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Titre : Représentations symboliques de séries temporelles
Mots clés : reconnaissance de formes, approches symboliques, détection de ruptures, appren-

tissage de représentation

Résumé : Les objectifs de cette these sont
de définir de nouvelles représentations symbo-
liques et des mesures de distance adaptées aux
séries temporelles pouvant étre multivariées et
non-stationnaires. De plus, elles doivent pré-
server linformation temporelle, étre interpré-
tables et rapides a calculer. Nous passons en
revue les représentations symboliques de sé-
ries temporelles, ainsi que les mesures de dis-
tance sur séries temporelles, chaines de carac-
téres et séquences symboliques (qui résultent
d'un processus de symbolisation).

Nous proposons deux contributions : AS-
TRIDE pour un ensemble de séries temporelles
univariées, et dgy,,, pour un ensemble de sé-
ries temporelles multivariées. Nous avons éga-
lement développé le dg,,,, playground, un ou-
til interactif en ligne permettant aux utilisa-
teurs d'appliquer dgy,, a leurs données télé-

versées. ASTRIDE et d,,,; sont pilotées par les
données, car elles utilisent la détection de rup-
tures pour I'étape de segmentation, puis des
quantiles ou un partitionnement par les K-
moyennes pour I'étape de quantification. En-
fin, elles appliquent la distance d'édition géné-
rale avec des codts personnalisés entre les sé-
guences symboliques obtenues.

Nous montrons les performances d'AS-
TRIDE, comparé a 4 autres représentations
symboliques, sur des taches de reconstruc-
tion, et lorsque cela s'applique, sur des taches
de classification. Pour dgym, les expériences
montrent a quel point la symbolisation est in-
terprétable. De plus, comparée a 9 distances
élastiques sur une tache de partitionnement,
dsymp atteint des performances competitives
tout en étant plusieurs ordres de grandeur plus
rapide.

Title : Symbolic representations of time series

Keywords : change-point detection, pattern recognition, symbolic approaches, representation

learning

Abstract : The objectives of this thesis are to
define novel symbolic representations and dis-
tance measures that are suited for time series
that can be multivariate and non-stationary. In
addition, they should preserve the time infor-
mation, be interpretable, and fast to compute.
We review symbolic representations of time se-
ries (that transform a real-valued series into a
shorter discrete-valued series), as well as dis-
tances measures on time series, strings, and
symbolic sequences (that result from a symbo-
lization process).

We propose two contributions : ASTRIDE for
a data set of univariate time series, and dgyms
for a data set of multivariate time series. We
also developed the d,,,; playground, an online
interactive tool that allows users to apply dsyms

to their uploaded data. ASTRIDE and dy,; are
data-driven as they use change-point detection
for the segmentation step, then either quan-
tiles or a K-means clustering algorithm for the
quantization step. Finally, they apply the gene-
ral edit distance with custom costs between the
resulting symbolic sequences.

We show the performance of ASTRIDE com-
pared to 4 other symbolic representations on
reconstruction and, when applicable, on clas-
sification tasks. For dgym experiments show
how interpretable the symbolization is. Moreo-
ver, compared to 9 elastic distances on a clus-
tering task, ds,mp achieves a competitive perfor-
mance while being several orders of magnitude
faster.
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Résumé (en francgais)

Cette these traite du probleme de la représentation et de la comparaison de signaux
physiologiques, qu'ils soient univariés ou multivariés. Dans de nombreuses applica-
tions comme en neurologie comportementale, les chercheurs ont besoin d’analyser
et de comparer de grands jeux de données de séries temporelles multivariées, de
maniére interactive et interprétable. Les objectifs de cette thése sont de définir de
nouvelles représentations symboliques et mesures de distances qui peuvent prendre
en compte des signaux physiologiques ayant une structure complexe : multivariée
et non-stationnaire. De plus, cette représentation doit préserver l'information tem-
porelle, étre interprétable et rapide a calculer.

Apreés avoir passé en revue les techniques de symbolisation (qui transforment une
série a valeurs réelles en une série plus courte a valeurs discréetes) et avoir mené
une revue de I'état de l'art sur les mesures de distance sur les séries temporelles,
les chaines de caractéres et les séquences symboliques (qui résultent d'un proces-
sus de symbolisation), nous introduisons de nouvelles représentations symboliques
et définissons des mesures de distance entre les séquences symboliques obtenues.

La premiere contribution, appelée ASTRIDE, est une représentation symbolique
pour un jeu de données de séries temporelles univariées. Contrairement a la plupart
desreprésentations symboliques, ASTRIDE est adaptative (i.e. pilotée par les données)
durant I'étape de segmentation grace a une détection de ruptures ainsi que durant
I'étape de quantification en utilisant des quantiles. Au lieu de traiter chaque signal
I'un apreés l'autre, ASTRIDE construit un dictionnaire de symboles qui est commun a
tous les signaux d’'un jeu de données. Nous introduisons également une nouvelle
mesure de distance entre représentations symboliques qui est basée dans la distance
d'édition générale, avec des poids personnalisés. Nous montrons les performances
d’ASTRIDE, comparé a 4 autres représentations symboliques, sur des taches de recon-
struction, et lorsque cela s'applique, sur des taches de classification.

La seconde contribution est une représentation symbolique pour un jeu de
données de séries temporelles multivariées qui peuvent étre non-stationnaires, ap-
pelée dgym,p, qui est mise en ceuvre au sein d'un outil d’'exploration en ligne, appelé le
dsymp Playground. Contrairement a la plupart des mesures de distance sur des sig-
naux multivariés, d,.,, prend en compte leur non-stationnarité grace a une étape de
symbolisation. Cette étape est elle-méme basée sur une détection de ruptures di-
visant un signal non stationnaire en plusieurs segments stationnaires, suivie d'une
guantification a l'aide d'un partitionnement par l'algorithme des K-moyennes. La
mesure de distance proposée est basée sur la distance d'édition générale. Les avan-
tages de dgymp sont illustrés sur 3 jeux de données de signaux physiologiques multi-
variés. Les expériences montrent a quel point la symbolisation est interprétable : un
simple coup d'ceil aux séquences symboliques obtenues fournit une compréhension

1



Contents

instantanée et globale d'un jeu de données. De plus, comparée a g distances
élastiques multivariées sur une tache de partitionnement, d,,,, atteint des perfor-
mances compétitives tout en étant plusieurs ordres de grandeur plus rapide que
les autres méthodes. Avec ces caractéristiques désirables, nous avons développé le
dsyms Playground, un outil en ligne, qui permet aux chercheurs d'appliquer dgy,,; aux
données qu'ils auront téléversées.
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Abstract

This work addresses the problem of representing and comparing physiological sig-
nals that can be univariate or multivariate. In many applications, such as behavioral
neurology, researchers have to analyze and compare large amounts of multivariate
time series in an interactive and interpretable way. The objectives of this thesis are to
define novel symbolic representations and distance measures that can handle physi-
ological signals with a complex structure: multivariate and non-stationary. Moreover,
the representation should preserve the time information, be interpretable, and be
fast to compute.

After reviewing symbolization techniques (that transform a real-valued series into
a shorter discrete-valued series) and conducting a survey of distance measures on
time series, strings, and symbolic sequences (that result from a symbolization pro-
cess), we introduce novel symbolic representations and define a distance measure
between the resulting symbolic sequences.

The first contribution is a symbolic representation for a data set of univariate time
series called ASTRIDE. Unlike most symbolization procedures, ASTRIDE is adaptive (i.e.
data-driven) during both the segmentation step by performing change-point detection
and the quantization step by using quantiles. Instead of proceeding signal by signal,
ASTRIDE builds a dictionary of symbols that is common to all signals in a data set. We
alsointroduce a novel distance measure on symbolic representations that is based on
the general edit distance with custom weights. We show the performance of ASTRIDE
compared to 4 other symbolic representations on reconstruction and, when applica-
ble, on classification tasks.

The second contribution is a symbolic representation for a data set of multivari-
ate time series that can be non-stationary, called dg,,,; along with an online explo-
ration tool, called the d,,,; playground. Unlike most distance measures on multi-
variate signals, ds,, takes into account their non-stationarity thanks to a symboliza-
tion step. This step is itself based on a change-point detection procedure that splits
a non-stationary signal into several stationary segments, followed by quantization us-
ing K-means clustering. The proposed distance measure leverages the general edit
distance. The advantages of d,, are shown on 3 data sets of multivariate physi-
ological signals. Experiments show how interpretable the symbolization is: a single
glance at the symbolic sequences provides an immediate and comprehensive under-
standing of a data set. Moreover, compared to 9 multivariate elastic distances on a
clustering task, d,m» achieves a competitive performance while being several orders
of magnitude faster than the other methods. With these desirable characteristics, we
developed the d,,; playground, an online tool, that allows researchers to apply dsyms
to their uploaded data.
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Contexte, motivation et objectifs

L'objectif général de cette thése est d'introduire de nouvelles représentations
symboliques et mesures de distance pour les séries temporelles multivariées et non
stationnaires.

Contexte

Cette theése a été menée au Centre Borelli", un laboratoire de recherche académique
de I'Ecole Normale Supérieure Paris-Saclay, également affilié & I'Université Paris-
Saclay, a I'Université Paris Cité, au CNRS, au SSA et a 'INSERM. La recherche au Cen-
tre Borelli s'articule autour des mathématiques appliquées, des neurosciences et de
I'informatique, avec un accent particulier sur leurs interactions biomédicales et in-
dustrielles. Ainsi, une spécificité majeure du Centre Borelli est de faire collaborer
étroitement des mathématiciens avec des ingénieurs, des médecins, des cliniciens
et des experts de l'industrie.

'https://centreborelli.ens-paris-saclay.fr/fr
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Figure 1: Exemple d’'une série temporelle multivariée issue du jeu de données arm-
CODA. A gauche de la Figure, le positionnement de plusieurs capteurs sur le membre
supérieur d'un patient est affiché. A droite, un zoom sur la série temporelle multi-
variée, générée par I'un de ces capteurs, est fourni. Chaque mouvement (par exem-
ple, 'élévation du bras) comprend trois itérations.

Pour ce qui est des neurosciences, le travail du Centre Borelli se concentre sur
I'analyse du comportement humain et animal, avec deux objectifs principaux : le suivi
longitudinal (étudier I'évolution d'un sujet au fil du temps) et la comparaison interindi-
viduelle (comparer, souvent statistiquement, deux cohortes de sujets). Plusieurs pro-
jets sont actuellement en cours et visent a étudier la marche chez des sujets sains et
pathologiques (par exemple, la sclérose en plaques) [V]+19; Boi+22], le contrdle postu-
ral et la détection préventive du risque de chute [Bar+18], les mouvements des mem-
bres supérieurs pendant la rééducation apres une blessure [Com+24a], les cycles res-
piratoires chez les souris [Ger+22], ou les états de conscience pendant I'anesthésie.
Tous ces projets sont basés sur des capteurs pouvant étre placés sur les sujets et per-
mettant I'enregistrement de plusieurs signaux physiologiques (éventuellement syn-
chronisés), tels que les électrocardiogrammes (ECG), les électroencéphalogrammes
(EEG), ou les accélérations des pieds enregistrées avec des Inertial Measurement Units
(IMUs). Le Centre Borelli a également participé a la construction de plusieurs pro-
tocoles cliniques et a généré des jeux de données en libre accés, tels qu'un jeu de
données sur la marche humaine utilisant des IMUs [Tru+19] ou un jeu de données sur
les mouvements des membres supérieurs enregistrés grace a des capteurs de mou-
vement [Com+24a]. Un exemple de signaux physiologiques pouvant étre enregistrés
lors d'un protocole est présenté dans la Figure 1.

Du fait de la complexité des phénomenes que nous souhaitons observer, mobil-
isant parfois plusieurs fonctions physiologiques, les données collectées via différents
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protocoles peuvent s'avérer difficiles a analyser. Tout d’abord, comme pour toute
série temporelle, la premiere question est de savoir comment prendre en compte
I'information temporelle dans les modeéles. Intuitivement, dans une tache de surveil-
lance, la séquence et la chronologie des actions comportent des informations cru-
ciales, qui doivent étre préservées dans la chaine de traitement. La deuxiéme ques-
tion, qui est également treés générale, concerne la nature bruitée des données issues
de capteurs. En particulier, les études au niveau de la forme d'onde peuvent étre
rendues difficiles par le rapport signal/bruit parfois faible [KKo3; Fu11; EA12]. De plus,
d'autres questions découlent directement des protocoles utilisés :

1. Nature multivariée : L'étude d'un patient nécessite souvent des protocoles
avec de nombreux capteurs afin d'obtenir une compréhension globale de I'état
du patient. L'enregistrement de la position 3D d'une partie du corps au fil du
temps génére une série temporelle multivariée de dimension 3. Cependant, lors
de I'étude de I'élévation du bras, il est probable que plusieurs capteurs soient
nécessaires (par exemple, sur les deux bras, aux poignets et aux coudes), ce qui
donne une série temporelle de dimension bien plus grande (atteignant parfois
des centaines de dimensions). Intuitivement, ces dimensions sont susceptibles
d'étre fortement corrélées, et il s'agit donc d'une information cruciale qui doit
étre prise en compte.

2. Non-stationnarité : Lorsqu'ils sont enregistrés sur de longues périodes de
temps ou lors de protocoles complexes, les propriétés statistiques des signaux
physiologiques évoluent souvent au cours du temps. Par exemple, si un su-
jet porte une montre connectée pendant toute une journée, en effectuant di-
verses activités intercalées avec des périodes de repos, le signal généré est
généralement non stationnaire. La plupart des modéles statistiques couram-
ment utilisés pour les séries temporelles nécessitent I'hypothése de station-
narité au sens large et ne peuvent donc pas étre utilisés dans ce contexte.

3. Multimodalité : Certains protocoles impliquent I'étude de différents capteurs
qui enregistrent simultanément différents types de grandeurs, telles que des
données d'accélérométrie, des ECG ou des EEG. Dans ce cas, le défi est beaucoup
plus difficile car il nécessite I'étude conjointe de signaux physiologiques avec
différentes propriétés physiques (fréquence d'échantillonnage, structure, etc).

Enfin, il y a la question de l'interprétabilité pour les cliniciens. Les travaux au Cen-
tre Borelli sont menés par des équipes pluridisciplinaires de mathématiciens et de
cliniciens. Les outils d'analyse développés doivent donc leur permettre d'interagir
avec les données, et la plupart des cliniciens ne sont pas formés a observer des
formes d'ondes. Par conséquent, un défi de recherche fondamental est de créer des
représentations mathématiques qui abstraient la complexité des données afin de les
rendre sous une forme visuelle intuitive pour les cliniciens.

Questions scientifiques et positionnement

En ce qui concerne ces séries temporelles biomédicales complexes, cette thése aborde
les deux questions scientifiques suivantes :
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1. Comment pouvons-nous représenter les signaux physiologiques avec une struc-
ture complexe ?

2. Comment pouvons-nous comparer ces séries temporelles ?

Il existe deux approches principales dans la littérature pour représenter et com-
parer des séries temporelles. La premiere consiste a extraire des caractéristiques
a partir des séries temporelles brutes et a utiliser une représentation dite bag of
features. Dans le contexte des signaux physiologiques, les caractéristiques cour-
ramment utilisées sont par exemple les coefficients de la transformée de Fourier
discrete [AFS93; FRMo4] ou la transformée en ondelettes discrete [CF99]. Ces ap-
proches extraient des caractéristiques des séries temporelles, souvent dimension par
dimension, pour construire un vecteur de caractéristiques [BB21] qui est ensuite utilisé
pour des taches telles que la classification ou le partitionnement. Dans la plupart des
cas, la comparaison entre les séries temporelles peut étre effectuée en utilisant une
simple distance euclidienne entre les vecteurs de caractéristiques. Une limitation ma-
jeure de ces méthodes est qu'elles perdent souvent l'information temporelle, étant
donné qu'elles extraient des caractéristiques a I'échelle de la totalité de la série tem-
porelle. De plus, si les séries temporelles sont non stationnaires, il est possible qu'une
caractéristique définie sur toute la longueur du signal ne soit pas représentative.

La deuxiéme approche consiste a définir des distances applicables directement sur
les formes d'onde. Parmi ces distances, il existe différentes techniques d'alignement
temporel, a savoir les distances élastiques telles que la Dynamic Time Warping
(DTW) [BCo4; SY+17] ou les comparaisons de trajectoire [JCG2o; Vay+22]. Ces
méthodes travaillent directement sur la forme d’onde et projettent les séries tem-
porelles dans des espaces géométriques qui peuvent étre de grande dimension. Ces
distances sont bien adaptées pour comparer de petits "snippets” de données, mais,
par exemple, une comparaison brute des formes d'onde obtenues sur deux jours
consécutifs est susceptible de produire des résultats non pertinents. Elles peuvent
également étre sensibles au bruit et avoir un co(t de calcul élevé. De plus, ces dis-
tances sophistiquées impliquent des cadres mathématiques compliqués qui peuvent
étre difficiles a manipuler pour les cliniciens.

En se basant sur les idées développées précédemment, notre représentation de-
vrait idéalement :

+ Préserver I'information temporelle, c'est-a-dire la chronologie des événements;
* Prendre en compte la nature multivariée et/ou multimodale des données ;

« Etreinterprétable et ergonomique : Les longues séries temporelles multivariées
devraient étre représentées de maniere concise, ou un simple coup d'ceil a leur
représentation fournirait toutes les informations essentielles qu'elle contient,
par exemple en mettant 'accent sur les événements saillants ;

« Gérer la non-stationnarité des données : La caractérisation des phénomenes
devrait étre effectuée non pas au niveau de la totalité de la série temporelle,
mais au niveau des actions, c'est-a-dire des phases stationnaires ;

« Etre robuste au bruit.

De méme, notre mesure de distance devrait idéalement :
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« S'adapter aux phénomeénes d'intérét, c'est-a-dire aux types d'‘événements présents
dans le jeu de données ;

« Effectuer la comparaison au niveau des actions, c'est-a-dire des phases station-
naires ;

« Etre trés rapide a calculer : Idéalement, le temps de calcul devrait étre suffisam-
ment faible pour qu’elle puisse étre utilisée de maniere interactive par des clin-
iciens ;

+ Permettre des comparaisons interindividuelles et un suivi longitudinal.

Dans cette thése, nous proposons de relever ces défis en nous appuyant sur une
étape de représentation intermédiaire : la symbolisation des séries temporelles. In-
troduite au début des années 2000, la symbolisation vise a transformer des séries
temporelles a valeurs réelles en séries plus courtes et a valeurs discrétes. L'une des
représentations symboliques pionniére et trés populaire est Symbolic Aggregate ap-
proXimation (SAX) [Lin+03; Lin+07]. Un exemple de représentation SAX pour une série
temporelle univariée est illustré sur la Figure 4 en page 23. Grace a l'effet de lis-
sage induit par leur compression, les représentations symboliques sont largement
utilisées dans les taches de fouille de données, telles que la classification ou le parti-
tionnement, ou le choix de la représentation est fondamental. En particulier, une pro-
priété souhaitable de ces techniques est qu'elles integrent naturellement I'information
temporelle et ont tendance a étre robustes au bruit.

Dans les grandes lignes, la plupart des techniques de symbolisation suivent deux
étapes : une étape de segmentation, ou un signal a valeurs réelles est divisé en
plusieurs segments, puis une étape de quantification, ou chaque segment est attribué
a une valeur discréte appelée un symbole. Par exemple, SAX utilise une segmentation
uniforme puis quantifie les moyennes par segment en utilisant une hypothése gaussi-
enne. Ces séquences symboliques peuvent ensuite étre comparées en utilisant des
distances appropriées.

L'objectif de cette these est de créer une nouvelle représentation symbolique qui
tient compte de tous les défis décrits précédemment (non-stationnarité, nature mul-
tivariée, interprétabilité, ...), mais aussi de construire une mesure de distance sur ces
séquences symboliques qui soit rapide a calculer. Nos deux méthodes de symboli-
sation proposées sont ASTRIDE (décrite dans le chapitre IV) et dgy,,, (décrite dans le
chapitre V). ASTRIDE transforme un jeu de séries temporelles univariées, tandis que
dsymp transforme un jeu de séries temporelles multivariées. En plus de leur précision,
les avantages clés sont l'interprétabilité et le faible temps de calcul.

Contributions et plan du manuscrit

Le manuscrit est organisé comme suit.
Chapitre Il : Revue de la littérature sur les méthodes de symbolisation
pour les séries temporelles

Dans le Chapitre Il - Symbolic representation of time series, nous menons une revue
exhaustive des méthodes de symbolisation qui ont été proposées dans la littérature.
Nous examinons la premiere grande question scientifique de notre these d'un point
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de vue symbolique : Comment pouvons-nous représenter efficacement des séries tem-
porelles avec une structure complexe ?. Depuis l'introduction de SAX en 2003, il y a
eu un intérét prolifique pour la recherche autour des variantes de SAX et également
d'autres catégories de symbolisation. Certaines revues ont été proposéesily a plus de
10 ans [DFTo3; Lin+o7; SW11]. Une revue plus récente [Wan+19] se concentre unique-
ment sur les variantes de SAX. Dans le Chapitre Il, nous passons en revue plus de 60
méthodes de symbolisation.

Comme illustré dans la Figure 2, notre cadre est le suivant. Nous décomposons un
processus de symbolisation en 3 étapes consécutives : la segmentation, I'extraction
de caractéristiques et la quantification. En général, par rapport a SAX, les méthodes de
symbolisation dans la littérature modifient une (ou plusieurs) étape(s) parmi les trois
principales. Ce cadre n'est pas une grille stricte : certaines méthodes de symbolisation
qui ne s'intégrent pas parfaitement dans ce cadre sont également décrites (par exem-
ple, des méthodes qui n'utilisent pas exactement une étape de segmentation mais
plutdt un sous-échantillonnage). Pour chaque étape, une revue détaillée est fournie
avec le but de dégager des thémes communs. Nous discutons également de la tache
de reconstruction qui consiste a reconstruire une série temporelle originale a partir
de sa séquence symbolique. Enfin, nous discutons de la symbolisation de séries tem-
porelles multivariées, un domaine de recherche plus récent. Les mesures de distance
définies sur les séquences symboliques sont décrites dans le chapitre Ill.

- Extraction
Série temporelle .
L —| Segmentation de car-
originale A
actéristiques

Figure 2: Les principales étapes de la symbolisation d'une série temporelle décrites
dans le Chapitre II.

Séquence

Quantification symbolique

Chapitre Il : Revue de la littérature sur les mesures de distance pour les
séries temporelles, les chaines de caractéres et les séquences symbol-
iques

Dans le Chapitre Il - Distance measures on time series, strings, and symbolic se-
quences, nous passons en revue la deuxieme grande question scientifique de cette
thése : Comment pouvons-nous comparer efficacement les séries temporelles ?. Nous
passons en revue les mesures de distance sur les séries temporelles, les chaines de
caracteres et les séquences symboliques trouvées dans la littérature. Les séquences
symboliques sont des chaines de caracteres résultant de processus de symbolisation
décrits dans le Chapitre Il. Les mesures de distance sur les chaines de caractéres peu-
vent étre appliquées aux séquences symboliques : la combinaison d'une méthode de
symbolisation avec une mesure de distance sur les chaines de caractéres peut étre
considérée comme une mesure de distance sur les séries temporelles. Bien que des
revues (y compris des récentes) sur les distances sur les séries temporelles [Wan+13;
Shi+23; HMB23] et sur les chaines de caractéres [Kru83; Kukg2; WMg2; Navo1] existent,
a notre connaissance, elles n'abordent pas conjointement les séries temporelles et les
chaines de caracteres. En effet, comme nous le verrons, il existe des points communs
entre les mesures de distance sur les chaines de caractéres et celles sur les séries tem-
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Séries temporelles Chaines de
Sections Ill.2 caractéres [ Séries temporelles ]
et lll.3.4 Section 11l.3

Symbolisation (voir Chapitre II)

Y
Séquences
symboliques

Section lll.4

Figure 3: Apercu des différents types de mesures de distance décrites dans le
Chapitre IlI.

porelles. Dans ce chapitre, comme illustré dans la Figure 3, nous proposons une revue
des séries temporelles et des chaines de caracteres, en mettant en évidence comment
chaque domaine a inspiré l'autre. De plus, nous passons en revue les distances sur
les séquences symboliques, obtenues aprés symbolisation, ce qui est novateur.

Pour les séries temporelles, nous passons en revue les distances d'alignement
pas a pas ainsi que les distances dites élastiques. Lors de la comparaison de deux
séries temporelles, les distances d'alignement pas a pas (telles que la distance eu-
clidienne) ne peuvent comparer les échantillons qu’en utilisant un alignement “un a
un”, tandis que les distances élastiques utilisent un alignement "un a plusieurs”, ce qui
les rend plus robustes aux décalages temporels. Les distances élastiques incluent la
Dynamic Time Warping (DTW) ainsi que ses variantes et versions contraintes. Pour
les chalnes de caractéres, nous décrivons les distances d’édition telles que la Longest
Common SubSequence (LCSS). Nous examinons également I'extension des distances
d'édition aux séries a valeurs réelles. Ensuite, nous décrivons les mesures de distance
spécifiquement définies pour les séquences symboliques. Enfin, nous couvrons les
extensions multivariées des distances sur les séries temporelles.

Chapter IV : Présentation d’ASTRIDE, une méthode de symbolisation
adaptative pour un jeu de séries temporelles univariées

Dans le chapitre IV - ASTRIDE: Adaptive Symbolization for Time Series Databases, nous
présentons une solution qui aborde simultanément les deux aspects scientifiques clés
de cette thése: la représentation et la distance, a travers la symbolisation efficace d'un
jeu de séries temporelles univariées. Notre solution est une méthode de symbolisa-
tion appelée ASTRIDE (Adaptive Symbolization for Time seRles DatabasEs) [CTO23b], qui
est accompagnée d’'une variante accélérée appelée FASTRIDE (Fast ASTRIDE) ainsi que
d’'une mesure de distance compatible appelée D-GED (Dynamic General Edit Distance).

ASTRIDE et FASTRIDE sont de nouvelles représentations symboliques pour un jeu
de séries temporelles univariées. Contrairement a la plupart des procédures de sym-
bolisation, telles que la populaire SAX [Lin+03], ASTRIDE est adaptative (i.e. pilotée par
les données) a la fois lors de I'étape de segmentation en effectuant une détection des
points de rupture et lors de I'étape de quantification en utilisant des quantiles. Plus
précisément, la segmentation détecte les changements de moyenne, ou le nombre de
ruptures est défini par l'utilisateur. La segmentation et la quantification adaptatives
sont toutes deux apprises au niveau du jeu des signaux : les points de rupture, ainsi
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que les quantiles (pour la quantification), sont estimés en utilisant tous les signaux
du jeu de données. Ainsi, le dictionnaire de symboles d’ASTRIDE est le méme pour
tous les signaux, ce qui le rend efficace en mémoire. Une illustration comparant la
représentation ASTRIDE avec SAX, sur un méme signal univarié, est fournie dans la
Figure 4. En plus de la symbolisation, nous introduisons également D-GED, une nou-
velle mesure de distance sur les représentations symboliques basée sur la distance
d'édition générale (décrite dans le Chapitre Ill). Définie sur des chaines de caractéres,
la distance d'édition permet des substitutions, des suppressions et des insertions.
A notre connaissance, ASTRIDE est la seule représentation symbolique offrant une
discrétisation adaptative sur les dimensions temporelle et damplitude a I'échelle d'un
jeu de données tout en ayant une mesure de distance compatible et une procédure
de reconstruction efficace en mémaoire.

Afin d'évaluer la pertinence de nos solutions, nous les comparons avec des
représentations symboliques populaires (décrites dans le Chapitre Il) sur la tache de
reconstruction et, lorsque c'est applicable, en classification. Les algorithmes étudiés
sont évalués sur 86 jeux de signaux univariés de taille égale provenant de la UCR Time
Series Classification Archive [Dau+19] qui est largement utilisée. Cette archive est com-
posée de séries temporelles issues du monde réel (audio, mouvement, etc), et aussi
des séries simulées. Les performances des représentations ASTRIDE et FASTRIDE
sont comparées a celles de SAX, 1d-SAX [Mal+13], SFA (Symbolic Fourier Approxima-
tion) [SH12], et ABBA (Adaptive Brownian Bridge-based Aggregation) [EG20a]. Pour la
classification, notre comparaison est limitée aux méthodes directement basées sur
des symbolisations, car notre objectif est d'évaluer la pertinence de cette étape en
elle-méme et non pas d'atteindre des performances d'état de I'art en classification
de séries temporelles. Par conséquent, nous excluons les classifieurs construits sur
des représentations symboliques, a savoir les algorithmes dits "bag-of-words” et les
méthodes ensemblistes [SM13; Schis; SL17; Ngu+19; Mid+20]. Les résultats mon-
trent qu'ASTRIDE fournit une représentation symbolique intuitive qui surpasse |'état
de l'art en termes de taux de classification par plus proche voisin et obtient des
résultats compétitifs en reconstruction de signal. Un dépdt GitHub en libre accés?
est disponible pour reproduire toutes les expériences en Python.

Chapitre V : Présentation de d_symb, une mesure de distance, basée sur
la symbolisation, interprétable et rapide pour séries temporelles multi-
variées

Dans le Chapitre V - d_symb: an interpretable distance measure for multivariate sig-
nals, nous présentons d,,, [CTO23a], une méthode qui traite les séries temporelles
multivariées du point de vue de la représentation et aussi de celui de la distance, tout
en étant interprétable, précise et rapide a calculer. De plus, dgym,, €st mis en ceuvre
dans un outil interactif en ligne appelé le dgy,, playground [Com+24b]. Cet outil est
destiné a étre utilisé par des cliniciens ou des experts du domaine pour interpréter et
comparer rapidement leurs volumineux jeux de données de séries temporelles mul-
tivariées non stationnaires.

dsymp €St une nouvelle mesure de distance permettant de comparer des sig-
naux multivariés non stationnaires. Contrairement a la plupart des mesures de dis-
tance sur les signaux multivariés telles que les variantes de la Dynamic Time Warping

*https://github.com/sylvaincom/astride
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Figure 4: Exemple de représentations SAX et ASTRIDE pour le méme signal univarié
et les mémes paramétres d’entrée. La séquence symbolique résultante est 1131 pour
SAX et 1230 pour ASTRIDE.

(DTW) [BCo4; SY+17], dsyms PeUt prendre en compte la non-stationnarité des signaux
grace a une étape de segmentation adaptative. Cette étape repose sur une procédure
de détection de ruptures qui divise un signal non stationnaire en plusieurs segments
stationnaires. dgym,p Suit les mémes étapes générales qu’ASTRIDE (introduite dans le
Chapitre 1V), mais avec les modifications suivantes : la segmentation de d,,,; est ap-
pliquée a chaque signal multivarié séparément, le nombre de segments est trouvé au-
tomatiquement par une formulation pénalisée de la détection des ruptures, et I'étape
de quantification utilise un partitionnement par les K-moyennes au lieu des quan-
tiles. Enfin, la mesure de distance dy,,, exploite la distance d'édition générale et est
appliquée aux séquences symboliques.

Les avantages de d,,,, sont démontrés sur trois jeux de signaux physiologiques :
le jeu de données JIGSAWS [Gao+14], qui enregistre des chirurgiens utilisant des bras
et des pinces robotisés, le jeu de données sur la marche humaine [Tru+19], et le
jeu de données armCODA [Com+24a], qui enregistre les mouvements des membres
supérieurs humains. Les expériences montrent a quel point la symbolisation est in-
terprétable, comme illustré sur les données de la marche dans la Figure 5. En effet, la
symbolisation détecte les segments qui correspondent aux comportements saillants,
et chaque symbole correspond a un régime spécifique de la marche humaine, tel que
faire demi-tour ou marcher tout droit. D'un simple coup d'ceil sur les frises de couleur,
la symbolisation fournit une compréhension immédiate et compléte d’'un jeu de séries
temporelles multivariées. De plus, comparé a neuf distances élastiques multivariées
sur une tache de partitionnement, ds,,,, obtient des performances compétitives tout
en étant plusieurs ordres de grandeur plus rapide que les autres méthodes. Un dépdt
GitHub en libre accés3, codé en Python, est disponible.

3https://github.com/sylvaincom/d-symb
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Figure 5: Séquences symboliques (représentées sous forme de frises de couleur)
obtenues en utilisant la symbolisation dy,,, pour 60 séries temporelles multivariées
provenant du jeu de données de la marche [Tru+19] contenant 3 classes. Les classes
sont séparées par des lignes horizontales blanches en pointillés. Chaque ligne
représente la frise de couleur correspondant a une séquence symbolique.
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Le dg,ms playground4>, disponible en ligne, vise a explorer, interpréter et comparer
rapidement plusieurs séries temporelles multivariées a partir d'un jeu de données.
Cet outil, présenté dans la Figure 6, permet aux utilisateurs de téléverser et de vi-
sualiser leurs séries temporelles multivariées ainsi que leurs symbolisations dgyms,
a l'aide des frises de couleur. Linterprétabilité et I'interactivité du d,m,, playground

découlent de la pertinence des symboles et du faible temps de calcul de dgyp.

\\\\\

Overview of your symbolized dataset

Colorbars of all symbolic sequences in the dataset

(Welcome to the dsymb playground!

~N
Explore

Explore the clustering perform:

IS

(A) Dataset analysis frame

(B) Individual analysis frame

(C) Benchmark frame

Figure 6: Illustration des trois principales interfaces du d,,; playground.
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.4 Context, motivation, and objectives

The general objective of this thesis is to introduce new symbolic representations and

distance measures for multivariate non-stationary time series.

l.1.1 Context

This thesis has been conducted at Centre Borelli', an academic research laboratory
of Ecole Normale Supérieure Paris-Saclay, also affiliated with Université Paris-Saclay,
Université Paris Cité, CNRS, SSA, and INSERM. Research at Centre Borelli revolves
around applied mathematics, neuroscience, and computing, with a special focus on
their biomedical and industrial interactions. Hence, a major specificity of the Centre

'https://centreborelli.ens-paris-saclay.fr/en
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Figure I.1: Example of a multivariate time series from the armCODA data set. On the
left of the Figure, the placement of multiple sensors on the upper limb of a patient
is displayed. On the right, a focus on the multivariate time series generated by one

of these sensors is provided. Each movement (for example, arm elevation) comprises
three iterations.

Borelli is making mathematicians work closely with engineers, medical doctors, clini-
cians, and industry experts.

In terms of neuroscience, Centre Borelli's work focuses on the analysis of human
and animal behavior, with two main aims: longitudinal follow-up (studying the evolu-
tion of a subject over time) and inter-individual comparison (comparing, often statisti-
cally, two cohorts of subjects). Several projects are currently underway to study gait in
healthy and pathological subjects (e.g. multiple sclerosis) [V]+19; Boi+22], postural con-
trol and early detection of fall risk [Bar+18], upper-limb movements during rehabilita-
tion after injury [Com+24a], respiratory cycles in mice [Ger+22], or states of conscious-
ness during anesthesia. All these projects are based on sensors that can be worn by
the subjects and enable the recording of several physiological signals (possibly syn-
chronized), such as electrocardiograms (ECGs), electroencephalograms (EEGs), or foot
accelerations recorded with Inertial Measurement Units (IMUs). The Centre Borelli
has also participated in the construction of several clinical protocols and has gener-
ated open-access data sets such as a human locomotion data set using IMUs [Tru+19]
or an upper-limb human movement data set using motion capture [Com+24a]. An
example of physiological signals that can be recorded during a protocol is shown in
Figure I.1.

Due to the complexity of the phenomena we wish to observe, which sometimes
mobilize several physiological functions, the data collected in the various protocols
can be difficult to analyze. First of all, as with any time series, the first question is how
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to consider the temporal information in the models. Intuitively, in a monitoring task,
the sequence and chronology of actions carries crucial information, which must be
preserved in the processing chain. The second question, which is also very general,
relates to the noisy nature of sensor data. In particular, studies at the waveform level
can be made difficult by the sometimes low signal-to-noise ratio [KKo3; Fu11; EA12]. On
the other hand, other questions arise directly from the protocols used:

1. Multivariate nature: Studying a patient often requires protocols with many
sensors to get a complete understanding of the subject’s condition. Recording
the 3D position of a body segment over time results in a multivariate time series
of dimension 3. However, when studying arm elevation, it is likely that multiple
sensors will be needed (e.g., on both arms, at the wrists, and at the elbows),
resulting in a time series of higher dimensions (possibly hundreds). Intuitively,
these dimensions are likely to be highly correlated, and this constitutes crucial
information that needs to be taken into account.

2. Non-stationarity: When recorded over long periods of time or during complex
protocols, the statistical properties of physiological signals often change over
time. For example, if a subject wears a connected watch for an entire day, per-
forming various activities with periods of rest in between, the generated signal is
typically non-stationary. Most popular statistical models for time series require
the wide-sense stationary property and therefore cannot be used in this context.

3. Multimodality: Some protocols involve the study of different sensors that si-
multaneously record different types of quantities, such as accelerometry data,
ECG, or EEG. In this case, the challenge is much more difficult because it requires
the joint study of physiological signals with different physical properties (sam-
pling frequency, structure, etc).

Last but not least, there is the question of interpretability for clinicians. Work at the
Centre Borelli is carried out by multidisciplinary teams of mathematicians and clini-
cians. The developed analysis tools must, therefore, enable them to interact with the
data, and most clinicians are not trained to observe waveforms. Therefore, a funda-
mental research challenge is to be able to create mathematical representations that
abstract from the complexity of the data in order to render it in an intuitive visual form
for clinicians.

l.1.2 Scientific questions and positioning

Regarding these challenging biomedical time series, this thesis addresses the two fol-
lowing scientific questions:

1. How can we represent physiological signals with a complex structure?

2. How can we compare these time series?

There are two main approaches in the literature for representing and comparing
time series. The first is to extract features from the raw time series and use a bag
of features representation. In the context of physiological signals, popular features
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may include Discrete Fourier Transform (DFT) [AFS93; FRMo4] or Discrete Wavelet Trans-
form (DWT) [CF99] coefficients. These approaches extract features from the time se-
ries, often dimension by dimension, to build a vector of features [BB21] to be used
for classification, clustering, and more. In most cases, the comparison between time
series can be done using a simple Euclidean distance on the feature vectors. A major
limitation of these methods is that they often lose the temporal information as they
extract features at the scale of an entire time series. Furthermore, if the time series
are non-stationary, it is likely that a feature defined over the entire length would not
be representative.

The second approachis to define distances that can be applied directly to the wave-
forms. Among these distances, there is a variety of temporal alignment techniques
with elastic distances such as Dynamic Time Warping (DTW) [BC94; SY+17] or trajec-
tory comparisons [JCG2o; Vay+22]. These methods work directly on the waveform and
project the time series into geometric spaces, which can be high dimensional. These
distances are well suited for comparing small snippets of data but, for example, a
crude comparison of waveforms obtained over two consecutive days is likely to pro-
duce irrelevant results. They can also be sensitive to noise and have a high compu-
tational cost. In addition, sophisticated distances involve complicated mathematical
frameworks that can be difficult for clinicians to use.

Based on the ideas developed previously, our ideal representation should:

* Preserve the time information, i.e. the chronology of the events;
« Handle the multivariate and/or multimodal nature of the data;

* Be interpretable and ergonomic: Long multivariate time series should be rep-
resented in a concise way, where a simple glance at the representation should
provide all the essential information contained in it, for example, emphasizing
on the salient events;

+ Handle the non-stationarity of the data: The characterization of the phenomena
should be done not at the level of the whole time series, but at the level of actions,
i.e. stationary phases;

* Be robust to noise.
Similarly, our ideal distance measure should:
+ Adapt to the phenomena of interest, i.e. to the types of events present in the
data set;

+ Perform the comparison at the level of actions, i.e. stationary phases;

*+ Be very fast to compute: Ideally, the complexity should be low enough so that it
can be used interactively by clinicians;

+ Allow us to perform both inter-individual comparisons or longitudinal follow-up.

In this thesis, we propose to address these challenges by relying on an inter-
mediate representation step: the symbolization of time series. Introduced in the
early 2000s, symbolization aims at transforming real-valued time series into shorter
discrete-valued sequences. One of the pioneering and highly popular symbolic rep-
resentations is Symbolic Aggregate approXimation (SAX) [Lin+03; Lin+o7]. An example
of SAX representation for a univariate time series is shown in Figure |.4 on page 34.
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Thanks to the smoothing effect induced by their compression, symbolic representa-
tions are widely used in data mining tasks, such as classification or clustering, where
the choice of the representation is fundamental. In particular, a desirable property of
these techniques is that they naturally incorporate the time information and tend to
be robust to noise.

In a nutshell, most symbolization techniques follow two steps: a segmentation
step, where a real-valued signal is divided into several segments, then a quantization
step, where each segment is mapped to a discrete value called a symbol. For example,
SAX uses a uniform segmentation then quantizes the means per segment by using a
Gaussian assumption. These symbolic sequences can then be compared using well-
designed distances.

The goal of this thesis is to create a novel symbolic representation that addresses
allthe challenges described above (non-stationarity, multivariate nature, interpretabil-
ity, ...) but also to build a distance measure on these symbolic sequences that is fast to
compute. Our two proposed symbolization methods are ASTRIDE (described in Chap-
ter IV) and dy,,; (described in Chapter V). ASTRIDE transforms a data set of univariate
time series, while d,,,,,; transforms a data set of multivariate time series. Apart from
their accuracy, key advantages are their interpretability and computational efficiency.

l.2 Contributions and outline

The manuscript is organized as follows.

I.2.1  Chapter Il: Literature review of symbolization methods for time se-
ries

In Chapter Il - Symbolic representation of time series, we conduct a comprehensive
overview of symbolization methods that have been proposed in the literature. We
review the first main scientific question of our thesis from a symbolic perspective: How
can we efficiently represent time series with a complex structure? Since the introduction
of SAX in 2003, there has been a prolific interest in research around SAX-like methods
and other categories of symbolization methods. Some reviews have been proposed
more than 10 years ago [DFTo3; Lin+o7; SW11]. Amore recent one [Wan+19] focuses on
SAX-like variants only. In Chapter II, we review more than 6o symbolization methods.

As illustrated in Figure 1.2, our framework is the following: we break down a sym-
bolization process into 3 consecutive steps: segmentation, feature extraction, and
quantization. Typically, compared to SAX, symbolization methods in the literature
modify one (or more) step(s) among the three main ones. This framework is not a
strict grid: some symbolization methods that do not fit perfectly into this framework
are also described (for example, methods that do not employ a segmentation step per
se but rather down-sampling). For each step, a detailed overview is provided with the
aim of identifying common themes. We also discuss the reconstruction task: recon-
structing an original time series from its symbolic sequence. Finally, we discuss sym-
bolization for multivariate time series, which is a more recent research area. Distance
measures defined on the resulting symbolic sequences are described in Chapter lll.
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Figure I.2: Main steps for the symbolization of a time series described in Chapter Il.
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Figure 1.3: Overview of types of distance measures described in Chapter IIl.

.2.2 Chapter Illi: Literature review of distance measures on time series,
strings, and symbolic sequences

In Chapter Ill - Distance measures on time series, strings, and symbolic sequences, we
review the second main scientific question of this thesis: How can we efficiently com-
pare time series? We survey distance measures on time series, strings, and symbolic
sequences found in the literature. Symbolic sequences are strings resulting from sym-
bolization processes described in Chapter Il. Distance measures on strings could be
applied to symbolic sequences: the combination of a symbolization method with a
distance measure on strings can be considered as a distance measure on time series.
While reviews (including recent ones) on distances on time series [Wan+13; Shi+23;
HMB23] and strings [Kru83; Kukg2; WM9g2; Navo1] exist, to the best of our knowledge,
they do not tackle time series and strings jointly. Indeed, as we shall see, there are
common grounds for distances on strings and time series. In this chapter, as illus-
trated in Figure 1.3, we propose a review of time series and strings while highlight-
ing how one has inspired the other. Moreover, we survey distances on symbolic se-
quences obtained after symbolization, which has not been done before.

For time series, we review lock-step alignment distances as well as elastic ones.
When comparing two time series, lock-step alignment distances (such as the Euclidean
distance) can only compare samples using one-to-one alignment, while elastic dis-
tances use one-to-many alignment, thus are more robust to time-shifts. Elastic dis-
tances include Dynamic Time Warping (DTW) along with its variants and constrained
versions. For strings, we describe edit distances such as the Longest Common SubSe-
guence (LCSS). We also look into the extension of edit distances to real-valued series.
Then, we describe distance measures specifically defined for symbolic sequences. Fi-
nally, we cover the multivariate extensions of distances on time series.

.2.3 Chapter IV: Presentation of ASTRIDE, an adaptive symbolization
method for a data set of univariate time series

In Chapter IV - ASTRIDE: Adaptive Symbolization for Time Series Databases, we intro-
duce a solution that simultaneously addresses the two key scientific aspects of this
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thesis: representation and distance, with a focus on efficiently symbolizing a dataset
of univariate time series. Our solution is a symbolization method called ASTRIDE (Adap-
tive Symbolization for Time seRles DatabasEs) [CTO23b] that comes with an accelerated
variant named FASTRIDE (Fast ASTRIDE) as well as a compatible distance measure called
D-GED (Dynamic General Edit Distance).

ASTRIDE and FASTRIDE are novel symbolic representations for a data set of uni-
variate time series. Unlike most symbolization procedures, such as the popular
SAX[Lin+03], ASTRIDE is adaptive (i.e. data-driven) during both the segmentation step
by performing change-point detection and the quantization step by using quantiles.
More precisely, the segmentation detects mean-shifts, where the number of changes
is set by the user. Both adaptive segmentation and quantization are learned at the
level of the data set of signals: the change-points, as well as the quantiles (for the quan-
tization), are estimated using all signals in the data set. Hence, ASTRIDE's dictionary of
symbols is the same for all signals, and is thus memory-efficient. An illustration com-
paring the ASTRIDE representation with SAX, on a single univariate signal, is provided
in Figure 1.4. Along with the symbolization, we also introduce D-GED, a novel distance
measure on symbolic representations based on the general edit distance (reviewed in
Chapter Ill). Defined on strings, the edit distance allows substitutions, deletions, and
insertions. To the best of our knowledge, ASTRIDE is the only symbolic representa-
tion offering adaptive discretization on both the time and amplitude dimension at the
scale of a data set while having a compatible distance measure and a reconstruction
procedure that is memory-efficient.

In order to assess the relevance of our solutions, we benchmark them with pop-
ular symbolic representations (described in Chapter Il) on reconstruction and, when
applicable, on classification tasks. The studied algorithms are evaluated on 86 uni-
variate equal-size data sets from the widely-used UCR Time Series Classification
Archive [Dau+19], which is composed of real-world time series from several domains
such as audio and motion and simulated series. The performance of the ASTRIDE and
FASTRIDE representations is compared to SAX, 1d-SAX [Mal+13], SFA (Symbolic Fourier
Approximation) [SH12], and ABBA (Adaptive Brownian Bridge-based Aggregation) [EG20a].
For classification, our comparison is limited to techniques directly based on symbol-
izations since our objective is to evaluate the relevance of this step itself and not to
achieve state-of-the-art performance on time series classification. Hence, we exclude
classifiers that are built on top of symbolic representations, namely bag-of-words and
ensemble-based algorithms [SM13; Sch1s; SL17; Ngu+19; Mid+20]. Results show that
ASTRIDE provides an intuitive symbolic representation that outperforms the symbol-
ization state of the art in nearest-neighbor classification accuracy and achieves com-
petitive results in signal reconstruction. An open source GitHub repository? is available
to reproduce all the experiments in Python.

.2.4 Chapter V: Presentation of d_ symb, an interpretable and fast dis-
tance measure for multivariate time series based on symbolization

In Chapter V - d_symb: an interpretable distance measure for multivariate signals, we
introduce dy,,, [CTO23a] a solution that addresses multivariate time series for both
the representation and the distance aspects while being interpretable, accurate, and
fast to compute. Moreover, dg,.,; is showcased in an interactive online tool called

*https://github.com/sylvaincom/astride
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Figure l.4: Example of SAX and ASTRIDE representations for the same univariate signal
and the same input parameters. The resulting symbolic sequence is 1131 for SAX and
1230 for ASTRIDE.

the dgymy playground [Com+24b], to be used by clinicians or field experts to quickly
interpret and compare their typically large data sets of non-stationary multivariate
time series.

dsymp is @ novel distance measure for comparing multivariate non-stationary sig-
nals. Unlike most distance measures on multivariate signals such as variants of Dy-
namic Time Warping (DTW) [BC94; SY+17], dsympy Can take into account their non-
stationarity thanks to an adaptive segmentation step. This step is based on a change-
point detection procedure that splits a non-stationary signal into several stationary
segments. d,m; follows the same overall steps as ASTRIDE (introduced in Chapter IV),
but the d,,,,, Segmentation is applied to each multivariate signal separately, the num-
ber of segments is found automatically by a penalized formulation of the change-point
detection procedure, and the quantization step uses K-means clustering instead of
quantiles. Finally, the d,,,; distance measure leverages the general edit distance and
is applied to the symbolic sequences.

The advantages of d,,,, are shown on three data sets of physiological signals:
the JIGSAWS data set [Gao+14] which monitors surgeons using robotic arms and grip-
pers, the human locomotion data set [Tru+19], and the armCODA data set [Com+24a]
which records human upper-limb movement. Experiments show how interpretable
the symbolization is, as illustrated on gait data in Figure I.5. Indeed, the symbolization
detects the segments that correspond to salient behaviors, and each symbol corre-
sponds to a specific regime of human locomotion, such as turning around or walking
in a straight line. With a single glance at the color bars, the symbolization provides an
immediate and comprehensive understanding of a data set. Moreover, compared to
nine multivariate elastic distances on a clustering task, ds,.» achieves a competitive
performance while being several orders of magnitude faster than the other methods.
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Figure I.5: Symbolic sequences (represented as color bars) obtained using the dgym,
symbolization for 60 multivariate time series from the gait data set [Tru+19] containing
3 classes. Classes are separated by white dashed horizontal lines. Each row is the color
bar corresponding to a symbolic sequence.
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An open source GitHub repository3, written in Python, is available.
The dgymp playground4>, available online, aims at quickly exploring, interpreting,

andc

omparing multiple multivariate time series from a data set. This tool, displayed in

Figure 1.6, allows users to upload and visualize their multivariate time series and their

dsymb
dsymb

symbolizations using the color bars. The interpretability and interactivity of the
playground stem from the symbols’ relevance and the computational efficiency

of dsymb-
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Figure 1.6: Illustration of the three main frames of the d,,,; playground.

List of papers

Accepted papers:

S.W. Combettes, C. Truong, and L. Oudre. "SAX-DD : une nouvelle représentation
symbolique pour séries temporelles.” In Proceedings of the Groupe de Recherche
et d’Etudes en Traitement du Signal et des Images (GRETSI), Nancy, France, 2022.

S. W. Combettes, C. Truong, and L. Oudre. "An Interpretable Distance Measure
for Multivariate Non-Stationary Physiological Signals.” In Proceedings of the Inter-
national Conference on Data Mining Workshops (ICDMW), Shanghai, China, 2023.

S. W. Combettes, P. Boniol, A. Mazarguil, D. Wang, D. Vaquero-Ramos, M. Chau-
veau, L. Oudre, N. Vayatis, P.-P. Vidal, A. Roren, and M.-M. Lefévre-Colau. "Arm-
CODA: A Data Set of Upper-limb Human Movement During Routine Examina-
tion.” Image Processing On Line, 14:1-13, 2024.

S. W. Combettes, P. Boniol, C. Truong, and L. Oudre. "d_{symb} playground: an
interactive tool to explore large multivariate time series datasets.” In Proceedings

3https://github.com/sylvaincom/d-symb
“https://dsymb-playground.streamlit.app
Shttps://github.com/boniolp/dsymb-playground

36


https://github.com/sylvaincom/d-symb
https://dsymb-playground.streamlit.app
https://github.com/boniolp/dsymb-playground

Chapter I. Introduction (in English)

of the International Conference on Data Engineering (ICDE), Utrecht, Netherlands,
2024.

Preprint:

+ S.W. Combettes, C. Truong, and L. Oudre. "ASTRIDE: Adaptive Symbolization for
Time Series Databases.” arXiv preprint arXiv:2302.04097, 2023.

37






Chapter Il

Symbolic representation of time
series

This chapter is an overview of symbolization methods that have been proposed in
the literature. A symbolization process transforms real-valued time series into shorter
discrete-valued sequences. We break down a symbolization process into 3 consecu-
tive steps: segmentation, feature extraction, and quantization. We also discuss the
reconstruction task, that is, reconstructing an original time series from its symbolic
sequence. Finally, we discuss the symbolization of multivariate time series, which is a
more recent research area.
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Chapter Il. Symbolic representation of time series

1.1 Introduction

Over the past decades, the increasing amount of available time series data has led
to a rising interest in time series data mining. To cope with the complexity of such
data, researchers have designed adapted representations that encapsulate signals’
characteristics and that are easier to manipulate, e.g., shorter, interpretable, struc-
tured, etc. Among many time series representations [Rat+10; Fu11; EA12; Wan+13;
BR14], symbolic representations constitute a tool of choice [Lin+o7]. Symbolic rep-
resentations of time series are used for data mining tasks such as time series visu-
alization [LKLos; Lin+o7; Fu11; Rut+19], classification [Lin+o7; Esm+12; LKL12; SM13;
Schis; NGl17; Ngu+19; FCG22; LLP23], clustering [Lin+o7; BTT21a], indexing [Lin+07;
SKo8; Cam+10; Cam+14; Yag+17], anomaly detection [KLFo5; Lon+06; WKX06; Yan+07;
RK13; EG20a; KR20; BTT21a], rule discovery [P)J20], motif discovery [Sen+18], and fore-
casting [EG20ob]. The domain applications include finance [LSKo6; BABO12], health-
care [SW10; SP+17], and industry [Esm+12; PJ20; KR20] to name a few.

Most symbolization techniques follow three steps: a segmentation step where a
real-valued signal y = (y1, ..., yn) of length n is split into w segments, a feature extrac-
tion step where features of interest are extracted for each segment, then a quantiza-
tion step where each segment (through its extracted features) is mapped to a discrete
value g; taken from a set {ay,...,as} of A symbols. The resulting symbolic represen-
tation is the discrete-valued signal (or symbolic sequence) § = (1, .., %w). The set of
symbols {ai,...,as} is usually called an alphabet or dictionary, and A is the alphabet
size. The length w of the symbolic representation is called the word length. While there
exist many high-level representations for time series, the two main advantages of sym-
bolic representations are a reduced memory usage and competitive performances on
data mining tasks thanks to the smoothing effect induced by compression [Lin+07].

First of all, let us explain in detail the principle of symbolization through a widely-
used symbolization technique called Symbolic Aggregate ApproXimation (SAX) [Lin+03;
Lin+o7]. Introduced in 2003, SAX paved the way for many other symbolic represen-
tations, which are often variants or extensions of SAX. In SAX, as in most symbolic
representations, the symbolization process has two parameters: the word length w
and the alphabet size A. For instance, in the symbolic sequence abbcaabc, the pa-
rameters are w = 8 (length of the sequence) and A = 3 (number of possible symbols).
Each signal is centered and scaled to unit variance, then splitinto w segments of equal
length. Next, the means of all segments are clustered in bins and each segmentis rep-
resented by the bin where its mean falls into. The bin boundaries are chosen so that
all symbols are equiprobable under the assumption that the means follow a standard
Gaussian distribution. A SAX transformation of a signal taken from the UCR Time Se-
ries Classification Archive [Dau+19] is shown in Figure Il.1. The larger w and A, the
better the quality of the SAX representation, but the lower the compression. Optimal
values of w and A are highly dependent on the application and the data set. In the
experiments for classification in the SAX paper [Lin+07], w € [2,n/2] (where n is the
length of the original time series) and A € [3, 10]. SAX has been applied to many data
mining tasks, such as clustering, classification, query by content, anomaly detection,
motif discovery, and visualization.

Since the introduction of SAX in 2003, there has been a prolific interest in research
around SAX-like methods and other categories of symbolization methods. Some re-
views have been proposed [Liu+02; DFTo3; Lin+o7; SW11] more than a decade ago. A
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Figure Il.1: Example of a SAX representation of a signal from the Meat data set (UCR
Time Series Classification Archive). The original length of the signal is n = 448, and we
use w = 4 and A = 4. The resulting symbolic sequence is 1131.

.Orlglnql Segmentation Feature Quantization Symbolic
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Figure Il.2: Main steps for symbolization of a time series.

more recent one [Wan+19] focuses on SAX-variants only. In this chapter, we describe
more than 60 symbolization methods, extending previous reviews.

Outline We conduct a comprehensive overview of symbolization methods that have
been proposed in the literature. We break down a symbolization process into 3 con-
secutive steps illustrated in Figure 1l.2: segmentation, feature extraction, and quanti-
zation. Typically, compared to the popular SAX, symbolization methods in the litera-
ture modify one (or more) step(s) among the three main ones. A few symbolization
methods that do not fit perfectly into this framework are also described (for example,
methods that do not employ a segmentation step per se but rather down-sampling).
We also discuss the reconstruction task: reconstructing an original time series from
its symbolic sequence. A synthetic summary is provided in Table Il.1 on page 56. Fi-
nally, we discuss the symbolization of multivariate time series, which is a more recent
research area.

Il.2 Segmentation

The first step of symbolization, called segmentation, splits a time series into several
segments that can be of equal length or not. There are two ways to perform segmen-
tation: uniform segmentation where each segment has the same length, and adap-
tive segmentation when the segmentation is data-driven. A taxonomy of segmentation
techniques (in the symbolization literature) is displayed on Figure 11.3.

I1.2.1 Uniform segmentation

Uniform segmentation is the most straightforward and commonly used in the litera-
ture on symbolization [Lin+03; LSKo6; PLD1ob; BABO12; MF12; Fua12; Esm+12; LZY12;
Mal+13; LDH13; Bai+13; Sun+14; SP+17; Zha+18; AHWM19; Rua+20; LTN20; ZDX20; KR20;
BTT21a; KR21]. Piecewise Aggregate Approximation (PAA) representation [Keo+01; YFoo] is
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Uniform segmentation
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Salient events
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Figure I1.3: Taxonomy of segmentation techniques in the symbolization literature. For
conciseness, we do not display all the symbolization methods that use uniform seg-
mentation.

an intermediate step of SAX: it uses uniform segmentation and then represents each
segment by its mean. The number of segments w is set by the user. The larger w,
the better the representation, but the larger the memory usage. The PAA representa-
tion, with several values of w, of a univariate signal is shown in Figure Il.4. This signal
is used as a running example and also appears in Figure Il.5. When w increases, the
mean value per segment better represents the signal’s shape. Indeed, the peaks are
better accounted for when w = 16 compared to w = 4.

Finding an appropriate value for w and A is data-dependent and difficult. Some
methods to automatically find it have been proposed [MABH11; CA15; ZY17]. Harmony
search SAX (HSAX) [MABH11] is based on Harmony Search (HS) [GKLo1] algorithms. Anim-
proved version of HSAX is SAX++ [AABH14] which uses the relative frequency method.
Instead of trying to find the best value of w, some classification methods use several
values of w for a multiresolution representation in a supervised setting [NI122]. More-
over, some applications of symbolic methods replace the uniform segmentation by
overlapping sliding windows, especially in classification [LKL12; SM13]. Bag-Of-Patterns
(BOP) [LKL12] uses overlapping sliding windows and SAX is applied to each sliding win-
dow (for example fixing w = 4 and A = 4). BOP is a representation based on his-
tograms of SAX word occurrence, similar to the bag-of-words representation in the
text processing community. SAX-VSM [SM13], designed for classification, builds bag-
of-words for each class using a sliding window.

I.2.2 Adaptive segmentation

Contrary to uniform segmentation, adaptive segmentation is data-driven and adapts
to the intrinsic properties of the signal. The number of segments w is either chosen
by the user or controlled by another parameter (a threshold on the approximation
error or a penalization). Adaptive segmentation is mostly based on change-point de-
tection [TOV20], which finds unknown instants where some characteristics of the signal
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Figure 11.4: PAA representation, based uniform segmentation, of a signal from the
Meat data set (UCR Time Series Classification Archive), for several values of w. The
original length of the signal is n = 448.

change abruptly. To illustrate, a comparison of uniform and adaptive segmentation,
with the detection of changes in the mean or in the slope, is displayed in Figure Il.5.
Unlike uniform segmentation, the resulting segments of adaptive segmentation have
varying lengths. The input time series are also allowed to have different lengths.

Detecting changes in trend. Adaptive segmentation can detect several kinds of
change in a signal. In the symbolization literature, the most popular adaptive seg-
mentation is perhaps on the trend [SW10; YAD19; EG20a; Yin+15; Che+20]. As PAA in
SAX, the Piecewise Linear Approximation (PLA) [SZ96] a.k.a. Piecewise Linear Representa-
tion (PLR) [Keo+04] is used as an intermediate representation in some symbolization
methods [SW10; EG20a]. A review of PLR [Keo+04] categorizes the algorithms into slid-
ing windows, top-down, or bottom-up. This review also distinguishes linear interpola-
tion, where the approximating line on each segment is simply the line connecting the
starting and ending points, with linear representation, where the approximating line is
the one that minimizes the least squares error. PLR is used in a symbol-based proce-
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(b) Adaptive segmentation with detection of changes in the mean.
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(c) Adaptive segmentation with detection of changes in the slope.

Figure Il.5: Comparing uniform segmentation with adaptive segmentation (detecting
either changes in the mean or in the slope), with a fixed number of segments w = 4.

dure to detect phases of gait signals [SW10] and aims at detecting peaks in acceleration
signals, which are related to events such as heel-strike and toe-off. Adaptive Brownian
Bridge-based Aggregation (ABBA) [EG20a] focuses on the shape of the time series and
its local up-and-down behavior, claiming that it corresponds to the human intuition of
the summary of a signal. Each linear piece is chosen given a user-specified tolerance
tol: when the value of tol increases, the resulting number of segments w decreases.
IEPF-TSR [Che+20] employs the Iterative End Point Fitting (IEPF) [Ram72] algorithm that
performs multiple iterations.

Still focusing on the trend but without using PLR, SAX_CP [YAD19] adds a penaliza-
tion on the number of change-points. Using SAX_CP, for a single time series, the seg-
ments have different lengths, but all time series of a data set have the same change-
points. These change-points are estimated on a training set when used in a super-
vised setting. SAX_CP claims that trend information is essential in fields such as fi-
nance, quality control, stocks, and service quality. On its side, TFSA [Yin+15] also de-
tects changes in the trend and implements a two-step adaptive segmentation: the
obtained segments during the first step are further divided into shorter segments in

44



Chapter Il. Symbolic representation of time series

the second step. This two-step mechanism aims at reducing the time complexity, es-
pecially for long time series, because the second segmentation is faster than the first
and of the possibility of parallelization on each segment. TFSA proposes a method to
find global key points, which is inspired by the cumulative sum control chart [YLVo4].
TFSA states that the trend is an important feature in many domains, such as satellite
monitoring, and that it corresponds to human intuition in finance or health.

Detecting changes in mean. Rather than detecting changes in the trend, an-
other category of adaptive segmentation focuses on the mean [Hugo6; DAM23].
ASAX_SAE [DAM23] uses a bottom-up approach to reduce the approximation error
of the PAA representation. It also introduces a dynamic programming algorithm to
improve the segmentation computation time. According to [DAM23], this method
is suited for data sets with unbalanced distributions and for the similarity search
task. SBSR [Hugo6] does not apply change-point detection. SBSR can be viewed as
a symbolic version of the Adaptive Piecewise Constant Approximation (APCA) represen-
tation [Cha+o2], just as SAX can be viewed as the symbolic version of PAA [Keo+01;
YFoo]. APCA is based on the Discrete Wavelet Transform (DWT) [CF9Q].

Detecting changes in dispersion. Other methods focus on the dispersion that can
be captured by the variance or the entropy [Sun+12; DAM23]. VWSAX [Sun+12] de-
tects changes in the variance using a fixed-size sliding window. In the sliding window
procedure, once a segment has enough total variance according to a threshold, it is
transformed using SAX. ASAX_EN [DAM23] focuses on entropy and uses a top-down
approach to find informative segments with high entropy.

Segmentation based on salient events. Instead of performing change-point de-
tection based on a chosen feature, KP_SAX [Qyo09] finds so-called “Key Points”. It has
a two-step segmentation: the adaptive segmentation called KP_SEG finds potential
change-points in the first step that are refined in the second step. The first step of
KP_SEG finds the set of “Extreme Points”, which are defined as points with a change in
monotonicity. The second step of KP_SEG finds the “Key points” out of the “Extreme
Points” of the first step. For an extreme point to be considered as a key point, the ratio
between the segment length and the total length must be larger than a threshold or
the angle between the line from the previous sample to the current sample and the
line from the current sample to the next sample, must be smaller than an angle thresh-
old. Finally, we quickly mention similar time series representations that perform adap-
tive segmentation, especially in finance: Perceptually Important Points [Chu+o1], Turning
Points [BY08], and Important Points [PSSo8].

A summary of adaptive segmentation techniques used in the symbolization liter-
ature is given in Table Il.1 on page 56, and a taxonomy was shared in Table 11.3 on
page 42. Now, let us describe feature extraction methods in detail.
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1.3 Feature extraction

We now describe how to extract segment features after the segmentation step. In
the literature on symbolization, extracted features can be the mean, the slope, the
variance, the maximum, etc.

Note that, many methods, like SAX, only extract the segment mean [RKAJBos;
MUos; Hugo6; SKo8; Qyog; PLD1ob; Sun+12; MF12; Fua12; Bai+13; KR20; KR21; DAM23].
In the following, we focus on methods that extract other features. A taxonomy of
feature extraction techniques used in the symbolization literature is presented in Fig-
ure Il.6.

mean
[[Lin+03; RKAJBos; MUos; Hugo6; SKo8; Qyog; PLD1ob; Sun+12; MF12; Fua12; Bai+13; KR20; KR21; DAMzg]]

trend
[[Agr+95; AJB97; BP02; Yan+03; Esm+12; LZY12; yzg; LDH13; Sun+14; Yin+15; Zha+18; Rua+20; EG20a; Moh+20; Che+2o]]
dispersion
[SW10; ZY16; ZDX20; LTN20]
Feature extraction length
[SW10; EG20a]
extreme points
[MLWo4; Meg+o05]

N

Others
[HY99]

Figure 11.6: Taxonomy of feature extractions in the symbolization literature. For con-
ciseness, we do not display all symbolizations that extract the mean.

I1.3.1 Extracting the trend

In the symbolization literature, the main alternative to extracting the mean per seg-
ment is the trend [HA07; LZY12]. In the literature, the trend can be extracted in sev-
eral ways: the slope [Esm+12; Mal+13; Yin+15; Zha+18; Rua+20; Che+20], the direc-
tion (convex, concave, or linear) [LDH13], the increment [EG20a], or some ad-hoc fea-
tures [Sun+14]. These different ways of encoding trend information may impact per-
formance: ABBA [EG20a] claims that extracting the increment instead of the slope
allows their procedure to be independent of any pre-processing.

Mostly, variants do not replace the mean symbol with a trend one but rather add
the trend symbol to the mean symbol, obtained as in SAX, leading to at least two sym-
bols per segment [Esm+12; LDH13; Sun+14; Zha+18; Rua+20; Che+20]. For instance,
for the symbolized slope, TVA [Esm+12] and TSAX [Zha+18] only consider upward trend
(), a downward trend (\), and a straight trend (—). In order to represent the global
trend more accurately, TSAX adds two trend symbols to the mean: each PAA segment
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is further split into 3 segments to determine these two trend symbols. For exam-
ple, on a PAA segment, the two trend symbols can be * and then . The slope can
also be quantized using angle values, as in TrSAX [Rua+20] and TSX [LZY12]. In TSX,
each segment is represented by 4 symbols. TSX first defines a line called trend line
that connects the starting and ending points of a segment. The Most Peak point (MP)
is above the trend line and has the largest distance to the trend line. The Most Dip
point (MD) is below the trend line and has the largest distance to the trend line. TSX
draws three trend lines connecting the four following key points of a segment: the
starting and ending points, as well as the MP and MD. Finally, TSX holds 4 values per
segment: the symbolized mean and the three slope values. Some methods use the
trend as well the starting or ending point, especially when using adaptive segmenta-
tion [Yin+15; Che+20]. IEPF-TSR [Che+20] uses the symbolized mean, the slope, and
the starting point. TFSA [Yin+15] is quite different from the other methods as it does
not use the symbolized mean but the following three features: the symbolized trend
(upward, downward, flat following upward, and flat following downward), the slope,
and the end point. Its segmentation is adaptive and detects key points, as described
in Section I1.2.2. Instead of having several symbols per segment, 1d-SAX [Mal+13] rep-
resents two features with only one symbol per segment. It uses linear regression to
compute the mean and the slope of each segment, then discretizes the mean and the
slope separately using the same Gaussian assumption as in SAX. The final segment
symbol is the combination of the mean symbol and the slope symbol.

Ordinal patterns [BPo2] is a symbolization approach that differs from previously
described SAX variants: it only describes the up and down trends. There is no seg-
mentation: the original time series is down-sampled and a delay parameter defines
the equal-size duration between each sample. Let us consider that the down-sampled
time series is (2.24,1.23,5.42,4.21) which contains 4 values. For the sample of value
5.42, the ordinal pattern of order nqger = 3is (1,0, 2) because of the ordering of the
two previous values and itself. As another example, the ordinal pattern of sample
4.21is (0,2,1). For an ordinal pattern of order ng.ger = 3, there exists ngrqger! possible
values. Permutation Entropy (PE) is often applied to these ordinal patterns. PE mea-
sures the complexity of a time series: it is high when the obtained ordinal patterns
are random. Hence, ordinal patterns can be seen as symbols themselves, while PE
on ordinal patterns can be seen as feature extraction. Similarly to ordinal patterns,
[Yan+03] uses binary symbols (A = 2) to encode an increasing or decreasing trend.
For each sample of the time series, if its value is larger than the previous sample, then
the attributed symbol is 1, and 0 otherwise. The chosen number of successive pairs of
values is the word length, hence there is no segmentation per se. It was initially used
for challenging physiological signals. A similarity measure on the symbolic sequences
is introduced and uses rank order statistics.

Finally, Shape Definition Language (SDL) [Agr+95] defines a specific alphabet for the
trend. It was originally applied to query time series. SDL allows fuzzy matchings where
the user is more interested in the overall shape rather than specific details. SDL de-
fines a specific alphabet where each symbol represents an event, such as slightly in-
creasing transition and highly increasing transition. There is no segmentation. Each
event is defined by lower and upper bounds on the variation between the consecu-
tive points and constraints on these two points (being zero, non-zero, or else). Shape
Description Alphabet (SDA) [AJB97] is based on SDL [Agr+95] and rewrites the proposed
alphabet.
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11.3.2 Extracting the dispersion

Some symbolization techniques use the dispersion. The dispersion is either the stan-
dard deviation [SW10; ZY16], the entropy [ZDX20], or the complexity estimate [LTN20].
Apart from [SW10] (described in Section 11.3.3), these methods use the symbolized
mean and the real-valued dispersion, and thus hold two values per segment. The
idea is that the mean and the dispersion provide complementary information. The
complexity estimate C'E of a time series z of length n is defined in [Bat+14] as

n—1

CE(x) = \| > (i — xit1)%, (I1.1)

i=1

and corresponds to the Ls-norm of the finite differences vector. SAX_SD [ZY16], which
extracts the symbolized mean and the symbolized standard deviation, has been im-
proved by the same authors into autoSAXSD_S and autoSAXSD_M [ZY17] that automati-
cally estimate the parameters of SAX and SAX_SD. autoSAXSD_S chooses the best value
of w using Shannon’s sampling theorem. Alternatively, autoSAXSD_M applies adaptive
segmentation based on the change in the mean. Both autoSAXSD_S and autoSAXSD_M
estimate the best value of A by investigating the distribution of the means values, and
especially its skewness; it iterates over several values of A.

11.3.3 Extracting the length

When using adaptive segmentation, each segment usually has a different length and
is considered a feature in certain works. A method that focuses on the analysis of
acceleration signals [SW10] extracts five real-valued features: the variance, the mean
along two axes, the trend information, and the segment length. ABBA [EG20a] aims to
represent the shape of atime series and incorporates two features: the increment and
the length. A weighting parameter enables the user to promote either the increment
or the length, depending on the application.

11.3.4 Extracting extreme points

Rather than using the trend, the dispersion, or the length, Extended SAX (ESAX) [LSKo6]
focuses on extreme points and represents each segment by its mean, minimum, and
maximum values. It was initially crafted for financial data. On each segment, the sym-
bols for the mean, minimum, and maximum are ordered according to their time po-
sition in the segment.

I1.3.5 Others

Finally, let us describe a quite unique symbolization technique called IMPACTS [HY99].
IMPACTS was designed for indexing, and we only describe its symbolization part,
which serves as a preprocessing step for indexing. Its segmentation amounts to the
uniform one with a fixed number of segments as input. Then, a unique symbol is
mapped to each segment: the alphabet size A is the same as the word length w.
Hence, no specific feature is extracted: all the sample values in a segment are used.
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Figure 1l.7: Taxonomy of quantization techniques in the symbolization literature. For
conciseness, we do not display the symbolization methods that use the exact same
quantization as SAX.

Time-based
[MUos; BBG13; SH12; BBC16; LS22]

Il.4 Quantization

Following segmentation and feature extraction, quantization performs a mapping
from the extracted features to a discrete value called a symbol. Quantization methods
fall into several categories. Model-based methods assume a data model to determine
the quantization bins; for example, SAX assumes that the segment means follow a
Gaussian distribution. Conversely, non-parametric approaches estimate the quan-
tization bins without model assumption. Usually, these two approaches solely deal
with one feature and when there are several features, each one is quantized indepen-
dently. On the contrary, clustering methods can directly input several features. Finally,
we review methods incorporating time information while encoding the symbols. Note
that some simple and straightforward quantization techniques were described in Sec-
tion I1.3.1 about extracting the trend feature and are not mentioned in this section.

A taxonomy of quantization methods used in the symbolization literature is pre-
sented in Figure Il.7.

Il.4.1 Model-based

As their name suggests, model-based quantization techniques assume a data model
to determine the quantization bins. Most methods use the same Gaussian assump-
tion as SAX: they are mentioned in Table Il.1 on page 56 and in previous sections,
but are not further described here. Other approaches extend the Gaussian bins of
SAX [SKo8; Bai+13]. In indexable SAX (iSAX) [SKo8], an iSAX word is a SAX word where
each symbol is represented using binary numbers (instead of alphabetical letters or
integers). The quantization of iSAX also uses Gaussian bins, but it changes the cardi-
nality of the symbols. When the cardinality (alphabet size) is a power of 2, using binary
numbers enables one to change the cardinality of each iSAX word (into another power
of 2) and the cardinality of each symbol inside an iSAX word. Basically, it lowers the
alphabet size by aggregating close symbols. In the end, each symbol of an iSAX word
can have a different alphabet size, which is always a power of 2. iSAX words of differ-
ent cardinalities can be compared, and this multi-resolution trick allows one to index
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time series much faster. An improvement of iSAX has been proposed: Auto-iSAX [CA15]
estimates the best parameters of iSAX [SKo8]: the best w per iSAX word, and the best
value of A per symbol inside an iISAX word. Auto-iSAX tunes w by using the complexity
estimate defined in Formula (I.1) on page 48 and tunes A by using the standard devia-
tion. As for Random Shifting based SAX (rSAX) [Bai+13], it slightly modifies the Gaussian
quantization bins of SAX by applying random shifting. The goal of rSAX is to have “soft
borders”: points that are similar but on the other side of Gaussian borders will have a
higher probability of being mapped to the same symbol. Thus, the quantization bins
are more intuitive.

Instead of using a Gaussian distribution, Weibull-SAX (W-SAX) [AHWM19] uses a
Weibull distribution that is more suitable for predictive maintenance tasks where time
series are composed of healthy states and degraded ones. W-SAX uses learned pa-
rameters for the distribution. Finally, the clipped representation [RKAJBos] is a bit level
representation of time series (A = 2): the unique quantization bin is the time series
mean. If the value of a sample is above the mean of the time series, its symbol is 1,
otherwise 0. There is no segmentation step: all samples are quantized. As it is rec-
ommended that the time series are normalized [KKo3], the mean should be zero. The
clipped representation uses run-length encoding whilst taking advantage of the binary
nature of the symbolic sequences, and also applies numerosity reduction.

I1.4.2 Non-parametric estimation

Rather than using a predefined distribution, some methods have tried to estimate
it in a data-adaptive fashion. A straightforward approach is to use quantiles [SH12;
Zal+12a], the number of quantiles being determined by the number of symbols.
Distribution-Wise SAX (dwSAX) [KR20] tackles non-Gaussian distributions. dwSAX esti-
mates a data distribution of the PAA values using Kernel Density Estimation (KDE). KDE
requires the choice of a kernel function and a bandwidth parameter. After KDE, dwSAX
finds the quantization bins using the Probability Density Function (PDF) so that they cre-
ate equal-sized areas under the curve. An improved version called edwSAX [KR21] has
been proposed by the same authors. SAX using Kullback-Leibler (SAX-KL) [BTT21a] is
an anomaly detection based on a modified version of SAX and the Kullback-Leibler
goodness-of-fit. The modified version of SAX performs adaptive quantization by esti-
mating the PDF using KDE as in dwSAX [KR20], then a modified version of the Lloyd-
Max algorithm to better detect the modes is applied to obtain the quantization bins.
The symbolization step amounts to probabilistic SAX (pSAX) [BTT21b] by the same au-
thors, which comes with a high computational cost.

11.4.3 Clustering

Symbolization methods widely use clustering to map the extracted features to sym-
bols (see Figure 1.7 on page 49). All points in the same cluster are attributed the
same symbol. The K-means algorithm, called Lloyd’s ailgorithm in one-dimension, is
often used, where the number of clusters K equals the number of symbols A. In
that case, the symbols are the cluster labels obtained by the clustering algorithm.
Most symbolization techniques use K-means clustering (see Figure 11.7). Adaptive SAX
(aSAX) [PLD10ob; PLD10a] uses a uniform segmentation and K-means clustering for the
quantization. K-means is applied on a training set of PAA transformations from sev-
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eral time series. aSAX has several applications for data mining tasks. aSAX has been
applied to indexing with jaSAX [PLD10ob] which is the adaptive version of iSAX [SK08].
aSAX has been used for anomaly detection with HOT aSAX [PLD10a] which is the adap-
tive version of HOT SAX [KLFos]. In R-Kmeans [SP+17], which is similar to aSAX, the clus-
tering quantization step is done per class, as this method is applied to time series clas-
sification. [SP+17] also introduces SAX-Kmeans which is based on SAX and R-Kmeans,
and ESAX-Kmeans which is based on ESAX [LSK06] and R-Kmeans. Rather than apply-
ing K-means directly on the PAA representation, [Zal+12a] computes the first-order
differences of PAA values, then applies K-means clustering to obtain the symbolic
sequences. Some approaches hold more than one feature per segment in order to
preserve more information about the segments [BABO12; SW10]. ENhanced SAX (EN-
SAX) [BABO12] clusters the mean, the minimum, and the maximum. A symbol-based
procedure to detect phases of gait signals [SW10] uses piecewise linear segmentation,
then K-means clustering on the five features (described in Section 11.3.3) per segment
to get the symbols.

In ABBA [EG20a], following a PLR adaptive segmentation described in Section 11.2.2,
the K-means clustering inputs tuples of the increment over the segment and the seg-
ment length. ABBA uses a scaling parameter scl that calibrates the importance of the
length in relation to its increment: the clustering is performed on the increments alone
for scl = 0, while the clustering is done on both the length and increment with the
same importance when scl = 1. Hence, the input parameters are the tolerance tol, the
scaling scl, and the alphabet size A. When A is not set by the user, ABBA does several
runs of the K-means algorithm to get the optimal value of A, resulting in a higher com-
putational cost. A recent faster variant of the ABBA method, fABBA [CG23], replaces
the K-means clustering by a sorting-based aggregation procedure that does not re-
quire the user to specify the alphabet size. ABBA-LSTM [EG20b] combines ABBA [EG20a]
with LSTM for time series forecasting: it converts real-valued time series into symbolic
sequences, then a LSTM predicts the symbols that are converted back to real values.

Another category of symbolization methods based on clustering employs Vector
Quantization (VQ) [GG92]. PVQA [MLWo4] uses uniform segmentation to obtain w seg-
ments, then VQ for the quantization. Each segment is attributed to a symbol which is
its closest codeword taken from a codebook (or alphabet). The codebook is obtained
from a training set of segments by applying the generalized Lloyd algorithm [LIo82],
which is similar to K-means clustering. The authors of PVQA [MLWo4] also introduced
MVQ [Meg+os5], which uses codebooks with different resolutions by using codebooks
of different sizes.

Other algorithms are stochastic approaches and use genetic algorithms to do
the clustering. Genetic Algorithms-based SAX (GASAX) [MF12] works as SAX, but the bin
boundaries are determined through a genetic algorithm (which is a class of optimiza-
tion procedures). GASAX does not require any specific distribution of the data. DE-
SAX [Fua12] works like GASAX, but uses differential evolution instead of genetic algo-
rithms to find the breakpoints. Quite differently, eMODITS [MG+20], which enhances
MODITS [MGAMMMA17], uses evolutionary programming, a multi-objective algorithm
to have an alphabet size and quantization bins for each uniform segment.
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I.4.4 Time-based

Apart from the symbol-based procedure to detect phases of gait signals [SW10] and
ABBA [EG20a] that incorporate directly the length feature when creating their symbols
(using clustering), some quantization methods incorporate the temporal information
differently. In this section, we describe three independent methods where a symbol
considers the temporal information without explicitly using the length in the feature
extraction.

The Persist algorithm [MUos5] is based on the persistence score of symbols which
are considered as states, given A states. This persistence score is based on the sym-
metric Kullback-Leibler (KL) divergence of the non-self and self-transition probability
distributions of the symbols according to a first-order Markov model. The more likely
it is to observe the same segment as the previous one (self-transition is more proba-
ble than non-self-transition), the larger the persistence score based on KL. Persist is
reviewed and experimentally evaluated in [SW11].

Symbolic Aggregate approXimation Optimized by data (SAXO) [BBG13; BBC16] is a
parameter-free and adaptive time series symbolization. SAXO was initially used to
represent electricity consumption, where the behavior changes drastically at night
compared to the day. Hence, a good trade-off between compression and loss of in-
formation should have symbols that jointly represent the time and the values. To
that aim, SAXO applies an unsupervised regularized Bayesian co-clustering method
called Minimum Optimized Description Length (MODL) [Bouo6]. On each obtained time
segment, the number of symbols and their distribution is different. As a result, SAXO
performs a joint adaptive segmentation and quantization that comes with a large time
complexity cost.

Symbolic Fourier Approximation (SFA) [SH12] is based on the discrete Fourier trans-
form. First, SFA selects the w Fourier coefficients of lowest frequencies, and second,
uses a procedure called Multiple Coefficient Binning (MCB) to quantize them. In detail,
MCB computes a user-defined number A of quantiles per Fourier coefficient across
all signals of a data set, and each Fourier coefficient is represented by the bin (based
on quantiles) to which it belongs. In a supervised data mining task, the MCB bins are
learned on a training set. SFA naturally provides a low-pass filtering that reduces the
influence of noise. Also, no distance on SFA’s symbolic representations is described.
Note that SFA does not go through a segmentation step but still has the w param-
eter that determines the length of the symbolic sequences. SFA has been widely
used for dictionary-based time series classification, for example Bag of SFA Symbols
(BOSS) [Sch15] and some extensions [Sch16; MVB19; Lar+19; SL17; SL23; Mid+20]. A re-
cent variant of SFA called SFFA [LS22] applies the fractional Fourier transform instead
of the discrete Fourier transform. Similarly to SAX-VSM [SM13], the authors have de-
veloped SFFA-VSM.

Il.s Reconstruction

Reconstruction is the inverse transformation of symbolization: the original signal is
inferred from its symbolic sequences. Symbolization can be viewed as compression,
while reconstruction can be viewed as decompression. Moreover, comparing the dis-
tance between the original time series and its reconstruction can give a general idea
of the quality of the time series symbolization. Only a few papers on symbolic rep-
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Figure 11.8: Example of reconstruction of a single signal from the Beef data set (UCR
Time Series Classification Archive) of original length n = 470 for several methods, with
w=19and A =09.

resentation tackle the signal reconstruction task. ABBA [EG20a] addresses the signal
reconstruction task specifically. Papers on SAX, 1d-SAX, and SFA for example, do not
tackle signal reconstruction. However, it is easy to infer a reconstruction procedure
for these methods. As done in the tslearn Python package, for SAX' and 1d-SAX?, the
sample values on each segment of the reconstructed signal are based on the Gaussian
bins of the look-up tables. For SFA, the reconstructed signal is the Fourier reconstruc-
tion based on the quantized Fourier coefficients. The reconstruction is quite smooth
and provides low-pass filtering. For ABBA, as described in its original paper [EG20a],
the reconstruction holds 3 steps for a symbolic representation. First of all, each sym-
bol is associated with its corresponding cluster center. Then, as the lengths encoded
in the cluster centers may not be integers, a trick aims at rounding them. Finally, a pro-
cedure reconstruction of the piecewise linear continuous approximation. Figure 11.8
compares the reconstruction from these four symbolization methods for the same
original time series.

1.6 Symbolic representations for multivariate time series

In this section, we describe a main challenge that is still an active area of research: ex-
tending symbolization methods to multivariate time series. While most symbolization
techniques focus on univariate time series, some methods have extended procedures
for the multivariate case. As illustrated in Figure Il.9, there are three main strategies
to tackle multivariate time series symbolization: dimensionality reduction, the inde-
pendent strategy, and the dependent strategy.

'https://tslearn.readthedocs.io/en/stable/gen_modules/piecewise/tslearn.piecewise.
SymbolicAggregateApproximation.html

*https://tslearn.readthedocs.io/en/stable/gen_modules/piecewise/tslearn.piecewise.
OneD_SymbolicAggregateApproximation.html
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Figure Il.9: Taxonomy of symbolization techniques for multivariate time series.

Dimensionality reduction. The dimensionality reduction techniques reduce the
multivariate time series into a univariate time series and then use classic symbol-
ization. SAX-PCA [MN14] applies PCA on the time series that are z-normalized on
each dimension, then applies SAX to the projection of the time series on the first
principal component, which is one-dimensional. Similarly, multivariate ordinal pat-
terns [Moh+20] extend the ordinal pattern representation, which is based on the trend
and described in Section I1.3.1, to multivariate time series. It uses PCA to transform the
multivariate time series into univariate ones, then applies the usual ordinal patterns
on which the permutation entropy is then computed.

Independent strategies. The independent strategy symbolizes each channel in-
dependently and then aggregates them to return a single symbolic sequence. SAX-
REPEAT [MN14] applies SAX on each dimension separately, then concatenates the mul-
tiple symbolic sequences obtained from each dimension into a single long string. Mul-
tivariate SAX (MSAX) [AVC20] applies PAA on each channel, and then a Gaussian distri-
bution is associated with each variable. Then, a multivariate Gaussian distribution is
formed and used for the quantization to obtain a univariate symbolic sequence. In the
independent strategies, when there is an alphabet of size A for each dimension, then
the total number of symbols is A%, where d is the number of dimensions. Hence, the
number of symbols does not scale well with the number of dimensions. For instance,
MSAX was applied to trajectories where d = 2. Moreover, in these large alphabets,
many symbols are not used.

Dependent strategies. The dependent strategy symbolizes all channels together
and returns a single symbolic sequence. SAX-ZSCORE [MN14] starts by applying a mul-
tivariate version of the z-normalization step that uses the covariance matrix. Then, it
applies a modified multivariate version of PAA: the mean per segment is a real value
that corresponds to the average of the Ls-norms of each multidimensional sample.

In this section, we excluded symbolization methods that consist in multiple univari-
ate symbolizations that are then handled by a data mining algorithm [Esm+12; Son+20;
PJ20]. TVA [Esm+12] focuses on multivariate signal classification. SAX-ARM [P)20] uses
SAXto mine association rules efficiently among the deviant events of multivariate time
series. They do not transform multivariate time series into a single symbolic sequence.
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1.7 Conclusion

In this chapter, we conducted a survey of symbolization techniques. A synthetic sum-
mary of all univariate symbolization methods described in this review is provided in
Table 11.1 on page 56.

Symbolic representations are widely used when dealing with time series data for
visualization and many data mining tasks such as classification. Symbolization can be
used directly, for example, SAX with the MINDIST distance defined on its symbolic se-
quences (described in Section lll.4.1) can be used in 1-nearest neighbor classification,
or indirectly as an intermediate step, such as in SFA [SH12] which is used in the BOSS
classifier [Sch1s]. SAXis the most popular symbolic representation due to its simplicity
and has paved the way for numerous SAX variants. Some variants focus on adaptive
segmentation and/or adaptive quantization while extracting more relevant features
than the mean per segment. Adaptive segmentation amounts to change-point detec-
tion: it looks for important points where there is a change in the mean or the slope, for
example. Adaptive quantization uses distribution models, non-parametric estimation,
or clustering to find quantization bins. They can also integrate the time information.
These variants mainly focus on univariate time series, but some symbolization for mul-
tivariate time series have also been introduced more recently, some of them trying to
deal with all channels simultaneously.
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Table Il.1: Summary of symbolization techniques for univariate time series found in the literature, ordered by year of publication and

acronym.
For the feature extraction step, A indicates that the feature is extracted then later symbolized, while R indicates that the feature is used

but not quantized afterwards (it remains a real value).
fIncrement, not exactly the slope.
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SDL (Shape Definition Lan- || X N/A b 4 A X | X | X | X | X | X | x| X b 4 model-based
guage) [Agr+9s]
SDA (Shape Description Alpha- || X N/A X A X | X | x| X | X | X X | X |X model-based
bet) [AJB97]

IMPACTS (Interactive Matching || X N/A N/A: no feature extraction v model-based
of Patterns with Advanced
Constraints in  Time-Series
databases) [HY99]

Ordinal patterns [BP02] x N/A x A X | X | X | X | X | X | X | X x model-based
Yang et al. [Yan+03] X N/A ) 4 A X | X | X | X | X | X | X X ) 4 model-based
SAX (Symbolic Aggregate ap- || X N/A A b 4 X | X | X | X | X | X | x| X b 4 model-based
proXimation) [Lin+03; Lin+07]

PVQA (Piecewise Vector Quan- || X N/A N/A : vector quantization 4 clustering
tized Approximation) [MLWo4]

Continued on next page.
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Clipped representa- N/A A X X | X | X | X | X | X | X | X |V model-based
tion [RKAJBos5]
MVQ (Multiresolution Vector || X N/A N/A : vector quantization 4 clustering
Quantized) [Meg+o05]
Persist algorithm [MUo5] b 4 N/A A ) 4 X | X | X | X | X | X | X X v time-based
ESAX (Extended SAX) [LSK06] b 4 N/A A b 4 X | X | X | x| Al A| X | X b 4 model-based
SBSR-Lo (adaptive Segmenta- || v/ mean A b 4 X | X | X | X | X | X | X | X |V clustering
tion Based Symbolic Represen-
tations) [Hugo6]
iSAX (indexable SAX) [SK08] b 4 N/A A X X X | X | X | X | X | X | X X model-based
KP_SAX (Key Points SAX) [Qyo9] || ¢ | salient points || A X X | X | X | X | X | X | X | X X model-based
Sant’/Anna and Wick- || v/ trend A? A X | x| A | X | X | X | X | A|V clustering
strom [SW10]
aSAX (adaptive SAX) [PLD1ob; || X N/A A b 4 X | X | X | X | X | X | X X v clustering
PLD10a]
DESAX (Differential Evolution- || X N/A A X X | x| x| X | X | x| X | X |V clustering
Based SAX) [Fuai2]

Continued on next page.
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EFVD (Equal Fixed-Values Dis- || X N/A A X X | X X | X | X | X | X | X |V clustering
cretization) [Zal+12b]
EN-SAX (ENhanced || X N/A A X X | x| x| X A Al X | X |V clustering
SAX) [BABO12]
GASAX (Genetic Algorithms- || X N/A A b 4 X | X X | X | X | X | X | X |V clustering
based SAX) [MF12]
SFA (Symbolic Fourier Approxi- N/A : Fourier coefficients v time-based
mation) [SH12]
TSX (Trend-based Symbolic ap- || ¥ N/A A A3 X | X | X | X | X | X | x| X b 4 model-based
proximation) [LZY12]
TVA (Trend-based and Valued- || X N/A A A X | X | X | X | X | X | X | X b 4 model-based
based Approximation) [Esm+12]
VWSAX (Variance-Wise segmen- || v/ variance A b 4 X | X | X | X | X | X | x| X b 4 model-based
tation SAX) [Sun+12]
1d-SAX [Mal+13] x N/A A A X | X | X | X | x| x| X | X x model-based
rSAX (Random shifting based || X N/A A b 4 X X | X | X | X | X | X | X v model-based
SAX) [Bai+13]

Continued on next page.
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SAX_.DR (SAX with Direction || X N/A A b 4 Al X | X | X | X | X | X | X x model-based
Representation) [LDH13]
SAXO (Symbolic Aggregate || v/ N/A b 4 b 4 X | X | X | X | X | X | X | X |V time-based
approXimation Optimized by
data) [BBG13; BBC16]
SAX-TD (SAX-Trend Dis- || X N/A A R X X | X | X | X | X | X | X X model-based
tance) [Sun+14]
TFSA (Trend Feature Symbolic || v/ trend X AxR| X | X | X | X | X | X | R | X X model-based
Approximation) [Yin+15]
SAX_SD (SAX with Standard De- || X N/A A b 4 X R| X | X | X | X | X | X b 4 model-based
viation) [ZY16]
MODITS (Multi-objective sym- || X N/A A b 4 X | X | X | X | X | X | X | X |V clustering
bOlic Discretization for Time Se-
ries) IMGAMMM17]
R-Kmeans (Representation || X N/A A b 4 X | X | X | X | X | X | x| X 4 clustering
Kmeans) [SP+17]
TSAX (Trend-based || X N/A A A? X | x| x| x|[x|[x| x| x| x model-based

SAX) [Zha+18]

Continued on next page.
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SAX_CP (SAX Change- || v/ trend A|AXR | X | X | X | X | X | X | X | X X model-based
Points) [YAD19]
W-SAX (Weibull-SAX) [AHWM19] || X N/A A X X | X | X | X | X | X X v | non-param. est.
ABBA  (Adaptive  Brown- || ¢ trend X AT [ X[ x| x| x| x| x Al v clustering
ian  Bridge-based Aggrega-
tion) [EG204a]
CSAX (Complexity-invariant || X N/A A b4 X | X | R | X X |X X | X | X model-based
SAX) [LTN20]
eMODITS (enhanced Multi- || X N/A A b 4 X | X | X | X | X | X | X | X |V clustering
objective symbOlic Discretiza-
tion for Time Series) [MG+20]
EN_SAX (ENtropy-based || X N/A A X X | x| X | R X | X X | X | X model-based
SAX) [ZDX20]
dwSAX (Distribution-Wise || X N/A A X X | X | X | X | X | X | X | X |V |non-param. est.
SAX) [KR20]
IEPF-TSR (Trend Segmentation || v/ trend A R X | X | X | X | X | X | R | X b 4 model-based

Representation based on Iter-
ative End Point Fitting algo-
rithm) [Che+20]

Continued on next page.
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TrSAX (Trend SAX) [Rua+20] x N/A A A X | X | X | X | X | X | X | X x model-based
edwSAX [KR21] b 4 N/A A X X | X | X | X | X | X | X X v | non-param. est.
SAX-KL (SAX using Kullback- || X N/A A b 4 X | X | X | X | X | X | X | X || ¢V |nonparam. est.
Leibler) [BTT21a]
SFFA (Symbol Fractinal Fourier N/A : Fourier coefficients v time-based
Approximation) [LS22]
ASAX_EN (Adaptive SAX based || v/ entropy A b 4 X | X | X | X | X | X | X | X |V model-based
on ENtropy) [DAM23]
ASAX_SAE (Adaptive SAX based || ¢/ mean A X X | X | x| X | X | X | X | X | X model-based
on the Sum of Absolute Er-
rors) [DAM23]
fABBA (fast ABBA) [CG23] v trend '3 Al X[ x[ x| x| x| x| x| A v clustering
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Chapter lll

Distance measures on time series,
strings, and symbolic sequences

This chapter reviews popular distance measures on time series, strings, and sym-
bolic sequences. We first describe distances on univariate time series, including the
popular elastic distances and numerous variants of DTW. Afterwards, we describe dis-
tance measures on strings such as the edit distances. Then, we describe distance mea-
sures that have been defined on symbolic sequences, i.e. resulting from a symbolic
representation. Finally, we describe how distances have been extended to multivariate
time series.
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1.1 Introduction

In this chapter, we survey distance measures on time series, strings, and symbolic
sequences. First of all, let us define these objects.

* Atime series is a series of real values indexed in time order.

+ Asstring is a series of discrete values indexed in time order, the discrete values
being non-ordered and taken from a fixed alphabet of characters.

+ A symbolic sequence is a discrete sequence resulting from the transformation of
a time series using a symbolization process (described in Chapter ).

In the following, A denotes the alphabet, that is, a set of symbols, e.g. A =
{a,b,c,...} where a, b, ¢, ... are symbols. A = |A| is the alphabet size.

I1l.1.1 Definitions

Measuring the distance (or similarity) between series is key in many machine learning
tasks [EA12]. A distance measure computes a real value that quantifies the similarity
between two sets of values. For two series (with discrete or real values) x and y of

respective lengths m and n, a distance (or similarity) measure D is defined as
D : B"xB" — R (11L)
(z,y) = D(z,y)’ '

where B designates either the alphabet A in case of strings / symbolic sequences or
the set of real number R in case of time series. The challenge of building a distance
measure is to make it compatible with any series, whatever their nature, their size,
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etc, and also to formalize the human intuition of what makes two series different or
not, although they are not identical from a mathematical viewpoint [EA12].
A particular case of distance measure is the metric:

Definition Ill.1 (Metric). A measure D is a metric if it satisfies the three following funda-
mental properties, for any sequences (with discrete or real values) x, y, and z:

1. ldentity
D(z,y) =0<= x =y; (111.2)
2. Symmetry
D(z,y) = D(y, z); (11.3)
3. Triangle inequality
D(z,y) < D(z,z) + D(z,y). (I1.4)

If any of these three is not verified, then the distance measure is not a metric.

Note that the three properties described in Definition Ill.1 imply the non-negativity
property of a metric
D(z,y) > 0. (I11.5)

The triangle inequality property is also known as subadditivity [EA12].

lll.1.2 Applications of distances measures
Ill.1.2.1 Data mining tasks

Distance measures are particularly useful in data mining tasks. Let us review the use
of distance measures for each of the main data mining tasks on time series.

+ Distance measures are omnipresent in indexing and similarity search [GDo1;
Cha+o2; KKo3; Din+08; EA12; Rak+12; TWP17]. Indeed, given a query time series,
nearest neighbor search looks for the closest point out of a set of candidate
points, according to a distance measure.

+ Distances on time series are crucial in time series clustering, such as for K-
means and agglomerative clustering. Reviews on time series clustering, includ-
ing a recent one, are available at [Waros; Bero6; Fu11; ASY15; HMB23].

+ Classifiers such k-nearest neighbors classification require a distance measure.
Reviews on univariate and/or multivariate time series classification are available
at [Bag+17; AML19; Rui+21; MSB23; Shi+23] and apply the algorithms to the open-
access UCR archive [Dau+19].

+ For anomaly detection (also known as outlier detection), a distance on subse-
guences can be used [IP14; BBC18]. Anomaly detection is tackled by using clus-
tering on subsequences, and considering that some groups are anomalies, while
others are normal. Reviews including recent ones are available at [Weio4; CBKo9;
BG+21; Pap+22].

* Moreover, in the forecasting task, to assess the quality of a prediction, a distance
measure is used to compare the ground truth values with predicted ones.
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+ Similarly, in the reconstruction task, a distance measure is needed to compare
the original time series with its reconstruction (after a certain transformation).

The metric property defined in Definition Ill.1is particularly useful for some data
mining tasks. The triangle inequality can help time series indexing and can be used to
accelerate the time series retrieval task. A lot of algorithms have been optimized to
index and retrieve objects in metric spaces [Cho1]. For example, that is the case of the
widely-used indexing framework called GEMINI (GEneric Multimedia INdexIng) [FRM94].

lll.1.2.2 Lower-Bounding property

As stated in [FRMo4; Keo+o1; HW21], the Lower-Bounding (LB) property, in Defini-
tion 1.2, is important when performing similarity search such as nearest neighbor
search.

Definition Ill.2 (Lower-bound of a distance). A lower-bound LB of a distance D is an
easy to compute approximation of D such that for all time series x and y

LB(z,y) < D(z,y). (I1L.6)

A lower-bound is particularly useful when looking for the nearest neighbor given
a time series query z. Indeed, the search investigates each candidate iteratively: for a
candidate y € C (where C the set of time series candidates), if LB(x,y) > D(x, ypsf)
where y,, ¢ is the current nearest neighbor ("best-so-far” [Keo+09; SB16; Sil+18]), then
we have D(z,y) > LB(x,y) > D(z,ys) according to Formula (l11.6), so candidate y
can not be the nearest neighbor, and there is no need to compute D(z,y). D(x, ypsf)
is known as the cut-off [HW21]. Ideally, a lower bound LB is faster to compute than
its corresponding distance D. Typically, a lower bound would have a time complex-
ity of one order of magnitude lower than its corresponding distance. Hence, using a
lower-bound sometimes (e.g. if LB(x,y) > D(x,yssr)) replaces long computations
(e.g. D(x,y)) with faster ones (e.g. LB(x,y)), thus speed up the total search.

Moreover, the ideal lower-bound s tight. The Tightness of Lower Bound (TLB) [Keo+01],
defined in Definition 1ll.3, measures how close a lower bound is to its corresponding
distance: the closer a TLB is to 1, the tighter (and better). Usually, there is a trade-off
between the TLB and the computation time efficiency [Sil+18].

Definition I11.3 (Tightness of Lower Bound). Given a distance measure D and a lower
bound LB of D, the Tightness of Lower Bound (TLB) is defined as

LB(z,y) _
——= <L Il
Diry) = 7

Finally, the LB property ensures exact indexing of data in the sense that there will
be completeness (no false negatives / dismissals) [FRM9g4].

TLB =

l1l.4.3 Outline

A taxonomy of distance measures on time series, strings, and symbolic sequences,
that will be described in this chapter, is displayed in Figure lll.1. We first describe the
distances on time series. Then, we focus on strings, mainly edit distances along with
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their extension to time series. Next, we present the distances on symbolic sequence
which are obtained after symbolization (described in Chapter Il). Note that a distance
measure on symbolic sequences can be viewed as a distance measure on strings, as
well as a distance measure on time series when combined with a symbolization pro-
cess. Finally, we describe the extensions of distances for multivariate time series. A
summary table of distances on time series is available in Table Ill.2 on page 93, and a
summary table of distances on strings is available in Table Ill.3 on page 94.

Time series .
Sections Ill.2 il Time series
’ Section 1.3
and Ill.3.4

Symbolization [see Chapter II)

4
Symbolic sequences
Section lll.4

Figure lll.1: Taxonomy of distance measures on time series, strings, and symbolic se-
qguences described in this chapter.

I1l.2 Distance measures on time series

In this section, we describe the univariate measures, while the multivariate ones
(which are actually extensions of the univariate ones) will be covered in Section IIl.5.
More in-depth or complementary reviews on distance measures for time series can be
found in [Shi+23; EA12; Fu11; HMB23; Wan+13; Rui+21; Rat+10; Cas+12]. Review [Shi+23]
focuses on distance measures on multivariate time series but also describes univari-
ate ones. Review [EA12] classifies the distance measures into four categories: shape-
based, edit-based, feature-based, and structure-based. Some of these categories will
not be covered. Shape-based distances will be covered with the Euclidean distance
(and more generally L, distances) in Section Ill.2.1, and Dynamic Time Warping (along
with its variants) in Section Ill.2.2. [AML19] reviews distance-based time series classifi-
cation, while [HMB23] reviews distance-based clustering.

Let us assume that we want to compute the distance between the two univariate
real-valued time series x = (z1,...,z,) and y = (y1,...,yn) of respective lengths m
and n, such as the ones depicted in Figure Ill.2.

lll.2.1 Lp distances

Let us assume that z and y have the same length m = n. The most straightforward
way to calculate a distance between two signals is to use the L, distance [YFoo] defined
in Definition 1ll.4.

Definition Ill.4 (L, distance). The L, distance where p is the order of the distance, also
known as the Minkowski distance, between univariate time series x and y of same length
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Time series x
Time series y

50 100 150 200 250
Time stamp

o 4

Figure lll.2: Two equal-size univariate real-valued time series x and y. Note that there
is separate amplitude axis for each time series.

n is defined by

n 1/p
Ly(z,y) = (Z‘xi —y¢|p> : (111.8)

i=1

The L; (Manhattan) and L, (Euclidean) distances are widely used. In particular,
the Euclidean distance is often used as a baseline in data mining tasks, as it is well
referenced, holds no parameter, and is easy to implement [KKo3].

The time complexity of the L,-norm (whatever p) is O(n). Thus, it is considered as
one of the fastest in the community. For p > 1, the L, distance is a metric. The L,
distance requires its inputs to have the same length, otherwise it is not defined.

An extension of the Euclidean distance is the Complexity-Invariant Distance (CID) [Bat+14]
which is invariant to the complexity of a time series (for example a random walk is
more "complex” than a linear line). The motivation is the following: complex time se-
ries are often considered close (by the Euclidean distance) to simple time series rather
than other complex time series that actually bear a resemblance to them. To circum-
vent this issue, the CID introduces a correction factor to the Euclidean distance

Deip(z,y) = La(z,y) - Dor(w,y), (I1.9)
where D¢ is a complexity correction factor defined as

max (CE(x), CE(y))
min (CE(z), CE(y))

Dep(z,y) = >1, (I11.10)
and CE(z) is the complexity estimate of time series z, as defined in Formula (I1.1) on
page 48. The D¢ term forces time series with very different complexities to have
a larger distance according to D¢crp (relatively to time series with similar complexi-
ties). If two time series have the same complexity, their CID corresponds to the classic
Euclidean distance.

I1l.2.2 Dynamic Time Warping (DTW): an elastic distance measure

We now focus on Dynamic Time Warping (DTW) [SC71; SC78; BC94], a distance that can
cope with signals of different lengths. Such a distance is called an elastic distance
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measure [AML19; Shi+23], as defined in Definition lIl.5. Let us assume that x and y
have possibly different lengths m # n. An elastic measure is robust to time warping,
which is a contraction or dilatation of the time axis because it is able to "stretch” or
"shrink” [Marog].

Definition lll.5 (Elastic distance measure). An elastic distance measure is a distance
measure D that can compare two time series x and y, possibly of different lengths m and
n.

Contrary to elastic alignments, L, distances described in Section Ill.2.1 are called
lock-step alignment [AML19] due to their one-to-one alignment.

DTW is the most popular elastic distance and has been used in numerous data
mining tasks [Shi+23]. Historically, DTW was first used in the speech processing com-
munity [SC71; Ita7s5]. It has also been used in bioinformatics [ACo1], health [Cai+98;
Ger+22], and entertainment [ZS03], to give a few examples. 1 Nearest-Neighbor (1-NN)
classifier with DTW has long been considered as the traditional benchmark algorithm
for time series classification [Bag+17]. Note that DTW can input time series of varying
lengths, but there seems to be no significant difference in accuracies between us-
ing variable-length time series and equal-length time series (using reinterpolation) in
DTW [RKo5].

One important feature of an elastic distance measure such as DTW is its robust-
ness to time warping. Contrary to L, distances, DTW can perform warping, mean-
ing one-to-many alignment between samples of two time series, as illustrated in Fig-
ure lll.3b. L, distances compute point-to-point differences between corresponding
samples, so they require the timelines between the two signals being compared to
have a perfect match. They cannot align two series that are misaligned in the time
dimension (even if the signals have the same length).

8

(=)}
L

Time series x
sy
!
Time series y
Time series x
Time series y

N
L

o
L

0 50 100 150 200 250 0 50 100 150 200 250
Time stamp Time stamp

(a) Euclidean distance: one-to-one alignment. (b) DTW distance: one-to-many alignment.
Sample z; is associated with sample y;. Sample z;, is associated with sample y;, .

Figure Ill.3: Comparison of the alignments from the Euclidean and DTW distances for
the x and y signals depicted in Figure lll.2. In the DTW alignment, the first big peaks of
each time series are aligned, which makes sense, but not in the Euclidean distance.

Moreover, let us look into a pathological example of bad warping by the Euclidean
distance. Let us consider the univariate time series z of length 270 depicted in Fig-
ure lll.2. Let us denote by a the time series of length 300 obtained from = by padding
30 times to the left the first value of z. Let us denote by b the time series of length 300
obtained from x by padding 30 times to the right the last value of z. These two signals,
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along with their Euclidean and DTW alignments, are plotted Figure 1ll.4. By construc-
tion, a and b are (almost) the same, but the Euclidean distance would attribute them
a distance that is high, due to its imperfect fixed warping, contrary to DTW that is
able to recognize that these time series are just shifted on the time axis. Indeed, the
large peak is re-aligned by DTW. Moreover, the first value of b and the last value of a
both have many alignments, because of the construction of a and b upon z. Hence,
often, DTW is more suited than the Euclidean distance (including for equal-length sig-
nals) [Bag+17]. However, note that, for nearest neighbor search in large data sets, the
Euclidean distance has been shown to be quite equivalent in accuracy to DTW [SKo8].
Indeed, the larger a data set, the larger the probability that there is no need for warp-
ing for a close match to happen.
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0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time stamp Time stamp
(a) The Euclidean distance can not re-align the (b) DTW can re-align the time series.

time series.

Figure lll.4: Comparison of the alignments from the Euclidean and DTW distances of
two time series a and b that are shifted in time and not synchronized.

An elastic distance measure such as DTW is computed using dynamic program-
ming. Dynamic programming simplifies a "complicated” problem by breaking it down
into "simpler” sub-problems. Note that dynamic programming is not the same as re-
cursion: while recursion combined with memoization can be viewed as top-down dy-
namic programming, bottom-up dynamic programming does not involve recursion.

An elastic distance computes the alignment cost between two series that mini-
mizes the cumulative cost of aligning their individual samples [HW21]. This mapping is
non-linear. A cumulative cost matrix C € My, ,(R) stores each intermediate value: C; ;
is the minimal cumulative cost of aligning the first ¢ points of = with the first j points
of y. As a consequence, the elastic distance measure D is

D(z,y) = Cr - (11.11)

I1l.2.2.14 Dynamic time warping (DTW)

Now, let us describe in detail how DTW works. Let z and y be two time series of respec-
tive lengths m and n, with possibly m # n. As depicted in Figure lll.3b, DTW computes
a correspondence between the elements of = and those of y using some paths which
are defined in Definition IIl.6.

Definition 111.6 (Path for DTW). A path P is a mapping function
P =((i1,51),- - (iKp, jrp)) € NxN)*P KpeN (I11.12)
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such that for all k € [1, Kp], (ix, jx) € P if, and only if, y;, is matched with x;,.
The length K, of a path verifies the following bounds
max {m,n} < Kp<m-+n—1. (111.13)

An example of path, the one corresponding to the alignment in Figure Ill.3b, is given

Figure lll.5.
250 1 250 JJ
200 1 200
>
0
= 150 150
[
wn
()
£ 100 1 100 -
'_
50 50
0 0
2.5 0.0 0 50 100 150 200 250
2 -
0 -
0 50 100 150 200 250

Time series x

Figure lll.5: Optimal warping path between two time series, corresponding to the align-
ment in Figure I11.3b.

A path P is evaluated through the following cost function

Kp

Yotw(P) = Z (i, — ¥5,)° (111.14)
k=1

which is the squared Euclidean distance along the path. Out of the exponential num-
ber of possible warping paths, the final DTW distance corresponds to the optimal
warping path and is computed as the minimum value for the cost function

Dprw(z,y) = glei%’YDTW(P), (I.15)

where P is the set of acceptable paths respecting the conditions defined in Defini-
tion lll.7. As depicted in Figure lll.7, the optimal path is the one that minimizes the
total cost to go from the first time point (bottom left) to the last one (top right). Note
thatif m =n = Kp and i, = j, = k forall k € [1, K,,], DTW is equal to the Euclidean
distance (and the path would be the anti-diagonal). DTW is actually a generalization
of the Euclidean distance.

Definition Ill.7 (Set of acceptable paths for DTW). Given two time series x and y of
lengths m and n, the set of acceptable paths P must verify the three following conditions:
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1. Continuity
e —ip—1 <1 and ]k _jk—l <1 (|||.16)

At each step, continuity restricts the warping path to adjacent cells: it acts as a step
size condition.

2. Monotonicity
ig—1 <1k and  jr_1 < ji (1.17)

The path can only go up (1) and right (—), or diagonally up and right ( /*): “time can
only move forward”.

3. Boundary conditions
(il,jl) = (1, 1) and (iprij) = (m,n) (|||.18)
The path starts at the bottom left corner by matching together the first elements
of both signals, then finishes at the top right corner by matching together to last
elements of x and y.
Concretely, the three conditions for an acceptable path defined in Definition I1l.7

impose that, at each iteration, to get to (ix, jx ), there is a limited set of indexes for the
previous step (ix_1, jk—1)

(i, — 1, 7k)
(ik—1,Jk-1) = g or (ig,je—1) - (11.19)
or (ix—1,55—1)

An illustration is provided Figure I11.6.

(s gr — 1) ———— (ix, Jr)

(i — 1,5k — 1) (i — 1, k)

Figure 111.6: Set of acceptable paths for DTW at an iteration. As in Figure IlI.5, signal =
is on the x-axis and signal y on the y-axis.

In practice, DTW is solved using dynamic programming. It uses a cumulative cost
matrix defined in Definition I1.8.
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Definition 111.8 (Cumulative cost matrix of DTW). The cumulative cost matrix C €
M n(R) of DTW is the dynamic programming cost matrix such that

Vie[l,m] Cii=0 (I11.20)
Vi€ [l,n] Ci,;=0 (I11.21)
Ci—1,-1
V(i,j) € [2,m] x [2,n] Cij =M} +ming C;;y . (I11.22)
Ci—1j

where ij is the squared Euclidean distance between x; and y;. The point-to-point dis-

tance cost matrix M € M,, ,(R) is the matrix where each element MZJ. is the cost of
pairing x; with y;

V(i,j) € [1,m] x [Lin] M} = (z; —y;)°. (I11.23)

The cumulative cost distance matrix of the two signals in Figures Il1.2, 111.3b, Ill.5

is given in Figure Ill.7. For a fixed time stamp of z, one can look into where the path

should go next. Contrary to the point-to-point distance cost matrix M which can pre-

computed, the cumulative cost matrix C' is computed step by step. Note that the cu-

300
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Time series y
=
wv
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=
o
o

Cumulative cost density

100
50

0 50 100 150 200 250
Time series x

Figure Ill.7: DTW distance of the two signals in Figures Ill.2, Ill.3b, lll.5: cumulative cost
matrix C with the optimal warping path represented in blue.

mulative cost matrix C' enables us to memorize intermediate computations in For-
mula (l1l.22), as the computations of C;_; ; and C; ;_; both require the computation
of Ci—l,j—l-

The final DTW distance between = and y then corresponds to

DDTw(.Q:,y) = \/Cm’n. (|||.24)

The DTW algorithm is recapitulated on Algorithm 1. The point-to-point distance
matrix D is first computed. Then, the cumulative cost distance matrix C' is computed
(based on D).
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Algorithm 1: Dynamic Time Warping
Data: Time seriesz € R™ and y € R"
Result: DTW distance Dptw(z, y)

M < Opmxcns

C < Omxn;

fori <+ 1tomdo

L for j «— 1tondo

| M, 5) = (zi — y;)%
C(1,:) = M(1,:);
C(:,1)=M(:,1);
fori«+ 2tomdo

for j «— 2tondo
| C(i,5) = M(3,5) + min{C(i = 1,j = 1),C(i — 1,5),C(i,5 — 1)};

1 Dptw(z,y) = +/C(m,n);

12 return Dprw(z, y);

i A W N a

O 0 N O

1

o

For time series x and y, DTW holds the following properties: Dptw(z,y) > 0 (non-
negativity) and Dprw(z, z) = 0. However, DTW is not a metric since it does not satisfy
the triangular inequality nor the identity.

Although the number of possible ways to align x and y is exponential in m and
n, thanks to dynamic programming, DTW is quite efficient with O(mn). Still, having a
quadratic complexity, a point of focus has been trying to optimize it.

In the following, we describe variants of DTW. An outline and taxonomy of these
DTW variants is illustrated in Figure I1.8.

I11.2.3 Penalized variants of DTW

Looking at a cumulative cost density, such as the one in Figure Ill.7 on page 73, one
can make the intuitive observation that, if the timelines of z and y are assumed to be
approximately similar, a path would rarely go too far from the diagonal: points that
are too far away are unlikely to be aligned. Moreover, DTW can lead to bad alignments
where a relatively small part of one time series maps onto a large section of the other
one [RKo4]. In order to avoid these pathological matchings, some extensions of DTW
add a weight to penalize paths that are far from the diagonal. Definition Ill.g describes
this general framework.

Definition lll.9 (Penalized DTW with global or adaptive regions). For penalized DTW,
when creating the point-to-point distance matrix M?, a weight penalty, denoted weight,; ,
is applied. The algorithm of a penalized DTW is the same as unconstrained DTW defined
in Section Ill.2.2.1, except that Formula (111.23) is extended into

M}; = weight, ; - (z; — y;)* . (I11.25)

Penalization with global regions depend only on the lengths m and n, while penalization
with adaptive regions depend on the actual values taken by x and y.

In the case of global regions, the weights are often symmetric, and the weight
penalty is then denoted weight|;,_;. There are several ways to set the weight penalty
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Binary weights
[Ita75; SC78]

Continuous weights
[JO11]

Global regions

[Penalized variants

Adaptive regions
[RKo4; Can+12; Zha+17]

DTW

[SCo4; MMKo06; SJA14]

Proprocessing
[KPo1]

Early abandoning and pruning
e0+09; Rak+12; SB16; Sil+18; TWP17; HW21]

[DTW approximations]

Other variants

Other extensions
[ZTog; LB15; CB17; Vay+22; HTW23]

Figure I11.8: Outline and taxonomy of DTW variants that are described in the remainder
of this section.

in Definition lll.9 (see Figure 111.8): some weights are binary (discrete) while some
are continuous ; some are global while others are adaptive. When the weights
are binary (whether global or adaptive), penalized DTW is often called constrained
DTW (CDTW) [RKog4; Fu11; JJO11; HMB23]. Note that the classic DTW described in Sec-
tion I1l.2.2.1 uses weights equal to 1 everywhere and is sometimes called unconstrained
DTW [Gel+19]. Hence, penalized / constrained DTW is a generalization of (uncon-
strained) DTW.

l1.2.3.1 Global regions with binary weights

In the case of binary weights (taking values in {1, co}), when we have weight|;_;| = oo,

the alignment is simply discarded and there is no need to compute term (z; — yj)2
in Formula (l1l.25). Hence, these penalty weights are called "constraints”. These con-
straints actually speed up the computation of DTW as defined in Algorithm 1: it is not
necessary (nor recommendable) to compute all values of the cumulative cost distance
matrix C. In general, computations far from the diagonal are avoided in order to force
paths to be close to the diagonal. One can view these binary penalty weights, which
are excluding some alignments, as a fourth condition in Definition Ill.7 of acceptable
paths.

A constrained DTW variant uses the Sakoe-Chiba band [SC78] defined in Defini-
tion Ill.10.

Definition Ill.10 (Sakoe-Chiba band). The Sakoe-Chiba band sets the weight penalty ac-
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cording to a radius r € R such that

Lofli—gl<r

. (111.26)
oo otherwise

In other words, using the Sakoe-Chiba band excludes all computations that are
"far” (with a fixed radius r) from the diagonal, directly above or to the right. Figure Ill.g
shows examples of considered elements for several values of ». When r increases,
more indexes become valid. Note that r is also known as the warping window width or
just window [Sil+18; HW21]. The best value of r is data dependent [SB16]. When r = 0,

e e

@r=3 ()r =10

Figure 1ll.9: Visualization of DTW global constraints: Sakoe-Chiba band for several val-
ues of radius r, with m = n = 20. Valid index pairs are colored. When r increases,
more index pairs are valid. Source: [Tav21].

DTW with the Sakoe-Chiba band is the Euclidean distance. When m = n = r, DTW
with the Sakoe-Chiba band amounts to unconstrained DTW. While most papers have
used a Sakoe-Chiba Band with a 10% width, a wider r does not always lead to a better
accuracy [RKos]. According to experiments [RKos], there is even a peak in accuracy
that occurs at around 4% (on average) which suggests that narrow constraints are
better. The best value of » depends upon the data set.

Another band is the ltakura parallelogram [Ita75] which sets a maximum slope s
for alignment paths, which leads to a parallelogram-shaped constrain as depicted in
Figure Ill.10. Figure Ill.11 provides more insights into how the Itakura parallelogram is

S

(a)8—15 ()3:2

Figure Ill.10: Visualization of DTW constraints: Itakura parallelogram for several values
of maximum slope s, with m = n = 20. Valid index pairs are colored. Source: [Tav21].
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built: parameter s determines the slope of the steeper side and the slope of the other
side is set to 1/s, passing through the bottom left (start) and the top right (end). The
path should not be too steep nor too shallow, so that extremely short subsequences
do not match with extremely long ones.

8 TR B 84 Y |
ol ol e / o s - ,)L/
6 Y/ e T S T
4 /) 44 - . /-0 4 /
i xR Il o
2 2 / . . . 24 . /,f
Y/ 07 o
0 | O =1 =1 1 0 1
o 2 a2 & 8 o 2 a2 & 8 o 2 a2 & 8
(@)s=1.5 (b)s=2 (€)s=3

Figure Ill.11: Visualization of DTW constraints: Itakura parallelogram for several values
of maximum slope s, with m = n = 10. Figures are generated using a pyts [FJ20]
example.

The Sakoe-Chiba band is more uniform than the Itakura one. A recent pa-
per [Gel+19] compares the Sakoe-Chiba and Itakura bands to unconstrained DTW. It
states that the bands not only speed the computation, but also lead to a better ac-
curacy in classification than unconstrained DTW. The Sakoe-Chiba is said to be more
accurate than the Itakura band, when averaging scores on 85 real-word data sets from
the UCR archive [Dau+19]. However, it concludes with caution: the best band can vary
according to the data set at hand.

Note that some lower bounds have been developed on unconstrained DTW or
constrained DTW with Sakoe-Chiba or Itakura bands, such as LB Kim [KPCo1], LB
Keogh [KRos5], Lower Bounding distance measure with Segmentation (LBS) [SYFo5], and
LB Improved [Lemo9].

Ill.2.3.2 Global regions with continuous weights

Another variant, known as Weighted DTW (WDTW) [JJO11], aims at avoiding large warp-
ings by penalizing them using a non-linear multiplicative weight defined in Defini-
tion lll.11. WDTW is not exactly a constrained extension of DTW, but a penalized exten-
sion, as constrained alignments are not plainly forbidden.

Definition Ill.11 (Weighted DTW). Weighted DTW (WDTW) penalizes large warpings by
applying a non-linear weight to the warpings using the modified logistic function

ioht
Wele P maz (1l.27)

I+ exp <_9WDTW' (W))

where |i — j| is the phase difference, weight,,, .. is the upper bound on the weight (set to 1),
n is the series length, and gwprw is the parameter that controls the penalty level for large
warpings.
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According to [JJO11], gwptw is usually chosen in [0.01,0.6] and its best value is data
dependent. Smaller values of gwprw result in less penalty for further points in the
sequence (meaning large values of |i— j|), thus WDTW behaves similarly to DTW. When
gwotw = 0, the weight is constant: all the points have the same weight, and WDTW is
classic (unpenalized) DTW. Larger values of gwptw impose higher penalty for further
points, leading to a similar behavior to Euclidean distance. As can be observed in
Figure lll.12 and confirming Formula (I1.27), larger values of gwptw increase the penalty
for further points (relatively to closer points).

(b) gworw = 0.05

Figure Ill.12: Visualization of the weighted penalty weight|;_; in WDTW with m = n =
100. Lighter region indicates matching indexes that are more penalized. Note that for
each figure, the range of the color bar changes.

I11.2.3.3 Adaptive regions

Contrary to previously described global constraints (Sakoe-Chiba band, Itakura band,
and WDTW), adaptive regions depend on the actual values taken by z and y, and not
only on their lengths. Indeed, the optimal warping path may leave the specified global
region.

The Ratanamahatana-Keogh band (RK-band) [RKo4] is a generalization of the Sakoe-
Chiba and Itakura bands, as it finds the optimal width and shape of the constrained
band. As wider bands to do not always resultin an increased accuracy, the R-K band is
automatically learned from the data, using heuristic search algorithms. The R-K band
offers a practical balance between the Sakoe-Chiba and Itakura bands, as they each
have their specific applications. For instance, when dealing with speech recognition
tasks, where most variations occur in the middle rather than at the beginning or end,
the Itakura band is more suitable. The R-K band does not only aim to speed up DTW,
but also to make it more accurate [RKos]. Contrary to globals regions, the R-K band
has no reason to be symmetric.

Salient feature based DTW (sDTW) [Can+12] identifies salient temporal features in the
time series in order to help the search of the optimal warping path. These features
are robust to noise and are similar to Scale-Invariant Feature Transform (SIFT) [Lowo04]
used in computer vision. They are used to match salient feature points from the two
time series, on which the optimal warping path then relies on. The Sakoe-Chiba band
is a particular case of sDTW.

DTW with Limited warping path Length (LDTW) [Zha+17] introduces an upper bound
Ly g on the warping path length in order to avoid singularities. A singularity is defined
as a data point from a time series that is matched with a large subsection of the other
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time series, thus leading to pathological alighnments. In a supervised learning setting,
the best upper bound Ly 5 of warping path lengths is learned from the training set.

lll.2.4 Other variants of DTW
lll.2.4.1 DTW approximations

A DTW approximation finds an approximation of the optimal warping path of DTW: it
favors speed over accuracy. According to [Sil+18], DTW approximations do not provide
bounds for the approximation error.

FastDTW [SCo4] is a DTW approximation, with linear time complexity thanks to a
multilevel strategy. The time series are first down-sampled (coarsening) and an optimal
warping path is found on this lower resolution. Next, this warping path is projected
into a higher resolution (projection). Then, the optimal path in the neighborhood of the
projected path is found (refinement). The considered neighborhood is controlled by a
radius parameter. This multi-level process continues until a warping path is identified
at the original resolution of the time series.

A similar approach is Multiscale DTW (MsDTW) [MMKo6]. MsDTW states that a lim-
itation of FastDTW is that an incorrect alignment on a low resolution level becomes
increasingly inaccurate as it propagates to higher levels. Contrary to FastDTW, Ms-
DTW iteratively combines global constraints with the multilevel strategy. The differ-
ence with FastDTW is that the projected path from a lower level is used to form a
global constraint region in order to find the optimal warping path. MsDTW was first
applied to music synchronization: aligning the note events of different interpretations
of a same music.

Lucky Time Warping (LTW) [SJA14] is a DTW approximation with linear time complex-
ity. It uses a greedy algorithm to accelerate the distance calculations: it only evaluates
elements which are the most likely to be in the optimal warping path, resulting in a
suboptimal warping path. It is faster than DTW, but less accurate in nearest neighbor
classification.

lll.2.4.2 Preprocessing

Some preprocessing can be done to transform the time series before feeding them to
DTW (whether constrained or not).

Normalization Asforthe L, distance, acommonly used preprocessinginvolves nor-
malization. Normalization is used in order to improve the robustness to changes in
offset (amplitude). Note that normalization may increase the sensitivity with respect
to additive noise in time series. The need for normalization before measuring the dis-
tance between time series is described in [KKo3]. z-normalization, where a signal is
centered and scaled to unit variance, is the most popular.

Derivative Another preprocessing involves the derivative. One such variant is
Derivative DTW (DDTW) [KPo1] which applies DTW, not directly on the raw signals, but
on their first derivative. The goal is to prevent unnatural warpings when there is vari-
ability in the signals. In DDTW, the derivative transformation 2/, of a univariate time

79



Chapter Ill. Distance measures on time series, strings, and symbolic sequences

point x; is defined as

Tit1—Ti—1
Ti — Tj—] +
/ i i 2
T; = 2 ) (111.28)

where the first and last element of the signal are not defined. z] is the average of
the slopes of the line passing through z;_; and x;, and of the line passing through
x;—1 and z; 41, and is considered more robust than an estimation using only two data
points. The time complexity of DDTW is O(mn), same as DTW. When both Derivative
DTW and Weighted DTW are combined, the variant is referred to as Weighted Derivative
DTW (WDDTW) [J)JO11].

I1l.2.4.3 Early abandoning and pruning extensions

Early abandoning and pruning both aim at making computations involving distances
faster, but their strategies differ from the constrained bands described in Sec-
tion I11.2.3.

As stated in [HW21], early abandoning is the strategy that abandons a whole compu-
tation once it has been determined, through an "abandoning criterion”, that an exact
resultis not necessary. Early abandoning is also known as "early stopping” [SYFo5]. For
example, the lower-bounding property used for nearest neighbor search, described in
the introduction of this chapter, is a typical example of early abandoning: the whole
computation between two time series x = (z1,...,2,) and y = (yi1,...,yn) iS NOt
done. As a consequence, early abandoning does not compute an exact similarity score
(as it stops when it has a partial score such as the lower bound). Time Series Index-
ing (TSI) [TWP17] combines priority search in a hierarchy of K-means clusterings with
lower-bounding of DTW in order to index and classify trillions of satellite image time
series. Given that DTW is not a metric, indexing it is challenging, as explained in the
introduction of this chapter.

Similar yet different, pruning aims at identifying and avoiding unnecessary com-
putations [HW21]. Most recent advances aiming at accelerating the DTW computation
have focused on similarity search. However, data mining tasks such as classification
and clustering require the full pairwise distance matrix which early abandoning does
not provide. Pruning computes the exact similarity score of the full pairwise matrix:
the computation itself of the distance between z and y is improved. Pruning is applied
to constrained DTW with PrunedDTW [SB16]. When iteratively computing the cumula-
tive cost matrix C of DTW, if C;, ;, has a high value (according to a threshold), then the
path passing through position (i, ji) would probably not be part of the optimal full
path. Hence, the pairwise distances M; ; = (z; — yj)2 of paths going through (i, jx) do
not need to be computed. Note that only partial computations (z; — yj)2 are avoided,
but not the whole computation Dpw(x,y) as in early abandoning. An improvement
of PrunedDTW is suggested in [Sil+18].

The UCR Suite [Rak+12] introduces a set of accelerations, mainly lower-bounding
and pruning methods, making subsequence similarity search using DTW faster than
the Euclidean distance. [Keo+09] focuses on fast rotation-invariant search. EAPruned
(Early Abandoning and Pruned) [HW21] combines both pruning and early abandoning.
EAPruned can be applied to DTW, but also other elastic distances: unconstrained DTW,
WDTW, ERP, MSM, and TWE (that will described in Section IIl.3.4).
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I1l.2.4.4 Other extensions

DTW* and ADTW* [HTW23] modify the cost function for the point-to-point distance
M; ; in DTW that was defined in Definition Ill.15 on page 71. They introduce a family
of cost functions ¢, (z,y) = |x — y|™ with a parameter 7 to be tuned for DTW, for time
series classification. It claims that tuning 7 improves the classification accuracy for
1-NN DTW and another popular classifier called Proximity Forest [Luc+19].

Canonical Time Warping (CTW) [ZTo9] performs spatio-temporal alignment of times
by combining Canonical Correlation Analysis (CCA) [SCFo6] with DTW. CCA is a tech-
nique to extract common features from two sets of multivariate data. Originally, CTW
addresses the issue of large temporal scale difference between humans actions and
inter/intra subject variability, for example when aligning motion capture data. The
original paper [ZTo9] also introduces Local Canonical Time Warping (LCTW) that allows
several local spatial deformations (in order to align long sequences). In addition to be-
ing able to compare time series of varying lengths, CTW can also compare time series
of different dimensionality.

soft-DTW [CB17] is a differentiable extension of DTW: it uses a smoothed formu-
lation of DTW with the soft-min operator. A limit of classic DTW is that it can not be
differentiated everywhere because of its use of the min operator. For a distance, being
differentiable isimportantin order to be used as a loss function in gradient-based opti-
mization that is paramount in machine learning tasks. According to [JCG20], contrary
to classic DTW, soft-DTW is not invariant to time-shifts. Some variants of soft-DTW
have been proposed [JCG20; BMV21].

DTW with Global Invariances (DTW-GI) [Vay+22] aligns time series jointly in the tem-
poral and feature spaces, and thus addresses two sources of variability that are com-
monly encountered when dealing with time series: time-shifts and distribution-shifts.
The latter, feature space alterations, occur for example when sensors are switched
during a protocol. While DTW is invariant to time-shifts, (soft) DTW-GI can handle both
types of shifts thanks to a joint optimization formulation that can be extended for
soft-DTW.

Some ensemble distances are based on the previously described elastic distance
measures and also others that will be described in Section 11l.3.4. Indeed, using a di-
versity of distance measures for 1-NN classification is significantly more accurate than
1-NN with any single measure [LB15]. Ensemble methods help to reduce the variance
of the model. Elastic Ensemble (EE) [LB15] combines eleven elastic measures (to be ap-
plied to 1-NN algorithms): Euclidean, DTWF (with full window), DTW (with leave-one-out
cross-validated window), DDTWF, DDTW, WDTW, WDDTW, LCSS, ERP, MSM, and TWE.
For each measure, EE fine tunes their parameters using cross validation. While being
a relatively accurate classifier [Bag+17], EE is quite slow to train: its time complexity is
O (pN?n?) where N is the number of time series which are of length n, and p is the
total number of parameters.

1.3 Distance measures on strings

Let us assume that we want to compare two strings denoted by x and y, of respective
lengths m and n. In the string matching community, we are interested in approximate
string matching which addresses string matching while allowing errors [Navo1]. For

example, an error in a text is a typing or spelling error. We refer an interested reader
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to [Kru83; Kukg2; WMg2; Navo1; Shi+23] for extensive reviews on distances between
strings. Note that some extensions for multivariate texts exist [Navo1;, NBY99], but
they are not described in this thesis.

l11.3.1 The general edit distance framework

A popular distance measure is the edit distance: for two strings x and y, it is the mini-
mal cost of a sequence of elementary operations that transform x into y. The allowed
elementary operations, each one called an edit operation [YBo7], are the following:

1. Insertion [Kru83; Navo1] of an elementary character in a string.

For example, insert 4 (at the last position):

abc — abcd (111.29)

2. Deletion [Kru83; Navo1] of an elementary character in a string.

For example, delete b:
abc — ac (ll1.30)

3. Substitution [Kru83; Navo1] (a.k.a replacement [Kru83; Navo1] or mutation [BRo2;
Pin+13]) of elementary characters (with a different one) in both strings.

For example, substitute b by d in the following string:

abc — adc (1.31)

4. Transposition [Kru83; Navo1] (a.k.a. swapping [Kru83]): substitution of the form
ab — ba

This operation is particularly interesting in the case of typing errors.

5. Duplication [Pin+13] (a.k.a. amplification [BRo2] or expansion [Kru83])

For example, amplify b:
abc — abbc (n.32)

6. Contraction [Pin+13] (a.k.a. compression [Kru83])

For example, contract b:
abbc — abc (111.33)

Note that, in [Kru83], the expansion operation amplifies one elementinto two or more,
and the compression operation contracts two or more elements into one. Moreover,
in [Kru83], indel covers either insertion or deletion.

To each edit operation corresponds a cost, and this cost also depends on the char-
acters involved. The cost of a sequence of operations is the sum of the costs of the
edit operations. An edit distance can compare strings of different lengths, if it allows
for insertions, deletions, duplications, or contractions. Otherwise, it can only compare
equal-length strings.

If all the elementary operations have a cost of 1, whatever the operation or the
characters involved, it is called the simple edit distance. If the all authorized operations

82



Chapter Ill. Distance measures on time series, strings, and symbolic sequences

have different costs and/or the costs depend on the characters involved, it is called
the general edit distance.

Note that some of the edit operations can be obtained through a combination of
the others. For example, a transposition can be seen as an insertion followed by a
deletion. However, the main difference is the cost of the total operation. In the case
of the simple edit distance, a transposition has a cost of 1, while insertion followed by
deletion has a cost of 2. Hence, allowing transpositions reduces the impact of swap-
ping errors. The same idea applies for substitution which can be viewed as an insertion
followed by a deletion.

In addition, the main difference between insertion and duplication (and between
deletion and contraction) is that, in duplication, the operation cost depends on the
current character but also its adjacent ones. For example, inserting a at the middle
of aa costs less than inserting b at the middle of aa. On the other hand, an inser-
tion can be viewed as a duplication followed by a substitution. Hence, duplications or
contractions can allow an edit distance to be invariant to translations.

Let us formalize the general edit distance framework [YBo7]. An elementary edit
operation is written as a — b where (a,b) # (&, &). 7eq IS the weight function which
gives the cost of an edit operation a — b. The forms @ — a, a — b,and b — &
respectively, represent insertions, substitutions, and deletions. The forms ab — ba,
a — aa, and bb — b respectively, represent transpositions, duplications, and contrac-
tions. Tyy =T1oTzo...0Tk, is the edit transformation of x into y: it is a sequence
of elementary edit operations transforming x into y. Hence, an edit distance Dgq can
be defined as

Ded(x,y) = min {yed(Txy) } - (111.34)

A parallel can be drawn with DTW, described in Section Ill.2.2, with the notion of path
and a dynamic programming algorithm.

I11.3.2 The various edit distances

Based on the general edit distance framework presented in Section Ill.3.1, several edit
distances have been defined over the years, each one allowing a certain set of edit op-
erations out of the 6 that are described in Section I11.3.1. A summary of their definition
is presented in Table 1ll.3 on page 94, along with some properties. They are further
described in the next paragraphs.

As the Levenshtein distance (an edit distance which will be described in Sec-
tion 111.3.2.1) is widely-used, we will describe it with further details compared to the
other variants, as an illustrative example. In particular, we will study its simple ver-
sion (where all costs are set to 1) as well as its general version where the costs are not
uniform. For the other variants, we will only study their simple version.

l1l.3.2.1 Levenshtein distance

One of the most popular edit distance is the Levenshtein distance [Lev+66] which only
allows insertions, deletions, and substitutions. Note that sometimes, the Levenshtein
distance is simply referred to as the edit distance. Originally, its main application is to
check for spelling errors.
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The simple Levenshtein distance is the minimum number of insertions, deletions
and substitutions to make both strings equal. In that case, insertions on x are the
same as deletions in y, and substitutions can be made in x or y.

Similarly to DTW, the Levenshtein distance is solved using dynamic programming.
The Levenshtein distance between two strings x and y of respective lengths m and n
is defined by

Vie[l,m] Cii=i (I11.35)
Viel,n] Cij=j (I11.36)
Ci—1j-1 + Weuw(i, )
V(i j) € [2,m] x [2,n] Ci; =min{ C; ;1 + Wins(4) (I11.37)
Ci—1,; + Wae (i)
Dglev(x,y) = C(m,n) (I11.38)

Algorithm 2 details the implementation of the general edit distance. Comparing Al-

Algorithm 2: General Levenshtein distance, with A the alphabet of size A.

Data: Strings x € A™ and y € A"; deletion costs Wy, € R4, insertion costs
Wins € RA, substitution costs W, € RA*4
Result: General Levenshtein distance Dgjey(x, y)
1 C Omxn:
2 fori+ 1tomdo

4 for j «— 1tondo
s | C(Lj) =4

6 fori <« 2tomdo
7 for j + 2tondo

C(i,j — 1) + Wins(j)
8 C(i,j) =min ¢ C(i — 1,7) + Wae (4) ;
C(i -1,7- 1) + Wsub(ivj)

9 return C(m,n);

gorithm 2 to Algorithm 1, one can observe that the general edit distance is the equiva-
lent of DTW on strings and that their optimization problems are similar, both using dy-
namic programming and a warping path. The time complexity to compare two strings
of lengths m and n is O(mn).
The simple Levenshtein distance Ds ¢y satisfies all four fundamental properties of
a metric. Hence, the simple Levenshtein distance is a metric. Moreover, we have a
simple upper-bound
0 < Dglev(x,y) < max(m,n) (11.39)

for all strings x and y. Note that some tighter bounds are described in [Navo1].
According to [YBo7], it has been shown that the general edit distance is a metric if

the following conditions on the costs are satisfied:

Va,b € AU{2},
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* Yed(a —a) =0,
* Yed(2a = b) > 0ifa # b,

* Yed(@a = b) = Yed(b — a).

l11.3.2.2 Other edit distances

The Longest Common SubSequence (LCSS) [NW7o; Hir77; AG87] allows only insertions
and deletions. LCSS is widely used as it measures the length of the longest pairing of
characters that can be between both strings, so that the pairings respect the order
of the letters. The distance is the number of unpaired characters. The distance is
symmetric, and it holds

0 < Dicss(x,y) <m+n (11.40)

The Hamming distance [SM83] allows only substitutions. It can only be applied to
strings of the same length m = n. The distance is symmetric. It holds

0< DHamming(Xa y) <m. (11.47)

The Episode distance [Das+97] allows only insertions. It models the case where a
sequence of events is sought, where all of them must occur within a short period. This
distance is not symmetric. Note that it may not be possible to convert x (of length m)
into y (of length n) in this case. Hence, dgpisode (%, y) is either (n —m) or co.

Compared to the Levenshtein distance, the Damerau-Levenshtein distance [Dam64;
Lev+66] adds the transposition operation. Its main application is spelling error correc-
tion. The Lowrance and Wagner algorithm [WL75] has a complexity of O(mn). Accord-
ing to [Baro7], it is a metric. Compared to the Levenshtein distance, the Edit Distance
with Duplications and Contractions (EDDC) [BRo2; Pin+13] adds the duplication and con-
traction operations. The Jaro-Winkler distance [Wingo] allows only transposition. It is
not a metric because it does not satisfy the triangle inequality.

Edit distances are used in bioinformatics: many algorithms are used to align DNA
sequences of nucleotides, meaning strings composed of the letters A, C, G, and T. These
algorithms often use the edit distance as a score. Exhaustive searches look for all
possible alignments and retrieve the alignment(s) with the optimal score, which is very
costly. An alternative is the Needleman-Wunsch algorithm [NW70] which uses dynamic
programming for global sequence alighment. It determines the optimal alignment
of all possible prefixes of the first sequence with all possible prefixes of the second
sequence by going from the smallest to the largest prefixes. The Smith and Waterman
algorithm [SW81] is a variation of the Needleman-Wunsch algorithm which performs
local sequence alignment.

111.3.3 Normalization

Let us take the example of the Levenshtein distance. It lacks normalization with re-
spect to the lengths of the compared strings. It is intuitive that errors occurring when
comparing short strings are more crucial than when comparing long strings. Hence,
according the the data mining task at hand, normalizing the Levenshtein distance can
be important.
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There exists several ways to normalize the Levenshtein distance [MV93; WF94].
They are based on the editing path lengths or the string lengths, but they do not ver-
ify the triangle inequality. The Normalized Levenshtein Distance Metric [YBo7] is a nor-
malized Levenshtein distance that is also a valid metric valued in [0, 1] (under some
conditions on the costs of the edit operations).

111.3.4 Extensions of edit distances to time series

Some previously described edit distances, originally defined on strings, have been ex-
tended to input real-valued time series [Shi+23], mainly thanks to thresholds. We will
only describe the univariate cases, as the multivariate setting will be covered in Sec-
tion lll.s.

11.3.4.1 Longest Common SubSequence (LCSS)

As described in Section I1l.3.2.2, LCSS was originally defined on strings [Hir77]. It has
then been extended to real-valued time series [VKGo02] thanks to a threshold ¢ € R.
Compared to LCSS on strings, two real values z; and y; are considered a match if

Lo (mi,yj) = |.%'l — yj] <e. (|||.42)

The relaxed version of LCSS for real-valued signals is the following

0 ifi=0
0 if j = 0
Cless(i, §) = (.
Less (i) 14 Cress(i — 1,5 — 1) if Lo (5,1;) < & (Il.43)

max (Cress(i — 1,7), Cless (4,7 — 1)) otherwise

Then, we have
Dicss(z,y) = Ciess(m, n). (111.44)

LCSS has a greater robustness against noise compared to DTW, as it allows certain el-
ements within the time series to remain unmatched, all while preserving the matching
order. LCSS verifies the non-negativity and symmetry properties, and D, css(z, ) = 0
for all time series z. However, LCSS does not verify the triangle inequality, and thus is
not a metric.

l1l.3.4.2 Edit distance with Real Penalty (ERP)

Edit distance with Real Penalty (ERP) [CNo4] and Edit Distance on Real sequence
(EDR) [COOo05] were both introduced around the same time (with a common co-author
in both). They are based on the Levenshtein distance on strings [Lev+66] (that allows
insertions, deletions, and substitutions). In EDR, a threshold is used to consider a
match, similarly to LCSS, but the triangle inequality is not respected. On the contrary,
ERP is a metric. In the following, we focus on ERP rather than EDR.

Rather than using a delete operation, EDR considers a deletion in a time series
(e.g. z) as a special symbol in another series (e.g. y). ERP calls it a gap element and
its penalty parameter is Sgrp. According to [COOo05], ERP is sensitive to noise. In ERP,
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the Euclidean distance between elements is employed when there is no gap present,
while a constant penalty is applied in cases where a gap exists:

Cere(i — 1,5 — 1) + Lo (Q?uyj)Q
Cerp(i,j) = min { Cepp(i — 1, ) + Lo (24, Bere)” - (111.45)
Cere(i,j — 1) + L2 (y;, Bere)”

Then, we have
DERP(:L', y) = CERp(m, n) (|||.46)

Hence, the cost of insertion or deletion depends on the absolute magnitude of the
value that is inserted or delete.

111.3.4.3 Move-split-merge (MSM)

Move-split-merge (MSM) [SAD13] is inspired by edit distances on strings. It verifies the
properties of a metric. MSM states that, contrary to ERP, it has the particularity of
being invariant to translations. It allows three operations: move, split, and merge.
Actually, these three operations correspond to edit operations on strings described
in Section I11.3.1: move is equivalent to substitution, split to duplication, and merge to
contraction.

The cost associated to a substitution is set by the pairwise distance between two
points, and the cost of a duplication or a contraction depends on a parameter denoted

by Bmsm

Cmsm(i — 1,5 — 1) + Lo (x4, ;)
Cmsm(7,j) = min § Cusm(i — 1, 7) + Wysm (24, Ti—1, Y5, Busm) (1.47)
Cmsm (i, j — 1) + Wsm (Y5, T4, Yj—1, Bmsm)

where
Bmsm ifz,1 <a; <y
ife, 1 >x >y
Wusm (4, i1, Y, Bmsm) = Busm 2 — 21| it =T U
Busm 4+ min { LT T otherwise
lzs — 5]
(111.48)

The algorithm contracts two values or duplicates a value z; if x; is between two adja-
cent values (z;—; and y;). If a value z; falls two consecutive values (z;— and y;), the
algorithm either performs contraction or duplication.
Then, we have:
Dwysm(z,y) = Cusm(m,n). (1.49)

11.3.4.4 Time Warp Edit (TWE)

Time Warp Edit Distances (TWED) [Marog] is based on the edit distance on strings,
however it has no straightforward equivalent on strings. Indeed, TWE combines
(non-elastic) L, norms with the (elastic) edit distance. TWED is also referred to as
TWE [Shi+23] and is a metric.
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TWE allows three operations called match, delete,, and delete,. When there is a
match, the L, distance is used, otherwise a constant penalty is added. The delete, (or
delete,) operation is used to remove an element from x (or y) to match y (or x).

The TWE dynamic programming algorithm is thus

Crwe(i — 1,7 — 1) + v match

CTWE<i,j) = min CTWE(l — 1,j) + Ve deletex s (lM.50)
Crwe(i, 7 — 1) +yy delete,
where
_ 2 2
Ym = Lo (xi,y;)” + Lo (zi-1,yj-1)" + 2v  match
Ve = Lo (24, xi,1)2 + v+ Brwe delete, (111.51)
vy = La (yj, yj,l)Q + v+ Brwe delete,
with

* v, the stiffness parameter, controls the elasticity of TWE. When v = 0, TWE is stiff,
similarly to the L,, distance. When v approaches infinity, TWE becomes less stiff
and more elastic, similarly to DTW.

* Brwe is the cost of a delete operation, either delete, or delete,,.

Then, we have
DTWE(l', y) = CTWE(m, 77,) (I1.52)

lll.4 Distance measures on symbolic sequences

In Chapter Il, we reviewed symbolic representations on time series: they transform
real-valued time series into discrete-valued ones called symbolic sequences. In order
to use the learned symbolic representations for tasks such as classification or clus-
tering, it is crucial to define a distance measure between symbolic sequences, which
can be viewed as character strings. Defining an informative measure is a challenge
that has received a lot of attention. In this section, we described distance measures
defined on symbolic sequences obtained from symbolization processes that were de-
scribed in Chapter IIl. Note that symbolic representations do not systematically define
a distance measure on their symbolic sequences.

lll.4.1 MINDIST

The most popular distance measure on symbolic sequences is the one introduced
along with the SAX representation [Lin+03; Lin+o7]: MINDIST. Let x = (x4, ...,x,) and
y = (y1,-..,yn) be two time series with n samples. The Euclidean distance between x
and y, described in Section Ill.2.1, is given by

(I.53)
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The MINDIST distance measure between the resulting symbolic sequences z and g, of
lengths w, mimics the Euclidean distance

Dwvinpist (2,9) = % Z(dist(iz’aﬂi))2> (Ill.54)
i—1

where the dist function, based on a so-called look-up table, is illustrated in Table Il1.1.
MINDIST requires the symbolic sequences to be of equal length. For a given value of

Table Ill.1: Example of look-up table for MINDIST with A = 4. For example, dist(a,d) =
Bs — f1 = 1.34.

a b C d a b c d
a 0 0 Bo—B1 B3— P a 0 0 067 1.34
b 0 0 0 B3 — Bo b 0 0 0 0.67
c Bo—pBi 0 0 0 c 067 0 0 0
d B3—p1 [3— e 0 0 d 1.34 067 0 0

the alphabet size A, this table is calculated only once, and then stored for fast look-up.
For all look-up tables, whatever the alphabet size, the value in the cell of indexes (i, j)

is given by
cell; ;= 4 0 ifli—gl <1 (l11.55)
" Brmax(i,j)~1 — Pmin(ij) Otherwise ’ '

where the ;. are the boundaries of the bins used by SAX to quantize the segment
means. MINDIST is not a true metric, as dist(a, b) = 0 for example (see Table lll.1). The
MINDIST distance measure on SAX symbolic sequences lower bounds the Euclidean
distance on original signals, i.e.,

Dyinoist (2, 9) < La(z,y). (11.56)

As emphasized in the introduction of this chapter, the lower-bounding property im-
plies that the similarity matching in the reduced space maintains its meaning with
regards to the original space. The ability of SAX to define a lower bound is one of the
reasons why SAX is so popular against other time series representation techniques.

lll.4.2 Extensions of MINDIST

In the literature, the majority of SAX-like symbolization methods use a MINDIST-like
distance measure on their symbolic sequences.

I1l.4.2.1 Symbolization methods with one symbol per segment

Symbolization techniques with only one symbol per segment usually use straightfor-
ward variants of MINDIST [LSKo6; SKo8; Qyog; MF12; Fua12; Mal+13; Bai+13; KR20;
KR21; LS22; DAM23]. These MINDIST variants generalize equation (lll.55) according
to their modified symbolization(s) step(s): the g, coefficients correspond to the ob-
tained quantization bins. For example, SFFA [LS22], which uses a chi-square strategy
for the quantization bins i, replaces the obtained quantization bins in the MINDIST
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Formula (l11.55). As for the Updated Minimum Distance (UMD) [MFM10], it updates the
look up table of MINDIST, so that adjacent symbols do not have a null distance.

While having one symbol per segment, a few methods do not use MINDIST-like
distances. SBSR [Hugo6] explores distance measures that have additional information
compared to MINDIST, namely the data set global information, the time series local
information, and the episode local information.

I1l.4.2.2 Symbolization methods with at least two symbols per segment

Symbolization techniques that have more than one feature per segment (in addition
to the mean) usually include additive term(s) in Formula (lll.54) to take into account
their added feature(s) [PLD1ob; LZY12; LDH13; Sun+14; Zha+18; YAD19; ZDX20; LTN20;
Che+20].

When the added feature is quantized, a specific predefined look-up table is of-
ten defined. For example, SAX_DR [LDH13] introduces the direction distance using a
precomputed look-up table between the directions, and TSX [LZY12] uses a precom-
puted look-up table for the trends. To give a formalized example in more details,
we describe the SAX_DR distance. SAX_DR symbolizes the mean and the direction

for each segment. Let us consider a time series ¢ = (z1,...,2,). We denote by
Zmean = (Tmean,1,- - -, Zmean,w) the symbolic sequence of the symbolized means (i.e.
the SAX representation) and Zgir = (Zgir1,- - -, Zdirw) the symbolic sequence of the

symbolized directions, where w is the number of segments. Z is the total symbolic se-
guence, incorporating the means and the directions. The distance measure between
two SAX_DR symbolic sequences z and ¥ is thus

S N N n | = (distgir (fonr,mﬂour,i))2
Dsax or (Z,9) = DminpisT (Zmean, Ymean) + w Z , (II.57)

- w

1
where the distg;- function is based on a look-up table between symbolized directions.

When the added feature is not quantized and remains real-valued, the Euclidean

distance can be used. For example, CSAX [LTN20], which extracts a real value for the
complexity-invariant value C'I (which is the normalized complexity estimate C'E de-
fined in Formula (ll.1) on page 48) in addition to the symbolized mean, defines the
following distance:

Desax (.3) = = | D (dist (&, 50) + (C1 (&) = CI (5))°), (1l.58)
=1

where CT (#;) denotes the complexity-invariant value on the corresponding segment.
To give another example that is not using the Euclidean distance, SAX-TD [Sun+14]
defines a distance measure called TDIST that includes the trend:

Drpist (2,79) = \/Z ((dist (#4,5i))° + % (distig (2, y))2>, (11.59)
=1

)

where the trend distance called distyy is defined on the real-valued time series and
involves the starting and ending points of the segments.
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On the contrary, some methods do not use additive MINDIST-like terms. For exam-
ple, TFSA [Yin+15] which uses three features (without the mean): the symbolized trend,
the real-valued slope, and the real-valued end point, has multiplicative terms. More-
over, as it uses clustering for the quantization, the pSAX [BTT21b] distance between
symbolic sequences, which are sequences of cluster center labels, is the Euclidean
distance between the vectors of cluster centers coordinates.

lll.4.2.3 Lower-bounding property

When using a MINDIST-like distance measure, an important aspect is to retain the
lower bound. Quite a few methods claim that their proposed distance lowers bounds
the Euclidean distance [LDH13; Bai+13; Sun+14; Yin+1s5; Zha+18; YAD19; Che+20; LS22;
DAM23]. It appears that the definition of the distance measure of SAX_SD [ZY16], which
claims to guarantee the lower bound, is wrong: the properties of the square root are
not respected when going from Equation (10) to Equation (11). Furthermore, some
methods claim to have a tighter lower bound than SAX [LDH13; Bai+13].

lll.4.3 Distance measures between extracted features

Other methods use extracted features to compare signals. (i) Some distances extract
features from the symbolic sequences. The extracted features are mostly based on
the frequency of symbolic words. SAX-VSM [SM13] uses a Term Frequency - Inverse
Document Frequency (TF-IDF) weighting scheme, then the cosine similarity. TF-IDF was
originally applied to natural language processing tasks. Other methods are based on
histograms. BOSS [Sch15], a dictionary-based classifier, applies an overlapping sliding
on which SFA [SH12] is applied. Two time series are then compared based on their his-
tograms of symbolic words. Other methods focus on the permutation entropy, which
is extracted from ordinal patterns applied to a time series [BP02]. The permutation
entropy in each time series is then compared. The Permutation Jensen-Shannon Dis-
tance (PJSD) [Zun+22] combines ordinal patterns with the Jensen-Shannon divergence.
(ii) There are a few works that use the intermediate feature extraction (the step fol-
lowing segmentation and preceding quantization) of the symbolization. For instance,
EN-SAX [BABO12] uses the cosine similarity between vectors of the extracted features
per segment (the mean, minimum, and maximum).

lll.4.4 Edit distances

The literature on symbolic representations advocates that a major advantage of
symbolic representations is their ability to leverage the richness of the bioinformat-
ics and text processing communities [Lin+o7; EG20a]. However, to the best of our
knowledge, only a few symbolic representations make use of distance measures
defined on strings. Symbolic Vector Quantized Approximation (SVQA) [WMLos] ex-
tends PVQA [MLWo4], described in Section Il.4.3, and uses LCSS on the string sym-
bolic sequences, where a symbol is a codeword index. Similarly, SAXLCSS and 1D-
SAXrcoss [TTK17] respectively use the SAX and 1d-SAX representations, then LCSS for
the distance measure.
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Ill.s Distances on multivariate time series

Until now, we have focused on distance measures for univariate series. Indeed,
most distances in the literature are univariate. Recently, several strategies have been
designed to extend DTW to multivariate time series [SY+17]. More recently, a re-
view [Shi+23] applies these same strategies to extend seven other elastic distances
(that were described in Sections Ill.2 and IIl.3.4): DDTW [KPo1], WDTW [JJO11], WD-
DTW [JJO11], LCSS [VKGo2], ERP [CN04], MSM [SAD13], and TWE [Marog]. Two popular
approaches are used in practice: the independent and dependent strategies. In the
following, for each distance, the | subscript indicates the multivariate distance using
the independent strategy, and the D subscript indicates the dependent strategy. As
stated in [Shi+23], the time complexities of all these multivariate distances increase
linearly with the number of dimensions.

Let us illustrate these strategies on DTW. In [SY+17], each dimension of the time
series is z-normalized in order for the distance measure to be invariant to offset and
scale. Thus, the multivariate DTW can handle dimensions of different physical natures
for example.

* In the independent strategy for multivariate DTW, called DTW-I, the univariate
DTW is applied to each dimension separately, and the resulting distances on
each dimension are summed. As its name suggests, all dimensions are treated
independently and their warping is independent.

* The dependent strategy for multivariate DTW, called DTW-D, considers the multi-
variate series as a single series in which each timestamp is associated to a sin-
gle multidimensional point. The DTW scheme is applied by using Euclidean dis-
tances between the multidimensional points of the two series in Formula (I11.23)
on page 73. There is a unique warping path that deals with all dimensions.

An empirical review of these two approaches is conducted in [SY+17] and concludes
that, on the nearest neighbor classification tasks, DTW-D performs better than DTW-
| on some data sets, while DTW-I outperforms DTW-D on some other data sets: in
general, there is no definitive recommendation for a specific strategy to use. If the
warping paths of DTW-I are all the same, then the warping path of DTW-D should be
similar to the ones of DTW-I.

For the other elastic distances, the same multivariate strategies are employed. In
the following, when the independent strategy is straightforward, it is not described.

+ For WDTW, the derivatives are obtained separately on each dimension, then are
fed to DTW-I to obtain DDTW-I, or to DTW-D to obtain DDTW-D.

* For WDTW-D, the weight is applied to the DTW-D scheme.

« For WDDTW, the derivatives are obtained separately on each dimension, then
are fed to WDTW-I to obtain WDDTW-I, or to WDTW-D to obtain WDDTW-D.

+ LCSS-I computes the LCSS for each dimension, but each dimension has its own
threshold value. LCSS-D works as LCSS but computes the squared Euclidean dis-
tance between multidimensional points in Formula (I11.43) on page 86.

+ ERP-D works as ERP but computes the Euclidean distance between multidimen-
sional points in Formula (Ill.45) on page 87 where the penalty parameter is now
a vector.
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* MSM-D works as MSM but computes the squared Euclidean distance between
multidimensional points in Formula (lll.47) on page 87 where Wy gy is now
adapted to input vectors.

« TWE-D works as TWE but computes the Euclidean distance between multidimen-
sional points in Formula (l1l.51) on page 88.

For more details, we refer an interested reader to the recent review [Shi+23], which
also introduces Multivariate Elastic Ensemble (MEE), the multivariate extension of
EE [LB15] where each univariate elastic measure of EE is extended to its multivariate
version.

I11.6 Conclusion

In this chapter, we have reviewed distance measures that are defined on time series,
strings, and symbolic sequences. These distances are at the core of many data mining
tasks.

For distance measures on time series, if the input time series do not have the
same length (or do not have the same time synchronization), then an elastic distance
measure is more suitable. DTW is the most popular elastic distance measure, and a
lot of variants have proposed to make it more accurate and/or faster (see Figure 111.8
on page 75). Elastic distance measures, other than DTW, are based on the edit dis-
tance originally defined for strings. A summary of distance measures on time series
is shared in Table Ill.2.

Table 11l.2: Summary of distance measures on time series of length n.

$Metric for p > 1.

87 is the window size.

8885 is the slope parameter.

fpis the number of parameters. The time complexity reported is for the training time.

2
P = z
5|5 5
2|l %|2 =
Qe -= £
oo | © | Y 9
els|g|® 2
815528 E
Distance name W (> |0 | 2 =
L, distance [YFoo] X|X|x|[v|a] On)
Classic DTW [BC94] vV v iX|x|[x ]| 0
DTW with Sakoe-Chibaband [SC78] [V |V [ v | X | X | O(nr)®
DTW with Itakura band [Ita75] vV v | v]Xx| X | O
WDTW [JJO11] vVIiv v iX| x| 0@
LCSS [VKGoz2] vVIiv x| x| x| 0@
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For distance measures on strings, they are based on the general edit distance
framework. We have defined 6 edit operations. Each edit distance allows a subset of
these edit operations in order to model different behaviors in the compared strings.
Given the edit operations involved, the properties of each edit distance is impacted.
A summary of these edit distances is shared in Table Il1.3.

Table 111.3: Summary of edit distances on strings, with their authorized operations,
whether they are a metric, whether they can input strings of varying lengths, and their
time complexity.

TDepends on how the operation costs are set.

Allowed edit operations Properties
» 2
c = P
_ S22 58l 5 @
s § 2238 8@ oo S
S 8323 2|E 5% @
Distance name 2832 3 8|a 2 S E
LCSS [Hir77] vV v X X X X|v X Vv O(mn)
Hamming [SM83] X X v X X X|v v X O(m)
Simple  Levenshtein dis-||v v v X X X |V VvV V O(mn)
tance [Lev+66]
General Levenshtein dis-[[v v v X X X | =1 =T v 0O(mn)
tance [Lev+66]
Damerau-Levenshtein vV v Vv v X X| Vv Vv VvV O(mn)
Edit Distance with Dupli-||v ¢ ¢ X v v [ v v v O(Am?
cations and Contractions
(EDDC) [BR0o2; Pin+13]

We have also reviewed distance measures on symbolic sequences, which are
mainly based on MINDIST from SAX. A distance measure defined on symbolic se-
quences can be viewed as a distance measure on real-valued time series when com-
bined with the symbolization technique. Surprisingly, few distance measures on sym-
bolic sequences employ edit distances, and the exploration of the multivariate setting
is still in its early stages.
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Chapter IV

ASTRIDE: Adaptive Symbolization
for Time Series Databases

We introduce ASTRIDE (Adaptive Symbolization for Time seRles DatabaskEs), a novel
symbolic representation of time series, along with its accelerated variant FASTRIDE
(Fast ASTRIDE). Unlike most symbolization procedures, ASTRIDE is adaptive during both
the segmentation step by performing change-point detection and the quantization step
by using quantiles. Instead of proceeding signal by signal, ASTRIDE builds a dictionary
of symbols that is common to all signals in a data set. We also introduce D-GED (Dy-
namic General Edit Distance), a novel distance measure on symbolic representations
based on the general edit distance. We demonstrate the performance of the ASTRIDE
and FASTRIDE representations compared to SAX (Symbolic Aggregate approXimation),
1d-SAX, SFA (Symbolic Fourier Approximation), and ABBA (Adaptive Brownian Bridge-
based Aggregation) on reconstruction and, when applicable, on classification tasks.
These algorithms are evaluated on 86 univariate equal-size data sets from the UCR
Time Series Classification Archive.

Contents

IV.1 Introduction . .. ... ... i oo e 96
IV.2 Background and motivations . . . . . .. ... ... ..... 97
IV.2.1 Overview of symbolic representations . . . . . . . . ... . .. 97
IV.2.2 Overview of distance measures on symbolic sequences . . .. 99
IV.2.3 Limitations of existing symbolization methods . . . . . . .. 100

IV.2.3.1 The need for adaptive segmentation and quantiza-
tionsteps . . . . . .. o 100
IV.2.3.2 The need for a distance measure on symbolic sequences102

1V.2.3.3 The need for a shared dictionary of symbols across
the signals of adataset . . . . ... ... ... ... 102
IV.2.4 Contributions . . . . . . . . . . .. ... 103
IV.3 The ASTRIDE method . . . . ... ... .. ......... 103
IV.3.1 ASTRIDE segmentation step . . . . . . .. ... ... .... 104
1V.3.2 ASTRIDE adaptive quantization step . . . .. ... ... .. 104
IV.3.3 The D-GED distance measure . . . . . . . .. ... ...... 106
1V.3.4 Reconstruction of ASTRIDE symbolic sequences . . . . . .. 107
IV.3.5 The FASTRIDE method . . . . . . ... .. ... .. ..... 108
IV.4 Experimental results . . ... ... .............. 108



Chapter IV. ASTRIDE: Adaptive Symbolization for Time Series Databases

IV.4.1 Classification task . . . . .. .. ... ... ... ... 108
IV.4.1.1 Experimental setup . . .. .. ... ... ... ... 108

IV.4.1.2 Results . . . .. . ... o 109

IV.4.2 Reconstruction task . . . . .. .. ... ... .. 110
IV.4.2.1 Experimental setup . . .. .. ... ... ... ... 110

IV.4.22 Results . . . .. ... ... ... ... ... ... . 113

IV.4.3 Computational complexity . . . . . . .. ... ... ... ... 115
IV.5 Conclusion . . . . . .. 00 v it i e e e 117

IV.1 Introduction

Over the past decades, the increasing amount of available time series data has led
to a rising interest in time series data mining. In many applications, the collected
data take the form of complex time series which can be multivariate, multimodal, or
noisy. A fundamental issue is to adopt an actionable representation which takes into
account temporal information. In this regard, symbolic representations constitute a
tool of choice [Lin+07]. Symbolic representations of time series are used for data min-
ing tasks such as classification [Lin+07; SM13; Sch1s; Ngu+19], clustering [Lin+07], in-
dexing [Lin+o7; Cam+10], anomaly detection [EG20a; CG23], motif discovery [Sen+18],
and forecasting [EG20b]. The domain applications include finance [LSKo6; BABO12],
healthcare [SW10], and manufacturing [PJ20].

Briefly, most symbolization techniques follow two steps: a segmentation step
where a real-valued signal y = (y1, . .., y,) of length n is split into w segments, then a
quantization step where each segment is mapped to a discrete value ; taken from a
set {aj,...,as} of A symbols. The resulting symbolic representation is the discrete-
valued signal (or symbolic sequence) § = (91, .., %w). The setof symbols{ai,...,as}is
usually called an alphabet or dictionary, and A is the alphabet size; the length w of the
symbolic representation is called the word length. While there exist many high-level
representations for time series [Fu11], the two main advantages of symbolic represen-
tations are reduced memory usage, and often a better score on data mining tasks
thanks to the smoothing effect induced by compression [Lin+07].

In the present chapter, we introduce ASTRIDE (Adaptive Symbolization for Time se-
Rles DatabasEs) [CTO23b], a novel symbolic representation of time series data bases,
along with its accelerated variant FASTRIDE (Fast ASTRIDE). Unlike most symbolization
techniques, ASTRIDE is adaptive during both the segmentation step by performing
change-point detection and the quantization step by using quantiles. As the segmen-
tation and quantization are performed on the whole data set, a notable benefit of
ASTRIDE is to define a common dictionary of symbols for all signals in the data set
under consideration, thus further reducing memory usage. ASTRIDE comes with D-
GED (Dynamic General Edit Distance), a new distance measure for symbolic sequences
which is based on the general edit distance. As we shall see, ASTRIDE provides an in-
tuitive symbolic representation which outperforms the state of the art in classification
accuracy and achieves competitive results in signal reconstruction.

The remainder of the chapter is organized as follows. Section IV.2 provides an
overview of symbolic representations and their distance measures, highlights their
limits, and presents our main contributions. Section IV.3 introduces the novel ASTRIDE
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and FASTRIDE symbolic representations, as well as the new D-GED distance mea-
sure. Section IV.4 contains an experimental evaluation of the accuracy of ASTRIDE and
FASTRIDE for classification and for signal reconstruction compared to several state-of-
the-art symbolization methods. Section IV.5 provides concluding remarks.

IV.2 Background and motivations

This section gives an overview of symbolic representations and their distance mea-
sures, then assesses their limits and presents our contributions. It also provides a
summary of some symbolization methods in Table IV.2.

IV.2.1 Overview of symbolic representations

In 2003, a popular symbolic representation for time series was introduced: Symbolic
Aggregate approXimation (SAX) [Lin+03; Lin+o7]. In SAX, a symbolic sequence is a chain
of characters, for example abbcaabc (or 01120012). SAX has two parameters: the word
length w and the alphabet size A. For instance, in the symbolic sequence abbcaabc,
the parameters are w = 8 (length of the sequence) and A = 3 (number of possible
symbols). The larger w and A, the better the quality of the SAX representation, but
the lower the compression. Optimal values of w and A are highly dependent on the
application and the data set. In SAX, each signal is centered and scaled to unit vari-
ance, then split into w segments of equal length. Next, the means of all segments are
grouped together in bins and each segment is represented by the bin where its mean
falls into. The bin boundaries are chosen so that all symbols are equiprobable under
the assumption that the means follow a standard Gaussian distribution. A SAX trans-
formation of a signal taken from the UCR Time Series Classification Archive [Dau+19]
is shown in Figure IV.1.

Since the introduction of SAX, many variants and symbolization techniques have
been proposed (see Chapter II). First of all, some variants focus on the feature(s) per
segment. Extended SAX (ESAX) [LSKo6] represents each segment by its mean, minimum,
and maximum values. 1d-SAX [Mal+13] represents two features with only one symbol
per segment. It uses linear regression to compute the mean and the slope of each
segment, then discretizes the mean (in Amean Symbols) and the slope (in Agjope Sym-
bols) separately using the same Gaussian assumption as in SAX. The final segment
symbol is the combination of the mean symbol and the slope symbol. The alphabet
size is therefore A = Amean - Aslope-

Some symbolization procedures perform an non-uniform segmentation in order
to better adjust to the signal. Adaptive Segmentation Based Symbolic Representations
(SBSR) [Hugo6] can be viewed as a symbolic version of the Adaptive Piecewise Constant
Approximation (APCA) representation [Cha+o02], just as SAX can be viewed as the sym-
bolic version of the Piecewise Aggregate Approximation (PAA) [Keo+01; YFoo0]. In SBSR,
segment lengths adapt to the shape of the signal.

Some symbolic representations have an adaptive quantization step in order to re-
lax the Gaussian assumption on the data. Adaptive SAX (aSAX) [PLD10a] uses a uniform
segmentation and K-means clustering for the quantization. A symbol-based proce-
dure to detect phases of gait signals [SW10] uses piecewise linear segmentation then
K-means clustering on the features per segment to get the symbols. The features per
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Figure IV.1: Example of a SAX (top) and ASTRIDE (bottom) representations of a signal
from the Meat data set (UCR Time Series Classification Archive). The original length of
the signal is n = 448, and we use w = 4 and A = 4. The resulting symbolic sequence
is 1131 for SAX, and 1230 for ASTRIDE. (ASTRIDE is described in Section 1V.3.)

segment include slope, length, mean, and variance. Symbolization is used in order
to have a interpretable representation of gait signals. However, no distance mea-
sure is derived from this representation. Adaptive Brownian Bridge-based Aggregation
(ABBA) [EG20a] is adaptive for both the segmentation and quantization steps. It also
chooses w and A through a data-driven procedure. For the segmentation, adaptive
piecewise linear continuous approximation of the signal is used. Each linear piece is
chosen given a user-specified tolerance tol: when the value of tol increases, the result-
ing number of segments w decreases. The quantization step consists in a K-means
clustering of the tuples of the increment over the segment and the segment length,
where the number of clusters is set to A. ABBA uses a scaling parameter scl that
calibrates the importance of the length in relation to its increment: the clustering is
performed on the increments alone for scl = 0, while the clustering is done on both
the length and increment with the same importance when scl = 1. Hence, the input
parameters are the tolerance tol, the scaling scl, and the alphabet size A. Note that
when A is not set by the user, ABBA does several runs the K-means algorithm to get
the optimal value of A, resulting in a higher computational cost. ABBA focuses on
signal reconstruction: there is no mention of a distance measure on symbolic repre-
sentations. Reconstruction is the inverse transformation: the original signal is inferred
from its transformation which is its symbolic sequence. A recent faster variant of the
ABBA method, fABBA [CG23], replaces the K-means clustering by a sorting-based ag-
gregation procedure that does not require the user to specify A.

While previously mentioned methods symbolize each signal independently, some
procedures operate on a data set of signals. These methods share a dictionary of
symbols across all signals of the considered data set. Symbolic Fourier Approximation
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(SFA) [SH12] is based on the Discrete Fourier transform (DFT). First, SFA selects the w
Fourier coefficients of lowest frequencies, and second, uses a procedure called Multi-
ple Coefficient Binning (MCB) to quantize them. In detail, MCB computes a user-defined
number A of quantiles per Fourier coefficient across all signals of a data set, and each
Fourier coefficient is represented by the bin (based on quantiles) to which it belongs.
In a supervised data mining task, the MCB bins are learned on a training set. SFA natu-
rally provides a low-pass filtering that reduces the influence of noise. Also, no distance
on SFA's symbolic representations is described. Note that SFA does not go through a
segmentation step, but still has the w parameter that determines the length of the
symbolic sequences.

Table V.2 summarizes the main SAX variants as well as our novel ASTRIDE and
FASTRIDE representations that will be presented in Section IV.3.

IV.2.2 Overview of distance measures on symbolic sequences

In order to use the learned symbolic representations for tasks such as classification
or clustering, it is crucial to define a distance measure between symbolic sequences,
which can be viewed as character strings. Distance measures on symbolic sequences
were reviewed in Section Ill.4, while distances on strings were reviewed in Section Il.3.
Defining an informative measure is a challenge that has received a lot of attention.

SAX employs MINDIST, a distance measure on symbolic sequences. Let z =
(x1,...,2,) and y = (y1,...,yn) be two real-valued time series with n samples. The
Euclidean distance between x and y is given by

(IV.1)

The MINDIST distance measure between the resulting symbolic sequences & and
mimics the Euclidean distance

MINDIST (#, ) = g 3 (dist (&4, :))° (IV.2)
=1

where the function dist(), based on a so-called look-up table, is illustrated in Table IV.1.

MINDIST requires the symbolic sequences to be of equal length. For a given value of

Table IV.1: Example of look-up table for MINDIST with A = 4. For
example, dist(a,d) = 1.34.

a b c d
a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.34 0.67 0 0

the alphabet size A, this table is calculated only once, and then stored for fast look-up.
For all look-up tables, whatever the alphabet size, the value in the cell of indexes (i, j)
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is given by

Bmax(i,j)~1 — Pmin(ij), Otherwise

where the [ are the boundaries of the bins used by SAX to discretize the segment
means. MINDIST is not a true metric, as dist(a, b) = 0 for example (see Table IV.1).

The literature on symbolic representations advocates that a major advantage of
symbolic representations is their ability to leverage the richness of the bioinformatics
and text processing communities [Lin+o07; EG20a]. However, few symbolic represen-
tations employ distance measures defined on strings [WMLos; TTK17]. A review on
string matching is given in [Navo1]. A popular distance measure is the edit distance
which is reviewed in Section Ill.3. For two strings s1 and s2, it is the minimal cost of a
sequence of operations that transform s1 into s2. The edit distance is also called the
Levenshtein distance [Lev+66]. If all the simple operations have a cost of 1, whatever
the operation or the characters involved, it is called the simple edit distance. If the three
authorized operations have different costs or the costs depend on the characters in-
volved, it is called the general edit distance.

For each symbolization method presented in Section IV.2.1, Table IV.2 indicates
whether it comes with a compatible distance measure.

0, ifli—j|<1
cellm:{’ i =l < (IV.3)

IV.2.3 Limitations of existing symbolization methods
IV.2.3.1 The need for adaptive segmentation and quantization steps

As stated above, only a few methods are adaptive, and fewer are adaptive on both
the segmentation and quantization steps. Let us understand with the SAX method
why this can be an issue. Note that the same observations apply to SAX-like variants.

First, uniform segmentation has flaws. Most signals found in practice contain
salient events that are crucial to perform tasks such as classification. However, uni-
form segmentation does not detect these events and neglects the phenomena of in-
terest. As can be seen on the SAX representation of Figure IV.1, the two peaks around
timestamps 280 and 330 are not detected. Uniform segmentation does not depend on
the specific signal or data set at hand, but only on the input word length w. Moreover,
because of it, SAX is restricted to input signals of equal length, while real-world signals
are often of varying lengths [Tan+19].

As for quantization, the Gaussian assumption of SAX can be inappropriate for
some data sets. SAX considers that the symbols obtained after quantization will be
equiprobable because all normalized time series follow a Gaussian distribution. While
normalized time series that are independent and identically distributed do tend to fol-
low a Gaussian distribution, this in not the case for the means per segment [BK15]. To
illustrate this point, we computed the means per segment for a data set from the
UCR Time Series Classification Archive [Dau+19] and their histogram is displayed on
Figure IV.2. As observed, the means per segment do not seem to follow a Gaussian
distribution. We also performed the D’Agostino’s K2 normality test, whose null hy-
pothesis is that the sample comes from a normal distribution. This test rejects the
Gaussian assumption at the risk level « = 5%. In total, we computed the mean per
segment for each of 86 univariate equal-size data sets from the UCR Time Series Clas-
sification Archive (that will be taken into account in the experiments of Section IV.4). All
data sets reject the normal distribution hypothesis at the risk level o = 5%. Note that
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Table IV.2: Synthetic comparison of some symbolization methods (including our proposed

ASTRIDE and FASTRIDE) for a word length w and an alphabet size A, with a data set composed

=64

32 bits or npjts

bits.) The Amean, Amin: Amaxs Aslopes Aclusters, Acoefficients are respectively the number of symbols
used to encode the mean, the minimum, the maximum, the slope, the number of clusters,

and the number of Fourier coefficients.

fFor ESAX, A

of N signals whose values are encoded on nps bits (for example npis

Amean = Amin = Amax~
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the authors of SAX [Lin+07] emphasize that, if the normality assumption is not satis-
fied, the algorithmis less efficient but still correct due to the lower-bounding property.

2500
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Figure IV.2: Example of histogram of the Strawberry data set (UCR Time Series Classi-
fication Archive) whose signals are of length n = 235 and for which the word length is
set to w = 32. The obtained p-value for D'Agostino’s K2 normality test is 0: the means
per segment do not come from a normal distribution.

IV.2.3.2 The need for a distance measure on symbolic sequences

As seen in Table IV.2, some symbolic representations do not provide a distance mea-
sure. Thus, they cannot be used directly for tasks such as classification or clustering.
As stated in Section IV.2.2, most symbolization methods that have a distance measure
are based on MINDIST from SAX. An issue of MINDIST is that it considers adjacent
symbols to be equal. For example, the MINDIST measure between adjacent symbols
a and b is null, hence symbols that are actually different will be considered equal by
MINDIST, which can lead to misclassification of signals. Moreover, MINDIST is based
on a Gaussian assumption. As a result, the MINDIST distance does not adapt to the
signal. In addition, MINDIST is restricted to symbolic sequences of equal lengths. For
example, MINDIST cannot be applied to the ABBA symbolic sequences.

IV.2.3.3 The need for a shared dictionary of symbols across the signals of a data
set

As stated in the introduction, one of the goals of symbolization is to reduce the mem-
ory usage of the data. However, only a few papers mention that, in order to recon-
struct a data set of IV symbolic sequences, one needs to store the N symbolic se-
quences, but also the dictionary of A symbols for each signal. Denote by nyis the
number of bits needed to store a real value. A symbolic sequence with one symbol
per segment requires wlogy(A) bits, resulting in Nw log,(A) bits for N symbolic se-
guences. A dictionary of symbols with one real value per symbol needs nys A per
signal, resulting in Nnyits A bits for N symbolic sequences if the dictionary of symbols
is not shared across signals.
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Let us consider the SAX and the ABBA methods. SAX carries a shared dictionary
of symbols across signals, while ABBA does not. For SAX, Nwlog,s(A) + npitsA bits
are needed to reconstruct a data set of IV symbolic sequences. For the dictionary of
symbols of ABBA, each symbol is a cluster center, and each cluster center has two
real values: the length and the increment. Hence, each symbol requires 2ny;s bits in
memory. But, contrary to SAX, ABBA needs to store one dictionary of symbols per
signal. As a result, we need Nwlogy(A) + 2npits N A bits for the whole data set. For the
Meat data set with N = 120, w = 10, A = 9, and npjts = 64 bits, the memory usage
to encode the whole data set is 4,380 bits for SAX, and 142,044 bits for ABBA, thus 32
times more. For ABBA, encoding the dictionary of symbols costs 36 times more than
encoding the symbolic sequences. As a result, ABBA requires much more memory
usage than SAX because it is adaptive and its dictionary of symbols is not shared. The
memory usage to reconstruct a data set of symbolic sequences for more methods are
given Table IV.2.

IV.2.4 Contributions

To the best of our knowledge, the ASTRIDE method to be presented in Section IV.3 is
the only symbolic representation offering adaptive segmentation and quantization, a
shared dictionary of symbols as well as a compatible distance measure and a recon-
struction procedure. Altogether, ASTRIDE circumvents the limitations of the methods
described in Section IV.2.3.

Instead of using uniform segmentation, ASTRIDE performs adaptive segmentation,
a.k.a. change-point detection [TOV20], in order to capture salient events. More pre-
cisely, we detect changes in the mean, where the number of changes is set by the
user. Moreover, ASTRIDE does not rely on the Gaussian assumption for the quanti-
zation: this step is adaptive on the signals at hand. Consequently, ASTRIDE does not
require any assumption on the distribution of the data.

We also introduce Dynamic General Edit Distance (D-GED), a new distance measure
on symbolic representations which is based on the general edit distance. Moreover,
unlike MINDIST, the symbolic sequences are not required to be of equal lengths.

Adaptive segmentation and quantization are learned at the level of the data set of
signals: the change-points as well as the quantiles (for the quantization) are estimated
using all signals in the data set. ASTRIDE's dictionary of symbols is the same for all
signals (unlike ABBA), and is thus memory-efficient.

IV.3 The ASTRIDE method

ASTRIDE (Adaptive Symbolization Time seRles DatabasEs) is a novel symbolic repre-
sentation for data sets of signals. It is an offline method inputting univariate signals
that are required to be of equal size. There are two parameters to be set by the user:
the word length w and the alphabet size A. ASTRIDE comes with a new distance mea-
sure on symbolic sequences: D-GED (Dynamic General Edit Distance). After describing
ASTRIDE and D-GED, we introduce FASTRIDE (Fast ASTRIDE), an accelerated version of
ASTRIDE.
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IV.3.1 ASTRIDE segmentation step

As a preprocessing step, all times series in the data set are centered and scaled to
unit variance. Then, the N signals of length n are segmented. To that end, all sig-
nals are stacked, producing a single multivariate signal of length n and dimension
N. ASTRIDE applies multivariate change-points detection with a fixed number of seg-
ments on this high-dimensional signal. When w segments are chosen, the segmen-
tation provides w — 1 change-points that are the same for each univariate signal.
Since the change-points are common to all (univariate) signals, this allows ASTRIDE to
be memory-efficient. The lengths of each resulting symbolic sequence are the same
(equal to w). For a given multivariate signal y = (y1, ..., y») with n samples, change-
point detection finds the w — 1 unknown instants ¢] < t5 < ... < t;,_; where some
characteristics (here, the mean) of y change abruptly. A recent review of such methods
is given in [TOV20]. In the context of ASTRIDE, the number of changes w — 1 is chosen
by the user: it is the desired number of regimes, meaning the length of the resulting
symbolic sequences. The change-point algorithm estimates 1, . . ., t,,_; which are the
minimizers of a discrete optimization problem

w1 ter1—1

(51,...,fw_1) = argmin Z Z vt — Yiy.: tk+1H (IV.4)

(tha slw— 1 k=0 t=ty

where g1, ., is the empirical mean of {y;,,...,¥:,,,-1}. By convention, ¢y = 0 and
t, = n. Formulation (IV.4) seeks to reduce the error between the original signal and
the best piecewise constant approximation. This problem is solved using dynamic
programming which has a time complexity of O (anz) where N is the number of
signals in the data set.

Figure IV.1 displays an example of an ASTRIDE representation of a signal, along
with the SAX representation (for the same parameters w and A). Visually, compared to
uniform segmentation, adaptive segmentation leads to more meaningful segments.
For example, it detects that one segment is sufficient to approximate the signal from
timestamp 0 to 250, and that there is a peak around timestamp 280 and another
one around timestamp 330. It shows the importance of our adaptive segmentation
scheme. Figure IV.3 depicts how the multivariate change-point detection works. The
algorithm tries to find the abrupt changes in mean that are common to most (univari-
ate) signals in the data set.

IV.3.2 ASTRIDE adaptive quantization step

After segmentation, the means of all segments are computed and grouped into bins
based on the empirical quantiles. Each segment is then symbolized by the bin it be-
longs to. This quantization step is similar to the MCB (Multiple Coefficient Binning)
procedure of SFA [SH12]. Since the segments found during the segmentation step
correspond to mean-shifts, it is reasonable to represent each segment by its mean
value. The A — 1 quantiles are calculated on the means of all segments of all signals
in the data set, leading to A symbols. The time complexity of the quantization step
(computing the means, the quantiles, and applying the binning) is O (Nw), where N
is the number of signals in the data set. By design, all symbols are equiprobable. Fig-
ure 1V.1 shows an example of an ASTRIDE representation. Compared to SAX, the bins
of ASTRIDE represent the quantiles of the means per segment and are quite different
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Figure IV.3: Multivariate change-point detection on (univariate) signals from the CBF
data set (UCR Time Series Classification Archive). Here, n = 128 and w = 5. The
change-points are obtained from the whole training set, but only a few signals are
displayed.
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from the ones of SAX. Recall that ASTRIDE is fitted on the whole training set (and not
on the displayed signal only).

IV.3.3 The D-GED distance measure

We introduce Dynamic General Edit Distance (D-GED), a novel distance measure on
symbolic representations. D-GED is compatible with symbolic sequences of equal
or varying lengths. The distance measure D-GED is based on the general edit dis-
tance [Navo1]. D-GED sets the operation costs of the general edit distance so that
they incorporate the distance between individual symbols as follows:

* The substitution cost sub(a, b) for individual symbols a and b is the Euclidean
distance between the mean p, of the mean values attributed to symbol a and
the mean y, of the mean values attributed to symbol b

sub(a, b) = [[#a — o]l (V.5)

« For all characters, the insertion and deletion costs are set to submy.x, Where
subpax IS the maximum value of the modified substitute costs given in (IV.5).

For the substitution cost, the intuition is that if symbols a and b are "very different”,
then the difference between u, and puy, will be wider, and substituting them will have
a larger cost in D-GED. By setting the insertion and deletion costs to subyax, D-GED
favors substitutions over insertions and deletions. The worst-case complexity to com-
pute the D-GED distance measure of two symbolic sequences of lengths w; and wy is
O(wyws).

D-GED is not applied directly on the symbolic representation but on a replicated
version. Indeed, when a method uses a non-uniform segmentation, the segments
can have different lengths. Without taking into account the varying segment sizes, D-
GED would compare (substitute or delete/insert) symbols corresponding to segments
of different lengths. To prevent ASTRIDE from losing this information, we propose
the following procedure. Denote by /1, ..., £, the segment lengths obtained with our
adaptive segmentation. By design, they are the same for all signals in the data set.
Each segment length is divided by the minimum of all segments lengths and rounded
to its nearest integer to obtain the normalized segment lengths (1, ..., {,. Then, the
symbolic sequences are modified by replicating the symbol of the first segment ¢,
times, then the symbol of the second segment /5 times, etc. Finally, the D-GED mea-
sure between these replicated symbolic sequences is computed. As an example, con-
sider the symbolic sequence from ASTRIDE depicted in Figure IV.1. The symbolic se-
guence without incorporating information about the segment lengths is 1230. The
segment lengths are (266, 47,40, 95) before normalization (more details on the signal
are given in Table IV.3). The smallest segment has 40 samples and, as a result, the
normalized segment lengths are (7,1, 1,2). The replicated symbolic sequence based
on the normalized segment lengths is

11111112 3 00 (IV.6)
R o e

7 times once once twice

which is of total length 11.
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Table IV.3: Details of the ASTRIDE representation of the signal displayed on Figure IV.1.
The parameters of ASTRIDE are w = 4 and A = 4. (The quantized mean feature is
described in Section 1V.3.4.)

segmentstart mean symbol quantized mean length normalized length

o —-0.17 1 —0.16 266 7
266 1.11 2 1.05 47 1
313 2.34 3 2.38 40 1
353 —1.07 0 —1.06 95 2

IV.3.4 Reconstruction of ASTRIDE symbolic sequences

In ASTRIDE, a signal is reconstructed from its symbolic sequence as follows. Each sym-
bol of the symbolic representation is replicated ¢, times, where /i is the length of the
associated segment. The length of the reconstructed signal is the same as the original
one. Then, each symbol is replaced by the average of all segment means that belong
to the associated bin (the quantized mean). This resulting real-valued signal is the
reconstruction by ASTRIDE. As an example, consider the signal shown in Figure IV.1
whose symbolic representation is 1230. Details about the segment lengths, symbols,
and quantized mean are given in Table IV.3. First, the symbols 1, 2, 3 and 0 are repli-
cated 266, 47, 40 and g5 times respectively. Second, each symbol is mapped to its
guantized mean, going from a symbolic signal to a real-valued signal:

]-0.16\...]-0.16\ 1.05|...]1.05 2.38‘...’2.38“—1.06\...]—1.06\ (IV.7)
S—_— S—
266 times 47 times 40 times 95 times

The real-valued signal displayed in Formula (IV.7) is the reconstruction of the 1230
symbolic sequence. A reconstructed signal from ASTRIDE is a piecewise constant sig-
nal, as displayed in Figure IV.4. Notice how the reconstructed signal in Figure IV.4 is

3 —— original signal
reconstructed signal

/\
//\v/ \
0 — . — e —————— /

—— —_— —— - -~
-1 \\

~—
0 50 100 150 200 250 300 350 400

Figure IV.4: Example of reconstruction by ASTRIDE of the 1230 symbolic sequence
(same original signal as in Figure IV.1). Here, w = 4 and A = 4. Note that ASTRIDE is
fitted on the whole training set (and not on the displayed signal only).

different from the mean per segment representation in Figure V.1, as the quantized
mean is used, and not the mean.

The memory cost of ASTRIDE is easily derived. To reconstruct N symbolic se-
quences from the ASTRIDE representation with w segments and A symbols, one needs
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to store Nwlog,(A) bits for the symbolic sequences. For the shared dictionary of sym-
bols, one needs nyjts A bits. In addition to storing the symbolic sequences with their
shared dictionary of symbols, one also needs to store the w segment lengths that are
the same for all symbolic sequences, resulting in npiisw bits for the whole data set. In
total, Nwlogy(A) + (w + A)npits are required. To illustrate, let us take the example in
Section IV.2.3.3: the Meat data set with N = 120, w = 10, A = 9, and npits = 64 bits.
For ASTRIDE, the memory usage to encode the whole data set is 5,020 bits. Recall that
the memory usage is 4,380 bits for SAX, and 142,044 bits for ABBA.

IV.3.5 The FASTRIDE method

FASTRIDE (Fast ASTRIDE) is an accelerated variant of ASTRIDE. For the symbolization
procedure, the only difference is its segmentation step which is uniform, like SAX. The
reconstruction of FASTRIDE is performed in the same way as ASTRIDE. For the dis-
tance measure of FASTRIDE, we use D-GED but there is no need to replicate the sym-
bolic sequences, as the segment lengths are equal due to the uniform segmentation.
FASTRIDE is computationally faster than ASTRIDE because FASTRIDE skips the adap-
tive segmentation step, and the input symbolic sequences of the general edit distance
are not replicated, thus are shorter.

IV.4 Experimental results

We compare ASTRIDE and FASTRIDE to several popular symbolic representations (SAX,
1d-SAX, SFA, ABBA) on a classification task and a reconstruction task. We show that
ASTRIDE and FASTRIDE constitute the best compromises to address both these tasks.
Indeed, as will be discussed, some of these methods can be used only on one task; in
particular, SFA and ABBA do not possess a distance measure and, therefore, cannot
be used as such for classification.

The adaptive segmentation step of ASTRIDE is implemented with the ruptures
Python package [TOV20]. The general editdistance in D-GED uses the weighted-levenshtein
Python package [Inf18]. SAX and 1d-SAX are implemented in the tslearn Python pack-
age [Tav+20]. SFA is implemented from scratch. ABBA is taken from the authors'
GitHub repository’. A Python implementation of ASTRIDE and FASTRIDE, along with
codes to reproduce the figures and scores in this chapter, can be found in a GitHub
repository?.

IV.4.1 Classification task

We first investigate the performances of our approaches on a classification task.

IV.4.1.1 Experimental setup

Data mining task and competitors Our methods ASTRIDE and FASTRIDE are com-
pared to SAX and 1d-SAX. One-Nearest Neighbor (1-NN) classification is used to com-
pare the quality of both the symbolizations and the distance measures, as often done

"https://github.com/nla-group/ABBA
*https://github.com/sylvaincom/astride
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Table IV.4: Presentation of the 86 univariate equal-size data sets from
the UCR Time Series Classification Archive considered in our classifi-
cation experiment.

No. of signals Length No. of classes

mean 1,357 644 10
min 40 128 2
50% 687 456 4
max 9,236 2,844 60

in the literature [Bag+17]. For ASTRIDE and FASTRIDE, the change-points and the quan-
tization bins are learned on the training set.

Our comparison is limited to classification techniques based on symbolizations,
since our objective is to evaluate the relevance of this step itself and not to
achieve state-of-the-art performance on time series classification. Hence, we ex-
clude classifiers that are built on top of symbolic representations, namely bag-of-
words and ensemble-based algorithms. In particular, SAX-VSM (SAX and Vector Space
Model) [SM13], BOSS (Bag-of-SFA-Symbols) [Sch15], Mr-SEQL (Multiple symbolic rep-
resentations SEQuence Learner) [Ngu+19], WEASEL (Word ExtrAction for time SEries
cLassification) [SL17], and TDE (Temporal Dictionary Ensemble) [Mid+20] are out of
the scope on this study. More details on these techniques can be found in [Bag+17;
Rui+21; Aga+21].

Hyperparameters The hyperparameters for all methods are:
* the word length w in {5, 10, 15, 20, 25}

* the alphabet size A in {4,9,16,25}.
For1d-SAX, A € {4,9,16, 25} corresponds to (Amean, Asiope) € {(2,2),(3,3),(4,4), (5,5)}.

Evaluation of the task The evaluation metric for the classification is the test accu-
racy: percentage of correctly classified signals.

Datasets Since SAXand other methods can be applied only to univariate and equal-
size times series and we choose our signals to be of length at least 100 (as in the ABBA
paper [EG20a]), the scope of our comparisons is restricted to 86 data sets of the UCR
Times Series Classification Archive [Dau+19]. The data sets are both real-world and
synthetic, and come with a default train / test split which is the one used in this study.
Our experiments were launched on a total of 66,827,003 samples across all signals of
all data sets. Table IV.4 recaps some key figures of the considered data sets. While
averaging accuracies over different data sets, with different sizes and challenges, has
some flaws, itis the best compromise to obtain a global key figure to assess the quality
of a classifier on the UCR Time Series Classification Archive.

IV.4.1.2 Results

Figure IV.5 displays the accuracy scores as a function of the word length w averaged
over the selected data sets, for several methods, and for different values of alphabet
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size A. For each method and each alphabet size A, plotting the accuracy in relation to
w tells us which method provides the best representation: the larger the accuracy for
a given w, the better the symbolic representation.

Our results show that ASTRIDE and FASTRIDE perform better than both SAX and
1d-SAX on the classification task. Indeed, for each alphabet size A and each word
length w, ASTRIDE and FASTRIDE have a higher accuracy than both SAX and 1d-SAX.
This shows that the proposed adaptive symbolization process, combined with the D-
GED distance measure, is relevant in this classification context.

Influence of the parameters We observe that, for all methods, the accuracy in-
creases as the word length w increases. This was expected as the symbolization
becomes more precise as each signal is represented with more bits. Interestingly,
ASTRIDE and FASTRIDE achieve reasonable classification results even for a very small
number of segments. For example, when w = 5 and A = 16, ASTRIDE has a score of
57%, while SAX and 1d-SAX have a score of 48%. This confirms the fact that using a
more adaptive representation better captures the phenomenon observed in the sig-
nals, and thus better compresses the information.

For all methods, when the alphabet size A increases, the classification scores im-
prove. Yet, ASTRIDE and FASTRIDE are less sensitive to the value of A. For w = 20,
the accuracy of ASTRIDE is of 61%, 65%, 67%, and 68%, for A =4, A =9, A = 16, and
A = 25 respectively. On the contrary, SAX seems to be very sensitive to the value of A:
for w = 20, it reaches 45% for A = 4 and 62% for A = 16. Moreover, the performance
of SAX is worse than 1d-SAX for small values of A, and is slightly better than 1d-SAX
(and even largely surpasses it) for large values of A.

Importance of the adaptive approaches According to Figure IV.5, FASTRIDE
achieves results similar to those of ASTRIDE, which suggests that the adaptive seg-
mentation does not increase performances. As will be seen in the next section, the
relevance of the segmentation phase is more acute in the reconstruction task.

The importance of the adaptive quantization process based on quantiles can been
assessed by comparing the performances of FASTRIDE to those of SAX, which uses
quantization bins based on the standard normal distribution instead of an empirical
distribution. Based of the results, it appears that using the quantiles to build both
the symbolization and the distance measure allows us to adapt it to the data set of
interest, and to detect variations between signals that are not captured by the fixed
MINDIST costs.

We also note that both FASTRIDE and ASTRIDE benefit from the newly introduced
D-GED distance, which offers nice performances on this classification task.

IV.4.2 Reconstruction task

In this section, we investigate the performances of our approaches on a reconstruction
task.

IV.4.2.1 Experimental setup

Data mining task and competitors Our ASTRIDE and FASTRIDE representations,
SAX, 1d-SAX, SFA, and ABBA are compared on a reconstruction task. Except for ABBA,
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Figure IV.5: Accuracy of SAX, 1d-SAX, ASTRIDE, and FASTRIDE on the classification task
versus the word length w, for several values of alphabet size A, averaged on 86 data
sets from the UCR Time Series Classification Archive.
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the papers about SAX, 1d-SAX, and SFA do not tackle signal reconstruction. However, it
is easy to infer a reconstruction procedure for these methods. For SAX and 1d-SAX, the
sample values on each segment of the reconstructed signal are based on the Gaussian
bins. For SFA, the reconstructed signal is the Fourier reconstruction based on the
quantized Fourier coefficients.

Hyperparameters The alphabet size is fixed to A = 9 for all methods, and the scal-
ing parameter of ABBA is set to scl = 1, as is done in [EG20a]3. The word length w
results from the choice of the tolerance tol in ABBA. For fair comparison, this value
of w is determined by running ABBA with a fixed value of tol. To compare the differ-
ent approaches, we apply a protocol inspired from the ABBA paper [EG20a]. For each
signal, ABBA is first run with a low tolerance tol = 0.05 and it returns the number of
segments w to approximate the original signal at tolerance tol. If w > nr, where n is
the length of the original signal and 7, is a target memory usage ratio, we successively
increase tol by 0.05 and rerun ABBA until w < nr. This last value is denoted by w,. As
in [EG20a], we exclude all signals leading to w, < 9, because we choose A = 9.

We run this protocol for , € {5%,6.7%,10%, 16.7%,20%, 25%, 33.3%}. Unlike
ABBA, which works signal by signal, SFA, ASTRIDE, and FASTRIDE work on a whole data
set, so their input word length w is the same for all signals in the data set. For the lat-
ter methods, we set w equal to the average w, of the w,'s obtained for each signal by
ABBA. As a result, each data set and each value of 7; is associated with a word length
We.

In most cases, the empirical memory usage ratio 7. = w,/n is smaller than the
target memory usage ratio 7. The values of 7, and their corresponding 7. (averaged
on all signals irrespective of their data set) are displayed in Table IV.5. In the protocol,
if it is not possible to compress a signal at a given tol, 7;, and A, then the whole data
set is excluded from our benchmark, which explains why there are different numbers
of compatible data sets in Table IV.5.

Evaluation of the tasks The evaluation metrics of the reconstruction task are the
Euclidean and DTW (Dynamic Time Warping) which is robust to time-shifts. A data
set of N signals is transformed into N symbolic sequences, then these N symbolic
sequences are reconstructed. For each signal, we compute the reconstruction error:
the distance between the original signal and its reconstruction. Recall that, for all
methods, each signal is first centered and scaled to unit variance. The reconstruction
error is between the scaled original signal and its reconstruction, as the normalization
is important when conducting benchmarks [KKo3].

Moreover, because we noticed that the SAX and 1d-SAX implementations from
tslearn (v0.5.2) [Tav+20] poorly handles the last samples of the reconstructed sig-
nals when n is not divisible by w, the reconstruction error is computed between the
truncated signals: both the original and reconstructed signals (for all methods) are
truncated so that their length is |n/w] w.

Data sets As for the classification task, we use as input the UCR Time Series Classi-
fication Archive. The scope of our comparisons is restricted to equal-size data sets of
length at least 100 from the UCR Times Series Classification Archive [Dau+19].

3Note that we obtain similar reconstruction error results with scl = 0.
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Table IV.5: Empirical protocol to set the word length w per data set for
the reconstruction benchmark, given a target memory usage ratio 7
for ABBA.

Target memory Empirical mem- Number of com-
usage ratio 7 (%) ory usage ratio 7, patible data sets

(%)
5 4.0 44
6.7 5.3 49
10 7.6 56
16.7 1.7 64
20 13.4 65
25 15.8 67
333 19.3 69

IV.4.2.2 Results

Figure IV.6 displays the reconstruction error versus the memory usage ratio, averaged
over the compatible data sets, for several methods, and a fixed alphabet size A = 9.
We observe that, for both the Euclidean and DTW errors, SFA obtains the best perfor-
mances, followed by ASTRIDE.

To complement the use of the mean in Figure IV.6, the box-plots in Figure IV.7
show the spread of the reconstruction errors and the outliers, for a fixed target mem-
ory usage ratio = 6.7%. The most extreme outliers are generated by ABBA, which
shows that this method is not robust. A possible explanation is that ABBA is very sen-
sitive to noisy signals because of its piecewise linear approximation step and its use of
the quantized increments. On the contrary, SAX, 1d-SAX, SFA, ASTRIDE, and FASTRIDE
seem quite robust.

Influence of the memory usage ratio For SAX, 1d-SAX, SFA, ASTRIDE, and FASTRIDE,
the reconstruction error decreases as the memory usage ratio increases. Indeed, as
the memory usage ratio increases, more segments are allowed in the symbolic repre-
sentations, resulting in a higher quality of the reconstruction.

For very small memory usage ratios (7. < 6%), SFA and ASTRIDE have similar per-
formances. Moreover, when 7. < 6%, according to the DTW error, ABBA performs
better than ASTRIDE and FASTRIDE. However, this observation is challenged by the
box-plot in Figure IV.7, which shows that ABBA reaches very large errors and is much
less robust than ASTRIDE. Moreover, the empirical memory usage ratio 7. = we/n in
Figure IV.6 does not take into account the total memory usage: itignores the dictionary
of symbols and the fact that the reconstruction is done on a data set of signals (and
not on a single signal). As emphasized in Section 1V.2.3.3 and Section IV.3.4, the total
memory usage of ABBA is much larger than those of ASTRIDE and FASTRIDE, because
ABBA does not share a dictionary of symbols across signals.

Importance of the adaptive approaches Accordingto Figure V.6, ASTRIDE achieves
better results than FASTRIDE, thus showing the relevance of the adaptive segmenta-
tion on the reconstruction task. Indeed, the segmentation phase allows to focus on the
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Figure IV.6: Reconstruction benchmark for several methods and several empirical
memory usage ratios 7., averaged over the signals from various data sets from the
UCR Time Series Classification Archive, for A = 9.
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Figure IV.7: Box-plots of the reconstruction benchmark for several methods over the
signals of 49 data sets from the UCR Time Series Classification Archive, for A =9 and
7t = 6.7% (leading to 7. = 5.3%). For both box-plots, the range of the y-axis is limited
to the 99.99% quantile of the reconstruction error for visualization purposes.
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events of interest, which are thus correctly reconstructed. Dedicating a memory size
for the fine encoding of these events thus seems to be a good strategy to compress
the information contained in the signals. Adaptive quantization based on quantiles
does not appear particularly useful for signal reconstruction, as FASTRIDE performs
similarly to SAX.

Comparison of the methods on a single signal Figure IV.8 gives an example of
reconstruction of a single signal from the UCR Time Series Classification Archive, for
several methods. Contrary to ASTRIDE, the change-points from ABBA are not exact but
approximated from the cluster centers. Thus, they are not precise in the reconstruc-
tion phase, which explains why ABBA behaves better with the DTW error, which allows
for time-shifts, than with the Euclidean error. Note that the authors of ABBA empha-
size that their method does not focus on approximating the signal values at the exact
timestamps, but rather on capturing the overall behavior. SFA tends to provide accu-
rate global - rather than local - reconstruction: as shown in Figure IV.8: depending on
the data set, this property can be an advantage or a drawback. Regarding ASTRIDE,
we can see that the segmentation phase allows us to focus on the phenomenon of
interest in the signal, thus to devote more memory to the encoding of salient events.

IV.4.3 Computational complexity

This section describes an important characteristic of the methods: the computational
cost. The processing times of the different methods are compared on the 1-NN clas-
sification task applied to the ECG200 data set from the UCR Time Series Classifica-
tion Archive, and are reported in Table IV.6. We ran the experiments using Python
3.10.6 on a laptop under macOS 13.0.1 with Apple M1 Chip 8-Core CPU and 7-Core
GPU. All methods mentioned in Section IV.4.1 are compared (SAX, 1d-SAX, ASTRIDE,
and FASTRIDE). For SAX, both our implementation and tslearn are tested. Two du-
rations are reported: the time to compute the symbolization for all time series in the
data set, and the time to perform the actual 1-NN classification from the symbolized
time series.

Table IV.6: Processing times on the symbolization and 1-NN classification on
the ECG200 data set (UCR Time Series Classification Archive) composed of 100
training signals and 100 test signals of length n = 96, with w = 10 and A = 9.

Method Symbolization pro- 1-NN classification
cessing time (s) processing time (s)

SAX 0.27 0.08

SAX (tslearn) 0.02 0.11

1d-SAX (tslearn) 0.42 0.21

ASTRIDE 0.30 0.17

FASTRIDE 0.26 0.07

First, as expected, the ASTRIDE symbolization is more time-consuming than the
non-adaptive ones (SAX for example). An important remark is that the temporal
segmentation is relatively fast: the computation times for ASTRIDE and its variant
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Figure IV.8: Example of reconstruction of a single signal from the Beef data set (UCR
Time Series Classification Archive) of original length n = 470 for several methods,
with A = 9 and = 5% leading to w, = 19 and 7. = 4.0%. The Euclidean error is
respectively of 9.9, 10.7, 10.7, 18.1, 6.0, and 11.5 for SAX, 1d-SAX, SFA, ABBA, ASTRIDE,
and FASTRIDE respectively. Note that SFA, ASTRIDE, and FASTRIDE are fitted on the
whole training set (and not on the displayed signal only). All displayed signals are
truncated (so that their length is [n/w | w).
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FASTRIDE without adaptive segmentation are quite similar. 1d-SAX is more expen-
sive because it takes into account the mean as well as the slope, then has to combine
them.

Second, as far as the classification step is concerned, it appears that the compu-
tation of D-GED for ASTRIDE is more expensive than for FASTRIDE because of the
replication of the symbolic sequences which makes them longer. For ASTRIDE, us-
ing the normalized segment lengths instead of the raw segment lengths helps mak-
ing the replicated symbolic sequences shorter, but a gap remains in comparison to
FASTRIDE. Several improvements could further lower the computation time, such as
using more advanced general edit distances (e.g., Weighted Symbols-Based Edit Dis-
tance [Bar+10]), which are optimized to deal with redundant series of symbols.

IV.5 Conclusion

We have introduced a new symbolic representation of time series, ASTRIDE, along
with its accelerated variant FASTRIDE, as well as a novel distance measure on sym-
bolic sequences, D-GED. ASTRIDE is the only symbolic representation offering adap-
tive discretization on both the time and amplitude dimension, at the scale of a data
set, while having a compatible distance measure and a reconstruction procedure that
is memory-efficient. Hence, ASTRIDE combined with D-GED alleviates the main draw-
backs of existing symbolic representations. ASTRIDE uses change-point detection of
mean-shifts instead of uniform segmentation, and adaptive quantization using quan-
tiles in place of fixed Gaussian bins. Moreover, D-GED is based on the general edit
distance which relies on the quantiles and deals with substitution, deletions and in-
sertions, which are not handled by the MINDIST distance measure. In addition, thanks
to the multivariate change-points and the quantiles learned from all signals in the data
set, the dictionary of symbols is shared across all signals, thus reducing memory us-
age.

Our experiments show the quality of our symbolic representations. Indeed, both
ASTRIDE and FASTRIDE give better accuracies than SAX and 1d-SAX on the classification
task, for a same word length. This performance is mainly due to the adaptive quan-
tization based on quantiles and the D-GED distance measure. For the reconstruction
task, FASTRIDE and especially ASTRIDE give better errors than SAX, 1d-SAX and ABBA,
for a same memory usage ratio. On the reconstruction task, the adaptive segmen-
tation is particularly relevant, thus using ASTRIDE rather than FASTRIDE seems more
appropriate.
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Chapter V

d_symb: an interpretable distance
measure for multivariate signals

In many applications, such as behavioral neurology, researchers have to compare
and understand large amounts of multivariate time series in an interactive and inter-
pretable way. We introduce dy.ms, 0 novel distance measure for comparing multivari-
ate non-stationary signals. Unlike most distance measures on multivariate signals,
dsyms takes into account their non-stationarity thanks to a symbolization step. This
step is based on a change-point detection procedure that splits a non-stationary signal
into several stationary segments, followed by quantization using K-means clustering.
The proposed distance measure leverages the general edit distance and is applied to
the symbolic sequences. The advantages of ds,m» are shown on three data sets of phys-
iological signals. Moreover, we describe an online tool, called the d .., playground,
that we implemented to allow other researchers to apply ds,ms to their uploaded data.

Contents
V.1 Introduction . .......... ... 00 119
V.2 Thedsymbmethod . ... ... ................ 121
V.3 Applicationsofdsymb ... .................. 123
V.3.1 Application on the JIGSAWS dataset . . . ... ... .... 123
V.3.2 Application on the human locomotion data set . . .. .. .. 126
V.3.3 Application on the upper-limb movement analysis . . . . . . 127
V.4 The d_symb playground ... ................. 130
V.4.1 Individual analysis frame . . . .. .. ... ... ... .... 132
V.4.2 Data set analysis frame . . . . ... ... ... ... ... . 132
V.4.3 Benchmark frame. . . . . .. ... .. oL 133
V.5 Conclusion . ... ... ..., 133

V.1 Introduction
In numerous applications, large data sets of time series are collected and then com-

pared with each other. For instance, in behavioral neurology, subjects (human or an-
imal) with various neurological conditions are monitored during long time periods.
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Then, researchers want to compare subjects or groups of subjects or assess a sub-
ject's evolution (longitudinal study) using those signals. The recordings are often mul-
tivariate, as they are collected from one or several sensors. Moreover, because of
operational constraints, subjects are monitored for prolonged periods, yielding large
time series. For example, when monitoring elderly patients in hospitals [Jun+21], set-
ting up the sensors is cumbersome and can only be done once. As a result, signals also
contain several different regimes of interest. In such contexts, researchers focus on
the dynamic or chronology of those regimes: in [Jun+21], medical doctors want to eval-
uate their patients’ gait during a 10-minute protocol of several simple activities, e.g.,
walking and climbing stairs. In addition, they need intuitive and immediate feedback
in order to make a diagnosis. An informative distance measure between these kinds
of signals should consider this non-stationary structure. Such a setting -comparing
long multivariate time series with switching regimes in a fast and interpretable way-
is found in a great number of biomedical applications as well as industrial contexts.

Related work. Dynamic Time Warping (DTW) [BCo4], which is arguably the most
popular elastic distance measure, is often used in such situations [Shi+23]. One im-
portant feature of DTW is its robustness to time warping, that is, a contraction or di-
latation of the time axis. First defined for univariate signals, it was recently extended
to multivariate signals. Two popular approaches are often used in practice: the inde-
pendent and dependent strategies [SY+17]. In the independent strategy, the univari-
ate DTW is applied to each dimension separately, and the resulting distances on each
dimension are summed. The dependent strategy considers the multivariate series as
a single series in which each timestamp is associated with a single multidimensional
point. The DTW scheme is then applied using Euclidean distances between the mul-
tidimensional points of the two series. Other variants of multivariate DTW exist (see
Chapter Il1). One such variant is Derivative DTW [KPo1] which applies DTW, not directly
on the raw signals, but on their first derivative. Another variant, known as Weighted
DTW [JJO11], uses custom weights to avoid large warpings. Both Derivative DTW and
Weighted DTW can be combined into a variant called Weighted Derivative DTW. The
time complexity of DTW-based distances is O(dmn) where m and n are the lengths
of the compared time series and d is the dimension. In addition to the high compu-
tational cost, DTW-based distances are not always easy to interpret. For long signals,
the warping path between two signals is as complex as the original data.

Another category of methods is based on symbolic representations (reviewed in
Chapter Il), on which a distance measure is defined. Symbolization transforms a real-
valued signal y of arbitrary length n into a discrete-valued signal § of smaller length
w < n, called a symbolic sequence. Acommon symbolic representation for univariate
signals is Symbolic Aggregate approXimation (SAX) [Lin+03; Lin+o7] that has successfully
been used in several data-mining tasks such as classification [Lin+o7; Ngu+19], clus-
tering [Lin+07] or indexing [Cam+10]. However, extending a symbolic representation
to the multivariate case remains a challenge. A naive approach consists in symboliz-
ing each dimension independently and creating meta-symbols that are combinations
of the first symbols. The total number of symbols is then A%, where A is the num-
ber of symbols for each dimension and d is the number of dimensions. However, this
approach does not scale well when d increases. For instance, MSAX [AVC20], which
is a multivariate extension of SAX, is applied to data sets of trajectories (d = 2) only.
As a comparison, the physiological signals that we use in the experiments can have
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hundreds of dimensions. Large alphabets are also less interpretable, even for small
values of A and d.

Finally, distances based on feature extraction often lose the temporal aspect that
is essential for time series. Indeed, such methods (reviewed in Section Ill.4.3) extract
features that are mostly based on the frequency of symbolic words [SM13; Schis].
For example, in BOSS [Sch15], symbolic words are computed on overlapping sliding
windows, then signals are compared based on their histograms of symbolic words.

Contributions. We propose a symbolic representation, with a compatible distance
measure on its symbolic sequences, for a data set of multivariate time series that
can be non-stationary, called d,,,, [CTO23a]. Unlike most distance measures on mul-
tivariate signals, d,yms takes into account their non-stationarity thanks to a symbol-
ization step. This step is based on a change-point detection procedure that splits a
non-stationary signal into several stationary segments, followed by quantization us-
ing K-means clustering. The proposed distance measure leverages the general edit
distance with custom costs. The advantages of d,,,;, are shown on three data sets
of physiological signals. Experiments show how interpretable the symbolization is: a
single glance at the symbolic sequences provides an immediate and informative de-
scription of a data set. Moreover, compared to nine multivariate elastic distances on a
clustering task, d,m» preserves a competitive performance while being several orders
of magnitude faster than the other methods. With these desirable characteristics, we
developed the d,,, playground [Com+24Db], an online tool that allows researchers to
apply dsymy to their uploaded data.

Organization of the chapter. In the remainder of this chapter, we describe our
dsymp» Method in Section V.2 and apply it to three multivariate physiological data sets
in Section V.3. Finally, in Section V.4, we present our online tool, the dy,,;, playground.

V.2 The d symb method

Our method, denoted dgy.,5, is a novel distance measure on multivariate signals
of possibly different lengths. This distance measure is designed to handle non-
stationarity, to be interpretable, and to run fast to allow interactivity. The symbol-
ization is computed using the same steps as ASTRIDE: signal segmentation, feature
extraction, and quantization. However, there are several noteworthy modifications
in the segmentation and the quantization steps. Each step, of the symbolization and
the resulting distance, is briefly described in the following. Let y = (y1,...,y,) be a
multivariate signal.

1. Each multivariate signal is partitioned into stationary segments using a change-
point detection procedure. Signals are treated individually, unlike ASTRIDE,
which deals with the whole data set simultaneously.

Contrary to ASTRIDE, where the number of change-points is fixed by the user,
in dgymp, the number of changes is controlled by a penalty parameter denoted
\. The change-point estimates ¢y, . . ., £ (@ is the number of detected changes)
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are the minimizers of a discrete optimization problem:

w1 ter1—1

(12),751,...77?1;]) = argmin Z Z \|yt—gtk;tk+1||2+>\w, (V.1)

(Wt 5tw) k=0 t=t

where g4, ., is the empirical mean of {y;,,...,y.,~1} and A > 0 is a penal-
ization parameter. (By convention, ¢ty := 0 and t,,+1 := n.) The penalized for-
mulation (V.1) seeks a compromise between the reconstruction error given by
the sum of quadratic errors and the complexity given by the number of change-
points. Problem (V.1) is solved using the Pruned Exact Linear Time (PELT) algorithm
[KFE12], which is shown to have O(n) complexity under the assumption that the
segment lengths are randomly drawn from a uniform distribution.

Intuitively, the \ parameter penalizes the introduction of a new change-point:
when )\ is small, many change-points are detected. Once the user chooses a
penalty )\, the segmentation procedure returns the segment bins and the esti-
mated number of segments.

2. Each signal segment is summarized by its mean vector.

3. All segments of all signals are then pooled together and assigned a symbol
through K-means clustering. The user-defined alphabet size A is the number
of clusters. Each signal segment is symbolized by its cluster. A complete signal
is symbolized by the sequence of symbols, yielding a symbolic representation.
This is different from ASTRIDE, which uses quantiles to discretize univariate time
series.

4. The final distance d,,,; is computed as the general edit distance between the
symbolic version of the signals. The distance is the same as for ASTRIDE, ex-
cept that substituting one symbol for another has a cost equal to the Euclidean
distance between their associated cluster centers.

The differences with ASTRIDE are the following: the time series are segmented
individually with a penalty (in Step 1), and K-means is used for the quantization (Step
3). As a result, compared to ASTRIDE that has the same segment bins for a whole data
set, dymp l0SES SOme compression properties, but the resulting segmentation is better
adapted to each multivariate signal, and the symbolic representation contains more
information, as will be seen in the experiments (Section V.3). As each symbol is related
to a cluster; each cluster center represents an average behavior that is encoded by
the symbol. We will use this property extensively in the experiments to interpret the
symbols produced by dymp.

The theoretical complexity of the segmentation step is O(n). Similarly to ASTRIDE,
each symbolic representation is down-sampled. Therefore, the general edit distance
is applied to much shorter sequences than the raw time series. Since the complexity
of the general edit distance between two sequences is O(mn) where m and n are the
sequences'’ lengths, this produces an important speed-up.

As for the calibration, the penalty parameter can be derived using the well-known
Bayesian Information Criterion (BIC) [Yao88]. The alphabet size A is task-dependent
but should be chosen small enough for interpretation. In our experiments, we found
that with more than 10 different symbols, the analysis becomes difficult.
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V.3 Applications of d symb

In this section, we apply our distance measure d,,,; on several data sets of multivari-
ate physiological signals. d,,'s ability to separate clusters is quantitatively assessed
on the JIGSAWS data set. Then, we illustrate how the symbolic representations of
dsymp Can provide insights into two behavioral neurology tasks: human gait analysis
and upper-limb movement analysis. An open source GitHub repository’, written in
Python, is available.

V.3.1 Application on the JIGSAWS data set

Data and task. In order to evaluate the performance of d,,,;, we apply it to a clus-
tering task on the real-world JIGSAWS data set [Gao+14]. In this data set, eight surgeons
have been monitored while performing “simple” surgical tasks with robotic arms and
grippers. The signals are the kinematic data, e.g. positions and angular velocities, of
the surgical tools that they manipulated during the trial. Here, we consider two surgi-
cal gestures: Knot Tying (39 multivariate time series) and Needle Passing (40 multivari-
ate time series). The time series have 76 dimensions, are sampled at 30 Hz, and last
around 1.5 minutes on average. The objective is to use dg,; to discriminate between
the two gestures.

For comparison, nine other distances are applied to the time series: DTW
(DTW) [BCo4], Derivative DTW (DDTW) [KPo1], Weighted DTW (WDTW) [JJO11], Weighted
Derivative DTW (WDDTW) [JJO11], Move-Split-Merge (MSM) [SAD13], Time Warp Edit
(TWE) [Marog], Longest Common Sub-Sequence (LCSS) [VKGo2], Edit distance with Real
Penalty (ERP) [CNo4], and Edit Distance on Real sequence (EDR) [COOo05]. Each of these
distances is extended to its multivariate version by using the dependent strategy.

Metric and calibration. For a given distance function, the distance between all pairs
of signals is computed and fed to an agglomerative clustering algorithm, which se-
quentially merges similar clusters together. The number of final clusters is set to
two. Note that this method is unsupervised. The result is compared to the true
gesture labels by using the Adjusted Mutual Information (AMI). For two partitions U =
{U1,Us,...}and V ={V1,V;,... } of {1,2,..., N}, the mutual information is defined
by
vl v

Uin Vi, NUiNVj|
ZZ log .
N Uil V3]

i=1 j=1

The AMI is an adjustment for chance of the mutual information; it is equal to 1if U =
V and around o if the two partitions are random. All signals are centered and each
dimension is scaled to unit variance. To calibrate the parameters of d,,,; (alphabet
size A and penalty )), we use a training set of 10 signals. The AMI is computed on
the remaining 69 signals. Results are obtained using a computer with Quad-Core Intel
Core i5 (2.3 GHz) with 16 GB of RAM.

Results. The clustering performances and executiontimes are reported on Table V.1.
Overall, WDTW and WDDTW have the best AMI, followed by dy,,,. Remaining distances

"https://github.com/sylvaincom/d-symb
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Table V.1: Results on the JIGSAWS data set

Distance | AMI  Timings
dsymb 0.21 38s
DTW 0.19 35min
DDTW -0.00 35 min
WDTW 0.34 36min
WDDTW 0.34 36 min
MSM 013 4 h48 min
TWE -0.00 1h 46 min
LCSS -0.00 37 Min
ERP -0.00 38 min
EDR -0.01 38 min

(DDTW, MSM, TWE, LCSS, ERP, EDR) have markedly worse AMI than dy,,,. While our ap-
proach has not the best clustering score, it remains competitive -for instance, it is
on par with DTW- and more importantly, it does it for a fraction of the time needed by
other methods. Indeed, on average, it takes less than a minute to process 79 signals of
dimension 76 and length 2700. Even though our distance has a worst-case complexity,
which is quadratic in the number of samples (because of the change-point detection),
in practice, it is much faster. Then, after the symbolization, the Levenshtein distance
is applied to far shorter signals. To summarize, dsy,, strikes a trade-off between clus-
tering performance and speed, making it adapted for interactive but still informative
use.

Furthermore, the symbolic representation associated with dy,,, can be insight-
ful. See, for instance, Figure V.1 where three signals from JIGSAWS are shown. Evi-
dently, the raw multivariate time series are difficult to interpret. However, it is easier
to observe on the symbolic representations that the first two signals (Figure V.1-a and
Figure V.1-b) are similar: both roughly start and end with Symbol 4, and have an al-
ternation of Symbol 1 and 2 in the middle. The third signal (Figure V.1-c) has more
occurrences of Symbol 3 during the trial. Note that the first two signals represent the
same gesture (Needle Passing), while the third represents Knot Tying.

Moreover, it is possible to interpret each symbol. Since symbols are associated
with a cluster of signal segments, we can study the clusters’ centroids to understand
the average behavior that the symbols account for. For each cluster’s centroid, Fig-
ure V.2 shows the average positions, linear velocity, and angular velocity of the robotic
arms (left and right) used by the surgeon. For instance, looking at Symbol 4, we can
observe that it is associated with motions where both arms are far from each other,
compared to other symbols. Moreover, the right arm has the largest linear velocity
and the left arm has the largest (in absolute value) angular velocity. Thus, Symbol 4
is associated with a gesture where both arms are distant, the right arm moves across
the space and the left arm does not move as much but instead turns. We can sim-
ilarly analyze Symbols 1 and 2. First, they are located in different parts of the space
(Figure V.2-a), and in Symbol 1, the arms are close together, which is not the case of
Symbol 2. Second, looking at the angular velocity (Figure V.2-c), those two symbols
have the largest velocities (in absolute value) for the right arm, with opposite signs.
Hence, when alternating between Symbols 1 and 2, the robotic arms change location
and distance from each other, and the right arm changes rotation sign.
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Figure V.1: Three signal examples from the JIGSAWS data set. Signals in (a) and (b) are
close to each other according to dg.m; and are far from (c). Below the raw signals,
the symbolic representation associated with d,,,; is shown. There are four symbols:
Symbol 1 [}, Symbol 2 [li], Symbol 3 [} Symbol 4 |- In (a) and (b), the surgical gesture
is Needle Passing; in (c), it is Knot Tying.
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Figure V.2: (a) Positions (z, y, z) of the left (L) and right (R) robotic arms for each symbol
centroid. (b) Idem for the linear velocity norm. (c) Idem for the angular velocity. All
features are expressed in normalized units since all signals are centered and scaled
before applying dsymgp.
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Figure V.3: (a) Schematic protocol recorded by the sensors that are located with red
squares [Tru+19]. (b) Axis definition in the sensor’s frame.

V.3.2 Application on the human locomotion data set

Human gait is a complex phenomenon that can be altered by many neurological dis-
orders. Consequently, medical researchers try to objectively measure gait character-
istics to analyze patients’ walking patterns [Oud+18]. The human locomotion data
set [Tru+19] consists of signals from subjects wearing accelerometers on their feet
(sampling frequency: 100 Hz). All subjects underwent the same protocol (depicted in
Figure V.3-a): standing still, walking 10 meters, then walking back to where they started,
and standing still. For this illustrative study, we only keep the angular velocity around
the (Oy) axis (see Figure V.3-b for axis definition) of each foot.

Since locomotion is an activity that has a strong periodic component, itis common
in the literature to process such signals in the time-frequency domain. For each uni-
variate gait signal, we compute its Short Time Fourier Transform (STFT), with a window
length equal to 300 samples (3 seconds) and an overlap of 299 samples. Only the 0-5
Hz frequency band, where phenomena of interest are contained, is kept. The dgyms
symbolic representation is computed on those 16-dimensional signals. The number
of symbols is set to A = 5, and the change-point detection penalty is set to A = 2.

Four signal examples are shown in Figure V.5. Note that since the subjects per-
form the protocol at different speeds, each recording has a different duration. The
first three time series are from healthy subjects, and the last one is from a subject
with neurological impairment. Simply looking at the raw signals does not provide any
insight into the gait dynamics. However, as we shall see, the symbolic representation
is better adapted to see that all four subjects walk differently. First, note that since
dsymp is computed on the time-frequency representation of the raw signals, cluster
centroids are actually power spectral densities, which are shown in Figure V.4. Sym-
bol 3 represents the absence of movement (subject standing still). Symbol 1 represents
walking with lower-amplitude footsteps. The remaining symbols represent different
walking patterns.

From the symbolic representations of Figure V.6, we clearly see the activity se-
guence of the protocol (standing, walking, turning, walking, standing). Moreover, walk-
ing often starts and ends with one or several low amplitude footsteps (Symbol 1), a
well-known fact in gait analysis studies [BM+16]. The U-turn strategies, which are an
informative biomarker [BM+17], are also different even among healthy subjects. For
instance, Subject 1 has a short U-turn; Subject 2 has an asymmetric U-turn with a pause
on the left foot; and Subject 3 does long pauses while turning. When looking at the
walking phases, they are homogeneous for Subject 1 and less consistent for the other
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Figure V.4: Power Spectral Density (PSD) for each symbol centroid of the symbolic
representation of Figure V.6.

subjects. We observe a change between walking forward and walking back for Sub-
ject 3 that might result from tiredness. Here, in this limited sample, the main distinc-
tion between healthy and neurologically impaired subjects is the irregularity of the
walking phase. Indeed, Subject 4 alternates more often between Symbols 4 and 5
during the walk. All those observations are made possible thanks to the symbolic rep-
resentation and the interpretability of the symbols.

V.3.3 Application on the upper-limb movement analysis

Similarly to human gait, upper-limb movement is an extensively studied biomechan-
ical and neurological phenomenon that can be modified by many different medical
disorders. Quantifying such movement is a central question, and researchers often
use 3D position sensors to assess several key features, e.g., smoothness or symme-
try. The armCODA data set [Com+24a] contains around 2.5 hours of multivariate time
series collected from healthy subjects performing pre-defined simple movements. An
online interactive tool? is available to download and explore this data set. More pre-
cisely, the subjects were asked to perform several types of movements, including el-
evation movements of the right arm, the left arm, and both arms simultaneously. In
order to track these movements, 34 Cartesian Optoelectronic Dynamic Anthropome-
ter (CODA) motion system 3D position markers are placed on the upper-limb of the
participants, each marker recording its positions over time in the 3D space.

An example of signal is shown in Figure V.7. For this trial, the subject remained
seated and raised both arms vertically from a resting position (arms along the body)
to above the head. This movement was repeated three times. The signal dimension is
34 x 3 = 102. Inits raw form, the signal is not interpretable, therefore, we use the sym-
bolization procedure from d,y,,, to gain more insights. Here, the number of symbols
is manually set to 7. For this illustrative example, we only display the symbolic se-
qguences of a single subject performing four different movements. These movements
are shown in Figure V.8. The first symbolic sequence (Figure V.8-a) corresponds to the
raw signal in Figure V.7. The three other representations correspond to three other
movements: raising both arms while standing (Figure V.8-b), raising the right arm (Fig-
ure V.8-c), and the left arm (Figure V.8-d) while standing. On these representations, the

*https://wuw.ipol.im/pub/art/2024/494/
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Figure V.5: Signal examples from the Human Gait data set. Each row is one trial with
the left foot signal on the left and the right foot signal on the right. The x-axis is the
time in seconds. The first three trials are from healthy subjects, and the last one is
from a subject with a neurological pathology.
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Figure V.6: Symbolic representations of the signals shown on Figure V.5. There are 5
symbols: Symbol 1 [, Symbol 2 [, Symbol 3 [[], Symbol 4[], Symbol 5 [[. The x-axis
is the time in seconds.
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Figure V.7: Raw signal example from the armCODA data set. The movement is the
sagittal plane elevation (seated and bilateral).
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Figure V.8: Symbolic representations of signals from the armCODA data set. They
belong to the same subject and each one is the repetition of a single movement. The
first representation (a) is the signal shown in Figure V.7.

three movement repetitions (as demanded by the protocol), with in-between rest, can
be easily observed. There is a rest symbol for the seated state (Symbol 6) and another
for the standing state (Symbol 4). Moreover, each movement has its own symbol, and
there is a last symbol (Symbol 5) for an intermediate state between resting and both
arms up (Figure V.8-b). Recall that our symbolization procedure is unsupervised but
is still able to recover the salient events and classify each state correctly. A closer look
at the learned symbols in Figure V.9 confirms this observation. Since the cluster cen-
ters computed by d,,, are average body positions, it is possible to plot them in the
3D space. (Note that only the average positions of the head and forearms are shown
for readability, even though the subject has been monitored with 34 sensors.) The
front view is particularly revealing. The two symbols seen on the seated movement
-Symbol 2 and 6- have the head sensors at around 1.3m high and the arms either up
(Symbol 2) or down (Symbol 6). For the standing position, the head is around 1.6m
high, and three positions are easily interpretable: both arms up (Symbol 7), left arm
up (Symbol 1), or right arm up (Symbol 4). To summarize, the observation of this rep-
resentation is sufficient to discriminate between different types of movements and is
interpretable.

V.4 The d symb playground

In this section, we describe the d,,,,, playground, available online34, and built using
Python 3.9 and the Streamlit framework [Str]. The dy.,; playground, summarized in
Figure V.10, is a web interactive tool to explore and compare large multivariate time
series data sets. This interactive tool allows users to upload and visualize their multi-
variate time series and their d,,,;, symbolizations using the colorbars. With a single

3https://dsymb-playground.streamlit.app
“https://github.com/boniolp/dsymb-playground
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Figure V.9: Positions (x, y, z) (in cm and in the laboratory frame) of the head, left fore-
arm (L), and right forearm (R) for each symbol centroid.

glance at the colorbars, the symbolization provides an immediate and comprehensive
understanding of a data set. Users can also visualize the d,,,; pairwise distance ma-
trix between the symbolic sequences. Furthermore, users can assess the relevance
of the dy,,, distance measure with regards to 9 elastic distance measures, including
variants of DTW.
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Figure V.10: Summary of the dy,,;, playground’s inputs and features.
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Our system is based on d,,,,, and inputs a multivariate time series data set. The
GUI is composed of three main frames, shown in Figure V.11: the Individual analy-
sis frame, the data set analysis frame, and the Benchmark frame. The individual
and data set analysis frames enable users to explore and quickly gain insights thanks
to the dy.m,p Symbolization. The benchmark frame allows users to assess the perfor-
mance of the d,,,,;, distance compared to 9 existing distance measures on a real-world
application.

As shown in Figure V.11(B), for both the individual and data set analysis frames, the
user is required to upload their multivariate time series data set and then select the
number of symbols to be used in the d,y.,;, symbolization. Each multivariate time se-
ries must be stored in a Comma-Separated Values (CSV) file of shape (n_timestamps,
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n_dim). The user can choose the number of symbols as an integer between 2 and
25. Then, the d,,,;, computation is performed: the symbolization of all time series, as
well as the pairwise distance matrix between the time series, are returned. We now
describe the three main frames and their corresponding available actions in more de-
tail.

ichidunl st (Welcome to the dgymp playground! I

© Colorbars Distance matrix

DTW dependent

O True Normalized

Drag and drop files here

Overview of your symbolized dataset

s T8cs
Colorbars of all symbolic sequences in the dataset

Explore the clustering performances

il
=

(A) Dataset analysis frame (B) Individual analysis frame (C) Benchmark frame

Figure V.11: lllustration of the three main frames of the d,,,,,;, playground.

V.4.1 Individual analysis frame

The d,mp playground enables users to select a single time series and focus on its
exploration. A visualization, shown in Figure V.11(B), allows users to explore the raw
multivariate time series and its corresponding symbolic sequence represented as a
colorbar. Therefore, users can interpret the multivariate segmentation from dgys,
which is based on changes in the mean, and investigate how it deals with the poten-
tial non-stationarity of the input time series. It also allows one to understand what a
symbol represents with regard to real-world events: each symbol can be interpreted
as an action with a semantic meaning. For the plot of the raw multivariate time se-
ries, by default, the number of displayed dimensions on the same plot is capped at
20 for conciseness purposes. The user can investigate each group of 20 dimensions
separately (while the displayed symbolic sequence is the one corresponding to all di-
mensions together). The user can also choose to visualize all dimensions at once.

V.4.2 Data set analysis frame

Instead of focusing on a single time series, the data set analysis frame explores the
whole multivariate time series data set at once. With a quick glance, the colorbars
provide a compact representation of a data set of multivariate time series, as dis-
played in Figure V.11(A). Each row corresponds to the symbolic representation of each
time series of the data set. In a colorbar, black vertical lines illustrate change-points.
Therefore, users can observe the different regimes that occur in the time series. The
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colorbars can be represented in two different ways: (i) the true lengths of the time
series; or (ii) the normalized lengths. In the latter, all colorbars are stretched to have
the same length. Scrolling down, more visualizations are available to help users under-
stand the meaning of the symbols: (i) the histogram of the symbols, (ii) the distribution
of the lengths for each symbol, (iii) the time stamps where each symbol occurs, and
(iv) two figures illustrating the similarities between each individual symbol. Finally, the
users can also visualize the pairwise distance matrix between the obtained symbolic
sequences. Note that the users can modify the number of symbols at any time and,
thanks to the fast computation of d,,s, all the visualizations described above are up-
dated in real-time.

V.4.3 Benchmark frame

The benchmark frame compares the ds,,,,;, distance measure to 9 existing distance
measures on time series. We apply our benchmark to the real-world JIGSAWS data
set [Gao+14] with the goal of identifying surgeons’ gestures based on kinematic time
series, as done in Section V.3.1. All results are precomputed (in order to save the users
some computing time). In this data set, we consider two surgical gestures: Knot Ty-
ing (39 multivariate time series) and Needle Passing (40 multivariate time series). As
shown in Figure V.11(C), we display the pairwise distance matrix for the chosen dis-
tance measure, as well as the clustering accuracy and the execution time (in seconds)
for all distance measures in the benchmark.

V.5 Conclusion

We have introduced dgy,,, a novel distance measure on multivariate and non-
stationary signals, that uses symbolization as an intermediate step. Our method uses
change-point detection to segment signals, K-means clustering to create symbolic
representations, and the general edit distance with custom costs to compare them.
The resulting algorithm is fast and produces interpretable symbols. We have applied
dsymp to several physiological data sets. d,,, has achieved reasonable clustering
performance while being several orders of magnitude faster than classical methods
(such as DTW). In addition, the symbolic sequences allow users to understand, with a
glimpse, the dynamic of the multiple signals at hand. Finally, we have implemented
an online tool, called the d,,,;, playground, that allows users to upload their data set
and apply dsymp ON it.
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Chapter VI

Conclusion and perspectives

In this thesis, we have proposed two novel symbolic representations and distance
measures for time series: ASTRIDE for a data set of univariate time series (Chapter IV),
and d,my for a data set of multivariate time series (Chapter V). These distance mea-
sures transform time series into symbolic sequences which are then compared using
a modified version of the Levenshtein distance. We have also conducted two sur-
veys: one on the symbolic representations for time series (Chapter Il), and one on
the distance measures for time series, strings, and symbolic sequences (Chapter Il).
We have shown that, compared to the literature, our proposed distance can deal with
physiological signals that are multivariate and non-stationary, thanks to an adaptive
segmentation algorithm. The resulting symbolic sequences are interpretable, as each
symbol represents a salient event such as walking or turning around in the context of
gait data. ASTRIDE and d,,,, are shown to be fast to compute. The dy,,, playground,
a web-based tool, allows a user to upload its data set of multivariate time series and
gain insights into it.

Now, let us look into the perspectives of this thesis. First of all, the proposed sym-
bolization methods could be applied to more tasks. (i) ASTRIDE or d,y,,, could be
employed as an intermediate step in classifiers. They could be used in the shapelet
category such as in SAX-SEQL [NGI17] and Mr-SEQL [Ngu+19], or in the dictionary cat-
egory with SAX-VSM [SM13], BOSS [Sch1s], TDE [Mid+20], and PETSC [FCG22]. These
methods currently use SAX or SFA as the symbolization step, and involve overlap-
ping sliding windows that increase the time and space complexities. These classi-
fiers are described in a recent review [MSB23]. Thanks to the adaptive segmenta-
tion of ASTRIDE and d,y,,,;,, these sliding windows could be used more efficiently. (ii)
The ASTRIDE and d,y,», symbolic sequences could also be analyzed by methods devel-
oped in the bioinformatics community, for example in pattern discovery or anomaly
detection. Indeed, research in bioinformatics revolves around the study of sequences
of characters. (iii) Moreover, the obtained symbolic sequences could be modeled by
Markov chains where each symbol would be a state. Examining the probability of
transition between each symbol could provide meaningful information to a medical
practitioner for example.

dsymp could be extended to adapt to physiological signals with (even) more chal-
lenging structures. (i) They could be able to take into account the multi-resolution
aspect. Let us take the example of the human locomotion studied in Chapter V. It is
interesting to detect each global regime (few segments are allowed): standing still,
walking, and turning, and also to detect each local regime (many segments are al-
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lowed): first footstep of walking, second footstep, etc. A multi-resolution approach
would allow for a more comprehensive study on the phenomenon. (ii) Furthermore,
dsymp could tackle the correlation between each dimension of physiological signals
differently. With physiological signals, the dimension can be of a few hundreds, thus
using a dimension selection algorithm could be beneficial [TO22; DNI23; RB23]. The
segmentation and/or clustering steps could be extended to sparse features.

Moreover, our distance measure on symbolic sequences, based on the general
Levenshtein distance, could be investigated further. We have empirically showed that
our distance measure is much faster than DTW, but due to the strong links between
edit distances and DTW, it would be interesting to study the theoretical properties of
our method and understand better to what extent it is an approximation of the DTW.
Moreover, some other theoretical aspects could be studied, such as the possibility to
have a lower-bound.

Finally, the multimodal aspect of some physiological signals could be addressed.
Indeed, in some protocols developed by the Centre Borelli, several physiological func-
tions are analyzed simultaneously (such as brain activity, respiration, movements, car-
diac activity...). Constructing a symbolization for this complex multimodal data would
constitute a nice challenge and extension of this thesis work. If some dimensions do
not have the same sampling frequency, an adaptive segmentation on each modality
could be applied, which would result in several symbolic sequences that could then
constitute meta-symbols. Moreover, if the dimensions represent signals with a differ-
ent physical nature, then applying change-point detection on the mean for all dimen-
sions might not be sufficient. Indeed, some variables might need to detect changes
in frequency, while others might need to detect changes in the mean or in the slope:
some novel cost functions could therefore be introduced, possibly with some super-
vised techniques.
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