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Abstract

Protein kinases (PKs) comprise one of the most ancient and ubiquitous en-
zyme groups deeply embedded in a cell’s molecular machinery. PKs transfer a
γ-phosphate group from a nucleotide triphosphate (NTP) to a hydroxyl group
of a specific substrate. They are key signaling networks’ actors and impor-
tant drug targets during cancer treatment. PKs cycle between active and
inactive conformations, distinguished by a few elements within the catalytic
domain. One is the activation loop (AL), whose conserved DFG motif can
occupy DFG-in, DFG-out, and some rarer conformations. Annotation and
classification of the structural kinome are essential, as different inhibitors and
activators can target different conformations. Namely, DFG-out conformation
typically confers greater inhibitor selectivity and efficiency, as it impedes sub-
strate binding, and fewer kinases can achieve it. Despite being pivotal to drug
design efforts, little is known regarding which features shape the PK conforma-
tional landscape, both on sequence and structure levels. This work constitutes
a systematic attempt to elucidate them via careful data curation and mining.

Machine learning (ML) has become an increasingly popular tool in struc-
tural biology. A branch of ML known as Interpretable Machine Learning
(IML) provides techniques for explaining ML models, however complex. This
work utilized such techniques on PK sequences and structures to understand
features distinguishing between active/inactive and various DFG states. Still,
even state-of-the-art methodology will fall short if the data are inaccurate.
Despite decades of research and development, we still lack reliable, accurate,
general-purpose tools to characterize and relate protein sequences and struc-
tures. Here, we addressed this problem by creating an open-source Python
library lXtractor.

Using lXtractor, we assembled the largest structural kinome collection to
date, encompassing nearly ten thousand domains. Their sequences and struc-
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tures were represented by an extensive series of numerical descriptors anchored
to a single reference sequence profile covering the whole PK domain. We an-
notated DFG conformations of over 90% of the assembled domains using a
semi-supervised clustering-based approach. Moreover, the approach enabled
the assessment of the accuracy of the existing DFG labeling strategies, which
revealed their frequent inadequacy in labeling minor DFG states, leading to
internal inconsistency and conflicts with each other. As an improvement, we
trained ensembles of decision trees predicting active/inactive and DFG states
with near-perfect accuracy. The obtained models were then interpreted to
reveal the most prominent structural features distinguishing these conforma-
tional states. They were associated with well-known structural regions and
are readily interpretable by structural biologists. Furthermore, the ML mod-
els were applied to annotate structures published by a recent AlphaFold2 tool.
This demonstrated that AlphaFold2 predictions are likely biased towards the
DFG-in conformation.

With accurate structural annotations, we addressed the problem of se-
quence elements shaping DFG conformational preferences in the inactive state.
Namely, we sought to identify a handful of residues harbored by a PK domain
that could explain why a particular kinase has a propensity towards DFG-in
or DFG-out states. In doing so, we first assessed how this propensity has
evolved throughout a PK domain evolution. This revealed that the ability to
perform the DFG-in→DFG-out transition is sporadically distributed and does
not adhere to a discernable propagation pattern. Thus, we treated tyrosine
and serine-threonine kinases (TKs and STKs) separately. We first confirmed
that our ML pipeline can efficiently distinguish TK and STK sequences, ob-
taining perfect classifier for this ”test problem.” The models relied on sequence
positions that could be structurally interpreted and relate to different proper-
ties of tyrosine and serine/threonine phosphoacceptor residues. Following this,
the models were trained to discriminate between sequences with DFG-in and
DFG-out propensities, where labels were derived using ligand-free structures
and datasets were complemented by orthologs lacking structural data. The
obtained models were highly accurate, making only a handful of errors across
1330 STK and 1000 TK sequences. For TKs, the most prominent positions
the models relied on could be structurally rationalized as reinforcing the AL
in the DFG-out conformation. This insight corroborated existing studies and
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mutagenesis data. STK models were more challenging to interpret, with di-
verging position sets across different subfamilies being the most likely scenario.
Thus, natural DFG-out propensity may be a convergent trait. Without selec-
tive pressure, kinases may have sequence determinants dependent on a broader
evolutionary context.

Overall, this work provided an accurate assessment of the PK conforma-
tional landscape and improved our understanding of the structural kinome.
The PK data collection, sequence, and structure-based ML models and their
predictions were made publicly available. These can be used to develop more
accurate PK inhibition strategies and annotate conformations and propensities
of new experimental and predicted PK structures and sequences. The tools
developed in this work were also published as open-source packages written
in Python: (1) KinActive, encompassing ML models, a pipeline to train and
evaluate them, and a protocol to assemble a PK data collection; (2) lXtractor,
to assemble, manage, and characterize sequence/structure data collections; (3)
eBoruta, a tool for model-agnostic feature selection using the Boruta algorithm.
Cumulatively, we expect them to increase the transparency and reproducibility
of data mining in structural biology.



Résumé

Les protéines kinases (PK) constituent l’un des groupes d’enzymes les plus an-
ciens et les plus omniprésents, profondément ancrés dans la machinerie molécu-
laire d’une cellule. Les PK transfèrent un groupe γ-phosphate d’un nucléotide
triphosphate (NTP) à un groupe hydroxyle d’un substrat spécifique. Ce sont
des acteurs clés des réseaux de signalisation et des cibles médicamenteuses im-
portantes lors du traitement du cancer. Les PK alternent entre les conforma-
tions actives et inactives, distinguées par quelques éléments dans le domaine
catalytique. L’une est la boucle d’activation (AL), dont le motif DFG con-
servé peut occuper DFG-in, DFG-out et certaines conformations plus rares.
L’annotation et la classification du kinome structurel sont essentielles, car dif-
férents inhibiteurs et activateurs peuvent cibler différentes conformations. À
savoir, la conformation DFG-out confère généralement une plus grande sélec-
tivité et efficacité aux inhibiteurs, car elle empêche la liaison au substrat, et
moins de kinases peuvent y parvenir. Bien qu’elles soient essentielles aux
efforts de conception de médicaments, on sait peu de choses sur les carac-
téristiques qui façonnent le paysage conformationnel PK, tant au niveau de
la séquence que de la structure. Ce travail constitue une tentative systéma-
tique de les élucider via une conservation et une exploration minutieuses des
données.

L’apprentissage automatique (ML) est devenu un outil de plus en plus
populaire en biologie structurale. Une branche du ML connue sous le nom
d’Interpretable Machine Learning (IML) fournit des techniques pour expli-
quer les modèles de ML, aussi complexes soient-ils. Ce travail a utilisé de
telles techniques sur les séquences et les structures PK pour comprendre les
caractéristiques distinguant les états actif/inactif et divers états DFG. Pour-
tant, même les méthodes les plus avancées ne suffiront pas si les données sont
inexactes. Malgré des décennies de recherche et de développement, nous man-
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quons toujours d’outils fiables, précis et polyvalents pour caractériser et relier
les séquences et structures protéiques. Ici, nous avons résolu ce problème en
créant une bibliothèque Python open source lXtractor.

Grâce à lXtractor, nous avons rassemblé la plus grande collection de ki-
nomes structurels à ce jour, englobant près de dix mille domaines. Leurs
séquences et structures étaient représentées par une vaste série de descripteurs
numériques ancrés à un seul profil de séquence de référence couvrant l’ensemble
du domaine PK. Nous avons annoté les conformations DFG de plus de 90%
des domaines assemblés en utilisant une approche basée sur le clustering semi-
supervisé. De plus, l’approche a permis d’évaluer l’exactitude des stratégies
d’étiquetage DFG existantes, qui ont révélé leur insuffisance fréquente dans
l’étiquetage des États mineurs DFG, conduisant à des incohérences internes et
à des conflits les uns avec les autres. En guise d’amélioration, nous avons formé
des ensembles d’arbres de décision prédisant les états actif/inactif et DFG avec
une précision presque parfaite. Les modèles obtenus ont ensuite été interprétés
pour révéler les caractéristiques structurelles les plus importantes distinguant
ces états conformationnels. Ils étaient associés à des régions structurelles bien
connues et sont facilement interprétables par les biologistes structuraux. De
plus, les modèles ML ont été appliqués pour annoter des structures publiées par
un outil AlphaFold2 récent. Cela démontre que les prédictions d’AlphaFold2
sont probablement biaisées en faveur de la conformation DFG-in.

Avec des annotations structurelles précises, nous avons abordé le prob-
lème des éléments de séquence façonnant les préférences conformationnelles
du DFG à l’état inactif. À savoir, nous avons cherché à identifier une poignée
de résidus hébergés par un domaine PK qui pourraient expliquer pourquoi
une kinase particulière a une propension aux états DFG-in ou DFG-out. Ce
faisant, nous avons d’abord évalué comment cette propension a évolué tout
au long de l’évolution d’un domaine PK. Cela a révélé que la capacité à ef-
fectuer la transition DFG-in→DFG-out est distribuée de manière sporadique
et n’adhère pas à un modèle de propagation discernable. Ainsi, nous avons
traité séparément les tyrosine et sérine-thréonine kinases (TK et STK). Nous
avons d’abord confirmé que notre pipeline ML peut distinguer efficacement les
séquences TK et STK, obtenant ainsi un classificateur parfait pour ce “prob-
lème de test”. Les modèles reposaient sur des positions de séquence qui pou-
vaient être interprétées structurellement et liées à différentes propriétés des



6

résidus phosphoaccepteurs tyrosine et sérine/thréonine. Suite à cela, les mod-
èles ont été entraînés à distinguer les séquences avec des propensions DFG-in
et DFG-out, où les étiquettes ont été dérivées à l’aide de structures sans ligand
et les ensembles de données ont été complétés par des orthologues manquant
de données structurelles. Les modèles obtenus étaient très précis, ne com-
mettant que quelques erreurs sur 1330 séquences STK et 1000 séquences TK.
Pour les savoirs traditionnels, les positions les plus importantes sur lesquelles
s’appuient les modèles pourraient être structurellement rationalisées comme
renforçant l’AL dans la conformation DFG-out. Cette idée a corroboré les
études existantes et les données de mutagenèse. Les modèles STK étaient plus
difficiles à interpréter, le scénario le plus probable étant des ensembles de posi-
tions divergentes entre différentes sous-familles. Ainsi, la propension naturelle
à sortir du DFG peut être un trait convergent. Sans pression sélective, les
kinases peuvent avoir des déterminants de séquence dépendant d’un contexte
évolutif plus large.

Dans l’ensemble, ce travail a fourni une évaluation précise du paysage con-
formationnel PK et amélioré notre compréhension du kinome structurel. Les
modèles ML de collecte de données PK, de séquence et de structure ainsi que
leurs prédictions ont été rendus publics. Ceux-ci peuvent être utilisés pour
développer des stratégies d’inhibition PK plus précises et annoter les confor-
mations et les propensions de nouvelles structures et séquences PK expéri-
mentales et prédites. Les outils développés dans ce travail ont également été
publiés sous forme de packages open source écrits en Python: (1) KinActive,
englobant des modèles ML, un pipeline pour les entraîner et les évaluer, et un
protocole pour assembler une collection de données PK; (2) lXtractor, pour as-
sembler, gérer et caractériser des collections de données de séquence/structure;
(3) eBoruta, un outil de sélection de caractéristiques indépendantes du modèle
utilisant l’algorithme de Boruta. Cumulativement, nous espérons qu’ils aug-
menteront la transparence et la reproductibilité de l’exploration de données en
biologie structurale.
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Chapter 1

Introduction to Machine
Learning

Machine learning (ML) is a field that focuses on the development of algorithms
learning from data to make predictions. It can be viewed as a modern exten-
sion of applied statistics, emphasizing predictive accuracy and computational
efficiency over traditional statistical inference. The term was coined by Arthur
Samuel in 1959 [1], reflecting the idea that computers could be taught to learn
and adapt without being explicitly programmed for specific tasks. Pioneering
work by researchers such as Frank Rosenblatt [2] laid the groundwork for sub-
sequent advancements in artificial neural networks and other machine learning
techniques.

In the following decades, the field of machine learning has grown expo-
nentially, benefiting from technological innovation and vast amounts of data.
Today, ML plays a vital role in various domains, ranging from healthcare and
finance to natural language processing and computer vision, transforming the
way we analyze and interpret data [3].

An important distinction comes up when comparing ML to Data Mining
(DM). While ML models may be used as part of the data mining process, DM
aims to uncover underlying structures and relationships within the data itself.
In essence, ML is often about prediction, while DM focuses on description and
understanding. Both fields play a crucial role in modern data science, each
contributing unique perspectives and tools to the analysis and interpretation
of complex data [4].

This chapter aims to describe general ML principles and provide back-
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ground for ML techniques employed in subsequent chapters. We will begin
by delving into foundational concepts, including generalization, performance
estimation, and cross-validation. Next, we will introduce how ML approaches
can be categorized and discuss several models in greater depth. Building on
this foundation, we’ll lay out techniques allowing to interpret trained mod-
els, bridging the gap between DM and ML. Special attention will be given to
methods such as LIME and SHAP. Finally, we’ll discuss general principles of
feature selection and provide an in-depth description of the Boruta algorithm.

1.1 Basic concepts

1.1.1 The core ML approach

An ML model can be conceptualized as a sophisticated function f with both
trainable parameters (θ) and non-trainable parameters (λ). The trainable
parameters are central to the model, adapting and evolving during the training
process. Governed by a specific algorithm, the model “learns” to adjust θ based
on the input data X and, in supervised learning (see below), the corresponding
target values y.

The training algorithm relies on particular criteria to assess the quality of
predictions. In many models, this criterion is defined by a loss function l(y, y′)

that quantifies the difference between the target values and predicted values y′,
with the goal of minimizing this difference. In contrast, models like decision
trees utilize gain functions, such as reduction in entropy or variance, which
they aim to maximize.

The non-trainable parameters, on the other hand, are predetermined set-
tings that govern the structure and behavior of the model but do not change
during training. These settings can be informed by a user’s knowledge, itera-
tively adjusted through trial and error, or fine-tuned via a specific optimization
algorithm.

1.1.2 Learning paradigms

Machine Learning (ML) models can be broadly categorized based on the nature
of the output y and the availability of target values during training. This cat-
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egorization leads to three main learning paradigms: supervised, unsupervised,
and semi-supervised learning:

• Supervised Learning: In supervised learning, the target values y are
known and provided during training. The model learns to map input
data X to these target values, adjusting its parameters to minimize the
difference between predicted and actual outputs. Depending on the na-
ture of y, supervised learning can be further divided into:

– Classification: If y represents discrete categories. The number
of categories determines whether the problem is binary (two cate-
gories) or multiclass (more than two categories).

– Regression: If y represents continuous values.

• Unsupervised Learning: In unsupervised learning, the target values
y are unknown or not provided during training. The model focuses on
discovering underlying patterns, structures, or relationships within the
input data X without guidance from specific target values. Common
tasks include clustering, dimensionality reduction, and anomaly detec-
tion.

• Semi-Supervised Learning: Semi-supervised learning falls between
supervised and unsupervised learning. It utilizes both labeled data (with
known y) and unlabeled data (without y). This approach leverages the
information in the unlabeled data to enhance the learning process.

The nature of the learning problem informs the choice of algorithms, eval-
uation metrics, and methodologies, shaping the design and implementation of
ML solutions. Other learning paradigms, such as reinforcement learning, also
exist but fall outside the scope of this study, as they do not align as closely
with the data mining-oriented framework that guides our exploration. Here,
we focus more on supervised classification paradigm.

1.1.3 Generalization, Bias, and Variance

Generalization in ML refers to a model’s ability to perform well on unseen
data, capturing the underlying patterns without being influenced by noise or
random fluctuations. A model that generalizes well is essentially the antithesis
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of an overfitted model, which performs well on the training data but poorly
on new, unseen data.

Generalization is closely related to the concepts of bias and variance [5],
which provide insights into a model’s potential underperformance or overfit-
ting:

• Bias: Bias is the systematic error introduced by simplifying a real-world
problem. A model with high bias makes strong assumptions about the
underlying data and may oversimplify the problem, leading to underfit-
ting.

• Variance: Variance measures a model’s sensitivity to small fluctuations
in the training data. A model with high variance pays too much atten-
tion to the noise or random variations in the training data, leading to
overfitting.

• Bias-Variance Tradeoff: Balancing bias and variance is a fundamen-
tal challenge in ML. Reducing bias may increase variance, and vice versa
(Fig. 1.1). A well-balanced model minimizes both to achieve good gen-
eralization.

Figure 1.1: An illustration of the relationships between a model’s bias and variance.
The figure is taken from [6].

The bias-variance tradeoff is typically linked to the discussion on model
complexities. Overparametrization, or the use of an excessive number of pa-
rameters, increases the model’s complexity and may lead to a model that
“memorizes” its input, exerting high variance and becoming prone to over-
fitting [7]. However, with the emergence of large deep learning architectures,
some researchers are starting to revisit the traditional understanding, exploring
how these complex models can sometimes defy conventional wisdom [8].
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1.1.4 Performance Estimation and Cross-Validation

To evaluate a model’s generalization capacity, one uses a performance estimate.
In the context of supervised learning, this performance estimate evaluates the
difference between predicted and actual values. Mathematically, this is repre-
sented as a function ρ(y, y′). Depending on the metric, one may seek to either
maximize or minimize this function. For instance, Mean-Squared Error (MSE)
is commonly minimized, while Accuracy is maximized.

An important consideration is the data used for evaluating performance.
Using the same data for both training and testing fails to capture a model’s
ability to generalize to unseen data. To address this, one typically employs a
separate test set or a procedure known as cross-validation (CV) [9]. In CV,
the training instances are randomly partitioned into K non-overlapping folds.
The model is trained on K − 1 of these folds and tested on the remaining one.
This process is repeated K times, with each fold serving as the test set exactly
once, to produce an averaged ρCV . When K equals the size of the dataset, this
strategy is specifically known as Leave-One-Out Cross-Validation (LOOCV).

Using these strategies mimics a real-world scenario, where a model is ap-
plied to unseen data, leading to conclusion regarding its generalization capac-
ity. However, CV provides a more robust estimate of a model’s performance
than a single test set, reducing the risk of an overly optimistic or pessimistic
assessment.

Apart from evaluating generalization, CV has broader applications, such
as:

• Hyperparameter Tuning: The initial settings of an ML algorithm can
significantly impact its performance. Searching for optimal parameters
is often framed as an optimization problem [10], where one seeks hy-
perparameter combinations that maximize/minimize ρCV . We’ll explore
this in more detail below.

• Model Selection: CV is also used for comparing different models.
Combining model selection with hyperparameter tuning poses an even
greater challenge. Some methods like greedy K-fold CV can mitigate the
computational burden [11].

• Unsupervised Problems: Surprisingly, CV can also be applied to
unsupervised problems like clustering, where it can help determine the
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number of clusters based on intra-cluster similarity or inter-cluster dis-
similarity [12, 13].

In practice, applying CV can be nuanced and may lead to overfitting during
model selection. Namely, it can sometimes lead to ”optimization bias” or
”selection bias,” especially when the dataset is small [14]. This risk can be
mitigated through techniques like early stopping and regularization. Early
stopping refers to halting the training when a chosen performance metrics
deteriorates. Regularization, in turn, is penalizing a model’s complexity, such
as very large values of trainable parameters [15].

The nature of the underlying data can also influence the CV strategy.
Namely, using random sampling of training instances when constructing CV
folds may be inadequate in some scenarios, requiring to employ some external
similarity measure [16]. In such cases, CV may operate on pre-computed
clusters of samples, enclosing sufficiently similar instances. This is especially
relevant when training instances are (potentially related) protein sequences
[17].

Finally, if the data are plentiful, a common practice to avoid overfitting is
splitting the data modelling and testing subsets [6]. The former is used for
model selection, hyperparameter tuning, and fitting the final model, while the
latter is used to produce a final performance assessment.

1.1.5 Hyperparameter Tuning

Above, we’ve introduced hyperparameter optimization (HPO) as a combina-
torial problem of searching for an ML algorithm’s settings most suitable for
the learning objective [18]. Assuming that higher values of ρ indicate a bet-
ter model, one can formulate HPO as an optimization problem argmax

λ

ρ (or

argmax
λ

ρCV ), where λ is a space of possible hyperparameters. In practice, the

“tunability” of different hyperparameters may vary [19]. Thus, informed by
prior knowledge, λ is initially constrained to some sensible value ranges.

Various strategies exist for searches over λ [20], including:

• Grid Search: An exhaustive evaluation of all possible combinations.
The guarantee of convergence is offset by the computational cost.

• Random Grid Search: To mitigate the computational burden, a ran-
dom grid search can be employed. Instead of evaluating all combinations,
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a random subset is chosen, offering a trade-off between computational
cost and optimization quality.

• Genetic Algorithms: These are heuristic search algorithms inspired
by the process of natural selection. They are more efficient than grid
search but may require fine-tuning of their own parameters.

• Bayesian Optimization: This probabilistic model-based optimization
technique is particularly effective for high-dimensional hyperparameter
spaces. It builds a probabilistic model of the objective function and uses
it to select the most promising hyperparameters to evaluate in the true
objective function.

Among these, Bayesian Optimization (BO) techniques have gained promi-
nence for their efficiency and effectiveness. The core idea behind BO is to
build a probabilistic model P (ρ|λ) that estimates the distribution of ρ given a
particular set of hyperparameters λ. This model is iteratively updated based
on newly evaluated points in λ throughout the optimization process [21].

Another key ingredient to BO is the acquisition function, which guides
the sampling process. It takes P (ρ|λ) as input and produces a utility value
for each point in λ. The nature of the acquisition function can vary, but
certain formulations like the Expected Improvement (see below) aim to balance
between:

• Exploration: Exploring regions with higher uncertainty in P (ρ|λ) to
ensure that the algorithm doesn’t miss any potentially optimal regions.

• Exploitation: Exploiting regions where the expected performance, as
indicated by the mean of P (ρ|λ), is high.

A common example of an acquisition function is the Expected Improvement
(EI). For the best performance ρ∗ observed so far, it is defined as

EI(λ) = E[max(ρ− ρ∗, 0)] (1.1)

The EI function aims to maximize the expected improvement over the best-
known point ρ∗ by considering both the predicted mean and variance of P (ρ|λ).
Specifically, it produces a new point λ∗ such that

λ∗ = argmax
λ

EI(λ) (1.2)
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The BO algorithm iteratively performs the following steps:

1. Use the probabilistic model to find the hyperparameter set λ∗ that max-
imizes ρ.

2. Evaluate the true objective function ρ(λ∗) to obtain a new data point.
3. Update the probabilistic model P (ρ|λ) with the new data point.

Optuna is a popular framework that implements Bayesian Optimization.
It extends the basic BO algorithm by incorporating features like pruning of
unpromising trials and parallelization. Optuna is adaptable to various types of
hyperparameter spaces, including those with categorical variables, and allows
for easy customization of acquisition functions, making it a flexible tool for
hyperparameter optimization [22].

1.2 A Brief Overview of ML Algorithms
Above, we’ve introduced briefly the foundational ML principles, laying out the
general frameworks and methodologies that are broadly applicable across a va-
riety of supervised learning problems. However, the theoretical underpinnings
are often adapted and specialized to fit the particular models at hand. As
of today, a plethora of models are available, each with its unique strengths,
weaknesses, and assumptions. The choice of a model is rarely arbitrary; it is
closely guided by the learning objective and the nature of the data. In the
following sections, we will delve into some of these models, exploring their in-
ner workings, applicability, and how they embody the general principles we’ve
discussed.

1.2.1 The diversity of ML models

Machine learning algorithms can be broadly categorized based on several key
characteristics:

1. Linear vs. Non-linear: Linear models, such as Logistic Regression,
assume a linear relationship between the input features and the output.
Non-linear models like Decision Trees and Neural Networks do not make
this assumption and can capture complex relationships in the data.
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2. Parametric vs. Non-parametric: Parametric models make certain
assumptions about the data distribution and have a fixed number of
parameters. Non-parametric models, like K-Nearest Neighbors, make
fewer assumptions and can have an infinite number of parameters.

3. Lazy vs. Eager: Lazy learners, such as K-Nearest Neighbors, defer the
decision-making until a new instance is encountered. Eager learners like
Decision Trees and Neural Networks make decisions during training.

4. Generative vs. Discriminative: Generative models like Naive Bayes
learn the joint probability distribution P (X,Y ) and make predictions
by estimating P (Y |X). Discriminative models like Logistic Regression
directly learn the boundary between classes.

5. Interpretable vs. Black-box: Interpretable models like Decision
Trees and Linear Regression are easy to understand and interpret. Black-
box models like Neural Networks are more complex and harder to inter-
pret.

Understanding these categorizations can guide the choice of algorithm for
a given problem, ensuring that the chosen model is well-suited to the task at
hand. Below, we’ll elaborate on some of these approaches in greater detail.

1.2.2 Logistic Regression

Logistic Regression (LR) is perhaps the simplest example of a binary classifier.
In binary classification, the response variable y is a Bernoulli random variable
with parameter p. In linear regression, the expectation of y is modeled via a
linear combination of data X and trainable parameters θ, i.e., p = XT θ. In
logistic regression, a logistic link function is applied to p, resulting in

log
p

1− p
= XT θ. (1.3)

Solving this equation yields

p =
1

1 + e−XT θ
(1.4)
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The log-likelihood function to be maximized with respect to θ is given by:

N∑
i=1

(yi log(p) + (1− yi) log(1− p))− Cr(θ) (1.5)

where r(θ) is the regularization term that penalizes model complexity to pre-
vent overfitting, and C controls the regularization strength. For example, in
the elastic net regularization method, a combination of l2 and l1 regularization
is used, balanced by a parameter α:

r(θ) =
1− α

2
θT θ + α||θ||1 (1.6)

where ||θ||1 is the sum of the absolute values of the parameters.

1.2.3 Illustrating Core ML Principles Using Logistic Re-
gression

LR serves as a suitable choice to illustrate the core principles introduced above.
For this, we’ll generate a synthetic dataset X with 100 instances, where each
instance has two features x1 and x2. The dataset is divided into two classes,
with 70 and 30 instances belonging to each class (0 and 1). The feature matrix
X is defined as:

X =


x1,1 x1,2

x2,1 x2,2

... ...
x100,1 x100,2


For the sake of simplicity, we assume that x1 and x2 are normally dis-

tributed:

• For class 0: x1 ∼ N (2, 1) and x2 ∼ N (3, 1)

• For class 1: x1 ∼ N (4, 1) and x2 ∼ N (5, 1)

This setup provides a dataset where the two classes are somewhat separa-
ble, making it suitable for logistic regression (Fig. 1.2a).

As the dataset is imbalanced, using regular Accuracy may provide an in-
accurate assessment of the predictive power. Thus, we opt for using Balanced
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Figure 1.2: Sampled dataset, decision boundaries, and CV performance distribu-
tion. (a) The data points of X with classes denoted by color: blue circles are class
0 instances, whereas light cyan crosses depict class 1 instances. Red lines depict
decision boundaries of LR trained on different CV folds. (b) The distribution of
Balanced Accuracy across the CV folds. The algorithm was trained using the opti-
mized hyperparameters as described in the main text.

Accuracy (BAC) as the performance metric. BAC is defined as the arithmetic
mean of Sensitivity (True Positive Rate) and Specificity (True Negative Rate):

BAC =
1

2

(
TP

TP+ FN +
TN

TN+ FP

)
(1.7)

Here, TP, TN, FP, and FN stand for True Positives, True Negatives, False
Positives, and False Negatives, respectively. Balanced Accuracy effectively
handles class imbalance by giving equal weight to both Sensitivity and Speci-
ficity, ensuring that both classes are equally important in the evaluation.

First, we’ll tune two hyperparameters controlling regularization: 1
C

and
α, where the former is an inverse of C introduced above, with smaller values
implying stronger regularization. With this, we’ll set up the search space λ as
a 10× 10 grid with ten values for each parameter, amounting to 100 different
combinations:

• 1
C
ranges between 0.05 and 2.0, with values equally spaced in this range.

• α ranges between 0 and 1, with values equally spaced in this range.

Next, we’ll set up an exhaustive grid search over λ. For this, we’ll generate
ten stratified CV folds, preserving the class ratios observed in X within each
fold. For each ( 1

C
, α) combination, we’ll fit the LR algorithm on the training
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fold and compute the BAC on the training fold.
As illustrated in Fig. 1.3a, the performance of the Logistic Regression model

deteriorated as the regularization strength increased (i.e., as 1
C

decreased),
suggesting that the model became too biased. Conversely, as 1

C
increased,

indicating weaker regularization, the performance stabilized. This suggests
that the model benefits from additional complexity, without showing signs of
high variance or overfitting.

In turn, the α had marginal impact on the performance across the whole
explored value range. The best performance (BAC=0.85) was achieved for a
combination of 1

C
=1.13 and α=0.88 (Fig. 1.3b). The latter indicates that the

model relied primarily on the l1 penalty for regularization.

Figure 1.3: Grid search results. (a) X-axes depict two model settings sampled
during HPO. Y-axes depict BAC scores with line depicting mean values and shaded
ranges depicting BAC fluctuations across CV folds. (b) Hyperparameter combina-
tions and their influence on BAC averaged across CV folds.

To gain further insights, we once again cross-validated the algorithm, this
time using the attained hyperparameters. Firstly, as Fig. 1.2b indicates, the
mean CV performance remained consistent. Secondly, (Fig. 1.2a) demonstrates
the stability of the decision boundaries of models trained on different CV folds.

This practical illustration allowed us to explore some of the core ML princi-
ples described above. Namely, we’ve demonstrated: (1) the basics of hyperpa-
rameter optimization, (2) dealing with imbalanced datasets via stratified CV
and an appropriately chosen metric, (3) the concepts of overfitting, bias, and
variance, and (4) how regularization impacts the algorithm’s performance.
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1.2.4 Decision Trees

When the training data are not linearly separable, LR may suffer significant
performance losses. In such cases, using non-linear ML models is justified.
One of the simplest non-linear models is the Decision Tree (DT). DTs were
popularized by Leo Breiman, who introduced an efficient algorithm to train
them for both classification and regression tasks [23].

Figure 1.4: An example of a decision tree trained to partition the artificial data
introduced in the main text.

A DT is a hierarchical tree model composed of internal and external nodes
organized into “levels” (Fig. 1.4). Internal nodes are represented by a pair
(f, t), where f is an input feature and t is a learned threshold. If f > t, a data
instance is directed to one child node (typically the right); otherwise, it goes
to the other child node. In this manner, data instances are guided by internal
nodes towards the leaf nodes, which contain continuous values (for regression
problems) or classes (for classification problems) that constitute the model’s
predictions.
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To train a Decision Tree model, one typically employs a top-down, recur-
sive, divide-and-conquer approach. The most commonly used algorithms for
this purpose are ID3 (Iterative Dichotomiser 3) [24], C4.5 (the successor of
ID3) [25], and CART (Classification and Regression Trees) [23].

The algorithm starts by selecting the feature and threshold that minimize
the chosen criterion for the entire dataset. For classification tasks, this criterion
is often the Gini impurity or the information gain. The Gini impurity for a
node t is defined as:

Gini(t) = 1−
C∑
i=1

p2i (1.8)

where pi is the proportion of samples belonging to class i at node t, and C

is the number of classes. Information gain based on Gini impurity is then
calculated as:

Gain(t, f) = Gini(t)−
(nleft

n
Gini(tleft) +

nright

n
Gini(tright)

)
(1.9)

where n is the total number of samples at node t, nleft and nright are the number
of samples in the left and right child nodes, respectively, created by splitting
node t based on feature f .

This creates the root node of the tree, which splits the dataset into two
subsets. The algorithm then recursively applies the same procedure to each
subset, creating new internal nodes and partitions until one of the stopping
conditions is met. These conditions could be a maximum tree depth, a mini-
mum number of samples per leaf, or an acceptable level of impurity or error.

Once the tree is built, it can be pruned to remove branches that do not
provide sufficient predictive power. This helps in reducing the complexity of
the final model and mitigates the risk of overfitting.

Combining learned thresholds leads to non-linear decision boundaries. To
illustrate this, we trained a single decision tree on the artificial dataset intro-
duced above, restricting it to the maximum depth of three levels. Fig. 1.4
depicts this tree and its decision boundaries. As one can observe, the DT
non-linearity allows it to better partition the data compared to LR.
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1.2.5 Ensemble Algorithms

The motivation behind ensemble methods is rooted in the idea that while a
single model may have limitations in terms of bias, variance, or generalization,
a combination of models trained on the same objective can compensate for
these weaknesses. This disctinction is made explicit by the commonly adopted
terminology, where single models are typically denoted as weak learners, while
their combination is referred to as strong learner [26].

The concept of ensemble learning was popularized by several pivotal works,
including Leo Breiman’s 1996 paper on “Bagging Predictors,” which intro-
duced the technique of bootstrap aggregating, or bagging, to improve classifi-
cation and regression models [27]. The technique involves generating multiple
bootstrap samples from the original training dataset and training a separate
model on each sample. These models are typically identical in structure but
differ in the data they are trained on. The final prediction is obtained by
averaging the predictions (in the case of regression) or by taking a majority
vote (in the case of classification) from all the individual models. Bagging is
particularly effective for algorithms that are sensitive to the specific data they
are trained on, as it provides a way to “average out” the noise and errors,
leading to a more robust and stable model.

While bagging aims to reduce model variance by creating multiple boot-
strap samples and averaging the predictions, AdaBoost, introduced by by Yoav
Freund and Robert Schapire in 1997 [28], takes a different approach by focus-
ing on instances that are hard to classify. In essence, AdaBoost adapts by
giving more weight to training instances that are misclassified by previous
models in the ensemble. Each subsequent model is then trained to correct the
mistakes of its predecessors, thereby reducing the overall bias of the ensemble.
This adaptive nature allows AdaBoost to create a strong learner from a series
of weak learners, often achieving better performance than bagging, especially
when the base models are simple and prone to underfitting.

Random Forests (RFs) comprise ensembles of decision trees. Introduced
by Leo Breiman in 2001 [29] RF can be viewed as an extension of his earlier
work on bagging. While bagging uses bootstrap samples to train each model
independently, Random Forests add an additional layer of randomness by also
selecting a random subset of features for each decision tree. This “decorrelates”
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the trees, making the ensemble less prone to overfitting and often improving
generalization. The method has become one of the most popular machine
learning algorithms for both classification and regression tasks.

Gradient Boosting is another ensemble method that builds upon the prin-
ciples introduced by both AdaBoost and Random Forests [30]. Like AdaBoost,
it trains models in a sequential manner, focusing on instances that are difficult
to predict. However, it often employs decision trees as base learners, similar
to Random Forests, but optimizes them in a greedy manner. Each new model
is fitted to the residuals of the combined ensemble of existing models, allowing
the algorithm to adapt quickly and fit complex functions. Among the various
implementations of gradient boosting, XGBoost stands out for its efficiency
and effectiveness [31]. We’ll provide a detailed explanation of this algorithm
later on.

The versatility of Random Forest and gradient-boosted trees is evident in
their wide range of applications. As we previously explored the role of Bayesian
Optimization in hyperparameter tuning, it’s worth noting that these ensem-
ble methods often serve as surrogate probability models P (ρ|λ), particularly
useful for navigating large, high-dimensional hyperparameter spaces [32]. In
the realm of anomaly detection, Random Forest algorithms, including special-
ized variants like ”Isolation Forest,” excel at identifying outliers based on their
unique decision paths across the ensemble [33, 34]. The co-occurrence of fea-
tures within the trees also allows Random Forest to be adapted for clustering
tasks, generating a dissimilarity matrix that can be used for further analysis
[35, 36]. Additionally, the algorithm’s robustness makes it an effective tool for
imputing missing values [37].

1.3 Interpretable ML
Machine learning approach has traditionally focused on predictive power. How-
ever, gradual increase of ML algorithms’ complexity and their usage in various
sensitive spheres like healthcare [38], necessitates gaining more insights into
their decision-making process. Thus, Interpretable Machine Learning (IML1)
has emerged and gained popularity in recent years [39–41].

IML focuses on conjuring meaningful explanations regarding an MLmodel’s
1Some researches prefer the term “Explainable AI,” abbreviated as XAI.
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functioning. In this context, it’s worth distinguishing global vs. local explana-
tions. The former attempt to explain a model as a whole, while the latter focus
on interpreting predictions for specific data instances. IML techniques differ
in how they are applied to a model. Some of them are model-specific, while
others are model-agnostic. Furthermore, as we’ll elaborate below, some mod-
els have built-in features making them interpretable, while others (black-box
models) are explained post-hoc [42].

1.3.1 Intrinsically Interpretable Models

Some ML models are interpretable by design. For instance, above we’ve intro-
duced a Logistic Regression model and trained it on an artificial dataset. In
LR, the log-odds of belonging to class 1 is modeled as a linear function of the
features:

log

(
p

1− p

)
= θ0 + θ1x1 + θ2x2 (1.10)

Here, p is the probability of belonging to class 1.
The LRmodel trained above had parameters [θ0, θ1, θ2] = [−8.38, 2.00, 0.39],

where θ0 is an intercept coefficient. The positive θ1 indicates that higher val-
ues of x1 increase the log-odds of belonging to class 1, while the smaller θ2

suggests a lesser influence of x2 on the outcome. The intercept term θ0 = 8.38

represents the log-odds of the positive class when θ1 and θ2 are both zero,
implying that, in this case, the model is biased towards the negative class.

DT model introduced above is also interpretable. For small decision trees,
one can draw explanations from a visual representation. For instance, by
observing the root node in Fig. 1.4, one can deduce that the x1 variable alone
separated most of the instances; hence, it’s more useful for the objective than
x2.

For larger trees, visual inspection can be cumbersome. In such cases, the
usefulness of a feature can be quantified via various metrics, such as feature
importance scores. These scores are often calculated based on the average
reduction in impurity or error that a feature brings when used in a tree split.
Formally, the feature importance FI(f) for a feature f is computed as:

FI(f) =
∑

t∈Nodes using f Impurity Reduction(t)
Total number of nodes (1.11)
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Here, Impurity Reduction(t) is the reduction in impurity or error at node t

due to the split on feature f . This provides a quantitative measure of how
much each feature contributes to the predictive power of the tree.

DTs can aid in local (instance-level) interpretations as well. By tracing
the path an instance takes from the root to a leaf, one can understand the
sequence of decisions made by the model for that particular instance that
can be translated into a set of “if-then” rules. This set of rules provides a
transparent way to understand the exact conditions under which a particular
prediction is made.

We’ll briefly mention some other interpretable models: (1) k-NN, (2) Naive
Bayes, and (3) LASSO. The k-NN algorithm is a type of instance-based learn-
ing that classifies a new instance based on the majority class of its k nearest
neighbors in the feature space. By examining the neighbors, one can under-
stand why a particular instance was classified in a certain way.

Naive Bayes classifiers are probabilistic models based on Bayes’ theorem,
with the “naive” assumption that features are conditionally independent given
the class label. The model is interpretable because it provides probabilities for
each class, and one can look at the conditional probabilities to understand the
contribution of each feature to these class probabilities.

LASSO (Least Absolute Shrinkage and Selection Operator) is a linear
model trained with an l1 penalty term on the coefficients, which has the effect
of setting some coefficients to zero, effectively performing feature selection.
This makes the model simpler and more interpretable, as only a subset of
features contributes to the decision-making process.

1.3.2 Intepreting Ensemble Models

All the models introduced above have a small number of trainable parame-
ters connected to their output in a straightforward manner. As the number
of parameters and their interactions increase, a model essentially becomes a
“black-box,” requiring special techniques to interpret it.

Ensemble models illustrate well this interpretability-complexity trade-off
[43]. While a single decision tree is interpretable, their large ensembles are
not. Still, some of the techniques employed for a single tree may be generalized
towards the ensemble as a whole. Thus, rule extraction procedure mentioned
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above can be further improved by pruning techniques [44] and adapted for tree
ensembles [45, 46]. However, a more intriguing line of work that generalizes
beyond tree ensembles concerns feature importances.

Above, we’ve introduced a notion of feature importance. For extending it
to a collection of trees, one can average the feature importance scores:

FIensemble(f) =
1

N

N∑
i=1

FItreei(f) (1.12)

where N is the total number of trees in the ensemble [47]. This Mean Decrease
in Impurity (MDI) gives a more comprehensive view of how each feature con-
tributes to the predictive power of the ensemble model [48].

The Mean Decrease Accuracy (MDA) is another feature importance mea-
sure originally introduced for RF [29]. One of the advantages of using MDA
is the availability of Out-of-Bag (OOB) scores [49]. In Random Forests, each
tree is trained on a different bootstrap sample, and the samples not included
in the bootstrap (OOB samples) can be used to test the tree. This provides
a computationally efficient way to compute the MDA. Specifically, one can
permute a feature and recompute the OOB score without having to retrain
the model or set aside a separate validation set. The MDA for a feature f is
computed as follows:

MDA(f) = 1

N

N∑
i=1

(
Acc(i)original − Acc(i)permuted

)
(1.13)

where N is the number of trees in the ensemble, and Acc(i)original and Acc(i)permuted

are the OOB accuracies of the ith tree before and after permuting the feature
values, respectively.

RF models, however, were empirically shown to be biased towards cor-
related and numerical or high-cardinality categorical features, which hinders
their interpretability via MDI and MDA in these cases [50, 51]. Such features
introduce many possible split scenarios, which increases their chance of yield-
ing higher impurity reduction than features taking fewer values [52]. This bias
can be reduced by employing alternative tree construction algorithms (such as
cforest [53]) or debiased MDI formulations like MDI-OOB [54]. On the other
hand, other feature importance formulations like permutation importance are
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more general (i.e., model-agnostic) and are thought to mitigate the MDI biases.
The term “permutation importance” can refer to two different approaches,

both of which involve decoupling X from y through random permutation or
scrambling. One of these approaches, known as “PIMP,” aims to correct biases
in the initially computed feature importances and is applicable to any model
that provides a method for assessing these importances [55].

PIMP starts by scrambling y multiple times to compute a “null importance”
for each feature. These null importances are then fit to a chosen probability
distribution (e.g., Random Normal). Using this distribution, PIMP calculates
the likelihood of observing a feature importance value equal to or greater than
the one initially computed (without scrambling). This likelihood serves as a
new, statistically corrected measure of feature importance, assessing whether
initial importance values could have occured by chance given the distriution
of the null importances.

The other permutation importance strategy is to scramble values of X in-
stead of y. This repeated scrambling is followed by computing the ρoriginal −

1
#permutationsρpermuted difference. Opinions diverge on the exact permutation
protocol (conditional [56] vs. independent) and whether one should use the
original model to compute ρpermuted (permute-and-predict strategy) or refit
the algorithm following the permutation. Recent research advocates permut-
ing feature values conditionally on other features and refitting the model [57].
While potentially more accurate, this approach suffers from high computa-
tional demands and is therefore not universally applicable.

All the feature importance measures introduced above are global: they
give no insight into why a certain prediction was made for a certain instance.
Although some efforts exist to “localize” measures like MDI [58], they are not
model-agnostic and less widely adopted. On the other hand, methods that are
both local and model-agnostic exists and will be discussed below.

1.3.3 LIME

LIME stands for Local Interpretable Model-agnostic Explanations [59]. The
central premise of LIME is that the decision boundaries of a complex, black-
box model can be locally approximated by simpler, interpretable models such
as logistic regression or a decision tree. To explain a specific instance x, LIME
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generates a dataset for training a surrogate model by perturbing the feature
values of x (e.g., injecting Gaussian noise) and evaluating the corresponding
predictions from the black-box model. To ensure that the perturbations are
relevant, LIME assigns weights to these perturbed samples based on their
proximity to the original instance x.

More formally, for a black-box model f , LIME aims to find a surrogate
model g within a class of models G (e.g., logistic regression models), such that
the following objective is minimized:

explanation(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (1.14)

Here, L(f, g, πx) is a loss function that measures how well g approximates f in
the neighborhood of x, defined by the proximity measure πx. The term Ω(g)

represents the complexity of the model g, with the aim to keep it as simple as
possible for interpretability.

For instance, consider a text classification problem where the black-box
model f predicts the sentiment of a given text. In this case, the proximity
measure πx could be the cosine similarity between the vector representations of
the text samples. The loss function L could be the mean squared error (MSE)
between the predictions of f and g for the perturbed samples, weighted by πx.

L(f, g, πx) =
N∑
i=1

πx(x, xi) (f(xi)− g(xi))
2 (1.15)

Here, x is the original instance, xi are the perturbed samples, and N is the
number of such samples. The term πx(x, xi) weights the contribution of each
perturbed sample based on its similarity to x, ensuring that the surrogate
model g is a good local approximation of f .

In practice, LIME simplifies the optimization problem by limiting the fea-
ture space and using weighted least squares for linear models or greedy al-
gorithms for decision trees. Regularization techniques and user-defined con-
straints (specified by Ω(g)) further guide the search for an optimal g, making
the problem more tractable.

Despite its advantages, such as the ability to exert full control over the in-
put data, LIME has notable limitations. For instance, LIME employs an expo-
nential smoothing kernel to define a local neighborhood around a data point,
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which exact parameters often require manual tuning for different problems
[60]. This kernel-based approach also restricts LIME’s effectiveness in high-
dimensional spaces, as the exponential kernel tends to smooth distances, mak-
ing it challenging to differentiate between proximate and distant data points.
Additionally, LIME suffers from stability issues due to the randomness in gen-
erating perturbations; different runs can yield inconsistent explanations [61].
These shortcomings have led to the development of various adaptations aimed
at mitigating these issues [62–64].

1.3.4 SHAP

Above, we’ve introduced model-agnostic methods that enable either global
(e.g., permutation importance) or local (LIME) explanations. The SHAP
method, on the other hand, bridges the gap between local and global ex-
planations and has solid theoretical foundations and desirable mathematical
properties.

SHAP stands for “SHapley Additive exPlanations” and is inspired by Shap-
ley values, a concept from cooperative game theory [65]. In this framework,
the “game” is the prediction task, and the “players” are the individual fea-
tures [60]. Let ϕj be the SHAP value for feature j, N be the set of all features,
and f(S) = E[f(x)|x ∈ S] be the expected value of the model’s prediction
conditioned on a given subset of features S.

ϕj =
∑

S⊆N\{j}

|S|!(|N | − |S| − 1)!

|N |!
(f(S ∪ {j})− f(S)) (1.16)

Thus, the SHAP value ϕj for a feature j is calculated as a weighted average
of the differences between the expected model’s predictions when feature j is
included versus when it is not, across all possible subsets S of features. This
weighted average ensures that the contribution of each feature is fairly allo-
cated, satisfying properties like local accuracy, missingness, and consistency.

The robustness of SHAP values is rooted in the axioms of Shapley values
from cooperative game theory, further extended by Lundberg and Lee to suit
machine learning applications [66]. The original Shapley axioms are:

• Efficiency: The sum of the SHAP values ϕj for all features j plus the
base value (the prediction that would be made without any features) is
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equal to the actual prediction f(x).

f(x) = ϕ0 +
F∑

j=1

ϕj

• Symmetry: If two features i and j contribute equally to all possible
combinations of features, their SHAP values should be the same.

If f(S∪{i})−f(S) = f(S∪{j})−f(S) for all S ⊆ N\{i, j}, then ϕi = ϕj

• Additivity: The SHAP value for a feature is additive across the con-
tributions of all other features. This property is inherent in the formula
for ϕj, as it is a weighted sum of the feature’s contributions across all
possible subsets S.

Lundberg and Lee introduced additional properties tailored for machine
learning [66, 67]:

• Local Accuracy: This is equivalent to the Efficiency axiom but empha-
sizes that the sum of the SHAP values equals the difference between the
model output and the expected value for the instance being explained.

• Missingness: Features that are already missing (i.e., have a zero value)
are attributed no importance.

• Consistency: Changing a model so that a feature has a larger impact
will never decrease the attribution assigned to that feature.

These properties collectively make SHAP values a robust and consistent
method for explaining both individual predictions and the global behavior of
a model.

However, the SHAP formulation in Eq. 1.16 presents two challenges: (1)
the efficient estimation of f(S), and (2) the exponential complexity involved
in considering 2F combinations for F features. As a result, SHAP values are
often estimated rather than computed exactly in practice. Lundberg et al.
proposed various heuristic approaches tailored for different types of models.
One such approach is the TreeSHAP algorithm [67, 68], which estimates SHAP
contributions specifically for tree-based models like Random Forests or Gradi-
ent Boosting Machines in polynomial time.
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In addition to providing local explanations, SHAP values can also be used
to derive global feature importances and interaction values. To obtain global
feature importances, consider an input dataset X consisting of N instances
and M features. After computing the SHAP values for all instances in X,
we obtain an N ×M matrix Ψ, where Ψij represents the SHAP value of the
j-th feature for the i-th instance. The global feature importances can then be
calculated as:

F =
N∑
i=1

|Ψij| (1.17)

where F is an M -dimensional vector. Each element Fj quantifies the overall
impact of the j-th feature on the model’s output, irrespective of the direction
(positive or negative) of its effect.

SHAP interaction values extend the concept of SHAP values to capture
not just the individual contributions of features but also their interactions
[68]. This provides a more nuanced understanding of the model’s behavior
by allowing for the separate consideration of interaction effects for individual
model predictions.

The key term for understanding SHAP interaction values is ∇ij(f, x, S),
defined as:

∇ij(f, x, S) = fx(S ∪ {i, j})− fx(S ∪ {i})− fx(S ∪ {j}) + fx(S) (1.18)

This term quantifies the change in the model’s prediction when both features
i and j are included in the subset S, compared to when they are considered
individually.

One considers all possible subsets S and attributes weigths that accounts
for the number of ways a particular subset S, yielding

Φi,j(f, x) =
∑

S⊆M\{i,j}

|S|! · (M − |S| − 2)!

(M − 1)!
∇ij(f, x, S) (1.19)

The interaction value is symmetric, i.e., Φi,j(f, x) = Φj,i(f, x). SHAP value
for i-th feature ϕi can be decomposed into main (diagonal) and interaction (off-
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diagonal) effects:

ϕi(f, x) = Φi,i(f, x) +
∑
j ̸=i

Φi,j(f, x) (1.20)

This ensures that the sum of all interaction values and individual contribu-
tions equals the model’s output, providing a complete and fairly allocated
explanation of the model’s prediction.

1.4 Feature Selection
As previously discussed in this chapter, supervised learning aims to establish a
relationship between input variables and a target variable by fine-tuning model
parameters. However, not all input variables contribute equally to predictive
performance. This is particularly true in bioinformatics, where datasets are
often plagued by noise [69]. To address this, a preprocessing step is essential
to filter out irrelevant or redundant variables – a process known as Feature
Selection (FS) [70].

Deleting irrelevant or redundant input data may lead to the following out-
comes:

• Performance Enhancement: Many machine learning algorithms are
sensitive to noisy data. Eliminating irrelevant features can lead to im-
proved model accuracy.

• Enhanced Transparency and Interpretability: FS can aid in a
model’s interpretation. A reduced set of variables simplifies reasoning
about the model. Furthermore, the remaining features after filtering are
inherently valuable for the objective, providing additional insights.

• Model Simplification:

– Overfitting: Feature selection can act as an implicit form of regu-
larization, reducing the model’s susceptibility to overfitting. How-
ever, improper application of FS techniques can inadvertently lead
to overfitting, especially in scenarios where FS serves as a form of
model selection [71, 72].

– Reduced Computation: A less complex model eases the compu-
tational load, making it more efficient for time-sensitive tasks like
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hyperparameter tuning.

Due to these properties, FS techniques became an indespesible tool in many
areas, including bioinformatics [73], genomics [74], chemoinformatics [75], and
healthare [76], where they are adapted to fit field-specific requirements and
learning objectives.

1.4.1 Feature Categories

Above, we’ve used terms such as “relevant” or “redundant.” Here, we’ll intro-
duce their precise meaning following the definitions from Li et al. [77]. Let
P (C|S) denote the conditional probability of a class C given a set of features
S that some classifier model outputs. With this, features can be categorized
into:

• Strongly Relevant: A feature fj is strongly relevant if

P (C|fj, Sj) ̸= P (C|Sj)

• Weakly Relevant: A feature fj is weakly relevant if

P (C|fj, Sj) = P (C|Sj)

and

∃S ′
j ⊂ Sjsuch thatP (C|fj, S ′

j) ̸= P (C|S ′
j)

• Irrelevant: A feature fj is irrelevant if

∀S ′
j ⊂ Sj, P (C|fj, S ′

j) = P (C|S ′
j)

• Redundant: A feature fj is redundant if it is weakly relevant and has
a Markov blanket Mj within f . Mj is a Markov blanket for fj if

P (F −Mj − {fj}, C|fj,Mj) = P (F −Mj − {fj}, C|Mj)

To elaborate, a feature is strongly relevant if it alone has an impact on the
prediction of the class C. A feature is weakly relevant if it doesn’t affect the
prediction when considered with all other features but does make a difference
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with some subset of features. A feature is irrelevant if it doesn’t help in
predicting C better for any subset of features. Lastly, a feature is redundant
if it is weakly relevant but there exists a set of features, known as the Markov
blanket, that makes the feature unnecessary for predicting C.

A feature selection algorithm must discriminate between relevant and irrel-
evant features. Some contexts may also require removing redundant or weakly
relevant features.

1.4.2 Feature Selection Strategies

From the learning perspective, FS follows a broad categorization according to
the learning paradigms [78, 79]:

• Supervised: In supervised learning, the target values are known, and
features are selected based on their relevance to these target values.
Methods such as Recursive Feature Elimination (RFE) and LASSO are
commonly used in this category.

• Unsupervised: In unsupervised learning, the target values are not
known. Feature selection is often based on the structure and distribution
of the data. Techniques like Principal Component Analysis (PCA) and
clustering-based feature selection are examples in this category.

• Semi-Supervised: Semi-supervised feature selection methods like Lapla-
cian Score [80] leverage both labeled and unlabeled data to perform fea-
ture selection.

Some machine learning models inherently perform feature selection during
the training process; these models simply ignore features that are irrelevant to
the objective [81]. Examples include interpretable models like decision trees
and LASSO, as previously discussed. Such intrinsic feature selection tech-
niques are commonly referred to as embedded methods. However, in many in-
stances, an external search algorithm is necessary for feature selection. These
external algorithms are generally categorized into filter and wrapper methods.

Filter methods operate independently of any learning algorithm and evalu-
ate the relevance of each feature based on statistical properties of the data. The
primary advantage of filter methods is their computational efficiency, as they
do not necessitate model training. Examples of filter methods include Chi-
Squared Test, Information Gain, and Correlation Coefficient methods. These
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techniques often rank features based on a particular metric and allow for the
selection of the top-ranked features for model training.

Wrapper methods, in contrast, utilize the trained model itself to evaluate
different feature subsets. In supervised learning scenarios, the typical work-
flow involves retraining the model for each feature subset and assessing its
performance. Formally, for each subset S within the feature space F , wrapper
methods aim to solve the following optimization problem:

argmax
S⊆F

ρ(Y, f(S)) (1.21)

Here, f(S) represents the predictions made by a model trained using only
the features in subset S. In this context, wrapper methods essentially serve
as a form of model selection and are susceptible to overfitting if not applied
cautiously [14, 72].

Due to the combinatorial nature of the problem, finding the global op-
timum would require exploring 2F combinations, which is computationally
infeasible in most cases. This necessitates the use of heuristic approximations.
Techniques akin to those used in hyperparameter optimization, such as evolu-
tionary algorithms [82], can be employed for global searches across F . While
greedy strategies like recursive feature elimination (RFE) are less commonly
used in practice, they still hold educational value. Moreover, certain adapta-
tions of RFE can effectively filter out correlated features [83].

1.4.3 The Boruta Algorithm

Boruta (a good of forest in Polish folklore) is a supervised all-relevant feature
selection wrapper method initially developed by Kursa and Rudnicki for Ran-
dom Forests [84]. The key idea behind Boruta is that, for an ML model like
RF, irrelevant features would be indistinguishable from noise in their impor-
tance values, while relevant features would yield consistently higher feature
importances than noise variables.

Here, we’ll describe a model-agnostic version of Boruta (Algorithm 1), suit-
able for any model, as long as it can be queried for feature importances. An-
other deviation from the original formulation is an imporoved correction for
multiple statistical testing (see below).
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Algorithm 1 Boruta Algorithm for Feature Selection
1: Input: Model f , Feature evaluation function g, data matrix X of N

instances and M features, response variables Y , total number of steps K,
percentile k, p-value α.

2: Output: Vector r of feature relevance
3: procedure BORUTA(f, g,X, Y,K, k, α)
4: Initialize: c← 0M , r← 0M

5: i← 1
6: while i < K and ∃rj : rj = 0 do
7: M ′ ← size(X, 2) ▷ Current number of features in X
8: Create shadow features Xs by permuting X
9: Augment dataset [X Xs]

10: Train f on [X Xs], Y
11: Compute feature importances I = g(f([X Xs]))
12: Compute Qk = percentile({Il : l > M ′})
13: h← I1:M ′ > Qk ▷ Vectorized Hit/Miss
14: c← c+ h
15: r← UPDATE(r, c, i, α)
16: Update X to include only features where rj = 0
17: i← i+ 1
18: end while
19: return r
20: end procedure
21: procedure UPDATE(r, c, i, α)
22: Initialize: a,b← 0M

23: I ← {j : rj = 0} ▷ Indices where r = 0
24: t← cI ▷ Subset of c for tentative features
25: function TestHits(t, I, alternative)
26: p← 0M

27: for j in I do
28: pj ← BinomTest(tj, i, alternative)
29: end for
30: d← FDR(pI) ▷ False Discovery Rate correction
31: e← pI ≤ α

i
▷ Bonferroni correction

32: return d⊙ e
33: end function
34: aI ← TestHits(t, I, ”greater”)
35: bI ← TestHits(t, I, ”less”)

36: rj ←


1 if aj = 1, j ∈ I

−1 if bj = 1, j ∈ I

0 otherwise
37: return r
38: end procedure
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The Boruta algorithm aims to identify all relevant features in a given
dataset by comparing the importance of each feature against random noise.
The algorithm takes as input a machine learning model f , a feature evalua-
tion function g, a data matrix X with M features, response variables Y , a
total number of iterations K, a percentile k, and a p-value α. Here, k is the
percentile used for importance thresholding, and α is the significance level for
statistical tests (explained below). The output is a vector r, where each ele-
ment corresponds to the relevance of a feature: -1 for irrelevant, 0 for tentative,
and 1 for relevant.

The algorithm uses dynamic data structures that are updated throughout
its iterations. Specifically, c is a vector that keeps track of the “hit counts”
for each feature, and r is a vector that stores the final relevance decision for
each feature. The dataset X itself is also dynamic; it is pruned to only include
tentative features as the algorithm progresses.

The algorithm iterates through a series of steps that involve creating shadow
features, training the model, calculating feature importances, and performing
statistical tests to update r. This iterative process continues until either a
maximum number of iterations K is reached or all features have been classi-
fied as either relevant or irrelevant.

Namely, each iteration of the algorithm comprises the following steps:

• Creating an Augmented Dataset: The algorithm starts by creating
“shadow” features, which are randomized versions of the original fea-
tures in X. These shadow features are then concatenated to the original
dataset, forming an augmented dataset [X Xs].

• Fitting the Model: The machine learning model f is trained on this
augmented dataset [X Xs] and the target variable Y .

• Calculating Feature Importance Values: Once the model is trained,
feature importances are calculated using the function g. This results in a
vector I, where each element represents the importance of a correspond-
ing feature in the augmented dataset.

• Hit/Miss Determination: A percentile Qk is computed based on the
importances of the shadow features. Each real feature is then compared
to this threshold. If its importance is greater, it’s considered a “hit,”
and the corresponding element in the hit count vector c is incremented.

• Statistical Tests: The UPDATE procedure is called, which performs
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statistical tests on the hit counts. These tests are corrected for multi-
ple comparisons using both False Discovery Rate (FDR) and Bonferroni
methods. Based on these tests, the relevance vector r is updated.

• The Dataset Update: After each iteration, the dataset X is pruned
to only include features that are still considered ”tentative,” i.e., those
for which rj = 0.

The UPDATE procedure serves as the statistical backbone of the Boruta
algorithm, determining the relevance or irrelevance of each feature based on
accumulated “hit” counts. Its core part is the binomial test, evaluating whether
the number of hits for a feature could have occurred by random chance, given
i number of trials.

However, the p-values produced by the binomial test are susceptible to
high false positive rates due to two distinct types of multiple comparisons: (1)
testing multiple features simultaneously in each iteration, and (2) testing the
same features across multiple iterations. To control for these, the algorithm
employs two types of corrections:

1. False Discovery Rate (FDR): This correction is applied to account
for the multiple features being tested in each iteration. FDR is less
conservative than other methods like Bonferroni and is often used in
high-dimensional settings.

2. Bonferroni Correction: This is used to adjust for the repeated testing
of the same features across multiple iterations. It is a more conservative
method designed to control the family-wise error rate, thereby reducing
the chance of any false positives.

By combining these two corrections, the algorithm aims to provide a more ac-
curate and conservative assessment of feature relevance, effectively controlling
for both types of multiple comparisons.

The presented algorithm offers a highly flexible and adaptable approach
to feature selection, making it a versatile tool for various machine learning
applications. By abstracting the evaluation of feature importance, it can be
applied to any supervised machine learning model. This flexibility extends
to the choice of feature importance metrics, allowing for the incorporation of
state-of-the-art interpretability methods like SHAP values.
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Despite being categorized as a wrapper method, Boruta diverges from tra-
ditional wrapper approaches by focusing on feature importance values rather
than optimizing for the best-performing subset of features. On the one hand,
it mitigates the risk of overfitting, a common pitfall associated with model
selection methods. On the other hand, as the algorithm progresses and the
most relevant features are eliminated from the system, the model becomes less
accurate. Assuming the SHAP importance is used, a “relevant” feature may
have high contribution but to the wrong output.

In terms of computational efficiency, one might initially perceive Boruta
as resource-intensive due to its iterative nature and the requirement to fit the
model multiple times on an augmented dataset. However, in practice, the
algorithm is quite efficient. Most irrelevant features are typically eliminated
in the early iterations, making it particularly well-suited for high-dimensional
and noisy data, a common scenario in bioinformatics.

Another noteworthy aspect of Boruta is its “all-relevant” feature selection
approach, implying that the algorithm may retain features that are correlated
or redundant. Depending on the specific application, this can be either an
advantage or a drawback.

Although Boruta doesn’t rank the resulting features, the initial importance
evaluator g can be applied post-selection to the features deemed relevant by
Boruta.

1.5 Concluding Remarks
This overview serves as a foundational guide for the concepts and methodolog-
ical choices explored in subsequent chapters regarding ML. Here, we explored
the general principles behind training, evaluating, and interpreting supervised
models. Discussing the neighborhood of closely related techniques with their
strengths and weaknesses meant to clarify our methodological standpoint. We
paid special attention to methods like SHAP and the Boruta algorithm and
laid out their theoretical basis. The field of interpretable machine learning
is blooming with new approaches and theoretical studies behind the existing
ones. Thus, the generalized interpretable ML pipeline presented in subsequent
chapters will likely age fast and require improvements. Yet, its core ingredients
are backed up by solid theoretical foundations and many successful applica-
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tions in bioinformatics and beyond.
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Chapter 2

Introduction to Protein Kinases

Kinases are enzymes that catalyze the phosphorylation reaction, transferring a
γ-phosphate group from a nucleotide triphosphate (NTP) to a hydroxyl group
of a specific substrate (Fig. 2.1). Although ATP is the most commonly used
phosphate donor, other NTPs can also serve this role. Enzymatic classification
of kinases is based on their substrates, such as Protein Kinases (PKs), Lipid
Kinases, and Carbohydrate Kinases, each with distinct roles and regulatory
mechanisms.

Figure 2.1: The phosphorylation reaction. A phosphoryl moiety is transferred
from an NTP, typically ATP, to a substrate.

Protein phosphorylation, primarily executed by PKs, is the most commonly
observed post-translational modification [1]. The dynamic balance between
protein kinases and phosphatases, which reverse phosphorylation, forms cel-
lular signaling networks [2, 3]. PKs are key players in these networks, often
chaining their interactions to form signaling cascades [4]. Remarkably, interac-
tions among PKs are predominantly intra-family, indicating that kinases from
the same family are more likely to form functional clusters than to interact
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with kinases from different families [5].
PKs regulate a wide array of cellular processes, from cell division and

metabolism to transcription and apoptosis [6]. Beyond phosphorylation, they
also function in protein complex scaffolding, allosteric regulation, subcellular
targeting, and DNA binding [7]. Due to this functional diversity, dysfunc-
tional PKs are often implicated in a range of diseases, including cancer [8],
neurodegenerative [9], immunological [10], and hematological [11] disorders.

This chapter is structured as follows. First, we’ll provide an overview of the
PKs phylogenetic diversity. Next, we’ll analyze the structure of a PK domain
and describe its dynamic nature. Finally, we’ll delve into how their dynamic
architecture can be exploited for developing small molecules inhibiting their
function.

2.1 Diversity of Protein Kinases
PKs that phosphorylate Ser, Thr, and Tyr residues are the most common and
abundant. These PKs are found in eukaryotic, bacterial, and archeal cells and
likely share a common evolutionary origin [12–14]. In prokaryotes, however,
PKs exhibit a wider range of targets, and “non-canonical” phosphate acceptors
like histidine are common [15].

Eukaryotic PKs (ePKs) comprise a large superfamily [16]. Traditionally,
ePKs phylogeny was based on sequences of a catalytic domain, with early ef-
forts distinguishing between PKs specific to Ser/Thr and Tyr [17]. The pivotal
work of Manning [18] refined our understanding of the kinome by providing a
comprehensive classification of PKs into groups, families, and subfamilies based
on sequence homology and functional motifs (Fig. 2.2). This classification not
only expanded the known kinome, constituting about 2% of human genes (to
date, over 500 PKs were described), but also facilitated deeper insights into
the functional and evolutionary relationships between different kinases [19].

Namely, Manning separated kinases into the following groups:

• CAMK (Calcium/Calmodulin-Dependent Protein Kinase): These
kinases are primarily involved in the transduction of calcium signals.
They play a crucial role in various cellular processes including memory
formation in neurons, cell cycle progression, and muscle contraction [21].
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Figure 2.2: PK groups depicted on a phylogenetic tree constructed using the
KinMap service [20].

• AGC (Protein Kinase A, G, and C families): This group contains
kinases that are regulated by second messengers, such as cyclic AMP
(cAMP) and cyclic GMP (cGMP). They are involved in a wide range of
processes including cell growth, proliferation, and metabolism [22].

• CMGC (Cyclin-Dependent Kinases, Mitogen-Activated Pro-
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tein Kinases, Glycogen Synthase Kinases, and CDK-Like ki-
nases): These kinases are central to cell cycle control and signal trans-
duction pathways that respond to various extracellular stimuli. They are
involved in cellular growth, division, differentiation, and stress responses
[23].

• CK1 (Casein Kinase 1): CK1 family members are involved in various
cellular processes including DNA repair, cell cycle progression, and circa-
dian rhythm regulation. They are known for their role in Wnt signaling
pathway and RNA metabolism [24].

• STE (Sterile Kinases): These kinases are a part of the MAP kinase
signaling cascade, which is involved in processes such as cell growth and
stress response [25].

• TKL (Tyrosine Kinase-Like): This group includes a diverse set of
kinases that share structural similarity with tyrosine kinases. For in-
stance, it includes Raf family, whose members are often implicated in
cancer [26], and LRRK family, which members’ mutations are the most
frequent cause of the Parkinson’s disease [27].

• TK (Tyrosine Kinase): Tyrosine kinases are critical in cell signaling
pathways and are involved in the regulation of cell growth, differentia-
tion, and survival [28]. They play a significant role in cancer progression
as mutations in these kinases can lead to uncontrolled cell proliferation
[29]. TKs are typically divided into receptor and non-receptor subgroups
(RTKs and nRTKs) [30].

Alongside these groups, which share significant sequence similarity, Man-
ning identified a small out-group of ”atypical” kinases (aPKs). Although they
maintain a tertiary structure akin to ePKs, aPKs exhibit limited sequence ho-
mology with them and possess distinct variations in conserved PK elements,
such as the HRD motif (which appears as DRH in aPKs), the APE motif,
and the G-rich loop (discussed further below) [31]. For certain aPKs, such as
the aminoglycoside and choline kinase families, a common evolutionary origin
with ePKs is suggested. However, other groups, like the phosphatidylinositol
phosphate kinases, may have have evolved independently [32].

The methodology underlying the phylogenetic analysis of PKs continues to
be refined and expanded [33]. However, as highlighted by Martin et al., relying
solely on domain-based phylogeny might not always provide a comprehensive
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view [34]. Given that PKs are multi-domain proteins with the catalytic domain
often constituting only a small portion of the entire protein sequence, this
approach can overlook a significant amount of sequence data. While it serves
as a useful tool for grouping PKs based on the similarity of their catalytic
domains, it may not fully capture the nuances of their evolutionary divergence
and branching.

2.2 Protein Kinase Domain

2.2.1 PKD Structure

The Protein Kinase Domain (PKD) is generally composed of 250–350 residues
and forms the core structural and functional unit of protein kinases [16, 33,
34]. This domain is characterized by a bilobal structure consisting of a smaller
N-terminal lobe (N-lobe) and a larger C-terminal lobe (C-lobe), connected
by a region commonly referred to as the ”hinge” (Fig. 2.3a). The N-lobe is
structured with a sequence of five β-sheets and a prominent α-helix, denoted
as αC, arranged in the order: β1–β2–β3–αC–β4–β5. Some PKs like Aurora
kinase A have a small αB-helix between the β3 and αC regions. In contrast,
the C-lobe is predominantly composed of α-helices, labeled from D to I. The
activation loop (AL), situated between the N and C lobes, collaborates with
the hinge region, N-lobe’s interior, and the AL to delineate the ATP binding
pocket.

The PKD exhibits dynamic behavior, transitioning between various states
during the enzymatic cycle, a process modulated by external stimuli such as
AL phosphorylation, dimerization, and substrate binding [35–37]. This in-
tricate process encompasses numerous semi-stable transition states that are
interconnected, facilitating the complex regulation and signaling pathways in
which kinases are involved [38, 39].

The active conformation of the PKD is a highly orchestrated state, necessi-
tating the precise alignment of specific residues to facilitate effective catalysis
[40]. This alignment is often elucidated through the formation of two inte-
gral structural elements: the catalytic (C) spine and the regulatory (R) spine,
which are essential for optimal substrate positioning and catalytic activity [41,
42]:
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Figure 2.3: Protein kinase domains of CDK6 human protein (UniProt: Q00534;
PDB codes: 1G3N:E, 1JOW:B, and 1BLX:A). (a) An inactive CDK6 structure
(1BLX:A) with annotated structural regions. (b) The same CDK6 structure con-
trasted against an active structure (1JOW:B). (c) The same CDK6 structure con-
trasted against an inactive CDK6 structure (1G3N:E) adopting the DFG-out con-
formation. (d) Comparison of key conserved structural elements using structures
depicted in (b).

• The Catalytic Spine (C-spine) is formed by the assembly of residues
from both the N and C lobes, creating a hydrophobic spine that stabilizes
the adenine ring of ATP. The key residues involved in the formation of
the C-spine include those from the HRD motif (HRD-Arg), the HD-helix,
the β3 strand, and the HF-helix.

• The Regulatory Spine (R-spine) is a dynamic structure comprising
residues that undergo conformational changes during activation, aligning
to form a continuous spine that stabilizes the active conformation. The
R-spine includes residues from the DFG motif, the HRD motif (HRD-
His), the αC-helix, and the β4-β5 loop.

AL plays a critical role in the regulation of kinase activity [43]. Positioned
between the DFG and APE motifs, the AL is a dynamic and versatile segment



2.2 Protein Kinase Domain 58

that undergoes substantial conformational changes, facilitating the transition
between active and inactive states of the kinase [44, 45]. Phosphorylation
of specific residues within the AL is a common regulatory mechanism, often
serving as a switch that modulates kinase activity [46, 47].

In addition to its role in kinase regulation, the AL is also implicated in sub-
strate recognition [48]. This region is characterized by its flexibility, adopting
distinct conformations in different kinases and even exhibiting varied struc-
tures in the active and inactive states of the same kinase (Fig. 2.3). This
dynamic nature is reflected in X-ray crystallography studies, where the AL
often appears disordered, indicating its inherent flexibility and diverse range
of motion.

The DFG-motif, demarcating the start of the activation loop, plays a cru-
cial role in the activation dynamics [49, 50]. In the active state, the DFG-Asp
points towards the active site, facilitating the binding of ATP and the transfer
of the phosphate group. This orientation, termed the DFG-in conformation,
is critical for proper substrate positioning. Some PKs can access an alterna-
tive, DFG-out conformation, where DFG-Asp and DFG-Phe swap places (Fig.
2.3c-d).

The dynamic nature of the DFG motif, and its ability to adopt different
conformations, is central to the regulatory complexity of protein kinases, mak-
ing it a focal point for understanding kinase activation and a potential target
for therapeutic interventions. We’ll discuss the DFG motif in great detail in
the subsequent chapters.

The αC-helix, another pivotal structural element in shaping the conforma-
tional landscape of PKs, is frequently found to be disordered in X-ray struc-
tures [51]. In the active state, PKs adopt the αC-in conformation, where a
conserved Glu residue on the αC-helix forms a salt bridge with a Lys residue
on the β3 strand, a critical interaction depicted in Fig. 2.3d. This salt bridge,
a hallmark of kinase activation, facilitates the proper alignment of the cat-
alytic and regulatory spines, thereby fostering a competent active site ready
for substrate binding and phosphorylation. In contrast, the inactive state sees
PKs adopting the αC-out conformation, during which the disruption of this
salt bridge triggers a rearrangement in the kinase domain, hindering ATP and
substrate binding and consequently inhibiting kinase activity [52].

The “gatekeeper” residue, situated just before the hinge region, serves a
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critical role in modulating the accessibility of the ATP binding pocket in PKs
[49, 53]. This residue essentially acts as a molecular gate, controlling the entry
and exit of molecules at the ATP binding site. In many kinases, the size and
nature of the gatekeeper residue can significantly influence the affinity and
selectivity for ATP and small molecule inhibitors. Moreover, mutations at the
gatekeeper position have been linked to altered kinase activity and are often
implicated in drug resistance (elaborated below)[54, 55].

2.2.2 PKD Substrate Specificity

Another group of functionally important residues, besides those implicated
in catalysis, are the ones determining substrate specificity, also known as
specificity-determining residues (SDRs). Given the high structural similar-
ity in the active state of PKD, it is logical to anticipate the emergence of
sequence patterns that allow PKs to discriminate between substrates. This
problem can be approached from two angles: (1) at the level of the phos-
phate acceptor residue, and (2) at the level of other substrate residues forming
specific contacts with PKD. Both aspects have been studied extensively for
Ser/Thr/Tyr kinases.

The ability to discriminate between different phosphoacceptor residues can
be attributed to variations in their physical properties. The distinction is
particularly pronounced between Ser/Thr and Tyr kinases; Tyr is a large aro-
matic residue, whereas Ser and Thr are smaller and differ by a single methyl
group. The residues facilitating the discrimination between Ser/Thr and Tyr
kinases can be identified from multiple sequence alignments (MSAs) by quan-
tifying the conservation differences between the Ser/Thr and Tyr subsets [56].
For instance, residues following the HRD motif are small and non-polar in
TKs (primarily Ala), accommodating Tyr. In turn, a Pro residue preceding
the APE motif forms hydrophobic interactions with the phosphoacceptor Tyr,
whereas Ser/Thr kinases contain Thr [57].

Furthermore, despite the declared specificity towards both Ser and Thr
residues, PKs often exhibit different propensities towards these residues. As
demonstrated by Chen et al., a single residue following the DFGmotif (DFG+1)
influences this propensity. Specifically, Phe at this position can accommodate
Ser, but the additional methyl group of Thr makes this sterically challenging.
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Conversely, DFG+1-Val favors Thr as a phosphoacceptor, and mutations be-
tween Phe and Val can effectively manipulate substrate specificity in PKs like
STK20 [58].

However, these mechanisms are not universal. Some kinases, such as
MEK1, MEK2, and DYRK (along with its prokaryotic relative [59]), are ca-
pable of phosphorylating both Ser/Thr and Tyr, thus being known as dual-
specificity kinases [60]. For instance, DYRK (Down Syndrome Kinase) can
phosphorylate its own Tyr in the activation loop1, but can only phosphory-
late Ser and Thr on the substrate protein [61, 62]. The structural mechanism
underlying dual specificity remains to be elucidated.

From an evolutionary standpoint, Tyr specificity likely evolved from Ser/Thr
specificity, possibly independently in eukaryotes and prokaryotes [63]. In eu-
karyotes, Tyr kinases probably emerged in a unicellular ancestor, while a sig-
nificant expansion in RTKs is observed exclusively in multicellular organisms,
attributed to the pivotal role these proteins play in intercellular communica-
tion [64].

The issue of PKs discriminating between different substrates proves to be
considerably complex. While substrate patterns correlated with specific PKs
can be elucidated due to the abundant phosphoproteomic data available, iden-
tifying substrate-specific residues in PK remains a formidable challenge. These
SDRs seem to be dispersed throughout the PKD, forming a sparse network,
and generally correlate with phylogenetic proximity [65–67]. Considering the
diverse range of substrates, it is plausible that SDRs have evolved in tandem
with them, adapting to facilitate specific interactions and functions.

2.3 PK inhibition strategies
As delineated above, many protein kinases, when misregulated, can give rise
to severe diseases. For instance, gain-of-function mutations in RTKs lead to
enhanced signaling and subsequent overexpression of the receptors, further
amplifying the transmitted signal. Consequently, the cellular kinase domain
becomes constitutively active, causing the signaling pathways they orchestrate,
such as those controlling cell proliferation, to function at an elevated rate [8].

In a similar vein, the ABL1 kinase, a pivotal player in cellular signaling,
1A process known as autophosphorylation, a common mechanism of PK activation.
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governs various cellular processes including cell differentiation, division, and
adhesion [68]. Under normal circumstances, the activity of ABL1 is tightly
regulated. However, chromosomal aberrations can lead to the formation of a
BCR-ABL fusion protein, a constitutively active tyrosine kinase that drives
uncontrolled cell proliferation, a hallmark of chronic myeloid leukemia (CML)
[69, 70]. This aberrant kinase activity of ABL1 necessitated the development
of targeted inhibitors to curb its activity.

2.3.1 PK Inhibitor Types

The discovery of Imatinib, a selective inhibitor of ABL1, marked a significant
milestone in targeted cancer therapy [71, 72]. This drug binds to the kinase
domain of ABL1, stabilizing it in an inactive conformation and thus halting
its oncogenic signaling [73]. Since then, Imatinib was found to efficiently in-
hibit other kinases like c-KIT, DDR1, and CSF1R [68, 74]. More importantly,
this discovery paved the way for the exploration of various inhibitor inhbi-
tion strategies [75, 76] and systematization of the discovered inhibitors into
different types [77].

The efficacy of Imatinib stems from its ability to target the DFG-out confor-
mation, a state not readily accessible by other kinases, thereby conferring high
selectivity [78]. For instance, Imatinib exhibits diminished potency against
the closely related Src protein kinase, which less readily adopts the DFG-out
conformation [79–81]. Small molecules like Imatinib, which demonstrate se-
lectivity towards the DFG-out conformation, have been classified as “Type-2”
inhibitors. These inhibitors exploit a specific binding pocket that becomes
available exclusively in the DFG-out state, as illustrated in Fig. 2.4b [82].

Contrastingly, drugs such as Dasatinib, which exhibits a higher affinity
for Src compared to ABL1 and is employed in cases where ABL1 develops
mutations conferring resistance to Imatinib [83]2, operate through a distinct
mechanism. Termed as “Type-1” inhibitors, these compounds competitively
obstruct ATP from accessing the binding pocket, thereby binding exclusively in
the DFG-in conformation [42]. Given that this conformational state is akin to
the active state conserved across PKs and is distinct from the DFG-out state,
Type-1 inhibitors generally exhibit reduced selectivity, potentially leading to

2Although it may induce paradoxical activation of Src; refer to [84].
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Figure 2.4: Examples of ligand binding pockets. (a) A Type-1 pocket, where
ligands occupy the ATP binding site; some Type-1 ligands can extend deep into
the pocket in the αC-out conforamtion. (b) Type-2 pocket, where the DFG-out
conformation opens up a region between the AL and the αC-helix. (c) Type-1/2
pocket, where a combination DFG-in–αC-out allows small molecules to occupy a
region between β3, β4, αC, and the AL N-proximal end. (d) A unique allosteric
pocket opens up below the hinge, observed primarily in CSK kinases. (e) A distant
allosteric pocket occupied primarily by small lipid molecules in; likely unique to
MAPK14 proteins. (f) An allosteric pocket mostly observed in Aurora kinase A
structures that can accomodate a ligand between αC and β4−β5 due to an additional
αB helix.

adverse side effects [85].
Type-1/2 inhibitors, on the other hand, target a unique subpocket that

emerges in the DFG-in–αC-out state. In this state, the disruption of the
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αC-Glu–β3-Lys salt bridge creates sufficient space to accommodate a small
molecule, as depicted in Fig. 2.4c [53]. This pocket can be targeted by rela-
tively large inhibitors extending towards the hinge region or by drugs that can
synergize with small Type-1 ligands.

While Types 1, 2, and 1/2 encompass the majority of ligands that target
the ATP binding pocket in various conformational states, there exist other
categories of inhibitors that bind to minor, allosteric pockets, predominantly
specific to groups of closely related kinases. Fig. 2.4d-e illustrate examples of
such allosteric pockets. These inhibitors are typically grouped into categories
such as Type-3, Type-4, and beyond, offering alternative avenues for kinase
inhibition [77].

Inhibitor types and PK conformational variants were documented in nu-
merous efforts. Databases such as KLIFS [86, 87], KinCore [88], and Ki-
naMetrix [89] aggregate this information, facilitating the efforts of exploring
the structural kinome and developing novel inhibtion strategies.

2.3.2 Resistance to PK Inhibitors

In the face of inherent predispositions or the high adaptability of diseases
such as cancer, certain individuals may exhibit resistance to treatment with
PK inhibitors. Primary resistance manifests in patients who do not respond
to initial treatment, while secondary resistance develops over time, occurring
after an initially successful treatment phase [90]. For instance, up to 25%
of CML patients exhibit primary resistance to Imatinib, and 7–15% develop
secondary resistance as the treatment progresses [91].

Given the complexity of the signaling pathways orchestrated by PKs and
the substantial selective pressure to maintain these processes, resistance can
emerge through various mechanisms. These mechanisms might involve alter-
ations in the targeted protein or shifts in other components of the signaling
networks and gene regulation [92, 93]. In the context of the target protein,
resistance is typically acquired through specific mutations that render the bind-
ing of the initial inhibitor unfavorable.

For example, mutations dispersed across the P-loop, activation loop, hinge,
and the C-lobe can confer resistance to Imatinib treatment in ABL1 [94]. A
notable instance is the T315I gatekeeper mutation found in ABL1, as well
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as in c-KIT, PDGFRA, and EGFR. This mutation engenders resistance to a
spectrum of inhibitors, including Imatinib and Dasatinib [95]. The underlying
mechanism of this resistance is attributed to the disruption of a vital hydrogen
bond that the gatekeeper residue forms with Imatinib and analogous molecules,
a bond that is absent in mutants such as T315I [96]. Nevertheless, this re-
sistance can potentially be circumvented with alternative inhibitors, such as
VX-680 [97]. This scenario underscores the necessity of adopting multifaceted
inhibition strategies, which hinge on a profound understanding of the binding
mechanisms of these drugs and the conformational plasticity inherent to PKs.

2.4 Concluding Remarks
Protein kinases, with their structural complexity and diversity, govern piv-
otal cellular processes. Their functional versatility is deeply rooted in their
conformational plasticity. Despite over four decades of rigorous research, the
full extent of their phylogenetic diversity and functional mechanisms remains
elusive. The information available on PKs is abundant, and this review merely
scratches the surface of this vast field. Nonetheless, it serves to acquaint read-
ers with this vital segment of our proteome, emphasizing the pressing need to
further refine our comprehension of the dynamic PK conformational landscape.
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Chapter 3

Classifying protein kinase
conformations with machine
learning

Abstract
Protein kinases are key actors of signaling networks and important drug tar-
gets. They cycle between active and inactive conformations, distinguished by
a few elements within the catalytic domain. One is the activation loop, whose
conserved DFG motif can occupy DFG-in, DFG-out, and some rarer confor-
mations. Annotation and classification of the structural kinome is important,
as different conformations can be targeted by different inhibitors and activa-
tors. Valuable resources exist; however, large-scale applications will benefit
from increased automation and interpretability of structural annotation. In-
terpretable machine learning models are described for this purpose, based on
ensembles of decision trees. To train them, a set of catalytic domain sequences
and structures was collected, somewhat larger and more diverse than existing
resources. The structures were clustered based on the DFG conformation and
manually annotated. They were then used as training input. Two main models
were constructed, which distinguished active/inactive and in/out/other DFG
conformations. They considered initially thousands of structural variables,
spanning the whole catalytic domain, then identified (“learned”) a small sub-
set that sufficed for accurate classification. The first model correctly labeled
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all but 3 of 3284 structures as active or inactive, while the second assigned the
correct DFG label to all but 17 of 8826 structures. The most potent classify-
ing variables were all related to well-known structural elements in or near the
activation loop and their ranking gives insights into the conformational prefer-
ences. The models were used to automatically annotate 3850 kinase structures
predicted recently with the Alphafold2 tool, showing that Alphafold2 repro-
duced the active/inactive but not the DFG-in proportions seen in the Protein
Data Bank. We expect the models will be useful for understanding and engi-
neering kinases.

3.1 Introduction
Protein kinases (PK) are one of the largest and oldest groups of enzymes [1,
2]. They catalyze the transfer of a phosphate from ATP onto specific side
chains of target proteins, modulating the targets’ activity. As key elements
of signaling networks, they are highly regulated, and their dysfunction can
lead to various diseases, including cancers [3, 4]. Thus, considerable efforts are
made to develop molecules that inhibit them.

Like other ATPases, kinases cycle between an active and an inactive con-
formation, depending on their own phosphorylation state [1, 5–8]. Kinase
active conformations are all similar, despite substantial sequence diversity [5,
9]. The inactive conformation has fewer functional constraints and is more
variable. The active and inactive conformations differ in a few key elements.
One is the so-called activation loop, or A-loop, which includes a conserved DFG
motif. Another is the C helix (Fig. 3.1a). In the active state, the DFG motif
adopts an inward-facing, “DFG-in” conformation, where its Asp side chain can
coordinate an active site Mg2+ and help orient the ATP substrate (Fig. 3.1c-
d). In the inactive state of many PKs, the DFG motif is flipped, with its Asp
and Phe residues rotated by 180◦, a conformation known as “DFG-out”. The
bulky Phe then occupies the ATP binding pocket, precluding ATP binding
[10, 11]. In other PKs, like Src, the inactive state has a DFG-in conformation,
as detailed below. One strategy to achieve inhibitor specificity has been to
target the inactive conformation [7, 12]; for example, inhibitors that lock PKs
in the DFG-out state have proven effective against chronic myeloid leukemia
[13–15].
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Figure 3.1: The protein kinase catalytic domain. (a) Main structural regions,
shown on Src (PDB code 1YI6) and ADP-bound Aurora-A (PDB code 1OL7), both
in the active conformation. N-lobe and C-lobe are labeled, with the ATP-binding
pocket and activation loop (subdivided into ALN and ALC) sandwiched in between.
(b) Three Mitogen-Activated Kinase-14 structures with different DFG conforma-
tions: DFG-in (blue, PDB code 1A9U:A), DFG-out (yellow, 1KV1:A), and DFG-
other (red, 3BV2:A). (c) Close-up of the DFG region. (d) A view of the DFG
residues from the top (N-lobe side). The green line represents an activation loop
backbone loosely dividing the binding pocket into subregions ”inside” and ”outside”.
With DFG-in, DFG-Asp is inside and and DFG-Phe outside; converselywith DFG-
out. In the DFG-other conformation shown, both residues are pushed outside of the
binding pocket towards the C helix.

The conformational landscape of PKs has been studied extensively by X-ray
crystallography [16–20], and also by simulations [21–25]. There are over 6000
structures in the PDB, and several databases provide classifications of kinase
structures according to their active or inactive state, and the nature of their
inactive conformation. The KLIFS database, at the time of writing, included
6295 structures, classified by a decision tree algorithm trained on manually
curated data [26–28]. Dunbrack and coworkers maintain a similar database,
annotated based on clustering of distances and dihedral angles [29, 30]. These
resources are highly valuable for drug design, as structural classification can
facilitate comparisons between kinases and inferences about which ligands are
likely to be useful leads. On the other hand, manual or partly-manual anno-
tation by human experts can be difficult to generalize to large-scale studies,
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as more and more structures become available.
In this context, the accuracy of automatically labeling the structural ki-

nome is paramount. Here, we describe machine learning tools for this purpose.
Machine learning (ML) is increasingly proposed as a tool for large-scale clas-
sification and prediction in structural biology [31]. Prominent applications
include predictions of protein structure [32–34], function [35] and interaction
[36, 37], protein design [38–40] and drug discovery [41, 42].

As a prerequisite to develop and apply ML classification tools, we created
our own kinase structural collection, somewhat larger and more diverse than
previous ones. The collection groups kinase catalytic domains present in PDB
structures. Its construction was made reproducible and extensible, thanks to
open-source software for extracting structural variables, or “features”. The col-
lection contains pairs of UniProt and PDB entries, with sequences mapped to
a single kinase Hidden Markov Model (HMM) [43] from Pfam [44], which can
be thought of as a sequence profile or alignment and serves as a reference. A
comprehensive set of sequence and structure descriptors and metadata accom-
pany each pair. The structural domains were then superimposed and clustered,
based on the DFG motif’s coordinates, which facilitated the exploration and
annotation of the entire dataset in all its diversity. The annotations included
active/inactive labels, and in/out/other labels for the DFG motif. These were
compared to existing kinase classifications, revealing good agreement but also
a few discrepancies, which are discussed.

With annotated structures in place, several ML models were constructed,
designed to discriminate either between active/inactive structures, or between
the main classes of DFG structures: DFG-in, DFG-out, and “intermediate”
or “DFG-other”. The models were based on decision tree ensembles trained
by gradient boosting [45, 46]. During the learning process, the models came
to rank input variables, which we could exploit post-hoc using an iterative,
unsupervised selection protocol known as the “Boruta algorithm” [47]. The
variables were structural features such as dihedral torsion angles and residue–
residue distances. As a result, our models were interpretable and revealed
intuitive structural hallmarks associated with PK conformations, similar to
those employed in manual, expert annotations. The ML models were carefully
trained to avoid overfitting and achieved excellent accuracy, with just 3 errors
for active/inactive classification (among 3284 cases) and 17 errors for inactive
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DFG classifications (among 8826 cases). Inactive errors arose from structures
near the edge of the DFG-in conformational ensemble.

To illustrate the usefulness of the annotated dataset and the trained models,
we chose a current problem: annotating a large collection of kinase structures
predicted recently by the Alphafold2 tool [33]. This tool was shown to provide
high-quality protein models and is being widely used in structural biology.
However, when it predicts a kinase structure, Alphafold2 provides coordinates
but does not indicate or “label” the conformational state. To help interpret its
predictions, our ML models were used to annotate 3850 structures predicted
by AlphaFold2, corresponding to curated UniProt sequences (from Swiss-Prot
[48]). The structures were obtained from a database of predicted structures
made available by the Alphafold developers [49]. All had been judged [49] to
have a high overall accuracy, although the accuracies of the active site con-
formations are intrinsically harder to evaluate and not precisely known. Our
ML models categorized the predicted structures into 2749/1101 active/inac-
tive structures, and 3761 DFG-in, 74 DFG-out, and 15 DFG-other structures.
These proportions are close to the active/inactive but not the DFG-in propor-
tions seen in the PDB.

Beyond this illustrative problem, we expect our database and ML models
will be of use for other kinase applications, including lead selection in drug
design. In addition, the methodology and software can be applied to other
problems in structural biology, such as feature extraction and selection from
other domains and sequence patterns, increasing the ease, transparency, and
reproducibility of structural biology data mining.

3.2 Results

3.2.1 An extensive data collection of kinase catalytic do-
mains

Kinase sequences were obtained from the the SIFTS database (Structure Inte-
gration with Function, Taxonomy, and Sequence) [50], which contained 60567
sequences in all. Among these, we found 664 PK sequences. They were rep-
resented in the PDB by 8016 chains, 7547 of which were X-ray structures.
6300 of these passed our filtering for size and coverage (70% of the catalytic
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domain contained in the structure). Counting the sequences with at least one
PK domain resulted in 431 unique sequences.

Supplementary Figure 3.9 depicts statistics of this collection. Sequences
were mapped to a kinase Hidden Markov Model (HMM) [43] from Pfam [44]
(see Methods), which can be thought of as a sequence profile or alignment and
serves as a reference. Coverage of the HMM positions was high and almost
uniform, and similar for the “structural” sequences (those in the PDB) and the
“canonical” sequences (those from Uniprot). Conversely, sequence coverage by
HMM positions was high, as were the similarity scores for domain matching
(Supp. Fig. 3.9b,c). Domain sizes peaked at 250, rarely descending below
200. Finally, structural sequences matched canonical sequences closely (Supp.
Fig. 3.9f): PDB structures contained few mutations. Together, these results
indicate successful domain capture and high-quality sequence data.

We compared our data to four existing resources: (1) ABC [51], (2) Ki-
naMetrix [52], (3) KLIFS [28] and (4) KinCore [29] (Table 3.1). KLIFS used
human and mouse proteins, KinCore used proteins from ten model organisms,
and ABC and KinaMetrix were not limited to particular organisms. Our data
collection was somewhat larger and more diverse, with for example 88 more
unique sequences than the most recent KinCore (see also Supplementary Fig.
3.10 with categorized sequence counts). Labels in the different datasets (ac-
tive/inactive and so on) are described and compared further on.

Table 3.1: Kinase resource comparison

Resource Chains Structures Sequences Families Organisms

ABC 4223 2921 274 9 15
KinaMetrix 3569 3555 321 9 28
KLIFS 8402 5836 330 13 3
KinCore 9136 6040 343 9 10
This work 9459 6300 431 9 53

3.2.2 Annotating the substrate binding pocket

Our kinase dataset included 8273 PDB chains that had a bound ligand and
1186 with no ligand. We reviewed the most frequently mapped ligands, distin-
guishing (1) ATP-like and (2) non-ATP-like ligands (Fig.3.2e). Among the first
were ATP, ADP, AMP, ACP (AMP-PCP, or phosphomethyl phosphonic acid
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adenylate ester), ANP (AMP-PNP, or gamma-imino-ATP), and AGS (ATP-
Sγ). The second group contained many inhibitors, such as imatinib (STI) and
staurosporine (STU).
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Figure 3.2: Ligand contacts. (a) The number of chains corresponding to an HMM
position, grouped by the type of ligand contacted. ”Unk no data” refers to entries
outside KinCore, while ”Unk” refers to a few non-annotated cases. We omitted
structure-ligand pairs present in KinCore but absent in our data. (b) The number
of chains per HMM position contacting ATP-like ligands. Positions with≥250 counts
(in bold) are part of the ATP binding pocket. (c) ABL1 structure (PDB 2HIW:A)
bound to a Type-2 inhibitor in the DFG-out conformation. The color scale shows
the number of counts. Counts were scaled to the 0–1 range to compare the two
structures. (d) ABL1 structure (PDB 2G2I:A), bound to ADP, in the DFG-in
conformation. The circles with denoted HMM positions zoom into the binding
pocket. The structure in the lower circle is rotated by about 180◦. The color scale
depicts the frequency of contacts with ATP-like ligands. (e) The most frequently
contacted ligands, with ATP-like ligands in bold.
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Protein positions frequently contacting the ATP-like ligands were reviewed
(Fig. 3.2b). This resulted in a binding pocket defined by 25 HMM positions
(Table 3.2). Fig. 3.2d shows the ligand contact frequency of individual residues
in the ADP-bound ABL1 structure. The overall, position-wise, ligand-binding
frequency is shown in Fig. 3.2c, and seen to be similar. By mapping ligand
types reported by KinCore, we verified that these same positions also con-
tact a large group of Type-1 inhibitors that compete with ATP (3.2a), and
often formed contacts with other inhibitor groups. On the other hand, HMM
positions 51, 55, 60, 114, 119, and 121 (HMM numbering) mostly contacted
DFG-out-specific Type-2 inhibitors. Src numbering is also provided in Table
3.2.

Table 3.2: Positions that contact ATP-like ligands.

HMM positions Src positions Structural region

7 8 276 277 B1
9 10 278 279 B1-B2
14 15 283 284 B2
28 30 296 298 B3
48 313 aC
61 326 aC-B4
77 78 79 80 81 341 342 343 344 345 Hinge
83 84 87 347 348 351 HD
123 125 127 128 130 389 391 393 394 396 CL
140 141 406 407 ALN

For the 25 pocket positions, we computed the 300 mutual Cβ–Cβ distances,
distances to DFG-Phe (Cβ and Cζ atoms; 50 distances) and DFG-Asp (Cγ

atom), as well as distances between the atom pairs (DFG-Phe Cζ , DFG-Asp
Cγ) and (β3 Lys Nζ , αC-helix Glu Cδ), for a total of 377 distance variables
for future use.

3.2.3 Clustering and manually curating the DFG con-
formations

In view of classification, the kinase structures were clustered, using a distance
metric based on the DFG-Asp and DFG-Phe positions. Structures were first
superimposed, based on the Cα positions of the 30 most covered HMM posi-
tions: 100–115 (HE), 125–132 (CL), 137–140 (CL-ALN), and 181–182 (HF ).
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We filtered to 8927 PDB chains (94.5% of our dataset) where all these positions
were present. Other structures were discarded. We then computed a pairwise
distance defined by the rms deviation between the two structures, averaged
over the DFG-Phe and DFG-Asp residues. Fig. 3.3b shows the distribution of
rms deviations, both for the 30 Cα atoms and for the DFG-Asp/DFG-Phe pair.
The Cα deviations were mostly small, below 2 Å, while the DFG deviations
extended up to 25 Å. Agglomerative clustering with a 2.0 Å threshold yielded
161 clusters (Fig. 3.3a). Cluster sizes were far from uniform, with just a few
dominant clusters. Clusters 41, 46, and 86 contained 84% of the PDB chains.
There were 52 singleton clusters and 108 clusters with 5 elements or fewer.

Clusters were then assigned to a DFG class. The intuition behind the
assignment is illustrated in Fig. 3.4 and Fig. 3.8; details are in Methods.
We performed visual inspection, aligning up to 20 randomly-chosen cluster
members to a “central”, reference structure. Clusters were almost always
characterized by a close similarity between entire activation loops. Thus, the
DFG-Asp/DFG-Phe clustering metric was a good proxy for the overall loop
conformation. None of the clusters contained more than one DFG conforma-
tion, except for a few cases with substitutions (e.g., chains 6DC0:A,B from
the cluster 22, which were pseudokinases) and missing atoms in the DFG mo-
tif, due to disorder (e.g., chain 6RUU:C from cluster 86 was mislabeled by
us as DFG-out). We then assigned cluster labels, corresponding to DFG-in,
DFG-out, and DFG-other, in a semi-supervised manner, and transferred the
consensus label to the entire cluster. There were 46 DFG-in clusters (7931
chains in all), 33 DFG-other clusters (108 chains), and 33 DFG-out clusters
(857 chains). Most DFG-in chains were in clusters 5–49; the largest DFG-in
clusters were 41 and 46. Most DFG-out clusters were in the ranges 58–86,
88–104, and 134–145; the largest DFG-out cluster was 86. Most DFG-other
chains were in clusters 106–128. Some were scattered across smaller clusters,
including some (66–68, 97–98) that were in the mostly DFG-out ranges above,
and thus were structurally rather similar to DFG-out.
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Figure 3.3: Clustering of PK domains. (a) Dendrogram representation, with leaves
annotated, radially, by ID, size, DFG label (colored dot), number of inactive and
active structures (the last two swap places in the [90,270]◦ range). DFG-in, DFG-
other, DFG-out conformations are denoted by blue, ivory, and red dots. Several
clusters have no DFG label due to missing atoms. Clusters with 20 or more domains
are highlighted in light green (12 in total). (b) The joint rmsd histogram with 50
bins per variable. Cα rmsd peaks around 1 Å, while the DFG rmsd has a large peak
in the [0, 3] Å range and a smaller one around 8 Å.
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Figure 3.4: The intuition behind the DFG motif annotation. (a) A plane (in red)
divides the space between the N-lobe and the C-lobe into “inside” and “outside”
regions. The structures are the same as in Fig. 3.1b. (b) A view from above the
plane going through the DFG motif’s backbone. Except for Aurora, the plane puts
the αC-helix “outside”. Ligands are shown, using the same colors as the proteins.
(c) A close-up of the DFG residues and ligands with the dividing plane, showing
that ligands binding to DFG-out and DFG-other structures can extend “outside”,
while the DFG-in ligand (light blue) is “inside”.



85 3 Classifying protein kinase conformations with machine learning

3.2.4 Relating clusters to existing resources

Our collection of labeled structures is in Supplementary Material. We com-
pared structure labels to the existing resources ABC [51], KLIFS [28], Kin-
Core [29, 30], and KinaMetrix [52]. All four recognized DFG-in and DFG-out
categories. All but ABC recognized a third category: DFG-out-like (KLIFS),
DFG-inter (KinCore), and ωCD (KinaMetrix). These categories did not always
agree with our DFG-other label (as discussed below). Table 3.3 shows that
all resources covered most of our clusters. For instance, 145 clusters (105 of
109 non-singletons) contained KLIFS structures, while 135 (96 non-singletons)
contained KinCore structures.

There were three type of discrepancies within the clusters. (1) Internal: a
cluster contained chains with opposing labels from the same external resource;
for example, Kincore considers certain chains of cluster 148 to be DFG-in
(3BV2:A), DFG-out (3BV3:A), and DFG-other (4UMT:A). (2) External: two
or more external resources proposed different labels for the same kinase chain.
(3) Adverse: external resources disagreed with our own labels. Within the non-
singleton clusters (Table 3.3), there were 31, 16, 10, and 14 internal conflicts
for KLIFS, KinCore, ABC, and KinaMetrix, respectively, or 67 in all (62%
of non-singleton clusters). KLIFS, KinCore, and KinaMetrix had 74, 72, and
57 externally conflicting clusters, or 75 in all (69% of non-singleton clusters).
Finally, KLIFS, KinCore, and KinaMetrix disagreed with our labels in the
case of 72, 53, and 41 clusters, respectively (“adverse” labels). Supplementary
Table 3.6 lists all the conflicting clusters with examples of structures.

Table 3.3: Cluster coverage by external resources

Non Internally Refe-
Resource Present singleton conflicting rences

KLIFS 145 105 29 [26–28]
KinCore 135 96 16 [30]
ABC 117 91 10 [52]

KinaMetrix 108 82 13 [51]

92 clusters contained structures from all sources, while the number of clus-
ters unique to KLIFS, KinCore, or KinaMetrix was 5, 2, and 4, respectively
(Supp. Fig. 3.11a). Most of the shared clusters (53 out of 92) contained exter-
nal conflicts (Supp. Fig. 3.11c), where a few of the external labels disagreed.
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Internal conflicts were less common (15, 4, and 4 unique to KLIFS, KinCore,
or KinaMetrix, respectively; 5 intersecting; Supp. Fig. 3.11b). As for clus-
ters with adverse external annotations, there were 25, 15, and 4 such clusters
unique to KLIFS, KinCore, or KinaMetrix, while 22 were common to all three
sources. Notice that “internal” inconsistencies imply adverse annotations: if a
resource had two labels in a cluster, at least one would conflict with our label.

Supp. Fig. 3.11c shows that 5 and 42 clusters had only internal or external
conflicts, respectively. Only 14 clusters had only adverse annotations (91–
93, 95, 100–104, 113, 128, 136, 140–141), which all concerned discrepancies
between DFG-out and DFG-other labels. Most internal and external discrep-
ancies were also of this type. On the other hand, all resources discriminated
well between the DFG-in and DFG-out structures: e.g., there were only 12
DFG-in/DFG-out conflicts between KLIFS and KinCore within our clusters.
We return to these findings in the Discussion.

KinCore used a clustering method that differed from ours, and was based on
dihedral angles of the DFG motif and its preceding residue. KinCore’s clusters
covered 22 DFG-in, 20 DFG-out, and none of our DFG-other clusters. Rather,
KinCore regarded all the 103 overlapping DFG-other entries as “Noise”.

3.2.5 ML models to label kinase conformations auto-
matically

Using the labelled dataset created above, we trained four binary classifiers:
(1) KinActive (Active vs. Inactive), (2) DFGin, (3) DFGout, and (4) DFGother.
Each model consisted in an ensemble of 100 trees, with maximum depths of
15, 7, 4, and 16, respectively. An example tree is shown in Supplementary Fig.
3.12. All the models used the same feature pool of structural variables (set 3
in Table 3.5) and went through the same training pipeline.

To train the active/inactive KinActive model, we used the curated ac-
tive/inactive labels provided by McSkimming et al. [53], who used them to
train a Random Forest model called kinconform. Our model quickly learned
to discriminate between active and inactive conformations. The final model
relied on 78 features involving 70 positions. It reproduced and slightly sur-
passed previously reported performance (see below). The model made errors
for the chains 2NP8:A, 3NYX:A (false positive), and 6KZI:A (false negative),
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all coming from cluster 41 (Fig. 3.5d).
We trained the DFG models using the dataset and labels obtained above,

excluding cases with DFG-Asp substitutions and/or missing DFG-Phe. Each
model used the same number of data instances, labeled by 0 (negative class)
or 1 (positive class). The final, trained models relied on 65 (DFG-in), 108
(DFG-out), and 80 (DFG-other) features, involving 54, 73, and 44 unique se-
quence positions. Selected features for each model are listed in Supplementary
Material.

Each classifier outputted a probability for its DFG conformation. The
probabilities from the three DFG models then served as inputs to train a
logistic regression (LR) model DFGclassifier, which predicted the final DFG
label. Intuitively, LR learned to balance probability values so that their linear
combination predicted the final label correctly. Note that DFGclassifier
was cross-validated as a separate model, training and testing DFGin, DFGout,
DFGother, and LR on the same cross validation folds.

Table 3.4: Model performance

Model +/-* FCV10
1 Features FCV10

1
** PrecCV10** RecCV10** Errors

KinActive 1522/1762 0.9983 78 0.9992 0.9989 0.9994 3
DFGin 7874/952 0.9996 65 0.9996 0.9991 1.0000 7
DFGout 847/7979 0.9917 108 0.9953 0.9918 0.9988 8
DFGother 105/8721 0.8494 80 0.8976 0.9200 0.8762 21
DFGclassifier - - 3 0.9975 0.9975 0.9975 17
* Positive and negative examples.
** Using the selected features.

The final KinActive and DFGclassifier models achieved outstanding
performance (Table 3.4), with only 3 and 17 errors each during cross vali-
dation. DFGin reached the maximum possible recall rate, with no false neg-
atives. DFGout had a single FN and seven FP errors. DFGother was less
accurate, with 13 FN and 8 FP errors. Fig. 3.5b depicts the confusion ma-
trices, showing that 25 out of 36 errors involved entries with DFG-other la-
bels. DFGclassifier failed to resolve 16 of 31 misclassifications (when ac-
counting for common chains) and made a single new one. In turn, 16 of 17
DFGclassifier errors corresponded to DFG-other entries, mostly from under-
represented clusters (e.g., 51-54, 66-68, 152-154, 160). In most of these cases,
either there were two high-probability outputs (e.g., 3GGF:A,B, which consti-
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tute cluster 51, had comparable DFG-in and DFG-other probabilities) or all
probabilities were very small (e.g., 6TUA:A from cluster 67). We manually
reviewed the entries mislabeled by DFGclassifier to check whether the mis-
takes were legitimate. This resulted in us spotting two annotation mistakes
that the model rightfully corrected: 6TUA:A (DFG-in) and 5DE2:B (DFG-
out). These had been incorrectly clustered, due to a substituted DFG motif
and missing DFG-Phe atoms.
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Figure 3.5: Label comparisons. (a) A pairwise comparison of PK labels, involving
2 types: (1) active (True/False), (2) DFG (in/other/out). For (1), we show labels
predicted by KinActive and the kinconform model (ActiveKCF pred), and curated
labels (ActiveKCF) from [53]. For (2) we include DFG labels from other resources,
curated (DFG) and predicted (DFGp) by DFGclassifier. Note that predicted labels
were derived after refitting models on the full dataset. “-” indicates a missing label.
(b) Confusion matrices for the DFG models. X-axis depicts curated labels while
labels predicted during the CV by the DFGclassifier and its base classifiers are on
the Y-axis (c) DFGclassifier and KinActive labels predicted for the AlphaFold2
models. (d) A confusion matrix for the KinActive model comparing predicted (Y-
axis) and predicted (X-axis) labels.
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We inferred labels for all structures using the models trained on all avail-
able data. Fig. 3.5a compares predicted and curated labels, and labels from
other resources. The KinActive and DFGclassifier models retained one
(3NYX:A) and three errors (3GGF:A,B and 4EH3:A). Although KinActive
and kinconform predictions largely agreed, there were 91 differences, including
more active structures (60) predicted by the earlier kinconform tool.

Inactive chains were partitioned into 2835 DFG-in, 101 DFG-other, and 867
DFG-out. All active chains were predicted as DFG-in except one (5UQ1:C,
DFG-other, cluster 52). 99.6% of active PKs resided in DFG-in cluster 41,
which indicates stable structural features for the activation loop in the active
conformation. This cluster contained 5243 active and 733 inactive structures,
demonstrating that features other than the DFG motif discriminate between
active and inactive states. The feature selection results confirm this (see be-
low).

Comparing the active labels to the KinCore clusters (Supp. Fig. 3.13), we
observed that structures predicted to be active were split primarily between
KinCore’s BLAminus (4496) and ABAminus (527) clusters. On the other
hand, KinActive predicted 224 and 229 BLAminus and ABAminus structures
as inactive (see the Discussion below).

3.2.6 Interpreting the ML models

To interpret the obtained models, we ranked the features selected (“learned”)
by each model. Such post-selection ranking may attribute zero importance
to some features since the feature compositions during and after selection are
typically different. Therefore, after consulting the distributions of feature im-
portance, we narrowed our focus to the top 10 most important features per
model (Fig. 3.6a). Supplementary Table 3.7 gives a list of residues and features
that contributed strongly to the decision making.
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Figure 3.6: Top selected features. (a) Top-10 features ranked by importance for
each model. The X axis shows importance summed over the models. (b) Venn dia-
grams depicting overlaps between sets of selected features (above) and corresponding
residues (below). (c) Number of overlapping positions (above) and features (below),
versus the size N of the top-N set considered. See Fig. 3.14 for a full PK domain
logo. (d) Sequence logo built from UniProt sequences from our database using po-
sitions depicted in (a), highlighted in bold, with their nearest neighbors.
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Among the top-10 sets, 17 out of 22 features selected by the DFG* models
were distance variables, 12 of which were between the binding pocket residues
and DFG-Asp/DFG-Phe. For instance, D30Cβ ,142Cζ

(where 30 is the β3 Lys
and 142 is the DFG-Phe), D79Cβ ,142Cβ

, and D127Cβ ,142Cβ
were crucial for both

the DFGin and DFGout models. The distances between hinge (77, 79, 80) and
DFG-Phe residues mainly contributed to the DFGout predictions. Curiously,
the D140Cβ ,141Cβ

distance had a high importance for DFGin and DFGout, but
not for the DFGother model, which relied more on DFG-Asp/DFG-Phe dis-
tances (D141Cγ ,142Cζ

, D141Cβ ,142Cβ
, and D141Cβ ,142Cζ

). The KinActive top-10
set contained a single distance variable, ranked 3rd: D48Cβ ,142Cζ

, where 48 is
the αC-helix Glu.

Two neighboring pseudo-dihedral angles, Pd139−142 and Pd141−144, were
ranked 1st and 2nd for DFGin and KinActive. The Pd141−142 angle was also
crucial to DFGout and DFGother, but to a lesser extent. Finally, the solvent-
accessible surface area at position 120 ranked higher than the HRD motif
variables, except for the Pd141−144 distance, which exceeded all other features.
In summary, the most important features corresponded to well-known residues
and structural regions conserved across PK domains: β3 Lys, αC-helix Glu,
HRD and DFG motifs (Fig. 3.6b).

As Fig. 3.6a demonstrates, the top-10 sets from the four binary models
contained overlapping features. Six out of eight overlaps concerned the DFGin
and DFGout models. This effect persisted when considering other top-N sets
(Fig. 3.6d), with DFGin and DFGout models sharing most variables. In con-
trast, all other model combinations had 2–4 overlapping variables up to N=20.
However, when we considered the positions involved, the overlap increased lin-
early with N , from 10 up to 20 at N=50. Complete selected sets retained the
observed patterns, such as larger overlaps between the DFG* models compared
to the KinActive-DFG* pair (Fig. 3.6c). Indeed, KinActive had only 9, 11,
and 14 features common to the DFGin, DFGother, and DFGother models. In
contrast, DFG* models shared 60 (35%) and 41 (39%) features and positions.

Having analyzed feature compositions, we considered how their values in-
fluenced the model outputs. For this, we selected the following features from
the top-10 sets: (1) for KinActive, we picked SASA120, SASA142, D48Cβ ,142Cβ

,
and Pd141−144, (2) for DFGin and DFGout we picked the same set of overlapping
featuresD30Cβ ,142Cζ

, D79Cβ ,142Cζ
, D140Cβ ,141Cβ

, and Pd139−142. We constructed a
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balanced background dataset for each model, randomly sampling 300 positive
and negative instances. We analyzed the connection between SHAP contri-
butions, feature values, and actual classes (Supplementary Fig. 3.15). We
also explored feature pairwise interactions within the SHAP space, picking the
top feature with the highest interaction magnitude per variable selected for
analysis (Supplementary Fig. 3.16).

We could establish practical decision boundaries by examining the distribu-
tion of feature values. For instance, non-zero values of SASA120 and SASA142,
and D48Cβ ,142Cβ

> 8 Å usually indicated inactive conformations (Supp. Fig.
3.16a and Supp. Fig. 3.15a). In turn, D30Cβ ,142Cζ

< 11 Å, D140Cβ ,141Cβ
> 5

Å and D79Cβ ,142Cβ
< 15 Å make the DFG-out conformation highly probable

(Supp. Fig. 3.16b). Finally, D30Cβ ,142Cζ
> 11 Å and D140Cβ ,141Cβ

< 5 Å are
clear DFG-in indicators (Supp. Fig. 3.16c).

Association with the SHAP contributions further strengthened these intu-
itions. Thus, for KinActive, SASA120 = 0 and SASA142 = 0 have relatively
high SHAP values, driving the predictions towards the active class (Supp. Fig.
3.15a). Decreasing D140Cβ ,141Cβ

and increasing D30Cβ ,142Cζ
had opposite effects

on the SHAP contributions, contributing to the final DFG-in and DFG-out
labels (Supp. Fig. 3.15b,c). Similar arguments concern other analyzed fea-
tures, where, in most cases, there was a tangible clustering of classes within
the (feature, SHAP(feature)) space.

3.2.7 Classifying a large dataset of AlphaFold2 kinase
structures

As an application, we considered a large set of kinase structures predicted by
AlphaFold2 [33]. All but 5% of these structures were manually annotated with
DFG labels. The dataset is available from an online public repository (see
Section 3.4.13) [54]. To illustrate our ML models, we proceeded to relabel all
the kinase structures from the Swissprot portion of the AlphaFold2 database.
We applied the same filtering criteria for domain discovery as above. This
yielded 3960 initial sequences with domain hits, 3850 of which we managed to
download from the AlphaFold2 database. The data covered 21 protein families
from at least 282 organisms. The most abundant organism was A. thaliana,
with 571 Ser/Thr kinases (Supplementary Fig. 3.18). The other most abundant
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organisms were human, mouse, rat, C. elegans, and rice.
We extracted the kinase domains from each sequence and structure and

calculated structural variables defined above (set 3 in Table 3.5). We then pro-
ceeded to predict the DFG and active/inactive labels using our DFGclassifier
and KinActive models. There were 1101 and 2749 inactive/active predictions,
respectively (≈40% inactive), while 3761, 15, and 74 chains were predicted to
be DFG-in, DFG-other, and DFG-out, respectively (roughly 250:1:5). In our
own database of experimental kinase structures from the PDB, the proportions
were 3934/5531 inactive/active (≈42% inactive) and 77:1:8. Thus, Alphafold2
models had the right inactive proportion, but were heavily skewed towards
DFG-in, compared to the experimental structures. Alphafold2 label combi-
nations were internally consistent, with no DFG-other or DFG-out structures
predicted to be active (Fig. 3.5c). Curiously, the balance between Ser/Thr and
Tyr PKs was reversed for the DFG-out-predicted entries, with 49 Tyr kinases,
many of which were orthologs (10 of OTK, all coming from various Drosophila
species), NTRK1 (4), NTRK2 (2), NTRK3 (6), DDR1 (4).

3.3 Discussion
This work provided an up-to-date assessment of kinase conformational space,
as defined by its activation loop and DFG motif. An extensive collection of
catalytic domain sequences and structures was built. Its creation was trans-
parent and open, facilitating future applications or extensions, such as fitting
ML models or analyzing the structural kinome. We clustered and classified
the structures in a supervised way, relying mainly on the geometry of the
DFG motif, which turned out to be a good proxy for the overall activation
loop geometry. We then proceeded to build several machine learning mod-
els to do the same classification automatically, using ensembles of decision
trees. The models started from a pool of several thousand structural vari-
ables (features), covering a large part of the catalytic domain. The models
were carefully trained, and the most important variables for classification were
identified (“learned”). They included variables involving the DFG and HRD
motifs, the β3 Lys, and the αC Glu, which are kinase hallmarks.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Examples of clusters and conformations in stereo. DFG-Asp/Phe
in red/yellow. (a) 4EL9:A, 5UWD:A from clusters 90, 91. (b) Representative
structures from DFG-out clusters 92–96: 3DK6:A, 3DK7:A, 2WOB:A, 6YKY:A,
4OBP:B. (c) Representative structures with a unique conformation where DFG-Phe
is pushed out and up: 2G2H:A, 2JIT:B, 3MN3:A, 4B9D:A, 4MXX:B. (d) Structures
intermediate between DFG-out and -other: 2G2F:B, 5B2L:A, 6YG4:A. (e) Cluster
41 with structures labeled by KinCore as ABAminus, BLAminus, BLAplus, BLB-
minus, and BLBplus. DFG-Asp and DFG-Phe occupy similar subpockets but have
different dihedral angles: 3GU6:A, 3PXK:A, 3PXZ:A, 5FEE, 6TPE:A, 7M5Z:B. (f)
DFG-out clusters 65, 81, and 86, labeled by KinCore as BBAminus, but with DFG-
Asp and DFG-Phe occupying different subpockets: 3G6G:A, 4R5Y:A, 5HG8: A.
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The top variables could be analyzed and interpeted in some detail. Con-
sider first the solvent accessibility (SASA) of residues 120 and 142. Supp.
Fig. 3.16a and Fig. 3.17a show that zero accessibility is an active state signa-
ture. Position 120, before the HRD motif, is covered by the activation loop
(AL) in most active structures. Conversely, the AL is often disordered or
misplaced in inactive states. Active structures require the DFG-in orientation
so that DFG-Phe (142) is buried between the αC-helix and the β4 strand.
In contrast, inactive structures often have the DFG-Phe displaced, making it
accessible to solvent. Furthermore, the sequence logo in Fig. 3.6d shows that
positions 120 and 142 are always nonpolar, and presumably stabilize the active
conformation via hydrophobic effects.

Another variable is the D48Cβ ,142Cβ
distance, which was strongly associated

with the inactive state, since it captures the DFG-Phe displacement away from
the αC-helix (Supp. Fig. 3.15a and Fig. 3.17a). Combining it with Pd141−144

yielded clear decision boundaries (Supp. Fig. 3.16a). The joint distributions
of SASA120 with SASA142 and Pd142−145 further suggested that an interplay
between residues close to the HRD and DFG motifs determines active/inactive
states.

The DFG models relied mostly on distance variables and the DFG back-
bone orientation, captured by the 139–142 pseudo-dihedral angle. Among the
top-10 selected variables were the distances D30Cβ ,141Cγ (DFGout), D30Cβ ,142Cζ

,
D79Cβ ,142Cβ

and D140Cβ ,141Cβ
(DFGin and DFGout). These variables are also

readily interpretable. For instance, decreasing (increasing) the distance be-
tween DFG-Phe and the binding pocket residues, such as β3 Lys30 while in-
creasing (decreasing) the D140Cβ ,141Cβ

distance makes a domain more likely to
occupy the DFG-out (DFG-in) conformation (Supp. Fig. 3.15). Interestingly,
the top features often interacted with each other. Such interacting pairs had
the highest SHAP interaction values, and their joint distributions imposed
better decision boundaries than single-value distributions.

While KLIFS relies entirely on the DFG motif, the KinCore resource uses
two distances, D1 = D52Cα,142Cζ

and D2 = D30Cα,142Cζ
, to classify DFG con-

formations via two threshold values [29]. This approach does not consider
explicitly the DFG-Asp orientation, causing it to mislabel some DFG-other
conformations. It is not applicable to cases where β3 Lys (position 570) or αC

Glu+4 (115) are missing, nor to non-canonical DFG-Phe substitutions missing
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the Cζ atom. Our work shows that accurate DFG motif labeling (in contrast to
active/inactive) does not require variables anchored to the αC helix. It can be
derived by combining the mutual DFG-Asp/DFG-Phe orientation with their
positioning relative to the binding pocket residues.

Most DFG label discrepancies involved the DFG-other conformation. This
category lacks a precise definition, instead serving as an out-group with flexible
boundaries. As a result, methods often conflict with each other and mislabel
DFG-other or mix it wih DFG-in or DFG-out for similar structures. Although
these discrepancies mainly concerned rare conformations, they may still cause
accuracy losses in large-scale applications that take the in/out/other labels as
established input. For example, consider the closely related clusters 90 and
91, represented by chains 4EL9:A and 5UWD:A (Fig. 3.7a). In line with the
paper accompanying 4EL9 [55], we labeled these structures as DFG-out. In
contrast, KinCore labeled 4EL9:A as DFG-out and 5UWD:A (where DFG-
Asp is outside) as DFG-other, while KLIFS labeled both structures DFG-
other. We found clusters 92–96 and 100–104 to also encompass DFG-out
entries mislabeled as DFG-other (Fig. 3.7b,c). Mislabeling the latter group
was especially puzzling, as it contradicts the existing literature, including a
pivotal paper on the Src-like inactive conformation of Abl1 [56–59].

Literature sources may lead to conflicting cluster information as well. To
illustrate, Levinson et al. labeled 2G2F:B (referred to as molecule E) as “in-
termediate” [58], while Pemovska et al. labeled 4WA9:A from the same cluster
120 as DFG-out [60]. Finally, for a group of chains from clusters 121–123
labeled as DFG-other in our work (Fig. 3.7d), KLIFS assigns DFG-other la-
bels, KinCore labels 121–123 as DFG-out, while the structures’ authors mostly
agree on the DFG-out state (5BDL [61], 5Z1E [62], 6QFR [62], 6YG4 [63]).
More generally, it is challenging to provide a unifying framework for the DFG
conformational landscape of all kinases, causing clashes between methods that
put all non-standard conformations into a single category.

In conclusion, our structural clusters may serve as reference points for newly
solved kinase structures. In the future, it could be beneficial to further adapt
these results to drug design efforts, by relating the obtained clusters to the
active site subpockets. Our annotations could be complemented or refined by
dihedral angle based clustering, as in the KinCore approach. We expect the
ML models will be useful for future, large-scale applications to the structural
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kinome, similar to the present Alphafold application.

3.4 Materials and Methods

3.4.1 Building a collection of PK domains

To obtain PK catalytic domains, we queried the SIFTS database [50], which
collects PDB entries [64] along with their corresponding Uniprot sequences [65,
66]. We queried SIFTS with the PK profile PF00069 from the Pfam database
[44], using the PyHMMer software [67]. During this process, we retained map-
pings between each sequence and the numbering of nodes in the corresponding
Pfam HMM, for future reference. The HMM can be thought of as a sequence
profile or alignment. Correspondance between HMM position numbers and
residue numbers in human Src are given below. We retained hits that had (1)
a catalytic domain size above 150 residues, (2) a similarity bit score to the
query above 50, and (3) a coverage of both the sequence and the HMM nodes
above 70%. We then fetched PDB structures associated with these hits. We
mapped UniProt and PDB sequence numberings via pairwise sequence align-
ments performed with mafft [68]. These mappings allowed us to transfer the
HMM node mappings from UniProt to each PDB sequence, which identified
the domain boundaries within the extracted structures. We used the anno-
tated and transferred domain boundaries to extract domains from UniProt
sequences and PDB structures. Thus, each extracted domain comprised: (1) a
UniProt sequence, called the “canonical” sequence, (2) a PDB sequence (which
can be slightly different), (3) a PDB structure, and (4) associated metadata,
such as IDs and coverage information. We retained only domains with less
than 10% of the PDB sequence mutated relative to the canonical one.

3.4.2 Clustering catalytic domain structures

To facilitate the annotation of structures (as active, inactive, DFG-in, and so
on), the collected structures were grouped into into clusters, based on the DFG
motif conformation. The distance between two structures was defined by the
rms deviation between them, after superposition, calculated using atoms of
the DFG-Asp and DFG-Phe residues. Pairwise superposition of each domain
pair relied on the rms deviations between Cα atoms of the 30 HMM profile’s
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most frequently mapped residues. This procedure produced a matrix of dis-
tances between all domain pairs, which was clustered using the single linkage
agglomerative clustering provided by the scipy library. Manually inspect-
ing the results, we arrived at a distance threshold of 2.0 Å to form the final
clusters.

The superposition protocol encountered certain special cases. In case a
single position was missing from one PDB structure (eg, due to disorder), we
relied on the 29 other positions for the superposition. In the case of a mismatch
between DFG-Asp or DFG-Phe atoms within a domain pair (eg, a few atoms
missing from a PDB model), our protocol used a common set of atoms, and
backbone atoms at the minimum.

3.4.3 Semi-supervised DFG conformation labeling

To classify, or label each cluster, we performed the following steps:

1. Randomly selected up to 20 structures from the cluster.
2. Identified the sample center: the structure with the lowest mean distance

to the other sample members.
3. Superposed sample structures onto the central one.
4. Visualized the superposed structures.
5. Verified that they all had the same DFG conformation.
6. Visually defined a plane dividing the ATP binding pocket into “in” and

“out” regions: in practice, the plane was defined roughly by the activa-
tion loop backbone (see Fig. 3.4).

7. Annotated DFG-Asp and DFG-Phe side chains as “in” or “out” based
on their positioning in either region.

8. Annotated the domain conformation based on the DFG-Asp and DFG-
Phe labels, following the rules given below.

9. Transferred the derived label to all the cluster members.

From the DFG-Asp, Phe labels (step 7), we derived the DFG label (step 8) as
follows:

• DFG-Asp “in” and DFG-Phe “out”: we assigned the DFG-in label.
• DFG-Asp “out” and DFG-Phe “in”, we assigned the DFG-out label.
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• We assigned the DFG-other label in cases where both DFG-Asp and
DFG-Phe were “in” or “out”, including the cases where the separating
plane would divide the Asp and Phe residues themselves.

To resolve difficult cases during steps 7-8: (1) we compared to “typical” DFG-
in and DFG-out conformations (those from clusters 41 and 86, respectively;
see Results); (2) we compared to already-annotated clusters nearby; (3) we
considered pocket residue positions (specified in the Results), and (4) we con-
sulted the literature if a structure had an accompanying paper specified in the
PDB. In total, our manual annotations went through five revisions during the
study.

3.4.4 Extracting sequence and structural variables

For each extracted domain sequence and structure, descriptor variables, or
“features” were computed. These were then used as input for the ML models
developed below. They included sequence variables, structural variables, and
ligand variables. They could be subdivided into four subsets: (1) canonical
sequence variables (see below; 792 in all); (2) PDB sequence variables (792
in all); (3) PDB structural variables, such as torsion angles and interatomic
distances (1692 variables), and (4) ligand variables, such as the shortest ligand-
residue distance (792 variables). Variables were anchored to the PK profile’s
HMM nodes, so that values from different kinases and structures could be
treated as different instances of the same variable. The computation took less
than an hour for all structures when using 20 cores for set (3) and a single core
for sets (1), (2), and (4).

Table 3.5 lists the calculated variables. For sequence variables (sets 1 and
2), we used a numerical representation of each AA type, provided by the
ProtFP resource [69, 70]. These representations were based on a large set of
physical-chemical properties taken from the AAindex database [71], reduced
through a principal component analysis by the authors. Although variable sets
(1) and (2) turned out to be redundant for our ML models, we provide them
for completeness and potential use in future applications. Set (3) comprised
dihedral and pseudo-dihedral angles [72], solvent-accessible surface areas of in-
dividual residues, and residue–residue distances. The “ligand” variables of set
(4) included the list of residues contacting the ligand, the number of contacts,
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and the minimum distance of each residue to the ligand. A 5.5 Å distance
threshold was used to define residue–ligand contacts.

Table 3.5: Calculated variables

Set Variable Positions Description

1-2 ProtFP 1-264 3 ProtFP PCA components per position
3 ψ 1-264 Psi dihedral angle
3 ϕ 2-264 Phi dihedral angle
3 χ1 1-264 Chi1 dihedral angle
3 Pd(i) 1-262 Pseudo-dihedral angle, residues i, i+1,

i+2, i+3
3 SASA 1-264 Solvent-accessible surface area per posi-

tion
3 D(Cβ-Cβ,γ,ζ) Pocket residues Residue-residue distance
4 Ligand 1-264 The name of the ligand contacted
4 Contacts 1-264 Residue-ligand atomic contact number
4 Distances 1-264 Minimum distance to the closest ligand

3.4.5 ML models for binary classification

Having labeled our structures and extracted sequence and structural variables,
we proceeded to develop several ML models, designed and trained to repro-
duce the classification above. All models (except one) were binary classifiers
that distinguished two classes. The first model distinguished active/inactive
structures. The others distinguished structures either within a particular DFG
class or not, namely “DFG-in” vs. “anything else”, “DFG-out” vs. “anything
else”, “DFG-other” vs. “anything else”. These binary models were based on
the XGBoost tool (eXtreme Gradient Boosting) [73].

XGBoost is a supervised machine-learning algorithm that gradually builds
up an ensemble of decision trees. Each tree is a collection of internal and ter-
minal (leaf) nodes. Internal nodes contain learned thresholds that guide each
input instance (a particular structure) down through the tree to a leaf node.
Each leaf node computes the probability p of a particular label (say, active),
and outputs the log-odds probability ratio, log( p

1−p
). An overall probability is

obtained by summing up the outputs of individual trees and transforming the
result via the logistic function. For instance, if f(x) is the sum of the output
ratios, P (class = 1) = 1/(1 + e−f(x)) is the probability of the positive class.
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During training, starting from the current prediction, XGBoost adds one tree
at a time to gradually drive the prediction closer to the actual value, which is
known. Each tree is produced, or “grown” by recursively splitting each exist-
ing node, say P , into two children, say L and R. To split P , one considers the
deviations, or “residuals” between the predictions of P and the correct labels
of all structures (which are known during training). One searches for a feature
and a threshold value that splits the input structures into two subsets (L and
R) such that labeling errors are reduced as much as possible. XGBoost decides
whether to add a new node to a tree depending on various pre-set criteria, such
as a maximum tree depth, minimum leaf output, and minimum error reduc-
tion (detailed below). After a tree is grown, XGBoost finalizes its structure
by recursively eliminating (or pruning) leaf nodes that yield suboptimal splits
of residuals.

In more detail, the objective function to be minimized measures the differ-
ence between the current predictions and the actual labels, and contains also
regularization terms that penalize a tree’s complexity. Let yi be the known
label of a structure i, ŷi the label predicted by the current ensemble, T the
number of leaves across all indivudal trees, and wj the prediction of each leaf
j. The objective function can be written:

obj(t) =
n∑

i=1

l(yi, ŷi
(t)) +

1

2
λ

T∑
j=1

w2
j + γT, (3.1)

where λ and γ are pre-set constants and the last two terms favor tree pruning.
Predictions at an iteration t are derived from those computed at a step t− 1:

ŷ(t) = y(t−1) + w, (3.2)

where w is the output value of a node at which a training structure arrives.
Using this additive training paradigm, given a solution at step t− 1, XGBoost
attempts to find an optimal value for w that would minimize the objective. For
this, it approximates the loss function using a second-order Taylor expansion,
which transforms the objective into a quadratic equation,

obj(t) ≈
T∑

j=1

(Gj ∗ wj +
1

2
(Hj + λ) ∗ w2

j ) + γT, (3.3)
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where Gj and Hj are the gradients and the Hessians of a loss function at step
t− 1 summed over all training instances ending up at a leaf node j. Solving

δ

δwj

obj(t) = 0 (3.4)

leads to an optimal leaf output

w∗
j =

−Gi

Hi + λ
(3.5)

The objective becomes

obj(t) = −1

2

T∑
j=1

G2
j

Hj + λ
(3.6)

Similar to in other decision-tree-based ensembles [74], individual trees are
trained greedily, considering one split at a time. To construct a good split,
XGBoost assigns scores Sj to tree nodes j, each equal to

Sj =
1

2

G2
j

Hj + λ
= −Gjẇ

∗
j (3.7)

(elements of the sum in obj(t)). This leads to

Gain =
1

2

(
G2

L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

HL +HR + λ

)
− γT (3.8)

Finally, we used a binary-cross entropy for a loss function, −y log(p) − (1 −
y) log(1 − p), where y is a true class and p is the predicted probability of a
positive class. This leads to

Sj =
(
∑

i∈j (yi − pi))
2∑

i∈j (pi(1− pi)) + λ
(3.9)

Intuitively, XGBoost trees minimize the residuals and learn to split the training
data in ways that cluster them.
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3.4.6 Feature selection, or “learning”

Feature selection was done using an iterative procedure known as the “all-
relevant Boruta algorithm” [47, 75]. Given a current set of features, each
iteration included several steps. (1) The first was to duplicate the current
features and randomly scramble the copies so that values initially associated
with one kinase become associated with another, randomly chosen. (2) The
augmented feature set is then used to train the ML model. In practice, the
features are fed to a series of decision trees, which make predictions about
the classification of each kinase. (3) Evaluate each feature’s importance nu-
merically, with a metric defined below. (4) Compare the importance values
of the original features and the permuted copies. Designate as “hits” the fea-
tures, among the original ones, whose importance is higher than 95% of the
permuted ones. (5) Use a statistical test to accept or reject features based on
a history of the accumulated hits. The idea is to accept variables that have a
consistently higher importance than random noise. (6) Remove both accepted
and rejected features from the current pool. (7) Stop if the pool of remaining
features is empty or the maximum number of iterations has been reached (100
in our case). Otherwise, return to the first step.

3.4.7 Feature importance measure

The feature importance is an estimate of an individual feature’s impact on
the algorithm’s predictions. We used SHAP (SHapley Additive exPlanations)
to define feature importance [76]. SHAP explanations use a combinatorial
approach that compares the model’s predictions with and without a particular
feature, relative to a baseline prediction, e.g., the average prediction made
by the model for all data instances in the training set. For each feature and
structure, this approach defines its contribution to the output (for the XGBoost
method, this is the log odds ratio, log( p

1−p
)).

In more detail, for a dataset with M input structures and N features,
SHAP outputs an M ×N matrix Φ of estimated contributions to the outputs.
Summing Φ over structures (or instances),

∑
i Φi,j, yields an N -sized feature

importance vector. In addition, for the TreeExplainer tool provides an es-
timate of pairwise contributions. This may be seen as splitting an estimated
SHAP value into diagonal and off-diagonal (interaction) terms [77]. The pro-
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cess outputs an M ×N ×N table F . Summing over structures,
∑

i Fi,j,k yields
an N×N matrix of interactions accumulated across data instances, which can
be queried to find the feature pairs with the highest interactions.

3.4.8 Optimizing the ML models

The XGBoost models were trained to identify (“learn”) features that classify
effectively. They also contained parameters that were “non-trainable” and
optimized manually. These included tree pruning rules and maximum tree
depth; see Supplementary Table 3.8. Model optimization comprised the fol-
lowing stages:

1. Short optimization of non-trainable parameters on the full dataset of
structures.

2. Cross-validation of the performance estimate.
3. Feature selection with eBoruta. From here on, only the selected features

are used.
4. A second, longer, parameter optimization.
5. Cross-validation of the performance estimate.
6. Training the model on the full dataset.
7. Predicting classes for all available structures.
8. Ranking the selected features.

During steps 1 and 4, we searched for optimal values of parameters control-
ling the algorithm’s execution. Each time, before and after feature selection,
models were cross-validated using binary metrics defined below. After the al-
gorithm’s training on a full dataset, features were ranked for later comparison
and interpretion. More details for each step are given in later sections.

3.4.9 Performance measures for binary classification

We used three performance measures: the F1 score, model precision, and re-
call. Let TP and FN be the number of correctly predicted positive instances
(true positives) and incorrectly predicted negative instances (false negatives).
Instances are kinase structures to be classified. Let FP be the number of
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incorrectly predicted positives (false positives). Precision is defined as

prec =
TP

TP + FP
(3.10)

Recall, or true positive rate (TPR), or sensitivity, is defined as

rec =
TP

TP + FN
(3.11)

The F1-score combines these two measurements via their geometric mean:

F1 = 2
prc ∗ rec
prc + rec

=
2TP

2TP + FP + FN
(3.12)

to provide a composite performance measurement typically used for class-
imbalanced datasets, like those encountered here. The dataset was split into N
non-overlapping parts based on PDB identifiers during cross-validation (CV)
and N train/test cycles were run. In each cycle, we trained on all dataset in-
stances except one, which was used for prediction. Accumulating predictions
led to a fully-predicted dataset that was used to compute the performance
metrics above. N was set to 5 or 10.

3.4.10 Optimizing non-trainable parameters

We used the optuna library [78] to optimize non-trainable (or “hyper-”) pa-
rameters. Optuna solved the optimization problem argmax

θ
FCV5
1 , seeking a

parameter set θ that maximized the cross-validated F1 score. Supplementary
Table 3.8 lists the non-trainable parameters subject to optimization. We used
10 optimization rounds for calibrating parameters before feature selection, and
100 rounds after feature selection.

The number of trees for each classifier was determined using an early stop-
ping technique. Namely, each time the algorithm was trained, input data was
split into training and evaluation subsets (“folds”) as during the CV. We used
the evaluation fold to monitor the loss function after adding each tree, and
stopped the training if the last 20 trees did not improve the loss or when
reaching the maximum number of 100 trees. An example tree is shown in
Supplementary Fig. 3.12.
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3.4.11 Logistic regression classifier

We also built a final logistic regression (LR) meta-classifier of the DFG confor-
mations. LR used only three input variables (hence, no feature selection was
necessary): the class probabilities output by the binary, XGBoost classifiers.
It was trained to predict three possible DFG states. As this is a multiclass
objective, the binary metrics above required an adjustment. We used the
so-called “micro” averaging strategy, where TP , FP , TN , and FN were com-
bined into a single “confusion” matrix. 100 optimization steps were used to
find the optimal hyperparameters (see Supplementary Table 3.8).

3.4.12 Comparing to other resources

We compared our data to existing resources using PDB identifiers. As a
first step, we updated some obsolete PDB IDs found in some resources using
old-to-new mappings obtained from the wwpdb FTP server (https://files.
wwpdb.org/pub/pdb/data/status/obsolete.dat). For sequences in our own
database, we already had PDB-UniProt relationships, confirmed by pairwise
alignment and sequence-to-sequence matching (see above). For the external
resources, we used the mappings provided by the resource authors where pos-
sible, or by SIFTS in their absence. We fetched the corresponding metadata
for each UniProt ID, including organism and protein family. We manually
reviewed the resulting family annotations to distinguish protein kinases, non-
protein kinases, and non-kinase proteins. For numerical comparisons below,
we excluded confirmed non-kinase and non-protein kinase entries.

3.4.13 Software and data availability

Supplementary Table 3.9 lists all used software and resources. All data-related
operations, from fetching sequences and structures to extracting domains, com-
puting variables, and pairwise structure superpositions, were performed with
our feature extraction library Xtractor. We made available an exact pro-
tocol to build and navigate the PK data collection via a separate repository
KinActive. We used a reimplemented Boruta algorithm (eBoruta) for feature
selection.

The source code related to this study is available within KinActive, written

https://files.wwpdb.org/pub/pdb/data/status/obsolete.dat
https://files.wwpdb.org/pub/pdb/data/status/obsolete.dat
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in Python v3.10, based on Xtractor v0.1.1 (https://github.com/edikedik/
lXtractor) and eBoruta v0.1 (https://github.com/edikedik/eBoruta), and
available from the zenodo repository [54]. The tool is also available on GitHub
(https://github.com/edikedik/kinactive). Its documentation, including
a tutorial covering the creation of the structural kinome collection, is hosted on
https://kinactive.readthedocs.io/en/latest. The trained models and
their parameters are also included.

3.5 Supplementary Material
Additional data are provided as Supplementary Material. Supplementary Fig-
ures and Tables were listed above. Additional data files are:
kinase_labels.tsv gives the full list of 9471 kinase domains considered here,
with their manual annotation and predicted annotation. UniProt and PDB
ID’s are provided, as well as our own ID’s, referred to as lXtractor ID’s.
DFGin_features.tsv, DFGother_features.tsv, DFGout_features.tsv,
KinActive_features.tsv provide the features selected by each ML model,
along with their importance score.

https://github.com/edikedik/lXtractor
https://github.com/edikedik/lXtractor
https://github.com/edikedik/eBoruta
https://github.com/edikedik/kinactive
https://kinactive.readthedocs.io/en/latest
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3.6 Supplementary Information

3.6.1 Supplementary figures

Figure 3.8: A complement to Fig. 3.4, where superposed structures are separated
into subfigures; DFG-Asp and DFG-Phe are in yellow. (a) A structure in DFG-in
orientation, where DFG-Asp is “inside” and DFG-Phe is “outside” (1A9U:A). (b)
A domain in DFG-out conformation, where DFG-Asp and DFG-Phe swap places
with respect to the plane (1KV1:A). (c) An example of the DFG-other orientation,
where DFG-Asp and DFG-Phe are both “outside” (3BV2:A).
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Figure 3.9: Sequence statistics. Y-axis is the total number of counts for all charts.
(a) Coverage of the PK profile by structure and canonical sequences. (b) Sequence
and node coverage. (c) BitScore distribution for the domains extracted from canon-
ical sequences. (d) and (e) Domain size distribution in canonical and structure
sequences. (f) Match percentage between canonical and structure sequences.

Figure 3.10: Kinases grouped by family (left), organism (right), and data resource
(top).

Figure 3.11: Venn diagrams representing connections between different cluster
categories. From the left: (a) all clusters w here the external resource is “present” if
a cluster contains at least one structure from that resource, (b- d) clusters associated
with different DFG labeling conflicts (see the main text for details), (e) connection
b etween the conflict types.
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Figure 3.12: One of 100 trees from the DFG-in model. Nodes correspond to a
feature: either a pseudo-dihedral spanning 4 residues (◦), a residue SASA (Å2), a
backbone dihedral (◦), or an atom–atom distance (Å). Red/blue arrows indicate
true/false. Leaves are labeled with the decision score S (Eq. 3.9), which varies from
-1 to 1 (strong decision).

Figure 3.13: Comparison of the DFG and active/inactive labels with the KinCore
clusters.
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Figure 3.14: A PK domain sequence logo, complementing Fig. 3.6d. Y-axis
depicts total counts. X-axis shows PF00069 reference positions, with selected top-
10 selected positions highlighted in bold.
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Figure 3.15: The distributions of (feature, shap(feature)) values for selected vari-
ables.
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Figure 3.16: Correlations between selected top features for three of the ML models.
Shown are the joint distributions of feature pairs, as histograms, colored by the
magnitude of the pair’s SHAP interaction. Positive/negative SHAP values push the
model prediction towards the true/false class.
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(a) KinActive

(b) DFG-in

(c) DFG-out

(d) DFG-other

Figure 3.17: Value distributions of top-5 selected features per model, depicted as
kernel density estimates. The variables are sorted in decreasing importance. Up
to 300 domains were sampled for each label (e.g., 300 active and inactive domains
for the KinActive model). The plots demonstrate that, for the most part, selected
features allow discerning decision boundaries that separate different conformational
states. They also show that DFG-other is typically intermediate to DFG-in and
DFG-out, often overlapping both.
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Figure 3.18: SwissProt Alphafold2 sequences grouped by organism and protein
family. Non-PK families are labeled as “Other”.
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3.6.2 Supplementary Tables

Table 3.6: Conflicting clusters where (1) sources contain internal conflicts or (2)
sources conflict with each other or (3) sources conflict with the curated label (DFG).
The table lists up to two structures and chains per structure per label. We excluded
the ABC resource as it doesn’t recognize the DFGother conformation.

ID DFG Source in other out

6 out KLIFS 4RED:A,B
KinCore 4RED:A,B
KinaMetrix 4RED:A

7 in KLIFS 1VZO:A 3G51:A;4U3Y:A (10)
KinCore 3G51:A;6G77:A,B 1VZO:A;4U3Y:A (9)
KinaMetrix 1VZO:A;4U3Y:A

8 in KLIFS 1I44:A;3EKN:A (5)
KinCore 1I44:A;3EKN:A (6)
KinaMetrix 1I44:A;3EKN:A

9 in KLIFS 3OXI:A
KinCore 3OXI:A
KinaMetrix 3OXI:A

10 in KLIFS 4TYE:A
KinCore 4TYE:A

11 in KLIFS 1UA2:A,C;6S75:B 1UA2:B
KinCore 1UA2:A,B;6S75:B

15 in KLIFS 3GOP:A
KinCore 3GOP:A
KinaMetrix 3GOP:A

16 in KLIFS 2GHM:A;3TG1:A (6)
KinCore 2GHM:A;3TG1:A (6)
KinaMetrix 2GHM:A;3TG1:A

17 in KLIFS 3EKK:A;4LUD:A (13) 4F9W:A
KinCore 3EKK:A;4F9W:A (16)
KinaMetrix 3EKK:A;4F9W:A (5) 4O2P:A

18 in KLIFS 6BXI:A,B
KinCore 6BXI:A,B

20 in KLIFS 3VS1:A,B
KinCore 3VS1:A,B
KinaMetrix 3VS1:A

21 in KLIFS 5YT3:D
KinCore 5YT3:D

23 in KLIFS 1JQH:A,B;3BZ3:A (36)
KinCore 1JQH:A,B;2JKK:A (46)
KinaMetrix 1JQH:A;2JKK:A (8) 3I81:A

25 in KLIFS 2HAK:B,D;2QNJ:A,B 2HAK:A,C
KinaMetrix 2QNJ:A;3FE3:A 2HAK:A

27 in KLIFS 1B38:A;1B39:A (211) 6Q4F:A
KinCore 1B38:A;1B39:A (155)
KinaMetrix 1B38:A;1B39:A (216)

28 in KLIFS 3KMW:A;3REP:A

Continued on the next page
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Table 3.6: Conflicting clusters.

ID DFG Source in other out

KinCore 2HWP:A 3KMW:A;3REP:A
KinaMetrix 3KMW:A;3REP:A

29 in KLIFS 3CKW:A
KinCore 4D5H:A
KinaMetrix 4D5H:A 3CKW:A

32 in KLIFS 4DFY:A,E 3VUT:A
KinaMetrix 4DFY:A

41 in KLIFS 1A9U:A;1APM:E (5203) 3QUP:A;5K7I:B (6) 2WTK:B,E;6CCF:A,B
KinCore 1A06:A;1A9U:A (5762) 3C4Y:B;4FGB:A
KinaMetrix 1A06:A;1A9U:A (2266) 2WTK:B;4OLI:A

46 in KLIFS 1AD5:A,B;1AGW:A,B (1016) 3OCS:A;5YT3:A (8)
KinCore 1AD5:A,B;1AGW:A,B (1097) 5YT3:A 7PUE:A
KinaMetrix 1AD5:A;1AGW:A (397)

47 in KLIFS 4C58:A;4C59:A
KinCore 4C58:A;4C59:A

48 in KLIFS 3UIU:A,B;4FEQ:A (7) 3W18:B;4FG8:A
KinCore 3UIU:A,B;4FEQ:A (6) 4FG9:A,B
KinaMetrix 3UIU:A;4FEQ:A 4FG8:A

51 other KLIFS 3GGF:A,B
KinCore 3GGF:A,B
KinaMetrix 3GGF:A

52 other KLIFS 3DJ5:A;3DJ6:A
KinCore 3DJ5:A;3DJ6:A
KinaMetrix 3DJ5:A;3DJ6:A

53 other KLIFS 4UZD:A,B 2J4Z:B;4UYN:A
KinCore 2J4Z:B;4UYN:A (5)
KinaMetrix 3UC3:A;4UYN:A

54 other KLIFS 6BX6:A 2JAV:A
KinaMetrix 2JAV:A

57 in KLIFS 5B2M:A
KinCore 5B2M:A

58 out KLIFS 4EBV:A 4EBW:A;4I4F:A
KinCore 4EBW:A 4EBV:A;4I4F:A
KinaMetrix 4EBV:A;4EBW:A 4I4F:A

60 out KLIFS 1IRK:A;3LW0:A,B (26)
KinCore 1IRK:A;3LW0:A,B (26)
KinaMetrix 1IRK:A;3LW0:A (11)

64 out KLIFS 7S25:A
KinCore 7S25:A,B

65 out KLIFS 2RF9:A 2RF9:B;3NAX:A (24)
KinCore 4QQC:A 2RF9:A,B;3NAX:A (28)
KinaMetrix 2RF9:A 3NAX:A;3QC4:A (7)

66 other KLIFS 4NUS:A;5D9K:A,B 2XNO:A
KinCore 4NUS:A;5D9K:A,B
KinaMetrix 4NUS:A;5D9K:A

67 other KLIFS 6TUA:A 2XK3:A;2XK4:A (5)
KinCore 6TUA:A 2XK3:A;2XK4:A (5)
KinaMetrix 4A4X:A

Continued on the next page
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Table 3.6: Conflicting clusters.

ID DFG Source in other out

68 other KinCore 3D7T:B
KinaMetrix 3D7T:B

73 out KLIFS 2AC3:A
KinCore 1LUF:A 2AC3:A
KinaMetrix 1LUF:A;2AC3:A

76 out KLIFS 4YZ9:C 3GCP:A;3HUC:A (9)
KinCore 3GCP:A;3HUC:A (9) 4YZ9:C
KinaMetrix 2H34:A;3GCP:A (5)

77 out KLIFS 1GZN:A 1GZK:A;1GZO:A (4)
KinCore 1GZK:A;1GZN:A (5)
KinaMetrix 1GZK:A;1GZN:A

78 out KLIFS 4YZ9:A,B 3ZZW:B;6Y23:A,B
KinCore 6Y23:A,B 3ZZW:B;4YZ9:A,B
KinaMetrix 4YZ9:A

86 out KLIFS 4EH6:A;6RUU:C 1BI7:A;1BI8:A,C (380)
KinCore 2EWA:A 3TWJ:B,D 1FPU:A,B;1G3N:A,E (412)
KinaMetrix 2EWA:A 1FPU:A;1G3N:A (144)

88 out KLIFS 2R5T:A;3HDM:A
KinCore 2R5T:A;3HDM:A

89 out KinaMetrix 3UC4:A 3UDB:A
90 out KLIFS 3UBD:A;4EL9:A

KinCore 3UBD:A;4EL9:A
91 out KLIFS 5UWD:A

KinCore 5UWD:A
92 out KLIFS 3DK6:A,B;4YC8:A,B (7)

KinCore 3DK6:A,B;4YC8:A,B (10)
KinaMetrix 3DK6:A;4YC8:A

93 out KLIFS 3DK3:A,B;3DK7:A (6)
KinCore 3DK3:A,B;3DK7:A (6)
KinaMetrix 3DK3:A;3DK7:A

94 out KLIFS 2WQB:A
KinCore 2WQB:A
KinaMetrix 2WQB:A

95 out KLIFS 3DK7:B;4FZF:B (6)
KinCore 4FZF:B;4NZW:B (5)
KinaMetrix 4FZF:B;4I92:A (5)

96 out KLIFS 5CEK:A;5CEM:A 4OBO:B;4OBP:B (16)
KinCore 6BRJ:A 4OBO:B;4OBP:B (18)

98 other KLIFS 2WTV:A,B;3H10:D 3H10:A,B
KinCore 2WTV:A,B;3H10:A,B
KinaMetrix 2WTV:A;3H10:A

99 out KLIFS 3FME:A 4RLO:B
KinaMetrix 3FME:A

100 out KLIFS 1BYG:A;3OCT:A
KinCore 1BYG:A;3OCT:A
KinaMetrix 1BYG:A

101 out KLIFS 2CLQ:A,B;3SXR:A,B (8)
KinCore 2CLQ:A,B;3SXR:A,B (8)

Continued on the next page
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Table 3.6: Conflicting clusters.

ID DFG Source in other out

KinaMetrix 2CLQ:A;3MN3:A (5)
102 out KLIFS 2JIT:B;2JIU:B (7)

KinCore 2JIT:B;2JIU:B (7)
103 out KLIFS 4APC:A,B;4B9D:A,B

KinCore 4APC:A,B;4B9D:A,B
KinaMetrix 4APC:A;4B9D:A

104 out KLIFS 1FVR:A,B;2G2F:A (10)
KinCore 1FVR:A,B;2G2F:A (12)
KinaMetrix 1FVR:A;2G2F:A (5)

110 other KLIFS 5B2K:A
KinCore 5B2K:A

111 out KLIFS 1M52:A,B;1OPK:A (12)
KinCore 1M52:A,B;1OPK:A (12)
KinaMetrix 1M52:A;1OPK:A (6)

112 out KLIFS 3ZZW:A;4GT4:B
KinCore 3ZZW:A;4GT4:B
KinaMetrix 3ZZW:A

113 out KinaMetrix 3P86:A
114 out KLIFS 3SOA:A;6S75:A

KinCore 3SOA:A 6S75:A;7M0K:A,B
KinaMetrix 3SOA:A

115 out KLIFS 7M0L:A,B 3A60:B
KinCore 7M0L:A,B

116 out KLIFS 5J7S:A;5Y8U:A
KinCore 5Y8U:A

117 out KLIFS 3WZU:A
KinCore 3WZU:A

120 out KLIFS 2G2F:B;4WA9:A,B
KinCore 2G2F:B;4WA9:B

121 other KLIFS 5B2L:A;5Y90:A (8)
KinCore 5B2L:A;5Y90:A (8)
KinaMetrix 5B2L:A

122 other KLIFS 3ET7:A;3FZR:A (8)
KinCore 3ET7:A;3FZR:A (7)
KinaMetrix 3ET7:A;3FZR:A (6)

123 other KLIFS 3FZP:A
KinCore 3FZP:A
KinaMetrix 3FZP:A

124 other KLIFS 2BAQ:A;2GTM:A (15)
KinCore 2BAQ:A;2GTM:A (12) 6BSD:A 3IW5:A
KinaMetrix 2BAQ:A;2GTM:A (13)

125 out KLIFS 4EH7:A;4GEO:A (5) 4I20:A
KinCore 4GEO:A;4I1Z:A (5)
KinaMetrix 4EH7:A;4GEO:A 4I1Z:A;4I20:A

126 out KLIFS 3MTL:A
KinCore 3MTL:A
KinaMetrix 3MTL:A

127 other KLIFS 4AOT:A,B

Continued on the next page
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Table 3.6: Conflicting clusters.

ID DFG Source in other out

KinCore 4AOT:A,B
KinaMetrix 4AOT:A

128 other KLIFS 2XNM:A;2XNN:A
130 other KLIFS 1YW2:A;4FA2:A (4)

KinCore 1YW2:A;4FA2:A (4)
KinaMetrix 1YW2:A;4FA2:A

131 other KLIFS 3PIY:A
KinCore 3PIY:A
KinaMetrix 3PIY:A

136 out KinCore 2QQ7:B
137 out KLIFS 2J4Z:A;4UZH:A 3UNZ:A,B;3UO6:A,B (13)

KinCore 2J4Z:A;3UNZ:A,B (15)
KinaMetrix 2J4Z:A;3UNZ:A (8)

138 out KLIFS 2BMC:A,B;3EFW:A,B (22)
KinCore 2BMC:A,B;3EFW:A,B (22)
KinaMetrix 3K5U:A 2BMC:A;3EFW:A (11)

139 out KLIFS 3LAU:A;3W10:A 1MUO:A
KinCore 1MUO:A;3LAU:A
KinaMetrix 3LAU:A;3W10:A

140 out KLIFS 2J50:A,B;3DAJ:A (9)
KinCore 2J50:A,B;3DAJ:A (7)
KinaMetrix 2J50:A;3DAJ:A (6)

141 out KLIFS 4ZTR:A
KinCore 4ZTR:A
KinaMetrix 4ZTR:A

142 out KLIFS 2W5B:A 2W5H:A
KinCore 2W5B:A;2W5H:A
KinaMetrix 2W5B:A;2W5H:A

144 out KLIFS 5EW9:A 6C83:B;6CPG:A,D
KinCore 5EW9:A;6C83:B
KinaMetrix 5EW9:A

145 out KLIFS 5E7R:A;6YG2:A 4ZJJ:D;4ZLO:A
KinCore 4ZJJ:D;4ZLO:A
KinaMetrix 4ZLO:A

146 out KLIFS 6ANL:A
KinCore 6ANL:A

148 other KLIFS 3BV2:A;3BV3:A (9)
KinCore 3BV2:A;3O8P:A 4UMT:A;4UMU:A 3BV3:A;4EH8:A
KinaMetrix 4EH8:A;4UMT:A (4) 3BV2:A;3BV3:A

149 other KLIFS 3ZFY:A,B;5L6O:A (5)
KinCore 3ZFY:A,B;5L6O:A
KinaMetrix 3ZFY:A;5L6O:A

150 other KLIFS 3OEF:X
KinCore 3OEF:X
KinaMetrix 3OEF:X

151 in KLIFS 4O0U:A
KinCore 4O0U:A
KinaMetrix 4O0U:A

Continued on the next page
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Table 3.6: Conflicting clusters.

ID DFG Source in other out

153 out KLIFS 7O2V:A
KinCore 7O2V:A

154 other KLIFS 5W5J:B
KinCore 5W5J:B

155 out KLIFS 4JAI:A
KinCore 4JAI:A
KinaMetrix 4JAI:A

156 out KLIFS 3O51:A
KinCore 3O51:A
KinaMetrix 3O51:A

158 out KLIFS 7AYH:A
KinCore 7AYH:A

159 other KLIFS 3C4C:B
KinCore 3C4C:B
KinaMetrix 3C4C:B

Table 3.7: Profile positions. The columns, in left-to-right order: (1) structural
region name, (2) PF00069 profile position, (3) Src residue and position, (4) Aurora
residue and position, (5) the most frequently contacting ligand name, (6) the total
number of ligand contacts, (7) the total importance of selected variables for the
DFGin, DFGother, and DFGout models corresponding to this position, (8) the total
importance for the KinActive model, (9), the top-1 important variable for the DFG*
models, and (10) the top-1 important variable for the KinActive model.

Reg. Pos. Src Aurora Lig. #Cont. ItotDFG ItotKA Ftop−1
DFG Ftop−1

KA

1 F133 42J 50 0.00 0.00
2 E134 551 54 0.00 0.00
3 I135 C1V 91 0.00 0.00

β1

4 E273 G136 C1V 60 0.00 0.00
5 V274 R137 LU8 632 0.00 0.00
6 K275 P138 ADP 402 0.12 0.00 Ψ6

7 L276 L139 ANP 5611 0.06 0.00 D7Cβ ,48Cβ
D7Cβ ,80Cβ

8 G277 G140 ANP 4497 0.00 0.00

9 Q278 K141 ANP 3425 0.07 0.00 D9Cβ ,141Cβ

10 G279 G142 ANP 2681 0.05 0.00 SASA10

β2

11 C280 K143 ANP 1731 0.01 0.00 Pd10,11,12,13
12 F281 F144 ANP 2319 0.14 0.00 SASA12

13 G282 G145 ANP 1592 0.09 0.00 Ψ13

14 E283 N146 ANP 997 0.54 0.00 Pd14,15,16,17

Continued on the next page...
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Table 3.7: Profile positions.

Reg. Pos. Src Aurora Lig. #Cont. ItotDFG ItotKA Ftop−1
DFG Ftop−1

KA

15 V284 V147 ANP 6257 0.45 0.00 Pd14,15,16,17 D15Cβ ,142Cβ

16 W285 Y148 PDY 234 0.31 0.00 Pd14,15,16,17
17 M286 L149 P4O 769 0.30 0.00 Pd14,15,16,17

18 G287 A150 FGF 24 0.00 0.00
19 T288 R151 I46 24 0.00 0.00 SASA19

20 E152 STU 18 0.00 0.00
21 W289 K153 5WE 32 0.00 0.00
22 N290 Q154 LU8 68 0.06 0.00 Ψ22

β3

23 G291 S155 LVY 28 0.00 0.00 SASA23

24 T292 K156 SER 26 0.00 0.00
25 T293 F157 SER 71 0.00 0.00
26 R294 I158 B97 168 0.00 0.00 SASA26

27 V295 L159 LU8 157 0.00 0.01 Pd27,28,29,30 SASA27

28 A296 A160 ANP 7437 0.28 0.04 D28Cβ ,142Cβ
D28Cβ ,142Cβ

29 I297 L161 LU8 1883 0.00 0.00 Pd27,28,29,30
30 K298 K162 ANP 6963 0.83 0.00 D30Cβ ,142Cβ

D30Cβ ,48Cβ

31 T299 V163 VFS 427 0.00 0.00
32 L300 L164 ANP 798 0.00 0.00
33 K301 F165 C1V 91 0.04 0.00 χ1

33 Ψ33

αC

34 P302 K166 JBJ 185 0.00 0.00
35 G303 A167 ANP 70 0.00 0.00 SASA35

36 T304 Q168 JBJ 125 0.00 0.00
37 M305 L169 1F8 126 0.00 0.00
38 S306 E170 1F8 79 0.00 0.00
39 P307 K171 SCN 46 0.04 0.01 Φ39 SASA39

40 A172 VNS 77 0.00 0.00 SASA40

41 G173 SCN 73 0.07 0.01 χ1
41 Ψ41

42 V174 B5G 123 0.00 0.00
43 E308 H176 CO3 26 0.04 0.00 Pd43,44,45,46
44 A309 Q177 ANP 418 0.04 0.00 Pd43,44,45,46 SASA44

45 F310 L178 VNS 577 0.12 0.00 Φ45

46 L311 R179 LU8 328 0.04 0.00 Pd43,44,45,46
47 Q312 R180 B96 180 0.00 0.00 SASA47

48 E313 E181 ADP 3870 0.32 0.68 D14Cβ ,48Cβ
D48Cβ ,142Cβ

49 A314 V182 VNS 488 0.00 0.00
50 Q315 E183 LU8 83 0.00 0.00

Continued on the next page...
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Table 3.7: Profile positions.

Reg. Pos. Src Aurora Lig. #Cont. ItotDFG ItotKA Ftop−1
DFG Ftop−1

KA

51 V316 I184 STI 527 0.01 0.17 SASA51 SASA51

52 M317 Q185 STI 2514 0.00 0.00 SASA52

53 K318 S186 2AN 96 0.00 0.00 Pd53,54,55,56
54 K319 H187 DTU 28 0.22 0.00 SASA54

55 L320 L188 STI 662 0.11 0.00 SASA55

56 R321 R189 5WE 52 0.00 0.00 Pd53,54,55,56
57 H322 H190 6J9 35 0.00 0.00
58 E323 P191 CCX 19 0.00 0.00
59 K324 N192 1HW 12 0.00 0.00
60 L325 I193 STI 746 0.05 0.00 SASA60

61 V326 L194 ANP 7730 0.33 0.00 D61Cβ ,141Cβ
D48Cβ ,61Cβ

β4

62 Q327 R195 SB4 730 0.20 0.00 χ1
62

63 L328 L196 SB4 1083 0.15 0.00 SASA63

64 Y329 Y197 LU8 183 0.00 0.00 SASA64

65 A330 G198 LU8 158 0.00 0.00 Pd65,66,67,68

66 V331 Y199 LU8 168 0.00 0.00 Pd65,66,67,68

67 V332 F200 LU8 141 0.00 0.00 Pd65,66,67,68

68 S333 H201 1F8 108 0.00 0.03 Pd68,69,70,71

69 D202 551 63 0.04 0.03 Ψ69 Pd68,69,70,71

β5

70 E334 A203 A8Q 37 0.00 0.03 SASA70 Pd68,69,70,71

71 E335 T204 M77 17 0.00 0.03 Pd68,69,70,71

72 P336 R205 C1V 82 0.00 0.00 SASA72

73 I337 V206 1F8 107 0.00 0.00
74 Y338 Y207 C1V 108 0.00 0.00
75 I339 L208 LU8 2561 0.00 0.00
76 V340 I209 LU8 1410 0.17 0.00 Φ76

77 T341 L210 ANP 8028 0.09 0.02 D77Cβ ,141Cβ
D48Cβ ,77Cβ

78 E342 E211 ANP 7870 0.04 0.00 D78Cβ ,79Cβ

79 Y343 Y212 ANP 7824 0.23 0.00 D79Cβ ,142Cβ
D79Cβ ,142Cβ

80 M344 A213 ANP 7873 0.15 0.00 D80Cβ ,142Cβ
D7Cβ ,80Cβ

81 S345 P214 ANP 7083 0.22 0.14 D81Cβ ,142Cβ
D48Cβ ,81Cβ

82 K346 L215 STU 4755 0.14 0.00 D30Cβ ,82Cβ

HD

83 G347 G216 ANP 6086 0.00 0.01 D83Cβ ,142Cβ
D83Cβ ,127Cβ

84 S348 T217 ANP 4882 0.12 0.00 D84Cβ ,142Cβ
D48Cβ ,84Cβ

85 L349 V218 IMD 273 0.00 0.00

Continued on the next page...
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Table 3.7: Profile positions.

Reg. Pos. Src Aurora Lig. #Cont. ItotDFG ItotKA Ftop−1
DFG Ftop−1

KA

86 L350 Y219 ANP 658 0.00 0.00
87 D351 R220 ANP 3528 0.32 0.03 D87Cβ ,142Cβ

D87Cβ ,142Cβ

88 F352 E221 D5Q 317 0.00 0.00
89 L353 L222 IMD 107 0.00 0.00
90 K354 Q223 IMD 169 0.08 0.00 χ1

90

91 T357 K224 YY3 285 0.00 0.00
92 G358 L225 LDN 80 0.00 0.00
93 K359 S226 LDN 98 0.00 0.00
94 Y360 K227 9XA 26 0.00 0.00

HE

95 L361 F228 A8Q 123 0.00 0.00
96 R362 D229 STI 35 0.00 0.00
97 L363 E230 STI 34 0.00 0.00
98 P364 Q231 MS7 30 0.16 0.00 Ψ98

99 Q365 R232 551 109 0.00 0.00
100 L366 T233 A8Q 125 0.00 0.00 Φ100 SASA100

101 V367 A234 MS7 40 0.07 0.00 χ1
101

102 D368 T235 CCX 26 0.00 0.00 SASA102

103 M369 Y236 551 108 0.00 0.00
104 A370 I237 A8Q 115 0.00 0.00
105 A371 T238 GLN 8 0.00 0.00
106 Q372 E239 CCX 8 0.09 0.00 Φ106

107 I373 L240 551 97 0.00 0.00
108 A374 A241 LGY 3 0.00 0.00
109 S375 N242 6J9 21 0.00 0.00
110 G376 A243 ARS 5 0.00 0.00
111 M377 L244 ARS 11 0.00 0.00
112 A378 S245 6J9 22 0.07 0.01 Pd112,113,114,115 SASA112

113 Y379 Y246 4OR 47 0.07 0.00 Pd112,113,114,115
114 V380 C247 STI 557 0.22 0.00 SASA114

115 E381 H248 XK4 7 0.07 0.00 Pd112,113,114,115

116 R382 S249 PG6 17 0.00 0.00 SASA116

117 M383 K250 4OR 38 0.00 0.01 SASA117

118 N384 R251 ANP 31 0.06 0.00 SASA118

119 Y385 V252 STI 569 0.00 0.00 SASA119

120 V386 I253 STI 256 0.00 2.99 SASA120

121 H387 H254 STI 642 0.23 0.06 Pd121,122,123,124 Pd121,122,123,124

Continued on the next page...
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Table 3.7: Profile positions.

Reg. Pos. Src Aurora Lig. #Cont. ItotDFG ItotKA Ftop−1
DFG Ftop−1

KA

122 R388 R255 STI 192 0.09 0.16 Φ122 SASA122

123 D389 D256 ANP 870 0.46 0.14 Ψ123 SASA123

CL

124 L390 I257 AF3 7 0.12 0.03 Pd121,122,123,124 Pd121,122,123,124
125 R391 K258 ANP 931 0.04 0.21 Pd123,124,125,126 D125Cβ ,142Cβ

126 A392 P259 IMD 335 0.00 0.00 Pd123,124,125,126
127 A393 E260 ANP 5551 0.61 0.01 D127Cβ ,142Cβ

D83Cβ ,127Cβ

128 N394 N261 ANP 4915 0.31 0.01 D127Cβ ,128Cβ
D128Cβ ,141Cβ

129 I395 L262 LU8 1026 0.00 0.00
130 L396 L263 ANP 7892 0.11 0.00 D130Cβ ,142Cβ

D123Cβ ,130Cβ

131 V397 L264 T3B 272 0.00 0.00
132 G398 G265 499 26 0.04 0.00 χ1

132

133 E399 S266 9E1 61 0.00 0.00 Φ133 χ1
133

134 N400 A267 V62 59 0.05 0.00 Pd134,135,136,137
135 L401 G268 CCX 20 0.05 0.00 Pd134,135,136,137
136 V402 E269 CCX 19 0.05 0.00 Pd134,135,136,137
137 C403 L270 A8Q 66 0.11 0.00 Ψ137 χ1

137

138 K404 K271 V62 59 0.00 0.00 Pd137,138,139,140

ALN

139 V405 I272 STI 1195 1.71 0.05 Pd139,140,141,142 Pd139,140,141,142
140 A406 A273 ANP 7621 2.66 0.05 Pd139,140,141,142 Pd139,140,141,142
141 D407 D274 ANP 7320 4.75 2.53 Pd139,140,141,142 Pd141,142,143,144
142 F408 F275 LU8 3121 4.28 3.80 Pd139,140,141,142 Pd141,142,143,144
143 G409 G276 ATP 1172 0.12 2.77 Ψ143 Pd141,142,143,144

144 L410 W277 ANP 1107 0.18 2.69 Ψ144 Pd141,142,143,144

145 A411 S278 ANP 373 0.11 0.49 Φ145 SASA145

146 R412 V279 ANP 328 0.10 0.40 Φ146 Φ146

147 L413 H280 JBJ 181 0.00 0.07 Pd145,146,147,148

148 I414 A281 4BM 292 0.00 0.04 Pd145,146,147,148

149 E415 P282 ANP 195 0.00 0.10 χ1
149

150 D416 S283 VNS 106 0.00 0.00 Pd147,148,149,150

151 N417 S284 JBJ 43 0.00 0.00 SASA151

152 E418 R285 4BM 95 0.00 0.00
153 NH4 30 0.00 0.01 Pd153,154,155,156

154 Y419 R286 746 95 0.00 0.01 Pd153,154,155,156

155 T420 T287 ATP 49 0.00 0.01 Pd153,154,155,156

156 A421 T288 ANP 50 0.00 0.01 Pd153,154,155,156

ALC

157 R422 L289 ANP 79 0.00 0.28 Pd157,158,159,160

Continued on the next page...
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Table 3.7: Profile positions.

Reg. Pos. Src Aurora Lig. #Cont. ItotDFG ItotKA Ftop−1
DFG Ftop−1

KA

158 Q423 C290 ANP 94 0.00 0.62 SASA158 Pd157,158,159,160

159 G424 G291 ANP 67 0.00 0.39 Pd157,158,159,160

160 A425 T292 ANP 168 0.04 0.39 Pd160,161,162,163 Pd157,158,159,160
161 K426 L293 SCN 41 0.04 0.11 Pd160,161,162,163 Pd158,159,160,161
162 K430 D294 IMD 51 0.17 0.00 Φ162

163 W431 Y295 IMD 40 0.08 0.00 Pd160,161,162,163
164 T432 L296 SCN 36 0.08 0.01 Pd164,165,166,167 χ1

164

165 A433 P297 1M3 9 0.08 0.00 Pd164,165,166,167
166 P434 P298 IRG 53 0.05 0.00 Pd164,165,166,167
167 E435 E299 I46 50 0.05 0.00 Pd164,165,166,167
168 A436 M300 SCN 43 0.00 0.00
169 A437 I301 CPS 47 0.02 0.00 Φ169

170 L438 E302 IRG 63 0.00 0.00
171 Y439 G303 I46 91 0.00 0.00

172 G440 R304 CCX 56 0.00 0.00
173 R441 M305 SCN 42 0.00 0.00

HF

174 F442 H306 TPO 44 0.00 0.16 SASA174

175 T443 D307 ANP 17 0.00 0.00
176 I444 E308 IMD 12 0.00 0.00
177 K445 K309 IMD 12 0.00 0.00 χ1

177

178 S446 V310 1N1 13 0.00 0.00
179 D447 D311 AF3 6 0.00 0.00
180 V448 L312 THR 12 0.00 0.00
181 W449 W313 1M3 9 0.00 0.00
182 S450 S314 AF3 9 0.09 0.00 SASA182

183 F451 L315 CYS 9 0.00 0.00
184 G452 G316 CYS 2 0.00 0.00
185 I453 V317 1M3 7 0.06 0.00 Ψ185

186 L454 L318 551 99 0.00 0.00 Pd186,187,188,189
187 L455 C319 MS7 84 0.00 0.00 Pd186,187,188,189
188 T456 Y320 LEU 15 0.00 0.00 Pd186,187,188,189
189 E457 E321 IMD 112 0.00 0.00 Pd186,187,188,189
190 L458 F322 A8Q 121 0.00 0.00
191 T459 L323 MS7 49 0.00 0.00

192 T460 V324 LOT 35 0.00 0.00

Continued on the next page...



3.6 Supplementary Information 128

Table 3.7: Profile positions.

Reg. Pos. Src Aurora Lig. #Cont. ItotDFG ItotKA Ftop−1
DFG Ftop−1

KA

193 G462 G325 IMD 77 0.00 0.00

FL

194 R463 K326 IMD 101 0.00 0.00
195 V464 P327 IMD 118 0.00 0.00 Pd195,196,197,198
196 P465 P328 LOW 23 0.00 0.00 Pd195,196,197,198
197 Y466 F329 PDY 46 0.01 0.00 Φ197

198 P467 E330 PDY 59 0.02 0.00 Φ198

199 G468 A331 PDY 47 0.09 0.00 Pd199,200,201,202
200 M469 N332 IMD 36 0.09 0.00 Pd199,200,201,202
201 V470 T333 IMD 32 0.09 0.00 Pd199,200,201,202

HG

202 N471 Y334 CPS 39 0.09 0.00 Pd199,200,201,202
203 R472 Q335 CPS 37 0.00 0.00
204 E473 E336 SCN 21 0.00 0.00
205 XJV 2 0.00 0.00
206 CPS 19 0.00 0.00
207 IHP 12 0.00 0.00
208 LEU 8 0.00 0.00
209 V474 T337 1M3 23 0.00 0.00
210 L475 Y338 CPS 36 0.08 0.00 SASA210

211 D476 K339 ANP 15 0.00 0.00 Φ211

212 Q477 R340 SCN 11 0.00 0.00
213 V478 I46 56 0.00 0.00
214 E479 PDY 34 0.00 0.00

215 IHP 30 0.00 0.00
216 LEU 15 0.00 0.00
217 I46 48 0.00 0.00
218 SCN 26 0.00 0.02 SASA218

219 IWU 25 0.00 0.00
220 1M3 14 0.00 0.00
221 SCN 15 0.00 0.00
222 I341 1M3 12 0.00 0.00 Ψ222

223 R480 S342 C15 8 0.00 0.00 χ1
223

224 G481 R343 IRG 51 0.00 0.00 Pd224,225,226,227 χ1
224

225 Y482 V344 IRG 61 0.00 0.00 Pd224,225,226,227
226 R483 E345 I46 73 0.00 0.00 Pd224,225,226,227
227 M484 F346 IRG 40 0.00 0.00 Pd224,225,226,227
228 P485 T347 XHV 15 0.00 0.00

Continued on the next page...
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Table 3.7: Profile positions.

Reg. Pos. Src Aurora Lig. #Cont. ItotDFG ItotKA Ftop−1
DFG Ftop−1

KA

229 C486 F348 PDY 31 0.08 0.00 χ1
229

230 P487 P349 3YY 17 0.00 0.00
231 P488 D350 STI 24 0.00 0.00
232 E489 F351 STI 33 0.00 0.00 SASA232

HH

233 C490 V352 MS7 45 0.01 0.01 SASA233 Φ233

234 P491 T353 STI 38 0.00 0.00
235 E492 E354 YDJ 19 0.00 0.01 SASA235

236 S493 G355 YDJ 5 0.06 0.00 Ψ236

237 L494 A356 STI 28 0.00 0.00
238 H495 R357 IWU 15 0.00 0.00
239 D496 D358 IWU 8 0.00 0.00
240 L497 L359 PG6 2 0.00 0.00
241 M498 I360 KWD 17 0.00 0.00
242 C499 S361 IWU 15 0.00 0.00 Pd242,243,244,245
243 Q500 R362 THR 14 0.00 0.00 SASA243

244 C501 L363 THR 3 0.00 0.00 χ1
244

245 W502 L364 THR 7 0.00 0.00 Pd242,243,244,245
246 R503 K365 9HB 10 0.05 0.00 SASA246

247 K504 H366 I46 56 0.09 0.00 χ1
247

248 E505 N367 I46 59 0.00 0.00
249 P506 P368 IRG 55 0.00 0.00
250 E507 S369 I46 58 0.00 0.00
251 E508 Q370 3U9 16 0.00 0.00 SASA251

HI

252 R509 R371 I46 27 0.17 0.00 SASA252

253 P510 P372 XK4 10 0.00 0.00
254 T511 M373 XK4 9 0.11 0.00 SASA254

255 F512 L374 XK4 11 0.00 0.00
256 E513 R375 ANP 36 0.13 0.00 χ1

256

257 Y514 E376 ALA 9 0.00 0.00 SASA257

258 L515 V377 ALA 5 0.02 0.00 SASA258

259 L378 6J9 21 0.00 0.00
260 E379 LGY 5 0.00 0.00
261 H380 GLN 4 0.00 0.00
262 P381 GLN 3 0.00 0.00 SASA262

263 W382 GLN 5 0.00 0.00
264 I383 GLN 7 0.00 0.00
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Table 3.8: Parameters subject to automatic fine-tuning with optuna.

Parameter Min/Choice1 Max/Choice2 Description

Logistic Regression

C 0 1 Controls the regularization
strength. Lower values imply
stronger regularization.

l1_ratio 0 1 The ρ parameter balances l1 and
l2 regularization as described in
the main text.

class_weight - balanced Enables weighting samples ac-
cording to their class frequencies.

XGBoost

learning_rate 10−5 10 The step in the gradient descent
algorithm.

max_depth 4 12 Maximum tree depth.
gamma 10−3 10 Regularization parameter – a

complexity cost associated with
introducing nodes.

reg_lambda 10−3 5 Weight of the l2 regularization.
reg_alpha 10−3 5 Weight of the l1 regularization
colsample_bytree 0.1 1.0 A fraction of features sampled for

an individual tree.
colsample_bylevel 0.1 1.0 A fraction of features sampled

when introducing a node of an in-
dividual tree.

scale_pos_weight 0 5 For binary classification, the loss
multiplier for 1-labeled instances.
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Table 3.9: Software and data sources

Name/Title Category Purpose/Context/Usage Ref.

Standalone software

ChimeraX Structure visualization Visualizing structural superposi-
tions and individual structures.

[79]

mafft Sequence alignment Pairwise sequence alignments. [68]

Python libraries

biotite Toolkit Handling structure-related data. [80]
ete3 Phylogeny Dendrograms’ visualization. [81]
matplotlib Data visualization Producing plots.
optuna Machine-learning Hyperparameters’ optimization. [78]
pandas Data manipulation Constructing and manipulating

tabular data.
[82]

PyHMMer Sequence HMM modeling Extracting domains [67]
scikit-learn Machine-learning Logistic Regression and perfor-

mance metrics.
[83]

scipy Scientific computing Agglomerative clustering algo-
rithms.

[84]

seaborn Data visualization Producing plots. [85]
shap Machine-learning Estimating SHAP values to com-

pute feature importance.
[76, 77]

xgboost Machine-learning Using as a part of a feature selec-
tion algorithm.

[73]

Developed software

eBoruta* Machine-learning Feature selection and ranking. -
lXtractor Toolkit Creating the PK data collection. -
KinActive Toolkit Reproducing and using the re-

sults of this study.
-

Data sources

UniProt Database Protein canonical sequences and
their metadata

[65]

PDB Database Protein structures and their
metadata.

[64]

SIFTS Database ID mapping between UniProt
and PDB.

[50]

Pfam Database PF00069 profile used with PyH-
MMer

[44]

* Inspired by two open-source implementations: BorutaPy (https://github.com/scikit-
learn-contrib/boruta_py) and BorutaShap (https://github.com/Ekeany/Boruta-Shap).

https://github.com/scikit-learn-contrib/boruta_py
https://github.com/scikit-learn-contrib/boruta_py
https://github.com/Ekeany/Boruta-Shap
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Chapter 4

Uncovering the DFG-out
sequence propensity
determinants

Abstract
Protein kinases cycle between active and inactive states, distinguished by a
few structural elements, including the activation loop and its conserved DFG
motif. In the inactive state, this motif can occupy a DFG-in conformation, a
rarer DFG-out conformation, and some even rarer others. The minor, DFG-
out conformation is a valuable drug target that can provide selectivity. The
sequence determinants that favor DFG-out in specific kinases are not fully
understood. To help elucidate them, we assembled and annotated a large
collection of kinase domains and applied a machine-learning procedure based
on ensembles of decision trees to extract putative determinants. We discovered
five within the tyrosine kinase subfamily, which have been proposed earlier to
affect activation loop folding and stabilization. Thus, machine learning can
shed light on conformational determinants, help understand kinase regulation
and improve drug design strategies.
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4.1 Introduction
Protein kinases (PKs) play a key role in cellular signaling pathways, where they
selectively phosphorylate target proteins to switch on or off protein–protein
interactions [1–4]. Kinase mutations can lead to severe disorders like cancer
[5–7], driving the development of small molecule inhibitors [8–11]. They cycle
between an inactive and an active state through a complex processes involving
substrate binding, oligomerization, and autophosphorylation [12, 13]. While
the active conformation is highly conserved across PKs, the inactive state
displays more variability, often distinguished by a few structural elements,
especially the αC-helix and the so-called activation loop [14].

The DFG motif, at the beginning of the activation loop, plays an important
role. In the active state, its DFG-Asp side chain points inward, stabilizing
the ATP substrate. Its DFG-Phe side chain points outward, occupying a
hydrophobic pocket between the αC helix and the β4 strand (Fig. 4.1). Most
PKs retain this “DFG-in” conformation in their inactive state [15, 16]. Others
switch to a DFG-out conformation, where the Asp and Phe side chain positions
are swapped, impeding substrate binding. Thus, conformational free energy
can favor DFG-in or DFG-out, depending on the kinase.

The DFG conformation is also important for inhibitor binding, can modu-
late it and be modulated. Type-I inhibitors target the DFG-in conformation,
competing with substrates. Type-II inhibitors such as Gleevec target the rarer
DFG-out conformation, helping to stabilize it and potentially offering a greater
selectivity [17]. Characterizing kinase structures and inhibitors has therefore
involved DFG motif annotations [15, 16, 18–21]. However, the factors influ-
encing inactive conformations are complex and still not fully understood for
every kinase.

Abl and Src, for example, have different DFG propensities, despite their
high sequence and structural similarity [22, 23]. Molecular dynamics simu-
lations quantified the in/out free energy difference for Src, and showed that
Gleevec (Imatinib) binding stabilizes the DFG-out state [24, 25]. Mutagen-
esis experiments highlighted several positions that increased Gleevec affinity
to Src, however the in/out conformational preferences could not be measured
separately [23]. Other positions were shown to stabilize the active conforma-
tion [26]. Hari et al. surveyed Map kinases [27], identifying two residues whose
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type correlates with the in/out preference: a residue preceding the DFG motif
and a “gatekeeper” residue within the activation loop that controls access to
the hydrophobic binding pocket [28]. Binding experiments validated these po-
sitions but did not explain their precise effect. It remains unclear whether they
determine the in/out free energy difference and by what mechanism. Haldane
et al. analyzed residue covariation during evolution to predict the propensity
for a large set of kinases to assume the DFG-out conformation [29]. However,
structural information is often obtained in the presence of ligands that alter
the conformational propensities.

The present study reexamines the determinants of DFG inactive preferences
using machine learning and comprehensive datasets. In line with previous
work, we seek a small number of “discriminating” residues that determine
or at least correlate with the intrinsic preference for a DFG-in or DFG-out
inactive conformation. We first improved the accuracy and coverage of a recent
collection and annotation of kinase structures [16]. The improved collection
contained 9920 structural domains, corresponding to 454 unique sequences.
Next, we labeled the domain sequences as tyrosine or serine-threonine kinases
(TK or STK) and their structures as active/inactive, DFG-in/DFG-out, and
apo or holo (a ligand is bound in the inactive site). Finally, we used ensembles
of decision trees to re-label the sequences automatically, according to their
intrinsic DFG-in/DFG-out structural preferences, and extracted information
on which sequence elements correlated with the in/out preferences. These
elements may help determine the activation loop conformation and could be
targeted in efforts to redesign it.

As a first, test problem, we verified that the decision tree models correctly
discriminated between TK and STK sequences, obtaining perfect classifiers for
this problem. The classifiers relied on positions with diverging conservation
patterns in TKs and STKs, some of which had been described and interpreted
earlier. We then applied the method to the DFG-in/DFG-out problem, using
kinase sequences for which structural information was available, along with
orthologous sequences lacking such information. While the models achieved
high classification accuracy, interpreting them within a conservation framework
proved challenging. However, for TK sequences, the models achieved near-
perfect classification by relying on just a few positions thought to be crucial
for stabilizing the DFG-out state. Moreover, the models captured intricate
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sequence patterns underlying the DFG propensities. As a further application,
we applied the models to 4089 PK sequences found in Swiss-Prot [30] for which
structure predictons by Alphafold2 were available [31, 32]. The predicted DFG
in/out labels agreed well with the predicted structures.

Figure 4.1: Inactive DFG-in (1FMK, green, apo) and DFG-out (2OIQ, wheat/o-
range, holo) Src tyrosine kinase’s conformations. DFG motif resides within the
activation loop between N and C lobes, highlighted with darker green and orange
colors. In the DFG-in conformation, the DFG-Phe occupies the binding pocket, ex-
cluding the possibility of Imatinib’s (STI-571) binding. In contrast, in the DFG-out
conformation, DFG-Phe is “flipped,” freeing the space for type-II inhibitors.

4.2 Materials and Methods

4.2.1 Kinase domain discovery

The SIFTS database (Structure Integration with Function, Taxonomy and Se-
quence) [33] was queried with a Hidden Markov Model (HMM) from Pfam,
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which can be thought of as a sequence profile. We used model PF00069, re-
ferred to as PK , which describes catalytic domains of kinases in general. This
model can overlook valid TK domains, especially when there are large inserts.
Therefore, in contrast to our previous work [16], we also used the PF07714
profile, referred to as PTK , which describes TK domains. Each Uniprot se-
quence was aligned to both profiles. We retained hits with a similarity bit
score above 50 for either profile, spanning at least 150 residues, where profile
and sequence coverage were above 70%. For sequences that had valid hits
from both profiles, we created a mapping based on the HMM node numbers
that frequently aligned to the same protein sequence position, assigning PK

numbering to PTK hits.
Hits from SIFTS have associated PDB structures. Following the transfer

of HMM node numbers from UniProt to PDB sequences, we extracted both
sequence and structural domains from the PDB entries. For structures with
gaps (due to unresolved regions), the PDB sequences were filled in based on
the Uniprot sequences (not necessarily fully identical, as mutations were em-
ployed in some structural studies). Each domain was characterized by struc-
tural variables, described below. For residues or groups with several alternate
conformations in a PDB entry, structural analyses were done using the first,
main conformation.

4.2.2 Ligand discovery and apo/holo structures

Atoms in each PDB structure were sorted into three main categories: poly-
mer, ligand, and solvent. Residues were polymeric if they appeared as such
in the Chemical Component Dictionary (CCD, ftp://ftp.wwpdb.org/pub/
pdb/data/monomers/components.cif). Solvent residues were defined by our
curated list. Remaining residues were annotated as ligands if they met the
following criteria: they had at least 5 atoms, their closest distance to a protein
atom was below 5 Å, they contacted at least 5 protein atoms and 3 protein
residues. This procedure can occasionally result in some atoms not falling in
any of the categories. We manually checked such cases for legitimate ligands
(e.g., disjoint ligands appearing due to structure inaccuracy).

We split the binding pocket into several subpockets (Table 4.1). For each
subpocket, we defined an associated ligand as “bound” based on the number

ftp://ftp.wwpdb.org/pub/pdb/data/monomers/components.cif
ftp://ftp.wwpdb.org/pub/pdb/data/monomers/components.cif
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C of connected residues and the distance D to any subpocket residues (Table
4.1). We considered that a ligand was likely to influence the DFG conformation
if it belonged to one of the following subpockets or subpocket pairs: xDFGx,
αC Glu, β3 Lys, αC-β4, Hinge & Hinge+, Hinge & Gatekeeper. Structures
with no ligands or ligands not within these groups were labeled as (effectively)
apo.

Table 4.1: Subpocket definitions

Name PK pos. Criterion

β3 Lys 30 D ≤7
αC Glu 48 C ≥1
αC-β4 52, 60–62 C ≥1
Gatekeper 77 C ≥1
Hinge 78–80 C ≥2
Hinge+ 81,82,84 C ≥1
Type2 114,118,121 C ≥1
xDFGx 139-143 C ≥1

4.2.3 Sequence alignment and clustering

We used the CD-HIT clustering algorithm [34] to group domain sequences
at three identity levels: 70%, 95%, and 100%. CD-HIT algorithm iteratively
constructs cluster via comparing sequence identities in two steps: (1) a fast k-
mer-based comparison, and (2) a slower sequence-to-sequence alignment. New
clusters are formed by sequences that fail to meet the identity threshold with
all existing cluster representatives. The CD-HIT program was executed using
the options -g 1 -n 5.

For MSAs’ construction we used the mafft tool (Multiple Alignment using
Fast Fourier Transform), providing a good balance between speed and accu-
racy. It employs the Fast Fourier Transform to rapidly identify homologous
regions and then applies progressive alignment to construct the final MSA [35].
For pairwise sequence alignments, we used the biotite tool [36] that imple-
ments local sequence alignment via dynamic programming (Smith-Waterman
algorithm [37]). Finally, we used PyHMMer tool [38] for sequence-to-HMM
alignments, which is a reimplementation of the well-known HMMer program
[39].
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4.2.4 Annotating PK families

To annotate PK families, we relied on UniProt family annotations. When
these were not available, we employed HMM models from the PANTHER
database (v17.0) [40], categorized as: non-receptor serine-threonine kinases
(class PC00167; 2015 HMM member families and subfamilies), non-receptor
tyrosine kinases (PC00168; 95), receptor serine-threonine kinases (PC00205;
23), and receptor tyrosine kinases (PC00233; 18). These HMM profiles were
aligned to each full-length UniProt sequence with a PK domain previously
annotated (above). Depending on the best-scoring hit, we assigned a “Tyr”
(TK) or “Ser/Thr” (STK) label.

4.2.5 Assigning DFG in/out and active/inactive labels

We used our recent ML models DFGclassifier and KinActive [16] to catego-
rize each PDB structure as active/inactive and DFG-in/DFG-out. The models
rely on variables extracted from each structure, including backbone dihedral
angles, pseudo-dihedral angles, interatomic distances, and solvent-accessible
surface areas (SASA).

4.2.6 Enriching sequence data with orthologs

Given the limited number of sequences with 3D structures, we collected orthol-
ogous sequences lacking an associated X-ray structure, from both PANTHER
and UniProt. PANTHER offers an ortholog matching from 143 supported or-
ganisms (http://pantherdb.org/services/oai/pantherdb/ortholog/matchortho).
Using sequence and organism identifiers as inputs, we obtained UniProt acces-
sions of prospective orthologs. Concurrently, the UniRef50 database groups
sequences at a 50% identity threshold [41, 42]. Utilizing the bioservices
Python library [43], we determined the corresponding UniRef50 cluster for
each of our sequences. Within these clusters, we identified ortholog candidates
by matching gene annotations; specifically, we retained a candidate ortholog if
its gene names overlapped with those of the query sequence. We aligned each
query-ortholog pair and computed the match identity.

http://pantherdb.org/services/oai/pantherdb/ortholog/matchortho
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4.2.7 Making and encoding sequence alignments

To create and encode multiple sequence alignments (MSAs), we used the map-
pings between UniProt sequences and HMM node numbers, detailed above.
For a given position profile p, we denote P(p) the corresponding amino acid
and P(p, i) or PFP (p, i) (i = 1–3) one of three numerical variables that corre-
spond to physicochemical properties, or “Protein FingerPrints” associated with
P(p). These variables results from a principal component analysis (PCA) to
transform the high-dimensional data amino acid data in the AAindex database
[44] into a lower-dimensional space [45, 46]. Combined for a set of sequences,
P(p, i) and PFP (p, i) lead to an MSA and its numerical representation, re-
spectively.

4.2.8 Constructing training datasets

To curate our training datasets, we pursued the following strategy:

1. Clustering of sequences: We clustered patched domain sequences,
previously predicted as inactive, using a 95% identity threshold.

2. Defining seed collections: The resulting clusters were partitioned
based on their apo/holo and TK/STK labels. These divisions formed
our initial, or “seed” sequence collections.

3. Ortholog enrichment: For each seed collection, we added orthologous
sequences. We selected (seed, ortholog) pairs that exhibited sequence
identity within the [70, 100)% range. For orthologs matching multiple
kinase sequences, the ortholog was assigned to the sequence with the
highest match score. Seed sequence labels were then transferred to the
associated orthologs.

4. Sequence encoding and dataset creation: We generated both raw
and numerically-encoded MSAs. The raw MSAs aided in examining
positions during feature selection (below), whereas the encoded MSAs
served as input for the ML models.

5. Sample weighting: To counter sequence redundancy, we assigned weights
to each sequence, inversely proportional to the size Ni of its 95% identity
cluster.
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4.2.9 ML models training and feature selection

Let X be an N ×M table of features (an encoded MSA) and Y an array of
N response variables (e.g., DFG-in and DFG-out classes encoded as 0 and 1).
Let f be an ML model, which relies on a set of trainable parameters θ and a
set of non-trainable, or “hyper” parameters λ. The model outputs predictions
Y = f(X; θ, λ), which are compared to the known values Yexp. A performance
metrics ρ(Y, Yexp) estimates how well the predictions match the known labels.
Hyperparameters are chosen to maximize ρ. Our model training comprised
the following steps:

1. Hyperparameter tuning: Solve an optimization problem λ′ = argmax
λ

ρ.
2. Performance estimation: compute ρ(f(X), Yexp).
3. Feature selection: Select features relevant to the objective, producing

a new dataset X ′ with fewer variables.
4. Hyperparameter tuning: Further optimize hyperparameters using

the new dataset X ′.
5. Performance estimation: compute ρ(f(X), Yexp).
6. Final model training: Use X ′ and the optimized hyperparameters to

train the final model.
7. Feature ranking: Order the selected MSA columns or features accord-

ing to their impact on the output ρ.

We used two ML algorithms: XGBoost (eXtreme Gradient Boosting; XGB)
[47] and Random Forest [48] (RF). Both use an ensemble of decision trees
trained greedily to partition Y based on the values of X, but have different
training paradigms. The first employs the gradient boosting algorithm [49],
which sequentially grows a collection of decision trees. Each added tree is
trained to better account for errors made by its predecessors through explic-
itly minimizing a binary cross-entropy loss function. We provided a detailed
desciption in our previous work [16]. In contrast, the RF trains decision trees
independently on random subsamples of X, different for each tree. It outputs
a consensus prediction averaged across the ensemble. The training of a single
decision tree is exemplified in the Supplementary Material.

We used the Optuna algorithm [50] to find optimal hyperparameters. It is
a Bayesian approach that sequentially optimizes an arbitrary objective func-
tion, FCV

1 (Y, Y ′) in our case (see below), for a predetermined number of steps
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(100 steps). To filter for relevant features, we employed the Boruta algorithm
[51], which retains those features that demonstrate consistently higher impor-
tance values compared to feaures with randomly scrambled labels. A feature
is marked as relevant if its importance surpasses a pre-defined percentile of
the scrambled features. We used the 95th percentile for XGB and 100th for the
RF. We used our own Boruta implementation implemented as an open-source
eBoruta tool. To estimate feature importance, we used Shapley’s additive
explanations (SHAP), which assess each variable’s contribution to the output
using a game theory approach [52]. We utilized the shap Python library [53]
to compute SHAP values and interactions [54]. For further details, see our
recent work [16].

4.2.10 Cross-validation

During cross-validation (CV), we split the dataset into N non-overlapping
parts (“folds”). Each fold was constructed from sequence clusters obtained at
the 95% sequence identity threshold and randomly sampled to reproduce the
class ratios of the full dataset (i.e., “balanced” sampling). During each iteration
of CV, one fold was left out for testing while the model was trained on the
remaining folds. We used ten CV folds in all cases except for hyperparameter
tuning, where five folds were used. New folds were generated each time the CV
was used to estimate the performance (see below), including hyperparameter
tuning.

4.2.11 Performance metrics

The ML models were scored on the accumulated CV predictions using one
of three binary performance metrics: precision (prc), recall (rec), and F1-
score. For true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) predictions, the precision is defined as

prc =
TP

TP + FP
(4.1)

Recall, or true positive rate (TPR), or sensitivity, is defined as

rec =
TP

TP + FN
(4.2)



149 4 Uncovering the DFG-out sequence propensity determinants

The F1-score is the harmonic mean of precision and recall:

F1 = 2
prc ∗ rec
prc + rec

=
2TP

2TP + FP + FN
(4.3)

4.2.12 Constructing and visualizing phylogenetic trees

We produced MSAs of TK and STK patched domain sequences using mafft.
MSAs were input to the iqtree2 tool [55] to build phylogenetic trees. This tool
iteratively modifies a phylogenetic tree’s structure to maximize its likelihood
according to a specific probabilistic model (Pfam.Q in our case) that describes
the evolutionary changes. We used the ete3 toolkit [56] to visualize the results.

4.2.13 Contact Frequency Maps

We used Contact Frequency Maps (CFMs) [57] to compare contact frequencies
between structural domains labeled as DFG-in and DFG-out. To construct
CFMs, we computed the minimum distance between residue pairs for each of
the N PK positions. We then employed a 6 Å threshold to denote the presence
(1) or absence (0) of a contact, resulting in an N×N matrix for each protein.
These were subsequently averaged across the DFG-in and DFG-out domain
structures to derive CFMin and CFMout. We then merged these into a single
matrix, placing the CFMin data below and CFMout data above the diagonal.
During the averaging process, any missing values were omitted, which could
possibly highlight infrequent contacts. In contrast, treating these as an absence
of contacts would give less weight to unmapped or unstructured regions. We
constructed CFMs for TK and STK domains separately.

A contact frequency difference map (CFDM) can emphasize differences in
contact frequencies by removing the contacts common to two conformations.
To obtain it, we subtracted CFMout from CFMin. CFDMin/out values range
between -1 (exclusive to DFG-out) and 1 (exclusive to DFG-in).
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4.3 Results

4.3.1 An updated collection of kinase domains

We updated our recent kinase collection [16] using the latest SIFTS [33] version
encompassing 62790 UniProt sequences mapped to 206987 PDB entries (as of
7/2023). We also improved the domain discovery protocol to better account for
tyrosine kinase sequences (see Methods). Applying this protocol to all SIFTS
sequences resulted in 739 hits using a general PK domain HMM profile PK

and 699 using a profile PTK specific for TKs, for a total of 710 PK-domain-
containing sequences. These corresponded to 7929 initial PDB entries and
12002 protein chains, 9920 of which contained valid PK domains with at least
100 residues and 80% identity to UniProt sequences. There were a total of 454
unique UniProt entries associated with at least one domain structure.

Using highly accurate ML models developed earlier [16], we annotated
the structures as active or inactive and their DFG conformations as DFG-
in, DFG-out, or DFG-other. There were 5724/4196 active/inactive structures
and 8733/1082/105 in/out/other structures. 8657 (87%) of the domains were
ligand-bound, while the other 1263 were apo. There were 9769 ligand–domain
pairs in total. 852 domains had multiple contacting ligands, ranging from 2
to 9 (5S7I:B), and 95 ligands were shared between multiple domains (191 in
total). We subdivided bound ligands into effectively apo (ligand away froom
the activation loop) or holo (8767), relying on rule-based subpocket definitions
(see Methods). The ligands spanned the ATP binding pocket region and the
DFG-out-specific subpocket housing Type-II inhibitors, which was occupied
in 744 domains (Fig. 4.8). Overall, there were 8534 holo and 1386 apo (or
effectively apo) domains.

There were 7172 Ser/Thr PKs (STKs), with the CMGC (2082) and CAMK
(977) subfamilies being the most abundant, and 1465 lacking a subfamily anno-
tation. The other 2748 entries were tyrosine kinases (TKs). Table 4.2 reports
the sequence and structure labels. All active and most of the inactive domains
adopted the DFG-in orientation. TKs were usually observed in the inactive
state (65%), with or without ligands and STKs less frequently (38% and 33%
in the apo and holo subsets). 61% of the TK sequences were found in inactive
structures, compared to 44% of STK sequences. This will become crucial for
the ML applications below. The fraction of sequences with inactive DFG-out
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Table 4.2: Updated collection’s labels.

Group Active Apo DFG Dom. Struc. Seq. Clust.95% Clust.70%
STk False False in 1438 1162 127 119 95

other 66 55 16 15 13
out 472 325 59 58 48

True in 330 222 77 76 60
other 17 16 7 7 6
out 84 66 28 28 23

True False in 4057 2700 239 216 162
True in 707 423 141 126 103

Tk False False in 1125 717 51 45 30
other 14 12 6 6 6
out 486 356 42 40 28

True in 117 85 28 26 17
other 7 4 3 3 3
out 40 29 14 14 13

True False in 876 606 44 38 25
True in 83 56 23 21 13

structures also varied with protein family: 22-25% for CAMK, CMGC, STE;
36% for TKL and TKs; 39% for AGC; 65% for NEK (Fig. 4.9a).

To summarize, the structural data, while abundant and fully labeled, did
not yield a highly diverse collection of sequences with inactive domain struc-
tures. 1789 inactive TK domains produced only 172 sequence clusters at the
95% identity threshold. Furthermore, despite expanding the definition of apo
structures to include ligands distant from the DFG-out motif, the proportions
of structures and sequences they cover were low (16% of all structures, 39% of
all sequences), and lower in the inactive subsets (6% and 20%). This limitation
was addressed below by adding orthologous sequences.

4.3.2 Identifying Ser/Thr and Tyr kinase sequences with
decision trees

As a test problem, we used ML to identify sequence determinants that distin-
guish Ser/Thr and Tyr kinases. We considered a dataset of 188 TK and 322
STK sequences. Supplementing them with orthologs led to 1892 TK and 2978
STK sequences. We trained decision tree ensembles using either RF and XGB
models. They achieved perfect sequence partitioning with no errors in cross-



4.3 Results 152

validation test sets. RF and XGB relied on varying sets of residues (features).
XGB used 39 input variables (ProtFP PCA components), corresponding to 25
positions in the PK HMM profile.RF considered 752 out of 795 features (252
positions) to be relevant. Additionally, XGB conferred greater importance to a
select few positions, in contrast to RF’s more uniform distribution (Fig. 4.13).
We inspected the top 10 profile positions identified by each model, represented
in (Fig. 4.2c) as sequence logos (one each for TKs and STKs). A mapping of
PK profile numbering to sequences from eight representative PK domains is
given in Table 4.10.

Most positions’ importance coincided with a pronounced difference in con-
servation between TKs and STKs. The most prominent positions selected
by both models featured residues with contrasting physicochemical properties,
such as charge and size. For instance, position 115 contained His in almost all
STKs, while TKs harbored Glu, Ser, and Ala. Similarly, Lys at position 125
was predominant in STKs, and Ala in TKs. Similar observations applied to
other selected positions. Some of these positions were identified previously as
determinants of TK and STK substrate specificity.

Figure 4.2: A sequence logo of the TkST sequences at top-10 selected positions
selected by RF and XGB.

4.3.3 Phylogenetic analysis of the DFG conformation
propensity

We now turn to the DFG in/out conformational preferences. To understand
how this preference evolved, we selected domain sequences that: (1) were
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labeled as inactive, (2) were labeled either DFG-in or DFG-out, and (3) had
both DFG-Asp and DFG-Phe present in the structures. This resulted in 3729
structures, and 202 sequence clusters at the 95% threshold (compared to the
initial 410 clusters). Clusters with at least one apo structure were labeled
“apo,” and all others were labeled “holo.” We further labeled apo clusters
as “in” or “out” if no label conflicts existed and “mixed” in the presence of
conflicts (opposing labels within the same sequence cluster). Holo clusters
were designated “out-exists” if they contained at least one DFG-out structure
and “in-only” otherwise. We selected the most representative sequence from
each cluster and constructed phylogenetic trees for each family separately (see
Methods).

Within the holo subset, 40 clusters had at least one DFG-out structure,
while 51 contained only DFG-in structures. The apo subset consisted of 77
DFG-in, 24 DFG-out, and 10 mixed (or conflicting) clusters. Additional details
about these clusters, including discrepancies in labeling are in Supplementary
Material (Table 4.5). Potential reasons for these discrepancies include: (1)
a naturally low DFG-in/DFG-out free energy difference, (2) allosteric ligand
effects, as seen in MK14, (3) interdomain allostery in BRAF, and (4) sequence
mutations in proteins like MP2K7 and MKNK2.

Fig. 4.3 maps the cluster propensities onto a phylogenetic tree. Several
observations stood out:

• There was no discernible pattern for the propagation of the DFG-out
sequence propensity. DFG-out apo structures (within “pure” or mixed
clusters) were sporadically distributed across the tree, occasionally neigh-
boring the DFG-in ones. For instance, groups (MP2K7, MP2K6, MP2K4)
and SNF1 from S. Pombe and S. cerevisiae.

• Sequences with a natural DFG-out preference often clustered together.
In contrast, sequences such as TIE2, PKNE, VPS15 (DFG-out), and
VGFR2 (DFG-in) deviated from this pattern. A manual examination
revealed that VGFR2 was in the DFG-other conformation leaning to-
wards DFG-in. Another misannotation concerned MP2K6, which dis-
played the DFG-other conformation with both DFG-Asp and DFG-Phe
oriented “up.” For other sequences, these deviations might arise due to
limited coverage of the corresponding sequence space regions.

• Every PK family featured clusters with mixed propensities. Except for
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Figure 4.3: A phylogenetic tree of inactive PK domain sequences with mapped
DFG conformational propensities. The leaves are annotated radially by the repre-
sentative structure and sequence followed by the number of domains supporting the
label (for “apo” and “in-only holo” clusters) or the DFG-in/DFG-out proportion for
clusters with an existing DFG-out structure. Other details are in the main text.

CMGC, every family had at least one DFG-out apo structure. Remark-
ably, nine TK sequences from groups (1) and (2) displayed a consis-
tent bias towards DFG-out, regardless of an inhibitor’s presence. Ad-
ditionally, closely-related sequences lacking apo structures (DDR2 and
NTRK3) were solely linked with the DFG-out conformation.
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4.3.4 ML models to identify DFG-in and DFG-out se-
quences

To identify the residues that correlate with each sequence’s DFG in/out pref-
erence, we proceeded to train decision tree enesembles. We treated the TK and
STK sequences separately, and we excluded any sequences that fell into the
“mixed” clusters described above (clusters containing sequences with opposing
in/out preferences). Each subset was enriched with orthologues, resulting in
840/490 in/out STKs and 588/412 in/out TKs.

The trained models were highly accurate classifiers, with F1 scores ap-
proaching 1.00. XGB made 3 and 7 errors on the TKs and STKs, respectively,
while RF made 9 and 6. Several misclassifications were shared by the two mod-
els. For instance, both algorithms misclassified the TK sequences TIE2 and
DDR1 and the STK sequences MKNK1, VPS15, and PKNE. Other errors not
common to both models included ALK, SNRK, and KAPCA, errors likely due
to insufficient orthologous sequences.

We applied the same methods to the seed datasets (without orthologues).
The limited data caused the models’ performance to fluctuate during CV,
rendering the results largely unreliable. Still, some of the TK positions (77
and 147, described below) were considered for further analysis.

4.3.5 Interpreting models on a sequence level

For each model( XGB, RF) and dataset (TKs, STKs), we examined the ten
positions with the largest contribution to the classification. Fig. 4.4 shows
sequence logos at these positions, separately for the DFG-in and DFG-out se-
quences, while Table 4.3 maps the PK numbering to the UniProt numbering of
eight representative domains. For TKs, several positions displayed pronounced
differences in conservation (Fig. 4.4a). Specifically, positions 11, 14, 84, 155,
and 168 were highly conserved in the DFG-out sequences, but variable in the
DFG-in ones. Six positions, 14, 46, 53, 155, 168, and 207, were selected by
both RF and XGB, with a conserved Lys14 ranked as the top feature by both
models. STK conservation patterns were less clearcut, with RF seemingly cap-
turing the desired signal more effectively than XGB (Fig. 4.4b). Positions 69
(β4-β5 region), 168, and 177 (C-terminus of the AL) emerged as prominent
discriminators. Position 69 featured Asp and Glu in most DFG-out sequences,
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while DFG-in sequences mostly excluded such residues, without adhering to
any particular preferences. Similarly, DFG-in sequences favored Val at posi-
tion 168, while the DFG-out ones were heavily skewed towards Lys at position
177. Overall, the most prominent positions described above followed a com-
mon pattern: they were constrained to one or, at most, a few residues in one
group, whereas the other group did not display any strong preferences and
mostly excluded the dominant residues found in the opposing subset.

Table 4.3: Mapping of the PK ML-selected positions to representative DFG-in
(ABL1–FGFR1) and DFG-out (PGFRA–MUSK) TKs.

Reg. PKp ABL1 SRC ALK FGFR1 PGFRA INSR DDR1 MUSK

G-loop 11 Q252 C280 A1126 C488 A603 S1033 Q620 A584

β2 14 E255 E283 E1129 Q491 K606 M1036 E623 R587

β3–αC 35 D276 G303 V1155 D519 T632 S1062 D660 E613

37 M278 M305 S1157 T521 R634 S1064 T662 S615
39 V280 P307 Q1159 K523 S636 R1066 N664 D617

αC 46 L284 L311 L1165 I529 M642 L1072 L670 Q623

53 K291 K318 S1172 K536 T649 K1079 S677 A630

Hinge 77 T315 T341 L1196 V561 T674 M1103 T701 F654

αD 84 N322 S348 D1203 N568 D681 D1110 D708 D661

ALN 139 V379 V405 I1268 I639 I834 I1175 I782 I740
147 L387 L413 D1276 D647 D842 D1183 N790 N748

150 G390 D416 R1279 H650 H845 E1186 A793 S751
154 Y393 Y419 G1286 T657 K852 G1193 Q800 D758

155 T394 T420 G1287 T658 G853 G1194 G801 G759

ALC 168 S410 A436 A1300 A671 S866 S1207 C814 S772
αG 207 Y906 K1247 Y812

226 R457 R483 R1347 R718 R914 Y1254 Y869

To gain further insights, we analyzed MSAs of the selected positions. Our
goal was to elucidate some of the misclassifications discussed earlier. The STK
sequences presented a challenge: they exhibited a blend of DFG-in/DFG-out
characteristics, making them difficult to categorize clearly (Fig. 4.19). On the
other hand, two DFG-out TK sequences, DDR1 and TIE2, displayed notable
deviations at particular positions that were more conserved among their peers.
For instance, DDR1 varied at positions 11, 14, 147, and 154 (QENQ vs. the
AKDK), whereas TIE2 diverged at positions 11, 14, 84, 147, and 155 (NQNQT
vs. AKDDG) (Fig. 4.20), leading to erroneous labeling of these sequences by
the models.



157 4 Uncovering the DFG-out sequence propensity determinants

Figure 4.4: A sequence logo of DFG-in/DFG-out datasets’ sequences at top-10 se-
lected positions, with (a) depicting the Tk subset and (b) depicting the RF selection
of the STk subset.

4.3.6 Structural analysis of the selected positions

To characterize structural changes between the DFG-in and -out conforma-
tions, we computed residue contacts in each conformation (see Methods).
Contact frequencies were then averaged across DFG-in and DFG-out domain
structures, to derive N ×N Contact Frequency Matrices, where N is the num-
ber of residues in the kinase profile PK . The differences in contact frequencies
between the in and out conformations are shown in Fig. 4.5. Variations re-
lated to AL residues are prominent, particularly the DFG motif (141–143) and
nearby residues 144–149. Within TKs, the region 141-149 displayed DFG-out-
specific contacts with the N-lobe G-loop and β2 regions (11–17). These were
less frequent or DFG-in-specific in STKs. A similar trend was observed in the
(207–226, 199–217) and (207–226, 160–170) quadrants. Other variations in-
cluded long-range contacts specific to either DFG-out in STKs (e.g., 156–202
and 157–215) or TKs (e.g., 9–147 and 170–215). Table 4.11 reports the top
five DFG-in and -out-specific contacts for selected positions. The main con-
tact effects did not overlap strongly with the main ML-derived discriminating
positions.

Representative apo DFG-out TK structures are shown in Fig. 4.6. Unlike
DFG-in apo structures (Fig. 4.17), the AL was fully resolved in all DFG-
out structures. Its DFG-Phe residue was deeply nestled in the ATP-binding
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Figure 4.5: Contact frequency difference map (CFDM) for the apo inactive DFG-
in and DFG-out TK domains. Missing distances were excluded on averaging the
contact number per DFG-in/DFG-out groups. Selected positions are highlighted on
the left and at the top.

pocket, while its distal residues were encompassed by the G-rich loop. This
is consistent with the contact frequency differences above. AL–β1 and AL–G-
loop contacts were unique to DFG-out in TKs. Ala11 in the G-loop shields
hydrophobic residues 144–145 from solvent. The gatekeeper residue 77 may act
as a hydrophobic anchor for DFG-Phe, particularly in structures where Phe77
and DFG-Phe face each other (Fig. 4.6b). The top-ranked ML position, Lys14
in DFG-out sequences, was exposed on the surface and lacked specific contacts
(Fig. 4.6a-b).

Residues 84, 147, and 150, highly ranked by the ML models, appear to
stabilize the AL through polar interactions and assume distinct roles in var-
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ious kinase groups. Within class III RTKs (including FLT3, KIT, CSF1R,
and PGFRA), Asp147 interacts with Asn/His150 and Arg146 points towards
Asn128 and DFG-Asp141 to form DFG-out-specific interactions. In the (NTRK1-
2, DDR1, MUSK) group, an α-helix appears to be stabilized by the interaction
between Tyr149 and Asp84 (Fig. 4.6b). More distant AL positions 154 and
Gly155 (Fig. 4.6d) are in a β-turn present in all DFG-out apo TKs. Finally,
residues 35, 37, 39, 47, and 53, within the αC helix (Fig. 4.6c), were found to
have no specific contacts exclusive to the DFG-out conformation.

Figure 4.6: DFG-out apo Tk domains. The DFG-Phe and DFG-Asp were depicted
in red. The selected positions were highlighted in yellow. The essential contacts were
colored cyan. (a) The structures were rotated appox. 90◦ clockwise around the axis
between the N and C lobes. PDB codes: 5K5X:A, 1T45:A, and 2OGV:A. (b)
The structures were oriented as in (a). A subset with a different mechanism of the
AL stabilization (see the main text). PDB codes: 6Y23:A, 4ASZ:A, 6D22:A, and
1LUF:A. (c) The positions within or proximal to the αC-helix. (d) The positions
selected within the distal part of the AL and the C-lobe α-helices.

4.3.7 Exloring other labeling strategies

For completeness, we explored other strategies for assigning the DFG labels.
To reiterate, when constructing the datasets above, we excluded sequences
corresponding to both ligand-bound and “mixed” propensity domains. As
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alternative hypotheses, we also made datasets where (1) sequences of ligand-
bound structures were allowed, and (2) mixed-propensity entries were retained.
In both of these scenarios, the DFG-out labels were assigned to all sequences
within 95% identity clusters that contained at least one DFG-out-labeled do-
main. Although the models attained decent performance, they mostly failed to
highlight any discernible conservation signal within these sequence data. This
led us to conclude that ligand-bound structures do not possess a generalizable
sequence signal susceptible to data mining, while retaining “mixed” clusters
introduces noise that complicates sequence mining. Supplementary material
provides further information on these additional datasets.

4.3.8 Predicting conformational propensities for Swiss-
Prot proteins

Most of the SwissProt [30] kinase sequences have undergone structural predic-
tion with the AlphaFold2 tool [31]. For 3,784 of the Alphafold2 kinase models,
active/inactive labels and DFG classifications were computed recently [16].
The character of the DFG conformation in the Alphafold2 models can thus
be compared to the present, sequence-based predictions. Only the structures
that Alphafold2 modeled in the inactive state were considered, namely 265
TKs and 781 STKs, for a total of 1046 Alphafold2 sequences and structures.
81% (847) were predicted by our ML models to prefer the DFG-in inactive
conformation. In contrast, Alphafold2 modeled as many as 92% in the DFG-
in conformation. For sequences predicted here to prefer DFG-in, agreement
with Alphafold2 was almost perfect (only 16 discrepancies, or 1.9%). But for
sequences predicted here to prefer DFG-out, 142 of 199 (71%) were predicted
by Alphafold2 to prefer DFG-in. In effect, Alphafold2 behaved almost exactly
like a Null model that assigned DFG-in (the predominant conformation in the
PDB) to all inactive kinases. The data are summarized in Table 4.9.

AlphaFold2 favoring DFG-in was especially apparent for STK sequences.
For 37 STK entries that were part of our initial (“seed”) dataset, and thus
had manually verified apo-state propensities, all the Alphafold2 structures
were incorrectly predicted in the DFG-in orientation. These included two hu-
man (NEK1-2) and four non-human enties (SRK2E from A. thaliana; SNF1
and VPS15 from yeast, and PKNE from M. tuberculosis). Conversely, no mis-
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Table 4.4: Numbers of in/out preferences predicted by XGB and Alphafold2 (AF2)
(TKs/STKs in parentheses).

AF2 DFG-in AF2 DFG-out Fractions

XGB DFG-in 831 (184/647) 16 (8/8) 82%
XGB DFG-out 142 (30/112) 57 (43/14) 18%

Fractions 92% 8%

matches were found among 11 DFG-in and 4 DFG-out TK “seed” entries. This
implies that our sequence-based models likely captured native DFG propensi-
ties better than AlphaFold2, which appears to have a strong bias towards the
predominant conformation in the PDB, used for its training.

4.4 Discussion
DFG conformational selection involves rather subtle structural changes and
modest free energy differences [24, 25] that can be modulated or inverted
by ligand binding. In addition, positions whose conservation correlates with
DFG preferences may have functional significance, but can also simply mirror
broader evolutionary patterns such as ancestral sequences and branching time-
lines [58]. Thus, sequence determination of DFG-in/DFG-out propensities is
not fully resolved and was revisited here using machine learning. Our recent
PK collection was updated to include additional PK sequences and structures,
of which 4,196 were labeled as inactive. However, only a fraction of sequences
were represented by apo structures, where ligand effects are absent. These were
augmented by orthologues lacking structural information. As a simpler, test
problem, we first used ensembles of decision trees to distinguish TK and STK
sequences. The cross-validated models perfectly partitioned the sequences and
pinpointed positions with pronounced conservation differences. Top ranking
positions 125, 127, 160, and 162 agreed with earlier approaches [58, 59]. This
helped validate the approach.

We then analyzed how the DFG-out propensity evoloved throughout the
domain phylogeny. Intriguingly, closely related sequences corresponding to
apo domains often exhibited contrasting conformational tendencies, with var-
ied potential explanations. Furthermore, phylogenetic placement of native
propensities was often sporadic, implying no consistent evolutionary trajec-
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tory. This suggested that DFG preferences should be investigated separately
for TKs and STKs, so that evolutionary changes related directly to DFG struc-
ture are not obscured by other, broader changes.

Training the ML models to partition the DFG-in/DFG-out sequences led
to near-perfect classification of both TK and STK sequences. The models
trained to classify TK apo sequences detected a clear conservation signal. Two
clusters of receptor TKs contrasted with more diverse DFG-in sequences. Most
residues specific to DFG-out could be structurally rationalized as reinforcing
the DFG-out AL, although some closely-related sequences appeared to use
different stabilization mechanisms.

The ML-selected positions were corroborated by several studies. The class
III RTKs and DDR1-2, which inherently favor the DFG-out state, were de-
scribed by Hanson et al. as exceptionally receptive to a range of inhibitors,
binding to over a hundred distinct molecules [60]. They proposed that in-
creased AL stability in the DFG-out state might explain this adaptability.
They associated this stability to contacts identified here, including a polar
network formed by Arg146, Asn128, and DFG-Asp141. Mutations of these
residues compromise the DFG-out conformation. Mutations at position 14
in ABL1 are associated with resistance to type II inhibitors in patients with
chronic myeloid leukemia, suggesting DFG-out is less accessible [7, 61, 62].

The Asp84Asn mutation in NTRK1 (569 in NTRK1 numbering) abolishes
phosphorylation [63, 64]. Beyond this, mutagenesis studies offer no further
insights on position 84. In contrast, several DFG-out proteins manifest muta-
tions at the conserved Asp147 that markedly influence their activity. In FLT3
and KIT these mutations produce constitutive activity and increased sensitiv-
ity to Gleevec [65]. They may be associated with AL destructuring [66–68].
The mutation Asp147Tyr in NTRK1 (residue 668) results in a less active pro-
tein. The same mutation in PGFRA (position 842) increases Gleevec sensitiv-
ity, while Asp147Val yields resistance in humans [69, 70]. These substitutions,
as MD simulations imply [60, 71], destabilize the DFG-out AL conformation,
making it less accessible.

Overall, several discriminating positions appear to the DFG-out confor-
mations. However, despite clear conservation in DFG-out tyrosine kinases,
the roles of some others positions remain unclear. Additionally, our results
suggest that finding conformational determinants applicable across all kinases
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is unlikely. Instead, these determinants appear to rely on sequence context
and evolutionary history beyond the DFG motif and its neighborhood. It
may be that the DFG propensity is a convergent trait, easily adopted when
functionally necessary. Ancestral determinants may also have evolved differ-
ently within each PK subfamily, so that distinct positions serve analogous
functions. Finally, if the DFG propensity is selectively neutral, its determi-
nants could shift throughout the sequence, settling into consistent patterns
only within specific homology-based subgroups.

As the volume of structural data expands and sequence diversity increases,
machine learning will continue to help identify structural determinants, as
demonstrated here with the DFG motif and TKs. Combined with carefully
annotated datasets, our ML models and carefully crafted datasets offer a robust
platform to assist in hypothesis testing, mutagenesis and engineering studies,
and the development of PK inhibitors.

4.5 Supplementary Materials

4.5.1 Analysing clusters with “mixed” propensity

Table 4.5: Mixed-propensity clusters and their representative domain structures.

DFG-in DFG-out

1 MK14_MOUSE 5RA5:A 62 2NPQ:A 4
2 EGFR_HUMAN 3GOP:A 13 4I21:A,B 14
3 M4K4_HUMAN 4U3Z:A 2 4U3Z:B 16
1 CDK6_HUMAN 1BLX:A 1 1G3N:A,E 5
5 SNF1_YEAST 3HYH:A,B 5 3MN3:A 1
6 ROCK1_HUMAN 7S26:D 1 3TWJ:B,D 2
7 MP2K7_HUMAN 2DYL:A 2 5Y8U:A 1
8 MKNK2_HUMAN 2AC5:A 1 2AC3:A 1
9 INSR_HUMAN 1P14:A 1 1IRK:A 1

10 BRAF_HUMAN 4H58:B 1 4H58:C 1

Table 4.5 lists clusters obtained at the 95% identity threshold and contain-
ing both DFG-in and DFG-out domains in the apo state. Table contains a
representative structure and a total number of entries supporting the label.
We will discuss each of the entries in the presented order.
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(1) All four DFG-out MK14 structures (2NPQ:A, 2FSM:X, 4GEO:A, 5N64:A)
have a ligand bound to an allosteric pocket within the C-lobe. Diskin et al.
characterized this pocket as accommodating lipid molecules [72]. None of the
publications accompanying these structures provide an insight into its influ-
ence on the DFG motif. Allosteric modulation and sequence mutations likely
facilitate the DFG flip in this case.

(2) EGFR has structures supporting all DFG conformations. Perhaps due
to a greater AL conformational plasticity [73], DFG transitions in EGFR have
a lower energetic barrier, capturing some intermediate conformations.

(3) Two DFG-in M4K4 domains lack an accompanying publication, and
no sequence differences could explain the observed discrepancy, leaving the
possibility of some external variables influencing the DFG conformation.

(4) DFGin and DFGout structures bind natural protein inhibitors protrud-
ing inside the binding pocket and impacting AL conformation. We couldn’t
automatically account for natural (peptide/lipid) inhibitors in our data pro-
cessing pipeline: otherwise, such cases should have been excluded.

(5) SNF1 DFG-out structure 3MN3:A contains a large G-loop insert pro-
truding deep into the binding pocket and lacking in 3HYH:A,B domains. The
G-loop’s hydrophobic nature likely impacts “pulls” the DFG-Phe and reorients
the structure accordingly.

(6) Both DFG-in and DFG-out domains come from multimeric structures,
which interface via N-lobe regions. Neither accompanying papers nor sequence
differences help to explain the observed discrepancies. The number of existing
apo structures, unlike the EGFR case, doesn’t allow positing natural DFG
promiscuity.

(7) The DFG-in 2DYL:A domain of MP2K7 may be unique within avail-
able data. It has two AL mutations, including the T291D mutation of the
gatekeeper, which, as the title suggests, is activating. No publications accom-
pany the X-ray data. Based on this, we suspect the native sequence likely to
have a weak DFG-out propensity.

(8) An Mnk2 DFG-out protein (2AC5:A) is a valuable example of a single
mutation within the PK domain sufficient for the label’s shift. As indicated
by authors in [74], mutating Gly to Asp in the DFG motif pushed the mutated
structure into the DFG-out conformation. Interestingly, among the sequences
with confirmed preference, a single DFG-out sequence of the structure 2HW6:A
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(Q9BUB5, Human MKNK1 protein) had the same non-canonical DFD motif.
(9) The sequence for INSR structure 1IRK:A contains mutation Y984F

external to the PK domain and located at a highly conserved position implied
in autoinhibition and catalytic activity [12].

(10) Both BRAF chains come from a trimeric complex with a ligand-bound
chain 4H58:A. In a publication accompanying a similar structure [75], the
authors suggested that it constitutes an example of an anomalous inhibitor-
induced dimerization of a cancer-malformed protein. The inhibitor binds to a
single protomer, inducing the conformational switch in another one.

4.5.2 Decision tree training example

Figure 4.7: (a) Each character in an MSA column is embedded into numerical
representation using two ProtFP PCA components. (b) A trained decision tree.
Each DT node has a split threshold to distribute examples into child nodes. The
decision path of ALA classification is highlighted in orange.

The Random Forest algorithm comprises an ensemble of decision trees, each
trained separately on random subsamples of available instances and features.
Each decision tree comprises a collection of internal and terminal (leaf) nodes.
The former contains learned threshold values that guide training instances
towards the latter. The tree is grown greedily by searching for input variable
thresholds that decrease the impurity of the child nodes when compared to
the parent node. In classification problems, the impurity is typically measured
by the Gini importance or the Shannon entropy. Assuming that a node D

comprises N instances, K of which have class 0, and the rest have class 1, its
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Gini impurity is defined as

G(D) = 1−
(
K

N

)2

−
(
N −K

N

)2

= 1−
∑
i

p2i (4.4)

where pi is the fraction of observations that belong to the i-th class. To quantify
the goodness of split of a parent node P with N observations into child nodes
L and R of sizes N1 and N2, the following is used:

S = G(P )− N1

N
G(L)− N2

N
G(R) (4.5)

To illustrate, consider a sequence corresponding to a single MSA column
VILIKDKKQD labeled as 0000011111. Using two ProfFP PCA components, we
numerically encoded it into a 10 × 2 matrix with columns C1 and C2 (Fig.
4.7a). Fig. 4.7b shows a tree trained to partition these data and applied to
infer a class of a single instance – an Ala residue. The derived thresholds
correspond to average values between instances of different classes, e.g., C1 =
−3.95+5.04

2
≈ 0.54. The tree growth stopped at a depth of two since it wasn’t

possible to separate Lys residues of classes 0 and 1 that were distributed into
the right leaf on the second level.

4.5.3 Dataset naming conventions

The main text emphasizes datasets that yielded more interpretable results.
These were constructed from domain sequences, labeled as apo, inactive, DFG-
in, or DFG-out, and further divided into Tk and STk subsets. In the Supple-
mentary Material, we refer to these datasets with the abbreviation AAIO (Apo
All In or Out) to distinguish them from additional datasets.

In addition to AAIO, we explored two alternative labeling strategies:

• AHAO (Apo/Holo Any Out): This dataset includes sequences from
ligand-bound entries. All sequences within 95% identity clusters are
labeled as DFG-out if the cluster contains at least one sequence in this
state. All others are labeled as DFG-in.

• AAO (Apo Any Out): This dataset excludes sequences corresponding to
ligand-bound entries but includes those with conflicting conformational
tendencies within 95% identity clusters.
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Each of these datasets had two versions:

• A seed version, denoted by a “*” symbol.
• A version enriched with orthologous sequences (no special designation).

Together with the TkST datasets used for testing the methodology, a total
of 14 datasets were used, and both RF and XGB models were applied to each,
using the same initial settings, resulting in 28 different models. This additional
information is provided for completeness.
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4.5.4 Supplementary Tables

Table 4.6: Additional datasets and their performance in ML applications.

Dataset C100
** C95

** C70
** Pos. Neg. Prec/Rec/F1 Feat/Pos Prec/Rec/F1 Feat/Pos

Random Forest XGBoost

AHAOSTk 2978 739 116 1645 1333 0.97/0.97/0.97 724/246 0.94/0.98/0.96 237/133
AHAO∗

STk 322 149 116 181 141 0.85/0.70/0.77 46/39 0.64/0.91/0.75 4/4
AHAOTk 1892 355 39 1661 231 0.99/1.00/0.99 541/196 0.99/1.00/0.99 102/67
AHAO∗

Tk 188 58 39 162 26 - - 0.86/1.00/0.93 2/2

AAOSTk 1401 390 63 562 840 0.98/0.99/0.98 736/251 0.95/0.98/0.97 109/71
AAO∗

STk 120 79 63 36 84 0.80/0.33/0.47 24/22 0.38/0.56/0.45 4/4
AAOTk 1115 204 23 527 588 1.00/1.00/1.00 616/218 0.99/1.00/0.99 27/21
AAO∗

Tk 68 34 23 23 45 0.64/0.30/0.41 41/32 0.73/0.96/0.83 2/2
* Seed dataset.
** CX columns indicate the number of clusters obtained at the X% identity threshold.

Table 4.7: Final paramerters for the Random Forest models.

DS Sub. Seed bootstrap ccp class weight crit. max d. max f. n est.

AAIO STk N True 0.0 balanced subsample log loss 12 log2 181
Y True 0.19 balanced subsample entropy 4 log2 252

Tk N True 0.14 None gini 2 log2 382
Y True 0.03 balanced log loss 11 log2 363

AAO STk N True 0.0 balanced subsample entropy 15 log2 470
Y True 0.05 None entropy 16 sqrt 402

Tk N True 0.08 balanced entropy 10 log2 166
Y True 0.0 balanced log loss 15 log2 241

AHAO STk N False 0.01 balanced subsample entropy 9 sqrt 102
Y True 0.03 balanced subsample entropy 10 sqrt 162

Tk N True 0.0 balanced subsample entropy 10 None 136
TkST N False 0.01 balanced subsample entropy 8 sqrt 219

Y True 0.6 balanced subsample entropy 10 log2 195
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Table 4.8: Final paramerters for the XGBoost models.

Dataset Subset Seed ss. ss. γ lr max d. n est. α λ scale subs.
level tree pos

AAIO STk N 0.6 0.49 0.62 0.08 12 208 2.12 4.61 2.27 0.4
Y 0.93 0.62 2.15 0.02 7 277 0.31 9.14 3.1 0.68

Tk N 0.49 0.9 9.91 0.19 7 30 6.23 1.51 3.83 0.47
Y 0.52 0.97 8.36 0.72 16 18 7.33 7.28 9.25 0.66

AAO STk N 0.91 0.46 3.43 0.62 5 36 3.75 6.65 4.77 0.99
Y 0.54 0.6 5.44 0.53 16 50 5.85 6.5 4.0 0.5

Tk N 0.97 0.52 4.01 0.56 13 48 4.78 2.42 9.16 0.75
Y 0.5 0.56 1.98 0.7 7 28 9.44 4.1 8.25 0.73

AHAO STk N 0.67 0.97 0.61 0.41 11 27 0.37 3.33 6.94 0.49
Y 0.54 0.64 5.58 0.43 9 11 4.61 4.81 8.67 0.86

Tk N 0.82 0.91 1.52 0.77 13 13 1.79 1.97 8.8 0.75
Y 0.42 0.6 0.65 0.02 11 35 2.78 4.22 9.42 0.58

TkST N 0.86 0.9 8.1 0.81 16 17 8.56 9.62 4.44 0.76
Y 0.76 0.56 5.75 0.4 12 37 1.46 2.04 7.4 0.63

Table 4.9: XGB models’ predictions (DFG-in/-out) for the SP proteins.

AHAO AAO AAIO
in out in out in out Total

Ser/Thr 743 765 989 519 1176 332 1508
CMGC 147 399 490 56 546 0 546
Tyr 77 444 333 188 384 137 521
CAMK 245 218 379 84 408 55 463
AGC 102 265 162 205 263 104 367
STE 106 240 300 46 336 10 346
TKL 62 137 170 29 183 16 199
CK1 58 31 40 49 39 50 89
NEK 24 26 1 49 14 36 50
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Table 4.10: Full mapping of the reference PK positions to the selected human PK
domains. Reg. denotes the begginging of a structural region

Reg. PK ABL1 SRC PGFRA INSR AURKA BRAF KAPCA MKNK1

1 F133 F44

2 T243 R271 V594 T1024 E134 T458 E45

3 M244 L272 L595 L1025 L29 I135 V459 R46

β1 4 K245 E273 G596 L1026 G30 G136 G460 I47
5 H246 V274 R597 R1027 D31 R137 Q461 K48

6 K247 K275 V598 E1028 T32 P138 R462 T49

7 L248 L276 L599 L1029 L33 L139 I463 L50

8 G249 G277 G600 G1030 G34 G140 G464 G51

G-loop 9 G250 Q278 S601 Q1031 V35 K141 S465 T52

10 G251 G279 G602 G1032 G36 G142 G466 G53

11 Q252 C280 A603 S1033 T37 K143 S467 S54

12 Y253 F281 F604 F1034 F38 F144 F468 F55

β2 13 G254 G282 G605 G1035 G39 G145 G469 G56

14 E255 E283 K606 M1036 K40 N146 T470 R57

15 V256 V284 V607 V1037 V41 V147 V471 V58

16 Y257 W285 V608 Y1038 K42 Y148 Y472 M59

17 E258 M286 E609 E1039 V43 L149 K473 L60

18 G259 G287 G610 G1040 G44 A150 G474 V61

19 V260 T288 T611 I1046 K45 R151 K475 K62

20 W261 R617 K1047 H46 E152 H63

21 K262 W289 S618 G1048 E47 K153 K64

22 K263 N290 Q619 E1049 L48 Q154 E65

β3 23 Y264 G291 P620 A1050 T49 S155 W476 T66

24 S265 T292 V621 E1051 G50 K156 H477 G67

25 L266 T293 M622 T1052 H51 F157 G478 N68

26 T267 R294 K623 R1053 K52 I158 D479 H69

27 V268 V295 V624 V1054 V53 L159 V480 Y70

28 A269 A296 A625 A1055 A54 A160 A481 A71

29 V270 I297 V626 V1056 V55 L161 V482 M72

30 K271 K298 K627 K1057 K56 K162 K483 K73

31 T272 T299 M628 T1058 I57 V163 M484 I74
32 L273 L300 L629 V1059 L58 L164 L485 L75

33 K274 K301 K630 N1060 N59 F165 N486 D76

αC 34 E275 P302 P631 E1061 R60 K166 V487 K77

35 D276 G303 T632 S1062 Q61 A167 T488 Q78

36 T277 T304 A633 A1063 K62 Q168 A489 K79

37 M278 M305 R634 S1064 I63 L169 P490 V80

38 E279 S306 S635 L1065 R64 E170 T491 V81

39 V280 P307 S636 R1066 S65 K171 P492 K82

40 E281 E637 E1067 L66 A172 Q493 L83

41 K638 R1068 D67 G173 Q494 K84

42 V68 V174 L495 Q85

43 E308 Q639 I1069 G70 H176 Q496 E87

44 E282 A309 A640 E1070 K71 Q177 A497 H88

45 F283 F310 L641 F1071 I72 L178 F498 T89

46 L284 L311 M642 L1072 R73 R179 K499 L90

Continued on the next page...
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Table 4.10: Mapping reference positions to the selected human PK domains.

Reg. PK ABL1 SRC PGFRA INSR AURKA BRAF KAPCA MKNK1

47 K285 Q312 S643 N1073 R74 R180 N500 N91

48 E286 E313 E644 E1074 E75 E181 E501 E92

49 A287 A314 L645 A1075 I76 V182 V502 K93

50 A288 Q315 K646 S1076 Q77 E183 G503 R94

51 V289 V316 I647 V1077 N78 I184 V504 I95
52 M290 M317 M648 M1078 L79 Q185 L505 L96

53 K291 K318 T649 K1079 K80 S186 R506 Q97

54 E292 K319 H650 G1080 L81 H187 K507 A98

55 I293 L320 L651 F1081 F82 L188 T508 V99

56 K294 R321 P653 T1082 R83 R189 R509 N100

57 H295 H322 H654 C1083 H84 H190 H510 F101

58 P296 E323 L655 H1084 P85 P191 V511 P102

59 N297 K324 N656 H1085 H86 N192 N512 F103

60 L298 L325 I657 V1086 I87 I193 I513 L104

61 V299 V326 V658 V1087 I88 L194 L514 V105

β4 62 Q300 Q327 N659 R1088 K89 R195 L515 K106

63 L301 L328 L660 L1089 L90 L196 F516 L107

64 L302 Y329 L661 L1090 Y91 Y197 M517 E108

65 G303 A330 G662 G1091 Q92 G198 G518 F109

66 V304 V331 A663 V1092 V93 Y199 Y519 S110

67 C305 V332 C664 V1093 I94 F200 S520 F111

68 T306 S333 T665 S1094 S95 H201 T521 K112

69 R307 K666 K1095 T96 D202 D113

β5 70 E308 E334 S667 G1096 P97 A203 K522 N114

71 P309 E335 G668 Q1097 S98 T204 P523 S115

72 P310 P336 P669 P1098 D99 R205 Q524 N116

73 F311 I337 I670 T1099 I100 V206 L525 L117

74 Y312 Y338 Y671 L1100 F101 Y207 A526 Y118

75 I313 I339 I672 V1101 M102 L208 I527 M119

76 I314 V340 I673 V1102 V103 I209 V528 V120

77 T315 T341 T674 M1103 M104 L210 T529 M121

78 E316 E342 E675 E1104 E105 E211 Q530 E122

79 F317 Y343 Y676 L1105 Y106 Y212 W531 Y123

80 M318 M344 C677 M1106 V107 A213 C532 V124

81 T319 S345 F678 A1107 S108 P214 E533 P125

82 Y320 K346 Y679 H1108 G109 L215 G534 G126

αD 83 G321 G347 G680 G1109 G110 G216 S535 G127

84 N322 S348 D681 D1110 E111 T217 S536 E128

85 L323 L349 V778 L1111 L112 V218 L537 M129

86 L324 L350 K779 K1112 F113 Y219 Y538 F130

87 D325 D351 N780 S1113 D114 R220 H539 S131

88 Y326 F352 L781 Y1114 Y115 E221 H540 H132

89 L327 L353 L782 L1115 I116 L222 L541 L133

90 R328 K354 S783 R1116 C117 Q223 H542 R134

91 N331 T357 N786 G1127 K118 K224 I544 R135

92 R332 G358 S787 R1128 N119 L225 E545 I136
93 Q333 K359 E788 P1129 G120 S226 T546 G137

94 E334 Y360 G789 P1130 R121 K227 K547 R138

Continued on the next page...



4.5 Supplementary Materials 172

Table 4.10: Mapping reference positions to the selected human PK domains.

Reg. PK ABL1 SRC PGFRA INSR AURKA BRAF KAPCA MKNK1

αE 95 V335 L361 L790 P1131 L122 F228 F548 F139

96 N336 R362 T791 T1132 D123 D229 E549 S140

97 A337 L363 L792 L1133 E124 E230 M550 E141

98 V338 P364 L793 Q1134 K125 Q231 I551 P142

99 V339 Q365 D794 E1135 E126 R232 K552 H143

100 L340 L366 L795 M1136 S127 T233 L553 A144

101 L341 V367 L796 I1137 R128 A234 I554 R145

102 Y342 D368 S797 Q1138 R129 T235 D555 F146

103 M343 M369 F798 M1139 L130 Y236 I556 Y147

104 A344 A370 T799 A1140 F131 I237 A557 A148

105 T345 A371 Y800 A1141 Q132 T238 R558 A149

106 Q346 Q372 Q801 E1142 Q133 E239 Q559 Q150

107 I347 I373 V802 I1143 I134 L240 T560 I151
108 S348 A374 A803 A1144 L135 A241 A561 V152

109 S349 S375 R804 D1145 S136 N242 Q562 L153

110 A350 G376 G805 G1146 G137 A243 G563 T154

111 M351 M377 M806 M1147 V138 L244 M564 F155

112 E352 A378 E807 A1148 D139 S245 D565 E156

113 Y353 Y379 F808 Y1149 Y140 Y246 Y566 Y157

114 L354 V380 L809 L1150 C141 C247 L567 L158

115 E355 E381 A810 N1151 H142 H248 H568 H159

116 K356 R382 S811 A1152 R143 S249 A569 S160

117 K357 M383 K812 K1153 H144 K250 K570 L161

118 N358 N384 N813 K1154 M145 R251 S571 D162

119 F359 Y385 C814 F1155 V146 V252 I572 L163

120 I360 V386 V815 V1156 V147 I253 I573 I164
121 H361 H387 H816 H1157 H148 H254 H574 Y165

122 R362 R388 R817 R1158 R149 R255 R575 R166

123 D363 D389 D818 D1159 D150 D256 D576 D167

CL 124 L364 L390 L819 L1160 L151 I257 L577 L168

125 A365 R391 A820 A1161 K152 K258 K578 K169

126 A366 A392 A821 A1162 P153 P259 S579 P170

127 R367 A393 R822 R1163 E154 E260 N580 E171

128 N368 N394 N823 N1164 N155 N261 N581 N172

129 C369 I395 V824 C1165 V156 L262 I582 L173

130 L370 L396 L825 M1166 L157 L263 F583 L174

131 V371 V397 L826 V1167 L158 L264 L584 I175
132 G372 G398 A827 A1168 D159 G265 H585 D176

133 E373 E399 Q828 H1169 A160 S266 E586 Q177

134 N374 N400 G829 D1170 H161 A267 D587 Q178

135 H375 L401 K830 F1171 M162 G268 L588 G179

136 L376 V402 I831 T1172 N163 E269 T589 Y180

137 V377 C403 V832 V1173 A164 L270 V590 I181
138 K378 K404 K833 K1174 K165 K271 K591 Q182

ALN 139 V379 V405 I834 I1175 I166 I272 I592 V183

140 A380 A406 C835 G1176 A167 A273 G593 T184

141 D381 D407 D836 D1177 D168 D274 D594 D185

142 F382 F408 F837 F1178 F169 F275 F595 F186

Continued on the next page...
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Table 4.10: Mapping reference positions to the selected human PK domains.

Reg. PK ABL1 SRC PGFRA INSR AURKA BRAF KAPCA MKNK1

143 G383 G409 G838 G1179 G170 G276 G596 G187

144 L384 L410 L839 M1180 L171 W277 L597 F188

145 S385 A411 A840 T1181 S172 S278 A598 A189

146 R386 R412 R841 R1182 N173 V279 T599 K190

147 L387 L413 D842 D1183 M174 H280 R603 R191

148 M388 I414 I843 I1184 M175 A281 W604 V192

149 T389 E415 M844 Y1185 S176 P282 S605 K193

150 G390 D416 H845 E1186 D177 S283 G606 G194

151 D391 N417 D846 T1187 G178 S284 S607 R195

152 T392 E418 S847 D1188 E179 R285 H608 T196

153 N848 Y1189 F180 Q609

154 Y393 Y419 K852 G1193 L181 R286 F610

155 T394 T420 G853 G1194 R182 T287 E611 W197

156 A395 A421 S854 K1195 T183 T288 Q612 T198

ALC 157 H396 R422 T855 G1196 S184 L289 L613 L199

158 A397 Q423 F856 L1197 C185 C290 S614 C200

159 F401 F427 L857 L1198 G186 G291 G615 G201

160 P402 P428 P858 P1199 S187 T292 S616 T202

161 I403 I429 V859 V1200 P188 L293 I617 P203

162 K404 K430 K860 R1201 N189 D294 L618 E204

163 W405 W431 W861 W1202 Y190 Y295 W619 Y205

164 T406 T432 M862 M1203 A191 L296 M620 L206

165 A407 A433 A863 A1204 A192 P297 A621 A207

166 P408 P434 P864 P1205 P193 P298 P622 P208

167 E409 E435 E865 E1206 E194 E299 E623 E209

168 S410 A436 S866 S1207 V195 M300 V624 I210
169 L411 A437 I867 L1208 I196 I301 I625 I211
170 A412 L438 F868 K1209 S197 E302 D629 L212

171 Y413 Y439 D869 D1210 G198 G303 K630 S213

172 N414 G440 N870 G1211 R199 R304 N631 K214

173 K415 R441 L871 V1212 L200 M305 P632 G215

αF 174 F416 F442 Y872 F1213 Y201 H306 Y633 Y216

175 S417 T443 T873 T1214 G203 D307 S634 N217

176 I418 I444 T874 T1215 P204 E308 F635 K218

177 K419 K445 L875 S1216 E205 K309 Q636 A219

178 S420 S446 S876 S1217 V206 V310 S637 V220

179 D421 D447 D877 D1218 D207 D311 D638 D221

180 V422 V448 V878 M1219 I208 L312 V639 W222

181 W423 W449 W879 W1220 W209 W313 Y640 W223

182 A424 S450 S880 S1221 S210 S314 A641 A224

183 F425 F451 Y881 F1222 S211 L315 F642 L225

184 G426 G452 G882 G1223 G212 G316 G643 G226

185 V427 I453 I883 V1224 V213 V317 I644 V227

186 L428 L454 L884 V1225 I214 L318 V645 L228

187 L429 L455 L885 L1226 L215 C319 L646 I229
188 W430 T456 W886 W1227 Y216 Y320 Y647 Y230

189 E431 E457 E887 E1228 A217 E321 E648 E231

190 I432 L458 I888 I1229 L218 F322 L649 M232

Continued on the next page...
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Table 4.10: Mapping reference positions to the selected human PK domains.

Reg. PK ABL1 SRC PGFRA INSR AURKA BRAF KAPCA MKNK1

191 A433 T459 F889 T1230 L219 L323 M650 A233

192 Y435 K461 L891 L1232 C220 V324 T651 A234

193 G436 G462 G892 A1233 G221 G325 G652 G235

FL 194 M437 R463 G893 E1234 T222 K326 Q653 Y236

195 S438 V464 T894 Q1235 L223 P327 L654 P237

196 P439 P465 P895 P1236 P224 P328 P655 P238

197 Y440 Y466 Y896 Y1237 F225 F329 Y656 F239

198 P441 P467 P897 Q1238 D226 E330 S657 F240

199 G442 G468 G898 G1239 D227 A331 N658 A241

200 I443 M469 M899 L1240 D228 N332 I659 D242

201 V470 M900 S1241 H229 T333 N660 Q243

αG 202 N471 V901 N1242 V230 Y334 N661 P244

203 R472 D902 E1243 P231 Q335 R662 I245
204 E473 S903 Q1244 T232 E336 D663 Q246

205 T904 V1245 L233 Q664 I247
206 F905 L1246 F234 I665 Y248

207 Y906 K1247 K235 I666 E249

208 N907 F1248 K236 F667 K250

209 D444 V474 K908 V1249 I237 T337 M668 I251
210 L445 L475 I909 M1250 C238 Y338 V669 V252

211 S446 D476 K910 D1251 D239 K339 G670 S253

212 Q447 Q477 S911 G1252 G240 R340 R671 G254

213 V478 G912 G672

214 E479 Y913 Y673

215 L674

216 V448 S675

217 Y449 P676

218 E450 D677

219 L451 L678

220 L452

221 E453

222 I341
223 K454 R480 S342

224 D455 G481 R343

225 Y456 Y482 G1253 V344

226 R457 R483 R914 Y1254 I241 E345 K255

227 M458 M484 M915 L1255 F242 F346 S679 V256

228 E459 P485 A916 D1256 Y243 T347 K680 R257

229 R460 C486 K917 Q1257 T244 F348 V681 F258

230 P461 P487 P918 P1258 P245 P349 R682 P259

231 E462 P488 D919 D1259 Q246 D350 S683 S260

232 G463 E489 H920 N1260 Y247 F351 N684 H261

αH 233 C464 C490 A921 C1261 L248 V352 C685 F262

234 P465 P491 T922 P1262 N249 T353 P686 S263

235 E466 E492 S923 E1263 P250 E354 K687 S264

236 K467 S493 E924 R1264 S251 G355 A688 D265

237 V468 L494 V925 V1265 V252 A356 M689 L266

238 Y469 H495 Y926 T1266 I253 R357 K690 K267

Continued on the next page...
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Table 4.10: Mapping reference positions to the selected human PK domains.

Reg. PK ABL1 SRC PGFRA INSR AURKA BRAF KAPCA MKNK1

239 E470 D496 E927 D1267 S254 D358 R691 D268

240 L471 L497 I928 L1268 L255 L359 L692 L269

241 M472 M498 M929 M1269 L256 I360 M693 L270

242 R473 C499 V930 R1270 K257 S361 A694 R271

243 A474 Q500 K931 M1271 H258 R362 E695 N272

244 C475 C501 C932 C1272 M259 L363 C696 L273

245 W476 W502 W933 W1273 L260 L364 L697 L274

246 Q477 R503 N934 Q1274 Q261 K365 K698 Q275

247 W478 K504 S935 F1275 V262 H366 K699 V276

248 N479 E505 E936 N1276 D263 N367 K700 D277

249 P480 P506 P937 P1277 P264 P368 R701 L278

250 S481 E507 E938 K1278 M265 S369 D702 T279

251 D482 E508 K939 M1279 K266 Q370 E703 K280

αI 252 R483 R509 R940 R1280 R267 R371 R704 R281

253 P484 P510 P941 P1281 A268 P372 P705 F282

254 S485 T511 S942 T1282 T269 M373 L706 G283

255 F486 F512 F943 F1283 I270 L374 F707 V289

256 A487 E513 Y944 L1284 K271 R375 P708 N290

257 E488 Y514 H945 E1285 D272 E376 Q709 D291

258 I489 L515 L946 I1286 I273 V377 I710 I292
259 H490 Q516 S947 V1287 R274 L378 L711 K293

260 Q491 A517 E948 N1288 E275 E379 A712 N294

261 A492 F518 L1289 H276 H380 H295

262 E277 P381 K296

263 W278 W382 W297

264 F279 I383 F298
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Table 4.11: Top-5 interacting position pairs per model.

Dataset Subset Model P1 P2 Int.

TkST RF 115 125 0.59
125 162 0.65

178 -0.56
159 163 -0.65
160 163 -0.7

XGB 65 160 64.89
115 125 -39.59
125 160 -73.41

162 27.84
126 238 31.89

AHAO STk RF 55 180 -0.21
69 202 -0.19

132 180 0.17
199 202 0.16
201 232 -0.19

XGB 35 232 -16.92
37 132 19.91
44 73 15.82
55 201 -12.18
73 132 19.15

Tk RF 64 98 1.27
70 77 8.93
87 95 1.21
95 104 1.08

149 2.5
XGB 22 192 36.67

23 77 -25.05
25 46 -21.03

155 256 17.08
156 261 -26.33

AAO STk RF 69 165 -0.13
105 110 -0.1
108 251 -0.09
110 165 -0.11
150 165 -0.1

XGB 66 165 55.15
81 165 -12.37

165 192 -20.47
168 173 -14.6

177 19.62
Tk RF 14 84 0.2

35 139 -0.2
53 155 0.31
82 168 0.32

153 155 -0.2
XGB 35 150 32.48

168 25.82

Continued on the next page...
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Table 4.11: Top-5 interacting position pairs per model.

Dataset Subset Model P1 P2 Int.

139 150 35.18
168 40.08

150 168 22.45
AAIO STk RF 69 110 -0.21

165 -0.2
110 186 -0.24
177 255 -0.2
208 220 -0.2

XGB 11 110 7.27
105 118 6.03

177 5.69
251 5.26

110 118 5.86
Tk RF 14 113 0.09

207 0.1
35 53 -0.1
46 84 -0.14
53 259 -0.09

XGB 14 77 12.13
207 -11.25

39 101 14.54
150 7.19

150 154 7.37
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Table 4.12: Top CFDM conctacts for manually∗ and algorithmically selected po-
sitions. Only pairs with ≥ 0.3 frequence difference are displayed.

Subset P. P. cont. Freq. diff.

STk 11 151 0.37
150 0.32
149 0.31

66 45 0.33
69 1 -0.38
105 263 -0.36

259 0.54
115∗ 120 0.33
139∗ 125 -0.5

123 -0.44
142 0.66
108 0.44
106 0.32

165 219 -0.37
179 0.56
216 0.31

168 153 -0.41
151 -0.4
122 0.37

198 218 -0.57
202∗ 156 -0.85

218 -0.55
211 0.35
207 0.31

215∗ 157 -1.0
199 -0.36
161 -0.35
221 -0.33
206 0.4
197 0.33

216 197 0.55
181 0.52
247 0.48
221 0.44
164 0.43

246 220 0.3
258 183 -0.57

104 -0.35
Tk 11 147 -0.79

144 -0.52
33 -0.5
143 -0.45
146 -0.39
153 0.5
154 0.43
36 0.33

Continued on the next page...
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Table 4.12: Top CFDM contacts.

Subset P. P. cont. Freq. diff.

152 0.3
14 144 -0.88

145 -0.75
37 147 0.44

148 0.41
149 0.31

39 36 -0.43
147 0.3

46 74 0.33
84 149 -0.45

148 -0.45
142 -0.36
80 -0.31

139 109 -0.69
108 -0.44
142 0.98

142∗ 15 -1.0
30 -0.94
130 -0.91
28 -0.9
7 -0.75
114 1.0
139 0.98
60 0.98
119 0.91
121 0.91

144∗ 9 -1.0
10 -0.88
13 -0.88
14 -0.88
15 -0.88
121 0.59
122 0.46
52 0.37
75 0.35
148 0.32

145∗ 9 -0.75
10 -0.75
14 -0.75
15 -0.75
8 -0.67
122 0.61
12 0.38
47 0.37
121 0.35

147 9 -1.0
10 -0.88
11 -0.79

Continued on the next page...
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Table 4.12: Top CFDM contacts.

Subset P. P. cont. Freq. diff.

143 -0.5
150 -0.34
37 0.44
45 0.39
36 0.35
48 0.35
44 0.3

150 147 -0.34
145 -0.31
12 0.44
154 0.37
155 0.33
36 0.31

154 207 -0.5
161 -0.32
160 0.58
11 0.43
150 0.37
152 0.32

155 158 0.62
151 0.46
150 0.33
152 0.31

168 175 -0.51
153 0.42

198∗ 188 -0.31
207 170 -0.65

154 -0.5
223 1.0

215∗ 225 -1.0
224 -1.0
222 -1.0
221 -1.0
247 -1.0
200 1.0
202 1.0
201 1.0

216∗ 181 -1.0
226 -1.0
224 -1.0
165 -1.0
227 -1.0
200 1.0
221 1.0
161 1.0
162 1.0
210 1.0

226 216 -1.0

Continued on the next page...
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Table 4.12: Top CFDM contacts.

Subset P. P. cont. Freq. diff.

220 1.0
222 0.8
219 0.67
223 0.57
166 0.49
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4.5.5 Supplementary figures

Figure 4.8: Subpockets’ coverage in ligand-bound structures.

Figure 4.9: Counts of unique inactive sequences grouped by the PK family annota-
tion. (a) Unique sequences’ counts colored by the predicted DFG label. (b) Unique
sequences’ counts colored by being apo or holo concerning the DFG motif (see the
main text for details).
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Figure 4.10: Feature selection results for “seed” datasets, i.e., constructed from
sequences from our data collection and missing orthologs.
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Figure 4.11: Feature selection results for additional datasets: (a-b) Apo/Holo
Any Out (AHAO) and (c-d) Apo Any Out (AAO).
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Figure 4.12: Overlap sizes of top-10 selected positions per model.

Figure 4.13: Importance values’ distributions across ML model features.
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Figure 4.14: Contact frequency map for the AAIOSTk structures. Missing residue
pairs were excluded during averaging across the structures. Selected positions are
highlighted on the left and at the top. CFM for DFG-in and DFG-out structures
occupy the lower and upper triangles, respectively.
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Figure 4.15: Contact frequency map for the AAIOTk structures. See Fig. 4.14 for
further details.
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Figure 4.16: Contact frequency difference map (CFDM) for the AAIO structures.
The absence of contacting residues was treated as the absence of contact when
averaging across identically labeled domains. Selected positions are highlighted on
the left and at the top.
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Figure 4.17: Representative DFG-in apo TK domains with marked selected posi-
tions. AL is disordered in most structures, including positions distal to DFG-Phe
147, 150, 154, and 155. In contrast to the DFG-out domains (Fig. 4.6) these residues
are placed “below” the αC-helix. PDB codes: 4HZS:C, 3BBW:B, 3RCD:B, 4PDO:A,
3OF0:B, 1K2P:A, 2YJR:A, 1FGK:B, and 3Q6U:A
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Figure 4.18: MSA of TK DFG-in (top) and DFG-out (bottom) domain sequences,
with PK positions spanning 2–261 region. Selected positions are marked by black
triangles.
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Figure 4.19: AAIOSTk partial MSA depicting selected positions (±1). Only entries
with unique subsequences corresponding to the selection are displayed. Sequence
headers contain UniProt numbering of the selected positions.
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Figure 4.20: AAIOTk partial MSA depicting selected positions (±1). Only entries
with unique subsequences corresponding to the selection are displayed. Sequence
headers contain UniProt numbering of the selected positions.
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Figure 4.21: Sequence logos displaying selected positions of Swiss-Prot PK do-
mains predicted as DFG-in (top) or DFG-out (bottom) using AAIO orthologs-based
models – Tk for Tyr and STk for the rest.
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Chapter 5

lXtractor: Data Mining from
Macromolecules

In the fast-evolving domains of structural biology, machine learning, and data
mining, the meticulous and precise preparation of data stands as a critical yet
frequently neglected phase. While existing tools offer a diverse repertoire of
data description techniques, they inadequately address the foundational steps
of data collection and management. This oversight fosters fragmented initia-
tives and repeated efforts in the scientific community, hindering the seamless
integration and analysis that are vital for the development of robust machine
learning models and data mining applications. Addressing this gap, we intro-
duce lXtractor – an open-source Python library that synergizes data prepa-
ration and feature extraction, fostering transparent and complex data prepa-
ration workflows. This tool not only enables the creation of customizable
workflows for data mining from macromolecular sequences and structures but
also promotes transparency, reproducibility, and accessibility in data analysis.
Through lXtractor, users can intuitively design and analyze sequence/struc-
ture data collections, with the added capability to scale up to vast data volumes
and interface with various external resources. This chapter delineates the key
principles, functionalities, and future directions of lXtractor, showcasing its
potential as a robust backbone for data analysis and a catalyst for collaborative
advancements in structural biology.
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5.1 Introduction
The burgeoning repository of experimental [1, 2] and predicted [3, 4] struc-
tural data has propelled the rise of structure-based machine learning (ML)
applications [5]. These applications hinge critically on data preparation and
representation, factors that significantly influence their accuracy and reliabil-
ity. Consequently, there is a pressing need for programmatic solutions, aiding
in these steps, that are not only accessible but also adept at handling large-
scale scenarios.

While several tools, including BioPython [6], biotite [7], Bio3D [8], and
ProDy [9], facilitate the initial steps of structural data preparation, they often
fall short in addressing more advanced needs. Designed to cater to a wide
audience, these tools primarily focus on basic functionalities, making the task
of adapting them for large-scale feature extraction and engineering a laborious
process.

Thus, specialized tools for feature extraction from proteins have emerged.
However, they predominantly focus on protein sequences rather than their
structures [10–14]. Even among those that do consider tertiary structures,
there is a noticeable deficiency in functionalities for pre-processing and cor-
relating extracted features [15, 16], with Caretta being a notable exception
[17]. This gap becomes particularly glaring when researchers aim to scruti-
nize groups of related molecules to answer complex questions such as, ”What
characteristics of the binding site enable family X proteins to accommodate Y
ligands?” or ”How does the conformation of region X vary across Y domain-
containing proteins?” The existing methods, primarily serving as an interme-
diary layer between input data and their numerical representation, necessitate
substantial additional effort and the integration of other tools to construct the
final dataset suitable for data mining.

Therefore, we devised a comprehensive toolbox, lXtractor (/lE"kstrakt@r/),
that seamlessly integrates data preparation and feature extraction. This tool
facilitates the development of intricate yet fully customizable workflows for
data mining, encompassing macromolecular sequences, structures, and their
combinations. It promotes an interactive and adaptable approach to design-
ing and analyzing sequence/structure data collections, with a strong emphasis
on transparency, reproducibility, and accessibility.
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lXtractor adeptly handles related protein structures and sequences by
maintaining a clear connection to a selected reference entity, be it a sequence,
Multiple Sequence Alignment (MSA), or an HMM model. The data collec-
tions curated by lXtractor are intuitively structured, allowing for convenient
storage and retrieval, thus fostering iterative refinement and effortless distri-
bution. Moreover, these data can be characterized by an array of sequence
and structure descriptors, designed to preserve their linkage to the input data,
thereby aiding in the extraction of significant insights during subsequent data
mining phases.

For advanced users, the tool provides the flexibility to develop their own
descriptors and employ lXtractor for their computation. Its capability to
parallelize essential operations ensures scalability to handle extensive datasets.
Furthermore, it offers basic interfaces to a variety of external resources, includ-
ing SIFTS [18], Pfam [19], UniProt [20, 21], PDB [1], and AlphaFold2 [4], along
with features to analyze ligands and their respective binding pockets.

This manuscript is structured as follows: Initially, we elucidate the core
principles underlying lXtractor and outline the general workflow of its data
mining methodology. Subsequently, we delve into the implementation specifics,
highlighting the key data structures that constitute the backbone of the tool.
Following this, we introduce a versatile ”database” protocol to assemble a data
collection of domain sequences and associated structures. Lastly, we illustrate
the capabilities of lXtractor in facilitating variable computations.

5.2 Background
lXtractor is a Python library devised to facilitate the exploration of sequence
and structure data in the realm of bioinformatics. It’s designed to be a one-
stop solution to carry a researcher from the initial hypothesis to the datasets
ready for machine learning and data mining applications. Beyond its util-
ity in data preparation, it may serve as a tool for the interactive analysis of
macromolecular sequences and structures, fostering a deeper understanding
and engagement with the data at hand.

The fundamental workflow of an lXtractor project can be delineated into
the following stages, as illustrated in Fig. 5.1:

• Data Gathering: This initial stage involves acquiring the necessary
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Figure 5.1: The core lXtractor workflow. The initial data are obtained from
external resources, parsed to attain an internal representation, then processed and
described by collections of variables. The data collections can then be saved, shared
with the community, or loaded back into the Python interpreter for further refine-
ment and analysis.

data for the project. The library offers minimalist interfaces to several
databases including UniProt [20, 21], PDB [1], PANTHER [22], Pfam
[19], and the AlphaFold2 database [3, 4] to facilitate this. It creates
local interfaces to the Pfam database to access any desired HMM model,
and the SIFTS database [18] to swiftly access mappings between UniProt
and PDB identifiers, as well as segment-wise mappings between UniProt
and PDB protein numbering schemes.

• Data Parsing: In this stage, the gathered sequence and structure data
are parsed into an internal representation, structured into classes follow-
ing an object-oriented approach. These objects facilitate the subsequent
tasks:

– Mapping: This involves relating sequences, alignments, and HMM
models. Users are encouraged to establish a single reference object
to map all pertinent sequences to it for variable calculations (see
below).

– Filtering: This task allows users to filter sequence/structure col-
lections based on various criteria, such as the coverage of a structure
sequence by a UniProt sequence or a reference object.

– Extracting: This task enables the extraction of the regions of
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interest from sequences and structures – continuous segments with
boundaries defined either manually or by a reference object.

The tool offers the flexibility to perform these tasks in any order, fos-
tering the development of a detailed and transparent workflow suited to
individual use-cases.

• Variables Calculation: This stage involves computing variables for
sequences and structures, categorized based on the input data required
for their calculation:

– Sequence Variables: Variables in this category require an arbi-
trary sequence as input.

– Structure Variables: These variables necessitate an array of atoms
for computation.

– Ligand Variables: Variables in this category require an internal
ligand representation as input.

Each variable yields an atomistic output, either a single string or number.
While users can define their own variables, these definitions must comply
with specific standards.

• Saving and Summarizing: The final stage involves saving the data
collections as sets of binary and text files, organised and named specifi-
cally. lXtractor also generates a summary in the form of a CSV table
to offer a quick overview of the gathered data. These collections can be
shared within the community and easily loaded into a Python interpreter
for further refinement and analysis.

5.3 Implementation

5.3.1 Core Data Structures

At the core of the lXtractor library are a series of data structures engineered
to facilitate the streamlined analysis of sequence and structure data. These
structures form the backbone of the tool, enabling a seamless and efficient
workflow.

The Segment object serves as a foundational unit, delineating sequences as
named continuous segments. Each segment houses an array of indices along
with a collection of arbitrary sequences that span its length. This object
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operates as a flexible container, utilizing dictionary-like and list-like properties
to expedite the inspection and addition of new sequences and metadata entries.

Expanding upon the Segment is the ChainSequence, a critical data struc-
ture within lXtractor. It accommodates a continuous sequence corresponding
to a single polymeric chain, requiring a non-empty primary sequence element
for each segment index. It permits the input of actual sequence numbering if
it deviates from the default segment numbering. Beyond housing the primary
sequence and its numbering, it can retain numerous additional arrays (such as
secondary structure), which can be categorized and accessed with ease. Fur-
thermore, the chain sequence can be flexibly mapped to other chain sequences,
multiple sequence alignments (MSAs), or HMM models.

Working in tandem with the ChainSequence is the GenericStructure,
capable of storing an arbitrary structure encompassing any number of chains,
internally depicted as an array of atoms. During the parsing process, each
atom is classified based on its function as a ligand, solvent, or polymer, with
additional categorizations for polymeric atoms into protein, nucleotide, or car-
bohydrate groups. Ligands are documented as separate entities, as we elabo-
rate below. These categories are maintained as binary masks, facilitating rapid
access to specific segments within the atom array.

Complementing the GenericStructure is the ChainStructure, which in-
tegrates both the GenericStructure and ChainSequence corresponding to a
single structural chain. In instances where the structural data presents multi-
ple variants, as indicated by altloc PDB annotations, the ChainStructure
restricts itself to a single altloc. These limitations ensure it embodies a sin-
gular polymeric entity, defined by fixed atom positions and a primary sequence
outlined by polymeric atoms, thus preserving a transparent and unequivocal
data representation.

In practice, it is not uncommon to encounter deviations in PDB structure
sequences from the canonical UniProt sequences, which may be attributed to
mutations or varying numbering conventions. Moreover, a multitude of PDB
chains often correspond to a singular reference sequence. To address these
complexities, the Chain object has been developed. This object encapsulates a
single canonical ChainSequence and a series of associated ChainStructures,
wherein the chain structure sequences are mapped to the canonical chain se-
quence through pairwise sequence alignment.



207 5 lXtractor: Data Mining from Macromolecules

Within the lXtractor framework, the ChainSequence, ChainStructure,
and Chain objects cater to diverse use-cases in data analysis and mining.
Whether the focus is on analyzing pure sequence data, structure data, or a
combination of both, lXtractor recognizes these “chain-type” objects as pri-
mary entities. Consequently, they offer similar interfaces, fostering a uniform
approach in other segments of the codebase that are responsible for maintain-
ing and manipulating these objects.

5.3.2 Chain Identifiers and Tree

The lXtractor library is designed to facilitate workflows that predominantly
operate on interrelated chain-type objects, such as domains or smaller motifs.
Consequently, a significant emphasis has been placed on the efficient extraction
of such regions from sequences and structures.

Each chain-type object is equipped with a spawn_child() method, which
allows for the subsetting of the chain based on specified boundaries. These
boundaries are typically defined according to a certain numbering system, such
as that of a domain or a reference sequence, stored within a ChainSequence.
Figure 5.2 illustrates the process of creating a child segment from a Chain.

To streamline the management of object relationships, each chain-type ob-
ject maintains a record of its ”parent” and any ”children” derived from it,
thereby fostering the creation and inspection of segment trees. Moreover, each
object is assigned a dynamic unique identifier, formulated from its name, seg-
ment boundaries, and a recursively appended list of parent identifiers. While
these identifiers are not employed in object comparisons, adhering to a con-
vention where matching identifiers indicate object identity is strongly recom-
mended.

5.3.3 A List of Chains

Within the lXtractor framework, collections of chain-type objects are aggre-
gated into a specialized container termed ChainList. This container serves
as a direct extension of the Python list class, exclusively housing objects
of a uniform type, namely, ChainSequence, ChainStructure, or Chain. Be-
yond the conventional list functionalities such as slicing, the ChainList offers
enhanced capabilities including flexible filtering options, the application of ar-
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X|1-120

ChainStr(A|1-100)
ChainStr(B|1-90)
ChainStr(C|1-70)

X|25-95

ChainStr(A|5-75)
ChainStr(B|15-75)
ChainStr(C|1-65)

Chain(X|1-120)

Chain(X|25-95)<-Chain(X|1-120)

Parent IDSeq ID

Figure 5.2: Illustration of a child segment creation from a Chain. The chain houses
a canonical sequence X comprised of 120 residues, along with three structures - A,
B, and C - whose sequences are mapped to X. This canonical sequence is further
mapped to a reference M , delineating a specific region of interest. The extraction of
this region initiates with the subsetting of the canonical sequence, followed by the
utilization of sequence-to-sequence mappings to extract the child region from the
stored structures. The newly formed child Chain is assigned a unique identifier that
mirrors its lineage.

bitrary functions to its constituents, and the retrieval of all child objects at
a specified topological level within a segment tree. These functionalities fa-
cilitate the construction of complex workflows, similar to Pandas data frames
[23].

5.3.4 I/O and Storage Layout

The lXtractor library ensures a systematic approach to data storage and re-
trieval through the individual methods defined within each chain-type object.
These methods facilitate the reading and writing of data to the disk, stor-
ing them as a series of text files that can be examined both manually and
programmatically. Essential to each object are the obligatory sequence and
metadata files, preserved as TSV tables. The metadata file functions as an
object’s “passport,” encapsulating vital details such as the name and segment
boundaries, alongside other pertinent information. Moreover, structure data
can be accommodated in various formats including pdb, cif, and mmtf.

To streamline I/O operations, the ChainIO module has been developed,
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capable of handling bulk storage and retrieval of chain-type objects. This
module orchestrates a hierarchical organization of the objects, wherein child
segments are nested under their respective parents, as illustrated in Fig. 5.3.

ChainIO

Seq
-----
i seq1
1 A
2 K
... ...

Meta
------
Field Val
Name X
Start 1
... ...

Structure
------------
 sequence.tsv
 meta.tsv
 structure.mmtf
 - segments

Chain Seq
--------------
 sequence.tsv
 meta.tsv
 - segments

Chain
--------
 sequence.tsv
 meta.tsv
 - structures
 - segments

Input

ChainInitializer

ChainList

Storage

Figure 5.3: The data storage architecture of lXtractor segregates each object into
distinct folders, each housing two compulsory files: meta.tsv and sequence.tsv. In
the absence of supplementary files, an object is identified as a ChainSequence. The
inclusion of a structure.fmt file, where fmt denotes the chosen format, elevates
the object to a ChainStructure. Conversely, the addition of a structures folder
classifies it as a Chain. This setup allows for flexible parsing, with objects being
recognized as ChainSequence if structural data is not required. Furthermore, each
object can recursively store child segments. In cases where a Chain accommodates
child segments, these segments should be housed under the Chain rather than indi-
vidual ChainStructures. The ChainInitializer and ChainIO modules streamline
the transformation of initial data into chain-type objects and their subsequent stor-
age or retrieval from the disk, respectively.

To expedite the initial data parsing process, the ChainInitializer has
been introduced. This class adeptly identifies the nature of the input data,
initializing the appropriate chain-type objects accordingly. Furthermore, its
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callback system offers the flexibility to tailor the initialization process to suit
specific use-cases.

5.3.5 Ligands and Binding Pockets

In the process of parsing structure files, the GenericStructure categorizes
atoms into one of three distinct groups: solvent, ligand, or polymeric. The
categorization of solvents is facilitated through a carefully curated list of PDB
residue codes, while polymeric atoms are identified based on the guidelines set
by the Chemical Component Dictionary (CCD), accessible at https://www.
wwpdb.org/data/ccd. Atoms that do not fall under the solvent or polymer
categories are considered potential ligands.

The classification of atoms as a ligand is determined based on a set of
criteria encompassing the number of ligand atoms, the number of contacts in-
volving polymeric atoms and residues. These parameters are modifiable within
the configuration settings of each GenericStructure. If a residue meets these
criteria, it is encapsulated within a separate Ligand object, which retains the
connection to its parent GenericStructure. The Ligand object stores vari-
ous pieces of information, including the indices of its atoms within the parent
structure, the contact atoms of the parent structure, distances to these atoms,
and pertinent metadata. When generating subsets of a GenericStructure,
such as during the division into chains, the ligand configuration guides the
allocation of ligands into these subsets.

Complementing the Ligand object is the Pocket data structure, designed
to efficiently differentiate ligands into “binders” and “non-binders”. It utilizes a
flexible string-based definition that translates into specific statements, which,
when applied to a parent structure of a particular ligand, yields a binary
response (True or False). Each definition comprises statements that can be
algebraically combined, allowing for the definition of pockets with varying
levels of complexity. For example, the statement below classifies a ligand as a
binder if it establishes a minimum of two contacts with any atoms of a parent
structure residue at position 2, or if both Cα atoms at structure positions 2
and 3 are within a distance of less than 6 Å from any ligand atoms:

c:1:any >= 2 | daa:2,3:CA < 6

https://www.wwpdb.org/data/ccd
https://www.wwpdb.org/data/ccd
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To standardize pocket definitions, reference positions can be utilized, accom-
panied by a mapping that correlates these positions with the structure num-
bering. The computational efficiency of this approach facilitates the rapid
filtering of thousands of ligands across a multitude of structures.

5.3.6 Variables Computation

lXtractor offers a flexible and consistent way to compute comprehensive sets
of descriptor variables for sequences, structures, and ligands. To unify vari-
able definitions, it is recommended to anchor them to a common reference
numbering.

Variables are defined as classes adhering to a standard abstract interface.
An important feature of a variable is its string definition, automatically created
for each initialized variable from its name and attribute values. For instance,
a variable

Dist(p1=1,p2=2,a1=`CA',a2=`CB')

specifies a distance between Cα and Cβ atoms of protein positions 1 and 2,
and executing a eval("Dist(p1=1,p2=2,a1=`CA',a2=`CB')") statement will
create this variable within the Python interpreter, enabling seamless intercon-
version between textual and programmatic representation. This facilitates the
creation of short and meaningful variable definitions, enhancing readability
and ease of use.

Each variable specifies its own computation in the calculate method. As
input, it accepts a sequence, atom array, or a ligand (subject to the variable
type) and an optional mapping from reference to the object numbering, and
returns a value, typically a number or a string, representing a specific atomistic
property.

lXtractor defines sets of variables that cover basic use cases, such as sec-
ondary structure elements and ProtFP PCA embeddings [24, 25] for sequences,
and basic geometric variables like distances and dihedral angles for structural
data. Users may define their own variable types tailored for specific use cases,
by inheriting the core interface from an abstract class.

Variables computation is orchestrated by the special Manager class. It ac-
cepts a series of chain-type objects, a reference mapping name, and a series
of variables to compute. It automatically determines (object, variable) pairs
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based on their types and retrieves necessary mappings. Once staged, it sched-
ules variable calculations that can be parallelized. Finally, it dynamically
aggregates the results as they become available and outputs them as a table.

5.3.7 Protocols

The protocols module is designed to encapsulate complex workflows tailored
for specific analytical purposes. One such workflow, the superpose protocol,
facilitates the analysis of a series of ChainStructure objects by orchestrating
the superposition of each unique pair of structures. Initially, it aligns the se-
quences of each pair, followed by subsetting the aligned residues to common
atoms. Subsequently, it executes the structural superposition and optionally
computes a specified distance metric on the superposed structures. This com-
puted distance metric can then be utilized for clustering analyses, aiding in
the categorization and study of structural similarities and variations.

5.4 Demonstration

5.4.1 The Database Protocol

We’ll demonstrate how lXtractor can be used to create sequence/structure
data collections. Namely, we’ll compile a collection of PDZ domain-containing
proteins and extract these domains from sequences and structures. PDZ is a
short (80-90 residues) domain serving as a protein interaction module in various
cellular processes [26]. This protocol can be easily extrapolated towards other
domains by simply changing the PFAM_ID.

Listing 5.1 demonstrates the setup of the protocol with imports and the
configuration of relevant paths and constants like the number of CPUs for
parallel processing.

Listing 5.1: Setup for the database protocol
1 from io import StringIO
2 from i t e r t o o l s import chain
3 from pathl ib import Path
4

5 # Import chain and in ter faces to external resources
6 import lXtractor . core . chain as lxc
7 from lXtractor . ext import (
8 PyHMMer, PDB, SIFTS , Pfam, fetch_uniprot , filter_by_method
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9 )
10 # Import u t i l i t y functions
11 from lXtractor . u t i l import read_fasta , valgroup
12 from too lz import keymap , valmap , v a l f i l t e r
13

14 PFAM_ID = ’PF00595 ’ # Define the targe t domain reference model
15 NUM_PROC = 20 # A maximum number of CPUs to a l l oca t e
16 NUM_THREADS = 20 # A maximum number of threads to a l l oca t e
17 # I n i t i a l i z e paths to store data
18 PDB_DIR = Path( ’ ./tmp/pdb ’ )
19 DB_DIR = Path( f ’ ./tmp/{PFAM_ID}/db ’ )
20 PDB_DIR. mkdir ( exist_ok=True , parents=True)
21 DB_DIR. mkdir ( exist_ok=True , parents=True)
22 # I n i t i a l i z e external resources
23 pdb = PDB( verbose=1, num_threads=NUM_THREADS)
24 s i f t s = SIFTS( load_id_mapping=True)
25 pfam = Pfam()

Listing 5.2 encapsulates the code to obtain the initial sequences from the
SIFTS resource and parses them into ChainSequence objects for internal rep-
resentation. Each sequence will be named by a UniProt identifier.

Listing 5.2: Obtaining and parsing initial sequences
1 # Fetch a l l SIFTS sequences from UniProt in fas ta format
2 fetched = fetch_uniprot (
3 s i f t s . uniprot_ids , num_threads=NUM_THREADS, chunk_size=500, verbose=True
4 )
5

6 # Parse the loaded sequences from the fetched data
7 f a s ta = read_fasta ( StringIO ( fetched ))
8 # Convert the parsed fas ta sequences into lXtractor ’ s chain sequences
9 chains = lxc . ChainList (

10 # ‘name. s p l i t ( ’ | ’ ) [ 1 ] ‘ parses the f u l l UniProt name into an ID
11 lxc . ChainSequence . from_string ( seq , name=name . s p l i t ( ’ | ’ ) [ 1 ] )
12 f o r name, seq in fas ta
13 )

Next, the PDZ domain HMM model is applied to each parsed sequence
(Listing 5.3). This model can be accessed from the Pfam interface, which auto-
matically integrates it into the PyHMMer class. The latter serves as a simplified
wrapper around the eponymous Python tool, which is an HMMer redeveloped
in Cython [27, 28]. The annotate method of this class processes a collection of
chain-type objects, extracting child segments corresponding to successful do-
main hits and generating results sequentially. These child segments are stored
internally within each chain, allowing us to tally the domain hits by consuming
the iterator.
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Listing 5.3: Getting initial domain hits
1 # Load the HMM model from the Pfam inter face using the spec i f i ed PFAM_ID
2 hmm = pfam [PFAM_ID]
3

4 # Apply the HMM model to annotate the chain sequences , creat ing ch i ld sequences
5 # based on the domain boundaries i d e n t i f i e d for each sequence
6 num_domains = sum(
7 1 for _ in hmm. annotate ( chains , min_score=30, min_cov_hmm=0.7)
8 )
9

10 # F i l t e r out sequences that did not have any domain h i t s
11 chains = chains . f i l t e r ( lambda x : len (x . chi ldren ) > 0)

After securing the initial domain hits, the next step is to consult SIFTS
for corresponding structural chains in the PDB. Since the PDB only allows
downloading complete structure files, it is necessary to first compile a list
of query identifiers; the specific chains are extracted during the subsequent
parsing. This list is further refined to include only entries associated with
X-ray structures. The PDB interface efficiently manages the retrieval process,
avoiding redundant downloads by checking the existing files in the designated
directories, thereby preventing unnecessary strain on the PDB servers. Listing
5.4 showcases how lXtractor accomplishes these tasks with just a few lines
of code.

Listing 5.4: Fetching relevant structures
1 # Generate UniProt−PDB mappings for va l id h i t s using SIFTS,
2 # to be used l a t e r for i n i t i a l i z i n g Chain ob jec t s
3 uniprot2pdb = {c .name : s i f t s [ c .name ] fo r c in chains}
4

5 # Compile an i n i t i a l se t of PDB IDs
6 pdb_ids = {x . s p l i t ( ’ : ’ ) [ 0 ] f o r x in chain . from_iterable ( uniprot2pdb . values () )}
7

8 # Refine the se t to only include X−ray structures
9 pdb_ids = filter_by_method (
10 pdb_ids , pdb=pdb , dir_=PDB_DIR / ’ in fo ’ , method=”X−ray”
11 )
12 # Retrieve the structure f i l e s in mmtf format
13 pdb . fetch_structures (pdb_ids , PDB_DIR / ’mmtf ’ , ’mmtf . gz ’ )

With the necessary data retrieved, the next step is to construct an lXtractor
data collection comprising Chain objects. This task is facilitated by the
ChainInitializer, which requires a mapping between sequences and their
corresponding structures. The sequences, already loaded and filtered to in-
clude only those with domain hits, are hashable objects in lXtractor and
can be utilized directly as dictionary keys. To optimize memory usage, each
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group of associated structural chains is represented as pairs consisting of the
structure’s path and a list of chain IDs. The ChainInitializer processes this
mapping, initializing sequences and structure chains based on the input types
provided. Additionally, it aligns each structural chain sequence with the re-
spective canonical sequence through pairwise sequence alignment. Listing 5.5
illustrates the preparation of the sequence-structure mapping in the format
expected by ChainInitializer, and the utilization of the latter to assemble
the collection of Chain objects.

Listing 5.5: Initializing the data collection
1 # Clean up extracted segments to avoid dup l icat ing ch i ld segments
2 # as Chain ob jec t s w i l l be u t i l i z e d in subsequent s teps
3 chains = chains . apply ( lambda c : c . f i l t e r _ c h i l d r e n ( lambda _: False ))
4

5 # Format the sequence−to−structure mapping into a format :
6 # SeqID => [ (PDB, [ Chain , . . . ] ) , . . . ]
7 seq2str = valgroup ( uniprot2pdb )
8 # Replace PDB IDs with the appropriate paths to the re tr ieved structures
9 # ‘keymap ‘ and ‘valmap ‘ map a function to keys and values of a dict ionary

10 seq2str = valmap(
11 lambda xs : [
12 PDB_DIR / ’mmtf ’ / f ’ {pdb_id }.mmtf . gz ’
13 f o r pdb_id , _ in xs i f pdb_id in pdb_ids
14 ] ,
15 seq2str
16 )
17 # Replace UniProt IDs with the corresponding chain sequences
18 seq2str = keymap(
19 lambda x : chains [ x ] [ 0 ] ,
20 seq2str
21 )
22 # I n i t i a l i z e the database using the prepared mappings
23 i n i t = lxc . Cha in In i t i a l i z e r ( verbose=1, to l e ra t e _f a i lu r e s=True)
24 chains = i n i t . from_mapping(
25 seq2str , num_proc_read_str=NUM_PROC, num_proc_map_numbering=NUM_PROC
26 )

Finally, invoking the annotate method on the chains initiates a process
where the target HMM model aligns with each canonical sequence, extracting
the domains as illustrated in Fig. 5.21. Following domain extraction, several
filtering steps are undertaken to retain only entries with valid and sufficiently
large structural domains. The data collection is then saved to disk for future

1It should be noted that this step repeats the domain extraction for canonical sequences
already verified to contain valid domains. Although less efficient than directly applying
the previously identified domain boundaries to each structural chain, this approach serves
demonstrative purposes better.
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reference, with all objects summarized in a pandas dataframe, which can be
stored as a CSV file for subsequent analysis. Listing 5.6 illustrates these steps.

Listing 5.6: Annotating domains and saving the collection
1 # Reapply domain mapping ; now, domain boundaries inf luence
2 # both the canonical sequence and a l l associated chain structures
3 num_domains = sum(1 for _ in hmm. annotate (
4 chains , min_score=30, min_cov_hmm=0.7 , min_cov_seq=0.7 ,
5 to l e ra t e_fa i lu r e=True , s i l e n t=True , str_map_from=’ map_canonical ’
6 ) )
7

8 # Retain domain structures comprising at l e a s t 50 residues
9 f o r ch i ld in chains . co l lapse_chi ldren ( ) :
10 ch i ld . s t ructures = chi ld . s t ructures . f i l t e r ( lambda x : len (x) > 50)
11 # Keep domain chains that have at l e a s t one extracted s t ruc tura l domain
12 f o r c in chains :
13 c . chi ldren = c . chi ldren . f i l t e r ( lambda chi ld : len ( ch i ld . s t ructures ) > 0)
14 # Maintain chains with a minimum of one extracted domain
15 chains = chains . f i l t e r ( lambda c : len ( c . ch i ldren ) > 0)
16

17 # Store the data c o l l e c t i o n on disk
18 i o = lxc . ChainIO( verbose=1, num_proc=NUM_PROC)
19 sum(1 for _ in io . write ( chains , DB_DIR))
20

21 # Compile a l l meta−information into a s ing l e tab l e
22 df = chains . summary()
23 df . to_csv (DB_DIR / ’summary . csv ’ )

Executing the outlined database protocol required approximately three
minutes on a moderately powerful laptop (excluding the time for fetching the
structural data). The resulting data collection of PDZ domains encompassed
146 complete canonical sequences and 227 domain sequences, correlating to
2337 structural domains.

5.4.2 Calculating Descriptors

In this section, we illustrate how lXtractor facilitates the computation of vari-
ables. Assuming the database protocol delineated in the preceding section has
been executed, the objective now shifts to computing numerical descriptors for
the extracted sequence and structure domains. Listing 5.7 delineates the setup
procedure for this computation. After importing the necessary modules and
defining constants, the domain segments are loaded. Given that their parent
structures are not required for the computation, they are omitted; however,
a specific callback is utilized to restore ancestral relationships from metadata,
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necessary for the dynamic construction and display of identifiers. Moreover,
since variables are anchored to the reference HMM numbering, it must be
present in all objects. Hence, the last loop in Listing 5.7 transfers the target
domain numbering from UniProt to PDB sequences.

Listing 5.7: Setup for variables calculation
1 from c o l l e c t i o n s import Counter
2 from i t e r t o o l s import combinations , chain
3 from pathl ib import Path
4

5 import numpy as np
6 # Import necessary modules for chain and var iab le management
7 import lXtractor . core . chain as lxc
8 from lXtractor . var iab le s import Manager , GenericCalculator
9 from lXtractor . var iab le s . s t ructura l import ∗

10 from lXtractor . var iab le s . sequent ia l import ∗
11 from too lz import k e y f i l t e r , valmap
12

13 PFAM_ID = ’PF00595 ’ # Reference model for the targe t domain
14 NUM_PROC = 20 # Maximum number of CPUs a l loca ted for ca lcu la t ions
15 DB_DIR = Path( f ’ ./tmp/{PFAM_ID}/db ’ ) # Path to the stored database
16

17 # I n i t i a l i z e the database
18 i o = lxc . ChainIO( verbose=1)
19 chains = lxc . ChainList ( io . read_chain (
20 DB_DIR. glob ( f ’ ∗/segments/∗{PFAM_ID}∗ ’ ) , ca l lbacks =[ lxc . recover ] )
21 )
22 # Transfer domain mappings from canonical sequences to
23 # the associated structures
24 f o r c in chains :
25 c . transfer_seq_mapping (PFAM_ID)

With the chains loaded, Listing 5.8 illustrates the process of defining se-
quence and structure variables. Initially, positions covered in at least 80% of
domains are identified to optimize the outcome. These positions then guide
the definition of sequence variables, utilizing “Protein FingerPrints” (PFP)
descriptors that encapsulate the physicochemical properties of amino acids,
condensed through PCA analysis [24, 25]. Concurrently, structural variables
are defined, initializing Φ and Ψ dihedral angles for each position, along with
the minimum residue-residue distance for each position pair.

Listing 5.8: Defining variables for calculation
1 # Ident i f y HMM posi t ions covered in at l e a s t 80\% of domain sequences
2 counts = Counter ( chain . from_iterable ( s [PFAM_ID] fo r s in chains . sequences ))
3 pos_coverage = valmap(lambda x : x / len ( chains . sequences ) , counts )
4 pos i t i ons = { int (k) fo r k , v in pos_coverage . items () i f v > 0.8}
5
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6 # Define var iab l e s for ca lcu la t ion
7 seq_variables = l i s t ( chain . from_iterable (
8 # ProtFP embeddings (3 PCA components) for each posi t ion
9 (PFP(p , i ) fo r i in range (3)) fo r p in pos i t i ons )
10 )
11 str_var iables = l i s t ( chain (
12 ( Phi (p) fo r p in pos i t i ons ) , # Phi dihedral angle
13 ( Psi (p) fo r p in pos i t i ons ) , # Psi dihedral angle
14 # Minimum residue−residue distance for each posi t ion pair
15 ( AggDist (p1 , p2 , ’min ’ ) fo r p1 , p2 in combinations ( pos i t ions , 2))
16 ) )

The calculation of variables is streamlined by the Calculator and Manager
objects. The Calculator facilitates the calculation process, distributing it
across multiple CPUs, while the Manager organizes the (object, variable) pairs
for calculation, oversees execution, and compiles the results. It’s vital to specify
the common numbering name (map_name) in the Manager to align the reference
HMM with the actual residue numbering, as shown in Listing 5.9.

Listing 5.9: Calculating variables and saving the results
1 # I n i t i a l i z e ca lcu la tor and manager ob jec t s
2 ca l cu lator = GenericCalculator ( verbose=True , num_proc=NUM_PROC)
3 manager = Manager ()
4

5 # Stage and ca lcu la te sequence var iab l e s
6 staged = manager . ca l cu la te (
7 chains . sequences , seq_variables , ca lcu lator , map_name=PFAM_ID
8 )
9 df_seq = manager . aggregate_from_it ( staged , num_vs=len ( seq_variables ))
10 # Stage and ca lcu la te structure var iab l e s
11 staged = manager . ca l cu la te (
12 chains . structures , str_variables , ca lcu lator , map_name=PFAM_ID
13 )
14 df_str = manager . aggregate_from_it ( staged , num_vs=len ( str_var iables ))
15

16 # Save the ca lcu la t ion r e s u l t s
17 df_seq . to_csv (DB_DIR / ’ sequence_variables . csv ’ )
18 df_str . to_csv (DB_DIR / ’ structure_variables . csv ’ )

Leveraging parallelization for critical operations significantly accelerates
the calculation of variables. Consequently, the outlined protocol takes approx-
imately two minutes to execute, generating 211 variables for each of the 227
domain sequences and 2556 variables for each of the 2337 domain structures,
totaling 6,021,269 variables.
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5.5 Methods

5.5.1 Implementation Details

lXtractor was developed in Python v3.10, featuring a modular structure or-
ganized into subpackages that house thematically distinct modules (Fig. 5.4).
The source code adheres to the PEP 484 standard for type annotations, en-
hancing code reliability through the external mypy type checker used during
development.

 External
 -----------

UniProt
PDB
HMM+Pfam
SIFTS
PANTHER

 Variables
 ------------

Calculator
Manager
Structural
Sequential
Ligand

 Protocols
 ------------

Superpose
Database

 Utils module
 ----------------------

IO
Sequence
Structure
Typing

Interfaces to extenral
resources

General-purpose
utilities

Higher-order workflows
and protocols

Defining/scheduling/
calculating variables

Core objects for
sequential and structural
data representation and

manipulation

  Core 
  ====

Config
Exceptions
Segment
Structure
Alignment
Ligand
Pocket

 Chain
 --------

Sequence
Structure
Chain
List
IO
Initializer
Tree

Figure 5.4: lXtractor codebase architecture.

Time-sensitive operations, including the management of chain-type objects
and variables’ calculations, can distribute computational load across available
CPUs, utilizing either the built-in Python backend or joblib. Additionally,
calls to external resources can be parallelized flexibly using multithreading.

5.5.2 Testing, Documentation, and Deployment

The package encompasses a comprehensive test suite, implemented with the
pytest library, covering over 82% of the source code. Comprehensive docu-

https://peps.python.org/pep-0484/
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mentation is available for all modules, classes, and functions, with API docu-
mentation generated from source code using sphinx.

Hosted on GitHub, the project employs webhooks to automate testing and
documentation. A specific GitHub workflow triggers the test suite upon each
commit, facilitating early error detection, while another assembles and deploys
documentation to readthedocs.org. New releases are distributed through
PyPI and can be installed using the command pip install lxtractor.

5.5.3 Executing the Protocols

The database and variable calculation protocols were executed on a laptop
equipped with a 32-core 13th Gen Intel i9-13900HX processor and 32GB of
RAM.

5.5.4 Package Dependencies

Table 5.1: lXtractor dependencies

Name Usage Ref.

biotite Parsing and representing structure data. [7]
joblib Parallelizing jobs.
more-itertools Extending Python iterators.
networkx Analyzing chain trees. [29]
numpy Handling array computations. [30]
pandas Representing tabular data. [23]
pyhmmer Aligning sequence-to-HMM. [28]
toolz Processing dictionaries and composing functions.
tqdm Displaying progress bars.
requests Managing web requests.

5.6 Discussion and Future Directions
In the rapidly evolving field of structural biology, machine learning and data
mining have emerged as indispensable tools, unlocking the full potential of the
expanding volume of structural data. The cornerstone of these applications lies
in the establishment of reproducible, transparent, and accurate data prepara-
tion routines. Despite the plethora of tools available for describing these data,

readthedocs.org
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a significant gap exists in addressing the initial steps of preparing and manag-
ing data collections. This gap often leads to different groups “reinventing the
wheel” whenever such needs arise, hindering the progress of community-wide
efforts.

To illustrate, numerous structural databases are dedicated to Protein Ki-
nases (PKs) [31–35]. However, with the notable exception of Kincore [33],
these databases do not disclose their exact data preparation workflows, pre-
senting only the end results. This lack of transparency undermines the trust
in these data and complicates collaborative efforts to enhance the quality of
these datasets incrementally.

These observations spurred the development of lXtractor – an open-source
Python library that seamlessly integrates data preparation and feature extrac-
tion. This tool facilitates the creation of transparent yet sophisticated data
preparation workflows, providing a robust and flexible foundation for data
analysis and description. In previous work [36], we utilized lXtractor to an-
alyze a collection of PK domains. In this study, we introduced protocols for
database and feature extraction that enable the assembly and numerical de-
scription of a collection of arbitrary domains without requiring any input data.
For instance, executing these protocols for the PDZ domain allowed us to as-
semble 2237 structural domains corresponding to 227 sequences and compute
over 6 million descriptors in approximately five minutes on a standard laptop.

Looking ahead, lXtractor is slated for active development, with plans to
enhance basic functionalities, introduce more protocols, and expand the vari-
ety of available descriptors. Moreover, in a bid to democratize data mining
in structural biology and alleviate the need of reassembling the data for each
domain, we intend to create the “default” data collections for all domains
available in the PDB. This initiative will enable users to easily access exist-
ing collections or contribute their own, fostering a collaborative and dynamic
research environment.
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Corrections for the final version

This section introduces corrections requested by the jury members. Apart from
typographical errors, which I won’t detail here, the following changes/additions
were implemented:

• Clarified the description of the clustering procedure in Section 3.4.2.
• Added Supp. Fig. 3.8 that complements Fig. 3.4 and demonstrates the

plane usage to manually annotate DFG-in, DFG-out, and DFG-other
conformations.

• Added Supp. Fig. 3.14 depicting a sequence logo of an entire PK domain
to complement Fig. 3.6d.

• Added Supp. Fig. 3.17 demonstrating how selected structural variables
differ between domains captured in active/inactive and DFG-in/out/other
states.

• Fixed formatting issues in Table 3.6.
• Edited Section 4.3.8 to clarify the comparison of the sequence and structure-

based DFG labels of the AlphaFold2 models.
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Titre: Machine learning pour comprendre et concevoir le kinome structurel
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Résumé: Les protéines kinases (PK) constituent l’un des
groupes d’enzymes les plus anciens et les plus omniprésents
profondément intégrés dans la machinerie moléculaire d’une
cellule. En modifiant la conformation de leurs cibles via le
transfert de phosphate, les PK eux-mêmes passent d’un état
actif à un état inactif. Tout déséquilibre entre eux peut
entraîner des maladies nocives, notamment des cancers. Le
motif DFG, situé dans la boucle d’activation (AL), présente une
variabilité conformationnelle dans l’état inactif moins contraint
: une propriété que les inhibiteurs à petites molécules exploitent
souvent. À savoir, il existe deux orientations principales du
motif DFG, connues sous le nom de DFG-in et DFG-out. Ce
dernier empêche la liaison au substrat et est généralement
associé à une plus grande sélectivité de l’inhibiteur. Bien
qu’ils soient essentiels aux efforts de conception de médicaments,
on sait peu de choses sur les caractéristiques qui façonnent
le paysage conformationnel de l’AL. Ce travail constitue une
tentative systématique de les découvrir via une conservation
et une extraction minutieuses des données. Au cours de son
parcours, nous avons créé le plus grand assemblage de kinomes
structurels à ce jour, englobant près de dix mille domaines
PK annotés. Le regroupement de ces domaines a permis un
marquage semi-supervisé des conformations du motif DFG. Ces
étiquettes ont servi d’entrée à notre pipeline d’apprentissage
automatique interprétable (ML) incorporant des ensembles

basés sur des arbres de décision et un algorithme de sélection
de caractéristiques indépendant du modèle. Les classificateurs
obtenus ont prédit avec précision les conformations DFG et les
états actifs/inactifs et se sont appuyés sur des caractéristiques
structurelles facilement interprétables. Nous avons utilisé les
annotations obtenues et les prédictions des modèles ML pour
caractériser les éléments de séquence probablement responsables
du déplacement de l’équilibre conformationnel de l’état inactif
de l’AL, ou des positions ”discriminatives”. Pour les découvrir,
nous avons créé plusieurs ensembles de données basés sur des
séquences, chacun ayant un niveau différent de propension
conformationnelle attribuée à une séquence. Nous avons utilisé
le même pipeline ML et la même analyse phylogénétique
pour montrer qu’une propension conformationnelle DFG claire
est probablement privilégiée à un groupe de récepteurs
tyrosine protéine kinases étroitement apparentés. Les positions
discriminantes découvertes chevauchent la littérature existante
et les études de mutagenèse et peuvent fournir une base pour
de futurs efforts expérimentaux, y compris des applications de
conception de protéines informatiques. Enfin, la méthodologie
développée permet d’automatiser l’annotation du kinome
structural. Généralisable à des problèmes de même nature,
il peut accroître l’efficacité et la transparence de la fouille de
données en biologie structurale.
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Abstract: Protein kinases (PKs) comprise one of the
most ancient and ubiquitous enzyme groups deeply embedded
in a cell’s molecular machinery. Changing their targets’
conformation via phosphate transfer, PKs themselves cycle
between active and inactive states. Any misbalance between
them can lead to harmful diseases, including cancers. The
DFG motif, situated within the activation loop (AL), displays
conformational variability in the less constrained inactive state:
a property that small molecule inhibitors often exploit. Namely,
there are two major DFG motif orientations, known as the
DFG-in and DFG-out. The latter precludes substrate binding
and is typically associated with higher inhibitor selectivity.
Despite being pivotal to drug design efforts, little is known
regarding which features shape AL conformational landscape.
This work constitutes a systematic attempt to uncover them
via careful data curation and mining. Over its course,
we created the largest structural kinome assembly to date,
encompassing nearly ten thousand annotated PK domains.
Clustering these domains enabled semi-supervised labeling of
the DFG motif conformations. These labels served as input to
our interpretable machine-learning (ML) pipeline incorporating

decision tree-based ensembles and a model-agnostic feature
selection algorithm. The obtained classifiers accurately
predicted the DFG conformations and active/inactive states
and relied on readily interpretable structural hallmarks. We
used the obtained annotations and ML models’ predictions to
characterize sequence elements likely responsible for shifting the
AL inactive state’s conformational balance, or ”discriminative”
positions. To uncover these, we created several sequence-
based datasets, each having a different level of conformational
propensity attributed to a sequence. We used the same ML
pipeline and phylogenetic analysis to show that a clear DFG
conformational propensity is likely privileged to a group of
closely related receptor tyrosine protein kinases. The discovered
discriminating positions overlapped with the existing literature
and mutagenesis studies and may provide a foundation for
future experimental efforts, including computational protein
design applications. Finally, the developed methodology
enables automating the annotation of the structural kinome.
Generalizable towards problems of similar nature, it may
increase the efficiency and transparency of data mining in
structural biology.
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