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Abstract

This thesis mainly addresses two topics : the first focuses on parameter estimation while the second
explores applications relevant to safety pharmacology and disease studies.

Solving parameter estimation problems poses significant challenges, especially in dynamical systems
characterised by a large number of equations and parameters. The difficulties arise from the need to solve
non-linear, non-convex, and potentially high-dimensional optimisation problems. Classical optimisation
methods often rely solely on the underlying dynamical systems and neglect the advantages offered by all
available data. In response to this gap, we introduced a novel approach named Latent Variable Gradient
Flow (LVGF), designed to leverage both data and the underlying dynamical system. This method is based
on two steps. In the first step, an autoencoder is trained on the data set in order to represent it with
latent variables in smaller dimension. Then, in the second step, with the help of a non-linear mapping
that allows to link the latent variables and the parameter variables, we developed an algorithm that can
be described as a gradient flow for the latent variables of the autoencoder. We proved convergence results
for our method and the numerical tests highlighted the fact that the LVGF approach could overcome the
challenges associated with parameter estimation compared with the classical gradient descent method,
particularly in situations involving non-convex optimisation problems.

Regarding the applications in safety pharmacology and disease studies, we investigated several Artificial
Neural Networks (ANN) methods for classifying drugs based on their effects on ion channels. Firstly, we
focused on classifying whether a given data from a drug experiment alters the normal behaviour of the
human ether-a-go-go-related gene (hERG) channel. The Multilayer Perception (MLP) and multivariate
1-dimensional Convolutional Neural Network (1D-CNN) demonstrated efficiency and high accuracy in
drug classification, showcasing their potential to enhance drug high-throughput screening. Furthermore,
we extended the application of MLP and multivariate 1D-CNN to identify healthy individuals from
patients with Brugada syndrome. This testing confirmed their versatility in addressing different problems.
Additionally, we explored the use of autoencoder methods in anomaly detection to automatically identify
abnormal data from experimental data sets. This approach aims to enhance the quality of data during
the experimental recording stage. Lastly, we presented a comparative analysis of ANN, statistical, and
mathematical modelling methods employed in n vivo studies to examine the ageing effects on dogs’

cardiovascular systems.



Résumé

Cette thése aborde principalement deux thémes : le premier se concentre sur I’estimation des parameétres
tandis que le second explore des applications pertinentes pour la pharmacologie de la sécurité et les études
sur les maladies.

La résolution de problémes d’estimation des parameétres présente des défis significatifs, notamment
dans les systémes dynamiques caractérisés par un grand nombre d’équations et de paramétres. Les
difficultés découlent de la nécessité de résoudre des problémes d’optimisation non linéaires, non convexes
et potentiellement de grande dimension. Les méthodes d’optimisation traditionnelles s’appuient souvent
uniquement sur les systémes dynamiques sous-jacents et négligent les avantages offerts par ’ensemble des
données disponibles. En réponse a cette lacune, nous avons introduit une nouvelle approche appelée Latent
Variable Gradient Flow (LVGF), congue pour tirer parti a la fois des données et du systéme dynamique
sous-jacent. Cette méthode repose sur deux étapes. Dans un premier temps, un auto-encodeur est entrainé
sur l’ensemble de données afin de le représenter avec des variables latentes en plus petite dimension.
Ensuite, dans la deuxiéme étape, a 1’aide d’une application non linéaire qui relie les variables latentes
et les parameétres, nous avons développé un algorithme qui peut étre décrit comme une méthode de flot
gradient pour les variables latentes de 1’auto-encodeur. Nous avons prouvé des résultats de convergence
pour cette méthode et les tests numériques ont mis en évidence le fait que 'approche LVGF pouvait
surmonter les défis associés a ’estimation des paramétres par rapport a la méthode classique de descente
de gradient, en particulier dans les situations impliquant des problémes d’optimisation non convexes.

Pour ce qui est des applications en pharmacologie de la sécurité et les études sur les maladies, nous avons
examiné plusieurs méthodes d’Artificial Neural Networks (ANN) pour classer les médicaments en fonction
de leurs effets sur les canaux ioniques. Tout d’abord, nous nous sommes concentrés sur la classification pour
déterminer si des données provenant d’une expérience sur un médicament altérent le comportement normal
du canal human ether-a-go-go-related gene (hERG). Le Multilayer Perception (MLP) et le multivariate 1-
dimensional Convolutional Neural Network (1D-CNN) ont démontré une efficacité et une précision élevées
dans la classification des médicaments, illustrant leur potentiel pour améliorer le criblage & haut débit des
médicaments. De plus, nous avons étendu ’application du MLP et du 1D-CNN multivarié pour identifier
les individus en bonne santé parmi les patients atteints du syndrome de Brugada. Ces tests ont confirmé
leur polyvalence pour résoudre différents problémes. De plus, nous avons exploré 'utilisation de méthodes
d’autoencodeurs dans la détection d’anomalies pour identifier automatiquement des données anormales
dans des ensembles de données expérimentales. Cette approche vise a améliorer la qualité des données
lors de l'enregistrement expérimental. Enfin, nous avons présenté une analyse comparative des méthodes
d’ANN, statistiques et de modélisation mathématique utilisées dans des études in vivo pour examiner les

effets du vieillissement sur le systéme cardiovasculaire des chiens.
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Chapter 1

Introduction

In the first part of the introduction, we formulate the problem we are interested in
by presenting the general background, the basic mechanics of the electrical activity of
the cardiomyocytes and the methodological questions we will focus on. Then, a brief
presentation of the state-of-the-art is made on the main themes studied in this thesis: in
Section on neural network methods, in Section on parameter estimation and in
Section [I.4]on classification methods relevant in pharmaceutical studies. At last, Sections
and present the main contributions of the thesis, first on parameter estimation
and second on classification.

1.1 Motivation and statement of the problems

1.1.1 General background of the study

Drug development is a long and expensive process, marked by a high rate of failure in
contrast to the relatively few successes. The aim of this process is to advance novel drug
candidates that offer maximum benefits while posing minimal or manageable safety risks.
The safety assessment phase of drug development focuses on identifying potential safety
issues to safeguard patients from unintended harm. According to the Pharmaceutical
Research and Manufacturers of America’s 2016 Biopharmaceutical Research Industry
Profile [2], the journey to develop a new drug spans 10 to 15 years, with an average
cost of $2.6 billion from the 2000s to the early 2010s. Fewer than 12% of the drugs that
enter clinical trials have finally been approved. Thus, detailed analyses related to clinical
safety concerns and nonclinical toxicity issues that contribute to attrition during drug
discovery and development become important.

Among those drug safety issues, unexpected cardiac adverse effects are the leading
causes of drug attrition, discontinuation of clinical trials and withdrawal of drugs from
the market ([3, [, I]). As a result, cardiotoxicity assessment in drug development has
gained importance for many years.

Cardiotoxicity assessments for humans are usually done using in wvivo animal
models and in wvitro non-human tissues. For animal models, there is a lack of cross-
species translation due to different biological pathways and pharmacokinetic properties.
Conventional in wvitro testing is also limited because it is low throughput, expensive and
time-consuming [4]. Similarly, disease modelling is usually done on animal models or
human cells to study the pathogenesis of genetic cardiac diseases. The limitations of
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cross-species translation in animal models and the limited source of human cells also
create challenges in disease study [5].

Therefore, considering limitations exist in cardiotoxicity assessments, it is important
to develop high-throughput screening with thousands of compounds to select the
best candidates as fast as possible and reduce drug-induced safety concerns in drug
development.  Considering disease studying, it is essential to explore alternative
approaches, moving beyond reliance on animal models and human cells. One such
alternative involves conducting experiments on drug safety and disease studies using
human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) [6]. A human
induced pluripotent stem cell (hiPSC) is a reprogrammed cell with the capacity for self-
renewal and the capability to be differentiated in any cell type, in which cells close to
cardiomyocytes, hiPSC-CM.

Compared with using differentiated human cells and animal experiments, the unlimited
source of hiPSC-CMs is one the most promising innovations of medical research that can
overcome the limitations regarding effectiveness and efficiency. HiPSC-CMs can provide
new opportunities to create in vitro models which could be used in regenerative medicine,
disease modelling, drug screening, and precision medicine.

Cardiomyocytes are excitable cells, with a well characterised electrical activity. Thus,
recording and analysis of this activity allows to screen for all drugs interfering with it,
which are one of the main attrition causes in cardiac safety. Patch clamp [7] is a technology
used to study the electrical properties of a single cell at the level of ion channels and
membrane currents. During patch clamp recording, a microelectrode is put inside the cell
membrane. The microelectrode creates a tight seal with the cell membrane to measure
the electrical activity of the ion channels. A typical patch clamp recording captures the
intracellular action potential (AP). The AP results from rapid changes in the voltage
across a membrane. Patch clamping is considered the "gold standard" for ion channel
research, but it is low-throughput and has high requirements of expertise for experimenters
[8]. Therefore, new technologies like Multi-Electrode Array (MEA) have been proposed
for high-throughput studies which is more automated compared with patch clamping.

An MEA is a grid of closely spaced microscopic electrodes embedded at the bottom
of wells in a multi-well MEA plate [9]. This technology allows for the cultivation of
electrically active cells like cardiomyocytes directly over the electrodes. HiIPSC-CMs based
in vitro model, when observed with MEA can overcome the challenges presented above
and allow the high-throughput screening [10]. Indeed, MEA makes it possible to record the
electrical activity (the electrograms obtained are called field potential (FP)) of multiple
cells (usually a monolayer, a small tissue) to study a large number of drugs in parallel.
The FP of hiPSC-CMs is the extracellular electrical activity from a population of these
cells (a small tissue). It is a measure of the overall electrical activity of the hiPSC-CMs. In
the following section, we will give more detail of the mechanisms related to the electrical
activity of cardiomyocytes.

The extracellular FP waveforms and intracellular action potential are long time series
data. One cardiac beat has two parts: depolarisation and repolarisation phases. The
depolarisation phase may only last 5 to 10 milliseconds (ms). To be able to represent
depolarisation waveforms, the recording device must have a high sampling rate. For
instance, MEA often uses a sampling rate of 20 kilohertz (kHz, a unit of frequency is
equivalent to one cycle per second), which means, it records 20000 values of electrical
potential per second. When we assume there is only one electrode and one well, having 30
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minutes of recording would take 288 Megabytes of memory in double precision. However,
MEA can have 24, 48, 96, and more wells and multiple electrodes per well. Due to
the large amount of data to be analysed, the large amount of variability (caused by
sensitivity to experimental conditions and biological phenomena), and the measurement
noise, exploiting MEA recordings is a challenging task. The commonly used approach is
to compute key biomarkers which are values that can quantify a larger electrical activity.
This approach may not be reliable enough because the selected biomarkers may give
indirect and limited information on specific ion channel activities and other valuable
information can be ignored.

In this work, we will investigate computational methods that can efficiently and
effectively analyse data from hiPSC-CMs assays to address problems in drug safety
assessment and disease studies. To do so, it is necessary to understand the mechanisms
of perturbation caused by a drug or disease on cardiomyocytes. Another challenge lies
in managing big data recorded from hiPSC-CMs assays to perform high-throughput
screening and study of cardiac diseases.

1.1.2 Electrophysiology

In this section, we present very briefly the basic mechanisms governing the electrical
activities of the cardiomyocytes and the mathematical models which describe them.

The generation of electrical activity, such as the intracellular action potential [11]
of cardiomyocytes, results from the selective permeability of ion channels (which are
pores that allow specific charged particles to cross the membrane) distributed on
the cell membranes. The cell membrane consists of a phospholipid bilayer, allowing
only substances capable of diffusing directly through the hydrophobic core to pass
unaided. Charged particles, being hydrophilic, cannot traverse the cell membrane without
assistance. This assistance is provided by transmembrane proteins, particularly channel
proteins. The involvement of various channels and specialised energy-dependent "ion
pumps", for instance, the carrier protein known as the sodium-potassium pump, is
responsible for moving sodium ions out of the cell and potassium ions into the cell. This
process helps regulate ion concentrations on both sides of the cell membrane. Therefore,
the permeability of ion channels enables a specific ion to move passively down its
electrochemical gradient, thereby altering the membrane potential of the cardiomyocyte.
The ion motion and the different concentrations of ion species on both sides of the cellular
membrane determine a voltage difference across it, called transmembrane potential. Then,
a dynamic and transient alteration of this potential occurs in response to a stimulus, called
an action potential, allowing for cell communication and signalling. This provides several
information about the physiological state and function of the cardiomyocyte.

Referring to [I1] and Figure[1.1] one cycle of AP begins with a rapid transient influx of
sodium ions into the cell, leading to a rapid depolarisation (a rapid increase in membrane
potential). This phase is triggered by the opening of voltage-gated sodium channels.
Briefly following the depolarisation, rapid inactivation of the sodium channels, along
with the transient opening and closing of potassium channels contributes to a partial
repolarisation (the membrane potential becomes slightly decreased). Then, a balance
between the inward flow of calcium ions and the outward flow of potassium ions can lead
to a plateau phase that prolongs the AP, contributing to the sustained contraction of
the cardiac muscle. Finally, calcium channels close and the potassium channels remain
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Figure 1.1: Membrane currents that generate a normal action potential [IT]
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open, the efflux of potassium ions ensures an outward positive current results in the
repolarisation of the membrane potential, and then the cell is ready for the next cycle.

Among all the channels, in drug safety assessment, we will focus on detecting the
impact on the human ether-a-go-go-related gene (hERG) channel. hERG encodes the
pore-forming subunit of the rapid component of the delayed rectifier potassium channel
(IKr) [12]. This channel is important in the repolarisation of cardiomyocytes. Inhibition
of the hERG channel can prolong the action potential duration (would have the same
effects on FP). This would potentially cause ventricular arrhythmia, torsades de pointes
and sudden death. Therefore, many drug safety assessments focus on hERG channel
studies.

To get an insight into the different mechanisms of cardiac electrophysiology, we need
mathematical and computational models that can simulate the movement of sodium,
potassium, calcium, and other ions across semipermeable cellular and intracellular
membranes.

There are two types of models: phenomenological and physiological models. The
phenomenological models aim to describe and simulate the electrical activity of
the cardiomyocyte without necessarily considering the detailed biophysical processes
occurring at the cellular or molecular level. In contrast, the physiological (biophysical)
models describe and simulate the detailed biophysical phenomena of the cardiomyocyte.
In this work, as we are focused on understanding the effects that drugs or pathologies
might have on ion channels, our primary interest lies in physiological models.

The description of the electrophysiological activity by mathematical models started
from the foundational model introduced by Hodgkin and Huxley in 1952 [13]|. Since
then, mathematical models have been important in enhancing our understanding of the
physiological processes within cardiac cells. These models have evolved to cover a wide
array of cell types found in the heart, including nodal, atrial, ventricular, and Purkinje
cells, as documented in studies such as those by [14], [15] 16, [17, 18|, 19, 20].

Moreover, specialised computational models have been developed to describe various
cell types of hiPSC-CMs, including ventricular-and atrial-like AP of hiPSC-CMs in [21]
and [22], and FP behaviours, as investigated in studies by [23] and [24]. These models serve
as valuable tools for comprehending the electrophysiological characteristics of hiPSC-CMs
and their role in cardiac function in drug safety assessments.

Those mathematical models allow scientists and researchers to conduct virtual
experiments at a fraction of the cost which is much faster than performing experiments in
the lab, making it an economical choice, especially when dealing with hazardous materials
or complex systems. This can accelerate research and development in various fields, such
as drug discovery and disease studies.

In this work, we focus on how to use computational models of cardiac electrophysiology
that can help us improve the interpretation of drug effects on hiPSC-CMs and mechanisms
of cardiac disease. However, since cardiac electrophysiology models often involve a large
number of equations and parameters, using them in addition to experimental data can
be a challenging task. Therefore, we are inspired to work on methods that can help us to
perform this task in a better way.
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1.1.3 Methodological questions

The work presented in this thesis mainly focuses on two methodological issues.

()

(IT)

Enabling parameter estimation. Mathematical models are a tool to investigate
electrophysiological mechanisms, fostering the reduction of animal and human
testing in drug safety assessment and toxicology studies [25]. The models are systems
of parametric Ordinary (or Partial) Differential Equations (ODEs, respectively
PDEs). The parameters might encode physical properties or, in the case of
phenomenological closures, account for several mechanisms, not described in detail
and acting at different scales. When considering hiPSC-CMs, the Paci model,
presented in [21], consists of a system of ODEs well describing the AP and the
main ionic currents of these cells. Several mathematical models, such as the one
in [24], can describe, by means of a system of PDEs, the electrical state inside an
MEA well (and, hence, well reproducing FP signals).

Numerical simulations of the solutions for different values of the parameters,
sometimes referred to as in silico experiments, can be used to get some insight into
the variability of the solutions within a population of individuals or experiments.
Besides the direct problems, in a number of realistic applications, the goal consists
of (or can be reached by) estimating the values of the parameters given some
measurements of the system state. It is indeed the case when studying how a drug
or a pathology disrupts the normal functioning of cardiomyocytes. In this case,
a common situation is the following. We have a mathematical model describing
the phenomena under investigation. Moreover, we usually have a database of
existing experiments, sometimes with partial knowledge. The goal is to estimate
the model parameters given a measurement of AP or FP, in such a way that
the observation of the model solution matches the experimental data. This task
is generally difficult because models that describe cardiac electrophysiology are
often nonlinear and consist of a large number of equations and parameters. These
difficulties motivated us to focus on the topic of parameter estimation in dynamical
systems. We have investigated the idea of combining knowledge from available data
and the mathematical model to enable parameter estimation.

Machine learning methods for classification in electrophysiology. The
second objective is to explore computational methods that can help to analyse
data obtained from drug safety assessment and disease studies. We will investigate
some Machine Learning (ML) methods, especially Artificial Neural Networks (ANN)
methods to help study several questions:

e Can we automatically classify, given an FP recording, if the tested drug is an
inhibitor of one or more ion channels of the cell?

e To improve the quality of the data that will be considered in the analysis, can
we automatically detect some abnormal recordings from a large data set?

e Considering a specific disease, such as Brugada syndrome, and given some
Patch Clamp data of healthy and patient derived hiPSC-CMs, can we classify
healthy individuals from patients? Moreover, can we classify patients according
to the severity of the syndrome?
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All these questions are crucial in view of setting up reliable methods for high-
throughput screening technologies. Question 1 and 3 can be viewed as classification
problems. We will investigate the capability of different kinds of ANN to solve
classification problems in which the input is a set of long time series. Question 2 is
related to anomaly detection. For this problem, we will try an ANN method called
autoencoder to perform the anomaly detection in a fast automatic way, requiring a
minimum amount of pre-processing time.

In the three next sections, we will present some state-of-the-art of methods that will
be used to answer the mentioned questions and solve parameter estimation problems.

1.2 Neural Network methods: state-of-the-art

In this section, rather than making a general presentation of the Neural Network
methods, we will focus on three families of methods that we will consider in our work:
Multi-layer Perception (MLP), Convolutional Neural Network (CNN) and autoencoders.
The first two methods will be repeatedly used to address classification problems regarding
the effects of drugs and diseases. In addition, autoencoder methods are dimension
reduction methods that will play a key role for our parameter estimation method.

1.2.1 MLP

The idea of Perceptron was introduced by Frank Rosenblatt in 1958 [26]. It is a
simplified neural network model that consists of an input layer, one hidden layer and an
output layer to learn and perform binary classification tasks. Since the deep-learning
feedforward network was introduced in 1967 [27] and the backpropagation algorithm
developed in 1970 [28], MLP has been widely used in classification, regression, and pattern
recognition.

MLP is a type of feedforward ANN that consists of multiple layers, including an input
layer, one or more hidden layers, and an output layer. The input layer consists of neurons
that represent the input data denoted as # € R? for d € N*. MLP can consist of L € N*
hidden layers. For each hidden layer 1 <1 < L, the [-th layer consists of k) € N* hidden
units also known as neurons. The hidden layer output is a set of k() values given by:

d
oi=¢<zmij%+bi), 1<i<kW, (1.2.1)

Jj=1

where 1 represents the weights, b is the bias, and ¢(.) is the activation function. The
output of the first hidden layer will be the input passed to the next hidden layer until the
output layer. The number of neurons in the output layer will contain the result. Binary
classification typically consists of a single neuron and for multi-class classification, it has
as many neurons as there are classes. MLP is trained by optimising weights and biases
to minimise the loss function which is, for instance, a norm of the error between the
predicted output and the actual target values. The backpropagation algorithm computes
gradients of the loss with respect to the weights and biases, and an optimisation method,
such as the stochastic gradient is used to update them.

7
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MLP has found extensive application in pharmacology studies, particularly in the
realm of classification. Here, we will highlight a few examples. The work in [29]
constructed a 3-dimensional space matrix containing key features (so called toxicophores)
of biological activity and chemical structure. This input is provided to the MLP in order
to predict drugs which are causing torsades de pointed arrhythmias. Another example
[30] used MLP to classify the hERG channel-drug interaction potential based on values
of half-maximal inhibitory concentration (IC50) of drugs which have different ion channel
inhibitory. Moreover, the work presented in [3I] used chemical, bioactivity and genomic
data from the open source ChEMBL database to test the performance of classification of
hERG-related cardiotoxicity.

1.2.2 CNN

The modern CNN was proposed by Yann LeCun in 1998 [32]. A CNN comprises an
input layer, hidden layers, and an output layer. Within a CNN, the hidden layers consist
of one or more layers that execute convolutions. The key operation of the convolutional
layer is the convolution operation or cross-correlation operation. This operation involves
the convolution kernel, a small matrix of learnable weights with a defined size, performing
a dot product with the input matrix of the layer to produce a single scalar value. In the
convolutional layer, the kernel will slide over the input matrix with a defined step and
compute the dot product within the overlapping regions. Then, scalar biases will be
added to the results and the results will be passed to an activation function to produce
an output also called a feature map. This output serves as the input for the next layer
in the CNN. In CNN architectures, the convolutional layer may be followed by pooling
layers, fully connected layers (hidden layers mentioned in MLP), and normalisation layers
[33] and [34].

Pooling layers [34] reduce the dimensions of the given layer by aggregating information.
For example, max pooling is a pooling operation that selects the maximum element within
a filter’s region, which is a window with a predefined size, over the input. Thus, the output
after the max pooling layer would be a feature map containing the most prominent features
of the previous feature map. Normalisation layers are responsible for standardising and
normalising the input to ensure that the results are on a similar scale.

CNNs have found many applications in various fields, including medical image
classification, face recognition, handwriting analysis, and more. In the domain of safety
pharmacology, we can present a couple of examples. For instance, [35] used graph CNN
to classify the activity of drugs by inputting compound structures extracted from the
ChEMBL database. Furthermore, a study in [36] concerned the safety issue when patients
take multiple drugs. They applied deep CNNs to automatically extract information
related to Drug-Drug Interactions (DDIs) from the biomedical literature. This information
was then used for DDI classification, aiding researchers in gaining a deeper understanding
of DDIs by analysing a vast amount of published literature.

1.2.3 Autoencoder

The autoencoder(AE) was first introduced by Rumelhart in 1986 [37]. A more detailed
description of the autoencoder is given by [38]. As described in [3§], the autoencoder
consists of two parts: the encoder and the decoder. The encoder compresses the given
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data and encodes them into a representation in the latent space. We denote the encoder
function as ¥. Given an input datum, denoted by v € R™, ¥ compresses it to some latent
representations o € RP:
R — RP
v
ur— o= V(u)

When p < n, the encoder can be interpreted as a feature extractor, which performs
a (generally non-linear) dimension reduction. The decoder function restores the data
converted by the encoder. We denote the decoder function as W':

ot RP — R
Nar— 4= V()

A complete AE consists at least of three different layers, the input layer receives data
u € R", the latent space contains the latent variables o € R?, and the output layer gives
the prediction @ € R™. There is the same number of neurons in the input layer and the
output layer, there are no constraints on the neuron number in the latent space (usually
p < n). For the classical AE, the computation of each neuron in each layer is the same
as for the MLP method, equation . The autoencoder is optimised by minimising
a certain error norm between the original data and their reconstruction. More details of
the autoencoder will be given in the later sections. Here, we will give some examples of
its applications for various purposes.

After the development of the autoencoder, in recent years, there have been many
different evolutions and it has been applied to many fields. In particular, it has been
applied to the situations which benefit from dimension reduction.

Dealing with high-fidelity simulations of systems characterised by nonlinear PDEs can
pose significant challenges and computational expenses. To address these issues, reduced-
order modelling (ROM) has gained considerable attention. ROM aims to approximate
the original PDE problem by utilising a reduced set of parameters or basis functions
that capture the system’s behaviour in a lower-dimensional space (|39, 40, 41l 142]).
One approach to achieving dimension reduction and uncovering latent features, without
requiring access to the full order model (FOM) operators, is through AE [43] and [44].
As demonstrated in [45], AE has been used as a nonlinear ROM method compared with
proper orthogonal decomposition (POD) to investigate the capability to solve problems
such as the Burgers equation and turbulent channel flow. The results revealed that AE
exhibits enhanced reconstruction capabilities for the velocity field. In [46], an approach is
proposed that leverages AE with parametric sparse identification of nonlinear dynamics
(SINDy). This method involves using a limited number of FOM snapshots to construct
a low-dimensional dynamical model aimed at approximating solutions to parametrised
PDEs. As mentioned in [46], the AE+SINDy method is not only useful as a ROM but
also helpful in dynamical system identification.

Another popular research direction is to use the autoencoder to be a dimension
reduction and feature extraction tool in image compression and classification. For
instance, the work in [47] combined a stacked autoencoder (SAE) with a 3-dimensional
deep residual network (3DDRN) to classify hyperspectral images (HSIs). SAE consists
of several layers of sparse autoencoders that use regularisation to enforce sparsity. It was
used to reduce the dimensions of original HSIs. Then, residual network modules combined
with CNNs were used to perform classification by using, as input, the reduced data [48].

9
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Variational autoencoders (VAE) [49, 50| are a type of autoencoder, whose purpose is
enabling the fast generation of new data, which belong to the same population as the
ones provided. The encoder takes the input data and maps them to the mean and the
standard deviation of a Gaussian distribution. Then, taking samples drawn from the
Gaussian distribution as the decoder input, the decoder can generate reconstructed data
belonging to the same distribution of the input. VAEs have the capability to generate
meaningful new data and find applications in various domains, such as image and text
generation. Notably, VAEs can also be employed for generating novel molecular structures
in the context of drug development, as discussed in [51].

Denoising autoencoders (DAEs) [52, 53] are neural networks designed to learn the
reconstruction of clean data from their noisy version. During the training phase, DAEs
are exposed to noisy data, which are created by introducing random noise to the original
data set. The primary objective is for the network to learn how to denoise the data and
accurately reconstruct the original, noise-free input. DAEs find applications in various
fields, including computer vision, health care, and natural language processing. For
example, DAEs are employed for tasks like medical image denoising and ECG denoising
[54]. They can also be used as a data preprocessing step to handle missing values in the
data set by learning to reconstruct the missing information from the available data.

1.3 Parameter estimation: state-of-the-art

Parameter estimation is an inverse problem in which, given a model depending upon a
certain number of parameters, we look for the values of the parameters in such a way that
the model output matches given measurements. This problem can be mainly addressed
in two different ways: deterministic and stochastic. In a deterministic setting, we assume
that we can estimate the values of the parameters, whereas, in a stochastic setting (and
especially in Bayesian parameter estimation [55]), we try to estimate the conditional
probability density distribution of the parameters given the measurements.

Parameter estimation ([56], [57]) is often cast as an optimisation problem. In that case,
the parameter estimation is achieved by minimising a cost function, which encodes the
discrepancy between the model observations and the actual measurements of the system.
In general, this formulation leads to a non-linear, non-convex, possibly high-dimensional
optimisation problem. There are two major families of methods to solve these optimisation
problems: local optimisation methods and global optimisation methods. We are going to
describe them briefly, each time giving the main existing methods and their properties.

First, about local optimisation methods, the most common methods include the
gradient-based and Newton-based methods which are iterative algorithms that update
parameter estimates based on the gradient, and, for the Newton method, the Hessian, of
the cost function. A very common method is the Gauss-Newton method [58], which
is commonly used to solve non-linear least squares problems [59]. Another classical
example is the class of Quasi-Newton methods [60]. One of the most used is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [61]. This method approximates the Hessian
in each iteration by performing two rank-one updates to the approximate Hessian from
the previous iteration.

The local gradient-based optimisation methods might encounter convergence issues
when the initial guess is far from the true parameter values [62]. Other methods like

10



CHAPTER 1. INTRODUCTION Haibo L1U

Gauss-Newton or Quasi-Newton may also fail when dealing with non-convex continuous
optimisation problems [63].

In the second family of methods, global optimization methods [64] are designed to avoid
convergence issues related to the presence of local minimisers. There are many different
kinds of stochastic methods for global optimisation, we will highlight a few commonly
used classes:

1. Adaptive stochastic methods, also known as adaptive random search, were originally
introduced in [65] and [66]. These methods use stochastic (random or probabilistic)
processes to adaptively refine the parameter estimation process. They employ
sampling optimisation strategies that use results gathered from prior samples or
iterations to enhance both the exploration and convergence of the parameter space.
A very commonly used example of this method is the Markov Chain Monte Carlo
(MCMC) mentioned in [67] and [68]. MCMC methods generate a Markov chain
of parameter samples. They adaptively adjust the next proposed sample based on
the previous sample’s acceptance or rejection. This adaptability allows MCMC to
explore the parameter space effectively.

2. Clustering methods, as described in [69], serve the purpose of identifying groups or
clusters of parameter estimations that exhibit similar characteristics. Clustering
methods can group local optima which increases the efficiency by avoiding the
repeated estimations of the same local optimal solutions. However, there are still
some difficulties when dealing with high dimensional parameter estimation problems.

3. Evolutionary computation (EC) [70], is particularly useful when dealing with
optimisation problems in which the cost function may be non-linear or non-convex
continuous optimisation problems or when the search space is high-dimensional.
Starting with an initial population of candidate parameter sets, EC evaluates
the fitness (how well the model’s predictions match the observed data) of each
candidate parameter set by applying the model with the associated parameter
set. The subsequent step involves selecting the best-performing parameter sets
from the current population. New candidates are generated by considering
the mean of the selected parameters. To maintain diversity, small random
mutations are introduced, and the new population is updated with these fresh
candidates. This iterative process continues until a termination criterion is met.
It’s essential to note that this method demands a substantial number of function
evaluations, which can be computationally expensive, especially when dealing
with high-dimensional parameter spaces or complex models. There are six types
of evolutionary algorithms: genetic algorithms, genetic programming, evolution
strategies, evolutionary programming, classifier systems, and hybrid systems. Well-
known evolutionary strategy method includes the covariance matrix adaptation
evolution strategy (CMAES [71]).

4. Other methods include Ant Colony optimisation [72], Simulated annealing|73],
Taboo Search [74], and Particle swarm method [75].

In general, global optimisation methods can be computationally expensive because
they often require evaluating a large number of functions. This becomes particularly
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problematic when the parameter space is high-dimensional or when the model evaluation
is time-consuming.

Considering the above mentioned issues in local and global optimisation approaches,
scientists explored other methods that try to solve the problem by benefiting from
some available data. Let us assume that, in certain situations, we have examples of
pairs of parameters and observations, {H(i),u(i)}l <i<Ny' For example, the work in [70]
used a supervised convolutional machine-learning method to learn the physical model
parameters. The advantage of this kind of model is that no prior knowledge about the
system is required. The main disadvantage consists in the fact that we often need a large
number of training pairs parameters-observations to have a reliable estimation.

Recently, many efforts were made in order to try to exploit both the knowledge coming
from the mathematical model and from sets of data, such as physics-informed neural
networks(PINNs) mentioned in [77, [78, [79, 0] and deep operator network (DeepONet)
find in [81] and physics-informed DeepONet (PI-DeepONet) find in [82].

PINNSs represent a methodology that not only employs data-driven supervised neural
networks to learn the given observation but also incorporates physics equations provided
to ensure alignment with the established physics of the dynamical system. PINNs are
trained to generate corresponding observations of the dynamic system, taking time as
the input. The loss function, subject to minimisation, comprises two components. The
first addresses discrepancies between predicted observations and provided data, while
the second deals with the residuals of the differential equations, which depend on the
parameters. In the study by [83], it is noted that PINNs may encounter what is known
as spectral bias, indicating a tendency to prioritise learning the low-frequency component
of the solution, potentially neglecting multiple frequency scales. Acknowledging this
limitation, [84] introduced Fourier Features-Neural Networks (FF-NN) as a solution to
learn dynamical systems and inverse problems.

DeepONet is designed to learn continuous nonlinear operators. The training of a
DeepONet typically involves three components: input functions, independent variables
(often time in the case of differential equations), and observed outputs. The observed
outputs correspond to the results of the operators. In traditional parameter estimation
with DeepONet, the neural network aims to learn a mapping from observed data to
parameter estimates. This means that, in order to train DeepONet, we still need to
provide pairs of parameters and observations, {H(i), u(i)}l <i<Ny'

In PI-DeepONet, the loss function includes a physics-informed term. This term ensures
that the estimated parameters follow the known physical laws governing the system. This
helps in cases where the differential equations governing the system are well-established.
Compared with DeepONet, PI-DeepONet only requires input functions and observed
outputs as input. PI-DeepONet can set the unknown parameters ¢ as trainable parameters
in the neural network. It means the pairs of parameters and observations, {H(i), u® }1 <i<Ny
are not required to provide for the training. Then, the unknown parameters # can be
optimised by the weights and biases of the neural network that minimise the loss function.
Similar to PINNs, the loss function contains a data mismatch term and a physics-informed
regularisation term. The physics-informed regularisation term is based on the residual
of the differential equations. This regularisation term aids in estimating the unknown
parameters 6.

The local optimisation and global optimisation methods usually do not consider
potential benefits from some observation data. PINN-based and PI-DeepONet methods
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introduced an interesting point to leverage both available data and underlining dynamical
systems to benefit parameter estimation. Those methods are heavily weighted on the
training process. It often requires a large number of iterations and evaluations to converge
to an accurate solution. This computational intensity can be a drawback, especially when
dealing with dynamic systems consisting of a large number of equations and parameters.

1.4 Classification methods empowering hiPSC-CMs
assays: state-of-the-art

The primary focus regarding applications in pharmaceutical and disease studies is to
develop computational methods for the analysis of data generated during hiPSC-CMs
assays. Drug safety assessments often involve the collection of a large amount of data.
Extracting relevant information from them can be challenging from a computational point
of view.

In the following, we are going to focus on classification problems, which are a relevant
class of problems in pharmaceutical studies. As an example, the process of identifying
and grouping drugs according to their specific positive or negative effects can be cast as
a classification problem. We will review the contributions and applications of statistical
and ML classification methods.

The study in [85] used data on the properties of molecules as input and their
corresponding biological reactions as output targets. The authors compared two methods:
Support Vector Machine (SVM) [86] and ANN. The results, quite similar for both
methods, showed that valuable compound candidates with respect to a specific therapeutic
target response can be identified. These classifiers could be used for the virtual screening
of millions of molecules.

In the study conducted by [87], chemical toxicity and molecular description data
sets from the Leadscope Toxicity Database were employed to compare the predictive
performance of Random Forests and deep NN in estimating toxicity levels. The results
from both methods demonstrated effective predictions for over 30000 compounds.

Similarly, [88] undertook a comparative analysis of ANN, SVM, and Decision Trees
(DT) to classify compounds as either active or inactive within a specific target biological
system. The objective was to explore the potential of metabotropic glutamate receptor
5 (mGluR5) compounds as novel treatments for schizophrenia. The study revealed that
both ANN and SVM outperformed DT in terms of accuracy, with an area under the curve
(AUC) of 0.77 and 0.78 compared to 0.63 for DT.

Furthermore, in the work presented by [89], Bayesian and SVM classifiers were
employed to categorize compounds based on their potential to cause drug-induced liver
injury, cardiotoxicity, renal toxicity, and genotoxicity. This research aimed to enhance the
understanding of the toxicological profiles of various compounds.

In the context of cancer treatment development, evaluating Multidrug Resistance
(MDR) is crucial to prevent cancer cells from developing resistance to different drugs. In
a study by [90], molecular description data was employed to classify Multidrug Resistance
Reversal (MDRR) activity, categorizing compounds into active and inactive classes.
The tested naive Bayes classifier demonstrated a commendable performance, correctly
predicting MDRR activities for 82.2% of 185 compounds in a testing set.

From the above studies, ANNs have exhibited significant potential across various
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classification methods. In the following, we will explore several applications of ANNs
within the biomedical and pharmaceutical domains.

In this thesis, we primarily focus on ANN methods used in drug safety assessment
to study cardiotoxicity. There is a similar study in [91], which proposed a multi-labelled
neural network combined with an automatic feature extraction to process cardiomyocytes’
mechanical beating signals obtained by an interdigital electrode biosensor. Their
work classified different drug-induced cardiotoxicities and predicted drug concentrations
corresponding to the degree of cardiotoxicity. The classification method provided the
possibility to screen the drugs with high-throughput cardiotoxicity assessment.

One notable area of application is in drug discovery. As we mentioned, drug
development is a multi-stage, time and resource consuming process due to the number
of candidate molecules is large. ANNs have emerged as a valuable tool for enhancing
the efficiency of molecular design, pre-designing synthetic routes, predicting protein
structures, and identifying macromolecular targets [92]. For instance, the work
in [5I] proposed a variational autoencoder capable of transforming high-dimensional
Simplified Molecular-Input Line-Entry System (SMILES) strings into compact latent
space representation vectors. These vectors were subsequently employed in an MLP to
estimate target properties associated with each molecule. Moreover, in [93], the authors
showed that ANNs like MLLP have found utility in forecasting drug release behaviour by
using formulation characteristics, such as drug content, pH, or composition as inputs,
and providing neurons that represent the dissolution performance of the formulation as
outputs. ANNs could correctly predict the in vitro response of the drugs.

For instance, [94] used deep learning methods to classify and predict drug-induced liver
injury with chemical structure data. In another study [95], the authors used microscopy
images of fluorescently labelled nuclei from DAPI-stained cells pre-treated with a set of
drugs with differing toxicity mechanisms as input to a deep CNN model. The deep CNN
model could obtain abstract nucleus patterns of images and predict toxicity.

ANN has been also used in the study of in vitro in vivo relationship (IVIVR) [92]
to describe the relationship between in vitro dissolution and in vivo bioavailability. The
conventional statistical method often faces difficulties in linking the input variable with
the dissolution used. In contrast, ANN-based models offer the advantage of incorporating
a broader range of factors related to formulation composition, dissolution profiles, data
from in vitro and in vivo studies, and manufacturing process parameters into the model.
Leveraging these factors, the IVIVR neural model can comprehensively evaluate the
various influences on in vivo responsiveness and make predictions regarding total plasma
concentration-time profiles. This advancement in modelling contributes significantly to
the understanding of drug behaviour and its translation from laboratory studies to real-life
applications in pharmacology.

In many studies, ANN also has been mentioned for disease prediction and diagnosis.
Given the current shift in the healthcare system towards disease prevention rather than
treatment, there is a growing need for more accurate, rapid, and effective disease prediction
and diagnosis. ANN has demonstrated its capabilities in meeting these requirements. For
instance, in the field of medical diagnostics [96], 97, 98, 99], MLP and CNN have been
used in arrhythmia classification using electrocardiogram (ECG) data and in sleep analysis
and seizure detection based on electroencephalogram (EEG) data [100), 101]. Additional
studies in [102] and [103] used echocardiograms to train and evaluate CNN models
for multiple tasks, including automated identification of viewpoints and segmentation
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of cardiac chambers. The output of these segmentation models has been helpful in
quantifying chamber volumes, determining ejection fraction, and enabling automated
assessment of longitudinal strain through speckle tracking. These models have also played
a significant role in the detection of diseases such as hypertrophic cardiomyopathy, cardiac
amyloidosis, and pulmonary arterial hypertension. ANN’s ability to enhance disease
prediction and diagnosis is making substantial contributions to the healthcare landscape,
aligning with the industry’s evolving focus on proactive healthcare management.

In the summarised studies from [I04] by comparing different methods used for
classification in pharmacology studies, the SVM and ANN generally demonstrated
robust performance in classification tasks. DT faced challenges related to overfitting or
underfitting issues. SVM, DT, and the naive Bayes classifier are noted for their relatively
low computational costs when compared to ANN. These methods often rely on feature
data computed from data about the compounds, emphasising the importance of the
quality of these features. For different data types, such as signals or images, ML methods
like SVM, DT, and the naive Bayes classifier may necessitate data pre-processing to
compute relevant features. This pre-processing step can be resource-intensive, particularly
when dealing with large data sets. Evaluating the feature computation poses challenges,
as there is a risk of information loss during the process. Compared with different types
of ANN which can directly use raw data like signals or images as input, the feature
computation process may be avoided.

1.5 Contributions in parameter estimation

As mentioned in Section [I.3] local optimisation algorithms may encounter convergence
issues whereas global optimisation algorithms usually require high computational costs.
Moreover, those methods do not often incorporate available data. PINN-based methods
benefit from both available data and the underlying dynamics of the system but need a
large computational cost. In this thesis, we aim to explore an idea different from those
methods which can leverage data from the target dynamic system but does not solely rely
on training, as is the case with PINN-based methods.

To start with, let us set the framework of our study. We first consider a system of
parametric ODEs which describes a phenomenon and we denote by 6 the vector of the
parameters. The parameter-to-observation map (the relationship between the parameter
vector, eventually containing the initial conditions, and the measurements) is denoted by
©:

u=p(0).

In addition to this model, we assume that we have access to a data set U = {u(i)}l <i<N,
taken from a population of individuals or experiments (characterised by an unknown
distribution of the parameters §). Then we consider a specific new measurement u* which
is assumed to belong to the same population and, under these working hypotheses, our

objective is to identify the parameter 6* which satisfies:
ut = p(0).

To do so, we want to exploit the fact that in addition to the knowledge of the non-linear
function ¢ which encodes our a priori knowledge about the system, we have access to U
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which encodes a statistical knowledge about the population the datum belongs to.

The inherent challenge lies in the fact that, in the majority of cases, comprehensive
information regarding the distribution of the parameters 6 in the population is not
available. In some cases, for instance, in models with a large number of parameters,
it may happen that a significant number of these parameters are constant or are non-
linearly dependent on each other in the population. Getting a knowledge about this
could be precious in view of reducing the cost of the parameter estimation and increasing
the robustness of the computation.

Given a data set U, we propose to setup an autoencoder in order to approximate the
measurements u € U. The encoder ¥ maps the values of u into a smaller dimensional
latent variable o € RP. The decoder maps the latent variables to an approximation of
the given data. In general, the value of p (the dimension of the latent variable space)
is unknown, and it is a hyperparameter that needs to be pre-defined in order to use
autoencoder. We can assume that, in order to get a good approximation of the data,
we need the value of p to be larger or equal to the intrinsic dimension of the data. This
is primarily determined by the identifiable parameters which are not constant in the
population. It is henceforth crucial to have a good estimation of p. To this end, we
introduce a criterion based on an approximation of the product of the Lipschitz constants
of the encoder and decoder functions. This makes it possible to have an a posteriori
criterion to adjust the value of p.

In order to perform the parameter estimation by exploiting the model and the result of
the autoencoder, we introduce a novel method, Latent Variable Gradient Flow (LVGF),
which is a gradient flow in the latent variables . The LVGF method consists in computing
a non-linear mapping between the parameter space and the latent variable space. This is
done by using the model ¢ and the encoder . Given u € U and the encoder function ¥,
it holds:

Vo p(d) =a.

Using this relationship, we can transform an optimisation of a non-convex function in @,
into an optimisation of a convex cost function in «.

Chapter [2] will present in detail the parameter estimation problem and the LVGF
method, including the rationale behind its derivation and the theoretical proofs. We will
also present the theoretical results and methodology of using an autoencoder to perform
the intrinsic dimension estimation of the latent variable. Furthermore, we will present
the results of various tests conducted using the LVGF on simple dynamical systems,
showcasing its applicability and effectiveness in estimating parameters. Considering the
intrinsic dimension estimation, we will show that we can use the dimension of o to estimate
the intrinsic dimension of some given data generated by the Van der Pol oscillator and
FitzHugh—Nagumo model. The results obtained by considering Lipschitz constants as
a criterion outperformed the classical approach, which only considers the autoencoder’s
reconstruction errors. Then, we will present some numerical results in which we compare
the LVGF method with a classical gradient method. In these tests, we observe that LVGF
method reduces the error in predicting parameter values by around 10 times compared
with the gradient method.
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1.6 Contribution in classification

Considering the high computational resources and time costs in drug safety assessment,
there is a clear demand for automatic analysis tools in high-throughput drug screening.
The goal is to improve the efficiency of drug discovery and development. Given
the extracellular FP recorded by MEA from hiPSC-CMs, the first practical question
is to determine whether a given chemical drug is altering the electrical activity of
cardiomyocytes by disrupting the normal behaviour of certain ion channels like the hERG
channel. This question can be viewed as a classification problem to distinguish drugs
based on their effects on different ion channels. In this work, we will compare four
different Neural Network methods to perform this classification. These differ in terms of
pre-processing requirements and architecture.

In Chapter [3| we will explore a comparison of four types of ANN methods employed
for the classification of hERG channel blockade. This chapter will encompass a detailed
discussion of the experimental data, along with the associated data pre-processing steps
tailored to each tested ANN method. Additionally, we will outline the setup of each ANN
method and conclude with a comparison of their performance with respect to classification
accuracy and computational costs. This chapter aims to provide a better understanding of
the methodologies employed and the outcomes achieved through the ANN-based approach
to hERG channel blockade classification. Among the tested methods, we can find that
MLP and multivariate 1D-CNN could give an accuracy of more than 97% to predict the
hERG channel blockade.

Considering the data recording step, it is important to monitor and enhance data
quality during assessments. Experimental conditions, such as temperature control, cell
conditions, and equipment variables, can introduce uncertainties that may result in
problematic data recordings. As a consequence, we may create biases in the analysis
results. Automated monitoring and identification of such problematic recordings can
reduce potential biases and risks in the analysis results. To help in this task, we will
investigate Replicator Neural Networks (RNNs), which are a type of autoencoder, to
perform anomaly detection and remove some lower quality recordings.

Another contribution is to test an autoencoder for anomaly detection, it can be
considered as a semi-supervised learning problem. Indeed, during the training phase,
only normal recordings are used. The idea is the following: when reconstructing normal
data the autoencoder will have a small error, whereas for abnormal data (not used in
the training phase), it will have a larger (potentially much larger) error. By checking the
value of the reconstruction error, we can identify anomalies. More details about the setup
for the autoencoder in anomaly detection will be explained in the last section of Chapter
Bl We compared a linear autoencoder with a non-linear one to test their capability to
classify normal and abnormal data. The best method could provide anomaly detection
with 95% accuracy.

Another topic presented in the first part of Chapter [4 concerns data generated in
experiments studying genetic pathologies. We focus in particular on Brugada syndrome.
Data generated using patient-derived hiPSC-CMs might have a large variability despite
the fact that they belong to the same individual and they all carry the same genetic disease.
This may be due to perturbations like genetic mutations [I05]. The large variability in
the data could raise a question about the reproducible character of the experiments and
how much information do they convey about the disease mechanisms. In particular,
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very different signal shapes can be observed in both healthy and non-healthy individuals,
making it difficult to directly compare them.

In Chapter [ we will explore MLP and multivariate-1DCNN to classify healthy
and patient individuals. Subsequently, we will introduce a strategy for distinguishing
between patients with different degrees of symptom severity by employing an autoencoder
in feature extraction combined with a clustering method. Afterwards, we will discuss
potential future directions regarding the use of the cardio electrophysiology model to
explain the mechanisms of Brugada syndrome, especially exploring further possibilities
by testing the LVGF method to address this specific question. The points mentioned
above would provide valuable assistance to scientists studying Brugada syndrome.

Finally, in the second part of Chapter 4 we will also explore an investigation centred
on detecting age-related effects in dogs. This exploration will encompass the application
of statistical, ANN, and mathematical modelling methods, utilising in vivo data. The
objective is to offer a comprehensive understanding of age-related impacts, leveraging
diverse analytical approaches to enhance our insights into the physiological changes
associated with ageing. This will help scientists to see the advantages and disadvantages
of each type of method applied to dogs’ cardiovascular data.

1.7 Publications and preprint

The contributions presented above correspond to the following preprint and
publications:

1. Preprint: Muriel Boulakia, @ Haibo Liu, and Damiano Lombardi.
Parameter identification through gradient flow on latent variables. 2023.
https://inria.hal.science /hal-04364114

2. Publication: Haibo Liu, Tessa De Korte, Sylvain Bernasconi, Christophe Bleunven,
Damiano Lombardi and Muriel Boulakia. Artificial Neural Network Comparison
on hERG Channel Blockade Detection. International Journal of Computer
Applications 184(14):1-9, May 2022.

3. Publication: Elham Ataei Alizadeh, Sara Costa Faya, Haibo Liu, Damiano
Lombardi, Sylvain Bernasconi, Pieter-Jan Guns and Michael Markert. Comparison
of statistical, machine learning, and mathematical modelling methods to investigate

the effect of ageing on dog’s cardiovascular system. ESAIM: Proceedings and
Surveys, 73, 2-27, 2023.
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Chapter 2

Parameter Identification Through
Gradient Flow on Latent Variables

This chapter corresponds to a submitted article, achieved with Muriel Boulakia and
Damiano Lombardi

Abstract

In this chapter, we consider a system of parametric ODEs which involves unknown
parameters and we seek to identify the values of the parameters associated to a given
measurement. To do so, we place ourselves within the fairly usual framework that this
single measurement is in fact taken from a population of data and we therefore want to
take advantage of the statistical knowledge about the population to regularise the classical
minimisation problem associated to our identification problem. In the method that we
propose and that we call the Latent Variable Gradient Flow method, the data set is
represented by an autoencoder neural network which allows to associate to each element
of the data set a latent variable. Then, introducing a non-linear mapping between the
parameter space and the latent variable space allows to convexify the cost function and
to demonstrate convergence properties. These properties are numerically illustrated with
different tests on Van der Pol and FitzHugh-Nagumo models.

2.1 Introduction

In many studies of experimental sciences, such as chemistry, biology or environmental
engineering, mathematical models are used to describe the behaviour of the dynamical
systems. Those mathematical models consist of systems of ordinary differential equations
(ODEs). For the most part, these ODEs contain parameters that are associated to
physical, biological, or other properties of the system. To assess the relevance of the
model, it is necessary to understand the role of these parameters and to set their values in
order to generate signals that are close to reality. In addition to parameters, the system
is completed by the data of the initial state whose values may be unknown or uncertain.
When faced with an experimental observation, identifying the unknown parameters and
the initial state to closely match the experimental results is a key step in the development
and understanding of ODEs [106]. However, this identification problem which belongs
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to the class of “inverse problems” is a complex task, especially when the ODEs system
consists of a large number of equations and parameters.

To define the context more precisely, let us introduce some notations which will be
defined in more detail later on. Let a system be described by a mathematical model,
in which the output u is affected by a certain number of parameters and by the initial
conditions. Let us denote by 6 the vector of these parameters and initial conditions.
To simplify the formulation, in what follows, we will describe in general 6 as a model
parameters vector, even if it also includes the initial conditions. Then, we introduce the
parameter-to-output map ¢ which associates to the vector 6 the output u: u = ¢(0).

The general problem reads as follows: given some measurements u* of the output, we
try to estimate the model parameters 6* such that u* = ¢(6%).

Classically, the estimation of model parameters (|57, 56]) is cast as an optimisation
problem. In particular, a cost function is defined based on the data misfit and the
parameter 6 is estimated by minimising the discrepancy between the model observations
©(f) and the actual measurement u* of the system. This formulation often leads to a
non-linear non-convex possibly high-dimensional optimisation problem. This could be
dealt with in two ways:

1. Local (often gradient based) optimisation methods. These methods include Quasi-
Newton methods [I07, 108], the Gauss-Newton method (incorporating explicitly
derived and efficiently computed sensitivity equations [58]), as well as other
gradient-based methods [109]. The local gradient-based optimisation methods might
encounter convergence issues when the initial guess is far from the true parameter
values [62].

2. Global optimisation approach. For example, commonly utilized stochastic search
algorithms include evolutionary computation, adaptive stochastic methods, and
clustering methods. Other global optimisation methods are the genetic algorithms,
as proposed for instance in [I10] for the determination of rate constants in
heterogeneous reaction systems, and collocation methods, as proposed for instance
in [I11] and [I12]. In many cases, stochastic search algorithms are used to select
good initial guesses for starting either a Quasi-Newton method or a gradient-based
type minimisation. Global optimisation methods are often very expensive from a
computational point of view and might become prohibitive when the number of
parameters is large [113], [114].

Another way to try to solve the problem is purely based on data. Let us assume
that, in certain situations, we have examples of pairs of parameters and observations,
{ 6@, u(i)}l <icn,- Por example, the work in [76] used a supervised convolutional machine-
learning method to learn the physical model parameters. The advantage of this kind of
model is that no a priori knowledge about the system is required. The main disadvantage
consists in the fact that we often need a large number of training pairs parameters-
observations.

Recently, many efforts were made in order to try to exploit both the knowledge coming
from the mathematical model and from sets of data, such as physics-informed neural
networks (PINNs) mentioned in [80] [77, [79, [78], deep operator network (DeepONet) find
in [81] and physics-informed DeepONet (PI-DeepONet) find in [82].

PINNs operate by taking time as input and by training the network to generate
corresponding observations of the dynamic system. This training process leverages both
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the available data and the underlying dynamics of the system. When addressing inverse
problems, the PINN’s loss function integrates two components: the discrepancies between
predicted observations and given data, and the residual of the differential equations, which
depends on the parameters. Then, the network optimises the parameters of the network
and estimates the parameters of the dynamical system. PINNs might suffer from the
so-called spectral bias [83], which refers to the fact that it tends to prioritize learning the
low-frequency part of the solution, not rendering properly multiple frequency scales. To
overcome this issue, Fourier Features-Neural Networks (FF-NN) have been proposed to
solve dynamical systems and perform inverse problems [84]. Another limitation of PINN-
based methods is that they often require a large number of iterations and evaluations to
converge to an accurate solution. This computational intensity is a drawback, especially
when dealing with dynamic systems consisting of a large number of equations and
parameters. In the continuity of PINN-based methods, the method that we propose
in this paper seeks to leverage both available data and underlining dynamical systems.
However, as we will see, our method provides an alternative method of PINN for which
the computational demanding part corresponding to the training on the data set is done
in a preliminary part.

About the data set, we focus here on a specific situation: we consider that we
do not have data composed of pairs of parameters-observations but that we only have
observations

(i)
{u ' }1§Z§Nd

consisting in a collection of measurements taken on a population or a set of experiments
and we assume that our (novel) observation u* comes from the same population. This
situation, which is quite common in a number of realistic applications, is by far more
difficult than the one in which pairs of parameters-observations are available (as we have
no direct information about the parameters anymore).

In this paper, we will propose a new method of parameter estimation which relies
on a regularisation of a classical parameter estimation by means of the data set. A
representation of the data set by an autoencoder will allow to describe an element of the
data set by a latent variable. Then, the method performs a non-linear mapping between
the parameter space, where the cost function associated with the parameter estimation
is non-convex, and the latent variable space, where the cost function is convex. Since our
method can be described as a gradient flow for the latent variables of the autoencoder, it
will be called the Latent Variables Gradient Flow (LVGF) method.

In addition to the presentation and study of the LVGF method, this work also presents
a novel method to estimate the intrinsic dimension of a data set U = {u(i)}l <i<Ny'
Identifying this intrinsic dimension is an important point in the implementation of our
method since it allows to set the value of the latent dimension of the autoencoder trained
on the data set. The proposed method will be based on the use of autoencoders and
a criterion based on the approximation of the Lipschitz constant of the encoding and
decoding maps. For an ODE system satisfying observability and identifiability properties,
this intrinsic dimension is related to the dimension of the set of parameters which are
varying in the population.

The structure of the work is the following: in Section [2.2] we will state the parameter
identification problem, present our parameter estimation method which we call the
LVGF method, and study the convergence properties of this method. Moving on to
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Section [2.3] we will show some theoretical results and the methodology of using an
autoencoder to perform intrinsic dimension estimation which is a part of the parameter
estimation problem. Section [2.4)will be dedicated to demonstrating the performance of our
proposed intrinsic dimension estimation method using two example dynamical systems.
At last, in Section 2.5 we will assess the LVGF method’s ability to solve the parameter
estimation problem on the dynamical systems presented in the first section and compare
its performance with the classical minimization method.

2.2 Parameter estimation

2.2.1 Problem statement

Let us consider a system of ODEs:

{:f:@ = f(x(t),¢), Yt € (0,7), (2.2.1)

z(0) = xg

where x : [0,7] — RY is a real vector valued function, ¢ € R? represents a vector of
constant parameters and xo € R¥ is the initial state. We assume that, for every xy, € RY
and ¢ € RY, system admits a unique solution z in C'*([0, T])".

For this system, we consider that the parameter values and the initial condition
are unknown or uncertain and we are interested in the simultaneous identification of
parameters and initial data. We denote by 0 = (z¢,() € R™ with m = N + ¢ the vector
that we want to identify and look for 6 in a subset of R™ that we denote by ©.

The overall goal of our study is to identify the value of 8 € © C R™, by exploiting
some discrete measurements that we denote by u € R™ of the solution x of system ([2.2.1]).
We denote by H the observation operator that models the measurement procedure:

H: oY [0, )N — R™ (2.2.2)

For the sake of simplicity in the presentation, we assume that H only gives one scalar
information (for instance, one component of the vector valued function x) discretised in
time.

In addition, we define the map which associates the measurement to the unknown
parameters and initial data:

:R™ — R™
v 0 o H6.) (2.2.3)

where (0, -) is the solution of system (22.2.1)) associated to 6 = (o, ().

The classical deterministic identification problem can be formulated in the following
way: we assume that a datum u* € R” is given and we would like to identify * € © C R™
such that

e(0*) =u”. (2.2.4)

Most of the time, this problem is numerically studied by reformulating it as an
optimisation problem. In a classical way, the functional to minimise can be for instance

22



CHAPTER 2. PARAMETER IDENTIFICATION THROUGH GRADIENT FLOW

ON LATENT VARIABLES Haibo L1U
of the form:

J(0) = llo(0) — u”[l5 (2.2.5)
where || - ||,, corresponds to the Euclidean norm in R™.

Such a problem is known to be cumbersome in a number of situations, due to the fact
that it is usually non-linear and non-convex. We will give a practical example of those
situations in the end of this section.

In the present work, we consider that, in addition to the map ¢ and the datum u*,
we have access to a set of Ny € N* data, denoted U = {u(i)}KKNd € R"™ which u* is a
part. We assume that these data come from a population (of individuals, or experiments),
characterised by a certain (unknown) distribution of parameters 6. This setting is justified
by the fact that it is indeed common to have access not to a single measurement but to
a large number of data. Therefore, our objective is to study how we can take advantage
of this whole set of measurements U in the identification of parameters associated to a
single measurement »* and if adding information coming from the knowledge of the set U
can allow to construct a regularisation for the parameter estimation problem. This idea
will be the starting point of the LVGF method presented in [2.2.3]

In what follows, we will illustrate our approach on two ODE systems.

First, we will consider Van der Pol model, a model proposed in the 1920s by Van der
Pol [115] to represent the oscillations in vacuum tube circuits. It is given by the following
system:

T =,
0= p(l —2?)v—ux, (2.2.6)
(w,v)(0) = (o, vo)-

In this equation, © > 0 is a fixed parameter which reflects the degree of nonlinearity
of this system, x( is the initial position and vy is the initial velocity. For this model,
we assume that we measure the state variable x on the whole time interval and we are
interested in the identification of § = (xq, vo, it).

Second, we will consider FitzZHugh-Nagumo model which describes the dynamics of a
spiking neuron. It is given by

. 3
U:U_%_w+le$t7

.1
W= ~(v+a—bw), (2.2.7)
(v, w)(0) = (vo, wo)

where v corresponds to the membrane potential, w to the recovery variable and I.,; to a

stimulus current. For this model, we assume that we only observe the state variable v and

that the value of I.,; is known. For this problem, we are interested in the identification
of 6 = (vo, wy, a,b, 7).

2.2.2 Identifiability and observability of the inverse problem

Before testing numerical methods for the resolution of the identification problem
(2.2.4)), it is essential to ensure the uniqueness of a solution to (2.2.4]) or, in other words,
the injectivity of ¢ in ©. Not having this type of theoretical property can in fact explain
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numerical convergence issues independently of the numerical method chosen.

Moreover, contrary to Tykhonov methods that can overcome a lack of uniqueness in
the identification problem through the add of a prior, in our case the only information that
we add to regularise our minimisation problem comes from the knowledge of a data set.
Thus, the underdetermined nature of the problem would remain despite the regularisation
process.

Since 0 is composed both of model parameters and initial data, this identification
property is related to two distinct notions in inverse problems: first, the notion of
identifiability which refers to the fact that model parameters are uniquely determined
by the output and, second, the notion of observability which refers to the fact that the
initial conditions are uniquely determined by the output.

Let us notice that the identifiability and observability of the problem introduced above
can be reduced to the observability of the following augmented system (as presented for
instance in [116] and [117]):

{ X(t) = F(X(t), Yt € (0,T), (228)

X(0) = (x0,¢) =0
where 6 is taken in ©, X = (z,() : [0,7] — R™ is a regular function and F' is given by

F:R™ — R™
(z,¢) = (f(2,0),0).

Contrary to the observation operator given by (12.2.2) and adapted to the numerical
framework where the solution is discretised in time, we consider in the theoretical

framework that we have access to measurements at each time in [0,7] and we denote
by

(2.2.9)

heCY(0, TN — C'([0,T)) (2.2.10)

the observation map which associates the time-dependent measurement to the solution X
of the ODE system ([2.2.8)).

Numerous works address the question of identifiability and observability for ODE
systems and there is a wide variety of methods for doing so. About ODEs modelling, we
can quote [118], [119], [120] and [12I] among many references. Following these last two
references, we are interested by the structural observability property for system
(or by the structural identifiability and observability property for system ({2.2.1))) which
means that, for almost all initial conditions X;(0) and X5(0) in ©

h(X1) = h(X3) in [0,T] = X1(0) = X5(0).

For the two ODE models presented in the previous section, the we have the following
results:

Proposition 2.2.1. If we measure the wvariable x, Van der Pol model 18
structurally observable and identifiable in the wvariables (xo,vo, ), in the sense that
(20, vo, i) is uniquely determined from the measurement of the function x in [0,T].

Proposition 2.2.2. If we measure the variable v, FitzHugh-Nagumo model 18
structurally observable and identifiable in the variables (v, wo,a,b, T), in the sense that
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(vo, wo, a, b, T) is uniquely determined from the measurement of the function v in [0, T].

The proofs of these results are presented in Appendix [A]

2.2.3 Latent Variables Gradient Flow (LVGF) for parameter
estimation

Description of the LVGF method

The first ingredient of the proposed LVGF method relies on the construction of an
autoencoder approximating the data set U. It consists in an encoder map ¥ : R" — RP
which compresses an input data u € U into a latent variable o = ¥(u) € RP with p <n
and a decoder map UT : R? — R™ which recreates an approximation of the input data
from the latent variable. Thus, in the data set U, which we can think about as a sampling
of an embedded submanifold &« C R™, ¥fo W (u) is a good approximation of u. The set-up
of the autoencoder will be specified in Section Let us notice that the choice of the
hyperparameter p is related to the notion of intrinsic dimension of &/ and, by using some
recent results in approximation theory, the estimation of the intrinsic dimension will be
discussed in Section 2.3.2

The rationale behind the introduction of the autoencoder is the following: the latent
variables @ € RP are, at the same time, observable and related to the parameters 6 € ©.
Indeed, given u* = ¢(0*) € U, thanks to the encoder W, we can easily compute the latent
variable o* associated with it, o = W(u*). Furthermore, we are aware of the relationship
between 6* and o* which is defined as follows:

Vopl)=a".

By leveraging these two observations, we can introduce a method in which, by trying
to match the latent variables values a*, we estimate 6*.

The way in which we try to reach this goal is by introducing a gradient flow in the
latent variable «, which motivates the method name: Latent Variable Gradient Flow
(LVGF).

In what follows, we use the notation g = W o ¢ : R™ — RP and assume that
g € C?(0), for some > 0 and rank Vg(#) =p, V6 € ©. (2.2.11)

Under these hypotheses, we can consider the generalized inverse (also called the
MoorePenrose pseudoinverse [122]) of Vg(#) defined for a matrix M, by MT :=
MT(MMT)~t. Moreover, we assume that there exists a constant C' > 0 such that,
for all # € ©

IVg(0)']| < C. (2.2.12)

The LVGF algorithm is based on the following iterative process: let a step s > 0 and
an initial value 6, € © be given. We denote by «y the initial value associated to 6, that
is ap = g(0y). Then, we define the sequence (6 )ren iteratively by: for k € N

A, = sM/(a* — a;) where My = Vg(6;)
Opsr =0 + AB, (2.2.13)
ap1 = g(0k41).
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By definition, Afy is thus the unique vector of smallest norm solution in R™ of the system

MiAO, = s(a* — ag).

Convergence of the LVGF method

In the following proposition, we prove a convergence result on the sequence (6) in the
specific case where the parameter space is the full space R™.

Proposition 2.2.3. We assume that © = R™ and that g satisfies the hypotheses (2.2.11))-

. Then, for s > 0 small enough, the sequence (Ox)ren defined by converges
to some 6 € R™ which satisfies

ot = g(0). (2.2.14)
Moreover, there exists a constant C > 0 depending on a* — o and C such that
~ C s
16— Bull < (1= 5)"
Proof. Let k € N be given. According to (2.2.13]), we have
af —apy = a" — g0 + Aby).

Since g € C1#(©), we can write

g0 + AbOy) = g(0r) + MpAby, + & = ag + s(a” — ay) + &
where &, € RP satisfies

l&xlly < ClAG|LE < CT s )0 — a1

where we have used (2.2.12)) and denoted by C' the Holderian constant of Vg. This implies
that

[0 = apgall, = [[(1 = s)(@” — ax) = &l

* A1+ *
< (1= s)lla” —ayll, + CC s la” — o],
Assume now that the step s €]0, 1] is chosen such that

~~1+8 * 1
CC s || —Oz0||£ < 3

Then, an argument by induction allows us to deduce from the previous inequality that,
for all k € N

|a* — ak”p < la* — aO”p-

Therefore, we deduce that, for all £ € N
* 8 *
o = agaally < (1= 5)lla* - all,
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So the sequence (ag)en linearly converges to a* and
* S\k *
lo* = ally < (1= 2)*lla” = ol
This implies that the sequence (0y)gen satisfies

* Sk *
1641 = Ol = 120k ]l < Clla” = axll, < C(1 = 5) [la” = aoll,.

In particular, since (0g)ren is a Cauchy sequence, it converges to some 6. Moreover, we

have
2C

s
At last, passing to the limit in the expression ay = g(6y), we deduce the formula (2.2.14)).
O

~ S k %
16 =Okllm < — (1= 5)"lla" = aoll,

Corollary 2.2.4. Under the same hypotheses as Proposition[2.2.3, we assume in addition
that ¥ : U — RP and ¢ : R™ — R™ are one-to-one and that 0 € ¢~ (U). Then, for s >0
small enough, the sequence (Ox)ren defined by linearly converges to 6* € R™.

This corollary directly comes from the fact that, by definition of a* and according to
equation (2.2.14)), the limit 0 of the sequence (0 )xen satisfies:

Uop(l)=Topd).

Thus, under the hypotheses of the corollary, 6 = 0"

Let us add a few comments on the additional assumptions of Corollary 2.2.4] First,
we remark that the hypothesis that ¥ : &/ — RP? is one-to-one is naturally related to the
encoding properties of this function for which a given latent variable can correspond to
only one vector in Y. The hypothesis of injectivity of ¢ : R™ — R" is also a natural
assumption related to the identifiability and observability discussed in Section [2.2.2]

Since the algorithm given by equation does not allow to ensure that the
property 6 € o 1 (U) is satisfied, in practice, we correct it by adding a projection
procedure. Let us denote by P : R™ — R™ a projection operator on ¢~ *(U). For a
given 0_; € R™, we compute 6y = P(0_;) € p~!(U) and replace system by

A, = sM/(a* — a;) where My = Vg(6y)
Oosr = PO + A (2.2.15)
aps1 = g(0k4a).

Remark 2.2.5. In most of the realistic situations, © is not the whole space R™ but a
compact set in R™. The method can be written in a parametric domain (say, a box)
containing this domain, and such that 6% is an interior point of the domain. In the case
i which the iterates are all interior points, the result presented holds true without any
modification. If some iterates fall out of the domain, they can be reprojected into it. In
this case, further investigations would be needed to determine the speed of convergence.

Remark 2.2.6. The LVGF method can be applied also in the case in which p = m and
it has a remarkable interpretation. Let us assume that a parametric model is identifiable.
Let us recall that g € C1P(©). It follows that M = M=, for all # € © C R™. Solving
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the problem with a classical cost function would amount to solve a non-linear, non-convex
optimisation problem. The function g = W o ¢ can be seen as a change of variables
making it possible to cast the parameter estimation problem as the optimisation of the
convex function J(a) = ||a* — al?,.

Remark 2.2.7. The LVGF method comes with a way to verify, a posteriori, whether the
model solution ¢(0) does not belong to the population. This can be done by exploiting the
decoder ¢T. Let us consider: |[UToWop(0)—p(0)|2. If this quantity is significantly larger
than the error obtained on the validation set when training the autoencoder, it implies that
the obtained solution is far from the ones belonging to the population.

Numerical implementation

For the numerical implementation of this method, it is necessary to describe how the
projection on ¢ !(U) is defined and computed. By noticing that the elements § which
belong to = }(U) satisfy

UloWo w(0) —p(f) =0,

we introduce the functional
E0) = ||¥" o Wop(d) — o) (2.2.16)

and define the projection P(#) as the solution of the minimisation of E starting from
the initial data #. The minimisation of the function F is achieved by using the gradient
descent method.

In practice, to initialise the sequence (6;)ren With a 6y such that 6y € =1 (U), the
gradient descent method may fail if we start with a value far from the submanifold ¢ ~1(Uf).
So, we consider different initial values for 6y, run for each initial value the gradient descent
method and keep a 6 for which the optimisation procedure gives a value of E close to
zero. In addition, we do not run the projection step at each iteration but only if 6, begins
to move away from ¢~ !(U) which is tested by comparing the value E(6}) to a threshold
value. The details of the LVGF method are shown in Algorithm [T}

2.2.4 A numerical illustration of LVGF

In this section, a first numerical illustration of the LVGF method is proposed for the
identification of a two-dimensional parameter vector. Moreover, our method is compared
to a gradient descent method applied to the minimisation of the classical functional (2.2.5)).

We consider Van der Pol model and are interested by identifying 6 = (v, 1)
whereas xg is assumed to be known and its value is given by zo = 0.5. We consider a
measurement u* defined by u* = p(6*) with 6* = (0.5,0.5) and our objective is to identify
this value *. In addition to u*, we consider that we have access to a data set U (contain
Ny = 1200 simulations) which has been generated in a preliminary step by varying the
values of y1, randomly drawn from a uniform distribution in [0.05, 2.0] and setting vy = 0.5.
So in this case, the intrinsic dimension of the submanifold i/ is equal to 1. The latent
dimension of the autoencoder trained on this data set is fixed to p = 1 (this dimension
can also be rediscovered following the method presented in Section [2.3.2). We used AE1
(mentioned in Table to approximate the data set U. There are 1000 samples used in
the training set and 200 in the validation set. Moreover, the parameters given as input of
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Algorithm 1 The LVGF algorithm

1: Input: N,,,, = maximum number of iterations; o = tolerance for ||a* — af|,; S =

[81, S99y cuny Sn]lgign
2: start with a random initial guess 6,
3: if E(0y) > € then
4:  run the projection 6 = P ()
5: else
6: 0 =60,
7: end if
8: compute a = VU (p(h))
9: while j < N4, and ||a* — a|, > o do
10:  compute M = [V¥(p(0))][Ve(0)]
11:  compute Af = [M]T(a* — )
12 select 1 <7 < n the minimum point of {||a* — U(p(0 + s;A0))|l,, 1 <i <n}
13:  update 8 = 0 + s;Af
14:  if E(6) > e then
15: run the projection § = P(0)
16:  end if

17: compute a = VU(p(h))
18: end while
19: return the value of the last iteration of 6

Algorithm [1] have been fixed to N, = 2000, ¢ = 10~* and S = [0.0005, 0.0025, 0.0125,
0.0625].

In addition to the LVGF method, we have implemented the gradient descent method
applied to the minimisation of the classical functional in order to compare both
methods. In Figure[2.1], we plot the contour of the classical cost function given by equation
. We observe that the function is non convex and presents local minima in addition
to the global minimum at 6* = (0.5,0.5) represented by a red sign "+". The different
iterations for the classical gradient descent method applied to equation ([2.2.5) and for the
LVGF method have been also depicted starting with the same initialisation 6y = (0.8, 1.9).

It is interesting to observe that the gradient descent method converges as expected
to a local minimiser whereas the LVGF method is able to go against the direction of
the steepest slope in order to change valley and reach the global minimiser. Thus the
information coming from the data set and added through the use of the latent variable
made it possible to correct the convexity defect of the classical functions and to identify
the right value of the unknown parameters.

Further numerical tests to better assess the performances of LVGF will be presented

in Section 2.5

2.3 Lipschitz-stable autoencoders and intrinsic
dimension

As presented in Section our LVGF method relies on a description of the data set
U = {u®},<;<n, by an autoencoder. These neural networks are dimensionality reduction
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Figure 2.1: Contour plot of the classical function J(6) = [[u* — p(0)]|?> with 6 = (v, u):
comparison between the iterations of the classical gradient descent method
(blue dots) and the LVGF steps (red dots) with the same initial guess (blue
cross). The value of the true parameter, which is the minimum of J is * =
(0.5,0.5), marked with a red cross.
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algorithms which learn two functions called encoder and decoder. The encoder function
associates to an input vector in R™ a vector called a code or a latent variable of smaller
dimension p.

It is important to notice that the dimension p is an hyperparameter that has to be set
before training the autoencoder even though, in general, the intrinsic dimension of a data
set is unknown. That is why the first question that naturally arises in the representation
of a data set by an autoencoder is to understand how to settle the dimension of the latent
variable. In this section, we propose a criterion based on the notion of stable manifold
width to estimate the intrinsic dimension of the data set. This criterion is a consequence
of the result given by Corollary which highlights the fact that, if the dimension of
the latent variable is smaller than the intrinsic dimension, the product of the Lipschitz
constants of the encoder and decoder functions will blow up.

2.3.1 Presentation of the autoencoder

In this section, we describe the autoencoder neural network and give some details on
the implementation of the autoencoder that we have considered in this work.

Figure 2.2: autoencoder systemic structure.

As described in [123] and [124], an autoencoder is a feed-forward neural network with
a systemic structure that is composed of multiple hidden layers which include an encoding
and a decoding part. The input and output layers have the same size as shown in Figure
2.2, The encoder compresses the input data (u € R™) to some latent representation
(a € RP):

JU — RP
ur— a = VY(u)

whereas the decoder decodes the compressed latent representation o and reconstructs the
input in o € R™:
ot RP — R"
ar— 1= Ui(a).

Among the key aspects that have to be set in order to define an autoencoder, we
need to specify the loss function to be minimised. In our paper, we have considered the
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following loss function:

Ng
1 i i
EZ”“() — U (W (u®))|2 (2.3.1)
i=1
where U = {u(i) }1 <i<N, corresponds to the data set. In addition, we chose the exponential

linear unit (ELU) [125] as the activation function:

T ifx>0

p(exp(z) — 1) otherwise (2.3.2)

ELU(z) = {

where p > 0 is a constant number (we have taken p = 1.0 in our numerical tests). This
activation function is differentiable, a property which will allow to estimate the Lipschitz
constants associated to the encoder and decoder functions. The weights and biases of the
hidden layers were optimised by using an Adam optimiser [126].

In the numerical tests described in Sections and [2.5] different architectures will
be considered and, for each of them, we will specify the values of the hyperparameters
(numbers of hidden layers, number of neurons per layer).

2.3.2 A criterion based on stable manifold widths to determine
the latent variable dimension

In this section, we consider Y C R" a compact embedded submanifold of topological
dimension p and we propose a criterion based on autoencoders to identify the dimension
p. We refer to [127] and [128] for an overview of the intrinsic dimension estimation
methods, the methods aim to project the original data &/ C R™ to a lower M-dimensional
submanifold of R™ that M < n in a way that we will not lose the information of the
original data. When the minimum M-dimension is necessary to represent the observed
properties in U, M can be called intrinsic dimension.

Having in mind autoencoder applications, we are interested in nonlinear methods of
approximation of U depending on p parameters and built on two Lipschitz mappings that
correspond to the encoder map and the decoder map. Following [129], we then introduce
the quantity: for p € N and for given constants v > 0 and v > 0,

Oprymyt (U) = inf sup [lu — ¥ o U(u)]|,

U, Ut ey

where the infimum is taken over the v Lipschitz functions ¥ : &/ — R and the ' Lipschitz
functions T : R? — R".

This definition is introduced in [129] under the name of stable manifold width with
the slight nuance that the definition of [129] also involves the infimum over all the
norms in RP. As explained in [129], the concept of stable manifold width compared
to the concept of manifold width (where the functions ¥ and W' are only assumed to
be continuous) is motivated by the fact that the Lipschitz regularity allows to explicitly
control perturbations coming from noise or numerical approximation.

In the following proposition, we are interested by the case where p < p. This
corresponds to the case where the dimension of the latent representation space is
smaller than the topological dimension of the submanifold that the autoencoder has to
approximate. Under this assumption, the proposition gives a bound from below for the
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stable manifold width.

Proposition 2.3.1. Let U be a compact embedded submanifold of R™ of topological
dimension p. We assume that p < p. Then, there exists a constant C' > 0 which only
depends on U such that
C \P/@-p)
Oyt (U) > (—) R 2.3.3
bt (U) ~Toy ( )
where R > 0 is such that U C B, (0, R).

For m € N*, we have denoted by B,,(y,r) with y € R™ and r > 0 the closed ball of
center y and radius 7.

Proof. The proof of this proposition will rely on a result given in [130]. This paper
introduces and studies the notion of Lipschitz width, a concept close to stable manifold
width.

Let € be such that € > 6, .+(U). Then, there exist a v Lipschitz function ¥ : ¢/ — RP
and a ' Lipschitz function ¥' : R? — R™ such that

sup |lu — ¥ o U(u)||, < e
uel

Since V¥ is y Lipschitz and & C B, (0, R), we have V(i) C B,(¥(0),yR). Thus, we get
that

inf sup inf u— Vi), <e
Ul uelt a€By(¥(0),7R) | p( )|

where the infimum is taken over all the maps Ul : (B,(¥(0),vR), || - ||,) — R™ such that

H‘I'L(Oél) - ‘I’L(Oéz)Hn < At

sup <
a1,a2€ B, (¥(0),vR) ||CY1 - O42”1@
Let us now introduce the scaled norm || - ||, s in R? defined by ||a||,s = %RHoch. Then we

have

inf sup inf w— Ul ()], <e
W), el @€ By,s(¥(0),1) | o)l

where the infimum is taken over all the maps U] : (B, (¥(0),1),]| - ||,.s) = R" such that

Ul (aq) — Ul ()|l
a0 e

< fyT”yR.
a1,a2€By o (¥(0),1) lar — aslps

This property coincides with the fact that the fixed Lipschitz width of U associated to
the norm || - ||, for the Lipschitz constant 4Ty R is smaller than e. Now, let us introduce
the Lipschitz width of 2/ for the Lipschitz constant 7R which is defined as the infimum
of the fixed Lipschitz widths over all the norms in R? and denote it by d, .i,r(U). We
thus have the following property:

d

pyIvR

U) <e.

Thus according to Proposition 3.5 in [130], this implies that we have an upper bound on
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the Lipschitz constant which is given by:
] L i/
VYR 2 geNo " (U)

where N (U) is the e—covering number of U. Since U C B, (0, R) is a compact embedded
submanifold of dimension p, we have that

where C' depends on the Lipschitz constants of the local maps of the finite atlas describing
U. Thus, we get that
’YT’Y > C RP/P—11-p/p

p/(0—p)
(S
A

for every € > 6, +(U). This property allows us to conclude the proof. ]

which implies that

In the following corollary, we give another formulation of the previous proposition
which will be more useful for our numerical tests.

Corollary 2.3.2. Under the same notations and hypotheses as in Proposition |2.3.1], we
assume that there exist a v Lipschitz function ¥ : U — RP and a ~' Lipschitz function
Ut RP — R™ such that

sup |lu — ¥ o U(w)||, < e
uel

Then, there exists a constant C' > 0 which only depends on U such that
vy > CRP/P-1P/P, (2.3.4)

This result can be interpreted in the following way: if the dimension p is smaller than
the topological dimension of U, then getting an accurate approximation of the elements
of U with the latent dimension p may be achieved only if the Lipschitz constants of the
approximation mappings are sufficiently large. It is related to the fact that, as long as
the latent dimension is smaller than the intrinsic dimension, the encoder and decoder
functions have to compensate this with strong variations, in the same vein as the space-
filling curves. Our criterion thus relies on the representation of the variation of the product
of the Lipschitz constants of the encoder and decoder functions with respect to the latent
dimension p at a given accuracy e. Its relevance will be illustrated in Section [2.4]

2.3.3 Estimation of the Lipschitz constants

The criterion that we propose to estimate the intrinsic dimension relies on the
inequality and thus it is necessary to estimate the Lipschitz constants of the encoder
U and the decoder W', In this section, we explain how this is numerically achieved.

Since the activation function used to build these functions is the ELU, ¥ and U are
regular functions, in particular they are C*! functions. Let us introduce the gradient of
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the function ¥ : Y — RP and denote it by VWU:

U — RP*"
v {u — VU(u)

Similarly, we denote by VU the gradient of ¥T : R? — R":

RP — R™¥
T.
Vi {oz — VU ()

The estimation of the product 77y of the Lipschitz constants relies on the following
lemma whose proof uses classical arguments.

Lemma 2.3.3. For a function f : U C R® — R" of class C*, we have the following
estimate: for all u™, u® e U,

In particular, if we set z = ¢ = 2, we get that, for all ™, u® e U,

1
2)2

Thus, if we apply this estimate to f = WU o ¥, we can have an approximation of a
lower bound of vy by computing

Ov, )2 :
( 1?371a<XN’Z aaz )au;( ))’)
Ji.k=1 j=1

where we have selected N samples (u(™);<,,<x to have a discrete approximation of the
supremum value of the gradient.

o
5 )

sup
1 uelU

1 (@) = F@®) ”(”
1

@ — @ =

k=
1 1

where z,q €]1,+00[ are such that — 4+ — = 1.
< 9

Ofk
8_uj (u)

sup
ueU

HﬂMW—fW®Wn§<”

[t =@,

jk=1

2.4 Numerical tests of intrinsic dimension estimations

In this section, we will present some numerical tests on the estimation of the
intrinsic dimension of the data set by using an autoencoder, as described in Section [2.3
In particular, we will compare the criterion that we propose which is based on the
estimation of the Lipschitz constants with a more classical criterion (we refer to [131]
for a presentation of other criteria) based solely on the evolution of the accuracy with
respect to the dimension of the latent dimension.

For the tests which we will present hereafter, we consider the architectures of three
autoencoders, named AE1, AE2 and AE3, and described in Table [2.1] in which only half
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of the architecture is written, since we consider symmetric autoencoders (the encoder
and the decoder have the same architectures). The number of layers corresponds to the
number of hidden layers.

Each autoencoder is trained for different choices of p, the dimension of the latent
layer. Then, the product of the Lipschitz constants v!v is evaluated following the method
presented in Section and the error e (which corresponds to the value of the loss
function given by ) is computed in a validation set.

Table 2.1: Architectures of the autoencoder models

Number of layers Number of hidden units
AE1 7 150, 80, 20, p
AE2 11 250, 150, 80, 20, 10, p
AE3 15 250, 180, 120, 80, 50, 30, 15, p

2.4.1 Tests on Van der Pol model

To build a data set from Van der Pol model , among the three parameters of the
model, we fixed the initial velocity x¢y = 0.5 while the parameters vy and p were randomly
drawn from a uniform distribution in [0.05, 1.5] and [0.05, 2.0] respectively. Then, for each
parameter value, we computed an approximated solution of the ODE system in [0, T'], with
T = 30 thanks to the Crank-Nicolson scheme with the time step given by At = 0.075. A
total of Ny = 1200 solutions were generated, of which 1000 were used in the training set
and 200 in the validation set.

The training of the autoencoder was performed by optimising the loss function defined
in equation by using the Adam optimiser and by taking 1000 epochs with a batch
size equal to 40. Each training for a given p was repeated 10 times and the results
presented hereafter correspond to the average of these 10 tests.

In Figure (a), we have represented the variations of the error with respect to p for
different architectures. As explained in [131], these curves allow to identify the intrinsic
dimension which corresponds to the value of p from which the curve begins to stagnate.
In Figure (b), we have represented the variations of the products of the Lipschitz
constants to apply the criterion that we proposed. For both methods, we can observe a
stagnation for p = 2. Therefore, for this simple data set, both criteria are able to identify
the right intrinsic dimension p = 2.

2.4.2 Tests on the FitzHugh-Nagumo model

In this section, we present the results obtained on the intrinsic dimension estimation
for the solutions of the FitzZHugh-Nagumo model. We consider here a scenario in which
we test the dimension estimation when p = 5. The numerical approximation of FitzHugh-
Nagumo model is carried out by using the Crank-Nicolson scheme on a time interval (0, 7")
with T'= 200 and with the time step given by At = 0.5.

To generate the data set, we have kept I.,; fixed to the value I.,; = 0.325 whereas b, T,
a, vy and wy are drawn from a uniform distribution respectively in the intervals [0.05, 0.5],
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Figure 2.3: Intrinsic dimension estimation for Van der Pol model and p = 2

[12.0,13.0], [0.05,0.5], [0.05,1.0], and [0.05, 1.0]. So, in this case, the intrinsic dimension
Is p=>5.

If we consider the curve of the accuracy with respect to the latent dimension p, reported
in Figure 2.4a), we observe a stagnation from p = 3, which would lead to a wrong
conclusion. Let us mention that the difficulty to identify the latent dimension thanks
to this simple and natural criterion has already been highlighted in several papers (we
refer for instance to [I31]). In particular, in relatively high dimension, it is often observed
that the curve gradually decreases and starts to stagnate before reaching the intrinsic
dimension. On the other hand, if we consider the curve of the product of the Lipschitz
constants with respect to the latent dimension, reported in Figure (b), we can observe
that a stagnation only occurs from p = 5. Thus the criterion that we propose is able to
correctly identify the value of the intrinsic dimension.
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2.5 Parameter identification with LVGF method

In this section, we will assess the performances of the LVGF method for the
identification of parameters in Van der Pol and Fitzhugh-Nagumo models. For each
numerical test, we will compare the results given by LVGF method with what we will call
the classical method: it consists in minimising the classical misfit functional J given by
thanks to a gradient descent algorithm with a fixed step size.

Before describing each test, let us start with some practical details for the
implementation of the LVGF and classical methods. For the training process in the
preliminary step of the LVGF method, we have trained the autoencoders in 1000 epochs
with 40 batch sizes. In Algorithm [I] which describes LVGF method, the maximum number
of iterations has been set to Ny., = 2000, the tolerance for ||a* — axl|, has been set to
o = 107* and the steps were given by S = [0.0005, 0.0025, 0.0125, 0.0625].

To quantify the errors in the parameter estimation, we evaluated the total error by
computing the root relative sum of squares (RRSSE):

6 — 0
RRSSE(E",6) = 10— Oln T3 e

and, to evaluate the errors in each of the parameters, we also computed the following
relative error (RE) for each parameter:
_ 16— 63

RE(0;,0;) = e 1<i<m.

At last, the error between the observed signal * and the signal associated to the estimated
parameters u = ¢(#) is defined as the root relative mean squared error (RRMSE):

RRMSE(u",u) = 1~ Ul

lu*ln

2.5.1 Parameter identification for Van der Pol model

In this section, we consider Van der Pol model and are interested by the identification
of the parameter vector 0 = (g, vo, pt).

For LVGF method, we have taken the same data set of 1200 samples and the same
autoencoder setup as in Section In particular, in the data set, 0; has a valued
fixed to 6; = 0.5, whereas #, and 63 are respectively drawn from uniform distributions
in [0.05,1.5] and in [0.05,2.0]. The architecture of the autoencoder corresponds to AE1
described in Table 2.1l and its latent dimension has been identified in Section 2.4.1] to be
equal to p = 2 thanks to the criterion presented in Section [2.3.2]

In order to compare the classical method and the LVGF method, we tested them for
10 random values of 6* taken in the same range as the data set for 6, and 63 and in the
range of [0.05,1.5] for §;. Moreover, for each 6*, we performed the parameter estimation
methods starting from 20 different values of initial guess taken in the same range.

The results are presented in Tables [2.2] and [2.4] Table corresponds to the
errors on the parameters and the signals averaged over the 10 different values of 6* and
the 20 different initial guesses whereas Table details the results (still averaged over the
initial guesses) obtained for each value of 6*. To show the results more easily, we also listed
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the best case and the worst case in Table 2.4, We can see that the values obtained with
LVGF method are significantly closer to the right values than the classical method. With
the LVGF method, both the averaged RRSSE and RRMSE are about 10 times smaller
than the ones obtained by using the classical method. More specifically in Table 2.3], the
LVGF method could provide us estimations with smaller standard deviation (computed
for each @ over initial guesses) and RE almost for each test and each 6. Moreover, even
if, for the best case, the classical method gives very accurate results, most of the time, we
observe that the LVGF method could provide us estimations with smaller RE and that
the classical method converges to a local minima, which prevents it from reaching the
right value and leads to significant errors.

Table 2.2: Comparison between the classical method and LVGF method: averaged results
on 10 tests with Van der Pol model

RRSSE of the
estimated 6
1.412
0.112

RRMSE of the
estimated signal
0.4247
0.0231

RE of each
estimated 6
(0.327, 0.66, 1.37)
(0.055, 0.095, 0.01)

classical method
LVGF method

Table 2.3: Comparison between the classical method and LVGF method: detailed results
for 10 parameters with Van der Pol model. The results are averaged over the
initial guesses.

0* Methods | Average estimated 6 Standard deviation RE of each R’R‘SSE of the RBMSE Of. t-he
estimated 6 estimated 6 | estimated signal
(0.5, 0.5, 0.5) classical (0.37,0.34, 1.14) (0.18, 0.22, 0.87) (0.26, 0.33, 1.27) 1.3378 0.6205
B LVGF (0.52, 0.52, 0.50) (0.01, 0.01, 0.002) (0.05, 0.04, 0.008) 0.064 0.013
(0.5, 0.38, 0.65) classical (0.47, 0.01, 1.45) (0.494, 0.987, 0.936) (0.47, 0.97, 1.23) 1.84 0.8997
o LVGF (0.52, 0.38, 0.64) (0.012, 0.047, 0.045) (0.05, 0.09, 0.03) 0.111 0.0573
(0.5, 0.6, 0.3) classical (0.47,0.54, 0.50) (0.097, 0.17, 0.589) (0.07, 0.1, 0.65) 0.6649 0.2053
T LVGF (0.53, 0.64, 0.30) (0.016, 0.021, 0.0009) (0.07, 0.08, 0.006) 0.10708 0.0191
(0.5, 0.3, 0.8) classical (0.67, -0.05, 1.10) (0.545, 1.12, 0.94) (0.34, 1.18, 0.37) 1.2862 1.5
o LVGF (0.52, 0.31, 0.80) (0.0037, 0.0021, 0.00012) (0.05, 0.05, 0.003) 0.0677 0.0134
(0.5, 0.8, 0.2) classical (0.49,0.77, 0.30) (0.06, 0.155, 0.45) (0.03, 0.04, 0.51) 0.5157 0.1137
B LVGF (0.53, 0.85, 0.20) (0.008, 0.014, 0.0003) (0.06, 0.07, 0.005) 0.0926 0.0198
(0.5, 0.45, 0.7) classical (0.59, 0.17, 0.97) (0.35, 1.10, 1.03) (0.18, 0.63, 0.38) 0.7596 0.8561
o LVGF (0.51, 0.46, 0.70) (0.0088, 0.0077, 0.0017) (0.03, 0.03, 0.005) 0.0464 0.011
(0.5, 0.25, 0.6) classical | ( 0.50, -0.23, 5.63) (1.48, 1.51, 8.94) (1.29, 1.92, 8.38) 8.928 0.7703
e LVGF (0.54, 0.27, 0.60) (0.0009, 0.01, 0.006) (0.07, 0.07, 0.005) 0.1025 0.0125
(0.5, 0.35, 0.9) classical | (0.71, -0.08, 1.26) (0.60, 1.24, 1.0) (0.42, 1.23, 0.39) 1.3626 0.463
o LVGF (0.52, 0.36, 0.90) (0.0036, 0.003, 0.0005) (0.03, 0.03, 0.001) 0.045 0.009
(0.5, 0.25,0.7) classical | (0.396, 0.194, 1.06) (0.21, 0.11, 0.72) (0.21, 0.22, 0.51) 0.5999 0.3387
s LVGF (0.53, 0.35, 0.69) (0.023, 0.35, 0.06) (0.08, 0.42, 0.03) 0.4564 0.0694
(0.5, 0.6, 0.2) classical (0.5, 0.6, 0.2) (0.0001, 0.0001, 0.0001) | (0.0003, 0.0003, 0.0001) 0.0004 0.0000832
B LVGF (0.52, 0.63, 0.20) (0.002, 0.02, 0.03) (0.06, 0.07, 0.009) 0.091 0.0196

In order to better assess the performances of the methods and illustrate them, we are
going to describe the results in more detail for a case which is quite representative of what
is observed in general. We consider the case where the parameter to recover is given by
0* = (0.5,0.5,0.5) and where we start from the initial guess § = (0.6615, 1.23,1.6994).
The results obtained in this specific case are reported in Table[2.5] The iterations obtained
with the classical method are represented in Figure (a) where, to better visualize them,
we have chosen to represent only 6y and 3. Figure (b) represents the values taken
by the misfit function J given by at the successive iterations. We note that the
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Table 2.4: Comparison between the classical method and LVGF method for Van der Pol
model: detailed results for two specific cases (the best case and the worst
case) and averaged results over 10 different parameter values. At each line, the
results are averaged over 20 initial guesses.

Methods RE of each RRSSE of the | RRMSE of the
estimated 6 estimated 6 | estimated signal
Bost case Classical | (0.0003, 0.0003, 0.0001) 0.0004 0.00008
LVGF (0.06, 0.07, 0.009) 0.091 0.0196
Worst caso Classical (1.29, 1.92, 8.38) 8.928 0.77
LVGF (0.08, 0.42, 0.03) 0.46 0.07

gradient method experiences convergence issues and that the iterations stagnate to a local
minimum which is far away from 6*.

Table 2.5: Comparison between the classical method and LVGF method in a specific case
for Van der Pol model: parameter to identify 8* = (0.5,0.5,0.5) and initial
guess 0 = (0.6615,1.23,1.6994)

RRSSE of the | RRMSE of the
estimated 6 | estimated signal

classical method | (0.44, —0.16,2.32) 3.8666 1.81
LVGF method | (0.52,0.52,0.502) 0.0541 0.011

estimated 0

On the other hand, with LVGF method, the iterations converge to the correct values
of the parameters, as illustrated in Figure 2.6, In addition, Figure also depicts the
iterations of the latent variable o = (a1, a3) and we observe that the descent direction
for this variable allows to go in a relatively direct way towards the value o*.

Still for this specific case, let us finally illustrate the errors on the signal presented in
the last column of Table 2.5l For both methods, Figure presents a comparison of the
signal associated to the retrieved parameter with the true signal u* associated to 6%, the
value to be identified. The signal corresponding to the initial guess (which is the same
for both methods) corresponds to the green curve. We can see that the curve associated
to the LVGF method perfectly fits the measured signal whereas the signal reconstructed
thanks to the classical method is quite far from the measured signal.

2.5.2 Parameter identification for FitzHugh-Nagumo model

This section is devoted to a presentation of the numerical results obtained for the
identification of parameters in FitzHugh-Nagumo model ([2.2.7). In these tests, the values
of I.,; and of the initial condition of v are fixed to I.,; = 0.325 and vy = 1 and we want
to identify the four remaining parameters 6 = (wy, a, b, 7).

For LVGF method, we have considered a data set of 1200 samples corresponding to
a fixed value of 7 given by 7 = 12.5 whereas the values of wg,a and b are respectively
drawn from a uniform distribution in [0.05,1.0], [0.05,0.8], and [0.05,0.8]. With regard
to the setup and training process of the autoencoder, we made the same choices as in the
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(a) Values of 05 and 65 at each iteration (b) Values of J at each iteration

Figure 2.5: Tllustration of the test presented in Table[2.5} representations of the iterations
with the classical method
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true signal
— initial signal
—— signal for LVGF method

true signal

tial signal
—— signal for the classical method

0 50 100 150 200 250 300 350 400

(a) Signal generated with the parameters (b) Signal generated with the parameters
obtained with the classical method obtained with LVGF method

Figure 2.8: Tllustration of the test presented in Table : comparison of the signals with
the classical method and with LVGF method (Van der Pol model)

previous section for Van der Pol model, except that the dimension of the latent layer is
given by p = 3.

To test the performances of the LVGF method and compare them with the classical
method, we repeated the same statistical test as for Van der Pol model by considering 10
random values of 8* and 20 initial guesses for each value of 68*. We took the parameters
in the same range as the data set for wg, a, b and in the range of [12,13] for 7.

As in the previous section, the results are given by: Table[2.6] gives the averaged results
over 10 initial guesses whereas Table details averaged results obtained from every 6*
and corresponds to the best case and the worst case.

As for Van der Pol model, we observe that the relative error made on the parameters
is smaller with LVGF method than with the classical method. More precisely, we see that
the error is reduced by a factor of 2 or more and that the error on the signal is reduced by a
factor of about 7. If we look at the relative error parameter by parameter, we also observe
that the error on the reconstruction of the parameter b (third parameter in ) is relatively
large with both methods still with a clear improvement with LVGF method (around 54%
with the classical method and 27% for LVGF method). Since this lack of accuracy has
a rather low impact on the reconstruction of the signal, this difficulty to identify the
parameter b compared to wy, a and 7 is related to the differences of sensitivities of the
signal with respect to the parameters: its sensitivity with respect to b is smaller than its
sensitivity with respect to the other parameters and so a relatively rough identification
still allows to accurately reconstruct the signal.

At last, the results for a specific example corresponding to 8* = (0.5,0.5,0.5,12.5) with
the initial guess 6 = (0.4815,0.223,0.689, 12.52) are detailed in Table 2.9 In that case,
the reconstruction of the signal associated to the parameters is presented in Figure [2.9]
We can see that the signal generated by the parameters obtained with LVGF method
perfectly fits the measured signal.
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Table 2.6: Comparison between the classical method and LVGF method: averaged results
on 10 tests (FitzHugh-Nagumo model)

Method RE of each RRSSE of the | RRMSE of the
estimated 6 estimated # | estimated signal
classical method | (0.174, 0.322, 0.544, 0.036) 0.703 0.3662
LVGF method (0.074, 0.08, 0.27, 0.014) 0.3026 0.0529

Table 2.7: Comparison between the classical method and LVGF method for FitzHugh-
Nagumo model: detailed results for 10 parameters. The results are averaged
over the initial guesses.

. . ] . e RE each RRSSE of the | RRMSE of the
0 Methods Average estimated 0 estimated 6 estimated 6 | estimated signal
050505125 | csical (0.60, 0.26, 0.60, 12.97) | (0.19, 0.54, 0.20, 0.038) 0.6348 0.6045
9020, 580 IVGF | (0.47, 0.48, 0.42, 12.67) | (0.052, 0.035, 0.16, 0.014) 0.1683 0.0142
(050502125 | dassical (0.66, 0.26, 0.55, 13.0) | (0.33, 0.48, 1.74, 0.04) 1.8667 0.5788
PSR LVGF | (0.48, 0.46, 0.199, 12.51) | (0.097, 0.12, 0.44, 0.012) 0.4905 0.096
030503125 | cesical (0.39, 0.33, 0.45, 13.0) | (0.45, 0.35, 0.66, 0.04) 0.8804 0.4426
P90, 2 20 LVGF | (0.28, 0.48, 0.24, 12.56) | (0.097, 0.046, 0.3, 0.0092) 0.3145 0.0161
(020405125 | cassical (0.18, 0.33, 0.39, 12.84) | (0.13, 0.18, 0.23, 0.03 ) 0.3352 0.188
S S, L LVGF | (0.19, 0.38, 0.44, 12.56) | (0.13, 0.096, 0.22, 0.016) 0.2772 0.0541
o oo | classical | (0.68, 0.36, 0.74, 13.0) | (0.24, 0.34, 0.34, 0.04) 0.5512 0.4858
(0.55,0.55,0.55,12.5) | —yoap (052, 0.51, 0.44, 12.76) | (0.07, 0.08, 0.21, 0.02) 0.2467 0.0078
classical | (0.4, 0.33, 0.37, 13.0) | (0.034, 0.26, 0.19, 0.04) 0.3307 0.2586
(0-45,0.45,045,12.5) e (0.43, 0.43, 0.39, 12.60) | (0.055, 0.05, 0.2, 0.01) 0.216 0.0168
o | classical | (0.77,0.36,0.63, 13.0) | (0.17, 0.35, 0.88, 0.04) 0.9807 0.5015
(0.7,0.55,0.35,12.5) |y (0.64, 0.50, 0.21, 12.67) | (0.1, 0.11 , 0.47, 0.019) 0.5061 0.0756
(0750404125 | clssical (0.69, 0.26, 0.18, 12.99) | (0.07, 0.34, 0.56, 0.04) 0.666 0.2614
A UETAAS0 LVGF | (0.70, 0.37, 0.35, 12.59) | (0.07, 0.1, 0.31, 0.01) 0.3458 0.1028
- classical | (0.70, 0.26, 0.28, 12.84) | (0.06, 0.24, 0.39, 0.03) 0.4757 0.1889
(0.75, 0.35, 0-45,12.5) | (0.74, 0.33, 0.39, 12.56) | (0.03, 0.07, 0.22, 0.01) 0.24 0.0156
(0803506125 |_cssical (0.76, 0.30, 0.46, 12.78) | (0.06, 0.14, 0.25, 0.02) 0.3039 0.1515
99D A LVGF | (0.78, 0.32, 0.51, 12.65) | (0.04, 0.09, 0.19, 0.019) 0.2205 0.04

Table 2.8: Comparison between the classical method and LVGF method for FitzHugh-
Nagumo model: detailed results for two specific cases (the best case and the
worst case) and averaged results over 10 different parameter values. At each
line, the results are averaged over the initial guesses.

Methods RE of each RRSSE of the | RRMSE of the

estimated 6 estimated # | estimated signal
Best case Classical (0.06, 0.14, 0.25, 0.02) 0.304 0.152
LVGF | (0.052, 0.035, 0.16, 0.014) 0.168 0.0142
Worst case Classical | (0.33, 0.48, 1.74, 0.04) 1.867 0.579
LVGF (0.1, 0.11 , 0.47, 0.019) 0.506 0.076
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Table 2.9: Comparison between the classical method and LVGF method in a specific case
for FitzHugh-Nagumo model: parameter to identify 6* = (0.5,0.5,0.5,12.5)
and initial guess # = (0.4815,0.223,0.689, 12.52)

RRSSE of RRMSE of
estimated # | estimated signal
classical method | (0.59, 0.05, 0.59, 12.99) 0.9344 0.6695

LVGF method | (0.503, 0.502, 0.508, 12.48) 0.0203 0.00624

D

true signal
01 — initial signal
—— signal for LVGF method

Estimated 6

(a) Signal generated with the parameters (b) Signal generated with the parameters
obtained with the classical method obtained with LVGF method

Figure 2.9: Hlustration of the tests presented in Table comparison of the signals with
the classical method and with LVGF method (FitzHugh-Nagumo model)

2.6 Conclusion and discussion

In this study, we have presented an innovative method called Latent Variables Gradient
Flow (LVGF) which leverages the available data and the underlying dynamics of the
system in order to identify parameters of the ODE model. This approach entails a dual-
phase process. In the first phase, an autoencoder is trained on the data set in order to
represent it in a compressed way. The description of the data set by a latent variable
is then exploited in the second phase which corresponds to an optimisation method that
can be described as a gradient flow for the latent variables.

For this new method, we presented numerical tests and a comparison with the classical
method corresponding to a gradient descent method applied to the minimisation of
the classical data misfit functional . A noticeable property of LVGF method is
that it is able to avoid convergence towards local minimum points. In this way, LVGF
method generally gives much better results than the classical method for the parameters
identification problem.

In addition, we have shown that the sequence defined by the LVGF method satisfies
convergence properties. These results still need to be extended to the algorithm actually
implemented where there is an additional projection step. Nevertheless, our study, even
if it is incomplete, allows to understand how the use of the non-linear mapping between
the parameter space and the latent variable space latent variable allows to convexify our
initial minimisation problem.

In a complementary manner to this parameter identification method, we also
proposed a new criterion to identify the intrinsic dimension of a sub-manifold thanks
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to autoencoders. This criterion is justified by a theoretical result based on the notion of
stable manifold width. It describes the behaviour of the product of the Lipschitz constants
of the encoder and decoder when the latent variable is too small. We have compared our
criterion to the classical criterion based on the evolution of the error with respect to
the latent dimension and observed that it leads to better results. Indeed, in the case of
the classical criterion, the error gradually decreases when the latent dimension increases,
making it difficult to pick a single value for the dimension. On the contrary, our criterion
clearly highlights two phases in the evolution of the product of the Lipschitz constants
and the intrinsic dimension corresponds to the elbow of the curve.

In addition to the theoretical study which must be in-depth, this work opens a certain
number of perspectives. First of all, LVGF method has been tested on simple dynamical
systems to start assessing its basic properties. We intend to continue exploring its use in
more complex situations corresponding to larger dynamical systems that involve a large
number of parameters.

At last, the autoencoder used to approximate the available population data is based
on neural networks. This is not a necessary choice, and other manifold learning methods
could be used ([132]). For instance, Principal Component Analysis (PCA), kernel-PCA,
Locally Linear Embedding, Isomap, Laplacian Eigenmaps, Semidefinite Embedding are
all methods which could be used in order to build an encoder-decoder pair.
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Appendix A

Proof of Proposition [2.2.1] (identifiability and
observability for Van der Pol model)

We consider two solutions of system (2.2.6) (z(V),v™) and (z®,v®)) respectively

associated to the set of initial conditions and parameters X = (x(()l),vél), 1) and

X® = (x((f), v(()2) 1), We assume that the measurements on these two solutions coincide,
that is 2 = 2 in [0, 7] and we want to prove that X = X2,

First, by assumption, we immediately have that a:(()l) = a:'((f). Next, according to the
first equation of 1} we get that v = v in [0,77], so in particular U(()l) = v(()g). At

last, since 0™ = ©®) in [0, T, the second equation of (2.2.6) taken at ¢ = 0 gives that
1 1 2 2
PO = (e = nO (1= (7))

Thus, for almost all X and X®, we deduce that ™ = u® and we conclude that
XU y@)

Proof of Proposition [2.2.2| (identifiability and
observability for FitzHugh-Nagumo model)

We consider two solutions of system (2.2.7) (v, w®) and (v®,w®) respectively
associated to the set of initial conditions and parameters X = (vél), w(()l), a® oM (1)
and X@ = (o{?,wl?,a®,p® 7®). We assume that the measurements on these two
solutions coincide, that is v(Y) = v in [0,7] and we want to prove that X = X2,

First, by assumption, we immediately have that U(()l) = v(()z). Next, according to the

first equation of 1’ we get that w® = w® in [0,7], so in particular wél) = w((f).
Using the second equation of (2.2.7)), we have in [0, T

1

1
(1) M) _ pM My = (2) (2) _ p(2)y@
ey (v +a b wt) = ey (v +a b w') (A.0.1)
and . |
(oW —_ pMyy Wy — = (52 _ (2 (2)
ey (0 b Hw') = o) (0 b)),
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1 1 b H2
[ IO ¢ ) R AN (PN ¢ ) R
(7'(1) 7(2)) ) (T(l) 7_(2)> w' = 0. (A.0.2)

Let us prove that ) and w® are linearly independent. If it does not hold, there exists
A € R* such that w® = Ao("). Using system ({2.2.7), this implies that, for all ¢ € [0, T]

1 (1))3
—— (oW + o —pM ):)\(v(l)—(v ) —w(1)+lm)

This implies that

1)

7D 3
Differentiating this identity, we get that, for all £ € [0, T

1

— (00 — p0pD) = A (50 — (LW)2HD — (V)

Replacing w™ by Ao, we get

1
—(1=bPN)| =0.

7(1)

a1 = ()2 = X) -

So this implies that, for all ¢ € [0, T}, either 9V (t) = 0 or (v(V)2(t) is given by a constant.
Using that v )is a continuous function, this implies that it is a constant function in [0, 7]
and since 1w = A\oW, w® is also a constant function in [0, T7.

So, if v and w 1) are not constant functions, we get that v and ") are linearly
independent and we deduce from (A.0.2)) that

1 1 pn  p®2)

By this way, we get that b)) = @ and 7 = 7). At last, using (A.0.1)), we deduce
that a) = a®. So, if v(!) and w™ are not constant functions (which holds for almost all
X)) we have obtained that X! = X®)

Proof for Lemma 3.3: estimation of the Lipschitz
constants

Let f:u € R" — UloW(u) € R™ be a continuously differentiable function f € C*(R™).
The Lipschitz constant can be bounded by:

| fe(w®) = fr(u®)] < Zsup] ||u —ul?), 1<k <n.

Let us introduce a vector v € R™ whose components are defined as:

n

0
vk:Zsup| fk|| _ (.2)|, 1<k<n.

=1 ueu U
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We can estimate the ¢¢ norm of the vector v, we get:

> (zsup\ " ;%)q

ueu

Considering Holder’s inequality where z, ¢ € [1, 0o] with % + é =1,

q

I " n n 1/q
k=1 =

uEU uGM

If we divide on both sides by ||u§-1) ul? )qu .. We get

1/z 1\ ¢
S ((Srasplgir ) (S - )’
LF®) = Fa®)f, T AN T
1 2 — n 1 2
= I Siilug = e

To rewrite it, we get:

1f (™) = f(u®)]lian ~ (v Ofr
O _,® = 1 ]leuma_uj

Huj U, 10 k=

w
|

If we set z = ¢ = 2, we will get

1) — F@®) o :

. @) n n 8f 2
u k2
< DD supl |>]
1 2 —
g = [ [klﬁtuwaw

In this way, we get a method to estimate yfy. Now, we consider the function

of autoencoder U and W to this computation, we can compute % by computing
J

P 8‘1111; oy,

=1 Doy G Then, we will estimate the lower bounds of '~ by computing

- axplmzé
b:(XngMZI%Q R ”)]

k=1 \j=1

In this case, we use the max among N samples the discrete evaluation point of autoencoder
to estimate the sup on the manifold i/.
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Chapter 3

Artificial Neural Network Comparison
on hERG Channel Blockade Detection

The first five sections of this chapter correspond to an article that has been published
in International Journal of Computer Applications (Vol.184, No.14). The article is
entitled: Artificital Neural Network Comparison on hERG Channel Blockade Detection
and is a collaboration with Tessa De Korte, Sylvain Bernasconi, Christophe Bleunven,
Damiano Lombardi and Muriel Boulakia.

Abstract

This chapter presents a comparison of several Artificial Neural Network methods
for classification problems related to cardiac safety assessment. Given the extracellular
field potential recorded by means of micro-electrode arrays, the first aim is to determine
whether a chemical drug is altering the electrical activity of cardiomyocytes by disrupting
the normal behaviour of the human ether-a-go-go-related gene (hERG) channels. In this
chapter, we considered four different Neural Network methods and compared them in
terms of accuracy and computational costs. The results indicate that, among the tested
architectures, the MLP and multivariate 1-dimensional Convolutional Neural Network
(ID-CNN) give the most promising results. The second aim is to classify different drug
concentrations and different channel blockades. Then, we further tested multivariate 1D-
CNN to perform multiclass classification tasks to classify drug concentrations and different
channel blockades. Finally, we investigated RNN methods used in anomaly detection as
a perspective task.

3.1 Introduction

We recall some general information about our research purpose in this chapter.
According to [I33|, cardiotoxicity has become one of the major causes of drug
discontinuation in preclinical and clinical drug development. More specifically, as
presented in the studies [134, 35|, several non-cardiovascular drugs were withdrawn
from clinical use from 1990 to 2001 because they were associated with QT interval
prolongation by blocking ion channels. Therefore, it is crucial for the pharmaceutical
industry to develop effective methods to study and identify the cardiotoxicity risk in
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drug development at an early stage. To do so, measuring the electrophysiology of human-
induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using multi-electrodes
arrays (MEA) is a very promising technology that sets up high-throughput drug screening
methods. Specifically, assessing drug effects on the hERG channel [12] activity is an
important part of the cardiac safety risk assessment as the main cause of QT interval
prolongation. hERG channel is primarily responsible for conducting the delayed rectifier
potassium current (IKr), which is important for cardiac repolarisation. Inhibiting the
hERG channel can potentially induce ventricular arrhythmia, torsades de pointes, and
sudden death, causing dangerous side effects for patients. Moreover, regulatory agencies,
including the U.S. Food and Drug Administration (FDA) and the European Medicines
Agency (EMA), emphasise the evaluation of potential hERG channel blockade during drug
development. Drugs with a substantial risk of hERG channel blockade may encounter
regulatory restrictions or necessitate additional monitoring [136].

In this chapter, our first aim is to evaluate the impact of a drug on the hERG potassium
channel by using Artificial Neural Network (ANN) methods on the field potential (FP)
recordings of hiPSC-CMs obtained with MEA technology. In particular, given the
electrograms recorded by MEA after adding a drug to a mono-layer of hiPSC-CMs, we
explored if the drug can be classified as a hERG potassium blocker. By investigating
different ANNs, this work expects to find the most suitable and effective methods to
automatically identify which drugs cause hERG potassium channel blockade.

This chapter is a continuation of the work performed by [I37] who used a greedy
classifier optimisation strategy applied to combining in vitro and in silico experiment data
to predict pro-arrhythmic risk caused by drugs. Our objective is to test Neural Networks
that are known to be particularly effective and do not generally require a pre-processing
step to extract features.

The second aim is to help improve the cardiac safety assessments by determining 1)
if a given FP recording can be associated with a specific drug concentration or classified
as a specific channel blocker, 2) if abnormal/low quality recordings can be identified in a
large amount of FP recordings. These two questions and our proposed methods will be
covered in more details in the last two sections.

3.1.1 State-of-the-art/Literature reviews

The articles [96]-[99] presented several Neural Network methods that are able to
improve the accuracy of different learning tasks for electrocardiogram (ECG, a test that
records electrical signals in the heart) analysis. Among the proposed methods, MLP
and CNN are the most popular Neural Network methods that have been widely used for
classification and prediction purposes in different domains, including ECG arrhythmia
classification. Neural Networks have also been widely tested in electroencephalography
(EEG, a test that measures electrical activity in the brain) research like brain computer
interfaces, sleep analysis and seizure detection. Especially, CNN methods are used to
detect and diagnose seizures based on EEG signals ([L00, [101]).

In their studies, [I03] and [102] employed CNN to classify echocardiograms (a test that
uses high frequency sound waves to generate pictures of your heart which can check the
structure and function of the heart), aiming to develop an automated diagnostic tool for
clinical use. Furthermore, the work of [91] introduced a multi-label neural network that
employs feature extraction techniques on mechanical beating signals of cardiomyocytes.
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This network is designed to classify various drugs and drug concentrations by leveraging
the distinctive features found in individual cardiomyocyte beating patterns.

3.1.2 Structure of this chapter

In this chapter, Section presents the experimental data set that we have considered
and the data pre-processing needed for MLP, one of the tested ANN methods. Then,
Section details the type of input and the architecture for the tested ANN methods:
MLP, Univariate 1D-CNN, Multivariate 1D-CNN and 2D-CNN. In Sections [3.4] and
we present the design and results of the classification tasks given by these four ANN
methods and we compare them in terms of performances, data processing costs and
network training costs. At the end of the chapter, we will also present some further
studies regarding multiclass classification and semi-supervised learning methods to detect
anomalies in Section [3.6] and B.7.

3.2 Presentation of the data set and pre-processing

3.2.1 Experimental data set

This study has considered the same experimental data and setup as in the work of [137].
The experimental data are FP recordings of hiPSC-CMs obtained with MEA technology.
MEA includes a two-dimensional arrangement of micro-electrodes that can monitor the
extracellular electrical activity of the cultured cells (we refer to [138] for an overview on
the background of MEA measurements of hiPSC-CM). More specifically, the experimental
data correspond to FP signals before and after addition of 12 drugs, in 96-well MEA
plates, each well containing 8 recording electrodes. Each drug has been added at four
concentrations to four different wells using five replicates per concentration.

As mentioned in [I37], when a drug is added to the hiPSC-CM, the FP can be altered.
For instance, the drug can have some impact on certain ion channels of the cells: it can
reduce the original amplitude or prolong the duration of each cardiac beat. However, there
are big variabilities in the whole recording and each drug has a specific effect. Using basic
statistical tools to analyse those signals often faces difficulties and gives biased results. In
this work, ANNs have been tested to have a more comprehensive and effective analysis
on FP data set.

Table lists the drugs included in the data set and indicates the hERG potassium
(K), Calcium (Ca) and Sodium (Na) IC50 values and concentrations that have been
tested for each drug. The last column of Table [3.1] summarizes the known effects of the
drugs by classifying them as K, Ca or Na blockers or mixed blockers. A tested drug
with a predominant impact on K channel is considered as a K blocker. Based on this
information, 11 drugs can be considered as pure or mixed K blockers. Only Diltiazem
has a K IC50 value that is much higher than the Ca IC50 and higher than the top tested
concentration and has been classified as a Ca blocker.

Each cardiac beat has been extracted from the recording sequences coming from each
electrode. Since each beat may have a different length depending on the variability of the
hiPSC-CMs and the recording conditions, all cardiac beats have been resampled using
0.08 ms time step to normalize each beat duration to 885.6 ms (11070 samples). For more
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Table 3.1: Experimental data information

‘ ‘ IC50 (M) ‘ Concentration (uM) ‘
‘ Drug ‘ K ‘ Ca ‘ Na ‘ 21 ‘ 42 ‘ 43 ‘ 44 ‘Type of blocker‘
| Loratadine | 6.1 |11.4| 289 | 0.001 |0.003 |0.001 | 0.03 | K, Ca |
| Ibutilide | 0.018 | 62.5 | 42.5 | 0.0001 | 0.001 | 0.01 | 0.1 | K |
| Droperidol | 0.06 | 7.6 | 22.7 | 0.03 | 0.1 | 032 ] 1.0 | K |
| Mexiletine | 622 | 125 | 38 | 01 | 1.0 | 10 | 100 | Na , K |
| Dofetilide | 0.03 | 26.7 | 162.1 | 0.0003 | 0.001 | 0.003 | 0.01 | K |
| Diltazem | 132|076 | 224 | 001 | 01 | 1.0 | 10 | Ca |
‘ Chlorpromazine ‘ 1.5 ‘ 3.4 ‘ 3 ‘ 0.1 ‘ 0.3 ‘ 0.95 ‘ 3 ‘ K, Ca, Na ‘
‘Clozapino ‘ 2.3 ‘ 3.6 ‘ 3 ‘ 0.1 ‘ 0.3 ‘ 0.95 ‘ 3 ‘ K, Ca ‘
‘ Clarithromycine ‘ 32.9 ‘ >30 ‘ NA ‘ 0.1 ‘ 1 ‘ 10 ‘ 100 ‘ K ‘
| Cisapride | 0.02 | 11.8 | 337 | 0.003 | 0.01 | 0.03 | 0.1 | K |
| Bepridil | 016 | 1.0 | 23 | 001 | 01 | 1 | 10 | K,Ca,Na |
| Azimilide | <t |178| 19 | 001 | 01 | 1 | 10| K,Ca,Na |

The information contained in this table comes from [137] and the references therein.

details on the experimental data and setup, we refer to the work [137] which considered
the same data set.

For each beat, an acceptable signal must contain both depolarisation and repolarisation
phases. Among all the collected cardiac beats, some signals may have an altered
depolarisation or repolarisation phase compared to the majority of the signals and these
abnormal signals have been removed from the data set. The abnormal signals will be used
in later studies to investigate a method to detect anomalies.

In the experiments, the drugs have been added after a few minutes of baseline
recording so that each electrode provides two recordings: the time period corresponding
to the baseline recording (prior to drug addition) is denoted by B, and the time period
corresponding to the post-addition recording (after drug addition) is denoted by Bs. To
construct the training set, all the beats in the period 3; and the beats obtained from the
experiments of Diltiazem in the period 3, will be labelled as non-K blocker (this class is
denoted by NO-K-blocker). On the other hand, the beats obtained when one of the 11
K blockers was added to the experiments in the period B, will be labelled as K blocker
(this class is denoted by K-blocker).

3.2.2 Pre-processing for MLP method

MLP method, in contrast to CNN methods that can directly use the raw signal,
requires a pre-processing step to extract some markers or features from the signal that will
be used as input. This data pre-processing step represents an additional computational
cost but it can significantly reduce the input size compared to the raw signals and, by this
way, it can substantially speed up the training phase. To facilitate the feature extraction
process, we have separated the signal into two phases: each beat of the signal has been
split into a depolarisation phase with a duration of 25.6 ms, and a repolarisation phase
with a duration of 860 ms.

A Gaussian filtering, following [139] has been used to mitigate the impact of signal
noise and make the computation of the features more accurate. Since the signal to noise
ratio for the repolarisation phase of the signal is larger, we chose a Gaussian kernel with
a larger standard deviation for the repolarisation phase (its value is equal to 40) than for
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the depolarisation phase (its value is equal to 2.5).

To summarize, the pre-processing step has extracted 64 features from each beat,
distributed into 23 features for the depolarisation phase, 37 features for the repolarisation
phase, and 4 features for the entire signal. The features are listed in Tables and
and some of them are displayed in Figure and [3.2] The following notations are used
in the tables:

e the covariance matrix used to compute Maximum Eigenvalue for depolarisation
phase (DEV) and Maximum Eigenvalue for repolarisation phase (REV) is the
matrix given by: for all 1 <1i,7 <8

where N, corresponds to the number of time steps, egk) € R is the FP signal recorded
by the i-th electrode and €; is the mean value of e;

e Dw is the filtered signal restricted to the depolarisation phase (that corresponds
to the time interval delimited by DD in Figure whereas Rw is the part of the
filtered signal restricted to the repolarisation wave. Dw is defined on [0, tp] and Rw
is defined on [tg!, tR?].

e Ap (resp. Ag) is the area under the curve of Dw (resp. of Rw):

Ap = ‘ /tD Dw(t)dt‘ and Ap = ’ /tR2 Rw(t)dt‘
0 tr!

The third and sixth columns of Table [3.2] and the third column of Table [3.3] give the
feature indexes. The DEV and REV correspond to one scalar feature. Regarding the
other features listed in the tables, they have been extracted from each signal and, in a
given well and at a fixed beat. Then, we computed the average, maximum, minimum, and
standard deviation of the features over the different electrodes of the well. Then, these
four values were stored in the entries. In addition, Duration DD and Arrival time at
the centre DCT minimum values have been removed considering they have too extreme
values when they are computed on a large number of beats.

Due to the fact that the orders of magnitude of the features widely vary, the features
have been rescaled to ensure that the statistical distribution of the input data is roughly
in the same range. Since our goal is to detect the impact of drugs on the signal, the idea is
to rescale the features extracted from beats corresponding to period B, or P, by features
corresponding to period B;.

More precisely, a feature coming from one beat taken in period ‘B; is rescaled by
dividing the similar feature computed from another beat in period 9; in the same well.
The arrays containing these rescaled features are labelled as NO-K-blocker. On the other
hand, a feature coming from one beat taken in period P, is rescaled by dividing the
similar feature computed from another beat in period B; in the same well. An array
containing these features computed from beats extracted from Diltiazem experiments is
labeled as NO-K-blocker whereas an array containing these features computed from beats
extracted from K-blocker experiments will be labeled as K-blocker.
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Table 3.2: Features for the depolarisation and repolarisation signals

depolarisation Phase ‘

repolarisation Phase

‘ Features Name ‘ Methodology

‘ Index of features ‘ Features Name ‘ Methodology

‘ Index of features

Maximum Maximum eigenvalue of | 1 Maximum Maximum eigenvalue of | 24
Eigenvalue the covariance matrix C' Eigenvalue the covariance matrix C'
(DEV) (REV)
Amplitude (DA) | DA = max(Dw) — | 2,3,4,5 Amplitude (RA) | RA = max(Rw) — |25, 26, 27,
min(Dw) min(Rw) 28
‘ Duration (DD) ‘ Duration of Dw ‘ 6,7,8 ‘ ‘ ‘
Amplitude Value of Dw at the time | 17, 18, 19, Amplitude in Value of Rw at the time | 49, 50, 51,
in the Center where the area under | 20 the Center where the area under the | 52
(DC) the curve reaches 0.54, (RC) curve reaches 0.5A5
Maximum Dsmax =109, 10, 11, 12 Maximum Rsmazx = max(g,, Ruw' 33, 34, 35,
Slope maxo,,] Dw' Slope 36
(Dsmax) (Rsmazx)
Minimum Dsmin = miny,,|Dw’ 13, 14, 15, Minimum Rsmin = ming,,) Rw' 37, 38, 39,
Slope 16 Slope 40
(Dsmin) (Rsmin)
Arrival Time Time where the area | 21,22, 23 Arrival  Time Time when Rw reaches its | 29, 30, 31,
at the Center under the curve reaches for Maximum maximum value 32
(DCT) 0.5x Ap Amplitude
(RCT)
25% of the Time where the area |41, 42, 43,
area under under the curve reaches | 44
the curve 0.25AR
(RCTO0.25)
50% of the Time where the area |45, 46, 47,
area under under the curve reaches | 48
the curve 0.5AR
(RCTO0.5)
75% of the Time where the area |53, 54, 55,
area under under the curve reaches | 56
the curve 0.75AR
(RCT0.75)
90% of the Time where the area |57, 58, 59,
area under under the curve reaches | 60
the curve 0.9Ag
(RCTO0.9)

Table 3.3: Features for the whole signal

‘ Features Name ‘ Methodology ‘

Index of features ‘

Field potential | The duration
duration (FPD) from  beginning of
depolarisation  wave

61, 62, 63, 64

to the end of the
repolarisation wave

Depolarization Phase

1.0 1 i3 —— Non Potassium Blocker
——— Potassium Blocker
0.5 A
° 0.0 - R e
3
Té-
g —0.5 1
Ds (Dsmax,
Dsmin;
—1.0 1
—1.5 1
1¥| pA
0 5 10 15 20 25
Time(ms)

Figure 3.1: A selection of depolarisation phase features
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Figure 3.2: A selection of repolarisation phase features
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3.3 Artificial Neural Networks methods

This part of the chapter focuses on the classification between K or non-K blockers of
the drugs listed in Table 3.1 Four types of ANNs have been tested: MLP, Univariate
1D-CNN, Multivariate 1D-CNN and 2D-CNN. In this section, the architecture of these

ANN methods are explained.

3.3.1 Techniques used in ANN

Before presenting the different ANNs, the important techniques that have been used
are listed. We start by detailing the activation functions:

1. Since Rectifier Linear Unit (ReLU) has been used to improve Boltzmann Machines

in [140], ReLU becomes a commonly used activation function [141]:

ReLU(z) = max(z,0). (3.3.1)

. The leaky ReLU function has been introduced by [142] and it is a variant of the
ReLU function whose expression is given by:

T ifz>0
flz) = { axr otherwise

where a is a small constant number (we have taken a = 0.3 in our tests).

(3.3.2)

. The sigmoid activation function [141], 143] transforms the input into an output that
lies in the interval (0, 1) as follows:

1

x(z) =
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The Batch Normalisation operation is used to normalise and stabilise the distributions
of the input layers, considering the study of [I44]. The formula is the following ([I45]):

_ Ty — UB

7= S _HB (3.3.4)

VL

This equation normalises the input elements z; (which are the outputs from the previous
activation layer) by calculating the mean pp and variance 0% over all the samples. Here,
the positive constant e prevents the calculation from being invalid when the variance is
very small or equal to zero.

3.3.2 MLP

The first tested neural network is MLP. Since MLP was first proposed in [146], it has
become a commonly used method that consists of sets of fully connected layers. The work
of [147| proposed a method to detect arrhythmia in ECG using MLP.

In MLP method, if there are L € N* hidden layers and that, for each 1 <[ < L, the
I-th layer has k) € N* units. The input is denoted by z € R¢ (where d € N* corresponds
to the number of features), the first hidden layer output is a set of k*) values given by:

d

Jj=1

where ¢(.) is the activation function. Then, the output of the first hidden layer will be
the input of the second hidden layer, the output of the second hidden layer will be the
input of the third hidden layer, until the last hidden layer (see [126, Chapter 4, section
1.1], [148]).

The architecture of the MLP network is shown in Figure (we refer to [149,
Chapter 6], for the definitions of the technical terms that follow). In the first layer
which corresponds to the input layer, 64 features are fed into the network. A batch-load
[126, Chapter 11, section 5| has been used and each load will have 40 sets of 64 features
propagated through the network. The weights for the first hidden layer are initialized with
random normal distributed numbers. The bias for the first layer is initialized to zero. The
output from the first hidden layer is then rendered to the next 6 sets of fully connected
layers. In the 6 sets of fully connected layers, they have 320, 320, 192, 64, 32, and 10
hidden units in the layers and the neurons are activated by utilizing the ReLLU activation
function (3.3.1]) in each hidden layer considering the features were rescaled in Section .
The output from the last hidden layer will be passed to the fully connected output layer
of 1 neuron with the sigmoid activation function to provide a prediction for the
binary classification.

During the training phase of the network, the predictions from the MLP method will
be compared with the actual labels in order to compute the loss for each training. The
Binary Cross Entropy has been chosen as the loss function. The weights of hidden layers
were computed by using an Adam optimiser [126, Chapter 11, section 7].
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There are 7 fully
connected hidden layers
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Figure 3.3: Architecture of the MLP model
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3.3.3 1D-CNN

When CNN was first proposed in [I50], it was named a self-organised neural network.
After many improvements and extensions [I5I], CNN has become a neural network
commonly applied to image analysis. ~While 1D-CNN is very often used for the
classification of time series data, 2D-CNN is a leading machine learning approach for
image classification. Compared to MLP, the CNN method consists of convolutional layers
and works as a feature extractor, so it does not require heavy data pre-processing.

Pre-processing for 1D-CNN

Compared to the MLP method, the data pre-processing for 1D-CNN is much simpler.
In this work, the univariate 1D-CNN and the multivariate 1D-CNN have been tested.
The univariate 1D-CNN method takes a single signal as input. We label the individual
signals in period ; and the signals obtained from the experiments of Diltiazem as NO-
K-blocker and those signals are denoted by s,(t). We label the individual signals obtained
from experiments of K-blocker drugs as K-blocker and those signals are denoted by s, (¢).

On the other hand, the multivariate 1D-CNN takes a pair of signals as input. One
signal from period 3 is paired with another signal in the same well and beat but recorded
by a different electrode (in particular, it also belongs to period frP;). s.(t) and s.(t)
are the notations of these paired signals and NN, is the notation of their length. Then, &
is defined as the array in R?*"* given by :

S, = { salfy), i=1 (3.3.6)

where (t;)1<j<n, corresponds to the set of the time steps. All these pairs of signals will
be labelled as NO-K-blocker.

In a comparable way, one signal from period §3; (that is denoted by s.(t)) is paired
with one signal from period P, (that is denoted by s4(¢)) in the same electrode and well
by introducing the array & of size 2 x V; given by:

C(tj)7 =1
G = { zd@»), . (3.3.7)

For these pairs of signals, the ones coming from experiments of Diltiazem will be labeled
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There are 10 Conv1D layers. In the following
Conv1D layer, we have Max Pooling after
Dense 3, 5, 9 and Drop Out after Dense 6 and
8. The Dense number corresponding the

ConvlD No.1...,, 10
[ 3 \ [ Leaky ReLU function is used ]

after each fully connected
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Figure 3.4: Architecture of the 1D-CNN model

as NO-K-blocker whereas the ones coming from experiments of K-blocker drugs will be
labeled as K-blocker.

1D-CNN methodology and architecture

The architecture of the implemented 1D-CNN method (which is common to the
univariate and multivariate 1D-CNNs) is shown in Figure[3.4] It is based on the traditional
AlexNet [152] proposed in [153]. In the CNN method, the raw signals are used as input.
The weights for the first hidden layer are initialized with random normal distributed
numbers. Then, the kernel window with a height of 5 and a width of 1 unit slides across
the input time series to do a cross-correlation operation [120, Chapter 6, section 2| with
1 stride from top to bottom. The example of a cross-correlation operation can be seen
in Figure 3.5 The results from those cross-correlation operations constitute the features
extracted from the first convolutional layer (the convolutional layer can be called Conv1D)
and the ConvlD has 16 extractors to do this kind of computation named convolution
filters.

The output from the first ConvlD will be transformed by a leaky ReLU function
before the next process. As ReLU could not be used as negative features are
transformed to 0. So, to avoid losing information from negative features in the following
computation, the leaky ReLLU has been chosen to transform the output from all
Conv1D layers and fully connected layers.

After the first ConvlD layer and the activation process, the Batch Normalization
layer has been used to speed up the training process and reduce the sensitivity of the
initialization of the convolutional neural network [145]. Then the max-filter of the max-
pooling layer [126, Chapter 6, section 5| extracts the maximum values from the defined
region which has a height of 5 and a width of 1, as has been proposed in [153]. There
is also a dropout layer with a rate of 50% added between several ConvlD layers. Then
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Figure 3.5: One-dimensional cross-correlation operation. The shaded portions are the
first output element as well as the input and kernel tensor elements used for
the output computation: 0 X 0+1x1+2x24+3x3+4x4=230

the other convolution layers are following the same logic as the first convolution layer.
In summary, our model includes 10 Conv1D layers and each layer includes: 16, 16, 26,
26, 32, 52, 52, 72, 72, and 84 filters. The max pooling or dropout layers have been put
between several Conv1D layers.

At the end of the Conv1D layers, the flattened tensor reshapes the outputs from the
previous layer in a one-dimensional array. After flattening the layer, there is a dropout
layer that <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>