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Abstract

English

Spatial mode entanglement in semiconductor photonic circuits

Keywords: Quantum information, integrated quantum photonics, nonlinear optics, pho-
tonic circuits, entanglement, parametric fluorescence, semiconductors, quantum simula-
tion, quantrum metrology.

In the last decades, the theoretical and technological developments of quantum me-
chanics have led to the emergence of a new research field: quantum information science. It
directly exploits the peculiarities of quantum phenomena, such as superposition and entan-
glement, as a resource to develop new functionalities and reach performances unattainable
with classical physics. Quantum information is structured into four different axes defined
for the future applications of quantum information technologies: quantum computing,
i.e. the use of quantum properties to achieve better complexity scaling of algorithms over
their classical counterparts, quantum simulation, which exploits well-controlled quantum
systems to simulate the properties of more complex and inaccessible systems, quantum
metrology, where the high sensitivity of quantum systems to perturbations is harnessed to
improve the precision of measurements, and quantum communication, aiming at the real-
ization of secure information transmission. The constraining requirements for the imple-
mentation of quantum information protocols have led to the selection of several promising
physical platforms, including in particular atomic systems, electronic spins, superconduct-
ing qubits and photons. Photons are particularly attractive for their propagation speed,
robustness to decoherence, and large variety of degrees of freedom to encode information.
In particular, high-dimensional photonic degrees of freedom, such as frequency or spatial
modes, provide novel possibilities for quantum information, from fundamental tests of
quantum mechanics to enhanced computation and communication protocols. In addition,
optical systems have benefited in the recent years from the technological developments
of photonic circuits, allowing the implementation of compact and scalable architectures
for the generation, manipulation and detection of quantum states of light. In this con-
text, the III-V semiconductor material AlGaAs, with its high second-order nonlinearity,
mature fabrication technology, high electro-optic effect and integrability with supercon-
ducting nanowire single-photon detectors, is a promising candidate for the realization of
integrated quantum photonic circuits in a scalable manner.

In this thesis, we demonstrate photon pair sources based on parametric fluorescence
in AlGaAs photonic devices allowing to generate high-dimensional quantum states, en-
tangled in frequency and in spatial modes.

The first investigated source employs a transverse pump geometry in a single waveg-
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uide, offering the possibility to engineer the quantum state of the generated photon pairs
in the frequency degree of freedom through the spatial shaping of the pump beam. We
exploit it to demonstrate control over the exchange statistics of the generated biphotons.

The second demonstrated device is based on an array of evanescently coupled nonlin-
ear waveguides, pumped in a copropagating geometry, where the generated photons can
hop from waveguide to waveguide, thus implementing quantum random walks. This leads
to the generation of spatially entangled states that are reconfigurable through the spatial
profile of the pump beam and the parameters of the array. The photons are generated
directly within the device and the generation can take place at any position along the
propagation axis, leading to an increased compacity and a higher level of spatial entan-
glement, while opening the way to the implementation of on-chip quantum simulation
tasks.

The two demonstrated devices operate at room temperature and telecom wavelength,
enabling long-distance transmission of the generated photon pairs. They present a strong
potential for integration within more complex AlGaAs photonic circuits, and are thus
promising candidates for the all-integrated implementation of quantum information pro-
tocols on photonic chips.

Francais

Intrication en modes spatiaux dans des circuits photoniques semi-
conducteurs

Mots-clés: Information quantique, photonique quantique intégrée, optique non-linéaire,
circuits photoniques, intrication, fluorescence paramétrique, semi-conducteurs, simulation
quantique, métrologie quantique.

Au cours des dernieres décennies, les développements théoriques et technologiques de
la mécanique quantique ont conduit a ’émergence d’un nouveau domaine de recherche,
I'information quantique, qui exploite directement les particularités des phénomenes quan-
tiques - comme la superposition et l'intrication - pour développer de nouvelles fonction-
nalités et atteindre des performances inaccessibles aux systémes classiques. Le champ
de 'information quantique est structuré en quatre axes principaux : le calcul quantique,
qui vise une meilleure scalabilité de la complexité des algorithmes, la simulation quan-
tique, qui exploite des systemes quantiques bien controlés pour simuler les propriétés et
les comportements de systéemes complexes, la métrologie quantique, ou la haute sensibil-
ité des systemes quantiques est exploitée pour améliorer la précision des mesures, et la
communication quantique, qui vise a réaliser une transmission sécurisée d’information.

Les contraintes pour la mise en oeuvre des protocoles d’information quantique ont con-
duit a la sélection de plusieurs plateformes physiques prometteuses, comme les systemes
atomiques, les spins électroniques, les qubits supraconducteurs et les photons. Les pho-
tons sont particulierement attractifs de par leur vitesse de propagation, leur robustesse a
la décohérence et leur grande variété de degrés de liberté pour encoder 'information. En
particulier, les degrés de liberté photoniques de haute dimension, comme la fréquence ou
les modes spatiaux, offrent de nouvelles possibilités pour 'information quantique, pour
des tests fondamentaux de la mécanique quantique comme pour des protocoles de cal-
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cul et de communication améliorés. En outre, les systemes optiques ont bénéficié ces
dernieres années des développements technologiques des circuits photoniques, permettant
la réalisation de plateformes compactes pour la génération, la manipulation et la détection
d’états quantiques de lumiere. Dans ce contexte, le semi-conducteur AlGaAs, grace a sa
forte non-linéarité du second ordre, sa maturité technologique, son effet électro-optique
¢élevé et son intégrabilité avec des détecteurs de photons uniques sur puce, est un candidat
prometteur pour la réalisation de circuits photoniques quantiques intégrés.

Cette these étudie des sources de paires de photons basées sur la fluorescence paramétrique
dans des dispositifs photoniques AlGaAs permettant de générer des états quantiques de
haute dimension, intriqués en fréquence et en modes spatiaux.

La premiere source étudiée utilise une géométrie de pompe transverse dans un guide
d’ondes, permettant de modifier I’état quantique en fréquence des paires de photons par
la mise en forme spatiale du faisceau de pompe. Nous l'exploitons pour démontrer la
possibilité de controler la statistique d’échange des biphotons générés.

Le second dispositif est basé sur un réseau de guides d’ondes non linéaires couplés
de maniere évanescente, pompés dans une géométrie colinéaire, ou les photons générés
peuvent sauter d'un guide a l'autre, implémentant des marches quantiques aléatoires.
Cette configuration permet la génération d’états intriqués spatialement et reconfigurables
via le controle du faisceau de pompe ou des parametres du réseau. Les photons sont
générés directement dans le dispositif et la génération peut avoir lieu a n’importe quelle
position selon 'axe de propagation, permettant d’augmenter la compacité et le niveau
d’intrication spatiale tout en ouvrant la voie a des expériences de simulation quantique
sur puce.

Les deux dispositifs développés fonctionnent a température ambiante et aux longueurs
d’onde télécom, compatibles avec une transmission longue-distance des états générés.
Ils présentent un fort potentiel d’intégration dans des circuits photoniques AlGaAs plus
complexes, et sont donc des candidats prometteurs pour la mise en oeuvre de protocoles
d’information quantique intégrés sur puce.
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Au cours des dernieres décennies, les développements théoriques et technologiques de
la mécanique quantique ont conduit a ’émergence d’un nouveau domaine de recherche,
I'information quantique, qui exploite directement les particularités des phénomenes quan-
tiques - comme la superposition et l'intrication - pour développer de nouvelles fonction-
nalités et atteindre des performances inaccessibles aux systémes classiques. Le champ
de I'information quantique est structuré en quatre axes principaux : le calcul quantique,
qui vise une amélioration de la complexité des algorithmes, la simulation quantique, qui
exploite des systémes quantiques bien controlés pour simuler les propriétés et les com-
portements de systemes complexes, la métrologie quantique, ou la haute sensibilité des
systemes quantiques est exploitée pour améliorer la précision des mesures, et la commu-
nication quantique, qui vise a réaliser une transmission sécurisée d’information.

Les contraintes pour la mise en ceuvre des protocoles d’information quantique ont con-
duit a la sélection de plusieurs plateformes physiques prometteuses, comme les systemes
atomiques, les spins électroniques, les qubits supraconducteurs et les photons. Les pho-
tons sont particulierement attractifs de par leur vitesse de propagation, leur robustesse a
la décohérence et leur grande variété de degrés de liberté pour encoder I'information. En
particulier, les degrés de liberté photoniques de haute dimension, comme la fréquence ou
les modes spatiaux, offrent de nouvelles possibilités pour I'information quantique, pour
des tests fondamentaux de la mécanique quantique comme pour des protocoles de cal-
cul et de communication améliorés. En outre, les systémes optiques ont bénéficié ces
dernieres années des développements technologiques des circuits photoniques, permettant
la réalisation de plateformes compactes pour la génération, la manipulation et la détection
d’états quantiques de lumiere. Dans ce contexte, le semi-conducteur AlGaAs, grace a sa
forte non-linéarité du second ordre, sa maturité technologique, son effet électro-optique
élevé et son intégrabilité avec des détecteurs de photons uniques sur puce, est un candidat
prometteur pour la réalisation de circuits photoniques quantiques intégrés.

Cette these étudie des sources de paires de photons basées sur la fluorescence paramétrique
dans des dispositifs photoniques AlGaAs permettant de générer des états quantiques de
haute dimension, intriqués en fréquence et en modes spatiaux.

Dans un premier temps, nous décrivons le processus de fluorescence paramétrique dans
des matériaux non-linéaires, permettant de générer des paires de photons intriquées a par-
tir de la conversion de photons a fréquences visibles en paires de photons a fréquences télé-
com. Nous donnons d’abord une description théorique classique des processus optiques
non-linéaires pour introduire la notion d’accord de phase, avant d’utiliser cette notion
dans la description quantique de la fluorescence paramétrique pour décrire ’état quan-
tique des paires de photons générées. Nous présentons ensuite deux géométries différentes
pour réaliser un accord de phase efficace dans I’AlGaAs, d’abord une géométrie con-
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trapropageante avec une pompe transverse, puis un accord de phase modal en géométrie
copropageante.

Nous faisons ensuite ’étude de notre premiere source de paires de photons, dont le
principe repose sur un accord de phase contrapropageant. L’étude théorique de 1’état
quantique des paires de photons générées par fluorescence paramétrique dans cette source
montre tout d’abord que la symétrie d’échange de 1’état dépend du profil spatial du fais-
ceau de pompe utilisé, et ouvre la voie a la manipulation de la statistique d’échange de
I’état biphoton via le contrdle de ce profil spatial. L’interférométrie de Hong-Ou-Mandel
est également étudiée comme outil pour mesurer la statistique d’échange de deux par-
ticules, notamment dans le cas des anyons, qui présentent une statistique d’échange non
triviale, et la possibilité d’imiter ce type de statistique d’échange a I’aide de la modulation
spatiale du faisceau de pompe est démontrée. Des résultats expérimentaux sont finalement
présentés, d’abord dans le cas de la mesure de ’Amplitude Spectrale Jointe des paires
de photons générées, puis dans le cadre de la mesure de I'interférogramme de Hong-Ou-
Mandel de paires de photons présentant une statistique d’échange anyonique. Ces résul-
tats démontrent expérimentalement la possibilité de contrdler de maniere reconfigurable
la statistique d’échange de paires de photons générées par fluorescence paramétrique, a
température ambiante et longueur d’onde télécom.

Nous nous concentrons ensuite sur le second dispositif, basé sur un réseau de guides
d’ondes non-linéaires couplés de manieére évanescente, pompés dans une géométrie col-
inéaire. Les photons générés peuvent sauter d’un guide a l'autre, implémentant des
marches quantiques aléatoires. Cette configuration permet la génération d’états intriqués
spatialement et reconfigurables via le controle du faisceau de pompe ou des parametres du
réseau. Les photons sont générés directement dans le dispositif & n’importe quelle position
selon ’axe de propagation, permettant d’augmenter la compacité et le niveau d’intrication
spatiale tout en ouvrant la voie a des expériences de simulation quantique sur puce. Nous
faisons en premier lieu une étude théorique du dispositif passif, dans lequel nous intro-
duisons un formalisme de modes de Bloch pour décrire les modes collectifs du réseau infini
de guides d’ondes. En décomposant les états d’entrée sur les modes de Bloch, qui ont
chacun leur propre vecteur d’onde transverse et leur constante de propagation modifiée,
il est possible de calculer formellement de maniere simple la propagation d’un faisceau
cohérent dans le réseau. Nous faisons ensuite ’étude de la propagation de paires de pho-
tons dans le réseau, donnant lieu a des marches quantiques corrélées, et introduisons des
indicateurs de non-classicalité de I’état quantique de sortie.

Nous introduisons dans un deuxieme temps le concept de marches quantiques cas-
cadées, lorsque des paires de photons sont générées directement dans le réseau par fluo-
rescence paramétrique, et calculons I’état quantique des paires de photons ainsi obtenues.
Cela permet d’étudier de maniere théorique les corrélations spatiales présentées par les
biphotons produits, pour la compréhension desquelles le formalisme des modes collectifs
de Bloch offre un cadre adapté en permettant de considérer des corrélations de forme
plus simple dans I'espace réciproque, et donnent naissance a un accord de phase modifié
avec une condition supplémentaire de conservation du vecteur d’onde transverse. Nous
considérons également les corrélations existant entre les degrés de liberté spatiaux et de
fréquence, qui limitent la pureté des corrélations spatiales, que 'on peut quantifier en
utilisant la trace partielle de la matrice densité de 1’état a deux photons. Ensuite, nous
introduisons un modele théorique permettant de considérer directement I’évolution des
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corrélations dans I'espace réel, et qui ne nécessite pas de calcul des modes propres, ce qui
permet de 'appliquer aux réseaux finis.

Pour conclure notre étude théorique, nous effectuons une série de simulations pour met-
tre en lumiere le role de différents parametres des réseaux de guides considérés. D’abord,
nous démontrons par la simulation du spectre de résonance de fluorescence paramétrique
que l'existence du couplage entre les guides d’ondes conduit a un élargissement de la ré-
sonance non-linéaire. Nous étudions ensuite la pureté de la matrice densité réduite sur le
degré de liberté spatial, en fonction de la largeur spectrale considérée pour les photons
émis, ce qui permet, avec le tracé des spectres des photons de fluorescence paramétrique,
de confirmer I'existence du couplage spatio-spectral dans I’état généré. Nous passons en-
suite a la simulation d’un état pur spectralement, ainsi que de la résonance des différentes
métriques pour la non-classicalité des états a deux photons, qui sont maximales autour de
la longueur d’onde de fluorescence paramétrique adaptée a la dégénérescence. Finalement
pour le réseau infini, nous simulons les états générés par I'injection d’un faisceau de pompe
dont la distribution spatiale dans les différents guides du réseau est controlée en phase et
en amplitude, mettant ainsi en lumiere la possibilité du controle de ’état quantique de
sortie du dispositif. Enfin, nous simulons les effets de différents parametres en utilisant
le formalisme introduit pour les réseaux finis, notamment de la propagation transverse
et des pertes de la pompe, ainsi que les effets de rebond des photons sur les bords du
réseau. Pour terminer, nous démontrons un effet de localisation spatiale des photons
lorsque du désordre est introduit dans la constante de couplage, similaire au phénomene
de localisation d’Anderson.

Nous présentons ensuite la conception et la fabrication des microstructures permettant
la génération de paires de photons par fluorescence paramétrique dans les réseaux ainsi
que la mesure des corrélations spatiales. Nous détaillons les simulations électromagné-
tiques réalisées, puis le travail de développement des techniques de microfabrication, par
lithographie électronique et gravure plasma ICP, qui a constitué un aspect important et
exigeant de ce travail de these. Nous présentons également des premieres caractérisations
des échantillons réalisés.

Finalement, nous introduisons les résultats expérimentaux obtenus en utilisant les
échantillons ainsi fabriqués. Nous détaillons les techniques expérimentales développées
pour nos mesures. Nous confirmons expérimentalement 1’élargissement du spectre de
résonance du processus de fluorescence paramétrique, puis mesurons la matrice de cor-
rélation d’un échantillon sur cing guides, en bon accord avec ’étude théorique réalisées
précédemment. Les corrélations obtenues violent le critere de non-classicalité par une
soixantaine de déviations standard, indiquant le caractere quantique des états produits.
Ces résultats constituent la premiere démonstration de génération d’états de lumiere in-
triqués spatialement dans un réseau de guide d’onde en AlGaAs, ouvrant la voie a la
réalisation d’une source compacte et versatile fonctionnant a température ambiante et
aux longueurs d’onde télécom.

Nous concluons ce manuscrit en donnant un apergu des perspectives futures ouvertes
par les résultats présentés.

Nous avons d’abord démontré expérimentalement la possibilité de reconfigurer les
statistiques d’échange des paires de photons intriqués dans le degré de liberté de fréquence
et d'imiter des statistiques d’échange arbitraires, en particulier pour reproduire le com-
portement des anyons dans une configuration Hong-Ou-Mandel. Cela pourrait étre ex-
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ploité pour la réalisation de protocoles d’information quantique exploitant la robustesse
au bruit du processus de tressage (braiding), tels que les codes de correction d’erreurs
et les protocoles de calcul quantique topologique. Le degré de liberté en fréquence peut
également étre couplé a la polarisation en exploitant simultanément les deux interactions
pour la fluorescence paramétrique de type II supporté par la source, ce qui permet la
génération d’états intriqués hybrides en fréquence/polarisation. Ce degré de liberté hy-
bride pourrait a son tour étre utilisé pour la distribution d’intrication a des systemes
quantiques ayant des niveaux d’énergie disparates ou comme ressource pour des mesures
temporelles précises en métrologie. De plus, des configurations plus complexes du schéma
de pompage pourraient également étre mises en oeuvre pour générer une zoologie plus di-
versifiée d’états quantiques en fréquence, avec une structure de phase finement structurée
qui peut a nouveau fournir une ressource pour la métrologie quantique.

D’autre part, nous avons démontré la génération de paires de photons intriqués spa-
tialement a partir de marches quantiques dans des réseaux de guides d’ondes non linéaires
en AlGaAs. A DPavenir, cette plateforme pourrait étre utilisée pour générer une intrica-
tion spatiale controlable des paires de photons en adaptant la distribution spatiale du
faisceau de pompe dans le réseau. Les réseaux de guides d’ondes offrent en outre une
plateforme naturelle pour la simulation quantique de Hamiltoniens de liaisons fortes avec
des énergies sur site et des couplages controlables. Les parametres peuvent étre choisis di-
rectement au stade de la fabrication ou modifiés dynamiquement en exploitant le fort effet
électro-optique de I’AlGaAs. Gréace a un controle précis du Hamiltonien, les réseaux de
guides d’ondes peuvent ainsi permettre la simulation de problémes de matiere condensée,
tels que la localisation d’Anderson d’états quantiques bipartites. Ils offrent également la
possibilité de simuler et d’exploiter des effets topologiques pour réaliser une transmission
optique sans dissipation dans le régime quantique. En effet, il est possible de concevoir
les constantes de couplage et leur périodicité a l'intérieur du réseau pour simuler des
Hamiltoniens avec des propriétés topologiques, comme le Hamiltonien de Su-Schrieffer-
Heeger, et d’introduire un défaut structurel pour créer une interface entre deux phases
topologiques distinctes. Cela conduit a I’émergence d’états de bord topologiquement pro-
tégés qui ont des propriétés robustes au désordre. Grace a cette configuration, les réseaux
de guides d’ondes peuvent étre exploités pour étudier 'interaction entre les corrélations
quantiques dans le degré de liberté spatial et la protection topologique des états quan-
tiques, notamment pour les paires de photons générées par fluorescence paramétrique.

La source contrapropageante et le réseau de guides d’ondes non-linéaires étudiés dans
cette these permettent tous deux de générer des paires de photons intriqués de maniere
reconfigurable et peuvent étre intégrés a des circuits photoniques pour une manipulation
ultérieure des photons générés. Ils offrent diverses perspectives en termes de métrologie
et de simulation quantique, et leur développement et leur intégration sur puce constituent
un pas en avant vers des protocoles quantiques intégrés sur puce et a faible encombre-
ment pour la mise en oeuvre future des technologies d’information quantique hors des
laboratoires.
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Quantum information

The development of the theory of quantum mechanics since the beginning of the last
century has led to a counter-intuitive description of the behaviour of the microscopic world:
far from our everyday experience, particles can behave in a probabilistic manner and be in
a superposition of two different states. Moreover, two quantum systems can even present
instantaneous correlations between their measurable properties [1,2], even when at large
distances, which challenges the causality principle and gave rise to the famous Einstein-
Podolsky-Rosen paradox [3]. These two properties of quantum systems - superposition
and entanglement - opened the possibility for information protocols using them as a
resource, creating the basis of what would later be called quantum information [4].

Today the research community has structured this domain into four different axes de-
fined for the future applications of quantum information technologies: quantum comput-
ing, i.e. the use of quantum properties to achieve better complexity scaling of algorithms
over their classical counterparts, quantum simulation, which exploits well-controlled quan-
tum systems to simulate the properties of more complex and inaccessible systems, quantum
metrology, where the high sensitivity of quantum systems to perturbations is harnessed
to improve the precision of measurements, and quantum communication, aiming at the
realization of secure information transmission. Such protocols have been theoretically
developed as early as the 1980s, with the BB84 and BBM92 protocols proposed for Quan-
tum Key Distribution (QKD) [5, 6] enabling to secure a communication channel in an
absolute way using the fundamental properties of quantum mechanics. Since, other pro-
tocols have been theoretically investigated, especially in the field of quantum computing,
with the emergence of algorithms potentially offering quantum advantage over their clas-
sical counterparts [7-9]. This field has attracted a growing interest over the last three
decades and is now the object of concerted efforts at the international scale for further
developments of potential applications, notably through public funding plans such as the
European Quantum Flagship, or private research made to achieve quantum supremacy
for quantum computers [10-13].

Experimental requirements for these applications are summarized by the DiVincenzo
criteria [14] and were made realizable by technological developments allowing to address
and measure individual quantum systems'. These criteria lead to the selection of suitable
physical platforms to use for the encoding of quantum information, at first in the frame of
two-level encoding in quantum bits or qubits (analogous to the boolean bits used in classi-
cal computing). Atomic systems, such as ultracold atoms [20] and trapped ions [21], have

INotable developments include the invention of magnetic and optical traps [15,16] and of single-photon
detectors [17-19].
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been used to implement quantum simulation [22,23] and quantum computation [24-26]
protocols, due to the inherent possibility to encode information into the energy levels of
the system. The high degree of control offered by the opto-magnetic trapping and the
possibility to optically address the energy levels in a deterministic way make atomic sys-
tems prime candidates for the realization of interacting qubits with accurately controlled
parameters. Electronic spins from vacancy defects in crystals [27-29] also provide natural
two-level systems and are conveniently addressable through external electromagnetic fields
and readable through photoluminescence, and have been used as well to implement quan-
tum computing algorithms [30] and quantum memories in hybrid quantum information
processing schemes [31,32]. Superconducting qubits became the most advanced platform
for the purpose of quantum computing [33], with the possibility to encode information
in several degrees of freedom (charge [34], magnetic flux [35], phase [36]), to address the
qubits electronically and to implement quantum gates in a deterministic manner [37], and
have led to important advances in the scaling of the quantum computer [10]. Finally,
photons, with their innate robustness against decoherence, and high propagation speed,
offer characteristics of choice for the implementation of quantum communication [38] and
have been used for the implementation of long-distance QKD [39]. They also have general
applications in quantum information processing [40] and schemes for universal all-optical
quantum computing have been proposed by Knill, Laflamme and Milburn [41] as well
as Raussendorf and Briegel [42]. Since then, photons have been used for quantum sim-
ulations [43,44], quantum algorithms [45,46], and quantum states of lights have been
instrumental for new advances in metrology [47-51]. The interfacing of photons as flying
qubits with material qubits serving as quantum nodes to develop a quantum internet is
also a long-term goal of the development of quantum technologies [52,53].

Quantum photonics as a platform for high-dimensional quantum
information

This PhD thesis lies in the context of photonic-based quantum technologies. One of the
particular interests of photons is that they offer many degrees of freedom to encode the in-
formation, making them a versatile vector of quantum information. In the many-photons
regime, the information can be encoded in the quadrature amplitudes of the electromag-
netic fields, using in particular squeezed states of light [54,55] as a resource and homodyne
detection for measurements: this is the so-called continuous variables approach [56,57].
The present work takes place in the framework of its counterpart, the discrete variables
approach, in which information is encoded into few-photon states [40]. The most con-
ventional degree of freedom to encode information in single- or few-photons systems has
historically been polarization, used to realize quantum communication [58,59], comput-
ing [60-62] and simulation protocols [63,64]. However, this degree of freedom only spans a
two-dimensional Hilbert space, thus limiting the quantity of information encoded for each
photon. Harnessing higher-dimensional degrees of freedom offers increased density of in-
formation encoding [65], enhanced security in quantum communication protocols [66], and
more versatility for quantum computation schemes [67,68]. Degrees of freedom display-
ing high-dimensional Hilbert spaces for photons include Orbital Angular Momentum
(OAM), where the information is encoded into the phase winding of the modal field am-
plitude along the propagation direction [69], and has been shown to be particularly suited
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for long-distance QKD protocols [66,70] with high key rates [71]; time-bin encoding in
which the information is encoded into the time of arrival of photons, which has been used
for long-distance state teleportation [72,73] and QKD [74, 75]; time-frequency encod-
ing with the spectrum of the photons being the vector of information, and spatial (or
path) encoding where the information is contained in the occupied spatial modes, notably
in photonic circuits. Frequency and spatial encoding of quantum information are espe-
cially interesting, as they both enable high-dimensional quantum information encoding
with convenient transmission and manipulation. Frequency allows to convey all the in-
formation into a single spatial mode, while being integrable with already-existing telecom
technology for its manipulation [76,77]. Moreover, it is robust to propagation in fibers,
allowing for reliable high-rate transmission of quantum information [78]. At the same
time, the spatial degree of freedom is naturally suited for integrated photonic circuits, al-
lowing easy high-fidelity manipulation with beamsplitters, phase-shifters and waveguide
couplers, leading to advanced realizations in chip-based quantum simulation [79-83] and
quantum computing [84, 85].

Integrated quantum photonics platforms

Optical-based quantum information can be implemented using photons generated from
nonlinear processes in bulk crystals [86,87], squeezed light sources [55,88], and manip-
ulation through bulk optical components. This type of free-space and bulk setups have
been instrumental in the proof-of-principle demonstrations of the feasibility of quantum
information protocols in the 1990’s [89-91]. Later, the field of integrated photonics,
brought by the advances in fabrication technologies from the beginning of the 2000’s,
especially in the semiconductor industry, has offered additional compacity and stability
with low-footprint optical components, leading to increased scalability for the generation,
manipulation and detection of quantum states of light integrated inside miniature chips.
Efforts are currently made to combine these three fundamental stages of photonics quan-
tum information processing on a single chip. We give in the following a quick overview of
the different existing material platforms suitable for integrated quantum photonics.
Silicon-based circuits benefit from the already-developed CMOS industry, which
allows for cheap manufacturing and mastered fabrication processes, and include Silicon-
on-Insulator (SOI), Silica-on-Silicon (SOS) and Silicon Nitride (SiN). The mentioned ma-
terials all benefit from the presence of third-order nonlinearity, offering the possibility
of photon pair generation at telecom wavelengths by Spontaneous Four-Wave Mixing
(SFWM). SOI platforms have been successfully used to realize sophisticated circuits em-
bedding several sources based on the high third-order nonlinearity of the material [92] and
reconfigurable quantum gates [93]. It is compatible with the on-chip integration of high-
efficiency single-photons detectors [94], making it a promising candidate for the realization
of all-integrated quantum processing chips. Thanks to its high refractive index, SOI also
allows to integrate components with a high density on a chip, but it suffers from two-
photon absorption and non-negligible propagation losses at telecom wavelengths. SOS,
on the other hand, benefits from ultra-low propagation losses [95] but also has a weaker
third-order nonlinearity and lower refractive index, which decreases the integrable on-chip
components density. It has been used to demonstrate the first on-chip quantum gate [96].
SiN combines both ultra-low losses and high-density components integration [95], and
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presents reduced two-photon absorption, allowing to increase the pump power to com-
pensate for its weaker third-order nonlinearity. It has been successfully used for the
implementation of universal quantum gates [97,98] and for high-dimensional entangled
photon pairs using microresonators [99]. Silicon oxynitride (SiO,N,) has also been used
to demonstrate quantum correlations in the spatial degrees of freedom in waveguide ar-
rays [100]. We can additionally mention femtosecond laser writing in borosilicate glass,
which allows for the easy fabrication of complex circuits and has been used to realize
high-quality circuits, allowing to implement e.g. quantum random walks [81] and boson
sampling [43]. However, this platform does not benefit from optical nonlinearity and thus
cannot directly integrate photon sources.

Lithium niobate-based circuits benefit from a combination of low propagation losses,
high second-order nonlinearity, and high electro-optic effect, making it a suitable platform
for the implementation of efficient photon pair sources using Spontaneous Parametric
Down-Conversion (SPDC) [101], as well as reconfigurable quantum circuits embedding
various optical elements such as polarizing beamsplitters, electro-optic phase-shifters [102,
103] and arrays of coupled nonlinear waveguides [104]. Periodical poling, allowing to
achieve a high conversion efficiency, has been used to realize bright sources and engineer
the spectral properties of entanglement of the generated photon pairs [105,106]. LiNbOj
waveguides are compatible with wafer bonding, allowing e.g. to integrate photon pair
sources with silicon-based circuits [107].

III-V semiconductors such as GaAs, offer high refractive index and strong field
confinement, high second- and third-order nonlinearity allowing to realize efficient para-
metric sources based on SPDC in AlGaAs waveguides [108-112] or SFWM in waveg-
uides [113,114] and microring resonators [115]. GaAs can also host high-quality single-
photon sources based on quantum dots [116,117]. It benefits from a direct electronic
bandgap, which is useful in the realization of electrically injected sources, either for para-
metric sources [118] or quantum dots [119,120]. Additionally, they present a high electro-
optic effect which can be used to implement phase-shifters and delay lines [121]. Finally,
ITI-V semiconductors are compatible with the integration of superconducting nanowires
single-photon detectors (SNSPDs) [122], opening the possibility to realize fully on-chip
quantum information protocols [123].

Reconfigurable sources of biphoton states

In this thesis, we will focus on the study of SPDC photon pair sources and integrated
circuits based on AlGaAs waveguides, allowing to generate frequency-entangled and path-
entangled photon pairs.

The first source employs a transverse pump geometry in a single waveguide, offering the
possibility to engineer the quantum state of the generated photon pairs in the frequency
degree of freedom through the spatial shaping of the pump. Previous realizations of
similar quantum entanglement have been realized using domain-engineered crystals [106]
or spectral engineering of the pump pulse [124]. The first method fixes the shape of
the spectral wavefunction of the generated photon pairs for a given source and lacks
flexibility, while the second method cannot yield control over the exchanges statistics of
the biphotons. On the other hand, our source displays reconfigurable spectral properties
of the generated pairs, including the exchange statistics of the spectral wavefunction of

16



Introduction

the generated biphotons.

The second device is based on an array of evanescently coupled nonlinear waveg-
uides, pumped in a copropagating geometry, where the generated photons can hop from
waveguide to waveguide, thus implementing quantum random walks. This leads to the
generation of spatially entangled states that are reconfigurable through the spatial profile
of the pump beam and the parameters of the array. In contrast to previous implementa-
tions of quantum random walks [81], the photons are here generated directly within the
device and the generation can take place at any position along the propagation direction.
This leads to an increased compacity and a higher level of entanglement, that can be ex-
ploited to realize a versatile source of spatially entangled states of light, operating at room
temperature and telecom wavelength, while also opening the way to the implementation
of on-chip quantum simulation tasks.

These two sources open the possibility for reconfigurable entanglement engineering of
the photon pairs, either in the frequency or in the spatial degrees of freedom, which is a
crucial step in the realization of chip-integrated versatile sources of quantum states.

The manuscript is organized as follows:

In the first chapter, we will introduce the theory of the second-order nonlinear process
used for the generation of the photon pairs, Spontaneous Parametric Down-conversion,
as well as the general characteristics of the two sources described in the thesis. Then, the
second chapter will discuss the control of the exchange statistics for the photon pairs gen-
erated by the counter-propagating source, and present experimental results demonstrat-
ing, using measurements based on Hong-Ou-Mandel (HOM) interferometry, the ability
to reproduce anyonic exchange statistics by engineering the joint spectral wavefunction
of photon pairs. The third chapter will introduce the theory of SPDC in waveguide ar-
rays, and present the spatial entanglement resulting from the combination of photon pair
generation and quantum random walks along the array, called cascaded quantum random
walks. Numerical simulations of the generated states will be presented, to offer a panel of
the realizable quantum states. The fourth chapter will present the design and fabrication
processes of the waveguide array source of spatially entangled photons. Finally, the fifth
chapter will present the experimental demonstration of spatial correlations in the photon
pairs generated using the nonlinear waveguide array.
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Chapter 1

Non-linear optical processes in
AlGaAs waveguides

In this chapter, we give the theoretical background necessary to describe the generation
of photon pairs in AlGaAs waveguides. AlGaAs benefits from strong second and third
order nonlinearities, which enables Three and Four Wave Mixing. In this manuscript, we
focus on the second-order process of Spontaneous Parametric Down-Conversion (SPDC),
where photons of a pump beam are converted into pairs of twin photons. We first give
a classical theoretical description of the corresponding mechanisms, and then switch to
a semi-classical approach to derive the quantum state of the photon pairs generated by
SPDC in AlGaAs.
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1.1 Nonlinear optical processes: theoretical descrip-
tion

The interaction between a nonlinear material medium and an electromagnetic field can
give rise to diverse phenomena, such as frequency conversion of a laser beam inside a
crystal, which can be used for the generation of light with interesting properties. In this
section, we give a theoretical description of nonlinear optical processes, and especially
Spontaneous Parametric Down-Conversion, which will serve as a tool for the generation
of correlated photon pairs in an AlGaAs waveguide.

We first give a brief introduction of the concept of nonlinear polarization, then describe
the evolution of fields interacting in a nonlinear crytal, and finally give a semi-classical
Hamiltonian description of the SPDC process and derive the generated quantum state.

1.1.1 Nonlinear polarization

When an electric field E propagates through a medium, it induces a polarization in the
material, which we can describe in the following way:

— P L p@ L PO ... (1.1)
~— ’
PL(1) PNL(1)

with €y the vacuum dielectric permittivity and x the rank m + 1 tensor representing
the m-th order nonlinear susceptibility of the medium. The polarization can be written,
as in the second row of the equation, as the sum of a linear (P*(t)) and a nonlinear
(PYE(t)) term. For solid-state materials, x(!) is of the order of 1, and the value of x (™
decreases rapidly with m, meaning that for small values of the electric field, only the
linear part of the polarization plays a significant role in the response of the medium to
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the electric fields. However, for higher values of the electric fields, which can be typically
achieved using laser beams, the nonlinear terms become significant as the field becomes
more intense. These higher-order terms in the polarization are responsible for frequency
conversion in the medium, meaning that fields at different frequencies than the external
electric field can be generated.

For instance, if we consider an electric field of the form E (r,¢) = (Elei(wlt*klz) + C.C) €
(with c.c. the complex conjugate), then the second-order nonlinear polarization gives, from
equation 1.1 (considering a simple model where the nonlinear susceptibility is independent
of the involved frequencies):

PZ-(Q)(z,t) _ X%\EHQ (€2i(w1t—kz1z) 4 Q2il-wttkiz) | 2) (1.2)

with i = z,y, z, and we can see that terms with frequency 2w appear (as well as a non-
oscillating term), which is called Second Harmonic Generation (SHG). If we add a term
with a different frequency Es(r,t) = (E2ei(“2t_kzz) + c.c) e, then we get

PP (2,6) =xio, (2B + 2| Byl + (Ejetrhe) 4 peint=ha)

1.3

+E1E2673((w1+w2)t—(k1+k2)2) + ElE;ei((wl—m)t—(kl—b)z) 4 C.C.)) ( )
which corresponds to the generation of terms with frequency w; + wy (i.e. Sum Fre-
quency Generation or SFG) and terms with frequency w; — wy (i.e. Difference Frequency
Generation or DFG), giving examples of three-wave mixing processes.

1.1.2 Wave propagation in a nonlinear medium

In a material medium, the polarization induced by the electromagnetic field modifies the
propagation of this field. In standard dielectric media, at low values of the electric fields,
this is usually observable through a change in the propagation speed, which is quantified
by the refractive index of the medium. However, for materials with high nonlinearity
and/or at high optical power, the nonlinear polarization additionally creates oscillating
fields at new frequencies, which act as source terms in the propagation equation of the
electromagnetic field.

To derive this effect, let us consider Maxwell’s equations, in a dielectric optical medium
without free charges (p = 0) or currents (J = 0) for the electric and magnetic fields E
and B:

VxE:—a—B
t
o H_aﬁ
XH =5 (1.4)
V-B=0
V-D=0

with B = yoH and D = ¢ E + P.
By taking the curl of the first equation and using the three others to eliminate the
resulting terms depending on B, we get the propagation equation for the electric field in
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the nonlinear medium:
1 0’°E 1 O0°P
V’E — = (1.5)
2 ot? €gc? Ot?
where we see the polarization appearing on the right-hand side. If we split the polarization
into its linear and nonlinear part,

P = PL 4+ PVE = ¢oxW . E + PV, (1.6)
we can take the linear part into the left-hand side, which yields

14 xW-°E 1 PP

V’E —
c2 ot? €oc?  Ot?

(1.7)

Now the left-hand side is a wave equation, and for an isotropic and lossless medium,
x) is simply a real scalar and the equation reduces to

2 82E 1 62PNL
) D . 1.
v 2 Ot? €gc?  Ot? (18)

where n = (/1 + Y1 is the refractive index in the medium®. Equation 1.8 is thus a driven
wave equation with a source term on the right-hand side, where the nonlinear polarization
terms at new frequencies generate additional oscillations of the electric field.

The specific shape of the nonlinear polarization will then depend on the response
of the material to the electric field, which we can quantify using its nonlinear electric
susceptibility tensors. Here, we will focus on three-wave mixing processes, involving only
the x® tensor, in GaAs and AlGaAs, to put into light the phenomenon of Spontaneous
Parametric Down Conversion, where a pump field at high frequency is converted into two
signal and idler fields at smaller frequencies.

1.1.3 Second-order nonlinear processes in GaAs/AlGaAs

Gallium Arsenide (GaAs), and Aluminum Gallium Arsenide (AlGaAs), are III-V semi-
conductors that enable, thanks to their high second- and third-order nonlinearity, Three-
and Four-Wave-Mixing processes. They also have additional interesting electronic and
optical properties, such as their high electro-optic coefficient, high refractive index that
allow for efficient confinement, direct bandgap that can be exploited to realize electrically
pumped sources, and low losses at telecom wavelength.

To derive information over the shape of the second-order nonlinear tensor of GaAs
and AlGaAs, we need to consider the crystalline structure of the two materials, and use
symmetry conditions that help understand the shape of the tensor.

If the involved frequencies are far from resonance, and using Kleinman’s symmetry

(2)

condition, we can consider that the tensor element x5 is independent of frequency, and

Note that we can add the frequency dependence of the electric susceptibility by simply considering
equation 1.8 in the Fourier decomposition of the electric field to include dispersion in the medium in
our derivation. additionally, we can always consider the nonlinear susceptibility x(™ dependent on the
involved frequencies of the electric field in the tensorial product with the field.
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also independent of the permutation of the indices i, j, k (e.g. Xg,l

reduce the number of tensor elements to consider, by introducing

= XZ(Z;) We can then

1
diji = 5)(512;1 (1.9)

and defining a contracted matrix d; using the following correspondence table:

jk |11 22 33 23/32 31/13 12/21
11 2 3 4 5 6

which yields
di dip diz dig dis dig
dip = | dig da doz dag dig di2 (1.10)
dis day dzz dyz diz dig

Additionally, GaAs/AlGaAs has a non-centrosymmetric zincblende crystalline struc-
ture, which yields a 43m (tetrahedral) symmetry. This point-group symmetry also applies
to the second-order nonlinear tensor, giving relations between the tensor elements, and
the final d matrix can be written, with only one non-zero independent element:

000 dy 0 0
d=1{0 00 0 dy 0. (1.11)
000 0 0 dy

Here, the nonzero elements are dxyz and all of the elements associated with permuta-
tion of the indices, where X is the (100) direction, Y is the (010) direction, and Z the
(001) direction, corresponding to the crystallographic axes, meaning that all interactions
permitted by the symmetry of the crystal involve fields with polarizations components
in all three crystallographic axes. In our case, we define a second coordinate system
(z,y,2) = (110,110,001), and will consider light propagating in waveguides in the x di-
rection, meaning that the two main permitted polarization directions for the waveguided
modes are the y-direction (Transverse Electric (TE) polarization), and the z-direction
(Transverse Magnetic (TM) polarization). In the case of guided modes, because of the
confinement of light, it is worth noting that both the TE and TM polarized modes have
a small electric field component in the z direction as well, which means that the TM-
polarized modes have electric field components along all three axes of the crystal, and the
TE-polarized mode only along the X and Y axes. This reduces the possible nonlinear
interactions to three different types?®:

o the interaction between three TM-polarized modes, which is called type 0 in the
context of Spontaneous Parametric Down-Conversion (SPDC),

2The interaction between three TE-polarized modes is prohibited because there is no component of
the field in the Z direction, while the interaction between two TM-polarized and one TE-polarized modes
is highly suppressed for Spontaneous Parametric Down-Conversion because the TE and TM modes have
almost orthogonal field distributions in the XY plane (since the main TE component in this plane is along
the y direction while the main TM component is in the z direction), giving the main component of the
TMe-oriented polarization P o dxy 7z (EX¥ELM + ELFEIM) ~ 0, while the polarization generated
by two TM-polarized fields always have a non-zero electric field component along Z, and thus cannot be
polarized along the TE direction.
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o the interaction between one TM-polarized and two TE-polarized modes, which is
called type I if the pump is TM-polarized or type II if the pump is TE-polarized
in the context of SPDC.

1.1.4 Three Wave Mixing in a bulk medium

Having determined the shape of the nonlinear tensor, we can now shift our attention
to the actual second-order nonlinear processes taking place during the interaction of the
optical field within a bulk nonlinear medium. In our case, the resulting process is always
stemming from the interaction between three components: one component of the induced
polarization, and two components of the external electric field (which can be the same). If
we consider three fields with frequencies wy, ws and w3, we can consider that, for frequencies
far from the resonance of the medium, the exchange of energy only occurs between the
different fields involved, and not between the electric fields and the medium. The energy
conservation then allows the following set of three-wave mixing processes, summarized on
figure 1.1:

e Sum Frequency Generation (SFG) where two pump fields at frequency w; and
wy are interacting with a nonlinear medium to create a field at frequency ws =
w1 + wa.

+ Second Harmonic Generation (SHG), corresponding to the case of SFG where
the two fields at w; = wy = w are degenerate, and w; = 2w.

« Difference Frequency Generation (DFG), also called Optical Parametric Am-
plification (OPA), where two fields at frequency w; and ws interact with the crystal
to generate a field at frequency ws = w; — wy. To ensure energy conservation, we
can see that for each photon generated at frequency ws, a photon at frequency wy
must be generated as well, which means that this process also amplifies the second
input field.

« Spontaneous Parametric Down-Conversion (SPDC), in which the previous
process can take place in the presence of the first field at frequency w; only, which
can generate photons at frequencies wy and wsz by interacting with the vacuum
fluctuations of the latter fields. This process does not appear in the classical de-
scription of the nonlinear interaction between the crystal and the electric field, and
since it arises from the interaction with vacuum fluctuations, it induces weak fields
by nature.

In the next sections, we will describe the SPDC process using the formalism of quan-
tum mechanics, as it is the mechanism of choice to generate photon pairs. But the classical
analysis of the other nonlinear optical processes still gives interesting insight on the condi-
tions for efficient frequency conversion in nonlinear media, therefore we will first consider
the phenomenon of SFG (the derivation is very similar for the cases of SHG and DFG).

Let us consider three interacting fields, with a propagation direction along the z axis
(we switch to the z coordinate for the propagation direction, which is more conventional for
the formalism of guided waves), verifying the energy conservation condition w3 = wy +ws:
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Figure 1.1: Energetical scheme of the different three-wave mixing processes, depicted as ab-
sorption and emission of photons on virtual energy levels represented by dashed lines.

23:( (R 1 cc ) e (1.12)

=1

with E; the complex amplitude of field number [, and e; its polarization. Using equa-
tion 1.8 on the corresponding frequency components, and considering the slowly varying
envelope approximation (i.e. ]dQEl\ ]d2E1| ]djgll < |k%Et]) and the dispersion relation
wing(wy) = ke, we get:

(2)
iy 8 citent—hs2) _ M B, Eyeilst—(katk2)z)

dz €0C?
)

iy M2 gitent o) _ PXOHS o ient— (ka2 (1.13)
dz €02

(2)
ikl%ei(wlt—klz) . 2X132;)1E E* t(wit—(kza—k2)z)

dz €0C
which we can re-write as dE p
w .
3 _ eff 3E1E261Akz
dz €0N3C
dE dogw ~
i—2 = S p preifke (1.14)
dz €0NaC
dE dogw -
i 1 — eff W1 E3E5671Akz
dz €oN1C

where Ak = ks — ko — ky is the wavevector mismatch, and we define an effective nonlinear
coeflicient deg = 2X§21)2 = 4d4.

Equation 1.1.4 shows that the three waves interact by building each other up along the
propagation direction, with a phase oscillation that depends on the wavevector mismatch
Ak.

If we consider the process of SFG, assuming that the field F5 = 0 at z = 0, and
if we can neglect the variation of the fields F; and E, along z (the undepleted pump
approximation, which is valid for processes inefficient enough so that the two pump fields
are not significantly affected by the nonlinear processes) and thus consider both fields
constant, we can integrate the propagation equation over a length L:

2tdeg Lws Ak:L)

€gnzcC

Bs(L) = — F1Eoe’™2" sinc ( (1.15)

25



1.1. NONLINEAR OPTICAL PROCESSES: THEORETICAL DESCRIPTIOGhapter 1

The intensity given by the SFG field at the output of the medium, which we can compute
as the time-average of the corresponding Poynting vector, is then

AkL\?
I3(L) = n32EOC|E3(L)|2 = 1% sinc <2> (1.16)
with PRIE
0 = Seﬁifﬁ‘slllz. (1.17)
N1NaN3€nC

where [; (respectively I5) is the intensity corresponding to the w; (respectively ws) fre-
quency component of the field. The efficiency of the SFG process (and analogously, of all

second-order nonlinear processes) is thus heavily conditioned by the phase-matching term

2
sinc (%) . for perfect phase-matching Ak = 0, the output intensity reaches its maximal

value Iéo), and if the phase-matching is not perfect, the interference between the fields
generated at different positions is not constructive. This results in inefficient conversion

between the two pump fields and the SFG field, and in the intensity being modulated

2
by the term sinc (%) which has a rapidly decreasing envelope with AkL. It is thus a

crucial point for the efficient realization of the nonlinear processes to find strategies to
ensure proper phase-matching, a point we will discuss later in this chapter.

In order to compute the output power for the different modes, we need to integrate
the intensity over the effective area A occupied by the fields,

p= / 1ds.
A
This yields, using equation 1.16:
8% L33 AkL\?
P3 = me—a)gP1PQSiHC :nSFGPlPZ (118)
n1n2n36063A

with P, P, the input powers associated with fields F, and FEj, and ngrg the SFG con-
version efficiency:

2y L2} AKL\?
nsrG = 8eﬂ?—w?’simc ( 5 ) {W‘l} : (1.19)

ningnzescc A

Equation 1.19 gives the conditions for an efficient power conversion between the three
fields in the medium: the non-linear effective coefficient d.g should be as high as possible,
the phase-matching condition Ak = 0 should be satisfied, the interaction length L between
the three fields should also be as high as possible (in the lossless approximation), and
finally the effective area of the fields A should be as small as possible. In particular,
this last point is interesting, since it means that waveguides, where the light intensity
is confined over a small effective area, offer a powerful platform for the realization of
non-linear processes. In the next section, we study specifically second-order nonlinear
processes of waveguided modes of light.

3This last point can be understood in the following way: as the generated SFG intensity depends on
the product of the two intensities, for equivalent power (i.e. integral over a surface), the scaling of the
intensities is inversely linear with the effective area of the fields A, meaning that the product of the two
intensities scales as .42, and the final output power scales as A~!, the additional linear scaling coming
from integration over A.
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1.1.5 Three Wave Mixing in the guided regime

The fields we considered previously, in the slowly varying envelope approximation, had
negligible divergence, and propagated only in the z direction without deformation, like
plane waves. However, for actual light propagation in a bulk medium, diffraction causes
the light to spread over a higher surface area, which is detrimental for the SFG conversion
efficiency (from equation 1.19). To avoid this, it is possible to use waveguides to confine
the interacting fields within a small effective area to increase the efficiency of the nonlinear
process.

Let us consider a waveguide with a propagation direction along the z direction, the
field being confined in the x and y directions. This waveguide supports modes m of the
electric field which we can write as

E,.(r,t) = E,(2)e!@mt=fmd g (2 y)en (1.20)
where:
¢ o is the normalized transverse distribution of the mode m, with [|p,,(z, y)|*dzdy =
L;
e [, is the propagation constant of the mode m, related to the frequency through

the modal index by f,, = “mem;

C

e e, is the polarization of mode m;
o E,,(2) is a slowly varying amplitude.

If we define, as before, three interacting fields that we decompose on modes labeled
1,2, 3, the nonlinear interaction between the three fields is now dependent on the nonlinear
overlap integral?

Lo = /deff(fv,y)sol(fc,y)wz(%y)@z(%y)dwdy- (1.21)

The SFG output power after an interaction length L is then, re-writing equation 1.18
with the effective nonlinear modal overlap:

272 2 2
- 78|Feﬂ| L3w3 P, P, sinc (AgL) (1.22)

niNoN3€ 3

Py

where the phase-mismatch AS = 53— 51 — 35 is now dependent on the effective propagation
constant of the different modes, yielding the guided SFG efficiency:

272, 2 2
g . 8’Feﬁ| L W3 Sin (A/BL> (123)

’]7 =
SFG ningnzegcs

giving the nonlinear modal overlap as an additional parameter for the efficiency of the
nonlinear process.

4Note that, for processes where the negative frequency components of the electric field are involved,
such as DFG, the nonlinear modal overlap involves the conjugate of the corresponding transverse mode

profile, e.g. I'ppg = fdeffapl(m,y)apg(ac,y)gpg(;v,y)dxdy if wg = wy — ws.
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Here we want to study the process of SPDC for photon pair generation, which does
not occur in the classical formalism, as the signal and idler field have a zero amplitude
at the beginning of the process and thus do not give rise to an interaction term with the
pump field. To provide a theoretical framework for the SPDC process, we need to use the
formalism of quantum mechanics, which we introduce in the following paragraph.

1.1.6 Quantum formalism: Spontaneous Parametric Down-Conversion

In order to describe the nonlinear interaction within the formalism of quantum mechanics,
we first need to change the interacting fields from classical fields to quantum mechanical
operators. For this, we will use the creation and annihilation operators for a given mode
m, al and @,,. The electric field operator can then be written as a sum over all existing
modes:

(+) ()

ZE Jelwnt=Bng 4L he =8 (r,t)+E

(r,t) (1.24)
where h.c. corresponds to the hermitian conjugate, E,,(r) encapsulates the amplitude and
polarization of mode m, and z is the propagation direction.

If we are only interested in fields far from the resonance, we can consider that the quan-
tum state of the nonlinear medium does not change, and only describe the Hamiltonian
for the optical field, which yields:

Ani = e / drx®(r) : B(r, ) E(r, ) E(r, ). (1.25)

If we only consider the interaction between the fields for three specific sets of modes,
which we label p, s, 7 for pump, signal and idler modes, the Hamiltonian becomes

Hyy = € / drx® (v) B, (r, t) Bu(r, 1) Ei(r, 1). (1.26)

At this point, it is useful to decompose the three interacting fields into a convenient
mode basis. If we consider once again the case of optical modes confined in a waveguide
in the x and y directions, and thus propagating in direction z over a length L, we can
for instance decompose the modes over the propagation constants 3,,, or equivalently the
frequencies w,:

B \f [ BB, Bt () + b
(5,2:9m) s (1.27)
\/;/ \/(rni ) G (W) + e

where we used the group velocity v!(]m) = %—:, and the transformation a,, (5,,) — \/ vém)&m(wm)
to ensure normalization.

additionally, we are only interested in the SPDC process where one pump photon is
converted into signal and idler photons, i.e. the terms of the form a,alal + h.c., and thus
we can reduce the Hamiltonian to:

[A{SPDC = %]/drdeff(r) A1(7+)<r7t)EA’s(i)(rvt)Ei(i)(ra t) + h.c. (128)

28



Chapterlll. NONLINEAR OPTICAL PROCESSES: THEORETICAL DESCRIPTION

which will be the only term giving us one photon in each the signal and idler modes.
We can additionally consider that the pump field stays undepleted during the nonlinear
interaction, and treat is as a classical field:

E,(r,1) /dwp (wp) Ep(, y, w,)e =3 1 cc. (1.29)

with E, the spatial profile of the pump mode associated with w,, and A(w,) is the spectral
distribution of the pump.

Having found the shape of the nonlinear interaction and of the interacting optical
fields, we can now try to identify the quantum states produced by SPDC. To do that,
we will consider that initially, the state is in the vacuum for the signal and idler modes:
|W(t — —o0)) = |0). We can compute the evolution of this state with time using the
Schrodinger equation:

i (1) = Hspoo(t) (1) (1.30)

In the low pump regime, we can neglect the probability of generating multiple photon
pairs during the interaction, and consider that the state evolution can be approximated
at first order as:

w(e)) = e I et o) 0y - [ dflgpne(t)|0) =10) —alv)  (131)

where [¢) is the two-photon SPDC state.
We can compute the final biphoton state (¢t = c0)) by using the SPDC Hamiltonian:

alp) ==+ [atS [ drdan(r) B (0, ) EO (0, 0) B (x,1) [0)
zeOL
4rh
E*(x y7w8) o~ i(wst— ge2) i (@, ), wi) (, y,wz) z(witfﬁiz)ai(ws)&;r(wi) 10)

\/vg (ws) \/Ug w;)

/ dtdus, oo, deordrde (v) Aoy Ey (1, y, o, )it o)

A 1Awt
— 24602/ / dtdw,dwsdw; (wp)e ,
™ Vb (@)l (@)
/drdeff (@, y, W) B (2, y, ws) B (2, y, wi)e %6 (wy)al (w;) [0)

_ ZEOL/d dond A(wp)d(Aw)
Vol (we)od) (i)
[ )y ) 2 ) 2 o, )50 ) 1) 0
ZEOL /d i A(ws + wy)
= wedw;
¢ ) (ws)od (w1)

/ () By, gy + ) o, 60 o3, )™ 50 (03 0) [0)
(1.32)
and finally
= /dwsdwigb(ws,wi)di(ws)&j(wi) 0) (1.33)
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where we define the Joint Spectral Amplitude (JSA) of the photon pair:

iEOL A(Ws + WZ)

20ch \/U§S)<WS)U£;Z) (Wz) (1‘34)
/drdeﬁ(r)Ep(x, Y, ws + wi) Ex(z,y, ws) Bl (2, v, wi)e*mﬁz_

¢(w87 wi) =

It corresponds to the probability amplitude to find the photon in signal mode at frequency
ws and the photon in idler mode at frequency w;, i.e. the spectral wavefunction of the
biphoton. This JSA will serve as a tool to study the spectral properties of the SPDC
photon pairs, and we will generalize it to more complex modes in chapter 3. Knowing the
particular shape of the modes, it is possible to derive more information on the quantum
state of the photon pairs, but we will for now extract general principles from equation
1.34, by writing it as

¢(Ws; Wz') =7 XF<w57 wi) : (bspectral(ws + wi) : (bPM(ws; wi)u (135>

where v is a normalization constant. The efficient generation is again constrained by a
phase-matching term

dpm(ws,w;) = /deiAﬂz,

which means that the JSA will be enhanced for frequencies close to perfect phase-matching
while being suppressed for frequencies which do not verify the phase-matching condition.
The JSA is additionally modulated by the spectral distribution of the pump appearing in

¢spectral(ws + Wz') - A<ws + wi)

because of the energy conservation, and dependent on the nonlinear overlap integral

1

0§ (we)of” (w;

XF(w&wi) = \/ ) /dxdydeff(xv y)Ep(xv Y, Ws + wZ)E:(xv Y, WS)EZ*(I’, yawi)v

which can be dependent on the frequencies w, and w;.

We will later compute again the quantum states for specific interacting modes, which
we present in the following section, along with some phase-matching strategies in AlGaAs
waveguides.

1.2 Phase-matching strategies in AlGaAs waveguides

As shown in the previous section, phase-matching of the three interacting field is a key
parameter for efficient nonlinear conversion in Three-Wave Mixing processes. This condi-
tion, added to the condition of energy conservation, leads to the following equation system
for the SPDC process:

W3 = Wa + wi (1.36)

53 = 5 1+ /32
In materials with normal dispersion, i.e. where the refractive index n is a mono-
tonic increasing function of w, f3 = ”3(°Jc3)w3 = n3(°23)w1 + "3(?)“2 > [ + [y (since
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ng(ws) > ni(wy), ne(ws)), making phase-matching in principle impossible to attain if all
fields are in the same mode. Material birefringence can be exploited to achieve phase-
matching in bulk crystals, such as Barium borate [86], by exploiting polarization to com-
pensate for chromatic dispersion, but as AlGaAs is an isotropic material, this solution is
not possible in the bulk material. Thus, it is necessary to implement additional phase-
matching strategies, which we will discuss in this section.

The first strategy that can be implemented to satisfy the phase-matching condition is
the so-called Quasi-Phase-Matching (QPM), where the material is engineered to periodi-
cally modulate the nonlinear coefficient of the medium, with a period of length %. This
allows for a modulation of deg(r) over the propagation direction z to mitigate the effect
of the spatially-dependent phase of the nonlinear generation in the material.

In the ideal case, the sign of the nonlinear coefficient is changed (figure 1.2a), which
results in constructive interference of the generated fields along the propagation direction,
but in a less constraining manner, it is also possible to change the value from a low to high
value (figure 1.2b) to mitigate the destructive interference and allow for the build-up of
the generated fields with the propagation in the material. Albeit not as effective as perfect
phase-matching, this approach has allowed the realization of efficient SPDC sources in
dielectric bulk crystals and waveguides (such as PPLN [125,126]° and PPKTP® [127]). In
GaAs and AlGaAs, it can be realized by (1) periodical poling of the structure [128,129]
(rotating the crystal direction around the growth axis), which induces losses and is a
challenging fabrication process, (2) by changing the Aluminum concentration periodically
to alternate between high and low values of the nonlinear coefficient [130], or (3) by
exploiting the geometry of the structure supporting the interacting fields [131-133] (e.g.
using a ring resonator or gallery modes in microdisks, as sketched in figure 1.2c) to change
the propagation direction along the structure and thus achieve effective periodic rotation
of the crystal orientation.

() (b)

Figure 1.2: Sketch of different implementations of quasi-phase-matching strategies, a) domain-
reversal QPM, where the sign of the nonlinear coefficient periodically changes along the propaga-
tion direction, b) domain-disordered QPM, were the nonlinear coefficient periodically goes from
high to low values, and c¢) geometrical QPM in a circular structure, sketched for a microdisk.

In this thesis, we have used two other phase-matching techniques called counterprop-
agating and modal phase-matching; we describe them successively in the following.

5Periodically poled lithium niobate.
5Perdiodically poled potassium titanyl phosphate.
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1.2.1 Phase-matching in a counterpropagating geometry

In this paragraph, we present a counterpropagating phase-matching scheme, using an
AlGaAs ridge waveguide as a support. The working principle of the source is the following
(see figure 1.3): a pulsed pump beam is impinging on top of an AlGaAs waveguide,
producing SPDC photon pairs through nonlinear interaction with the waveguide material,
with the direction propagation of the two photons in the waveguide being opposite. In
this geometry, the two photons are readily spatially separated by the generation process.
We first present the epitaxial structure of the source and the interacting modes, and then
describe the phase-matching condition in this scheme.

k s
A —
Bi -
€«——— Pump pulses <
B ~775 nm
: N
Bragg Mirror
QPM Core .
Idler g// Signal
. / N
N 7/ 7
~1550 nm 7 ~1550 nm

Bragg Mirror

Substrate

Figure 1.3: Working principle of the counterpropagating photon pair source: the pump beam
impinges on top of the structure, and the signal and idler photons propagate in opposite direc-
tions inside the waveguide. The QPM core is represented in orange, while the different shades
of grey indicate different Al concentrations.

1.2.1.1 Epitaxial structure and interacting modes

The source consists of an AlGaAs ridge waveguide made from a stacking of epitaxial layers
with different Al concentration, as reported in table 1.1.

The design of the epitaxial structure is detailed in previous theses from our group
[134, 135], and here we simply report its basic principles. The propagation core, where
the SPDC photons will be generated, consists of AlGaAs layers with alternating Al con-
centration to implement QPM in the vertical direction, by alternating between low x(?
values and high Y values. It is surrounded by Bragg mirrors, which serve three different
purposes: they confine the signal and idler modes produced by SPDC by total internal
reflection, they provide a microcavity around the core which is resonant for the pump
field wavelength at 775 nm, and finally they are engineered to prevent penetration of the
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| Number of periods | Role | Al content (%) | Thickness h (nm) |

’ 1 \ Substrate \ 0 \ ‘
36 Bottom 90 70.8
Bragg 35 50.1
\ 1 | Buffer | 90 | 125.1 |
4 Core 25 129.1
Core 80 104.3
| 1 | Core | 25 | 129.1 |
| 1 | Buffer | 90 | 125.1 |
14 Top 35 50.1
Bragg 90 70.8
| 1 | Cap | 0] 46.2 |

Table 1.1: Nominal epitaxial structure for the counterpropagating source.

pump field into the substrate”. To fabricate waveguides from this epitaxial structure, the
ridges are chemically etched into the structure using photo-lithography, and we detail the
fabrication process in the following chapter.

In this particular structure, the nonlinear interaction results in type II SPDC with
the generation of two orthogonally polarized photons. We use the LUMERICAL software
to simulate the supported modes of the waveguide, the two SPDC modes represented in
figure 1.4 are the fundamental TE and TM telecom modes®. The two modes have slightly
different effective indices nrp ~ 3.0852 and npy; ==~ 3.0827, showing a slight modal
birefringence An ~ 0.0025 due to the epitaxial structure and optical field confinement. It
is important to note that in this case, two nonlinear interactions are possible: if we label
the photon propagating to the right as signal, and the one propagating to the left as idler,
the photon pairs produced can either have a signal photon with TE polarization, and an
idler photon with TM polarization, or vice-versa.

1.2.1.2 Phase-matching curve

In our counterpropagating geometry, the pump beam has an incident wavevector k, that
is almost orthogonal to the propagation direction of the signal and idler modes. As
mentioned in the previous paragraph, phase-matching in the vertical direction is ensured
by the periodical change in Al concentration of the epitaxial layers of the core. The
corresponding propagation constants (s and f; for the signal and idler photons) are
sketched in figure 1.3, where the pump beam impinges on top of a waveguide with a slight
angle 0.2 We can write the phase-matching condition in the waveguide direction, as well

Tt is important that the pump field stays confined in the core and Bragg mirror layers, since absorption
of the pump photons could lead to incoherent re-emission processes.

8Note that SPDC can in principle occur for higher-order signal and idler modes as well, but their
nonlinear overlap with the pump field is reduced, and their collection in single-mode optical fibers is
inefficient.

9Note that this angle can a priori result in the QPM being inefficient, because it changes the vertical
component of the pump propagation constant, but the angles we use are typically below 1°, which does
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(a) (b)

X (microns)
X (microns)

y (microns) y (microns)

Figure 1.4: Simulated field intensity for the two fundamental TE (a) and TM (b) modes at
1550 nm, for a 5 um wide waveguide with a wet etching profile.

as the energy conservation, as'’:

Wp = Ws + wj

1.37
k,sin(f) = Bs — b ( )

By substituting k, = wy,/c, and B/; = ny/i(ws/i)/c, we get:
Wp = s L (1.38)

wp sin(0) = ng(ws)ws — ni(w;)w;

It is convenient to rewrite this equation system as an equation giving w; as a function of
ws, assuming the pump frequency w, is fixed:

Wi = Wp — Ws

(1.39)

w; = TEws — % sin(6)
The equation system 1.39 defines two functions of w,, which are of the form w; = A — w,
and w; = Bw,+ C, with A and B positive values. As such, the two function always have a
crossing point, meaning that for any value of the pump wavelength, there always exists two

values of ws and w; that simultaneously satisfy both the energy conservation condition and

not significantly alter the phase-matching efficiency in the vertical direction.

10Here, the propagation constant along the z-axis for the pump beam is k;"t = npwp sin (9””) inside
the material, where n, is the effective index of the pump, and 6" the angle inside the material, but by
Snell-Descartes law, n,sin(6"") = sin(), which is valid at every interface, so we can effectively consider
only the z-component of the wavevector in free space for the pump.
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the phase-matching condition, and the position of the crossing point is tunable with the
angle 6. The two conditions are graphically represented in figure 1.5a, as well as the signal
and idler wavelengths for perfect phase-matching as a function of 6, for both interactions,
in figure 1.5b. Tuning the pump angle can thus allow to change the frequencies of the
generated signal and idler photons, and there is for each interaction a degeneracy angle
gy = Farcsin "+ for which the signal and idler photons have degenerate frequency
wp/2. The spectral width of the generated photons is of the order of AX ~ 0.5 nm in
our typical experimental conditions, which is the value fixed by the phase-matching and
energy conservation conditions. In the following, we will always select only one of the
two interactions'!, by simply placing a TE-oriented polarizer on the right output of the
waveguide, and a TM-oriented polarizer on the left.

(a) (b)

—— Energy conservation
Phase-matching condition, signal TE

1570 — -+ Phase-matching condition, signal TM
./7

—— Signal TE wavelength
—— Idler TM wavelength

— - Signal TM wavelength
—+- Idler TE wavelength

1560

1555 ~.

1550

1545

1540

1535 1540 1545 1550 1555 1560 1565
As(nm)

Signal/idler wavelength (nm)

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
o(°)

Figure 1.5: a) energy conservation and phase-matching condition for A; as a function of A,

simulated for A\, = 775 nm and ¢ ~ 0.40°, which corresponds to the degeneracy angle for the

interaction giving a TE-polarized signal and TM-polarized idler, and b) accordability curve

giving A\s and \; as a function of 4.

1.2.2 Phase-matching in a copropagating geometry

We now describe another phase-matching technique, called modal phase-matching scheme
in a copropagating geometry, for the interaction of three fields in a waveguide (see figure
1.6). In order to ensure the phase-matching condition, the pump mode must have an
effective refractive index approximately equal to the effective refractive indices of the
signal and idler modes, while verifying the energy conservation condition w, = ws + w;,
which is enabled by the multimodality of the waveguide. In particular, higher-order modes
tend to have heavily modified refractive indices, which is useful for phase-matching with
fundamental modes at different frequencies. Here, we present a source of SPDC photon
pairs with modal phase-matching based on the interaction between the TEyy and TMg
fundamental telecom modes around 1550 nm and a Bragg mode around 775 nm, where
the refractive index verifies 1 pyq04(7750m) >~ npp,, (15500m) ~ nyag, (1550nm), allowing
for degenerate phase-matching around these frequencies.

Hlnteresting quantum states can also be produced by simultaneously measuring the two interactions,
which are produced coherently, as reported by Francesconi et. al. [136]
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We first present the epitaxial structure and the interacting modes, and then describe
the phase-matching condition for the copropagating geometry.

1.2.2.1 Epitaxial structure and interacting modes

The structure that we use for the generation of SPDC photon pairs in a copropagating
geometry consists as previously of an AlGaAs ridge waveguide etched into an epitaxial
structure made from superimposed AlGaAs layers with different Al concentrations. The
corresponding epitaxial structure is reported in table 1.2. The structure is a Bragg re-
flection waveguide (see figure 1.6), consisting of a core surrounded above and below by
Bragg mirrors, and designed to support Bragg modes consisting of three lobes around
775 nm (figure 1.7c,d), additionally to the fundamental TE and TM telecom modes
around 1550 nm (figure 1.7a,b). The source and the epitaxial structure were designed
and optimized by Adeline Orieux, a former PhD student of our group, in order to achieve
both a high non-linear overlap, and dispersion relations which allow for phase-matching
around telecom wavelengths for the signal and idler photons. This structure can support
in principle both type 0, type I and type II SPDC.

| Number of periods | Role | Al content (%) | Thickness h (nm) |

’ 1 \ Substrate \ 0 \ ‘
6 Bottom 80 276
Bragg 25 114

\ 1 | Core | 45 | 355.5 |
6 Top 25 114
Bragg 80 276

| 1 | Cap | 0] 250 |

Table 1.2: Nominal epitaxial structure for the co-propagating source.

1.2.2.2 Interaction types and phase-matching curves

In the copropagating geometry, since the propagation direction is the same for the pump,
signal and idler fields, the phase-matching condition can be written only along this direc-
tion. If we use the dispersion relation (3,, = 1, (W )wm /¢, with m = p, s, i, we can then
write both the energy conservation and the phase-matching condition as:

Wp = Ws + W; (1.40)
Ny (Wp)wp = N (W) ws + 1y (wi)w;

This shows that in order to achieve phase-matching and efficient SPDC, the pump mode
must have an effective index similar to the signal and idler mode at their respective
frequencies.

We simulated the effective indices of the fundamental and Bragg modes in both polar-
izations as a function of the wavelength, which we report in figure 1.8. From the crossing
points (circled), we can find the pump wavelengths allowing for perfect phase-matching
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Top Bragg mirror

Core

» idler
pump
signal

Bottom Bragg
mirror

Figure 1.6: Sketch of the co-propagating modal phase-matching, where the pump photons
are down-converted into signal and idler photons propagating in the same direction inside the
waveguide.

at degeneracy (i.e. when both signal and idler photons have the same frequencies) for the
different types of SPDC.

The corresponding conditions for phase-matching are (writing np rgra) the index of
the pump and nygran that of SPDC photons):

nprm(Wp)wpy = Ny (ws)ws + npar (wi)w; — for type 0 SPDC

nprv(wWp)wpy = nrg(ws)ws + nrg(w;)w; — for type I SPDC

npre(wp)wpy = N (ws)ws + Ny, (Wi)w; for type II SPDC where 0 = TE(TM)
and o is the orthogonal polarization

(1.41)
yielding at degeneracy (ws; = w; = w,/2):
nprv(wWp) = nrav(wp/2) for type 0 SPDC
nprv(wp) = nre(w,/2) for type I SPDC (1.42)

nByTE(wp) = (nTE(wp/Q) + nTM(on/Q)) /2 fOI' type 11 SPDC

As in the case of SFG in a waveguide, the efficiency of the process scales as sinc? SAB %),
which depends on the frequencies of the different interacted fields, and as such influences
the shape of the frequency correlations between the two photons (equation 1.34). We can
simulate the phase-matching term sinc? (%), as a function of the pump wavelength and
the signal wavelength, as shown on the example of type 0 in figure 1.9a. The shape of
the phase-matching curve shows that the efficiency of the SPDC process is maximal for
the degeneracy pump wavelength (here ~ 773.48 nm) and the phase-matching condition
cannot be verified for pump wavelengths above this value. As the pump wavelength
decreases, the curve separates in two arms, showing that tuning the pump wavelength
allows to manipulate the spectral distribution of the signal and idler photons, which is
given by taking the cut of the phase-matching efficiency with respect to A, for a fixed
value of A,. The spectral distribution for the SPDC photons produced by the type 0
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Figure 1.7: Simulated field intensity for the two fundamental TE (a) and TM (b) modes at
1550 nm, and for the Bragg TE (c) and TM (d) modes at 775 nm for a 2 pm wide waveguide
with dry etching profile.

SPDC process at degeneracy wavelength is shown in figure 1.9b. The spectral width is
approximately A\ ~ 60 nm for a 2 yum wide and 2 mm long waveguide, which is 2 orders
of magnitude higher than the spectral width for the counterpropagating scheme.
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Figure 1.8: Simulated effective refractive indices for the fundamental TE and TM modes, as
well as the Bragg TE and TM modes for a 2 um wide waveguide with an ICP etching profile.
The circled crossing points show where the different SPDC types are possible at degeneracy.
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Figure 1.9: a) Simulated phase-matching efficiency for type 0 SPDC for a 2 ym wide and
2 mm long waveguide in a copropagating SPDC scheme, as a function of the pump wavelength
and of the signal wavelength, the idler wavelength being determined by the energy conservation
condition. b) Marginal spectrum of the SPDC photons at pump wavelength A, = 773.48 nm (at
maximum efficiency for phase-matching at degeneracy), for the same waveguide in the coprop-
agating scheme. The generated photons have spectral width at half maximum AMX ~ 60 nm.
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Chapter 2

Biphoton exchange statistics
engineering in a counterpropagating
phase-matching scheme

In this chapter, we describe the generation of frequency-entangled photon pairs using a
counterpropagating phase-matching scheme in an AlGaAs waveguide, allowing to manipu-
late the exchange statistics of the two photons. This scheme has be studied in a previous
thesis of our group [137] to demonstrate the possibility to generate photon pairs with
fermionic exchange statistics. Here we report the theoretical foundation of the exchange
statistics manipulation, as well as the latest experimental results having led to anyonic
exchange statistics for photon pairs.
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2.1 Theoretical description of the quantum state

In this section, we consider the counterpropagating phase-matching scheme described in
section 1.2.1 for photon pair generation using SPDC, and we describe the quantum state
of the generated photon pairs by using the formalism introduced in section 1.1.6, and
starting from equation 1.34. We consider a single nonlinear interaction, producing signal
photon with TE polarization and idler photon with TM polarization.

2.1.1 Dependance of the biphoton wavefunction on the pump
profile

Let us first consider the shape of the Joint Spectral amplitude, which we recall from
equation 1.34:

el A(ws + wz)

20h \/ (ws) Ug w;) (2.1)
/drdeg (r,ws 4 wi) BX (v, w,) B} (v, w;)e 407

¢<w57 wl) =

with the phase-mismatch AfS = k,sin(d) — Bs + ;. The spatial profile of the three
interacting fields are involved in equation 2.1, so in order to derive the quantum state, one
needs the exact spatial distributions of the considered modes. We denote the propagation
direction z, the growth direction x, and the transverse direction y. The signal and idler
fields have transverse profiles Ey(r,ws) = ¢re(z,y,ws) and Ei(r,w;) = orym(z,y,w;)
which depend on the supported modes of the waveguides and their frequencies. Since
the SPDC process is efficient only for a very narrow range of signal and idler wavelengths
from the phase-matching term (around the crossing point between the energy conservation
condition and the phase-matching condition in figure 1.5(a)), we can consider these spatial
modes independent of the SPDC photons frequencies, and write them as prg(x,y,ws) =
os(x,y) and oray(z,y,w;) = pi(z,y). We now need to examine the shape of the pump
field E,(r,wy).

42



Chapter 2 2.1. THEORETICAL DESCRIPTION OF THE QUANTUM STATE

We assume that the pump beam only propagates in the z, z plane, so that its wavevec-
tor in the y direction is zero: k% = 0. Assuming the transverse profile of the pump beam
is separable in the transverse y, z plane!, one can write the pump field spatial profile as
a product of its transverse spatial profile and of the vertical microcavity response which
can depend on the pump frequency w,:

Ey(r,w,) = fucav(xawp)‘:p;(szp)%pg(yaWp) (2.2)

where f,cq0 18 the cavity response function, dependent on w, and z, and ¢} and 7 describe
the pump spatial profile along the y and z direction respectively. In our case, the effective
second-order coefficient deg is only dependent on x, since the material only changes along
the growth direction. This yields:

il Aws + w;)
2ah UéS)(

¢(w87 wi) -

ws)vg (w;)

/drdeﬁ(ac)fumv(x, Ws + w;) oy (2, ws + wi )b (Y, ws + w;)

(@, y)¢; (w,y)e

_imey  Aws +wi) (2.3)
P\ (.0 (1)

: / drdyde () fucan (T, ws + wi) (Y, ws + wi) @5 (@, ¥)@; (7, y)

: /dzgof,(z,ws + w;)e APz

which we write, as in chapter 1

¢(w3, wi) =7 XF(wsawi) : ¢spectral(ws + wi) : ¢PM(WS> wi) (24)
where the terms

¢spectral (wsa wi) :A(ws + wi)
1

XF(Wsawz‘) :\/ )/dxdydeff(x)fucav(xaws +wi)90g(y,ws —{—wi)ap;(x,y)cp;k(x,y)

oy (ws)ug” (ws
(2.5)
encapsulates both the spectrum of the pump, the spectral response of the cavity, and the

nonlinear overlap integral between the three fields, and the term

Opm(ws,w;) = /dch;(z,wp)e_mﬁz (2.6)

corresponds to the phase-matching condition. The latter term is of particular interest,
as it gives a way of controlling the JSA of the photon pairs through the tuning of the
pump spatial profile. If we rewrite the function with two new variables w, = w, 4+ w;, and

!Since the beam produced by the experimental pump laser has a Gaussian profile, and since it is
possible to control the spatial profile of the pump beam, which we will discuss later in the chapter, this
assumption can be made reasonably.
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W_ = ws — w;, we see that Pgpectral Only depends on w; and not on w_. Additionally, since
the spectral width of the generated photons is small, we can consider the group velocities
and mode profiles to be independent of the different frequencies, and thus treat xr as
a constant term. Thus the only term depending on w_ (through the phase mismatch
ApB) is ¢pyr, making it dependent upon the exchange of the two photon frequencies
(ws,w;) = (w;,ws) (equivalent to the transformation (w;,w-) — (w4, —w-)). In this
chapter, we will specifically study the engineering of the exchange symmetry of the JSA,
and we will thus be particularly interested in the w_ parameter?.

Let us make the dependence of ¢py; on w, and w_ explicit. First, the phase-mismatch
term can be written as

AB = 1 (W sinf — ng(ws)ws + ni(w;)w;) - (2.7)

Writing wy/; = 5+ % = Waeg £ %5, With weey = wp/2,* we can then use the Taylor expan-
sion of the effective modal indices for the signal and idler modes around the degeneracy

frequency, giving

w_ dngy; w? dzns/i
Ng/i\Ws/i) = Ns/i\Wde + — . 2.8
filwssi) filiey) 2 dw 8 dw? (28)
deg Wdeg
Injecting it into equation 2.7, and remembering that sin 4, = "5, we obtain to second

order in w_ (where the refractive indices and their derivatives are all evaluated at wgeg):

Ap :1 <w+ (sin@ — sinOgey) — e (ns +n; + Megéﬂﬂﬁ”i))
C

2 dw
w? [ _d(ng —ny) d*(ns — n;) 3
= S (2 S (3 2.9
i <2dw FWieg— | + O(w?) (2.9)
Wi , . ) S w_\2
:% (sin@ — sinOgey) — w_vg—l — (2> davp

with @ the mean of the inverse group velocity (evaluated at wge,):

— 1 /(1 1 1 (dps f
L1 1\ _1(ds,  dB
72 \vs v 2 \dw  dw
(2.10)
1 e dng n dn;
=7 Ns n; e S
2c Yeo  dw " dw
and dgyp is the half-difference between the group velocity dispersions:
1d (1 1 1 (. d(ns—ny;) d*(ngs — n;)
0, =——|———=|==(2—— o | - 2.11
VP9 dw (v; U;) 2¢ ( dw + Waeg dw? (2.11)

For our signal TE and idler TM modes at 1550 nm, numerical simulations done with
Lumerical give Group Velocity Dispersions values of GV Drg ~ 1.9 - 10~* fs?m~! and

2However, this source can generate other interesting states of the JSA, presented in G. Boucher’s [135]
and S. Francesconi’s [137] theses.

3Tt is important to note that this yields Wdeg = “Sgwi because of the energy conservation.
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GVDry ~ 2.1-107* fs?m~", while the group velocities are ve? =9.53-10" ms~! and
vIM = 9.57 - 10" ms™!, giving v,;7 = 1.05-10® sm~'. For a 5 mm long sample, the
phase difference generated by the linear term w_v, 1 over the waveguide length is of the
order of 7 for a frequency w_ ~ 10'" rad -s~!, which gives a phase difference resulting
from the quadratic term (%)2 davp of Ag ~ 7.6 -10717 rad. We can thus neglect the
quadratic term in equation 2.9, since it does not generate significant phase rotations in
the phase-mismatch. The phase-mismatch can thus be reduced to:

A = w% (sin @ — sin Ogeq) — w_v, 1. (2.12)
The first term shows that for efficient phase-matching at degeneracy (i.e. for w_ = 0),
the pump beam must impinge on top of the waveguide with the correct angle 4.4, and
the term F conditions the range of w_ (which quantifies the deviation from degeneracy)
for phase-matching, and thus dictates the width of the JSA in the w_ direction (i.e.
along the antidiagonal in the (ws,w;) coordinates). Additionally, we can consider the
transverse spatial profile of the pump beam independent of the frequency, since the pump
propagates in free space without dispersion: ¢7(z,w,) = A,(z). Taking all this into
account, the phase-matching term in the JSA can finally be written:

L/2 Yt (sin 0 —sin Odeg)—wfvgfl)z

dpyvl(we,w-) = / dz./élp(z)e_i(T

(2.13)
z=—L/2

In the following, we will use a pulsed picosecond laser to pump our waveguide, with a
central wavelength of 775 nm, and the pump angle close to the degeneracy angle, so that
we can further simplify equation 2.13 by neglecting the first phase term®:

opm(w-) = /ZL/2 dZAP(Z>eiM%jZ- (2.14)

=—L/2

If we assume the pump spatial profile to be symmetrical around the center of the waveguide
at z =0 (i.e. Ay(z) to be even), then

dpu(w-) :/

z2=0
L2 o
=2 dzA,(z)cos (w_v1lz

AR (w-v,T2)

=¢pm(—w-)

is a symmetrical function in (ws, w;), i.e. is invariant under the transformation (wy,w_) —
(w4, —w_). However, if A,(z) = —A,(—2) is now an odd function of z, we then get

dpar(w) = [

z=0
L/2 -
=2 dzAp(z) sin (w,vglz)

z=0
=—opu(—w-),

L/2

dZAp(Z) <€iwvg_1z + e—iwvg_lz>
(2.15)

L/2

dzA,(2) (e"“”’glz - e_i“”912>
(2.16)

4For a spectral width of Aw = 10'2 rad-s' (e.g. for a picosecond Gaussian pulse) the maximal
difference in the degeneracy angle sines is sin 677" — sin 93;2” = 2.5-107%, meaning the total phase
difference over 5 mm induced by this term is of the order of 0.1 rad, i.e. a variation of less than 1% in
the real part of the exponential.
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which is antisymmetrical in (ws,w;), i.e. acquires a phase m under the transformation
(wy,w_) = (wy,—w_). This is the most simple example of how the tailoring of the pump
spatial profile can affect the exchange symmetry of the JSA, but further control of the
JSA is possible. Indeed, the phase-matching term from equation 2.14 is simply analogous
to the Fourier transform of the spatial profile of the pump beam °, meaning that any
phase-matching function of w_ can be achieved by taking the spatial profile of the pump
to be its reciprocal Fourier transform.

The next step in the shaping of the reconfigurable exchange statistics of the photon
pairs is to be able to measure the exchange properties of the JSA (i.e. how it is modified
when exchanging the signal and idler photons), which can be done using a Hong-Ou-
Mandel experiment, a tool of choice to determine the exchange statistics of a photon pair,
as we present it in the next section.

2.1.2 Hong-Ou-Mandel interferometer and exchange statistics
of the photon pair

Here we recall the principle of the Hong-Ou-Mandel experiment and demonstrate its utility
to measure the exchange statistics of the SPDC photon pairs.

2.1.2.1 The Hong-Ou-Mandel interferometer

The Hong-Ou-Mandel experiment, demonstrated in 1987 [138], consists in sending two
photons, in our case the signal and idler photons, through the two input ports of a
beamsplitter, while imposing a time delay At on one of the two arms. A coincidence
measurement is then realized between the two output ports of the beamsplitter, and the
coincidence probability as a function of the time delay is measured (figure 2.1).

(a) (b)

At ' /

idler

Bunching

—> Antibunching

!

Figure 2.1: a) Schematic principle of the Hong-Ou-Mandel experiment, and b) the four possible
outcomes, separated into bunching and antibunching scenarii.

If we label s,7 the two input ports, and 1,2 the two output ports, the beamsplitter
acts as the transformation for the corresponding creation operators, if the photons are

5 Analogous, but not exactly equal, since the integral is made over a finite space, however the approx-
imation is valid if the pump spot size is smaller than the waveguide.
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indistinguishable over all degrees of freedom:

at — % (al + iad) (217
af — 5 (ial + af)

We thus get, for an input state |¥) = alal |0) with one photon in each input arm without
added delay between them, the output state:

1/ 4. it ot T /st
) = 5 (mJ{aI +iabal + alal — a%a{) |0) = 3 (aJ{aI + agc@) |0) (2.18)
since {di,&;} = 0. Thus, the photons always exit through one output arm together,

and the coincidence probability P, = <&£d1&2&1> vanishes® because of the destructive
interference between the probability amplitudes for the two antibunching outcomes. Note
that if the operator were fermionic, because of the anticommutation relations, the output
state would be |¥) = = ialad |0), meaning that the coincidence probability in this case
would be P, = 1.

For distinguishable particles (distinguishability can be, for instance, introduced us-
ing the time delay between the two photons), the interference between the probability
amplitudes of the different paths is modified, and disappears if the particles become en-
tirely distinguishable (i.e. if their quantum states have zero overlap), leading to the four
paths having equal probability, and giving a coincidence probability of P. = 1/2. The
probability thus gradually increases up to 1/2 as the time delay increases, the increase
speed being related to the coherence time of the photons. This is the fundamental result
of the Hong-Ou-Mandel interference for independent particles, and we will look at how
entangled photons behave in the interferometer in the next paragraph.

2.1.2.2 Hong-Ou-Mandel interference of spectrally entangled photons

Let us now consider a photon pair, with a JSA ¢(w;,w;). We can write the quantum state
as:

)i = [ devsding(ws, wi)al ()il (i) 0) (2.19)

If we apply the beamsplitter transformation, with a time delay At in the idler arm, we
get (identifying the signal and idler arms with the input ports of the beamsplitter, and
considering every degree of freedom except for frequency to be indistinguishable between
the two photons):

1 R .
|w>out :Q/dwsdwi(b(ws’(ﬂi (Zai(ws)a

) !
+&§(ws)&£(wz) - &;(ws)di (UJZ)> Wit |0>
:; /dwsdwi¢(w3,wz‘) (idi(ws)&l(wi) + i&;(ws)&;(wi)) 10)

1 bW; iw N N
+ 3 / dwsdw; (gb(ws, wi)ewlm — ¢(w;,ws)e SAt) ax (ws)ag(wi) |0)

(2.20)

6Note that, in the case of bosons, this operator is restricted to the subspace with exactly two particles,
otherwise it is not the correct tool to study the coincidence probability.
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where the first term does not give coincidences, so we can discard it The coincidence
operator C' can then be defined as:

C= /dwldwﬂi(Wl)&g(w)@z(wz)@l(wl) (2.21)
and the coincidence probability (which depends on At) as:
Po(At) = (4] C |)

:i (O] [ desde, (67 el i)™ 1 = 67 (], wl)e H47) p(wh)an ()
: / deondusndt ()b (ws) s (w2) a1 (w1)
[ s (B, ) = Gl a,)e A1)l (w,)ab(wi) [0)

=1 (O] dfdfdindndo oy (67 (ol l)em 80 — 5 (ufy ) 4) (222
+0(w, — w)d(w; — wa)d(ws — wi)d(w; — wa)
(Bws, wi)e™ A = p(awr, wy)e™ ) [0)

—;/dwldw2|¢(w1,w2)|2

1 )
1 [/ dwrdws ™ (wr, wa)p(wa, wy )e 2 7wIA C.c}

and finally, using the normalization of the JSA, we get:

1 1 )
Pc(At) = 5 - §Re [/ dwldwggb*(wl, w2)¢(w2, wl)BZ(MQWI)At] (223)

The coincidence probability is thus the difference between a constant term 1/2 and an
interference term, that will depend on the specific JSA. We can already see from equation
2.23 that at zero time delay, the second term gives —1/2 for a completely symmetrical
JSA, thus giving a coincidence probability P?¥"™ = 0, and thus a Hong-Ou-Mandel dip at
At = 0, while for an antisymmetrical JSA, we get P*¥™ = 1, giving a "fermionic” peak
in coincidences at zero time delay.

2.1.3 Exchange statistics of anyons

To derive the coincidence probability in the HOM experiment, we described the behaviour
of entangled photons, using bosonic operators. However, the possibility to make photons
anti-bunch at a beamsplitter, and have a fermionic-like behaviour, raises the question of
the possibility to mimic arbitrary exchange statistics using entangled photon pairs, and
in particular non-trivial exchange statistics, such as the fractionnal exchange statistics
of anyons [139,140]. Anyons are quasiparticles that live in 1D or 2D space and, unlike
bosons or fermions, acquire a fractional phase (different from 0 or 7) in their wavefunction
when two of them are exchanged, and they have been first theoretically investigated in
the context of the fractional quantum Hall effect [141, 142].

These types of particular exchange statistics are interesting, particularly because they
open the possibility of braiding [143-145], which is the acquisition of a non-zero quantized
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phase by the wavefunction through two successive directional exchanges of particles. The
topological robustness to noise resulting from braiding operations makes anyons promising
candidates for the implementation of fault-tolerant topological quantum computing and
error correction tasks [145-147], and has attracted growing interest in the last years.

To describe the behaviour of anyons in a HOM interferometer, let us first recall the
commutation relations for bosonic, fermionic and anyonic operators:

[&T(ws), af(w;)| =0 for bosons
{ET (ws), b (w;) b =0 for fermions (2.24)
&M (ws) el (w;) = e?@s @it (w;)éf (w,)  for anyons
where 0(ws,w;) = —0(w;,w;) for the operators to be well-defined. The case of bosons
simply corresponds to 6 = 0, and the case of fermions to § = m. We can rewrite the state

after the HOM beamsplitter for anyons with JSA ¢4, and post-select on the events giving
coincidences between the two output arms, yielding:

|77Z}a> :; /dwsdwi¢A(w8’wi) (éi(ws)ég(wz) - é;(ws)él(wl)) GiwiAt |0>

2.25)
1 . o e (
=3 /dwsdwi (¢A(ws, w;)e Bt — s gy (y, Ws)ewsm> &l (ws)eb(w;) [0) -

Analogously to what we have done in equation 2.22, we can compute the probability
of coincidence in the case of anyons, and we get:

1 1 . .
Re |:/ dwldwgqﬁZ(wl, CLJQ)¢A((A)2, w1>€z(w2w1)AtezG(w1,w2):| . (226)

This coincidence probability is the same as for bosons with JSA ¢p(ws, w;) = e 0@s@i/2¢  (w,, w;).
Indeed, in that case, we get from equation 2.23:

1 1 . , A
PCBosons(At) :i . §Re [/ dwldwggb}}(wl, w2)620(wl,w2)/2¢(w27 wl)e—w(wg,on)/261(w2—w1)At:|

1 1 , A
=5~ §Re [/ dw1dw2¢2(w1,w2)¢A(wLwl)ez(w_wlmtew(wl’w?}
:PCA"yO"S (At).

(2.27)
Tailoring the spectral entanglement of photon pairs (i.e. their JSA ¢p) thus enables to
simulate the behaviour of anyons at a Hong-Ou-Mandel interferometer, by mimicking the
effect of the fractional exchange statistics stemming from the operators algebra through
a phase manipulation of the JSA.

2.2 Experimental measurement of the exchange statis-
tics

Having presented the theory for the manipulation of the exchange statistics of photon
pairs to mimic anyonic behaviour, we now turn to presenting the experimental realization
of photon pairs with reconfigurable exchange statistics, starting with the fabrication and
characterization of the sample, and going through the shaping of the pump beam and the
measurement process for the exchange statistics.
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2.2.1 Sample fabrication and characterization

In this paragraph we go over the different steps involved in the fabrication and character-
ization of the sample. The samples are fabricated from an epitaxial growth realized by
Aristide Lemaitre in C2N via Molecular Beam Epitaxy (following the epitaxial structure
described in section 1.2.1.1), and the fabrication process described below was made in the
clean room of the MP(Q laboratory at Université Paris Cité.

2.2.1.1 Fabrication

The sample was fabricated using optical lithography and chemical wet etching, using the
following procedure: the sample is cleaned, and a negative photosensitive resist (S1805)
is spincoated on its surface. The sample then undergoes UV lithography while covered
by a metallic chromium mask consisting of single lines, to realize simple waveguides. The
resist is then developed, and the sample is chemically etched using a 1:1:1 BCK solution
(i.e. an even mix of hydrobromic acid, chlorhydric acid and potassium dichromate). The
process is summarized in figure 2.2. The process was studied and optimized by several
PhD students from our group, and described in more details in Xavier Caillet’s [134] and
Claire Autebert’s [148] theses. The sample is then cleaved to make clean facets at the
input and output of the waveguides, to realize 1.9 mm long waveguides, with a 6 pym
width.

Sample Resist deposition UV lithography Resist development Chemical etching Resist removal

[l GaAssubstrate [l AlGaAs epitaxial structure [l Photo-sensitive resist [l Resist after UV exposure

Figure 2.2: Schematical summary of the lithography and chemical etching process.

2.2.1.2 Losses characterization

When propagating inside a waveguide, photons can suffer from losses induced by several
effects, such as fabrication defects, scattering from impurities, modal mismatch at domain
interfaces or roughness. It is thus important to ensure that the sample has reasonable
losses, so as to not lose the information carried by the generated photon pairs.

In order to measure the losses of the sample, we employ a Fabry-Pérot technique
exploiting the modal reflectivity of the telecom modes at the facets of the waveguides.
Optical losses lead to a decrease of the intensity of a light beam along the propagation
direction z:

dl
dz
where « is the propagation loss coefficient. If we couple a laser beam into the waveguide,
and take into account the reflectivity of the input and output facets, the waveguide acts

—al (2.28)
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as a Fabry-Pérot cavity, resulting in a transmitted power at the output that depends on
the wavelength:

n P0T2 efaL
(1 — Re=L)2 + 4Re~oL sin? (LKEHL + ¢0)

with 7 the coupling efficiency of light inside the waveguide, F, the input power, 7" and
R the modal transmission and reflection coefficients at the facets, L the length of the
waveguide, neg the effective index of the guided mode, Ay the free-space wavelength, and
¢o the reflection-induced phase.

The reflection coefficients can be estimated by using numerical simulations, giving
values of R = 0.247 for the TE-polarized mode, and R = 0.285 for the TM-polarized
mode. Furthermore, by continuously varying the wavelength of the injected laser beam,
one can extract the values for the maximum and minimum transmitted power P;/"*" and
P and thus the ratio

(2.29)

P, =

max
B

min
F

C =
allowing to determine the loss coefficient as:
1 C+1

-In (R\/_ + ) .

/B (2.30)

Losses measurement for the TE and TM telecom modes
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Figure 2.3: Result of the loss measurement for the TE and TM telecom modes.

Figure 2.3 shows, for the sample studied in this chapter, the measured transmitted
power as a function of wavelength for the TE and TM-polarized telecom modes around
1550 nm. The extracted loss coefficients are arp = 0.9 ecm™! and apy = 1.1 cm™?,
obtained with the simulated values for the modal reflectivity Rrp = 0.247 and Rpy =

0.285.

2.2.2 Measurement of the exchange statistics

We now describe the measurement of the exchange statistics of the biphoton wavefunction,
with the wavefront shaping technique and the Hong-Ou-Mandel coincidence measurement.
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2.2.2.1 Wavefront shaping and experimental set-up

As we saw from the beginning of the chapter, the main requirement to generate photon
pairs with reconfigurable exchange statistics is the ability to tailor the spatial profile of the
pump beam in the waveguide propagation direction. In order to shape the pump beam,
the tool we use in this work is a phase Spatial Light Modulator (SLM), which consists
of an array of pixels that can reflect light while locally changing its phase. Through
diffraction effects, SLMs can be used to shape the wavefront of the reflected beam by
individually addressing the pixels to spatially modulate its phase. We use a Leto SLM
from the Holoeye company, and the wavefront shaping techniques using this device were
studied by Saverio Francesconi in a previous PhD thesis from our group [137].

As the pump laser, we use a Coherent Mira Ti:sapphire laser, pulsed with a 76 MHz
repetition rate, a 4.5 ps pulse duration and 50 mW average power, set at the SPDC
resonance wavelength for our source (A, = 773.15 nm). As shown in figure 2.4, the laser
beam is then sent on the SLM through a telescope to match its dimension to the SLM, and
a second telescope in a 4f configuration to image the SLM on the waveguide. Part of the
beam is reflected on a 99:1 beamsplitter and sent to a Phasics SID4 wavefront analyzer
(WFA) to characterize the spatial profile of the input pump beam. The pump beam with
the desired spatial profile is then focused on top of the waveguide using a cylindrical lens,
and the generated signal and idler photons are collected through microscope objectives.
To ensure that we only consider the interaction where the signal photon is TE-polarized
and the idler photon is TM-polarized, we use polarizers at the output facets of the sample.

An ideal characterization of the emitted the quantum state would consist in measuring
the JSA. Unfortunately, the simultaneous measurement of the amplitude and phase of the
wavefunction is a very difficult problem, which lacks measurement methods applicable in
the general case, although there are techniques that have been used in specific situations
[149]. It is easier to measure the Joint Spectral Intensity (JSI), which is the squared
modulus of the JSA, giving information on the joint spectrum of the biphoton. In order
to do so, we use a fiber spectrograph” as presented in figure 2.4, where the two photons
are sent into highly dispersive fibers (DCF), which change the frequency information of
the photon pairs into an information on time of arrival on single-photon detectors. The
times of arrival of the photons relative to a trigger coming from the pulsed laser clock
is then measured using a Swabian TimeTagger. After proper calibration, the JSI can be
reconstructed from the coincidence counts in each time-bin.

An example of JSI measurement, when pumping the source with a standard Gaussian
profile at degeneracy angle, is shown in figure 2.6a. The average value of the dispersion
for the employed DCFs was around D = —1650 ps-nm~! for both fibers, the detectors
are Superconducting Nanowire Single-Photon Detectors (SNSPD) with a Atp = 90 ps
jitter, and the TimeTagger resolution is Aty = 42 ps. Thus, the best achievable spectral

resolution was here
VAL + At?
AN = IID| T ~ 60 pm. (2.31)

This resolution allows to obtain the general shape of the JSI (essentially circular in figure
2.6a, and confirming the good spectral indistinguishability of the photons, as needed to

"Other methods exist [150,151], but they are usually more time-consuming, although they can be
more accurate.
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TE —~
™ e

Figure 2.4: Experimental set-up for the measurement of the JSI.

perform HOM interference), but its value is of the same order than the free spectral range
of the Fabry-Pérot cavity (AApsr ~ 190 pm), and thus does not allow to precisely resolve
the associated modulation of the joint spectrum.

Next, in order to measure the exchange statistics of the biphoton state, the signal
and idler photons are coupled to fibers and sent into a fibered beamsplitter acting as a
HOM interferometer, with its two output ports connected to single-photons detectors,
as sketched in figure 2.5. We use a Fibered Polarization Controller (FPC) in the signal
photon arm in the beamsplitter, to ensure that the polarization modes of the two photons
at the input of the beamsplitter coincide to allow interference of the two photons. A
motorized fibered delay line adds a time delay At at the input of the idler arm in the
beamsplitter, two fibered filters are added before detection to filter out the potential
luminescence noise, and the photon detection is carried out by Superconducting Nanowire
Single-Photon Detectors (SNSPDs). Scanning the time delay on the delay line allows to
reconstruct the HOM interferogram of the generated photon pairs, and we discuss the
experimental results in the next paragraph.

2.2.2.2 Anyonic-like exchange statistics

In this paragraph, we present the experimental results for the measurement of the ex-
change statistics of photons for different JSA shapes. First, we show than we can indeed
invert the bunching behaviour of the photons at a beamsplitter, and measure the HOM
interferogram for an antisymmetrical JSA. In order to realize this, we impose a phase
step Ap between the two halves of the pump spot with Gaussian intensity profile using
the SLM. For Ay = m, the pump spatial profile is thus antisymmetrical with respect to
the center of the waveguide. In this case, from equation 2.16, the JSA is expected to be
antisymmetrical under exchange of the two frequencies, and the two photons should anti-
bunch at the HOM interferometer for a time delay At = 0. Figure 2.6d presents the result
of the JSI measurement for Ay = 7 that we can compare to the previous measurement
(figure 2.6a) at Ap = 0. We observe that for Ap = 7, the JSA splits into two lobes, and
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Figure 2.5: Experimental set-up for the HOM measurement.

we expect the phase difference between the two lobes to be m. The corresponding mea-
sured HOM interferograms are presented in figures 2.6b and 2.6e for Ap =0 and Ap =7
respectively, and compared with theoretical predictions in figure 2.6¢ and 8. We observe
spatial bunching of the photons through the HOM interferometer for the symmetric state
Ay = 0, and antibunching for the antisymmetric state Ay = 7. This experiment already
shows the possibility to manipulate the exchange statistics of the photon pairs to simulate
a fermionic behaviour at the beamsplitter. In order to tailor the pump beam to explore
further exchange statistics, we first need to define a correct phase-matching function for
the simulation of anyonic statistics, as well as the corresponding pump spatial profile.

For experimental demonstration, we chose to focus on anyons having a phase 6 = +7/2
under exchange, i.e. 0(ws,w;) = sign (w; —ws) - /2 in the formalism of equation 2.24.
The target wavefunction to implement is, as plotted in figure 2.7a:

{¢pM(w) = Cem/4\ J|w_le 22" for w_ >0 (2.32)

dpa(w_) = Ce ™4 Jlw_|e 227" for w_ <0

where the term y/|w_| is here to ensure the continuity of the JSA along the w_ = 0
interface, and C' is a normalization constant. The corresponding pump spatial profile,
which we compute numerically by inverting equation 2.14, is represented on figure 2.7b,
along with the simulated HOM interferogram for this phase-matching function in figure
2.7c.

We experimentally implement the corresponding pump spatial profile, which consists
in two unbalanced lobes, with the separation between the two lobes offset from the waveg-
uide center, and a phase difference of © between the two lobes. Using this pump profile,

8This measurement was presented in Saverio Francesconi’s PhD thesis and in [152], and realized with
different single-photon detectors and a different time tagger than the one we described in the section,
but the experimental set-up is essentially the same. We refer the reader to the given references for more
information on the specifics of this measurement, as we included it in the thesis mainly to have a coherent
progression in the measurement of the exchange statistics.
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Figure 2.7: Simulated a) phase-matching function, b) pump spatial profile and ¢) HOM inter-

ferogram for entangled photon pairs mimicking /2 anyons.
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Figure 2.8: a) Experimental and b) simulated JSI for the phase-matching function described
in equation 2.32, mimicking anyons with a 7/2 phase over exchange.
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Figure 2.9: Experimentally measured HOM interferograms (dots) and theoretical prediction
(blue line) for frequency-entangled biphoton states mimicking § = +7/2, with different exchange
directions for a) and b).

we measure the JSI of the produced photon pairs using the experimental set-up described
in the previous paragraph, and plot it on figure 2.8 along with the simulated JSI (ob-
tained from equation 2.3). The measured JSI consists of two lobes with similar intensities
along the w_ direction, which is consistent with the target phase-matching function (fig-
ure 2.7a), and demonstrates accurate control over the joint spectrum from the tailoring
of the pump profile. The generation rate of the SPDC photon pairs is estimated to be
107 pairs-s~! from the experimental data.

Finally, we measured the HOM interferogram of the biphoton state to reveal the
exchange statistics of the generated photon pairs. The results are presented on figure 2.9a
(dots), and are in good agreement with the numerical simulation (blue line), showing a
peculiar shape with a peak at negative delay, a dip at positive delay, and a symmetry
around the central point at zero delay. The same state with an opposite phase in the
anyonic operator algebra (i.e. 0(ws,w;) = sign (ws — w;) - /2) is also measured on figure
2.9b, and is obtained by taking the symmetrical pump profile with respect to the center
of the waveguide. Its HOM interferogram, that is mirror-symmetric to the previously
measured interferogram, is also in good agreement with the theoretical prediction.

2.3 Summary and perspectives

In this chapter, we analytically described the exchange symmetry control of the JSA
of photon pairs produced by SPDC using a counterpropagating phase-matched source,
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through spatial tailoring of the pump beam. We investigated HOM interferometry as a
tool to characterize the exchange symmetry of the spectral wavefunction of the generated
photon pairs, and experimentally measured photonic states displaying bosonic, fermionic
and anyonic behaviours in their HOM interferograms. The good agreement between
the theory and the experimental results confirms the reconfigurable manipulation of the
photon pairs statistics from the tailoring of the spatial profile of the pump beam.

We have thus demonstrated flexible exchange statistics control of photon pairs, di-
rectly at the generation stage, in a chip-integrated source, at room temperature and
telecom wavelength. The possibility to generate on-demand frequency-entangled states in
a controllable and reconfigurable manner is a powerful resource in quantum simulations
of exchange statistics effects [63, 64, 153, 154] to simulate the behaviour of fermionic or
anyonic particles and is an asset in view of the implementation of quantum information
protocols on-chip. This source can also be used to generate more complex states, like hy-
brid polarization/frequency entangled states [136], which have applications in metrology
for accurate time measurements [155] or in the interconnection of qubits with disparate
energy levels [156], and like compass states [157] presenting fine phase structure which
can be used as a resource for quantum metrology [158, 159].

The results presented in this chapter are published in [160].
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Chapter 3

Theory of quantum walks in
nonlinear waveguide arrays

With the end of the previous chapter, we conclude our study of the counter-propagating
biphoton source and we now turn to the device based on nonlinear waveguide arrays. As
we will discuss in this chapter, this device can be exploited to realize quantum random
walks [161], in which a particle can simultaneously evolve towards all its accessible states
with interference between the various probability amplitudes. Quantum walks constitute
a powerful resource in quantum information, allowing e.g. the demonstration of the Shor
factoring algorithm [46], boson sampling [162] and simulation of condensed matter prob-
lems [81]. Two different regimes of quantum random walks exist: discrete-time quantum
random walks [163], where the particles evolve in discrete steps, and continuous-time
quantum random walks [164], in which the evolution of the particles is continuous and
can be described using Hamiltonian dynamics. In the case of photons, the accessible
states can be path modes of a photonic circuit. Discrete-time quantum walks in the
path degree of freedom have been implemented using networks of directional couplers and
phase-shifters (see figure 3.1a) in femtosecond written circuits in silicate glass [81, 165]
and integrated with SEFWM sources in silicon-based circuits [166]. On the other hand, the
natural photonic platform for the implementation of continuous-time quantum random
walks consists in arrays of evanescently coupled waveguides (figure 3.1b), allowing photons
to continuously hop from one waveguide to its neighbours during their propagation. This
platform has first been explored in the classical regime [167] to study nonlinear effects
and solid-state phenomena such as Bloch oscillations or disorder-induced localization, by
exploiting the analogy between electrons in a crystal periodic potential and optical waves
propagating in a periodic dielectric structure. More recently, the quantum regime has
been experimentally investigated in passive arrays of silicon oxynitride waveguides [100)]
fed with an external source of photon pairs, then in the cascaded quantum walks regime in
periodically poled lithium niobate by generating SPDC photons directly inside the waveg-
uide array [104] and finally in silicon chips where SFWM was used inside a waveguide
array to demonstrate topological protection of the generated photon pairs [82]. Nonlin-
ear waveguide arrays have also been identified as a promising platform for the on-chip
generation of continuous-variable multipartite entanglement [168-170].

The aim of this chapter is to introduce the theory necessary to the understanding
of the phenomenon of quantum random walks inside a waveguide array and to study
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Figure 3.1: a) Lattice of photonic beam splitters and phase shifters, taken from [81] and b)
array of silicon oxynitride waveguides (top) and discrete diffraction in the array (bottom), taken
from [100].

its interplay with the generation of correlated photon pairs by SPDC directly inside the
device, with the aim of developing a compact and versatile source of spatially entangled
states, operating at room temperature and telecom wavelength. We first give a theoretical
model for the evanescent coupling between the waveguides, then focus on the case of the
infinite waveguide array and introduce the Bloch modes and tight-binding formalism to
describe the propagation of optical fields inside the array. We then present the theory of
quantum walks of correlated photons within passive arrays, before considering the case
of nonlinear waveguide arrays supporting cascaded quantum walks generated by SPDC.
We introduce the needed formalism both in the quasi-momentum and real space as well
as the associated metrics to characterize the produced quantum states (purity, Schmidt
rank, non-classicality indicator). Finally, we perform a series of numerical simulations to
investigate various effects (boundary and disorder effects, pump propagation and losses)
and explore the variety of spatially entangled states that can be engineered using such a
device.
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3.1 Continuous-time quantum walks in waveguide ar-
rays

3.1.1 Waveguide arrays as a support for continuous quantum
random walks

3.1.1.1 Coupled-mode theory for two waveguides

To get an understanding of the phenomena underlying the realization of quantum random
walks in waveguide arrays, it is useful to first consider the simplest case where only two
single-mode waveguides are placed near each other, so that the light from one waveguide
can tunnel to the other one through evanescent coupling from the overlap of their mode
profiles.

With this goal in mind, we will consider two lossless waveguides, which we label 1
and 2, supporting modes we denote |a;) and |as), that we will assume to be orthogonal
in this simple model. We write the modes with a ket because, although this subsection
will be purely classical in its formalism, we will later work with single-photon modes, and
it is useful to use this notation as of now. We assume that the guides have propagation
constants 3; and (5. The individual propagation of the modes in waveguides 1 and 2 then
yields:

where b; denotes the field amplitude in mode |a;).
Now suppose we introduce a coupling between the two fields, such that the evolution
of the amplitudes b; can be described as

db
L= —iB1by + iky2bs

iy (3.2)
—2 — —ifoby + kg1
dz
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If the waveguides are lossless, then the total energy |b;|* + |by|*> must be conserved during
the propagation, giving us:

dlb > d|by|? . % | a0k ; *_ g .
|d;| + |dj = —if1b1b] + i1b1b1 + i51,202b] — ik 205Dy

— Zﬁgbzb; + Zﬁgb;bg -+ i/ﬁz’lblb; — Z./‘illb}{bz (33)
= 7:/{/172b2b>{ — Z.K,l,gl);bl + Z.I{271b1b; — i/fg@bibQ

=1 (KJLQ — H2,1> (bgb}< — b1b§> .

Since this energy conservation does not depend on the initial conditions, we can choose the
b; (0) such that (bebi — b103) # 0, and thus we can deduce that the coupling is symmetrical:

Ri2 = Rg1 = C. (34)

We can then rewrite equation 3.2 as

db
CT; = —if1by +iCby
by (3.5)
e —i2by + 1Cby
and simplify it even further by defining b} = e?#1%b,, b, = €?#2?by and AB = B, — Po:
b, ,
e
db,; (3.6)

= je PO
dz !

These coupled equations can be solved analytically, by multiplying the first equality by
e~AP and taking its derivative with respect to z and using the second equality to replace
% by its value in the computation. This yields

d?v dby

dz? dz
which is resolved through a simple second degree differential equation. Defining o =
\/ ATB? + C?, we finally get the shape of b} and b}, (after substitution):

—iAB—+ + O, = 0, (3.7)

bll (Z) — ei%z (Ae—iaz 4 B€+iaz)
i | | (3.8)
by (2) = ¢ G (A (Af — oz) e '+ B <A26 + oz) e+mz>

where A and B are deduced from the initial conditions.
For instance, if we suppose that we inject power only in waveguide 1 at z = 0, then
b} (0) = Ap and b, (0) = 0, so we get:

A+B=A4
A(iﬁ—a>+B<A26+a>:0 (3.9
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Figure 3.2: Power oscillation between the two waveguides for % = 0 (blue), % = 2 (red)
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which gives:

A= AO 1 + %
2 Ao (3.10)
1 Ap '
B=Ay|-——
0 (2 4o )
If we replace it in terms of b} and b}, we then have:
, A
by (2) = Age'5* <cos az + z—ﬂ sin az)
2a
. (3.11)
by (2) = iAoe_i%za sin az

Equation 3.11 provides several pieces of information on the transmission of power from
waveguide 1 to waveguide 2. Firstly, the power oscillates in waveguide 2 with a spatial

rate a = 4/ ATﬁQ + C?, dependent on both the coupling rate C' between the waveguides and
the mismatch AfS between the two propagation constants. Secondly, we can see that as
long as the mismatch AfS is non-zero, the optical power can never be fully transmitted
to waveguide 2. Indeed, the injected optical power is proportional to |A4g|?, while the
maximum power in waveguide 2 is achieved for z = 7= and is proportional to |A?TC|2,
and o > C' from its definition, with the equality only achieved for Ag = 0. This power

oscillation between the two waveguides is shown in figure 4.4 for different values of AfS.
Let us now focus on the simpler case where Ag = 0, i.e. with no index mismatch
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between the two waveguides. In this case, equation 3.5 simply reads

db
dfl = —iBb; +iCby
dbz (3.12)
—= = —ifby +iCby,
dz
which has for solution (from equation 3.8)
b (Z) — efzﬂz AefiCz_'_Be+iCz
' ( ) (3.13)

by (2) = ie”P* (—Ae_icz + Be”CZ) )

If we define the vector V (z) = <Z;8), we find that there are two modes that form

a basis of solutions to the propagation equation: V,(z) = e7*#=97 (1) and V, (z) =
e~ +)= (1) corresponding to the cases A = 0 and B = 0 in the equation above.

The mode V corresponds to a symmetrical superposition of the two modes of the
waveguides, and has a modified propagation constant 8, = § — C' while the mode V,, is
an antisymmetrical superposition of the two modes of the waveguides with propagation
constant 5, = B+ C. Here, we can see that much like in the case of the interaction of two
two-level systems in quantum mechanics, the coupling between the waveguides induces
mode-mixing with a shift in the propagation constant of the modes for the coupled system.
In other words, the coupling of the two waveguides changes the propagation velocity in
the system. If we now assume that we send, like previously, only an amplitude Aq in
waveguide 1 at z = 0, then we get, from equation 3.11 (it is simply the case AS = 0):

b (2) = Ape” % cos (Cz)

I (3.14)
by (2) = iAge P*sin (C2) |
or in the basis of the eigenmodes of the coupled waveguides:
Ao
V(z) = — (Vs (2) + Va(2)) (3.15)

2

What we can see from equation 3.15 is that the power now oscillates completely from
waveguide 1 to waveguide 2, with a spatial pulsation C. In terms of the eigenmodes
of the two waveguides, this can be understood through a spatial beating between the
symmetrical and antisymmetrical modes.

One parameter of interest in this model, that we will reuse in the following sections, is
the coupling length L., or half-beat length, defined as the length necessary for a complete
transfer of optical power from one guide to the other:

™

Le=—.
20

(3.16)

3.1.1.2 Tight-binding model for a waveguide array

Let us now consider a waveguide array, in the simplest case where each guide only supports
one mode, which we label a,,, associated to waveguide number n which is a relative integer.
Each waveguide has an associated propagation constant 3,, (which for now will not depend
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on n, but it can be useful to label it to consider e.g. the effect of disorder). Then we
can write the initial quantum state (before propagation) in the waveguide array as a
superposition of all modes:

Zb )| an). (3.17)

If the quantum state propagates along the z-axis without losses, we have at position z:
Z by (2) |an) =D b, (0) |an)e 2. (3.18)

Let us also assume that there is a coupling between the nearest-neighbour modes in
the waveguide array. We denote the coupling constant between waveguides n and n + 1
by C,, n+1. If we then write the evolution equation for each coefficient b,,, we have:

db,

dz
Equation 3.19 will serve as the basis for the theoretical description and numerical simula-
tions of our waveguide arrays. Although it is very complex to analytically solve in the case
of an array with multiple waveguides, we can still get an intuitive physical understanding
of the equation: the amplitude probability of the photon in waveguide n goes through
a phase rotation at a rate (3,, while also leaking with a 7/2 phase to the neighbouring
waveguides over time, with a rate C, 41 or Cp,_1,,. Note that this 7/2 phase is important,
as it allows for the conservation of energy. Indeed, if we compute the derivative of the
energy in the waveguide array, we get:

A3 [bal? db ., db?;
dz Z Eb dz
= Z—zﬁn (bubjy = b3bn) + iCut i (b1t = buby 1) + iChet (bugabl — bubi )

= iCh 1 nbn1b +0Ch pg1bpa bl — D b1 gbeaby — D ibg i brraby,

== _Zﬂnbn + Z‘Cn7n+1bn+1 + Z’Cnflvnbnfl. (319)

=0,

(3.20)
where the last two terms in the third equality are simply reindexation of the terms sub-
tracted on the previous line. The total probability amplitude is thus conserved during
the propagation along the array. This equation thus describes a lossless evolution of the
optical field.

Now if we consider it closely, we can see that equation 3.19 resembles a Schrodinger-
type equation, where the propagation distance z plays the role of the time. Re-writing
equation 3.19 by replacing z by ct where t is the time and ¢ the speed of light, and
rearranging the equation a bit by multiplying by ¢ and A, we find that:

db,,
Zhdi == Chﬁn n Chcn,n+1bn+1 — Chcn_l’nbn_l (321)

which is the equation evolution of state |¥)

a1v)

i
N

= H|T) (3.22)
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under the action of the Hamiltonian

H= Chzﬁn |an) (an] = Cpntt |an) (@nt1]| — Cn1n fan) (an-1. (3.23)

H is identical to the tight-binding Hamiltonian of a one-dimensional atom chain where an
electron can take positions on sites n with energies ch(, and hop to and from the closest
neighbouring sites with amplitudes chC, ,,+1 and chC,_; .

This in itself is interesting, because it means that waveguide arrays can serve as a
simulation platform for this type of Hamiltonian, which is encountered in many situations
in condensed matter systems [167]. Additionally, the coupling constants can be engineered
to reproduce simple Hamiltonians presenting interesting topological properties, such as
the Su-Schrieffer-Heeger (SSH) Hamiltonian [171]. Another important feature of this type
of system is that it is a suitable candidate to realize quantum random walks: as a photon
is injected into a certain waveguide and propagates, its probability amplitude propagates
transversally to the neighbouring waveguides and eventually to all waveguides of the
array. The propagation of the photon along the waveguide array is then a realization of
a continuous-time quantum random walk, on a lattice where the sites are the waveguides
of the array [172].

3.1.1.3 Bloch modes and transverse propagation in infinite arrays

We will now turn our interest to the case of an infinite waveguide array: although it
is a purely theoretical case, it will actually allow us to introduce the concept of trans-
verse wavevector, which is useful to get an intuitive and physical understanding of the
mechanisms behind the quantum walks in waveguide arrays. It will also serve as a good
approximation in arrays where C'L < N, with L the propagation length and N the total
number of waveguides in the array.

In this case, we will assume that 3, = 8 and C,, ,,+1 = C for all n, so that we have
a periodic array of identical waveguides. Going back to the analogy with the case of a
one-dimensional atomic chain, one can find the eigenstates of the Hamiltonian of equation
3.23 using Bloch’s theorem:

W (k1)) =D e™ ™ ay) (3.24)

since

AW (k) = (chZB a2 = Cans) (an] = C lan_s) <an|> 3 )

m

= chB|¥ (k1)) = chC Y ™™ (Jans) (anlam) + lan-1) (anlam))

)

= chB|¥ (k1)) — chC D e™™ (Jansr) + |an-1))

=chB |V (kL)) — chC’Z gikL(n=1) la,) + gtk (nt1) |a,)

(3.25)

= chB |V (k1)) — chC’Ze“ﬂ'" ) (eiln i e—ilu)
=ch(f —2Ccosky) |V (k))
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We can see from equations 3.24 and 3.25 that the eigenmodes of the waveguide array
are Bloch modes with transverse wavevector k; ranging between —m and m, with ampli-
tude spread amongst all the waveguides. The most interesting feature of these eigenmodes
is the dependence of the energy with k. In terms of optical modes, this means that each
Bloch mode has its own modal propagation constant 3 (k) =  —2C cos k, : the coupling
between the waveguides gives a band structure to the dispersion relation of the modes.

Another feature worthy of note is that these eigenmodes are not normalizable; however,

we can write every |a,) as an integral of these modes, much like we would use a Fourier
transform:

1 m
an) = 5= [ e W (k1) ey (3.26)

Since we know exactly how the Bloch modes propagate, this decomposition allows us to
analytically compute the optical profile after an arbitrary propagation length from any
input state.

Let us consider for instance that we send a single photon into mode |ag) at z = 0, so
that |U (0)) = |ag). After a propagation of length z, each Bloch mode associated with k|
is simply multiplied by e~##*1)2 which gives us

1

() = 5o [ e W (k)
27r/ I ar) dby (3.27)
—zﬂz

Z/ 21C cos(k, )z zkln|a >dk,L

The field amplitude b, (z) in guide n after a propagation length z is then

e—zﬂz T ) )
bn (2) _ o /_7r 6216’cos(kzl)zeszndkL
—ifz us
— € /W+2 eQiCCOS(kL)Zeikl”dkL
2T —-T+5
_ e e /7T+72r e2Csin(ky —7/2)z gikin gp. (3.28)
2T —T+5
e—iﬁz T

_ / 6—210 sm(kL)zezklne—mg dk,L
2T -7

= e P27 ], (20%),

where J,, is the Bessel function of the first kind associated to number n.

The presence probability of the single photon thus propagates in the transverse di-
rection and oscillates in every waveguide. This phenomenon, called discrete diffraction,
has been extensively studied both theoretically and experimentally in the case of coher-
ent optical waves [167]; a unique photon has the same behaviour (quantum effects only
arise when at least two photons are considered). Figure 3.3 shows the full electromag-
netic simulation of transverse propagation of coherent light through a waveguide array
with typical parameters (more details are given in chapter 4). The simulation, which is
in excellent agreement with the tight-binding approximation, shows that the intensity in
one waveguide oscillates quasi-periodically, as expected from the behaviour of the Bessel
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Figure 3.3: Electromagnetic simulation of the discrete diffraction of an optical wave in a
waveguide array.

functions, and propagates transversally over a characteristic number of steps 20 L = 7

Lc
after a longitudinal propagation over a length L.

3.1.1.4 Quantum walks of photon pairs

Let us now consider a pair of photons walking through the array, as for instance produced
by SPDC. In this case, it is not sufficient to treat each photon individually, and we now
need to consider the joint spatial amplitude of the two photons. If we label the photons
s and ¢ for signal and idler, so that this formalism is easily transferred to SPDC, and
assuming that the waveguides now support single-photon modes |a,, ), in guide n, for the
signal photon and |ay,), in guide n, for the idler photon, then this joint spatial amplitude
is simply the probability amplitude distribution b, ,, of the photon pair over all the
possible waveguide pairs, so that we can write the biphoton state in the general case! as:

(W (2)) = D b, (2) lan,), lan,); (3.29)
Ns,Mg
The evolution of this joint spatial amplitude, represented by the matrix (b, »,), is con-
ditioned by a number of different factors. First, the waveguides still have propagation
constants that have an influence on the phase evolution of the coefficients b,,, ,,,. Secondly,
the photons propagate transversally in the array and change waveguides, which translates
to the probability amplitude moving from b, ,,, to either b, 41, or by, »,+1, again with a
s

phase 7 as noted in section 3.1.1.1. The evolution of the joint spatial amplitude is thus
governed by the set of equations

dby,; n,

dZ =—1 (/BS + /87,) bn + ZC (bns,ni+1 + bns,nifl + bnSJrl,ni + bnsfl,ni) (33())

Note that, in order to consider indistinguishable photons in the spatial degree of freedom, we can
simply consider the matrix (b, n;) to be symmetrical.
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We are interested in the spatial mode correlations of the two photons, it is thus useful
to consider the indicators that can be used to quantify the quantum properties of the
photon pairs, such as entanglement or non-classicality. The first tool that can be used
is simply the joint spatial intensity, which is the square modulus of the joint spatial
amplitude:

2, (3.31)

To show that this quantity reveals quantum correlations between the photons, let us
temporarily come back to the simpler case of two coupled identical waveguides, in which
we send two indistinguishable photons. We can here re-write equation 3.30 as:

dby
dz

dby o
dz

dby »
dz

ba1 = b1

Fns,m = ‘bnsmi

== —Q’L.Bbl,l + 22.017172

— —Qiﬁbg,g —l— 2i0b1,2 (3 32)

= —2if3b15 +iC (byo + by11)

Let us consider that we inject for instance one photon in each guide, so that by, (0) =
b12(0) = % and by 1 (0) = by2(0) = 0. In terms of quantum states, if we go back to
subsection 3.1.1.1, we can write the initial state as:

W (0)) = di'dy" |0) (3.33)

and decompose it into the symmetrical (s) and antisymmetrical (a) eigenmodes of the
coupled waveguides:

0 () = 5 (6 + ) (@) -l o

1

(3.34)
=3 (d.fa." — d,d.) |0).

Since the two photons evolve independently and we know exactly how the eigenmodes
behave as a function of z, we can derive the evolution of |V (z)) and put it back in the
{d@\", @y} basis:

0 (2)) = @;2& (ezzczdsTaAST _ e—izczdaTdaT) 0)
= 6_425 (€7 (dr" + ') (drf + dx") — €72 (@ — ") (drf = ') ) |0)
67126,2
== (cos (2C2) (drfdy" + drfdn") + isin (2C2) (dr " + dxdix') ) [0) -

(3.35)

From equation 3.35, we can now compute the average photon number in each waveguide
[79]:

nig) (2) = cos® (2Cz) + sin® (2C2) = 1 (3.36)

which is a constant. This is analogous to the behaviour of a coherent state of light
simultaneously injected in the two guides: the power in each waveguide will never be
zero, and will be a constant along the propagation direction.
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However, a difference arises if we perform a coincidence measurement between the two
waveguides. The coincidence probability is in this case:

P, =cos* (2C2) =T+ Ty;. (3.37)

This coincidence probability oscillates between 0 and 1, and goes to zero for

T L.
D=E = (3.38)
Hence, at propagation length 2y, which is half the coupling length L., the two photons
bunch together and are never found in different waveguides, which shows a non-classical
effect of the quantum walk of two correlated photons.

Coming back to the general case of a waveguide array, a general way to quantify the
non-classicality of spatial correlations has been introduced by Bromberg et al. [79] and
used in Refs [80,100]. It is a criterion stating that two incoherent classical beams coupled
to two different waveguides generate intensity correlations that always verify the following
inequality?:

1

NG,MNs Z g

r Lo Una s (3.39)

A complete derivation of the criterion is given in appendix B. From this inequality, we
define a non-classicality indicator

1
Inc(ng, n;) = max (3 I e O) (3.40)

that we use in the following section to give indication over the non-classicality of the state.
This criterion gives a lower bound on I',,_ ,,, for the classical behaviour of light.
In an opposite manner, the Cauchy-Schwartz inequality, which gives an upper bound

for classical behaviour I'y,_ ,, < /Iy, n,I'n. n., can be used as well to define the Cauchy-
Schwartz violation indicator:

Ics(ng, n;) = max (Fni’ns — v Tnini L ngnes 0) (3.41)

The two inequalities give two different characterizations for non-classical behaviours
that violate the inequation % Loinilnone < Togms <A/ Tninilngng

3.1.2 Cascaded quantum walks in nonlinear waveguide arrays

In most previous experimental studies of quantum walks, the photons were generated with
external sources and injected into a passive array. We now want to consider the interplay
between SPDC and quantum random walks in waveguide arrays made from material with
second-order nonlinearity, such as AlGaAs.

2In that sense, it is not rigorously an entanglement witness, since we can imagine special classical states
of light that would violate it. However, it can still give a good indication of non-classical correlations.
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Figure 3.4: a) Working principle of the photon pair generation in a nonlinear waveguide array,
where the pump is injected into the central waveguide and the generated SPDC photons can
tunnel to the adjacent waveguides. b) Transverse section of an AlGaAs waveguide array with
evanescent coupling between the different waveguides.

3.1.2.1 Simplest theoretical case: infinite array with no pump propagation

With this goal in mind, we will consider the simple case, in which each single waveguide
of the arrays only supports three interacting modes, a pump mode that we will label p,
a signal mode s and an idler mode ¢ (they can, however, be the same transverse mode
and simply differ by their frequencies or polarization). We consider the SPDC in the
undepleted pump limit.

The working principle is illustrated in figure 3.4. Let us assume that we inject a pump
beam (sketched in red in figure 3.4a) into the central waveguide of the array, and that this
pump beam undergoes SPDC during its travel inside the array. For now, we will assume
that the pump does not undergo transverse propagation throughout the array, which is
naturally favored by its twice shorter wavelength. We also assume that the process is
sufficiently weak so that the probability of generating two photon pairs is negligible.

In this situation, the pump beam will generate (at most) one pair of signal and idler
photons (sketched in blue in figure 3.4a) inside the pumped waveguide, which will then
undergo quantum walks by tunneling to the neighbouring waveguides because of evanes-
cent coupling (figure 3.4b). Due to the probabilistic nature of the SPDC process, the
photon pairs can be generated at all possible positions along the propagation axis. The
output quantum state results from the interference between the various probability am-
plitudes from the different generation positions. This is the concept of cascaded quantum
walks, presented by Solntsev et al. [80], which results in a higher level of spatial entan-
glement compared to the case of quantum walks in passive arrays. This principle can be
generalized to the situation where several waveguides are simultaneously pumped, which
allows for further tailoring of the spatial correlations as will be shown later in the chapter.
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Hamiltonian

Let us consider the nonlinear Hamiltonian of the system, which is similar to what has
been shown in section 1.1.6, except we now need to simultaneously consider all of the
waveguides:

A

Hyi(t eoz / drdeg(v)E,,, (v,t) By, (v,t) E;p (r,1) (3.42)

with deg(r) the element of the second-order nonlinearity tensor of the material describing
the interaction between the pump, signal and idler modes, and Ejyn the modal fields from
waveguide n, with j = p,s,i. Much like in section 1.1.6, we can consider here only the
interactions in which exactly one pump photon is converted into a signal and idler photon
pair and its reciprocal process (which is in mathematical terms its Hermitian conjugate).
The Hamiltonian then reduces to:

A € A ~ A
Aseoo(t) =3 Y [ drda()EL) (v,) BG) (1) EL) (r.8) + hic. (3.43)

If we decompose the waveguided modal fields in the Bloch mode basis, we get, treating
like in section 1.1.6 the pump field as a classical field and the signal and idler fields as
operators®*:

1 -
E(+) (I', t) :g/dwpdkaAspectral (wp)Aspatial(k;pL) z(wpt ﬁp(wm p) ) Zk nE ( )

p)n
A

1 . .
BG (1) - / durydk e (ost=8s(@obt)?) ikt g oy (ws ) (3.44)
m

. 1 - -
B3 ) T or / oyl (k) =ik (0 a (w, kE)
’ ™

where z is the propagation direction and Ej;,(x,y) is the normalized transverse profile
of the single- Waveguide mode, with j = p, s,4i. Agpectrai(wp) denotes the spectrum of the
pump, while Aspatzal(k ) is the Fourier transform of the spatial distribution of the pump
in the array.

We can then re-write the Hamiltonian by replacing the interacting fields by their
mathematical expressions:

ﬁspDC(t) 2(271' 3 Z/dwpdwsdszSPectral<wp) Z(wp Yo wl)t

'/dde;_dkjdkiLAspatial(k;_)e i(Bs (ws ki) 485 (wiohit ) =B (w by ) ) 2 i (k3 =k )m

- / drdydes (2,) Byn(@, ) Ex(,9) Er (2,9)

(i) 6 o)

3We do not consider here the effect of the group velocity, that is in good approximation a constant term
over the considered bandwidth, as it makes the calculation heavy, but the result is easily generalizable.

4We consider here the modified propagation constant of the collective Bloch modes for the pump,
signal and idler B; (wj, kj-) = ﬁj(o) —2C; Cos(kj-) with j = p, s, 4, where 6](»0) is the propagation constant
for a single waveguide.

(3.45)
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and using 3, e = 270 (k), we get a term 276 (/csL + ki — ka) inside the integral and
we can simplify it:

A €ole
Hgsppe(t) = ngﬁ

: / dedktdk A pagia (k- + k)¢ (o (oka ) 48: (wikit) =By (wp b)) = (3.46)

it (wo, k) dif (wr )

/ dwpdwsdwiASpectTal (wp ) ei(wp —Ws—W; )t

The efficiency of the SPDC process is governed by the nonlinear integral overlap of
the single-waveguide modes, appearing in equation 3.46:

Lop = [ des (2.9) By (.9 B (0, 9) B (w0, y)dady, (3.47)

which does not depend on the waveguide number n since all waveguides are assumed
identical and independent of frequency.

Equation 3.46 shows that in terms of Bloch modes, the SPDC must satisfy an addi-
tional condition in the case of waveguide arrays which is the conservation of the transverse
wavevector, similar to an exact phase-matching condition for the Bloch modes. In the case
of an infinite periodic array, this exact conservation condition is related to the transla-
tional invariance of the system in the transverse direction.

Biphoton state at the array output

The Hamiltonian evolution of a photonic quantum state is then given by the Schrodinger
equation for the nonlinear interaction:

a|v)

i
N

= Hsppe(t) | W) . (3.48)
In actual semiconductors, the probability to generate a photon pair from a single pump

photon is very low, so if we assume that we are initially in the vacuum state |0), we then
have, neglecting the events of multiple pairs creation:

_ift g v [t oA

Our final state is

1 [t 4

W) = [0) — A Hgsppe(t)dt |0) (3.50)
Here, we will as before post-select the quantum state on the subspace in which there is
a photon pair, meaning that we are only interested in the second term of the equality,
which is (for now without normalization):
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7 +oo .
¥) =~ A Hgsppc(t)dt |0)
) +o0 Fe | |
= — % A dte;ﬂ_;f /dwpdwsdwiAspectral(wp)el(wpf“’s*wz)t

~ L )
: / dkTdki-Agpasiar (kT + K;) / Aol (B (k) 48 (wiski) =By (wp ki k1) )2
0

. dST (ws, kj‘) CiZ'T (Wiy sz_) ’0>
_’i€0Feff
~ h8n2

. / dky dki Aspasiar (ky + ki) Lsine (AB (wsrn b ) s) (Bt i) 3)

. dST (ws, k’sl) aAZ‘T (Wi; kzL) |0>
_iEOFeffL
~ h8n?

. e_i(Aﬁ(wS’wi,ks{k})%)dST (ws, ki) a;t (wi, k:j) 0)

/ dw,dwsdw; Aspectral (wp)ei(“”’*wsf‘”i)té (Wp — ws — w;)

s

[ i aht Aspecrar(, + 09) Asparia I+ ) sine (AB (1005, i, B

SRSy

)

(3.51)
where we have defined the phase mismatch Aj (ws, w;, kt k-L) =B, (wp, kpl) — B (ws, kj) —

ﬁi(wi,kf) o

Spatio-Spectral Amplitude
We can thus write the post-selected state after SPDC:

v) = / deosdiosdle it (e o ki k) @ (o k) @ (wr, k) 10) (3.52)
This state is a superposition of spatio-spectral modes, which is a generalization of the
case of SPDC in a single waveguide where we had a superposition of spectral modes. The
distribution of spatio-spectral modes is given by the Joint Spatio-Spectral Amplitude
¢, which is a generalization of the Joint Spectral Amplitude from section 1.1.6. From
equation 3.51, it reads:

1 ~
¢ (ws, Wi, ksLa kZL) :7Aspect7’al (ws + (*‘}i)félspatml(k;sL + kzL)

VN

. (3.53)
; 1 pLl)L
. sinc <A6 (ws’ Wi, k.L k,L) 2) e—z(Aﬂ(ws,wi,ks k; )5)

s

with N a normalization constant.

One can see that there are three terms in ¢. The first term Agpectrar (wWs + wi) rep-
resents the spectrum of the pump beam, and it encapsulates the energy conservation
in the SPDC process: photon pairs at frequency (ws,w;) can only be produced if the
pump’s spectrum at w, = ws + w; is non-zero. The second term flsmtial(kj + ki) is the
Fourier transform of the spatial shape of the pump, or equivalently its amplitude in the
transverse wavevector space, and it incorporates the conservation of transverse wavevec-
tors during the SPDC process, which we have shown in equation 3.46. The last term is
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sinc (AB (ws, wi, k-, kf) ), and is the origin of the phase-matching condition of SPDC
processes. [t makes an mteresting property of the SPDC in waveguide arrays apparent:
the phase-matching is modified by the coupling between the waveguides. Indeed, from
equation 3.25, the effective propagation constant for the Bloch modes of the waveguide
array is B(k*) = B0 —2C cos(k) (where 3% is the propagation constant of an uncoupled
waveguide). If we assume that the array is perfectly periodic and the coupling between
the waveguides is homogeneous, but that it can still depend on the frequencies of the

specific modes and on their properties (for instance their polarization), we have

AB (weywis ks ) =By (wp, by ) = By (e ki) = B (wi ki)
=B (@it wi) = B (w2) = B (i)
+ 20 (ws) cos (k‘j) + 2C; (w;) cos (k’L>
=ABO (w,w;) + ABC (ws,wl, ki kL)

s

(3.54)

with ABO) = ﬁg” (ws + w;) —BO (wy) —ﬂi(o) (w;) the phase mismatch in the case of a single
waveguide, and AB® the additional mismatch stemming from the coupling between the
waveguides®. We will discuss this phase-matching term in more details in the following
section, when we will talk about the correlations between the spatial and spectral degrees
of freedom that it encapsulates.

Spatial intensity correlations

Having derived the shape of the biphoton state |¥), we can first turn our interest to its
spatial correlations. To this end, we first define the intensity correlations in transverse
wavevector space:

P s = [ dudanlo (w0, b K52 (3.55)
Although this quantity is useful from a formal point of view, since it quantifies the
correlations between the two photons in the transverse momentum space, it is of less
practical interest, since it is hard to experimentally measure the distribution of the two
photons in the Bloch modes basis. What we can more directly access experimentally is
the probability distribution for the two photons to be in the waveguide pairs (ns,n;),
which is T',,, ,,. Here, we can decompose the creation operators for the Bloch modes®
(w], k:L) > ¢~k g2iC; cos(k l)LOLJT (wj,n), with j = s,7. Starting from equation 3.52
thls gives:

5The modified phase-matching does not include the coupling constant for the pump, as we have
assumed that it was negligible, but at this stage, the result is easily generalizable to the case of a pump
propagating in the transverse direction.

SWe consider the modes after a propagation length L, which imposes a phase difference between the
collective Bloch modes and the single-waveguide modes of 2C} cos(kj-)L.
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1 . A
) = [ dendindkE i 3 6 (e ) e

Ns,Ng
¢2i(Creon(i )+ Croos (k)L G T (0 ) 6 (i, i) [0)

1 171 1 L\ —iking —ikin,
:\/N/dwsdwig; (/dkzs A6 (w0, i, ki, ) e ms ik (3.56)

¢~ 2(Cacos (k) +Ci COS(’#))L) ds" (ws,ns) di' (wi, ;) 0)

1 -
=—= [ dwsdw; Ws, Wi, Mg, T dsT Wss Mg dzT wi, n;) |0
o [ dwsd 3 6 )] (@) i (i) [0)

Ns,Nyg

with ¢ (ws, wi, ns, ;) the 2-dimensional spatial Fourier transform of

s

¢ (ws, Wi, ]{;J- kl> e—Qi(Cs cos(kﬁ')-‘rci cos(kZ.J-))L.
We thus obtain:

Fns,ni = /dwsdwilé(wsawians>ni)|2a (357)

generalizing equation 3.31. The real-space variables ns and n; are more readily accessible
experimentally, and directly usable, for instance by connecting the end of each waveguide
in the array to a specific channel (a fiber, an integrated waveguide structure on a photonic
chip ...). Quite similarly to the case of SPDC in single waveguides, we can see that both
the constraints given by the transverse wavevector conservation and the modified phase-
matching term contribute to creating correlations in the transverse wavevector space (and
thus in real space) since the phase-matching term is not separable as a function of the
variables k=, ki-.

s

3.1.2.2 Spatio-spectral correlations and purity of the spatial state

Let us now go back to the analysis of the modified phase-matching. Equation 3.54 can
be written by using the effective indices for the pump, signal and idler modes:

AB (wa,wi ki, k) =AB (we,wi) + AR (wa, wi, b, k)
:i ((ws + wi) ny (W 4 wi) — weng(ws) — wing(wy)) (3.58)
+ 20 (ws) cos (kj) + 2C; (w;) cos (kf)
An important feature of this phase-matching is that it induces spatio-spectral correlations
in the biphoton state, since the phase mismatch needs to be close to zero in order for the

SPDC process to take place efficiently. If there were no coupling between the waveguides,
the phase mismatch would simply be, like in the single-waveguide case:

ABY (ws, w;) = i ((ws + wi) np (ws + w;) — wsns(ws) — wing(w;)) (3.59)
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As shown in section 1.2.2 (figure 1.9a), if we consider the SPDC efficiency as a function
of the pump frequency, such a phase-matching induces a very narrow resonance: indeed,
it is only possible for the phase mismatch to be close to zero, and thus for the generation
to be maximally efficient, in a narrow range of pump frequency where the modal index of
the pumping mode at w, is close to the mean of the modal indices of the signal and idler
modes close to degeneracy w, ~ w; ~ . If we now consider the coupling between the
waveguides in the array, the phase-mismatch has an additional term than can compensate
for the spectral part of the phase mismatch, up to A3S, = 2(C, + C;). This means that
ezact phase-matching is still possible for frequencies that satisfy |[AB°| < ABS,. and thus
there is a wider pump frequency range where SPDC can be conducted efficiently: the
coupling between the waveguide relaxes the constraints on the pump frequency for efficient
photon pair generation. This effect can be quantified if we know the particular frequency
dependence of the involved modal indices, and we will present numerical simulations of
the enlargement of the SPDC spectrum in the following section.

The coupling between the spatial and spectral degrees of freedom can have interesting
effects, and a detailed study of this coupling is given in [173], which we will summarize
here. The phase mismatch 3.58 and its frequency and transverse wavevector dependence
is inherent to the waveguide array, and determines the shape of all possible correlations,
while the spectral and spatial shape of the pump can serve as a selection of a subspace of
the correlations.

Indeed, by selecting a frequency w, for the pump, one selects a line along the antidi-
agonal in the (wg,w;) space, and thus the spectral shaping of the pump allows to select a
specific subspace of values for the frequency phase-mismatch AS©). In a similar way, the
spatial shapin% of the pump on a specific transverse wavevector selects an antidiagonal

in the (k:j,kf space, and thus a specific subspace of values for the possible coupling

s

a two-dimensional torus, which has an effect on the specific shape of the selected sub-
space. Is is interesting to note here that both the energy conservation and the transverse
wavevector conservation add constraints on the variety of subspaces that can be selected,
while the modified phase-matching term act as an envelope for the possible joint spatio-
spectral amplitude that can be achieved with this source. Thus, both the spectral and
spatial shaping of the pump can be used as a form of control over the quantum state pro-
duced, making the nonlinear waveguide array a reconfigurable source of spatio-spectral
correlations (albeit not giving fully arbitrary control over the final biphoton state).

phase-mismatch AB. Note here that the space of interest for the (k:L k’*) variables is

Shape of the spatial correlations

It is possible to get a general idea of the shape of the spatial correlations by making a rough
analysis of the single-waveguide phase-matching condition. Let us assume we are in the
simple case where Cy = C; = (' and that perfect phase-matching at degeneracy is permit-
ted by the pump frequency, i.e. AB®(w,/2,w,/2) = 0. In this case, the phase-mismatch
ABY takes values in a symmetrical interval around 0, whose width is dictated by the
coupling constant C'. Perfect phase-matching condition around degeneracy is then given
by the condition ABY(w,/2,w,/2, kL ki) =0, ie. 2C (w,/2) (cos (ksl) + cos (kf)) =0.

Vs 1T

The modified phase-matching condition thus selects transverse wavevectors around the
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square defined in the torus (kt, ki)-space by the condition k+ = 7 & kit

s
If we now discard the frequency degree of freedom to study the shape of the spatial
correlations for a pump equally spread over all transverse wavevectors (e.g. when pumping
a single waveguide) and consider the case where the transverse wavevector condition is

perfectly respected, the state can be written as’:

ki,ﬁ—ki>+

\/_/ k- ( khom kD))

/ dkj_ z(kslnerﬂ’nifksLm) +ei(k§ns+ﬂni+k§ni)) |TL n)
EIRLY)

nsfnz

_ Z emnl (/ ko_ ikE(ns—n;) _,_/ ko_ ikt nernz)) ’ns’nl> (360)

Ns,Mj
21

__“m Z 6i7rm ((Sns,nz‘ —+ (5ns,fm)

Ns,Ng

> €™ (|n,n) + |n, —n)).

H%

%

Ng, nl)

%

\/_

From this hand-waving reasoning, the correlations can thus be expected to be mainly
localized on the diagonal and antidiagonal terms of the matrix I, ,,, i.e. terms of the
type I'y,, and I',, _,,. This effect will become apparent when we present simulations for the
spatial correlations in the case of a pure state pumped at degeneracy (see paragraph 3.2.1.5
and figure 3.11) and can be interpreted as a simultaneous bunching and antibunching of
the generated photon pairs in the waveguide array®.

Reduced spatial density matrix

Although these spatio-spectral correlations can be used as a resource for quantum in-
formation, in the following we will mainly be interested in the spatial part of the Joint
Spatio-Spectral Amplitude and in our case the spatio-spectral correlations will be a limit-
ing effect on the purity of the spatial state that we measure. Indeed, we will experimentally
only have access to the measurement of the spatial correlations without any spectral res-
olution, which will yield a mixed state for the spatial state. This is not a fundamental
problem, since one can always spectrally filter the signal and idler photons in a narrow
range around specific frequencies, which is mathematically equivalent to a projection in
the total Hilbert space, giving access to a pure spatial state.

A useful metric to quantify the spatio-spectral correlations in the absence of filtering

is the reduced spatial density matrix. To define it, we start from the pure biphoton state
|W) defined in the previous section (equation 3.52) and write the associated density matrix

"There is no phase in the Fourier transform in this case, since the condition kX = 7 & ki precisely
cancels the phase term 2C (wy/2) (cos (k3-) 4 cos (k;-)).

8The intensity correlations are spread over all guides in the waveguide array in the case of an infinite
propagation length and perfect phase-matching, but in a practical situation the spread of the state will
be limited by the propagation length.
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p =) (V|
:;f / dwodwidk i (we,wi, ki k) @7 (we, k) dif (wi, k) [0)
[ dtduiar Ak (wl e, K RES) (0] dy (w0 k) d () ) (3.61)

_ 1 1 1 1 1
_N/dwsdwidk;s A (ws, wi, K B

s

W, k:SL>

wi,kf>

! oL
<wi7 kz

[ dldwiantdr o (el Kt ) (R

where ‘wj, k]L> denotes the state of a single photon in the mode j = s, at frequency w;

and with transverse wavevector k‘j In terms of matrix element, one has

p (ws,wi, kit Wl wh KL kf) = ¢ (ws,wi, kT, kf) P (w;,wl’-, Kt k;L> (3.62)
The reduced spatial density matrix pPspatir is then simply the partial trace in the
spectral domain of p:

Pspatial :Trspectralp

:/dwsdwi {ws] (Wil plws) Jwi) (3.63)

with matrix element:

s 'V s 17

popatiat (K K HES) = [ duogdiosd (s B BE) 0 (w5 RS (3.64)

One can then see that T, L+ (equation 3.55) is simply the diagonal element of the reduced

spatial density matrix, i.e. pspatial (kj, k:f, kj, kf)

Thus the measurement of spatial correlations at the output of the waveguide array
actually corresponds, in the general case, to the observation of a mixed state, which has
reduced spatial entanglement compared to a pure spatial state. This is a limiting effect in
the use of entanglement as a resource to encode information. The purity of the reduced
spatial density matrix Pepatiar (defined by T7(p7u1a;)) thus allows to assess the quality of
the measured spatial state if no information on the photons frequencies is collected during

the measurement process.

Effect of the pump transverse propagation

Up to now, we considered that the coupling constant for the pump beam was zero, but
in the case of a infinite array, the results we found are easily generalized, since the only
effect of the coupling is to modify the propagation constant of the collective modes of the
waveguide array and thus the phase-matching. If we consider a coupling C, # 0 for the
pump mode, the expression for the Joint Spatio-Spectral Amplitude then stays the same,
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but the phase-mismatch from equation 3.58 becomes:

AB (wa,wi, ki, k) =AB) (we,wi) + AR (wa, wi, b, ki)

1
=— ((ws +w;) Ny (W + w;) — wsnglwg) — w;n;(w;
- ) ( ) (ws) (w:)) (3.65)
— 2C, (wp + w;) cos (k‘j—i—kf)

+ 20 (ws) cos (kj) + 2C; (w;) cos (kf) :

The pump transverse propagation can thus be interpreted as a modification of the phase-
mismatch, and creates a different selection pattern for the spatio-spectral correlations,
without changing the general structure of the Joint Spatio-Spectral Amplitude.

3.1.2.3 SPDC in finite waveguide arrays

The case of a perfectly periodic infinite array has given us insight into interesting effects
coming from the coupling of the waveguides, such as spatio-spectral correlations and en-
largement of the SPDC resonance spectrum, but it has limitations for the study of real-life
systems. For example, in presence of disorder in the coupling or propagation constants,
the collective modes of the system become impossible to analytically compute. It is inter-
esting in this case to introduce a real-space formalism for finite arrays, which gives a more
realistic approach to simulate actual waveguide arrays. It is possible in this approach
to account for non-constant coupling between the waveguides, enabling the simulation of
topological Hamiltonians with different topological domains and the emergence of topo-
logically protected modes. Such formalism also allows to consider boundary effects and
rebounds of the photons along the edge of the array, which can have interesting effects.
Finally, this formalism is very practical to transfer to numerical simulations in matrix
form for specific arrays.

Let us consider here the case of SPDC in a finite array of N identical waveguides,
equally spaced and thus with identical coupling between nearest-neighbours. If we assume
that each waveguide supports exactly one mode with propagation constant (3, it is possible
to show, similarly to what has been done in the case of the Bloch modes, that the array
now supports N collective modes that we label by 1 < k < N, with modified propagation
constants Sy = 8 — 2C cos (Nk—:[J

Knowing that, it is possible for a specific array to compute the collective eigenmodes
and then to apply the Hamiltonian formalism in the same way as it has been done in
the previous paragraphs, by taking the nonlinear overlap between the different collective
modes for the pump, signal and idler fields and then deriving the quantum state in the
basis of these eigenmodes. Although it is the most rigorous theoretical way to derive the
biphoton state at the output of the array, it involves tedious calculations, is dependent
on the specific array and the number of waveguides, and this theoretical formalism is
generally unpractical for the purpose of numerical simulations. It is thus useful to take a
different approach in order to simulate finite arrays of waveguides.

To reproduce the main features of the different physical phenomena involved in the
creation of the SPDC photon pairs, we will follow here the approach of Blanco-Redondo
et al. in [82]. We will consider that the biphoton state consists of the vacuum state
at the entrance of the nonlinear waveguide array at z = 0, and that it evolves along
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the propagation direction. We will denote the state by |¥(z)), and derive its evolution
equation along z.

We will consider as previously that the pump beam is not depleted by the low efficiency
SPDC process, and that it evolves according to a classical wave equation. We model the
pump field through a vector amplitude A, ,, (w,, ) which denotes the pump amplitude in
each waveguide n at frequency w, and position z. The evolution equation for the pump
beam can be written as:

dApn (Wp:2) _
% = —if3y (wp) Apn (wp, 2) — ApApp (wp, 2) (3.66)

+1iC, (wp) (Apm-&-l (va z) + Apn (va z))

where C), (w,) is the coupling constant for the pump mode at frequency w, (which can be
set to zero in the case of an uncoupled pump beam) and «, accounts for the losses of the
pump. This equation can then be solved with the initial conditions for the pump beam
to get A, (wp, 2) for all 2.

If we write W, ., (ws,w,, 2) the vector element of the state with one photon in guide
n, and one photon in guide n;, at frequencies wy and w; and position z, we now have 3
effects to take into account in our model:

o the propagation of the two photons along the waveguides, with propagation con-
stants [ (ws) and B; (w;)

o the coupling between the waveguides, which we model by considering that the signal
photon can go from waveguide ng to waveguide ny+ 1 with coupling constant Cj(ws)
and the idler photon from waveguide n; to waveguide n; 41, with a coupling constant

Ci (wl)

o the creation of photon pairs by SPDC, whose probability amplitude is proportional
to the pump amplitude A,,, and to the nonlinear overlap I'eg (equation 3.47) and
is a local interaction that can only produce two photons in the same waveguide®.

Here we neglect the losses for the SPDC photons since for our sample they are very low
compared to the optical losses for the pump beam!'®!'. The evolution equation for the
term W,,_ . (2) is then

9Tt is also possible to consider non-local SPDC generation [174].

10The effect of losses can be understood in the following intuitive picture: if the SPDC modes have
high losses, then the photon pairs produced close to the input of the waveguide will have a much greater
probability of being lost than the ones produced close to the output. Photons generated close to the
output will have less time to undergo quantum walks in the transverse direction and thus the output
quantum state will be more localized around the pumped waveguide. An opposite reasoning can be made
for the losses of the pump, where the output state will get closer to the case of ballistic propagation in a
passive array as the pump losses increase.

H'We refer the reader to reference [175] for a more detailed study of the effect of losses for the SPDC
modes.
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AV, n, (ws, Wy, 2)

dz

=—1 (ﬂs(ws) + 51(001)) \I’ns,m (ws7wp7 z)

+iCs(ws) (\I’nsﬂ,m (ws, Wp, z) + W1 (ws, Wp, z)) (3.67)
+iCi(wi) (W mit1 (Ws, Wp, z) + Vo mi—1 (W&wm z))
+ Fefféns,ni Ap,ns (Ws + Wi, Z)

with the initial condition ¥, ,, = 0 at z = 0, and where the last term is the source term
for the creation of SPDC photon pairs. This is equivalent to the formulation given by
Blanco-Redondo et al. [82], where the effective Hamiltonian'? is given by

A A A A~

H(Z) :Hpropagation(z) + Hcoupling<z> + ngnerati0n<z) (368)

with
ﬁpropagation :hz / dwsﬁs (ws)&l (wsa ns) ds (w57 ns)
" (3.69)
+ hZ/dwz@;(wi)&I (wisni) G5 (Wi, ny)

ﬁcouphng hZ/dws (ws) l (ws, ns + 1) ag (ws, ng) + @’ (ws,ns — 1) as (ws,ns))

(3.70)
f{generation(z) :hreff Z / dwsdwiAp,n (Ws + Wi, Z) dl (wsa TL) d@ (wia 7’L) (371)

and the state is described in the Fock basis as
[U(2)) = Wo |0) + > /dwsdwZ nom; (W, Wi, 2)a5 (ws, ) @l (w, n) |0) + .. (3.72)

Ng,Mj

Here we are only interested in the part of the state having exactly one photon in each of
the signal and idler modes and we disregard the other modes. We have

d|v
n 1Y)

= H(z)|W) (3.73)

and we retrieve equation 3.67 by projecting on the the post-selected state and taking
W, = 1. Since the evolution equation 3.67 is very well adapted to discretize and put into
a matricial form, it is a suitable formalism to realize numerical simulations of the output
quantum state after interaction of the pump beam in the array with an easily adaptable
and generalizable algorithm, which we will develop in section 3.2.2.

121t is important to keep in mind that this Hamiltonian does not have the dimension of an energy and
does not act as a derivative over time but over distance.
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3.2 Numerical simulations

In this section, we introduce various kinds of numerical simulations that we performed to
help quantify and visualize the effects described in the previous sections. We will describe
the process and the method for the numerical simulations, and then present the results
in a graphical way. The software used for the numerical simulations is MATLAB, which
is efficient for manipulating arrays, vectors and matrices.

3.2.1 Case of infinite arrays: Bloch-mode formalism

We first consider in this subsection the case of infinite arrays described within the Bloch
modes formalism.

3.2.1.1 Passive arrays and correlated quantum walks

The first effect that is interesting to simulate is the case of correlated quantum walks,
when we send two single photons in a passive waveguide array, as described in section
3.1.1.4. In order to properly simulate this effect in a realistic way, one needs to access the
coupling constant of the array, which we can numerically simulate. These simulations will
be described in chapter 4, but the value for the coupling length at telecom wavelength is
typically around L. ~ 350 pum for the waveguide arrays that we will use, with an array
length L ~ 2 mm, giving LL ~ 6. Intuitively, this quantity is related to the mean number
of "steps” the photons will take in the transverse direction during the quantum walks,
with the relation Ngps ~ % (see equation 3.28).

To simulate the quantum walk of two photons in a passive array, we will then simply
give an input state |Uy) in a matricial form with the coefficient b, ,, and then discretize
the evolution equation 3.30 along z.

We can consider different possible input states. For instance, following Bromberg
et al. [79], it is interesting to look at three particular cases, and compare them to the
corresponding classical propagation of incoherent beams in a similar setting. For this we
will consider the three input states |pg) = %dg&g 10), |1) = adal |0) and |@,) = alal, |0),
and compare them to the cases where we inject two incoherent beams in the corresponding
waveguide pairs (either {0,0}, {0, 1} or {1, —1}). We know from the criterion given in [79]
that some properties of the Joint Spatial Amplitude cannot be reproduced by such a
classical input. We present, for the three input states considered, the graph of the Joint

Spatial Intensity I',,, », (equation 3.31), the non-classicality indicator defined in equation

3.40 as Inc(ns,n;) = max(% LoonLngng — Dngngy 0) and the violation of the Cauchy-

Schwartz inequality defined in equation 3.41 as Ics(ns, n;) = max(Iy, n, —/Tnenengngs 0)
in figure 3.5 (first, second and third column, respectively).

The spatial correlations at the lattice output for the input state |¢g) = %&gdg |0)
(first line in figure 3.5) present four lobes at the corners of the matrix, giving evidence of
the ballistic propagation of the photons in the passive array over approximately 20 sites,
consistently with the value of 7L/ L.. These correlations do not generate a non-zero value
of the non-classicality indicator nor a violation of the Cauchy-Schwartz inequality. This
is coming from the fact that the output state in this case is simply the product of the
output states of single photons injected in the central waveguide and undergoing quantum
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random walks, and thus is analog to the classical case of two incoherent beams injected
in the central waveguide!.

The case of |@,) = ala’, |0) (third line in figure 3.5) is more interesting, since the
correlations also present four strong lobes in the corners of the matrix, but the intensity
along the lines joining the corners is suppressed compared to the case of |¢g). This
state also presents a strong violation of both the non-classicality and Cauchy-Schwartz
inequality along these same lines, showing signs of a highly non-classic behaviour of the
photon pairs, coming from the interference between the paths of the two photons. This
can be interpreted as a simultaneous bunching and antibunching of the photons in the
ballistic lobes.

The case of |¢1) = abal |0) (second line in figure 3.5), corresponding to the injection
of two photons in adjacent waveguides gives a different shape for the spatial correlations
of the biphoton states: the correlations are now concentrated in two strong lobes in
the diagonal corners of the matrix, and the violation of the non-classicality criterion is
strongest in the antidiagonal corners of the matrix, consistent with the fact that the
antibunching terms are now suppressed, leaving only bunching of the photons in the
ballistic lobes.

3.2.1.2 Joint Spatio-Spectral Amplitude

Let us now consider the case of photon pairs generated by SPDC in an infinite waveguide
array. As seen in section 3.1.2.1, in the case of an infinite array, one can directly write
the Joint Spatio-Spectral Amplitude as a function of the spatial and spectral profiles of
the pump beam, and of the phase-matching term. Let us recall equation 3.53, to identify
the different simulation steps:

1 .
o (ws, Wi, kj_a k’zj_) :7’481’60”@1 (ws + W@'>A8patial(kj_ + sz_)

VN

- sinc (Aﬁ (ws, wi, kT, kf) §> o1 (AB(wswisk k) §)

(3.74)

To compute it numerically, we simply need to discretize the (ki,k}) space, and the

(ws,w;) space, and then compute the functions A (k:pl) from the input spatial profile of
the pump, and simply compute for every point in the discretized spaces the product

- ) L

Aspectral<ws + (f‘)i)*’élspatial(lfsL + kzl) sSmce (Aﬁ (Wsa Wi, ksLa k%) 2) .
In our case, we will limit ourselves to a single pump frequency w,, since our source for
the pump beam will be a continuous wave laser with a narrow bandwidth. This yields
through energy conservation w; = w, — w;, and thus:

6 (worwi, kE k) = ¢ (we wp — wa kK

s s

13Since the photons in the array evolve independently, if the input state is a separable one (e.g. |¢o) =
|ag) ® |ag), the output state is also separable, of the form U |ag) ® U |ag), where U is the unitary operator
representing the evolution of the state in the array. The spatial correlations are then just the product of
“classical” spatial correlations.
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Figure 3.5: Spatial correlations, non-classicality indicator and Cauchy-Schwartz inequality
violation for the three input states |¢p), |¢1) and |¢2) (first, second and third lines respectively),
with a 2 mm long waveguide array, yielding L/L. ~ 6. In every case, the correlations propagate
up to mL/L. ~ 20 guides in the transverse direction.
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Here, our structure supports three different interactions for the SPDC process: type 0
interaction, where the pump, signal and idler photons all have the same TM polarization,
type I interaction, where the pump is TM polarized and the signal and idler photons are
both TE polarized, and type II interaction where the pump is TE polarized and the signal
and idler photons have crossed polarization (see section 1.1.3). To compute the phase-
mismatch AS, we have to simulate the relevant parameters for the considered interactions.
These simulations are detailed in chapter 1 for the modal indices and in chapter 4 for the
coupling constants. We will consider here, in agreement with the experiment presented in
chapter 5, a waveguide array with a typical gap of 500 nm between the waveguides. The
simulations will focus on type 0 SPDC, which is very similar to the case of type I except for
a scaling factor in the coupling constants. The case of type II SPDC is more complicated,
as the coupling constants for both photons are different. This gives rise to interference
between two possibilities with the signal photon being either TE- or TM-polarized. We
will briefly present simulations for the case of type II correlations in paragraph 3.2.1.5 in
the case of a pure state, but for the most part will use type 0 SPDC as a support for a
more pedagogical display of the possibilities offered by nonlinear waveguide arrays.

We present in the following paragraphs the results of the simulations while studying the
effect of different parameters. Initially, we will only consider the case of a non-propagating
pump, injected in the central waveguide of the array.

3.2.1.3 Enlargement of the SPDC spectrum

The first effect we can simulate is the enlargement of the SPDC resonance spectrum.
For that, we can compute the joint spatio-spectral amplitude ¢ for a certain pump fre-
quency w, and integrate its square modulus over ws, w;, ki and ki, which gives the
probability of producing a photon pair in any couple of transverse modes and at any
couple of frequencies. We can then plot the result as a function of w,, which gives the
SPDC efficiency for different pump frequencies. We made the simulation for a propa-
gation length of 2 mm and taking into account signal and idler photons generated over
a 800 nm band centered on w,/2, and plotted the results in figure 3.6, where we used
the pump wavelength A\, as a parameter for convenience. Three different cases were con-
sidered: the case where the coupling constant was taken from the numerical simulations
(C(wp/2) ~ 4.6 mm™'), the case where the value of the coupling constant was half of
the simulated value (C'(w,/2) ~ 2.3 mm™"), and the case where there was no coupling,
corresponding to a single waveguide. The SPDC efficiency is asymmetrical with respect
to the pump wavelength and presents a maximum for perfect phase-matching at degen-
eracy, as explained in section 1.2.2. The efficiency stays maximal at the same wavelength
in the case of waveguide arrays. The plot also shows a correlation between the coupling
constant and the Full Width at Half Maximum (FWHM), which goes from 0.2 nm for the
case of the single waveguide, to 1.44 nm in the case of the halved coupling constant, and
finally to 2.76 nm in the case of the full simulated coupling constant, corresponding to an
almost-linear relationship between the FWHM and the coupling between the waveguides
(which we verified by additional simulations). We additionally computed the marginal
spectrum of the generated SPDC photons for two different values of the pump wavelength,
Apdeg = 773.48 nm (figure 3.7a) giving perfect single-waveguide phase-matching ABO at
degeneracy for type 0 SPDC and at a wavelength 2 nm below, A, = 771.48 nm (figure
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Figure 3.6: Simulated SPDC resonance spectrum for different coupling constant values.

3.7b). We see that the FWHM of the spectrum for A, 4, is of the order of 330 nm,
meaning that the spectrum of the generated photons is also enlarged by the coupling
compared to the case of a single waveguide (figure 1.9b) where the FWHM is ~ 70 nm.
The spectrum of the generated photons splits into two lobes as the wavelength decreases
(figure 3.7b), similarly to the case of a single waveguide yielding a branched shape in the
SPDC efficiency (figure 1.9a).

3.2.1.4 Spatio-spectral correlations and purity of the state

As we have seen in the previous section, the phase-matching term in the Joint Spatio-
Spectral Amplitude induces a coupling between the spatial and spectral degrees of free-
dom, which can limit the purity of the measured spatial state if the measurement is not
spectrally resolved. To visualize the effect of the spatio-spectral correlations, one can look
at the single counts'* of each waveguide or at the diagonal coincidences as a function of
the signal/idler photon wavelength. We consider here a 800 nm bandwidth for the signal
and idler photons around degeneracy.

The results of the simulation are shown in figure 3.8, for the same two values of
the pump wavelength as in figure 3.7. In agreement with figure 3.7a, we can see that,
for pump wavelength A, 4, (figure 3.8a), the distribution of the signal wavelength is
mainly concentrated in a lobe around degeneracy, while for a smaller pump wavelength
(figure 3.8¢), the signal distribution forms two lobes that shift away from the degeneracy
wavelength. We also observe that the spatial distribution of both the single counts and
diagonal coincidences (figures 3.8b and 3.8d) varies with the signal wavelength, indicating
that the Joint Spatio-Spectral Amplitude cannot be simply written as a product of a

14We compute the single counts in waveguide n, as the sum of the matrix elements I',,_,,, over n;:

S(ns) = an P
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Figure 3.7: Marginal spectrum of the emitted SPDC photons for pump wavelengths a) A, =
Ap,deg = 773.48 nm, corresponding to the maximum of SPDC efficiency, and b) A\, = 771.48 nm.
L/L. ~ 6 at degeneracy.

spatial term and a spectral term, and showing the presence of spatio-spectral correlations
in the output quantum state.

Another useful quantity to simulate is the purity of the state at the output of the array.
This requires the simulation of the density matrix, and its tracing over the spectral degree
of freedom (see section 3.1.2.2), which can be a heavy operation for the memory of the
computer'®. Thus, simulations of the purity imposed harsher computational constraints
than the other simulations.

Figure 3.9 shows the simulation of the purity of the reduced spatial density matrix
for different filtering widths of the output state, i.e. where we computed the reduced
density matrix and its purity by only considering a certain range of values for w, (and
w;) around the degeneracy. One can see that the purity goes to one when the filtering
width goes to zero, which is expected from the continuous character of the Joint Spatio-
Spectral Amplitude, and the fact that we filter the state into a single frequency component,
meaning it is now a pure spatial state. Interestingly, the purity can go down to almost
0.1 when the filtering width increases, showing that the output state without filtering is
a highly mixed state, which confirms again the presence of spatio-spectral correlations.
Spectral filtering of the state is thus required to yield a state with pure spatial correlations
unaffected by spatio-spectral coupling, e.g. filtering at 40 nm yields a purity of 95%.

Although the spatio-spectral correlations and the purity of the reduced density matrix
indicate that the output spatial state that we measure is highly mixed, we can investi-
gate the spatial intensity correlations in the waveguide number (I, ;) and transverse
wavevector (I, 1 x1) spaces even for non-filtered states. The corresponding correlations
for a 2 mm long érray with a bandwidth of 400 nm for the signal and idler photons are
shown in 3.10a for the correlations in real space and figure 3.10b for the correlations in
transverse wavevector space. One can see from these correlations that although the state
is highly mixed, the intensity correlations still present interesting features (that we will
find again later in the case of narrow filtering): the photons tend to either exit through

15Tf we want to discretize the transverse wavevector space using 100 points, and the spectral space
using 400 points for a 400 nm width, which is a reasonable discretization to have satisfying precision, the
total size of the matrix is 1002 - 1002 - 4002 = 1.6 - 10'2 points.
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Figure 3.8: Normalized single counts and diagonal coincidences distribution as a function of
the signal wavelength, for two different pump wavelengths A, = A 4eg = 773.48 nm (first row)
and A, = 771.48 nm (second row), with L/L. ~ 6 at degeneracy.
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Figure 3.9: Purity of the reduced spatial density matrix as a function of the spectral filtering
width of the SPDC photons.

the same output waveguide or through opposite waveguides, giving a correlation pattern
located mainly on the diagonal and antidiagonal, as anticipated in paragraph 3.1.2.2 (see
equation 3.60). In terms of transverse wavevector, one can see that the wavevectors are
preferentially selected along the cos (kj) + cos (kfa = 0 curve, giving kf = 7 + kit
on the torus space, as expected from the modified phase-matching condition around the
degeneracy, which gives the square-like shape in the correlations visible in figure 3.10b.

3.2.1.5 Non-classicality of the pure state

In all the following, we will focus on the case of spectral filtering with a narrow band-
width near degeneracy to only take into consideration the spatial correlations of the
photon pair and discard the spatio-spectral correlations. We will thus only consider the
matrix elements close to ¢ (wp /2,w,/2, kT, kf) for the Joint Spatio-Spectral Amplitude,
corresponding to a pure spatial state.

Figure 3.11 shows the corresponding correlations in real space (figure 3.11a) and in
transverse wavevector space (3.11b). We can first compare figure 3.11 to figure 3.10, and
see that the main features of the intensity correlations in both cases are very similar:
the transverse wavevectors are selected around the k- = 7 4+ kj* square, and the spatial
correlations in real space are located on the diagonal or antidiagonal of the matrix. Al-
though the main features and the general shape remain the same, we can observe that
filtering makes the transverse momentum correlations more tightly concentrated around
the square defined by kX = w4 k;- and increases the transverse propagation of correlations
along the array as well as the relative weight of the correlations located along the diagonal
and antidiagonal (compared to other points of the matrix).

Figure 3.12 shows the corresponding distribution of the non-classicality indicator, i.e.
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Figure 3.10: a) Real space and b) transverse wavevector-space intensity correlations for a pump
wavelength A, 4y injected in the central waveguide, with filtering width 400 nm and L/L. ~ 6
at degeneracy.

the quantity Ixc(ns,n:;) = max(31/Tn,n.lnine — Diung, 0) (equation 3.40) as well as the

violation of the Cauchy-Schwartz inequality, i.e. Icg = max(Ly, », — /T ning, 0)

(equation 3.41). We can note that the maximum attainable value (for any state) is & in
the case of the non-classicality indicator, and 1 in the case of Cauchy-Schwartz assuming
a normalized Joint Spatial Intensity (3°,,. .. I'n,.n, = 1). These quantities give insight into
how the distribution of the correlations affects the non-classical character of the matrix.
The first remark we can make is that the output state, although entangled and thus
highly non-classic, as discussed below, does not violate Cauchy-Schwartz inequality, since
the correlations are only located on the diagonal and antidiagonal. It is also visible that
the non-zero values of the non-classicality indicator is mainly located in two vertical and
horizontal lines crossing at the center of the correlation matrix, away from the diagonal
and antidiagonal points. This is expected since the considered non-classicality criterion
gives a lower bound for classical behaviour, so the points that are most likely to violate
the criterion are the one giving the lowest relative intensity.

Going back to the real-space intensity correlations of a pure state, the increase in
the transverse propagation, mentioned before, is of particular interest, as intuitively, it
is expected to be closely related to entanglement. Indeed, in the simplest case in which
all the correlations are located either on the diagonal or on the antidiagonal, with the
same amplitude, then one can write the Schmidt decomposition [176] of the state (i.e. its
decomposition in the form of a sum Y-, \/ay |ax) |bx) where |ay), and |by), are two sets of
orthonormal states):

0) = 3 b (0), + [=n),) (In), + |-n),) (3.75)
which is an entangled state with Schmidt number

1

Ky = A

(3.76)
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Figure 3.11: a) Real-space and b) transverse wavevector-space intensity correlations for a
pump wavelength A, 4¢4 injected in the central waveguide, for a pure state at degeneracy and
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This quantity is maximal when all non-zero b, are equal, and corresponds in this case
exactly to the number of non-zero coefficients. Thus, the more spread out along the
diagonal and antidiagonal the state is, the larger its Schmidt number (i.e. the number
of involved spatial modes). As stated previously, the relevant quantity to determine the
transverse propagation along the waveguide array is the ratio between the array length
L and the coupling length L. (equation 3.16), as it is related to the number of "steps” in
the quantum random walks that the photons can undergo during the propagation inside
the array. Figure 3.13 shows the simulated Schmidt number as a function of the dimen-
sionless product Cf (w—z”) L = 2LCW(LLP B We can see that the Schmidt number increases
monotonically with the propagatioxi length.

Another parameter that influences the quantum properties of the considered state is
the pump frequency w,, as it gives a degree of control over the phase-matching condition
of the SPDC process. By filtering the state around wy = w; = w,/2, we can compute
the Schmidt number Ky and the total non-classicality indicator (i.e. the sum of the
indicator values Inxc over all the waveguide pairs) as a function of the pump wavelength,
as plotted on figures 3.14a and 3.14b respectively. The figure demonstrates a resonance
in both the Schmidt!'® number and non-classicality indicator around Ap.deg-

It is also interesting to quantify the sharpness of the diagonal and antidiagonal corre-
lations. A good indicator for this is the quantity

Lagiag =T11+T 00 +T 00+ 11 1,

quantifying the bunching and antibunching on the first diagonals and antidiagonals, which
can be compared to
Ihon—diag = L'og +To—1 + T 0+ 11,

giving the off-diagonal coincidence probability in the 3 x 3 square around the central
waveguide. Figure 3.15a shows the simulated I'g,, (blue line) and I'pn—giag (red line)
as a function of the pump wavelength (without state normalization, i.e. taking into
account SPDC efficiency). The results show a resonance around A, gey for I'g;oy and on
the contrary an essentially flat behaviour for Iy, —giag. The concentration of correlations
along the diagonal and antidiagonal is thus maximal at A, 4., and progressively fades out
as we move away from this resonance, as directly shown in figure 3.15b displaying the
ratio between gy and I'yon—aiag @s a function of the pump wavelength.

Type II SPDC and spatial correlations

We now turn to the case of type II SPDC. In this case, the correlations are the result
of the interference between two possibilities, where the signal photon is either TE- or
TM-polarized (and vice versa for the idler photon). We plot the simulated real-space
correlations of a pure state generated by type II SPDC for a longitudinal propagation
length of L =1 mm in 3.16a and for a longitudinal propagation length of L = 2.5 mm in
3.16b.

At low propagation distance, the correlations are still mainly located around the diag-
onal and antidiagonal (see figure 3.16a), while at higher propagation distance, they split

16 Although the local maxima for the Schmidt number are reached slightly off the degeneracy pump
wavelength, which might stem from a more complex correlation pattern off-resonance.
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Figure 3.13: Schmidt number of the output state with increasing propagation length.
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Figure 3.16: Type II spatial correlations in real space for propagation length a) L = 1 mm
(L/L. ~ 3 at degeneracy) and b) L = 2.5 mm (L/L. ~ 7.5 at degeneracy), for a pump
wavelength A, 4., injected in the central waveguide, with filtering width 400 nm.

into two branches that correspond to the two possibilities mentioned above (see figure
3.16b); this splitting is governed by the polarization-dependence of the coupling constant.

Although the correlations are more complex in their shape, type II SPDC can be more
efficient and thus easier to access experimentally than type 0 or type I SPDC, and we will
present in chapter 5 experimental spatial correlations generated by type 11 SPDC.

However, for the remainder of this chapter, we will continue to focus on simulations
of spatial correlations generated by type 0 SPDC, as they give a more straightforward
understanding of the possibilities offered by nonlinear waveguide arrays.

3.2.1.6 Pump tailoring for the reconfiguration of the correlations

In this paragraph, we will take interest in the ability to control the output spatial correla-
tions by tailoring the pump beam, through several examples, which put in light interesting
points about the spatial correlations engineered in the array. Figure 3.17 shows four dif-
ferent cases: simultaneous pumping of guides 0 and 1 in phase (3.17a) or with a 7 relative
phase (3.17c) and of guides —1 and 1 in phase (3.17b) or with a 7 relative phase (3.17d).

The shape of the correlation matrix is heavily modified by the tailoring of the pump
spatial profile, giving control over the spatial correlations. One can observe selective
enhancement or suppression of either diagonal or antidiagonal bands.

Looking at the case of the transverse wavevector correlations (figure 3.18) gives a nice
numerical confirmation of the point made in paragraph 3.1.2.2: tailoring of the pump
beam allows to select a subset of the k- = 7 + ki* square permitted by the modified
phase-matching condition. Another interesting observation is that the correlations are
strikingly similar if we pump guides 0 and 1 in phase or if we pump —1 and 1 with a
7 relative phase, and vice-versa. This is because the transverse wavevector distribution
of the pump beam is intrinsically related to the relative phase between two adjacent
waveguides in its spatial profile.

It is even possible to make more complex input states to control the correlations,

95



3.2. NUMERICAL SIMULATIONS

Chapter 3

(a)

Guides 0 and 1 pumped in phase

(b)

Guides —1 and 1 pumped in phase

20 0.03
15 15 0.035
0.025
10 10 0.03
c 0.02 c
o 5 o 5 0.025
o e
> 0 0.015 > 0 0.02
(9] (9]
& & 5 0.015
-5 - .
= 0.01 =
10 10 0.01
0.005
-15 -15 0.005
-20 -20
-20 -10 0 10 20 -20 -10 0 10 20

Waveguide ng

(c)

Gz%ides 0 and 1 pumped with a 7 relative phase

0.04

Waveguide ng

(d)

Gtzl'bdes —1 and 1 pumped with a 7 relative phase

0.025
15 0.035 15
10 0.03 10 0.02
c 5 = 5
g 0.025 g
= 0 = 0 0.015
§’ 0.02 §’
© ©
-5 -5
= 0.015 = 0.01
-10 0.01 -10
0.005
-15 0.005 -15
-20 -20
-20 -10 0 10 20 -20 -10 0 10 20

Waveguide ng

Waveguide ng

Figure 3.17: Correlations in real space while pumping two guides simultaneously, a) 0 and 1
in phase, b) —1 and 1 in phase, b) 0 and 1 with a 7 relative phase, and d) —1 and 1 with a 7
relative phase, for L /L. ~ 6.
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Figure 3.18: Correlations in transverse wavevector space while pumping two guides simulta-
neously, a) 0 and 1 in phase, b) —1 and 1 in phase, b) 0 and 1 with a 7 relative phase, and d)
—1 and 1 with a 7 relative phase, for L/L. ~ 6.
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which can yield interesting spatial shapes for the correlations. For instance, it is possi-
ble to obtain perfect diagonal correlations by using the pump spatial profile such that
Aspatial (k:;) = 5%7%, i.e. pumping all waveguides with alternate 0 and 7 phase, yielding
Agpatial(n) = (—1)". The resulting correlations when pumping the waveguide array in
this scheme is shown in figure 3.19a (real space) and b (transverse wavevector space).
The wavevector correlations verify in this case k- + kX = 7, taking only the two sides
of the square oriented along the antidiagonal. In this case, we can also observe that the
non-classicality indicator (figure 3.19¢) is maximal on every point outside of the diago-
nal, while the Cauchy-Schwartz inequality (figure 3.19d) is never violated, because the
non-diagonal terms are all zero.

In the same spirit, it is also possible to select the antidiagonal by selecting every pump
transverse wavevector except for m, giving complementary correlations to the previous
case in transverse wavevector space. The results for the simulation are given in figure
3.20, where in contrast to the perfect diagonal case, we observe a high violation of the
Cauchy-Schwartz inequality on the antidiagonal.

These results show that nonlinear waveguide arrays constitute a versatile platform for
the reconfigurable generation of spatially entangled photon pairs.

3.2.2 Real-space simulations for finite arrays

In this subsection, we introduce the simulations in real space for finite arrays, using the
formalism derived in paragraph 3.1.2.3. Because equation 3.67 is very easy to put in a
discrete matricial form, it is a convenient and efficient formalism for MATLAB-supported
computation. Numerical simulations for finite arrays also allow to simulate systems closer
to actual experimental photonic chips, with the possibility to add in a convenient manner
losses, pump propagation, disorder in the propagation or coupling constants and boundary
effects from the edges of the array.

The simulation is performed in the following way: we discretize the propagation di-
rection of the array into pieces of size dz = L/N,, where N, is the number of points we
consider for the propagation. We first compute (if present) the transverse propagation of
the pump, taking losses into account. For this we define a variable vector for the pump
beam {A,, n. }1<n,<No0<n.<n., Where N is the total number of waveguides, and A, is
the pump amplitude in guide n, at position z = n,dz. Starting from the desired initial
condition {4, o}, corresponding to the spatial profile of the pump at the array input, we
can then define

dAn,n. = <_Zﬂp (wp) Ay — A, n, +1C, (wp) (A%-H,nz + Anp—lvnz)) dz (3.77)

where 3, is the propagation constant of the pump, c, its loss coefficient, and C, its
(potentially zero) transverse coupling constant. We then redefine Appna1 = Appn, +
dA,, n., and repeat the process N, times, which gives the distribution of the pump beam
along the array. We can then use this pump beam distribution in our computation of the
generation of SPDC photon pairs along the array.

For the next step, we need to discretize equation 3.67. For this, we now define a
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Figure 3.19: Correlations in a) real and b) transverse wavevector space and c¢) non-classicality
indicator and d) Cauchy-Schwartz inequality violation when pumping every waveguide with

alternating sign, for L /L. ~ 6.
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Figure 3.20: Correlations in a) real and b) transverse wavevector space and c¢) non-classicality
indicator and d) Cauchy-Schwartz inequality violation for antidiagonal correlations, for L/L,. ~
6.
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matrix'” {W,, .. (ws) h<n.n,<n, and two coupling matrices for the signal and idler modes

0 ZCZ (wz) 1
M () = e -
L ZCl (wl) 0 ]
and
[0 G (wy) ]
iCy (ws) 0 iCy (ws)
OM; (ws) = e ! i, (wy)
iCs (wy) 0 iCs (wy)
I iCs (ws) 0 |

Equation 3.67 can then be put into the matricial form at step n, (omitting the frequency
dependence for readability and considering the case of a pure state in the spatial degree
of freedom):

AV, = [—i (Bs + Bi) U + WCOM; + CM,V + Tl o diag(Arn., ., Avn)]dz (3.78)

with diag(Aq, ..., A,) the square matrix with diagonal coefficients (A, ..., A,). We then
redefine ¥ = U + dV¥, and repeat the process IV, times to get the final state at the
output of the array.

Note that the matricial formalism is convenient, since it allows to introduce disor-
der in a simple manner in the matrix, by modifying over- and under-diagonal coeffi-
cients of CM; and C'M,. It is also possible to introduce disorder in the propagation
constants by multiplying ¥ in the equation evolution by diag(ifs1, ..., i03s ) on the left
and diag(if; 1, ..., i8; ) on the right instead of using scalar multiplication in equation 3.78,
although we will not consider this effect in the following simulations.

3.2.2.1 Effect of pump propagation and losses

As mentioned before, the pump can potentially undergo transverse propagation in the
waveguide array, and it is important to quantify the effect of the pump propagation
on the correlations, since it can potentially complexify the correlations compared to the
simpler case where the pump stays confined in its input waveguides. For this we can
simulate the propagation using different values of the pump transverse coupling constant
C,, and consider the intensity correlations in real space (since the intensity correlations
in transverse wavevector space are no longer well-defined in the case of a finite array).

"Here the matrix only depends on one variable wg, since the energy conservation condition and
monochromatic pump completely determine w; = w, — w,. In practice, we will only consider pure
states here, with ws = wp/2.
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Figure 3.21: Simulated spatial correlations with a pump propagating transversally. From a) to
d), the coupling constant of the pump increases. L/L. ~ 6 for the telecom fundamental modes.

We present in figure 3.21 numerical simulations for different values of the pump prop-
agation, given in units of C}, L, which is the relevant dimensionless parameter in this case,
while pumping the central waveguide of the array n = 0. One can see that as the propaga-
tion of the pump increases (from panel a to d), the central diagonal points have a higher
coincidence rate compared to the antidiagonal ones (which is expected from the generation
of photon pairs in different waveguides), and an interference pattern appears near the an-
tidiagonal. The effect of the pump transverse propagation is complex to understand, but
its main feature seems to be enhancing of the diagonal coincidences and scrambling of the
antidiagonal coincidences through interference of the photon pairs produced in different
waveguides in which the pump has significant intensity.

Another parameter that can affect the produced output state is the pump propagation
losses, since in our samples the losses for the pump mode (Bragg mode) can be relatively
high (~ 5 cm™!) compared to the losses for the telecom modes of the SPDC photons
(< 1 cm™!). Intuitively, what is expected in the limit of extremely high losses is that
the output state will tend to the output state for a passive array with input state |¢q)
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Figure 3.22: Simulated spatial correlations with losses in the pump propagation. From a) to
d), the losses of the pump increase. L/L. ~ 6 for the telecom modes.

(see figure 3.5, first line), since in a very local and simplified picture, the photons would
be preferentially created at the beginning of the waveguide array, as the pump intensity
decreases fast with propagation, and the interference between the quantum walks starting
at different positions along the propagation direction would be suppressed. We plot the
simulations for different values of o, L in figure 3.22 (increasing from panel a to d). With
increasing pump loss, the intensity of the correlations gradually go from the correlations
propagating in the diagonal and the antidiagonal from the center waveguide to b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>