness, unit weight, undrained 

shear strength 

Horizontal wall 

deflection 
MARS - 

10 

RF (Zhang 

et al., 

2017) 

Excavation width; excavation 

depth; soft clay thickness;  

soil unit weight; system stiffness 

Inverse analysis of 

soil and wall 

properties 

MARS 1032 

11 

RF (Zhang 

et al., 

2019) 

Soil type, wall stiffness, 

excavation length,  

excavation depth 

Horizontal wall 

deflection 
MARS 90 

12 

RF (R. 

Zhang et 

al., 2021) 

Excavation width,  

wall stiffness,  

wall penetration, soil parameters, 

shear modulus over active shear 

strength 

Horizontal wall 

deflection 

XGBoost 

RFR 

DTR 

MLPR  

MARS 

1778 

13 

RF (Zhao 

et al., 

2021) 

Field measurement for different 

construction procedure 

Horizontal wall 

deflection 

ANN 

LSTM 

GRU 

7728 

Note: ANN: Artificial Neural Network; EBBP: Bayesian back-propagation neural network; SVM: Support 

Vector Machine; MARS: Multivariate Adaptive Regression Spline; RFR: Random Forest Regression; DTR: 

Decision Tree Regression; MLPR: Multilayer Perceptron Regression; LSTM: Long Short-Term Memory; 

GRU: Gated Recurrent Unit. 

The machine learning techniques have also been applied for the probabilistic analyses with 

consideration of the soil variabilities. The ML methods are used for the surrogate model 

construction, the probabilistic methods are then performed to provide probabilistic results. Goh 

and Kulhawy (2005) used an integrated neural network-reliability method to assess the risk of 

serviceability failure through the calculation of the reliability index. Performing a series of 

parametric studies using the finite element method to discuss the probability of exceeding the 

limiting lateral wall deflection for sheet pile wall; Huang and Wang (2007) analysed the 

excavation stability using the ANN-based FORM and ANN-based MCS, and found the 

probabilistic methods based on the ANN are superior to direct reliability methods, since the 

ANN provides a surrogate model to predict the model response in a fast way; Li et al. (2021b) 

build the surrogates models for the hard rock pillar strength predictions based on the SVM and 

BPNN methods, the MCS is then conducted to complete the stochastic assessment; Qu et al. 

(2023) assessed the twin tunnels stability considering the fluid-solid coupling in deterministic 

and probabilistic frameworks. The physics-guided machine learning method is used for the 

metamodel construction based on 1000 groups of input combinations generated by the finite 

element method. The MCS is then performed to assess the probabilistic tunnel stability. 
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Most probabilistic studies often determined the deterministic evaluations samples for the ML-

based surrogate model construction in advance and thousands of simulations are often 

considered to ensure the model accuracy. It cannot reduce significantly the probabilistic 

computational effort. In order to overcome this limitation, the iterative probabilistic procedures 

based on ANN models are proposed. Cho (2009) considered the slope stability problems with 

uncertain quantities through a practical procedure that combined a commercial numerical 

analysis code and artificial neural networks into the probabilistic analysis of slope stability. An 

ANN technique was adopted to establish a model for the approximation of the limit state 

function. Training and test data sets for the model were obtained from numerical calculations. 

The samples are enriched to the datasets until the probabilistic results are stable. Probabilistic 

stability assessments for a hypothetical two-layer slope as well as for the Cannon Dam in 

Missouri, USA were performed to verify the application potential of the proposed method; Lü 

et al. (2012) proposed an efficient approach for probabilistic ground-support interaction analysis 

of deep rock excavation using the ANN-based response surface and uniform design. The 

uniform design table is used to prepare the sampling points for training the ANN and for 

determining the parameters of the network via an iterative procedure. The iterations will be 

stopped when the probabilistic results start to converge and the flowchart is given in Fig. 1.21. 

The efficiency of this proposed procedure is then validated by comparing the results of the 

FORM/SORM based on the generated ANN response surface with the MCS and polynomial 

response surface method. 
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Fig. 1.21 The procedure presented in (Lü et al., 2012). 

The adaptive probabilistic methods can provide probabilistic results with minimal deterministic 

simulations and guaranteed accuracy, which improve the efficiency of ANN applications in 

geotechnical engineering. However, there are still two aspects that could be further improved, 

which include: (1) the procedure can only be considered in low-dimensional cases (random 

variables number < 20) and is limited for high-dimensional problems (such as the random field 

case). This is because the ANN model was used to approximate the real limit state surface and 

the approximation methods were then performed to determine the reliability index. It is noted 
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that for high-dimensional problems, the approximation methods tend to become unreliable due 

to the presence of complex non-linear limit-state surfaces (Marelli and Sudret, 2014). To avoid 

dimensional restraints, the combination of the ANN and the crude MCS is performed in this 

study; (2) the existing studies often use single basic machine learning methods. With the 

development of computer science, novel hybrid methods can be applied to improve calculation 

efficiency and stability. Atom Search Optimization (ASO)-ANN method will be introduced and 

implemented in this study, which exhibits better adaptive convergence and efficiency in 

optimizing neuron network parameters (W. G. Zhao et al., 2019). The improvements can be 

found in Chapter 7. 

1.5  Conclusion 

Supported excavation analyses (rectangular excavation and circular shaft) in deterministic and 

probabilistic frameworks are presented. The field observations, laboratory-scale physical tests, 

analytical/empirical methods and numerical simulations are used for the deterministic analyses. 

The probabilistic methods, which include the reliability methods (approximation method, 

simulation method and active learning method) and sensitivity analysis methods, are then 

introduced. Some previous probabilistic studies of supported excavations are reviewed and the 

advantages/limitations are discussed. In order to address the existing studies limitations and to 

better understand the supported excavations stability under different conditions, the supported 

excavation stability analyses in deterministic and probabilistic frameworks are presented in the 

following chapters. 
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Chapter 2  

Stability analysis of rectangular 

excavations in undrained conditions 
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2.1  Introduction 

This chapter presents deterministic and probabilistic methods for the supported excavation 

stability analysis considering a two-dimensional plane-strain configuration. An improved limit 

analysis mechanism (ILA) is proposed first based on the existing limit analysis mechanism to 

assess their basal heave safety factor under undrained conditions. A comparative study with 

numerical simulation and three limit equilibrium methods, including the modified Terzaghi 

method, the modified Bjerrum & Eide method and the slip circle method, is carried out to 

validate the proposed ILA effectiveness. 

In the probabilistic framework, an active learning method based on the Polynomial Chaos 

Kriging model is introduced to improve the efficiency of the probabilistic results estimation. 

Academic cases are then conducted to get some insights into the efficiency and accuracy of the 

probabilistic framework compared with the direct probabilistic methods, such as the direct 

Monte Carlo Simulation. Benefiting from the high efficiency, the effects of the wall embedment 

depth, shear strength coefficient of variation, and soil-wall interface on the excavation stability 

are then discussed. 

2.2  Development of limit analysis model 

2.2.1 Improved limit analysis 

Chang (2000) and Cai et al. (2018) discussed the basal heave stability using the limit analysis 

method based on the failure mechanism illustrated in Fig. 2.1(a). H and B are respectively the 

excavation depth and width. B1 refers to the distance from the wall to the vertical failure surface 

fi. D is the wall embedment depth, and T is the depth from the wall bottom tip to the hard stratum. 

The wall is assumed to be fully rigid and the lateral resistance afforded by the wall is not 

considered, which means that the wall moves along the vertical direction while it is motionless 

in the horizontal direction (Faheem et al., 2003; Huang et al., 2018). 

The existing limit analysis (ELA) mechanism consists of a 90o circular arc (jkh) sandwiched 

between two 45o isosceles wedges (ijk and gjh), soil columns efij and mljg. v is the velocity of 

plastic flow and the safety factor can be determined by the ratio of the internal energy 

dissipation E and the external work rate W. The safety factor 
-ELAsF  can be calculated using Eq. 
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(1.9). B1 is set to B when a hard stratum is present at a depth of T≥Tc, otherwise, 
1= 2B T  

(
cT T ), 

cT  is the critical hard stratum depth from the wall bottom tip and is equal to / 2B . 

  

(a) Existing (ELA) (b) Improved (ILA) 

Fig. 2.1 Limit analysis failure mechanism. 

It should be noted that the triangular wedges ijk and gjh of the existing failure mechanism are 

defined by a constant angle of 45o. However, this mechanism may change in different 

excavations with different geometry or soil parameters. In order to assess excavation stability 

more accurately, the improvements to the failure mechanism are necessary. 

This study proposed a failure mechanism as depicted in Fig. 2.1(b). It can be found that the 

isosceles triangle gjh is determined by a variable angle β varying in the range (0, π/2) and the 

circular arc angle (hjk) is then equal to 3π/4-β. The value of B2 can then be defined as 

 
2 12 cosB B =  (2.1) 

B1 is equal to B in the existing failure mechanism when 
cT T . However, the plastic area behind 

the wall is often larger than B (Huang et al., 2011) since it is also related to the wall penetration 

depth and the value of B1 is normally increased as the penetration depth increases. It is more 

reasonable to consider the corresponding effects and set it to be B+0.5D in this improved failure 

mechanism. 

The value of β under different cases (different undrained shear strength, excavation depth, width 

and wall embedment depth) can be optimized by the work rate balance equation of upper bound 

limit analysis. It states that the external work rate W is no more than the energy dissipation E. 

Otherwise, the failure occurs due to the excessive external work rate (Hou et al., 2019). 

Therefore, the values of W and E should be evaluated.  
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Herein, the external work rate is provided by the blocks weight (efij, ijk, jkh, gjh and mljg) 

respectively denoted by dWi (i∈[1, 5]) and can be expressed as 

 
1 1: ( +D)

2

v
efij dW H B=  (2.2) 

 2 21
2 1

1 1
: ( )

2 2 2 4 2

B v
ijk dW B v =    =  (2.3) 

 
- -

2 21
3 1

4 4

1 1
: ( ) cos cos

2 42

B
jkh dW v d B v d

   

      =    =   (2.4) 

 22
4 2 2

1 1
: tan sin sin tan

2 2 4
gh gh

B
gjh dW B v B v     = −      = −  (2.5) 

 5 2: mgmljg dW DB v= −  (2.6) 

where γ is the unit weight of the soil (kN/m3). The total external work rate can be obtained by 

the work rate summation of these 5 blocks 

 
5

1

i

i

W dW
=

=  (2.7) 

The internal energy dissipation E is deduced from the sliding along fi, ij, ik, hg, mg, lj and the 

arc kh combined with the radial shear sliding (radial shear zone jkh), which are denoted by dEj 

(j∈[1, 8]) and expressed as follows 

 
1

1
: ( )

2
ufi dE H D S v= +  (2.8) 

 
2 1

1
:

2
uij dE B S v=  (2.9) 

 
3 1

1
:

2
uik dE B S v=  (2.10) 

 
4 2

1
:

2cos
u ghhg dE B S v


=  (2.11) 

 5: i u mgmg dE r DS v=  (2.12) 

 6: i u ljlj dE r DS v=  (2.13) 
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 

 =    (2.14) 

 
1 sin

-
2

8

4

1
:

sin

B
H D

H D
jkh dE Su v dzd


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where 
uS  is the undrained shear strength (kPa) and ri is the soil-wall adhesion coefficient. It is 

introduced since the soil-wall interface strength is reduced due to the wall construction 

disturbance and is often considered to be proportional to the adjacent soil strength, i.e. riSu. The 

velocity along gh, mg and lj can be respectively determined by 

 
sin( 2 )

gh

v
v

 
=

−
 (2.16) 

 sin
sin( 2 )

gm

v
v 

 
=

−
 (2.17) 

 
1 1

( sin )
sin( 2 ) 2

ljv v
 

= +
−

 (2.18) 

Like the external work rate calculation, the energy dissipation can also be obtained by the 

summation of the elementary work rate jdE . The total energy dissipation finally writes 

 
8

1

j

j

E dE
=

=  (2.19) 

The safety factor can then be obtained by performing an optimization work with respect to the 

variable (i.e. β) and expressed as 

 -ILA ( )s

E
F f

W
= =  (2.20) 

The strength reduction method and a bisection approach (Hou et al., 2019) are employed to find 

the critical 
sF  value. The flowchart can be found in Fig. 2.2. 
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Fig. 2.2 Flowchart of the safety factor optimization. 

It is noted that the value of β is in the range of o o[45  90 )， , and the limitation of B2≤B should be 

satisfied to ensure the failure mechanism is within the excavation. 

2.2.2 Deterministic model comparison 

This section aims to present the comparison of safety factors assessed by the improved limit 

analysis, numerical simulations (NS) and the existing analytical methods presented in Section 

1.2.1.2, including the modified Terzaghi method (MT, see Eq. (1.5)), the modified Bjerrum & 

Eide method (MBE, see Eq. (1.7)), the slip circle method (SC, see Eq. (1.8)) and the existing 

limit analysis method (ELA, see Eq. (1.9)). 

A Finite Element Limit Analysis (FELA) is performed for the NS evaluations (Krabbenhoft et 

al., 2015). A plane-strain model is used and half of the cross-section is considered due to the 

excavation symmetry. The horizontal distance between the wall and the outer model boundary 

and the vertical distance from the excavation base to the outer boundary are respectively larger 

than 2B and 5H in order to minimize the boundary effects. Besides, the displacements are fully 

fixed at the bottom boundary while only vertical displacements are allowed for the lateral 

boundaries. The soil is modelled as a linear elastic-plastic Tresca material and the wall is 

assumed to be rigid. The interface elements are introduced to consider the soil-wall interface 

roughness. 
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Fig. 2.3 A FELA model for D=5 m, H=10 m, B=20 m, Su=40 kPa, and ri=1. 

In order to account for the applicability of each basal heave stability method, several cases with 

different excavation depths, widths, wall embedment depths and soil-wall interfaces are 

implemented and presented in Fig. 2.4 to Fig. 2.7. 

A discussion of the effects on excavation depths is depicted in Fig. 2.4. 14 cases with different 

excavation depths from 10 m to 40 m with an interval of 5 m under Su=20kPa and 40kPa are 

performed. The excavation width is supposed to be constant and equal to 20 m and the wall 

embedment depth to 5 m. It is seen that the safety factor decreases with the increase of H/B (i.e. 

increase of H) and the decrease is significant for small values of H/B. The safety factor of ILA 

is the closest to the FELA among the 5 analytical methods and the maximum difference is found 

to be lower than 2%. 
ELAsF −

 is always larger than 
NSsF −

 by the fact that the ELA assumes the 

failure mechanism to be deterministic as shown in Fig. 2.1(a) and cannot obtain the critical safety 

factor with accuracy. It can also be concluded that the 
MTsF −

 is consistent with the 
NSsF −

 when 

the H/B is small, however, the difference is increasing with the increase of H/B. For example, 

when H/B=0.5 and Su=20kPa, the 
MTsF −

 and 
NSsF −

 are respectively equal to 1.58 and 1.63, with 

a difference of 3.0%. While this value can be up to 9.0% when H/B=2. Conversely, the difference 

of 
MBEsF −

 and 
NSsF −

 becomes lower as H/B increases. This finding is consistent with the 

existing remarks considering that the Terzaghi method is valid for wide excavations whereas the 

Bjerrum & Eide method is more suitable for deep excavations (Goh et al., 2008). The slip circle 

method gives the most conservative results and the differences can be up to 36%. 



80 

 

  
(a) Su=20 kPa (b) Su=40 kPa 

Fig. 2.4 Safety factors comparison for different values of H/B with B=20 m, D=5 m. 

The excavation width influence is discussed for different cases with B/H (0.5~2.0) and Su (20 

kPa and 40 kPa). The results are shown in Fig. 2.5. The safety factors increase with the H/B (i.e. 

with the decrease of B) except for the slip circle method, which is independent of the excavation 

width. It can also be seen that the SC method is suitable for wide excavations by the fact that the 

difference between 
SCsF −

 and 
NSsF −

 becomes smaller with the decrease of H/B. Similarly to 

the results presented in Fig. 2.4, as H/B increases, the difference of 
MTsF −

 and 
NSsF −

 becomes 

significant while 
MBEsF −

 is closer to 
NSsF −

. The existing limit analysis mechanism still 

overestimates the basal heave stability and the improved ones are consistent with the numerical 

results in both wide and narrow excavations. 
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(a) Su=20 kPa (b) Su=40 kPa 

Fig. 2.5 Safety factors comparison for different values of H/B with H=20 m, D=5 m. 

Fig. 2.6 illustrates the wall embedment depth influence (D/H∈[0, 2]) on the basal heave stability. 

The excavation depth and soil undrained shear strength are respectively equal to 20 m and 40 

kPa. Two kinds of excavation width are considered, including B=10 m (narrow excavation) and 

B=30 m (wide excavation). As expected, the longer embedment depth increases the safety factor. 

However, it should be noted that the slip circle method cannot give reasonable results and 

underestimates significantly the excavations stability when the embedment depth equals 0. This 

is because when D=0, the slip circle radius is the distance from the lowest strut level to the final 

excavation level. It means that the failure surface terminates at the intersection point of the 

excavation base and wall (point l as depicted in Fig. 2.1(a)), which will significantly 

underestimate the resisting moment
rM . Besides, it is seen that the existing limit analysis method 

gives more biased results with the increase of the wall penetration depth, and the difference can 

be up to 36%. In addition, for the narrow excavation, the safety factor differences between the 

MT and NS are increased with the wall embedment depth, in contrast to the wide case where the 

results are consistent. MBE can give reasonable results for the narrow excavation whereas 

underestimates the basal heave stability for the wide excavation. The results obtained by the 

proposed limit analysis method can give accurate results for all the cases with different 

excavation widths and wall penetration depths. 
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(a) B=10 m (b) B=30 m 

Fig. 2.6 Safety factors comparison for different values of D with H=20 m. 

The soil wall interface effects on the excavation basal heave stability are also discussed. It is 

noted that the soil-wall interface coefficient is considered to vary in the range of [0, 1] (Day and 

Potts, 1998). In the existing analytical methods, the MT, MBE and the present ILA methods are 

able to consider the soil-wall interface influence and will be performed in this discussion. The 

results are depicted in Fig. 2.7. These results allow to discuss of the soil-wall interface effects 

with the excavation depth and undrained shear strength being respectively equal to 20 m and 40 

kPa. Six subfigures are depicted for different cases considering two excavation widths (10 m 

and 30 m) and wall embedment depths varying from 5 m to 15 m (interval of 5 m). 

The safety factor increases with the increase of ri. The effects of ri are more essential for the 

cases with larger D values. Taking B=30 m as an example, the safety factors are respectively 

equal to 0.85 (ri=0) and 1.03 (ri=1) when D=5 m, whereas the values are 0.90 (ri=0) and 1.31 

(ri=1) with a difference being up to 46.7%. It can be explained by Eqs. (2.12) and (2.13), the 

effects of ri increase with the increase of D, which can lead to a higher influence on the 

excavation stability. It is seen that the safety factor may be lower or higher than 1 with the 

variation of the soil-wall interface, which can be defined as a failure or safe state in the analysis. 

The determination should be done with attention. 

Besides, it can be observed that the MT can provide better results when the soil-wall interface 

strength is higher, while the MBE is more suitable for most cases with small soil-wall interface 
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strength. The proposed ILA can give results that are consistent with the NS for different soil-

wall interface coefficients. In addition, similar to the above discussions, the MT and MBE are 

respectively suitable for wide and narrow excavations. 

 

 

 
Fig. 2.7 Safety factors comparison for different values of ri with H=20 m and Su=40 kPa. 

In general, the safety factors increase with the decrease of the excavation depth, width as well 

as the increase of embedment depth and soil-wall adhesion factor. The ELA method 

overestimates the safety factors, in contrast, the MBE and SC provide smaller ones for most of 

cases. Compared to the limit analysis with the well-known failure mechanism, the proposed ILA 

method can provide more consistent results within less than one second (around 0.15 s) when 

compared with the time-consuming numerical ones (around 40 s) and can significantly alleviate 

the computational burden. Besides, the MT method can lead to reasonable results for wide 
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excavations whereas the MBE is more suitable for narrow ones. The MT and MBE methods are 

also restrained to account for the soil non-homogeneity. The SC gives the most conservative 

results among the analytical methods. It cannot explain the excavation width effect and gives 

unrealistic results for the case without wall embedment. Therefore, the proposed ILA is 

preferable and has the potential to be an effective tool to analyse the stability of the supported 

excavations under undrained conditions in an efficient way. 

2.3  Proposed probabilistic analysis framework 

Once the deterministic model is determined, a probabilistic analysis should be performed to 

reflect the impact of the soil parameters uncertainties. The active learning method (LAM) is 

carried out in this study. This section aims to introduce the probabilistic methods employed and 

the flowchart of the proposed probabilistic framework. 

2.3.1 Polynomial Chaos Kriging 

The commonly used surrogate models used for the probabilistic analysis include the Kriging 

(Guo and Dias, 2020; Schöbi et al., 2017; Zhou et al., 2020), Polynomial Chaos Expansions 

(PCE) (Guo et al., 2019a; Pan and Dias, 2017), Support Vector Machines (Kordjazi et al., 2014), 

etc. This study introduces an advanced metamodeling technique, the Polynomial Chaos Kriging 

(PCK), which integrates the advantages of PCE and Kriging. It uses a sparse set of orthonormal 

polynomials to approximate the global behavior of the computational model and the Kriging to 

manage the local variability of the model output (Schöbi et al., 2015). It permits to build a more 

efficient and accurate metamodel compared to PCE and Kriging separately (Schöbi et al., 2017).  

More specifically, PCK is defined as a universal Kriging model, whose trend is modelled by a 

sparse set of orthogonal polynomials instead of a constant value within the ordinary Kriging. 

The basic function of the PCK theory is expressed as 

 2( ) ( ) ( )x x x
PCK

i i

i A

Y M Z 


 =  +  (2.21) 

where x is a vector with input random variables, ( )PCKM x  is the model output approximation 

using PCK and A is the index set of polynomials. ( )i i

i A




 x  is the sum of orthonormal 

polynomials, which is used to describe the trend within the universal Kriging formula. It is 

required to truncate to a finite number of terms for the sake of practical applications. Using the 
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standard truncation method can be inefficient particularly for the high dimensional problems 

and then an improved hyperbolic truncation scheme is proposed by Blatman and Sudret (2011), 

which is used in this study. The model construction includes the determination of multivariate 

polynomial basis ( )i x , which is the tensor product of univariate orthonormal polynomials, 

and the corresponding unknown coefficients 
i , which is estimated by the least-square 

minimization method (Pan et al., 2020). Several families for the univariate orthonormal 

polynomials are proposed and the Hermite polynomials which correspond to the standard 

normal random variables are considered in this study (Pan and Dias, 2017). Besides, the sparse 

PCE (SPCE) is considered by implementing the Least Angle Regression (LAR) algorithm to 

determine and select the important candidate polynomial basis. The insignificant PCE 

coefficients are then ignored and the polynomial number can be reduced. 

2  and ( )Z x  denote respectively the variance and the zero mean, unit variance stationary 

Gaussian process defined by an autocorrelation function between two sample points 

( ' ; )R x x − , where   is the hyper-parameter to be estimated. Several autocorrelation functions 

have been proposed, i.e. linear, exponential, Gaussian and Matern functions. The Matern-5/2 

model is adopted as the autocorrelation function in this study (Marelli and Sudret, 2014)  

 2
' ' '5

( , '; , 5 / 2) (1 5 ( ) )exp 5
3

x x x x x x
R R x x v

  

− −  − 
= = = + + − 

 
 (2.22) 

The construction of the PCK model can be divided into two parts, which consist of the sets of 

polynomials determination in the trend and the calibration of the Kriging model. Optimal PCK, 

which defines the metamodel iteratively, is performed. The sparse set of polynomials obtained 

by the LAR algorithm are ranked in decreasing order according to their correlation to the model 

response. Each polynomial is then added individually to the trend of a PCK. In each iteration, 

a new PCK model (coefficients of trend and parameters of autocorrelation function) is 

calibrated, and the optimal PCK metamodel corresponds to the model with minimal value of 

the leave-one-out error (ErrLOO) as defined by 

 

( ) ( ) 2

,( )

1

( ( ))
1

Var( )

N
i i

y i

i

LOO

Y x

Err
N Y

 −

=

 
− 

 =
 
 
 


 (2.23) 
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where 
( )

,( ) ( )i

y i x −  is the prediction values based on the PCK metamodel using all the 

experimental design points except ( )ix , ( )iY  is the exact model response, and Var(Y) is the 

corresponding estimated variance. The corresponding flowchart of the PCK metamodel 

construction can be found in Fig. 2.8. More details of the PCK can be found in Marelli and 

Sudret (2014). 

 

Fig. 2.8 Optimal PCK metamodel construction. 

 

2.3.2 Probabilistic analysis framework 

This study proposed the PCK metamodel-based probabilistic analysis (PCK-PA) and this 

section aims to present the detailed procedure. To improve the efficiency and facilitate the 

automatic calculations, MATLAB is used for the pre- and post-processing of the probabilistic 

analyses. A flowchart of the PCK-PA is depicted in Fig. 2.9 and the details are described below: 

Step 1: Preparation. Determine the geometrical and geotechnical parameters and construct the 

deterministic model as shown in Section 2.2; Determine the input parameters statistics (i.e., the 

distribution, mean value and coefficient of variation) and an initial Experimental Design (ED) 

based on the Latin Hypercube Sampling (LHS) can be generated. The ED initial size 

corresponds to the max [10, 2N], where N is the considered random variables number. 

Step 2: Input-output sets determination. Compile the batch commands and map the generated 

samples on the deterministic model. The model response (such as the basal heave safety factor) 

is then exported and saved automatically. 
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Step 3: Metamodel determination. Construct an initial PCK metamodel based on the initial 

input-output sets and check the PCK metamodel accuracy. Two criteria, which correlate to the 

Leave-One-Out error (LOO) LOOErr  and failure probability convergence error 
fPErr , are 

considered for the metamodel accuracy improvement. 
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where ( )iY  is the result from the FEM model, 
( )

,( ) ( )i

Y i x −  is the prediction from PCK 

metamodel using all the ED points except ( )ix , 2 ( )

,( ) ( )i

Y i x −
 is the estimated variance, ( 1)fP i −  

and ( )fP i  are respectively the (i-1)th and ith failure probabilities, enN  is the enrichment samples 

number, 
tgN  is the number of failure probability needs to be compared, 

_LOO tgErr  and 
_fP tgErr  

are the threshold values for both criteria. 

_LOO tgErr , 
_fP tgErr  and tgN  are respectively set to 0.01, 0.01 and 10 in this study (Pan and Dias, 

2017). Once the 
LOOErr  and 

fPErr are smaller than the values of 
_LOO tgErr  and 

_fP tgErr , the 

procedure enters the next step. Otherwise, ED enrichment for the PCK metamodel construction 

is necessary. The U-function is performed in this study (Moustapha et al., 2022), which is 

expressed by 

 
( )

( )
( )

x
U x

x




=  (2.25) 

The newly added sample is chosen by minimizing Eq. (2.25), i.e., arg min ( )nS U x= , which 

permits finding the point which has the highest probability of being misjudged as failure or 

safety. 

Step 4: Probabilistic analysis. Determine the limit state function and perform the existing 

probabilistic methods based on the PCK metamodel and export results, which include ① 

Monte-Carlo Simulations (MCS): failure probability, model response distributions and 

statistical moments of the system response (mean value and standard deviation (std.)); ② First 

Order Reliability Method (FORM): reliability index, design point (DP) and importance factor; 
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③ Global Sensitivity Analysis (GSA): first-order sensitivity index and total effect sensitivity 

index. It should be noted that not only the mentioned probabilistic methods but also others, such 

as the Subset Simulation (SS), can be performed after the PCK construction. The calculations 

are performed on a computer with an Intel (R) Core (TM) i7-8700K 3.70GHz CPU. 

 

(a) Framework of the proposed PCK-PA 

 

(b) An active learning process for the PCK metamodel construction 

Fig. 2.9 Flowchart of the proposed metamodel-based stochastic analysis procedure PCK-PA. 

 

2.3.3 Comparison and discussion of the probabilistic results 

This section carries out the above-mentioned probabilistic analysis procedure and the improved 

limit analysis method to analyse the basal heave stability of supported excavations in a 

probabilistic framework. The undrained shear strength uS  and the unit weight γ are considered 

as random variables and the others are constant. To avoid negative values, a lognormal 

distribution is adopted and the statistical properties (mean value and coefficient of variation 

(COV)) details are summarized in Table 2.1. Other parameters of the reference case include 

D=5 m, H=10 m, B=20 m, Su=40 kPa, and ri=1. These values will be used if there is no specific 

statement. Besides, it should be noted that in the deterministic framework, the excavation is 
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considered a failure when the safety factor is smaller than 1, leading to the limit-state function 

in a probabilistic analysis as ( ) 1sG x F= − . 

Table 2.1 Statistical properties of input random variables. 

Parameters Notation 
Statistics of parameters 

Mean COV Distribution 

Undrained shear strength Su (kPa) 40 0.2 Lognormal 

Unit weight γ (kN/m3) 18 0.05 Lognormal 

 

The PCK metamodel is constructed first. 10 input samples are initially generated by the LHS 

for the metamodel construction. An iterative procedure is then followed to satisfy the criteria 

presented in Eq. (2.24). Fig. 2.9 depicts the numerical convergence of the leave-one-out error 

LOOErr  and of the failure probability error 
fPErr . The criterion for LOO is always satisfied. 

fPErr  

satisfies the requirement after 2 sample enrichments, and the error becomes smaller than 0.01. 

A total of 22 evaluations, including 10 initial EDs and 12 enrichments, are used for the PCK 

metamodel construction. 

 

Fig. 2.10 PCK metamodel construction process with the enrichment samples increase. 

The probabilistic methods are calculated after the metamodel construction and the probabilistic 

results can be found in Table 2.2. The results obtained by the direct probabilistic methods are 

also given for comparison and validation. The failure probabilities, reliability index, design point 

and sensitivity index which are calculated by the PCK-MCS, PCK-SS, PCK-FORM, PCK-GSA 

and the direct MCS, SS, FORM and GSA, are very consistent. The PDFs of 40000 safety factors 

calculated by the direct MCS and PCK-MCS are also given and can be found in Fig. 2.11. It can 

be observed that the results of PCK-MCS are in good agreement with the ones of the direct MCS. 

This allows validating the accuracy of the PCK-based probabilistic analysis.  
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Table 2.2 Comparison of probabilistic results. 

Method  Pf β 
DP Sensitivity index Number of 

evaluations Su γ Su γ 

PCK-MCS 1.15e-2 - - - - - 

22 

PCK-SS 1.13e-2 - - - - - 

PCK-FORM 1.17e-2 2.266 25.4 18.5 0.938 0.062 

PCK-

GSA 

Total 
- - - - 

0.930 0.070 

First 0.929 0.066 

MCS 1.13e-2 - - - - - 40000 

SS 1.12e-2 - - - - - 1841 

FORM 1.19e-2 2.256 25.5 18.5 0.937 0.063 26 

GSA 
Total 

- - - - 
0.939 0.061 

4000 
First 0.938 0.052 

 

 

Fig. 2.11 PDFs of safety factor obtained by the PCK-based MCS and the direct MCS. 

Concerning the computational effort, it is noted that the computation time of the PCK-based 

probabilistic analysis consists of 2 parts, the construction of the PCK model and the performance 

of the probabilistic methods. The surrogate model is fast-evaluated compared to the 

computational model (Marelli and Sudret, 2014), the computation time of the MCS, SS, FORM 

and GSA based on the PCK model can thus be negligible. The direct comparison of the 

deterministic evaluation number is reasonable. It can be observed that the PCK-based 

probabilistic analysis only needs 22 deterministic evaluations. However, a total of 40000 

evaluations are required for the direct MCS, and the improved sampling technique SS increases 

the calculation efficiency, however, it still needs 1841. The sensitivity index determination also 

requires further 4000 evaluations. The FORM although only needs 26, which is close to that of 
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PCK. However, it should be noted that the FORM may fail to give accurate estimates for 

complex or non-linear limit state surface cases. In general, the proposed PCK-metamodel 

probabilistic analysis procedure is efficient in terms of the results accuracy and the 

computational effort, particularly for the cases with small failure probability. For example, when 

the direct MCS is implemented, around 10e6 runs are required with a Pf of 10e-4 in order to 

ensure the failure probability accuracy and the calculation time can be up to 41.67 h, which is 

time-consuming. In addition, the PCK-based probabilistic method is also effective and 

interesting when the deterministic model is constructed by numerical simulations, which will 

also be discussed in the following chapters. 

2.4  Parametric study 

Fig. 2.12 depicts the influence of COVSu on the failure probability. It can be observed that for 

the same safety factor, the value of Pf is different with the COVSu values change. The failure 

probability increases with COVSu increases. The effect of COVSu is more significant for the case 

with larger Fs values. For example, when the mean safety factor is equal to 1.0, the failure 

probabilities are respectively equal to 0.52 and 0.59 for COVSu =0.2 and COVSu =0.5, while the 

failure probability varies from 4.5e-4 (COVSu =0.2) to 1.1e-1 (COVSu =0.5) when the safety factor 

is equal to 2.0. It represents a difference of 3 orders of magnitude. 
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Fig. 2.12 Effect of the COVSu on the failure probability. 

Fig. 2.13 gives some information about how the soil-wall adhesion coefficient influences the 

failure probability. It can be seen that for larger values of ri, the failure probability is smaller as 

expected. This is because the riSu values increase leads to more resistance between the soil and 
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wall, which is beneficial to the excavation stability. Besides, the influence of ri is significant 

with the Su increase. It can be explained by the fact that for larger undrained shear strengths, the 

value of riSu is larger and can have more influence on the basal heave stability. For example, the 

failure probability ranges from 0.51 (ri=1) to 0.69 (ri=0) when Su=20 kPa, while for the case 

with Su=50 kPa, the difference can be up to 87% (3.0e-3 and 4.0e-4 for ri =0 and ri=1, 

respectively). Therefore, the soil-wall adhesion coefficient should be chosen with caution in 

excavation probabilistic analyses, particularly for the large undrained shear strength value cases. 
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Fig. 2.13 Effect of the soil-wall adhesion coefficient on the failure probability. 

The wall embedment depth effect on the failure probability is shown in Fig. 2.14. The failure 

probability decreases with the embedment depth increase. Its influence is more significant for 

the cases of large soil-wall adhesion coefficient values, i.e. the failure probability of ri=1 changes 

rapidly compared with the case of ri=0.1 for different embedment depths. For example, the 

failure probabilities are respectively equal to 6.5e-2 and 1.7e-2 when the wall embedment depth 

increases from 0 to 20 m with ri=0.1 and Su=40 kPa. However, this probability decreases to 

2.01e-4 for the case of ri=1 and D=20 m. The explanation is similar to the one of Fig. 2.7, i.e. 

the effects of D can be enlarged with the increase of ri values. It clarifies the important soil-wall 

adhesion coefficient role, particularly for excavations with larger wall embedment depth. 

Besides, the wall embedment depth can have a significant effect on the failure probability for 

large undrained shear strength values. 
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Fig. 2.14 Effect of the embedment depth D on the failure probability. 

 

2.5  Conclusion 

This chapter has presented deterministic and probabilistic analyses of the basal stability analysis 

of supported excavations in undrained clays. An improved limit analysis (ILA) mechanism is 

proposed to estimate the basal heave safety factor of supported excavations under undrained 

conditions. Compared with other existing analytical methods, including the modified Terzaghi 

method (MT), the modified Bjerrum & Eide method (MBE), the slip circle method (SC) and the 

existing limit analysis method (ELA), the ILA determines the safety factor and failure 

mechanism through an optimization process, which can lead to more consistent results with the 

numerical simulation (NS) ones in an affordable calculation time. Besides, the advantages of 

ILA are enhanced by its low time calculation and results accuracy compared with the NS, which 

may be preferable and has the potential to be an effective tool to analyse the excavation stability. 

The comparison results indicate that the ELA method overestimates the safety factors and the 

safety factor differences are increased with the wall penetration depth increase and the wall 

width decrease. The MT and MBE methods are not suitable for respectively narrow and wide 

excavations stability analyses. Besides, they are restrained to account for the soil non-
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homogeneity. The SC method gives the most conservative results, ignores the excavation width 

effect and may be unreasonable for cases without wall embedment depth. 

The Polynomial Chaos Kriging-based probabilistic analysis (PCK-PA) is then proposed. The 

involved metamodel construction, adaptive procedure, criteria, and probabilistic methods 

implementation are introduced via a flowchart. A variety of probabilistic results can be obtained, 

including failure probability, model response distributions and statistical moments of the system 

response (from Monte-Carlo Simulations); reliability index, design point and importance factor 

(from First Order Reliability Method); first-order sensitivity index and total effect sensitivity 

index (from Global Sensitivity Analysis). A comparative study of the probabilistic results 

obtained by the PCK-based probabilistic methods and the direct ones is then carried out. The 

results indicate the proposed probabilistic procedure PCK-PA helps to improve the 

computational efficiency of probabilistic analyses, particularly for cases with small failure 

probabilities. 

By benefiting from the high computational efficiency of the proposed method, a parametric 

study is also performed. The results show that the excavation stability is increased with the 

decrease of the excavation depth, width and the increase of embedment depth and soil-wall 

adhesion factor. The coefficient of variation of undrained shear strength effect is important on 

the failure probability, and its value should be chosen with caution. The soil-wall adhesion 

coefficient significantly influences the failure probability estimation and its influence is 

important for large values of undrained shear strength and embedment depths. 

The ILA and PCK-PA allow for the effective assessment of the excavation stability and are 

recommended for practical design and construction. The proposed PCK-PA will also be used in 

the probabilistic analyses of the following chapters due to its high efficiency. 
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3.1  Introduction 

Existing rectangular-shaped excavations mainly focus on small-depth excavations from 6 m to 

20 m, whereas studies on excavations at large depths (greater than 30 m) are rarely discussed as 

shown in Chapter 1. This chapter aims to discuss the stability of a supported excavation at great 

depth based on a real case study: the Fort d’Issy-Vanves-Clamart excavation (FIVC) of the 

Grand Paris Express project. The FIVC excavation is located at the southwest of Paris and is the 

first metro station of the subway line 15. The excavation reaches a depth of 32 m, and Fig. 3.1 

shows its location and aerial photo. It is seen that the FIVC metro station is surrounded by 

adjacent buildings and a rail traffic system. It is important to control the construction activities 

influences. 

 

(a) Location 

 

(b) Aerial photo 

Fig. 3.1 Location and aerial photo of the FIVC excavation. 

The introduction for the FIVC excavation is presented, which is followed by the numerical 

simulations using the Finite Element Method (FEM). The hardening soil constitutive model is 

used to simulate the soils behaviour during the excavation phases. The comparison between the 

numerical results with field measurements and the discussions in terms of wall deflections and 

ground surface settlements are presented. Then the probabilistic analysis based on the proposed 

PCK-PA of Chapter 2 is carried out. A series of studies are implemented to discuss the: (1) 
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probabilistic distributions of the wall deflections and ground surface settlements, (2) correlation 

between the maximum horizontal wall deflections and maximum ground surface settlements, (3) 

probabilistic serviceability assessment with different limiting criteria, (4) sensitivity analysis for 

the considered parameters, and (5) soil-wall interaction effects on the excavation stability.  

3.2  Presentation of the FIVC excavation 

The Fort d’Issy-Vanves-Clamart excavation, located in the suburbs of Paris, is the study case 

adopted. Fig. 3.2(a) depicts the top view, which is about 110 m long and 22 m wide. To prevent 

damage to adjacent buildings and to the existing transportation system, this excavation is 

supported by a 40 m deep and 1.2 m thick diaphragm wall, a cover slab, three-floor levels (N1, 

N2, N3), four strut levels (B1, B2, B3 and B4) and a raft. Struts B1, B2 and B3 are used in 

western and eastern zones, while B4 is for the whole excavation between the lowest floor level 

N3 and the raft. Fig. 3.2(b) shows the cross-section of the supporting system and seven 

excavation levels (E1~E7). A top-down construction method is adopted in the central zone, 

whereas the bottom-up method is adopted for the western and eastern zones. 

The FIVC station is located in the Parisian sedimentary basin and there are five strata below 77 

m from the ground surface. It mainly consists of a 11 m-thick layer of Backfill (BF), a 10 m-

thick layer of Hard Limestone (HL), a 8 m-thick layer of Ypresian Plastic Clay (PC), a 8~10 m-

thick layer of Meudon Marls (MM) and the wall bottom is embedded into Chalk (CK) (Khadija 

et al., 2021). 

 

(a) Top view 
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(b) Supporting system 

Fig. 3.2 Top view and supporting system of the FIVC excavation. 

This study discusses the FIVC excavation stability based on the central section D using a two-

dimensional plane-strain model. The other sections in the western and eastern zones are closer 

to corners and three-dimensional effects in these zones can be important. Fig. 3.3 depicts the 

rectangular cross-section of Section D, with the excavation width B and final excavation depth 

H being 22 m and 32 m, respectively. The retaining wall is embedded into MM and CK layers 

and the embedment depth D is 8 m. Table 3.1 summarizes the top-down construction sequence 

of Section D and the excavation activities are mainly divided into 7 parts. The cover slab, floor 

levels N1, N2, N3, strut B4 and raft will then be installed respectively at stages Ⅰ, Ⅲ, Ⅴ, Ⅵ and 

Ⅶ. The detailed excavation process and strut locations can be found in Fig. 3.2(b), Fig. 3.3 and 

Table 3.1. 

 

Fig. 3.3 Section D layout. 
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Table 3.1 Excavation stages. 

Stage Construction activity 

Ⅰ Excavation to -10 m and install the cover slab and N1 

Ⅱ Excavation to -14 m 

Ⅲ Excavation to -16 m and installation of N2 

Ⅳ Excavation to -20 m 

Ⅴ Excavation to -23 m and installation of N3 

Ⅵ Excavation to -27 m and installation of B4 

Ⅶ Excavation to -32 m and installation of raft 

3.3  Deterministic analysis 

3.3.1  Finite Element Modelling 

A two-dimensional Finite Element software, PLAXIS 2D, is adopted to analyse the excavation 

stability. One-half of the cross-section is modeled due to symmetry and the plane-strain 

numerical model is presented in Fig. 3.4. The horizontal and vertical lengths are respectively set 

equal to 100 m and 80 m to minimize the geometry influence. Displacements are fixed at the 

model bottom in horizontal and vertical directions, while only the horizontal direction is 

constrained for the lateral sides. Due to the existing rail traffic system and several buildings 

effects, a homogenized load of -30 kN/m/m is chosen conservatively and applied uniformly on 

the ground surface. The total number of elements and nodes of the numerical model are 

respectively equal to 3448 and 28178. 

 

Fig. 3.4 FEM model of the FIVC excavation. 
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The hardening soil model (HS), which is an elastoplastic model and able to simulate the soil 

non-linearity and failure using the Mohr-Coulomb failure criterion, is used to simulate the soils 

behaviour during the excavation phases. Table 3.2 summarizes the detailed soil parameters 

based on the site tests (pressure-meter, cross hole and cone penetration tests), laboratory tests 

(the oedometric and triaxial tests) and the numerical back analyses presented by Khadija et al. 

(2021). It should be noted that the Ypresian plastic clay is over-consolidated by the fact that it 

was loaded by more than 120 m of sedimentary soils after the Ypresian age. Therefore, its initial 

earth pressure coefficient at rest k0 is affected by both the friction angle and the Over 

Consolidation Ratio (OCR). The wall installation also influences the soil stress and the k0 value 

is set equal to 0.85 (Khadija et al., 2021; Paul W and Fred H, 1982). 

Table 3.2 Soil parameters of each layer (Nejjar and Dias, 2019). 

Parameter Notation (Unit) 
Value 

BK HL PC MM CK 

Material model - HS HS HS HS HS 

Unsaturated unit weight γdry (kN/m3) 19 21 19 19.5 19.5 

Saturated unit weight γsat (kN/m3) 20 22 20 20.5 20.5 

Secant stiffness E50
ref

 (MN/m2) 48 200 150 600 1,360 

Tangent oedometer stiffness Eoed
ref

 (MN/m2) 48 200 150 600 1,360 

Unloading/reloading stiffness Eur
ref

 (MN/m2) 144 600 450 1,800 4,080 

Cohesion c (kPa) 0 20 20 30 40 

Friction angle φ (°) 29 35 18 25 35 

Poisson’s ratio υur 0.2 0.2 0.2 0.2 0.2 

Over consolidation ratio OCR 1 1 2.2 1 1 

Initial earth pressure coefficient at rest k0 0.52 0.43 0.85 0.58 0.43 

Vertical diaphragm walls were installed with a cover slab, floor levels N1, N2, N3, strut B4 and 

raft to ensure the excavation stability. The supports are modeled by plates considering a linear-

elastic constitutive model and the corresponding parameters are presented in Table 3.3. Quasi-

permanent loads are considered and applied on the cover slab, floor levels N1, N2, N3 and raft. 

Table 3.3 Properties of the structural support elements (Nejjar and Dias, 2019). 

Parameter 
Notation 

(Unit) 

Value 

Wall Cover slab N1 N2 N3 B4 Raft 

Normal stiffness EA (kN) 2.9e7 3.2e7 2.2e7 1.8e6 5.5e6 2.8e6 2.3e7 

Flexural stiffness EI (kN·m2) 3.5e6 - - - - - - 

Loading Fy (kN) - -1370 -361 -59 -381 - -70 
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3.3.2  Comparison and discussion 

During the FIVC excavation construction, a comprehensive monitoring system (such as wall 

inclinometers and optical fiber), was implemented to assess the excavation performance. More 

detailed descriptions can be found in Nejjar and Dias (2019). 

Fig. 3.5(a) depicts the measured and simulated excavation-induced wall deflection profiles of 

section D at Stages Ⅳ, Ⅴ and Ⅵ. It can be seen that the trend and magnitude of the simulated 

horizontal wall deflections are generally in good agreement with the measured ones. It allows to 

validate the numerical model effectiveness. Besides, the maximum horizontal wall deflection is 

increased by about 6 mm from stage Ⅳ to stage Ⅴ, which is larger than the increment from stage 

Ⅴ to stage Ⅵ (2 mm). This is because the horizontal wall deflection is strongly related to the 

soil behaviour behind the retaining wall. The soil stiffness difference between layers HL, PC 

and MM causes the wall to deflect more easily at layer PC. N3 floor was installed at stage Ⅴ and 

it is located at the junction between layers HL and PC. Conversely, at stage Ⅵ, strut B4 is 

installed in the layer PC middle, which can resist effectively the wall deformation. In addition, 

no toe movements occurred since the diaphragm wall is embedded into the layers MM and CK 

with high stiffness. 

Fig. 3.5(b) presents a comparison of the observed and computed ground surface settlements at 

Stages Ⅳ and Ⅵ. The ground surface settlement trends are similar, while the FEM simulation 

overestimates the settlement magnitudes. The possible explanation is that the railway tracks 

above the excavation were still in operation during the FIVC station construction and the loads 

applied on the ground surface may vary in time. In this numerical model, a static uniform load 

of -30 kN/m2 is assumed to be distributed on the ground surface for the sake of simplicity and 

the load variations are not considered. Besides, compared with the wall deflection measurements, 

the surface settlement data is relatively scattered and cannot totally be used to identify the 

surface settlement contours. 
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(a) Horizontal wall deflection 

 

(b) Ground surface settlement 

Fig. 3.5 Comparison between measured and predicted excavation responses. 

The deterministic FEM model implemented in this study is able to reflect reasonably the 

excavation phases and will be used in the following discussions. 

Fig. 3.6(a) depicts the development of the maximum horizontal wall deflection δhm during 

construction. It can be observed that the ratio Rd, which denotes the relationship between δhm 

and the excavation depth H, ranges from 0.05‰ to 0.2‰ when H is smaller than 16 m. δhm varies 

almost linearly with the excavation depth when H lies between 23 m and 32 m, and the 

corresponding Rd value is close to 0.58‰. The Rd value increase lies in the fact that the plastic 

clay is involved in excavation activities with H being larger than 21 m, and the stiffness decrease 

of layer PC can increase the wall deflection. 
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Some existing empirical relationships are also provided for comparison. It can be seen that the 

wall deflection is significantly smaller than the reported ones, which include 0.2%H~1%H in 

soft clays (Peck, 1969), 0.22%H~0.5%H in stiff clays (Clough and O’Rourke, 1990) and 

0.3%H~0.6%H in soft-medium clays (Kung et al., 2007c). Tan and Wei (2012) provide a Rd 

range of 0.2‰H~0.23%H in Shanghai soft clays and the lower bound 0.2‰H is relatively close 

to the present study one, whereas the excavation depth is limited to 18 m. One documented deep 

excavation (38m) is also given, and the δhm value is around 0.14%H (Liu et al., 2011). 

The relationship between the maximum ground surface settlement δvm and excavation depth H 

can be found in Fig. 3.6(b). Rs is the ratio between δvm and H. It is seen that the results are 

consistent with the wall deflection ones, and the surface settlements of Stages Ⅰ, Ⅱ and Ⅲ are 

very small with Rs (around 0.03‰). The magnitude of δvm increases with H within an upper 

bound of Rd = 0.45‰. The settlement values in this study are also smaller than those of the 

documented excavations: 0.15%H~0.5%H in stiff clay (Clough and O’Rourke, 1990), 

0.3‰H~0.18%H of Shanghai soft clay (Tan and Wei, 2012) and 0.45‰ for a 38 m deep 

excavation (Liu et al., 2011). 

The small values of δhm and δvm can be explained by the fact that a considerable thickness of 

hard layers (HL, MM and CK) is present along the excavation and the diaphragm wall is also 

embedded into the layers MM and CK. It can effectively prevent excavation deformations. The 

installation of several supports, which include the diaphragm wall, cover slab, raft and struts, 

can also increase the excavation stability. 
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Fig. 3.6 Relationships between the excavation depth and maximum horizontal wall deflection, and 

maximum ground surface settlement. 

Fig. 3.7 gives the locations where the maximum wall deflection and maximum ground surface 

settlement occur with the excavation depth increase. There is no doubt that the location of δhm 

moves downward with the H increase. For stages Ⅰ, Ⅱ and Ⅲ, δhm is approximately located 3 m 

above the excavation bottom. When H approaches 20 m, the location is close to the excavation 

bottom. For the rest of the excavation phases (stages Ⅴ, Ⅵ and Ⅶ), the maximum wall 

deflection falls within the layer PC due to its relatively small stiffness contrast with the adjacent 

layers (HL and MM). The maximum surface settlement is located at 4~7 m from the retaining 

wall for stages Ⅰ, Ⅱ and Ⅲ. The location changes slightly when H is larger than 20 m and is 

mainly distributed around 10 m from the wall. Construction at these locations should be 

particularly careful and strengthening measurements need to be implemented to prevent uneven 

settlements and potential damages. 
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Fig. 3.7 Locations of maximum wall deflection and maximum ground surface settlement  

with excavation depth increase. 

 

3.4  Probabilistic analysis 

This section aims to investigate the (1) uncertainties consideration effects on the wall deflection 

and surface settlement distributions, (2) relationship between the maximum wall deflection and 

maximum surface settlement, (3) probabilistic serviceability assessment with different limiting 

values, (4) soil-wall interaction effects on the excavation stability. 

3.4.1 Definition of the limit state function and statistical parameters 

The excavation design and construction need to satisfy the horizontal wall deflection and ground 

surface settlement requirements at the serviceability limit state, i.e., the values of δhm and δvm 

should be smaller than the defined limiting values. In this study, the probabilistic analysis related 

to the wall deflection is considered (the explanations are detailed in Section 5.3) and the limit 

state function is defined by 

 _( )= hm hm limg X  −  (3.1) 

where X denotes the considered random variables, and ( )g X  is the limit state function regarding 

the maximum wall deflection. _hm lim  is the limiting maximum wall deflection and is set equal 

to 28 mm in this study (Philipponnat and Hubert, 2016). The excavation is considered as safe 

when g(x) ≤ 0, and failure occurs when g(x)＞0. 
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Parameter uncertainties of layers HL, PC and MM are considered since the excavation is done 

through these three layers. The uncertainty of layer BK is neglected due to its insignificant 

contribution to the horizontal wall deflection as presented in Fig. 3.5(a). Seven random variables, 

which include the friction angle and secant stiffness of layers HL, PC and MM, and the initial 

earth pressure coefficient at the rest of layer PC, are discussed. The input uncertain parameters 

are considered statistically independent and a lognormal distribution is taken into account to 

model the samples distribution. The detailed statistical information determined by the existing 

studies (Phoon and Kulhawy, 1999; Zhou et al., 2020), is summarized in Table 3.4. 

Table 3.4 Statistical properties of input random variables. 

Layer Parameters Notation (Unit) 

Statistics of parameters 

Mean 
Coefficient of variation 

(COV) 

HL 
Friction angle φHL (°) 35 0.1 

Secant-stiffness E50
ref

HL (kN/m2) 2.0e5 0.15 

PC 

Friction angle φPC (°) 18 0.1 

Secant-stiffness E50
ref

PC (kN/m2) 1.5e5 0.15 

Initial earth pressure 

coefficient at rest 
k0PC 0.85 0.15 

MM 
Friction angle φMM (°) 25 0.1 

Secant-stiffness E50
ref

MM (kN/m2) 6.0e5 0.15 

3.4.2 Probabilistic results 

The proposed PCK-PA presented in Chapter 2 is implemented. Fig. 3.8 depicts the numerical 

convergence of the leave-one-out error LOOErr  and of the failure probability error 
fPErr . The 

criterion for LOO is satisfied when 8 samples are added. Pf values vary considerably for the 

former 100 sample enrichments, start to converge after 131 and 
fPErr  satisfies the requirement 

after 141 sample enrichments. A total of 155 evaluations, including 14 initial experimental 

design points, are used for the PCK metamodel construction. 
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Fig. 3.8 PCK metamodel construction process with the enrichment samples increase. 

The metamodel accuracy can be checked in Fig. 3.9. It is noted that the accuracy of the PCK-

based probabilistic analysis should be investigated by comparing the results obtained by a direct 

MCS and GSA. However, around 1.0e6 model evaluations are essential to meet the requirements 

of COVPf with a Pf of 3.6e-4. It requires 1736 days at least to calculate the failure probability, 

which is unaffordable. Therefore, the proposed procedure accuracy is discussed by the validation 

of the metamodel evaluations. If the maximum wall deflections obtained from the PCK 

metamodel are accurate enough, the subsequent probabilistic methods can perform in a good 

manner. Fig. 3.9 that the points are distributed on a line at 45o and the R2 value can be up to 

0.994, which means that the PCK metamodel can provide similar δhm as the numerical 

simulations. The effective PCK predictions can then ensure the accuracy of the following 

probabilistic discussions. 
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Fig. 3.9 Maximum horizontal wall deflection comparison using FEM and PCK methods. 
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The PCK-based MCS provides a failure probability of 3.6e-4. In order to satisfy the COVPf 

requirement (5%), a total of 1.11 million simulations are performed after a numerical 

convergence study. The corresponding maximum wall deflection distribution is depicted in Fig. 

3.10. It is found that δhm is mainly distributed in the range of [12.5 mm, 25 mm], and there is a 

probability of 3.6‱ exceeding the limiting wall deflection value (28 mm). The statistical 

moments of the system response are respectively the mean value and standard deviation of 17.9 

mm and 2.2 mm. 

 

Fig. 3.10 PDF and CDF of maximum wall deflections of PCK-MCS. 

Fig. 3.11 depicts the PCK-based GSA analysis results. Although there are small differences in 

the magnitudes of the first-order and total-effects Sobol indices, they can give a consistent 

ranking order. Besides, the friction angle plays a dominant role in the wall deflection variation 

within the current probabilistic input configuration, and the one of layer MM contributes the 

most, followed by layers PC and HL. A possible explanation can be found in Fig. 3.12, which 

depicts 4 plastic zone distributions with different friction angles of layers MM and PC. The 

corresponding magnitudes are determined considering the mean ± 3×standard deviations. 

 

Fig. 3.11 Sensitivity analysis results of PCK-GSA. 
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It can be observed that when the friction angle of layer MM is large, the failure points are mainly 

distributed at the soil-wall interface, and the intersection of the wall and the excavation base is 

found to have a direction being around 45° as shown in Fig. 3.12(a). However, when its friction 

angle value decreases, the failure points move to the retaining wall back and the failure surface 

is through layer MM. It even reaches the wall toe due to the reduced shear strength. Soil 

deformations in layer MM increase the active earth pressure on the wall and subsequently induce 

significant wall deflections due to the deformation compatibility (Zheng et al., 2014). Besides, 

the connection of the shear failure surface and the wall toe may lead to wall toe deformations 

and decreases greatly the excavation stability. 

  

(a) φMM = 32.5°, φPC = 18° (b) φMM = 17.5°, φPC = 18° 

  

(c) φMM = 25°, φPC = 23.4° (d) φMM = 25°, φPC = 12.6° 

Fig. 3.12 Influences of layers MM and PC friction angles on the plastic zone distributions. 

Comparatively, the effects of the PC layer friction angle on the plastic zone distributions are 

presented in Fig. 3.12(c) and (d). Similar results are achieved. The friction angle decrease can 

make the failure points move behind the wall. However, it can only affect the excavation phases 
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depth range, i.e., the upper MM layer part. Correspondingly, the friction angle influence on the 

horizontal wall deflection is small. 

In addition, the bending moment and wall deflection profiles are also presented in Fig. 3.13 to 

provide a quantitative interpretation. It is seen that the MM friction angle decrease leads to the 

increase of the bending moment at layer MM (2114 kN·m/m) and subsequently induces an 

increase of the horizontal wall deflection. The δhm value is up to 26 mm with an increase of 76.4% 

compared to the case of φMM= 32.5° (14.8 mm) and the maximum wall deflection location is 

lowered to the intersection of layers MM and PC. Conversely, the bending moment and wall 

deflection variations with the PC friction angle decrease are less significant. The maximum wall 

deflection difference is around 50.7% and occurs mainly in the middle of layer PC. In summary, 

the layer MM friction angle has an essential effect on the excavation stability and its value should 

be determined with caution in designs and constructions. 

  
(a) φMM = 32.5°, φPC = 18° (b) φMM = 17.5°, φPC = 18° 
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(c) φMM = 25°, φPC = 23.4° (d) φMM = 25°, φPC = 12.6° 

Fig. 3.13 Influences of MM and PC friction angles on the wall bending moment  

and horizontal deflection. 

The sensitivity index of the initial earth pressure coefficient at the rest of layer PC follows with 

being around 0.1. Its importance can be explained by the stiffness difference between the PC 

and adjacent layers (HL and MM), which may lead to the maximum wall deflection more likely 

to occur at layer PC as presented in Fig. 3.7. The k0PC affects the lateral stress magnitudes, and 

the wall deflection will be directly affected. For the secant stiffness, layer PC contributes the 

most among the considered layers. It can also be explained by the fact that the maximum wall 

deflection is more prone to occur in layer PC and the corresponding stiffness is more sensitive 

to the wall deflection. 

Moreover, it should be noted that at least 1.11 million samples are necessary for the MCS 

calculation. It requires about 3855 days using the direct crude MCS, which is unaffordable in 

practice. However, for the analysis based on the PCK metamodel, 155 samples can ensure the 

surrogate model accuracy and the calculation time is around 13 h. It is able to decrease greatly 

the computational effort. In summary, this proposed PCK-PA makes the probabilistic analysis 

affordable with accurate results. 
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3.4.3 Probabilistic distributions of the wall deflection and ground surface 

settlement 

4 cases with different combinations of COV for 7 random variables are considered and details 

are given in Table 3.5. Case A is the reference case, and the COV values of secant stiffness, 

friction angle and initial earth pressure coefficient at rest are respectively increased by 0.1 for 

cases B, C and D, while the other parameters are kept constant. 500 realizations (samples are 

generated using LHS) are simulated for each case to investigate the uncertainty effects on the 

wall deflections and ground surface settlements. 

Table 3.5 Four cases for probabilistic analysis. 

Cases COVE50ref COVφ COVk0 

A 0.15 0.1 0.15 

B 0.25 0.1 0.15 

C 0.15 0.2 0.15 

D 0.15 0.1 0.25 

The mean values of the maximum wall deflection and ground surface settlement are respectively 

given in Fig. 3.14(a) and (b). The deterministic FEM analysis results are also presented for 

comparison. The mean values are larger than the deterministic ones, and the magnitude is 

increased with the uncertainty level. Therefore, the excavation stability will be overestimated 

when the uncertainty is neglected or the uncertainty level is underestimated. It is also observed 

that there is a significant increase in cases C and D compared to case A, while case B is relatively 

close to case A. 



113 

 

 

Fig. 3.14 Mean values of the maximum wall deflection and maximum ground surface settlement  

under different cases. 

A confidence interval at 95% level for the mean values is also presented to discuss the 

parameters variability and the results accuracy. It is observed that the confidence bound width 

is affected by the input parameters’ uncertainty level. Case A has the narrowest confidence 

interval due to the smallest COVs combinations. The confidence intervals of case C are the 

largest. They are followed by cases D and B. It demonstrates that the friction angle COV increase 

leads to more varied wall deflections and ground surface settlements whereas the secant stiffness 

is the least sensitive one. It is consistent with the sensitivity analysis results presented in Fig. 

3.11. Besides, the confidence intervals for ground surface settlement are greater than the wall 

deflection ones, which is similar to the results of Nguyen and Likitlersuang (2021). 

It is noted that the confidence interval is also affected by the considered simulations number, 

i.e., a large simulations number can reduce the interval and improve the analysis results accuracy. 

However, there is no significant improvement in the analysis results when the simulation number 

is greater than a certain value, whereas the computational efforts are increased. A simulation 

number sensitivity analysis is necessary to balance the accuracy and computational burden. Fig. 

3.15 displays the numerical convergence of the estimates of mean values and standard deviation 

(Std.) for δhm and δvm. It can be observed that case A with small COV values is more prone to 

converge and there is no prominent change for cases B, C and D after 300 simulations. It 

1 2 3 4
16.5

17.0

17.5

18.0

18.5

19.0

Deterministic analysis result: 17.1 mm 

 

 

M
ea

n
 v

al
u
e 

o
f 
δ

h
m
 (

m
m

)

1 2 3 4
13.0

13.5

14.0

14.5

15.0

Deterministic analysis result: 13.3 mm 

 

 

M
ea

n
 v

al
u
e 

o
f 
δ

vm
 (

m
m

)

Cases number 

A B C D

Cases

(a) δhm

(b) δvm



114 

 

confirms the accuracy and rationality of the results based on 500 simulations for each case in 

this study. 

  

(a) δhm (b) δvm 

Fig. 3.15 Numerical convergence of mean values of maximum wall horizontal deflection  

and surface settlement. 

The distributions of the wall deflection and ground surface settlement are plotted respectively in 

Fig. 3.16 and Fig. 3.17. The deterministic analysis (DA) contour is also shown for comparison. 

It is seen that the wall deflection and ground surface settlement obtained by the deterministic 

analysis are included in the probabilistic analysis (PA) distribution range, while the probabilistic 

analysis gives further possible cases compared to the deterministic one. It allows providing more 

references for the excavation design and construction. Besides, case A gives the narrowest wall 

deflection and ground surface settlement distribution and the ranges are greater as the COV value 

increases. Case C has the most significant variation, which is followed by cases D and B (taking 

the wall deflection as an example, the ranges are respectively [-13 mm, -26.5 m], [-10.4 mm, -

28.6 m] and [-11 mm, -28.5 m] for cases B, C and D). It indicates again that the friction angle is 

more sensitive to the horizontal wall deflections and ground surface settlements compared with 

other parameters (secant stiffness and initial earth pressure coefficient at rest). 
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(a) Case A (b) Case B 

  

(c) Case C (d) Case D 

Fig. 3.16 Wall deflection contours using deterministic and probabilistic analyses. 
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(a) Case A (b) Case B 

  

(c) Case C (d) Case D 

Fig. 3.17 Ground surface settlement contours using deterministic and probabilistic analyses. 

In order to specify the probability of overestimation and underestimation for the wall deflection 

and ground surface settlement, the PDF and CDF of δhm and δvm based on 500 realizations are 

presented in Fig. 3.18. For the maximum wall deflections, about 36~42% of the probabilistic 

simulations are smaller than the deterministic one, while the percentage range is 42~48% for the 

ground surface settlements. In addition, the overestimation probability of case C is the smallest. 

It is followed by cases D, A and B. It can be explained by Fig. 3.16 and Fig. 3.17, the wall 

deflection and surface settlement distribution ranges are wider for case C and more cases with 

small magnitudes are generated. 

  

(a) δhm (b) δvm 

Fig. 3.18 PDF and CDF of maximum wall deflections and ground surface settlements. 
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The location determination where the maximum wall deflection and maximum ground surface 

settlement occur is important for the structural assessment of diaphragm walls and the adjacent 

buildings construction. Fig. 3.19 depicts the depth frequency at which the maximum wall 

deflection occurs for different cases. It is observed that the δhm locations are distributed widely 

as the COV value increases ([22 m, 30 m] for cases A and B; [18 m, 30m] for cases C and D). 

However, the depths are mainly located between 24 m and 26 m below the ground surface (case 

A: 62%, case B: 59%, case C: 36% and case D: 41%) due to the stiffness difference between 

layers HL, PC and MM. 

  

(a) Case A (b) Case B 

  

(c) Case C (d) Case D 

Fig. 3.19 Frequency of the maximum horizontal wall deflection location. 
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Fig. 3.20 gives the distance from the diaphragm wall distributions where the maximum ground 

surface settlement occurs. The δhm is located between 6 m and 12 m from the diaphragm wall 

for cases A and B, and the range increases to [4 m, 14 m] for cases C and D. Whereas the 

maximum surface settlements mainly occur in the range of 10 m to 12 m from the wall. Therefore, 

the construction activities should be considered and monitored in the ground surface settlement 

influence zone (80 m, approximately 2.5 times the excavation depth as shown in Fig. 3.17), 

particularly in the range of [10 m, 12 m], where most of the maximum surface settlements 

outcomes are observed. 

In addition, similar results are achieved for the wall deflections and ground surface settlements 

that the deterministic results lie in the highest frequency range of the probabilistic analysis. 

  

(a) Case A (b) Case B 

  

(c) Case C (d) Case D 

Fig. 3.20 Frequency of the maximum ground surface settlement location. 
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3.4.4 Relation between the maximum wall deflection and ground surface 

settlement 

This section investigates the relation between the maximum wall deflection and maximum 

ground surface settlement under 4 cases presented in Table 3.5. Fig. 3.21 plots the δhm 

distributions versus the ratio between δvm and δhm. As expected, with the COV level increase, the 

points are more dispersed. However, the ratio δvm/δhm is generally within the range of [0.5, 1], 

which is similar to the existing studies (Kung et al., 2007c; Tan and Wei, 2012). It means that 

the maximum ground surface settlements are smaller than the maximum wall deflections and 

there is a positive linear relation between δvm and δhm. The ratio histogram distributions are 

presented in the upper part of each subfigure and it is observed that most of the ratios fall 

between 0.7 to 0.8 regardless of the uncertainty effect. 

In addition, there is a trend between the ratio and the maximum wall deflections from the scatter 

figures. The ratio distributions within 4 deflection ranges ([10 mm, 15 mm), [15 mm, 20 mm), 

[20 mm, 25 mm), [25 mm, 30 mm]) are discussed and the results can be found in the right part 

of each subfigure. It can be observed that the ratio tends to be greater for cases with large δhm 

values. Taking case C as an example, when the δhm falls between 10 to 15 mm, the ratio varies 

from 0.5 to 0.9 and most of the cases are within the range of [0.7, 0.8]. However, the ratios are 

mainly located between 0.8 to 0.9 when the δhm is larger than 20 mm. Therefore, it is more 

rational and conservative to consider larger δvm/δhm ratios for cases with larger values of δhm. 
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(b) Case B 

 

(c) Case C 
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(d) Case D 

Fig. 3.21 Relationship between the maximum wall deflection and maximum ground surface settlement 

under different cases. 

3.4.5 Probabilistic serviceability assessment 

It should be noted that the allowable thresholds in one probabilistic analysis depend on several 

factors, such as the soil types, supporting system and the construction safety level requirement 

(Zhang et al., 2015c). This section assesses the probability of serviceability limit state failure 

considering different limiting values. The failure mode associated with the wall deflection 

instead of the ground surface settlement is considered by the fact that: (1) the maximum wall 

defection is larger than the maximum ground surface settlement values as discussed in section 

3.4.4. It is thus more critical to consider that; (2) the wall deflection is relatively easier to predict 

accurately than the ground surface settlement (Kung et al., 2007a); (3) the horizontal wall 

deflection-induced excavation failure mode is important in the SLS assessment (Johari and 

Kalantari, 2021; Luo et al., 2018b; Zhang et al., 2015c). 

Fig. 3.22 depicts the Pf value variation with the maximum horizontal wall deflection exceeding 

different limiting values (12 mm to 30 mm). With the increase of the limiting wall deflection, 

the failure probability is decreasing since higher thresholds are not easily exceeded. The Pf value 

variation is large for small COV value cases with a difference of 5 orders of magnitude. Besides, 

the friction angle COV increase can increase considerably the failure probability, which is 

followed by the effects of k0 and E50
ref. Taking the limiting wall deflection of 30 mm as an 

example, the Pf value varies from 1.3e-5 to 6.9e-4 in the COVE50ref range of [0.15, 0.35], while 
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the Pf can be up to 0.091 with the COVφ increase. It highlights again the importance of the friction 

angle. 

Besides, it is seen that when the limiting wall deflection is larger than about 17 mm, the Pf value 

is increased as the uncertainty increases. Conversely, the Pf is decreased. This is because the 

deterministic maximum horizontal wall deflection is 17.1 mm for the reference case and the 

peak value of wall deflection PDF corresponds to about 17 mm as shown in Fig. 3.10. Therefore, 

when the limiting value is smaller than 17 mm, the probability of exceeding the limiting value 

decreases with the COV value increase due to the wide distributions of maximum horizontal 

wall deflection, and subsequently induce a smaller failure probability. 

  

(a) E50
ref (b) φ 

 

 

 

(c) k0  

Fig. 3.22 Effect of parameters uncertainties on the probability of exceeding specified  

limiting wall deflection. 

The sensitivity analysis is also implemented for different uncertainty levels and the results can 

be found in Fig. 3.23. It is observed that with the COV increase, the corresponding sensitivity 

indices also increase. For example, the secant stiffness of layer PC has a great influence on the 

wall deflections and the index can be up to 0.2 when the COV value is equal to 0.35. Therefore, 

the determination of the uncertainty level should be accurately done. 

(a) (b) (c)

COVE50ref=0.15 COVφ=0.1 COVk0=0.15

COVE50ref=0.25 COVφ=0.2 COVk0=0.25

COVE50ref=0.35 COVφ=0.3 COVk0=0.35
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(a) E50
ref (b) φ 

 

     

  

(c) k0  

Fig. 3.23 Effect of parameters uncertainties on the sensitivity indices. 

This section indicates that the choices of the limiting wall deflection and parameters uncertainty 

level play a significant role in the failure probability calculation. Some references for the 

determination of the limiting wall deflection considering the related parameter uncertainties and 

the target serviceability failure probability are provided. 

3.4.6 Soil-wall interaction effects 

Fig. 3.12 shows that the plastic points are mainly distributed on the soil-wall interface, which 

means that the interface plays an important role in the excavation deformation. The above 

discussions consider the interface coefficient ri equals to 1, while retaining wall installation or 

excavation construction may influence the interface strength and the horizontal wall deflection 

may be further affected. Therefore, the soil-wall interface strength reduction effects on the 

serviceability failure probability are necessary. The shear strength is reduced by the interface 

coefficient and can be determined by 
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where 
ic  and 

i  are respectively the cohesion and friction angle of the soil-wall interface and 

ri is the reduction factor. 

A range of [0.5, 1] is considered in this real case study, which is suggested by the design manuals 

(Canadian, 2006; Taylor and Wang, 2013) and the results are presented in Fig. 3.24. It can be 

found that with the ri increase, the failure probability is decreasing and the Pf varies considerably 

for cases with small COV values. For example, the Pf decreases respectively about 99.9% and 

68.2% for cases of COVφ =0.1 and COVφ =0.3. Besides, the parameters uncertainty level 

determination is more significant with the soil-wall interface coefficient increase. 

 

Fig. 3.24 Effects of the soil-wall interface on failure probability. 

 

3.5  Conclusion 

This study investigated the deterministic and probabilistic stability of deep excavations based 

on a real case: the Fort d’Issy-Vanves-Clamart excavation (FIVC). The Finite Element Method 

(FEM) is adopted to predict the wall horizontal deflections and ground surface settlements. The 

comparison with the field measurements and the existing studies is carried out. The results 

indicate that the horizontal wall deflections and ground surface settlements of the FIVC 

excavation are smaller than the former studies since ① the FIVC station is located in a site with 

a considerable thickness of hard layers (Hard Limestone, Meudon Marls and Chalk); ② the 

diaphragm wall is embedded into layers Meudon Marls and Chalk; ③ a multi-strutted support 

system is implemented. 
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The proposed PCK-PA is then implemented for the excavation serviceability assessment in a 

probabilistic framework. The distributions of the wall deflections and ground surface settlements 

are wider as the COV value increases. The corresponding ranges for locations where the 

maximum wall deflection (δhm) and ground surface settlement (δvm) occur are also increased. 

The δhm mainly occurs from 24 m to 26 m below the ground surface, and δvm is mainly distributed 

at the range of [10 m, 12 m] behind the retaining wall for the FIVC excavation. Besides, the 

maximum ground surface settlement is linearly distributed with the maximum horizontal wall 

deflection and the δvm/δhm ratio is generally in the range of [0.5, 1]. It is more rational to use a 

larger δvm/δhm ratio to determine the δvm value for cases with larger δhm. 

The sensitivity analysis indicates that the friction angle for the excavation bottom layer (MM) 

contributes the most to the model response variation by the fact that the soil deformation behind 

the wall is significant due to the reduced shear strength and the slip surface even reaches the 

wall toe. Parameters related to layer PC are also important by the fact that the maximum wall 

deflection is more likely to occur in the PC layer. The corresponding parameters are sensitive to 

the wall deflection variations. The parameter uncertainty level also influences the sensitivity 

indices. It should then be determined carefully. 

Benefitting from the high efficiency of the PCK-PA, the probabilistic serviceability assessment 

is implemented. The results show that the serviceability failure probability depends on the 

adopted limit wall deflection and on the parameters uncertainty level. The failure probability Pf 

increases with the COV value when the limiting wall deflection is larger than the deterministic 

wall deflection. The Pf decreases as the COV increases when the limiting wall deflection 

becomes smaller than the deterministic one. Some references for the limiting wall deflection 

determination are also provided. The soil-wall interface influences on the excavation stability 

are discussed and the results found that the interface influence greatly the excavation stability, 

particularly for cases with small COV values. 
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Chapter 4  

Undrained stability analysis of circular 

shafts in non-homogeneous clayey soils 
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4.1  Introduction 

This chapter aims to perform probabilistic basal heave stability analyses of supported circular 

shafts in undrained non-homogeneous soils. After a brief explanation of the studied problem, 

the deterministic model construction and analysis using the Finite Element Limit Analysis is 

detailed. The probabilistic analysis based on the proposed PCK-PA is then implemented to 

discuss the circular shaft stability. Some comparisons and discussions considering the soil non-

homogeneity and uncertainties consideration, and the soil-wall interaction of the circular shafts 

are provided. The major contributions of this work compared to the previous studies about the 

circular shaft stability are the following ones: (1) the basal-heave stability for supported circular 

shafts is discussed in a probabilistic framework, and the soil undrained shear strength parameter 

uncertainties and its increasing gradient (i.e. non-homogeneity coefficient), unit weight and soil-

wall interface strength, are considered; (2) the effects of parameter uncertainties, soil-wall 

interface and soil non-homogeneity on the circular shaft stability are discussed, and the 

sensitivity indices are estimated to rank the uncertain parameters importance, which is useful 

for the design and construction in practice. 

(Disclaimer: The content of this chapter was published in the following journal paper: Tingting 

Zhang, Julien Baroth and Daniel Dias. (2021). Probabilistic basal heave stability analyses of 

supported circular shafts in non-homogeneous clayey soils. Computers and Geotechnics, 140, 

104457) 

4.2  Problem statement 

4.2.1 Circular shaft 

The supported circular shaft is illustrated in Fig. 4.1 using 3D and 2D representations. H and Rc 

are respectively the depth and diameter of the circular shaft. D is the wall embedment depth, and 

T is the depth from the excavation base to the hard stratum. 
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(a) 3D view 

 

(b) 2D view 

Fig. 4.1 Introduction of the supported circular shaft of the geometry and evolution of the undrained shear 

strength with depth. 

The soil is supposed to follow a linear elastic-perfectly plastic model based on the Tresca 

criterion, which is characterized by the undrained shear strength (Su), Young’s modulus (Eu) and 

Poisson’s ratio (υsoil). The soil profile is non-homogeneous and the undrained shear strength is 

considered to vary linearly with depth as shown in Fig. 4.1(b), where Su0 is the undrained shear 

strength at the ground surface, and the undrained shear strength value at any depth h below the 

ground surface can be expressed by 
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h 0u uS S kh= +  (4.1) 

where k is the gradient that defines the rate at which the undrained shear strength increases 

linearly with depth h, its value varies from 0 to 3.5 kN/m3 (Zhu et al., 2017). 

The wall is assumed to behave as a linear elastic material and is embedded to improve the shaft 

stability. The wall thickness is set equal to 1.0 m in this study by the fact that its value slightly 

influences the shaft stability. The safety factors difference is lower than 0.5% for the wall 

thicknesses in the range from 0.6 m to 1.2 m (Goh et al., 2019). The interface between the soil 

and wall is specified by the Tresca material and its strength is modified using the soil-wall 

interface ri, which can be expressed by u interface i u soilS r S− −= . The value of ri is considered to vary 

from 0.1 to 1 for this circular shaft (Cai et al., 2002; Dong, 2014; Faheem et al., 2003; Goh, 

2017a; Goh et al., 2019b; Zhao et al., 2020). Table 4.1 presents the input parameters of the 

deterministic reference case used in this study. 

Table 4.1 Summary of soil, wall and geometric input parameters of the reference case. 

Parameters Notation Value  

Soil  

Undrained shear strength at ground surface  Su0 (kPa) 10a 

Undrained shear strength increase gradient k (KN/m3) 1b 

Soil wall adhesion factor ri 0.5a 

Unit weight γs (KN/m3) 16a 

Soil undrained stiffness ratio Eu / Su 300a 

Poisson’s ratio υsoil 0.495a 

Wall 

Unit weight γw (Kn/m3) 25 

Young’s modulus Eu (kPa) 2.0e7 

Poisson’s ratio υwall 0.25 

Geometry 

Circular shaft depth H (m) 16a 

Circular shaft diameter Rc (m) 15a 

Wall embedment depth D (m) 10a 

Thickness to hard stratum T (m) 84a 

Note : 
a Based on values given by Goh (2017b). 
b Griffiths and Yu (2015). 
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4.2.2 Uncertainty consideration 

Four input parameters are considered as random variables in the probabilistic analysis, which 

include the undrained shear strength at the ground surface Su0, undrained shear strength increase 

gradient k, soil-wall adhesion factor ri and unit weight γ. Other parameters can be controlled 

during construction and are considered deterministic parameters. A lognormal distribution is 

adopted to model the parameter variability to avoid negative values, and the input parameters 

are considered independent. The summary of the parameters’ statistics and corresponding limits, 

which cover a range of extremes, is summarized in Table 4.2. 

Table 4.2 Statistical properties of input random variables. 

Parameters Notation 
Statistics of parameters 

Mean COV Distribution Range 

Undrained shear strength at ground surface Su0 (kPa) 10 0.2a Lognormal 0~100 

Undrained shear strength increase gradient k (kN/m3) 1 0.1 Lognormal 0~3.5b 

Soil wall adhesion factor ri 0.5 0.2a Lognormal 0.1~1 

Unit weight γ (kN/m3) 16 0.05c Lognormal - 

Note: 
a Based on values given by Goh et al. (2019b). 
b Zhu et al. (2017). 
c Luo et al. (2012a). 

 

4.3  Model of non-homogeneity and comparison 

This section aims to present the deterministic computational model and the comparison with the 

existing studies to validate the model effectiveness. 

4.3.1 Deterministic computational model 

A Finite Element Limit Analysis (FELA) software (Krabbenhoft et al., 2016) is used to analyse 

the circular shaft deterministic stability. It combines the powerful capabilities of the finite 

elements discretization with plastic bound theorems to bracket the exact solutions by the upper 

bound (UB) and lower bound (LB) analysis (Keawsawasvong and Ukritchon, 2017). It has been 

extensively used in other kind of geotechnical works, such as tunnels (Wu et al., 2021), strip 

footings (Raj et al., 2018) and slopes (T. Zhang et al., 2021b). 
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In UB FELA analysis, the problem is formulated into a second-order conic programming 

(SOCP), that satisfies the kinematically admissible velocity constraints. In LB FELA analysis, 

the problem is formulated into a SOCP which satisfies the statically admissible stress constraints 

including equilibrium equations, stress boundary conditions and yield criterion 

(Keawsawasvong and Ukritchon, 2017; Krabbenhoft et al., 2016). 

The supported circular shaft numerical model is presented in Fig. 4.2. An axisymmetric model 

is used because of the circular shape and a slice of the cross-section is considered due to the 

excavation symmetry. Displacements are fixed at the lateral sides in the horizontal directions 

and are free in the vertical boundary, while they are fully fixed at the model bottom. Besides, 

the model boundaries are assumed to be at least 5B and 3(H+D) in respectively the horizontal 

and vertical directions to avoid boundary effects. 

 

Fig. 4.2 FELA model of the reference circular shaft with adaptive mesh refinement. 

The soil is discretized using 3-noded triangular elements. The shear strength value increases 

linearly with depth from the ground surface considering the k gradient. The contact interface 

between wall and surrounding soil is specified by means of a shear joint element. Its strength 

corresponds to the surrounding soil shear strength using the soil-wall adhesion factor ri. 

A powerful feature of Optum G2 is the automatically adaptive mesh refinement according to the 

distribution of shear dissipation, total dissipation, strain or plastic multiplier. Shear dissipation 

is considered the adaptivity control parameter in this study since it is generally the most efficient 

and reliable one for limit analysis (Krabbenhoft et al., 2016). The shear dissipation distribution 

with mesh is shown in Fig. 4.2. It can be observed that the very fine mesh in the failure region 

is a consequence of the adaptive mesh refinement. 



132 

 

In order to determine the optimal mesh combining better accuracy and computation effort, a 

mesh sensitivity analysis was conducted. Non-adaptive mesh refinement cases were also 

considered for the sake of comparison. Taking the LB FELA analysis as an example, the 

calculated safety factor (Fs) and corresponding computational time are depicted in Fig. 4.3. The 

elements number (Ne) affects greatly the Fs and computational time. For the adaptive mesh 

refinement cases, the values of Fs increase quickly when Ne is lower than 1000 and tend to a 

stable value with Ne increasing. It allows giving precise results when Ne is larger, whereas the 

computational burden is also simultaneously increasing. For example, Fs values are almost the 

same (1.506 and 1.510 respectively) when the elements number are 3000 and 4000, the 

calculation time differs considerably (60 s and 83 s respectively). Fs using non-adaptive mesh 

refinement is irregular when Ne is small and converges to a value of 1.445 as Ne increases, 

which is conservative compared to the adaptive mesh case. As a result, an adaptive mesh 

refinement in combination with an element number of 3000 is selected to be used in the 

following calculations as it provides an optimal results compromise between accuracy and 

computational burden. 

 

Fig. 4.3 Comparison of the safety factors (left vertical axis, black curves) and computational time (right 

vertical axis, blue curves) considering the cases with and without adaptive mesh refinement. 

4.3.2 Deterministic FELA model verification 

Fig. 4.4 shows the safety factor comparison under different combinations of wall embedment 

depth D and B/H for homogeneous cases. The safety factors evaluated by the FELA-UB and 

FELA-LB present the same trends with FEM results as shown in Goh (2017b). It can be observed 

that the results of FEM are in the range of FELA-LB and FELA-UB. Besides, the non-

homogeneity effects are also considered and the comparison is summarized in Table 4.3. The 



133 

 

results are consistent under different cases with different excavation widths, depths, wall 

embedment depths, undrained shear strengths and non-homogeneity coefficients. All the 

comparisons can validate the effectiveness the numerical model presented in this study. 
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Fig. 4.4 Comparison of the safety factors for homogeneous circular shafts. 

Table 4.3 Comparison of the safety factors for non-homogeneous circular shafts. 

Case 
γ 

(kN/m3) 
B(m) T(m) H(m) D(m) Su0(kPa) 

k 

(kN/m3) 

Average 

method 

(Goh, 

2017b) 

FEM 

(Goh, 

2017b) 

FELA 

-LB 

FELA 

-LB 

1 16 40 60 16 4 5 1.5 1.287 1.288 1.268 1.306 

2 16 40 60 16 4 10 1.5 1.450 1.473 1.440 1.504 

3 16 40 60 16 4 20 1.5 1.776 1.813 1.783 1.839 

4 16 40 60 16 10 10 1.5 1.952 1.923 1.889 1.95 

5 16 40 72 24 4 10 1.5 1.291 1.285 1.266 1.3 

6 16 40 80 24 12 10 1.5 1.785 1.748 1.721 1.769 

7 16 100 120 24 24 10 1.5 2.180 2.192 2.152 2.23 

8 16 20 60 16 10 10 1.5 2.300 2.177 2.133 2.223 

9 16 20 60 16 4 10 1.5 1.610 1.544 1.521 1.577 

10 16 30 60 16 4 10 1.5 1.498 1.479 1.454 1.509 

11 16 40 60 16 4 20 1.2 1.551 1.584 1.557 1.621 

12 16 40 60 16 4 10 1.2 1.225 1.246 1.226 1.276 

13 16 40 60 16 10 10 1.2 1.634 1.617 1.585 1.651 
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In order to validate the soil-wall interface application of the present FELA model, the results are 

obtained with conditions similar to the ones in Goh et al. (2019b), i.e. under plane-strain 

conditions. Fig. 4.5 shows the Fs comparison with different values of soil-wall interface 

adhesion factor. It is found that the results evaluated by this study and Goh et al. (2019) are 

consistent. 
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Fig. 4.5 Comparison of the safety factors for different values of soil-wall adhesion factor m. 

As the comparisons in terms of homogeneous, non-homogeneous soils and soil-wall interface 

effects are in good agreement, the implemented deterministic FELA model is validated and will 

be used for the subsequent probabilistic analyses. 

4.4  Probabilistic discussions 

The probabilistic analysis results are presented first. The discussions of the circular shaft 

stability under undrained conditions are given, which include (1) importance of parameter 

uncertainties; (2) soil-wall adhesion effects; (3) soil non-homogeneity. Some recommendations 

are then provided based on these discussions. It should be noted that the parameters are the same 

as the reference case presented in Table 4.1 and Table 4.2 if there is no more description. The 

excavation state is respectively considered as failure and safe when the safety factor is smaller 

or larger than 1 in the present study. The limit-state function can thus be determined by Y=Fs-1. 

The LB FELA analysis, which can provide safer solutions, is employed in the subsequent 

probabilistic analysis. 
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4.4.1 Probabilistic results of the reference case 

The reference circular shaft presented in Section 4.2 is analysed based on the above-mentioned 

probabilistic analysis procedure PCK-PA, and the main results are plotted in Fig. 4.6 and Fig. 

4.7. 2.0e5 samples are set for the failure probability calculation, and Pf is found to be 2.2e-3 with 

a COVPf being 4.8%, which can ensure the Pf value accuracy. For the statistical moments, the 

mean value and standard deviation are respectively 1.47 and 0.17. Fig. 4.6 shows the PDF and 

CDF for the safety factor estimations based on the PCK-MCS. It can be observed from the PDF 

that the safety factor distribution is approximately symmetric and the Fs values mainly vary 

from 1.0 to 2.0. The CDF allows providing the probability that Fs is lower than or equal to one 

specific value. For example, it can be observed that 59% of the safety factors are smaller than 

1.5. 

 

Fig. 4.6 PDF and CDF of the obtained safety factor Fs. 

Fig. 4.7 shows the total effect Sobol’ indices of the 4 input random variables. It is found that the 

undrained shear strength increase gradient k has the highest sensitivity index with a value of 

0.341. It reveals that k contributes the most to the model response variation. The soil-wall 

adhesion factor ri sensitivity index is slightly smaller than the one of k, however, it still 

influences more the results than the undrained shear strength at the ground surface Su0 (0.329 

and 0.304 respectively). The least one is the unit weight γ with a Sobol’ index being lower than 

0.08. This sensitivity discussion demonstrates the importance of the soil non-homogeneity and 

the soil-wall interface. 
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Fig. 4.7 Sensitivity analysis results: undrained shear strength at the ground surface Su0, strength gradient 

k, unit weight γ and soil-wall adhesion factor ri. 

The metamodel accuracy validation can be found in Fig. 4.8. 1000 input samples are firstly 

generated based on the LHS, and then the PCK metamodel and numerical model are used to 

estimate the safety factors. It is observed that the points are distributed around a 45o line and in 

a range limited by the lines considering a 5% of error. The good consistency of the safety factors 

indicates that the PCK metamodel can give accurate model evaluations. Besides, it is noted that 

the PCK-PA only requires 99 calls (10 for the initial ED and 89 for the iterative procedure) to 

construct the metamodel and then perform the probabilistic methods in a few seconds, which is 

far below the calculation time of direct probabilistic analysis. 
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Fig. 4.8 Comparison of the safety factors estimated by FELA and PCK metamodel. 

4.4.2 Importance of the uncertainty consideration 

Fig. 4.9 depicts the influence of four input variables’ coefficient of variation (COVSu, COVri, 

COVk, COVγ) on the failure probability. 4 cases with different safety factors (Fs=1.06, 1.26, 1.51, 
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1.77) corresponding to embedment depths (D=3, 6, 10, 14 m) are respectively considered. It is 

shown that Pf varies with the COV values change although the deterministic Fs is the same. The 

larger the COV values, the greater the failure probabilities. The COV influences are more 

pronounced for shafts with larger safety factors. Besides, the failure probability is more sensitive 

when the coefficient of variation value is small. For example, the Pf values are respectively 4.6e-

1 (Fs=1.06) and 4.7e-3 (Fs=1.77) with COVk being equal to 0.25, whereas the Pf value can be 

lower to 7.8e-5 (Fs=1.77) from 3.6e-1 (Fs=1.06) when the COVk is equal to 0.05. The results 

reveal that different COV values can lead to totally different failure probabilities when varying 

from 6.0e-1 (hazardous) to 1.0e-5 (good-high level) even for the case with the same safety 

factors, which point out the important role of the uncertainties consideration for the circular shaft 

stability analyses. 
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Fig. 4.9 Coefficient of variation of (a) Su (b) ri (c) k (d) γ effects on the failure probability 
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4.4.3 Influence of the soil-wall adhesion 

The soil-wall adhesion factor ri influence on the supported circular shafts stability under 

different Su0 values is discussed and the results are plotted in Fig. 4.10. As shown in this figure, 

the increase of ri leads to smaller failure probabilities as expected and its influence is more 

significant for larger Su0 values. For example, the failure probability is in the range from 8.4e-1 

(ri=0.3) to 1.0e-2 (ri=1) when Su0=2.5 kPa, while for the case with Su0=10 kPa, the values are 

respectively 1.3e-1 and 1.0e-6 with a difference of 5 orders of magnitude. This is because for 

larger values of undrained shear strengths, the interface adhesion can be more significant, which 

is beneficial to the shaft stability. The soil-wall adhesion should thus be considered in the 

circular shafts analysis, particularly for large undrained shear strength cases which can result in 

a great Pf decrease. 
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Fig. 4.10 Soil-wall adhesion factor effects under different undrained shear strengths. 

Besides, the Pf values change rapidly when ri is in the range from 0.3 to 0.7. It can be explained 

by Fig. 4.11, which presents the sensitivity index variations of 4 input variables with ri by 

performing GSA based on PCK metamodel. As illustrated in this figure, the ri sensitivity index 

increases firstly and reaches a peak (around 0.55) when ri equals 0.3, then the importance of ri 

on the model response decreases with its value increase. The sensitivity indices are more 

pronounced when the soil-wall adhesion coefficient varies from 0.3 to 0.7 compared with the 

cases when ri=0.1, 0.7~1.0 (with a sensitivity index being smaller than 0.14), which can cause 

less change for the failure probability. Therefore, the soil-wall adhesion coefficient should be 

determined with caution in shaft probabilistic analyses. 
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In addition, it can also be found from Fig. 4.11 that the sensitivity indices of the undrained shear 

strength at the ground surface Su0, non-homogeneity coefficient k and unit weight γ decrease 

firstly and then increase as ri increases, which is opposite to the ri sensitivity index variations. 
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(a) Su0=5 kPa (b) Su0=10 kPa 

Fig. 4.11 Sensitivity analysis for different soil-wall adhesion coefficients. 

The soil-wall adhesion coefficient effect with different wall embedment depths (D=2.5, 5, 7.5, 

10.0 m) is also discussed and the results are depicted in Fig. 4.12. As expected, the failure 

probability decreases with the embedment depth increase. The influence of ri variations on the 

failure probability becomes slight when its value is larger than 0.7. In addition, ri affects greatly 

the shaft stability for cases with large embedment depths, i.e. the Pf value for case of D=10.0 m 

changes more compared with the case of D=2.5 m. This is because larger values of D lead to 

stronger contacts between the soil and wall, the soil-wall interface coefficient can thus make 

more influence on the failure probability. It can also be illustrated by Fig. 4.13, which shows the 

Sobol’ index of the input parameters under different embedment depths. With the increase of D, 

the sensitivity indices of ri increase simultaneously, which can lead to a remarkable impact. The 

sensitivity indices of the non-homogeneity coefficient k are also improving with the embedment 

depth increase; however, its variation is not significant compared to the ri ones (difference of 

respectively 0.05 and 0.10). The undrained shear strength sensitivity index changes most when 

its value varies from 0.44 to 0.30. 
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Fig. 4.12 Soil-wall adhesion factor effects under different embedment depths. 

 

Fig. 4.13 Sensitivity indices under different embedment depths. 

In summary, the soil-wall adhesion coefficient plays an essential role in the shaft stability 

analysis, particularly for cases with larger values of undrained shear strengths and embedment 

depths. The ri influence is more pronounced when its value is in the range from 0.3 to 0.7, which 

means that even small changes can result in different failure probabilities. Therefore, it should 

be paid attention to in practice. 

4.4.4 Influence of the soil non-homogeneity  

The effects of the strength gradient k which corresponds to the soil non-homogeneity on the 

failure probability under different undrained shear strengths Su0 (10, 15 and 20 kPa) are also 

considered, and the results are plotted in Fig. 4.14. It can be found that k considerably influences 

the failure probability, and its effects are more prominent for cases with larger undrained shear 
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strength values. For example, the failure probability can be reduced to 3.4e-5 (k=1) from 9.0e-1 

(k=0) when the undrained shear strength at the ground surface is equal to 20 kPa. The significant 

difference points out the importance of the soil non-homogeneity. Considering a homogeneous 

case (k=0) may lead to a failure probability which can underestimate the shaft stability. 

 

Fig. 4.14 Soil non-homogeneity effects under different undrained shear strengths. 

Non-homogeneous cases can also be transformed into homogeneous ones by taking an average 

of the shear strengths profile (Qin and Chian, 2018) for the sake of simplicity. Goh (2017b) gave 

a simplified method that can be achieved by considering the average Su between a depth of (H+D) 

and (H+D+0.15B) as the constant undrained shear strength of a homogeneous one. The average 

method is discussed in a probabilistic framework and the results are also plotted in Fig. 4.15 for 

direct comparisons with the non-homogeneous cases. It can be observed that the simplified 

method overestimates greatly the shaft stability and gives smaller failure probabilities. The 

possible explanation is that the undrained shear strength of the simplified average method is 

related to the excavation depth, width and wall embedment depth. As shown in Table 4.3, the 

average method (Goh, 2017b) can lead to larger safety factors when H+D is larger (compared 

Case 4 to Case 1) or the embedment depth is smaller (compared Cases 9, 10 to Case 1). Fig. 

4.14 plots the comparison based on the circular shaft with B=15m, H=16m and D=10m (a 

relatively small B and large H+D), which may lead to larger safety factors and be followed by 

smaller failure probabilities. Therefore, the average method is limited to the application for some 

special cases, and should be used with caution in practical engineering. 

The sensitivity indices of the 4 input parameters versus the non-homogeneity coefficients k are 

also discussed and the results are presented in Fig. 4.15. For large values of the non-homogeneity 

coefficients, the sensitivity index of ri is also greater as expected whereas the undrained shear 
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strength one is decreasing. Besides, the soil-wall adhesion factor can influence more the model 

response with the k increase. The results highlight again the significance of the soil non-

homogeneity and soil-wall adhesion. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 S
u0

 k

 γ

 r
i

 

 

 

 
S

en
si

ti
v

it
y

 i
n

d
ex

k  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.6

0.8

1.0

 S
u0

 k

 γ

 r
i

 

 

 

 
S

en
si

ti
v

it
y

 i
n

d
ex

k  

(a) Su0=10 kPa (b) Su0=20 kPa 

Fig. 4.15 Sensitivity analysis for different non-homogeneity coefficients. 

 

4.5  Conclusion 

This study discusses the deterministic and probabilistic basal heave stability of circular shafts 

with the consideration of the soil-wall interface in undrained and non-homogeneous clayey soils. 

The coupling of the finite element limit analysis and of the proposed procedure PCK-PA makes 

the circular shaft probabilistic analyses possible. The results are validated by comparing them 

with former studies in deterministic and probabilistic frameworks. 

The effects of the input variables uncertainties, soil-wall interface and soil non-homogeneity on 

the shaft stability are discussed. The failure probability increases with the coefficient of variation 

increase and the decrease of the soil-wall adhesion coefficient ri, undrained shear strength at the 

ground surface Su0, soil non-homogeneity coefficient k and wall embedment depth D. 

Concerning the soil uncertainties, the results show that the probabilistic analyses are necessary 

for the circular shaft stability and the coefficient of variation effect is more pronounced for cases 

with larger safety factors. The soil-wall interaction influences on the shaft stability are then 

discussed. It is seen that ri affects considerably the shaft failure probability, and its influence is 

more significant with the increase of the undrained shear strength and of the embedment depth. 

The ri influences greatly the model response when its value is in the range from 0.3 to 0.7. The 

choice of this parameter should then be carefully done or based on experimental tests. In addition, 

the soil non-homogeneity influences are investigated. It indicates that there is a remarkable 
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effect on the failure probability, and the simplified average method may give biased results, 

which should be used carefully when considering probabilistic analyses. The sensitivity indices 

of k and ri are increasing as k increases, whereas the importance of Su0 decreases. 

This study provides a good insight into the probabilistic basal heave stability analyses of 

supported circular shafts, and highlights the importance of the soil-wall adhesion, soil non-

homogeneity and uncertainties consideration. 
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Chapter 5  

Stability analysis of circular shaft against 

an hydraulic uplift 
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5.1  Introduction 

Underground water is commonly encountered in practical engineering, which can make shafts 

more prone to hydraulic heaves and significant amounts of soil uplift rebound that could cause 

serious accidents. Therefore, the hydraulic effects on shaft stability under drained conditions 

should be discussed. A brief explanation of the studied problem is given first, the deterministic 

and probabilistic analyses are then detailed, followed by comparisons and discussions. The 

permeability anisotropy coefficient, soil-wall interaction, and soil tension cut-off on the shaft 

basal heave stability against hydraulic effects are discussed in deterministic and probabilistic 

frameworks. 

(Disclaimer: The content of this chapter was published in the following journal paper: Tingting 

Zhang, Julien Baroth and Daniel Dias. (2022). Deterministic and probabilistic basal heave 

stability analysis of circular shafts against hydraulic uplift. Computers and Geotechnics, 150, 

104922) 

5.2  Problem statement 

5.2.1 Circular shaft against an hydraulic uplift 

Fig. 5.1 shows the reference supported circular shaft after excavation. H and Rc are respectively 

the depth and radius of the circular shaft. tw is the wall thickness and D is its corresponding 

embedment depth. The groundwater level is located at hw_1 below the ground surface. For the 

excavation side, the water is lowered to the level hw_2 from the excavation base to facilitate 

practical works (dry excavation). 

The soil is supposed to follow a linear elastic-perfectly plastic model with the Mohr-Coulomb 

failure criterion, which is characterized by the friction angle (φ), cohesion (c), Young’s modulus 

(Eu) and Poisson’s ratio (υ). 

The soil tensile strength is generally assumed to be insignificant compared to the shear strength 

of soils. Its small value may lead to tensile cracks development and can further affect the 

structures stability, particularly when underground water is considered. This is because the 

generated cracks may create preferential flow paths in soil, which can influence the soil 

hydraulic conductivity and shaft stability (Lv et al., 2020). The soil tensile strength is considered 

in this shaft stability analysis and can be expressed by 
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tc t tf r f=   (5.1) 

where 
tf  and 

tcf  are respectively the soil tensile strength before and after cut-off, and rt is the 

corresponding tensile strength cut-off coefficient within the range of [0, 1] (Hou et al., 2019).  

 

Fig. 5.1 Cross-section of the circular shaft. 

Due to the stratification, deposition and densification, the soil develops an anisotropic 

permeability, and the permeability anisotropy coefficient rk can be considered as 

 x

k

y

k
r

k
=  (5.2) 

where kx and ky are respectively the horizontal and vertical permeability coefficients. In general, 

the value of rk is often considered to be larger than 1 because the soils are usually vertically 

compacted by layers (Mouyeaux et al., 2019). The value of ky is set as a constant while the kx 

value varies accordingly with the considered rk values in the following discussions. 

The Linear-Elastic model is adopted for the retaining wall, and the wall is assumed to be 

impervious. The soil-wall interface strength is linked to the strength properties of the adjacent 

soil layer and its strength can be determined by Eq. (3.2).  

Table 5.1 presents the input parameters of the reference case used in this study. 
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Table 5.1 Parameters summary of the reference case. 

Parameters Notation Value 

Circular shaft depth H (m) 25 

Circular shaft radius Rc (m) 15 

Wall embedment depth D (m) 5 

Wall thickness tw (m) 1.2 

Water level from ground surface hw_1 (m) 5 

Water level from excavation base hw_2 (m) 2 

 Soil Wall  

Material model - Mohr-Coulomb Linear-Elastic 

Unsaturated unit weight γdry (kN/m3) 19 25 

Saturated unit weight γsat (kN/m3) 20 25 

Friction angle φ (°) 25 - 

Cohesion c (kPa) 35 - 

Young’s modulus E (kN/m2) 5.0e5 2.0e7 

Poisson’s ratio υ 0.25 0.2 

Vertical permeability coefficient ky (m/d) 0.864 a 8.64e-5 c 

Permeability anisotropy 

coefficient 
rk 3 (1~50) b 1 

Tension cut-off coefficient rt 0.5 (0~1) d - 

Soil-wall interface coefficient ri 0.7 (0.1~1) e 

Note: 
a Based on values given by Goh et al. (2019a). 
b Mouyeaux et al. (2019). 
c Shen et al. (2017). 
d Hou et al. (2019). 
e Sun (2016). 

 

5.2.2 Uncertainty consideration 

Four input parameters are considered random variables in the probabilistic analyses, which 

include the permeability anisotropy coefficient, the soil cohesion and friction angle, and the soil-

wall interface coefficient. The soil unit weight uncertainties are ignored as its variation makes 

an insignificant influence on the shaft stability as shown in Fig. 4.7. Lognormal random variables 

are arbitrarily chosen to model input uncertain parameters, and the input parameters are 

considered independent. Table 5.2 summarizes the parameters’ statistics and corresponding 

limits. 

Table 5.2 Statistical properties of input random variables. 

Parameters Notation 
Statistics of parameters 

Mean COV Distribution Range 
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Permeability anisotropy coefficient rk 3 0.5 a 
Truncated 

Lognormal 
1~50 

Cohesion c (kPa) 35 0.2 Lognormal - 

Friction angle φ (o) 25 0.2 Lognormal - 

Soil-wall interface coefficient  ri 0.7 0.3 
Truncated 

Lognormal 
0.1~1 

Note: 
a Based on values given by (Cho, 2012). 

5.3  Deterministic analysis 

The circular shaft model is constructed first. The influences of the permeability anisotropy 

coefficient, soil-wall interface coefficient and soil tension cut-off coefficient in the deterministic 

framework are then discussed. It should be noted that the parameters are the same as the 

reference case if there is no more discussion about these parameters. 

5.3.1 Numerical model construction 

The finite element limit analysis presented in Chapter 4 is used to analyse the circular shaft 

deterministic stability subjected to hydraulic effects. Fig. 5.2 illustrates the numerical model 

configuration of the supported circular shaft against the hydraulic effects based on the data 

summarized in Table 5.1. An axisymmetric model is used because of the circular shape. 

Displacements are fixed at the lateral sides in the horizontal directions and are free in the vertical 

boundary, while they are fully restrained at the model bottom. The lateral and bottom boundaries 

are impermeable. 
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Fig. 5.2 Deterministic FELA model with adaptive mesh refinement. 

The full tensile strength is calculated by (Krabbenhoft et al., 2015) 

 
tan

t

c
f


=  (5.3) 

The reduced tensile strength is then determined by Eq. (5.1). 

The contact interface between the wall and surrounding soil is specified by means of a shear 

joint element to consider the soil/wall interaction. Its strength corresponds to the surrounding 

soil shear strength and can be defined by Eq. (3.2). 

5.3.2 Influence of the permeability anisotropy 

Fig. 5.3 shows the permeability anisotropy coefficient influence on the circular shaft safety 

factor (Fs) for 4 different rt values. The safety factor decreases as rk increases, and it varies 

significantly when rk is in the range of [1, 10] with a difference being up to 42.2% (rt=0). 

However, when rk is larger than 10, the anisotropy has less effect on the shaft stability. The 

safety factor is also varied with the tensile strength value variations and the difference is around 

20%. Besides, when the tensile strength is equal to 0 (rt=0), the safety factor values are below 

1.0 for cases where rk>10, while the correlated full tensile strength cases’ (rt =1) safety factors 

are larger than 1. It could be respectively considered as “failure” and “safe” zones in 

deterministic analyses. The tensile strength determination at the design stage is thus important. 
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Fig. 5.3 Effects of rk and rt on Fs. 

Fig. 5.4 shows the seepage velocity vectors around the circular shaft for different permeability 

anisotropy coefficients (3, 10, 30 and 50). It can be observed that the water flows bypass the 
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retaining wall toe and move towards the excavation side. This is because the retaining wall can 

block the groundwater seepage and lengthen the seepage path benefiting from its low hydraulic 

permeability coefficient. Besides, with the permeability anisotropy increases, the water flow 

around the retaining wall toe (Region 1) is almost parallel to the horizontal direction, and the 

flow direction close to the shaft center (Region 2) is modified with an anticlockwise rotation and 

tends to be more horizontal. The reason is that the horizontal permeability coefficient kx is 

increasing with the increase of rk. It leads to strong correlated hydraulic conductivities in the 

horizontal direction, and the horizontal water flow is accordingly prominent. Moreover, on the 

excavation side, the flow vectors are bigger and denser when they are closer to the soil-wall 

interface. 

  

(a) rk=3 (b) rk=10 

  

(c) rk=30 (d) rk=50 

Fig. 5.4 Flow vectors for different rk values. 

Fig. 5.5 presents the correlated water pressure distribution, and only two points on the excavation 

side are given for the sake of simplicity. It can be noted that the water pressure distribution 

around the retaining wall toe is more horizontal with the increase of rk. It shows similar trends 
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with the flow vector ones. Besides, the water pressure around the retaining wall increases on the 

excavation side as rk increases. It indicates the flow volume is greater when the permeability 

coefficient is more anisotropic. 

  

(a) rk =3 (b) rk =10 

  

(c) rk =30 (d) rk =50 

Fig. 5.5 Water pressure distributions for different rk values. 

The water head distributions with different levels of permeability anisotropy are also given in 

Fig. 5.6. The water head decreases along with the water flow by the fact that the groundwater 

flow is impacted by friction with the soil grains. It leads to mechanical energy consumption and 

a head loss. Besides, for cases with larger rk values, the hydraulic head contours are also more 

horizontal and denser on the excavation side. It indicates that a higher hydraulic gradient is 

developed, which can increase the soil uplift potential. 
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(a) rk =3 (b) rk =10 

  

(c) rk =30 (d) rk =50 

Fig. 5.6 Water head distributions for different rk values. 

As a result, ignoring the anisotropy of the permeability coefficient and tensile strength reduction 

will overestimate the shaft stability. The corresponding values should be determined with 

attention, particularly when rk is in the range of [1, 10]. Larger rk values induce a prominent 

horizontal water flow, which leads to horizontal water pressure distributions and a hydraulic 

head around the wall toe. Greater water pressure and hydraulic gradients will also be developed. 

In such a case, the excavation will be more prone to hydraulic heave accidents. 
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5.3.3 Influence of soil-wall interaction 

Fig. 5.7 depicts the soil-wall interface effects on the shaft stability for different tensile strengths. 

The safety factor increases as ri increases by the fact that it attributes more resistance between 

the soil and wall. The tensile strength also plays an important role in the stability analysis, and 

its difference is more significant when ri is small. For example, the safety factors are respectively 

1.127 and 0.567 when ri =0.1, with a difference being 49.6%. This difference is larger than 20.9% 

for the case of ri =1. 
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Fig. 5.7 Effects of ri and rt on Fs. 

The interface strength effect under different permeability anisotropy coefficients is also 

discussed and the results are presented in Fig. 5.8. It is noted that the influence of ri is less 

significant as rk increases. For example, the safety factor differences are 0.79 and 0.53 when rk 

equals respectively to 3 and 50. 
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Fig. 5.8 Effects of ri and rk on Fs. 

Fig. 5.9 gives the possible explanations. It can be observed that when rk is small, the shear 

dissipation on the excavation side is mainly distributed on the soil-wall interface upper part due 

to the property diversity between soil and wall. Resisting to the hydraulic uplifts mainly depends 

on the soil-wall interface shear strength. Conversely, with the increase of rk (Fig. 5.9(b)), the 

failure surface is developed away from the soil-wall interface and in the shaft center direction. 

The failure surface is around 30o in relation to the vertical direction and tends to be horizontal 

when it is close to the retaining wall depth (-30 m). This is because with the rk increases, the 

seepage in Region 2 tends to be horizontal as shown in Fig. 5.4(d) and the correlated hydraulic 

head distribution is almost horizontal (Fig. 5.6(d)). It induces hydrostatic water and no flow 

occurs. It places the soil in this area in a suspension state, which is more prone to cause the 

excavation uplift and destabilize the circular shaft. 

  

(a) rk =1 (b) rk =50 

Fig. 5.9 Shear dissipation distribution for different rk values (ri =1). 
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In summary, the soil-wall interface influences greatly the shafts stability and is more correlated 

to the shaft stability when the permeability coefficient is less anisotropic. 

5.4  Probabilistic analysis 

The section aims to investigate the effects of the permeability anisotropy coefficient, the soil-

wall interface coefficient and the soil tensile strength in a probabilistic framework. The 

sensitivity analysis is also performed to rank the importance of the considered random variables. 

The total effect Sobol’s indices are given. 

5.4.1 Probabilistic results for the reference case 

It should be noted that two solutions can be provided in the limit analysis framework, i.e. lower 

and upper bounds (LB and UB). The lower one aims to provide a lower bound of the solution 

based on a statically admissible stress field, while the upper one gives an upper bound according 

to the kinematically admissible velocity field (Wu et al., 2020). A precise solution is enclosed 

in the interval between the UB and LB solutions. It is often approximated by the average of UB 

and LB solutions by the fact that the average value is relatively stable with the elements number 

increases and is closer to the results obtained by 15-node Gaussian element type as shown in the 

upper part of Fig. 5.10. However, the computational time of 15-node Gauss results is far longer 

and varies significantly with the increase of elements number compared to the average values 

as depicted in the lower part of Fig. 5.10. In view of this, the average of UB and LB results will 

be considered as the model response and 3000 element numbers will be used in the subsequent 

probabilistic analyses in combination with the calculation results efficiency and accuracy. One 

deterministic simulation needs around 180 s. 
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Fig. 5.10 Comparison between average and 15-node Gauss solutions. 

The reference circular shaft is analysed based on the above-mentioned PCK-PA. 80 simulations 

(10 for the initial ED and 70 for the iterative procedure) are necessary to construct the PCK 

metamodel. The main probabilistic results are plotted in Table 5.3, Table 5.4, Fig. 5.11 and Fig. 

5.12. 3.0e4 samples are set for the failure probability calculation using the MCS. The Pf is found 

to be 0.018 with a COVPf being 4.3%, which can ensure the Pf value accuracy. For the statistical 

moments, the mean value and standard deviation are respectively 1.53 and 0.28. Fig. 5.11 shows 

the PDF and CDF for the safety factor estimations based on the procedure. 

Table 5.3 Results for the reference case. 

  Pf β *U  Sensitivity-

index 

Number of 

evaluations 

PCK-PA 

MCS 0.018 — — — 30000 

GSA — — — Fig. 5.12 6000 

FORM - 1.975 Table 5.4 Fig. 5.12 102 

 

Table 5.4 Design points for the reference case. 

Parameters rk c φ ri 

DP 4.38 26.0 21.9 0.53 
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Fig. 5.11 PDF and CDF of Fs. 

Fig. 5.12 shows the sensitivity indices obtained by GSA and FORM of the 4 input random 

variables. The cohesion contributes the most to the model response variation, with a sensitivity 

index being more than 0.5. The permeability anisotropy coefficient rk follows. It reveals that the 

permeability anisotropy coefficient also plays a significant role in the basal heave stability 

analysis. The sensitivity index of the soil-wall interface coefficient ri is slightly larger than the 

friction angle one. It indicates the importance of the soil-wall interface consideration. Although 

the values of the sensitivity index obtained by FORM and GSA are not totally the same, they 

can give consistent results with the same ranking orders, which can validate the results accuracy. 

 

Fig. 5.12 Sensitivity analysis results based on the FORM and GSA. 

The metamodel is validated by Fig. 5.13, which depicts the safety factor comparison and 900 

sets of samples generated by the LHS are considered. The R2 value is 98.4% and nearly all of 

the scatter points are within ±5% of the 45o line, which represents the results based on the PCK 

metamodel are approximately equal to the ones obtained by the numerical model. It allows 

validating the metamodel accuracy and the original mechanical model can then be substituted 

by the PCK metamodel. 
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Fig. 5.13 Fs comparison obtained by FELA and PCK models. 

5.4.2 Influence of permeability anisotropy 

The permeability anisotropy coefficient effects on the failure probability and sensitivity indices 

under different rt cases are depicted in Fig. 5.14. The failure probability increases with the rk 

increases and its variation is significant with a difference of 3 orders of magnitude when rk varies 

from 1 to 50. The corresponding expected performance levels are respectively “above average” 

and “hazardous” (Sivakumar Babu and Murthy, 2005). It points out again the permeability 

anisotropy coefficient importance. 

The failure probability exhibits similar variations with Fig. 5.3. It shows that in the range of [1, 

10], the result variation is more pronounced. It can be explained by Fig. 5.14(b), which presents 

the sensitivity index of rk for different cases. The value of Srk initially increases and reaches a 

peak when its value is around 5. Then the importance of rk on the model response decreases as 

rk increases. 

It can also be seen that the tensile strength also influences significantly the failure probabilities, 

and the difference can be respectively up to 97.8%, 94.2%, 89.4%, 80.6%, 62.9% and 57.5% for 

cases with rk being 1, 3, 5, 10, 30 and 50. 
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 (a) Failure probability (b) Sensitivity index of rk 

Fig. 5.14 Effects of rk and rt on probabilistic analysis results. 

Fig. 5.15 presents the permeability anisotropy coefficient effects on the failure probability and 

sensitivity indices. There is no doubt that the sensitivity index of rk increases as the COVrk 

increases by the fact that a higher coefficient of variation can lead to more variable samples, and 

make more significant influences on the response. The sensitivity indices of rk = 30, 50 are 

smaller than the cases of rk = 1, 3, 5, 10. It is consistent with the results shown in Fig. 5.14(b). 

However, the failure probability shows different variation trends with the increase of COVrk. Pf 

is increasing when rk is 1, 3, 5, while for the cases with rk being 10, 30 and 50, the failure 

probability is decreasing. 
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(a) Failure probability (b) Sensitivity index of rk 

Fig. 5.15 Effects of COVrk on probabilistic analysis results. 

It can be clarified by Fig. 5.16, which presents the rk distribution with μrk=5, 30 and COVrk=0.3, 

0.5, 0.7. 100000 samples are generated for each case. The critical permeability anisotropy 

coefficient is around 34 for the reference case, which means that the safety factor with rk=34 is 

equal to 1 when other parameters are set to the average values. It is noted that for the case with 

μrk=5 as shown in Fig. 5.16(a), the amount of rk>34 can be up to 37 for a COVrk=0.7 by its wide 

distribution. It is larger than the other two cases (COVrk=0.3, 0.5). In such a case, the failure 

probability increases as the COVrk increases. Conversely, the opposite trend is given when μrk is 

equal to 30 as shown in Fig. 5.16(b). There are respectively 26142, 23650 and 19926 samples 

greater than rk=34 with COVrk equal to 0.3, 0.5 and 0.7, it is followed by the failure probability 

decrease. 

  
(a) μrk = 5 (b) μrk = 30 

Fig. 5.16 PDF of rk for different cases. 
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To sum up, the failure probability increases with rk increases, whereas the effects of COVrk on 

the Pf values are different for cases with different rk values. Besides, the sensitivity indices are 

increasing with the COVrk. rk influences significantly the results when its value is in the range 

of [1, 10]. Therefore, the statistical properties determination should be done with attention in 

practice. 

5.4.3 Influence of soil-wall interaction 

The soil-wall interface coefficient influences on the circular shafts stability are discussed and 

the results are plotted in Fig. 5.17. As shown in Fig. 5.17(a), the failure probability decreases 

with the increase of ri as expected. Its variation is more significant when ri varies from 0.2 to 

0.8. It is consistent with the results given by Fig. 5.17(b), the sensitivity index increases firstly 

and then decreases, and its value is relatively small when ri is out of the range [0.2, 0.8]. It means 

ri variation causes less change of the failure probability. 
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(a) Failure probability (b) Sensitivity index of ri 

Fig. 5.17 Effects of ri and rt on probabilistic analysis results. 

The probabilistic effects of soil-wall interface strength with different permeability anisotropy 

coefficients are also discussed and the results are depicted in Fig. 5.18. The ri influence on the 

failure probability becomes more important when the permeability anisotropy coefficient 

decreases. The difference is up to 97.9% when ri=0.9. It shows similar trends with Fig. 5.8. 
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Fig. 5.18 Effects of ri and rk on Pf. 

5.5  Conclusion 

Deterministic and probabilistic analyses are conducted to analyse the stability of circular shafts 

subjected to hydraulic uplifts. The effects of the permeability anisotropy coefficient (rk), soil-

wall interface coefficient (ri) and soil tension cut-off coefficient (rt) are discussed. The results 

show that the safety factor increases with the increase of ri and rt, and with the decrease of rk. 

Besides, when rk increases, the horizontal water flow is prominent. The flow vectors, water 

pressures and water heads are then more horizontally distributed. The water pressures and 

hydraulic gradients on the excavation side are increased. The failure surface is developed from 

the shaft center, which is more prone to result in hydraulic heave accidents. Conversely, the 

shear failure occurs along the soil-wall interface when the soil permeability is less anisotropic. 

The effect of ri is more pronounced with the rk decreases.  

The magnitudes of shaft stability results are not linearly proportional to the values of rk and ri. 

The permeability anisotropy coefficient sensitivity index is higher when rk varies from 1 to 10 

and the soil-wall interface coefficient influences significantly the shaft stability when it is in the 

range of [0.2, 0.8]. This is similar to the soil-wall interface discussions presented in Chapter 4 

([0.3, 0.7]). Even small changes can result in different stability results. The tensile strength can 

also make a significant influence on the circular shaft stability, and the difference can be up to 

97.8%. Therefore, the corresponding values determination should be done with attention for the 

design of such structures. 
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A probabilistic analysis based on the PCK metamodel is then performed. The probabilistic 

results show that as COVrk increases, the sensitivity index of rk increases. However, the failure 

probability variation depends on the rk mean values. When the permeability anisotropy 

coefficient is small (e.g., rk<10), the failure probability is increased as the coefficient of variation. 

Conversely, the failure probability is decreased for the case with large permeability anisotropy 

coefficient. Therefore, one should take advantage to better characterize the variability of the 

inputs considered as uncertain parameters. 
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6.1  Introduction 

In Chapters 2-5, soil uncertainties are modelled only using random variables. However, soil 

spatial variability, which means that the mechanical soil properties are significantly different 

from one location to another, always exists due to the complex geological processes (deposition, 

sedimentation, weathering and biological effects) (T. Zhang et al., 2021a). Probabilistic analyses 

considering the soil spatial variability are more representative and permit to provide more 

complementary results. 

This chapter improves the probabilistic analysis of the supported excavation at great depth in 

Chapter 3 by introducing random fields (RF) to consider the spatial variability. A random finite-

element method is implemented to study the effect of two-dimensional spatial variability on the 

predicted wall responses of the FIVC excavation. The Karhunen-Loève (K-L) expansion is used 

to generate a discretized random field. An active learning method based on the bootstrap Sparse 

Polynomial Chaos Expansions (bSPCE) is then implemented to analyse the spatial variability 

effects on the excavation stability (in terms of failure probability and wall deflection). The 

Monte Carlo simulations are then coupled with bSPCE models for the serviceability assessment 

of the supported excavations. 

6.2  Random finite element analysis 

This section aims to present the random finite element analysis for the supported excavations. 

The random field generation is introduced first, which is followed by the probabilistic methods. 

A flowchart is then given for the probabilistic analysis of the supported excavations with 

consideration of the spatial variability. 

6.2.1 Random field generation 

A random field can describe the spatial correlation of soil properties at different locations and 

represent nonhomogeneous features. Among the random field discretization methods (i.e., the 

point discretization methods, the average discretization methods and the series expansion 

methods), the series expansion methods which are less sensitive to the finite element mesh size, 

will be implemented in this chapter (Sudret and Kiureghian, 2000). 
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The series expansion methods result in a Gaussian field represented by a series of random 

variables and deterministic spatial functions. The accuracy of the field depends on the number 

of terms used in the series expansion and the expansion method employed. The K-L expansion 

is used in this study since it requires the least random variables for a given accuracy and is 

independent of the finite element discretization (Cho, 2010; Sudret and Kiureghian, 2000). 

Spatial correlation 

A Gaussian random field can be described by its constant mean ( )x , variance ( )x  and an 

autocorrelation function  , which is used to describe the spatial correlation of soil properties. 

In this study, a squared exponential autocorrelation function is used and reads as follows 

 
2 2

2 2

' '
( , )=exp

h v
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x y

l l
 

  − −
  − +
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 (6.1) 

where hl  and vl  are respectively the autocorrelation lengths in the horizontal and vertical 

directions, (x, y) and (x’, y’) are the coordinates of two arbitrary points. The autocorrelation 

length is used to describe the distance for the soil properties with correlation. A large 

autocorrelation length value implies that the soil property is highly correlated over a large 

spatial extent, resulting in a smooth variation within the soil profile (T. Zhang et al., 2021a). 

K-L expansion 

The Karhunen-Loève (K-L) expansion is based on the spectral decomposition of its 

autocovariance function, which is the product of the autocorrelation function and the random 

field variance. The realization of a stationary Gaussian random field, denoted ( , )H x  , can be 

defined by (Cho, 2010; Liao and Ji, 2021) 
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 (6.2) 

where μ and σ are respectively the mean value and standard deviation of the random field, 
i  

and 
i  are respectively the eigenvalues and eigenfunctions of the autocovariance function, 

i  

is a set of uncorrelated random variables and S is the size of the truncated series expansion. It 

should be noted that S depends on the target accuracy, autocorrelation length and the random 

field dimension. It is noted that the higher the value of S, the higher the accuracy of the random 

field. However, a large amount of S can also increase the computational burden. The 

determination of the minimal random variables number with the accuracy guarantee is necessary. 
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The ratio of expected energy Re is introduced and the approximation is considered good enough 

when the value is larger than a given threshold δRe, which can be expressed as (Jiang et al., 2014) 

 
1 1

/
e

S

e i i R

i i

R   


= =

=    (6.3) 

A log-normal random field can then be expressed as 
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where ( , )G x   is a standard normally distributed random field with S terms, 
ln  and 

ln  are 

respectively mean value and standard deviation of the log-normal random field, which can be 

defined by 

 2

ln = ln(1 )COV +  (6.5) 

 2

ln ln=ln 0.5  −  (6.6) 

where COV is the coefficient of variation. 

6.2.2 bSPCE method 

The probabilistic analysis from Chapter 2 to Chapter 5 is based on the PCK-based probabilistic 

methods, and the optimal PCK is performed to find the metamodel with minimal value of the 

leave-one-out error. This metamodel includes the determination of the orthogonal polynomials 

and corresponding coefficients in sparse polynomial chaos expansions, and parameters of 

autocorrelation function in Kriging. It is recommended for the low-dimensional (random 

variable dimensionality is smaller than 20) problems. 

It is noted that the probabilistic analysis becomes a high-dimensional problem due to the random 

field discretization. The increased random variables number can significantly increase the 

computational effort for the determination of the optimal PCK. The Polynomial Chaos 

Expansions (PCE) metamodel is recommended in terms of computational efficiency and 

accuracy, which is used in this probabilistic analysis with consideration of spatial variability 

(Moustapha et al., 2022). The PCE is a mathematical technique for quantifying the uncertainty 

in a system by representing it as a polynomial function of random variables, and the basic 

formula of PCE is defined as 
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 ( ) ( )PCE
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The detailed definitions can be found in Section 2.3.1. The hyperbolic truncation scheme is 

used to truncate the PCE formula for the sake of practical applications and the least-square 

minimization regression strategy to calculate the coefficients. 

The metamodel performance can then be assessed by the leave-one-out error, which represents 

the global error of the PCE metamodel. The smaller the error, the more accurate the model. In 

order to consider the local error estimate of PCE metamodel and can further employ the active 

learning method to enrich the model evaluations close to the limit state, the bPCE method is 

proposed by (Marelli and Sudret, 2018) by implementing the bootstrap resampling technique 

into PCE. 

The rationale of the bPCE is: an initial experimental design (NED) is generated from the input 

space, and the corresponding model response (Y) can be determined by the deterministic models. 

A bootstrap resampling technique is then implemented to generate b new EDs by randomly 

assembling b NED realizations. Accordingly, b different PCE surrogate models are constructed 

based on the new EDs. Therefore, b possible predictions can be observed at each point. The 

local error bounds can then be determined by employing the empirical quantiles. A bSPCE (also 

known as the fast bPCE) approach is further proposed since performing b sparse-least square 

analysis is time-consuming. The sparse polynomial basis identified by the NED is performed 

only once and assumed effective for all the new Eds. The bootstrap is only applicable to the 

unknown coefficient estimation of the sparse basis which is based on a classic ordinary least-

square regression. More detailed information about the bSPCE performance can be found in 

Fig. 6.1. 

6.2.3 Procedure 

This section aims to describe the procedure of the random finite element analysis based on the 

FEM code in PLAXIS software and the probabilistic analysis using the surrogate models 

bSPCE. Fig. 6.1 gives a detailed flowchart and can be described as follows, 

Step 1: Preparation. Construct an RFEM model for the excavations. Generate an initial 

experimental design NED and a large of samples SPf used for the failure probability Pf calculation; 
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Step 2: Input-output sets determination. Compile the batch commands of MATLAB and map 

the generated samples on the RFEM model. After the evaluation, the model response (such as 

the horizontal wall deflection) is then exported and saved automatically; 

Step 3: SPCE model construction. Construct a SPCE metamodel based on the NED and the 

corresponding model response. The failure probability can then be evaluated based on the 

metamodel and SPf; 

Step 4: bSPCE model construction. Generate b sets of new EDs based on the bootstrap 

resampling technique and construct b different SPCE surrogate models. A set of failure 

probabilities can then be evaluated; 

Step 5: Accuracy control. Two stopping criteria are satisfied. The first one is related to the 

failure probability estimation as presented by 

 f f

f

f

P P
P

P


+ −−
  (6.8) 

where fP +  and fP −  are respectively the maximum and minimum failure probability estimated 

by the b different SPCE models, and fP  is the target accuracy with a range of [0.05, 0.15] and 

0.05 is considered in this study (Marelli and Sudret, 2018). 

If Eq. (6.8) is not satisfied, the informative samples from the SPf needs to be elected to enrich 

the experimental designs for the metamodel construction. The learning function for the bSPCE 

is the Fraction of bootstrap replicates (FBR) based on the probability of misclassification of a 

candidate sample. The FBR can be defined as 

 FBR

( ) ( )
( )

s fB x B x
U x

B

−
=  (6.9) 

where ( )sB x  and ( )fB x  are respectively the number of safe and failed bootstrap replicate 

predictions at the point x. The newly added sample is chosen by minimizing Eq. (6.9), i.e., 

FBRarg min ( )nS U x= , which permits finding the point whose prediction is uncertain tend to have 

close values of ( )sB x  and ( )fB x . 

The second criterion is related to the coefficient of variation of Pf as presented in Eq. (1.16), if 

it is smaller than 5%, the procedure enters the next step, otherwise, the enrichment of the SPf is 

necessary and enters Step 3; 
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Step 6: Post-processing of MCS results. The statistical moments of the model response and 

the PDF/CDF can be obtained. 

 

Fig. 6.1 Flowchart of the probabilistic analysis with consideration of the spatial variability 

 

6.3  Results and discussions 

This section aims to investigate the influence of the soil spatial variability on the stability of the 

supported excavation with great depth (Fort d’Issy-Vanves-Clamart excavation: FIVC) as 

presented in Chapter 3. The probabilistic analysis is validated first, which is followed by the 

discussion of the spatial variability effects on the maximum wall deflections and the failure 

probability of supported excavations. 

6.3.1 Results and comparison 

The sensitivity analysis presented in Fig. 3.11 shows that the friction angles of layers Meudon 

Marls (MM) and Ypresian Plastic Clay (PC), and the initial earth pressure coefficient at the rest 

of layer PC are the parameters contribute the model most, whose sensitivity indices exceed 0.1. 
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Therefore, the three key parameters (φPC, φMM and k0PC) will be modelled using random fields 

and the other four parameters (EHL, EPC, EMM and φHL) are modelled random variables. The 

random fields of layers MM and CP are considered and can be defined by subdividing the layers 

into square-shaped subdomains (Nguyen and Likitlersuang, 2021) as presented in Fig. 6.2. If 

the element sizes are too small, the computational effort increases significantly. In this study, 

the soil profile was subdivided into 360 elements, including 160 elements for the PC layer and 

200 for the MM layer, each one in a block shape of 5 × 1 m2. 

 

Fig. 6.2 FEM model of the FIVC excavation considering the spatial variability 

The horizontal and vertical autocorrelation lengths are respectively 40 m and 3 m for the 

reference case and more statistical properties refer to Table 3.4. A total of 36 input variables 

will be considered in this probabilistic analysis, which includes 20 standard normal variables 

for the PC layer (φPC and k0PC), 10 standard normal variables for the MM layer (φMM) and 4 

random variables (EHL, EPC, EMM and φHL). The random fields of φPC, φMM and k0PC can be 

realized using Eq. (6.1) to Eq. (6.6) and the corresponding information can then be 

automatically imported to the numerical model via batch command codes. After the calculation, 

the horizontal wall deflection can be automatically exported and saved. 

The probabilistic analysis presented in Section 6.2 is implemented. Initial EDs with 360 samples 

are generated first (Guo et al., 2019b). The input-output can then be determined and the adaptive 

metamodel bSPCE is constructed. The MCS is implemented to provide the failure probability, 

the distributions of the maximum wall deflection, and the corresponding statistical moments. 

Considering the limiting wall deflection, 28 mm is used for the reference case in Chapter 3. 
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However, the failure probability with consideration of the spatial variability is very small using 

28 mm and is hard to calculate the corresponding failure probability (will be presented in 

Section 6.3.3). This section takes 20 mm as an example to discuss the accuracy of the 

probabilistic analysis procedure (Philipponnat and Hubert, 2016). A total of 589 samples are 

used for the metamodel construction and the MCS gives a failure probability of 1.9e-3 with a 

COVPf being 4.6%, which can ensure the Pf value accuracy. For the statistical moments, the 

mean value and standard deviation are respectively 16.50 mm and 1.11 mm. Fig. 6.3 shows the 

PDF and CDF for the maximum wall deflection estimations based on the procedure.  

 

Fig. 6.3 PDF and CDF of δhm 

The metamodel is validated by Fig. 6.4, which depicts the comparison of the maximum wall 

deflection with the numerical simulations. 300 sets of samples generated by the LHS are 

considered. It is seen that almost all the scatter points are within ±5% of the 45o line, which 

represents that the results based on the metamodel are approximately equal to those obtained by 

the numerical simulations. It allows verifying the accuracy of the SPCE surrogate model. 
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Fig. 6.4 δhm comparison obtained by FEM and SPCE models. 

 

6.3.2 Probabilistic distributions of the wall deflection with consideration 

of the soil spatial variability 

4 cases with different combinations of horizontal and vertical autocorrelation lengths, including 

lh=∞ & lv=∞, lh=40 m & lv=3 m, lh=10 m & lv=3 m and lh=40 m & lv=1 m, are considered (Phoon 

et al., 2022). The autocorrelation lengths for three key parameters are set the same. Similar to 

Chapter 3, 500 samples generated by the LHS, are simulated for each case to investigate the 

spatial variability consideration effects on the wall deflection distributions. The infinite value 

of the autocorrelation length in Fig. 6.5(a) is related to the random variable case and the 

variation of the horizontal wall deflection is the most significant. With the decrease of the 

autocorrelation lengths in horizontal and vertical directions, the distributions are less varied as 

presented in Fig. 6.5(b~d). This is because a higher autocorrelation length indicates a stronger 

correlation of the soil strength, which may lead to a relatively low variability. As a result, the 

global average of the strength parameters varies considerably from one realization to another, 

which results in higher variability of the obtained maximum wall deflections. Conversely, small 

autocorrelation lengths lead to more non-homogeneous zones, and smaller variations in the 

system response. 
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(a) lh=∞, lv=∞ (b) lh=40 m, lv=3 m 

  

(c) lh=10 m, lv=3 m (d) lh=40 m, lv=1 m 

Fig. 6.5 Wall deflection contours with consideration of the spatial variability. 
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Determining the corresponding locations where the maximum wall deflection occurs is also 

important for the structural evaluation of underground diaphragm walls. Fig. 6.6 depicts the 

depth frequencies at which the maximum deflection of the wall occurs for different cases. It is 

observed that the δhm locations are distributed narrower with the decrease of the autocorrelation 

lengths. The depths are mainly located between 24 m and 26 m below the ground surface due 

to the stiffness difference between layers HL, PC and MM. More attention should be paid in 

practice in these areas. 

  

(a) lh=∞, lv=∞ (b) lh=40 m, lv=3 m 

  

(c) lh=10 m, lv=3 m (d) lh=40 m, lv=1 m 

Fig. 6.6 Frequency of the maximum horizontal wall deflection location. 
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6.3.3 Probabilistic serviceability assessment 

The limiting wall deflection effects on the probability of serviceability limit state are discussed 

in this section. Different soil autocorrelation lengths and coefficient of variations are considered 

and the limiting maximum horizontal wall deflection is varied from 12 mm to 30 mm. It is seen 

that with the increase of the limiting wall deflection, there is no doubt that the failure probability 

is decreasing since higher thresholds are not easily exceeded. With the decrease of the 

autocorrelation lengths, the Pf value is increased when the limiting wall deflection is smaller 

than about 16 mm. The failure probability is decreased with the increase of the limiting wall 

deflection after the limiting wall deflection is larger than 18 mm. This phenomenon is similar 

to Section 3.4.5 and the same explanation can be given since with the increase of the 

autocorrelation lengths, the maximum wall deflection distributions are also wider. The failure 

probability is decreased with the increase of the distributions when the limiting value is smaller 

than the mean horizontal wall deflection of about 17 mm. Besides, compared to Fig. 6.7 (a) and 

(b), the increase of the COVφ of Fig. 6.7(c) makes more influence on the failure probability, 

which can highlight the importance of the friction angles. 

  

(a) COVE50ref=0.15, COVφ=0.1, COVk0=0.15 (b) COVE50ref=0.15, COVφ=0.1, COVk0=0.35 
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(c) COVE50ref=0.15, COVφ=0.3, COVk0=0.15 

Fig. 6.7 Effect of autocorrelation lengths on the probability of exceeding specified limiting wall 

deflection 

 

6.3.4 Influence of the autocorrelation lengths 

This section aims to discuss the effects of autocorrelation lengths on excavation stability. For 

the horizontal autocorrelation length lh, it varies from 10 m to 40 m, and the vertical one l𝑦 is in 

the range of [1 m, 4 m]. The limiting wall deflection is set to 20 mm and after the metamodel 

construction, 100000 input samples (generated by the LHS) are considered for the PDF and 

statistical moments discussions in each case. Table 6.1 gives an overview of the probabilistic 

analysis results with different autocorrelation lengths and Fig. 6.8 depicts the corresponding 

PDF curves. It can be seen that as the autocorrelation length increases, the failure probability is 

increased as expected. It can also be interpreted by the standard deviation variation in Table 6.1 

and the PDF in Fig. 6.8. It is observed that with the decrease of the autocorrelation lengths, the 

standard deviation is smaller and the PDF curve is narrower, which shows a smaller variability. 

Besides, Fig. 6.8(a) and Fig. 6.8(b) depict respectively the horizontal and vertical 

autocorrelation lengths on the excavation stability. The results indicate the excavation stability 

is more sensitive to the vertical autocorrelation length by the fact that the failure probability is 

increased from 2.49e-4 (lv=1 m) to 2.79e-3 (lv=4 m) when lh=40 m, whereas the failure 

probability Pf changes less with the increase of the horizontal autocorrelation length. All of the 

cases are smaller than the random variable case with a failure probability of 0.234 as presented 

in Fig. 3.22 and the differences are significant. Therefore, ignoring the soil spatial variability 

may provide biased excavation stability. 
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Table 6.1 Probabilistic analysis with consideration of the spatial variability. 

Autocorrelation lengths Pf Mean (mm) Std. (mm) 

lh=40 m 

lv=1 m 2.49e-4 16.44 0.92 

lv=2 m 1.2e-3 16.48 0.99 

lv=3 m 1.88e-3 16.50 1.11 

lv=4 m 2.79e-3 16.52 1.13 

lv=3 m 

lh=10 m 1.37e-3 16.44 1.02 

lh=20 m 1.52e-3 16.46 1.05 

lh=30 m 1.58e-3 16.48 1.07 

lh=40 m 1.88e-3 16.50 1.11 

 

  

(a) lv=3 m (b) lh=40 m 

Fig. 6.8 PDFs for different autocorrelation lengths 

 

6.4 Conclusion 

This chapter presents a probabilistic analysis of supported excavations at great depth 

considering the spatial variability. A random finite element model is constructed for the 

computation of the horizontal wall deflection. The Karhunen-Loève (K-L) expansion is used 

for the random field discretization and three parameters, which include the friction angles of 

the Meudon Marls (MM) and Plastic Clay (PC) layers, and the initial earth pressure coefficient 

at rest k0 of the PC layer, are modelled by the random field approach since they contribute 

significantly to the model response as discussed in Chapter 3. An active bootstrap-sparse 

polynomial chaos expansion (bSPCE) is then implemented to replace the time-consuming 

deterministic models and allow to alleviate the computational effort. Finally, the Monte-Carlo 

Simulation is carried out to determine the probabilistic results. 
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The wall deflection distributions are discussed and the results show that the spatial variability 

highly affects the lateral wall deflection distributions. With the decrease of the autocorrelation 

lengths, the distributions are narrower since a small autocorrelation length leads to more non-

homogeneous zones, and smaller variations in the system response. The maximum wall 

deflection occurs in the layer PC (from 22 m to 28 m below the ground surface) and with the 

decrease of the autocorrelation lengths, it is mainly distributed in the range of [-24 m, -26 m]. 

The probabilistic serviceability assessment considering the spatial variability is implemented. 

The results showed that the serviceability failure probability strongly depends on the limiting 

wall deflection and parameter uncertainties (autocorrelation lengths and coefficient of 

variation). Their determination should be done with attention. The failure probability Pf 

increases with the autocorrelation length value when the limiting wall deflection is larger than 

the deterministic wall deflection. Conversely, the failure probability is decreased. The 

autocorrelation lengths on the probability density functions of the maximum wall deflection and 

on the failure probabilities, are also discussed. The results show that ignoring the soil spatial 

variability can provide a biased estimation of the excavation stability, particularly the spatial 

variability in the vertical direction. 

  



180 

 

 

Chapter 7  

Sample-wised probabilistic analysis 
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7.1  Introduction 

It is noted that in the previous five chapters, the Polynomial Chaos Kriging and Sparse 

Polynomial Chaos Expansion methods were used to provide the probabilistic results, which can 

improve significantly the probabilistic analysis efficiency. With the rapid development of 

scientific computing software, machine learning approaches can make predictions based on 

regression analysis and received attention in geotechnical engineering due to their high 

efficiency and flexibility. This chapter proposes a Sample-wised Probabilistic Approach based 

on the Artificial Neural Network (ANN) (SPAA) to analyse the supported excavations stability. 

An adaptive Atom Search Optimization (ASO)-ANN model is introduced to replace the time-

consuming numerical simulations. The existing reliability methods (such as the Monte Carlo 

Simulation (MCS) and the First Order Reliability Method (FORM)) are then implemented to 

provide the stability results. The Global Sensitivity Analysis (GSA) is also performed to provide 

information about the importance of the considered parameters. Then, based on the proposed 

SPAA, the circular shafts examples presented in Chapters 4 and 5 are used for the validation and 

comparisons with other methods (including Subset Simulation (SS), Polynomial Chaos Kriging 

(PCK)-MCS, PCK-FORM and Sparse Polynomial Chaos Expansion (SPCE)-MCS). 

7.2  Proposed hybrid SPAA approach 

This section introduces the proposed sample-wised probabilistic analysis approach SPAA via a 

flowchart. The principle of the ASO-ANN method and the determination of initial data are 

detailed. 

7.2.1 ASO-ANN method 

Artificial neural networks inspired by biological neural networks can be trained to find solutions, 

recognize patterns, classify data and forecast future events (Gordan et al., 2016; Sasmal and 

Behera, 2021). ANN was used for figures and speech recognition and also have been applied to 

data science in engineering field more recently (Li et al., 2021a; Salazar et al., 2017). 

The multilayer perceptron (MLP) is one of the most popular supervised algorithms, and it can 

be easily built with open-source packages in Python (Rosenblatt, 1958). In MLP, information is 

transferred from the input layer to the output layer through hidden layers, as shown in Fig. 7.1. 

d is the target output dataset. nij is the neuron in the hidden layer and its value could be calculated 
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by 

 
1

( ( ))
n

ij ij i j

i

n f w b
=

= +  (7.1) 

where   is the activation function, including logistic sigmoid function, hyperbolic tangent 

function and some other non-linear functions (Wei et al., 2021). wij and bj are respectively the 

weight and bias of the neural network. The network is trained by adapting w and b to minimize 

the errors between the predicted and target values. It is noted that inappropriate initial values of 

w and b can not only increase the training convergence steps, but also lead the model to fall into 

a local optimum solution (Gharehchopogh et al., 2022). Therefore, the initial values 

determination of w and b is important, which can be found by the optimization method. A 

recently proposed optimization algorithm, Atom Search Optimization (ASO) is applied to 

explore efficiently the appropriate initial values. 

 

Fig. 7.1 The architecture of artificial neural networks. 

ASO was inspired by basic molecular dynamics (Alder and Wainwright, 1959) and was first 

proposed in the theoretical physics field. It was then developed to address a set of optimization 

problems by Zhao et al. (2019). This optimization method shows strong competitiveness for 

multimodal functions and it can adeptly balance the explorative and exploitative search in 

dealing with hybrid and composition functions. It has been tested on a series of benchmark 

functions and its effectiveness was verified qualitatively and quantitatively by comparing with 

other classic and popular optimization methods, such as the Particle Swarm Optimization (Li et 

al., 2022b), Genetic Algorithm (GA) (Whitley, 1994) and Wind Driven Optimization (W. G. 

Zhao et al., 2019), which is not further discussed in this study. 
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(a) L-J potential curve with attraction and repulsion  (b) forces of an atom system with Kbest. 

Fig. 7.2 Atomic motion theory model. 

ASO starts the optimization by generating a set of random solutions. It mathematically models 

and mimics the atomic motion model in nature that follows the classical Newton second law for 

updating their positions and velocities in each iteration, where atoms interact through interaction 

forces Fi resulting from the Lennard-Jones potential and constraint forces Gi resulting from the 

bond-length potential. L-J potential including attraction and repulsion regions shown in Fig. 

7.2(a), in the attractive zone, the attraction force gradually decreases to zero as the distance r 

between the atoms increases. In the repulsive zone, the repulsive force rapidly increases as the 

distance decreases. When the distance between two atoms is 1.12 times the atomic diameter 𝜎, 

the L-J potential energy is equal to zero. Therefore, the acceleration ai of the atom could be 

calculated by 

  (7.2) 

where the mi is the mass of ith atom. Fig. 7.2(b) depicts the forces of an atom population, where 

the first four atoms with the best fitness values are considered the Kbest. The Kbest is made up of 

A1, A2, A3, and A4, as seen in the diagram. Each atom in the Kbest attracts or repels A5, A6, 

and A7, and A1, A2, A3, and A4 attract or repel each other. Except for A1 every atom in the 

population is constrained by the best atom A1. A more detailed mathematical introduction was 

descripted in Ghosh et al. (2020). 

Among them, the total interaction force working on the ith atom from all other atoms is the 

weighted sum of components of the forces in dth dimension can be formulated by 
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where randomj is a random number in [0, 1] and j is the number of Kbest. In ASO, an atom is 

assumed to have a covalent bond with the best atom, so each atom is acted upon by a constraint 

force by the best atom (W. G. Zhao et al., 2019). This constraint force acting on the ith atom in 

the dth dimension is defined by the position of atom ( )
i

dx t  and the optimum atom 
best

( )dx t  as below 

 
best

20

( ( ) ( ))n

i

t

Td d d

iG e x t x t
−

= −  (7.4) 

where β is the multiplier weight and Tn is the maximum number of iterations. The acceleration 

aid can then be calculated. And the new position of the atom is updated from the time t position 

 ( 1) random ( ) ( )d d d d

i i i iv t v t a t+ = +  (7.5) 

 ( 1) ( ) ( 1)d d d

i i ix t x t v t+ = + +  (7.6) 

where randomd

i  is a random number in [0, 1]. d

iv  and d

ix  are the atom velocity and the position 

of the ith atom in dth dimension, respectively.  

To improve the exploration in the first iteration of the ASO algorithm, each atom must interact 

with many atoms with higher fitness values as its K neighbors. To improve exploitation in the 

final iteration stage, the atoms should interact with as few atoms with higher fitness values as 

possible as their K neighbors. Therefore, as a function of time, K gradually decreases with the 

lapse of iterations. K can be calculated as 

 ( ) ( 2)
n

t
K t N N

T
= − −   (7.7) 

where N is the initial population size. Initially, the positions of the four atoms in the search space 

are generated at random. Each iteration also updates the position of the best atom located. All 

updating and calculations are developing progressively until the stop criterion is reached. With 

the passing of time, all of the atoms apply the mathematical motion mode to approach the target 

and form a swarm. Finally, as an approximation to the global optimum, the position and fitness 

value of the best atom (w and b) are restored. Based on the optimized values of w and b, the 

ANN model can then be efficiently determined. 
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7.2.2 Data preparation 

A large number of samples are necessary for the Pf determination using the MCS to ensure the 

probabilistic results accuracy. Latin Hypercube Sampling (LHS) is widely used for the sample 

generation by the fact that it combines the advantages of random sampling and stratified 

sampling. The run number required for an accurate probabilistic analysis can thus be reduced 

significantly compared to using the random and stratified sampling methods respectively 

(Helton and Davis, 2003). It is known for decades that about 10k+2 deterministic simulations are 

usually required for a failure probability of 10-k with a coefficient of variation of 10% (Guo, 

2020). The computational burden is strong using the direct MCS, particularly for cases with 

time-consuming deterministic simulations (Yoo et al., 2022). An accurate surrogate model 

(ASO-ANN) can then be constructed to replace the time-consuming evaluations and assess the 

large samples safety factor. The main task is to select the sampling points for the model 

construction that can represent large samples used for Pf calculations. It is no doubt that a large 

amount of initial sampling data can build a sufficiently accurate surrogate model. However, the 

required deterministic evaluations increase along with a heavier computational burden. Finding 

the most representative points, which means using few sampling points to build an accurate 

surrogate model, is necessary. 

The uniform design is often carried out for the initial sampling generation in the existing studies 

about the ANN-based adaptive probabilistic analysis (Cho, 2009; Lü et al., 2012). The possible 

explanation can be found in Fig. 7.3, which depicts the generated sample distributions. R1 and 

R2 are two considered lognormal random variables and are modelled by the lognormal 

distributions. It is observed that a uniform method guarantees the sampling points being 

scattered uniformly (30 black solid points) to make sure of the ANN model effectiveness. 

However, the large samples used for the Pf calculation (1000 blue hollow points) are mainly 

distributed in a range of [0.7, 1.3], and only 4 uniform samples are spread in the densest domain 

(green box). 

Conversely, most of the LHS initial samples (30 red solid points) are located around the blue 

points. That is to say, the distributions of LHS initial samples and Pf calculation samples are 

similar. It is observed that about 23 samples are in the green box, which confirms that sampling 

points generated by the LHS are more effective for the surrogate model construction compared 

to the uniform one. Besides, the boundary points, composing of limit values, are also added to 

the initial samples to cover the samples domain. 
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Fig. 7.3 Comparison of samples generated by the LHS and uniform methods. 

7.2.3 SPAA procedure 

This study considers the SPAA for excavations probabilistic analyses and this section aims to 

present the detailed procedure. Fig. 7.4 depicts a detailed description of the SPAA and the main 

steps are described below: 

Step 1: Preparation. Determine the input variables statistics information and build a 

deterministic numerical model. For the random variable case, the variables distribution, mean 

value, coefficient of variation and cross-correlation coefficient should be determined. The 

autocorrelation function and autocorrelation lengths are also provided when the soil spatial 

variation is considered. 

Step 2: Input-output sets determination. Map the generated input samples to deterministic 

models. The responses are evaluated and exported for the post-process. 

Step 3: ASO-ANN model determination. It is noted that the input-output dataset is divided 

into 70% and 30% for training and testing, respectively. Besides, the datasets are normalized to 

−1 and 1 by the MinMax scaling method to reduce all characteristics to a common dimension 

without distorting differences in the range of values (Li et al., 2022a). The ASO-ANN model is 

then constructed by adjusting the hidden layer neurons of ANN, the population size of ASO, and 
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enriching the datasets. It is noted that the points that are most likely to be misjudged as failures 

or safe should be enriched and can be determined by 

 ( ) argmin( ( ) 1)d dA x P x= −  (7.8) 

where ( )dP x  is the predictions based on the ASO-ANN model. 

Step 4: Perform the MCS and GSA based on the ASO-ANN model and several probabilistic 

results can be provided. The MCS and GSA are employed within the uncertainty quantification 

toolbox UQLab (Marelli and Sudret, 2014) and the ASO-ANN model construction is 

implemented with Python. The calculations were carried out on a computer equipped with an 

Intel(R) Core (TM) i7-8700K 3.70GHz CPU. 
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Note: Stopping criterion 1: evaluation metrics of ASO-ANN model with test datasets mean square error 

(MSE)). The model needs to meet one of the criteria: the epochs amount achieves 1000 or the MSE≤1.0e-

5. 

Stopping criterion 2: failure probability convergence. ( ) [ ( ) ( 1)] / ( 1)
fP f f fErr i P i P i P i= − − − , where ( 1)fP i −  and 

( )fP i  are the failure probabilities of (i-1)th and ith iteration, 
enN  is the sample enrichment iteration number, 

tgN  is the number of failure probabilities which are required to be compared, and i is in the range of 

 +en tg enN N N[ - 1, ] . When the 
fPErr  value is smaller than the threshold value, i.e., _f fP P tgErr Err , the procedure 

can enter Step 4. In this study, _fP tgErr  and tgN  are respectively set to 0.02 and 2. 

Fig. 7.4 Flowchart of the proposed SPAA. 
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7.3  Example and application 

In this section, the probabilistic analyses are performed using the proposed SPAA approach. 

Two low-dimensional random variable cases with respect to 1) drained circular shaft stability 

against hydraulic uplift; 2) undrained circular shaft stability in non-homogeneous soils; and a 

high-dimensional random field problem 3) circular shaft stability considering soil spatial 

variability, are considered and discussed. The results are discussed and compared with the 

previous results to validate the effectiveness of the proposed SPAA approach. 

7.3.1 Case 1: drained circular shaft stability against hydraulic uplift 

The circular shaft considering the hydraulic effects as presented in Chapter 5 is firstly considered. 

The geometrical, soil and water levels information are referred to Section 5.2. Four input 

parameters are considered random variables, including the permeability anisotropy coefficient 

(rk), the soil cohesion (c), friction angle (φ) and the soil-wall interface coefficient (ri). Lognormal 

random variables are implemented to model input uncertain parameters, and the statistical 

properties can be found in Table 5.2. 

32 input samples are initially generated by LHS according to the statistical information and the 

corresponding outputs are evaluated by the FELA. The ASO-ANN model can be constructed 

based on the datasets and an iterative procedure is then followed to satisfy the criteria presented 

in Section 7.2.3. It is noted that 5 informative sampling points are selected for each iteration and 

a new ASO-ANN model can be built based on the updated input-output datasets. Table 7.1 

summarizes the iterative results and the ones using uniform sampling method are also provided 

for comparison. 

It can be observed that the final ASO-ANN model is constructed based on a total of 47 sampling 

points: 32 points from the first iteration (30 points from LHS sampling and 2 points of the 

boundary points), and 15 points from the subsequent three iterations. The number of samples is 

far less than the results of the uniform sampling method which needs around 17 iterations and 

112 simulations. 
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Table 7.1 Probabilistic analysis iterative results of case 1. 

Iteration 
Pf Number of 

evaluations 
Iteration 

Pf Number of 

evaluations LHS Uniform LHS Uniform 

1 0.029 0.059 32 10 - 0.017 77 

2 0.018 0.013 37 11 - 0.015 82 

3 0.018 0.004 42 12 - 0.017 87 

4 0.018 0.020 47 13 - 0.018 92 

5 - 0.024 52 14 - 0.019 97 

6 - 0.017 57 15 - 0.020 102 

7 - 0.020 62 16 - 0.019 107 

8 - 0.019 65 17  0.019 112 

9 - 0.008 72     

*The bold is the converged result. 

The Pearson correlation coefficients are computed and demonstrated in Fig. 7.5. The cloud 

graphs depict the density of every two sets of related parameters: the denser the circle, the more 

concentrated the data. The height of the yellow histogram and the curve above it denote the 

density of data for different input parameters. It can be concluded that most of the adding 

sensitive samples are distributed around the limit Fs (=1) and the corresponding input variables 

are located near specific values, for example, the enriched cohesions are generally in the range 

of [20 kPa, 30 kPa]. Besides, one interesting finding is that the scatter points can be regressed 

as a curve after the enrichment, which indicates that there is a correlation for the enriched 

samples (coefficient is marked above the regression line) between the two parameters 

corresponding to the horizontal and vertical coordinates. In addition, the correlation between the 

considered parameters and the basal heave safety factor of circular shafts is also given. It is seen 

that the parameters are significantly correlated with the model responses with a correlation 

coefficients being larger than 0.1 and the cohesion has a higher correlation compared with other 

parameters. 
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Fig. 7.5 Pearson correlation coefficients between the influential factors (rk: permeability anisotropy 

coefficient, c: the soil cohesion, φ: friction angle, ri: the soil-wall interface coefficient). 

Fig. 7.6 presents the comparison between the predictions from ASO-ANN and the results 

computed from the numerical simulations sampled by LHS and uniform. A good consistency is 

observed for both train (R2_LHS=0.9998) and test (R2_LHS=0.9957) datasets, which can 

validate the effectiveness of the proposed SPAA approach. Besides, although the points sampled 

by uniform are relatively scattered (Fig. 7.6(b)) compared to the LHS one (Fig. 7.6a), the 

performance of LHS and uniform sampling methods can give reasonable results by the fact that 

the prediction errors are mainly distributed in the range of [10-4, 10-2] as presented in Fig. 7.7. 

In addition, it is also observed that the output sets of enrichment samples are around 1. 
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(a) LHS sampling method (b) Uniform sampling method 

Fig. 7.6 Comparison of the predictions and numerical simulations for case 1. 
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(a) LHS sampling method (b) Uniform sampling method 

Fig. 7.7 Predictions error distribution of case 1. 

In general, the ASO-ANN surrogate model has good generalization quality and the LHS 

sampling method performs better for the probabilistic analysis in terms of calculation efficiency 

and accuracy. 

Once the surrogate model (ASO-ANN) is defined, the probabilistic methods can then be 

performed. The ASO-ANN metamodel-based MCS is implemented first and the results are 

given in Fig. 7.8. 100,000 calls to the surrogate model to make sure the failure probability 

accuracy (meets the target COVPf requirement of 5% and its corresponding value is 0.018. The 

safety factors are almost distributed asymmetrically and the Fs values are mainly in the range of 

[0.5, 3]. The mean value and standard deviation (Std.) are respectively 1.546 and 0.294. The 

sensitivity analysis based on the ASO-ANN model is then performed and the results can be 

found in Fig. 7.9. The first order and total effect Sobol indices shows that the cohesion is the 

parameter that contributes the most, which is followed by the permeability anisotropy coefficient 

rk. The effects of friction angle φ and soil-wall interface coefficient ri are relatively slight. 
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Fig. 7.8 PDF, CDF and statistical moments of Fs comparison of case 1. 

 

Fig. 7.9 Sensitivity indices comparison of case 1. 

In order to validate the proposed SPAA method, the probabilistic results obtained by the existing 

SS and PCK metamodel-based probabilistic methods, are also given. The comparison can be 

found in Table 7.2, Fig. 7.8 and Fig. 7.9. It is evident that the Pf values of SPAA-MCS (LHS: 

0.018; Uniform: 0.019) are almost identical to the Pf value of PCK-MCS (0.018). SS and PCK-

FORM yield relatively larger Pf values (0.021 and 0.024 respectively), but the failure 

probabilities are generally similar within the same order of magnitudes. It can be observed that 

the SPAA based on the LHS sampling approach needs the fewest calls to the deterministic model 

(around 47 evaluations). The PCK metamodel and SPAA-Uniform-MCS follow (80 and 112, 

respectively). The SS needs around 1898 simulations, which is far larger than the surrogate 

model-based probabilistic analyses. The proposed LHS-based SPAA surrogate model is also 

further validated by the comparisons of PDF, CDF and statistical moments of safety factor with 

the ones of PCK. It can be found that the PDF curves of SPAA and PCK are close and the 

corresponding CDF curves are almost overlapping. The statistical moments (i.e., mean value 
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and Std.) are also identical. Besides, the sensitivity indices comparison can be found in Fig. 7.9. 

It is noted that the considered methods can give consistent results with the same ranking orders, 

which can validate the sensitivity analysis results accuracy. 

Table 7.2 Failure probability comparison of case 1. 

Methods Pf Number of numerical evaluations 

SS 0.021 1898 

PCK-MCS 0.018 a 80 

PCK-FORM 0.024 a 80 

SPAA-LHS-MCS 0.018 47 

SPAA-Uniform-MCS 0.019 112 

Note: a Based on results given by Zhang et al. (2022) 

This section indicates that the LHS-based SPAA performs better than other methods in terms of 

the deterministic simulations number and results accuracy. 

7.3.2 Case 2: undrained circular shaft stability in non-homogeneous soils 

A circular shaft in non-homogeneous soils as presented in Chapter 4 is presented. Three input 

parameters, which include the undrained shear strength at the ground surface Su0, undrained 

shear strength increase gradient rg and soil-wall adhesion factor ri, are considered random 

variables in the probabilistic analysis. The summary of the parameters’ statistics and 

corresponding distributions refer to Table 4.2. 

Table 7.3 presents the iterative procedure, and 10 input samples are initially generated, which is 

less than 30 samples presented in case 1. This is because the COV values of case 2 are less 

significant with a maximum value of 0.2, while the one of case 1 can be up to 0.5. The relatively 

insignificant variation leads to a narrow distribution of soil parameters, which requires fewer 

simulations for the SPAA model construction. It can be observed that the requirement is met in 

4th iteration using the LHS sampling method and a total of 27 samples are used for the SPAA 

model construction. Comparatively, the uniform sampling method needs around 77 simulations 

and starts to converge at the 12th iteration and the failure probability is around 9.2e-4. 
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Table 7.3 Probabilistic analysis iterative results of case 2. 

Iteration 
Pf Number of 

evaluations 
Iteration 

Pf Number of 

evaluations LHS Uniform LHS Uniform 

1 9.4e-4 8.4e-4 12 8 - 9.2e-4 47 

2 8.6e-4 6.4e-4 17 9 - 8.6e-4 52 

3 8.6e-4 8.8e-4 22 10 - 8.4e-4 57 

4 8.7e-4 8.4e-4 27 11 - 8.7e-4 62 

5 - 8.7e-4 32 12 - 9.1e-4 67 

6 - 9.0e-4 37 13 - 9.1e-4 72 

7 - 8.8e-4 42 14 - 9.2e-4 77 

*The bold is the converged result. 

The trained neural network is verified by comparing the predictions from SPAA with numerical 

evaluations. It is seen that nearly all of the sampling points are distributed in 45° line in Fig. 

7.10, which can demonstrate the accuracy of the ASO-ANN model. Besides, this surrogate 

model can be further validated as the safety factor evaluation errors are almost within the range 

of [10-4, 10-2] as depicted in Fig. 7.11. 
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(a) LHS sampling method (b) Uniform sampling method 

Fig. 7.10 Comparison of the predictions and numerical simulations for case 2. 
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(a) LHS sampling method (b) Uniform sampling method 

Fig. 7.11 Predictions error distribution of case 2. 

The reliability analysis results and comparison are summarized in Fig. 7.12 and Table 7.4. The 

Pf values obtained by PCK-MCS and SPAA-LHS-MCS are identical (8.8e-4 and 8.78e-4, 

respectively) and the PDF/CDF distributions (based on 1000,000 simulations) are almost 

coinciding. Relatively high Pf values are derived by the SS and PCK-FORM with a difference 

being about 14%, which is similar to Case 1. SPAA-LHS still needs the fewest deterministic 

evaluations, which can validate the ASO-ANN model efficiency. 

Table 7.4 Failure probability comparison of case 2. 

Methods Pf Number of numerical evaluations 

SS 1.1e-3 2763 

PCK-MCS 8.8e-4 43 

PCK-FORM 1.0e-3 43 

SPAA-LHS-MCS 8.7e-4 27 

SPAA-UNI-MCS 9.2e-4 77 
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Fig. 7.12 PDF, CDF and statistical moments of Fs comparison of case 2. 

Fig. 7.13 depicts the sensitivity analysis results for the undrained circular shaft. Although there 

are differences in the sensitivity index magnitudes, they can give a consistent ranking order. The 

strength gradient has the highest sensitivity index with a value of 0.4 in this case. The soil-wall 

adhesion factor ri sensitivity index is slightly smaller. The undrained shear strength at the ground 

surface Su0 has the least effect on the model response. This discussion indicates the importance 

of the soil non-homogeneity consideration in the undrained circular shaft, which supports the 

evidence from previous observations (Goh et al., 2019b). Besides, the soil-wall interface 

uncertainty has a significant influence on the model response and the values determination 

should be done with attention. 

 

Fig. 7.13 Sensitivity indices comparison of case 2. 
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7.3.3 Case 3: circular shaft stability considering soil spatial variability 

A random field case is considered to discuss the SPAA performance on the high-dimensional 

problems and the same deterministic model as in case 1 is applied. According to the results 

presented in Fig. 7.9, the cohesion contributes the most among the four random parameters, and 

the sensitivity index can be up to 0.6. It is more reasonable to consider the inherent spatial 

variability of soil cohesion. The other three (i.e., the permeability anisotropy coefficient, friction 

angle and soil-wall interface coefficient) are modelled using random variables. The K-L 

expansion is used for the random field generation as presented in Section 6.2.1 and the 

corresponding autocorrelation lengths are respectively lh=40 m and lv=3 m (Luo et al., 2018a). 

It is noted that 54 variables are necessary for the ratio of expected energy Re being larger than 

0.99 (Marelli and Sudret, 2014). A total of 57 input variables will be considered in this 

probabilistic analysis, which includes 54 standard normal variables about the cohesion and 3 

random variables (rk, ri and φ). A random finite element limit analysis is used and the soil 

properties of each point in the FELA model can be mapped from MATLAB using batch 

commands. One realization of the cohesion random field is depicted in Fig. 7.14. 

 

Fig. 7.14 One realization of the random field for cohesion. 

The LHS sampling behaves better than uniform sampling as presented in cases 1 and 2. 

Therefore, only the LHS sampling approach is considered in this case. The iterative procedure 

can be found in Table 7.5. Due to the high-dimensional random variables, the initial samples are 
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then be developed to determine the Fs. It can be noticed that the failure probability converges 

when 870 samples are enriched and the failure probability is around 8.2e-3. 

Table 7.5 Probabilistic analysis iterative results of case 3. 

Iteration Pf 
Number of 

evaluations 
Iteration Pf 

Number of 

evaluations 

1 8.4e-3 570 5 8.2e-3 770 

2 1.1e-2 620 6 8.2e-3 820 

3 1.0e-2 670 7 8.2e-3 870 

4 9.2e-3 720    

* The bold is the converged result. 

A good correlation is observed between the predictions from ASO-ANN and the numerical 

evaluations in Fig. 7.15(a). It is seen that the Train and Test sets are distributed in the diagonal 

line, which can validate the effectiveness of the ASO-ANN model. The prediction tolerances 

are also primarily allocated in the region of [10-4, 10-2], as illustrated in Fig. 7.15(b). 
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Fig. 7.15 Validation of the SPAA model for high-dimensional case. 

The comparison with the SPCE-based MCS is presented in Table 7.6 and Fig. 7.16. It is seen 

that the failure probability, PDF, CDF and the statistical moments are similar to the results 

determined by the SPCE-based MCS results, which can validate the proposed SPAA 

effectiveness on high-dimensional problems. However, the SPCE model construction requires 

around 1945 simulations, while for the SPAA, less half of the simulations number (870) is 
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necessary. It proves that the SPAA can reduce significantly the evaluation number and improves 

computational efficiency. 

Table 7.6 Failure probability comparison of case 3. 

Method Pf Number of numerical evaluations 

SPCE-MCS 8.7e-3 1945 

SPAA-MCS 8.2e-3 870 

 

 

Fig. 7.16 PDF, CDF and statistical moments of Fs comparison of case 3. 

7.4  Discussion 

This section aims to give some discussions about the SPAA performance, and the importance of 

spatial variability consideration. 

7.4.1 Accuracy and efficiency survey 

The ASO-ANN model with the input -1st hidden -2nd hidden -output MLP neuron structure with 

the maximum determination coefficients R2 is identified as the optimal model (Bharati et al., 

2022). In this study, after being tuned, the ASO-ANN model including two hidden layers and 

10 initial population size of ASO proved to be the most effective for the ASO-ANN model 

construction. The optimal model parameters in 3 cases are listed in Table 7.7. It is seen that the 
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between the amount of input variables and three times of it. It can easily be concluded that the 

larger the sample size is, the larger the number of neurons in the hidden layer. 

Table 7.7 Parameters of ASO-ANN model.  

Case Sampling method 

Parameters of model 

Architecture of ANN layers 

(input-neurons in 1st hidden 

layer-neurons in 2nd hidden 

layer-output) 

Sample size Testing R2   

1 LHS 4-6-4-1 47 0.9957  

 Uniform 4-10-4-1 112 0.9807  

2 LHS 3-5-3-1 27 0.9982  

 Uniform 3-7-3-1 77 0.9993  

3 LHS 57-114-57-1 870 0.9686  

 

The failure probabilities and required runs for the ASO-ANN model construction of 3 cases are 

summarized in Fig. 7.17. It can be observed that the calculated failure probabilities are consistent, 

whereas the SPAA-LHS requires fewer simulations for the results determination compared to 

the SPAA-Uniform, PCK and SPCE-based analysis, particularly for the high dimensional 

stochastic problems, and around 1000 model evaluations are reduced. It indicates that the SPAA 

based on the LHS sampling technique, introduced in this study, could be a good choice for the 

shaft probabilistic stability analysis since it is efficient and permits to provide a variety of 

interesting results. 

 

Fig. 7.17 Comparison of deterministic simulations number and Pf of 3 cases. 
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7.4.2 Initial samples determination 

The initial sampling amount is varied for different problems, and it depends on the random 

variables number and the corresponding COV. Case 1 has a maximum COV value of 0.5 and 4 

random variables, 32 samples are generated in the first iteration. Whereas for the second case, 

the random variables number is 3 and the COV value is relatively small (0.2) and 12 initial 

samples are considered. For the random field case, 57 random variables are observed, and 570 

samples are provided for the initial sample generation. 

In general, the initial generated sample number is set to be 3 to 10 times the number of random 

variable quantities. The larger the COV, the larger the recommended initial sample size, and 

conversely, the smaller the COV, the smaller the sample size. The presented initial generated 

sample number can be regarded as a reference for future discussion using SPAA. 

7.5 Conclusion 

This chapter proposed a sample-wised probabilistic analysis method SPAA for the excavation 

stability evaluation in a probabilistic framework. The Latin Hypercube Sampling (LHS) is 

employed to provide the initial sampling points. The proposed hybrid atom search optimization 

(ASO) based on an artificial neural network (ANN) approach is then used to construct a fast-to-

evaluate surrogate model, which can replace the time-consuming deterministic numerical 

simulations. Probabilistic methods are employed to provide probabilistic results. 

To validate the effectiveness and feasibility of the proposed SPAA approach, 3 circular shaft 

problems, which include two random variables and one random field cases, are analysed and the 

results are compared with the existing methods, which include the Subset Simulation, the 

Polynomial Chaos Kriging based MCS and FORM, and Sparse Polynomial Chaos Expansion 

based MCS. The comparison demonstrates that the SPAA outperforms other existing methods 

due to its adaptative capacity of providing satisfactory solutions and excellent powers of 

improving computational efficiency. It is noted that the ASO-ANN model tuning may also 

increase the computational effort. Therefore, for the random field case which can reduce around 

1000 model evaluations or the deterministic numerical simulation is very time-consuming, the 

proposed SPAA is more essential. In addition, the samples generation method is also discussed 

and the results show that the samples generated by the LHS sampling method are more 

representative and more efficient compared to the uniform sampling method. 
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8.1  Conclusions and recommendations 

This thesis aims to discuss the stability of rectangular- and circular-shaped supported 

excavations, which are commonly encountered in practical engineering. Probabilistic analyses 

are also implemented to account for the soil uncertainties and quantify their effects on the 

excavation stability. Four kinds of excavations cases, which include rectangular- and circular-

shaped excavations under undrained and drained conditions, are respectively discussed in 

deterministic and probabilistic frameworks from Chapter 2 to Chapter 5. In order to further 

consider the soil spatial variability on the excavation stability, Chapter 6 introduces soil random 

fields into probabilistic analyses. Chapter 7 proposes a sample-wised probabilistic analysis 

approach based on an artificial neural network to further improve the computational efficiency. 

An improved limit analysis (ILA) mechanism for the rectangular-shaped excavations under 

undrained conditions is first proposed in Chapter 2. It is found that the proposed ILA can provide 

an accurate basal heave safety factor in a shorter time (less than one second) compared to the 

numerical simulations and has a wider applicability compared to the other existing analytical 

methods. Benefiting from the proposed ILA method efficiency, a comparative study of the 

probabilistic methods is conducted. It is shown that the proposed probabilistic procedure 

Polynomial Chaos Kriging-based probabilistic analysis (PCK-PA) can provide a variety of 

probabilistic results in an efficient way. The excavation stability is increased with the decrease 

of the excavation depth, width and the increase of embedment depth and soil-wall adhesion 

factor. Besides, it is found that the soil-wall interface strength significantly influences the failure 

probability estimation and its influence is important for the larger values of undrained shear 

strength and embedment depth. 

A real case, the Fort d’Issy-Vanves-Clamart excavation (FIVC) with a depth of 32 m is 

introduced in Chapter 3 to investigate the deterministic and probabilistic stability of deep 

excavations. The wall deflections and ground surface settlements are evaluated using the finite 

element method. The distributions of the wall deflections and ground surface settlements are 

wider with the increase of the soil parameters coefficient of variation (COV). However, the 

maximum horizontal wall deflection δhm mainly occurs from 24 m to 26 m below the ground 

surface, and the maximum ground surface settlement δvm is mainly distributed at the range of 

[10 m, 12 m] behind the retaining wall. Besides, the δvm/δhm ratio is generally in the range of 

[0.5, 1] and for cases with larger δhm, a larger δvm/δhm ratio should be used. The sensitivity 

analysis indicates that the friction angle at the excavation bottom layer contributes the most to 
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the model response variation. In addition, the probabilistic serviceability assessment shows that 

the serviceability failure probability is significantly affected by the wall deflection limit and the 

soil coefficient of variation. When the limit value is larger than the deterministic wall deflection, 

the failure probability Pf increases with the COV, conversely, the Pf decreases as the COV 

increases. 

Circular shafts considering the soil-wall interface in undrained and non-homogeneous clayey 

soils are presented in Chapter 4. The coupling of the finite element limit analysis and proposed 

procedure PCK-PA makes the circular shaft probabilistic analysis possible. The failure 

probability increases with the coefficient of variation increase and the decrease of the soil-wall 

interaction coefficient ri, undrained shear strength at the ground surface Su0, soil non-

homogeneity coefficient k and wall embedment depth D. The soil-wall interaction ri affects 

considerably the shaft failure probabilities, and its influence is more significant with the increase 

of the undrained shear strength and wall embedment depth. Besides, the ri influences the model 

response greatly when its value is in the range from 0.3 to 0.7. The sensitivity analysis indicates 

the importance of the soil-wall interaction, soil non-homogeneity and uncertainties 

consideration. 

The stability of circular shafts subjected to hydraulic uplifts is presented in Chapter 5. The 

effects of the soil-wall interaction, the soil tensile strength and the permeability anisotropy 

coefficient are discussed. The results show that the safety factor increases with the increase of 

the soil-wall interface and soil tensile strength, and with the decrease of permeability anisotropy 

coefficient. It is shown that the permeability coefficient anisotropy increase can lead to more 

horizontally distributed flow vectors. Its influence is more pronounced when it varies from 1 to 

10. Concerning the soil-wall interface effects, the corresponding strength affects significantly 

the shaft stability when the soil-wall interaction coefficient is in the range of [0.2, 0.8] and the 

shear failure occurs along the soil-wall interface when the soil permeability is less anisotropic. 

The tensile strength can also make a significant influence on the circular shaft stability, and the 

difference can be up to 100%. Besides, the failure probability is increased as the coefficient of 

variation when the permeability anisotropy coefficient is small (e.g., rk<10), whereas it is 

decreased for the case with a large permeability anisotropy coefficient. 

Then, an extension of Chapter 3 is presented in Chapter 6 by considering the soil spatial 

variability. A bootstrap-sparse polynomial chaos expansion is implemented to perform a 

probabilistic analysis of supported excavations. Three key parameters determined from 
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sensitivity analysis of Chapter 3, which include the friction angles of the Meudon Marls and 

Plastic Clay layers, and the initial earth pressure coefficient at rest of the Plastic Clay layer, are 

modelled using random fields. It is shown that the autocorrelation lengths influence significantly 

the excavation stability. With the decrease of the autocorrelation lengths, the distributions of the 

wall deflection contours and the locations where the maximum wall deflection occurs are 

narrower, whereas the probability of serviceability failure is not monotonously varied with the 

autocorrelation lengths and is strongly related to the limiting values. The failure probability Pf 

decreases with the autocorrelation length value when the limiting wall deflection is larger than 

the deterministic wall deflection. Conversely, the failure probability is increased. Besides, the 

probabilistic results show that ignoring the soil spatial variability can provide a biased estimation 

of the excavation stability, particularly the spatial variability in the vertical direction. 

At the end of the thesis, a sample-wised probabilistic analysis method SPAA is proposed. The 

hybrid atom search optimization based artificial neural network approach is used to construct a 

fast-to-evaluate surrogate model. The initial sampling points are generated by the latin 

hypercube sampling method and an active learning method is designed to find the informative 

training samples. The probabilistic methods are then employed to provide probabilistic results. 

The proposed method is validated by 3 circular shaft problems, which include two random 

variables and one random field cases. It is found that the SPAA shows a great power of 

improving computational efficiency. Particularly for the random field case with around 1000 

model evaluations being reduced. 

In conclusion, this thesis presents several deterministic models of assessing the supported 

excavations (with rectangular and circular shapes) stability and the surrogate-model based 

probabilistic methods for computing failure probabilities. A sensitivity analysis is also 

implemented to determine the input variables information. 

Based on the present work, some suggestions can be given to the engineers/researchers, which 

can improve the understanding of the supported excavations in deterministic and probabilistic 

frameworks, which include: 

⚫ Probabilistic analyses of the supported excavations stability are important, particularly for 

cases with significant soil uncertainties. They can provide more useful information that can 

help designers to make more reasonable decisions in practical engineering. One major 

concern of the probabilistic analyses is the heavy computational effort. In order to improve 

their computational efficiency, the development of analytical methods is a good idea since 
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they can significantly decrease the computational time within a reasonable result. However, 

some cases with complex geometrical and geological conditions are difficult to be analysed 

by analytical methods. The development of probabilistic methods is necessary. Active-

learning methods based on the surrogate models (such as the sparse polynomial chaos 

expansion, polynomial chaos kriging, and the artificial intelligence method) are powerful 

for probabilistic analysis because they can significantly decrease the required deterministic 

simulations. A variety of interesting results can then be provided, such as the failure 

probability, reliability index, design point and sensitivity index. 

⚫ A sensitivity analysis is recommended in practical engineering since it can provide a 

quantitative measure of the importance of input parameters, allowing for a better 

understanding of how the model output varies with the input parameters changes. For the 

input parameters that have a great influence on the model output variability, more attention 

should be paid to the data collection and variability modelling. Conversely, the insignificant 

parameters can be considered as deterministic, which can simplify the numerical models 

and reduce the computational effort. Besides, when the soil spatial variability is considered, 

the sensitivity analysis can help the  parameters selection that need to be modelled by the 

random field approach. 

⚫ The failure probability is significantly influenced by the limiting values (wall deflection, 

ground surface settlement or basal heave safety factor). The criteria are often given for 

different areas. However, the excavation stability is also influenced by the soil properties, 

wall stiffness, excavation geometry, groundwater conditions, etc. A thorough understanding 

of these factors is essential to ensure a safe and effective design, and construction of 

excavations. 

⚫ Considering the spatial variability or different uncertainty properties of soil can make a 

significant influence on the failure probability, which may lead to different designs of the 

excavations. It is thus important to measure and collect more soil information that is used 

for the soil variability modelling. 

⚫ The soil-wall interaction is an essential consideration in the design and analysis of supported 

excavations and its strength is often considered to be proportional to the adjacent soil 

strength. It significantly influences the excavation stability, particularly for cases with larger 

embedment depths of wall or soil shear strength. Besides, the interface effects are more 

significant when the reduction factor value is in the range of [0.2, 0.8] for circular shafts. 

Some codes or researches give some information of the reduction factor, for instance, a 

value of 2/3 is suggested by the Eurocode 7 (Bond et al., 2013), 0.5 and 0.67 are respectively 
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set for clays and sand materials (Hsi and Yu, 2005). However, the value may be affected by 

the soil properties, the retaining system type and stiffness, the construction methods, or the 

quality of the workmanship. In practice, it should be determined with attention by  field 

experiments, such as direct shear tests or pullout tests (Kuntz et al., 1994). 

⚫ Considering the hydraulic effects, the anisotropy of the permeability coefficient should also 

be considered. The excavation stability is significantly influenced particularly when the 

anisotropy coefficient is in the range of [1, 10]. The determination should be done with 

attention. 

8.2  Limitations and perspectives 

This section aims to discuss the limitations of the present work and the corresponding 

perspectives for future researches considering supported excavations stability.  

System failure consideration. As a systematic soil-structure interaction problem, the structural 

performance is also important for the stability assessment of the supported excavations. This 

thesis only considers the geotechnical failure modes and the system failure modes which include 

the geotechnical and structural failures should be examined to better understand the excavation 

stability. 

Analytical methods developments. This thesis improves the failure mechanism of the 

rectangular-shaped supported excavation under undrained conditions and it can decrease the 

computational time from 40 s (numerical simulations) to 0.15 s (improved analytical method). 

However, the wall stiffness effect is not considered, which will be discussed in the future. 

Besides, the analytical method for the circular shaft basal heave safety factor determination is 

also of interest to develop since one numerical evaluation is around 180 s.  

Back analysis using the Bayesian theory. The soil variability parameters of FIVC excavation 

are assumed or referenced from existing studies in this thesis. However, the corresponding 

parameters (such as the coefficient of variation, the autocorrelation lengths) could be updated 

using complementary data using the Bayesian theory and more reasonable probabilistic stability 

can be assessed.  

Three-dimensional consideration. In practice, the supported excavations are three-

dimensional and the soil properties vary in three dimensions. It should be interesting to 
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investigate the three-dimensional soil spatial variability effects on the supported excavations 

stability. 

  



210 

 

Bibliography 

Addenbrooke, T.I., Potts, D.M., Dabee, B., 2000. Displacement flexibility number for multipropped retaining 

wall design. Journal of geotechnical and geoenvironmental engineering 126, 718–726. 

Alder, B.J., Wainwright, T.E., 1959. Studies in Molecular Dynamics. I. General Method. The Journal of 

Chemical Physics 31, 459–466. 

Álvarez, M.A., Rosasco, L., Lawrence, N.D., 2011. Kernels for vector-valued functions: A review. 

Foundations and Trends in Machine Learning 4, 195–266. https://doi.org/10.1561/2200000036 

Arai, Y., Kusakabe, O., Murata, O., Konishi, S., 2008. A numerical study on ground displacement and stress 

during and after the installation of deep circular diaphragm walls and soil excavation 35, 791–807. 

https://doi.org/10.1016/j.compgeo.2007.11.001 

Au, S.K., Beck, J.L., 2001. Estimation of small failure probabilities in high dimensions by subset simulation. 

Probabilistic Engineering Mechanics 16, 263–277. https://doi.org/10.1016/S0266-8920(01)00019-4 

Aye, T.T., Tong, M.S.Y., Yi, K.H., Arunasoruban, E., 2014. Design and Construction of Large Diameter 

Circular Shafts. Underground Singapore. 

Baroth, J., Malecot, Y., 2010. Computers and Geotechnics Probabilistic analysis of the inverse analysis of an 

excavation problem. Computers and Geotechnics 37, 391–398. 

https://doi.org/10.1016/j.compgeo.2009.12.006 

Bharati, A.K., Ray, A., Khandelwal, M., Rai, R., Jaiswal, A., 2022. Stability evaluation of dump slope using 

artificial neural network and multiple regression. Engineering with Computers 38, 1835–1843. 

https://doi.org/10.1007/s00366-021-01358-y 

Bjerrum, L., Eide, O., 1956. Stability of strutted excavations in clay. Geotechnique 6, 32–47. 

https://doi.org/10.1680/geot.1956.6.1.32 

Blatman, G., Sudret, B., 2011. Adaptive sparse polynomial chaos expansion based on least angle regression. 

Journal of Computational Physics 230, 2345–2367. https://doi.org/10.1016/j.jcp.2010.12.021 

Bond, A.J., Schuppener, B., Scarpelli, G., Orr, T.L., Dimova, S., Nikolova, B., Pinto, A. V., 2013. Eurocode 

7: geotechnical design worked examples, BSI Standards Limited. https://doi.org/10.2788/3398 

Boulon, M., 1989. Basic features of soil structure interface behaviour. Computers and Geotechnics 7, 115–

131. 

Bourinet, J., Riche, R. Le, Lemaire, M., 2018. Reliability analysis and optimal design under uncertainty - 

Focus on adaptive surrogate-based approaches. 

Brault, J., Konrad, J., 2007. Experimental device and testing procedures to determine the hydraulic 

conductivity anisotropy of compacted tills 127–133. 

Breitung, K., 1984. Asymptotic approximations for multinormal integrals. Journal of Engineering Mechanics 

110, 357–366. 

Burgess, J., Fenton, G.A., Griffiths, D. V, 2019. Probabilistic seismic slope stability analysis and design. 

Canadian Geotechnical Journal 56, 1979–1998. 



211 

 

Cai, F., Ugai, K., Hagiwara, T., 2002. Base Stability of Circular Excavations in Soft Clay. Journal of 

Geotechnical and Geoenvironmental Engineering 128, 702–706. https://doi.org/10.1061/(asce)1090-

0241(2002)128:8(702) 

Cai, L., Zhou, J., Ying, H.W., Gong, X.N., 2018. Stability against basal heave of excavation in anisotropic 

soft clay. Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering 40, 1968–1976. 

https://doi.org/10.11779/CJGE201811002 

Canadian, G., 2006. Canadian foundation engineering manual. Canadian Geotechnical Society, Richmond. 

Celestino, T.B., Rocha, H.C., Gonçalves, F.L., 2009. Geotechnical aspects of shaft design and construction 

in São Paulo city, in: Roceedings of the ITA-AITES World Tunnel Congress – Safe Tunnelling for the 

City and Environment. 

Chang, M., 2000. Basal Stability Analysis of Braced Cuts in Clay. Journal of Geotechnical and 

Geoenvironmental Engineering 126, 276–279. https://doi.org/10.1061/(asce)1090-

0241(2000)126:3(276) 

Chapuis, R.P., 2002. The 2000 R.M. Hardy lecture: Full-scale hydraulic performance of soil-bentonite and 

compacted clay liners. Canadian Geotechnical Journal 39, 417–439. https://doi.org/10.1139/t01-092 

Chapuis, R.P., Aubertin, M., 2003. On the use of the Kozeny-Carman equation to predict the hydraulic 

conductivity of soils. Canadian Geotechnical Journal 40, 616–628. https://doi.org/10.1139/t03-013 

Chehadeh, A., Turan, A., Abed, F., 2015. Numerical investigation of spatial aspects of soil structure 

interaction for secant pile wall circular shafts. Computers and Geotechnics 69, 452–461. 

https://doi.org/10.1016/j.compgeo.2015.06.014 

Chen, F., Miao, G., Lai, F., 2020. Base Instability Triggered by Hydraulic Uplift of Pit-in-Pit Braced 

Excavations in Soft Clay Overlying a Confined Aquifer. KSCE Journal of Civil Engineering 24, 1717–

1730. https://doi.org/10.1007/s12205-020-1102-2 

Chen, S., Cui, J., Liang, F., 2022. Centrifuge Model Investigation of Interaction between Successively 

Constructed Foundation Pits. Applied Sciences (Switzerland) 12. https://doi.org/10.3390/app12167975 

Cheng, H., Chen, J., Chen, R., Huang, J., 2019. Three-dimensional analysis of tunnel face stability in spatially 

variable soils. Computers and Geotechnics 111, 76–88. 

Cheng, M., Wu, Y., 2009. Prediction of Diaphragm Wall Deflection in Deep Excavations Using Evolutionary 

Support Vector Machine Inference Model ( ESIM ), in: 26th Int. Symp. on Automation and Robotics 

in Construction (ISARC 2009). pp. 176–182. 

Cho, S.E., 2012. Probabilistic analysis of seepage that considers the spatial variability of permeability for an 

embankment on soil foundation. Engineering Geology 133–134, 30–39. 

https://doi.org/10.1016/j.enggeo.2012.02.013 

Cho, S.E., 2010. Probabilistic assessment of slope stability that considers the spatial variability of soil 

properties. Journal of Geotechnical and Geoenvironmental Engineering 136, 975–984. 

https://doi.org/10.1061/(ASCE)GT.1943-5606.0000309 

Cho, S.E., 2009. Probabilistic stability analyses of slopes using the ANN-based response surface. Computers 

and Geotechnics 36, 787–797. 



212 

 

Chowdhury, S.S., 2017. Reliability Analysis of Excavation Induced Basal Heave. Geotechnical and 

Geological Engineering 35, 2705–2714. https://doi.org/10.1007/s10706-017-0272-2 

Chua, C.G., Goh, A.T.C., 2005. Estimating wall deflections in deep excavations using Bayesian neural 

networks 20, 400–409. https://doi.org/10.1016/j.tust.2005.02.001 

Clough, G.W., O’Rourke, T.D., 1990. Construction induced movements of in-situ walls, in: In Proc. Design 

and Performance of Earth Retaining Structure, ASCE Special Conference. pp. 439–470. 

Clough, G.W., Smith, E.M., Sweeney, B.P., 1989. Movement control of excavation support systems by 

iterative design, in: ASCE Conference on Current Principles and Practices on Foundation and 

Engineering. pp. 869–884. 

Cui, J., Nelson, J.D., 2019. Underground transport: An overview. Tunnelling and Underground Space 

Technology 87, 122–126. https://doi.org/10.1016/j.tust.2019.01.003 

Daliri, F., 2011. A Review of theoretical and experimental methods to measure coefficient of permeability of 

unsaturated soils. Electronic Journal of Geotechnical Engineering 16 U, 1665–1677. 

Dang, H.P., Lin, H.D., Juang, C.H., 2014. Analyses of braced excavation considering parameter uncertainties 

using a finite element code. Journal of the Chinese Institute of Engineers 37, 141–151. 

https://doi.org/10.1080/02533839.2013.781790 

Day, R.A., Potts, D.M., 1998. The effect of interface properties on retaining wall behaviour. International 

Journal for Numerical and Analytical Methods in Geomechanics 22, 1021–1033. 

https://doi.org/10.1002/(sici)1096-9853(199812)22:12<1021::aid-nag953>3.3.co;2-d 

Desai, C.S., Zaman, M.M., Lightner, J.G., Siriwardane, H., 1984. Thin‐layer element for interfaces and joints. 

International Journal for Numerical and Analytical Methods in Geomechanics 8, 19–43. 

Dias, T.G.S., Farias, M.M., Assis, A.P., 2015. Large diameter shafts for underground infrastructure. 

Tunnelling and Underground Space Technology 45, 181–189. 

https://doi.org/10.1016/j.tust.2014.09.010 

Ding, C., Li, Z., Wu, X., Wu, K., 2014. Analysis on inducing factors to inrushing plastic deformation failure 

of foundation pit with confined water. In Tunneling and Underground Construction 491–501. 

Dong, Y., 2014. Advanced finite element analysis of deep excavation case histories. UNIVERSITY OF 

OXFORD. 

Dong, Y.P., Burd, H.J., Houlsby, G.T., 2016. Finite-element analysis of a deep excavation case history. 

Geotechnique 66, 1–15. https://doi.org/10.1680/jgeot.14.P.234 

Echard, B., Gayton, N., Lemaire, M., 2011. AK-MCS: An active learning reliability method combining 

Kriging and Monte Carlo Simulation. Structural Safety 33, 145–154. 

https://doi.org/10.1016/j.strusafe.2011.01.002 

Faheem, H., Cai, F., Ugai, K., Hagiwara, T., 2003. Two-dimensional base stability of excavations in soft soils 

using FEM. Computers and Geotechnics 30, 141–163. https://doi.org/10.1016/S0266-352X(02)00061-

7 



213 

 

Faustin, N.E., Elshafie, M.Z.E.B., Mair, R.J., 2018. Case studies of circular shaft construction in London. 

Proceedings of the Institution of Civil Engineers: Geotechnical Engineering 171, 391–404. 

https://doi.org/10.1680/jgeen.17.00166 

Fell, R., 2005. Geotechnical engineering of dams, 2nd ed. CRC Press, London. 

Fenton, G.A., Griffiths, D. V., 2010. Reliability-Based Geotechnical Engineering 41095, 14–52. 

https://doi.org/10.1061/41095(365)2 

Finno, R.J., Atmatzidis, D.K., Perkins, S.B., 1989. Observed performance of a deep excavation in clay. 

Journal of geotechnical engineering 115, 1045–1064. 

Fredlund, D.G., Xing, A., Huang, S., 1994. Predicting the permeability function for unsaturated soils using 

the soil-water characteristic curve. Canadian Geotechnical Journal 31, 533–546. 

https://doi.org/10.1016/0148-9062(95)96995-n 

Furlani, G., Guiducci, G., Lucarelli, A. Carettucci, A., Sorge, R., 2011. 3-D finite element modeling and 

construction aspects for vertical shafts in Metro C Rome, in: International Symposium on Geotechnical 

Aspects of Underground Construction in Soft Ground. pp. 685–692. 

Gharehchopogh, F.S., Maleki, I., Dizaji, Z.A., 2022. Chaotic vortex search algorithm: metaheuristic 

algorithm for feature selection, Evolutionary Intelligence. Springer Berlin Heidelberg. 

https://doi.org/10.1007/s12065-021-00590-1 

Gholampour, A., Johari, A., 2019. Reliability-based analysis of braced excavation in unsaturated soils 

considering conditional spatial variability. Computers and Geotechnics 115, 103163. 

https://doi.org/10.1016/j.compgeo.2019.103163 

Ghosh, K.K., Guha, R., Ghosh, S., Bera, S.K., Sarkar, R., 2020. Atom Search Optimization with Simulated 

Annealing-a Hybrid Metaheuristic Approach for Feature Selection. arXiv preprint 2005.08642. 

Goh, A.T.C., 2017a. Deterministic and reliability assessment of basal heave stability for braced excavations 

with jet grout base slab. Engineering Geology 218, 63–69. 

https://doi.org/10.1016/j.enggeo.2016.12.017 

Goh, A.T.C., 2017b. Basal heave stability of supported circular excavations in clay. Tunnelling and 

Underground Space Technology 61, 145–149. https://doi.org/10.1016/j.tust.2016.10.005 

Goh, A.T.C., 1994. Estimating basal-heave stability for braced excavations in soft clay. Journal of 

geotechnical engineering 120, 1430–1436. 

Goh, A.T.C., Fan, Z., Wengang, Z., Yanmei, Z., Hanlong, L., 2017. A simple estimation model for 3D braced 

excavation wall deflection. Computers and Geotechnics 83, 106–113. 

https://doi.org/10.1016/j.compgeo.2016.10.022 

Goh, A.T.C., Kulhawy, F.H., 2005. Reliability assessment of serviceability performance of braced retaining 

walls using a neural network approach. International Journal for Numerical and Analytical Methods in 

Geomechanics 29, 627–642. https://doi.org/10.1002/nag.432 

Goh, A.T.C., Kulhawy, F.H., Wong, K.S., 2008. Reliability assessment of basal-heave stability for braced 

excavations in clay. Journal of Geotechnical and Geoenvironmental Engineering 134, 145–153. 

https://doi.org/10.1061/(asce)1090-0241(2008)134:2(145) 



214 

 

Goh, A.T.C., Wong, K.S., Broms, B.B., 1995. Estimation of lateral wall movements in braced excavations 

using neural networks 1064, 1059–1064. 

Goh, A.T.C., Zhang, W.G., Wang, W., Wang, L., Liu, H., Zhang, W., 2019a. Numerical study of the effects 

of groundwater drawdown on ground settlement for excavation in residual soils. Acta Geotechnica 15, 

1259–1272. https://doi.org/10.1007/s11440-019-00843-5 

Goh, A.T.C., Zhang, W.G., Wong, K.S., 2019b. Deterministic and reliability analysis of basal heave stability 

for excavation in spatial variable soils. Computers and Geotechnics 108, 152–160. 

https://doi.org/10.1016/j.compgeo.2018.12.015 

Gordan, B., Jahed Armaghani, D., Hajihassani, M., Monjezi, M., 2016. Prediction of seismic slope stability 

through combination of particle swarm optimization and neural network. Engineering with Computers 

32, 85–97. https://doi.org/10.1007/s00366-015-0400-7 

Griffiths, D., Yu, X., 2015. Another look at the stability of slopes with linearly increasing undrained strength. 

Geotechnique 65, 824–830. https://doi.org/10.1680/geot.14.T.030 

Griffiths, D. V., Huang, J., Fenton, G.A., 2009. Influence of spatial variability on slope reliability using 2-D 

random fields. Journal of Geotechnical and Geoenvironmental Engineering 135, 1367–1378. 

https://doi.org/10.1061/(asce)gt.1943-5606.0000099 

Gu, X., Wang, L., Ou, Q., Zhang, W., 2023. Efficient stochastic analysis of unsaturated slopes subjected to 

various rainfall intensities and patterns. Geoscience Frontiers 14, 101490. 

https://doi.org/10.1016/j.gsf.2022.101490 

Guo, X., 2020. Etude probabiliste de la stabilité d ’ un barrage en remblais. Doctor thesis, Université Grenoble 

Alpes. 

Guo, X., Dias, D., 2020. Kriging based reliability and sensitivity analysis – Application to the stability of an 

earth dam. Computers and Geotechnics 120, 103411. https://doi.org/10.1016/j.compgeo.2019.103411 

Guo, X., Dias, D., Carvajal, C., Peyras, L., Breul, P., 2019a. A comparative study of different reliability 

methods for high dimensional stochastic problems related to earth dam stability analyses. Engineering 

Structures 188, 591–602. https://doi.org/10.1016/j.engstruct.2019.03.056 

Guo, X., Du, D., Dias, D., 2019b. Reliability analysis of tunnel lining considering soil spatial variability. 

Engineering Structures 196, 109332. https://doi.org/10.1016/j.engstruct.2019.109332 

Hamrouni, A., Dias, D., Sbartai, B., 2019. Probability analysis of shallow circular tunnels in homogeneous 

soil using the surface response methodology optimized by a genetic algorithm. Tunnelling and 

Underground Space Technology 86, 22–33. https://doi.org/10.1016/j.tust.2019.01.008 

Hashash, Y.M., Whittle, A.J., 1996. Ground movement prediction for deep excavations in soft clay. Journal 

of geotechnical engineering 122, 474–486. 

He, Q., Cao, Z., Tang, F., Gu, M., Zhang, T., 2023. Experimental analysis and machine learning research on 

tunnel carriage fire spread and temperature evolution. Tunnelling and Underground Space Technology 

133, 104940. https://doi.org/10.1016/j.tust.2022.104940 

Helton, J.C., Davis, F.J., 2003. Latin hypercube sampling and the propagation of uncertainty in analyses of 

complex systems. Reliability Engineering and System Safety 81, 23–69. https://doi.org/10.1007/3-540-

54029-6_187 



215 

 

Herrmann, L.R., 1978. Finite element analysis of contact problems. Journal of the engineering mechanics 

division 104, 1043–1057. 

Hohenbichler, M., Gollwitzer, S., Kruse, W., Rackwitz, R., 1987. New light on first-and second-order 

reliability methods. Structural safety 4, 267–284. 

Hong, Y., 2012. Ground deformation and base instability of deep excavation in soft clay subjected to 

hydraulic uplift. 

Hong, Y., Ng, C.W.W., 2013. Base stability of multi-propped excavations in soft clay subjected to hydraulic 

uplift. Canadian Geotechnical Journal 50, 153–164. https://doi.org/10.1139/cgj-2012-0170 

Hong, Y., Ng, C.W.W., Liu, G.B., Liu, T., 2015a. Three-dimensional deformation behaviour of a multi-

propped excavation at a “greenfield” site at Shanghai soft clay. Tunnelling and Underground Space 

Technology 45, 249–259. https://doi.org/10.1016/j.tust.2014.09.012 

Hong, Y., Ng, C.W.W., Wang, L.Z., 2015b. Initiation and failure mechanism of base instability of 

excavations in clay triggered by hydraulic uplift. Canadian Geotechnical Journal 52, 599–608. 

https://doi.org/10.1139/cgj-2013-0343 

Hou, C., Zhang, T., Sun, Z., Dias, D., Shang, M., 2019. Seismic analysis of nonhomogeneous slopes with 

cracks using a discretization kinematic approach. International Journal of Geomechanics 19, 1–14. 

https://doi.org/10.1061/(ASCE)GM.1943-5622.0001487 

Hsi, J.P., Yu, J.B.Y., 2005. Jet grout application for excavation in soft marine clay, in: In Proceedings of the 

16th International Conference on Soil Mechanics and Geotechnical Engineering. pp. 1485–1488. 

https://doi.org/10.3233/978-1-61499-656-9-1485 

Hsiao, E.C.L., Kung, G.T.C., Juang, C.H., Schuster, M., 2006. Estimation of wall deflection in braced 

excavation in clays using artificial neural networks 1–6. 

Hsieh, P.G., Ou, C.Y., 1998. Shape of ground surface settlement profiles caused by excavation. Canadian 

geotechnical journal 35, 1004–1017. 

Hsiung, B.C.B., 2009. A case study on the behaviour of a deep excavation in sand. Computers and 

Geotechnics 36, 665–675. https://doi.org/10.1016/j.compgeo.2008.10.003 

Hu, Z., Mansour, R., Olsson, M., Du, X., 2021. Second-order reliability methods: a review and comparative 

study. Structural and Multidisciplinary Optimization 64, 3233–3263. https://doi.org/10.1007/s00158-

021-03013-y 

Huang, F.K., Wang, G.S., 2007. ANN-based reliability analysis for deep excavation. EUROCON 2007 - The 

International Conference on Computer as a Tool 2039–2046. 

https://doi.org/10.1109/EURCON.2007.4400328 

Huang, M., Tang, Z., Yuan, J., 2018. Basal stability analysis of braced excavations with embedded walls in 

undrained clay using the upper bound theorem. Tunnelling and Underground Space Technology 79, 

231–241. https://doi.org/10.1016/j.tust.2018.05.014 

Huang, M.S., Zuo-long, D.U., Chun-xia, S.O.N.G., 2011. Effects of inserted depth of wall penetration on 

basal stability of foundation pits in clay. Chinese Journal of Geotechnical Engineering 33, 1097–1103. 



216 

 

Huang, S.Y., Barbour, S.L., Fredlund, D.G., 1998a. Development and verification of a coefficient of 

permeability function for a deformable unsaturated soil. Canadian Geotechnical Journal 35, 411–425. 

https://doi.org/10.1139/cgj-35-3-411 

Huang, S.Y., Fredlund, D., Barbour, S., 1998b. Measurement of the coefficient of permeability for a 

deformable unsaturated soil using a triaxial permeameter. Canadian Geotechnical Journal 35, 426–432. 

Iooss, B., Lemaître, P., 2015. A review on Global Sensitivity Analysis methods, in: Uncertainty Management 

in Simulation-Optimization of Complex Systems: Algorithms and Applications. pp. 101–122. 

https://doi.org/10.1007/978-1-4899-7547-8 

Jan, J.C., Hung, S., Asce, M., Chi, S.Y., Chern, J.C., 2002. Neural Network Forecast Model in deep 

excavation 16, 59–65. 

Jen, L.C., 1998. The Design and Performance of Deep Excavation in Clay. MIT. 

Jiang, S.H., Li, D.Q., Zhou, C.B., Zhang, L.M., 2014. Reliability analysis of unsaturated slope considering 

spatial variability. Rock and Soil Mechanics 35, 2569–2578. 

Johari, A., Kalantari, A., 2021. System reliability analysis of soldier-piled excavation in unsaturated soil by 

combining random finite element and sequential compounding methods. Bulletin of Engineering 

Geology and the Environment. https://doi.org/10.1007/s10064-020-02022-3 

Jun, Y.U., Haiming, C., Jun, Y.U., Haiming, C., Training, A., 2009. Artificial Neural Network ’ s Application 

in Intelligent Prediction of Surface Settlement Induced by Foundation Pit Excavation 303–305. 

https://doi.org/10.1109/ICICTA.2009.80 

Kamien, D.J., 1997. Engineering and design: introduction to probability and reliability methods for use in 

geotechnical engineering. Engineer Technical Letter. 

Keawsawasvong, S., Ukritchon, B., 2019. Undrained basal stability of braced circular excavations in non-

homogeneous clays with linear increase of strength with depth. Computers and Geotechnics 115, 

103180. https://doi.org/10.1016/j.compgeo.2019.103180 

Keawsawasvong, S., Ukritchon, B., 2017. Stability of unsupported conical excavations in non-homogeneous 

clays. Computers and Geotechnics 81, 125–136. https://doi.org/10.1016/j.compgeo.2016.08.007 

Khadija, N., Dias, D., Cuira, F., Chapron, G., 2021. Experimental study of the performance of a 32 m deep 

excavation in the suburbs of Paris. Géotechnique 1–11. 

https://doi.org/https://doi.org/10.1680/jgeot.21.00017 

Kłosowski, G., Rymarczyk, T., 2022. Monitoring of flood embankments through EIT machine ensemble 

learning. International Journal of Applied Electromagnetics and Mechanics 1–10. 

Koltuk, S., Song, J., Iyisan, R., Azzam, R., 2019. Seepage failure by heave in sheeted excavation pits 

constructed in stratified cohesionless soils. Frontiers of Structural and Civil Engineering 13, 1415–1431. 

https://doi.org/10.1007/s11709-019-0565-z 

Konda, T., Shahin, H.M., Nakai, T., 2010. Numerical analysis for backside ground deformation behaviour 

due to braced excavation. IOP Conference Series: Materials Science and Engineering 10. 

https://doi.org/10.1088/1757-899X/10/1/012010 

Krabbenhoft, K., Lyamin, A., Krabbenhoft, J., 2016. OptumG2:theory. Optum. 



217 

 

Krabbenhoft, K., Lyamin, A., Krabbenhoft, J., 2015. Optum computational engineering (OptumG2). 

Kucherenko, S., Tarantola, S., Annoni, P., 2012. Estimation of global sensitivity indices for models with 

dependent variables. Computer Physics Communications 183, 937–946. 

https://doi.org/10.1016/j.cpc.2011.12.020 

Kung, G.T.C., Hsiao, E.C., Juang, C.H., 2007a. Evaluation of a simplified small-strain soil model for analysis 

of excavation-induced movements. Canadian Geotechnical Journal 736, 726–736. 

https://doi.org/10.1139/T07-014 

Kung, G.T.C., Hsiao, E.C.L., Schuster, M., Juang, C., 2007b. A neural network approach to estimating 

deflection of diaphragm walls caused by excavation in clays 34, 385–396. 

https://doi.org/10.1016/j.compgeo.2007.05.007 

Kung, G.T.C., Juang, C.H., Hsiao, E.C., Hashash, Y.M., 2007c. Simplified Model for Wall Deflection and 

Ground-Surface Settlement Caused by Braced Excavation in Clays. Journal of Geotechnical and 

Geoenvironmental Engineering 0241. https://doi.org/10.1061/(ASCE)1090-0241(2007)133 

Kuntz, M., Schlapschi, K.H., Meier, B., Grathwohl, G., 1994. Evaluation of interface parameters in push-out 

and pull-out tests. Composites 25, 476–481. 

Lai, F., Chen, F., Liu, S., Keawsawasvong, S., Shiau, J., 2022. Undrained stability of pit-in-pit braced 

excavations under hydraulic uplift. Underground Space (China) 7, 1139–1155. 

https://doi.org/10.1016/j.undsp.2022.04.003 

Lam, S.Y., 2010. Ground movements due to excavation in clay: physical and analytical models. University 

of Cambridge. 

Lam, S.Y., Haigh, S.K., Bolton, M.D., 2014. Understanding ground deformation mechanisms for multi-

propped excavation in soft clay. Soils and Foundations 54, 296–312. 

https://doi.org/10.1016/j.sandf.2014.04.005 

Le, B.T., Goodey, R.J., Divall, S., 2019. Subsurface ground movements due to circular shaft construction. 

Soils and Foundations 59, 1160–1171. https://doi.org/10.1016/j.sandf.2019.03.013 

Leroueil, S., Le Bihan, J.P., Sebaihi, S., Alicescu, V., 2002. Hydraulic conductivity of compacted tills from 

northern Quebec. Canadian Geotechnical Journal 39, 1039–1049. https://doi.org/10.1139/t02-062 

Leu, S., Lo, H., 2004. Neural-network-based regression model of ground surface settlement induced by deep 

excavation 13, 279–289. https://doi.org/10.1016/S0926-5805(03)00018-9 

Li, C., Zhou, J., Armaghani, D., Li, X., 2021a. Stability analysis of underground mine hard rock pillars via 

combination of finite difference methods, neural networks, and Monte Carlo simulation techniques. 

Underground Space (China) 6, 379–395. https://doi.org/10.1016/j.undsp.2020.05.005 

Li, C., Zhou, J., Armaghani, D.J., Cao, W., Yagiz, S., 2021b. Stochastic assessment of hard rock pillar 

stability based on the geological strength index system. Geomechanics and Geophysics for Geo-Energy 

and Geo-Resources 7, 1–24. https://doi.org/10.1007/s40948-021-00243-8 

Li, C., Zhou, J., Dias, D., Gui, Y., 2022a. A Kernel Extreme Learning Machine-Grey Wolf Optimizer 

(KELM-GWO) Model to Predict Uniaxial Compressive Strength of Rock. Applied Sciences 

(Switzerland) 12. https://doi.org/10.3390/app12178468 



218 

 

Li, C., Zhou, J., Khandelwal, M., Zhang, X., Monjezi, M., Qiu, Y., 2022b. Natural Resources ResearchSix 

Novel Hybrid Extreme Learning Machine–Swarm Intelligence Optimization (ELM–SIO) Models for 

Predicting Backbreak in Open-Pit Blasting. Natural Resources Research 31, 3017–3039. 

https://doi.org/10.1007/s11053-022-10082-3 

Li, H., Kayhanian, M., Harvey, J.T., 2013. Comparative field permeability measurement of permeable 

pavements using ASTM C1701 and NCAT permeameter methods. Journal of Environmental 

Management 118, 144–152. https://doi.org/10.1016/j.jenvman.2013.01.016 

Li, J.H., Zhou, Y., Zhang, L.L., Tian, Y., Cassidy, M.J., 2016. Random finite element method for spudcan 

foundations in spatially variable soils. Engineering Geology 205, 146–155. 

Liao, W., Ji, J., 2021. Time-dependent reliability analysis of rainfall-induced shallow landslides considering 

spatial variability of soil permeability. Computers and Geotechnics 129, 103903. 

https://doi.org/10.1016/j.compgeo.2020.103903 

Likitlersuang, S., Surarak, C., Wanatowski, D., Oh, E., Balasubramaniam, A., 2013. Finite element analysis 

of a deep excavation: A case study from the Bangkok MRT. Soils and Foundations 53, 756–773. 

https://doi.org/10.1016/j.sandf.2013.08.013 

Lin, S., Shen, S., Zhou, A., Xu, Y., 2021. Automation in Construction Risk assessment and management of 

excavation system based on fuzzy set theory and machine learning methods. Automation in 

Construction 122, 103490. https://doi.org/10.1016/j.autcon.2020.103490 

Liu, G.B., Jiang, R.J., Ng, C.W.W., Hong, Y., 2011. Deformation characteristics of a 38 m deep excavation 

in soft clay. Canadian Geotechnical Journal 48, 1817–1828. https://doi.org/10.1139/T11-075 

Liu, Jinlong, Liu, Jiequn, 2011. Abrupt gush problem of foundation pit considering the influence of shear 

strength of soil. Advanced Materials Research 168–170, 1586–1589. 

https://doi.org/10.4028/www.scientific.net/AMR.168-170.1586 

Long, M., 2001. A case history of a deep basement in London Clay. Computers and Geotechnics 28, 397–

423. https://doi.org/10.1016/S0266-352X(01)00006-4 

Lü, Q., Chan, C.L., Low, B.K., 2012. Probabilistic evaluation of ground-support interaction for deep rock 

excavation using artificial neural network and uniform design. Tunnelling and Underground Space 

Technology 32, 1–18. https://doi.org/10.1016/j.tust.2012.04.014 

Luo, Z., Atamturktur, S., Cai, Y., Juang, C.H., 2012a. Simplified approach for reliability-based design against 

basal-heave failure in braced excavations considering spatial effect. Journal of Geotechnical and 

Geoenvironmental Engineering 138, 441–450. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000621 

Luo, Z., Atamturktur, S., Cai, Y., Juang, C.H., 2012b. Reliability analysis of basal-heave in a braced 

excavation in a 2-D random field. Computers and Geotechnics 39, 27–37. 

https://doi.org/10.1016/j.compgeo.2011.08.005 

Luo, Z., Atamturktur, S., Juang, C.H., 2012c. Effect of Spatial Variability on Probability-Based Design of 

Excavations against Basal-Heave 2876–2884. https://doi.org/10.1061/9780784412121.294 

Luo, Z., Atamturktur, S., Juang, C.H., Huang, H., Lin, P., 2011a. Computers and Geotechnics Probability of 

serviceability failure in a braced excavation in a spatially random field : Fuzzy finite element approach. 

Computers and Geotechnics 38, 1031–1040. https://doi.org/10.1016/j.compgeo.2011.07.009 



219 

 

Luo, Z., Atamturktur, S., Juang, C.H., Huang, H., Lin, P., 2011b. Probability of serviceability failure in a 

braced excavation in a spatially random field : Fuzzy finite element approach. Computers and 

Geotechnics 38, 1031–1040. https://doi.org/10.1016/j.compgeo.2011.07.009 

Luo, Z., Das, B.M., 2015. System probabilistic serviceability assessment of braced excavations in clays 00, 

1–11. https://doi.org/10.1179/1939787915Y.0000000021 

Luo, Z., Hu, B., Wang, Y., Di, H., 2018a. Effect of spatial variability of soft clays on geotechnical design of 

braced excavations: A case study of Formosa excavation. Computers and Geotechnics 103, 242–253. 

https://doi.org/10.1016/j.compgeo.2018.07.020 

Luo, Z., Li, Y., Zhou, S., Di, H., 2018b. Effects of vertical spatial variability on supported excavations in 

sands considering multiple geotechnical and structural failure modes. Computers and Geotechnics 95, 

16–29. https://doi.org/10.1016/j.compgeo.2017.11.017 

Lv, G., He, Y., Wei, B., 2020. Dynamic Stability Analysis of Slope Subjected to Surcharge Load considering 

Tensile Strength Cut-Off. Mathematical Problems in Engineering 2020. 

https://doi.org/10.1155/2020/5196303 

Mahmoodzadeh, A., Mohammadi, M., Farid Hama Ali, H., Hashim Ibrahim, H. Nariman Abdulhamid, S., 

Nejati, H.R., 2022. Prediction of safety factors for slope stability: comparison of machine learning 

techniques. Natural Hazards 111, 1771–1799. 

Mana, A.I., Clough, G.W., 1981. Prediction of Movements for Braced Cuts in Clay. Journal of the 

Geotechnical Engineering Division 107, 759–777. 

Marelli, S., Sudret, B., 2018. An active-learning algorithm that combines sparse polynomial chaos expansions 

and bootstrap for structural reliability analysis. Structural Safety 75, 67–74. 

https://doi.org/10.1016/j.strusafe.2018.06.003 

Marelli, S., Sudret, B., 2014. UQLab: A framework for Uncertainty Quantification in MATLAB. 

Vulnerability, Uncertainty, Risk ©ASCE 2554–2563. 

Marten, S., Bourgeois, E., 2006. Three-dimensional behaviour of a circular excavation in Nantes, France, in: 

Proceedings of the 5th International Conference of TC 28 of the ISSMGE. pp. 867–872. 

https://doi.org/10.1007/978-3-319-73568-9_174 

McNamara, A.M., Roberts, T.O.L., Morrison, P.R.J., Holmes, G., 2008. Construction of a deep shaft for 

Crossrail. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering 161, 299–309. 

https://doi.org/10.1680/geng.2008.161.6.299 

Milligan, V., Lo, K.Y., 1970. Observations on some basal failures in sheeted excavations. Canadian 

Geotechnical Journal 7, 136–144. 

Mishra, S., 2004. Sensitivity Analysis with Correlated Inputs - An Environmental Risk Assessment Example. 

Mollon, G., Dias, D., Abdul-Hamid Soubra, M.A., 2010. Face Stability Analysis of Circular Tunnels Driven 

by a Pressurized Shield. Journal of Geotechnical and Geoenvironmental Engineering 136, 215–229. 

https://doi.org/10.4028/www.scientific.net/AMR.378-379.461 

Mollon, G., Phoon, K.K., Dias, D., Soubra, A.-H., 2011. Validation of a New 2D Failure Mechanism for the 

Stability Analysis of a Pressurized Tunnel Face in a Spatially Varying Sand. Journal of Engineering 

Mechanics 137, 8–21. https://doi.org/10.1061/41095(365)208 



220 

 

Moore, J.F.A., Longworth, T.I., 1979. Hydraulic uplift of the base of a deep excavation in Oxford Clay. 

Géotechnique 29, 35–46. 

Moormann, C., 2004. Analysis of wall and ground movements due to deep excavations in soft soil based on 

a new worldwide database. Soils and foundations 44, 87–98. 

Moustapha, M., Marelli, S., Sudret, B., 2022. Active learning for structural reliability: Survey, general 

framework and benchmark. Structural Safety 96, 102174. 

https://doi.org/10.1016/j.strusafe.2021.102174 

Mouyeaux, A., Carvajal, C., Bressolette, P., Peyras, L., Breul, P., Bacconnet, C., 2019a. Probabilistic analysis 

of pore water pressures of an earth dam using a random finite element approach based on field data. 

Engineering Geology 259. https://doi.org/10.1016/j.enggeo.2019.105190 

Nagy, L., Tabácks, A., Huszák, T., Mahler, A., Varga, G., 2013. Comparison of permeability testing methods. 

18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and 

Innovations in Geotechnics, ICSMGE 2013 1, 399–402. 

Nejjar, K., Dias, D., 2019. Comportement des parois de soutènement dans un contexte exceptionnel ( grande 

profondeur , formations déformables , environnement sensible ) Application à la gare Fort d ’ Issy -

Vanves-Clamart. https://doi.org/10.13140/RG.2.2.31102.33607 

Ng, C.W., Simpson, B., Lings, M.L., Nash, D.F., 1998. Numerical analysis of a multi-propped excavation in 

stiff clay. Canadian Geotechnical Journal 35, 115–130. 

Ng, C.W.W., Hong, Y., Liu, G.B., Liu, T., 2012. Ground deformations and soil-structure interaction of a 

multi-propped excavation in Shanghai soft clays. Geotechnique 62, 907–921. 

https://doi.org/10.1680/geot.10.P.072 

Nguyen, T.S., Likitlersuang, S., 2021. Influence of the Spatial Variability of Soil Shear Strength on Deep 

Excavation : A Case Study of a Bangkok Underground MRT Station. International Journal of 

Geomechanics 21, 1–12. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001914 

O’Rourke, T.D., 1993. Base stability and ground movement prediction for excavations in soft clay. Thomas 

Telford, London. 

Osman, A.S., Bolton, M.D., 2006. Ground Movement Predictions for Braced Excavations in Undrained Clay. 

Journal of Geotechnical and Geoenvironmental Engineering 132, 465–477. 

https://doi.org/10.1061/(asce)1090-0241(2006)132:4(465) 

Ou, C.Y., 2006. Deepexcavation:TheoryandPractice. Taylor&Francis, London, UK. 

Ou, C.Y., Hsieh, P.G., 2011. A simplified method for predicting ground settlement profiles induced by 

excavation in soft clay. Computers and Geotechnics 38, 987–997. 

Ou, C.Y., Liao, J.T., Lin, H.D., 1998. Performance of diaphragm wall constructed using top-down method. 

Journal of geotechnical and geoenvironmental engineering 124, 798–808. 

Ouzaid, I., Benmebarek, N., Benmebarek, S., 2020. FEM optimisation of seepage control system used for 

base stability of excavation. Civil Engineering Journal (Iran) 6, 1739–1751. 

https://doi.org/10.28991/cej-2020-03091579 



221 

 

Pan, Q., Dias, D., 2017. Probabilistic evaluation of tunnel face stability in spatially random soils using sparse 

polynomial chaos expansion with global sensitivity analysis. Acta Geotechnica 12, 1415–1429. 

https://doi.org/10.1007/s11440-017-0541-5 

Pan, Q., Qu, X., Liu, L., Dias, D., 2020. A sequential sparse polynomial chaos expansion using Bayesian 

regression for geotechnical reliability estimations. International Journal for Numerical and Analytical 

Methods in Geomechanics 44, 874–889. https://doi.org/10.1002/nag.3044 

Pan, Y., Lee, F.H., 2019. Effect of spatial variability on undrained behaviour of tunnel with improved 

surroundings, in: 13th International Conference on Applications of Statistics and Probability in Civil 

Engineering, ICASP 2019. pp. 1–8. 

Papaioannou, I., Betz, W., Zwirglmaier, K., Straub, D., 2015. MCMC algorithms for Subset Simulation. 

Probabilistic Engineering Mechanics 41, 89–103. https://doi.org/10.1016/j.probengmech.2015.06.006 

Papaioannou, I., Straub, D., 2012. Reliability updating in geotechnical engineering including spatial 

variability of soil 44–51. 

Paul W, M., Fred H, K., 1982. K0-OCR relationships in soil. ASCE GT6 851–869. 

Peck, R.B., 1969. Deep excavations and tunneling in soft ground. Proc. 7th ICSMFE 225–290. 

Philipponnat, G., Hubert, B., 2016. Fondations et ouvrages en terre. Eyrolles. 

Phoon, K.K., Cao, Z.J., Ji, J., Leung, Y.F., Najjar, S., Shuku, T., Tang, C., Yin, Z.Y., Ikumasa, Y., Ching, J., 

2022. Geotechnical uncertainty, modeling, and decision making. Soils and Foundations 62, 101189. 

https://doi.org/10.1016/j.sandf.2022.101189 

Phoon, K.K., Kulhawy, F.H., 1999. Characterization of geotechnical variability. Canadian Geotechnical 

Journal 36, 612–624. https://doi.org/10.1139/t99-038 

Pieczyńska-Kozłowska, J., Vessia, G., 2022. Spatially variable soils affecting geotechnical strip foundation 

design. Journal of Rock Mechanics and Geotechnical Engineering 14, 886–895. 

https://doi.org/10.1016/j.jrmge.2021.10.010 

Powrie, W., Li, E.S.F., 1991. Finite element analyses of an in situ wall propped at formation level. 

Geotechnique 41, 499–514. 

Qin, C., Chian, S.C., 2018. Seismic bearing capacity of non-uniform soil slopes using discretization-based 

kinematic analysis considering Rayleigh waves. Soil Dynamics and Earthquake Engineering 109, 23–

32. https://doi.org/10.1016/j.soildyn.2018.02.017 

Qu, J.L., Liu, G.B., Zhang, J.F., 2002. Study on the ground settlement induced by artesian pressure release 

at Dongchang road metro station. China Civil Engineering Journal 35, 93–98. 

Qu, P., Zhang, L., Zhu, Q., Wu, M., 2023. Probabilistic reliability assessment of twin tunnels considering 

fluid–solid coupling with physics-guided machine learning. Reliability Engineering & System Safety 

231, 109028. 

Raj, D., Singh, Y., Kaynia, A.M., 2018. Behavior of Slopes under Multiple Adjacent Footings and Buildings. 

International Journal of Geomechanics 18, 04018062. https://doi.org/10.1061/(asce)gm.1943-

5622.0001142 



222 

 

Richards, D.J., Powrie, W., 1998. Centrifuge model tests on doubly propped embedded retaining walls in 

overconsolidated kaolin clay. Géotechnique 48, 833–846. 

Rosenblatt, F., 1958. The perceptron: A probabilistic model for information storage and organization in the 

brain. Psychological review 65, 386. https://doi.org/https://doi.org/10.1037/h0042519 

Rouainia, M., Ph, D., Elia, G., Ph, D., Panayides, S., Ph, D., Scott, P., Asce, M., 2017. Nonlinear Finite-

Element Prediction of the Performance of a Deep Excavation in Boston Blue Clay. Journal of 

Geotechnical and Geoenvironmental Engineering 143, 1–13. https://doi.org/10.1061/(ASCE)GT.1943-

5606.0001650. 

Sahin, A.U., 2016. A new parameter estimation procedure for pumping test analysis using a radial basis 

function collocation method. Environmental Earth Sciences 75, 1–13. 

Salazar, F., Morán, R., Toledo, M., Oñate, E., 2017. Data-Based Models for the Prediction of Dam Behaviour: 

A Review and Some Methodological Considerations. Archives of Computational Methods in 

Engineering 24, 1–21. https://doi.org/10.1007/s11831-015-9157-9 

Sasmal, S.K., Behera, R.N., 2021. Prediction of combined static and cyclic load-induced settlement of 

shallow strip footing on granular soil using artificial neural network. International Journal of 

Geotechnical Engineering 15, 834–844. https://doi.org/10.1080/19386362.2018.1557384 

Schöbi, R., Sudret, B., Marelli, S., 2017. Rare Event Estimation Using Polynomial-Chaos Kriging. ASCE-

ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering 3, 1–12. 

https://doi.org/10.1061/ajrua6.0000870 

Schöbi, R., Sudret, B., Wiart, J., 2015. Polynomial-Chaos-based Kriging. International Journal for 

Uncertainty Quantification 5(2). 

Schwamb, T., Elshafie, M.Z., Soga, K., Mair, R.J., 2016. Considerations for monitoring of deep circular 

excavations, in: Proceedings of the Institution of Civil Engineers-Geotechnical Engineering. pp. 477–

493. 

Schwamb, T., Soga, K., 2015. Case studies of circular shaft construction in London. Geotechnique 65, 604–

619. https://doi.org/10.1680/geot.14.P.251 

Selmi, M., Kormi, T., Hentati, A., Ali, N.B.H., 2019. Capacity assessment of offshore skirted foundations 

under HM combined loading using RFEM. Computers and Geotechnics 114, 103148. 

Sert, S., Luo, Z., Xiao, J., Gong, W., Juang, C.H., 2016. Probabilistic analysis of responses of cantilever wall-

supported excavations in sands considering vertical spatial variability. Computers and Geotechnics 75, 

182–191. https://doi.org/10.1016/j.compgeo.2016.02.004 

Shen, S.L., Wu, Y.X., Misra, A., 2017. Calculation of head difference at two sides of a cut-off barrier during 

excavation dewatering. Computers and Geotechnics 91, 192–202. 

https://doi.org/10.1016/j.compgeo.2017.07.014 

Shi, Y.-J., Li, M.-G., Zhang, Y.-Q., Li, J., Wang, J.-H., 2018. Field Investigation and Prediction of Responses 

of Far-Field Ground and Groundwater to Pumping Artesian Water in Deep Excavations. International 

Journal of Geomechanics 18, 1–12. https://doi.org/10.1061/(asce)gm.1943-5622.0001252 



223 

 

Shoari Shoar, S.M., Heshmati R, A.A., Salehzadeh, H., 2023. Investigation of Failure Behaviour of Soil 

Nailed Excavations under Surcharge by Centrifuge Model Test. KSCE Journal of Civil Engineering 27, 

66–79. 

Siacara, A.T., Napa-García, G.F., Beck, A.T., Futai, M.M., 2022. Reliability analysis of an earth dam in 

operating conditions using direct coupling. SN Applied Sciences 4. https://doi.org/10.1007/s42452-

022-04980-7 

Sivakumar Babu, G.L., Murthy, D.S., 2005. Reliability Analysis of Unsaturated Soil Slopes. Journal of 

Geotechnical and Geoenvironmental Engineering 131, 1423–1428. https://doi.org/10.1061/(asce)1090-

0241(2005)131:11(1423) 

Sobol, I., 1993. Sensitivity estimates for nonlinear mathematical models. Math Model Comput Exp 407–414. 

Sudret, B., 2008. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering and 

System Safety 93, 964–979. https://doi.org/10.1016/j.ress.2007.04.002 

Sudret, B., Kiureghian, A. Der, 2000. Stochastic Finite Element Methods and Reliability. A State-of-the-Art 

Report 189. 

Sun, Y. yong, 2016. Experimental and theoretical investigation on the stability of deep excavations against 

confined aquifers in Shanghai, China. KSCE Journal of Civil Engineering 20, 2746–2754. 

https://doi.org/10.1007/s12205-016-0488-3 

Takemura, J., Kondoh, M., Esaki, T., Kouda, M., Kusakabe, O., 1999. Centrifuge model tests on double 

propped wall excavation in soft clay. Soils and foundations 39, 75–87. 

Tan, Y., Wei, B., 2012. Observed Behaviors of a Long and Deep Excavation Constructed by Cut-and-Cover 

Technique in Shanghai Soft Clay. Journal of Geotechnical and Geoenvironmental Engineering 138, 

69–88. https://doi.org/10.1061/(ASCE)GT.1943-5606 

Tang, Y., 2011. Probability-based method using RFEM for predicting wall deflection caused by excavation. 

Journal of Zhejiang University-SCIENCE A 12, 737–746. https://doi.org/10.1631/jzus.A1100016 

Tang, Y., Kung, G.T., 2014. Influence of Spatially Varying Soil on Basal Heave Analysis of Braced 

Excavation. In Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management 

2439–2448. https://doi.org/10.1061/9780784413609.245 

Tang, Y.G., Kung, G.T.C., 2012. Probabilistic analysis of excavation-induced basal heave-a case study, in: 

5th Asian-Pacific Symposium on Structural Reliability and Its Applications. pp. 707–712. 

https://doi.org/10.3850/978-981-07-2219-7 

Tang, Y.G., Kung, G.T.C., 2011. Probabilistic Analysis of Basal Heave in Deep Excavation. GeoRisk 2011: 

Risk Assessment and Management 217–224. 

Tang, Z., 2020. Design and construction of the circular shape shaft using the reverse construction method. 

E3S Web of Conferences 198, 3–7. https://doi.org/10.1051/e3sconf/202019802011 

Taylor, P., Wang, Y., 2013. MCS-based probabilistic design of embedded sheet pile walls. Georisk : 

Assessment and Management of Risk for Engineered Systems and Geohazards 7, 151–162. 

https://doi.org/10.1080/17499518.2013.765286 



224 

 

Tedd, P., Chard, B.M., Charles, J.A., Symons, I.F., 1984. Behaviour of a propped embedded retaining wall 

in stiff clay at Bell Common Tunnel. Géotechnique 34, 513–532. 

Terzaghi, K., 1943. Theoretical soil mechanics. John Wiley & Sons, New York (USA). 

Tokmachev, M.S., 2018. Modeling of truncated probability distributions. IOP Conference Series: Materials 

Science and Engineering 441. https://doi.org/10.1088/1757-899X/441/1/012056 

Tvedt, L., 1990. Distribution of quadratic forms in normal space— application to structural reliability. Journal 

of engineering mechanics 116, 1183–1197. 

Wang, J., Aldosary, M., Cen, S., Li, C., 2021. Hermite polynomial normal transformation for structural 

reliability analysis. Engineering Computations (Swansea, Wales) 38, 3193–3218. 

https://doi.org/10.1108/EC-05-2020-0244 

Wang, J.H., Xu, Z.H., Wang, W.D., 2010. Wall and Ground Movements due to Deep Excavations in Shanghai 

Soft Soils. Journal of Geotechnical and Geoenvironmental Engineering 136, 985–994. 

Wang, Z.W., Ng, C.W.W., Liu, G.B., 2005. Characteristics of wall deflections and ground surface settlements 

in Shanghai. Canadian Geotechnical Journal 42, 1243–1254. https://doi.org/10.1139/T05-056 

Wei, X., Zhang, Lulu, Yang, H.Q., Zhang, Limin, Yao, Y.P., 2021. Machine learning for pore-water pressure 

time-series prediction: Application of recurrent neural networks. Geoscience Frontiers 12, 453–467. 

https://doi.org/10.1016/j.gsf.2020.04.011 

Whitley, D., 1994. A genetic algorithm tutorial. Statistics and Computing 4, 65–85. 

https://doi.org/10.1007/BF00175354 

Wijesinghe, D.R., Dyson, A., You, G., 2022. Development of the scaled boundary finite element method for 

image-based slope stability analysis. Computers and Geotechnics 143, 104586. 

Wong, R.C.K., Kaiser, P.K., 1988. Behaviour of Vertical Shafts: Reevaluation of Model Test Results and 

Evaluation of Field Measurements. Canadian geotechnical journal 25, 338–352. 

https://doi.org/10.1139/t88-035 

Wu, G., Zhao, H., Zhao, M., 2021. Undrained stability analysis of strip footings lying on circular voids with 

spatially random soil. Computers and Geotechnics 133, 104072. 

https://doi.org/10.1016/j.compgeo.2021.104072 

Wu, G., Zhao, H., Zhao, M., Xiao, Y., 2020. Undrained seismic bearing capacity of strip footings lying on 

two-layered slopes. Computers and Geotechnics 122, 103539. 

https://doi.org/10.1016/j.compgeo.2020.103539 

Wu, S.H., Ou, C.Y., Ching, J., 2014. Calibration of model uncertainties in base heave stability for wide 

excavations in clay. Soils and Foundations 54, 1159–1174. https://doi.org/10.1016/j.sandf.2014.11.010 

Wu, S.H., Ou, C.Y., Ching, J., 2011. Reliability based design of base heave stability in wide excavations, in: 

In Geo-Risk 2011: Risk Assessment and Management. pp. 680–687. 

Wu, S.H., Ou, C.Y., Ching, J.Y., Hsein, J.C., 2012. Reliability-Based Design for Basal Heave Stability of 

Deep Excavations in Spatially Varying Soils. Journal of Geotechnical and Geoenvironmental 

Engineering 138, 594–603. https://doi.org/10.1061/(asce)gt.1943-5606.0000626 



225 

 

Xiao, Z., Lin, J., Tang, D., 2022. A Numerical Study of Ground Displacement and Stress Conditions of Small 

and Medium Circular Diaphragm Wall during Excavation 2022. 

Xu, C., Chen, Q., Wang, Y., Hu, W., Fang, T., 2016. Dynamic deformation control of retaining structures of 

a deep excavation. Journal of Performance of Constructed Facilities 30, 04015071. 

Xu, C., Gertner, G.Z., 2008. Uncertainty and sensitivity analysis for models with correlated parameters. 

Reliability Engineering & System Safety 93, 1563–1573. 

Xue, Y., Miao, F., Wu, Y., Li, L., Meng, J., 2021. Application of uncertain models of sliding zone on stability 

analysis for reservoir landslide considering the uncertainty of shear strength parameters. Engineering 

with Computers 1–20. https://doi.org/10.1007/s00366-021-01446-z 

Yang, H.Q., Zhang, L., Li, D.Q., 2018. Efficient method for probabilistic estimation of spatially varied 

hydraulic properties in a soil slope based on field responses: A Bayesian approach. Computers and 

Geotechnics 102, 262–272. https://doi.org/10.1016/j.compgeo.2017.11.012 

Yang, J.M., Zheng, G., 2009. Classification of seepage failures and opinion to formula for check bursting 

instability in dewatering. Rock and soil Mechanics 30, 261–264. 

Yang, Z., Chen, Y., Azzam, R., Yan, C., 2022. Performance of a top-down excavation in shanghai: case study 

and numerical exploration. European Journal of Environmental and Civil Engineering 26, 7932–7957. 

https://doi.org/10.1080/19648189.2021.2013950 

Ye-Shuang, X., Xue-Xin, Y., Shui-Long, S., An-Nan, Z., 2019. Experimental investigation on the blocking 

of groundwater seepage from a waterproof curtain during pumped dewatering in an excavation. 

Hydrogeology Journal 27, 2659–2672. 

Yoo, K., Bacarreza, O., Aliabadi, M.H.F., 2022. A novel multi-fidelity modelling-based framework for 

reliability-based design optimisation of composite structures. Engineering with Computers 38, 595–

608. https://doi.org/10.1007/s00366-020-01084-x 

Young, D.K., Ho, E.W.L., 1994. The observational approach to design of a sheet-piled retaining wall. 

Geotechnique 44, 637–654. 

Zapata-Medina, D.G., 2007. Semi-empirical method for designing excavation support systems based on 

deformation control. University of Kentucky. 

Zhang, F., Sun, C., Li, F., 2016. Hydraulic heave stability and deformation of braced excavation affected by 

confined water in soft soil. Electronic Journal of Geotechnical Engineering 21, 7469–7480. 

Zhang, J., Dias, D., An, L., Li, C., 2022. Applying a novel slime mould algorithm-based artificial neural 

network to predict the settlement of a single footing on a soft soil reinforced by rigid inclusions. 

Mechanics of Advanced Materials and Structures 1–16. 

https://doi.org/https://doi.org/10.1080/15376494.2022.2114048 

Zhang, M., Zhang, Z., Li, Z., Li, P., 2018. Axisymmetric arc sliding method of basal heave stability analysis 

for braced circular excavations. Symmetry 10. https://doi.org/10.3390/sym10050179 

Zhang, R., Wu, C., Goh, A.C., Thomas, B., Zhang, W., 2021. Estimation of diaphragm wall deflections for 

deep braced excavation in anisotropic clays using ensemble learning. Geoscience Frontiers 12, 365–

373. https://doi.org/10.1016/j.gsf.2020.03.003 



226 

 

Zhang, T., Guo, X., Baroth, J., Dias, D., 2021a. Metamodel-based slope reliability analysis—case of spatially 

variable soils considering a rotated anisotropy. Geosciences (Switzerland) 11, 1–24. 

https://doi.org/10.3390/geosciences11110465 

Zhang, T., Guo, X., Dias, D., Sun, Z., 2021b. Dynamic probabilistic analysis of non-homogeneous slopes 

based on a simplified deterministic model. Soil dynamics and earthquake engineering 142. 

https://doi.org/10.1016/j.soildyn.2020.106563 

Zhang, W., 2017. Multivariate Adaptive Regression Splines Approach to Estimate Lateral Wall Deflection 

Profiles Caused by Braced Excavations in Clays. Geotechnical and Geological Engineering. 

https://doi.org/10.1007/s10706-017-0397-3 

Zhang, W., Goh, A.T.C., 2016. General behavior of braced excavation in Bukit Timah Granite residual soils: 

A case study. ISSMGE International Journal of Geoengineering Case Histories 3, 190–202. 

Zhang, W., Goh, A.T.C., Xuan, F., 2015a. A simple prediction model for wall deflection caused by braced 

excavation in clays. Computers and Geotechnics 63, 67–72. 

https://doi.org/10.1016/j.compgeo.2014.09.001 

Zhang, W., Goh, A.T.C., Zhang, Y., 2015b. Probabilistic Assessment of Serviceability Limit State of 

Diaphragm Walls for Braced Excavation in Clays. ASCE-ASME Journal of Risk and Uncertainty in 

Engineering Systems, Part A: Civil Engineering 1, 06015001. 

https://doi.org/10.1061/AJRUA6.0000827. 

Zhang, W., Goh, A.T.C., Zhang, Y., 2015c. Probabilistic Assessment of Serviceability Limit State of 

Diaphragm Walls for Braced Excavation in Clays. ASCE-ASME Journal of Risk and Uncertainty in 

Engineering Systems, Part A: Civil Engineering 1, 06015001. 

https://doi.org/10.1061/AJRUA6.0000827. 

Zhang, W., Wang, W., Zhou, D., Zhang, R., Goh, A., Hou, Z., 2018. Influence of groundwater drawdown on 

excavation responses – A case history in Bukit Timah granitic residual soils. Journal of Rock Mechanics 

and Geotechnical Engineering 10, 856–864. https://doi.org/10.1016/j.jrmge.2018.04.006 

Zhang, W., Zhang, R., Wang, W., Zhang, F., Teck, A., Goh, C., 2019. A Multivariate Adaptive Regression 

Splines model for determining horizontal wall deflection envelope for braced excavations in clays. 

Tunnelling and Underground Space Technology 84, 461–471. 

https://doi.org/10.1016/j.tust.2018.11.046 

Zhang, W., Zhang, Y., Goh, A.T.C., 2017. Multivariate adaptive regression splines for inverse analysis of 

soil and wall properties in braced excavation. Tunnelling and Underground Space Technology 

incorporating Trenchless Technology Research 64, 24–33. https://doi.org/10.1016/j.tust.2017.01.009 

Zhao, G., Yang, Y., Meng, S., 2020. Failure of circular shaft subjected to hydraulic uplift: Field and numerical 

investigation. Journal of Central South University 27, 256–266. https://doi.org/10.1007/s11771-020-

4293-2 

Zhao, H., Liu, W., Guan, H., Fu, C., 2021. Analysis of Diaphragm Wall Deflection Induced by Excavation 

Based on Machine Learning 2021. 

Zhao, W., Du, C., Sun, L., Chen, X., 2019. Field measurements and numerical studies of the behaviour of 

anchored sheet pile walls constructed with excavating and backfilling procedures. Engineering Geology 

259, 105165. 



227 

 

Zhao, W.G., Wang, L., Zhang, Z., 2019. Atom search optimization and its application to solve a 

hydrogeologic parameter estimation problem. Knowledge-Based Systems 163, 283–304. 

https://doi.org/10.1016/j.knosys.2018.08.030 

Zheng, G., Zeng, C., Diao, Y., Xue, X., 2014. Test and numerical research on wall deflections induced by 

pre-excavation dewatering. Computers and Geotechnics 62, 244–256. 

https://doi.org/10.1016/j.compgeo.2014.08.005 

Zhou, S., Guo, X., Zhang, Q., Dias, D., Pan, Q., 2020. Influence of a weak layer on the tunnel face stability 

– Reliability and sensitivity analysis. Computers and Geotechnics 122, 103507. 

https://doi.org/10.1016/j.compgeo.2020.103507 

Zhou, W.H., Mu, Y., Q., H., X., Yang, S., 2018. Reliability-Based Design of Basal Heave Stability for Braced 

Excavation Using Three Different Methods, in: In Proceedings of the 2nd International Symposium on 

Asia Urban GeoEngineering. pp. 273–283. 

Zhu, D., Griffiths, D., Huang, J., Fenton, G., 2017. Probabilistic stability analyses of undrained slopes with 

linearly increasing mean strength. Geotechnique 67, 733–746. https://doi.org/10.1680/jgeot.16.P.223 

 

 


