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Titre : 

Strategies De Charge Rapide De Batteries Lithium-Ion 
Prenant en Compte Un Modele De Veillissement 

Résumé : 

Un modèle décrivant les phénomènes physiques internes de batteries lithium-ion est développé 

pour une détection précise de leur état, avec application au domaine de l'industrie automobile. Pour 

pouvoir utiliser le modèle à des fins de contrôle de charge rapide, un observateur de vieillissement 

est tout d'abord conçu et intégré au modèle de batterie. Dans un second temps, une stratégie de 

contrôle de charge rapide robuste est conçue. Elle est basée sur un contrôleur Crone capable de 

gérer les grandes incertitudes paramétriques du modèle de batterie tout en atteignant l'objectif de 

charge rapide. Enfin, quelques simplifications du modèle de batterie, de la technique d'optimisation 

et de la définition des profils de charge rapide sont proposées et évaluées afin de rendre l'ensemble 

de la stratégie de recharge rapide applicable à un système embarqué de gestion de batterie. 

Mots clés :

Batteries Lithium-ion, Modele de veillissement, Contrôle de charge rapide 

Title : 

Fast Charging Strategies of a Lithium-ion Battery Using 
Aging Model 

Abstract :

A physics-based battery model is developed for an accurate state-detection of batteries in 

the automotive industry. In order to use the model for the purpose of fast charging control an 

aging observer is designed and integrated to the battery model. In a subsequent step a robust fast 

charging control is introduced to design a controller able to deal with large parametric 

uncertainties of the battery model while achieving the fast charging target. Finally some 

simplifications in the battery model structure, in the optimization technique and in the definition 
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of fast charging profiles are proposed and evaluated to make the whole model applicable for an 

onboard battery management system.    

Keywords : 
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Abstract 

The motivation for advancement of electric vehicles and as a result, the battery management 

systems (BMS) has led to dedicate more research to battery modelling. Batteries are known as the 

most expensive component of an electric vehicle. Thus increasing the lifetime of the batteries are 

of great importance for the advancement of electromobility. For this purpose, advanced battery 

management systems have proved to be the best solution for improvement of battery lifetime and 

performance.  

Battery state detection is based on a battery model in the battery management system. In 

this thesis a physics-based battery model is designed which is able to model the behavior of the 

battery in a wide operating range with a reasonable computational complexity. Besides that, an 

aging observer is included in the model to estimate the aging of the battery in terms of capacity 

loss. The battery model is validated using several real-world driving cycles and current profiles 

with RMS error of 0.0147 V in terminal voltage estimation. The model has shown a very good 

accuracy especially in comparison with the state of the art battery modelling approaches, while 

having a comparable computational effort.  

In the following step, a fast charging controller is designed using a robust fractional order 

control strategy. The charging controller adapts the operating limitations based on the estimated 

capacity loss so that the fast charging target will be achieved while minimizing the battery 

degradation. Using the optimal charging profiles generated by a prior trajectory planning the aging 

is reduced up to 15% in comparison to the convenient CCCV (Constant Current Constant Voltage) 

charging protocol. The performance of the controller is examined by applying uncertainties in the 

model parameters and a good tracking accuracy is observed.  

In the last chapter, several possible simplifications are proposed to be considered in the 

model structure, in the optimization algorithm, and in the definition of the fast charging profile 

patterns. Thereby, the model and the fast charging algorithms are adapted to be used for an onboard 

application such as the battery management system of the electric vehicles.   
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Résumé  

Les batteries sont reconnues comme étant les composants les plus onéreux d’un véhicule 

électrique. Ainsi, l’augmentation de la durée de vie des batteries est d’une importance capitale vers 

la démarche d’électrification. Pour atteindre cet objectif, les systèmes de contrôle de batteries 

(Battery Management System – BMS) ont été démontrés comme étant la meilleure solution pour 

exploiter au maximum les capacités de la batterie et ainsi améliorer ses performances tout au long 

de sa vie. L’estimation des états internes de la batterie se base sur un modèle implémenté dans le 

BMS. Dans cette thèse, un modèle inspiré par des principes physiques a été développé : il est 

capable de modéliser le comportement de la batterie dans une large plage de fonctionnement avec 

un temps de calcul et une complexité raisonnable. De plus, un observateur de vieillissement a été 

inclus dans le modèle pour estimer le vieillissement de la batterie en termes de perte de capacité. 

Le modèle de batterie a été validé en utilisant différents cycles de conduite basés sur des mesures 

et profils de courant. Le modèle a montré une très bonne précision par rapport à l’état de l’art actuel 

des modèles de batterie, tout en ayant un temps de calcul comparable.  

Dans un second temps, un régulateur de charge rapide a été développé en utilisant une 

commande robuste d’ordre non-entier. Le régulateur de charge adapte les limites de 

fonctionnement de la batterie en estimant la perte de capacité afin que le temps de charge désiré 

soit atteint avec un vieillissement minimal de la batterie. La performance du régulateur est évaluée 

en appliquant des incertitudes sur les paramètres du modèle et une bonne précision a été observée.   

Dans le dernier chapitre, des simplifications sont proposées au niveau de la structure du modèle, 

de l’algorithme d’optimisation et de la génération de profils de courant de charge rapide. Ainsi, le 

modèle et l’algorithme de charge rapide sont adaptés pour être implémentés sur des systèmes 

embarqués à l’image du BMS. 
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1.1 Electromobility emersion and evolution 

The desire to reduce the greenhouse gas emission and the pollution caused by fossil fuels 

such as gasoline and diesel in the recent years has led into looking for more environmentally 

friendly and sustainable alternatives. Among the currently available renewable energy sources, 

chemical storage systems are highly reliable. The most important feature makes them more widely 

used, is providing the portable power to many applications. Chemical storage is the most popular 

mean of using renewable energy storage systems. The batteries, which are studied in this work, are 

the kind of electrochemical systems that convert the electrochemical energy into electricity as a 

result of certain chemical reactions. Due to the high energy and power density and excellent 

performance of Lithium ion batteries, they are widely used as a portable power source in many 

applications such as laptop computers, load-leveling systems in homes and electric vehicle that is 

studied in this work. 

Figure 1-1 represents the step-by-step evolution of electrification in the automotive industry 

over time. The introduction of electrification begins with development of micro-hybrid vehicles 

with start/stop systems at standstill and low speed, and coasting at higher speeds or including 

braking energy recovery systems. Increase of electrification level was followed by emersion of 

mild-hybrid electric vehicles initially equipped with electric motor assist systems and boost 

recuperation modules. Next level of electrification was achieved by production of full-hybrid and 

plug-in hybrid electric vehicles incorporating pure electric drives, but still in presence of an internal 

combustion engine. Finally, the ultimate level of electrification was introduction of battery electric 

vehicles simply referred as electric vehicles, where internal combustion engines are replaced by a 

high voltage (HV) battery and electric drives.   

For the development of future powertrain systems, the main market driver is CO2-reduction. 

As shown on the diagram in figure 1-1, the best alternative to achieve this target is using the pure 

electric vehicles. However, higher levels of electrification lead to increase of respective 

manufacturing costs. Among the electric vehicle components, usually the battery is the most 

expensive component. Hence, the performance, cost and durability of the energy storage are critical 

for the overall feasibility, commercialization and mass production of electric vehicles.  
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Figure 1-1 Evolution of electromobility [1] 

Nowadays, high voltage Li-ion batteries are commonly used in the automotive industry 

whether in Electric Vehicles (EV), Hybrid Electric Vehicles (HEV), or Plug-in Hybrid Electric 

Vehicles (PHEV). For the efficient use of batteries in such applications, it is crucial to understand 

the characteristics of the Lithium ion batteries. Generally, those characteristics are related to the 

underlying electrochemical reactions, migration and diffusion of chemical species during charging 

and discharging inside the batteries, which is briefly explained in next section. 

1.2 Principles of Lithium ion battery 

Li-ion batteries are nowadays considered as the best candidates to promote 

commercialization of electric vehicles thanks to their good power and energy characteristics. A 

schematic view of the most commonly used Li-ion batteries is depicted in     Figure 1-2. The main 

working principle of Li-ion batteries is as follows. During the charging process the positive 

electrode (Cathode) releases the Li ions to the negative electrode (Anode) referred as intercalation 

or insertion reaction (1-1). The discharge process negative electrode supplies the positive electrode 

with Li ions known as de-intercalation or extraction reaction (1-2).  
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    Figure 1-2 Schematic diagram of a Li-ion battery and main reactions [2] 

 

There exists a diverse range of Li-ion batteries depending on the technology and the 

material used for anode, cathode, electrolyte, and separator. Most Li-ion batteries use carbon 

materials such as graphite and hard carbon as the anode active material. Some metal oxides, such 

as Lithium Titanate (Li4Ti5O12) and Niobium Pentoxide (Nb2O5), can also be used as an anode 

active material. These anode active materials also referred as intercalating material, accept Li ions 

when charged and release them during discharge. The reaction potentials for these materials are 

much lower than that of standard hydrogen electrodes. Therefore, the electrolyte should be stable 

even at these lower potentials. This is the reason why organic electrolytes that consist of organic 

solvents and lithium salts are used for Li-ion batteries rather than aqueous electrolytes. The cathode 

active materials should contain elemental Lithium in the composition to provide a Li-ion source 

for cell reactions with the conventional anode active materials. Lithium cobaltate (LiCoO2) was 

used as the cathode active material during the first stage of Li-ion battery commercialization. A 

similar compound, LiNiO2, had also been studied intensively. However, it was not used because of 

its thermal instability. Substituted derivatives of this compound, formulated as LiMxNi1-xO2 (M: 

                Anode:                                𝑳𝒊𝒙𝑪 → 𝑪 + 𝒙𝑳𝒊+ +  𝒙𝒆− (1-1) 

 Cathode:                            𝑳𝒊𝟏−𝒙𝑴𝑶𝟐 + 𝒙𝑳𝒊
+ + 𝒙𝒆− → 𝑳𝒊𝑴𝑶𝟐 (1-2) 

                Overall reaction:             𝑳𝒊𝒙𝑪 + 𝑳𝒊𝟏−𝒙𝑴𝑶𝟐 → 𝑳𝒊𝑴𝑶𝟐 + 𝑪 (1-3) 
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metal element other than nickel such as Co, Mn, Al, Mg), were developed instead and used in 

several applications [3]. 

Li-ion batteries have high single-cell voltages of approximately 3-4.3 V, which is due to 

the lower potentials of the anode active materials. The high specific energy of Li-ion cell is a result 

of its high cell voltage, because specific energy is the product of the cell voltage and the specific 

capacity, where 3–4.3 V is an extraordinarily high cell voltage for secondary batteries. The specific 

energies for Li-ion batteries are 1.5 times as large as that for Ni-MH batteries, of which the single-

cell voltage is only 1.2 V, despite having specific capacities greater than those of Li-ion batteries 

[4]. 

In this study, a prismatic Li-ion cell with 28 Ah nominal capacity manufactured by Samsung 

SDI (SDI stands for Samsung with the initial letter S, 'Display' and 'Digital' with D and 'Interface' 

and 'Internet Component' with I), referred as SDI 28 Ah cells. This cell has been used in production 

of the plug-in Porsche Cayenne S E-Hybrid cars. It has energy capacity of 10.8 kWh, which enables 

an all-electric driving range of 18 to 36 km, depending on the driving style and route topography. 

It can be fully charged from a normal household power socket in less than four hours. By using a 

high current power supply, the charging time is almost halved to two hours [5]. The cell anode is 

made of Graphite and the material of the cathode is a 1:1:1 composition of Nickel, Manganese, and 

Cobalt (referred as NMC). The cell electrolyte is mainly composed of ethylene carbonate (EC), 

dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) (simply can be referred as 

EC/DMC/EMC electrolyte) with 1:1:1 ratio.  

1.3 Challenges in the field of electromobility, battery management 
system, a promising solution                                                                                                                                                                                                                                                                                                                  

As discussed in section 1.1, one of the barriers to commercialization of electrified vehicles 

is high investment and manufacturing costs. Various solutions exist to reduce the costs such as 

standardization of cell and pack production, employing new business strategies, and utilizing 

advanced technologies such as high-energy materials for production of electrodes. But among all 

the alternatives, incorporating a Battery Management System (BMS) in the battery pack, is 

identified as the most promising and viable solution [6–8]. 

  



6 

 

Battery management involves implementing functions to monitor the state of the battery 

and taking predictive measures to optimize the system performance. BMS, is a protective device 

built into the battery packs that can ensure optimum use and safe operation of the batteries.  

To maintain safe operation and preventing the misuse of the batteries, BMS sets limitations 

on the peak voltage and minimum voltage of each cell during charging and discharging. The BMS 

also controls the maximum charging and discharging currents and monitors the cell temperature to 

avoid hazardous reactions such as thermal runaway [9]. 

Another obstacle for further commercialization of Li-ion batteries is their lifetime. In order 

to improve the battery longevity, the operation methods of batteries should be optimized. The 

operation during discharge depends mainly on the demand of the user, while the charging method 

can be optimized by the manufacturer to minimize the battery degradation and the charging time. 

Therefore, one of the important tasks of BMS is control of charging and discharging of the batteries. 

During charging, the BMS prevents overcharging of the cells. During discharge it monitors the 

level of discharge and by tracking the State of Charge (SOC), it interrupts the discharge current 

when the battery is empty and signals the value to the user of the portable device. A schematic 

diagram of a battery pack is shown in Figure 1-3 including main components such as BMS, cell, 

etc.  

 

Figure 1-3 Schematic diagram of a PHEV pack manusfactured by A123 Sysems  

BMS preforms the mentioned tasks by monitoring SOC, the remaining usable capacity or 

in other words State of Health (SOH), the internal cell temperature and by controlling the battery 
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charging current. State prediction can only be achieved based on analysis of an advanced battery 

model that is able to show the battery behavior with its physical and electrochemical properties, 

and can accurately capture the battery dynamics  

Significant number of studies have been devoted for further advancement of battery 

modelling and state detection to design more accurate and less conservative battery management 

systems. For example, one of the main motivations to have a more accurate and reliable BMS, is 

to extend the usable capacity of the cell (i.e. utilizing greater SOC range) by setting dynamic 

voltage limits rather than constant voltage limits used by conventional BMS units. Extending the 

usable capacity permits to increase the limited driving range of the electrified vehicles, which is a 

major disadvantage comparing to convenient cars with combustion engines. This goal can be 

achieved by a precise aging estimation, temperature and power prediction and physics based battery 

resistance model.    

There are some challenges associated with the modeling of batteries. Batteries are not 

stationary and their dynamical behavior depends on many parameters like temperature, SOC, etc. 

Besides that, in general the electrochemical storage systems and so batteries, are highly nonlinear 

[10]. Most of the battery parameters cannot be measured but should be estimated by designing a 

proper state observer. Thus, it is necessary to devote more resources on development of advanced 

battery models and battery management systems.  

1.4 Overview of the dissertation 

In this dissertation, chapter 2 is devoted to an overview of various battery modelling 

approaches. The fractional battery model is chosen as the best candidate for modeling of the PHEV 

cell under investigation. Subsequently implementation, calibration and finally validation of the 

fractional model is explained in details.  

Chapter 3 proposes a precise model for estimation of Open Circuit Voltage (OCV), which 

is the main contributor to the cell terminal voltage. The method is afterwards extended to consider 

aging effects and their impact on the OCV curves, followed by some validation results.  

In chapter 4, firstly the degradation mechanisms of batteries are comprehensively 

investigated. In the following sections, the aging mechanisms of the case study are identified by 

interpreting the results of some aging measurements. Afterwards, mathematical techniques are 

introduced to simulate the aging of the cells with high accuracy and reasonable computational 
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effort. A thermal model is also implemented and calibrated to be coupled to the aging model and 

to consider the temperature effect on degradation. Validation tests have been carried out to verify 

the accuracy of the coupled electro-thermal aging model.    

Chapter 5 summarizes different open-loop and closed-loop strategies to optimize the 

operation of batteries during fast charging. Afterwards, a closed-loop method is proposed which 

permits to minimize the aging effects during fast charging of batteries in presence of large 

parametric uncertainties. The method is explained in details in subsequent sections. As a first step, 

offline trajectory planning is performed to collect optimal charging profiles, then using a numerical 

linearization technique the battery model is linearized. In the next step, the linearized model is used 

to identify the operating points of the system. By observing a large uncertainty in the phase and 

magnitude of the linearized model of the original nonlinear battery model, a robust control 

methodology is introduced and used to design a fractional-order controller for achieving the 

intelligent charging targets. Finally, the performance of the controller is analyzed by applying some 

uncertainties to the parameters of the model.   

Chapter 6 is dedicated to improve the simulation time of the model-based charging profile 

optimization (introduced in chapter 5) in order to make it appropriate for an onboard application. 

Possible simplifications are proposed in subsequent sections regarding the definition of fast 

charging profiles, the structure of the battery model and finally the optimization scheme. Validity 

of each proposal is verified by showing some simulation results.  
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2.1 Introduction 

Previous chapter has shown the interest of battery models for the design of battery 

management systems. After a comparison of battery models proposed in the literature, this 

chapter focuses on fractional order model: 

- how it is obtained 

- how it can be implemented 

- how it can be calibrated 

In the final sections of this chapter, several validation results will verify the accuracy of 

the implemented fractional battery model. 

2.2 Different battery modelling approaches 

The battery model simulates the behavior of the system in response to different operating 

conditions. It should be able to represent the underlying electrochemical phenomena with 

optimized number of parameters and reasonable computational effort. The two main classes of 

models proposed in the literature for lithium-ion batteries modelling [11] are: 

- equivalent circuit models; 

- electrochemical models. 

Equivalent circuit models (ECM) include large class of  battery models in the literature such as 

enhanced equivalent circuit models including Kalman filter proposed by Plett [12] or purely 

impedance-based models developed by Buller et al. [13]. ECM describes the underlying 

phenomena in the batteries by employing usually a combination of capacitors, resistors, voltage 

sources, and lookup tables. Capacity fade is often represented by a capacitor with a decreasing 

capacity, while temperature dependence is modeled by a resistor-capacitor combination. Current 

research in this area includes adopting the circuit based models by continuously updating the 

parameters using the data obtained from current and voltage measurement. Such models can be 

simulated very quickly but are not accurate outside of the operating conditions for which they were 

developed or as the battery degrades. The parameters also lack any physical meaning, limiting the 

physical insight that can be gained from these models. Another disadvantage associated with ECM 

is its limited prediction capability compared to physics-based electrochemical models. These 

models usually neglect mass-transfer limitations due to solid-phase diffusion, resulting in 
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prediction errors when used over a wide operating region. Despite these limitations, ECMs are 

popular in development of BMS software because of the very low computational requirements of 

simulation. [14] 

Electrochemical models are promising candidates for development of advanced battery 

management systems. They provide the possibility to interpret the model response based on real 

physical parameters. Physical models for battery state detection was firstly introduced by John 

Newman [15]. This model is based on well-proven electrochemical and thermodynamic concepts, 

and describes the mechanisms that take place in the battery during operation. Two main classes of 

electrochemical model are found in the literature summarized as follows:  

Pseudo-two-dimensional models (P2D): The P2D models include diffusion in the solid-phases and 

electrolyte as well as cell kinetics governed by Butler-Volmer equation with in-depth details. It has 

two independent spatial variables: x dimension, to track the variables across the thickness of the 

cell, and r dimension to track the lithium concentration radially in the solid electrode particles. 

Having multiple spatial variables increases the number of equations to be solved and leads to a 

very high computational effort. Thus by having numerous coupled nonlinear partial differential 

equations (PDEs), simulation time may take from seconds to minutes. An extensive review on P2D  

electrochemical model is done by Jokar et al. [16]  

Single Particle Model (SPM): The SPM includes the effects of transport phenomena in a simple 

way, thereby making electrochemical models realizable for on-board applications. In this model, a 

detailed distribution of local concentration and potential in solution phase are ignored to increase 

computational run time without compromising accuracy. The SPM is simple and fast in the 

simulation. The only bottleneck is its limited application only for cells with thin electrodes (mainly 

high power cells used for HEV and PHEV application) and high C-rates usually greater than 5 C 

(C-rate: charging or discharging current normalized against the cell capacity). A simple schematic 

of the model is presented in Figure 2-1. 

 The efficiency of the single particle fractional models for modelling and state of charge 

estimation was highlighted in several studies [17–21]. SPM should be simplified without 

sacrificing its accuracy to implement a model appropriate for real-time applications. Several 

techniques have been developed to approximate the partial differential equations representing an 

electrochemical model by ordinary differential equations.  
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Figure 2-1 Single particle model (on the right) based on spatial discretization of a fully 

electrochemical model along x-axis (on the left). Having only one particle for each electrode, we 

can consider the value at each node to be an averaged quantity over the electrode [22].  

 

Single particle model developed by Chaturvedi et al. [22] involves numerical techniques to 

discretize the spatial domain to yield a system of Differential Algebraic Equations (DAE). The 

main assumption is regarding volume-averaged quantities for the states, e.g. average concentration 

through that electrode. This assumption may not be valid for other types of cell chemistry such as 

EV cells with thick electrodes or batteries used for high power applications such as power tools 

where the average surface concentration in the solid phase does not match the concentration along 

x axis. In this work, Model Order Reduction (MOR) is used to further simplify the model structure 

but it leads to generate coefficients for the model, difficult to physically interpret.  

Another interesting study in this field is done by Gu and Wang [23]. They designed a thermal-

electrochemical coupled model of a lithium ion cell used in electric vehicles within a 

Computational Fluid Dynamics (CFD) framework. Their 2D electrochemical model considers 

ohmic and reaction heat generation effects. The ion concentration profile within the spherical 

particle is resembled to a parabolic profile. This kind of profile can describe the concentration 

gradient under steady state conditions with a good accuracy but unable to simulate the transient 

behavior. Thus its application is limited to the cells with sluggish electrochemical reactions. To 
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address the limitations of Wang’s study, Smith [15] found a 5th order transfer function using Finite 

Element Method (FEM) for solid state diffusion and incorporated the transient solid state Li 

diffusion sub-model into the previously developed CFD model of Gu and Wang [23]. The problem 

with such an approach using FEM, is the way to obtain finite element node sizes. They are usually 

obtained by trial and error and may not be optimal at long times or different operating condition.  

The factional order electrochemical model of Sabatier et al. [20, 21] is built upon the CFD 

model originally proposed by Smith by including transient and steady state diffusion effects. The 

novelty of this model is suggesting several simplifying hypotheses and introduction of a fractional 

model as an approximation for the analytical solution of the diffusion equation involving only two 

tuning variables. The frequency domain approximation used for this model is based on fractional 

calculus, which is a branch of mathematics, specifically applicable to model the diffusion 

phenomena in highly complex systems such as ultra-capacitors, fuel cells, and batteries.  

  However the developed model by Sabatier et al. [20, 21] does not take into account neither 

aging nor cell thermal behaviour.  These limitations have been addressed in this work that provides 

an electrochemical model, 

- with a reduced number of parameters due to fractional parts to take into account diffusion 

phenomenon, 

- accurate even thermal and state of heath variations. 

This topic is discussed in details in chapter 4. Moreover and in relation to the other existing 

models in the literature, the proposed physically-based battery model describes the dependency of 

degradation mechanisms to SOC, temperature and C-rate. This feature provides a very good 

agreement of the model to the experiments. 

 Considering the requirements and characteristics of the cell under investigation (PHEV cell) 

and based on the mentioned features of the fractional electrochemical model [20, 21], this class of 

battery modelling is employed in this study. As a summary, comparison of main classes of battery 

modelling approaches used for application of vehicular BMS is shown on Figure 2-2. ECM 

provides the least demanding method to model the cell behavior with the minimum accuracy, while 

fully electrochemical P2D model offers a detailed behavior of the cell with high computational 

effort. It can be concluded from the literature review presented in this section and also on the 

diagram, that the single particle model is a good compromise between accuracy and complexity.   
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Figure 2-2 Different types of battery models used in battery management systems (Single particle 

and Pseudo-two dimensional models from [24]) 

2.3 Fractional battery model  

Fractional battery modeling is based on the solution of Fick’s first law of diffusion and by 

employing several simplifying hypotheses [20, 21] in relation to Smith’s model  [15]. According 

to Fick’s law and if a cell electrode is viewed as a single spherical particle [25] (see Figure 2-3), 

lithium ions concentration gradient in the particle is described by the following relations:  
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Figure 2-3 Concentration gradient through the sphere, representing the single particle model 
 

In relation (2-1), Ds is the diffusion coefficient, r is the radius of the sphere, and 𝐽mean
Li is the 

average current density. Analytical solution of such a differential equation is the following transfer 

function: 

 
𝐺(𝑠) =

𝐶𝑠|𝑟=𝑅𝑠
𝐽meanLi (𝑠)

= −
𝑅S

𝐹𝐷s𝑎𝑠(√
𝑠
𝐷s
coth (√

𝑠
𝐷s
𝑅S) − 1)

. 
(2-2) 

An analysis of the Bode diagram of G(s) has been proved that a simplified transfer function 

H(s), defined by (2-3), can approximate the dynamics of the battery in the best way with only two 

parameters simplifying the original transfer function:  

 

 

 

𝐻(𝑠) =
𝐾1
𝑠
(1 +

𝑠

𝜔cs
)
0.5

. 
(2-3) 

 

Figure 2-4 Comparison of G(s) and its approximation H(s). 
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There exists other possibilities to do a frequency-domain approximation such as using Pade 

approximation used by Prasad and Rahn [26].The disadvantage of employing Padé approximation 

is that it generates too many coefficients for the approximated transfer function without a physical 

meaning that cannot be easily interpreted. As explained in [20], gain K1 is the coefficient of the 

lowest degree term of Taylor expansion of (2-3). Corner frequency 𝜔cs is a function of diffusion 

coefficient and is obtained by a limit study to (2-2) at high frequencies.   

  For an easier initialization of the system and also to make the variable SOC appear, the 

model structure is improved comparing to [20, 27]. Thereby H(s) is split into two sub-functions 

representing respectively the average concentration Havg(s) (correlates to the steady-state ion 

concentration from the center to the surface of the particle) and partial gradient of ion concentration 

on the particle surface Hpart(s) (associated with the ion concentration gradient under dynamic 

conditions):  

 𝐻(𝑠) = 𝐻avg(𝑠) + 𝐻part(𝑠) 

 

(2-4) 

with 
𝐻avg(𝑠) =

𝐶s,avg

𝑗meanLi
=
K1
s

 
(2-5) 

and 
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𝑠
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)
0.5

− 1). 
(2-6) 

In order to implement the battery model in the battery control unit, a discrete form of H(s) 

is required. This discrete form is obtained in three stages according to the method proposed by 

Oustaloup et al. [28]: 

- approximation of the fractional transfer function Hpart(s) using the Oustaloup recursive 

algorithm 
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(2-7) 

- first order elements expansion of the approximation which can then be easily implemented 

in state-space environment 
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(2-8) 

- discrete-time approximation of 𝐻app2(𝑠) using forward Euler approach 𝑠 ≈
1−𝑧−1

𝑇𝑠
 . 

By increasing the number of zeros and poles in (2-7) and by using other algorithms 

[29], higher accuracy can be achieved. Figure 2-5 shows that by choosing 𝑁 = 7, a good fit 

between the approximated integer-order function and fractional order is obtained on a wide 

frequency band. 

 

Figure 2-5 Comparison of fractional transfer function and its approximations in a frequency 

domain compatible with the BMS sampling frequency. 

Figure 2-6 shows the fractional transfer function for one electrode defined by (2-3) that has 

been implemented in Matlab/Simulink. The fractional battery model consists of two sub-models, 

for each electrode. Thus the same structure but with different set of parameters has been used for 

both anode and cathode to calculate the terminal voltage out of electrode potentials. 

 

Figure 2-6 Block diagram implementation of the electrical fractional model 
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As shown in Figure 2-6, the electrode potential is composed of two parts, one from open 

circuit potential under equilibrium conditions and the other from charge transfer kinetics governed 

by Butler-Volmer equation, characterized by Rct resistance. In order to compute the overpotential 

caused by charge transfer kinetics denoted by ηcharge transfer, the following relation is used which is 

indeed the inverse of Butler-Volmer equation (i is replaced by charge transfer in ηcharge transfer to 

distinguish between anode (n) and cathode (p)):  

 
𝜂𝑖 =

𝑅𝑇

𝛼𝑖𝐹
𝑠𝑖𝑛ℎ−1 (

𝐽𝑖

2𝑎𝑠
𝑖 𝑖0𝑖
)              𝑖 ∈ {𝑛, 𝑝} 

(2-9) 

In this relation, R is the universal gas constant 8.314 (J.mol-1.K-1), F is the Faraday constant 

96485 s.A.mol-1, and T stands for temperature. αi is charge transfer coefficient, Ji (A.m-2) denotes 

the current density, 𝑎𝑠
𝑖  is the specific area and i0i (A.m-2) presents the exchange current density 

respectively for each of the electrodes.  

2.3.1 Model calibration 

At this step, the proposed electrode model in Figure 2-6, should be parametrized. The 

datasheet of the studied cell, Samsung 28 Ah cells contains only some electrical limit values for its 

safe operation. The relevant data to our study from the datasheets are given below:  

Parameter Value (unit) 

Nominal capacity 28 (Ah) 

Nominal voltage 3.75 (V) 

Charging cut-off voltage  4.3 ± 0.03 (V) 

Discharge cut-off voltage 2.75 (V) 

Cell weight  758.4 (g) 

Cell dimension Height: 65.00 (mm)  

Diameter: 8.40 (mm)  

Operating temperature Charge : 0 to 45℃  

Discharge: -20 to 60℃ 

 

Table 2-1 Prismatic Samsung SDI 28 cell specifications from manufacturer 



20 

 

Thus for full characterization of the model, combination of the following methods have 

been used to acquire the necessary electrochemical data: 

- data from Comsol simulation 

- data from measurement and literature 

- parameter fitting.  

Some physical parameters are based on the results obtained from a P2D model of Newman [15, 

30] developed in Comsol Multiphysics at Bosch Research and Technology Center in North 

America. The rest of electrochemical parameters are acquired from the measurements performed 

by Institut für Stromrichtertechnik und elektrische Antriebe (ISEA – Institute for current converter 

technology and electrical drives) at the RWTH Aachen University [31].  

For example for porosity and particle radius measurement, mercury porosimetry was carried 

out using two measurement devices with different pressure ranges. The data of the two devices 

were merged using the SOLID software to obtain respective porosity of each electrode and the 

separator. Consequently using Mayer and Stowe approach particle radius for each electrode is 

computed [32].   

For precise calculation of solid diffusion coefficient, GITT (Galvanostatic Intermittent 

Titration Technique) method is employed. Anode and cathode coin cells are made and used for this 

purpose. The test is carried out at room temperature.  In a GITT measurement, the cell is excited 

with a current pulse (here 150 s at C/20) from the equilibrium state. By applying the GITT current, 

an increasing voltage deviation is observed in addition to the pure ohmic voltage drop. This is 

attributed to the formation of a concentration gradient in the active material. Thereby this feature 

is used for calculation of diffusion coefficient. [33]  

In order to characterize the transport and kinetic properties of the cell, firstly an impedance 

spectroscopy test was performed on half-cell level to measure the impedance of each electrode. By 

measuring the impedance in medium frequency range, Rct of each electrode is obtained. 

Subsequently, by having the values of electrodes charge transfer resistance, exchange current 

density is computed by fitting the data to Butler-Volmer relation. A list of the resulting data from 

Comsol simulation as well as the mentioned experiments can be found in Table 2-2.  
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Parameter  Anode Separator Cathode 

Design specification and geometric data 

Active material 

Thickness 

Particle radius 

Porosity (%) 

Specific interfacial area 

 

Graphite 

46.6 (𝜇𝑚) 

6.3 (𝜇𝑚) 

29.2 % 

 

 

18.7 (𝜇𝑚) 

 

39.49 % 

 

NMC 

43.0 (𝜇𝑚) 

2.13 (𝜇𝑚) 

20.9 % 

Solid and Electrolyte phase concentration 

Maximum solid phase concentration 

Stoichiometry at 0% SOC (1) 

Stoichiometry at 100% SOC (2) 

 

31390 (mol.m-3) 
0.18365 

0.9152 

  

48390 (mol.m-3) 
0.9174 

0.40299 

Kinetic and transport properties 

Diffusion coefficient 

Charge transfer exchange current density 

Charge transfer coefficients 

Li+ transference number  

 

3.1623 × 10−14 (m2.s-1) 

36 (A.m-2) 

0.5 

0.26 

 

 

 

0.26 

 

1.4125 × 10−15 (m2.s-1) 

26 (A.m-2) 

0.5 

0.26 

High frequency resistance (Begin of Life) 0.6 (mΩ) 

Specific heat capacity  0.7 (J.g-1.K-1) 

Heat transfer coefficient  10 (W.m-2.K-1) 

Table 2-2 Electrochemical model parameters for Samsung SDI 28 Ah PHEV cells ((1) and (2): 

the method used to obtain electrode stoichiometries are explained in details in chapter 3) 

Another important necessary data concerns the electrode Open Circuit Potential (OCP)  and the 

cell Open Circuit Voltage (OCV) measurements which are discussed in details in chapter 3. 

Moreover for a cell at its Begin of Life (BOL), half-cell open circuit potential measurement is 

performed. The resulting OCP curves of Samsung SDI cells are given in Figure 2-7.  

 

Figure 2-7 OCP curves of Anode (left) and Cathode (right) against the respective lithiation 

degree 
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For the rest of parameters, whether for the unmeasurable parameters or in case of observing 

deviations due to inaccurate measurements, optimization and fitting of the model is conducted. The 

parameter identification has been performed by nonlinear least squares (curve fitting) method. 

Therefore, the terminal voltage simulated by the model has been fitted to the measurement under 

applying dynamic driving cycle current profile. The following relation shows the objective function 

for the fitting process:  

 

𝑆𝑆𝐸 = ∑ (𝑈meas − 𝑈sim)
2.

𝑛meas

𝑘=1

 

(2-10) 

The optimization function minimizes the sum of squared errors obtained from deviation of 

simulated voltage from the measured one over the whole measurement data. 

2.3.2 Model validation 

The fractional model presented in the previous section and the associated calibration 

method are validated using a real-world driving cycle. Extended Artemis driving cycle used for 

model validation is designed at Bosch which is very similar to well-known Artemis drive cycle 

[34], but with some adaptations to the cell performance and its application for PHEVs as shown by 

Figure 2-8. It covers various driving manoeuvres such as driving with rather constant speed at the 

highways or driving uphill or downhill recuperation in different areas including urban and rural 

roads as well as motorways. According to the cell operating limits provided by the manufacturer 

(see Table 2-1), some adaptations are taken into account in the design of the driving scheme. For 

instance short fast charging regimes are also incorporated into the original Artemis driving profile 

with maxim current of 3 C, applied for approximately 5 minutes as well as relaxation phases (point 

(I) on current diagram in Figure 2-8). Moreover maximum discharging current is applied for 10 

seconds (point II on the current diagram in Figure 2-8). These modifications to the original Artemis 

driving cycle permit to capture all different driving dynamics.  

Extended Artemis driving cycle is applied to the fractional battery model and the simulated 

terminal voltage of the model is compared with the measurements on the first diagram in Figure 

2-8. The second diagram represents the voltage deviation between the measurements and the 

simulation. There is a good agreement between the simulation and measurement with the average 

absolute error below 0.1 V and the maximum error of 0.4 V. The peak error takes place at the 

deepest discharge level where the maximum discharging current at point (II) is applied.  
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Figure 2-8 Validation results of applying extended Artemis drive cycle to the fractional model 

In another validation test the fractional model accuracy is compared to the state-of-the-art 

battery modelling approach of ECM. The ECM used for validation consists of an order 7 RC 

(Resistor-Capacitor) circuit and a voltage source representing OCV of the cell, so that the model 

structure could be compared to the similar fractional model converted to seven first-order elements.  

It can be concluded from the diagrams of Figure 2-9, that the simulated voltage by both of 

the models are in a good accordance, while the voltage estimation error using fractional model has 

greatly reduced comparing to the ECM model. This analysis proves the superiority of the fractional 

battery model over ECM in estimation of battery voltage with less computational effort only having 

two adjustable parameters with physical meaning (K1: gain correlated to cell capacity and ωcs: 

corner frequency correlated to diffusion) comparing to ECM with at least 14 resistors and 

capacitors to be parameterized without any physical background.  
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Figure 2-9 Voltage simulation and respective absolute estimation error for fractional battery 

model and order 7 ECM. 

2.4 Conclusion and future work 

In this chapter an overview of various battery modelling approaches is presented. 

Advantages and disadvantages associated with each approach and their application are discussed 

in section 2.2. The cell used as our case study is a high power Samsung SDI 28 Ah cell for PHEV 

application. According to the cell specifications and application, a single particle model is chosen 

for simulation of the battery behaviour in this work. In section 2.3 the concept of incorporating 

fractional calculus in development of single particle model is introduced. The model is calibrated 

based on the data acquired from Comsol, experiments and manufacturer datasheets. Subsequently 

the model accuracy is verified by means of a real world driving cycle. It shows promising results 

and the error lies in an acceptable range for BMS applications. This is why this kind of model is 

adopted in the next chapters of this manuscript. 

For future work, one would expand the concept of fractional battery model for high energy 

cells with thicker electrodes where the assumptions of a quasi-constant concentration along x-axis 

on Figure 2-1 is no more valid. Thus a volume averaged concentration cannot be considered for 

thick electrodes of EV cell [22]. Also if this model is going to be used for different cell chemistries, 

more adaptations are required. For example in case of cells with Si-based anodes, influence of 

hysteresis in the charge and discharge OCV curve needs to be taken into account [35]. A detailed 
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discussion on the OCV/OCP calculation which has the highest contribution to voltage estimation 

is demonstrated in chapter 3. The model explained in this chapter was considered at its Begin of 

Life (BOL). Thus the influence of aging leading to capacity loss will be discussed in chapter 4 in 

details, where a thermal and aging model are coupled to the fractional model to fully characterize 

a comprehensive model enabling accurate state detection over the entire life time of the battery.  
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3.1 Introduction 

State of Charge (SOC) similar as a fuel gauge for the batteries, is an important indicator for 

reliable operation of the batteries. Accurate information from the available cell capacity can 

prolong the lifetime of the cell by taking appropriate measures during the operation. In contrast to 

a fuel gauge, SOC cannot be measured, but should be estimated.  There are different methods for 

SOC estimation in the literature which can be classified into direct and indirect approaches. The 

direct measurements include Coulomb counting, which is indeed current integration that is a 

suitable way of online SOC estimation, but the bottleneck of this approach is its open-loop nature 

that might generate an accumulated estimation error originating from the error in current 

measurements. The other direct method which is the focus in this chapter is the direct OCV curve 

inversion method.  In this method, the voltage is measured continuously and the corresponding 

SOC is obtained whether from a lookup table or from a function. This method is a good candidate 

for SOC estimation for onboard applications. Other indirect methods can be also employed such 

as Extended Kalman Filtering (EKF), which is a very reliable method based on an advanced battery 

model but with high computational effort. [36] 

Thus the need for accurate capacity estimation (permissible BMS error for our case study<

3.5%) leads to find an appropriate OCV adaptation strategy, since both are strongly interconnected. 

This chapter describes the development of a function-based method for describing the Open Circuit 

Voltage (OCV) of a cell, measured under equilibrium conditions to be used for direct estimation 

of the available capacity and respectively SOC. The developed method is later on expanded to the 

aged cells, by taking into account the influence of aging on the variation of respective OCV curves. 

Alteration of OCV curves by aging is discussed in details in in the study by Schmidt et al. [37]  

This influences the performance of OCV-based estimation of SOC and consequently performance 

and lifetime of the battery.  

Aging correction of OCV curves is investigated by Cheng et al. [38] where a purely 

mathematical approach is used to track the changes in the OCV curves caused by aging. Despite 

the good results and its computational efficiency, this method does not consider the physical 

phenomena such as Li intercalation mechanism. Physics-based methods facilitate analysis and 

interpretation of route-causes for OCV curve variation and consequently more accurate SOC and 

SOH estimation algorithms. Some works have been focused on this topic such as the study by 
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Honkura et al. [39]. In this work, they have employed differential voltage analysis method to 

reproduce the half-cell OCP curves and the full cell OCV curves after degradation. In another paper 

by Dubarry et al. [40], an incremental capacity analysis is applied to identify various contributions 

to capacity loss, whereas the open circuit voltage measurements is used to trace the state of charge 

as the cell degrades in order to accurately correlate the capacity degradation with SOC. The 

disadvantage of the approaches being introduced in these papers is high computational effort 

required to model the OCV curves by large number of parameters. Therefore the aim of this study 

is to explore a strategy to model the OCV curves by a physics-based model involving reduced 

number of parameters for BMS application.  The solution later on discussed is using a polynomial 

description of the two electrodes Open Circuit Potential (OCP) and analysis of the impact of aging 

on this description. The analysis is based on the following hypothesis: 

Hypothesis (I): It is supposed that the two electrodes OCP are invariant with age, and that only the 

extreme values of stoichiometry change.   

This hypothesis is derived from Redlich-Kister equation comprehensively discussed in 

[41], that is the relation used for describing the OCP of electrodes as a function of ion concentration. 

Under constant temperatures the coefficients of Redlich-Kister equation (relation (3-5) explained 

in next section) remain constant and they are regarded as intrinsic characteristics of the electrodes.  

3.2 Function-based model for electrode potential  

The electrode stoichiometry is defined as the ratio of inserted lithium quantities (Qi,t) over 

the theoretical maximum quantity of Li ions that can be inserted (Qi,max):  

 
𝑥𝑖(𝑡) =

𝑄𝑖(𝑡)

𝑄𝑖,𝑚𝑎𝑥(𝑡)
       𝑖 ∈ {𝑛, 𝑝} 

(3-1) 

with:  

 𝑄𝑖,𝑚𝑎𝑥 = 𝜖𝑠,𝑖 𝛿𝑖  𝐴𝑖𝑐𝑠,𝑖,𝑚𝑎𝑥. (3-2) 

 

where εs,i denotes the electrode porosity, cs,i,max is the maximum lithium concentration, A represents 

the electrode surface and δi is the electrode thickness.  

Modified Nernst equation is used to describe the OCP of positive (p) and negative (n) 

electrodes [41]:  
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 𝑈𝑖(𝑥𝑖 , 𝑇) =  𝑉𝑁𝑒𝑟𝑛𝑠𝑡(𝑥𝑖, 𝑇) + 𝑉𝐼𝑁𝑇(𝑥𝑖)      𝑖 ∈    {𝑛, 𝑝 } (3-3) 

 

with:  

 
𝑉𝑁𝑒𝑟𝑛𝑠𝑡(𝑥𝑖, 𝑇) = 𝐸𝑖

0  +
𝑅𝑇

𝐹
 𝑙𝑛 (

1 − 𝑥𝑖
𝑥𝑖

), 
(3-4) 

Based on the definition in [42], VINT is the term added to the Nernst equation, derived from 

Redlich-Kister relation that takes into account the non-ideal interaction of ions in the cell and it is 

defined by:   

 

𝑉𝐼𝑁𝑇(𝑥𝑖) = ∑𝐴𝑖,𝑘   [(2𝑥𝑖 − 1)
𝑘 + 1 −

2𝑥𝑖 𝑘 (1 − 𝑥𝑖)

(2𝑥𝑖 − 1)
(1−𝑘)

] .

𝐾𝑖

𝑘=0

    
(3-5) 

At this step, relation (3-4) is simplified to a polynomial function (relation (3-8)). Using the 

following relation: 

 
𝑙𝑛 
(1 − 𝑥𝑖)

𝑥𝑖
  =  𝑙𝑛(1 − 𝑥𝑖) − ln 𝑥𝑖 = ln(1 − 𝑥𝑖) − ln(1 − (1 + 𝑥𝑖)), 

(3-6) 

an expansion of   on interval of [0,1] is thus given by: 

 
𝑙𝑛 (

1 − 𝑥𝑖
𝑥𝑖

) =  −∑
𝑥𝑖
𝑘+1

𝑘 + 1

∞

𝑘=0

  −∑(−1)𝑘+1
𝑥𝑖−1

𝑘+1

𝑘 + 1

∞

𝑘=0

. 
(3-7) 

Thus relation (3-4) can be approximated by: 

 
𝑉𝑁𝑒𝑟𝑛𝑠𝑡(𝑥𝑖, 𝑇) ≃  𝐸𝑖

0  +
𝑅𝑇

𝐹
 −∑

1

𝑘 + 1
 [(−1)𝑘+1(𝑥𝑖 − 1)

𝑘+1 − 𝑥𝑖
𝑘+1

𝑁

𝑘=0

  =  𝑉̃𝑁𝑒𝑟𝑛𝑠𝑡 . 
(3-8) 

Assuming a large value for N (the polynomial degree) in relation (3-8), a good 

approximation can be achieved so that the difference between 𝑉𝑁𝑒𝑟𝑛𝑠𝑡 and 𝑉̃𝑁𝑒𝑟𝑛𝑠𝑡  is minimized. 

Using 𝑉̃𝑁𝑒𝑟𝑛𝑠𝑡, and by expanding VINT, the following polynomial relation for cell’s OCP is derived:   

 𝑈𝑖(𝑥𝑖, 𝑇) =  𝐸𝑖
0  + ∑ 𝐶𝑖,𝑘(𝑥𝑖)

𝑘𝐾𝑖
𝑘=1              𝑖 ∈  {𝑛, 𝑝}. (3-9) 

Half-cell (OCP) measurements are performed using ELcell setup shown in Figure 3-1, 

which facilitates the potential measurements with respect to a reference electrode. For anode 

potential measurement, CC-charging with C/50 until reaching 25 mV is used and for cathode, CC-

discharging with C/50 until reaching voltage of 1.2 V. 
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Figure 3-1 ELcell setup for potential measurement (described in - ELcell setup 

 

Then the potential measurements are fitted to relation (3-9), with 𝐾𝑖 = 20. As shown in 

Figure 3-2, a good accordance (absolute error (Δ𝑂𝐶𝑃) less than 5 mV) between measurements and 

the model is achieved. Relation (3-9) for OCP modelling is thus validated. 

  
 

Figure 3-2 OCP fitting at BOL (for the negative electrode (left) and the positive electrode 

(right) 

 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Lithiation degree (x)N
e
g

 E
le

c
tr

o
d

e
 O

C
P

 -
 V

o
lt

s

0 0.2 0.4 0.6 0.8 1
-0.01

-0.005

0

0.005

0.01
Absolute error(V)

Lithiation degree (x)


O

C
P

 (
V

)

0.4 0.5 0.6 0.7 0.8 0.9 1
3

3.5

4

4.5

Lithiation degree (y)

P
o

s
 E

le
c
to

d
e
 O

C
P

 -
 V

o
lt

s

0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5
x 10

-3 Absolute error(V)

Lithiation degree (y)


O

C
P

 (
V

)



31 

 

3.3 Concentration profile in the electrodes 

 
For generalizing the developed function to the cell level, the cell is modelled by two 

connected tanks as shown in Figure 3-3 and as proposed in [43]. For this purpose the following 

parameters are defined: 

: the maximum theoretical capacity of electrode 

 : the actual capacity at time t and i% (0<i<100) SOC 

 and  : the capacity at 0% (discharge capacity) and 100% SOC 

Based on the above definitions we get the following relations: 

Cell full capacity 𝑄𝑐𝑒𝑙𝑙 = 𝑄𝑛,100 − 𝑄𝑛,0 = 𝑄𝑝,0 − 𝑄𝑝,100 (3-10) 

Available capacity at i% SOC 𝑄𝑎𝑣 = 𝑄𝑛 − 𝑄𝑛,0 = 𝑄𝑝,0 − 𝑄𝑝 (3-11) 

 

 

Figure 3-3 Model of cell with two connected tanks (similar concept proposed in [44]) 

3.4 OCV formula for the cell at Begin Of Life (BOL) and Middle Of Life 
(MOL) 

According to the defined parameters in Figure 3-3, the SOC and the electrode stoichiometry 

are defined by: 

 
𝑆𝑂𝐶 =

𝑄𝑖  −  𝑄𝑖,0
𝑄𝑖,100 − 𝑄𝑖,0

 =
𝑄𝑛,100  − ∫ 𝐼𝑑𝑡   − 𝑄𝑛,0

𝑄𝑛,100 −𝑄𝑛,0
=
𝑄𝑝,100  + ∫ 𝐼𝑑𝑡  − 𝑄𝑝,0

𝑄𝑝,100 − 𝑄𝑝,0
 =  1 ∓

∫ 𝐼𝑑𝑡

𝑄𝑖,100  −  𝑄𝑖,0
 (3-12) 
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𝑥𝑖  =

𝑄𝑖
𝑄𝑖,𝑚𝑎𝑥

 =
𝑄𝑖,100 ∓ ∫ 𝐼𝑑𝑡

𝛼𝑖  (𝑄𝑖,100 − 𝑄𝑖,0)
 =  

𝑄𝑖,100 ∓ ∫ 𝐼𝑑𝑡 − 𝑄𝑖,0  +  𝑄𝑖,0

𝛼𝑖  (𝑄𝑖,100 − 𝑄𝑖,0)
)    𝑖 ∈  {𝑛, 𝑝}. 

(3-13) 

If it is supposed that Qi,max is written as: 

 𝑄𝑖,𝑚𝑎𝑥 = 𝛼𝑖(𝑄𝑖,100 − 𝑄𝑖,0) (3-14) 

where parameter αi is a real number, and introducing parameter   (3-15), then: 

 

 
𝑥𝑖 =

𝑄𝑖,100 ∓ ∫ 𝐼𝑑𝑡 − 𝑄𝑖,0

𝛼𝑖  (𝑄𝑖,100  − 𝑄𝑖,0)
+ 

𝑄𝑖,0

𝛼𝑖  (𝑄𝑖,100  −  𝑄𝑖,0)
=
𝑆𝑂𝐶

𝛼𝑖
 + 𝛽𝑖      𝑖 ∈  {𝑛, 𝑝}. 

(3-16) 

At this point, using relation (3-16), the OCV formula for the cell can be calculated: 

 

𝑈𝑝  =  𝐸𝑝
0  +∑𝐶𝑝,𝑘  𝑥𝑝

𝑘  =  𝐸𝑝
0  +∑𝐶𝑝,𝑘  (

𝑆𝑂𝐶

𝛼𝑝
 + 𝛽𝑝)

𝑘

 
(3-17) 

 

 
𝑈𝑛  =  𝐸𝑛

0  +∑𝐶𝑛,𝑘  𝑥𝑛
𝑘  =  𝐸𝑛

0  +∑𝐶𝑛,𝑘  (
𝑆𝑂𝐶

𝛼𝑛
 + 𝛽𝑛 )

𝑘

 
(3-18) 

 

 𝑂𝐶𝑉 = 𝑈𝑝 − 𝑈𝑛. (3-19) 

Parameters Qi,0 and Qi,100 depend on aging, thus parameters αi and βi also depend on aging. 

Therefore, in the case of having the half-cell measurements, OCV of the cell after aging (at MOL) 

can be taken into account by optimization of 4 parameters: . 

3.4.1 Derivation of OCV formula for aged cells at MOL 

It is supposed that aging only impacts the value of 𝑄𝑖,100 and 𝑄𝑖,0. As a consequence the 

value of 𝑄𝑎𝑣 is affected. However, SOC=100 % is always defined for 𝑈100 =  4.2 𝑉 whatever the 

aging is.  Thus parameters ∆𝑄𝑖,100, ∆𝑄𝑖,0 , 𝛿𝑄𝑖 are introduced to take into account the aging 

phenomena such that:   

 𝑄𝑖,100
𝑎𝑔𝑒𝑑

= 𝑄𝑖,100
𝑛𝑒𝑤 + Δ𝑄𝑖,100 (3-20) 

 𝑄𝑖,0
𝑎𝑔𝑒𝑑

= 𝑄𝑖,0
𝑛𝑒𝑤 + Δ𝑄𝑖,0 (3-21) 

 𝑄𝑖,𝑚𝑎𝑥
𝑎𝑔𝑒𝑑

= 𝑄𝑖,𝑚𝑎𝑥
𝑛𝑒𝑤 𝛿𝑄𝑖  (3-22) 
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It means that, by aging both of the electrode capacities at SOC of 0% and 100% and also 

the cell full capacity changes. At BOL the following relations hold for cathode and anode 

respectively: 

 
𝑈𝑝  =  𝐸0

𝑝  +∑𝐶𝑝,𝑘  (𝑄𝑝,100
𝑛𝑒𝑤 + 𝐾 ∫ 𝐼𝑑𝑡)

𝑘

 
 

 
𝑈𝑛  =  𝐸𝑛

0  +∑𝐶𝑛,𝑘  (𝑄𝑛,100
𝑛𝑒𝑤 − 𝐾∫ 𝐼𝑑𝑡)

𝑘

. 
(3-23) 

After expansion, it thus can be demonstrated that:  

 
𝑈𝑝  =   𝐸𝑝

0̅̅̅̅  + ∑   𝐶𝑝̅,𝑘  (∫ 𝐼𝑑𝑡)
𝑘

  
 

 
𝑈𝑛  =   𝐸𝑛

0̅̅̅̅  +  ∑𝐶𝑛̅,𝑘  (∫ 𝐼𝑑𝑡)
𝑘

. 
(3-24) 

By replacing relations (3-20), (3-21) and, (3-22) into equation (3-9) for an electrode at BOL, 

the formula for the OCP at MOL is derived: 

 𝑈𝑖
𝑎𝑔𝑒𝑑

 =  𝐸𝑖
0  +∑𝐶𝑖,𝑘

𝑘

  (𝑥𝑖
𝑎𝑔𝑒𝑑

)
𝑘
 (3-25) 

By using relation (3-1), relation (3-25) becomes: 

 
𝑈𝑖
𝑎𝑔𝑒𝑑

 =  𝐸𝑖
0  +∑𝐶𝑖,𝑘

𝑘

  (
𝑄𝑖
𝑎𝑔𝑒𝑑

𝑄𝑖,𝑚𝑎𝑥
𝑎𝑔𝑒𝑑 𝑘

)  

  

(3-26) 

and based on relation (3-13): 

 
𝑈𝑖
𝑎𝑔𝑒𝑑

 =  𝐸𝑖
0   +∑𝐶𝑖,𝑘

𝑘

  (
𝑄𝑖,100
𝑛𝑒𝑤 + Δ 𝑄𝑖 ± ∫ 𝐼𝑑𝑡

𝛿𝑄𝑖 𝑄𝑖,𝑚𝑎𝑥
𝑛𝑒𝑤 )

𝑘

.    
(3-27) 

From (3-27) the following relations are obtained for the negative electrode: 

𝑈𝑛
𝑎𝑔𝑒𝑑

 =  𝐸𝑛
0  +∑𝐶𝑛,𝑘  (

𝑄𝑛,100
𝑛𝑒𝑤

𝛿𝑄𝑛
+
Δ 𝑄𝑛
𝛿𝑄𝑛

−
1
𝛿𝑄𝑛 

∫ 𝐼 𝑑𝑡

𝑄𝑛,𝑚𝑎𝑥
𝑛𝑒𝑤 )

= 𝐸𝑛
0  +∑𝐶𝑛,𝑘

𝑘

  (
𝑄𝑛,100
𝑛𝑒𝑤 − (𝑄𝑛,100

𝑛𝑒𝑤 −
𝑄𝑛,100
𝑛𝑒𝑤

𝛿𝑄𝑛
−
Δ  𝑄𝑛
 𝛿𝑄𝑛

 +
1
𝛿𝑄𝑛

 ∫ 𝐼𝑑𝑡)

𝑄𝑛,𝑚𝑎𝑥
𝑛𝑒𝑤 ).  

(3-28) 

According to relations (3-23) and (3-24) for the aged anode potential: 
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𝑈𝑛
𝑎𝑔𝑒𝑑

 =   𝐸̅𝑛
0  +∑𝐶𝑛̅,𝑘

𝑘

  (𝑄𝑛,100
𝑛𝑒𝑤 −

𝑄𝑛,100
𝑛𝑒𝑤

𝛿𝑄𝑛
−
Δ 𝑄𝑛
𝛿𝑄𝑛⏟              

𝑎𝑛

    −
1

𝛿𝑄𝑛⏟
𝑏𝑛

∫𝐼 𝑑𝑡)

𝑘

  

(3-29) 

and by analogy, for the positive electrode: 

 

𝑈𝑝
𝑎𝑔𝑒𝑑

 = 𝐸̅𝑝
0 +∑𝐶𝑝̅,𝑘

𝑘

(

 
 
(𝑄𝑝,100

𝑛𝑒𝑤 + (−𝑄𝑝,100
𝑛𝑒𝑤 +

𝑄𝑝,100
𝑛𝑒𝑤

𝛿𝑄𝑝
+
Δ 𝑄𝑝
𝛿𝑄𝑝

+
1
𝛿𝑄𝑝

∫ 𝐼 𝑑𝑡)

𝑄𝑝,𝑚𝑎𝑥
𝑛𝑒𝑤

)

 
 

𝑘
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and again referring to relations (3-23) and (3-24): 

 

𝑈𝑝
𝑎𝑔𝑒𝑑

 =   𝐸̅𝑝
0  +∑𝐶𝑝̅,𝑘

𝑘

  

(

 
 
−𝑄𝑝,100

𝑛𝑒𝑤 +
𝑄𝑝,100
𝑛𝑒𝑤

𝛿𝑄𝑝
+
Δ𝑄𝑝

𝛿𝑄𝑝⏟              
𝑎𝑝

    −
1

𝛿𝑄𝑝
∫𝐼 𝑑𝑡

⏟      
𝑏𝑝 )

 
 

𝑘

. 

(3-31) 

Therefore to summarize, the following steps are required to modify the OCV curve of an aged 

cell: 

1. Fitting the OCP measurements at BOL with the polynomial function of relation (3-24), and 

polynomial coefficients  and ; 

 

2. Optimizing the ai and bi parameters so that OCV at MOL can be fitted to the following 

relations: 

𝑂𝐶𝑉 =  𝑈𝑝  −  𝑈𝑛  =  𝐸̅𝑝
0  +∑𝐶𝑝̅,𝑘

𝑘

    (𝑎𝑝  + 𝑏𝑝  ∫ 𝐼𝑑𝑡)
𝑘

 −  ( 𝐸̅𝑛
0  +∑𝐶𝑛̅,𝑘

𝑘

(𝑎𝑛  + 𝑏𝑛 ∫ 𝐼𝑑𝑡)
𝑘
).  

(3-32) 

 

  The optimization problem is solved by minimizing the deviation between the model and 

the measurements. The objective function is:   

 𝑆𝑆𝐸 =∑(𝑂𝐶𝑉𝑚𝑜𝑑𝑒𝑙,𝑘 −𝑂𝐶𝑉𝑚𝑒𝑎𝑠,𝑘)
2
.

𝑘

 (3-33) 

3.5 Balancing: a requirement for optimization problem 

As it can be seen in relation (3-32), anode OCP is subtracted from cathode OCP in order to 

calculate OCV. The problem is that the two half-cell potentials need to be adjusted before doing 

the subtraction. For this purpose, an algorithm (Figure 3-4) is used to determine the extreme 

electrode potential values at 0 and 100% SOC, and then the other points will be automatically 
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adjusted. After cell balancing, the potentials can be subtracted and the overall OCV curve can be 

reconstructed from the half-cell measurements.      

 

Figure 3-4 Flowchart showing the cell balancing algorithm 

For a given 𝑦0 a good 𝑥0 can be deduced because at 𝑆𝑂𝐶 = 0, the OCV value is: 

  𝑆𝑂𝐶 = 0 → 𝑂𝐶𝑉𝑚𝑖𝑛  =  𝑈0. (3-34) 

As 𝑂𝐶𝑃𝑝(𝑦0) is known, therefore: 

 𝑃𝑛(𝑥0) =  𝑂𝐶𝑃𝑝(𝑦0) − 𝑈0. (3-35) 

Thus 𝑥0 is the value of 𝑥 such as the previous relation holds. The same thing can be done 

at 𝑆𝑂𝐶 = 100%.  

For a given 𝑦100 the corresponding 𝑥100 can be deduced so that the OCV at 𝑆𝑂𝐶 = 100% 

is 𝑈100. This can be done using the fitted polynomials so that: 

 𝑂𝐶𝑃𝑛(𝑥100) =  𝑂𝐶𝑃𝑝(𝑦100) − 𝑈100. (3-36) 

Then the question is to find the best values of 𝑦0 and 𝑦100 to minimize the error between 

𝑂𝐶𝑉(𝑆𝑂𝐶) and 𝑂𝐶𝑃𝑝(𝑆𝑂𝐶) − 𝑂𝐶𝑃𝑛(𝑆𝑂𝐶). 
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Since the fitted polynomials for 𝑂𝐶𝑃𝑝 and 𝑂𝐶𝑃𝑛 are respectively function of 𝑦 and 𝑥, thus 

the following relation in the interval of 𝑦 ∈ [𝑦0, 𝑦100] and 𝑥 ∈ [𝑥0, 𝑥100] can be used: 

 𝑦 = (𝑦100 − 𝑦0)𝑆𝑂𝐶 + 𝑦0, (3-37) 

 𝑥 = (𝑥100 − 𝑥0)𝑆𝑂𝐶 + 𝑥0. (3-38) 

 

Using the explained approach, the stoichiometries of anode and cathode are calculated 

based on the error surface minima represented by Figure 3-5 and defined by the following relation:  

 𝑀𝑖𝑛(𝐸𝑟𝑟𝑜𝑟) = 𝑀𝑖𝑛(𝑂𝐶𝑉(𝑆𝑂𝐶) − (OCPp(SOC) − OCPn(SOC))) (3-39) 

The following results are obtained: 

𝑥0 =   0.18365 ,                𝑥100 =   0.9152, 

𝑦0 =    0.9174  ,              𝑦100 =   0.40299. 

These values are very close to those proposed in [17].  

 

Figure 3-5: balancing error surface 
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Using the obtained stoichiometry values, the anode and cathode potentials are balanced and 

the respective OCV can be constructed by subtraction of half-cell potentials. Comparison 

between the reconstructed OCV and the measured OCV is shown in Figure 3-6.   

  

Figure 3-6: OCP balancing and reconstructed OCV 

3.6 Aging correction of OCV curve at MOL 

Based on the approach described in section 3.4 , Figure 3-7 represents the balanced anode 

OCP fitting at BOL using polynomial of degree 20 (relation (3-24)).  

 

Figure 3-7: Balanced anode OCP fitting and the respective error 

Equivalently, balanced cathode OCP fitting at BOL using polynomial of degree 20 (relation 

(3-24)) is represented by Figure 3-8. 
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Figure 3-8: Balanced cathode OCP fitting and the respective error 

In Figure 3-9, the difference between the half-cell electrode potentials and the 

reconstructed OCV for the new and aged cell can be observed.   

 

Figure 3-9 Comparison of balanced OCPs and reconstructed OCV 

At this step, parameters 𝑎𝑛, 𝑏𝑛, 𝑎𝑝 and 𝑏𝑝 for correction of OCV curve at MOL are 

optimized as based on the objective function of relation (3-33). The difference between the model 

and the real OCV at MOL is represented by Figure 3-10. The difference between the two curves 

is also shown.  
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Figure 3-10 Aged OCV correction (comparison of model and measurement (top) and its 

respective error (bottom)) 

3.7 Conclusion and future work 

A polynomial function was used to represent the behavior of electrode potentials and it was 

extended to the cell level to simulate the OCV curves at BOL. After introducing aging parameters, 

the method was modified so that including the aged cell OCV curves. The parameters were 

optimized in order to minimize the difference between the model and the measurements. 

As a requirement for the optimization problem, the cell OCP was adjusted using an 

algorithm described in section 3.5 .  

It can be noticed from Figure 3-10, that after aging, the proposed method permits to adjust the 

cell OCV with an error close to 20 mV. Such an error is too large for implementation in a BMS 

and might have two origins: 

- The balancing method proposed in section 3.5 , permits the cell OCV fitting within an error 

close to 20 mV. Such an error has an impact certainly on the accuracy of the OCV 

adjustment method proposed.  

- Hypothesis (I) in section 3.1 is perhaps not met and electrode heterogeneities have an 

impact on the shape of the electrode OCPs. 

In the future work the effect of heterogeneous aging on the same electrode needs to be taken 

into account to improve the accuracy of the model. This reveals the interest to well understand the 

aging mechanisms is lithium ion cells, which is the focus of the next chapter.  
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Aging of batteries can be investigated with respect to the application, whether short-term 

e.g. under fast charging or long-term e.g. cycling of battery until End of Life (EOL). In this study, 

the developed model is designed for generation of fast charging algorithms. Thus the degradation 

is considered to be caused mainly by formation of solid electrolyte interphase (SEI) layer growth 

[45] on the anode which is mostly seen by short to middle-term usage of battery during fast 

charging. In case of long-term cycling, further phenomena such as loss of active material may 

happen that can be modelled by other techniques explained in section 4.1.2.2  Since temperature is 

identified as a key factor to provoke battery degradation, a thermal model is designed and coupled 

to the aging model to take into account its influence in section 4.2.1 .  

4.1 Review on aging mechanisms and aging modelling techniques 

 

Battery aging is a complicated process where various environmental conditions and 

utilization scenarios interact with each other to provoke different degradation effects. Driving cycle 

and the road profile has a great impact on aging of the battery packs. Driving with rather a constant 

speed in residential areas has less destructive impact on the vehicle battery than driving with 

frequent acceleration on highways which requires more available peak power. Besides that, 

environmental conditions especially the ambient temperature greatly affects battery longevity. 

Various exothermic reactions are likely to happen in a battery during operation (whether charge or 

discharge mode) and high temperature is of course a triggering factor for such reactions leading to 

degradation. These kind of factors depending on external conditions and their interaction are really 

difficult to be predicted, and quantified in the context of aging estimation.  

In most of the studies on battery aging, capacity fade and internal resistance increase of the 

cell are identified as aging indicators. Capacity fade results in reduction of the available driving 

range of the electrified vehicles, while resistance increase mainly leads to fading of available 

power.  There is no clear correlation between capacity fade and resistance increase. Depending on 

the type of cell either capacity fade or resistance increase can be used for quantification of aging. 

Usually for EV cells with large sizing, there is less concern regarding the available range. But for 

high power PHEV cells with smaller size, reduction in the available range is a problem to be 

addressed [46]. Thus capacity fade is the metric used to quantify the aging of PHEV cell under 

investigation in this work.  
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 A great number of chemical and mechanical mechanisms are associated with aging of 

Lithium-ion batteries depending on the cell chemistry. Comprehensive review of these mechanisms 

can be found in a study by Barré et al. [47] and Vetter et. al [48]. In general, operating and storing 

the cells at extreme environmental conditions such as very high or very low temperatures, very 

large or very low initial SOC levels are very destructive. Moreover, charging with large SOC 

swings, or at elevated voltage exposure, or by applying large charging current amplitudes adversely 

influence the lifespan of the batteries.  

Various aging mechanisms can be categorized whether based on the location that they 

happen or based on the time that it takes. These classifications are explained in next section. Both 

cases involve one of the following adverse consequences on the battery performance [47]:  

1- primary capacity fade due to loss of mobile cyclable Li ions (caused by side reactions 

and formation of SEI layer); 

2- secondary capacity fade due to loss of active material (caused by material dissolution, 

particle isolation, structural deformation, …); 

3- resistance increase (caused by film formation and electrode delamination inducing loss 

of electrical contact and impedance rise). 

4.1.1 Classification of aging mechanisms based on location in the cell 

Due to a different chemical composition of anode and cathode, the aging mechanisms 

happening on each side differs from the other. Aging of electrolyte is mainly observed at the 

interphase between each electrode and the electrolyte and is considered with other aging 

phenomena at the electrodes [48]. 

4.1.1.1 Aging on the negative electrode 

 The operating voltage of the lithium-ion battery is outside of the electrochemical stability 

window of electrolyte. Hence by reduction of electrolyte at the interphase of the anode a protective 

film referred as Solid Electrolyte Interphase (SEI) is formed. Growth of the SEI layer mainly 

happens during the first charging cycles and it slows down after a while. SEI acts as a protective 

layer towards corrosion of electrode and guarantees safety. However, gradual growth of the layer 

leads to loss of mobile Li ions and thereby capacity loss. Moreover rising thickness of the layer 

increases the cell internal resistance leading to power fade. Figure 4-1 summarizes the major aging 

phenomena at the anode and its interphase with electrolyte. Another phenomenon depicted in the 

figure is graphite exfoliation. It is caused by diffusion of solvent through SEI layer and its insertion 
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to the layered structure of graphite. Gas formation and expansion of anode are the potential 

consequences of this mechanism. Li-plating is the dominating mechanisms at low temperature. It 

is a result of Li precipitation on the surface of anode that leads to dendrite formation and finally 

short circuit and safety issues [49]. 

 

Figure 4-1 Aging mechanisms on anode and its interphase with electrolyte [48]  

 

4.1.1.2 Aging on the positive electrode 

Contribution of cathode in overall aging of Li-ion batteries is negligible comparing to 

anode. Studies have proved insignificant modification of cathode structure at different levels of 

cycling [50]. The cathode of cell under investigation is principally composed of 

LiCo1/3Ni1/3Mn1/3O2 commonly referred as NMC. The main aging mechanisms associated with 

NMC material is metal dissolution observed at high temperatures that induces capacity fade of 

cathode. Besides that, due to exposure of cathode to high voltage, structural deformation is another 

common aging phenomenon discovered on the cathode side. This phenomenon blocks the Li 

diffusion pathways, leading to a decrease of the cathode rate capability [51]. A summary of the 

main degradation mechanisms are given in Figure 4-2. It includes further phenomena such as 

oxidation of electrolyte at the surface of cathode resulting in film formation, binder decomposition 

triggering loss of contact with the electrode surface and finally corrosion of current collector.  
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Figure 4-2 Aging mechanisms on cathode and its interphase with electrolyte [4] 

 

4.1.2 Classification of aging mechanisms based on time 

Another classification of aging mechanisms can be done based on the time it takes to 

happen. According to time criterion, aging happening by storage on a large time-scale is referred 

as calendar aging while aging caused by usage of the cell (charge or discharge) in a short to medium 

time-scale is called cycling aging.  

4.1.2.1 Calendar aging 

Calendar aging is the degradation caused by self-discharge current during storage of the 

batteries (i.e. zero input current). This type of aging is highly dependent on the storage conditions. 

An experiment on SDI cells was performed to evaluate the impact of storage conditions on calendar 

aging. For this experiment, the cell was stored at different temperatures and initial SOC levels and 

the actual capacity was measured in 10 different time intervals up to 140 days. The test 

specifications are listed in Table 4-1. 
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Experiment 
No. 

Test Conditions 
Temperature [°C] SOC [%] 

#1 

25 °C 

100% 

#2 95% 

#3 30% 

#4 15% 

#5 10% 

#6 

35℃ 

100% 

#7 95% 

#8 30% 

#9 15% 

#10 10% 

#11 

50 °C 

100% 

#12 95% 

#13 30% 

#14 15% 

#15 10% 

#16 

60 °C 

100% 

#17 95% 

#18 30% 

#19 15% 

#20 10% 

Table 4-1Calendar life test specifications 

Each 3D diagram in Figure 4-3 presents the variation of the actual capacity against the 

storage time and initial SOC at a certain temperature, including 25, 35, 50, and 60 °C. It can be 

observed on both diagrams that, storing the cells at higher temperature and high SOC has led to 

pronounced reduction of cell capacity.   

                  
Figure 4-3 Calendar aging measurement results for SDI prismatic cells 



47 

 

The reason lies in the disequilibrium condition provided by high initial SOC; that means a 

large concentration gradient between anode and electrolyte. Also higher temperature is a triggering 

factor for parasitic reactions such as corrosion [47]. 

4.1.2.2 Cyclic aging 

Successive charge and discharge of batteries during operation provoke cycling aging. Ecker 

et al. [52] has done a thorough investigation on calendar and cycling aging of Graphite/NMC based 

batteries. It has been proven that cycling aging is substantially larger comparing to calendar aging. 

Among various factors associated with cyclic aging, most important severity factors are: cycling 

temperature, cycle depth (Δ𝑆𝑂𝐶), charging/discharging C-rate and voltage [47]. The impact of 

these factors on aging of the considered cells was evaluated by performing some experiments, 

based on the test specifications presented in Table 4-2. 

No. Content 
Test Conditions 

T / °C SOC / % ∆SOC / % Charge current Discharge Current 

#1 

Cycle depth impact 
35 °C 

 
 

90% ↔ 30% 60% 

1C 2C 

#2 90% ↔ 20% 70% 

#3 90% ↔ 10% 80% 

#4 90% ↔ 5% 85% 

#5 100% ↔ 0% 100% 

#6 

Temperature impact 

0 °C 

 95% ↔ 15% 

  

80% 
  

1C 
 

2C 
 

#7 10 °C 

#9 25°C 

#10 45 °C 

#11 60 °C 

#12 

Charge rate impact 35 °C 95% ↔ 15% 80% 

0.33C 2C 

#13 0.5C 2C 

#14 1C 2C 

#15 2C 2C 

#16 3C 2C 

#17 4C 2C 

Table 4-2 Cyclic life test specifications 

The results are depicted on three diagrams in Figure 4-4, each presenting the impact of a 

certain specific aging factor on value of cell aging rate (mAh.kAh-1), calculated by division of 

capacity fade (mAh) by total charge throughput (kAh). The cell behavior in these experiments 

confirms the influence of the mentioned factors. Aging rate has greatly increased by charging the 

cell with larger SOC swing (Figure 4-4 (a)) and larger C-rate (Figure 4-4 (c)).  In Figure 4-4 (b), 

at extremely low and extremely large temperature, capacity fade dramatically rises, and the 

minimum aging is observed for moderate operating temperature of 25 °C.  
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(a) 

 

(b) 

 

 (c) 

Figure 4-4 cyclic test results - aging as a function of (a): cycle depth, (b): temperature, and (c): 

C-rate 

For a long-term cycling study until End of Life (EOL) of the cell or by cycling under 

extremely large charge and discharge rates, the graphite structure undergoes a deformation and 

cracks due to the stress exposed by intense intercalation/de-intercalation of Li-ions. Formation of 

cracks creates new surface area during cycling. These fresh surfaces act as catalysis for SEI formation. 

At high charge or discharge rates, the diffusion induced fracture and crack propagation results in a 

higher side reactions rates. A schematic presentation of the electrochemical and mechanical 

degradation model in this study is shown in Figure 4-5 [53]. In order to consider the effect of high 

mechanical stresses inducing fractures in the electrode structure, it is necessary to couple the 

chemical aging mechanisms to the mechanical aging effects by implementing a coupled 

electrochemical-mechanical-thermal model. Loss of active material due to mechanical stress can 

be modelled by semi-empirical relations such as the method described in [54].  

 

Figure 4-5 Schematic diagram showing capacity loss caused by crack propagation on anode 

[53].  

Our focus is on medium-term cycling during fast charging or by cycling using mild HEV 

driving cycles therefore potential mechanical deformations are neglected. All the important 
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degrading factors and mechanisms are taken into account for design of an efficient and 

comprehensive aging model in next section. 

4.2 Implementation of electro-thermal aging model 

In this section a thermal model and an aging model are designed and coupled to the 

electrochemical model (already described in chapter 2) to estimate battery State of Health (SOH). 

Before deciding on the strategy to model and simulate degradation of our case study, a review on 

various types of aging models is presented and measurement results of post-mortem are discussed. 

According to the comparison between different aging modeling methods and more importantly 

experimental observations, the best strategy is chosen.      

4.2.1 Thermal model  

 Cell temperature plays an important role in the kinetics of charge transfer during 

intercalation process and in the rate of side reactions. This is the motivation to build a separate 

thermal model for monitoring of variable cell temperature and to couple it with the electrical 

fractional model. Thermal management is not the focus of this work, therefore an efficient simple 

thermal model as proposed in [55] has been implemented.  

 The thermal model adopts a lumped-parameter approach based on heat transfer equation 

that is given by:  

 
𝑚𝐶p

𝑑𝑇(𝑡)

𝑑𝑡
= 𝑄gen(𝑡) − 𝑄loss(𝑡) 

(4-1) 

 The thermal parameters being used are shown in Table 4-3 Lumped thermal parameters  

Symbol Parameter Unit 

𝒎 Mass of the cell g 

𝑪𝐩 Specific heat capacity  J.g-1.K-1 

𝑼𝐩𝐨𝐥 Polarization voltage V 

𝑹𝐟 High frequency resistance  mΩ 

I Input current A 

𝜶 Heat transfer coefficient W.m-2.K 

𝑨 Cell surface area m2 

𝑻𝐚𝐦𝐛 Ambient temperature K 

Table 4-3 Lumped thermal parameters 
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 The generated heat is obtained by: 

 𝑄gen(𝑡) = 𝑈pol(𝑡)𝐼(𝑡) + 𝑅f𝐼(𝑡)
2. (4-2) 

 Upol(t) characterizes the irreversible heat generation due to polarization of the electrodes. 

The second term in (4-2), is caused by voltage drop over internal resistor of Rf. The convective 

exchanged heat with the environment is: 

  𝑄loss(𝑡) = 𝛼𝐴(𝑇(𝑡) − 𝑇amb) .  (4-3) 

4.2.2 Aging Model 

Different approaches are found in the literature for battery lifetime estimation and 

prediction, namely: analytical models with empirical fitting, statistical models, and physics-based 

models. These three classes of modelling approaches are briefly reviewed in this section. 

Analytical models with empirical fitting - The analytical and empirical models account for 

estimation and prediction of aging parameters through measurements. Empirical models can be 

parameterised without a comprehensive understanding of the electrochemical cell structure. 

Empirical models have the advantage of simplicity. The main disadvantages of such models are 

the inaccuracy of the measurements and not being able to produce a prediction of internal cell 

behaviour. An example of this methodology, is Coulomb counting approach that includes 

measuring the current flowing in and out of the battery and integrating over time to calculate SOH. 

This approach can be used in BMS due to its simplicity to apply. However, it requires a 

recalibration at regular intervals which is a difficult task in real time [56]. Another powerful method 

is by using information from Electrochemical Impedance Spectroscopy (EIS). In this framework 

SOH is related to the battery impedance. The advantage of EIS approach is its scalability for various 

battery chemistries. However it requires laboratory setup and advanced hardware, which makes it 

no applicable for on-line aging estimation e.g. for EV and HEV cases [57]. Extended Kalman Filter 

(EKF) method which involves in designing of an optimal state observer for nonlinear systems, is 

another example in this category. G. L. Plett [58] presented a complete solution for extended 

Kalman filter theory for battery state estimation. One disadvantage of this approach is the 

computational complexity and lack of stability in case of nonlinear systems such as batteries. Other 

studies such as the semi-empirical model for capacity fade proposed by Ramadass [59] includes an 

analytical aging estimation method. In this work solvent reduction reaction during charging process 

is identified as the main source of degradation. Another example is the empirical aging model 
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developed by Ecker et al. [60] that incorporates an impedance-based electric-thermal model 

coupled to the aging model to simulate the dynamic interaction between aging of the battery and 

the thermal effects as well as electric behaviour.  Another interesting work in this category, is the 

cycle life model implemented by Ning et al. [61]. It is the first principle cycle life model based on 

lithium ion loss in the parasitic reaction and film resistance rise.   

Statistical methods - This type of strategy requires an extensive set of data. Statistical 

methods are not based on chemical and physical formulations and do not need any analytical 

information on the aging mechanisms. Precision of statistical approaches depend on data and it 

may need many full battery characterizations to collect the required data sets. Despite its high 

accuracy, time-consuming data acquisition makes this type of battery aging estimation method an 

unrealizable solution for on-board applications [62]. 

            Physics-based models - In this type of aging modelling, the behavior of the battery is 

correlated to a physical model and the model parameters provide information about the battery 

performance and conditions e.g. voltage, current, temperature, electrolyte concentration, etc. This 

type of model can be established according to underlying physical phenomena using a SPM or P2D 

model. The physics-based models need specific knowledge of the physical and chemical properties 

of the battery e.g. electrolyte volume, density and porosity of the active materials. They are 

powerful tools to understand the different interactions between different physical phenomena and 

the trends about operating condition effects on aging. Another advantage of physical models is that 

they include all internal battery behavior parameters inherently for more precision. However the 

implementation of a fully physics-based aging model is questionable on a BMS. Therefore 

considering some simplifications makes it realizable for online aging estimation [63].  

Multimodal, physics-based aging model of Safari et al. [65] relates the aging to solvent-

decomposition reaction leading to the growth of SEI. The model is able to estimate the calendar and 

cycle life of Li-ion batteries with good accuracy. An interesting investigation using physics-based 

methodology concept is done by Pinson and Baznat [64]. Capacity fade prediction of batteries is based 

on a single particle model. The model has showed accurate fit with experiments. It has been assumed 

that the SEI formation is the main degradation mechanism. The designed model is also extended to 

porous electrodes and showed that even at high rates a homogeneous SEI formation occurs within the 

electrode. Another example in this category is the phenomenological degradation model by Narayanrao 

et al. [65]. In this model the particle fracture, SEI formation and isolation are described in 
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phenomenological expressions and are coupled with a P2D model. A coupled mechanical-chemical 

degradation model is proposed by Deshpande et al. [66]. They have studied the capacity fade of 

graphite-LiFePO4 cells in presence of mechanical fatigue leading to irreversible capacity loss by crack 

formation. This type of model can be especially used for lifetime prediction until EOL of the cell, and 

this strategy is thus adopted in the sequel. 

4.2.2.1 SEI Growth Model  

Based on the observations from post-mortem analysis of the cell under investigation, aging 

is only considered on the anode side. Figure 4-6 SDI 28 Ah cell opening at BOLshows an opened 

SDI 28 Ah fresh cell at BOL and Figure 4-7 shows the same cell at its EOL. According to the post-

mortem experimental observations, aging has essentially happened on the anode. At the surface of 

the fresh cell anode, some spots can be observed which could be due to high lithiation at the 

discharged state. The same kinds of spots are visible on the separator at BOL. After cycling and by 

opening the cell at its EOL, large number of spots are observed at the anode due to aging, which is 

an evidence for electrolyte decomposition at its interphase with electrolyte. However, no significant 

change is seen on the cathode.  At EOL, a change of color can be seen on the separator in the border 

areas.  

(a) Anode (b) Cathode (c) Separator 

Figure 4-6 SDI 28 Ah cell opening at BOL 

 

(a) Anode 

 

(b) Cathode 

 

(c) Separator 

Figure 4-7 SDI 28 Ah cell opening at EOL 
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In another aging experiment on the same type of cell, charge and discharge cycles using a 

constant current profile with rate of C/50 is performed both on the anode and the cathode. 

Respective half-cell discharge capacity is measured as shown in Table 4-4. It can be seen that 

anode has lost around 12% of its initial capacity while the variation of capacity at the cathode is 

negligible. This is another proof for dominance of aging at the anode side. 

Electrode/Aging level Discharge capacity [mAh] Rel. capacity 

Anode/BOL 5.40 ± 0.03 100% 

Anode/EOL 4.75 ± 0.02 88%±0.3% 

Cathode/BOL 4.83 ± 0.05 100% 

Cathode /EOL 4.97 ± 0.08 102.9%±1.7% 

Table 4-4 Half-cell capacity measurements for SDI 28 Ah at BOL and EOL 

The last experiment is carried out on full-cell level by inserting an additional Li-reference 

electrode. The full-cell OCV as well as half-cell potential of each electrode are measured against 

the reference electrode at BOL and after cycling by discharging current profile with rate of C/20 

within the operating voltage range of SDI 28 Ah cells (Vmin: 3.0 V and Vmax: 4.15 V). The same test 

has been repeated on two samples of the same cell in the experimental set-up shown in Figure 4-8: 

                                                

Figure 4-8 Full cell with reference electrode 

The comparison between the OCP and OCV of aged and fresh cells are shown in Figure 

4-9. 
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Figure 4-9 Variation of half-cell OCPS and full-cell OCV curves with aging 

The study by Imamura et al. [67] suggests that such a change in the OCV curve of an aged 

cell is correlated to capacity fade as a consequence of cyclable Li-ion loss. The relative capacity 

loss after cycling is around 10%. In these measurements no loss of anode active material is visible. 

Based on all the mentioned experimental observations, SEI formation is identified as the 

main source of aging on the anode. The structure of the SEI growth model is basically driven from 

the equations proposed in [45].  The side-reaction of interest for aging modeling is given by: 

 𝑆 + 2𝐿𝑖+ + 2𝑒− → 𝑃 (4-4) 

where S stands for the solvent and P for the undesired product of the side reaction. Figure 4-10 

shows the main intercalation reaction as well as the unwanted reaction of electrons with solvent 

and mobile Li ions inducing SEI formation. 

 

Figure 4-10 Desired intercalation reaction vs. undesired SEI formation at the interphase of 

anode and electrolyte [64]  
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Assuming a constant temperature T, Tafel equation calculates the current (denoted by jsr) 

produced by the side reaction, as a result of undesired reduction of Li ions: 

 
 𝑗sr = −𝑎s

n𝑗0,sei exp (−
𝑛𝐹𝛼n
𝑅𝑇

𝜂sei).  
(4-5) 

Thus the remaining current for the diffusion reaction jremain, is calculated by subtraction of 

the main intercalation reaction jI, and the side reaction current given by relation: 

  𝑗𝑟𝑒𝑚𝑎𝑖𝑛 = 𝑗𝐼 − 𝑗sr.  
 

(4-6) 

All the electrochemical parameters and respective values and units are defined in Table 4-5.  

Some parameters are directly taken from [45] and the rest have been obtained by fitting to the 

measurements on the cell under investigation. 

Symbol Parameter Unit 

𝒂𝐬
𝐧 Specific surface area m-1 

𝒋𝟎,𝐬𝐞𝐢 Exchange current density A.m-2 

𝜶𝐧 Symmetry factor - 

n Number of transferred electrons - 

𝑬𝐚 Activation Energy kJ.mol-1 

𝜹𝐬𝐞𝐢 SEI layer thickness m 

𝑴𝐬𝐞𝐢 Molar mass of SEI layer kg.mol-1 

𝝆 Density of SEI layer kg.m-3 

𝜿𝐬𝐞𝐢 SEI layer conductivity S.m-1 

𝑹𝐬𝐞𝐢,𝐢𝐧𝐢𝐭 Initial resistance of SEI layer Ω.m2 

𝑹𝐩 Resistance of side reaction product Ω.m2 

𝑰𝒄𝒉 Charging current A 

Table 4-5 Aging model parameters 

The SEI overpotential 𝜂𝑠𝑒𝑖 , is defined as a function of anode potential φen, of the potential 

drop through SEI layer with inner resistance of Rsei and of the reference potential of SEI formation 

𝑈𝑠𝑒𝑖
𝑟𝑒𝑓
,  assumed to be 0.4 V: 

 𝜂𝑠𝑒𝑖 = 𝜑𝑒𝑛 − 𝑅𝑠𝑒𝑖𝐼 − 𝑈𝑠𝑒𝑖
𝑟𝑒𝑓
,  (4-7) 

 

where anode potential 𝜑𝑒𝑛 is described by: 

 𝜑𝑒𝑛 = 𝜂n + 𝑈n + 𝑅sei𝐼 . (4-8) 
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 As explained in [68], ηn is obtained by manipulating the Butler-Volmer equation that 

defines the kinetics of Li ion intercalation:  

 
𝜂n =

2𝑅𝑇

𝐹
sinh−1 (

𝑗I
2𝑎sn𝑗0

n) ,  
(4-9) 

where 𝑗I is the intercalation current density (obtained by subtraction of charging current and side 

reaction current) and 𝑗0
n is the exchange current density of intercalation reaction. For easier 

implementation of the model in Simulink, (4-9) is simplified via relation: 

 

𝜂n =
2𝑅𝑇

𝐹
log((

𝑗I
2𝑎sn𝑗0

n) +√(
𝑗I

2𝑎s
𝑛𝑗0
n)

2

+ 1).  

(4-10) 

 Under fast charging conditions, the increase of temperature has a substantial influence on 

the rate of side reactions. Therefore (4-5) needs to be modified, in order to consider the Arrhenius 

dependency of side reaction current to the temperature variation. Equation (4-5) thus becomes: 

 
𝑗sr = −𝑎s

n𝑗0,seiexp (
𝐸a
𝑅
(
1

𝑇ref
−
1

𝑇
))exp (−

𝑛𝐹𝛼n
𝑅𝑇

𝜂sei).          
(4-11) 

 The SEI thickness (δsei) and resistance (Rsei) can be computed by the following relations 

[45]: 

 𝜕𝛿sei

𝜕𝑡
=
𝑀sei

2𝐹𝜌
 𝑗sr, (4-12) 

 𝑅p(𝑡) =
𝛿sei 
𝜅sei 

, (4-13) 

 𝑅sei(𝑡) = 𝑅sei,init + 𝑅p(𝑡).  (4-14) 

 Based on experimental observations [69], the thickness growth of SEI layer decreases 

gradually after some cycles by primary formation of passivation layer over the surface of electrode. 

In order to ensure that the SEI growth model provides such a behavior, an exponential term has 

been added to (4-11). The updated equation obtained is thus: 

 
𝑗sr = −𝑎s

n𝑗0,sei exp(−𝜆𝛿𝑠𝑒𝑖) exp (
𝐸a
𝑅
(
1

𝑇ref
−
1

𝑇
)) exp (−

𝑛𝐹𝛼n
𝑅𝑇

𝜂sei), 
(4-15) 

where λ is the SEI decay rate constant (m-1). Figure (4-5) shows the simulation results using the 

modified aging equation (4-15) and by imposing a 1C charge and discharge current profile with 
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SOC swing of 70% to the model.  Stabilization in the growth of SEI layer is achieved after 

approximately 150 cycles.  

 

Figure 4-11 SEI layer thickness growth 

4.2.2.2 Decoupling of calendar and cycling aging  

Figure 4-12 shows the aging measurement in terms of aging rate (mAh.kAh-1), at different 

C-rates and for certain variation of SOC in the cell. It can be observed that the capacity loss is 

substantially larger at higher charging C-rates. 

 

Figure 4-12 Aging map obtained by interpolation of measurement points at different C-rates in 

SOC range of 15-95% 

The aging model should be able to mimic such a behavior with good accuracy in order to 

guarantee a superior fast charging strategy. Such a requirement was impossible with (4-15) and 

that is why an additional coefficient Kη has been introduced in order to scale the inverse Butler-

Volmer overpotential ηn. Equation (4-15) is thus rewritten as: 
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𝑗sr = −𝑎s
n𝑗0,sei exp(−𝜆𝛿𝑠𝑒𝑖) exp (

𝐸a
𝑅
(
1

𝑇ref
−
1

𝑇
)) exp (

−𝑛𝐹𝛼n
𝑅𝑇

(𝐾η𝜂n + 𝑈n − 𝑈sei
ref)), 

(4-16) 

or  

 
𝑗sr = 𝐶T exp(−𝜆𝛿𝑠𝑒𝑖) exp (

−𝐸a
𝑅𝑇

) exp (
−𝑛𝐹𝛼n
𝑅𝑇

𝐾η𝜂n) exp (
−𝑛𝐹αn
𝑅𝑇

𝑈n),  
(4-17) 

where  

 
𝐶T = −𝑎s

n𝑗0,𝑠𝑒𝑖 exp (
𝑛𝐹𝛼n
𝑅𝑇

𝑈sei
ref) exp (

𝐸a
𝑅𝑇ref

) . 
(4-18) 

It can be concluded from (4-18), that the time-dependent (calendar) aging effects and 

current-dependent (cycling) aging effects have been decoupled. That provides the possibility of 

better interpretation of each mechanism on the cell aging and to emphasize on the influence of C-

rate on capacity fade during cycling and especially fast charging. Equation (4-18) can be rearranged 

as: 

 𝑗sr = 𝐶T𝑓1(𝑡)𝑓2(𝑇)𝑓3(𝐼ch)𝑓4(𝑆𝑂𝐶), (4-19) 

with  

                      𝑓1(𝑡) = 𝑒𝑥𝑝(−𝜆𝛿𝑠𝑒𝑖), 

                     𝑓2(𝑇) = 𝑒𝑥𝑝 (
−𝐸𝑎

𝑅𝑇
), 

                     𝑓3(𝐼𝑐ℎ) = 𝑒𝑥𝑝 (
−𝑛𝐹𝛼𝑛

𝑅𝑇
𝐾𝜂𝜂𝑛), 

                     𝑓4(𝑆𝑂𝐶) = 𝑒𝑥𝑝 (
−𝑛𝐹𝛼𝑛

𝑅𝑇
𝑈𝑛). 

 To the author’s best knowledge, this study is the first one, proposing a physically-based 

battery model capable of showing the dependency of degradation mechanisms as a function of 

SOC, temperature and C-rate. This feature provides a very good agreement of the model to the 

experiments. By starting the charging process at higher SOC levels, activation energy of parasitic 

reactions, which is the energy barrier needs to get overcome, decreases. This results in promoting 

the rate of side reactions [70]. Therefore it is very useful to monitor the influence of SOC on 

capacity loss by the decoupled function 𝑓4(𝑆𝑂𝐶).  
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4.3 Validation of the coupled Electro-thermal aging model  

 The developed electro-thermal aging model obtained is represented by Figure 4-13. It has 

been validated by different tests as shown in the next sections, verifying the requirements for 

correct prediction of battery behavior based on experimental observations on the cell under study. 

 

Figure 4-13 Coupled electro-aging thermal model [71] 

4.3.1 Validation of the Electro-thermal Model 

The implemented electrical fractional model is validated against cell voltage measurements 

under a dynamic driving cycle conditions changing the SOC of the cell repeatedly from 100% to 

0% and vice versa (see Figure 4-14). The driving cycle profile, is an extended Artemis drive cycle 

explained in section 2.3.2 including different driving conditions such as: accelerating, braking, 

driving uphill and on highways with constant speed, and downhill recuperation. 
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Figure 4-14 Comparison of simulated and measured voltage and the respective absolute error 

under dynamic driving cycle 

Figure 4-14 confirms the validity of the electrical fractional model since the simulated 

voltage and measured one are in a very good agreement with RMS error of 0.0147 V. The error 

peaks are due to the nonlinearities not taken into account in the model. The maximum error of 0.09 

(V) occurs at deep discharge levels (𝑆𝑂𝐶 < 5%) and by abrupt voltage variations during long 

phases of applying large charging currents.  

4.3.2 Validation of Aging Model 

According to our experimental observations, a comprehensive aging model is expected to 

fulfil the requirements sketched in Figure 4-15. As explained in section 4.2.2.2 Decoupling of 

calendar and cycling aging, the aging formula shown by (4-19) is already driven by considering 

each requirement. The correlation between the requirements and respective sub-functions is clearly 

displayed in Figure 4-15. The analysis on the SEI growth shown in Figure 4-11 confirms satisfying 

of the first requirement. 
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Figure 4-15 Aging model requirements 

Figure 4-16 represents the influence of the temperature on capacity loss to validate the 

second requirement. The normalized capacity has been measured by simulating the electro-thermal 

aging model using a 1C Hybrid Pulse Power (HPC) current profile. The test has been conducted in 

SOC range of 50 to 60% at three different temperatures of 5, 25, and 45°C. It can be observed that 

the capacity decreases substantially at elevated temperatures due to higher kinetics of side 

reactions. Thus the second requirement has been met. 

 

Figure 4-16 Investigation of temperature effect on aging 

In order to verify the capability of the aging model in prediction of larger aging at higher 

C-rate, a validation test is carried out. For this aim, two charge and discharge current profiles are 
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designed having the same cycle depth and length (correlated to the same calendar aging), one 

profile with 1C and the other with 3C rate (See Figure 4-17).  

 

Figure 4-17 1C and 3C charging profiles and respective cycle depth 

The mentioned current profile are applied to the developed electro-thermal aging model 

and the corresponding cell temperature and capacity loss have been measured and compared on the 

diagrams in Figure 4-18. The cell is at initial temperature of 20°C and initial SOC of 50%. There 

is a significant larger increase in the cell temperature (approximately 6°C increase in temperature 

for 3C profile comparing to 1.5 °C increase for 1C profile) and consequently a large capacity loss 

using 3C profile than 1C profile, as expected from a valid aging model.  

 

Figure 4-18 1C and 3C validation profiles and corresponding temperature and capacity loss  
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 In another validation test, cyclic behavior of the model after several cycles has been 

investigated. Thereby the profiles shown in Figure 4-17 are imposed to the model for 25 cycles at 

initial temperature of 35°C and initial SOC of 50%. The corresponding capacity loss and 

temperature are simulated and presented in Figure 4-19. Higher temperature increase and capacity 

loss is obtained for the case of applying a 3C current than 1C current profile.  

  

Figure 4-19 Cyclic behavior of the electro-thermal aging model using two different profiles 

  For a more comprehensive validation to meet the third and fourth requirements, the last 

validation test has been done to investigate the impact of C-rate and SOC on aging together on an 

aging map. Figure 4-20 shows the simulation results on a three dimensional aging map.  

 

Figure 4-20 Investigation of C-rate and SOC effect on aging 
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between 0 to 100A. The increase of capacity fade at larger initial SOC and charging currents is 

very well in accordance with expectation such as the experimental results shown in Figure 4-12. 

Another characteristic of the SEI layer is its larger growth rate during charging rather than 

discharging. This phenomenon was analyzed on the model.  

4.4 Conclusion and future work 

 A coupled electro-thermal aging model for lithium-ion batteries is proposed in this study 

based on the requirement of having a model implementable for on-board applications and 

according to the aging measurement results. The electrical fractional model proposed, captures the 

low frequency diffusion dynamics (the operating frequency range of BMS) with high accuracy. 

The aging model is capable of showing the dependency of degradation mechanisms as a function 

of SOC, temperature and C-rate. It provides the possibility to distinguish between various aging 

mechanisms and to estimate the contribution of each one to the overall capacity fade. This useful 

information can be used for developing optimized charging protocols. To the best knowledge of 

the author, such a global modeling is quite rare in the literature. This feature has led to achieve a 

very good agreement of the model to the experiments. That is proved with several validation tests. 

The application of this model for fast charging profile optimization and model-based design of an 

intelligent charging controller is explained in details in the next chapter. 
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5.1 Concept of intelligent charging and bibliography analysis 

Relatively long charging time of Li-ion batteries is a barrier to their commercialization for 

application of automotive industry. In order to accelerate the charging process, aggressive charging 

profiles are applied to reach the desired State of Charge (SOC). This leads to evolution of higher 

internal cell temperature and consequently acceleration of undesirable side reactions. The side 

reactions consume the Li ions and prevent them to take part into the intercalation reaction. This 

phenomenon gives rise to aging and poor performance of the Li-ion batteries.  

As already discussed in chapter 1, in order to tackle this problem, it is necessary to optimize 

the operation methods of batteries. The operation during discharging depends mainly on the 

demand of the user, while the charging method can be improved by the manufacturer to decrease 

the charging time while minimizing the aging effects. 

The Battery Management Systems has been widely used in the electric vehicles for non-

destructive detection of the battery states. This includes monitoring the State of Charge, the State 

of Health (SOH), the internal cell temperature and controlling the battery charging current to 

minimize the charging time and its impact on aging. 

Figure 5-1 shows a block diagram of the fast charging functions of a BMS. The battery 

observer based on the battery model, simulates the behaviour of the battery under various operating 

conditions. A control-oriented battery model is described in details in [71]. The fast charging 

controller adapts the operating limitation based on the information obtained from the battery model. 

Various control strategies have been incorporated to the BMS to control the fast charging process 

while improving the battery performance. The control scheme can be classified into whether open-

loop or closed-loop control. 

                             

                                           

Figure 5-1 Fast charging function in BMS 
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Several works have been focused on open-loop model-based optimal control of battery 

charging. Tu Vo [72], used a Taguchi-based algorithm to minimize the effort for finding the optimal 

profile that meets a trade-off between charging time, energy efficiency and temperature variation. 

An Equivalent Circuit Model (ECM) is used to derive the battery dynamics while cell degradation 

is not taken into account. Abdollahi [73], proposed an open-loop optimal charging strategy to find 

an analytical solution for the current profile by solving an optimization problem. The optimization 

is to minimize a multi-objective function including time to charge, energy loss and temperature 

rise index based on a simple ECM. Perez [74] presented the results of an open-loop multi-objective 

optimization technique, using a more comprehensive battery model consisting of coupled ECM, 

empirical aging model, and thermal model. The objective function is the weighted sum of charging 

time and aging.  

All the open-loop schemes are highly subject to the parametric uncertainties arising from 

an inaccurate simplified battery model. Thus a feedback loop is essential for fast charging control 

to compensate the errors of the model and let the system to adjust its performance for achieving a 

desired response [75]. 

Some investigations have been done on closed-loop optimal charging control. Choe [75], 

has employed a feedback controller to minimize the charging time. The aging is assumed to be 

caused only by excessive anode surface concentration and increase of temperature which are taken 

into account as optimization constraints. Battery state detection is done by a physic-based coupled 

electro-thermal model. In this study, the main problem is with low observability of the states, such 

as anode and cathode solid-phase concentrations. Klein [76], has introduced a state-feedback 

Nonlinear Model Predictive Control (NMPC) approach based on a simplified electrochemical 

model. The objective is minimization of charging time with constraints on temperature and Solid 

Electrolyte Interphase (SEI) overpotential (identified as root causes of aging). Another work 

focusing on the use of MPC framework for charging control, is done by Yan [77]. In this study an 

online genetic algorithm is used within a MPC framework for minimizing charging time while 

keeping the temperature below a specified maximum limit to lower the battery degradation.  

Despite the achieved results, the weakness of MPC approach is lack of robustness with 

respect to fast variation of state variables such as anode potential. Since the system is highly 

nonlinear, the linear behaviour could vary depending on the level of the signals (state and input 

variables). MPC is designed on the nominal plant of the model, but the model parameters can be 
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uncertain. Besides that, it needs information regarding the exact dynamic behaviour of the system 

and all of the disturbances, which cannot be easily provided in each control sequence. Thus the 

MPC strategy is not efficient with respect to disturbances and uncertainties.  

Another major shortcoming of the already mentioned closed-loop schemes is the fact that 

the aging caused by magnitude of applied charging current is not considered in none of the studies. 

This factor is known to be the main contributor to degradation of the battery during aggressive fast 

charging [70]. 

As already discussed, there are still challenges in this growing field of research. This work 

proposes solutions to address the main challenge regarding: 

- implementing an intelligent charging method to achieve fast charging target while minimizing 

aging caused by temperature and also aggressive charging current by means of a comprehensive 

battery model 

- robustness with respect to large process variations. 

Therefore in this chapter first of all, optimal charging problem is formulated in section 5.2 

and an example of resulting optimal current profile and respective system response have been 

shown followed by introducing a novel numerical linearization method in section 5.3 to linearize 

the battery model. Section 5.4 to 5.6 are devoted to clarify the steps to obtain an appropriate set of 

linearized models for the design and implementation of the intelligent charging controller. Finally 

design and implementation of an appropriate fast charging controller is explained in section 5.7. 

5.2 Trajectory planning 

The model-based charging controller in Figure 5-1, is responsible for finding the optimal 

charging current profile. Optimal in this case means a current profile as large as possible (to 

minimize the charging time) while considering a certain time-variant upper bound for the side 

reaction current. Thus it can be ensured that the fast charging target is achieved while a certain 

aging is not exceeded. The time-variant value of side reaction current is a function of the SOC and 

depends on the optimal charging current. It is computed offline before starting the charging process 

as explained in this section. During charging, the limitation on the side reaction current is provided 

in a lookup table over SOC. The bound at each time interval, corresponds to the optimal trajectory 
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for the side reaction current. In the real-time application the controller interpolates the stored data 

to find the optimal profile. 

Therefore, as the first step towards designing a robust controller, a trajectory planning for 

the charging current and thus for the side reaction current is performed. The aim is to minimize the 

capacity loss during a fixed charging time of 20 minutes, subject to bounds on the control variable 

(Ich), in order to avoid exceeding a maximum charging current of 3.5C (where the unit C-rate is the 

current normalized against the cell capacity of 22.5 Ah) due to safety reasons and to increase the 

SOC from initial SOC of 5% to a target SOC of 80% (fast charging target in this study) to complete 

the charging procedure.  

For initialization of optimization problem, a Multi-stage Constant Current (MCC) profile 

is used as it has proved to be a promising candidate for maximizing the energy efficiency, 

enhancing the battery lifetime during rapid charging [78] and also for its flexibility as it permits to 

reach large number of shapes for the charging profiles. The MCC profile is equally split into four 

stages, where each stage has the time range of 5 minutes inspired from the charging profile 

proposed by Tu Vo et al. [72]. Therefore, the following relation formulates the optimal control 

problem: 

 
min
𝐼ch(𝑡)

∫ Δ𝐶loss(𝑡)𝑑𝑡
𝑡f

0

  
(5-1) 

subject to: 
 𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝐼ch(𝑡)), 𝑥(0) = 𝑥0 (5-2) 

 

 1

3600
∫ 𝐼ch(𝑡)𝑑𝑡
𝑡f

0

≥ 𝑄trans ,     
(5-3) 

 

 0 ≤ 𝐼ch(𝑡) ≤ 3.5𝐶 (5-4) 

 

where ΔCloss (t) is the capacity loss (A.h), x(t) is system state variable vector, Qtrans (t) is the 

amount of Lithium ions transferred by charging in (A.h), and tf (s) is the charging time. The 

nonlinear constrained optimal control problem has been solved using Sequential Quadratic 

Programming (SQP) under various operating conditions.  

Figure 5-2 shows the optimization result and corresponding SOC, capacity loss, side 

reaction, and anode potential variation at 35°C in comparison with a conventional Constant Current 
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Constant Voltage (CCCV) profile. It can be observed that using the optimal current profile the 

capacity loss has been decreased by approximately 15% in comparison with a CCCV profile. The 

optimization is performed for various ambient temperatures of 10, 17, 27, 30, 47, and 77°C and 

various aging levels, starting from Begin of Life (BOL) to Middle of Life (MOL) and finally End 

of Life (EOL). 

 

Figure 5-2 Trajectories obtained at T=35°C for a cell at BOL in SOC range of 5-80% with fixed 

charging time of 20 minutes 

 

This section presented the optimization of the charging current profile for a perfectly known 

cell. Unfortunately, this ideal case does not exist and applying an optimized charging current does 

not necessarily lead to reach the target SOC with minimum amount of aging. Thus as explained in 

section 5.1, a closed-loop strategy should be developed. Another problem encountered in the 

trajectory planning was the comparably long simulation time of the optimization script. This 

problem will be addressed in details in chapter 6.  

As it can be observed from Figure 5-2, the side reaction current Jsr is highly sensitive to the 

charging current that provokes aging. Therefore it has been chosen as the control signal to manage 

the charging process. 

0 2 4 6 8 10 12 14 16 18 20
0

50

100

C
ur

re
nt

[A
] CCCV

MSCC

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

 C
lo

ss
[m

A
h]

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

|J
sr

|[m
A

]

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

A
no

de
 p

ot
en

tia
l[V

]

0 2 4 6 8 10 12 14 16 18 20

Time[minutes]

0

50

100

S
O

C
[%

]



71 

 

5.3 Model linearization 

In sections 5.1 and 5.2, the necessity of having a closed-loop control scheme was discussed. 

It is proposed to design a linear controller using a linearized model of the cell. 

The battery model used for this purpose is the model developed and explained in chapter 4 

(shown in Figure 4-13), a physically-based single particle model that represents the underlying 

electrochemical phenomena with optimized number of parameters and reasonable computational 

effort. It consists of three coupled sub-models:  

- an electrical sub-model, based on a fractional transfer function used to estimate the ion 

concentration variation during charge and discharge and to simulate the terminal voltage; 

- an aging sub-model, used to simulate the degradation processes mainly happening inside the 

Solid Electrolyte Interphase (SEI) layer on the anode; 

- a lumped-parameter thermal sub-model to predict the temperature of the cell and its impact on 

aging and kinetics of lithium intercalation.  

Such a model is highly nonlinear. The simulation results show a large nonlinearity and high 

sensitivity in the battery model response especially at different stages of lifetime, temperature 

variation, and level of charging current. This nonlinear behaviour is taken into account through a 

set of linearized models computed for particular operating points (whether stage of life, temperature 

or charging current) and different optimized charging profiles and thus corresponding side reaction 

current (Jsr) profiles.  

 

5.4 State-space representation of the nonlinear battery system 

 

The battery model can be represented by the nonlinear state-space model: 

 
{
𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))

𝑦(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡))
 

(5-5) 

 

where the input u(t) is the charging current Ich(t), the output vector y(t) and the state vector x(t) are 

described by the following relations: 
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 𝑥 = [Δ𝐶loss, 𝛿SEI, 𝐶avg,n, 𝐶1
part,n

…𝐶5
part,n

, 𝐶avg,p, 𝐶1
part,p

…𝐶5
part,p

]
𝑇
, (5-6) 

   

 

 𝑦 = [𝐽sr, 𝑈bat, 𝜙en, 𝑂𝐶𝑉, 𝑇, 𝑆𝑂𝐶]
𝑇 . (5-7) 

 

 
Symbol Parameter Unit 

ΔCloss Capacity loss mA.h 

δSEI SEI layer thickness m 

𝑪𝐚𝐯𝐠,𝐢∗  Electrode average concentration A.h 

𝑪𝟏…𝟓
𝐩𝐚𝐫𝐭,𝐢∗

 Electrode partial concentration A.h 

Ubat Battery terminal voltage V 

ϕen Anode potential V 

OCV Open Circuit Voltage V 

* i= n (anode) or, p (cathode) 

Table 5-1 Battery state and output variables 

The approach to represent such a nonlinear model by a set of linear models (each one for 

a specific operating point) is described in the next part. 

5.5 Determination of the system operating points 

 

The operating points are defined based on a set of optimized charging profiles obtained in 

section 5.2. The optimization is performed for different ambient temperatures and aging levels in 

the SOC range of 5-80%. For each optimal MCC current profile, in addition to constant current 

phases, relaxation intervals are considered to reach equilibrium conditions. Taking into account 18 

ambient (and internal) temperatures, 8 operating conditions provided by each charging profile, and 

3 aging levels, a total of 432 operating points are identified. Figure 5-3 represents an example of 

determining the operating points under steady-state conditions. All the corresponding state-

variables have been recorded as well.  
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Figure 5-3 Determination of operating points for an optimal charging profile at 10°C and BOL. 

5.6 Uncertain linear model of the nonlinear battery model 

Using a numerical linearization method (linmod command in Matlab), the model is then 

linearized around the set of operating points. For this purpose, the states are parametrized with the 

equilibrium values obtained in section 5.5. The set of 432 uncertain linear models of transfer 

function Jsr(s)/Ich(s) using a logarithmically spaced frequency distribution are presented in Bode 

plot of Figure 5-4. This diagram permits a good definition of the uncertain frequency response of 

the plant. Among these set of uncertain linear transfer functions, one is arbitrarily chosen as the 

nominal one. It can be seen that the magnitude of this transfer function Jsr(s)/Ich(s) depends strongly 

on the operating point. The resulting uncertainty in the gain and phase can be used to design a fast 

charging robust controller.  
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Figure 5-4 Frequency responses of transfer function Jsr(s)/Ich(s) for various operating points 

 

5.7 Robust controller design 

 After linearization of the battery model, an appropriate robust controller can be designed 

and associated to the original model to accomplish desired performance for the overall system. The 

following section summarizes an overview of different types of control strategies and the methods 

to evaluate their performance that can be used for this purpose.   

5.7.1 Overview of control system design and performance assessment 

 In this part, a general review on the concept of feedback and feedforward controller design 

is presented, followed by a section explaining about the criteria for stability and robustness 

evaluation.  

5.7.1.1 Output feedback control system  

Assuming a Single Input Single Output (SISO) system, Figure 5-5 represents the concept 

of output unity negative feedback control system. The control system component are introduced in 

Table 5-2.  The measured output is compared with the reference value (yref(t)) and the controller 

computes a corrective action to achieve a desired performance.  
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Figure 5-5 Unity-feedback control system 

 

Symbol Description 

𝐆(𝐬) Transfer function of linear plant model 

𝐮(𝐭) Control effort input 

𝐲(𝐭) Output (controlled signal) 

𝒚𝒎𝒆𝒂𝒔(𝒕) Measured output (e.g. measured by sensor) 

𝐂(𝐬) Transfer function of controller 

𝐲𝐫𝐞𝐟(𝒕) Reference value of output 

𝐝𝐮(𝒕) Disturbance on the plant input 

𝒅𝒚(𝒕) Disturbance on the plant output 

𝐧𝐦(𝒕) High frequency measurement noise 

Table 5-2 Unity-feedback Control system components 

 

The control system in Figure 5-5 is influenced by four external signals, the reference signal, 

the disturbance on the plant input, the disturbance on the plant output and the measurement noise. 

The variation of control signal, measured output, disturbance on output and disturbance on the 

control signal with respect to each other are of great interest for control engineering problems.  The 

following relations are the closed-loop transfer functions of interest (for simplicity of relations, the 

argument of all Laplace transforms are dropped):  

 
𝑇 =

𝑌𝑚𝑒𝑎𝑠
𝑌𝑟𝑒𝑓

= −
𝑌𝑚𝑒𝑎𝑠
𝑁𝑚

= −
𝑈

𝑃𝑢
=

𝐺𝐶

1 + 𝐺𝐶
, 

(5-8) 

 

 
𝑆 =

𝑌𝑚𝑒𝑎𝑠
𝑃𝑦

=
1

1 + 𝐺𝐶
, 

(5-9) 
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𝑆𝐺 =

𝑌𝑚𝑒𝑎𝑠
𝑃𝑢

=
𝐺

1 + 𝐺𝐶
, 

(5-10) 

 

 
𝐶𝑆 =

𝑈

𝑌𝑟𝑒𝑓
= −

𝑈

𝑁𝑚
=
𝑈

𝑃𝑦
=

𝐶

1 + 𝐶𝐺
. 

(5-11) 

 

These transfer functions are able to fully characterize a unity-feedback control system and 

their interesting properties can be used for the design of controllers.   

Based on the previous set of equations, function S can be re-written as the ratio between 

relative uncertainties of T and G by: 

 

𝑆 =

𝜕𝑇
𝑇
𝜕𝐺
𝐺

 

 

(5-12) 

It actually maps the output/input gain variation against the plant uncertainty, therefore it is 

called sensitivity function. Respectively, T which is obtained by: 

 𝑇 = 1 − 𝑆 (5-13) 

 

is called complementary sensitivity function. Accordingly relation (5-10), mapping the output to 

the input disturbance is called load disturbance or input sensitivity function and equation (5-11) 

relating the control signal to the measurement noise is called the noise sensitivity or control 

sensitivity function.  

Various design issues have to be respected for implementation of a control system. Basic 

requirements such as: stability, reference tracking, robustness disturbance and noise attenuation 

need to be taken into account depending on the application. For instance, the major goal in process 

control is often reduction of load disturbance while the main focus of motion control would be 

reference signal tracking. In this study, the primary target of the controller design is reference 

tracking in presence of plant uncertainties which is explained in details in section 5.7.3, therefore 

the requirements for achieving this target are reviewed shortly.   
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The aim is to observe convergence of the control system output y to the desired reference 

signal yref   under steady state conditions (long durations or low frequency range). This goal can be 

achieved by having open-loop gain of β= GC much greater than one at low frequencies i.e.: 

 
|𝐺𝐶| ≫ 1 → |𝑇| = |

𝐺𝐶

1 + 𝐺𝐶
| ≈ 1 

(5-14) 

5.7.1.2 Feedforward control system  

A controller with two degrees of freedom is shown in Figure 5-6. It consists of a feedback 

controller CFB, mainly to deal with process uncertainties and to reduce the disturbance effects, and 

a feedforward controller CFF designed to cope with the reference signal and to reduce the settling 

time of the control system. This kind of design with two degrees of freedom can provide a nice 

separation of control problem and compromises between the control effort (magnitude of control 

sensitivity function CS) and the bandwidth. 

 

Figure 5-6 Feedback-Feedforward control system 

5.7.1.3 Assessment of control systems 

Apart from achieving a good performance from a closed-loop system such as ability to 

follow the command signal, it is crucial to check its stability and robustness. Next two sections 

focus on this topic.   

5.7.1.3.1 Plant Stability  

Stability of the control system can be analysed using the Nyquist stability criterion, but 

more interesting in this study is to analyse the stability degree of the control system whether based 

on the open-loop or the closed-loop transfer functions.  
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Here the main focus is on the closed-loop stability degree which can be obtained whether 

in time domain or in frequency domain features. The diagram in Figure 5-7 shows the summary 

of the ways to estimate the stability degree using both features.  

 

Figure 5-7 Criteria for analysis of stability degree 

5.7.1.3.2 Uncertainty and robustness 

The other important characteristic of the control system to be investigated is the ability to 

deal with variations in the plant components. Trade-offs between robustness and performance is a 

key issue for design. A multiplicative uncertainty ΔG(s) for a perturbed SISO system Gnom(s), can 

be defined as:  

 𝐺(𝑠) = 𝐺𝑛𝑜𝑚(𝑠)Δ𝐺(𝑠). (5-15) 

 

The frequency uncertainty domain associated to the Nichols plot of Gnom(s) is defined by all 

the possible values of the pair {|Δ𝐺(𝑗𝜔)|, 𝑎𝑟𝑔Δ𝐺(𝑗𝜔)}. A novel approach for robustification of 

intelligent charging controller in frequency domain is employed in section 5.7.3 by minimizing the 

variations in the resonant peak of the complementary sensitivity function. This approach ensures 

the robustness of time-domain characteristics as well, which is the final goal of robust controller 

design.  

5.7.2 Closed-loop control 

As shown by Figure 5-8, the goal is to design a controller with two degrees of freedom 

using separated controller signals. The robust feedback is to ensure an accurate tracking of the 

desired output whereas the feedforward permits the initialization of the plant input. In our case 

study, both the reference signals (optimal trajectories) of the plant model input ICh,traj and output 

Jsr,traj are available. A Low Pass Filter (LPF) is used to smooth the reference current profiles. When 

the battery parameters are those used to optimize a charging profiles, the charging current ICharge 
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permitting the tracking of the optimal Jsr,traj equals the feedforward current ICh,FF and the feedback 

controller has no effect. In the opposite situation, in presence of process uncertainties, the feedback 

loop modifies the charging current in order to impose the computed optimal side reaction current 

to the cell. Since cell voltage Ucell, temperature T, and charging current ICharge are the only 

measureable signals, the side reaction current is estimated by an aging observer based on the cell 

model.    

 

Figure 5-8 Closed-loop configuration for the fast charging control 

5.7.2.1 CRONE control methodology 

The CRONE control methodology is the strategy used to design the controller C(s) of 

Figure 5-8 in this study. CRONE is French acronym which means: fractional order robust control. 

This is a frequency domain based technique that uses fractional differentiation orders as high-level 

design parameters [79]. Thus the tuning of the controller includes optimization of these parameters.  

 Fractional controllers can increase the robustness properties of a closed-loop system, as 

proved by Bode [80]. Based on his proposal, considering uncertainties originating from plant’s 

magnitude, the ideal shape of the Nyquist plot for open loop frequency response β(s) is a straight 

line in the complex plane. β(s) has thus a flat Bode phase plot, i.e. even if the gain changes, the 

gain margin is infinite. Infinite gain margin leads to insensitivity of the plant to the gain variations 

and that means robustness of the stability degree with respect to the parametric plant perturbation. 

β(s) can ensure such a property also in a closed-loop configuration. As proposed by the CRONE 

methodology Bode’s ideal open loop transfer function can be obtained from the fractional-order 

transfer function of non-integer order α:  

 𝛽(𝑗𝜔) = 𝐶𝐺(𝑗𝜔) = (
𝜔𝑐𝑠
𝑠
)
𝛼

. 
(5-16) 
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The fractional order α enables parameterization of the open-loop transfer function with a 

reduced number of parameters.   

Another advantage of using CRONE methodology is facilitating non-conservative robust 

control system with better performance. This feature is due to assessment of well-structured 

frequency uncertainty domains of the plant (also called templates or perturbations), resulting to 

avoid overestimation of perturbations and better performance of the overall system.   

The above-mentioned interesting characteristics of CRONE methodology makes it a 

promising candidate to be incorporated in the design and control of unstable systems, time varying 

plants and, nonlinear systems whose nonlinear behaviors are taken into account by sets of linear 

equivalent behaviors like our case of study, batteries. [81] 

5.7.2.1.1 Three generations of CRONE controller 

Three CRONE methods have been developed, successively extending the field of 

application of each generation in the control system design. In these three methods the controller 

or open-loop transfer function is defined using fractional order integro-differentiation.  

The main criterion for the classification of different generations of Crone controllers is the 

plant uncertainty origin, whether coming from the gain and/or phase of the plant. According to this 

criterion, the three generations of CRONE controller are now defined as:  

1st Generation- 1st generation of CRONE controller is applicable in the case of observing gain-

like perturbations of the plant and constant phase in the frequency range around open loop gain 

cross-over frequency ωcg. Thus for the configuration shown in Figure 5-5, the controller C(s) is 

defined by: 

 

𝐶(𝑠) = 𝐶0 (
𝜔𝐼
𝑠
+ 1)

𝑛𝐼
(
1 +

𝑠
𝜔𝑙

1 +
𝑠
𝜔ℎ

)

𝑛

1

(1 +
𝜔𝐹
𝑠 )

𝑛𝐹
 . 

(5-17) 

It consists of a gain, an integrator, a band-limited fractional order operator in the frequency 

range of interest [ωl, ωh], and a low pass filter. The combination of the mentioned operators ensures 

a limited control effort level and reduction of steady-state errors. The desired closed-loop 

performance is obtained by tuning of integer parameters nI, nF and the fractional order n. A 1st 
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generation CRONE controller can be considered as a PID controller with a constant phase 

fractional order derivative part.  

2nd Generation- The 2nd generation of Crone controller is used when in addition to gain-like 

perturbations, plant phase variation is also observed around the gain crossover frequency ωcg. This 

robust controller is designed based on a fractional order open-loop transfer function inspired by 

Bode’s ideal transfer function explained in section 5.7.1. 

 
𝛽(𝑠) = (

𝜔𝑐𝑔

𝑠
)
𝑛

. 
(5-18) 

In order to reach the desired closed-loop behavior, parameters ωcg and n can be tuned 

resulting a constant phase open-loop frequency response, also called template, as presented by the 

Nichols chart of Figure 5-9. Even after vertical displacement of the template, uncertainties shown 

by the gray area on Figure 5-9, does not vary the phase margin Mϕ and the resonant peak Mr , 

ensuring the robustness property.  

 

Figure 5-9 Robustness of stability degree in presence of uncertainties for 2nd generation CRONE 

controller 

3rd Generation- By replacing the real fractional order n by a complex order, the 3rd generation of 

the CRONE controller is defined for any perturbed SISO system. It widens the application domain 

of the 1st generation by permitting to change gain-crossover frequency and widens the application 

of the 2nd generation by providing the possibility to handle more general uncertainties using a 

complex number for the fractional order. As shown in Figure 5-10, the vertical template of the 
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second generation is replaced by a generalized template with any angle. The designing method of 

3rd generation CRONE controller is explained in more details in the following section.  

 
Figure 5-10 Generalized template for the 3rd generation of CRONE controller 

 

5.7.2.1.2 3rd generation of CRONE controller 

The main concept of the 3rd generation CRONE controller is to optimize the parameters of 

a nominal open-loop transfer function βnom(s) based on a band-limited complex fractional order 

integration: 

      𝛽nom(𝑠) = 𝛽I(𝑠)𝛽m(𝑠)𝛽h(𝑠) (5-19) 

where βI(s) represents a nI integer order proportional integrator described by: 

    𝛽l(𝑠) = 𝐶l (
𝜔𝑁−

𝑠
+ 1)

𝑛𝑙
, 

(5-20) 

and βm(s) is a set of band-limited generalized templates: 

 

   𝛽m(𝑠) = ∏ 𝛽m𝑘(𝑠)

𝑁+

𝑘=−𝑁−

, 
(5-21) 

with 

 

 𝛽m𝑘(𝑠) = 𝐶𝑘 (𝛼𝑘

1 +
𝑠

𝜔𝑘+1

1 +
𝑠
𝜔𝑘

)

𝑎𝑘

(ℜ𝑖 {(𝛼𝑘

1 +
𝑠

𝜔𝑘+1

1 +
𝑠
𝜔𝑘

)

𝑖𝑏𝑘

})

−𝑞𝑘𝑠𝑖𝑔𝑛(𝑏𝑘)

 

(5-22) 

 

where 
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𝛼𝑘 = (
𝜔𝑘+1

𝜔𝑘
)
0.5

for 𝑘 ≠ 0, and 𝛼0 = (
1+(

𝜔r
𝜔0
)
2

1+(
𝜔r
𝜔1
)
2)

0.5

 

(5-23) 

                                                           

and βh(s) is a low-pass filter of order nh: 

 
   𝛽h(𝑠) = 𝐶h (

𝑠

𝜔𝑁+
+ 1)

−𝑛h

. 
(5-24) 

Order nI  can be tuned to cancel steady-state error and reach the desired controller accuracy. 

CI, Ck, and Ch are adjusted in a way to set ωr as the resonant frequency. By modifying the value of 

order nh, a proper or strictly proper controller can be achieved. The optimization of the open-loop 

parameters are done in a way to minimize the variations of the resonant peak Mr of the 

complementary sensitivity function T(s), which is equivalent to minimizing the following 

robustness objective function: 

  𝐽 = 𝑠𝑢𝑝
𝐺
𝑀r −𝑀rnom (5-25) 

where Mrnom is a desired value of the nominal closed-loop resonant peak (for the nominal plant 

Gnom), while considering the following set of performance inequality constraints on the sensitivity 

functions for 𝜔 ∈ 𝑅+: 

 𝑖𝑛𝑓
𝐺
|𝑇(𝑗𝜔)| ≥ 𝑇l(𝜔), 𝑠𝑢𝑝

𝐺
|𝑇(𝑗𝜔)| ≤𝑇u(𝜔) 

𝑠𝑢𝑝
𝐺
|𝑆(𝑗𝜔)| ≤ 𝑆u(𝜔), 𝑠𝑢𝑝

𝐺
|𝐶𝑆(𝑗𝜔)| ≤𝐶𝑆u(𝜔) 

                                       𝑠𝑢𝑝
𝐺
|𝐺𝑆(𝑗𝜔)| ≤𝐺𝑆u(𝜔) (5-26) 

 

where T(s), S(s), CS(s), and SG(s) are defined by relations (5-8) to (5-11). 

In the Nichols chart, the frequency uncertainty domains of the open-loop frequency 

response are invariant and equal to those of the plant. By minimizing J in (5-25), the optimal 

parameters place the uncertainty frequency domains so that they overlap as little as possible with 

the low stability margin areas of the Nichols chart. Since the uncertainties are taken into account 

by the least conservative method, only a nonlinear optimization method can be used. For N- = N+ 

= 0 in (5-21), only four independent open-loop parameters should be optimized. They can be ω0, 
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ωl  ωr and Yr=|(jr)|dB. The other open loop parameters such as a0 and b0 are then derived in order 

to ensure the tangency of Gnom(jω) to the desired Mrnom circle of the Nichols chart. 

Finally, the closed-loop fractional controller C(s) can be found from the ratio of the 

frequency responses of the optimal open-loop and nominal plant inversion: 

 𝐶F(j𝜔) =
𝛽nom(j𝜔)

𝐺nom(j𝜔)
. (5-27) 

For this purpose, by means of an appropriate frequency domain system identification 

method such as pole/zero allocation, parameters of an integer-order transfer CR(s) function are 

tuned to fit the ideal frequency response of CF(s). An advantage of this design method is that low 

values of the controller order (usually less than 6) can be used, regardless of the control problem 

complexity. Besides that, avoiding overestimation of plant perturbation leads to achieve a better 

performance by implementing a non-conservative robust control system. 

5.7.3 CRONE controller design 

The gain behavior of the plant is respectively of order 1 and 0 at low and high frequencies. Thus, 

the open loop orders 𝑛l  = 2 and 𝑛h  =  1 ensure that the controller behaves as an integrator at low-

frequency and as a low-pass filter at high-frequency. The parameters of the nominal open-loop 

transfer function (5-19) are optimized to minimize the variation of complementary sensitivity 

function resonant peak through criterion (5-25) and to ensure the following design specifications:  

- a nominal resonant peak 𝑀Tnom of T of 1.7dB for a small nominal overshoot of the step response 

corresponding to the reference signal of Jsr; 

- a resonant peak of sensitivity function S lower than 6dB to achieve a good stability degree; 

- a bandwidth of higher than 0.2 rad/s; 

- control effort noise lower than 10A (𝐼ch) for a 10-5A high-frequency variation of 𝐽sr. 

The optimal parameters of the open-loop plant meeting the specified requirements are obtained 

using the CRONE control toolbox [28, 82]. They are: 𝑌r  = 3.8 𝑑𝐵, 𝜔r = 1.5 𝑟𝑎𝑑. 𝑠
−1, 𝜔0 =

0.1 𝑟𝑎𝑑. 𝑠−1 and 𝜔1 = 7.5 𝑟𝑎𝑑. 𝑠
−1. Thus, the fractional integration order is given by 𝑎0 =  1.42 

and 𝑏0  =  −0.46. Figure 5-11 shows the Nichols chart of the optimized nominal transfer function 

and respective frequency uncertainty domains. It can be seen that the closed-loop system is stable 

since the nominal open-loop and its corresponding uncertainty domains are far enough from the 
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instability point (-180°, 0 dB). The green curve is actually a set of convex hulls, where each convex 

hull defines the frequency uncertainty domain of G (j) for a specific frequency. The Nichols chart 

contains all the possible values of G (j) for frequencies logarithmically spaced between 10-4rad/s 

and 103rad/s.  

 

Figure 5-11 Nichols chart of the nominal plant and associated uncertainties 

At this step, fulfilling the design specifications is verified using the magnitude plots of the 

four sensitivity functions in Figure 5-12. The magnitude of the complementary sensitivity function 

T, sensitivity function S, load disturbance sensitivity function SG and control sensitivity function 

KS do not cross the defined constraints (dashed lines). The small resonant peaks on T and S 

functions ensure the robustness. As the plant output has to converge to a reference value, for low 

frequency (long durations) the complementary sensitivity function T, has to be close to one (0 dB) 

within this frequency range. 



86 

 

 

Figure 5-12 Magnitude plots of the four sensitivity functions 

From the desired frequency response of the controller, an order 4 rational transfer 

function is synthesized. The block diagram is shown in Figure 5-13. 

 

Figure 5-13 3rd generation CRONE controller 

Due to the integrating nature of the designed controller, it was observed that the output 

charging current exceeds saturated value of the input current and the windup phenomenon could 

lead to instability of the closed-loop system. On the other hand, applying large input currents results 

in short settling time for the system which is desirable.  Thus in case of windup phenomenon, a 
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promising solution used in this work is to feedback the integral part of the linear controller so that 

the controller output remains close to the saturated values during saturation time. The concept is 

depicted in Figure 5-14, where the anti-windup system is incorporated with the primary controller. 

Figure 5-14 represents the block diagram of the resulting controller. It is able to suppress 

the undesired increase of charging current due to the integrator error accumulation. The safety limit 

for the battery under investigation is the maximum charging current of 3.5 C. 

 

Figure 5-14 Block diagram of the fast charging controller 

5.7.4 CRONE controller performance analysis 

The fast charging controller is implemented in the control loop of Figure 5-8 including the 

nonlinear battery model described in chapter 4. Battery dynamics vary by aging and large 

temperature variation. Thus the sensitivity of the closed-loop system to the process dynamics is an 

important issue that should be dealt. In order to investigate the performance and robustness of the 

controller to changes in the battery parameter values, a robustness analysis has been made, where 

the changes in the system response is monitored with response to relative changes in the battery 

parameters. Figure 5-15 presents the tracking of a previously optimized side reaction profile at 

10°C, for the cell at BOL, but with a model in which parameters indicating the aging, including the 

cell high frequency resistance (Ω), cell actual capacity (Ah), initial thickness of SEI layer (nm), 

and specific surface area of anode (𝑚−1) were varied by ~ ± 20%. It can be concluded from Jsr 

diagram that the tracking performance is guaranteed with respect to plant uncertainties with a 

maximum tracking error of approximately 2 μA.m-3.  
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Figure 5-15 Reference tracking in case of parameter variations 

 

Thanks to a robust CRONE feedback loop, the controller provides an enhanced closed-loop 

performance to track the side reaction current trajectories (corresponding to an optimal charging 

current) and responding well to slow system dynamics. To the best knowledge of the author, this 

is the first work proposing a closed-loop control strategy for a health-conscious fast charging based 

on a thorough electro-thermal aging battery model. 

However, using this strategy, reaching the final value SOC is not guaranteed. Therefore in 

a subsequent step, some modifications to the control strategy are proposed to attain the desired 

target SOC level. The designed controller in Figure 5-14 is incorporated in an inner loop of a 

cascade setup, to design a comprehensive controller being able to also achieve the target SOC 

during charging. The target is achieved by re-scaling the recorded optimal trajectories of charging 

current and side reaction current profiles against the SOC.  
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Figure 5-16 Cascade charging controller 

 

The robustness property of the modified control strategy is examined by moderate variation 

(up to 10%) of some process parameters including initial temperature, electrolyte resistance, and 

initial thickness of SEI layer. The simulation is performed at 10°C for the cell at its BOL. The 

results are depicted in Figure 5-17, where the first diagram is representing the comparison between 

the optimal charging current from the trajectory planning and the current generated by the 

controller. In this case, the controller output deviates from the optimal current profile in order to 

keep the track of the optimal side reaction current shown in the second diagram of Figure 5-17 with 

neglectable tracking error presented in the third diagram. It can be seen that using the modified 

control loop, target SOC of 80% is reached within the desired charging time of 20 minutes.   
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Figure 5-17 Charging in presence of process uncertainties using the cascade controller 

5.8 Conclusion and future work 

It is demonstrated in this chapter that the dynamic behavior of the battery model varies 

substantially according to the battery age. This issue needs to be addressed specially during optimal 

charging of batteries. Thus a cascade feedforward-feedback controller is designed in order to track 

specific reference trajectories in presence of large parametric uncertainties. Using feedforward 

technique, the open loop performance is highly improved by acting quickly towards fast dynamics. 

Thanks to a robust CRONE feedback loop, the controller provides an enhanced closed-loop 

performance to track the side reaction current trajectories (corresponding to an optimal charging 

current) and responding well to slow system dynamics. To the author’s best knowledge this is the 

first work proposing a closed-loop control strategy for a health-conscious fast charging based on a 

thorough electro-thermal aging battery model.  

For a future study, a thorough investigation can be performed to identify the best aging 

criteria in terms of observability. After trajectory planning and based on a sensitivity analysis, this 

signal can be used as the best candidate for control signal and for design of a charging controller. 
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In spite of its efficiency, the control loop of figure 5-18 cannot be implemented easily in a 

car controller. The charging controller indeed requires the computation of the side reaction current 

and charge current trajectories. In this chapter, they are obtained after the optimization of a charging 

profile using the method described in section 5.2. However, this optimization problem involves a 

large number of parameters and requires implementation of a nonlinear optimization routine. Such 

an approach is really time and resource consuming and prevents any implementation in a car BMS. 

That is why the next chapter is dedicated to the design of an efficient profile optimization method. 
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The intelligent charging methodology developed in the previous chapter (see Figure 5-6) 

requires a reference current that is captured offline using an optimization algorithm described in 

section 5.2 The optimization algorithm runs the battery model under different conditions iteratively 

to find the best possible scenario for fast charging. As observed in chapter 5.2, comparably long 

simulation time of the nonlinear battery model is problematic for implementing the algorithm on a 

battery control unit.   

In order to succeed in achieving an efficient online charging current profile optimization, three 

types of simplifications can be investigated: 

1- Simplification in definition of charging profiles 

2- Simplification in the structure of the battery model 

3- Simplification in the optimization scheme  

In the following sections, some proposals are given to solve this issue in order to reach an 

easily implementable solution for charging profile optimization. 

6.1 Empirical simplification of charging profiles 

The goal is to find general patterns for the optimal charging profiles by interpreting the 

behaviour of the profiles obtained in chapter 5.2. According to this concept, each optimal profile 

pattern will be characterized by only a few independent parameters comparing to other profiles 

such as MCC. This simplification by using pre-defined charging profiles leads to reduce the 

execution time of the optimization and to facilitate an online optimization method.  

Decision on the general shape of an optimal profile is based on an investigation on the 

previous researches done in this field and the observations from trajectory planning results in 

chapter 5. For the first time, Mas [83] introduced an ideal charging acceptance diagram to minimize 

the rate of gassing reaction in Lead-Acid batteries. According to his hypothesis, large current is 

permissible to be applied in the beginning of charging procedure. Charging efficiency maintains 

very well until start of the unwanted gassing phenomenon. By continuing the charging, mass 

transport for the reaction triggers the polarization effect. As a result of polarization, battery 

charging efficiency reduces gradually. When battery voltage reaches the critical voltage of gassing, 

charging current has to be reduced in order to slow down the unwanted gassing reaction. Thus to 

keep high efficiency for fast charging, it is recommended to input as much charge as possible before 
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start of gassing. This means a monotonically decreasing shape for the charging profile. Besides 

that, by analysing the results obtained from the trajectory planning, it can be observed that the 

optimal profiles have a strictly decreasing behaviour versus SOC (resp. time).  

Another issue with charging profile optimization method used in chapter 5 was with using 

fmincon as the optimizer. The problem with fmincon is that, it is not implementable for the real-

time application on Electronic Control Units (ECU). Besides that, it is an iterative approach that 

runs the battery model several times in each iteration which is very resource consuming and 

computationally intensive. Thus, the optimization method in this case, can be simplified with less 

optimization parameters and a more efficient algorithm. One idea is to replace fmincon, by a user-

defined function, implementable on ECU and with less computational effort. This topic will be 

discussed in more details in section 6.3  

According to the mentioned points, two patterns with affine shape and polynomial shape 

have been investigated in the following sections. For all the different possible patterns, two 

conditions hold: 

- fixed charging time of tch 

 

- fixed amount of charge denoted by Qc is transferred (correlating to a certain SOC range)  

6.1.1 Affine profile pattern 

This kind of profile is specified by initial charging current I0 (y-axis intersection) and slope 

α.  Taking into account the constraints on a fixed charging time and a given amount of  transferred 

charge (area under the curve), the following relation is deduced: 

 𝛼 =
2(𝐼0𝑡𝑐ℎ−𝑄𝑐)

𝑡𝑐ℎ
2  . (6-1) 

 

Figure 6-1 Affine-shape profile pattern 
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It means, searching for an optimal charging profile using affine profile pattern reduces the 

optimization to search for only one independent parameter α. 

6.1.2 Polynomial profile pattern 

A Polynomial shape can be a good candidate providing a smooth transition from a semi-

constant current phase to a semi-constant voltage phase. Analytical relation for a minimum-degree 

polynomial is:  

 𝐼(𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡2 + 𝑑𝑡3. (6-2) 

The following constraints hold for a polynomial shape charging profile that can further 

reduce the complexity of the expression in (6-2): 

 
(𝐼) ∶              

𝑑𝐼(𝑡)

𝑑𝑡
|
𝑡=0

= 0 → 𝑏 = 0 ;  
(6-3) 

 
             (𝐼𝐼) ∶              

𝑑𝐼(𝑡)

𝑑𝑡
|
𝑡=𝑡𝑐ℎ

= 0 → 𝑐 = −1.5𝑑𝑡𝑐ℎ ; 
(6-4) 

 
             (𝐼𝐼𝐼): ∫ 𝐼(𝑡)𝑑𝑡 = 𝑄𝑐 → 𝑎 =

𝑄𝑐 + 0.25 𝑑𝑡𝑐ℎ
4

𝑡𝑐ℎ

𝑡𝑐ℎ

0

 ; 
(6-5) 

   (𝐼𝑉):  0 ≤ 𝑎 = 𝐼0 ≤ 3.5𝐶𝑐𝑒𝑙𝑙 → 𝑑𝑚𝑖𝑛 ≤ 𝑑 ≤ 𝑑𝑚𝑎𝑥 . 
  

(6-6) 

Figure 6-2 represents the conceptual profile with polynomial shape with the corresponding 

boundary conditions specified on the diagram. 

 

Figure 6-2 Polynomial-shape profile pattern 

From the mentioned constraints on the shape of the profile, relation (6-1) is reduced to the 

following equation, where only one independent parameter d exists. After optimization of 
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parameter d, parameters c and a can be computed accordingly from (6-4) and (6-5), and relation 

(6-2) becomes:  

 𝐼(𝑡) = 𝑎 + 𝑐𝑡2 + 𝑑𝑡3. (6-7) 

The performance of both affine and polynomial profiles are evaluated in the next section. 

6.1.3 Comparison of the simplified profiles with the state of the art profiles 

The two empirical profile patterns introduced are obtained at temperature of 35°C to charge 

a fresh cell from 5 to 80% SOC. The charging profiles are applied to the battery model as the input 

and corresponding capacity loss, side reaction current, temperature, SOC, and voltage are 

monitored.  Based on the simulation results presented in Figure 6-3, the polynomial profile appears 

to be a promising candidate in reduction of aging in terms of capacity loss and side reaction current 

comparing to other profiles including CCCV, MSCC and Affine. 

  

 Figure 6-3 Performance comparison of the optimal patterns with state of the art CCCV 

All of the different types of the optimal profiles demonstrate a reduction in the capacity loss 

and consequently less side reaction current. It can be seen that the side reaction current obtained 

by applying the polynomial profile has the smoothest variation especially rather than MSCC due 

to abrupt change of current amplitude in each constant current phase. The increase of temperature 

for the conventional CCCV profile is also greater than of the one using optimal charging profiles. 

Excessive temperature increase is one of reasons leading to higher capacity loss. Therefore, 
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polynomial profile is taken as the best pattern with least complexity and best performance for 

reduction of battery degradation.   

6.2 Simplifications in the structure of the battery model 

The battery model shown in chapter 4 (Figure 4-13), is a nonlinear model including several 

feedback loops with high computational effort leading to resource consumption problem. Various 

techniques can be employed to simplify the nonlinear battery model. Before exploring different 

possible methods for transformation of the model into a less complicated structure, some 

simplifications can be regarded in the arrangement of the model in Figure 4-13.  

First, the electrode model for the anode and the cathode illustrated in Figure 6-7 is taken into 

account and the following modifications are proposed to decrease the model simulation time: 

1- substituting the OCP lookup table (refereed as OCP LUT) by its equivalent polynomial 

function with the method introduced in section 6.3  

 

2- suppression of the loop including the side reaction current jsr; 

 

3- linearization of inverse Butler-Volmer sub-system; 

 

4- simplification of the thermal sub-system using Volterra series  

 

In the following parts, each proposal is explained and validated. The first proposal is already 

discussed in chapter 3. The second proposal concerns relation (4-6) and is based on two hypotheses:  

- the magnitude of side reaction current jsr, is negligible in relation to the magnitude of the 

intercalation (main reaction) current jI.  

- SEI thickness remains almost constant during a single fast charging cycle  

In order to evaluate the truth of these hypotheses, a simulation test has been performed. In 

this test a current profile (Figure 6-4) is imposed to the model once before cutting the loop 

including jsr and with a variable SEI thickness, and once after cutting the side reaction loop and 

with a constant SEI thickness. Subsequently the side reaction (Figure 6-5) and the cell terminal 

voltage, ( 

Figure 6-6) for both cases are measured and compared. It can be deduced that cutting the 

closed-loop (i.e 𝑗𝑟𝑒𝑚𝑎𝑖𝑛 = 𝑗𝐼) and assuming a constant SEI layer thickness during one fast 
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charging cycle has no significant influence on the outputs of the model and is a valid hypothesis 

that leads to simplicity of the battery model.  

 

Figure 6-4 Current profile for validation of the second proposal 

 
(I) 

 

 

 
(II) 

 

 

 
          (III) 

 Figure 6-5 Side raction current (I) by assuming a variable SEI thickness (II) by assuming a 

cosntant SEI thickness and (III) relative error of both cases 
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   (I) 

 
         

       (II) 

 

Figure 6-6 Cell terminal voltage (I) before and (II) after breaking the jsr loop 

 

The third proposal is related to the inverse Butler-Volmer sub-system introduced by relation 

(3-9). The polarization voltage of the cell 𝑈𝑝𝑜𝑙, which represents the variation of cell voltage from 

its steady state value, (also input to the thermal sub-model) is defined by relation (6-8). 𝑈𝑖
𝑠𝑠 denotes 

the steady-state electrodes potential (where i =n (anode) or p (cathode)).  

 

 

 

 

𝑈𝑝𝑜𝑙 = (𝜙𝑠𝑝 − 𝜙𝑒𝑝)⏟        
𝑈𝑝+𝜂𝑝

− (𝜙𝑠𝑛 − 𝜙𝑒𝑛)⏟        
𝑈𝑛+𝜂𝑛+𝑅𝑆𝐸𝐼𝐼

− (𝑈𝑝
𝑠𝑠
− 𝑈𝑛

𝑠𝑠). 

 

(6-8) 

By rearranging the above equation, a distinction between the contribution from the Butler-Volmer 

sub-model Vy and electrode concentration model Vx, is made: 

 

 𝑈𝑝𝑜𝑙 = (𝑈𝑝 − 𝑈𝑛 − 𝑅𝑆𝐸𝐼𝐼 − 𝑈𝑝
𝑠𝑠 + 𝑈𝑛

𝑠𝑠)⏟                    
𝑉𝑥

+ (𝜂
𝑝
− 𝜂𝑛) .⏟      
𝑉𝑦

 (6-9) 
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Figure 6-7 Simplified model of the electrodes 

By assuming the proposed modifications, the remaining part of the global model in Figure 4-13 

which includes the thermal, aging and Butler-Volmer sub-models turns into the model of Figure 

6-8.  

 

Figure 6-8 Coupled aging-thermal- Butler-Volmer model after simplification 

The state-space representation of the Thermal-Butler-Volmer sub-model (denoted by thermal-

BV sub-model) is derived. Assuming the temperature Tcell as the state-variable, Vx,  and I as inputs, 

the nonlinear multiple-input single-output (MISO) ordinary differential equation (ODE) of the 

system is given by: 

 𝑇𝑐𝑒𝑙𝑙̇ = 𝑓(𝑇𝑐𝑒𝑙𝑙, 𝑉𝑥,, 𝐼, 𝑇𝑖𝑛𝑖𝑡, 𝑇𝑎𝑚𝑏). (6-10) 
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Thus based on the heat transfer equation (4-1), it expands to:  

 
𝑇𝑐𝑒𝑙𝑙̇ =

1

𝑚𝐶𝑝
(−ℎ𝐴𝑡𝑜𝑡(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑎𝑚𝑏) + 𝑅𝑓𝐼

2 + 𝑉𝑥𝐼 + (𝜂𝑛 − 𝜂𝑝)𝐼) 
(6-11) 

At this point, the behaviour of the Butler-Volmer sub-model is investigated by applying a 

constant current to the model in the range of 0 < 𝐼𝑐ℎ ≤ 100 (𝐴) to do a full charge and the 

respective average anode and cathode overpotential is measured. The results shown on diagrams 

of figure Figure 6-9, reveal a linear dependency of the electrode overpotential with respect to the 

input current.  

  

Figure 6-9 Variation of the electrode overpotential against input current in Butler-Vomer sub-

model 

Therefore the inverse Butler-Volmer function to obtain the electrode overpotential is 

approximated by a linear relationship, where mn and mp are the slopes of the diagrams in Figure 

6-9 for anode and cathode respectively. This permits the following simplifications:  

 
𝜂𝑛 =

𝑅𝑇

𝛼𝑛𝐹
𝑠𝑖𝑛ℎ−1(

𝑗𝑛
2𝑎𝑠

𝑛𝑖0𝑛
) ≈ 𝑚𝑛𝑇𝐼 

𝜂𝑝 =
𝑅𝑇

𝛼𝑝𝐹
sinh−1 (

𝑗𝑝

2𝑎𝑠
𝑝𝑖0𝑝

) ≈ 𝑚𝑝𝑇𝐼  

 

 

(6-12) 

Incorporating relation (6-19) into (6-18) results in:  

 
𝑇𝑐𝑒𝑙𝑙̇ =

1

𝑚𝐶𝑝
(−ℎ𝐴𝑡𝑜𝑡(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑎𝑚𝑏) + 𝑅𝑓𝐼

2 + 𝑉𝑥𝐼 + 𝑚𝑛𝑇𝑐𝑒𝑙𝑙𝐼
2 −𝑚𝑝𝑇𝑐𝑒𝑙𝑙𝐼

2). 
(6-13) 
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From (6-13), assuming that 𝑇𝑐𝑒𝑙𝑙 = 𝑇𝑖𝑛𝑖𝑡 + 𝛿𝑇𝑐𝑒𝑙𝑙, a nonlinear Multi-Input Single-Output 

(MISO) differential equation is derived where 𝛿𝑇𝑐𝑒𝑙𝑙 is the state-variable and four input signals 𝐼2, 

𝑉𝑥𝐼,Tamb and Tinit are identified: 

𝛿𝑇𝑐𝑒𝑙𝑙̇ =
1

𝑚𝐶𝑝
(−ℎ𝐴𝑡𝑜𝑡(𝑇𝑖𝑛𝑖𝑡 − 𝑇𝑎𝑚𝑏 + 𝛿𝑇𝑐𝑒𝑙𝑙) + 𝑅𝑓𝐼

2 + 𝑉𝑥𝐼 + 𝑚𝑛(𝑇𝑖𝑛𝑖𝑡 + 𝛿𝑇𝑐𝑒𝑙𝑙)𝐼
2

−𝑚𝑝(𝑇𝑖𝑛𝑖𝑡 + 𝛿𝑇𝑐𝑒𝑙𝑙)𝐼
2) 

(6-14) 

The whole thermal-BV sub-model thus is summarized by the block diagram of Figure 6-10: 

 

Figure 6-10 Input-Output System representation of coupled thermal-BV sub-model 

This sub-model incorporates a nonlinear MISO equation with plenty of parameters. Thus after 

the simplifications proposed by the first three hypotheses, this sub-model would be the main source 

of nonlinearity and computationally expensive. Based on this conclusion, thermal sub-model is the 

focus of the next section to be transformed to a less complicated structure using Volterra series 

approximation. Volterra series permit an implementation with only linear systems (whose output 

are combined with multiplication) that are thus easy to discretize and realizable with low level of 

complexity. Besides that it reduces the simulation and optimisation time of the model.  

6.2.2 Simplification of the nonlinear thermal model by Volterra series 

Volterra series are recently widely used for representation of input-output relationship of 

nonlinear dynamical systems. The concept was firstly introduced by Vito Volterra in 1887 [85] but 

due to high computational complexity of the method it was only extensively employed until 1990s, 

at the same time with advancement of computer and software technology. It is known as a good 

tool for modeling and analyzing the nonlinear systems. Use of Volterra series for representation of 

dynamical systems covers a wide range of application in several fields of engineering and physics. 

In field of mechanical engineering, it has been employed for systems modeling and identification, 

system design and fault diagnosis [86, 87].  It has a widespread application in electronic and 
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electrical engineering for instance in nonlinear distortion analysis, speech modeling and image 

processing [88, 89].  The application in control engineering is also of great interest, especially for 

accurate consideration of nonlinear factors in modelling of observers or controllers. There has been 

also an application of Volterra series for control of electrochemical storage systems. A study by 

Gruber where Volterra series are used for design of a nonlinear model predictive controller to adjust 

the airflow in a fuel cell  [90]. 

 Volterra Series are of a similar character as Taylor series but with advantage of considering 

memory effects. In addition to Volterra series, there exist a variety of mathematical tools for 

description and handling of nonlinear dynamic systems such as Taylor series, Wiener series, 

Hammerstein model, etc. For example Taylor series is a common method for representing 

nonlinear systems, where the output of the system depends on the input at a particular time. Wiener 

series which is the orthogonal expansion of functional series for nonlinear-time invariant systems, 

is developed to deal with the strict convergence region of Volterra series. The main issue with this 

method is difficult identification of kernel functions.  Hammerstein model is used for a specific 

case of a static nonlinear system followed by a linear dynamic system [91]. The main advantage of 

using Volterra series is in its generality that enables displaying the intrinsic characteristics of a 

nonlinear system in a rather simple and convenient way. 

The principal of the method lies in extension of standard convolution of linear systems to 

nonlinear systems. According to this method,  𝑦𝑛(𝑡) the n-th order output of the system with 𝑢(𝑡) as 

the input, can be represented by multi-dimensional convolution of n-th order Volterra kernel ℎ𝑛 

(comparable to impulse response for a linear system with n=1), given by:  

 
𝑦𝑛(𝑡) = ∫ …∫ ℎ𝑛(𝜏1, … , 𝜏𝑛)∏𝑢(𝑡 − 𝜏𝑖)𝑑𝜏𝑖

𝑛

𝑖=1

+∞

−∞

+∞

−∞

 
(6-15) 

The identification of Volterra kernel function can be done whether in time domain or frequency 

domain. Multi-dimensional Fourier transform of Volterra kernel function is called the Generalized 

Frequency Response Function (GFRF). In this work, the frequency domain identification is 

performed using harmonic probing or exponential input method proposed by Peyton Jones and 

Billings [92]. Based on this approach, input is a periodic multi-frequency excitation consisting of 

the sum of n exponentials presented by: 
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𝑢(𝑡) =∑exp (𝑠𝑟𝑡)

𝑛

𝑟=1

. 
 

(6-16) 

The system output 𝑦(𝑡), can be expressed as a Volterra functional polynomial of the input u(t) 

(where  𝑁̅ denotes the maximum order of the system nonlinearity):  

 
𝑦(𝑡) = ∑𝑦𝑛(𝑡)

𝑁̅

𝑛=1

= 𝑦1(𝑡) + 𝑦2(𝑡) + ⋯ 
(6-17) 

      A recursive algorithm is introduced in this study, to compute the nth-order frequency 

response function of a nonlinear model described by a nonlinear differential equation. The method 

involves essentially in derivation of system’s respective GFRFs under harmonic excitation. The 

GFRF of n-th order leads to the following relation for n-th order kernel: 

 
𝐻𝑛(𝑠1, … , 𝑠𝑛) = ∫ …∫ ℎ𝑛(𝜏1, … , 𝜏𝑛) exp(−(𝑠1𝜏1 +⋯+ 𝑠𝑛𝜏𝑛)) 𝑑𝜏1…𝑑𝜏𝑛

+∞

−∞

+∞

−∞

. 
 

(6-18) 

Thus the n-th order Volterra transfer function for a nonlinear system with exponential input 

covering the frequency spectrum up to 𝜔𝑟 is obtained by:  

 𝐻𝑛(𝑠1, … , 𝑠𝑛) =
1

𝑛!
× [ coefficients of  exp((𝑠1 +⋯+ 𝑠𝑛)𝑡)  𝑖𝑛 𝑦(𝑡; 𝜃, 𝜔𝑟) ]. (6-19) 

  

The term in the brackets states to extract the coefficients of the exponential functions having 

non-repetitive combinations of frequencies {𝜔1, … , 𝜔𝑟} the nth harmonics for nth order kernel. 

For the thermal nonlinear model, as the first step towards computing the Volterra kernels, the 

governing nonlinear differential equation of the coupled Thermal-BV sub-system is rewritten. 

Referring to the simplifications proposed in section 6.2 the original differential equation is given 

by relation (6-14).  Four inputs, u1, u2, u3, and u4 and one output, 𝛿𝑇𝑐𝑒𝑙𝑙 (temperature gradient) are 

identified for the nonlinear system, with: 

 

{
 

 
𝑢1(𝑡) = 𝐼

2(𝑡)

𝑢2(𝑡) = 𝑉𝑥(𝑡)𝐼(𝑡)

𝑢3(𝑡) = 𝑇𝑎𝑚𝑏(𝑡)

𝑢4(𝑡) = 𝑇𝑖𝑛𝑖𝑡

. 

(6-20) 

Renaming the coefficients by: 

𝑎 = −
ℎ𝐴𝑡𝑜𝑡

𝑚𝐶𝑝
, 𝑏 =

𝑚𝑛−𝑚𝑝

𝑚𝐶𝑝
, 𝑐 = −

𝑅𝑓

𝑚𝐶𝑝
 , 𝑑 =

𝑚𝑛−𝑚𝑝

𝑚𝐶𝑝
, 𝑒 = −

1

𝑚𝐶𝑝
, 𝑓 = −

ℎ𝐴𝑡𝑜𝑡

𝑚𝐶𝑝
, 𝑔 =

ℎ𝐴𝑡𝑜𝑡

𝑚𝐶𝑝
     (6-21) 



105 

 

and by dropping the time-dependency notation of the signals, relation (6-19) changes to a compact 

standard form of: 

 𝛿𝑇𝑐𝑒𝑙𝑙̇ = −𝑎𝛿𝑇𝑐𝑒𝑙𝑙 − 𝑏𝛿𝑇𝑐𝑒𝑙𝑙𝑢1 − 𝑐𝑢1 − 𝑒𝑢2 − 𝑔𝑢4 − 𝑑𝑢4𝑢1 − 𝑓𝑢3. (6-22) 

For each kernel, the input is sum of exponentials up to kernel’s order. Thus the first kernel, 

which is indeed the Fourier transform of the linear part of the nonlinear system and therefore 

identical to a linear transfer function, is calculated by defining the input signals as:  

 

 

{
 

 
𝑢1(𝑡) = 𝑟1exp (𝑠1𝑡)

𝑢2(𝑡) = 𝑟2exp (𝑠1𝑡)

𝑢3(𝑡) = 𝑟3exp (𝑠1𝑡)

𝑢4(𝑡) = 𝑟4 exp(𝑠1𝑡)

. 

(6-23) 

The resulting output signal y(t) (temperature gradient) is then supposed given by : 

 𝑦1(𝑡) = 𝐻1(𝑠1)exp (𝑠1𝑡). (6-24) 

Subsequently, the defined signals are replaced in equation (6-22) and by collecting the 

coefficients of the terms including exp (𝑠1𝑡), following expression is obtained for first kernel:    

 
𝐻1(𝑠1) =

−𝑒𝑟2 − 𝑓𝑟3 − 𝑔𝑟4
𝑎 + 𝑠1

. 
(6-25) 

The result shows traces of inputs u2, u3, and u4 yield in the formation of the first-order kernel. 

Figure 6-11 represents the corresponding block diagram of first-order kernel, where the 

contribution of u4 is in initialization of the integral block. 

 

Figure 6-11 Block diagram of the first order Volterra kernel 

  For calculation of the second order kernel, a more general periodic excitation composed of 

two harmonics is imposed shown by:  
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{
 

 
𝑢1(𝑡) = 𝑟1 exp(𝑠1𝑡) + 𝑟1exp (𝑠2𝑡)

𝑢2(𝑡) = 𝑟2 exp(𝑠1𝑡) + 𝑟2exp (𝑠2𝑡)

𝑢3(𝑡) = 𝑟3 exp(𝑠1𝑡) + 𝑟3exp (𝑠2𝑡)

𝑢4(𝑡) = 𝑟4 exp(𝑠1𝑡) + 𝑟4exp (𝑠2𝑡)

. 

(6-26) 

Substituting the input signals in relation (6-15), yields the following expression for the 

output:  

𝑦2(𝑡) = 𝐻1(𝑠1) exp(𝑠1𝑡) + 𝐻1(𝑠2) exp(𝑠2𝑡) + 𝐻2(𝑠1, 𝑠1) exp(2𝑠1𝑡) +
                                 2𝐻2(𝑠1, 𝑠2) exp(𝑠1𝑡) exp(𝑠2𝑡) +𝐻2(𝑠2, 𝑠2) exp(2𝑠2𝑡).                           (6-27) 

The same procedure is employed to obtain the relation for the second order kernel. 

Extracting the coefficients of the terms with two harmonics exp (𝑠1𝑡) × exp (𝑠2𝑡) leads to: 

 
𝐻2(𝑠1, 𝑠2) = −

1

2

𝑟1(𝑏𝐻1(𝑠1) + 𝑏𝐻1(𝑠2) + 2𝑑𝑟4)

𝑎 + 𝑠1 + 𝑠2
. 

(6-28) 

In order to implement its block diagram, firstly the obtained formula for the second kernel 

is decomposed to lower degree components based on Volterra realization theory [93]. As (6-28) 

can be rewritten by: 

𝐻2(𝑠1, 𝑠2) = (−
𝑏

2
) × 𝐻1(𝑠1) × 1 ×

1

𝑎 + 𝑠1 + 𝑠2
× 𝑟1 + (−

𝑏

2
) × 1 × 𝐻1(𝑠2)

×
1

𝑎 + 𝑠1 + 𝑠2
× 𝑟1 + (−𝑑) × 1 × 1 ×

1

𝑎 + 𝑠1 + 𝑠2
× 𝑟1 × 𝑟4 

(6-29) 

The corresponding block diagram is presented by Figure 6-12 (assuming: 𝐺(𝑠) =
1

𝑎+𝑠
). 

 

Figure 6-12 Block diagram of the second order Volterra kernel 

Due to the symmetry observed in the two upper branches, the block diagram of Figure 6-12 

is further simplified (Figure 6-13).    
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Figure 6-13 Simplified block diagram of the second order Volterra kernel 

The calculation of Volterra kernel is done for the third kernel as well. For the third order 

kernel calculation, a periodic input composed of three harmonics is used for perturbation of system: 

 

{
 

 
𝑢1(𝑡) = 𝑟1 exp(𝑠1𝑡) + 𝑟1 exp(𝑠2𝑡) + 𝑟1exp (𝑠3𝑡)

𝑢2(𝑡) = 𝑟2 exp(𝑠1𝑡) + 𝑟2 exp(𝑠2𝑡) + 𝑟2exp (𝑠3𝑡)

𝑢3(𝑡) = 𝑟3 exp(𝑠1𝑡) + 𝑟3 exp(𝑠2𝑡) + 𝑟3exp (𝑠3𝑡)

𝑢4(𝑡) = 𝑟4 exp(𝑠1𝑡) + 𝑟4 exp(𝑠2𝑡) + 𝑟4exp (𝑠3𝑡)

.  

(6-30) 

The corresponding output is then given by: 

 𝑦3(𝑡) =  𝐻1(𝑠1) exp(𝑠1𝑡) + 𝐻1(𝑠2) exp(𝑠2𝑡) + 𝐻1(𝑠3) exp(𝑠3𝑡)

+ 𝐻2(𝑠1, 𝑠1) exp(2𝑠1𝑡)

+  2𝐻2(𝑠1, 𝑠2) exp(𝑠1𝑡) exp(𝑠2𝑡)+𝐻2(𝑠2, 𝑠2) exp(2𝑠2𝑡)

+ 2𝐻2(𝑠1, 𝑠3) exp(𝑠1𝑡) exp(𝑠3𝑡)

+ H2(s3, s3)exp(2𝑠3𝑡) + 2𝐻2(𝑠2, 𝑠3) exp(𝑠2𝑡) exp(𝑠3𝑡)

+ H3(𝑠1, 𝑠1, 𝑠1) exp(3𝑠1𝑡) + 3𝐻3(𝑠1, 𝑠1, 𝑠2) exp(2𝑠1𝑡) exp(𝑠2𝑡)

+ 3𝐻3(𝑠1, 𝑠2, 𝑠3) exp(2𝑠1𝑡) exp(𝑠3𝑡)

+ 3𝐻3(𝑠1, 𝑠2, 𝑠2) exp(𝑠1𝑡) exp(2𝑠2𝑡)

+ 6𝐻3(𝑠1, 𝑠2, 𝑠3) exp(𝑠1𝑡) exp(𝑠2𝑡) exp(𝑠3𝑡)

+ 3𝐻3(𝑠1, 𝑠3, 𝑠3) exp(𝑠1𝑡) exp(2𝑠3𝑡) + H3(𝑠2, 𝑠2, 𝑠2) exp(3𝑠2𝑡)

+ 3H3(𝑠2, 𝑠2, 𝑠3) exp(2𝑠2𝑡) exp(𝑠3𝑡)

+ 3H3(𝑠2, 𝑠3, 𝑠3) exp(𝑠2𝑡) exp(2𝑠3𝑡) + H3(𝑠3, 𝑠3, 𝑠3) exp(3𝑠3𝑡) 

(6-31) 

Thus the third order kernel is: 

 𝐻3(𝑠1, 𝑠2, 𝑠3) = −
𝑏

3

𝑟1(𝐻2(𝑠2,𝑠3)+𝐻2(𝑠1,𝑠3)+𝐻2(𝑠1,𝑠2))

𝑎+𝑠1+𝑠2+𝑠3
. (6-32) 

The simplified form of the kernel function split into lower degree kernels is given by:  

 𝐻3(𝑠1, 𝑠2, 𝑠3) =
𝑏

3
(𝐻2(𝑠1, 𝑠2) × 1)

1

𝑎+𝑠1+𝑠2+𝑠3 
× 𝑟1 +

𝑏

3
(𝐻2(𝑠2, 𝑠3) ×

1)
1

𝑎+𝑠1+𝑠2+𝑠3 
× 𝑟1 + 

𝑏

3
(𝐻2(𝑠1, 𝑠3) × 1)

1

𝑎+𝑠1+𝑠2+𝑠3 
× 𝑟1. 

(6-33) 

The respective block diagram is shown by Figure 6-14.   
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Figure 6-14 Simplified block diagram of the third order Volterra kernel 

At this stage, the overall output of the system, temperature gradient 𝛿𝑇 can be reconstructed 

from the Volterra system components: 𝐻1(𝑠1), 𝐻2(𝑠1, 𝑠2), and 𝐻3(𝑠1, 𝑠2, 𝑠3) represented in Figure 

6-15. The underlying system components in Volterra approximated system is illustrated in figure 

Figure 6-16 with aim of reducing the computational complexity.  

 

Figure 6-15 Replacing the Thermal-BV sub-system by its Volterra approximated equivalent 

 

Figure 6-16 Interconnection of the elementary blocks with a simpler structure 

Figure 6-17 depicts the magnitude Bode plots of the Volterra kernels. It is observable from 

the diagrams that the magnitude of the kernel decreases with the order. The steady-state gain of 5 
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dB, -130 dB, and -120 dB (for the case with 𝜔3 = 0
𝑟𝑎𝑑

𝑠
) are obtained for the first, second and third 

kernel respectively. Thus under steady-state conditions, the contribution of each kernel for a 

charging current with amplitude of Ich drastically reduces.  

 
(a) 

 
(b) 

 
(c) 

Figure 6-17 Magnitude Bode plot of the Volterra kernels: (a) first kenel magnitude plot, (b) 

second order kernel magnitude plot third order kernel magnitude plot at frequencies of (c) 𝜔3 =

0 
𝑟𝑎𝑑

𝑠
 

6.2.2.1 Validation of the Volterra-based model 

 In this section, the ability of the Volterra-based model in simulation of aging phenomenon 

is examined which is of main interest for online charging optimization. For this purpose, various 

test conditions are considered to cover a big operating range of the cell. As already discussed in 

chapter 4, temperature and SOC range are identified as highly influencing factors on battery aging. 

Thus validation tests conditions employed are summarized in table Table 6-1:  
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Table 6-1 Test specifications for validation of Volterra-based model 

According to these test specifications, model-based optimization using the polynomial 

profile pattern explained in section (6.1.2) is carried on both original nonlinear model and the 

simplified Volterra-based model. The optimal profile obtained by each optimization is imposed to 

the original nonlinear model, and the respective aging in terms of capacity loss (the value of 

optimization cost function) is measured and presented on a diagram against the experiment number 

in Figure 6-18.  

 

Figure 6-18 Comparison of Nonlinear model and Volterra-based model in aging estimation 

The results show that the aging estimated by the optimal profile using Volterra-based model 

matches well the aging predicted by imposing the current profile obtained from optimization of 

original nonlinear model. The deviation in aging estimation is more noticeable by charging at larger 

SOC ranges, where the Volterra-based model underestimates the capacity loss comparing to the 

nonlinear model. The reason is that the nonlinear nature of the battery appears strongly at extremely 
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low and high SOC levels, due to larger gradient of Li-ions at the electrode/electrolyte interface 

[47].   

An example of the performed experiments is shown in Figure 6-16. Optimization with 

interior-point algorithm is performed at temperature of 0°C and SOC range of 10-85% (experiment 

number 2) once based on the nonlinear model and once with respect to the Volterra-based model 

(left diagram). Due to simpler structure of the Volterra-based model, optimization algorithm 

converges to the minimum faster and with less iterations. The simulation time for each 

optimization, is also given in the table. Using the Volterra-based model the time needed for the 

model-based optimization is reduced by 37%. The optimal current profiles for each model obtained 

from the optimization are presented on the right diagram in Figure 6-16. 

. 

 

 

 

 

 

 

Type of model Simulation time [s] 

Nonlinear model 14.65 

Volterra-based model 9.15 

 

Figure 6-19 Optimization cost function against iteration number 

  In a subsequent step, the optimal profiles are imposed to the original nonlinear model to 

estimate the capacity loss and the temperature rise and respective estimation error shown in Figure 

6-20. Since the thermal sub-model in the original nonlinear model is partly replaced by Volterra-

based sub-model, it is of great interest for the application of intelligent charging, to evaluate its 

accuracy in estimation of temperature and the corresponding capacity loss. The relative error of 

maximum 0.18% in capacity loss estimation and 0.28% in temperature estimation confirm the high 

precision of the model simplified by Volterra series. 
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Figure 6-20 Optimization results and respective aging estimated by the nonlinear model 

At this step, the validated Volterra-based model can be used to further simplify the online 

charging optimization by designing a less complex user-defined optimization algorithm, which is 

the topic of the next section. 

6.3 Simplification in the optimization scheme  

 The ultimate objective of this study is to propose an online charging optimization 

methodology to be integrated on real-time Electronic Control Units (ECUs).  fmincon, the built-in 

function of Matlab for optimization, is not appropriate for this purpose, since the transformation to 

an executable script is very resource consuming. Furthermore, the optimization options cannot be 

easily tuned according to scaling of the optimization problem. Thus the solution lies in developing 

a simplified user-defined optimizer that replaces the time-consuming iterative dynamic 

optimization and facilitates easy tuning of constraints and optimization options by the user.  

Various optimization techniques can be used for this aim. In general, optimization methods 

can be classified based on the order of the cost function derivative used for the direction of search 

method to: 0th –order, 1st-order, and 2nd –order optimizers.  

0th –order optimizer or direct-search method, relies only on evaluation of the cost function 

value for searching the optimum. This includes a few methods such as dichotomous and black box 

search. Dichotomous optimization involves in dividing the search space into four regions and 

computing the cost function values at each point, then comparing the values in each iteration and 
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eliminating the part of the interval with larger cost function value, until reaching the minimum 

point. The disadvantages of this method is its slow convergence speed. Furthermore, the cost 

function should be always continues with sign change in the optimization interval.  

1st- order methods also referred as gradient-based methods, use derivative information (1st 

derivative of the cost function) to guide the search process of the minimum point. With this 

additional information, the convergence of the search algorithm can be significantly enhanced.  

2nd-order optimization techniques use additional information on the curvature of the cost 

function by calculating the 2nd derivative (or 2nd order Taylor expansion) of the cost function also 

referred as Hessian. This method is only applicable in case of existing a positive definite Hessian 

throughout the whole search space [94]. 

 In order to decide about the best technique, a sensitivity analysis on the behavior of the 

cost function against the optimization variable is conducted. In this analysis, the polynomial pattern 

introduced in section 6.1.2  that requires only one parameter to optimize is used. It involves in the 

representation of the cost function Closs as a function of the parameter to tune (parameter d). The 

analysis is repeated for several test conditions represented in Table 6-2. 

According to the diagrams Table 6-2, the objective function is continuous and unimodal in 

the given interval for optimization of parameter d. Having a single-variable optimization problem 

and a monotonic gradient function, a combination of dichotomous and gradient descent approach 

is employed for online charging profile optimization. It means that the 1st order derivative 

(gradient) of the cost function is included in the dichotomous optimization algorithm. Figure 6-21 

clarifies the concept for a unimodal cost function over interval of [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥]. 
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Table 6-2 Sensitivity analyis of cost function Closs versus optimization parameter d 

 

 

Figure 6-21 Gradient-based dichotomous optimization 
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  The gradient-based Dichotomous approach can be implemented by using the following 

procedure: 

 

 

The gradient-based dichotomous method was employed to minimize the capacity loss for the 

same experiments explained in Table 6-1. By having a pre-knowledge about the problem and 

variables scale and relaxing the tolerances, promising results are obtained. The obtained results are 

compared with the results using fmincon optimizer on diagram in Figure 6-22.  

1- Start by computing lower bound and upper bound values of d, from the 

boundary conditions in equation (6-6) 

2- Set a value for cost function tolerance TolFun according to scaling of the 

optimization problem. 

 

>>    Iteration starts 

3- Calculation of the middle point 𝑑𝑚𝑒𝑎𝑛 =
𝑙𝑏 + 𝑢𝑏

2
         

4- Gradient computation at 𝑑𝑚𝑒𝑎𝑛 by using forward difference approximation: 

𝑓́(𝑑) =  
𝑓(𝑑 + ℎ. 𝑒) − 𝑓(𝑑)

ℎ
 

where h is a small step size value depending on the scale of optimization variable 

and e is an arbitrary unit vector in the parameter space.   

5- Computing the termination criterion: 

 

𝐿𝐹 = |𝑓́(𝑙𝑏) − 𝑓́(𝑢𝑏)| 

 

>>   Checking whether the termination criterion is reached:  

6- This procedure continue until a point, where the difference between the gradient 

of lower and upper bound reaches the pre-determined value of TolFun 

(LF<TolFun). 

7- Optimal result is the middle point of the last sub-interval: 𝑑𝑜𝑝𝑡 =
𝑙𝑏 + 𝑢𝑏

2
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Figure 6-22 Comparison of Matlab fmincon optimizer with self-written gradient-based 

dichotomous optimization method in minimization of capacity loss 

6.4 Conclusion and future work 

The requirement to have a battery model realizable under real-time conditions, led to propose 

possible simplifications for the whole intelligent charging process. The simplifications were 

investigated firstly in the definition of charging profile patterns, then in the second part, in the 

structure of the nonlinear battery model, and finally in the optimization method.  

Based on empirical observations two types of charging patterns were identified: Affine profile 

and Polynomial profile. These profiles could reduce the initial multi-variable optimization to a 

single-variable optimization, which can greatly improve the speed of online fast charging.  

In the next section, Volterra series were introduced for further simplification of the battery 

model. Volterra series provide an interesting alternative in the modelling by replacement of 

resource consuming nonlinear functions in the coupled thermal Butler-Volmer sub-model. Using 

this approach the simulation executed faster as it can be concluded from Figure 6-19. 

Last analysis on the cost function of the optimization problem (capacity loss) is conducted to 

evaluate its behaviour against the optimization variable. The continuous unimodal cost function in 

the optimization interval provides the possibility to design a straight-forward optimization scheme. 

The new method is an attractive alternative to the well-known fmincon, comprising a gradient-
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based search and dichotomous algorithm to guide the minimum point search direction very fast and 

with easy user-adjustable optimization options. 

All the concepts introduced in this chapter are presented in Figure 6-23 that shows the closed-

loop framework of on-board charging profile optimization. By using a Volterra-based battery 

model aging in terms of capacity loss can be estimated and that is the criterion for the gradient-

based dichotomous optimizer to adapt the shape of the polynomial charging profile to be applied 

to the cell to reduce aging during charging.  

Further studies can be conducted using other modelling frameworks such as multiple model 

approach. The main principle lies in decomposition of the nonlinear model operating regime into 

finite number of zones, where the nonlinear model can be approximated locally by an equivalent 

linear model. . During charge and for instance in order to take into account some modelling errors, 

it should also be interesting to make an online optimisation of the charging profile. This will imply 

a modification of the diagram in Figure 6-23 to decide when the optimisation is requested to update 

the charge profile. 
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Figure 6-23 Charging profile optimization framework using the concepts introduced in chapter 5 

and 6  
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Conclusion and future work 

This research was conducted at Bosch Battery Systems GmbH in collaboration with IMS 

laboratory (Laboratoire de l'Intégration du Matériau au Système) at University of Bordeaux 

between October 2015 and October 2018. The main goals of this study was to develop concepts, 

functions and models to improve the state of the art battery models and algorithms used in Battery 

Management Systems (BMS). The case study was a prismatic Li-ion cell for application of Plug-

in Hybrid Electric Vehicles. The conventional battery management strategies employ extremely 

conservative methods to adapt the battery operation and thus do not use the maximum available 

energy of the battery. This problem is addressed in this work by proposing novel algorithms that 

permit to utilize the maximum capacity in an efficient way. Furthermore the developed models 

facilitate better understanding, prediction and control of the states of the battery in a wide operating 

range. 

In Chapter 2, comprehensive literature review is done on the different battery modelling 

approaches. The existing modelling methods are briefly introduced and respective advantages and 

disadvantages are compared. In section 2.3 , a single particle fractional order model is presented. 

It is based on Fick’s first law of diffusion. The analytical solution of the governing diffusion 

equation results in a fractional order transfer function, which is able to precisely capture the 

dynamics of the system at lower frequencies which the operating frequency of BMS lies. However 

the problem is model implementation on the digital battery control unit, where requires the 

functions to be discretizable. For this reason, using Oustaloup recursive algorithm, the fractional 

order transfer function of the system is converted to an integer order transfer function with a very 

similar behavior in the frequency domain. Subsequently, the model is calibrated using some 

measurement results and literature parameters. Validation tests are carried out by imposing real 

world driving cycles and the accuracy of the model in simulating the battery behavior is compared 

to the convenient battery modeling approach of Equivalent Circuit Model (ECM). From the 

simulation results shown in section 2.3.2 Model validation, it can be deduced that the fractional 

order model is more accurate than ECM approach while having a comparable computational 

efficiency. It also provides the possibility to interpret the battery behavior based on physics and 

electrochemistry. 
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Chapter 3 deals with developing a new algorithm to assign a function to the Open Circuit 

Potential (OCP) of the electrodes (half-cell) and similarly to the Open Circuit Voltage (OCV) on 

the full cell level. OCV has a significant contribution in the terminal voltage and varies notably 

over the battery lifetime. Thus the algorithm takes the aging into account and models the full cell 

OCV out of half-cell OCP measurement data using a polynomial function. In section 3.6 Aging 

correction of OCV curve at MOLthe algorithm is verified by comparing the measured and modeled 

OCV, where a good accuracy is achieved. The observed deviations of the simulation from the 

measurement are attributed to neglecting the heterogeneity of the cell surface.    

Due to strong influence of aging on the battery behavior, Chapter 4 is dedicated to better 

understanding and modeling of degradation mechanisms. Firstly a general review of the various 

aging mechanisms is given. In section 4.2.2 Aging Model, by interpreting the aging measurement 

results of the studied battery, its underlying aging phenomena are determined. Cell temperature is 

identified as an influencing factor on aging, thus a lumped-parameter thermal model of the cell is 

implemented. Subsequently, a modified aging model is proposed that features decoupling of 

calendar and cycling aging. Additionally, it can show the dependency of degradation mechanisms 

(in terms of capacity loss) as a function of SOC, temperature and C-rate. It is a very important 

aspect of the aging model that permits to distinguish the root-cause of the capacity loss, especially 

applicable for aging control of batteries during aggressive fast charging cycles which is discussed 

in Chapter 5. In section 4.3 , the thermal and aging model and the fractional order electrical model 

from Chapter 2 are coupled together to form a unified ‘’electro-thermal aging’’ battery model. 

Several validation test results are demonstrated to justify the model accuracy.  

Chapter 5 is focused on designing an intelligent charging controller to reach the fast 

charging target while minimizing the degradation effects. As the first step towards implementing 

the charging controller, offline trajectory planning is performed to obtain the optimal charging 

profiles and respective side reaction current under different conditions, covering the whole 

operating range of the battery. The optimal charging profiles are compared to the convenient CCCV 

charging strategy (Figure 5-2), where using the optimal profiles up to 15% reduction in aging is 

achieved. The collected trajectories are scaled versus SOC and kept in lookup tables to be used in 

a feedforward controller for initializing the model and providing reference signal.  The trajectory 

planning is based on the assumption of a perfectly known cell, which is not always the case and 

thus applying an optimized charging current does not necessarily result in reaching the target SOC 
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with minimum aging. Therefore a closed-loop strategy should be developed. For this purpose, the 

uncertain linear model of the nonlinear system is derived, where a big uncertainty both in the 

magnitude and phase of the system Bode plot is observed (Figure 5-4). Thus a robust closed-loop 

control strategy is required to deal with this large parametric uncertainty. Later on, concept of 

CRONE methodology is introduced as a good candidate to achieve intelligent charging targets. 

CRONE control strategy involves in optimization of fractional differentiation orders as design 

parameters in frequency domain. Third generation of CRONE controller is parameterized based on 

the closed-loop system design specifications. The closed-loop CRONE controller and feedforward 

controller are interconnected and an anti-windup block is integrated to the overall system to account 

for integral accumulation error. In the following sections, the robustness of the controller is 

examined by applying uncertainties in the operating conditions and battery model parameters. The 

controller has shown a very good tracking of the optimal side reaction current profile (to minimize 

aging) while achieving the fast charging target (5-80% SOC) in the desired charging time of 20 

minutes (Figure 5-17). Despite the good results obtained from the closed-loop intelligent charging 

strategy, the control loop is not easily implementable for onboard application such as BMS. The 

optimization algorithm to obtain the side reaction and optimal charging profile trajectories involves 

a nonlinear optimization routine with large number of parameters. Such an approach is 

computationally expensive and thus the next chapter deals with the design of an efficient profile 

optimization method. 

Chapter 6 deals with possible simplifications of the intelligent charging process to permit 

its application under real-time conditions. The simplifications are considered firstly in the 

definition of the charging profiles. According to this proposal, two semi-empirical shapes (affine 

and polynomial) are identified for the optimal charging current. The profiles are applied to the 

model and good performance is achieved comparing to other convenient charging profiles. In the 

second part, the structure of the model is simplified by linearization of the Butler-Volmer sub-

system and replacing the thermal sub-system using Volterra series. From the validation test shown 

in section 6.2.2.1 , it can be concluded that the capacity loss estimated by the Volterra–based 

simplified model and the original nonlinear model are in a good agreement while the simulation 

time of the Volterra-based model is reduced significantly by 37%. In the third part, a user-defined 

optimization strategy is proposed to replace fmincon (Matlab built-in optimizer) in the framework 

of intelligent charging. The main advantage is that the user-defined optimizer is straight-forward 
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and easily realizable for onboard application. In another validation test, the optimized values of 

capacity loss using the newly proposed optimization method are compared to the ones by fmincon 

and the obtained results are in a good agreement.  

Further studies can be conducted to include the electrolyte dynamics into the electrical 

fractional-order model. In Chapter 2, only the high frequency resistance of the cell is accounted for 

the influence of electrolyte on the cell behaviour. However, considering the ion diffusion 

phenomenon inside the electrolyte would increase the model accuracy in estimation of the terminal 

voltage.  

In Chapter 3, considering the heterogeneity of the electrode surface would increase the accuracy 

of OCV modelling. This idea can be realized by investigating the influence of aging on the OCP 

of electrodes. 

A comprehensive aging model can be accomplished by implementing a mechanical model of 

the cell, taking into account the fracture formation and mechanical pressure. The cell mechanical 

model should be then coupled to the proposed electro-thermal aging model in Chapter 4. With this 

extension, one can predict the cell behaviour under long-term cycling and its EOL. 

For a future in context of Chapter 5, a control problem considering a fixed aging rate to 

minimize the charging time can be formulated and respective trajectories can be obtained. 

Moreover by means of sensitivity analysis on the trajectories, best aging criteria in terms of 

observability (for example anode potential) can be figured out to be used as the controlled signal 

and for design of a charging controller. 

Volterra series are employed for further simplification of the nonlinear model in Chapter 6. 

This will permit its application under real-time conditions for example on the controller of the 

BMS. However other methods such as multiple model approach can be applied to obtain a 

simplified model. Multiple model approach is also a powerful tool for modeling a large class of 

nonlinear systems. It involves in decomposition of the operating space and finding an appropriate 

weighting function for each sub-system in a specific operating space.  

Most of the proposed algorithms and methods in this thesis were validated by means of 

simulations. Evaluation of the internal battery states is not possible using real cell and 

measurement, but simulation provides this possibility. However, importance of experimental 

validations cannot be ignored and thus should be pursued in a future work. Upon successful 
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validation of simulation results presented in this work, the electro-thermal aging battery model and 

the intelligent charging strategy can be implemented as a part of a BMS. 
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Appendix A - ELcell setup 

 

EL-CELL ECC-Combi measurement device, shown in Figure 3-1 is briefly described in this 

appendix. This measurement setup can provide two different modes, firstly the electrochemical test 

for two-electrode battery testing referred as ECC-Std. The most typical application in this mode is 

the characterization of a lithium-ion battery electrode (anode or cathode) against a lithium metal 

counter electrode. The second mode of usage, referred as ECC-Ref is for electrochemical test cell 

with reference electrode. A typical application in this case is the characterization of a full lithium-

ion battery (e.g. graphite anode and lithium metal oxide cathode) with a lithium metal reference. 

The experimental setup used for half-cell potential measurements using a reference electrode in 

ECC-Ref mode is shown in the following figure where it comprises of a 3 electrode configuration 

(1: working electrode, 2: counter electrode and 3: reference electrode. It is used to measure the 

open circuit potential of the coin cells by applying charging/discharging current of C/50. The cross-

section of the measurement setup with its main components is presented in on the right side of the 

figure. A detailed explanation about the usage of the setup can be found in the device manual 

available on the manufacturer website. [96] 
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