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Etude de ’Emission Optique des Propulseurs a Effet Hall a ’aide
d’un Modéle Collisionel Radiatif, des Simulations PIC et du
Machine Learning

Résumeé : Ce travail cherche & analyser 1’émission optique des propulseurs & effet Hall afin
d’en extraire les paramétres plasma. Elle s’inscrit dans le contexte des micro-lanceurs réutil-
isables et des programmes de ride-share pour les satellites, qui ont considérablement réduit
les cotits des opérations spatiales. Cette évolution a intensifié la demande d’équipements de
satellites standardisés et miniaturisés, avec un accent particulier sur les propulseurs a effet
Hall en raison de leur avantageux rapport poussée/puissance, de leur impulsion spécifique
et de leur efficacité. La thése s’appuie sur le développement du code LPPic Particle-In-
Cell et explore la dynamique du plasma en couplant les résultats de la simulation avec des
diagnostics virtuels. Le premier diagnostic virtuel mis en ceuvre est la diffusion Thomson
Collective, qui explore les fluctuations de la densité électronique dans le propulseur. Le
deuxiéme diagnostic virtuel est la spectroscopie d’émission optique générée via un modéle
collisionnel radiatif, permettant de caractériser la fonction de distribution d’énergie des
électrons. Ces deux diagnostics permettent de valider les simulations de LPPic avec des
expériences. En outre, la spectroscopie d’émission sert également d’outil prometteur pour
évaluer les performances en orbite et caractériser les effets des installations au sol. La
thése est structurée en huit chapitres. Ceux-ci couvrent la mise en place du diagnostic
virtuel de diffusion Thomson Collective, le développement et la validation de HETOD - un
modeéle collisionnel radiatif pour le xénon neutre - et la mise en place de la spectroscopie
d’émission optique virtuelle. L’implémentation de ces méthodes a démontré 'importance de
rendre compte des gradients spatiaux dans le propulseur pour 'extraction des paramétres
du plasma a partir de I’émission optique ou du signal de diffusion. Elle a également mis
en évidence la validité des hypothéses sur le transport des métastables et de 'utilisation
d’une fonction de distribution maxwellienne dans les modéles collisionnels radiatifs des neu-
tres dans la zone d’accélération et la plume, ainsi que les limitations de bandes passantes
spécifiques & chaque raie d’émission pour étudier des instabilités a haute fréquence (> 1
MHz).

Ces observations ont été confrontées ensuite & des expériences ot des spectres expéri-
mentaux ont été utilisés pour extraire les paramétres du plasma a l'aide HET0OD pour
diverses conditions d’opération. Les recommandations issues du couplage virtuel ont été
vérifiées démontrant ainsi I’adéquation de I’émission optique et des modéles collisionnels ra-
diatifs pour suivre et controler les propulseurs a effet Hall. Ces expériences ont souligné les
gradients des paramétres plasma (densité et température électronique) dans les trois direc-
tions. En particulier, le gradient de la température électronique dans le canal du propulseur,
a été mesuré pour la premiére fois avec de I’émission optique, soulignant des températures
électronique entre 20 et 30 eV et qui augmentent linéairement avec la tension d’opération
du propulseur. Enfin, une ameélioration du modéle d’émission optique et du modéle col-
lisionnel radiatif est également présentée via l'intégration de réseaux de neurones. Cette
méthode améliore considérablement 'efficacité et la portée du diagnostic, en accélérant le
traitement de quelques minutes par spectre & quelques dizaines de millisecondes. La con-
séquence pratique de cette accélération est la réduction du hardware nécessaire en orbite et
éventuellement le contréle optique en temps réel des paramétres du propulseur.







Investigation of the Optical Emission of Hall Effect Thrusters
using a Collisional Radiative Model, Particle-In-Cell Simulations,
and Machine Learning

Abstract: This thesis provides an analysis of the optical emission of Hall Effect thrusters.
The study is grounded in the context of micro-reusable launchers and ride-share satellite
programs, which have substantially reduced space operation costs. This shift has intensified
the demand for standardized and miniaturized satellite equipment, with a particular focus
on Hall effect thrusters due to their advantageous thrust-to-power ratio, specific impulse,
and efficiency. The thesis builds upon the development of the LPPic Particle-In-Cell code
and explores the plasma dynamics by coupling the simulation results with the novel concept
of virtual diagnostics. The first virtual diagnostic implemented is collective Thomson scat-
tering, which explores the electron density fluctuations in the thruster. The second virtual
diagnostic is optical emission spectroscopy coupled with a collisional radiative model, which
characterizes the electron energy distribution function. Both are instrumental in validating
LPPic simulations, with the latter also serving as a promising tool for assessing the per-
formance in orbit and characterizing ground facility effects. The thesis is structured into
eight chapters. These include the implementation of virtual collective Thomson scattering
diagnostics, the development and validation of HETOD, a collisional-radiative model for
neutral xenon, and the establishment of the virtual optical emission spectroscopy frame-
work. These methods established the importance of considering spatial gradients in the
plume of the thruster when extracting plasma parameters from optical emission or scat-
tered emission. It also highlighted the validity of the transport and the Maxwellian energy
distribution function assumptions in the collisional radiative models of neutral species in
the acceleration zone and the plume and highlighted line-specific bandwidth limitations for
the implementation of optical emission spectroscopy to study high-frequency instabilities
(> 1 MHz).

These insights were confronted with experiments where actual spectra were used to
extract plasma parameters using the collisional radiative model under various thruster
conditions, thereby demonstrating the validity of the recommendations from the virtual
diagnostic analysis and the adequacy of optical emission and collisional radiative models to
monitor Hall Effect thrusters. These experiments put in evidence the gradient in the plasma
parameters in the three directions. In particular, the gradient in the electron temperature
in the thruster channel was measured for the first time using optical emission spectroscopy,
highlighting temperatures between 20 and 30 €V, that increase linearly with the applied
anode voltage. Finally, an innovative enhancement to optical emission and collisional ra-
diative model through the integration of artificial neural networks is also presented, which
significantly improves the efficiency and scope of the diagnostic, by speeding up the process-
ing from 1min to 10ms, reducing the needed hardware in-orbit, and allowing the real-time
optical control of the operating parameters of the thruster.
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CHAPTER 1

Introduction

Light is therefore colour.

William Turner
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1.1 Electric propulsion and Hall effect thrusters

The emergence of micro reusable launchers and the increasing popularity of "ride-
share" for satellites have led to significant cost reductions for space operators. This
has not only opened doors for the deployment of commercial satellite constellations
but has also expanded the horizons of space exploration. It has created a growing
demand for standardized and miniaturized equipment for satellites, hence reducing
the structural mass for the benefit of the payload. In the past, propulsion systems’
robustness and reliability have been a major shortcoming for the satellite market.
However, the situation has improved today with the availability of many capable
propulsion systems as well as associated components, enabling control of attitude,
changes in orbit, and other complex space maneuvers [Miller & Woellert 2020|. This
has sparked the interest of the space industry for Electric Propulsion (EP) systems.
Indeed, compared to traditional propulsion systems, EP can produce a wide range
of exhaust velocities, from 1km.s™! to 100km.s~! [Choueiri 2009], which enables
spacecraft to achieve higher velocities while consuming less propellant. Nevertheless,
this comes at the expense of lower thrust density, hence a longer transfer time.
Broadly speaking, EP systems are elements of the spacecraft that harness the
solar panel-generated electric power, converting it into kinetic energy delivered to
the propellant through electromagnetic forces. The concept of EP dates back to as
early as 1906, with pioneers Robert Goddard and Konstantin Tsiolkovsky. However,
in-orbit demonstrations were not until the early 1980s when EP gained widespread
recognition and adoption within the aerospace industry, owing to its versatility
and robust designs. These systems can employ various field and current types,
including steady, pulsed, or alternating configurations while offering flexibility in
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magnetic field sources and a choice of solid or liquid propellants with diverse ge-
ometries and densities [Jahn & Choueiri 2003|. Today, electric propulsion stands
as the standard propulsion solution for orbit maintenance across commercial, mil-
itary, and scientific satellites in Earth’s orbit [O’Reilly et al. 2021|. Furthermore,
the extended lifetime of the propellant utilization makes EP invaluable for space
missions venturing beyond the Earth’s orbit, paving the way not only to scientific
interplanetary missions, such as ESA’s BepiColombo [Clark et al. 2013] or NASA’s
Psyche [Snyder et al. 2020] but also manned space travel.

Among the technologies meeting the rising demand in this sector, Hall-Effect
Thruster (HET)s play a pivotal role. HETs distinguish themselves from other elec-
tric propulsion methods with their high thrust-to-power ratio, specific impulse, to-
tal efficiency, extended operational lifetime, and reduced mass. Consequently, they
have witnessed a growing preference for a wide array of space missions and ma-
neuvers requiring significant velocity increments. Today, HETs have a rich flight
heritage [Mazouffre 2016], ranging from drag compensation and trajectory correc-
tion for Low Earth Orbit (LEO) satellites [Cornara et al. 2012] to full orbit transfer
for deep space missions [Koppel et al. 2004, Jackson et al. 2018, Snyder et al. 2020].

Cathode gas feed
Hollow Cathode

Secondary

K coil

Anode
gas feed

/6

Xe

Anode

X

Figure 1.1: Schematic of the operating principle of a HET. Neutral xenon is injected
from the anode. Electrons that are emitted from the cathode are trapped by the
radial magnetic field, hence increasing the collision frequency with the neutral gas

Primary
coil

and leading to the production of electron-ion pairs. Ions are exhausted out of the
channel under the effect of the electric field, creating thrust.

HET (Figure 1.1) consists typically of an axisymmetric discharge chamber hous-
ing an internal anode and an externally mounted cathode. The propellant is injected
at a very low velocity at the anode. Then, a voltage drop is applied, which estab-
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lishes an electric field along the symmetry axis. The electric field accelerates the
electrons that are emitted by the cathode discharge toward the entrance of the dis-
charge channel. When the electrons reach the latter, they are subject to a strong
radial magnetic field, trapping them in an E x B drift. This drift reduces their
mobility, hence, increasing the frequency of ionizing electron-neutral collisions and
consequently the production of electron-ion pairs. The positively charged ions are
un-magnetized and are accelerated out of the thruster by the axial electric field,
while the electrons are re-trapped by the magnetic field promoting further ioniza-
tion and thereby enhancing the thrust density. Additional electrons are emitted
from the cathode and are supplied to the downstream discharge to keep the plume
of the thruster quasi-neutral. The most commonly employed propellants in HETs
are noble gases, xenon mainly because they are chemically inert, easily ionized, and
safe to handle at standard conditions.

1.2 Challenges

Despite the maturity of the technology and the rich flight heritage, HET faces still
several challenges that restrict its current performance. First, alternative propel-
lants to noble gases are being actively explored, such as bismuth [Szabo et al. 2017],
adamantane |A. Bretti 2022|, molecular gas mixtures similar to the upper atmo-
spheric conditions of Earth [Andreussi et al. 2022, Tejeda & Knoll 2023], and halo-
gen iodine [Szabo et al. 2013|. This is still a part of the current research and has
become a recent economic priority given the soaring prices of noble gases and the
inadequacy of the current production means to meet the increasing rate of demand.
Along with the quest for alternative propellants, the current development activ-
ity on HET actively aims at expanding their capabilities and reducing their size
[Levchenko et al. 2020]. Alongside efforts to enhance efficiency and thrust levels,
there is a strong focus today on increasing the thruster’s lifetime, widening its op-
erational envelope, and simplifying the overall system. One significant challenge
that affects the lifetime is the erosion of the electrodes. Recent advances in mag-
netically shielded thrusters [Garrigues et al. 2019, Grimaud & Mazouffre 2017] and
the concept of wall-less HET [Mazouffre et al. 2014] have shown promising results
in mitigating this issue, albeit with a slight reduction in efficiency at lower power
levels. The magnetic field topology is also a key area of exploration. Researchers are
investigating more sophisticated configurations to enhance the degree of ionization
within the channel, including the implementation of a pre-ionization helicon stage
[Shabshelowitz et al. 2014], an RF antenna [Bugrova et al. 2012] or the utilization of
a two-peak magnetic field topology [Perez-Luna et al. 2007|. Finally increasing the
power envelope of HETS is also a crucial aspect of current research and an effective
candidate is using a nested configuration consisting of multiple thruster channels
within a single system which allows the division of the power load and effectively
achieves higher thrust regimes [Cusson et al. 2018|.

Looking ahead, the miniaturization of HETs is expected to align with
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the increasing demand for smaller, low-mass spacecraft. One poten-
tial candidate for miniature HET is the Cylindrical Hall Thruster (CHT)
[Smirnov et al. 2002, Smirnov et al. 2006, Smirnov et al. 2007, Smirnov et al. 2008,
Garrigues et al. 2008] which demonstrates an efficiency that is compara-
ble to its traditional counterpart. Over the years, various scaling
methodologies have been developed to explore the possibilities of scal-
ing down the size of HETs [Khayms & Martinez-Sanchez 1996, Warner 2007,
Dannenmayer & Mazouffre 2011, Andrenucci et al. 2005]. While there are estab-
lished methods to overcome the challenges of scaling HET's to larger sizes, decreas-
ing their sizes appears to have some fundamental limits. Indeed, as the size of the
channel decreases, a higher magnetic field is required to maintain a decent mass uti-
lization efficiency. However, the implementation of the magnetic field requirement is
still technically challenging because the magnetic circuit in such a small space would
leave no room for magnetic poles and heat shields, hence increasing ion and power
losses, heating, and erosion. In addition, the ratio of surface-to-volume increases re-
quiring a deeper characterization of plasma/wall interactions and the testing of new
wall materials to limit erosion. Furthermore, the quest for miniaturization extends
beyond the thrusters themselves to the diagnostics used to study and evaluate their
performances. The reduction in the device scale inevitably poses difficulties and
invasiveness when using direct measurement approaches. Consequently, there is a
growing interest today in optical measurement techniques as a viable solution for
diagnosing and monitoring miniaturized HETSs, either in test facilities or in orbit,
for instance via the use of Optical Emission Spectroscopy (OES). The development
of such techniques is not only relevant to the study of small-scale HETs but also to
the characterization of any type of EP system due to their noninvasive nature.

Second, the change of scale also brings up the question of its impact on plasma
instabilities in HETs. Due to the presence of gradients in different directions, mul-
tiple instabilities can grow and interact together, covering a broad range of fre-
quencies. The most prominent ones in HETSs, such as the Propulseur a Plasma
Stationnaire (PPS)-1350 of Safran, are:

e The low-frequency Breathing Mode (BM) which is an ionization wave charac-
terized by kHz-level oscillations in the discharge current of HETs. These os-
cillations, which can reach amplitudes as high as 100% of the mean discharge
current, pose operational challenges. The commonly adopted explanation is
a predator-prey model between neutrals and plasma, involving ionization and
neutral replenishment. However, the exact onset criteria for BM oscillations
remain undefined and require further investigation.

e The intermediate-frequency Ion-Transit Time Instability (ITTI) which occurs
in the range of hundreds of kHz. It is related to the transit time of ions within
the acceleration region of HETs. The ITTI results in variations in plasma
potential and ion velocity, causing oscillations in the discharge properties.
The "wave-riding" mechanism, where ions gain or lose energy from the wave,



1.2. Challenges 5

contributes to this instability. The precise criteria for its onset are still not
well-defined, necessitating ongoing research.

e The high-frequency Electron Cyclotron Drift Instability (ECDI), typically in
the MHz range, which arises from the coupling between electron Bernstein
modes and ion acoustic modes. The ECDI exhibits short wavelengths and
dominant propagation in the azimuthal direction. While the linear stage of
the ECDI is well understood and translates usually into an Ion Acoustic Wave
(IAW), the transition to the nonlinear regime and saturation mechanisms are
areas of ongoing research.

e Other instabilities include azimuthally rotating modes like "rotating spokes"
and "gradient-induced instabilities" with frequencies in the 10-100 kHz range.
These instabilities are related to ionization inhomogeneities and gradients in
density and magnetic field. While they have been observed and studied, they
are generally less concerning for HET operation and do not represent signifi-
cant issues.

Understanding these instabilities is important due to their nonnegligible con-
tribution to electrode erosion as well as to electron mobility, which is the second
source of performance limitation of HETs. Over the years, extensive research has
been conducted to identify and analyze the various factors contributing to electron
mobility, with ECDI emerging as a key driver, as demonstrated by both simula-
tions [Adam et al. 2004, Lafleur et al. 2017], Collective Thomson Scattering (CTS)
[Tsikata et al. 2009, Tsikata et al. 2010, Tsikata et al. 2013, Tsikata et al. 2014]
and different probe techniques [Lazurenko et al. 2007a, Brown & Jorns 2019,
Kaganovich et al. 2020].

Finally, the change in the scale also prompts a reconsideration of the approaches
employed for exploring novel designs, which, until now, have largely relied on a
trial-and-error methodology. Issues such as performance characterization and cost
reduction are of central interest to the industry stakeholders. As far as thruster
design is concerned, significant efforts have been put into simulations, both ki-
netic and fluid, to self-consistently simulate the plasma and provide a fast-reliable
tool for better designs and performances. Nevertheless, the simulations need to
be validated against experiments, which requires a framework capable of account-
ing for the inherent differences between the experiments and simulations as well
as challenging their assumptions. As far as monitoring the thruster’s performance
in test facilities or orbit is concerned, optical diagnostics, such as CTS and OES
have proven, to be extremely promising to non-invasively determine the plasma
parameters. However, involved, CTS is not ideal for thruster manufacturers for
monitoring purposes, while, on the other hand, OES can easily provide an opti-
cal footprint, that reflects the discharge parameters. This is achieved by using
a Collisional Radiative Model (CRM). This model is a 0-dimensional model re-
lating the emission spectra to the plasma parameters via a detailed description
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of the kinetic mechanisms that lead to populating the radiative excited states
[Karabadzhak et al. 2006, Zhu et al. 2019, Priti et al. 2019a].

1.3 Thesis context, content and objectives

The future Plasma thrusters for [Ow earth orbit SatElllte propulsiON systems
(POSEIDON) project at Laboratoire de Physique de Plasmas (LPP) has been dedi-
cated to advancing the field of EP, with a primary emphasis on numerical simulations
from 2016 to 2022 and it was financially supported by the national research agency
ANR and Safran. A significant milestone within this project is the LPPic Particle-
In-Cell (PIC) code, involving collaborative efforts with Safran, as documented in
prior theses by [Tavant 2019, Charoy 2020, Petronio 2023]. This previous work fo-
cused extensively on the study of plasma dynamics within the radial-azimuthal and
axial-azimuthal planes of HET. Moreover, they explored plasma-wall interactions,
leading to the introduction of a conceptual "virtual radial direction" to account for
losses at the walls. The LPPic code was also part of two international benchmarks
in 2019 [Charoy et al. 2019, Villafana et al. 2021].

Building upon this solid numerical foundation, the present work introduces an
optical diagnostic aimed at characterizing the Electron Energy Distribution Func-
tion (EEDF) within the HET channel. This distribution function stands as a pivotal
factor in predicting the anomalous transport phenomena that theoretical and simu-
lation studies have consistently investigated. The overall objective of this research
effort unfolds into two primary goals: firstly, the validation of existing simulations
within LPPic, and secondly, the development of a diagnostic tool favorable to an
in-orbit evaluation of HET performance. The significant contributions within this
thesis are delineated as follows:

e The establishment of a comprehensive framework to compare numerical sim-
ulations and experimental data.

e The development of an optical diagnostic based on OES, CRM, and Artificial
Neural Network (ANN) to effectively characterize the in-orbit performance of
HET.

e The verification of theoretical predictions and the validation/challenge of nu-
merical simulation codes.

The distinctive aspect of the research methodology in this thesis is the inte-
gration of simulations to guide and inform the experimental designs. This novel
approach revolves around the concept of virtual diagnostics, paving the way for a
dual understanding of simulat