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Abstract

Historically, the resolution of optical imaging systems was dictated by diffraction,
and the Rayleigh criterion was long considered an unsurpassable limit. Superres-
olution techniques have been developed to overcome this limit, however, they are
often domain-specific, and reaching sub-Rayleigh resolution remains a challenge.
Examining imaging problems through the lens of parameter estimation elucidates
the constraints inherent in traditional super-resolution approaches and provides a
quantum-optimal measurement based on photodetection in the Hermite-Gaussian
mode basis. In this thesis, we implemented this metrology-inspired approach for
estimating the separation between two incoherent sources, achieving a sensitivity
of five orders of magnitude beyond the Rayleigh limit thanks to a multimodal ap-
proach. In our setup, based on a spatial mode demultiplexer, we investigated scenes
with bright and faint sources. Analyzing sensitivity and accuracy over an extensive
range of separations, we demonstrate the remarkable effectiveness of demultiplex-
ing for sub-Rayleigh separation estimation. This work paves the way for reaching
high sensitivity in more intricate optical scenes, closer to realistic imaging situations.
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1

Introduction

The Bureau International des Poids et Mesures (BIPM) defines metrology as "the sci-
ence of measurement, embracing both experimental and theoretical determinations
at any level of uncertainty in any field of science and technology" [collectif 2012].
The impact of metrology spans numerous fields beyond purely scientific domains
and this characteristic is imprinted in the roots of modern metrology. Indeed, one of
its most famous tasks is to establish common definitions of units, and this was ini-
tiated in France, right after the Revolution, for political motivations of unifying the
nation [Jedrzejewski 2002]. This led to the last revised definition of the International
Unit System based on fixed values of seven physical constants in 2019 [BIPM 2019].
It also plays a critical role in health as it ensures reliable measurements for diagno-
sis, as well as in economics since trade is ensured by precisely manufactured and
tested products, or in communications where atomic clocks ensure a common and
precise time reference for satellites. Finally, metrology is also of paramount impor-
tance for the advancement of science. Indeed, scientific theories are confirmed or
refuted by performing measurements. One of the most striking examples of the last
few years was the detection of gravitational waves by the LIGO-Virgo collaboration,
a phenomenon that was predicted by the theory of general relativity [Virgo Collab-
oration 2019].
Many measurements, however, do not give direct access to the quantities of interest.
For example, optical measurements are always based on intensity measurements,
and the determination of relevant quantities are achieved through more or less so-
phisticated data processing. Most of the quantities of interest are said to be param-
eters that are encoded in a probe by a physical interaction and estimated from the
outcomes of measurements performed on the probe. Formally, parameter estima-
tion theory is the branch of statistics that establishes the mathematical framework of
metrology [Kay 1993].
Another task of metrology is to reach high accuracy and high precision in the mea-
surements by studying the sources of noise and how to limit their impact on the
measurements. This analysis can be performed with the tools provided by the pa-
rameter estimation theory. The noises can be technical, such as mechanical or ther-
mal fluctuations, but also intrinsic, i.e. arising from the quantum nature of some
systems, which poses the most fundamental limit in the measurement precision and
accuracy. This last noise source is taken into account in a quantum version of esti-
mation theory, adapted by Helstrom [Helstrom 1967; Helstrom 1969] at the end of
the 20th century. For a quantum parameter estimation task, the unknown parameter
is encoded into a quantum probe and this could provide an experimental quantum
advantage, outperforming classical strategies and getting closer to the fundamental
precision limit [Caves 1981; Braunstein 1994; Giovannetti 2011; Barbieri 2022].



2 Contents

Light plays a crucial role in the task of parameter estimation. It carries information
that we can extract either to learn more about our environment or to communicate
with each other, and it allows us to perform precise non-invasive measurements.
The Revised International System of Units ties the meter to the speed of light in vac-
uum, showcasing the centrality of light in precision measurements. Optical range-
finding measurements can measure extremely long distances with high accuracy,
for instance, the Lunar Laser Ranging experiment determined the distance between
Earth and the Moon with an accuracy of a few millimeters [Murphy 2008].
For a long time, light was studied and used through its classical part, or its different
degrees of freedom (amplitude, phase, polarization, spectral and temporal proper-
ties) called modes. On the other hand, light has a unique status among quantum
objects, its quantum nature can emerge relatively easily in the lab. This is why light
is a probe of choice while studying quantum metrology problems. Tailoring spe-
cific quantum states of light can provide a quantum advantage in measurements.
Notably, the so-called NOON states can enhance the sensitivity in phase estimation
tasks [Slussarenko 2017], while squeezed states were shown to improve the sensi-
tivity in the context of gravitational wave detection [Virgo Collaboration 2019] and
beam displacement estimations [Treps 2003].

Imaging is a domain that would profit from precision enhancement. The resolution
of imaging systems is historically known to be diffraction-limited and the minimal
resolvable distance is given by Rayleigh’s limit, i.e. of the order of the beam size
[Abbe 1873; Rayleigh 1879]. Despite the development of superresolution techniques
both in microscopy [Hell 1994; Betzig 2006; Hell 2007; Dickson 1997] and in astron-
omy, the gain was still limited to an order of magnitude at best. Moreover, these
techniques are domain-specific, some of them requiring intricate control over the
light source [Hell 1994; Hell 2007], manipulations of the illuminated sample [Bet-
zig 2006; Dickson 1997], or very sophisticated apparatus.
However, a quantum parameter estimation analysis revealed that Rayleigh’s limit
is not a fundamental limit and that it could be overcome by several orders of mag-
nitude, even with classical resources. This conclusion emerged by reducing imag-
ing tasks to their essence which is the estimation of separation between two point-
like sources imaged by a diffraction-limited optical system [Tsang 2016]. Through
a quantum metrology analysis, they determined that the diffraction limit can be
overcome by changing the detection apparatus, from a camera, typically used in
imaging contexts, to a spatial-mode demultiplexer (SPADE), which decomposes the
light over a given spatial mode basis, in our case, the Hermite-Gaussian mode basis
[Morizur 2010].
SPADE was proven to provide a scaling advantage for the minimal resolvable dis-
tance compared with DI in an ideal scenario. This advantage is preserved in the pres-
ence of experimental noise even if the scaling is degraded [Gessner 2020a; Len 2020;
Lupo 2020; Sorelli 2021b] Since then, the advantages provided by this metrology-
inspired approach have been theoretically extended to other related problems such
as discrimination tasks [Lu 2018; Grace 2022] and multiparameter estimation [Ře-
haček 2017; Napoli 2019; Tsang 2017], also including more general photon statistics
[Nair 2016; Lupo 2016]. Early experiments used interferometric schemes to imple-
ment a simplified version of the demultiplexing approach [Yang 2016; Paúr 2016;
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Tang 2016; Tham 2017; Zhou 2019a; Zanforlin 2022; Parniak 2018; Wadood 2021;
Santamaria 2023]. A comprehensive literature review of these articles is provided in
chapter 3.

During the last two decades, our group has developed expertise in the study of spa-
tial modes in quantum optics [Schwob 1997; Treps 2001; Gigan 2004; Delaubert 2007;
Chalopin 2009; Morizur 2011; Boucher 2018]. In particular, the thesis of Jean-François
Morizur resulted in the creation of the company Cailabs in 2013 which specialized
in the development of spatial-mode demultiplexers via multi-plane light conversion
(MPLC).
Using an MPLC, Boucher et al. demonstrated that SPADE is potentially efficient,
but did not achieve an ultra-sensitive separation estimation [Boucher 2020]. In the
footsteps of these advancements, this thesis aims to contribute to the experimen-
tal realization of ultra-sensitive separation estimation between incoherent equally
bright sources using spatial-mode demultiplexing.

This thesis is organized as follows.
Chapter 1 introduces the main concepts of quantum optics, in particular, the spatial
modes that are central to this work.
Chapter 2 presents the tools for parameter estimation that we use, in particular the
quantum Fisher information for separation estimation of two incoherent equally
bright sources and the Fisher information for SPADE.
Chapter 3 exposes the limitations of the traditional approaches for superresolution
and provides a literature review of the various experiments that were performed
in the scope of separation estimation. This chapter also describes the experimental
setup we used to conduct an ultra-sensitive separation estimation.
Chapter 4 examines the different noise sources arising from the setup and provides
a prediction of the sensitivity that the experimental setup could reach.
Finally, chapter 5 presents the experimental results that we obtained, as well as some
prospects for this project. In particular, we discuss the sensitivity for separation es-
timation we measured either for a low photon flux (3500 detected photons in total
per integration time) where the performances of any camera are outperformed or
for a high photon flux (1013 detected photons in total per integration time) where we
achieved a five order of magnitude gain compared to Rayleigh’s limit.
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Chapter 1

Modes and states and
measurements in quantum optics
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This chapter introduces the concepts and notations necessary to describe the elec-
tromagnetic field, see [Grynberg 2010] and paper "Modes and states in quantum op-
tics" by [Fabre 2020] for a more thorough development. We first explore the two sides
of quantum optics, the optical modes in the first section and the quantum states in
the second section. Finally, in the third section, we mention the measurements that
will be discussed in this thesis.

1.1 Modes

Let us begin with the description of the classical electromagnetic field, based on the
concept of modes. We will then focus on the so-called Hermite-Gaussian modes,
which are one of the building blocks of this work.
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1.1.1 Modes of the electromagnetic field

The time-frequency Fourier decomposition of the electric field is written as follows:

E(r, t) =
1√
2π

∫ +∞

−∞
dω e−iωtẼ(r, ω), (1.1)

where Ẽ(r, ω) is the Fourier transform of the complex electric field E(r, t). The elec-
tric field can be separated into a positive frequency component E(+)(r, t) and a neg-
ative frequency component E(−)(r, t):

E(r, t) = E(+)(r, t) + E(−)(r, t), (1.2)

where
E(+)(r, t) =

1√
2π

∫ +∞

0
dω e−iωtẼ(r, ω) (1.3)

and
E(−)(r, t) = [E(+)(r, t)]∗. (1.4)

From eq. (1.4), we see that E(+)(r, t) and E(−)(r, t) carry redundant information. This
is why in the following, we will only consider E(+)(r, t).

We restrict ourselves to the case where the field is enclosed in a finite volume
V, much larger than the physical system. A mode of the electromagnetic field is a
vector field u1(r, t) which is a solution of Maxwell’s equations and that satisfies at
any time t the normalization condition

1
V

∫
V

d3r |u1(r, t)|2 = 1. (1.5)

Due to the linearity of Maxwell’s equations, one can construct an orthonormal mode
basis uℓ(r, t). Since the field is enclosed in a finite volume V1, the mode basis is
discrete and the electric field can be expanded as follows:

E(+)(r, t) = ∑
ℓ

Eℓuℓ(r, t), (1.6)

where Eℓ is the complex amplitude of the different modes. The modes satisfy the
orthonormality condition, i.e. at any time t

1
V

∫
V

d3r u∗
ℓ (r, t)uℓ′(r, t) = δℓℓ′ (1.7)

and the completeness relation, i.e at any time t

∑
ℓ

u∗
ℓ (r, t)uℓ(r′, t) = 2Vδ(3)(r − r′). (1.8)

1This is true for plane waves, with periodical boundary conditions. Throughout this manuscript,
we will only exclusively refer to the Hermite-Gaussian modes (see section 1.1.2). These modes have
an infinite spatial extension, but they can be decomposed over the plane wave basis, at least approxi-
mately.
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Mode basis change In principle, the electromagnetic field can be decomposed over
any orthonormal complete basis. The choice of the mode basis is not unique and
will depend, in practice, on the symmetry of the problem under consideration. It
is thus useful to be able to perform mode basis changes. Let {vm(r, t)} be another
orthonormal basis. We can define the modal unitary transformation U of complex
components

Umℓ =
1
V

∫
V

d3r u∗
ℓ (r, t)vm(r, t). (1.9)

The elements of the bases {uℓ(r, t)} and {vm(r, t)} can now be decomposed onto one
another with the unitary matrix U:

vm(r, t) = ∑
ℓ

Umℓuℓ(r, t), (1.10)

uℓ(r, t) = ∑
m

U∗
mℓvm(r, t). (1.11)

In the following, we will give concrete examples of mode bases.

Spatial modes The fields that we are interested in in this work are in the form
of laser beams. In other words, we restrict our analysis to beams that are confined
close to the propagation axis. We place ourselves, from now on, in the paraxial
approximation, i.e. the field is composed of plane waves with wave vectors close to
a mean value k0 (||k0 − k|| ≪ ||k0||), and in the narrow-band approximation, for
which the frequencies of the plane waves are close to the central one ω0 = c||k0||
(∆ω ≪ ω0). To simplify the notations, we assume that the propagation axis is the
Oz axis and that the electromagnetic field is linearly polarized.
The wave equation of the electric field is

∆E(r, t)− 1
c2

∂2

∂t2 E(r, t) = 0, (1.12)

whose solutions are of the form:

E(r, t) = εεεE0u′(x, y, z, t)e−i(k0z−ω0t), (1.13)

where εεε is the polarization in the xy plane, and we assume that the mode of the
field u′(x, y, z, t) is separable in time and space, i.e. can be written u′(x, y, z, t) =
u(x, y, z)g(t− z/c), assuming g(t− z/c) is a single temporal mode. By inserting this
expression in eq. (1.12), we can rewrite the wave equation:

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 − 2ik0

∂u
∂z

= 0. (1.14)

Using the paraxial approximation, where the spatial transverse profile of the beam
evolves slowly along Oz compared to the wavelength and to the variations due to
the finite transverse size of the beam:∣∣∣∣∂2u

∂z2

∣∣∣∣≪ ∣∣∣∣2k0
∂u
∂z

∣∣∣∣ ,
∣∣∣∣∂2u

∂z2

∣∣∣∣≪ ∣∣∣∣∂2u
∂x2

∣∣∣∣ and
∣∣∣∣∂2u

∂z2

∣∣∣∣≪ ∣∣∣∣∂2u
∂y2

∣∣∣∣ , (1.15)
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we obtain the paraxial wave equation:

∂2u
∂x2 +

∂2u
∂y2 − 2ik0

∂u
∂z

= 0. (1.16)

1.1.2 Hermite-Gaussian modes

The Hermite-Gaussian modes are the real stars of this work. We exhibit the main
results that concern them. Note that they are extracted from standard derivations
that can be found in many textbooks, for example, [Yariv 1977].

Gaussian beam in homogeneous media

A solution to eq. (1.16) with exponential decrease and cylindrical symmetry around
the propagation axis Oz is of the form:

u(x, y, z) = f (z)e
−ik(x2+y2)

2q(z) , (1.17)

where q(z) is a complex function. These solutions with a Gaussian transverse enve-
lope are eigenmodes for propagation in free space and in cavities. Injecting eq. (1.17)
into eq. (1.16), we find

(x2 + y2)(1 − q′(z)) = 0 and f ′(z) +
f (z)
q(z)

= 0. (1.18)

Hence, we get

q(z) = z − z0 + izR and f (z) =
C

q(z)
, (1.19)

where z0, C and zR are real numbers. We can thus rewrite u(x, y, z) as

u(x, y, z) =
C

z − z0 + izR
exp

(
−ik(x2 + y2)

2(z − z0 + izR)

)

= C
z − z0 − izR

(z − z0)2 + z2
R

exp

−ik
x2 + y2

2
(

z − z0 +
z2

R
z−z0

)


× exp
(
−k

x2 + y2

2zR(1 + (z − z0)2/z2
R)

)
.

(1.20)

We can define another constant w0 called the waist, linked to the Rayleigh range zR:

w2
0 =

2zR

k
=

λzR

π
. (1.21)
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FIGURE 1.1: Gaussian beam.

We also define the functions w(z), R(z) and φ(z), respectively the radius, the radius
of curvature and the Gouy phase, as

w(z) = w0

√
1 +

(z − z0)2

z2
R

R(z) =
z2

R
z − z0

+ z − z0

tan φ(z) = − z − z0

zR
.

(1.22)

Using the normalisation condition eq. (1.5), we find C =
√

2
π

zR
w0

. Finally, we write
the solution to eq. (1.16) as the Gaussian beam

u00(x, y, z) =

√
2
π

1
w(z)

exp
(
− x2 + y2

w2(z)

)
exp

(
−ik

x2 + y2

2R(z)
+ iφ(z)

)
. (1.23)

Beam parameters

The Gaussian beam is completely characterized by z0 and zR or equivalently by only
knowing q(z) called the confocal parameter. It can be shown that

1
q(z)

=
1

R(z)
− iλ

πw2(z)
. (1.24)

The quantity w(z) gives the evolution of the size of the beam along the propagation.
At any given z, 86% of the energy is contained in the disk of radius w(z).
For z = z0, w(z) is minimal and is equal to the waist w0. For z = z0 ± zR, w(z) =√

2w0: the variations of the radius are slow within the Rayleigh range, as illustrated
in fig. 1.1. Within this range, the beam looks like a plane wave since R(z) → ∞ for
z ≪ zR. While, for z ≫ zR, w(z) = w0

z−z0
zR

and R(z) = z − z0: the beam diverges as
a spherical wave.
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Higher-order Gaussian beam modes in homogeneous media

Although the Gaussian beam is a very important solution to Maxwell’s equations,
it is not the only one. More complex solutions can be found: some with cylindrical
symmetry and others with axial symmetries in x and y. The formers will be de-
scribed later. We will now examine the latters, called the Hermite-Gaussian modes.
They are solutions of eq. (1.16) that are separable in the cartesian coordinate system
unm(x,y,z) = un(x, z) × um(y, z). A Hermite-Gaussian transverse profile of indices
n ∈ N along the Ox axis and m ∈ N in the y direction, also denoted HGnm mode, is
written as

unm(x, y, z) =

√
2
π

1√
2n+mn!m!w2(z)

Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)

× exp
(
− x2 + y2

w2(z)

)
exp

(
−ik

x2 + y2

2R(z)
+ iφnm(z)

)
,

(1.25)

where φnm(z) = −(n + m + 1) arctan z−z0
zR

is the Gouy phase, and Hn(x) and Hm(y)
are Hermite polynomials respectively along x and y [Yariv 1977]. These polynomials
are orthogonal with respect to the weight function e−x2

:∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx =
√

π2nn!δnm, (1.26)

and the first Hermite polynomials are:

H0(x) = 1
H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x + 12.

(1.27)

The amplitudes of the first four Hermite-Gaussian modes are represented in fig. 1.2.
The Hermite-Gaussian modes {unm(x, y, z)} form an orthonormal mode basis which
is very useful for describing fields propagating inside cavities.

The beam solutions presented in eq. (1.25) correspond to circular Hermite-Gaussian
beams. A more general solution of Maxwell’s equations is elliptic Hermite-Gaussian
beams written as [Yariv 1977]

unm(x, y, z) =

√
2
π

1√
2n+mn!m!wx(z)wy(z)

Hn

( √
2x

wx(z)

)
Hm

( √
2y

wy(z)

)

× exp
(
− x2

w2
x(z)

)
exp

(
− y2

w2
y(z)

)

× exp
(
−ik

x2

2Rx(z)
− ik

y2

2Ry(z)
+ iφnx(z) + iφmy(z)

)
,

(1.28)
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FIGURE 1.2: Amplitudes of the first four Hermite-Gaussian modes
with w0 = 1.

where

wx(z) = w0x

√
1 +

(z − z0x)2

z2
Rx

Rx(z) =
z2

Rx
z − z0x

+ z − z0x

tan φnx(z) = −
(

n +
1
2

)
z − z0x

zRx

zRx =
w2

0xπ

λ

(1.29)

All the results derived for the case of circular Hermite-Gaussian beams apply sep-
arately to the x and y behavior of the elliptic beams. These beams correspond for
example to the output of an astigmatic resonator, as is the case of the triangular
cavity presented in section 1.1.3.

ABCD matrix

As stated earlier, Gaussian beams are completely characterized by the confocal pa-
rameter q(z) and this is also true for higher-order Hermite-Gaussian modes. Their
evolution along the propagation in free space and through optical elements can thus
be described in terms of transformations of q(z). Each optical element is represented

by a matrix M =

(
A B
C D

)
, called an ABCD matrix, such that the confocal parameter

in the plane z2 after the element is linked to the confocal parameter in the plane z1
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before the element by the relation [Yariv 1977]

q(z2) =
Aq(z1) + B
Cq(z1) + D

. (1.30)

It can easily be shown that if M1 transforms q(z1) into q(z2) and M2 transforms q(z2)
into q(z3), then the transformation of q(z1) into q(z3) is realized with M3 = M2M1.

We summarize the most common ABCD matrices in table 1.1 [Siegman 1986].

TABLE 1.1: Useful ABCD matrices.

Propagation in free space along a distance d
(

1 d
0 1

)

Propagation through a thin lens of focal length f
(

1 0
−1/ f 1

)

Reflection on a spherical mirror
with a radius of curvature Rc, normal incidence

(
1 0

−2/Rc 1

)

Reflection on a spherical mirror, incidence θ,
R = Rc cos θ in the plane of incidence,
R = Rc/ cos θ orthogonal to the plane of incidence

(
1 0

−2/R 1

)

1.1.3 Hermite-Gaussian modes in optical resonators

Hermite-Gaussian modes are eigenmodes of free-space propagation but also of op-
tical resonators, or cavities. Cavities are one of the building blocks of a laser, where
they are used to amplify a beam. They can also be used to clean spatial modes as is
the case in this work (see section 4.6.3). Again, the description of optical resonators
can be found in many textbooks e.g. [Yariv 1977].

Hermite-Gaussian modes in a linear and a triangular cavity

We will focus on two types of cavities: a triangular cavity composed of two plane
mirrors and a spherical concave mirror, with a radius of curvature Rc, which was
used in the experiment, and a linear cavity with two spherical mirrors, with the
same radius of curvature Rc, for comparison (see fig. 1.3).

We assume that the input and output mirrors, namely the two plane mirrors for
the triangular cavity and the two spherical mirrors for the linear cavity, are identical
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FIGURE 1.3: (a) Linear cavity. (b) Triangular cavity

and have the same reflection and transmission coefficients r1 and t1. We note L the
distance between the input and output mirrors and D0 the length of a round trip in
the cavity, in particular, for the linear cavity, we have D0 = 2L.
We consider HG modes unm(x, y, z), as defined by eq. (1.25), propagating inside these
cavities, and we want to show that they are eigenmodes of these cavities and to
determine their resonance frequencies. By symmetry, the reference plane z0, i.e. the
position of the waist is in the middle of the input and output mirrors. We choose
z0 = 0 and the position of the input and output mirrors are respectively z1 = −L/2
and z2 = L/2, and the position of the spherical mirror of the triangular cavity is
zs = D0/2.

Cavity stability condition

We assume that Hermite-Gaussian modes are eigenmodes of these cavities. It means
that they should be able to overlap themselves after a round trip in the cavity. We
show in this section that this self-reproducing requirement leads to a consistent sta-
bility condition. We consider the ABCD matrix of the unwrapped cavity and the
reference plane z0 in which we write the relation for the confocal parameter

q =
Aq + B
Cq + D

, (1.31)

leading to the equation Cq2 +(D− A)q− B = 0. Since q is has an imaginary part, we
have ∆ = (D − A)2 + 4BC < 0, and using the fact that the ABCD matrix is unitary,
i.e. AD − BC = 1, we obtain the condition

−1 <
A + D

2
< 1. (1.32)

For both cavities, this stability condition translates into a condition on the radius of
curvature of the spherical mirror.
For the linear cavity, the ABCD matrix is(

A B
C D

)
=

(
1 D0/4
0 1

)(
1 0

−2/Rc 1

)(
1 D0/2
0 1

)(
1 0

−2/Rc 1

)(
1 D0/4
0 1

)
(1.33)
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and, using eq. (1.32), we obtain the condition:

Rc >
D0

4
. (1.34)

For a triangular cavity, the ABCD matrix reads(
A B
C D

)
=

(
1 D0/2
0 1

)(
1 0

−2/Rc 1

)(
1 D0/2
0 1

)
=

(
1 − D0/Rc D0/2(1 − D0/Rc) + D0/2
−2/Rc 1 − D0/Rc

)
,

(1.35)

hence, from eq. (1.32), we obtain

Rc >
D0

2
. (1.36)

Under this condition, HG modes can propagate inside a linear and a triangular cav-
ity. In practice, the length of the triangular cavity we used was fixed, so we had to
take this condition into account when choosing the radius of curvature of the spher-
ical mirror.

Waist of the beam in the cavity

For symmetry reasons, the radius of curvature of the mirrors and the length of the
cavity impose a specific waist to the beams propagating in the cavity. Indeed, the
waist position has to be in between the input and output mirrors and the radius of
curvature of the mirrors has to correspond to the radius of curvature of the beam at
the position of the mirrors. For the linear cavity, we have the relation

R(z2) = Rc (1.37)

which, using eqs. (1.21) and (1.22), leads to

zlinear
R =

√
D0

4

(
Rc −

D0

4

)
, (1.38)

w2
0 =

λ

π

√
D0

4

(
Rc −

D0

4

)
. (1.39)

For the triangular cavity, we have

R(zs) = Rc (1.40)

and thus

ztriangular
R =

√
D0

2

(
Rc −

D0

2

)
, (1.41)

w2
0 =

λ

π

√
D0

2

(
Rc −

D0

2

)
. (1.42)
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This waist has to be matched for the HG modes to be eigenmodes of the cavity2.

Resonance of Hermite-Gaussian modes

The resonances are observed for constructive interferences in the cavity, which are
encountered when varying the length of the cavity D0 + ϵ with ϵ ≪ D0. We denote
∆φ, the phase shift acquired during one round trip in the cavity.
In a linear cavity, the phase shift acquired between the two spherical mirrors by
Hermite-Gaussian modes is

∆φlinear

2
= k(z2 − z1) + φnm(z = z2)− φnm(z = z1), (1.43)

where φnm(z) is the Gouy phase of the HGnm mode. Hence, using eq. (1.22), the
phase shift acquired during one round trip in a linear cavity is

∆φlinear = k(D0 + ε)− 4(n + m + 1) arctan
D0

4zlinear
R

. (1.44)

In a triangular cavity, this phase shift is

∆φtriangular = k(z2 − z1) + φnm(z = z2)− φnm(z = z1)− nπ, (1.45)

where z1 and z2 are the positions of the spherical mirror in an unwrapped configu-
ration. Since we consider a symmetric cavity, we have z2 = −z1 = D0/2, the origin
being in the center between the two plane mirrors. The additional nπ phase delay
comes from the fact that, for an odd number of mirrors, the field is flipped in the
x-direction and, therefore, the x-antisymmetric modes get an extra nπ phase, which
breaks the degeneracy as it will be shown in fig. 1.4. The phase shift for one round
trip is then given by

∆φtriangular = k(D0 + ε)− 2(n + m + 1) arctan
D0

2ztriangular
R

− nπ. (1.46)

The resonance condition is ∆φ = 2pπ with p ∈ Z. This shows that the different
Hermite-Gaussian modes resonate for different cavity lengths, which is why cavities
can be used to clean modes. We also observe a degeneracy for modes with identical
(n + m) in the case of a linear cavity, which is no longer the case for a triangular
cavity.

Transmitted intensity

We consider monochromatic linearly polarized fields, namely Ei the field injected
into the cavity, Ec in the cavity, and Et transmitted by the cavity. All the fields have
the same polarization, frequency ω0, temporal and spatial modes, hence the scalar

2In principle, since the incidence is not normal on the spherical mirror of the triangular cavity, we
should take the astigmatism of the cavity into account, which results in w0x ≈ 195 µm and w0y ≈
202 µm. The astigmatism is therefore negligible.
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fields are written as follows

Ei(x, y, z, t) = Eiunm(x, y, z)g(t)e−i(k0z−ω0t),

Ec(x, y, z, t) = Ecunm(x, y, z)g(t)e−i(k0z−ω0t),

Et(x, y, z, t) = Etunm(x, y, z)g(t)e−i(k0z−ω0t),

(1.47)

where Ei, Ec and Et are the complex amplitudes of the fields.

We can write the relations between the fields at the two plane mirrors, i.e. for z = 0
and z = L:

Ec(x, y, z = 0, t) = t1Ei(x, y, z = 0, t) + r2
1Ec(x, y, z = D, t),

Et(x, y, z = L, t) = t1Ec(x, y, z = L, t),
Er(x, y, z = 0, t) = r1Ei(x, y, z = 0, t)− t1Ec(x, y, z = D, t).

(1.48)

From eq. (1.47), we obtain

Ec = t1Ei + r2
1Ecei∆φ,

Et = t1Ec,
(1.49)

where ∆φ is the phase shift acquired during one round trip. Using R1 + T1 = 1
(where r2

1 = R1 and t2
1 = T1), we can write the transmitted intensity

It =
Ii

1 + 4R2
1

T2
1

sin2 ∆φ
2

, (1.50)

where ∆φ has the expression given by eq. (1.44) or eq. (1.46) depending on the cavity.
The transmissivity for several Hermite-Gaussian modes propagating inside linear
and triangular cavities are represented in fig. 1.4. The modes HG01 and HG10 are no
longer degenerated in the triangular cavity compared to the linear cavity.

Finesse of the cavity

An optical resonator is characterized by its finesse F . This is a measure of how
narrow the resonances are and whether they can be distinguished from one another.
The finesse is defined as the ratio of the distance between two resonances to the full
width at half maximum of one peak. It is linked to the reflectivity of the output
mirror R with the relation

F =
π
√

R
1 − R

. (1.51)

1.1.4 Some other mode bases

The aim of this section is not to give an exhaustive list of the existing mode bases,
it would be impossible anyway, the list being infinite, depending on the symmetry
of the medium of propagation as well as on the detection apparatus. We only wish
to give a description of the modes that will be discussed in this work and to give a
brief overview of some bases for a better understanding of the concept of mode.
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FIGURE 1.4: Transmissivity for (a) a linear cavity and (b) a triangular
cavity, for a superposition of the modes HG00, HG01 and HG10 in

proportion 1:0.5:0.5, for T = 0.05, D0 = 32 cm and Rc = 200 mm.
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Laguerre-Gaussian modes

When a cylindrical symmetry is considered, we can extract the Laguerre-Gaussian
modes from the paraxial wave equation. A Laguerre-Gaussian transverse profile of
radial index p ∈ N and azimuthal index ℓ ∈ Z, also denoted LGℓ

p mode, is written
as

upℓ(r, θ, z) =

√
2p!

π(|ℓ|+ p)!
1

w(z)

( √
2r

w(z)

)|ℓ|
L|ℓ|

p

( 2r2

w2(z)

)
× exp

(
− r2

w2(z)

)
exp

(
−ik

r2

2R(z)
+ i(2p + ℓ+ 1)φ(z) + iℓθ

)
,

(1.52)

where Lℓ
p(x) is a Laguerre polynomial, such as

Lℓ
0(x) = 1, (1.53)

Lℓ
1(x) = −x + ℓ+ 1, (1.54)

Lℓ
2(x) =

x2

2
− (ℓ+ 2)x +

(ℓ+ 2)(ℓ+ 1)
2

, (1.55)

Lℓ
3(x) =

−x3

6
+

(ℓ+ 3)x2

2
− (ℓ+ 2)(ℓ+ 3)x

2
+

(ℓ+ 1)(ℓ+ 2)(ℓ+ 3)
6

, (1.56)

Lℓ
p+1(x) =

(2p + 1 + ℓ− x)Lℓ
p(x)− (p + ℓ)Lℓ

p−1(x)

p + 1
. (1.57)

The amplitudes of the first four Laguerre-Gaussian modes are represented in fig. 1.5.
As for the Hermite-Gaussian modes, it is possible to build an orthonormal and com-
plete mode basis {upℓ(r, θ, z)} of Laguerre-Gaussian modes from the first element,
the Gaussian beam. These modes are extensively used in free-space quantum com-
munication protocols [Sit 2017; Zhou 2019b].

Pixel modes

Another set of spatial modes of interest is the one that fits the symmetry of a CCD
camera or, in general, an array of photodetectors. These are known as the pixel
modes and can be written as follows for pixels of size ℓx × ℓy:

unm(x, y) =
1√
ℓxℓy

rect(x, xn, xn + ℓx)rect(y, ym, ym + ℓy), (1.58)

where rect(x, a, b) is the rectangular function equal to 1 in [a, b] and to 0 elsewhere.
The basis {unm(x, y)} is orthonormal but not complete. It is therefore useful to write
the modes in the limit of infinitely small pixels. When ℓx goes to 0, we have 1

ℓx
rect(x, xn, xn +

ℓx) → δ(x − xn), and pixel modes can be written as

u′
nm(x, y) =

√
ℓxℓyδ(x − xn)δ(y − ym). (1.59)
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FIGURE 1.5: Amplitudes of the first four Laguerre-Gaussian modes,
with w0 = 1.

The continuous basis {u′
nm(x, y)} is orthonormal and complete. We can find analogs

of the pixel mode basis in the time and spectral domains respectively known as the
time bin basis and the frequency band basis. They are useful to analyze temporal
sequences and broadband sources.

Temporal or frequency Hermite-Gaussian modes

Similarly to pixel modes, there exists a temporal and a spectral equivalent to the
Hermite-Gaussian spatial modes. They constitute well-suited orthonormal mode
bases to describe light pulses of any temporal and spectral shape. They will not be
discussed in this thesis but descriptions and applications can be found in [Brecht 2015;
Ansquer 2022; Renault 2022].

Traveling plane-wave modes

Plane waves are the most well-known modes. They are defined as

uℓ(r, t) = eiφ(r,t) = ei(kℓ·r−ωℓt) (1.60)

where kℓ and ωℓ are the wave vector and the frequency of the mode uℓ(r, t). Even
though these modes are not physical since they carry infinite energy, they provide
good approximations in many situations.

Polarized modes

Finally, even though we will consider only linearly polarized beams throughout this
manuscript, it is helpful to remember that mode bases can also be composed of a vec-
torial part. In particular, for a monochromatic Gaussian beam, we can write modes
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of the form:
uℓ(r, t) = εεεℓu00(r, t), (1.61)

where {εεεℓ} is a set of orthogonal polarization modes, for example, horizontal and
vertical linear polarizations, or circular right and circular left polarizations.

1.2 States

We now introduce quantum fields. We will briefly expose the quantization of the
electric field, more details can be found in [Mandel 1995; Cohen-Tannoudji 1997;
Grynberg 2010]. Then we will describe some quantum states and representations in
the continuous variables framework.

1.2.1 Quantization of the electromagnetic field

We establish the electric field operator Ê(+)(r, t) in the Heisenberg picture as the
quantum counterpart of the classical complex field E(+)(r, t) defined by eq. (1.6).
This means that we associate an operator âℓ to the mode uℓ(r, t), considering the
orthonormal mode basis {uℓ(r, t)}:

Ê(+)(r, t) = i ∑
ℓ

E (1)
ℓ âℓuℓ(r, t) = ∑

ℓ

Ê(+)
ℓ uℓ(r, t), (1.62)

where E (1)
ℓ =

√
h̄ωℓ
2ε0V (see derivation in appendix A) and Ê(+)

ℓ = iE (1)
ℓ âℓ. The annihi-

lation and creation operators âℓ and â†
ℓ associated to the mode ℓ, satisfy the commu-

tation relations
[âℓ, â†

ℓ′ ] = δℓℓ′ , (1.63)

[âℓ, âℓ′ ] = 0. (1.64)

In the following, we will only consider linearly polarized beams, so the electric field
can be written as a scalar quantity:

Ê(+)(r, t) = i ∑
ℓ

E (1)
ℓ âℓuℓ(r, t). (1.65)

The energy of the field is

Ĥ = ∑
ℓ

h̄ωℓ

(
â†
ℓ âℓ +

1
2

)
= ∑

ℓ

h̄ωℓ

(
N̂ℓ +

1
2

)
, (1.66)

where N̂ℓ = â†
ℓ âℓ is the photon number operator in the mode uℓ(r, t). This expres-

sion is formally identical to the Hamiltonian of an assembly of decoupled quantum
harmonic oscillators.
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1.2.2 Continuous variables

Quadrature operators

Since âℓ and â†
ℓ are not Hermitian, they are not observables. It is however possible to

define Hermitian operators, named the quadrature operators, q̂ℓ and p̂ℓ such that:

Ê(+) = i ∑
ℓ

E (1)
ℓ âℓuℓ =

i
2 ∑

ℓ

E (1)
ℓ (q̂ℓ + i p̂ℓ)uℓ, (1.67)

where q̂ℓ and p̂ℓ correspond to the real and imaginary parts of the field amplitude. It
can be noted that q̂ℓ and p̂ℓ are equivalent to the position and momentum operators
of the quantum harmonic oscillator. Similarly to the position and momentum oper-
ators, they have a continuous spectrum, and the eigenstates {|q⟩ℓ} (resp. {|p⟩ℓ}) of q̂ℓ
(resp. p̂ℓ) form an orthonormal and complete basis

q̂ℓ |q⟩ℓ = q |q⟩ℓ , (1.68)

ℓ

〈
q
∣∣q′〉

ℓ
= δ(q − q′), (1.69)∫

|q⟩ℓ ⟨q|ℓ dq = 1, (1.70)

with similar relations for p̂ℓ,where q and p are real numbers.

Convention

Many conventions for the quadrature operators can be chosen. The one that we use
is the following:

q̂ℓ = âℓ + â†
ℓ , (1.71)

p̂ℓ = i(â†
ℓ − âℓ), (1.72)

with
[q̂ℓ, p̂ℓ′ ] = 2iδℓℓ′ and [q̂ℓ, q̂ℓ′ ] = [ p̂ℓ, p̂ℓ′ ] = 0. (1.73)

This allows writing the Heisenberg relation3 as:

∆q̂ℓ∆ p̂ℓ ≥ 1, (1.74)

where ∆q̂ =
√
⟨(δq̂)2⟩, using the fluctuations operator δÔ = Ô − ⟨Ô⟩. ∆q̂ is the

standard deviation of the operator q̂ and corresponds to its fluctuations. This relation
reflects the intrinsic quantum fluctuations of the field.

Generalized quadrature operator

We introduce the generalized quadrature operator

q̂θ
ℓ = q̂ℓ cos θ + p̂ℓ sin θ = âℓe−iθ + â†

ℓeiθ . (1.75)

3Other conventions can be chosen, see appendix A for an alternative one. We use this one because
it is convenient to have the quantum noise equal to 1.
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FIGURE 1.6: Phase-space representation

These quadrature operators satisfy the commutation relation

[q̂θ
ℓ , q̂θ+ π

2
ℓ ] = 2i, (1.76)

as well as the Heisenberg relation

∆q̂θ
ℓ∆q̂θ+ π

2
ℓ ≥ 1. (1.77)

Phase space representation

The operators q̂θ
ℓ are observables and can be measured using homodyne detection,

which will be described in section 1.3.2. Let us see how the quantum field (Eq eq. (1.67))
is represented from the knowledge of q̂θ

ℓ . For simplicity, we consider the plane wave
mode basis, the quantum electric field in mode uℓ is written:

Êℓ = Ê(+)
ℓ + Ê(−)

ℓ =
1
2
E (1)
ℓ

[
(q̂ℓ + i p̂ℓ)e−iφℓ + (q̂ℓ − i p̂ℓ)eiφℓ ]

= E (1)
ℓ (q̂ℓ cos φℓ + p̂ℓ sin φℓ).

(1.78)

We can thus represent each mode of the field in a phase diagram (see fig. 1.6). Con-
trary to a classical field that is represented as a point on this phase diagram, because
of the Heisenberg relation, for the quantum field, a disk is displayed to represent the
standard deviations of the quadratures.

For a real field, ⟨ p̂ℓ⟩ = 0, which is why q̂ℓ is called the amplitude quadrature
and p̂ℓ the phase quadrature. As mentioned earlier, the operators q̂ℓ and p̂ℓ have
continuous spectra, hence the denomination continuous variables when the focus is
on these observables, as opposed to the discrete variables community whose focus
is on the photon-number observable, using photon-counting detection schemes.

1.2.3 Back to the mode basis change

We see from eq. (1.67) that the annihilation operators {â†
ℓ } are associated to the mode

basis {uℓ(r, t)}. We now describe how a modal unitary transformation U, from the
basis {uℓ(r, t)} to the basis {vm(r, t)}, affects the annihilation operators. We inject
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eq. (1.11) into eq. (1.65):

Ê(+)(r, t) = i ∑
ℓ

E (1)
ℓ âℓ ∑

m
U∗

mℓvm(r, t). (1.79)

Assuming the transformation only mixes modes of the same frequency, i.e. E (1)
m =

E (1)
ℓ for any (m, ℓ), we obtain

Ê(+)(r, t) = i ∑
m
E (1)

m vm(r, t)∑
ℓ

U∗
mℓ âℓ. (1.80)

We can thus write the quantum field in terms of the set of annilation operators b̂m,
associated to the basis {vm(r, t)}:

Ê(+)(r, t) = i ∑
m
E (1)

m b̂mvm(r, t), (1.81)

with
b̂†

m = ∑
ℓ

Umℓ â†
ℓ (1.82)

and
âℓ = ∑

m
Umℓb̂m. (1.83)

Since U is unitary, the commutation relations are conserved

[b̂m, b̂†
m′ ] = δmm′ , (1.84)

[b̂m, b̂m′ ] = 0. (1.85)

These relations show how intertwined the quantum and optical natures of the elec-
tromagnetic field are. Note that the total number of photons in a given state is in-
variant under any mode basis change

N̂tot = ∑
ℓ

â†
ℓ âℓ = ∑

m
b̂†

mb̂m. (1.86)

1.2.4 Quantum states

In this section, we introduce several important states of the electromagnetic field.
Further descriptions can be found in [Grynberg 2010; Leonhardt 2005].

Fock states

Fock states, denoted |n⟩, are the manifestations of the granular aspect of light. They
are eigenstates of the Hamiltonian Ĥ and of the photon number operator N̂tot, and
thus carry a fixed number of photons. For the mode uℓ, we have:

N̂ℓ |n⟩ℓ = n |n⟩ℓ , (1.87)
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Ĥℓ |n⟩ℓ = h̄ωℓ(n +
1
2
) |n⟩ℓ . (1.88)

The |n⟩ℓ form a basis of the single-mode state space, i.e. any pure state in mode uℓ

can be written as |ψ⟩ℓ = ∑n cn |n⟩ℓ with ∑n |cn|2 = 1.
For the total state space, a basis is the tensor product of single mode bases:
|n1, ..., nℓ, ...⟩ ≡ |n1⟩1 ⊗ ... ⊗ |nℓ⟩ℓ ⊗ ..., and we have:

âℓ |n1, ..., nℓ, ...⟩ =
√

nℓ |n1, ..., nℓ − 1, ...⟩ , (1.89)

â†
ℓ |n1, ..., nℓ, ...⟩ =

√
nℓ + 1 |n1, ..., nℓ + 1, ...⟩ , (1.90)

⟨n1, ..., nℓ, ...| Ĥ |n1, ..., nℓ, ...⟩ = ∑
ℓ

h̄ωℓ

(
nℓ +

1
2

)
. (1.91)

The vacuum state

We examine the particular case for which nℓ = 0 for any mode ℓ. This state |0⟩ =
|n1 = 0, ..., nℓ = 0, ...⟩ is called the vacuum state and corresponds to the state with
the minimum energy.
Its mean field is zero

⟨0| Ê(+) |0⟩ = 0, (1.92)

but it has non-zero fluctuations

⟨0| Ê2 |0⟩ = ⟨0| Ê(+)Ê(−) |0⟩ = ∑
ℓℓ′

E (1)
ℓ E (1)

ℓ′ uℓuℓ′ ⟨0| âℓ â†
ℓ′ |0⟩ = ∑

ℓ

[E (1)
ℓ ]2|uℓ|2. (1.93)

As for the quadratures of the field, eqs. (1.71) and (1.72) result in their fluctuations
being

∆2q̂ℓ = ⟨0| q̂2
ℓ |0⟩ − ⟨0| q̂ℓ |0⟩2 = ⟨0| âℓ â†

ℓ |0⟩ = 1, (1.94)

∆2 p̂ℓ = ⟨0| p̂2
ℓ |0⟩ − ⟨0| p̂ℓ |0⟩2 = ⟨0| âℓ â†

ℓ |0⟩ = 1. (1.95)

These fluctuations, saturating the Heisenberg relation, are called the vacuum noise.

Coherent states

Coherent states are generated by an ideal laser. They are eigenstates of the annihila-
tion operator:

âℓ |α⟩ℓ = α |α⟩ℓ , (1.96)

where α is a complex number and corresponds to the complex wave amplitude in
classical optics. These states are often called the quasi-classical states. The intensity
of these fields is given by

⟨α| N̂ℓ |α⟩ = |α|2 (1.97)

and the variance of the intensity is

∆2N̂ℓ = |α|2 = ⟨N̂ℓ⟩. (1.98)
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This is a standard property of the Poissonian distribution, and these fluctuations are
called the shot noise. Indeed, the photon number distribution of coherent states is
Poissonian as it is shown by their decomposition over the Fock state basis

|α⟩ = e−|α|2/2
+∞

∑
n=0

αn
√

n!
|n⟩ . (1.99)

Contrary to a classical field, the mean energy is not only h̄ω|α|2, but is

⟨α| Ĥ |α⟩ = h̄ω(|α|2 + 1
2
), (1.100)

with an extra term 1/2 which is the vacuum energy and amount for the quantum
aspect of light.
Since the mean field of a coherent state in mode uℓ is

⟨α| Ê(+)
ℓ |α⟩ = iE (1)

ℓ αuℓ, (1.101)

with the same fluctuations as the vacuum

∆2q̂ℓ = ∆2 p̂ℓ = 1, (1.102)

the quantum vacuum can be seen as a coherent state with α = 0 and any coherent
state can be interpreted as a displaced vacuum in phase space. We introduce the
displacement operator as

D̂(α) ≡ exp
(

αâ† − α∗ â
)
= e−i|α|q̂θ−π/2

(1.103)

and coherent states can be written

|α⟩ = D̂(α) |0⟩ . (1.104)

Furthermore, the coherent states form a non-orthogonal overcomplete basis:

⟨β|α⟩ = exp
(
−1

2
(|β|2 + |α|2 − 2β∗α)

)
̸= δ(β − α), (1.105)

1
π

∫
|α⟩ ⟨α| d2α = 1. (1.106)

We can also define a multimode coherent state as |ψ⟩ = |α1, ..., αℓ, ...⟩ for which we
have: âℓ |ψ⟩ = αℓ |ψ⟩.

Squeezed states

We saw that coherent states are a family of states that saturate the Heisenberg re-
lation. However, having ∆q̂ℓ = ∆ p̂ℓ = 1 is not the only possibility to minimize
this relation. It is indeed possible to have a variance smaller than one for q̂ℓ, but
this means that it is greater than one for p̂ℓ, and vice versa. These states are called
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squeezed states and are very useful in quantum metrology and quantum informa-
tion protocols, or in general in situations where lower fluctuations are needed.
We define the squeezing operator as

Ŝ(ξ) = exp
(

ξ

2
(â2

ℓ − â†2
ℓ )

)
(1.107)

and the squeezed-vacuum state is written

|ψ⟩ = Ŝ(ξ) |0⟩ , (1.108)

where ξ ∈ R is the squeezing parameter. Similarly to coherent states being seen as
displaced vacuum, squeezed states can be interpreted as displaced squeezed vac-
uum states. ∣∣ψξ

〉
= D̂(α)Ŝ(ξ) |0⟩ . (1.109)

Details on how these states are generated can be found in [Bachor 2019; Re-
nault 2022].

1.2.5 The density operator

The states cited earlier are pure states as they can be represented by a state vector.
However, this is not the most general description of a quantum state. To include
states that are not pure, called mixed states, we need to introduce the concept of the
density operator, which becomes the density matrix when represented on a given
basis.

Density matrix

Mixed states are statistical mixtures of pure states |ψi⟩ and their density operator is

ρ̂ = ∑
i

pi |ψi⟩ ⟨ψi| , (1.110)

with ∑i pi = 1 since pi is the probability associated to the state |ψi⟩. From this
definition, we see that ρ̂ is Hermitian and is normalized to

Tr ρ̂ = 1. (1.111)

A more comprehensive description of the density operator can be found in many
textbooks, for example [Mandel 1995].

Thermal states

Let us introduce mixed states which will be extensively studied in this work: the
thermal states. They model the light produced by black body radiation, for example,
stars. Thermal states are an incoherent mixture of Fock states (see appendix A for
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details) and their density matrix can be written as

ρ̂th =
∞

∑
n=0

P(n) |n⟩ ⟨n| (1.112)

where

P(n) =
⟨n̂⟩n

(1 + ⟨n̂⟩)n+1 . (1.113)

Thermal states can also be viewed as incoherent mixtures of coherent states, this can
be seen with eq. (1.123).

1.2.6 Quasiprobability distributions

We want a representation that corresponds to what is measured experimentally. In-
deed, the phase space representation as presented in section 1.2.2 is incomplete as it
hides the distribution associated with each quadrature. We thus need to introduce
the quasiprobability distributions to finalize the description. We will only give here
the definitions, some useful properties and relevant expressions for the quantum
states cited earlier. For more details, see [Leonhardt 2005].

The Wigner function

The most extensively used quasiprobability distribution is the Wigner function, it
is also the simplest one to interpret. There exists a bijection between the density
matrix and the Wigner function. We consider (q, p), real-number coordinates of the
phase space that correspond to eigenvalues of q̂ and p̂, the Wigner function W(p, q)
is defined as:

W(q, p) =
1

2π

∫ +∞

−∞
eiνp ⟨q − ν| ρ̂ |q + ν⟩dν =

1
2π

∫ +∞

−∞
e−iνq ⟨p − ν| ρ̂ |p + ν⟩dν.

(1.114)
Since ρ̂ is Hermitian, W(p, q) is real and normalized to:∫

dq dp W(q, p) =
1

2π

∫
dq dν ⟨q − ν| ρ̂ |q + ν⟩

∫
dp eiνp =

∫
dq ⟨q| ρ̂ |q⟩ = Tr ρ̂ = 1.

(1.115)
Its marginal distributions are the q and p probability distributions:∫

dp W(p, q) = ⟨q| ρ̂ |q⟩ = P(q), (1.116)

∫
dq W(p, q) = ⟨p| ρ̂ |p⟩ = P(p). (1.117)

These marginal distributions are obtained by homodyne detection, a measurement
that will be described later in this chapter, and mathematical procedures provide
access to the reconstruction of the Wigner function from these measurements. Thus,
W(q, p) is similar to a joint probability, however, it should be noted that it can have
negative values, hence the quasi-probability denomination.



28 Chapter 1. Modes and states and measurements in quantum optics

FIGURE 1.7: Wigner functions of (a) a coherent state, (b) a squeezed
state and (c) a one-photon Fock state.

The Wigner function of a coherent state with amplitude α is

W|α⟩(q, p) =
1

2π
e−((q−q0)

2+(p−p0)
2)/2, (1.118)

where α = 1
2 (q0 + ip0). Coherent states are described by Gaussian Wigner functions,

which is why they are classified as Gaussian states.
The Wigner functions of a coherent state, a squeezed state, and a one-photon state
are represented in fig. 1.7.

We can generalize for a multimode state, if (q, p) = (q1, ..., qM, p1, ..., pM) are eigen-
values of q̂ = (q̂1, ..., q̂M) and p̂ = ( p̂1, ..., p̂M) in the mode basis {uℓ}:

W(q, p) =
1

(2π)M

∫
eiννν·p ⟨q − ννν| ρ̂ |q + ννν⟩dMννν

=
1

(2π)M

∫
e−iννν·q ⟨p − ννν| ρ̂ |p + ννν⟩dMννν.

(1.119)

The Glauber-Sudarshan P function

The Glauber-Sudarshan P function is defined as the coefficients of the decomposition
of the density operator over the basis of the coherent states {|α⟩}α∈C

ρ̂ =
∫

d2αP(α) |α⟩ ⟨α| , (1.120)

where d2α = d(Im α)d(Re α) is a phase space element, and |α⟩ is a single-mode
coherent state. eq. (1.120) is then an integral over all phase space. Like the Wigner
function, the P function is real-valued and∫

d2αP(α) = 1, (1.121)

but can also have negative values and is less smooth than the Wigner function,
meaning that it can be mathematically irregular.
The interpretation of the P function is not straightforward in general. However, it
has a straight physical interpretation [Glauber 1963; Sudarshan 1963; Mandel 1995].
If there exists a classical analog to the system, then its P function is non-negative
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everywhere, and, therefore, the state can be regarded as a mixture of coherent states
with the relative weights P(α).

It is possible to obtain the Wigner function from the P function by using the follow-
ing convolution with the Wigner function of a coherent state, as written in eq. (1.118)
[Walschaers 2021]:

W(q, p) =
∫

P(α)W|α⟩(q, p)d2α

=
1

2π

∫
P(α)e−

1
2 (q−2 Re(α))2− 1

2 (p−2Im(α))2
d Re(α)d Im(α).

(1.122)

For a thermal state with mean photon number Nth, the P function is written:

Pth(α) =
1

πNth
e−|α|2/Nth . (1.123)

This expression is convenient as it shows that thermal states are incoherent mixtures
of coherent states weighted by Gaussian functions, the P function corresponds to
the probability distribution of measuring a coherent state. Using eq. (1.122), we can
extract the Wigner function of a thermal state from eq. (1.123):

Wth(q, p) =
1

2π(2Nth + 1)
e−

(q2+p2)
2(2Nth+1) . (1.124)

The Husimi Q function

The Husimi Q function is another quasi-probability distribution. Its expression is

Q(α) =
1

4π
⟨α| ρ̂ |α⟩ (1.125)

where |α⟩ is a coherent state. This function is real but, contrary to the Wigner and P
functions, is always positive, and normalized to unity∫

Q(α)d2α = 1. (1.126)

The Q function can also be expressed in terms of the Wigner function

Q(α) =
∫

dpdq W(q, p)W0(q0 − q, p0 − p), (1.127)

where W0(q, p) is the Wigner function of the vacuum and with α = 1
2 (q0 + ip0).

Finally, the Q function is directly measurable with a double homodyne detector.

1.2.7 Quantum covariance matrix

Quantum metrology studies noise sources and their impact on the sensitivity of mea-
surements. It is therefore necessary to have a tool to describe the fluctuations and
correlations of the field, which is why we introduce the covariance matrix.
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Definition

We consider the quadrature vector in a given mode basis {uℓ(r, t)} with M modes

x̂ = (q̂1, ..., q̂M, p̂1, ..., p̂M)T. (1.128)

From the commutation relation eq. (1.73), we have

[x̂a, x̂b] = 2iβab with β =

(
0M 1M
−1M 0M

)
. (1.129)

The associated quantum covariance matrix V is the 2M × 2M matrix:

V =
1
2
⟨x̂x̂T + (x̂x̂T)T⟩ − ⟨x̂⟩⟨x̂T⟩, (1.130)

i.e.
Vab =

1
2
⟨x̂a x̂b + x̂b x̂a⟩ − ⟨x̂a⟩⟨x̂b⟩. (1.131)

It contains the second moments ⟨q̂aq̂b⟩, ⟨q̂a p̂b⟩, ⟨ p̂aq̂b⟩ and ⟨ p̂a p̂b⟩.

Basis change

We now examine the transformation of the covariance matrix under a unitary trans-
formation U = X + iY, where X and Y are real matrices. We have b̂ = Uâ where
b̂ = (b̂1, ..., b̂M)T and â = (â1, ..., âM)T are the vectors of field operators respectively
in bases {vm(r, t)} and {uℓ(r, t)}. We can write the basis change between the quadra-
ture vectors ŷ and x̂ associated respectively to b̂ and â as

ŷ = Ox̂ with O =

(
X −Y
Y X

)
. (1.132)

Then the covariance matrix V ′ associated to ŷ is

V ′ =
1
2
⟨ŷŷT + (ŷŷT)T⟩ − ⟨ŷ⟩⟨ŷT⟩ = OVOT. (1.133)

Gaussian states

Gaussian states play an important role in quantum optics, and, in particular, we will
only manipulate this kind of state in this work. By definition, Gaussian states are
states that have a Gaussian Wigner function

WG(x) =
1

(2π)M
√

det V
e−

1
2 (x−⟨x̂⟩)TV−1(x−⟨x̂⟩). (1.134)

They are completely characterized by their mean field and covariance matrix. The
quantum vacuum, coherent states, squeezed states and thermal states are examples
of Gaussian states.
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Williamson decomposition

It can be shown that the covariance matrix can be expressed in a diagonal form,
according to the Williamson theorem [Williamson 1936; Arvind 1995]:

V = SνMST with νM = ⊕M
k=1νk12, (1.135)

where S is a symplectic matrix, i.e.

STΩS = Ω where Ω =

(
0 1M

−1M 0

)
, (1.136)

and νM is a diagonal matrix whose elements νk are known as the symplectic eigen-
values.
This decomposition will be useful to derive useful quantities in section 2.1.4.

Covariance matrix for any set of observables

The concept of covariance matrix is not unique to the quadratures of the field. For
any set of observables X̂ = (X̂1, ..., X̂M)T, we can define the associated covariance
matrix Γ as the 2M × 2M matrix with elements

Γkℓ[X̂] = ⟨X̂kX̂ℓ⟩ − ⟨X̂k⟩⟨X̂ℓ⟩. (1.137)

1.3 Measurements

This section deals with some types of measurements, which are interesting for this
work. We begin with photodetection and homodyne detection which are typically
performed in optics and then we present spatial-mode demultiplexing techniques,
in particular the multi-plane light conversion, which is at the heart of this thesis.

1.3.1 Photodetection

A building block of any optical measurement is photodetectors like photodiodes,
photomultipliers, CCD cameras, or the eyes. They convert the optical signal into a
proportional electronic current. At the present time, none of these detectors are fast
enough to measure the field directly, they only give access to the light intensity, i.e.
the time average of the square of the electric field over the detector surface S and the
integration time T. We introduce the intensity operator as being equal to the number
of detected photons:

î = N̂ = ∑
ℓ

â†
ℓ âℓ. (1.138)

We assume ⟨î⟩ ≫ 1 per integration time and ⟨(δâ)2⟩ ≪ ⟨â⟩2, with δâ = â − ⟨â−⟩. We
place ourselves in a single-mode scenario, and we can expand the total photodetec-
tion operator:

î = â† â

≃ ⟨â†⟩⟨â⟩+ δâ†⟨â⟩+ δâ⟨â†⟩.
(1.139)
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Hence its fluctuations are written

δî = î − ⟨î⟩ = δâ†⟨â⟩+ δâ⟨â†⟩. (1.140)

For a coherent state, we have ⟨â⟩ = |α|eiφ, and then

δî = |α|δq̂φ, (1.141)

where q̂φ is the amplitude quadrature. In realistic situations, we need to add the
electronic noise of the detector δNEN , which is a random variable, and the intensity
fluctuations become

δî = |α|δq̂φ + δNEN . (1.142)

Here, for simplicity, the quantum efficiency has been chosen as equal to 1. Eq. (1.142)
depends only on the measured field and on the noise of the detector. This means that
photodetection can only give access to the amplitude quadrature, and for this, we
need to overcome the electronic noise of the detector, which is not easily done when
the state is close to the vacuum.

1.3.2 Balanced homodyne detection

In order to have access to the field itself and not only to its intensity, an interfero-
metric measurement must be performed. Before presenting this measurement called
homodyne detection, we will describe the beamsplitter transformation in the quan-
tum optics formalism.

A small detour: the beamsplitter

We study monochromatic Gaussian beams, all beams having the same frequency
and the same waist. The input-output relations of a lossless semi-reflecting mirror,
with transmissivity κ are

âout,1 =
√

κâin,1 +
√

1 − κâin,2, (1.143)

âout,2 =
√

κâin,1 −
√

1 − κâin,2. (1.144)

The negative sign is needed for energy conservation. Note that the commutator
relations of the outgoing fields follow the ones of quantized fields:

[âout,1, â†
out,1] = [âout,2, â†

out,2] = 1, (1.145)

[âout,1, âout,1] = [âout,2, âout,2] = 0. (1.146)

Measuring the field

Homodyne detection is a standard measurement technique used in quantum optics,
initially developed in radio-wave contexts. It gives access to all quadratures of the
field of interest, referred to as the signal, by mixing it with a reference beam called
the local oscillator on a 50-50 beamsplitter and measuring the intensity at each out-
put with two photodetectors (see fig. 1.8). For the sake of simplicity, we consider
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FIGURE 1.8: Homodyne detection.

that both the signal and the local oscillator are single-mode. When their modes are
matched, as presented before for the beamsplitter relations, the intensity difference
between the two photodetectors is written as follows:

N̂− = N̂1 − N̂2

=
1
2
(â†

s + â†
LO)(âs + âLO)−

1
2
(â†

s − â†
LO)(âs − âLO)

= â†
s âLO + â†

LO âs.

(1.147)

The local oscillator is chosen to be an intense field, i.e. we assume that its fluc-
tuations and the mean field of the signal beam are negligible compared to its mean
field: ⟨âs⟩,

√
⟨(δâLO)2⟩ ≪ ⟨âLO⟩ with ⟨âLO⟩ = |αLO|eiϕLO . Hence, eq. (1.147) becomes

N̂− ≃ |αLO|(â†
s eiφLO + âse−iφLO)

= |αLO|q̂
φLO
s

(1.148)

where q̂φLO
s = â†

s eiφLO + âse−iφLO is the quadrature operator aligned along the local
oscillator phase. The fluctuations of the measured signal are thus

δN̂− = |αLO|δq̂φLO
s , (1.149)

and, in a realistic scenario, similarly to the photodetection scheme, we add the de-
tector noise:

δN̂− = |αLO|δq̂φLO
s + δN̂EN . (1.150)

We see here that the homodyne detection apparatus allows the amplification of the
fluctuations of the field of interest by an external field, the local oscillator. Therefore,
it is possible to overcome the electronic noise of the detectors more easily than for
photodetection. The measured quadrature is also set by the phase of the local oscil-
lator, giving complete access to the field.
Note that the homodyne detection acts as a modal projective measurement. If the
modes of the signal and the local oscillator are unmatched, the measured quadrature
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FIGURE 1.9: Spatial-mode demultiplexing consists in decomposing
multimode light over single-modes of a basis, in this work, of th trans-
verse Hermite-Gaussian mode basis. We will designate as SPADE the

association of a mode-sorting technique with photodetectors.

FIGURE 1.10: Photonic lantern [Birks 2015].

corresponds to the one in the local oscillator mode [Bachor 2019].

1.3.3 Spatial-mode demultiplexing

Principle

The measurement at the heart of this work is based on spatial-mode demultiplexing
(SPADE). SPADE designates the ability to decompose multimode light over single
modes of a basis using a mode-sorting technique. By default, we consider in this
manuscript that the considered basis is the transverse Hermite-Gaussian one. At the
output of the mode-sorter, it is then possible to perform any measurement. When
nothing else is specified, SPADE refers to photodetectors at the single-mode outputs
of the mode-sorter (see fig. 1.9).

Mode-sorting techniques

Photonic lantern Photonic lanterns are based on a gradual transition between un-
coupled single-mode waveguides to a multimode waveguide. Reviews on this tech-
nology can be found in [Birks 2015; Leon-Saval 2015]. Photonic lanterns consist of
single-mode cores being gradually reduced until they cannot confine the light any-
more. The light is then coupled into the multimode waveguide, as illustrated in
fig. 1.10. The transition has to be adiabatic in order to guarantee reversibility.
There are several possible implementations of the photonic lantern, either from a
bundle of tapered single-mode fibers or from an array of single-mode waveguides
formed via inscription processes with ultrafast lasers. This system allows taking ad-
vantage of single-mode-based photonic technologies in a multimode scenario lead-
ing to numerous applications in astronomy, spectroscopy and telecommunications.
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FIGURE 1.11: Photonic lantern implementations [Leon-Saval 2015].

Note, however, that there is no direct correspondence between the single modes and
the modes of the multimode core. In other words, light coming from one single-
mode core excites several modes of the multimode core. Therefore, it makes it dif-
ficult to have access to a specific decomposition like on the Laguerre-Gaussian or
Hermite-Gaussian mode bases for example.

Fractional Fourier Transform This approach allows to sort Laguerre-Gaussian
modes as it is based on one of their key properties: their effective phase velocity
depends on the radial index p (as presented in eq. (1.52)) [Zhou 2017]. LG modes are
eigenmodes of fractional Fourier transforms (FRFT), a generalization of the Fourier
transform. Under a FRFT, their shape remains unchanged but they gain a mode-
dependent phase, as shown in eq. (1.151). The family of FRFT operations F a, where
a is the order of the FRFT, transforms the LG modes from the mode in the initial
plane upℓ(r0, θ0) to the mode in the final plane upℓ(r, θ) as follows

F a[upℓ(r0, θ0)] = exp(−i(2p + |ℓ|)a)upℓ(r, θ). (1.151)

The standard Fourier transform corresponds to a = π/2. This mode-dependent
additional phase is referred to as the fractional Gouy phase. The ℓ dependence can
be removed with the use of a Dove prism [Leach 2002], leaving only the p-dependent
extra phase.
The FRFT F a can be realized experimentally with a single lens of focal length f in a
z-z configuration, as illustrated in fig. 1.12, where

z =
πw2

0
λ

tan
a
2

,

f =
πw2

0
λ sin a

.
(1.152)

Therefore, FRFT combined with an interferometer discriminates the modes based
on the fractional Gouy phase and sorts the LG modes by routing them to different
interferometer outputs. Zhou et al. implemented this demultiplexing operation ex-
perimentally by coupling lenses, to perform the FRFT, with beamsplitters and phase
plates, that form the interferometer and obtained a total crosstalk (the sum of the
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FIGURE 1.12: Realization of the FRFT with a single lens [Zhou 2017].

optical powers at the wrong outputs divided by the total power) of 15% [Zhou 2017]
for sorting 3 modes.

Hermite-Gaussian modes can be bijectively converted into Laguerre-Gaussian
modes using an astigmatic mode-converter (AMC) [Beijersbergen 1993], composed
of two cylindrical lenses. Therefore, combining an AMC with an FRFT-based mode-
sorter results in a Hermite-Gaussian mode demultiplexer4 [Zhou 2018].

The previous sorting approaches5 are unitary and give access to a high number of
modes. However, they are specific to some bases either given by the positions of the
single-mode waveguides of the photonic lantern or by exploiting some properties of
the Laguerre-Gaussian and Hermite-Gaussian modes with the FRFT-based sorter.

Multi-plane light conversion The multi-plane light conversion [Labroille 2014;
Zhang 2023] technology was conceived in Laboratoire Kastler Brossel [Morizur 2011]
and is now developed and commercialized by the company Cailabs. This sorting
technique can be adapted to any mode basis decomposition. It was shown that any
spatial unitary transform can be performed by cascading a finite number of phase
masks and Fourier transforms [Morizur 2010]. For practical applications, the input
and output are finite subsets of orthonormal modes.

There is no theory on how to analytically optimize the patterns and the number
of phase masks, these parameters are not intuitive to determine. Several numerical
methods can be used to establish the phase masks, most of them in the inverse de-
sign category. It is generally accepted that N phase masks are required to transform
N modes. However, a "magic mapping" was recently developed by Fontaine et al.
and enables a demultiplexing of 1035 modes using 14 phase masks [Fontaine 2021].
Multi-plane light conversion exhibits low losses and low crosstalk - which are im-
perfections in the mode-basis decomposition - and can be achieved for any spatial-
mode transformation. Thanks to these remarkable features, it is an ally of choice
for various applications, and in particular, fibered and free-space communications.
Let us now examine implementations of the multi-plane light conversion. A spatial

4To be precise, there is also an OAM sorter added to the setup to distinguish modes with different
ℓ.

5One method that was not mentioned is to use a sequence of cavities for sorting modes, for example,
by injecting the reflection at the input of a triangular cavity into a second triangular cavity and so on
[Santos 2021].
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Fourier transform can be realized with a lens of focal length f in a f - f configuration.
In practical applications, the multi-plane light conversion is often realized with a re-
flective design, with the lens replaced by a spherical mirror. A common implemen-
tation of the multi-plane light conversion is carried out with several reflections on a
spatial light modulator (SLM) [Paúr 2016], on a deformable mirror [Labroille 2014]
or a reflective phase plate for Cailabs as the successive phase masks. The unitary
transformation is programmable in these situations. In practice, multi-plane light
conversion requires local phase shifts and diffraction, making the use of a lens non-
mandatory. The multi-plane light converter (MPLC) that we use in this work is
the Proteus-C from Cailabs, which is commercialized mostly for telecommunication
purposes. It implements phase shifts and diffraction through several reflections on
an engraved gold-plated phase plate, serving as successive phase planes. The en-
graving is chosen such that diffraction occurs between the phase planes. Proteus-C
performs the mode basis change between ten spatially separated Gaussian beams
to the basis defined by the eigenmodes of a multimode fiber, in our case the spatial
Hermite-Gaussian mode basis, as illustrated in fig. 1.13. The basis change is fixed,
ensuring low losses and crosstalk. To adapt the MPLC for the study of optical scenes,
we removed the multimode fiber, resulting in a free-space input. The transformation
can be performed in both directions: from the single-mode fibers to the multimode
beam, and vice-versa.

FIGURE 1.13: The Multi-Plane Light Converter (MPLC - Proteus-C) of
Cailabs performs the basis change between spatially separated Gaus-
sian beams from single-mode fibers into the eigenmodes of a multi-
mode fiber thanks to multiple reflections on a spherical mirror and a

phase plate. Source: [Cailabs].

Dispersion serves as the temporal counterpart to diffraction but its controlled
implementation requires non-linear optical processes. Consequently, this mode-
demultiplexing technique can be extended to both the temporal and spectral do-
mains at the cost, however, of necessitating more sophisticated setups [Brecht 2015;
Ashby 2020; Joshi 2022].

https://www.cailabs.com/fr/reseaux-fibres/reseaux-du-futur/proteus/-
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1.3.4 Direct imaging

Direct imaging (DI) corresponds to what is commonly identified as conventional
imaging, i.e. the association of a lens, or more generally of an imaging system, with
a CCD camera, as illustrated in fig. 1.14.

FIGURE 1.14: Direct imaging.

The photons are detected on each pixel of the camera to reconstruct the optical
scene. Therefore, direct imaging is a particular type of spatial-mode demultiplexing
where the measurement basis is the pixel mode basis. Since it is the conventional
way to perform passive imaging, we will often compare the performances of HG
SPADE to those of typical direct imaging.
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Parameter estimation is a fundamental task in metrology. This is a branch of
statistics with applications ranging from physics to politics, as well as telecommuni-
cations, speech recognition, medicine, or economics [Schuster 1898; Kay 1993; Tay-
lor 2007; Box 2015; Barbieri 2022].
In the context of experimental physics, due to the unavoidable presence of noises
and their intrinsic randomness, measurements exhibit statistical errors that limit
their sensitivity. Classical estimation theory which deals with experimental noises
like thermal fluctuations, mechanical instabilities, or electronic noises, was extended
to a quantum version that includes the intrinsic noises, in particular of the quantum
electromagnetic field, as presented in the previous chapter. In some situations, it
is possible to improve technologies to reduce the influence of certain noise sources,
as well as to engineer the state of the light to access a smaller intrinsic noise. An
interesting question is therefore: what is the ultimate sensitivity limit for a given
parameter and what measurement reaches it?

Parameter estimation theory and quantum metrology aim to provide a formal-
ism to answer these questions, and their general framework is introduced in the first
section. The second section describes the tools extracted from the parameter estima-
tion theory to reach the ultimate sensitivity in various contexts. The third section
presents some models and assumptions that will be used in the manuscript to study
the particular cases of the estimations of beam displacement and source separation.
We will then apply the formalism of parameter estimation to these situations in the
last two sections.
For more details about classical estimation theory, see [Kay 1993], and for more com-
prehensive reviews on quantum metrology, see [Giovannetti 2011; Pezzè 2014; Bar-
bieri 2022].

2.1 Tools for parameter estimation

Within the framework of quantum metrology, variables can be categorized into two
distinct types: parameters and observables. Observables (e.g. number of photons,
spin) inherently carry noise due to their quantum nature. Their measurement pro-
vides access to parameters (e.g. phase, separation between two optical sources), that
have a well-defined value, their true value, without any noise. Noise in the param-
eters arises during the encoding of parameters into the probe — in this work, the
electromagnetic field — and during the subsequent measurement of observables.
The parameter estimation theory is concerned with the extent to which collected
data - from the measurement of observables - can be used to estimate the unknown
parameters, and how the information from the observables can be extracted effi-
ciently to have the best estimation possible of the parameters 1.
The process of parameter estimation can be decomposed into distinct building
blocks presented in fig. 2.1: the preparation of the probe, in our case of the light

1This formalism can be used in various contexts: estimation of the proportion of the population
who will vote for a particular candidate, the position of an object with radar or sonar, the heart rate of
a fetus [Widrow 1985], the underground distance of an oil deposit [Justice 1985], the carrier frequency
of a signal for telecommunications [Proakis 2007], orbit determination...
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FIGURE 2.1: The building blocks of parameter estimation theory. The
probe, i.e. the electromagnetic field E0, is prepared and goes through
the sample where the parameter θ is encoded. Then the θ-dependent
electromagnetic field is measured resulting in a set of data points x =
(x1, x2, ...) which are data-processed to extract an estimate θest of the

parameter θ using the estimator θ̃.

beam, the encoding of the parameter θ onto the probe, the measurement of the ob-
servables X̂ and the data processing, providing an estimate θest = θ̃(x) using the
estimator θ̃.
In this section, we introduce the formalism needed to describe estimators and we
introduce fundamental bounds used to benchmark estimation procedures.

2.1.1 Estimators

We consider a set of measurement outcomes x = (x1, ..., xµ) whose distribution de-
pends on an unknown parameter θ. They are formally treated as a realization of
µ independent and identically distributed random variables X, obtained with the
measurement of the observable X̂. The goal is to determine the parameter θ based
on the measurement results by building an estimator θ̃(x).

An estimator is a function of random variables, hence it is also a random vari-
able and its statistical moments are well-defined. We note p(x|θ) the probability
distribution function of the measurement results for a given parameter value. The
expectation value of the estimator is

⟨θ̃⟩ =
∫

p(x|θ)θ̃(x)dx. (2.1)

We define the bias of the estimator as

bθ̃ = ⟨θ̃⟩ − θ0, (2.2)

where θ0 is the true value of the parameter. An estimation with low bias is said to
have high accuracy. If bθ̃ = 0, the estimator is said to be unbiased. In the following of
this manuscript, we will only consider unbiased estimators. Using this assumption,
we will quantify the performance of an estimator with its variance:

∆2θ̃ = ⟨θ̃2⟩ − ⟨θ̃⟩2 =
∫

p(x|θ)
(
θ̃(x)− ⟨θ̃⟩

)2 dx. (2.3)
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FIGURE 2.2: Properties of an estimator. The bias bθ̃ and the standard
deviation ∆θ̃ of the estimator θ̃ of the parameter θ are represented.

This quantity corresponds to the sensitivity of the estimation. The aim when looking
for an optimal estimator is to find an estimator with the minimum variance, i.e. with
the highest sensitivity possible.

Frequentist versus Bayesian approach

The parameter estimation framework presents two approaches which are based on
two interpretations of the probabilities. In the Bayesian approach, the probability
of an event is viewed as the degree of belief in this event, while in the frequentist
approach, the probability of an event corresponds to the relative frequency of this
event after many realizations.

The Bayesian approach assumes prior information on the parameter θ, which is
written as the probability distribution p(θ). The parameter θ is, therefore, seen as a
random variable, and the prior information on the parameter is taken into account
using Bayes’ theorem to access an estimation through the following probability dis-
tribution

p(θ|x) = p(x|θ)p(θ)
p(x)

. (2.4)

The estimator continually computes a new probability distribution function p(θ|x)
based on the previous density function and the collected data and converges toward
the true value of the parameter as the number of measurements increases.

In this work, we use the frequentist approach, where the parameter θ is treated as
a deterministic and unknown constant, without any prior information. As M −→ ∞,
the frequency of the collected data tends to reflect the probability density function,
hence the denomination. A criticism that is usually addressed to the frequentist
approach is that an optimal estimator potentially depends on θ. This could seem
counter-intuitive as it appears to conflict with the purpose of parameter estimation.
It is however reasonable to assume that it is always possible to have access to prior
knowledge on the parameter thanks to theory, previous estimates, or from a fraction
of the data set.
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2.1.2 Fisher information

To answer the question of what is the sensitivity limit of a given parameter when per-
forming a specific measurement, the parameter estimation theory provides a lower
bound for the variance of the estimator, the Cramér-Rao bound (CRB) [Fisher 1925;
Kay 1993; Rao 1994; Cramér 1999]:

∆2θ̃ ≥ 1
µIF[θ, X̂]

, (2.5)

where µ is the number of independent measurements and IF[θ, X̂] is the Fisher in-
formation defined by

IF[θ, X̂] = −
∫

p(x|θ)∂2 ln p(x|θ)
∂θ2 =

∫ 1
p(x|θ)

(
∂p(x|θ)

∂θ

)2

dx. (2.6)

The Fisher information is a non-negative and additive quantity [Kay 1993]. It is
often interpreted as the maximal amount of information about the unknown param-
eter θ that can be extracted with a given measurement. The more the probability
distribution depends on the parameter, the better the sensitivity is. The estimation
will present a high variance if the probability distribution does not depend or de-
pends only weakly on the parameter θ2.
The Cramér-Rao bound allows for the benchmarking of the performance of unbiased
estimators. An estimator that saturates the Cramér-Rao bound is said to be efficient.

Derivation of the Cramér-Rao bound

Let us derive the Cramér-Rao bound. From the definition of the expectation value
of an estimator, since we assume θ̃ to be unbiased, we have∫ (

θ̃ − ⟨θ̃⟩
)

p(x|θ)dx = 0. (2.7)

We apply ∂θ to both sides

∫ (
θ̃ − ⟨θ̃⟩

) ∂p(x|θ)
∂θ

dx − ∂⟨θ̃⟩
∂θ

∫
p(x|θ)dx = 0. (2.8)

Using the normalization of p(x|θ):∫
p(x|θ)dx = 1, (2.9)

we obtain ∫
(θ̃ − ⟨θ̃⟩)p(x|θ)∂ ln p(x|θ)

∂θ
dx =

∂⟨θ̃⟩
∂θ

, (2.10)

2"Depending on the parameter" here means that we want to maximize ∂θ p(x|θ) around the true
value θ, hence to maximize the second derivative of p(x|θ), the curvature around the true value–the
derivative ∂θ p(x|θ) is typically 0 at the true value. This is best shown by the logarithmic formulation
of the Fisher information.
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and the Cauchy-Schwarz inequality3 gives

∫
(θ̃ − ⟨θ̃⟩)2 p(x|θ)dx ×

∫
p(x|θ)

(
∂ ln p(x|θ)

∂θ

)2

dx ≥
(

∂⟨θ̃⟩
∂θ

)2

. (2.11)

For an unbiased estimator, ⟨θ̃⟩ = θ, hence

∫
(θ̃ − ⟨θ̃⟩)2 p(x|θ)dx ×

∫
p(x|θ)

(
∂ ln p(x|θ)

∂θ

)2

dx ≥ 1 (2.12)

and, since the µ measurement results are independent and identically distributed,
we have ∫

(θ̃ − ⟨θ̃⟩)2 p(x|θ)dx × µ
∫

p(x|θ)
(

∂ ln p(x|θ)
∂θ

)2

dx ≥ 1. (2.13)

Finally, we obtain the Cramér-Rao bound as given in eq. (2.5):

∆2θ̃ ≥ 1
µIF[θ, X̂]

with IF[θ, X̂] =
∫ 1

p(x|θ)

(
∂p(x|θ)

∂θ

)2

dx. (2.14)

2.1.3 Quantum Fisher information

In the previous section, we tackled the task of estimating a parameter θ from the
results of a given measurement with the best sensitivity possible. It is however pos-
sible to determine the ultimate sensitivity limit for the estimation of θ, i.e. a limit
that depends only on the state of the probe after encoding the parameter and not on
the measurement apparatus.
The most general description of a measurement is given by positive operator-valued
measures (POVM). A POVM is a set of Hermitian operators {F̂(x)} which are non-
negative and satisfy the normalization condition∫

dxF̂(x) = 1. (2.15)

The conditional probability to observe the result x for a given value of the parameter
θ is

p(x|θ) = Tr
[
F̂(x)ρ̂(θ)

]
. (2.16)

The ultimate limit on the sensitivity of the estimation of θ is obtained by maximizing
the Fisher information over all possible POVMs {F̂(x)} - which replace the observ-
able X̂ - and is given by the quantum Cramér-Rao bound (QCRB) [Helstrom 1967;
Braunstein 1994]:

∆2θ̃ ≥ 1
µIF[ρ̂(θ), {F̂(x)}]

≥ 1
µIQ[ρ̂(θ)]

, (2.17)

3The Cauchy-Schwarz inequality states that
(∫

|uv|
)2 ≤

∫
|u|2

∫
|v|2 with equality if and only if

u = λv. Here, we apply it with u = (θ̃ − ⟨θ̃⟩)
√

p(x|θ) and v =
√

p(x|θ) ∂ ln p(x|θ)
∂θ .
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where µ is the number of independent measurements, and IQ[ρ̂(θ)] is the quantum
Fisher information (QFI) defined as

IQ[ρ̂(θ)] = max
{F̂(x)}

IF[ρ̂(θ), {F̂(x)}] = Tr
[
ρ̂(θ)L̂2

θ

]
. (2.18)

The operator L̂θ is the symmetric logarithmic derivative (SLD) defined as a solution
of the following equation [Helstrom 1967]

∂ρ̂(θ)

∂θ
=

1
2
(ρ̂(θ)L̂θ + L̂θ ρ̂(θ)). (2.19)

As written in eq. (2.18), the QFI is a maximization of the Fisher information over all
possible measurements and is therefore an upper bound for this quantity. The QFI
provides the ultimate sensitivity for the estimation of the parameter θ whatever the
measurement apparatus.

Derivation of the quantum Cramér-Rao bound
For the derivation of the QCRB, we follow [Pezzè 2014].
From eqs. (2.6) and (2.16), we write

IF[ρ̂(θ), {F̂(x)}] =
∫ 1

p(x, θ)

(
∂p(x, θ)

∂θ

)2

dx =
∫

dx
Tr
[
F̂(x)∂θ ρ̂(θ)

]2

Tr
[
F̂(x)ρ̂(θ)

] . (2.20)

Using eq. (2.19), we obtain

Tr
[
F̂(x)∂θ ρ̂(θ)

]
=

1
2
(
Tr
[
F̂(x)ρ̂(θ)L̂θ

]
+ Tr

[
F̂(x)L̂θ ρ̂(θ))

])
. (2.21)

Since the operators are Hermitian, we have

F̂(x)L̂θ ρ̂(θ) = F̂(x)† L̂†
θ ρ̂(θ)† =

(
ρ̂L̂θ(θ)F̂(x)

)† . (2.22)

Then, using
Tr
[(

ρ̂L̂θ(θ)F̂(x)
)†
]
= Tr

[
ρ̂L̂θ(θ)F̂(x)

]∗, (2.23)

from eq. (2.21),we obtain

Tr
[
F̂(x)∂θ ρ̂(θ)

]
= Re

{
Tr
[
F̂(x)ρ̂(θ)L̂θ

]}
, (2.24)

and we have
Re
{

Tr
[
F̂(x)ρ̂(θ)L̂θ

]}2 ≤ |Tr
[
F̂(x)ρ̂(θ)L̂θ

]
|2. (2.25)

Moreover, since ρ̂(θ) and F̂(x) are positive semi-definite operators, the Cauchy-
Schwarz inequality4 gives

|Tr
[
F̂(x)ρ̂(θ)L̂θ

]
|2 ≤ Tr

[
F̂(x)ρ̂(θ)

]
Tr
[
F̂(x)ρ̂(θ)L̂2

θ

]
. (2.26)

4The Cauchy-Schwarz inequality states that |Tr
[
Â† B̂

]
|2 ≤ Tr

[
Â† Â

]
Tr
[
B̂† B̂

]
with equality if and

only if Â = λB̂.
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Consequently, combining eqs. (2.24) to (2.26), we obtain the inequality

Tr
[
F̂(x)∂θ ρ̂(θ)

]2 ≤ Tr
[
F̂(x)ρ̂(θ)

]
Tr
[
F̂(x)ρ̂(θ)L̂2

θ

]
, (2.27)

Hence, using eq. (2.20) and the normalization of the POVM (see eq. (2.15)), the Fisher
information satisfies the inequality

IF[ρ̂(θ), {F̂(x)}] ≤ Tr
[
ρ̂(θ)L̂2

θ

]
. (2.28)

We note that the right side of the inequality does not depend on the POVM. More-
over, it can be shown that there exists at least one measurement that saturates
eq. (2.28), which is the POVM built on the eigenstates of L̂θ (see [Pezzè 2014]). We
can thus interpret this quantity to be the maximization of IF[ρ̂(θ), {F̂(x)}] over all
possible POVMs, and we define this higher bound to be the QFI IQ[ρ̂(θ)] defined in
eq. (2.18).

2.1.4 Quantum Fisher information for Gaussian states and mode-encoded
parameters

In this work, we are particularly interested in the estimation of two parameters, the
displacement of a beam and the separation between two sources. In sections 2.4
and 2.5, we derive the QFI for these two parameters, in order to determine which
measurements are optimal.
We consider the case where the probe electromagnetic field is in a thermal state,
which is a Gaussian state (as described in section 1.2.7).
In this section, we provide a simplified expression of the QFI derived in
[Sorelli 2023], that we apply to beam displacement and source separation estima-
tions in sections 2.4 and 2.5.

These parameters are encoded in the modes of the probe, more specifically the spa-
tial modes. This means that the parameter of interest θ modifies the n initially -
before the encoding of the parameter - populated modes of the probe {uk(r)} but
not the state of the field ρ̂, or, in other words, that the way the state ρ̂ is written
in the initial mode basis is not affected by changes of the parameter. In order to
determine the QFI for mode-encoded parameters and small variations of the pa-
rameters, we define the n parameter-dependent modes {uk[θ](r)} from the modes
{uk(r)}, and their derivatives {∂θuk[θ](r)}. For example, when the parameter of
interest is the displacement of the beam x0, the initially populated mode is the cen-
tered Gaussian beam u00(x), and we define the parameter-dependent mode such
that u00[x0](x) = u00(x − x0).

It can be shown that for modes {uk(r)} initially populated with Gaussian states, the
QFI can be decomposed into the covariance matrix V and the mean field x = ⟨x̂⟩
contributions [Pinel 2012; Serafini 2017]

IQ[θ] = IQ,V [θ] + IQ,x[θ] (2.29)
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where IQ,V [θ] and IQ,x[θ], the covariance matrix and the displacement vector contri-
butions to the QFI, are written in terms of the symplectic matrix and the symplectic
eigenvalues obtained from the Williamson decomposition of V. Their expressions
can be found in [Sorelli 2023].

In order to derive an analytical expression for the QFI for mode-encoded param-
eters, we now introduce two Hilbert spaces: Hn formed by the n modes {uk[θ](r)}
and H∂ formed by their m derivatives {∂θuk[θ](r)} that are linearly independent
from the modes {uk[θ](r)}. We assume that the n modes {uk[θ](r)} form an or-
thonormal basis, and we have dim Hn = n and dim H∂ = m ≤ n. We can always
construct a m-dimensional orthonormal basis {u′

k[θ](r)} of H∂ from the derivative
modes, so that each derivative mode can be expressed as5

∂θuk[θ](r) =
n

∑
ℓ=1

ckℓ[θ]uℓ[θ](r) +
m

∑
ℓ=1

dkℓ[θ]u′
ℓ[θ](r). (2.30)

The covariance matrix and the displacement vector contributions to the QFI can be
expressed in terms of the ckℓ[θ] and dkℓ[θ]

6 , i.e. in terms of the initially populated
modes and their derivatives. Both expressions and their derivations are quite heavy
and can be found in [Sorelli 2023].

Since we are interested in thermal states, which have a zero mean field, we give
their only contribution to the QFI which is the covariance matrix contribution. The
covariance matrix Vn of thermal states, expressed in the basis {uk[θ](r)}, is diagonal,
and therefore, its Williamson decomposition (eq. (1.135)) is straightforward

Vn = SνnST with νn = ⊕n
k=1νk12 and S = 12n. (2.31)

The covariance contribution to the QFI is given by [Sorelli 2023]:

IQ,V [θ] =
1
2

3

∑
ℓ=0

n

∑
j,k=1

(a(ℓ)j,k )
2

νjνk − (−1)ℓ
+

1
2

3

∑
ℓ=0

n

∑
j=1

m

∑
k=1

(a(ℓ)j,k+n)
2 + (a(ℓ)k+n,j)

2

νj − (−1)ℓ
, (2.32)

where the νk are the symplectic values of the covariance matrix expressed in the n
initially populated modes and the a(ℓ)j,k coefficients are given by

a(ℓ)j,k =


Tr
[

A(ℓ)
j,k Bn

]
1 ≤ j, k ≤ n,

Tr
[

A(ℓ)
j,(k−n)B∂

]
1 ≤ j ≤ n, n < k ≤ n + m,

Tr
[

A(ℓ)
(j−n),kB∂

]
n < j ≤ n + m, 1 ≤ k ≤ n.

(2.33)

5This decomposition is not unique as the bases choice is not unique. If the initially populated modes
uℓ[θ](r) are more than one, it is possible to apply a unitary transformation to obtain a different mode
basis of the same space and the orthonormalization of the derivative modes u′

ℓ[θ](r) is not unique. For
example, with the Gram-Schmidt orthogonalization process, the final mode basis depends on which
mode is started with.

6These are the coefficients of interest as they contain information about consequences of variations
of the parameter on the modes on the smallest subspace as shown in eq. (2.30).
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Here, the A(ℓ)
jk matrices are a set of 2n × 2n matrices that are zero everywhere except

in the jk block where they are given by Aℓ = iσy/
√

2, σz/
√

2, 12/
√

2 and σx/
√

2 for
ℓ = 0, 1, 2 and 3, respectively, with σx,y,z the Pauli matrices7, and

Bn = DT
n (Vn − 12n) + (Vn − 12n)Dn + ∂θVn, (2.35)

B∂ = DT
∂ (Vn − 12n), (2.36)

where Dn and D∂ are respectively 2n× 2n and 2n× 2m matrices with kℓ blocks given
by

(Dn)kℓ =

(
Re(ckℓ) − Im(ckℓ)
Im(ckℓ) Re(ckℓ)

)
, (2.37)

(D∂)kℓ =

(
Re(dkℓ) − Im(dkℓ)
Im(dkℓ) Re(dkℓ)

)
, (2.38)

using the coefficients ckℓ and dkℓ from eq. (2.30).

In the following, we will consider only real modes {uk[θ](r)}, which is the case for
HG modes. This is why we can simplify eqs. (2.37) and (2.38) to

(Dn)kℓ = ckℓ12, (2.39)

(D∂)kℓ = dkℓ12. (2.40)

We also assume that the modes {uk[θ](r)} are orthogonal to all the derivative modes
{∂θuk[θ](r)}, again this is the case for HG modes. This leads to n = m and

Dn = 0 and (D∂)kℓ = δkℓηk12, (2.41)

where η2
k = ||∂θuk[θ](r)||2 =

∫
d2r (∂θuk[θ](r))2. As a consequence, the matrices Bn

and B∂ are diagonal and only the terms with ℓ = 2 survive in eq. (2.32), and the QFI
reads

IQ,V [θ] =
1
2

n

∑
j,k=1

(
a(2)j,k

)2

νjνk − 1
+

n

∑
j=1

(
a(2)j,j+n

)2

νj − 1
, (2.42)

with

a(ℓ)j,k =

{
1√
2

Tr[∂θVn] 1 ≤ j, k ≤ n,
1√
2

Tr
[
DT

∂ (Vn − 12n)
]

1 ≤ j ≤ n, n < k ≤ 2n.
(2.43)

The first term in eq. (2.42) contains the sum over only the n modes {uk[θ](r)}, it de-
scribes the contribution to the QFI of variations of the state within these n modes due
to a parameter change. On the other hand, the second term is composed of a sum

7For a better understanding of the structure of the A(ℓ)
jk matrices, we write the A(2)

24 matrix with
n = 2:

A(2)
24 =

1√
2


0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

 (2.34)



2.2. Reaching the ultimate sensitivity limit in parameter estimation 49

over the modes {uk[θ](r)} but also of a sum over their m orthonormalized deriva-
tives {u′

k[θ](r)}. This second term accounts for the coupling between the modes
{uk[θ](r)} and their derivatives induced by parameter variations.

2.2 Reaching the ultimate sensitivity limit in parameter esti-
mation

As stated in the previous section, the ultimate sensitivity for the estimation of a
given parameter is given by the QFI. An estimation protocol can be decomposed
into four steps: the preparation of the probe and its interaction with the system to
be measured which encodes the parameter in the probe, the probe readout, and the
data processing which results in an estimate, as illustrated in fig. 2.1.

It is possible to act on three of these points, which we will develop in the follow-
ing, to optimize the process and hope to saturate the quantum Cramér-Rao bound
[Kay 1993; Giovannetti 2011; Barbieri 2022].

2.2.1 Optimal states as the probe

As noticeable in eq. (2.18), the QFI is derived for a given quantum state, and different
states provide different scalings of the QFI with the number of photons. An optimal
probe state is a state that maximizes the QFI.
The most well-known successes of quantum metrology emerged in phase esti-
mation problems. The textbook examples of optimal states for estimation of
phase φ are the so-called NOON states. They are entangled states of the form
|ψ⟩ = 1√

2
(|N⟩ |0⟩+ |0⟩ |N⟩), which represents a superposition of N particles in one

mode with zero particles in the other mode, and vice versa. These states are theoret-
ically known to provide a Heisenberg scaling, i.e. ∆φ̃ ∝ 1/N instead of the standard
quantum limit where ∆φ̃ ∝ 1/

√
N [Demkowicz-Dobrzański 2015]. An experimental

demonstration was realized with N = 2 [Slussarenko 2017]. However, NOON states
are difficult to generate for N > 2 and there is no recipe to prepare them determin-
istically. They are also extremely sensitive to losses [Giovannetti 2011]. Squeezed
states are another kind of quantum state that can be useful to overcome the standard
quantum limit for phase estimation [Giovannetti 2011]. One of their famous appli-
cation is the detection of gravitational waves with the VIRGO interferometer where
they allow for a 3dB gain on the sensitivity compared to using coherent states [Virgo
Collaboration 2019].

2.2.2 Optimal measurements

As shown in the definition of the QFI eq. (2.18), which is a maximization of the
Fisher information over all the POVM, another strategy to improve the sensitivity of
the estimation is to perform an optimal readout of the probe. The measurements for
which the Fisher information saturates the QFI are said to be quantum optimal. We
will illustrate this point with the case of estimating the transverse separation of two
incoherent sources in the image plane, which is the core of this thesis.
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Measuring the intensities in the pixel mode basis with a CCD camera, i.e. perform-
ing direct imaging, as it is commonly implemented in passive imaging contexts, is
known to have a low sensitivity when estimating short separations, but high sensi-
tivities for large separations. This is what is conveyed by Rayleigh’s criterion (see
section 3.1).
However, in the parameter estimation framework, when deriving the QFI for sepa-
ration estimation (see section 2.5), we find that the QFI is independent of the source
separation. The derivation of the Fisher information for direct imaging confirms
what is observed experimentally, that direct imaging is a sub-optimal measurement
for estimating short separations, and therefore optimal measurements need to be de-
veloped in this range.
To saturate the QFI for short separations, Tsang et al. suggested performing SPADE
with HG modes [Tsang 2016]. Indeed, the Fisher information for SPADE - deter-
mined in section 2.5 - saturates the QFI for all separations. Consequently, SPADE is
an optimal measurement for separation estimations.

2.2.3 Optimal estimators

Several estimation approaches are available, an overview can be found in [Kay 1993].
Some will perform better than others depending on the parameter of interest and the
complexity of the data model.
The Cramér-Rao bound (see eq. (2.5)) provides a lower bound for the sensitivity of
the estimation. An estimator is said to be efficient when saturating the Cramér-Rao
bound. Such an estimator, however, may not exist, especially when dealing with
small data sets.
We present two estimators that are commonly used: the maximum likelihood esti-
mator and the method of moments.

Maximum likelihood estimator

The maximum likelihood estimator is very popular as it is always asymptotically
efficient. This is based on the assumption that the probability distribution function
is known p(x|θ), and provides efficient estimators for large data sets. The procedure
is the following: for a fixed data set x, the maximum likelihood estimator θ̃ is the
value of the parameter θ that maximizes the likelihood function L(θ|x) = ∏i p(xi|θ).
Unfortunately, this method often requires large data sets and becomes laborious to
implement in a multiparameter scenario.

Method of moments

In the method of moments approach, the probability distribution function does not
need to be completely known. Instead, from the measured observable X̂, a calibra-
tion curve ⟨X̂⟩ = h(θ) has to be built, theoretically or experimentally, beforehand.
We then perform µ measurements which give the results {xi} and the mean value
xµ. The estimator θ̃ is given by the value of the parameter θ for which xµ = ⟨X̂⟩. In
other words, the calibration curve is inverted, we have θ̃ = h−1(xµ) and the variance
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FIGURE 2.3: Illustration of the method of moments. The measured
mean values of the available observables are linearly combined, with
the optimal coefficient given by eq. (2.47). This allows the building of

a calibration curve that is inverted to estimate the parameter.

is given, from the error propagation formula, by

∆2θ̃ =
χ2[θ, X̂]

µ
with χ2[θ, X̂] =

∆2X̂
(∂θ⟨X̂⟩)2

. (2.44)

The quantity χ2[θ, X̂] obeys the chain of inequalities

χ−2[θ, X̂] ≤ IF[θ, X̂] ≤ IQ[θ]. (2.45)

This approach, based on the central limit theorem is simple to implement but, as
shown in eq. (2.45), it is not optimal in general. It could, however, be used as a
starting point for an efficient estimator.

The method of moments can be extended to a more general situation where K ob-
servables X̂ = (X̂1, ..., X̂K)

T are accessible [Gessner 2019; Sorelli 2021b; Sorelli 2021a].
Their linear combination is given by X̂m = mT X̂, where m = (m1, ..., mK)

T is the co-
efficient vector, as illustrated in fig. 2.3. An analytical optimization over all possible
linear combinations can be performed and it results in the optimized sensitivity:

M[θ, X̂] = max
m

χ−2[θ, Xm] = D[θ, X̂]TΓ[θ, X̂]−1D[θ, X̂], (2.46)

where D[θ, X̂] = ∂⟨X̂⟩
∂θ is the derivative vector. Moreover, this sensitivity is obtained

for m = m̃ with
m̃ = ηΓ[θ, X̂]−1D[θ, X̂], (2.47)

where η is a normalization constant. The derivation of eqs. (2.46) and (2.47) is given
in appendix B. For our problem of source separation estimation, the method-of-
moment sensitivity saturates the first inequality of eq. (2.45).
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2.3 Modeling point-like objects imaged by diffraction-
limited optical systems

2.3.1 Point-spread function

Along this work, we examine the situation where point-like objects like stars or flu-
orescent molecules are imaged by a diffraction-limited linear optical system. The
imaging system is characterized by its point-spread function (PSF), which gives the
image function of perfect point sources.
We consider shift-invariant imaging systems, i.e. the point spread function is inde-
pendent of the position in the object plane. We also assume there is no distortion,
so that the image plane coordinates (u, v) are linearly related to the object plane
coordinates (x, y) with the magnification factor M: (u, v) = (Mx,My). The PSF
h(u, v, x, y, t) links the field in the object plane Eo(x, y, zo, t) to the field in the image
plane Ei(u, v, zi, t) [Goodman 2000]:

Ei(u, v, zi, t) =
∫∫

dxdy h(u, v, x, y)Eo(x, y, zo). (2.48)

For point-like objects, it is generally admitted that the spatial modes of the field in
the image plane are directly given by the PSF.
Typical point-spread functions for diffraction-limited optical systems involve Bessel
functions or Zernike polynomials [Racine 1996; Thompson 2002; Braat 2008]. The 2D
Gaussian function is a good approximation of the PSF of diffraction-limited imag-
ing systems and is usually chosen for modeling diffraction-limited optical systems
[Cheezum 2001; Zhang 2007; Stallinga 2010; Chao 2016; Aniano 2011; Jarvis 2020].
This is also our choice for this work.

2.3.2 Beamsplitter model for the propagation through a diffraction-
limited optical system

The previous subsection describes the evolution of the modes of the electromagnetic
field through a diffraction-limited imaging system. We are now interested in the
evolution of the associated field operators.
The finite aperture of the optical system and the diffraction introduce some losses
and we note κ the transmissivity of the imaging system. The optical system can thus
be treated as a beamsplitter with the field of interest âin at one input and vacuum
v̂ at the other [Lupo 2016; Sorelli 2021a]. Using eq. (1.143), the field operator of the
output field is

âout =
√

κâin +
√

1 − κv̂. (2.49)

This equation will used in the model for two-source separation estimation in sec-
tion 2.5.
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2.3.3 Poissonian photodetection model

In sections 2.4 and 2.5, we derive the Fisher information for several measurements
for beam displacement and source separation estimations. As described in sec-
tion 2.1.2, the computation of the Fisher information requires the probability dis-
tribution of the measurement results conditioned on the value of the parameter.
In this work, we assume that there are no correlations or bunching8 effects between
the detected photons, i.e. that all the detected photons are independent. Therefore,
the detection events follow Poissonian statistics. This describes coherent states but
also faint sources for which the number of detected photons during the coherence
time is smaller than one. This is motivated by the high losses of the imaging systems
which results in Poissonian photodetection processes in the image plane [Chao 2016;
Zmuidzinas 2003].
Due to the Poissonian distribution, there is no multiphoton coincidence in the image
plane, and only the single-photon detection events have to be taken into account
for the probability distribution of the measurement results. It is, therefore, possible
to equate the probability distribution to the intensity profile, which simplifies the
calculation of the Fisher information.

2.4 Beam displacement estimation

This section illustrates the previous concepts in the particular case of beam displace-
ment estimation. It is, however, not only a pretext to have fun with some metro-
logical quantities. In order to assess our source separation estimation during the
experimental procedure, we estimate the position of each source individually with a
quadrant detector. Therefore, this section gives us the opportunity to show that this
measurement is almost optimal for beam displacement estimation.

2.4.1 Modeling beam displacement

We want to estimate the transverse displacement x0 of a Gaussian beam, with a
waist w0, in the image plane, assumed to be at the position of the waist z = z0.
The spatial profile of the beam is defined by u00(r − r0) given by eq. (1.23), where
the displacement is along the x-axis without loss of generality, i.e. r0 = (x0, 0), as
illustrated in fig. 2.4(a).
This mode is populated with a thermal state with mean photon number N.

2.4.2 Quantum Fisher information

We present the results from [Sorelli 2023] for beam displacement estimation. This
is a single-mode situation for which the initially populated mode is Gaussian, i.e.
u0[x0](r) = u00(r− r0). Since the mode u0[x0](r) is initially populated with a thermal
state, the QFI is only given by the single-mode covariance matrix contribution of

8No bunching means that the intensity fluctuations are the shot noise.
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FIGURE 2.4: (a) Gaussian beam displaced along the x-axis with a
transverse displacement x0 in the image plane. (b) A quadrant de-
tector, used in a split configuration, is composed of two pixels, mea-

suring the intensities i1 and i2.

eq. (2.42), with V1 = (2N + 1)12 and ν = 2N + 1 its symplectic eigenvalues:

IQ[x0] =
1
2
(a(2)1,1 )

2

ν2 − 1
+

1
2
(a(2)1,2 )

2 + (a(2)2,1 )
2

ν − 1
. (2.50)

The normalized derivative mode is u′
0[x0](r) = w0∂x0 u0[x0](r). Hence, using

eq. (2.41), we have

IQ[x0] =
1
2

Tr[A2 ∂x0V1]
2

ν2 − 1
+

1
w2

0

Tr[A2(V1 − 12)]
2

ν − 1

=
(∂x0 N)2

N(N + 1)
+

4N
w2

0
.

(2.51)

When the mean photon number does not depend explicitly on the displacement, as
it is the case here since we consider small displacements, the normalized QFI for
displacement estimation is the same as for coherent states [Sorelli 2023]

w2
0

N
IQ[x0] = 4. (2.52)

2.4.3 Fisher information for quadrant detection

A relevant measurement for estimating the displacement of a beam is quadrant de-
tection, used in a split configuration. The quadrant detector we consider is com-
posed of two pixels that give access to two measured intensities i1 and i2, as illus-
trated in fig. 2.4(b). We assume that the pixel size of the detector is much larger than
the waist of the beam.
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We apply the method of moments to determine the sensitivity of the measure-
ment. We assume the border between the two pixels to be at x = −x0, as presented
in fig. 2.4(b). The intensity profile on the quadrant detector is

I(r) = ⟨Ê(+)†(r)Ê(+)(r)⟩
≈ N|u00(r)|2

= N
2

πw2
0

exp
(
− x2 + y2

2w2
0

)
,

(2.53)

where we used the expansion of the electric field over the Hermite-Gaussian mode
basis {unm(r)} and that higher-order modes unm≥1,1(r) are in the vacuum state.
Therefore, the normalized intensities on each pixel are

i1 =
1
N

∫ +∞

−∞
dy
∫ +∞

−x0

dx I(x, y) =
1
2

(
1 + erf

(√
2x0

w0

))
, (2.54)

i2 =
1
N

∫ +∞

−∞
dy
∫ −x0

−∞
dx I(x, y) =

1
2

(
1 − erf

(√
2x0

w0

))
, (2.55)

where the error function, denoted erf, is defined by

erf z =
2√
π

∫ z

0
e−t2

dt. (2.56)

As we have a faint source, the two intensities are uncorrelated, leading to a diagonal
covariance matrix

Γmn = ⟨imin⟩ − ⟨im⟩⟨in⟩ =
1
N

imδmn. (2.57)

The sensitivity given by the method of moments (see eq. (2.46)) is then

M[x0, i] =
2

∑
k=1

N
1
ik

(
∂ik

∂x0

)2

. (2.58)

Since we consider Poissonian statistics, the probabilities p(x|x0) associated with the
measurement outcomes x are the measurement outcomes, conditioned on the pa-
rameter x0, coincide with the normalized intensities ik. Hence the normalized Fisher
information eq. (2.6) for quadrant detection coincides with this sensitivity. There-
fore, for small displacements, we have

w2
0

N
IQD
F [x0] =

2

∑
k=1

w2
0

ik

(
∂ik

∂x0

)2

=
8
π

. (2.59)

The optimal coefficients are given by eq. (2.47) and, for small displacements, we find

m1 =
1
i1

∂i1
∂x0

= −m2, (2.60)

which demonstrates that the estimator i− = i1 − i2 of quadrant detection is optimal.
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Moreover, we observe that

IQD
F [x0] =

2
π

IQ[x0], (2.61)

hence, quadrant detection is 2/π ≈ 64% efficient compared to the quantum limit. It
is not a quantum optimal measurement for displacement estimation, contrary to ho-
modyne detection in the HG01 mode [Delaubert 2006] or direct imaging [Chao 2016],
but an efficient estimator for quadrant detection is easier to implement, which is why
we use this measurement to certify our separation estimation measurements.

2.5 Source separation estimation

This thesis aimed to implement experimentally what has been shown theoretically
a few years ago: SPADE associated with photodetection is a quantum optimal mea-
surement for source separation estimation and shows higher sensitivity than direct
imaging approaches [Tsang 2016]. This section recalls these theoretical results and
the derivations for the QFI for source separation estimation, as well as the Fisher
information for direct imaging and SPADE with photodetection.

2.5.1 Modeling source separation estimation

We consider two equally bright incoherent point sources separated by a transverse
distance d, as illustrated in fig. 2.5. They are located at positions ±r0, with r0 =
( d

2 cos θ, d
2 sin θ) and emit a total mean photon number equal to 2N in the spatial

modes corresponding to the operators ŝ1 and ŝ2. They are described by the quantum
state

ρ̂0 = ρ̂s1(N)⊗ ρ̂s2(N) (2.62)

where ρ̂a(N) is the density operator associated with a thermal state with mean pho-
ton number N in the mode associated with the operator â. We consider the point
spread function (PSF) of the imaging system to be a Gaussian mode u00(r) as defined
in eq. (1.23). Therefore, the images of the sources through the diffraction-limited
imaging system with transmissivity κ, are u00(r ± r0), associated with the operators
ĉ1,2

ĉ1,2 =
√

κŝ1,2 +
√

1 − κv̂1,2. (2.63)

This expression is obtained from the beamsplitter model for the propagation
[Lupo 2016] where the operators v̂1,2 are associated with auxiliary modes, which
are in the vacuum state, given eq. (2.49). The modes u00(r ± r0) are not orthogonal
for small separations, leading to resolution difficulties. To construct an orthonormal
basis to represent the quantum electric field in the image plane, we introduce the
orthonormal image modes:

u±(r, r0) =
u00(r + r0)± u00(r − r0)√

2(1 ± δ)
(2.64)
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FIGURE 2.5: Two equally bright incoherent sources are separated by
a distance d in the image plane.

where δ is the overlap between the source images

δ =
∫

d2r u∗
00(r + r0)u00(r − r0). (2.65)

The symmetric and anti-symmetric modes u±(r) are associated to the operators b̂±

b̂± =
√

κ± ŝ± +
√

1 − κ±v̂± (2.66)

with ŝ± = (ŝ1 ± ŝ2)/
√

2, v̂± the operators associated to auxiliary modes which are
in the vacuum and κ± = κ(1 ± δ).

It is convenient to define an auxiliary mode basis {wi(r)} obtained by extending
w0(r) = u+(r) and w1(r) = u−(r) to a complete orthonormal basis. Accordingly,
for the field operators {b̂i} associated with this basis, we have b̂0 = b̂+ and b̂1 = b̂−.
The two modes u±(r) are populated with thermal states with mean photon numbers
N± = Nκ(1 ± δ).

2.5.2 Quantum Fisher information

Several derivations of the QFI for source separation with thermal states can be found
here [Tsang 2016; Lupo 2016; Nair 2016]. We choose to present one adapted from
[Sorelli 2022; Sorelli 2023]. We assume without loss of generality that the separation
is along the x-axis, so r0 = ( d

2 , 0). The quadrature covariance matrix is

V2 =

(
(2N+ + 1)12 0

0 (2N− + 1)12

)
, (2.67)

and the symplectic eigenvalues are

νj =

{
2N+ + 1 for j = 1,
2N− + 1 for j = 2.

(2.68)
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We note the initially populated modes

u0[d](r) = u+(r), (2.69)

v0[d](r) = u−(r) (2.70)

and their orthonormalized derivative modes are

u′
0[d](x) = ∂du0[d](r)/ηu, (2.71)

v′0[d](x) = ∂dv0[d](r)/ηv, (2.72)

for which the expressions of η2
u = ||∂du0[d](r)||2 and η2

v = ||∂dv0[d](r)||2 are given in
Appendix. Using eqs. (2.41) and (2.42), we obtain

IQ[d] =
1
2
(a(2)1,1 )

2

ν2
1 − 1

+
1
2
(a(2)2,2 )

2

ν2
2 − 1

+
(a(2)1,3 )

2

ν1 − 1
+

(a(2)2,4 )
2

ν2 − 1
, (2.73)

with

a(2)1,1 = Tr
[

A(2)
1,1 (∂dV2)

]
= 2

√
2Nκ(∂dδ),

a(2)2,2 = Tr
[

A(2)
2,2 (∂dV2)

]
= 2

√
2Nκ(∂dδ),

a(2)1,3 = Tr
[

A(2)
1,1 (V2 − 14)ηu

]
=

Nκ√
2
(1 + δ)ηu,

a(2)2,4 = Tr
[

A(2)
2,2 (V2 − 14)ηv

]
=

Nκ√
2
(1 − δ)ηv.

(2.74)

Finally, the normalized QFI is

w2
0

2Nκ
IQ

[
d

w0

]
= 1 −

(
d

w0

)2 Nκ(1 + Nκ)

e
(

d
w0

)2

(1 + Nκ)2 − (Nκ)2

. (2.75)

The QFI is represented in fig. 2.6 for different numbers of detected photons. For
faint sources, i.e. Nκ ≪ 1, and, in general, for states with Poissonian statistics, the
QFI is constant and equal to 2Nκ

w2
0

.

2.5.3 Fisher information for direct imaging

Direct imaging is the most standard measurement for source separation estimation,
and imaging in general, in particular in microscopy or astronomy contexts [Rogge-
mann 1997; Wizinowich 2000; Chao 2016]. It is, however, well-known that this mea-
surement is not quantum optimal and provides poor sensitivities for small separa-
tions, i.e. smaller than the PSF width, due to the non-orthogonality of the two modes
u00(r ± r0). This effect is known as the Rayleigh curse [Tsang 2016]. We present here
a derivation of the Fisher information for direct imaging to compare it to the QFI for
source separation estimation and to the Fisher information for SPADE with photode-
tection. We consider faint sources, it is, therefore, possible to equate the probability
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FIGURE 2.6: Normalized quantum Fisher information for source sep-
aration estimation for different mean number of detected photons
2Nκ. The dip for intermediary separations comes from the fact that,
for this range, the only relevant information is in the HG10 mode but
the intensity is high enough for the noise of the thermal state to re-

duce the sensitivity.

distribution function with the intensity profile. We assume the CCD detector is ideal,
i.e. without any noise, no saturation, perfectly linear and with perfect quantum ef-
ficiency. In the limit of continuous direct imaging, where the pixels are infinitely
small, the normalized Fisher information is given by [Tsang 2016; Sorelli 2021a]

w2
0

2Nκ
IDI
F [d] =

w2
0

2Nκ

∫ 1
I(r)

(
∂I(r)

∂d

)2

d2r. (2.76)

We can expand the electric field in the basis {wk(r)} defined in section 2.5.1, and
use that all the higher-order modes wk≥2(r) are in the vacuum state. The intensity
distribution in the image plane is

I(r) = ⟨Ê(+)†(r)Ê(+)(r)⟩ = ∑
i,j=±

u∗
i (r)uj(r)⟨b̂†

i b̂j⟩, (2.77)

where the field operators b̂± are defined in eq. (2.66).
It can be shown that (see appendix C)

⟨b̂†
±b̂±⟩ = Nκ(1 ± δ),

⟨b̂†
±b̂∓⟩ = 0.

(2.78)

Hence, the intensity distribution becomes

I(r) = Nκ(|u00(r + r0)|2 + |u00(r − r0)|2), (2.79)
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which is expected for incoherent sources. The Fisher information is plotted in fig. 2.8,
along with the Fisher information for SPADE that will be derived in the next section
and with the QFI. For small separations, i.e. d/w0 ≪ 1, the Fisher information can
be analytically approximated as

w2
0

2Nκ
IDI
F

[
d

w0

]
= 2

(
d

w0

)2

+O
((

d
w0

)4
)

. (2.80)

We see in fig. 2.8 that the Fisher information for direct imaging saturates the QFI
for large separations but goes to zero for small separations. This is what is known
as Rayleigh’s curse. This means that direct imaging is fundamentally not efficient
when the sources are very close to each other and we need to perform another mea-
surement to achieve higher sensitivities in this regime.

2.5.4 Fisher information for SPADE with photodetection

SPADE associated with photodetection has been proven to be a quantum optimal
measurement for source separation estimation [Tsang 2016] when the sources have
equal brightness and the centroid is aligned with the demultiplexing apparatus. We
present the derivation of the Fisher information for an ideal SPADE scheme, i.e. with
ideal photodetectors and ideal mode-decomposition, adapted from the Supplemen-
tary material of [Gessner 2020a].

We consider M photodetectors at the outputs of a SPADE detection scheme. For de-
riving the Fisher information eq. (2.6), we need to determine the conditional prob-
abilities p(x|d), where x are the measurement outcomes when detecting photons at
the SPADE outputs. Since we consider a Poissonian photodetection process, as de-
scribed in section 2.3.3, we can equate the normalized intensities Nk/2Nκ with the
probabilities p(x|d), so that the normalized Fisher information reads

w2
0

2Nκ
ISPADE
F [d] =

w2
0

2Nκ

M

∑
k=1

1
Nk

(
∂Nk

∂d

)2

, (2.81)

where Nk is the mean photon number detected at the detector k.

In the image plane, we consider the measurement in the ideal Hermite-Gaussian
mode basis {uk(r)}, with k = (n, m), defined in eq. (1.25), associated to the operators
{âk}. The basis change eqs. (1.9) and (1.82) gives the relation

âk = ∑
k,ℓ=±

gkℓb̂ℓ with gkℓ =
∫

d2r u∗
k (r)wℓ(r). (2.82)

Using eq. (2.64), we obtain

gk± =
βnm(r0)± βnm(−r0)√

2(1 ± δ)
, (2.83)
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FIGURE 2.7: Normalized intensity in each mode, for θ = 0.

with
βnm(±r0) =

∫
d2r u∗

nm(r)u00(r ± r0). (2.84)

With eq. (2.78), the mean photon number in each measured mode is then

Nk = ⟨â†
k âk⟩ = ∑

i,j=±
g∗kigkj⟨b̂†

i b̂j⟩ = Nκ(|βnm(r0)|2 + |βnm(−r0)|2). (2.85)

From eqs. (1.25) and (2.84), we obtain

βnm(±r0) =
1√

n!m!

(
±d
2w0

)n+m

(cos θ)n(sin θ)me−
1
2

(
±d
2w0

)2

. (2.86)

Hence,
Nk = 2Nκβnm(r0)

2, (2.87)

which is presented in fig. 2.7 for 4 modes. Assuming that all HG modes un,m with
0 ≤ n, m ≤ Q are measured, and substituting in eq. (2.81), we have

w2
0

2Nκ
IF[d] =

Q

∑
n,m=0

w2
0

βnm(r0)2

(∂βnm(r0)2

∂d

)2

=
Q

∑
n,m=0

4w2
0

d2

(
n + m −

( d
2w0

)2)2
βnm(r0)

2.

(2.88)

Finally, the normalized Fisher information for SPADE reads

w2
0

2Nκ
ISPADE
F

[
d

w0

]
=

M

∑
n,m=0

(
d

w0

)2(n+m−1)

n!m!

(
n + m −

(
d

w0

)2
)2

(cos θ)2n(sin θ)2me−
(

d
w0

)2

.

(2.89)
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FIGURE 2.8: Normalized Fisher information for SPADE performed
with the modes HG00, HG01 and HG10, normalized Fisher informa-
tion with direct imaging and QFI of the separation of Poissonian

sources, for θ = π/6.

The Fisher information for SPADE performed with only three modes (HG00, HG01
and HG10) is represented in fig. 2.8, along with the QFI and the Fisher information
for direct imaging. We note that contrary to direct imaging, in the limit of very small
separations (d/w0 → 0) or an infinite number of measured modes (Q → ∞), the
Fisher information of ideal SPADE saturates the QFI:

lim
d/w0→0

w2
0

2Nκ
ISPADE
F

[
d

w0

]
= 1,

lim
Q→∞

w2
0

2Nκ
ISPADE
F [d] = 1.

(2.90)

This means that, in an ideal scenario, SPADE is a quantum optimal measurement
and gives access to a much higher sensitivity than direct imaging, enabling it to beat
Rayleigh’s curse.
The behavior of the Fisher information of SPADE for different values of Q (where
0 ≤ n, m ≤ Q) is compared in fig. 2.9. The Fisher information saturates the QFI for
a longer range of separations when Q increases (with 0 ≤ n, m ≤ Q). This comes
from the fact that higher-order HG modes have a larger spatial extension and are,
therefore, more sensitive to larger separations. Consequently, in order to have the
best sensitivity over a large range of separations, many modes have to be measured
and this has to be taken into account for the estimation using the method of moments
adapted to several observables.

Finally, we plot in fig. 2.10 the QFI, Fisher information for SPADE with mode HG10
and Fisher information for direct imaging when sources are aligned with one of the
axes of the demultiplexing apparatus, i.e. for θ = 0, as it is the case in our experi-
mental configuration (see section 3.4.5). This graph shows that for small separations,



2.5. Source separation estimation 63

0 2 4 6 8 10
d/w0

0.0

0.2

0.4

0.6

0.8

1.0

w
2 0

I F
/2

N

QFI
Q = 1
Q = 3
Q = 5

FIGURE 2.9: Normalized Fisher information for SPADE, for θ = π/6.

measuring the intensity only in the mode HG10 saturates the QFI.

2.5.5 From the Fisher information to the standard deviation of the estima-
tion

From the quantum Cramér-Rao bound (eq. (2.17)), the inverse of the QFI can be
seen as the theoretical minimum variance of the estimator, and the inverse of the
Fisher information as the theoretical minimum variance for a given measurement.
Since metrology is concerned with the noise sources of the measurement and their
influence on the noise of the estimation, it is sometimes more convenient to visualize
the standard deviation of the estimation as a function of the separation, and this is
what is represented in fig. 2.11, using eqs. (2.75), (2.80) and (2.89) for 2Nκ = 106

detected photons.

2.5.6 Minimal resolvable distance

Signal-to-noise ratio

The signal-to-noise ratio (SNR) is a measure used in signal processing to compare
the level of signal with the level of noise. It is often expressed in dB. In this work,
we define the SNR as being the ratio between the mean value of the estimator ⟨d̃⟩,
which corresponds to the true value of the parameter since we consider unbiased
estimators, to the standard deviation of the estimator ∆d̃:

SNR =
⟨d̃⟩
∆d̃

. (2.91)
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FIGURE 2.10: Normalized Fisher information for SPADE performed
with the HG10 mode, normalized Fisher information with direct
imaging and QFI of the separation of Poissonian sources, for θ = 0.
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θ = π/6 and 2Nκ = 106 detected photons.
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FIGURE 2.12: Theoretical minimum resolvable distance as a function
of the number of detected photons for ideal direct imaging and ideal
SPADE. The limit established by Rayleigh is also plotted on the graph.
The minimum resolvable distance for ideal SPADE is exactly the one
given by the QFI, following the scaling (2Nκ)−1/2 and the scaling for

ideal direct imaging is (2Nκ)−1/4.

Minimal resolvable distance

The minimal resolvable distance dmin = ⟨d̃⟩min is defined as

⟨d̃⟩min

∆d
= 1. (2.92)

Since, when the Cramér-Rao bound is saturated, we have

∆d̃ =
1√

2Nκ · IF[d]
, (2.93)

the theoretical minimal resolvable distance can be determined by solving

dmin

√
IF[dmin] =

1√
2Nκ

, (2.94)

where 2Nκ is the mean number of detected photons and IF[d] is the Fisher informa-
tion of a single photon. The minimal resolvable distance as a function of the number
of incident photons is presented in fig. 2.12 for ideal SPADE and ideal direct imaging.
These two measurements display different scalings, the minimal resolvable distance
varies as (2Nκ)−1/4 for direct imaging while the behavior for SPADE reaches the
one associated with the QFI as (2Nκ)−1/2, which enables to reach smaller separa-
tions with the same number of photons. We also represented the one corresponding
to the diffraction limit, which will be established in chapter 3.
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FIGURE 2.13: Accuracy vs precision.

2.6 Accuracy, precision, sensitivity and resolution

In this section, we aim to provide clarity on concepts commonly used in metrology
contexts, which are occasionally used interchangeably.
Accuracy refers to the bias of the estimation, i.e. whether the mean value of the es-
timator is close to the true value of the parameter. A high accuracy means that the
bias is narrow, and vice versa. In the case of unbiased estimators, the accuracy is
perfect.
Precision describes the reproducibility of the estimation. Sensitivity corresponds to
the smallest variation that is detectable, it is linked to the standard deviation of the
estimation. A high sensitivity coincides with a low standard deviation, which is
what we aim for. Since we are primarily concerned with unbiased estimators, sensi-
tivity is the key figure of merit for benchmarking estimations in this thesis. Through-
out this thesis, we may interchangeably use the terms ’precision’ or ’sensitivity,’ with
a clear preference for ’sensitivity’. The distinction between accuracy and precision is
illustrated in fig. 2.13.
Lastly, the term ’resolution’, explored in the following chapter, quantifies the perfor-
mance of imaging systems. It refers to the smallest separation between two sources
at which they remain distinguishable, as defined in section 2.5.6.
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Imaging systems are designed to increase the information available to observers
beyond what can be discerned with the naked eye. In numerous contexts, this addi-
tional information refers to acquiring finer details about the observed object, which
is the meaning we adopt in this work. The extent to which details can be extracted
from an optical image is quantified by the resolution of the imaging systems. This
chapter serves as a bridge between the historical limits imposed by diffraction on
resolution and our experiment, which contributes to the field of separation estima-
tion.
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The first section revisits the famous Rayleigh criterion, while the second section
presents imaging techniques employed in microscopy, astronomy, and remote sens-
ing to surpass the diffraction limit, often referred to as "super-resolution" techniques,
and demonstrates how separation estimation can be a tool to understand the funda-
mental limits of these imaging tasks. Section 3 provides an overview of the current
state of the art concerning the experiments conducted before or during this work on
the estimation of the separation between two incoherent optical point sources. This
review allows us to establish the requirements for our experimental setup presented
in Section 4, along with an overview of the setup. Finally, Section 5 is dedicated to
the sources we employed, with a particular focus on the generation of thermal states.

3.1 Historical sensitivity limit for separation estimation

The resolving power is a common metric for benchmarking optical imaging devices,
such as telescopes and microscopes. It quantifies the minimal resolvable distance
between to imaged point sources, i.e. the separation below which it becomes im-
possible to tell whether there are one or two distinct sources. When a point source
is imaged with a circular aperture, assuming there are no aberrations, it forms an
Airy pattern, resulting in a blurred image due to diffraction. If two point sources
are too closely situated, their images overlap, making it challenging to differentiate
them. Several criteria for establishing a resolution limit were introduced between the
late 19th and early 20th centuries, including Abbe’s [Abbe 1873], Sparrow’s [Spar-
row 1916] and Rayleigh’s [Rayleigh 1879] criteria. While these criteria define slightly
different limits, they are essentially equivalent. Consequently, we will only elabo-
rate on Rayleigh’s criterion, which is perhaps the most renowned and continues to
be widely employed for assessing the resolution of optical instruments.

Lord Rayleigh investigated the image formation of microscopes and telescopes.
The resolution limit he established in his work [Rayleigh 1879] states that two point-
like sources can be resolved if the first minimum of the Airy pattern formed by the
image of one source coincides with the maximum of the Airy pattern of the image of
the second source. This is illustrated in fig. 3.2. In other words, the resolving power
of the optical device is set by the radius of the Airy disk it forms for a single point
source:

dRayleigh
min ≃ 0.61

λ

NA
. (3.1)

This criterion is written in terms of the wavelength of the incident light λ and of the
numerical aperture NA of the optical apparatus. The size of the image is then usually
adapted to the size of the photodetector, typically a CCD camera, with a secondary
linear-optical system. In the paraxial approximation, the ratio between the radius of
the beam and the distance between the sources is preserved. Consequently, it can
be more convenient to express Rayleigh’s limit in terms of the size of the PSF. As
explained in chapter 2, the Airy disk can be efficiently approximated by a Gaussian

function [Zhang 2007]. Fitting an Airy pattern IPSF(r) =
(

2J1(ar)
ar

)2
where a = 2πNA

λ

and J1 is the first-order Bessel function of the first kind, with a Gaussian intensity
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FIGURE 3.1: Airy pattern fitted with a Gaussian function.

distribution IG(r) = exp
(
− 2r2

w2
0

)
(see fig. 3.1), we find [Thomann 2002]

w0 ≃ 0.42
λ

NA
. (3.2)

We then write Rayleigh’s limit in terms of the waist of the PSF w0:

dRayleigh
min ≃ 1.5w0. (3.3)

As mentioned earlier, other resolution criteria established at the same period are
equivalent to Rayleigh’s, with slightly different coefficients1. However, these criteria
are inherently subjective, as evident from their formulation. They rely on the resolv-
ing power of the human eye, given that sensitive photodetectors using semiconduc-
tor materials only emerged in the late 20th century. It is worth mentioning that they
are independent of the incident optical power because the eyes act as photodetectors
that saturate relatively easily. Nevertheless, these resolution limits, which are of the

1Abbe’s criterion [Abbe 1873]. The imaging resolution is limited to half a wavelength normalized
by the numerical aperture of the system

dAbbe
min ≃ 0.5

λ

NA
. (3.4)

Sparrow’s criterion [Sparrow 1916], mostly used in astronomy. Two sources can be distinguished when
the derivative of the total intensity around zero is negative

dSparrow
min ≃ 0.47

λ

NA
. (3.5)

In terms of the waist of the PSF, they become

dAbbe
min ≃ 1.2w0,

dSparrow
min ≃ 1.1w0.

(3.6)
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FIGURE 3.2: Resolution limit. (top) The two sources are separated
by a distance larger than dRayleigh

min and are distinguishable. (mid-

dle) The two sources are separated by exactly dRayleigh
min . (bottom) The

two sources are separated by a distance shorter than dRayleigh
min and are

therefore not resolvable.

order of the size of the PSF, remain relevant to benchmark optical systems. This is
because state-of-the-art instruments typically exhibit resolutions within this order of
magnitude.

3.2 Super-resolution techniques in microscopy and astron-
omy

We use the term "super-resolution techniques" to describe imaging devices that en-
able resolutions surpassing Rayleigh’s limit, i.e. where the minimum resolvable dis-
tance is smaller than 1.5w0. Over the last decade, numerous such techniques have
emerged in the fields of microscopy and astronomy, and this subject remains an ac-
tive area of research. This section aims at providing an overview of the current state
of the art, without attempting to comprehensively cover all the techniques that exist
currently.
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3.2.1 Microscopy

Conventional fluorescence microscopy techniques, consisting of collecting the light
emitted by fluorophores introduced in the sample after excitation, present a typi-
cal resolution around 200 nm. Super-resolution techniques in microscopy that over-
come the diffraction limit can be classified into near-field and far-field techniques
[Huang 2009].

Near-field microscopy

Non-optical techniques such as atomic force microscopy [Binnig 1986] and electron
microscopy [Franken 2017], are able to resolve structures as fine as 1 nm in size.
However, these approaches are invasive, as they require close interaction with the
sample or placing it in a high vacuum [Steed 2012], and do not allow observation of
objects in their native environment.
Near-field optical techniques were also developed. They are known as pho-
ton tunneling microscopy [Guerra 1990], near-field scanning optical microscopy
[Hecht 2000], tip-enhanced near-field optical microscopy [Hartschuh 2008], and pho-
ton scanning tunneling microscopy [Ohtsu 1995] and use a probe to record the in-
formation of the evanescent waves that decay exponentially with the distance away
from the sample [Goodman 2004].
These techniques reach resolutions of the order of 20 nm but require very low work-
ing distances and are limited to studying near-surface features. In addition, near-
field microscopy techniques involve a scanning procedure to image the whole sam-
ple which is time-consuming

Far-field microscopy

Far-field microscopy requires illumination of the sample but does not rely only on
fluorescence microscopy. Some of the far-field techniques are label-free - without
fluorophores - taking advantage of non-linear optical processes. However, since
super-resolution techniques were traditionally based on specific ways to excite the
fluorophores, we focus here on far-field fluorescence super-resolution microscopy.
Reviews of these approaches can be found in [Huang 2009; Leung 2011].

Confocal microscopy combines focusing the excitation laser with a pinhole for de-
tection, effectively reducing out-of-focus fluorescence background and achieving a
resolution improvement by a factor of

√
2 [Pawley 2006].

4Pi (referring to the 4π solid angle of a sphere) and I5M (for image interference mi-
croscopy combined with incoherent interference illumination) microscopy are tech-
niques that virtually increase the numerical aperture by using two opposing ob-
jectives. This results in an increase of the solid angle used for illumination and
detection, leading to a resolution improvement by a factor of 2 [Gustafsson 1999;
Hell 2007].
Structured illumination microscopy [Gustafsson 2000; Gustafsson 2008] illuminates
the sample with a sinusoidal pattern with a high spatial frequency, which shifts the
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fine details of the structures to lower frequencies, detectable by the microscope. Res-
olutions of the order of 100 nm are achieved by acquiring multiple images with pat-
terns of different phases and orientations.
The previously described approaches can be applied to any fluorophores, but they
are still limited in resolution enhancement. An order of magnitude on the resolu-
tion can be gained by taking advantage of the photo-physical properties of some
fluorophores and non-linear effects.

The first approach to fluorescence super-resolution microscopy using non-linear ef-
fects is called the spatially patterned excitation approach. It is based on stimulated
emission or saturable depletion which induces a reduction in undesirable fluores-
cence emission.
Stimulated emission depletion (STED) microscopy [Hell 1994; Klar 2000] reaches a
resolution of around 50 nm by activating the fluorescent sample with a laser as well
as a secondary torus-shaped coherent beam, which reduces the excitation effect of
the primary laser. This reduces the PSF size to a narrow area around the center of
the torus (where the second field is very weak, supposedly zero), leading to the res-
olution improvement.
RESOLFT microscopy [Hell 1995; Hofmann 2005; Bretschneider 2007] is a more gen-
eral scheme where reversibly photoswitchable fluorescent probes are used to de-
crease the PSF size, leading to a resolution lower than 100 nm while requiring lower
laser intensity than STED microscopy.
Combining saturable depletion with structured illumination microscopy sharpens
the illumination patterns and enables to access higher spatial frequencies. This tech-
nique called saturated structured illumination microscopy demonstrated resolutions
of the order of 50 nm.

Finally, the last way to improve the resolution of fluorescence microscopy is real-
ized with single-molecule localization. This method requires a low density of fluo-
rophores, otherwise, their overlapping images would prevent their localization. The
probe density is thus decreased by causing individual photoswitchable fluorophores
to fluoresce at different moments in time and the images are superimposed after-
ward. Therefore, single-point emitters can be localized with sub-diffraction preci-
sion even with a diffraction-limited PSF. This concept, independently developed in
three labs at the same time and named stochastic optical reconstruction microscopy
(STORM) [Rust 2006], photo-activated localization microscopy (PALM) [Betzig 2006;
Lee 2012], and FPALM [Hess 2006], reaches a resolution of around 5 nm.

In conclusion, the far-field methods are dependent on specific characteristics of the
fluorescent probes and require active control over the illumination of the sample.

3.2.2 Astronomy and remote sensing

In astronomy contexts, the Rayleigh criterion is formulated as

dRayleigh
min = 1.22

f λ

D
(3.7)
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FIGURE 3.3: Comparison between images from conventional flu-
orescence (A, C, E) microscopy and STORM microscopy (B, D, F)

[Bates 2007].

where λ is the wavelength of the observed radiation, f is the focal length of the
objective of the telescope, and D its diameter. The resolution is seen as improvable
only by increasing the diameter of the objective.

Thanks to aperture synthesis, it is possible to create lenses that have virtual sizes
much bigger than what is technologically possible. It was initially developed and
mostly used for radio astronomy since the 1950s. It is now also used for radar re-
mote sensing and, for two decades, for optical telescopes.
Aperture synthesis is a technique where signals from different telescopes interfere,
resulting in higher resolutions than when using a single telescope [Jennison 1958;
Haniff 1987; Roggemann 1997; Kellermann 2001; Monnier 2003]. It requires the mea-
surement of the phase and amplitude of the observed electromagnetic field, either
by post-processing for radio-frequency signals or by having the signals physically
interfere with optical frequencies. This results in having virtually larger lenses as
the size of the effective lens corresponds to the size of the entire collection, hence the
denomination. In radio astronomy, aperture synthesis is now combined with very
long-baseline interferometry (VLBI), which enables higher separations between tele-
scopes thanks to synchronization with atomic clocks.
For instance, the Event Horizon Telescope (EHT), an international collaboration,
consists of a large array of telescopes all around the world. This array has a theoret-
ical resolution of 25 micro-arcsecond, and this enabled the acquisition of the images
of the supermassive black hole at the center of Messier 87 that were released in 2019,
which display a diameter of around 40 micro-arcsecond [Collaboration 2019] (see
fig. 3.4). For comparison, the Hubble Space Telescope which has a 2.4 m-objective
displays a resolution of 0.1 arcsecond. Therefore, aperture synthesis has reached a
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FIGURE 3.4: Images of the supermassive black hole at the center of
Messier 87, obtained with aperture synthesis and very-long-baseline
interferometry by the Event Horizon Telescope [Collaboration 2019].

3-order-of-magnitude gain of resolution compared to a single telescope in radio as-
tronomy.
However, this requires the collaboration between many observatories and stable
clock synchronization over large distances. This is why aperture synthesis is even
more challenging for optical interferometers. For instance, with its six telescopes,
the CHARA array, located in California, is one of the largest arrays of telescopes at
optical frequencies and has a resolution of 200 micro-arcsecond [Hand 2010].

Astronomical observations are also time-limited as turbulence introduces noise in
the measurement with time scales between 1 ms and 1 s.

3.2.3 From super-resolution imaging techniques to parameter estimation

As we saw from the previous sections, super-resolution techniques that are currently
employed in microscopy and astronomy contexts are domain-specific. Near-field
microscopy techniques place the samples in artificial environments, far-field mi-
croscopy approaches require the illumination of the samples, and aperture synthesis
for astronomy relies on colossal apparatus.
A super-resolution technique to bridge the gap between microscopy and astronomy
techniques is still missing, it has to be linear-optical, non-invasive, passive (no inter-
action with the sample), operational at all scales in the far-field regime, and compat-
ible with incoherent sources.

The objective of this work is not to develop yet another technique for super-
resolution imaging. Our task is more foundational, we aspire to understand the
fundamental physical limits inherent in these imaging problems.
Advancements in super-resolution techniques within microscopy and astronomy
have revealed that Rayleigh’s limit, and more broadly the diffraction limit, is not
fundamental and that the sole information of the PSF is not sufficient to determine
the sensitivity and resolution of an apparatus [Goodman 2000].

Historical diffraction limits presented in section 3.1 were established at a time when
the study of noise in measurements was technically infeasible. Physicists then only
had access to a minimal resolvable distance between two point sources based on the
saturation of the human eye.
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While the detection of a substantial number of photons with a CCD camera could, in
principle, provide information for surpassing the diffraction limit, even in an ideal
scheme (no electronic noise, infinitely small pixels), the sensitivity of the measure-
ment can not be infinitely large as increasing the photon count also amplifies shot
noise.
From the definition given in section 2.5.6, the minimal resolvable distance is equiva-
lent to the sensitivity of the estimation for small separations. According to fig. 2.12,
the minimal resolvable distance for ideal direct imaging scales as (2Nκ)−1/4, where
2Nκ is the total number of detected photons. This slow scaling, combined with CCD
camera saturation, hinders significant improvements beyond Rayleigh’s limit.

Hence, a comprehensive analysis of noise contributions to the measurement is im-
perative to determine the sensitivity and resolution of an apparatus. This is why we
treat the task of imaging in a parameter estimation framework. We determine the
sensitivity limits associated with estimating some unknown parameters, in particu-
lar the separation between sources, encoded in the incident light by processing the
measurement results, as presented in chapter 2.

The exploration of this parameter estimation problem begins with the study of the
simplest optical scene, the images formed by two point-like incoherent sources. The
theoretical limits (QFI and Fisher information) are well-known in various configura-
tions, when taking into account different noise sources but also in a multi-parameter
estimation scenario [Tsang 2016; Nair 2016; Tsang 2017; Bonsma-Fisher 2019; Gess-
ner 2020a; Grace 2020; Len 2020; Sorelli 2021a; Sorelli 2021b].
As explained in chapter 2, spatial-mode demultiplexing is a good candidate for im-
proving resolution beyond the diffraction limit as it saturates the QFI for incoherent
sources. It also satisfies the requirements cited at the beginning of this section -
linear-optical, non-invasive, passive, operational at all scales in the far-field regime,
and compatible with incoherent sources - since the demultiplexing apparatus can
simply be added after any imaging system. It involves no interaction with the ob-
served scene and is only time-limited by the bandwidths of a few photodetectors.
However, this problem is still not completely understood experimentally, and exper-
iments on single-parameter estimation are ongoing. The figure of merit that is used
to benchmark the performance is the variance of the estimation that is compared to
the Fisher information of SPADE, the Fisher information of direct imaging, and the
QFI of separation estimation.

3.3 Experimental separation estimation: Literature review

3.3.1 Context

As demonstrated in the previous section, the task of estimating the separation be-
tween two incoherent equally bright sources has witnessed a renewed interest on
the theoretical front during the last decade, from the publication of [Tsang 2016].
This resurgence has been accompanied by the emergence of several experiments
aiming at assessing the validity of the theoretical predictions as well as identifying
the limitations of the existing models. In this section, we provide a comprehensive
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FIGURE 3.5: Schematic diagram of the experimental setup from
[Paúr 2016]. Two incoherent point sources are created with a high-
frequency switched digital micromirror chip (DMD) illuminated with
an intensity-stabilized He–Ne laser. The sources are imaged by a low-
aperture lens. In the image plane, projection onto different modes is
performed with a digital hologram created with an amplitude spa-
tial light modulator (SLM). Information about the desired projection
is carried by the first-order diffraction spectrum, which is mapped by

a lens onto an EMCCD camera.

review of experimental investigations for the separation estimation of two incoher-
ent point-like sources via SPADE or a simplified version with only the HG10 mode.
In each case, the study is conducted for an optical system with a Gaussian PSF and
with the sources’ centroid aligned on the measurement apparatus. Our goal is to
describe the current state of the art.

3.3.2 Projection on one mode

The experimental investigations realized shortly after the proposal of [Tsang 2016]
are all simplified versions of SPADE, based on the projection on only the HG10 mode.

Paúr et al. [Paúr 2016] performed separation estimation using SPADE implemented
with an SLM, as explained in section 1.3.3 . Two point-like sources are generated
with a digital micro-mirror device (DMD) illuminated with a He-Ne laser. The sep-
aration between the two sources is controlled by addressing the micro-mirrors indi-
vidually. The sources are turned on and off alternatively to ensure spatial incoher-
ence with the switching time being significantly shorter than the integration time of
the detection. The images of the two sources are projected in the mode HG10 with
intensity measured with an electron-multiplying CCD camera - the intensity in the
HG00 mode is used for normalization - as illustrated in fig. 3.5. For each separation,
from 0.1w0 to 0.8w0, explored with steps of 0.1w0, 500 measurements were carried
out to characterize the performances of the estimation.
The experimental results demonstrate a negligible bias, and the standard deviation
of the estimation is approximately 0.1w0. The small discrepancy compared to the
QFI arises from the noise of the camera, from the background light reaching the de-
tector, and from mechanical instabilities.
This measurement performs better than theoretical direct imaging, as it exhibits a
variance 20 times smaller. There is, however, no mention of the number of detected
photons or of the integration time, the measurement is only said to be performed in
the photon counting regime.
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FIGURE 3.6: Schematic diagram of the experimental setup from
[Tang 2016]. The two test sources, with orthogonal polarizations, are
obtained from a laser-illuminated single-mode optical fiber whose
output is separated by a polarizing beamsplitter (PBS). The separa-
tion of the sources is controlled by translating mirrors mounted on
linear-motion stages, and can achieve complete overlap of the two
light “sources". The image inversion interferometer then detects the

interference value at detector D2.

Tang et al. [Tang 2016] realized a simplified version of SPADE with image inver-
sion interferometry which is a self-interference technique equivalent to project on
the HG10 mode. The experimental setup is presented in fig. 3.6. In this case, the two
sources, generated from a He-Ne laser, do not interfere because they have orthogo-
nal polarizations.
The intensity at the output of the interferometer is measured with a photodiode,
and the integration time is 200 µs, for a total measurement time for each separa-
tion of 300 s allowing for statistical analysis. The total incident power is 120 µW, i.e.
around 80 × 109 photons per integration time. They explore separations from 0.2w0
to 1.25w0, with steps around 0.3w0, using a translation stage, the reference separa-
tion value being given by its controller, which has a 1 µm-accuracy. A calibration
curve is built using these measurement points from which they extract a prediction
of the sensitivity of the measurement using error propagation.
According to their analysis, the minimum standard deviation would be around
0.05w0, but was not experimentally measured.

Yang et al. [Yang 2016] carried out heterodyne detection on the HG10 mode for pre-
liminary results on separation estimation. They generated two sources by transmit-
ting laser light through masks with two rectangular slits, separated by a controlled
distance, as illustrated in fig. 3.7. In this situation, the diffraction pattern is not an
Airy disk but a sinc function. Nevertheless, the PSF can also be approximated with
a Gaussian function. The spatial incoherence between the sources is generated by
moving a white card before the mask during the integration time of 1 ms.
The power transmitted through the mask is around 10 µW, corresponding to around
4× 1010 incident photons per integration time. They also studied the situation where
the two sources are mutually coherent though we will not develop on these results.
A calibration curve is built from the measurement of four separations (0.4w0, 0.8w0,
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FIGURE 3.7: Schematic diagram of the experimental setup from
[Yang 2016]. They carried out heterodyne detection on the HG10
mode for preliminary results on separation estimation. They gener-
ated two sources by transmitting laser light through masks with two
rectangular slits, separated by a controlled distance. In this situation,
the diffraction pattern is not an Airy disk but a sinc function. Never-
theless, the PSF can also be approximated with a Gaussian function.
The spatial incoherence between the sources is generated by moving

a white card before the mask during the integration time of 1 ms.

1.25w0 and 1.7w0), and the standard deviation on the separation estimation is pre-
dicted by inverting the calibration curve to be at minimum ∆d = 3 × 10−2w0 for
d = 0.3w0.
The limitations of this apparatus performing heterodyne detection arise from the
fluctuations of mode matching between the local oscillator and the signal of interest
due to mechanical instabilities. This experiment serves as a proof-of-principle for
employing heterodyne detection in higher-order Hermite-Gaussian modes in imag-
ing contexts when combined with machine learning techniques. This concept was
implemented in [Pushkina 2021] with coherent sources.

Tham et al. [Tham 2017] demonstrated that SPLICE (super-resolved position local-
ization by inversion of coherence along an edge) detection improves the sensitivity
of separation estimation between two sources compared to Rayleigh’s limit. This
technique is equivalent to projecting on the HG10 mode, but the projection is imple-
mented on another spatially anti-symmetric mode ψ⊥(x, y) = exp

(
− x2+y2

w2
0

)
sgn(x),

using an edged phase plate.
Two Gaussian beams are separated using a mirror displaced by a translation stage,
the separation is certified by the controller of the stage, as described in fig. 3.8.
They are made incoherent with a path difference much longer than their coherence
length. For each measurement, for separations from 0.02w0 to 1.3w0, approximately
N = 1200 − 1500 photons are detected.
The separation estimation is implemented using a calibration curve, with 17 mea-
surements for each separation. The measured standard deviation of 2.6 × 10−2w0
outperforms their experimental implementation of direct imaging by a factor of 4
for separations below 0.4w0.
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FIGURE 3.8: Schematic diagram of the experimental setup from
[Tham 2017], using SPLICE (super-resolved position localization by
inversion of coherence along an edge) detection. In the lower right-
hand box is a representation of SPLICE, the measurement scheme
tested in this experiment. In the upper right-hand box is a sketch
of the spatial profile of the electromagnetic field before the measure-
ment. The rest of the figure depicts the device used to simulate the
two light sources, which can be displaced around their centroid by

the displacement of the top mirror.

Parniak et al. [Parniak 2018] show that Hong-Ou-Mandel interference combined
with spatially resolved cross-coincidences provide information on the separation
between two sources theoretically and experimentally. The concept is illustrated
in fig. 3.9. Because Hong-Ou-Mandel interference is sensitive to mode overlap be-
tween the photons, for small separations, a two-photon interference scheme enables
to reach half of the QFI of separation estimation for perfect visibility, and this sensi-
tivity should be improved for multi-photon interference to even saturate the QFI.
The experiment was realized with visibility around 0.92 and they obtained a stan-
dard deviation ∆d of approximately 0.05w0 for separations between 0.1w0 and 0.6w0
using maximum likelihood estimation, from 1000 coincidences, which outperforms
theoretical DI by a factor of 2. They also studied the task of estimating the centroid
position of the two sources.

FIGURE 3.9: Concept of the experimental from [Parniak 2018]. The
authors show that Hong-Ou-Mandel interference combined with spa-
tially resolved cross-coincidences provide information on the separa-

tion between two sources theoretically and experimentally.

Zanforlin et al. [Zanforlin 2022] performed the separation estimation between
two incoherent weak thermal sources with an interferometric setup, presented in
fig. 3.10. The thermal sources are generated with the combination of a phase and
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FIGURE 3.10: Schematic diagram of the experimental setup from
[Zanforlin 2022]. The thermal sources are generated with the combi-
nation of a phase and an amplitude EOM, followed by a multimode
fiber to reduce the spatial correlations. The separation between the
sources, from 15 µm to 1 cm, is fixed with a mask, fabricated by laser-
written lithography, of two pinholes with diameters from 10 µm to
50 µm. At the detection stage, two single-mode fibers are placed at
1 m from the mask, separated by 5.3 mm. The coupled light is then
injected into a balanced interferometer, with an air gap in one arm
to adjust the losses and single-photon avalanche photodiodes at the

outputs.

an amplitude EOM, followed by a multimode fiber to reduce the spatial correla-
tions. The separation between the sources, from 15 µm to 1 cm, is fixed with a mask,
fabricated by laser-written lithography, of two pinholes with diameters from 10 µm
to 50 µm. At the detection stage, two single-mode fibers are placed at 1 m from
the mask, separated by 5.3 mm. The coupled light is then injected into a balanced
interferometer, with an air gap in one arm to adjust the losses and single-photon
avalanche photodiodes at the outputs.
They performed the estimation for 5 angular separations, θ = 15 µrad, 25 µrad,
40 µrad, 60 µrad and 90 µrad, where approximately 6 · 104 photons were detected
per measurement point, using the maximum likelihood estimator.
They demonstrated a gain of a factor of 3 to 30 for the standard deviation of the es-
timation compared to ideal direct imaging, with a factor of 1.4 to the QCRB.
However, this setup requires phase stabilization, which is realized by controlling
the sources as the thermal states are alternated with coherent states. The authors
also performed hypothesis testing to distinguish between the situations where there
are one or two sources, but we do not discuss the corresponding results.

Zhou et al. [Zhou 2019a] were interested in a slightly different problem, they were
aiming at improving axial resolution which is also affected by diffraction. The exper-
imental setup is presented in fig. 3.11. They implemented SPADE on the Laguerre-
Gaussian modes using two SLMs to extract information on the axial separation be-
tween two sources. They generated a pair of incoherent sources with an SLM illu-
minated by a He-Ne laser, where the holograms for each source are never present
at the same time. The integration time of the CCD camera is much longer than the
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FIGURE 3.11: Schematic diagram of the experimental setup from
[Zhou 2019a]. A 633 nm He–Ne laser is attenuated and modulated
by an acousto-optic modulator (AOM) to generate weak pulses. A
computer-generated hologram is imprinted onto a spatial light mod-
ulator (SLM 1) to generate the desired pupil function to simulate
point sources. Two different methods, the binary sorter-based mea-
surement, and the direct imaging method, are used to estimate the
separation s. In the experiment, they used a flip mirror to select the

measurement method.

switching time of the holograms.
The estimated separations, between 0.1zR and zR, where zR is the Rayleigh range de-
fined by eq. (1.21), are obtained with the maximum likelihood estimation procedure.
For each separation, 2000 detected photons, and the measurement was repeated 400
times to extract the standard deviation. The measured standard deviation in this
configuration is around 0.11 zR.

3.3.3 Demultiplexing on several modes

The experimental works presented in the previous section were all based on the pro-
jection on only one spatial mode, typically the HG10 mode. Having access to more
modes, and even better to more modes simultaneously, provides supplementary in-
formation that can enhance the sensitivity of separation estimation.

The work presented in this manuscript follows the path opened by the preliminary
results of Boucher et al. on the use of an MPLC to improve the estimation of the
separation between two incoherent sources [Boucher 2020]. The sources are gener-
ated incoherently by using a laser with low coherence length, at 1550 nm, and the
incident power on the MPLC is 22 mW. The light coming from the two sources
is demultiplexed by an MPLC, aligned on the centroid of the sources, from Cail-
abs which gives access simultaneously to 9 modes (HG00, HG01, HG10, HG02, HG20,
HG11, HG21, HG12 and HG22).
Calibration curves, giving the intensity as a function of the separation were built
and are found to be in perfect agreement with the theoretical predictions for sep-
arations ranging from 0 to 3w0. These calibration curves carry information on the
separation between the sources, which demonstrates that SPADE with an MPLC is
relevant for separation estimation, even in a practical setup where imperfections like
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crosstalk arise. The predicted sensitivity is determined by inverting the calibration
curve to be 2 × 10−3w0, mainly because of the crosstalks. This is yet to be measured
experimentally.

Another experiment implementing SPADE with an MPLC from Cailabs was con-
ducted by Santamaria et al. [Santamaria 2023]. Contrary to other schemes presented
in this section, they studied the situation of two sources with imbalanced intensi-
ties. In order to generate incoherent sources, they used two different lasers (both
at 1550 nm). The dimmer laser had a power adjustable from 0 to 11 µW, and the
brighter one was at 150 µW. The beams are mode-matched to the MPLC and the in-
tensities at the HG00, HG01 and HG10 outputs were detected with InGaAs photodi-
odes with an integration time of 100 ms, as illustrated in fig. 3.12. They did not align
the SPADE apparatus on the centroid of the two sources but on the bright beam, and
tuned the separation between the sources by displacing the weaker beam.
They built calibration curves, i.e. intensity as a function of the displacement of the
dim source, for the modes HG01 and HG10, certifying the displacement, with the
translation stage controller. They evaluated the resolving power of the device by
inverting the calibration curves and predicted a minimum resolvable distance of
2.4 × 10−2w0 for a sensitivity around 10−3w0.
They also investigated the estimation of the relative intensity between the two
sources, which will not be discussed in this manuscript.

Tan et al. performed SPADE with an MPLC from Cailabs to study a parameter esti-
mation task as well [Tan 2023]. They investigated how the symmetry break induced
by the MPLC crosstalk enables the localization of the two incoherent sources indi-
vidually. Therefore, they actually estimated the position of each source. The experi-
mental setup is presented in fig. 3.13
The incoherence between the sources is generated by having only one source at a
time per integration time. They measured the intensity at six outputs of the MPLC
(HG00, HG01, HG10, HG02, HG20 and HG11) for one source, displaced by a trans-
lation stage, for several displacements, which are certified by the translation stage
controller.
The authors realized the position estimation with a calibration curve, and obtained
values between 10−2w0 and 10−1w0.
The authors do not provide information on the incident power, it is probably around
1.5 mW according to the reference of the laser (at 1550 nm), but they also do not men-
tion the integration time.

Table 3.1 summarize the results on the minimal separations and the minimal sen-
sitivity, either effectively measured or predicted from preliminary measurements,
from all the experiments that we discussed in this section. Note that the minimum
standard deviation does not always correspond to the minimum separation that was
studied, it depends on the range of separations as well as on the different sources
and the number of detected photons. The notation "-" indicates that either the value
is not provided or is not comparable.
We also added the results we obtained, presented in chapter 5 and in [Rou-
vière 2024], for the two intensity regimes we studied.
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FIGURE 3.12: Schematic diagram of the experimental setup from
[Santamaria 2023]. Two telecom fiber lasers (A and B sources) that
exit from collimators (C) are mode-matched using simple lenses (L)
systems. The intensities are tuned by changing the relative orienta-
tion of a pair of polarizers (P). The beams are combined on the input
ports of a beamsplitter (BS) whose O1 output port is coupled with
the demultiplexer free space input. A pair of steering (M) mirrors for
each beam are used to optimize the coupling with the demultiplexer.
The second mirror of beam B is mounted on a translation stage to
move the beam, within the transverse plane, with micrometric reso-
lution whereas the A beam stays centered throughout the measure-
ment. The demultiplexer, PROTEUS-C from Cailabs, allows to per-
form intensity measurements on six Hermite-Gaussian modes. The
HG01 and HG10 outputs of the demultiplexer are coupled with pho-
todetectors (D) whose signals F1 and F2 are recorded using an oscillo-
scope. The intensity of the second output (O2) of BS is recorded using
the same detector/oscilloscope used to record intensities of HG01 and

HG10 modes.

FIGURE 3.13: Schematic diagram of the experimental setup from
[Tan 2023].
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TABLE 3.1: Summary of experiments on separation estimation of two
equally-bright incoherent sources. The (P) for "Predicted" or (M) for
"Measured" indicates whether the separation estimation with the as-
sociated standard deviation was effectively implemented experimen-
tally or if the indicated standard deviation was predicted from pre-

liminary experimental results.

Article Measurement method Ndet dmin (∆d)min

[Paúr 2016] SPADE with SLM Low 0.1w0 ∼ 0.1w0 (M)
[Tang 2016] Self-interferometry 80 × 109 0.2w0 0.05w0 (P)
[Yang 2016] Heterodyne detection (HG10) 4 × 1010 0.3w0 0.03w0 (P)
[Tham 2017] SPLICE 1500 0.02w0 0.03w0 (M)
[Zhou 2017] SPADE on LG modes 2000 0.1zR 0.11zR (M)
[Parniak 2018] Two-photon interference 2000 0.1w0 ∼ 0.05w0 (M)
[Boucher 2020] SPADE with MPLC High 0.03w0 2 × 10−3w0 (P)
[Zanforlin 2022] Intensity interferometry - - -
[Santamaria 2023] SPADE with MPLC 1014 0.02w0 0.1 × 10−2w0 (P)
[Tan 2023] SPADE with MPLC - - -
[Rouvière 2024] SPADE with MPLC 3500 0.4w0 0.03w0 (M)

1013 0.03w0 2 × 10−5w0 (M)

3.4 Experimental setup

3.4.1 Designing the experiment

Our goal is to experimentally implement the estimation of the separation between
two equally bright incoherent sources, populated with thermal states, with spatial-
mode demultiplexing.
We aim to investigate different regimes of mean photon numbers, including bright
thermal sources. The separation between the sources must be variable, from 0 to
about w0, and certified by an independent measurement. Furthermore, we want
to be able to rotate the source orientation in the image plane, to modify the angle
between the source axis and the demultiplexing axes.

In the long run, we would like the experiment to be versatile to explore multiparam-
eter scenarios, as described in section 5.7.2. In this context, we want to be able to
tune other parameters than the separation between the sources, in particular, their
mutual coherence and their relative intensity.

3.4.2 General description

While our initial intention was to conduct the experiment using thermal states, prac-
tical constraints led us to employ phase-averaged coherent states for the incoherent
sources. We studied two distinct intensity regimes, a low photon flux scenario (3500
detected photons at the outputs of the MPLC per integration time) and a high flux
scenario (1013 detected photons at the outputs of the MPLC per integration time).
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Since, for faint sources2, thermal states exhibit Poissonian statistics, they display
the same QFI for separation estimation and Fisher information for SPADE and di-
rect imaging as for phase-averaged coherent states (with any mean photon number),
which were presented in fig. 2.8. Consequently, our experimental results obtained
for phase-averaged coherent states (described in chapter 5) can be extended to ther-
mal states with low mean photon numbers.

The experimental setup is composed of three parts:

• the source generation which is completely fibered,

• the optical scene setup which controls the geometry of the sources, the align-
ment and mode-matching to the MPLC,

• the detection apparatus composed of the demultiplexer and the photodetec-
tors.

Source generation The fibered laser is split into two paths, that are independently
phase-modulated to generate incoherent sources, as explained in section 3.5.4. Sub-
sequently, the light is coupled to free space with two collimating lenses.
Optical scene setup The collimators are mounted on translation stages to adjust
their separation. The two laser beams are aligned and mode-matched to the MPLC
free-space input.
Detection apparatus The light is injected into the MPLC, and photodetectors mea-
sure the intensity at various single-mode outputs of the MPLC. A reference photodi-
ode detects a fraction of the total intensity for normalizing the optical powers mea-
sured at the MPLC outputs. Additionally, a quadrant detector is employed to certify
the separation between the sources.

In the following subsections, we give details on these three items and their optical
components. These elements constitute the PEsto (Parameter ESTimatiOn) experi-
ment, which is displayed in figs. 3.14 and 3.15.

2"Faint sources" here means that the number of photons per coherence time is low.
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FIGURE 3.14: Setup of the PEsto experiment. The experimental setup
is composed of three parts: the source generation (blue part), the de-
tection apparatus (orange part), and the optical scene setup in be-
tween. The fibers at the outputs of the modulators are polarization-

maintaining.
CW laser: Continuous-wave laser, PC: Polarization controller, PM:
Phase modulator, (M)TS: (Motorized) translation stage, CL: Collimat-
ing lens, λ/2: Half-wave plate, (P)BS: (Polarizing) beamsplitter, L:
Lens, QD: Quadrant detector, PD: Photodetector, DP: Dove prism,

MPLC: Multi-plane light converter (spatial-mode demultiplexer).

FIGURE 3.15: Picture of the PEsto experiment.

The experiment turned out to be extremely sensitive in particular to mechanical
instabilities, including those induced by air flows. This is why a plexiglass cover box
surrounds the experimental setup, as it can be seen in fig. 3.16.
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FIGURE 3.16: Picture of the PEsto experimental setup, which is sur-
rounded by a plexiglass box to isolate it from air flows.

3.4.3 Detection apparatus

The experiment revolves around the detection apparatus, and, in particular, around
the spatial-mode demultiplexing device, which is why we begin the description of
the experimental setup with this section.

Spatial-mode demultiplexing

As mentioned in chapter 1, several strategies are possible to demultiplex light over a
given spatial mode basis. We are using the MPLC Proteus-C from Cailabs, which is
a spin-off of our group. This MPLC has 10 outputs which correspond to the modes
HG00, HG01, HG10, HG11, HG02, HG20, HG12, HG21, HG03 and HG30.
Since the commercial version of this device is designed for telecommunication pur-
poses, its working wavelength is 1550 nm and the multimode input is a multimode
fiber. However, as we use it in imaging contexts, the multimode fiber was removed
from our copy, and we have a free-space input. The MPLC has an intrinsic waist,
which is the waist of the mode basis on which the demultiplexing is performed, and
its value is w0 ≃ 300 µm. Due to the multiple reflections on the spherical gold-plated
mirror and to the simulation and manufacturing defects of the phase plate resulting
in low couplings into the single-mode fibers, the MPLC has around 50% losses.

Photodiodes

For high photon flux regimes, the light at the outputs of the MPLC is detected
by variable gain Ge photodiode (Thorlabs PDA50B2). Depending on the gain,
these detectors display bandwidths from 210 Hz to 510 kHz. The maximum optical
powers that can be measured by the photodiodes for each gain are presented in
table 3.2. Their responsivity is R = 0.85 A W−1.

Another photodiode before the MPLC collects part of the incident light for nor-
malizing the measurement data, referred to as the reference photodiode.
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TABLE 3.2: Bandwidth and maximum measurable optical power of
the photodiodes (Thorlabs, PDA50B2) depending on the gain.

Gain Bandwidth Maximum measurable power
0 dB DC-510 kHz 7 mW
10 dB DC-270 kHz 2 mW
20 dB DC-85 kHz 0.7 mW
30 dB DC-22 kHz 0.2 mW
40 dB DC-6.3 kHz 70 µW
50 dB DC-2 kHz 20 µW
60 dB DC-630 Hz 7 µW
70 dB DC-210 Hz 2 µW

Avalanche photodiodes

To investigate the low photon flux regime, we adapted the detectors and borrowed,
for two weeks, two avalanche photodiodes (APD) from Prof. Eleni Diamanti who
works at LIP6 - a computer science lab of Sorbonne Université, in Paris. These single-
photon detectors (IDQuantique, ID230) have a 25% quantum efficiency at 1550 nm.
We also characterized their saturation by plotting the mean photon number mea-
sured by the APD, with an integration time of 100 ms, as a function of the out-
put voltage of by the reference photodiode in fig. 3.17. This graph shows that the
APD saturates quite quickly as it is not linear from around 1500 measured photons,
and this is because we are illuminating it with a Poissonian light and the detector
presents a deadtime of around 50 µs.

FIGURE 3.17: Mean photon number measured by the APD, with a
100 ms-integration time, as a function of the output voltage of the ref-
erence photodiode. The APD saturates quite quickly as it is not linear

from around 1500 measured photons
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3.4.4 Source generation

The MPLC is a telecommunication device and its working wavelength is 1550 nm,
which imposes the laser wavelength. As mentioned previously, we want to be able
to adapt the coherence of the sources from mutually coherent to mutually incoherent
and everything in between. This is why we chose a laser (Thorlabs, SFL1550P) with
a large coherence length (ℓc ≈ 6 km). Its output power is around 20 mW. The laser
is fiber coupled and split into two paths. The light in each path is then modulated
with phase and amplitude integrated modulators (iXBlue, MPX-LN-0.1 and MX-LN-
0.1) appropriately to generate thermal sources or mutually incoherent sources with
Poissonian statistics, as it will be explained in section 3.5. Because the modulators
are based on birefringent crystals, they are sensitive to the polarization of the input
field, which we adjust with polarization controllers at the input. The fibers at the
output of the modulators at polarization-maintaining.

3.4.5 Optical scene setup

Collimators

After the modulation, we use triplet lens collimators (Thorlabs TC12APC-1550) to
couple light into free space. The waist at the output of the collimators is w0 =
1.1 mm.
The beams at the output of the collimators are then mixed on a beamsplitter to ori-
entate them on the same optical path.

Translation stages

Both collimators are mounted on translation stages to adjust the separation between
the sources. One of the translation stages is manual (Newport, M-UMR5.16) associ-
ated with a micrometer head (Newport, BM11.16), and the other one is motorized
(Newport, 9066-X-P-M). The manual stage has a travel range of 16 mm, with a sen-
sitivity of 2 µm, while the motorized stage has a travel range of 12.7 mm, for a step
size of around 30 nm with an open-loop control system.

In order to distinguish them easily, we named Linguine the source corresponding
to the manual stage, and Trofie the one corresponding to the motorized translation
stage.

Quadrant detector for reference separation

Due to hysteresis and variability in the step size for the motorized stage and low
sensitivity for the manual stage, the true value of the separation can not be extracted
from the translation stage controller. This is why we wanted to have an indepen-
dent measurement to certify the separation, and, for this purpose, we employed
a quadrant detector. Even though, this detector can not measure separations be-
tween beams3, as demonstrated in section 2.4, the sensitivity of quadrant detection

3This is due to its working principle. If two equally bright beams are symmetrically displaced by a
small distance, the output signal of the quadrant detector is always zero whatever the separation.
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for beam displacement estimation is close enough to the QFI to be reliable. There-
fore, we measure independently the displacement of each source x1 and x2 with a
quadrant detector to access a reference separation value dref = |x1 − x2|.

The calibration curve of the quadrant detector (Thorlabs PDQ30C) is presented
in fig. 3.18. We built it by displacing the beam on the detector by a known amount
- determined by the translation stage - and measuring the output signal for each
displacement. The signal, normalized by the total incident power, given by the SUM
output of the controller (Thorlabs KPA101), is referred to as VQD.
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FIGURE 3.18: Calibration of the quadrant detector. The fit using
eq. (3.8) gives a = 337.2 and b = 2023.5.

We fitted this calibration curve with the sigmoid function, which is a good model
for the calibration of such a quadrant detector,

f (x) = −1 +
2

1 + exp
(

x−b
a

) , (3.8)

where x is the beam position, and a and b are the fitting parameters, and by inverting
this function after finding a and b, it is possible to determine the position of the beam
from the measured output voltage of the quadrant detector

x = b + a ln
(

1 − VQD

1 + VQD

)
. (3.9)

Dove prism

We use a Dove prism (Thorlabs, PS991M) to rotate the optical scenes in the image
plane. In this version of the experiment, we aligned the source axis on one of the
MPLC axes, which are 45° to the horizontal and vertical axes. This is why the Dove
prism is set to rotate the images by 45°.

Mode-matching

For mode matching the Gaussian beams at the output of the collimators to the intrin-
sic waist of the MPLC, we set up two lenses of focal lengths 300 mm and 100 mm in a
telescope configuration. The mode-matching procedure, which involves the modes
HG02 and HG20, is described in section 5.2.2.
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Intensity balance

Since the light generated by the laser is linearly polarized, we use a combination
of half-wave plates and polarizing beamsplitter to balance the intensities of the two
sources. This configuration also enables to unbalance the intensities in a controlled
way.

3.5 Thermal state generation

One of our goals was to study separation estimation for light with statistics close to
the one emitted by astronomical objects. Despite conducting the experiment using
phase-averaged coherent states, we allocated time to produce thermal light from
a laser beam. In this section, we explain how we generated thermal states with
low mean photon numbers, and how we exploited a segment of this procedure to
generate phase-averaged coherent states.

3.5.1 How to generate thermal states

Since thermal light emanates from black body radiation, a straightforward way to
generate it would be with an incandescent bulb. However, our requirements were to
produce thermal states with a non-negligible mean photon number, in a monochro-
matic Gaussian beam, in other words in a well-defined spatio-temporal mode. We
also wanted the coherence between the two sources to be modulated. Hence the use
of a laser.
We recall the P function of a thermal state, given in eq. (1.123), which corresponds to
the probability distribution of the coherent states |α⟩ constituting the thermal state:

Pth(α) =
1

πNth
e−|α|2/Nth , (3.10)

where α is the complex amplitude of |α⟩. Thermal states can thus be seen as incoher-
ent mixtures of coherent states weighted by a Gaussian distribution.
From this definition, there are two ways to generate what can be called pseudo-
thermal light - "pseudo" because it does not originate from black body radiation -
from a single laser beam: either using phase and amplitude electro-optical modula-
tors on which we implement the probability distribution of eq. (3.10) with arbitrary
signal generators, or using a rotating ground glass wheel that realizes this proba-
bility distribution in an analog manner, exploiting the speckle pattern. The former
method is the one we chose and is presented in sections 3.5.2 and 3.5.3, and we also
explain how we tried to implement the latter technique in section 3.5.5. We will re-
fer to this kind of light as "thermal states of light" in this manuscript, even though
it does not have the spectrum of black body radiation, since it corresponds to the
formal mathematical definition.



92 Chapter 3. Surpassing Rayleigh’s limit

3.5.2 Generation with electro-optical modulators

As mentioned before, using a phase and an amplitude electro-optic modulator
(EOM) is a controlled way to generate thermal states from a laser beam, by mod-
ulating the amplitude A and phase θ of the coherent state |α⟩, with the complex
amplitude α = Aeiθ . Indeed, eq. (3.10) can be written in polar coordinates as4

P(A, θ) =
A

πNth
e−A2/Nth , (3.11)

which is actually independent of θ. Since phase and amplitude are uncorrelated, the
probability distribution eq. (3.11) is separable into a phase and an amplitude part:
P(A, θ) = P(A)P(θ). The phase is uniformly distributed over 2π, i.e.

P(θ) =
1

2π
, (3.12)

and the probability distribution of amplitude is thus

P(A) =
2A
Nth

e−A2/Nth . (3.13)

These probability distributions can be applied to the phase and amplitude modula-
tors in order to generate such thermal states.

Working principle of electro-optical modulators

Since the laser is fibered, we used integrated optical modulators. A phase EOM
consists of a lithium niobate crystal placed in between two electrodes. When an
electric field is applied to this birefringent crystal, its refractive index changes due
to the Pockels effect - a second-order nonlinear effect. This is how a phase shift is
implemented to the guided light. Moreover, the phase shift is proportional to the
voltage applied to the crystal. The voltage corresponding to a phase shift of π is
denoted Vπ.

An amplitude EOM is an integrated Mach-Zehnder interferometer in which a
phase modulator is inserted. A voltage is applied to induce a phase difference be-
tween both arms, which results in power variations at the output of the interfer-
ometer. The interferometer is in a push-pull configuration, which means that each
arm sees an opposite phase shift, and the transmissivity of the amplitude EOM as a
function of the applied voltage reads

T(U) = cos(k(U − U0)), (3.14)

where U0 is the voltage corresponding to the maximum amplitude.

4Since we chose the convention â |α⟩ = α |α⟩, then |α|2 corresponds to the laser intensity and α =
1
2 (q + ip) to the complex amplitude of the electric field.
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FIGURE 3.19: (top) Phase modulator, (bottom) Amplitude modulator.
Source: [Jenoptik].
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FIGURE 3.20: Transmissivity of the amplitude EOM, with k = 1/2
and U0 = 1.5 V. The dashed lines correspond to Umin = U0 and

Umax = U0 +
π
2k .

https://www.jenoptik.com/products/optoelectronic-systems/light-modulation/integrated-optical-modulators-fiber-coupled
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Phase modulation for thermal state generation

As explained previously, the phase shift induced by a phase EOM is proportional
to the voltage applied to the modulator. Therefore, in order to generate the uniform
phase distribution over 2π, given by eq. (3.12), the phase EOM is driven with a white
voltage noise, with amplitude 2Vπ, produced with an arbitrary signal generator.

Amplitude modulation for thermal state generation

According to the operation of the amplitude modulator described previously, the
amplitude of the field at the output of the EOM is A = T(U)A0 where A0 is the
amplitude of the incident coherent state and T(U) is given by eq. (3.14). Since the
transmissivity function T(U) is periodic, we limit the voltage modulation in a range
where it is monotonic between Umin = U0 and Umax = U0 +

π
2k , as presented in

fig. 3.20. Using that for probability distributions, a variable change is given by

P(u) = P(v)
∣∣∣dv
du

∣∣∣, (3.15)

we obtain the probability density function of the applied voltage by applying the
variable change A = T(U)A0 to eq. (3.13):

P(U) = C exp
(
− α2

0
Nth

T(U)2
)
|T(U) sin(k(U − U0))|Θ(U − Umin)Θ(Umax − U)

(3.16)
where Θ(x) is the Heaviside function which is equal to 1 for x ≥ 0 and to 0 else-
where, and

C =
2kA2

0
Nth

[
1 − exp

(
− A2

0
Nth

)]−1
(3.17)

is the normalization constant.
The probability distribution of the voltage to apply to the amplitude modulator
eq. (3.16) is represented in fig. 3.21 for several mean photon numbers Nth.

In order to generate random numbers following this probability distribution
function, these voltages are applied to the amplitude EOM. For this purpose, we
use inverse transform sampling which is a basic pseudo-random number sampling
[Devroye 2013]. This method works as follows:

1. Generate a random number z from the random variable Z following the uni-
form distribution in the interval [0, 1].

2. Compute F−1
U (z), where FU is the cumulative distribution function of P(U), i.e.

FU(x) = P(U ≤ x).

For the probability distribution eq. (3.16), we find that the inverse of the cumu-
lative distribution function is:

F−1
U (Z) = U0 +

1
k

arcsin

 1
A0

√
Nth ln

(
1 + (exp

(
A2

0
Nth

)
− 1)Z

). (3.18)
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FIGURE 3.21: Probability distribution of the voltage applied to the
amplitude EOM.

This function produces the voltage values for approximating the voltage probability
distribution eq. (3.16) needed for thermal states generation, as illustrated in fig. 3.22.
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FIGURE 3.22: Probability distribution of the voltage to apply to the
amplitude EOM and histogram from the inverse transform sampling

method with 100000 samples.

Thermal states with EOM

Combining the two probability distribution functions, it is thus possible to generate
a thermal state from a coherent state.
The P function of a state simulated using the probability distribution eq. (3.12) and
the inverse transform sampling with eq. (3.18) is plotted in fig. 3.23(a), as well as the
projection of the P function on the real part of α in fig. 3.23(b). These two histograms
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FIGURE 3.23: Simulation of a thermal state for A0 = 5, Nth = 2 and
Nsamples = 105. (a) Histogram and P function. (b) Projection on the

real part of α.

are plotted along with the P function of the target thermal state for comparison.
Both curves are extremely similar, suggesting that high-quality thermal states can be
generated with a phase and an amplitude EOM.
In order to characterize the quality of the generated states, the figure of merit that we
choose is the overlap between the P function of the generated thermal state and the
P function of the target state. This overlap is presented as a function of A0 and Nth
in fig. 3.24. This figure shows that it is not possible to generate any target thermal
state with any incident coherent state, but that the amplitude of the incident coherent
state must be adapted to the mean photon number of the thermal state we want to
generate, or, in other words, that only a specific range of mean photon numbers is
accessible with a given amplitude for the incident coherent state.

3.5.3 Experimental results

The thermal states are generated with a phase modulator and an amplitude mod-
ulator driven with an arbitrary signal generator implemented on Red Pitaya com-
ponents (STEMlab, 125-14). The characterization of the EOMs can be found in Ap-
pendix. Since the Red Pitaya outputs are limited between −1 V and 1 V, we added
homemade electronic amplifiers to match the modulators’ characteristics. These am-
plifiers have a limited bandwidth of 1 MHz. We characterize the generated ther-
mal states by performing a homodyne detection (Koheron, PD100B, bandwidth
100 MHz), which measures the marginals of the Wigner function, as illustrated in
fig. 3.25. The bandwidths of the different devices that we use to generate and detect
the thermal states are presented in table 3.3.
Since the phase is uniformly averaged over 2π, the measurement results should dis-
play rotational invariance in the phase space - this was verified experimentally, see
fig. 3.27 - which is why the phase of the local oscillator does not have to be locked,
as long as the phase drift of the local oscillator is slow. We therefore measure the
marginals of the Wigner function of the generated states at random phases.
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FIGURE 3.24: Overlap of the generated states compared to the target
thermal state, (top) as a function of the amplitude of the input coher-
ent state for several target mean photon numbers Nth, and (bottom)
as a function of target mean photon numbers Nth for several ampli-

tudes of the input coherent state.

TABLE 3.3: Bandwidths of the different devices used to generate and
detect the thermal states.

Device Bandwidth
EOM DC-200 MHz
Red Pitaya DC-60 MHz
Amplifier DC-1 MHz
Homodyne detector DC-100 MHz
Photodiode DC-200 Hz
Avalanche photodiode DC-10 Hz
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FIGURE 3.25: Experimental setup for generating thermal states with
an amplitude EOM (AM) and a phase EOM (PM), and for character-
izing the generated states with balanced homodyne detection (BHD).

PC: Polarization controller, BS: Beamsplitter.

Figure 3.26 presents a typical measurement obtained with homodyne detection, with
a measurement time of 100 ms. In this figure, we display the distributions of the
phase (left plot) and amplitude (middle plot) modulation voltages measured at the
outputs of the amplifiers. We observe that the modulators are properly driven by
distributions of the form eqs. (3.12) and (3.16). We also display in this figure, the dis-
tribution of the voltages at the output of the homodyne detector (right plot), which
measures the field modulated with the obtained phase and amplitude modulations
(left and middle plots).
By fitting the obtained probability distribution with a Gaussian function, and com-
paring its variance to the vacuum variance, we access the temperature of the gener-
ated thermal state. Indeed, the variance of the marginal distributions of the vacuum
is σ2

0 = 1, and the variance of the marginal distributions of a thermal state with mean
photon number Nth is σ2

th = (2Nth + 1)2. This means that we have the relation:

Nth =
σth

2σ0
− 1

2
. (3.19)

Therefore, for the generated state of fig. 3.26, the temperature is Nth = 23.3 in this
case.
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FIGURE 3.26: Thermal state measured with a measurement time of
100 ms. We display the probability distributions of the phase (left
plot) and amplitude (middle plot) modulation voltages measured at
the outputs of the amplifiers. We also display in this figure, the distri-
bution of the voltages at the output of the homodyne detector (right
plot), which measures the field modulated with the obtained phase

and amplitude modulations (left and middle plots).

Since the modulators are sensitive to thermal fluctuations, it was important to assess
how stable the generated states are. We visualize in fig. 3.27 a marginal of the Wigner
function of generated thermal states, averaged over 100 ms, for a total measurement
time of 1 s. For some of them, a dip appears in the center, this corresponds to a slight
shift in the amplitude modulation due to thermal fluctuations, because of shifts in
the amplitude modulation. Nevertheless, they remain close to a thermal state as
their Gaussian fits are of good quality.
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FIGURE 3.27: Evolution over time of a thermal state averaged over
100 ms, with total measurement time of 1 s. Each histogram corre-
sponds to the probability distribution of the measured voltage and is
fitted with a Gaussian function. The number F indicated in the upper
right corner is the overlap between the histogram of the generated
state and to the same the Gaussian function corresponding to the fit
in fig. 3.26 thermal state. We observe that the overlap varies only

slightly.

3.5.4 Incoherent sources

At the time when we performed the measurement, we were not able to generate
thermal states with high mean photon numbers, because the laser was not powerful
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enough. However, we wanted to perform the experiment in two distinct photon-
flux regimes, at low flux (with 3500 detected photons in total per integration time)
and at high flux (with 1013 detected photons in total per integration time). This is
why, in order to be in the same situation for the high-flux and the low-flux regimes,
we decided to have two Poissonian sources that are mutually incoherent. Note that,
in the low-flux regime, thermal states are written, in each coherence time interval, as

ρ̂ = |0⟩ ⟨0|+ ε |1⟩ ⟨1| , (3.20)

with ε ≪ 1, and, therefore, display Poissonian statistics.
For generating mutually incoherent sources, only the phase modulators are on with
the same uniform phase distribution. Since this is realized with two independent
phase modulators, one for each source, the two beams are mutually incoherent. We
can see signatures of the incoherence spatially in fig. 3.28 and temporally in fig. 3.29.

FIGURE 3.28: Spatial incoherence. Images acquired by an infrared
CCD camera after the beamsplitter which mixes the two sources
when the beams overlap perfectly. A small angle is introduced be-
tween the two beams for visualizing the interference fringes. The
fringes appear when the phase modulators are off (left), and disap-

pear when the modulators are turned on (right).
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FIGURE 3.30: Generating thermal states with a rotating ground glass
wheel. When the ground glass is illuminated with a laser beam, the
scattered light forms speckles (A), and a single-mode fiber is placed
after the disk to collect light. Rotating the round glass disk induces
many speckle contributions with random amplitudes and phases to
rapidly mix up (B), and light at the output of the single-mode fiber

has the statistics of a thermal state. Source: [Parigi 2009].
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FIGURE 3.29: Temporal incoherence. Signal detected by the photo-
diodes after the beamsplitter which mixes the two sources, when the
two beams overlap perfectly. Interference fringes appear when the
phase modulators are off (light blue), and disappear when the mod-

ulators are turned on (dark blue).

The measurements were realized for two very different photon fluxes, 3500 and
1013 detected photons per integration time.

3.5.5 Sidenote: a first attempt to generate thermal states with speckles

A popular and cheap trick to generate thermal states that meet all the above require-
ments is realized using a rotating ground glass disk and a single-mode fiber. When
the ground glass is illuminated with a laser beam, the scattered light forms speck-
les, and a single-mode fiber is placed after the disk to collect light, as illustrated in
fig. 3.30.

If the core diameter of the fiber is smaller than the average size of the speckle,
only a single speckle is coupled into the fiber and its output is a coherent Gaussian
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beam. It has been shown experimentally that rotating the round glass disk induces
many speckle contributions with random amplitudes and phases to rapidly mix up,
and light at the output of the single-mode fiber has the statistics of a thermal state
as defined by eq. (1.123) [Arecchi 1965; Parigi 2009]. We performed this technique
with tracing paper, instead of ground glass. The intensity at the output of the fiber
was too low however and did not allow to explore a large range of mean photon
numbers. Moreover, it does not give access to easy control of the coherence between
the two sources.
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As we saw in section 2.5.4, when performing SPADE with an infinite number
of modes, the Fisher information for the estimation of the separation between two
incoherent equally bright sources is constant and saturates the QFI. The sensitivity
on the estimation of d is, therefore, independent of the true value and arbitrarily
small separations can be resolved equally well as large ones. This is, however, only
true for ideal measurements, without noises or imperfections. In realistic scenarios,
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noise sources are present at different stages of the estimation scheme: quantum noise
and laser noise at the source generation stage, crosstalk at the demultiplexing stage,
and electronic noise at the detection stage.

Assuming the estimation is unbiased, the figure of merit to benchmark is the
sensitivity, quantified with the standard deviation of the estimation ∆d̃. This chap-
ter aims to evaluate how the sensitivity of the estimation is affected by the different
noise sources. The first section establishes the link between noises and sensitiv-
ity, and the following sections examine all the noise sources one after the other to
determine which are the dominant ones between the electronic noise of the detec-
tion apparatus in section 4.2, the laser noise in section 4.3, and the phase noise in
section 4.4. They are summarized in section 4.5 before the effects of crosstalk are
studied in section 4.6.

4.1 Noise sources and expected sensitivity

The experiment aims at estimating the separation between two incoherent sources,
in the short separations range, i.e. for separations shorter than the beam size w0, and
where the axis of the sources is aligned to the x-axis of the MPLC. Each source emits
N photons, and, because of the losses of the detection apparatus (1 − κ), with κ < 1,
the total detected photons at all the outputs of the MPLC is 2Nκ.
In this setting, the sensitivity for SPADE with only the mode HG10 saturates the
QFI (see fig. 2.10). This is why we only measure the intensity at the output of the
HG10 mode, and we denote the associated photon number N̂10. In the following, we
denote N10 = ⟨N̂10⟩. As described in section 2.2.3, we first built a calibration curve,
i.e. we determined experimentally the mean photon number N10 at the output of the
HG10 mode of the MPLC as a function of the separation between the two sources.
Then, by inverting the calibration curve, we have access to the estimation d̃ after
measuring N10 when the two sources are separated by a distance d.
The theoretical variance of the estimation is given by eq. (2.44)

∆2d̃ =
∆2N̂10

µ(∂dN10)2 , (4.1)

where µ is the number of measurements realized to estimate the separation.
Since we study Poissonian statistics, it is equivalent to increase the integration time
for one measurement and the number of measurements. We chose to have µ = 1 and
we determined the variance ∆2d̃ by realizing the estimation 200 times. One measure-
ment corresponds to an integration time which is either tint = 5 ms, corresponding
to 2Nκ = 1013 photons detected at all the outputs of the MPLC for the high-flux
regime, or tint = 100 ms, i.e. 2Nκ = 3500 detected photons, for the low-flux regime.
As eq. (4.1) emphasizes, the variance of the estimation depends on the variance of
the number of measured photons N10, which has several sources of fluctuations.
These noise sources are the laser noise ∆N̂LN

10 - composed of the quantum noise of
the light (or shot noise) ∆N̂SN

10 and a classical intensity noise ∆N̂CN
10 , the electronic

noise of the detection apparatus ∆N̂EN
10 or the phase noise due to the presence of two
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sources ∆N̂PhN
10 . Because all these noises are uncorrelated, we can rewrite eq. (4.1) as

∆2d̃ =
∆2N̂LN

10 + ∆2N̂EN
10 + ∆2N̂PhN

10
µ(∂dN10)2 . (4.2)

Finally, another experimental imperfection that affects the sensitivity of the separa-
tion estimation is crosstalk [Gessner 2020a]. Crosstalk arises from the slight devia-
tion in the decomposition of multimode light by the MPLC from the ideal Hermite-
Gaussian modes (see section 4.6). Since the HG mode basis is the target basis of
the decomposition performed by the MPLC, we continue to designate the diverse
outputs from the single-mode fibers as HGnm mode outputs, acknowledging the
presence of crosstalk. The imperfect mode basis decomposition is not a noise strictly
speaking, but it affects the number of photons detected at the different outputs of the
MPLC, in particular N10. Consequently, this imperfection has a discernible impact
on the sensitivity of the separation estimation1.

In the following sections, we study the influence of each noise on the sensitivity of
the estimation from our experimental data by determining their order of magnitude.
Crosstalk will be examined in the last section.

4.2 Electronic noise of the detection apparatus

In this section, we explore the noise introduced by the photodetection stage, at the
output of the MPLC. The electronic noise of the detection apparatus reduces the
signal-to-noise ratio. In the low-flux regime, it corresponds to the dark counts of
the single-photon detectors which introduces additional photon counts that do not
contain any information on the separation.
In the high-flux regime, the noise emerges from both the detectors and the oscillo-
scope, they also add an extra contribution to the variance in the number of detected
photons. The effect of electronic noise on separation estimation using SPADE was in-
vestigated in the literature with different approaches [Lupo 2020; Len 2020; Oh 2021]
in the single-photon regime. They agree that, in the presence of dark counts, the
Fisher information drops to zero for short separations. Sorelli et al. [Sorelli 2021a]
studied how to take it into account in the method of moment and how it affects the
sensitivity of the estimation.
In this section, in the spirit of this chapter, we approach the electronic noise in a
practical manner by determining the order of magnitude of its contribution to the
estimations we conducted.

4.2.1 Bright sources: photodiodes and oscilloscope

When the MPLC is illuminated with bright sources, the intensity at its outputs is
measured with photodiodes, and the experimental data are acquired with an oscil-
loscope. We want to determine the variance ∆2N̂EN introduced by these electronical

1In principle, the crosstalks introduce some biases too. However, since we use an experimental
calibration curve for the estimation (see chapter 5), these biases are taken into account and, therefore,
the estimation could be considered unbiased.
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components.
We acquired the offset signals - the output voltage of the detectors, acquired with
the scope, when they are not illuminated with light - for an integration time of 5 ms,
which is the same as during the estimation measurements (see chapter 5). We re-
peated these measurements for 2000 samples, on which we extracted the variance
of the measured voltage ∆2U. Since the electronic noise depends, in practice, on the
gain of the detectors and the scale of the oscilloscope, we realized this procedure for
several detector gains (40 dB, 50 dB, 60 dB, 70 dB) and oscilloscope scales (10 mV,
20 mV, 50 mV, 100 mV, 200 mV, 500 mV, 1 V).
The results are plotted in fig. 4.1(top) where the standard deviation of the measured
voltage ∆U is represented as a function of the scope scale. We observe that for the
highest gains, especially the 70 dB-gain, the electronic noise is dominated by the
noise of the detector, while, for the highest scope scales, the electronic noise is dom-
inated by the scope noise.

We also expressed the electronic noise in terms of noise on the equivalent optical
power. The measured offset voltages U are converted in equivalent optical powers
P using

P =
U
RG

, (4.3)

where R is the responsivity of the photodetectors (for our photodiodes, R =
0.85 A W−1) and G is the gain of the detectors.
The voltages corresponding to the scope scales Uscale are also converted into equiv-
alent optical powers, that we denote the equivalent optical power setting Psetting. In-
deed, while acquiring the data for separation estimation (see chapter 5), we adjusted
the scale of the scope so that the measured voltage reached half of the maximal volt-
age of the scope, which corresponds to 5 divisions. This is why we determined the
equivalent optical power for each scope scale by converting the half-maximal volt-
age into an optical power using eq. (4.3) using

Psetting =
5 Uscale

RG
. (4.4)

The electronic noise in terms of the equivalent optical power ∆P as a function of the
equivalent optical power setting Psetting is represented in fig. 4.1(bottom).

We write the variance of the electronic noise ∆2P as a sum of two noises ∆2P =
∆2P0 + ∆2P1. The total electronic noise in terms of the equivalent optical power ∆P
is fitted with the function

f (P) =
√
(a · P)2 + b2. (4.5)

The first term is independent of the mean measured power and is the noise offset
∆P0 = b = 2.6 × 10−10 W, and the second term is a standard deviation proportional
to the measured power ∆P1 = a · P = 3.8 × 10−4 · P. The variance ∆2P can also be
written in terms of the number of photons as follows

∆2N̂EN = 1.1 × 1014 + 1.5 × 10−7 · N2. (4.6)
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FIGURE 4.1: Electronic noise for detection in the high-flux regime, for
a total measurement time of 10 s and an integration time of 5 ms. (top)
Standard deviation of the voltage of the offset signal of the detectors
as a function of the scope scale, for different gains of the photodi-
odes. (bottom) Equivalent optical power noise as a function of the
equivalent optical power for the scope scale and detector gain, the
experimental points are fitted with the function f in eq. (4.5) (dashed

blue line).
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FIGURE 4.2: Offset signal of the photodiode at the HG10 output.

We mention that this is only an approximation of the actual electronic noise. Indeed,
due to the working principle of the photodiodes, the electronic noise might vary
with the incident optical power, in a different way than eq. (4.6).

We also observed that the offsets of the detectors are not stable. The offset signal of
the photodiode at the HG10 output over 10 s is plotted in fig. 4.2. Since the estimation
is obtained from the mean value over 200 samples, i.e. over 1 s for a 5 ms integration
time, we evaluated the variations of the mean value of the offset signal, and these are
also represented on fig. 4.2. These electronic fluctuations introduce some systematic
errors in the estimation.

4.2.2 Faint sources: SPAPD

For the single-photon avalanche photodiodes (SPAPD) that we used for the low flux
measurements, we assume that the dark counts are constant and independent of the
incident number of photons. In order to measure the electronic noise, as explained
in the previous section, we acquire the offset signal - without incident light - of the
APD, and determine its variance over the same integration time of the estimation
measurements 100 ms.
We found ∆2N̂EN = 30, over 200 samples. Therefore, using eq. (4.9), the electronic-
noise-limited sensitivity, for the low-flux regime is represented in fig. 4.3.

4.3 Laser noise

Lasers, in general, do not generate perfect coherent states and exhibit an intensity
noise larger than the shot noise section 1.2.4, with a classical contribution. The
quantum and classical contributions to the intensity noise of the laser being un-
correlated, we can artificially divide the laser noise into two noises, the shot noise
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FIGURE 4.3: Standard deviation of the estimation as a function of the
true value while taking into account different noise contributions in
the low-flux regime. The dashed line is the quantum Cramér-Rao
bound, the light blue line corresponds to the shot noise contribution,
the blue line is the laser noise added to the shot noise contribution
and the dark blue line is the electronic noise added to the laser and
shot noises contribution. The dark blue line corresponds to our exper-
imental configuration since it takes into account all the noise sources.

∆2N̂SN and the classical noise ∆2N̂CN, arising from electronic and thermal fluctua-
tions: ∆2N̂LN = ∆2N̂SN + ∆2N̂CN. When detecting laser light with a photodetec-
tor, the total measured noise also accounts for the electronic noise and is, therefore,
∆2Ntot = ∆2N̂LN + ∆2N̂EN.
This section examines the laser contribution to the intensity noise, compared to the
electronic noise, in both the high-flux regime, where we used photodiodes for the
detection, and the low-flux regime, where the detection was performed with single-
photon avalanche photodiodes.

4.3.1 Shot noise

We begin to investigate the quantum noise, i.e. the only noise source that is intrinsic
to the state of the electromagnetic field. Since we chose to generate phase-averaged
coherent states of intensity |α|2 = N, the quantum noise is given by the shot noise
which is ∆2N̂SN = N. Assuming the centroid of the sources is aligned on the MPLC,
the total number of photons at the output of the mode HG10 from two sources lo-
cated in positions x1,2 = ±d/2 reads

N10 = Nκ

(
β10

(
d
2

)2

+ β10

(
−d

2

)2
)

= 2Nκβ10

(
d
2

)2

, (4.7)
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FIGURE 4.4: Shot noise-limited sensitivity for HG10 measurement, for
2Nκ = 3500 detected photons.

where each source emits N photons during the integration time tint and

β10(x) =
x

w0
exp

[
− x2

2w2
0

]
(4.8)

is the mode overlap as defined by eq. (2.86). The derivative of eq. (4.7) with respect
to d gives access to the denominator of eq. (4.2)

∂dN10 = 2Nκ
d

2w2
0

(
1 − d2

4w2
0

)
exp

(
− d2

4w2
0

.
)

(4.9)

Therefore, the shot-noise limited estimator has a variance given by

∆2dSN(d) =
∆2NSN

10
(∂dN10)2 =

N10

(∂dN10)2 =
w2

0
2Nκ

exp
(

d2

4w2
0

)
(

1 − d2

4w2
0

)2 . (4.10)

The prefactor w2
0

2Nκ corresponds to the quantum Cramér-Rao bound (for the sources
with Poisson statistics), and the second part is close to 1 in the sub-Raleigh regime
d ≪ w0, i.e. HG10 measurement is close to being quantum optimal for small
separations, as illustrated in fig. 4.4 for 2Nκ = 3500.

4.3.2 Bright sources

We now examine the laser noise in the high photon flux regime.
We acquired the voltage of the output of the photodiode at the HG10 output of the
MPLC illuminated by one source, during 5 ms, and we repeat this measurement
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over 200 samples to extract the statistics, in particular, the mean value of the de-
tected photon number which corresponds to the shot noise ∆2N̂SN

10 and the variance
which is the total measured noise ∆2N̂tot

10 .
Typically, the mean number of detected photons is N10 ≈ 1010, which results in
an electronic noise of ∆2N̂EN

10 ≈ 1014, according to eq. (4.6). Additionally, the total
measured noise is of the same order, ∆2N̂tot

10 ≈ 1014. This suggests that the laser
noise is, in our case, negligible compared to the electronic noise of the photodiodes
and oscilloscope.

4.3.3 Faint sources

We conducted the same analysis for the low-flux regime, only changing the integra-
tion time to 100 ms. In this regime, we used single-photon avalanche photodiodes,
which are adapted to the photon flux and much less noisy than the photodiodes.
We obtained a typical laser noise of ∆2N̂LN

10 ≈ 400 which slightly varies with the
mean number of detected photons and is of the same order of magnitude as the shot
noise ∆2N̂SN

10 . We compare this value to the electronic noise measured in section 4.2.2,
∆2N̂EN

10 ≈ 30.
Consequently, when detecting faint sources, the laser noise has to be taken into ac-
count, along with the shot noise, and, to a lesser extent, the electronic noise of the
detectors.
The laser noise is roughly constant over the range of estimated separations, accord-
ingly, using eq. (4.9), the sensitivity limited by the laser and shot noises is repre-
sented in fig. 4.3.

4.4 Phase noise from the residual interference

We now consider the noise due to the interference between two mutually incoherent
sources. Indeed, even though the mean number of photons of the two sources is
the sum of the mean number of photons of each source, the variance in the photon
number is increased compared to the variance of a single coherent state. This section
models the interference between the two sources to extract the extra noise term,
which is referred to as the phase noise, and examines if this noise is observable in
the experimental results.

4.4.1 Modeling phase noise

As presented in section 3.5, we generate two incoherent sources by modulating their
phase randomly. Because the two beams are a mixture of coherent states, they inter-
fere and this effect broadens the variance of the measured intensity. This interference
noise will be referred to as the phase noise and, in this section, we extract its contri-
bution.
We consider that, within a time duration equal to the coherence time τc, the two
beams are in two coherent states |α⟩ and

∣∣αeiφ〉 with a fixed phase φ. Note that the
coherence time τc is governed by the bandwidth of the phase modulators, and is
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typically of 1 µs for our measurements. Both sources have the same mean photon
number Nc = |α|2 at the scale of the coherence time τc. They are mixed and detected
with efficiency κ<1, resulting in the measured state being

∣∣√κ(α + αeiφ)
〉
. Therefore,

the mean number of photons detected during this time interval is:

n(φ) = κ|α + αeiφ|2 = 2Ncκ(1 + cos φ), (4.11)

and the probability conditional probability to detect m photons given a phase φ, in
this time interval, is

p(m|φ) = n(φ)m

m!
e−n(φ). (4.12)

Using the law of total probability and eq. (4.11), we obtain the probability of detect-
ing m photons during τc when φ is not known:

p(m) =
∫ 2π

0
dφP(φ)p(m|φ) =

∫ 2π

0
dφ

1
2π

n(φ)m

m!
e−n(φ), (4.13)

where P(φ) = 1
2π since the phase is a random variable with a uniform probability

distribution over 2π (see section 3.5.4).
From eq. (4.12), we can find the mean value and the variance of the number of de-
tected photons during τc

⟨m⟩ =
+∞

∑
m=0

p(m)m = 2Ncκ,

⟨m2⟩ =
+∞

∑
m=0

p(m)m2 = 2Ncκ +
3
2
(2Ncκ)

2,

∆2m = ⟨m2⟩ − ⟨m⟩2 = 2Ncκ +
(2Ncκ)2

2
.

(4.14)

At the scale of the integration time of the detectors tint (either 5 ms or 100 ms de-
pending on our experimental configuration), with tint ≫ τc, the number of detected
photons Nint is a random variable such that

Nint =
M

∑
i=0

mi (4.15)

where M = tint/τc and {mi} are independent random variables with the probability
distribution given by eq. (4.13). Consequently, the two first moments of the proba-
bility distribution of Nint are directly given by

⟨Nint⟩ =
M

∑
i=0

⟨mi⟩ = Ndet

∆2N̂int =
M

∑
i=0

∆2mi = Ndet + Ncκ · Ndet.

(4.16)

where Ndet = M · 2Ncκ is the mean total number of photons detected during one
unit of integration time.
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We see that the variance of the total intensity at the scale of the integration time
∆2N̂int presents two terms, the first one Ndet corresponding to the shot noise, and
the second one which is the phase noise:

∆2N̂PhN = Ncκ · Ndet. (4.17)

Therefore, we observe two regimes: a low-flux regime per coherence time where
Ncκ<1 and the phase noise is negligible compared to the shot noise, and a high-flux
regime per coherence where Ncκ>1 and the phase noise can surpass the shot noise.
Our experimental configuration corresponds to the latter.

4.4.2 Experimental results

We evaluate the phase noise contribution in both photon flux regimes.
For bright sources, we acquired the signal at the output of the photodiode at the
HG10 output, when illuminating it with either one of the beams or both beams, mod-
ulated with the uniform phase noise, as described in section 3.5.4. As for extracting
the other noise contributions, the integration time was 5 ms and we determined the
mean value and the variance of the number of detected photons over 2000 samples.
The experimental results are presented in fig. 4.5 for typical intensity values, where
we plot the detected number of photons over time. The mean photon number de-
tected during 10 s was subtracted in order to compare the variances of the individual
sources and of both sources simultaneously.
The total measured noise is the same for one and two sources, of around ∆2N̂tot

10 ≈
6 · 1013, which corresponds to the order of magnitude of the electronic noise given
by eq. (4.6) ∆2N̂EN

10 ≈ 1014. Moreover, using eq. (4.17), we estimate the phase noise
to be ∆2N̂PhN

10 ≈ 1014. Both the electronic noise of the detection and the phase are
of the same order of magnitude. The contribution of the phase can be reduced by
modulating the phase faster.

We follow the same procedure for faint sources, adapting the integration time and
the number of detected photons. Here, we obtain that the phase noise (∆2N̂PhN

10 ≈
0.2, using eq. (4.17)) contributes only marginally to the total measurement (∆2N̂tot

10 ≈
103). In this setting, the dominant noise source is the laser noise (∆2N̂LN

10 ≈ 4 · 102).
In both photon flux regimes, the measured intensities at the HG10 output are low

enough so that the phase noise does not contribute to the sensitivity of the estima-
tion.

4.4.3 Some remarks

We presented a simple model for the phase noise, that could be refined in several
ways to reflect the experimental reality. The phase does not jump from one value to
the next one and is not constant within the duration of a coherence time. Instead,
the changes are continuous and the phase values present some oscillations within
a coherence time. Because of these approximations, the phase noise modeling that
we established does not correspond to what is observed with higher intensities, like
those which are measured at the HG00 output. It is, however, not critical to under-
stand the noise limitations for the estimation since only the HG10 output is exploited.
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FIGURE 4.5: Number of photons detected at the HG10 output in the
bright source regime over time, normalized by its mean value over
10 s, for each source individually and both sources simultaneously,
when the sources are phase modulated with uniform noise over 2π.
The integration time is 5 ms. The total measured variance of the num-
ber of detected photons is the same either with one or two sources,

suggesting that the phase noise is negligible in this setting.

4.5 Summary of the noise contributions

We summarize the noise contributions in table 4.1. This table is filled with typical
values corresponding to the two photon-flux regimes that were studied. It is there-
fore clear that the dominant contributions to the sensitivity of the estimation are
very different. For bright sources, the electronic noise from the photodiode and the
oscilloscope and the phase noise were very high, making them the dominant noise
source. For faint sources, since the electronic noise of the single-photon avalanche
photodiode is low, the sensitivity is limited by the shot noise and the intensity noise
of the laser.

TABLE 4.1: Noise contributions for high flux (5 ms integration time,
1013 detected photons at all the MPLC outputs) and low flux (100 ms

integration time, 3500 detected photons in total) regimes.

Noise High flux Low flux
Laser noise ∆2N̂LN

01 (measured) Negligible 400
Shot noise ∆2N̂SN

01 (calculated) 109 200
Phase noise ∆2N̂PhN

01 (measured) 1014 0.2
Electronic noise ∆2N̂EN

01 (measured) 1014 30
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4.6 Crosstalk-limited sensitivity

In chapter 2, we derived the Fisher information for SPADE in an ideal scenario.
However, for a realistic apparatus, crosstalk between the modes is unavoidable,
the mode basis change into the transverse Hermite-Gaussian basis is inevitably im-
perfect. These imperfections limit the sensitivity of the separation estimation and
change the scaling of the minimal resolvable distance with the total number of de-
tected photons. As we saw in section 2.5.6, the minimal resolvable distance is equiv-
alent to the sensitivity for small separations. It is thus important to measure the
crosstalk values to understand the sensitivity limit they set.

4.6.1 Modeling crosstalk and theoretical crosstalk-limited sensitivity

Following [Gessner 2020a] and [Sorelli 2021a], crosstalk between the detection
modes are modeled with a unitary matrix ckℓ that maps the ideal HG modes uℓ(r)
into the actual measurement modes vk(r) = ∑ℓ ckℓuℓ(r), as illustrated in fig. 4.6.
Accordingly, the actual overlap functions f±,k - which correspond to the overlap be-
tween the displaced Gaussian modes u00(r ± r0) and the detection modes {vk(r)} -
defined are linear combinations of the ideal overlap functions given by eq. (2.86)

f±,k(r0) =
∫

d2r v∗k (r)u00(r ± r0) = ∑
ℓ

c∗kℓβℓ(±r0). (4.18)

We assume that crosstalk is weak, which means that we consider matrices ckℓ whose
off-diagonal elements are small compared to the diagonal ones.
For an analytical study of the typical behavior at small separations, Gessner et al. in-
troduce a uniform crosstalk model where the ckℓ matrices are D× D matrices written
as follows: 

t r . . . r

r
. . . . . .

...
...

. . . . . . r
r . . . r t

 (4.19)

The diagonal elements t and off-diagonal elements r are such that |t|2 + (D −
1)|r|2 = 1, and D is the number of modes. The quantity |r|2 is referred to as the
crosstalk probability.

For weak crosstalk probabilities (|r|2 ≪ 1) and small separations (d ≪ w0), Gess-
ner et al. established that, for any Q ≥ 1 (where Q is the largest index of the mea-
sured modes in both spatial dimensions, defined like in section 2.5.4), the Fisher
information of SPADE with crosstalk is [Gessner 2020a]

w2
0

2Nκ
IF(d, θ) ≃

(
d

2w0

)2 (3 + cos(4θ)

4

)
1
|r|2 , (4.20)

where θ is the angle between the source axis and the x-axis of the MPLC.
We can also express eq. (4.20) in terms of the standard deviation of the separation
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FIGURE 4.6: Crosstalk is an unavoidable imperfection of demultiplex-
ing devices. The actual measurement basis vk(r) is slightly different
from the ideal basis uk(r), which is the Hermite-Gaussian mode basis
in this work. It is schematically represented by each mode being ei-
ther transmitted into the correct output or reflected into another mode
due to crosstalk before the photodetection. Source: [Gessner 2020a].

estimation as follows
∆d̃
w0

≈ |r|√
2Nκ

2w0

d

√
4

3 + cos(4θ)
. (4.21)

This results in a change of scaling in the minimal resolvable distance, using the def-
inition given in section 2.5.6, which becomes

dmin =
w0

(2Nκ)1/4

√
2|r|

(
4

3 + cos(4θ)

)1/4

, (4.22)

in the presence of crosstalk. We observe that, for low intensities, the minimal resolv-
able distance keeps the N−1/2 scaling of ideal demultiplexing, but when the number
of detected photons increases, the presence of crosstalk induces a deviation from this
scaling, which becomes a N−1/4 scaling, like ideal direct imaging, as illustrated in
fig. 4.7.

FIGURE 4.7: Minimal resolvable distance as a function of the num-
ber of detected photons (N on the graph corresponds to 2Nκ with
our notations) in the presence of crosstalk, with low (violet), medium
(blue), and high (orange) crosstalk probability for measurements up
to Q = 2. The ideal N−1/2 scaling (black) and the N−1/4 scaling
of an ideal direct imaging measurement (green) are also represented.

Source: [Gessner 2020a].
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Even though the scaling of the minimal resolvable distance changes significantly
for SPADE when considering crosstalk and meets the N−1/4 scaling of ideal direct
imaging, the prefactor depends on the crosstalk probability and still might provide
an advantage over direct imaging. This is why it is critical to determine this value
and, more generally, to determine the transmission matrix of the demultiplexing
device.

4.6.2 How to measure the crosstalks

To analyze the behavior of the MPLC we used, we measure its crosstalk matrix, with
the input modes being HG00, HG10, HG01, HG11, HG20, HG02, HG21, HG12, HG30
and HG03 and the output modes are the ten outputs of the single-mode fibers, thus
here D = 10.
In order to determine the amplitude and the phase of the crosstalks, we generate the
ten Hermite-Gaussian modes with high intensities, using another MPLC in the mul-
tiplexing direction. Then, injecting each mode in the multimode input of the MPLC
of interest and measuring the outputs of the single-mode fibers, we should be able
to access the crosstalk values. However, crosstalks are induced in both directions of
the basis change (demultiplexing and multiplexing), therefore, the HG modes at the
output of the MPLC are imperfect and if we inject them into the MPLC we want to
characterize, we would measure the crosstalk of both MPLCs without being able to
uncouple them. Consequently, the modes at the output of the multiplexing MPLC
have to be cleaned before being coupled into the MPLC of interest, and, for this
purpose, we use a cavity of which the HG modes are eigenmodes (see section 4.6.3).

We measured the crosstalk matrix in two steps, first their amplitude and then their
phase because they did not involve the same experimental procedure. The ampli-
tude measurement relies on coupling one HG mode to the cavity and measuring the
output intensity at each single-mode fiber output. However, to measure their phase,
we need to mix two modes. These requirements result in two protocols that will be
described in the following sections and that exhibit different degrees of difficulties.
Indeed, measuring the amplitude crosstalk was simpler, and experimental results
are displayed in fig. 4.14, while we did not established yet the phase crosstalks due
to experimental challenges that will be described.

4.6.3 Cleaning the modes with a cavity

Design of the cavity

The simplest design for the mode cleaner cavity would be a linear cavity, as pre-
sented in section 1.1.3. However, as displayed in fig. 4.8, in a linear cavity, modes
with the same n + m are degenerate. In order to lift the degeneracy for most of the
modes, since they are the ones that are critical for estimating short separations, while
keeping a simple design and a simple setup for the lock, we chose a triangular cav-
ity. Even though the triangular cavity does not allow to separate all the modes of the
MPLC (see fig. 4.8), since the HG10 and HG01 are the most critical modes to estimate
short separations, having them not degenerate with this geometry is sufficient for
our study.
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FIGURE 4.8: Transmissivity of (a) a linear and (b) a triangular cavity,
with T = 0.03 for the modes of the MPLC.
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FIGURE 4.9: Comparison of the transmissivity of the triangular cavity
with a low and a high finesse.

Following the design presented in section 1.1.3, we chose two plane mirrors
(Thorlabs BSX12) as the input and output mirror and a spherical mirror (Thorlabs,
CM254-1000-M01, Rc = 2000 mm), which is on a piezo transducer for adjusting the
length of the cavity. The transmissivity T of the plane mirrors depends on the po-
larization, either T = 0.15 when the light is polarized vertically or T = 0.014 for
the horizontal polarization. The theoretical transmissivity of the cavity is plotted in
fig. 4.9, and the actual transmissivities are presented in fig. 4.10. Even though some
peaks overlap for the low finesse, the lock of the cavity does not work when using
the high finesse peaks because the laser is too noisy, which is why we worked with
the high transmissivity.
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FIGURE 4.10: Experimental transmissivity of the cavity for high (top)
and low (bottom) finesse. The piezo transducer is driven by the ramp

signal, allowing the scanning of the cavity length.

Locking the cavity

As displayed in fig. 4.8, each HG mode is resonant for a given length of the cavity
and, therefore, we need the chosen length of the cavity to be stable, while we do
the measurement. The lock of the cavity is realized following the Pound-Drever-
Hall technique [Drever 1983; Black 2001], which is commonly used for metrology
purposes. We are summarizing here the working principle and how we adapted it
to our setup.
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FIGURE 4.11: Experimental setup for locking the cavity. The light at
the output of the laser is modulated with a phase EOM (PM), driven
with a signal generator (SG) and placed after a polarization controller
(PC). The beam is mode-matched to the cavity with lenses (L) and the
reflected light at the input of the cavity is detected by a photodiode
(PD). The output of the photodiode is mixed with the signal sent to
the phase modulator. The output of the mixer is then filtered with a
low-pass filter (LPF) and the filtered signal is fed to a servo amplifier,

which output controls the piezo transducer (PZT) of the cavity.

The Pound-Drever-Hall technique is based on the fact that the derivative of the in-
tensity of reflected light at the input of the cavity is antisymmetric, and, therefore,
can be used as an error signal (see fig. 4.12).
In our setup, the lock only worked for the low finesse, i.e. with transmissivity of the
input and output mirrors being T = 0.15, leading to a finesse F = 19.3 and a cavity
bandwidth fcavity = fFSR

F = c
D0F = 48.6 MHz (see section 1.1.3).

The light at the output of the laser (at the frequency ω = 2π · c/λ) is modulated sinu-
soïdally (amplitude around 0.8 V, frequency Ω = 7 MHz) with a fibered electro-optic
phase modulator (iXBlue, MPX-LN-0.1), introducing two sidebands to the reflected
signal at ω ± Ω around the carrier at ω. The reflected light at the input of the cavity
is detected with a fast photodiode (Thorlabs PDA20CS-EC, bandwidth 10 MHz) and
the output signal of the photodiode is [Black 2001]

Vr = B
+ A Re [R(ω)R∗(ω + Ω)− R∗(ω)R(ω − Ω)] cos(Ωt)
+ A Im [R(ω)R∗(ω + Ω)− R∗(ω)R(ω − Ω)] sin(Ωt)
+ (2Ω terms)

(4.23)

where R(ω) is the reflection coefficient of the cavity, plotted in fig. 4.12, and A and
B are constants. Since Ω ≪ fcavity, we have

R(ω)R∗(ω + Ω)− R∗(ω)R(ω − Ω) ≈ 2Ω Re
{

R(ω)
d

dω
R∗(ω)

}
= Ω

d|R|2
dω

. (4.24)

Therefore, the quantity R(ω)R∗(ω + Ω)− R∗(ω)R(ω − Ω) is real and the sine term
in eq. (4.23) does not survive for small Ω.
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FIGURE 4.12: (a) Reflected signal. (b) Error signal of the Pound-
Drever-Hall technique.

Moreover, according to fig. 4.12(a), the sign of the derivative of the reflected signal
carries information on how to act on the cavity. Using that resonant frequencies ω0
are such that

D0 = pλ = p
2πc
ω0

, (4.25)

where D0 is the length of the cavity and p ∈ N, then small variations in the cavity
length δD, near the resonance, are proportional to small variations in the frequency
δ f :

δD = −p
2πc
ω2

0
δω. (4.26)

Thus, the sign of the derivative of the reflected signal carries information about
whether the length of the cavity D0 should be increased or decreased with the piezo
transducer.

Therefore, we want to isolate eq. (4.24) with the following procedure. The output of
the photodetector is mixed with the sine signal sent to the electro-optic modulator
at Ω. Since the mixer forms the products of its inputs and

sin(Ωt) cos
(
Ω′t
)
=

1
2
(sin

(
(Ω − Ω′)t

)
− sin

(
(Ω + Ω′)t

)
), (4.27)

when Ω = Ω′, as it is the case in our setup, the sin((Ω − Ω′)t) term is a DC signal.
We isolate this DC signal with a low-pass filter ( fc = 15 kHz), after which we obtain
the Pound-Drever-Hall error signal:

ϵPDH ∝ Ω
d|R|2
dω

. (4.28)

This DC signal, plotted in fig. 4.12(b), is finally fed to a servo amplifier (Newport
LB10005) whose output is sent to the piezo transducer of the cavity, resulting in
stabilizing the length of the cavity.
The parameters of the servo amplifier can be adapted to choose the mode on which
the cavity is locked.
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4.6.4 Measuring the amplitude crosstalks

Experimental procedure

Our experimental procedure for measuring amplitude crosstalk followed the steps
presented below, with the experimental setup presented in fig. 4.13.

1. First, we generated a beam in a specific mode of the MPLC (HG00, HG10, HG01,
HG11, HG20, HG02, HG21, HG12, HG30 or HG03) by injecting laser light in the
corresponding single-mode fiber. This MPLC is referred to as the MUX MPLC
(MUX for multiplexing).

2. Subsequently, this mode was cleaned using the triangular cavity, which was
locked to the corresponding mode, in order to eliminate the crosstalk intro-
duced by the MUX MPLC.

3. Finally, we conducted measurements of optical powers at each output of the
second MPLC, which was the MPLC to be characterized. This MPLC is re-
ferred to as the DEMUX MPLC (DEMUX for demultiplexing).

This entire procedure was repeated for each input mode. Using the measurement
results, we constructed the amplitude crosstalk matrix CA for the DEMUX MPLC so
that the term (CA)ij is given in dB as

(CA)ij = 10 × log
(

Pout,j

Pin,i

)
(4.29)

where Pin,i is the input power for the mode i and Pout,j is the optical power measured
at the output corresponding to mode j with i, j ∈ {HG30, HG20, HG10, HG21, HG00,
HG11, HG12, HG01, HG02, HG03}.

FIGURE 4.13: Experimental setup for the measurement of the ampli-
tude crosstalk matrix. Light is injected in the single-mode fiber in-
put of the MPLC corresponding to mode ui, and mode matched to
the cavity with lenses (L). The length of the cavity is locked with the
piezo transducer (PZT) to the length corresponding to ui, to clean it
from the crosstalk introduced by the MUX MPLC. At the output of
the cavity, the beam is mode-matched to the DEMUX MPLC, and de-
tected at the output corresponding to the mode uj with a photodiode
(PD). Before the DEMUX MPLC, the light is separated into two paths
with a beamsplitter (BS), in order to measure a reference intensity

with another photodiode.
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TABLE 4.2: Efficiencies of the MPLC, values in dB and linear scale.

HG30 HG20 HG10 HG21 HG00 HG11 HG12 HG01 HG02 HG03

-2.8 dB -3.0 dB -2.8 dB -3.7 dB -2.7 dB -3.3 dB -4.0 dB -2.6 dB -3.4 dB -4.2 dB
0.52 0.51 0.53 0.42 0.54 0.46 0.40 0.54 0.46 0.38

Experimental results

The measured amplitude crosstalk matrix, determined using eq. (4.29), is presented
in fig. 4.14. The order of the modes does not correspond to the normal ordering
of the HG modes due to geometry reasons for the construction of the MPLC, the
modes are ordered as follows: HG30, HG20, HG10, HG21, HG00, HG11, HG12, HG01,
HG02 and HG03. This matrix is almost diagonal, and the highest crosstalk values
are located on the upper and lower sub-diagonals, i.e. light leaks mostly from the
closest neighbors. The losses of the MPLC are presented in table 4.2.

FIGURE 4.14: Amplitude crosstalk matrix.

For the experiment, as it will be presented in chapter 5, we only use the modes HG00,
HG10, HG01, HG20 and HG02. As it will be explained in section 5.2, these modes are
the most efficient to exploit for centering and mode matching the input beams to the
MPLC, which is critical for the reproducibility of the experiment.
Moreover, when the crosstalk is too high, Gessner et al. demonstrated that it limits
the separation estimation sensitivity [Gessner 2020a]. Since we extract the estima-
tion on the separation from measurements in the mode HG10, we therefore have to
minimize the crosstalk in this mode.
Because the HG00 mode is the most populated one (see fig. 2.7), since we are study-
ing small separations, the more critical crosstalk would be the ones from this mode to
the modes HG10, HG01, HG20 and HG02, which is why we choose to give their value
in table 4.3 along with the typical values measured by Cailabs. They obtained these
values by implementing the same procedure as we did, except they did not use the
cavity to clean the modes. They, therefore extracted the crosstalk values by assum-
ing the two MPLCs are identical and dividing the measured values by 2. Comparing
these two sets of values indicates that we measured values within a consistent order
of magnitude.
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TABLE 4.3: Crosstalk from the mode HG00 measured experimentally
and comparison with the typical measured values from Cailabs, using

the back-to-back measurement, values in dB.

Modes HG20 HG10 HG01 HG02

Exp -26.0 -18.3 -33.9 -27.4
Cailabs -20.1 -28.4 -30.0 -18.6

4.6.5 Measuring the phase crosstalks

Crosstalks are also characterized by their phase, i.e. the field that leaks into other
modes encounters a phase shift. We will explain the experimental procedure we
implemented to measure the phase crosstalk and why we could not extract them
from our measurement results.
We used only one MPLC and the cavity. This time, since we wanted to determine
phase shifts between modes, we generated beams in superpositions of two modes
by injecting laser light into two single-mode fibers of the MPLC. To overcome the
problem of phase shifts induced by phase drifts in the fibers, we modulated the
phase of one of the modes, sinusoidally. The cavity was locked on the other mode.

FIGURE 4.15: Experimental setup for the measurement of the phase
crosstalk. Light is injected into two single-mode fiber inputs of the
MPLC. One of the inputs is phase-modulated with a phase EOM
(PM), placed after a polarization controller (PC). The beam is mode
matched, with lenses (L), to the cavity, which is locked on one of the
modes that is not phase modulated. The intensities at the input and

output of the cavity are measured with photodiodes (PD).

Ideal scenario

For clarity, we consider that we want to evaluate the phase crosstalk from mode
HG10 onto mode HG00, referred to as φ10

00. The following demonstration is obviously
applicable to any other pair of modes.
The phase φ(t) at the HG10 input is modulated and the cavity is locked on the HG00
mode. The field at the output of the MPLC (and the input of the cavity) is

Ein =
(

α00 + c10
00ei(φ10

00+φ(t))α10

)
u00 +

(
eiφ(t)α10 + c00

10eiφ00
10 α00

)
u10 (4.30)
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where c10
00 (resp. c00

10) is the amplitude of crosstalk from HG10 to HG00 (resp. from
HG00 to HG10), and φ10

00 (resp. φ00
10) its associated phase. α00 (resp. α10) is the com-

plex amplitude of the field in mode HG00 (resp. HG10). We measure the reference
signal before the cavity with a photodiode measuring half of the image (otherwise
the intensity would be constant and equal to |α00|2 + |α10|2). The measured reference
intensity oscillates with φ(t) since we have

Iref ∝ |α00|2 + |α10|2 + 2 Re[α∗
00α10eiφ(t)] +O

(
c10

00, c00
10

)
. (4.31)

The cavity being locked on the mode HG00, has output intensity

I00
out ∝ |α00|2 + 2c10

00 Re[α∗
00α10ei(φ(t)+φ10

00)] +O
(
(c10

00)
2
)

. (4.32)

Therefore, the dephasing between Iref and I00
out is directly the phase crosstalk φ10

00.
We present in fig. 4.16 some typical results that we obtained. When we repeated
the same procedure, in the same configuration, we obtained different values, for
example here φ10

00 ≈ 0 and for the second one, we obtain φ10
00 ≈ π/2. The results

were therefore not reproducible.
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FIGURE 4.16: Interferences between modes HG00 and HG10. We plot-
ted the reference signal (light blue) and the output of the cavity locked
on the HG00 mode ((blue). The two plots correspond to two measure-
ments in the same configuration, for the first (top), we obtain φ10

00 ≈ 0
and for the second one, we obtain φ10

00 ≈ π/2.

Phase crosstalks of the cavity

We realized that the non-reproducibility comes from the imperfect alignment of the
cavity. Indeed, the cavity, just like the MPLC, presents some unavoidable crosstalks,
which are more or less strong depending on the alignment. Note that this is also
true for the amplitude crosstalk but we assume that those of the cavity are negligible
compared to the ones of the MPLC. We denote δ10

00 the crosstalk from HG10 to HG00
of the cavity and ϕ10

00 its associated phase. Taking this crosstalk into consideration,
eq. (4.32) becomes

I00,misaligned
out ∝ |α00|2 + 2c10

00 Re[α∗
00α10ei(φ(t)+φ10

00)] + 2δ10
00 Re[α∗

00α10ei(φ(t)+ϕ10
00)]

+O
(
(c10

00)
2, (δ10

00)
2
)

.
(4.33)
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There is therefore a beating between the crosstalk of the MPLC and the crosstalk of
the cavity, preventing us from determining the phase crosstalk of the MPLC. This
limitation might be due to the fact that we had to use a low finesse because the laser
was too noisy in phase to be locked with a higher finesse. This low finesse leads
to the modes to overlap (see fig. 4.10) and might increase the phase crosstalk of the
cavity. Therefore, we should be able to access the phase crosstalk of the MPLC with
a less noisy laser.

Phase crosstalk in the displacement calibration curve

During this work, we did not have time to investigate other methods to determine
the phase crosstalk values. A possible path to explore would be to extract these
values from the displacement calibration curve, i.e. the mean number of photons
measured in the HG10 mode as a function of the displacement of one beam with
respect to the center of the MPLC, as displayed in fig. 4.17.
Indeed, the presence of crosstalk, and their phase in particular, has an influence on
the mean number of photons N01 measured at the output of the HG10 mode. The
relation between N01 and the beam displacement x0 along the x-axis of the MPLC is
given by

N01(x0) = Nκ
∣∣β10(x0) + c00

10β00(x0)
∣∣2 , (4.34)

where c00
10 = |c00

10|eiφ00
10 is the crosstalk from mode HG00 to mode HG10 with amplitude

|c00
10| and phase φ00

10, and β10 and β00 are the mode overlap defined by eq. (2.86) so
that

βn0(x) =
1√
n!

(
x

w0

)n

exp
(
− x2

2w2
0

)
. (4.35)

In fig. 4.17, following eq. (4.34), we represented the displacement calibration curve
with a given crosstalk amplitude |c00

10| = 0.015 (corresponding to the -18.3 dB mea-
sured experimentally) and different phases φ00

10, from 0 to π. We observe that the
position of the minimum intensity in the HG10 mode depends on the value of the
phase crosstalk, and this property could in principle be used to determine the phase
crosstalk values φ00

10, and φ00
01 if the beam is displaced along the y-axis of the MPLC.

The dependence of the minimum position in the calibration curve can, however, be
hardly exploited to determine the value of the phase crosstalk. Indeed, it would re-
quire good precision on the position x0, given by the maximum intensity at the HG00
output, i.e. the maximum of

N00(x0) = Nκ |β00(x0)|2 = exp
(
− x2

0

w2
0

)
. (4.36)

Since N00(x0) is almost flat around x0 = 0, it results in a low sensitivity in the
determination of the position x0 = 0.
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FIGURE 4.17: Displacement calibration curve without crosstalk
(dashed light blue line) and with crosstalk for a given crosstalk am-
plitude |c00

10| = 0.015 (or -18.3 dB) and different phases φ00
10, from 0 to

π.

4.6.6 Experimental sensitivity of separation estimation and crosstalk

In the presence of crosstalk, when the two sources are separated by a distance d, with
symmetric source positions x1,2 = ±d/2, the mean number of photons in the HG10
mode, assuming the main crosstalk contribution is from the HG00 mode, reads

N10(d) = Nκ

∣∣∣∣β10

(
d
2

)
+ c00

01β00

(
d
2

)∣∣∣∣2
+ Nκ

∣∣∣∣β10

(
−d

2

)
+ c00

01β00

(
−d

2

)∣∣∣∣2
= 2Nκ

(
β10

(
d
2

)2

+ |c00
01|2β00

(
d
2

)2
)

+ 2Nκ|c00
01| cos

(
φ00

10
) (

β10

(
d
2

)
β00

(
d
2

)
+ β10

(
−d

2

)
β00

(
−d

2

))
(4.37)

c00
10 = |c00

10|eiφ00
10 is the crosstalk from mode HG00 to mode HG10 with amplitude |c00

10|
and phase φ00

10, and β10 and β00 are the mode overlap. Using eq. (4.35), we see that

β10

(
d
2

)
β00

(
d
2

)
= −β10

(
−d

2

)
β00

(
−d

2

)
, (4.38)

consequently, eq. (4.37) becomes

N10(d) = 2Nκ

(
β10

(
d
2

)2

+ |c00
01|2β00

(
d
2

)2
)

. (4.39)
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Therefore, the phase of the crosstalk has no impact on the sensitivity of short sepa-
ration estimation, only the amplitude |c00

01| has to be taken into account.

We injected eq. (4.39), instead of eq. (4.7), into the noise contributions taken into
account in the previous sections, i.e. the electronic noise of the photodiodes (eq. (4.6))
and the shot noise (eq. (4.10)), in order to determine the sensitivity of the separation
estimation in the presence of crosstalk. We recall that we considered the laser noise
in both regimes and the dark counts of the APD to be independent of N10. We plot
the expected sensitivity with and without crosstalk for both intensity regimes in
fig. 4.18.
We observe that, for bright sources, the presence of crosstalk has no impact on the
sensitivity of the estimation. This is due to the fact that electronic noise is dominant
and constant in this regime.
Similarly, for faint sources, crosstalk has little impact on the sensitivity, because dark
counts and laser noise are assumed to be constant, and therefore crosstalk would
only affect the shot noise contribution. This is why crosstalk appears to improve the
sensitivity. However, in more realistic modeling, laser noise should increase with the
separation (in the considered separation range) which would alter the sensitivity in
the presence of crosstalk.

4.7 Conclusion

In this chapter, we studied the different noise contributions of the PEsto setup in-
troduced in section 3.4, in the two intensity regimes we chose for the separation
estimation experiment described in chapter 5. We observe that in both cases we
are limited by technical noises, but with different dominant contributions. In the
low-flux regime, the sensitivity is mainly limited by the laser noise, while for bright
sources, the noise mostly comes from the electronic noise of the scope and detectors
and from the phase noise from the residual interference between the two incoherent
sources. These fluctuations are not fundamental and can be reduced such that the
sensitivity of the separation estimation gets closer to the QFI.
Additionally, we investigate the imperfections of the MPLC by determining experi-
mentally the crosstalk matrix, i.e. the actual mode decomposition of the MPLC that
is slightly different from the HG mode basis. These imperfections limit in theory the
sensitivity of the estimation. Even if the current setup is not limited by crosstalk yet,
it is still interesting to know their value to predict when they would be the limiting
factor.
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FIGURE 4.18: Comparison of the expected sensitivity of the separa-
tion estimation with and without taking crosstalk into account for
the high-flux regime (top) and the low-flux regime(bottom). For both
plots, we represented the quantum Cramér-Rao bound (dashed light
blue line), the sensitivity with all noise sources without crosstalk
(light blue line) and with crosstalk (blue line). For the high-flux
regime (top), the curves with and without crosstalk are perfectly su-

perimposed, suggesting that crosstalk is negligible in this regime.
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As discussed in chapter 3, several quantum-metrology-inspired experiments
were performed to estimate the separation between two point-like sources. This was,
however, not realized yet with a multi-plane light converter, which enables a mul-
timodal approach. This final chapter presents the experimental results we obtained
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on the separation estimation for incoherent equally bright sources, via spatial-mode
demultiplexing with an MPLC, with the setup introduced in section 3.4.

Section 5.1 recalls the context in which we implemented the experiment and the
assumptions we used to process the experimental data. Sections 5.2 and 5.3 explain
the experimental procedure we performed. Sections 5.4 and 5.5 contain the results
we obtained which are interpreted in relation to the noise analysis depicted in chap-
ter 4, each section being dedicated to a different intensity regime, and section 5.6
describes how the experimental setup can be improved regarding the observed limi-
tations. Finally, section 5.7 suggest some prospects that can be explored in the future.

5.1 Context and assumptions

The goal of the experiment is to perform a single parameter estimation task. This
means that we assume every parameter is known, except for the one of interest, be-
ing here the separation d between the two sources in the image plane.
We assume that the optical scene is composed of two equally bright incoherent
sources and that the centroid is known and aligned on the MPLC. We also assume
that the two sources are identical, i.e. they are two Gaussian beams with the same
waist w0, same polarization and the same spectrum. We place ourselves in the range
of short separations i.e. d < w0.
The estimation is realized using the method of moments, presented in section 2.2.3,
using one observable, the number of photons N̂10 measured at the output HG10 of
the MPLC, assuming this estimation is unbiased.
To perform this experiment, called PEsto (for Parameter Estimation), we use the
experimental setup presented in chapter 3, which noise sources were analyzed in
chapter 4.

The concept of the experiment is illustrated in fig. 5.1. The light from two incoherent
equally bright Gaussian beams with the same waist w0, separated by a distance d, is
injected into the MPLC. Measuring the light at 5 outputs of the MPLC (correspond-
ing to the modes HG00, HG10, HG01, HG20 and HG02) gives access to an estimation
of the separation with high sensitivity, as it will be presented in sections 5.4 and 5.5.
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FIGURE 5.1: Concept of the PEsto experiment, an experiment of sepa-
ration estimation. The light from two incoherent equally bright Gaus-
sian beams with a waist w0, separated by a distance d, is injected into
the MPLC. Measuring the light from 5 modes (HG00, HG10, HG01,
HG20, HG02) gives access to an estimation of the separation with high
sensitivity. We provide a result obtained with 1013 detected photons:
we estimated a separation d

w0
= 5 · 10−2 with a standard deviation

∆d
w0

= 2 · 10−5.

5.2 The MPLC as an alignment and mode-matching tool

As for any experiment in optics, the alignment and mode matching are critical.
In the present case, misalignment and imperfect mode matching can be seen as a
decomposition in a basis slightly different from the Hermite-Gaussian mode basis
[Sorelli 2021a]. They introduce extra crosstalk to the intrinsic crosstalk of the MPLC,
which limits the sensitivity as explained in section 4.6. In this section, we consider
the MPLC to be without intrinsic crosstalk, and we explain how to align and mode
match to the MPLC with a multimode approach.

5.2.1 Tilt and displacement

The MPLC is sensitive to the displacement and the tilt of an input beam u(x, y, z) =
u00(r) as defined by eq. (1.23). We assume the input beam is mode matched to the
MPLC, it is a Gaussian beam with the same waist as the waist of the decomposition
of the MPLC, denoted w0. Then, a small displacement x0 or a small tilt angle θx
along the x-axis will result in a non-zero signal in the mode HG10. This can be seen
with the Taylor development analysis, developed in the following paragraphs.
We define ũ(x0, px; x, y, z), which will be simplified as ũ(x0, p), as

ũ(x0, px) = u(x − x0, y, z)eipxx (5.1)

with px = 2πθx/λ. At the first order in x0 and px, the Taylor development gives

ũ(x0, px) ≃ ũ(0, 0) + x0
∂ũ
∂x0

(0, 0) + px
∂ũ
∂px

(0, 0). (5.2)
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Since we have

∂ũ
∂x0

(x0, px; x, y, z) =
1

w0
u10(x, y, z),

∂ũ
∂px

(x0, px; x, y, z) =
iw0

2
u10(x, y, z),

(5.3)

where u10(x, y, z) is the HG10 mode as defined by eq. (1.25), we can write eq. (5.2) as

ũ(x0, px; x, y, z) ≃ u00(x, y, z) +
[ x0

w0
+

ipxw0

2

]
u10(x, y, z). (5.4)

As expected, this equation shows that, for a centered mode-matched Gaussian beam,
the intensity is maximum at the HG00 output and zero at the HG10 output. Therefore,
small displacements and tilts along the x-axis can be detected as they result in non-
zero intensities at the HG10 output. Similarly, small displacements and tilts along
the y-axis can be detected in the HG01 mode.
Consequently, minimizing the intensity at the outputs of the modes HG10 and HG01
results in centering the beam at the input of the MPLC.

5.2.2 Waist-size changes

Similarly to the previous subsection, we can show that the MPLC is sensitive to
waist-size changes which allows us to mode match the input beam to the demulti-
plexing basis, with waist w0. Indeed, assuming the input beam is not displaced or
tilted with respect to the MPLC, we denote ũ(δw0; x, y, z) the beam with the waist
w0 + δw0. For a small waist-size change, the Taylor development at the first order in
δw0 gives

ũ(δw0, x, y, z) ≃ u00(x, y, z) + δw0
∂u

∂w0
(x, y, z), (5.5)

and we have

ũ(δw0, x, y, z) ≃ u00(x, y, z) +
δw0√
2w0

(u02(x, y, z) + u20(x, y, z)). (5.6)

where u20(x, y, z) and u20(x, y, z) are the HG02 and HG20 modes as defined by
eq. (1.25). this expansion confirms that, for centered and mode-matched Gaussian
beams, the intensity is maximum at the HG00 output and zero at the HG20 and HG02
outputs. Therefore, small waist changes can be detected when measuring non-zero
intensities at the HG02 and HG20 outputs.
This is why we mode matched the input beam by minimizing the intensity at these
outputs of the MPLC.

5.3 Experimental procedure

This section presents the experimental procedure we performed. It is composed of
three steps which will be detailed in the following subsections:

• Alignment
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• Calibration

• Measurement.

We realized the separation estimation in two intensity regimes: a low photon flux
regime (3500 photons at all the MPLC outputs per integration time) and a high pho-
ton flux regime (1013 detected photons in total per integration time). The photode-
tectors at the outputs of the MPLC were adapted to each regime, i.e. they were
APDs with a 100 ms-integration time for the faint sources, and photodiodes with an
integration time of 5 ms for the bright sources.

5.3.1 Alignment

The aim of the alignment procedure is for the beams from both sources to be in-
dividually mode matched and centered on the MPLC input - the two sources will
be separated with a given distance for the measurement step. Since the crosstalk
induced by misalignment and imperfect mode matching is by nature variable, it is
important, for the reproducibility of the estimation, to have a reliable and repro-
ducible alignment procedure. This stage is realized with bright sources.
In the beginning, the alignment of one source is done roughly by maximizing the in-
tensity at the output of the HG00 mode. However, as shown by eq. (4.36), the mean
photon number at the HG00 output has very poor sensitivity to displacement. This
means that only maximizing the intensity at the output of the HG00 mode is not suf-
ficient to meet the reproducibility requirement. Then, we minimize the intensities
at the HG01, HG10, HG02 and HG20 outputs, which ensures low variations in waist
size, tilts, and displacements in x and y directions. Using these five modes is critical
for the robustness and repeatability of the procedure.
As explained in section 3.4, a reference separation dref is determined using a quad-
rant detector, by measuring separately the position of each beam, x1 and x2, and
having dref = |x1 − x2|. The quadrant detector is aligned with the MPLC center.

5.3.2 Calibration

In order to implement the method of moments, we build a calibration curve, i.e.
we determine the mean number of photons N10 measured at the HG10 output as a
function of the separation between the two sources: N10 = g(d).
For building this curve, only one of the two beams is turned on (for practicability, the
one of Trofie, which corresponds to the motorized translation stage) and translated
in discrete steps, from −100 µm to 100 µm, with steps of 6 µm, where the origin is the
center of the MPLC. For each position, which is certified with the quadrant detector,
the intensity at the output of the HG10 mode is acquired for 10 s. Its mean value
is normalized with the mean value of the optical power measured by the reference
photodiode.
The experimental points are then fitted with a 6th-order polynomial function. This
is the calibration curve for one source f (x), where x is the position of the beam.
This calibration curve is presented in fig. 5.2. Thanks to the precise and reproducible
alignment procedure, this calibration can be done once and for all.
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FIGURE 5.2: Calibration curve for the source displacement. It gives
the normalized intensity measured at the HG10 output of the MPLC
as a function of the displacement of one source with respect to the
MPLC. The experimental points are fitted with a 6th-order polyno-

mial function.

Using the assumption that the scene is composed of two identical incoherent
sources and that the centroid is known, we construct the two-source calibration
curve g(d). This calibration curve has to be built for each estimated separation,
where the normalizing optical power p1 and p2 is measured for each source with
the reference photodiode. This curve is constructed as follows: we assume that both
sources have the same calibration curve - since they are identical - but are displaced
symmetrically with respect to the MPLC center, each by a distance x, resulting in a
separation d = 2x. Therefore, in order to build g(d), we sum the contributions f (x)
and f (−x) corresponding to each source. The two sources are close to being equally
bright but due to polarization fluctuations in the independent fiber paths, they have
a slight power imbalance. This relative intensity ratio is assumed to be known, since
measured with the reference photodiode, and taken into account by the weights in
front of the corresponding calibration curve f (x) and f (−x). Consequently, the two-
source calibration curve g(d) is

g(d = 2x) =
p1

p1 + p2
f (x) +

p2

p1 + p2
f (−x), (5.7)

and is displayed in fig. 5.3.
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FIGURE 5.3: Calibration curve for the source separation, this curve
gives the normalized intensity that should be measured at the HG10
output of the MPLC as a function of the separation between the two
sources. This graph was obtained by symmetrizing the polynomial
fit of the experimental points presented in fig. 5.2, assuming the two
sources are identical, i.e. they are two Gaussian beams with the same
waist w0, same polarization and the same spectrum, and the centroid

is aligned on the MPLC input.

5.3.3 Measurement

Finally, for the separation estimation itself, the sources are displaced symmetrically
with respect to the center of the MPLC by a given distance. The symmetry is guar-
anteed by the quadrant detector by measuring the position of each beam x1 and x2
while turning off the other one with a shutter. This detector delivers a zero signal
with two sources when the positions are symmetric and is therefore unable to give
any information on the separation between the sources directly, but the reference
separation value is given by dref = |x1 − x2|.
With both sources turned on, the optical power at the HG10 output is then measured
over a specific integration time. The separation is estimated at last by inverting the
two-source calibration curve g(d) of fig. 5.3.
For each optical setting, this measurement is repeated 200 times to evaluate the sta-
tistical moments of the estimation. The estimated separation d is then the average of
the 200 estimations, and the sensitivity is given by the standard deviation ∆d.

5.4 Experimental results: Low-flux regime

This section presents the results of the separation estimation we performed with
faint sources. The total incident power, i.e. of both sources combined, was around
50 fW during an integration time of 100 ms. Due to the quantum efficiency of the
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APDs and the losses of the MPLC, this results in around 2Nκ = 3500 detected pho-
tons (for all the outputs) per integration time. We studied separations ranging from
0.35w0 to 0.76w0. We will examine the accuracy and the sensitivity of the estimation,
implemented as introduced in the previous section.

5.4.1 Accuracy

In order to check the assumption of the unbiased estimation, we plotted the esti-
mated separation as a function of the reference separation, measured with the quad-
rant detector, presented in fig. 5.4.
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FIGURE 5.4: Estimated separation as a function of the reference sep-
aration in the low-flux regime (2Nκ = 3500 detected photons in total
during 100 ms). Both axes are presented with absolute values and
values relative to the size of the beam w0 = 1.135 mm. Error bars due
to statistical uncertainty on the reference separation and the estima-
tion, determined with 200 measurements (each during one integra-
tion time of 100 ms), are displayed as well as the line dref/w0 = d/w0
corresponding to the unbiased estimation line (black line). The QCRB
(light blue) and the Cramér-Rao bound for ideal direct imaging (or-
ange) for the same number of detected photons are also plotted as

shaded areas for comparison.

The experimental points, in black, are obtained with the mean values of the 200
estimations, and the error bars around them correspond to one standard deviation
determined over the 200 estimations for each separation. The black line corresponds
to the unbiased estimation and is compatible with the statistical uncertainties. The
experimental estimations follow, therefore, a perfect linear trend with a negligible
bias to the true value.
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5.4.2 Sensitivity

As stated in chapter 2, the figure of merit we use to benchmark unbiased estimators
is the standard deviation of the estimation, which characterizes the sensitivity of the
estimation. Along with the standard deviation of the estimations, we plotted the
ones corresponding to the Cramér-Rao bound of ideal direct imaging in orange and
to the QCRB in blue. They are presented as error bars and shaded areas in fig. 5.4,
and their values are also plotted as a function of the reference separation in fig. 5.5.
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FIGURE 5.5: Sensitivity on the source separation estimation as a func-
tion of the reference separation in the low-flux regime (2Nκ = 3500
detected photons in total during 100 ms). The experimental points
(black) are presented along with the QCRB (dashed blue line) and
the Cramér-Rao bound for perfect direct imaging (orange line), cal-

culated for the same number of detected photons.

The standard deviation of the estimation is constant around ∆d = 0.03w0 over
the studied range of separations and is very close to the quantum Cramér-Rao
bound, which, in this setting, is 1√

2Nκ
= 1.7 × 10−2w0, according to eq. (2.75). The

discrepancy arises from the laser noise, and marginally from the dark counts of the
APDs (see chapter 4).

In order to compare to standard imaging techniques, we determine the sensitivity
for direct imaging. This could be done experimentally, however, the performances
of the estimation depend a lot on the performances of the camera, which are not
optimal at telecom wavelength. This is why we chose to compare the sensitivity of
SPADE to the one of ideal direct imaging, corresponding to a camera without noise,
with infinitely small pixels and with the same losses as our detection apparatus for
SPADE. The SPADE scheme outperforms this idealized setting since we achieved
lower standard deviation δd for separations below 0.5w0.
In practice, as discussed in chapter 3, the sensitivity of passive imaging is currently
of the order of the Rayleigh limit. This means that we gain two orders of magnitude
on the sensitivity compared to practical superresolution techniques.
Note that, in this setting, we reached this sensitivity by measuring only 200 photons
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FIGURE 5.6: Minimum resolvable distance as a function of the de-
tected number of photons. The experimental points (blue points)
are fitted with the function y = b × (2Nκ)a, we obtain the scaling

a = −0.49.

per integration time at the output of the HG10 mode. The sensitivity enhancement
obtained with SPADE can be traced back to the fact that, contrary to direct imag-
ing, the demultiplexing enables the detection of mostly the photons containing the
relevant information by routing them to the HG10 output.

5.4.3 Scaling with the number of photons

To study the scaling of the minimum resolvable distance with the number of de-
tected photons, we acquired experimental data in the same regime of intensity but
over a total measurement time of 1 s, resulting in 2000 measurement points each for
an integration time of 100 ms. Therefore, we can access different mean numbers of
detected photons by changing the integration time in post-processing.
The theoretical predictions were presented in section 2.5.6. We recall that, for the
QFI and ideal SPADE, the scaling is (2Nκ)−1/2, and it is (2Nκ)−1/4 for ideal direct
imaging, as illustrated in fig. 2.12. Moreover as discussed in section 4.6, the scaling
of SPADE is degraded in the presence of imperfections. In particular, in the presence
of crosstalk, the scaling meets the one of ideal direct imaging fig. 4.7).
We chose different integration times (resp. 100 ms, 200 ms, 250 ms, 333 ms, 500 ms,
1 s, 2 s), and repeated the previous analysis. For each separation, we estimated the
separation over the corresponding number of points (1000, 500, 400, 300, 200, 100,
50) and determined the statistical moments of these estimations. In particular, we ex-
tracted the standard deviation ∆d and we assume that, in this regime, ∆d is a good
approximation of the minimal resolvable distance as defined by eq. (2.92). In fig. 5.6,
we plot the obtained minimum resolvable distances as a function of the detected
photons 2Nκ, along with a fit with the function y = b · (2Nκ)a, with a = −0.49.
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Thus, our experimental points display the same scaling as the ideal SPADE, and
therefore, in this regime, we are not limited by crosstalk, but, as discussed in chap-
ter 4, by the laser noise and the shot noise, and marginally by the electronic noise
of the APD. This plot is another visualization of how our setup outperforms ideal
direct imaging.

5.5 Experimental results: High-flux regime

We now analyze the experimental results with bright sources. The incident power
was around 650 µW for an integration time of 5 ms, and this results in around 1013

detected photons at all the outputs of the MPLC. Similarly to the low-flux regime,
we study the accuracy and the sensitivity of the estimation.

5.5.1 Accuracy

We plot the estimated separation as a function of the reference separation in fig. 5.7,
for separations ranging from 1.7 × 10−2 w0 to 0.14 w0. The black line corresponds to
an unbiased estimation. We note a linear agreement between the estimated values
and the reference.
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FIGURE 5.7: Estimated separation as a function of the reference sep-
aration in the high-flux regime (1013 detected photons in total during
5 ms. Both axes are presented with absolute values and values rela-
tive to the size of the beam w0 = 1.135 mm. Error bars due to statisti-
cal uncertainty on the reference separation and the estimation, deter-
mined with 200 measurements (each during one integration time of 5
ms), are displayed as well as the unbiased estimation line (black line).

However, when looking closer to the experimental points, we see a deviation
of the estimations of 1 µm on average compared to the true value. This bias arises
from small differences between the two sources because the symmetrized calibration
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curve is built on the assumption that they are identical, except for their position,
i.e. they are Gaussian beams with the same waist, same wavelength, and same tilt
angle at the input of the MPLC. However, as noticeable in the experimental setup
(see fig. 3.14), the sources are generated from two independent collimators and may
display slightly different spatial shapes, they are not true point sources. Moreover,
their optical paths are different which might result in different spatial shapes and tilt
angles. These spatial differences influence the mode decomposition corresponding
to each source and are, therefore, visible in the calibration curves of each source in
fig. 5.8. The two curves are similar but slightly shifted horizontally and vertically
from each other.
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FIGURE 5.8: Comparison between the calibration curves, i.e. mean
photon number in the HG10 mode as a function of the displacement

of the source, for Trofie (dark blue) and Linguine (light blue).

These differences give rise to the systematic errors that we observe in the experi-
mental results. Consequently, the assumption of having identical sources should be
tempered in settings where the error bars are small enough so that slight differences
in sources are revealed. Note that the inaccuracy does not originate from the de-
tection apparatus itself. In realistic scenarios, like microscopy or astronomy setups,
this bias will depend on the optical imaging device and the type of sources, and can
eventually be largely improved.

5.5.2 Sensitivity

The most critical figure of merit being the standard deviation of the estimation, we
plot the statistical errors on the estimated separations as a function of the reference
separation in fig. 5.9. We demonstrate sensitivities ranging from 97 nm for our short-
est separation of 20 µm to as low as 20 nm for larger separations. This corresponds to
five orders of magnitude beyond the beam size. This is ensured by the single-source
independent calibration, as well as by the precise alignment and mode matching,
made possible by the information from multimode MPLC outputs.
We also compare the experimentally measured sensitivities to theoretical values. The
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dashed blue line at 3.5 × 10−7 w0 is the quantum Cramér-Rao bound, calculated for
the same number of detected photons, and the black line is the sensitivity of the
SPADE measurement taking the electronic noise of the detection into account since
all the other noise sources are negligible as presented in chapter 4.
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FIGURE 5.9: Experimental sensitivity in the high-flux regime (1013

detected photons in total during 5 ms). Both axes are presented
with absolute values and values relative to the size of the beam
w0 = 1.135 mm. The QCRB (dashed blue line), calculated for the
same number of detected photons, and the sensitivity for the SPADE
measurement taking into account the detection noise (black line) are

also plotted for comparison.

The discrepancy between the experimental values and the QCRB is therefore quan-
titatively reproduced by our theoretical model, presented in chapter 4. This demon-
strates that the limiting noise source of our setup is the detection noise. Note that the
absolute values of the measured sensitivities are given at the plane of the collimators
where w0 = 1.135 mm, and, at the input plane of the MPLC, the beam underwent a
magnification factor of around 1/4. Therefore, the measured sensitivity corresponds
to a standard deviation on the separation of approximately 5 nm in the input plane
of the MPLC, which is a regime where the setup is extremely sensitive to mechanical
fluctuations.

5.5.3 Differential measurements

To elucidate the full potential of our apparatus and the extremely low statistical er-
rors, we performed differential measurements. From a scene with a given separation
between the two sources, for instance 50 µm, only one source is displaced by a series
of very small steps, of approximately 200 nm each - to be sure that the error bars of
consecutive points do not overlap. At each step, we determined the reference sep-
aration and we performed the separation estimation. The results are displayed in
fig. 5.10, where we plotted the experimental points along with a linear fit as a guide
for the eye.
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FIGURE 5.10: Estimated separation as a function of the reference sep-
aration for differential measurements in the high-flux regime (1013

detected photons in total during 5 ms). A separation of around 50 µm
is fixed, and one source was displaced by several steps, each of ap-
proximately 200 nm. For each point, 200 measurements (each during
one integration time of 5 ms) were realized to determine the statisti-
cal errors. The experimental points follow a linear tendency (orange
line). The horizontal error bars are determined from the quadrant
detector measurements, exactly in the same manner as for the estima-

tion error bars.

We observe in this case statistical errors over the estimation of about 20 nm, and a
linear trend consistent with the error bars. The slope of the linear fit is not equal
to one, due to the limited accuracy, however, this demonstrates that our apparatus
displays the unprecedented ability to distinguish between two scenes with a dif-
ference in separation of the order of 20 nm. Note that some small deviations from
the estimated separation and the linear fit can be observed, this is to be expected
in such an ultra-sensitive measurement where the actual scene is dependent on any
mechanical or electronic fluctuations. These fluctuations also account for the differ-
ences in the measured error bars. Indeed, the horizontal error bars are determined
from the quadrant detector measurements, exactly in the same manner as for the
estimation error bars. Therefore, different fluctuations between the electronic noise
of the quadrant detector and the photodiode at the HG10 output and between the
mechanical fluctuations between the two optical paths leading either to the MPLC
or the quadrant detector result in different error bars.

5.5.4 Stability

We also studied how stable the experimental setup is by acquiring the intensity at
the HG10 output over 200 s, a time much longer than the integration time of 5 ms.
The recorded voltage over time at the output of the photodiode is displayed in
fig. 5.11(top). We observe a slow drift of the voltage, of around 0.15 V s−1, which is
due to some mechanical instabilities in the mounts of the optical elements.
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FIGURE 5.11: Temporal signal of the photodiode at the HG10 output
over a measurement time of 200 s, for an integration time of 5 ms,

(top) without and (bottom) with applying a high-pass filter.
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When this drift is removed, using a numerical high-pass filter, the remaining
noise is the dominant noise, extracted in chapter 4, i.e. the electronic noise of the
detectors, which is constant, as shown in fig. 5.11(bottom).

5.6 Improvements of the setup

The results presented in this chapter, and, in particular, in figs. 5.4, 5.7 and 5.9 and in
[Rouvière 2024] demonstrate a high level of sensitivity and are very promising for
the future of the experiment. Indeed, the PEsto experiment does not end with these
results and will be continued and improved in the next years.
The first type of improvement concerns the measured sensitivity that does not sat-
urate the QCRB, even if we are very close to it in the low-flux regime. This is due
to the presence of technical noise, as studied in chapter 4: mostly the laser noise for
faint sources and the electronic noise of the detection apparatus for bright sources.
Both these limiting noise sources will be reduced by using a less noisy laser and less
noisy photodiodes associated with an acquisition card. We are also replacing the
amplifiers that limit the bandwidth of the phase modulation Once these technical
noises are reduced, it is reasonable to suppose that crosstalk will limit the sensitiv-
ity for bright sources [Gessner 2020a], and we should compensate them for example
with a spatial light modulator before the MPLC.
The second type of improvement aims at enhancing the stability of the experimental
setup. The mounts of the optical elements are being replaced with more stable ones.
Moreover, most of the mechanical instabilities arise from the fact the optical table is
unfortunately situated right under the AC output, resulting in a disruptive airflow.
Even though a plexiglass box was placed around the setup during the measurement,
the alignment was painful due to the presence of airflow. The plexiglass box will be
replaced by a protective cage around the optical table to facilitate this stage.
Moreover, we did not study the contribution of mechanical instabilities to the sensi-
tivity of the estimation. Actually, in our analysis in chapter 4, we only examined the
noise sources arising from the sources - the laser noise and phase noise - and those
from the detection apparatus - the electronic noise of the detectors and the scope. We
implicitly included the fast mechanical fluctuations of the setup to the laser noise.
We plan to conduct a more thorough analysis of this noise contribution, and this
would allow the investigation of more realistic settings where turbulence limits the
sensitivity.
Finally, the last type of improvement involves the calibration stage. Thanks to the
precise alignment procedure, it is not necessary to measure the calibration curve ev-
ery time an estimation measurement is performed, as long as the experimental setup
stays identical. However, the calibration needs to be performed every time the setup
is modified. It would be therefore more comfortable to automatize this stage, which
is not yet the case. For this, we will add an acquisition card and a second motorized
translation stage for Linguine.
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5.7 Some prospects

As mentioned earlier, we obtained great results with a simple setup of spatial-
mode demultiplexing, which is very encouraging for exploring more complex op-
tical scenes. Indeed, the single-parameter study we performed can be extended
to a multi-parameter scenario to release some assumptions that were presented in
section 5.1 and get closer to more realistic scenes that can be found in microscopy
contexts for example. This requires getting more information, by measuring more
observables, and extracting it optimally, adapted to this multi-parameter estimation
task.

5.7.1 Prospect 1: Larger separation estimation

First, we aim at estimating larger separations. As shown in fig. 2.9, this requires
measuring the intensity at the output of more modes, and thus, knowing how to
optimally extract the information from the measurement of several observables. The
method of moments was extended to a multi-observable estimation [Gessner 2019],
as presented in section 2.2.3 and was also adapted to noisy setups in [Sorelli 2021b].
We plan on exploring separations larger than w0 which requires measuring the inten-
sity at the output of the HG00, HG20 and HG30 modes - depending on the separation.

Toward this goal, we performed some preliminary experimental measurements with
bright sources that, unfortunately, were not conclusive and need to be improved. We
measured the calibration curves for the HG00, HG20 and HG30 modes, presented in
fig. 5.12. In order to have a reliable fit of the experimental points with a 6th-order
polynomial for short separations, we took more measurement points in the central
range, which is why we see an almost continuous line. We observe that, because
of the electronic noise of the detection apparatus, the intensities in the modes HG20
and HG30 are relatively flat as a function of the separation, which will limit the sen-
sitivity of the estimation.
We implemented the method of moments and performed the separation estimation

for each mode separately. The results for a reference separation of 520 µm are pre-
sented in fig. 5.13. We observe that the accuracy is different for each mode, mostly
due to the electronic noise of the detection, when we performed the measurement
in the high-flux regime, and, therefore, we could not implement the method of mo-
ments on our current measurements.

5.7.2 Prospect 2: Multiparameter estimation

In a more practical scenario, we might have less prior knowledge on the optical
scene than what was assumed in this chapter, and more specifically presented in
section 5.1. It is therefore interesting to understand how to perform, in a controlled
experiment, the estimation of multiple parameters. Various parameters that can be
studied and how they can be varied with the experimental setup presented in sec-
tion 3.4, are displayed in table 5.1. In addition to the cited parameters, it would
be also useful to study the situation where more than two sources are close to each
other. Questions arise for the data processing and the estimation stage, in particular,



152 Chapter 5. Reaching high sensitivities with the PEsto experiment

FIGURE 5.12: Calibration curves for the displacement of Trofie, for
the modes HG00 (mode 0), HG10 (mode 1), HG20 (mode 2) and HG30
(mode 3). The experimental points (black) are fitted with a 6th-order

polynomial (blue line).

FIGURE 5.13: Separation estimation for the modes HG00, HG10, HG20
and HG30.



5.7. Some prospects 153

TABLE 5.1: Various parameters that can be investigated with the
PEsto setup.

Parameter Experimental control
Separation between the sources Translation stages

Relative intensity between the sources Half-wave plates
Partial coherence between the source Phase modulators
Relative size of the waist of the beams Collimators

Orientation of the source axis Dove prism
Position of the centroid of the sources Mirror before the MPLC

not all the parameters can be estimated with an optimized sensitivity at the same
time, and trade-offs will have to be met.

The formalism of quantum parameter estimation and the method of moments can
also be adapted to a multiparameter estimation task. This section aims at giving an
overview of the multiparameter framework, detailed works and reviews on mul-
tiparameter estimation can be found in [Tsang 2016; Řehaček 2017; Nichols 2018;
Gessner 2020b; Barbieri 2022].

We show how the formalism of single-parameter estimation presented in section 2.1
is generalized to a multiparameter scheme. We aim at estimating a set of parameters
θ = (θ1, θ2, ...)T, with the best possible sensitivity, which are inferred from a set of
estimators θ̃ = (θ̃1, θ̃2, ...)T. The estimators θ̃ are functions of the outcomes x of the
measurement of the set of observables X̂. We introduce the covariance matrix Σ as

Σℓ,k = ⟨(θ̃ℓ − ⟨θ̃ℓ⟩)(θ̃k − ⟨θ̃k⟩)⟩, (5.8)

where the diagonal elements Σℓ = ∆2θ̃ℓ are the variance on the estimators, and the
off-diagonal terms quantify the statistical correlations between estimators. We also
express the Fisher information as a symmetric matrix [Helstrom 1969]:

(F[θ])ℓ,k =
∫

dx
1

p(x|θ)
∂p(x|θ)

∂θℓ

∂p(x|θ)
∂θk

. (5.9)

When X̂ is measured µ ≫ 1 times, the central limit theorem provides the multipa-
rameter CRB as:

Σ ≥ 1
µ
(F[θ])−1 , (5.10)

which means that for any ℓ, k, we have(
Σ − 1

µ
(F[θ])−1

)
ℓ,k

≥ 0. (5.11)

Finally, we can also define a QFI matrix for the probe state ρ̂θ as [Helstrom 1969;
Holevo 2011]

(Q[θ, ρ̂θ])ℓ,k =
1
2

Tr
[
ρ̂θ{L̂ℓ, L̂k}

]
, (5.12)
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where L̂ℓ is the symmetric logarithmic derivative operator associated with the
parameter θℓ, as defined in eq. (2.19), and the curly brackets denote the anti-
commutator. It can be shown that a matrix QCRB is:

Σ ≥ 1
µ
(F[θ])−1 ≥ 1

µ
(Q[θ, ρ̂θ])

−1 . (5.13)

This inequality shows some limitations regarding the simultaneous estimations of
several parameters. Indeed, an estimation protocol optimized for one parameter
might not be optimized for the others, leading to a trade-off in attainable sensitivities
[Crowley 2014; Ragy 2016].

The QFI matrix was derived in the context of the simultaneous estimation of
the separation, centroid, and relative intensity between the sources, assuming no
prior knowledge about these parameters, for two mutually incoherent sources, in
[Řehaček 2017]. They demonstrated that Q[θ, ρ̂θ] is independent of the centroid,
as expected, but not of the relative intensity. When the sources are equally bright,
the separation estimation is uncorrelated with the other parameters, and the cor-
responding QFI is the same as in the single-parameter estimation task derived in
section 2.5. However, for unbalanced intensities, the separation estimation is corre-
lated with the centroid, and the centroid estimation is correlated with the intensity
ratio, since unequal brightness results in asymmetrical images.

Similarly, a multiparameter version of the method of moments, presented in sec-
tion 2.2.3, was derived in [Gessner 2020b], which is a generalization of the estimation
strategy introduced in [Gessner 2019]. Therefore, this procedure could, in principle,
be implemented in the context of multiparameter estimation tasks with various pa-
rameters presented in table 5.1, to determine the sensitivity of the estimations and
determine whether the QCRB can be saturated experimentally.

5.7.3 Prospect 3: MPLC after a microscope - Collaboration with Geneva

This last section introduces an unfinished business which consists of associating the
MPLC with an actual diffraction-limited imaging system, namely a microscope, and
real point sources. We are collaborating with Jean-Pierre Wolf’s group, at the Uni-
versity of Geneva, which specializes in biophotonics and non-linear microscopy.
Our goal is to implement a proof-of-principle experiment to demonstrate that
SPADE at the output of a microscope can enhance the sensitivity of the measure-
ment.
Several samples that mimic pairs of point sources separated by various distances
were fabricated by lithography at EPFL in Lausanne. The samples were constituted
of gold nanostructures engraved on indium-tin oxide, which are pairs of disks with
a diameter of 300 nm and separated by distances of 100 nm, 300 nm and 500 nm. The
samples are highly reflective and, therefore, the SPADE measurements were real-
ized on the light reflected on the samples. The experimental setup is presented in
fig. 5.14.
At the moment when this manuscript is being written, the data are still under pro-
cessing.
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FIGURE 5.14: Experimental setup in Geneva.

5.8 Conclusion

In this chapter, we presented the main experimental results that were obtained in
the course of this thesis [Rouvière 2024].
We implemented an experiment for source separation estimation using a spatial-
mode demultiplexer, the MPLC from Cailabs, which allows to access several modes,
in particular the modes HG00, HG10, HG01, HG20 and HG02. We show how the in-
formation from these modes can be exploited to align and mode match the sources
to the MPLC which then ensures a high sensitivity to the separation estimation.
The experiment was realized in two very different intensity regimes, one with a total
of 3500 detected photons during the integration time of the SPAPD and one with a
total of 1013 detected photons during the integration time of the photodiodes. Con-
sequently, these two distinct experimental situations display specific limitations.
The low-flux regime is dominated by the noise of the laser and presents a lower sen-
sitivity due to the low number of detected photons. However, this relatively lower
sensitivity allows for good accuracy and, nonetheless, (almost) saturates the QCRB
while outperforming the sensitivity obtained for direct imaging with any current or
future camera.
On the other hand, for bright sources, the sensitivity of the estimation, even if limited
by the electronic noise of the detection apparatus which prevents it from saturating
the QCRB, reaches a five-order of magnitude gain on Rayleigh’s limit. This high sen-
sitivity results in a degradation in the accuracy, because the estimation holds on the
assumption that the two sources are identical, which is only true to a certain extent.
In general, the separation estimation experiment we presented in this thesis relies on
many assumptions that would need to be released to account for more realistic sce-
narios. This is why we introduce some prospects either in a multiparameter scheme
or in associating spatial-mode demultiplexing to actual imaging systems that will
be implemented in the future. The experimental scheme we set up is versatile and
allows us to explore more complex optical scenes, with many variations that were
not discussed here: dynamical scenes, turbulence, finite-size, sources, and various
states for the sources.
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Conclusion and prospects

In this thesis, we presented the results of an experiment of separation estimation
of optical incoherent sources. This experiment was performed using a commercial
spatial-mode demultiplexer, the MPLC from Cailabs, which allowed for reaching
high sensitivities for faint and bright sources, respectively outperforming ideal di-
rect imaging and beating the diffraction limit by five orders of magnitude.

We presented the theoretical concepts behind this measurement, introducing the
multimode description of the electromagnetic field and the quantum parameter es-
timation theory. In particular, we derived the quantum Fisher information for in-
coherent sources and we showed that it is saturated by the Fisher information for
SPADE. This demonstrates that SPADE is a quantum-optimal measurement for sep-
aration estimation of incoherent sources, i.e. that it reaches the ultimate sensitivity
limit. This can have applications in many contexts where imaging is needed but still
limited by diffraction, such as microscopy, astronomy or remote sensing.

Experimentally, the sensitivity enhancement we obtained was possible thanks to a
multimode approach for SPADE, even in the short separation range. Indeed, in prin-
ciple, it is sufficient to perform a single-mode measurement in the HG10 mode. How-
ever, extracting information from higher-order modes enables us to limit the impact
of experimental imperfections, such as misalignment and imperfect mode matching,
on the sensitivity and to ensure reproducibility of the measurements.

By conducting a thorough analysis of the noise sources of the experimental setup,
we understand the technical constraints at the source generation and the detection
stages, in the two intensity regimes. In particular, the laser and the detectors will
be replaced in the near future to enhance the separation-estimation sensitivity even
further, eventually reaching the QCRB.
We also performed an experimental characterization of the MPLC, by determin-
ing its amplitude crosstalk matrix. We also made a preliminary evaluation of the
phase crosstalk. Indeed, even if the sensitivity of the estimation is not limited by its
crosstalk for now, it is important to know their order of magnitude to understand
their influence once other noise contributions are reduced. The determination of the
crosstalk matrix would also give information on how to compensate it to counteract
its impact.

We performed experimental single-parameter estimation in one of the simplest op-
tical scenes: two equally bright incoherent sources, with the same spatial shape,
assuming that we know everything except for the separation that we want to esti-
mate.
Therefore, many exciting prospects can be envisioned, in particular for exploring
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more realistic optical scenes. Indeed, it is useful to study the performances of the es-
timation when some assumptions are released. Notably, the versatility of the setup
enables the investigation of the simultaneous estimation of the separation, the cen-
troid position, the relative intensity and the partial coherence between the sources.
As a complement to the analysis of multiparameter estimation for controlled opti-
cal scenes, as produced by the PEsto setup, it is also interesting to examine how to
extract the relevant information at the output of an actual imaging system like a mi-
croscope.
Finally, we conducted experimental separation estimation with phase-averaged co-
herent states. However, it is worth exploring other states of the field, with different
statistics. In particular, we initiated work in this direction by investigating the gen-
eration of thermal states with high mean photon numbers from a laser using a com-
bination of phase and amplitude electro-optic modulators. An experimental separa-
tion estimation with this type of state is yet to be implemented. We can also imagine
variations of the PEsto experiment with non-classical states to examine whether they
can provide a quantum advantage in some situations.
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Appendix A

Quantum Electromagnetic field and
thermal states

This appendix presents the development for the quantization of the electromag-
netic field, in particular of the expressions of the quadrature operators eqs. (1.71)
and (1.72) and the electric field eq. (1.62). The content given here is from a lecture by
Nicolas and [Mandel 1995; Grynberg 2010].
The last section provides details on the statistics of thermal states and gives the
derivation of the photon-number probability from [Mandel 1995] for eq. (1.113).

A.1 Canonical quantization

We want to use the Hamiltonian equations to identify pairs of conjugated variables
and a Hamiltonian, as it is done to quantize a system of material particles. Therefore,
the procedure for quantizing the electromagnetic field goes as follows:

• Write the dynamical equations, i.e. Maxwell’s equations, as Hamilton equa-
tions to identify conjugated variables,

• Introduce the corresponding quantum operators and the commutation rela-
tion.

A.2 Quantization of the electromagnetic field

A.2.1 Potential vector

Maxwell’s equations in the vacuum are:

E(r, t) = −∂A(r, t)
∂t

B(r, t) = ∇× A(r, t) (A.1)

where A is the potential vector and satisfies the wave equation.
We write the potential vector as the sum of its positive frequency component and its
negative frequency component:

A(r, t) = A(+)(r, t) + A(−)(r, t) (A.2)

where A(−)(r, t) = [A(+)(r, t)]∗.
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A.2.2 Field energy

We assume the system is in a box of size L and periodic boundary conditions. Thus,
we can decompose A(+)(r, t) over an orthonormal mode basis {uℓ(r, t)} and write
A(+)(r, t) = ∑ℓ Aℓ(t)uℓ(r, t), where Aℓ(t) = Aℓ(0)e−iωℓt.
We obtain the field energy:

HR =
1
2

∫
V

d3r (E(r, t)2 + c2B(r, t)2) = 2ε0V ∑
ℓ

ω2
ℓ |Aℓ|2. (A.3)

We write Aℓ(t) = Qℓ(t) + iPℓ(t), where Qℓ(t) and Pℓ(t) are real quantities. Hence

HR = 2ε0V ∑
ℓ

ω2
ℓ (Qℓ(t)2 + Pℓ(t)2). (A.4)

A.2.3 Conjugated variables

From Eq A.1, we have
dAℓ(t)

dt
= −iωℓAℓ(t) (A.5)

Hence, the real and imaginary parts of the potential vector satisfy the relations:

∂Qℓ(t)
∂t

= ωℓPℓ(t) =
1

4ε0Vωℓ

∂HR

∂Pℓ(t)
∂Pℓ(t)

∂t
= −ωℓQℓ(t) = − 1

4ε0Vωℓ

∂HR

∂Qℓ(t)

(A.6)

Renormalizing the variables Pℓ(t) and Qℓ(t) as follows:

qℓ(t) = 2
√

ε0VωℓQℓ(t) (A.7)

pℓ(t) = 2
√

ε0VωℓPℓ(t), (A.8)

we obtain the Hamiltonian equations

∂qℓ(t)
∂t

=
∂HR

∂pℓ(t)
∂pℓ(t)

∂t
= − ∂HR

∂qℓ(t)
.

(A.9)

We introduce the corresponding time-independent quantum operators q̂ℓ and p̂ℓ and
we impose the commutation relation1

[q̂ℓ, p̂ℓ′ ] = ih̄δℓℓ′ . (A.10)
1According to the postulates of quantum mechanics, each pair of canonically conjugate operators

has the commutator ih̄.
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A.2.4 Creation and annihilation operators

We want to define creation and annihilation operators that satisfy the commutation
relations

[âℓ, â†
ℓ′ ] = δℓℓ′ ,

[âℓ, âℓ′ ] = 0
(A.11)

and that give an energy of the form Ĥ ≈ ∑ℓ h̄ωℓ â†
ℓ âℓ, which correspond to quantum

harmonic oscillators.

From Eq A.7 and A.8, we obtain the operator

Âℓ =
1

2
√

ε0Vωℓ
(q̂ℓ + i p̂ℓ) (A.12)

and the commutator is

[Âℓ, Â†
ℓ′ ] =

1
4ε0V

√
ωℓωℓ′

[q̂ℓ + i p̂ℓ, q̂ℓ′ − i p̂ℓ′ ]

=
h̄

2ε0Vωℓ
δℓℓ′

(A.13)

Hence, we define âℓ the creation operator of mode ℓ as

âℓ =

√
2ε0Vωℓ

h̄
Âℓ =

1√
2h̄

(q̂ℓ + i p̂ℓ) (A.14)

so that âℓ satisfies the commutation relations Eq A.11. We can then express q̂ℓ and p̂ℓ
in terms of the creation and annihilation operators2

q̂ℓ =

√
h̄
2
(â†

ℓ + âℓ) (A.18)

p̂ℓ = i

√
h̄
2
(â†

ℓ − âℓ). (A.19)

2It is possible to choose another normalization (change of units) for the field operators such as

q̂ℓ = (â†
ℓ + âℓ)

p̂ℓ = i(â†
ℓ − âℓ),

(A.15)

so that
[q̂ℓ, p̂ℓ′ ] = 2iδℓℓ′ (A.16)

while keeping
[âℓ, â†

ℓ′ ] = δℓℓ′ . (A.17)

This is the normalization that is chosen throughout the manuscript.
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A.2.5 Energy of the quantum field

From Eq A.4, the quantum Hamiltonian associated to the field is

ĤR = 2ε0V ∑
ℓ

ω2
ℓ (Q̂

2
ℓ + iP̂2

ℓ )

= 2ε0V ∑
ℓ

ω2
ℓ

1
4ε0Vωℓ

(q̂2
ℓ + i p̂2

ℓ).
(A.20)

Hence, using Eq A.18, A.19 and A.11, we obtain

ĤR = ∑
ℓ

h̄ωℓ

(
â†
ℓ âℓ +

1
2

)
. (A.21)

This expression is formally identical to the Hamiltonian of an assembly of decoupled
quantum harmonic oscillators.

A.2.6 Electric field operator

Using Eq A.14, the potential vector operator is written

Â(+)(r) = ∑
ℓ

Âℓuℓ(r) = ∑
ℓ

√
h̄

2ε0Vωℓ
âℓuℓ(r), (A.22)

and since E(r, t) = − ∂A(r,t)
∂t , we have E(+)(r, t) = i ∑ℓ ωℓAℓ(t)uℓ(r, t). From which

we obtain

Ê(+)(r) = i ∑
ℓ

E (1)
ℓ âℓuℓ(r) with E (1)

ℓ =

√
h̄ωℓ

2ε0V
. (A.23)

A.3 Details on thermal states

A.3.1 Density operator

A system with total energy Ĥ in thermal equilibrium at temperature T can be
described by the density operator ρth given by the Maxwell-Boltzmann (or Bose-
Einstein, it does not matter here) statistics [Mandel 1995]:

ρ̂th =
exp

(
−Ĥ/kBT

)
Tr
[
exp

(
−Ĥ/kBT

)] , (A.24)

where kB is the Boltzmann constant. For a single-mode black-body, we have Ĥ =
h̄ω
(
n̂ + 1

2

)
, and therefore

ρ̂th =
exp(−n̂h̄ω/kBT)

Tr[exp(−n̂h̄ω/kBT)]
. (A.25)
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Note that the zero point energy has conveniently dropped out from the normaliza-
tion. Since in the Fock basis, we can write

Tr[ f (n̂)] = ∑
n
⟨n| f (n̂) |n⟩ = ∑

n
f (n), (A.26)

we have

ρ̂th =
exp(−n̂h̄ω/kBT)

∑n exp(−nh̄ω/kBT)]
= (1 − exp(−nh̄ω/kBT)) exp(−n̂h̄ω/kBT). (A.27)

Using that 1 = ∑n |n⟩ ⟨n|, we obtain

ρ̂th = ∑
n
(1 − exp(−nh̄ω/kBT)) exp(−nh̄ω/kBT) |n⟩ ⟨n|

= ∑
n

P(n) |n⟩ ⟨n| .
(A.28)

A.3.2 Moments of the number of photons operator

Let us define the function
F(ξ) = ⟨(1 + ξ)n̂⟩. (A.29)

Using the binomial series, we have

F(ξ) =
∞

∑
r=0

ξr

r!
⟨n̂(r)⟩ (A.30)

where

⟨n̂(r)⟩ = ⟨n̂(n̂ − 1)...(n̂ − r + 1)⟩ = ⟨n̂⟩!
⟨n̂ − r⟩! . (A.31)

Moreover, with the expectation value definition, we also have

F(ξ) = ∑
n

P(n)(1 + ξ)n

=
1 − exp(−h̄ω/kBT)

1 − (1 + ξ) exp(−h̄ω/kBT)
,

(A.32)

using that
1

1 − x
= ∑

n
xn. (A.33)

Therefore, we obtain

∞

∑
r=0

ξr

r!
⟨n̂(r)⟩ =

∞

∑
r=0

(
ξ

exp(h̄ω/kBT)− 1

)r

. (A.34)

It follows that
⟨n̂(r)⟩ = r!

(exp(h̄ω/kBT)− 1)r . (A.35)
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A.3.3 Photon number statistics

From eq. (A.35), we obtain

exp(h̄ω/kBT) = 1 +
1
⟨n̂⟩ , (A.36)

and finally, we get

P(n) =
⟨n̂⟩n

(⟨n̂⟩+ 1)n+1 . (A.37)



165

Appendix B

Method of Moments

This appendix presents the derivation of eqs. (2.46) and (2.47).

We consider a multi-observable and single-parameter method of moments where K
observables X̂ = (X̂1, ..., X̂K)

T are accessible to estimate a parameter θ. Their linear
combination is given by X̂m = mT X̂, where m = (m1, ..., mK)

T is the coefficient
vector. The error propagation formula (eq. (2.44)) gives the sensitivity as

χ−2[θ, X̂m] =
(∂θ⟨X̂m⟩)2

∆2X̂m
, (B.1)

with

∂θ⟨X̂m⟩ = mT ∂θ⟨X̂⟩
∆2X̂m = ⟨mT X̂X̂T m⟩ − ⟨mT X̂⟩⟨X̂T m⟩ = mTΓ[θ, X̂]m

(B.2)

where Γ[θ, X̂] is the covariance matrix defined in eq. (1.137) as

Γ[θ, X̂]ij = ⟨X̂iX̂j⟩ − ⟨X̂i⟩⟨X̂j⟩. (B.3)

We use the Cauchy-Schwarz inequality, which states

|uTv|2 ≤ (uTu)(vTv), (B.4)

with

u = Γ[θ, X̂]1/2m,

v = Γ[θ, X̂]−1/2∂θ⟨X̂⟩.
(B.5)

Therefore, the sensitivity eq. (B.1) can be written

χ−2[θ, X̂m] =
|uTv|2
uTu

, (B.6)

hence the Cauchy-Schwarz inequality eq. (B.4) gives

χ−2[θ, X̂m] ≤ M[θ, X̂], (B.7)
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with the optimal sensitivity

M[θ, X̂] = ∂θ⟨X̂T⟩Γ[θ, X̂]−1∂θ⟨X̂⟩. (B.8)

The Cauchy-Schwarz inequality is saturated for u ∝ v, i.e. m ∝ Γ[θ, X̂]−1∂θ⟨X̂⟩. We
therefore choose the optimal coefficients as

m = Γ[θ, X̂]−1∂θ⟨X̂⟩. (B.9)
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Appendix C

Details on calculations for
separation estimation

C.1 Quantum Fisher information for separation estimation

In this section, we provide some expressions that are useful to derive Eq 2.75, there
are extracted from [Sorelli 2023].

The initially populated modes are

u0[d](r) =
u00(r + r0) + u00(r − r0)√

2(1 + δ)

v0[d](r) =
u00(r + r0)− u00(r − r0)√

2(1 − δ)
,

(C.1)

where δ is the overlap between the source images with

δ =
∫

d2r u0[d](r)v0[d](r) = e
− d2

2w2
0 . (C.2)

The normalized derivative modes are

u′
0[d](r) = ∂du0[d](r)/ηu

v′0[d](r) = ∂dv0[d](r)/ηv,
(C.3)

where

η2
u = ||∂du0[d](x)||2 =

∫
d2r (∂du0[d](x))2 =

(∆k)2 − β

4(1 + δ)
− (∂dδ)2

4(1 + δ)2

η2
v = ||∂dv0[d](x)||2 =

∫
d2r (∂dv0[d](x))2 =

(∆k)2 + β

4(1 − δ)
− (∂dδ)2

4(1 − δ)2

(C.4)

with

(∆k)2 =
∫

d2r (∂du00(x))2

β =
∫

d2r ∂du00(r + r0)∂du00(r − r0).
(C.5)
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For Gaussian beams, i.e. beams in mode

u00(r) =

√
2

πw2
0

e
− x2+y2

w2
0 , (C.6)

the overlap δ is

δ = e
− d2

2w2
0 (C.7)

and its derivative is given by

∂dδ = −de
d2

2w2
0

w2
0

. (C.8)

Moreover, inserting eq. (C.6) in eq. (C.5), we obtain:

(∆k)2 =
1

w2
0

β =
−d2 + w2

w4 e
− d2

2w2
0 .

(C.9)

For small separations, we note that we have the following behaviours:

δ = 1 − (∆k)2 d2

2
+O(d4) (C.10)

β = (∆k)2 +O(d2) (C.11)

C.2 Expectation values of the field operators for separation
estimation

This section derives eq. (2.78) and is based on [Sorelli 2021a].

C.2.1 P function of the sources

As depicted in section 2.5.1, the sources are described by the quantum state

ρ̂0 = ρ̂s1(N)⊗ ρ̂s2(N) =
∫

d2α1d2α2Ps1,s2(α1, α2) |α1, α2⟩ ⟨α1, α2| (C.12)

where ρ̂a(N) are density operators associated with a thermal state with mean photon
number N in the mode associated with the operator â, |αa⟩ are coherent states of the
field â, and Ps1,s2(α1, α2) = Ps1(α1)Ps2(α2) is the Glauber-Sudarshan function such
that

Pa(αa) =
1

πN
exp

(
−|αa|2

N

)
. (C.13)

We define the modes ŝ± as (
ŝ+
ŝ−

)
=

1√
2

(
1 1
1 −1

)(
ŝ1
ŝ2

)
(C.14)



C.2. Expectation values of the field operators for separation estimation 169

and the associated coherent states |α±⟩ as

|α±⟩ =
∣∣∣∣α1 ± α2√

2

〉
. (C.15)

We can therefore write the quantum state of the sources in terms of the coherent
states |α±⟩:

ρ̂0 =
∫

d2α+d2α−Ps+,s−(α+, α−) |α+, α−⟩ ⟨α+, α−| , (C.16)

where Ps+,s−(α+, α−) = Ps1,s2

(
α1α2√

2
, α1−α2√

2

)
.

C.2.2 P function in the image plane

We propagate the quantum state of the source to the image plane. Using eq. (2.66)
for the propagation through the imaging system:

b̂± =
√

κ± ŝ± +
√

1 − κ±v̂±, (C.17)

we have |α+, α−⟩ → |β+, β−⟩ =
∣∣√κ+α+,

√
κ−α−

〉
, with |β±⟩ the coherent states of

the field operators b̂±. The quantum state in the image plane can thus be written

ρ̂ =
∫

d2β+d2β−Pb+,b−(β+, β−) |β+, β−⟩ ⟨β+, β−| , (C.18)

with

Pb+,b−(β+, β−) =
1

κ+κ−
Ps+,s−

(
β+√
κ+

,
β−√
κ−

)
. (C.19)

Combining eqs. (C.13) and (C.19), we obtain

Pb+,b−(β+, β−) =
1

π2N+N−
exp

(
−|β+|2

N+
− |β−|2

N−

)
, (C.20)

with N± = Nκ± = Nκ(1 ± δ).

C.2.3 Expectation values of the field operators

In sections 2.5.3 and 2.5.4, we need to calculate expressions of the form
∑i,j=± cij⟨b̂†

i b̂j⟩. The expectation values of the field operators b̂i can be calculated
with the P function, and we have

⟨b̂†
i b̂j⟩ =

∫
β∗

i β jPb+,b−(β+, β−)d2β+d2β−. (C.21)
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Since the P function eq. (C.20) is Gaussian, we use the Gaussian integrals:∫ ∞

−∞
exp

(
−x2/α

)
dx =

√
απ,∫ ∞

−∞
x exp

(
−x2/α

)
dx = 0,∫ ∞

−∞
x2 exp

(
−x2/α

)
dx =

α
√

απ

2
,

(C.22)

where α is real, to determine eq. (C.21). Consequently, we have

⟨b̂†
+b̂−⟩ = ⟨b̂†

−b̂+⟩ = 0, (C.23)

and

⟨b̂†
±b̂±⟩ =

1
πN±

× 2
√

πN±

∫ ∞

−∞
exp

(
− x2

N±

)
dx = N±. (C.24)
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Appendix D

Experimental characterizations

In this appendix, I grouped some characterization measurements that I did for dif-
ferent devices. In particular, I provide details on the characterization of the electro-
optical modulators.

D.1 Electro-optical modulators

D.1.1 Experimental setup

The phase (iXBlue, MPX-LN-0.1) and amplitude (iXBlue, MX-LN-0.1) modulators
are integrated devices with bandwidths from DC to 200 MHz. They are driven with
are arbitrary signal generator implemented on Red Pitaya components (STEMlab
125-14). Since the outputs of the Red Pitayas are limited to −1 V to 1 V, which is too
low to drive the modulators, amplifiers built by the electronic workshop are added
before the EOMs. These amplifiers are closed-loop operational amplifiers with a
bandwidth of 1 MHz, and a variable gain of up to 10. The Red Pitayas are also
used to generate the modulating signals for producing the thermal states. In order
to implement accurate inverse transverse sampling, we need to characterize the
modulators to extract the Vpi of the phase modulators, the transmissivity of the am-
plitude modulators as well as their bandwidths. Measurements are realized either
with a homodyne detector (Koheron, PD100B) with a DC to 100 MHz bandwidth
for the characterization of the phase modulators, or with a photodiode (Thorlabs,
PDA50B2) for the characterization of the amplitude modulators.

D.1.2 Vπ of the phase EOM

The Vπ of the phase EOM is the voltage amplitude corresponding to a π phase shift.
We measured it for both phase modulators by modulating the EOM with a ramp
signal with variable amplitude and performing a homodyne detection between the
signal at the output of the modulator and a local oscillator.
As illustrated by Figure D.1, when the amplitude of the modulating signal is small,
only a fraction of a period of the interference pattern appears during one period of
the modulation, while for larger amplitudes, several periods of the interference pat-
tern are formed during one period of the modulation. We chose to use a ramp signal
for the modulation, instead of a sine, to have sharp transitions when the monotony
of the modulation changes for an easier determination.
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FIGURE D.1: Vπ characterization of a PM EOM.

For simplicity, we actually determined the 2Vπ, or V2π by the linearity of the mod-
ulator, which is given by the voltage for which we obtain exactly one period of the
interference pattern. We measured V2π ≃ 6.5 V for the modulator corresponding to
Figure D.1 and V2π ≃ 8.5 V for the second one. These values can not be determined
precisely due to noises, they also change from day to day because of thermal fluc-
tuations, which is why we need to adapt the gain of the amplifiers by doing this
procedure daily.

D.1.3 Transmissivity of the amplitude EOM

The transmissivity of the amplitude EOMs is obtained by modulating with a DC sig-
nal and measuring the output power of the modulator with a photodiode as a func-
tion of the modulation voltage. The obtained calibration curve for one of the ampli-
tude modulators is displayed in Figure D.2. Fitting with f (U) = A cos(k(U − U0))+
B, we obtain the parameters k = 1.29 and U0 = −0.05 for the displayed modulator,
and k = 0.93 and U0 = 1.56 for the second one. These parameters are not constant,
particularly the voltage U0, and change with thermal fluctuations, which is why they
are not determined with high precision. The gains of the amplifiers corresponding to
the amplitude modulators need therefore to be adapted daily to match the statistics
of thermal states.

D.1.4 Bandwidth

We also add a look at the behavior of the EOMs depending on the frequency of the
modulating signal. As displayed on Figures D.3 and D.4, the modulators display
expected behaviors up to 1 MHz. The bandwidth was expected to be limited by the
electronic amplifiers.
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FIGURE D.2: Calibration of one amplitude modulator EOM.

FIGURE D.3: Bandwidth of a phase EOM.
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FIGURE D.4: Bandwidth of an amplitude EOM.

D.2 Laser diode

I measured the power spectral density Γ( f ) of the laser diode (Thorlabs, SFL1550P)
with a photodiode and the spectrum analyzer (see fig. D.5) and, from this measure-
ment, I extracted the relative intensity noise (RIN) of the laser (see fig. D.6), with

RIN = 10 log10

(
Γ( f )
Vmean

)
, (D.1)

where Vmean is the mean voltage value measured by the photodiode.

D.3 Red Pitaya

We measured, with the oscilloscope, the voltage distribution generated by the Red
Pitaya (STEMlab, 125-14) for the amplitude noise using the inverse transform sam-
pling (see eq. (3.18)), to check that it corresponds to eq. (3.16). We also measured
this distribution at the output of the homemade 1MHz amplifier that amplifies the
Red Pitaya’s output, so that we were sure that the amplifier does not distort the
distribution. The results are presented in fig. D.7.

D.4 Homodyne detector

The homodyne detector (Koheron, PDB100B), which was used to characterize the
thermal states, was characterized beforehand. We measured its spectrum for differ-
ent local oscillator powers and a vacuum input. The results are presented in fig. D.8.
In order to have an idea of the clearance of the homodyne detector, we plotted its
clearance i.e. its signal-to-noise ratio, where the signal is the power of the detector
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FIGURE D.5: Power spectral density of the laser diode.

FIGURE D.6: Measured relative intensity noise of the laser diode.
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FIGURE D.7: Histograms of the output voltages of the Red Pitaya
generating the amplitude noise (left) and of the homemade 1MHz

amplifier (right).

FIGURE D.8: Noise spectrum of the Koheron homodyne detector for
different local oscillator powers. The electronic noise of the spectrum

analyzer is plotted in black.
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FIGURE D.9: Clearance of the Koheron homodyne detector.

and the noise is the power of the electronic noise, at 100 MHz. The clearance is
presented in fig. D.9.
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Demkowicz-Dobrzański. “Compatibility in
multiparameter quantum metrology”. Physical
Review A 94.5 (Nov. 2016). tex.ids= ragy2016a,
p. 052108. DOI: 10 . 1103 / PhysRevA . 94 . 052108
(cit. on p. 154).

[Rao 1994] Calyampudi Radhakrishna Rao and S. Das Gupta.
Selected Papers of C. R. Rao. Google-Books-ID: NK-
TgAAAAMAAJ. Wiley, 1994 (cit. on p. 43).

[Rayleigh 1879] Rayleigh. “XXXI. Investigations in optics, with
special reference to the spectroscope”. The London,
Edinburgh, and Dublin Philosophical Magazine and
Journal of Science 8.49 (Oct. 1879), pp. 261–274. DOI:
10.1080/14786447908639684 (cit. on pp. 2, 68).
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