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Résumé en français

Les images sont des moyens de communication et d’expression centraux dans nos
sociétés et nos vies. Si nous sommes aujourd’hui capables de capter ces images
sous formes numériques et de leur appliquer de nombreux traitements (équilibrage,
édition, retouche, etc), il n’existe pas de façon simple de les manipuler amplement
tout en préservant leur aspect réaliste. La représentation sous forme de pixels est
pratique mais ne reflète pas la réalité de leur complexité et l’interdépendance cachée
qui existe entre tous les différents pixels d’une même image. Ce phénomène est
exacerbé dans le cas des vidéos où les modifications doivent être précises pour être
convaincantes. Les applications sont néanmoins nombreuses pour l’art, le graphisme,
ou le cinéma.

Nous nous intéressons dans cette thèse aux problèmes de la génération d’images
et d’inpainting, ou complétion d’image. Ces problématiques sont proches, et l’on
peut tout à fait voir l’inpainting comme une génération contrainte. Les derniers pro-
grès en traitement d’image ont montré des résultats de plus en plus époustouflants
pour l’édition et la génération (Ho et al. 2020; Saharia et al. 2022b). Ces méthodes
récentes s’appuient sur des modèles complexes, de grands réseaux de neurones, et de
larges bases de données d’images. L’apprentissage statistique combine ces éléments
et permet de tirer parti de la large diversité d’images pour mieux les générer.

Notre objectif à terme est le traitement des vidéos mais les méthodes récentes
sont déjà à la limite des contraintes matérielles pour le simple traitement des images.
Nous cherchons donc ici à résoudre les problèmes de génération et d’inpainting de
façon plus efficace: avec des petits modèles et très peu d’exemples d’apprentissage.
Nous étudions en particulier les méthodes par patchs, les méthodes d’apprentissage
interne sur une image, et les couches d’attention qui font le lien entre les entre
patchs et réseaux de neurones.

Le Chapitre III présente une application sans apprentissage à la synthèse mono-
image par réarrangement de patchs. Alors que Shaham et al. (2019) choisissent
d’entraîner un réseau de neurones, nous montrons qu’il est possible d’obtenir des
résultats d’une qualité supérieure sans apprentissage avec une approche utilisant
explicitement l’information dans l’image de référence. Nous proposons deux version
de notre méthode, une version qui favorise la diversité des résultats et une autre
version qui utilise une initialisation par transport optimal qui a l’avantage de mieux
respecter la distribution de patchs de l’image de référence.
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Le Chapitre IV est dédié à l’étude du calcul de l’attention de façon efficace.
Les couches d’attention (Vaswani et al. 2017) sont une proposition récente pour
modéliser les dépendances longue distance dans les réseaux de neurones tout en
permettant un apprentissage de bout en bout. On peut notamment les rapprocher
des méthodes classiques non-locales dont font partie les méthodes par patchs. Un
des problèmes majeurs cependant est que cette approche a un coût d’exécution qui
augmente de façon quadratique avec le nombre de pixels. C’est une limite importante
pour le traitement d’images haute résolution et potentiellement les vidéos. Nous
montrons que le calcul de l’attention se rapproche d’un problème de recherche de
plus proche voisin, ce qui permet une approximation efficace. Dans le cas des images,
nous proposons une couche d’attention qui s’appuie sur PatchMatch (Barnes et al.
2009) pour calculer l’attention en utilisant très peu de mémoire. Notre couche
d’attention est une bonne approximation dans certains cas mais permet surtout
d’utiliser l’attention pour le traitement d’images haute résolution ou de vidéos, ce
qui est impossible avec le calcul classique de l’attention.

Les chapitres V et VI étudient les nouveaux modèles de diffusion (Ho et al.
2020; Sohl-Dickstein et al. 2015). Ces modèles se sont imposés comme l’état de l’art
pour la génération d’images mais aussi pour de nombreux problèmes de restauration
d’image. Dans le chapitre V, nous expérimentons leur application au problème de
l’inpainting, en limitant l’entraînement à une seule image. Nous comparons en dé-
tail cette formulation avec d’autres approches par apprentissage et des méthodes par
patchs. Nous évaluons une des caractéristiques centrales de ces réseaux: leur diver-
sité de résultats. Dans le chapitre VI, nous étendons ce travail à la vidéo. La vidéo
est parfaitement adaptée à un traitement interne grâce à la redondance temporelle
naturelle entre les images composant une séquence. Nous proposons une stratégie
d’entraînement particulièrement adaptée à la formulation interne et de l’approche
par diffusion en mêlant apprentissage et inférence. Cette stratégie est efficace et
permet d’obtenir de bons résultats pour l’inpainting de textures dynamiques com-
plexes.
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I Introduction

I.1 Context

Images and video are ubiquitous in today’s digital landscape, finding applications in
areas as diverse as social media communication, marketing strategies, educational
materials, medical diagnostics, and entertainment. From a scientific perspective, we
now have a range of tools to take digital pictures of the world in diverse conditions
and we store these images in a digital form with millions of pixels. To edit images, the
pixel values can be manually or algorithmically modified but doing so in a visually
plausible way is still an open challenge. In this thesis we are interested in two
different problems. The first one is image inpainting i.e. how to remove an object
from an image, and replace it by generated content that fits visually. The second
problem is image generation, how to design algorithms that generate real looking
images. These questions are of interest for multiple reasons. First, image editing
is an end goal in itself for content creation and artistic purposes. It is desirable
to make images easier to edit and create. Second, developing accurate models of
complex data is a difficult problem that occurs in many research areas. Some of
the tools and techniques developed for image modeling can be applied to different
fields. An obvious advantage of images over other types of data, is that anyone can
evaluate a natural image model. We are all experts and we do not need a scientific
third party to look at the data and judge whether it is realistic or not. This makes
the development easier than in other cases, but at the same time this evaluation is
not objective, which makes it difficult to measure or optimize.

Image processing aims to improve the visual quality of images or to extract in-
formation from them. Improving visual quality covers a wide range of operations:
denoising, demosaicing, editing, etc, but they all have one thing in common: pro-
ducing images. We can further distinguish two subcategories: image restoration,
such as denoising, demosaicing, for which we have an objective criterion, and im-
age editing / synthesis, which is more open-ended and subjective. Other high-level
problems like classification and semantic segmentation aim to give a human-like un-
derstanding of an image beyond the pixels i.e. “what objects are seen in this image?
how many? where? etc”. The work in this thesis falls into the former category, we
are interested in image editing and image generation.

More generally, we focus on methods for producing real-looking images with or
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Figure I.1: Texture synthesis examples from Efros and Leung (1999). A new large
texture is created using only a reference image as source material.

without constraints. This is a difficult task, given their high dimensionality and our
familiarity with natural images. First, images consist of thousands to millions of
pixels and the interdependence between the pixels is not obvious. Second, as human
beings, we see images all day, all our lives, so we are very demanding when it comes
to images, and any defects can be easily detected. For these reasons, creating images
that can fool a human being is an extraordinary feat.

We first present the problem of texture synthesis and its natural extension to non-
stationary images. Image generation techniques can be adapted for image inpainting.
We then focus on the second main topic of this thesis: image and video inpainting.

I.2 Texture synthesis

Textures are easily identified but difficult to define. A texture is a variable but
visually homogeneous pattern. Textures vary in scale, stochasticity, regularity, di-
rectionality, etc. The aim of exemplar-based texture synthesis is to generate from
scratch samples with the same visual identity as a reference image. This reference is
limited in size, and the challenge is to extrapolate its properties to a large sample.
See Figure I.1 for examples.

This process has applications in image editing and computer graphics. In editing,
synthesis can be used to fill-in a background or an occlusion. In computer graphics,
textures are used to decorate 2D and 3D objects of all sizes, which then appear in
films or video games.

A good synthesis should be visually similar to the reference image, without
being identical. It must avoid internal repetition, where appropriate, and external
repetition, as the results must be different for different samples of the same texture.
For some applications, it is desired that the process is very fast or scales to very
high resolutions.
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Figure I.2: After a learning phase on a dataset of human faces, the method of Karras
et al. (2019) can generate high resolution images of faces. Source: Karras et al .

I.3 Image generation

Image generation is an extension of texture synthesis to non-stationary processes i.e.
any image. In this section, we consider image generation as unconditional generation
(without explicit constraints). The problem can be framed mathematically as sam-
pling from an unknown data distribution where our knowledge of the distribution
comes from a collection of samples.

Image generation has applications in computer graphics, art, and content cre-
ation. Sometimes, such techniques can also extend a limited training set in machine
learning where it serves as a complex data augmentation method. Recently, gener-
ative models have also shown great succcess in regularizing inverse problems.

A good generative algorithm produces diversified, high-quality, unseen samples
that could believably belong to the original training data. These qualities are diffi-
cult to measure objectively and quantitatively, requiring either human intervention
or approximate evaluation methods. Incredible results are already achieved in hu-
man face generation (Figure I.2).

I.4 Inpainting

Inpainting, in-filling, image completion, or disocclusion, is the process of filling a
desired region in an image such that the result is visually pleasing. The occlusion
usually covers a defect or unwanted content from the picture, and inpainting al-
lows a graceful removal while retaining most of the picture’s identity. Applications
include art and old photo restoration as well as professional and consumer image
editing (Figure I.3). Over time, the physical supports such as canvases, negatives,
and films deteriorate as do the images themselves. Inpainting can then be used
to restore a digitalized version. Image editing on the other hand is used to alter
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photos for artistic purposes, information manipulation, or privacy concerns. The
film and photography industries enhance images by removing distracting and un-
sightly elements such as passers-by, signs, or sound booms. Consumer software now
also offers the same capabilities for better vacation photos. These applications are
our primary motivation, but we cannot hide the fact that questionable derivative
uses are possible. Inpainting can be used to change the meaning of an image and
threaten its veracity. This has long been a concern, even with analog photography,
as it was already possible (and done) to airbrush someone out of an image (Fineman
2012; King 1997). More recently, deepfakes - convincing fully generated images or
videos of celebrities - have completed the erosion of trust in visual content. A final
application is to remove people from images for privacy reasons, rather than simply
blurring their faces. Inpainting them completely preserves their anonymity.

These applications can be extended to video, although the problem is more
difficult due to higher dimensionality and temporal coherency. At the same time, a
moving occlusion can sometimes reveal the true completion in the case of videos. We
present a situation and a complex one in Figure I.4. Algorithms should handle both
cases: when the content is truely unknown and when a reasonable guess is possible.
The time dimension is very important because the human eye is very sensitive to
small temporal inconsistencies.

Finally, while the original problem of inpainting was just to produce a visually
pleasing solution, the recent developments have made it possible to describe the
desired completion with text (Adobe Firefly 2023).

As an image processing problem, we assume that we are given an image and a
binary mask indicating the position of the occlusion (the region to be filled-in). In
any case, we do not use the occluded content of the original image. The difficulty of
the task depends strongly on the size of the occlusion. Small independent missing
regions are easier to inpaint than large regions for which the problem looks more
like a loosely constrained generation problem. In our work, we are more interested
in image editing where occlusions can be large. Inpainting is also a very ill-posed
problem i.e. many different solutions are possible.

It is difficult to evaluate inpainting algorithms for several reasons. The first
reason is that we do not have an absolute quantitative metric for the quality or
realism of an image that perfectly matches human judgement. Among the metrics
we do have, each has different characteristics and limitations. The human eye is
still the best option for evaluating the results, but it cannot be used for thousands
of images. The second difficulty is that multiple solutions are possible and there is
no ground truth available.

I.5 Contributions

We define internal methods as methods that work with very limited data i.e. a single
image / video. In this thesis, we focus on internal methods for the generation and
inpainting of images and videos. The idea is to exploit the self-similarity of images to



I.5. Contributions 5

Figure I.3: Left: the “inpainting“ term comes from the restoration operation on
paintings. Right: example of inpainting in digital photography for removing dis-
tracting elements. Sources: Bertalmio et al. (2000); Criminisi et al. (2004)

Figure I.4: In video inpainting, a moving occlusion (top) can be easier to inpaint
than a static one (bottom) because the background is visible at some point in the
sequence. In the second case, the completion must be generated.

inpaint, or generate similar images. Internal methods include patch-based methods
as well as (deep) internal learning approaches. Recent attention mechanisms can be
seen as a combination of patch-based methods and deep networks. In this thesis,
we have investigated several of these aspects for image inpainting or generation.

In chapter III, we develop a patch-based method for single-image generation.
The problem of single-image generation was introduced and first adressed by Shaham
et al. (2019). They train a neural network on a single reference image to generate
variations of the same image. We show that a patch-based algorithm can be devised
and perform extremely well. We draw inspiration from early work on exemplar-based
texture synthesis, and more recent work on optimal transport. Optimal transport is
important for controlling the patch distribution but is computationally expensive,
so we only use it at low resolutions. An advantage of our method is that it can
generate new samples immediately because no initial learning stage is required.

In chapter IV we investigate the use of attention mechanisms (Vaswani et al.



6 Chapter I. Introduction

2017). Attention brings together patch-based methods and deep networks, com-
bining their respective advantages. A limitation of the attention layers is their
computational cost, especially for images and videos. Therefore, we propose an ef-
ficient attention computation that scales to high resolution images. We exploit the
connection between attention layers and the problem of nearest neighbor search.
We adapt the PatchMatch algorithm (Barnes et al. 2009) to quickly identify the
nearest neighbors, and compute an approximation of at a fraction of the original
computational cost. We ensure that our method is differentiable which is the main
difficulty in our approach. We validate our approximation on several image editing
and image restoration tasks.

In chapter V, we look at a new framework for image generation and inpainting:
diffusion models (Ho et al. 2020). The diffusion framework is based on iterative
denoising and sampling, that provides diverse and high quality samples. We present
an application to internal image inpainting, where a lightweight neural network is
trained on a single image. We show results competitive with several state-of-the-
art methods: patch-based methods, deep learning approaches, and large diffusion
models, on texture images. We also compare different evaluation metrics used in
inpainting, and highlight their shortcomings.

In chapter VI, we extend the previous application to videos. Instead of relying on
a carefully designed deep architecture, we train a simple neural network to minimize
the diffusion loss on a single video. Our method is able to inpaint both the easy case
of static backgrounds and, more importantly, the difficult cases of dynamic textures
and complex motion. We propose a specific training strategy adapted to diffusion
and internal learning. The inference procedure in diffusion models consists of many
iterations, we train on specific subsets of iterations instead of all of them. Learning
is thus separated for each subset, and consequently simpler, leading to better results.
We report a significant improvement over the state-of-the-art for dynamic texture
inpainting.

In summary, we make the following contributions:

• in chapter III, we propose a fast patch-based algorithm for single-image gen-
eration that does not require a learning phase. We combine optimal transport
and a global patch-based energy term for fidelity to the reference image and
diversity. We compare it to a deep learning approach and show superior visual
results.

• in chapter IV, we develop a very efficient attention layer. It is based on
a nearest neighbor approximation of attention. The nearest neighbors are
efficiently identified using PatchMatch. The result is an attention layer with
a very small memory footprint, which no longer limits the architectures of
neural networks and their input sizes. We demonstrate its application to
various image editing and restoration tasks.

• in chapter V, we investigate the use of small neural networks in diffusion
models. Even with a small number of parameters, we get very good results in
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texture inpainting, with diverse and high quality results. The training time is
also minimal compared to other deep learning approaches. We discuss several
metrics for image inpainting.

• in chapter VI, we extend the work on diffusion to video inpainting. We train
a small network on a single incomplete video and inpaint it. This approach
handles static and dynamic backgrounds, as well as moving objects. We design
a specific training and inference scheme that significantly improves the results
over the baseline. We show superior results for dynamic texture inpainting, as
verified quantitatively and qualitatively.

These contributions were shared in the form of 4 publications: 1 at an interna-
tional conference, 1 in a journal, and 2 at national conferences. Publications for the
chapters V and VI, on image and video inpainting using diffusion models, are in
preparation.

• Chapter III: N. Cherel, A. Almansa, Y. Gousseau, and A. Newson (2022a).
“A Patch-Based Algorithm for Diverse and High Fidelity Single Image Gener-
ation”. In: 2022 IEEE International Conference on Image Processing (ICIP).
Oral presentation, pp. 3221–3225. doi: 10.1109/ICIP46576.2022.9897913,
URL: https://hal.science/hal-03822204, Code: https://github.com/ncherel/
psin

• Chapter IV: N. Cherel, A. Almansa, Y. Gousseau, and A. Newson (2024).
“Patch-Based Stochastic Attention for Image Editing”. In: Computer Vision
and Image Understanding 238, p. 103866. issn: 1077-3142. doi: 10.1016/
j.cviu.2023.103866, URL: https://arxiv.org/abs/2202.03163, Code:
https://github.com/ncherel/psal

• Chapter IV: N. Cherel, A. Almansa, Y. Gousseau, and A. Newson (2022b).
“Attention stochastique basée patchs pour l’édition d’images”. In: 28° Colloque
sur le traitement du signal et des images. 001-0302. Nancy: GRETSI - Groupe
de Recherche en Traitement du Signal et des Images, p. 1209–1212, URL:
https://www.gretsi.fr/data/colloque/pdf/2022_cherel952.pdf

• Chapter V: N. Cherel, A. Almansa, Y. Gousseau, and A. Newson (2023b).
“Modèle de Diffusion Frugal Pour l’inpainting d’images”. In: GRETSI 2023
:XXIXème Colloque Francophone de Traitement Du Signal et Des Images.
Grenoble, France, URL: https://hal.science/hal-04199282

• Chapter VI: N. Cherel, A. Almansa, Y. Gousseau, and A. Newson (2023a).
Infusion: Internal Diffusion for Video Inpainting. In preparation. arXiv:
2311.01090 [cs], URL: https://arxiv.org/abs/2311.01090
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II Related works

This chapter covers the related works and is organized along 3 methodological per-
spectives: patch-based methods, deep learning models, and attention mechanisms.
This is not a partition of the space of image processing techniques: this will not
cover every method related to works presented in this thesis and some methods may
also belong to more than one family. In each chapter, the relevant bibliography is
recalled and expanded to account for the blind spots of our partition. The goal is
really to present the major techniques of interest for us through 2 main applications:
inpainting and image synthesis.

This chapter follows the chronological developments of the field, with first the
patch-based methods, then the deep learning models, and finally the attention mech-
anisms.

II.1 Patch-based methods

II.1.1 Definition

A patch is a small square region of an image, a set of pixels. Patches are local
descriptors of an image, they locally represent its appearance and can easily be
compared and combined. It is easy to construct images from patches and extract
patches from images. Formally, for an image u ∈ RH×W , a patch of size n × n at
position p1 is a vector of Rn×n that we note Ψu

p .
It has been observed that natural images are self-similar : similar local patterns

(and patches) are found at different positions both in-scale and across-scale. We will
see that many methods are based on this property either to overcome degradations
or to create self-similar images. Patch-based approaches fall into so called non-local
methods, due to patch operations not being restricted to a local neighborhood.

II.1.2 Exemplar-based Texture synthesis

For texture synthesis, one option is to use a parametric model such as the one of
Portilla and Simoncelli (2000). An initial white noise image is optimized so that

1It is common to consider patches of odd size so that the central pixel of the patch coincides
with the pixel at position p in the image.
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Figure II.1: A image u and a 7× 7 patch from this image at position p

the statistical descriptors extracted from the wavelet coefficients are similar to those
of the reference texture. An alternative is to rearrange patches from the reference
image into a new texture sample. The obvious redundancy of a texture is exploited
through its patches by Efros and Leung (1999). They progessively synthesize a
texture by finding patches similar to the synthetic neighborhood, and directly paste
pixels of the reference image. This algorithm has been refined (Wei and Levoy
2000), accelerated (Liang et al. 2001), and extended to surfaces (Turk 2001). To
avoid verbatim copies, Raad et al. (2014) estimate a Gaussian model from multiple
patches and sample from it.

Kwatra et al. (2005) proposed to shift from greedy algorithms to optimize a
global patch-based energy term. Let ũ be the reference image and u be the new,
synthesised image, defined over the image domain Ω. A patch centred on a pixel p
in image u is denoted as Ψu

p . At each scale, the energy writes:

E(u) =
∑︂
p∈Ω

min
p̃∈Ω
∥Ψu

p −Ψũ
p̃∥22, (II.1)

Their energy is hard to minimize as it requires many iterations compared to
the previous greedy approach but produce very good results. They also include a
multi-scale strategy which can handle larger structures without increasing the patch
size.

Lefebvre and Hoppe (2006) change the patch description to include appearance
features. Kaspar et al. (2015) propose several heuristics to tune the list of parameters
of texture synthesis (number of scales, patch size) and add a few constraints to avoid
repetitions.

One limitation of Kwatra et al. (2005) is that nothing prevents unbalanced syn-
thesis where only a small region of the reference texture is replicated. Optimal
transport is one way to solve this shortcoming. Gutierrez et al. (2017) tackle the
problem of optimal transport on patches using a linear sum assignment and solve
it with the Hungarian algorithm. Next, Galerne et al. (2018) proposed to learn
a semi-discrete transport plan which enables multiple synthesis once established.
This has been refined next by Leclaire and Rabin (2019) in a two-step approxi-
mation which is faster than the previous approach. Finally, Houdard et al. (2021)
proposed a semi-discrete differentiable formulation which can also be optimized by
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a neural network.
In our work, we are interested in image generation, not limited to textures.

However, the problem is more complicated because larger structures are harder to
create with patches. It has been explored for images and videos in Kwatra et al.
(2003) using GraphCut. Since the recent introduction of the single-image generation
problem (Shaham et al. 2019), multiple patch-based approaches have been proposed
for images (Granot et al. 2022) or videos (Haim et al. 2022). They extend the work
of Kwatra et al. (2005) with more scales and a regularization term.

Surveys are available for state-of-the-art patch-based texture synthesis (Barnes
and Zhang 2017; Wei et al. 2009).

II.1.3 Patch-based Inpainting

The extension of texture synthesis to image inpainting is straightforward. In the
case of a homogeneous texture to inpaint, the algorithm of Efros and Leung (1999)
can be used, the non-occluded content acting as the reference image and the oc-
cluded content the synthesized output. It turns out that the self-similarity of natural
images is not limited to textures which greatly expands the possibilities of inpaint-
ing (Bornard et al. 2002). Drori et al. (2003) propose a multiscale greedy algorithm
that computes a confidence map to decide which patch to inpaint first. Criminisi
et al. (2004) change the order of the inpainting to first extend the existing lines.
This is important for reconstructing the main structures in the image. Sun et al.
(2005) constrain the generation with user-defined line guidance.

Wexler et al. (2007) propose an extension to video inpainting using spatio-
temporal patches and a global energy minimization similar to Kwatra et al. (2005).
The energy is:

E(u) =
∑︂
p∈Ω̄

min
p̃∈Ω
∥Ψu

p −Ψu
p̃∥22, (II.2)

but this time, there is only one image: u, and the domains of definition Ω and
Ω̄ correspond to the visible and masked region respectively.

One issue of this energy is the computational complexity of their fundamental
step: nearest neighbor search. This problem is solved with the PatchMatch algo-
rithm (Barnes and Shechtman 2010). PatchMatch is a very efficient nearest neigh-
bor search technique very adapted to images because it relies on the self-similarity
property of images. It allows nearest neighbor search in log-linear computational
complexity compared to a quadratic complexity for naive approaches.

Simakov et al. (2008) introduce a bidirectional similarity measure to optimize
completeness and coherence for image and video retargeting. Pritch et al. (2009)
optimize the shift-map directly instead of alternating it with optimizations over
the image pixels. Formulated as a graph-cut problem, this can be solved quickly.
Cao et al. (2011) combine an exemplar-based inpainting with a solution obtained
with Partial Differential Equation (PDE). The exemplar-based approach allows for
a better inpainting of the textures and the PDE of the structures. Bugeau et al.
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Figure II.2: Patches can be used in different applications due to self-similarity:
inpainting, denoising, single image super-resolution. Images adapted from (Criminisi
et al. 2004), (Buades et al. 2005), and (Glasner et al. 2009).

(2010) minimize an energy which is a sum of 3 terms: one relying on patches, one
on PDE, and one on image coherence. This covers all situations, structures and
textures.

This variational non-local inpainting approach has been formalized and ana-
lyzed by Arias et al. (2012). Patches can be used to reconstruct the RGB values
directly or the gradients (Darabi et al. 2012), which have been found to improve
coherence (Pérez et al. 2003).

He and Sun (2012) find that the shift-map is sparse and thus the nearest neighbor
search can be drastically accelerated while enforcing coherence more easily. It has
been observed by Liu and Caselles (2013), that the textures are better inpainted
in multiscale approaches when using the gradients computed at the original image
resolution in the distance function. Lee et al. (2016) use a Laplacian pyramid for
the multiscale approach to find more accurate neighbors.

Recently, patches have also been used jointly with deep learning, with patches
of neural features by Yang et al. (2017). Samuth et al. (2023) generate realistic face
images using a small dataset using patches in a latent space. For small datasets,
this non-parametric approach is more interesting than learning-based approaches.
An advantage of patch-based methods is that they scale to very high resolutions
more easily than methods using deep neural networks (Zhang et al. 2022d).

II.2 Deep learning methods

II.2.1 Introduction

As a brief introduction to the topic, deep learning uses neural networks which are
compositions of simple operations such as convolutions, or matrix multiplications.
We call these operations layers. These layers have a set of parameters, such as the
kernel for a convolution. The main idea is to optimize these parameters θ, called
the weights of the neural network, for a given dataset.
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Convolution Matrix multiplication
x→ k ∗ x x→Wx

θ = k ∈ Rs×s θ =W ∈ Rn×m

Nonlinear operations are also introduced in between these linear layers. These in-
clude Rectified Linear Unit (ReLU): x→ max(0, x), sigmoid x→ 1

1+exp(x) and many
others. A neural network is a composition of multiple layers and non-linearities, we
note fθ this composition, where θ is thus the union of all parameters from each layer.

The parameters are optimized on a dataset of pairs {(x, y) ∈ X × Y}, where
in each pair (x, y) we find the input x and the desired output y. A user-defined
differentiable loss function is used to measure the error between y and fθ(x). The
gradient with respect to the weights is used to optimize the parameters of our neural
network. For image restoration, the ℓ2 error between the predicted pixel values and
the ground truth is often used. The most common technique for training a neural
network is to optimize the parameters using stochastic gradient descent, using only
a small subset of examples at a time. L : Y×Y → R is the loss function, we optimize
the following:

min
θ

E(x,y)[L(fθ(x), y)] (II.3)

The layers can be optimized to solve nearly any problem, provided there is
enough data and computing power. When it comes to image restoration, such as
denoising, deblurring, or inpainting, the training data can be generated using non-
degraded images and a degradation operator. When non-degraded images are not
available or the degradation operator is unknown, the problem is more complicated.
Some works (Batson and Royer n.d.; Lehtinen et al. 2018) have overcome this diffi-
culty of requiring paired data for deep learning.

II.2.2 Generative models

The distribution of natural images is complex due to its high dimensionality in pixel
space. At the same time, it is believed that natural images can be represented in
a low-dimensional manifold. Many models have been proposed to find this repre-
sentation space and the mapping from it to the pixel space. An advantage to this
problem is the large amount of natural images we have at our disposal, which are
as many samples from this unknown and complex distribution.

Generative Adversarial Networks (GANs) were invented by Goodfellow et al.
(2014) as a simple way to learn a generative model on a given dataset. They in-
troduce two neural networks: a generator, whose goal is to generate real-looking
images from noise, and a discriminator, whose goal is to distinguish between the
images from the real dataset and from the generator’s output. This procedure is
formalized by the dual optimizations of the generator and the discriminator:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (II.4)

While elegant, such a loss function can be difficult to optimize, and the training
may not converge to an optimum in practice. This idea has been extended beyond
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image generation, as a real-looking objective function can be of interest for many
applications. Indeed, in image restoration, the goal is to recover an image that mini-
mizes both the data fitting term and a regularization term describing natural images.
This regularization is learned by a discriminator. Several improvements have been
made for their stability (Arjovsky et al. 2017) or the architectures used (Karras
et al. 2019).

We can also mention the Variational AutoEncoder (VAE) by Kingma and Welling
(2014) in this category, a neural network is trained to encode the images into a Gaus-
sian latent space and reconstruct them from the latent representation. Once trained,
images can be obtained by sampling latent variables and decoding them. It is easy
to edit existing images, because an encoder explicitly projects images into the la-
tent space, unlike GANs, which typically do not have this component. Compared to
GANs, VAEs do not suffer from the mode collapse where only a subset of the distri-
bution is represented, nor are they unstable during training, but they do have other
problems. The images they produce are often less detailed than those produced by
a properly trained GAN.

In both cases, GANs and VAEs, the latent space is an interesting tool for in-
terpolation (Karras et al. 2019), or image editing (Yao et al. 2022). It provides a
compact representation space to semantically modify an image.

Among the other deep generative frameworks, we now briefly introduce Normal-
izing Flows (Rezende and Mohamed 2015). They have a similar idea to VAEs, i.e.
encoding/decoding images to/from a Gaussian latent space, but rely on learned in-
vertible functions to map the images to the latent space. The invertible property is
nice because it does not require training an encoder and decoder separately. In fact,
the decoder is the (mathematical) inverse of the encoder. However, this framework
limits the design of the neural network because all operations must be differentiable
and invertible. In particular, for bijectivity, the latent space must be the same size
as the original image space, which is often impractical.

Inspired by text modeling, it is also possible to view an image as a sequence of
pixels (van den Oord et al. 2016; Van Den Oord et al. 2016). Generative models
for sequences can be trained by predicting the next element given the previous ones
over a set of discrete outputs.

Diffusion models. We present in detail diffusion models, which are extensively
used in Chapters V and VI. Diffusion models (Ho et al. 2020; Sohl-Dickstein et al.
2015) are a recent improvement over the other generative alternatives in quality
and stability. The idea is to introduce a long Markov chain of T states from q(x0)

to q(xT ). Here q(x0) represents the distribution of clean natural images and q(xT )
is a pure noise distribution and in between, there is a series of intermediate states
(Figure II.3). The forward process describes the transition from x0 to xT through
the following kernel:

q(xt|xt−1) = N
(︂
xt;

√︁
1− βtxt−1, βtI

)︂
, (II.5)

We define αt = 1 − βt, and ᾱt =
∏︁t
s=1 αs which are useful variables in the
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following because q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). Associated with the forward

process, is the reverse process that defines the data distribution pθ(xt|xt+1) which
is also a Gaussian of unknown but learnable mean and variance.

pθ (xt|xt+1) = N
(︁
xt;µθ(xt+1, t), σ

2
t I
)︁

A neural network predicts the mean µθ(xt+1, t) whose parameters θ are optimized
to maximize a lower bound of the log-likelihood of the data. In the case of Gaussian
variables of known variance, which is a simpler case, then this lower bound has a
simple formula which is finally for each timestep t:

Lt = Eq(x0,xt)
[︃

1

2σ2t

ᾱt−1β
2
t

(1− ᾱt)2
∥x0 − fθ(xt, t)∥2

]︃
(II.6)

This loss is easier to minimize than the one used for GANs which results in more
stable trainings. The training and inference algorithms are detailed in Figure II.4.
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Figure II.3: Diffusion model - Source: Ho et al. (2020)

The iterative nature of diffusion models make them particularly slow for infer-
ence. Improvements of different kinds have been proposed. Nichol and Dhariwal
(2021) propose adjustments to the loss function and time schedule. Subsequently,
they proposed a non-Markovian formulation of the process to skip some steps that
they call Denoising Diffusion Implicit Models (DDIM) (Song et al. 2021a). To re-
duce the complexity of training and inference, Rombach et al. (2022) investigate
training a diffusion model in another representation space. They train a VAE to
drastically reduce the resolution of the input images and train the diffusion model in
this new latent space. Similarly to GAN-based approaches, high-resolution images
can be produced by chaining multiple diffusion models (Ho et al. 2022a).

Score-based methods (Song and Ermon 2019; Song et al. 2021b) are very close
to diffusion models and precede them temporally by less than a year. Similar to
diffusion models, the process is iterative and uses a stochastic refinement starting
from pure noise. In this case, the network is explicitly trained to model the score
i.e. the gradient of the log-likelihood. Given the score at every point of the space, it
is possible to design inference schemes to sample high probability samples through
Langevin sampling for instance.

Diffusion models have been shown to be very flexible and usable in many con-
texts: image (Dhariwal and Nichol 2021), audio (Kong et al. 2020), videos (Ho et al.
2022c). Diffusion models can also easily be conditioned on very different variables:
texts (Xie et al. 2023), segmentation maps (Zhang et al. 2023), images (Zhang et al.
2023). We refer the interested reader to the survey of Yang et al. (2023b).
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Algorithm 1 Training
repeat

x0 ∼ q(x0)
t ∼ Uniform({1, . . . , T})
ε ∼ N (0, I)

Take gradient descent step on
∇θ∥x0 − fθ(

√
ᾱtx0 +

√
1− ᾱtε⏞ ⏟⏟ ⏞

xt

, t)∥2

until converged

Algorithm 2 Sampling

xT ∼ N (0, I)

for t = T, . . . , 1 do
z ∼ N (0, I) if t > 1, else z = 0

µt−1 =
(1−ᾱt−1)

√
αt

1−ᾱt
xt+

βt
√
ᾱt−1

1−ᾱt
fθ(xt, t)

xt−1 = µt−1 + σtz

end for
return x0

Figure II.4: Training and sampling algorithm for Denoisig Diffusion Probabilistic
Models.

II.2.3 Texture synthesis with neural networks

To complete the very general framework of data generation and sampling, we present
here some techniques specifically designed for texture synthesis. The seminal work
of Gatys et al. (2015) has introduced the idea of using neural networks as texture
descriptors. These descriptors are derived from the Gram matrices of the feature
maps, and have been shown to be very accurate for replicating the fidelity of tex-
tures. The associated loss function is also called the style loss, and is used both
in texture synthesis and sometimes for image inpainting, or other image generation
tasks. However, each sample image must be optimized individually. To speed up
the synthesis, Ulyanov et al. (2016) have proposed to train a feed-forward generative
network for each texture while maintaining a diversity in the output. GANs can
also be used to train such a network (Jetchev et al. 2016). An alternative to bypass
the pixel optimization is to train a VGG (Simonyan and Zisserman 2015) decoder
that can go from the features to the pixels, the texture style is transferred through
a whiten-and-color transform, swapping the feature maps statistics (Li et al. 2017).
To force the textures to respect a given periodicity, Bergmann et al. (2017) introduce
periodic sine maps into the inputs, as an addition to the noise. Recently, Chatillon
et al. (2023) encode the texture in a controllable latent space, and decode these
vectors with a Style-GAN (Karras et al. 2019) inspired architecture.

II.2.4 Neural Inpainting

The first application of neural networks for image inpainting is the work of Xie et al.
(2012) which performs blind image inpainting. An autoencoder is trained to denoise
images and is then used for inpainting. Next, Pathak et al. (2016) use a regression
network to predict the missing pixel values in a central square region of an image.
They add a discriminator to produce less blurred images. In fact, training a neural
network for image inpainting is simple: take complete images, and randomly mask
some regions in the image. The reconstruction error alone leads to blurry outputs,
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so they add a discriminator and its associated loss. The loss function is eventually:

L = ℓ2 + λLadv.

where λ ∈ R controls the balance between the two terms. Later, Iizuka et al.
(2017) use both a local and a global discriminator to improve image quality on two
different levels. Previously a single global discriminator guided the generator, the
local discriminator is helpful for better local reconstruction and details. Yang et al.
(2017) combine a first inpainting step using a neural network and a second step
optimizing a patch-based energy. Other approaches tackle the inpainting problem
in two distinct steps: a first rough reconstruction and only then the addition of
details. Liao et al. (2018); Nazeri et al. (2019) use line reconstruction, once the
edges and object boundaries are fixed, the second network only needs to add the
texture and colors. As a first step, Ren et al. (2019) use a smoothed image, without
any texture, but preserve the boundaries. Yeh et al. (2017) propose a semantic
inpainting approach. Other options include a first step for inpainting the foreground
and background (Xiong et al. 2019).

Yu et al. (2018) introduce an attention layer inspired by the traditional methods
to take advantage of the existing information. After a coarse inpainting, the result
is refined by an attention-based network (Figure II.5). The attention layer is used
to fill-in the occluded region using an aggregation of patches from the visible region
of the image.

Figure II.5: ContextualAttention: after a first coarse inpainting, the result is refined
by a two-branch neural networks. One branch is using Attention. Adapted from
Yu et al. (2018)

Shift-net (Yan et al. 2018) uses an attention layer with a single matched patch
outside the occlusion. Until now, the mask information was simply introduced into
the network by concatenation at the input layer which is suboptimal (Liu et al.
2018b; Yu et al. 2019). In fact, it is possible to propagate this mask in the network
to mask invalid features. Inpainting with deep learning networks, and a discrimi-
nator have seen several improvements: Wang et al. (2018c) use multiple levels of
convolutions, Xie et al. (2019) use a bidirectional attention map. TransFill (Zhou
et al. 2021) tackles the problem of reference guided image inpainting, they use a
neural network to combine multiple images.

One problem with deep neural networks is that it is more difficult to use them
for high resolution images due to increased memory requirements and limited GPU
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memory. One solution is to do the inpainting in multiple steps, at different reso-
lutions similar to the Gaussian pyramid approach. Yi et al. (2020) perform a two
step inpainting at different resolutions. Zhang et al. (2022d) use a first step with a
neural network and a guided patch-based refinement step.

Diverse image inpainting has been a long lasting problem, and one solution has
been proposed by Zheng et al. (2019). They use a conditional VAE for introducing
diversity. For a single image, multiple solutions can be sampled. Peng et al. (2021b)
have a diverse structure generation and deterministic refinement step. Zhao et al.
(2023) use a diffusion model for image inpainting, which may then produce different
samples using different latent vectors.

To better handle high-frequency details, Kim et al. (2022) use a multi-scale
architecture and multi-step processing. On their side, Suvorov et al. (2022) introduce
a Fourier transform that allows local convolutions in the spectral domain to have
a global effect. Fourier networks are well suited for inpainting repetitive structures
whose spectrum is unique.

With the development of diffusion models (Ho et al. 2020), the inpainting prob-
lem has seen a great leap in the quality of results. Diffusion models produce great
and diverse results (Lugmayr et al. 2022; Saharia et al. 2022b) and the completion
can be conditioned on text (Xie et al. 2023) or class (Ho and Salimans 2021). It
is even possible to use an unconditional model that is not trained for inpainting
but this requires additional attention to converge to a coherent scene (Chung et al.
2022; Kawar et al. 2022a; Song et al. 2023; Trippe et al. 2023). Large off-the-shelf
diffusion models can be finetuned for a specific scene (Tang et al. 2023).

II.3 Attention mechanisms

II.3.1 Definition

In this section, we present a new type of deep learning layer: the attention layer.
Introduced by Bahdanau et al. (2015) and popularized by Vaswani et al. (2017), at-
tention has been introduced to overcome one crucial limitation of other operations:
long-range dependencies. Indeed, convolutions are local operations, multi-layer per-
ceptrons require a fixed input size. Recurrent neural networks can model long-range
dependencies, but are inefficient in practice due to their sequential nature and do
not take full advantage of the parallel architecture of GPUs. Intuitively, attention
mechanisms compute a weighted sum of all the input vectors, and their weights
depend on pairwise similarities.

We first give the mathematical definition of the Attention layer, the classical dot-
product attention mechanism introduced in Vaswani et al. (2017). Let Q ∈ Rm×d

denote a set of m queries packed into a matrix, each query being a vector of Rd.
Intuitively, these queries correspond to the different elements for which we want
an attention vector. In the context of images, this may be a set of patches. The
queries are compared to a set of n keys, packed into the matrix K ∈ Rn×d. These
keys correspond to elements that we want to use as a reference to give more or less



II.3. Attention mechanisms 19

importance to the queries. In the image case, the keys may be a set of patches
(not necessarily the same as the queries). Given a vector V ∈ Rn×d′ , the attention
output is the following weighted sum:

Attention(Q,K, V ) = softmax

(︃
QKT

√
d

)︃
V (II.7)

where the softmax function is applied to each row of the matrix QKT . Recall that
the softmax of a vector x ∈ Rn is defined by softmax(x)i = exi/

∑︁n
j=1 e

xj . Thus,
the final result of the attention for each query is a vector, containing a weighted
average of values, weighted by the dot product of the query with the elements in
K (the keys). This definition solves the problem of long-range dependencies, since
the the result for a single query depends on all the keys and values. The non-local
behavior is thus obtained by choosing the approriate set of keys.

The link between attention and non-local operations from patch-based methods
(section II.1) and especially Non-local Means (Buades et al. 2005) is obvious when
the dot-product similarity is replaced by the ℓ2 distance.

The attention mechanism is very general and can be applied to any kind of data.
In fact, the queries, keys are just sets of vectors compared by a similarity function
and aggregated. Any order is lost. It can be applied to non-Euclidean data as
long as an aggregation operation and a similarity measure are defined. Thus the
attention layer can be used with queries, and keys from different images, different
modalities such as text and images for example (Xu et al. 2018b).

However, the spatial information, i.e. the position of the queries relatively to
the keys, is lost. It can be artificially restored with positional encoding (Vaswani
et al. 2017). A common choice is to represent the positions using Fourier features
which have been shown to better reconstruct high frequencies (Tancik et al. 2020).

In the next sections, we will see applications of attention layers in inpainting
and generation. Attention has been introduced in deep vision architectures in two
different ways. The first one was to interleave attention and convolutions, keep-
ing the usual vision architectures such as UNet or ResNet. This solution allows
for long-range dependencies while preserving many local and efficient operations:
convolutions. The second one is to use Transformers, a novel neural network archi-
tecture based on the attention mechanism (Vaswani et al. 2017). The architecture
alternates between attention layers, dense layers, and non-linear operations (Fig-
ure II.6). There is no convolution. The query and key descriptors are enriched with
a positional information.

II.3.2 Attention-based Neural Image Generation

For texture synthesis, Lu (2022) proposed an extension of the approach of Gatys
et al. (2015) using a Transformer. Liu et al. (2020a) compute the attention through
transposed feature maps, which can be seen as an exemplar-based approach to
texture synthesis, with soft assignments. Guo et al. (2022) have a multi-scale hier-
archical Transformer for texture synthesis.
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Figure II.6: Transformer block as introduced by Vaswani et al. (2017)

For image generation, attention can be used as a complementary operation to
convolutions (Zhang et al. 2019a). The GAN framework can thus be extended to
include attention layers, improving the results by simply changing the architecture.
For example, Jiang et al. (2021) train both a generator and a discriminator with
Transformer architectures. To reduce the computational burden, they propose a
multi-scale grid attention which divides the image into small subregions in which
attention is computed. Zhao et al. (2021) have a different approximation: they
rely on different stride patterns so that the attention of each pattern is computed
quickly, but their diversity compensates their individual imprecision. Lee et al.
(2022) modify the Vision Transformer (ViT) (Dosovitskiy et al. 2020) architecture
and adapt it for GAN training: they use overlapping patches, enforce the Lipschitz
constant of the discriminator, and improve the spectral normalization. For high-
resolution image generation, Zhang et al. (2022a) use the SWinTransformer (Liu
et al. 2021c).

Another application of Transformer architectures for image generation is to use
them as autoregressive predictors, similar to what is done in Natural Language
Processing (NLP) in 1D. Pixels are predicted successively in raster order. This is
experimented by Parmar et al. (2018). They combine a 1D view of the image and
a 2D local view to compute the attention. Chen et al. (2020) take inspiration from
NLP and use a generative pretraining for downstream classification tasks. Esser et
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al. (2021) use an autoregressive model with transformers. The input is first encoded
in a discrete latent space, which is optimized by a VAE. Instead of predicting RGB
pixels, the Transformer is trained to predict latent pixels which are then decoded
into an image. This greatly reduces the dimensionality of the data, simplifying the
learning task without losing detail.

In recent diffusion models, it is common to find attention layers that are impor-
tant for maintaining global coherence (Ho et al. 2020; Rombach et al. 2022; Saharia
et al. 2022c). Lately, a Transformer-only architecture has been proposed by Peebles
and Xie (2023). Transformers are interesting in very large networks, where they have
been found to work better than convolutions and are more parameter efficient (Zhai
et al. 2022).

Attention has also changed the way text-to-image generation is done by using
cross-attention between visual features and text tokens. This was first used by Attn-
GAN (Xu et al. 2018b), and is now popular in diffusion-based text-to-image models
such as StableDiffusion (Rombach et al. 2022). Attention, and more specifically the
attention map, is another tool for controlling the generation. With a constrained
attention map, it is possible to force the layout of a generated image (Hertz et al.
2023). Similarly, Chefer et al. (2023) leverage the attention map to ensure that the
description of an image fully matches the visual content in text-to-image.

Finally, we have recently seen Transformers been used in a pretraining inpaint-
ing task in Masked AutoEncoders (He et al. 2022). Masked Autoencoders trained
in this way can be used for discriminative tasks such as classification and object
detection, or for generative tasks such as inpainting, or generation. Chang et al.
(2022) adapt the framework with a bidirectional Transformer instead of an autore-
gressive formulation for generation. Tong et al. (2022) extend this application to
video, masking an entire temporal tube instead of individual spatio-temporal pixels.
The reason for this is to ensure that the inpainting task is hard enough to force the
network to learn meaningful representations.

II.3.3 Attention-based Inpainting

For image inpainting, attention layers have bridged the gap between the traditional
patch-based methods (Criminisi et al. 2004; Wexler et al. 2007) and neural net-
works (Pathak et al. 2016). We see early ideas of combining patches and deep
networks in Yang et al. (2017). They have a first inpainting step with a neural
network which is then refined by optimizing a patch-based energy on features. Song
et al. (2018) also split the inpainting into two steps. A first network extracts and
completes the features from the input image. A patch-based inpainting is then
performed in the feature space. A decoder finally projects the result into image
space, but the two networks cannot be trained end-to-end because the patch-based
operation is not a proper attention layer.

Yu et al. (2018) introduce the first neural network for image inpainting that
uses an attention layer. After a coarse inpainting, the image is refined by a fully
convolutional network on one side, and convolution and attention on the other side.
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Yan et al. (2018) perform inpainting with a single nearest neighbor, replacing the
attention by an argmax. Ren et al. (2019) first reconstruct the image structure,
and then sample neighbors locally for the texture. This aggregation is based on the
pairwise similarities like in attention. Liu et al. (2019) use an attention layer but with
an additional coherence step that refines the weight in the attention matrix based on
the neighbors of each patch. Xie et al. (2019) add bi-directional attention map that
focuses only on reconstructing the masked region and not the known region. Zheng
et al. (2019) introduce short and long term attention for pluralistic completion.
They combine short self-attention and long attention between the current layer and
the corresponding layer in the encoding path of a UNet.

Zheng et al. (2022a) use restrictive convolutions and a Transformer architecture
for inpainting. The attention is computed by distinguishing between masked and
visible regions. Wan et al. (2021) start with an autoregressive Transformer for in-
painting a low-resolution image and then guide the upsampling with a convolutional
network. The first inpainting is diverse due to the sampling step during autoregres-
sive generation. Yi et al. (2020) use contextual attention at lower resolutions and
transfer the attention maps to the higher resolutions. Their method handles images
with resolutions up to 8K. Zeng et al. (2021) learn an autoencoder to produce im-
ages with known self-similarity, this improves the results and avoid computing the
attention over all points from the feature map.

Li et al. (2022a) use a Transformer with an iterative filling of the masked region.
They achieve diversity by adding noise as one of the inputs in the network. Sham-
solmoali et al. (2023) combine a detection Transformer for predicting incomplete
objects and then a Texture Enhancement Network that combines convolutions and
Transformer blocks. Ko and Kim (2023) use a Transformer for inpainting but with
a non-binary mask value for missing regions not covering a full patch. The network
can learn to leverage information from these partially incomplete patches. Similar
to onion peeling, the information is gradually propagated from the boundaries to
the center of the occlusion.
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III.1 Introduction

Single-image generation is the problem of generating new images that preserve the
original patch distribution from a single reference image. This problem was recently
introduced by Shaham et al. (2019) and can be seen as an extension of texture
synthesis (Efros and Leung 1999; Kwatra et al. 2005; Portilla and Simoncelli 2000),
which uses only a single reference but without the assumption of stationarity. The
images are not restricted to textures and thus have a “structure”, which makes some
texture approaches unusable here. Examples of synthesis can be seen in Figure III.1.
The two main goals of such image synthesis are to produce results with both high
visual fidelity with respect to the original image, but that also have enough diversity.
Indeed, it is trivial to achieve fidelity by always producing the same image, and
conversely it is trivial to produce high diversity by producing noise. Thus, attaining
both goals is a great challenge.

While Shaham et al. (2019) trained a deep neural network to solve this task
we show that a simpler approach can also be used. We thus propose an efficient,
fully patch-based method for single-image synthesis, that requires no training and
produces examples of both high fidelity and diversity. We promote fidelity by min-
imizing a patch-based energy in a multi-scale approach, and we ensure diversity by
carefully choosing the initialization of the example, which turns out to be crucial
for diversity. In particular, we propose an initialization based on optimal transport,
which is designed to respect the patch distribution of the original image.

This task is useful for several reasons:

• Generating new samples is important for some computer vision problems with
limited data availability. Single-image generation can thus generate new sam-
ples that are very different from the usual data augmentations (rotations,
scaling).

• The second aspect of the problem is modeling the patch distribution from a
single image. This is important for other downstream image restoration prob-
lems that use this internal prior. Applications include denoising, deblurring,
super-resolution, inpainting.
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Random samples from a single imageSingle training image

Figure III.1: Single image generation can be defined as generating diverse image
samples, visually similar to a reference image but nonetheless different. Source:
Shaham et al. (2019)

• Finally, in this setting we also have the perfect opportunity to compare patch-
based methods with deep learning approaches for a generative task. Image
generation using a large database of images is natural for deep learning meth-
ods (Goodfellow et al. 2014), and much less natural for patch-based methods,
although possible (Hays and Efros 2007).

III.2 Related works

III.2.1 Patch-based methods

The corresponding literature was already presented in chapter II and we here recall
some of the most related works. It is possible to directly reuse the pixel values
of the reference image with a non-parametric formulation (Efros and Leung 1999).
Kwatra et al. (2005) optimize a global energy term instead of the greedy approach.
Early works in image inpainting use the same exemplar-based tools to complete
both textures and structures (Criminisi et al. 2004; Wexler et al. 2007). The patch
distribution in texture synthesis can be controlled by optimal transport (Galerne
et al. 2018; Gutierrez et al. 2017; Houdard et al. 2021; Leclaire and Rabin 2019).

For single image generation, Generative Patch Nearest-Neighbor(GPNN) of Gra-
not et al. (2022) is a new patch-based algorithm proposal to avoid the learning phase
of SinGAN. They minimize a multi-scale energy similar to the one of Kwatra et al.
(2005), but add a regularization term for the distributional aspect. However, this
regularization term is computationally expensive and lacks guarantees for distribu-
tion convergence. Haim et al. (2022) extend the 2D patch-based version of Gra-
not et al . to videos. Their method can synthesize high quality and diverse videos.
To accommodate the large size of the input data, they use the PatchMatch algo-
rithm (Barnes et al. 2009) to find the nearest neighbors. The distance is modified
to include a completeness score and to promote distribution fidelity.
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III.2.2 Internal learning approaches

In this section, we review internal learning approaches, i.e. internal methods, that
train a deep neural network on a single image. It was shown by Shaham et al.
(2019), who proposed SinGAN (Single Image Generative Adversarial Network), that
the GAN formulation can be applied to a distribution of patches rather than a
distribution of images. Using a lightweight convolutional neural network at multiple
scales, they show that they can easily generate variations of a reference image. At
the coarsest scale, the generator directly predicts pixels from noise. For the other
scales, the generator combines noise with the upsampled image from the previous
scale. Hinz et al. (2021) proposed some changes in the SinGAN architecture to
allow faster training and better results. Sushko et al. (2021) extend SinGAN to
multiple reference images (e.g ., from a video sequence) and also better preserve the
global layout with a special branch in the discriminator. Zhang et al. (2021) use
three different GANs for the different components of an image (texture, structure,
semantic). Xu et al. (2021) show that the spatial bias in neural networks due
to padding in convolutions is of utmost importance for structured images. They
explicitly add the Cartesian coordinates to the pixels during generation. For other
modalities, Gur et al. (2020) have proposed to combine a Patch-VAE and Patch-
GAN (Isola et al. 2017) to synthesize new videos from a single example. Wu and
Zheng (2022) adopt the framework of Shaham et al. (2019) for 3D volumes. However,
they use 2D projections to significantly reduce the complexity. More recently, several
diffusion approaches have been proposed for single-image generation by Kulikov et
al. (2023); Nikankin et al. (2023); Wang et al. (2022).

Few works have investigated the use of neural networks on a single image for
image restoration. Ulyanov et al. (2018) have introduced Deep Image Prior, a neural
network as a regularization component for solving inverse problems. In this work,
they show that the convolutional architecture is key in modeling natural images.
Chatillon et al. (2022) extend SinGAN to images with strong self-similarity across
scales for single-image super-resolution. Shocher et al. (2019) learn the distribution
of patches in an image, enabling smart image retargeting that synthesizes new re-
gions instead of interpolating. Alkobi et al. (2023) derive an inpainting network from
the work of Shaham et al . that learns on a single occluded image. The completion is
refined at multiple scales by a generator. The coarsest initialization is done with the
internal approach of Ulyanov et al . For denoising, internal learning has been pop-
ularized following the developments of Noise2Noise (Batson and Royer n.d.; Huang
et al. 2021; Krull et al. 2019; Lehtinen et al. 2018). Extensions to videos have been
successful due to their high degress of self-similarity for temporal consistency (Lei
et al. 2020; 2023), and video inpainting (Ouyang et al. 2021; Zhang et al. 2019b).
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III.3 Method

III.3.1 A patch-based approach for single-image generation

We propose PSin, a Patch-based algorithm for Single image generation. Our algo-
rithm exploits the Gaussian pyramid, minimizing an energy from the coarsest scale
to the finest scale. We avoid costly learning stages by copying patches from the
reference image.

We now introduce the patch-based optimization problem that we solve to pro-
duce the output image. Let ũ be the reference image and u be the new, synthesised
image, defined both over the image domain Ω. A patch centred on a pixel p in image
u is denoted as Ψu

p . At each scale, we minimize a global energy similar to the one
of Kwatra et al. (2005):

E(u) =
∑︂
p∈Ω

min
p̃∈Ω
∥Ψu

p −Ψũ
p̃∥22, (III.1)

where ∥Ψu
p −Ψũ

p̃∥22 is the ℓ2 distance between the pixels of the patches Ψu
p and Ψũ

p̃ .
This energy specifies that a good solution is one where each patch is similar to its
nearest neighbor (NN), with respect to the ℓ2 patch distance, in the reference image.

This energy is efficiently minimized by alternating a nearest neighbor search step
and a reconstruction step, which were identified as two steps of a hard Expectation-
Maximization (EM) by Kwatra et al. (2005). Let ψ : Ω → Ω represent the nearest
neighbor mapping, the energy can be rewritten as:

E(u, ψ) =
∑︂
p∈Ω
∥Ψu

p −Ψũ
ψ(p)∥22, (III.2)

The minimization of this energy is done by alternating the minimizations on u

and ψ, using the following for ψ:

ψ(p) = argmin
q̃∈Ω

∥Ψu
p −Ψũ

q̃∥22 (III.3)

The reconstruction step is given, for each pixel p by:

u(p) =
∑︂
q∈Ψp

e
−∥Ψuq−Ψũ

ψ(q)
∥22 ũ(ψ(q) + (p− q)) (III.4)

Using the efficient approximate nearest neighbor algorithm PatchMatch (Barnes
et al. 2009) for an approximation of Equation III.3 makes generation possible in
seconds. No training is required at any time. Our full algorithm is described in
Alg. 3.

This energy is minimized at each scale starting from the coarsest to the finest
scale, adding more and more details. The coarse structure e.g . position of the main
objects and structures, is defined at the very beginning similarly to SinGAN. The
initialization and first scales are thus crucial steps in our algorithm (Figure III.2),
and must be carefully considered. We have two strategies for initialization.
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Figure III.2: Images at the end of the optimization process at each scale. We already
see the main structure of the image after the very first scale.

Algorithm 3 PSin / PSinOT
u← init() ▷ Random noise or optimal initialization
for s ∈ [2, 1, 0] do

u← rescale(u, scale = s)

for i = 1..10 do
ψ ← NN-Mapping(u, ũ) ▷ Expectation
u← Reconstruction(ψ, ũ) ▷ Maximization

end for
end for

III.3.2 Random Initialization - PSin

In the simplest approach that we first consider, Gaussian noise can be used as
an initialization. We refer to this method as PSin. While simple, this can lead
to interesting structures provided that the starting resolution is low enough with
respect to the patch size. Figure III.3 illustrates this phenomenon: with 3 scales,
the generated image has poor global coherency. In general, this approach ensures
some diversity but has limited fidelity, in the sense that e.g . it does not respect the
distribution of patches in the reference image. To address this problem, we turn to
another initialization.

(a) Reference (b) 3 scales (c) 4 scales (d) 5 scales

Figure III.3: PSin results with different number of scales. With 3 scales, the general
structure is not coherent; this is addressed by initializing at a lower scale.
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Algorithm Learning-Free Distribution Scalable
SinGAN (Shaham et al. 2019) ✗ ✓ ✓

Patex (Houdard et al. 2021) ✓ ✓ ✗

GPNN (Granot et al. 2022) ✓ ✓ ✗

PSin ✓ ✗ ✓

PSinOT ✓ ✓ ✓

Table III.1: Combining PSin with a good initialization gives an algorithm that does
not require learning, respects the original distribution, scales to higher images and
has limited runtime

III.3.3 Optimal distribution - PSinOT

In this approach, we turn to tools from optimal transport to build a loss that ac-
counts for the distance between the probability distribution of patches from the
input and the one of the synthesized image. This enables us to produce an initial-
ization which has a similar patch distribution to the reference image. This loss, the
Wasserstein-2 distance, is minimized at a coarse scale to produce the desired initial-
ization. Our method is inspired by the work of Houdard et al. (2021), who proposed
a patch-based optimal transport algorithm for texture synthesis. Minimizing the
Wasserstein-2 distance ensures that the generated samples have the correct patch
distribution, i.e. the distribution of patches in the reference image.

Using our notations, the semi-dual problem at a single scale is the following:

OT (u) = max
β∈R|Ω|

∑︂
p∈Ω

min
p̃∈Ω

(︁
∥Ψu

p −Ψũ
p̃∥22 − βp̃

)︁
+

∑︂
p̃∈Ω

βp̃ (III.5)

using β as the dual variable. The cost is minimized by alternative optimizations on
u and β.

This process is long and computationally expensive. It scales quadratically with
the number of patches which makes it unpractical for single-image generation. To
combine the strengths of both approaches, we propose to first create a coarse ini-
tialization by optimization and then switch to our fast generator for performance.
We call this method PSinOT.

III.3.4 Fast nearest neighbor search

Our algorithm spends most of its computational effort finding the nearest neighbors.
Unfortunately, a naive approach to this search does not scale well, with a complexity
of O(n2) for n patches. Therefore, we turn to PatchMatch (Barnes et al. 2009) for
a fast computation of nearest neighbors. This makes PSin and PSinOT scalable
algorithms. Table III.1 summarizes the advantages of each method. In practice,
PSin can generate a new sample in 15 seconds on the CPU, while SinGAN first
requires 1 hour of training on GPU. GPNN takes 6 seconds to generate a sample
on GPU. The optimal initialization in PSinOT adds 15s (see Table III.2 for running
times).
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Algorithm Runtime CPU (s) Runtime GPU (s)
SinGAN - 3700
GPNN 32 6
PSin 15 -

PSinOT 72 30*

Table III.2: Runtimes of each algorithm on CPU / GPU. PSin is the fastest on
CPU. The optimal initialization slows down the total run time but is still faster
than training SinGAN. *Initialization on GPU and refinement on CPU

(a) ul−1

(b) ul - image upsampling (c) ul - ψ upsampling

Figure III.4: For the same image at a coarser scale, the results are very different
when upsampling through u or through ψ. Details are lost when using a simple
bilinear upsampling of the image u (lower left).

III.3.5 Upsampling the shift-map

Our generated image is described by two different variables: the pixel image u and
the nearest neighbor mapping ψ. When we change scale, we then have the option
of upsampling either u or ψ. While upsampling the image is the easiest operation,
it is not the most accurate. In Figure III.4 we show the results of two different
upsampling operations. The first method is to upsample u, optimize ψ and then
reconstruct of u from ψ. The second method is to upsample ψ and then reconstruct
u from ψ. The first option causes a large loss of detail because the nearest neighbors
have to be recomputed and are not preserved.

In practice, upsampling on ψ is done by enlarging the shift map. Remember
that ψl : Ω → Ω̃ is the nearest neighbor map of scale l. If the patch positions are
represented by integers and we use of scales of ratio 2, then:

∀p ∈ Ωl, ψl(p) = 2ψl+1(p
⋆) + p− 2p⋆ (III.6)

where p⋆ = argminp′∈Ωl+1
∥p − 2p′∥2 is the nearest (spatial) neighbor at the lower

scale. The careful reader will notice that the reconstruction step requires both ψ,
which we just defined and the distances at the current scale ∥Ψu

p − Ψũ
ψ(p)∥2, for

simplicity we also upsample these using nearest neighbor interpolation.
Optimal transport to PSin The similar formulations of Equation III.1 and

Equation III.5 suggest an easy way to transition between the two (on the same
scale):
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ψ(p) = argmin
p̃∈Ω

∥Ψu
p −Ψũ

p̃∥22 − βp̃ (III.7)

The shift-map is a better representation of the image than the pixel image u
which helps preserve the details from the optimal initialization to the rest of the
algorithm.

III.4 Results

III.4.1 Experiment details

We implement our algorithm in Python and speed it up with Numba1 on CPU. We
typically use 4 scales with factor 2 and set the patch size to 11, which is comparable
to the receptive field of SinGAN (Shaham et al. 2019). With images of original size
around 256 × 256 this brings the initialization size to 32 × 32, close to the patch
size. We do 10 iterations of EM at each scale before switching. Upscaling is done by
interpolating the shift map ψ rather than interpolating the image u. For PSin, we
use a Gaussian noise N (0.5, 1). For PSinOT, optimal transport is employed for the
first two scales and then the standard EM is used. Our patch distance includes the
RGB difference and the norm of the horizontal and vertical gradients of the intensity
images, which have been shown to improve texture synthesis (Liu and Caselles 2013;
Newson et al. 2014). We have an additional parameter α = 5 which balances the
weight of this term in the patch distance:

∥Ψu
p −Ψũ

p̃∥22 =
∑︂
r∈Np

∥u(r)− ũ(r)∥22 + α · ∥∇u(r)−∇ũ(r)∥22

Our code is available online: https://github.com/ncherel/psin. For com-
parisons, we have used the official implementation of each work with their default
parameters2. (σ = 0.75 for GPNN).

III.4.2 Quantitative results

Evaluating image generation is challenging in itself. Therefore we rely on several
metrics to compare the methods. We use the Fréchet Inception Distance (Heusel
et al. 2017) which measures the distance between Gaussian distributions of features
and its adaptation to single-image generation (SIFID) (Shaham et al. 2019). SIFID
uses lower level features that FID, to accomodate for the small number of data
points. A low SIFID means that images have the same feature distribution and
contain the same visual objects. For fidelity, we include the optimal transport cost
on patches (derived from the work of Houdard et al. (2021)) which measures the
true distance between patch distributions at the finest scale. In practice this is done

1Numba is a compiler for Python https://numba.pydata.org/
2GPNN: https://github.com/iyttor/GPNN, SinGAN: https://github.com/tamarott/SinGAN

https://github.com/ncherel/psin
https://numba.pydata.org/
https://github.com/iyttor/GPNN
https://github.com/tamarott/SinGAN
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Algorithm SIFID ↓ Optimal Transport ↓ Diversity ↑
SinGAN 0.12 1.34 0.34
GPNN 0.02 0.52 0.40
PSin 0.45 0.94 0.62

PSinOT 0.06 0.36 0.53

Table III.3: PSin is very diverse but has limited fidelity (SIFID, optimal transport).
PSinOT combines high diversity and similar distribution. best, second best.

SinGAN PSinOT PSin

Figure III.5: Standard deviation images starting from the balloon reference image.
SinGAN has very low variance / diversity along the edges, while PSinOT has higher
variance with some recognizable shapes. PSin has a uniform variance, indicating a
low structural component.

by optimizing Equation III.5 in the dual variable β only, with 1000 iterations of
gradient ascent.

We also measure the diversity of generated images. The entropy of the distri-
bution is intractable and we use the measure of diversity given in Shaham et al.
(2019). For each image, the pixel diversity is the standard deviation of pixel-wise
intensities when stacking all generated images (ui)i=1..n:

Diversity =
1

|X||Y |
∑︂
x,y

σ(x, y)

=
1

|X||Y |
∑︂
x,y

1

n

⌜⃓⃓⎷ n∑︂
i

(ui(x, y)− µ(x, y))2
(III.8)

We compare with the results of SinGAN, GPNN (Granot et al. 2022), PSin, and
PSinOT. We use a dataset of 50 images from Places (Zhou et al. 2017), the same as
in Shaham et al ., and compute our metrics on 50 samples for each image. Table III.3
confirms that PSin produces very variable results with limited fidelity. SinGAN pro-
duces less diverse output with a lower SIFID. Finally GPNN and PSinOT both have
good diversity and fidelity scores but our approaches yield significant improvements
both in the fidelity of patches distribution and in diversity.
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Figure III.6: SinGAN (left) and PSinOT (right). Our method does not have network
artifacts.

III.4.3 Qualitative results

We also present visual results in Figure III.7 which are representative outputs. Sin-
GAN’s results are visually pleasing from a distance but suffer from network artifacts
when viewed closely (Figure III.6). However, SinGAN’s results are diverse globally
and locally. GPNN produces visually coherent results but may reproduce the same
image multiple times. Finally PSinOT has a coherent structure and satisfying de-
tails. More results are shown in Figure III.8. In these examples, the difference
between PSin and PSinOT is clearly visible: the patch distribution is not respected
in PSin. In these 3 examples, the sky is missing in the PSin samples while it is
correctly placed in PSinOT. However, both PSin and PSinOT results are of high
quality. Results from GPNN are very close to the reference image. See our website
for more examples: link to website.

We show in Figure III.10 that some neural network artifacts never appear with
our method however our method suffers from other defects. Blurry borders can
happen when no suitable patch is found to join two different regions. At the same
time, our method cannot create new content.

Diversity We show in Figure III.5 the variance map before spatial averaging.
We see that in this simple diversity measure highlights the limits of SinGAN: as
mentioned by the authors, diversity is very low along the edges of the images and the
corners. This is because of the convolutions in the neural network which have to use
a default value for the outside region. It is then very easy for the generator and the
discriminator to specifically learn these patterns which include an unusual number
of zeros. On the other side, PSinOT has a variance more uniformly distributed and
PSin’s variance has even less structure, indicating a high diversity of results.

III.4.4 Other applications

SinGAN’s paper proposes multiple applications once the network has been trained
for single-image generation. These applications include: single-image super resolu-
tion, sketch to image, image animation, image harmonization.

We show that our approach can be used for sketch-to-image. The idea is similar

https://psin.telecom-paris.fr
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Figure III.7: Reference image and 6 uncurated samples for each algorithm to show-
case diversity. SinGAN and PSin produce diverse shapes, however the visual qual-
ity of SinGAN is clearly lacking. GPNN introduces very little diversity, keeping
the main structure of the reference image (the single rock arch). PSinOT produces
original geometries while maintaining better visual fidelity than SinGAN.

Reference SinGAN GPNN PSin PSinOT

Figure III.8: Results from our different algorithms.
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Figure III.9: Reference (top left) and two generated images with different aspect
ratios. Original image by Jainam Mehta on Unsplash

Reference SinGAN PSinOT

Figure III.10: Limitations of patch based methods vs deep networks: first row shows
that our results guarantees good looking patches compared to a neural based network
but lacks originality which may be desired in the second row.
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Reference Sketch SinGAN PSin

Figure III.11: Paint-to-image: our approach allows partially to generate an image
from a sketch, we compare our results with those of SinGAN. The results are com-
parable. Sometimes it fails to respect the constraints but often produces sharper
results.

to Image Analogies (Hertzmann et al. 2001) but does not require a full pair, the
color is used for matching. In this setting, a simplified image is used to guide the
generation. In practice, instead of using random noise as initialization, we can take
an image and subsample it to start from a template. So we start with a first opti-
mization on ψ. While there is no guarantee that all the structure will be preserved,
is can work in simple settings, sometimes better than SinGAN (Figure III.11).

In our approach we can’t offer the other applications of SinGAN due to our patch-
based approach. We do not have access to a latent space that can be navigated to
create animations, for example. In our case, navigating through the initial noise
produces different solutions without any transitions.

We have not explored other applications suggested by the Shaham et al ., such
as super-resolution or harmonization, and we must admit that while these appli-
cations are possible with our patch-based approach, they are not straightforward
in their implementation. Glasner et al. (2009) have investigated single-image super
resolution using patches and a single image. Image harmonization could be built by
replacing the Gaussian pyramid with a Laplacian pyramid to preserve the content
present in the lower scales.

III.5 Conclusion and perspectives

In this chapter, we introduced a patch-based approach to single image generation.
Contrary to SinGAN, it does not require training but still generates diverse and
visually pleasing images. Our algorithm is based on the minimization of a patch
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energy, which encourages fidelity to the reference image. In order to ensure that the
patch distribution of the reference image is respected, we propose an initialization
based on optimal transport. We have compared our results quantitatively and qual-
itatively with the original SinGAN and another patch-based method, showing that
our approach achieves better fidelity and diversity than the previous two. Although
patch-based methods work well here, in future work, we may want to preserve some
of the advantages of convolutional architectures, replacing only the discriminator
with a patch-based approach.

Our approach also has some limitations: it can only combine existing patches in
a pleasant way and cannot create new content. Another problem with our algorithm
is that while it requires no learning, it is slower at inference. In some cases, where
many inferences are needed, this can be a problem.

Matching space and reconstruction space. Our method works in the RGB
space, using familiar image processing tools such as the Gaussian pyramid. But
we began to observe that these design choices, while sound, were sometimes not
optimal: for example the preferred descriptor space is to use the horizontal and
vertical gradients on top of the RGB information from the patches. Other choices
can be made to improve the compactness of patch descriptors (Korman and Avidan
2011). To avoid handcrafting these parameters and descriptors, it is possible to use
a learning-based approach. Many classical methods have a set of parameters that
can be optimized on a given dataset rather than blindly tested (Monga et al. 2021).

The first application of learning descriptors would be to start integrating seman-
tics that are available in a neural network pyramid rather than a Gaussian pyramid.
Most popular latent spaces are often derived from networks trained for object clas-
sification which correctly reflect the human perception (Gatys et al. 2015; Zhang
et al. 2018a), but no associated decoder is available to go from the feature level to
the pixel level. Changing the matching space would not lead to drastically different
results if we still perform the reconstruction step simply. Another option would be
for instance to look for a different reconstruction space.

The reconstruction space can be built manually: for example, Darabi et al. (2012)
aggregate the gradients and then reconstruct the image from them using following
the Poisson equation. Another option is to use a neural network to perform the
reconstruction step: it is expected that averaging deep patches and decoding them
would lead to different results than averaging patches of pixels.

Finally, we can compare this approach to attention layers or Transformers (Vaswani
et al. 2017) where the base operation is very similar to a non-local (or patch-based)
operation. These attention layers use projection layers in a set of queries, and keys
for matching and a set of values for the reconstruction, these layer parameters are
fully learned. However, it is unclear what the objective function optimized by such
a neural network should be.

Transformed patches. A second way to create new content would be to use a
larger patch dictionary, a source of patches, by introducing augmentations of patches
and recombining them together. This has been done in several papers for rotations
and scalings to overcome the inherent limitations of patch-based methods (Barnes
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and Shechtman 2010; Darabi et al. 2012; HaCohen et al. 2011).
For the transformations to consider, a natural choice is the set of rotations and

scalings, studied by Darabi et al. (2012) for image melding. A new direction could be
to incorporate non-linear augmentations such as deformations (Simard et al. 2003)
or neural augmentations. In fact, neural networks are flexible enough to modify
images or patches in non-linear ways (Karras et al. 2019; 2020).





IV Patch-based Stochastic Attention

Attention mechanisms (Vaswani et al. 2017) have become of crucial importance in
deep learning in recent years. The use of attention has helped deep learning intro-
duce long-range dependencies. This addresses a drawback of the commonly used
convolutions, which are local operations. Even if deeper networks and dilated con-
volutions can address this drawback by extending the receptive field of the network,
they nevertheless fall short when non-local behaviors are important. This happens
in text processing where words referring to a same subject can be far apart, in video
classification (Wang et al. 2018b) when the action is changing position in time and
space, or for image editing to maintain global coherence (Yu et al. 2018; Zhang et al.
2019a).

However, computing the full attention matrix is an expensive step with heavy
memory and computational loads. These limitations curb network architectures and
performances, in particular for the case of high resolution images. Among the popu-
lar proposals for efficient attention mechanisms, we find drastic approximations like
local attention (Parmar et al. 2018), attention subsampling (Yu et al. 2018), sparse
strided attention (Child et al. 2019), clustered attention (Vyas et al. 2020), or linear
approximations of the non-linear softmax (Choromanski et al. 2020; Katharopou-
los et al. 2020; Wang et al. 2020). However these methods are not sufficient for
high-resolution image editing where these approximations are too restrictive. Lo-
calization is unable to model long-range interactions, and subsampling is unable
to provide pixel-precise attention maps, leading to blurred results or jagged edges
where they should be smooth.

In this work, we aim to drastically reduce the memory and computational re-
quirements of the attention layer through a novel approach that avoids the artifacts
of other attention approximations. It turns out that the attention layer is closely re-
lated to the problem of Nearest Neighbor (NN) search. The softmax in the attention
computation in effect biases the distribution of weights towards a handful of simi-
lar points. We show that when dealing with images, attention mechanisms can be
efficiently estimated via an Approximate Nearest Neighbor (ANN) search. For this
search, we turn to the prominent PatchMatch algorithm (Barnes et al. 2009), a fast
algorithm for ANN search that is especially efficient for comparing similar images.
In order to overcome the computational limits of the traditional attention layer,
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we propose an attention layer which employs the PatchMatch method, specifically
designed for the case of images, which we name “Patch-Based Stochastic Attention
Layer” (PSAL).

Furthermore, we propose different approaches, based on patch aggregation, to
ensure the differentiability of PSAL, thus allowing end-to-end training of any net-
work containing our layer. PSAL has a small memory footprint and can therefore
scale to high resolution images. It maintains this footprint without sacrificing spa-
tial precision and globality of the nearest neighbors, which means that it can be
easily inserted in any level of a deep architecture, even in shallower levels. PSAL
has a small memory impact, scaling linearly with the input image size. As a re-
sult, it can be applied to large-size two-dimensional inputs and in particular allows
us to apply the attention mechanism to high resolution images or to both shallow
and deep 2D feature maps. Such situations are out of reach for classical attention
mechanisms, because of memory limitations, and require the use of a sub-sampling
strategy or a restriction to very deep features. These approaches are problematic
for image editing in several situations: handling high resolution images, using low
level features closer to the original image or applying attention mechanisms at the
pixel level.

IV.1 Related work

IV.1.1 Image editing

We briefly recall some of the important references for image editing, and single-image
super-resolution. As already presented in chapter II, image editing has long used
patch-based approaches for inpainting (Criminisi et al. 2004; Wexler et al. 2007),
retargeting (Barnes et al. 2009), style transfer (Frigo et al. 2016), and other image
editing tasks (Darabi et al. 2012), making heavy use of NN patches. More recently,
the work of Yu et al. (2018) has pioneered inpainting with attention layers.

Self-similarity has also been identified as a key component for single-image super-
resolution (Freeman et al. 2002; Glasner et al. 2009; Michaeli and Irani 2014). For
single-image super-resolution, deep networks have progressively replaced these meth-
ods with the introduction of large datasets (Zhang et al. 2018b). Attention layers
have been integrated within recent image restoration networks, increasing their mod-
eling power with non-local operations (Dai et al. 2019a; Liu et al. 2018a). The work
of Mei et al. (2020) highlights the importance of attention across multiple scales.

IV.1.2 Efficient attention mechanisms

The attention layer is very flexible at the cost of high computational complexity; at-
tention for a single query is a function of all keys. This is a major limitation because
the computational cost grows quadratically O(n2) with the input size, as opposed to
linearly for fully convolutional architectures. This is problematic for Natural Lan-
guage Processing (NLP), but even more so for image and video processing, which
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(a) PVT (b) Swin Transformer

Query Receptive Field Key/Value Points

(c) Local Attention

Figure IV.1: Efficient attention by subsampling (a) (Wang et al. 2021d), or local
attention (b-c). Source: Pan et al. (2023)

deal with large inputs.
Some works have focused on reducing the amount of pairwise distances to com-

pute. The immediate idea is to split the input into several small chunks and only
compute the attention locally. This is done by Parmar et al. (2018); Plötz and Roth
(2018), and we refer to it as Local Attention. Note that the non-local behavior of
attention is lost with this approximation. These local windows can be shifted so
that two successive attention layers use different query and key sets, this is especially
interesting for images because they have 2 dimensions that can be used to shift the
window along (Liu et al. 2021c). Vaswani et al. (2021) introduce HaloNet with a
spatial subdivision of queries and keys, they show improved results in classification
error and throughput. The Local Attention can be refined with multiple scales and
regional attention (Chen et al. 2022). Pan et al. (2023) extract the local vectors
with a deformable convolution.

Grouping queries and keys into small subsets for comparison is an interesting
approach to efficiency, but is not limited to spatial proximity. It is possible to
first regroup similar vectors based on similarity and then compute the attention
in that group. Roy et al. (2021) learn a sparse attention routing operation with
k-means. Wang et al. (2021b) combine a clustering approach with a sliding window
attention. Similarly, Vyas et al. (2020) use a first clustering step to identify similar
keys and queries and reduce the overall cost of attention. Tay et al. (2020b) use a
differentiable sort as a first step and then compute the attention locally. Lample et
al. (2019) design an attention layer around key stores, the attention approximation is
then a problem of finding nearest keys in these stores. Kitaev et al. (2020) introduce
a layer based on Locality Sensitive Hashing (LSH), they hash the keys and queries
to different buckets, and compute the attention only in these buckets. Calian et
al. (2019), propose an attention layer derived from PatchMatch to compute the
attention, however in their preprint the authors do not verify the validity of their
layer in a practical deep learning setting, meaning that there is no way of knowing
if the layer functions correctly.

It is also possible to reduce the number of computations by using sparse or
strided extraction patterns. Child et al. (2019) propose the Sparse Transformer
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which factorizes the attention matrix with fixed strides and patterns. Correia et
al. (2019) learn a sparse pattern, their multihead attention can also have different
levels of sparsity. Beltagy et al. (2020) combine a local strided attention and global
attention. Zaheer et al. (2020) combine random attention, local attention, and global
attention.

Another possibility is to approximate the softmax with a linear operation. In
this case, reordering the matrix operations avoids computing the huge QKT matrix
as long as we have a correct approximation using the auxiliary functions f and g:

softmax(QKT⏞ ⏟⏟ ⏞
n×n

) V⏞⏟⏟⏞
n×d′

≈ f(Q)⏞ ⏟⏟ ⏞
n×d

g(K)V⏞ ⏟⏟ ⏞
d×d′

Katharopoulos et al. (2020) project the queries and keys to a different vector
space in which the dot product is an approximation of the softmax. Peng et al.
(2021a) use random projections which are known to approximate the Gaussian ker-
nel. Performers (Choromanski et al. 2020) follow the same idea, but with only
positive orthogonal features which reduce the unstability of the previous approach.
Wang et al. (2020) propose the Linformer, which factorizes the attention into low-
rank matrices. Another solution is the Nyström approximation, computed by Xiong
et al. (2021) by sampling the queries and the keys.

Long-range dependencies can be achieved by iterating multiple smaller attention
layers with different contexts every time. Jaegle et al. (2021) use a drastic compres-
sion step and then iterate over multiple cross-attention layers. Dai et al. (2019b)
compute the attention over local chunks but recursively which brings a larger con-
text than the standard approach. Similarly, Rae et al. (2020) use a memory bank
for caching previous states and compute the attention using the local window and
this memory tokens.

For videos, Arnab et al. (2021) investigate different factorizations of the atten-
tion. Attention can be decoupled in an intra-frame spatial attention and inter-frame
temporal attention (Liang et al. 2022). Local spatio-temporal windows are another
solution (Liu et al. 2022).

Finally, an alternative to attention layers that allows for long-range dependencies
without the cost is LambdaNetworks (Bello 2021). In the attention linguo, they
project the keys to a fixed size context with a preprocessing softmax operation.

The interested reader will find in Tay et al. (2020a) a comprehensive survey of
efficient Transformers and attention layers.

IV.2 Patch-Based Stochastic Attention

IV.2.1 Full Attention

We recall the standard definition of dot-product attention introduced in chapter II.
We refer to it as the Full Attention layer (FA layer). The attention is defined for
a set of m queries each in Rd so that Q ∈ Rm×d. We also have a set of n keys,



IV.2. Patch-Based Stochastic Attention 43

(a) (b) (c)

Figure IV.2: Illustration of patch NN search. (a) Full Attention computes a com-
plete attention matrix but many elements have negligible weight. (b) Patch-Based
Stochastic Attention only probes randomly a few elements. (c) Good matches are
propagated to neighbors

vectors of Rd, with the matrix K ∈ Rn×d the collection of all these vectors. The last
element is the set of values V ∈ Rn×d′ . Given these, the attention is the following
weighted sum:

Attention(Q,K, V ) = softmax(QKT )V (IV.1)

where the softmax function is applied to each row of the matrix QKT . Here, we
concentrate on the case where these contain image patches. For simplicity, in all
that follows, we will consider that m = n. However, we note that our approach is
equally applicable in the general case where m ̸= n.

The dot-product attention in Equation (IV.1) requires the computation of the
full matrix QKT with n2 entries. This results in a computational complexity of
O(n2d), and a memory complexity of O(n2), n being the input size e.g . sequence
length or number of pixels. For 1-dimensional vectors, this can be implemented with
simple matrix multiplications. For 2-dimensional vectors i.e. patches, dot products
can be computed as 2D convolutions as remarked by Li and Wand (2016).

This memory requirement is the most problematic limitation of the FA layers.
To address this problem, Yu et al. (2018) subsample the set of keys. Another
approach, proposed by Liu et al. (2018a) for image restoration, is to compute the
attention restricted to a local neighborhood. While such approximations are useful,
they nevertheless rely on many pairwise distances to be computed. In practice, we
remark that after the softmax operation in Equation (IV.1), only a few elements
actually matter. One way of viewing the attention layer is as a “soft” NN search
layer. Consequently, in order to limit algorithmic complexity, we propose to switch
to a sparse layer, keeping only a single non-zero value in each row in the matrix
QKT , corresponding to the NN. The crux of the problem is now to solve the NN
search quickly and with little memory overhead. For this purpose, we propose to
employ an efficient ANN algorithm, designed specifically for images: the PatchMatch
algorithm (Barnes and Shechtman 2010; Barnes et al. 2009).
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IV.2.2 Patch-based Stochastic Attention Layer (PSAL)

Recall that our goal is to replace the traditional attention layer, which is cumbersome
in terms of memory, with a more efficient approach, designed for images. As we have
noted above, attention layers are closely related to the search of NNs. We start by
defining the NN mapping ψ, between the query vectors and the key vectors:

ψ(i) = argmax
j∈{1,...,n}

⟨Qi,Kj⟩ , (IV.2)

where Qi is the ith line of the matrix Q, corresponding to the vector i, and likewise
for K. In the attention literature, the dot product is commonly used to compare
patches, but for more generality, we introduce a patch similarity function s(Qi,Kj),
which is high when patches are similar.

Finally, we introduce the associated sparse matrix A ∈ Rn×n defined as:

Ai,j =

{︄
1 if ψ(i) = j

0 otherwise
. (IV.3)

Our definition of attention, which can be seen as a rewriting of Equation (IV.1), is
simply

Attention(Q,K, V ) = AV. (IV.4)

The next step is to provide a fast and light way to approximate ψ. In the general
case, this can be implemented using ANN algorithms, like kd-trees or Locality Sen-
sitive Hashing as done by Kitaev et al. (2020). For images and image-like tensors
such as feature maps, where vectors are patches, PatchMatch is an efficient alterna-
tive. It accelerates the search for NNs by drawing on a specific regularity property
of images: the shift map (ie. the values ψ(i) − i) between NNs in different images
is approximately piece-wise constant. Note that this implicitly requires a spatial
organisation (1D, 2D, etc) of the data, which is the present case of images.

PatchMatch is an efficient, stochastic, algorithm for searching for ANNs of
patches in images and videos, between a query image and a key image. Patch-
Match starts out by randomly associating ANNs to the query patches. In general,
these ANNs will be of poor quality, however from time to time a good association
ψ(i) will be found. The algorithm then attempts to propagate the shift ψ(i)−i given
by this ANN to other query patches in the spatial patch neighborhood of i, with
the hypothesis that these shifts are piece-wise constant. This happens, for example,
when a coherent object is found in both the query image and the key image.

After the random initialization, the PatchMatch algorithm relies on two alter-
nating steps:

1. Propagation, in which good shifts are propagated to spatial neighbors

2. Random search for better ANNs for each query patch
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Algorithm 4 Propagation step using Jump-Flooding
Require: queries Q, keys K, ANN field ψ
Ensure: Updated ANN field ψ
1: parfor p = 1 . . .m do
2: for l = 1, 2, 4, 8 do
3: for δ in [(−l, 0), (l, 0), (0,−l), (0, l)] do ▷ Look up, down, left, right
4: q ← ψ(p+ δ)− δ ▷ Candidate position q
5: if s(Qp,Kq) > s(Qp,Kψ(p)) then
6: ψ(p)← q

7: end if
8: end for
9: end for

10: end parfor

The random search is carried out by randomly looking in a window of decreasing
size, around the current ANN. An illustration of the idea of PatchMatch can be seen
in Figure IV.2.

A drawback of PatchMatch is that it is an iterative algorithm that is not nat-
urally parallelizable, with the propagation step being inherently sequential, thus
making it problematic for use in deep learning. However, we employ a semi-parallel
approximation to this propagation step known as jump-flooding (Barnes et al. 2009;
Rong and Tan 2006) described in Algorithm 4. A significant advantage of Patch-
Match is that it keeps only the current ANN, which vastly reduces the memory
requirements.

IV.2.3 Complexity

The computational complexity of our proposed PSAL is O(ndN log(n)) with N

the number of iterations of propagation / random search. The derivations are the
following: the PatchMatch algorithm consists of N iterations of propagation and
random search for each of the n patches. Following the usual practice for random
search, we sample 1 candidate in windows of geometrically decreasing size of ratio
0.5, leading to O(log(n)) candidates. For the propagation step, the parallel ap-
proach (Algorithm 4) uses 4 × 4 = 16 candidates. Finally, the cost of a similarity
computation (dot product, cosine similarity, or ℓ2 distance) between two patches has
a complexity O(d) for d the dimension of the patch. Putting all together, we have
a computational complexity of O(ndN max(log(n), 16)). The memory complexity
is simply O(n), as we only have to store the shift map ψ, our mapping for each
patch. This is to be compared with the Full Attention layer, whose complexities are
O(n2d) and O(n2), respectively.

In particular, the memory complexity is linear with respect to the number of
queries, while that of Full Attention is quadratic. This has important consequences,
in particular on the maximum resolution of images that can be processed by deep
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learning architectures which employ attention layers.

IV.2.4 Differentiability

Unfortunately PatchMatch, using a single NN, is not differentiable with respect to
Q and K because of the argmax operator in equation (IV.2).

We propose to overcome this limitation by the use of multiple neighbors, and
the adaptation of the softmax operator. Note that another work, by (Plötz and
Roth 2018), also proposed the use of nearest neighbours. However, it is based on a
continuous relaxation of the k-Nearest Neighbor (KNN) attention matrix, and thus
has the same computational and memory complexity as Full Attention, which is
precisely what we wish to avoid.

We now assume that we have access to multiple NNs instead of only one so that
the support of our rows, or the shift-map, is now a set ψ(i) with k elements. The
matrix A writes:

Ai,j =

⎧⎨⎩
exp(Sij)∑︁

j′∈ψ(i) exp(Sij′ )
if j ∈ ψ(i)

0 otherwise
. (IV.5)

The matrix S ∈ Rn×n is an intermediate matrix storing the similarities between
elements of Q and K. We will give further details on how S is established later in
the paper.

We propose two ways to construct A in a computationally- and memory-efficient
way: one based on using several NNs, and one based on patch aggregation. Our
theoretical findings are confirmed by the experiments (Section IV.3.3.3), in which
the importance of the differentiability property will be shown.

We show that this restores differentiability with respect to Q and K as long as
the number k = |ψ(i)| of NNs is larger than 1.

IV.2.4.1 Derivatives

We give the derivatives with respect to all input variables in the case of scalar values
i.e. Q ∈ Rn×1,K ∈ Rn×1, V ∈ Rn×1. We have : ∀i, j:

∂(AV )i
∂Vj

= Aij (IV.6)

∂(AV )i
∂Qj

= 1i=j
∑︂
k∈ψ(i)

AikVk

⎡⎣∂Sik
∂Qj

−
∑︂

j′∈ψ(i)

Aij′
∂Sij′

∂Qj

⎤⎦ (IV.7)

∂(AV )i
∂Kj

= 1j∈ψ(i)
∂Sij
∂Kj

∑︂
k∈ψ(i)

Aik [1j=k −Aik]Vk (IV.8)

The derivatives with respect to Q,K involve the derivatives of the similarity
function used Sij = s(Qi,Kj) with respect to its inputs but are of no difficulty
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when s is the Euclidean distance or the dot product. In the case where |ψ(i)| = 1,
the derivatives with respect to Qj and Kj are equal to 0 for all j, confirming the
need for multiple neighbors in our method.

IV.2.4.2 k-Nearest Neighbors differentiability

In order to overcome the aforementioned differentiability problem which arises when
we have only a single NN, we propose to enrich the matrix S using several NNs for
each patch, which can be done with a modified version of PatchMatch (Barnes and
Shechtman 2010). In this case, each ψ(i) is now a set of k NN correspondences. We
start by redefining the matrix Si,j as:

Si,j =

{︄
s(Qi,Kj) if j ∈ ψ(i)
−∞ otherwise.

(IV.9)

Then by applying a softmax operation along the rows, we obtain the differentiable
Ãt = softmaxt(S) with the same behavior than the original implementation. It can
be seen that the Full Attention implementation corresponds to Ãt in the case where
k = N . There is only a light computational overhead to manage the k nearest
neighbors using a max heap and the associated memory extension. Finally PSAL-k
hasO(ndN log(n) log(k)) computational complexity andO(nk) memory complexity.

IV.2.4.3 Patch aggregation differentiability

The second approach we propose for achieving differentiability/enriching the patch
NNs is to perform spatial aggregation. Intuitively, we enrich the list of NNs for a
given patch by using the NNs of the spatial neighbors of this patch. To put it more
colloquially, the neighbor of my spatial neighbor is my neighbor. In this case, we
redefine S in terms of a spatial neighbor i′ and its patch-space neighbor j′ as1:

Si,j =

⎧⎪⎨⎪⎩s(Qi′ ,Kj′) if

{︄
i′ ∈ Ni and j′ ∈ ψ(i′)
and i′ − i = j′ − j

−∞ otherwise.
(IV.10)

whereNi is the spatial patch neighborhood of i. The condition in Equation (IV.10)
basically says that, for a patch i, we are analyzing its spatial neighbor i′ and the
NN of i′, ψ(i′). We then check that the spatial shift between the patch i and i′ is
the same as the NN patches j and j′. The last condition is necessary to link j to j′.
In practice, we choose the spatial neighborhood to be the patch neighborhood. This
aggregation can be useful to other sparse attention layers. PSAL Agg. has O(p2n)
memory complexity and O(p2n+ndN log(n)) computational complexity for a patch
size of p.

1Note that this also impacts the definition of A in Equation (IV.3)
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These previous two differentiability methods can be combined as desired. We
present experiments in the next Section that show that without these approaches,
networks have great difficulty learning, and produce poor results.

IV.2.5 Similarity function

One of the key components of the attention mechanism is the similarity function
used to build the similarity matrix S . The original work of Vaswani et al. (2017)
used the dot product with a scaling parameter, however other options such as the
cosine similarity (Yu et al. 2018) are better suited in some situations. PSAL can be
used with any similarity metric. This is important for providing a flexible attention
layer, especially given than the similarity function can significatively impact the
performance of a whole network. For instance, we found out that the dot product
similarity performs poorly compared to the ℓ2 distance in the reconstruction and
colorization tasks (Sections IV.3.2 and IV.3.3). Linear Attention (Katharopoulos
et al. 2020) and Reformer (Choromanski et al. 2020) are linear approximations and
are thus limited in some cases.

IV.3 Results

We now present quantitative and qualitative results showing the advantages of our
proposed attention layer. We compare our layer in 5 different situations:

1. We analyze the memory consumption of different attention layers. We ob-
serve in particular that PSAL requires orders of magnitude less memory than
alternatives

2. Image reconstruction. We show that by replacing the FA layer with the pro-
posed PSAL, the NN patches reconstruct an image well. This evaluation is
motivated by the fact that the examples in the matrix V should reconstruct
or approximate the initial queries

3. Image colorization. PSAL performs better than other attention layers in the
context of guided image colorization, an image editing task for which attention
is crucial

4. Image inpainting. We show that it is possible to replace a classical FA layer
directly with a PSAL, without affecting the inpainting quality, allowing for
inpainting of high-resolution images

5. Single-image super-resolution. Similarly to inpainting, classical FA layer can
be replaced with PSAL without affecting the performance but allowing high
resolution processing which is beneficial

We compare our work with Full Attention and other state-of-the-art attention
layers: Local Attention (Parmar et al. 2018), Performer (Choromanski et al. 2020),
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Attention Method Mem. complexity
Memory (GB) for images of size

64x64 128x128 256x256 512x512
Full Attention O(n2) 0.30 4.98 15.26 250.04
Local Attention O(w2n) 0.19 0.64 3.23 13.12
Linear Attention O(n)∗ 0.11 0.46 1.85 7.47
Performer O(nd log d)∗ 0.71 2.84 11.55 17.68
Reformer O(128n)∗ 0.47 1.86 7.42 21.47
PSAL 3 O(3n) 0.01 0.01 0.04 0.18
PSAL Aggreg. O(p2n) 0.05 0.19 0.74 2.95

Table IV.1: Memory (mem.) (GB) required by the attention layer when the input
size is increasing. n is the number of pixels. For Local Attention, the window size w
is set to 50. For Performer, we use the recommended parameter M = d log d. Tested
in conditions with patch size p = 7 and 16 channels. PSAL and PSAL Aggreg. have
a low enough memory footprint to make batches larger than 1 possible. ∗ Linear
Attention, Performer, and Reformer use 1D vectors, gathering patches and unrolling
them consumes a significant amount of memory.

Reformer (Kitaev et al. 2020), and Linear Attention (Katharopoulos et al. 2020).
We compare these with two differentiable PSAL approaches: PSAL 3 which uses
k-NNs with k = 3 and PSAL with aggregation, (PSAL Aggreg.). The code for our
PSAL layer is available at https://github.com/ncherel/psal.

IV.3.1 Memory benchmark

We recall that one of our initial motivations is to develop an efficient attention
layer that can be used in any situation. In particular, we designed our layer to not
be memory-bounded when applying it to mid to large images. In this section, we
measure the memory footprint of various attention layers for different feature maps
size. We also compare the theoretical complexity with the true memory occupation.
These results can be seen in Table IV.1. We see that our PSAL requires vastly less
memory than FA and competing methods. For example, in the case of 512 × 512

images, FA requires 250GB, whereas PSAL 0.18GB or 2.95GB (PSAL 3 or PSAL
Aggreg.).

IV.3.2 Image reconstruction task

We now compare the performances of PSAL and that of a FA layer on the task
of image reconstruction using patches. The goal of this experiment is to check
that using ANNs does not induce any loss of quality with respect to the “standard”
attention. In the case of images, we can directly view this quality, contrary to the
case of deep features.

We reconstruct an image by applying the attention layer using the ℓ2 distance,
Q the set of patches from image A, K the set of patches from image B and V the
pixels of image B. Image A and B are taken from the same video sequence.

https://github.com/ncherel/psal
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(a) Full Attention (b) PSAL

Figure IV.3: Full Attention (left) and PSAL (right) reconstruction using another
frame of the same video. The memory constraints and the subsequent subsampling
step make it impossible for the Full Attention to capture all details

Attention Method ℓ2 loss
Full Attention 0.0022

Local Attention 0.0119
Linear Attention 0.0576

PSAL 3 0.0011
PSAL Aggreg. 0.0008

Table IV.2: Reconstruction error of PSAL layers vs other attention layers.

We first show that PSAL can efficiently appproximate Full Attention on this
reconstruction task, using patches of size 7 × 7. Table IV.3 indicates that the
performances of PSAL and Full Attention (with stride 1) are equivalent but limits
the size of the input to 64 × 64. As the resolution is increased, an approximation
has to be used for Full Attention. Among the different options, we decide to keep
all the queries Q but the keys K are obtained using a stride to decrease the memory
pressure. We observe better results for PSAL in these cases.

We then consider a realistic case where images are of size 512 × 512. Quanti-
tative results for 30 pairs of images 10 frames apart are shown in Table IV.2. The
metrics confirm that the naive approximation of Full Attention via subsampling is
more damageable to the performance than the approximation of PSAL. For Linear
Attention, the approximation proposed by Katharopoulos et al. (2020) is an ap-
proximation of the dot product which is not well-suited in this case. Similarly Local
Attention performs poorly as the displacement between the reference and the image
to reconstruct is often larger than the local window.

Figure IV.3 shows the results of the image reconstruction task. We observe that
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Image width
Full Attention PSAL 3

Stride ℓ2 error ℓ2 error
512 10 0.0022 0.0011
256 5 0.0031 0.0017
128 2 0.0038 0.0029
64 1 0.0048 0.0048

Table IV.3: Reconstruction error of PSAL layer vs Full Attention.

Full Attention (stride 10) PSAL 3 PSAL Aggreg.

Figure IV.4: Results on the reconstruction task. Best seen with zoom-in.

not only does PSAL maintain good reconstruction, it in fact performs better than
FA, which is not able to reconstruct fine details (see the zooms in the red squares
on the bottom right of the images). This is a result of the stride induced by strong
memory requirements. On the other hand, PSAL reconstruction has crisp details.
This ability of PSAL to recover details is interesting when attention layers are used
for tasks such as single image super-resolution (Parmar et al. 2018).

IV.3.3 Guided Colorization

We evaluate PSAL on the task of guided image colorization. Given a grayscale image
and a colorful reference image, we train a network to recover the color information.
We use as simple a network as possible, to isolate the contribution of the attention
layer. This architecture can be seen in Figure IV.6. Because we are using similar
images, but not identical, attention is a crucial component to identify the best
regions from which to copy the colors. Note that the goal of this experiment is not
to get good colorization results, but to compare attention layers in a challenging but
realistic task. In this setting, the limitations and advantages of each method are
easier to interpret than in a large neural network where attention layers are added
for unclear reasons.

We compare our results with the other attention models by keeping the same
architecture, but changing only the attention layer. We use images of size 256x256
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Figure IV.5: Performance vs computation constraints (memory and GFLOPs) in
the colorization task. Radius is proportional to FLOPs for a single forward pass
(smaller is better). Full Attention (Vaswani et al. 2017) performs well at the cost
of high memory and many GFLOPs. Local Attention (Parmar et al. 2018) is an
efficient approximation of Full Attention with a limited drop in performance. Per-
former (Choromanski et al. 2020) does not perform well. Reformer (Kitaev et al.
2020) and linear Attention (Katharopoulos et al. 2020) are linear approximations
which are not adapted to this problem. PSAL 3 and PSAL Aggreg. have better per-
formance, largely reduced memory usage, and require less FLOPs than alternatives.
∗Full Attention still requires a subsampling step to fit into GPU memory.

Attention
Conv

Conv

Conv

ConvConcat

Figure IV.6: Architecture for our colorization network. We have used as simple an
architecture as possible to isolate the contribution of the attention layer.
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(a) Ground truth (b) Full Attention (c) Local Attention

(d) Performer (e) PSAL 3 (f) PSAL Aggreg.

(g) Ground truth (h) Full Attention (i) Local Attention

(j) Performer (k) PSAL 3 (l) PSAL Aggreg.

Figure IV.7: More results on the colorization task. Performer and Full Attention
produce bland results. Because of large displacements between frames local attention
is not enough to recover the true colors resulting in artifacts. PSAL 3 and PSAL
Aggreg. have good results despite some wrong matches.

which are large by feature map standards but low resolution in the modern context.
If we plot the ℓ2 error as a function of the memory usage, and resize the points
proportionally to the number of Floating Point OPerations (FLOPs), (Figure IV.5),
it is clear that PSAL does not trade performance for memory or computations, and
performs favorably against all other considered methods. Full Attention has close
results but is limited by memory constraints: to fit into memory a subsampling
step (of stride 3) is necessary which limits the set of keys considered. For Local
Attention (Parmar et al. 2018), the model performs well for frames with little or no
displacement but degrades abruptly when distant neighbors are required. PSAL 3
reaches good results but may sometimes match patches incorrectly. PSAL Aggreg.
helps with this aspect, the aggregation step helps smoothing out irregularities. As in
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Attention Method ℓ2 error
PSAL 1 0.00832
PSAL 3 0.00228
PSAL 7 0.00234
PSAL 15 0.00237
PSAL 31 0.00232

PSAL1 + Aggreg. 0.00194

Table IV.4: Colorization error of PSAL layers with different parameters. PSAL-1 is
not fully differentiable which limits learning and performance. These experiments
confirm that the solutions we proposed in Section IV.2.4 do indeed allow for efficient
learning

the case of image reconstruction (Section IV.3.2), the choice of either ℓ2 distance or
dot product when comparing patches has a significant impact on performance. Our
method is compatible with any metric. For FA and Local Attention (Parmar et al.
2018), we replaced the dot product with a ℓ2 operation. For the Performer, which
is based on softmax approximations of the dot product, we left them as described
by their authors, since there is no obvious way to adapt their algorithm to the ℓ2
case. They indeed produce poorer results generally. Reformer is very similar to
our solution by using LSH to efficiently identify the nearest neighbors. For cross-
attention, the proposed implementation of Kitaev et al. (2020) is far from perfect as
it may create buckets containing only keys or queries, hence it has difficulty matching
neighbors together. We also compare our method to a linear approximation of the
attention : Linear Attention (Katharopoulos et al. 2020). In this case, we observe
that non linearity is needed and the approximation is thus severely hurting the
performance.

Figure IV.7 shows the visual results. We observe that FA and Performer produce
faded results, while Local Attention has visible square artifacts because of local
windows. PSAL Aggreg. produces the best results in this case.

IV.3.3.1 Training details

The colorization network is minimal, only containing: a single layer of 3x3 convo-
lutions (16 output channels), the attention layer, and another 3x3 convolution (3
output channels). The goal is to put the emphasis on the attention layer and not on
the problem of colorization, which is complex with an extensive literature. We add a
residual connection so that the attention layer only has to provide color information.

Training is done on DAVIS dataset (Perazzi et al. 2016): train + test-dev. Test-
ing is done on test-challenge. Images are resized to 256x256. The patch size is set
to 7. We use the Adam optimizer with a learning rate of 0.001 for 200k iterations
and a batch size of 1.
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Similarity function ℓ2 loss
Dot product s(q, k) = ⟨q, k⟩ 0.0064

ℓ2 distance s(q, k) = −∥q − k∥22 0.0024

Table IV.5: ℓ2 vs dot product colorization results when using Full Attention. The
choice of similarity metric is very important for the task. We see that ℓ2 performs
much better.

Attention Method ℓ1 loss ↓ ℓ2 loss ↓ PSNR (dB) ↑ TV loss ↓ SSIM ↑
ContextualAttention∗ 11.8% 3.6% 16.4 6.6% 53.7

PSAL (ours) 11.6% 3.6% 16.6 6.9% 54.1

Table IV.6: Average inpainting metrics on Places2 validation set. Quantitative mea-
sures show similar performance using our layer with reduced memory requirements.
∗ retrained.

IV.3.3.2 ℓ2 vs dot product

For image colorization, we observed a large discrepancy between methods employing
an ℓ2 distance and a dot product similarity measure in the attention e.g . s(q, k) =
⟨q, k⟩ vs. s(q, k) = −∥q − k∥22. Indeed, all methods using an ℓ2 distance (Full
Attention, Local Attention, PSAL) perform better than the methods based on dot
product (Performer, Reformer, Linear Attention) in Figure IV.5. Table IV.5 shows
this gap for the Full Attention layer for the same hyper parameters.

We hypothesize that in this bare-bones experiment without additional layers and
especially normalization layers, the dot product is not well adapted. In fact, when
comparing patches with the dot product similarity, the average value of a patch
(query or key) does not directly intervene compared to the case of the ℓ2 norm. It is
then not surprising that the similarity between patches with very different average
values can be high, which is often undesirable in traditional patch-based methods.

IV.3.3.3 Differentiability and neighbors

We now show experimental evidence that our proposed strategies for PSAL’s dif-
ferentiability are effective and are crucial for end-to-end training. Looking at Ta-
ble IV.4, we see a large performance gap between PSAL-1 and PSAL-3/PSAL Ag-
greg. PSAL-1 is indeed not fully differentiable with respect to all its parameters and
cannot learn the projection matrices Q and K. The attention does not help in this
case and performances are poor. The performance does not improve beyond k ≥ 3.
PSAL with aggregration uses more neighbors and aggregates values differently than
PSAL-k. We often use a number of neighbors of form 2l − 1, this comes from our
internal representation of the set of neighbors as a binary tree of depth l.

PSAL-3, on the other hand, employs a 3-NN PSAL layer which makes optimiza-
tion possible. Similarly, PSAL Aggreg. performs extremely well. This experiment
confirms that our two approaches for making PSAL differentiable are effective. This
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also shows that the adaptation of PatchMatch to feature maps is not as straightfor-
ward as it looks.

IV.3.4 Image inpainting

A prominent field of application of attention models is image inpainting. This is the
process of automatically filling in unknown or damaged regions in an image. Deep
learning inpainting algorithms are able to inpaint semantic objects, such as posi-
tioning an eye in a face. However, one of the blindspots of such approaches to image
inpainting is the correct reconstruction of textures and fine details. It turns out that
this problem is, in turn, well addressed by using patch-based approaches (Criminisi
et al. 2004; Wexler et al. 2007). Thus, the ideal inpainting method would be able to
unite the strengths of both deep learning and patch-based approaches in a single al-
gorithm. This has motivated the introduction of attention layers in deep inpainting
networks.

Recently, Yu et al. (2018) have introduced an attention layer with great success
in their inpainting network, which we refer to as ContextualAttention (CA). After
a first coarse inpainting, the image is refined flowing into 2 different branches: a
fully convolutional network, and an attention-based network. The outputs are then
merged. At its core, CA is a Full Attention layer based on 3x3 patches in feature
maps. Unfortunately, even with mid-level features, the remaining spatial size is too
large to avoid a memory explosion especially during training. Yu et al . limit the
number of patches to be computed using a downsampling scheme. Once again, this
illustrates the practical need for an attention layer which scales to large images.
Given the setting, the proposed PSAL is a good fit in the network. We directly
replace the FA layer with our PSAL 3. We use a patch size of 7 for PSAL, which
is equivalent to a patch size of 3 plus a downsampling with a factor of 2 as used by
CA.

We compare both approaches on different metrics: PSNR, SSIM, as well as Total
Variation. We include the Total Variation (TV) loss which measures the smoothness
of the inpainted image and does not depend on the ground truth:

TV (x) =
∑︂
i,j

|xi+1,j − xi,j |+ |xi,j+1 − xi,j |

The quantitative results shows no significant differences between PSAL and Con-
textualAttention for different metrics (Table IV.6). This confirms that the PSAL
can indeed replace the CA layer, with no quality loss, but with a great reduction in
memory requirements.

Note that we do not need to compare with other attention approaches, since our
goal here is not to improve the quality of inpainting, but rather to show that our
PSAL can be easily inserted into any existing architecture, without any loss in qual-
ity, while greatly reducing memory requirements (which we showed in Table IV.1).
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Ground truth Contextual
Attention

PSAL Ground truth Contextual
Attention

PSAL

Figure IV.8: Here, we show the results of the ContextualAttention (Yu et al. 2018)
and our version of the algorithm where the FA layer is replaced with a PSAL.
We observe that the results are of very similar quality, validating the direct and
straightforward replacement of FA with PSAL.

IV.3.4.1 Inpainting results

For completeness, we produce visual comparisons of inpainting results. Figure IV.8
shows very similar results between our method and the one from Yu et al. 2018.
This is exactly what we aimed for, since we want to achieve the same inpainting
results with our more memory efficient PSAL. This is reflected by close quantitative
inpainting metrics.

IV.3.4.2 Training

We retrain Contextual Attention (Yu et al. 2018) using the same hyper-parameters
than the authors and an implementation by Du Ang https://github.com/daa233/
generative-inpainting-pytorch. Specifically, we train our networks for 800k itera-
tions with a batch size of 16 on Places2.

For PSAL, we train for the same number of iterations. We use a patch size of 7,
remove the downsampling step in the attention, reconstruct only from the central
pixel, and use 5 iterations of PatchMatch.

IV.3.5 High resolution inpainting

Finally, in Figure IV.9 we show that with PSAL we can inpaint high resolution
images, which is the initial goal that motivates this work (extending attention layers
to larger resolution images). The low memory requirements make it possible to
handle images of resolution up to 3300x3300 on a NVIDIA GTX 1080 Ti with 11 GB
of memory. Processing such a large image using the FA layer without subsampling
would require more than 1000 GB of memory.

The images are processed at their native resolutions without memory-saving
tricks. The network is still limited by its receptive field which makes it only possible
to fill small holes (128x128). Note that the maximum size of the occlusions/holes

https://github.com/daa233/generative-inpainting-pytorch
https://github.com/daa233/generative-inpainting-pytorch
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Attention Method Zoom x2 Zoom x3 Zoom x4
Cross-Scale Attention 33.383 29.123 27.288

PSAL 33.375 29.112 27.184

Table IV.7: For single-image super-resolution, Cross-Scale attention (Mei et al. 2020)
can be efficiently approximated with PSAL as indicated by similar PSNR scores on
the Urban 100 dataset.

(128×128) is imposed by the network architecture of ContextualAttention. We could
certainly create another architecture using PSAL for larger occlusion sizes, but to
be fair to the original work we kept the same sizes.

IV.3.6 Super-Resolution

Attention can also be very useful for the super-resolution task (Liu et al. 2018a).
Patch recurrence in natural images at different scales have been identified as a strong
prior for super resolution, providing rich information (Glasner et al. 2009; Michaeli
and Irani 2014). Recent adaptations to attention with In-Scale attention and Cross-
Scale Attention by Mei et al. (2020) confirm these findings for deep learning.

Recurring patches naturally occur at long range due to perspective, thus limiting
the usefulness of local or restrained attention. Looking at the work of Mei et al ., we
replace the Full Attention layer which they use in the Cross-Scale branch by PSAL.
We evaluate this replacement on the task of single-image super-resolution.

Our results (Table IV.7) on the Urban 100 dataset for different zoom factors
indicate that we can use PSAL to efficiently approximate the Cross-Scale attention
which benefits from long range dependencies. The In-Scale attention branch is
more efficiently approximated with a local attention. We test our hypothesis by
keeping the same weights and changing only the Cross-Scale attention layer. Similar
performance is reached using only a fraction of the memory (Table IV.7), this is of
high interest for handling images with repetitive structures at a distance i.e. at high
resolution.

Early works on patch recurrence (Glasner et al. 2009; Michaeli and Irani 2014)
showed that the benefits of Cross-Scale are most spectacular at very large resolutions
and zoom levels, which cannot be achieved by full attention implementations such
as the one in Mei et al. 2020 due to GPU memory limitations. By replacing this
implementation with PSAL in the Cross-Scale branch we expect to be able to retrain
the architecture for much larger zoom levels and image sizes, thus showing the full
potential of patch recurrence. This will be the subject of future research.

IV.4 Approximation in pretrained networks

One advantage of our attention layer is that it can replace the attention layers in
already trained models. More generally, because PSAL-k is an approximation of Full
Attention, we can replace attention layers, keeping similar results at a fraction of the
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Figure IV.9: A 2700x3300 image inpainted using PSAL. The initial occlusions are
outlined in green. Original picture by Didier Descouens - Licensed under CC BY-SA
4.0
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Figure IV.10: A 3600x2700 image inpainted using PSAL. The initial occlusions are
outlined in green. Original picture by MOSSOT - Licensed under CC BY-SA 3.0

original computational cost. This is particularly useful when performing inference
on large inputs.

Recall that the attention can be written with a temperature coefficient T :

Attention(Q,K, V ) = softmax

(︃
QKT

T

)︃
V (IV.11)

This temperature coefficient controls the entropy of the attention matrix by assimi-
lating the rows as probabilities. In the extremes, we have limT→+∞ softmax

(︂
QKT

T

)︂
i
=

1
n which is simply a uniform aggregation. We also call this regime the “high entropy”
regime since the entropy of the attention matrix is high. At the other extreme,
limT→0 softmax

(︂
QKT

T

)︂
= ψ⋆ for which PSAL-1 is an approximation. This is “low

entropy”. We therefore see that our approximation is mainly valid in the case where
the attention distribution has low entropy. The often recommended value for T is√
d where d is the dimension of the vectors.

In the following subsections, we experiment with different values of T to under-
stand in which regime the network operates and understand if our approximation
would be detrimental to the performances.

We only test this on already trained networks. This does not indicate that our
PSAL layer wouldn’t work when retrained from scratch. Indeed it is expected that
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Attention
during training

Attention
during test

ℓ2 loss Test GFLOPs Test Memory (GB)

PSAL 1 PSAL 1 0.0083 30 0.05

PSAL Aggreg.
PSAL Aggreg. 0.0019 37 0.74

PSAL 1 0.0023 30 0.05

PSAL 3
PSAL 3 0.0023 36 0.08
PSAL 1 0.0023 30 0.05

Full Attention
Full Attention 0.0024 1173 9.32

PSAL 1 0.0024 30 0.045

Local Attention
Local Attention 0.0032 385 3.23

PSAL 1 0.0035 30 0.045

Table IV.8: Colorization performance when using weights from pretrained models
but replacing the attention layer with PSAL 1 at test time. PSAL 1 can replace
the attention layers in trained networks with similar performance but a significant
reduction in FLOPs and memory usage.

the weights would be different if we enforce sparsity in the attention map during the
training part.

For Natural Language Processing, the Transformer framework has been central
to the recent breakthroughs. However we refrain from testing this additional modal-
ity, while the search for very long context windows have started to reach the image
levels and could benefit from the limited memory impact of PSAL, the PatchMatch
hypothesis is also weakened because text is 1 dimensional and therefore benefits less
from the spatial propagation step.

One of our hypothesis for our approximation was that it was possible to approx-
imate the attention using only the nearest neighbors. In this section, we investigate
if this is true for different types of common networks.

IV.4.1 Colorization

We show this effect on the colorization task using PSAL-1 as a replacement for
other attention layers at inference time. While the parameters of PSAL-1 are not
all trainable, we can still use it if we do not need to train the network. PSAL-1 is
still a fast, light, and good approximation of Full Attention or other PSAL-k layers.
In the colorization task, we trained and froze several different networks, and then
we switched attention layers to PSAL-1. We observed very good results with this
approach. Table IV.8 shows for instance that Full Attention can be approximated
with no drop in performance but with 40x less computations and 225x less memory.

IV.4.2 Inpainting with ContextualAttention

Here, contrary to the experiment of subsection IV.3.4, we compare the results re-
placing the ContextualAttention layer with PSAL in the already trained network
of Yu et al. (2018). We evaluate the results using the same validation set than
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Attention Method ℓ1 loss ℓ2 loss PSNR TV loss SSIM
ContextualAttention (2018) 10.8% 3.2% 17.1% 7.3% 56.0%

PSAL 3 (ours) 10.7% 3.2% 17.1% 7.1% 56.4%

Table IV.9: Average inpainting metrics on Places2 validation set. Quantitative mea-
sures show similar performance using our layer with reduced memory requirements

previously. We report the results in Table IV.9. Once again, we find that PSAL
correctly approximate the ContextualAttention layer at a fraction of the memory
requirements.

In this case, we recall that the ContextualAttention was computed using the
following equation:

Attention(Q,K, V ) = softmax

(︃
1

0.1

⟨q, k⟩
∥q∥ · ∥k∥

)︃
V

On top of using cosine similarity instead of simply scaled dot product, the tem-
perature is already low: 0.1, biasing the attention to a handful of points.

IV.4.3 Transformer for classification

For classification networks, we look at the Vision Transformer (ViT) from Dosovit-
skiy et al. (2020). The Vision Transformer performs the classification on images
from the ImageNet dataset, non-overlapping patches of size 16x16 are extracted
from the image and then go through a series of Transformer layers: attention layers,
multi-layer perceptrons, normalization layers. In this context, after extraction, the
number of patches in the attention layer is 197 which is very low compared to ap-
plying attention of size 128x128 (still small) but for which around 16k patches are
used.

We select a small test set of classification images (4000 images from ImageNet)
and test different values of T on ViT-B. It is also possible that the entropy changes
through the layers for instance with first layers being more sparse and later layers
less so. Recall that the attention is given by:

Attention(Q,K, V ) = softmax

(︃
QKT

T

)︃
V

We change the temperature and report the classification accuracy in Table IV.10.
The quantitative evaluations show a sharp decline in accuracy when using a different
temperature coefficient than the training one. In our case, we are interested in the
low temperature value, and we see that the results are actually quite bad. In fact,
for classification, it could be expected that the attention is not sparse, even more so
that there are not many patches in total.
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Temperature 1 2 4 8 16 32 64
Top-1 accuracy 0.0100 0.0760 0.6640 0.8098 0.6850 0.2435 0.0693

Table IV.10: Changing the temperature coefficient in an already trained classifica-
tion network.

T = 0.1 T = 1 T = 100

Figure IV.11: Inpainting results in diffusion models when changing the temperature
in all the attention layers. We cannot replace the attention by our approximation
in these cases because our approximation would be close to the case T = 0.1.

IV.4.4 Stable Diffusion

For diffusion models, we test changing the temperatures in the inpainting network of
Stable Diffusion (Rombach et al. 2022). Their network is large UNet with attention
layers at different positions in the network. We compare the results using different
temperatures coefficients through the diffusion process; we use the same temperature
coefficient despite the attention layers having different input resolutions. In the
baseline, the Full Attention adds a temperature coefficient scaled to the square root
of the dimension of the features, thus providing an adaptive temperature based on
the feature depth.

For these results, we do not have a quantitative evaluation but a purely quali-
tative one, that should be enough to convey the main idea. The results are shown
in Figure IV.11 and show that in this context, our method cannot be used. When
using a low temperature, severe artifacts are appearing. On the other hand, when
increasing the temperature, we see that the output lacks details.
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IV.4.5 Conclusion about pretrained networks

Among the 4 different settings tested: image classification, guided colorization, im-
age inpainting with standard model, image inpainting with a diffusion model, we
found that only the guided colorization and the image inpainting with the standard
model actually worked with PSAL. Our hypothesis may thus only work for a few
networks, it is also possible that our method work better for high resolution images
than low resolution images, as relying on a few neighbors is even more true when the
number of points grows. Note that we have done these experiments using trained
networks, it is possible that retraining with PSAL from the start could work just as
well.

IV.5 Self-similarity and the PatchMatch hypothesis

We have assumed in this chapter that the main PatchMatch hypothesis, the fact
that natural images are coherent, can be extended without issues to feature maps.
This is indeed a property that have been exploited by many authors for style trans-
fer (Hamazaspyan and Navasardyan 2023; Samuth et al. 2022), stereo (Duggal et al.
2019; Wang et al. 2021a), or optical flow (Zheng et al. 2022b). In practice, for
our application this self-similarity translates into a piecewise constant shift map:
large regions of the image are repeated. We have several reasons to think that this
property holds true for feature maps.

First of all, when using overlapping patches with the ℓ2 distance, independently
of the underlying signal, this hypothesis is likely to be respected because the differ-
ences are shared. This effect is stronger when using large patches. In fact, it is easy
to see that the following is true for all patch positions p, q, r:

∥Ψp −Ψq∥2 = ∥(Ψp ∩Ψr)− (Ψq ∩Ψq+(r−p))∥2⏞ ⏟⏟ ⏞
common

+∥(Ψp \Ψr)− (Ψq \Ψq+(r−p))∥2

Using a neighbor patch of p for r, then the intersection is the dominant factor
in the distance.

Secondly, features are non-linear transformations of an image but still look like
the original image Figure IV.12.

IV.6 Limitations

Our approach is an approximation of the Full Attention based on the assumption
that the attention is sparse and the number of points is too large to compute the
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Figure IV.12: RGB image and some feature maps from the attention layer from
ContextualAttention. The original image has been downscaled. After the convolu-
tions, the image is still recognizable in the features which validate self-similarity in
the features even though the features are activating for very different patterns from
the original image.

standard attention due to memory constraints. Our limitations are then, by defini-
tion, when the attention is not sparse and memory is not an issue. If the attention is
not sparse, then we leave a lot of the energy of the weighted sum on the side which
is detrimental to the final output. We saw in section IV.4, that this can be the case
for classification networks, where the temperature coefficient is large.

Second, our attention layer is not interesting if it is slower than Full Attention,
this happens when the feature map is relatively small. In fact, PatchMatch is
mainly a spatial approximation, and is of little use when the spatial size is low.
In addition, it is often very likely than our previous assumption is also wrong:
when there are not many points, attention is often not sparse. While our custom
kernel has an advantageous theoretical complexity, it can be difficult to compete
with naive methods with efficient implementations. Hardware optimizations and
memory access are not always reflected in theoretical complexity analysis.

Finally, due to a sparse attention, we also have sparse gradients and while we
have not encountered this problem in practice, learning with PSAL may be more
difficult with only a few points receiving gradients. For disjoint query and key sets,
the gradients with respect to K (Equation IV.8) show that a key may not receive
a gradient from our attention layer if it is not among the nearest neighbors of any
query point.

IV.7 Conclusion and perspectives

In this chapter, we have presented PSAL, an efficient patch-based stochastic at-
tention layer that is not limited by GPU memory. We have showed that our layer
gives a much lighter memory load, scaling to very high resolution images. This
makes the processing of high resolution images possible with deep networks using
attention, without any of the customary tricks currently used (subsampling, etc).
Furthermore, new network architectures using attention mechanisms on low level
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Figure IV.13: Failure cases of our method for reconstruction (top) and colorization
(bottom).

features are now conceivable. We have demonstrated the use of PSAL in several
tasks, showing in particular that high resolution image inpainting is achievable with
PSAL. Some questions are still open:

Training of neural networks with low level attention layers. Current
architectures are limited to using attention layers at very coarse resolution because
of memory constraints. Our layer could finally enable architectures with low level
attention layers almost at pixel level. This could improve the results as shown by
Beyer et al. (2023); Dosovitskiy et al. (2020) for classification and restoration (Zamir
et al. 2022) - operating closer to the pixel level often leads to better results.

Extensions to other data. We have proposed to use PSAL when considering
2D patches on images and features maps but the problem of attention is even greater
in higher dimensions. Videos and 3D volumes have one more spatial dimension
compared to images and thus the attention is even more computationally expensive.
While we estimate that the naive Full Attention computations were limited to a res-
olution of 256x256 for a single image, this corresponds to a 32x32x32 volume in 3D.
This dramatically limits the processing of realistic data in these cases. For instance,
A high resolution (HD) video of 5 seconds at 24 frames per seconds is already of
size 1280x720x120 which would require 1e7 more memory than the limit estimated
previously (12e6 Gb of RAM). We see that an extension of PSAL would be welcome
to drastically reduce the memory impact of attention layers. PatchMatch for videos
have already been proposed by Newson et al. (2014), and a generalized formulation
on any graph has been described by Ehret and Arias (2018). One difficulty remains
however to fully leverage the GPU architecture, a parallel implementation has to be
developed. In the case of videos, the temporal axis is more stable which allows for
good approximations with temporal factorization (Liu et al. 2021a) or deformable
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attention (Liu et al. 2020b).
Efficient attention layers through attention propagation. In our exper-

iments, we have mainly studied the use of PSAL at a single position in the neural
network. It is however common to build neural networks based on attention layers:
Transformers. Sequential attention layers can remind us of traditional algorithms
reusing the shift map multiple times in a row and refining it after the initializa-
tion (Newson et al. 2017) or chapter III. A similar mechanism could be proposed
in the context of transformers: can we reuse the attention map between two con-
secutive layers? This could lead to great efficiency improvements. Intuitively, we
could expect that the attention map is valid for several features even if splitting the
features among different heads could limit the application. PSAL could be extended
to reuse both coarser attention maps and previous attention maps at the same res-
olution (Samuth et al. 2022). This could also benefit diffusion models for instance
which iterate the same network many times over slowly changing inputs.





V Internal image inpainting

Generative models based on deep learning have gained considerable momentum
in recent years, since the introduction of Generative Adversarial Network (GAN)
by Goodfellow et al. (2014). Subsequently, diffusion models (Ho et al. 2020) out-
performed these approaches, and established themselves as the state-of-the-art for
image synthesis and editing (Lugmayr et al. 2022; Saharia et al. 2022b). In addition,
image a priori implicitly found by generative models have been exploited for solving
inverse problems (Kawar et al. 2022a; Saharia et al. 2022b). However, these diffusion
models are massive, possibly comprising up to several hundred million parameters,
and require enormous computational resources, making training impossible for most
users and questionable from an environmental point of view.

Here, we train a lightweight diffusion model on a single image without using an
external database for image inpainting. This framework enables us to investigate
the use of small diffusion models which is not the norm in the current literature.
In contrast to the state-of-the-art, which proposes massive architectures, we pro-
pose very small-scale models. These models rely solely on convolution, subsam-
pling/oversampling and nonlinearity operations, unlike most diffusion models which
involve other more complex modules, such as attention modules.

Finally, this setting is also perfect for evaluating the stochastic nature of diffusion
models. This ability to produce multiple results is then considered in the evaluation
of our method, in particular, we look at the traditional ways of evaluating inpainting
and their shortcomings. We also compare in detail the use of diffusion models with
patch-based methods which we expect to perform similarly in this context but do
not require a learning phase.

V.1 Related works

V.1.1 Diffusion models

The general framework of diffusion models has been presented in chapter II. Briefly,
diffusion models are generative models which work on a long Markov chain of noisy
examples. First introduced by Sohl-Dickstein et al. (2015), they have been popular-
ized by Ho et al. (2020) recently by reframing it as a “denoising“ problem. Multiple
extensions have been proposed for conditional generations, from text (Rombach et
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al. 2022) or images (Saharia et al. 2022a; b). To specialize the model, Ruiz et al.
(2023) finetune a large neural network on a limited set of images. Diffusion models
can also be applied to single image generation i.e. with limited data, as shown by
Kulikov et al. (2023); Nikankin et al. (2023); Wang et al. (2022). Hao et al. (2023)
propose a rectification step to enable planar texture synthesis with diffusion models.

V.1.2 Inpainting

As detailed in chapter II, the first approach to image inpainting has been proposed
by Masnou and Morel (1998) using Partial Differential Equations (PDE). Bertalmio
et al. (2000) then introduced the term of “inpainting” with a discrete smoothness
energy term.

Then Efros and Leung (1999) have proposed an exemplar-barsed approach for
texture synthesis and inpainting. The assumptions for patch-based texture inpaint-
ing can also be applied to non-stationary image inpainting (Bornard et al. 2002).
With greedy algorithms, the order of inpainting is crucial and can be optimized (Cri-
minisi et al. 2004). Classical approaches to inpainting with patches (Newson et al.
2017; Wexler et al. 2007) rely on the self-similarity of images to build a plausible
solution. Hays and Efros (2007) have an external database to take patches from to
complete images.

After the first work by Xie et al. (2012), the next neural network proposed for
inpainting was by Pathak et al. (2016). They directly predict the pixel values for
the missing region, the objective function uses both a reconstruction term and a
discriminator term (Goodfellow et al. 2014). This is then refined by Iizuka et al.
(2017), which use a global and a local discriminator. Yu et al. (2018) incorporate
an attention layer to integrate a non-local component into their otherwise purely
convolutional network. Liu et al. (2018b); Yu et al. (2019) propose to change the way
the mask is used in deep networks. Suvorov et al. (2022) use a Fourier convolution
module to avoid the use of attention layers while maintaining a global receptive
field. Their method is particularly efficient for repetitive structures that have a
specific Fourier transform. To account for the multiplicity of solutions in inpainting,
Zheng et al. (2019) use a model that can efficiently produce multiple results. More
recently, resource-intensive methods based on diffusion models have emerged, such
as Repaint (Lugmayr et al. 2022) and Palette (Saharia et al. 2022b). It is possible to
use unconditional diffusion models for inverse problems (Chung et al. 2022; Kawar
et al. 2022a). These new diffusion models can be guided by text and mask (Xie
et al. 2023), or another image (Yang et al. 2023a). RealFill (Tang et al. 2023) tries
to find the true painted content using different images of the same scene.

Deep internal methods, i.e. methods based on neural networks trained on a
single image, have been shown to work for image generation (Shaham et al. 2019)
and also for image restoration (Ulyanov et al. 2018). For image inpainting, Wang
et al. (2021c) have both an external and an internal network. Alkobi et al. (2023)
trains a model similar to SinGAN for diverse image completion. Ruiz et al. (2023)
Fine tune a large diffusion model on a few images for guided image generation.
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For video inpainting, the high redundancy makes it easier to train a neural
network for internal use. Zhang et al. (2019b) train a neural network on a single
video, they use a reconstruction loss and a loss based on the optical flow. Ouyang
et al. (2021) refine this idea but use an implicit flow that connects different frames.
Ren et al. (2022) finetune a VAE with a discrete latent codebook on each video for
better adequacy between training and testing.

V.2 Method

V.2.1 Diffusion models for image inpainting

We adapt the general framework of diffusion models (Ho et al. 2020; Sohl-Dickstein
et al. 2015) to image inpainting. As presented in chapter II, diffusion models are
generative models whose aim is to learn a distribution of natural images. They are
based on a destructive forward process and a generative backward process. The
forward process consists in transforming an input image, which is assumed to be
a sample of the natural image distribution, into a white noise image, by adding
low-amplitude noise over a number of iterations. The backward process performs
the opposite steps: iterative (learned) denoisers of a sample initially drawn from
Gaussian noise. If the denoiser is learned correctly, it can be used to go from a
white noise to obtain a sample image. The reference image is taken to correspond
to the image at time t = 0, and the final noisy image to that at time t = T . In this
way, we establish a succession of images xt with a noise level that increases with
time.

Starting from the unknown distribution of natural images q(x0|y) conditioned on
the observations y, we define a Markov chain q(x0|y), ..., q(xT |y) with the forward
transition kernel for t ∈ [1, T ]:

q(xt|xt−1, y) = N
(︂
xt;

√︁
1− βtxt−1, βtI

)︂
, (V.1)

with the variance schedule linearly increasing from β1 = 0.0001 to βT = 0.02.
Recall the variables αt = 1 − βt and ᾱt =

∏︁t
s=1 αs which will come in handy

because q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). In this case, the reverse process defines

a conditional Gaussian distribution pθ(xt|xt+1, y) of learnable mean and variance:

pθ (xt|xt+1, y) = N
(︁
xt;µθ(xt+1, y, t), σ

2
t I
)︁

We use a neural network to predict the conditional mean µθ(xt+1, y, t). We use
a fixed variance schedule for the reverse process: σ2t = 1−ᾱt−1

1−ᾱt βt. The parameters
θ are optimized to maximize a lower bound of the log-likelihood of the data in Ho
et al. (2020).

In the case of inpainting, as mentioned above, we are interested in the data
distribution conditioned on our observations i.e. the known region of the image. The
observations are introduced in the network as incomplete images via concatenation
in the input layer (similarly to Saharia et al. (2022b)). We also add the mask
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information as input. We train our network by minimizing the reweighted ℓ2 loss of
the x0-parametrization:

Ex0,ε,t,M∥M ⊙ (x0 − fθ(xt, y, t,M))∥22, (V.2)

where M ∼ Pmask is a binary mask with 0 for the known region and 1 elsewhere,
y is the masked image i.e. y = x0 ⊙ (1 −M), and xt is obtained by the forward
diffusion of x0 by the following:

xt =
√
ᾱtx0 +

√
1− ᾱtε

where ε ∼ N (0, I).
The parameter t controls the noise level. Our network fθ takes as input the

noisy image xt, the observation y, the mask M and the noise level at step t.
Inference. Once the denoiser fθ has been trained, synthesis consists in drawing

a random sample xT and denoising it successively from t = T, . . . , 0. The mean of
pθ(xt−1|xt, t) is given by:

µθ(xt, t) = βt

√
ᾱt−1

1− ᾱt
· x̂0(xt, t) + (1− ᾱt−1)

√
αt

1− ᾱt
· xt (V.3)

Note that in this equation is involved the predicted clean image x̂0(xt, t). We
postprocess it: we clip it to [-1,1] and reproject the observations at each diffusion
step.

V.2.2 Lightweight network for image inpainting

Single image inpainting. In the case of single image inpainting, we are given a
large image xtest and its corresponding mask Mtest. When possible, we take sub-
regions of the large image that do not intersect with the testing mask, and train on
these smaller images: we generate synthetic masks, pick a random timestep, and
sample noise to be added. After training, the model is then applied to the test data.

When the image is too small to take sub-regions, we still use the same training
tactic but mask the input data with both the training mask and the testing mask.
The loss for the pixels in the testing mask is zero.

Architecture. In practice, our conditional network takes as input the masked
image y, the noisy image xt, the inpainting binary mask M , and the temporal
information t. For the network architecture, we have chosen to simplify the Ho
et al. (2020) architecture as much as possible. It is therefore a UNet-type network
without an attention layer (Figure V.1). The network entries are concatenated
before the first convolution. In the case of single-image inpainting, it is not necessary
to multiply the parameters, so we limit the number of channels to 32. In the end,
our network has 160k parameters, compared to 450M for RePaint (Lugmayr et al.
2022).

Unlike Ho et al. (2020), we get better results by directly predicting the initial
image x0 rather than the noise ε. The temporal information of the t diffusion
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Figure V.1: Our UNet architecture is very simple, it uses multiple scales and simple
operations. The number of channels is kept constant across the network. The
different inputs (xt, y,M, t) are simply concatenated before the first layer.

p ∼ U(0,W )× U(0, H)

for i = 1, ..., N do
θ ∼ U(0, θmax)

if i % 2 == 0 then
θ ← 2π − θ ▷ reverse mode

end if
ℓ ∼ U(0, ℓmax)

p′ ← p+ ℓ · (cos(θ) sin(θ))T

Draw line from p to p′

p← p′

end for

Figure V.2: Mask generation illustration and algorithm. Starting from a random
position p in the image, a sequence of angles θi and lengths ℓi are used to draw a
path with a given brush thickness.

step is usually introduced by a combination of sine and cosine. Encoding spatial
positions using this technique facilitates the learning of high frequencies in a 3D
image or scene (Tancik et al. 2020). We find that our simple formulation, similar to
that used in some denoising networks, gives us equivalent results and simplifies the
network. Training is performed by randomly drawing regions of size 256x256 from
our reference image, which are then noised and masked. The M mask is generated
synthetically according to a Yu et al. (2019) formulation. The algorithm is designed
to mimick an eraser used for removing a stain with back and forth motions in a local
region. Starting from a random starting point, a sequence of lengths and angles are
drawn randomly and defines the brushstrokes. This is repeated multiple times. We
show an illustration in Figure V.2 with the algorithm.

It is necessary to train the network to perform denoising for all time steps, so
they are drawn uniformly in [1, T ].
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Figure V.3: Training loop for single image inpainting, starting from a sub-region x0
of our full training image, batch samples are generated randomly (mask, timestep,
noise). The network uses all those inputs for producing a denoised image x̂0.

The UNet architecture allows for an adaptive receptive field: depending on the
task, the multi-scale nature of the network can be exploited or not. This is a clear
advantage over patch-based methods, since the patch size and the number of scales
in the Gaussian pyramid are two very important parameters that can be difficult to
set.

V.3 Application to texture inpainting

V.3.1 Experimental details

We consider the application to texture inpainting. External information is not
required for textures. They are stationary and training on a single image is sufficient.
For training, we use images from the MacroTextures dataset (Lin et al. 2023). In
these large images, routinely of size 1920x1080, we identify a central test region
of size 256x256 that is never seen during training. We use the rest of the image
for training. For training, we simply take a random crop x0, a generated mask
M , a random timestep t, and a noise ε and do a gradient step using the loss from
Equation V.2. This training loop is summarized in Figure V.3.

Our neural network has only a few parameters (160k) compared to RePaint’s
450M. Training takes 15 minutes on an NVidia V100. We train with the Adam
optimizer with an initial learning rate of 1e-4 for 15k iterations. The batch size is
16.

We generate masks with random strokes, similar to Yu et al. (2018). These
masks are of a reasonable size, neither too small nor too large, and come from the
same generator for both training and testing. Inconsistencies between training and
testing could introduce biases in the results.

We compare our frugal diffusion network to four other approaches. The first
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t=999 t=750 t=500 t=250 t=0

Figure V.4: Predicted x̂0(t) during the inference process. The details are progres-
sively added.

is a classical patch-based approach (Newson et al. 2017), which does not require a
learning phase. The second is the inpainting formulation of RePaint (Lugmayr et al.
2022), a diffusion-based inpainting algorithm, which represents the state-of-the-art
in inpainting. Their network has several hundred million parameters and requires
tens of GPU days of training. The third approach is the previous state-of-the-art
model from Yu et al. (2018): DeepFill, which uses an attention layer. Finally, we
compare our diffusion inpainting with a standard learning approach on a regression
problem.

Direct Comparison with Fixed Network Regression: This comparison is
made with fixed architecture: we isolate exactly the contribution of diffusion mod-
eling. For regression, the network is trained using only the ℓ2 error of the image
reconstruction on the masked area:

Lθ(x) = ∥M ⊙ (x− fθ(y,M))∥2 (V.4)

Regression and diffusion networks are trained for the same amount of time (15
minutes). For the patch-based approach, while we test on a relatively small image,
we include the full image to avoid restricting access to many different patches. This
full image is the training data for our diffusion approaches.

V.3.2 Qualitative Results

Figure V.5 shows the results for the different models.
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Visually, our method performs very well. It generates convincing results in
all situations: for regular textures and very stochastic ones. On top of that, the
stochastic nature of the diffusion process allows for sampling different results. We
observe that the direct regression method leads to results that do not reproduce the
stochastic variations of the images, unlike the diffusion or patch methods. For very
regular images (e.g . with periodicities), the regression method is able to partially
reconstruct the main structure, but the results remain blurred (Figure V.5, top line).
This loss of detail and fuzziness is the predictable result of the averaging effect of
the regression method. It’s interesting to note that in this simple case and with a
constant architecture, diffusion learning alone produces sharp, detailed results.

The inpainting results from the patch-based method of Newson et al. (2017)
are also satisfactory. However, it has trouble handling some structures because
the patches must be precisely aligned and we also see a little bit of blur in some
situations.

DeepFill on the other hand is not as good as the other methods. While not
blatantly wrong, the results have a few visual artifacts. It is neither trained on
these textures, nor it has many parameters and attention layers, which can explain
the lesser results.

It should also be noted that RePaint, although not trained on these specific tex-
tures, produces satisfactory inpainting. This ability to generalize can be explained
by the size of the network, the attention layers, and the training database. The
attention layers in the network also helps achieving self-similar solutions.

V.3.3 Quantitative results

We provide an in-depth analysis of the results using metrics that we also recall. It is
well known that the notion of ground truth for image inpainting is controversial, but
a quantitative evaluation is still needed to objectively compare the results of different
methods. We chose to measure so-called reconstruction errors, which compute the
errors between a ground truth and a prediction. They are far from perfect, but not
completely irrelevant in the case of texture inpainting, where the solutions are more
constrained than in the general case. For diverse methods that can produce multiple
results with different scores, we only report the scores for a single sample. First, let
us introduce the metrics we will use.

V.3.3.1 Metrics

PSNR is a measure of the ℓ2 error between the predicted image and the ground
truth. It is convenient to train neural networks on the ℓ2 reconstruction error,
which therefore makes PSNR a suitable metric of evaluation for these approaches.
The reconstruction error has is not enough for realism which is why GANs have
been a popular alternative for many tasks (Pathak et al. 2016). The optimal is
the conditional expectation it is known to be of low quality perceptually (Blau and
Michaeli 2018; Saharia et al. 2022a).



V.3. Application to texture inpainting 77

Reference Patch DeepFill Regression Ours RePaint

Figure V.5: The results from Regression are very blurry, and those from DeepFill
have network artifacts. Result from Patch are satisfactory. Results from RePaint
and our method are very good. RePaint results are impressive given that it has not
been trained on these textures, nonetheless it may hallucinate (4th row).

SSIM (Wang et al. 2004) is a full reference metric that uses the local means and
covariances in small windows of size 8x8. It emphasizes the changes in structure
rather than uniform intensity shifts.
LPIPS (Zhang et al. 2018a) This metric is derived from deep neural network trained
for other tasks, such as classification, and attempt to better reflect visual visual
similarity. It is more sensitive to blurred output, handle small misalignments, and
small changes in contrast.
FLIP (Andersson et al. 2020) is a hand-designed perceptual metric that aims to
correctly represent the perceived changes when flipping between two images. It was
designed especially for comparing image renders. It thus removes the small dis-
alignments and contrast changes. It also includes a per-pixel error map to visualize
where the dissimilarity is the highest.
DISTS (Ding et al. 2020) is designed to be similar to SSIM but uses an additional
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term to handle the textures. Indeed stochastic textures are assumed to not always
match and thus as long as the texture is the same, the samples can be different.
There is also a structure evaluation distinct from the texture.

V.3.3.2 Results

Numerically, the results from Table V.1 are simple: the regression approach is the
best in PSNR, SSIM, and FLIP. For the two other metrics, the patch method, our
diffusion model and RePaint scores are close. The patch metrics are slightly better
in this case. DeepFill is the very last in all metrics but LPIPS.

Comparing the visual results from Figure V.5 and the numerical results tells
a different story. In fact, the regression approach is very far from the best visual
results, it is excessively blurry for stochastic textures. This raises the question of
PSNR as a relevant metric for inpainting, especially since there is an important gap
between the regression score and the second one. It has recently been suggested that
PSNR is only loosely related to the visual quality of the results (Blau and Michaeli
2018; Saharia et al. 2022a) which we confirm it in our experiments. This problem
is particularly acute for inverse problems with high degrees of freedom (such as
inpainting) and for which the so-called “ground truth” is already doubtful. There is
a schism between the real objective of inpainting, producing good looking images,
and the metrics we optimize for. It is not surprising that inpainting losses for neural
networks often include a secondary objective that balances the reconstruction error
and a perceptual loss. Perceptual losses include: GAN objectives (Pathak et al.
2016), or style loss (Gatys et al. 2015).

We hold the same conclusions for SSIM. In our experiments, the inpainting task
is not sufficiently constrained, the inpainted structures are too different from the
ground truth structures. Then the invariance of SSIM to local intensity shifts is not
relevant.

According to the perceptual measure LPIPS (Zhang et al. 2018a), the results
are quite different. We see that the patch-based method, our method, and RePaint
perform similarly on LPIPS and DISTS, which is confirmed by similar quality visu-
ally. Compared to PSNR, LPIPS does not enforce a strict pixel-to-pixel similarity
because it compares deep feature maps. LPIPS is also more sensitive to blur than
PSNR. Blur is an important visual feature that significanly affects the perception
of an image or texture. LPIPS is not without limitations but is currently one of the
best options when a ground truth is available and makes sense.

Finally, we wanted to highlight in these experiments that PSNR scores can be
deceptive for inpainting metrics. LPIPS better matches the perceptual error but
still requires a ground-truth to be computed. Some authors (Saharia et al. 2022b;
Suvorov et al. 2022) have adopted an evaluation score based on the Fréchet Inception
Distance which measures distance between distributions of features. It does not
require ground truths. One last option is to use human evaluators.



V.3. Application to texture inpainting 79

Method PSNR (dB) ↑ SSIM ↑ LPIPS ↓ FLIP ↓ DISTS ↓ #Param.
Patch 28.12 0.902 0.046 0.064 0.026 -

DeepFill 21.55 0.870 0.105 0.156 0.149 3M
Regression 30.31 0.923 0.157 0.045 0.099 160k

Ours 28.02 0.908 0.057 0.054 0.031 160k
RePaint 26.77 0.899 0.053 0.078 0.031 450M

Table V.1: Reconstruction error using different metrics on our inpainting datasets.

Method PSNR (dB) ↑ SSIM ↑ LPIPS ↓ FLIP ↓ DISTS ↓
Regression 30.31 0.923 0.157 0.045 0.099

Ours 28.02 0.908 0.057 0.054 0.031
Ours (averaged) 29.67 0.921 0.141 0.071 0.093

Table V.2: Reconstruction error when using the average of multiple samples for the
diffusion approach. Averaging the samples leads to a better PSNR and SSIM but
worse LPIPS / FLIP / DISTS.

V.3.3.3 An experiment showing the limitations of the PSNR

In this section, we will show how it is possible to artificially increase the PSNR of
our approach. Diffusion models are trained to minimize the reconstruction error but
are used in inference to draw samples from the distribution rather than picking the
mean of the distribution. To maximize the PSNR, we make the observation that
we simply need to generate samples close to the conditional mean. It is possible to
approximate this using our diffusion model and many samples1:

E[x|y] =
∫︂
xp(x|y) ≈ 1

n

n∑︂
i=1

xi

Where the xi are samples obtained using the conditional reverse process. The diffu-
sion framework is precisely designed to approximate the true conditional distribu-
tion.

The numerical results of averaging 100 samples for evaluation are in Table V.2.
We see that averaging all these samples allow for a gain of 1.5dB over our sample
point estimation. SSIM is also improved. However, the other perceptual metrics
are heavily impacted. We recover metrics closer to the Regression approach with a
severe degradation in LPIPS, FLIP and DISTS.

Visually Figure V.6, we confirm that averaging the samples from our diffusion
model approximate the output of the Regression model which is expected. There
is however one difference, is that the regression model cannot give us access to a
variance of map of the output while it is possible to exhib it with different samples.

1an alternative can also be obtained by using the estimate of x0 at time t = T i.e. fθ(xT , y, T )
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Regression Diffusion sample Diffusion avg. Diffusion std.

Figure V.6: It is possible to get results close the regression approach by averaging
multiple diffusion samples, we also get a variance map. Variance is located along
the possible edges (first row) and highlight the stochasticity of the texture.

V.3.4 Frugality

The previous sections show that RePaint (Lugmayr et al. 2022) generates high qual-
ity results and is able to generalize to very specific problems like texture inpainting.
However, these capabilities have been achieved after a long learning curve and there-
fore at the cost of significant environmental impacts. We must note, however, that
RePaint is better in this respect than Palette (Saharia et al. 2022b). In fact, RePaint
is derived from an existing unconditional diffusion model, while Palette is specifi-
cally trained for inpainting only. This is of course an important consideration given
the challenges of climate change. Table V.3 shows the estimated environmental im-
pact for each method, including training and inference time. A major limitation of
our approach is that we have to train for each new texture, which is not the case
for RePaint or DeepFill. The patch-based approach of Newson et al. (2017) takes
slightly longer for inference than ours, but does not require any training, resulting in
the most energy-efficient method of all. If we compare the inference cost of RePaint
and the total cost of our method, we see that the break-even point is reached when
the number of inferences is greater than 2.
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Training Inference (1 sample)
Time (h) gCO2eq Time (h) gCO2eq

Patch 0 0 0.03 0.25
DeepFill 120 1707 0.001 0.01
RePaint 576 9832 0.17 2.4

Ours 0.25 3.5 0.001 0.01

Table V.3: Environmental impact of each method. For neural methods, the training
time dominates the total cost, they need to be used multiple times to favorably
compete with patch-based approaches.

Inference time (s) VRAM (MB)
Patch 18* 23

DeepFill 1 103
RePaint 610 2768

Ours 3 69

Table V.4: Inference time and VRAM requirements show that large models are not
really adapted to interactive tools. While engineering efforts can optimize these
values, RePaint is too long, and DeepFill is not as good as our method. *: CPU

We estimate the electricity consumption for training and inference of these mod-
els using Lacoste et al. (2019). The CO2 equivalent is provided for information
purposes, for a French electricity consumption2.

V.3.5 Interactivity

Outside of the research field, image inpainting is an important tool for artists. In
this context, interactivity is an important selling point. Patch-based methods have
undergone many optimizations to process images in real time, and be useful in
image processing softwares such as Photoshop. In our case, previous methods deep
methods like DeepFill (Yu et al. 2018) are a simple forward pass through a moderate-
sized neural network. But diffusion models on the other hand, while producing very
good and diverse results, have problems with inference speed, and the size of the
models often makes them unusable on limited hardware. Our method combines
together diffusion and a lightweight model that can be used on consumer hardware
and in near real-time. We present a quick comparison of the running time and
memory requirements of several inpainting methods for 256x256 images in Table V.4.

One way to add state-of-the-art inpainting algorithms to software products is to
keep these applications on a remote server (Adobe Firefly 2023) but this requires
an internet connection and merely hides the environmental impact of such methods
instead of solving it. A second issue is that some of these large diffusion models are
trained on copyrighted data. This can be problematic for professional use.

256.9g CO2 eq/kWh in 2021. Source: Base Empreinte® (ADEME)

https://base-empreinte.ademe.fr/
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Figure V.7: Proof-of-concept that combines drawing (a), and a magic eraser / in-
painting that runs interactively (b-c). Instead of removing all the pixels in a given
region, this eraser is actually inpainting the region.

On the other hand, we could imagine a use case, where our method is trained
locally on the artist’s own data, and used locally. After training, the model can be
integrated for interactive use. We show a simple proof of concept in Figure V.7 for
line drawing inpainting. In this example, we trained our diffusion model on multiple
images of line drawings (Sasaki et al. 2018). In the case where multiple images are
available, there is no obvious way to use all the training images for the patch-based
method whereas it is easy to do with a learning-based approach.

In our case, the inference time is not that far from truly real time, it could
probably be achieved with some optimizations. Some fruitful approaches could be:
network pruning and quantization, reducing the number of diffusion steps which is
probably more than enough for the bimodal color distributions.

V.4 Limitations

A major limitation of our approach is that it requires a full training for each new
texture. This puts our method at a disadvantage against patch-based methods,
which are faster than a full training, even though our method is faster for inference.
Large neural networks take longer to train and are more computationally expensive,
but once trained they can be used in many situations. It is often easier to reduce the
size of a powerful network via pruning (Blalock et al. 2020), or distillation (Hinton
et al. 2015), than to train a small powerful network (Frankle and Carbin 2023).

The second limitation is that our network cannot synthesize new, unseen content
and is thus limited in generalization. In Figure V.8, we show the results of inpainting
a face and a natural image. On the natural image, our inpainting of the leopard and
the background are satisfactory thanks to self-similarity, but are slightly blurry, this
confirms that our method can be applied outside of textures. On the face, without
surprise our method fails. RePaint is the best option in both cases, thanks to its
large training database.
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Patch Ours RePaint

Figure V.8: Results of different methods on non-stationary images. Our method can
model a multimodal distribution and be applied to natural images (top). It can’t
however create new content which is a limitation shared with patch-based methods
(bottom).

V.5 Conclusion and perspectives

In this chapter, we have investigated the application of diffusion models to image
inpainting using a single image. Diffusion methods have become the state-of-the-art
for image generation and for solving many inverse problems. However, the cost of
training these models is a major obstacle to their practical use, and raises questions
about their durability. We have presented a network based on the principle of
diffusion training but retaining only the essentials for its architecture, dividing the
number of parameters by more than 1000 and the training time by 500 compared
to state-of-the-art methods, without compromising the quality of results in cases of
textures. Compared to patch-based approaches, our method is a slower but produce
slightly better results.

We have only studied the full training of networks from scratch and not the
finetuning on a small dataset, which differs from the current trend of exploiting
large foundation models (Hu et al. 2022; Ruiz et al. 2023). Indeed finetuning is
probably faster than a full training of a small model. While potentially giving
better results, this proposition still requires to use a large network and introduces
biases from the external database.

Beyond the extension to videos that we detail in the next chapter (chapter VI),
we identify two interesting perspectives.

Architectures for using both patches and neural networks. We have
simplified the architecture to use only convolutions. Fully convolutional neural net-
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works are easy to train and often perform very well, but newer attention mechanisms
could be used. In particular, attention layers have links to patch-based approaches
that are well suited to the internal setting. Attention could greatly benefit internal
methods to further reduce the learning phase.

Applications to other inverse problems. We have only looked at the in-
painting problem which is quite close to generative problems, but other inverse
problems could benefit from an internal setting. For example, in medical data, it is
common to have limited data but many inverse problems to solve. These algorithms
may be of interest in this context.



VI Internal diffusion for video inpainting

In this chapter, we present an extension of chapter V to video inpainting. Video
inpainting is a very challenging task due to the high dimensionality of the signal
and the temporal consistency required for obtaining convincing results. Despite
very impressive results in the case of image inpainting (Saharia et al. 2022b; Yu
et al. 2018) extension of deep learning approaches to the case of videos has proved
to be difficult. Thus most methods still rely on a combination of deep learning and
carefully crafted inference schemes based on optical flow.

Recently, diffusion models have shown impressive results in modeling complex
data distributions, including images and videos. They are able to synthesize realistic
images with unprecedented quality (Ho et al. 2020). Following their introduction for
unconditional data generation of face images and more general natural images, con-
ditional diffusion models dedicated to inverse problems have been proposed (Saharia
et al. 2022b). The extensions to videos have been limited due in part to the high
computational cost of training such networks, and to GPU memory constraints. Ho
et al. (2022c) have presented an extension for the generation of small videos. Oth-
ers, including MakeAVideo (Singer et al. 2022) and ImagenVideo (Ho et al. 2022b)
attempt to circumvent the problem by combining 3D diffusion models with super-
resolution and frame interpolation, producing sequences that are nevertheless not
completely natural. However, these networks are extremely large, inducing long
training and inference times. Several acceleration techniques have been proposed in
the framework of Song et al. (2021a), or the network introduced in Rombach et al.
(2022), for image diffusion, but they are still not sufficient in the case of videos.

We present the first application of diffusion models to video inpainting. We
show that internal training is sufficient to train a lightweight network for video
inpainting. Internal training means, in this context, that we only use the current
information contained in the video to inpaint for the purposes of training. Indeed,
this makes a lot of sense for the case of videos. Due to their high level of auto-
similarity, the information outside the zone to inpaint is similar to the information
inside, and thus represents a good database for inpainting. Furthermore, we present
a new method to train diffusion models that is particularly efficient in the case of
internal training. In internal training, the trained model is less important than the
inpainting result because we expect such a network to be used only once. Therefore
we prioritize the result over the model i.e. inference over training. Specifically, we
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start the inference process and train our network only when needed. This strategy
is particularly effective for diffusion models because the inference is made up of a
thousand inference steps. Each step is thus solved almost individually instead of
training a model to solve them all.

The video results can be found online at https://infusion.telecom-paris.fr/phd.

VI.1 Related work

VI.1.1 Diffusion Models

We complete chapter II on diffusion models, we summarize the main contributions
on diffusion models. We especially focus on the application to video generation
which is the close to video inpainting, since no other work has been published for
video inpainting using diffusion models. Diffusion models (Ho et al. 2020; Sohl-
Dickstein et al. 2015) are generative models that have shown great generative ca-
pabilities on image datasets. However, a major drawback, is the slow inference and
training, which can be accelerated with various techniques (Nichol and Dhariwal
2021; Rombach et al. 2022). A solution to overcome the size of the model is to
use a multiscale approach via the Gaussian pyramid (Ho et al. 2022a) or a wavelet
decomposition (Guth et al. 2022).

For image inpainting, Lugmayr et al. (2022) use an unconditional diffusion
model, with projections and time-travels for better coherence. Improvements to
this framework have been proposed by Chung et al. (2023); Kawar et al. (2022b).
Saharia et al. (2022b) train a conditional model for diverse image-to-image problems.
It has also been proposed to control the inpainting via text (Xie et al. 2023).

However the extension of diffusion models to videos is not straightforward,
mainly due to their huge size and training time. Ho et al. (2022c) have extended the
diffusion approach to video by using a temporal attention layer for sharing the infor-
mation along the temporal axis, avoiding costly 3D convolutions. Other approaches
have studied the conditional generation of videos via multiple networks for frame
interpolation and super-resolution (Ho et al. 2022b; Singer et al. 2022). Harvey et al.
(2022) implement a diffusion network for generation based on long temporal atten-
tion and frame interpolation. To reduce the computational complexity of handling
full 3D videos, Yu et al. (2023) use multiple 2D projections. Mei and Patel (2023)
have two models, one for frame content and one for frame motion. Blattmann et al.
(2023) finetune an image model for videos by introducing temporal attention lay-
ers. Luo et al. (2023) share a basic noise component for all frames representing the
structure of the scene and a frame-wise noise for variations in each frame. Another
option is to decompose the video into multiple images using neural atlases (Kasten
et al. 2021) which can then be handled by image-based diffusion models (Chai et al.
2023). Ceylan et al. (2023) use noise inversion and the attention maps for consistent
video editing. Liew et al. (2023) propose text-guided video editing, disentangling
content, structure via the depth map, and motion. Very recently, Guo et al. (2024)
add a motion module to transfer motions from a reference to a generated image.

https://infusion.telecom-paris.fr/phd
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Finally, it has recently been shown that diffusion can be applied to small datasets,
for example when only a single image is available for training. It is possible to achieve
single image generation with only one image (Kulikov et al. 2023; Wang et al. 2022).
Similarly, Nikankin et al. (2023) show the application to both image and video, for
generation or extrapolation. It is also possible to finetune a general diffusion model
for a specific scene (Ruiz et al. 2023).

VI.1.2 Video Inpainting

Classical approaches to video inpainting have long relied on available information
already present in the video to achieve inpainting of the occluded region using ex-
tensions of image patch-based approaches (Criminisi et al. 2004; Drori et al. 2003).
The early works on video inpainting split the problem in two: the easy case of
static background occluded by a moving object and the more difficult case of a
moving occluded object (Patwardhan et al. 2005). To handle light camera motion,
a preprocessing step is then added (Patwardhan et al. 2007).

These patch-based greedy approaches are then replaced by a global optimization
problem (Wexler et al. 2007). This optimization is a significant improvement over the
greedy approaches as it allows for better global coherency. One issue is the running
time of this method. Newson et al. (2014) add texture features, a stabilization
step, and adapt the PatchMatch algorithm (Barnes et al. 2009) to greatly improve
the computation speed and quality. Patch-based methods can be long to compute
but the inpainting can be propagated to new frames by estimating the camera
motions (Herling and Broll 2014). Le et al. (2017) adds the optical flow to the
patch description and warp patches according to their flow for better reconstructing
the different moving objects. Granados et al. (2012) optimize the shift-map, they
can handle non-periodic motions but solving the graph-cut problem can be very
long.

Another class of approaches is based on optical flow. Indeed, in many situations,
especially when the occluded region is observed at some point in time in the video,
optical flow gives extremely useful information. The first method is by Shiratori
et al. (2006), they show that inpainting the optical flow is much easier than in-
painting the color values. Matsushita et al. (2006) inpaint the optical flow for full
frame video stabilization. Strobel et al. (2014) first inpaint the optical flow which
adds constraints in the exemplar-based color inpainting step that follows. Huang
et al. (2016) jointly optimize the appearance and the optical flow, making sure that
the output is temporally coherent. A joint optimal flow and appearance energy is
optimized by Bokov and Vatolin (2018), their method is very fast and handle any
camera motion. Xie et al. (2017) apply their method for dynamic texture synthesis
in the context of inpainting.

More recently, deep learning-based methods are flourishing because they can
finally learn from the large amount of data available. They are however more re-
stricted than traditional methods because they are not memory efficient and HD
video inpainting is still a challenge today. Kim et al. (2019) have proposed a direct
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inpainting approach using a 3D-2D neural network with an optical flow consistency
loss. Wang et al. (2019) perform the inpainting in 2 steps, the first with a 3D con-
volution network at low resolution and a second one with image inpainting. Gated
convolution (Yu et al. 2019) is extended to 3D by Chang et al. (2019) with a 3D
patch-GAN.

Murase et al. (2019) perform the optical flow inpainting with a lightweight net-
work and then integrate it. Methods such as (Gao et al. 2020; Xu et al. 2019) first
inpaint the optical flow and then propagate pixel values. These methods have been
successful in handling non-rigid motions and long range dependencies. Zhang et al.
(2022c) proposed to predict the optical flow using more frames, resulting in a more
accurate optical flow and better preservation of motions. Li et al. (2022b) integrate
the optical flow prediction and propagation inside the training loop optimizing the
network parameters for video inpainting rather than optical flow prediction. The
first work, to our knowledge, on video inpainting with diffusion is by Gu et al. (2023).
They use optical flow to guide the propagation of features in a latent diffusion model.

Attention-based algorithms can be seen as updated versions of patch-based al-
gorithms. They are however severely limited the resolution of the video (recall that
attention was already limited by memory constraints). Greedy onion peeling gets
revisited by Oh et al. (2019). Affine transforms can align frames and copy-paste
algorithms get improved with deep learning (Lee et al. 2019). Sometimes it is nec-
essary to use both the near frames and distant frames (Li et al. 2020; Woo et al.
2020). Zeng et al. (2020) align the frames and use a Transformer to fill multiple
regions at the same time using self-attention. After initialization of the inpainted
region, Hu et al. (2020) combine multiple proposals together which are larger than
just pixels from Transformers. Liu et al. (2021b) adapt overlapping patches which
is more expensive but allows for more flexibility and better reconstruction quality.
Zhang et al. (2022b) combine a Transformer with optical flow. To avoid the problem
of rigid patches, Cai et al. (2022) deform the patches used in a Transformer with
homographies. Lastly, Propainter (Zhou et al. 2023) improves the propagation step
of optical flow methods and avoid useless computations in the attention modules
using only the masked queries.

Related to internal learning, Zhang et al. (2019b) learn a model on a single video
similarly to Deep Image Prior Ulyanov et al. 2018. They also model the optical flow
for better temporal coherency. Ouyang et al. (2021) tackle the same problem but
propose a solution to avoid explicit modeling of the optical flow. Finally, Ren et al.
(2022) use VAE with a discrete codebook finetuned on the target video, similar to
a masked quantized autoencoder.

VI.1.3 Dynamic Texture Synthesis

Early work in dynamic texture synthesis modeled the problem with a linear dy-
namical system (Doretto et al. 2003). This was later refined into a multi-scale and
autoregressive model by Doretto et al. (2004). Costantini et al. (2008) factorize
the video with a higher-order Singular Value Decomposition to avoid the simplistic
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temporal decomposition. Zhou et al. (2009) use a non-linear dynamic system and
a different sampling method. You et al. (2016) find that kernels allow non-linear
modeling and improve the results without stability problems.

The greedy exemplar-based method from Wei and Levoy (2000) and its energy-
based alternative (Kwatra et al. 2003) also work for dynamic texture synthesis.
Spatiotemporal patches are rearranged to generate new texture samples.

Following the seminal work of Gatys et al. (2015), neural networks have been
used to describe dynamic textures. Synthesis achieved by optimizing the Gram
matrices (Funke et al. 2017; Yang et al. 2016). Tesfaldet et al. (2018) optimize the
pixels of a video to have matching statistics of appearance and optical flow.

Xie et al. (2017) use an energy-based framework whose parameters are described
by a neural network. After the analysis, the synthesis is done by Langevin dynam-
ics. Dorkenwald et al. (2021) learn a latent representation of a video and combine it
with scene dynamics through a a decoder to generate new stochastic videos. Finally,
DyNCA (Pajouheshgar et al. 2023) extends the work on cellular automata (Mord-
vintsev et al. 2020) to dynamic textures. A tiny neural network learn the update
rules of the automata.

VI.2 Method

Our method builds on the Denoising Diffusion Probabilistic Models (DDPM) (Ho
et al. 2020) and chapter V, based on discrete forward and backward processes. The
formulation is very similar to the previous chapter: the framework is adapted for
inpainting by modeling the conditional data distribution. Our observations y are
an incomplete video this time. Our vectors are from RL×H×W×3 representing RGB
videos of L frames of size H ×W . Despite the presence of a temporal component
in videos, the t variable is only used for the diffusion timesteps.

The unknown distribution of natural videos q(x0|y) conditioned on y is degraded
into pure noise q(xT |y) through a series of 1000 steps. We keep a variance schedule
linearly increasing from β1 = 0.0001 to βT = 0.02.

The reverse process is learned by a neural network predicting the means of
the Gaussian variables. We keep a fixed variance schedule instead of learning the
variances: σ2t =

1−ᾱt−1

1−ᾱt βt.
In the case of inpainting, as mentioned above, we are interested in the conditional

data distribution p(x|y) where y are our observations i.e. the known region of the
image. The observations are introduced in the network as incomplete images via
concatenation in the input layer (similarly to Saharia et al. (2022b)). We also add
the mask information as input. We train our network by minimizing the reweighted
ℓ2 loss of the x0-parametrization (Ho et al. 2020):

Ex0,ε,t,M∥M ⊙ (x0 − fθ(xt, y, t,M))∥22 (VI.1)

Where M ∼ Pmask is a binary mask with 0 for the known region and 1 elsewhere,
y is the masked video i.e. y = x0⊙(1−M), and xt is obtained by the forward diffusion
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of x0 by the following:
xt =

√
ᾱtx0 +

√
1− ᾱtε

where αt = 1− βt and ᾱt = Πti=0αt, ε ∼ N (0, I).
This objective function derived from the Evidence Lower BOund can be ex-

pressed as a sum of loss functions (one for each timestep):

Lt(x0) = w(t)∥x0 − x̂0(xt, t)∥2

with w a weighting function depending on the timestep. The choice of this weighting
function is crucial for convergence and quality but is difficult to set. The original
authors (Ho et al. 2020) suggest using a simple uniform weighting for easier con-
vergence. Nichol and Dhariwal (2021) uses importance sampling to compute the
weighting term to stabilize the convergence. Hang et al. (2023) propose a truncated
version to avoid extreme values of this weighting term. In our case, we use a uniform
weight of 1 but we use a specific training schedule (detailed in subsection VI.2.3).
We get better results this way than with other tested strategies.

Unless specified we use the default parameters of DDPM (Ho et al. 2020): vari-
ance schedule, sampling, time schedule. Therefore, our method could benefit from
many of the recent improvements for each of these items. We also operate in the
pixel space, and not a latent space as proposed by Rombach et al. (2022).

VI.2.1 Architecture

We extend the traditional UNet architecture to video by using 3D convolution.
Instead of focusing on very long-range dependencies, we focus more on local temporal
features and thus use a 3D convolution approach within a UNet. Local convolutions
are more important for modeling dynamic textures, which is our goal, than long-
range dependencies through attention layers, or transformers.

By training on a single video, we avoid the need for very long-range dependencies.
In fact these dependencies are learned during training. The spatial relationship
between elements is not inferred at test time but embedded in the weights of the
network. A disadvantage is that it does not enforce coherent completion for the
generated content. A similar context may give a similar inpainting content but no
strict rule enforces the same appearance for texture samples. This problem will be
illustrated later subsection VI.4.1.

Since we are training on a single video, we can limit the number of parameters
in our network. With 16 convolutional layers, 32 channels, our network has 500k
parameters which are to be compared to the 16.5B parameters of ImagenVideo (Ho
et al. 2022b) for text-to-video generation. Even image models are really big with
450M parameters (Lugmayr et al. 2022).

VI.2.2 Single Video (Internal) Training

Our neural network is trained to inpaint a single video, using the video itself. This
type of approach is referred to as internal learning. Fundamentally, it is based
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on the auto-similarity hypothesis, which has been successfully used in the case of
patch-based methods (Newson et al. 2014) and neural networks via internal learn-
ing (Alkobi et al. 2023; Ouyang et al. 2021; Zhang et al. 2019b). It is quite logical
that such a hypothesis is successful for video inpainting; videos contain roughly the
same content in every frame, with some movement, with some or all of the occluded
content being revealed at some point in time. Thus, what might be considered as
overfitting in a normal machine learning situation is in fact desirable here: we want
to use the content of the video for the inpainting task. This kind of situation also
arises in the problem of Single-Image Generation (Shaham et al. 2019).

Thus, it is possible to efficiently inpaint a video without requiring a large external
dataset. We assume that a binary test mask Mtest is provided. It is equal to 1 in
the region to be inpainted, 0 elsewhere. Training is done by sampling consecutive
frames from the video, and generating training masks which are to be inpainted /
denoised by our neural network. We prevent data leakage from the test region by
additional masking operations for the inputs:

xt =
√
ᾱt(1−Mtest)⊙ x0 +

√
1− ᾱtε

y = (1−Mtest)⊙ (1−Mtrain)⊙ x0
M = 1− (1−Mtest)⊙ (1−Mtrain)

M is thus the logical OR combination of Mtest and Mtrain. Similarly, we ignore
some parts of the objective function:

Lθ(x0) = ∥Mtrain ⊙ (1−Mtest)⊙ (x0 − fθ(xt, y,M, t))∥2

VI.2.3 Interval training

Training a diffusion network obviously involves training it for all timesteps t, from
1 to T , since all these steps are needed during inference. However, depending on
the timestep, the goal of the network is quite different. If t is large (pure noise),
then the network should behave more like a generative model because the input is
mainly noise. If t is small, then the network should behave more like a denoiser,
since the original video is only slightly noisy. This observation is crucial: indeed,
in a standard diffusion model, a single network is supposed to achieve these very
different goals. This is why diffusion networks tend to be extremely large.

To circumvent this problem, we propose to use one lightweight network trained
on only a subset of timesteps at a time. Training starts from the end of the diffusion
process, dividing the 1000 timesteps into a number of non-overlapping intervals. We
train our model on a given interval. Once training on that interval is complete, we
use the model to infer the start of the next time step. At this point, the model is
trained only on the next interval. This is carried out until we have reached time
step t = 0. We can, of course, save the intermediate models if we wish, but this is
not really necessary for video inpainting, since the model can only be used for the
current video.

In practice, we define a time schedule of N steps such that τ1 = 0 < τ1 < ... <

τN = T . Our network learns successively on each interval [τi, τi+1], starting with
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(a) Baseline

(b) Interval training

Figure VI.1: Baseline vs Interval training. In interval training, we train our network
on a subset of timesteps of the diffusion process.

the noisiest interval. After training on one interval, the inference is done for the
same interval i.e. for all timesteps from τi+1 to τi (details in Alg. 5).

This strategy has several advantages. First, we can use a lighter network as it
specializes only on a small subset of timesteps. Second, we can avoid complicated
weighting scheme for the loss function: in one interval all timesteps have roughly the
same theoretical weight and setting a uniform weight 1 is not a bad approximation.
This is not the case when one network is used and must perform well on all T
timesteps (Hang et al. 2023).

We note that as we were developping our interval training approach, a concurrent
method by Balaji et al. (2023) was developed for image generation which shares a
similar training methodology. In their work, they create an ensemble of networks
specialised in each timestep. However, we note a fundamental difference in our
approach: once the model has been trained for a given interval, we can let it “forget”
that interval since it is no longer required for further inpainting. In practice, we
simply finetune it on the next interval. In this way, the relevant weights are retained
and fine-tuned while the useless bits are replaced by more approriate ones. In the
approach of Balaji et al ., the whole ensemble is required for inference. Thus, our
approach is considerably more frugal, and thus remains lightweight as we said before.

VI.3 Video inpainting experiments

VI.3.1 Evaluation

For evaluation, we use Peak Signal to Noise Ratio (PSNR), Structural Similarity
Index (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et
al. 2018a) which are full-reference quality evaluations. However these metrics are
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Algorithm 5 Training / inference algorithm for interval training
Require: model fθ, intervals τi=1..n, test data ytest

xtest ← N (0, I)

for i = N − 1, ..., 1 do
for j = 1, ..,K do ▷ Training for K iterations

xj , yj , εj ,Mj ← NextBatch(j)
t← U(τi, τi+1)

Take gradient step with gradient:
∇θ∥xj − fθ(

√
ᾱtxj +

√
1− ᾱtεj , yj , t,Mj)∥2

end for
for t = τi+1, ..., τi do ▷ Inference

µθ ← fθ(xtest, ytest, t)

xtest ∼ N (µθ, σ
2
t I)

end for
end for
return xtest

designed for images and do not take into account the temporal component. To
complete these metrics, an extension of the Fréchet Inception Distance has been
proposed: Vidéo Fréchet Inception Distance (VFID) by Unterthiner et al. (2019);
Wang et al. (2018a). The image classification network is replaced by a network for
video classification (Carreira and Zisserman 2017). The classification network is
used to extract deep spatiotemporal features and then modeled by a multivariate
Gaussian is fitted. In video inpainting, the community (Li et al. 2022b; Liu et al.
2021b; Zeng et al. 2020) has adapted the following evaluation procedure: for each
video, extract the deep features, averaging spatially and temporally if needed to
have a single 1024-dimensional vector per video. These features are collected for
the inpainted video on one side, and for the original video on the other side. The
Gaussian parameters are estimated and the distance is computed. This procedure
has a strong limitation however, contrary to image generation, the number of sam-
ples with respect to the dimension is very low which makes the estimation of the
high-dimensional Gaussians hazardous. We keep it that way for comparison with
the other methods, under the name VFID, but propose another solution.

To evaluate the quality of single video generation, Gur et al. (2020) proposed
to extend the Single Image Fréchet Inception Distance (SIFID) from Shaham et
al. (2019) to videos (SVFID). The idea is to extract low-level features that are
descriptive of the original video appearance, rather than high-level features which
are more semantic and are often used for FID or VFID. By using low level features,
we get more data to estimate the Gaussian parameters. In the case of generation,
the sets of generated data and reference data are disjoint, but not for inpainting.

For inpainting, we propose this new way of computing the metric because the
inpainted video and the original video differ only in the occlusion, so we are com-
paring the features of the inpainted region with the features of the removed object
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which has little sense. What we propose is to compare the features from the com-
pleted region and the features from the rest of the video. This biases the result into
promoting inpainted content that is similar to its surroundings, which limits the
generative aspect of inpainting but is a lesser evil compared to the alternative and
is approriate for video inpainting for which very good guesses are possible compared
to image inpainting. We note it SVFID◦.

In practice, we use the 480-dimensional features from the layer “Mixed_3c“. The
reduction is still acceptable at this layer to provide enough data points for a correct
estimation of the Gaussian parameters. For SVFID◦, we resize the inpainting mask
to the size of the features. The interior features are not that easily separated from
the exterior but this approximation is common in inpainting (Yu et al. 2018).

VI.3.2 Training details

For training, we specifically use a single video and avoid introducing external data
into our training set. We resize the training data and masks to 432x240. While
our architecture is lightweight and can be used with many frames on a reasonable
GPU, we only use 24 frames at a time for training. Unlike other video generation
approaches or some video inpainting algorithms, we use consecutive frames without
dropping any of them.

We generate training masks similar to the evaluation masks from Liu et al.
(2021b). Their algorithm generates random shapes using Bezier curves. The shape
is the same throughout the video but can move. Specifically, a mask can be fixed,
relatively to the image borders, or move through a set of random points with a
random acceleration component.

For better matching between the training and test sets, we generate masks of
similar size and motion of the test mask. We use the Adam optimizer with an
initial learning rate of 1e-4, and train for 200k steps. For interval training, the 1000
timesteps are divided into 20 intervals of length 50. Each interval has the same
training budget.

VI.3.3 Video reconstruction

We present here our results on video reconstruction i.e. video inpainting with a
ground truth. A common currently-used method of evaluating video inpainting
methods is to take a video database (often the “DAVIS” database Perazzi et al.
2016), and add an artificial occlusion mask to the videos. This is done so that a
ground-truth is available for evaluation, but results in somehow artificial masking
conditions. Moreover, it is well-known that in the case of inpainting, the notion
of ground-truth is debatable, since many different inpainting solutions can look
realistic. This task and its evaluation procedure has become the new standard for
comparing and benchmarking video inpainting algorithms (Li et al. 2022b; Liu et al.
2021b; Zeng et al. 2020).

We thus adopt the standard evaluation method in video inpainting (Liu et al.
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2021b). We evaluate our method using 50 sequences from the DAVIS dataset (Per-
azzi et al. 2016; Pont-Tuset et al. 2017). We use the synthetic masks from Liu
et al. (2021b). These results are interesting for evaluation but not as much as qual-
itative evaluation. An example is found in Figure VI.2. In contrast to the masks
found in the object removal task, these masks are generated independently of the
video content, they are completely artificial and have no semantic meaning. As a
result, they often cover simple cases of video inpainting: static backgrounds and
small partial occlusions. We argue that the real challenge lies in complex motion
and dynamic backgrounds, which is not reflected in these evaluations. We stabilize,
when possible, the videos which is an important pre-processing step for our method
(see subsection VI.3.7) and train our network for 200k iterations.

We report the results using a single sample and do not use the fact that our
method can generate multiple solutions. We measure the frame-wise PSNR and
SSIM, as well as Video Fréchet Inception Distance (VFID). The first two metrics rely
on a ground-truth, which, as explained before, prevent their use in the case of real
object removal applications. These metrics are moreover computed frame-by-frame
and therefore invariant to motion discontinuities. We also report the VFID (Wang
et al. 2018a), which uses spatio-temporal features and does not require a pixelwise
ground truth: the statistics of all the inpainted videos are compared to the statistics
of all the original videos. Quantitative results can be found in Table VI.1, the results
for other methods are taken from Zhou et al. (2023). Our method performs worse
than several other methods. ProPainter gets the best results overall, in PSNR,
SSIM, and VFID. It turns out that video reconstruction is a restoration problem for
which solutions very close to the ground truth can be achieved, thanks to camera
motions and moving occlusions, and thus very high PSNR values can be reached. In
these cases, optical flow-based approaches can provide a very accurate completion,
while any invention, no matter how good, is penalized. Our method is designed to
hallucinate dynamic and stochastic completions, which are still a challenge in video
inpainting today. These cases are of secondary importance in the DAVIS benchmark,
which focuses on the reconstruction of static backgrounds. These simpler cases are
very well handled by optical flow or affine motion estimation (Bokov and Vatolin
2018; Herling and Broll 2014), and have been further refined using deep neural
networks (Zhou et al. 2023).

A major limitation of our approach becomes appearant: after training on a
synthetic mask, our model cannot be used for object removal, which is the interesting
part of video inpainting. In fact, our model is specific to a video/mask pair, and
reusing the same model for a different mask is equivalent to introducing test data
into the training set. This is a methodological problem, but it can still be done.
There is also a risk that a model will overfit to a video and not be able to remove
an object whose appearance and position are hardwired into the weights. Ideally, a
new round of training and inference round must be performed. Our method is not
suitable for large-scale experiments, as it requires training a new network for each
video. We refrain from evaluating our method on 508 videos and synthetic masks
from the Youtube-VOS test set (Xu et al. 2018a).
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Figure VI.2: Measuring the reconstruction error on the DAVIS dataset using syn-
thetic masks. Right: result using Infusion. Link to videos

VI.3.4 Object removal

Object removal is probably the most exciting application of video inpainting, but it
has the major drawback of being difficult to evaluate quantitatively. Therefore, in
this section, we propose to look mainly at the results of video inpainting results and
not to judge the results by numbers from a table. Furthermore, we are interested in
complex motion and dynamic backgrounds, which is the real challenge of video in-
painting today. The easy cases (static backgrounds) are now really well handled now
using optical flow, affine motion estimation, or deep networks (Bokov and Vatolin
2018; Gao et al. 2020; Herling and Broll 2014). We use the 4 videos from Granados
et al. (2012), 3 videos from Newson et al. (2014) and 1 video from Le et al. (2017).
All of them provide accurate segmentation masks and present challenging situations
for video inpainting.

We compare ourselves to a classical patch-based approach (Newson et al. 2014),
and more recent deep learning approaches based on optical flow: E2FGVI (Li et al.
2022b) and ISVI (Zhang et al. 2022c).

For object removal, we obtain very good results on different videos using the
provided test masks, comparable to the state-of-the-art flow-based approaches for
static background and significantly better for dynamic backgrounds such as dynamic
textures (Figure VI.3) or occluded moving objects (Figure VI.4). We wan to empha-
size that static background inpainting is not really our focus as it is already solved in
many situations. Our method shines when generation is needed because the masked
region is never seen, or the optical flow is of little help. Our framework is well
suited for dynamic texture inpainting which requires stochasticity both temporally
and spatially. No other deep learning method can currently handle that. Examples
of dynamic textures with comparisons with other methods can be found in the videos
fontaine-chatelet and jumping-girl-fire (https://infusion.telecom-paris.fr/phd).

For complex motion, optical flow is difficult to inpaint because it requires a multi-
frame understanding of the motion. Long temporal occlusions such as those found
in loulous (Figure VI.3, bottom) or museum (Figure VI.4) are challenging examples.
We see that in the museum sequence, our method better preserves the appearance
of people crossing the occlusion while the other methods show people appearing
and disappearing. In the loulous sequence, our method is able to reconstruct the

https://infusion.telecom-paris.fr/phd
https://infusion.telecom-paris.fr/phd
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Model PSNR (dB) ↑ SSIM ↑ VFID ↓
VINET (2019) 28.96 0.941 0.199
DFVI (2019) 28.81 0.940 0.187
CAP (2019) 30.28 0.952 0.182

FGVC (2020) 30.80 0.950 0.165
STTN (2020) 30.67 0.956 0.149
TSAM (2021) 30.67 0.955 0.146

FuseFormer (2021b) 32.54 0.970 0.138
ISVI (2022c) 32.54 0.970 0.138
FGT (2022b) 32.86 0.965 0.129

E2FGVI (2022b) 33.01 0.972 0.116
ProPainter (2023) 34.47 0.978 0.098

Infusion (ours) 31.55 0.970 0.183

Table VI.1: Inpainting metrics on the DAVIS dataset using the evaluation masks of
Liu et al. (2021b)

Method SVFID◦ ↓
ISVI Zhang et al. 2022c 29.81
E2FGVI Li et al. 2022b 29.88

Patch Newson et al. 2014 25.59
Infusion 31.29

Table VI.2: Inpainting metrics for object removal. Our method is the worse under
this metric.

occluded person without distortion and also generates a convincing moving body.
We also try to evaluate our method using the SVFID◦, which is not ideal, but

a less bad solution in these cases. In fact, SVFID◦ measures the distance between
the feature distributions inside the occlusion and outside the occlusion, so it does
not directly measure the quality of the inpainting, but rather the self-similarity of
the inpainted video. The results can be found in Table VI.2 and place our method
in the last position among the ones that we benchmarked.

VI.3.5 Dynamic texture inpainting

We also evaluate our method on dynamic textures. The dynamic textures are also
mostly absent from the usual training set for video inpainting. It is therefore ex-
pected that methods trained on such datasets will underperform. Indeed, dynamic
textures have been a blind spot of recent methods, especially deep learning methods,
in spite of the great importance and presence of this components of videos. In fact,
they are key for obtaining realistic and vivid results.

We use the texture dataset from Tesfaldet et al. (2018), which is a collection of
59 textures. Since the dataset is designed for texture synthesis, no mask is provided,
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Figure VI.3: Results on object removal in the context of dynamic textures. Link to
videos

E2FGVI ISVI Patch Infusion

#
12

6
#

13
3

Figure VI.4: On the museum sequence, our method can faithfully reconstruct a
moving object hidden behind the occlusion. The other methods struggle with this
complex occlusion which lasts for several frames. Link to videos

Method PSNR (dB) ↑ SSIM ↑ LPIPS ↓ SVFID◦ ↓
ISVI Zhang et al. 2022c 27.41 0.945 0.062 1.359
E2FGVI Li et al. 2022b 31.58 0.961 0.046 1.562

Patch Newson et al. 2014 29.47 0.954 0.051 1.035
Infusion 30.14 0.958 0.039 0.517

Table VI.3: Inpainting metrics for dynamic textures. E2FGVI has better PSNR
and SSIM, but our method performs better on the perceptual metrics.

https://infusion.telecom-paris.fr/phd
https://infusion.telecom-paris.fr/phd
https://infusion.telecom-paris.fr/phd
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and we define synthetic masks using the algorithm from Kim et al. (2019). In the
case of the DAVIS dataset, the ground truth is not unique and many solutions are
possible with very different appearances. For texture inpainting, there is no unique
solution either, but the completion should look like the rest of the texture due to
stationarity. Thus, the pixelwise error metric (PSNR) is not completely accurate,
but a perceputal metric such as LPIPS is reasonable for evaluation. For our method,
we train for fewer iterations than before due to the small size of the texture samples
(12 frames of size 256x256).

We report the quantitative results in Table VI.3, which shows that the evaluated
deep learning approaches perform poorly on these textures. E2FGVI still reports
high PSNR, but we have seen that this does not alway correlate with better visual
results Saharia et al. (2022a). In fact, for textures, the PSNR can be misleading
due to the stochasticity in both space and time. Therefore, it is possible to achieve
high PSNR by ignoring these variations. However, this leads to very unrealistic
results such as a static and blurred inpainting. Infusion has better perceptual scores,
followed by the patch-based method of Newson et al. (2014). We let the reader judge
by looking at Figure VI.5. We can see that the results of the competing methods are
either blurry or still while the patch-based method performs well on these examples.
Our method is able to produce complex and visually satisfying dynamic textures.
As before, these results are better appreciated when played as videos. It turns
out that our method is perfectly adapted to this setting where the optical flow is
unusable and the content must be hallucinated. Unlike other deep methods which
are deterministic, our method is inherently diverse and better reflects the stochastic
nature of dynamic textures.

VI.3.6 Ablation study

In this section, we show the contribution of interval training through several exper-
iments. We train the same neural network for the same total number of training
steps for both the baseline i.e. training on 1000 timesteps, and the interval training
i.e. training sequentially for small interval of timesteps.

We first evaluate this in image texture inpainting, using the same dataset and
experimental setting from chapter V). The quantitative results are reported in
Table VI.4. We see that training with interval training improves the PSNR and
lowers the LPIPS, the SSIM values are very similar. We also show visual results
in Figure VI.6, we observe that the baseline inpainting do not correctly match the
color of the surrounding area, this is not the case for interval training. More details
are inpainted because the loss is no longer dominated by the most noisy steps.

We then confirm these results on the dynamic texture inpainting task. Using the
dataset from Tesfaldet et al. (2018), we measure the inpainting error in frame-wise
PSNR, SSIM, LPIPS, and SFVID introduced earlier. The quantitative results can
be found in Table VI.5 and the visual results can be found in Figure VI.7. Once
again, we see an undeniable improvement over the baseline.

Finally, we note that the weighting scheme of the diffusion loss is important
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Figure VI.5: On these challenging textures, Infusion is able to inpaint all of theme
satisfactorily. Link to videos

https://infusion.telecom-paris.fr/phd
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Figure VI.6: Texture inpainting, with and without interval training. Left is the
baseline. Right is with interval training. The results using interval training are
better visually. Link to videos
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Figure VI.7: Baseline vs interval training on dynamic textures inpainting. Interval
training improves the visual results. Best seen with zoom-in. Link to videos.

https://infusion.telecom-paris.fr/phd
https://infusion.telecom-paris.fr/phd
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Method PSNR (dB) ↑ SSIM ↑ LPIPS ↓
Baseline 28.02 0.908 0.057
Interval 28.33 0.907 0.042

Table VI.4: Inpainting metrics on image textures when using the interval approach
vs baseline. Interval training improves the performances of the diffusion model at
no cost (same training time).

Method PSNR (dB) ↑ SSIM ↑ LPIPS ↓ SVFID ↓
Baseline 29.54 0.960 0.042 0.720
Interval 30.27 0.964 0.035 0.517

Table VI.5: Inpainting metrics on dynamic textures when using interval training vs
baseline. All metrics are improved with interval training.

for baseline training. Indeed it is somewhat expected that when training on all
timesteps, the ℓ2 error, and thus the gradients, will be larger for noisy inputs than for
less noisy ones. Thus, uniform weighting in the x0-parametrization implicitly focuses
on large timesteps, which explains the lack of detail. Our method simplifies the
training of diffusion models for which the weighting term for the different timesteps
can be difficult to set in order to achieve both a low Fréchet Inception Distance
and a good likelihood (Ho et al. 2020; Nichol and Dhariwal 2021). Specifically, we
compare the results when training with a uniform weight for all timesteps (baseline),
the theoretical weight derived from the Evidence Lower Bound (ELBO) loss (details
in Appendix A), the MIN-SNR weight (Hang et al. 2023), and our proposed approach
which uses uniform weight in an interval.

• Uniform: ∀t ∈ [1, T ], w(t) = 1

• ELBO: ∀t ∈ [1, T ], w(t) = 1
2σ2
t

ᾱt−1

(1−ᾱt)2β
2
t

• Min-SNR: ∀t ∈ [1, T ], w(t) = min
(︂

ᾱt
1−ᾱt−1

, 5
)︂

• Interval: ∀i ∈ [1, N − 1],∀t ∈ [τi, τi+1], w(t) = 1

The results can be seen in Figure VI.8. Optimizing the ELBO bound does not
converge to a correct result. In our case, Min-SNR does not perform much better
than the baseline. Among all propositions, the interval approach performs the best.

VI.3.7 Stabilization

Similar to patch-based methods (Newson et al. 2014), we observe improved results
when using a preprocessing stabilization step to remove the camera motion from
the equation. The intuition is that the stabilization reduces the complexity of the
data distribution learned by our model. While a deep architecture does not use
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(a) Uniform (b) ELBO

(c) Min-SNR (d) Interval

Figure VI.8: Among the possible weighting schemes commonly used in diffusion,
our approach is very simple and perform extremely well for video inpainting. The
inpainting mask is not highlighted to better illustrate the problems corrected by
interval training at its boundaries. The contour is easily guessed from the ELBO
result. Link to video

rigid spatiotemporal cubes, and could handle small misalignments between frames,
stabilizing the video is a simple but effective way to reduce temporal inconsistencies.

We use the method of Sánchez (2017) to estimate the transforms between frames.
During training, we locally stabilize our image batch. During inference, we process
the full stabilized video with padding. In Figure VI.9, we show the results with
and without stabilization. We can see that the results are more stable, which is
especially important for static backgrounds.

One drawback, however, is that the stabilization using homographies can’t han-
dle all types of motion and in these cases, optical flow is superior because it can
handle any type of motion.

VI.4 Dynamic texture synthesis

Given our architecture, we also evaluate its ability to synthesize dynamic textures.
We train an unconditional network for each texture using interval training. We
enforce stationarity by using only sub-regions of the original texture instead of using
the whole texture during training. The reason is to remove the spatial bias due to
zero padding in neural networks which can be useful for structured images but not
in our case (Shaham et al. 2019; Xu et al. 2021).

We use the texture dataset from Tesfaldet et al. (2018), which consists of 59
textures of moderate size: 12 frames of size 256x256. We compare our results to

https://infusion.telecom-paris.fr/phd/ablation_study


104 Chapter VI. Infusion

(a) Not stabilized (b) Stabilized

Figure VI.9: Inpainting results, with and without stabilization. The stabilization
removes small temporal inconsistencies. Better appreciated when played as video

the three recent papers: Xie et al. (2017), Tesfaldet et al. (2018), and DyNCA (Pa-
jouheshgar et al. 2023).

We evaluate the synthesis using SVFID. We simply compute the features on the
synthesized output and the reference using a single sample. We do not measure
the diversity of outputs. We report these results in Table VI.6. Quantitatively, we
perform worse than the other methods designed for dynamic texture synthesis. We
hypothesize that this is due to two differences: first, we assume a strict stationarity
which is sometimes not verified (Figure VI.10), and we do not enforce a similar
distribution during inference while SVFID measures the distances between the dis-
tributions of the features. We also include the PSNR using the reference as ground
truth, and it tells a different story. The method of Xie et al. (2017) produces results
much closer to the reference than the other methods, which makes one wonder how
diverse their method really is.

Qualitatively, we observe similar results for most textures (Figure VI.10). Our
synthesis may not respect the original structure nor the original distribution of
elements in the image.

VI.4.1 Limitations and failure cases

Our method has two inherent limitations. The first one, is that our method relies
on a convolutional architecture, which has a limited receptive field, especially in the

https://infusion.telecom-paris.fr/phd/stabilization
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Method SVFID ↓ PSNR (dB)
Xie et al. (2017) 4.47 22.22

Tesfaldet et al. (2018) 6.70 14.41
DyNCA (2023) 8.54 14.02

Infusion 9.95 14.37

Table VI.6: Evaluation of dynamic texture synthesis. The SVFID measures the
unstructured distance to the ground truth and the PSNR measures the structured
distance to the ground truth. Low PSNR is not the goal, but high PSNR is suspi-
cious.
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Figure VI.10: Results of dynamic texture synthesis. Our approach produces locally
coherent content: the motion and visual appearance are good, but do not respect
the global geometry. The results from Xie et al. (2017) are very close to the reference
video. Link to videos

https://infusion.telecom-paris.fr/phd
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(a) Frame #1 (b) Frame #55

Figure VI.11: (a-b) Our method does not guarantee long-term temporal consistency
when generating unseen content.

temporal dimension, because we avoid subsampling in this direction. The long-term
visible coherence along the temporal axis is mostly established during the learning
phase by the network’s weights, not by its architecture. This failure mode is most
noticeable when a purely generative guess has to be made, a region is never seen in
the whole video, then it is very unlikely that our method will generate a still textured
background. In fact, the visual appearance may be the same but it is unlikely to be
the same texture sample for all frames. We show an example in Figure VI.11 where
the inpainted region changes between the beginning and the end of the video which
are more than 50 frames apart. This is not the case with many optical flow-based
approaches, which are designed to promote stability.

The second limitation is due to the nature of our approach: we have to train
a new neural network for each mask / video pair. We mitigated this aspect by
designing a training algorithm - interval training - with this in mind. Knowing
that each model will be used only once, we have maximized its usefulness. Our
execution time for completing a video is therefore longer than other deep learning
based approaches such as E2FGVI (Li et al. 2022b) or ISVI (Zhang et al. 2022c).

VI.5 Conclusion

In this chapter, we have presented a method for video inpainting that uses the diffu-
sion framework. We overcome the lengthy training and large model size associated
with diffusion models by training a lightweight model on a single video. This allows
for diffusion that is possible on consumer hardware and still produces very satisfy-
ing results both quantitatively and qualitatively. For dynamic textures, we show a
dramatic improvement over current methods. We also propose an adapted training
scheme that is particularly suitable for single video inpainting, and produces better
results than the baseline training. Our method has some shortcomings: it must be
trained from scratch for each new video, and the results are less accurate than opti-
cal flow-based methods for still background inpainting. Nevertheless, we see several
directions of improvement for future work.

Designing a video-specific model. In this work, we have applied a diffu-
sion model to the problem of video inpainting without any special architecture or
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knowledge of video specifics. Different solutions are possible: it could be to add
optical flow to the equation, or to combine two different models: a first one suitable
for background inpainting and a second one for dynamic textures. Splitting the
problem may not be easy but it is probably a fruitful direction for very high quality
results.

Imbalanced learning. We train our diffusion model on all the visible regions
of the video. In theory, it is then capable of inpainting any region. In practice, the
test region is spatially limited, and its inpainting does not require all this capacity.
In the case of neural networks, training on too much data with a limited network
will degrade the results. While it is impossible to know beforehand which regions
are important for the final inpainting, after a few steps of reverse diffusion, the
occluded region already has a coarse completion. It is then possible to adjust the
learning goal and focus learning on regions similar to the completion.

In addition to these two main directions, other challenges remain, such as han-
dling high-resolution videos, or accurately evaluating the results without human
intervention. Immediate improvements in diffusion could also be addressed by bet-
ter architectures, faster diffusion processes, multi-scale approaches, etc.





Conclusion

In this thesis, we presented several works on internal methods for the generation
and inpainting of images and videos. In the internal setting, data is limited and
the main goal is to exploit the self-similarity of the image / video. This is explicit
in patch-based methods, and indirect in learning-based internal approaches. The
attention mechanism combines both patch-based and learning-based approaches.
We summarize here our contributions to these three aspects of internal methods.

In chapter III, we considered the problem of single-image generation. This prob-
lem has been introduced by Shaham et al. (2019), who extend the texture synthesis
problem to non-stationary images. In their approach, they train a multi-scale Gen-
erative Adversarial Network and generate new variations of a reference image. It
turns out that in this setting, a patch-based method is competitive with this deep
learning approach. We show that minimizing an energy similar to that of Kwatra
et al. (2005) leads to good results without loss of detail or network artifacts. To
enforce similar patch distributions, i.e. fidelity, between the generated samples and
the reference image, we turn to optimal transport for the first coarsest scales. Once
correctly initialized, the main structure of the image is fixed, and our global energy
term is quickly minimized thanks to an approximate nearest neighbor search. We
have thus shown that our method can produce convincing samples without using a
neural network.

In chapter IV, we have developed a very efficient attention layer. The complexity
of the default attention layer (Vaswani et al. 2017) scales quadratically with the num-
ber of input elements. This is incompatible with high-resolution images and videos.
This problem applies to computation time, but more importantly to memory, which
is a hard limit on GPUs. Exploiting the link between attention computation and
nearest neighbor search, we have proposed a new attention layer called “Patch-based
Stochastic Attention Layer”. We approximate the attention by focusing on the near-
est neighbors, which are those with the largest weights in the attention layer. Our
layer is based on the PatchMatch algorithm (Barnes et al. 2009), parallelized and
modified for deep learning. A key modification is to ensure end-to-end differentiabil-
ity, which is of paramount importance for deep learning applications. We show that
our layer has negligible memory impact compared to the standard attention layer,
as the memory complexity is linear compared to quadratic. While not universally
applicable, our layer is a good approximation in many image editing problems such
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as image inpainting, image colorization, or single-image super-resolution. We obtain
competitive results compared to other efficient attention layers.

In chapter V, we have investigated the use of diffusion models for image inpaint-
ing. The diffusion framework is particularly interesting for modeling the diversity
that is inherent in image inpainting. We approach the task by training a small
neural network on the test image only. Thanks to the lightweight architecture, the
learning phase is relatively fast although not negligible. Despite limited data, we
obtain high-quality and diverse results on texture images. These results are com-
petitive with patch-based methods, recent inpainting networks, and extremely large
diffusion models. We also discuss some of the common metrics for image inpaint-
ing, and show their limitations. In particular, PSNR is not a reliable metric when
stochasticity is involved. On the other hand, LPIPS correlates better with the per-
ceptual quality. A final advantage of our tiny neural network is that its size allows
interactive use.

Finally, in chapter VI, we extend our work on diffusion models to video inpaint-
ing. As of our knowledge, it is the first work on video inpainting using diffusion
models. Internal learning is particularly well suited to videos because they are
highly redundant. This explains why very good results are obtained using inter-
nal data exploited by patches or optical flow. In our method, we train a diffusion
model for each video, which is therefore perfectly adapted and specialized for the
task. Aware that most of our networks will be used only a few times, we propose an
adapted learning strategy, called “interval training”. In interval training, the infer-
ence and learning are intertwined. Instead of training a model for all timesteps and
then performing the inference for all those timesteps, we work iteratively on subsets
of timesteps. On each interval, we train and then perform inference. These small
intervals make the learning task easier. This strategy proves to be very effective in
improving the quality of the results while keeping the network size constant. We
then demonstrate the performance of our method on dynamic texture inpainting
and complex video inpainting. Compared to other methods, our approach is very
effective in dealing with these difficult situations.

To complete the perspectives proposed at the end of each chapter, we present
here three ideas of interest:

Lightweight diffusion models with attention. We have proposed in chap-
ter V a tiny fully convolutional diffusion model. However, the images we tested
on were highly self-similar. In this situation, patch-based methods (Newson et al.
2017) are well adapted, and attention layers are also a great fit. It would be very
interesting to try to incorporate attention layers in this simple setting. It could
probably reduce even more the number of parameters required to solve this inpaint-
ing problem; patch-based methods are efficient with no parameters at all. It is also a
good case study for understanding the role of attention layers; the network is small
enough to try to interpret it. Furthermore, the diffusion process covers a wide range
of noise levels with probably different interpretations.

Fast and efficient video inpainting. In our experiments, we have used a
diffusion model to handle all aspects of the inpainting task, but this is suboptimal.
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In fact, static background inpainting can be solved very efficiently with optical flow.
For simple camera motions and reasonable occlusions, following the optical flow
is very accurate and runs in real time (Bokov and Vatolin 2018). The remaining
part consists of dynamic backgrounds, complex motions, and regions that are never
revealed during the whole sequence. For these cases, the method developed in
chapter VI is well adapted. Using simple models whenever possible and resorting
to complex networks only when necessary is probably a safe strategy to achieve
fast and high-quality video inpainting. The major challenge of this approach is to
design an algorithm that correctly splits the tasks and combines the results. A
second challenge for our diffusion model is that its training time does not depend
on the occlusion size. Right now, we train a neural network on a single video almost
independently of the masked region, the only difference is that no loss is computed in
the occlusion. Compared to patch-based methods that iterate only over the missing
pixels, our training scheme does not benefit from an "almost" complete video. Small
occlusions are probably easier to inpaint and might require less training, but this
is not reflected in our current method. This aspect is therefore of interest for a
two-step approach.

Unconditional training for inpainting. In the last two chapters on diffu-
sion, we trained models from scratch. We decided to use a conditional network for
inpainting following Saharia et al. (2022b). The conditional information is probably
helpful for better end-results and faster convergence. The alternative is to use an
unconditional model and adapt the inference process for inpainting (Kawar et al.
2022a; Lugmayr et al. 2022). Some of our early experiments suggest that uncondi-
tional training is possible and sometimes faster to train too. However, we have to be
careful because in the case of internal learning, we are training on degraded and in-
complete data. This approach is similar to the setting of Deep Image Prior (Ulyanov
et al. 2018) where a neural network learns on degraded data only, in a self-supervised
manner.
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A Appendix

A.1 Parametrizations in diffusion models

We briefly review the few lines of computation needed to establish the loss function
formulas for different parametrizations in diffusion models. We recall the parameters
of the diffusion process for a given transition kernel:

q(xt+1|xt) ∼ N (
√︁
1− βtxt|βtI)

We have αt = 1 − βt, and ᾱt =
∏︁t
s=1 αs. Ho et al. (2020) derive the loss function

for a given timestep:

Lt−1 = DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))

For Gaussian variables, then we have q(xt−1|xt, x0) ∼ N (µ̃t(x0, xt), β̃tI) and
pθ(xt−1|xt) ∼ N (µθ(xt, t),Σt).

For q, the parameters
(︂
µ̃t(x0, xt), β̃t

)︂
are known. For p, Ho et al . chose to use

fixed variances for the reverse process i.e. Σt = σ2t I. Then the Lt−1 loss depends
only on the differences between the means of the Gaussian variables since we do not
learn the other variables:

Lt−1 = DKL(N (µ̃t(x0, xt), β̃tI)||N (µθ(xt, t), σ
2
t I)

=
1

2

[︃
log
|σ2t I|
|βtI|

− d+ tr{(σ2t I)−1(β̃tI)}+ (µ̃t − µθ)T (σ2t I)−1(µ̃t − µθ)
]︃

=
1

2σ2t
∥µ̃t(x0, xt)− µθ∥2 + C

Now, we have to consider that we will use a neural network fθ to predict this
mean. Here we have several options, we present 3 natural parametrizations but
there are alternatives such as the v-parametrization (Salimans and Ho 2022).
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A.1.1 Parametrization #1

The first and obvious parametrization is to train the network to predict the mean,
i.e. fθ(xt, t) = µθ(xt, t). Then the loss is directly:

Lt−1 =
1

2σ2t
∥µ̃t(xt, x0)− fθ(xt, t)∥2

In practice, we sample a clean image x0 from the dataset, and a noisy version
xt, not directly µ̃t(x0, xt) =

√
ᾱt−1βt
1−ᾱt x0 +

√
αt(1−ᾱt−1)

1−ᾱt xt. This parametrization is not
very popular.

A.1.2 Parametrization #2

We write µ̃t(x0, xt) as a function of x0 and xt :

µ̃t(x0, xt) =

√
ᾱt−1βt
1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

In this expression, x0 is the important term to predict from the the point of view of
the neural network because xt is an input. We can thus write:

µθ(xt, t) =

√
ᾱt−1βt
1− ᾱt

x̂0,θ(xt, t) +

√
αt(1− ᾱt−1)

1− ᾱt
xt

With the neural network fθ predicting the clean original image: fθ(xt, t) = x̂0,θ(xt, t).
Then the loss function is:

Lt−1 =
1

2σ2t

⃦⃦⃦⃦√
ᾱt−1βt
1− ᾱt

x0 +
���������√
αt(1− ᾱt−1)

1− ᾱt
xt −

√
ᾱt−1βt
1− ᾱt

x̂0,θ(xt, t)−
���������√
αt(1− ᾱt−1)

1− ᾱt
xt

⃦⃦⃦⃦2
=

1

2σ2t

⃦⃦⃦⃦√
ᾱt−1βt
1− ᾱt

(x0 − x̂0,θ(xt, t))
⃦⃦⃦⃦2

=
1

2σ2t

ᾱt−1β
2
t

(1− ᾱt)2
∥x0 − x̂0,θ(xt, t)∥2

The link with denoising is obvious in this formulation (with the minor nitpick
that xt is a noisy and scaled-down version of x0). This is a very intuitive formulation.

A.1.3 Parametrization #3

Finally, we can rewrite x0 as a function of ε and xt:

xt =
√
ᾱtx0 +

√
1− ᾱtε↔ x0 =

xt −
√
1− ᾱtε√
ᾱt

Then we can write µ̃t(x0, xt) as a sum of ε and xt:
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µ̃t(x0, xt) =

√
ᾱt−1βt
1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

=

√
ᾱt−1βt
1− ᾱt

(︃
1√
ᾱ
xt −

√
1− ᾱ√
ᾱ

ε

)︃
+

√
αt(1− ᾱt−1)

1− ᾱt
xt

=

(︃ √
ᾱt−1βt√
ᾱ(1− ᾱt)

+

√
αt(1− ᾱt−1)

1− ᾱt

)︃
xt −

√
ᾱt−1βt
1− ᾱt

√
1− ᾱt√
ᾱt

ε

Same as previously, the unknown and important variable is ε because xt is known
during inference. So we set fθ(xt, t) = ε̂(xt, t).

Plugging this into our main equation, we have:

Lt−1 =
1

2σ2t
∥
˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂(︃ √

ᾱt−1βt√
ᾱ(1− ᾱt)

+

√
αt(1− ᾱt−1)

1− ᾱt

)︃
xt −

√
ᾱt−1βt
1− ᾱt

√
1− ᾱt√
ᾱt

ε

−
˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂(︃ √

ᾱt−1βt√
ᾱ(1− ᾱt)

+

√
αt(1− ᾱt−1)

1− ᾱt

)︃
xt +

√
ᾱt−1βt
1− ᾱt

√
1− ᾱt√
ᾱt

ε̂θ(xt, t)∥2

=
1

2σ2t

⃦⃦⃦⃦√
ᾱt−1βt
1− ᾱt

√
1− ᾱt√
ᾱt

(ε− ε̂θ(xt, t))
⃦⃦⃦⃦2

=
1

2σ2t

β2t
(1− ᾱt)

ᾱt−1

ᾱt
∥ε− ε̂θ(xt, t)∥2

=
1

2σ2t

β2t
αt(1− ᾱt)2

∥ε− ε̂θ(xt, t)∥2

This formulation can be seen as a prediction of the residual noise, similar to
some denoising approaches. Ho et al . prefer this formulation, which is considered
more stable. In their original paper, the authors also propose a simplified loss:

Lsimple,t−1 = ||ε− ε̂θ(xt, t)||2
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Résumé : L’édition et la génération d’images sont
des problèmes complexes dans le domaine du traite-
ment d’images. Récemment, nous avons vu un grand
bond en avant dans le développement en utilisant
des approches basées sur l’apprentissage qui tirent
parti de grandes bases de données d’images. Dans
cette thèse, nous étudions les méthodes internes,
c’est-à-dire les méthodes basées sur une seule image
comme source de données. Cela inclut les méthodes
par patchs, les approches d’apprentissage interne qui
entraı̂nent un réseau neuronal sur une seule image, et
les mécanismes d’attention qui combinent les patchs
et les réseaux profonds.
Tout d’abord, nous présentons une contribution à
la génération mono-image avec une méthode par
patchs. Cette approche classique est compétitive par
rapport aux approches récentes par réseau mais évite
la phase d’apprentissage.
Deuxièmement, les mécanismes d’attention sont im-
portants pour modéliser les dépendances à longue

distance et sont plus flexibles que les convolutions,
mais souffrent d’une terrible complexité calculatoire.
En fait, la complexité croı̂t de façon quadratique
avec le nombre d’éléments d’entrée, ce qui rend
ces couches inutilisables pour les images haute-
résolution ou les vidéos. Nous proposons une ap-
proximation efficace basée sur la recherche du plus
proche voisin.
Enfin, nous examinons les modèles de diffusion
récents pour l’inpainting d’images et de vidéos.
Dans les cas mono-images, nous montrons comment
des architectures très légères sont compétitives par
rapport à l’état de l’art. Nos modèles s’exécutent
et s’entraı̂nent pour une fraction du coût de cal-
cul des modèles les plus courants. Nous propo-
sons également une application à l’inpainting vidéo
avec une stratégie d’entraı̂nement spécifique qui
améliore significativement les résultats par rapport
à la méthode de base. Cette stratégie est particu-
lièrement adaptée à ces modèles à usage unique.
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Abstract : Image editing and generation are com-
plex problems in image processing. Recently, we have
seen a great leap in development by using learning-
based approaches that take advantage of large image
databases. In this thesis, we study internal methods
i.e. methods based on a single image as a data
source. This includes patch-based methods, internal
learning approaches that train a neural network on a
single image, and attention mechanisms that combine
patches and deep networks.
First, we present a contribution to single image gene-
ration with a patch-based method. This classical ap-
proach is competitive with recent network-based ap-
proaches but does not require a learning phase.
Second, attention mechanisms are important for mo-
deling long-range dependencies and are more flexible

than convolutions but suffer from poor computatio-
nal complexity. In fact, the complexity grows quadrati-
cally with the number of input elements making such
layers unusable for high-resolution images or videos.
We propose an efficient approximation based on nea-
rest neighbor search.
Finally, we look at the recent diffusion models for
image and video inpainting. In the single image set-
ting, we show how very lightweight architectures are
competitive with the state-of-the-art. Our models run
and train at a fraction of the computational cost of po-
pular models. We also propose an application to video
inpainting with a specific training strategy that signi-
ficantly improves the results over the baseline. This
strategy is particularly adapted to these one-shot mo-
dels.
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