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Abstract

This thesis mainly addresses two topics : the first focuses on parameter estimation while the second
explores applications relevant to safety pharmacology and disease studies.

Solving parameter estimation problems poses significant challenges, especially in dynamical systems
characterised by a large number of equations and parameters. The difficulties arise from the need to solve
non-linear, non-convex, and potentially high-dimensional optimisation problems. Classical optimisation
methods often rely solely on the underlying dynamical systems and neglect the advantages offered by all
available data. In response to this gap, we introduced a novel approach named Latent Variable Gradient
Flow (LVGF), designed to leverage both data and the underlying dynamical system. This method is based
on two steps. In the first step, an autoencoder is trained on the data set in order to represent it with
latent variables in smaller dimension. Then, in the second step, with the help of a non-linear mapping
that allows to link the latent variables and the parameter variables, we developed an algorithm that can
be described as a gradient flow for the latent variables of the autoencoder. We proved convergence results
for our method and the numerical tests highlighted the fact that the LVGF approach could overcome the
challenges associated with parameter estimation compared with the classical gradient descent method,
particularly in situations involving non-convex optimisation problems.

Regarding the applications in safety pharmacology and disease studies, we investigated several Artificial
Neural Networks (ANN) methods for classifying drugs based on their effects on ion channels. Firstly, we
focused on classifying whether a given data from a drug experiment alters the normal behaviour of the
human ether-a-go-go-related gene (hERG) channel. The Multilayer Perception (MLP) and multivariate
1-dimensional Convolutional Neural Network (1D-CNN) demonstrated efficiency and high accuracy in
drug classification, showcasing their potential to enhance drug high-throughput screening. Furthermore,
we extended the application of MLP and multivariate 1D-CNN to identify healthy individuals from
patients with Brugada syndrome. This testing confirmed their versatility in addressing different problems.
Additionally, we explored the use of autoencoder methods in anomaly detection to automatically identify
abnormal data from experimental data sets. This approach aims to enhance the quality of data during
the experimental recording stage. Lastly, we presented a comparative analysis of ANN, statistical, and
mathematical modelling methods employed in in vivo studies to examine the ageing effects on dogs’
cardiovascular systems.
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Résumé

Cette thèse aborde principalement deux thèmes : le premier se concentre sur l’estimation des paramètres
tandis que le second explore des applications pertinentes pour la pharmacologie de la sécurité et les études
sur les maladies.

La résolution de problèmes d’estimation des paramètres présente des défis significatifs, notamment
dans les systèmes dynamiques caractérisés par un grand nombre d’équations et de paramètres. Les
difficultés découlent de la nécessité de résoudre des problèmes d’optimisation non linéaires, non convexes
et potentiellement de grande dimension. Les méthodes d’optimisation traditionnelles s’appuient souvent
uniquement sur les systèmes dynamiques sous-jacents et négligent les avantages offerts par l’ensemble des
données disponibles. En réponse à cette lacune, nous avons introduit une nouvelle approche appelée Latent
Variable Gradient Flow (LVGF), conçue pour tirer parti à la fois des données et du système dynamique
sous-jacent. Cette méthode repose sur deux étapes. Dans un premier temps, un auto-encodeur est entraîné
sur l’ensemble de données afin de le représenter avec des variables latentes en plus petite dimension.
Ensuite, dans la deuxième étape, à l’aide d’une application non linéaire qui relie les variables latentes
et les paramètres, nous avons développé un algorithme qui peut être décrit comme une méthode de flot
gradient pour les variables latentes de l’auto-encodeur. Nous avons prouvé des résultats de convergence
pour cette méthode et les tests numériques ont mis en évidence le fait que l’approche LVGF pouvait
surmonter les défis associés à l’estimation des paramètres par rapport à la méthode classique de descente
de gradient, en particulier dans les situations impliquant des problèmes d’optimisation non convexes.

Pour ce qui est des applications en pharmacologie de la sécurité et les études sur les maladies, nous avons
examiné plusieurs méthodes d’Artificial Neural Networks (ANN) pour classer les médicaments en fonction
de leurs effets sur les canaux ioniques. Tout d’abord, nous nous sommes concentrés sur la classification pour
déterminer si des données provenant d’une expérience sur un médicament altèrent le comportement normal
du canal human ether-a-go-go-related gene (hERG). Le Multilayer Perception (MLP) et le multivariate 1-
dimensional Convolutional Neural Network (1D-CNN) ont démontré une efficacité et une précision élevées
dans la classification des médicaments, illustrant leur potentiel pour améliorer le criblage à haut débit des
médicaments. De plus, nous avons étendu l’application du MLP et du 1D-CNN multivarié pour identifier
les individus en bonne santé parmi les patients atteints du syndrome de Brugada. Ces tests ont confirmé
leur polyvalence pour résoudre différents problèmes. De plus, nous avons exploré l’utilisation de méthodes
d’autoencodeurs dans la détection d’anomalies pour identifier automatiquement des données anormales
dans des ensembles de données expérimentales. Cette approche vise à améliorer la qualité des données
lors de l’enregistrement expérimental. Enfin, nous avons présenté une analyse comparative des méthodes
d’ANN, statistiques et de modélisation mathématique utilisées dans des études in vivo pour examiner les
effets du vieillissement sur le système cardiovasculaire des chiens.

v



Contents

Acknowledgements i

Abstract iv

Résumé v

1 Introduction 1
1.1 Motivation and statement of the problems . . . . . . . . . . . . . . . . . . 1

1.1.1 General background of the study . . . . . . . . . . . . . . . . . . . 1
1.1.2 Electrophysiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Methodological questions . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Neural Network methods: state-of-the-art . . . . . . . . . . . . . . . . . . . 7
1.2.1 MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Parameter estimation: state-of-the-art . . . . . . . . . . . . . . . . . . . . 10
1.4 Classification methods empowering hiPSC-CMs assays: state-of-the-art . . 13
1.5 Contributions in parameter estimation . . . . . . . . . . . . . . . . . . . . 15
1.6 Contribution in classification . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7 Publications and preprint . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Parameter Identification Through Gradient Flow on Latent Variables 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Identifiability and observability of the inverse problem . . . . . . . 23
2.2.3 Latent Variables Gradient Flow (LVGF) for parameter estimation . 25
2.2.4 A numerical illustration of LVGF . . . . . . . . . . . . . . . . . . . 28

2.3 Lipschitz-stable autoencoders and intrinsic dimension . . . . . . . . . . . . 29
2.3.1 Presentation of the autoencoder . . . . . . . . . . . . . . . . . . . . 31
2.3.2 A criterion based on stable manifold widths to determine the latent

variable dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Estimation of the Lipschitz constants . . . . . . . . . . . . . . . . . 34

2.4 Numerical tests of intrinsic dimension estimations . . . . . . . . . . . . . . 35
2.4.1 Tests on Van der Pol model . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 Tests on the FitzHugh-Nagumo model . . . . . . . . . . . . . . . . 36

2.5 Parameter identification with LVGF method . . . . . . . . . . . . . . . . . 38

vi



2.5.1 Parameter identification for Van der Pol model . . . . . . . . . . . 38
2.5.2 Parameter identification for FitzHugh-Nagumo model . . . . . . . . 40

2.6 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A Appendix 46

3 Artificial Neural Network Comparison on hERG Channel Blockade
Detection 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 State-of-the-art/Literature reviews . . . . . . . . . . . . . . . . . . 50
3.1.2 Structure of this chapter . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Presentation of the data set and pre-processing . . . . . . . . . . . . . . . 51
3.2.1 Experimental data set . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2 Pre-processing for MLP method . . . . . . . . . . . . . . . . . . . . 52

3.3 Artificial Neural Networks methods . . . . . . . . . . . . . . . . . . . . . . 55
3.3.1 Techniques used in ANN . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.2 MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.3 1D-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.4 2D-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Setup of binary classification . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 Binary classification results and methods evaluations . . . . . . . . . . . . 64

3.5.1 Results of binary classification . . . . . . . . . . . . . . . . . . . . . 64
3.5.2 Methods evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Beyond binary classification . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6.1 Classification according to concentration. . . . . . . . . . . . . . . . 66
3.6.2 Multi-blockers classification. . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Replicator neural networks (RNNs) for anomaly detection . . . . . . . . . 68
3.8 Summary: chapter conclusion and discussion . . . . . . . . . . . . . . . . . 72

4 Two Additional Studies 73

Part 1: Analysis of Data from Patients Affected by the Brugada Syndrome 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 The AP data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.2 The goals of this study . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Binary classification between healthy and non-healthy individuals . . . . . 75
4.3 Distinguishing patients with severe and non-severe symptoms . . . . . . . . 79

4.3.1 Data variability analysis . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.2 Severe and non-severe syndrome identification . . . . . . . . . . . . 80

4.4 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Part 2: Comparison of Statistical, Machine Learning, and Mathematical
Modelling Methods to Investigate the Effect of Ageing on Dog’s
Cardiovascular System 86
4.5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

vii



4.6 Experimental Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.7 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.7.2 Results from Statistical Analysis . . . . . . . . . . . . . . . . . . . 91

4.8 Machine Learning Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.8.1 MLP Method used to Analysis In vivo Data . . . . . . . . . . . . . 94
4.8.2 Results from MLP Method Answering Q1 . . . . . . . . . . . . . . 95
4.8.3 Results from MLP Method Answering Q2 . . . . . . . . . . . . . . 95

4.9 Mathematical Modelling Analysis . . . . . . . . . . . . . . . . . . . . . . . 96
4.9.1 Analog Circuit Model for the Left Ventricle . . . . . . . . . . . . . 96
4.9.2 Results from Mathematical Modelling . . . . . . . . . . . . . . . . . 99

4.10 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.10.1 Limitations and Perspectives . . . . . . . . . . . . . . . . . . . . . . 106

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Bibliography 108

viii



Chapter 1

Introduction

In the first part of the introduction, we formulate the problem we are interested in
by presenting the general background, the basic mechanics of the electrical activity of
the cardiomyocytes and the methodological questions we will focus on. Then, a brief
presentation of the state-of-the-art is made on the main themes studied in this thesis: in
Section 1.2 on neural network methods, in Section 1.3 on parameter estimation and in
Section 1.4 on classification methods relevant in pharmaceutical studies. At last, Sections
1.5 and 1.6 present the main contributions of the thesis, first on parameter estimation
and second on classification.

1.1 Motivation and statement of the problems

1.1.1 General background of the study

Drug development is a long and expensive process, marked by a high rate of failure in
contrast to the relatively few successes. The aim of this process is to advance novel drug
candidates that offer maximum benefits while posing minimal or manageable safety risks.
The safety assessment phase of drug development focuses on identifying potential safety
issues to safeguard patients from unintended harm. According to the Pharmaceutical
Research and Manufacturers of America’s 2016 Biopharmaceutical Research Industry
Profile [2], the journey to develop a new drug spans 10 to 15 years, with an average
cost of $2.6 billion from the 2000s to the early 2010s. Fewer than 12% of the drugs that
enter clinical trials have finally been approved. Thus, detailed analyses related to clinical
safety concerns and nonclinical toxicity issues that contribute to attrition during drug
discovery and development become important.

Among those drug safety issues, unexpected cardiac adverse effects are the leading
causes of drug attrition, discontinuation of clinical trials and withdrawal of drugs from
the market ([3, 4, 1]). As a result, cardiotoxicity assessment in drug development has
gained importance for many years.

Cardiotoxicity assessments for humans are usually done using in vivo animal
models and in vitro non-human tissues. For animal models, there is a lack of cross-
species translation due to different biological pathways and pharmacokinetic properties.
Conventional in vitro testing is also limited because it is low throughput, expensive and
time-consuming [4]. Similarly, disease modelling is usually done on animal models or
human cells to study the pathogenesis of genetic cardiac diseases. The limitations of
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cross-species translation in animal models and the limited source of human cells also
create challenges in disease study [5].

Therefore, considering limitations exist in cardiotoxicity assessments, it is important
to develop high-throughput screening with thousands of compounds to select the
best candidates as fast as possible and reduce drug-induced safety concerns in drug
development. Considering disease studying, it is essential to explore alternative
approaches, moving beyond reliance on animal models and human cells. One such
alternative involves conducting experiments on drug safety and disease studies using
human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) [6]. A human
induced pluripotent stem cell (hiPSC) is a reprogrammed cell with the capacity for self-
renewal and the capability to be differentiated in any cell type, in which cells close to
cardiomyocytes, hiPSC-CM.

Compared with using differentiated human cells and animal experiments, the unlimited
source of hiPSC-CMs is one the most promising innovations of medical research that can
overcome the limitations regarding effectiveness and efficiency. HiPSC-CMs can provide
new opportunities to create in vitro models which could be used in regenerative medicine,
disease modelling, drug screening, and precision medicine.

Cardiomyocytes are excitable cells, with a well characterised electrical activity. Thus,
recording and analysis of this activity allows to screen for all drugs interfering with it,
which are one of the main attrition causes in cardiac safety. Patch clamp [7] is a technology
used to study the electrical properties of a single cell at the level of ion channels and
membrane currents. During patch clamp recording, a microelectrode is put inside the cell
membrane. The microelectrode creates a tight seal with the cell membrane to measure
the electrical activity of the ion channels. A typical patch clamp recording captures the
intracellular action potential (AP). The AP results from rapid changes in the voltage
across a membrane. Patch clamping is considered the "gold standard" for ion channel
research, but it is low-throughput and has high requirements of expertise for experimenters
[8]. Therefore, new technologies like Multi-Electrode Array (MEA) have been proposed
for high-throughput studies which is more automated compared with patch clamping.

An MEA is a grid of closely spaced microscopic electrodes embedded at the bottom
of wells in a multi-well MEA plate [9]. This technology allows for the cultivation of
electrically active cells like cardiomyocytes directly over the electrodes. HiPSC-CMs based
in vitro model, when observed with MEA can overcome the challenges presented above
and allow the high-throughput screening [10]. Indeed, MEA makes it possible to record the
electrical activity (the electrograms obtained are called field potential (FP)) of multiple
cells (usually a monolayer, a small tissue) to study a large number of drugs in parallel.
The FP of hiPSC-CMs is the extracellular electrical activity from a population of these
cells (a small tissue). It is a measure of the overall electrical activity of the hiPSC-CMs. In
the following section, we will give more detail of the mechanisms related to the electrical
activity of cardiomyocytes.

The extracellular FP waveforms and intracellular action potential are long time series
data. One cardiac beat has two parts: depolarisation and repolarisation phases. The
depolarisation phase may only last 5 to 10 milliseconds (ms). To be able to represent
depolarisation waveforms, the recording device must have a high sampling rate. For
instance, MEA often uses a sampling rate of 20 kilohertz (kHz, a unit of frequency is
equivalent to one cycle per second), which means, it records 20000 values of electrical
potential per second. When we assume there is only one electrode and one well, having 30
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minutes of recording would take 288 Megabytes of memory in double precision. However,
MEA can have 24, 48, 96, and more wells and multiple electrodes per well. Due to
the large amount of data to be analysed, the large amount of variability (caused by
sensitivity to experimental conditions and biological phenomena), and the measurement
noise, exploiting MEA recordings is a challenging task. The commonly used approach is
to compute key biomarkers which are values that can quantify a larger electrical activity.
This approach may not be reliable enough because the selected biomarkers may give
indirect and limited information on specific ion channel activities and other valuable
information can be ignored.

In this work, we will investigate computational methods that can efficiently and
effectively analyse data from hiPSC-CMs assays to address problems in drug safety
assessment and disease studies. To do so, it is necessary to understand the mechanisms
of perturbation caused by a drug or disease on cardiomyocytes. Another challenge lies
in managing big data recorded from hiPSC-CMs assays to perform high-throughput
screening and study of cardiac diseases.

1.1.2 Electrophysiology

In this section, we present very briefly the basic mechanisms governing the electrical
activities of the cardiomyocytes and the mathematical models which describe them.

The generation of electrical activity, such as the intracellular action potential [11]
of cardiomyocytes, results from the selective permeability of ion channels (which are
pores that allow specific charged particles to cross the membrane) distributed on
the cell membranes. The cell membrane consists of a phospholipid bilayer, allowing
only substances capable of diffusing directly through the hydrophobic core to pass
unaided. Charged particles, being hydrophilic, cannot traverse the cell membrane without
assistance. This assistance is provided by transmembrane proteins, particularly channel
proteins. The involvement of various channels and specialised energy-dependent "ion
pumps", for instance, the carrier protein known as the sodium-potassium pump, is
responsible for moving sodium ions out of the cell and potassium ions into the cell. This
process helps regulate ion concentrations on both sides of the cell membrane. Therefore,
the permeability of ion channels enables a specific ion to move passively down its
electrochemical gradient, thereby altering the membrane potential of the cardiomyocyte.
The ion motion and the different concentrations of ion species on both sides of the cellular
membrane determine a voltage difference across it, called transmembrane potential. Then,
a dynamic and transient alteration of this potential occurs in response to a stimulus, called
an action potential, allowing for cell communication and signalling. This provides several
information about the physiological state and function of the cardiomyocyte.

Referring to [11] and Figure 1.1, one cycle of AP begins with a rapid transient influx of
sodium ions into the cell, leading to a rapid depolarisation (a rapid increase in membrane
potential). This phase is triggered by the opening of voltage-gated sodium channels.
Briefly following the depolarisation, rapid inactivation of the sodium channels, along
with the transient opening and closing of potassium channels contributes to a partial
repolarisation (the membrane potential becomes slightly decreased). Then, a balance
between the inward flow of calcium ions and the outward flow of potassium ions can lead
to a plateau phase that prolongs the AP, contributing to the sustained contraction of
the cardiac muscle. Finally, calcium channels close and the potassium channels remain
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Figure 1.1: Membrane currents that generate a normal action potential [11]
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open, the efflux of potassium ions ensures an outward positive current results in the
repolarisation of the membrane potential, and then the cell is ready for the next cycle.

Among all the channels, in drug safety assessment, we will focus on detecting the
impact on the human ether-a-go-go-related gene (hERG) channel. hERG encodes the
pore-forming subunit of the rapid component of the delayed rectifier potassium channel
(IKr) [12]. This channel is important in the repolarisation of cardiomyocytes. Inhibition
of the hERG channel can prolong the action potential duration (would have the same
effects on FP). This would potentially cause ventricular arrhythmia, torsades de pointes
and sudden death. Therefore, many drug safety assessments focus on hERG channel
studies.

To get an insight into the different mechanisms of cardiac electrophysiology, we need
mathematical and computational models that can simulate the movement of sodium,
potassium, calcium, and other ions across semipermeable cellular and intracellular
membranes.

There are two types of models: phenomenological and physiological models. The
phenomenological models aim to describe and simulate the electrical activity of
the cardiomyocyte without necessarily considering the detailed biophysical processes
occurring at the cellular or molecular level. In contrast, the physiological (biophysical)
models describe and simulate the detailed biophysical phenomena of the cardiomyocyte.
In this work, as we are focused on understanding the effects that drugs or pathologies
might have on ion channels, our primary interest lies in physiological models.

The description of the electrophysiological activity by mathematical models started
from the foundational model introduced by Hodgkin and Huxley in 1952 [13]. Since
then, mathematical models have been important in enhancing our understanding of the
physiological processes within cardiac cells. These models have evolved to cover a wide
array of cell types found in the heart, including nodal, atrial, ventricular, and Purkinje
cells, as documented in studies such as those by [14, 15, 16, 17, 18, 19, 20].

Moreover, specialised computational models have been developed to describe various
cell types of hiPSC-CMs, including ventricular-and atrial-like AP of hiPSC-CMs in [21]
and [22], and FP behaviours, as investigated in studies by [23] and [24]. These models serve
as valuable tools for comprehending the electrophysiological characteristics of hiPSC-CMs
and their role in cardiac function in drug safety assessments.

Those mathematical models allow scientists and researchers to conduct virtual
experiments at a fraction of the cost which is much faster than performing experiments in
the lab, making it an economical choice, especially when dealing with hazardous materials
or complex systems. This can accelerate research and development in various fields, such
as drug discovery and disease studies.

In this work, we focus on how to use computational models of cardiac electrophysiology
that can help us improve the interpretation of drug effects on hiPSC-CMs and mechanisms
of cardiac disease. However, since cardiac electrophysiology models often involve a large
number of equations and parameters, using them in addition to experimental data can
be a challenging task. Therefore, we are inspired to work on methods that can help us to
perform this task in a better way.
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1.1.3 Methodological questions

The work presented in this thesis mainly focuses on two methodological issues.

(I) Enabling parameter estimation. Mathematical models are a tool to investigate
electrophysiological mechanisms, fostering the reduction of animal and human
testing in drug safety assessment and toxicology studies [25]. The models are systems
of parametric Ordinary (or Partial) Differential Equations (ODEs, respectively
PDEs). The parameters might encode physical properties or, in the case of
phenomenological closures, account for several mechanisms, not described in detail
and acting at different scales. When considering hiPSC-CMs, the Paci model,
presented in [21], consists of a system of ODEs well describing the AP and the
main ionic currents of these cells. Several mathematical models, such as the one
in [24], can describe, by means of a system of PDEs, the electrical state inside an
MEA well (and, hence, well reproducing FP signals).

Numerical simulations of the solutions for different values of the parameters,
sometimes referred to as in silico experiments, can be used to get some insight into
the variability of the solutions within a population of individuals or experiments.
Besides the direct problems, in a number of realistic applications, the goal consists
of (or can be reached by) estimating the values of the parameters given some
measurements of the system state. It is indeed the case when studying how a drug
or a pathology disrupts the normal functioning of cardiomyocytes. In this case,
a common situation is the following. We have a mathematical model describing
the phenomena under investigation. Moreover, we usually have a database of
existing experiments, sometimes with partial knowledge. The goal is to estimate
the model parameters given a measurement of AP or FP, in such a way that
the observation of the model solution matches the experimental data. This task
is generally difficult because models that describe cardiac electrophysiology are
often nonlinear and consist of a large number of equations and parameters. These
difficulties motivated us to focus on the topic of parameter estimation in dynamical
systems. We have investigated the idea of combining knowledge from available data
and the mathematical model to enable parameter estimation.

(II) Machine learning methods for classification in electrophysiology. The
second objective is to explore computational methods that can help to analyse
data obtained from drug safety assessment and disease studies. We will investigate
some Machine Learning (ML) methods, especially Artificial Neural Networks (ANN)
methods to help study several questions:

• Can we automatically classify, given an FP recording, if the tested drug is an
inhibitor of one or more ion channels of the cell?

• To improve the quality of the data that will be considered in the analysis, can
we automatically detect some abnormal recordings from a large data set?

• Considering a specific disease, such as Brugada syndrome, and given some
Patch Clamp data of healthy and patient derived hiPSC-CMs, can we classify
healthy individuals from patients? Moreover, can we classify patients according
to the severity of the syndrome?
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All these questions are crucial in view of setting up reliable methods for high-
throughput screening technologies. Question 1 and 3 can be viewed as classification
problems. We will investigate the capability of different kinds of ANN to solve
classification problems in which the input is a set of long time series. Question 2 is
related to anomaly detection. For this problem, we will try an ANN method called
autoencoder to perform the anomaly detection in a fast automatic way, requiring a
minimum amount of pre-processing time.

In the three next sections, we will present some state-of-the-art of methods that will
be used to answer the mentioned questions and solve parameter estimation problems.

1.2 Neural Network methods: state-of-the-art

In this section, rather than making a general presentation of the Neural Network
methods, we will focus on three families of methods that we will consider in our work:
Multi-layer Perception (MLP), Convolutional Neural Network (CNN) and autoencoders.
The first two methods will be repeatedly used to address classification problems regarding
the effects of drugs and diseases. In addition, autoencoder methods are dimension
reduction methods that will play a key role for our parameter estimation method.

1.2.1 MLP

The idea of Perceptron was introduced by Frank Rosenblatt in 1958 [26]. It is a
simplified neural network model that consists of an input layer, one hidden layer and an
output layer to learn and perform binary classification tasks. Since the deep-learning
feedforward network was introduced in 1967 [27] and the backpropagation algorithm
developed in 1970 [28], MLP has been widely used in classification, regression, and pattern
recognition.

MLP is a type of feedforward ANN that consists of multiple layers, including an input
layer, one or more hidden layers, and an output layer. The input layer consists of neurons
that represent the input data denoted as x ∈ Rd for d ∈ N∗. MLP can consist of L ∈ N∗

hidden layers. For each hidden layer 1 ≤ l ≤ L, the l-th layer consists of k(l) ∈ N∗ hidden
units also known as neurons. The hidden layer output is a set of k(1) values given by:

oi = ϕ
( d∑

j=1

wijxj + bi

)
, 1 ≤ i ≤ k(1), (1.2.1)

where w represents the weights, b is the bias, and ϕ(.) is the activation function. The
output of the first hidden layer will be the input passed to the next hidden layer until the
output layer. The number of neurons in the output layer will contain the result. Binary
classification typically consists of a single neuron and for multi-class classification, it has
as many neurons as there are classes. MLP is trained by optimising weights and biases
to minimise the loss function which is, for instance, a norm of the error between the
predicted output and the actual target values. The backpropagation algorithm computes
gradients of the loss with respect to the weights and biases, and an optimisation method,
such as the stochastic gradient is used to update them.
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MLP has found extensive application in pharmacology studies, particularly in the
realm of classification. Here, we will highlight a few examples. The work in [29]
constructed a 3-dimensional space matrix containing key features (so called toxicophores)
of biological activity and chemical structure. This input is provided to the MLP in order
to predict drugs which are causing torsades de pointed arrhythmias. Another example
[30] used MLP to classify the hERG channel–drug interaction potential based on values
of half-maximal inhibitory concentration (IC50) of drugs which have different ion channel
inhibitory. Moreover, the work presented in [31] used chemical, bioactivity and genomic
data from the open source ChEMBL database to test the performance of classification of
hERG-related cardiotoxicity.

1.2.2 CNN

The modern CNN was proposed by Yann LeCun in 1998 [32]. A CNN comprises an
input layer, hidden layers, and an output layer. Within a CNN, the hidden layers consist
of one or more layers that execute convolutions. The key operation of the convolutional
layer is the convolution operation or cross-correlation operation. This operation involves
the convolution kernel, a small matrix of learnable weights with a defined size, performing
a dot product with the input matrix of the layer to produce a single scalar value. In the
convolutional layer, the kernel will slide over the input matrix with a defined step and
compute the dot product within the overlapping regions. Then, scalar biases will be
added to the results and the results will be passed to an activation function to produce
an output also called a feature map. This output serves as the input for the next layer
in the CNN. In CNN architectures, the convolutional layer may be followed by pooling
layers, fully connected layers (hidden layers mentioned in MLP), and normalisation layers
[33] and [34].

Pooling layers [34] reduce the dimensions of the given layer by aggregating information.
For example, max pooling is a pooling operation that selects the maximum element within
a filter’s region, which is a window with a predefined size, over the input. Thus, the output
after the max pooling layer would be a feature map containing the most prominent features
of the previous feature map. Normalisation layers are responsible for standardising and
normalising the input to ensure that the results are on a similar scale.

CNNs have found many applications in various fields, including medical image
classification, face recognition, handwriting analysis, and more. In the domain of safety
pharmacology, we can present a couple of examples. For instance, [35] used graph CNN
to classify the activity of drugs by inputting compound structures extracted from the
ChEMBL database. Furthermore, a study in [36] concerned the safety issue when patients
take multiple drugs. They applied deep CNNs to automatically extract information
related to Drug-Drug Interactions (DDIs) from the biomedical literature. This information
was then used for DDI classification, aiding researchers in gaining a deeper understanding
of DDIs by analysing a vast amount of published literature.

1.2.3 Autoencoder

The autoencoder(AE) was first introduced by Rumelhart in 1986 [37]. A more detailed
description of the autoencoder is given by [38]. As described in [38], the autoencoder
consists of two parts: the encoder and the decoder. The encoder compresses the given
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data and encodes them into a representation in the latent space. We denote the encoder
function as Ψ. Given an input datum, denoted by u ∈ Rn, Ψ compresses it to some latent
representations α ∈ Rp:

Ψ :

{
Rn −→ Rp

u 7−→ α := Ψ(u)

When p < n, the encoder can be interpreted as a feature extractor, which performs
a (generally non-linear) dimension reduction. The decoder function restores the data
converted by the encoder. We denote the decoder function as Ψ†:

Ψ† :

{
Rp −→ Rn

α 7−→ ũ := Ψ†(α)

A complete AE consists at least of three different layers, the input layer receives data
u ∈ Rn, the latent space contains the latent variables α ∈ Rp, and the output layer gives
the prediction ũ ∈ Rn. There is the same number of neurons in the input layer and the
output layer, there are no constraints on the neuron number in the latent space (usually
p ≤ n). For the classical AE, the computation of each neuron in each layer is the same
as for the MLP method, equation (1.2.1). The autoencoder is optimised by minimising
a certain error norm between the original data and their reconstruction. More details of
the autoencoder will be given in the later sections. Here, we will give some examples of
its applications for various purposes.

After the development of the autoencoder, in recent years, there have been many
different evolutions and it has been applied to many fields. In particular, it has been
applied to the situations which benefit from dimension reduction.

Dealing with high-fidelity simulations of systems characterised by nonlinear PDEs can
pose significant challenges and computational expenses. To address these issues, reduced-
order modelling (ROM) has gained considerable attention. ROM aims to approximate
the original PDE problem by utilising a reduced set of parameters or basis functions
that capture the system’s behaviour in a lower-dimensional space ([39, 40, 41, 42]).
One approach to achieving dimension reduction and uncovering latent features, without
requiring access to the full order model (FOM) operators, is through AE [43] and [44].
As demonstrated in [45], AE has been used as a nonlinear ROM method compared with
proper orthogonal decomposition (POD) to investigate the capability to solve problems
such as the Burgers equation and turbulent channel flow. The results revealed that AE
exhibits enhanced reconstruction capabilities for the velocity field. In [46], an approach is
proposed that leverages AE with parametric sparse identification of nonlinear dynamics
(SINDy). This method involves using a limited number of FOM snapshots to construct
a low-dimensional dynamical model aimed at approximating solutions to parametrised
PDEs. As mentioned in [46], the AE+SINDy method is not only useful as a ROM but
also helpful in dynamical system identification.

Another popular research direction is to use the autoencoder to be a dimension
reduction and feature extraction tool in image compression and classification. For
instance, the work in [47] combined a stacked autoencoder (SAE) with a 3-dimensional
deep residual network (3DDRN) to classify hyperspectral images (HSIs). SAE consists
of several layers of sparse autoencoders that use regularisation to enforce sparsity. It was
used to reduce the dimensions of original HSIs. Then, residual network modules combined
with CNNs were used to perform classification by using, as input, the reduced data [48].
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Variational autoencoders (VAE) [49, 50] are a type of autoencoder, whose purpose is
enabling the fast generation of new data, which belong to the same population as the
ones provided. The encoder takes the input data and maps them to the mean and the
standard deviation of a Gaussian distribution. Then, taking samples drawn from the
Gaussian distribution as the decoder input, the decoder can generate reconstructed data
belonging to the same distribution of the input. VAEs have the capability to generate
meaningful new data and find applications in various domains, such as image and text
generation. Notably, VAEs can also be employed for generating novel molecular structures
in the context of drug development, as discussed in [51].

Denoising autoencoders (DAEs) [52, 53] are neural networks designed to learn the
reconstruction of clean data from their noisy version. During the training phase, DAEs
are exposed to noisy data, which are created by introducing random noise to the original
data set. The primary objective is for the network to learn how to denoise the data and
accurately reconstruct the original, noise-free input. DAEs find applications in various
fields, including computer vision, health care, and natural language processing. For
example, DAEs are employed for tasks like medical image denoising and ECG denoising
[54]. They can also be used as a data preprocessing step to handle missing values in the
data set by learning to reconstruct the missing information from the available data.

1.3 Parameter estimation: state-of-the-art

Parameter estimation is an inverse problem in which, given a model depending upon a
certain number of parameters, we look for the values of the parameters in such a way that
the model output matches given measurements. This problem can be mainly addressed
in two different ways: deterministic and stochastic. In a deterministic setting, we assume
that we can estimate the values of the parameters, whereas, in a stochastic setting (and
especially in Bayesian parameter estimation [55]), we try to estimate the conditional
probability density distribution of the parameters given the measurements.

Parameter estimation ([56], [57]) is often cast as an optimisation problem. In that case,
the parameter estimation is achieved by minimising a cost function, which encodes the
discrepancy between the model observations and the actual measurements of the system.
In general, this formulation leads to a non-linear, non-convex, possibly high-dimensional
optimisation problem. There are two major families of methods to solve these optimisation
problems: local optimisation methods and global optimisation methods. We are going to
describe them briefly, each time giving the main existing methods and their properties.

First, about local optimisation methods, the most common methods include the
gradient-based and Newton-based methods which are iterative algorithms that update
parameter estimates based on the gradient, and, for the Newton method, the Hessian, of
the cost function. A very common method is the Gauss-Newton method [58], which
is commonly used to solve non-linear least squares problems [59]. Another classical
example is the class of Quasi-Newton methods [60]. One of the most used is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [61]. This method approximates the Hessian
in each iteration by performing two rank-one updates to the approximate Hessian from
the previous iteration.

The local gradient-based optimisation methods might encounter convergence issues
when the initial guess is far from the true parameter values [62]. Other methods like

10



CHAPTER 1. INTRODUCTION Haibo Liu

Gauss-Newton or Quasi-Newton may also fail when dealing with non-convex continuous
optimisation problems [63].

In the second family of methods, global optimization methods [64] are designed to avoid
convergence issues related to the presence of local minimisers. There are many different
kinds of stochastic methods for global optimisation, we will highlight a few commonly
used classes:

1. Adaptive stochastic methods, also known as adaptive random search, were originally
introduced in [65] and [66]. These methods use stochastic (random or probabilistic)
processes to adaptively refine the parameter estimation process. They employ
sampling optimisation strategies that use results gathered from prior samples or
iterations to enhance both the exploration and convergence of the parameter space.
A very commonly used example of this method is the Markov Chain Monte Carlo
(MCMC) mentioned in [67] and [68]. MCMC methods generate a Markov chain
of parameter samples. They adaptively adjust the next proposed sample based on
the previous sample’s acceptance or rejection. This adaptability allows MCMC to
explore the parameter space effectively.

2. Clustering methods, as described in [69], serve the purpose of identifying groups or
clusters of parameter estimations that exhibit similar characteristics. Clustering
methods can group local optima which increases the efficiency by avoiding the
repeated estimations of the same local optimal solutions. However, there are still
some difficulties when dealing with high dimensional parameter estimation problems.

3. Evolutionary computation (EC) [70], is particularly useful when dealing with
optimisation problems in which the cost function may be non-linear or non-convex
continuous optimisation problems or when the search space is high-dimensional.
Starting with an initial population of candidate parameter sets, EC evaluates
the fitness (how well the model’s predictions match the observed data) of each
candidate parameter set by applying the model with the associated parameter
set. The subsequent step involves selecting the best-performing parameter sets
from the current population. New candidates are generated by considering
the mean of the selected parameters. To maintain diversity, small random
mutations are introduced, and the new population is updated with these fresh
candidates. This iterative process continues until a termination criterion is met.
It’s essential to note that this method demands a substantial number of function
evaluations, which can be computationally expensive, especially when dealing
with high-dimensional parameter spaces or complex models. There are six types
of evolutionary algorithms: genetic algorithms, genetic programming, evolution
strategies, evolutionary programming, classifier systems, and hybrid systems. Well-
known evolutionary strategy method includes the covariance matrix adaptation
evolution strategy (CMAES [71]).

4. Other methods include Ant Colony optimisation [72], Simulated annealing[73],
Taboo Search [74], and Particle swarm method [75].

In general, global optimisation methods can be computationally expensive because
they often require evaluating a large number of functions. This becomes particularly
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problematic when the parameter space is high-dimensional or when the model evaluation
is time-consuming.

Considering the above mentioned issues in local and global optimisation approaches,
scientists explored other methods that try to solve the problem by benefiting from
some available data. Let us assume that, in certain situations, we have examples of
pairs of parameters and observations,

{
θ(i), u(i)

}
1≤i≤Nd

. For example, the work in [76]
used a supervised convolutional machine-learning method to learn the physical model
parameters. The advantage of this kind of model is that no prior knowledge about the
system is required. The main disadvantage consists in the fact that we often need a large
number of training pairs parameters-observations to have a reliable estimation.

Recently, many efforts were made in order to try to exploit both the knowledge coming
from the mathematical model and from sets of data, such as physics-informed neural
networks(PINNs) mentioned in [77, 78, 79, 80] and deep operator network (DeepONet)
find in [81] and physics-informed DeepONet (PI-DeepONet) find in [82].

PINNs represent a methodology that not only employs data-driven supervised neural
networks to learn the given observation but also incorporates physics equations provided
to ensure alignment with the established physics of the dynamical system. PINNs are
trained to generate corresponding observations of the dynamic system, taking time as
the input. The loss function, subject to minimisation, comprises two components. The
first addresses discrepancies between predicted observations and provided data, while
the second deals with the residuals of the differential equations, which depend on the
parameters. In the study by [83], it is noted that PINNs may encounter what is known
as spectral bias, indicating a tendency to prioritise learning the low-frequency component
of the solution, potentially neglecting multiple frequency scales. Acknowledging this
limitation, [84] introduced Fourier Features-Neural Networks (FF-NN) as a solution to
learn dynamical systems and inverse problems.

DeepONet is designed to learn continuous nonlinear operators. The training of a
DeepONet typically involves three components: input functions, independent variables
(often time in the case of differential equations), and observed outputs. The observed
outputs correspond to the results of the operators. In traditional parameter estimation
with DeepONet, the neural network aims to learn a mapping from observed data to
parameter estimates. This means that, in order to train DeepONet, we still need to
provide pairs of parameters and observations,

{
θ(i), u(i)

}
1≤i≤Nd

.
In PI-DeepONet, the loss function includes a physics-informed term. This term ensures

that the estimated parameters follow the known physical laws governing the system. This
helps in cases where the differential equations governing the system are well-established.
Compared with DeepONet, PI-DeepONet only requires input functions and observed
outputs as input. PI-DeepONet can set the unknown parameters θ as trainable parameters
in the neural network. It means the pairs of parameters and observations,

{
θ(i), u(i)

}
1≤i≤Nd

are not required to provide for the training. Then, the unknown parameters θ can be
optimised by the weights and biases of the neural network that minimise the loss function.
Similar to PINNs, the loss function contains a data mismatch term and a physics-informed
regularisation term. The physics-informed regularisation term is based on the residual
of the differential equations. This regularisation term aids in estimating the unknown
parameters θ.

The local optimisation and global optimisation methods usually do not consider
potential benefits from some observation data. PINN-based and PI-DeepONet methods
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introduced an interesting point to leverage both available data and underlining dynamical
systems to benefit parameter estimation. Those methods are heavily weighted on the
training process. It often requires a large number of iterations and evaluations to converge
to an accurate solution. This computational intensity can be a drawback, especially when
dealing with dynamic systems consisting of a large number of equations and parameters.

1.4 Classification methods empowering hiPSC-CMs
assays: state-of-the-art

The primary focus regarding applications in pharmaceutical and disease studies is to
develop computational methods for the analysis of data generated during hiPSC-CMs
assays. Drug safety assessments often involve the collection of a large amount of data.
Extracting relevant information from them can be challenging from a computational point
of view.

In the following, we are going to focus on classification problems, which are a relevant
class of problems in pharmaceutical studies. As an example, the process of identifying
and grouping drugs according to their specific positive or negative effects can be cast as
a classification problem. We will review the contributions and applications of statistical
and ML classification methods.

The study in [85] used data on the properties of molecules as input and their
corresponding biological reactions as output targets. The authors compared two methods:
Support Vector Machine (SVM) [86] and ANN. The results, quite similar for both
methods, showed that valuable compound candidates with respect to a specific therapeutic
target response can be identified. These classifiers could be used for the virtual screening
of millions of molecules.

In the study conducted by [87], chemical toxicity and molecular description data
sets from the Leadscope Toxicity Database were employed to compare the predictive
performance of Random Forests and deep NN in estimating toxicity levels. The results
from both methods demonstrated effective predictions for over 30000 compounds.

Similarly, [88] undertook a comparative analysis of ANN, SVM, and Decision Trees
(DT) to classify compounds as either active or inactive within a specific target biological
system. The objective was to explore the potential of metabotropic glutamate receptor
5 (mGluR5) compounds as novel treatments for schizophrenia. The study revealed that
both ANN and SVM outperformed DT in terms of accuracy, with an area under the curve
(AUC) of 0.77 and 0.78 compared to 0.63 for DT.

Furthermore, in the work presented by [89], Bayesian and SVM classifiers were
employed to categorize compounds based on their potential to cause drug-induced liver
injury, cardiotoxicity, renal toxicity, and genotoxicity. This research aimed to enhance the
understanding of the toxicological profiles of various compounds.

In the context of cancer treatment development, evaluating Multidrug Resistance
(MDR) is crucial to prevent cancer cells from developing resistance to different drugs. In
a study by [90], molecular description data was employed to classify Multidrug Resistance
Reversal (MDRR) activity, categorizing compounds into active and inactive classes.
The tested naïve Bayes classifier demonstrated a commendable performance, correctly
predicting MDRR activities for 82.2% of 185 compounds in a testing set.

From the above studies, ANNs have exhibited significant potential across various
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classification methods. In the following, we will explore several applications of ANNs
within the biomedical and pharmaceutical domains.

In this thesis, we primarily focus on ANN methods used in drug safety assessment
to study cardiotoxicity. There is a similar study in [91], which proposed a multi-labelled
neural network combined with an automatic feature extraction to process cardiomyocytes’
mechanical beating signals obtained by an interdigital electrode biosensor. Their
work classified different drug-induced cardiotoxicities and predicted drug concentrations
corresponding to the degree of cardiotoxicity. The classification method provided the
possibility to screen the drugs with high-throughput cardiotoxicity assessment.

One notable area of application is in drug discovery. As we mentioned, drug
development is a multi-stage, time and resource consuming process due to the number
of candidate molecules is large. ANNs have emerged as a valuable tool for enhancing
the efficiency of molecular design, pre-designing synthetic routes, predicting protein
structures, and identifying macromolecular targets [92]. For instance, the work
in [51] proposed a variational autoencoder capable of transforming high-dimensional
Simplified Molecular-Input Line-Entry System (SMILES) strings into compact latent
space representation vectors. These vectors were subsequently employed in an MLP to
estimate target properties associated with each molecule. Moreover, in [93], the authors
showed that ANNs like MLP have found utility in forecasting drug release behaviour by
using formulation characteristics, such as drug content, pH, or composition as inputs,
and providing neurons that represent the dissolution performance of the formulation as
outputs. ANNs could correctly predict the in vitro response of the drugs.

For instance, [94] used deep learning methods to classify and predict drug-induced liver
injury with chemical structure data. In another study [95], the authors used microscopy
images of fluorescently labelled nuclei from DAPI-stained cells pre-treated with a set of
drugs with differing toxicity mechanisms as input to a deep CNN model. The deep CNN
model could obtain abstract nucleus patterns of images and predict toxicity.

ANN has been also used in the study of in vitro in vivo relationship (IVIVR) [92]
to describe the relationship between in vitro dissolution and in vivo bioavailability. The
conventional statistical method often faces difficulties in linking the input variable with
the dissolution used. In contrast, ANN-based models offer the advantage of incorporating
a broader range of factors related to formulation composition, dissolution profiles, data
from in vitro and in vivo studies, and manufacturing process parameters into the model.
Leveraging these factors, the IVIVR neural model can comprehensively evaluate the
various influences on in vivo responsiveness and make predictions regarding total plasma
concentration-time profiles. This advancement in modelling contributes significantly to
the understanding of drug behaviour and its translation from laboratory studies to real-life
applications in pharmacology.

In many studies, ANN also has been mentioned for disease prediction and diagnosis.
Given the current shift in the healthcare system towards disease prevention rather than
treatment, there is a growing need for more accurate, rapid, and effective disease prediction
and diagnosis. ANN has demonstrated its capabilities in meeting these requirements. For
instance, in the field of medical diagnostics [96, 97, 98, 99], MLP and CNN have been
used in arrhythmia classification using electrocardiogram (ECG) data and in sleep analysis
and seizure detection based on electroencephalogram (EEG) data [100, 101]. Additional
studies in [102] and [103] used echocardiograms to train and evaluate CNN models
for multiple tasks, including automated identification of viewpoints and segmentation
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of cardiac chambers. The output of these segmentation models has been helpful in
quantifying chamber volumes, determining ejection fraction, and enabling automated
assessment of longitudinal strain through speckle tracking. These models have also played
a significant role in the detection of diseases such as hypertrophic cardiomyopathy, cardiac
amyloidosis, and pulmonary arterial hypertension. ANN’s ability to enhance disease
prediction and diagnosis is making substantial contributions to the healthcare landscape,
aligning with the industry’s evolving focus on proactive healthcare management.

In the summarised studies from [104] by comparing different methods used for
classification in pharmacology studies, the SVM and ANN generally demonstrated
robust performance in classification tasks. DT faced challenges related to overfitting or
underfitting issues. SVM, DT, and the naïve Bayes classifier are noted for their relatively
low computational costs when compared to ANN. These methods often rely on feature
data computed from data about the compounds, emphasising the importance of the
quality of these features. For different data types, such as signals or images, ML methods
like SVM, DT, and the naïve Bayes classifier may necessitate data pre-processing to
compute relevant features. This pre-processing step can be resource-intensive, particularly
when dealing with large data sets. Evaluating the feature computation poses challenges,
as there is a risk of information loss during the process. Compared with different types
of ANN which can directly use raw data like signals or images as input, the feature
computation process may be avoided.

1.5 Contributions in parameter estimation

As mentioned in Section 1.3, local optimisation algorithms may encounter convergence
issues whereas global optimisation algorithms usually require high computational costs.
Moreover, those methods do not often incorporate available data. PINN-based methods
benefit from both available data and the underlying dynamics of the system but need a
large computational cost. In this thesis, we aim to explore an idea different from those
methods which can leverage data from the target dynamic system but does not solely rely
on training, as is the case with PINN-based methods.

To start with, let us set the framework of our study. We first consider a system of
parametric ODEs which describes a phenomenon and we denote by θ the vector of the
parameters. The parameter-to-observation map (the relationship between the parameter
vector, eventually containing the initial conditions, and the measurements) is denoted by
φ:

u = φ(θ).

In addition to this model, we assume that we have access to a data set U =
{
u(i)
}
1≤i≤Nd

taken from a population of individuals or experiments (characterised by an unknown
distribution of the parameters θ). Then we consider a specific new measurement u∗ which
is assumed to belong to the same population and, under these working hypotheses, our
objective is to identify the parameter θ∗ which satisfies:

u∗ = φ(θ∗).

To do so, we want to exploit the fact that in addition to the knowledge of the non-linear
function φ which encodes our a priori knowledge about the system, we have access to U
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which encodes a statistical knowledge about the population the datum belongs to.

The inherent challenge lies in the fact that, in the majority of cases, comprehensive
information regarding the distribution of the parameters θ in the population is not
available. In some cases, for instance, in models with a large number of parameters,
it may happen that a significant number of these parameters are constant or are non-
linearly dependent on each other in the population. Getting a knowledge about this
could be precious in view of reducing the cost of the parameter estimation and increasing
the robustness of the computation.

Given a data set U , we propose to setup an autoencoder in order to approximate the
measurements u ∈ U . The encoder Ψ maps the values of u into a smaller dimensional
latent variable α ∈ Rp. The decoder maps the latent variables to an approximation of
the given data. In general, the value of p (the dimension of the latent variable space)
is unknown, and it is a hyperparameter that needs to be pre-defined in order to use
autoencoder. We can assume that, in order to get a good approximation of the data,
we need the value of p to be larger or equal to the intrinsic dimension of the data. This
is primarily determined by the identifiable parameters which are not constant in the
population. It is henceforth crucial to have a good estimation of p. To this end, we
introduce a criterion based on an approximation of the product of the Lipschitz constants
of the encoder and decoder functions. This makes it possible to have an a posteriori
criterion to adjust the value of p.

In order to perform the parameter estimation by exploiting the model and the result of
the autoencoder, we introduce a novel method, Latent Variable Gradient Flow (LVGF),
which is a gradient flow in the latent variables α. The LVGF method consists in computing
a non-linear mapping between the parameter space and the latent variable space. This is
done by using the model φ and the encoder Ψ. Given u ∈ U and the encoder function Ψ,
it holds:

Ψ ◦ φ(θ) = α.

Using this relationship, we can transform an optimisation of a non-convex function in θ,
into an optimisation of a convex cost function in α.

Chapter 2 will present in detail the parameter estimation problem and the LVGF
method, including the rationale behind its derivation and the theoretical proofs. We will
also present the theoretical results and methodology of using an autoencoder to perform
the intrinsic dimension estimation of the latent variable. Furthermore, we will present
the results of various tests conducted using the LVGF on simple dynamical systems,
showcasing its applicability and effectiveness in estimating parameters. Considering the
intrinsic dimension estimation, we will show that we can use the dimension of α to estimate
the intrinsic dimension of some given data generated by the Van der Pol oscillator and
FitzHugh–Nagumo model. The results obtained by considering Lipschitz constants as
a criterion outperformed the classical approach, which only considers the autoencoder’s
reconstruction errors. Then, we will present some numerical results in which we compare
the LVGF method with a classical gradient method. In these tests, we observe that LVGF
method reduces the error in predicting parameter values by around 10 times compared
with the gradient method.
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1.6 Contribution in classification

Considering the high computational resources and time costs in drug safety assessment,
there is a clear demand for automatic analysis tools in high-throughput drug screening.
The goal is to improve the efficiency of drug discovery and development. Given
the extracellular FP recorded by MEA from hiPSC-CMs, the first practical question
is to determine whether a given chemical drug is altering the electrical activity of
cardiomyocytes by disrupting the normal behaviour of certain ion channels like the hERG
channel. This question can be viewed as a classification problem to distinguish drugs
based on their effects on different ion channels. In this work, we will compare four
different Neural Network methods to perform this classification. These differ in terms of
pre-processing requirements and architecture.

In Chapter 3, we will explore a comparison of four types of ANN methods employed
for the classification of hERG channel blockade. This chapter will encompass a detailed
discussion of the experimental data, along with the associated data pre-processing steps
tailored to each tested ANN method. Additionally, we will outline the setup of each ANN
method and conclude with a comparison of their performance with respect to classification
accuracy and computational costs. This chapter aims to provide a better understanding of
the methodologies employed and the outcomes achieved through the ANN-based approach
to hERG channel blockade classification. Among the tested methods, we can find that
MLP and multivariate 1D-CNN could give an accuracy of more than 97% to predict the
hERG channel blockade.

Considering the data recording step, it is important to monitor and enhance data
quality during assessments. Experimental conditions, such as temperature control, cell
conditions, and equipment variables, can introduce uncertainties that may result in
problematic data recordings. As a consequence, we may create biases in the analysis
results. Automated monitoring and identification of such problematic recordings can
reduce potential biases and risks in the analysis results. To help in this task, we will
investigate Replicator Neural Networks (RNNs), which are a type of autoencoder, to
perform anomaly detection and remove some lower quality recordings.

Another contribution is to test an autoencoder for anomaly detection, it can be
considered as a semi-supervised learning problem. Indeed, during the training phase,
only normal recordings are used. The idea is the following: when reconstructing normal
data the autoencoder will have a small error, whereas for abnormal data (not used in
the training phase), it will have a larger (potentially much larger) error. By checking the
value of the reconstruction error, we can identify anomalies. More details about the setup
for the autoencoder in anomaly detection will be explained in the last section of Chapter
3. We compared a linear autoencoder with a non-linear one to test their capability to
classify normal and abnormal data. The best method could provide anomaly detection
with 95% accuracy.

Another topic presented in the first part of Chapter 4 concerns data generated in
experiments studying genetic pathologies. We focus in particular on Brugada syndrome.
Data generated using patient-derived hiPSC-CMs might have a large variability despite
the fact that they belong to the same individual and they all carry the same genetic disease.
This may be due to perturbations like genetic mutations [105]. The large variability in
the data could raise a question about the reproducible character of the experiments and
how much information do they convey about the disease mechanisms. In particular,
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very different signal shapes can be observed in both healthy and non-healthy individuals,
making it difficult to directly compare them.

In Chapter 4, we will explore MLP and multivariate-1DCNN to classify healthy
and patient individuals. Subsequently, we will introduce a strategy for distinguishing
between patients with different degrees of symptom severity by employing an autoencoder
in feature extraction combined with a clustering method. Afterwards, we will discuss
potential future directions regarding the use of the cardio electrophysiology model to
explain the mechanisms of Brugada syndrome, especially exploring further possibilities
by testing the LVGF method to address this specific question. The points mentioned
above would provide valuable assistance to scientists studying Brugada syndrome.

Finally, in the second part of Chapter 4, we will also explore an investigation centred
on detecting age-related effects in dogs. This exploration will encompass the application
of statistical, ANN, and mathematical modelling methods, utilising in vivo data. The
objective is to offer a comprehensive understanding of age-related impacts, leveraging
diverse analytical approaches to enhance our insights into the physiological changes
associated with ageing. This will help scientists to see the advantages and disadvantages
of each type of method applied to dogs’ cardiovascular data.

1.7 Publications and preprint
The contributions presented above correspond to the following preprint and

publications:

1. Preprint: Muriel Boulakia, Haibo Liu, and Damiano Lombardi.
Parameter identification through gradient flow on latent variables. 2023.
https://inria.hal.science/hal-04364114

2. Publication: Haibo Liu, Tessa De Korte, Sylvain Bernasconi, Christophe Bleunven,
Damiano Lombardi and Muriel Boulakia. Artificial Neural Network Comparison
on hERG Channel Blockade Detection. International Journal of Computer
Applications 184(14):1-9, May 2022.

3. Publication: Elham Ataei Alizadeh, Sara Costa Faya, Haibo Liu, Damiano
Lombardi, Sylvain Bernasconi, Pieter-Jan Guns and Michael Markert. Comparison
of statistical, machine learning, and mathematical modelling methods to investigate
the effect of ageing on dog’s cardiovascular system. ESAIM: Proceedings and
Surveys, 73, 2-27, 2023.
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Chapter 2

Parameter Identification Through
Gradient Flow on Latent Variables

This chapter corresponds to a submitted article, achieved with Muriel Boulakia and
Damiano Lombardi

Abstract

In this chapter, we consider a system of parametric ODEs which involves unknown
parameters and we seek to identify the values of the parameters associated to a given
measurement. To do so, we place ourselves within the fairly usual framework that this
single measurement is in fact taken from a population of data and we therefore want to
take advantage of the statistical knowledge about the population to regularise the classical
minimisation problem associated to our identification problem. In the method that we
propose and that we call the Latent Variable Gradient Flow method, the data set is
represented by an autoencoder neural network which allows to associate to each element
of the data set a latent variable. Then, introducing a non-linear mapping between the
parameter space and the latent variable space allows to convexify the cost function and
to demonstrate convergence properties. These properties are numerically illustrated with
different tests on Van der Pol and FitzHugh-Nagumo models.

2.1 Introduction

In many studies of experimental sciences, such as chemistry, biology or environmental
engineering, mathematical models are used to describe the behaviour of the dynamical
systems. Those mathematical models consist of systems of ordinary differential equations
(ODEs). For the most part, these ODEs contain parameters that are associated to
physical, biological, or other properties of the system. To assess the relevance of the
model, it is necessary to understand the role of these parameters and to set their values in
order to generate signals that are close to reality. In addition to parameters, the system
is completed by the data of the initial state whose values may be unknown or uncertain.
When faced with an experimental observation, identifying the unknown parameters and
the initial state to closely match the experimental results is a key step in the development
and understanding of ODEs [106]. However, this identification problem which belongs
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to the class of “inverse problems” is a complex task, especially when the ODEs system
consists of a large number of equations and parameters.

To define the context more precisely, let us introduce some notations which will be
defined in more detail later on. Let a system be described by a mathematical model,
in which the output u is affected by a certain number of parameters and by the initial
conditions. Let us denote by θ the vector of these parameters and initial conditions.
To simplify the formulation, in what follows, we will describe in general θ as a model
parameters vector, even if it also includes the initial conditions. Then, we introduce the
parameter-to-output map φ which associates to the vector θ the output u: u = φ(θ).

The general problem reads as follows: given some measurements u∗ of the output, we
try to estimate the model parameters θ∗ such that u∗ = φ(θ∗).

Classically, the estimation of model parameters ([57, 56]) is cast as an optimisation
problem. In particular, a cost function is defined based on the data misfit and the
parameter θ is estimated by minimising the discrepancy between the model observations
φ(θ) and the actual measurement u∗ of the system. This formulation often leads to a
non-linear non-convex possibly high-dimensional optimisation problem. This could be
dealt with in two ways:

1. Local (often gradient based) optimisation methods. These methods include Quasi-
Newton methods [107, 108], the Gauss-Newton method (incorporating explicitly
derived and efficiently computed sensitivity equations [58]), as well as other
gradient-based methods [109]. The local gradient-based optimisation methods might
encounter convergence issues when the initial guess is far from the true parameter
values [62].

2. Global optimisation approach. For example, commonly utilized stochastic search
algorithms include evolutionary computation, adaptive stochastic methods, and
clustering methods. Other global optimisation methods are the genetic algorithms,
as proposed for instance in [110] for the determination of rate constants in
heterogeneous reaction systems, and collocation methods, as proposed for instance
in [111] and [112]. In many cases, stochastic search algorithms are used to select
good initial guesses for starting either a Quasi-Newton method or a gradient-based
type minimisation. Global optimisation methods are often very expensive from a
computational point of view and might become prohibitive when the number of
parameters is large [113, 114].

Another way to try to solve the problem is purely based on data. Let us assume
that, in certain situations, we have examples of pairs of parameters and observations,{
θ(i), u(i)

}
1≤i≤Nd

. For example, the work in [76] used a supervised convolutional machine-
learning method to learn the physical model parameters. The advantage of this kind of
model is that no a priori knowledge about the system is required. The main disadvantage
consists in the fact that we often need a large number of training pairs parameters-
observations.

Recently, many efforts were made in order to try to exploit both the knowledge coming
from the mathematical model and from sets of data, such as physics-informed neural
networks (PINNs) mentioned in [80, 77, 79, 78], deep operator network (DeepONet) find
in [81] and physics-informed DeepONet (PI-DeepONet) find in [82].

PINNs operate by taking time as input and by training the network to generate
corresponding observations of the dynamic system. This training process leverages both
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the available data and the underlying dynamics of the system. When addressing inverse
problems, the PINN’s loss function integrates two components: the discrepancies between
predicted observations and given data, and the residual of the differential equations, which
depends on the parameters. Then, the network optimises the parameters of the network
and estimates the parameters of the dynamical system. PINNs might suffer from the
so-called spectral bias [83], which refers to the fact that it tends to prioritize learning the
low-frequency part of the solution, not rendering properly multiple frequency scales. To
overcome this issue, Fourier Features-Neural Networks (FF-NN) have been proposed to
solve dynamical systems and perform inverse problems [84]. Another limitation of PINN-
based methods is that they often require a large number of iterations and evaluations to
converge to an accurate solution. This computational intensity is a drawback, especially
when dealing with dynamic systems consisting of a large number of equations and
parameters. In the continuity of PINN-based methods, the method that we propose
in this paper seeks to leverage both available data and underlining dynamical systems.
However, as we will see, our method provides an alternative method of PINN for which
the computational demanding part corresponding to the training on the data set is done
in a preliminary part.

About the data set, we focus here on a specific situation: we consider that we
do not have data composed of pairs of parameters-observations but that we only have
observations {

u(i)
}
1≤i≤Nd

consisting in a collection of measurements taken on a population or a set of experiments
and we assume that our (novel) observation u∗ comes from the same population. This
situation, which is quite common in a number of realistic applications, is by far more
difficult than the one in which pairs of parameters-observations are available (as we have
no direct information about the parameters anymore).

In this paper, we will propose a new method of parameter estimation which relies
on a regularisation of a classical parameter estimation by means of the data set. A
representation of the data set by an autoencoder will allow to describe an element of the
data set by a latent variable. Then, the method performs a non-linear mapping between
the parameter space, where the cost function associated with the parameter estimation
is non-convex, and the latent variable space, where the cost function is convex. Since our
method can be described as a gradient flow for the latent variables of the autoencoder, it
will be called the Latent Variables Gradient Flow (LVGF) method.

In addition to the presentation and study of the LVGF method, this work also presents
a novel method to estimate the intrinsic dimension of a data set U =

{
u(i)
}
1≤i≤Nd

.
Identifying this intrinsic dimension is an important point in the implementation of our
method since it allows to set the value of the latent dimension of the autoencoder trained
on the data set. The proposed method will be based on the use of autoencoders and
a criterion based on the approximation of the Lipschitz constant of the encoding and
decoding maps. For an ODE system satisfying observability and identifiability properties,
this intrinsic dimension is related to the dimension of the set of parameters which are
varying in the population.

The structure of the work is the following: in Section 2.2, we will state the parameter
identification problem, present our parameter estimation method which we call the
LVGF method, and study the convergence properties of this method. Moving on to
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Section 2.3, we will show some theoretical results and the methodology of using an
autoencoder to perform intrinsic dimension estimation which is a part of the parameter
estimation problem. Section 2.4 will be dedicated to demonstrating the performance of our
proposed intrinsic dimension estimation method using two example dynamical systems.
At last, in Section 2.5, we will assess the LVGF method’s ability to solve the parameter
estimation problem on the dynamical systems presented in the first section and compare
its performance with the classical minimization method.

2.2 Parameter estimation

2.2.1 Problem statement

Let us consider a system of ODEs:{
ẋ(t) = f(x(t), ζ), ∀ t ∈ (0, T ),

x(0) = x0
(2.2.1)

where x : [0, T ] → RN is a real vector valued function, ζ ∈ Rq represents a vector of
constant parameters and x0 ∈ RN is the initial state. We assume that, for every x0 ∈ RN

and ζ ∈ Rq, system (2.2.1) admits a unique solution x in C1([0, T ])N .
For this system, we consider that the parameter values and the initial condition

are unknown or uncertain and we are interested in the simultaneous identification of
parameters and initial data. We denote by θ = (x0, ζ) ∈ Rm with m = N + q the vector
that we want to identify and look for θ in a subset of Rm that we denote by Θ.

The overall goal of our study is to identify the value of θ ∈ Θ ⊂ Rm, by exploiting
some discrete measurements that we denote by u ∈ Rn of the solution x of system (2.2.1).
We denote by H the observation operator that models the measurement procedure:

H : C1([0, T ])N → Rn. (2.2.2)

For the sake of simplicity in the presentation, we assume that H only gives one scalar
information (for instance, one component of the vector valued function x) discretised in
time.

In addition, we define the map which associates the measurement to the unknown
parameters and initial data:

φ : Rm → Rn

θ → H(x(θ, ·)) (2.2.3)

where x(θ, ·) is the solution of system (2.2.1) associated to θ = (x0, ζ).

The classical deterministic identification problem can be formulated in the following
way: we assume that a datum u∗ ∈ Rn is given and we would like to identify θ∗ ∈ Θ ⊂ Rm

such that
φ(θ∗) = u∗. (2.2.4)

Most of the time, this problem is numerically studied by reformulating it as an
optimisation problem. In a classical way, the functional to minimise can be for instance
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of the form:
J(θ) = ∥φ(θ)− u∗∥2n (2.2.5)

where ∥ · ∥n corresponds to the Euclidean norm in Rn.
Such a problem is known to be cumbersome in a number of situations, due to the fact

that it is usually non-linear and non-convex. We will give a practical example of those
situations in the end of this section.

In the present work, we consider that, in addition to the map φ and the datum u∗,
we have access to a set of Nd ∈ N∗ data, denoted U =

{
u(i)
}
1≤i≤Nd

∈ Rn which u∗ is a
part. We assume that these data come from a population (of individuals, or experiments),
characterised by a certain (unknown) distribution of parameters θ. This setting is justified
by the fact that it is indeed common to have access not to a single measurement but to
a large number of data. Therefore, our objective is to study how we can take advantage
of this whole set of measurements U in the identification of parameters associated to a
single measurement u∗ and if adding information coming from the knowledge of the set U
can allow to construct a regularisation for the parameter estimation problem. This idea
will be the starting point of the LVGF method presented in 2.2.3.

In what follows, we will illustrate our approach on two ODE systems.
First, we will consider Van der Pol model, a model proposed in the 1920s by Van der

Pol [115] to represent the oscillations in vacuum tube circuits. It is given by the following
system: 

ẋ = v,

v̇ = µ(1− x2)v − x,

(x, v)(0) = (x0, v0).

(2.2.6)

In this equation, µ > 0 is a fixed parameter which reflects the degree of nonlinearity
of this system, x0 is the initial position and v0 is the initial velocity. For this model,
we assume that we measure the state variable x on the whole time interval and we are
interested in the identification of θ = (x0, v0, µ).

Second, we will consider FitzHugh-Nagumo model which describes the dynamics of a
spiking neuron. It is given by 

v̇ = v − v3

3
− w + Iext,

ẇ = 1
τ
(v + a− bw),

(v, w)(0) = (v0, w0)

(2.2.7)

where v corresponds to the membrane potential, w to the recovery variable and Iext to a
stimulus current. For this model, we assume that we only observe the state variable v and
that the value of Iext is known. For this problem, we are interested in the identification
of θ = (v0, w0, a, b, τ).

2.2.2 Identifiability and observability of the inverse problem

Before testing numerical methods for the resolution of the identification problem
(2.2.4), it is essential to ensure the uniqueness of a solution to (2.2.4) or, in other words,
the injectivity of φ in Θ. Not having this type of theoretical property can in fact explain
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numerical convergence issues independently of the numerical method chosen.
Moreover, contrary to Tykhonov methods that can overcome a lack of uniqueness in

the identification problem through the add of a prior, in our case the only information that
we add to regularise our minimisation problem comes from the knowledge of a data set.
Thus, the underdetermined nature of the problem would remain despite the regularisation
process.

Since θ is composed both of model parameters and initial data, this identification
property is related to two distinct notions in inverse problems: first, the notion of
identifiability which refers to the fact that model parameters are uniquely determined
by the output and, second, the notion of observability which refers to the fact that the
initial conditions are uniquely determined by the output.

Let us notice that the identifiability and observability of the problem introduced above
can be reduced to the observability of the following augmented system (as presented for
instance in [116] and [117]):{

Ẋ(t) = F (X(t)), ∀ t ∈ (0, T ),

X(0) = (x0, ζ) = θ
(2.2.8)

where θ is taken in Θ, X = (x, ζ) : [0, T ] → Rm is a regular function and F is given by

F : Rm → Rm

(x, ζ) → (f(x, ζ), 0).
(2.2.9)

Contrary to the observation operator given by (2.2.2) and adapted to the numerical
framework where the solution is discretised in time, we consider in the theoretical
framework that we have access to measurements at each time in [0, T ] and we denote
by

h : C1([0, T ])N → C1([0, T ]) (2.2.10)

the observation map which associates the time-dependent measurement to the solution X
of the ODE system (2.2.8).

Numerous works address the question of identifiability and observability for ODE
systems and there is a wide variety of methods for doing so. About ODEs modelling, we
can quote [118], [119], [120] and [121] among many references. Following these last two
references, we are interested by the structural observability property for system (2.2.8)
(or by the structural identifiability and observability property for system (2.2.1)) which
means that, for almost all initial conditions X1(0) and X2(0) in Θ

h(X1) = h(X2) in [0, T ] ⇒ X1(0) = X2(0).

For the two ODE models presented in the previous section, the we have the following
results:

Proposition 2.2.1. If we measure the variable x, Van der Pol model (2.2.6) is
structurally observable and identifiable in the variables (x0, v0, µ), in the sense that
(x0, v0, µ) is uniquely determined from the measurement of the function x in [0, T ].

Proposition 2.2.2. If we measure the variable v, FitzHugh-Nagumo model (2.2.7) is
structurally observable and identifiable in the variables (v0, w0, a, b, τ), in the sense that
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(v0, w0, a, b, τ) is uniquely determined from the measurement of the function v in [0, T ].

The proofs of these results are presented in Appendix A.

2.2.3 Latent Variables Gradient Flow (LVGF) for parameter
estimation

Description of the LVGF method

The first ingredient of the proposed LVGF method relies on the construction of an
autoencoder approximating the data set U . It consists in an encoder map Ψ : Rn → Rp

which compresses an input data u ∈ U into a latent variable α = Ψ(u) ∈ Rp with p < n
and a decoder map Ψ† : Rp → Rn which recreates an approximation of the input data
from the latent variable. Thus, in the data set U , which we can think about as a sampling
of an embedded submanifold U ⊂ Rn, Ψ† ◦Ψ(u) is a good approximation of u. The set-up
of the autoencoder will be specified in Section 2.3.1. Let us notice that the choice of the
hyperparameter p is related to the notion of intrinsic dimension of U and, by using some
recent results in approximation theory, the estimation of the intrinsic dimension will be
discussed in Section 2.3.2.

The rationale behind the introduction of the autoencoder is the following: the latent
variables α ∈ Rp are, at the same time, observable and related to the parameters θ ∈ Θ.
Indeed, given u∗ = φ(θ∗) ∈ U , thanks to the encoder Ψ, we can easily compute the latent
variable α∗ associated with it, α∗ = Ψ(u∗). Furthermore, we are aware of the relationship
between θ∗ and α∗ which is defined as follows:

Ψ ◦ φ(θ∗) = α∗.

By leveraging these two observations, we can introduce a method in which, by trying
to match the latent variables values α∗, we estimate θ∗.

The way in which we try to reach this goal is by introducing a gradient flow in the
latent variable α, which motivates the method name: Latent Variable Gradient Flow
(LVGF).

In what follows, we use the notation g = Ψ ◦ φ : Rm → Rp and assume that

g ∈ C1,β(Θ), for some β > 0 and rank∇g(θ) = p, ∀ θ ∈ Θ. (2.2.11)

Under these hypotheses, we can consider the generalized inverse (also called the
MoorePenrose pseudoinverse [122]) of ∇g(θ) defined for a matrix M , by M † :=
MT (MMT )−1. Moreover, we assume that there exists a constant C > 0 such that,
for all θ ∈ Θ

∥∇g(θ)†∥ ≤ C. (2.2.12)

The LVGF algorithm is based on the following iterative process: let a step s > 0 and
an initial value θ0 ∈ Θ be given. We denote by α0 the initial value associated to θ0, that
is α0 = g(θ0). Then, we define the sequence (θk)k∈N iteratively by: for k ∈ N ∆θk = sM †

k(α
∗ − αk) where Mk = ∇g(θk)

θk+1 = θk +∆θk
αk+1 = g(θk+1).

(2.2.13)
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By definition, ∆θk is thus the unique vector of smallest norm solution in Rm of the system

Mk∆θk = s(α∗ − αk).

Convergence of the LVGF method

In the following proposition, we prove a convergence result on the sequence (θk) in the
specific case where the parameter space is the full space Rm.

Proposition 2.2.3. We assume that Θ = Rm and that g satisfies the hypotheses (2.2.11)-
(2.2.12). Then, for s > 0 small enough, the sequence (θk)k∈N defined by (2.2.13) converges
to some θ̃ ∈ Rm which satisfies

α∗ = g(θ̃). (2.2.14)

Moreover, there exists a constant C > 0 depending on α∗ − α0 and C such that

∥θ̃ − θk∥m ≤ C

s

(
1− s

2

)k
Proof. Let k ∈ N be given. According to (2.2.13), we have

α∗ − αk+1 = α∗ − g(θk +∆θk).

Since g ∈ C1,β(Θ), we can write

g(θk +∆θk) = g(θk) +Mk∆θk + ξk = αk + s(α∗ − αk) + ξk

where ξk ∈ Rp satisfies

∥ξk∥p ≤ C̃∥∆θk∥1+β
m ≤ C̃C

1+β
s1+β∥α∗ − αk∥1+β

p

where we have used (2.2.12) and denoted by C̃ the Hölderian constant of ∇g. This implies
that

∥α∗ − αk+1∥p = ∥(1− s)(α∗ − αk)− ξk∥p
≤ (1− s)∥α∗ − αk∥p + C̃C

1+β
s1+β∥α∗ − αk∥1+β

p

Assume now that the step s ∈]0, 1[ is chosen such that

C̃C
1+β

sβ∥α∗ − α0∥βp ≤ 1

2
.

Then, an argument by induction allows us to deduce from the previous inequality that,
for all k ∈ N

∥α∗ − αk∥p ≤ ∥α∗ − α0∥p.

Therefore, we deduce that, for all k ∈ N

∥α∗ − αk+1∥p ≤
(
1− s

2

)
∥α∗ − αk∥p.
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So the sequence (αk)k∈N linearly converges to α∗ and

∥α∗ − αk∥p ≤
(
1− s

2

)k∥α∗ − α0∥p.

This implies that the sequence (θk)k∈N satisfies

∥θk+1 − θk∥m = ∥∆θk∥m ≤ C∥α∗ − αk∥p ≤ C
(
1− s

2

)k∥α∗ − α0∥p.

In particular, since (θk)k∈N is a Cauchy sequence, it converges to some θ̃. Moreover, we
have

∥θ̃ − θk∥m ≤ 2C

s

(
1− s

2

)k∥α∗ − α0∥p

At last, passing to the limit in the expression αk = g(θk), we deduce the formula (2.2.14).

Corollary 2.2.4. Under the same hypotheses as Proposition 2.2.3, we assume in addition
that Ψ : U → Rp and φ : Rm → Rn are one-to-one and that θ̃ ∈ φ−1(U). Then, for s > 0
small enough, the sequence (θk)k∈N defined by (2.2.13) linearly converges to θ∗ ∈ Rm.

This corollary directly comes from the fact that, by definition of α∗ and according to
equation (2.2.14), the limit θ̃ of the sequence (θk)k∈N satisfies:

Ψ ◦ φ(θ̃) = Ψ ◦ φ(θ∗).

Thus, under the hypotheses of the corollary, θ̃ = θ∗.
Let us add a few comments on the additional assumptions of Corollary 2.2.4. First,

we remark that the hypothesis that Ψ : U → Rp is one-to-one is naturally related to the
encoding properties of this function for which a given latent variable can correspond to
only one vector in U . The hypothesis of injectivity of φ : Rm → Rn is also a natural
assumption related to the identifiability and observability discussed in Section 2.2.2.

Since the algorithm given by equation (2.2.13) does not allow to ensure that the
property θ̃ ∈ φ−1(U) is satisfied, in practice, we correct it by adding a projection
procedure. Let us denote by P : Rm → Rm a projection operator on φ−1(U). For a
given θ−1 ∈ Rm, we compute θ0 = P(θ−1) ∈ φ−1(U) and replace system (2.2.13) by ∆θk = sM †

k(α
∗ − αk) where Mk = ∇g(θk)

θk+1 = P(θk +∆θk)
αk+1 = g(θk+1).

(2.2.15)

Remark 2.2.5. In most of the realistic situations, Θ is not the whole space Rm but a
compact set in Rm. The method can be written in a parametric domain (say, a box)
containing this domain, and such that θ∗ is an interior point of the domain. In the case
in which the iterates are all interior points, the result presented holds true without any
modification. If some iterates fall out of the domain, they can be reprojected into it. In
this case, further investigations would be needed to determine the speed of convergence.

Remark 2.2.6. The LVGF method can be applied also in the case in which p̄ = m and
it has a remarkable interpretation. Let us assume that a parametric model is identifiable.
Let us recall that g ∈ C1,β(Θ). It follows that M † = M−1, for all θ ∈ Θ ⊆ Rm. Solving
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the problem with a classical cost function would amount to solve a non-linear, non-convex
optimisation problem. The function g = Ψ ◦ φ can be seen as a change of variables
making it possible to cast the parameter estimation problem as the optimisation of the
convex function J(α) = ∥α∗ − α∥2m.

Remark 2.2.7. The LVGF method comes with a way to verify, a posteriori, whether the
model solution φ(θ) does not belong to the population. This can be done by exploiting the
decoder ψ†. Let us consider: ∥Ψ† ◦Ψ◦φ(θ)−φ(θ)∥2n. If this quantity is significantly larger
than the error obtained on the validation set when training the autoencoder, it implies that
the obtained solution is far from the ones belonging to the population.

Numerical implementation

For the numerical implementation of this method, it is necessary to describe how the
projection on φ−1(U) is defined and computed. By noticing that the elements θ which
belong to φ−1(U) satisfy

Ψ† ◦Ψ ◦ φ(θ)− φ(θ) = 0,

we introduce the functional

E(θ) = ||Ψ† ◦Ψ ◦ φ(θ)− φ(θ)||2n (2.2.16)

and define the projection P(θ) as the solution of the minimisation of E starting from
the initial data θ. The minimisation of the function E is achieved by using the gradient
descent method.

In practice, to initialise the sequence (θk)k∈N with a θ0 such that θ0 ∈ φ−1(U), the
gradient descent method may fail if we start with a value far from the submanifold φ−1(U).
So, we consider different initial values for θ0, run for each initial value the gradient descent
method and keep a θ0 for which the optimisation procedure gives a value of E close to
zero. In addition, we do not run the projection step at each iteration but only if θk begins
to move away from φ−1(U) which is tested by comparing the value E(θk) to a threshold
value. The details of the LVGF method are shown in Algorithm 1.

2.2.4 A numerical illustration of LVGF

In this section, a first numerical illustration of the LVGF method is proposed for the
identification of a two-dimensional parameter vector. Moreover, our method is compared
to a gradient descent method applied to the minimisation of the classical functional (2.2.5).

We consider Van der Pol model (2.2.6) and are interested by identifying θ = (v0, µ)
whereas x0 is assumed to be known and its value is given by x0 = 0.5. We consider a
measurement u∗ defined by u∗ = φ(θ∗) with θ∗ = (0.5, 0.5) and our objective is to identify
this value θ∗. In addition to u∗, we consider that we have access to a data set U (contain
Nd = 1200 simulations) which has been generated in a preliminary step by varying the
values of µ, randomly drawn from a uniform distribution in [0.05, 2.0] and setting v0 = 0.5.
So in this case, the intrinsic dimension of the submanifold U is equal to 1. The latent
dimension of the autoencoder trained on this data set is fixed to p = 1 (this dimension
can also be rediscovered following the method presented in Section 2.3.2). We used AE1
(mentioned in Table 2.1) to approximate the data set U . There are 1000 samples used in
the training set and 200 in the validation set. Moreover, the parameters given as input of
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Algorithm 1 The LVGF algorithm
1: Input: Nmax = maximum number of iterations; σ = tolerance for ||α∗ − α||p; S =

[s1, s2, ..., sn]1≤i≤n

2: start with a random initial guess θ0
3: if E(θ0) > ϵ then
4: run the projection θ = P(θ0)
5: else
6: θ = θ0
7: end if
8: compute α = Ψ(φ(θ))
9: while j ≤ Nmax and ||α∗ − α||p ≥ σ do

10: compute M = [∇Ψ(φ(θ))][∇φ(θ)]
11: compute ∆θ = [M ]†(α∗ − α)
12: select 1 ≤ i ≤ n the minimum point of {∥α∗ −Ψ(φ(θ + si∆θ))∥p, 1 ≤ i ≤ n}
13: update θ = θ + si∆θ
14: if E(θ) > ϵ then
15: run the projection θ = P(θ)
16: end if
17: compute α = Ψ(φ(θ))
18: end while
19: return the value of the last iteration of θ

Algorithm 1 have been fixed to Nmax = 2000, σ = 10−4 and S = [0.0005, 0.0025, 0.0125,
0.0625].

In addition to the LVGF method, we have implemented the gradient descent method
applied to the minimisation of the classical functional (2.2.5) in order to compare both
methods. In Figure 2.1, we plot the contour of the classical cost function given by equation
(2.2.5). We observe that the function is non convex and presents local minima in addition
to the global minimum at θ∗ = (0.5, 0.5) represented by a red sign "+". The different
iterations for the classical gradient descent method applied to equation (2.2.5) and for the
LVGF method have been also depicted starting with the same initialisation θ0 = (0.8, 1.9).

It is interesting to observe that the gradient descent method converges as expected
to a local minimiser whereas the LVGF method is able to go against the direction of
the steepest slope in order to change valley and reach the global minimiser. Thus the
information coming from the data set and added through the use of the latent variable
made it possible to correct the convexity defect of the classical functions and to identify
the right value of the unknown parameters.

Further numerical tests to better assess the performances of LVGF will be presented
in Section 2.5.

2.3 Lipschitz-stable autoencoders and intrinsic
dimension

As presented in Section 2.2.3, our LVGF method relies on a description of the data set
U = {u(i)}1≤i≤Nd

by an autoencoder. These neural networks are dimensionality reduction
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Figure 2.1: Contour plot of the classical function J(θ) = ∥u∗ − φ(θ)∥2n with θ = (v0, µ):
comparison between the iterations of the classical gradient descent method
(blue dots) and the LVGF steps (red dots) with the same initial guess (blue
cross). The value of the true parameter, which is the minimum of J is θ∗ =
(0.5, 0.5), marked with a red cross.
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algorithms which learn two functions called encoder and decoder. The encoder function
associates to an input vector in Rn a vector called a code or a latent variable of smaller
dimension p.

It is important to notice that the dimension p is an hyperparameter that has to be set
before training the autoencoder even though, in general, the intrinsic dimension of a data
set is unknown. That is why the first question that naturally arises in the representation
of a data set by an autoencoder is to understand how to settle the dimension of the latent
variable. In this section, we propose a criterion based on the notion of stable manifold
width to estimate the intrinsic dimension of the data set. This criterion is a consequence
of the result given by Corollary 2.3.2 which highlights the fact that, if the dimension of
the latent variable is smaller than the intrinsic dimension, the product of the Lipschitz
constants of the encoder and decoder functions will blow up.

2.3.1 Presentation of the autoencoder

In this section, we describe the autoencoder neural network and give some details on
the implementation of the autoencoder that we have considered in this work.

Figure 2.2: autoencoder systemic structure.

As described in [123] and [124], an autoencoder is a feed-forward neural network with
a systemic structure that is composed of multiple hidden layers which include an encoding
and a decoding part. The input and output layers have the same size as shown in Figure
2.2. The encoder compresses the input data (u ∈ Rn) to some latent representation
(α ∈ Rp):

Ψ :

{
U −→ Rp

u 7−→ α := Ψ(u)

whereas the decoder decodes the compressed latent representation α and reconstructs the
input in ũ ∈ Rn:

Ψ† :

{
Rp −→ Rn

α 7−→ ũ := Ψ†(α).

Among the key aspects that have to be set in order to define an autoencoder, we
need to specify the loss function to be minimised. In our paper, we have considered the
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following loss function:
1

Nd

Nd∑
i=1

∥u(i) −Ψ†(Ψ(u(i))
)
∥2n (2.3.1)

where U =
{
u(i)
}
1≤i≤Nd

corresponds to the data set. In addition, we chose the exponential
linear unit (ELU) [125] as the activation function:

ELU(x) =

{
x if x ≥ 0
ρ(exp(x)− 1) otherwise (2.3.2)

where ρ > 0 is a constant number (we have taken ρ = 1.0 in our numerical tests). This
activation function is differentiable, a property which will allow to estimate the Lipschitz
constants associated to the encoder and decoder functions. The weights and biases of the
hidden layers were optimised by using an Adam optimiser [126].

In the numerical tests described in Sections 2.4 and 2.5, different architectures will
be considered and, for each of them, we will specify the values of the hyperparameters
(numbers of hidden layers, number of neurons per layer).

2.3.2 A criterion based on stable manifold widths to determine
the latent variable dimension

In this section, we consider U ⊂ Rn a compact embedded submanifold of topological
dimension p and we propose a criterion based on autoencoders to identify the dimension
p. We refer to [127] and [128] for an overview of the intrinsic dimension estimation
methods, the methods aim to project the original data U ⊂ Rn to a lower M-dimensional
submanifold of Rn that M < n in a way that we will not lose the information of the
original data. When the minimum M-dimension is necessary to represent the observed
properties in U , M can be called intrinsic dimension.

Having in mind autoencoder applications, we are interested in nonlinear methods of
approximation of U depending on p parameters and built on two Lipschitz mappings that
correspond to the encoder map and the decoder map. Following [129], we then introduce
the quantity: for p ∈ N and for given constants γ > 0 and γ† > 0,

δp,γ,γ†(U) = inf
Ψ,Ψ†

sup
u∈U

∥u−Ψ† ◦Ψ(u)∥n

where the infimum is taken over the γ Lipschitz functions Ψ : U → Rp and the γ† Lipschitz
functions Ψ† : Rp → Rn.

This definition is introduced in [129] under the name of stable manifold width with
the slight nuance that the definition of [129] also involves the infimum over all the
norms in Rp. As explained in [129], the concept of stable manifold width compared
to the concept of manifold width (where the functions Ψ and Ψ† are only assumed to
be continuous) is motivated by the fact that the Lipschitz regularity allows to explicitly
control perturbations coming from noise or numerical approximation.

In the following proposition, we are interested by the case where p < p. This
corresponds to the case where the dimension of the latent representation space is
smaller than the topological dimension of the submanifold that the autoencoder has to
approximate. Under this assumption, the proposition gives a bound from below for the
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stable manifold width.

Proposition 2.3.1. Let U be a compact embedded submanifold of Rn of topological
dimension p. We assume that p < p. Then, there exists a constant C > 0 which only
depends on U such that

δp,γ,γ†(U) ≥
(
C

γ†γ

)p/(p−p)

R (2.3.3)

where R > 0 is such that U ⊂ Bn(0, R).

For m ∈ N∗, we have denoted by Bm(y, r) with y ∈ Rm and r > 0 the closed ball of
center y and radius r.

Proof. The proof of this proposition will rely on a result given in [130]. This paper
introduces and studies the notion of Lipschitz width, a concept close to stable manifold
width.
Let ϵ be such that ϵ > δp,γ,γ†(U). Then, there exist a γ Lipschitz function Ψ : U → Rp

and a γ† Lipschitz function Ψ† : Rp → Rn such that

sup
u∈U

∥u−Ψ† ◦Ψ(u)∥n ≤ ϵ.

Since Ψ is γ Lipschitz and U ⊂ Bn(0, R), we have Ψ(U) ⊂ Bp(Ψ(0), γR). Thus, we get
that

inf
Ψ†

p

sup
u∈U

inf
α∈Bp(Ψ(0),γR)

∥u−Ψ†
p(α)∥n ≤ ϵ

where the infimum is taken over all the maps Ψ†
p : (Bp(Ψ(0), γR), ∥ · ∥p) → Rn such that

sup
α1,α2∈Bp(Ψ(0),γR)

∥Ψ†
p(α1)−Ψ†

p(α2)∥n
∥α1 − α2∥p

≤ γ†

Let us now introduce the scaled norm ∥ · ∥p,s in Rp defined by ∥α∥p,s = 1
γR

∥α∥p. Then we
have

inf
Ψ†

p

sup
u∈U

inf
α∈Bp,s(Ψ(0),1)

∥u−Ψ†
p(α)∥n ≤ ϵ

where the infimum is taken over all the maps Ψ†
p : (Bp,s(Ψ(0), 1), ∥ · ∥p,s) → Rn such that

sup
α1,α2∈Bp,s(Ψ(0),1)

∥Ψ†
p(α1)−Ψ†

p(α2)∥n
∥α1 − α2∥p,s

≤ γ†γR.

This property coincides with the fact that the fixed Lipschitz width of U associated to
the norm ∥ · ∥p,s for the Lipschitz constant γ†γR is smaller than ϵ. Now, let us introduce
the Lipschitz width of U for the Lipschitz constant γ†γR which is defined as the infimum
of the fixed Lipschitz widths over all the norms in Rp and denote it by dp,γ†γR(U). We
thus have the following property:

dp,γ†γR(U) < ϵ.

Thus according to Proposition 3.5 in [130], this implies that we have an upper bound on
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the Lipschitz constant which is given by:

γ†γR ≥ 1

3
ϵN

1/p
2ϵ (U)

where Nϵ(U) is the ϵ−covering number of U . Since U ⊂ Bn(0, R) is a compact embedded
submanifold of dimension p, we have that

Nϵ(U) ≥ C
Rp

ϵp
,

where C depends on the Lipschitz constants of the local maps of the finite atlas describing
U . Thus, we get that

γ†γ ≥ CRp/p−1ϵ1−p/p

which implies that

ϵ ≥
(
C

γ†γ

)p/(p−p)

R

for every ϵ > δp,γ,γ†(U). This property allows us to conclude the proof.

In the following corollary, we give another formulation of the previous proposition
which will be more useful for our numerical tests.

Corollary 2.3.2. Under the same notations and hypotheses as in Proposition 2.3.1, we
assume that there exist a γ Lipschitz function Ψ : U → Rp and a γ† Lipschitz function
Ψ† : Rp → Rn such that

sup
u∈U

∥u−Ψ† ◦Ψ(u)∥n ≤ ϵ.

Then, there exists a constant C > 0 which only depends on U such that

γ†γ ≥ CRp/p−1ϵ1−p/p. (2.3.4)

This result can be interpreted in the following way: if the dimension p is smaller than
the topological dimension of U , then getting an accurate approximation of the elements
of U with the latent dimension p may be achieved only if the Lipschitz constants of the
approximation mappings are sufficiently large. It is related to the fact that, as long as
the latent dimension is smaller than the intrinsic dimension, the encoder and decoder
functions have to compensate this with strong variations, in the same vein as the space-
filling curves. Our criterion thus relies on the representation of the variation of the product
of the Lipschitz constants of the encoder and decoder functions with respect to the latent
dimension p at a given accuracy ϵ. Its relevance will be illustrated in Section 2.4.

2.3.3 Estimation of the Lipschitz constants

The criterion that we propose to estimate the intrinsic dimension relies on the
inequality (2.3.4) and thus it is necessary to estimate the Lipschitz constants of the encoder
Ψ and the decoder Ψ†. In this section, we explain how this is numerically achieved.

Since the activation function used to build these functions is the ELU, Ψ and Ψ† are
regular functions, in particular they are C1 functions. Let us introduce the gradient of
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the function Ψ : U → Rp and denote it by ∇Ψ:

∇Ψ :

{
U −→ Rp×n

u 7−→ ∇Ψ(u)

Similarly, we denote by ∇Ψ† the gradient of Ψ† : Rp → Rn:

∇Ψ† :

{
Rp −→ Rn×p

α 7−→ ∇Ψ†(α)

The estimation of the product γ†γ of the Lipschitz constants relies on the following
lemma whose proof uses classical arguments.

Lemma 2.3.3. For a function f : U ⊂ Rn → Rn of class C1, we have the following
estimate: for all u(1), u(2) ∈ U ,

∥f(u(1))− f(u(2))∥lq,n
∥u(1) − u(2)∥lq,n

≤

 n∑
k=1

(
n∑

j=1

sup
u∈U

∣∣∣∣∂fk∂uj
(u)

∣∣∣∣z
) q

z

 1
q

where z, q ∈]1,+∞[ are such that
1

z
+

1

q
= 1.

In particular, if we set z = q = 2, we get that, for all u(1), u(2) ∈ U ,

∥f(u(1))− f(u(2))∥n
∥u(1) − u(2)∥n

≤

(
n∑

j,k=1

sup
u∈U

∣∣∣∣∂fk∂uj
(u)

∣∣∣∣2
) 1

2

Thus, if we apply this estimate to f = Ψ† ◦ Ψ, we can have an approximation of a
lower bound of γ†γ by computing(

n∑
j,k=1

n∑
j=1

max
1≤m≤N

∣∣∣ p∑
l=1

∂Ψ†
k

∂αl

(Ψ(u(m)))
∂Ψl

∂uj
(u(m))

∣∣∣2) 1
2

where we have selected N samples (u(m))1≤m≤N to have a discrete approximation of the
supremum value of the gradient.

2.4 Numerical tests of intrinsic dimension estimations
In this section, we will present some numerical tests on the estimation of the

intrinsic dimension of the data set by using an autoencoder, as described in Section 2.3.
In particular, we will compare the criterion that we propose which is based on the
estimation of the Lipschitz constants with a more classical criterion (we refer to [131]
for a presentation of other criteria) based solely on the evolution of the accuracy with
respect to the dimension of the latent dimension.

For the tests which we will present hereafter, we consider the architectures of three
autoencoders, named AE1, AE2 and AE3, and described in Table 2.1, in which only half
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of the architecture is written, since we consider symmetric autoencoders (the encoder
and the decoder have the same architectures). The number of layers corresponds to the
number of hidden layers.

Each autoencoder is trained for different choices of p, the dimension of the latent
layer. Then, the product of the Lipschitz constants γ†γ is evaluated following the method
presented in Section 2.3.3 and the error ϵ (which corresponds to the value of the loss
function given by (2.3.1)) is computed in a validation set.

Table 2.1: Architectures of the autoencoder models

Number of layers Number of hidden units
AE1 7 150, 80, 20, p
AE2 11 250, 150, 80, 20, 10, p
AE3 15 250, 180, 120, 80, 50, 30, 15, p

2.4.1 Tests on Van der Pol model

To build a data set from Van der Pol model (2.2.6), among the three parameters of the
model, we fixed the initial velocity x0 = 0.5 while the parameters v0 and µ were randomly
drawn from a uniform distribution in [0.05, 1.5] and [0.05, 2.0] respectively. Then, for each
parameter value, we computed an approximated solution of the ODE system in [0, T ], with
T = 30 thanks to the Crank-Nicolson scheme with the time step given by ∆t = 0.075. A
total of Nd = 1200 solutions were generated, of which 1000 were used in the training set
and 200 in the validation set.

The training of the autoencoder was performed by optimising the loss function defined
in equation (2.3.1) by using the Adam optimiser and by taking 1000 epochs with a batch
size equal to 40. Each training for a given p was repeated 10 times and the results
presented hereafter correspond to the average of these 10 tests.

In Figure 2.3(a), we have represented the variations of the error with respect to p for
different architectures. As explained in [131], these curves allow to identify the intrinsic
dimension which corresponds to the value of p from which the curve begins to stagnate.
In Figure 2.3(b), we have represented the variations of the products of the Lipschitz
constants to apply the criterion that we proposed. For both methods, we can observe a
stagnation for p = 2. Therefore, for this simple data set, both criteria are able to identify
the right intrinsic dimension p̄ = 2.

2.4.2 Tests on the FitzHugh-Nagumo model

In this section, we present the results obtained on the intrinsic dimension estimation
for the solutions of the FitzHugh-Nagumo model. We consider here a scenario in which
we test the dimension estimation when p̄ = 5. The numerical approximation of FitzHugh-
Nagumo model is carried out by using the Crank-Nicolson scheme on a time interval (0, T )
with T = 200 and with the time step given by ∆t = 0.5.

To generate the data set, we have kept Iext fixed to the value Iext = 0.325 whereas b, τ ,
a, v0 and w0 are drawn from a uniform distribution respectively in the intervals [0.05, 0.5],
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(a) ϵ against different number of p (b) γ†γ against different number of p

Figure 2.3: Intrinsic dimension estimation for Van der Pol model and p̄ = 2

[12.0, 13.0], [0.05, 0.5], [0.05, 1.0], and [0.05, 1.0]. So, in this case, the intrinsic dimension
is p̄ = 5.

If we consider the curve of the accuracy with respect to the latent dimension p, reported
in Figure 2.4(a), we observe a stagnation from p = 3, which would lead to a wrong
conclusion. Let us mention that the difficulty to identify the latent dimension thanks
to this simple and natural criterion has already been highlighted in several papers (we
refer for instance to [131]). In particular, in relatively high dimension, it is often observed
that the curve gradually decreases and starts to stagnate before reaching the intrinsic
dimension. On the other hand, if we consider the curve of the product of the Lipschitz
constants with respect to the latent dimension, reported in Figure 2.4(b), we can observe
that a stagnation only occurs from p = 5. Thus the criterion that we propose is able to
correctly identify the value of the intrinsic dimension.

(a) ϵ against different number of p (b) γ†γ against different number of p

Figure 2.4: Intrinsic dimension estimation for FitzHugh-Nagumo model and p̄ = 5
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2.5 Parameter identification with LVGF method
In this section, we will assess the performances of the LVGF method for the

identification of parameters in Van der Pol and Fitzhugh-Nagumo models. For each
numerical test, we will compare the results given by LVGF method with what we will call
the classical method: it consists in minimising the classical misfit functional J given by
(2.2.5) thanks to a gradient descent algorithm with a fixed step size.

Before describing each test, let us start with some practical details for the
implementation of the LVGF and classical methods. For the training process in the
preliminary step of the LVGF method, we have trained the autoencoders in 1000 epochs
with 40 batch sizes. In Algorithm 1 which describes LVGF method, the maximum number
of iterations has been set to Nmax = 2000, the tolerance for ∥α∗ − αk∥p has been set to
σ = 10−4 and the steps were given by S = [0.0005, 0.0025, 0.0125, 0.0625].

To quantify the errors in the parameter estimation, we evaluated the total error by
computing the root relative sum of squares (RRSSE):

RRSSE(θ∗, θ) =
∥θ∗ − θ∥m
∥θ∗∥m

and, to evaluate the errors in each of the parameters, we also computed the following
relative error (RE) for each parameter:

RE(θ∗i , θi) =
|θ∗i − θi|
|θ∗i |

, 1 ≤ i ≤ m.

At last, the error between the observed signal u∗ and the signal associated to the estimated
parameters u = φ(θ) is defined as the root relative mean squared error (RRMSE):

RRMSE(u∗, u) =
∥u∗ − u∥n
∥u∗∥n

.

2.5.1 Parameter identification for Van der Pol model

In this section, we consider Van der Pol model and are interested by the identification
of the parameter vector θ = (x0, v0, µ).

For LVGF method, we have taken the same data set of 1200 samples and the same
autoencoder setup as in Section 2.4.1. In particular, in the data set, θ1 has a valued
fixed to θ1 = 0.5, whereas θ2 and θ3 are respectively drawn from uniform distributions
in [0.05, 1.5] and in [0.05, 2.0]. The architecture of the autoencoder corresponds to AE1
described in Table 2.1 and its latent dimension has been identified in Section 2.4.1 to be
equal to p = 2 thanks to the criterion presented in Section 2.3.2.

In order to compare the classical method and the LVGF method, we tested them for
10 random values of θ∗ taken in the same range as the data set for θ2 and θ3 and in the
range of [0.05, 1.5] for θ1. Moreover, for each θ∗, we performed the parameter estimation
methods starting from 20 different values of initial guess taken in the same range.

The results are presented in Tables 2.2, 2.3 and 2.4. Table 2.2 corresponds to the
errors on the parameters and the signals averaged over the 10 different values of θ∗ and
the 20 different initial guesses whereas Table 2.3 details the results (still averaged over the
initial guesses) obtained for each value of θ∗. To show the results more easily, we also listed
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the best case and the worst case in Table 2.4. We can see that the values obtained with
LVGF method are significantly closer to the right values than the classical method. With
the LVGF method, both the averaged RRSSE and RRMSE are about 10 times smaller
than the ones obtained by using the classical method. More specifically in Table 2.3, the
LVGF method could provide us estimations with smaller standard deviation (computed
for each θ over initial guesses) and RE almost for each test and each θ. Moreover, even
if, for the best case, the classical method gives very accurate results, most of the time, we
observe that the LVGF method could provide us estimations with smaller RE and that
the classical method converges to a local minima, which prevents it from reaching the
right value and leads to significant errors.

Table 2.2: Comparison between the classical method and LVGF method: averaged results
on 10 tests with Van der Pol model

RE of each
estimated θ

RRSSE of the
estimated θ

RRMSE of the
estimated signal

classical method (0.327, 0.66, 1.37) 1.412 0.4247
LVGF method (0.055, 0.095, 0.01) 0.112 0.0231

Table 2.3: Comparison between the classical method and LVGF method: detailed results
for 10 parameters with Van der Pol model. The results are averaged over the
initial guesses.

θ∗ Methods Average estimated θ Standard deviation RE of each
estimated θ

RRSSE of the
estimated θ

RRMSE of the
estimated signal

(0.5, 0.5, 0.5) classical (0.37, 0.34, 1.14) (0.18, 0.22, 0.87) (0.26, 0.33, 1.27) 1.3378 0.6205
LVGF (0.52, 0.52, 0.50) (0.01, 0.01, 0.002) (0.05, 0.04, 0.008) 0.064 0.013

(0.5, 0.38, 0.65) classical (0.47, 0.01, 1.45) (0.494, 0.987, 0.936) (0.47, 0.97, 1.23) 1.84 0.8997
LVGF (0.52, 0.38, 0.64) (0.012, 0.047, 0.045) (0.05, 0.09, 0.03) 0.111 0.0573

(0.5, 0.6, 0.3) classical (0.47,0.54, 0.50) (0.097, 0.17, 0.589) (0.07, 0.1, 0.65) 0.6649 0.2053
LVGF (0.53, 0.64, 0.30) (0.016, 0.021, 0.0009) (0.07, 0.08, 0.006) 0.10708 0.0191

(0.5, 0.3, 0.8) classical (0.67, -0.05, 1.10) (0.545, 1.12, 0.94) (0.34, 1.18, 0.37) 1.2862 1.5
LVGF (0.52, 0.31, 0.80) (0.0037, 0.0021, 0.00012) (0.05, 0.05, 0.003) 0.0677 0.0134

(0.5, 0.8, 0.2) classical (0.49,0.77, 0.30) (0.06, 0.155, 0.45) (0.03, 0.04, 0.51) 0.5157 0.1137
LVGF (0.53, 0.85, 0.20) (0.008, 0.014, 0.0003) (0.06, 0.07, 0.005) 0.0926 0.0198

(0.5, 0.45, 0.7) classical (0.59, 0.17, 0.97) (0.35, 1.10, 1.03) (0.18, 0.63, 0.38) 0.7596 0.8561
LVGF (0.51, 0.46, 0.70) (0.0088, 0.0077, 0.0017) (0.03, 0.03, 0.005) 0.0464 0.011

(0.5, 0.25, 0.6) classical ( 0.50, -0.23, 5.63) (1.48, 1.51, 8.94) (1.29, 1.92, 8.38) 8.928 0.7703
LVGF (0.54, 0.27, 0.60) (0.0009, 0.01, 0.006) (0.07, 0.07, 0.005) 0.1025 0.0125

(0.5, 0.35, 0.9) classical (0.71, -0.08, 1.26) (0.60, 1.24, 1.0) (0.42, 1.23, 0.39) 1.3626 0.463
LVGF (0.52, 0.36, 0.90) (0.0036, 0.003, 0.0005) (0.03, 0.03, 0.001) 0.045 0.009

(0.5, 0.25, 0.7) classical (0.396, 0.194, 1.06) (0.21, 0.11, 0.72) (0.21, 0.22, 0.51) 0.5999 0.3387
LVGF (0.53, 0.35, 0.69) (0.023, 0.35, 0.06) (0.08, 0.42, 0.03) 0.4564 0.0694

(0.5, 0.6, 0.2) classical (0.5, 0.6, 0.2) (0.0001, 0.0001, 0.0001) (0.0003, 0.0003, 0.0001) 0.0004 0.0000832
LVGF (0.52, 0.63, 0.20) (0.002, 0.02, 0.03) (0.06, 0.07, 0.009) 0.091 0.0196

In order to better assess the performances of the methods and illustrate them, we are
going to describe the results in more detail for a case which is quite representative of what
is observed in general. We consider the case where the parameter to recover is given by
θ∗ = (0.5, 0.5, 0.5) and where we start from the initial guess θ = (0.6615, 1.23, 1.6994).
The results obtained in this specific case are reported in Table 2.5. The iterations obtained
with the classical method are represented in Figure 2.5 (a) where, to better visualize them,
we have chosen to represent only θ2 and θ3. Figure 2.5 (b) represents the values taken
by the misfit function J given by (2.2.5) at the successive iterations. We note that the
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Table 2.4: Comparison between the classical method and LVGF method for Van der Pol
model: detailed results for two specific cases (the best case and the worst
case) and averaged results over 10 different parameter values. At each line, the
results are averaged over 20 initial guesses.

Methods RE of each
estimated θ

RRSSE of the
estimated θ

RRMSE of the
estimated signal

Best case Classical (0.0003, 0.0003, 0.0001) 0.0004 0.00008
LVGF (0.06, 0.07, 0.009) 0.091 0.0196

Worst case Classical (1.29, 1.92, 8.38) 8.928 0.77
LVGF (0.08, 0.42, 0.03) 0.46 0.07

gradient method experiences convergence issues and that the iterations stagnate to a local
minimum which is far away from θ∗.

Table 2.5: Comparison between the classical method and LVGF method in a specific case
for Van der Pol model: parameter to identify θ∗ = (0.5, 0.5, 0.5) and initial
guess θ = (0.6615, 1.23, 1.6994)

estimated θ RRSSE of the
estimated θ

RRMSE of the
estimated signal

classical method (0.44,−0.16, 2.32) 3.8666 1.81
LVGF method (0.52, 0.52, 0.502) 0.0541 0.011

On the other hand, with LVGF method, the iterations converge to the correct values
of the parameters, as illustrated in Figure 2.6. In addition, Figure 2.7 also depicts the
iterations of the latent variable α = (α1, α2) and we observe that the descent direction
for this variable allows to go in a relatively direct way towards the value α∗.

Still for this specific case, let us finally illustrate the errors on the signal presented in
the last column of Table 2.5. For both methods, Figure 2.8 presents a comparison of the
signal associated to the retrieved parameter with the true signal u∗ associated to θ∗, the
value to be identified. The signal corresponding to the initial guess (which is the same
for both methods) corresponds to the green curve. We can see that the curve associated
to the LVGF method perfectly fits the measured signal whereas the signal reconstructed
thanks to the classical method is quite far from the measured signal.

2.5.2 Parameter identification for FitzHugh-Nagumo model

This section is devoted to a presentation of the numerical results obtained for the
identification of parameters in FitzHugh-Nagumo model (2.2.7). In these tests, the values
of Iext and of the initial condition of v are fixed to Iext = 0.325 and v0 = 1 and we want
to identify the four remaining parameters θ = (w0, a, b, τ).

For LVGF method, we have considered a data set of 1200 samples corresponding to
a fixed value of τ given by τ = 12.5 whereas the values of w0, a and b are respectively
drawn from a uniform distribution in [0.05, 1.0], [0.05, 0.8], and [0.05, 0.8]. With regard
to the setup and training process of the autoencoder, we made the same choices as in the
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(a) Values of θ2 and θ3 at each iteration (b) Values of J at each iteration

Figure 2.5: Illustration of the test presented in Table 2.5: representations of the iterations
with the classical method

(a) Values of θ2 and θ3 at each iteration (b) Values of J at each iteration

Figure 2.6: Illustration of the test presented in Table 2.5: representations of the iterations
with LVGF method

Figure 2.7: Illustration of the test presented in Table 2.5: values of α at each iteration
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(a) Signal generated with the parameters
obtained with the classical method

(b) Signal generated with the parameters
obtained with LVGF method

Figure 2.8: Illustration of the test presented in Table 2.5: comparison of the signals with
the classical method and with LVGF method (Van der Pol model)

previous section for Van der Pol model, except that the dimension of the latent layer is
given by p = 3.

To test the performances of the LVGF method and compare them with the classical
method, we repeated the same statistical test as for Van der Pol model by considering 10
random values of θ∗ and 20 initial guesses for each value of θ∗. We took the parameters
in the same range as the data set for w0, a, b and in the range of [12, 13] for τ .

As in the previous section, the results are given by: Table 2.6 gives the averaged results
over 10 initial guesses whereas Table 2.7 details averaged results obtained from every θ∗
and 2.8 corresponds to the best case and the worst case.

As for Van der Pol model, we observe that the relative error made on the parameters
is smaller with LVGF method than with the classical method. More precisely, we see that
the error is reduced by a factor of 2 or more and that the error on the signal is reduced by a
factor of about 7. If we look at the relative error parameter by parameter, we also observe
that the error on the reconstruction of the parameter b (third parameter in θ) is relatively
large with both methods still with a clear improvement with LVGF method (around 54%
with the classical method and 27% for LVGF method). Since this lack of accuracy has
a rather low impact on the reconstruction of the signal, this difficulty to identify the
parameter b compared to w0, a and τ is related to the differences of sensitivities of the
signal with respect to the parameters: its sensitivity with respect to b is smaller than its
sensitivity with respect to the other parameters and so a relatively rough identification
still allows to accurately reconstruct the signal.

At last, the results for a specific example corresponding to θ∗ = (0.5, 0.5, 0.5, 12.5) with
the initial guess θ = (0.4815, 0.223, 0.689, 12.52) are detailed in Table 2.9. In that case,
the reconstruction of the signal associated to the parameters is presented in Figure 2.9.
We can see that the signal generated by the parameters obtained with LVGF method
perfectly fits the measured signal.
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Table 2.6: Comparison between the classical method and LVGF method: averaged results
on 10 tests (FitzHugh-Nagumo model)

Method RE of each
estimated θ

RRSSE of the
estimated θ

RRMSE of the
estimated signal

classical method (0.174, 0.322, 0.544, 0.036) 0.703 0.3662
LVGF method (0.074, 0.08, 0.27, 0.014) 0.3026 0.0529

Table 2.7: Comparison between the classical method and LVGF method for FitzHugh-
Nagumo model: detailed results for 10 parameters. The results are averaged
over the initial guesses.

θ∗ Methods Average estimated θ RE each
estimated θ

RRSSE of the
estimated θ

RRMSE of the
estimated signal

(0.5,0.5,0.5,12.5) classical (0.60, 0.26, 0.60, 12.97) (0.19, 0.54, 0.20, 0.038) 0.6348 0.6045
LVGF (0.47, 0.48, 0.42, 12.67) (0.052, 0.035, 0.16, 0.014) 0.1683 0.0142

(0.5,0.5,0.2,12.5) classical (0.66, 0.26, 0.55, 13.0) (0.33, 0.48, 1.74, 0.04) 1.8667 0.5788
LVGF (0.48, 0.46, 0.199, 12.51) (0.097, 0.12, 0.44, 0.012) 0.4905 0.096

(0.3,0.5,0.3,12.5) classical (0.39, 0.33, 0.45, 13.0) (0.45, 0.35, 0.66, 0.04) 0.8804 0.4426
LVGF (0.28, 0.48, 0.24, 12.56) (0.097, 0.046, 0.3, 0.0092) 0.3145 0.0161

(0.2,0.4,0.5,12.5) classical (0.18, 0.33, 0.39, 12.84) (0.13, 0.18, 0.23, 0.03 ) 0.3352 0.188
LVGF (0.19, 0.38, 0.44, 12.56) (0.13, 0.096, 0.22, 0.016) 0.2772 0.0541

(0.55,0.55,0.55,12.5) classical (0.68, 0.36, 0.74, 13.0) (0.24, 0.34, 0.34, 0.04) 0.5512 0.4858
LVGF (0.52, 0.51, 0.44, 12.76) (0.07, 0.08, 0.21, 0.02) 0.2467 0.0978

(0.45,0.45,0.45,12.5) classical (0.44, 0.33, 0.37, 13.0) (0.034, 0.26, 0.19, 0.04) 0.3307 0.2586
LVGF (0.43, 0.43, 0.39, 12.60) (0.055, 0.05, 0.2, 0.01) 0.216 0.0168

(0.7,0.55,0.35,12.5) classical (0.77, 0.36, 0.63, 13.0) (0.17, 0.35, 0.88, 0.04) 0.9807 0.5015
LVGF (0.64, 0.50, 0.21, 12.67) (0.1, 0.11 , 0.47, 0.019) 0.5061 0.0756

(0.75,0.4,0.4,12.5) classical (0.69, 0.26, 0.18, 12.99) (0.07, 0.34, 0.56, 0.04) 0.666 0.2614
LVGF (0.70, 0.37, 0.35, 12.59) (0.07, 0.1 , 0.31, 0.01) 0.3458 0.1028

(0.75, 0.35, 0.45,12.5) classical (0.70, 0.26, 0.28, 12.84) (0.06, 0.24, 0.39, 0.03) 0.4757 0.1889
LVGF (0.74, 0.33, 0.39, 12.56) (0.03, 0.07, 0.22, 0.01) 0.24 0.0156

(0.8,0.35,0.6,12.5) classical (0.76, 0.30, 0.46, 12.78) (0.06, 0.14, 0.25, 0.02) 0.3039 0.1515
LVGF ( 0.78, 0.32, 0.51, 12.65) (0.04, 0.09, 0.19, 0.019) 0.2205 0.04

Table 2.8: Comparison between the classical method and LVGF method for FitzHugh-
Nagumo model: detailed results for two specific cases (the best case and the
worst case) and averaged results over 10 different parameter values. At each
line, the results are averaged over the initial guesses.

Methods RE of each
estimated θ

RRSSE of the
estimated θ

RRMSE of the
estimated signal

Classical (0.06, 0.14, 0.25, 0.02) 0.304 0.152Best case LVGF (0.052, 0.035, 0.16, 0.014) 0.168 0.0142
Classical (0.33, 0.48, 1.74, 0.04) 1.867 0.579Worst case LVGF (0.1, 0.11 , 0.47, 0.019) 0.506 0.076
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Table 2.9: Comparison between the classical method and LVGF method in a specific case
for FitzHugh-Nagumo model: parameter to identify θ∗ = (0.5, 0.5, 0.5, 12.5)
and initial guess θ = (0.4815, 0.223, 0.689, 12.52)

Estimated θ RRSSE of
estimated θ

RRMSE of
estimated signal

classical method (0.59, 0.05, 0.59, 12.99) 0.9344 0.6695
LVGF method (0.503, 0.502, 0.508, 12.48) 0.0203 0.00624

(a) Signal generated with the parameters
obtained with the classical method

(b) Signal generated with the parameters
obtained with LVGF method

Figure 2.9: Illustration of the tests presented in Table 2.9: comparison of the signals with
the classical method and with LVGF method (FitzHugh-Nagumo model)

2.6 Conclusion and discussion
In this study, we have presented an innovative method called Latent Variables Gradient

Flow (LVGF) which leverages the available data and the underlying dynamics of the
system in order to identify parameters of the ODE model. This approach entails a dual-
phase process. In the first phase, an autoencoder is trained on the data set in order to
represent it in a compressed way. The description of the data set by a latent variable
is then exploited in the second phase which corresponds to an optimisation method that
can be described as a gradient flow for the latent variables.

For this new method, we presented numerical tests and a comparison with the classical
method corresponding to a gradient descent method applied to the minimisation of
the classical data misfit functional (2.2.5). A noticeable property of LVGF method is
that it is able to avoid convergence towards local minimum points. In this way, LVGF
method generally gives much better results than the classical method for the parameters
identification problem.

In addition, we have shown that the sequence defined by the LVGF method satisfies
convergence properties. These results still need to be extended to the algorithm actually
implemented where there is an additional projection step. Nevertheless, our study, even
if it is incomplete, allows to understand how the use of the non-linear mapping between
the parameter space and the latent variable space latent variable allows to convexify our
initial minimisation problem.

In a complementary manner to this parameter identification method, we also
proposed a new criterion to identify the intrinsic dimension of a sub-manifold thanks
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to autoencoders. This criterion is justified by a theoretical result based on the notion of
stable manifold width. It describes the behaviour of the product of the Lipschitz constants
of the encoder and decoder when the latent variable is too small. We have compared our
criterion to the classical criterion based on the evolution of the error with respect to
the latent dimension and observed that it leads to better results. Indeed, in the case of
the classical criterion, the error gradually decreases when the latent dimension increases,
making it difficult to pick a single value for the dimension. On the contrary, our criterion
clearly highlights two phases in the evolution of the product of the Lipschitz constants
and the intrinsic dimension corresponds to the elbow of the curve.

In addition to the theoretical study which must be in-depth, this work opens a certain
number of perspectives. First of all, LVGF method has been tested on simple dynamical
systems to start assessing its basic properties. We intend to continue exploring its use in
more complex situations corresponding to larger dynamical systems that involve a large
number of parameters.

At last, the autoencoder used to approximate the available population data is based
on neural networks. This is not a necessary choice, and other manifold learning methods
could be used ([132]). For instance, Principal Component Analysis (PCA), kernel-PCA,
Locally Linear Embedding, Isomap, Laplacian Eigenmaps, Semidefinite Embedding are
all methods which could be used in order to build an encoder-decoder pair.
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Appendix A

Proof of Proposition 2.2.1 (identifiability and
observability for Van der Pol model)

We consider two solutions of system (2.2.6) (x(1), v(1)) and (x(2), v(2)) respectively
associated to the set of initial conditions and parameters X(1) = (x

(1)
0 , v

(1)
0 , µ(1)) and

X(2) = (x
(2)
0 , v

(2)
0 µ(2)). We assume that the measurements on these two solutions coincide,

that is x(1) = x(2) in [0, T ] and we want to prove that X(1) = X(2).
First, by assumption, we immediately have that x(1)0 = x

(2)
0 . Next, according to the

first equation of (2.2.6), we get that v(1) = v(2) in [0, T ], so in particular v(1)0 = v
(2)
0 . At

last, since v̇(1) = v̇(2) in [0, T ], the second equation of (2.2.6) taken at t = 0 gives that

µ(1)(1− (x
(1)
0 )2)v

(1)
0 = µ(2)(1− (x

(2)
0 )2)v

(2)
0 .

Thus, for almost all X(1) and X(2), we deduce that µ(1) = µ(2) and we conclude that
X(1) = X(2).

Proof of Proposition 2.2.2 (identifiability and
observability for FitzHugh-Nagumo model)

We consider two solutions of system (2.2.7) (v(1), w(1)) and (v(2), w(2)) respectively
associated to the set of initial conditions and parameters X(1) = (v

(1)
0 , w

(1)
0 , a(1), b(1), τ (1))

and X(2) = (v
(2)
0 , w

(2)
0 , a(2), b(2), τ (2)). We assume that the measurements on these two

solutions coincide, that is v(1) = v(2) in [0, T ] and we want to prove that X(1) = X(2).
First, by assumption, we immediately have that v(1)0 = v

(2)
0 . Next, according to the

first equation of (2.2.7), we get that w(1) = w(2) in [0, T ], so in particular w(1)
0 = w

(2)
0 .

Using the second equation of (2.2.7), we have in [0, T ]

1

τ (1)
(v(1) + a(1) − b(1)w(1)) =

1

τ (2)
(v(2) + a(2) − b(2)w(2)) (A.0.1)

and
1

τ (1)
(v̇(1) − b(1)ẇ(1)) =

1

τ (2)
(v̇(2) − b(2)ẇ(2)).
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This implies that (
1

τ (1)
− 1

τ (2)

)
v̇(1) −

(
b(1)

τ (1)
− b(2)

τ (2)

)
ẇ(1) = 0. (A.0.2)

Let us prove that v̇(1) and ẇ(1) are linearly independent. If it does not hold, there exists
λ ∈ R∗ such that ẇ(1) = λv̇(1). Using system (2.2.7), this implies that, for all t ∈ [0, T ]

1

τ (1)
(v(1) + a(1) − b(1)w(1)) = λ

(
v(1) − (v(1))3

3
− w(1) + Iext

)
Differentiating this identity, we get that, for all t ∈ [0, T ]

1

τ (1)
(v̇(1) − b(1)ẇ(1)) = λ

(
v̇(1) − (v(1))2v̇(1) − ẇ(1)

)
Replacing ẇ(1) by λv̇(1), we get

v̇(1)
[
λ
(
1− (v(1))2 − λ

)
− 1

τ (1)
(1− b(1)λ)

]
= 0.

So this implies that, for all t ∈ [0, T ], either v̇(1)(t) = 0 or (v(1))2(t) is given by a constant.
Using that v(1) is a continuous function, this implies that it is a constant function in [0, T ]
and since ẇ(1) = λv̇(1), w(1) is also a constant function in [0, T ].

So, if v(1) and w(1) are not constant functions, we get that v̇(1) and ẇ(1) are linearly
independent and we deduce from (A.0.2) that(

1

τ (1)
− 1

τ (2)

)
= 0 and

(
b(1)

τ (1)
− b(2)

τ (2)

)
= 0.

By this way, we get that b(1) = b(2) and τ (1) = τ (2). At last, using (A.0.1), we deduce
that a(1) = a(2). So, if v(1) and w(1) are not constant functions (which holds for almost all
X(1)), we have obtained that X(1) = X(2).

Proof for Lemma 3.3: estimation of the Lipschitz
constants

Let f : u ∈ Rn → Ψ†◦Ψ(u) ∈ Rn be a continuously differentiable function f ∈ C1(Rn).
The Lipschitz constant can be bounded by:

|fk(u(1))− fk(u
(2))| ≤

n∑
j=1

sup
u∈U

|∂fk
∂uj

||u(1)j − u
(2)
j |, 1 ≤ k ≤ n.

Let us introduce a vector v ∈ Rn whose components are defined as:

vk =
n∑

j=1

sup
u∈U

|∂fk
∂uj

||u(1)j − u
(2)
j |, 1 ≤ k ≤ n.
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We can estimate the ℓq norm of the vector v, we get:

n∑
k=1

(
n∑

j=1

sup
u∈U

|∂fk
∂uj

||u(1)j − u
(2)
j |

)q

Considering Hölder’s inequality where z, q ∈ [1,∞] with 1
z
+ 1

q
= 1,

n∑
k=1

(
n∑

j=1

sup
u∈U

|∂fk
∂uj

||u(1)j − u
(2)
j |

)q

≤
n∑

k=1

( n∑
j=1

sup
u∈U

|∂fk
∂uj

|p
)1/z( n∑

j=1

|u(1)j − u
(2)
j |q

)1/q
q

If we divide on both sides by ∥u(1)j − u
(2)
j ∥qlq,n . We get

∥f(u(1))− f(u(2))∥qlq,n
∥u(1)j − u

(2)
j ∥qlq,n

≤

∑n
k=1

((∑n
j=1 sup

u∈U
|∂fk
∂uj

|z
)1/z (∑n

j=1|u
(1)
j − u

(2)
j |q

) 1
q

)q

∑n
k=1|u

(1)
j − u

(2)
j |q

To rewrite it, we get:

∥f(u(1))− f(u(2))∥lq,n
∥u(1)j − u

(2)
j ∥lq,n

≤

 n∑
k=1

(
n∑

j=1

sup
u∈U

|∂fk
∂uj

|z
) q

z

 1
q

If we set z = q = 2, we will get

∥f(u(1))− f(u(2))∥lq,n
∥u(1)j − u

(2)
j ∥lq,n

≤

[
n∑

k=1

(
n∑

j=1

sup
u∈U

|∂fk
∂uj

|2
)] 1

2

In this way, we get a method to estimate γ†γ. Now, we consider the function
of autoencoder Ψ† and Ψ to this computation, we can compute ∂fk

∂uj
by computing∑p

l=1

∂Ψ†
k

∂αl

∂Ψl

∂uj
. Then, we will estimate the lower bounds of γ†γ by computing

[
n∑

k=1

(
n∑

j=1

max
1≤m≤N

|
p∑

l=1

∂Ψ†
k

∂αl

(Ψ(um))
∂Ψl

∂uj
(um)|2

)] 1
2

In this case, we use the max amongN samples the discrete evaluation point of autoencoder
to estimate the sup on the manifold U .
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Chapter 3

Artificial Neural Network Comparison
on hERG Channel Blockade Detection

The first five sections of this chapter correspond to an article that has been published
in International Journal of Computer Applications (Vol.184, No.14). The article is
entitled: Artificial Neural Network Comparison on hERG Channel Blockade Detection
and is a collaboration with Tessa De Korte, Sylvain Bernasconi, Christophe Bleunven,
Damiano Lombardi and Muriel Boulakia.

Abstract

This chapter presents a comparison of several Artificial Neural Network methods
for classification problems related to cardiac safety assessment. Given the extracellular
field potential recorded by means of micro-electrode arrays, the first aim is to determine
whether a chemical drug is altering the electrical activity of cardiomyocytes by disrupting
the normal behaviour of the human ether-a-go-go-related gene (hERG) channels. In this
chapter, we considered four different Neural Network methods and compared them in
terms of accuracy and computational costs. The results indicate that, among the tested
architectures, the MLP and multivariate 1-dimensional Convolutional Neural Network
(1D-CNN) give the most promising results. The second aim is to classify different drug
concentrations and different channel blockades. Then, we further tested multivariate 1D-
CNN to perform multiclass classification tasks to classify drug concentrations and different
channel blockades. Finally, we investigated RNN methods used in anomaly detection as
a perspective task.

3.1 Introduction

We recall some general information about our research purpose in this chapter.
According to [133], cardiotoxicity has become one of the major causes of drug
discontinuation in preclinical and clinical drug development. More specifically, as
presented in the studies [134, 135], several non-cardiovascular drugs were withdrawn
from clinical use from 1990 to 2001 because they were associated with QT interval
prolongation by blocking ion channels. Therefore, it is crucial for the pharmaceutical
industry to develop effective methods to study and identify the cardiotoxicity risk in
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drug development at an early stage. To do so, measuring the electrophysiology of human-
induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using multi-electrodes
arrays (MEA) is a very promising technology that sets up high-throughput drug screening
methods. Specifically, assessing drug effects on the hERG channel [12] activity is an
important part of the cardiac safety risk assessment as the main cause of QT interval
prolongation. hERG channel is primarily responsible for conducting the delayed rectifier
potassium current (IKr), which is important for cardiac repolarisation. Inhibiting the
hERG channel can potentially induce ventricular arrhythmia, torsades de pointes, and
sudden death, causing dangerous side effects for patients. Moreover, regulatory agencies,
including the U.S. Food and Drug Administration (FDA) and the European Medicines
Agency (EMA), emphasise the evaluation of potential hERG channel blockade during drug
development. Drugs with a substantial risk of hERG channel blockade may encounter
regulatory restrictions or necessitate additional monitoring [136].

In this chapter, our first aim is to evaluate the impact of a drug on the hERG potassium
channel by using Artificial Neural Network (ANN) methods on the field potential (FP)
recordings of hiPSC-CMs obtained with MEA technology. In particular, given the
electrograms recorded by MEA after adding a drug to a mono-layer of hiPSC-CMs, we
explored if the drug can be classified as a hERG potassium blocker. By investigating
different ANNs, this work expects to find the most suitable and effective methods to
automatically identify which drugs cause hERG potassium channel blockade.

This chapter is a continuation of the work performed by [137] who used a greedy
classifier optimisation strategy applied to combining in vitro and in silico experiment data
to predict pro-arrhythmic risk caused by drugs. Our objective is to test Neural Networks
that are known to be particularly effective and do not generally require a pre-processing
step to extract features.

The second aim is to help improve the cardiac safety assessments by determining 1)
if a given FP recording can be associated with a specific drug concentration or classified
as a specific channel blocker, 2) if abnormal/low quality recordings can be identified in a
large amount of FP recordings. These two questions and our proposed methods will be
covered in more details in the last two sections.

3.1.1 State-of-the-art/Literature reviews

The articles [96]-[99] presented several Neural Network methods that are able to
improve the accuracy of different learning tasks for electrocardiogram (ECG, a test that
records electrical signals in the heart) analysis. Among the proposed methods, MLP
and CNN are the most popular Neural Network methods that have been widely used for
classification and prediction purposes in different domains, including ECG arrhythmia
classification. Neural Networks have also been widely tested in electroencephalography
(EEG, a test that measures electrical activity in the brain) research like brain computer
interfaces, sleep analysis and seizure detection. Especially, CNN methods are used to
detect and diagnose seizures based on EEG signals ([100, 101]).

In their studies, [103] and [102] employed CNN to classify echocardiograms (a test that
uses high frequency sound waves to generate pictures of your heart which can check the
structure and function of the heart), aiming to develop an automated diagnostic tool for
clinical use. Furthermore, the work of [91] introduced a multi-label neural network that
employs feature extraction techniques on mechanical beating signals of cardiomyocytes.

50



CHAPTER 3. ARTIFICIAL NEURAL NETWORK COMPARISON ON HERG
CHANNEL BLOCKADE DETECTION Haibo Liu

This network is designed to classify various drugs and drug concentrations by leveraging
the distinctive features found in individual cardiomyocyte beating patterns.

3.1.2 Structure of this chapter

In this chapter, Section 3.2 presents the experimental data set that we have considered
and the data pre-processing needed for MLP, one of the tested ANN methods. Then,
Section 3.3 details the type of input and the architecture for the tested ANN methods:
MLP, Univariate 1D-CNN, Multivariate 1D-CNN and 2D-CNN. In Sections 3.4 and 3.5
we present the design and results of the classification tasks given by these four ANN
methods and we compare them in terms of performances, data processing costs and
network training costs. At the end of the chapter, we will also present some further
studies regarding multiclass classification and semi-supervised learning methods to detect
anomalies in Section 3.6 and 3.7.

3.2 Presentation of the data set and pre-processing

3.2.1 Experimental data set

This study has considered the same experimental data and setup as in the work of [137].
The experimental data are FP recordings of hiPSC-CMs obtained with MEA technology.
MEA includes a two-dimensional arrangement of micro-electrodes that can monitor the
extracellular electrical activity of the cultured cells (we refer to [138] for an overview on
the background of MEA measurements of hiPSC-CM). More specifically, the experimental
data correspond to FP signals before and after addition of 12 drugs, in 96-well MEA
plates, each well containing 8 recording electrodes. Each drug has been added at four
concentrations to four different wells using five replicates per concentration.

As mentioned in [137], when a drug is added to the hiPSC-CM, the FP can be altered.
For instance, the drug can have some impact on certain ion channels of the cells: it can
reduce the original amplitude or prolong the duration of each cardiac beat. However, there
are big variabilities in the whole recording and each drug has a specific effect. Using basic
statistical tools to analyse those signals often faces difficulties and gives biased results. In
this work, ANNs have been tested to have a more comprehensive and effective analysis
on FP data set.

Table 3.1 lists the drugs included in the data set and indicates the hERG potassium
(K), Calcium (Ca) and Sodium (Na) IC50 values and concentrations that have been
tested for each drug. The last column of Table 3.1 summarizes the known effects of the
drugs by classifying them as K, Ca or Na blockers or mixed blockers. A tested drug
with a predominant impact on K channel is considered as a K blocker. Based on this
information, 11 drugs can be considered as pure or mixed K blockers. Only Diltiazem
has a K IC50 value that is much higher than the Ca IC50 and higher than the top tested
concentration and has been classified as a Ca blocker.

Each cardiac beat has been extracted from the recording sequences coming from each
electrode. Since each beat may have a different length depending on the variability of the
hiPSC-CMs and the recording conditions, all cardiac beats have been resampled using
0.08 ms time step to normalize each beat duration to 885.6 ms (11070 samples). For more
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Table 3.1: Experimental data information

Drug
IC50 (µM) Concentration (µM)

Type of blockerK Ca Na #1 #2 #3 #4

Loratadine 6.1 11.4 28.9 0.001 0.003 0.001 0.03 K, Ca

Ibutilide 0.018 62.5 42.5 0.0001 0.001 0.01 0.1 K

Droperidol 0.06 7.6 22.7 0.03 0.1 0.32 1.0 K

Mexiletine 62.2 125 38 0.1 1.0 10 100 Na , K

Dofetilide 0.03 26.7 162.1 0.0003 0.001 0.003 0.01 K

Diltazem 13.2 0.76 22.4 0.01 0.1 1.0 10 Ca

Chlorpromazine 1.5 3.4 3 0.1 0.3 0.95 3 K , Ca , Na

Clozapine 2.3 3.6 3 0.1 0.3 0.95 3 K , Ca

Clarithromycine 32.9 >30 NA 0.1 1 10 100 K

Cisapride 0.02 11.8 337 0.003 0.01 0.03 0.1 K

Bepridil 0.16 1.0 2.3 0.01 0.1 1 10 K , Ca , Na

Azimilide <1 17.8 19 0.01 0.1 1 10 K , Ca , Na

The information contained in this table comes from [137] and the references therein.

details on the experimental data and setup, we refer to the work [137] which considered
the same data set.

For each beat, an acceptable signal must contain both depolarisation and repolarisation
phases. Among all the collected cardiac beats, some signals may have an altered
depolarisation or repolarisation phase compared to the majority of the signals and these
abnormal signals have been removed from the data set. The abnormal signals will be used
in later studies to investigate a method to detect anomalies.

In the experiments, the drugs have been added after a few minutes of baseline
recording so that each electrode provides two recordings: the time period corresponding
to the baseline recording (prior to drug addition) is denoted by P1, and the time period
corresponding to the post-addition recording (after drug addition) is denoted by P2. To
construct the training set, all the beats in the period P1 and the beats obtained from the
experiments of Diltiazem in the period P2 will be labelled as non-K blocker (this class is
denoted by NO-K-blocker). On the other hand, the beats obtained when one of the 11
K blockers was added to the experiments in the period P2 will be labelled as K blocker
(this class is denoted by K-blocker).

3.2.2 Pre-processing for MLP method

MLP method, in contrast to CNN methods that can directly use the raw signal,
requires a pre-processing step to extract some markers or features from the signal that will
be used as input. This data pre-processing step represents an additional computational
cost but it can significantly reduce the input size compared to the raw signals and, by this
way, it can substantially speed up the training phase. To facilitate the feature extraction
process, we have separated the signal into two phases: each beat of the signal has been
split into a depolarisation phase with a duration of 25.6 ms, and a repolarisation phase
with a duration of 860 ms.

A Gaussian filtering, following [139] has been used to mitigate the impact of signal
noise and make the computation of the features more accurate. Since the signal to noise
ratio for the repolarisation phase of the signal is larger, we chose a Gaussian kernel with
a larger standard deviation for the repolarisation phase (its value is equal to 40) than for

52



CHAPTER 3. ARTIFICIAL NEURAL NETWORK COMPARISON ON HERG
CHANNEL BLOCKADE DETECTION Haibo Liu

the depolarisation phase (its value is equal to 2.5).
To summarize, the pre-processing step has extracted 64 features from each beat,

distributed into 23 features for the depolarisation phase, 37 features for the repolarisation
phase, and 4 features for the entire signal. The features are listed in Tables 3.2 and 3.3
and some of them are displayed in Figure 3.1 and 3.2. The following notations are used
in the tables:

• the covariance matrix used to compute Maximum Eigenvalue for depolarisation
phase (DEV ) and Maximum Eigenvalue for repolarisation phase (REV ) is the
matrix given by: for all 1 ≤ i, j ≤ 8

Cij =
1

Nt

Nt∑
k=1

(e
(k)
i − ēi)(e

(k)
j − ēj)

T

where Nt corresponds to the number of time steps, e(k)i ∈ R is the FP signal recorded
by the i-th electrode and ēi is the mean value of ei

• Dw is the filtered signal restricted to the depolarisation phase (that corresponds
to the time interval delimited by DD in Figure 3.1) whereas Rw is the part of the
filtered signal restricted to the repolarisation wave. Dw is defined on [0, tD] and Rw
is defined on [tR

1, tR
2].

• AD (resp. AR) is the area under the curve of Dw (resp. of Rw):

AD =
∣∣∣ ∫ tD

0

Dw(t)dt
∣∣∣ and AR =

∣∣∣ ∫ tR
2

tR1

Rw(t)dt
∣∣∣

The third and sixth columns of Table 3.2 and the third column of Table 3.3 give the
feature indexes. The DEV and REV correspond to one scalar feature. Regarding the
other features listed in the tables, they have been extracted from each signal and, in a
given well and at a fixed beat. Then, we computed the average, maximum, minimum, and
standard deviation of the features over the different electrodes of the well. Then, these
four values were stored in the entries. In addition, Duration DD and Arrival time at
the centre DCT minimum values have been removed considering they have too extreme
values when they are computed on a large number of beats.

Due to the fact that the orders of magnitude of the features widely vary, the features
have been rescaled to ensure that the statistical distribution of the input data is roughly
in the same range. Since our goal is to detect the impact of drugs on the signal, the idea is
to rescale the features extracted from beats corresponding to period P1 or P2 by features
corresponding to period P1.

More precisely, a feature coming from one beat taken in period P1 is rescaled by
dividing the similar feature computed from another beat in period P1 in the same well.
The arrays containing these rescaled features are labelled as NO-K-blocker. On the other
hand, a feature coming from one beat taken in period P2 is rescaled by dividing the
similar feature computed from another beat in period P1 in the same well. An array
containing these features computed from beats extracted from Diltiazem experiments is
labeled as NO-K-blocker whereas an array containing these features computed from beats
extracted from K-blocker experiments will be labeled as K-blocker.
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Table 3.2: Features for the depolarisation and repolarisation signals

depolarisation Phase repolarisation Phase

Features Name Methodology Index of features Features Name Methodology Index of features

Maximum
Eigenvalue
(DEV )

Maximum eigenvalue of
the covariance matrix C

1 Maximum
Eigenvalue
(REV )

Maximum eigenvalue of
the covariance matrix C

24

Amplitude (DA) DA = max(Dw) −
min(Dw)

2, 3, 4, 5 Amplitude (RA) RA = max(Rw) −
min(Rw)

25, 26, 27,
28

Duration (DD) Duration of Dw 6, 7, 8

Amplitude
in the Center
(DC)

Value of Dw at the time
where the area under
the curve reaches 0.5AD

17, 18, 19,
20

Amplitude in
the Center
(RC)

Value of Rw at the time
where the area under the
curve reaches 0.5AR

49, 50, 51,
52

Maximum
Slope
(Dsmax)

Dsmax =
max[0,tD]Dw

′
9, 10, 11, 12 Maximum

Slope
(Rsmax)

Rsmax = max[0,tR]Rw
′ 33, 34, 35,

36

Minimum
Slope
(Dsmin)

Dsmin = min[0,tD]Dw’ 13, 14, 15,
16

Minimum
Slope
(Rsmin)

Rsmin = min[0,tR]Rw
′ 37, 38, 39,

40

Arrival Time
at the Center
(DCT )

Time where the area
under the curve reaches
0.5× AD

21, 22, 23 Arrival Time
for Maximum
Amplitude
(RCT )

Time when Rw reaches its
maximum value

29, 30, 31,
32

25% of the
area under
the curve
(RCT0.25)

Time where the area
under the curve reaches
0.25AR

41, 42, 43,
44

50% of the
area under
the curve
(RCT0.5)

Time where the area
under the curve reaches
0.5AR

45, 46, 47,
48

75% of the
area under
the curve
(RCT0.75)

Time where the area
under the curve reaches
0.75AR

53, 54, 55,
56

90% of the
area under
the curve
(RCT0.9)

Time where the area
under the curve reaches
0.9AR

57, 58, 59,
60

Table 3.3: Features for the whole signal

Features Name Methodology Index of features

Field potential
duration (FPD)

The duration
from beginning of
depolarisation wave
to the end of the
repolarisation wave

61, 62, 63, 64

Figure 3.1: A selection of depolarisation phase features
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Figure 3.2: A selection of repolarisation phase features

3.3 Artificial Neural Networks methods

This part of the chapter focuses on the classification between K or non-K blockers of
the drugs listed in Table 3.1. Four types of ANNs have been tested: MLP, Univariate
1D-CNN, Multivariate 1D-CNN and 2D-CNN. In this section, the architecture of these
ANN methods are explained.

3.3.1 Techniques used in ANN

Before presenting the different ANNs, the important techniques that have been used
are listed. We start by detailing the activation functions:

1. Since Rectifier Linear Unit (ReLU) has been used to improve Boltzmann Machines
in [140], ReLU becomes a commonly used activation function [141]:

ReLU(x) = max(x, 0). (3.3.1)

2. The leaky ReLU function has been introduced by [142] and it is a variant of the
ReLU function whose expression is given by:

f(x) =

{
x if x > 0
ax otherwise (3.3.2)

where a is a small constant number (we have taken a = 0.3 in our tests).

3. The sigmoid activation function [141, 143] transforms the input into an output that
lies in the interval (0, 1) as follows:

χ(x) =
1

1 + exp(−x)
(3.3.3)
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The Batch Normalisation operation is used to normalise and stabilise the distributions
of the input layers, considering the study of [144]. The formula is the following ([145]):

x̄i =
xi − µB√
σ2
B + ϵ

(3.3.4)

This equation normalises the input elements xi (which are the outputs from the previous
activation layer) by calculating the mean µB and variance σ2

B over all the samples. Here,
the positive constant ϵ prevents the calculation from being invalid when the variance is
very small or equal to zero.

3.3.2 MLP

The first tested neural network is MLP. Since MLP was first proposed in [146], it has
become a commonly used method that consists of sets of fully connected layers. The work
of [147] proposed a method to detect arrhythmia in ECG using MLP.

In MLP method, if there are L ∈ N∗ hidden layers and that, for each 1 ≤ l ≤ L, the
l-th layer has k(l) ∈ N∗ units. The input is denoted by x ∈ Rd (where d ∈ N∗ corresponds
to the number of features), the first hidden layer output is a set of k(1) values given by:

oi = ϕ
( d∑

j=1

wijxj + bi

)
, 1 ≤ i ≤ k(1), (3.3.5)

where ϕ(.) is the activation function. Then, the output of the first hidden layer will be
the input of the second hidden layer, the output of the second hidden layer will be the
input of the third hidden layer, until the last hidden layer (see [126, Chapter 4, section
1.1], [148]).

The architecture of the MLP network is shown in Figure 3.3 (we refer to [149,
Chapter 6], for the definitions of the technical terms that follow). In the first layer
which corresponds to the input layer, 64 features are fed into the network. A batch-load
[126, Chapter 11, section 5] has been used and each load will have 40 sets of 64 features
propagated through the network. The weights for the first hidden layer are initialized with
random normal distributed numbers. The bias for the first layer is initialized to zero. The
output from the first hidden layer is then rendered to the next 6 sets of fully connected
layers. In the 6 sets of fully connected layers, they have 320, 320, 192, 64, 32, and 10
hidden units in the layers and the neurons are activated by utilizing the ReLU activation
function (3.3.1) in each hidden layer considering the features were rescaled in Section 3.2.
The output from the last hidden layer will be passed to the fully connected output layer
of 1 neuron with the sigmoid activation function (3.3.3) to provide a prediction for the
binary classification.

During the training phase of the network, the predictions from the MLP method will
be compared with the actual labels in order to compute the loss for each training. The
Binary Cross Entropy has been chosen as the loss function. The weights of hidden layers
were computed by using an Adam optimiser [126, Chapter 11, section 7].
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Figure 3.3: Architecture of the MLP model

3.3.3 1D-CNN

When CNN was first proposed in [150], it was named a self-organised neural network.
After many improvements and extensions [151], CNN has become a neural network
commonly applied to image analysis. While 1D-CNN is very often used for the
classification of time series data, 2D-CNN is a leading machine learning approach for
image classification. Compared to MLP, the CNN method consists of convolutional layers
and works as a feature extractor, so it does not require heavy data pre-processing.

Pre-processing for 1D-CNN

Compared to the MLP method, the data pre-processing for 1D-CNN is much simpler.
In this work, the univariate 1D-CNN and the multivariate 1D-CNN have been tested.
The univariate 1D-CNN method takes a single signal as input. We label the individual
signals in period P1 and the signals obtained from the experiments of Diltiazem as NO-
K-blocker and those signals are denoted by sp(t). We label the individual signals obtained
from experiments of K-blocker drugs as K-blocker and those signals are denoted by snp(t).

On the other hand, the multivariate 1D-CNN takes a pair of signals as input. One
signal from period P1 is paired with another signal in the same well and beat but recorded
by a different electrode (in particular, it also belongs to period frP1). sc1(t) and sc2(t)
are the notations of these paired signals and Nt is the notation of their length. Then, S
is defined as the array in R2×Nt given by :

Sij =

{
sc1(tj), i = 1
sc2(tj), i = 2

(3.3.6)

where (tj)1≤j≤Nt corresponds to the set of the time steps. All these pairs of signals will
be labelled as NO-K-blocker.

In a comparable way, one signal from period P1 (that is denoted by sc(t)) is paired
with one signal from period P2 (that is denoted by sd(t)) in the same electrode and well
by introducing the array S of size 2×Nt given by:

Sij =

{
sc(tj), i = 1
sd(tj), i = 2

(3.3.7)

For these pairs of signals, the ones coming from experiments of Diltiazem will be labeled
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Figure 3.4: Architecture of the 1D-CNN model

as NO-K-blocker whereas the ones coming from experiments of K-blocker drugs will be
labeled as K-blocker.

1D-CNN methodology and architecture

The architecture of the implemented 1D-CNN method (which is common to the
univariate and multivariate 1D-CNNs) is shown in Figure 3.4. It is based on the traditional
AlexNet [152] proposed in [153]. In the CNN method, the raw signals are used as input.
The weights for the first hidden layer are initialized with random normal distributed
numbers. Then, the kernel window with a height of 5 and a width of 1 unit slides across
the input time series to do a cross-correlation operation [126, Chapter 6, section 2] with
1 stride from top to bottom. The example of a cross-correlation operation can be seen
in Figure 3.5. The results from those cross-correlation operations constitute the features
extracted from the first convolutional layer (the convolutional layer can be called Conv1D)
and the Conv1D has 16 extractors to do this kind of computation named convolution
filters.

The output from the first Conv1D will be transformed by a leaky ReLU function
(3.3.2) before the next process. As ReLU (3.3.1) could not be used as negative features are
transformed to 0. So, to avoid losing information from negative features in the following
computation, the leaky ReLU (3.3.2) has been chosen to transform the output from all
Conv1D layers and fully connected layers.

After the first Conv1D layer and the activation process, the Batch Normalization
layer has been used to speed up the training process and reduce the sensitivity of the
initialization of the convolutional neural network [145]. Then the max-filter of the max-
pooling layer [126, Chapter 6, section 5] extracts the maximum values from the defined
region which has a height of 5 and a width of 1, as has been proposed in [153]. There
is also a dropout layer with a rate of 50% added between several Conv1D layers. Then
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Figure 3.5: One-dimensional cross-correlation operation. The shaded portions are the
first output element as well as the input and kernel tensor elements used for
the output computation: 0× 0 + 1× 1 + 2× 2 + 3× 3 + 4× 4 = 30

the other convolution layers are following the same logic as the first convolution layer.
In summary, our model includes 10 Conv1D layers and each layer includes: 16, 16, 26,
26, 32, 52, 52, 72, 72, and 84 filters. The max pooling or dropout layers have been put
between several Conv1D layers.

At the end of the Conv1D layers, the flattened tensor reshapes the outputs from the
previous layer in a one-dimensional array. After flattening the layer, there is a dropout
layer that reduces 50% of the parameters. Then some fully connected layers were added
to the dropout layer. Every neuron in a fully connected layer is connected to every neuron
in the next fully connected layer. There are 5 fully connected layers that have 872, 328,
128, 64, and 16 neurons respectively. Between the last fully connected layer and the
output, the sigmoid activation function (3.3.3) has been used to transform the input to
the output.

In the training phase of the network, we used Binary Cross Entropy as the loss function
and the weights of hidden layers were computed by using an Adam optimizer for CNN
models.

3.3.4 2D-CNN

Pre-processing for 2D-CNN

Before presenting the 2D-CNN method, let us explain how images have been generated
from the signals. The main idea is to associate an image to a pair of signals constructed in
the data pre-processing step for the multivariate CNN. The image is a portrait in which
the first signal of the pair is a function of the second signal of the pair.

Since the depolarisation phase and the repolarisation phase are very different in terms
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of magnitude and duration, we will consider them separately and two images will be
associated with each pair of signals after a renormalization step. To be more precise,
reusing the notations (3.3.6) or (3.3.7), we define

p = max
1≤i≤2,1≤j≤Nt

Sij and q = min
1≤i≤2,1≤j≤Nt

Sij

and then, we define the following points in the 2D space:(
S1j − q

p− q
,
S2j − q

p− q

)
for 1 ≤ j ≤ Nt.

The images have been generated from the data of these points considering the following
process. Every image is divided into a certain number of squares. For the depolarisation
and repolarisation phase, the graph is divided into 30×30 and 60×60 squares respectively.
The images have been generated by counting how many curve points lay in each square.
The number of points included in each square also represents the density of the pixels and
the density is presented by the colour of the squares in the image. Examples of images
are given in Figure 3.6 and 3.7. We expect to observe that the pixels diverge along the
diagonals when a drug causes an alteration of the signals.

Figure 3.6: Example of image obtained by pairing signals both in period P1 as in (3.3.6).
Left: depolarisation phase, right: repolarisation phase

2D-CNN methodology and architecture

These generated images are the inputs of the 2D-CNN method. The size of the image
corresponds to height× width × colour channels. In contrast to 1D-CNN method, the
kernel for 2D-CNN slides crosses the input along with two dimensional directions which
are the height and width of the image like in Figure 3.8. The sizes for kernel and max
pooling window correspond to height × width × colour channel.

In the 2D-CNN model, the kernel size is 3 × 3 × 3 , the window size is 2 × 2 × 3 for
max-pooling and a 20% dropout rate. The architecture of proposed 2D-CNN model is
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Figure 3.7: Example of the image obtained by pairing a signal coming from period P1

and a signal coming from period P2 as in (3.3.7). Left: depolarisation phase,
right: repolarisation phase

Figure 3.8: Two-dimensional cross-correlation operation. The shaded portions correspond
to the first output element as well as the input and kernel tensor elements used
for the computation of this output: 0× 0 + 1× 1 + 3× 2 + 4× 3 = 19, figure
from [126, Chapter 6, section 4.1].

Figure 3.9: Architecture of the 2D-CNN model
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Table 3.4: Details for 2D CNN model: number of layers and their type, number of neurons,
kernel size, whether it has Batch Normalization, max pooling (and, if so, the
size) and dropout (and, if so, the rate)

Number
of Hidden
Layers

Number
of
Filters

Number
of
Neurons

Kernel
Size

Batch
Normalization

Max
Pooling

Dropout

Conv2D Layer 1 16 None 3 Yes Yes, pool size(2, 2) Yes, 20%
Conv2D Layer 2 16 None 3 Yes No No
Conv2D Layer 3 32 None 3 No Yes, pool size(2, 2) No
Conv2D Layer 4 32 None 3 No No Yes, 20%
Conv2D Layer 5 54 None 3 No Yes, pool size(2, 2) No
Conv2D Layer 6 54 None 3 No No Yes, 20%
Conv2D Layer 7 62 None 3 No No Yes, 20%
Conv2D Layer 8 62 None 3 No Yes, pool size(2, 2) Yes, 20%
Flatten Layer 9 None None None No No Yes, 20%
Dense Layer 10 None 872 None No No Yes, 20%
Dense Layer 11 None 328 None No No Yes, 20%
Dense Layer 12 None 164 None No No No
Dense Layer 13 None 64 None No No No
Dense Layer 14 None 16 None No No No

shown in Figure 3.9. There are 8 hidden two dimensional convolution layers (Conv2D)
and the input of image data will be passed to those sets of Conv2D layers. The results
from the last Conv2D layer will be flattened by a Flatten layer. Then, the flattened
parameters will be pass to a set of fully connected layers. The results from each hidden
layer will be transformed by a ReLU activation function (3.3.1). The outputs from the
last hidden layer will be passed to the fully connected output layer of 1 neuron with the
sigmoid activation function (3.3.3). Binary Cross Entropy was used as a loss function and
the weights of hidden layers were computed by using an Adam optimizer.

More details of the architecture of the 2D-CNN model are given in Table 3.4 which
includes the name of hidden layers, the number of filters and the kernel size for each
Conv2D layer and the number of neurons in the fully connected layers. Table 3.4 also
lists the information regarding whether there is a Batch Normalization layer, Max Pooling
layer or Dropout process after each Conv2D or fully connected layer. The techniques used
in Table 3.4 refer to [126, Chapter 6], [149, Chapter 9].

3.4 Setup of binary classification
This section will present the details of the design of the classification tasks for testing

the four ANN methods presented above (MLP, Univariate 1D-CNN, Multivariate 1D-CNN
and 2D-CNN). The tests have performed for two different scenarios:

• Scenario 1: The training set is composed of random signals taken from the recordings
of all the 11 K blockers of our data set. The test set is composed of random signals
taken from the same drugs.

• Scenario 2: The training set is composed of random signals taken from the recordings
of only 7 K blockers among the 11. The test set is composed of random signals from
the 4 remaining K blockers.

For each scenario, the four ANN methods have been tested to predict the label of the
signals in the test set. The obtained results make it possible to compare the ANN
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methods in terms of performances, data processing costs and network training costs.
The performances of the networks are evaluated using the classical criteria [153] which
are listed in Table 3.5. The ANN methods have implemented using the Sequential model
from TensorF lowTM [154].

Table 3.5: Criteria to evaluate the classification methods

Criterion Meaning
False negative (FN) The classification result where positive training data are evaluated as negative
Percentage of FN (FN%) FN% = FN

TP+FN

False positive (FP) The classification result where negative training data are evaluated as positive
True negative (TN) The classification result where negative training data are evaluated as negative
True positive (TP) The classification result where positive training data are evaluated as positive
Accuracy The percentage of signals correctly classified, TP+TN

TP+TN+FP+FN

Precision The percentage of predicted controls cases that were correctly classified, TP
TP+FP

Recall The percentage of actual control cases that were correctly classified, TP
TP+FN

AUC Area under the curve of a receiver operating characteristic (ROC) curve

For scenario 1, different methods have been implemented in the following way:

1. The MLP method takes the rescaled features array of size 64 as input. There are
29116 signals have been selected.

2. The Univariate 1D-CNN method takes single signals as inputs. 27831 signals have
been randomly chosen from NO-K-blocker experiments and 30000 signals from K-
blocker experiments (with a third of the signals in plate 1, a third of the signals in
plate 2 and a third of the signals in plate 3, each plate containing signals from 4
tested drugs).

3. The Multivariate 1D-CNN method takes pairs of signals as inputs. The same signals
have been used as inputs for the Univariate CNN method.

4. The 2D-CNN takes images as inputs. The images were generated from the same
set of signals as the Multivariate 1D-CNN. By loading the images to the 2D-CNN,
each image corresponds to a matrix of size 97 × 181 × 3 (corresponding to height,
width and colour channels).

During the model training phase, there are 20% of the signals randomly distributed
in the test set and 80% of the signals in the training set. In the training set, 20% have
been randomly chosen as a validation set.

For scenario 2, the same signals have been used as in scenario 1 for the four types
of ANNs. However, the signals have been divided in a different way since the training is
made by using signals coming only from a part of the drugs. More precisely, the network
is trained by using the signals coming from only 7 K blockers (Loratadine, Ibutilide,
Mexiletine, Droperidol, Chlorpromazine, Clozapine, Dofetilide). In the training part,
20% of signals have been randomly chosen as the validation set and the rest of the
signals are in the training set. Then, the signals coming from the 4 remaining K blockers
(Clarithromycine, Cisapride, Bepridil, Azimilide) are used to test the networks.
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3.5 Binary classification results and methods
evaluations

In this subsection, the classification results obtained for each scenario and each ANN
method are presented and the evaluations of each method will be listed.

3.5.1 Results of binary classification

The classification results are listed in Table 3.6 for scenario 1 and Table 3.7 for scenario
2. In general, the performances of MLP and multivariate 1D-CNN methods are superior
with 96.82% and 99.26% of accuracy for scenario 1 and 98.33% and 99.13% of accuracy
for scenario 2, respectively. A special attention has to be paid to the error rate of K-
blocker wrongly classified as NO-K-blocker, because in practice this may have more critical
outcomes. Again, the MLP and multivariate 1D-CNN methods give satisfactory results
with respectively 0.2% and 0.14% being false negative (FN). A study on the signals
which have been wrongly classified allows to notice that a large part of them corresponds
to drugs whose channel effect is complex either because they correspond to the mixed
blockers, like Chlorpromazine and Clozapine, or because it has been classified as a non-K
blocker (Diltiazem) whereas this drug partly blocks the K channel at high concentration.
So, the classification error is partly related to the fact that classifying the drug as K-
blocker or non-K blocker may sometimes be reductive due to their complex effect on the
ionic channel activity. There will be more discussion about this point in the next section.

Table 3.6: Classification results of the tested ANNs with scenario 1

Metrics
Classifier

MLP Univariate
1D-CNN

Multivariate
1D-CNN

2D-CNN

Accuracy 96.82% 86.58% 99.26% 88.50%

Precision 92.79% 86.98% 98.70% 89.92%

Recall 99.74% 85.98% 99.86% 87.52%

AUC 99.63% 94.21% 99.90% 95.65%

FN% 0.20% 13.80% 0.14% 12.95%

Table 3.7: Classification results of the tested ANNs with scenario 2

Metrics
Classifier

MLP Univariate
1D-CNN

Multivariate
1D-CNN

2D-CNN

Accuracy 98.33% 64.63% 99.13% 84.42%

Precision 99.90% 65.62% 98.76% 88.43%

Recall 96.00% 61.47% 99.67% 82.42%

AUC 98.80% 70.85% 99.63% 92.27%

FN% 2.72% 36.24% 0.41% 19.77%
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It is interesting to notice that, contrary to the other methods, the performances of
MLP and multivariate 1D-CNN methods with scenario 2 are similar to the ones with
scenario 1. This suggests that these methods will have good predictive capabilities for
testing new drugs whose action on ionic channels is still unknown.

Table 3.8: Data Processing and Training Costs of the tested ANNs

Classifier Data
Processing
Cost

Training Time
for Each
Epoch

Number
of Epochs
needed

Training
Time

MLP Very High 1 minutes 20 epochs 20 minutes

Univariate
1D-CNN

Very Low 3.5 minutes 100 epochs 5.8 hours

Multivariate
1D-CNN

Very Low 3.67 minutes 20 epochs 1.2 hours

2D-CNN Low 6.67 minutes 60 epochs 6.7 hours

3.5.2 Methods evaluations

Considering the showed classification results, MLP and multivariate 1D-CNN methods
can provide the most promising analysis of experimental data set. Besides the evaluation
of the performance of the ANN methods, additional factors have to be considered such
as the data processing costs and the model training costs to have a more comprehensive
evaluation of each method. In terms of industrial implementation, it is important to
consider which ANN methods would be easier to deploy. The data processing costs and
model training costs are listed in Table 3.8. Depending on the size of the data set and
computational power, the time demand would be different. The data processing costs
are ranked from very low to very high. In terms of training costs, the training time
for each epoch and the total training time are considered to get a well-trained model. In
summary, MLP needs the shortest training time but has the largest data processing costs.
Multivariate 1D-CNN has very low data processing costs and needs 1.2 hours of training
time. In other words, compared to MLP, Multivariate 1D-CNN has a lower requirement
for data processing but higher computation requirements for training the network.

3.6 Beyond binary classification

As already mentioned in the previous section, it may be too restrictive to assign a class
(K-blocker or NO-K-blocker) to a drug because this binary assignment does not reflect the
complex behaviour of drugs on ion channels. In particular, once a drug has been identified
as a K-blocker, a natural refinement could be to classify it as a pure K-blocker or a multi-
channel blocker with the different possible combinations K+Na, K+Ca or K+Na+Ca.
It may also be important for this classification to consider each concentration separately
since they may have a different impact on the ion channels. In this section, we present
some tests on multiclass classification. In particular, we have started to investigate two
scenarios:

1. Classification according to molecule concentration. Given a signal, we try to identify
to which level of molecule concentration it corresponds.
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2. Classification as pure K-blocker or multi-channel blocker.

For all these tests, we considered the multivariate 1D-CNN presented in Chapter 3,
Section 3.3.

3.6.1 Classification according to concentration.

In the preliminary study that is presented here, we made the simple hypothesis that,
when the drug concentration increases, the identification of the molecule becomes more
accurate. Conversely, we assume that when the drug concentration is lower, we have a
larger classification error. The idea behind this hypothesis comes from the observation
that it is more difficult to distinguish signals obtained for low concentrations from the ones
of the control group. It is to be noted that this assumption can be naive because when
concentration increases, for instance, a drug that primarily has an impact on the hERG
channel can have effects on other channels. But we have chosen to disregard these more
complex behaviours (like counteract of multiple blockades with higher concentrations) in
this exploratory study.

We consider here 5 different classes: the first one corresponds to controls (baseline
recording which is prior to drug addition), and the other four correspond to the four
different levels of concentrations, C1 ≤ . . . ≤ C4. These are reported in Table 3.1. To
start with, we considered here a set of data composed of the signals obtained for the
control and the drug Ibutilide.

The training set consists of 80% of the signals recorded for the Ibutilide assessment
(meaning that we have data for controls and for the four concentrations). The training
procedure is the same as the multivariate 1D-CNN presented in Section 3.3 and 3.4.

The obtained results are depicted in Figure 3.10. We can see that, for the lowest
concentration, C1, we obtain, as expected, less accuracy, as 8% of the signals are classified
as controls, and part of the signals are classified as C2. For higher concentrations, the
results are encouraging, as we obtain an accuracy larger than 94%. Therefore, this means
that we have, at least for some compounds, the possibility to have a finer classification
than the binary one, with multiple levels of blockade intensity. Further tests are needed
in order to have a finer assessment of the performances of this classification with different
kinds of drugs, in particular when they are multi-channel blockers.

3.6.2 Multi-blockers classification.

We describe in this section the compound classification according to different types of
blockade. We have simultaneously considered pure potassium blockers and multi-channel
blockers corresponding to the following four classes:

• K blockers corresponding to Droperidol, Ibutilide, Dofetilide, Clarithromycine, and
Cisapride

• K+Na blockers corresponding to Mexiletine

• K+Ca blockers corresponding to Clozapine and Loratadine

• K+Na+Ca blockers corresponding to Chlorpromazine, Azimilide, and Bepridil
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Figure 3.10: Classification of concentrations of Ibutilide
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The training set consists of 80% of the signals recorded in the experiments when adding
the above listed compounds. The training procedure was the same as the multivariate
1D-CNN presented in Section 3.3 and 3.4.

The results of this classification are depicted in Figure 3.11. We can see that multi-
channel blockers like K+Na+Ca blockers have a higher chance of being misclassified
as pure K blockers. This can be illustrated by some multi-channel blockers that may
share some similar characteristics as pure K blockers. When just the potassium or two
channels at a time are blocked, the accuracy is larger than 92%, showing the potential of
distinguishing between different blockade mechanisms.

Figure 3.11: Classification of different drug effects

3.7 Replicator neural networks (RNNs) for anomaly
detection

In hiPSC CM drug safety assays, a substantial volume of MEA signals is recorded.
Before beginning any signal analysis, a series of data preprocessing steps is needed. These
preprocessing steps include data cleaning, normalization, etc. The principal objective
of this preprocessing is to ensure the data quality, which is paramount for subsequent
analysis.

However, among all the collected FP signals, some signals may deviate from the main
signal shape. This discrepancy can often be attributed to suboptimal cell conditions or
recording circumstances. Such abnormal recordings introduce potential biases that could
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compromise the experiments conclusions. Consequently, it becomes necessary to exclude
these problematic recordings from the data set. Traditionally, this has been accomplished
through manual selection and removal, a labor-intensive process that consumes significant
resources.

In this section, we aim to explore methods able to automatically and reliably identify
poorly recorded FP signals. If we consider this challenge as a semi-supervised learning
problem, we could use an RNN-based approach. RNN is an example of autoencoder which
was already presented in Chapter 2, section 2.3.1. We will test a linear and nonlinear
autoencoder to perform this task.

Autoencoders are usually set up to perform anomaly detection, as presented in [124].
They are used in a semi-supervised way. An autoencoder is trained in order to well
reproduce signals which are considered as normal. When trying to reconstruct normal
signals, it would henceforth have a small reconstruction error. On the contrary, when
trying to reconstruct an abnormal signal, it would have a significantly larger reconstruction
error. This provides a way to perform a binary classification between normal and abnormal
signals, by considering a threshold on the reconstruction error.

We consider here a first test with real FP signals obtained from the drug safety
assessment experiments mentioned in Section 3.2. We restrict to the depolarisation part
for simplicity as the majority of the anomalies occurring in MEA experiments can be seen
in the depolarisation part of the signal. The data set consists of Nd = 38894 signals, each
signal being denoted by s ∈ RNt , with Nt = 320. In these data, there are 34530 normal
signals and 4364 signals considered as anomalies. Among all normal signals, we will take
80% to train and 20% to validate the autoencoder.

We consider, for the reconstruction error, the root relative mean squared error
(RRMSE), as done in Chapter 2, section 2.5:

RRMSE(s, ŝ) =

√
1
Nt

∑Nt

i=1(si − ŝi)2√
1
Nt

∑Nt

i=1 s
2
i

where s, ŝ ∈ RNt are the true and reconstructed signals respectively. The rationale behind
this choice for error reconstruction lies in the robustness with respect to the eventual
change of scale in the recorded signals.

In view of performing anomaly detection by classifying the reconstruction based on
the error, we have to introduce a threshold. We will set its value by considering the
average reconstruction RRMSEs in the training set plus its standard deviation η, which
is denoted by e = RRMSEs + η. When the reconstructed error of a given new datum is
higher than this threshold e, we will predict it as an anomaly.

Three different autoencoders have been tested. The first one, that we will refer to as
linear autoencoder, is built by considering the following set-up. We arrange the data into
a matrix A ∈ RNt×Nd , each datum being a column of this matrix. The singular value
decomposition (SVD) of A is denoted A = USV T . Here, U consists of the eigenvectors
of AAT , V consists of the eigenvectors of ATA and S contains the singular values in
decreasing order. According to the idea of principal component analysis (PCA) in [155]
and [156], if we select the first k column vectors of U (corresponding to the k largest
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singular values), denoted Ũ , for an input datum u, we can define a linear autoencoder as:

α = ψ(u) = ŨTu

ũ = ψ†(u) = Ũα.

In the following tests, we will set k = 40 (k should be set depending on specific data).
This linear autoencoder will be compared with two other nonlinear autoencoders that
have the following architectures, denoted AE1, AE2 respectively, depicted in Figure 3.12.

(a) Nonlinear autoencoder AE1

(b) Nonlinear autoencoder AE2

Figure 3.12: Autoencoder Architectures

For these two non-linear autoencoders, the considered activation function is
ELU(2.3.2). The training was performed by using the Adam optimizer, 500 epochs with
batch size 20.

The error thresholds e to be used in the classification are reported in Table 3.9. The
test set consists of 20% of the normal signals completed by the abnormal signals.

Let us describe the results obtained. We compare the RRMSE of each signal in the
test set to the threshold and attribute a label. The results, depicted in Figure 3.13, are
presented as percentages. These percentages are obtained by dividing the total number
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Table 3.9: Thresholds results for three autoencoders

Methods Average RRMSE Standard deviation
Linear autoecnoder 0.0207 0.0756

Nonlinear autoencoder AE1 0.0435 0.1442
Nonlinear autoencoder AE2 0.03051 0.1069

of abnormal and normal signals, respectively.

(a) Results for the linear autoencoder (b) Results for the nonlinear autoencoder

AE1

(c) Results for the nonlinear autoencoder

AE2

Figure 3.13: Anomaly detection results

Both the linear autoencoder and the non-linear autoencoder AE2 detected anomalies
with a large accuracy (around 95%) and the linear autoencoder slightly outperforms
AE2. However, the linear autoencoder does not have a good accuracy when predicting
normal signals, the error being around 12%. The autoencoder AE2 has more uniform
performances, as the error in detecting normal signals is around 7%. The global accuracy
of the linear autoencoder is around 91.5% and the accuracies of AE1 and AE2 are around
91.5% and 93.5% respectively.

In this section, we conducted tests using three different autoencoders for anomaly
detection. The linear autoencoder stands out as the most simple method, offering
the advantage of lower computational costs while maintaining a high level of accuracy.
However, in comparison to nonlinear autoencoder AE2, one limitation of the linear
autoencoder is its tendency to detect more normal cases as anomalies, potentially leading
to the misprediction of normal data.

It is important to highlight that this section represents a preliminary investigation of
methods for automatic anomaly detection. To establish a robust and reliable method,
there are several aspects to be considered in further studies.

Firstly, concerning the selection of the parameter k, we should address the question
of what criterion determines the optimal value of k that results in the lowest overall
prediction errors. The same question applies to the nonlinear autoencoder: how do the
architecture and dimension of the latent space influence the prediction errors? Likewise,
the threshold value is set arbitrarily and we would need to determine a criterion suitable
for detecting anomalies. At last, we would like to understand in which situations the
linear autoencoder outperforms the nonlinear ones and vice versa.
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3.8 Summary: chapter conclusion and discussion
In this chapter, we tested some methods based on ANNs to address specific challenges

in the field of safety pharmacology.
In our first study, we explored the performance of four different neural network

approaches, namely MLP, univariate 1D-CNN, multivariate 1D-CNN, and 2D-CNN, in
a binary classification task involving the classification of K channel blockers and NO-K
blockers. Our findings indicated that both MLP and multivariate 1D-CNN yielded the
highest accuracy. MLP offers the advantage of having lower training costs, but it requires
more extensive data pre-processing compared to multivariate 1D-CNN which requires less
computational costs in pre-processing but more in training.

We also presented two exploratory studies in Sections 3.6 and 3.7. First, we worked on
a classification according to the concentration of drugs or according to their multi-channel
effect. This problem can be viewed as a multiclass classification problem. We showed some
results obtained with the multivariate 1D-CNN. Then, for the question related to anomaly
detection, we utilised three different autoencoders to automatically spot the anomalies.

Overall, we got encouraging results that lead us to believe that the use of Neural
Networks may allow us to achieve a fine classification of drugs and may be of great help
in assessing the cardiac safety of drugs in a semi-automatic and high throughput manner.

It is worth noting that these methods were tested on a specific data set. In future
works, we aim to assess whether they can maintain their high accuracy when applied to
a new data set. Furthermore, we recognise that there is a wide range of alternative ANN
methods that could potentially surpass the current methods in terms of computational
efficiency and accuracy. In the current context, we are constrained by limited resources,
which restrict our ability to compare and analyze a broader range of ANN methods.

To ensure the applicability of these methods in industrial settings, it is imperative to
conduct additional tests in various scenarios to validate their robustness and efficiency.
Especially, considering the multiclass classification and anomaly detection scenarios, there
are still a lot of potential aspects to be considered in the future.
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Chapter 4

Two Additional Studies on
Cardiovascular Signals

Part 1: Analysis of Data from Patients Affected by
Brugada Syndrome

Abstract

This part presents results obtained in the context of a collaboration with the
Pharmacology department at Antwerp University and more specifically with Maaike
Alaerts. It focuses on investigating Brugada syndrome, a genetic disorder in which
the cardiac electrical activity is irregular. Based on data sets of action potentials (AP)
recorded for patient derived hiPSC-CMs, we aim to explore methods that would allow to
better understand the manifestations of Brugada syndrome. First of all, we will present
how Neural Network methods can help to automatically classify patients and healthy
individuals. Subsequently, we will introduce a strategy in order to distinguish patients
with severe symptoms from patients with non-severe symptoms. This approach combines
clustering methods with a classification strategy and provides insights into the severity
degrees of the symptoms. In the end, we will present some methods which could help us
to understand better the mechanisms related to Brugada syndrome and some prospective
studies.

4.1 Introduction

As described in the studies [157, 158, 159], Brugada syndrome is a genetic condition
that can lead to dangerous irregular heart rhythms and sudden cardiac death in affected
individuals. It has a notably high incidence in various regions worldwide and carries a
substantial risk of sudden death.

Certain studies have observed a higher prevalence of this syndrome, particularly in
patients with SCN5A mutations. SCN5A gene [160] encodes the alpha subunit of the
main cardiac sodium channel Nav1.5. SCN5A mutations can influence inward sodium
current (INa) and cause irregular cardiac electrophysiological functions. However, much
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Figure 4.1: The process to generate patient derived hiPSC-CMs

work remains to be undertaken to fully understand the underlying mechanisms of Brugada
syndrome. The Antwerp research team has undertaken the task of cloning hiPSC-CMs
from patients and healthy individuals and recording cellular signals (Patch Clamp data
Action Potential, AP) to delve deeper into the intricacies of the mechanisms of this disease.

Compared with hiPSC-CMs assays for drug safety assessment in Chapter 3, patient
derived hiPSC-CMs carry genetic mutations and changes in other genes. These changes
make it different from the healthy cells.

One of the central challenges comes from the fact that patients sharing the same
genetic mutation exhibit varying degrees of syndrome expression. The objective is to
understand the relationship between the genetic mutation and the ion channel activities.
Furthermore, the team aims to investigate why some patients exhibit milder or more severe
manifestations of the syndrome, shedding light on the underlying factors that contribute
to this variability. It should be mentioned that this work is a preliminary investigation of
a potentially broad topic, involving multidisciplinary research.

4.1.1 The AP data set

In this section, we will give some information about the data set of action potentials
(AP) provided by Antwerp team. The AP recordings come from 5 patients suffering
from Brugada syndrome. For each patient, there are 2 cell lines and each cell line has
2 differentiations (we need to note that the differentiation process can itself be a source
of variability and increase the challenges in this study). An example of this process is
described in Figure 4.1. In addition, the same process has been implemented for healthy
individuals in order to get the same quantity of hiPSC-CMs APs which correspond to
the control cell lines. Each AP recording has been segmented by beat and each beat is
denoted sa ∈ RNt where Nt = 15000 corresponds to the number of time steps.

The data generated are labelled as follows: BrS8C2_D1 and D2, BrS8C3_D1 and D2,
BrS9C7_D1, BrS10C3_D1, and BrS12C1_D1 and D2. BrS is followed by the patient
code, C is followed by the cell line code, and D is followed by the differentiation code. For
the control cell lines, we have the following data: M4550C3_D1 and D2, M4550C9_D1
and D2, M4550C15_D1 and D2, F199001C2_D1 and D2, and F199001C3_D1 and D2.

4.1.2 The goals of this study

In this work, we will investigate the following questions:

74



CHAPTER 4. TWO ADDITIONAL STUDIES Haibo Liu

1. Distinguishing patients from healthy individuals: This question can be
viewed as a classification problem in the same vein as the problems studied
in Chapter 3. Answering to this question therefore consists in labelling AP
recordings according to two classes: control and patient. In Section 4.2, we will
approach this classification problem using neural network methods and perform a
comparison between an MLP classifier and a multivariate 1D-CNN. Both methods
were presented in Chapter 3, Section 3.3.

2. Distinguishing patients with severe symptoms from non-severe
symptoms: The question is now the following: given the data collected on the
different cell lines and differentiations of the same individual, is it possible to deduce
whether the syndrome manifests itself through severe symptoms or not?

As already mentioned, we observe a large variability in the data set. In particular,
for the same patient, there are signals (in certain cell lines and differentiations)
which correspond to a ventricular shape whereas others have an atrial shape. Due
to this variability, we will break this question into two distinct parts:

• Handling Variability in the Data: We will explore methods to handle
the inherent variability in the data. The goal is to separate the dataset into
subgroups according to the AP signals’ shape. To this end, we will use a
clustering method, whose input is generated by a dictionary of agnostic and
electro-physiology derived features (biomarkers). The details are explained in
Section 4.3.1.

• Distinguishing Severe and Non-Severe Syndrome Patients: After
dealing with this data variability problem, we will introduce an approach which
could help to discriminate between patients with severe and non-severe forms
of the syndrome. This step is performed by exploiting the clustering of the APs
shapes, and a notion of similarity between signals. The results are presented
in Section 4.3.2.

4.2 Binary classification between healthy and non-
healthy individuals

Given an AP signal, we wish to classify it as healthy (labelled as 0) or non-healthy
(labelled as 1). In this section, we present a comparison between two different classification
methods: MLP and multivariate 1D-CNN.

For the classification based on MLP, we need to extract well-adapted biomarkers
associated to the signals. The computation of these features is similar to the one presented
in Chapter 3, Section 3.2.2. There are however some variations due to the difference
of shapes between FP signals and AP signals. For instance, the depolarisation of AP
(like Figure 1.1) is followed by the plateau phase which does not exist as is in the FP
(like Figure 3.1 and 3.2). Therefore, some features are not computed separately for
depolarisation and repolarisation phases.

More specifically, we compute a dictionary of features f ∈ R9 containing: action AP
duration denoted as APD, amplitude (APA), amplitude in the centre (APC), maximum
and minimum slope (APSmax and APSmin), 25%, 50%, 75%, and 90% of the area under
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the AP curve (APCT0.25, APCT0.50, APCT0.75, and APCT0.90). In our classification
scheme, we considered that obtaining a value above 0.5 classifies the cell line as unhealthy,
whereas a value below 0.5 corresponds to a control cell line. The proximity of a prediction
to either 1 or 0 indicated the model’s level of certainty. For the architecture, the choice
of the NN parameters and the training setup of the MLP, we considered the same as in
Chapter 3, Section 3.3.2. Moreover, to ensure a robust evaluation, we randomly selected
20% of the entire feature data set as unknown samples in the test set.

The MLP model achieved an accuracy of 75.45% on correctly predicted controls and
patients in the test set. However, upon closer examination, we observed that the average
confidence levels, as depicted in Figure 4.2, were not particularly high for certain patient
cell lines, namely BrS12C1, BrS12C4, and BrS8C3-D1. Furthermore, a noteworthy issue
arose with patient BrS8C3-D2, as most of its samples were classified as controls.

Given the limitations in both accuracy and confidence levels, we explored an
alternative method to improve our classification results.

Figure 4.2: Results from MLP model to predict control versus patients

In our second approach, we employed the multivariate 1D-CNN method, which has
the capability to use the action potential (AP) signals directly as input and autonomously
extract features from the signals. This method can consider features which we did not
take into account for the construction of the MLP input, thereby enhancing its ability
to discriminate between controls and patients. The details of the multivariate 1D-CNN
method, including the architecture, NN parameters and training setup are the same as
the ones detailed in Chapter 3, Section 3.3.3.

In order to define the input of the multivariate 1D-CNN method, we organized the
APs as an array S ∈ R6×Nt , where each beat of the APs is sa ∈ RNt . In the case of
controls, we randomly selected one trace and paired it with another control AP. This
pairing process was repeated three times to create a matrix containing six APs. For
patients, we randomly selected one trace and paired it with a control AP. Again, this
pairing process was repeated three times to create a matrix with six APs.
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To train the multivariate 1D-CNN model, we included 80% of all APs from control
and patient cell lines. Then, the model was tested on 20% of the unknown APs. The
results demonstrated 97% accuracy in predicting controls versus patients, as depicted
in Figure 4.3. The model successfully classified all the patients with high confidence,
except for patient BrS8C3-D2, for which the confidence level was lower and the number
of misclassified samples was higher.

Figure 4.3: Results from multivariate 1D-CNN model to predict control versus patients

Subsequently, we extended the evaluation of the multivariate 1D-CNN model by
testing its ability to predict unknown patients. This involved training the multivariate
1D-CNN model using a portion of a patients data and then using the trained model
to predict the label corresponding to patients data which had never been used during
the model training. This evaluation strategy allows us to assess the model capability to
generalize and perform predictions on unknown data.

The results of these evaluations are presented in Figures 4.4, 4.5, and 4.6. The
Figures are in agreement with our previous observations, indicating that the 1D-CNN
model performs well in classifying the patients. It exhibits a high degree of confidence in
accurately classifying patients (more than 90% accuracy), except for patient BrS8C3-D2,
where, although the average confidence level remains above 0.5, there is a notable presence
of misclassified samples and increased uncertainty. It seems to be related that, for this
patient cell line, the impact of the genetic disorder is lower but further investigations are
needed in order to better explain this difference.

To conclude this section, we noticed that MLP method could not provide a good
classification between patients and healthy individuals whereas the multivariate 1D-CNN
was able to achieve a high-level of accuracy with good confidence bounds. This points
towards some questions that merit further investigation in the future. In particular, it
would be interesting to study which features are used by the CNN and to understand
their interpretation in order to complement the physiological biomarkers classically used
in an MLP type of approach.
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Figure 4.4: Results from multivariate 1D-CNN model to predict control versus unknown
patients 1

Figure 4.5: Results from multivariate 1D-CNN model to predict control versus unknown
patients 2
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Figure 4.6: Results from multivariate 1D-CNN model to predict control versus unknown
patients 3

4.3 Distinguishing patients with severe and non-severe
symptoms

In this section, we will present a study on the classification between patients with a
severe manifestation of the pathology and patients with mild effects. This section will be
divided into two parts: a variability analysis on the control cell data and the identification
of patients with severe and non-severe syndrome.

4.3.1 Data variability analysis

One of the difficulties we encountered when attempting to distinguish severe forms
from less severe forms comes from the variability in the data set. The diverse range of AP
shapes makes indeed this task tough. So in a first step, we analysed the "beat-to-beat"
variability for the control group (cell lines and differentiation of cells derived from healthy
individuals) by clustering the AP signals according to their shape.

We used the Density Based Spatial Clustering of Applications with Noise (DBSCAN)
method, that was introduced in [161]. DBSCAN is a density-based clustering method,
whose aim is to discover clusters of arbitrary size.

The first step of DBSCAN consists in defining a neighbourhood around each data
point, according to a notion of distance, and a specified radius. It also requires that
this neighbourhood contains at least a minimum number of data points. Then, the
method identifies the centre of those neighbourhoods. This process is repeated until
all centre points have been identified and included in clusters. The algorithm iterates
through each centre point and expands the cluster by connecting centre points within
their neighbourhoods. For the non-centre points, the method assigns them to a nearby
cluster if the cluster is within the defined radius neighbourhood. Otherwise, the points
are labelled as noise.

DBSCAN stands out for its ability to determine the number of clusters based on the
given radius and minimum number of data points. It is robust in handling outliers, which
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is suitable for our problem.
The inputs required for DBSCAN are the electro-physiology derived features

mentioned for the MLP method presented in Section 4.2. The features were normalised
from 0 to 1 by min-max normalisation. We denote by F ∈ RNd×9 the array of features and
define fjmin

= min
1≤i≤Nd

{Fij} and fjmax = max
1≤i≤Nd

{Fij} where 1 ≤ j ≤ 9. Then, the normalised

features are defined by:

F̂ij =
Fij − fjmin

fjmax − fjmin

, 1 ≤ i ≤ Nd, 1 ≤ j ≤ 9

For the DBSCAN algorithm, we considered the Euclidean distance. Moreover, the
hyperparameter d > 0 which corresponds to the maximum distance between two samples
for one to be considered as in the neighbourhood of the other has been set to d = 0.3.
At last, the minimum number of samples required in a neighbourhood for a point to be
considered as a centre point was equal to 20.

However, the first results did not meet our expectations, as different shapes were
assigned to the same cluster. This can be explained by the fact that very different shapes
could have similar biomarkers. For the sake of brevity, we do not report these first results.

To correct this, we tried to enrich the dictionary of features to be used in the clustering
process. To do so, we considered an autoencoder-based approach. In this case, the input
of the autoencoder is now the full AP signals that we denote by sa. The autoencoder has
5 hidden layers which have respectively 5000, 300, 20, 300, and 5000 hidden units. The
autoencoder was trained to reconstruct the APs with small error (RRMSEsa ≤ 10−1 ).
Then we computed the values of the latent variables α ∈ R20, and we considered them as
extra features.

The results from the clustering of control cell data are shown in Figure 4.7. We can
see that the data set of control APs is divided into Nc = 36 different clusters and that
this method is able to qualitatively group the APs on their shapes.

4.3.2 Severe and non-severe syndrome identification

The method that we propose to identify if a patient has severe or non-severe syndrome
effects relies on the use of this clustering applied to control cell data. Having now an AP
coming from a patient, we extract the features of the augmented dictionary presented
before and we compute the distance between the patient features and the centres of every
cluster to see to what extent the patient AP is far from the population of control APs. For
each cluster, we compare the distance to a threshold (set at d = 0.3+0.5). If the distance
is smaller than the threshold we can consider that this patient datum could belong to this
cluster. If multiple clusters have a distance smaller than defined d, the patient datum
could belong to the cluster which has the minimum distance. If so, this beat is somehow
similar to part of the beats in the control population. On the contrary, if the sample does
not belong to any of the control clusters, it will be considered as an outlier (labelled −1),
as it is far apart with respect to all the control data.

In this section, we will present some results to classify the data recorded for two
patients: BrS10 and BrS12.
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Figure 4.7: Clustering results for control cell lines

The results for these two patients are summarised in the Tables 4.1-4.2. In these tables,
we listed the cluster number and the number of beats assigned to them. For BrS10, we
can see that there are 248 beats, corresponding to 12.67% of the total number of beats,
that have been labelled as outliers, which means not similar to any of the control APs.

For BrS12, there are 180 beats, corresponding to 25.86% of the total number of beats,
that have been labelled as outliers. This ratio is much bigger with respect to the one
for patient BrS10. This result is an indicator that for patient BrS12, there exist more
APs that are not similar to the control data. Henceforth, it is plausible to infer that
BrS12 is experiencing more severe symptoms with respect to BrS10. According to the
prior information we got from the Antwerp team, patient BrS12 indeed shows more severe
symptoms compared with patient BrS10.

Table 4.1: Clustering results of BrS10 respect controls

Cluster number 13 12 -1 5 9 15 33 25 16 19 7 32 10 29 11 17 26 8 27 28 24 2 35 1 34 21 23
number of beats 520 311 248 236 162 133 113 23 22 22 20 20 18 17 14 10 8 7 7 5 5 5 3 3 1 1 1

Table 4.2: Clustering results of BrS12 respect controls

Cluster number -1 14 23 21 10 25 22 17 15 0 32 20 11 8 30 1 13
number of beats 180 116 108 69 53 48 28 15 14 14 14 11 10 9 5 2 1

This work is a preliminary investigation to distinguish severe syndrome effects from
less severe syndrome effects on patients. The results on the two patients that have been
analysed are encouraging. However, further tests are needed to understand whether the
ratio of outliers can be directly related to the severity of the pathology, and how much it
is affected by the level of variability in the experiments. This question has to be studied
in collaboration with physiologists and pharmacologists who are working on the Brugada
syndrome. A further step in the understanding of this syndrome consists in investigating
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how the same gene mutation could have a different impact on the activity of different ion
channels activity in cells. This will be explained in the next section.

4.4 Perspectives

As mentioned previously, to be able to conclude whether one patient is affected by
more severe syndrome, we need to investigate the mechanisms related to the syndrome,
and, in particular, which ion channels have been altered and to what extent.

To explore these questions, we can rely on a description of the electrophysiological
mechanisms of cardiac cells by a mathematical model.

Figure 4.8: Diagram of ion channels in Paci model [21]

According to [21], Paci model has been introduced to describe the evolution of the
action potential and the ion channel activities of hiPSC-CMs like in Figure 4.8. The
parameters in each ion channel have a specific physical meaning. Henceforth, estimating
the values of the parameters given a certain AP signal could provide some insight on the
ion channel activities of the cells.

This parameter estimation can be carried by minimising the classical objective function
which was stated in Chapter 2, Section 2.2.1, equation (2.2.5) and which, in our case,
corresponds to the discrepancy between the experimental AP signal and the AP signal
given by the model.

In these preliminary tests, we used CMAES [162] algorithm which is a commonly
used global optimisation method already presented in Chapter 1, section 1.3. As prior
information, we know that the majority of the patients carry an SCN5A mutation and
SCN5A inhibits sodium channel Nav1.5 at a certain level. Since Paci model contains 49
parameters, working on the identification of all the parameters simultaneously is out of
range. So, to begin with, we decided to focus on five parameters which we assume are
the five most important parameters that may be influenced by genetic mutation: the
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Figure 4.9: Ventricular like AP simulation result using Paci model

Figure 4.10: Atrial like AP simulation result using Paci model
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gate of sodium gNa, the calcium channel gCal, the potassium channel gKr, the gate of the
background sodium channel gbNa

and hiPSC-CM membrane capacities Cm.
Then, we set the initial guess for CMAES method by considering the values reported

in [21], except for gNa and gbNa
where we take half the value given in [21]. Once obtained

the values of the parameters given by CMAES method, we can perform a simulation and
compare it to the data. An example is presented in Figure 4.9. In [21], the parameters
for ventricular like AP are [3671.2, 8.64e−5, 29.8667, 0.9, 9.87109e−11]. The optimised
parameters obtained by using CMAES are [3726.78, 3.69e−4, 57.92, 0.5076, 9.87e−11].
These optimised parameters were used to generate the simulation in blue. We observe
that, compared to the original values of Paci model, we have the following behaviour for
the parameters associated to the AP of BrS12C1_D2: an increase of gCal and gKr and a
decrease in gbNa

.
Another example is presented in Figure 4.10, in which we only try to identify

[gNa, gCal, gKr, gbNa
]. As an initial guess for the optimisation, we considered

[6646.185, 8.64e−5, 29.8667, 0.9] (which corresponds to the original suggested parameters
for Atrial like AP in Paci model). In that case, the parameters obtained by CMAES
method are [8.84,−9.7287, 2.82,−0.45]. We can observe, in this case, a decrease in gNa,
gCal, gKr, gbNa

.
In both cases, we can see that the simulated APs do not completely fit to the

experimental data.
These two calibrations provided encouraging results. However, they pointed towards

some methodological limitations that have to be further investigated.

1. Firstly, due to the complexity of the models (for example Paci model), which
involve a large number of parameters, the parameter estimation turns out to be
a challenging task. The computational cost of using global optimisation methods
could be prohibitive. In these preliminary tests, we selected five parameters were the
effective ones. However, this may not be a good idea as it rules out the possibility to
investigate some of the mechanisms described by the model. When we increase the
number of parameters to optimise, it not only increases the computation costs but
also the risk that CMAES method finds combinations of parameters which reduce
the cost but correspond to non-physiological regimes or to situations in which the AP
is close to the experimental one, but the internal state of the system is different. The
cause of this is twofold: first, we do not have information about the identifiability of
the parameters in the Paci model. Due to its complexity, an analytical study is, at
present, out of reach. Methods of practical identifiability evaluation should be used.
Second, for every parameter, physiological ranges should be specified, and eventual
regularisation terms to be added to the cost function.
The challenges of high-dimensional parameter estimation motivated the work
presented in Chapter 1. To deal with the computation costs of global optimisation
methods, like CMAES, or convergence issues of local optimisation methods, like
gradient descent, the LVGF method has been proposed and tested on simpler
ODE systems. The LVGF has shown some advantages compared with the gradient
descent algorithm to minimise the classical objective function. LVGF is beneficial
in estimating parameters which are varying and observable in a population.

2. As pointed out in [21], Paci model can be combined with some adult ionic current
from other models to produce more variety in terms of AP shape. Only a single
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model with a fixed ionic channel may have some limitations to be able to describe all
possible shapes of AP. To consider various AP shapes in the experimental data, one
idea is to include in the Paci model some ion channels considered in other electro-
physiology models, as, for instance, the O’Hara-Rudy model (ORd model) which is
a simulation model of undiseased human cardiac ventricular action potential done
by ([19]).

3. A challenging aspect of the present study is related to the variability of the AP
shapes. A first strategy to address the study of the mechanisms triggered by the
Brugada syndrome consists in solving the parameter estimation for all individual
cells and study how the values of the parameters differ in the healthy and in the
patient populations. This involves a significant computational burden. Besides that,
suitable comparison criteria should be introduced. Indeed, as there are different AP
shapes, it is not straightforward to set up a comparison. Moreover, we do not
know a prior how many different mechanisms can be triggered by the disease. In
view of addressing this point, it could be interesting to consider population based
approaches (a similar idea is mentioned in [163], [164], and [165])
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Part 2: Comparison of Statistical, Machine Learning,
and Mathematical Modelling Methods to Investigate the
Effect of Ageing on Dog’s Cardiovascular System

The work presented in this part has been published in an ESAIM proceeding (Vol.70)
and is entitled: Comparison of statistical, machine learning, and mathematical modelling
methods to investigate the effect of ageing on dog’s cardiovascular system.

This work has been carried out in the CEMRACS 2021 summer school, and it is a
collaboration with Elham Ataei Alizadeh (Boehringer Ingelheim Pharma GmbH & Co KG,
Biberach an der Riss, Germany), Sara Costa Faya (Sorbonne Université and COMMEDIA
team, Inria, Paris, France), my supervisors Damiano Lombardi and Sylvain Bernasconi,
Pieter-Jan Guns (Laboratory of Physiopharmacology, University of Antwerp, Antwerp,
Belgium) and Michael Markert (Boehringer Ingelheim Pharma GmbH & Co KG, Biberach
an der Riss, Germany).

Abstract

The aim of this work is to provide a preliminary comparison of different classes of
methods to automatically detect the effect of ageing from in vivo data. The application
which motivated this work is related to safety pharmacology, whose major goal is to
determine, in a pre-clinical phase, whether a drug is potentially dangerous for the health
[1]. In particular, we are going to compare statistical, machine learning and mathematical
modelling methods.

4.5 Introduction

This work has been motivated by some questions arising in safety pharmacology. Safety
pharmacology studies are designed to identify and assess the potential clinical risk of
undesirable drug properties before they enter clinical trials, as described in [166].

Many drug development processes must proceed through several stages to be sure for a
product to be safe, efficacious, and has passed all regulatory requirements. The preclinical
stage encompasses the use of in vitro and in vivo studies to develop a drug that can safely
and effectively be administered for clinical trials. In vivo studies performed in animals
are essential to drug development because they have the ability to evaluate the effects a
drug has on a living organism. A particular care is taken in assessing adverse effects and
drug-drug interactions that cannot be observed in vitro [167].

When an animal participates in an experiment in safety pharmacology studies, one
can anticipate that the compound tested might have an effect on the organism. It is
therefore essential to know when the animal can participate again in an experiment after
a sufficient wash-out period. This is of particular importance in cross-over design studies
(for details, the reader can refer to [168]). Before an animal will be used in a study, it has
to undergo clinical evaluation as well as physiological tests to monitor the condition its
cardiovascular system. When these initial tests are successfully performed the particular
animal can be labelled as “healthy" and participate in the experiment. Age is one of
the factors that has an impact on the function of the cardiovascular system. The effect
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of age on cardiovascular function in laboratory dogs can be related to decreased blood
flow, blood velocity, arterial compliance and distensibility, as well as increased ventricular
systolic and diastolic stiffness as a result of prolonged duration of myocardial contraction
phase (see [169], [170], and [171]). In this study, we are going to test the capabilities
of several methods to detect the effect of age using some cardiovascular data collected
from laboratory dogs. In addition to detecting ageing, we are interested in determining
whether we can find unique individual fingerprints in the cardiovascular data of the dogs.
Roughly speaking, this could provide some insight into whether ageing might impact
interindividual variability.

Among all the questions that pharmacologists and physiologists have, we have tried
to answer a pair of questions:

(Q1) Can we assess if an animal is getting old? This question can be reformulated
as follows: given its data at an initial time and assuming that its initial state is
conforming to the experimental protocol how far its cardiovascular system is, at
subsequent times, from this initial state?

(Q2) Is it possible to identify an animal by its haemodynamic data by a computer
algorithm?

Data about the cardiovascular activity of animals are available over several weeks taken
by telemetry. For instance, each hour of recording can be a few gigabytes for each dog.
Plus, there are variabilities across several weeks of recording. Therefore, it is necessary to
use mathematical methods that can automatically analyse large data sets collected from
those initial tests since it is not possible to analyse them manually.

This is a preliminary work to test different methods to answer these questions using
a large data set from 4 dogs. Then, the methods can be verified and improved in future
work.

4.5.1 Methods

Different viewpoints might be used to address these questions. In this work, we have
compared statistical, machine learning, and mathematical modelling methods to analyse
some in vivo cardiovascular data of 4 dogs. One of the main goals of the project is to assess
which methods perform better on these kinds of tasks. In particular, we will compare:

1. Statistical methods: Physiologists and pharmacologists typically use statistical
methods. This technique involves extracting a set of features from the signals
and analyzing them statistically. As a first step, we will compute the empirical
estimators mean, median, and other statistical criteria to determine if there is any
significant difference between the cardiovascular function of young and old animals.
Two-tailed Wilcoxon (Mann-Whitney) test will be presented to assess the effect of
age on the individual features. The final step in the analysis will be the K-Means
clustering (which could be interpreted as an unsupervised learning approach).

2. Machine learning: Given a database of signals and the outcome of the questions,
we can build a map to learn a relationship between the data and the outcome. We
will use artificial neural networks, which are typical machine learning algorithms.
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They were used for instance in ECG analysis [172], cardiac arrhythmia prediction
[173, 174], and drug safety studies [175, 176].

3. Mathematical modelling: By exploiting a priori information about the system, we
build a set of equations to simulate the phenomenon under investigation. These
equations provide a way to link observable quantities to the outcome. We will use
a parametric 0-d model to simulate the global circulation (in the spirit of [177, 178,
179, 180, 181, 182, 183]). The parameters of the model, once calibrated, will make it
possible to investigate the changes in the animals’ cardiovascular system with age.

More precisely, we would like to analyse the advantages and disadvantages of each
approach in terms of accuracy and computational cost.

4.5.2 Structure

In Section 4.6 we have presented the experimental data set we have used. In Section 4.7
we have described methods for analyzing the statistics. In Section 4.8 we have explained
the Multilayer Perceptron (MLP) method that was implemented to detect the ageing of
the dogs and distinguish the dogs. In Section 4.9 we have presented the model for the left
part of the heart coupled with a model of the global circulation and the obtained results
after calibration. Finally, some conslusions are given in Section 4.10.

4.6 Experimental Data Sets

In this project, we have used cardiovascular data gathered from 4 dogs: two Beagles
(Hexe and Happy) and two Labrador-mix mongrel dogs (Simba and Roxy), involved in
safety pharmacology studies for several years. During the study, dogs are in pairs in a
group housing system. The dogs are calm and in resting mode during the study. A placebo
injection was given to the dogs one hour after the study began. In order to avoid the
effects of animal excitability during this period, the data during administration time have
been excluded. Water is available to them ad libitum, and meals are provided after the
study period ends. While avoiding all disturbances on the conscious animals is not possible
due to the natural environment, the laboratory team managed to minimize cardiovascular
disruption during data collection by creating a calm and regular environment and avoiding
any intrusion or potential impact.

The data are acquired by telemetry from awake and non-anaesthetized animals for
many hours (for more details, the reader can refer to [184]). This data set includes values
of the Electrocardiogram (ECG), Arterial Pressure (AP), and Left Ventricular Pressure
(LVP) signals, recorded every 2 milliseconds. For each dog, we had data corresponding
to two different periods of the dog’s life: the first one when the dog was 6-7 years old
("Historical data"), the second one when it was 8-9 years old ("New data"). We have
used the cardiovascular data that has been recorded when the animal was younger and
“healthy” state (we also call it “Historical" data) to compare with the recent recorded
data, helping to decide whether or not this particular animal is “healthy”. Each data file
includes a seven hours continue recording of a placebo cardiovascular safety pharmacology
study (pharmacologically inactive substances [185]).
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Concerning the measurement of the arterial pressure, according to [186], the signal
was sampled either by a catheter in the abdominal aorta or in the femoral artery. The
LVP is measured by inserting a catheter connected to a fluid-filled transducer into the
left ventricle [187]. From each complete cardiac beat (which in dogs at rest is around 0.8
s), we have extracted 9 quantities (those choices of 9 quantities have been decided by the
data provider). All these features have been done by Notocord-Hem™ software. Human
supervision and some manual corrections were needed to ensure the features are correctly
extracted (especially for ECG). From the ECG we compute (see Figure 4.11):

1 QT interval in ms.

2 QRS interval in ms.

3 RR interval in ms.

4 PR interval in ms.

From the LVP signal we extract the following parameters:

5 Left ventricle systolic pressure, LVP systolic, measured in mmHg.

6 Left ventricle diastolic pressure, LVP diastolic, measured in mmHg.

7 Maximum of the left ventricular pressure, LVP dpdt(max), measured in mmHg s−1.

From the AP signal we extract:

8 Systolic AP, measured in mmHg.

9 Diastolic AP, measured in mmHg.

Figure 4.11: Cardiac parameter calculation from the raw ECG signal. See reference [188]

4.7 Statistical Analysis
In this section, we present the statistical analysis of the data. This has been performed

by using solely the 9 features extracted from the telemetry data. In the next section, we
will present the methods that have been used and their results.
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4.7.1 Methodology

The data set consists of 9 cardiovascular features for every cardiac beat for a total
amount of 10887 beats for the young and old animals. We had, henceforth, roughly
Ns = 104 samples. The first analysis consists of computing the mean, first quartile,
median, third quartile, and standard deviation for each feature individually by using
empirical estimators. Due to the distribution-free nature of the data, a Mann-Whitney U
test with a significance level of 0.05 was performed to confirm the results and interpretation
provided by the statistical moments estimated (in the spirit of [189]). The goal was to
understand whether age is influencing the features, individually. In Mann-Whitney test,
the U1 and U2 values were computed as

U1 = n1n2 + n1(n1 + 1)/2−R1,

U2 = n1n2 + n2(n2 + 1)/2−R2.

In these formulas, n1 and n2 represent the sample sizes for the "Historical" sample
and the "New" sample, and R1 and R2 represent the sum of the ranks for the "Historical"
and the "New" cardiovascular sample, respectively.

As a second method, K-Means clustering has been used in order to determine whether
cardiovascular functionality is unique and how age can affect this function (the reader
is referred to [190, 191]). This algorithm was used to identify homogeneous subgroups
within the data, such that the data points within each cluster are as similar as possible
based on euclidean-based distance. Prior to applying the method, we have normalised the
feature values and mapped them into the unit hypercube [0, 1]d. As a similarity metric,
we have used the standard ℓ2,d norm (the Euclidean distance in renormalised space). The
d value for this study is equal to 9 because we have nine cardiovascular features. The way
to assign data points to clusters is to compute the squared distance between them and
the cluster centroid (arithmetic mean of all the data points in a cluster) at a minimum.

To perform several tests with different purposes using the K-Means algorithm, we
specify a different number of clusters that is estimated in all cases using the clustering gap
method, based on [192]. Let k ∈ N be the number of clusters, we denote the Euclidean
distance between two points Dr, the sum of all pairwise distances would be: Wk =∑k

r=1
1

2nr
Dr. The gap statistic is defined as:

Gapn(k) = E∗
n{log(Wk)} − log(Wk),

where E∗
n is the expectation under a sample of size n from the reference distribution. Gap

statistic is computed to estimate the most optimized K for clustering. The number of K
is selected based on the overall behaviour of uniformly drawn samples, where the greatest
jump in within cluster distance occurred. For each number of clusters k, the algorithm
compares log(W (k)) with E∗

n{log(Wk)} where the latter is defined via bootstrapping [193].
To eliminate the sampling noise from the data, the optimal K value will only be determined
if the change is larger than the others. Figure 4.13 illustrates how K-Means clustering
can estimate that we have two different data sets for the first data union of "Historical"
and "New" data of one dog as an example.

As a first step, we have considered, as a data set, the union of the "Historical" and
"New" data for each dog. As the second data union, we have shuffled all the cardiovascular
data of the dogs in both "Historical" and "New" data. Wk has been used to measure the
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pertinence of the results derived from K-Means on this database.
In order to determine whether age dominates variability within an individual dog to

a greater or lesser extent, we divided the first data union into two and the second data
union into four groups.

4.7.2 Results from Statistical Analysis

For each cardiovascular feature, we have made box-plot charts to compare the changes
over time between "Historical" and "New" data for each dog in order to dynamically
analyze the effect of ageing on each cardiovascular characteristic. Figure 4.12 shows the
box-plot charts1 of the overall QT interval comparison between dogs as an example of
the statistical calculation based on ECG features.

Figure 4.12: QT interval overview of all the dogs at two different ages.

Results answering Q1

It has been found that the Mann-Whitney analysis has confirmed that ageing has a
significant effect, which has a large and detectable impact on each cardiovascular feature
as they relate to ageing.. These results are presented in Table 4.3.

To answer Q1, we have provided Table 4.4 that shows the impact of ageing on each of
our dogs on a case-by-case basis. In order to gain a clearer understanding of the extent
to which each dog has been affected by ageing over time, it is necessary to average out
the changes between "Historical" and "New" data. It has been observed that Simba’s
cardiovascular data has remained relatively stable over time. The cardiovascular feature
values of Roxy are opposite to the ones of Happy and Hexe (we should also note that
Happy and Hexe are Beagles, while Simba and Roxy are Mongrels).

1All the charts have been drawn by TIBCO Spotfire® platform.
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Table 4.3: Two-tailed Mann-Whitney U test to determine the effects of ageing on each
dog cardiovascular features

Cardiovascular Features Happy Simba Roxy Hexe
U value p-value U value p-value U value p-value U value p-value

LVP Systolic 6.19 · 107 2.2 · 10−16 2.83 · 107 5 · 10−3 4.44 · 107 2.2 · 10−16 4.64 · 107 2.2 · 10−16

LVP Diastolic 1.89 · 107 2.2 · 10−16 1.78 · 107 2.2 · 10−16 4.82 · 106 2.2 · 10−16 1.56 · 107 2.2 · 10−16

LVP dpdt(max) 7.47 · 107 2.2 · 10−16 2.95 · 107 18 · 10−15 3.29 · 107 1.4 · 10−4 1.08 · 108 1.4 · 10−4

QT duration 7.51 · 107 2.2 · 10−16 3.04 · 107 2.2 · 10−16 3.27 · 107 1.4 · 10−3 9.39 · 107 2.6 · 10−2

PR duration 4.42 · 107 1 · 10−4 3.17 · 107 2.2 · 10−16 2.11 · 107 2.2 · 10−16 5.66 · 107 2.2 · 10−16

RR duration 5.65 · 107 2.2 · 10−16 2.82 · 107 1.1 · 10−2 2.39 · 107 2.2 · 10−16 6.29 · 107 2.2 · 10−16

QRS duration 3.39 · 107 2.2 · 10−16 2.53 · 107 2.2 · 10−16 4.97 · 106 2.2 · 10−16 6.78 · 107 2.2 · 10−16

APR Systolic 8.25 · 107 2.2 · 10−16 3.96 · 107 2.2 · 10−16 5.39 · 106 2.2 · 10−16 4.98 · 107 2.2 · 10−16

APR Diastolic 1.93 · 107 2.2 · 10−16 4.01 · 107 2.2 · 10−16 6.02 · 107 2.2 · 10−16 4.36 · 107 2.2 · 10−16

Table 4.4: Total median of "Historical" and "New" cardiovascular data parameter for per
each animal and their comparison.

Name Data LVP Systolic LVP Diastolic LVP dpdt(max) QT duration PR duration RR duration QRS duration APR Systolic APR Diastolic Avg of all
Historical 130.73 -4.63 3173.83 232 126 708 40 136.52 90.79

New 125.61 -1.83 2746.58 218 126 572 42 123.62 104.47Happy
New-Historical -5.12 2.8 -427.25 -14 0 -136 2 -12.9 13.68 -64.0877

Historical 114.86 0.48 2075.2 270 114 1256 40 131.99 86.23
New 115.72 2.19 2075.2 268 112 1258 40 122.53 76.64Simba

New-Historical 0.86 1.71 0 -2 -2 2 0 -9.46 -9.59 -2.0533
Historical 98.75 -3.66 1434.33 262 120 1010 46 104.93 81.22

New 90.69 1.7 1403.81 260 128 1228 60 92.03 62.83Roxy
New-Historical -8.06 5.36 -30.52 -2 8 218 14 -12.9 -18.39 19.2766

Historical 117.55 -4.63 3021.24 262 122 978 44 128.62 84.32
New 120.48 1.586 2136.23 246 120 832 42 130.21 89.66Hexe

New-Historical 2.93 6.216 -885.01 -16 -2 -146 -2 1.59 5.34 -114.9926

In the next step, K-Means clustering has been examined on merged "Historical" and
"New" data sets for each dog (independently) in order to determine whether or not ageing
can comprehensively change the cardiovascular characteristics of individual animals. To
avoid over-fitting, data points were grouped into chunks, and for each cardiovascular
feature the median of 100 data points was computed.

As a positive outcome of the K-Means clustering test, the data were roughly clustered
according to age. The number of samples that fall into the wrong cluster was computed
by assuming "Historical" data are labeled cluster 1 and "New" data are labeled cluster
2. The evaluation of the results of this clustering has been shown in Table 4.5. This
table shows the rates of wrong labeled K-Means clustering for each animal in each cluster
of "Historical" and "New". Regarding to this table, the accuracy of K-Means clustering
for distinguishing "Historical" and "New" data of Happy, Simba, Roxy, and Hexe are,
respectively, 77%, 52%, 87%, and 94%.

Table 4.5: K-Means cardiovascular clustering of one animal in different ages.

"Historical" wrong labeled / "Historical" cluster "New" wrong labeled / "New" cluster Total wrong labeled / Total number
Happy 45/106 = 0.42 0/86 = 0 45/192 = 0.23
Simba 52/84 = 0.61 20/66 = 0.30 72/150 = 0.48
Roxy 7/78 = 0.09 15/82 = 0.18 22/160 = 0.13
Hexe 0/105 = 0 14/103 = 0.13 14/208 = 0.06

Results answering Q2

To check if it is possible to identify an animal by its haemodynamic data and answering
Q2, we have considered a data set containing data from two dogs. The purpose of this
test is to examine inter- and intra-dog variability in order to determine if age is more
relevant than individual cardiovascular characteristics. The input data was the union
of 4 data sets, two dogs in two different ages. As soon as the data set is divided into
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two clusters by the K-Means algorithm, it is automatically divided by two individual
animals’ cardiovascular data. This result illustrates that each individual animal has unique
cardiovascular characteristics. As shown in Table 4.6, K-Means clusters the cardiovascular
data of each individual dog. The average number of total incorrect classifications was
16 percent, which indicates an 84 percent success rate for distinguishing cardiovascular
data between two individual dogs. The K-Means clustering method is thus capable of
recognizing differences in age, individual animals, and individual files (each animal in
each age group) with acceptable accuracy. Let us point out that if the number of clusters
increases, or if the age, gender, and strain of animals are similar, then the accuracy of the
K-Means clustering will be reduced.

Figure 4.13: K-Means clustering indicates the optimal number of clusters using gap for
"Historical" and "New" data combination file for one dog. Gap is within
cluster distance, and number of cluster is considering possible cluster number.

Table 4.6: K-Means cardiovascular clustering of two animals in different ages.

Happy wrong labeled / Happy cluster Simba wrong labeled / Simba cluster Total wrong labeled / Total numberHappy-Simba 22/192 = 0.11 20/150 = 0.13 42/342 = 0.12
Happy wrong labeled / Happy cluster Roxy wrong labeled / Roxy cluster Total wrong labeled / Total numberHappy-Roxy 0/192 = 0 16/160 = 0.1 16/352 = 0.04
Happy wrong labeled /Happy cluster Hexe wrong labeled / Hexe cluster Total wrong labeled / Total numberHappy-Hexe 53/192 = 0.27 38/208 = 0.18 91/400 = 0.22
Simba wrong labeled / Simba cluster Roxy wrong labeled / Roxy cluster Total wrong labeled / Total numberSimba-Roxy 0/150 = 0 46/160 = 0.28 46/310 = 0.14
Simba wrong labeled / Simba cluster Hexe wrong labeled / Hexe cluster Total wrong labeled / Total numberSimba-Hexe 45/150 = 0.3 75/208 = 0.36 120/358 = 0.33
Roxy wrong labeled / Roxy cluster Hexe wrong labeled / Hexe cluster Total wrong labeled / Total numberRoxy-Hexe 46/160 = 0.28 0/208 = 0 46/368 = 0.12

4.8 Machine Learning Analysis
Considering the answer to Q1, we would like to detect if the dogs are still healthy by

comparing the "Historical" with the "New" data. We can see this problem either as a
binary classification or a semi-supervised learning problem. Firstly, we have considered a
binary classification. For each dog, the input consists of the set of cardiovascular features
introduced in Section 4.6. Given these features, we would like to determine if they were
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recorded at the younger age (class 0) or at the older age (class 1) for each dog separately.
If we get a high classification score, we would conclude that their health conditions have
changed. Otherwise, we would consider that they have a similar health condition as when
they were young. We have used an MLP to perform this classification.

Secondly, if we consider the ageing assessment as a semi-supervised learning problem,
we could use a Replicator Neural Networks (RNN) method on the cardiovascular signals.
RNN is usually set up to perform anomaly detection in [194]: the RNN takes the raw
signals as input and tries to reconstruct the input itself, as usually done in autoencoders
[195]. In the present context, this would translate as follows: we train an RNN model on
the "Historical" signals (normal case). Then we can use trained RNN to reconstruct
test samples from "Historical" and "New" signals. By comparing the errors in the
reconstructions, we would like to be able to classify whether the signal is coming from a
young or old animal. Due to the small changes in the signals and the variabilities between
signals, the RNN method is not very successful in performing the detection of dogs’ age
effects and for sake of brevity, we will not discuss any further the results in this article.
However, we have tested the RNN method on another data set reported in the Chapter
3, section 3.7.

Moreover, we would also like to see if we can distinguish 4 dogs by using their
cardiovascular features (answering Q2). We can view this question as a multi-class
classification problem (see [154]). We have tried to classify each dog to see if they are
accurately classified in their class2.

4.8.1 MLP Method used to Analysis In vivo Data

In this part, we have tested MLP to answer Q1 and Q2. According to [196], MLP
is one of the most commonly used artificial neural networks in medical decision support
to help analysing cardiovascular data. MLP consists of multiple layers which include the
input layer to receive the features, several hidden layers which are the true computational
engines of the MLP, and an output layer that produces a decision or prediction results.
MLP is often applied to supervised learning problems especially binary classification.

We can train a set of hidden parameters of MLP that are able to learn the relationships
between input-output. Then, the trained parameters can be optimized by Back-
propagation which computes the gradient of the loss/error with respect to the weights
in the network.

We have trained a MLP to discriminate between the "Historical" and "New" state
of 4 dogs to answer the first question. "Historical" and "New" data correspond the two
classes in the binary classification task. "Historical" and "New" data are mixed in the
model training phase. We have used the data set consisting of around 10000 samples of
cardiovascular features for each state of each dog to train the MLP model.

Those features are normalized using MinMaxScaler, explained in [197]. We have
used 80% of the samples to train and validate (with cross validation), and 20% of samples
to test the MLP model. Our MLP model consists of 3 fully connected hidden layers, which
have 9, 6, and, 3 hidden units. The first hidden layer receives 9 cardiovascular features
(LVP Systolic, LVP Diastolic, LVP dpdt(max), RR interval, PR duration, QT interval,
QRS duration, APR Systolic, APR Diastolic). The outputs from each hidden layer are

2All the Machine Learning models were implemented in Python using TensorF low™.
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transformed by a ReLU function and the results in the output layer will be transformed
to a decision boundary by a sigmoid function.

4.8.2 Results from MLP Method Answering Q1

To evaluate the performance of the MLP method, we have computed the success
rate which is defined as the number of correctly predicted samples divided by the total
number of samples of the dogs as in Table 4.7. We have high success rates, 98.24%,
87.40%, 97.81%, and 98.33% to discriminate between the "Historical" and "New" state
of our 4 dogs. As Simba has the lowest success rate than other dogs, maybe Simba has
fewer changes in its cardiovascular performance compared to the other 3 dogs.

Table 4.7: Results from MLP model to discriminate "Historical" and "New" state of the
dogs.

Happy Simba Roxy Hexe
Success Rate 98.24% 87.40% 97.81% 98.33%

4.8.3 Results from MLP Method Answering Q2

We also would like to check if we can identify a dog by using an MLP, to perform
a multi-class classification. According to [198], multiclass classification makes the
assumption that each sample is assigned to one and only one label. We have labelled
4 classes Happy, Simba, Roxy, and Hexe. If there are significant differences in their
cardiovascular features for each dog, we expect the model will have a high score to label
them correctly, which means we can identify a specific dog among the 4. In the multi-
class classification, we have used the same cardiovascular features as input. The difference
between MLP used for binary classification and multi-class classification is in the output
layer, the number of outputs being equal to the number of classes and the results will be
transformed by a softmax function. In the training and testing phase, only "Historical"
data of 4 dogs were used to train and test the multi-class classification model. From the
results reported in Figure 4.14, we can conclude that over 93% of the time, we can identify
one dog among 4 dogs and 7% of the time, we miss identifying the dog.

95



4.9. MATHEMATICAL MODELLING ANALYSIS Haibo Liu

Figure 4.14: Classification results for identifying dogs using MLP method.

4.9 Mathematical Modelling Analysis

In this part of the project, we have considered a 0-d model (concerning 0-d models
the reader is referred to [177, 178, 179, 180, 181, 182, 183]) for the left part of the heart
coupled to systemic circulation which makes it possible to describe the main observable
haemodynamics quantities and their evolution in time. Once the data are reproduced, we
can calibrate the model by estimating the values of the parameters. The calibration is
performed for the "Historical" state and for the "New" state of the animal and the values
for the parameters in each situation will help to assess if the dog has changed significantly
with age.

4.9.1 Analog Circuit Model for the Left Ventricle

The heart beat (concerning the physiology the reader is referred to [199]) is a two
stage pumping action over a period of about one second subdivided in 2 stages: systole
and diastole. During systole, the pressure in the left ventricle increases, exceeding the left
atrium pressure. Then the mitral valve closes and the aortic valve opens and the blood
flows into the aorta and out to the rest of the body. In diastole, the rate of contraction
of the myocardium begins to slow and the aortic valve closes. When the ventricle relaxes,
the pressure in the left ventricle falls and when it decreases below the pressure in the
left atrium, the mitral valve opens and this lets blood flow from the left atrium to the
ventricle.

The goal is to build a 0-d model of the left part of the heart coupled to system
circulation by an electrical analogy [200].

The 0 − d electric circuit model (see [183]) for the left ventricle is shown in Figure
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4.15.

Figure 4.15: Electric circuit model.

The valves are represented by diodes in series with a resistor: Rmv and Dmv for the
mitral valve and Rav and Dav for the aortic valve and Rs is the resistance of systemic
circulation. The coil L represents the inertia of blood in the aorta. The compliances of
the left atrium and systemic circulation are represented by Cla and Cs, respectively. We
have used a time-varying left ventricular compliance Clv(t) to represent the action of the
heart muscle. The elastance E(t) is the reciprocal of the compliance (E(t) = 1/Clv(t))
and it represents the contractile state of the left ventricle. It relates to the ventricle’s
pressure and volume (detailed in [201]) according to the expression:

E(t) =
Plv(t)

Vlv(t)− V0
,

where Plv(t) is the left ventricular pressure, Vlv(t) is the left ventricular volume and V0 is
a reference volume. The time variations in this model are due to the cyclical nature of the
ventricle elastance and it changes as a function of time within one cardiac cycle. In our
case, we are using the ECG to model the activation of the ventricle and, more precisely,
the peaks of the QRS complex. The QRS complex (see Figure 4.11) corresponds to the
electrical forces generated by ventricular depolarisation and represents the pumping action
of the ventricles. From the ECG, we save the times at which the R peaks of the QRS
complex occur and this is what we call the activation times of the ECG.

We approximated E(t) by the following expression:

E(t) =
m∑
k=1

a · [tanh [b · (t− wk)]− tanh [b · (t− wk − d)]] + h,

where m ∈ N∗, a, b, d and h are constants, t ∈ R is the time and w ∈ Rm are the
activation times of the ECG.

In order to get the equations for the circuit, three different cases have been considered:

• Case 1: Filling. The mitral valve is opened and the aortic valve is closed so the
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left ventricle is being filled.

• Case 2: Ejection. The mitral valve is closed and the aortic valve is opened so
blood is being ejected from the left ventricle.

• Case 3: Isovolumic phase. Both valves are closed and the capacitor has either
just being filled (isovolumic contraction) or emptied (isovolumic relaxation).

Each phase of operation of the left ventricle can be modeled by a system of linear
ordinary differential equations (ODEs). However, the whole system is non-linear because
each diode has two states so we have three different cases (first diode is on and second
one is off, first diode is off and second one is on, or both diodes are off). Each case is
modeled by a different equivalent circuit since when a diode is off, it acts as a wire and
we have open-circuit and when it is on, we have short-circuit.

The system of ODEs has been derived by applying Kirchoff’s Current Law and Ohm’s
Law (the reader is referred to [202] for an overview on the topic) to the analog circuit
model as follows:

CASE 1: If Pla(t) > Plv(t) and Plv(t) < Ps(t)

For the first node, with left atrial pressure (LAP) Pla(t), we have that

Cla
dPla

dt
=
Plv − Pla

Rmv

− Pla

Rs

.

For the one in the middle with value Plv(t)

Clv
dPlv

dt
+ Plv

dClv

dt
− P0

dClv

dt
=
Pla − Plv

Rmv

,

and since Elv(t) = 1/Clv(t), we can rewrite the previous expression as

dPlv

dt
= E

(
Pla − Plv

Rmv

)
+
Plv

E

dE

dt
− P0

E

dE

dt
,

where P0 ∈ R is just a reference value. Then, for the node on the right, with arterial
pressure Ps(t),

Cs
dPs

dt
=
Pla − Ps

Rs

,

and, for the aortic flow qs(t)
dqs
dt

= 0.
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The system of equations for the filling phase is then

Cla
dPla

dt
=

Plv − Pla

Rmv

− Pla

Rs

,

dPlv

dt
= E

(
Pla − Plv

Rmv

)
+
Plv

E

dE

dt
− P0

E

dE

dt
,

Cs
dPs

dt
=

Pla − Ps

Rs

,

dqs
dt

= 0.

CASE 2: If Plv(t) > Pla(t) and Plv(t) > Ps(t)
Proceeding in an analogue way, we get the following system of ODEs

Cla
dPla

dt
=

Ps − Pla

Rs

,

dPlv

dt
=

Plv

E

dE

dt
− Eqs −

P0

E

dE

dt
,

Cs
dPs

dt
=

Pla − Ps

Rs

+ qs,

dqs
dt

=
Plv − Ps

L
− qs
L
Rav.

CASE 3: If Plv(t) > Pla(t) and Plv(t) < Ps(t)
In this case, both valves are closed (both diodes are off) and there is no current flow.

Then the equations are 

Cla
dPla

dt
=

Ps − Pla

Rs

,

dPlv

dt
=

Plv

E

dE

dt
− P0

E

dE

dt
,

Cs
dPs

dt
=

Pla − Ps

Rs

,

dqs
dt

= 0.

4.9.2 Results from Mathematical Modelling

To solve the equations in each case according to time we have used a backward
differentiation formula (BDF) solver that is implemented in the Python built-in solver
odeint (see [203] and [204] for more details). In order to solve the model, we need to
give as input the parameters (Rs, Rmv, Rav, Ca, Cs, L, P0, a, h) and the peaks of the ECG.
Then we get as output the LVP, the AP, the LAP and the aortic flow.

To obtain the optimized parameters for each dog we have used the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) optimization algorithm that is implemented in
Python in the pycma module [162]. We need to give as input an initial estimation of the
parameters and the experimental data for the AP, LVP and ECG. The initial standard
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deviation was chosen as σ0 = 0.4 and we have used a population size 1000 times larger
than the default value. The objective function needs also to be specified. We have chosen
the following function to be minimized

J =

√√√√ n∑
i=1

∣∣∣P (i)
lv − P̂lv

(i)
∣∣∣2 + ∣∣∣P (i)

s − P̂s

(i)
∣∣∣2,

where P (i)
lv is the experimental value of the left ventricle pressure at each time, P̂lv

(i)
is the

predicted value of the left ventricle pressure at each time, P (i)
s is the experimental value

of the arterial pressure at each time, P̂s

(i)
is the predicted value of the arterial pressure

at each time and n ∈ N∗.
The output of the CMA-ES algorithm are the optimized parameters of the model.

Results answering Q1

For each dog, we have estimated the parameters for the "Historical" and "New" state.
Table 4.8 shows the optimized model parameters for each dog at both times. The solution
of the model for its corresponding parameters for each dog is plotted in Figures 4.16, 4.17,
4.18 and 4.19. Although the heart pace can look irregular in Figures 4.16-4.19, the signal
cannot be considered arrhythmia since dogs have a pronounced vagal tone which leads to
this “normal” unnormal rhythm and this has no clinical relevance.

We have computed the difference between the values predicted by our model and the
values observed. For that purpose, we have found the local maxima of the LVP and we
have computed the difference between the real signal and the simulated one at each peak
(local maxima) for the LVP. The relative error is

ξ(Plv) =

√
1
n

∑n
i=1(yi − ŷi)2

1
n

∑n
i=1(yi)

2
,

where y is the value of the pressure at each peak in the true signal, ŷ is the value in
the predicted signal and n ∈ N∗. For the AP we have taken into account not only the
difference between maxima but also the one between minima

ξ(Ps) =

√
1
n

∑n
i=1(yi − ŷi)2

1
n

∑n
i=1(yi)

2
+

√
1
n

∑n
i=1(wi − ŵi)2

1
n

∑n
i=1(wi)2

,

where w is the value of the pressure at each minimum peak in the true signal, ŵ is the
value of the pressure at each minimum peak in the predicted signal and n ∈ N∗.

We want to address if the animals are getting old or not by the change in the parameters
in the electrical model. To check that, we have made the following steps:

1. We have computed the optimized parameters of the model for each dog in the
"Historical" state and also in the "New" state (they are shown in Table 4.8).

2. Afterwards, we have run the parameter optimization in the 0-d model for each dog
in the "New" state considering as initial guess the optimized parameters for the
"Historical" state. The purpose of doing this is to see if having as initial test the
parameters of the "Historical" state, the optimizer could find good values for the
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Table 4.8: Model parameters (from left to right) for Happy "Historical" (2015), Happy
"New" (2018) , Simba "Historical" (2018), Simba "New" (2021), Roxy
"Historical" (2018), Roxy "New" (2021), Hexe "Historical" (2018) and Hexe
"New" (2020). The relative error for the LVP and for the AP is also shown for
each dog in both states ("Historical" and "New").

Parameters Happy "H" Happy "N" Simba "H" Simba "N" Roxy "H" Roxy "N" Hexe "H" Hexe "N"
Rs [mmHg · s/cm3] 1.62 · 10−3 1.20 · 10−1 8.06 · 10−2 2.67 · 10−1 8.78 3.87 1.45 · 10−3 6.26 · 10−2

Rmv [mmHg · s/cm3] 2.06 · 10−6 1.75 · 10−2 5.12 · 10−5 1.47 · 10−4 1.26 · 10−1 1.12 · 10−2 7.02 · 10−7 7.38 · 10−3

Rav [mmHg · s/cm3] 1.85 · 10−5 1.18 · 10−3 6.33 · 10−4 2.45 · 10−3 3.57 · 10−4 8.18 · 10−4 3.55 · 10−6 2.95 · 10−4

Ca [cm3/mmHg] 3.65 · 104 7.01 1.36 · 102 5.18 · 101 2.61 · 10−1 1.72 4.59 · 104 1.0808 · 101
Cs [cm3/mmHg] 1.21 · 103 9.39 2.99 · 101 9.27 3.26 · 10−1 9.67 · 10−1 1.71 · 103 1.63 · 101
L [mmHg · s2/cm3] 1.68 · 10−7 9.18 · 10−6 1.1151 · 10−5 5.26 · 10−5 1.98 · 10−4 1.60 · 10−4 6.30 · 109 3.41 · 10−6

P0 [mmHg] 1.66 · 104 6.41 · 101 3.05 · 103 7.71 · 102 1.63 · 10−1 9.52 · 10−1 2.25 · 103 3.16 · 101
a [mmHg/cm3] 9.08 · 10−3 6.90 · 10−1 9.27 · 10−2 1.95 · 10−1 1.07 · 101 2.39 5.36 · 10−3 2.87 · 10−1

h [mmHg/cm3] 1.12 · 10−2 0.00 6.92 · 10−2 6.07 · 10−2 3.36 · 10−3 3.87 · 10−3 1.23 · 10−3 1.40 · 10−6

Relative errors
ξ(Ps) 10.83 % 10.56 % 6.39 % 9.39 % 5.22 % 8.53 % 10.13 % 9.51 %
ξ(Plv) 8.38 % 4.11 % 8.94 % 3.99 % 3.51 % 7.68 % 6.17 % 4.17 %

(a) AP and LVP for Simba 2018 ("Historical") (b) AP and LVP for Simba 2021 ("New")

Figure 4.16: Experimental data compared with the model prediction for Simba.

(a) AP and LVP for Happy 2015 ("Historical") (b) AP and LVP for Happy 2018 ("New")

Figure 4.17: Experimental data compared with the model prediction for Happy.
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(a) AP and LVP for Hexe 2018 ("Historical") (b) AP and LVP for Hexe 2020 ("New")

Figure 4.18: Experimental data compared with the model prediction for Hexe.

(a) AP and LVP for Roxy 2018 ("Historical") (b) AP and LVP for Roxy 2021 ("New")

Figure 4.19: Experimental data compared with the model prediction for Roxy.
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(a) AP and LVP for Happy 2018 starting with
parameters of Happy 2015

(b) AP and LVP for Hexe 2020 starting with
parameters of Hexe 2018

(c) AP and LVP for Simba 2021 starting with
parameters of Simba 2018

Figure 4.20: Experimental data compared with the model prediction when we start the
optimization from the optimized "Historical" parameters as initial guess.
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"New" state. The model prediction after the optimization is shown in green in
Figure 4.20. The initial guess is shown in orange in the same Figure.

3. We have also directly solved the model in the "New" state, with the parameters
of the "Historical" state. The purpose is to see if we can match the real data in
the "New" state with the optimized parameters of the "Historical" state (without
running the optimization). This is plotted in Figure 4.20 in orange.

After repeating the simulations for several chunks of beats, we have observed that
Simba barely changes. With the optimized parameters in the "Historical" state we can
reproduce the data in the "New" state. However, we have observed significant changes
for Happy, Roxy and Hexe. In Happy and Hexe we have observed that as the dogs are
getting older the resistances increase and the capacitances decrease as a general tendency.
The capacitance gives us the ability of the vessels to get elastic and since the capacitances
decrease, the vessels become less elastic with the years. On the contrary, we have observed
in Roxy a different tendency. Roxy has experienced a decrease in the resistances and an
increase in the capacitances which is the opposite behaviour as in Hexe and Happy and
may be interpreted as her features have improved with age.

To answer properly Q1, we need to set a threshold of the error that determines that
the animal is changing with age. In other words, at which relative error do we claim that
the "Historical" parameters do not fit the "New" state because the dog has changed? To
establish that threshold, we have solved the model for each dog for several chunks with
the parameters of Table 4.8. The maximum of the error that we got for each animal,
is going to be our threshold to claim whether the dog experienced changes with age or
not. The thresholds to determine if the model is fitting the data are 14 % (Happy), 15 %
(Simba), 16 % (Roxy) and 13 % (Hexe).

To study the accuracy of the mathematical modelling method answering Q1, we have
solved the model for each dog with our calibrated parameters in other chunks of beats
than the ones used for setting the threshold. First, we have considered chunks in the
"Historical" state and we have used the "Historical" parameters to solve the model (same
applies for the "New" state). If we get a relative error that is less than the threshold, then
it means that the model has worked. But if we get a relative error that is bigger than the
threshold, it means that the model suggests that the dog changed but it is a mistake since
we are just using the calibrated "Historical" parameters but for a different chunk. We
have repeated this computation for a certain number of chunks and we have computed
the success rate (number of correctly predicted chunks divided by the total number of
tested chunks), that was always higher than 95 %.

Therefore, we can conclude that we are able to identify from the parameters if a dog
is changing with age or not.

Results answering Q2

The second question that we wanted to answer is if we can discriminate between dogs.
If we look at the optimized parameters of the model that are shown in Table 4.8, we can
see that they substantially change between different dogs. We have solved the model at a
given state ("New" or "Historical") with the data of a given dog but using the optimized
parameters for the same state but for another dog. The result of doing that for every dog,
was that the relative error in the left ventricular pressure (ξ(Plv)) was sometimes below
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the values of the thresholds but the value for the relative error in the arterial pressure
(ξ(Ps)) was always above 32 % (higher than the thresholds).

Although it would be necessary to do the study with a larger number of chunks in order
to withdraw a strong conclusion, it is already possible to spot some differences between
the dogs since the calibrated parameters for one dog can never reproduce the data of a
different one. Therefore, we can claim that it is possible to identify an animal by its
haemodynamic data after doing the calibration of the model since with the optimized
parameters of a dog, it is not possible to reproduce the data of another one.

4.10 Conclusion and Discussion

In this paper, we have tried to analyse some in vivo experiments data for addressing
the effect of ageing in an animal by using statistical, machine learning and mathematical
modelling methods. On the whole, we are able to identify some changes in dogs’
cardiovascular data in the "New" state compared to the "Historical" state. Moreover,
we can discriminate not only between "New" and "Historical" state of the dog, but also
distinguish one dog among the others.

In terms of accuracy, cost, and robustness, we have compared the advantages and
disadvantages of each method. Although the way how we answer the questions is very
different in mathematical modelling and in statistical and machine learning approaches,
we can set a link on how to compare the accuracy of the methods. With respect to
the answer to question Q1 in the statistical method, changes between the "New" and
"Historical" state of cardiovascular data for each dog in a positive or negative direction are
always measurable, as shown in the statistical results. However, the K-Means clustering
method could recognize and cluster these changes for Happy, Simba, Roxy, and Hexe
with an accuracy of 77%, 52%, 87%, and 94%, respectively. Machine learning method
can correctly (above 97% for Happy, Roxy, and Hexe) distinguish between the "New" and
"Historical" state of the dog. When "New" and "Historical" states are more similar for
Simba, the error of the machine learning method would be higher (12.60%). Regarding
mathematical modelling, we can see that the relative error between the values predicted
by our model with the optimized parameters and the values observed, is typically below
the thresholds. The accuracy of this approach was above 95 %.

According to question Q2, K-Means clustering accurately identified 84% of dogs among
four cardiovascular data of two dogs of different ages. Machine learning method can
identify one dog among 4 dogs with more than 93% accuracy. To test the accuracy of the
identifiability of the dogs with the mathematical modelling approach, we had the same
logic as the one with ageing but we have tried the calibrated parameters of one dog on
another dog and see if they could fit. It was never the case so the accuracy in this case is
around 100 %.

Regarding the cost and robustness, K-Means and MLP use the extracted
cardiovascular features as input and they would require computational cost in the feature
extraction process. Considering that the number of samples and the size of the input is
not large, K-Means only takes very small computational cost. We could also train a MLP
with high accuracy (above 93%) and very little training cost (less than 20 minutes). In
particular, MLP is robust to beats to beats variability and provides a promising result
for the above biological questions. Regarding the computational cost for mathematical

105



4.10. CONCLUSION AND DISCUSSION Haibo Liu

modelling, it requires a light pre-processing of the data. Before running the optimization,
the only thing we need to do is to extract the activation times of the ECG and this is
almost instantaneous. However, the optimization process to obtain the parameters of
the model takes on average 7 hours, although it depends a lot on the initial guess that
we consider. Once we have the parameters, model integration in time is cheap from a
computational point of view (few seconds). Regarding the robustness of the parameter
estimation procedure in mathematical modelling, we have tried so far to run the model
with the same parameters for other intervals to see if we are able to reproduce other
windows of time with the parameters fitted from one chunk. Usually, we are able to fit
other time intervals if we do not go very far from the original one. It is also important to
take into account that if the activity of the dog changes (if it is playing, eating, making
digestion...) the parameters could change. In the future, we would like to get the model
parameters for a larger number of chunks and analyze their variability of them in the
“New” and "Historical" states in order to give a reliable interval for the parameters in
each state and to have a better notion of the accuracy of this approach. Same applies
for the identifiability of each dog in order to know what is the interval in which the
parameters move in each dog. In fact, the parameters may significantly change between
different dogs because it is possible that there are several combinations of parameters
that fit the data. As stated before, it would be necessary to do a study with a larger
set of chunks in order to analyze in detail the variability of the parameters. This will be
the object of a further investigation. However, we could already spot differences between
the animals based on the parameters (the parameters of a dog do not reproduce the data
of another one). Regarding the ageing process, it is also possible to assess if the dog is
getting old (excluding Simba, we have shown that with the parameters of the "New" state
we were not able to fit the data in the "Historical" state).

4.10.1 Limitations and Perspectives

The limitation of the statistical algorithms is that when the number of animals is
high or strains and genders of dogs are similar, the accuracy may decrease. Statistical
methods are modelled using extracted features which require computational resources
and the number and choices of features may have an impact on the analysis of the results
(missing some information from the raw signals).

Similarly, MLP needs extracted features as input which other types of neural networks
like Convolutional Neural Network (CNN) in [205] do not. CNN can process and learn
the important parameters from the signals directly to perform a binary classification. By
using CNN, we can avoid the feature extraction process step. However, as the dimension
of the signal data is usually high, the CNN method would need more training costs. We
can also consider the autoencoder method calibrated by some cardiovascular features to
do anomaly detection like in [123] to perform a semi-supervised learning. In general,
the neural network method has a "black box" nature. This method can’t help us to
understand the mechanism of dogs’ cardiovascular system. So we won’t be able to use it
to answer some questions like how much and which element of cardiovascular function has
changed. However, in a mathematical modelling approach, the parameters have a link
with age which can give us some information related to how age changes cardiovascular
functionality (that is to say if the dog gets older or younger). Moreover, if the number of
dogs increases in the future, which means the number of classes also increases, the accuracy
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of correctly identifying the dogs decreases for machine learning and statistical methods.
To test the neural network method and statistical method for a larger number of dogs,
we need to find a training strategy that can include enough dogs and acceptable model
accuracy. For the mathematical modelling method, it is necessary to do the optimization
of the parameters for each dog in each state ("Historical" and "New") and this process
takes a lot of time. Consequently, if the number of dogs is high, it will be computationally
very demanding in terms of time to answer the fore-mentioned questions.

In the future perspective, we would like to take into account the data of more dogs
to test our methods. It is also very important from the mathematical modelling point
of view to do the study with more chunks to be able to perform classification tasks
on the parameters. We would also like to work on more experiments with different
species and strains to gather more information about the effect of ageing on cardiovascular
performance. Discovering the impact factors on cardiovascular functionality helps us to
understand the reason why some animals have more changes in their cardiovascular data
by comparing with others.
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