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RESUME

Context

En 2023, le constat alarmant sur 1’état du climat mondial s’est accentué. Cette année a été
confirmée comme la plus chaude depuis le début des relevés de températures globales
en 1850, surpassant de manieére significative le précédent record établi en 2016. Avec une
moyenne de 0.60°C au-dessus de la période de référence 1991-2020 et 1.48°C au-dessus
des niveaux préindustriels de 1850-1900 [25]. Dans ce contexte, les Accords de Paris sur
le climat, qui visent a maintenir 'augmentation de la température moyenne mondiale
par rapprot a la periode préindustrielle « bien en dessous de 2°C » voir de preference a
limiter cette hausse a 1,5°C, prennent une importance renouvelée. Etant donner que
ce seuil est considéré comme crucial pour éviter les effets les plus dévastateurs du
changement climatique.

La COP28 a constitué un jalon majeur dans cette lutte. Elle a marqué la fin du premier
« bilan mondial » des actions menées en vertu de I’Accord de Paris. Ce bilan a mis en
évidence le manque de progres dans tous les aspects de I’action climatique, incluant
la réduction des émissions de gaz a effet de serre, le renforcement de la résilience
climatique, et 'apport de soutien financier et technologique aux nations vulnérables.
Bien que la COP28 ait été I'objet de controverses en raison de son organisation par un
pays producteur de pétrole elle a été un moment inédit : pour la premiere fois, les
énergies fossiles, principales causes du déréglement climatique, ont été explicitement
ciblées dans 1’accord final, signalant ainsi le début de la fin de 1’ere des combustibles
fossiles. Cette avancée marque un tournant politique et économique important, fruit
de la mobilisation persistante de la société civile et de nombreux Etats. Le texte final
appelle les nations du monde entier a « abandonner les combustibles fossiles dans
les systémes énergétiques de maniere juste, ordonnée et équitable », en accélérant les
actions nécessaires pour atteindre la neutralité carbone d’ici 2050. Pour y parvenir,
'accord prévoit de tripler la capacité mondiale des énergies renouvelables et de doubler
le taux d’amélioration annuel moyen de 1'efficacité énergétique d’ici 2030 [24].

Dans ce paysage énergétique en mutation le solaire a concentration (CSP) sera amener a
gagner en importance dans le mix énergétique mondial. Contrairement aux systemes
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photovoltaiques (PV) plus connus, qui transforment directement la lumiere du soleil en
électricité grace a des matériaux semi-conducteurs, les systémes de solaire a concentration
(CSP) fonctionnent en focalisant la lumiere solaire sur une petite surface pour générer
une chaleur intense, qui est ensuite convertie en électricité par un processus thermique.
Au ceoeur du principe de fonctionnement du CSP se trouve 1'utilisation de miroirs
ou de lentilles pour concentrer une grande surface de lumiére solaire en un faisceau
focalisé vers un récepteur. Cette énergie solaire concentrée est d’abord absorbée par le
récepteur, puis utilisée pour chauffer un fluide caloporteur. Ce fluide chauffé est ensuite
utilisé, directement ou indirectement, comme source de chaleur pour alimenter un cycle
thermodynamique de production d’électricité (voir figure 1.1).
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Figure 1.1: Fonctionnement d'une centrale solaire a concentration[84].

Bien que la capacité installée des technologies CSP soit actuellement faible comparée a
celle des énergies photovoltaique et éolienne, ces technologies présentent un potentiel de
croissance significatif pour I’avenir. On s’attend a ce que les systemes CSP se développent
parallélement aux capacités croissantes des énergies PV et éolienne, contribuant ainsi
a un mix énergétique mondial plus équilibré et durable [59]. En effet, I'ajout de
sources d’énergie renouvelables controlables peut étre trés bénéfique pour compenser
les fluctuations de puissance causées par la nature intermittente des énergies PV et
éolienne. A cet égard, les systémes CSP, en particulier lorsqu'ils sont couplés avec du
stockage d’énergie thermique (TES), peuvent jouer un role significatif dans 'équilibrage
de la courbe d’offre et de demande d’électricité. Cela aide a assurer une fourniture
d’électricité stable et fiable sur le réseau [59]. De plus, les systémes CSP sont également
d’excellents systémes de production d’électricité dans la gamme de 10 a 1000 MW [84].
Cependant, un obstacle majeur freinant la commercialisation a grande échelle du solaire
a concentration (CSP) est son cotit nominal élevé de 1'électricité (LCOE) comapré a celui
du photovoltaique et de I'éolien terrestre. Pour renforcer la position concurrentielle du
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CSP, des efforts importants en vue de réduire les cofits et d’améliorer les performances
de tous les sous-systémes des centrales CSP sont vivement souhaités.

Actuellement, les technologies CSP de troisieme génération font 1’'objet de recherches
intensives. L'objectif principal est d’augmenter l'efficacité de conversion de 1'énergie
solaire en électricité afin de réduire le cotit de 1’électricité générée (LCOE). Une des
stratégies consiste a améliorer 1'efficacité du cycle, notamment en utilisant le cycle
Brayton avec des températures de cycle maximales dépassant les 700 °C. Un autre aspect
crucial pour améliorer les performances concerne le choix du fluide caloporteur. Divers
fluides caloporteurs sont a I’étude, notamment les gaz a haute pression, les sels fondus
a haute température et les particules solides [9]. En particulier, cette derniére option
offre plusieurs avantages, tels quune plage de température de fonctionnement plus
large et une stabilité thermique améliorée, qui pourraient optimiser l'efficacité et les
performances des systémes CSP [7].

Les fluides caloporteurs a base de particules suscitent un intérét grandissant dans le
domaine du CSP, avec diverses technologies développées a travers le monde [78, 64,
41]. La technologie d’intérét pour ce travail de thése est le récepteur solaire a particules
tubulaire verticale, également connu sous le nom de lit fluidisé bouillonnant ascendant
(UBFB), développé par le laboratoire PROMES-CNRS en France, en collaboration avec
des partenaires internationaux. Cette recherche fait partie des projets européens "CSP-2"
et "Next-CSP" [46, 61].

La figure 1.2 représente le systeme UBFB (Upflow Bubbling Fluidized Bed) en condi-
tions d’ensoleillement (a gauche), un diagramme schématique du systéme (au centre),
ainsi que les phénomenes de bullage et de bouchonnage observables a température
ambiante (a droite). Le systeme UBFB repose sur des tubes immergés dans un réservoir

Figure 1.2: Représentation du récepteur solaire a particules en écoulement vertical
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d’alimentation pour les particules (le distributeur). Lorsque de l'air est introduit dans
le distributeur sous des conditions bien spécifiques, il en résulte la suspension des
particules solides dans le flux d’air montant. Le mélange en suspension exhibe des
caractéristiques similaires a celles d"un fluide. Par exemple, le mélange peut s’écouler li-
brement et s’adapter a la forme de son contenant, générant des bulles, etc. Ce phénomeéne
est connu sous le nom de fluidisation.

En appliquant une pression dans la partie supérieure libre du distributeur, un flux
de particules ascendant dans les tubes est obtenu avec une large gamme de fractions
volumiques solides. Des études expérimentales ont montré que les récepteurs UBFB
peuvent atteindre des coefficients de transfert de chaleur de I'ordre de 800 a 1200 watts
par metre carré par kelvin, les rendant tres efficaces sous diverses conditions d’irradiation
[8, 126, 128, 55]. Le concept UBFB offre plusieurs autres avantages technologiques,
notamment 'utilisation d’un récepteur tubulaire similaire a ceux utilisés avec des sels
fondus et la capacité d’utiliser le méme milieu comme fluide caloporteur et matériau
de stockage. Contrairement aux sels fondus, les particules ne sont pas limitées a une
plage de température de fonctionnement spécifique, permettant des températures de
fonctionnement élevées et une conversion de chaleur-électricité plus efficace via des
cycles thermodynamiques a haute température [7]. D’un point de vue économique, la
technologie UBFB peut potentiellement réduire les cofits associés au fluide caloporteur
et au milieu de stockage, car les particules sélectionnées peuvent étre nettement moins
cheres que les sels fondus [67]. D'un point de vue environnemental, 1"utilisation de
particules minérales peut aider a diminuer 1’empreinte écologique globale de la centrale
électrique [69].

La recherche expérimentale sur les récepteurs UBFB s’est principalement concentrée sur
des configurations de petite échelle avec des tubes courts (1 a 2 metres) et des tubes un
peu plus longs (jusqu’a 4 metres) mais dans des conditions de température ambiantes.
Pour passer a 1’échelle commerciale de la technologie UBFB (10 a 50 MWth), des tubes
plus longs (d’au moins 6 metres) sont nécessaires. Cependant, des études antérieures
ont montré que les régimes de fluidisation dans les tubes varient de maniere significative
avec la hauteur des tubes. La performance thermique du récepteur solaire dépend
grandement de cette hydrodynamique complexe. Bien comprendre la physique des
écoulements multiphasiques devient donc un enjeu crucial pour concevoir des systémes
UBFB viables et efficaces.

Les écoulements fluide-particules, en particulier dans les systemes de lits fluidisés,
illustrent tres bien le caractere multi-échelles de la physique gouvernant ces écoulements
(voir Figure 1.3). A la plus petite échelle, la physique est dictée par des interactions telles
que les collisions, les couches limites et les sillages de particules. Ces interactions se
produisent a des échelles de temps de 'ordre de la microseconde voire de la nanoseconde.
La fraction volumique solide, qui varie considérablement dans ces systemes, influence
également ’équilibre entre les interactions collisionnelles et la dynamique des particules
dans le fluide, avec une complexité émergente a mesure que la concentration de particules
augmente. A 1’échelle macroscopique, le comportement est influencé par le contexte
d’application, englobant des structures et des phénomenes d’écoulement a grande
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échelle. Cela inclut des phénoménes comme la formation de bulles et la recirculation de
particules, les frontiéres introduisant des inhomogénéités supplémentaires. L'interaction
entre ces échelles est bidirectionnelle, chaque échelle influengant et étant influencée par
les autres, rendant la prédiction et la compréhension de tels flux une tache complexe
[105].

Meso
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Solid volume
: frqctjon

Collisions®
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Figure 1.3: (a) llustration du caractére multi-échelle des écoulements fluide-particules.

Dans ce contexte, la simulation numérique, en particulier les techniques de simulation
numérique directe (SND), offre une approche complémentaire aux méthodes analytiques
et expérimentales pour mieux comprendre la physique des écoulements multiphasiques.
Dans la SND, les équations régissant la phase fluide sont résolues sans aucune simplifi-
cation ni modélisation de la turbulence, capturant toute la gamme d’échelles présentes
dans I’écoulement. Cette méthode requiert toutefois d’importantes ressources infor-
matiques en raison de la nécessité de résoudre toutes les échelles pertinentes, des
plus petits tourbillons aux plus grandes structures d’écoulement. Cependant, le SND
offre un apercgu inégalé des mécanismes fondamentaux régissant le comportement
de 1’écoulement, en fournissant des informations détaillées sur le mouvement et les
interactions des phases, telles que les trajectoires, vitesses et taux de collision des
particules, ainsi que la vitesse instantanée du fluide... Méme s’il n’est généralement
pas possible d’utiliser cette méthode pour simuler directement des systemes de taille
industrielle en raison de 1'intensité des calculs requis, les avancées dans le domaine
informatique et le développement de méthodes numériques plus efficaces permettent
désormais de réaliser des SND sur des systemes autrefois hors de portée.

Il est désormais possible de modéliser avec précision I'évolution des écoulements particu-
laires impliquant plusieurs centaines de particules, sur des échelles de temps permettant
une convergence statistique. De plus, les méthodes DNS peuvent étre utilisées dans une
approche de remontée d’échelle, fournissant ainsi des informations précieuses pour des
méthodes plus macroscopiques telles que la méthode des deux fluides, qui dépendent
de lois de fermeture précises. Une fois a maturité, on s’attend a ce que les simulations
numériques directes réalisées contribuent grandement aux phases de conception et
d’optimisation des systémes d’ingénierie. Cela réduira non seulement le besoin de tests
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pilotes expérimentaux, mais également le temps nécessaire a la commercialisation des
nouvelles technologies. A cette fin, 'objectif principal de cette thése est de développer
une méthode de simulation numérique directe capable de simuler efficacement un
écoulement de particules impliquant plus de quelques centaines de particules. Cette
méthode sera implémentée dans le code de calcul TrioCFD, initialement développé
par le CEA pour étudier les écoulements diphasiques gaz/liquide dans les réacteurs
nucléaires. Cependant, la version standard de ce code n"a actuellement pas la capacité de
simuler des écoulements granulaires. Par conséquent, notre implémentation nécessitera
'utilisation d’une technique appropriée pour imposer la contrainte de rigidité dans
la phase solide, ainsi que I'implémentation d’un modéle de collision pour prendre en
compte les interactions entre les particules.

La suite de ce résumé suit le texte principal de la thése en présentant, dans un premier
temps, la méthodologie et I'algorithme développés. Ensuite, nous présenterons des cas
tests de validation et les principaux résultats obtenus a partir des simulations réalisées.

Méthode

L'algorithme utilisé dans ce travail pour réaliser des simulations numériques directes des
écoulements fluide-particules est basé sur le formalisme mono-fluide (one-fluid). Dans
cette approche, un seul ensemble d’équations est utilisé pour décrire le comportement
de toutes les phases présentes dans le domaine de calcul. Les différentes phases sont
traitées comme un seul fluide dont les propriétés matérielles varient spatialement, en
fonction de la fonction indicatrice de phase I. Les équations gouvernantes sont données

par:

V-u=0 (11&)
P
% LV (pun) = —Vp + V- ([J (Vu + vTu)) + pg + F (1.1b)

Ou u représente le champ de vitesse, p le champ de densité, p le champ de pression,
p le champ de viscosité dynamique, g l'accélération gravitationnelle et F. la force
de collision. Les deux phases sont considérées comme incompressibles. p et u sont
considérés constants dans chaque phase mais présentent une transition abrupte a travers
I'interface. Les équations sont identiques a celles d'un écoulement monophasique.
Par conséquent, les techniques développées pour résoudre les équations pour les
écoulements monophasiques peuvent étre facilement utilisées. La seule différence est
que le solveur doit étre adapté pour gérer les propriétés matérielles variant spatialement.

Lors de la résolution numérique des équations précedantes, il est nécessaire d’identifier
la phase présente n'importe ou dans le domaine. Pour cela, la fonction indicatrice de
phase I est introduite. Elle est définie comme étant egale a 1 dans la phase solide, a 0
dans la phase fluide, et égale a la fraction volumique solide a = V;/V,.;; dans toutes les
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Figure 1.4: Représentation graphique des maillages de résolution (a) maillage fixe, (b) maillage
mobile.

cellules traversées par une interface. Dans les cellules biphasées, la densité est définie
comme la moyenne pondérée par la fonction indicatrice des deux densités fluide et
solide :

p = Ipsotide + (1 = Dpfiuide (1.2)

Lorsque les particules se déplacent, l'interface entre les deux phases est déplacée.
Pouvoir localiser précisément la position de l'interface est primordial dans le formalisme
mono-fluide. L'advection de la fonction indicatrice est régie par :

dl
—+uy-Vi=0 1.3
ot ! (1.3)
Ou uy, représente la vitesse de déplacement de l'interface. Pour résoudre 'equation
precedante, la methode de Front tracking est utilisée. Selon cette méthode, la frontiere
entre les deux phases est suivie par un maillage de surface mobile composé de marqueurs
Lagrangiens connectés qui sont advectés par rapport a un maillage Eulérien fixe (voir
Figure 1.4).

La vitesse barycentrique de 'interface u,, est ensuite calculée numériquement a partir
de:

Uy, = ﬁ Z A,-ui (1.4)

ou A; etu; sont respectivement la surface et le vecteur vitesse associés au marqueur idu
maillage Lagrangien. Les marqueurs sont ensuite déplacés avec la vitesse barycentrique

1 _ 1
X! =xI' + Atuy” (1.5)
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Une fois les nouvelles positions des marqueurs xf’“ connues, le front est utilisé pour

reconstruire la fonction indicatrice et pour mettre a jour les propriétés physiques locales
en conséquence. Les difficultés habituellement soulevées par la méthode de suivi frontal,
liées a la conservation de la masse et a la gestion de la fragmentation et de la coalescence
des inclusions, sont absentes dans notre situation.

D’un point de vue eulérien, la contrainte de rigidité au sein de la phase solide peut étre
exprimée comme suit [107] :

% (Vu + VTu) ~0 (1.6)
Cette formulation est tres pratique par rapport aux équations mono-fluide. Elle décrit
une contrainte localisée pour le domaine rigide qui pourrait étre directement imposée
sur l’équation de conservation de la quantité de mouvement sans avoir besoin de
connaitre au préalable les vitesses du solide. En pratique, il est possible d’annuler le
tenseur de déformation en imposant une valeur élevée pour i a l'intérieur de la région
solide par rapport au domaine fluide. Le comportement de corps rigide sera dans
ce cas appliqué de maniére asymptotique. Cette approche est appelée méthode de
pénalité visqueuse [97, 16]. Cette stratégie présente 'avantage de simplifier grandement
le couplage entre les phases solide et fluide, puisque le couplage est fait implicitement
et I'inertie de la région solide est entierement portée par le solveur fluide. Le champ de
vitesse a l'intérieur du solide étant un champ sans divergence, 'équation de continuité
est également automatiquement satisfaite. En ce qui concerne la modélisation de la
viscosité dynamique dans les mailles traversées par 'interface diphasique, 1'utilisation
d’une moyenne harmonique est préférée a une moyenne arithmétique, car la moyenne
harmonique satisfait mieux a la condition de continuité des contraintes a l'interface.
Cependant, méme avec cette stratégie, le rapport de viscosité peut occasionnellement
étre si élevé que des ajustements supplémentaires sont nécessaires. Par exemple, certains
auteurs ont proposé de réduire le rayon des particules pour compenser cet effet [115].
Dans notre cas, nous avons préféré utiliser une fonction en escalier pour modéliser la
viscosité équivalente a l'interface. L'application de la viscosité du fluide dans les mailles
biphasiques permet en quelque sorte de réduire le diametre hydraulique des particules.
Le rapport de viscosité prescrit pour nos simulations varie entre 10% et 10*.

Pour ce qui est de la modélisation des collisions particule-particule et particule-paroi,
une version modifiée de la méthode de modélisation combinée de Mohaghegh et al.
2019 [83] a été adoptée. Dans cette approche, la force de collision est modélisée sur
la base d"un systeme masse-ressort sans amortisseur. Cette méthodologie permet de
réduire le nombre de parametres numériques en comparaison avec d’autres modeles de
collision de la littérature [13, 12, 66, 26]. Pour tenir compte des pertes dissipatives liées
au frottement fluide et aux collisions inélastiques, la raideur du ressort est ajustée en
utilisant le coefficient de restitution pour obtenir la vitesse de rebond désirée a la fin de
la collision, contrairement a d’autres modeles qui nécessitent souvent "utilisation d'un
modele de lubrification et d'un modeéle de force-déplacement impliquant un coefficient
d’amortissement. Une particularité de cette approche réside dans le fait que la vitesse
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de rebond des particules est connue avant méme que 'impact ne se produise. Cela est
di au fait que le coefficient de restitution utilisé pour corriger la raideur du ressort est
calculé a partir d"une corrélation expérimentale entre le coefficient de restitution et le
nombre de Stokes a 'impact [99]. De plus, cette méthode permet d’étendre la durée de
la collision, permettant ainsi de réaliser des simulations sur des durées prolongées. Les
coefficients du modele sont fournis explicitement, éliminant le besoin d"une solution
itérative. Enfin, le nombre de parameétres numériques est réduit car aucun modele de
lubrification supplémentaire n’est requis.

Dans le passage suivant, les grandes lignes du modele de collision sont exposées :
Considérons une collision se produisant entre deux particules sphériques p et g ou entre
la particule p et un mur. La force de contact F. agissant sur une particule pendant une
collision est modélisée par un oscillateur harmonique comme :

F. = —k&,n (1.7)

avec k est la raideur du ressort et 6,, la distance normale séparant les surfaces des sphéres
en collision donnée par :

on = lIxp — x4l = (Rp + Ry) (1.8)

ou x, et x; sont les positions des centres de masse des particules p et g, R, et R, sont les
rayons des particules. n est le vecteur normal au plan de collision défini par :

Xp = Xq

n=—— (1.9)
”Xp — Xg [
L'équation différentielle décrivant le mouvement du systeme est donnée par :
MeOpn + kby =0 (1.10)

La raideur du ressort k a été dérivée par [13] dans le cas particulier d"une collision
élastique :

k=m, (1)2 (1.11)
70

ou m, est la masse effective et 7¢ est la durée de collision prescrite. Pour les interactions

particule-particule, m, = m,m,/(m, + m,) avec m, et m, étant la masse des particules

p et g respectivement. Si la collision se produit entre une particule p et un mur, alors

me = my. La durée de collision étirée est prise comme un multiple N du pas de temps

du solveur Navier-Stokes At :

70 = NAt (1.12)

Physiquement, les collisions sont inélastiques, ce qui signifie qu'une partie de I'énergie
cinétique est dissipée pendant le contact. Méme dans le scénario ot la contrainte
visqueuse est négligeable, une certaine énergie est encore dissipée sous forme de
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vibrations dans le solide. Le coefficient de restitution sec e; tient compte de cette
dissipation d’énergie :

_ Aureb,d

ed (1.13)

Auimp,d

ou Autyep,q €t Aujnp 4 sont respectivement les vitesses relatives de rebond et d’impact
des deux surfaces solides en collision dans 1’absence de dissipation visqueuse du fluide
(régime sec). Le coefficient de restitution sec du solide est une propriété physique
directement liée aux propriétés élastiques du matériau. La valeur par défaut utilisée
dans ce travail de these est e; = 0.97. En régime humide (présence d"un fluide visqueux),
la dissipation d’énergie est nettement plus élevée en raison de la dissipation visqueuse
du fluide. [68, 120] (Figure 1.5) ont montré expérimentalement que le coefficient de
restitution apparent ou effectif est fortement corrélé avec le nombre de Stokes St :

_ %ReffAuimpps

St
9 Wy

(1.14)

Dans cette équation, R, ¢ représente le rayon effectif, défini par Resf = RyRy/(Rp + Ry)
dans le cas de la collision de deux particules, et R, s = R, dans le cas d"une collision
entre une particule et une paroi. Au;y, correspond a la vitesse relative au moment de
I'impact, ps est la densité des particules, et yf est la viscosité dynamique du fluide.

La relation entre le coefficient de restitution effectif e et le nombre de Stokes St peut étre
exprimée comme le produit du coefficient de restitution sec constant et d’un coefficient
de restitution "humide", e;,, dépendant du nombre de Stokes St. Typiquement, e,, varie
deOal:

e(St) = eg ew (St) = Z‘—_’”’ (1.15)
imp

De maniere similaire a [83], la vitesse de rebond nécessaire a la fin d’une collision
est obtenue en utilisant la relation e, = exp (—35/5t) en tant que parametre d’entrée
du modele. Le coefficient de restitution effectif de la collision est calculé en fonction
du nombre de Stokes St avant I'impact et est utilisé pour ajuster la raideur du ressort
dans I'Eq.4.36. Cette procédure élimine le besoin d’un modeéle de lubrification ou
d’un coefficient d’amortissement en tenant compte intrinsequement de la dissipation
d’énergie.

Il est a noter que le nombre de Stokes pré-collision est calculé au moment ot les
particules commencent a entrer en collision, ce qui signifie que 'effet de lubrification
a déja été sous-résolu, car 1'espace entre les particules est inférieur a une cellule de
grille. Par conséquent, le nombre de Stokes pourrait étre surestimé. En pratique,
I'énergie cinétique de la particule avant et apres la collision est prescrite en utilisant le
coefficient de restitution effectif. La différence entre les deux énergies correspond aux
effets dissipatifs. Apres avoir traduit cette différence en énergie potentielle, il peut étre
montré facilement que, pour obtenir la vitesse de rebond souhaitée, la raideur du ressort
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Figure 1.5: Adapté de [76]. Coefficient de restitution en milieu humide en fonction du nombre
de Stokes St. Points de données de [68, 53, 75, 47].

doit étre réduite d'un facteur e? pendant la phase de rebond (voir [83] pour plus de
détails sur la dérivation). L'ajustement est effectué apres que le chevauchement maximal
des interfaces permis par la raideur du ressort soit atteint, et les particules commencent
a se déplacer dans des directions opposées. La raideur du ressort est traitée comme une
fonction définie par morceaux du produit scalaire Au - n (Eq.4.49). Le changement de
signe de ce dernier est utilisé pour déterminer précisément le moment ot la réduction
de la raideur est effectuée (voir Figl.6):

2
Tt
kim = — if Au- <
ki = 4 me(fo) i Awn<O (1.16)

krep = kimpe® if Au-n>0

La force de collision F. = —k;6,n est ensuite appliquée aux cellules purement solides dans
le domaine de simulation (correspondant a une fonction indicatrice strictement égale a
0). Cela est fait a chaque pas de temps jusqu’a ce qu’il n'y ait plus de chevauchement
entre les deux solides.

La distance 6, (Eq. 1.8) entre les surfaces de chaque paire de particules p et g est calculée.
Si (6, < 0), alors une collision est détectée et la force a appliquer a chacune de ces
particules est calculée. Conformément a la troisiéme loi du mouvement de Newton, la
force de réaction a appliquer a la particule g est d’intensité égale et de direction opposée
a la force appliquée a la particule p :

Fc,p - qg=-Fc,q—p (1.17)

Les forces agissant sur la particule p sont additionnées et divisées par le volume Vp de
la particule p. Le résultat est ensuite appliqué aux cellules solides appropriées grace a
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Figure 1.6: Diagramme explicatif du modele de collision.

la fonction indicatrice de phase :

n+1

Fc,g—p

n+1 n

=1 _—_ 1.1

¢ ; Vv, (1.18)

Les forces sont calculées a chaque pas de temps jusqu’a ce qu’aucun chevauchement ne
soit observé (6, > 0). L'intégration temporelle de la force de collision est effectuée par
un schéma de temps Euler semi-implicite (SIE) pour éviter les divergences numériques
causées par le schéma Euler explicite :

Fc,q — p"™ = —k;6n"n (1.19)
oit n est donné par Eq. 4.38 et 51" ! est la distance séparant la surface des deux particules
en collision évaluée au temps 1 + 1 :

6n"+1 —

(xp" —xq") + At (up” - ug) — (Rp +Ry) (1.20)

Dans le cas d"une collision mur-particule, une particule virtuelle identique a la particule
p est générée derriere le mur, comme proposé dans [50]. Cette stratégie permet de traiter
le calcul de la force de collision dans la situation de collision mur-particule de maniére
identique au scénario particule-particule.

Enfin, les équations de Navier-Stokes sont résolues par une méthode de prédiction/-
correction sur une grille cartésienne échelonnée avec une discrétisation en volume fini
Marker-And-Cell (MAC) [92]. Pour alléger les contraintes numériques causées par les
hauts rapports de viscosité R, requis par la méthode de pénalité visqueuse, I'évaluation
du terme source diffusif est implicite et calculée avec un algorithme d’Uzawa.
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Figure 1.7: Profile de la hauteur normalisée /,/d, en fonction du temps pour une particule en
sédimentation. Symboles : données expérimentales de Cate et al. [18], lignes : simulations.

Validation et simulations

la méthodologie de simulation présentée précédemment est validée en reproduisant les
cas tests de [18] et [53]. Le premier cas test correspond a la sédimentation d"une particule
sphérique dans un conteneur contenant un fluide au repos a différents nombres de
Reynolds. Les nombres de Reynolds, Re; = pfViR, /s basés sur la vitesse terminale V;
considérée dans cette étude sont 1.5, 4.1, 11.6, and 32.2.

Ces conditions sont obtenues en ajustant le type de fluide a I'intérieur du conteneur.
Les dimensions du conteneur sont de 0.10m X 0.16 m X 0.10 m dans les directions X, y
et z, respectivement.

La gravité ¢ = 9.81m - s™! agit dans la direction négative de y. La position de lacher du
centre de gravité de la particule est située 12.75 cm au-dessus du fond du réservoir et est
centrée dans les directions x et z. La densité de la particule solide est p, = 1120 kg/m”.
Des conditions aux limites de non-glissement sont imposées sur les parois du domaine,
tandis que des conditions aux limites de sortie (avec une pression de référence nulle) sont
appliquées a la limite supérieure. Initialement, le fluide est au repos dans le domaine.
Le rapport de viscosité est fixé a R, = 1000 pour les quatre cas. Enfin, un pas de temps
d’intégration égal a At = 107 s est utilisé pour le solveur de pression.

Pour réaliser les simulation sur les figures ultérieures, une moyenne harmonique et une
résolution de grille de Rx = 15 ont été employées pour les quatre nombres de Reynolds.
Les résultats de ces simulations sont comparés avec les résultats expérimentaux de ten
Cate et al. sur les figures 5.2 et 5.3. Comme le montre la comparaison, la dynamique
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Figure 1.8: Profile de la vitesse de particule v, en fonction du temps pour une particule en
sédimentation. Symboles : données expérimentales de Cate et al. [18], lignes : simulations.

d’une particule en sédimentation a des nombres de Reynolds allant jusqu’a 31.9 est
fidelement capturée par nos simulations. La section suivante sera consacrée a une
validation supplémentaire du modele de collision, spécifiquement dans le contexte
du régime de rebond. Pour valider notre méthode, nous reproduisons les données
expérimentales de Gondret, Lance, and Petit [53].

La configuration de la simulation met en jeu une particule en acier inoxydable qui est
libérée dans un réservoir rempli d’huile de silicone RV10. Sous l'effet de la gravité,
la particule accélére vers le fond du réservoir, entrant en collision a plusieurs reprises
avec le fond de la boite. L'évolution temporelle de la trajectoire et des profils de vitesse
verticale a été simulée, et elle a été comparée aux données expérimentales. Les nombres
de Stokes pour les rebonds successifs sont St = 75, 41, 20, and 5. La simulation est
réalisée dans un domaine de 9mm X 12 mm X 9 mm avec une résolution de maillage
de Ra = 16. Le diametre de la particule est d, = 3mm et le centre de la particule est
positionné aux coordonnées (4.5mm, 8.88 mm, 4.5mm). Les densités du fluide et du
solide sont respectivement égales a 935 kg/m> and 7800 kg/m®. La viscosité du fluide
est égale a 0.01 Pa - s et le rapport de viscosité est maintenu a R, = 1000. Des conditions
aux limites de non-glissement sont imposées sur toutes les parois du domaine, et le pas
de temps est fixé a At =5x 107 s.

Les figures 1.9 et 1.10 montrent le comportement temporel de la distance normalisée
de la particule par rapport au mur et sa vitesse de sédimentation. Les simulations
utilisent a la fois la moyenne harmonique et la modélisation en escalier pour calculer
la viscosité dans les cellules traversées par l'interface. Les deux méthodes montrent
une forte concordance avec les données expérimentales pendant la phase initiale de
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Figure 1.9: Profile de la hauteur normalisée h, /d, en fonction du temps. Symboles : données
expérimentales de Gondret, Lance, and Petit [53], lignes : simulations
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expérimentales de Gondret, Lance, and Petit [53], lignes : simulations actuelles
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sédimentation, fournissant une représentation correcte de la trajectoire de la particule.
Cependant, des incohérences deviennent apparentes apres le premier rebond. En
particulier, apres la premiere interaction de la particule avec son sillage, la force de
trainée est surestimée, entrainant une réduction des hauteurs de rebond. L'utilisation de
la méthode de fonction d’étape pour le calcul de la viscosité améliore les résultats de la
simulation. Ce faisant, nous diminuons numériquement le diametre hydrodynamique
de la particule, réduisant ainsi la trainée. Au fur et a mesure que la simulation progresse
et que la particule rebondit plusieurs fois, de 1égeres déviations entre les données
simulées et expérimentales émergent. Ces écarts entrainent une sédimentation plus
précoce de la particule simulée par rapport a son homologue réel.

Dans la section suivante, nous évaluerons la performance de la méthode dans le cas
plus complexe d"un lit fluidisé avec plus de 2000 particules en interaction. Pour ce
faire, nous présentons les résultats de simulation d’un systeme de 2100 particules
a quatre vitesses de fluidisation différentes. Les parametres de la simulation sont
basés sur I'expérience de Aguilar-Corona [1], qui a étudié la fluidisation de particules
sphériques monodispersées de Pyrex de 6mm (p, = 2230kg/m’) dans une solution
aqueuse concentrée de thiocyanate de potassium (py = 1400 kg/ m> F=3.8x 1073 Pas).
La vitesse terminale de la particule est V; = 0.24m/s.

Le dispositif expérimental a été spécialement con¢u pour servir de référence lors de
la validation numérique, car 1'indice de réfraction des deux phases a été choisi pour
permettre des techniques de mesure optique non intrusives. Ces techniques sont
utilisées pour caractériser le champ de vitesse du fluide et 1’agitation des particules. La
méme configuration a déja été étudiée numériquement par Ozel et al. [86], en utilisant la
méthode de pénalité tensorielle implicite de Vincent et al. [115], avec une résolution de
maillage de RA = 12. Le nombre de Reynolds basé sur la vitesse terminale est Re; = 530
et le nombre de Stokes associé est St; = 94. Nous visons a évaluer la performance
de notre approche en reproduisant la configuration numérique d’Ozel pour quatre
vitesses de fluidisation différentes : Ur = 0.15m/s, 0.12m/s, 0.09m/s, 0.073m/s. Le
domaine de calcul est de dimension 0.072m X 0.648 m X 0.072m, et correspond a la
méme surface de section transversale expérimentale. Pour maintenir la cohérence avec
I’étude originale, nous avons également imposé une résolution de maillage de Ry =12,
qui est légérement plus grossiere que la résolution utilisée dans les cas précédents, mais
est considérée comme un équilibre juste entre colit computationnel et précision. De
plus, le rapport de viscosité est fixé a R, =1 X 10%. Pour accélérer la phase transitoire
initiale, le lit de particules a été congu pour correspondre étroitement a la hauteur de lit
obtenue dans le cas numéro 3 de [86] (ot Ur = 0.12m/s et la hauteur de lit est atteinte
dans le régime stationnaire).

La Figure 1.11 fournit a la fois une vue macroscopique et microscopique de la dynamique
du lit fluidisé. La figure du haut illustre l'intensité de la vitesse au plan central du
domaine a t = 9.6 secondes, couvrant diverses vitesses de fluidisation Ur. Notamment,
les vitesses a l'intérieur des particules sont significativement plus faibles que dans
le fluide environnant. A mesure que Ur augmente, nous observons l’émergence de
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Figure 1.12: Vitesse de fluidisation en fonction de la concentration solide du lit.

structures pseudo-turbulentes plus grandes se formant dans le sillage des particules.
En se concentrant sur le niveau microscopique, le tracé vectoriel de la figure du bas
révele la formation de couches limites dynamiques autour de chaque particule. La
vitesse du fluide passe de la vitesse de la particule a sa surface a des valeurs dépassant
la vitesse de fluidisation plus loin dans le domaine. La distribution non uniforme des
particules est également évidente, conduisant a des disparités de vitesse entre les régions
riches en particules et les régions pauvres en particules. A mesure que les particules se
déplacent a travers le fluide, leurs couches limites perturbent I’écoulement, créant des
zones de sillage a faible vitesse juste derriere elles. L'interaction et la superposition de
ces sillages de plusieurs particules ajoutent une couche de complexité a la dynamique
de I’écoulement.

Une étape importante dans la validation du lit fluidisé est I’établissement de la loi
de fluidisation. Les fractions volumiques moyennes du lit sont affichées dans la
Figure 5.15 en fonction de la vitesse de fluidisation. Les résultats sont comparés
avec les données expérimentales de Aguilar-Corona [1], les résultats numériques de
[86], et 1a corrélation empirique proposée par Richardson and Zaki [96] avec n = 2.4 et
Uro = 0.24 m/s comme suggéré dans Aguilar-Corona [1]. D’autres quantités importantes
qui capturent bien la dynamique microscopique du lit sont le coefficient d’anisotropie et
I'énergie cinétique totale. Ces quantité sont tracés en fonction de la fraction volumique
dans Fig. 5.17a. D’apres le graphique, nous observons que les valeurs obtenues sont
légerement inférieures a celles de [86]. Cependant, nous constatons également qu’il
n'y a pas de dépendance du coefficient d’anisotropie, kanis, sur la fraction volumique
moyenne des particules. Ceci est vrai sauf pour le dernier cas, qui correspond a la vitesse
de fluidisation la plus élevée de Ur = 0.15m/s. Des tendances similaires sont observées
pour l'énergie cinétique. Enfin, cette analyse démontre que 'approche développée
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au cours de cette these permet de simuler un lit fluidisé solide-liquide avec la méme
précision que [86, 115].
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Figure 1.13: Coefficient d"anisotropie des fluctuations de la vitesse des particules en fonction de
la concentration solide du lit.

Conclusion

Dans le contexte de cette these, des modifications conséquentes ont été apportées a
I'algorithme de suivi frontal (front tracking) de TrioCFD pour réaliser des simulations
numériques directes d’écoulements denses de fluides-particules.

En appliquant la technique de pénalisation visqueuse au formalisme monofluide afin
de traiter les contraintes de rigidité, nous avons réussi a maintenir une interaction
précise entre les phases solide et fluide, sans avoir a recourir a des termes de forcage
supplémentaires. De plus, 'utilisation d"une moyenne harmonique et d"une fonction
en escalier pour calculer la viscosité équivalente dans les cellules traversées par une
interface diphasique s’est avérée efficace pour calibrer le diametre hydraulique lorsque
le maillage de simulation ne pouvait pas étre suffisamment raffiné pour des raisons
de cotit. La gestion des interactions a courte portée entre les particules a été réalisée
grace a un modele de collision combiné, permettant de prendre en compte la dissipation
visqueuse et inélastique.

La validation de notre méthode de simulation par rapport a des références expérimentales
a démontré sa fiabilité, avec une bonne concordance avec des références expérimentales,
notamment dans les cas de simulation du mouvement de chute en présence d'un
fluide visqueux et de la trajectoire de rebond de particules lors d’impacts contre une
paroi verticale. Enfin, cette méthode a permis de simuler avec succes des écoulements
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granulaires denses comptant plus de 2000 particules, reproduisant ainsi les résultats
expérimentaux avec une bonne précision.
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2.1. Context

swy B 4R

Figure 2.1: (a) Sediment plume of the Rhone river in France. Credit: European Union, Copernicus
Sentinel-2 imagery. (b) Eruption of the Hunga Tonga-Hunga Ha’apai volcano. (c) Sandstorm
near the city of Djelfa, Algeria. (d) Pneumatic transport of grains. (e) Pharmaceutical fluidized
bed coating machine.

2.1 Context

Fluid-particle flows, also known as particle-laden flows, represent a significant subclass
of multiphase flows. As the name implies, these flows are characterized by the
simultaneous presence of two distinct phases: a continuous fluid phase either gas or
liquid, and a dispersed particulate phase that is transported by the fluid phase.

A distinguishing characteristic of fluid-particle flows is the intense interaction between
the fluid and particulate phases. This interaction is marked by a continuous and intricate
exchange of momentum - and depending on the physics of the flow energy and mass
- across the interfaces that separate the two phases. This complex interplay and the
resulting coupling of phases give rise to a multitude of captivating phenomena that are
unique to fluid-particle flows, and set them apart from their single-phase counterparts
in a profound manner. Fluid-particle flows are not only intellectually engaging but
also practically significant. These flows are omnipresent across diverse strata of natural
phenomena and industrial application, with instances ranging from common daily
occurrences to highly specialized technological applications [112].

In the environmental domain, these flows are instrumental in geological processes such
as soil erosion and sediment transport in rivers. Here, soil particles, along with sand,
silt, and rocks, are transported by rainwater, continuously reshaping the landscapes over
time. Additionally, fluid-particle dynamics extend into the atmospheric domain with

2



2.1. Context

phenomena such as the dispersion of dust during storms and the spread of volcanic
ash during volcanic eruptions (see Fig. 2.1). They also play a crucial role in the field of
microbiology where biological entities like viruses, bacteria, and nutrients can be viewed
as particles suspended in biological fluids such as blood or lymph. This fluid-particle
interaction is a fundamental aspect of how these entities move, interact, and distribute
within the host organism. A notable example is the spread of the SARS-CoV-2 virus,
which has caused the COVID-19 pandemic.

In the industrial and technological landscape, fluid-particle flows are integral to numer-
ous processes across a vast array of sectors. For instance, the pharmaceutical industry
employs these flows in processes like granulation, where fine particles are bound
together in the presence of a liquid to form larger granules. Similarly, in the mineral
processing industry, hydraulic transport of ores involves creating a slurry where solid
particles are transported by a fluid medium. Fluid-particle flows are also integral to
operations of fluidized bed reactors in chemical engineering, which are essential for
large-scale chemical processes such as catalytic cracking of petroleum.

Lastly, in the wake of the global climate crisis, the role of fluid-particle flows in renewable
energy solutions has become increasingly significant, especially in Concentrated Solar
Power (CSP) technology.

2.1.1 Concentrated solar power

Concentrated Solar Power (CSP) systems are a form of renewable energy technology
designed to harness the sun’s energy. Unlike the more broadly known photovoltaic (PV)
systems, which convert sunlight directly into electricity via semiconductor materials,
CSP systems work by focusing sunlight onto a small area to generate high-intensity heat,
which is then converted to electricity through a thermal process. Both type of systems
are displayed on Fig. 2.2.

At the core of CSP’s working principle is the utilization of mirrors or lenses to concentrate
a large area of sunlight into a focalized beam aimed at a reciver. This concentrated solar
energy is first absorbed by the reciver and then used to heat up a working fluid. The
heated fluid is then employed either dirctly or indirectly as a heatsource for alimenting
a thermodynamic cycle for electric power generation [48].

There are four main CSP technologies, differentiated primarily by the geometry of their
collectors: Parabolic Trough Collector (PTC), Linear Fresnel Reflector (LFR), Parabolic
Dish Collector (PDC), and Solar Power Tower (SPT). [48] LFR and PTC fall under
line-focusing systems. These systems harness sunlight by focusing radiation 60-100
times onto an absorber pipe. Commercially, these technologies often operate based on
the Rankine cycle, with synthetic oil or steam serving as heat transfer fluids [84, 91].

On the other hand, SPT and PDC fall into the category of point-focusing central receiver
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Figure 2.2: (Top) PV: Photovoltaic systems, PTC: Parabolic Trough Collector,LFR: Linear Fresnel
Reflector, PDC: Parabolic Dish Collector, SPT: Solar Power Tower (Bottom) Concentrating solar
power plant [84].

systems. Solar tower plants employ numerous heliostats that concentrate solar radiation
up to 1000 times onto a central receiver. The dish-Stirling systems take the focusing
aspect even further, where a dish-shaped mirror concentrates solar radiation up to
3000-fold into the receiver cavity of a Stirling engine [84].

Although the installed capacity of Concentrated Solar Power technologies is currently
small compared to Photovoltaic and wind energy, these technologies exhibit significant
growth potential for the future. CSP systems are expected to expand in parallel with
the ever-increasing capacities of PV and wind energy, contributing to a more balanced,
sustainable global energy mix [59]. . Indeed, the addition of renewable power sources
that are controllable can be highly beneficial for offsetting the power fluctuations
caused by the intermittent nature of PV and wind energy. In this regard, CSP systems,
especially when coupled with Thermal Energy Storage (TES), can play a significant role
in smoothing out the electricity supply-demand curve. This helps to ensure a steady
and reliable electricity supply on the grid [59]. Furthermore, CSP systems also serve as
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excellent bulk electricity production systems in the 10-1000 MW range [84].

The interest in CSP technologies is clearly seen in the growth rates over the recent
years. In 2019, the cumulative CSP capacity reached 6430 MWh,, with an additional
3645 MWh, under construction or development [59]. However, a major obstacle that
hinders the large-scale commercialization of CSP is the substantial nominal levelized
costs of electricity (LCOE,). In 2018, it was found that some CSP plants could achieve an
LCOE of around 10.9 c$/kWh.. However, the global weighted-average LCOE,,of CSP
projects commissioned in 2018 was 18.5 c$/kWh,, which is significantly higher than
those of photovoltaics (8.5 c$/kWh,) and onshore wind power (5.6 c¢$/kWh,) [59]. To
enhance the competitive positioning of CSP, concerted efforts toward cost reductions and
performance improvements across all subsystems in the CSP plant are highly desirable
[59].

Based on the cycle efficiency and the thermodynamic cycle types, CSP technologies can
be categorized into three generations as outlined in Figure 2.

Generation 15t gen. 21 gep, 3 gen._

O O O >
Receiver outlet temp. ~250-450C ~500 - 565°C ~720C Expected to be 1
f—% r A A} (4 A 3
PTC, SPI NEER PTC, SPLREER PDC ey Air,
Typical plant or -- B s00-565C e E He,
technology 5{ . : ‘E"‘__!_f e co,
SEGST m \Ne[COSE M Archimede M Maricopa | etc.
Heat transfer medium Oil or steam Steam or salt Gas Salt Pﬂl G!
Thermal energy storage "Rt i) Reeent | Eol Gl Sonenves N0 ves
Power cycle Steam Rankine cycle Stirling Brayton cye_
Peak temp. of cycle ~240-440°C ~480-550°C ~720C Expected to be I
Design cycle eff. ~28-38% ~38-44%  ~38%  Expected to be >50% |
Annual solar-electric eff. ~9-16% ~10-20% ~25% ~ 25—30%-

Figure 2.3: Overview of the three generation of CSP technologies [59]

The first-generation CSP systems mainly utilized the Rankine cycle with an approximate
cycle efficiency of 28-38%. The peak cycle temperature in these systems varied from
a modest 240 °C to 440 °C. In this generation PTC, SPT and LFR technologies were
primarily employed. Early designs lacked thermal energy storage, limiting the plant
operations to sunlit hours. Nevertheless, more recent iterations have incorporated a
two-tank sensible TES to ensure functionality during nighttime or overcast conditions.
Despite the lower cycle efficiency, with an annual solar-electric efficiency of roughly 9-
16%, first-generation CSP systems comprise the majority (around 80.2%) of the installed
capacity, with PTC systems constituting about 76.5% of this figure [59].
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The second-generation CSP plants employ an improved Rankine cycles, achieving
an enhanced cycle efficiency of approximately 38-44%. The peak cycle temperature
for these systems ascended to a range of 480 °C to 550 °C. These systems are almost
always integrated with TES, where a binary nitrate serving dual purposes as the heat
transfer fluid and thermal storage material. Although efficient, this solution encounters
limitations related to minimum and maximum operating temperatures, as the salts
solidify around 220-260 °C and suffer chemical degradation at temperatures beyond
565-600 °C [9]. These limitations hinder the overall performance and efficiency of the
CSP system [126]. As a result, these plants can attain an annual solar-electric efficiency
of about 10-20%. While PDC systems leveraging the Stirling cycle, with a typical
cycle efficiency around 38%. Despite higher efficiency, PDC implementation has been
restricted due to reliability issues such as gas leaks [59]. Economic analysis highlights
that among all CSP systems, the second-generation Solar Power Tower can attain the
lowest nominal levelized cost of electricity LCOEyat 10.90 ¢$/kWhe, thus reducing the
cost difference with PV. This implies the potential of SPT systems to generate dispatchable
electricity more cost-effectively than other CSP systems, supporting the trend of SPT
systems constituting 61.51% of the total projected capacity [59].

Currently, third-generation CSP technologies are under intense research. The primary
objective is to augment solar-electric efficiency to reduce LCOE,.. One key strategy
involves enhancing cycle efficiency, where the Brayton cycle, with peak cycle tempera-
tures exceeding 700 °C, is suggested. The cycle efficiency is also anticipated to exceed
50%. Various solar collection pathways employing diverse HTFs are being investigated,
particularly focusing on high-pressure gases, high-temperature molten salts, and solid
particles [9].

Specifically, solid particles present several benefits such as a broader operating temper-
ature range and potential thermal stability, which could optimize the efficiency and
performance of CSP systems [7].

2.1.2 Particle-based HTF

Particle-based HTFs have attracted considerable interest in the field of CSP, with
various technologies being developed worldwide. Some notable examples include
the "falling particle" receiver by Sandia National Laboratories in the United States
[64], the top-irradiated draft tube fluidized bed developed by [78] and the centrifugal
receiver developed by the German Aerospace Center (DLR) [41]. Another noteworthy
development is the particle-in-tube solar receiver, also known as the Upflow Bubbling
Fluidized Bed (UBFB), which is developed by the National Center for Scientific Research
(CNRS) in France in collaboration with international partners. This research is part of
the European projects "CSP-2" and "Next-CSP.[46, 61]". The receivers are illustrated in
Fig. 2.4.

In the UBFB design, tubes are submerged within a vessel called the dispenser, which acts
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-
(1) Particle dispenser bed
(2) 16 Parallel UBFB-tubes

(4) Heat recovery BFB
(5) Refractory-lined solar cavity.

(3) Particle disengagement chamber

Figure 2.4: (a) Falling particles receiver. (b) Centrifugal receiver. (c) UBFB single tube on-sun
experiment. (d) 3D schematics of the multi-tube UBFB solar receiver. (e) On-sun experiment of
the multi-tube UBFB. (f) Microscopic magnification of powders used as HTF in the UBFB system.

as a feeder tank for the particles. When air is introduced into the dispenser under specific
conditions it results in the suspension of the solid particles in the upward-moving air
stream. The suspended mixture starts to exhibit characteristics similar to those of a
liquid. For instance, the mixture can flow freely, conform to the shape of its container
much like a fluid does, etc. This phenomenon is referred to as fluidization.

By applying pressure in the dispenser’s freeboard, an upward particle flow in the tubes
is achieved (See Fig. 2.5(c)). This type of flow is distinct from traditional risers, as it
relies on a combination of carrier phase velocity and a pressure gradient between the
dispenser and the collector, resulting in a wide range of solid volume fractions [55].
On-sun studies have shown that UBFB receivers can achieve heat transfer coefficients
in the range of 800 W - m™2-K™! to 1200W - m™2 - K™!, making them highly efficient
under various irradiation conditions [8, 126, 128]. The UBFB concept offers several
other technological benefits, including the use of a tubular receiver similar to those
employed with molten salts and the ability to use the same medium as both HTF and
storage material. Unlike molten salts, particles are not restricted to a specific working
temperature range, allowing for high operation temperatures and more efficient heat-to-
electricity conversion via high-temperature thermodynamic cycles [7]. Economically,
UBFB technology can potentially reduce costs associated with the HTF and storage
medium, as the selected particles can be significantly less expensive than molten salts
[67]. Environmentally, the use of mineral particles can help decrease the power plant’s
overall environmental footprint [69].

Up to this point, experimental research on UBFB receivers has primarily focused on
smaller-scale setups with tubes of small internal diameters and irradiated lengths
ranging from 1 to 2 meters [8, 88, 11, 74], as well as longer tubes in ambient conditions
up to 4m. However, to successfully scale up the UBFB technology for commercial
applications in the range of 10 MWy, to 50 MWy,, it is necessary to employ taller tubes,
preferably at least 6 m in height. Previous research has demonstrated that fluidization
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Figure 2.5: (a) Off-sun UBFB experimental setup. (b) Wall slug. (c) Axisymmetric slug. (d) Flow
regime evolution with tube height.

regimes within the tubes are not homogeneous in relation to tube height [32, 100, 55].
At the base of the tubes, small bubble-like gas pockets begin to form as a result of
increased gas pressure. These bubbles, in turn, entrain particles, carrying them upward.
The phenomenon shares a visual similarity with boiling, leading to the term ‘bubbling
fluidization” regime. As we move further up the tube, these bubbles start to merge,
creating larger ‘slugs’ of gas. The slugs are significant enough to encompass a substantial
portion of the tube’s diameter, although not its entirety. Given their size and shape,
these slugs preferentially ascend near the tube’s wall, leading to the term "wall slug’
regime. The transition from the bubbling regime to the wall slug regime notably takes
place at around the 0.7 m mark. At greater elevations, these slugs progressively increase
in size, eventually covering the full diameter of the tube at approximately 1.7 m. This
critical point signals the transition from the wall slug regime to the "axisymmetric slug’
regime, where the slugs of gas occupy the central axis of the tube.

The thermal performance of the solar receiver is closely related to the hydrodynamics of
the two-phase flow. While wall slugs have a limited impact on particle mixing since
they do not cover the entire cross-sectional area of the tube, axi-symmetric slugs can
significantly impair heat transfer due to the reduction in axial and radial particle mixing,
as well as direct contact between the gas volume and the tube wall, thus hindering
particle convection heat transfer [127]. Moreover other studies suggest that the turbulent
regime is the most favorable for on-sun operation in order to maximize the wall-to-bed
heat transfer and, consequently, the receiver efficiency [32, 72].

In light of these observations, it becomes evident that a comprehensive understanding
of the underlying physics of multiphase flows is crucial for designing more efficient
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and effective UBFB systems. By thoroughly investigating both the operating conditions
and potential measures that can mitigate the axi-symmetric slugging phenomena while
enhancing turbulent fluidization in long tubes, we can develop strategies to optimize
the performance of UBFB receivers. This, in turn, will enable the development of more
advanced and scalable solar power systems, paving the way for a cleaner and more
sustainable future.

2.2 The Challenge posed by Particle Fluid flows

Grasping the dynamics of fluid-particle flows is critical, yet this remains a daunting task
due to inherent complexities. The difficulty in making sense of these flows is mainly
attributed to two factors - the multiscale nature of interactions in fluid-solid flows and
the limitations of the tools available to study them.

In the context of fluidized bed systems, the largest flow structures can be on the order of
meters. Yet, these structures are directly influenced by particle-gas and particle-particle
interactions, which take place on a scale of micrometers [113]. Fig. 2.6a illustrates the
multiscale and intricate nature of the physics of fluid-particle flows.
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Figure 2.6: (a) Multiscale character of granular flows. (b) High speed camera charecterization of
the granular flow.

At the smallest scale, known as the microscale, interactions occur between individual
particles and the surrounding fluid. In particle-laden flows, the particle diameter d, is an
essential length scale. Consequently, flow features near the particles, such as boundary
layers and wakes, are usually defined as a function of the particle size. These features
generate structures that typically range from 1 to 104, [105]. The behavior of the flow
around particles is also significantly influenced by the solid volume fraction. In fluidized
bed systems, this fraction can range from less than 5 % to nearly the close-packing limit,
depending on the inlet velocity. The magnitude of the solid volume fraction governs the
significance of collisional interactions relative to particle-fluid interactions. For highly
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dilute flows, the effect of flow on a particle at the microscale can be adequately described
by the flow past an isolated particle. However, as the volume fraction increases and
particles move closer to each other, the wakes start to interact and merge. This makes
it challenging to associate a flow structure uniquely with a particle. At this level of
mass loading, particle-particle and particle-wall collisions also come into play. These
micro-interactions occur over extremely short timescales ranging from microseconds for
the fluid phase to nanoseconds for the solid phase.

Scaling up, we encounter mesoscale interactions, encompassing phenomena that span
lengths and timescales larger than the microscale but smaller than the macroscale. The
definition of mesoscale isn’t precise or universally agreed upon. However, a useful
definition, among many, considers mesoscale as the length over which particles are no
longer uniformly distributed, and the variation in volume fraction becomes significant
[104]. At this level, the focus shifts to understanding fluid velocity fluctuations caused
by intermediate mechanisms. These include the formation and evolution of instabilities
or inhomogeneities, the variations in particle concentration, and the clustering behavior
where hundreds of particles congregate together under the influence of cohesive and
electrostatic forces.

Finally, at the macroscale, interactions are dictated by the specific problem or application
context. This level encompasses the large-scale structures and patterns that come to
light as a consequence of interactions unfolding at smaller scales. In the context of
turbulent flow, the macroscale corresponds to large-scale energy-containing motions.
The time scales involved in this context are also extensive, ranging from several seconds
to hours. The macroscale features phenomena such as the formation of bubbles, the
occurrence of slugging, or the overarching circulation of particles, to name a few. An
added layer of complexity is introduced by boundaries, which contribute to macroscale
inhomogeneities that persist even when averaged over time [105]. For instance, in riser
tflows, higher concentrations of particles are often observed near bounding walls. This
can lead to a downward motion of particles (and sometimes gas) in the wall region
and an upward flow in the core region, a pattern found commonly in both riser flow
and turbulent fluidization. These inhomogeneities have a far-reaching impact on gas
and particle residence time distributions within the device, affecting the degree of
contact between phases. Ultimately, these factors influence the overall performance
of the system. The interconnectivity of these scales is bidirectional, as microscale
processes influence mesoscale behavior, which in turn shapes macroscale processes.
Conversely, macroscale features define the environment for mesoscale interactions,
which subsequently dictate the conditions for microscale phenomena to occur.

While a deep understanding of fluid-particle flows requires a comprehensive exploration
across all these scales the endeavor is often hindered by the limitations of analytical and
experimental methods available:

Mathematically, these flows are notoriously complex, with strongly coupled and nonlin-
ear governing equations that are dependent on the location of the two-phase interface.
This complexity makes it challenging to use analytical methods. Even for seemingly
simple configurations, such as flow around a sphere. Analytical solutions are only
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available for the limiting cases of very low Reynolds numbers (creeping flow in the
Stokes regime) or very high Reynolds numbers (inertial flow in the Newton regime),
leaving the intermediate cases - which are often the most relevant - without a clear
analytical solution Clift, Grace, and Weber [23].

Moreover, most of what is currently known about two-phase flow dynamics comes
from experimental studies. These investigations have delved into a diverse array of
fluid-solid flow characteristics, such as the existence of different fluidization regimes,
the preferential clustering of particles, and the emergence of bubble-like voids in dense
fluidized beds. Furthermore, researchers have uncovered the crucial role that operating
conditions play in fluidization behavior, highlighting the significance of factors such
as flow rates and pressure in determining the overall performance of fluidized beds.
Experimental studies have also explored the effects of varying temperatures on fluid-
solid flows, demonstrating that high temperatures can lead to particle recirculation
near the walls, a phenomenon not observed at room temperature [8]. Additionally,
researchers have investigated the impact of slugging on heat transfer rates and mixing,
identifying strategies to optimize the efficiency of fluidized bed systems. Other no-
table findings from experimental studies include the observation of vertically traveling
one-dimensional (1D) waves in liquid-fluidized beds and the secondary instability of
such beds. However, despite the extensive literature on this topic, the implementa-
tion of experimental protocols is not always straightforward. The spatial scales that
researchers are interested in are often quite small, making visual or optical access to
these scales difficult with non-intrusive methods such as high-frequency video capture,
PIV, radioactive tracers, or acoustic spectroscopy. Additionally, with these non-intrusive
methods, it is often necessary to adjust the optical indices of the two phases, which can
be challenging, especially for gaseous fluidized beds. Moreover, the control of operating
conditions, particularly the fluidization rate, is also an important parameter that is not
always easy to set up.

2.3 Numerical Modeling of fluid particules flows

In this context, numerical simulation techniques offer an interesting and complementary
approach for gaining a better understanding of the complex physics of multiphase
flows. By utilizing appropriate numerical methods, we are able to conduct virtual
experiments that provide us with an in-depth look at the flow without disrupting it.
This allows for the examination of a broad range of operating conditions and provides
comprehensive insights into the movement and interactions of the different phases.
Additionally, numerical simulation possesses the ability to detach itself from real-world
scenarios and study the impact of parameters that are unattainable to investigate in a
laboratory setting. An example of this is the effect of weightlessness in microgravity,
where in this case the numerical approach is often the only viable means at our disposal.

However, the multiscale nature of granular flows discussed previously presents a
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Figure 2.7: Overview of simulation methods in fluid-particle flows.

significant challenge in the numerical modeling of such systems, as it is not feasible to
cover all time and space scales present in industrial applications with a single method.
Consequently, over the years, a plethora of numerical methods have been developed and
documented in the literature to target specific scales. These methods can be categorized
into three main groups, akin to the previous classification of multiscale phenomena
in granular flows: Macroscale methods, such as the Two Fluid Methods (TFM), focus
on modeling the overall behavior of granular flows by considering the solid and fluid
phases as interpenetrating continua. In this approach, both phases are described by
separate sets of averaged conservation equations for mass, momentum, and energy.
The coupling between the two phases is achieved through exchange terms that account
for the interactions between particles and the surrounding fluid. Key interactions
include the effective solid’s pressure and the effective solids phase stress tensor, which
represent the forces acting within the granular media and their effects on the flow. TFM
is the primary method capable of simulating pilot-scale industrial processes due to its
ability to capture the global behavior of the system without resolving individual particle
interactions. However, one limitation of TFM arises from the averaging process used to
derive the equations of the model. This averaging necessitates additional closures for
the coupling terms, which are often obtained through empirical correlations or kinetic
theory-based approaches, such as the Kinetic Theory of Granular Flow (KTGF). The use
of empirical correlations or KTGF-based closures introduces a degree of uncertainty in
the model predictions, as these closures may not accurately represent the wide range of
granular flow conditions encountered in industrial applications. Furthermore, the TFM
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does not account for the detailed microscale phenomena that may influence the flow
behavior, such as particle shape, size distribution, or cohesion.

At the mesoscale, the Discrete Element Method (DEM) [29, 17] is utilized to model
granular flows by explicitly simulating the motion and interactions of individual particles
in a Lagrangian framework while describing the fluid phase using an Eulerian approach.
The particles are considered as rigid bodies interacting through contact forces. Newton’s
laws govern the motion of these particles, facilitating the incorporation of various
forces, such as collision, friction, and cohesive forces. Particle-particle and particle-wall
collisions are computed individually using appropriate models (e.g., hard-sphere or
soft-sphere). A primary motivation behind the development of DEM models was to
circumvent the need for modeling the rheology of the solid phase on a continuum scale.
DEM is particularly well-suited for simulating systems where particle-scale effects are
crucial and cannot be disregarded, such as in dense granular flows or fluidized beds
with intricate particle shapes. However, these simulations necessitate input models for
interphase interaction forces and effective stress in the fluid phase. The fluid-particle
force must be provided as part of the model, either in the form of a correlation or by
solving the locally averaged equations of motion for the fluid phase. This approach is
commonly referred to as CFD-DEM.

Finally, at the microscale, Direct Numerical Simulation (DNS) is utilized to provide
an in-depth understanding of the flow physics at the smallest scales. In DNS, the
governing equations for the fluid phase are solved without any simplifications or
turbulence modeling, capturing the full range of scales present in the flow. This method
requires substantial computational resources due to the need to resolve all relevant
scales, from the smallest turbulent eddies to the largest flow structures. However, DNS
provides unparalleled insight into the fundamental mechanisms governing the behavior
of granular flows, by providing detailed information on the motion and interactions of
the phases, such as the particle trajectories, velocities, and collision rates, and the fluid
velocity ...

Direct Numerical Simulation (DNS) techniques can be categorized into two primary
categories: boundary-fitted and non-boundary-fitted methods. Each of these approaches
has unique advantages and challenges that must be considered when selecting the most
appropriate method for a given application.

Boundary-fitted methods (Fig. 2.8(a)), such as the Arbitrary Lagrangian-Eulerian
(ALE) method or the Deforming-Spatial-Domain/Space-Time (DSD/ST) method, aim to
conform the computational grid to the flow boundaries, providing a detailed and accurate
representation of the flow behavior near solid surfaces. While these techniques are
capable of capturing high-resolution flow information around complex geometries, they
often require substantial computational resources and time for mesh generation. This
becomes particularly challenging in three-dimensional cases, where the generation of
high-quality meshes is essential for ensuring accurate numerical solutions. Additionally,
the process of generating boundary-fitted meshes can be labor-intensive and require
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Figure 2.8: (a) Boundary-fitted grid. (b) Non-Boundary-fitted grid.

expert knowledge, potentially extending the time and resources needed for a successful
simulation.

In contrast, non-boundary-fitted methods (Fig. 2.8(b)), such as the fictitious domain
method, the immersed boundary method, and the Lattice Boltzmann method, use
a non-aligned grid to solve the fluid phase equation, and handle the moving solid
interfaces separately. The primary advantage of non-boundary-fitted methods is the
relative ease of grid generation, usually employing a structured Cartesian grid. However,
it is important to note that these methods show some limitations in accurately capturing
flow details near boundaries compared to their boundary-fitted counterparts. Despite
this limitation, they are almost always preferred for simulating large-scale solid-fluid
flows due to their efficiency and ease of use, as demonstrated in the literature.

2.3.1 Multiscale modeling approach

In some cases, direct numerical calculation (DNS) can be readily used for solving practical
problems, such as studying a laminar flow around bacteria in microbiology. However,
it is generally not feasible to use this method for simulating industrial-sized systems
as the DNS approach is computationally intensive and requires high-performance
computing resources. But thanks to the advancements in computer technology and the
development of more efficient numerical methods, it is now possible to conduct DNS on
systems that were previously too large to simulate. We can now accurately model the
evolution of diluted flows of several hundred particles over timescales that allow for
statistical convergence. This makes the resulting simulations an ideal benchmark case
for developing and validating other numerical methods.

Additionally, DNS methods can be used in an upscaling approach, providing valuable
information for higher-scale methods that rely on precise closure laws.
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Two Fluid Model
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Direct Numerical Simulation Effective fluid-particle interactions
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Figure 2.9: Multiscale modeling approach.

While DNS has been widely used in the study of single-phase turbulent flows, its
application in the study of two-phase flows is still lagging behind. The DNS approach
has been used to study a wide range of multiphase flow problems, including fluidized
beds, particle-laden pipes, and spray systems. But most research in this area is focused
on fixed particle beds with periodic walls. However, the greatest breakthroughs can
be made in cases where it is necessary to track the motion of a significant number of
particles and study their interactions with the walls of the domain.

Upon reaching maturity, it is expected that the simulations conducted will greatly
aid in the design and optimization phases of engineering systems. This will not only
reduce the need for experimental pilot tests but also decrease the time it takes for new
technologies to be brought to market.

2.4 Thesis Objectives

To this end, the main objective of this thesis is to develop a direct numerical simulation
method that can effectively simulate particle flow with more than a few hundred
particles. This method will be implemented in the TrioCFD computational code, which
was originally developed by the CEA for studying two-phase gas/liquid flows in
nuclear reactors. However, the standard version of this code does not currently have
the capability to simulate granular flows. Therefore, our implementation will require
the use of an adapted technique to impose the rigidity constraint in the dispersed
phase, as well as the implementation of a collision model to account for particle-particle
interactions. Once developed, our method will be rigorously validated by simulating
various test cases from the literature.
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During the next chapter, a brief reminder of the fundamental notions necessary for
the study of granular flows will be given, alongside an overview of the different direct
numerical simulation methods that can be used to study particle flow. In chapters 3 and
4, the method chosen for this thesis will be detailed and validated against preliminary
test cases and a study of a fluidized bed of 2100 particles.
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FUNDAMENTAL CONCEPTS ON THE PHYSICS
OF FLUID-PARTICLE FLOWS

The purpose of this chapter is to provide an introduction to the fundamentals of
particulate flows, including their physical background, and governing equations. By
exploring these concepts, we will lay the foundation for the analysis and modeling of
particulate flows that will be used throughout this thesis.
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3.1 Key parameters and adimensional numbers

Density Ratio

The first dimensionless number of interest is the density ratio, represented by:

_br

R
P pr

where p, denotes the density of the particles, and py the density of the surrounding
fluid. This dimensionless number characterizes the buoyancy of the particles in the
fluid, as in case where R, = 1, the particles are referred to as neutrally buoyant. These
type particles, if small enough, hold significant experimental value as they tend to
follow the flow streamlines precisely. When R, # 1, the particles are known as inertial
particles. Unlike neutrally buoyant particles, inertial particles do not strictly follow the
streamlines. Instead, they tend to accumulate preferentially in fluid regions with high
strain rates if the particles are heavy (R, > 1), or in regions with low strain rates if the
particles are light (R, < 1).

Reynolds Number

The particle Reynolds number, denoted as Re,, is a dimensionless parameter that
quantifies the relative velocity of a particle with respect to the surrounding fluid. It
is essential for characterizing the momentum exchange between the particle and fluid
phases. The particle Reynolds number is defined as:

prdpW
Hrf

Rep =

where W = |up -U f| represents the magnitude of the slip velocity between the particle
velocity u, and the fluid velocity Uy far from the particle. u; denotes the dynamic
viscosity of the fluid. The value of Re, helps determine the nature of the flow around
the particle. For Rey, < 1, the flow is in the Stokes regime. As Re, increases, the
flow separates, creating a recirculating eddy in the particle’s wake. When Re, > 280,
the wake of an isolated particle exhibits time-dependent behavior and begins to shed
vortices. Furthermore, the wake flow becomes turbulent when Re, > 500.

Stokes Number

The Stokes number is a dimensionless parameter that provides information on the
relative importance of particle inertia compared to that of the surrounding fluid. In
particular, it is defined as the ratio of the particle response timescale 7, to that of the
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fluid 7 £ When the particle response time is much smaller than the fluid timescale, the
particle follows the fluid motion closely and its behavior is essentially that of a passive
tracer. On the other hand, when the particle response time is much larger, the particle
behavior is dominated by its inertia.

The definition of the Stokes number depends on the velocity and length scales used in
the definition of the response times of the fluid and the particle. One common definition
based on the slip velocity W is given by the equation [108]:

2 m,W
St, ==L

Smyipdy

where m, is the mass of a particle. The Stokes number can be written as a function of
the denstiy ration and the Reynolds number as follows:

1pp 1

Stp = §p—fR€p = —RpRep

9

Coefficient of Restitution

The dry coefficient of restitution e; accounts for the energy dissipation during collision:

_ AMreb,ul

eq (3.1)

Auimp,d
where Ay 4 and Autjyp 4 are, respectively, the rebound and impact relative velocities of
the two solid surfaces colliding in the absence of fluid viscous dissipation (dry regime).
The solid’s dry coefficient of restitution is a physical property directly related to the
material’s elastic properties. The default value used in this work is e; = 0.97.

In the wet regime, the energy dissipation is notably higher due to the fluid viscous
dissipation. [68, 120] have shown experimentally that the apparent or effective coefficient
of restitution is strongly correlated with the Stokes number St:

The relationship between the effective coefficient of restitution e and the Stokes number
St can be written as the product of the constant dry coefficient of restitution and a "wet"
coefficient of restitution, e,, depending on the St number. Typically e, varies from 0 to 1:

Autyep

e(St) = ez ey (St) = A
imp

(3.2)
From Fig 3.1, we can see the effective coefficient of restitution e is pretty much equal
to the dry coefficient of restitution for St > 1000. This is in accordance with the fact
that in this range of Stokes numbers, viscous effects are negligible. However, for lower

values of St, from 10 to 1000, significant variation of e is observed. The coefficient of
restitution decreases with St and the related viscous stress rises. Below the critical value
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Figure 3.1: Adapted from [76]. Wet coefficient of restitution, as a function of the Stokes number
St. The solid line is the best fit of the data points of [68, 53, 75, 47]

St 10, no rebound is observed. Using the analogy with a dissipative mass-spring system
[75] showed that the evolution of the wet coefficient of restitution as a function of the St
numbers followed the expression:

ew = exp (—g) (3.3)

Mass loading

The solid volume fraction «a;, also known as the particle concentration, is a measure of
the proportion of the volume occupied by particles V; relative to the total volume of the
mixture Vi, = V¢ + V. The solid volume fraction is expressed as:

KNe = &
s = V.,
In a similar manner, the fluid volume fraction af can be represented by:
Vi
o f= V_m

Adhering to the principle of volume conservation, the entire volume is occupied by
either the dispersed phase or the continuous phase. As a result, at any given point
within the continuum, the combined sum of the two volume fractions is equal to 1:
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The volume fraction is closely related to phase coupling in multiphase flows. Phase
coupling refers to the extent and nature of the interactions between different phases in a
multiphase flow system - such as momentum, heat, and mass transfer. These interactions
significantly affect the flow behavior. For example, in a solid-liquid flow, a high solid
volume fraction (dense suspension) may result in stronger inter-particle interactions and
increased friction between particles and the fluid. This can lead to changes in the flow
regime, increased pressure drops, and reduced flow velocities. Conversely, a low solid
volume fraction (dilute suspension) may result in weaker inter-particle interactions and
less influence on the fluid flow.

In the following paragraph, we will classify the phase coupling of solid-fluid flows
based on the volume fraction values.

3.1.1 Phase coupling

Elghobashi [42] introduced a classification system for gas-solid suspensions based on
the solid volume (see Fig. 3.2) categorizing the coupling into three primary regimes:

e One-way coupling: In this regime, the solid volume fraction is low ( in the range
1076 to 107°), resulting in a negligible effect of particles on the gas flow. However,
the gas flow does influence the motion of particles with sufficiently small inertia.
In one-way coupling, the gas flow is treated as a pure fluid, and the particle phase
motion is primarily governed by hydrodynamic forces, such as drag and buoyancy
forces. It is assumed that particle-particle interactions are inconsequential in this
regime.

e Two-way coupling: As the solid volume fraction increases (in the range 107 to
107%), the influence of the particle phase on the gas-phase flow pattern becomes
significant. In this regime, turbulent structures commonly encountered in gas
flows can be modified by the presence of particles. Although particle-particle
interactions are still not considered dominant in two-way coupling, their impact on
the gas flow becomes more pronounced, leading to alterations in the momentum
or effective density of the fluid phase .

e Four-way coupling: For even higher solid volume fractions (as > 107°), momen-
tum transport among particles occurs through both hydrodynamics mechanisms
and collisions between particles and/or confining walls. In this dense-particle
regime, which is particularly relevant for industrial applications, particle-particle
interactions become critical, necessitating the consideration of four-way coupling.
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Figure 3.2: Interphase coupling. Based on [42, 112]
3.1.2 Fluidization

Phase coupling as a concept captures the essence of the interactions between fluid-
particles and particle-particle at the microscopic level. The nature and intensity of
these same interactions are directly related to the overall behavior of the mixture at a
macroscopic level. One phenomenon of particular interest in a wide range of industrial
applications that can emerge from these interaction is fluidization. The fluidization
process, involves a fluid flowing upward through a bed of solid particles, suspending
them and creating a dynamic, fluid-like state. This fluidized state allows for enhanced
mixing and improved heat and mass transfer.

The type of particles in a fluidized bed plays a crucial role in determining the fluidization
behavior. Geldart’s classification (see Fig. 3.3) categorizes particles into four groups
based on their fluidization properties at atmospheric pressure and room temperature:

e Group A (aeratable) particles exhibit appreciable but not dominant interparticle
cohesive forces. They generally fluidize smoothly, show uniform bed expansion
and high mixing in a fluidized state, and deaerate slowly when the flow is
interrupted.

e Group B (bubble-ready or sand-like) particles have larger sizes with negligible
interparticle forces. Bubbles form immediately when the gas superficial velocity
exceeds the minimal fluidization velocity, and these particles mix relatively well in
the fluidized state.

e Group C (cohesive) particles are dominated by strong interparticle cohesive forces
due to their very small size. As a result, they tend to form clusters and aggregates,
leading to agglomeration, channeling, and plugging phenomena, making them
generally unsuitable for fluidization.
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Figure 3.3: Geldart’s powder classification.

e Group D (inertial or spoutable) particles consist of coarser particles with domi-
nant inertia. They can be fluidized at higher velocities, but their mixing in the
fluidization state is poor, making them more suitable for spouted fluidized beds.

Fluidization can manifest in several distinct regimes, which are primarily determined
by the superficial gas velocity. Each regime is characterized by unique hydrodynamics,
heat and mass transfer properties, making it important to understand the differences

between these regimes and their transitions. Some of the primary fluidization regimes
are:

e Fixed bed: In this regime, particles remain stationary, and no fluidization occurs.

The fluid simply passes through the void spaces between the particles, leaving the
bed in a fixed state.

e Homogeneous fluidization: In this regime, particles are uniformly suspended in
the fluid, creating a homogeneous fluidized bed without the formation of bubbles.
This type of fluidization is typically observed with Geldart Group A particles.

e Bubbling fluidization: Bubbles form and rise through the fluidized bed, causing
significant mixing of the particles and promoting heat and mass transfer. Bubbling
fluidization is a common regime for Geldart Group B particles.

e Slugging fluidization: Occurring in small-diameter beds, large gas slugs form
and rise, causing significant bed expansion and particle movement. This regime is
characterized by a pulsating motion and a series of pressure fluctuations.

e Turbulent fluidization: As gas velocity increases, particle motion becomes more
chaotic, leading to enhanced mixing and improved heat and mass transfer. Turbu-
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Figure 3.4: Illustration of fluidization regimes.

lent fluidization is particularly advantageous in industrial fluidization processes
due to its vigorous gas-solid contact and high solid hold-up.

o Fast fluidization: In this regime, a dilute suspension of particles is achieved
with high gas velocities, resulting in a more uniform distribution of particles
throughout the bed. Fast fluidization is typically employed in circulating fluidized
bed systems.

e Pneumatic transport: At high gas velocities, particles are conveyed upward in a
dilute phase, similar to pneumatic conveying systems. This regime is characterized
by low solid hold-up and high gas-solid contact, making it suitable for certain
applications such as pneumatic conveying of powders and granular materials.

Fig. 3.4 provides a visualization of the different fluidization regimes.

3.2 Fluid-Particles Interactions Modeling

Before reviewing the various forces that may come into play during interfacial coupling,
we recall some important concepts of solid mechanics that will be useful for deriving
the governing equations in the following chapter.
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3.2.1 Solid Phase Equations

In classical mechanics, the motion of a solid object is traditionally divided into the
translation of the center of mass and rotation about the center of mass [52]. In a
two-dimensional space, the solid’s motion can be wholly described with three degrees
of freedom (two translations and one rotation), while in three dimensions, six degrees
of freedom are required (three translations and three rotations).

Consider a 2D solid particle, the center of mass of this object is denoted by x,, while its
orientation is denoted by 6,. The position variables are related to the translational and
rotational velocities u, and w, respectively by:

dxyp
? = up (34&)
de,
T = C()p (34b)

In the context of three-dimensional space, describing the motion of particles is not
as straightforward. It requires the use of three distinct angles, such as Euler angles,
to accurately capture the orientation changes. This necessity adds complexity to the
process of tracking orientation, as various techniques including Rotation Matrices,
Cosine Angles, or Cayley-Klein parameters can be employed to accomplish this task
(see [52]). Thus Eq. (3.4b) need to be replaced accordingly.

We call a "rigid body" an idealized entity possessing no internal degrees of freedom.
This essentially means that no internal deformation takes place within such a body.
Mathematically, this concept can be expressed as follows: for any two given points x;
and x; on the solid, the distance between the two points remains unchanged, despite
any external forces:

d

“a |2
dt

|xvi —x;[ =0 (3.5)

During a Rigid Body Motion (RBM), the rigidity constraint Eq. (3.5) places specific

conditions on the associated velocity field. Both necessary and sufficient, these conditions
can be articulated in the following ways [107]:

Lagrangian form: The velocity field must be a Helicoidal Vector Field (HVF):
u(x)=up,+w, xXr (3.6)
where, r = x — x, is the displacement vector.

Eulerian form: The strain rate tensor D (1) must be null:

D[u] = % (Vu+Viu) =0 (3.7)
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The time evolution of the center of mass velocity and angular velocity are governed by
the Newton-Euler equations. These equations relate the rate of change of linear and
angular momentum to the sum of external forces and moments (about the center of
mass):

d duy dmy,
E(mpup) My —— dt +uP it ZPext (3.8a)

di(lpa’v) ZIPTJF“’PXIP“’P =) Tex (3.8b)

where m, and J,, are the mass and moment of inertia tensor of the particle, respectively.
They are given by:

mpz/ psdv (3.9)
Qs

I» /ps(lrl —r®r)dv (3.10)

For a non-reactive (constant mass), spherically symmetric (isentropic inertia tensor)
rigid particle, the general Newton-Euler equations simplify to:

du

p
w
]pw” =1 X Fppi + 1 X Fpp; (3.11b)

The external forces that influence a particle moving within a fluid are numerous and
diverse. Accurately characterizing the impact of these forces on particle dynamics is
crucial for understanding the complex of phases coupling. These external forces can be
divided into two primary categories: Fluid-Particle Interaction forces F s,; and Particle-
Particle Interaction forces Fpp;. A comprehensive analysis of these two categories of
forces will be undertaken in the subsequent sections. For a more refined understanding,
we can further decompose the fluid-particle interaction forces into three categories:
body (or volume) forces, hydrodynamic (or surface) forces, and transient (or inertial)
forces:

3.2.2 Body Forces

When an object (or particle) is immersed in a fluid, it experiences an upward force
known as the buoyancy force. This force arises due to the pressure difference between
the top and bottom of the object in the fluid. Archimedes’ Principle asserts that the
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buoyancy force equals the weight of the fluid displaced by the object. The net body force
on the particle is the difference between the particle’s weight and the buoyancy force:

F, = /Q (pp — pr) gdv (3.12)
Assuming the densities are constant, the total force acting on the object becomes:

Fy = (pp = pf) Vo8 (3.13)

where Vp is the total volume of the particle.

3.2.3 Hydrodynamic Forces

Hydrodynamic forces arise from the interaction between a fluid and an immersed
particle’s surface. This relationship is mathematically characterized by specific boundary
conditions at the interface, most notably the kinematic and dynamic boundary conditions.
These can be expressed as:

u(x) =us x € 0 (3.14a)
Of " n=0s"n on dQ; (3.14b)

where u is the fluid velocity field at the interface location, u; is the solid’s velocity at the
same location, oy and o5 are the stress tensors of the fluid and solid phases, respectively,
and #n is the outward unit normal vector to the solid’s surface dQ;.

Given known pressure and velocity fields, the hydrodynamic forces acting on the particle
can be determined by integrating the stress tensor across its surface:

th—j{ o-nds =— pnds—j{ T -nds (3.15)
90 90 90

Arguably theses forces are the most important in influencing the particle’s behavior
within the fluid medium, and can be decomposed into three distinct contributions:

The Drag force:

The Drag force emerges due to the resistance encountered by a particle as it traverses
through a fluid. The magnitude of this force increases as a function of the slip velocity
between the fluid and the solid. This force exhibits a reactive nature since it materializes
only when the object is in motion and it acts in the direction opposite to the object’s
movement through the fluid. This force is frequently represented as a function of
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the dimensionless Drag Coefficient (Cp) and the slip velocity by employing the drag
equation:

1
Fp ZEPfCDA (wp—up) [uy—upl (3.16)

Here, A denotes the cross section of the solid perpendicular to the relative velocity
(45 —uy). For a sphere, A = nd,, /4.

For an incompressible external flow over a sphere, the dimensionless drag coefficient
primarily functions as the Reynolds number (Re). Its evolution is depicted Fig. 3.5 as
the standard, steady drag coefficient curve.

O Experiment --———— Stokes’ theory Cheng fit
- - = Di Felice fit Schiller-Naumann fit
1000 4 Stokes’ law Intermediate Newton’s law I Boundary

:Iayer

100 -

10 4

Cq(-)

0.1 4

0.01

0.01 1 100 10000 1000000
Reynolds number (-)

Figure 3.5: Drag coefficient for an incompressible flow over a smooth sphere as a function of
Reynolds number, Cheng [20] correlation, Di Felice [33] correlation, and Schiller-Naumann
correlation

While analytical expressions for the drag coefficient are limited to low Reynolds numbers,
numerous empirical correlations have been developed to evaluate the drag coefficient.
The most commonly utilized correlations are shown in Figure 3.5. For a recent review of
empirical correlations for rigid spheres, refer to Goossens [54]. The figure highlights the
presence of four distinctive regions:

Stokes’ region: Here, an inverse relationship is observed between the drag force and
the Reynolds number, resulting in a linear relationship between drag and slip

velocity:
Re
Cp = 1
Fp, =3nd,uy (uf — 1)

The flow is regarded as a creeping flow in which the inertial terms in the Navier-
Stokes equations are unimportant. According to Stokes’ theory, the pressure
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distribution contributes to a third of the total Stokes” drag (known as "form" drag),
while two-thirds are due to the viscous stress on the sphere’s surface (known as
"friction" drag).

Intermediate region: This lies between the Stokes and Newton regions and is marked by
an increased importance of inertial forces as the Reynolds number rises, resulting
in a drag coefficient greater than that in Stokes” drag.

Newton's region: starting from Reynolds number of 100 the drag coefficient does not
depend on the Reynolds number (Cd ~ 0.445). The flow begins to separate,
forming vortices behind the sphere, which further reduces the pressure in the
wake, enhancing the "form" drag. As the Cd versus Re curve flattens, the drag
becomes predominantly "form" drag, with a marginal contribution from "friction"
drag.

Boundary layer separation region: This region is typified by very high Reynolds num-
bers. At a critical Reynolds number (Re = 3 x 10°), the boundary layer becomes
turbulent and the separation point moves to the rear, reducing the "form" drag
and, thus, the drag coefficient. This behavior is solely due to boundary layer
effects. Rough particles induce a transition to turbulence at a lower Reynolds
number, lowering the critical Reynolds number. For particles with sharp edges,
the separation is geometrically controlled (separation at sharp edges), and no
critical Reynolds number effect is discerned.

The Lift force:

Lift forces occur due to velocity differences around the particle, leading to pressure
differences that cause the particle to move perpendicular to the flow direction. When a
particle undergoes rotational motion due to a velocity gradient or as a consequence of
particle collisions, the hydrodynamic force manifests a transverse component referred to
as the lift force or the Magnus force. The expression of the force is given by the relation
proposed by Rubinow and Keller [98].

F; = %ndp3pfa)p X (up —uy) (3.17)
This force arises from the velocity asymmetry around the particle, which prompts a
transverse pressure difference on the sphere’s surface. The force follows a direction
normal to the plane formed by the rotational velocity and relative velocity. To quantify
the Magnus force, it is common to employ the lift coefficient C; and the transverse
section A:

1 w
F; = EprLA |up—uf|ﬁx(up—uf) (318)
p
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Several authors [77, 30, 5, 106] proposed correlations to estimate the lift coefficient at
Reynolds numbers exceeding 2 x 10°. The correlation suggested by Oesterlé and Dinh
[85] is commonly preferred for lift coefficient calculation:

Cr = 0.45 + (2Q — 0.45) exp (—0.075Q%*Reg"7) (3.19a)
d,w
Q=—""F* (3.19b)
2 |”f - ”P|

where Q refers to the spin parameters, and Reg is the rotational Reynolds number.The
correlation holds for Re < 140 and 1 < Q < 6, reducing to the correct limit for low
Reynolds numbers. Michaelides [80] posits that the results from Saffman’s low Reynolds
number analysis [101], often referred to as the Saffman force in the literature, is a specific
instance of the Magnus force at low Reynolds numbers. Therefore, the lift force should
only be considered once in particle dynamics computations.

Generally, the lift coefficient decreases with increasing Rer and increases with increasing
spin parameters (). However, experimental studies Tanaka, Yamagata, and Tsuji [106]
demonstrated that the lift coefficient rises linearly with spin ratio at low spin ratios,
then decreases sharply with increasing spin ratio, becoming negative at lower Reynolds
numbers. This phenomenon is likely due to higher relative velocity on one side of the
sphere and an early transition to turbulence in the boundary layer on that side. As a
result, the wake behind the sphere deflects in an opposite direction than expected in
rotating flow, reversing the direction of the lift force. A definitive explanation for the
observed trends is still lacking.

Usually, the transverse lift force developed on a sphere is significantly weaker than the
longitudinal drag force. However, in engineering applications the transverse lift can
have a significant impact on the lateral migration and dispersion of particles towards
cylindrical pipe walls. Due to the short radial distances involved, even small forces can
effectively move particles close to the walls, thereby enhancing mixing.

The presence of other particles further enhances the lift force. In their numerical studies,
Feng and Michaelides [44] demonstrated that the hydrodynamic force exerted by the
suspension flow on a solid particle attached to a wall increases by 2-4 times when similar
particles are present in the fluid.

Despite this observation, Hilton and Cleary [62] argued that there is currently no clear
methodology to modify the expression for the Magnus force to account for the proximity
of nearby particles and the non-spherical shape of the particles.

3.2.4 Transient Forces

Transient forces are acceleration-dependent and become significant when a particle’s
velocity changes within the fluid, i.e., during periods of acceleration or deceleration.
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Virtual mass force:

When a particle is accelerated within a fluid medium, it necessarily imparts momentum
to a portion of the surrounding fluid, causing it to accelerate as well. This interaction is
governed by the virtual mass force, as demonstrated by Auton, Hunt, and Prud’Homme
[4]. The force counteracts the particle’s displacement and is described for a spherical
particle with:

PFVp (Du d”ﬁ)
Fam = —F—

>\ o1~

TR (3.20)

The virtual mass force can be conceptually understood as increasing the mass of the
particle by the equivalent mass of the fluid that it displaces, hence its other name of
"added mass force". While this effect is minimal in air-solid flows due to a small density
ratio, it is significant in solid-liquid flows [63]. For non-spherical particles, the added
mass force remains similar, but the displaced volume must be adjusted for the specific
shape [28].

History force:

Also referred to as the Basset force accounts for the inherent delay in boundary layer
development around the moving particle. The flow around a particle cannot adjust
instantly to changes in the particle’s motion due to the fluid’s viscosity. Essentially, the
fluid has a "memory" of the particle’s past trajectory, hence the term of "history force".
In the case of creeping flow around a sphere, Basset [6] derived the expression for this
force as:

uf _uP) (uf_up)o

:—d Wl/ ar — dt+T (3.21)

The second term within the brackets accounts for an initial particle velocity scenario
[95]. This force hinges on the particle’s entire acceleration history, making its evaluation
challenging. While the history force has significant relevance in unsteady liquid-solid
flow applications, its impact is minimal for small density ratios, like air-solid application
[63]. The existing analytical expressions for the transient hydrodynamic force on
particles are valid primarily for low Reynolds numbers. As we venture into higher
Reynolds number regimes, these formulations become inadequate. For higher Reynolds,
experimental data and semi-empirical correlations are used as a correction for the force
[81].

As a summary, Eq. (3.22) consolidates all previously discussed forces into a unified
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expression:

Frpi= (pp—ps) Vp8 Body force
+%PfCDA (”f - up) |uf - Mp| Drag force
+%PfCLA |”P - ”f| ﬁ X (up - uf) Lift force

prVd (% - % Virtual mass force (3.22)
L - —
+%dp2 TOf s [fot %_t,up)dt' + _(uf\/l_:V)o History force

This equation represents the totality of forces that influence a particle’s motion within
a fluid medium, each with its unique origins and effects. However, it is important to
remember that this equation, in its full complexity, applies to isolated spherical particles
in conditions of ambient temperature. As we attempt to extend this model to more
complex scenarios such as non-spherical particle shapes, interaction among multiple
particles, and thermal effects, the analytical characterizations of these forces tend to
become increasingly convoluted. In fact, there are many situations where analytical
expressions for these forces are not available at all. In these instances, empirical
correlations, with their inherent limitations and scope of applicability, are often used as
an approximation.

The challenging nature of these problems underscores the potential role of Direct
Numerical Simulation (DNS) in the field of fluid-particle interaction. DNS methods
have the capability to fully resolve the intricate dynamics of fluid-particle interactions,
thereby eliminating the necessity for force models or correlations. In the next section,
we will review DNS-based numerical methods capable of handling such complex
configurations.

3.3 Numerical methods for BF-PRDNS

3.3.1 Immersed Boundary Methods

The Immersed Boundary Method (IBM) is a computational fluid dynamics approach
originally proposed by Peskin [89] for solving fluid flow around heart valves.

In IBM, Lagrangian marker points are attached to the immersed solid object. These
markers are advected with the local fluid velocity. In other words, they move along
with the fluid flow. The deformation of these markers due to the fluid motion allows
the calculation of a Lagrangian rigidity force, which is then spread back to the Eulerian
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grid using a Dirac delta function.

For modeling totally rigid solids, the original IBM can be used with high spring stiffness.
However, this continuous forcing approach severely limits the time step due to stability
considerations. As a result, this approach is generally avoided in favor of a discrete
version of the method. In the discrete version of IBM, the forcing term is calculated from
a target rigid velocity field, which is determined by solving the Euler-Newton equation.
The Euler-Newton equation describes the motion of a rigid body, taking into account
the hydrodynamic forces computed from the Eulerian velocity and pressure fields. In
this way, the discrete IBM allows for a more stable and efficient simulation of fluid flow
around rigid bodies by directly imposing the rigidity constraint at the velocity level.

3.3.2 Distributed Lagrange Multiplier

The Distributed Lagrange Multiplier (DLM) method, otherwise known as the Implicit
Fictitious Domain Method is based on the global variational formulation of fluid and
particle momentum conservation equations. In this framework, the full computational
domain is filled with the background fluid (py in both fluid and solid regions). Dis-
tributed Lagrange Multipliers are applied over both the particle surface and volume in
the form of an additional body force to enforce the rigid body motion constraint and the
no-slip condition at the same time. originally, the governing equations are discretized
using a finite-element spatial discretization [50, 51]. However, if the equations are refor-
mulated in a non-variational form, alternative discretization methods can be employed.
For instance, finite-volume methods [94, 116, 43], or finite-difference methods [124, 123]
can be utilized.

The system of equations derived from the variational formulation form a constrained
minimization problem with a saddle point. The two constraint involved are the
divergence-free of the fluid velocity, relaxed by pressure p as a Lagrange multiplier and
the rigid body motion within particles, relaxed with the DLM A. The divergence-free
constraint is automaticaly imposed on the solid regions as the rigid body motion
constraint is mass conserving by construction. The system of equations are usally
solved with a fractional step time algorithm coupled to an iterative Uzawa algorithm /
pre-conditioned conjugate gradient solver [50, 116].

Historically, the Distributed Lagrange Multiplier method was first introduced by
Glowinski et al. [50], where the solid constraint on the velocity field was imposed
using Eq. (3.6). However, it was demonstrated that this formulation was inadequate for
neutrally buoyant and light particles (R, < 0). Patankar et al. [87] made improvements to
the method by employing Eq. (3.7) as a constraint instead of Eq. (3.6), thereby successfully
allowing the simulation of light particles. This approach eliminated the need for the use
of translational and angular velocities, as the solid constraint was now expressed in an
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Eulerian manner, similar to a fluid.

To avoid the computational cost induced by the Uzawa algorithm, anumber of researchers
proposed an explicit equation for the DLM A [114, 123, 49], making the method strikingly
similar to the Direct Forcing Immersed Boundary methods. Sharma and Patankar [102]
suggested using a projection technique to directly approximate the rigid velocity field
and to impose it on a discrete level. Yang et al. [121] further enhanced this method by
using a least-square projection method to derive an expression for the rigidity force
explicitly written on a continuum level. This approach was found to be equivalent to
the Newton-Euler formulation.

A key benefit of the Distributed Lagrange Multiplier (DLM) method lies in its well-
established stability and efficiency, as it eliminates the need for direct calculation
of hydrodynamic forces on particles, thereby saving significant computational time.
However, this computational efficiency is offset by the additional computing overhead
required to solve a large number of linear and non-linear equations that result from the
implicit coupling between the fluid and particles.

3.3.3 Viscous Penality Methods

Instead of adding an additional force source term to the governing equation as done in
preceding techniques, the Viscous Penalty Method modifies the fluid properties in solid
regions by assigning a very high viscosity value within these regions. This elevated
viscosity serves as a penalization parameter, forcing the fluid in these regions to mimic
the behavior of a rigid body.

The application of high viscosity promotes near-zero strain rates in the solid domain,
implying virtually no deformations. Nonetheless, this does not impede the motion
of the solid object within the fluid. The viscosity penalty method enables fluid-solid
interaction while upholding the non-deformation criterion within the solid region.

The effect of this heightened viscosity is that the viscous stress tensor term becomes
dominant in the discretized momentum equation within the penalized region. Once
numerical convergence is achieved, the strain-rate tensor approximates zero.

While the original method is a first-order method, the Viscous Penalty Method was later
advanced to a second order by Caltagirone and Vincent. They separated the different
contributions of the deformation rate tensor into viscosities that are expressed on the
pressure nodes and other contributions expressed on the velocity nodes, allowing for a
more precise control over the penalization procedure.
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3.3.4 Latice Boltzman Methods

Unlike the traditional Computational Fluid Dynamics (CFD) methods, which solve
the Navier-Stokes equations, the LBM is based on the discrete Boltzmann equation,
simulating the process of particles moving and colliding on a lattice. The method uses a
simplified kinetic model with a limited number of particle velocities (corresponding to
the lattice points) to recover the macroscopic hydrodynamic behavior. The advantage of
LBM is its simplicity, as it provides a very simple and efficient way of incorporating the
effect of complex boundaries, and it can be easily implemented on parallel computers
due to its local dynamics.

3.4 Particle-Particle Interactions Modeling

In general, Non-Boundary-Fitted-Particle-Resolved (NBF-PR) methods are ideally suited
to capture the long-range hydrodynamic interactions between the fluid and solid phases.
However, they are not the best suited methods to capture the short-range interactions.
The lubrication effects are under resolved, and the collisions are not taken into account
intrinsically by NBF-PR methods. Additional modeling is required to take those
interactions into account.

Three major types of forces contribute to these interactions: lubrication forces, direct
contact forces, and cohesive forces.

3.4.1 Lubrication modeling

When two particles are brought into close proximity, a local pressure buildup in the
inter-particle region forces the fluid out. Conversely, when the solid particles move apart,
the fluid is pushed back into the gap during rebound. The friction generated by this
motion of fluid is known as the lubrication force. This force, being purely dissipative,
persistently resists the solids” motion. At low approach velocities, the lubrication force
can prevent direct contact between solids, whereas at higher velocities, it acts as a
damping mechanism, reducing the coefficient of restitution relative to the dry coefficient
of restitution. This additional dissipation could potentially enhance secondary collisions
by maintaining a close distance between the particles. The influence of the lubrication
force becomes more pronounced as the solid volume fraction increases and the average
interparticle distance decreases. In dense suspensions, it often becomes the dominant
component of the total hydrodynamic force.

The NBF-PR method adequately captures these frictional forces provided that the
distance between two solids is greater than two simulation cells. However, when
the spacing becomes less than one cell, a large portion of the hydrodynamic force
attributed to the lubrication effect remains unresolved. While a finer mesh can capture
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the dissipative effect of the lubrication force more accurately, the computational cost
incurred by such a mesh can be prohibitive. Some researchers have proposed using
locally refined meshes to alleviate the calculation time, whereas others have used a
corrective force based on lubrication theory.

According to [27], the analytical expression for the normal lubrication force experienced
by two perfectly smooth and identical spheres can be represented as a Stokes drag law
multiplied by an amplification factor A (¢):

Fi = —6musrsAuyA (¢) (3.23)

The amplification factor is a function of the dimensionless gap ¢ = 26,,/d,, expressed
differently depending on whether particle-particle or particle-wall collisions are consid-
ered:

1 9 3
App = 5~ Elog(e) — %slog(e) +1.346 + O (¢)

1 1 1
Apw = P log (&) — 716 log () +0.9713 + O (¢)

Where 0, is the inter-particle distance. As this distance approaches zero, the analytical
expression becomes singular, emphasizing that theoretically, perfectly smooth spherical
particles never actually touch. However, this is unrealistic in practice, as particles are
never entirely smooth, and surface asperities (surface roughness) are always present,
causing the lubrication force to saturate or even break down when the continuum
hypothesis is no longer valid. To account for this effect, a user-defined saturation distance
is introduced, within which the lubrication force is held constant until deactivated.
Since the NBF-PR methods do capture a part of the lubrication force, this force does not
need to be continuously active, but rather only when grid resolution is lacking. This
distance is referred to as the activation distance. In these models, lubrication forces
are assumed to be pairwise additive. Similar force expressions can be derived for the
tangential component of the lubrication force.

3.4.2 Direct Contact Modeling

Simulating direct contact between solids presents challenges. A comprehensive collision
model based on elastic material properties would be computationally excessive, as the
necessary ordinary differential equations are extremely stiff. This makes flow configu-
rations with thousands of particles infeasible to simulate, even on high-performance
computing platforms. Therefore, a macroscopic description of collisions is more appro-
priate. We will use the same classification as Kempe and Frohlich [71] for the contact
modeling families.
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Repulsive Potential

Glowinski et al. [50] proposed the Repulsive Potential Model. Though not physically
based, its main objective is to prevent particle overlap by applying a normal repulsive
force on the interacting surfaces. The force expression is as follows:

Fo=1, , . (3.24)

€
Here, 6 is the inter-particle distance for two particles p and g with radii r, and r;, and
positions x, and x, respectively:

6=r1p+15—|xp — x4 (3.25)

dact is the threshold activation distance at which particles are repulsed, and € is the
stiffness parameter, which is set to a small value. In this model, particles can overlap.
It has been successfully employed for simulating dilute suspensions, such as in [111].
However, the simplicity of this force results in poor physical fidelity, especially in high
volume fraction flows where kinetic energy dissipation due to collisions cannot be
neglected. It also fails to capture collision-induced rotation of spherical particles.

Hard Sphere Modeling

The hard-sphere model uses an impulsive interpretation of collision forces, defined
by the integral of the collision force over time [47, 65]. It assumes binary, pairwise
additive, momentum-conserving collisions that occur instantaneously, transitioning
immediately from pre-collision to post-collision velocities. There is no time scale
associated with the collision process. This model only requires the normal coefficient
of restitution, the tangential coefficient of restitution, and the Coulomb (dynamic)
friction coefficient. For a comprehensive derivation of the impulsive collision equation,
readers are referred to [28]. In the context of multi-sphere simulations, the hard-sphere
model is implemented in an event-driven manner. Collisions are processed sequentially
in the order they occur, making the model efficient for systems that are not densely
populated and where collision frequency is low. However, this model cannot account
for multiple simultaneous collisions, a limitation that impacts its applicability in high
particle volume fraction scenarios where collision frequency significantly increases. The
hard-sphere model also cannot handle persistent contacts, a disadvantage in systems
where many particles are either stationary (packed) or moving collectively (clustered).
Moreover, in situations where the coefficient of normal restitution is low, collisions
can lead to a dramatic decrease in kinetic energy, known as inelastic collapse [79]. In
this regime, collision frequencies diverge as relative velocities disappear, rendering the
hard-sphere method unsuitable. Lastly, while the hard-sphere model can accommodate
non-spherical rigid bodies, it requires accurate determination or approximation of the
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next collision time. However, accurately estimating the next collision for non-spherical
bodies is challenging. Approaches for complex shapes like polyhedra or ellipsoids have
been suggested [82, 34], but these involve a certain level of overlap and cannot strictly
satisfy the non-penetration constraint geometrically.

Soft Sphere Modeling

Distinct from the hard-sphere model, the soft-sphere model, first introduced by [29],
allows a minor degree of overlap between particles during collisions. The model
derives contact forces from this overlap using a specific contact-force scheme, which is
fundamental to the method. The model’s equations of motion are explicitly integrated
over time, with contact forces and torques stemming from the geometric properties
of the overlap. This approach enables multiparticle collisions, with the total contact
force determined by the summation of all pairwise interactions. Soft-sphere models
primarily operate in a time-driven manner, necessitating a judicious selection of the
time step to accurately calculate the contact force. For stability and precision, the chosen
time step should be smaller than the contact duration (approximately 10 time steps
per collision [71]). This requirement imposes the need for tiny time increments, given
that the characteristic contact duration is several orders of magnitude shorter than
the relevant time scales of macroscopic physics. Even though the soft-sphere model
typically requires more computational time than the hard-sphere model, especially
for dilute flows, it readily incorporates the integration of pairwise cohesive forces,
which is not as straightforward in the hard-sphere approach. This feature enhances the
versatility of the soft-sphere model, making it suitable for a broader range of simulation
scenarios (multiple simultaneous contacts, dense regimes, low coefficients of restitution,
etc.). Therefore, soft-sphere models are almost always preferred for simulating dense
particulate flows, like those of interest in this work.

The main variation among different soft-sphere models found in literature resides in the
contact-force scheme employed. These schemes represent repulsive interparticle forces
using mechanical elements such as springs and dash-pots. The following section will
concentrate on the contact models most frequently used in the context of particle-laden
flows. As the scope of this thesis is limited to smooth spherical particles, tangential force
models will not be addressed. For a more comprehensive overview of the soft-sphere
model, readers can refer to [103, 73], among others.

Force-Displacement Laws

Many of the most commonly used force-displacement laws within the context of the
Discrete Element Method (DEM) can be expressed as the sum of an elastic term and a
dissipative term:

F. = k6% + pnd (3.26)
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where k is the spring stiffness coefficient and 7 is the damping coefficient. Depending on
the values of @ and g, the collision model can be classified as linear (a = 1), non-linear
(a # 1), elastic (n = 0), or viscoelastic (1 = 1). 6 is the normal inter-particle distance, and
b is the normal relative velocity between the two colliding particles.

Linear Spring Model: (o« =1 and g = 0) In its simplest form, the force-displacement
relationship is expressed by Hook’s law indicating a linear relationship between
the force and displacement. This relationship suggests that the energy is conserved,
and the collision is considered completely elastic. Analytical solutions are available
for the corresponding harmonic oscillator motion.

Hertz Model: (@ = 3/2 and = 0) By solving the linear elasticity equation for elastic
bodies in contact, Hertz [60] showed that the collision force is proportional to the
1.5 power of the depth of indentation 6. This tendency was later confirmed by
experimental studies and Finite Element Analysis (FEA) simulations [129, 93]. If
the material properties of the particles, such as the Young’s modulus E and the
Poisson coefficient v, are known, the spring stiffness can be expressed as:

4
k = 5\/@&& (3.27)
where 7¢¢ and Eeg are the effective radius and the effective Young’s modulus,
respectively:
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Based on this spring stiffness, the collision duration predicted by the Hertz theory
is given by [60, 71]:
m2.\°
T.H ~2.439 | —& 3.28
¢ (Aurk2 (3:28)

This model has the advantage of being analytically derived for spheres, but
no generalization for arbitrary shapes is available. Like the preceding model,
the collisions are assumed to be elastic and any material damping is neglected.
Furthermore, in the presence of a viscous fluid, the fluid drainage decelerates the
collision processes, resulting in longer collision durations compared to the dry
regime. Based on the particle-wall collision experiments of [125], Legendre et al.
[76] proposed a simple correlation to account for this effect on the collision time:

P5+CMPf)% 1

T. = T."
e ( Ps 1-0.855¢01

(3.29)
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where cyr = 0.73 is the added-mass coefficient for a spherical particle approaching
a wall. For common materials such as rocks or steel, Egs. (3.28) and (3.29) leads
to collision durations of the order between 107 s to 10™°s, which is an order of
magnitude smaller than the relaxation time of inertial particles.

Nonlinear Viscoelastic (o« = 3/2 and g = 1) To account for energy loss by elastic waves
during impact, a dissipative term is added to the Hertzian force. A large number
of models for the dissipative term can be found in the literature. The simplest is
the model proposed by Cundall and Strack, where the damping force is expressed
as the product of the relative velocity and a dashpot coefficient responsible for
dissipating some of the relative kinetic energy. However, a side effect of introducing
the dashpot coefficient is a non-zero collision force at the start and end of the
collision, which is physically unrealistic for non-adhering particles. The greater the
relative velocity, the greater the non-zero force. To alleviate this, some authors have
expressed the damping coefficient as a function of 6'/2 An analytical expression
for the damping coefficient as a function of Poisson’s ratio, Young’s modulus,
coefficients of shear, and bulk deformation viscosities can be found but it’s more
common to adjust the damping coefficient to best fit experimental results of the
normal coefficient of restitution.

Linear Spring Dashpot (¢ = 1 and = 1) In the Linear Spring Dashpot model, the
elastic term is computed using Hooke’s Law like in the Linear Spring model, while
the dissipative term is calculated using the dashpot model of Cundall and Strack.
This model can be seen as a linearization of the Nonlinear Viscoelastic model.
The motion of the system mirrors the motion of a damped harmonic oscillator,
which accepts an analytical solution. Using the definition of the dry coefficient of
restitution and appropriate boundary conditions, the dashpot coefficient can be

expressed as:
2Inegyy

\/nz + (In edry)2

The collision duration corresponding to half of the oscillation period is:

J Meff (7‘(2 + (11’1 edry)z)
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According to [40], the spring coefficient of the system can be related to the material
properties as:
4
k= SreprEesy

Utilizing the above equation to compute the collision duration and solving the
collision motion with an appropriate time step only leads to a very stiff system
that over resolves the fluid motion.

Fortunately, it is possible to artificially stretch the collision duration to be larger
than the fluid solver time step and still maintain the perceived separation of time
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scales (or the discontinuity) in the motion of the particles as long as the maximum
indentation is kept below 0.5% of the characteristic length of the particles [22,
118]. This procedure, however, renders the spring stiffness an ad hoc numerical
parameter used to control the amount of geometric overlap, stripping it of any
physical meaning.

Based on this principle, [45] manually reduced the value of the spring stiffness to
obtain a satisfactory collision time. [71] while using a non-linear force-displacement
relationship, suggested in their Adaptive Collision Model (ACM) to stretch the
collision time to ten times the flow solver time step. In a similar fashion, [13, 12,
66, 26] used a stretching factor equal to eight.

Combined Modeling

In the presence of a viscous fluid, all the previously discussed collision models, when
used in the context of NF-PRDNS methods, need to be coupled with a lubrication model
to account for the unresolved dissipative effects of viscous drainage. As previously
stated, the implementation of the lubrication model might result in a large number
of ad hoc numerical parameters that must be calibrated. For instance, three separate
parameters were required in [12]. Additionally, the provided amplification coefficients
for the lubrication force are grid dependent. Moreover, [10] showed that dissipation
may depend on the gap thickness, suggesting that more investigation is needed in
this regard. Finally, for this procedure to be valid, the Stokes flow assumption must
be fulfilled within the fluid film separating the two solids. This is only verified if the
distance between the two interfaces is significantly smaller than the characteristic length
scale of the particles [27]. To correctly solve for viscous dissipation in the fluid film, the
mesh would need to be further refined, increasing the computation time.

To address the aforementioned challenges, [83] proposed an alternative strategy that
simultaneously accounts for both the dissipative effect in the solid and in the fluid gap.
The collision force is modelled using a piecewise linear spring model, i.e., using two
different spring stiffness in the loading and unloading phases, vaguely similar to the
Hysteretic class of models [117, 122]. To account for the global kinetic energy loss during
the collision process, the spring stiffness in the unloading phase is reduced using the
apparent coefficient of restitution, leading to the appropriate rebound velocity at the
end of the collision.

The spring stiffness in the loading phase is computed using a prescribed maximal
distance of indentation, making this distance the only numerical parameter of the
model. The proposed model differs from other models in that the rebound velocity of
the particles is known before the impact even occurs. This is because the coefficient
of restitution used to correct the spring stiffness is calculated from a well-established
experimental relationship between the restitution coefficient and the Stokes number
[99]. By doing so, this model addresses many of the drawbacks of the previous collision
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models. It allows the collision time to be stretched, enabling granular flow simulations to
be run for extended times. The model’s coefficients are provided explicitly, eliminating
the requirement for an iterative solution. No dashpot coefficient is used, which eliminates
the nonphysical non-zero collision force at the start and end of the collision. The number
of numerical parameters is reduced to one (the maximum indentation distance), since
no separate lubrication model is used. Considering the mentioned benefits of this
model, we have opted for a modified version of this collision model. The details of our
implementation are elaborated in the following chapter.

Collision Force Integration Methods

In the realm of the Discrete Element Method (DEM), the use of explicit methods for
the integration of Euler’s equations often proves more practical than their implicit
counterparts. This preference primarily arises due to the simplicity and reduced
computational burden that explicit methods provide, as they do not necessitate solving
non-linear equations or inverting matrices - tasks that become computationally intensive
for large systems.

Starting with the Explicit Euler method, its primary strength lies in its simplicity and
easy implementation. It’s a single-step method that needs just one force evaluation per
time step. However, this simplicity comes with significant drawbacks. Its numerical
stability is heavily dependent on the step size, and it is prone to significant errors in the
conservation of energy over long simulations, which makes it less suitable for longer
and more precise simulations. The semi-implicit Euler method, or Euler-Cromer, offers
a step-up in terms of energy conservation while retaining the simplicity of explicit
Euler. It is still a single-step method and uses one force evaluation per time step, but
by updating the velocities before the positions, it provides better long-term energy
conservation than the explicit Euler method.

The Leapfrog method, aptly named for its ‘jumping’ over data points, improves on
this further. Leapfrog method that decouples position and velocity updates and offers
superior stability and energy conservation over the explicit Euler and semi-implicit
Euler methods. Permuting between the position and velocity leads to the position Verlet
method.

The Velocity Verlet algorithm, an evolution of Position Verlet, reduces these errors by
making velocities central to the integration. while it seems that the method requires
two force evaluations, the second force evaluation can be stored and used as the first
force evaluation in the next time step.

Classical Verlet stands out in terms of memory efficiency, as it only requires storing
the current and previous positions. However, this comes with a cost as velocity is not
explicitly calculated, which might be an issue if velocities are required for analysis.
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The Beeman algorithm, a further enhancement of the Verlet family, optimizes the use of
acceleration data for updating positions and velocities. It’s a single-step method, pro-
viding high accuracy for oscillatory motion while using only one more force evaluation
than the Velocity Verlet.

On the multi-step front, methods like Adams-Bashforth and Adams-Moulton present.
They use information from more than one previous step to predict future values, which
can increase accuracy but also memory usage and complexity. Adams-Bashforth is
an explicit predictor method, benefiting from more straightforward implementation
but suffering from stability issues. On the other hand, Adams-Moulton is an implicit
corrector method, which brings increased stability at the cost of computational effort.
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3.4. Particle-Particle Interactions Modeling

Table 3.1: Comparison of numerical integration methods

Method Name Type Order Storage Equation
Forward Euler SS 1 +0 "™ =y + a'At
x™ = 4"y At
Semi-Implicit Euler ~ SS 1 +0 ™ =u" + a"At
xn+1 — xn + u”“At
Leapfrog SS 2 +0 w2 = 412 4 g (x, u”_l/z) At
xn+1 =" 4 un+1/2At
Position Verlet SS 2 +0 X2 = U2y A
un+1 =u" +a" (xn—l/Z, un) At
1
Velocity Verlet SS 2 +1 "= X" At + Ea”Atz
1
un+1 — un + E (an+1 + an) At
Classical Verlet MS 2 +1 = 2 — x4 g AR
u"+1 _ xn+1 _ xn—l
2At
2 1
Beeman MS 2 +1 ™= 4"y A+ (ga” — gu”_l) At?
1 5 1
n+1 n n+1 n n-1
=u" +|za™ + 2a" - —a"T| At
u u (3 a g4~ ga )
1
Adam Bashforth 2 MS 2 +2 x™ = 4" 4 5 (Bu™ —u"t) At
1
™t =" + 5 (3a" —a") At
1
Adam Moulton 3 PC 3 +5  u"l =y + - (5a"* +8a" — a")
1
xn+1 — xn + E (Sun+1 + 8un un—l)
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3.4. Particle-Particle Interactions Modeling

3.4.3 Cohesive Forces

Cohesive forces occur due to the various short-range interactions between particles.
These forces can cause particles to aggregate and significantly impact the overall behavior
of the particles in the fluid. The primary types of cohesive forces include Van der Waals
forces, electrostatic forces, and liquid bridge forces.

Van der Waals forces:

Van der Waals forces emerge from intermolecular interactions between solid surfaces.
These forces become particularly significant when we bring very smooth surfaces into
close proximity. The force acting between two spheres due to van der Waals interactions
can be quantified using [56] :

d.H
T 12n22
where F is the force per unit area, while H is the Hamaker constant. z represents the
separation distance at the point of contact, a factor determined by the roughness of the
sphere. Finally, d. is the effective diameter:
dp1dp2
dpl + dpz

(3.30)

de = (3.31)
To get the force between a sphere and a flat plate, the same equation can be used with
d. = d (the plate is considered as a sphere of infinite diameter). The Hamaker constant
H for different materials in a fluid medium can be expressed as:

1= () (P )

Electrostatic forces:

Electrostatic forces originate from interactions between charged particles. In fluids,
particles can gain a surface charge via ion adsorption, resulting in either attractive or
repulsive interactions, depending on the sign of the charges. The force between two
charged particles can be calculated using Coulomb’s law:

1 qmq2
 4mey L2

(3.33)

Where g1 and g, are the charges on the particles, ¢¢ is the vacuum permittivity, and L is
the distance between particle centers. For identically-sized particles in direct contact,
the cohesive force between them is given by:

_ 710102
= e

F d,? (3.34)
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3.4. Particle-Particle Interactions Modeling

Here, 01 and o represent the charge densities of the particles. This equation assumes
uniformly charged particles with effective charge concentrated at their centers. Interest-
ingly, particle size has a greater effect on the Coulomb cohesive force than the van der
Waals force [28].

Liquid bridge forces:

Under conditions of high humidity, condensation can lead to the formation of a liquid
bridge between particles. The surface of this liquid exhibits a concave shape due to
surface tension, creating a region of negative pressure within the bridge. The force
exerted on a particle is a combination of this negative pressure force and the cohesive
force generated by capillarity. The magnitude of this force can be calculated using the
Laplace-Young equation:

1 1
F = may*f, (ﬂ_l + E) + 2may f; cos 0 (3.35)

In this equation, a1 denotes the radius of curvature of the bridge, while a; refers to the
radius of the liquid bridge itself. f, is the capillary force, and O is the contact angle
between the liquid and the surface of the particle.
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4.1. Presentation of the TrioCFD Framework

4.1 Presentation of the TrioCFD Framework

Figure 4.1: Illustration of mixed method FT/VOF in TrioCFD

In this work, the TrioCFD simulation software (formerly known as TrioU) is utilized. This
code is based on the TRUST platform and is an open-source, object-oriented code written
in C++ that features an intrinsic management of parallelism. Developed by the CEA, it is
specifically designed for industrial CFD applications on structured (parallelepipeds) or
unstructured (tetrahedrons) meshes containing up to several hundred million elements
(Fig 4.1a). TrioCFD has been proven to be successful in simulations on supercomputers,
with the ability to perform LES simulations, single-phase DNS, and two-phase DNS
(liquid-gas) simulations utilizing up to 10,000 processors [109, 3, 39, 38, 35, 37, 36].

To simulate multiphase flow, the TrioCFD simulation code utilizes the one-fluid formal-
ism of the Navier-Stokes equations combined with a Front-Tracking/VOF techniques
for managing the transport of interfaces.

In this work, the governing equations are solved with a VDF discretization on a staggered
mesh (Fig. 4.1b).

4.2 Deriving the One-Fluid Formulation

In order to derive the One-Fluid equations for the fluid-solid problem, we will first
derive individual fluid equations for each phase, considering them both as fluids. The
appropriate jump conditions at the interface dividing the two phases will also be derived.
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4.2. Deriving the One-Fluid Formulation

4.2.1 Two-fluids equations derivation

Let’s consider (Qp, an immaterial control volume of arbitrary shape, fixed in space such
that it is intersected by the biphasic interface, as illustrated in the Fig. 4.2:

Figure 4.2: Biphasic control volume.

The control volume ) is constituted of two sub-volumes: Q1(t) and (), correspond-
ing respectively to fluid 1 and fluid 2. These two sub-volumes are separated by an
immaterial interface of surface area Ay(t), which is free to move with velocity u;. The
closed boundaries, dQ1(t) and d(Q2;(t), for the sub-volumes 1(t) and (2(t) respectively,
are described through the following relations:

Qo = O1(t) + Qa(t)
Qo = Aq(t) + Ax(t)
dQ1(t) = A1(t) + Ap(t)
d(t) = Ax(t) + Ap(t)

(4.1)

To derive the phase equations and the corresponding jump conditions, we will apply the
conservation principle over the control volume (g, and express the balance for the two
sub-volumes, (21 and (2,, using the general balance equation provided by Delhaye [31]:

{Rate of change} = {Net convection} + {Net diffusion} + {Production/Destruction}

d
D E/Qk(t)f?k\lrkdv_— > /aO W (u - ) dS+ ) /m JidS+ /Q pridV

k=1, k=1,2 ¢ 9Cx(t) k=127 9Q%(t) k=12 ¢ x(t)
(4.2)
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4.2. Deriving the One-Fluid Formulation

Conserved quantity Vi P Ji
Mass 1 0O O
Linear momementum uy f tx

Table 4.1: Term expression for the equation balance

The terms ¥, ®;, and J; are selected from Table 4.1, and their choice depends on the
particular type of balance we aim to express. In this table, f represents body forces,
tr = o) - ny is the traction vector or the surface forces while oy is the total stress tensor,
given by:

ok = —pil + 7% 4.3)

In this formulation, py is the phase pressure, I the identity tensor, and 7 the viscous
stress tensor, expressed for an incompressible Newtonian fluid as:

Tk = 2ukD [ug] (4.4)

L is the dynamic viscosity and D [u] is the strain rate tensor that quantifies the rate of
deformation:

D [ux] = % (Vug + Viug) (4.5)

Conservation of mass

To derive the conservation of mass equation, we use 4.2 along with the parameters from
the first line of 4.1.

d
Z a/ prdV =~ Z prtt - nxdS (4.6)
k=12 O (t) k=12 Y Ak(t)

Next, by employing Leibniz’s rule on the rate of change, we obtain the following
expression:

d dpk
— dV = / —dV + / KUp - nidS
dt Joe P Qt) Ot Ap(t) P

We then apply Gauss’s theorem to the convective term. This allows us to transform the
surface integral into a volume integral, as shown below:

/ PkUk - nidS = / V- prurdV — PkUk - nidS
Ak(t) Q(t) Ap(t)
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4.2. Deriving the One-Fluid Formulation

Substituting these results back into our initial mass conservation Eq. (4.6) and rearanging:

0
Z /Qk(t)(%+V-Pkuk)dV= Z [Pk(uk—ub)-nk]ds 4.7)

k=1, Ap(t) k212

Given that the control volumes and the boundary separating them are arbitrary, the
integrands of Eq. (4.7) must be equal to zero. This leads us to two important equations,
one for local mass balance within each phase and another for the balance of mass
equation at the interface, often referred to as the jump condition:

d

% +V - prug =0 (k=1,2) (4.82)
Z Pk (uk—ub)~nk =0 (4.8b)
k=1,2

The quantity pg (up —up) - ny represents the mass flux per unit area ritx. Hence, we can
rewrite the jump condition in terms of the mass fluxes from the two phases:

1y = —tip (4.9)
If there’s no phase change occurring in the system, the mass flux will be zero, which
results in the following condition for the velocities:

(ug —up) -n =0 (4.10)

Summing over k we get:

Z uy -1 =0 (4.11)

k=1,2

This equation shows that in the absence of phase change, the normal phase velocities at
the interface must be equal:

Ui Mg = Uy - N (4.12)
This relationship is also referred to as the no-penetration boundary condition.

Lastly, if we assume a no-slip condition at the interface (tangential velocities at the
interface are equal), which is applicable for the types of flows discussed in this study,
we obtain the kinematic boundary condition on the velocity.:

ui = uy (4.13)
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4.2. Deriving the One-Fluid Formulation

Conservation of Linear momementum

Following the approach used in the previous section, we will establish equations for the
conservation of linear momentum. We start by using Eq. (4.2) and the parameters from
the second line of Table 4.1:

d = —
k=Zl;2 dt /Qk(t) prurdV = Z

PrkUk (uk-nk)dS+ Z / Oy - nidS
k=12 Ak(t)

—J A
k=127 (4.14)
+ / prfdv
kzzl;z Qi(t)
Next, Leibniz’s rule is applied to the rate of change, yielding the following expression:
0
i pkude = / Mdv + PrkUk (ub . nk) ds (4.15)
at Jow RO Ap(t)

Afterwards, we invoke Gauss’s theorem on the convective and diffusive terms to
transform the surface integrals into volume integrals:

pruy (ug - ny)dS = / (prukui) - nids

Ak(t) Ax(t)

= / V- (pkukuk) dV—/ pruk (uy - nx)dS
Q(t) Ap(t)

/ ak-nde=/ V-O‘de—/ O - nidS
Ag(t) Q(t) Ap(t)

Substituting these results back and rearranging:

dpxu
Z / ( pakt K +V- (pkukuk)—pkf—V~ak)dV
k=1, Ck(t)

(4.16)
:/ Z [Pkuk(uk—ub)'nk—ak-nk]ds
Ap(t) k=1,2

Given that the control volumes and the boundary separating them are arbitrary, the
integrands of this equation must be null.

dpkiti

of +V- (pkukuk) — pkf -V-0,=0 (k = 1,2) (4.17a)
Z [prue (ur — up) - ny — o - mie| =0 (4.17b)
k=1,2

The first equation is the local linear momentum balance within each phase, and the
second is the jump condition at the interface, also known as the dynamic boundary
condition. Again, in the absence of phase change, the jump condition simplifies to:

01-N1=—02" N> (4.18)
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4.2. Deriving the One-Fluid Formulation

4.2.2 One-fluid equations derivation

The individual phase equations for each separate phase and the corresponding boundary
conditions are given in Eq. (4.19). We consider the fluid phase as an incompressible
fluid (Eq. (4.19b)), whereas the solid phase is modeled as a fluid adhering to rigidity
constraints (Eq. (4.19d)). The no-slip and no-penetration conditions give rise to the
corresponding kinematic and dynamic boundary conditions (Egs. (4.19¢) and (4.19f)
respectively):

dpsu .

8ft ! + V- (prusus) =V-o5+psf in Qy, (4.19a)
Voup=0 in Qy, (4.19b)
d

%Stus +V. (psusus) =V-0s+psf in 0, (4.19¢)
D[us]=0 in Q, (4.19d)
U= s on dQ), (4.19%)
Of Nf=—0s"MN; on dQ; (4.191)

To extend these equations to the entire domain, we introduce the phase indicator
function, defined as:

Bt in Q 4.20)
Ak = 0 elsewhere '

This function serves as a flag for the phase presence. Several key properties of the
indicator function include Kataoka [70] and Tryggvason, Scardovelli, and Zaleski [110]:

Vxr = —nidp (4.21a)

XkXk = Xk (4.21b)

Z xe =1 (4.21c)
k

As the interface moves, each fluid’s occupied region shape alters, and x; adjusts
accordingly. This means the material derivative of xy is zero, providing the transport
equation for xy:
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4.2. Deriving the One-Fluid Formulation

To establish the one-fluid formulation, we first multiply each phase’s governing equation
with its corresponding phase indicator function:

XkV-ur=0 (4.23a)
Iprui
Xk pat + xkV - (prurur) = xiV - 0k + xepif (4.23b)

We can refer to the following identity of the divergence operator:
V- (pA) =V -A+A-Vgp (4.24)

@ represents a scalar function, and A can be either a vector or a second-order tensor. By
utilizing Eq. (4.24) alongside the transport equation of x Eq. (4.22), we can rework each
term in Eq. (4.23) as follows:

XiVoug =V (xeur) —ug - Ve

dpkuk _ OXkpitk o IX
MTor T T o PRk
_ IXkPrUk

5+ Pk (up - Vxe)

XV - (pruur) =V - (xeprurur) — prurur -V xr
xXkV - 0oxk =V (xxok) — ok - Vxk

By inserting these terms back into Eq. (4.23), replacing V x using Eq. (4.21a), summing
the phase equation over k = 1, 2, and rearranging, we obtain:

\x (Z )(kuk) + Z [g - ni]op =0 (4.25a)

k=12 k=12
Jd
T ( Z kakuk) +V- (Z kakukuk) =V. (Z Xka) + Z Xkprf
k=12 k=1, k=12 k=12 (4.25b)

- |prk (g — up) - n — oy - 1| 6y
k=12

We introduce a "One-fluid" property, ¢, based on the single-phase properties, ¢ (Where
¢ canbeu, o, p, 1, p):

¢ = 22 Xk Pk (4.26)

k=12

To simplify the notation in the case of a two-phase flow between a solid phase s and a
fluid phase f, we introduce a color function I called the phase indicator function, set
equaltol = s =1-yx £ This leads to the following definition for I:

1 ifx € Q
I(x) = HXESS 4o
0 1fx€Qf
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4.2. Deriving the One-Fluid Formulation

The one-fluid properties are then expressed as a function of I with:

p() =1Ips + (1 =Dpy

(4.28)
u(l) = Tus + (1 = Duy

Utilizing the property from Eq. (4.21b), we rewrite the equation in terms of the one-fluid
properties, and by simultaneously applying the jump equations (Egs. (4.8b), (4.11)
and (4.17b)) to remove the Dirac delta function, 6,, we finally derive the one-fluid
equations system:

V-u=0 (4.29a)
d

% +V.(puu)=-Vp+V- (y (Vu + VTu)) +pf (4.29b)
dl

S FuVI=0 (4.29¢)

4.2.3 Advection of the interface: The front-tracking method.

Despite the apparent simplicity of Eq 4.29c, numerically integrating the transport
equation of a piecewise constant function is a challenging task. To address this challenge,
several methods such as the volume-of-fluid (VOF) method, the level-set method have
emerged. The reader is referred to Tryggvason, Scardovelli, and Zaleski [110] for a
review on the subject. In this work we will focus on one method in particular, i.e. the
Front Tracking method [15]. To solve the transport equation of the phase indicator
function, the Front-Tracking method utilizes two distinct meshes: a fixed, Eulerian mesh
for computing velocity and pressure, and a moving, Lagrangian mesh composed of
massless markers nodes. The triangles (segments in 2D) formed by the interconnection
of the markers points are called the elements of the mesh (see Fig. 4.3). The interface
velocity is computed by interpolating the Eulerian velocities at the Lagrangian marker
locations. This uses a tri-linear interpolation in 3D (or bi-linear in 2D, as seen in Fig. 4.3a).

The resulting element velocities are given by ﬁ;l”:

3
N 1 o
Gl = 3 E u?ﬂ (4.30)

where ! is the velocity vector associated to the i " marker of the Lagrangian mesh
after interpolation. The element velocities are then combined into a single global mesh
velocity u’;"! through an Area Weighted Average:

S,ﬁ11+1
n+l _ Z 17

u,, —Z 5,

(4.31)
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Figure 4.3: Graphical representation of resolution meshes (a) fixed mesh, (b) moving mesh

where §; is the area of the j th Lagrangian element. This velocity is then used to translate
the markers to their new position:

on+l _ o 1
X! =X + Atuy” (4.32)

The phase indicator function is calculated from the new front position, and the thermo-
physical property fields of each phase are updated accordingly.

In TrioCFD, the Front-Tracking method, which alone lacks conservation properties,
is paired with a VOF algorithm to ensure the mass is preserved during the transport
of interfaces. However, as the focus of this study is on solid-fluid flows with rigid
two-phase interfaces, the volume of the dispersed phase is automatically conserved
and the VOF component is not necessary. Additionally, the bulk translation of the
Lagrangian markers eliminates the need for the expensive remeshing algorithms for
which the Front-Tracking algorithm is infamous.

Moreover, the software was designed primarily for gas and liquid simulations, where
it handled air bubbles as a collective group and assigned a random and temporary
ID to each bubble at every timestep. However, as we transitioned to solid and fluid
simulations, it became crucial to continuously track each particle over time for accurate
force calculations. To accomplish this, we ensured that every particle maintained a
unique and consistent ID throughout the simulation. We implemented a caching system
that stored each particle’s previous position along with its ID and resolved any labeling
inconsistencies. This approach is based on the assumption that particles undergo
relatively small movements between timesteps compared to their radii.
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4.2. Deriving the One-Fluid Formulation

4.2.4 Solid Rigidity Constraint: Viscous Penalization

In order to impose the constraint of non-deformation within the solid phase, we utilized
the Eulerian formulation of this constraint (Eq. (3.7)). This formulation represents a local
constraint that can be directly imposed on the conservation of momentum equations
(Eqg. (4.29b)) without requiring prior knowledge of the velocity of the solid. By imposing
a high value of viscosity, it is possible to make the deformation tensor tend towards zero,
effectively treating the solid as a highly viscous fluid. The constraint is most effectively
imposed when the ratio between solid viscosity and fluid viscosity, R, = ps/pif, is large.
This approach greatly simplifies the coupling between the dispersed and carrier phases,
as the solid’s inertia is implicitly accounted for by the fluid solver. Additionally, the
rigidity constraint is stricter than the continuity constraint, as a consequence the later is
automatically satisfied within the solid phase.

4.2.5 Modeling of the one-fluid physical properties at the interface

2,

P
- ~
~ ~
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N,
N\
)
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2, /
[ i=1 [ Ji=o0 Lr=vov,
() (b)

Figure 4.4: (a) Phase indicator schematic for the Front Tracking algorithm: purely solid cells (dark
grey), purely fluid cells (white), and interface-crossed cells or mixed cells (gradient grey based on
solid volume fraction). (b) Intersection of the Lagrangian and Eulerian meshes, demonstrating
the determination of volume fractions from their relative positioning.

In the current method, the interface between the solid and fluid phases is smoothed
over one grid cell, resulting in the formation of a third zone that contains both phases
simultaneously. We will referred to it in this text as the mixed zone €,,. The solid phase
indicator function is calculated by evaluating geometrically the solid volume fraction at
that location Fig. 4.4:

I(x) = = if xeQ, (4.33)
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4.3. Particle-particle interactions: Collision modeling

Where, V. and V; are the volume of the mixed cell and the volume of the solid phase
present in that cell respectively. The evaluation of physical properties over (), is crucial
for mass conservation and the calculation of the viscous stresses. The density calculation
is straightforward and identical to Eq. (4.28):

p=1Ips+(1-1Ips

However, the viscosity calculation is more challenging due to the high viscosity ratio
required by the viscous penalization method. Using an arithmetic average, like for the
density will resultin u = I us, regardless of the volume fraction of solid in the mixed cells.
This leads to the diffusion of the interface from a hydrodynamic perspective, resulting
in an apparent particle surface that is larger than the actual surface. A more accurate
approach, which ensures the stress tensor continuity and a proper representation of the
hydraulic surface, consist in using a harmonic average [110, 90]:

= Hsthf
Ty + (- Dgs

(4.34)

While this formulation is an improvement over the previous one, its implementation in
our calculation code occasionally led to an overestimation of the hydraulic diameter
(interpreted as the effective diameter influencing the fluid drag on the particle). To reduce
the drag force exerted on the particle, we used the step function, defined by Eq. (4.35),
to calculate the local viscosity. This approach, when paired with the appropriate mesh
resolution, allows for a more precise calibration of the hydrodynamic drag, especially in
scenarios where harmonic averaging fell short of achieving the desired accuracy.

s if1=1
p= . (4.35)
Lr ifl <1

4.3 Particle-particle interactions: Collision modeling

The solid phase has a much shorter characteristic time than the fluid phase, which
ordinarily would necessitate an extremely small simulation time step for accurate
representation. However, as discussed in [13, 12, 26] the collision time can be extended
up to several times the fluid simulation time step without sacrificing physical realism.
This approach, combined with the simultaneous modeling of both the collision and
lubrication forces proposed by Mohaghegh and Udaykumar [83], serves as the basis for
the collision model that was implemented in this work.
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4.3. Particle-particle interactions: Collision modeling

4.3.1 Particle-particle collisions

The model is built on a harmonic oscillator, which is a mass-spring system with no
damping. Consider an elastic collision between two particles, p and q, with radii R, and
R, respectively. For clarity, particle ¢ will be maintained stationary in space (u, = 0).
The collision force, F¢ ,_,,, exerted by particle g on particle p in the normal direction is
modeled as a force of the following form:

Feqop = —koun (4.36)

where k represents the stiffness constant of the oscillator, 6, is the normal distance
separating the surfaces of the two particles defined by:

on = llxp —x4ll = (Rp + Ry) (4.37)

where x, and x, are the centers of gravity of particles p and g, respectively. The vector
n represents the normal to the contact plane of the two surfaces:
Xp ~Xq

— 1 (4.38)
||xp - xq”

n

The equation of motion for the overlapping distance 6, in the normal direction is:
Megn + ko =0 (4.39)
where 1. is the reduced mass of the two interacting particles:

1 1 1

Mg my g
The solution of the differential equation Eq. (4.39) is:
On (t) = Omax sin (wot + ¢) (4.40)

Omax and ¢ are the amplitude and the phase of the harmonic oscillator:

2.2, 2
WXy + 1 [ woxo
wo 00

X0 = 6, (t = 0s) and vy = &, (t = 0s) are the initial conditions for the displacement and
the velocity respectively.

wo is the natural frequency of the oscillator given by:

21 k
a)oz—:

T meﬁc
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4.3. Particle-particle interactions: Collision modeling

where T is the oscillation period of the system. By noting the collision period 7. equal
to 7. = T /2 we can deduce the expression of the spring constant k:

2
= (X (4.41)

Tc

From a physical point of view, collisions are never purely elastic. A portion of the initial
kinetic energy is lost both as vibrational energy in the solid and as viscous dissipation
in the fluid (when they are not negligible). To account for these inelastic losses, the
combined modeling approach of Mohaghegh and Udaykumar [83] was preferred. In
this approach, we rely on the existing relationship between the St number and the
coefficient of restitution e to predict the particle speed at the end of the collision. The
difference in kinetic energy between the impact and the rebound will serve to relax the
stiffness constant k to obtain the desired speed at the end of the collision. The derivation
of the correction factor for the spring stiffness is detailed in the following:

The motion of the particle during the collision goes through three key moments (see
Fig. 4.5):

e The start of the collision, represented by ¢#;;,,,, which marks the moment when the
surfaces of two particles first come into contact, and the overlapping distance 6,
becomes negative (6, (timp) < 0).

e The spring correction time, represented by t.,,r, which marks the moment during
the collision when the particle’s velocity reaches zero as its kinetic energy is
completely converted into elastic potential energy stored in spring k. At this point,
On (tcorr) = Omax, and the spring stiffness is reduced from k to k’.

e The end of the collision, represented by ¢,.,, when the surfaces of the two particles
are no longer in contact, and thus the overlapping distance 6,, becomes positive
again (65 (trep) > 0).

By noting uy,, = ||up(timp)|| the velocity of the particle p when it’s impacting the particle
g, we can compute the St at that instant:

Here, R.f is the effective diameter, which is calculated by Rz = (R];1 + Rq_l)_l. Using the
definition of coefficient of restitution, e = ;¢ /uimp we can deduce the rebound velocity
Upep = ||up(treb)|| of the particle p at the end of the collision:

Uyeh (Stimp) =e (Stimp) Uimp (4.43)

The kinetic energy lost by the particle p after the collision is given by:

1 2 2 1 2
Ay = 5y (13,,, = 12,) = sy, (1= €) (444)
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F,- Au<0 F,-Au > 0

kreb - e(?ffkimp
Figure 4.5: Explanatory diagram of the collision model.

The corresponding elastic potential energy reduction is given by:
4 1 /
AE; = 5 (k—k ) 62101 (4.45)
Where k' is the reduced spring stiffness we are looking for.

The value of &2, . can be obtained from an energy balance between iy, and teorr:
max gy p

1 1

En1,,u§§np = Ekéﬁm (4.46)
By equating AE; = AE, and replacing 62,,, into Eq 4.45 we can write:

5 Wiy (1-¢%) = 5 Wiy (1 - % (4.47)
Finally, solving for k” we find:

K = ke? (4.48)

Numerically, to identify the moment ¢.,,,, we rely on the change of sign of the scalar
product u, - n > 0. Indeed, when t < t.,,,, the collision force acts against the velocity,
resulting in a negative product. While, the product is positive when t > t.,,, as the
collision force acts in the same direction as the velocity. The stiffness can be considered
as a piecewise function of the scalar product u, - n:

ki = (4.49)
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4.3. Particle-particle interactions: Collision modeling

According to the third Newton law of motion, the reaction force to be applied to the
particle g is of equal intensity and opposite direction to the force applied to the particle

p:

F. - (4.50)

P T
The forces acting on a particle are summed up and divided by the volume of the particle.
Using the corresponding particle phase indicator function, the resulting force is then
applied to the purely solid cells belonging to that particle. For the particle p this gives:

|
F(x) = I,(x) ) ‘j P with xe Q) (4.51)
p
q

4.3.2 Time integration of the collision force

For each pair of particles, we test for collisions by calculating the overlap distance
(0n < 0), and the forces are updated until no overlapping is observed. The time
integration of the collision force is done using a variant of the Semi-Implicit Euler time
scheme (SIE) to prevent numerical divergences caused by the Forward Euler scheme
(FE):

F' = kit in (4.52)

where k' is the piecewise stiffness evaluated with the scalar product (u, - n) at time n.
n is given by Eq. (4.38) and 6"*! is the normal overlaping distance of the two colliding
particles evaluated at the time n + 1:

5+ = H(xg )+ (el - ug)AtH — (R, +Ry) (4.53)

4.3.3 Particle-wall collisions

Particle-wall collisions are handled by introducing a virtual particle on the opposite
side of the wall, effectively acting as a mirror image of the colliding particle. This
approach follows the methodology proposed in [50]. Dynamically speaking the wall is
considered as a particle with infinite radius. The center of mass x of the virtual particle
is conventionally positioned so that the contact plane of the two particles coincides with
the wall. However, we have chosen to slightly shift the contact plane by a small distance
€wp in order to prevent the Lagrangian marker, composing the moving mesh, to leave
the simulation domain - which results in small particle deformation. In all simulations
carried out, &4, was set equal to one quarter of the Eulerian grid cell.
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4.4. Numerical implementation

Two identical particles Particle-wall

n —_— —

llxp — x4l llxp — x0ll
Mefy m/2 my
Ref R/2 R,

1R 2R,p

Stimp 6 ‘LSCS Al/l(tlmp) §£up(tzmp)
57+l ”(x;; —xg)+Au”At“ _2R H(xg —x;;)+u;AtH ~2R,

Table 4.2: Numerical parameters for the collision model in the case of a collision between two
identical particles, and a particle-wall collision.

Table 4.2 shows the numerical parameters of the model for both collisions between a
particle and a wall and between two identical freely moving particles p and g, with
the same radius R, = R; = R and mass m,, = m; = m. The relative velocity of the two
particles is defined as (Au = u, — u,).

4.4 Numerical implementation

The primary difficulty in solving the Navier-Stokes equations lies in the nonlinearity
and the coupling between the pressure and velocity fields. The momentum equation
includes both velocity and pressure, and is nonlinear due to the convective acceleration
term. Meanwhile, the continuity equation involves only the velocity field, but it must
be satisfied for the pressure field to be accurate. The pressure does not appear as a
primary variable in either equation, yet it indirectly influences both through its role in
the momentum equation. Casting the equations onto matrix form further emphasis this
points:

n+1

A G
GT 0

u
(4.54)

n+1

P

where A, G and G', are the terms associated with the advection, gradient, and divergence
operators respectively. X regroup the remaining terms (surface and body forces). This
formulation highlight the saddle point nature of the problem, characterized by a zero
diagonal block. It also underscores that without an explicit equation for pressure, it is
impossible to directly solve for the pressure and velocity fields using standard iterative
methods. Given the inherent complexities, it appears necessary to devise an algorithm
that resolves these equations in the right sequence, making all the necessary information
available when needed. In this work, we used a splitting operator approach based on
the projection method of Chorin [21] and Yanenko [119]
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4.4. Numerical implementation

4.4.1 The projection method

The projection method decomposes a complex problem into the sum of simpler sub-
problems. This allows us to address each subproblem separately, applying a solution
method tailored to each one. Consider the semi descritize form of the Naviers stokes
euqations:

ntl " n 1 n+1 1 n+1 n+1
A—t:_A —va +W(D +F )+g (455)

where the convection term is represented by A", the diffusion term by D"*!, the
collisional source term by F**!, and the gravitational source term by g. We follow the
procedure of [21, 119] to subdivide the equation into two subproblems:

Convection-Diffusion problem

u-uw _ 1 +1 +1
X ——A”+W(D” +F"*) +g (4.56)

The evaluation of the diffusion term is implicit in time and computed iteratively
using an Uzawa algorithm. Due to the large viscosity ratio required by the
viscous penalty method, an explicit evaluation would result in impractically small
integration time steps.

Degenerate Stokes problem

n+1 *
u —u 1 n+1

At - pn+1 p
V-u"l=0 (4.57b)

(4.57a)

Taking the divergence of equation Eq. (4.57a) and combining it with Eq. (4.57b)
results in the Poisson equation for pressure:

v n+1 1
v (2 ) —v.w (4.58)
pn"rl At

In the first stage of the projection method, we predict a temporary velocity field u* by
solving the advection-diffusion subproblem without considering the pressure. In the
next stage, we use the obtained velocity field to solve the Poisson equation for pressure.
Finally, once the pressure field is known, the temporary velocity field is corrected by
projecting it onto a divergence-free velocity field.
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4.4. Numerical implementation

4.4.2 Solving the advection-diffusion problem
Spatial discritisation

To solve the advection-diffusion problem, we first discretize the governing equations
- that is, we transform the continuous mathematical expressions into a form suitable
for numerical computation. This process is done using the finite volume discretization
(FVD) approach, which works by applying the conservation principles of mass and
momentum over small control volumes. The fluid properties at the center of each control
volume are approximated by their average value over the control volume. For instance,
the average velocity is calculated as:

1
u= E/Qu(x)dv (4.59)

(2 denotes the control volume associated with the variable. In a 2D scenario, (2 = AxAy
is effectively a surface area, yet we consider it as a volume. While we assume a
two-dimensional flow for clarity, the extension to three dimensions is straightforward.

The computational domain is subdivided using a structured staggered grid, similar to
the one introduced by Harlow and Welch [58] for the MAC method. Typically, control
volumes assigned to the velocities are centered over the boundaries of the pressure
control volume as shown in Fig. 4.6. This arrangement is inspired by the nature of
the conservation equations, which require a balance between the rate of change in
the volume and the net outflow through the boundaries. This setup offers greater
accuracy compared to a collocated grid, particularly for pressure gradients, by computing
differences between adjacent points. Moreover, it ensures a tighter coupling between the
variables than if they were all located at the same grid node. The continuity equation
on a staggered grid links every other grid point, which can lead to exactly satisfying
continuity even for highly fluctuating velocities [110]. The control volumes associated
with pressure p, the x-component of velocity u, and the y-component of velocity v, are
denoted by 2, Q,,, and Q, respectively. Each control volume has bounding surfaces
labeled as &, W, N, and S for the east, west, north, and south boundaries, respectively.
Their normal vectors are denoted as:

1
0

0
1

ng = 7 ny = ’ ny = ’ ng =

When discretizing the continuity equation over 2, we apply Gauss’s theorem to convert
the volume integral into a surface integral over the boundary of the control volume dQ,
with the integrals evaluated numerically as:

l/V-udV:l}{ u-ndS=0
Q Jo Q Jia

: (4.60)
= 5 {[(w)e — Ww] Ay + [(0)x — (v)s] Ax}
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Figure 4.6: (a) Control volume for the pressure calculation. (b) Control volume for the x-direction
velocity calculation. (c) Control volume for the y-direction velocity calculation.

By expressing the velocities according to the notation shown in Fig. 4.6a, we derive the
discretized equation:

Ue — Uy Vy — Vs
+

o S 0 (4.61)

The advection and diffusion terms are computed with a similar procedure.

Discretization of the advection term

The computation of the average value of the advection terms is achieved by recasting
the volume integral as a net flux across the boundaries of the velocity control volume:

1

A=
-Qu,v Qo

1
V- (uu)dVv = v jégm u(u-n)ds (4.62)

Even though velocities are centered within their individual control volumes, momentum
fluxes are calculated at the control volumes’ boundaries. To evaluate the flux, a second-
order centered scheme is employed, which involves the linear interpolation of velocities
at the boundary locations associated with 2, and ), The x-component of the advection
term is derived by approximating the flux across the boundaries of Q:

(Ax)g, = [(uu)g — (uu)w] Ay + [(uv)n — (uv)s] Ax}

AxAy

Using the discretized velocities, the flux approximation becomes:

B e )

oy | () - () (257
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4.4. Numerical implementation

Likewise, the y-component of the advection term is computed by evaluating the flux
across the boundaries of Q,:

(A4)o, = iy {10006 = (w0h] Ay + [@2) - (@051 4x)

And the flux approximation with discretized velocities is given by:

o = (22 (22 - () )

(o]

Discretization of the diffusion term

The average value of diffusion terms is computed by reinterpreting it as a net flux over
the boundaries of the velocity control volume:

1

D=
Qu/v -Qu,v

Vou (Vu + vTu) v = %}é u (Vu + vTu)  ndS (4.65)

The x-component of the diffusion term is determined by assessing the flux at the

boundaries of Q,;:
1 au au (91/[ av au av
o, = o [P (022) -2 (o) Jav o fo(Zr ) (2 ) |

The velocity derivatives appearing in the viscous stress tensor are evaluated using the
second-order centered differences scheme. Using discrete velocities, we obtain:

_ 1 Uee — Ue Ue — Uy
(DX)Q“ ~ Ax [2‘UE ( Ax ) 2uc ( AX )]
1 Upe —Ue  Vpe — Vy Ue —Use  Vse — Vg
+Ay[“N( Ay A ) #S( Ay A )l

At the north and south boundaries of Jd(Q,, where viscosities are not defined, we
approximate them by taking the mean of the four nearest neighbors:

(4.66)

1 1
Msz(#NE+uN+uc+uE)/ HS=Z(#E+#C+H5+P‘SE)-

Similarly, the y-component of the diffusion term is determined by assessing the flux at

the boundaries of Q,:
v ) ( v ) }
2Mu—1] —-2|\u=— AXx
(;lgy N “ay S

Ay +

(D) — 1 8_04_ 8_1/[ - &_’U+ 8_1/[
Yo, = axay |[\Fox T Hay ), T \Fax Ty ).,
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4.4. Numerical implementation

Utilizing the discretized velocities, the flux estimation becomes:

_ 1 Ve = Vn | Upe — Ue Vn = Vnw  Upw — Uy
(Dy)g, = 3% [“8( Ax | Ay ) WW( Ax ' Ay
1 Vnn _Vn) (Vn _Vs)l
+— |2 —_— -2
Ayl “N( Ay "\ Tay

For the undefined viscosities at the east and west boundaries of dQ2,, we calculate:

| o

1 1
M8=1(MNE+HN+Mc+HE)/ IJW:1(#N+P‘NW+“W+P‘C)'

Prediction step

With the advection and diffusion terms available, Eq. (4.56) can be used to compute the
temporary velocity field u".

1

u, = u, + At {— (Ax)gu + W (Dx)thl + (Fx)g;l + (gx) Q} (4.68a)
u

Vi, = Vi 4+ At {— (Ay)g, + # (Dy)"gjl + (py)”(;;1 + (gx)oz,} (4.68b)
v

The densities at the centers of the control volumes Q,, and (2, are respectively:

1 1
pu=75(pe+pc), po=3(pn+pc).

4.4.3 Solving the degenerate Stokes problem

The velocity field u* obtained from the prediction step isn’t divergence-free, so it’s
corrected using the pressure field in the following step. The equation for pressure is
obtained by discretizing the Poisson equation Eq. (4.58).

Discretization of the pressure equation

The average value of the left-hand side terms in Eq. (4.58) is calculated by reinterpreting
it as a net flux over the boundaries of the pressure control volume Q:

1 1 1 1
LHS =—/V-(—V )de—j{ (—V)-ndS 4.69
68



4.4. Numerical implementation

Evaluating the flux at the boundaries of (2 and approximating the pressure differential
using a centered difference yields:
Ax}

_ 1 1dp 1dp 10p 19p
e = i {|Gan), - () o+ G 3), - Gavl,

_|[1pe-pc 1 PC_PW]JrleN_pC_LpC_PSl
pe  Ax pw  Ax pn Ay ps Ay

(4.70)

Since the pressures aren’t available at the boundaries of (2, we evaluate them using
linear interpolations:

1 1 1 L
pa=§(PE+PC)r p(W:E(pC+pw), pN=§(pN+pc), Ps=§(Pc+PS)-

Discretizing the right-hand side of the Poisson equation (4.58) results in:

1 (uy—uw, V-V
RHS) = — [ ——% + =
RHS)a = 3 ( Ax Ay )

(4.71)

Equating the derived expressions gives the fully discretized equation for the pressure:

2 (pE—pc pc—pw) 2 (pN—pc pc—ps) 1 (uz—u; vy = Vi
— + - = — +

A2 \pe+pc pc+pw) Ay2\pn+pc pc+ps) At\ Ax Ay
(4.72)

Solving Eq. (4.72) tends to be the most time-consuming step in any CFD simulation. In
this work, an efficient SSOR-preconditioned GCP solver is employed to solve the elliptic
equation.

Projection step

With the pressure field known, the temporary velocity field #* can be corrected by
projecting it onto a divergence-free velocity field using:

At pn+1 _ pn+1

+1 _ o E C

1,1? =u, — ET (473&)
A n+l _ . n+l

vl oy AtPn ZPc (4.73b)

n no AY pn+1
n

The semi-explicit projection method presented in this section is first-order in time.
Furthermore, the integration time step needs to satisfy:

CFL
Atcono = max(|ul) n max(|v]) n max(|w]) (4'74)
Ax Ay Az
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4.5 Complete Algorithm

1. Initialize the front position, the solid phase indicator function I, fluid velocity u,
density p, and viscosity u.

2. Loop over time:

(a) Prediction step:
i. Compute the Collision force:
Fcn+1 — _kn6n+1n
i9n
ii. Compute the Advection term A" using Eqgs. (4.63) and (4.64).
iii. Compute the implicit Diffusion term D"*! using Egs. (4.66) and (4.67).

iv. Compute the intermediate velocity field:

n

u-u _ n 1 n+1 n+1
X =-A +W(D +F") +g

(b) Projection step:
i. Compute the pressure field:

vpi’l-i-l 1 \
)i

ii. Apply velocity correction:
u"tl -y 1

_ +1
At - pn+1 vpn

(c) Interface transport:

i. Interpolate the velocity field at the Lagrangian nodes i :
on+l _ (3 1
u " =T (X, u")

ii. Compute the mean velocity of the Lagrangian elements j:

3
1
Ant+l _ — °on+1
Yo T3 Z Y
i=1
iii. Compute the mean velocity of the front:
Sl

n+l _ 2 a
iv. Translate the Lagrangian nodes with the mean velocity:

u

en+l _ en °n+1
X; " =x; + Atuy,

v. Reconstruct the phase indicator function:
In+1 =R ()?H'l)
(d) Update the "one-fluid" fields:
¢n+1 — 7:(¢S/ ¢f/1n+1)
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NUMERICAL SIMULATIONS RESuULTS

In this chapter, the validity of the present numerical method will be thoroughly evaluated
by comparing its performance against the experimental data of two well-established
test cases in the field, namely the sedimentation of a spherical particle in a fluid at rest
made by Cate et al. 2002 [18] and the normal collision of a spherical particle with a wall
made by Gondret et al. 2002 [53]. The High Performance Computing capabilities of
our approach are finally tested by reproducing the liquid-solid fluidized bed of [1] -
involving ~ 2100 particles. The results presented in this chapter form the core of an
article published in the International Journal of Multiphase Flow: [57].
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5.1. Hydrodynamic validation: Sedimentation of a solid particle in a finite size domain

5.1 Hydrodynamic validation: Sedimentation of a solid par-
ticle in a finite size domain

In the first validation case, we consider the settling of a spherical particle in a three-
dimensional box at different Reynolds numbers. This test case is based on the experimen-
tal configuration of Cate et al. [18], where a single sphere with a diameter of d, = 15mm
is released at rest in an open quiescent container. This numerical benchmark has also
been performed by Vincent et al. [115], Zhou et al. [130], and Chen and Miiller [19]
among others.

The Reynolds numbers, Re; = p¢ViR, /s based on the terminal velocity V; considered in
thisstudyare1.5,4.1,11.6,and 32.2. These are achieved by adjusting the fluid type inside
the box, as shown in Table 5.1. The container dimensions are 0.10m X 0.16 m X 0.10m
in the x, y, and z-directions, respectively. The gravity ¢ = 9.81m - s™! acts in the negative
y-direction. The release position of the particle’s gravity center is positioned 12.75 cm
above the bottom of the tank, and is centered on the x and z directions. The density of
the solid particle is p, = 1120kg/m".

Case Re R, pf Lf u;
[kg.m_3] [Pa.s] [m.s7]
1.1 15 1.115 970 0.373 0.038
1.2 41 1.161 965 0.212  0.060
1.3 116 1.164 962 0.113  0.091
14 319 1.167 960 0.058 0.128

Table 5.1: Physical parameters for a spherical particle settling in viscous fluid

Our numerical domain corresponds to the experimental container size. No-slip boundary
conditions are imposed on the walls of the domain, while outflow boundary conditions
(with a null reference pressure) are applied on the upper boundary. Initially, the fluid is
at rest in the domain. The viscosity ratio is set to R, = 1000 for all four cases. Finally, an
integration time step equal to At = 107* s is used for the pressure solver.

Fig. 5.1 depicts the time evolution of the normalized vertical position and velocity of
the particle at Re = 31.9. Results are presented for two mesh resolutions, Ry = 15
and 30 cells per diameter, using both arithmetic and harmonic viscosity averaging at
interface-crossing cells. The harmonic method proves more accurate, with the arithmetic
approach overestimating drag and thus underestimating settling velocity. While refining
the mesh improves the arithmetic method’s accuracy, it cannot match the correct settling
velocity even at Ry = 30. Conversely, the harmonic method achieves great accuracy at
Ra = 15. Further refinement to Ry = 30 offers negligible accuracy gains, suggesting
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Figure 5.1: Time evolution of the simulated (a) vertical position and (b) vertical velocity for
the case 1.4, Re = 31.9 as a function of mesh resolution and mixed cells viscosity modeling.
Dashed line: resolution of 15 grid cells per diameter; continuous line: resolution of 30 grid cells
per diameter. Blue line: harmonic averaging; gray line: arithmetic averaging. Vertical position
normalized with the particle diameter.

convergence.

In subsequent simulations, the harmonic average and a grid resolution of Ry = 15
were employed for all four Reynolds numbers listed in Table 5.1. The outcomes of
these simulations are compared with the experimental results from ten Cate et al. in
Figs. 5.2 and 5.3. As seen from the comparison, the dynamics of a settling particle at
Reynolds numbers up to 31.9 are faithfully captured by our simulations. In conclusion,
by reproducing this test case, we demonstrate that our method is able to accurately
simulate the hydrodynamics of a solid sphere settling in a viscous fluid and the collision
model for the no-bouncing contact regime. The subsequent section will be dedicated to
further validating the collision model, specifically within the context of the bouncing
regime.
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Figure 5.2: Time histories of the normalized gap height h, /d, for a particle settling in a small
container. Symbols: experimental data of Cate et al. [18], lines: present simulations
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Figure 5.3: Time histories of the Settling Velocity v, for a particle settling in a small container.
Symbols: experimental data of Cate et al. [18], lines: present simulations

74
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5.2 Collisional response validation: Normal collision of a
particle with a planar wall

The simulation of the bouncing motion of a solid sphere colliding onto a planar surface
in a viscous fluid is a challenging task, as it involves capturing the complex dynamics of
the particle’s motion, including its acceleration, multiple collisions, and deceleration. To
validate our method, we reproduce the experimental data of Gondret, Lance, and Petit
[53]. The setup of the simulation involves a stainless steel particle that is released into
a tank filled with silicon oil RV10. Under the effect of gravity, the particle accelerates
towards the bottom of the tank, colliding multiple times. We simulated the time
evolution of the trajectory and vertical velocity profiles and compared them to the
experimental data.

In the conducted experiment, the properties of the fluid and particles, as well as the
particle’s release position are carefully selected to ensure the particle reaches its terminal
velocity of approximately 0.6 m - s~ upon contacting the bottom wall. Simulating the
entire acceleration distance can be computationally expensive.

Furthermore, accurately capturing the sequential bouncing motion of the particle
is challenging. Errors from initial rebounds can compound, leading to significant
discrepancies in subsequent bounces. Hence, establishing accurate starting conditions
is of paramount importance. To address these challenges we reduced the simulation
domain by releasing the particle from a height that corresponds to the maximum
elevation it would reach after its first collision with the bottom wall in the experimental
setup. This approach is justified by the observation that fluid perturbations caused by
the initial rebound have negligible effects on subsequent bounces, as indicated in [53].
As a result, the Stokes numbers for the ensuing rebounds are St =75, 41, 20, and 5. The
simulation is conducted in a 9 mm X 12 mm X 9 mm domain with a mesh resolution of
Ra = 16. The particle diameter is d, = 3mm and the center of the particle is positioned
at the coordinates (4.5 mm, 8.88 mm, 4.5 mm). The densities of the fluid and the solid are
equal to 935 kg/m? and 7800 kg/m°respectively. The fluid viscosity is equal to 0.01 Pa - s
and the viscosity ratio is kept at R, = 1000. No-slip boundary conditions are imposed
on all the walls of the domain, and the time step is set to At = 5x 107 s.

Figures 5.4 and 5.5 display the time-dependent behavior of the particle’s normalized
distance to the wall and its settling velocity. The simulations use both harmonic average
and step function approaches for calculating viscosity at interface-crossing cells, as
detailed in the previous chapter (Egs. (4.34) and (4.35)). Both methods show strong
alignment with experimental data during the initial settling phase, providing an accurate
representation of the particle’s path. However, post-rebound inconsistencies become
apparent. Specifically, after the particle’s first interaction with its wake, the drag force is
overestimated, resulting in reduced rebound heights. Using the step function method
for viscosity calculation improves the simulation results. While doing so, we numerically
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Figure 5.4: Time histories of the normalized gap height &, /d,. Symbols: experimental data of
Gondret, Lance, and Petit [53], lines: present simulations
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Figure 5.5: Time histories of the y-componnent of the particle velocity v,. Symbols: experimental
data of Gondret, Lance, and Petit [53], lines: present simulations
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decrease the particle’s hydrodynamic diameter, thereby lowering the drag.

As the simulation progresses and the particle rebounds multiple times, minor deviations
between the simulated and experimental data emerge. These deviations cause the
simulated particle to settle earlier than its real-world counterpart. The discrepancies
can be linked to cumulative errors in the rebound simulations and variability in the
experimental data used for the collision model, particularly noticeable at lower Stokes
numbers (Fig. 3.1). Optimizing the collision model for specific materials could enhance
accuracy but would limit its broader applicability, which is not ideal. Therefore, we
consider the current results to be adequate for our purposes. This validation strengthens
our confidence in the collision model, particularly for binary collisions. In the subsequent
section, we will assess the model’s performance in simulating complex flows involving
multiple interacting particles.
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5.3 Particle resolved direct numerical simulation of a 2100
liquid—solid fluidized bed

Up;=0.073 ms '  Up=0.090 mss ' Uy=0.120 m.s "

t=9.6s

Figure 5.6: 3D views of the particles’ position distribution in the domain at t = 0s and 9.6s for
the four fluidization velocities tested.

In this section, we aim to evaluate the accuracy of our framework in reproducing
the global behavior of a liquid-solid fluidized bed. To do so, we present simulation
results of a 2100-particle system at four different fluidization velocities. The parameters
for the simulation are based on the experiment of Aguilar-Corona [1], who studied
the fluidization of 6 mm monodisperse spherical Pyrex particles (p, = 2230 kg/m®)
in a concentrated aqueous solution of potassium thiocyanate (o = 1400 kg/ m® f=
3.8 x 1072 Pas). The particle terminal velocity is V; = 0.24m/s.

The experimental setup was specifically designed with numerical method validation
in mind, as the refractive index of both phases was chosen to allow for non-intrusive
optical measurement techniques. These techniques are used to characterize the fluid
velocity field and particle agitation. This configuration was already studied numerically
by Ozel et al. [86], using the Implicit Tensorial Penalty Method of Vincent et al. [115],
with a mesh resolution of Ry = 12. The Reynolds number based on the terminal velocity
is Re; = 530 and the associated Stokes number is St; = 94. However, in [86], the authors
reported a value of St; = 5.3 based on the Reynolds number in the creeping flow regime.
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We aim to evaluate the performance of our approach by reproducing the numerical
configuration of Ozel for four different fluidization velocities: Ur = 0.15m/s, 0.12m/s,
0.09m/s, 0.073m/s. However, as our code does not utilize O-grid mesh, we have
adapted the initial container geometry from a cylinder to a cuboid of dimensions
0.072m x 0.648 m x 0.072m, which matches the experimental cross-section area. To
maintain consistency with the original study, we have also imposed a mesh resolution
of Ra = 12, which is slightly coarser than the resolution used in previous cases but is
considered a fair balance between computational cost and accuracy.

Additionally, we have set the viscosity ratio to R, = 1X 10%. To expedite the initial
transient phase, we initially positioned the particles to closely correspond with the bed
height obtained in case number 3 of [86] (wWhere Ur = 0.12m/s and the bed height is
attained in the stationary regime). The initial bed was generated using the Bridson
algorithm [14]. Fig. 5.6 illustrates the initial bed as well as its state near the end of the
simulation for the four cases.

Fig. 5.7 provides both a macroscopic and microscopic view of fluidized bed dynamics.
The top figure illustrates the velocity magnitude at the domain’s central plane att = 9.6
seconds, spanning various fluidization velocities Ur. Notably, velocities within particles
are significantly lower than in the surrounding fluid. As Ur increases, we observe the
emergence of larger pseudo-turbulent structures forming in the wake of particles.

Focusing on the microscopic level, the vector plot in the bottom figure reveals the
formation of dynamic boundary layers around each particle. Fluid velocity changes
from the velocity of the particle at its surface to values exceeding the fluidization
velocity further away. The non-uniform particle distribution is also evident, leading
to velocity disparities between particle-dense and particle-sparse regions. As particles
move through the fluid, their boundary layers disturb the flow, creating low-velocity
wake zones right behind them. The interaction and superposition of these wakes from
multiple particles add a layer of complexity to the flow dynamics. A more detailed,
quantitative analysis of these complex flow patterns will be elaborated in the following
sections.
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(a) Color map of the velocity magnitude, in a plane centered in the domain of the x-direction, during
the established regime (¢ = 9.6s) and for the four fluidization velocities Ur. Fluidization velocity is
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Figure 5.7: Fluid flow structure visualization.
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5.3.1 Solid Phase Statistics

The particle average of any particle-related quantity ¢,(p,t) is computed using the
particle ensemble averaging operator defined as follows:

Np

O =5 2 6 651)

1

where Ny, is the number of particles in the ensemble. Fig. 5.8 shows the time evolution of
the particle-averaged streamwise velocity component (v,), (y-direction), while Fig. 5.9
shows the transverse components (up), and (w;), (x- and z-directions, respectively).
The streamwise velocity component first undergoes a transient phase before stabilizing
around O0m/s. As expected, the transient period for Ur = 0.12m/s is the shortest, as the
expected bed height for this case was chosen to initialize the bed height for all cases.
The lower-velocity cases undergo a more pronounced compression (larger downward
average velocity), while the higher-velocity cases undergo an expansion that spans a
longer period compared to the other cases. No transition period can be observed for
both transverse average velocity components. All velocity components fluctuate around
zero 0 m/s, indicating no net movement of the fluidized bed.

0.10
—— U =0.073m/s
—— Up =0.090m/s
— 0.05 — Up=0120m/s 1
E Ur =0.150m/s
- 0.00 -~
=
2
—0.05
—0.10 r
0 2 4 6 8 10

t[s]

Figure 5.8: Time evolution of the particle average streamwise velocity component, y-direction
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Figure 5.9: Time evolution of the particle average transverse velocity component, continuous
line x-direction, dashed lines z-direction

To investigate the solid phase fluctuation, we define the particle variance operator for a
particle-related quantity ¢,(p, t) as follows:

NP
’ 1 ’ 2
2 —
(Ppp (t) = N, El (%) (5.2)
where cj);} is the fluctuation or the deviation from the particle mean:
Gp(p,t) = Pp = (Pp)y (5.3)

Fig. 5.10 shows the time evolution of the particle variance for the three components of
the particle velocity. Overall, the velocity variance increases with increasing fluidization
velocity. The transverse component of the velocity variances exhibits low-amplitude,
high-frequency fluctuations (Fig. 5.10b), while the streamwise component is much
smoother (Fig. 5.10a). On the other hand, higher amplitude, lower frequency are observed
for the streamwise variance component, particularly prominent for the Ur = 0.150 m/s
fluidization velocity.

Another important observation is that the streamwise velocity variance is always greater
than the lateral components, regardless of the fluidization velocity. This behavior is best
captured using the anisotropy coefficient Kapis:

<U;;2>p

(5.4)
(¢ + @)

Kanis =

Its time evolution is displayed in Fig. 5.11. After the initial transient period, we can
see that the value of the anisotropy coefficient oscillates around the same value for the
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Figure 5.10: Time evolution of the particle velocity variance
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Figure 5.11: Anisotropy coefficient
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Figure 5.12: Fluctuating kinetic energy

fluidization velocities 0.073m/s, 0.090m/s, and 0.120m/s, while at Ur = 0.150m/s,
the amplitude of the oscillations is higher.

The time evolution of the total fluctuating kinetic energy of the particles is depicted in
Fig. 5.12, as calculated using Eq. (5.5). Not surprisingly, the graph closely mirrors the
behavior of the variance in the streamwise velocity component, which carries most of
the kinetic energy in this flow configuration.

E, = ((v 2, + (W2, + (w 2>p) (5.5)

I\)IH

In order to compare our results with the experimental data of Aguilar-Corona, Zenit, and
Masbernat [2] and the numerical results of Ozel et al. [86], the average solid fraction in
the fluidized bed (&) must be calculated. This was accomplished by taking transversal
slices (perpendicular to the streamwise direction) of the fluidized bed at regular intervals.
The areas of the disks, formed by the intersection of each plane with the spherical
particles, were summed up and divided by the cross-sectional area of the domain to
obtain the average solid volume fraction at that elevation.

This procedure was repeated for each time step, generating a profile of the solid volume
fraction at different times (@ (f,y)). These profiles were then averaged over time,
resulting in the time-averaged profile shown in Fig. 5.13. For the time-averaging process,
the operations were conducted over a timeframe that started at ¢y = 5s:

@ (v)) = 77 Z & (tm, vj) (5.6)
tm=to

where |T| is the cardinality of the set T representing the set of time values t,, > 5s.
This decision was based on the time evolution depicted in the previous figures, which
indicated that the transition phase was complete around this time. However, for a
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Figure 5.13: Time-averaged profile of solid volume fraction

flow velocity Ur = 0.150 m/s, more simulation time might be necessary to confirm the
establishment of the flow.

As evident from Fig. 5.13, the volume fraction is relatively uniform throughout the
height of the bed. However, a transition zone can be observed between the bed and
the pure fluid region. The thickness of this transition zone is directly proportional to
the fluidization speed: the lower the fluidization velocity, the narrower the transition
zone. The thickness of this transition zone makes it challenging to precisely estimate
the height of the bed, which is needed to compute the averaged solid volume fraction «
within the bed. We chose to approximate the bed height h;, as the time average of the
maximal vertical position of the particles:

1
hy = m Z Ymax (tm)

tm>to
Ymax (tm) = max{yp (tm) | p e [1/Np]}

Fig. 5.14 shows the time evolution of ymax alongside a box plot to showcase its fluctuation

range. In order to exclude the influence of bed boundaries and inhomogeneities when
calculating the average volume fraction, the time-averaged value (&), (y;) is spatially
averaged over a specific range in the vertical direction, denoted as H. This range
is defined as H = {y; | 0.05 X hy < y; < 0.85 X hp}. This selection filters out edge
effects, such as the wide transition zones seen at high fluidization speeds or particle
accumulation at the bed’s bottom when the fluidization speed is low.

1 -
@ = D (@ (1) (57)

yjeH

The resulting average volume fractions are displayed in Fig. 5.15 as a function of the
fluidization velocity. The results are then compared with experimental data from
Aguilar-Corona [1], numerical results from [86], and the empirical correlation proposed
by Richardson and Zaki [96] with n = 2.4 and Uy = 0.24 m/s as suggested by Aguilar-
Corona [1]. As shown in Figure 5.15, our results align well with both the numerical and
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Figure 5.14: (a): Time evolution of maximum axial particle position at different fluidization
velocities: Ur =0.073m/s, 0.090m/s, 0.120m/s, and 150m/s. The continuous lines represent
the average mean value of 1,4« over the range t = [55,105] (b) Box plot of the distribution of
Ymax (m). The box represents the interquartile range (IQR), the line inside the box is the mean,
the whiskers extend to the minimum and maximum values.
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Figure 5.15: Fluidization velocity with respect to the bed solid concentration.
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Figure 5.16: Variance of axial (a) and transverse (b) particle velocity with respect to the bed solid
concentration.

experimental references. They also agree with the prediction of the fluidization law, as
given by the empirical correlation with n = 2.4 and Urg = 0.24 m/s, which accurately
predicts the observed trends in the data.

The time average of the variance of the particle velocities is computed for all directions
and displayed in Fig. 5.16, alongside previous experimental and numerical results. Our
method accurately predicts the velocity variance for the three components, for solid
fractions a > 0.2. The superimposition of the two transverse components, x and z, attests
the convergence of the statistics. For the lowest volume fraction (highest fluidization
speed), our simulation overestimates the variance of the three components and the two
transverse components no longer match.

The anisotropy coefficient and the total kinetic energy for the particles are plotted as a
function of volume fraction in Fig. 5.17a. From the graph, we observe that the values
obtained are slightly lower than those of [86]. However, we also find that there is
no dependence of the anisotropy coefficient, kanis, on the averaged particle volume
fraction. This is true except for the non-converged case, which corresponds to the highest
fluidization velocity of Ur = 0.15m/s. Similar trends are observed for the kinetic energy.

Finally, this analysis demonstrates that the original approach developed during this
PhD allows simulating liquid-solid fluidized bed with the same accuracy that [86, 115].
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Figure 5.17: Anisotropy coefficient of the particle velocity fluctuations as a function of the bed
solid concentration
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CONCLUSIONS AND FUTURE WORK

Solid-fluid flows are fundamental to a wide array of industrial operations and natural
phenomena, yet their inherent complexity makes them notoriously challenging to
study and predict. While traditional analytical and experimental techniques offer some
insights, they have distinct limitations in terms of scope and resolution. The advent of
improved computational capabilities and numerical methodologies has opened a new
frontier, making Direct Numerical Simulations (DNS) an increasingly essential tool for
gaining deeper understanding of the intricate dynamics involved in these flows.

Within the context of this thesis, we have carried out a series of modifications to the
Front Tracking method implemented in the TrioCFD software, specifically to enable
the simulation of dense fluid-particles flows. The method is based on the one-fluid
formalism, where the rigidity constraint is handled through a viscous penalty method. In
practical terms, this means that a large viscosity ratio between the fluid and the particles
is imposed. This maneuver ensures that the deformation tensor in the simulation
approaches zero in an asymptotic manner, effectively treating the solid phase as a
highly viscous fluid. As a result, phase coupling between the solid and fluid phases is
seamlessly carried out by the pressure solver without the need for any added forcing
terms in the governing equations to enforce the rigid body motion.

Our approach falls under the broader category of non-boundary-fitted methods, com-
monly referred to as Fictitious Domains methods. Utilizing a non-conforming and
fixed simulation mesh offers computational advantages but comes with a downside: it
provides a less accurate description of the interface between the fluid and solid phases.
Even when using the front-tracking method, where the interface is represented by
a massless surface mesh, its projection onto the simulation grid tends to diffuse the
interface over a thickness equivalent to one grid cell. To address this issue and ensure
precise momentum coupling, it’s crucial to accurately model how fluid properties are
represented in grid cells intersected by the interface. To address this and ensure accurate
momentum coupling, special care must be taken when modeling fluid properties in the
grid cells that are intersected by the interface.

For that purpose, we adopted two specific methods for calculating the equivalent
viscosity in cells that are crossed by the interface. The first method uses harmonic
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averaging, which produces significantly better outcomes than a simple arithmetic
average at comparable grid resolutions. The second method employs a step function,
which, when used in conjunction with the appropriate grid resolution, can improve
simulation accuracy even at coarser grid scales. Importantly, these approach also
counteract some of the shortcomings associated with the viscous penalty approach,
particularly the issue of artificially increasing viscous dissipation. This is achieved by
allowing a degree of control over the apparent hydrodynamic diameter of the particle,
which in turn influences the drag forces acting upon it.

For modeling short-range particle interactions, we employed a combined collision model
that integrates both the solid energy dissipation aspects and the viscous effects arising
from fluid drainage during the collision events. The model is based on a harmonic
oscillator model where the spring stiffness is adjusted mid-collision to achieve the
desired rebound velocity. This adjustment is determined using empirical relationships
between the Stokes number at the point of collision impact and the apparent coefficient
of restitution. This approach negates the necessity for additional closure laws specifically
for lubrication effects, thereby minimizing the number of numerical parameters that
need to be adjusted during simulations.

We subjected our simulation framework to rigorous testing against established exper-
imental benchmarks to validate its accuracy and reliability. For the hydrodynamics,
we simulated the motion of a settling sphere based on the seminal work of Cate et al.
[18], observing good agreement across a range of terminal Reynolds numbers from 1
to 32. Following that, we focused on validating our collision model by simulating the
trajectory of a bouncing spherical particle based on experiments conducted by Gondret,
Lance, and Petit [53]. Again, our simulations were consistent with the experimental
findings.

Expanding upon this, we demonstrated the method’s capability to simulate dense
granular flows involving numerous interacting particles. Specifically, we reproduced
the fluidized bed experiments of Aguilar-Corona [1], involving more than 2000 particles
at various fluidization velocities. Key parameters such as particle velocity variance,
coefficient of anisotropy, and the governing fluidization laws were all calculated and
analyzed. Our results showed good quantitative agreement with the experimental data
for solid fractions ranging from 0.2 to 0.4, aligning well with the performances reported
in the study by Ozel et al. [86].

90



For future research, several areas can be further explored to enhance the capabilities
and reliability of the proposed numerical methodology for simulating solid-fluid flows.

Firstly, improved stability can be attained by incorporating a more sophisticated time
integration method and/or convective discretization scheme. The current model
employs an Euler explicit method combined with second-order differences for handling
the convective term in the equations. While this scheme has been sufficient for the flow
regimes studied in this work, it’s worth noting that Euler explicit methods are known for
their susceptibility to numerical oscillations. Such oscillations have not been observed
in this thesis work but could potentially become a concern when moving into regimes
with higher Stokes numbers. It’s plausible that switching to a higher-order integration
method could significantly enhance numerical stability in such cases. Another option
could be to implement a higher-order scheme for the convective term specifically, such
as the Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme.

Secondly, in terms of parallelism and efficiency the implementation of a contact detection
algorithm is worth investigating. In the scope of this thesis work, the number of particles
simulated was relatively small, making the computational time spent on collision
detection less critical compared to the time spent on the viscous penalization aspect.
However, as we aim to extend the model to handle larger numbers of particles, the
computational time needed for collision detection may become a bottleneck. This shift
in computational focus highlights the need for efficient contact detection algorithms to
identify potential collisions among particles quickly and accurately.

The third point to consider is the issue of non-sphericity and particle rotation. Real-
world particles are seldom perfectly smooth and spherical, and the behavior of irregular
particles is quite different from that of idealized spheres. Thus, extending the model to
handle non-spherical particles and incorporating rotation dynamics would bring the
simulations closer to real-life scenarios. This would make the model vastly more useful
for industrial applications where particle shapes can vary significantly.

Fourthly, the current work confines particles within a box, limiting the types of systems
that can be modeled. The next logical step is to allow particles to freely exit and enter
the simulation domain. This would facilitate the simulation of more complex systems
like circulating beds. However, achieving this will necessitate the development of new
techniques for handling boundary conditions.

Finally, the influence of temperature on flow dynamics remains an unexplored avenue
in the present work. We expect different dynamics at higher temperatures but lack
sufficient data to predict how exactly it will affect the flow. Incorporating thermal
effects into the model would enable a more comprehensive understanding of flow
characteristics under varying temperature conditions. This is particularly relevant for
processes where temperature gradients exist or where thermal effects play a pivotal role
in the system’s overall performance.
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ABsTRACT / RESUME

In english

Fluid particle flows hold significant importance in a variety of industrial applications,
particularly in the context of third-generation concentrated solar power plants, where
they can be used as both a heat transfer fluid and a storage medium. However, studying
these flows presents considerable challenges due to the complex multiscale interactions
governing them. Numerical simulation, particularly Direct Numerical Simulation
(DNS) methods where the resolution is smaller than the particle diameter, emerges
as a promising tool for better understanding these flows and aiding in the design of
pilot-scale industrial applications. The increase in computational capabilities and the
performance of numerical algorithms has made the particle resolved simulations of
fluidized beds increasingly feasible for representative studies.

In this thesis, we present a numerical method based on the one-fluid formulation.
This method combines the front tracking method with the viscous penalty method to
simulate fluid particle flow behaviors. The front tracking method employs a dual mesh
system. This system effectively tracks the moving solid interfaces, represented as a
moving mesh, across a fixed simulation grid, ensuring accuracy in representing the
particle movements. The viscous penalty method, on the other hand, plays a pivotal
role in ensuring the fidelity of rigid body motion within the particles. This is achieved
by treating the fluid within the particles as an extremely viscous medium, thereby
enabling the simulation to realistically mimic the behavior of fluid particles under
various conditions.

For short-term interactions between particles, a combined collision model is used. This
model adeptly accounts for both viscous dissipation and solid dissipation, primarily due
to lubrication effects and inelastic contacts between particles, respectively. The nuanced
approach of this model allows for more natural simulations of particle interactions,
reducing the reliance on arbitrary numerical parameters often seen in other models
cited in the literature. The algorithm is implemented in TrioCFD an open-source
framework designed for massively parallel computing. The accuracy and reliability
of the simulation code were rigorously tested against well-established benchmarks in
the literature. Furthermore, the thesis includes a parametric simulation of a lab-scale
fluidized bed, comparing the accuracy of the algorithm against both experimental and
numerical results. These comparisons demonstrate that the proposed algorithm aligns
well with established benchmarks and exhibits good accuracy in its predictions.
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In french

Les écoulements de fluide particules jouent un réle important dans une variété
d’applications industrielles, particuliérement dans le contexte des centrales solaires
a concentration de troisiéme génération, ou ils peuvent étre utilisés a la fois comme
fluide caloporteur et moyen de stockage thermique. Cependant, I’étude de ces écoule-
ments présente des défis considérables en raison de la complexité des interactions
multi-échelles qui les régissent. La simulation numérique, et en particulier les méthodes
de Simulation Numérique Directe (DNS) ot la résolution est inférieure au diameétre des
particules, émerge comme un outil prometteur pour mieux comprendre ces écoulements.
L'augmentation des moyens de calcul et la performance des algorithmes numériques ont
rendu les simulations de lits fluidisés avec particules résolues de plus en plus réalisables
pour des études a des échelles représentatives. Dans cette these, nous présentons une
méthode numérique basée sur la formulation mono-fluide. Cette méthode combine
la méthode de suivi de front avec la méthode de pénalisation visqueuse pour simuler
les comportements des écoulements particulaires. La méthode de suivi de front utilise
un systéme de maillage double. Ce systéme suit efficacement les interfaces solides en
mouvement, représentées par un maillage mobile, a travers une grille de simulation fixe,
garantissant ainsi la précision dans la représentation des mouvements des particules. La
méthode de pénalisation visqueuse, quant a elle, joue un role essentiel pour assurer la
condition de non-déformation a l'intérieur des particules. Cela est réalisé en traitant le
fluide a l'intérieur des particules comme un milieu extrémement visqueux, permettant
ainsi a la simulation de reproduire de maniere réaliste le comportement des particules
solides dans diverses conditions. Pour les interactions a courte distance entre les
particules, un modeéle de collision combiné est utilisé. Ce modéle prend habilement
en compte a la fois la dissipation visqueuse et la dissipation solide, principalement
dues aux effets de lubrification et aux contacts inélastiques entre les particules, respec-
tivement. L'approche nuancée de ce modéle permet des simulations plus naturelles
des interactions entre particules, réduisant le nombre de parametres numériques a
utiliser dans le modeéle. L'algorithme résultant est implémenté dans TrioCFD un code
open-source congu pour le calcul parallele massif. La précision et la fiabilité du code de
simulation ont été testées contre des références bien établies dans la littérature. De plus,
la thése inclut une simulation paramétrique d"un lit fluidisé a I’échelle de laboratoire,
comparant la précision de l'algorithme aux résultats expérimentaux et numériques.
Ces comparaisons démontrent que l’algorithme proposé reproduit correctement les
références établies
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