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Introduction

Historically, the study of collective electronic motion, or plasma oscillations, developed with-
out considering size confinement. The quantum theory of plasma oscillations developed by
Pines and Bohm [106106] is for a 3D electron gas. In the characteristic energy loss experiments
which confirmed the existence of plasma oscillations [105105], electrons were scattered inelas-
tically by metal films a few tens of nanometers thick. Ferrell predicted [4141], and McAlister
and Stern confirmed [8484], that plasma oscillations in thin metal films couple with free space
radiation. In these experiments, it was not possible to resolve the effect of size confinement
on the energy of the plasmon excitations.

With the advent of nanofabrication techniques and technologies enabling the nanoscale
characterization of materials, the effect of size confinement on plasmonic excitations could
be observed, thus beginning the study of quantum plasmonics. One of the pioneering works
was the demonstration that the optical resonances of localized surface plasmons are strongly
affected by electronic confinement for metallic nanoparticle with sizes on the order of 10 nm
[115115]. In this regime, the Drude model fails to correctly describe the optical response of
the electron gas, and a quantum treatment or nonlocal electromagnetic models [8686] must
be considered. The effect of quantum size confinement on surface plasmons has now been
investigated in many works [3232, 4242, 5353, 125125, 128128].

In the case of semiconductors, the development of mature growth and nanofabrication
techniques [2323, 8181, 8282, 8585] enabled the development of two separate branches of research,
which have, until recently, been separated by the dimensionality of the system. On one
branch is semiconductor plasmonics, which has traditionally been limited to studies of the
3D electron gas, described by the classical Drude model.

On the other branch is the study of low-dimensional structures, of which the optical
properties are well described with a single particle description. The electronic transitions
between bound states of a 2D electron gas, the so-called intersubband transitions [146146], are
an example of a low dimensional system in which the single particle description is usually
adequate. Unipolar devices employing semiconductor quantum wells, such as quantum cas-
cade lasers [4040] and quantum well detectors [4747, 7171], are successfully described in the single
particle picture. This description remains sufficient as long as the energy separation between
confined states is large compared with the plasma energy of the electron gas.

This should not be interpreted to mean that collective effects have not been studied
in low dimensional systems. As summarized in the review of Ando, Fowler, and Stern, it
was not long after the first observations of intersubband transitions in Si inversion layers [6464]
that, “It quickly became clear that energy-level splittings could not be explained on the basis
of one-electron models but could be understood if many-body effects were included in the
theory” [66]. Indeed, collective effects in intersubband transitions have long been a subject of
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x Introduction

fascination as evidenced by the many important contributions made from numerous authors
toward their understanding [33, 5050, 9292, 145145, 151151]. However, these authors studied systems
in which collective effects represented a correction to the description of the system. In the
low dimensional systems that they analyzed, the energy level spacing was still the dominant
contribution to the excitation energy.

Only recently has the regime in which the plasma energy is larger than a finite, non-
negligible level spacing begun to be investigated in semiconductor quantum wells [88, 3434, 100100].
In this regime, the regime of quantum plasmonics, both quantum confinement and collective
effects can be of equal significance in the determination of the optical response.

Collective excitations in this regime are investigated in this work in highly doped thin
semiconductor layers. The excitations studied are volume plasmons, otherwise described as
longitudinal oscillations of the electron gas. As Ferrell originally predicted for thin metal
films, these modes couple with free space radiation.

A semiconductor platform offers numerous benefits for the study of quantum plasmonics.
Single particle electronic states can be described in the envelope function formalism. Mature
growth technologies enable the realization of carefully designed electronic potentials in which
the electronic band structure can be precisely engineered. The electronic density can be
tuned during the growth, and consequently, plasmons can be coupled to other oscillators
over a wide spectral range, including for example, the longitudinal optical phonons. These
favorable aspects enable the studies presented throughout this work.

The manuscript is organized as follows:
In Chapter 11, the plasmonic mode studied throughout this manuscript, the Berreman

mode, is introduced. The semiconductor material platform and quantum well heterostruc-
tures in which the mode is studied are likewise introduced. A semiclassical description for
the optical response of the electron gas, sufficiently general to describe the response for con-
finement regimes from a quantum well with only two bound states up to the 3D free electron
gas, is established. A particular effort is made to provide a conceptually clear semiclassical
description of collective effects in the excitations of the electron gas in thin films.

In Chapter 22, it is demonstrated that the Berreman mode can be excited in a single
material platform in which a high density of dopants are added to a subwavelength layer.
The optical modes of the system are described theoretically and investigated experimentally
both above and below the light line. The same modes are studied as efficient sources of
thermal emission.

In Chapter 33, the interaction between the electron plasma and optically active vibrations
of the crystal lattice is studied in thin films. Coupled longitudinal optical phonon-plasmon
modes are directly observed as resonances in spectroscopic measurements.

In Chapter 44, a quantum description of the collective excitations of the confined electron
gas is established. The collective modes of the system are calculated from a basis of single
particle excitations between confined states, considering their coupling. The model is applied
to describe the dispersion of collective modes in a square quantum well. The form of the
dispersion is tied to the size confinement.

In Chapter 55, it is demonstrated theoretically and experimentally that the collective
modes of the electron gas can be engineered by careful design of the static confining po-
tential. From the application of the microscopic quantum model of the previous chapter,
it is demonstrated that the breaking of the square well symmetry is a key element for the
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engineering of novel collective excitations. This motivates the experimental study of a step
well potential, in which it is demonstrated that the oscillator strength of the system can be
split into multiple collective modes.

In Chapter 66, the Berreman mode is experimentally investigated as the absorption mech-
anism in a photodetector and the first experimental observation of photocurrent from the
Berreman mode is reported. The devices are classified as hot electron detectors. The chapter
begins with a clear enunciation of the fundamental motivation for the study: to understand
how a collective excitation scatters into a single particle photocurrent. The experimental
results are interpreted with the simplest of theoretical descriptions, as a first attempt to
understand the novel phenomenon observed.

In Chapter 77, the Berreman mode is coupled to the photonic mode of a double metal
microcavity structure. A fabrication procedure to realize the microcavity devices with three
contact terminals is detailed. The coupled light-matter modes, the polaritons, are investi-
gated with optical measurments, and the system is shown to be in the ultrastrong coupling
regime. The photocurrent generated from the excitation of the upper polariton mode is
experimentally investigated under illumination by a tunable quantum cascade laser.

A series of Appendices complement the main text. Appendix AA is intended to remind
the reader under which condition the wave equation admits longitudinal solutions. In Ap-
pendices BB and CC, additional experimental studies of Berreman mode photodetectors which
complement those described in Chapter 55 are reported. These studies are reported in appen-
dices to improve the readability of Chapter 55, wherein they are referenced. In Appendix DD,
the calibration of the tunable quantum cascade laser source used to characterize the photode-
tectors in Chapters 55 and 77 is reported. Appendix EE serves as a repository for the growth
sheets of the samples investigated throughout the manuscript. Finally, in Appendix FF, a
French language summary of each chapter of the manuscript can be found.
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Chapter 1

Optical Properties of Thin
Semiconductor Layers

In this chapter, the optical properties of thin (sub-wavelength) semiconductor layers in the
infrared spectral region are described. In this spectral region, the optical response of semi-
conductors is determined microscopically by the optically active vibrations of the crystal
lattice (phonons), and in the case when the semiconductor is n-doped, by the response of
an electron gas in the conduction band. In both cases, the subwavelength thickness of the
film modifies the optical properties of the layer. Whereas in bulk media resonances occur at
the poles of the dielectric function, in subwavelength layers, resonances occur at the zeros of
the dielectric function. This phenomenon is explored in the following chapter. A particular
focus is placed on describing the optical properties of highly doped semiconductor layers
when the thickness of the film is sufficiently small as to impart a quantum confinement on
the electrons of the conduction band.

1.1 The Berreman Mode

It is natural that the optical properties which arise as a consequence of the thin film geometry
(beyond simple reflections at the boundaries) should be observed when the film is investigated
with light which has an electric field component in the direction normal to the film, which
we denote ẑ. This is the case for p-polarized light incident at oblique angles of incidence.

In classic experiments, Berreman [1111], and shortly thereafter, McAlister and Stern [8484],
investigated the optical spectra of thin films of LiF and silver, respectively, for light incident
under such conditions. The transmission spectra from their experiments are presented in
Fig. 1.11.1.

In the spectra Berreman measured of a 200 nm LiF film (Fig. 1.1a1.1a), a single resonant
dip is observed in the s-polarized (no Ez component) spectrum at 32.6 µm and is attributed
to the transverse optical (TO) phonon, which is also observed in bulk crystals. In the p-
polarized spectrum (the light has an Ez component), there are two resonances: one at the
same wavelength of the TO phonon resonance in the s-polarized spectrum, and a second at a
shorter wavelength corresponding to the excitation frequency of the longitudinal optical (LO)
phonon. For a bulk crystal, no optical resonance is observed at the LO phonon frequency.

Similar to Berreman’s observation of an LO phonon resonance in a thin film, McAlister
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Fig. 1.1 The transmission spectra of p- and s-polarized light, incident in a cone
from 26◦ to 34◦ in (a)(a) and for the various angles indicated in (b)(b), are plotted.
Figures reproduced from [1111, 8484].

and Stern observed a resonance in the p-polarized transmission spectra of silver films which
did not appear in the s-polarized spectra, and which is not observed in optical spectra of
bulk silver. As evident in Fig. 1.1b1.1b, the resonance is only observable at off-normal angles of
incidence (when the light has an Ez component). The energy at which the resonance occurs
corresponds to the plasma frequency of silver.

At the frequency of the LO phonon in LiF (or any polar dielectric material), the real part
of the dielectric function1 crosses zero. At the plasma frequency of silver (or any material
with the optical response of an electron gas), the real part of the dielectric function crosses
zero. The modes observed by Berreman and McAlister and Stern are therefore resonant for
the same optical condition, namely that ε′ = 0, regardless of the microscopic origin of the
matter polarization.

In an infinite homogeneous dielectric medium, longitudinal modes are solutions to the
wave equation under the condition that ε′ = 0. This is demonstrated in Appendix AA. It is a
general fact that transverse light from free space cannot couple to longitudinal modes in an
infinite medium. It is for this reason that no optical resonance is observed at the LO phonon
frequency in bulk crystals or at the plasma frequency in metals.

Let us consider a physical picture which describes the modes observed by Berreman and
McAlister and Stern. The experiment is sketched in Fig. 1.21.2. Light incident with an Ez

component is assumed to induce a uniform polarization Pz in the medium. Due to the
discontinuity of the polarization at the film boundaries, a surface charge density σ = −Pz · n̂

1Throughout this manuscript, the real quantities ε′ and ε′′ are used to describe the real and complex
components of the frequency-dependent dielectric function ε = ε′ + iε′′.

http://dx.doi.org/10.1103/PhysRev.130.2193
http://dx.doi.org/10.1103/PhysRev.132.1599
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arises at both surfaces of the film. Here, n̂ is the unit vector facing out from either surface.
This results in a density of opposite surface charge ±σ on either side of the film.
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Fig. 1.2 The condition to observe a resonance in a thin polarizable film is sketched.

For a film thin enough that electronic screening may be neglected, the surface charges
give rise to a homogeneous electric field inside the film which is opposite in direction and
equal to the polarization up to the factor ϵ0:

Ez = −σ

ϵ0
= −Pz

ϵ0
(1.1)

The electric field Ez results in a force on the oscillators in the film opposite to their displace-
ment. In the absence of damping, this results in a sustained oscillation, which describes a
mode [148148].

Equation (1.11.1) implies that the displacement field Dz vanishes inside the film since:

D = ϵ0E + P (1.2)

The dielectric constant ε and the relative dielectric constant εr, are defined through:

D = εE = ϵ0εrE (1.3)

where ϵ0 is the vacuum permittivity. Consequently, the vanishing displacement field implies
that ε = 0 inside the film, exactly the condition for which the resonance is observed.

In this picture, which describes the resonances observed in the experiments of both Berre-
man and McAlister and Stern, the microscopic origin of the polarization was not specified
to highlight the common electromagnetic origin of the modes. Consequently, it is common
practice to refer to the mode excited in a thin film by p-polarized light at oblique incidence at
the frequency for which ε′ = 0 as the Berreman mode, regardless of the microscopic origin of
the matter polarization [88, 138138]. The coupling of plasma oscillations in the normal direction
of a thin film to light was first predicted by Ferrell [4141], and thus some authors refer to the
mode as the Ferrell-Berreman mode when the microscopic origin is the motion of electrons
[9393]. Throughout this manuscript, we shall refer to the mode simply as the Berreman mode,
regardless of the microscopic origin.
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1.1.1 Plasma Oscillations in Thin Films
In this section, we explicitly demonstrate that the resonant behavior of a Berreman mode
excited in a thin metallic layer is a consequence of the thin film geometry by considering
a classical microscopic description of the electrons. We consider that the metal can be
described as a gas of free electrons with effective mass m∗.

We first describe the optical response of the free electron gas in the bulk (homogeneous
and without boundaries). We begin with the equation of motion for an electron of effective
mass m∗ subject to an electric field Ez(t) = E0e−iωt in the absence of damping:

m∗ d2z(t)
dt2 = −eE0e−iωt (1.4)

The solution is found as:

z(t) = z0e−iωt with z0 = eE0
m∗ω2 (1.5)

For an electron gas of density N , the polarization density is defined as:

Pz(t) = −Nez(t) (1.6)

Inserting Eq. (1.51.5) into Eq. (1.61.6), we find:

Pz(t) = −Nez0e−iωt = P0e−iωt (1.7)

From the definition of the displacement field in Eq. (1.21.2), it follows that:

D0 = ϵ0E0 + P0 = ϵ0E0

(
1 − Ne2

m∗ω2ε

)
= ϵ0E0

(
1 −

ω2
p

ω2

)
(1.8)

The plasma frequency has been introduced in the final expression as:

ω2
p = Ne2

m∗ϵ0
(1.9)

From Eq. (1.31.3) and Eq. (1.81.8), the relative dielectric function describing the free electron gas
is found as:

εr(ω) = 1 −
ω2

p
ω2 (1.10)

This expression is plotted in Fig. 1.21.2, and is evidently equal to zero for ω = ωp.
The dielectric function of Eq. (1.101.10) does not describe any resonant behavior, yet as

demonstrated by the experiment of McAlister and Stern, resonances are observed in the
spectra of thin metallic films described by this dielectric function. We turn now to consider
how the thin film geometry modifies the electronic response to the incident radiation and
leads to a resonance phenomenon. The physical picture we describe was introduced by
McAlister and Stern [8484].

As in the previous section, let us consider that light with an Ez component induces a
uniform polarization density Pz in the thin film. With the polarization density of the free
electron gas as defined in Eq. (1.61.6), the surface charge density at the film boundaries is
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σ = ±Nez. This results in an electric field and thus a force on each electron opposite in
direction to its displacement. Consequently, there is a new equation of motion for the system:

m∗ d2z(t)
dt2 = −Ne2

ϵ0
z(t) + eE0e−iωt (1.11)

The added term, linear in z, describes a restoring force on each electron. The solution to
the new equation of motion is:

z(t) = eE0

m∗
(
ω2 − ω2

p

)e−iωt (1.12)

The solution describes plasma oscillations. In the absence of damping, when ω = ωp,
z(t) → ∞ and a resonance is observed. We recall that at ωp, the dielectric function Eq. (1.101.10)
for an electron gas is equal to zero. The model thus links the optical condition at which the
mode is observed, namely that ε = 0, with a microscopic description of the resonance.

The resonant behavior is a direct consequence of the restoring force introduced in Eq. (1.111.11),
which exists only because of the thin film geometry. The restoring force, which acts on a
single electron in Eq. (1.111.11), is proportional to the electronic density and thus arises as a
collective effect. Later in this chapter, it will be shown that the same collective effect is
responsible for renormalizing the resonance frequencies of bound electrons.

1.2 Semiconductor Platform for Quantum Plasmonics
1.2.1 Semiconductor Plasmonics
When the microscopic origin of the thin film polarization which gives rise to the Berreman
mode is due to the collective oscillation of an electron gas, the Berreman mode is a plasmonic
mode. The Berreman mode is a volume plasmon and should not be confused with the well-
known surface plasmon polariton [8080].

In this work, Berreman modes hosted in thin, highly doped semiconductor layers will be
investigated. This work thus falls under the domain of semiconductor plasmonics [126126], which
is concerned with the interaction of light with the collective oscillations of the electron gas
of highly doped semiconductors. An electron gas is realized in the semiconductor by doping
the crystal into the degenerate regime, in which the Fermi level lies above the conduction
band minimum. To describe an electron gas in a semiconductor, the effective mass m∗ is
introduced to account for the periodic potential of the crystal lattice. The plasma frequency
ωp, which is the natural oscillation frequency of the electron gas, can then be defined as:

ω2
p = Nve2

m∗ϵ0ε∞
(1.13)

where Nv is the electronic density, e is the electron charge, ε is the vacuum permittivity,
and ε∞ is the high frequency dielectric constant, introduced to account for the nonresonant
contributions to the polarization which originate from interband transitions at frequencies
much greater than ωp.2 Defined as above, ωp is sometimes called the screened plasma
frequency since ε∞ has been (arbitrarily) included in the definition [126126].

2The ∞ subscript is used to denote that this dielectric constant is valid at frequencies much greater than
ωp. It is not intended to suggest that it is valid towards infinite frequency, since we are using it to describe
the approximately static response below interband excitation frequencies [149149].
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In semiconductor plasmonics, ωp is in the infrared region of the spectrum. Unlike the
case for metal plasmonics, in semiconductors, the electronic density Nv can be controlled,
which allows ωp to be tuned.

In the present work, highly doped layers of In0.53Ga0.47As will be studied, for which a
density Nv ∼ 1019 cm−3 of electron-donating Si impurities are added. The Si impurities
have a sufficiently small ionization energy such that at room temperature the conduction
band electron density can be assumed equal to the impurity density. In In0.53Ga0.47As,
ε∞ = 11.6108, and at the conduction band minimum, the effective mass has the value
m∗ = 0.043me where me is the electron mass [142142]. Then, for Nv ∼ 1019 cm−3, the plasma
frequency lies in the mid-infrared.

1.2.2 Confined Electron Gases in Semiconductor Quantum Wells

In Section 1.1.11.1.1, the Berreman mode was considered classically: a free electron gas in a
subwavelength layer was considered, and the resonance was found to occur at the plasma
frequency. In this work, collective electronic excitations will be studied in semiconductor
layers thin enough that the electron gas is quantum confined. The collective response of the
confined electron gas will be calculated beginning from the single particle electronic states,
which we now introduce.

The electron gas is confined in an In0.53Ga0.47As/Al0.48In0.52As quantum well heterostruc-
ture lattice-matched to InP. The subscripts indicating the composition of the InGaAs/AlInAs
layers are omitted in the remainder of the text. In this system, a 0.52 eV offset in the con-
duction band potential at the interface of the InGaAs well and AlInAs barrier results in a
confining potential VCB(z) for an electron in the heavily doped InGaAs layer.

The quantized electronic states of a heterostructure can be written as a product of the
Bloch function, which varies with the same periodicity of the crystal, and a so-called envelope
function which varies slowly on the scale of the lattice constant [99, 111111]. By introducing the
effective mass m∗ to account for the quickly varying potential of the crystal lattice, the
problem can be simplified to a Schrödinger equation for the envelope functions.

Let us consider an InGaAs/AlInAs heterostructure like the one sketched in Fig. 1.31.3 in
which the electron gas is confined in the ẑ direction, such that the electrons remain free to
move in the x̂ − ŷ plane. The envelope functions in the position basis r =

(
r∥,z

)
are written

as: 〈
r
∣∣∣λ,k∥

〉
= ϕλ(z) 1√

S
eik∥·r∥ (1.14)

where k∥ is the wavevector in the x̂ − ŷ plane, λ is the quantum number associated with
the confinement in the ẑ direction, and S is the surface area. In the constant effective mass
(parabolic band) approximation, the quantized energy levels are written:

Eλk∥ = Eλ +
ℏ2k2

∥
2m∗ (1.15)

The eigenstates of Eq. (1.141.14) represent plane waves in the x̂ − ŷ plane multiplied by a
wavefunction ϕλ(z) which depends on the confinement in the ẑ direction. Each λ indexes a
subband, for which electrons may take on any value of k∥ as illustrated in Fig. 1.31.3.
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Fig. 1.3 The single particle eigenstates are presented for a 10 nm InGaAs/AlInAs
well accounting for nonparabolicity. On the left, the square moduli |ϕλ(z)|2 are
plotted at the energies ℏωλ inside the well potential. On the right, the energy
dispersion of the subbands as a function of the in-plane wavector is plotted. The
dispersion for the first subband is also plotted for a constant effective mass of
0.041me to make apparent the strong nonparabolicity effects in InGaAs.

The envelope functions ϕλ(z) are solutions of the Schrödinger equation in the ẑ direction:[
−ℏ2

2
∂

∂z

1
m∗ (Eλ,z)

∂

∂z
+ VCB(z)

]
ϕλ(z) = Eλϕλ(z) (1.16)

The effective mass can be position and energy dependent. The position dependency reflects
the different effective masses of the materials which constitute the heterostructure. The
energy dependency is important for small band gap semiconductors.

The energy dependence of the effective mass can be calculated via the k ·p method [149149],
in which case the nonparabolicity effect is found to originate due to the coupling between
bands. Considering the coupling between the conduction, light hole, and split-off bands, the
energy dependent effect mass can be written [119119]:

m∗(E,z) = me

[
2
3

Ep
E + Eg(z) + 1

3
Ep

E + Eg(z) + Eso(z)

]−1

(1.17)

where E is the energy with respect to the bottom of the conduction band, Eg is the band gap
energy, Eso is the split-off energy, and Ep is the Kane energy. For InGaAs lattice-matched
to InP, Eg(T = 0) = 0.816 eV, Eso = 0.36 eV, and Ep = 20.7 eV [22, 142142, 152152].

The nonparabolicity effect is significant in InGaAs. Furthermore, due to the high elec-
tronic densities investigated in this manuscript, electrons occupy and transition to states of
large k∥ well above the conduction band minimum, for which the parabolic approximation
becomes increasingly inaccurate.
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The electronic band structures studied in this work were calculated using either a program
written within the Quantum Devices group, in which the nonparabolicity is treated according
to the 3-band k · p model of Eq. (1.171.17); or using the commercial nextnano software [1515] in
which the nonparabolicity is treated by solving an 8-band k · p model.

With knowledge of the density of states of the system and the electron density Nv, the
Fermi level inside the quantum well may be calculated. At zero temperature, states below the
Fermi level are occupied, and states above the Fermi level are unoccupied. This is illustrated
in Fig. 1.31.3 where red curves are used to indicate the subband states that are occupied. At
nonzero temperatures, the electrons are thermally distributed across the subbands according
to the Fermi-Dirac distribution.

The example InGaAs/AlInAs quantum well shown in Fig. 1.31.3 is only 10 nm wide and
has only three occupied subbands. It was demonstrated in [88] that the Berreman mode is
observed in heavily doped wide (∼ 100 nm) quantum well structures where many (∼ 10)
subbands are occupied. In this regime, the spacing between the bound states Eλ is small
(< 10 meV) .

1.2.2.1 Self-Consistent Schrödinger-Poisson Solution

In heavily doped semiconductor heterostructures, inhomogeneous charge distributions may
give rise to electrostatic interactions described by Poisson’s equation ∇2Vρ(z) = −ρ(z)/ε
where ρ(z) is a spatial charge distribution, Vρ(z) is its associated potential, and ε is the
permittivity of the material.

Inhomogeneous charge distributions arise because positively charged ionized donors are
fixed in space, while electrons can be free to move. While the volume density of the ionized
donors at a given position d(z) is set by the dopant impurity distribution during the sample
growth, the positions of the electrons are determined by the probabilistic nature of their
wavefunctions.

As an example, let us consider a narrow square quantum well with a single occupied
subband ϕ1. The volume density of electronic charge at a location z is Nϕ∗

1(z)ϕ1(z) where
N is the total number of electrons, equal to the number of dopant impurities assuming
perfect ionization. The net surface charge density in an infinitesimal sheet of width ∂z is
then written [5555]:

σ(z) = q [Nϕ∗
1(z)ϕ1(z) − d(z)] ∂z (1.18)

The probability amplitude given by |ϕ1(z)|2 peaks in the center of the quantum well. Assum-
ing that the donors are evenly distributed such that d does not vary with z, then the charge
density σ(z) also peaks in the center of the well. This results in a static electric field be-
tween the negatively charged center and the positively charged edges of the well. The above
expression is easily generalized to the case of multiple occupied subbands by introducing a
sum over the subbands of the spatial distribution of the volume charge per subband.

The electrostatic potential which results from an inhomogeneous charge distribution con-
stitutes an additional potential term to be included in the Schrödinger equation: VCB →
VCB + Vρ. The added term Vρ is the Hartree potential [5757]. As evident from the example of
the single occupied subband, the Hartree term depends itself on the wavefunction solutions
to the Schrödinger equation. The Schrödinger and Poisson equations are therefore coupled.
The problem is solved by finding wavefunctions which are simultaneous solutions to both
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equations. This is usually done numerically using an iterative method. The final form of the
wavefunction solutions then accounts for the electrostatic Coulomb interactions.

In this manuscript, self-consistent solutions to the Schrödinger-Poission equations, when
sought, were determined using either the freely available 1D Poisson program [129129] or the
commercial nextnano software [1515].

1.3 Semiclassical Description of Optical Response
Having now introduced the semiconductor material system and the discrete electronic states
found when the electrons of the conduction band are confined, we turn now to describe
the optical response of the system. The semi-classical Drude-Lorentz model describes all of
the microscopic oscillators of the material system which respond to a time varying electric
field, including free electrons, bound electrons (electron transitions), and later in Section 1.51.5,
optical phonons.

1.3.1 Drude-Lorentz Model
To describe the motion of bound electrons, a restoring force must be added to Eq. (1.41.4),
which was introduced to describe the free electron gas in the absence of damping. We also
introduce a damping term. The resulting equation of motion constitutes the Drude-Lorentz
model, and is written:

m∗ d2z(t)
dt2 = −eE0e−iωt − kz(t) − m∗ dz(t)

dt
γ (1.19)

We look for solutions which oscillate at the frequency of the driving field such that z(t) =
z0e−iωt where z0 may be complex and find:

z0 = eE0
m∗ω2 − k + im∗γω

(1.20)

Realizing that z0 is maximized at the resonance condition where k = m∗ω2, we introduce
the natural vibrational frequency ω0 =

√
k/m∗ so that z0 may be written:

z0 = eE0
m∗ (ω2 − ω2

0 + iγω
) (1.21)

Our solution for z(t) describes the motion of a single harmonic oscillator. By considering
a density N of identical harmonic oscillators, the polarization density can be defined as in
Eq. (1.61.6). Inserting the expression for the polarization density into the definition of the
displacement field (Eq. (1.21.2)), we find the following expression

D0 = ϵ0

(
1 − Ne2

ϵ0m∗
1(

ω2 − ω2
0 + iγω

))E0 (1.22)

Since D = εrϵ0E, the relative dielectric function is found as:

εr(ω) = 1 − Ne2

ϵ0m∗
1(

ω2 − ω2
0 + iγω

) (1.23)
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Accounting for the nonresonant contributions due to the high frequency electronic tran-
sitions, the dielectric function is written:

εr(ω) = ε∞ − Ne2

ϵ0m∗
1(

ω2 − ω2
0 + iγω

) (1.24)

For ω ≫ ω0, εr → ε∞ implying that the oscillators with natural frequency ω0 cannot keep
up with the driving frequency. This dielectric function can be immediately generalized to
describe the response of a medium with multiple resonances below the interband excitations
by introducing a sum:

εr(ω) = ε∞ − e2

ϵ0m∗

∑
j

Nj(
ω2 − ω2

j + iγω
) (1.25)

We may also define the static dielectric frequency for ω = 0 as εs = εr(0). With this
definition, the dielectric function describing a medium with a single resonance takes the form:

εr(ω) = ε∞ + (εs − ε∞) ω2
0

ω2 − ω2
0 + iγω

(1.26)

Drude Model

The Drude-Lorentz model is referred to as the Drude model when ω0 = 0. For this condition,
the dielectric function of Eq. (1.241.24) describes a free electron gas. Introducing the screened
plasma frequency as defined in Eq. (1.131.13), the complex dielectric function for the free electron
gas in a semiconductor takes the simple form:

εr(ω) = ε∞

(
1 −

ω2
p

ω2 + iγω

)
, (1.27)

Letting ε∞ → 1 and γ → 0, the dielectric function for the free electron introduced in
Eq. (1.101.10) is recovered. In the presence of damping, the real part of the dielectric function
for the free electron gas goes to zero for:

ω2 = ω2
p − γ2 (1.28)

1.3.2 Bound Electrons: Intersubband Transitions

Bound electrons are described classically by the equation of motion given by Eq. (1.191.19) when
the restoring term is nonzero. It was demonstrated that the restoring term leads to a natural
vibrational frequency for the system. This resonance frequency then appears in the dielectric
function of Eq. (1.241.24) as ω0. In quantum mechanics, ω0 is a transition frequency between
eigenstates of the system.

In degenerately doped semiconductor quantum wells, transitions can be induced between
confined states in the conduction band. These transition are called intersubband transitions
[5757]. Because the momentum of the photon which induces the transition is negligible with
respect to the electronic wavevector, the transitions can be described as vertical (same k∥
for initial and final state). As sketched in the middle panel of Fig. 1.41.4, the transitions occur
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between electronic subbands for all in-plane wavevectors k∥ for which the initial state is
occupied and the final state is unoccupied. Because the energy separation of the subbands
is nearly independent of k∥ (it is completely independent when nonparabolicty is neglected),
resonances are observed in optical spectra at discrete transition frequencies ωα.

0 6

z (nm)

0.00

0.52

0.11

0.33

E
n

er
gy

(e
V

)

−1 0 1

k‖ (nm−1)

100 150 200 250 300

Energy (meV)

0

10

20

30 h̄ω12(k‖ = 0)

h̄ω̃12

εαzz
′

εαzz
′′

Fig. 1.4 The square-moduli of the bound state wavefunctions for a 6 nm In-
GaAs/AlInAs quantum well are plotted. The Fermi level is plotted as a dotted
line for a volume electron density of Nv = 1 × 1019 cm−3. In the middle panel, the
subband dispersion is plotted and optical transitions are sketched. On the right, the
real and imaginary parts of the dielectric function Eq. (1.331.33) from the generalized
Drude-Lorentz model are plotted.

An intersubband transition gives rise to a dipole moment between two bound states only
in the confined ẑ direction. Therefore, the dielectric function which describes the quantum
well is anisotropic. The in-plane components are described by the dielection function for the
free electron gas found in Eq. (1.271.27).

In the ẑ-direction, the optical response of a single intersubband transition α can be
described with the dielectric function derived in Eq. (1.241.24) for an oscillator subject to a
restoring force:

εα
zz(ω) = ε∞ +

(
∆Nαe2

Leff
α ϵ0m∗

)
fα

ω2
α − ω2 − iγω

(1.29)

The volume electronic density N has been substituted with ∆Nα

/
Leff

α where ∆Nα describes
the difference in the surface density of electrons on the initial and final subbands and Leff

α

is an effective length, which is defined in accounting for the wave nature of the electrons
[66, 101101, 135135]. The dimensionless oscillator strength fα has been introduced. Classically,
fα would need to be introduced phenomenologically [4545]. In quantum mechanics, fα is
determined by the dipole matrix element:

fα = 2m∗ωα

ℏ
| ⟨f |z|i⟩|2 (1.30)

where |i⟩ and |f⟩ are initial and final states. Realizing that the numerator of the second term
in Eq. (1.291.29) has units of frequency-squared, we may define a plasma frequency associated
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with the transition α as [44, 135135]:

ω2
pα

= fα∆Nαe2

ε∞Leff
α ϵ0m∗ (1.31)

The dielectric function describing the intersubband transition α may then be written:

εα
zz(ω) = ε∞

(
1 +

ω2
pα

ω2
α − ω2 − iγω

)
(1.32)

When nonparabolicity is considered, the subbands are not exactly parallel, and the tran-
sition energy depends on the in-plane wavevector k∥. To account for this effect, the expression
of Eq. (1.321.32) can be generalized [144144] so that a different contribution to the permittivity is
considered for each population of electrons with an in-plane wavevector in the infinitesimal
interval dk∥:

εα
zz(ω) = ε∞

1 +
∫ ∞

0

ω2
pα

(
k∥
)

ω2
α

(
k∥
)

− ω2 − iγω
dk∥

 (1.33)

where

ω2
pα

(
k∥
)

=
fα∆Nα

(
k∥
)

e2

ε∞Leff
α ϵ0m∗

(
k∥
) (1.34)

The real and imaginary parts of εα
zz are plotted in Fig. 1.41.4. They have the usual form for

a Lorentz dipole oscillator: the real part oscillates once, crossing the origin twice at the
zeroes of the dielectric function; the imaginary part peaks once at the pole of the dielectric
function. The higher energy zero, at which the real part of εα

zz goes from negative to positive,
is denoted ℏω̃12. As a consequence of nonparabolicity, the energy at which the imaginary
part peaks is redshifted from the transition energy at k∥ = 0.

As the width of a quantum well is increased, the number of bound states increases.
A quantum well with multiple bound states can have multiple intersubband transitions,
although the transitions must occur between states of opposite parity in order to be dipole-
active [5757]. The dielectric function of Eq. (1.331.33) is easily generalized to multiple intersubband
transitions by considering the additive contribution of each transition α to the permittivity:

εzz(ω) = ε∞

1 +
∑

α

∫ ∞

0

ω2
pα

(
k∥
)

ω2
α

(
k∥
)

− ω2 − iγω
dk∥

 (1.35)

In Fig. 1.51.5, a 9 nm InGaAs/AlInAs quantum well is pictured with three bound states, two
of which are occupied. Optical transitions can take place between the first and second bound
states ω12 and between the second and third bound states ω23. The subbands of the three
bound states are plotted in the center panel. Electronic transitions are sketched between
occupied and unoccupied states of the subbands. As a consequence of Pauli blocking, only
electrons which lie close to the Fermi level participate in optical transitions.

The real and imaginary parts of the dielectric function εzz (Eq. (1.351.35)) for the heavily
doped 9 nm well are plotted in the right panel of Fig. 1.51.5. The imaginary part peaks twice,
indicating two poles, as expected since εzz is determined as the sum of two Lorentzian
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Fig. 1.5 The square moduli of the wavefunctions and the subband dispersion are
shown for the three bound states of a 9 nm InGaAs/AlInAs quantum well. The
Fermi level is plotted as a dotted line for a volume electron density of Nv = 1 ×
1019 cm−3. On the right, the real and imaginary parts of the dielectric function
calculated from Eq. (1.351.35) for two intersubband transitions are plotted.

contributions. The poles are redshifted with respect to the k∥ = 0 transition energies due
to nonparabolicity. The real part of the dielectric function is observed to oscillate twice,
crossing the origin a total of four times. The two zero crossings at which the real part goes
from negative to positive are denoted ℏΩ±.

1.3.3 Optical Response of Electron Gas in Wide Quantum Wells

The Drude-Lorentz model is well suited to describe the optical response of an electron gas
confined in a thin semiconductor layer, since it naturally accounts for size confinement. In
the previous section, the model was applied to two cases in which the size confinement was
significant. In this section, we demonstrate that the model can also be used to describe
the optical response of a large quantum well, in which case the size confinement is nearly
negligible. In the absence of any size confinement, the classical description of the Berreman
mode from Section 1.1.11.1.1 is recovered.

The band structure of a wide, heavily doped 100 nm InGaAs/AlInAs quantum well is
shown in Fig. 1.61.6. The 100 nm well, doped with an electronic density of Nv = 1 × 1019 cm−3,
has 32 bound states, 21 of which are occupied.

Just as for the case of the 9 nm well, the dielectric function is constructed by summing
the contributions from all of the allowed transitions between single particle states in the
quantum well, according to Eq. (1.351.35).

To describe the Berreman mode, only the contributions from electronic transitions be-
tween adjacent subbands need be considered. It will be demonstrated in Chapter 44 that the
consideration of optically active transitions between odd numbers of states greater than one
will naturally lead to a description of higher order collective modes, which are experimentally
observed at energies greater than the Berreman mode [138138].

Since the levels of the 100 nm quantum well are closely spaced, calculating εzz according
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Fig. 1.6 The square moduli of the wavefunctions for a 100 nm InGaAs/AlInAs
quantum well are plotted. The Fermi level is indicated with a dotted line for a
volume electron density of Nv = 1 × 1019 cm−3. The subband dispersion is plotted
for positive values of k∥. Note that the subbands are symmetric for k∥ ↔ −k∥.
In the upper right, the dielectric function εzz calculated from Eq. (1.351.35) for the
100 nm well and the dielectric function from the Drude model are compared. On
the bottom, the real part of εzz is plotted with the real part of εDrude for different
effective masses.

to Eq. (1.351.35) for transitions between consecutive subbands corresponds to considering the
sum of many Lorentzian oscillators at small transition frequencies. The resulting dielectric
function, plotted in upper right panel of Fig. 1.61.6, is similar in form to the Drude dielectric
function εDrude from Eq. (1.271.27) for energies larger than a few meV. For comparison, the
real and imaginary parts of εDrude are plotted in the same panel, for an electron density of
Nv = 1 × 1019 cm−3, using the value of the effective mass at the conduction band minimum
of m∗ = 0.043me. Whereas the real and imaginary parts of εDrude diverge toward zero, the
real and imaginary parts of εzz exhibit a resonant feature at an energy on the order of the
level spacing.

In the bottom panel of Fig. 1.61.6, ε′
zz and ε′

Drude from the upper right panel are re-plotted
on a scale for which the zeros can be more easily identified. The zeros are found at 131 meV
and 166 meV, respectively. In the same panel, ε′

Drude is plotted for a heavier effective mass
of 0.068me, in which case the zero crossing of ε′

zz is reproduced. Recall that ε′
Drude crosses

zero at the plasma frequency (Eq. (1.131.13)), which scales with 1
/√

m∗ .
That a heavier effective mass must be used in the Drude model to reproduce ε′

zz is a
consequence of considering the energy dependence of the effective mass (nonparabolicity) in
the calculation of εzz. The electronic transitions between adjacent subbands which contribute
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to εzz must occur within the vicinity of the Fermi level, which lies 284 meV above the bottom
of the conduction band. At this energy, the effective mass calculated according to Eq. (1.171.17)
is significantly heavier than the 0.43me mass at the bottom of the conduction band.

In the Drude model, the electronic density and the constant effective mass are indepen-
dent inputs. Calculating the dielectric function according to Eq. (1.351.35) has the advantage
that the electronic density implicitly sets the effective mass.

To show that εzz calculated according to Eq. (1.351.35) is well suited to describe the effect of
confinement on the optical response of the electron gas, ε′

zz is plotted in Fig. 1.71.7 for quantum
wells of various widths, identically doped with an electronic density of Nv = 1 × 1019 cm−3.
As the well width is reduced, the energy at which ε′

zz crosses zero, and therefore the energy
at which the resonance is observed, shifts to higher energy. The blueshifting of the Berreman
mode with decreasing well width was experimentally observed in [88]. In the same work, the
dielectric function of Eq. (1.351.35) was shown to describe well the experimental results.
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Fig. 1.7 The real part of the dielectric function calculated according to Eq. (1.351.35)
for InGaAs/AlInAs wells of varying width but constant electronic density of Nv =
1 × 1019 cm−3.

It is important to point out that the Drude model alone cannot self-consistently describe
a different resonance energy for wells of different widths: the energy of the zero crossing of
ε′

Drude is fixed only by m∗ and Nv through the plasma frequency. In the classical Drude
model, neither of these quantities has any dependence on the system dimensions.

In this section and the previous, it was demonstrated that a dielectric function which
describes an electron gas in the confined regime can be constructed from a proper summation
of the contributions of optically active single particle intersubband transitions. There are
two favorable aspects of describing the response of the electron gas in this manner which
are worth remarking upon. First, the model describes in an identical manner the optical
response of the electron gas across two vastly different confinement regimes. Second, and
most conveniently, the model permits a semiclassical description of the optical response of
the many body electron gas in term of quantities which can be easily calculated, namely the
single particle bound states.
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(b) Absorption Spectra

Fig. 1.8 The intersubband transitions, plotted as vertical arrows in (a)(a), are de-
scribed by the dielectric function plotted in the inset of (b)(b), used in Eq. (1.361.36)
to calculate the absorption spectrum plotted on the main axis of (b)(b) in blue and
shaded grey. The experimentally measured resonances are plotted in black and red.
Figures reproduced from [3434] with modifications.

In Chapter 44, a fully quantum model will be introduced in which the the collective
response of the confined electron gas is calculated starting from the basis of single particle
optical transitions in analogy to what has been demonstrated semi-classically here. The
same favorable aspects of the semi-classical model are exploited in the quantum model.

1.4 Collective Effects in the Optical Spectra of Thin Films
In thin films, optical resonances are not observed at the poles of the dielectric function, but
rather at the zeros. This phenomenon is dramatically demonstrated by the experimentally
measured spectra of an 18.5 nm InGaAs quantum well doped with an electronic density of
1.19 × 1019 cm−3 reported in [3434] and reproduced in Fig. 1.8b1.8b.

The band structure of the 18.5 nm InGaAs is plotted in Fig. 1.8a1.8a. There are four subbands
populated with electrons, resulting in four intersubband transitions between adjacent levels.
The real and imaginary parts of the dielectric function calculated according to Eq. (1.351.35)
are plotted in the inset of Fig. 1.8b1.8b. The dielectric function has four poles, one for each
intersubband transition, which are identifiable as the four peaks of ε′′

zz.
For a weakly absorbing homogeneous medium of complex dielectric function εr(ω), the

absorption coefficient is written [4545]:

α = ω

c

ε′′
r√
ε′

r
(1.36)

Apart from a small deviation due to the frequency dependence of ε′
r, the resonances in α

occur where ε′′
r peaks. With a blue line and a shaded area, the spectrum of Eq. (1.361.36) is

plotted in Fig. 1.8b1.8b for the dielectric function of the 18.5 nm InGaAs quantum well. Four
peaks are observed corresponding to the four intersubband transitions.

http://dx.doi.org/10.1103/PhysRevLett.109.246808
http://dx.doi.org/10.1103/PhysRevLett.109.246808
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On the same axis, experimental absorption spectra of the 18.5 nm InGaAs quantum well
measured at a 45◦ angle at T=77 K and T=300 K are plotted. In the experimental spectra,
a single resonance is observed near 165 meV, which corresponds to the zero crossing of ε′

zz.
The fact that a single resonance is observed at the zero of the dielectric function instead

of multiple resonances at the poles is due to collective effects. An electron undergoing an
intersubband transition is sensitive to the electric field generated from the polarization due
to the other electrons undergoing transitions. This is called the depolarization effect and
formally “arises because each electron feels a field which is different from the external field
by the mean Hartree field of other electrons polarized by the external field” [66].

Since each electron which undergoes a transition gives rise to an optical dipole, the
collective phenomenon can be described as the dipole-dipole coupling of all the electrons
participating in transitions [3434]. In the case of many occupied subbands, such as the heavily
doped 18.5 nm InGaAs well, this results in the dramatic effect that all of the oscillator
strength is coupled into a single bright mode, giving rise to the multisubband plasmon [3434].

In Section 1.4.11.4.1, the optical condition for which thin film resonances are observed, namely
that ε′ = 0, is tied to a microscopic description of the collective effects. A simple equation of
motion model is introduced which captures the essential physics of the depolarization effect.
The model is demonstrated to reproduce well-known experimentally observed phenomena in
which collective effects are known to play an important role. To the best of the author’s
knowledge, this conceptually simple model is described here for the first time.

Then, in Section 1.4.21.4.2, an expression for the absorption coefficient is found which correctly
describes the experimentally observed resonance energies in accounting for the depolarization
effect.

1.4.1 Depolarization Effect in Equations of Motion

In the first section of this chapter, a restoring term of the form eEz ∝ z was added to the
equation of motion for free electrons to describe their motion in a thin film when driven by
an oscillating external field. The restoring field Ez is the uniform electric field inside the slab
due to the presence of surface charge σ = ±Nez resulting from the uniform polarization of
the medium: Ez = σ/ϵ0 . The restoring term describes the force on each electron from the
field which arises due to the collective polarization of the medium and the thin film geometry
of the problem. Consequently, the inclusion of the restoring term in the equation of motion
accounts for the depolarization effect.

In the following subsections, equations of motion which describe intersubband transitions
are considered when a similar restoring term is included. The solutions of the modified
equations of motions are found to describe the resonance energies which are experimentally
observed.

Depolarization Shift for Single Intersubband Transition

Let us consider the equation of motion for an electron in the presence of Nα intersubband
oscillators per unit volume. The equation of motion has the form of Eq. (1.191.19) plus the
additional restoring term. The volume density of charge participating in an intersubband
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transition α is written Nα = ∆Nα

/
Leff

α . The equation of motion takes the form:

m∗ d2z

dt2 = −Nαe2

ϵ0
z − m∗ω2

αz + eE0e−iωt (1.37)

where ωα is the frequency of the intersubband transition. The solution to this equation of
motion is written as

z(t) = eE0

m∗
(
ω2

pα
+ ω2

α − ω2
)e−iωt (1.38)

where ωpα is as defined in Eq. (1.311.31). The resonance frequency is not at the intersubband
transition frequency ωα but rather at the blueshifted frequency:

ω̃α =
√

ω2
pα

+ ω2
α (1.39)

As will be seen in Section 1.4.21.4.2, it is at this frequency that a resonance is observed in the
absorption spectrum.

This well-known phenomenon is referred to as the depolarization shift [66, 5757], and was
first described by Chen et al [2222]. It is a collective effect since an electron feels a force due
to the electric field resulting from the collective polarization of the electron gas.

The collective nature of the effect is underlined by its dependence on the electronic
density. For a small electronic density such that ωpα ≪ ωα, the observed transition ω̃α

occurs at the bare ’single particle’ transition frequency ωα, and the depolarization shift is
negligible. In the regime where ωpα is on the order of ωα, the depolarization effect cannot be
neglected, and the collective electronic excitation is referred to as an intersubband plasmon
[137137, 147147].

It is found upon substituting ω̃α into Eq. (1.291.29) that the real part of the dielectric function
for a single intersubband transition crosses zero at ω̃α. This links the solutions to Eq. (1.371.37)
with the optical condition at which the intersubband transitions are observed, namely that
ε′

zz = 0.

Coupled Intersubband Oscillators

We now consider the case of two intersubband transitions α and β. Each oscillating electron
is described by an equation of motion of the form of Eq. (1.191.19) with two added restoring
terms. One restoring term originates from the displacement of the Nα charge density, while
the other originates from the displacement of the Nβ charge density. The equations of motion
for the two intersubband transitions are coupled:

m∗ d2zα

dt2 = −Nαe2

ϵ0
zα − m∗ω2

αzα + eE0e−iωt − Nβe2

ϵ0
zβ

m∗ d2zβ

dt2 = −Nβe2

ϵ0
zβ − m∗ω2

βzβ + eE0e−iωt − Nαe2

ϵ0
zα

(1.40)

Each equation contains a term which describes a capacitive force originating from the polar-
ization induced by the other oscillator. The set of coupled differential equations is simply a
coupled oscillator problem.
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The solutions, or modes, of the set of coupled differential equations are found to oscillate
at the frequencies given by:

Ω2
± = 1

2

(
ω̃2

α + ω̃2
β ±

√(
ω̃2

α − ω̃2
β

)2
+ 4ω2

pα
ω2

pβ

)
(1.41)

where the frequencies ω̃α and ω̃β are as defined in Eq. (1.391.39). Unsurprisingly, the coupled
mode solutions oscillate at frequencies different from those of the uncoupled oscillators, ωα

and ωβ. As shown in Fig. 1.51.5 for the case of the 9 nm quantum well with 2 occupied subbands,
the real part of the dielectric function crosses zero at the energies ℏΩ±. The solutions to
Eq. (1.411.41) are thus linked with the optical condition at which the intersubband transitions
are observed, namely that ε′

zz = 0.
It is interesting that a restoring term of the same form which is found to give rise to the

depolarization shift for the single intersubband transition is also responsible for the coupling
between multiple intersubband transitions. The two phenomena are linked because they
are both collective effects which work through the Coulomb force. It is easy to see that the
solutions Ω± tend toward the uncoupled transition frequencies ωα and ωβ when the electronic
densities Nα and Nβ are small.

The Coulombic coupling between two intersubband oscillators was experimentally studied
in [3535, 144144]. In these works, two absorption resonances were observed at the two energies for
which ε′

zz = 0, and therefore the energies ℏΩ± found in the coupled oscillator model above.

1.4.2 The Electron Energy Loss Function
Thus far, we have calculated the normal modes of bound and free charges oscillating in the
normal direction of a thin film by adding to the equation of motion an additional term which
describes a uniform electric field inside the medium. While this approach correctly describes
the energies of the new modes of the system, it does not lend itself toward a straightforward
calculation of the optical properties of the system, such as the absorption.

We wish to calculate the absorption in a thin film starting from the dielectric functions
defined in Section 1.31.3, which were derived from an equation of motion without a depolar-
ization term. The depolarization effect is not an inherent property of the material response,
but is determined by the geometry of the electromagnetic problem, so it is not appropriate
to already include the depolarization effect in the definition of a dielectric function.

The response of a medium to an electromagnetic field may be described equivalently
through the electrical conductivity σ or the dielectric function, which are related through:

εr(ω) = ε∞ + iσ
ϵ0ω

(1.42)

As before, the high frequency dielectric constant ε∞ describes the response at frequencies
just below the interband edge. Then, σ describes the response of the oscillators of interest
well below interband transition frequencies.

We now consider p-polarized light incident from a medium with dielectric constant εout

at an oblique angle to a thin film with normal direction ẑ. The optical response of the film
is described by Eq. (1.421.42). The current per unit area induced in the film in the ẑ direction
is given by:

Jz = σzzEin
z (1.43)
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where σzz is an electrical conductivity (units of siemens/meter), and Ein
z is the z-component

of the total electric field in the film.
Since there are no external charges in the system, the displacement field normal to the

boundary, Dz, is continuous. The electric field inside the slab may then be related to the
electric field outside the slab:

εoutEout
z = εr(ω)Ein

z (1.44)

The current density induced in the film may then be written in terms of the external field
Eout

z :

Jz = σzz
εout

εr(ω)Eout
z ≡ σ̃zzEout

z (1.45)

A modified conductivity σ̃zz has been defined which describes the response to the external
field [66].

Using the expression of Eq. (1.421.42), the absorption coefficient α defined in Eq. (1.361.36) can
be rewritten in terms of the conductivity as:

α = − Re{σ}
ϵ0c

√
ε′

(1.46)

Substituting the effective conductivity σ̃ into this expression, the absorption coefficient de-
scribing the ohmic losses in the thin film induced by the external field is found as:

α = − Re{σ̃}
ϵ0c

√
ε′

= Im
{−1

εr

}
ε∞εoutω

c
√

ε′
(1.47)

The resonances in α occur at the zeros of the dielectric function εr, and not at the poles,3
as they do when the expression of Eq. (1.361.36) is used to calculate α.

The expression for α found in Eq. (1.471.47) takes into account the depolarization effect,
unlike the expression of Eq. (1.361.36). Since the depolarization effect is a collective effect,
calculating α via Eq. (1.471.47) is equivalent to considering collective effects. Then, Eq. (1.361.36)
is said to describe the single particle absorption spectrum.

The expression Im
{
ε−1} is used in electron energy loss spectroscopy (EELS) to describe

characteristic energy loss spectra, and is sometimes called the electron energy loss function
[3030, 5454, 109109, 148148]. In these experiments, a beam of mono-energetic electrons is sent through a
solid. After passing through the solid, the energy of the electrons is measured. The quantities
of energy lost by the electrons correspond to the excitation energies of single particle and
collective excitations in the solid [105105, 110110]. Because the impinging beam of electrons carries
a longitudinal wave, it can excite longitudinal oscillations in bulk material, including plasma
oscillations, which cannot be excited by a transverse wave.

In the following sections, the expression for the absorption found in Eq. (1.471.47) is used
to calculate the absorption coefficient for the cases already introduced in this chapter: the
free electron gas in a thin film, a quantum well with a single intersubband transition, and a
quantum well with multiple intersubband transitions.

3This is easy to see: Let ε = a + ib, then, Im
{−1

ε

}
= b

a2 + b2 which peaks when a = 0
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Absorption of Free Electron Gas in a Thin Film

The resonant absorption feature (Berreman mode) which arises for a free electron gas in a
thin film is easily found upon substituting the dielectric function of Eq. (1.271.27) for the free
electron gas into Eq. (1.471.47):

α = εout

c
√

ε′

ω2ω2
pγ(

ω2 − ω2
p

)2
+ γ2ω2

(1.48)

This function peaks at the plasma frequency ωp. The resonant behavior at ωp is exactly
what is predicted from the solution of the equation of motion describing the free electron
gas in a thin film in the presence of the depolarization field found in Eq. (1.121.12).

Absorption of a Single Intersubband Transition

Let us show that the expression of Eq. (1.471.47) describes the depolarization shift for a single
intersubband transition in a quantum well. Since the absorption is proportional to Im

{
ε−1},

we invert the dielectric function of Eq. (1.321.32) describing an intersubband transition α to find:

ε∞
ϵr(ω) = 1 +

ω2
pα

ω2 − ω̃2
α + iγω

(1.49)

where ω̃α is as defined in Eq. (1.391.39). From Eq. (1.471.47), the shape of the absorption spectrum
is given by:

α = εout

c
√

ε′

ω2ω2
pα

γ

(ω2 − ω̃2
α)2 + γ2ω2

(1.50)

This function peaks at the depolarization shifted frequency ω̃α. For ω ≈ ω̃α, the function
simplifies to a Lorentzian centered at the frequency ω̃α.

In Fig. 1.91.9, the collective and single particle absorption spectra are plotted for the 6 nm
InGaAs/AlInAs quantum well considered in Fig. 1.41.4. The spectra are calculated from the
dielectric function determined in accounting for nonparabolicity. The collective effects not
only blueshift the resonance from the bare transition frequency, but also narrow the linewidth
which is broadened by nonparabolicity in the single particle spectrum.

Absorption of Two Coupled Intersubband Transitions

Let us show that the expression of Eq. (1.471.47) applied to a quantum well with two intersub-
band transitions results in two resonant absorption peaks shifted from the bare transition
frequencies. From Eq. (1.251.25), the dielectric function describing two intersubband transitions
α and β neglecting nonparabolicity is written:

εr(ω) = ε∞

(
1 +

ω2
pα

ω2
α − ω2 − iγω

+
ω2

pβ

ω2
β − ω2 − iγω

)
(1.51)

After a great deal of manipulation [3636, 101101], the inverse of the dielectric function can be
written as:

ε∞
ε(ω) = 1 +

A2
p+

ω2 − Ω2
+ + iγω

+
A2

p−

ω2 − Ω2
− + iγω

(1.52)
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Fig. 1.9 The absorption coefficient is plotted for 6 nm InGaAs/AlInAs quantum
well doped with electronic density of Nv = 1 × 1019 cm−3, with and without the
consideration of collective effects.

where the coupled mode resonances Ω± are given as:

Ω2
± = 1

2

(
ω̃2

α + ω̃2
β ±

√(
ω̃2

α − ω̃2
β

)2
+ 4ω2

pα
ω2

pβ

)
(1.53)

and the amplitudes Ap± :
Ap± = K±

(
ω2

pα
+ ω2

pβ

)
(1.54)

with:

K± = 1
2 ±

(
ω̃2

α − ω̃2
β

) (
ω2

pα
− ω2

pβ

)
+ 4ω2

pα
ω2

pβ

2
(
ω2

pα
+ ω2

pβ

)√(
ω̃2

α − ω̃2
β

)2
+ 4ω2

pα
ω2

pβ

(1.55)

Taking the imaginary part of Eq. (1.521.52), Eq. (1.471.47) yields:

α = εout

c
√

ε′

(
ω2A2

p+γ(
ω2 − Ω2

+
)2 + γ2ω2

+
ω2A2

p−γ(
ω2 − Ω2

−
)2 + γ2ω2

)
(1.56)

This function peaks at the coupled mode frequencies Ω±. For ω ≈ Ω± the two terms simplify
to Lorentzian lineshapes with amplitudes of Ap± .

The amplitudes Ap± of the coupled modes appear as effective plasma frequencies, which
through Eq. (1.541.54) are related to the plasma frequencies of the α and β transitions. Through
the form of Ap± , the oscillator strength of the α and β transitions is renormalized into the
two normal modes.

The frequencies Ω± are identical to the solutions found in Eq. (1.411.41) for the coupled
equations of motion describing two intersubband oscillators subjected to restoring terms
arising from collective charge oscillations.

In Fig. 1.101.10, the collective and single particle absorption spectra are plotted for the 9 nm
InGaAs/AlInAs quantum well considered in Fig. 1.51.5 accounting for nonparabolicity. The
collective effects blueshift both of the single particle resonances, redistribute the oscillator
strength, and counteract the broadening effect nonparabolicity has on the single particle
linewidths.
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Fig. 1.10 The absorption coefficient is plotted for a 9 nm InGaAs/AlInAs quantum
well doped with electronic density of Nv = 1 × 1019 cm−3, with and without the
consideration of collective effects.

Absorption of Berreman Modes of Confined Electron Gas

In Fig. 1.111.11, the absorption spectra calculated from Eq. (1.471.47) are plotted in solid lines for
the wide heavily doped quantum wells of varying width for which ε′

zz was plotted in Fig. 1.71.7.
As expected, the Berreman mode resonances occur at the energies for which ε′

zz = 0 and
blueshift as the electron gas is increasingly confined.
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Fig. 1.11 The absorption coefficient is plotted for InGaAs/AlInAs quantum wells
of various widths doped with electronic density of Nv = 1 × 1019 cm−3.

The single particle absorption spectrum is plotted for the 100 nm well, and shows no
feature over the energy range plotted.
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1.5 Optical Phonons
Throughout most of this manuscript, the Berreman modes studied are plasmonic. Micro-
scopically, they constitute oscillations of fluctuations in the charge density of the electron
gas. Berreman modes can also be observed when the microscopic source of the polarization
in the thin film is due to the excitation of optically active vibrational modes of the crys-
tal lattice, the longitudinal optical (LO) phonons. As mentioned in the beginning of this
chapter, it was for this case that Berreman first observed the mode named after him.

In Chapter 33, the coupling between Berreman modes originating from these different
microscopic mechanisms will be investigated. In this section, the dielectric function which
describes the response of the longitudinal optical phonons is derived starting from the results
of the Drude-Lorentz oscillator model introduced in Section 1.3.11.3.1.

Phonons can be described as simple harmonic oscillators [149149] with charge Q and mass
M . The dielectric function of the Drude-Lorentz model can thus be applied to describe their
optical response, upon making the substitutions −e → Q and m∗ → M in Eq. (1.241.24). To
avoid the difficult task of defining values for Q and M , we instead immediately define a
frequency ωLO for which εr(ω) = 0 and for which phonons support longitudinal electromag-
netic waves. Setting Eq. (1.241.24) equal to zero and solving for the frequency in the absence of
damping, ωLO is found:

ω2
LO = NQ2

ϵ0ϵ∞M
+ ω2

TO (1.57)

The frequency ω0 in Eq. (1.241.24) has been renamed ωTO since this frequency describes the
transverse optical (TO) phonons.

With this definition for the LO phonon frequency, the dielectric function describing the
optical response of the phonons is written:

εr(ω) = ε∞

(
1 + ω2

LO − ω2
TO

ω2
TO − ω2 − iγω

)
(1.58)

Introducing the static dielectric frequency εs = εr(0), the dielectric function can be written
as:

εr(ω) = ε∞ + (εs − ε∞) ω2
TO

ω2
TO − ω2 − iγω

(1.59)

The pole of the dielectric function occurs at ωTO, and the zero occurs at ωLO as defined.
Materials described by Eq. (1.581.58) are highly reflective in the region between ωTO and ωLO,
which is known as the Reststrahlen band.

In the top panel of Fig. 1.121.12, the real and imaginary parts of Eq. (1.591.59) are plotted for the
case of GaAs. The pole of εr, corresponding to the peak of ε′′

r , occurs at ℏωTO = 33.25 meV.
It is at this frequency that bulk GaAs resonantly absorbs incident radiation.

In the lower panel of the same figure, the thin film absorption coefficient (Eq. (1.471.47)),
which describes the losses for the Ez component of the incident radiation, is plotted for
the GaAs dielectric function. A resonance is found at ℏωLO, which is the energy at which
ε′ = 0. This is directly analogous to the depolarization shift for intersubband transitions,
in which the observed resonance occurs at ω̃α (the zero of εr) which is blueshifted from the
bare transition frequency ωα (the pole of εr).

Experimentally, the resonance at ωLO is only observed for p-polarized light arriving at
an oblique angle of incidence, since an electric field component Ez is needed to excite the
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Fig. 1.12 The real and imaginary parts of Eq. (1.591.59) are plotted for GaAs in
the Reststrahlen band, using εs = 10.88, ε∞ = 12.85, ℏωTO = 33.25 meV, and
γ = 0.25 meV [1616]. The absorption coefficient is plotted for a thin film of GaAs,
calculated according to Eq. (1.471.47).

mode. Since the angle of incidence will always be less than 90◦ by definition, the incident
light will always have a nonzero in-plane electric field component. The in-plane electric field
component will excite resonances at ωTO, since there is no depolarization effect acting in this
direction. Consequently, in an absorption spectrum, resonances will be observed at both ωTO
and ωLO. This is observed in Berreman’s p-polarized spectrum of LiF in Fig. 1.1a1.1a.

Note that this is not analogous to the anisotropic quantum well case, in which case the
natural frequency ωα appears only in the z-component of the dielectric function. For p-
polarized light incident on a quantum well at off-normal angles, a resonance is only observed
at ω̃α.

1.5.1 Optical Phonons of Ternary Alloys

The dielectric function of Eq. (1.581.58) describes the response of crystals with one longitudinal
phonon mode and one transverse phonon mode. This is the case for binary semiconductors,
such as GaAs. However, the experiments described in this manuscript involve the ternary
alloy materials InGaAs and AlInAs. For ternary alloys, there are two Reststrahlen bands,
each with a TO phonon mode and an LO phonon mode.

The frequency of the four optical phonon modes depends on the composition of the alloy
[11, 6262]. As an example, the frequencies of the optical phonons for Ga1−xAlxAs are plotted
in Fig. 1.131.13 as function of the alloy content. The LO1 and TO1 phonons at higher frequency
are said to be "AlAs-like", while the LO2 and TO2 phonons at lower frequency are said to
be "GaAs-like", in relation to the Reststrahlen bands of the binary crystals.

The dielectric function for the phonons in a ternary material can be written in an additive
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Fig. 1.13 The frequencies of the longitudinal optical (LO) and transverse optical
(TO) phonons of Ga1−xAlxAs are plotted as a function of the aluminum content x.
Figure reproduced from [6262] with annotations added.

form:
εr(ω) = ε∞

(
1 +

ω2
LO1

− ω2
TO1

ω2
TO1

− ω2 − iγ1ω
+

ω2
LO2

− ω2
TO2

ω2
TO2

− ω2 − iγ2ω

)
(1.60)

The dielectric function can also be written in a factored form [1212, 2727] as:

εr(ω) = ε∞

(
ω2

LO1
− ω2 − iγ1ω

) (
ω2

LO2
− ω2 − iγ2ω

)
(
ω2

TO1
− ω2 − iγ1ω

) (
ω2

TO2
− ω2 − iγ2ω

) (1.61)

in which case the zeros are easily identified as ωLO1 and ωLO2 in the absence of damping.

http://dx.doi.org/10.1103/PhysRevB.1.1576


Chapter 2

Single Material Plasmonic Platform

In the following, the Berreman mode is observed in a single material semiconductor structure
in which a high electronic density has been added to a subwavelength layer. Electrostatic
charge effects are sufficiently strong as to give rise to a confining potential for the electron
gas. A dielectric function describing the response of the highly doped layer is constructed
from single particle intersubband transitions. The optical properties of the mode are explored
experimentally and are found to be in agreement with the theoretical description.

It is demonstrated that the highly doped slab can support a collective surface mode
which lies beyond the light line when the doped layer lies close to the sample surface and
near a dielectric, such as air. The mode is resonant near the plasma frequency, and is thus
not equivalent to the surface plasmon polariton mode supported at the boundary between
half-infinite metal and dielectric regions.

Thermal emission experiments are presented in which both of the modes described above
are used as sources of infrared radiation.

2.1 Berreman Mode in Single Material Structure

In Chapter 11, the Berreman mode was introduced as the resonance observed in subwavelength
films at the zero of the dielectric function under illumination by p-polarized light at oblique
incidence. When the microscopic source of the polarization is due to the motion of electrons,
the mode is a collective electronic excitation.

The Berreman mode has been observed over a wide frequency range for various materials
either at the longitudinal optical phonon frequency or the plasma frequency: GaN [3939], AlN
[9494, 9999], SiO2 [117117], Si3N4 [117117], n-doped InAsSb [127127], and n-doped InGaAs [88] in the mid-
infrared; doped ITO in the near-infrared [1919]; and silver [1313, 8484, 9393] in the near-UV. In all
cases, the media surrounding the thin layer which hosts the mode has been of a different
material. For the n-doped InGaAs case, the Berreman mode was observed for an electron
gas confined in a quantum well heterostructure with AlInAs barriers.

In the following, we demonstrate that a Berreman mode is supported in a structure
consisting entirely of InGaAs, in which a high density of dopants has been added to a single
layer of subwavelength thickness. In such a structure, there is no potential to localize the
electrons other than the electrostatic potential between the mobile electrons and their ionized
donors.

27
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2.1.1 Experimental Observation

The sample studied (InP1716) consists of a 150 nm layer of InGaAs doped with a nominal
electronic density of Nv = 2×1019 cm−3 grown between two not-intentionally-doped InGaAs
layers. The sample was grown via Metal Organic Chemical Vapor Deposition (MOCVD)
on an InP substrate by the team of Grégoire Beaudoin, Konstantinos Pantzas, and Isabelle
Sagnes at the Centre de Nanosciences et Nanotechnologies (C2N) in Palaiseau, France.

Transmission spectra of the sample were measured using a Fourier Transform Interfer-
ometer (FTIR), a blackbody light source, and a liquid nitrogen-cooled mercury cadmium
telluride (MCT) detector. Transmission spectra were measured for p- and s-polarized light
incident on the highly doped InGaAs layer, and separately, incident on a region of the sample
where the highly doped layer was etched away from the substrate, as sketched in Fig. 2.12.1.

InP

ReferenceBerreman  Mode

Fig. 2.1 Transmission measurements sketched for p-polarized radiation, for light
incident on the plasmonic mode and, separately, the substrate reference. The ex-
ternal angle θext and the internal angle θint are defined.

Since the Berreman mode is not excited by s-polarized light, the s-polarized spectrum can
be used to normalize the p-polarized spectrum. The resulting transmission spectrum does not
have a baseline of one, since the Fresnel coefficients differ depending on the polarization of
the incident light. To have a baseline near one and to eliminate spectral artifacts which result
from the polarization dependency of the optical elements, the spectrum is further normalized
by the ratio of the p- and s-polarized spectra of the substrate reference. Altogether, the
transmission spectrum of the Berreman mode is found as:

Transmission =
Tplas

p

Tplas
s

/
Tsub

p
Tsub

s
(2.1)

At the Brewster’s angle of the air/InP interface (θext = 72◦ for nInP = 3.1 ), no p-polarized
light is reflected, and the absorptivity may be conveniently calculated as 1 − Transmission.
Note that the angle of incidence inside the semiconductor θint is much smaller than θext due
to the large refractive index mismatch at the air/InP interface.

The experimental transmission spectrum of the InP1716 sample measured at the Brew-
ster’s angle, normalized according to Eq. (2.12.1), is plotted in Fig. 2.22.2 with a black line. A
resonant dip attributed to the Berreman mode is observed at 153 meV.

The absorptivity, plotted in blue, is extracted from the experimental data as 1 − Transmission,
after the baseline of the transmission spectrum has been corrected. In red, an absorptiv-
ity spectrum calculated with the transfer matrix method (TMM) is shown to be in good
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Fig. 2.2 In black, the normalized transmission of the InP1716 sample is plotted.
A baseline fit (dotted orange curve) is found for the transmission spectrum. After
correcting for the baseline, the experimental absorptivity (blue) is determined as
1 − Transmission and compared with the absorptivity calculated with the transfer
matrix method (TMM) (red).

agreement with the experimental curve. This calculation is the subject of the following
section.

The simple transmission experiment permits the determination of the electronic density
of the highly doped layer without any additional processing of the sample [127127], since in
the case of a negligible confinement of the electron gas, the Berreman mode occurs at the
plasma frequency as seen in the previous chapter. From the above experiment and taking
into account nonparabolicity, the electronic density of the highly doped InGaAs layer is
determined to be Nv = 1.5 × 1019 cm−3.

2.1.2 Optical Modeling

In all the cases cited at the beginning of Section 2.12.1, the material structure in which the
Berreman mode was observed consisted of three distinct optical layers, describable with three
dielectric functions. In the present study, the electrons added to the 150 nm InGaAs layer
are free to diffuse into the undoped layers, and it is not a priori apparent that the system
can be described as three distinct homogeneous optical media.

Electrons which diffuse from the highly doped layer carry a net negative charge and leave
behind a net positive charge. This results in an electrostatic potential, which at equilibrium,
exactly balances the diffusion potential. In the following, we find that the electrostatic
potential is sufficiently strong as to localize the electron gas. This justifies the description
of three distinct optical media, in which the doped-layer has the response of an electron
gas, and the undoped InGaAs layers are described by a frequency-independent dielectric
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permittivity.
Classically, the electrostatic potential felt by an electron in the heavily doped layer is the

potential which self-consistently satisfies the coupled drift-diffusion and Poisson equations at
equilibrium. The Poisson equation describes the electrostatic potential which results from
the displacement of charges away from their donors. The electrostatic potential enters the
drift-diffusion equation and creates a current which cancels the drift current at equilibrium.

Quantum mechanically, the electrostatic potential felt by an electron in the heavily doped
layer is found as the self-consistent solution to the Schrödinger and Poisson equations, as
described in Section 1.2.2.11.2.2.1. The solution is found by solving the problem iteratively ac-
cording to the following physical picture: At first, the electrons introduced into the heavily
doped InGaAs layer are not bound and have an equal probability to be anywhere. They are
described by completely delocalized wave functions. This implies that the electronic density
goes to zero everywhere since a finite amount of charge is distributed in all space. The
positive charge of the fixed ionized donors is no longer compensated, and an electrostatic
potential arises. The Schrödinger equation is then solved again for the new electrostatic
potential. The loop continues until a self-consistent solution is found.

The band structure of the InP1716 sample was calculated quantum mechanically using
the commercially available nextnano software [1515, 136136] using a single band approximation
for the effective mass (neglecting band nonparabolicity). The electronic density used for
the 150 nm doped InGaAs region in the simulation is the experimentally extracted value of
Nv = 1.5 × 1019 cm−3.

The InP1716 sample was originally designed to study the possibility of resonantly exciting
the Berreman mode via an electrical current through a thin barrier [2828]. Consequently,
moderately doped InGaAs layers were grown on either side of the structure to serve as
contacts, along with a narrow 10 nm AlInAs barrier.1 The entire structure, detailed on
Page 190190, is considered in the band structure calculation presented in Fig. 2.32.3.

Boundary conditions must be specified for a solution to Poisson’s equation. For the
modeling of the InP1716 sample, the electrostatic potential Vρ(z) is fixed to a large negative
value at the sample surface (Dirichlet boundary condition) as to impose a large work function
to remove an electron from the structure. This is approximate, as no attempt is made to
model surface states. For the other boundary, the derivative of the electrostatic potential is
set to zero at the far edge of the undoped InP substrate (Neumann boundary condition).

The large electronic density introduced to the 150 nm layer of the InGaAs results in a
significant band bending effect. Remarkably, a nearly square confining potential is realized
for the electrons in this region, with a depth almost identical to the 0.52 eV conduction
band offset of an InGaAs/AlInAs heterostructure lattice-matched to InP. The electron gas
is almost totally localized to the 150 nm doped region. The abrupt change in charge density
at the layer boundaries between the doped and undoped regions justifies the description of
three distinct optical media.

It is important to consider nonparabolicity in describing the optical response of InGaAs.
As an approximate treatment, the Schrödinger equation for the envelope functions is solved

1The presence of the thin AlInAs barrier hardly detracts from our claim of observing the Berreman mode
in a single material structure. It is sufficiently thin as to offer little confinement to the electronic states.
The electrostatic potential resulting from charge separation is clearly the dominant effect responsible for the
localization of the electronic wavefunctions. Later in the chapter, the Berreman mode is observed for another
sample (V0211) which consists of exclusively InGaAs layers.
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Fig. 2.3 In the lower panel, the electronic band structure found as a solution to
the coupled Schrödinger-Poisson equations is plotted a function of position for the
InP1716 sample. The conduction band (CB), the degenerate heavy hole (HH) and
light hole (LH) bands, and the split-off (SO) band are indicated. In the upper
panel, the square moduli of the bound electronic states calculated with a 3-band
k · p model are plotted at their respective energies inside the potential.
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for a final time, considering nonparabolicity, for the potential found as the self-consistent
solution to the coupled Schrödinger-Poisson equations in the constant effective mass approx-
imation. The square moduli of the resulting envelope functions are plotted in the top panel
of Fig. 2.32.3. For a fully proper treatment, the band nonparabolicity should be considered for
every iteration of the Schrödinger-Poisson solver.

The z-component of the uniaxially anisotropic dielectric function for the electron gas
effectively confined to the 150 nm InGaAs layer, εzz, is determined from the generalized
Drude-Lorentz model introduced Section 1.3.31.3.3. We recall that in this description, the dielec-
tric function is constructed as the summation of contributions from single particle intersub-
band transitions to the matter polarization according to Eq. (1.351.35).

The real and imaginary parts of εzz are plotted in Fig. 2.42.4. Due to the large width of
the quantum well, the dielectric function has a similar form to that of the Drude model
for a free electron gas. As discussed in Section 1.3.31.3.3, our approach for calculating εzz has
the two-fold advantage that it naturally accounts for confinement, and that the electronic
density implicitly sets the effective mass.
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Fig. 2.4 The real and imaginary parts of εzz, calculated to describe the response of
the electron gas in the potential shown in the top panel of Fig. 2.32.3, are plotted. The
real part of the dielectric function calculated with the Drude mode for the same
electronic density and using the effective mass at the bottom of the conduction
band is plotted for comparison.

To model the propagation of electromagnetic fields across the structure and calculate
the experimentally measurable transmission, reflection, and absorptivity, either a transfer
matrix method [9898] or a finite element solver can be employed. The transfer matrix (TMM)
method is computationally less resource intensive, and is the method used for the numerical
calculations presented throughout this chapter.

In either method, the optical response of each region of the structure is defined with
a dielectric function, and the polarization and angle of the incident field is set. Apart
from the highly doped 150 nm layer, the layers of the InP1716 sample are described with
isotropic dielectric functions. The less-doped InGaAs layers are described with the Drude
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model, whereas the intrinsic InGaAs layers and the InP substrate are described by their
respective high frequency dielectric constants, ε∞, introduced in Section 1.3.11.3.1. The in-plane
components of the dielectric function for the 150 nm highly doped layer are described with
the Drude model.

The absorptivity spectrum calculated with the TMM for p-polarized light at Brewster’s
angle, plotted in Fig. 2.22.2, was calculated using the dielectric function εzz as determined
above, using phenomenological values for the linewidth broadening. With this approach, the
amplitude of the calculated absorptivity spectra agrees well with the experimental spectrum.

2.1.3 Subtleties of Transmission Spectra Normalization

The divergence of the baseline of the (black) transmission curve in Fig. 2.22.2 to increasingly
large values above one at low energies is a consequence of the normalization procedure
described by Eq. (2.12.1). To demonstrate this, the four transmission spectra (Tplas

p , Tplas
s ,

Tsub
p , Tsub

s ) which enter into Eq. (2.12.1) are calculated with the TMM at Brewster’s angle
and plotted in Fig. 2.52.5. A normalized transmission spectrum, determined from the series of
simulated transmission spectra according to Eq. (2.12.1), is also plotted. As in the experiment,
the baseline of the spectrum determined via the normalization procedure diverges above one
at low energies.

The transmission of the highly doped layer actually decreases for energies below the
Berreman mode (plasma energy), as evident in the p- and s-polarized transmission spectra
(solid and dashed blue lines) of Fig. 2.52.5. This is due to an increase in the reflectivity below the
plasma energy. For bulk metals described with the Drude dielectric function, the reflectivity
sharply approaches one and the transmission sharply drops to zero below the plasma energy
[4545]. The highly doped thin layer behaves analogously, but since its thickness is less than the
skin depth, the transmission does not completely go to zero below the plasma energy. If the
thickness of the highly doped layer is increased, the transmission below the plasma energy
is found to decrease until the bulk case is recovered, in which case the Berreman mode is no
longer observed.

Above the plasma energy, the baseline of the transmission spectrum (black) is still not
unity, despite the normalization procedure. The amplitude of the Berreman mode resonance
should be determined with respect to this baseline, as was done in extracting the absorptivity
in Fig. 2.22.2.

2.2 Coupling of Berreman Mode with Free Space

2.2.1 Theoretical Description

The Berreman mode interacts strongly with the free space electromagnetic field. This prop-
erty can manifest itself in the total absorption of incident light by the mode under certain
conditions. The strength of the interaction is quantified by the radiative decay rate Γrad,
which determines the coupling between plasmon excitations and the radiation field. In most
solid state systems, the radiative decay rate is so small compared to the nonradiative decay
rate γNR that the observed linewidths are determined solely by the lifetimes of nonradiative
processes. In these systems, the rate at which excited electronic states dissipate energy is
much greater than the rate at which they are excited. In the case of the Berreman mode,
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Fig. 2.5 Transmission spectra calculated via the transfer matrix method are plot-
ted for p- and s-polarized light incident from inside the InP substrate, for light
passing through the heavily doped 150 nm layer and then into air (denoted plas-
mon), and for light passing from the substrate directly into air (denoted substrate).
The initial air/substrate interface encountered by light entering the sample in the
experiment is not considered.

the interaction with the electromagnetic field can be so significant that Γrad is larger than
γNR [6969]. This has profound consequences on the optical properties.

The reflectivity and absorptivity spectra of a thin layer supporting a Berreman mode are
highly angular-dependent. This is a consequence of the angular dependency of Γrad and the
large values it can reach. Let us introduce the total decay rate, or linewidth, of the Berreman
mode:

Γtot = γNR + Γrad(θ, ω) (2.2)

In this expression, and for the remainder of this section, the angle θ describes the angle
inside the semiconductor (we omit the subscript used elsewhere in the chapter). We see that
when Γrad is of the same order of magnitude of γNR, the linewidth is no longer determined
solely by the decay rate of nonradiative scattering processes.

The angular dependency of Γrad is due to the thin layer geometry of the Berreman mode
and the fact that the mode only interacts with p-polarized radiation. The form of the
dependency is easy to establish: the Berreman mode only interacts with the electric field in
the ẑ direction, written as Ez = E0 sin θ, and the effective interaction length of radiation with
the mode goes as (cos θ)−1. These two considerations suggest a factor of sin2 θ

/
cos θ should

appear in the definition of Γrad(θ, ω) (the squared sinusoidal dependence appears because
absorption is related to an attenuated intensity). A rigorous evaluation of Γrad [6060] indeed
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leads to the following formula:

Γrad(θ, ω) = Γ0
ω

ω0

sin2 θ

cos θ
(2.3)

This expression results from solving the quantum Langevin equations in the input-output
formalism. The angle-independent spontaneous emission rate Γ0 can be calculated using
perturbation theory (Fermi’s Golden Rule) [6060, 6969, 100100] in which case Γ0 is found to be
proportional to the surfacic density of electrons, Ns. The frequency dependence of Γrad(θ, ω),
however, can only be found in a nonperturbative, non-Markovian description [6060]. We note
that the dependency of the radiative decay rate Γrad(θ, ω) on the electronic density is evidence
of the superradiant nature of the plasmonic excitation [6969]. In Section 4.2.34.2.3, an expression
for Γ0 will be found from a quantum description of the ac current density associated with
the excitation of the plasmon mode.

In the input-output formalism [6060], the plasmon mode is described as being coupled to two
bosonic baths: the free electromagnetic field in the dielectric medium, and a bath of electronic
excitations. The coupling with each bath is described by Γrad(θ, ω) and γNR, respectively.
Whereas Γrad is determined by the quantum model described above, γNR is introduced
phenomenologically. Each bath represents one of two competing decay channels for the
excited plasmons. When γNR ≫ Γrad(θ, ω), plasmon excitations relax into the electronic
bath at a faster rate than they are excited. When Γrad(θ, ω) ≫ γNR, plasmons are excited
at a rate faster than they can relax into the electronic bath and the dominant relaxation
pathway is radiative decay. When the two rates are equal (the critical coupling condition),
plasmons decays into the electronic bath at the same rate that they are excited. For plasmons
excited by an incident radiation field, this is the condition for perfect absorption.

The sin2 θ
/
cos θ dependence of Γrad means that each of the regimes discussed above is

fulfilled at a different angle. For small angles, sin2 θ
/
cos θ is small, reaching about 0.1 only

at θ = 18◦. This implies that for small incidence angles, the linewidth is almost entirely
determined by γNR. For large angles, sin2 θ

/
cos θ exceeds unity, which is reached around

50◦. Experimentally, this is observed as a clear broadening of the resonance.
The complete expression for the absorptivity of the plasmon mode calculated in the

input-output formalism is written [6060]:

α(θ, ω) =

4ω2
0

(ω0 + ω)2
γNRΓrad(θ, ω)

2

(ω − ω0)2 + 4ω2
0

(ω0 + ω)2

[
γNR

2 + Γrad(θ, ω)
2

]2 (2.4)

The expression can be simplified for certain cases. For γNR ≫ Γrad(θ, ω), the expression
reduces to:

α(θ, ω) = 2
γNR

2Γrad

1 +
(

ω − ω0
γNR/2

)2 (2.5)

which is a Lorentzian with a full-width at half-maximum given by γNR. At the critical
coupling angle θcrit where Γrad = γNR, the expression reduces to a Lorentzian which peaks
at 1/2:

α(θcrit, ω) = 1
2

1

1 + ω − ω0
γNR

2 (2.6)
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For Γrad(θ, ω) ≫ γNR, the linewidth of the resonance determined by Eq. (2.42.4) is radiatively
broadened.

When the Berreman mode is next to a metallic mirror, a factor of two must be included
in Eq. (2.42.4). Under these circumstances, the Berreman mode can act as a perfect absorber.
Equation (2.42.4) is plotted including the factor of 2 for three angles covering the three regimes
in Fig. 2.62.6.
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Fig. 2.6 Equation (2.42.4) is plotted after multiplication by a factor of 2 for ω =
150 meV, Γ0 = 46 meV, and γNR = 7 meV. For a small angle, the linewidth is
determined by γNR. At the critical coupling angle, the absorptivity reaches one.
At large angle, the linewidth is radiatively broadened.

Finally, it must be remarked that for Γrad(θ, ω) ≫ γNR, the expression given by Eq. (2.42.4)
deviates from a Lorentzian lineshape. The non-Lorentzian behavior results from the anti-
rotating terms in the light-matter interaction Hamiltonian. These terms ensure that the
absorptivity goes to zero at zero energy, as is physically required. A Lorentzian lineshape
would become unphysical in the limit of extreme radiative broadening (very large Γrad), since
the low energy tail can take on a finite value below zero energy.

2.2.2 Experimental Observations
In this section, the optical properties of the Berreman mode for the single material InP1716
sample are experimentally investigated as a function of the angle of incidence. First, trans-
mission spectra measured up to the maximum internal angle achievable for light incident
from free space are presented. Afterwards, absorptivity spectra, determined from reflectivity
measurements in which a gold layer has been deposited on the sample surface, are presented.
Using a Ge hemisherical lens, absorptivity spectra are measured beyond the light line [3131].
The regime in which Γrad(θ, ω) ≥ γNR is experimentally investigated and perfect absorption
is demonstrated.

Transmission Measurements

As was the case for the Brewster’s angle measurement reported in Section 2.1.12.1.1, the trans-
mission measurements are performed with the light incident from free space onto the InP
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substrate (350 µm thick) of refractive index nInP = 3.1. From free space, the maximum in-
ternal angle which can be reached is 18.8◦ for light arriving on the substrate at near-grazing
incidence.

A series of experimental transmission spectra measured up to an internal angle of 17.9◦

are presented in the left panel of Fig. 2.72.7. The specular reflection was not measured in the
experiment, and as a result, the absorptivity cannot be determined.

Transmission spectra calculated with the TMM for angles up to 18◦, normalized in the
same way as the experiment, are plotted in the right panel of Fig. 2.72.7. There is good
agreement between the experimental spectra and the TMM simulations. The contrast of the
resonant transmission dip varies approximately the same in both as a function of angle. In
both sets of spectra, as the angle is increased, the value of the baseline decreases and the
divergence of the baseline below the plasma energy becomes more rapid. Both of the trends
are more pronounced in the TMM simulation.
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Fig. 2.7 The normalized transmission is compared for the experimentally measured
spectra and transfer matrix method (TMM) calculations for internal angles up to
the total internal reflection angle.

Reflectivity Measurements with Gold Mirror

In this section, the optical properties of the Berreman mode of the InP1716 sample with a
deposited gold mirror are studied as a function of angle. The results of these studies were
reported in a publication [139139] of which I was a coauthor.
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Two configurations for the reflectivity measurements are sketched in Fig. 2.82.8. In both
cases, a gold mirror is deposited on the sample surface, close to the highly doped layer. As in
the transmission experiments, light is incident onto the InP substrate. Assuming a perfectly
reflective gold layer, the absorptivity of the sample can be determined as 1 − Reflectivity.

Spectra can be measured up to an internal angle of approximately 18.8◦ directly from free
space. To access larger internal angles, a germanium hemispherical lens is used. Germanium
has a refractive index of nGe ≈ 4 over the spectral range investigated. The hemispherical
geometry of the germanium lens permits incident light to cross the interface of large refractive
index mismatch at normal incidence, thus permitting access to large internal angles inside
the InP substrate.

gold

InP

(a) Above free space light line

Ge

InP

(b) Below free space light line

Fig. 2.8 The reflectivity configurations used to probe the Berreman mode across
a wide range of angles are sketched. The use of a hemispherical lens allows for light
incident from free space to enter the first high refractive index material (the Ge
lens) at normal incidence, avoiding refraction.

For the reflectivity experiments, reference spectra are measured over a deposited gold
film. Since the Berreman mode is only excited by p-polarized radiation, and the light is
assumed to be completely reflected by the gold layer, absorptivity spectra are determined
as:

Absorptivity = 1 −
Rplas

p

Rplas
s

/
Rgold

p

Rgold
s

(2.7)

With this procedure, the baselines of the absorptivity spectra are not equal to zero, since at
non-normal incidence angles, the incident beam is reflected from the InP substrate differently
depending on the polarization. The baselines of the spectra given by Eq. (2.42.4) are manually
normalized to one far from the optical resonance, in a flat non-absorptive region.

Experimental reflectivity measurements are presented in Panel (a) of Fig. 2.92.9 for the
gold-backed InP1716 sample. The low angle spectra, in which light was incident onto the
sample directly from free space, were measured by the author. The spectra for angles larger
than 18.8◦ (below the free space light line), were measured by Baptiste Dailly using a Ge
hemispherical lens [3131]. The two data sets overlap for some angles and show complete
agreement.

The peak absorptivity is small at low angles, but increases quickly as the angle is enlarged.
It continues to increase until an angle of approximately 22◦, at which it reaches a maximum
value of one, indicating a total absorption of the incident light field. This angle is identified
as the critical coupling angle. Beyond this angle, the peak absorptivity begins to decrease,
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and a marked broadening of the resonance linewidth is observed. The center of the resonance
is observed to shift towards higher energy.

In Panel (d) of Fig. 2.92.9, the experimental linewidth is plotted as a function of the internal
angle. At low incidence angles, the full-width at half-maximum (FWHM) is at its narrowest.
As described in Section 2.2.12.2.1, the radiative linewidth Γrad is proportional to sin2 θ

/
cos θ .

For small angles, this quantity is negligible and thus the total linewidth is equivalent to the
nonradiative linewidth γNR. The total linewidth of the experimental resonance at low angle
permits the determination of the nonradiative linewidth as γNR = 8 meV. As the angle is
increased in the experiment, the linewidth is found to broaden as sin2 θ

/
cos θ , as predicted

by the theory. The theoretical curve closely models the experimental data.
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Fig. 2.9 In Panel (a), the experimental absorptivity spectra are plotted for the
InP1716 sample for which a gold mirror has been deposited on the surface. In
Panels (b) and (d), experimental and theoretical curves are plotted for the peak
absorptivity and the total linewidth (FWHM) as a function of the internal angle.
In Panel (c), the dispersion of the resonance energy with incidence angle is plotted,
and is modeled with transfer matrix method (TMM) calculations.

In Panel (b) of Fig. 2.92.9, the experimentally measured peak absorptivity is plotted as a
function of angle. The theoretical absorptivity, calculated according to Eq. (2.42.4), is plotted
alongside the experimental data, and a close agreement is observed. Note that no free pa-
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rameters are used in the theoretical calculation, as γNR has been determined experimentally,
and the value for Γrad is calculated quantum mechanically beginning from the single particle
electronic wavefunctions.

For increasing but still small angles, the absorptivity gets larger at an increasingly rapid
rate. For low angles, it can be approximated that γNR ≫ Γrad, and thus the form of the
absorptivity is described by Eq. (2.52.5) as a Lorentzian function with amplitude proportional
to the radiative linewidth Γrad, which increases as sin2 θ

/
cos θ .

The critical coupling angle is the condition for which Γrad = γNR. The phenomenon of
perfect absorption can thus be understood to occur when the rate of decay of the plasmonic
excitation into the electronic bath (dissipation) is the same as the rate at which plasmon is
optically excited. In the case when Γrad is larger than γNR, the plasmon is optically excited
at a rate faster than that which it can dissipate energy at. As a result, the plasmon must re-
radiate some of its energy. In this regime, the resonance broadens, and the plasmon becomes
increasingly reflective, as the radiative decay pathway is faster than the nonradiative decay
pathway.

In Panel (c) of Fig. 2.92.9, the experimental resonance energy of the Berreman mode is
plotted as a function of angle. The experimental resonance blueshifts continuously with
increasing angle. This behavior is well-reproduced with the transfer matrix method calcula-
tions. The behavior is consistent with calculation for the dispersion of the Berreman mode,
described in the following section.

2.3 Nonradiative (ENZ) Mode of Highly-Doped Thin Layer
2.3.1 Mode Dispersion of Thin Layer Near Zero of Dielectric Function
The mode that we have investigated up to this point, which we have called the Berreman
mode, is a radiative mode, meaning it lies above the light line. The thin highly doped layer
also supports transverse magnetic (TM) nonradiative modes which lie below the light line.
As we shall find, whether the light line in question is that of free space, ω = cq∥, or that
inside the semiconductor, ω = cq∥

/√
ε∞ , depends on the nature of the media adjacent to

the highly doped layer.
In the previous expressions, q∥ is the in-plane wavevector, which is related to the angle

of incidence inside the semiconductor θint according to:

q∥ = 2π E

hc

√
ε∞ sin θint (2.8)

The in-plane wavevector is a conserved quantity as light propagates through a stack of layers,
due to translational invariance in the planar direction.

Thus far, we have studied the InP1716 sample with and without a deposited gold layer.
In the following, to simplify the description, we neglect the thin undoped layers between
the highly doped thin layer and the sample surface. Then we can describe the two cases
considering only three media, with the highly doped slab directly adjacent to either gold or
air. The two cases are pictured in Fig. 2.102.10.

We wish to consider the dispersion of modes supported by the thin highly doped layer
for each case. The dispersion is found by solving for the modes of the three layer structure
for each q. A mode is defined as a solution to Maxwell’s equations in the absence of an
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Electron Gas

(a) Deposited gold layer

InP

air

Electron Gas

(b) Interface with air

Fig. 2.10 Three layer model of InP1716 experiments. The structure with air mod-
els transmission experiments, like those reported in Section 2.2.22.2.2. The structure
with gold models the reflectivity experiments reported in Section 2.2.22.2.2.

excitation [1818]. The dispersion of the TM modes supported by a highly doped slab (ε2) of
width d surrounded by two half-infinite media (ε1 and ε3) is determined by the following
expression [1818, 141141]: (

1 + ε1qz,1
ε3qz,3

)
= i tan (qz,2d)

(
ε2qz,3
ε3qz,2

+ ε1qz,2
ε2qz,1

)
(2.9)

in which qz,n =
√

εnω2/c2 − q2
∥ is the wavevector in the ẑ direction inside medium n. No

solutions exist for real q∥ and real ω, but solutions can be found for real q∥ and complex
ω. In Fig. 2.11b2.11b, the dispersion for the semiconductor/highly doped thin layer/air case is
plotted, reproduced from [1818, 141141].

The mode dispersion can also be calculated with a semiclassical nonlocal theory [44] and
via the input-output formalism detailed in [6060]. In Fig. 2.11a2.11a, the dispersion describing the
semiconductor/highly doped thin layer/gold case is plotted, reproduced from [6060].

In the dispersion plotted in Fig. 2.11a2.11a, for the case of the highly doped layer sandwiched
between undoped semiconductor described by ε∞ and gold (sketched in Fig. 2.10a2.10a), the
Berreman mode exists above the light line in the semiconductor, ω = cq∥

/√
ε∞ . In the

dispersion plotted in Fig. 2.11b2.11b, for the case of the highly doped layer sandwiched between
undoped semiconductor and air (sketched in Fig. 2.10b2.10b), the Berreman mode exists above
the free space light line, ω = cq∥. In the reflectivity measurements of Section 2.2.22.2.2, it was
due to the presence of the gold layer that the Berreman mode could be excited beyond the
free space light line using the Ge hemispherical lens.

In both dispersion plots of Fig. 2.112.11, the energy of the Berreman mode slightly blueshifts
as q∥ is increased up to the light line. The blueshifting of the Berreman mode was observed
in the reflectivity experiment with the gold mirror, for which the results were reported in
Fig. 2.92.9. The effect was also reproduced with transfer matrix method simulations. While the
dispersion of the Berreman mode is described classically through Eq. (2.92.9), the blueshifting
of the mode can also be explained from a quantum electrodynamics point of view as a
manifestation of the cooperative Lamb shift [4646].

We now turn to consider the nonradiative modes which lie below the light line in the
semiconductor for the case of the highly doped layer sandwiched between undoped semi-
conductor and gold, and below the free space light for the case of the highly doped layer
sandwiched between undoped semiconductor and air.
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Fig. 2.11 The dispersion of modes supported in a thin highly doped semiconductor
layer is calculated for two cases. (a)(a) The dispersion is calculated for a highly doped
slab surrounded by high index media. The Berreman mode branch extends to the
light line in the media described by ε∞, below which lies the nonradiative ENZ mode.
Figure reproduced from [6060] with modifications. (b)(b) The dispersion is calculated for
a highly doped thin layer bordered by air and semiconductor. The Berreman mode
extends to the light line in free space, below which lie two branches of nonradiative
modes. The higher energy branch is the so-called ENZ mode. Figure reproduced
from [127127] with modifications.

Let us focus on the dispersion plotted in Fig. 2.11b2.11b for the case in which there is an
interface with air. There are two modes which lie below the light line, labeled II and III.
These modes originate from the coupling of surface plasmon polariton modes on opposite
interfaces of the doped slab, when the slab thickness is less than the decay length of the
surface modes. The behavior of these modes has been extensively studied [8080, 113113] and
is well known. The higher energy mode is traditionally known as the long-range surface
plasmon polariton, while the lower energy mode is known as the short-range surface plasmon
polariton.

For sufficiently thin metal-like films, the dispersion of the long range surface plasmon
mode (II in Fig. 2.11b2.11b) becomes increasingly flat at the (plasma) frequency at which the
real part of the dielectric function goes to zero. In this regime, this mode is now commonly
referred to as the epsilon-near-zero (ENZ) mode [1818, 140140, 141141]. A characteristic of the ENZ
mode is that the electric field in the ẑ direction of the thin layer becomes constant within
the thin layer.

In the following section, we experimentally investigate the ENZ mode for the InP1716
sample, in which the highly doped layer is close to the air interface. Unlike in the simple three
medium geometry considered in the present section, in the InP1716 sample, there are some
semiconductor layers between the highly doped thin layer and the interface with air. The
entire thickness of these layers is still much smaller than the wavelength, and consequently,
the structure is found to support the type of ENZ mode just beyond the free space light line
as found in the three medium study with air.

http://dx.doi.org/10.1103/PhysRevB.94.155418
http://dx.doi.org/10.1364/OE.22.024294
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2.3.2 Experimental Study of Nonradiative (ENZ) Mode
In the following, the optical response of the heavily doped 150 nm layer next to a boundary
with air is investigated below the free space light line. This is achieved with the multipass
geometry sketched in Fig. 2.122.12. Two facets are mechanically polished onto the substrate at
45◦, allowing light to be coupled into the substrate for high internal angles.

InP

Fig. 2.12 The multipass geometry is sketched. This geometry permits experimen-
tal access to large angles of incidence inside the semiconductor medium, and thus
in-plane wavevectors which lie beyond the free space light line.

This geometry is equivalent to the well-known Kretschman configuration used to excite
surface plasmon polaritons [6868, 8080]. It is mechanically difficult to polish two facets close
enough to one other that the light only reflects once inside the semiconductor (the InP
substrate is 350 µm thick). As a consequence, the light passes through the highly doped slab
many times. This would be favorable if the absorption was small (this effect is used to great
advantage to observe resonances of low doped samples). In the present study, however, there
is zero transmission over an energy range around the resonance, indicating a saturation of the
absorption. This is seen in the p-polarized transmission spectrum shown in Fig. 2.132.13. Due
to this effect, the linewidth of the experimental spectra cannot be properly characterized.
The peak position can still be extracted, however.
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Fig. 2.13 The multipass transmisson spectrum is saturated around 150 meV. The
shape of the blackbody light source is recognizable.

In Panel (a) of Fig. 2.142.14, resonance energies extracted from experimental transmission
spectra are plotted as a function of θint. The resonance energies at low angles (above the free
space light line) are extracted from the transmission spectra of Fig. 2.72.7, while the resonance
energies for angles between 40◦ to 60◦ (below the free space light line) are extracted from mul-
tipass measurements. Over small angles, the energy of the resonances varies little. At larger
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angles, the resonance significantly and continuously redshifts. Resonance energies extracted
from the absorptivity spectra shown in Panel (b), calculated with the TMM, are plotted as
blue scatter points. Their dispersion reproduces well the experimental observations.
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Fig. 2.14 In Panel (a), the experimental and simulated resonances energies are
plotted as a function of the internal angle. The same data is plotted in the inset
as a function of the in-plane wavevector q∥. The grey lines indicate the light lines
of free space. In Panel (b) simulated absorptivity spectra calculated via the TMM
are plotted. The series of spectra are spaced at 5◦, with an additional spectrum
included at 18◦ to show the behavior just below the light line. In Panel (c), the
absolute value of the electric field in the confined direction is plotted over the
propagation axis of an incident p-polarized wave.

In the dispersion of the resonance energies extracted from the simulated spectra, an
anomalous behavior is observed near the free space light line at 18.98◦. There is a divergence
between the radiative modes above the light line, and the nonradiative modes below the light
line. This effect is less evident in the experiment. In the inset of the left panel of Fig. 2.142.14,
the same data are plotted as a function of the in-plane wavevector instead of the angle.

The simulated absorptivity spectra shown in the right panel likewise exhibit noteworthy
behavior near the light line. For small angles (above the light line), the amplitude of the
absorptivity increases, as expected according to Eq. (2.52.5), and as suggested by the trans-
mission data shown in Fig. 2.72.7. Then, over just the next 2◦, as the light line is crossed,
the peak value of the absorptivity jumps from less than 0.4 to 1. It is remarkable that the
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absorptivity can reach a value of unity despite the deeply subwavelength width of the thin
film, and without any surface patterning or reflective metallic layers to enhance the light
matter interaction. In the case of a highly doped layer between two half-infinite semicon-
ductor media, the absorptivity of the radiative Berreman mode, given by Eq. (2.42.4), never
exceeds 1/2. In stark contrast to the Berreman mode, the linewidth of the nonradiative
mode in the simulated spectra of a Panel (b) does not broaden with angle.

The modes below the light line are bound surface modes, and therefore the electric field
of these modes decays away from the semiconductor surface. This behavior is observed for
the Ez component of the electric field in Panel (c) of Fig. 2.142.14, calculated for an energy
of 153 meV and for an internal angle of 20◦, just below the light line. Inside the heavily
doped thin layer, there is an enhancement of the electric field Ez. This enhancement can be
attributed to an epsilon-near-zero effect [1818, 141141]. In [140140], the authors exploit this effect in
an optoelectronic device.

A nearly identical study to the one presented here of the nonradiative modes of a deeply
subwavelength thin film is found in [1919]. This study was performed with indium tin oxide
(ITO) thin films deposited on a glass substrate. Light incident from the glass substrate can
excite the surface modes of the thin film on the ITO/air interface, as the geometry resembles
the Kretschmann configuration. In this study, the zero crossing of the real part of the ITO
dielectric function was near 0.955 meV, giving rise to modes at much greater frequency than
those studied here.

2.3.3 Summary of Optical Studies

The experiments of Section 2.2.22.2.2 and the previous section demonstrate that the nature of the
medium next to the sample surface, close to the heavily doped slab, determines the nature
of the mode excited. Above the free space light line, the Berreman mode is excited whether
the media bordering the surface of the heavily doped layer is air or gold. Below the free
space light line, the nature of the mode excited depends on the media on the surface side of
the heavily doped layer. When the adjacent medium is gold, the Berreman mode is excited
up to the semiconductor light line. When the adjacent medium is air, the Berreman mode
is only excited up to the air light line, below which, a bound nonradiative mode is excited.
The optical properties of the nonradiative mode are fundamentally different than those of
Berreman mode.

2.4 Thermal Emission from Thin Layer Plasmon Modes

Up to this point, the optical properties of the plasmonic modes supported by a highly doped
thin layer in a single material InGaAs platform were investigated through spectroscopy mea-
surements. Particular attention was paid to the absorptivity α of the modes. In this section,
the same modes are studied as sources of thermal emission in experiments performed at room
temperature. The optical properties of the modes are investigated through the emissivity ϵ,
which is extracted from the spectral distribution of the emitted thermal radiation.

It is observed once more in the emission experiments that the presence of gold or air next
to the sample surface dramatically changes the nature of the collective mode supported by
the heavily doped thin layer.
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2.4.1 Background and Description of the Experiment

The spectral power distribution of thermal radiation emitted by an object is described by
the Planck law for the thermal emission of a perfect blackbody B(ω, T ) times the emissivity
ϵ(ω) of the object:

B(ω, T )ϵ(ω) = 2hω3

(2π)3 c2
nB(ω, T )ϵ(ω) (2.10)

where nB(ω, T ) = (exp(ℏω/kT ) − 1)−1 is the Bose-Einstein occupation factor. The emissiv-
ity is simply defined as the ratio of the power of thermal radiation emitted from an object
at a given temperature to that of a perfect blackbody at the same temperature. It is thus a
property of the object and cannot exceed 1.

According to Kirchhoff’s law, for a body in thermodynamic equilibrium, the absorptivity
α and the emissivity ϵ must be equivalent at a given frequency. Since in the previous section,
it was demonstrated that the absorptivity of the plasmon modes supported by the heavily
doped slab can reach unity under certain conditions, Kirchhoff’s law dictates that these
modes, at least for a certain critical coupling angle, behave as ideal (ϵ = 1) thermal emitters
at their resonant frequency.

At room temperature, the curve of B(ω, T ), which describes the spectral radiance emit-
ted from a blackbody, peaks in the mid-infrared where the plasmonic modes studied in this
chapter are resonant. Consequently, even in the absence of a driving force, a significant
number of electrons are already involved in plasmon excitations when the system is in equi-
librium at room temperature. The fraction of excited plasmons is determined precisely by
the Bose-Einstein occupation factor. It is the radiative decay of these excitations which is
responsible for the incandescent (or thermal) emission.

To experimentally study thermal radiation emitted by the plasmon modes, devices are
fabricated in which plasmons can be thermally excited with an electrical current. The device
is sketched in Fig. 2.152.15. The semiconductor layers grown on the InP substrate are patterned
into mesa structures. Then, gold electrical contacts are deposited permitting an in-plane
current to be applied.

Plasmon modes between the contacts are thermally excited by square electrical pulses
repeated at a 1 kHz frequency. The pulses drive a current parallel to the surface which heats
the electron gas via the Joule effect. An optional gold mirror layer can be deposited above
the region where the plasmons are excited. The emitted thermal radiation is coupled out
to free space through a facet polished onto the substrate. The radiation emitted at a given
angle inside the semiconductor is selectively detected once the radiation passes into free
space, accounting for refraction at the facet interface. To study the radiation emitted over
a wide range of angles, multiple facets at different angles with respect to the sample surface
are polished on different devices.

Since the electron gas reaches internal equilibrium orders of magnitude faster than the
inverse of the pulse frequency at 1 kHz, the temperature of the electron gas is defined as T +
∆T where T is the ambient temperature and ∆T is the temperature increase resulting from
the dissipation of electrical power. Note that for fast modulation schemes, the electron gas
may be out of equilibrium with respect to the lattice, and the dynamics of the heat transfer
in the system must be more carefully considered to properly model the excess electronic
temperature (see [139139] for additional details).
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Fig. 2.15 The device used to thermally excite plasmon modes with an electrical
current is sketched. A side profile of the mesa structure is shown with gold con-
tacts and a gold mirror above the region where the plasmons are excited. In the
experiment, the channel of the mesa is 55 µm wide (in the dimension out of the
page), and two gold contacts are separated by 55 µm, fixing the area of the excited
plasmons.

The modulation of the injected electrical power results in a modulaton of the electronic
temperature, permitting a lock-in detection technique to be used to selectively detect the
infrared emission only from the excited sample under study and not the ambient environment.
The change in temperature of the electron gas during an electrical pulse results in a change
in the Bose–Einstein occupation factor of the plasmon modes, resulting in a net increase
in the total optical power emitted as well as a change in the spectral radiance distribution
of this power. This is illustrated in the left panel of Fig. 2.162.16, where the curves B(T ) are
plotted for a blackbody at 300 K, and a blackbody at a temperature ∆T greater than 300 K.

The signal measured by the lock-in technique is not the total optical power emitted from
the plasmon modes, but is instead proportional to the difference in the optical power emitted
with and without the electrical excitation. The signal is sketched in Fig. 2.162.16 as the shaded
areas between the two blackbody curves, and at a frequency ω, is proportional to [7070]:

ϵ (ω) (nB (ω, T + ∆T ) − nB (ω, T )) (2.11)

A Fourier Transform Interferometer (FTIR) is used to spectrally resolve the detected
signal into an an emission spectrum, the shape of which is described by Eq. (2.112.11). The
frequency dependence of the spectrum depends on the emissivity and a factor determined as
the difference in occupation number at two temperatures separated by ∆T . The spectrum
of the emissivity at a given angle can thus be extracted provided one has knowledge of ∆T .

The shape of the factor dependent on ∆T is shown in the right panel of Fig. 2.162.16 for
various temperatures. It is evidently not flat over the spectral region in which the plasmon
modes are resonant. Thus, to properly extract the emissivity from the emission spectrum
of the plasmon modes, especially when the linewidth of the emitting mode is large, requires
that the energy dependence of this factor be considered.

From experiment, ∆T may be determined by establishing a relationship between the
injected electrical power and the detected optical power. The optical power emitted in a
solid angle dΩ may be written [7070]:

δPopt(θ) = Γrad(θ)∆UδN(θ, dΩ) (2.12)
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Fig. 2.16 On the left, the curves describing the spectral radiance of a blackbody
(Planck’s law) are plotted at temperatures T and T +∆T . The shaded areas between
the curves are given by ϵ(ω) (B(T + ∆T ) − B(T )) in accordance with Eq. (2.112.11) and
represent the optical power detected by the lock-in measurement. On the right, the
difference between two Bose-Einstein factors at temperatures T + ∆T and T is
plotted for various ∆T and normalized to one.

where Γrad(θ) is the spontaneous emission rate, ∆U = ℏω0 (nB (ω, T + ∆T ) − nB (ω, T )),
and δN(θ, dΩ) = ω2

0n2S (2π)−2 c−2 cos θdΩ describes the number of plasmons emitting in a
direction θ from the area S. Equation (2.122.12) describes a relationship between the optical
power detected and the temperature rise ∆T of the electron gas. In the simplest description,
∆T = RthPelec where Pelec is the current times the voltage of the injected pulse, and Rth is
understood to be a constant electronic thermal resistance. The curve of δPopt as a function
of Pelec can be experimentally measured. By fitting the experimental curve with Eq. (2.122.12),
the relationship between Pelec and ∆T can be determined. Note that in general, ∆T is
dependent on the modulation frequency [139139].

2.4.2 Results of the Thermal Emission Experiments

To study the thermal emission from the plasmonic modes of a highly doped thin layer, and
specifically, to investigate how the medium adjacent to the sample surface (whether air or
gold) influences the nature of the collective mode supported in the structure, devices like
those sketched in Fig. 2.152.15 were processed in two forms: with and without a gold mirror
centered between the contacts above the thermally excited region.

For these studies, sample V0211 was grown2 to consist of just three InGaAs layers of
thickness 100 nm, 150 nm, and 100 nm on an Fe-doped InP substrate. The middle 150 nm
layer was intentionally doped with a very large electronic density. As was described for
the InP1716 sample in Section 2.1.22.1.2, despite the lack of intrinsic barriers (conduction band

2Sample V0211 was also grown via MOCVD by the team of Grégoire Beaudoin, Konstantinos Pantzas,
and Isabelle Sagnes at the Centre de Nanosciences et Nanotechnologies (C2N).
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offsets) in the single-material system, electronic charge is bound in the highly doped region
due to a significant band bending effect, resulting in a system which resembles that of a
highly doped wide quantum well in an InGaAs/AlInAs system.

To model the optical response of the electron gas in the thin layer, a dielectric function is
constructed as described in Section 2.1.22.1.2. To determine the electronic density of the highly
doped layer, transmission measurements of the V0211 sample were performed at Brewster’s
angle. The Berreman mode was observed at 161 meV, allowing the electronic density to be
determined as Nv = 1.7 × 1019 cm−3.

In prior thermal emission experiments [7070] similar to those described here, the metallic
contacts were diffused down to the highly doped layer to directly contact the electron gas.
In the present experiment, the contacts were not diffused, as it was anticipated that an
increase in resistivity from the not-intentionally-doped InGaAs top layer would result in an
increased ∆T for the electron gas, thereby resulting in an increase in the emitted optical
power. However, even without diffusing the metallic contacts, the devices were found to have
a near linear current-voltage response with a small resistance of approximately 12 Ω. It is
very likely that some dopants are unintentionally incorporated into the top InGaAs layer,
rendering it more conductive. It is difficult during the MOCVD growth to abruptly halt the
incorporation of dopants in the layers grown just after the very highly doped layer, as the
dopant density of this layer pushes the growth process to an extreme.

In the experiments which follow, multiple devices with and without a gold layer deposited
above the region where plasmons are thermally excited were fabricated with facet angles of
20◦, 30◦, and 45◦ in order to couple radiation emitted at a wide range of angles into free
space. The current-voltage characteristics of the different devices were highly consistent. All
of the thermal emission spectra presented in the following sections were measured with the
electron gas thermally excited by 500 ms, 2.5 V square pulses repeated at a rate of 1 kHz,
during which a current of 190 mA passed through the sample, resulting in an injected peak
electrical power of 475 mW.

In order to study the amplitude of the plasmon emission lineshape as a function of
angle, each spectrum is multiplied by an angle-dependent factor to correct for the angle-
dependent transmission across the InP/air boundary of the facet (determined by the Fresnel
coefficients). The spectra are also corrected for the the responsivity of the MCT detector.
Then, to extract the form of the emissivity from the emission spectra, the experimental
spectra are divided by the factor nB (ω, T + ∆T )−nB (ω, T ), appearing in Eq. (2.112.11). While
as described in the previous section, ∆T can be extracted from experiment, in what follows
∆T was fixed to 75 K in order to find the best agreement between the extracted emissivity and
the model for the absorptivity, described in Section 2.32.3.3 Note that if the factor describing
the difference in occupation number is neglected in extracting the form of the emissivity, then
the determined emissivity will be largely underestimated at higher energies. This becomes
particularly relevant when the emitting mode has a large linewidth.

Finally, note that only the spectral form of the emissivity is extracted from the exper-
iment, meaning the emissivity is determined only up to a constant factor. To extract the

3Unfortunately, at the time of the experimental study, the experiment described in the previous section
to extract ∆T was not performed. The value of ∆T mentioned in the text used to extract the form of the
emissivity from the experimental spectra is reasonable with the values reported in [7070]. Furthermore, it is
evident in the right panel of Eq. (2.112.11) that small variations of ∆T on the order of even 50 K have little
influence on the form of the factor (nB (ω, T + ∆T ) − nB (ω, T )).
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absolute emissivity, fixed between 0 and 1 would require the perfect collection of all the
emitted power from the device, and the precise determination of ∆T . Practically, this is
difficult.

2.4.2.1 Thermal Emission with Gold Mirror

The modulated injection of electrical power to the devices at the low frequencies studied here
increases the temperature not only of the electron gas, but also of the crystal lattice, which is
described by its own emissivity. The spectrum of the emitted radiation detected in the lock-
in measurements thus includes a background contribution. Assuming this contribution is not
polarization dependent, the strict polarization dependence of the plasmon mode permits the
plasmon contribution to be separated from the background. At each emission angle, spectra
are measured selectively for each polarization. The s-polarized spectra Sexp

s can then be
subtracted from the p-polarized spectra Sexp

p , to extract the plasmonic contribution to the
emission.

Practically, this procedure does not eliminate all of the background contribution, and
it is necessary to multiply Sexp

s by a factor f before subtracting it from the p-polarized
spectrum. To determine f , a least-squares regression algorithm is used to fit the experimental
p-polarized spectrum with a function of the form:

Sexp
p = fSexp

s + F(ω, . . .) (2.13)

The expression F(ω, . . .) describes the expected lineshape of the plasmon emission. When a
gold layer is present above the highly doped layer, the plasmon emissivity (absorptivity) is
described by the expression of Eq. (2.42.4). Then, for a fixed angle and using γNR = 7 meV ex-
tracted from a spectrum measured at low angle where the radiative broadening contribution
is absent, the emission from the plasmon is modeled as:

F(ω, A, ω0, Γrad) = Aα(ω, ω0, Γrad) (2.14)

The resonance frequency ω0, the radiative linewidth Γrad, and a factor A accounting for the
non-normalized amplitude of the emission are left as fit parameters. Including f above, there
are a total of four free parameters in the fit.

Experimentally measured thermal emission spectra for the V0211 devices with the gold
mirror measured for three emission angles are presented in Fig. 2.172.17. In each panel of the
figure, the experimentally measured p- and s-polarized spectra are plotted. The extracted
plasmon contribution, found as:

Sexp
p − fSexp

s (2.15)

is plotted, with f determined from the fit procedure described above. The values of f ,
E0 = ℏω0, and Γrad, extracted from the fitting procedure for each angle, are reported in the
figure. Finally, the model of the plasmon emission, described by F , is plotted (gold dashed
lines) using the parameters extracted from the fit. For each of the angles shown, there is a
strong agreement between the extracted plasmon contribution and the form of F , suggesting
the background contribution has been effectively removed. The factors f are found to be of
order 1, as expected.

The width of the emission feature is found to broaden dramatically for increasing angle,
as described theoretically by Eqs. (2.22.2) and (2.32.3) and as experimentally observed in the
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Fig. 2.17 The experimentally measured p- and s-polarized emission spectra are
shown after being corrected for the factor of nB (ω, T + ∆T ) − nB (ω, T ) assuming
∆T = 75 K. The function determined by Eqs. (2.132.13) and (2.142.14) in the text is
fit to the p-polarized spectra, allowing the extracted plasmon contribution to be
determined according to Eq. (2.152.15). The model F is plotted for the extracted
parameters.

absorptivity measured reported in Fig. 2.92.9 for the InP1716 sample. Likewise, the resonance
energy E0 of the plasmon mode increases in energy like that of the InP1716 sample in the
reflection measurements.

To more closely study the angular dependence of the plasmon emission, emission spectra
were measured for angles between 18◦ and 58◦, from devices with facets of 20◦, 30◦, and
45◦. The plasmon contribution was extracted from each spectra using the same procedure
described above and demonstrated in Fig. 2.172.17. The resulting series of emission spectra is
plotted in Panel (a) of Fig. 2.182.18.

While not shown, emission spectra were measured for each of the three devices over a
range of angles which overlapped with the measurements of another facet. Spectra measured
from different devices with different facets but for the same emission angle were found to be
nearly identical in form.

The y-axis of the experimental plasmon emission spectra plotted in Panel (a) of Fig. 2.182.18
describes the emissivity. While the emissivity is only determined experimentally up to a
factor, modeling of the absorptivity of the Berreman mode with the TMM (shown in Panel
(b) of the same figure) indicates that the emissivity peaks at one for a given angle. The
series of experimental spectra are normalized such that the maximum emission value is set
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Fig. 2.18 The extracted plasmon contribution from the experimental thermal emis-
sion spectra of V0211 devices fabricated with a deposited gold layer are plotted in
Panel (a). Simulated absorptivity spectra calculated with the TMM are plotted
in Panel (b). Note the angle-color key set with the color bar applies to Panels
(a) and (b). In the bottom panels, the experimental peak emissivity, FWHM, and
resonance energy are plotted, compared with curves determined from TMM calcu-
lations, and curves determined by fitting expressions from the quantum model, as
described in the text.
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to one, permitting the spectra to be interpreted as the emissivity.
In the bottom panels of Fig. 2.182.18, the maximum of the experimental emissivity, the total

linewidth, and the resonance energy, extracted from spectra measured from three devices with
different facets, are plotted as scatter points as a function of the emission angle. The same
quantities extracted from the TMM modeling are plotted with continuous cyan-colored lines.
The trends observed in the experiment are found to be well-modeled by the simulations: the
emissivity is found to peak at one between 20◦ and 30◦, and thereafter continually decline;
the linewidth broadens with angle; and the resonance energy blueshifts with increasing angle.

The total linewidth of the plasmon mode is ΓFWHM = γNR + Γ0 sin2 θ
/
cos θ . Leaving Γ0

and γNR as free parameters, this expression can be fit to the extracted linewidth Γtot of the
experimental emission spectra as a function of angle. The result of the fit is plotted in the
bottom middle panel of Fig. 2.182.18 with a continuous pink line. From the fit, it is determined
that Γ0 = 64 meV and γNR = 5.9 meV. These values for the radiative and nonradiative
linewidth can then be used to plot a curve of the peak absorptivity as a function of angle,
where the peak absorptivity is found according to Eq. (2.42.4) for ℏω = E0. This curve is
plotted in the bottom left panel of Fig. 2.182.18 as a continuous pink line. The curve is found
to agree slightly better with the experimental data than the TMM prediction.

2.4.2.2 Thermal Emission with Air Next to Sample Surface

When no gold mirror is deposited, the surface of the area where the electron gas is thermally
excited has a boundary with air, and the structure support a nonradiative plasmonic epsilon-
near-zero mode which lies below the free space light line. In the following, we investigate
the thermal emission from this mode.

As in the previous section, the plasmon contribution to the emission spectrum is ex-
tracted by fitting a function of the form described by Eq. (2.132.13) to the measured p-polarized
emission spectrum. In the thermal emission experiments with the gold mirror, the form of
the plasmon contribution F(ω, . . .) used in the fit was determined by the expression for the
absorptivity (Eq. (2.42.4)) of the Berreman mode. In the case of the nonradiative mode, an
analytic expression for the absorptivity is lacking, and we therefore assume a Lorentzian
form for F , leaving the amplitude A, the resonance energy E0, and the FWHM Γtot as free
parameters: F = F(ω,A,E0,Γtot). As before, including f , there are four free parameters to
fit Eq. (2.132.13) to the experimental p-polarized emission spectra.

Emission spectra were measured for angles between 18◦ and 58◦ from V0211 devices
with facets of 20◦, 30◦, and 45◦, in the absence of a deposited gold layer. The spectra of the
extracted plasmon contributions are plotted in Panel (a) of Fig. 2.192.19. Simulated absorptivity
spectra of the highly doped layer next to air, calculated with the TMM, are plotted in Panel
(b). As observed in Fig. 2.142.14, the absorptivity of the modes in the simulation is found to
jump to one just below the light line around 18◦. The extracted plasmon contribution from
the experimental spectra is therefore normalized to the maximum emission amplitude which
is found to occur around 20◦, permitting the experimental plasmon emission to be identified
as the emissivity.

In the experiment, as in the TMM simulations, the emissivity increases with angle below
20◦ until reaching a maximum at one. Beyond 20◦, the emissivity decreases continuously.
This behavior is observed in Panel (c) of Fig. 2.192.19, where the experimental emissivity and
calculated absorptivity are plotted as a function of angle, and are found to be in good
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Fig. 2.19 Emission spectra of the extracted plasmon contribution of V0211 devices
fabricated without a gold layer on the sample surface are plotted in Panel (a).
Simulated absorptivity spectra, calculated with the TMM, are plotted in Panel (b).
Note the angle-color key set with the color bar applies to Panels (a) and (b). In the
bottom panels, the experimental peak emissivity, FWHM, and resonance energy
are plotted and compared with TMM calculations and experimental data from the
thermal emission experiments with the deposited gold layer.
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agreement.
In total contrast to the behavior of the Berreman mode observed in the emission experi-

ments with the gold mirror, the nonradiative mode observed without the gold mirror redshifts
with increasing angle and does not radiatively broaden with a sin2 θ

/
cos θ dependence. To

stress this contrast, in Panels (b) and (c) of Fig. 2.192.19, the linewidth and the resonance en-
ergy of the emission spectra measured without a gold layer are plotted alongside the same
quantities from the emission spectra measured with a gold layer. The linewidth and reso-
nance energies determined from TMM simulations for the case without the gold layer are
also plotted and found to be in good agreement with the corresponding experimental data.

2.5 Conclusion
It was demonstrated that a single material platform could host a Berreman mode. Modeling
of electrostatic charge effects demonstrated that the highly doped layer in a single material
structure can give rise to its own confining potential. This provides justification for modeling
a single material structure as three distinct homogenous media.

The plasmon modes supported in a thin highly doped layer of a single material InGaAs
structure were experimentally investigated through spectroscopy and thermal emission ex-
periments. It was experimentally demonstrated that the dispersion of the modes supported
by the heavily doped layer differs whether or not a gold layer is deposited on the sample
surface. Measurements of the sample with the gold layer were well-described at all angles by
the theoretical description of the Berreman mode developed in the input-output formalism
[6060]. In the absence of a gold layer, it was demonstrated that a nonradiative mode could be
excited below the free space light line with different optical properties than the Berreman
mode. This mode was identified as the epsilon-near-zero mode described in [141141].

We conclude this chapter by noting that the fact that the electric field of the plasmon
mode extends into free space when no gold layer is deposited immediately raises the per-
spective that other material resonances, such as colloidal quantum dots, graphene sheets, or
perhaps even molecular vibrations (with possible applications in sensing) could be coupled
to this mode. The coupled modes could then be studied in thermal emission.

A final interesting perspective concerns the propagation of the collective surface-type
modes adjacent to the air interface. Could these modes be thermally excited electrically,
propagate on a chip, and then be detected? Such a scheme would find use in both sensing
and communication applications.
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Chapter 3

Coupled Phonon-Plasmon Modes in
Thin Films

It is usually assumed that the Reststrahlen band is a fixed property of a semiconductor
material. In this spectral region, the optical response is determined by the optical phonons,
whose resonance frequencies are fixed by the atomic composition of the crystal lattice. In
contrast, there are many degrees of freedom in semiconductors to engineer electronic optical
properties. As examples, the plasma frequency can be tuned with the addition of dopant
impurities, and optical resonances can be engineered at desired frequencies via carefully
designed heterostructures. In the following study, we use the electronic degrees of freedom
to engineer the optical properties of the Reststrahlen band by exploiting the coupling between
electronic motion and lattice vibrations.

The zero of the dielectric function in the Reststrahlen band normally occurs at the
longitudinal optical (LO) phonon frequency. When an electron gas of comparable plasma
frequency is introduced into the semiconductor, plasma oscillations couple with the LO
phonons, and as a result, the zeros of the dielectric function are modified. In a thin film, due
to the Berreman effect, the coupled LO phonon-plasmon modes can be directly observed as
resonances in p-polarized spectra for light at oblique incidence. We experimentally investigate
this phenomenon in thin doped InGaAs layers.

3.1 Plasmon-Phonon Coupling in Semiconductors

In this section, we solve for the zeros of the dielectric function which describes the optical
response of bulk doped InGaAs in the Reststrahlen band.

The dielectric function describing the optical phonons of InGaAs in the absence of an elec-
tronic density is that provided in Eq. (1.611.61). It has two zeros at ωLO1 and ωLO2 . Literature
values for the optical phonon resonances and ε∞ are listed in Table 3.13.1 for the In0.53Ga0.47As
ternary alloy.

In the presence of a gas of free electrons, the dielectric function describing the Rest-
strahlen band of InGaAs is found as the sum of Eq. (1.611.61) and the plasma frequency term

57
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In0.53Ga0.47As
ε∞ 11.61

ℏωLO1 33.93 meV
ℏωTO1 31.39 meV
ℏωLO2 29.14 meV
ℏωTO2 28.18 meV

Table 3.1: Literature values for the optical phonon energies and high frequency dielectric
constant of In0.53Ga0.47As [2727].

of the Drude dielectric function (Eq. (1.271.27)):

εr(ω) = ε∞

(
ω2

LO1
− ω2 − iγ1ω

) (
ω2

LO2
− ω2 − iγ2ω

)
(
ω2

TO1
− ω2 − iγ1ω

) (
ω2

TO2
− ω2 − iγ2ω

) −
ε∞ω2

p
ω2 + iγω

(3.1)

The zeros of εr(ω) in the absence of damping are plotted in Fig. 3.13.1 as the plasma energy
ℏωp is varied. Since three longitudinal oscillations are coupled (two LO phonons and the
plasma oscillations of the electron gas), there are three continuous branches of zeros. We
name the branches L−, L0, and L+ in concordance with [1010, 8989, 150150]. An anticrossing is
observed between L+ and L0 and between L0 and L−. The L+ mode is bound below by
ωLO1 , the L0 mode is bound between ωLO1 and ωLO2 , and the L− mode is bound above by
ωLO2 . When the plasma frequency is well detuned from the LO phonon resonances, two of
the branches converge to the bare LO phonon energies. The three zeros, arising from the
coupling of optical phonons and plasma oscillations, are the energies at which the medium
can support longitudinal electromagnetic waves.

The strength of the interaction between two coupled oscillators is usually quantified with
a coupling constant. For example, in coupled light-matter systems, the Rabi energy quantifies
the coupling strength [4343]. When the coupled modes lie on two anticrossing branches, the
coupling strength can be extracted as half of the minimal energy separation between the
branches [135135].

The coupled mode solutions plotted in Fig. 3.13.1 result from the coupling of three oscil-
lators, and therefore three coupling constants are required to exactly describe the system.
However, by setting one LO phonon and its corresponding TO phonon to zero energy, the
coupling between the plasma oscillations with each LO phonon can be considered separately.
In Fig. 3.23.2, the zeros of Eq. (3.13.1) are plotted for ωTO2 = ωLO2 = 0 (left) and ωTO1 = ωLO1 = 0
(right). The strength of the interaction between the LO1 phonon and the plasma oscillations
is extracted as Ω1 = 6.44 meV or approximately 19.0 % of the LO1 phonon excitation energy.
The strength of the interaction between the LO2 phonon and the plasma oscillations is ex-
tracted as 3.71 meV or approximately Ω2 = 12.7 % of the LO1 phonon excitation energy. In
both cases, the LO phonons are said to be ultrastrongly coupled with the plasma oscillations.
Two hallmarks of the ultrastrong coupling regime are observed in either panel of Fig. 3.23.2: the
opening of a photonic gap (shaded in gray) between the branches of coupled modes, and the
redshifting of the minimal energy separation away from the crossing of the two uncoupled
modes [135135].
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Fig. 3.1 The coupled longitudinal optical phonon-plasmon modes are found as the
zeros of Eq. (3.13.1) and named L−, L0, and L+. A constant effective mass of 0.043me

is used to link the electronic density axis with the plasma energy axis.

The coupling between LO phonons and a plasma of electrons has been extensively studied
with Raman spectroscopy. In this technique, inelastic light scattering is used to investigate
the modes. Mooradian and Wright were the first to observe the interaction of the electron
plasma with an LO phonon in the Raman spectra of bulk GaAs, for which they experimen-
tally demonstrated an anti-crossing behavior [8888]. Their work was followed by additional
studies, still of n-doped GaAs [8787, 130130]. Later studies used Raman spectroscopy to inves-
tigate the coupling of longitudinal phonon modes with confined electronic transitions in
heterostructures [104104], specifically GaAs/AlGaAs heterostructures [103103]. Raman scattering
has also been used to investigate the coupling of the longitudinal optical phonons of ternary
alloys with an electron plasma, for example in GaAlAs films [1010, 150150] and in GaInAs-InP
quantum wells [8989]. In these studies, the behavior of the coupled modes predicted in Fig. 3.13.1
for a ternary material was verified.

The coupling between LO phonons and an electron plasma was investigated optically
in [6666]. The authors measured infrared reflectivity spectra of bulk Te-doped GaAlAs, and
then relied on a careful modeling of the spectra to extract the anticrossings of the coupled
plasmon-phonon modes. In such optical studies of bulk materials, it is not possible to directly
observe coupled LO phonon-plasmon resonances.

In the following, we study thin doped InGaAs layers in InGaAs/AlInAs heterostructures
with p-polarized light at oblique angles of incidence and attempt to use the Berreman effect
to directly observe resonances of the LO phonon-plasmon modes. We note that after the
completion of our own investigation, a similar study, reported in [6161], came to our attention.
In the referenced study, the authors extract electronic densities from analyses of thin film
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Fig. 3.2 The zeros of Eq. (3.13.1) in the absence of damping are plotted setting
ωTO2 = ωLO2 = 0 on the left, and setting ωTO1 = ωLO1 = 0 on the right. The
minimal energy separation between the branches of coupled modes is indicated.

Reststrahlen band spectra.

3.2 Description of the Experiment

Heterostructures of InGaAs/AlInAs layers, grown on an InP substrate, are studied in the
reflectivity experiment sketched in Fig. 3.33.3. Reflectivity spectra are measured for p-polarized
(TM) and s-polarized (TE) light incident from a blackbody source inside a Fourier Transform
Interferometer (FTIR). The light is focused onto the sample with gold parabolic mirrors at
a 45◦ angle. The specular reflection is collimated via another gold parabolic mirror, and
finally, the beam is focused onto a liquid He-cooled bolometer. Spectra are normalized with
reference spectra obtained by replacing the sample with a gold mirror.

To be able to identify dips in the reflectivity spectra as absorptivity, a 5 nm layer of
titanium and a 150 nm layer of gold were deposited on the sample surface to act as a mir-
ror. Without additional processing, incident and reflected light would need to pass through
the 300 nm thick Fe-doped InP substrate before reaching the InGaAs/AlInAs layers. The
InP substrate is opaque in the Reststrahlen region of InGaAs and AlInAs due to its own
Reststrahlen band [55]. To avoid this difficulty, after the metal deposition, the samples are
bonded mirror-side down to a host GaAs wafer using an epoxy. The entire InP substrate
is then removed using an HCl solution, which is very selective against an InGaAs etch-stop
layer.

Samples

The three samples summarized in Table 3.13.1 are studied in the following sections. Sample
V0296 was grown as a control sample, and was not-intentionally-doped (n.i.d.). Sample
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Fig. 3.3 A sketch of the experiment.

V0300 was designed identically to V0296 but with an added electronic density. The 45 nm
width of the well and the nominal electron density were chosen so that, in the absence of
plasmon-phonon coupling, the well would support a Berreman mode close in energy to the
InGaAs optical phonons ∼ 30 meV.

Period Nv

Sample InGaAs/AlInAs Nominal Experimental Repetition
V0296 45 nm/10 nm n.i.d. 30
V0300 45 nm/10 nm 1.7 × 1017 cm−3 3.75 × 1017 cm−3 30
V0301 35 nm/10 nm 8 × 1016 cm−3 2.2 × 1017 cm−3 50

Table 3.2: The samples studied in this chapter. The samples were grown via Metal Or-
ganic Chemical Vapor Deposition (MOCVD) on an InP substrate by the team of Grégoire
Beaudoin, Konstantinos Pantzas, and Isabelle Sagnes at the Centre de Nanosciences et Nan-
otechnologies (C2N) in Palaiseau, France.

At the outset of our study, to the best of our knowledge, an electronic Berreman mode
had never been observed at such low energies (in the THz). To observe a Berreman mode in
this spectral range, the electronic density required is ∼ 25 times less than that for which the
Berreman mode is usually observed in the mid-IR (∼ 150 meV). It was uncertain whether
there would be sufficient charge-induced coherence to observe the collective mode, or if the
mode would be too overdamped.

On the contrary, intersubband transitions are frequently studied in the THz [2929, 132132]. For
this reason, we also chose to study the coupling between an intersubband transition and the
optical phonons. To realize an intersubband transition around 30 meV in the InGaAs/AlInAs
system, a wide quantum well is needed so that the subband spacing is sufficiently small.
Sample V0301 was designed with 35 nm InGaAs/AlInAs quantum wells nominally doped
with an electronic density of Nv = 8×1016 cm−3. For these parameters, a single intersubband
transition was expected at 26 meV.
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Experimental values for the electronic density are reported in Table 3.13.1. These values
are deduced from the modeling of experimental spectra, described in the following sections.
The experimental values for the electronic density for both V0300 and V0301 are nearly a
factor of two greater than the nominal values. Consequently, our studies are limited to the
regime in which the ‘bare’ plasmon resonance is always at greater energy that the GaInAs
phonons. We shall observe a coupling nonetheless.

The samples are designed with many repetitions of the well/barrier period in order that
absorption features can be observed with a good contrast. This is especially important as
the electronic density is reduced, since the absorption coefficient scales with the electronic
density.

Though we shall not dwell on it further, we note that the V0296 structure is a hyperbolic
metamaterial over certain frequency bands, meaning that structure can be described with
an effective anisotropic dielectric function for which εeff

∥ and εeff
⊥ are of opposite sign [107107].

This condition is often realized in periodic metal-dielectric structures. In the present case,
the zero crossing at the LO phonon frequency fulfills the role of the metallic layers.

3.3 Optical Phonons in i-InGaAs/AlInAs Heterostructure

We begin with the study of the not-intentionally-doped InGaAs/AlInAs heterostructure,
sample V0296. Resonances from the optical phonons of both the InGaAs layer and the
AlInAs layer are observed in the experimental spectra. Since each material is a ternary alloy
with four optical phonons, there are a total of eight optical phonon resonances which can
be excited in the heterostructure. In order to more easily identify the resonances in the
experimental spectra, we first examine the dielectric functions of the ternary alloys.

3.3.1 Dielectric Functions of InGaAs and AlInAs Reststrahlen Bands

Each ternary alloy is described by the dielectric function of Eq. (3.13.1) when the plasma
frequency is set to zero. The real and imaginary parts of the dielectric function are plotted for
InGaAs and AlInAs in Fig. 3.43.4 using parameters for the energies and linewidths determined
from modeling of the V0296 experimental spectra, described in the following section. The
parameters are reported in Table 3.33.3 under ‘Values for ε’. They are found to be in good
agreement with values from the literature, also reported in the table.

For each ternary alloy, two peaks are observed in the imaginary part of the dielectric
function, plotted in red, at the energies of the transverse optical (TO) phonons, ωTO1 and
ωTO2 . In the absence of damping, the real part of the dielectric function describing the
ternary alloys crosses zero at ωLO1 and ωLO2 . However, using the linewidths from Table 3.33.3,
the real part of the dielectric function misses the zero crossing at the frequency of the ωLO2

phonon for both ternary alloys.
The absorption coefficients for thin InGaAs and AlInAs layers are calculated using the

expression given in Eq. (1.471.47), and are plotted in the bottom panel of Fig. 3.43.4. Absorption
peaks are observed at the two LO phonon energies of each material. However, for both
materials, the amplitude of the LO2 peak is nearly two orders of magnitude less than that
of the LO1 peak.
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Fig. 3.4 In the top two panels, the real ε′ and imaginary ε′′ parts of the dielectric
functions for In0.53Ga0.47As and Al0.48In0.52As for ωp = 0 are plotted using the
values indicated in Table 3.33.3. In the bottom panel, the thin film absorption is
plotted in logarithmic scale for each ternary material. Dashed vertical lines indicate
a missed zero-crossing due to finite damping.
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3.3.2 Direct Observation of InGaAs/AlInAs Optical Phonons

The experimental spectra of sample V0296 measured at T=5 K are plotted in the top panel
of Fig. 3.53.5. In the TM spectrum, there are six phonon resonances which can be identified.
The resonances at 33.9 meV and 46.1 meV appear only in the TM spectrum and are ab-
sent in the TE spectrum, and can thus be identified as LO phonons, observed due to the
Berreman effect. From comparison with the literature values reported in Table 3.33.3, they are
identified as the ωLO1 phonons for InGaAs and AlInAs, respectively. In agreement with the
absorbance calculated in Fig. 3.43.4, the ωLO2 resonances are not observed in the experimental
TM spectrum.

The remaining four phonons are assigned to the TO phonons of the ternary materials
based on their proximity to the literature values. Note that the close proximity between
the experimental resonances and the literature values for the InGaAs TO1 and the AlInAs
TO2 phonons render the assignment of these resonances somewhat ambiguous. A summary
of the observed resonance energies and their assignments is reported in Table 3.33.3 under
‘Experiment’.

The reflectivity of the TM spectrum is less than that of the TE spectrum across the
spectral range from 25 meV to 50 meV. This is due to a difference in Fresnel coefficients
for the TM and TE polarizations. The TE polarized light is more strongly reflected at the
semiconductor-air interface than the TM polarized light, and consequently less of the TE
polarized light is coupled into the semiconductor layers where the absorption takes place.

Broad dips in the reflectivity spectra are observed for both TM and TE polarizations at
energies above the phonon resonances. The dip in the TE spectrum is of slightly greater
amplitude than that in the TM spectrum. These features are thin film interferences, resulting
from the destructive interference between light reflected from the air/semiconductor interface
and light reflected from the semiconductor/gold interface. They are analyzed in further detail
below.

In the bottom panel of Fig. 3.53.5, simulated spectra for the V0296 reflectivity experiment
are plotted. The simulations are performed with a commercial finite element software (COM-
SOL). The propagation of light through the InGaAs/AlInAs heterostructure is modeled in
2D for a planar slice of the heterostructure, using periodic boundary conditions for the
translationally invariant directions in the layer plane. Each material layer is modeled in the
simulation as a spatial domain described by its respective dielectric function. To simulate
the reflectivity experiments, a gold domain is defined after the heterostructure layers, and
the angle of incidence is set to 45◦, as in the experiment.

The parameters used for the dielectric functions of the ternaries, reported in Table 3.33.3,
were adapted so that the simulated spectra reproduce as closely as possible the experimental
spectra. Likely due to the periodicity of the structure, there is a small discrepancy between
the resonance energies used in the definition of the dielectric functions, and the energies at
which resonances are observed in the simulated spectra.

With this approach, the simulated spectra closely model nearly all of the essential features
of the experimental spectra: there are just two LO phonon resonances observed, one from
each ternary material, present only for TM polarization; the reflectivity of the TM spectrum
is less than that of the TE spectrum across the spectral range from 25 meV to 50 meV; and
the relative amplitudes of the various peaks are in good agreement with the experimental
spectra. The only significant disagreement between the simulated and experimental spectra



3.3 Optical Phonons in i-InGaAs/AlInAs Heterostructure 65

25 30 35 40 45
0.0

0.2

0.4

0.6

0.8

1.0

LO1TO1TO2

LO1TO1TO2

TM

TE

25 30 35 40 45
0.0

0.2

0.4

0.6

0.8

1.0

TM TE

50 60 70

Thin film
interference

50 60 70

EMT

Energy (meV)

R
efl

ec
ti

v
it

y

V0296 Experimental Spectra

Energy (meV)

R
efl

ec
ti

v
it

y

V0296 Simulated Spectra

Fig. 3.5 Experimental and simulated spectra for sample V0296, consisting of 30
periods of not-intentionally-doped 45 nm InGaAs wells and 10 nm AlInAs barriers.
The experimental spectra were measured at T= 5 K. The resonances attributed to
GaInAs are labeled in blue, and those attributed to AlInAs are labeled in green.
Simulated reflectivity spectra using Effective Medium Theory (EMT) are overlayed
on top of the full structure simulations for the region between around 50 meV to
70 meV.
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is the presence of only a single peak around 31 meV in the simulation in contrast to two
closely spaced peaks in the experimental spectrum around the same energy.

Literature Experiment Values for ε

In0.53Ga0.47As ℏωLO1 33.4 (0.4) 33.9 33.90 (0.6)
ℏωTO1 31.7 (1.3) 31.3 31.72 (1.3)
ℏωLO2 28.8 (2.6) 29.14 (1.5)
ℏωTO2 27.7 (1.5) 27.8 28.33 (1.2)

Al0.48In0.52As ℏωLO1 44.7 46.1 46.07 (0.8)
ℏωTO1 43.2 43.1 43.51 (1.4)
ℏωLO2 29.7 29.66 (1.5)
ℏωTO2 28.0 30.6 28.95 (1.2)

Table 3.3: The parameters for the phonon resonances are tabulated for the two ternary
materials. Values are reported in units of meV. Parameters for the phonon linewidths are
reported in parenthesis. The literature values are reproduced from [7777] for InGaAs and from
[2727] for AlInAs.

Effective medium theory (EMT) can be used to understand the broad features at energies
above the phonon resonances in the experimental and simulated spectra. In effective medium
theory, an effective dielectric function is introduced to describe homogeneously a structure
which is spatially inhomogeneous.

For a structure of repeating subwavelength layers of materials 1 and 2, of thicknesses t1
and t2, the dielectric permittivity tensor found in the EMT is diagonal with the in-plane (∥)
components and the out-of-plane component (⊥) given by:

εEMT
∥ = ρε1 + (1 − ρ) ε2 (3.2)

εEMT
⊥ =

(
ρ

ε1
+ (1 − ρ)

ε2

)−1
(3.3)

where ρ is the filling fraction of material 1: ρ = t1/(t1 + t2) . For the V0296 structure, with
material 1 as InGaAs and material 2 as AlInAs, ρ ≈ 0.818.

In the bottom panel of Fig. 3.53.5, the simulated reflectivity spectrum, calculated for the
InGaAs/AlInAs heterostructure described with εEMT, is plotted with a dashed line on top
of the simulated reflectivity spectrum of the exact heterostructure from 47 meV to 74 meV.
There is excellent agreement between the two simulations.

The condition for the thin film interference phenomenon is determined by the optical path
difference (OPD), and by accounting for the phase shifts which occur upon reflection from
the interface of a medium of a higher refractive index. Considering the entire heterostructure
of V0296 to be a thin film of semiconductor between air and gold, and accounting for a π

phase shift at both the air/semiconductor and semiconductor/gold interfaces, the condition
for destructive interferences is found:

OPD = 2neff cos(θneff )t = λ0
2 (3.4)

In this expression, t is the total film thickness, λ0 is the wavelength in free space, neff is an
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effective isotropic refractive index inside the semiconductor, and θneff is the incidence angle
inside the semiconductor layer.

In the EMT, the refractive index of the multilayer structure is anisotropic, but to simplify
the description of the thin film interference, we may assume an isotropic effective refractive
index, neff . This is well justified since the anisotropy at the energy of the interference
feature is rather small: at 58 meV, nEMT

⊥ ≈ 3.145 and nEMT
∥ ≈ 3.158. For a 45◦ angle of

incidence from air and neff ≈ 3.15, the thickness of the film may be calculated according
to the condition given by Eq. (3.43.4) for a destructive interference fringe at 58 meV, where
λ0 = 21.38 µm. We find t = 1.74 µm, which is not far from the nominal thickness of the
heterostructure, 1.81 µm.

Since the entire thickness, t, of the InGaAs/AlInAs heterostructure studied here is sub-
wavelength (t ≈ 0.1λ), it might be expected that resonances should be observed in the
p-polarized spectra at the zeros of the effective dielectric function. In [9393], the authors
studied a periodic metal/dielectric structure and found the that the Berreman modes were
not observed at the zeros of the effective dielectric function, but instead at the zeros of
the dielectric function of the constituent material. This is in accordance with our own
observations.

3.4 Plasmon-Phonon Coupling in n-InGaAs/AlInAs
In the following sections, the experimental spectra of doped InGaAs/AlInAs heterostructures
are reported. We first briefly consider how the optical description of the structure is modified
in the presence of a confined electron gas.

In Section 3.13.1, a Drude term was added to the dielectric function for the phonons in
order to describe the response of a ternary alloy in the presence of a free electron gas. The
resulting dielectric function (Eq. (3.13.1)) was isotropic. In our study, electrons are added to
thin InGaAs layers in which they are confined in the ẑ-direction. Consequently, the addition
of an electronic density to the thin InGaAs layers results in the previously isotropic dielectric
function becoming uniaxially anisotropic:

εV 0296
InGaAs =

εphonon 0 0
0 εphonon 0
0 0 εphonon

 =⇒

ε
V 0300/V 0301
InGaAs =

εphonon + εDrude 0 0
0 εphonon + εDrude 0
0 0 εphonon + εzz

 (3.5)

In the confined z-direction (⊥), the electrons are described by εzz, defined in Eq. (1.351.35). In
the in-plane directions (∥), the electrons are free and are described by εDrude. For simplicity,
we have neglected the ‘bookkeeping’ of ε∞ in Eq. (3.53.5), although it is properly considered
in all calculations.

In the wide layer limit, the anisotropy disappears as εzz → εDrude. In the 35 nm and
45 nm InGaAs quantum wells of samples V0300 and V0301, the confinement effects and the
anisotropy remain relevant.

In the analysis of the doped samples, the parameters extracted from the modeling of
the not-intentionally-doped V0296 structure reported in Table 3.33.3 are used for the phonon
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resonances in the dielectric function.

3.4.1 V0300: Electron Plasma-Optical Phonon Coupling
We now present the experimental study of sample V0300, which we recall has the same
structure as sample V0296, but with a density of electrons added. The experimental TM
reflectivity spectra of V0300, measured at T=5 K, is compared with that of V0296 in Fig. 3.63.6.
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Fig. 3.6 The experimental TM reflectivity spectra at 45◦ and T=5 K are shown
for the not-intentially-doped V0296 sample and the V0300 sample for which the
InGaAs layers are nominally doped with an electronic density of 1.7 × 1017 cm−3.
The four differences between the two spectra discussed in the text are annotated.

There are four primary differences between the V0300 and V0296 TM reflectivity spectra,
which are numbered in Fig. 3.63.6:

1. The InGaAs TO1 and TO2 resonances (31.3 meV and 27.8 meV) and the AlInAs TO2
resonance (30.6 meV) have a greater contrast (are more absorbing) in the V0296 spec-
trum.

2. The InGaAs LO1 phonon which is sharply peaked around 34 meV in the spectrum of
the undoped sample is almost completely absent in the spectrum of the doped sample.

3. There is a broad feature between about 40 meV and 50 meV present in the V0300
spectrum which is absent in the V0296 spectrum.

4. The broad thin film interference feature moves from 58 meV in the V0296 spectrum
to 61 meV in the V0300 spectrum, despite the fact that the film thickness should be
consistent between the samples.
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Each of these differences will be demonstrated to be a consequence of the addition of an
electronic density to the InGaAs layers.

We begin by discussing the second and third differences, which arise due to a coupling
between plasma oscillations and the LO1 phonon in the InGaAs layer. In the top panel
of Fig. 3.73.7, the real part of the dielectric function in the out-of-plane (confined) direction
is plotted for the not-intentionally-doped V0296 sample and for the V0300 sample doped
with an electronic concentration of Nv = 3.75 × 1017 cm−3. The addition of the electronic
density shifts the energy of the zero crossing of the real part of the dielectric function from
ℏωLO1 = 34 meV to 43.9 meV.
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Fig. 3.7 In the top panel, the real part of the z-component of the dielectric func-
tion is plotted for the doped V0300 sample with Nv = 3.75 × 1017 cm−3 and the
undoped V0296 sample. The energy at which each dielectric function crosses zero
is indicated. In the bottom panel, the thin film absorption is calculated for the
doped and undoped InGaAs layers.

The thin-film absorption coefficient, calculated according to Eq. (1.471.47), is plotted in the
bottom panel of Fig. 3.73.7 for the two dielectric functions describing the doped and not-doped
45 nm InGaAs layers. Due to the Berreman effect, resonances are observed at the zero
crossings of ε′

⊥. Upon addition of the electronic density, the resonance at 34 meV disappears
from the absorption spectrum and a new coupled-mode resonance appears at 43.8 meV. This
exactly describes the disappearance of the LO phonon peak and the appearance of a broad
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absorption feature around 45 meV in the experimental V0300 reflectivity spectrum. We
identify the coupled-mode resonance at 43.8 meV as the L+ mode of Fig. 3.13.1, since it lies at
an energy greater than ℏωLO1 .

Note that the sharp resonances at approximately 43 meV and 46 meV observed in both
the V0296 and V0300 layers originate from phonons in the AlInAs layers. For this reason,
they are hardly modified between the two spectra. It is an unfortunate coincidence that the
L+ mode we wish to observe is nearly degenerate with these peaks.

We now comment on the first annotated difference between the V0296 and V0300 spectra.
The decrease in the contrast of the TO resonances around 30 meV in the V0300 spectra results
from an increase in the reflectivity below the energy of the L+ mode in the InGaAs layer.
Highly doped semiconductors, like metals, are usually reflective below the plasma energy, at
which the real part of the dielectric function crosses zero and tends increasingly negative.
When an electron gas with a plasma energy greater than the optical phonon resonances is
coupled with the optical phonons, the real part of the dielectric function crosses zero and
tends negative at ℏωL+ . In this case, ωL+ plays the analogous role of ωp in defining the
‘plasma edge’, below which the material is reflective.

In the upper panel of Fig. 3.83.8, the real part of the in-plane dielectric function of the doped
V0300 sample is plotted. At L+ = 39.6 meV, ε′

∥ crosses zero and tends negative (apart from
the phonon oscillations). Similarly, the real part of the out-of-plane dielectric constant (top
panel of Fig. 3.73.7) goes from positive to negative below L+, although due to the confinement
in the z-direction, L+ occurs at 43.8 meV. At the energies where the InGaAs TO1 and TO2
phonons lie, below L+, the doped InGaAs layers are increasing reflective. As a result, less
light is absorbed by any single InGaAs layer, and less light is coupled into subsequent InGaAs
layers where it can be absorbed. This explains the reduced contrast of the InGaAs TO1 and
TO2 phonons in the V0300 spectrum.

Apart from the small change in contrast in the spectrum, the InGaAs TO phonon modes
are otherwise not modified with the addition of an electronic density. This is in agreement
with the theoretical description, as is now discussed.

In thin films, all of the absorption which gives rise to the observed TO resonances is
due to losses in the in-plane direction. This is because, as described in Fig. 1.121.12, the TO
resonances in the normal direction are depolarization-shifted to the LO resonance frequencies.
To explicitly show that the TO resonances are not modified by the presence of an electronic
density, ε′′

∥ is plotted for the InGaAs layer, with (V0300) and without (V0296) an electronic
density, in the bottom panel of Fig. 3.83.8. The peaks of ε′′

∥, responsible for the TO phonon
resonances, are found not to be modified by the electron plasma.

We now explain the fourth difference observed in Fig. 3.63.6: the shift of the thin film
interference. In the top panel of Fig. 3.73.7, the real part of the dielectric function of the
not-doped (V0296) layer converges to ε∞ after crossing zero more quickly than that of the
doped (V0300) layer. The same behavior occurs for the real part of the in-plane dielectric
function, as seen in the top panel of Fig. 3.83.8. In the region where the interference dip occurs,
the losses are small and n ≈

√
ε′. Then, from Eq. (3.43.4), it is evident that a decrease in ε′

should move the interference dip toward higher energy as is experimentally observed.
The electronic density Nv used to model the dielectric function of the doped InGaAs layer,

plotted in Figs. 3.73.7 and 3.83.8, was determined by finding the best agreement between a series
of finite element simulations in which the electronic density was varied and the experimental
spectrum. The best agreement was found for Nv = 3.75 × 1017 cm−3. This value is of the
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Fig. 3.8 The real and imaginary parts of the in-plane dielectric function are plotted
for the doped V0300 sample with Nv = 3.75 × 1017 cm−3 and the undoped V0296
sample.

same order of magnitude as the nominal electronic density Nv = 1.7 × 1017 cm−3 which is
assumed to have a large uncertainty.

The best parameter for the nonradiative linewidth of the electronic resonance was deter-
mined similarly. The optimal value was found as γNR = 3.03 meV which would correspond
to a quality factor of about 14.5 for the bare electronic excitation, absent coupling with the
phonons. A fixed value of γ = 27.57 meV is used to describe the damping of the free electron
gas in the plane. The parameters γNR and γ are important in determining how quickly the
real parts of the perpendicular and in-plane dielectric functions rise after crossing zero, and
how fast they eventually converge to ε∞.

The simulated TM 45◦ V0300 spectrum, for Nv = 3.75 × 1017 cm−3 and for the val-
ues of γNR and γ provided above, is plotted with the simulated TM spectrum of the not-
intentionally-doped V0296 sample in Fig. 3.93.9. The four differences observed between the
samples in the experimental spectra (Fig. 3.63.6) are reproduced in the simulations. With the
added electronic density, the contrast of the InGaAs TO phonons around 30 meV is reduced,
the InGaAs LO1 resonance disappears, a new broad absorption feature appears behind the
AlInAs resonances around 45 meV, and the destructive interference dip shifts towards lower
energy.
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Simulated Spectra: V0300 and V0296
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Fig. 3.9 TM reflectivity spectra simulated at 45◦ for the not-intentionally-doped
V0296 and doped V0300 samplres are plotted. The four major differences high-
lighted between the experimental spectra of the two samples are reproduced in the
simulated spectra.

Both in the simulated and experimental spectra of the doped V0300 sample, there is a
small absorption feature which remains at the uncoupled ωLO1 frequency. According to the
theory, no such feature should remain at ωLO1 when an electronic density has been added
to the InGaAs layer. This small absorption feature is attributed to the presence of a 50 nm
undoped InGaAs layer next to the gold mirror and a 100 nm undoped InGaAs layer next to
the air interface. These layers were added during the growth process to serve as capping and
buffer layers, respectively. They have been included in the finite element simulations. The
growth sheet of sample V0300 can be found on Page 193193.

To gain quantitative insight into the modification of the reflectivity spectra with the
addition of an electronic density, the ratio of the V0300 and V0296 TM spectra, normalized
by the ratio of the TE spectra, is plotted in Fig. 3.103.10. Dips in the resulting spectrum can
be exclusively attributed to absorption of TM polarized light in the doped V0300 sample.

In the ratio of reflectivities, two of the four differences between the TM spectra of the
not-intentionally-doped and doped samples are readily observable. First, a sharp positive
feature is observed around 34 meV, which results from the absence of the InGaAs LO1 phonon
resonance in the V0300 spectrum. Second, a broad dip is observed around 45 meV, which
is attributed to absorption from the coupled plasmon-phonon L+ mode in the TM V0300
spectrum.

A Lorentzian lineshape is fit to the L+ feature using a non-linear least squares regression,
with the best fit found for a Lorentzian centered at 45.3 meV with a FWHM of γ = 7.1 meV.
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Fig. 3.10 The ratio of the experimental TM spectra of the doped V0300 sample and
the undoped V0296 sample, normalized by the ratio of the respective TE spectra, is
plotted. The resonant dip is fitted with a Lorentzian lineshape, with center ω0 and
FWHM γ, plotted with a dashed red line. The solid cyan-colored line shows the
best Lorentzian profile found, through trial-and-error, to model the V0300 spectra
in the finite element simulations.

The fitted Lorentzian is plotted in Fig. 3.103.10 with dashed lines. The best Lorentzian profile
found through trial-and-error with finite element simulations (varying the electronic density
and nonradiative linewidth of the Berreman mode), which corresponds to the Lorentzian
centered at ℏωL+ in Fig. 3.73.7, is plotted as a solid cyan-colored line. A reasonably good
agreement is observed.

We conclude this section by highlighting that the plasmon-phonon coupled mode which
we have observed is significantly shifted from the bare LO1 resonance energy. This is a
signature of the strong plasmon-phonon coupling.

3.4.2 V0301: Intersubband Excitation-Optical Phonon Coupling

In this section, the results from the study of sample V0301, designed with an intersubband
transition resonant at 26 meV, are reported.

As reported in Table 3.23.2, the experimentally determined electronic density is significantly
greater than the nominal electronic density for which the sample was designed. In the left
panel of Fig. 3.113.11, the dispersion of the electronic subbands in the 35 nm InGaAs layers of
the V0301 structure is plotted. Two Fermi levels, calculated for T=5 K, corresponding to the
nominal (Nv = 8 × 1016 cm−3) and experimental (Nv = 2.2 × 1017 cm−3) electronic densities,
are indicated.

The Fermi level for the nominal electronic density sits just below the second subband,
so that the only occupied electronic states lie in the first subband. For this case, neglecting
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the phonons, the thin film absorption spectrum has a single resonance, corresponding to
the 1 → 2 intersubband transition. The absorption spectrum is plotted in the middle panel
of Fig. 3.11b3.11b with a blue line. When the interaction between the optical phonons and the
intersubband transition is considered, the dominant feature in the calculated absorption
spectrum (red line) is a sharp resonance corresponding to the L+ mode that is slightly
blueshifted from the InGaAs LO1 phonon resonance.
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Fig. 3.11 (a)(a) The subbands are plotted for a 35 nm InGaAs/AlInAs quantum
well. Two Fermi levels, calculated at T=5 K, are plotted for the two electronic
densities indicated in the legend. (b)(b) The calculated thin film absorption, αzz =
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/
cn is plotted for various ε⊥. In these calculations, the nonradiative

linewidth γNR of the electronic mode is fixed at 7.5% of the bare resonance energy.

The Fermi level for the experimentally extracted electronic density lies almost midway
between the first and second subbands. As a result, 1 → 2 and 2 → 3 intersubband transi-
tions can occur. The two intersubband transitions are coupled through the depolarization
effect, as described in Section 1.4.11.4.1. Consequently, in the absorption spectrum calculated ne-
glecting the phonons, plotted in the bottom panel of Fig. 3.11b3.11b with a blue line, there are two
resonances at 22 meV and 37.5 meV, but nearly all of the oscillator strength is coupled into
the mode at 37.5 meV. When the interaction between the optical phonons and the coupled
intersubband transitions is considered, the absorption spectrum (red line) is dominated by a
single resonance, corresponding to the L+ mode, at 41 meV. The resonance has a linewidth
similar to the bare electronic mode.

The experimental reflectivity spectra of sample V0301, measured at T=5 K and for light
incident at 45◦, are plotted in the top panel of Fig. 3.123.12 for TM and TE polarizations. There
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is a feature in the TM spectrum at 41 meV which is absent in the TE spectrum. The feature
is identified as the coupled electron-phonon L+ mode. Unfortunately, as was the case for the
V0300 sample, the feature is largely obscured by the resonances of the AlInAs phonons.
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Fig. 3.12 In the top panel, experimental reflectivity spectra of sample V0301,
measured at T=5 K for light incidence at 45◦, are shown. Simulated reflectivity
spectra are shown in the bottom panel, calculated for an electronic density of Nv =
2.2 × 1017 cm−3 in the InGaAs layers.

There is a faint feature which can be observed at the InGaAs LO1 phonon energy only
in the TM spectrum. As was done for a similar feature in the V0300 spectrum, this feature
is attributed to the excitation of the InGaAs LO1 phonon in the not-intentionally-doped
InGaAs layers bordering either side of the periodic heterostructure (see the V0301 growth
sheet on Page 194194).

We now comment on a few additional observations of the V0301 experimental spectra.
There is broad, shallow dip just below 50 meV in both the TM and TE spectra which is
attributed to a thin film destructive interference.

Below approximately 45 meV, the reflectivity of the TE spectrum is almost uniformly
greater than that of the TM spectrum. This is attributed to a difference in the fraction of
light reflected, depending on the polarization, at the air/semiconductor interface (the Fresnel
coefficients are polarization-dependent).

In the bottom panel of Fig. 3.123.12, simulated reflectivity spectra for sample V0301 are
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plotted. All of the essential experimental observations are reproduced: a clear feature re-
sulting from the electron-plasmon coupling is present near 41 meV, thin film interferences
are present around 50 meV, and the reflectivity is systematically less for the TM spectrum
below the thin film interferences.

3.5 Conclusion and Perspectives
The Berreman effect was exploited to directly observe coupled plasmon-phonon modes in
doped InGaAs. Despite the small electronic density required for the plasma energy in InGaAs
to be close to the optical phonons, L+ modes were observed which were more heavily weighted
with an electronic than phononic character. For the 35 nm quantum well, the coupled mode
that was observed resulted from the coupling between two intersubband transitions and the
LO phonons.

The L+ modes were observed significantly shifted from the InGaAs LO1 phonon reso-
nances. We conclude that the large interaction strength between LO phonons and plasma
oscillations is an enabling factor for the engineering of the Reststrahlen band.

All of the essential features of the experimental spectra were well-reproduced with simula-
tions using semiclassical dielectric functions. A fully quantum description of the interaction
between the optical phonons and the electron plasma is the subject of an ongoing study
within the Quantum Devices team.

In the experimental studies, there was an unfortunate overlap in the spectra between the
coupled LO phonon-plasmon mode in the InGaAs layers and the phonon resonances from
the AlInAs barrier layers. In future studies, samples could be designed with barrier layers
of reduced width to improve the contrast between the features originating from the InGaAs
layers and those originating from the barrier layers. It would also be desirable to study
samples with lower electronic densities, with the hope of observing the L0 and L− modes.
Finally, we note that the plasmon-phonon coupling phenomenon could be investigated in
other material platforms.



Chapter 4

Semiconductor Quantum Plasmonics

In this chapter, a microscopic quantum model for the collective excitations of the confined
electron gas is introduced. The collective excitations are calculated starting from the basis of
stationary single particle electronic states, immediately implying that quantum confinement
is fully considered. The microscopic matter polarization is described in space directly as a
function of the single particle electronic states. Consequently, the model naturally describes
the nonlocal response of the confined electron gas. Accounting for quantum confinement
and nonlocality, the model provides a plasmonic description well beyond that of the classical
Dude model.

The model was developed in the Quantum Devices team before my arrival, and I borrow
heavily from the works of [100100, 135135] as I describe it in this chapter. I wish to state immediately
that the theoretical development of the model was not my work.

The quantum model is introduced in the first part of the chapter: In Section 4.14.1, excita-
tions of the electron gas are described neglecting the dynamic Coulomb interaction between
electronic excitations. We qualify these non-interacting excitations as single particle. In
Section 4.24.2, the collective excitations of the system are found by considering the interaction
between the single particle excitations.

In the second part of the chapter, the model is applied to analytically describe the
collective longitudinal modes of the electron gas in a wide quantum well (square static
potential). The square well is shown to support a series of collective modes with different
out-of-plane wavevector kz. This dispersion of the modes with kz is found analytically and
shown to differ, due to electronic confinement, from the well-known Lindhard formula for
the free electron gas. This study resulted in a publication [138138] which I coauthored.

4.1 Bright Single Particle Excitations

In this section, we establish a description in the second quantization formalism for the single
particle excitations of the 2D electron gas which couple with the electromagnetic field. By
single particle excitations, we refer to electronic transitions between stationary electronic
states which occur at the bare transition energy (not dressed through a many body Coulomb
interaction). To describe the spatial distribution of oscillating charge associated with each
transition, we define a polarization operator.

The section is organized as follows: In Section 4.1.14.1.1, a matter Hamiltonian describing

77
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all the single particle excitations of the 2D electron gas is written in terms of fermionic
operators. In Section 4.1.24.1.2, the Hamiltonian is rewritten in terms of bosonic operators which
describe only excitations with a nonzero dipole. In Section 4.1.34.1.3, the polarization operator
is defined, and the quantum description is applied to describe the single particle transitions
of a 100 nm quantum well.

4.1.1 Fermionic Excitations of the 2D Electron Gas

The eigenstates
〈
r
∣∣∣λ,k∥

〉
of the static Hamiltonian for the electron gas confined in the ẑ-

direction were defined in Eq. (1.141.14). We recall that λ is the quantum number indexing the
bound states of the confined ẑ direction, and k∥ is the in-plane wavevector describing the
free motion of the electrons in the x̂ − ŷ plane. When the

〈
r
∣∣∣λ,k∥

〉
states are found as

self-consistent solutions to both the Schrodinger and Poisson equations, their form accounts
for the static Coulomb interaction (see Section 1.2.2.11.2.2.1).

We introduce Fermionic creation c†
λk∥

and annihilation cλk∥ operators which increase

or decrease the occupation of the state
∣∣∣λ,k∥

〉
. The matter Hamiltonian describing the

spectrum of single particle excitations can then be written as:

Ĥsp
mat =

∑
λk∥

ℏωλk∥c†
λk∥

cλk∥ (4.1)

We may immediately write the fundamental state |f⟩ of the many particle system at
T=0 K as the completely antisymmetric state for which all states up to the Fermi energy EF
are occupied:

|f⟩ =
∏

ℏωλk∥ <EF

c†
λk∥

|0⟩ (4.2)

where |0⟩ describes the state with no particles. When T ̸= 0 K, the electrons are thermally
distributed across the subbands of the system.

The basis of excited states, already necessary to describe the electron gas at finite tem-
perature, may be spanned with: ∣∣∣eλ>µ,k∥

〉
= c†

λk∥+qcµk∥ |f⟩ (4.3)

The excited state on the left side of the equal sign is modified from the fundamental state
in that an electron has been excited from the subband µ to the subband λ and has gained
an in-plane moment contribution q from the photon wavevector.

The field operators [116116] are found by defining raising and lowering operators in the
position basis:

Ψ̂(z, r∥) =
∑
λk∥

1√
S

cλk∥ϕλ(z)eik∥·r∥ (4.4)

4.1.2 Bosonized Matter Hamiltonian

Any excited state of Eq. (4.14.1) may be written as a linear combination of the states defined
in Eq. (4.34.3). However, not every excited state has a nonzero dipole matrix element with |f⟩.
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Excited states which do have a nonzero dipole are said to be bright, while those which do
not are said to be dark. Only bright states couple with the electromagnetic field.

In this section, we will substitute the Hamiltonian of Eq. (4.14.1) with an effective bosonic
Hamiltonian written in terms of bosonic operators which describe only bright excitations.
Although the bosonic description is an approximate treatment of the problem, it will later
permit us to diagonalize a Hopfield-type Hamiltonian [5959] which includes interactions be-
tween electronic transitions using a Bogoliubov transformation.

We define bosonic raising and lowering operators for the single particle electronic transi-
tions as [2424]:

b†
λµq = 1√

∆Nλµ

∑
k∥

c†
λk∥+qcλk∥ (4.5)

where ∆Nλµ =
〈
N̂µ

〉
−
〈
N̂λ

〉
is the difference in the expectation value for the number

operator N̂ of states µ and λ in thermal equilibrium at a given temperature.
The raising operator b†

λµq applied to the fundamental state |f⟩ has the effect of creating
an excited state which is the completely symmetric superposition of states

∣∣∣eλ>µ,k∥

〉
weighted

with equal amplitude 1√
∆Nλµ

:

b†
λµq |f⟩ =

∑
k∥

1√
∆Nλµ

∣∣∣eλ>µ,k∥

〉
(4.6)

By construction, the completely symmetric states realized through the application of b†
λµq

are bright states [135135]. States which are not coherent symmetric superpositions of
∣∣∣eλ>µ,k∥

〉
are dark states. The bright and dark states are degenerate absent other interactions. We
will find, however, that the degeneracy is lifted by the Coulomb interaction which couples
the bright states to each other. From this point onward, we will not consider the dark states,
other than to mention now that they must be considered in the description of electronic
transport.

The factor 1√
∆Nλµ

in the definition of b†
λµq ensures that the operators satisfy the com-

mutation relations for bosons in the weak excitation regime, as we now demonstrate. For
the b†

λµq operators to be bosonic, they must satisfy the following commutation relation:

[bλµq, b†
λµq′ ] = δqq′ (4.7)

Expanding the commutation relation using the definitions from Eq. (4.54.5), we find:

[bλµq, b†
λµq′ ] =

∑
k

c†
µk∥

cµk∥ − c†
λk∥+qcλk∥+q〈

N̂µ

〉
−
〈
N̂λ

〉 δqq′

= N̂µ − N̂λ〈
N̂µ

〉
−
〈
N̂λ

〉δqq′

= δqq′

(4.8)

The last equality holds in the weak excitation regime, when the difference in occupation
number N̂ between the initial and final states is approximately equivalent to the difference
in the expectation values of the number operators when the system is in thermal equilibrium.



80 Chapter 4. Semiconductor Quantum Plasmonics

We now replace the Hamiltonian of Eq. (4.14.1) with an effective bosonic Hamiltonian which
describes only the single particle excitations which couple with the electromagnetic field:

Ĥsp
mat =

∑
λ>µ,q

ℏωλµb†
λµqbλµq (4.9)

The spectrum of this Hamiltonian is determined by the level spacing of single particle elec-
tronic states (i.e. the excitations are not dressed by the Coulomb interaction). The Hamil-
tonian is valid only in the weak excitation regime, where the b†

λµq operators satisfy the
commutation relation for bosons.

4.1.3 Definiton of the Polarization Operator

In the semiclassical description of Chapter 11, we associated a spatially uniform polarization
field with each intersubband transition. In this section, we introduce a polarization operator
P̂ to describe locally the nonuniform polarization associated with each electronic excitation.
The position dependence of the P̂ operator is defined directly in terms of the electronic
wavefunctions ϕλ.

The spatial properties of the polarization operator will be shown to be related to the more
familiar dipole matrix element. The definition of P̂ will be found useful later in Section 4.24.2
to express the Coulomb interaction between single particle excitations, the consideration of
which allows the collective modes of the system to be determined.

We begin by recalling that, classically, the change in polarization density with time gives
rise to a current:

j = dP
dt

(4.10)

The polarization operator P̂ is defined so that its time evolution results in a current:

ĵ(r) = dP̂
dt

= −iℏ
[
P̂(r),Ĥsp

mat

]
(4.11)

The second equality defines the equation of motion for P̂ in the Heisenberg picture.1
The total current operator is written as:

ĵ(r) = iℏe

2m∗

(
Ψ̂ †(r)∇rΨ̂(r) − ∇rΨ̂ †(r)Ψ̂(r)

)
(4.12)

where Ψ̂ † and Ψ̂ are the field operators introduced in Eq. (4.44.4). Intersubband transitions
only carry a polarization in the z-direction, so we limit our consideration to the z-component
of the current operator, which is found to take the form:

ĵz(r) = iℏe

2m∗
√

S

∑
λ>µ,q

ξλµ(z)eiq·r∥
√

∆Nλµ

(
bλµq − b†

λµ−q

)
(4.13)

1In general, P̂ evolves under the action of the full electrodynamics Hamiltonian. When this Hamiltonian
is introduced in Section 4.2.14.2.1 in the dipole representation, it will become clear that P̂ commutes with every
term of the Hamiltonian except Ĥsp

mat.



4.1 Bright Single Particle Excitations 81

The spatial dependence of ĵz(r) is determined entirely by the current distribution functions
ξλµ(z), defined in terms of the wavefunctions as:

ξλµ(z) = ϕλ(z)∂ϕµ(z)
∂z

− ϕµ(z)∂ϕλ(z)
∂z

(4.14)

For intersubband transitions, the wavevector of the photon excitation q is much smaller
than the electron wavevector k∥, and consequently the long wavelength approximation ∥q∥ =
0 can be made. Under this approximation, the polarization operator which satisfies equation
Eq. (4.114.11) is found as [135135]:

P̂z(z) = ℏe

2
√

Sm∗

∑
λ>µ

ξλµ(z)
ωλµ

√
∆Nλµ

(
b†

λµ + bλµ

)
(4.15)

As was the case for ĵz(r) in Eq. (4.134.13), the spatial dependence of the polarization operator
is determined by the current distribution functions ξα(z) which are written in terms of
the electronic wavefunctions. Thus, for any arbitrary potential which admits bound state
solutions to the Schrödinger equation, we may calculate the dynamic polarization associated
with the electronic transitions.

Up to this point, the indices µ and λ have been used to identify the initial and final
subbands of an electronic transition. Instead of making reference to the subbands involved
in a transition, we can index the transition itself. We define α := µ → λ. With this notation,
the polarization operator describing single particle excitations may be written in the more
compact notation as:

P̂z(z) = ℏe

2
√

Sm∗

∑
α

ξα(z)
ωα

√
∆Nα

(
b†

α + bα

)
(4.16)

Transition may also be described in terms of their initial state i and the difference in
quantum number between their final and initial state, which we denote j. In this notation,
a transition α is defined as α := i → i + j. This notation is particularly useful because it
easily permits the single particle transitions to be grouped by j.

For the remainder of the chapter, greek indices will be used to index transitions, i will
describe initial states, and j will describe the change in quantum number associated with a
transition.

4.1.4 Single Particle Optical Properties
Since the microcurrents describe the spatial current distribution related to a polarization
induced by the electromagnetic field, they must be related to the dipole matrix elements. It
can be shown that the dipole matrix element zα is related to the microcurrent ξα as:∫ ∞

−∞
ξα(z) dz = 2m∗ωα

ℏ
zα (4.17)

This relation links the optical properties of the intersubband transition α with its associated
microcurrent distribution. The link is made even more explicit by defining a quantity ρα(z)
which describes the spatial distribution of charge:

ρα(z) = ∂ξα(z)
∂z

(4.18)
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The average displacement of the charge distribution is related to the dipole matrix element,
zα as: ∫ ∞

−∞
ρα(z)z dz = 2m∗ωα

ℏ
zα (4.19)

Since the oscillator strength associated with a transition is written in terms of the dipole
matrix element, we may rewrite the expression for the oscillator strength in terms of the
microcurrent distributions:

fα = 2m∗ωα

ℏ
z2

α = ℏ
2ωαm∗

(∫ ∞

−∞
ξα(z) dz

)2
(4.20)

It is then straightforward to calculate the absorption spectrum for single particle transitions
assuming Lorenztian lineshapes.

In Fig. 4.14.1, the microcurrents ξα(z) and charge distributions ρα(z) are plotted for various
single particle transitions α in a 100 nm InGaAs quantum well. In the left panel, microcur-
rents are plotted for transitions between one, two, and three levels (j = 1, 2, and 3) from
initial states i = 1, 2, and 3. Interestingly, the microcurrent distributions for transitions
of identical j are similar regardless of the initial state i, and have a form approximating
sin(jπz/L) where L = 100 nm is the width of the quantum well. These properties will prove
consequential later for determining the collective modes of the system.

The charge distributions ρα(z) are plotted in the right column of Fig. 4.14.1 for j =
1, 2, and 3 transitions from the lowest energy subband i = 1. For j = 1, the charge
distribution has a dipolar form. The integral

∫∞
−∞ ρα(z)z dz is nonzero, and by Eq. (4.194.19),

the dipole matrix element is also nonzero. For the j = 2 case, the charge distribution is an
even function with a spatial average of zero. By Eq. (4.194.19), the dipole matrix element associ-
ated with this transition is zero. This confirms the selection rule for intersubband transitions
which states that only odd transitions are allowed [111111]. The j = 3 charge distribution takes
the form of two dipoles aligned top to bottom. The dipole matrix element of this transition
then approximately describes the length associated with the charge separation for only one
of these dipoles.

4.2 Collective Excitations of the 2D Electron Gas
In Section 1.41.4, it was demonstrated semiclassically that the collective excitations of the
confined electron gas can be described as resulting from the coupling between single particle
transitions. To calculate the collective excitation spectrum of the 2D electron gas in our
quantum formalism, a term must be added to the Hamiltonian to describe the interaction
between the bright single particle electronic transitions.

It is the task of the following sections to: (1) establish the form of the term which must
be added to Eq. (4.94.9) to describe the interaction between the single particle excitations; and
(2) to then diagonalize the resulting Hamiltonian in order to find the collective modes. We
then explore the properties of the collective modes.

4.2.1 Electrodynamics in the PZW Representation
One might postulate that the term describing the coupling between single particle transi-
tions should describe an interaction between their associated polarizations, as this is the
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Fig. 4.1 The single particle microcurrents are plotted for transitions α := i → i+j
for j = 1, 2, and 3. The corresponding charge distributions are plotted for the i = 1
case.

essence of collective effects. We will not need to guess the form of the coupling term, as it
appears naturally [131131, 134134] in the the Power, Zienau, and Woolley (PZW) representation
of electrodynamics, which we now introduce.

The full PZW Hamiltonian [77, 2626, 7878] describing the coupled light-matter system, ne-
glecting magnetic interactions, can be written in the following form:

Ĥmulti = Ĥmat + Ĥself + Ĥphot + Ĥl−m (4.21)

The Hamiltonian has been labeled Ĥmulti since this form of the Hamiltonian is sometimes
called the multipolar Hamiltonian [9191].

The matter term Ĥmat describes excitations of independent matter polarizations. For
our system, Ĥmat = Ĥsp

mat, defined in Eq. (4.94.9).
The photon term Ĥphot is written in terms of operators for the displacement field D̂ and

the magnetic field Ĥ. It is the spatial integral of the energy density of the D̂ and Ĥ fields:

Ĥphot =
∫ [ 1

2ϵ0ε(z)D̂2(r) + µ0
2 Ĥ2(r)

]
dr (4.22)
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The light-matter interaction term Ĥl−m is written as an interaction between the polar-
ization operator and the displacement field operator:

Ĥl−m =
∫ 1

ϵ0ε(z)D̂(r) · P̂(r) dr (4.23)

In the PZW representation, the displacement field is entire transverse: D̂ = D̂⊥ [2525]. In
our formulation, the displacement field is totally independent of the polarization of the
electron gas [135135]. It is determined by the spatially dependent dielectric response of the
material system, apart from the polarization from the electron gas. Put otherwise, all of
the polarization degrees of freedom of the matter except for the electron gas are already
considered in D̂.

Finally, the self-interaction term Ĥself describes the interaction between matter polariza-
tions:

Ĥself =
∫ 1

2ϵ0ε(z)P̂2(r) dr (4.24)

This term, quadratic in P̂, defines the form of the coupling between the single particle
excitations b†

λµq of the electron gas [131131]. Let us define:

Ĥcoll
mat = Ĥsp

mat + Ĥself (4.25)

The collective electronic excitations, or the collective modes of the system, are found upon
diagonalizing of this Hamiltonian, which is accomplished in the following section.

4.2.2 Diagonalization of the Collective Hamiltonian
Using the definition of the polarization operator from Section 4.1.34.1.3, the Hamiltonian of
Eq. (4.254.25) takes the form:

Ĥcoll
mat =

∑
α

ℏωαb†
αbα + e2

2ϵ0εs

∑
α,β

Sαβ

√
∆Nα∆Nβ

(
b†

α + bα

) (
b†

β + bβ

)
(4.26)

with Sαβ written as:

Sαβ = 1
ℏωα

1
ℏωβ

(
ℏ2

2m∗

)2 ∫ ∞

−∞
ξα(z)ξβ(z) dz (4.27)

Sαβ describes the spatially dependent coupling between any two transitions α and β. It is
proportional to the spatial overlap of the microcurrents associated with the transitions.

We first diagonalize the Hamiltonian found by setting α = β in Eq. (4.264.26). The sim-
pler Hamiltonian which results, Hα=β, describes the coupling between identical excitations
(electronic transitions with the same i and j), and neglects the coupling between different
excitations. The eigenmodes of Hα=β are the intersubband plasmons [131131].

The Hamiltonian Hα=β can be diagonalized with a Bogoliubov procedure. We intro-
duce bosonic operators pα which describe the excitations of the intersubband plasmons, and
require that they satisfy the following commutation relation:

[pα,Hα=β] = ℏω̃αpα (4.28)
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This equation implies that the pα operators act on a state to shift its eigenvalue by ℏω̃α. The
new operators p†

α and pα are therefore raising and lowering operators for the intersubband
plasmon excitations. The diagonalization results in the following definition for the raising
and lowering operators:

pα = ω̃α + ωα

2
√

ω̃αωα
bα + ω̃α − ωα

2
√

ω̃αωα
b†

α (4.29)

The eigenvalues ω̃α can be written as:

ω̃α =
√

ω2
α + ω2

pα
(4.30)

The collective excitation frequencies ω̃α are blueshifted from the bare (single particle) tran-
sition frequencies ωα due to the ωpα term, which is the plasma frequency associated with
the transition α defined in Eq. (1.311.31). We recall that the same expression for ω̃α was found
in Eq. (1.391.39) from a semiclassical description. There, the blueshift was identified as the
well-known depolarization shift for intersubband transitions. That the magnitude of the
depolarization shift depends on the magnitude of ωpα , which depends on the density of
electrons involved in the transition, underlines the collective nature of the effect.

We are now prepared to diagonalize the full Hamiltonian of Eq. (4.264.26), which can be
written in terms of the intersubband plasmon operators as:

Ĥcoll
mat =

∑
α

ℏω̃αp†
αpα + ℏ

2
∑
α ̸=β

Ξαβ

(
pα + p†

α

) (
pβ + p†

β

)
(4.31)

This Hamiltonian describes the intersubband plasmon excitations and their coupling, the
strength of which is determined by:

Ξαβ =
ωpαωpβ

2
√

ω̃αω̃β

Sαβ√
SααSββ

(4.32)

Once again, the Hamiltonian is quadratic in bosonic operators and can be diagonalized
with a Bogoliubov transformation. We introduce the bosonic operators Pn which describe
the collective excitations of the system, the plasmons. The number of collective modes
n is equivalent to the number of unique single particle transitions.2 This is because the
Bogoliubov transformation is simply a change in basis, through which the dimensionality of
the vector space is preserved.

We require that the operators satisfy:[
Pn,Ĥcoll

mat

]
= ℏΩnPn (4.33)

so that P †
n and Pn are raising and lowering operators for the collective modes, the plasmons.

In the Bogoliubov procedure, the new operators are written as linear combinations of the
old operators:

Pn =
∑

α

(
anαpα + bnαp†

α

)
(4.34)

2For N bound states,the number of unique single particle transitions may be written as N !
2!(N − 2)! .
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Equations (4.334.33) and (4.344.34) lead to a system of 2N linear equations for anα , bnα , and Ωn.
The problem can be recast in matrix form, where upon diagonalization, the eigenfrequen-
cies Ωn and their associated eigenvectors with coefficients anα and bnα are found [101101].
The problem admits 2N eigenvalues, where for each eigenvalue Ωn there is an eigenvalue
−Ωn. Only the positive frequency solutions Ωn are physical. The normalization condition∑

i

(
|ani |

2 − |bni |
2
)

= 1 ensures the bosonicity of the operators Pn. After diagonalization,
the Hamiltonian takes the form:

Ĥcoll
mat =

∑
n

ℏΩnP †
nPn (4.35)

4.2.3 Optical Properties of the Collective Modes

The optical properties of the collective modes are found through the polarization operator
P̂z. Because it commutes with every term of the full system Hamiltonian (Eq. (4.214.21)) except
Ĥsp

mat, the expression for P̂z found in Eq. (4.164.16) remains valid to describe the polarization of
the collective excitations. Expressing P̂z from Eq. (4.164.16) in terms of the operators Pn for the
collective excitations, instead of the operators bα for the single particle excitations, results
in the following expression:

P̂z(z) = eℏ
2m∗

√
S

∑
n

∑
α

ξα(z)
√

∆Nα√
ωαω̃α

Xαn

(
Pn + P †

n

)
(4.36)

where Xαn = (anα + bnα)−1 is the inverse of an N × N matrix.
The current density operator is found as the time evolution of P̂z under the action of

Ĥcoll
mat:

Ĵz = i
ℏ

[
P̂z,

∑
n

ℏΩnP †
nPn

]
= i

∑
n

Jn(z)
(
Pn − P †

n

)
(4.37)

The spatial dependence of Ĵz has been fully captured in the definition of the current density
functions Jn(z):

Jn(z) = eℏ
2m∗

√
S

Ωn

∑
α

ξα(z)
√

∆Nα√
ωαω̃α

Xαn (4.38)

The Jn(z) are analogous to the single particle microcurrents ξα(z), as in the single particle
case, it was the ξα(z) which fully determined the z-dependence of the single particle current
operator ĵz in Eq. (4.134.13).

It is worth remarking that the spatial dependence of the single particle microcurrents
could be written only in terms of the electronic wavefunctions ϕ, whereas the same cannot
be done for Jn(z). As evident in Eq. (4.384.38), the factor ∆Nα, describing the density of
charge involved in each single particle transition α, weighs each term of the sum over α.
The fact that charge densities must be considered to establish the spatial dependence of Ĵz

underscores the collective nature of the Ωn modes.
Analogously to what was done in Eq. (4.184.18) for the single particle case, the spatial

distribution of charge involved in the collective excitation n can be defined as:

ρcoll
n (z) = ∂Jn(z)

∂z
(4.39)
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The charge distribution oscillates at the frequency Ωn. This quantity can be interpreted
similarly to the charge distribution ρα(z) defined for the single particle transitions,3 which
was shown to be linked to the dipole matrix element.

An effective oscillator strength for the collective mode n can be written in terms of Jn(z)
as [100100]:

ΩnFn = 1
Ωn

∣∣∣∣∫ ∞

−∞
Jn(z) dz

∣∣∣∣2 (4.40)

The angle-dependent radiative decay rate of the Ωn mode, found by solving the quantum
Langevin equations in the input-output formalism [6060], is written:

Γrad,n(θ, ω) = Γn
ω

Ωn

sin2 θ

cos θ
(4.41)

where Γn is found as:

Γn = S

ℏϵ0
√

εs

|
∫

Jn(z) dz|2

cΩn
(4.42)

The expression of Eq. (4.414.41) was introduced for the Berreman mode in Section 2.2.12.2.1. With
the expression for Γrad,n(θ, ω) and upon introducing a phenomenological nonradiative linewidth
γNR, the angle-dependent absorptivity of the Ωn mode can be calculated nonperturbatively
as was described in Section 2.2.12.2.1.

We now examine the optical properties of the collective modes of a 100 nm InGaAs/AlInAs
quantum well. Whereas the microcurrents and charge distributions could be plotted in
Fig. 4.14.1 for the 100 nm well unambiguously without specifying the electronic density in the
well, for the collective modes, the electronic density must be specified as per the discus-
sion above. In Fig. 4.24.2, the current density distributions Jn(z) and the charge distributions
ρcoll

n (z) for the first three collective modes of largest oscillator strength are plotted for an
electronic density of Nv = 1.7 × 1019 cm−3.

In order of increasing oscillator strength, the modes are indexed with odd integers as
n = 1, 3, and 5 because the form of the Jn(z) functions can be described, upon introducing
the longitudinal wavevector kz, as:

Jn(z) ∝ sin(kz,nz) where kz,n = nπ

L
(4.43)

In this expression, L is the width of the quantum well.
The wavevector kz determines the spatial dependence of the polarization associated with

the collective excitation. This highlights the fact that our quantum model provides a nonlocal
description for the excitations of the electron gas. The nonlocal description stems from the
fact that the polarization is defined as a function of the coordinate z in space. In the classical
Drude description, excitations of the electron gas correspond to a uniform displacement of
charge in space, i.e. a spatially uniform polarization independent of z.

Let us now consider the charge distribution of the n = 1, 3, and 5 modes. The largest
oscillator strength mode, the n = 1 mode, has the form of a dipole. We conclude that this
mode is the Berreman mode. The n = 3 and n = 5 modes have charge distributions which
take the form of dipoles stacked top to bottom. Modes with even indices n are dark modes.
Their charge distributions are not dipole active, and consequently, they have zero oscillator
strength.

3The quantities ρα(z) and ρcoll
n (z) are not, however, dimensionally homogeneous. See [101101].
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Fig. 4.2 The current densities and the corresponding charge distributions are plot-
ted for the first three collective modes of largest oscillator strength, indexed by odd
j as described in the text, for a 100 nm InGaAs/AlInAs quantum well with an elec-
tronic density of Nv = 1.7 × 1019 cm−3.

4.2.4 Dispersion of Plasmon Modes

The absorptivity of the electron gas confined in InGaAs/AlInAs quantum wells of 50 nm,
100 nm, and 150 nm widths, calculated with the input-output formalism for a fixed electronic
density of 1.7 × 1019 cm−3, is plotted in the left panel of Fig. 4.34.3 for an incidence angle of
30◦. The relative oscillator strengths of the collective modes which give rise to the absorption
spectra are indicated by the height of the bars plotted at their respective energies.

In each of the spectra, the majority of the oscillator strength is concentrated into the
lowest energy mode which is identified as the n = 1 (Berreman) mode, whose charge dis-
tribution was shown in Fig. 4.24.2 to be that of a dipole. At energies greater than this mode,
there is a series of higher order modes of decreasing oscillator strength, which are associated
with the n = 3, 5, . . . current distributions described by Eq. (4.434.43). Since the indices n are
related to the wavevector kz,n, we may refer to a quantized dispersion Ωn (kz,n) of collective
modes.

We highlight that the classical Drude description for the electron gas cannot describe
a dispersion of collective modes. In the classical description, only a single collective mode,
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Fig. 4.3 The calculated absorptivity for a 30◦ angle of incidence is plotted for
wide quantum wells of various widths for a fixed volume electronic density of 1.7 ×
1019 cm−3 for a nonradiative linewidth of γNR = 7 meV. The relative oscillator
strengths of the modes are plotted, normalized to the largest oscillator strength
of the 150 nm well. On the right, the energies of the collective modes are plotted
as a function of the mode index (scatter points), and an interpolation function is
plotted (dotted lines).

corresponding to a uniform polarization of the electron gas, can be excited exactly at the
plasma energy. As described in Chapter 11, the Drude model is already insufficient to describe
the Berreman mode in the presence of electronic confinement, since the mode blueshifts
with increasing confinement. The blueshift of the Berreman mode is evident comparing the
absorptivity spectra from the 50 nm, 100 nm, and 150 nm wells in the left panel of Fig. 4.34.3.

In the right panel of Fig. 4.34.3, the energies ℏΩn of the collective modes for the three well
widths are plotted as a function of the mode index, n. An interpolation function for the set
of modes from each well is plotted as a dashed line to more clearly show the dispersion trend.
For each of the well widths, the energy separation of the modes increases in a superlinear
way with the mode index. The dispersion of modes depends strongly on the width of the
quantum well, which determines the electronic confinement.

The mode dispersions plotted in the right panel of Fig. 4.34.3 result from numerical cal-
culations. Other than indicating that the static electronic confinement is important in de-
termining the dispersion, the numerical solutions do not give much physical insight. In the
next section, we will derive an analytic expression for the dispersion of the collective modes
assuming an infinite square well, and then show that with suitable approximations, we may
even derive a dispersion relation for the collective modes arising in quantum wells of finite
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potential.

4.3 Longitudinal Plasmon Modes in an Infinite Square Well
In the first sections of this chapter, the collective modes of the confined electron gas were
constructed by defining a polarization for each optically active single particle transition, and
then by considering the coupling of the polarizations between the single particle excitations.
The collective modes, and their optical properties, were calculated numerically. In this
section, we apply the same quantum formalism to analytically calculate the collective modes
of the electron gas in an infinite square well, for which case, the single particle wavefunctions
and bound state energies take on relatively simple forms.

Two important findings will result from our analytic approach. First, we shall establish
that each collective mode Ωn=j in a square well arises from the coupling of single particle
transitions i → i + j with the same j. Second, we shall derive an analytic expression for the
collective mode dispersion as a function of the quantized longitudinal wavevector kz,j .

We then demonstrate that our analytic results can be extrapolated under the correct
assumptions to describe the collective modes experimentally observed in a heavily doped
InGaAs/AlInAs quantum well.

Consider an infinite square well of width L centered at L/2. The stationary states of
the time-independent Schrödinger equation and their energies are found as:

ϕn(z) =
√

2
L

sin
(

nπz

L

)
(4.44)

En = n2π2ℏ2

2m∗L2 , n = 1,2,3, . . . (4.45)

We proceed now to derive a few quantities which will be useful in solving for the collective
modes. The frequency of the i → i + j transitions can be written:

ωi→i+j = π2ℏ
2m∗L2 (i + j)2 − i2 = π2ℏ

2m∗L2 j (2i + j) (4.46)

The Fermi energy can be approximated as the energy of the highest occupied state, Nocc, as:

EF ≈ N2
occπ

2ℏ2

2m∗L2 (4.47)

For a noninteracting 3D electron gas, the Fermi energy takes the usual form:

E3D
F = ℏ2

2m∗

(
3π2Nv

) 2
3 (4.48)

where Nv is the number of electrons per volume. For a sufficiently wide quantum well with
many occupied subbands in which the level spacing is sufficiently small, the system may
be approximated as a 3D electron gas. From Eqs. (4.474.47) and (4.484.48), the volume electronic
density Nv can be related to Nocc:

Nv ≈ πN3
occ

3L3 (4.49)
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This relation becomes increasingly exact for large L and large Nocc.
We now derive an expression for ∆Ni→i+j , the surfacic population difference between

states i and i + j, in terms of the well width L and quantum numbers. At T=0 K, the
Fermi-Dirac distribution simplifies to:

fFD(E) =
{

1 if E ≤ EF

0 if E > EF
(4.50)

implying that only subbands with energies below the Fermi level are populated. Supposing
that the Fermi level is fixed such that the state Ei+j is unoccupied and the state Ei is oc-
cupied, as illustrated in Fig. 4.44.4, then the surfacic density of electrons on the subbands are,
respectively, Ni+j = 0 and Ni = ρ2D (EF − Ei), where ρ2D is the 2D density of states per
subband per area [111111]. We may intoduce the approximation EF ≈ Ei+j in order to write
Ni ≈ ρ2D (Ei+j − Ei). As illustrated in Fig. 4.44.4, this approximation leads to an overesti-
mation of the initial state subband population. With this approximation, the population
difference between states i and i + j can be written:

∆Ni→i+j ≈ ℏωi→i+j · ρ2D (4.51)

Substituting ρ2D = m∗/πℏ2 and ωi→i+j from Eq. (4.464.46), we have:

∆Ni→i+j ≈ π

2L2 j(2i + j) (4.52)

EF

Ei

Ei+1

j = 1

EF

Ei

Ei+3

j = 3

Fig. 4.4 At T=0 K, the surfacic population of the initial subband i is estimated
as Ni ≈ ρ2D (Ei+j − Ei), illustrated here with the blue shaded subbands. This
approximation leads to an overestimation of the initial state subband population.
The true populations for a Fermi level between the initial and final state are shown
in red.

We now evaluate the coupling coefficients Sαβ describing the coupling between optically
induced single particle transitions in an infinite square well. For convenience, we reproduce
Sαβ from Eq. (4.274.27):

Sαβ = 1
ℏωα

1
ℏωβ

(
ℏ2

2m∗

)2 ∫ ∞

−∞
ξα(z)ξβ(z) dz (4.53)
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The microcurrents describing the optical transitions in an infinite well take the form:

ξi→i+j(z) = π

L2

[
j sin

(2i + j

L
πz

)
− (2i + j) sin

(
jπz

L

)]
(4.54)

This expression is plotted in Fig. 4.54.5 for j = 1 and j = 3 for various values of i. The form
of ξi→i+j(z) is similar for varying i but differs for varying j. For i ≫ j, the curves approach
sin(jπz/L). Indeed, for i ≫ j, only the sine term with a factor of i contributes in Eq. (4.544.54),
and the expression for the microcurrents can be simplified to:

ξi→i+j(z) ≈ π

L2

[
−2i sin

(
jπz

L

)]
(4.55)

In quantum wells with many occupied subbands, Nocc ≫ 1. Because the final state involved
in a transition must be initially unoccupied, it holds that i ≥ (Nocc − j). The oscillator
strength of a single particle transition scales with j−2, so we can neglect all but the first
few j, thereby limiting the magnitude of j. Then, the condition that i ≫ j is satisfied for
the semiconductor system we study since for a 100 nm InGaAs quantum well, Nocc ≈ 20.
Substituting the expressions found in Eqs. (4.464.46) and (4.554.55) into Eq. (4.534.53), the coupling
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i = 1

i = 3

i = 50

0 L/2 L

j = 3

Normalized ξi→i+j(z)

Fig. 4.5 The normalized single particle microcurrents ξi→i+j(z) for the infinite
square well are plotted for j = 1 on the left and j = 3 on the right for various
initial states i.

coefficients can be evaluated as:

Si→i+j,i′→i′+j′ = 4ii′

π2j(2i + j)j′(2i′ + j′)

∫ L

0
sin
(

jπz

L

)
sin
(

j′πz

L

)
dz (4.56)

Noting that for i ≫ j, 2i + j ≈ 2i (and similarly for i’ and j’), and that sine functions of
different indices are orthogonal over a symmetric period:∫ L

0
sin(nz) sin(mz) dz = L

2 δnm, (4.57)
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Equation (4.564.56) can be simplified to:

Si→i+j,i′→i′+j′ = L

2π2
1
j

1
j′ δjj′ for i ≫ j, i′ ≫ j′ (4.58)

The expression no longer depends on the initial states i or i′. The δ-function implies that
only transitions with identical j couple to each other. Thus, the collective modes of the
system arise from the coupling of single-particle microcurrents with the same j.

The collective modes of the system are determined by calculating the zeros of the following
determinant:

∆j(ω) = 1 − 2e2

ℏϵ0εs

Nocc∑
i=1

Si→i+j,i′→i′+j′∆Ni→i+jωi→i+j

ω2 − ω2
i→i+j

(4.59)

In the sections which follow, two different approximation are introduced which permit
Eq. (4.594.59) to be solved. In what we term the metallic limit, we make the approxima-
tion that j2/Nocc ≪ 1. In this limit, we recover the Lindhard formula [7676, 7979, 148148] which
describes the dispersion of collective modes for a free electron gas. In what we term the
semiconductor limit, we make the approximation that the level spacing in the quantum well
is constant: ωi→i+1 = ω0. This is a rather good approximation for a wide InGaAs quantum
well, due to the finite confinement potential and the increasing value for the effective mass
with increasing energy (nonparabolicity). In this limit, we find a dispersion relation which
describes the experimentally observed modes in a 100 nm InGaAs AlInAs quantum well.

4.3.1 Metallic Limit
Using Eqs. (4.464.46), (4.524.52) and (4.584.58) to substitute expressions for the terms in the numera-
tor, and introducing the plasma frequency ω2

p = e2Nv(m∗ϵ0εs)−1, the determinant may be
rewritten as:

∆j(ω) = 1 −
πω2

p
4NvL3

Nocc∑
i=1

(2i + j)2

ω2 − ω2
i→i+j

(4.60)

After some manipulation, this expression may be rewritten:

∆j(ω) = 1 − 1
ω2

πω2
p

4NvL3

Nocc∑
i=1

(2i + j)2
(

1 +
ω2

i→i+j

ω2

)

1 −
(

ω2
i→i+j

ω2

)2 (4.61)

The denominator in the sum is simplified to one when:

ω2
i→i+j

ω2 ≪ 1 (4.62)

This holds for j2/Nocc ≪ 1, which we have defined as the metallic limit. To show this, we
use the facts that ωi→i+j ≤ ωNocc→Nocc+j and ω2 ≥ ω2

p (the latter because the bright modes
are always at energies above the plasma frequency) to establish an upper bound for the left
side of Eq. (4.624.62):

ω2
i→i+j

ω2 <
3ℏ2π3ϵ0εs

m∗L

j2

Nocc

(
1 + j

2Nocc

)2
(4.63)
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The right side of Eq. (4.634.63) is small for j2/Nocc ≪ 1. Since j ≥ 1, this occurs for large Nocc,
when many subbands are occupied, as in a metal.

With Eq. (4.624.62), the determinant takes the simpler form:

∆j(ω) = 1 − 1
ω2

πω2
p

4NvL3

Nocc∑
i=1

(2i + j)2
(

1 +
ω2

i→i+j

ω2

)
(4.64)

Inserting closed form expressions for ∑Nocc
i=1 i2 and ∑Nocc

i=1 i, we find that Ω, the zeros of the
determinant, are solutions to the following equation quadratic in Ω2:

AΩ4 + BΩ2 + C = 0
A = 1

B = −ω2
p

(
1 + 3(i + j)

2Nocc
+ 3

4N2
occ

(2
3 + j(j + 2)

))

C = −12
5 ω2

p
EFEj

ℏ2

(
1 + 5(1 + j)

2Nocc
+ 5

2N2
occ

(2
3 + 2j + j2

)
+ 5j

4N3
occ

(
2 + 3j + j2

)

+ 5
16N4

occ

(
−16

30 + j2
(
4 + 4j + j2

)))
(4.65)

The quantities Ej and EF have been introduced according to Eq. (4.454.45) and Eq. (4.474.47).
Having already limited ourselves to the regime where j2/Nocc ≪ 1, we may write the
solution to Eq. (4.654.65) using only the first terms for B and C:

Ω2
j =

ω2
p

2 +
ω2

p
2

√
1 + 48EFEj

5(ℏωp)2 (4.66)

Using the approximation
√

1 + x ≈ 1 + x/2, the solutions become:

Ω2
j ≈ ω2

p + 12
5

EFEj

ℏ2 (4.67)

Introducing the Fermi velocity via EF = m∗v2
F
/
2 and substituting for Ej via Eq. (4.454.45), the

solutions can be written:
Ω2

j ≈ ω2
p + 3

5v2
F

(
πj

L

)2
(4.68)

This dispersion relation is identical to the one derived by Lindhard for an electron gas using
the rotating phase approximation [7676], and experimentally investigated by Lindau et al. [7575]
in thin metal films. The higher order (j ≥ 3, 5, 7 . . . ) modes are known as Tonks-Dattner
modes [5656].

4.3.2 Semiconductor Limit
The determinant of Eq. (4.594.59) can be written in a simpler form by introducing the plasma fre-
quency associated with each intersubband transition ωpi→i+j , defined in Eq. (1.311.31). Making
the substitution, the determinant takes the form:

∆j(ω) = 1 −
Nocc∑
i=1

ω2
pi→i+j

ω2 − ω2
i→i+j

(4.69)
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The zeros of Eq. (4.694.69) can be readily found assuming constant energy spacing ω0 between
bound states, a reasonable approximation for a semiconductor quantum well. With this
assumption, ω2

i→i+j can be written as (jω0)2 and the zeros of the determinant are found as:

Ω2
j = (jω0)2 +

Nocc∑
i=1

ω2
pi→i+j

(4.70)

The sum of the squared intersubband plasma frequencies is equal to the bulk plasma fre-
quency [88], and so the solutions may be written as:

Ω2
j = ω2

0j2 + ω2
p (4.71)

This expression establishes a relationship between the electronic confinement and the disper-
sion of the plasmon modes. In the absence of confinement (ω0 = 0), the only mode excited
is at the plasma frequency, and the classical description for the Berreman mode is recovered.
In the presence of confinement (nonzero ω0), the j = 1 Berreman mode is blueshifted from
the plasma frequency ωp, and the dispersion of modes is modified.

In the following section, it will be demonstrated that Eq. (4.714.71) correctly describes the
dispersion of experimentally observed collective modes in a 100 nm InGaAs/AlInAs quantum
well. In the remainder of this section, it is shown that this expression correctly describes
the dispersion of collective modes calculated numerically for InGaAs/AlInAs quantum wells
considering a finite barrier potential and nonparabolicity.

The analytic dispersion of Eq. (4.714.71) is plotted against numerically calculated plasmon
energies for quantum wells of fixed electronic density but varying width in Fig. 4.6a4.6a, and
for quantum wells of fixed width but varying electronic density in Fig. 4.6b4.6b. The average
subband separation is calculated for each well as ℏω0 = eVbarr/Nst , where eVbarr is the depth
of the quantum well (equal to 0.52 eV for InGaAs/AlInAs wells grown on InP), and Nst is
the number of bound states. In all cases, the analytic expression of Eq. (4.714.71) well describes
the dispersion of the numerically calculated modes.

In Fig. 4.6a4.6a, the dispersion curves converge at j = 1 and diverge for j > 1. The average
level spacing ω0 is increased as the width of the quantum well is reduced, resulting in a
more rapid increase in the slope of the mode dispersion for thinner wells. For the wells of
fixed width but varying electronic density in Fig. 4.6b4.6b, the dispersion curves for the various
electronic densities are parallel but offset, indicating that the curvature of the dispersion is
not affected by the electronic density.

In this section, we have linked the form of the collective mode dispersion to the electronic
confinement, and in effect, have demonstrated that the electronic confinement determines
the nonlocal nature, or kz dependence, of the collective mode.

4.4 Experimental Observation of Higher Order Longitudinal Plas-
mon Modes

The higher order longitudinal collective modes were experimentally observed in a 100 nm
InGaAs/AlInAs quantum well with an electronic density of 7.5 × 1018 cm−3 in thermal emis-
sion spectra [138138]. The spectra were measured in experiments like those described in Sec-
tion 2.4.12.4.1, in which the electron gas is thermally excited by Joule heating from an in-plane
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Fig. 4.6 Collective mode energies calculated from the the numerical diagonaliza-
tion of Ĥcoll

mat are plotted as points for varying well width L and fixed Nv in (a)(a) and
for varying Nv and fixed L in (b)(b). Dispersion relations from the analytic formula
of Eq. (4.714.71) are plotted as continuous curves.

current. Because the absorptivity and emissivity are equivalent at a given frequency accord-
ing to Kirchhoff’s law, this experiment permits a direct observation of the plasmonic modes
of the system.

The thermal emission spectra from the experiment of [138138] are plotted in Fig. 4.7a4.7a for four
different angles in red. The emission spectra were measured at room temperature and have
been normalized to one. In black, the theoretically predicted emission spectra are plotted.

Multiple resonances are clearly observed in each of the spectra at energies above the
dominant (Berreman) mode. The Berreman mode radiatively broadens with increasing angle,
as was described in Section 2.2.12.2.1. The radiative decay rate of the higher energy modes also
increases with angle. However, these modes do not become severely overdamped like the
Berreman mode because their radiative decay rates never surpass the nonradiative decay
rate γNR. As a result, the emissivity of the higher order modes continuously increases with
angle. For this reason, the modes are more easily observed in spectra measured at high
angles. The theoretical curves well reproduce the experimental data at all angles, confirming
the validity of the quantum model.

The square of the collective mode energies extracted from the spectra are plotted as a
function of odd j in Fig. 4.7b4.7b and compared with the dispersion found analytically in the
semiconductor limit in Eq. (4.714.71). The analytic dispersion is plotted with a continuous black
curve using the values ℏω0 = 17 meV for the average subband separation and ℏωp = 114 meV
for the plasma energy and is found to closely model the experimental data.
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Fig. 4.7 (a)(a) Experimentally measured thermal emission spectra of a 100 nm In-
GaAs/AlInAs quantum well doped with electronic density of Nv = 7.5 × 1018 cm−3

are plotted in red. Calculated emission spectra are plotted in black. Figure re-
produced from [138138]. (b)(b) Energies of the plasmon modes extracted from (a)(a) are
plotted as a function of j. The analytic dispersion relation of Eq. (4.714.71) is plotted
as a continuous black line.

4.5 Conclusion
A microscopic quantum model was introduced in the PZW formalism to describe the collec-
tive modes of the confined electron gas. The collective modes were constructed by consider-
ing the coupling between single particle transitions through the P̂2 term of the Hamiltonian.
Because the polarization associated with a single particle transition is directly expressed in
terms of the electronic wavefunctions of the states involved in the transition, size confinement
is naturally considered in the calculation of the collective modes.

Through the definition of a spatially dependent polarization operator, the model de-
scribes the nonlocality (or kz-dependence) of the collective modes. This is in strong contrast
to the Drude model, for which no spatial coordinate (or wavevector) enters the description
of the response. By applying the quantum model to analytically study the collective modes
in an infinite square well, we found expressions for the dispersion of longitudinal collective
modes with quantized wavevector kz. We demonstrated that depending on the approxi-
mations made, the Lindhard formula for the modes of a free plasma can be recovered, or
the experimentally observed higher order modes in a semiconductor quantum well can be
modeled.

The microscopic quantum model introduced in this chapter is general insofar as it can
be used to describe the collective modes of the electron gas in any static potential once the
bound electronic states are known. In the next chapter, we attempt to engineer the collective
modes of the system through the careful design of the confinement potential.

http://dx.doi.org/10.1103/PhysRevLett.125.187401
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Chapter 5

Collective Mode Engineering

A primary aim in nanophotonics is to leverage fundamental knowledge of the interaction
of light and matter to engineer structures with novel optical properties. In the previous
chapter, the collective modes of a highly doped square quantum well were described with a
microscopic quantum model. In this chapter, we exploit our knowledge of the microscopic
origin of the collective electronic response to engineer novel collective modes.

The degree of freedom available to engineer the collective modes is the electronic poten-
tial, as it determines the single particle electronic states from which the collective response
is determined. The techniques of band structure engineering, including, for example, the use
of tunnel-coupled quantum wells and the varying of alloy content across a heterostructure,
can be used to experimentally realize designer potentials.

The collective optical response cannot be directly inferred from the band structure dia-
gram, beyond a very limited physical intuition. The collective modes are determined only
after a diagonalization of the Hamiltonian describing all of the single particle transitions and
their dipole-dipole coupling. This makes the engineering of the collective modes a difficult
task.

Two key findings from our study in the previous chapter of the collective modes arising
in a square potential suggest points of departure for our engineering effort:

1. It was established that the coupling strength between any two single particle transitions
is determined by the overlap of the microcurrents of the transitions. For the square well,
a series of bright collective modes indexed with odd-j arise because the microcurrents
of single particle transitions i → i + j and i′ → i′ + j′ strongly overlap for j = j’ and
are orthogonal for j ̸= j′. To engineer novel collective modes, we must break the strict
orthogonality of the microcurrents for j ̸= j′.

2. The collective modes are bright (have a nonzero oscillator strength) when the spatial
integral of the collective microcurrent is nonzero. For the symmetric square well case,
this occurs only for odd sinusoidal collective microcurrents. With the breaking of the
potential symmetry, novel bright modes can be expected.

This chapter is organized as follows. In the first section, the collective modes are calcu-
lated for a tunnel coupled quantum well heterostructure, in which the strict orthogonality
condition of (1) above is broken. In the second section, the collective modes are calculated
for a quantum well in which the potential symmetry is broken with an applied electric field.

99
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In the third section, the breaking of the potential symmetry is studied experimentally for
step well structures.

5.1 Collective Modes from Inter-Miniband Transitions
In this section, the absorption spectrum of the 54 nm structure shown in Fig. 5.1a5.1a is cal-
culated. The superlattice structure consists of alternating 7.5 nm and 5 nm quantum wells,
separated by 1.5 nm barriers. The electronic band structure is dramatically different from
that of a 54 nm square well, due to the formation of minibands of electronic states.
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Fig. 5.1 (a)(a) The introduction of six 1.5 nm barriers into a 54 nm square quantum
well results in the formation of electronic minibands. The Fermi level calculated
for an electronic density of 2 × 1019 cm−3 is indicated with the dashed red line. (b)(b)
The band structure of a single period of tunnel coupled 7.5 nm and 5 nm quantum
wells is plotted. (c)(c) The single particle microcurrents for transitions between states
i and i + j of the structure of two tunnel coupled wells are normalized and plotted
for j = 1, 2, and 3.

The design of the 54 nm structure was motivated by the optical properties of asymmetric
tunnel coupled quantum wells [120120]. In Fig. 5.1b5.1b, the band structure of tunnel coupled 7.5 nm
and 5 nm quantum wells, representing a single period of the 54 nm superlattice structure, is
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plotted. In the tunnel coupled structure, unlike in a square well, the dipole matrix elements
between states i and i + j are nonzero for even and odd j.

The single particle microcurrents associated with transitions between states i → i + j of
the tunnel coupled quantum well structure are plotted in Fig. 5.1c5.1c, up to j = 3. For j = 1
and j = 3, the single particle microcurrents approximate the form of sin(jπz/L) for odd j,
where L is the total structure length, and therefore have approximately the same form as the
microcurrents associated with the j = 1 and j = 3 transitions of a square quantum well. On
the contrary, the j = 2 single particle microcurrents differ dramatically from the sin(2πz/L)
form they follow in a square quantum well. As a a consequence, the microcurrents of the
j = 2 family of transitions are not strictly orthogonal to the microcurrents associated with
odd j transitions, and the transitions can couple. As we have set out to do, we have broken
the strict orthogonality between microcurrents associated with single particle transitions of
different j.

We chose to study the collective modes of the 54 nm structure of Fig. 5.1a5.1a, in which the
structure of Fig. 5.1b5.1b is repeated, in order to investigate a structure with many occupied
subbands. The absorption spectrum, calculated with quantum model introduced in the
previous chapter, is plotted in Fig. 5.25.2. The absorption spectrum of an InGaAs/AlInAs
quantum well of the same total thickness with the same electronic density, is plotted on the
same axis to highlight the dramatic effect of the band structure engineering on the collective
response of the tunnel coupled quantum well structure. In contrast to the absorptivity
spectrum of the square well, multiple peaks of similar amplitude, resulting from modes of
similar oscillator strength, are present in the absorptivity spectrum of the tunnel coupled
quantum well structure. Notably, the largest oscillator strength mode is not the lowest
energy mode as in the square well case.

50 100 150 200 250 300 350 400 450

Energy (meV)

0.00

0.25

0.50

0.75

1.00

A
b

so
rp

ti
v
it

y

Minibands

54 nm square well

Fig. 5.2 The calculated absorptivity is plotted for the 54 nm tunnel coupled struc-
ture of Fig. 5.1a5.1a and for a single 54 nm InGaAs/InAlAs quantum well, both doped
with an electronic density of Nv = 2 × 1019 cm−3. The absorptivity is calculated
considering a gold layer adjacent to each structure for 45◦ angle of incidence, using
a nonradiative linewidth of 9 meV.

This demonstrates that the collective electronic response can be artificially modified by
the engineering of the potential which confines the constituent electrons. We did not attempt
an experimental study of the engineered structure, expecting that the collective modes would
not survive the disorder resulting from the many interfaces and the imperfect growth of the
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structure, effects which are not considered in the above modeling. Previously, a structure
of two tunnel coupled quantum wells was experimentally investigated [101101]. The quantum
model predicted two collective modes separated by an energy larger than their linewidths,
but a single broad mode was observed instead.

5.2 Symmetry Breaking with Applied Field
The conduction band profile resulting from the application of a 0.5 V bias across a structure
consisting of a 50 nm AlInAs barrier, a 100 nm InGaAs quantum well doped with an electronic
density of Nv = 1.7×1019 cm−3, and a 50 nm AlInAs barrier is plotted in the inset of Fig. 5.3a5.3a.
The potential is calculated as the self-consistent solution to the coupled Schrödinger-Poisson
equations in the constant effective mass approximation using nextnano, considering InGaAs
contact layers doped with an electronic density of Nv = 2 × 1018 cm−3 on either side of
the structure. The final electronic states, for which the square moduli are plotted, were
calculated considering nonparabolicity using a three-band k · p model for the effective mass.
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Fig. 5.3 (a)(a) The absorptivity spectrum and the normalized oscillator strengths of
the collective modes are plotted for the biased quantum well shown in the inset. (b)(b)
The collective microcurrents corresponding to the modes of (a)(a) are plotted along
the growth direction.

In the main panel of Fig. 5.3a5.3a, the absorptivity spectrum of the biased 100 nm well
calculated with the quantum model is plotted. The absorptivity is calculated for a 30◦ angle
of incidence, for a gold layer next to the structure, and for nonradiative linewidths of 9 meV.
The oscillator strengths of the collective modes are plotted with bars beneath the spectrum
at the energies of the modes. The modes are indexed one through nine with increasing
energy. In Fig. 5.3b5.3b, the microcurrents of the collective modes are plotted along the growth
direction, indexed to correspond with the modes indicated in (a)(a).
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The microcurrents plotted in red, indexed with odd-j, have an odd number of lobes and
an even number of nodes, and thus resemble the microcurrents of the bright modes of a
square well in the absence of a bias. The bias has the effect of distorting the sinusoidal shape
of the microcurrents. As a consequence, the oscillator strength of the modes does not scale
with j−2, as it does for a square well without a bias. Compared to the square well without a
bias, the j = 1 mode has a reduced oscillator strength and effective length, and j = 3 mode
has an increased oscillator strength and effective length.

The microcurrents plotted in blue, indexed with even-j, have an even number of lobes
and an odd number of nodes. In a square well without an applied bias, collective modes with
this symmetry have zero oscillator strength (are dark), as the integral of the microcurrent
is exactly zero. With the applied bias, the positive and negative lobes of the microcurrent
no longer perfectly cancel, and these modes acquire nonzero oscillator strength, as indicated
with the blue bars in (a)(a).

This demonstrates that by breaking the square well symmetry, the oscillator strength of
the collective modes can be redistributed. Most strikingly, modes which are strictly dark in
a symmetric square well can be made bright with the breaking of the symmetry under an
applied bias.

5.3 Plasmons in a Step Well Potential
In this section, the collective modes of step well structures, like that shown in the transmis-
sion electron microscope (TEM) image of Fig. 5.4a5.4a, are studied experimentally and theoret-
ically. The step potential structures are realized with the growth of a 50 nm quarternary
AlxGayIn1−x−yAs layer next to a 50 nm InGaAs layer, between AlInAs barriers, lattice
matched to InP. Both the InGaAs and quaternary layers are doped with an electronic den-
sity Nv.
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Fig. 5.4 (a)(a) A TEM image of an epitaxially grown step structure is shown, with
a sketch of the step potential. The TEM image was acquired by Konstantinos
Pantzas. (b)(b) The conduction band offset of the quaternary layer is plotted as a
function of the aluminum content, x, and AlInAs content, z.
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By varying the aluminum content, x, of the quaternary layer, the height of the step
with respect to the bottom of the InGaAs conduction band can be varied between zero and
the 0.52 eV conduction band offset of the lattice-matched InGaAs/InAlAs heterojunction, as
shown in Fig. 5.4b5.4b. The quaternary may equivalently be written (InGaAs)1−z(InAlAs)z, in
which case z determines the height of the step. The step height is plotted in Fig. 5.4b5.4b using
a linear interpolation between the ternary endpoints, a good approximation considering the
small bowing parameter of the quaternary [142142].

The quaternary layer can be modeled with a repeating series of tunnel-coupled ternary
quantum wells. A quaternary layer with InAlAs fraction z is modeled with alternating
InGaAs layers of width (1 − z)p and InAlAs layers of width zp where p is the width of
the well/barrier period. In this chapter, quaternary regions are modeled in band structure
calculations with repeating 2 nm periods of ternary wells and barriers.

All of the step well structures studied in this chapter were grown by Metal Organic Chem-
ical Vapor Deposition (MOCVD) on an InP substrate by the team of Grégoire Beaudoin,
Konstantinos Pantzas, and Isabelle Sagnes at the Centre de Nanosciences et Nanotechnolo-
gies (C2N) in Palaiseau, France.

5.3.1 Experimental Study of Varying Fermi Level

Two step well structures were grown with the same InAlAs content of z = 0.375 in the
quaternary layer but with different nominal electronic densities of Nv = 2×1018 cm−3 (sample
V0388) and Nv = 2 × 1019 cm−3 (sample V0389). The InAlAs content was experimentally
determined from high-angle annular dark-field scanning transmission electron microscopy
(HAADF-STEM) images by Konstantinos Pantzas.1

The two different electronic densities were chosen so that the Fermi level would lie below
the step in sample V0388, and above the step in sample V0389. When the Fermi level is
below the step, the electrons are confined to a square-like potential and a single collective
mode is expected. A dramatic change in the spectrum is observed when the Fermi level is
above the step, as we now show.

Experimental transmission spectra of the two samples are shown in Fig. 5.55.5. The spectra
were measured at room temperature for p-polarized light incident at Brewster’s angle. The
spectra have been normalized with only the p-polarized transmission spectra of a region of
the substrate where the step well structure has been etched away.

The spectrum of the lower doped sample has a single feature around 100 meV, while
the spectrum of the higher doped sample has two resonant features of similar amplitude at
140 meV and 170 meV. This demonstrates a remarkable quantum engineering of the collective
electronic response which is strikingly different from the square well case, and which cannot
be described with the classical Drude model of the electron gas.

The absorptivity of the lower energy mode of the V0389 sample cannot be accurately
extracted from Brewster’s angle transmission spectra as 1 − Transmission, because it sits
below the reflective edge of the higher energy mode. The specular reflection would need to
be collected to determine the experimental absorptivity of this mode.

1As shown in the growth sheets on Pages 195195 and 196196, the step region of samples V0388 and V0389 was
originally intended to be realized with a digital alloy of alternating 1 nm barriers and wells. The HAADF-
STEM analysis revealed a continuous quaternary region was actually grown.
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Fig. 5.5 Experimental 18◦ p-polarized transmission spectra measured at room tem-
perature and normalized by a substrate reference are plotted in the upper panel.
Absorptivity spectra calculated for the same conditions are plotted in the lower
panel. The Fermi levels corresponding to the electronic densities used for the sim-
ulations are indicated on the step well potential.

Simulated absorptivity spectra, plotted in Fig. 5.55.5, were calculated for a step height fixed
by z = 0.225, and for electronic densities of Nv = 3.2 × 1018 cm−3 and Nv = 1.6 × 1019 cm−3.
The spectra were calculated using the quantum model for an 18◦ angle of incidence, with
nonradiative linewidths of γNR = 5 meV and γNR = 12 meV for the lower and higher doped
samples, respectively. The step potential, the square moduli of the calculated wavefunctions,
and the two Fermi levels determined from the simulations are plotted in the right panel of
Fig. 5.55.5. For z = 0.225, the step height is 116 meV.

The calculated Fermi level of the V0388 sample actually sits above the step, and con-
sequently, two collective modes are predicted by the simulation. However, the lower energy
mode (not shown) sits below the cut off of the MCT detector, and is therefore not observed
in the experiment.

The energies of the plasmon modes and the nonradiative linewidths used in the modeling
correspond to quality factors of Q = 20 for the 100 meV mode of the V0388 sample, and
Q ≈ 13 for the 140 meV and 170 meV modes of the V0389 sample. The reduction in the
quality factor could be attributed to increased scattering in the quaternary region of the
structure, since the collective mode of the lower doped sample is largely confined to the
ternary well below the step.

The InAlAs content reported from the simulations is underestimated because the in-
fluence of static charge effects on the electronic potential has not been considered. These
effects are shown in Section 5.3.35.3.3 to lower the step height. This explains the larger value
of z determined from the HAADF-STEM images as compared with the value of z extracted
from the simulations.
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5.3.2 Experimental Study of Varying Step Height

To study the collective modes of the step well structure as a function of the step height, a
series of samples was grown in which the nominal InAlAs fraction of the quaternary region
was varied between z = 0.25 and z = 0.60. The step well region of each sample was nominally
doped with an electronic density of 2 × 1019 cm−3. A summary of the samples is found in
Table 5.15.1. The sample growth sheets can be found on Pages 197197 to 200200.

z Nv

Sample Nominal Experimental Nominal Experimental
V0588 0.25 0.13 2 × 1019 cm−3 1.73 × 1019 cm−3

V0589 0.40 0.23 2 × 1019 cm−3 1.58 × 1019 cm−3

V0390 0.48* 0.30 2 × 1019 cm−3 1.50 × 1019 cm−3

V0590 0.60 0.35 2 × 1019 cm−3 1.40 × 1019 cm−3

* This value was determined from high-angle annular dark-field scanning transmis-
sion electron microscopy (HAADF-STEM) images by Konstantinos Pantzas. From
the same images, the InGaAs and quaternary layers of this sample were determined
to be 65 nm and 61 nm thick. These dimensions are used in the simulations of this
sample.

Table 5.1: Summary of samples with varying step height. Recall z indicates the InAlAs
fraction of the quaternary according to (InGaAs)1−z(InAlAs)z.

The samples were investigated with room temperature transmission measurements at
Brewster’s angle, the results of which are shown in Fig. 5.65.6. The values of z indicated in
the legend are extracted from modeling of the experimental spectra. Two resonances can
be observed in each spectrum. The higher energy resonance is hardly affected by variations
in the step height. It is always centered at 169 meV with near constant amplitude. On the
contrary, the lower energy resonance redshifts and decreases in amplitude with increasing
step height. For convenience, we denote the higher energy mode as PT and the lower energy
mode as PQ, where T and Q refer to ternary and quaternary for reasons which will become
apparent.

The experimental transmission spectra have been normalized according to the procedure
described in Section 2.1.12.1.1, and are additionally normalized to one at 200 meV. The diverging
baselines of the spectra at low energies are a consequence of the normalization, as detailed
in Section 2.1.32.1.3.

Simulated absorption spectra are shown in the bottom panel of Fig. 5.65.6. The values of
the InAlAs fraction in the quaternary layer and the electronic density used in the simulations
to model the experimental spectra are compared with the nominal values in Table 5.15.1.

The electronic densities extracted from the modeling of the experimental spectra sys-
tematically decrease with increasing InAlAs fraction, z. This is attributed to an increase in
the ionization energy for dopants in the quaternary layer with increasing step height, since
as the step height is increased, the energy difference between the impurity band and the
conduction band minimum of the quaternary layer is increased.

The InAlAs fraction extracted from the modeling of the experimental spectra is always
lower than the nominal value. This is attributed to the fact that static charge effects have
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Fig. 5.6 Experimental 18◦ transmission spectra measured at room temperature
are plotted in the upper panel. Absorptivity spectra calculated for p-polarized light
incident at 18◦ are plotted in the lower panel using the InAlAs content indicated
in the legend, the value of Nv reported in Table 5.15.1 under Experimental, and a
nonradiative linewidth of γNR = 9 meV.

not been taken into account in the band structure calculation. This point is considered in
greater detail in Section 5.3.35.3.3.

For each pair of z and Nv for which the experimental spectra are modeled, the Fermi level
is found to be at the same energy, 0.398 eV above the InGaAs conduction band minimum,
in the band structure calculations. Because the electronic density of states decreases with
increasing z, the electronic density must be reduced in the simulations to keep the Fermi
level constant.

Let us denote the difference between the Fermi level and the InGaAs conduction band
minimum as ∆T and the difference between the Fermi level and the quaternary conduction
band minimum as ∆Q, as sketched in Fig. 5.75.7. The values of ∆T and ∆Q independently fix
the energies of the PT and PQ modes in the step well spectra for a constant Fermi level.
With varying z, ∆T remains constant, explaining the constant energy of the PT resonance.
On the contrary, ∆Q decreases with increasing z, resulting in the redshift of the PQ mode.

This suggests that the lower energy mode is localized in the quaternary side of the step
well, and the higher energy mode is localized in the ternary side of the step well. This is
confirmed with a microscopic description of the current density of each mode in Section 5.3.45.3.4.

The PT and PQ modes of the step well structure can be modeled by separate 50 nm
InGaAs/AlInAs and (InGaAs)1−z(InAlAs)z/AlInAs quantum wells, respectively, when the
Fermi level in each well is set by ∆T and ∆Q. This is demonstrated in Fig. 5.85.8 for the lower
energy mode of the step well structure. The experimental energies of the PT and PQ modes
are plotted in black as a function of the InAlAs content in the quaternary layer of the step.
In red, the calculated Berreman mode energies for the 50 nm quaternary well with Fermi
level set by ∆Q are plotted. The energies of the modes calculated for the 50 nm quaternary
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Fig. 5.7 The quantities ∆T and ∆Q are defined for a constant Fermi level. The
dependence of ∆Q on the InAlAs content z is made explicit.

well reproduce almost exactly the experimentally observed energies.

0.2 0.3

InAlAs content, z

130

140

150

160

170

E
n

er
gy

(m
eV

)

PT

PQ

Experiment

0 50

Position (nm)

0.0

0.2

0.4

E
n

er
gy

(e
V

)

z

∆Q(z)

Fermi level

0 50

Position (nm)

0.0

0.2

0.4

E
n

er
gy

(e
V

)

z

Nv

Fermi level

Fig. 5.8 In black, the experimental PT and PQ energies are plotted as a function of
the InAlAs content in the step. In red, the Berreman modes of a 50 nm quaternary
well, calculated for the same ∆Q as the step well structure, as sketched on the
bottom right, are plotted for varying z. In green, the Berreman modes of a 50 nm
quaternary well, calculated using the electronic density of the step well structure
as sketched in the upper right, are plotted for varying z.

The step well structures consist of two material layers with different effective masses.
Therefore, it interesting to ask if the two collective modes of the step well can be described
classically by considering a separate plasma energy for each side of the well.2 This cor-
responds to describing the step well with separate 50 nm quantum wells with the same

2Recall that the Berreman mode of a wide quantum well can be described classically, considering only the
Drude model and a thin film geometry, in which case the mode is resonant at the plasma energy.
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electronic density for each side of the step.
The green curve of Fig. 5.85.8 demonstrates that it is not possible to describe the modes

of the step well in this way. The green curve shows the Berreman mode energies of a 50 nm
quaternary well calculated using the values of Nv extracted from the experiment as the
quaternary content is varied. The curve is shifted to significantly higher energy with respect
to the experimental PQ modes (black).

As already observed, the experimental modes can be reproduced when ∆Q is fixed in the
50 nm quaternary well (red). However, fixing ∆Q requires a different electronic density than
that of the full step structure, which is nonphysical. We conclude that a quantum description
is necessary to model the collective modes.

5.3.3 Static Charge Effects on Step Potential
When the electronic charge distribution is not identical to the charge distribution of the
donor ions, an electrostatic potential arises (see Section 1.2.2.11.2.2.1). In the step well structures,
which are nominally uniformly doped, the electronic charge density is greater on the deeper
side of the well. Consequently, static charge effects are significant.

In Fig. 5.9a5.9a, the step potential for an InAlAs fraction of z = 0.60 is plotted in gray,
neglecting charge effects. The potential found as as the self-consistent solution to the coupled
Schrödinger and Poisson equations is plotted in black. The self-consistent solution was
calculated with nextnano using an 8-band k · p model for the effective mass and considering
a volume electron density of Nv = 1.75×1019 cm−3. The charge effects result in a significant
lowering of the step height from 0.312 eV to 0.207 eV.

In the experimental studies reported above, the InAlAs fraction was extracted from
simulations in which charge effects were neglected. When neglecting charge effects, the
InAlAs fraction must be underestimated to have the correct ∆Q to correctly reproduce the
energy of the lower energy step well mode.

In Fig. 5.9b5.9b, the InAlAs fraction z extracted from modeling of the experimental spectra
is compared with the nominal value of z (or the value of z determined by HAADF-STEM,
indicated by empty markers), considering (red) and neglecting (blue) charge effects. When
charge effects are neglected, the extracted value of z diverges away from the nominal value
towards smaller values with increasing z. When charge effects are taken into account, the
value of z extracted from the modeling of the experiment and the nominal value do not
diverge, and instead offset by a small but constant amount.

The divergence between the nominal and extracted value of z with increasing z when
charge effects are neglected implies that charge effects are increasingly important as the step
height is increased. This is because the distribution of electronic charge becomes increasingly
non-uniform as the step height is increased.

5.3.4 Microscopic Description of Step Potential Modes
In this section, the microscopic properties of the collective modes of the step well are inves-
tigated. We begin by more closely examining the calculated absorption spectra of the step
well as a function of the step height. In the color plot of Fig. 5.105.10, the absorptivity of a
100 nm step well, calculated for an 18◦ angle of incidence and for a fixed Fermi level of 0.4 eV,
is plotted on a logarithmic scale as a function of the InAlAs content in the quaternary side
of the well.
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Fig. 5.9 (a)(a) The step potential calculated self-consistently as the solution to the
coupled Schrödinger and Poisson equations (black) is compared with the potential
determined only by the conduction band offsets of the materials (gray). An InAlAs
content of z = 0.60 and a volume charge density of Nv = 1.75 × 1019 cm−3 were
used in the calculation. (b)(b) The InAlAs content z extracted from modeling of the
experimental results is compared with the nominal value of z, or where indicated
with empty markers, the value of z determined by HAADF-STEM.

The logarithmic scale permits three branches of modes to be identified in the color plot.
The highest energy branch, marked with three blue dots, is nearly constant in energy as a
function of z, and is identified as the PT mode observed in the experiments of the previous
sections. The mode is labeled as P(1)

T on the color plot for reasons which will become clear.
The lowest energy branch, marked with three red dots, redshifts with increasing z. This
mode corresponds to the PQ mode observed in the experiments, and is denoted P(1)

Q on the
color plot. A third branch of modes is observed between the two already identified branches.
This mode, which is always approximately 24 meV above the P(1)

Q mode, is labeled P(3)
Q . Due

to its small oscillator strength, this mode was not observed in the experiments.
The InAlAs content, z, is varied from zero to 0.5 on the horizontal axis of the color plot.

At z = 0, the step height is zero, and the structure is that of the 100 nm InGaAs/InAlAs
quantum well sketched in Panel (b). The energies of the j = 1, 3, and 5 longitudinal modes
of the 100 nm InGaAs/InAlAs quantum well are indicated on the left edge of the color plot
in magenta. As z → 0, the modes of the step well converge to the modes of the 100 nm well,
as they must.

On the right side of the color plot where z = 0.5, the energies of the j = 1, 3, and 5
longitudinal modes of the 50 nm quaternary well sketched in Panel (c), with z = 0.5 and
with a Fermi level set by ∆Q = 0.14 eV, are indicated. Likewise, the j = 1 (Berreman) mode
of the 50 nm InGaAs/InAlAs quantum well sketched in Panel (d) is also indicated on the
right edge of the color plot, in blue.
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Fig. 5.10 (a) The calculated absorptivity of a 100 nm step well with a Fermi level
of 0.4 eV (sketched in white) is plotted with a log scale color map as a function of
the InAlAs content in the quaternary side of the well for an 18◦ angle of incidence.
The magenta annotations on the left side of the color plot correspond to the modes
of the 100 nm InGaAs/InAlAs quantum well sketched in (b). The red and blue
annotations on the right side of the color plot correspond to the modes of the 50 nm
(InGaAs)0.5 (InAlAs)0.5/InAlAs quantum well sketched in (c), and the first mode
of the 50 nm InGaAs/InAlAs quantum well sketched in (d). The microcurrents of
the modes indicated with dots on the color map are plotted in Fig. 5.115.11.

The P(1)
Q and P(3)

Q modes of the step well converge to the j = 1 and j = 3 modes (red
annotations) of the 50 nm quaternary well (Panel (c)), as the z content of the step approaches
0.5. The P(1)

T mode of the step well converges to the j = 1 mode of the 50 nm InGaAs/InAlAs
well (Panel (d)). This suggests that the P(1)

Q and P(3)
Q modes and the P(1)

T mode are well
localized, respectively, to the quaternary and ternary sides of the step well, and are thus
spatially separated.

As the step height is decreased, the P(3)
Q mode blueshifts until it merges into the P(1)

T
mode at approximately z = 0.23. The single mode at z = 0.23 results from the merging of
two modes localized on different sides of the well, and is therefore delocalized across the entire
step well. This interpretation is confirmed by the microcurrents which we now consider.

The microcurrents of the two modes of largest oscillator strength for z = 0.06, 0.23 and 0.46,
corresponding to the modes indicated with blue and red dots on the color plot of Fig. 5.105.10,
are plotted in Fig. 5.115.11. In Panel (a), the microcurrents of the two modes for z = 0.06 are
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shown to be delocalized across the entire 100 nm step well, and are similar in form to the
j = 1 and j = 3 modes of a 100 nm quantum well. Notably, the slight perturbation intro-
duced by the small step breaks their symmetry in a similar manner to what was observed
for the square quantum well under an applied bias in Fig. 6.16.1.
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Fig. 5.11 The microcurrents of the modes corresponding to the blue and red dots
on the color plot of Fig. 5.105.10 are plotted. The quaternary, or step, region of the
step well is indicated with gray shading.

For z = 0.23 and z = 0.46, the lower energy mode, for which the red microcurrents are
plotted in Panels (b) and (c), corresponds to the P(1)

Q mode. The microcurrents of this mode
are almost completely localized to the quaternary side of the step well. The localization of
the microcurrent to the quaternary region is slightly more strict for the larger step height,
z = 0.46.

The higher energy mode for z = 0.23 is the mode at the intersection of the P(3)
Q and P(1)

T
modes. The microcurrent of this mode (blue curve in Panel (b)) is delocalized across the
entire step structure. It has the form of a j = 3 mode over the quaternary side of the step
well and the form of a j = 1 mode over the ternary side of the step well, indicating that it
results from a hybridization [5252, 108108, 143143] of spatially separated modes.

A similar phenomenon is observed for the microcurrent of the higher energy mode at
z = 0.46 (blue curve in Panel (c)). The microcurrent has the form of a j = 5 mode over the
quaternary region of the structure and a j = 1 mode over the ternary region of the structure.
The mode results from the hybridization of the j = 5 mode of the quaternary side and the
j = 1 mode of the ternary side of the step well structure.

The hybridization picture can also describe the form of the microcurrent of the higher
energy mode for z = 0.06 (blue curve in Panel (a)). This mode was described above as a
j = 3-like mode of a perturbed 100 nm square well. A closer look at the microcurrent reveals
that there is a node at approximately the center step of the well. As a result, this mode can
be interpreted as resulting from the hybridization of a dark j = 2 mode from the quaternary
side with a bright j = 1 mode from the ternary side of the step well.

The spatial distribution of the microcurrents for the z = 0.23 and z = 0.46 cases confirms
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that the modes of the step well are well described as arising from separate 50 nm quaternary
and ternary square quantum wells. This description must become increasingly inaccurate as
z → 0. This is seen in the decreasing localization of the microcurrent of the lower energy
mode (red curve) in Fig. 5.115.11 as z is decreased from 0.46 to 0.06. To better quantify the
influence of the step height on the spatial extent of the modes, the effective lengths Leff of
the first two modes of largest oscillator strength are plotted in Fig. 5.125.12.
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Fig. 5.12 The effective length of the first two modes of largest oscillator strength
for a 100 nm step well structure with Fermi level of 0.4 eV are plotted as a function
of the InAlAs content in the step side of the well. The effective length of both
modes approaches 42 nm, indicated with grey line, as z is increased.

For z = 0, the higher energy mode is the j = 3 mode of a 100 nm square well and
the lower energy mode is the j = 1 mode of a 100 nm square well. As z is increased, the
effective length of the lower energy mode rapidly decreases while that of the higher energy
mode rapidly increases. For both modes, the effective length approaches 42 nm for large z.
Already, for z slightly larger than 0.1, the two modes have comparable effective lengths close
to 50 nm. The smallest z of the step wells experimentally investigated in Section 5.3.25.3.2 was
extracted as 0.15, which explains why the two separate well model so accurately described
the results.

5.4 Conclusion
In this chapter, the microscopic model introduced in Chapter 44 was exploited to study ways
in which the static electronic potential can be designed to engineer the collective electronic
response. Three studies were presented in which the collective response was engineered with
dramatic effect.

In the study of the tunnel-coupled quantum well structure, the coupling between transi-
tions which normally do not couple was engineered. In the studies of a quantum well under
an applied electric field and the step well, breaking of the square well symmetry was demon-
strated to be a key element for engineering a novel collective response. Remarkably, in the
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structure with the applied electric field, it was demonstrated that normally dark plasmonic
modes could be made bright.

The practicality of collective mode engineering was demonstrated with the experimental
study of step well structures. The hybridization of spatially separated plasmons was demon-
strated to occur when the modes are of the same energy. This feature can be used to tailor
the spatial extent of the collective mode polarization. An enticing future study could be to
investigate the spatial hybridization of the plasmon modes with other matter polarizations
external to the semiconductor sample, introduced close to the surface.



Chapter 6

Berreman Mode Photodetectors

In this chapter, photodetector devices are investigated in which the Berreman mode of a
heavily doped quantum well is used as the photoabsorber. The first observation of pho-
tocurrent from a Berreman mode excitation is reported. The study is interesting from a
fundamental point of view because of the collective nature of the Berreman mode excitation.

Photodetection involves both the absorption of incident photons and the transport of
photoexcited carriers. In most commonly studied photodetectors, the absorption of a photon
coincides with the transition of an electron between two single particle states. The subsequent
transport problem is well defined as the state of the excited carrier is known. This is the case
for the well-known unipolar intersubband Quantum Well Infrared Photodetector (QWIP)
[3333, 7171, 9797, 111111, 114114] and Quantum Cascade Detector (QCD) [1414, 4747, 5858]. As an example,
the bound-to-continuum transition typically employed in a QWIP is sketched in Fig. 6.1a6.1a.
An electron is excited from its initial bound state E0 to a quasi-bound state in the continuum
just above the barrier. With the application of an electric field, the electron can be collected.

E0

(a) A single particle tran-
sition.

EFermi

(b) A collective excitation.

Fig. 6.1 The typical bound-to-continuum transition scheme employed in a QWIP
is sketched in (a)(a). A photon of energy ℏωBC excites an electron initially in the
bound states E0. For the collective excitation sketched in (b)(b), while the excitation
energy ℏωBerr is known, it is not obvious at which energy the population of excited
carriers lies after the excitation. In the sketch, the energy of the excited carrier
population has been assumed to lie at EFermi + ℏωBerr.

115
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Because the Berreman mode is a collective excitation, the absorption of a photon by
the mode cannot be indicated on a band diagram as a transition between single particle
electronic states. The collective nature of the excitation was made explicit in the quantum
mechanical description of Chapter 44, where the mode was demonstrated to arise from the
dipole-dipole coupling of all the allowed single particle transitions.

It is possible to indicate on a band diagram the population of out-of-equilibrium electrons,
or hot carriers, which result from the decay of the collective excitation. However, the energy
distribution of the hot carrier population is not easily known. This is a serious problem for
designing a photodetector.

In Fig. 6.1b6.1b, hot carriers resulting from the excitation of a Berreman mode are sketched
at the energy of the excitation above the Fermi level. It is one of the goals of our study to
investigate if this physical pictures accurately describes the Berreman mode photodetection
phenomenon. More generally, we are motivated to understand how a collective bosonic
excitation scatters into a single-particle fermionic current.

6.1 Background: Plasmonic Photodetectors

The use of a collective excitation as the absorption mechanism in a photodetector is not a
new concept: these type of detectors are usually called plasmonic photodetectors. They have
been extensively studied in the short-wave infrared spectral range [2121, 4848, 4949, 5151, 6767, 9090],
and always exploit surface plasmon resonances.

It is important to distinguish between two types of plasmonic photodetectors [3838]: those
in which the metal itself constitutes the absorber, and those in which the metal provides
an electromagnetic enhancement for another absorber [9595, 9696, 112112, 122122]. (In both cases, the
metal is understood to support a plasmon resonance). Here, we are concerned only with the
first type.

A figure from one of the pioneering works [6767] in which this concept was introduced is
reproduced in Fig. 6.26.2, and provides a clear illustration of the concept underlying these type of
detectors. In this work, gold nanoantennas supporting localized surface plasmon resonances
were used to concentrate and absorb the incident light. Surface plasmons are resonantly
excited upon illumination, and decay into energetic hot-carriers, electrons which are out of
equilibrium with the electron bath. Some of the hot carriers are injected over a Schottky
barrier which forms at the interface between the Au and semiconductor surface on which
the antennas were fabricated, resulting in a photocurrent. The detector thus operates as an
internal emission Schottky photodiode, but for which the strong absorption characteristics
of the plasmon mode are exploited.

The theoretical description of an internal emission plasmon photodetector requires the
understanding of the hot carrier generation process, as well as a model for the internal
photoemission process in which the hot carriers are collected. The generation of the hot-
carriers is understood to result from Landau damping of the plasmonic excitation [6565, 7373]
and occurs on the femtosecond time scale [1717].

Perhaps the simplest and most commonly used description of the internal emission process
is given by the Fowler law, derived under the assumption that photoexcited hot carriers have
an isotropic momentum distribution, and that only the subset of hot carriers which have
sufficient momentum and energy in the correct direction are collected [4444, 111111]. Later, a fuller
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Fig. 6.2 A gold nanoantenna which supports a localized surface plasmon resonance
is used as an optical detector. The gold nanoantennas are fabricated on Si, and
the metal-semiconductor interface is exploited to realize an internal emission pho-
todetector in which hot carriers resulting from the decay of the plasmon resonance
are collected over the Schottky barrier, ϕB, giving rise to a photocurrent. Figure
reproduced from [6767].

description of the photoemission process was introduced by Spicer [123123, 124124] who described
the phenomenon in three steps: photoexcitation of electrons (the hot carrier distribution),
the motion of electrons through the crystal (transport), and finally the escape of the electrons
over a barrier (collection).

The detailed description of these processes is beyond the scope of this section. A concise
review of the hot carrier physics involved in plasmon-based hot electron photodetection can
be found in [7272], and a more comprehensive review on plasmon-induced hot carrier science
and technology can be found in [1717].

We conclude this section by highlighting the novelty of the present work. In the exper-
iments which follow, we demonstrate the first plasmonic photodetector using a Berreman
mode as the collective excitation. To the best of our knowledge, our experiment is the first
in which a volume plasmon, rather than a surface plasmon, is used as the absorber in a plas-
monic photodetector. Furthermore, our demonstration is the first in which the plasmonic
photodetector concept is implemented in the long wavelength infrared.

The most important aspect of the work, however, is that we provide the first demonstra-
tion of a plasmonic photodetector in a mature III-V semiconductor platform. Consequently,
all of the tools of quantum band structure engineering can be employed to aide in the inves-
tigation of the fundamental physics behind the phenomenon.

http://dx.doi.org/10.1126/science.1203056
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6.2 Description of Experiment

6.2.1 Samples

In this chapter, two InGaAs/AlInAs samples which host Berreman modes are investigated
as photodetectors. In both samples, a highly doped (∼ 2 × 1019 cm−3) InGaAs layer which
supports a Berreman mode is grown between two AlInAs barrier layers. Less doped (∼
2 × 1018 cm−3) InGaAs layers are grown on either side of the structure so that the devices
can be ohmically contacted.

Sample V0386 was designed with a 84.4 nm AlInAs lower barrier, a 100 nm heavily doped
InGaAs layer, and a 30 nm AlInAs upper barrier. The layers were grown via MOCVD in the
order described, on an InP substrate (see the growth sheet on Page 202202). The growth was
performed by the team of Grégoire Beaudoin, Konstantinos Pantzas, and Isabelle Sagnes at
the Centre de Nanosciences et Nanotechnologies (C2N) in Palaiseau, France.

Because of the large electronic densities in the structure (Nv = 2 × 1019 cm−3), static
charge effects must be considered to properly calculate the band structure and describe the
device operation. In Fig. 6.36.3, the band structure calculated as the self-consistent solution to
the coupled Schrödinger-Poisson equations in the constant effective mass approximation is
plotted.
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Fig. 6.3 Single-band Schrödinger-Poisson solution for the band structure of the
nominal V0386 sample calculated with nextnano for Nv = 2 × 1019 cm−3.

Because the Fermi level must be constant across the structure at equilibrium, the less-
doped contact regions and barriers on either side of the main InGaAs well bend upwards.
Consequently, the effective potential barrier ϕeff that an electron at the Fermi level must
overcome to travel to a contact region is set by the energy difference between the barrier
edge and the Fermi level in the contacts.

If the plasmonic excitation decays into a population of electrons at an energy ℏωBerr
above the Fermi level (sketched with the red arrow in the figure), it is evident that a bias
will need to be applied to the device to collect the electrons (observe a photocurrent).
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In the above band structure calculation, we have settled for a solution calculated in
the single band, constant effective mass approximation simply because it is difficult to find
a converging self-consistent solution considering the coupling between 8 bands for such a
wide and heavily doped quantum well as the one we study here. Because nonparabolicity is
significant in InGaAs, the resulting band structure should not be relied on for quantitative
predictions. It does, however, describe the correct qualitative picture.

Sample G0662 was designed to be symmetric: 50 nm AlInAs barrier layers were grown
before and after a 200 nm InGaAs layer.1 A large electronic density was added to a 180 nm
thick region centered in the 200 nm InGaAs layer, so that 10 nm not-intentionally-doped
InGaAs layers lie between the heavily doped region and the barriers. These not-intentionally-
doped layers are included in order to limit the unintentional incorporation of dopants into
the AlInAs barrier regions, a problem which arose in the study of the V0386 sample. The
sample was grown via molecular beam epitaxy (MBE) on an InP substrate (see the growth
sheet on Page 206206) by Lianhe Li, Edmund Linfield, and Giles Davies at the University of
Leeds.

We note here that results from the study of additional plasmon detector samples are
reported in Appendices BB and CC.

6.2.2 Photovoltage Measurements

The V0386 and G0662 samples are processed into circular mesa devices 100 µm in diameter.
To couple light into the devices at the angles for which the maximum absorptivity occurs,
facets are mechanically polished onto the InP substrate (sketched in green in Fig. 6.46.4).

In the photodetection experiments, light from a Globar source inside a Fourier Transform
Interferometer (FTIR) is focused with a 2" germanium F1 lens through a ZnSe window
and through the polished facet onto the detector mesa. The devices are mounted onto a
copper cold finger inside a continuous flow cryostat and are cooled with liquid helium to a
temperature of 7 K.

Two types of measurements are performed with the set-up sketched in Fig. 6.46.4: (1) the
total photodetected signal is measured as a function of the potential across the device, and
(2) spectra of the photodetected signal are measured for a fixed potential.

In practice, the devices are biased with an applied current, Iapp using a Keithley 2450
SourceMeter. In what follows, the resulting DC voltage Vmeas is often referred to as the bias
voltage, with the understanding that it is the current which is sourced.

The devices behave as photoconductors, so that their conductivity changes upon illumi-
nation. Because the current is fixed, it is a photovoltage signal that is measured upon illumi-
nation. In the discussion of the photoresponse of the devices, we often refer to photocurrent
generation. This is not inaccurate. It is a choice of the experiment to measure the photo-
voltage for a fixed current, instead of the photocurrent for a fixed bias.2

1The wider 200 nm InGaAs heavily doped layer for the Berreman mode of the G0662 sample was chosen
because the structure was designed to be inserted into a double metal optical cavity to study polariton modes
(see Chapter 77). Increasing the ratio of the well width to the total structure thickness maximizes the overlap
between the cavity mode and the Berreman mode excitation (see Section 7.17.1).

2The choice to source the current (Iapp) rather than apply a voltage bias was made so that the SR560 voltage
pre-amplifier could be used in the experiment. One might be tempted to apply a bias voltage and replace
the SR560 voltage pre-amplifier in Fig. 6.46.4 with a transimpedance amplifier. However, the transimpedance
amplifier amplifies a current signal, and since a voltage source has a low impedance, one would find that some
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Fig. 6.4 The experiment for the photovoltage detection is sketched for the lock-in
detection technique.

The incident light is modulated at 165 Hz using a mechanical chopper. The time-varying
voltage response to the modulated light is amplified using a Stanford Research Instruments
SR560 pre-amplifier. Built-in low-pass and high-pass filters from the SR560 pre-amplifier
are employed: the high-pass filter cuts the DC bias, whereas the low-pass filter helps to limit
the amplification of any high-frequency noise.

For the first type of measurement described above, the mirrors of the FTIR are fixed, and
the magnitude and phase of the photovoltage signal is read from the lock-in amplifier as a
function of the DC bias Vmeas. Even using a relatively long (1 s) time constant for the lock-in
measurement,3 the signal and phase can still vary quite a bit. Rather than increasing the
lock-in time-constant, the signal and phase are sampled over a period of time and averaged.
The standard deviation of each set is calculated as a first indication of the level of noise
present in the signal.

While the amplitude of the signal measured from the lock-in amplifier is strictly positive
and phase-independent, changes in the phase with the bias can provide information regarding
the direction of the current flow. The phase reported by the lock-in amplifier is the phase
difference between the signal and reference oscillator: θ = θsig −θref . In Fig. 6.56.5, a sinusoidal

of the photocurrent goes to the voltage source instead of the transimpedance amplifier. While a commercial
transimpedance amplifier designed with the correct circuitry to correctly measure the photocurrent with an
applied voltage bias was available for the following experiments, the applied voltage had to be manually
changed via a screw, and could not be controlled via a computer, as required to record continuous curves of
the signal as a function of the potential across the device.

3The time-constant of the lock-in amplifier sets the low-pass filter bandwidth. Recall that the ideal lock-in
output is a DC signal obtained by filtering the AC components from the product of the input signal and a
reference oscillator.
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Reference signal is plotted in black and an example of a possible photovoltage signal is plotted
in red (Signal 1). Without loss of generality, Signal 1 is plotted exactly in-phase with the
reference signal, so that the phase displayed by the lock-in would be zero. A second signal
is plotted in blue (Signal 2) to represent the case when the polarity of the photovoltage of
Signal 1 has flipped (corresponding to a change in the direction of the photocurrent). The
lock-in reports the same signal magnitude for Signals 1 and 2; it is the π-phase shift which
indicates that the two signals correspond to a photovoltage response of opposite polarity.

πReference

Signal 1

Signal 2

Fig. 6.5 A change in the direction of the photovoltage corresponds to a 180◦ phase
shift in the the phase reported on the lock-in amplifier.

To measure photovoltage spectra using the lock-in technique, the FTIR is operated in
step-scan mode. In this mode, the mirror (or the path length) of an arm of the interferometer
is fixed for a brief period of time, during which the photovoltage is measured with the lock-in
detection technique. The path length of the interferometer arm is then slightly adjusted and
another photovoltage measurement is recorded. The process is repeated until an interfero-
gram is recorded, which is then Fourier Transformed to reveal the spectral information of
the photovoltage signal.

Photovoltage spectra may also be recorded without the use of a chopper or lock-in de-
tection technique by using the FTIR in rapid-scan mode. In this mode, the path length of
one arm of the Michelson interferometer is continuously and periodically modified. Conse-
quently, many interferograms can be recorded at a much faster rate than in step-scan mode.
However, because the photovoltage response of the devices in the present study is quite noisy,
a very large number of scans (≈ 30000) are required to obtain a reasonable interferogram.

For acquiring the photovoltage spectra, the step-scan technique is generally preferred
since a lock-in technique is ideal for extracting a signal from a noisy background. However,
a drawback with the step-scan/lock-in technique, is that the interferogram is only recorded
once. Therefore, any spike of noise during the rather long scan time completely ruins the
photovoltage spectrum. In the photovoltage experiments for the V0386 devices, random
spikes of noise plagued the step-scan measurements, and thus long rapid-scan measurements
were preferred. For the study of the G0662 devices, the lock-in technique proved more stable
and was preferred.
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6.3 First Observation of Berreman Mode Photocurrent
In this section, the experimental results are reported for devices fabricated from the V0386
sample. The first observation of photocurrent from the excitaton of a Berreman mode is
reported. The section is organized as follows: first, the fabrication of the devices is described;
second, the devices are electrically characterized; third, the thermal activation energy is
extracted through electrical measurements, and finally, the photodetection measurements
are reported.

We begin by presenting in Fig. 6.66.6 the absorption spectrum of the Berreman mode of the
V0386 sample, determined from room temperature transmission measurements at Brewster’s
angle. The plasmon resonance is centered at 168.7 meV and has a quality factor of Q = 20.0.
From the resonance energy, the electronic density of the 100 nm InGaAs layer is determined
to be Nv = 2 × 1019 cm−3.
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Fig. 6.6 The absorption spectrum of the V0386 sample determined from trans-
mission measurements at Brewster’s angle is plotted with a Lorentzian fit (dashed
line).

6.3.1 Device Processing
Due to the highly doped nature of the 100 nm layer which hosts the Berreman mode, it
may be electrically contacted itself. Three different processing schemes are employed to
realize two-terminal 100 µm diameter mesa devices for three different contact schemes, as
illustrated in Fig. 6.76.7. This allows for the role of the barrier regions on either side of the
highly doped middle layer to be studied independently. The ‘Top-Bottom’ scheme of Fig. 6.7a6.7a
and the ‘Top-Middle’ scheme of Fig. 6.7b6.7b are realized via a single wet etch step with a
H2O2/H3PO4/H2O solution, in which the etch is carefully stopped midway though the layer
to be contacted. The ‘Middle-Bottom’ configuration is achieved by defining mesas during two
consecutive wet etch steps. This process permits the electromagnetic boundary conditions
of the heavily doped thin layer to remain the same as the other two configuration, while
allowing for the heavily doped middle layer to be contacted in plane. After the definition of
the mesas, a 5 nm layer of Ti and a 150 nm layer of Au are deposited on the sample surface
and the devices are electrically contacted by gold wirebonds.



6.3 First Observation of Berreman Mode Photocurrent 123

AlInAs

InGaAs n+

InGaAs n+

InGaAs n++

InP

100 μm

Au

Au

Au

(a) Top-Bottom

AlInAs

InGaAs n+

InGaAs n+

InGaAs n++

InP

100 μm

Au

Au

Au

(b) Top-Middle

AlInAs

InGaAs n+

InGaAs n+

InGaAs n++

InP

Au

Au

Au

100 μm

(c) Middle-Bottom

Fig. 6.7 Three different contact schemes are illustrated.

6.3.2 Electrical Characterization

Current-voltage (I-V) curves of V0386 devices for each of the three contact schemes described
above were measured at T=7 K using a Keithley Model 2450 SourceMeter, and are shown
in Fig. 6.86.8. A positive voltage lowers the energy of the second contact specified. Thus, for
the Top-Bottom device under a positive applied bias, electrons move from the top contact
to the bottom contact.

The Top-Middle I-V curve is perfectly linear, and has a resistance of less than 5 Ω even at
a temperature of 7 K. The 30 nm AlInAs barrier separating the top and middle contact layers
must be conductive, which suggests that dopant impurities were unintentionally incorporated
into this layer during the growth. This layer is grown immediately after the highly doped
middle layer which supports the Berreman mode. To achieve a high electronic density in the
middle layer, the MOCVD process is pushed to an extreme, and it is difficult to abruptly
stop the incorporation of dopants in the barrier layer grown immediately afterwards.

To approximate the effect of dopants in the top 30 nm barrier, the band structure shown
in Fig. 6.96.9 was calculated assuming an electronic density of 2×1018 cm−3 in the 30 nm AlInAs
barrier. Under these conditions, the barrier is essentially transparent to the electrons.

Because the top 30 nm barrier is conductive, the Top-Bottom and Middle-Bottom I-V
curves are nearly superimposed. The curves are highly asymmetric. Near zero bias, the
differential resistance is nearly infinite. The differential resistance undergoes a dramatic
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Fig. 6.8 Current-voltage curves for 100 µm diameter V0386 mesas measured with
the devices mounted on a cold finger at T=7 K are plotted. The devices are exposed
to the room temperature background radiation.
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Fig. 6.9 The band structure for sample V0386, calculated assuming an electronic
density of 2×1018 cm−3 in the top 30 nm AlInAs barrier, is plotted. The band struc-
ture was calculated self-consistently for a constant effective mass using nextnano.

drop for a much smaller positive bias than negative bias.
The asymmetry can be explained considering a simple thermionic emission model, sketched

in Fig. 6.106.10 for the Middle-Bottom device. The model assumes that the energy difference
between the maximum of an adjacent barrier potential, Ebarr, and the Fermi level in a given
doped layer determines the magnitude of current for a given bias. We call this quantity the
thermal activation energy Eact. It is an effective barrier height for an electron to escape from
a degenerately doped region.

In the absence of an applied bias, the conduction band of the top contact region bends
upward so that a constant Fermi level is maintained across the structure. Neglecting tunnel-
ing, the thermal activation energy is the same for electrons in the middle layer or the bottom
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Fig. 6.10 A band structure diagram is sketched for the Middle-Bottom device for
three bias conditions. The Fermi level (or quasi-Fermi level) is indicated as a dotted
red line. The thermal activation energy Eact is sketched in blue.

contact.
Under negative bias, the thermal activation energy for electrons in the bottom contact

is hardly changed, apart from an effective lowering of the barrier height when tunneling is
considered. On the contrary, for a positive bias, the thermal activation energy is greatly
reduced. This explains why the differential resistance, which is near infinite for both positive
and negative biases close to zero, undergoes a dramatic drop for a smaller magnitude of
positive bias than negative bias.

This simple model relates the asymmetry of the I-V curve to the fundamental asymmetry
of the Middle-Bottom structure, which is the relative proximity of the Fermi level to the
barrier edge in either layer. The model is, of course, overly simplified.

6.3.3 Extraction of Thermal Activation Energy
In this section, we attempt to extract from a series of temperature dependent I-V curve
measurements in the dark the thermal activation energy required for an electron to move
from the highly doped middle layer over the bottom barrier. Two different models for the
dark current are considered which lead to similar values for the activation energy.

In the first model, we consider that the interface between the highly doped middle layer
and the adjacent barrier can be treated as a Schottky junction, with the degenerately-doped
middle layer fulfilling the role of the metal, and the AlInAs barrier layer fulfilling the tradi-
tional role of the semiconductor. The activation energy is equivalent to the Schottky barrier
height, ϕB. From the well-known expression describing the current-voltage characteristics
of a Schottky diode [7474, 8383, 111111] operating in reverse bias, the current Jdark is found to be
proportional to:

Jdark ∝ (kT )2 exp
(−Eact

kT

)
(6.1)

The second model we consider is the so-called 3D carrier drift model [114114]. It is frequently
used to describe the dark current characteristics of quantum well infrared photodetectors
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(QWIPs). These detectors consist of repeating periods of thin, doped quantum wells with
one occupied subband sandwiched between much wider barriers. In the 3D carrier drift
model, the dark current density is written:

Jdark = eN3Dv(E) (6.2)

In this equation, N3D is the 3D electron density above the barriers, and v(E) is the electric
field-dependent electron drift velocity.

The key step in the model is the evaluation of N3D. Under the assumption that Eact =
Ebarr − EF ≫ kT , than N3D may be calculated by replacing the Fermi-Dirac function f(E)
with the Boltzmann distribution exp(−(E − EF)/kT ) in considering the overlap with the
density of states in the conduction band ρc(E):

N3D =
∫ ∞

Ebarr
ρc(E)f(E) dE

=
∫ ∞

Ebarr
ρc(E) exp

(−(E − EF)
kT

)
dE

= 1
4

(2m∗
bkT

πℏ2

) 3
2

exp
(−Eact

kT

) (6.3)

It is important to note that N3D is calculated for the system at equilibrium, without an
applied bias. Consequently, the model is only expected to be valid for small applied voltages.

Under the assumption that the electron mobility and saturation velocity are temperature
independent, then from Eq. (6.26.2), it holds that:

Jdark ∝ (kT )
3
2 exp

(−Eact
kT

)
(6.4)

Equations (6.16.1) and (6.46.4) differ only by the power of kT in front of the exponential.
The activation energy Eact is experimentally extracted by measuring I-V curves as a

function of temperature in the dark. For these measurements, the device is placed inside a
metal cryoshield which is kept as closely as possible to the same temperature as the copper
cold finger, in order that the device is in thermal equilibrium with the background radiation
to which it is exposed. Current-voltage curves of the V0386 Top-Bottom device measured
as a function of temperature are plotted in Fig. 6.11a6.11a for positive voltages. As expected, the
resistance of the device decreases with increasing temperature.

To extract the activation energy, Eqs. (6.16.1) and (6.46.4) are fit to the current as a function
of temperature curve for a fixed bias. In Fig. 6.11b6.11b, the measured current I is plotted as a
function of the temperature T for a fixed bias of 5 mV. Equations (6.16.1) and (6.46.4) are fit to the
I(T ) curve over a temperature ranging from 170 K to 300 K. The proportionality constant
α is introduced. Over the temperature range indicated, both models fit the I(T ) curve well
and are nearly superimposed. From the Schottky diode model (blue) Eact is extracted as
165 meV, while for the 3D carrier drift model, the activation energy is extracted as 176 meV.

These values are significantly smaller than the value of the effective barrier potential
ϕeff = 350 meV determined from the calculation of the V0386 band structure, shown in
Fig. 6.36.3. While the definition of ϕeff neglects tunneling through triangular AlInAs barriers
(see Fig. 6.36.3), it is unlikely that tunneling alone can explain the discrepancy between the
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Fig. 6.11 The activation energy Eact is extracted from fits of the current as a
function of temperature for a small fixed voltage for the V0386 Top-Bottom device.
Assuming a complete electrical short between the top and middle doped regions,
V = 5 mV corresponds to an electric field of 0.571 kV cm−1 between the middle and
bottom doped layers.

experimentally extracted value of Eact and ϕeff . The values extracted for Eact are more in-
line with the difference between the barrier height (520 meV) and the Fermi level (370 meV)
in the highly doped middle layer, if the band bending effect is neglected. This discussion
highlights the significant uncertainty in the band structure modeling of our devices, due to
the large electronic densities involved and uncertainties in the material growth.

6.3.4 Photovoltage Measurements

Photovoltage measurements for the V0386 Top-Bottom and Middle-Bottom devices were
recorded for light incident at 30◦ inside the semiconductor, close to the critical coupling angle
at which incident radiation is totally absorbed. The light was coupled into the semiconductor
from free space at normal incidence across a facet polished at an angle of 30◦ with respect
to the sample plane.

In the upper panels of Fig. 6.126.12, photovoltage spectra measured at T=7 K in rapid-scan
mode are shown for each device for positive Vmeas. The spectra have not been treated to
account for the shape of the blackbody light source.

A resonant feature is observed at the energy of the Berreman mode. For positive biases,
the potential energy of the bottom contact is lowered. The resonant feature arises then
from electrons which traverse the 84.4 nm barrier separating the middle and bottom contact
layers. No photovoltage features were observed for negative biases, most likely due to the
electrically shorted 30 nm barrier.

For comparison, experimental absorption spectra determined from Brewster’s angle trans-
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Fig. 6.12 Experimental photovoltage results measured at a temperature of 7 K are
presented for devices fabricated from sample V0386. The green shaded spectra are
absorption measurements at Brewster’s angle, normalized here to the photovoltage
spectra.

mission measurements are plotted in shaded green normalized to the maximum of the photo-
voltage spectra. The resonances of the photovoltage spectra, measured at a 30◦ angle, have a
larger linewidth than the absorption resonance, measured at an 18◦ angle. This is explained
by the radiative broadening effect described in Section 2.2.12.2.1, in which the radiative decay
rate increases as a function of angle and reaches values larger than the nonradiative decay
rate.

The photovoltage resonance, centered at 172 meV, is blueshifted from the absorption
resonance, centered at 168.5 meV in the spectrum measured at 18◦. This effect can be
attributed to the dispersion of the Berreman mode with the in-plane wavevector (which varies
with angle), described in Section 2.3.12.3.1. A similar blueshift was observed in the absorption
measurements of Fig. 2.92.9.

We conclude that the observed photocurrent lineshape follows closely the form expected
for the absorption. This suggests that the transport of the photoexcited carriers is not
dependent on the energy of the excited carriers over the bandwidth that the absorption
resonance is observed.

In the bottom panels, the photovoltage signal measured on the lock-in as a function of
the bias is plotted. Errorbars indicating the standard deviation of the lock-in signal over
a sampling time of 10 seconds for a fixed time constant are plotted in magenta. For the
Top-Bottom device, the signal is negligible other than a slight bump around 150 mV until it
peaks dramatically for a bias of 270 mV, after which it decays more slowly. For the Middle-
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Bottom device, the signal increases from zero bias, reaching a noisy first maximum for a bias
of 60 mV, and a second less-noisy maximum for a bias of 250 mV.

Note that the y-axis of the lock-in signal differs by a factor of 4 between the panels
for the Top-Bottom and Middle-Bottom devices. Thus, the peak at 250 mV observed in the
Middle-Bottom lock-in signal curve is similar in form, magnitude, and noise to that observed
in the Top-Bottom curve for a bias of 270 mV.

The relative amplitudes of the peaks in the Middle-Bottom photovoltage spectra do not
correspond to the relative signal amplitudes in the the lock-in signal as a function of bias
curve. This suggests that some of the signal contributing to the first peak around 60 mV
does not originate from a resonant plasmonic feature.

For both the V0386 Top-Bottom and Middle-Bottom devices, the bias at which the
photovoltage signal reaches a smooth peak corresponds to the voltage at which the differential
resistances of the I-V curve undergoes a dramatic drop. In Fig. 6.136.13, the differential resistance
of the V0386 Top-Bottom and Middle-Bottom I-V curves (shown already in Fig. 6.86.8) is
plotted on a logarithmic scale. The differential resistance drops by nearly four orders of
magnitude at the voltages for which the photovoltage signals peak (250 mV for the Middle-
Bottom device and 270 mV for the Top-Bottom device).
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Fig. 6.13 The differential resistance of the V0386 Top-Bottom and Middle-Bottom
I-V curves from Fig. 6.86.8 is plotted as a function of the bias voltage. The vertical lines
plotted at 250 meV and 270 meV indicate the bias values for which the photocurrent
signal of the respecitve device reached a maximum in Fig. 6.126.12.

The correspondence between the voltage at which a peak-like feature is observed in the
signal as a function of bias curve, and the voltage at which a strong drop in the differential
resistance is observed, has been repeatedly observed across many different samples, including
for the G0662 sample studied later in this chapter and the samples studied in Appendices BB
and CC. A physical description linking the two observations remains to be established. It is
clear, however, that the plasmonic photocurrent signal is strongest in the region where the
I-V curves are strongly nonlinear.
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6.3.5 Photovoltage Spectra as Function of Angle

In this section, photovoltage spectra measured with the FTIR/blackbody source at various
angles of incidence for the V0386 Top-Bottom devices are investigated. Due to the radiative
broadening effect described in Section 2.2.12.2.1, the linewidth of the Berreman mode absorption
resonance increases with the angle of incidence. We exploit this effect to investigate how
changes in the absorption spectrum are manifested in the photovoltage spectra.

Let us assume that the photovoltage spectra can be described as:

Vphoto(ω, θ) = α(ω, θ) × Ftrans(ω) (6.5)

where α(ω, θ) is the absorptivity spectrum, and Ftrans(ω) is an energy-dependent function
describing the electronic transport. By comparing Vphoto(ω, θ) with α(ω, θ), the form of the
function Ftrans(ω) can be extracted. The form of Ftrans should provide information on the
population distribution of hot carriers after the decay of the collective excitation.

As the angle of incidence is increased, and the linewidth of α(ω, θ) is broadened, the
spectral range over which the transport function Ftrans(ω) can be studied is expanded. With
this, more insight can be gained into the physics of the photodection process.

As an example, if hot carriers are excited to the energy of the collective excitation above
the Fermi level, than we should expect to observe an asymmetric broadening of the linewidth
like that sketched in Fig. 6.146.14 due to a low energy cut-off set by the difference between the
barrier height and the Fermi level.

Iph

EFermi

+Vapp

I p
h 

/ 
m
ax

(I
ph

)

Energy

Contact

Fig. 6.14 The plasmonic excitation is sketched for light incident at a low angle
(cyan) and for light incident at a high angle (magenta) for which the radiative
broadening effect is significant. The hypothesized shape of the resulting photocur-
rent spectra are sketched.

Experimental photocurrent spectra for the Top-Bottom contact scheme of sample V0386
are presented in Fig. 6.156.15. The spectra were measured at T=7 K for a 270 mV potential
between the top and bottom contacts. The spectrum recorded at 30◦ was measured from a
device polished with a 30◦ facet, while the other spectra were measured with light incident
at various angles on a device with a 70.5◦ facet. The spectra have been treated to consider
the emission shape of the blackbody light source, then smoothed and normalized to one at
their maximum.

A clear broadening of the photocurrent spectra is observed as the angle is increased from
30◦ to 58◦ and then to 67◦. For the photocurrent spectrum measured at 77◦, a relatively
narrow peak resides on top of an otherwise broadened background. The energy at which the
photocurrent peaks at 30◦ is slightly shifted from that of the other spectra. This origin of
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Fig. 6.15 Experimental photocurrent spectra measured at T=7 K for a 270 mV
potential between the top and bottom contacts are plotted for various angles.

this effect is uncertain, and may be due to the fact that the 30◦ spectrum was measured for
a different device than the other spectra.

As the incidence angle increases from 58◦ to 77◦, the low energy side of the spectral
feature does not broaden, in contrast to the high energy side. The study is complicated by
the small responsivity of the device and the large quantity of noise present. Nonetheless, the
data provides initial evidence for the validity of the model sketched in Fig. 6.146.14.

6.4 Three-Terminal Berreman Mode Photodetector

In this section, experimental results are reported for photodetector devices fabricated from
the MBE-grown G0662 sample, described in Section 6.2.16.2.1. The sample was processed into
three-terminal devices in which the top contact, bottom contact, and highly doped middle
layer could be independently contacted. The three terminal design permits the potential
drop across any two of the three contact layers to be set independently of the third and
permits the isolated study of the top and bottom barriers in the same device.

One motivation for the study of the MBE-grown G0662 sample was to compare similar
devices grown via alternative techniques, as the high doping level pushes the growth processes
to their limits. A series of samples similar to the G0662 sample, grown with MOCVD, were
also investigated. The results of these studies are reported in Appendix CC and confirm all of
the essential observations which we now recount for the G0662 sample.

The section is organized as follows: first, the fabrication of the devices is described; sec-
ond, the devices are electrically characterized; third, FTIR photodetection measurements
with a blackbody source are reported; and lastly, photodetection measurements with a tun-
able quantum cascade laser (QCL) are reported.

The absorption spectrum of the Berreman mode of the G0662 sample, determined from
room temperature transmission measurements at Brewster’s angle, is presented in Fig. 6.166.16.
The plasmon resonance is centered at 156 meV and has a quality factor of Q = 15.5. From
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the plasmon resonance, the electronic density of the 200 nm InGaAs layer is determined as
Nv = 1.6 × 1019 cm−3.
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Fig. 6.16 The absorption spectrum at room temperature of the G0662 sample
determined from transmission measurements at Brewster’s angle is plotted.

The quality factor of the resonance is less than the value of 20.0 observed for the Berreman
resonance of the MOCVD grown V0386 sample at Brewster’s angle. However, the radiative
broadening effect is more significant for the Berreman mode of the G0662 sample because of
the wider 200 nm well. This is because the radiative emission rate, defined in Eq. (2.32.3), is
proportional to the surfacic electron density, Nv · L, where L is the well width.

6.4.1 Three-Terminal Device Processing

A side-profile sketch and a top-view optical image of the final G0662 three-terminal device
are shown in Fig. 6.176.17. The devices are fabricated into mesa structures of 100 µm diameter.

InGaAs n+

InGaAs n++

InP

AlInAs

100 μm15 μm

Au

Au

Si3N4

(a) Side-profile sketch of three-terminal G0662
device (b) 50× optical image of device

Fig. 6.17 A side-profile sketch and an optical image taken after fabrication of the
G0662 three-terminal device are shown.
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To achieve the final structure shown, three successive optical lithography and wet etch
steps with an H3PO4:H2O2:H2O solution are performed. The first and second wet etches are
carefully calibrated to stop in the center of the middle highly doped layer and the center of
the bottom contact. The third wet etch is selective against the semi-insulating Fe-doped InP
substrate. Following the definition of the semiconductor plateaus, Si3N4 is deposited on the
entirety of the sample surface via plasma-enhanced chemical vapor deposition (PECVD).
Note that the deposition is conformal and not directional. A mask of resist is fabricated
with optical lithography and reactive ion etching (RIE) is used to vertically etch the exposed
Si3N4. A final lithography step is performed to define the areas where Ti/Au contacts are
deposited. The metal deposition is followed by a lift-off step, after which the microfabrication
of the devices is complete. The devices are electrically connected with gold wire bonds.

6.4.2 Electrical Characterization

In the left panel of Fig. 6.18a6.18a, current-voltage curves measured at room temperature for
various contact schemes of the G0662 three terminal device are plotted. The voltage biases
are described with respect to the top contact.

There are two sets of similar curves. The green and purple curves correspond to I-
V measurements between the top and bottom contacts. The green curve was measured
with the middle contact left floating. The purple curve was measured with the top contact
and middle contact electrically shorted. The two curves are nearly identical, especially for
negative voltages where they are essentially superimposed. This implies that the nonlinear
shape of the curves is determined by the transport of electrons over the lower barrier.

The cyan and brown dashed curves were measured between the top contact and middle
layer. The cyan curve was measured with the bottom contact left floating, whereas the
brown curve was measured with the top and bottom contacts electrically shorted. The two
curves are essentially superimposed on one another. This implies that essentially no current
flows over the lower barrier. The differential resistance of the lower barrier is thus orders of
magnitude greater than the differential resistance of the upper barrier. This is sketched in
the inset of the left panel of the figure.

In the right panel of Fig. 6.18a6.18a, I-V curves measured at T=10 K between the top and
bottom contacts, for which the middle layer was held to a fixed potential with respect to the
top contact, are plotted. It is observed that the entire curve shifts upwards or downwards in
voltage by a magnitude close to that of the bias on the middle contact.

This behavior is explained by considering that the majority of the voltage drop between
the top and bottom contacts occurs across the bottom barrier, consistent with the picture
that the bottom barrier gives rise to a larger differential resistance than the top barrier.

In the upper band diagram of Fig. 6.18b6.18b, this scenario is sketched for a positive bias
between the top and bottom contacts. The potential offset between the middle and bottom
contacts is intentionally drawn to be much greater than that between the top and middle
contacts.

If the voltage drop between the middle and bottom contacts determines the current flow,
then for the same current flow to be maintained in the device when a positive bias is applied
between the top contact and middle layer, a larger bias is required between the top and
bottom contacts to maintain the voltage drop between the middle and bottom contacts.
This is sketched in the lower band diagram of Fig. 6.18b6.18b. While not sketched, a similar
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measured between the top and bottom contacts at 10 K are plotted for fixed potentials on the middle
contact.

Bottom
Contact

Top
Contact

eΔVmid-bott

eΔVtop-mid

rbott

rtop

Bottom
Contact

Top
Contact

eΔVmid-bott

eΔVtop-mid

rbott

rtop
Middle

Middle

(b) Band diagrams are sketched for a positive bias applied between the top and bottom contacts. In
the upper band diagram, the middle contact is left floating. In the lower band diagram, the middle
contact is fixed to a positive bias with respect to the top contact.

Fig. 6.18 I-V curves measured for the G0662 three-terminal device are shown in
the upper panel. In the lower panel, band diagrams are sketched.
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argument holds for the case of a negative potential between the top and bottom contacts.
For such a case, a positive bias between the top and middle layer increases the potential
drop between the middle and bottom contacts. This explains why current begins to flow for
a negative Top-Bottom potential for a smaller voltage magnitude when the middle layer is
positively biased with respect to the top contact.

While the above results already demonstrate that the upper and lower barriers contribute
quite differently to the transport in the device, the three-terminal device permits each barrier
to be studied independently. In Fig. 6.196.19, two I-V curves measured at T=11 K, one between
the top and middle contacts, and the other between the bottom and middle contacts, are
plotted. To permit easy comparison, both curves have been plotted so that a negative voltage
corresponds to an increased potential energy of the highly doped middle layer, for which case
electrons are favored to flow from the middle layer over the respective barrier toward the
contact. In the bottom panel of the same Fig. 6.196.19, the differential resistance for the two
curves is plotted as a function of the voltage.
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Fig. 6.19 In the upper panel, I-V curves measured at T=11 K for two contact con-
figurations chosen to isolate the top or bottom barrier are plotted. The differential
resistance is plotted in the lower panel with a logarithmic y-axis. In both panels,
the voltage range over which the Berreman mode is observed in Fig. 6.206.20 for a bias
between the middle layer and shorted top/bottom layers, is shaded.

The voltage range over which the differential resistance is near infinite is much larger
for the Bottom-Middle I-V curve than for the Top-Middle I-V curve, both for positive and
negative biases. Even for biases for which the differential resistance of the Bottom-Middle I-
V curve does decrease, it remains orders of magnitude greater than the differential resistance
of the Top-Middle I-V curve. This confirms the interpretations offered above for the results
presented in Fig. 6.186.18: the bottom barrier is much more resistive than the top barrier.
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The origin of the asymmetric electrical response of the device, which should nominally be
symmetric, must be a consequence of the growth process, and is attributed to the incorpo-
ration of dopants in the layers grown immediately following the highly doped middle layer.
The same explanation was provided to account for the completely conductive top barrier of
the MOCVD-grown V0386 sample.

6.4.3 Photovoltage Measurements

The critical coupling angle for the Berreman mode of the 200 nm highly doped layer of the
G0662 sample is close to 20◦. To couple light into the devices with this angle of incidence
inside the semiconductor, the devices were polished with 20◦ facets.

Photocurrent from the Berreman mode was only observed for a negative bias on the
middle layer with respect to the top contact, in which case photoexcited electrons in the
middle layer are collected over the less resistive top barrier. No Berreman mode photocur-
rent was observed over the more resistive bottom barrier, which suggests that the thermal
activation energy for transport in this direction is large compared with the energy of the
collective excitation. The much larger magnitude of negative voltage required before the
differential resistance drops in the Bottom-Middle I-V curve of Fig. 6.196.19 as compared with
the Top-Middle curve supports this interpretation.

An identical photoresponse was observed in experiments for a bias between the top and
middle layers, and for a bias between shorted top/bottom layers and the middle layer. The
differential resistance of the bottom barrier is so large compared with that of the top barrier
that all the photocurrent moves toward the upper contact over the top barrier, and the
bottom contact is essentially electrically floating.

A series of photovoltage spectra measured as a function of the voltage on the middle
layer with respect to shorted top/bottom layers, are presented in Fig. 6.206.20. The spectra
were recorded at T=9 K under illumination with p-polarized light. The spectra are plotted
in Panel (a) on a logarithmic y-scale, with the polarity of the photovoltage indicated. In
Panel (b), the spectra are normalized between zero and one and offset for clarity. In either
panel, the spectra have not been corrected for the shape of the blackbody source, shown at
top of Panel (b). The 156 meV energy of the Berreman mode resonance determined from the
Brewster’s angle transmission measurement of Fig. 6.166.16 is indicated with a vertical line.

A resonant photocurrent feature is observed at the energy of the Berreman mode only
for negative biases less than −200 mV. In all of the spectra, for both positive and negative
biases, there are broad features with widths on the order of 100 meV observed at energies
greater than the Berreman mode. In a separate series of photovoltage spectra measured for
s-polarized light (not shown here), the broad features were also observed. To the contrary,
the resonant Berreman mode feature does not appear in the s-polarized photovoltage spectra,
as expected. The amplitude of the Berreman mode feature increases with respect to that of
the broad feature as the magnitude of the negative bias is increased.

The Berreman mode resonance is observed at 162.5 meV in the photovoltage spectrum
measured at 20◦. This energy is blueshifted with respect to the 155.6 meV centerline mea-
sured for the Brewster’s angle measurement at 18◦. This effect is highlighted in Fig. 6.216.21.
A similar shift was observed between the Brewster’s angle spectrum and the photovoltage
measurements reported in Fig. 6.126.12 for the V0386 sample, and was attributed to the disper-
sion of the Berreman mode with the in-plane vector. Here, the shift is more dramatic due to
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Fig. 6.20 Photovoltage spectra measured at T=9 K between the middle and
shorted top/bottom contacts of the G0662 three-terminal device are plotted in
Panel (a) on a logarithmic y-scale, and plotted in Panel (b) normalized and offset
for clarity. The correspondence between the line color and the voltage bias indi-
cated in Panel (b) holds for Panel (a). In Panel (c), the integrated photovoltage
signal for the spectra in Panel (a) is plotted on a logarithmic scale as a function of
the voltage potential. In Panel (d), the cut-off energy, calculated as the energy at
which the photovoltage is 20 % of the maximum value in the spectrum, is plotted
as a function of the voltage.
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the increased radiative decay rate associated with the higher surfacic density of the 200 nm
quantum well, and because the two measurements are recorded close to the critical coupling
angle.
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Fig. 6.21 The absorption spectrum of the G0662 sample determined from trans-
mission measurements at Brewster’s angle is compared with a photovoltage spec-
trum measured at T=9 K for a bias of −277 mV on the the middle contact with
respect to shorted top/bottom contacts of the G0662 three-terminal device.

The bias range over which the Berreman mode is observed is shaded in Fig. 6.196.19. The
photocurrent from the Berreman mode is observed over the negative voltage range for which
the Top-Middle I-V curve flattens and current begins to flow. The voltage range over which
the Berreman mode photocurrent is observed thus coincides with the voltage range over
which a rapid drop in the differential resistance occurs (see lower panel of Fig. 6.196.19). The
same observation was made for the V0386 sample and the studies reported in Appendix CC.

We attribute the high energy features observed in the spectra of Fig. 6.206.20 to photocurrent
arising from nonresonant single particle excitations (free carrier absorption) of the electron
gas in the contact and in the middle layer.4,5 The photoemission of carriers excited via free
carrier absorption from a heavily doped layer over a neighboring barrier region has been
purposefully exploited in numerous studies to realize all-semiconductor internal emission
photodetectors [8383, 102102].

The broad high energy features shift toward lower energy as the magnitude of the bias
voltage is increased. To quantify this effect, the energy at which the photovoltage is 20 %
of the spectrum maximum is plotted as a function of the bias voltage in Panel (d). As the
magnitude of the bias is increased, the 20 % cut-off energy redshifts.

A similar effect was reported in a study of an internal emission infrared photodetector
based on free carrier absorption [8383]. The detector studied showed a broadband photore-

4It is open question why similar features were not observed in the V0386 photovoltage spectra.
5Similar features are not observed in QWIP or QCD structures grown with the same materials, and

with similarly doped contacts. However, QWIP and QCD structures are microns thick, whereas the G0662
structure is only 500 nm thick. This sets a completely different length scale over which photoexcited carriers
must drift without scattering before collection.
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sponse and had a cut-off energy that redshifted with increasing bias. The cut-off energy was
demonstrated to be equal to the thermal activation energy (barrier height minus Fermi level)
for electrons in the degenerately doped layer. Under an applied bias, the barrier height, and
thus the thermal activation energy, are reduced, resulting in the redshift of the cut-off energy.

For the spectra of Fig. 6.206.20, equating the cut-off energy to the thermal activation energy
leads to a qualitative explanation for why the redshift of the cut-off energy with bias shown
in Panel (d) is more severe for negative biases. We consider again a simple model for the
activation energies like that first introduced in Section 6.3.26.3.2 to qualitatively explain the
asymmetry of the V0386 Middle-Bottom I-V curve.

The model is sketched again in Fig. 6.226.22 for the top and middle layers. The activation
energies are now indicated with vertical arrows, to indicate the lowest energy excitations for
which the photoemission of electrons can take place. We recall that because the electronic
density in the middle layer is greater, the conduction band of the top contact region bends
upward in the absence of an applied bias.

At zero bias, the cut-off energy for electrons in the top or middle layers is the same,
neglecting tunneling. This behavior is observed in the experiment. In Panel (d) of Fig. 6.206.20,
the cut-off energy as a function of the bias voltage converges to the same value as zero bias
is approached from both sides.

Top Contact Middle

No bias

Positive
 bias

Negative
 bias

Fig. 6.22 The band structure diagram is sketched for the Top-Middle device for
three bias conditions. The Fermi level is indicated as a dotted red line. The
photodetection cut-off energy is sketched with arrows intend to represent the pho-
toemission process. The lowering of the effective barrier separating the top contact
and middle layer due to a tunneling effect is sketched with a dotted black line.

For a positive bias, the conduction band of the middle layer moves to lower energy with
respect to the top contact. Apart from a small tunneling effect, the effective barrier height,
or activation energy, for electrons in the top contact is unchanged. On the contrary, for
a negative bias, for which the potential energy of the middle layer increases, the difference
between the effective barrier height and the Fermi level in the middle layer is greatly reduced.

The model of Fig. 6.226.22 also explains the asymmetry of the G0662 Top-Middle I-V curve,
shown in Fig. 6.196.19, in which the differential resistance decreases more quickly for decreasing
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negative biases than for increasing positive biases. Of note, there is a striking similarity
between the Top-Middle differential resistance as a function of voltage curve of Fig. 6.196.19
and the photovoltage cut-off as a function of voltage curve in Panel (d) of Fig. 6.206.20. The
proposed model links both of these observations to the asymmetric change with bias polarity
in the activation energy electrons must surmount to contribute to transport.

In Panel (c) of Fig. 6.206.20, the integrated photovoltage signal from each spectrum is plotted
on a logarithmic scale as a function of the bias voltage. The maximum of the integrated
signal reaches a value approximately 10 times larger for the negative bias than for positive
bias. Evidently, the photoemission process is more efficient for electrons excited from the
middle layer over the barrier toward the top contact than the reverse process.

The Berreman mode feature only appears in the photovoltage spectra for biases of suf-
ficient magnitude that the broad high energy feature redshifts enough to overlap with the
Berreman mode energy. From this, it can be inferred that the origin of the cut-off energy
is the same for electrons photoemitted due to the excitation of the collective mode, and
electrons photoemitted due to single particle excitations. This is a first indication that the
collective mode decays into electrons at the energy of the collective mode above the Fermi
level.

6.4.4 Photovoltage Spectra as Function of Angle
In the left panel of Fig. 6.236.23, photovoltage spectra from the G0662 three-terminal device for
a −276 mV potential on the middle layer with respect to shorted top/bottom contacts are
plotted for various angles of incidence, offset for clarity. The photovoltage spectra measured
between 17◦ and 36◦ were measured from a device with a 20◦ facet. The photovoltage
spectra between 40◦ and 58◦ were measured from a device with a 45◦ facet. The spectra
have been multiplied by a factor to account for the different reflection amplitudes of the
incident radiation on the facet face depending on the angle of incidence, but have otherwise
not been normalized.

A broad feature from 150 meV to 400 meV is observed in the spectra at all angles with a
nearly constant shape. On the contrary, the resonant Berreman mode feature, observed at
163 meV at 17◦, broadens dramatically with increasing angle up to at least 58◦, where it can
no longer be resolved.

In the right panel of the figure, the same spectra are plotted on top of each other,
normalized to one. The spectra broaden asymmetrically only on the higher energy side. Ad-
ditionally, the center line of the resonance shifts towards higher energy with increasing angle,
which can be attributed to the dispersion of the Berreman mode with the in-plane wavevec-
tor. Analysis of the linewidth broadening and the shift in resonance energy is complicated
by the fact that the resonance lies on a steep background feature

6.4.5 Photovoltage Response to Tunable-QCL Source
In this section, the response of the three-terminal G0662 device, contacted in the Top-Middle
configuration, is studied under illumination by a tunable laser source. The use of a laser
source has multiple advantages. First, the photoresponse can be studied specifically at the
Berreman mode energy as a function of the voltage potential. Second, because the intensity
of the laser emission is orders of magnitude greater than that of the blackbody, the signal-
to-noise ratio of the photovoltage response is massively improved. Third, the power of the
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Fig. 6.23 Photovoltage spectra measured at T=10 K between the middle and
shorted top/bottom contacts of the G0662 three-terminal device are plotted for
varying angle of incidence, for a bias of −276 mV on the middle layer. On the left,
the spectra are plotted without normalization and are offset for clarity. On the
right, the spectra are normalized to one and plotted over a reduced energy range.

laser is easy to quantify, and thus permits an easy determination of the responsivity of the
devices under study.

A commercial MIRcat system packaged with two QCLs, continuously tunable from 7.4 µm
to 11.29 µm, is employed as the laser source. The MIRcat uses an external cavity to tune
the emission line over the gain bandwidth of each QCL. Multiple QCLs with different gain
curves enable a wider tuning range. The calibration of the emitted optical power of the
MIRcat source is described in Appendix DD.

The experiment to characterize the photoresponse of the devices remains the same as
illustrated in Section 6.2.26.2.2, except the FTIR and chopper are replaced with the MIRcat
laser source, set to emit pulses of 960 ns duration at a rate of 100 kHz. The detector device
is cooled to T=7 K. The photovoltage is measured after amplification via a lock-in amplifier,
which receives a 100 kHz reference signal from the emitting MIRcat laser.

In Fig. 6.246.24, the responsivity of the G0662 device is plotted as a function of the voltage
(top panel) and as a function of the applied current (middle panel) under laser illumination
at energies of 124 meV, 139.9 meV, and 167.5 meV. In the bottom panel, the current-voltage
curves of the device under illumination at each laser energy are plotted, and are found to be
exactly superimposed.

As was the case in the FTIR experiments, the current is sourced with the Keithley Model
2450 SourceMeter, and the photoresponse is measured by detection of the voltage change
upon illumination. The current source range determines the maximum value of the current
which can be sourced, but also in effect determines the the minimum interval (or step)
which can be accurately sourced. In Fig. 6.246.24, the current source range was fixed to 100 uA.
Consequently, the instrument cannot source the vary small values of current required to
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Fig. 6.24 The responsivity measured at T =7 K of the G0662 three-terminal device
is plotted on the left y-axis as a function of the bias voltage (current) between the
top and middle layers in the upper (middle panel) for three laser excitation energies.
The phase is plotted on the right y-axis. In the bottom panel, I-V curves measured
under illumination at the three energies are plotted. The voltage range over which
no data points are measured is shaded in gray.

measure data over the extremely high differential resistance region of the I-V curve. The
shaded regions in the figure indicate the voltage range over which no data was collected.
While it is possible to change the current source range in order to source very small current
values, an offset was observed in the photovoltage each time the source range was changed.
To avoid these artifacts, the source range was fixed for the entirety of the scan.

For all three laser energies, the peak responsivity of the detector is observed for a bias of
−0.287 V. For this bias, the responsivity at 167.5 meV is 10 and 20 times larger than that
measured at 139.9 meV and 124.0 meV, respectively. This is the expected behavior as the
energy of the laser is tuned away from the Berreman mode resonance.

For all three laser energies, the peak responsivity measured at −0.287 V is approximately
two orders of magnitude larger than the peak responsivity measured for a positive bias. This
is similar to what was observed for the blackbody FTIR measurements for the same device
where the signal integrated over the whole spectrum was found to reach a maximum over
negative biases orders of magnitude larger than that reached for positive biases.
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The curve of the responsivity as a function of the voltage shows a similar form to the
curve of the lock-in signal as a function of bias measured for the V0386 Top-Bottom device
shown in Fig. 6.126.12. We recall that for the V0386 device, only the Berreman mode feature
was observed in the spectra, and thus the lock-in signal as a function of bias curve can be
interpreted as signal from the Berreman mode as a function of bias, which allows for a direct
comparison with the G0662 responsivity curve measured under resonant illumination at the
Berreman mode energy. In both cases, the photoresponse peaks for a bias of a magnitude of
a few hundred millivolts, and then begins to decline. In both cases, the bias for which the
responsivity peaks corresponds closely with the voltage at which the I-V curve flattens and
the differential resistance undergoes a dramatic drop.

In the middle panel of Fig. 6.246.24, the responsivity dramatically increases with the magni-
tude of the negative current, starting from zero. As a function of the voltage, the responsivity
is essentially zero until the negative bias reaches a magnitude greater than −0.2 V. The near
infinite differential resistance over the range from 0 V to −0.2 V links these two behaviors.

A clear 180◦ phase shift in the photovoltage signal is observed as the polarity of the
current is inverted around zero. The same 180◦ phase shift is observed as a function of the
voltage in the first data points recorded on either side of zero. As the magnitude of the
current is increased, the phase shifts continuously upward for both polarities, accumulating
nearly 90◦ by the point at which the magnitude of the current reaches 100 µA. The origin
of this shift is unknown, but for positive and negative currents of equivalent magnitude, the
photovoltage signal is consistently 180◦ out-of-phase.

In Fig. 6.256.25, photovoltage responsivity spectra of the three-terminal G0662 device are
shown for various biases between the top contact and middle layer. The shape of the spectra
are similar, with the responsivity consistently peaking around 160 meV. This energy is
blueshifted from the Berreman mode resonance observed in the Brewster’s angle transmission
measurement at 156 meV. This is consistent with the behavior observed in the photovoltage
spectra recorded with the FTIR, presented in Fig. 6.206.20.

6.5 Electroluminescence from V0386 Devices

In this section, it is demonstrated that the same V0386 device which functions as a pho-
todetector can also function as an electroluminescent source. The experimental set-up for
the electroluminescence experiments is sketched in Fig. 6.266.26. In the sketch, the devices are
shown inside a cryostat at a temperature of 7 K, but the experiments may also be conducted
at room temperature, as will soon be shown.

The plasmonic Berreman mode is electrically excited by 1 µs square voltage pulses repeat-
ing at a frequency of 100 kHz (10 % duty cycle). A reference signal passed from the signal
generator to the lock-in amplifier permits a lock-in detection technique to be employed. The
light emitted from the excited Berreman mode passes through the polished 30◦ facet of the
device and is collimated by a 2" f/1 Ge lens into the FTIR. An MCT detector placed at
the exit of the FTIR is used to detect the emitted radiation. The signal from the MCT is
amplified 100× before detection by the lock-in amplifier. To get the spectral dependence
of the emission signal, an interferogram is recorded using the FTIR in step-scan mode and
then Fourier transformed into a spectrum of the emitted radiation. The spectrum is then
corrected to account for the frequency-dependent response of the MCT detector.
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Fig. 6.25 The measured responsivity at T=7 K of the G0662 three-terminal device
for voltages between the top and middle layers is plotted as a function of the laser
energy. The energy range over which it is difficult to calibrate the optical power
emitted from the MIRcat, due to a rapid decrease in the emitted power, is shaded.
For the calibration, see Fig. D.1D.1.
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Fig. 6.26 The set-up for the electroluminescence experiment.
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In the left panel of Fig. 6.276.27, current-voltage curves measured for a 10 % duty cycle
are plotted at T=300 K and 7 K for the V0386 Top-Bottom sample in black. Also in the
left panel, the luminescence signal measured on the lock-in amplifier is plotted in red and
blue as a function of the current, the red (blue) indicating a negative (positive) polarity of
the voltage pulse. At T=300 K, for either polarity, the luminescence curve is superlinear.
However, at T=7 K, the luminescence curve becomes linear for negative polarity pulses. The
linearity of the luminescence curve for negative polarity pulses is highlighted in the figure
with a linear fit plotted in gray. The linear relationship between the injected current and
the photon emission suggests that the collective mode is resonantly excited [7070].
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Fig. 6.27 The electrical characteristics (black curves, left y-axis) and the lumines-
cence signal (red and blue curves, right y-axis) as a function of the injected current
(left panel) or injected electrical power (right panel) are plotted for the V0386 Top-
Bottom device at T=300 K (solid lines) and T=7 K (dotted lines). The red and
blue colors indicate the polarity of the pulse. A linear fit is plotted as a shadowing
grey line.

In the right panel of Fig. 6.276.27, the luminescence signal is plotted as a function of the peak
injected electrical power (current × voltage during pulse) at T=7 K and 300 K for negative
(red) and positive (blue) polarity pulses. At both T=7 K and 300 K, the luminescence
signal is greater for negative polarity pulses for a given electrical power injected. Under the
application of a negative bias voltage, electrons excite the Berreman mode in the heavily
doped middle layer by traversing the lower 84.4 nm barrier from the bottom contact. The
fact that the 30 nm upper barrier between the top contact and the middle layer is essentially
shorted, as described in the proceeding sections, likely explains why so little luminescence is
observed for positive polarity pulses.

In the thermal emission model presented in Section 2.4.12.4.1, the temperature rise ∆T of the
electron gas is simply proportional to the electrical power injected, and thus the excitation
does not depend on the polarity of the applied pulses. The observation that the luminescence
signal does depend strongly on the direction of the electron flow suggests a resonant excitation
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mechanism.
Electroluminescence spectra of the V0386 Top-Bottom sample measured at T=300 K are

shown in Fig. 6.286.28. Emission spectra are plotted for positive and negative pulse polarities
corresponding to an identical peak electrical power injected WPP = 0.92 W. The plasmon
mode is present in both spectra, however, the magnitude of the emission from the plas-
mon mode is much larger for the negative polarity pulse. In both cases, there is a broad
background contribution to the emission spectrum. By subtracting the emission spectrum
measured for positive polarity from that measured for negative polarity,6 the Lorentzian
shaped spectra plotted in the right panel of Fig. 6.286.28 is found. A Lorentzian fit is plotted
with a thick grey line.
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Fig. 6.28 Electroluminescence spectra measured at 300 K for positive (blue) and
negative (red) polarity pulses corresponding to an identical peak electrical power
injected WPP are plotted in the left panel. In the right panel, a Lorentzian lineshape
is extracted (black) and fit (grey) as described in the text.

Electroluminescence spectra measured at T=7 K are shown in the left panel of Fig. 6.296.29,
for positive and negative pulse polarities corresponding to an identical peak electrical power
injected WPP of 1.62 W. The amplitude of the plasmon resonance with respect to the
background contribution is significantly decreased with respect to the emission spectrum
at T=300 K, suggesting that some of the emission from the Berreman mode at T=300 K
was thermal. Emission from the plasmon resonance is only present in the spectrum for the
negative polarity pulses.

In the right panel of Fig. 6.296.29, polarized electroluminescence spectra measured from a
different V0386 Top-Bottom mesa for a heat sink temperature also at T=7 K are plotted.
The background contribution to the emission spectrum is greatly reduced. While this could
be due to the smaller injected electrical power, it may also be due to variations between the
different devices.

It is compelling from a fundamental point of view to have a single device in which both
6Prior to the substraction, the positive polarity spectrum is first multiplied by a factor of order 1.
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Fig. 6.29 Electroluminescence spectra measured for a heat sink temperature of
T=7 K are plotted. The spectra in the left panel are measured for positive (blue)
and negative (red) polarity pulses which correspond to an identical peak electrical
power injected WPP. In the right panel, polarized emission spectra from another
mesa are plotted.

the emission and photodetection problems may be studied. In the resonant injection scheme,
the collective mode is excited by a resonant electron-plasmon scattering process, in which
the kinetic energy of single particle electrons is transferred to the collective mode [7070]. A
microscopic theory is still missing to describe this phenomenon, as is a microscopic theory
to describe the photodetection process from the Berreman mode. In both cases, it is the
transfer of energy between a single-particle excitation and a many-body excitation which is
at the core of the problem.

6.6 Conclusion

A resonant Berreman mode feature was observed in the photovoltage spectra of the V0386
and G0662 devices. For both samples, the mode was observed for only one bias polarity.
For the V0386 sample, this is because the upper barrier was completely conductive. For
the G0662 sample, the potential height of the lower barrier is most likely too large for
photoexcited electrons from the Berreman mode to surpass.

For the V0386 and G0662 devices, and the additional Berreman mode detectors studied
in Appendices BB and CC, the Berreman mode photovoltage feature was always observed
near the voltage at which the differential resistance of the I-V curve sharply drops. This
observation is most simply explained by linking the activation energy with a cut-off energy for
the photodetection process. An applied bias has the same lowering effect on both quantities.

In the study of the of the G0662 sample, unexpected features were observed at energies
above the Berreman mode resonance. These features were attributed to the photoemission
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of single particle electrons excited via free carrier absorption. Similar features were observed
in the study of the MOCVD grown samples of Appendix CC. It remains a mystery why such
features were not observed in the photovoltage spectra of sample V0386, or sample V0385
studied in Appendix BB.

The efficiency for which the collective excitation is converted into photocurrent appears
to be very low. The photovoltage features attributed to free carrier absorption are of much
greater amplitude than the Berreman mode features, despite the fact that the absorptivity
from free carrier absorption is orders of magnitude smaller than the absorptivity of the
collective mode, which is unity at the critical coupling angle.

Finally, we have demonstrated that a collective mode can be resonantly excited and
utilized as a photodetector in the same device. This highlights the potential for heavily
doped quantum wells as an intriguing platform to study the interaction between collective
excitations and electronic current.



Chapter 7

Plasmonic Detectors Operating in the
Ultrastrong Coupling Regime

In this chapter, photocurrent from the excitation of coupled light-matter modes, the well-
known cavity polaritons, is studied. The Berreman mode photodetector structures investi-
gated in the previous chapter are put inside an optical microcavity. The Berreman mode
couples ultrastrongly to the cavity mode, resulting in two polariton modes at energies sig-
nificantly detuned from that of the bare resonance.

Three are three principle motivations for the study. First, the microcavities act as a
spectral filter for incident free space radiation. Incident light is reflected unless it excites
a mode of the cavity. Consequently, the large photocurrent features observed above the
Berreman mode energy in the study of the Berreman mode detectors should not be observed
when the structure is placed inside a cavity.

Second, by varying the cavity parameters, the energy of the polaritonic excitation can be
tuned. By measuring the photoresponse as a function of the polariton energy, the internal
photoemission model can be investigated, and perhaps reveal a cut-off energy.

Third, the study is motivated by the same reasons put forth in the introduction of
the previous chapter: to understand the physics behind the generation of photocurrent
from a mode with an excitation energy which is renormalized by the Coulomb interaction
from that of the single particle electrons which constitute it. The interaction of the matter
excitation with the cavity mode is just one more dipolar oscillator coupled to the system.
The fundamental question remains: after the normal mode of the system is excited, at which
energy are the carriers left which participate in the transport?

The chapter begins with a brief quantum description of the polaritons. This is followed
by a description of the microcavity resonators used and the fabrication of the photodetector
devices. Finally, experimental results are presented.

7.1 Polariton Modes

In Chapter 44, the matter Hamiltonian (Eq. (4.254.25)) describing the single particle intersubband
excitations of a quantum well and their mutual Coulomb interaction was diagonalized for
the case of many occupied subbands. The diagonalized Hamiltonian (Eq. (4.354.35)) is written
in terms of raising P †

n and lowering Pn operators for the collective excitations of frequency

149
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Ωn.
We now consider the full Hamiltonian Eq. (4.214.21), including the radiation and light-matter

interaction terms, which were not considered in Chapter 44. With the matter part already
diagonalized, this Hamiltonian takes the form [3434]:

H = Ec

(
a†a + 1

2

)
+
∑

n

ℏΩnP †
nPn + i

∑
n

ℏωpn

2

√
F

ωc
Ωn

(
a† − a

) (
P †

n − Pn

)
(7.1)

where the operators a† and a describe the creation and annihilation of a photon in the mode
Ec = ℏωc, ωpn is an effective plasma frequency associated with the Ωn mode, and F describes
the spatial overlap between the matter polarization and the photon mode.

In the experimental studies which follow, we will consider a 200 nm InGaAs/AlInAs
heavily doped quantum well in which all of the oscillator strength is coupled into a single
bright mode: the Berreman mode. We drop the sum over n, and consider only a single
collective excitation at the energy EBerr = ℏΩ1.

The exact diagonalization of the Hamiltonian, including the antiresonant terms a†P † and
aP , results in the following eigenvalue equation [3434, 131131]:(

E2 − E2
Berr

) (
E2 − E2

c

)
= E2

RE2
c (7.2)

where the Rabi energy ER = ℏΩP

√
F has been introduced. This equation admits two positive

solutions for each cavity mode energy Ec. The higher energy and lower energy solutions are
continuous functions of Ec, and are referred to as the upper and lower polariton branches.
The solutions are found as:

E2
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2
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c

)
(7.3)

The solutions are the oscillation frequencies of the coupled light-matter modes, called
polaritons. These modes are observed under the condition that the light-matter coupling,
quantified by ER, is sufficiently strong as compared with the damping rate in the system
[3737].

Equation (7.37.3) defines the dispersion of the polariton modes. The dispersion is plotted
in Fig. 7.17.1 for the case of the G0662 sample inserted into a microcavity, in which case
EBerr = ℏΩP = 156 meV and F = 0.444. Here, F is taken as the ratio of the quantum well
width to the ratio of the total thickness of the sample, which defines the cavity height. For
these parameters, ER = 104 meV.

As the cavity mode energy is increasingly detuned from the Berreman mode towards
higher energies, the upper polariton branch approaches the energy of the bare cavity mode.
Similarly, when the cavity mode energy is increasingly detuned towards lower energies, the
lower polariton branch approaches the bare cavity energy.

Between the upper and lower polariton modes, there is an energy region with no solu-
tions, indicating a photonic gap in which no light is admitted into the microcavities. The
appearance of the photonic gap is a hallmark of the ultrastrong coupling (USC) regime, and
is only found when the antiresonant terms in Eq. (7.17.1) are considered [3434, 6363, 131131]. The
width of the gap is found as:

Eg = EBerr

1 −

√
1 −

(
ER

EBerr

)2
 (7.4)
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Fig. 7.1 The upper and lower polariton modes from Eq. (7.37.3) are plotted in black
for the G0662 sample.

The relative weight of the photonic or matter components which constitute a polariton
mode can be described by Hopfield coefficients [5959, 135135]. In the regime where the upper
polariton approaches the cavity mode energy, the matter component becomes increasingly
small, and the polariton mode becomes increasingly photon-like.

In the experimental study which follows, we attempt to observe photocurrent from the
upper polariton mode. It is an interesting question what influence the ratio of matter compo-
nent to photonic component has on the generation of photocurrent. Even if the photocurrent
generation is reduced as the relative weight of the matter component is reduced, it remains
possible that the increased energy of the electrons which decay from the mode might be
advantageous for their collection.

7.2 Metal-Dielectric-Metal Microcavities
The Berreman mode is coupled to the fundamental photonic mode of metal-dielectric-metal
microcavities like those sketched in Fig. 7.2a7.2a. The upper gold and dielectric layers of a metal-
dielectric-metal structure are patterned on a sub-wavelength scale to realize a periodic motif
of stripes of width s, realizing a metamaterial. Each stripe supports a resonant photonic
mode. The periodicity of the stripes determines the efficiency with which free space radiation
is coupled into the dielectric region of sub-wavelength thickness h in each stripe [133133].

Let z be the direction perpendicular to the metallic plane, and x be the direction perpen-
dicular to the stripes, as shown in Fig. 7.2a7.2a. We consider p-polarized (TM) incident waves
such that the electric field lies in the x−z plane. The modes excited under such illumination
consist almost exclusively of a strongly confined z-polarized electric field Ez within each
stripe and are therefore ideal for coupling with the Berreman mode, which only interacts
with the z-polarized electric field.

The Ez profile for the fundamental mode excited in each stripe is plotted in Fig. 7.2b7.2b,
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where the blue and red colors indicate the amplitude of positive and negative fields. The Ez

field is confined between the upper gold layer and the bottom gold plane, and is found to be
constant with z, like a TM0 guided mode between two metallic plates.
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Fig. 7.2 (a)(a) The geometry of the stripe resonators is defined, with the dielectric
height h, stripe width s, and pitch o indicated. (b)(b) The Ez field of the fundamental
resonator mode excited by light at normal incidence polarized perpendicular to the
stripes with photon energy E = 152 meV is plotted for h = 450 nm, s = 1.1 µm, and
o = 3 µm. (c)(c) Simulated reflectivity spectra for resonators of varying s are plotted,
for h = 450 nm and o = 3 µm.

The x-dependence of Ez for the fundamental cavity mode is that of a standing wave
pattern, for which a single node is observed near the center of the stripe. More generally,
the Ez field of the Kth mode is written [133133]:

Ez(x) = Ez cos
(
πK

s
x

)
(7.5)

In Fig. 7.2c7.2c, reflectivity spectra calculated with a finite element solver (COMSOL) are
plotted for three simulations for which s is varied. The energy of the cavity mode resonance
is found to be linearly proportional to s−1. More generally, the energy of the Kth-order mode
can be written as [132132]:

EK = hc
K

2neff

1
s

(7.6)

where an effective modal index has been introduced as neff . For the remainder of the chapter,
we shall only concern ourselves with the fundamental K = 1 mode, and refer to it unam-
biguously as the cavity mode. Then, by fabricating structures of various stripe width s, the
cavity mode resonance can be tuned.

The contrast of the cavity mode, defined as one minus the reflectivity minimum, depends
on the geometry of the resonators, notably the dielectric height h and the stripe separation
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o. Similarly, the contrast of the polariton resonances observed when a matter excitation is
coupled to the cavity mode, is determined by these parameters.

In the experiments which follow, we aim to observe photocurrent from the upper polariton
of the coupled Berreman mode-micocavity mode system. To this end, the geometry of the
microcavities is optimized to maximize the contrast of the upper polariton mode.

The microcavites are fabricated around the same G0662 structure as studied in the
previous chapter. The height h of the cavities is fixed by the semiconductor growth to a
value of 450 nm. This leaves the pitch o as the only free parameter to optimize.

The optimal value of o for which the contrast of the upper polariton is maximized between
150 meV and 200 meV is determined from finite element simulations to be 3 µm. Simulated
reflectivity spectra for stripe cavities containing the G0662 structure for this value of o and
for varying s are plotted in Fig. 7.37.3. A value of 9.8 meV is used for the nonradiative linewidth
γNR of the Berreman mode in the simulations.
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Fig. 7.3 Simulated reflectivity spectra and the extracted polariton dispersion are
plotted for stripe cavities containing the G0662 structure for various stripe width s,
for height h = 450 nm and separation o = 3 µm. The photonic gap separating the
upper (blue) and lower (red) polariton branches is shaded in gray on the dispersion
plot.

The dispersion of the polariton modes is plotted in the right panel of Fig. 7.37.3. A photonic
gap Eg of about 33 meV separates the two polariton branches, indicating that the system
is in the ultrastrong coupling regime. From the width of the gap, the Rabi energy ER is
extracted according to Eq. (7.47.4) as approximately 96 meV, or 62 % of the matter excitation
energy, corresponding to an overlap factor of F = 0.38. This value of F is slightly lower than
that calculated as the ratio of the quantum well width to h. This is because in the finite
element simulations, the nonuniform field distribution is considered.
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7.3 Device Fabrication

7.3.1 Device Overview

To observe photocurrent from the polariton modes, the microcavity devices must be elec-
trically contacted. Furthermore, a three-terminal device is desired, for which independent
electrical connections can be made to the top contact layer, the highly doped middle layer,
and the bottom contact layer, as was done for the G0662 three-terminal device described in
the previous chapter.

The fabrication of devices meeting these criteria constituted a considerable challenge and
had not previously been realized in the Quantum Devices team. The procedure developed
to realize these devices is detailed in the following section.

An optical image of the final device is shown in Fig. 7.47.4. Two of the contacts are estab-
lished with air bridges, while the third contact is simply the gold ground plane.

Fig. 7.4 A G0696 microcavity resonator device after fabrication

As will be detailed, the InGaAs/AlInAs heterostructure is flipped during the device
fabrication due to a wafer bonding step. To keep the naming convention consistent with the
mesa devices, references to the top and bottom contacts are still made with respect to the
order of the semiconductor growth, and do not correspond to the relative position of the
layers with respect to the gold ground plane of the final device. Thus, in the image, the
bottom contact is made by contacting the top gold layer of the resonators.

The microcavity detector devices studied in this chapter were fabricated from sample
G0696, grown to be an identical copy of the G0662 sample studied in the previous chapter.
The sample was grown via MBE by Lianhe Li, Giles Davies, and Edmund Linfield at the
University of Leeds. The growth sheet can be found on Page 206206.
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7.3.2 Fabrication Procedure

Wafer bonding and Substrate Removal A thin Ti adhesion layer followed by a few hundred
nanometers of Au are deposited on the surfaces of the GaInAs/AlInAs semiconductor
epitaxial wafer and a semi-insulating GaAs host wafer. After the metal deposition,
the metallic sides of the wafers are brought into contact. The application of heat and
pressure lead to the bonding of the Au layers.1 After the wafer bonding, the sample
is placed into concentrated HCl to selectively remove the InP substrate on which the
semiconductor growth initially took place.

Definition of Metallic Resonators The stripe pattern, the region connecting the stripes, and
a region destined to be contacted are defined via electron beam lithography. A bilayer
resist, consisting of a PMGI bottom layer and a PMMA top layer, is used to ease the
lift-off process. The PMMA layer is patterned with electron beam lithography2 and
then selectively developed in a 1:3 MIBK:isopropanol solution. Where the PMMA has
been removed, the PMGI layer is exposed to MF319 developer. The developer removes
the PMGI layer in the exposed regions and undercuts beneath the PMMA pattern.
The result is shown in Fig. 7.5a7.5a. After the bilayer resist has been developed, 5 nm of
Ti, 150 nm of Au, and 40 nm of Ni are deposited on the sample surface. The Ni layer
is deposited to protect the gold during the later ICP etch step. The lift-off is achieved
with DMSO heated to 50 ◦C.

Si3N4 Hard Masking of Eventual Middle Contact Area A 200 nm layer of Si3N4 is deposited
on the entire sample surface. An optical lithograpy step is used to define a rectangular
resist region which will later become the middle contact. The resist region serves as a
mask during the subsequent reactive ion etching (RIE) step, where the Si3N4 layer is
removed from the sample surface apart from the resist-protected region. Upon removal
of the resist, a rectangular Si3N4 region is left behind to serve as a hard mask for the
subsequent ICP etch step. The Si3N4 hard mask is shown in Fig. 7.5b7.5b.

ICP Etch An inductively coupled plasma (ICP) etch of the exposed GaInAs/AlInAs semi-
conductor layers is performed3 to realize vertical sidewalls. The ICP etch removes
some, if not all, of the Ni layer deposited on top of the resonator devices. The ICP
etch should be carefully stopped just as the gold ground plane becomes visible. The
careful stopping of the ICP etch is the largest source of non-reproducibility during the
entire device fabrication, if not the entire ICP step itself. Further refinement of the
ICP recipe is still needed to achieve ideal results.

Removal of Si3N4 Hard Mask and Wet Etch to Middle Layer Following the ICP step, the
Si3N4 hard mask is removed with RIE, leaving behind the exposed semiconductor
layers. The image of Fig. 7.5c7.5c shows the sample at this stage of the fabrication.
An optical lithography step is used to define a windows wherein only the already
exposed semiconductor area is left uncovered by resist, as seen in Fig. 7.5d7.5d. The resist
protects the stripe resonators from being etched from the side. One dimension of the

1Nathalie Isac performed the wafer bonding step at the Centre de Nanosciences et Nanotechnologies (C2N).
2Thomas Bonazzi performed the electron beam lithography step of the fabrication.
3Thomas Bonazzi calibrated and performed the ICP etch step of the fabrication.
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(a) Bilayer resist for metal deposition (b) Si3N4 hard mask

(c) After ICP and hard mask removal (d) Wet etch window for middle contact

(e) After etch of Au ground plane (f) Hard baked pillows for bridges

(g) Definition of metal deposition areas (h) SEM image of final device

Fig. 7.5 Images taken at various steps of the device fabrication are presented. The
SEM image of (h)(h) was taken by Thomas Bonazzi.
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window is extended over the metal ground plane which is impervious to the etchant
solution. This permits profilemeter measurements to be performed to confirm the depth
of the wet etch. An H2O2/H3PO4/H2O solution is used to etch approximately 200 nm
of the exposed InGaAs/AlInAs layers until the center of the highly doped middle layer
is reached.

Removal of Ti/Au Ground Plane to Expose GaAs Host Wafer In order to realize contact
pads which are electrically insulated from the device ground plane, the Ti/Au ground
plane must be removed from the areas where the future contact pads will be deposited.
Note that the so-called semi-insulating GaAs host wafer is, in fact, very insulating,
such that the contact pads deposited directly on it remain electrically separated.

An optical lithography step defines the area where the gold will be removed. The
exposed gold is then selectively removed from the underlying Ti layer by a KI/I2
solution (KI:I2:H2O = 4 g:1 g:40 mL). The image of Fig. 7.5e7.5e shows the sample just
after the gold wet etch. The remaining thin (≈ 5 nm) layer of Ti is then removed via
RIE with SF6 gas. The resist protecting the remainder of the sample is then removed.
At this point, the GaAs host substrate is now exposed over the areas where the metallic
contacts will be deposited.

Support Pillow for Contact Bridges The two contact pads to be deposited on the GaAs host
substrate must be electrically connected, separately, to the upper metallic surface of
the resonator and to the exposed semiconductor middle contact. To avoid electrical
shorts, these connections are achieved with air bridges. A pillow of hard baked resist
serves as the support for the bridge structures during the metal deposition step.

The resist pillow is defined by optical lithography, using S1818 positive photoresist.
After development, the resist is hard baked. The hard bake serves two purposes. When
heated above its softening temperature, the resist reflows, so that its edges become
rounded, necessary to create a smooth surface for the metal deposition. Second, the
hard bake induces thermal cross-linking which renders the resist stable against usual
resist developers. This is important since a subsequent optical lithography step is
necessary to define the area over which metal will be deposited. The hard baked pillow
is shown in Fig. 7.5f7.5f.

Deposition of Metallic Contacts A negative photoresist is used to define the areas of the
metal deposition, as shown in Fig. 7.5g7.5g. Due to the hard bake, the support pillow for
the air bridges is not developed during this lithography step. A 5 nm layer of Ti and
150 nm layer of gold are deposited. The lift-off is performed with SVC-14 Photoresist
Stripper heated to 80 ◦C. At the stage, the microfabrication of the devices is complete.
An SEM image of a final device is shown in Fig. 7.5h7.5h. The devices are ready to be
mounted, at which point, electrical connections can be established via wirebonds.
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7.4 Experimental Study

7.4.1 Reflectivity Measurements

Reflectivity spectra of G0696 resonator devices were measured at room temperature using
a Bruker HYPERION FTIR microscope.4 The microscope allows for the selection of a
microscopic area of the sample surface over which reflectivity spectra can be measured. For
the G0696 devices, spectra were measured over a 50 µm×50 µm region of each 100 µm×100 µm
resonator device. The reflectivity spectra of G0696 devices of various stripe width are plotted
in Fig. 7.67.6.
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Fig. 7.6 Reflectivity spectra measured at room temperature for G0696 devices of
various stripe width s are plotted. In the inset, the experimental energies of the
upper and lower polariton resonances are plotted as a function of s−1. The photonic
gap extracted from finite element simulations is plotted.

For the smallest value of s−1, the upper polariton resonance is at 162 meV, close to the
energy of the bare Berreman mode. As s−1 is increased, the upper polariton resonance
blueshifts towards increasingly high energies. Minima in the reflectivity spectra correspond-
ing to the lower polariton mode are distinguishable at energies of 90 meV or less for the
spectra shown with the three largest values of s−1. For the other values of s−1, the lower
polariton redshifts to energies below the cut-off of the MCT detector used in the experiment.
The contrast of the lower polariton is significantly reduced from that of the upper polariton,
a consequence of the choice of the stripe separation length, o.

The dispersion of the upper and lower polariton modes is plotted in the inset of Fig. 7.67.6.
A photonic gap is clearly present, indicating that the ultrastrong coupling regime has been

4These measurements were performed with the aid of Baptiste Fix at the Optics and Associated Techniques
Department (DOTA) of ONERA.
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reached. However, without reflectivity spectra for larger values of s−1, the asymptote which
sets the upper bound for the lower polariton branch cannot be determined, and thus the
Rabi energy is not extracted from the experimental dispersion. The photonic gap from the
finite element simulations of Fig. 7.37.3 is plotted on the inset for comparison.

In the simulated spectra of Fig. 7.37.3, the contrast of the upper polariton mode approaches
unity when the mode is resonant near 175 meV, and then declines as the mode is blueshifted,
though it still remains near 85 % when the upper polariton is at 200 meV. In the experimental
spectra, the contrast is found to continually increase as the polariton mode is blueshifted,
reaching of maximum of just over 60 % for the spectrum measured from the device with the
largest value of s−1.

The FWHM of the experimental upper polariton resonances is about 23 % of the mode
energy; for the simulated spectra, the FWHM of the upper polariton modes between 160 meV
and 200 meV is about 9.5 % of the mode energy. The larger linewidths observed in the
experiment explain the discrepancy in the contrast between the simulation and experiment.
The broader experimental linewidths are likely due to imperfections in the definition of the
stripe resonators during the ICP etch step. SEM images showed that the sidewalls of the
resonators were not smooth.

7.4.2 Electrical Characterization

Before proceeding, it is noted that the results presented in this section are from the study of
devices fabricated separately from those for which the optical spectra were reported in the
previous section. An electrical short due to a fabrication issue prevented the study of the
electrical properties of those devices. The optical characterization of the devices studied in
this section has not yet been performed, but it is expected to yield similar results as those
described in the previous section.

For all contact schemes, the G0696 resonator devices were much less resistive near zero
bias than the G0662 mesa devices studied in the previous chapter. Current-voltage curves for
the Top-Middle contact scheme are plotted in Fig. 7.7a7.7a for resonator devices of various stripe
widths and for the G0662 mesa device studied in the previous chapter. Under a negative bias
of the same magnitude at which plasmonic photocurrent could be observed from the G0662
mesa device (around −200 mV), an orders of magnitude larger current density is observed
for the resonator devices.

In Fig. 7.7b7.7b, current-voltage curves for the Top-Middle and Bottom-Middle contact con-
figurations of the same s=2.86 µm G0696 device are plotted. Contrary to the case for the
G0662 mesa device, in which the bottom barrier was found to be much more resistive than
the top barrier (see Fig. 6.196.19), for the s=2.86 µm G0696 device, the I-V curves for the two
contact configurations are rather similiar, with the Top-Middle configuration actually being
slightly more resistive near zero bias than the Bottom-Middle configuration.

The reason for the reduced resistivity of the resonator devices, and specifically, the huge
reduction in the differential resistance around zero bias as compared with the G0662 mesa
device, is not known.5 Interestingly, the differential resistance around zero bias for the Top-
Middle configuration shown in Fig. 7.7a7.7a is reduced almost systematically as the stripe width
is reduced. It is possible that a contaminating layer is deposited on the sidewalls of the

5To rule out the influence of the wafer bonding step, mesa structures were fabricated on a wafer bonded
sample, and were found to have the same electrical properties as mesas fabricated directly on the InP substrate.
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Fig. 7.7 (a)(a) I-V curves measured at T=10 K between top contact and middle layer
for various devices. The differential resistance of the 100 µm diameter G0662 circu-
lar mesa around zero bias is much greater than that of any of the G0696 resonator
devices. (b)(b) I-V curves measured at T=10 K for different contact schemes of same
G0696 s=2.86 µm device. The resistance of the Bottom-Middle curve is even less
than that of the Top-Middle configuration. (c)(c) SEM image of G0696 sidewalls (12.25
k× magnification). Unknown features are found to mar the resonator sidewalls. (d)(d)
SEM image of V0760 sidewalls (31.52 k× magnification). A layer of unknown origin
covers the sidewalls. The SEM images were taken by Thomas Bonazzi.
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resonators during the ICP etch step which provides an additional current pathway. The
relative contribution of current passing through a sidewall path to the total current would
be expected to increase as the resonator width is reduced.

An SEM image of the G0696 sidewalls immediately after the ICP step is shown in
Fig. 7.7c7.7c, where unknown features can be observed. Another SEM image is presented in
Fig. 7.7d7.7d, in which an unknown material is seen coating the sidewalls of a similar sample
(V0760), fabricated in the same manner.

7.4.3 Photoresponsivity Measurements

For the same experiment described in Section 6.2.26.2.2, using the internal blackbody of the
FTIR as the light source, and employing a lock-in detection technique, no photoresponse
could be detected above the noise level from the resonator devices at T=10 K for any contact
configuration under any voltage bias. For this reason, the photoresponse of the devices was
studied under laser illumination from the tunable MIRcat multi-QCL system, introduced in
the previous chapter and characterized in Appendix DD.

Unfortunately, the largest energy to which the MIRcat laser could be tuned was 167.5 meV.
The investigation was thus limited to excitation energies far below the region in which the
upper polariton resonances are expected for the devices. Nonetheless, in what follows, we
present indirect evidence that the resonator devices show a resonant photoresponse at the
energy of the upper polariton mode.

We begin by comparing the photoresponse of the G0696 resonator device with the largest
stripe width, s=2.86 µm, to that of the G0662 100 µm diameter mesa. For this stripe width,
corresponding to a value of s−1 = 0.35 µm−1, the upper polariton mode is expected at
159 meV, only slightly blueshifted from the bare resonance of the Berreman mode. Therefore,
a photoresponse similar to the mesa device is expected.

In the lower panel of Fig. 7.87.8, the responsivity of the G0696 s=2.86 µm device is plotted
as a function of the voltage bias on the middle layer with respect to the top contact, for
three different laser energies. The responsivity of the same device is also plotted for a bias
between the bottom contact and the middle layer for a single laser energy. The responsivity
is determined from the photovoltage signal measured with a lock-in amplifier. For each
measurement, a clear 180◦ shift of the phase of the photovoltage signal was observed on the
lock-in for a negative value of the voltage, indicating a reversal in the photocurrent direction.
The responsivity curves plotted in Fig. 7.87.8 have been multiplied by −1 for voltages greater
than that at which the phase shift is observed.

The responsivity curve for the Top-Middle contact configuration of the G0696 s=2.86 µm
device exhibits a relatively sharp peak at a negative bias of a few hundred millivolts for
all three laser excitation energies, similar to what was observed for the G0662 mesa device
in Fig. 6.246.24. As the laser is tuned from 167.5 meV to 139.9 meV and then to 124.0 meV,
the peak responsivity drops by a factor of 6, and then 20, with respect to the responsivity
measured with the laser fixed to 167.5 meV. This is the expected behavior as the laser is
tuned away from the upper polariton, estimated to be at 159 meV, and is also similar to the
behavior observed for the responsivity of G0662 mesa as the laser was redshifted away from
the Berreman mode resonance.

The peak responsivity and the bias at which it occurs differ between the G0662 mesa
device and the G0696 s=2.86 µm device for the same Top-Middle contact configuration.
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Fig. 7.8 In the upper panel, the differential resistance, calculated as the derivative
of the voltage with respect to the current density, is plotted for the G0696 s=2.86 µm
device, for the Top-Middle contact scheme (solid lines, left axis) and the Bottom-
Middle contact scheme (dotted line, right axis). These curves are the derivatives of
the I-V curves plotted in Fig. 7.7b7.7b. In the lower panel, responsivity curves for the
G0696 s=2.86 µm resonator device, determined from photovoltage measurements
recorded at T=7 K, are plotted for the Top-Middle contact scheme for various
laser excitation energies, and for the Bottom-Middle contact scheme for a single
excitation energy. The responsivity is plotted as a negative quantity over the voltage
range for which the photocurrent direction is opposite.
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The peak responsivity observed for the G0662 mesa device (1.8 × 10−7 V W−1) is nearly
two orders of magnitude greater than of the G0696 s=2.86 µm device (3 × 10−9 V W−1)
under illumination by the laser tuned to 167.5 meV. This is consistent with the fact that
no photoresponse could be detected from the resonator devices under illumination with the
blackbody of the FTIR.

For the G0662 mesa device, the peak responsivity was reached for a bias of −0.287 V,
whereas for the G0696 s=2.86 µm device, the peak occurs for a bias of −0.445 mV. One of the
important findings of the previous chapter, observed for the G0662 mesa device, is that the
responsivity peaks near the voltage at which the differential resistance rapidly drops. This
correspondence is observed for both the Top-Middle and Bottom-Middle contact schemes of
the G0696 s=2.86 µm device in Fig. 7.87.8, where the differential resistance is plotted in the
upper panel on the same voltage axis over which the responsivity is plotted in the lower
panel. This suggests that the difference in the bias at which the responsivity peaks for
the G0662 mesa device and the G0696 s=2.86 µm device can be attributed to the different
electrical characteristics of the devices.

For the same 167.5 meV laser energy, the peak responsivity of the Top-Middle contact
configuration is nearly five times greater than the peak responsivity observed for the Bottom-
Middle contact scheme. For the G0662 mesa device, the peak responsivity of the Top-Middle
contact configuration was 40 times greater than that observed for the Bottom-Middle contact
scheme. For the G0696 s=2.86 µm device, the I-V curves for the Top-Middle and Bottom-
Middle configurations are more similar (Fig. 7.7b7.7b) than they were for the G0662 mesas
(Fig. 6.196.19). This explains why the relative difference in responsivity between the contact
configurations is reduced.

The upper polaritons of the various G0696 device cannot be directly excited since they
lie at energies above the tuning range of the MIRcat. Instead, we fix the energy of the laser
to 167.5 meV and measure the responsivity of the detectors as the upper polariton mode is
tuned away from the laser and to increasingly large energy. In practice, this corresponds to
measuring the responsivity of various devices for decreasing stripe width s, or for increasing
value of s−1.

In the upper left panel of Fig. 7.97.9, the responsivity is plotted as a function of the bias
voltage for G0696 devices of different stripe width contacted in the Top-Middle configuration
under illumination by the laser at 167.5 meV. The responsivity of each device reaches a
maximum between −0.4 V and −0.6 V. The peak responsivity is found to systematically
decline as the the value of s−1 (and the energy of the upper polariton mode) is increased.

If the photocurrent response of the devices mirrors the optical absorption, so that res-
onances in the photocurrent occur at the energies of the upper polariton mode, then the
responsivity of the devices should decrease as the upper polariton mode is blueshifted away
from the fixed energy of the laser. This is exactly the behavior observed in Fig. 7.97.9.

A particular interest of this study was to look for a modification of the voltage at which
the responsivity peaks, as the energy of the upper polariton is modified. If the internal
photoemission model describes the photocurrent generation process, then for a cut-off energy
fixed by the conduction band potential, an increase in the energy of the excited polariton
mode should result in a reduction of the bias voltage at which the peak responsivity is
observed.

The bias voltage at which the peak responsivity is observed in the upper left panel of
Fig. 7.97.9 does not follow a monotonic trend with s−1. Instead, the bias voltage at which
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the peak responsivity is observed for a given device correlates with the voltage at which the
differential resistance of the I-V curve undergoes a decline, as shown in the bottom left panel
of Fig. 7.97.9. We are unable to conclude from our data that the polariton energy modifies the
voltage for which the peak responsivity is observed.
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Fig. 7.9 In the upper left panel, photovoltage responsivity curves are plotted for
resonators of varying stripe width s under illumination by the laser at 167.5 meV.
The estimated energy of the upper polariton (UP) mode is indicated in the legend.
In the lower left panel, the differential resistance, normalized between zero and one,
is plotted for the same devices. Responsivity spectra are plotted in the right panel
for the same devices, biased at −450 mV (indicated by dashed vertical line in upper
left panel). The responsivity measured for the G0662 mesa device for a voltage of
−287 mV is plotted on the right y-axis. All devices are contacted in the Top-Middle
configuration.

In the right panel of Fig. 7.97.9, photovoltage responsivity spectra measured at a bias of
−450 mV are plotted for the same devices studied in the left panels. The photovoltage
spectrum of the G0662 mesa measured under a bias of −287 mV, corresponding to its peak
responsivity, is plotted on the right y-axis for comparison. As already stated, the responsivity
of the mesa device is far superior to the resonator devices.

Whereas the responsivity peak of the G0662 mesa device can be observed at 159 meV,
the peak responsivities of the polariton devices lie beyond the cut-off of the MIRcat laser. It
is noteworthy that the upper polariton for the s−1 = 0.35 µm−1 device appears to lie beyond
the 167.5 meV cut-off, since the resonance for the upper polariton of a device with s−1 =
0.32 µm−1, fabricated from the same sample, was observed at 160 meV in the reflectivity
spectra of Fig. 7.67.6.

For increasing value of s−1, the responsivity spectra of the polariton devices have a smaller
slope for a given energy. Additionally, excluding the spectra from the s−1 = 0.95 µm−1
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device, the amplitude of the responsivity spectra are systematically reduced as the value of
s−1 is increased. The s−1 = 0.95 µm−1 device only fails to follow this trend because the peak
responsivity for this device occurs at a smaller bias voltage than the other spectra. The
dashed vertical black line in the upper left panel of the figure indicates the voltage at which
the polariton device responsivity spectra were measured. It is evident that if the responsivity
spectra were measured for a slightly smaller voltage, the trend in the decrease of the spectral
amplitude with increasing value of s−1 would be monotonic.

The reduction in amplitude and slope of the responsivity spectra with increasing value
of s−1 is exactly the behavior expected if the responsivity spectra are measured on the low
energy tail of a resonance which is blueshifting with increasing value of s−1. The results
presented here thus constitute the first preliminary evidence of the detection of resonant
photocurrent features originating from polaritons in the ultrastrong coupling regime.

7.5 Conclusion
For the first time, metal-dielectric-metal microcavities with three contact terminals were
fabricated. While the ICP etch procedure still requires some improvement, this is a significant
step which introduces a new degree of electrical control to be exploited in future studies of
microcavity polariton devices.

Optically, the devices were demonstrated to work in the ultrastrong coupling regime.
Electrically, the devices were much less resistive than expected and more investigation is
required to determine the underlying cause. Photocurrent was detected under laser illumi-
nation, and the first evidence of photocurrent features from polaritons in the ultrastrong
coupling regime was presented.

It is hoped that with the availability of a laser tunable beyond 167 meV, the resonant
nature of the photocurrent response of the upper polariton in the ultrastrong coupling regime
can be more firmly established for the devices already fabricated. In future devices, the
polariton dispersion could be shifted to lower energies by reducing the electronic density of
the Berreman mode layer, or by switching to another material system with a heavier effective
mass in the well layer, such as GaAs/AlGaAs. With a better understanding of the Berreman
mode detection phenomenon, more responsive devices can be fabricated, thus alleviating the
laser constraint altogether.
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Conclusion

In this work, we have used the many degrees of freedom available in a semiconductor platform
to manipulate and control the optical properties of collective electronic excitations.

We demonstrated that plasmonic modes can be studied in a single material semiconductor
platform simply by introducing a high density of dopant impurities to a subwavelength
layer. The plasmonic modes supported by the highly doped layer, above and below the
light line, were characterized with optical measurements and thermal emission experiments.
It was shown that under certain conditions, the modes act as perfect absorbers, and as a
consequence of Kirchhoff’s law, also act as perfect thermal emitters. This demonstrates
perhaps the most favorable property of the collective excitations, their extremely strong
interaction with light.

One of the unifying themes throughout this work is the coupling of oscillators, or various
matter polarizations. In Chapter 33, the polarization of plasma oscillations was coupled to the
polarization of the longitudinal phonons. The quantum model introduced for the collective
modes in Chapter 44 is, at its core, a description of how polarizations associated with single
particle transitions couple to give rise to collective modes. It was from this description that
we established the form of the dispersion for the collective modes in a square well potential
and directly linked it to the size confinement of the single particle electronic states.

The understanding of the microscopic origin of the collective modes conferred by the
quantum model, that they arise from the coupling of polarizations from single particle tran-
sitions, immediately leads to the exciting perspective that new collective coherences can be
engineered in the system. This is where the semiconductor platform becomes most appealing,
as the full technological toolbox of band structure engineering is available to engineer the
single particle electronic states, and consequently, the polarizations associated with the sin-
gle particle transitions. The difficulty of engineering the collective modes, however, is that
they represent an emergent phenomenon. It is difficult to know, apart from a physicist’s
intuition, how the design of the single particle band structure will influence the collective
excitations.

One of the most basic intuitions in physics is that new properties arise when symmetries
are broken. It was with this principle that we successfully demonstrated for the first time
that collective modes can be engineered. With this demonstration, we have extended the
domain of quantum plasmonics from merely describing the effect of quantum confinement
on the collective optical response of the electron gas, to the use of confinement as a tool to
manipulate that response.

One of the most exciting aspects of this work is that it constitutes some first steps towards
achieving active plasmonic optoelectronic devices in the mid- and far-infrared. The successful
implementation of these devices will require an understanding of how collective excitations
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interact with single particle electronic current. Our demonstration that the excitation of the
Berreman mode can give rise to a photocurrent is a step in this direction. Moreover, we
have demonstrated that the fundamental problem can be studied from two directions in the
same device. In one direction, that of photodection, energy is transferred from the collective
mode to excited single particle electrons. In the other direction, that of luminescence, we
demonstrated that the plasmon mode can be resonantly excited by a transfer of energy from
single particle electrons to a collective excitation. The semiconductor platform is ideal for
this fundamental study, for, as we have now demonstrated, it permits both the single particle
states and collective excitations to be engineered.

An important perspective of this work is an extension of one of the principal themes, the
coupling of various oscillators. In this regard, it will be interesting to study hybrid system
in which electronic polarizations outside the semiconductor are coupled with the plasmonic
modes of the thin highly doped layer in the semiconductor. The plasmonic mode below the
light line is particularly well-suited for this venture, as its electric field extends into space
beyond the semiconductor surface.

We conclude by remarking that the study of confinement on the collective excitations of
the electron gas has been fundamentally enabled by the technological progress of nanotech-
nology, including, most notably for the present study, the development of well-controlled
semiconductor growth methods. It is unlikely that the authors who originally described
plasma oscillations in bulk metals could have envisioned that the phenomenon could, one
day, not only be studied, but readily manipulated, in the quantum confined regime.
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Appendix A

Longitudinal Solutions to the Wave
Equation

Traveling wave solutions to Maxwell’s equations are solutions of the wave equation. To arrive
at the wave equation, we combine the two curl equations of Maxwell’s set given by:

∇ × E = −∂B
∂t

(A.1)

∇ × H = Jext + ∂D
∂t

(A.2)

For static Jext, the wave equation is written:

∇ × ∇ × E = −µ0
∂2D
∂t2 (A.3)

Assuming time harmonic solutions for the fields, the wave equation may be written:

q (q · E) − q2E = −εr (ω) ω2

c2 E (A.4)

where the speed of light has been introduced as c = (ϵ0µ0)− 1
2 . For transverse waves (q ⊥ E),

the solutions to the wave equations are those satisfying:

q2E = εr (ω) ω2

c2 E (A.5)

This expression determines the dispersion relation for transverse waves:

ω2 = c2q2

εr(ω) (A.6)

For longitudinal waves (q ∥ E), the left side of Eq. (A.4A.4) goes to zero, and nontrivial solutions
are only found for:

εr (ω) = 0 (A.7)
Note that one can already see from Gauss’s law that the dielectric function must go to

zero for the medium to support a longitudinal wave [149149] in the absence of external charge.
In neutral media, Gauss’s law states that the divergence of the displacement field is zero:

∇ · D = q · D = 0 (A.8)
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For a spatially homogeneous dielectric function, we find:

ε (q · E0) = 0 (A.9)

This equation is satisfied automatically for transverse waves, but requires ε → 0 for longitu-
dinal waves.

Since ε = 0 is a necessary condition for longitudinal waves, then these waves have no
displacement field accompanying them, since D = εE = 0.1 From this fact, we may easily
demonstrate that a longitudinal electronic wave can only exist in a medium with a nonzero
polarization density. From the definition of the displacement given in Eq. (1.21.2), for D = 0
it holds that

P = −ϵ0E (A.10)

While it may seem obvious that a nonzero polarization density is necessary to support a
longitudinal wave, note that it contrasts strongly with the case for transverse waves, which
of course appear in vacuum in the absence of any charge.

Longitudinal waves cannot couple with light (transverse radiation) in an infinite medium.
For this reason, to study longitudinal waves in a plasma, a beam of accelerated electrons is
used to excite the mode, since such a beam may be described as a longitudinal wave.

1In the case of transverse waves in the absence of damping, at the resonance frequency ω0 it may be said
that no electric field accompanies the wave since E = D

ε
and ε(ω0) → ∞ at ω0.



Appendix B

Photovoltaic Berreman Mode
Photodetector

The strong influence of static charge effects on the device band structure was not fully appre-
ciated at the outset of our study of the Berreman mode photodetectors. In the following, the
experimental results of a study in which an attempt was made to engineer the continuum of
electronic states above the barrier in order to engineer the transport of photoexcited electrons
are reported. The sample studied was designed without the consideration of static charge
effects. Consequently, the effect of the quantum engineering is not realized as intended.

B.1 Engineering of the Continuum States

If static charge effects are neglected, the electronic potential for sample V0386, introduced in
Section 6.2.16.2.1, is that of a square 100 nm InGaAs/AlInAs quantum well with a barrier height
of 0.52 eV. For an electronic density of Nv = 2 × 1019 cm−3 in the well, the Fermi level lies
110 meV below the AlInAs barrier edge. Electrons excited to an energy ℏωBerr = 169 meV
above the Fermi level should therefore be freed from the quantum well.

To collect the electrons excited above the barrier edge, a bias would need to be applied.
However, due to the small energy difference between the barrier edges of the quantum well
and the Fermi level (a small activation energy), a large dark current would result from the
application of even a small bias. To avoid this issue, a sample was designed to operate in
photovoltaic mode. Sample V0385 was designed with the same dimensions as sample V0386,
described in the text, except a series of five tunnel-coupled quantum wells were introduced
in the 84.4 nm barrier region (see Page 201201 for the growth sheet).

The series of tunnel-coupled quantum wells realizes a Bragg reflector for the electronic
wavefunctions over an energy range just above the barrier edge [2020, 118118]. This is shown in
the left panel of Fig. B.1B.1, where a forbidden band can be observed above the barrier to the
right of the 100 nm well. As sketched with the gray arrow, over a given energy band, excited
electrons should undergo preferential transport in the direction opposite the Bragg reflector.
This concept was experimentally demonstrated in [121121].

The V0385 sample was designed for the band structure plotted in the left panel of Fig. B.1B.1.
However, when static charge effects are considered, the band structure appears like that
plotted in the left panel of Fig. B.1B.1. The electronic potential is strongly modified due to
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Fig. B.1 The band structure of sample V0385 is plotted on the left neglecting static
charge effects, and on the right, as the self-consistent solution to the Schrödinger
and Poisson equations. The band structure on the left is calculated considering
nonparabolicity using the k · p method for 8 coupled bands, whereas the band
structure on the right is calculated for a constant effective mass (single band ap-
proximation). The band structures were calculated with nextnano.

the nonuniform distribution of electronic densities across the structure. The first forbidden
band of the Bragg reflector lies below the maximum barrier height that an electron must
overcome to reach a contact, and thus losses its intended purpose.

B.2 Experimental Results
The V0385 sample was processed into devices of three different contact schemes as described
in Section 6.3.16.3.1. This permits the upper 30 nm AlInAs barrier and the lower 84.4 nm electron
Bragg reflector region to be studied independently.

Current-voltage (I-V) curves, measured for the V0385 devices at T=7 K for each of the
three contact schemes, are shown in Fig. B.2B.2. The voltages are applied to the second contact,
with respect to the first contact, of the device name. As was the case for the V0386 sample
studied in the main text, the Top-Middle I-V curve is completely linear and has a resistance
of less than 5 Ω, indicating that dopants were unintentionally incorporated into the upper
30 nm AlInAs layer during the growth. The Top-Bottom and Middle-Bottom I-V curves are
quite similar, as expected due to the very small ohmic resistance between the top and middle
layers.

The V0386 Top-Bottom I-V curve is plotted on the right y-axis for comparison. Despite
the fact that the only intentional difference in the growth of the V0385 and V0386 samples
was the introduction of the series of tunnel-coupled quantum wells in the 84.4 nm barrier re-
gion of the V0385 sample, the Top-Bottom I-V curves are dramatically different between the
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Fig. B.2 Current-voltage curves for 100 µm diameter V0385 mesas devices of vari-
ous contact schemes measured at T=7 K are plotted on the left y-axis. The current-
voltage curve for the V0386 Top-Bottom device measured at T=7 K is plotted on
the right y-axis for comparison.

two samples. The V0386 Top-Bottom I-V curve shows a near infinite differential resistance
from −1 V to 0.25 V, while for a bias of less than 100 mV, the differential resistance of the
V0385 Top-Bottom I-V curve is just a few ohms. Both the Top-Bottom and Middle-Bottom
I-V curves for the V0385 sample are quite symmetric with respect to the voltage, whereas
the Top-Bottom I-V curve of the V0386 sample is strongly asymmetric.

It is not expected from the band structure modeling of the nominal V0385 and V0386
samples that the inclusion of the tunnel-coupled wells should so dramatically reduce the
resistance of the device.

The photovoltage measurements for the V0385 Top-Bottom and Middle-Bottom devices
are presented in Fig. B.3B.3. For these measurements, the devices were polished with 30◦ facets
and aligned with light normally incident to the facet to realize a 30◦ angle of incidence inside
the semiconductor.

In the upper panels, photovoltage spectra measured in rapid-scan mode are shown for each
device for various biases Vmeas. For both contact schemes, a resonant photovoltage feature
is observed at the energy of the Berreman mode for zero and positive bias (on the bottom
contact). For comparison, experimental absorption spectra determined from transmission
measurements at Brewster’s angle are plotted in shaded green, normalized to the maximum
photovoltage in each panel. The photovoltage spectra have not been treated to account for
the shape of the blackbody light source.

As interpreted similarly in the main text for the V0386 photocurrent spectra, the larger
linewidth of the photovoltage resonance compared with the absorption resonance is explained
accounting for the difference in radiative lifetime (which contributes to the linewidth) of the
plasmon mode due to the different angle of incidence at which the measurements were made.

In the lower panels, the magnitude and phase of the photovoltage signal measured on the
lock-in are plotted as a function of the bias voltage Vmeas.
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Fig. B.3 Experimental photovoltage results measured at a temperature of 7 K
are presented for V0385 devices. The shaded green spectra are absorption mea-
surements at Brewster’s angle, normalized to the maximum of the photovoltage
spectra. As described in the text, the negative polarity of the photovoltage spectra
shown in black has been assigned. The negative polarity of the total photovoltage
signal in the middle panels has also been assigned according to the analysis of the
π-phase shift observed in the phase.

The phase is measured over a period of 2π, but with periodic boundary conditions,
meaning, for example, that a phase of −181◦ will be mapped to 179◦. This behavior is
observed for the phase of the Top-Bottom and Middle-Bottom devices at biases of −10 mV
and −30 mV, respectively. For both devices, the total phase shift is ≈ 180◦, indicating a
reversal of the photocurrent. The lock-in signal, measured as a strictly positive quantity, has
been assigned a negative polarity for the biases below that at which the phase shift occurs.
Likewise, the photovoltage spectra measured for biases of −29 mV and −49 mV are assigned
a negative polarity. The area under these spectra correspond to photocurrent moving in the
opposite direction with respect to that of the spectra measured at zero and positive biases.

We determine that for zero and positive bias, photoexcited electrons from the plasmon
mode are collected at the bottom contact, and thus move over the Bragg reflector region of
the structure, contrary to expectation and the intended design of the device. For negative
bias, the direction of the photocurrent is reversed, and photoexcited electrons move towards
the top or middle. The magnitude of the negative polarity photocurrent under negative bias
is reduced near the energy of the Berreman mode. This is explained considering that the
photocurrent contribution from the Berreman mode continues to move towards the lower
contact, canceling some of the photocurrent moving in the opposite direction.
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The photocurrent measured from the Top-Bottom and Middle-Bottom devices is essen-
tially identical, both in spectral form as a function of applied bias, and in terms of the signal
and phase as a function of the bias. This further confirms the conclusion from the electrical
measurements that the top barrier is electrically shorted.

The primary observation from this study is that the plasmonic photocurrent moves over
the Bragg reflector region of the sample towards the lower contact, in contrast to expectation,
even for a small negative bias. Because the upper 30 nm barrier is doped, the only barrier
over which electrons can be photoexcited and captured is the 84.4 nm region with the tunnel-
coupled quantum wells. That photocurrent is collected from this pathway suggests that the
devices operate similarly to internal emission Schottky photodiodes.

We conclude by noting that the V0385 devices are thus far the the only Berreman mode
photodetectors for which a resonant plasmonic feature has been observed without an applied
bias. In all the other samples studied, the bias for which the plasmonic photocurrent is ob-
served corresponds with the voltage at which the differential resistance undergoes a dramatic
decline. Of note, the V0385 samples are the only devices studied in which the differential
resistance is already small close to zero bias.
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Appendix C

MOCVD-Grown Berreman Mode
Photodetectors

As described in the main text, a series of samples similar to the MBE-grown G0662 sample
were grown with MOCVD. Results from the investigation of these samples are reported here.

Samples V0580, V0581, and V0582 were designed to be symmetric around a central
200 nm highly doped InGaAs layer. On both sides of the central layer is a 10 nm not-
intentionally-doped InGaAs layer, a 100 nm AlInAs barrier, and a 100 nm InGaAs layer
nominally doped with an electronic density of Nv = 1 × 1018 cm−3 to serve as a contact.
The 10 nm intrinsic InGaAs layers were included in the design of the structure in order to
limit the unintentional incorporation of dopants in the AlInAs layer grown subsequent to
the highly doped InGaAs layer, an effect observed for the V0386 sample studied in the main
text, and the V0385 sample studied in Appendix BB.

The three structures differ only in the electronic density added to the central 200 nm
layer. The electronic density was varied in order to study the photodetection effect as a
function of the Berreman mode excitation energy. The actual electronic densities realized
in the growth of the samples do not differ much between the structures, as will be evident.
The growth sheets of the samples can be found on Pages 203203 to 205205.

C.1 Optical and Electrical Characterization of Devices
Electronic densities of the 200 nm InGaAs layers were determined by modeling the experi-
mental Brewster’s angle transmission spectra shown in the top panel of Fig. C.1C.1.1 From the
simulations plotted in the figure with dashed lines, electronic densities of 1.81 × 1018 cm−3,
1.61 × 1018 cm−3, and 1.32 × 1018 cm−3 were determined for the V0580, V0581, and V0582
samples, respectively.

All three samples were processed into 100 nm diameter circular mesas for the Top-Bottom
contact scheme described in Section 6.3.16.3.1. Devices of the Top-Middle contact scheme were
realized for the V0581 sample.

Current-voltage curves measured at T=7 K for the four types of devices are shown in the
middle panel of Fig. C.1C.1. Electrons move from the top contact toward the bottom contact

1These measurements were performed by Tereasa Stefanini during her Masters Internship under my guid-
ance.
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Fig. C.1 Absorption spectra extracted from transmission measurements at Brew-
ster’s angle are presented in the upper panel with solid lines. Simulated spectra,
from which the electronic densities of the 200 nm highly doped layers are extracted,
are plotted in dashed lines. In the middle panel, the voltage response is plotted as
a function of the current sourced. In the lower panel, the differential resistance is
plotted as a function of the voltage.

(or middle layer) under a positive bias.
All of the I-V curves exhibit near infinite differential resistance around zero bias. For the

Top-Bottom devices, there is an inverse relationship between the magnitude of voltage at
which the differential resistance drops (associated with a flattening of the I-V curve), and the
electronic density of the highly doped 200 nm layer. For example, the differential resistance
of the most-doped V0580 sample undergoes a dramatic decline for a positive bias of ≈ 1 V,
whereas the differential resistance of the least-doped V0582 sample does not significantly
decline until until a bias of approximately ≈ 4.5 V.

Despite the perfect symmetry of the nominal structures, none of the I-V curves are
symmetric with respect to the voltage. For each of the curves, the differential resistance
undergoes a rapid decline over a range of negative voltages of smaller magnitude than it
does for positive voltages. We infer that the upper barrier is slightly less resistive than the
lower barrier. This can be attributed to residual doping from the growth of the highly doped
200 nm layer. Note that the severity of this effect, compared with the V0385 and V0386
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samples, has been hugely reduced by the inclusion of the 10 nm not-intentionally-doped
InGaAs layers.

The I-V curve for the V0581 Top-Middle device, which is an asymmetric structure, is
highly asymmetric around zero voltage. The I-V curve flattens (the differential resistance
drops) for a negative voltage of smaller magnitude than it does for positive voltage. This
implies that the activation energy for electronic transport from the middle layer to the top
contact under a bias of similar magnitude is less than the activation energy for transport
from the top contact to the middle layer. A similar behavior was observed for the V0386
Middle-Bottom device, and qualitatively explained in the model sketched in Fig. 6.106.10.

C.2 Photocurrent Measurements

The photoresponse of the Top-Bottom V0580, V0581, and V0582 devices, and the V0581 Top-
Middle device was characterized using the experimental set-up described in Section 6.2.26.2.2. A
20◦ facet was polished onto each device. The devices were aligned for light normally incident
on the facet for a 20◦ angle of incidence inside the InP substrate. The photovoltage spectra
for these devices were recorded with the FTIR in step-scan mode, with the light mechanically
chopped at 160 Hz, a bandpass of 10 Hz-3 kHz selected on the SR560 pre-amplifier, and a
300 ms time constant used on the lock-in amplifier.

A Berreman mode photovoltage resonance was only observed for the Top-Bottom device
fabricated from the V0580 sample and for the V0581 Top-Middle device. The results from
the study of these two devices are presented in the subsequent sections.

C.2.1 V0580 Top-Bottom

In the left panel of Fig. C.2C.2, raw (strictly positive) photovoltage spectra for the V0580 Top-
Bottom device are plotted for various biases between the top and bottom contacts.2 The
spectra were recorded without a polarizer and have not been modified to take into account
the shape of the blackbody source which is shown in the upper-left of the figure.

For both positive and negative biases, a resonant feature is observed at 168 meV, the
same energy at which the Berreman mode is observed in the Brewster’s angle absorption
measurements. Though not shown here, the feature was confirmed to only be present for
excitation with p-polarized light. It is thus attributed to the Berreman mode.

In all of the spectra, there are additional broad features at energies above the Berreman
mode. These features were observed for both p- and s-polarized light. At zero bias, a
particularly intense feature centered at 400 meV is observed. If the shape of the blackbody
source is considered, the relative responsivity of the device over the energy range of the broad
high energy features is even more significant.

The spectra measured at biases of 9 mV, 60 mV, and 88 mV touch zero twice at about
200 meV and 300 meV. This is indicative of a current reversal phenomenon. Over nearly
the same energy range, a dip is observed in the spectra measured at biases of 129 mV and
206 mV. The feature observed between 200 meV and 300 meV in the 9 mV, 60 mV, and
88 mV spectra is inferred to correspond to photocurrent moving in the opposite direction of

2As described in Section 6.2.26.2.2, the current is being sourced, and the bias voltage is the potential difference
measured between the two contacts.
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Fig. C.2 In the left panel, raw photovoltage spectra from the V0580 Top-Bottom
device are plotted for various potentials between the top and bottom contacts, off-
set for clarity. The photovoltage spectra have not been treated for the shape of
the blackbody source, plotted at the top of the figure. In the right panel, the pho-
tovoltage spectra are replotted with some regions assigned a negative polarity, as
discussed in the text. At the bottom of the figure, the phase of the total photovolt-
age signal is plotted as a function of the bias.
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the photocurrent observed at the Berreman mode energy. In the right panel of Fig. C.2C.2, the
spectra are plotted with the inferred polarity for each region bordered by zero crossings.

At the bottom of the figure, the phase of the total photovoltage signal measured on the
lock-in is plotted as a function of the bias. A π-phase shift is observed around −15 mV.
Because the total lock-in signal should be equivalent to the area under the spectrum, this
implies that the mathematical area of the spectra shifts sign around −15 mV. This determines
that the sign of the area under the spectrum measured for 0 mV bias must be the same as
the sign of the area under the spectra measured for positive bias. Likewise, it implies that
the largest amplitude features of the spectra measured for negative bias must be assigned to
the opposite polarity.

Once the polarity of the photovoltage features has been assigned, we are left with the
conclusion that the photovoltage from the plasmon mode is always of positive polarity. Then,
the plasmonic photocurrent is only detected for electrons photoexcited over the botom 100 nm
AlInAs barrier toward the bottom contact. This is consistent with the V0385 and V0386
experiments.

We attribute the broad features at energies above the Berreman mode to the photoe-
mission of electrons excited via free carrier absorption in the highly doped layers, similar to
what is described beginning on Page 138138. It remains a challenge, however, to explain the
physical origin of the current reversal.

No Berreman mode resonance was observed in the photovoltage spectra (not shown) of the
V0581 Top-Bottom or V0582 Top-Bottom devices, up to biases of 1 V and 2 V, respectively.
However, broad high energy features were observed in the photovoltage spectra of these
devices, and were found to behave similarly as a function of bias as the broad features
observed in the V0580 Top-Bottom photovoltage spectra.

As highlighted in the main text, there is a correspondence between the bias at which a
rapid drop in the differential resistance occurs, and the bias for which the Berreman mode
photovoltage can be detected. The differential resistance of the V0581 Top-Bottom and
V0582 Top-Bottom devices dramatically drops for biases of magnitude no smaller than 1 V
and 4 V respectively, as shown in Fig. C.1C.1. For biases this large, the photovoltage signal was
not stable enough to record spectra. This could explain why the Berreman mode feature
was not observed for these devices.

C.2.2 V0581 Top-Middle

We now consider the photoresponse of the V0581 Top-Middle device, presented in Fig. C.3C.3.
In the left panel, the photovoltage spectra from the V0581 Top-Middle device are plotted
without normalization for various biases between the top and middle contacts. The spectra
have not been modified to take into account the shape of the blackbody source, shown in
the upper right of the figure.

None of the spectra in the series go to zero as a function of the photon energy, and
therefore, all of the photocurrent of a given spectrum moves in the same direction, regardless
of the photon energy. Spectra measured for positive biases on the middle layer correspond
to photocurrent moving from the top contact to the middle layer. Spectra measured for
negative biases on the middle layer correspond to photocurrent moving from the middle
layer to the top contact. For both polarities, the amplitude of the spectra decreases as the
magnitude of the bias goes to zero. In the right panel of the figure, the same spectra are
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Fig. C.3 In the left panel, photovoltage spectra measured at various biases are
plotted without normalization or correction for the shape of the blackbody source.
The pairing between the line color and the bias voltage is established in the right
panel of the figure, where the same spectra are normalized between zero and one
and offset for clarity. In the left panel, spectra measured for negative biases are
plotted as negative photovoltage signals.

shown normalized between between zero and one, and offset for clarity.
All of the essential features observed in the V0581 Top-Middle spectra, which are pointed

out below, were already observed for the G0662 Top-Middle photovoltage spectra shown in
Fig. 6.206.20. The reader is thus referred to Section 6.4.36.4.3 for a more in-depth discussion of the
physical phenomena.

The Berreman mode resonance is observed for negative biases of increasing magnitude
beginning around −250 mV. This bias corresponds to the voltage at which the differential
resistance of the I-V curve begins to decline dramatically.

The Berreman mode resonance is observed in the photovoltage spectra at 168 meV,
blueshifted from the 161 meV resonance observed in the Brewster’s angle absorption spec-
trum. In the main text, this was attributed to the dispersion of the mode with in-plane
wavevector and the fact that the two measurements are recorded for different angles of
incidence.

Broad high energy features are observed at energies above the Berreman mode energy.
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The features redshift as the magnitude of the bias voltage is increased. The redshift of the
low energy edge of the broad features is more significant for negative biases than positive
biases of similar magnitude.

The Berreman mode resonance is only observed for biases for which the broad feature
is redshifted to low enough energy to overlap with the Berreman mode. This suggests a
common reference energy, above which the Berreman mode decays into hot carriers, and
from which single electrons transition, assuming that the broad features are due to free
carrier absorption.

The amplitudes of the spectra change dramatically with the applied bias, an effect clearly
evident in the set of spectra which have not been normalized. This observation is quanti-
fied in the bottom left panel of the Fig. C.3C.3, where the total integrated signal from each
spectrum is plotted as a function of the bias voltage on a logarithmic y-axis. The maximum
integrated photovoltage signal for a negative voltage is two orders of magnitude larger than
the maximum integrated photovoltage signal for a positive voltage.

The negative polarity integrated photovoltage signal peaks for a bias of approximately
−300 mV, which corresponds closely to the voltage at which the differential resistance drops
dramatically in the I-V curve. For a positive bias, the differential resistance does not undergo
a dramatic decrease until around 2 V. This likely explains why a peak in the integrated
photovoltage signal is not observed for a positive bias.

C.2.3 Device Comparison
We conclude this appendix by comparing the responsivity of the V0580 Top-Bottom device
to that of the V0581 Top-Middle device. In the upper panel of Fig. C.4C.4, a photovoltage
spectrum is plotted for each device, measured at the bias condition for which the amplitude
of the Berreman mode feature was maximized. The V0580 Top-Middle spectrum measured
at a bias of 88 mV must be multiplied by a factor of 300 in order for the photovoltage response
at the Berreman mode energy to be comparable to that of the V0581 Top-Middle spectrum.

In the lower panel of the same figure, the same spectra are plotted as photocurrent,
determined by dividing each photovoltage spectrum by the differential resistance at the bias
at which it was recorded. The responsivity of the V0581 Top-Middle device in current per
incident power is 100× better than the V0580 Top-Bottom device.

While the two devices were processed from two different growths, this is some evidence
that directly contacting the middle highly doped layer is favorable for the observation of the
plasmonic photocurrent. This can be justified on account of the fact that a smaller bias is
required to achieve the same potential difference between the middle layer and one of the
contacts when the middle layer is contacted directly than if bias is applied across the entire
structure between the top and bottom contacts.
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Fig. C.4 In the upper panel, photovoltage spectra from a V0580 Top-Bottom and
V0581 Top-Middle devices are compared, after the V0580 Top-Bottom spectrum
has been multiplied by 300. In the lower panel, the photovoltage spectra from the
upper panel are converted into photocurrent spectra, and the V0580 Top-Bottom
spectrum is plotted after multiplication by 100.



Appendix D

Calibration of MIRcat Emission

The MIRcat laser is a one box multi-quantum cascade laser (QCL) system, in which the
emission wavelength can be continuously tuned with an external cavity. The MIRcat used
in the experiments described in the text had two QCL modules installed: QCL1 could scan
from 7.4 µm to 9.35 µm; QCL2 could scan from 8.6 µm to 11.29 µm.

The optical power emitted by either laser varies as a function of the wavelength, peaking
close to the center of the tuning range, and rapidly dropping towards the edge. Consequently,
to compare the response of photodetectors at different wavelengths (e.g. as in a spectrum),
it is necessary to calibrate the emission spectrum of the MIRcat. The calibration of the
wavelength-dependent optical power emitted by the MIRcat is shown in Fig. D.1D.1.

In the experiments described in the text, the MIRcat laser is always operated in pulsed
mode and set to emit pulses of 960 ns duration at a repetition rate of 100 kHz (9.6 % duty
cycle). QCL1 is always sourced with a current of 825 mA, and QCL2 is always sourced with
a current of 1200 mA.

To calibrate the MIRcat, its emission is detected via an MCT detector placed into the
identical optical set-up as used in the experiment, in which a 1" F1 ZnSe lens focuses the light
onto the detector. However, in order not to damage the MCT or saturate its photoresponse,
a series of optical densities is placed in the beam path prior to the MCT detector. It is an
assumption of the calibration that the transmission of the optical densities is not wavelength
dependent.

The optical signal detected by the MCT is plotted as a dotted blue curve in Fig. D.1D.1.
The oscillations superimposed on the curve are likely due to a Fabry-Perot effect, perhaps
due to the thin window of the MCT packaging. The oscillations are smoothed to obtain the
continuous blue curve. The detected emission must be corrected for the relative response of
the MCT. For this, the blue curve is divided by the red curve to obtain the shape of the black
curve. Finally, the absolute optical power emitted at a fixed wavelength of 9.16 µm (dashed
vertical green line) is measured with a power meter, which permits the absolute scaling of
the black calibrated QCL emission curve.

187
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Fig. D.1 Calibration of the emitted optical power of the MIRcat laser as a function
of wavelength for 960 ns pulses repeated at 100 kHz, for currents of 825 mA and
1200 mA injected into QCL1 and QCL2, respectively.
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Growth Sheets

InP1716InP1716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190190
V0211V0211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191191
V0296V0296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192192
V0300V0300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193193
V0301V0301 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194194
V0388V0388 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195195
V0389V0389 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196196
V0588V0588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197197
V0589V0589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198198
V0390V0390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199199
V0590V0590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200200
V0385V0385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201201
V0386V0386 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202202
V0580V0580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203203
V0581V0581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204204
V0582V0582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205205
G0662G0662 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206206

189



 

 

 

InP1716 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs : Si 1 × 1018 cm−3 20.0 

InGaAs : Si 2 × 1017 cm−3 80.0 

InGaAs  30.0 

AlInAs  10.0 

InGaAs  30.0 

InGaAs : Si 2 × 1019 cm−3 150.0 

InGaAs  70.0 

InGaAs : Si 1 × 1018 cm−3 300.0 

Buffer 

InP : Fe 

  

190



 

 

 

V0211 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs  100.0 

InGaAs : Si 2 × 1019 cm−3 150.0 

InGaAs  100.0 

Buffer 

InP : Fe 

  

191



 

 

 

V0296 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs  50.0 

AlInAs  10.0 
Repeat 30x 

InGaAs  45.0 

AlInAs  10.0 

InGaAs  100.0 

Buffer 

InP: Fe 

  

192



 

 

 

V0300 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs  50.0 

AlInAs  10.0 
Repeat 30x 

InGaAs : Si 2 × 1017 cm−3 45.0 

AlInAs  10.0 

InGaAs  100.0 

Buffer 

InP: Fe 
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V0301 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs  50.0 

AlInAs  10.0 
Repeat 50x 

InGaAs : Si 1 × 1017 cm−3 35.0 

AlInAs  10.0 

InGaAs  100.0 

Buffer 

InP: Fe 

  

194



 

 

 

V0388 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs  20.0 

AlInAs  10.0 

InGaAs : Si 2 × 1018 cm−3 50.0 

AlInAs  1.0 
Repeat 25x 

InGaAs : Si 2 × 1018 cm−3 1.0 

AlInAs  10.0 

InGaAs  100.0 

InP: Fe 
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V0389 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs  20.0 

AlInAs  10.0 

InGaAs : Si 2 × 1019 cm−3 50.0 

AlInAs  1.0 
Repeat 25x 

InGaAs : Si 2 × 1019cm−3 1.0 

AlInAs  10.0 

InGaAs  100.0 

InP: Fe 

 

  

196



 

 

 

V0588 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs  50.0 

AlInAs  30.0 

(InGaAs)0.75(AlInAs)0.25 : Si 2 × 1019 cm−3 50.0 

InGaAs : Si 2 × 1019 cm−3 50.0 

AlInAs  10.0 

InGaAs  100.0 

Buffer 

InP: Fe 
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V0589 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs  50.0 

AlInAs  30.0 

(InGaAs)0.60(AlInAs)0.40 : Si 2 × 1019 cm−3 50.0 

InGaAs : Si 2 × 1019 cm−3 50.0 

AlInAs  10.0 

InGaAs  100.0 

Buffer 

InP: Fe 
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V0390 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs  20.0 

AlInAs  10.0 

(InGaAs)0.50(AlInAs)0.50 : Si 2 × 1019 cm−3 50.0 

InGaAs : Si 2 × 1019 cm−3 50.0 

AlInAs  10.0 

InGaAs  100.0 

Buffer 

InP: Fe 
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V0590 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs  50.0 

AlInAs  30.0 

(InGaAs)0.40(AlInAs)0.60 : Si 2 × 1019 cm−3 50.0 

InGaAs : Si 2 × 1019 cm−3 50.0 

AlInAs  10.0 

InGaAs  100.0 

Buffer 

InP: Fe 
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V0385 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs : Si 2 × 1018 cm−3 50.0 

AlInAs  30.0 

InGaAs : Si 2 × 1019 cm−3 100.0 

AlInAs  7.9 

InGaAs  1.4 
Repeat 5x 

AlInAs  7.9 

AlInAs  30.0 

InGaAs : Si 2 × 1018 cm−3 100.0 

InP: Fe 
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V0386 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs : Si 2 × 1018 cm−3 50.0 

AlInAs  30.0 

InGaAs : Si 2 × 1019 cm−3 100.0 

AlInAs  84.4 

InGaAs : Si 2 × 1018 cm−3 100.0 

InP: Fe 
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V0580 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs : Si 1 × 1018 cm−3 100.0 

AlInAs  100.0 

InGaAs  10.0 

InGaAs : Si 2 × 1019 cm−3 200.0 

InGaAs  10.0 

AlInAs  100.0 

InGaAs : Si 1 × 1018 cm−3 100.0 

Buffer 

InP: Fe 
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V0581 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs : Si 1 × 1018 cm−3 100.0 

AlInAs  100.0 

InGaAs  10.0 

InGaAs : Si 1 × 1019 cm−3 200.0 

InGaAs  10.0 

AlInAs  100.0 

InGaAs : Si 1 × 1018 cm−3 100.0 

Buffer 

InP: Fe 
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V0582 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs : Si 1 × 1018 cm−3 100.0 

AlInAs  100.0 

InGaAs  10.0 

InGaAs : Si 5 × 1018 cm−3 200.0 

InGaAs  10.0 

AlInAs  100.0 

InGaAs : Si 1 × 1018 cm−3 100.0 

Buffer 

InP: Fe 
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G0662/G0696 

Description Doping (Nominal) Desired Thickness (nm) 

InGaAs : Si 2 × 1018 cm−3 50.0 

AlInAs  50.0 

InGaAs  10.0 

InGaAs : Si 2 × 1019 cm−3 180.0 

InGaAs  10.0 

AlInAs  50.0 

InGaAs : Si 2 × 1018 cm−3 100.0 

InP: Fe 

 

206



Appendix F

Résumé en français

Chapitre 1

Dans la gamme spectrale de l’infrarouge, la réponse optique des couches semiconductrices
d’épaisseur inférieure à la longueur d’onde est déterminée microscopiquement par les vibra-
tions du réseau cristallin (les phonons) et, dans le cas où le semiconducteur est fortement
dopé, par la pulsation de plasma du gaz d’électrons.

Dans les matériaux massifs, les résonances optiques ont généralement lieu aux pôles de la
fonction diélectrique, tandis qu’elles se produisent aux zéros de la fonction diélectrique dans
le cas des couches sub-longueur d’onde soumises à une lumière polarisée p incidente à des
angles obliques. Ce phénomène est appelé l’effet Berreman. La nature résonante de l’effet est
classiquement expliquée en considérant que la lumière induit une polarisation uniforme dans
la couche mince, faisant apparaitre sur les côtés opposés de la couche des densités surfaciques
de charge positive et négative, formant un dipôle macroscopique.

Il faut préciser que, pour les couches minces décrites par une fonction diélectrique isotrope,
les résonances sont observées aux pôles et aux zéros de la fonction diélectrique dans les spec-
tres expérimentaux. La composante du champ électrique de la lumière parallèle au plan de
couche excite les résonances aux pôles de la fonction diélectrique, alors que la composante
perpendiculaire du champ électrique excite les résonances aux zéros à cause de l’effet Berre-
man. De ce fait, on observe dans les spectres polarisés p des couches minces semiconductrices,
mesurés en incidence oblique, des pics aux fréquences des phonons transverses (les pôles de la
fonction diélectrique) et aux fréquences des phonons longitudinaux (les zéros de la fonction
diélectrique).

La réponse optique des électrons d’une couche dopée d’une épaisseur suffisante pour que
les électrons ne soient pas confinés quantiquement est décrite par la fonction diélectrique
isotrope de Drude. La fonction de Drude peut être décrite comme ayant un pôle à fréquence
nulle et un zéro à la fréquence qu’on définit comme la fréquence plasma. Par conséquent,
les spectres polarisés p d’un gaz d’électrons libres dans une couche fine ont un seul pic
de résonance, qui est excité par la composante perpendiculaire du champs électrique de la
lumière incidente. Cette résonance est associée à une excitation collective du gaz d’électrons,
appelé un plasmon.

Dans des couches suffisamment fines, le gaz d’électrons est confiné. Il a un spectre
d’excitation discret et sa réponse optique diffère de celle d’un gaz d’électrons libres. Pour
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décrire la réponse optique du gaz d’électrons confinés, un modèle semi-classique pour la
fonction diélectrique est introduit. Dans ce model, toutes les contributions à la polarisation
originant des électrons qui participent aux différentes transitions optiques sont additionnées.
En pratique, la population d’électrons qui participe à chaque transition optique est calculée,
puis la réponse optique de celle-ci est décrite comme un oscillateur classique de la forme
forme Drude-Lorentz. Pour trouver la fonction diélectrique finale, toutes les fonctions de type
Drude-Lorentz, dont chacune décrit les électrons qui participent à une transition spécifique,
sont additionnées.

De même que pour un gaz d’électrons libres, les résonances optiques sont aussi observées
aux zéros de la fonction diélectrique pour un gaz d’électrons confinés quantiquement. Dans le
cas où le confinement donne lieu à un spectre d’états confinés très rapprochés en fréquences,
toutes les fréquences de transition sont petites, et la fonction diélectrique calculée s’approche
de celle du modèle de Drude. Quand le gaz d’électrons est de plus en plus confiné, le zero de
la fonction diélectrique, et donc, la résonance du plasmon, se décalent vers le bleu. Dans le
cas où le gaz d’électrons est confiné à tel point que seulement quelques niveaux sont occupés,
plusieurs résonances peuvent être observées dans le spectre optique. En effet, les zéros de la
fonction diélectrique deviennent alors bien séparés en fréquence.

Pour mettre en lumière l’origine physique de l’observation de résonances aux zéros de
la fonction diélectriques dans les couches minces, un modèle semi-classique est introduit.
Une équation du mouvement est alors écrite pour chaque population d’électrons participant
à une transition donnée. Des termes sont introduits pour prendre en compte les forces
coulombiennes sur cette population. Ces forces proviennent des charges surfaciques issues
du déplacement de cette population d’électrons induit par le rayonnement incident, ainsi
que par les autres transitions électroniques. Cette dernière contribution couple toutes les
équations du mouvement, donnant lieu à un système d’oscillateurs couplés. Il est démontré
que les solutions de ce système sont exactement les zéros de la fonction diélectrique.

Chapitre 2

Il est expérimentalement démontré que le mode de Berreman peut être observé dans l’infrarouge
dans une structure composé d’un seul type de semiconducteur si une haute densité de dopants
est introduite dans une couche sub-longueur d’onde. En trouvant les fonctions d’onde qui
sont simultanément des solutions aux equation de Schrödinger et de Poisson, il est démontré
que le champ électrostatique des donneurs ionisés est suffisamment fort pour confiner les
électrons dans la couche sub-longueur d’onde.

Les propriétés optiques du gaz d’électrons dans une couche sub-longueur d’onde d’InGaAs
fortement dopée n sont étudiées par spectroscopie à transformée de Fourier. Comme il se
couple directement à la lumière de l’espace libre, le mode de Berreman est observé dans des
mesures de transmission à des angles d’incidence faible jusqu’à l’angle de réflexion totale
interne. Un autre mode, existant sous la ligne de lumière de l’espace libre, qualifié de type
epsilon-near-zero (ENZ), est aussi observé expérimentalement pour des angles internes plus
élevés en utilisant un biseau pour coupler la lumière à l’intérieur et hors du semi-conducteur.

Le mode de Berreman est étudié dans une autre configuration où une couche d’or, agis-
sant comme un miroir, est déposée sur la surface du semi-conducteur proche de la couche
fortement dopée. Dans cette configuration, l’absorptivité du mode de Berreman peut être
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directement déterminée comme 1 - réflectivité, car la couche fortement dopée ne partage plus
d’interface avec l’espace libre. Le mode de Berreman peut être expérimentalement étudié
jusqu’à la ligne de la lumière du semi-conducteur, au-delà de celle de l’espace libre.

Dans la dernière partie du chapitre, des expériences d’émission thermique sont rapportées.
Dans ces expériences, la température du gaz d’électrons est modulée grâce à l’effet Joule en
injectant un courant pulsé dans le plan de la couche dopée. L’émission thermique, qui prend
la forme de l’émission d’un corps noir (loi de Planck) multipliée par l’émissivité (égale à
l’absorptivité selon la loi de Kirchhoff), est donc aussi modulée, permettant aux plasmons
d’être observés grâce à une détection synchrone. L’émission thermique du mode de Berreman
et du mode non-radiatif ENZ est étudiée en utilisant des dispositifs avec et sans couche d’or
adjacente à la couche fortement dopée. Nous démontrons que la dispersion et le couplage à
la lumière des deux modes sont différents.

Chapitre 3

Le couplage entre plasmons et phonons optiques longitudinaux est étudié. La dépendance de
la fréquence plasma de la densité électronique dans les semi-conducteurs dopés est exploitée
afin de mettre en résonance la fréquence plasma avec la bande Reststrahlen.

Une fonction diélectrique est introduite pour décrire la réponse optique des semi-conducteurs
dopés dans la bande Reststrahlen. Elle consiste en une somme des termes décrivant les
phonons, et un terme de Drude, décrivant le gaz d’électrons libres. Les termes décrivant la
réponse des phonons prennent la forme d’oscillateurs de Lorentz avec des pôles aux fréquences
des phonons optiques transverses et des zéros aux fréquences des phonons longitudinaux. Les
modes couplés plasmon-phonon se trouvent aux zéros de la fonction diélectrique totale. Grâce
à l’effet Berreman, ces modes peuvent être directement observés dans les couche sub-longueur
d’onde.

Les résultats des expériences réalisées sur trois échantillons sont rapportés. Les échantil-
lons sont composés d’une répétition de couches fines d’InGaAs et d’AlInAs, épitaxiés sur un
substrat InP. Deux des échantillons sont identiques, à l’exception de la densité d’électrons
dans les couches d’InGaAs: dans le premier l’InGaAs est non intentionnellement dopé, tandis
que le deuxième échantillon est dopé de sorte que la fréquence de plasma est proche de celle
des phonons optiques. Pour ces échantillons, l’épaisseur des couches d’InGaAs a été choisie
suffisamment épaisse pour que les électrons puissent être considérés comme libres. Pour le
troisième échantillon, l’épaisseur des couches dopées d’InGaAs a été choisi suffisamment fine
pour confiner les électrons, donnant ainsi lieu à des transitions intrabandes.

Dans les spectres polarisés p de l’échantillon non-dopé, nous observons les résonances
de phonons optiques transverses et longitudinaux des couches InGaAs et AlInAs. Comme
attendu, seulement les phonons transverses sont observés dans les spectres polarisés s. Dans
les spectres des échantillons dopés, l’une des résonances de phonons optiques longitudinaux
d’InGaAs n’apparait plus, alors qu’une nouvelle résonance apparaît à une énergie plus haute.
Ces nouvelles résonances correspondent aux modes couplés plasmon-phonon.



210 Appendix F. Résumé en français

Chapitre 4
Un modèle quantique microscopique est introduit pour décrire les excitations électroniques
collectives d’un gaz d’électrons confinés. Les excitations collectives sont construites à partir
de la base de toutes les transitions électroniques optiquement actives, ce qui implique que le
confinement quantique est naturellement considéré dans le modèle. Les modes collectifs sont
calculés à travers la diagonalisation d’un Hamiltonien qui contient deux termes, l’un décrivant
des transitions électroniques optiquement actives et l’autre leur couplage Coulombien.

L’écriture du Hamiltonien dans la représentation de Power, Zienau, et Woolley permet au
terme de couplage d’apparaître sous la forme du carré de l’opérateur de polarisation. Dans
le modèle, la dépendance spatiale de la polarisation microscopique de la matière est décrite
comme une fonction des états électroniques stationnaires des électrons uniques. Ainsi, le
modèle décrit naturellement la non-localité des excitations collectives.

Le modèle est appliqué pour décrire analytiquement les modes longitudinaux collectifs
observés dans un puits quantique large fortement dopé. Il est démontré que chaque mode
collectif dans un puits carré se produit grâce au couplage des transitions électroniques de
même symétrie spatiale.

Des expressions analytiques sont dérivées pour la dispersion quantifiée des modes longi-
tudinaux collectifs comme une fonction du vecteur d’onde dans la direction du confinement.
Nous démontrons que, en l’absence de confinement, la formule de Lindhard, pour les modes
de plasma d’un gaz d’électrons libres, peut être retrouvée. En considérant le confinement des
états électroniques, nous démontrons que notre modèle analytique décrit bien les modes col-
lectifs expérimentalement observés dans un puits quantique large (100 nm) fortement dopé
de InGaAs/AlInAs.

Chapitre 5
Le modèle quantique microscopique, introduit dans le chapitre précédent, est exploité afin de
concevoir des nouveaux modes collectifs électroniques en utilisant le potentiel électronique de
confinement comme un degré de liberté. Les modes collectifs de trois potentiels électroniques
différents, choisis pour avoir une symétrie différente de celle d’un puits carré, sont étudiés.

En premier, les modes collectifs sont calculés pour une hétérostructure constituée de
puits quantiques couplés par effet tunnel. Nous observons que dans cette structure les tran-
sitions normalement interdites par la symétrie d’un puits carré, sont permises. L’ingénierie
des états électroniques permet donc de modifier profondément les excitations collectives et
en conséquence le spectre d’absorptivité par rapport à celui d’un puits carré de la même
épaisseur.

Dans une deuxième étude théorique, les modes plasmoniques d’un gaz d’électrons con-
finés dans un potentiel quasi-triangulaire, réalisé par l’application d’un champs électrique
à un puits carré, sont étudiés. Du fait de la rupture de la symétrie miroir, de nouveaux
modes plasmoniques, qui n’interagissent normalement pas avec la lumière (appelés noirs),
apparaissent dans le spectre d’absorptivité.

Le dernier potentiel étudié est celui d’une marche. Les modes de plasmons confinés dans
ce potentiel sont étudiés théoriquement et expérimentalement. Les structures sont réalisées
expérimentalement en utilisant la croissance d’un alliage quaternaire dans la région de la
marche. En changeant la concentration du quaternaire, la hauteur de la marche est variée.
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Sur l’ensemble des spectres expérimentaux obtenus sur des échantillons avec des hauteurs
différentes de la marche, deux modes de plasmon sont observés. Le mode à plus haute
énergie est peu affecté par l’augmentation de la hauteur de la marche, alors que le mode à
plus basse énergie se décale vers le rouge. Ces résultats sont expliqués par des calculs qui
démontrent que le mode à plus haute énergie est localisé dans la région la plus profonde
du potentiel, tandis que le mode à plus basse énergie est localisé dans la région quaternaire
de la marche. Plus exactement, il est démontré théoriquement qu’il existe une dispersion
des modes plasmoniques qui peuvent être excités de chaque côté de la structure, et que des
modes provenant des côtés opposés, lorsqu’ils sont en résonance, peuvent être couplés pour
former des modes hybridisés.

Chapitre 6

Des photodetecteurs sont étudiés dans lesquels le mode de Berreman d’un puits fortement
dopé est utilisé comme photoabsorbeur. La première observation de photocourant généré
par l’excitation d’un mode de Berreman est rapportée.

La chapitre commence par un résumé des motivations de l’étude, dont la principale
est d’étudier comment une excitation bosonique multi-corps peut générer un courant élec-
tronique. Nous établissons un lien entre notre étude et des résultats précédents de pho-
todetecteurs plasmoniques à électrons chauds, qui utilisent un plasmon de surface pour
l’absorption. Dans ces études, il est indiqué que l’excitation plasmonique se désintègre en
une population de porteurs hors-équilibre et chauds qui sont ensuite collectés.

Les études expérimentales de deux échantillons différents sont rapportées. Ces échantil-
lons contiennent chacun un puits épais central fortement dopé flanqué de chaque côté par
une barrière et une couche de contact dopée. La fabrication des dispositifs et les expériences
faites pour les caractériser sont décrites. Pour chaque échantillon, des mesures de spectres
optiques, de caractérisation électrique, et de photoréponse sont réalisées. Pour une tension
proche de zéro, les courbes de courant-tension de chaque dispositif présentent une grande
résistance différentielle. Il est démontré que les photodetecteurs atteignent leur responsiv-
ité maximale au voltage où la résistance différentielle décroît rapidement. À ce voltage, les
spectres de photovoltage ressemblent aux spectres d’absorptivité du mode de Berreman, au
moins autour de sa fréquence d’excitation. Des caractéristiques supplémentaires sont ob-
servées dans les spectres de photovoltage de l’un des échantillons à des énergies supérieures
au mode de Berreman, et sont associées à de l’absorption par porteurs libres. Les carac-
téristiques courant-tension et la photoréponse des dispositifs sont expliquées par un simple
modèle d’émission thermionique, dans lequel l’énergie d’activation est liée à la hauteur ef-
fective de la barrière que les électrons doivent surmonter afin d’être collectés. Les résultats
de l’étude de la photoréponse de l’un des deux dispositifs sous éclairage d’une source laser à
cascade quantique accordable sont également rapportés.

Dans la dernière partie du chapitre, il est démontré expérimentalement que le même dis-
positif à mode de Berreman qui fonctionne comme un photodétecteur peut aussi fonctionner
comme un émetteur électroluminescent. Ces expériences montrent que le mode plasmon
peut être excité par un courant continu par le biais d’un processus de diffusion résonante
électron-plasmon.
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Chapitre 7
Le photocourant issu de l’excitation de polaritons est étudié. Ces derniers sont des modes
couplés matière-lumière observés quand le mode de Berreman est couplé à un mode de micro-
cavité. En ajustant les paramètres de la cavité, l’énergie des éxcitations de polaritons peut
être modifiée, ce qui permet d’étudier le photocourant en fonction de l’énergie d’excitation
collective.

La chapitre commence par la description quantique des modes polaritons. Les microcav-
ités métal-diélectrique-métal auxquelles le mode de Berrman est couplé sont décrites. Les
spectres de réflectivité des modes de polariton sont calculés pour des cavités d’épaisseur
variable. La procédure pour la fabrication des dispositifs à microcavité double-métal avec
trois contacts électriques est décrite en détail. Les images de chaque étape de la fabrication
sont présentées.

Les résultats de la caractérisation expérimentale des dispositifs sont présentés en trois
parties. Tout d’abord, les spectres de réflectivité des dispositifs à résonateur unique dont
la largeur de la cavité varie, mesurés à l’aide d’un microscope à spectromètre infrarouge à
transformée de Fourier, sont rapportés. En accord avec les spectres simulés, un décalage vers
le bleu du polariton supérieur est observé lorsque la largeur de la cavité est réduite. Une
bande spectrale de réflectivité parfaite est observée entre les modes de polariton supérieur et
inférieur, ce qui indique que les dispositifs fonctionnent dans le régime de couplage ultra-fort.

Les courbes courant-tension des dispositifs à différentes énergies de mode de cavité sont
ensuite rapportées. Les courbes, bien qu’elles ne soient pas linéaires, montrent une résistance
différentielle très réduite proche du voltage nul par rapport à celles obtenues avec un dispositif
simple de type mésa, fabriqué à partir du même échantillon. Cela indique la présence de
courants parasites induits par des défauts de fabrication.

Dans la dernière section du chapitre, des mesures de photoresponsivité des dispositifs de
résonateur sous illumination par un laser à cascade quantique accordable sont rapportées.
Malheureusement, le laser à cascade quantique n’a pu être accordé qu’un peu au-delà de
l’énergie d’excitation du mode de Berreman non couplé, ce qui a empêché l’observation di-
recte du photocourant provenant des modes de polaritons supérieurs. Avec cette contrainte,
deux études sont présentées qui fournissent la première preuve de l’observation d’un photo-
courant provenant de modes polaritons dans le régime de couplage ultra-fort: premièrement,
la responsivité d’un dispositif à résonateur avec un mode de polariton supérieur à une énergie
proche de la coupure du laser est étudiée. Lorsque le laser est accordé à des énergies plus
faibles, la responsivité des dispositifs diminue. Dans la seconde étude, le laser est fixée à une
énergie proche de celle du mode de Berreman non couplé, et des dispositifs de résonateur
à énergie de cavité variable sont étudiés. Lorsque l’énergie du mode de polariton supérieur
est augmentée, la responsivité des dispositifs diminue, ce qui est conforme aux attentes si le
photocourant provient du mode de polariton supérieur.
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RÉSUMÉ

La plasmonique sur semiconducteurs s’intéresse à l’interaction de la lumière avec un gaz dense
d’électrons. Dans ce travail, nous étudions les excitations multi-corps dans des couches minces de
semiconducteur, où le déplacement des électrons crée un dipôle optique collectif. Les modes brillants
qui en résultent sont des plasmons de volume connus sous le nom de modes de Berreman. Nous
démontrons que les propriétés de ces modes peuvent être modifiées en les couplant avec leur envi-
ronnement (phonons optiques dans le semiconducteur, résonateurs photoniques), ou en manipulant
les états électroniques des particules individuelles qui les composent par des potentiels artificiels.
Nous montrons que l’introduction d’une forte densité électronique dans une couche mince d’un
matériau semiconducteur unique est suffisante pour observer ces modes collectifs, qui peuvent être
exploités pour réaliser des émetteurs thermiques efficaces. Nous observons des résonances cou-
plées plasmon - phonon dans des expériences de spectroscopie lorsque la fréquence de plasma est
proche de celle des phonons optiques. Ce couplage donne lieu à une modification de la bande Rest-
strahlen du semiconducteur.
Pour des couches suffisamment fines, la réponse collective du gaz d’électrons est modifiée en raison
du confinement quantique. Un modèle microscopique quantique est introduit dans lequel la réponse
collective est construite à partir du couplage dipolaire des transitions électroniques entre états liés.
Avec ce modèle, nous démontrons que le confinement quantique fixe la dispersion des modes plas-
moniques dans un potentiel de puits carré. Nous démontrons expérimentalement que de nouveaux
modes collectifs peuvent être créés en concevant opportunément le potentiel de confinement du gaz
d’électrons.
Dans la dernière partie du travail, les premières observations de photocourant provenant de l’excitation
d’un plasmon de volume sont rapportées. Le mécanisme de photodétection est interprété comme
résultant de la relaxation de l’excitation collective en une population de porteurs chauds. Pour ap-
profondir cette interprétation, nous étudions des photodétecteurs dans lesquels le mode plasmon est
couplé au mode photonique d’une microcavité. Nous rapportons la première preuve de la génération
de photocourant à partir de l’excitation de modes couplés lumière-matière en régime de couplage
ultra-fort.

MOTS CLÉS

plasmonique, semiconducteur, infrarouge, puits quantiques, polaritons

ABSTRACT

Semiconductor plasmonics is concerned with the interaction of light with a dense electron gas in
a semiconductor. In this work, we study many-body excitations in thin films, where the electronic
displacement forms a collective optical dipole. The resulting bright modes are volume plasmons known
as Berreman modes. We demonstrate that the properties of these modes can be engineered by
coupling them with their environment (optical phonons in the semiconductor, photonic resonators), or
by manipulating their constituent single-particle electronic states through artificial potentials.
We show that the introduction of a high electronic density to a thin layer in a single semiconductor
material is sufficient to observe these collective modes, which can be exploited to realize efficient
thermal emitters. We observe coupled plasmon – phonon resonances in spectroscopic measurements
when the plasma frequency is close to that of the optical phonons. This coupling results in a modified
Reststrahlen band for the semiconductor.
For sufficiently thin layers, the collective response of the electron gas is modified due to the quantum
confinement. A quantum microscopic model is introduced in which the collective response is con-
structed from the dipolar coupling of single particle transitions between bound states. With this model,
we demonstrate that quantum confinement fixes the dispersion of plasmonic modes in a square well
potential. We experimentally demonstrate that novel collective modes can be engineered by careful
design of the confining potential for the electron gas.
In the last part of the work, the first observations of photocurrent from the excitation of a volume
plasmon are reported. The photodetection mechanism is interpreted to result from the decay of the
collective excitation into a population of hot carriers. To further establish this interpretation, we in-
vestigate photodetector devices in which the plasmon mode is coupled to the photonic mode of a
microcavity. We report the first evidence of photocurrent generation from the excitation of coupled
light-matter modes in the ultrastrong coupling regime.

KEYWORDS

plasmonics, semiconductor, infrared, quantum well, polaritons
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