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Summary

Over a half-century ago, one of the central characters in a series of novels by English

science-fiction writer Arthur C. Clarke was not a human being but a computer. As

conceived by the writer, this machine had intelligence and was able to speak, recognize

faces, process natural languages and play chess, among other things. What was

considered a sheer fiction at that time is now becoming a reality due to rapid advances

in science and digital technologies. Data is increasingly seen by many as ”the new

oil”, and artificial intelligence (AI) is an engine of productivity and economic growth.

Machines performing human-like cognitive processes, such as learning, understanding,

reasoning and interacting, deeply transform the way in which modern societies live

and work. In healthcare, AI-based visual recognition systems have the potential to

revolutionize the disease diagnosis process by helping radiologists interpret medical

images and accelerating reading time. In order to be employed for clinical decision

support, such mechanisms must be reliable, accurate and integrated into the workflow.

The first two requirements, i.e., the reliability and accuracy of AI-based solutions, are

central research subjects of this thesis, examined in the context of automated tumor

segmentation in multimodal medical imaging. The integration aspects are beyond

the scope of this work and only briefly covered in Chapter 8.

Chapter 1 introduces a statistical learning framework developed by V. Vapnik,

which is de facto the foundation of modern data analysis. Starting with a description

of the key postulates of supervised learning, this chapter formulates a task of empirical

risk minimization, describes associated pitfalls, e.g., overfitting, and advocates the

use of techniques such as regularization, cross-validation and ensembling in order to

reduce the generalization error and obtain its reliable estimate. The last part of the

chapter describes a special type of ensemble technique known as stacking and its close

connection with feedforward neural networks.

Chapter 2 is devoted to neural networks that form the core of deep learning.

First, it introduces two basic models, namely linear regression and logistic regres-

sion, and standard statistical techniques for estimating their parameters on training
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data, i.e., least squares and maximum likelihood estimation, respectively. Then, it

is demonstrated that a feedforward neural network is nothing more than a series of

logistic regression models stacked one on top of another. Next, convolutional neural

networks (CNNs) are presented as a specialized kind of networks for working with

grid-like data, such as images. Finally, approximation properties of different types

of neural networks are provided as a family of theorems stating that (almost) any

function can be approximated arbitrarily well by a neural network of a certain type.

Chapter 3 gives a general overview of architectures used in various medical image

segmentation tasks. It is shown that the vast majority of existing CNNs are based on

U-Net, and often involve just minor modifications proposed for specific tasks and/or

datasets. The main sources of variation in architectural design are summarised in

this chapter.

The following chapters are based on research projects carried out during my PhD

studies. Chapter 4 repeats the content of the article on cervical cancer segmentation

in PET imaging. One purpose of that study was to propose a U-Net based model for

fully automated delineation of 3D functional primary tumor volumes in the specific

context of cervical cancer, where a pathological uptake of interest is located close to

a physiological one, corresponding to the bladder. A secondary objective was to train

the network on reliable ground-truth segmentation masks obtained through accurate

and robust PET semi-automated segmentation instead of manual delineation. A final

objective was to train and evaluate the model performance under standard clinical

imaging conditions, considering a multicenter patient cohort without any prior stan-

dardization in data acquisition and/or image reconstruction processes. As a results,

the designed model performed well for this task, and it was demonstrated on a dataset

comprised of 232 patients from five institutions. A versatile pipeline was designed, in-

cluding appropriate data preprocessing and augmentation steps, design of the model

architecture beyond the standard U-Net model, and an optimized training procedure.

All experiments were conducted in the multicenter context to imitate a typical clinical

scenario, in which this task can arise.

An automated approach to head and neck primary tumor segmentation in com-

bined PET/CT images in the context of the MICCAI 2020 HECKTOR challenge is

described in Chapter 5. A part of this chapter repeats exactly our previously pub-

lished findings. However, a large amount of supplementary information was included

relying on papers published after the end of the challenge. The key ingredient of the

solution is a new computational unit, called Squeeze-and-Excitation Normalization,

that was proposed by our team to supplement the vanilla U-Net model. Using a train-
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ing set of 201 patients from four medical centers for model development, the designed

method obtained the best results among all participating teams on an independent

test set and won first prize in the contest. Both development and testing were done in

the multicenter fashion, and the model predictions were accurate and robust without

any center-specific standardization. Moreover, an estimate for inter-observer agree-

ment between four human experts was considerably worse than the model results,

demonstrating the high potential of CNN-based models in this task.

Chapter 6 describes a CNN-based method for brain tumor segmentation in mul-

tisequence MRI scans. This method was applied to delineate three different glioma

sub-regions in the context of the MICCAI 2020 BraTS challenge. Apart from a few

minor modifications, the model described in this chapter is identical to the one pre-

sented in Chapter 5. Moreover, pipelines (i.e., data preprocessing, augmentation,

training procedures, etc.) in both chapters vary insignificantly and mainly because

of the difference in input image modalities. Nonetheless, the described approach ob-

tained highly competitive results in the BraTS contest as well, and finished fourth in

the final ranking, essentially without any task-specific adjustments.

The primary objective of Chapter 7 is to investigate the feasibility of achieving

fully automated detection and segmentation of lymphoma and sarcoidosis lesions in

PET/CT images by applying the original U-Net model off-the-shelf, i.e., without any

task- and data-specific adjustments. This aim was chosen to check if high-quality

results can be achieved by using the original model with the fixed architecture and

fine-tuning solely the pipeline components. The analyses was carried out on a retro-

spective dataset consisting of 419 patients with biopsy-proven diagnoses, using two

complementary groups of metrics. As a result, the trained model obtained good

average accuracy for all metrics in the segmentation task. On the other hand, the

detection performance varied significantly depending on the chosen detection criteria.

Conclusions and future research perspectives are discussed in Chapter 8.
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Chapter 1

Statistical Learning Framework

1.1 Learning Task

Broadly speaking, the term ”learning” can be explained as a process of improving

on specific tasks with experience. The central subject of this process is a learner,

or a learning system, which is typically considered to be a machine or a computer

program. In supervised learning tasks, there exists a domain set X, wherein each

element is represented by a feature vector, i.e., x = (x1, x2, . . . , xp) for all x ∈ X, and

an associated label set Y . A training set S = {(x1, y1), (x2, y2), . . . , (xN , yN)} is a

sequence of N labeled domain points, often called training examples, that represent

experience available to the learning system. The purpose of learning on the training

set S is to obtain a predictor h : X → Y , also called a hypothesis or a model, that

can be used to label new domain points. In other words, having the training set S,

the leaner makes a reasonable guess about the data-generating process and selects

the best candidate h from a set of available hypotheses H.

Underlying assumptions about the data-generating process have to be made. De-

fine a joint probability distribution D over domain points and labels, X × Y . Sup-

pose that all elements in the training set S are independent and identically distributed

(i.i.d) according to the probability distribution D that is unknown to the learner, i.e.

(x, y) ∼ D for any (x, y) ∈ S.

For any training example (x, y), an error between the ground-truth label y and the

predicted label h(x) can be measured with a loss function ` : Y × Y → R+. Define a

generalization error, or a true risk, of a hypothesis h to be

LD(h)
def
== E(x,y)∼D [`(y, h(x))] (1.1)
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that is the expected value of the loss function measured with respect to the prob-

ability distribution D. Since the distribution D is unknown, the generalization error

is not directly available to the learner. An estimate for the generalization error can

be a training error, also called an empirical risk, that is calculated directly on the

training set S:

LS(h)
def
==

1

N

N∑
i=1

`(yi, h(xi)) , (1.2)

where the subscript S indicates that the error is computed on the training set S.

Therefore, the task of Empirical Risk Minimization (ERM) is to find a hypothesis

h∗s ∈ H using the training set S to minimize the empirical risk:

h∗s = argmin
h∈H

1

N

N∑
i=1

`(yi, h(xi)) . (1.3)

It is worth to note that in the field of machine learning, the learning process is

often considered from the perspective of function approximation. Often, this assumes

the existence of some ”correct” labeling function, f : X → Y , such that f(x) = y+ ε

for all (x, y) ∈ X ×Y , where ε represents the random error independent of the input,

with zero mean and finite variance, i.e., E[ε] = 0 and V ar(ε) = σ2. The error term

is used to introduce uncertainty associated with the data-generating process (e.g.,

unsystematic errors in labels). Thus, from this perspective, the learning task is to

obtain the best approximation (in terms of some criterion) of the target function f

using any available hypothesis from H and the training set S.

1.2 Regression and Classification

There exist a wide variety of supervised learning tasks. However, only two of them,

namely regression and classification, are central in the context of this work. Both

tasks have a training set S = {(x1, y1), . . . , (xN , yN)} of N labeled domain points.

In regression tasks, each ground-truth label y ∈ Y is represented by a real number.

For example, one can consider survival analysis that plays crucial role in clinical

research. The main objective is to predict patient survival, i.e., time to death, based

on some clinical information about patients provided as a set of features. In this case,

the quality of a prediction h(x) for a data point (x, y) can be measured by a squared
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loss :

`sq(y, h(x))
def
== (y − h(x))2 . (1.4)

The empirical risk with the squared loss is often referred to as a mean squared

error (MSE). For the training set S with N data points, it is written as

LMSE
S (h)

def
==

1

N

N∑
i=1

(yi − h(xi))
2 . (1.5)

The problem of survival prediction can be reformulated as a classification task.

Suppose the label set Y is a finite set of categories, or classes, so that each patient

belongs to one of them. In the aforementioned example, one can stratify all patients

into short-, mid- and long-survivors depending on their survival time that corresponds

to multiclass classification. The most intuitive way to assess the prediction rule, which

in this context is commonly called a classifier, is to rely on a 0-1 loss :

`0−1(y, h(x))
def
==

0 if h(x) = y

1 if h(x) 6= y
(1.6)

that indicates if the prediction is incorrect. Thus, the empirical risk corresponds

to a proportion of mislabeled examples, i.e., an error rate (ER):

LERS (h)
def
==

1

N

N∑
i=1

`0−1(yi, h(xi)) . (1.7)

Under certain conditions, the regression problem has a single analytical solution

(see details in Section 2.1). On the other hand, the classification task with the 0-1 loss

is typically NP-hard, and therefore computationally intractable [235]. To circumvent

this problem, one common approach is to replace the 0-1 loss with a surrogate loss,

which is often its convex upper bound. This convex relaxation allows to derive a

computationally efficient solution relying on numerical optimization methods.

1.3 Gradient Descent

Among numerical methods suitable for different learning tasks, most effective modern

algorithms are built on gradient descent, also known as steepest descent. Suppose each

hypothesis h ∈ H is uniquely defined by a vector of parameters w. Therefore, the
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ERM task can be written as

w∗ = argmin
w

LS(w) (1.8)

for the training set S. Gradient descent iteratively performs small updates of the

parameters w in the direction of the negative gradient, so that

w(t+1) = w(t) − α∇LS(w(t)) , (1.9)

where t = 0, 1, . . . denotes the iteration step and α > 0 is the hyperparameter,

known as a learning rate, that controls the step size. This process usually starts

with the weights w(0) that are initialized randomly or following some task-specific

initialization scheme [33, 66, 90]. The gradient is re-evaluated for the new weight

vector after each update in order to move the value of the training error towards the

local minimum. The training procedure continuous while a stopping criterion, e.g.,

the maximum number of training iterations, is not satisfied.

Unfortunately, a single weight update requires to compute the gradient with re-

spect to the whole training set S, and it can be inefficient or even intractable in

practice. Therefore, instead of using the entire training set S, the gradient of the

training error in Equation (1.9) can be replaced with its estimate computed on a

mini-batch B to obtain mini-batch gradient descent :

w(t+1) = w(t) − α∇LB(w(t)) , (1.10)

where B is a subset of training examples from S. The use of small mini-batches

significantly reduces computational burden of training complex models and allows to

move rapidly through the weight space in large-scale problems. The specific case with

|B| = 1 is known as stochastic gradient descent that provides weight updates on the

basis of the loss function measured for a single example.

The batch gradient descent, i.e., the method that operates on the entire training

set, is shown to monotonically converge to the local minimum, whereas stochastic

gradient descent typically oscillates in some area around it due to noise in the gra-

dient estimates. The level of noise can be dampen by applying gradient descent with

momentum that performs weight updates using gradients from previous iterations so

it can considerably accelerate convergence [176, 186]. This method is typically has a

form of

v(t+1) = βv(t) − α∇LB(w(t)) , (1.11)
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w(t+1) = w(t) + v(t+1) , (1.12)

where α > 0 is the learning rate, β ∈ [0, 1] is another hyperparameter, called a

momentum coefficient, that limits the contribution of previous gradients to the current

update. The case of β = 0 represents the mini-batch gradient descent method, when

the weight update at each iteration is solely determined by the corresponding gradient.

Denote the weight update αLB(w(t)) at the iteration t by ∆(t) and rewrite Equation

(1.12) as follows:

w(t+1) = w(t) −∆(t) − β∆(t−1) − β2∆(t−2) − β3∆(t−3) − . . . (1.13)

It is evident that the momentum method in fact takes into account the exponential

moving average of the previous updates so it allows to reduce oscillations and speed

up training. In practical application, the momentum coefficient β is commonly set

between 0.9 and 0.99 and rarely fine-tuned.

The learning rate in the equations above is treated as a parameter that remains

constant in the course of training. However, it was shown that in many cases the

learning rate adjustments can be beneficial for improving convergence. It is usually

considered good practice to start with the high learning rate and gradually reduce it

over training iterations to not overshoot a local minimum. One option is to apply a

learning rate schedule that basically determines the learning rate as a function of the

training step t. For example, a learning rate decay can be achieved with the schedule

of the form

α(t) =
1

1 + γt
α(0) , (1.14)

where α(0) is the initial learning rate, and γ ∈ [0, 1] is a decay parameter. More

sophisticated strategies are based on the idea of cyclical learning rates that often yield

better results in fewer iterations and without a need to carefully fine-tune the learning

rate [146, 199, 200]. As an alternative, one can rely on adaptive learning rate methods,

such as RMSProp [211] and Adam [122], that implement individual learning rates for

different parameters. Nowadays, these methods become a default option in many

practical application due to fast convergence and robustness to random parameter

initialization [185], that can be detrimental for previously mentioned gradient descent

methods. On the other hand, a number of studies demonstrated that the adaptive

methods tend to have worse generalization performance than gradient descent with
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momentum [121, 226, 241]. Therefore, the choice of the optimization method can be

considered, to a certain extent, as another hyperparameter depending on the task at

hand.

1.4 Risk Upper Bound

The empirical risk provides an estimate of the generalization error evaluated on the

training set. Since training examples are sampled randomly, the empirical risk is

also a random variable that depends on a number of factors, namely the probability

distribution D, the size of the training set N and the hypothesis space H. Statistical

learning theory [219] allows to compute analytic approximations, or bounds, to the

generalization error based on these factors and the empirical risk. In case of a finite

hypothesis space H, the following theorem can be applied [48].

Theorem 1.4.1 For any probability distribution D and any training set S with a size

of N drawn from D, the probability that the absolute difference between the empirical

risk and the generalization error will be greater than any ε > 0, in the worst case, is

upper bounded as follows:

P
(

max
h
|LS(h)− LD(h)| > ε

)
≤ 2|H|e−2Nε2 , (1.15)

where |H| is a size of the hypothesis space H.

In the equation 1.15, the difference between the empirical risk and the general-

ization error is often called a generalization gap. The aforementioned theorem states

that this gap increases with the size of the hypothesis space but decreases with the

size of the training set. The key intuition behind this theorem suggests that the large

hypothesis space and relatively small training set will likely result in a hypothesis

with the low train error just by chance, whereas the generalization gap will be large.

This phenomenon is crucial in practice and known as overfitting.

Note that Theorem 1.4.1 considers only situations with the finite hypothesis set

H. Therefore, it cannot be applied, for example, to parametric hypotheses with real-

valued parameters, since the hypothesis space is infinite in this case. The statistical

learning theory [219] provides methods to derive upper bounds for the generalization

gap in the infinite case from the Vapnik-Chervonenkis (VC) dimension that expresses

the capacity of prediction rules in the hypothesis space. See [218] for details. How-

ever, the VC dimension is hard, often unfeasible, to compute for various classes of

hypotheses and the upper bounds are typically very loose [160, p. 210].
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1.5 Risk Decomposition

Since overfitting tends to occur in situations with the ”unlimited” hypothesis space,

a common solution is to supplement the ERM task with additional restrictions that

depend on the capacity of the hypotheses. These restrictions might reflect some prior

knowledge about the learning task. For example, one can consider only the class

of linear hypotheses, especially if the training set is small and linear approximation

of the underlying distribution seems reasonable. However, it cannot guarantee that

the hypothesis with the best achievable generalization error is still available to the

learner. This dilemma is often called a bias-variance tradeoff and can be illustrated

by separating the generalization error into three components [16, 48].

Define the Bayes error BD for a given probability distribution D over X×Y as the

infimum of the generalization error that can be achieved by any possible hypothesis

h:

BD
def
== inf

any h
LD(h) . (1.16)

This is the irreducible generalization error for the distribution D that reflects

the possible non-determinism in the data-generating process and captures many real-

world problems. For example, the Bayes error arises if some identical data points

have different labels or some labels are assigned with errors.

Ideally, the hypothesis space H, provided to the learning system, should be rich

enough to contain hypotheses with the smallest achievable error, i.e., the Bayes error.

Nevertheless, choosing the richest hypothesis space - the class of all functions over

the given domain - is not reasonable due to overfitting. Therefore, restricting the

hypothesis space to a specific class of functions might increase the generalization

error. Define an approximation error as the minimal possible increment over the

Bayes error in the hypothesis space H:

LappD,H
def
== min

h∈H
LD −BD . (1.17)

The approximation error is independent of the training set and only determined

by the distribution D and chosen hypothesis space H. This error can be decreased

only by enlarging the hypothesis space.

Introduce an estimation error caused by the fact that the learner attempts to

select the best available hypothesis using the empirical risk as an estimate of the

generalization error. The estimation error implies that even if the hypothesis with
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the satisfying approximation error is available to the learner, it might not correctly

choose it based on the available training set S. Suppose h∗s denotes the ERM solution

(see Equation 1.3), then the estimation error can be written as follows:

LestD,S
def
== LD(h∗s)−min

h∈H
LD . (1.18)

The estimation error decreases if the learner chooses better candidates among

available hypotheses. Therefore, this error is influenced by the training set and its

size as well as the size and complexity of the hypothesis space.

To sum up, the generalization error of the ERM hypothesis h∗s, obtained on the

training set S and the hypotheses space H, can be represented as follows:

LD(h∗s) = BD + LappD,H + LestD,S . (1.19)

Since the underlying distribution D is unknown, none of these errors could be eval-

uated. However, this decomposition clearly demonstrates the bias-variance tradeoff.

On one hand, choosing a very rich set H decreases the approximation error, but at the

same time it might increase the estimation error because of overfitting. This situation

is often described as ”low bias - high variance”. On the other hand, choosing a very

small H reduces the estimation error but might increase the approximation error or,

in other words, might lead to underfitting (”high bias - low variance”).

1.6 Regularization

Minimizing the empirical risk might results in overfitting, if available hypotheses have

an excessive capacity for a given task. Naturally, one can supplement the ERM task

(see Equation 1.3) with a complexity term to penalize more complex hypotheses.

Typically, if a hypothesis is represented by a function, or a model, with a set of

parameters w, then the total number of these parameters can be treated as the

model complexity. Define a regularizer as a functional R : H → R that measures

the complexity of hypotheses. Supplement the ERM objective function (see Equation

1.3) with the regularizer in order to obtain the task of Regularized Risk Minimization

(RRM):

h∗s = argmin
h∈H

(
1

N

N∑
i=1

`(yi, h(xi)) +R(h)

)
(1.20)

for some loss function ` and the training set S. Various methods built on the RRM
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principle are widely known in statistics. They mainly differ in terms of loss func-

tions, regularizers and assumptions about the underlying data distribution. Among

them are Mallow’s statistic [65, 152], the Akaike information criterion (AIC) [2],

the Bayesian information criterion (BIC) [194] and the minimum description length

(MDL) [76, pp. 235]. These approaches quantify the model complexity using the

number of parameters which might be suboptimal. As an alternative, there exists the

general measure of complexity, known as the VC dimension, which is the essence of

the Structural Risk Minimization (SRM) principle, developed by Vapnik [219] in the

context of the statistical learning theory.

In addition, there is a vast array of regularizers to induct some prior belief into the

task at hand. Tikhonov, a pioneer of the regularization theory, introduced regulariza-

tion as a method to stabilize the learning task [86, pp. 315]. Intuitively, a hypothesis

is considered stable, if small changes in the input do not effect the output much. In

other words, similar examples tend to have similar labels. Tikhonov demonstrated

that this property can be achieved by restricting parameters, or weights, of the hy-

potheses. Suppose each hypothesis h(w) ∈ H is uniquely determined by a vector of

real-valued weights, w = (w1, w2, . . . , wp)
>, then Tikhonov’s regularizer is defined as:

R(h) = λ‖w‖22 , (1.21)

where λ ≥ 0 and ‖w‖2 =
√∑p

i=1w
2
i . The regularization parameter λ controls the

importance of the regularization term. If λ = 0, the objective function corresponds to

the unconstrained case, i.e., the ERM task. The limiting case, λ → ∞, leads to the

most stable, yet trivial, hypothesis with all parameters w equal to zero. Therefore,

the regularization parameter λ should be chosen between these extreme cases. Since

the L2-norm is used in Equation 1.21, this is often, especially in the field of machine

learning, referred to as L2-regularization.

One could choose the L1-norm (without squaring) instead, that leads to L1-

regularization, which encourages a sparse solution:

R(h) = λ‖w‖1 , (1.22)

where ‖w‖1 =
∑p

i=1|wi|. In particular, this type of regularization is useful in case

of over-parameterization in order to drive some redundant parameters to zero and

produce a parsimonious model [192].

In fact, both aforementioned regularizers can be applied simultaneously that leads
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to the elastic net regularization [248]:

R(h) = α‖w‖22 + (1− α)‖w‖1 (1.23)

with the mixing parameter α, that 0 ≤ α ≤ 1, to balance different types of penalty.

In general, regularization techniques should be considered as certain constraints

imposed on the hypothesis space. But beyond explicit requirements for the model

parameters, more subtle regularization methods can be employed. Suppose, for ex-

ample, that the solution of the learning task must be robust to a certain level of noise

that might be present in data. This condition can be satisfied by augmenting avail-

able data examples with random noise before (or during) training, which serves as a

specific form of data augmentation. Enlarging the training sample with augmented

data points, will likely compel the learner to focus solely on a set of noise-tolerant

hypotheses, that corresponds to regularization. In addition, Bishop [20] showed that

training with noise is equivalent to Tikhonov regularization under certain conditions.

Apart from the orthodox methods described above, plenty of diverse, task-specific

regularization techniques has been proposed [29, 164, 203].

1.7 Validation and Testing

Since the empirical risk is computed on the training set, it will be henceforth re-

ferred to as a training error for convenience. As mentioned earlier, the use of this

measurement to estimate the generalization error typically leads to over-optimistic

results caused by overfitting. Although some methods (e.g., Mallow’s statistic, AIC

and BIC) provide an analytical approximation of the generalization error, they are

applicable only in certain settings. These approaches rely heavily on assumptions

about the data-generating process and are primarily used in statistics.

In machine learning, on the other hand, the predictive accuracy is the number

one priority that leads to the use of more complex and less interpretable models. In

general, an estimate of the predictive performance is obtained using a test set. Based

on the fact that the generalization error refers to the expected error on previously

unseen data, one can exclude some examples from the available training set and use

them afterwards to compute a test error. Given that the test sample is not used

by the learner to choose the best hypothesis, it allows to alleviate the problem of

overfitting, and thus entails a more reliable estimate of the generalization error. Note

that the test set is considered to be unavailable to the learner during training and
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can be used only once, solely for performance evaluation.

Any learning task includes two groups of parameters. The first group relates to

hypotheses available to the learner. These parameters are determined, or fitted, by

the learner in the course of training using some learning procedure. The second group,

often referred to as hyperparameters, is external to the learner and must be specified

before learning. For example, in the case of Tikhonov regularization (Equation 1.21),

the regularization penalty is controlled by the hyperparameter λ. As another example,

one can consider a set of features that characterizes each data example, since multiple

ways of feature extraction might be applied depending on the learning task. It is not

allowed to use the test set for hyperparameter tuning, otherwise the test error would

be the biased estimate of the generalization error. Instead, a part of data, called a

validation set, could be held out from training and testing, and used specifically to

validate the choice of hyperparameters.

It is implied that partitioning of the available data into three sets, or folds, is

equivalent to sampling three independent sets according to the distribution D. In

practice, however, random partitioning might results in non-representative folds, es-

pecially if the number of available examples is small, that is often termed as selection

bias. If there is reason to believe that some features are more important for prediction

than others, it is usually a good idea to use them for stratified sampling to address

selection bias. For example, in some medical applications, patient age is crucial for

survival prediction, and therefore different age groups should be evenly distributed

between the folds. In some applications, selection bias can be tested by training a

classifier that tries to identify which fold a data example comes from. Ideally, pre-

dictions of the classifier should not be significantly different from random guessing.

Otherwise, it might be a sign of selection bias.

If available data is scarce, the test error might have a relatively high variance.

In practice, it is often solved by applying cross-validation1, which is probably the

simplest and most widely used method for estimating the generalization error nowa-

days. Typically, in the case of K-fold cross-validation, the data is randomly split into

K roughly equal-sized parts. Then K − 1 parts of the data are used for building

the model, whereas the kth part is held out to calculate the prediction error. This

fit-predict cycle is repeated for k = 1, 2, . . . , K to obtain K estimates of the general-

ization error. The final estimate is received by taking the arithmetic mean of the K

1This procedure is conventionally referred to as ”cross-validation”, whereas in fact it corresponds
to testing the model on different folds multiple times. Hence, ”cross-testing” seems to be a more
precise term. However, throughout this work, the conventional term is used to avoid any possible
misunderstanding.
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estimates. If K = N , i.e. each fold consists of a single data example, this method is

known as leave-one-out cross-validation (LOOCV). In this case, the computational

burden might be considerable, since it requires N repeats of the fit-predict cycle.

It is known that K-fold cross-validation provides an unbiased estimate of the gen-

eralization error, however, its variance might be large [18, 56]. This variance was

estimated in a number of studies [49, 162] under certain assumptions. Nevertheless,

Bengio and Grandvalet [19] demonstrated that exists no universal (valid under all

distributions) unbiased estimator of the variance of K-fold cross-validation. In addi-

tion, the optimal number of folds depends on the learning task. For example, Kohavi

[124] showed that in some situations large values of K might lead to an increase in

variance, and therefore moderate values (10–20) are more preferable.

Surprisingly, the validation procedure had been ignored in statistical research

for decades and became widely known only in the late 1970s owing to Stone [205],

Mosteller and Tukey [159], and Allen [3]. The dominant idea at the time was that the

data-generating process was known in advance. It was typically assumed to be a linear

function with a set of parameters that were to be estimated from the training set.

As a result, this simplification led to irrelevant theory, questionable conclusions, and

kept statisticians from working on a large range of problems. According to Breiman

[26],

”Given that the data is generated this way, elegant tests of hypothe-

ses, confidence intervals, distributions of the residual sum-of-squares and

asymptotics can be derived. This made the model attractive in terms of

the mathematics involved. This theory was used both by academic statis-

ticians and others to derive significance levels for coefficients on the basis

of model, with little consideration as to whether the data on hand could

have been generated by a linear model. Hundreds, perhaps thousands of

articles were published claiming proof of something or other because the

coefficient was significant at the 5% level [without knowing whether the

model fits the data].”

1.8 Ensemble Methods

Given a training set S, a learning system outputs a hypothesis h ∈ H following some

learning procedure. The training set S is randomly sampled from a distribution D,

therefore the resulting hypothesis h is also a random variable with some unknown
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properties. Repeating the learning procedure with M independent training set sam-

ples, S1, S2, . . . , SM , will result in different hypotheses, h1, h2, . . . , hM , that in general

provide different predictions for the same input x. Instead of just selecting a single

hypothesis, it is often beneficial to use all of them as an ensemble, or a committee, by

combining individual predictions in some way. In regression tasks 2, for example, the

average could be used to obtain the ensemble prediction for a domain point x:

hens(x)
def
==

1

M

M∑
i=1

hi(x) . (1.24)

The task of constructing ”good” ensembles was one of the most active areas of

research in supervised learning. As a result, it was demonstrated that ensembles are

often much more accurate than individual members that make them up [50, 166].

A necessary and sufficient condition for an ensemble to outperform each individual

method is if it consists of accurate and diverse hypotheses. In this context, it implies

that the individual hypotheses make different, yet reliable predictions with a low

correlation between their errors.

Dietterich [50] suggested three fundamental reasons for the superior performance

of ensembles. From a statistical perspective, a learning system can be view as search-

ing a hypothesis space H to identify the best-performing hypothesis. Without enough

data, the learning system can find many different hypotheses, that all provide the

same accuracy on the training set. Therefore, by constructing an ensemble out of

all of these accurate hypotheses, the learner can reduce the chance of selecting the

wrong one. A computational reason relates to situations when the best hypothesis is

selected by performing some form of local search that may get stuck in local optima.

In particular, this includes all sorts of neural networks that employ gradient descent

to determine the best configuration, i.e. weights of the network, that minimizes a

loss on the training set. Even in cases where there is enough training data, gradient

descent methods lead to different results depending on weight initialization. Hence,

an ensemble of neural networks trained with different starting configurations tends

to provide better results [73]. The last reason is representational meaning that in

some cases the data-generating process cannot be sufficiently approximated by any

single hypothesis in H. That is why forming the ensemble of hypotheses drawn from

H might expand the set of representable functions and subsequently improve gener-

alization.

2One can apply majority voting as a strategy to combine independent classifiers in classification
problems.
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There is a number of general ways to build ensembles in practice. The first group

of methods is focused on manipulating the available training data to generate multiple

hypotheses. A naive approach suggests for this purpose to run the learning algorithm

several times with different training samples drawn from the data distributionD. This

technique is especially effective for unstable algorithms, such as decision trees and neu-

ral networks, that are prone to overfitting. In practical applications, however, there is

merely one training sample available for learning. For this reason, one can rely on the

bootstrap, which is a method widely used in statistics to mimic the random sampling

process [55, 57]. Given the training set S = {(x1, y1), (x2, y2), . . . , (xN , yN)} com-

prised of N data points, the bootstrap sample S∗ = {(x∗1, y∗1), (x∗2, y
∗
2), . . . , (x∗N , y

∗
N)}

is generated by sampling the same number of random points with replacement from

the training set S. Therefore, the ensemble prediction can be written as

hbag(x)
def
==

1

M∗

M∗∑
i=1

hi(x) , (1.25)

where each hypothesis hi is received on its individual bootstrap sample S∗i , and

M∗ denotes the ensemble size. The procedure of building ensembles on bootstrap

samples was initially proposed by Breiman [24], who called it ”bootstrap aggregating”

and introduced the acronym bagging. Breiman [24] provided both theoretical and

experimental evidence that bagging can significantly improve unstable hypotheses.

In other words, it reduces the estimation error without affecting the approximation

error (see Section 1.5).

In bagging, each bootstrap sample is expected to have nearly 36% duplicates

caused by sampling with replacement [24], so it might entail too high correlation

between all ensemble members. Parmanto et al. [172] proposed to use an alternative

approach inspired by cross-validation. This method first splits all data into several

folds and then build hypotheses on different combinations of training folds, which

exactly repeats the cross-validation procedure. Finally, the received hypotheses are

combined in ensemble. This method, originally called a cross-validation committee,

can provide less correlated hypotheses, compared to the bootstrap, and is commonly

used nowadays.

In fact, the correlation between methods can also be reduced by increasing any

sort of diversity between them. Ho [96] proposed a random subspace method that

constructs an ensemble of decision trees trained with different subsets of features.

Breiman [25] applied this idea in combination with bagging that led to random forests.

In case of neural networks, various types of data augmentation, regularization tech-
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Figure 1.1: Two-level stacking with M base learners and a single super learner.
Arrows denote the information flow from the original features (the level 0 space)
through the level 1 space to the output.

niques as well as training procedures can be employed for this purpose.

In addition to averaging, individual hypotheses can be combined in many other

ways to form ensembles. In general, it can be considered as another learning problem

that requires to find a ”higher-level” model that uses predictions of the ensemble

members as its own features. This idea was originally proposed by Wolpert [227],

who called it ”stacked generalization”, although nowadays the term ”stacking” is

more common. In this approach, cross-validation is first applied to learn a set of

individual hypotheses. Wolpert refers to them as ”level 0 generalizers”, since they

are built on the original features inhabited in a ”level 0 space”. Denote them by

{h(0)1 , h
(0)
2 , . . . , h

(0)
M } with a superscript indicating the level. Then, their individual

predictions are generated for each domain point x represented by a feature vector

x(0) in the training set in order to get the new feature representation in a ”level 1

space”, x(1) = (h
(0)
1 (x(0)), h

(0)
2 (x(0)), . . . , h

(0)
M (x(0))). Finally, a ”level 1 generalizer”,

sometimes called a super learner, is trained to combine the lower-level generalizers

and to get the final prediction ŷ for the domain point x:

ŷ = h(1)(x(1)) = h(1)
(
h
(0)
1 (x(0)), h

(0)
2 (x(0)), . . . , h

(0)
M (x(0))

)
. (1.26)

In the original paper, Wolpert considered only the case of two-level stacking (see

Figure 1.1), although a larger number of levels can be employed. It is notewor-

thy that the idea behind stacking shares a certain similarity to feedforward neural

networks. Both neural networks and stacked ensembles aim to approximate the data-

generating process by a composition of some base learners arranged in layers or levels,
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respectively. However, while feedforward neural networks consist solely of basic com-

putational units of the same type, i.e, neurons, stacking is typically used with diverse

learners of any complexity. Also, the stacked learners are to be fitted independently

on sophisticated data splits, whereas a feedforward neural network can be trained at

once that is often described as end-to-end training.
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Chapter 2

Methods

2.1 Linear Regression and Least Squares

In a regression task, a training set S consists of labeled domain points

{(x1, y1), (x2, y2), . . . , (xN , yN)}

such that xi ∈ Rp and yi ∈ R. A typical choice to evaluate the quality of a hypothesis

h ∈ H that predicts a real-valued output h(x) is to compute the expected squared

error :

LD(h)
def
== E(x,y)∼D(y − h(x))2 . (2.1)

In the form of ERM, this equation for the training set S can be written as

Ls(h)
def
==

1

N

N∑
i=1

(yi − h(xi))
2 . (2.2)

In statistics and many other quantitative fields, linear regression models play a

crucial role due to their simplicity and interpretability. The linear regression is based

on the assumption that underlying relationship in data can be modeled or reasonably

approximated by an affine function. Therefore, any hypothesis h ∈ H is represented

as an affine function parameterized by a vector of weights w = (w0, w1, w2, . . . , wp)
>,

such that

h(x) = w0 +

p∑
j=1

wjx
j , (2.3)
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where the parameter w0 is called an intercept or a bias. The algorithm of solving

the ERM problem for the hypothesis class of affine predictors with the respect to the

expected squared loss is termed least squares. It represents the following optimization

task:

min
w

L(w)
def
==

N∑
i=1

(yi − w0 −
p∑
j=1

wjx
j
i )

2 . (2.4)

Denote by y = (y1, y2, . . . , yN)> the N -vector of outputs in the training set, and

similarly let X be the N×(p+1) matrix of features, where the i-th row corresponds to

features of the i-th training example, i.e., Xi = (1, x1i , x
2
i , . . . , x

p
i ). The first component

of Xi is a dummy variable equal to 1 in order to omit the bias term in the equations.

Rewrite Equation 2.4 in matrix notation as

L(w) = (y −Xw)>(y −Xw) . (2.5)

This is a quadratic function with p + 1 parameters. Differentiating with respect

to w will give

∂L(w)

∂w
= −2X>(y −Xw) , (2.6)

∂2L(w)

∂w∂w>
= 2X>X . (2.7)

Assuming that X has full column rank, and hence X>X is positive definite, will

allow to set the first derivative (Equation 2.6) to zero:

X>(y −Xw) = 0 (2.8)

in order to obtain the unique closed-form solution (the least squares estimate):

ŵ = (X>X)−1X>y . (2.9)

Therefore, the prediction ŷ for the training set X is written as

ŷ = Xŵ = (X>X)−1X>y . (2.10)

If some features are linearly dependent, which is known in statistics as multi-

collinearity, then X is not of full rank and X>X cannot be inverted. In this case, the

least squares estimate is not uniquely defined and can be derived from the Moore-
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Penrose pseudo-inverse of the matrix X>X (see [21, pp. 142]).

Linear regression is a convenient, yet quite limited method built on the assumption

that dependencies in data can be captured by a linear (affine) function. However,

linear regression can be made to model nonlinear relationships by transforming the

input features with some fixed nonlinear functions, which is equivalent to generating

a new feature space. Denote by φk(x) : Rp → R the kth transformation of x, where

k = 1, . . . ,m. Then, the regression model has a form

h(x) = w0 +
m∑
k=1

wkφk(x) , (2.11)

where φk(x) are known as basis functions. Since this method typically leads to

an increased number of features, it is referred to as basis function expansion [21,

pp. 139]. The use of basis functions allows the regression model to be a nonlinear

function of the input x, while the model in fact remains linear in the parameters w.

This linearity in the parameters greatly simplifies the analyses of this class of models.

There are many possible choices for the basis functions, for example, a sigmoidal

basis function of the form

φσ(xj) = σ

(
xj − µ
s

)
, (2.12)

where µ and σ is a pair of hyperparameters, while σ(t) is a logistic function, also

called a sigmoid, defined by

σ(t)
def
==

1

1 + e−t
. (2.13)

Note that φσ(xj) is a transformation defined for a single feature xj in the feature

vector x. Likewise, this function is widely used in feedforward neural networks as an

activation function for nonlinear transformation of outputs in intermediate layers.

2.2 Logistic Regression and Maximum Likelihood

Estimation

If all examples in the training set S = {(x1, y1), (x2, y2), . . . , (xN , yN)} have binary

labels instead of real numbers, i.e., yi ∈ {0, 1} for any i = 1, . . . , N , this learning task

is an instance of a binary classification problem. The solution of this type of problems

can be obtained by adapting the linear regression method. Suppose there exists a
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Figure 2.1: Unit step function (red) and sigmoid (blue).

linear decision boundary z(x) in the feature space X, which is defined as before by a

parameter vector w = (w0, w1, w2, . . . , wp)
>, i.e.

z(x) = w0 +

p∑
j=1

wjx
j , (2.14)

such that it separates data points into two classes. Therefore, a prediction rule

can be expressed as a unit step function:

s(x) =

1 if z(x) > 0 ,

0 if z(x) ≤ 0 .
(2.15)

Unfortunately, the unit step function has its own drawbacks. The output of this

function remains constant for all data points lying on the same side of the decision

boundary, even if these points are significantly distinct. From the perspective of

optimization, this function is not suitable as it is discontinuous at z = 0 and has

zero gradient everywhere else. Therefore, it is better to replace the unit step function

s(z) with the sigmoid σ(z), defined by Equation (2.13), that serves as its smooth,

monotonic approximation (see Figure 2.1). The received model is commonly referred

to as logistic regression.

The sigmoid function squashes the linear prediction z(x) into the (0, 1) interval

that is regarded as the conditional probability of getting the positive class, namely

P (y = 1|x) = σ(z) ,

P (y = 0|x) = 1− P (y = 1|x) = 1− σ(z) .
(2.16)
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These equations can be combined as

P (y|x) = [P (y = 1|x)]y · [1− P (y = 1|x)]1−y ,

= σ(z)y · [1− σ(z)]1−y .
(2.17)

Based on the assumption that all data points are i.i.d, the joint probability dis-

tribution of the training sample S (called a likelihood function) can be written as

L(w) = P (y1, . . . , yN |x1, . . . , xN) =
N∏
i=1

P (yi|xi) ,

=
N∏
i=1

σ(zi)
yi · [1− σ(zi)]

1−yi ,

=
N∏
i=1

σ(w>xi)
yi ·
[
1− σ(w>xi)

]1−yi
,

(2.18)

where zi = w0 +
∑p

j=1wjx
j
i = w>xi and x0

i = 1 is the dummy component to in-

corporate the bias. The principle idea behind maximum likelihood estimation (MLE)

is to find the parameters w that maximize the likelihood function of the training set

S:

argmax
w

N∏
i=1

σ(w>xi)
yi ·
[
1− σ(w>xi)

]1−yi
. (2.19)

It is convenient to apply the natural logarithm that leads to maximization of the

log-likelihood :

argmax
w

N∑
i=1

[
yi log σ(w>xi) + (1− yi) log

(
1− σ(w>xi)

)]
. (2.20)

The task (2.20) is equivalent to minimizing the negative log-likelihood, which is

also known as binary cross-entropy :

argmin
w

−
N∑
i=1

[
yi log σ(w>xi) + (1− yi) log

(
1− σ(w>xi)

)]
. (2.21)

In contrast to linear regression, the optimization task (2.21) does not have a

closed-form solution and is typically solved by numerical optimization methods, e.g.,
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Figure 2.2: Binary (left) and multiclass (right) logistic regression models.

gradient descent and its variations (see Section 1.3 for details). Denoting the objective

function (2.21), i.e., binary cross entropy, as LCE(w), it is required to compute the

gradient ∇LCE(w). One can demonstrate [21, pp. 140] that the partial derivative of

the objective function with respect to each training parameter wj with j = 0, . . . , p

has a form of

∂LCE(w)

∂wj
=

N∑
i=1

[
yi − σ(w>xi)

]
xji (2.22)

and can be used at each step of gradient descent.

The logistic regression approach can be generalized to multiclass classification,

where all data labels belongs to a finite set of integer categories, i.e., y ∈ {1, . . . , C}
for all (x, y) ∈ S. It usually requires to apply one-hot encoding :

t(y) = (0, . . . , 1, . . . , 0)︸ ︷︷ ︸
kth coordinate is 1

, if y = k (2.23)

in order to transform the labels into indicator vectors. Instead of the parameter

vector w, used in the binary classification, the C×(p+1) weight matrix W is applied

to map the input features x ∈ R(p+1) into z ∈ RC , namely

z = Wx , (2.24)
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z1

z2

...

zC

 =


w>1

w>2
...

w>C

×

x0

x1

...

xp

 (2.25)

where the vector z is commonly referred to as logits (see Figure 2.2). Similarly to

binary classification (see Equation 2.16), the vector of logits z can be transformed to

represent a probability distribution over the output classes as

P (y = k|x) = σk(z) , (2.26)

where each component of the vector function σ, conventionally called a softmax

function, is defined as

σk(z) =
exp(zk)∑C
c=1 exp(z

c)
, for allk ∈ {1, . . . , C} . (2.27)

Finally, multiclass cross-entropy for the training set with N data examples can be

expressed as

LCE(W) = −
N∑
i=1

C∑
c=1

tci log(σc(zi)) = −
N∑
i=1

t>i log(σ(zi)) , (2.28)

where zi = Wxi, the vector ti is the one-hot representation (see Equation 2.23) of

the label yi for all i = 1, . . . , N , and log(σ(zi)) corresponds to the natural logarithm

applied element-wise to the softmax vector σ(zi). As before, gradient descent methods

can be employed to minimize the objective function (2.28) with respect to the weight

matrix W (see details in [21, pp. 209]). Note that the logistic regression and linear

regression models have convex objective functions that guarantee the convergence of

gradient-based optimization algorithms to a global minimum [68, pp. 169].

The multiclass logistic regression model obtains a prediction ŷ for an example x

in three steps:

z = Wx ,

a = σ(z) ,

ŷ = argmax(a) .

(2.29)

Since the softmax function outputs the probability distribution over the target

labels, the argmax function is applied at the last step to get the predicted label. In
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Figure 2.3: Cross-entropy loss (black), 0-1 loss (orange) and Focal loss with different
values of the focusing parameter γ, that controls the loss contribution from easy
examples.

practice, the softmax output is often referred to as ”soft labels”, since it is associated

with the probability, whereas the one-hot label representation is called ”hard labels”.

Suppose N = 1 in Equation 2.28 and denote by p̂ the predicted probability corre-

sponding to the correct label, i.e., p̂ = t>σ(z). Thus, a cross-entropy loss is defined

as

`ce
def
== − log(p̂) . (2.30)

The cross-entropy loss is a surrogate loss function suitable for gradient descent

and is, in fact, a smooth approximation of the 0-1 loss (see Figure 2.3), introduced in

Section 1.2. Sometimes, however, the use of cross-entropy might results in overfitting,

since always p̂ → 1 in the course of training. This phenomenon is also known as

”overconfidence” [210] that can be detrimental, especially if the training set includes

incorrectly labeled examples, or in case of a high class imbalance in data. This effect

can be mitigated by applying different oversampling and undersampling techniques

[95] or by relying on early-stopping [232]. An elegant alternative, called a focal loss,

was proposed by Lin et al. [139] that added a modulating factor (1− p̂) to the cross

entropy loss:

`fl
def
== −(1− p̂)γ log(p̂) (2.31)
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with a focusing hyperparameter γ ≥ 0. This hyperparameter smoothly down-

weights the loss on easy examples and thus focus training on hard false negative

examples (see Figure 2.3).

2.3 Feedforward Neural Networks

Both linear regression and logistic regression are appealing methods mainly due to

the fact that they are compact and can be trained efficiently, either by applying the

closed-form solution or relying on gradient descent. On the other hand, the capacity of

these methods is strictly limited to linear (affine) functions that makes them incapable

of learning more complex, nonlinear interactions between input features. One way to

increase the capacity of linear models is to transform input features using nonlinear

basis function (see Section 2.1) that is in fact equivalent to generating a new feature

representation. Another option is to rely on handcrafted feature extraction techniques

that typically require special knowledge and expertise in a particular domain. This

approach dominated in speech recognition and computer vision before the rise of

deep learning, and nowadays this principle is still at the core of radiomics analysis

[1, 46, 204]. Finally, the strategy of deep learning aims at extracting a good feature

representation directly from data in a fully automated manner.

A feedforward neural network is a quintessential deep learning model that com-

prises multiple layers of logistic regression models stacked one on top of another. This

formulation clearly emphasizes the direct link between feedforward neural networks

and the concept of stacking, presented in Section 1.8. More formally, a feedforward

neural network F with d layers is a composite function of the form

F (x)
def
== f (d)(f (d−1)(. . . (f (1)(x)) . . . )) , (2.32)

where x is the input feature vector, and f (i) is the vector function of the i-th layer

consisting of two transformations, namely

z(i) = W(i)a(i−1) ,

a(i) = g(z(i)) .
(2.33)

The weight matrix W(i) defines the affine transformation performed in the i-th

layer, and g is the nonlinear basis function that is typically called an activation

function, or a nonlinearity, in the field of deep learning. The output of the i-th layer,
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Figure 2.4: Feedforward neural network with d fully connected layers.

a(i), is not directly observable and therefore this layer is named a hidden layer. The

overall number of layers, d, is commonly called a model depth, whereas the length of

the vector a(i), denoted by p(i) + 1, is referred to as a width of the i-th layer (with the

first component always equal to 1 to omit the bias term in Equations 2.33). Thus,

each weight matrix W(i) has a shape of (p(i) + 1)× (p(i−1) + 1).

The activation function of the last layer depends on the task at hand. However,

all other layers typically have the same activation function applied element-wise. It is

important to use nonlinear activation functions, otherwise the whole model collapses

into a linear transformation, since the composition of successive linear transformations

is itself a linear transformation. Early, models used to rely on the sigmoid (see

Equation 2.13), whereas a rectified linear unit (ReLU) is a default recommendation

for modern neural networks. The ReLU activation is defined as

g(z)
def
== max (0, z) , (2.34)

which means that this is a piecewise function with two linear segments (see Figure

2.5). It has been demonstrated [163] that this activation function has a number of

advantages over the sigmoid so it leads to a better performance of gradient-based

optimization methods. Since the activation function is applied element-wise, indi-

vidual components of the vector a(i) can be considered as basic computational units,

neurons, that act in parallel. In fact, each neuron corresponds to a logistic regression

model with some activation function g that uses the entire output of the previous

layer as its own feature vector. Due to the full connectivity of adjacent layers, they

are often termed ”fully connected layers”.

During inference, a feedworward neural network uses an input x to produce an

output ŷ. In this case, information flows forward through the network, that is called
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Figure 2.5: Rectified linear unit (ReLU). The recommended activation function for
most modern feedforward neural networks.

forward propagation. In the course of training, forward propagation is followed by

computing a value of the loss function on a mini-batch of training examples. Then,

a back-propagation algorithm, or backprop, is used to send information backward

through the network in order to compute the gradient of the loss function with re-

spect to the model parameters. Therefore, back-propagation is referred to the method

for computing the gradient, which can be used in combination with gradient descent

methods to fit the model parameters. Apart from feedforward neural networks, the

back-propagation algorithm can be applied to many other learning tasks that in-

volve computing other derivatives as well. See details regarding the back-propagation

algorithm in Rumelhart et al. [187].

2.4 Convolutional Neural Network

Feedforward neural networks have an input x in a form of a real-valued feature vector.

In many applications, however, it is required for a model to process data with a

grid-like structure, e.g., images, represented as multidimensional arrays, also called

tensors. A naive approach is to flatten an n-dimensional tensor into a vector and

use it as input. Since, each single neuron in feedforward neural networks interacts

with the whole output of the previous layer (see Equations 2.33), the naive approach

will be feasible in terms of memory requirements and statistical efficiency, only if the

input images are relatively small. A better alternative is to rely on a specialized kind

of neural networks for working with grid-like data, which is known as convolutional

neural networks or CNNs.

CNNs usually have sparse interactions, also called sparse connectivity, meaning

that these models focus on extracting local features that depend only on small re-

gions of the input image. This is built on the assumption that nearby image pixels are
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more strongly correlated than more distant pixels. Therefore, CNNs replace most of

matrix multiplications (see Equation 2.33) with an operation called convolution. Sup-

pose that I and K are two-dimensional (2D) tensors, then a (discrete) convolution1

(denoted with an asterisk) is defined as

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) + b , (2.35)

where (i, j) - is a pair of coordinates indicating a particular element of a tensor,

the tensor I is called an input, whereas the tensor K is named a kernel or filter, and

b ∈ R is the bias. The output tensor S is in fact a 2D feature grid that is often

referred to as a feature map.

The filter K is typically a small tensor, e.g., 3 × 3, of parameters that are to be

fitted in the course of training so that it makes CNNs dramatically more efficient

than matrix multiplications. Since this kernel is used at every position of the input

to generate the feature map, it is often referred to as parameter sharing.

Convolution with a single kernel can only extract one kind of features at many

locations. Therefore, it is required to apply multiple different kernels and stack their

feature maps along a so-called channel dimension, which will technically lead to the

3D output tensor. In practice, however, the channel dimension is considered inde-

pendently from the spacial dimensions and can be conveniently regarded as a feature

vector associated with a particular spatial point of the input tensor. In addition, the

term ”convolution” is typically referred to multi-channel convolution, rather than the

operation presented in Equation 2.35. More precisely, multi-channel convolution is

defined as follows:

S(c, i, j) = (I ∗K)(c, i, j) =
∑
p

∑
m

∑
n

I(c+ p, i+m, j + n)K(p,m, n) + b , (2.36)

where c denotes the index along the channel dimension. Likewise, this operation

can be defined for 3D tensors by adding an extra spatial dimension. If it is required

to keep the spatial size of the input unchanged, it can be achieved by applying con-

volution with padding that first adds extra, empty pixels around the boundary of the

input. The default convolutional transformation implies to slide one element at a

time over all filter locations. This behavior can be modified with another parameter,

1In signal processing, on the other hand, this operation is usually referred to as ”cross-
correlation”.
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Figure 2.6: Multi-channel convolution with the kernel K of the size 3× 3 applied to
the input tensor I of the spatial size 5× 5 with 3 input channels (the bias term b is
omitted for simplicity).

called a stride. Similarly to feedforward neural networks, outputs of convolutional

transformations are followed by an element-wise nonlinearity, such as ReLU. Overall,

a set of convolutional transformations applied to the same input forms a convolutional

layer.

The spacial size of feature maps can be decreased with the use of pooling. This op-

eration replaces values at a certain spatial location with a summary statistic computed

within its neighborhood. For example, max pooling returns a maximum value within

each rectangular region of the predefined size. Likewise, average pooling computes a

mean inside these regions (see Scherer et al. [191]). As an alternative to pooling, the

output size can be reduced by applying a convolutional layer with a larger stride. To

increase the spatial size, one can use upsampling with different forms of interpolation

or a specialized operation known as transposed convolution.

Since deep learning models are commonly fitted employing gradient descent meth-

ods with a single learning rate for all parameters (see Section 1.3), input features

should be normalized, i.e., adjusted to a common scale, to improve convergence. For

example, one can apply Z-score normalization, which is widely used in statistics and

defined as

x′i =
xi − E[Xi]√
V ar(Xi)

, (2.37)

where xi is the value of the i-th feature in an individual example, whereas Xi is the

entire sample. In 2015, Ioffe and Szegedy [108] presented the idea of batch normaliza-

tion, also called batchnorm for short, devised to scale features in intermediate layers.

This new kind of layers allowed to train significantly deeper models without the need

for careful parameter initialization. Basically, in case of batch normalization, each
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single feature map in a mini-batch of examples is to be scaled with Z-score normal-

ization. Suppose T is a tensor corresponding to a mini-batch of 2D images, then T

has the shape (B,C,H,W ), in which B - is a number of images in the mini-batch, C

- is a number of channels, or feature maps, whereas H and W determine the spacial

size of the tensor T . Therefore, batchnorm layers first normalize the input tensor T

as follows:

T ′i =
Ti − E[Ti]√
V ar(Ti)

, (2.38)

where Ti denotes the i-th feature map of T . Then, batchnorm layers learn a pair

of parameters γi and βi to scale and shift each normalized channel:

T̂i = γiT
′
i + βi , i = 1, . . . , C . (2.39)

Note that the output of batchnorm layers depends on the examples in the mini-

batch, since they affect the mean and standard deviation. Therefore, batchnorm

layers track moving averages of these values in the course of training and apply the

computed statistics during inference to obtain deterministic predictions. Based on

the concept of batch normalization, other normalization layers [9, 215, 231] have been

devised for different learning tasks. Moreover, normalization layers have become a

de facto standard for most modern architectures, wherein they are usually placed

between each convolutional layer and nonlinearity.

In case of models with tens of convolutional (or feedforward) layers, normalization

layers allow to reduce the problem of vanishing / exploding gradients that hamper

convergence of gradient descent methods. However, training of deeper models usually

requires to rely on skip connections and the principle of residual learning. He et al.

[89] introduced a residual unit as a following transformation:

y(i) = h(x(i)) + F (x(i)) ,

x(i+1) = f(y(i)) ,
(2.40)

where x(i) is the input tensor to the i-th residual unit, F is a residual function,

and h is known as a skip connection. Functions h and f are often set as an identity

mapping, which leads to the residual unit with a shortcut connection, defined as

x(i+1) = x(i) + F (x(i)) , (2.41)
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which means that the input tensor x(i) could be directly propagated through the

residual unit in both forward and backward passes. As a result, it has become pos-

sible to train extremely deep models with various types of residual units and skip

connections (e.g., a 1001-layer network developed by He et al. [91]) using optimization

algorithms based on gradient descent. Huang et al. [103] proposed to use a differ-

ent connectivity patter to facilitate the information flow between layers by replacing

summation with concatenation. Consequently, the unit with a dense connection has

the output

x(i+1) =
[
x(i), F (x(i))

]
, (2.42)

where
[
x(i), F (x(i))

]
refers to the concatenation of the feature maps x(i) and F (x(i))

along the channel dimension.

2.5 Architecture Design

Despite a myriad of existing CNN architectures applied to visual recognition tasks,

the vast majority of them are built on the same underlying principles. A typical CNN

has a feature extractor, also called an encoder, that converts an input data into a new,

low-dimensional representation using a number of convolutional and pooling layers.

Each convolutional layer is composed of multiple filters aiming to extract diverse

visual patterns and generate corresponding feature maps. The first layers detect

elementary, low-level features in the input data such as oriented edges, end-points,

corners, etc. These features are then combined by the subsequent convolutional layers

in order to extract more complex, high-level features with a larger receptive field2.

In theory, the size of the receptive field grows linearly with the model depth, as

each convolutional layer increases the receptive field by its kernel size. On the other

hand, pooling layers enlarge the receptive field multiplicatively by reducing the feature

map resolution [150], and help to learn representations that are invariant to small

translations and distortions of the input [130]. Since pooling layers eliminate a part

of spatial information encoded in feature maps, the width of subsequent convolutional

layers is typically increased to compensate for the information loss. Thus, the encoder

is a stack of alternating convolutional layers (followed by nonlinearity, e.g., ReLU)

2Since each filter in a convolutional layer is applied locally, a unit of the resulting feature map is
only affected by a small neighborhood in the layer input. Likewise, in an entire CNN, the value of a
unit in a certain feature map depends only on some region in the model input. This region is called
a receptive field for that unit.
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Figure 2.7: General encoder-classifier structure used in modern CNNs for image clas-
sification tasks.

and pooling layers, which returns a compact representation of the input.

In image classification tasks, the encoder is followed by a classifier, usually com-

prised of one or more fully connected layers. Given the compact representation of

the input data produced by the encoder, the classifier aims to generate the correct

probability distribution over the target classes using the softmax function (see Figure

2.7). This design principle was introduced in LeCun et al. [129] and LeCun et al.

[130] to build LeNet, a pioneering network, successfully applied to handwritten digit

recognition. Variants of this basic design have become prevalent in different vision

recognition tasks and, most notably, in the ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC) [188], wherein, starting with AlexNet in 2012 [127], state-of-

the-art results have been obtained exclusively by CNNs with the encoder-classifier

structure (for example, see [91, 99, 103, 209]). In addition, decomposing CNNs into

the encoder and classifier components leads to the appealing idea of transfer learn-

ing, an approach often used in practice [233]. Hypothetically, the whole encoder or

its part, trained for some learning task, can be successfully reused in another related

problems. Therefore, it is often advantageous to use encoders pretrained, for example,

on the ImageNet data, instead of fitting the whole model from scratch.

Another important class of visual recognition tasks is image segmentation. In case

of semantic segmentation, it is required to label all units (pixels in 2D images and

voxels in 3D images) of the input with a certain category. In fact, this task can be

thought of as a pixel- or voxel-wise classification problem, often referred to as dense

prediction. The prediction is typically a segmentation mask of the same spatial size as

the input, in which the probability distribution over all categories is provided for each

unit. The term ”semantic” emphasizes the fact that different objects, or instances,

of the same category have to have the same label. On the other hand, in instance

segmentation, unique labels must be given to each instance, even if they belong to the

same category. For example, in radiotherapy, it is often necessary to label all units
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Figure 2.8: General encoder-decoder structure used in modern CNNs for image seg-
mentation tasks. The encoder is shown in Figure 2.7 and omitted here for simplicity.

of a patient scan in order to locate all malignant lesions. If this task is formulated

in the context of semantic segmentation, all lesions will have to be marked with the

same label. Otherwise, if the individual label is required for each lesion, it will lead

to the instance segmentation problem.

One of the first approaches for semantic segmentation with the use of CNNs ap-

peared in Ciresan et al. [35] for segmentation of neuronal membranes in electron

microscopy images (see details in Section 3). The proposed CNN predicted labels for

a single pixel from raw image values in a square window centered on it. To get the

segmentation mask for the whole image, the network required multiple forward passes

in a sliding-window setup, resulting in significant computational overhead. Long et

al. [144] introduced fully convolutional networks (FCNs), that did not have fully con-

nected layers, could process inputs of an arbitrary size, and produced correspondingly-

sized outputs with more efficient inference. The FCN included a pretrained encoder

(based on AlexNet [127], VGG [198] and GoogLeNet [208]) to extract feature maps of

different hierarchy and spatial size. Transposed convolutions and bilinear interpola-

tion were applied to feature maps of different resolution to subsequently combine fine

and coarse features, and eventually restore the input image size. SegNet was intro-

duced by Badrinarayanan et al. [10] and incorporated an encoder similar to FCN and

a decoder, a part of the network aiming to restore the input resolution, that led to

the encoder-decoder structure (see Figure 2.8). Since the encoder provides high-level

features with low spatial resolution, the main purpose of the decoder is to gradually

upsample these features in order to generate the corresponding segmentation mask.

Similarly, Ronneberger et al. [183] designed U-Net, arguably the most popular net-

work for medical image segmentation, that includes skip connections to copy some

feature maps from the encoder to the decoder (see details in Section 3).

Another class of methods, working especially well in instance segmentation tasks,

is based on the idea of combining semantic segmentation with object detection [92,
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179, 181]. First, these methods detect each individual object identifying a bounding

box around it. Then, this bounding box is used to generate the segmentation mask

corresponding to the object. Even though this approach leads to state-of-the-art

results in many different applications with 2D images, it is barely employed in case

of 3D medical scans. The main reason of it is that the detection task requires a large

number of annotated objects available for training, which is quite rare in medical

datasets.

2.6 Universal Approximation Theorems

The representational power, or the capacity, of feedforward neural networks has been

widely studied in different fields. Most of these results are directly related to a number

of universal approximation theorems, presented by Cybenko [44], Hornik et al. [97]

and Hornik [98]. For example, Theorem 2 from [44] can be formulated as follows:

Theorem 2.6.1 If F ∗ is a continuous function defined on the p-dimensional unit

cube Ip, i.e., Ip = [0, 1]p. Then, for any given ε > 0, there exists

F (x) =
N∑
j=1

αjσ(w>j x) , (2.43)

such that for all x ∈ Ip

|F (x)− F ∗(x)| < ε . (2.44)

The transformation w>j x corresponds to an affine transformation of the input x,

and σ is a ”squashing function”, i.e., any continuous function of the form

σ(z) =

1 if z → +∞

0 if z → −∞
(2.45)

In other words, Theorem 2.6.1 states that any continuous function can be approx-

imated by a shallow feedforward neural network, i.e., a network with one hidden layer

(see Figure 2.9), and with an arbitrary squashing function, e.g, the sigmoid activa-

tion. This type of networks is therefore said to be a universal approximator. Leshno

et al. [133] and Pinkus [174] extended results of the universal approximation theorem

to a wider class of activation functions, including rectified linear units.
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Figure 2.9: Shallow feedforward neural network.

The presented theorem says that there exists a network large enough to achieve

any desirable accuracy, however, it does not say anything about the size of the hid-

den layer. In fact, this single layer may be infeasibly large so that the network will

fail to learn and generalize correctly. In many circumstances, using deeper models

can significantly reduce the number of neurons required to approximate the desired

function [137]. It was demonstrated that some functions require exponentially many

neurons in a shallow network to achieve the same approximation accuracy as a deep

network with only a polynomial or linear number of neurons [40, 60]. However, if

the input length is p, even an infinitely deep feedforward network with ReLU non-

linearities must have at least p + 1 neurons in each hidden layer to be the universal

approximator [72, 147]. Lin and Jegelka [137] showed that feedforward networks with

shortcut connections and just one neuron representing the residual function F (see

Equation 2.41) is enough to provide universal approximation as the depth goes to

infinity. This result implies that, compared to fully connected layers, the identity

mapping in residual layers allows to improve the representational power of deep net-

works. However, both deep and wide networks require a large number of training

examples. In addition, nonlinear activation functions, used in hidden layers, make

most of loss functions to become non-convex. Gradient descent methods applied to

non-convex loss functions have no global convergence guarantees and are sensitive to

the values of the initial parameters. Although the universal approximation theorem

states that for any continuous function there exists its approximation with a shallow

network, it does not guarantee that the training algorithm will be able to correctly

learn that network from the training set. This situation can be described in terms

of the bias-variance tradeoff (see Section 1.5). The universal approximation theo-
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rem guarantees that the approximation error of shallow networks is zero. However,

the estimation error might be extremely large, making these models inapplicable in

practice for small training sets.

Similar theoretical results on the approximation capacity of CNNs (without fully

connected layers) were provided recently. Zhou [240], for example, proved the univer-

sality of CNNs to approximate any continuous function to an arbitrary accuracy, if

the model depth is large enough. These results verified the efficiency of deep CNNs

in dealing with large dimensional data.
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Chapter 3

Overview of CNNs for Medical

Image Segmentation

From Classification to Segmentation

To the best of my knowledge, the first convolutional neural network (CNN) applied to

a medical visual recognition task dated back to 1995, when Lo et al. [142] used it for

lung nodule classification in CT images. Their model consisted of two convolutional

layers and operated on extracted image patches with a size of 16×16 pixels. Despite its

simplicity, the model achieved high accuracy (AUC = 0.83) on 207 testing patches and

set an important precedent for the future use of CNNs in medical image segmentation.

It is generally accepted that CNNs owe much of their success to AlexNet [127]

that won the ImageNet LSVRC-2012 competition by a large margin. However, the

other network, called DanNet [36], won four other image recognition challenges in

a row prior to AlexNet. In fact, DanNet was the first CNN that surpassed human-

level performance (twice as good as humans) in a vision challenge [37]. This network

also became the first CNN to win a contest on object detection in large images

(2048× 2048× 3 voxels) and a medical imaging contest [38, 39]. In addition, DanNet

was the first CNN that outperformed classical methods for image segmentation in a

public challenge. More specifically, in the ISBI 2012 EM Segmentation Challenge,

DanNet was applied to segment biological neuron membranes in stacks of electron

microscopy (EM) images [35]. Since DanNet is an encoder-classifier network (see

Section 2.5), it used a square image patch as input to classify just a single central

pixel in the entire patch. After training, to segment a whole test image, the model

was applied to all image pixels in a sliding-window fashion (see Figure 3.1) that made

this method computationally expensive. It is worth noting that DanNet has a striking
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similarity to AlexNet in terms of architecture design, and it is also one of the first

CNNs that relies on GPU-based training.

Figure 3.1: DanNet for EM image segmentation. An image patche with a size of
w×w pixels is used to compute the probability of a central pixel being a membrane.
Source: Ciresan et al. [35].

U-Net as a Starting Point for Architecture Design

As stated earlier in Section 2.5, encoder-decoder networks (e.g., FCN [144] and SegNet

[10]) overcome drawbacks with the sliding-window approach in segmentation tasks

by employing a decoder to generate the prediction for the entire input with a single

forward pass. U-net [183] is an instance of this type of networks that includes skip

connections to transfer some feature maps from the encoder to the decoder. In case

of medical image segmentation, the vast majority of models have been built on the

basis of U-Net.

In the U-Net architecture, at each resolution stage (i.e, before downsampling /

upsamling), two 3× 3 convolutional layers followed by ReLU are applied to generate

feature maps. After downsampling, usually performed by a 2 × 2 max pooling, the

number of feature channels is doubled. In the decoder, upsampling is done by 2 ×
2 transposed convolutions that halve the number of feature channels. Then, the

upsampled maps are concatenated with the corresponding maps from the encoder,

and two 2×2 convolutional layers with ReLU are applied to combine these maps. The

final layer is a 1× 1 convolution that generates the proper number of output classes.

The last activation function returns the probability distribution over the classes for

each pixel. The original U-Net introduced by Ronneberger et al. [183] is shown in

Figure 3.2. By replacing all 2D layers with their 3D counterparts, one can get the 3D

U-Net architecture [34], widely used in medical image analysis. Today, it is common

practice to apply normalization (e.g., batch normalization) after each convolutional
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layer and before nonlinearity to facilitate training. The combination of these three

transformations is defined as a convolutional block.

Figure 3.2: Original 2D U-Net with 64 filters in the first convolutional layer. Source:
Ronneberger et al. [183].

Towards New Blocks and Layers

Many architectures have been derived from U-Net by relying on alternative convo-

lutional blocks. For example, Milletari et al. [158] introduced V-Net for prostate

segmentation in transversal T2-weighted MR images. This network used residual

blocks [87] in both encoder and decoder, and applied strided convolutions instead

of max pooling for downsampling. In addition, this paper presented the Soft Dice

Loss, a differentiable surrogate for the Dice similarity coefficient (DSC) (defined in

Section 6.2.3), which is commonly used in modern applications. Likewise, Dolz et al.

[51] used dense blocks [101] as the basic unit of their model and additional skip con-

nections between encoding and decoding paths to address two different brain tissue

segmentation tasks in MRI. Alom et al. [4] proposed a recurrent U-Net (RU-Net)

model and a recurrent residual U-Net (R2U-Net) model that outperformed U-Net in

three different tasks, namely blood vessel segmentation in retinal images, skin cancer
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segmentation and lung lesion segmentation. In these models, all convolutional blocks

were replaced with novel recurrent residual convolutional units that relied on skip

connections and the general ideas of recurrent neural networks. Jin et al. [118] pro-

posed a 3D hybrid residual attention-aware segmentation method (RA-UNet) based

on U-net with integrated attention residual modules. This model was successfully

applied to the task of liver tumor segmentation in CT images. Jha et al. [115] de-

signed an architecture with diverse types of residual layers for colonoscopic image

segmentation. Their model outperformed state-of-the-art methods and the original

U-Net on two public datasets. Wang et al. [222] described another network based on

3D U-Net with recursive residual blocks and pyramid pooling for segmenting three

brain sub-regions, namely white matter, gray matter and cerebrospinal fluid, in T1-

weighted MRI. The recursive residual blocks contained multiple skip connections to

ease training, while pyramid pooling was applied to generate feature maps at differ-

ent resolution stages for obtaining both local and global image features. In addition,

the deep supervision mechanism was incorporated into the network. On three public

datasets, the proposed model generated accurate predictions for all brain sub-regions

with the average DSC of 0.91, 0.90 and 0.85 on the corresponding datasets.

Attention to Details

Another common source of modification is to supply U-Net with various attention

mechanisms [11]. Oktay et al. [165], for instance, presented an extension to the stan-

dard U-Net model for gastric cancer segmentation in CT images by incorporating

new attention gate (AG) modules in the decoder. These modules aimed to suppress

irrelevant regions in the input image while highlighting salient features useful for a

specific task. In a similar manner, Roy et al. [184] proposed concurrent spatial and

channel squeeze & excitation (scSE) modules to adaptively recalibrate feature maps

during training. Integrating these lightweight modules into fully convolutional neural

networks provided consistent improvements of performance across different architec-

tures, which was demonstrated in the task of segmenting MRI T1 brain scans into

27 cortical and sub-cortical structures as well as for organs delineation in whole-

body contrast-enhanced CT scans. An alternative attention mechanism, convolu-

tional block attention module (CBAM), was successfully applied to nasopharyngeal

carcinoma segmentation in multisequence MRI [228]. Zhou et al. [242] used scSE

modules similar to Hu et al. [99] and Roy et al. [184] in order to add the attention

mechanism to various parts of the U-Net architecture, including skip connections.

These modules re-weighted feature maps channel- and space-wise to obtain more

54



informative feature representations. In addition, residual blocks with dilated convo-

lutions were used to construct both encoder and decoder with the larger receptive

field. The model was trained to delineate three target classes in CT scans of patients

with COVID-19.

New Architectures

The broad range of models are in fact deviations from the traditional U-shaped ar-

chitecture shown in Figure 3.2. For instance, Myronenko [161] supplemented the

encoder-decoder network comprised of full pre-activation residual blocks [88] with an

additional variational auto-encoder branch that aimed at reconstructing the input im-

age. It imposed additional constraints on the model weights and therefore served as a

form of model regularization. This architecture demonstrated the best results in the

Brain Tumor Segmentation (BraTS) Challenge 2018 [12]. [245] addressed the task of

chronic stroke lesion segmentation in 3D MRI T1 scans by doubling the encoder path.

Each branch of the encoder extracted features of the specific dimension (2D or 3D)

that were subsequently combined and transferred to the decoder. It achieved better

performance compared to 2D counterparts while significantly reducing computational

overhead in comparison to pure 3D networks. Zhou et al. [247] re-designed skip con-

nections in U-Net by including a series of nested dense blocks that increased semantic

similarity between the encoder and decoder feature maps. The model was superior to

different variants of U-Net for nodule segmentation in the low-dose chest CT scans,

nuclei segmentation in the microscopy images, liver segmentation in abdominal CT

scans, and polyp segmentation in colonoscopy videos. Li et al. [136] presented an ar-

chitecture consisting of multiple iterations of U-Net with additional skip connections.

Each iteration was designed to refine predictions obtained in previous steps. The

model achieved state-of-the-art performance in retinal vessel segmentation on three

commonly used datasets. In the context of the automatic liver segmentation in CT,

Dou et al. [52] provided the model with multiple auxiliary branches aiming to generate

predictions with different resolutions. Each auxiliary output was first upsampled to

the proper output size with the use of transposed convolutions. Then, the weighted

average of the generated outputs was used to produce the final prediction. Often,

this procedure is referred to as deep supervision [131]. Finally, a fully connected con-

ditional random field (CRF) method was applied as a post-processing step to refine

the output. On the public dataset, this approach outperformed all other methods

while demonstrating the best running time. Another variant of 3D U-Net with deep

supervision was described in Kayalibay et al. [120]. In this network, convolutional
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blocks were replaced with residual blocks, and strided convolutions were employed

for downsampling in place of max pooling. Each pair of feature maps at adjacent

stages in the decoder was subsequently combined by element-wise summation (that

corresponds to deep supervision) to compute the prediction. Hence, the output was

directly affected by the features from all stages that helped to speed up convergence

during training. This model was used to segment four classes of human phalanges in

hand MRI.

Multibranch Structures

In the BraTS 2019, Jiang et al. [117] merged two U-Net architectures into a two-stage

cascaded model to address the task of glioma sub-region segmentation in multise-

quence MRI. During the first stage, the first U-Net was trained on the original input

to produce coarse, preliminary predictions. Then, the original input and correspond-

ing predictions were merged and subsequently used as input by the second U-Net

to refine the preliminary results. The final prediction was obtained after applying

post-processing to the output of the second U-Net. Although the whole model was

relatively cumbersome and could not produce end-to-end predictions, this method

won first prize in the BraTS 2019. It is worth noting that this approach is a special

case of two-level stacking introduced in Section 1.8. Isensee and Maier-Hein [111]

applied three variants of U-Net in the Kidney Tumor Segmentation (KiTS) Chal-

lenge 2019 [94]. In addition to the standard 3D U-Net architecture, they designed

two additional models with two types of residual blocks [87, 89] used solely in the

encoder. Despite the large number of publications claiming substantial advantages

of residual layers over basic convolutional blocks, all three models obtained results

without significant differences.

Instead of using a fixed-size patch as input, Kamnitsas et al. [119] presented

DeepMedic, a dual pathway architecture, to process the input images at multiple

scales simultaneously. In this model, the original patch and its downsampled coun-

terpart were passed through individual pathways to extract both local and larger

contextual features, which were subsequently fused to generate the output. Similarly,

Srivastava et al. [202] designed a dual-scale dense fusion block to compute both high-

and low-resolution feature representations. U-Net supplemented with these blocks

achieved state-of-the-art results on four public medical datasets. For meningioma

segmentation in Gd-enhanced T1-weighted MRI, Bouget et al. [23] designed U-Net

with multi-scale input, attention and deep supervision. At each resolution stage,

the downsampled input obtained with the use of average pooling was concatenated
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to the corresponding feature maps in the encoder. Likewise, downsampled ground-

truth masks were used to evaluate the intermediate loss at each stage in the decoder

to apply deep supervision. The total value of the loss function was the sum of all

intermediate losses. Two different types of attention mechanisms were applied to

skip connections to highlight relevant feature maps, before transferring them to the

decoder. Using 5-fold cross-validation (three folds were used for training, one for

validation, and one for testing) on a dataset with about 600 patients, the best model

configuration obtained the average DSC of 0.82 across all test folds.

Also, a variety of fusion techniques have been proposed in multimodal image

segmentation to efficiently combine and/or process diverse image modalities [104,

243, 244].
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Chapter 4

Cervical Cancer Segmentation in

PET

Reference

Convolutional neural networks for PET functional volume fully

automatic segmentation: development and validation in a mul-

ticenter setting. Andrei Iantsen, Marta Ferreira, Francois Lucia, Vin-

cent Jaouen, Caroline Reinhold, Pietro Bonaffini, Joanne Alfieri, Ra-

mon Rovira, Ingrid Masson, Philippe Robin, Augustin Mervoyer, Car-

oline Rousseau, Frédéric Kridelka, Marjolein Decuypere, Pierre Lovin-

fosse, Olivier Pradier, Roland Hustinx, Ulrike Schick, Dimitris Visvikis,

and Mathieu Hatt. European Journal of Nuclear Medicine and Molecular

Imaging (2021).

Abstract

Purpose: In this work, we addressed fully automatic determination of tu-

mor functional uptake from positron emission tomography (PET) images

without relying on other image modalities or additional prior constraints,

in the context of multicenter images with heterogeneous characteristics.

Methods: In cervical cancer, an additional challenge is the location of

the tumor uptake near or even stuck to the bladder. PET datasets of 232

patients from five institutions were exploited. To avoid unreliable manual
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delineations, the ground-truth was generated with a semi-automated ap-

proach: a volume containing the tumor and excluding the bladder was first

manually determined, then a well-validated, semi-automated approach

relying on the Fuzzy locally Adaptive Bayesian (FLAB) algorithm was

applied to generate the ground-truth. Our model built on the U-Net

architecture incorporates residual blocks with concurrent spatial squeeze

and excitation modules, as well as learnable non-linear downsampling and

upsampling blocks. Experiments relied on cross-validation (four institu-

tions for training and validation, and the fifth for testing). Results:

The model achieved good Dice similarity coefficient (DSC) with little

variability across institutions (0.80±0.03), with higher recall (0.90±0.05)

than precision (0.75±0.05) and improved results over the standard U-Net

(DSC 0.77±0.05, recall 0.87±0.02, precision 0.74±0.08). Both vastly out-

performed a fixed threshold at 40% of SUVmax (DSC 0.33±0.15, recall

0.52±0.17, precision 0.30±0.16). In all cases, the model could determine

the tumor uptake without including the bladder. Neither shape priors nor

anatomical information was required to achieve efficient training. Con-

clusion: The proposed method could facilitate the deployment of a fully

automated radiomics pipeline in such a challenging multicenter context.

4.1 Introduction

Combined positron emission tomography / computed tomography (PET/CT) imag-

ing is widely used in clinical practice to provide functional information on organs and

tissues, as well as disease abnormalities. Static PET images provide semi-quantitative

information regarding the distribution of a radiotracer uptake. In oncology, Fluo-

rodeoxyglucose (FDG) PET imaging is routinely relied upon for diagnosis, staging,

treatment planning and therapy follow-up [82].

In clinical applications, nuclear medicine physicians carry out qualitative assess-

ments of PET/CT images, which is typically sufficient for detecting and anatomically

locating lesions. For radiotherapy treatment planning, radiation oncologists manu-

ally draw boundaries on fused PET/CT images to determine the gross target volume

(GTV) of a tumor, in order to subsequently deliver a specific dose to the target. The

boundary of the target should be defined as accurately as possible to maximize the
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coverage of the target and minimize the dose delivered to surrounding healthy tissues

and nearby organs-at-risk (OAR).

More quantitative assessment of FDG uptake in PET images can also be per-

formed. For instance, radiomics analyses [85] aim at extracting clinically relevant

measurements through the calculation of numerous image derived features features

(e.g., intensity, shape and textural). Such measures can subsequently be used to build

models predictive of outcome or for assessing changes in tumors before, during, and

after treatment in order to better evaluate response to therapy [47, 148, 151]. It has

been shown in all image modalities including PET that the choice of the segmentation

method in this step of the radiomics workflow can significantly affect the extracted

features [84, 123, 173, 182, 236]. In addition, it is recognized that in the absence of

fully automated segmentation, this step is a crucial bottleneck and time-consuming

step of any radiomics study, preventing such a process to be expanded to very large

datasets [85]. There is therefore a need for a delineation method that is not only

accurate and robust, but also fully automated as well.

There are several challenges pertaining to PET image segmentation [82]. First,

PET images suffer from limited spatial resolution (4-5 mm), comparatively to CT

(below 1 mm) due to partial volume effects (PVE) that make boundaries between

adjacent functional regions blurred and result in under-estimated activity in small

objects of interest. Second, signal-to-noise ratio in PET images is inherently low and

affected by a vast array of factors, such as scanner sensitivity, temporal resolution,

acquisition mode, scan time, quantity and distribution of tracer, applied corrections

(e.g., scatter, attenuation, randoms) and reconstruction algorithm type (e.g., resolu-

tion recovery, time of flight) and parameters (e.g., number of iterations). All these

issues make things challenging in a multicenter context, i.e., when analyzing PET

images acquired using different systems, acquisition protocols and reconstruction set-

tings. Third, the wide variability in shapes and heterogeneity of lesion uptakes might

reduce the generalization of segmentation methods to only some specific cases.

An important aspect in medical image segmentation is that the true boundary of

the object of interest (ground-truth) is impossible to determine without a complete

histopathological analysis of an excised tumor, which can typically be performed only

in a small number of cases. In PET, even with a very robust protocol, this approach

can only provide approximate co-registration between the histopathology slides and

the corresponding 3D PET slices [82]. One way to overcome this is the use of a

consensus of several manual segmentations by experts as a surrogate of truth [82].

Unfortunately, manual segmentation is typically a labor intensive, time consuming
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task with low reproducibility, due to the high intra- and interobserver variability [79].

There have been a number of algorithms proposed for PET image segmentation,

accounting at different degrees for some of the limitations referred to above [82].

For example, thresholding-based methods, the most simple image segmentation tech-

niques, work on the assumption that different tissue types have specific uptake ranges;

therefore, segmentation can be done by comparing individual voxel intensities with

a set of thresholds. More advanced methods aim at exploiting statistical differences

between uptake regions and surrounding tissues. These include different clustering

and classification methods trained on a set of features extracted from PET images, as

well as atlas based [154, 180] and generative models such as Gaussian mixture models

(GMM) [8] and Fuzzy Locally Adaptive Bayesian (FLAB) model [77]. Numerous

other common image segmentation algorithms have been evaluated for this task us-

ing PET uptake only [82]. For the vast majority of these published methods, it is

usually assumed that the tumor has been previously isolated in a volume of interest

(VOI), i.e., the input to the algorithm is not the entire PET image but a sub-volume

containing the object of interest, that is usually manually determined after visually

detecting the tumor uptake in the whole image. It should be emphasized on that

numerous approaches tried to improve PET segmentation by considering both PET

and CT modalities together, assuming an (almost) perfect correspondence between

tumor functional uptake and tumor anatomical boundaries as determined on CT im-

ages using co-segmentation approaches exploiting co-registered PET and CT images

[59, 74, 135]. This assumption may not be true as radiotracer uptake and anatomical

boundaries can be uncorrelated. This also makes the method sensitive to registration

issues in PET imaging, especially in body regions affected by motion [82].

Convolutional neural networks (CNNs) have been successfully applied to different

medical imaging tasks [141], such as reconstruction [132, 177], denoising [67, 178],

segmentaton [70, 158] and classification [41]. Most segmentation studies rely on U-

Net [183], that is arguably the most popular network for semantic segmentation, and

focus on anatomical modalities such as magnetic resonance imaging (MRI) [51, 158]

and CT [165, 184]. The limited number of papers dedicated to PET segmentation

usually assume a correspondence between functional and anatomical regions in com-

bined PET/CT or PET/MRI imaging [71, 100, 237–239]. The ground-truth is usually

obtained through manual delineation performed on multimodal images (e.g., training

a network to reproduce delineations performed by radiation oncologist that perform

this manually on fused PET/CT images). Guo et al. [70] included PET imaging

within a CNN based multimodal image segmentation framework using PET, MR (T1
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Table 4.1: Summary of patients, including the different characteristics of the scanners,
and associated reconstruction methods and parameters.

Institution
Numb.
of pa-
tients

Scanner Voxel sizes (mm3)
Reconstr.
methods

Time per
bed

position
(s)

FDG
total dose

(MBq)

University Hospital
of Brest, France

69
Siemens
Biograph

4.073×4.073×2.027 PSF+TOF 120± 17 253± 80

Integrated Centre
for Oncology
(ICO), France

18
5

Siemens
Biograph

GE Discovery
STE

4.073×4.073×2.027
4.688× 4.688× 3.27

PSF+TOF
3D IR

202± 32 210± 56

McGill University
Health center,

Canada

7
19

GE Discovery
710

GE Discovery
ST

3.646× 3.646× 3.27
5.469× 5.469× 3.27

VPFXS
OSEM

212± 30 398± 81

Hospital of the
Holy Cross and

Saint Paul, Spain
24

Philips Gemini
TF

4× 4× 4
BLOB-OS-

TF
109± 21 228± 50

University Hospital
of Liège, Belgium

90
Philips Gemini

TF
4× 4× 4

BLOB-OS-
TF

73± 16 260± 32

and T2) and CT images of a publicly available soft tissue sarcoma dataset of 50 pa-

tients. Gross tumor volumes were manually annotated in all four imaging modalities.

Different fusion networks were used for feature-, classifier- and decision-level fusion,

demonstrating improved performance at a feature level fusion [70].

Considerably less attention has been dedicated to processing PET images as a

standalone modality. Moreover, the majority of studies have used only datasets with

small cohorts of patients from one or two centers and manual delineation as a surrogate

of truth. Under these circumstances, some previously published results might be

less generalizable due to high heterogeneity of PET images caused, for instance, by

scanner type, reconstruction algorithm and applied post-processing that vary across

centers. Huang et al. [100] applied U-Net with minor modifications for head and

neck cancer gross tumor volume segmentation on PET/CT images. Results were

obtained for a dataset of 22 patients using manual segmentation as a surrogate of

truth. Blanc-Durand et al. [22] evaluated U-Net for glioma segmentation on PET

images with the fluoroethyl-tyrosine (FET) tracer. Their dataset contained only 37

patients with manually segmented lesions. Leung et al. [134] used a modified U-

Net trained on simulated PET images and fine-tuned using a clinical dataset of 160

patients with manual delineations for lung cancer segmentation. In cervical cancer,

Chen et al. [32] proposed to combine a 2D CNN and a post-processing step that relies

on prior anatomical information on the tumor roundness and its position relative
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to the bladder. The choice of the 2D network was dictated by the limited size of

the available dataset that contained 1176 slices from 50 patients, and the surrogate

of truth was also obtained through manual delineation. Within the scope of the

recent MICCAI challenge on automatic PET tumor functional volume delineation, the

CNN-based method reached the highest score compared to twelve other approaches,

amongst them some of the current state of the art [83].

In this paper, we focused our experiments on cervical cancer. Approximately 570

000 new cases of cervical cancer and 311 000 deaths from the disease occurred in 2018

and this type of cancer was the fourth most common cancer in women worldwide [7].

Recently, predictive models relying on textural features from tumor volumes in PET

images were able to identify the subset of patients that will suffer from recurrence

after treatment with clinically-relevant accuracy [148, 182]. This obviously requires

accurate delineation of the tumor volume in the PET images and this is achieved

without the use of the associated CT image. Due to the anatomical proximity between

the cervix and the bladder that generally has similar FDG uptake in PET scans,

conventional techniques (e.g., thresholding, region- and boundary-based methods)

provide poor results if applied to the whole image without additional prior knowledge

or constraints, which is why a VOI excluding physiological uptake usually needs to

be provided as input to the method. For instance, the use of FLAB, as described

in the radiomic study above [148], requires an expert to first manually define a VOI

containing the tumor but excluding the bladder, in which FLAB is then applied

to delineate the tumor. However, this step can be quite labor intensive and time-

consuming, especially when the tumor uptake and bladder are very close to each other,

hindering the potential clinical translation of these segmentation tools, and in turn

the use of the predictive radiomics based models. A fully automated segmentation

step, without the manual determination of the VOI, is therefore highly desirable in

that context.

The purpose of our study was thus to propose a U-Net based model for the fully

automated delineation (i.e., without the need for visual detection of their location and

manual determination of a VOI) of 3D functional primary tumor volumes in PET

images only, especially in the specific context of cervical cancer where the pathological

uptake of interest is located close to a physiological one that should not be included

(here, the bladder). A secondary objective was to train the network on a reliable

ground-truth obtained through accurate and robust PET semi-automated segmenta-

tion instead of manual delineation. A final objective was to train and evaluate the

performance of our model under standard clinical imaging conditions, considering a
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multicenter patient cohort without any prior standardization in the data acquisition

or image reconstruction processes.

4.2 Materials and Methods

4.2.1 PET Images and FLAB-derived Ground-Truth

Our first objective is to achieve fully automated determination of the functional up-

take boundaries in PET images only, without relying on assumptions regarding its

correspondence with anatomical boundaries and to avoid registration issues, which

are important in the case of cervical cancer due to the elastic nature of organs in

this body region. We decided to train and evaluate the proposed model exclusively

on real, clinical images, contrary to recent recommendations by the task group 211

of the AAPM (American Association of Physicists in Medicine) dedicated on PET

auto-segmentation, which advises to rely on a combination of simulated, phantom

and clinical images [82]. Indeed, usually the number of clinical images available for

training and validation is small, and the surrogate of truth is questionable when only

manual delineations from experts are available. In such a context, results obtained on

large datasets of simulated and/or phantom images can indeed increase the confidence

in the results obtained in a smaller amount of clinical cases with less reliable surrogate

of truth. However, in the present work, we exploited a large dataset of images that

were processed by experts using a semi-automated approach (see section below detail-

ing how the ground-truth was generated) for the purpose of radiomics-based outcome

modeling studies. In addition, one objective of this work is to evaluate the ability of

the proposed approach to deal with fully automated tumor uptake delineation when

it is located close to a physiological one that should not be included. Simulated or

phantom images corresponding to this specific context are currently not available in

large amounts to train and evaluate a CNN-based approach.

We collected a dataset of 232 FDG PET images of patients from five institu-

tions, all with histologically proven cervical cancer, with clinical stage IB1-IVB1

(Figure A.1). All images contained the abdominopelvic cavity and were acquired for

diagnostic and staging purposes before chemoradiotherapy followed by brachytherapy.

Collected images considerably differed in acquisition protocols (scanning duration per

bed position, injected radiopharmaceutical dose) and reconstruction (algorithms, use

1According to the staging system of the International Federation of Gynecology and Obstetrics
(FIGO).
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of time of flight information, resolution modeling, voxel and matrix sizes)(see Ta-

ble 4.1). Data were corrected for randoms and scatter in all cases. All reconstructed

images were corrected for attenuation using the associated low dose CT.

An objective of our work is to train the network using a reliable ground-truth

excluding the bladder uptake. Segmentation of the tumor volumes to generate the

ground-truth was performed on PET images using the FLAB algorithm [77] applied

in a semi-automated manner: first, a VOI containing the tumor uptake and excluding

the nearby bladder and other physiological uptakes was manually defined by the user.

The FLAB algorithm was then run within that VOI to generate a segmentation mask

that was reviewed by the user. If this mask was deemed unsatisfactory, the user had

the option to re-run the algorithm after specifying different values of initialization

parameters in order to obtain a more satisfying result. Finally, the results for all

tumors were reviewed and in some cases (<5%) manually edited before being validated

by two experts with more than 15 years of clinical practice. Given that FLAB in

such a context has been demonstrated to provide accurate and reliable results in

numerous studies [69, 84, 207], including for complex heterogeneous cases [78, 79]

and over different scanner model and reconstruction algorithms, especially compared

to manual delineation [80], we consider this ground-truth sufficiently reliable for the

purpose of training and evaluating the proposed approach. Although FLAB was

applied only within the manually determined VOI, we then registered the obtained

segmentation mask onto the entire PET image used as input to the network for

training and testing.

4.2.2 Network Architecture

The widely used 3D U-Net model [34] served as the basis for our network design.

Although not the main objective of the present work, we nonetheless introduced

three optimizations beyond the standard U-Net model:

1. Original U-Net consists of conventional convolutional blocks comprised of a

3×3×3 convolution, a normalization layer (e.g. batch norm) and a ReLU activation

function as a basic element of the network. We chose to rely upon a residual block

with full pre-activation [88] supplemented by a concurrent spatial and channel squeeze

& excitation (scSE) module (Figure 4.1, grey blocks).

2. An important part of the proposed architecture is the integration of squeeze

and excitation (SE) blocks that aim at providing the option to compute weights for

the feature maps, so the network can put more or less attention on some of them.
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Figure 4.1: Proposed Encoder-Decoder Network with residual blocks. The number
of output channels is depicted under blocks of each group.

We implemented SE blocks within the full pre-activation residual blocks, namely a

specific modification called concurrent spatial SE (scSE), that has been shown to

perform better for image segmentation tasks [184]. In order to include the scSE

module in the residual block, we followed the same approach that was applied in SE-

ResNet architectures [99]. Due to the high memory consumption working with 3D

images, we switched from using batch norm layers to instance normalization (instance

norm) that was shown to work better in a small-batch regime [230].

3. We replaced max pooling operations in the encoder of the network by learnable

downsampling blocks (Figure 4.1, red blocks), which consist of one 3× 3× 3 strided

convolutional layer, the instance norm, the ReLU activation and the scSE module.

Similarly, we implemented upsampling blocks in the decoder of the network using

3×3×3 transposed convolutions instead (Figure 4.1, green blocks). To reduce memory

consumption and increase the receptive field of the network, we implemented the first

downsampling block with a kernel size of 7 × 7 × 7 right after the input. The last

convolutional layer followed by the sigmoid activation function to produce the model

output was applied with a kernel size of 1× 1× 1.
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4.3 Experimental Settings

4.3.1 Data Preprocessing

The PET images exhibited a large variability of voxel sizes (see Table 4.1) that can

adversely affect the model performance since CNNs cannot natively interpret spatial

dimensions with different scales. Therefore, we first interpolated all PET images

and corresponding segmentation masks to a common resolution of 4 × 4 × 2 mm3

through the use of linear interpolation. A slice thickness of 2 mm was chosen to

retain small image details that could be lost if interpolated at a larger voxel size.

Linear interpolation was chosen after comparison with other techniques including

Nearest Neighbour and B-spline, which led to decreased performance.

PET image intensities can exhibit a high variability in both within-image and

between images. In order to reduce these variabilities and use the PET scans as the

input for the CNNs, we applied Z-score normalization for each scan separately, with

the mean and the standard deviation computed based only on voxels with non-zero

intensities corresponding to the body region.

4.3.2 Data Augmentation

Due to the large variability in shapes, sizes and heterogeneity of tumor uptakes in

PET images, data augmentation can play a useful role in model training. To aid the

model learn features invariant to affine transformations that are realistic, we applied

mirroring on the axial plane, rotations in random directions with the angle uniformly

sampled from the range [5, 15] degrees along the random set of axes, and scaling

with a random factor between 0.8 and 1.2. In order to increase the diversity in lesion

shapes, we relied on elastic deformations. Gamma correction with γ sampled from the

uniform distribution between 0.8 and 1.2, and contrast stretching between 0 and 0.8 -

1.2 of the original range of values were applied to adjust voxel intensity distributions.

To improve model robustness, we also added Gaussian noise to training samples.

The standard deviation of the noise was equal to 0.1 - 0.2 standard deviations of

the training sample. All augmentation methods were applied independently during

model training with a probability of 0.2.

4.3.3 Training Procedure

Due to the large size of PET images, we trained the model on randomly extracted

patches of 128 × 128 × 64 voxels with a batch size of 2. Since all PET images
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corresponded to the abdominopelvic cavity with a number of axial slices ranging

from 77 to 192, the chosen patch size was large enough to cover a significant part of

the input PET image for all patients.

We trained the model for 400 epochs using Adam optimizer with β1 = 0.9 and

β2 = 0.99 for exponential decay rates for moment estimates. We applied a cosine

annealing schedule [146], gradually reducing the learning rate from lrmax = 10−4 to

lrmin = 10−6 for every 25 epochs and performing the adjustment at each epoch.

Considering the fact that the Dice similarity coefficient (DSC) is one of the most

common metrics used for the evaluation in medical image segmentation, we trained

the model with the Soft Dice Loss. Based on [158], in case of binary segmentation,

the loss function for one training example can be written as

L(y, ŷ) = 1− 2
∑N

i yiŷi + 1∑N
i y

2
i +

∑N
i ŷ

2
i + 1

(4.1)

where yi ∈ {0, 1} - the binary label for the i-th voxel, ŷi ∈ [0, 1] - predicted

probability for the i-th voxel. Additionally we applied Laplacian smoothing by adding

+1 to the numerator and the denominator in the loss function to avoid the zero

division in cases when only one class is represented in the training example.

4.3.4 Multicenter Cross-Validation

Cross-validation is probably the simplest and most widely used method for estimating

the expected prediction error of a model on an independent test sample [75]. Impor-

tantly, cross-validation is based on the assumption that data samples in the train and

test folds are drawn from the same distribution. However, as already mentioned in

Section 4.2.1, no standardization in the acquisition or reconstruction protocols were

implemented across the five institutions in which the images were collected. In addi-

tion, different PET/ CT imaging devices with variable overall performance were used

in these centers. Therefore, in order to obtain more reliable estimate of the model

performance, we implemented 5-fold cross-validation where each fold was comprised

only of samples from one of the 5 centers. This simulated a ”real-life scenario” in

which data from one or several centers are used for training and evaluating a model,

that is then used in yet another center. For each cross-validation split of the data,

we randomly set aside 20% of training samples to tune hyperparameters of the model

and to assess the model performance during training.
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Table 4.2: Segmentation results obtained on the different test folds with the use of
cross-validation. The proposed model was compared to the standard U-Net model and
the fixed thresholding method in terms of DSC, precision and recall. The mean and
standard deviation of each metric on the test folds are computed across corresponding
data samples. Average results are reported across the test folds.

Metrics Model
Test fold

Average

(n=69)
Brest

(n=23)
Nantes

(n=26)
Montreal

(n=24)
Barcelona

(n=90)
Liège

DSC
T40 0.33± 0.36 0.57± 0.41 0.37± 0.31 0.22± 0.24 0.18± 0.22 0.33± 0.15

U-Net 0.68± 0.20 0.79± 0.12 0.77± 0.13 0.83± 0.10 0.79± 0.13 0.77± 0.05
Ours 0.77± 0.15 0.81± 0.13 0.77± 0.21 0.84± 0.11 0.79± 0.13 0.80± 0.03

Precision
T40 0.30± 0.37 0.56± 0.43 0.29± 0.28 0.18± 0.21 0.14± 0.21 0.30± 0.16

U-Net 0.61± 0.24 0.75± 0.15 0.74± 0.16 0.81± 0.17 0.79± 0.18 0.74± 0.08
Ours 0.69± 0.20 0.73± 0.16 0.77± 0.22 0.81± 0.18 0.77± 0.19 0.75± 0.05

Recall
T40 0.48± 0.43 0.74± 0.35 0.65± 0.40 0.38± 0.36 0.38± 0.37 0.52± 0.17

U-Net 0.88± 0.15 0.87± 0.10 0.85± 0.15 0.90± 0.09 0.84± 0.14 0.87± 0.02
Ours 0.93± 0.10 0.96± 0.04 0.83± 0.19 0.91± 0.08 0.87± 0.14 0.90± 0.05

4.3.5 Evaluation Metrics

Aside from the DSC metric quantifying global volume overlap, we used precision

(a.k.a. positive predictive value) P and recall R (a.k.a. sensitivity) to further evaluate

model performance, as recommended by the TG211 [82], where DSC can be written

as the harmonic mean of precision and recall:

DSC = 2
P ·R
P +R

(4.2)

Using these metrics we compared our proposed network to the standard U-Net

as a baseline model. In addition, a comparison was made with the use of a fixed

thresholding method (based on 40% of the maximum standardized uptake within the

tumor, denoted from here onward as T40), still widely used in the literature despite

its obvious limitations [82, 83].

4.4 Results and Discussion

The results of all methods are summarised in Table 4.2 and Table A.1. As expected,

T40 obtained poor performance across all test folds compared to U-Net and the pro-

posed model. On average, our proposed model outperformed its U-Net counterpart

in terms of DSC (0.80 vs 0.77), with a slightly smaller spread (0.03 vs 0.05). The

largest difference between the proposed method and its standard counterpart was
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(a) DSC (b) Precision (c) Recall

Figure 4.2: Box plots of the results on the test folds.

measured on the ’Brest’ test fold, where U-Net demonstrated relatively poorer per-

formance (0.77 vs 0.68). However, on the other test folds, both models achieved

closer results. The superiority of the proposed model was due to a better recall

(0.90 vs 0.87), whereas the difference in terms of precision was smaller (0.75 vs 0.74).

Kolmogorov-Smirnov and Wilcoxon signed-rank tests both indicated that the differ-

ence in predictions of two models was significant (α = 0.05) only for all evaluation

metrics on the ’Brest’ test fold, and for recall on ’Nantes’ (see Table A.1).

This finding is in line with previous observations that, when properly tuned, the

standard U-Net model can provide highly competitive results in many image segmen-

tation tasks, especially in medical imaging. For example, top-ranked results were

obtained in recent segmentation challenges using the ordinary U-Net model [109,

110, 113]. Under these circumstances, each step in the entire pipeline (e.g, data pre-

processing, data augmentation, training procedure, etc.) may have a much larger

impact on the model performance than a careful or complex re-design of the model

architecture. For instance, we observed in our experiments that applying b-spline

interpolation for image resampling instead of linear interpolation deteriorated both

models performance by an average of nearly 8.5% on the test folds.

Both models achieved higher recall (between 0.83 and 0.93 on average) than pre-

cision (between 0.61 and 0.81) in all test folds, showing a trend in over-estimating the

ground-truth rather than under-estimating it. One of the most challenging aspects

pertaining to cervical cancer segmentation in PET images is to distinguish the tumor

uptake from the adjacent bladder uptake. In all cases, even when the tumor was

very close to the tumor, the proposed approach was capable to address this problem

independently on the size, location and shape of the tumor uptake (see examples in
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Figure 4.3). However, the wider spread of results on the two largest test folds (Brest,

Liège) (Figure 4.2) could mean that the applied data augmentation techniques are

not able to completely mimic all possible variations in presented PET images and al-

ternatives should be investigated, such as, for example, relying on realistic simulated

PET images to add more data for training. In addition, due to our 5-fold evaluation

scheme based on clinical centers, the size of training sets (and as a result the vari-

ety of encountered examples) varied substantially (e.g., holding out Liège yields 146

training cases whereas holding out Nantes yields 209), which could also contribute in

explaining these differences.

Analyzing predictions of the models, we identified a number of outliers2 in each

test fold (see examples in Figure 4.4). When considering the DSC metric, the total

number of outliers in the entire dataset was equal to 15 (12 for U-Net) and varies from

2 to 4 across the test folds. In most cases, the model failed to accurately segment

images with relatively small tumor regions (Figures 4.4a, 4.4d). More specifically,

11 outliers corresponded to cases where the tumor size was less than 200 voxels

(i.e., 6.4 cm3), whereas the average value across the dataset was 1160 voxels (i.e.,

37.12 cm3). The other source of errors in the model predictions is the presence of

surrounding tissues with relatively high uptake that can be misclassified as the tumor

(Figures 4.4b, 4.4c, 4.4e).

The performance was affected by tumor volume (see Table A.2 and Figure A.2):

the lowest results were obtained in the first decile group3 with DSC = 0.56 compared

to the performance obtained on larger tumor volumes (significantly higher between

0.71 and 0.85). This happened due to precision that was steeply increasing along with

the tumor size (0.44 to 0.90) whereas recall remained relatively stable (between 0.81

and 0.94). Examining the impact of the tumor contrast4, we found that the proposed

model demonstrated the worst results on low contrast images (see Table A.3 and

Figure A.3). The decile group with the lowest tumor contrast had DSC = 0.67 and

recall = 0.77, which were significantly different from the results on other groups (0.77

to 0.84, and 0.88 to 0.93, respectively). Investigating the relation between FIGO

stages and the model performance, we did not find significant differences with DSC

ranging from 0.75 to 0.82 (see Table A.4 and Figure A.4).

It should be emphasized on that although we used a previously well validated ap-

2A data point xi from a dataset X = {x1, . . . , xn} is an outlier, if xi < q1 + 1.5(q3 − q1), where
qi is the i-th empirical quartile of X.

3The first decile group corresponds to 10% of patients with the smallest tumors.
4We roughly estimated tumor contrast as the ratio between average tumor intensity and average

intensity of the body region.
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(a) Brest
(0.80, 0.70, 0.95)

(b) Nantes
(0.84, 0.73, 0.98)

(c) Montreal
(0.81, 0.73, 0.90)

(d) Barcelona
(0.88, 0.82, 0.94)

(e) Liège
(0.81, 0.77, 0.87)

Figure 4.3: Examples of the model predictions on the test folds. Axial slices. (First
row) Input images, (second row) input images with ground truth segmentation, (last
row) input images with predicted segmentation. Evaluation metrics for whole scans
are provided in format (DSC, precision, recall).

proach to define the ground-truth, this remains a surrogate of truth. In the absence

of perfectly registered histopathological spatial information, this is the best we can

achieve with a single segmentation method, which obviously provides imperfect re-

sults in a small number of cases (for instance highly heterogeneous or very small and

low contrast cases) [83]. An even better approach would consist in generating several

manual delineations by experts (at least three) in addition to the results of FLAB

(other algorithms with proven good performance [83] could be added too) and gen-

erating a statistical consensus of all these segmentation results. This would provide

the proposed model an even more reliable ground-truth to learn from, but it would

be considerably more time-consuming and tedious, especially for generating the nu-

merous manual delineations. Alternatively, our approach consisting in training the

network on rigorously determined ground-truth masks could be reproduced by relying

on other semi-automated methods with similar demonstrated levels of performance

[82, 83]. Once trained, the proposed network can be applied to new data instanta-

neously, without the need for user intervention beyond checking and validating the
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(a) Brest
(0.34, 0.21, 0.87)

(b) Nantes
(0.34, 0.20, 0.97)

(c) Montreal
(0.16, 0.09, 0.90)

(d) Barcelona
(0.59, 0.42, 1.0)

(e) Liège
(0.40, 0.25, 1.0)

Figure 4.4: Examples of outliers in each test fold. Axial slices. (First row) Input
images, (second row) input images with ground truth segmentation, (last row) input
images with predicted segmentation. Evaluation metrics for whole scans are provided
in format (DSC, precision, recall).

output result.

Unlike Chen et al. [32], we did not rely on any post-processing techniques built on

prior anatomical information. First, based on the segmentation results of the proposed

model, it appears able to natively learn the anatomic position of the tumor relative to

the bladder from training samples without an additional prior guidance. Second, the

assumption about the tumor roundness contradicts numerous examples in our dataset,

especially these with heterogeneous distributions (Figures 4.3b, 4.3e). Although in

the present case we focused on PET-only delineation, the proposed model can be

trained using multiple different modalities as input. It might be beneficial in specific

cases, such as dealing with small and/or low contrast tumors, to extract additional

information from associated CT or MRI modalities. However, the main challenge in

that case is to have a reliable ground-truth determined on fused multimodal data,

which could prove quite difficult in the cervical region due to anatomical deformations

and differences between PET and CT datasets.

With respect to our original objectives, our results obtained with the use of mul-
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ticenter cross-validation allow to conclude that the designed model is able to provide

similar performance on PET images from different institutions and is robust to vari-

ations in scanner types, reconstruction algorithms and post-processing methods. In

addition, it allows for fully automated delineation of the tumor uptake without the

need to exclude the bladder uptake, either manually or through the incorporation of

additional prior information or constraints.

4.5 Conclusion

In this work we trained a modified U-Net model for fully automatic tumor uptake

delineation in PET images in a multicenter context, without the need for additional

anatomical information or prior constraints. The ability of the proposed model to

learn and perform well for this task was demonstrated in PET images of 232 patients

collected from five institutions. The ground-truth labels for all patient were generated

by experts with the use of a semi-automated algorithm, to reduce observer-related

variability and to avoid relying on manual delineations. We presented a versatile

pipeline that includes appropriate data preprocessing and augmentation, design of

the model architecture beyond the standard U-Net model, and an optimized training

procedure. We mimicked a typical clinical scenario and conducted all experiments

in a multicenter context. The designed model obtained good average accuracy for

all considered institutions with very small standard deviation (DSC of 0.80 ± 0.03)

without requiring any change in the pipeline. It slightly improved accuracy over the

standard U-Net model although both approaches provided good results and largely

outperformed the fixed threshold approach. The described approach managed to

avoid including the bladder uptake in the resulting segmentation without the need

for additional anatomical information (for instance, using the CT image) or priors

such as shape constraints, and can therefore achieve fully automated delineation of

the tumor uptake without the need for any user intervention. It can be implemented

with minimal modifications to solve a variety of other segmentation tasks in different

medical imaging modalities and could facilitate the deployment of fully automated

radiomics pipelines.

74



Chapter 5

Delineation of Head and Neck

Tumors in PET/CT

Reference

Squeeze-and-Excitation Normalization for Automated Delineation

of Head and Neck Primary Tumors in Combined PET and CT

Images. Andrei Iantsen, Dimitris Visvikis, and Mathieu Hatt. In:Andrearczyk

V., Oreiller V., Depeursinge A. (eds) Head and Neck Tumor Segmenta-

tion. HECKTOR 2020. Lecture Notes in Computer Science, vol 12603.

Springer, Cham. (2020).

Abstract

Development of robust and accurate fully automated methods for medical

image segmentation is crucial in clinical practice and radiomics studies. In

this work, we contributed an automated approach to head and neck (H&N)

primary tumor segmentation in combined positron emission tomography

/ computed tomography (PET/CT) images in the context of the MICCAI

2020 Head and Neck Tumor segmentation challenge (HECKTOR). Our

model was designed on the U-Net architecture with residual layers and

supplemented with Squeeze-and-Excitation Normalization. The described

method achieved competitive results in cross-validation (DSC 0.745, pre-

cision 0.760, recall 0.789) performed on different centers, as well as on

the test set (DSC 0.759, precision 0.833, recall 0.740) that allowed us to
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win first prize in the HECKTOR challenge among 64 registered teams.

The full implementation based on PyTorch and the trained models are

available at https://github.com/iantsen/hecktor.

This chapter describes a CNN-based approach that was proposed by our team to

address the task of H&N tumor segmentation in the context of the HECKTOR chal-

lenge. A part of this chapter repeats exactly our previously published findings (see

the paper cited above). However, a large amount of supplementary information was

included relying on a number of overview papers published after the end of the chal-

lenge. Apart from a few minor modifications (in HECKTOR, dropout layers were

not used for regularization), the model described in this chapter is identical to the

one presented in Chapter 6 for a task of brain tumor segmentation in MRI scans.

Moreover, the described pipelines (i.e., data preprocessing, augmentation, training

procedures, etc.) vary insignificantly and mainly because of the difference in input

image modalities. Nevertheless, the described approach obtained highly competitive

results in both competitions, essentially without any task-specific adjustments.

5.1 Introduction

As stated earlier in Chapter 4, combined PET/CT imaging is widely used in clinical

practice, for instance, for radiotherapy treatment planning, initial staging and re-

sponse assessment. PET and CT modalities provide complementary information on

metabolic and morphological tissue properties and therefore can be used for malig-

nant lesion segmentation. In radiomics, quantitative evaluation of radiotracer uptake

in PET and tissue density in CT aims at extracting clinically relevant features in

order to build diagnostic and prognostic tools. However, the segmentation stage in

the radiomics pipeline represents the significant bottleneck, since it is a tedious and

time-consuming process that typically suffers from a high observer-related variability,

especially if manual segmentation is used as a ground-truth. Under these circum-

stances, more efficient methods are highly desirable to automate the segmentation

process and facilitate its clinical routine usage.

The prime focus of the MICCAI 2020 Head and Neck Tumor segmentation chal-

lenge (HECKTOR) [5, 167] is on evaluating automatic algorithms for head and neck

(H&N) tumor segmentation in combined PET and CT images. In the context of this

challenge, all participants are asked to design an approach to segment Gross Tumor
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Table 5.1: Summary of the HECKTOR dataset.

Center
Numb.

of
patients

Split Scanner

Hôpital général Juif, Canada (HGJ) 55 Train GE Discovery ST
Centre Hospitalier Universitaire de

Sherbooke, Canada (CHUS)
72 Train Philips GeminiGXL

Hôpital Maisonneuve-Rosemont,
Canada (HMR)

18 Train GE Discovery STE

Centre Hospitalier de l’Université de
Montréal, Canada (CHUM)

56 Train GE Discovery STE

Centre Hospitalier Universitaire
Vaudois, Switzerland (CHUV)

53 Test GE Discovery D690

Volume of the primary tumor (GTVt) in provided images of patients with oropha-

ryngeal cancer. Since some part of the dataset was acquired for the whole body, each

data example is accompanied by a bonding box to detect the oropharynx region. In

total, a training dataset consisting of 201 patients from four medical centers (HGJ,

CHUS, HMR and CHUM) located in Québec, Canada, is available for model develop-

ment. A test set comprised of 53 patients without ground-truth labels from a different

center in Switzerland (CHUV) is used for assessment (see Table 5.1). As a result,

all images were acquired using many different systems and acquisition protocols (see

details in [5, 167]). The training dataset consists of images initially presented in [217]

that were manually re-annotated by an expert for the purpose of the challenge. All

challenge participants have up to five attempts to submit their predictions for the test

set. The Dice similarity coefficient (DSC), precision and recall metrics are computed

for each submission. However, the final ranking is based only on the average DSC

across examples in the test set.

This chapter describes our approach based on convolutional neural networks (CNNs)

supplemented with Squeeze-and-Excitation Normalization (SE Normalization or SE

Norm) layers to address the goal of the HECKTOR challenge.

5.2 Materials and Methods

5.2.1 SE Normalization

The key element of our model is SE Normalization layers [105, 106] that we re-

cently proposed in the context of the MICCAI 2020 Brain Tumor Segmentation
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(BraTS) challenge [13, 14, 156]. Similarly to instance normalization [215], for an

input X = (x1, x2, . . . , xC) with C channels, SE Norm layer first normalizes all chan-

nels of each example in a batch using the mean and standard deviation:

x′i =
1

σi
(xi − µi) , (5.1)

where µi = E[xi] and σi =
√

Var[xi] + ε with ε as a small constant to prevent

division by zero. After, a pair of parameters γi, βi are applied to each channel to scale

and shift the normalized values:

yi = γix
′
i + βi . (5.2)

In case of instance normalization, both parameters γi, βi, are fitted in the course

of training, stay fixed and independent on the input X during inference. By contrast,

we propose to model the parameters γi, βi as functions of the input X by means of

Squeeze-and-Excitation (SE) blocks [99], i.e.,

γ = fγ(X) ,

β = fβ(X) ,
(5.3)

where γ = (γ1, γ2, . . . , γC) and β = (β1, β2, . . . , βC) - the scale and shift parameters

for all channels, fγ - the original SE block with the sigmoid activation, and fβ is

modeled as the SE block with the tanh activation function to enable the negative

shift (see Figure 5.1a). Both SE blocks first apply global average pooling (GAP)

to squeeze each channel into a single vector, a descriptor. Then, the descriptor is

passed through two fully connected (FC) layers to capture non-linear cross-channel

dependencies. The first FC layer is implemented with the reduction ratio r to form a

bottleneck for controlling model complexity. Throughout this chapter, we apply SE

Norm layers with the fixed reduction ration r = 2.

5.2.2 Network Architecture

Our model is built upon a seminal U-Net architecture [34, 183] with the use of SE

Norm layers [105, 106]. Convolutional blocks that form the model decoder are stacks

of 3×3×3 convolutions and ReLU nonlinearity followed by SE Norm layers. Residual

blocks in the encoder consist of convolutional blocks with shortcut connections (see

Figure 5.1b). If the number of input/output channels in a residual block is different,
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Figure 5.1: Layers with SE Normalization: (a) SE Norm layer, (b) residual layer with
the shortcut connection, and (c) residual layer with the non-linear projection. Output
dimensions are depicted in italics.

a non-linear projection is performed by adding a 1× 1× 1 convolutional block to the

shortcut in order to match the dimensions (see Figure 5.1c).

In the encoder, downsampling is performed by applying max pooling with the

kernel size of 2× 2× 2. To linearly upsample feature maps in the decoder, 3× 3× 3

transposed convolutions are used. In addition, we supplement the decoder with three

upsampling paths to transfer low-resolution features further in the model by applying

a 1 × 1 × 1 convolutional block to reduce the number of channels, and utilizing

trilinear interpolation to increase the spatial size of the corresponding feature maps

(see Figure 5.2, yellow blocks).

The first residual block placed right after the input is implemented with a 7×7×7

kernel to increase the receptive field of the model without significant computational

overhead. The sigmoid function is applied after the last block to generate probabilities

for two target classes.

5.2.3 Data Preprocessing and Sampling

Both PET and CT images were first resampled to a common resolution of 1× 1× 1

mm3 with trilinear interpolation. Each training example was a patch of 144× 144× 144

voxels randomly extracted from a whole PET/CT image, whereas validation examples

were received from the bounding boxes provided by organizers. Training patches were

extracted to include the tumor class with a 0.9 probability to reduce class imbalance

and facilitate model training.
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Figure 5.2: The model architecture with SE Norm layers. The input consists of
PET/CT patches of the size of 144× 144× 144 voxels. The encoder consists of
residual blocks with identity (solid arrows) and projection (dashed arrows) shortcuts.
The decoder is formed by convolutional blocks. Additional upsampling paths are
added to transfer low-resolution features further in the decoder. Kernel sizes and
numbers of output channels are depicted in each block.
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CT intensities were first clipped in the range of [−1024, 1024] Hounsfield Units

and then mapped to [−1, 1]. PET images were transformed independently with the

use of Z-score normalization, performed on each patch.

5.2.4 Training Procedure

The model was trained for 800 epochs using Adam optimizer on two GPUs NVIDIA

GeForce GTX 1080 Ti (11 GB) with a batch size of 2 (one sample per worker). The

cosine annealing schedule was applied to reduce the learning rate from 10−3 to 10−6

within every 25 epochs.

5.2.5 Loss Function

The unweighted sum of the Soft Dice Loss [158] and the Focal Loss [139] was employed

for training. Based on [158], the Soft Dice Loss for one data example can be written

as

LDice(y, ŷ) = 1− 2
∑N

i yiŷi + 1∑N
i y

2
i +

∑N
i ŷ

2
i + 1

. (5.4)

The Focal Loss is defined as

LFocal(y, ŷ) = − 1

N

N∑
i

yi(1− ŷi)γ log(ŷi) . (5.5)

In both definitions, yi ∈ {0, 1} - the label for the i-th voxel, ŷi ∈ [0, 1] - the pre-

dicted probability for the i-th voxel, and N - the total numbers of voxels. Also, we

add +1 to the numerator and denominator in the Soft Dice Loss to avoid a division by

zero in cases where the tumor class is not present in training patches. The parameter

γ in the Focal Loss is set at 2.

5.2.6 Ensembling

Results on the test set were produced with the use of an ensemble of eight models

trained and validated on different splits of the training set. Four models were built

using multicenter cross-validation, i.e, the data from three centers was used for train-

ing while the data from the fourth center was held out for validation. Four additional

models were fitted on random data splits in order to take into account potential,

center-specific differences in data distributions caused by variations in scanners and
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Table 5.2: Results on different cross-validation splits. Average results (the row ’Av-
erage’) are provided for each evaluation metric across all centers in the context of
multicenter cross-validation (first four rows). The mean and standard deviation of
each metric are computed across all data samples in the corresponding validation
center. The row ’Average (rs)’ indicates the average results on the four random data
splits.

Center DSC Precision Recall

CHUS (n = 72) 0.744± 0.206 0.763± 0.248 0.788± 0.226
CHUM (n = 56) 0.739± 0.190 0.748± 0.224 0.819± 0.216
HGJ (n = 55) 0.801± 0.180 0.791± 0.208 0.839± 0.200
HMR (n = 18) 0.696± 0.232 0.739± 0.286 0.712± 0.228

Average 0.745 0.760 0.789
Average (rs) 0.757 0.762 0.820

(a) DSC (b) Precision (c) Recall

Figure 5.3: Distributions of the results on multicenter cross-validation splits.

acquisition protocols. Examples in these splits were sampled randomly with strati-

fication to preserve the original percentage of examples for each center. Predictions

on the test set were produced by averaging predictions of the individual models and

applying a threshold operation with a value equal to 0.5.

5.3 Results and Discussion

Our cross-validation results in the context of the HECKTOR challenge are summa-

rized in Table 5.2. The best outcome in terms of all evaluation metrics was received

for the ’HGJ’ center with 55 patients (DSC of 0.801, precision of 0.791, and recall of

0.712). The model demonstrated the lowest performance for the ’HMR’ center that is
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Figure 5.4: Example of high-quality predictions on multicenter cross-validation splits.
Patient ’CHUM062’ with DSC = 0.924, precision = 0.940 and recall = 0.909.

the least represented in the whole dataset. The difference with the two other centers

was minor for all evaluation metrics. Relatively small spreads between each center

and the average results imply that the model predictions were robust enough, even

without any center-specific standardization. This finding is supported by the lack

of significant differences in the average DSC between the multicenter and random

cross-validation splits (0.745 vs 0.757).

Apart from the ’HMR’ center, the model demonstrated higher recall than preci-

sion for all centers, tending to slightly over-estimate the target volume (recall 0.789

vs precision 0.760). In case of random validation splits, this difference even increased

(recall 0.82 vs precision 0.762), although precision remained practically unchanged.

This might be due to a small number of hard, non-representative cases that signifi-

cantly affect the model performance, depending on whether they are used for training

or validation. For instance, the poor model performance can be caused by the low

amount of radiotracer uptake that makes lesions barely visible in some PET images

(see Figure 5.5). Therefore, it is necessary to have a sufficient number of such ex-

amples in the training sample to alleviate this problem. In addition, according to
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Figure 5.5: Example of low-quality predictions on multicenter cross-validation splits.
Patient ’CHUS026’ with DSC = 0.364, precision = 0.780 and recall = 0.238

.

Andrearczyk et al. [5] and Oreiller et al. [167], CNNs tend to demonstrate poor re-

sults in the context of the HECKTOR challenge in cases where primary tumors look

like lymph nodes, there exists abnormal uptake in the tongue, or lesions are located

at the border of the oropharynx region. These challenging examples are presented in

every center, and most of them belong to the ’HGJ’ center (see Figure 5.3).

Despite the hard cases, the model achieved highly accurate results for the vast

majority of patients (the median DSC of 0.813) in multicenter cross-validation (see

Figure 5.6). Moreover, it was able to correctly segment diverse cases combining

complementary information from both image modalities. For example, the predicted

contour containing the area with high FDG uptake was corrected by the model using

the CT scan to exclude air in the trachea (see Figure 5.4).

The ensemble results on the test set consisting of 53 patients from the ’CHUV’

center are summarized in Table 5.3. On the previously unseen data, the ensemble

of eight models achieved the highest result among all participating teams with DSC

of 75.9%, precision of 83.3% and recall of 74%. Our approach significantly outper-

formed both baseline methods provided by the challenge organizers (’Baseline 2D’
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Figure 5.6: Histogram of the DSC distribution across all patients in multicenter cross-
validation with the mean = 0.754 (green) and median = 0.813 (red)

Table 5.3: Summary of the challenge results. The average DSC, precision, and recall
are reported for the top-5 teams and two baseline models. The final ranking is based
on the average DSC across examples in the test. See details in Andrearczyk et al. [6]

Team DSC Precision Recall Rank

andrei.iantsen (ours) 0.759 0.833 0.740 1
junma 0.752 0.838 0.717 2
badger 0.735 0.833 0.702 3
deepX 0.732 0.785 0.732 4

AIView sjtu 0.724 0.848 0.670 5

Baseline 3D 0.661 0.591 0.853 –
Baseline 2D 0.659 0.624 0.763 –

and ’Baseline 3D’ in Table 5.3). Although our average results on the test set are

higher, in terms of recall, than the results of the second best participant (0.740 vs

0.717), the difference in DSC between our teams is statistically insignificant. How-

ever, the difference with all other participants is significant [5, 167]. In addition, the

organizers provided an estimate for inter-observer agreement between four different

experts, which was measured on a random data subset of 21 patients. The aver-

age DSC metric calculated for all possible pairs of these experts was 0.61, which is

considerably worse than the results of most participants. The relatively low value

of inter-observer agreement is partly due to the lack of clear clinical guidelines for

GTVt segmentation in combined PET/CT images. However, it also demonstrates
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the high potential of CNN-based models to surpass human experts in this task and

be subsequently integrated in clinical practice.

5.4 Conclusion

In this work we presented the CNN-based approach with a new type of layers, referred

to as SE Normalization, to address the task of the H&N tumor segmentation in the

context of the HECKTOR challenge. The ability of our method to provide accurate

segmentation for tumor lesions in PET/CT images was demonstrated with the use of

multicenter cross-validation and the independent test set. Our approach obtained the

best results in terms of DSC among all participating teams, and hopefully took one

more step towards the integration of CNN-based methods into daily clinical practice.
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Chapter 6

Brain Tumor Segmentation in

Multisequence MRI

Reference

Squeeze-and-Excitation Normalization for Brain Tumor Segmen-

tation.. Andrei Iantsen, Vincent Jaouen, Dimitris Visvikis, and Mathieu

Hatt. In:Crimi A., Bakas S. (eds) Brainlesion: Glioma, Multiple Sclero-

sis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes

in Computer Science, vol 12659. Springer, Cham. (2021).

Abstract

In this paper we described our approach for glioma segmentation in mul-

tisequence magnetic resonance imaging (MRI) in the context of the MIC-

CAI 2020 Brain Tumor Segmentation Challenge (BraTS). We proposed

an architecture based on U-Net with a new computational unit termed

”SE Norm” that brought significant improvements in segmentation qual-

ity. Our approach obtained competitive results on the validation (Dice

scores of 0.780, 0.911, 0.863) and test (Dice scores of 0.805, 0.887, 0.843)

sets for the enhanced tumor, whole tumor and tumor core sub-regions.
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6.1 Introduction

Glioma is a group of malignancies that arises from the glial cells in the brain. Nowa-

days, gliomas are the most common primary tumors of the central nervous system [13,

216]. The symptoms of patients presenting with a glioma depend on the anatomical

site of the glioma in the brain and can be too common (e.g., headaches, nausea or

vomiting, mood and personality alterations, etc.) to give an accurate diagnosis in

early stages of the disease. The primary diagnosis is usually confirmed by magnetic

resonance imaging (MRI) or computed tomography (CT) that provide additional

structural information about the tumor.

Gliomas usually consist of heterogeneous sub-regions (i.e., peritumoral edema-

tous/invaded tissue, necrotic core, active and non-enhancing core) with variable his-

tologic and genomic phenotypes [12, 156]. This heterogeneity of gliomas is also re-

flected in their imaging phenotype, as their sub-regions are described by varying

intensity profiles in MRI scans, indicating varying tumor biological properties. Due

to its ability to depict the tumor sub-regions with different intensities, multimodal

MR imaging is routinely used for non-invasive tumor evaluation and treatment plan-

ning. However, manual detection and delineation of tumor sub-regions is tedious,

time-consuming and subjective because of the high heterogeneity in tumor appear-

ances and shapes. In clinical settings, this manual process is routinely carried out

by radiologists in a qualitative visual manner and hence becomes impractical when

dealing with numerous patients.

The BraTS challenge [13, 14, 156], running since 2012, is aimed at the development

of automatic methods for brain tumor segmentation in MRI scans. The challenge

participants are called to address this task by using a provided clinically-acquired

training data to develop their method and produce segmentation labels of the glioma

sub-regions. Additional tasks in the BraTS 2020 challenge, namely overall survival

prediction and uncertainty estimation for the predicted tumor sub-regions, are beyond

the scope of this research.

6.2 BraTS Challenge

6.2.1 Dataset

All participants of the BraTS challenge are provided with the clinically-acquired train-

ing dataset of pre-operative MRI scans (four sequences per patient) and segmentation

masks for three different tumor sub-regions. The exact MRI data consists of 1) a na-
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tive T1-weighted scan (T1), 2) a post-contrast T1-weighted scan (T1Gd), 3) a native

T2-weighted scan (T2), and 4) a T2 Fluid Attenuated Inversion Recovery (T2-FLAIR)

scan. This collection of brain tumor MRI scans was acquired from multiple different

centers under standard clinical conditions but with different equipment and imaging

protocols, resulting in a vastly heterogeneous image quality, reflecting diverse clinical

practice across different institutions.

The dataset was segmented manually, by one to four raters in each center, fol-

lowing the same annotation protocol. This protocol was designed by the challenge

organizers in order to make it possible to create similar ground-truth delineations

across various annotators. The exact annotated regions were based upon known ob-

servations visible to the trained radiologist and comprised of the Gd-enhancing tumor

(ET), the peritumoral edematous/invaded tissue (ED) and the necrotic tumor core

(NCR). ET is the enhancing portion of the tumor, described by areas with both visu-

ally avid as well as faint enhancement on T1Gd MRI. NCR is the necrotic core of the

tumor, the appearance of which is hypointense on T1Gd MRI. ED is the peritumoral

edematous and infiltrated tissue, defined by the abnormal hyperintense signal enve-

lope on the T2 FLAIR volumes, which includes the infiltrative non enhancing tumor

as well as vasogenic edema in the peritumoral region. See Figure 6.1 for details.

The ground-truth annotations were only approved by domain experts whereas

they were actually created by multiple experts. Although a very specific annotation

protocol was provided to each data contributing institution, slightly different annota-

tion styles were noted for the various raters involved in the process. Therefore, all final

labels included in the BraTS dataset were also further reviewed for consistency and

compliance with the annotation protocol by a single board-certified neuro-radiologist

with more than 15 years of experience.

The provided data was distributed after its harmonization, following standardiza-

tion preprocessing without affecting the apparent information in the images. Specif-

ically, the preprocessing routines applied in all the BraTS MRI scans included co-

registration to the same anatomical template, interpolation to a uniform isotropic

resolution of 1 mm3 and skull-stripping (see details in Menze et al. [156]).

The BraTS challenge was evolving over the years with a continuously increasing

number of patient cases as well as through an improvement of the data split, used

for algorithmic development and evaluation. In the BraTS 2020, the dataset of 660

patients is divided in training (n = 369), validation (n = 125), and testing (n = 166)

datasets. The challenge participants are provided with the ground-truth labels only

for the training data. The validation data is then provided to the participants without
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any associated ground-truth and the testing data is kept hidden from the participants

at all times.

Figure 6.1: Glioma sub-regions. Image patches with the tumor sub-regions annotated
in the different MRI modalities. The image patches show from left to right: the whole
tumor (WT - yellow) visible in T2-FLAIR (A), the tumor core (TC - orange) visible
in T2 (B), the enhancing tumor (ET - light blue) visible in T1-Gd, surrounding
the cystic/necrotic components of the core (green) (C). The segmentation masks are
combined to generate the final labels of the tumor sub-regions (D): edema/invasion
(yellow), non-enhancing solid core (orange), necrotic/cystic core (green), enhancing
core (blue). Source: Menze et al. [156]

6.2.2 Challenge Task

The challenge participants are called to develop automatic methods for brain tumor

segmentation by using the provided training data. For each patient, the output must

represent a corresponding segmentation mask for the target classes (i.e, ET, NCR

and ED sub-regions). However, the following sub-regions (see Figure 6.1) are used

for performance evaluation:

• “enhancing tumor” (ET), that corresponds to the ET sub-region;

• “tumor core” (TC), that describes the bulk of the tumor, which is what is

typically considered for surgical excision. The TC entails the ET as well as the

NCR parts of the tumor;

• ”whole tumor” (WT), that entails the TC and ED parts, and describes the

complete extent of the disease.
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6.2.3 Performance Evaluation

Metrics

Results of the segmentation task are evaluated using the Dice similarity coefficient

(DSC) and the Hausdorff distance (HD). Suppose T and P denote a ground-truth

binary mask for a particular class and a binary prediction for this class, respectively.

The DSC is computed as follows:

DSC(T,P)
def
==

2|T ∩ P|
|T|+ |P|

, (6.1)

where | · | is the total class size (i.e, the number of non-zero elements). The DSC

metric quantifies the overlap between two segmentation mask.

The HD metric evaluates the maximum surface distance between two segmentation

masks. It is defined as

dHD(T,P)
def
== max

{
sup
t∈∂T

inf
p∈∂P

d(t, p), sup
p∈∂P

inf
t∈∂T

d(p, t)

}
, (6.2)

where d(t, p) corresponds to the Euclidean distance between two points, t and p,

lying on the ground-truth surface ∂T and the predicted surface ∂P, respectively. This

metric is generally sensitive to outliers, therefore the 95th percentile of the surface

distance is often used instead. Throughout this chapter, we in fact refer to the 95th

percentile of the surface distance as the ”Hausdorff distance”.

Ranking Scheme

The BraTS ranking scheme assigns ranks to each team relative to its competitors for

each of the testing subjects, for each evaluated region (i.e., ET, TC, WT), and for

each metric (i.e., DSC and HD). In BraTS 2020, each team is ranked for 166 subjects,

for 3 sub-regions, and for 2 metrics, which results in 166 × 3 × 2 = 996 individual

rankings. The final ranking score (FRS) for each team is then calculated by firstly

averaging across all these individual rankings for each patient (i.e., cumulative rank),

and then averaging these cumulative ranks across all patients for each participating

team.

Then, permutation testing is conducted to determine statistical significance of the

relative rankings between each pair of teams. This permutation testing reflects dif-

ferences in performance that exceed those that might be expected by chance. More

specifically, the challenge organizers start with a list of observed subject-level cumu-
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lative ranks, i.e., the actual ranking described above, for each team. For each pair of

teams, they repeatedly randomly permute (for 100,000 times) the cumulative ranks

for each subject. For each permutation, they calculate the difference in the FRS be-

tween this pair of teams. The proportion of times the difference in FRS, calculated

using randomly permuted data, exceeds the observed difference in FRS (i.e., using

the actual data), so it indicates the statistical significance of their relative rankings as

a p-value. These values provide insights of statistically significant differences across

each pair of participating teams (see details in Bakas et al. [12]).

6.3 Method

6.3.1 Network Architecture

The 3D U-Net [34, 183] serves as the basis to design our model. The basic element

of the model, a convolutional block comprised of a 3× 3× 3 convolution followed by

the ReLU activation function and the SE Norm layer (described in Section 5.2.1), is

used to construct the decoder (Figure 6.2, blue blocks). In the encoder, we utilize

residual layers [89, 91] consisting of convolutional blocks with shortcut connections

(Section 5.2.1, Figure 5.1b). If numbers of input/output channels in a residual layer

are different, we perform a non-linear projection by adding a 1× 1× 1 convolutional

block to the shortcut in order to match the dimensions (Section 5.2.1, Figure 5.1c).

In the encoder, we perform downsampling applying max pooling with the kernel

size of 2 × 2 × 2. To linearly upsample feature maps in the decoder, we use 3 ×
3 × 3 transposed convolutions. In addition, we supplement the decoder with three

upsampling paths to transfer low-resolution features further in the model by applying

a 1 × 1 × 1 convolutional block to reduce the number of channels, and utilizing

trilinear interpolation to increase the spatial size of the feature maps (Figure 6.2,

yellow blocks).

The first residual layer located after the input is implemented with the kernel

size of 7 × 7 × 7 to increase the receptive field of the model without significant

computational overhead. The softmax layer is applied to output probabilities for four

target classes.

To regularize the model, we add Spatial Dropout layers1 [212] right after the

last residual block at each resolution stage in the encoder and before the 1 × 1 × 1

1The model introduced in Section 5 is built without the dropout layers, which is the main
difference between presented architectures. Here, these layers are applied to achieve stronger regu-
larization.
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convolution in the decoder (Figure 6.2, red blocks).

6.3.2 Data Preprocessing

Intensities of MRI scans are not standardized and typically exhibit a high variability

in both intra- and inter-image domains. In order to decrease the intensity inhomo-

geneity, we perform Z-score normalization for each MRI sequence and each patient

separately. The mean and standard deviation are calculated based only on non-zero

voxels corresponding to the brain region. All background voxels remain unchanged

after normalization.

6.3.3 Training Procedure

Due to the large size of provided MRI scans, we perform training on random patches

with a size of 144×160×192 voxels (depth × height × width) on two GPUs NVIDIA

GeForce GTX 1080 Ti (11 GB) with a batch size of 2 (one sample per worker).

We train the model for 300 epochs using Adam optimizer [122] with β1 = 0.9

and β2 = 0.99 for exponential decay rates for moment estimates, and apply a cosine

annealing schedule [146] gradually reducing the learning rate from lrmax = 10−4 to

lrmin = 10−6 within 25 epochs and performing the learning rate adjustment at each

epoch.

6.3.4 Loss Function

We utilize the unweighted sum of the Soft Dice Loss [158] and the Focal Loss [139]

as the composite loss function in the course of training. The Soft Dice Loss is the

differentiable surrogate to optimize the DSC metric, that is one of the evaluation

metrics used in the challenge. The Focal Loss, compared to the Soft Dice Loss, has

much smoother optimization surface that ease the model training.

The Soft Dice Loss for a single training example can be written as

LDice(y, ŷ) = 1− 1

C

C∑
c=1

2
∑N

i y
c
i ŷ
c
i + 1∑N

i y
c
i +

∑N
i ŷ

c
i + 1

. (6.3)

The Focal Loss is computed as

LFocal(y, ŷ) = − 1

N

N∑
i

C∑
c=1

yci (1− ŷci )γ log(ŷci ) . (6.4)
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Figure 6.2: Proposed network architecture with SE Normalization.
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In both definitions, yi =
[
y1i , y

2
i , . . . , y

C
i

]>
- the one-hot encoded label for the i-th

voxel, ŷi =
[
ŷ1i , ŷ

2
i , . . . , ŷ

C
i

]>
- predicted probabilities for the i-th voxel. N and C are

the total numbers of voxels and classes for the given example, respectively. In addi-

tion, we apply Laplacian smoothing by adding +1 to the numerator and denominator

in the Soft Dice Loss to avoid the zero division in cases where one or several classes

are not represented in the training example. The parameter γ in the Focal Loss is set

at 2.

The training data in the challenge has labels for three tumor sub-regions, namely

the necrotic and non-enhancing tumor core (NCR & NET), the peritumoral edema

(ED) and the Gd-enhancing tumor (ET). However, the evaluation is done for the Gd-

enhancing tumor (ET), the tumor core (TC), which is comprised of NCR & NET along

with ET, and the whole tumor (WT) that combines all provided sub-regions. Hence,

during training we optimize the loss directly on these nested tumor sub-regions.

Table 6.1: Our results on the online validation set (n = 125). Average values across
all patients are provided for each evaluation metric. ’Best Model’ corresponds to
the best-performing model in the ensemble. The abbreviation ’PP’ stands for post-
processing.

Metrics DSC Sensitivity HD
Class ET WT TC ET WT TC ET WT TC

U-Net 0.772 0.899 0.825 0.794 0.896 0.813 5.81 5.97 6.58
Best Model 0.740 0.908 0.862 0.816 0.909 0.854 3.84 4.60 5.34
Ensemble 0.761 0.911 0.863 0.814 0.908 0.850 3.70 4.48 4.82

Ensemble (PP) 0.780 0.911 0.863 0.815 0.908 0.850 3.72 4.48 4.82

6.3.5 Ensembling

To reduce the variance of the model predictions, we build an ensemble of models that

are trained on different splits of the train set, and use their average as the ensemble

prediction. At each iteration, the model is built on 90%/10% splits of the training

set and subsequently evaluated on the online validation set. Having repeated this

procedure multiple times, we choose 20 models with the highest performance on the

online validation set and combine them into the ensemble. Predictions on the test

set are produced by averaging predictions of the individual models and applying a

threshold operation with a value equal to 0.5.
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Table 6.2: Our results on the test set (n = 166). Average values across all patients
are provided for each evaluation metric.

Metrics DSC Sensitivity HD
Class ET WT TC ET WT TC ET WT TC

Ensemble (pp) 0.805 0.887 0.843 0.854 0.909 0.866 15.43 4.54 19.59

6.3.6 Post-processing

The DSC metric used for the performance evaluation in the challenge is highly sensi-

tive to cases, wherein the model predicts classes that are not presented in the ground-

truth (DSC = 0 in such cases). Therefore, a false positive prediction for a single voxel

leads to the lowest value of the DSC and might significantly affect the average model

performance on the whole evaluation dataset. This primarily refers to patients with-

out ET sub-regions. To address this issue, we add a post-processing step to remove

small ET regions from the model outcome, if the ET volume is less than a certain

threshold. We set the threshold value at 32 voxels, since it is the smallest ET area

among all patients in the training set.

6.4 Results and Discussion

Our results on the online validation set and the test set are summarized in Table 6.1

and Table 6.2, respectively. The final ranking of the best participants is presented in

Table 6.3.

On the online validation set with 125 patients without available ground-truth

masks, our ensemble of 20 models, fitted on different splits of the training set and

with applied post-processing, obtained the DSC of 0.78, 0.911 and 0.863 for the ET,

WT and TC glioma sub-regions, respectively. The method applied for post-processing

excluded small regions that were incorrectly identified as the ET class that increased

the average DSC for this class (from 0.761 to 0.780). Combining multiple models with

the same architecture into the ensemble led to marginal improvements in the results

for the ET sub-region (DSC increased from 0.740 to 0.761) and the TC sub-region

(HD decreased from 5.34 to 4.82) over the single best model. The single model that

showed the highest results among others (’Best Model’ in Table 6.1) outperformed

U-Net in all cases, except for the ET class (DSC of 0.772 vs 0.740).

Figure 6.3 depicts the distribution of the validation set results. Similarly to the

segmentation tasks presented in Chapter 4 and Chapter 5, there exists a relatively

small set of examples that were poorly segmented. In the BraTS challenge, it mainly
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(a) DSC (b) Sensitivity

Figure 6.3: Distributions of the results for the ET, WT and TC glioma sub-regions
on the online validation set.

applies to ET sub-regions that can be partially explained by the smaller size of this

class compared to other glioma parts. Also, based on the high results for WT, it

can be inferred that in some cases ET regions are misidentified by the model as

different tumor classes. However, the results for the WT region (DSC 0.911 and

sensitivity 0.908) indicate that the model quite rarely recognises glioma sub-regions

as the background.

Table 6.3: Final ranking on the test set (n = 166). Average values for all metrics are
reported for all metrics.

Team Dice Score HD Rank
Class ET WT TC ET WT TC –

MIC DKFZ [112] 0.820 0.889 0.851 17.81 8.50 17.34 1
NPU PITT [116] 0.828 0.888 0.854 13.04 4.53 16.92

2
Radicals [223] 0.816 0.891 0.842 17.79 6.24 19.54
deepX [234] 0.818 0.883 0.843 13.43 5.22 17.97 3

INSERM (ours) 0.805 0.887 0.843 15.43 4.54 19.59 4

The challenge rules allowed to make a single prediction on the test set (165 pa-

tients), which was used to rank all participating teams. In general, our results on the

test set in terms of the DSC and sensitivity metrics are consistent with the results ob-

tained in cross-validation (the difference is less than 0.03 for both metrics). However,
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there is a high discrepancy between the HD values, which is presumably due to the

evaluation procedure. In all cases where the model predicts a class that is absent in

the ground-truth, even if it is a single voxel, the scoring system assigns the DSC of 0

and HD of 373 to this class, that might significantly reduce the average values of these

metrics. This issue is also evident in the average results of the top-ranking partici-

pants (see Table 6.3). However, it could not affect positions in the final leaderboard

that was built on the final ranking score (FRS) described in Section 6.2.3.

The team ’MIC DKFZ’ won first prize with nnU-Net framework [114]. Two teams

(NPU PITT and Radicals) tied for second place in the challenge with a statistically

insignificant difference between their results (based on permutation testing introduced

in Section 6.2.3). Our team (INSERM) finished fourth in the competition, slightly

below the leaders, presumably because of the results for ET sub-regions. An example

of our predictions on the validation set is shown in Figure 6.4.
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Figure 6.4: Model prediction for the patient (65) from the online validation set. Five
axial slices. From left: T2-FLAIR, T1, T1-Gd, and T2. The results for this patient
(DSC of 0.892, 0.915, 0.922) are approximately equal to the median values of the
online validation set (DSC of 0.872, 0.927, 0.910) for the ET, WT and TC glioma
sub-regions, respectively.
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Chapter 7

Detection and Segmentation of

Lymphoma and Sarcoidosis

Reference

Fully Automated Detection and Segmentation of Hypermetabolic

Lesions in Pretherapeutic [18F]FDG PET/CT Images of Lym-

phoma and Sarcoidosis Patients. Andrei Iantsen, Pierre Lovinfosse,

Marta Ferreira, Alexandre Jadoul, Nadia Withofs, Céline Derwael, Anne-

Noëlle Frix, Julien Guiot, Dimitris Visvikis, Mathieu Hatt, Roland Hus-

tinx. In:European Journal of Nuclear Medicine and Molecular Imaging 48

(Suppl 1) (2021).

Abstract

Aim/Introduction: Automated detection and segmentation of patho-

logical uptakes in [18F]FDG PET images can be useful to derive clinically

relevant metrics such as total tumor burden for diagnosis and prognosis

purposes. It remains a challenging task given the large possible range

of number, location, size and heterogeneity of lesions. Semi-automated

delineation such as the use of manually adjusted thresholds applied to

visually detected lesions by an expert, remains time-consuming and sub-

jective, and a fully automated approach is thus desirable for improved

robustness and reproducibility. The goal of this work was to evaluate the
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feasibility of achieving fully automated detection and delineation by train-

ing a deep convolutional neural network. Materials and Methods: A

cohort of 419 patients who underwent pretherapeutic [18F]FDG PET and

associated low dose CT scans was retrospectively collected for the pur-

pose of developing and testing the proposed algorithm. The ground-truth

for each PET/CT scan was determined semi-automatically by one of four

physicians following the same procedure, i.e. standardized uptake value

(SUV) threshold of 3, volume > 2 cc and manual correction whenever

deemed necessary. The seminal U-Net architecture was applied “of the

shelf” to develop the model on 397 patients and evaluate it on 22 test

patients. In addition, the test subset was annotated by all experts inde-

pendently to evaluate inter-observer variability. Dice similarity coefficient

(DSC), Sensitivity (SE) and Positive Predictive Value (PPV) computed

on a patient basis (i.e., all lesions considered together) were used for the

first stage evaluation. A lesion by lesion analysis was then performed

applying different detection criteria. An ablation study was carried out

to identify main factors affecting segmentation results. Results: The

model obtained good average accuracy for all metrics on the patient basis

(DSC = 0.84 ± 0.16) with SE (0.84 ± 0.21) and PPV (0.90 ± 0.12). On

the lesion basis, the performance varied (DSC between 0.61 and 0.77; SE

0.60 - 0.75; PPV 0.66 - 0.83) depending on the chosen detection criteria.

The analysis of the inter-observer variability demonstrated insignificant

differences between the ground-truth annotations of all experts (e.g., the

patient-wise DSC = 0.96 ± 0.15) and ensured the reproducibility of the

procedure for establishing the ground-truth. Visual inspection confirmed

the relevance of the model predictions and revealed the limitations in-

herent to the evaluation method. Conclusion: The proposed approach

achieved good overall results and might provide a robust and accurate

fully automated solution for future works investigating the clinical prog-

nostic and predictive value of metrics derived from these segmentation

masks.

A part of this chapter is based on the materials presented at the 34th Annual Congress

of the European Association of Nuclear Medicine – EANM’21 Virtual.
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7.1 Introduction

Lymphoma is a type of lymphoproliferative disorder, characterized by malignant

transformations in lymphocytes that can spread to various parts of the body, including

lymph nodes, spleen, bone marrow and other organs, and subsequently form tumors.

Two broad groups of this disease, Hodgkin lymphoma (HL) and non-Hodgkin lym-

phoma (NHL), amount to 83 087 and 544 352 new cases (23 376 and 259 793 deaths),

respectively, worldwide in 2020 [206].

Positron emission tomography/computed tomography (PET/CT) imaging is an

integral instrument in oncology, generally used for diagnosis, baseline staging, treat-

ment planning and response assessment. Many lymphomas have characteristic mor-

phological features that appear in CT and are suitable for detection of sites of dis-

ease. PET findings, on the other hand, provide functional information with a lack of

anatomic landmarks by indicating the overall level of metabolic activity of lymphoma.

In case of 18F–fluorodeoxyglucose (FDG) radiotracer, uptake rate often correlates pos-

itively with tumor aggressiveness [17, 54, 62, 126, 195] and some clinical prognostic

factors, such as serum lactate dehydrogenase (LDH) level [43, 193].

The standardized uptake value (SUV) and its derivatives (e.g., SUVmax and SU-

Vmean), metabolic tumor volume (MTV, a measure of the metabolically active, i.e.,

exceeding a certain SUV threshold, tumor volume), and total lesion glycolysis (TLG,

averaged SUV multiplied by MTV) are quintessential descriptors that can be ex-

tracted from PET/CT images in order to build diagnostic, prognostic and predictive

tools [42, 43, 190]. The use of more sophisticated features for quantification of tumor

phenotypes is investigated in the field of radiomics [64, 85, 157, 221]. For instance, the

seminal article by Aerts et al. [1] revealed that radiomic features could capture intra-

tumor heterogeneity and, furthermore, are associated with underlying gene-expression

patterns. Although it was later shown that the specific signature developed in that

work was only a surrogate of the tumor volume [225].

A number of recent articles have described promising results of radiomics anal-

ysis carried out in patients with various types of lymphoma. Zhou et al. [246], for

instance, relied on radiomic features, extracted from PET/CT images, to predict

overall and progression-free survival (OS and PFS) in case of diffuse large B-cell lym-

phoma (DLBCL). Lue et al. [149] used clinical and PET/CT radiomic features to

evaluate response to therapy, PFS and OS in patients with HL. Milgrom et al. [157]

identified five radiomic features, including MTV and TLG, that were highly predictive

of primary refractory status in a cohort of patients with early-stage HL. In terms of
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an area under the curve (AUC), their model with additional features received signifi-

cantly more accurate predictions (0.95), when compared to MTV (0.78), TLG (0.78)

or SUVmax (0.65) alone. Relying on the radiomics approach, Lippi et al. [140] differ-

entiated between four lymphoma subtypes on a dataset comprised of 60 patients, and

demonstrated a convincing predictive performance with recall of 0.97 and precision

of 0.94. In addition, radiomics could be applied to accurately distinguish lymphoma

from another types of cancer in PET/CT images [125, 169, 170].

In radiomics workflow, features are to be extracted from predetermined tumor vol-

umes, which are commonly defined manually or semi-automatically by one or many

clinical experts. Semi-automatic segmentation of lymphoma lesions in PET/CT has

traditionally been performed by applying different thresholding techniques within

volumes of interest (VOIs), previously detected in the entire scan [107, 153]. The

fundamental principle of such methods is to treat all regions with uptake above a

certain threshold as tumors. The threshold value can be fixed (e.g., SUV of 2.5 or

4 [15, 63, 128]) or adaptively chosen, based on the uptake distribution in the whole

scan (e.g., 25% or 41% of SUVmax [30, 31, 155]) or some reference region (e.g., mean

liver uptake [220]). Since user interaction is an essential part, these annotation pro-

cedures are not only time-consuming but also acutely sensitive to observer-related

variability. As a consequence, the radiomic features are significantly affected by the

choice of image segmentation methods, applied to distinguish tumors from normal

tissues, and the observers themselves [84, 123, 173, 182, 236]. In lymphoma, segmen-

tation is especially challenging, given the large possible range of number, location, size

and heterogeneity of lesions in the body. A fully automated approach to lymphoma

segmentation is thus strictly necessary for improved robustness and reproducibility.

Convolutional neural networks (CNNs) have consistently achieved state-of-the-

art results in most visual recognition tasks. A lack of a unique, sufficiently large

dataset, like ImageNet [45], in the medical imaging domain has resulted in a myriad

of CNN architectures presented in the literature (see Chapter 3). Nonetheless, in the

case of medical image segmentation, the vast majority of the architectures stem from

U-Net [34, 183], an encoder-decoder network with skip connections. Although it is

commonly reported that alternative architectures have superior performance in com-

parison with U-Net, recent publications imply that the benefits of these models are

likely to be restricted to datasets on which they were trained and tested [113, 141, 213,

214]. Moreover, other components of the general pipeline, e.g., data preprocessing

and augmentation, training procedure, etc., can have a much greater impact on the

outcome than tricky modifications in the architecture design. As shown by Isensee
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et al. [113], the orthodox U-Net (with adjustments only in the number of layers and

filters) surpasses most existing, highly specialized networks on 23 public datasets used

in international biomedical segmentation competitions, if the other pipeline compo-

nents are properly selected. Hence, only the U-Net architecture is considered in this

chapter.

Although PET/CT imaging plays a key role in lymphoma evaluation, it is also

fraught with potential pitfalls, mainly associated with its limited specificity. Lym-

phoma lesions exhibit variable FDG uptake that can be difficult to detect, particularly

in the presence of elevated physiologic uptakes that potentially result in false-positive

findings. Normally, physiologic uptake is observed in the brain, heart, liver, spleen,

gastrointestinal tract, urinary collecting system (including the bladder) and bone

marrow [196]. Nonetheless, intense FDG uptake can also be a sign of tissue inflam-

mation caused by another disorder [53, 145, 189]. A typical example is sarcoidosis,

which is a systemic disease of unknown etiology, characterized by the presence of

(benign) granulomatous lesions in various organs, primarily the lungs and the lym-

phatic system [28, 58]. Moreover, both diseases can coexist, with sarcoidosis usually

preceding lymphoma, and a biopsy is necessary to obtain histological evidence for the

presence of malignancy [27, 143, 171, 175]. Since biopsy sites must be localized before

treatment planning, segmentation of both lymphoma and sarcoidosis simultaneously

is considered in this chapter.

The performance of automated segmentation is commonly evaluated with volume-

and distance-based metrics, computed on the ground-truth and predicted binary seg-

mentation mask of the entire scan (see Section 6.2.3). In lymphoma, however, multiple

lesions of different sizes can be situated in various parts of the body at a relatively

large distance from each other. As a result, these metrics can be misleading when

measuring segmentation performance, especially if some lesions are missed in the out-

come. Moreover, detection of all individual lesions, even with coarse contours, is more

important for therapy planning to reduce a risk of relapsed and refractory lymphoma

in future. Therefore, two complementary groups of metrics, based on the Dice similar-

ity coefficient (DSC), sensitivity (SE) and positive predictive value (PPV), are used

in this chapter for performance evaluation. More specifically, segmentation is consid-

ered voxel-wise, meaning that the overlap between the ground-truth and prediction is

estimated for the total tumor volume composed of individual lesions. Detection, on

the other hand, is estimated lesion-wise and quantifies a fraction of lesions that are

correctly detected according to some criteria (see details in Section 7.2.4).

The purpose of this chapter is thus to evaluate the feasibility of achieving fully
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automated detection and segmentation of both lymphoma and sarcoidosis lesions in

pretherapeutic 18F–FDG PET/CT images by applying the U-Net model.

7.2 Materials and Methods

The study has been approved by the Ethics Committee of the University Hospital of

Liège. The need for written informed consent was waived due to the retrospective

and non-interventional nature of the study.

7.2.1 Data Description

A dataset consisting of 419 patients with Hodgkin lymphoma (HL, n = 140), diffuse

large B-cell lymphoma (DLBCL, n = 111) or sarcoidosis (n = 168) was provided by

the University Hospital of Liège. All cases of lymphoma and some of the diagnoses of

sacroidosis were confirmed with biopsy, whereas the remaining diagnoses were based

on clinical evidence and follow-up.

All 18F–FDG PET/CT scans were acquired between April 2010 and February

2020, using two PET/CT scanners, namely a GEMINI TF Big Bore and a GEMINI

TF 16 (Philips Medical Systems, Cleveland, OH, USA), according to the European

Association of Nuclear Medicine Research Limited (EARL) guidelines. The PET

images were reconstructed with a voxel size of 4 × 4 × 4 mm3 using a blob-based

iterative time-of-flight reconstruction algorithm (BLOB-OS-TF) that included CT-

based attenuation and scatter corrections, without post-reconstruction smoothing.

To generate ground-truth (gold standard) segmentation masks, the entire dataset

was divided into four non-overlapping subsets, and each was independently annotated

by one of four nuclear medicine physicians with 3, 6, 10 and 15 years of clinical expe-

rience. Segmentation was performed in a semi-automatic manner and each observer

followed a standardized procedure in order to reduce variability in the ground-truth

definition. First, fixed thresholding with SUV of 3 was applied to localize regions of

high metabolic activity in PET. Next, all volumes smaller than 2 cubic centimeters

(cc) were excluded, because their uptake values could be significantly biased due to

the partial volume effect [81, 168, 201]. Then, sites of physiological uptake in the

brain, liver, kidney, and other parts of the body were manually removed. After, the

remaining volumes were treated as pathological lesions and their contours could be

manually adjusted if necessary. Last, all lesions were marked using natural num-

bers and the remaining area, i.e., the background, was labeled with zeros to obtain

105



the corresponding ground-truth mask. Each physician was unaware of any clinical

information and diagnosis, performing segmentation solely on the PET/CT images.

All data was split into training, validation and test sets consisting of 357, 40 and

22 patients, respectively. To alleviate a possible discrepancy between data distri-

butions in the folds, all examples were sampled using the average lesion volume for

stratification.

7.2.2 Network Architecture

The famous U-Net architecture [34, 183] was applied “off the shelf” and only basic

hyperparameters, namely a layer width (i.e., a number of channels), a number of

layers and a number of stages, were fine-tuned on the validation set.

U-Net is an encoder-decoder network that includes skip connections to copy some

feature maps from the encoder to the decoder. Usually, this architecture is formed by

a set of convolutional blocks, and each block is composed of a convolutional layer, a

normalization layer and a nonlinear transformation applied element-wise. Throughout

this chapter, all convolutional layers have the kernel size of 3× 3× 3 and are applied

with padding to keep the spatial size of the input unchanged. After each convolution,

the feature maps are normalized using instance normalization, and followed by the

ReLU activation to capture nonlinear patterns in data.

The model has a number of stages, characterized by the spatial size of the feature

maps. At each stage in the encoder, two convolutional blocks are applied to generate

the stage output that is stored to be subsequently transferred to the decoder through

skip connections. First convolutional blocks, placed right after the model input, have

the layer width of 32.

Transition to the next stage in the encoder is performed with max pooling that

halves each side of the feature maps. At the following stage, the number of feature

maps (i.e., the layer width) is doubled to compensate for the information loss caused

by downsampling. In the decoder, on the contrary, the number of feature maps is first

halved by a pointwise convolution (i.e., it uses a 1×1×1 kernel) with nonlinearity, and

nearest neighbor interpolation is then applied to double each side of the corresponding

feature maps. The model used in this chapter consists of four stages in total, i.e.,

max pooling is applied three times.

The final layer is a pointwise convolution with the sigmoid activation to generate

the probability map, i.e., soft labels. The probability map is then converted into a

segmentation mask by applying thresholding with a value of 0.5 to produce binary,
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i.e., hard, labels for all individual voxels.

7.2.3 Training and Inference

Training is performed on 128 × 128 × 64 patches that are randomly extracted from

the training images and combined into batches such that each is composed of two

patches. A training budget is set to 100 epochs and each epoch is equivalent to 1 000

batches. During training, a learning rate is adjusted using a cosine annealing learning

rate schedule [146]: starting from an initial value of 10−4, it is gradually reduced to a

minimum value of 10−7 within a cycle of 10 epochs. After each cycle, a warm restart is

performed by setting the learning rate to the initial value. This procedure enables the

model to converge to multiple local minima in the course of training, which improves

generalization [102, 146, 199]. Training is performed with Adam, an algorithm for

first-order gradient-based optimization of stochastic objective functions [122].

The unweighted sum of the Soft Dice Loss [158] and the Focal Loss [139] is em-

ployed as the objective function. Based on [158], the Soft Dice Loss, a differentiable

surrogate for the DSC metric, can be written for one data example as

LDice(y, ŷ) = 1− 2
∑N

i yiŷi + 1∑N
i y

2
i +

∑N
i ŷ

2
i + 1

. (7.1)

The Focal Loss is defined as

LFocal(y, ŷ) = − 1

N

N∑
i

yi(1− ŷi)γ log(ŷi) . (7.2)

In both definitions, yi ∈ {0, 1} - the label for the i-th voxel, ŷi ∈ [0, 1] - the pre-

dicted probability for the i-th voxel, and N - the total numbers of voxels. Also, we

add +1 to the numerator and denominator in the Soft Dice Loss to avoid a division by

zero in cases where the lesion class is not present in training patches. The parameter

γ in the Focal Loss is set to 2.

During inference, the trained model makes predictions on the whole PET/CT

scan using a sliding window approach with a 64×64×32 stride, i.e., adjacent patches

have a 50% overlap, to avoid edge artifacts. Then, the output is binarized with a 0.5

threshold to obtain the segmentation mask.

Generally speaking, object detection entails both marking an object with a certain

label and localizing this object with an individual bounding box [61, 138]. However,

direct prediction of bounding boxes on 3D medical images is often impracticable due
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to the limited amount of data available for training. Therefore, it is common practice

to first mark all objects with a single class label, i.e., perform binary segmentation,

and then re-mark them with individual instance labels [183, 224]. The latter can

be addressed as a connected-component labeling problem [93, 197, 229]. Thus, all

neighboring voxels in the segmentation mask are considered as part of the same lesion

and re-marked with the unique label.

Last, all predicted lesions smaller than 2 cc are excluded during post-processing.

7.2.4 Evaluation Metrics

Given a binary mask predicted by the model, the segmentation quality is assessed

using the Dice similarity coefficient (DSC), sensitivity (SE) and positive predictive

value (PPV) computed on a voxel basis as follows:

DSC =
2TP

2TP + FP + FN
, SE =

TP

TP + FN
, PPV =

TP

TP + FP
, (7.3)

where TP is a number of true positive voxels, FP is a number of false positive

voxels, and FN corresponds to false negative voxels.

Consider a ground-truth lesion as a true positive, i.e., correctly detected, if there

is a lesion predicted by the model such that the value of DSC computed on binary

masks corresponding to these lesions is greater than or equal to a certain threshold

t. If this value is less than t, the ground-truth lesion is treated as a false negative.

Thus, the evaluation metrics in Equations 7.3 can be rewritten on a lesion basis :

DSCt =
2TPt

2TPt + FPt + FNt

, SEt =
TPt

TPt + FNt

, PPVt =
TPt

TPt + FPt

, (7.4)

where TPt is a number of true positive lesions (depending on the threshold t),

FNt is a number of false negative lesions, and a number of false positive lesions can

be computed as FPt = P− TPt , where P - a total number of predicted lesions.

Thus, the segmentation quality of an individual lesion required in the detection

task can be adjusted by varying the threshold value t. In this chapter, detection was

assessed with respect to three different values of t: 0.25, 0.5 and 0.75.
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7.3 Results and Discussion

7.3.1 Interobserver Variability

As each PET/CT scan was randomly assigned to one of four nuclear medicine physi-

cians with different levels of clinical experience for ground-truth annotation, evalu-

ation of interobserver variability was carried out prior to model development. For

this purpose, all 22 scans from the test fold were independently segmented by each

observer and their results were then compared pairwise using the segmentation met-

rics. As a results, the average DSC across all possible pairs of the observers was

0.956± 0.154, with SE of 0.970± 0.135 and PPV of 0.964± 0.139, indicating a high

level of agreement in the ground-truth definition and reproducibility of the established

procedure.

7.3.2 Segmentation

Figure 7.1: Segmentation re-
sults on the test set.

Using the validation set, a number of different model

configurations, i.e., hyperparameter choices, were as-

sessed with the DSC metric. The best performance

was obtained by the model with 32 channels, 4 stages

and 2 layers at each stage. Its wider and deeper

counterparts either had no effect on the performance,

while being more computationally expensive, or even

worsen the results.

The best model had the average DSC values of

0.835 and 0.842 on the validation and test sets, respec-

tively. In addition, it demonstrated similar results on

the training set as well (DSC = 0.837), showing great

consistency in segmentation performance on all folds.

Given the average values of PPV significantly larger than SE (0.903 vs 0.837), the

model had a tendency to underestimate the total lesion volume. In a few cases, the

model yielded poor predictions, which significantly reduced the average of each metric

(see Figure 7.1).

The distributions of the segmentation results on the test set for the target classes,

i.e. HL, DLBCL and sarcoidosis, are shown in Figure 7.2. The best outcome was

obtained for patients with DLBCL (DSC = 0.909), while segmentation of HL lesions

proved to be most challenging among the considered classes (DSC = 0.744). However,
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(a) t = 0.25 (b) t = 0.5 (c) t = 0.75

Figure 7.3: Distributions of the detection results on the test set for different thresh-
olds.

these findings are likely to be biased in the light of the relatively limited size of the

test set. The predicted binary segmentation masks were transformed into the lesion-

labeled masks by applying connected-component labeling and the post-processing

step that excluded volumes less than 2 cc.

7.3.3 Detection

Figure 7.2: Segmentation re-
sults for each class on the test
set.

The detection results for the different threshold val-

ues (t = 0.25, 0.5, 0.75) are summarized in Figure 7.3.

As the threshold increases, stricter requirements are

imposed on the model. Therefore, the highest values

of all metrics related to the lowest threshold, t = 0.25,

(Figure 7.3a) when it was sufficient for the model to

correctly segment just a small fraction of the lesion.

In this case, the average DSC0.25 computed on the test

set was 0.769, with PPV0.25 significantly higher than

SE0.25 (0.827 vs 0.749, respectively), indicating that

some lesion were missed by the model.

If the highest threshold was set, the mean values

of all metrics substantially decreased and at the same

time a noticeable increase in their variance occurred

(Figure 7.3c). For example, by increasing the threshold value from 0.5 to 0.75, each

detection metric declined by about 0.13. On the other hand, using the threshold of
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0.5 instead of 0.25 resulted only in a marginal drop (by 0.022 at worst) in the average

values of all metrics. Hence, the threshold of 0.5 can be considered as a good trade-

off, providing both acceptable segmentation of individual lesions and high detection

performance (Figure 7.3b).

Examples of the model predictions for different lesion types are shown in Fig-

ure 7.4. Each individual lesion was marked with a unique, natural number corre-

sponding to some color. When calculating the detection metrics, the lesion numbering

had no effect on the outcome.

In the first example (Figure 7.4, first row), the model showed significantly better

results in terms of segmentation (DSC = 0.789, PPV = 0.992, SE = 0.655) than

detection (DSC0.5 = 0.592, PPV0.5 = 0.615, SE0.5 = 0.571). This was primarily due

to the presence of a large number of small lesions, and each of them could either

be completely missed by the model or marked as several separate lesions. In such

cases, accurate detection is unlikely to be feasible, as the boundaries between adjacent

lesions are adversely influenced by the partial volume effect. In addition, many ground

volumes are highly non-convex, which makes segmentation metrics more reliable for

performance assessment. In the second case (Figure 7.4, second row), a patient with

DLBCL, the trained model showed convincing results for both groups of metrics,

namely DSC = 0.886, PPV = 0.997, SE = 0.797, and DSC0.5 = 0.933, PPV0.5 =

0.999, SE0.5 = 0.874. Unlike the first case, this patient did not have clusters of closely

spaced lesions, which had a favourable impact on detection performance. The last

example corresponds to a patient with sarcoidosis that has a massive group of lesions

mainly located in the lungs (Figure 7.4, last row). The model prediction for this

patient was accurate in terms of segmentation (DSC = 0.884, PPV = 0.893, SE =

0.875), whereas the quality of detection was substantially deteriorated (DSC0.5 =

0.750, PPV0.5 = 0.749, SE0.5 = 0.749) due to a few isolated lesions of small volume,

incorrectly labeled by the model.

7.4 Conclusion

The described model obtained good average accuracy for all metrics on the voxel

basis (DSC = 0.842 ± 0.163, PPV = 0.903 ± 0.117, SE = 0.836 ± 0.206). On the

lesion basis, the performance varied (DSC between 0.612 and 0.769; SE 0.600 – 0.749;

PPV 0.661 – 0.827) depending on the chosen detection criteria. The analysis of the

inter-observer variability demonstrated insignificant differences between the ground-

truth annotations of all clinical experts (e.g., the voxel-wise DSC = 0.956 ± 0.154)
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and ensured the reproducibility of the procedure for establishing the ground-truth.

Visual inspection confirmed the relevance of the model predictions and revealed the

limitations inherent to the evaluation metrics.

The presented approach achieved good overall results and might provide a ro-

bust and accurate fully automated solution for future works investigating the clinical

prognostic and predictive value of metrics derived from these segmentation masks. In

addition, the obtained results can serve as a starting point for future studies aimed at

differentiating lesion types based directly on medical images, i.e. without performing

a biopsy.
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Figure 7.4: Examples of the predictions on the test set.

113



Chapter 8

Conclusions and Perspectives

In this thesis, four practical cases of applying CNN-based methods to tumor seg-

mentation in medical images of various modalities, including multimodal imaging,

were examined. For two of them, results were obtained in public contests with mul-

tiple participants, whose solutions provided additional benchmarks for performance

assessment.

It is already evident from numerous studies and the cases considered in this thesis

that existing AI methods, primarily CNNs, are capable of providing impressive results

in medical image segmentation tasks. Moreover, such approaches can outperform

human experts by making more accurate predictions, as demonstrated in Chapter 5.

In contrast to humans, these models are free from intra-observer variability and can

run much faster as well. For example, inference time of the model in Chapter 7 is

just about 6 sec per patient on a GPU. Nonetheless, the potential integration of such

models in clinical workflows remains highly questionable for most practitioners.

Major concerns are directly related to the reliability of these methods in different

circumstances. In the medical imaging domain, there is not a diverse, sufficiently

large and annotated dataset, like ImageNet, commonly employed by the research

community to develop new models and make fair comparisons between them. So far,

important findings presented in the literature have been obtained for relatively small,

often private cohorts of patients with a certain type of disorder. As a result, there

exists an excessive amount of sophisticated CNN architectures fine-tuned, probably

even overfitted, for a particular task and/or dataset. However, as shown by Isensee

et al. [113], other components of the general pipeline, e.g., data preprocessing, aug-

mentation, training procedure, etc., can have a much greater impact on the outcome

than tricky modifications in the architecture design. Therefore, collective efforts of

the research community in future should be more focused on constructing a diverse,
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large-scale dataset rather than developing yet another model architecture with dubi-

ous generalization. Until then, only certain aspects of the reliability of these methods

can be investigated relying on available datasets.

Typically, datasets presented in the literature on medical image segmentation

relate to a specific disease, such as a particular type of cancer, which means that

models are trained to recognize a limited range of pathologies. In practice, however,

it is highly desirable to have a multi-disease model capable of accurately detecting

various types of abnormalities simultaneously. One such case was considered in Chap-

ter 7, wherein a single CNN was developed to detect and delineate both lymphoma

and sarcoidosis lesions at once. The presented model achieved good overall results for

all considered disorders, supporting the potential use of CNNs in the multi-disease

setting.

The generalization performance of automated segmentation methods can be seri-

ously hindered by the existing diversity in imaging equipment and protocols used in

different medical centers. Hence, the equipment neutrality is another critical require-

ment for the automated methods that should demonstrate the robust performance,

when analyzing images in a multi-center context. Results obtained in Chapters 4,5

with the use of specialized cross-validation allow to conclude that designed models

are able to provide similar performance on images from different institutions, and

center-related variability can be significantly reduced by applying relatively simple

data augmentation techniques. For cervical cancer segmentation in PET imaging

(Chapter 4), the analysis was carried out using ground-truth annotations generated

by a semi-automated algorithm in order to decrease observer-related variability and

obtain more reliable estimates of the generalization performance. A new computa-

tional unit, referred to as SE Norm, was introduced in Chapter 5 to address the task

of head and neck primary tumor segmentation in PET/CT scans in the context of

the MICCAI 2020 HECKTOR challenge. The U-Net architecture with residual blocks

and SE Norm units made accurate and robust predictions without any center-specific

data standardization. The same model, except for a few minor modifications, was also

employed in the MICCAI 2020 BraTS competition to delineate different glioma sub-

regions in multisequence MRI. The described approaches obtained highly competitive

results in both competitions, essentially without any task-specific adjustments.

Another significant limitation of AI segmentation methods, often neglected by the

research community, is the bias towards positive disease detection. The models are

typically trained solely on patients with pathology, which results in a high sensitivity

but a limited specificity. In imaging tests, it could lead to false positives and/or
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potential overdiagnosis in healthy patients. This problem can be addressed in future

studies by including disease-free cases in the development process.

The other problem is related with the fact that modern CNNs commonly rely on

graphics processing units (GPUs) for accelerated computations, which is a significant

technical bottleneck for most medical centers. Thus, it is necessary to investigate

diverse strategies for relaxing hardware requirements and limiting the execution time

needed for model inference. Pruning, for example, can be used in an attempt to reduce

the number of layers without a serious deterioration in the model performance. Also,

quantization techniques can be investigated as an alternative to pruning in order to

decrease the size of the model weights and accelerate execution.
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Appendix A

Plots and Tables

Table A.1: Kolmogorov-Smirnov and Wilcoxon signed-rank tests to compare results
of the proposed model and U-Net. Both tests are two-sided and applied to each
evaluation metric. Test statistics (T ) and corresponding P -values (P) are present in
columns. Asterisks indicate statistically significant results with the significance level
α = 0.05.

Center

Kolmogorov-Smirnov Test Wilcoxon Signed-Rank Test

DSC Precision Recall DSC Precision Recall

T P T P T P T P T P T P

Brest 0.26 .02* 0.25 .03* 0.28 .01* 499 < .001* 716 < .001* 294 < .001*

Nantes 0.30 .24 0.17 .89 0.52 < .001* 74 .05 97 .21 11 < .001*

Montreal 0.23 .50 0.27 .31 0.27 .31 143 .41 103 .07 116 .13

Barcelona 0.29 .26 0.17 .90 0.25 .45 75 .03* 129 .55 88 .08

Liège 0.07 .99 0.11 .64 0.17 .16 1932 .64 1696 .16 900 < .001*

Table A.2: Average results of the proposed model for different volume decile groups.
The i-th decile group corresponds to patients with the tumor volume between di−1
and di, where di - the i-th empirical decile of the tumor volume distribution.

Metric
Volume Decile Group

1 2 3 4 5 6 7 8 9 10

DSC 0.56± 0.22 0.71± 0.1 0.76± 0.19 0.81± 0.1 0.83± 0.09 0.84± 0.08 0.85± 0.07 0.84± 0.05 0.85± 0.07 0.83± 0.12

Precision 0.44± 0.23 0.59± 0.13 0.69± 0.19 0.78± 0.14 0.80± 0.15 0.81± 0.13 0.81± 0.12 0.83± 0.11 0.82± 0.12 0.90± 0.10

Recall 0.94± 0.06 0.93± 0.06 0.89± 0.2 0.87± 0.14 0.91± 0.12 0.91± 0.11 0.91± 0.08 0.88± 0.11 0.91± 0.09 0.81± 0.18
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Figure A.1: Distributions of the patients with different FIGO stages in each center.

Table A.3: Average results of the proposed model for different contrast decile groups.
The i-th decile group corresponds to patients with the tumor contrast between di−1
and di, where di - the i-th empirical decile of the tumor contrast distribution. The
tumor contrast is defined as a ratio of the average tumor intensity to the average
intensity of the body region.

Metric
Contrast Decile Group

1 2 3 4 5 6 7 8 9 10

DSC 0.67± 0.21 0.77± 0.12 0.78± 0.18 0.78± 0.15 0.79± 0.13 0.79± 0.13 0.83± 0.09 0.84± 0.06 0.84± 0.07 0.78± 0.19

Precision 0.70± 0.27 0.71± 0.20 0.75± 0.24 0.73± 0.22 0.73± 0.20 0.75± 0.20 0.78± 0.14 0.78± 0.09 0.78± 0.10 0.74± 0.23

Recall 0.77± 0.23 0.89± 0.09 0.88± 0.09 0.91± 0.09 0.92± 0.09 0.90± 0.14 0.93± 0.10 0.93± 0.09 0.92± 0.11 0.90± 0.10

(a) DSC (b) Precision (c) Recall

Figure A.2: Results of the proposed model for different volume decile groups. The
i-th decile group corresponds to patients with the tumor volume between di−1 and di,
where di - the i-th empirical decile of the tumor volume distribution.
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(a) DSC (b) Precision (c) Recall

Figure A.3: Results of the proposed model for different contrast decile groups. The
i-th decile group corresponds to patients with the tumor contrast between di−1 and
di, where di - the i-th empirical decile of the tumor contrast distribution. The tumor
contrast is defined as a ratio of the average tumor intensity to the average intensity
of the body region.

(a) DSC (b) Precision (c) Recall

Figure A.4: Results of the proposed model for different FIGO stages.

Table A.4: Average results of the proposed model for different FIGO stages.

Metric
FIGO Stage

IB (n=27) IIA (n=23) IIB (n=120) IIIA (n=6) IIIB (n=33) IVA (n=18) IVB (n=5)

DSC 0.76± 0.15 0.78± 0.12 0.79± 0.16 0.82± 0.06 0.81± 0.14 0.81± 0.10 0.75± 0.21

Precision 0.71± 0.20 0.72± 0.19 0.74± 0.21 0.79± 0.09 0.80± 0.18 0.77± 0.14 0.69± 0.28

Recall 0.88± 0.11 0.91± 0.11 0.90± 0.13 0.87± 0.15 0.87± 0.14 0.89± 0.13 0.90± 0.08

119



Appendix B

Miscellaneous Information

Publications

Oreiller, V., Andrearczyk, V., Jreige, M., Boughdad, S., Elhalawani, H., Castelli, J.,

Vallières, M., Zhu, S., Xie, J., Peng, Y., Iantsen, A., Hatt, M., Yuan, Y., Ma, J., Yang,

X., Rao, C., Pai, S., Ghimire, K., Feng, X., Naser, M. A., Fuller, C. D., Yousefirizi, F.,

Rahmim, A., Chen, H., Wang, L., Prior, J. O., Depeursinge, A., “Head and Neck Tumor

Segmentation in PET/CT: The HECKTOR Challenge”. In: Medical Image Analysis, 2021.

Sepehri, S., Tankyevych, O., Iantsen, A.., Visvikis, D., Hatt, M., “Accurate tumor delin-

eation vs. rough volume of interest analysis for 18F-FDG PET/CT radiomic-based prog-

nostic modeling in Non-Small Cell Lung cancer”. In: Frontiers in Oncology, 2021.

Iantsen, A., Ferreira, M., Lucia, F., Jaouen, V., Reinhold, C., Bonaffini, P., Alfieri, J.,

Rovira, R., Masson, I., Robin, P., Mervoyer, A., Rousseau, C., Kridelka, F., Decuypere, M.,

Lovinfosse, P., Pradier, O., Hustinx, R., Schick, U., Visvikis, D., Hatt, M., “Convolutional

neural networks for PET functional volume fully automatic segmentation: development

and validation in a multi-center setting”. In: European Journal of Nuclear Medicine and

Molecular Imaging 48.11, 2021.

Iantsen, A., Jaouen, V., Visvikis, D., Hatt, M., “Squeeze-and-Excitation Normalization

for Brain Tumor Segmentation”. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and

Traumatic Brain Injuries. Ed. by A. Crimi and S. Bakas. Cham: Springer International

Publishing, 2021.

Iantsen, A., Visvikis, D., Hatt, M., “Squeeze-and-Excitation Normalization for Auto-

mated Delineation of Head and Neck Primary Tumors in Combined PET and CT Images”.

In: Head and Neck Tumor Segmentation. Ed. by V. Andrearczyk, V. Oreiller, and A.

Depeursinge. Cham: Springer International Publishing, 2021.

120



Presentations at Conferences and Workshops

”Fully Automated Detection and Segmentation of Hypermetabolic Lesions in Prethera-

peutic [18F]FDG PET / CT Images of Lymphoma and Sarcoidosis Patients”, EANM’21,

Virtual, Oct. 2021.

”Squeeze-and-Excitation Normalization for Automated Delineation of Head and Neck Pri-

mary Tumors in Combined PET and CT Images”, MICCAI 2020, Virtual, Oct. 2020.

”Automated Cervical Primary Tumor Functional Volume Segmentation in PET Images”,

EANM’19, Barcelona, Spain, Oct. 2019.

”Automated cervical primary tumor functional volume segmentation in PET images”, Imag-

ing of diagnostic and therapeutic biomarkers in Oncology, workshop in Le Bono, France, Sep.

2019.
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Titre : Segmentation Automatique de Tumeurs en Imagerie Multimodale TEP / TDM / IRM

Mot clés : imagerie médicale, apprentissage profond, segmentation, tumeur, réseau neuronal

Résumé : Les systèmes de reconnaissance
visuelle fondés sur des réseaux de neurones
convolutionnels (RNC) ont le potentiel d’amé-
liorer le processus de prise en charge des pa-
tients. La fiabilité et la précision de solutions
utilisant des RNC sont le sujet de cette thèse,
dans le contexte de la segmentation automa-
tisée de tumeurs.

Quatre tâches dans différentes modalités
d’images ont été considérées. (1) Un mo-
dèle pour la segmentation de tumeurs du col
de l’utérus en imagerie TEP a été entraîné
sur des références fiables dans un contexte
multicentrique, obtenant des performances ro-
bustes en s’appuyant sur de simples tech-
niques d’augmentation de données. Un mo-
dule de norme «squeeze-and-excitation» a
été introduit dans le contexte de la segmen-
tation de tumeurs tête et cou sur des images

TEP/TDM multicentriques, obtenant de bons
résultats sans standardisation spécifique. (3)
La même approche, avec des modifications
mineures, a été employée dans le contexte de
tumeurs cérébrales dans des séquences IRM.
Les deux méthodes ont obtenu des résultats
compétitifs dans des compétitions en 2020,
sans nécessité d’ajustement spécifique. (4)
Un modèle a été construit pour la détection et
la segmentation de lésions de lymphomes et
de sarcoïdoses en imagerie TEP/TDM, avec
de bons résultats sur les pathologies consi-
dérés, confirmant ainsi le potentiel des RNCs
dans un contexte de plusieurs pathologies dif-
férentes.

Les résultats présentés dans cette thèse
représentent une avancée vers l’intégration de
ces méthodes en routine clinique.

Title: Automated Tumor Segmentation in Multimodal PET / CT / MR Imaging

Keywords: medical imaging, deep learning, segmentation, tumor, neural network

Abstract: In healthcare, visual recognition
systems built on convolutional neural networks
(CNNs) have the potential to improve the pa-
tient management process. The reliability and
accuracy of CNN-based solutions are central
research subjects of this thesis, examined in
the context of automated tumor segmentation.

Four practical tasks with different image
modalities were considered. (1) A model for
cervical cancer segmentation in PET was de-
veloped in a multi-center setting, learning on
reliable ground-truth labels. This approach
provided robust performance by relying on
simple data augmentation techniques. (2)
A computational unit, squeeze-and-excitation
norm, was introduced for head and neck pri-
mary tumor segmentation in PET/CT scans
from multiple centers. A model with these

units made accurate delineations without any
center-specific data standardization. (3) The
same approach, with minor modifications, was
employed to delineate glioma subregions in
multi-sequence MRI. Both methods obtained
competitive results in two public challenges in
2020, essentially without any task-specific ad-
justments. (4) A model for detection and seg-
mentation of lymphoma and sarcoidosis le-
sions in PET/CT was built. It achieved good
overall results for the considered disorders,
supporting potential applications of CNNs in
a multi-disease context.

The findings described in this thesis rep-
resent a few steps towards the integration of
CNN-based methods into daily clinical prac-
tice.
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