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Titre : Représentations symboliques de séries temporellesMots clés : reconnaissance de formes, approches symboliques, détection de ruptures, appren-tissage de représentation
Résumé : Les objectifs de cette thèse sontde définir de nouvelles représentations symbo-liques et desmesures de distance adaptées auxséries temporelles pouvant êtremultivariées etnon-stationnaires. De plus, elles doivent pré-server l’information temporelle, être interpré-tables et rapides à calculer. Nous passons enrevue les représentations symboliques de sé-ries temporelles, ainsi que les mesures de dis-tance sur séries temporelles, chaînes de carac-tères et séquences symboliques (qui résultentd’un processus de symbolisation).Nous proposons deux contributions : AS-TRIDE pour un ensemble de séries temporellesunivariées, et dsymb pour un ensemble de sé-ries temporelles multivariées. Nous avons éga-lement développé le dsymb playground, un ou-til interactif en ligne permettant aux utilisa-teurs d’appliquer dsymb à leurs données télé-

versées. ASTRIDE et dsymb sont pilotées par lesdonnées, car elles utilisent la détection de rup-tures pour l’étape de segmentation, puis desquantiles ou un partitionnement par les K-moyennes pour l’étape de quantification. En-fin, elles appliquent la distance d’édition géné-rale avec des coûts personnalisés entre les sé-quences symboliques obtenues.Nous montrons les performances d’AS-TRIDE, comparé à 4 autres représentationssymboliques, sur des tâches de reconstruc-tion, et lorsque cela s’applique, sur des tâchesde classification. Pour dsymb, les expériencesmontrent à quel point la symbolisation est in-terprétable. De plus, comparée à 9 distancesélastiques sur une tâche de partitionnement,
dsymb atteint des performances compétitivestout en étant plusieurs ordres de grandeur plusrapide.

Title : Symbolic representations of time seriesKeywords : change-point detection, pattern recognition, symbolic approaches, representationlearning
Abstract : The objectives of this thesis are todefine novel symbolic representations and dis-tance measures that are suited for time seriesthat can be multivariate and non-stationary. Inaddition, they should preserve the time infor-mation, be interpretable, and fast to compute.We review symbolic representations of time se-ries (that transform a real-valued series into ashorter discrete-valued series), as well as dis-tances measures on time series, strings, andsymbolic sequences (that result from a symbo-lization process).We propose two contributions : ASTRIDE fora data set of univariate time series, and dsymbfor a data set of multivariate time series. Wealso developed the dsymb playground, an onlineinteractive tool that allows users to apply dsymb

to their uploaded data. ASTRIDE and dsymb aredata-driven as they use change-point detectionfor the segmentation step, then either quan-tiles or aK-means clustering algorithm for thequantization step. Finally, they apply the gene-ral edit distance with custom costs between theresulting symbolic sequences.We show the performance of ASTRIDE com-pared to 4 other symbolic representations onreconstruction and, when applicable, on clas-sification tasks. For dsymb, experiments showhow interpretable the symbolization is. Moreo-ver, compared to 9 elastic distances on a clus-tering task, dsymb achieves a competitive perfor-mancewhile being several orders ofmagnitudefaster.
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8



Contents
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Résumé (en français)
Cette thèse traite du problème de la représentation et de la comparaison de signauxphysiologiques, qu’ils soient univariés ou multivariés. Dans de nombreuses applica-tions comme en neurologie comportementale, les chercheurs ont besoin d’analyseret de comparer de grands jeux de données de séries temporelles multivariées, demanière interactive et interprétable. Les objectifs de cette thèse sont de définir denouvelles représentations symboliques et mesures de distances qui peuvent prendreen compte des signaux physiologiques ayant une structure complexe : multivariéeet non-stationnaire. De plus, cette représentation doit préserver l’information tem-porelle, être interprétable et rapide à calculer.

Après avoir passé en revue les techniques de symbolisation (qui transforment unesérie à valeurs réelles en une série plus courte à valeurs discrètes) et avoir menéune revue de l’état de l’art sur les mesures de distance sur les séries temporelles,les châınes de caractères et les séquences symboliques (qui résultent d’un proces-sus de symbolisation), nous introduisons de nouvelles représentations symboliqueset définissons des mesures de distance entre les séquences symboliques obtenues.
La première contribution, appelée ASTRIDE, est une représentation symboliquepour un jeu de données de séries temporelles univariées. Contrairement à la plupartdes représentations symboliques, ASTRIDE est adaptative (i.e. pilotée par les données)durant l’étape de segmentation grâce à une détection de ruptures ainsi que durantl’étape de quantification en utilisant des quantiles. Au lieu de traiter chaque signall’un après l’autre, ASTRIDE construit un dictionnaire de symboles qui est commun àtous les signaux d’un jeu de données. Nous introduisons également une nouvellemesure de distance entre représentations symboliques qui est basée dans la distanced’édition générale, avec des poids personnalisés. Nous montrons les performancesd’ASTRIDE, comparé à 4 autres représentations symboliques, sur des tâches de recon-struction, et lorsque cela s’applique, sur des tâches de classification.
La seconde contribution est une représentation symbolique pour un jeu dedonnées de séries temporelles multivariées qui peuvent être non-stationnaires, ap-pelée dsymb, qui est mise en œuvre au sein d’un outil d’exploration en ligne, appelé le

dsymb playground. Contrairement à la plupart des mesures de distance sur des sig-naux multivariés, dsymb prend en compte leur non-stationnarité grâce à une étape desymbolisation. Cette étape est elle-même basée sur une détection de ruptures di-visant un signal non stationnaire en plusieurs segments stationnaires, suivie d’unequantification à l’aide d’un partitionnement par l’algorithme des K-moyennes. Lamesure de distance proposée est basée sur la distance d’édition générale. Les avan-tages de dsymb sont illustrés sur 3 jeux de données de signaux physiologiques multi-variés. Les expériences montrent à quel point la symbolisation est interprétable : unsimple coup d’œil aux séquences symboliques obtenues fournit une compréhension
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instantanée et globale d’un jeu de données. De plus, comparée à 9 distancesélastiques multivariées sur une tâche de partitionnement, dsymb atteint des perfor-mances compétitives tout en étant plusieurs ordres de grandeur plus rapide queles autres méthodes. Avec ces caractéristiques désirables, nous avons développé le
dsymb playground, un outil en ligne, qui permet aux chercheurs d’appliquer dsymb auxdonnées qu’ils auront téléversées.
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Abstract
This work addresses the problem of representing and comparing physiological sig-nals that can be univariate or multivariate. In many applications, such as behavioralneurology, researchers have to analyze and compare large amounts of multivariatetime series in an interactive and interpretable way. The objectives of this thesis are todefine novel symbolic representations and distance measures that can handle physi-ological signals with a complex structure: multivariate and non-stationary. Moreover,the representation should preserve the time information, be interpretable, and befast to compute.After reviewing symbolization techniques (that transform a real-valued series intoa shorter discrete-valued series) and conducting a survey of distance measures ontime series, strings, and symbolic sequences (that result from a symbolization pro-cess), we introduce novel symbolic representations and define a distance measurebetween the resulting symbolic sequences.The first contribution is a symbolic representation for a data set of univariate timeseries called ASTRIDE. Unlike most symbolization procedures, ASTRIDE is adaptive (i.e.data-driven) during both the segmentation step by performing change-point detectionand the quantization step by using quantiles. Instead of proceeding signal by signal,ASTRIDE builds a dictionary of symbols that is common to all signals in a data set. Wealso introduce a novel distance measure on symbolic representations that is based onthe general edit distance with custom weights. We show the performance of ASTRIDEcompared to 4 other symbolic representations on reconstruction and, when applica-ble, on classification tasks.The second contribution is a symbolic representation for a data set of multivari-ate time series that can be non-stationary, called dsymb, along with an online explo-ration tool, called the dsymb playground. Unlike most distance measures on multi-variate signals, dsymb takes into account their non-stationarity thanks to a symboliza-tion step. This step is itself based on a change-point detection procedure that splitsa non-stationary signal into several stationary segments, followed by quantization us-ing K-means clustering. The proposed distance measure leverages the general editdistance. The advantages of dsymb are shown on 3 data sets of multivariate physi-ological signals. Experiments show how interpretable the symbolization is: a singleglance at the symbolic sequences provides an immediate and comprehensive under-standing of a data set. Moreover, compared to 9 multivariate elastic distances on aclustering task, dsymb achieves a competitive performance while being several ordersof magnitude faster than the other methods. With these desirable characteristics, wedeveloped the dsymb playground, an online tool, that allows researchers to apply dsymbto their uploaded data.
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Contexte, motivation et objectifs
L’objectif général de cette thèse est d’introduire de nouvelles représentationssymboliques et mesures de distance pour les séries temporelles multivariées et nonstationnaires.

Contexte
Cette thèse a été menée au Centre Borelli1, un laboratoire de recherche académiquede l’École Normale Supérieure Paris-Saclay, également affilié à l’Université Paris-Saclay, à l’Université Paris Cité, au CNRS, au SSA et à l’INSERM. La recherche au Cen-tre Borelli s’articule autour des mathématiques appliquées, des neurosciences et del’informatique, avec un accent particulier sur leurs interactions biomédicales et in-dustrielles. Ainsi, une spécificité majeure du Centre Borelli est de faire collaborerétroitement des mathématiciens avec des ingénieurs, des médecins, des clinicienset des experts de l’industrie.

1https://centreborelli.ens-paris-saclay.fr/fr
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Figure 1: Exemple d’une série temporelle multivariée issue du jeu de données arm-CODA. À gauche de la Figure, le positionnement de plusieurs capteurs sur le membresupérieur d’un patient est affiché. À droite, un zoom sur la série temporelle multi-variée, générée par l’un de ces capteurs, est fourni. Chaque mouvement (par exem-ple, l’élévation du bras) comprend trois itérations.

Pour ce qui est des neurosciences, le travail du Centre Borelli se concentre surl’analyse du comportement humain et animal, avec deux objectifs principaux : le suivilongitudinal (étudier l’évolution d’un sujet au fil du temps) et la comparaison interindi-viduelle (comparer, souvent statistiquement, deux cohortes de sujets). Plusieurs pro-jets sont actuellement en cours et visent à étudier la marche chez des sujets sains etpathologiques (par exemple, la sclérose en plaques) [VJ+19; Boi+22], le contrôle postu-ral et la détection préventive du risque de chute [Bar+18], les mouvements des mem-bres supérieurs pendant la rééducation après une blessure [Com+24a], les cycles res-piratoires chez les souris [Ger+22], ou les états de conscience pendant l’anesthésie.Tous ces projets sont basés sur des capteurs pouvant être placés sur les sujets et per-mettant l’enregistrement de plusieurs signaux physiologiques (éventuellement syn-chronisés), tels que les électrocardiogrammes (ECG), les électroencéphalogrammes(EEG), ou les accélérations des pieds enregistrées avec des Inertial Measurement Units(IMUs). Le Centre Borelli a également participé à la construction de plusieurs pro-tocoles cliniques et a généré des jeux de données en libre accès, tels qu’un jeu dedonnées sur la marche humaine utilisant des IMUs [Tru+19] ou un jeu de données surles mouvements des membres supérieurs enregistrés grâce à des capteurs de mou-vement [Com+24a]. Un exemple de signaux physiologiques pouvant être enregistréslors d’un protocole est présenté dans la Figure 1.
Du fait de la complexité des phénomènes que nous souhaitons observer, mobil-isant parfois plusieurs fonctions physiologiques, les données collectées via différents
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protocoles peuvent s’avérer difficiles à analyser. Tout d’abord, comme pour toutesérie temporelle, la première question est de savoir comment prendre en comptel’information temporelle dans les modèles. Intuitivement, dans une tâche de surveil-lance, la séquence et la chronologie des actions comportent des informations cru-ciales, qui doivent être préservées dans la châıne de traitement. La deuxième ques-tion, qui est également très générale, concerne la nature bruitée des données issuesde capteurs. En particulier, les études au niveau de la forme d’onde peuvent êtrerendues difficiles par le rapport signal/bruit parfois faible [KK03; Fu11; EA12]. De plus,d’autres questions découlent directement des protocoles utilisés :

1. Nature multivariée : L’étude d’un patient nécessite souvent des protocolesavec de nombreux capteurs afin d’obtenir une compréhension globale de l’étatdu patient. L’enregistrement de la position 3D d’une partie du corps au fil dutemps génère une série temporelle multivariée de dimension 3. Cependant, lorsde l’étude de l’élévation du bras, il est probable que plusieurs capteurs soientnécessaires (par exemple, sur les deux bras, aux poignets et aux coudes), ce quidonne une série temporelle de dimension bien plus grande (atteignant parfoisdes centaines de dimensions). Intuitivement, ces dimensions sont susceptiblesd’être fortement corrélées, et il s’agit donc d’une information cruciale qui doitêtre prise en compte.
2. Non-stationnarité : Lorsqu’ils sont enregistrés sur de longues périodes detemps ou lors de protocoles complexes, les propriétés statistiques des signauxphysiologiques évoluent souvent au cours du temps. Par exemple, si un su-jet porte une montre connectée pendant toute une journée, en effectuant di-verses activités intercalées avec des périodes de repos, le signal généré estgénéralement non stationnaire. La plupart des modèles statistiques couram-ment utilisés pour les séries temporelles nécessitent l’hypothèse de station-narité au sens large et ne peuvent donc pas être utilisés dans ce contexte.
3. Multimodalité : Certains protocoles impliquent l’étude de différents capteursqui enregistrent simultanément différents types de grandeurs, telles que desdonnées d’accélérométrie, des ECG ou des EEG. Dans ce cas, le défi est beaucoupplus difficile car il nécessite l’étude conjointe de signaux physiologiques avecdifférentes propriétés physiques (fréquence d’échantillonnage, structure, etc).

Enfin, il y a la question de l’interprétabilité pour les cliniciens. Les travaux au Cen-tre Borelli sont menés par des équipes pluridisciplinaires de mathématiciens et decliniciens. Les outils d’analyse développés doivent donc leur permettre d’interagiravec les données, et la plupart des cliniciens ne sont pas formés à observer desformes d’ondes. Par conséquent, un défi de recherche fondamental est de créer desreprésentations mathématiques qui abstraient la complexité des données afin de lesrendre sous une forme visuelle intuitive pour les cliniciens.

Questions scientifiques et positionnement
En ce qui concerne ces séries temporelles biomédicales complexes, cette thèse abordeles deux questions scientifiques suivantes :
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1. Comment pouvons-nous représenter les signaux physiologiques avec une struc-ture complexe ?
2. Comment pouvons-nous comparer ces séries temporelles ?
Il existe deux approches principales dans la littérature pour représenter et com-parer des séries temporelles. La première consiste à extraire des caractéristiquesà partir des séries temporelles brutes et à utiliser une représentation dite bag offeatures. Dans le contexte des signaux physiologiques, les caractéristiques cour-ramment utilisées sont par exemple les coefficients de la transformée de Fourierdiscrète [AFS93; FRM94] ou la transformée en ondelettes discrète [CF99]. Ces ap-proches extraient des caractéristiques des séries temporelles, souvent dimension pardimension, pour construire un vecteur de caractéristiques [BB21] qui est ensuite utilisépour des tâches telles que la classification ou le partitionnement. Dans la plupart descas, la comparaison entre les séries temporelles peut être effectuée en utilisant unesimple distance euclidienne entre les vecteurs de caractéristiques. Une limitation ma-jeure de ces méthodes est qu’elles perdent souvent l’information temporelle, étantdonné qu’elles extraient des caractéristiques à l’échelle de la totalité de la série tem-porelle. De plus, si les séries temporelles sont non stationnaires, il est possible qu’unecaractéristique définie sur toute la longueur du signal ne soit pas représentative.La deuxième approche consiste à définir des distances applicables directement surles formes d’onde. Parmi ces distances, il existe différentes techniques d’alignementtemporel, à savoir les distances élastiques telles que la Dynamic Time Warping(DTW) [BC94; SY+17] ou les comparaisons de trajectoire [JCG20; Vay+22]. Cesméthodes travaillent directement sur la forme d’onde et projettent les séries tem-porelles dans des espaces géométriques qui peuvent être de grande dimension. Cesdistances sont bien adaptées pour comparer de petits ”snippets” de données, mais,par exemple, une comparaison brute des formes d’onde obtenues sur deux joursconsécutifs est susceptible de produire des résultats non pertinents. Elles peuventégalement être sensibles au bruit et avoir un coût de calcul élevé. De plus, ces dis-tances sophistiquées impliquent des cadres mathématiques compliqués qui peuventêtre difficiles à manipuler pour les cliniciens.En se basant sur les idées développées précédemment, notre représentation de-vrait idéalement :
• Préserver l’information temporelle, c’est-à-dire la chronologie des événements ;
• Prendre en compte la nature multivariée et/ou multimodale des données ;
• Être interprétable et ergonomique : Les longues séries temporelles multivariéesdevraient être représentées de manière concise, où un simple coup d’œil à leurreprésentation fournirait toutes les informations essentielles qu’elle contient,par exemple en mettant l’accent sur les événements saillants ;
• Gérer la non-stationnarité des données : La caractérisation des phénomènesdevrait être effectuée non pas au niveau de la totalité de la série temporelle,mais au niveau des actions, c’est-à-dire des phases stationnaires ;
• Être robuste au bruit.
De même, notre mesure de distance devrait idéalement :
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• S’adapter aux phénomènes d’intérêt, c’est-à-dire aux types d’événements présentsdans le jeu de données ;
• Effectuer la comparaison au niveau des actions, c’est-à-dire des phases station-naires ;
• Être très rapide à calculer : Idéalement, le temps de calcul devrait être suffisam-ment faible pour qu’elle puisse être utilisée de manière interactive par des clin-iciens ;
• Permettre des comparaisons interindividuelles et un suivi longitudinal.
Dans cette thèse, nous proposons de relever ces défis en nous appuyant sur uneétape de représentation intermédiaire : la symbolisation des séries temporelles. In-troduite au début des années 2000, la symbolisation vise à transformer des sériestemporelles à valeurs réelles en séries plus courtes et à valeurs discrètes. L’une desreprésentations symboliques pionnière et très populaire est Symbolic Aggregate ap-proXimation (SAX) [Lin+03; Lin+07]. Un exemple de représentation SAX pour une sérietemporelle univariée est illustré sur la Figure 4 en page 23. Grâce à l’effet de lis-sage induit par leur compression, les représentations symboliques sont largementutilisées dans les tâches de fouille de données, telles que la classification ou le parti-tionnement, où le choix de la représentation est fondamental. En particulier, une pro-priété souhaitable de ces techniques est qu’elles intègrent naturellement l’informationtemporelle et ont tendance à être robustes au bruit.Dans les grandes lignes, la plupart des techniques de symbolisation suivent deuxétapes : une étape de segmentation, où un signal à valeurs réelles est divisé enplusieurs segments, puis une étape de quantification, où chaque segment est attribuéà une valeur discrète appelée un symbole. Par exemple, SAX utilise une segmentationuniforme puis quantifie les moyennes par segment en utilisant une hypothèse gaussi-enne. Ces séquences symboliques peuvent ensuite être comparées en utilisant desdistances appropriées.L’objectif de cette thèse est de créer une nouvelle représentation symbolique quitient compte de tous les défis décrits précédemment (non-stationnarité, nature mul-tivariée, interprétabilité, ...), mais aussi de construire une mesure de distance sur cesséquences symboliques qui soit rapide à calculer. Nos deux méthodes de symboli-sation proposées sont ASTRIDE (décrite dans le chapitre IV) et dsymb (décrite dans lechapitre V). ASTRIDE transforme un jeu de séries temporelles univariées, tandis que

dsymb transforme un jeu de séries temporelles multivariées. En plus de leur précision,les avantages clés sont l’interprétabilité et le faible temps de calcul.

Contributions et plan du manuscrit
Le manuscrit est organisé comme suit.
Chapitre II : Revue de la littérature sur les méthodes de symbolisationpour les séries temporelles
Dans le Chapitre II – Symbolic representation of time series, nous menons une revueexhaustive des méthodes de symbolisation qui ont été proposées dans la littérature.Nous examinons la première grande question scientifique de notre thèse d’un point
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de vue symbolique : Comment pouvons-nous représenter efficacement des séries tem-porelles avec une structure complexe ?. Depuis l’introduction de SAX en 2003, il y aeu un intérêt prolifique pour la recherche autour des variantes de SAX et égalementd’autres catégories de symbolisation. Certaines revues ont été proposées il y a plus de10 ans [DFT03; Lin+07; SW11]. Une revue plus récente [Wan+19] se concentre unique-ment sur les variantes de SAX. Dans le Chapitre II, nous passons en revue plus de 60méthodes de symbolisation.Comme illustré dans la Figure 2, notre cadre est le suivant. Nous décomposons unprocessus de symbolisation en 3 étapes consécutives : la segmentation, l’extractionde caractéristiques et la quantification. En général, par rapport à SAX, les méthodes desymbolisation dans la littérature modifient une (ou plusieurs) étape(s) parmi les troisprincipales. Ce cadre n’est pas une grille stricte : certaines méthodes de symbolisationqui ne s’intègrent pas parfaitement dans ce cadre sont également décrites (par exem-ple, des méthodes qui n’utilisent pas exactement une étape de segmentation maisplutôt un sous-échantillonnage). Pour chaque étape, une revue détaillée est fournieavec le but de dégager des thèmes communs. Nous discutons également de la tâchede reconstruction qui consiste à reconstruire une série temporelle originale à partirde sa séquence symbolique. Enfin, nous discutons de la symbolisation de séries tem-porelles multivariées, un domaine de recherche plus récent. Les mesures de distancedéfinies sur les séquences symboliques sont décrites dans le chapitre III.

Série temporelleoriginale Segmentation Extractionde car-actéristiques Quantification Séquencesymbolique

Figure 2: Les principales étapes de la symbolisation d’une série temporelle décritesdans le Chapitre II.

Chapitre III : Revue de la littérature sur les mesures de distance pour lesséries temporelles, les châınes de caractères et les séquences symbol-iques
Dans le Chapitre III – Distance measures on time series, strings, and symbolic se-quences, nous passons en revue la deuxième grande question scientifique de cettethèse : Comment pouvons-nous comparer efficacement les séries temporelles ?. Nouspassons en revue les mesures de distance sur les séries temporelles, les châınes decaractères et les séquences symboliques trouvées dans la littérature. Les séquencessymboliques sont des châınes de caractères résultant de processus de symbolisationdécrits dans le Chapitre II. Les mesures de distance sur les châınes de caractères peu-vent être appliquées aux séquences symboliques : la combinaison d’une méthode desymbolisation avec une mesure de distance sur les châınes de caractères peut êtreconsidérée comme une mesure de distance sur les séries temporelles. Bien que desrevues (y compris des récentes) sur les distances sur les séries temporelles [Wan+13;Shi+23; HMB23] et sur les châınes de caractères [Kru83; Kuk92; WM92; Nav01] existent,à notre connaissance, elles n’abordent pas conjointement les séries temporelles et leschâınes de caractères. En effet, comme nous le verrons, il existe des points communsentre les mesures de distance sur les châınes de caractères et celles sur les séries tem-
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Séries temporellesSections III.2et III.3.4

Châınes decaractèresSection III.3 Séries temporelles

SéquencessymboliquesSection III.4

Symbolisation (voir Chapitre II)

Figure 3: Aperçu des différents types de mesures de distance décrites dans leChapitre III.

porelles. Dans ce chapitre, comme illustré dans la Figure 3, nous proposons une revuedes séries temporelles et des châınes de caractères, en mettant en évidence commentchaque domaine a inspiré l’autre. De plus, nous passons en revue les distances surles séquences symboliques, obtenues après symbolisation, ce qui est novateur.
Pour les séries temporelles, nous passons en revue les distances d’alignementpas à pas ainsi que les distances dites élastiques. Lors de la comparaison de deuxséries temporelles, les distances d’alignement pas à pas (telles que la distance eu-clidienne) ne peuvent comparer les échantillons qu’en utilisant un alignement ”un àun”, tandis que les distances élastiques utilisent un alignement ”un à plusieurs”, ce quiles rend plus robustes aux décalages temporels. Les distances élastiques incluent laDynamic Time Warping (DTW) ainsi que ses variantes et versions contraintes. Pourles châınes de caractères, nous décrivons les distances d’édition telles que la LongestCommon SubSequence (LCSS). Nous examinons également l’extension des distancesd’édition aux séries à valeurs réelles. Ensuite, nous décrivons les mesures de distancespécifiquement définies pour les séquences symboliques. Enfin, nous couvrons lesextensions multivariées des distances sur les séries temporelles.

Chapter IV : Présentation d’ASTRIDE, une méthode de symbolisationadaptative pour un jeu de séries temporelles univariées
Dans le chapitre IV – ASTRIDE: Adaptive Symbolization for Time Series Databases, nousprésentons une solution qui aborde simultanément les deux aspects scientifiques clésde cette thèse : la représentation et la distance, à travers la symbolisation efficace d’unjeu de séries temporelles univariées. Notre solution est une méthode de symbolisa-tion appelée ASTRIDE (Adaptive Symbolization for Time seRIes DatabasEs) [CTO23b], quiest accompagnée d’une variante accélérée appelée FASTRIDE (Fast ASTRIDE) ainsi qued’une mesure de distance compatible appelée D-GED (Dynamic General Edit Distance).

ASTRIDE et FASTRIDE sont de nouvelles représentations symboliques pour un jeude séries temporelles univariées. Contrairement à la plupart des procédures de sym-bolisation, telles que la populaire SAX [Lin+03], ASTRIDE est adaptative (i.e. pilotée parles données) à la fois lors de l’étape de segmentation en effectuant une détection despoints de rupture et lors de l’étape de quantification en utilisant des quantiles. Plusprécisément, la segmentation détecte les changements de moyenne, où le nombre deruptures est défini par l’utilisateur. La segmentation et la quantification adaptativessont toutes deux apprises au niveau du jeu des signaux : les points de rupture, ainsi
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que les quantiles (pour la quantification), sont estimés en utilisant tous les signauxdu jeu de données. Ainsi, le dictionnaire de symboles d’ASTRIDE est le même pourtous les signaux, ce qui le rend efficace en mémoire. Une illustration comparant lareprésentation ASTRIDE avec SAX, sur un même signal univarié, est fournie dans laFigure 4. En plus de la symbolisation, nous introduisons également D-GED, une nou-velle mesure de distance sur les représentations symboliques basée sur la distanced’édition générale (décrite dans le Chapitre III). Définie sur des châınes de caractères,la distance d’édition permet des substitutions, des suppressions et des insertions.À notre connaissance, ASTRIDE est la seule représentation symbolique offrant unediscrétisation adaptative sur les dimensions temporelle et d’amplitude à l’échelle d’unjeu de données tout en ayant une mesure de distance compatible et une procédurede reconstruction efficace en mémoire.Afin d’évaluer la pertinence de nos solutions, nous les comparons avec desreprésentations symboliques populaires (décrites dans le Chapitre II) sur la tâche dereconstruction et, lorsque c’est applicable, en classification. Les algorithmes étudiéssont évalués sur 86 jeux de signaux univariés de taille égale provenant de la UCR TimeSeries Classification Archive [Dau+19] qui est largement utilisée. Cette archive est com-posée de séries temporelles issues du monde réel (audio, mouvement, etc), et aussides séries simulées. Les performances des représentations ASTRIDE et FASTRIDEsont comparées à celles de SAX, 1d-SAX [Mal+13], SFA (Symbolic Fourier Approxima-tion) [SH12], et ABBA (Adaptive Brownian Bridge-based Aggregation) [EG20a]. Pour laclassification, notre comparaison est limitée aux méthodes directement basées surdes symbolisations, car notre objectif est d’évaluer la pertinence de cette étape enelle-même et non pas d’atteindre des performances d’état de l’art en classificationde séries temporelles. Par conséquent, nous excluons les classifieurs construits surdes représentations symboliques, à savoir les algorithmes dits ”bag-of-words” et lesméthodes ensemblistes [SM13; Sch15; SL17; Ngu+19; Mid+20]. Les résultats mon-trent qu’ASTRIDE fournit une représentation symbolique intuitive qui surpasse l’étatde l’art en termes de taux de classification par plus proche voisin et obtient desrésultats compétitifs en reconstruction de signal. Un dépôt GitHub en libre accès2
est disponible pour reproduire toutes les expériences en Python.
Chapitre V : Présentation de d symb, une mesure de distance, basée surla symbolisation, interprétable et rapide pour séries temporelles multi-variées
Dans le Chapitre V – d symb: an interpretable distance measure for multivariate sig-nals, nous présentons dsymb [CTO23a], une méthode qui traite les séries temporellesmultivariées du point de vue de la représentation et aussi de celui de la distance, touten étant interprétable, précise et rapide à calculer. De plus, dsymb est mis en œuvredans un outil interactif en ligne appelé le dsymb playground [Com+24b]. Cet outil estdestiné à être utilisé par des cliniciens ou des experts du domaine pour interpréter etcomparer rapidement leurs volumineux jeux de données de séries temporelles mul-tivariées non stationnaires.

dsymb est une nouvelle mesure de distance permettant de comparer des sig-naux multivariés non stationnaires. Contrairement à la plupart des mesures de dis-tance sur les signaux multivariés telles que les variantes de la Dynamic Time Warping
2https://github.com/sylvaincom/astride
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(a) Répresentation SAX
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(b) Représentation ASTRIDE
Figure 4: Exemple de représentations SAX et ASTRIDE pour le même signal univariéet les mêmes paramètres d’entrée. La séquence symbolique résultante est 1131 pourSAX et 1230 pour ASTRIDE.

(DTW) [BC94; SY+17], dsymb peut prendre en compte la non-stationnarité des signauxgrâce à une étape de segmentation adaptative. Cette étape repose sur une procédurede détection de ruptures qui divise un signal non stationnaire en plusieurs segmentsstationnaires. dsymb suit les mêmes étapes générales qu’ASTRIDE (introduite dans leChapitre IV), mais avec les modifications suivantes : la segmentation de dsymb est ap-pliquée à chaque signal multivarié séparément, le nombre de segments est trouvé au-tomatiquement par une formulation pénalisée de la détection des ruptures, et l’étapede quantification utilise un partitionnement par les K-moyennes au lieu des quan-tiles. Enfin, la mesure de distance dsymb exploite la distance d’édition générale et estappliquée aux séquences symboliques.
Les avantages de dsymb sont démontrés sur trois jeux de signaux physiologiques :le jeu de données JIGSAWS [Gao+14], qui enregistre des chirurgiens utilisant des braset des pinces robotisés, le jeu de données sur la marche humaine [Tru+19], et lejeu de données armCODA [Com+24a], qui enregistre les mouvements des membressupérieurs humains. Les expériences montrent à quel point la symbolisation est in-terprétable, comme illustré sur les données de la marche dans la Figure 5. En effet, lasymbolisation détecte les segments qui correspondent aux comportements saillants,et chaque symbole correspond à un régime spécifique de la marche humaine, tel quefaire demi-tour ou marcher tout droit. D’un simple coup d’œil sur les frises de couleur,la symbolisation fournit une compréhension immédiate et complète d’un jeu de sériestemporelles multivariées. De plus, comparé à neuf distances élastiques multivariéessur une tâche de partitionnement, dsymb obtient des performances compétitives touten étant plusieurs ordres de grandeur plus rapide que les autres méthodes. Un dépôtGitHub en libre accès3, codé en Python, est disponible.

3https://github.com/sylvaincom/d-symb
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Figure 5: Séquences symboliques (représentées sous forme de frises de couleur)obtenues en utilisant la symbolisation dsymb pour 60 séries temporelles multivariéesprovenant du jeu de données de la marche [Tru+19] contenant 3 classes. Les classessont séparées par des lignes horizontales blanches en pointillés. Chaque lignereprésente la frise de couleur correspondant à une séquence symbolique.
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Le dsymb playground45, disponible en ligne, vise à explorer, interpréter et comparerrapidement plusieurs séries temporelles multivariées à partir d’un jeu de données.Cet outil, présenté dans la Figure 6, permet aux utilisateurs de téléverser et de vi-sualiser leurs séries temporelles multivariées ainsi que leurs symbolisations dsymbà l’aide des frises de couleur. L’interprétabilité et l’interactivité du dsymb playgrounddécoulent de la pertinence des symboles et du faible temps de calcul de dsymb.

(B) Individual analysis frame(A) Dataset analysis frame (C) Benchmark frame

Figure 6: Illustration des trois principales interfaces du dsymb playground.
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I.1 Context, motivation, and objectives

The general objective of this thesis is to introduce new symbolic representations anddistance measures for multivariate non-stationary time series.

I.1.1 Context
This thesis has been conducted at Centre Borelli1, an academic research laboratoryof Ecole Normale Supérieure Paris-Saclay, also affiliated with Université Paris-Saclay,Université Paris Cité, CNRS, SSA, and INSERM. Research at Centre Borelli revolvesaround applied mathematics, neuroscience, and computing, with a special focus ontheir biomedical and industrial interactions. Hence, a major specificity of the Centre

1https://centreborelli.ens-paris-saclay.fr/en
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Chapter I. Introduction (in English)

Figure I.1: Example of a multivariate time series from the armCODA data set. On theleft of the Figure, the placement of multiple sensors on the upper limb of a patientis displayed. On the right, a focus on the multivariate time series generated by oneof these sensors is provided. Each movement (for example, arm elevation) comprisesthree iterations.

Borelli is making mathematicians work closely with engineers, medical doctors, clini-cians, and industry experts.In terms of neuroscience, Centre Borelli’s work focuses on the analysis of humanand animal behavior, with two main aims: longitudinal follow-up (studying the evolu-tion of a subject over time) and inter-individual comparison (comparing, often statisti-cally, two cohorts of subjects). Several projects are currently underway to study gait inhealthy and pathological subjects (e.g. multiple sclerosis) [VJ+19; Boi+22], postural con-trol and early detection of fall risk [Bar+18], upper-limb movements during rehabilita-tion after injury [Com+24a], respiratory cycles in mice [Ger+22], or states of conscious-ness during anesthesia. All these projects are based on sensors that can be worn bythe subjects and enable the recording of several physiological signals (possibly syn-chronized), such as electrocardiograms (ECGs), electroencephalograms (EEGs), or footaccelerations recorded with Inertial Measurement Units (IMUs). The Centre Borellihas also participated in the construction of several clinical protocols and has gener-ated open-access data sets such as a human locomotion data set using IMUs [Tru+19]or an upper-limb human movement data set using motion capture [Com+24a]. Anexample of physiological signals that can be recorded during a protocol is shown inFigure I.1.Due to the complexity of the phenomena we wish to observe, which sometimesmobilize several physiological functions, the data collected in the various protocolscan be difficult to analyze. First of all, as with any time series, the first question is how
28



Chapter I. Introduction (in English)
to consider the temporal information in the models. Intuitively, in a monitoring task,the sequence and chronology of actions carries crucial information, which must bepreserved in the processing chain. The second question, which is also very general,relates to the noisy nature of sensor data. In particular, studies at the waveform levelcan be made difficult by the sometimes low signal-to-noise ratio [KK03; Fu11; EA12]. Onthe other hand, other questions arise directly from the protocols used:

1. Multivariate nature: Studying a patient often requires protocols with manysensors to get a complete understanding of the subject’s condition. Recordingthe 3D position of a body segment over time results in a multivariate time seriesof dimension 3. However, when studying arm elevation, it is likely that multiplesensors will be needed (e.g., on both arms, at the wrists, and at the elbows),resulting in a time series of higher dimensions (possibly hundreds). Intuitively,these dimensions are likely to be highly correlated, and this constitutes crucialinformation that needs to be taken into account.
2. Non-stationarity: When recorded over long periods of time or during complexprotocols, the statistical properties of physiological signals often change overtime. For example, if a subject wears a connected watch for an entire day, per-forming various activities with periods of rest in between, the generated signal istypically non-stationary. Most popular statistical models for time series requirethe wide-sense stationary property and therefore cannot be used in this context.
3. Multimodality: Some protocols involve the study of different sensors that si-multaneously record different types of quantities, such as accelerometry data,ECG, or EEG. In this case, the challenge is much more difficult because it requiresthe joint study of physiological signals with different physical properties (sam-pling frequency, structure, etc).

Last but not least, there is the question of interpretability for clinicians. Work at theCentre Borelli is carried out by multidisciplinary teams of mathematicians and clini-cians. The developed analysis tools must, therefore, enable them to interact with thedata, and most clinicians are not trained to observe waveforms. Therefore, a funda-mental research challenge is to be able to create mathematical representations thatabstract from the complexity of the data in order to render it in an intuitive visual formfor clinicians.
I.1.2 Scientific questions and positioning
Regarding these challenging biomedical time series, this thesis addresses the two fol-lowing scientific questions:

1. How can we represent physiological signals with a complex structure?
2. How can we compare these time series?
There are two main approaches in the literature for representing and comparingtime series. The first is to extract features from the raw time series and use a bagof features representation. In the context of physiological signals, popular features
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Chapter I. Introduction (in English)
may include Discrete Fourier Transform (DFT) [AFS93; FRM94] or Discrete Wavelet Trans-form (DWT) [CF99] coefficients. These approaches extract features from the time se-ries, often dimension by dimension, to build a vector of features [BB21] to be usedfor classification, clustering, and more. In most cases, the comparison between timeseries can be done using a simple Euclidean distance on the feature vectors. A majorlimitation of these methods is that they often lose the temporal information as theyextract features at the scale of an entire time series. Furthermore, if the time seriesare non-stationary, it is likely that a feature defined over the entire length would notbe representative.The second approach is to define distances that can be applied directly to the wave-forms. Among these distances, there is a variety of temporal alignment techniqueswith elastic distances such as Dynamic Time Warping (DTW) [BC94; SY+17] or trajec-tory comparisons [JCG20; Vay+22]. These methods work directly on the waveform andproject the time series into geometric spaces, which can be high dimensional. Thesedistances are well suited for comparing small snippets of data but, for example, acrude comparison of waveforms obtained over two consecutive days is likely to pro-duce irrelevant results. They can also be sensitive to noise and have a high compu-tational cost. In addition, sophisticated distances involve complicated mathematicalframeworks that can be difficult for clinicians to use.Based on the ideas developed previously, our ideal representation should:

• Preserve the time information, i.e. the chronology of the events;
• Handle the multivariate and/or multimodal nature of the data;
• Be interpretable and ergonomic: Long multivariate time series should be rep-resented in a concise way, where a simple glance at the representation shouldprovide all the essential information contained in it, for example, emphasizingon the salient events;
• Handle the non-stationarity of the data: The characterization of the phenomenashould be done not at the level of the whole time series, but at the level of actions,i.e. stationary phases;
• Be robust to noise.

Similarly, our ideal distance measure should:
• Adapt to the phenomena of interest, i.e. to the types of events present in thedata set;
• Perform the comparison at the level of actions, i.e. stationary phases;
• Be very fast to compute: Ideally, the complexity should be low enough so that itcan be used interactively by clinicians;
• Allow us to perform both inter-individual comparisons or longitudinal follow-up.
In this thesis, we propose to address these challenges by relying on an inter-mediate representation step: the symbolization of time series. Introduced in theearly 2000s, symbolization aims at transforming real-valued time series into shorterdiscrete-valued sequences. One of the pioneering and highly popular symbolic rep-resentations is Symbolic Aggregate approXimation (SAX) [Lin+03; Lin+07]. An exampleof SAX representation for a univariate time series is shown in Figure I.4 on page 34.
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Chapter I. Introduction (in English)
Thanks to the smoothing effect induced by their compression, symbolic representa-tions are widely used in data mining tasks, such as classification or clustering, wherethe choice of the representation is fundamental. In particular, a desirable property ofthese techniques is that they naturally incorporate the time information and tend tobe robust to noise.

In a nutshell, most symbolization techniques follow two steps: a segmentationstep, where a real-valued signal is divided into several segments, then a quantizationstep, where each segment is mapped to a discrete value called a symbol. For example,SAX uses a uniform segmentation then quantizes the means per segment by using aGaussian assumption. These symbolic sequences can then be compared using well-designed distances.
The goal of this thesis is to create a novel symbolic representation that addressesall the challenges described above (non-stationarity, multivariate nature, interpretabil-ity, ...) but also to build a distance measure on these symbolic sequences that is fast tocompute. Our two proposed symbolization methods are ASTRIDE (described in Chap-ter IV) and dsymb (described in Chapter V). ASTRIDE transforms a data set of univariatetime series, while dsymb transforms a data set of multivariate time series. Apart fromtheir accuracy, key advantages are their interpretability and computational efficiency.

I.2 Contributions and outline
The manuscript is organized as follows.

I.2.1 Chapter II: Literature review of symbolization methods for time se-ries
In Chapter II – Symbolic representation of time series, we conduct a comprehensiveoverview of symbolization methods that have been proposed in the literature. Wereview the first main scientific question of our thesis from a symbolic perspective: Howcan we efficiently represent time series with a complex structure? Since the introductionof SAX in 2003, there has been a prolific interest in research around SAX-like methodsand other categories of symbolization methods. Some reviews have been proposedmore than 10 years ago [DFT03; Lin+07; SW11]. A more recent one [Wan+19] focuses onSAX-like variants only. In Chapter II, we review more than 60 symbolization methods.

As illustrated in Figure I.2, our framework is the following: we break down a sym-bolization process into 3 consecutive steps: segmentation, feature extraction, andquantization. Typically, compared to SAX, symbolization methods in the literaturemodify one (or more) step(s) among the three main ones. This framework is not astrict grid: some symbolization methods that do not fit perfectly into this frameworkare also described (for example, methods that do not employ a segmentation step perse but rather down-sampling). For each step, a detailed overview is provided with theaim of identifying common themes. We also discuss the reconstruction task: recon-structing an original time series from its symbolic sequence. Finally, we discuss sym-bolization for multivariate time series, which is a more recent research area. Distancemeasures defined on the resulting symbolic sequences are described in Chapter III.
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Originaltime series Segmentation Featureextraction Quantization Symbolicsequence

Figure I.2: Main steps for the symbolization of a time series described in Chapter II.
Time seriesSections III.2and III.3.4

StringsSection III.3 Time series

Symbolic sequencesSection III.4

Symbolization (see Chapter II)

Figure I.3: Overview of types of distance measures described in Chapter III.

I.2.2 Chapter III: Literature review of distance measures on time series,strings, and symbolic sequences
In Chapter III – Distance measures on time series, strings, and symbolic sequences, wereview the second main scientific question of this thesis: How can we efficiently com-pare time series? We survey distance measures on time series, strings, and symbolicsequences found in the literature. Symbolic sequences are strings resulting from sym-bolization processes described in Chapter II. Distance measures on strings could beapplied to symbolic sequences: the combination of a symbolization method with adistance measure on strings can be considered as a distance measure on time series.While reviews (including recent ones) on distances on time series [Wan+13; Shi+23;HMB23] and strings [Kru83; Kuk92; WM92; Nav01] exist, to the best of our knowledge,they do not tackle time series and strings jointly. Indeed, as we shall see, there arecommon grounds for distances on strings and time series. In this chapter, as illus-trated in Figure I.3, we propose a review of time series and strings while highlight-ing how one has inspired the other. Moreover, we survey distances on symbolic se-quences obtained after symbolization, which has not been done before.For time series, we review lock-step alignment distances as well as elastic ones.When comparing two time series, lock-step alignment distances (such as the Euclideandistance) can only compare samples using one-to-one alignment, while elastic dis-tances use one-to-many alignment, thus are more robust to time-shifts. Elastic dis-tances include Dynamic Time Warping (DTW) along with its variants and constrainedversions. For strings, we describe edit distances such as the Longest Common SubSe-quence (LCSS). We also look into the extension of edit distances to real-valued series.Then, we describe distance measures specifically defined for symbolic sequences. Fi-nally, we cover the multivariate extensions of distances on time series.
I.2.3 Chapter IV: Presentation of ASTRIDE, an adaptive symbolizationmethod for a data set of univariate time series
In Chapter IV – ASTRIDE: Adaptive Symbolization for Time Series Databases, we intro-duce a solution that simultaneously addresses the two key scientific aspects of this
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Chapter I. Introduction (in English)
thesis: representation and distance, with a focus on efficiently symbolizing a datasetof univariate time series. Our solution is a symbolization method called ASTRIDE (Adap-tive Symbolization for Time seRIes DatabasEs) [CTO23b] that comes with an acceleratedvariant named FASTRIDE (Fast ASTRIDE) as well as a compatible distance measure calledD-GED (Dynamic General Edit Distance).ASTRIDE and FASTRIDE are novel symbolic representations for a data set of uni-variate time series. Unlike most symbolization procedures, such as the popularSAX [Lin+03], ASTRIDE is adaptive (i.e. data-driven) during both the segmentation stepby performing change-point detection and the quantization step by using quantiles.More precisely, the segmentation detects mean-shifts, where the number of changesis set by the user. Both adaptive segmentation and quantization are learned at thelevel of the data set of signals: the change-points, as well as the quantiles (for the quan-tization), are estimated using all signals in the data set. Hence, ASTRIDE’s dictionary ofsymbols is the same for all signals, and is thus memory-efficient. An illustration com-paring the ASTRIDE representation with SAX, on a single univariate signal, is providedin Figure I.4. Along with the symbolization, we also introduce D-GED, a novel distancemeasure on symbolic representations based on the general edit distance (reviewed inChapter III). Defined on strings, the edit distance allows substitutions, deletions, andinsertions. To the best of our knowledge, ASTRIDE is the only symbolic representa-tion offering adaptive discretization on both the time and amplitude dimension at thescale of a data set while having a compatible distance measure and a reconstructionprocedure that is memory-efficient.In order to assess the relevance of our solutions, we benchmark them with pop-ular symbolic representations (described in Chapter II) on reconstruction and, whenapplicable, on classification tasks. The studied algorithms are evaluated on 86 uni-variate equal-size data sets from the widely-used UCR Time Series ClassificationArchive [Dau+19], which is composed of real-world time series from several domainssuch as audio and motion and simulated series. The performance of the ASTRIDE andFASTRIDE representations is compared to SAX, 1d-SAX [Mal+13], SFA (Symbolic FourierApproximation) [SH12], and ABBA (Adaptive Brownian Bridge-based Aggregation) [EG20a].For classification, our comparison is limited to techniques directly based on symbol-izations since our objective is to evaluate the relevance of this step itself and not toachieve state-of-the-art performance on time series classification. Hence, we excludeclassifiers that are built on top of symbolic representations, namely bag-of-words andensemble-based algorithms [SM13; Sch15; SL17; Ngu+19; Mid+20]. Results show thatASTRIDE provides an intuitive symbolic representation that outperforms the symbol-ization state of the art in nearest-neighbor classification accuracy and achieves com-petitive results in signal reconstruction. An open source GitHub repository2 is availableto reproduce all the experiments in Python.
I.2.4 Chapter V: Presentation of d symb, an interpretable and fast dis-tance measure for multivariate time series based on symbolization
In Chapter V – d symb: an interpretable distance measure for multivariate signals, weintroduce dsymb [CTO23a] a solution that addresses multivariate time series for boththe representation and the distance aspects while being interpretable, accurate, andfast to compute. Moreover, dsymb is showcased in an interactive online tool called

2https://github.com/sylvaincom/astride
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(a) SAX representation

0 50 100 150 200 250 300 350 400

0

2

0
1
2

3

1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0
1

2

3

0

normalized signal
segmentation bins
mean per segment
quantization bins

(b) ASTRIDE representation
Figure I.4: Example of SAX and ASTRIDE representations for the same univariate signaland the same input parameters. The resulting symbolic sequence is 1131 for SAX and
1230 for ASTRIDE.

the dsymb playground [Com+24b], to be used by clinicians or field experts to quicklyinterpret and compare their typically large data sets of non-stationary multivariatetime series.
dsymb is a novel distance measure for comparing multivariate non-stationary sig-nals. Unlike most distance measures on multivariate signals such as variants of Dy-namic Time Warping (DTW) [BC94; SY+17], dsymb can take into account their non-stationarity thanks to an adaptive segmentation step. This step is based on a change-point detection procedure that splits a non-stationary signal into several stationarysegments. dsymb follows the same overall steps as ASTRIDE (introduced in Chapter IV),but the dsymb segmentation is applied to each multivariate signal separately, the num-ber of segments is found automatically by a penalized formulation of the change-pointdetection procedure, and the quantization step uses K-means clustering instead ofquantiles. Finally, the dsymb distance measure leverages the general edit distance andis applied to the symbolic sequences.
The advantages of dsymb are shown on three data sets of physiological signals:the JIGSAWS data set [Gao+14] which monitors surgeons using robotic arms and grip-pers, the human locomotion data set [Tru+19], and the armCODA data set [Com+24a]which records human upper-limb movement. Experiments show how interpretablethe symbolization is, as illustrated on gait data in Figure I.5. Indeed, the symbolizationdetects the segments that correspond to salient behaviors, and each symbol corre-sponds to a specific regime of human locomotion, such as turning around or walkingin a straight line. With a single glance at the color bars, the symbolization provides animmediate and comprehensive understanding of a data set. Moreover, compared tonine multivariate elastic distances on a clustering task, dsymb achieves a competitiveperformance while being several orders of magnitude faster than the other methods.
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Figure I.5: Symbolic sequences (represented as color bars) obtained using the dsymbsymbolization for 60 multivariate time series from the gait data set [Tru+19] containing3 classes. Classes are separated by white dashed horizontal lines. Each row is the colorbar corresponding to a symbolic sequence.
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An open source GitHub repository3, written in Python, is available.The dsymb playground45, available online, aims at quickly exploring, interpreting,and comparing multiple multivariate time series from a data set. This tool, displayed inFigure I.6, allows users to upload and visualize their multivariate time series and their
dsymb symbolizations using the color bars. The interpretability and interactivity of the
dsymb playground stem from the symbols’ relevance and the computational efficiencyof dsymb.

(B) Individual analysis frame(A) Dataset analysis frame (C) Benchmark frame

Figure I.6: Illustration of the three main frames of the dsymb playground.
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• S. W. Combettes, C. Truong, and L. Oudre. ”An Interpretable Distance Measurefor Multivariate Non-Stationary Physiological Signals.” In Proceedings of the Inter-national Conference on Data Mining Workshops (ICDMW), Shanghai, China, 2023.
• S. W. Combettes, P. Boniol, A. Mazarguil, D. Wang, D. Vaquero-Ramos, M. Chau-veau, L. Oudre, N. Vayatis, P.-P. Vidal, A. Roren, and M.-M. Lefèvre-Colau. ”Arm-CODA: A Data Set of Upper-limb Human Movement During Routine Examina-tion.” Image Processing On Line, 14:1-13, 2024.
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Chapter II
Symbolic representation of timeseries

This chapter is an overview of symbolization methods that have been proposed inthe literature. A symbolization process transforms real-valued time series into shorterdiscrete-valued sequences. We break down a symbolization process into 3 consecu-tive steps: segmentation, feature extraction, and quantization. We also discuss thereconstruction task, that is, reconstructing an original time series from its symbolicsequence. Finally, we discuss the symbolization of multivariate time series, which is amore recent research area.
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Chapter II. Symbolic representation of time series
II.1 Introduction
Over the past decades, the increasing amount of available time series data has ledto a rising interest in time series data mining. To cope with the complexity of suchdata, researchers have designed adapted representations that encapsulate signals’characteristics and that are easier to manipulate, e.g., shorter, interpretable, struc-tured, etc. Among many time series representations [Rat+10; Fu11; EA12; Wan+13;BR14], symbolic representations constitute a tool of choice [Lin+07]. Symbolic rep-resentations of time series are used for data mining tasks such as time series visu-alization [LKL05; Lin+07; Fu11; Rut+19], classification [Lin+07; Esm+12; LKL12; SM13;Sch15; NGI17; Ngu+19; FCG22; LLP23], clustering [Lin+07; BTT21a], indexing [Lin+07;SK08; Cam+10; Cam+14; Yag+17], anomaly detection [KLF05; Lon+06; WKX06; Yan+07;RK13; EG20a; KR20; BTT21a], rule discovery [PJ20], motif discovery [Sen+18], and fore-casting [EG20b]. The domain applications include finance [LSK06; BABO12], health-care [SW10; SP+17], and industry [Esm+12; PJ20; KR20] to name a few.

Most symbolization techniques follow three steps: a segmentation step where areal-valued signal y = (y1, . . . , yn) of length n is split into w segments, a feature extrac-tion step where features of interest are extracted for each segment, then a quantiza-tion step where each segment (through its extracted features) is mapped to a discretevalue ŷi taken from a set {a1, . . . , aA} of A symbols. The resulting symbolic represen-tation is the discrete-valued signal (or symbolic sequence) ŷ = (ŷ1, . . . , ŷw). The set ofsymbols {a1, . . . , aA} is usually called an alphabet or dictionary, and A is the alphabetsize. The length w of the symbolic representation is called the word length. While thereexist many high-level representations for time series, the two main advantages of sym-bolic representations are a reduced memory usage and competitive performances ondata mining tasks thanks to the smoothing effect induced by compression [Lin+07].
First of all, let us explain in detail the principle of symbolization through a widely-used symbolization technique called Symbolic Aggregate ApproXimation (SAX) [Lin+03;Lin+07]. Introduced in 2003, SAX paved the way for many other symbolic represen-tations, which are often variants or extensions of SAX. In SAX, as in most symbolicrepresentations, the symbolization process has two parameters: the word length wand the alphabet size A. For instance, in the symbolic sequence abbcaabc, the pa-rameters are w = 8 (length of the sequence) and A = 3 (number of possible symbols).Each signal is centered and scaled to unit variance, then split into w segments of equallength. Next, the means of all segments are clustered in bins and each segment is rep-resented by the bin where its mean falls into. The bin boundaries are chosen so thatall symbols are equiprobable under the assumption that the means follow a standardGaussian distribution. A SAX transformation of a signal taken from the UCR Time Se-ries Classification Archive [Dau+19] is shown in Figure II.1. The larger w and A, thebetter the quality of the SAX representation, but the lower the compression. Optimalvalues of w and A are highly dependent on the application and the data set. In theexperiments for classification in the SAX paper [Lin+07], w ∈ J2, n/2K (where n is thelength of the original time series) and A ∈ J3, 10K. SAX has been applied to many datamining tasks, such as clustering, classification, query by content, anomaly detection,motif discovery, and visualization.
Since the introduction of SAX in 2003, there has been a prolific interest in researcharound SAX-like methods and other categories of symbolization methods. Some re-views have been proposed [Liu+02; DFT03; Lin+07; SW11] more than a decade ago. A
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Figure II.1: Example of a SAX representation of a signal from the Meat data set (UCRTime Series Classification Archive). The original length of the signal is n = 448, and weuse w = 4 and A = 4. The resulting symbolic sequence is 1131.
Originaltime series Segmentation Featureextraction Quantization Symbolicsequence

Figure II.2: Main steps for symbolization of a time series.

more recent one [Wan+19] focuses on SAX-variants only. In this chapter, we describemore than 60 symbolization methods, extending previous reviews.
Outline We conduct a comprehensive overview of symbolization methods that havebeen proposed in the literature. We break down a symbolization process into 3 con-secutive steps illustrated in Figure II.2: segmentation, feature extraction, and quanti-zation. Typically, compared to the popular SAX, symbolization methods in the litera-ture modify one (or more) step(s) among the three main ones. A few symbolizationmethods that do not fit perfectly into this framework are also described (for example,methods that do not employ a segmentation step per se but rather down-sampling).We also discuss the reconstruction task: reconstructing an original time series fromits symbolic sequence. A synthetic summary is provided in Table II.1 on page 56. Fi-nally, we discuss the symbolization of multivariate time series, which is a more recentresearch area.

II.2 Segmentation
The first step of symbolization, called segmentation, splits a time series into severalsegments that can be of equal length or not. There are two ways to perform segmen-tation: uniform segmentation where each segment has the same length, and adap-tive segmentation when the segmentation is data-driven. A taxonomy of segmentationtechniques (in the symbolization literature) is displayed on Figure II.3.
II.2.1 Uniform segmentation
Uniform segmentation is the most straightforward and commonly used in the litera-ture on symbolization [Lin+03; LSK06; PLD10b; BABO12; MF12; Fua12; Esm+12; LZY12;Mal+13; LDH13; Bai+13; Sun+14; SP+17; Zha+18; AHWM19; Rua+20; LTN20; ZDX20; KR20;BTT21a; KR21]. Piecewise Aggregate Approximation (PAA) representation [Keo+01; YF00] is
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Segmentation

Uniform segmentation
[Lin+03; LSK06; PLD10b; BABO12; MF12; Esm+12; Mal+13; Sun+14; SP+17; LTN20; KR21]

Adaptive segmentation

Changes in the trend
[SW10; Yin+15; YAD19; Che+20; EG20a]

Changes in the mean
[Hug06; DAM23]

Changes in the dispersion
[Sun+12; DAM23]

Salient events
[Qy09]

Figure II.3: Taxonomy of segmentation techniques in the symbolization literature. Forconciseness, we do not display all the symbolization methods that use uniform seg-mentation.

an intermediate step of SAX: it uses uniform segmentation and then represents eachsegment by its mean. The number of segments w is set by the user. The larger w,the better the representation, but the larger the memory usage. The PAA representa-tion, with several values of w, of a univariate signal is shown in Figure II.4. This signalis used as a running example and also appears in Figure II.5. When w increases, themean value per segment better represents the signal’s shape. Indeed, the peaks arebetter accounted for when w = 16 compared to w = 4.
Finding an appropriate value for w and A is data-dependent and difficult. Somemethods to automatically find it have been proposed [MABH11; CA15; ZY17]. Harmonysearch SAX (HSAX) [MABH11] is based on Harmony Search (HS) [GKL01] algorithms. An im-proved version of HSAX is SAX++ [AABH14] which uses the relative frequency method.Instead of trying to find the best value of w, some classification methods use severalvalues of w for a multiresolution representation in a supervised setting [NI22]. More-over, some applications of symbolic methods replace the uniform segmentation byoverlapping sliding windows, especially in classification [LKL12; SM13]. Bag-Of-Patterns(BOP) [LKL12] uses overlapping sliding windows and SAX is applied to each sliding win-dow (for example fixing w = 4 and A = 4). BOP is a representation based on his-tograms of SAX word occurrence, similar to the bag-of-words representation in thetext processing community. SAX-VSM [SM13], designed for classification, builds bag-of-words for each class using a sliding window.

II.2.2 Adaptive segmentation
Contrary to uniform segmentation, adaptive segmentation is data-driven and adaptsto the intrinsic properties of the signal. The number of segments w is either chosenby the user or controlled by another parameter (a threshold on the approximationerror or a penalization). Adaptive segmentation is mostly based on change-point de-tection [TOV20], which finds unknown instants where some characteristics of the signal
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(a) w = 4

(b) w = 8

(c) w = 16

Figure II.4: PAA representation, based uniform segmentation, of a signal from theMeat data set (UCR Time Series Classification Archive), for several values of w. Theoriginal length of the signal is n = 448.

change abruptly. To illustrate, a comparison of uniform and adaptive segmentation,with the detection of changes in the mean or in the slope, is displayed in Figure II.5.Unlike uniform segmentation, the resulting segments of adaptive segmentation havevarying lengths. The input time series are also allowed to have different lengths.
Detecting changes in trend. Adaptive segmentation can detect several kinds ofchange in a signal. In the symbolization literature, the most popular adaptive seg-mentation is perhaps on the trend [SW10; YAD19; EG20a; Yin+15; Che+20]. As PAA inSAX, the Piecewise Linear Approximation (PLA) [SZ96] a.k.a. Piecewise Linear Representa-tion (PLR) [Keo+04] is used as an intermediate representation in some symbolizationmethods [SW10; EG20a]. A review of PLR [Keo+04] categorizes the algorithms into slid-ing windows, top-down, or bottom-up. This review also distinguishes linear interpola-tion, where the approximating line on each segment is simply the line connecting thestarting and ending points, with linear representation, where the approximating line isthe one that minimizes the least squares error. PLR is used in a symbol-based proce-
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(a) Uniform segmentation.

(b) Adaptive segmentation with detection of changes in the mean.

(c) Adaptive segmentation with detection of changes in the slope.
Figure II.5: Comparing uniform segmentation with adaptive segmentation (detectingeither changes in the mean or in the slope), with a fixed number of segments w = 4.

dure to detect phases of gait signals [SW10] and aims at detecting peaks in accelerationsignals, which are related to events such as heel-strike and toe-off. Adaptive BrownianBridge-based Aggregation (ABBA) [EG20a] focuses on the shape of the time series andits local up-and-down behavior, claiming that it corresponds to the human intuition ofthe summary of a signal. Each linear piece is chosen given a user-specified tolerance
tol: when the value of tol increases, the resulting number of segments w decreases.IEPF-TSR [Che+20] employs the Iterative End Point Fitting (IEPF) [Ram72] algorithm thatperforms multiple iterations.

Still focusing on the trend but without using PLR, SAX CP [YAD19] adds a penaliza-tion on the number of change-points. Using SAX CP, for a single time series, the seg-ments have different lengths, but all time series of a data set have the same change-points. These change-points are estimated on a training set when used in a super-vised setting. SAX CP claims that trend information is essential in fields such as fi-nance, quality control, stocks, and service quality. On its side, TFSA [Yin+15] also de-tects changes in the trend and implements a two-step adaptive segmentation: theobtained segments during the first step are further divided into shorter segments in
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the second step. This two-step mechanism aims at reducing the time complexity, es-pecially for long time series, because the second segmentation is faster than the firstand of the possibility of parallelization on each segment. TFSA proposes a method tofind global key points, which is inspired by the cumulative sum control chart [YLV04].TFSA states that the trend is an important feature in many domains, such as satellitemonitoring, and that it corresponds to human intuition in finance or health.

Detecting changes in mean. Rather than detecting changes in the trend, an-other category of adaptive segmentation focuses on the mean [Hug06; DAM23].ASAX SAE [DAM23] uses a bottom-up approach to reduce the approximation errorof the PAA representation. It also introduces a dynamic programming algorithm toimprove the segmentation computation time. According to [DAM23], this methodis suited for data sets with unbalanced distributions and for the similarity searchtask. SBSR [Hug06] does not apply change-point detection. SBSR can be viewed asa symbolic version of the Adaptive Piecewise Constant Approximation (APCA) represen-tation [Cha+02], just as SAX can be viewed as the symbolic version of PAA [Keo+01;YF00]. APCA is based on the Discrete Wavelet Transform (DWT) [CF99].

Detecting changes in dispersion. Other methods focus on the dispersion that canbe captured by the variance or the entropy [Sun+12; DAM23]. VWSAX [Sun+12] de-tects changes in the variance using a fixed-size sliding window. In the sliding windowprocedure, once a segment has enough total variance according to a threshold, it istransformed using SAX. ASAX EN [DAM23] focuses on entropy and uses a top-downapproach to find informative segments with high entropy.

Segmentation based on salient events. Instead of performing change-point de-tection based on a chosen feature, KP SAX [Qy09] finds so-called “Key Points”. It hasa two-step segmentation: the adaptive segmentation called KP SEG finds potentialchange-points in the first step that are refined in the second step. The first step ofKP SEG finds the set of “Extreme Points”, which are defined as points with a change inmonotonicity. The second step of KP SEG finds the “Key points” out of the “ExtremePoints” of the first step. For an extreme point to be considered as a key point, the ratiobetween the segment length and the total length must be larger than a threshold orthe angle between the line from the previous sample to the current sample and theline from the current sample to the next sample, must be smaller than an angle thresh-old. Finally, we quickly mention similar time series representations that perform adap-tive segmentation, especially in finance: Perceptually Important Points [Chu+01], TurningPoints [BY08], and Important Points [PSS08].

A summary of adaptive segmentation techniques used in the symbolization liter-ature is given in Table II.1 on page 56, and a taxonomy was shared in Table II.3 onpage 42. Now, let us describe feature extraction methods in detail.
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II.3 Feature extraction
We now describe how to extract segment features after the segmentation step. Inthe literature on symbolization, extracted features can be the mean, the slope, thevariance, the maximum, etc.

Note that, many methods, like SAX, only extract the segment mean [RKAJB05;MU05; Hug06; SK08; Qy09; PLD10b; Sun+12; MF12; Fua12; Bai+13; KR20; KR21; DAM23].In the following, we focus on methods that extract other features. A taxonomy offeature extraction techniques used in the symbolization literature is presented in Fig-ure II.6.

Feature extraction

mean
[Lin+03; RKAJB05; MU05; Hug06; SK08; Qy09; PLD10b; Sun+12; MF12; Fua12; Bai+13; KR20; KR21; DAM23]

trend
[Agr+95; AJB97; BP02; Yan+03; Esm+12; LZY12; Mal+13; LDH13; Sun+14; Yin+15; Zha+18; Rua+20; EG20a; Moh+20; Che+20]

dispersion
[SW10; ZY16; ZDX20; LTN20]

length
[SW10; EG20a]

extreme points
[MLW04; Meg+05]

Others
[HY99]

Figure II.6: Taxonomy of feature extractions in the symbolization literature. For con-ciseness, we do not display all symbolizations that extract the mean.

II.3.1 Extracting the trend
In the symbolization literature, the main alternative to extracting the mean per seg-ment is the trend [HA07; LZY12]. In the literature, the trend can be extracted in sev-eral ways: the slope [Esm+12; Mal+13; Yin+15; Zha+18; Rua+20; Che+20], the direc-tion (convex, concave, or linear) [LDH13], the increment [EG20a], or some ad-hoc fea-tures [Sun+14]. These different ways of encoding trend information may impact per-formance: ABBA [EG20a] claims that extracting the increment instead of the slopeallows their procedure to be independent of any pre-processing.

Mostly, variants do not replace the mean symbol with a trend one but rather addthe trend symbol to the mean symbol, obtained as in SAX, leading to at least two sym-bols per segment [Esm+12; LDH13; Sun+14; Zha+18; Rua+20; Che+20]. For instance,for the symbolized slope, TVA [Esm+12] and TSAX [Zha+18] only consider upward trend(↗), a downward trend (↘), and a straight trend (→). In order to represent the globaltrend more accurately, TSAX adds two trend symbols to the mean: each PAA segment
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is further split into 3 segments to determine these two trend symbols. For exam-ple, on a PAA segment, the two trend symbols can be↗ and then↘. The slope canalso be quantized using angle values, as in TrSAX [Rua+20] and TSX [LZY12]. In TSX,each segment is represented by 4 symbols. TSX first defines a line called trend linethat connects the starting and ending points of a segment. The Most Peak point (MP)is above the trend line and has the largest distance to the trend line. The Most Dippoint (MD) is below the trend line and has the largest distance to the trend line. TSXdraws three trend lines connecting the four following key points of a segment: thestarting and ending points, as well as the MP and MD. Finally, TSX holds 4 values persegment: the symbolized mean and the three slope values. Some methods use thetrend as well the starting or ending point, especially when using adaptive segmenta-tion [Yin+15; Che+20]. IEPF-TSR [Che+20] uses the symbolized mean, the slope, andthe starting point. TFSA [Yin+15] is quite different from the other methods as it doesnot use the symbolized mean but the following three features: the symbolized trend(upward, downward, flat following upward, and flat following downward), the slope,and the end point. Its segmentation is adaptive and detects key points, as describedin Section II.2.2. Instead of having several symbols per segment, 1d-SAX [Mal+13] rep-resents two features with only one symbol per segment. It uses linear regression tocompute the mean and the slope of each segment, then discretizes the mean and theslope separately using the same Gaussian assumption as in SAX. The final segmentsymbol is the combination of the mean symbol and the slope symbol.

Ordinal patterns [BP02] is a symbolization approach that differs from previouslydescribed SAX variants: it only describes the up and down trends. There is no seg-mentation: the original time series is down-sampled and a delay parameter definesthe equal-size duration between each sample. Let us consider that the down-sampledtime series is (2.24, 1.23, 5.42, 4.21) which contains 4 values. For the sample of value
5.42, the ordinal pattern of order norder = 3 is (1, 0, 2) because of the ordering of thetwo previous values and itself. As another example, the ordinal pattern of sample
4.21 is (0, 2, 1). For an ordinal pattern of order norder = 3, there exists norder! possiblevalues. Permutation Entropy (PE) is often applied to these ordinal patterns. PE mea-sures the complexity of a time series: it is high when the obtained ordinal patternsare random. Hence, ordinal patterns can be seen as symbols themselves, while PEon ordinal patterns can be seen as feature extraction. Similarly to ordinal patterns,[Yan+03] uses binary symbols (A = 2) to encode an increasing or decreasing trend.For each sample of the time series, if its value is larger than the previous sample, thenthe attributed symbol is 1, and 0 otherwise. The chosen number of successive pairs ofvalues is the word length, hence there is no segmentation per se. It was initially usedfor challenging physiological signals. A similarity measure on the symbolic sequencesis introduced and uses rank order statistics.

Finally, Shape Definition Language (SDL) [Agr+95] defines a specific alphabet for thetrend. It was originally applied to query time series. SDL allows fuzzy matchings wherethe user is more interested in the overall shape rather than specific details. SDL de-fines a specific alphabet where each symbol represents an event, such as slightly in-creasing transition and highly increasing transition. There is no segmentation. Eachevent is defined by lower and upper bounds on the variation between the consecu-tive points and constraints on these two points (being zero, non-zero, or else). ShapeDescription Alphabet (SDA) [AJB97] is based on SDL [Agr+95] and rewrites the proposedalphabet.
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II.3.2 Extracting the dispersion
Some symbolization techniques use the dispersion. The dispersion is either the stan-dard deviation [SW10; ZY16], the entropy [ZDX20], or the complexity estimate [LTN20].Apart from [SW10] (described in Section II.3.3), these methods use the symbolizedmean and the real-valued dispersion, and thus hold two values per segment. Theidea is that the mean and the dispersion provide complementary information. Thecomplexity estimate CE of a time series x of length n is defined in [Bat+14] as

CE(x) =

√√√√n−1∑
i=1

(xi − xi+1)
2, (II.1)

and corresponds to the L2-norm of the finite differences vector. SAX SD [ZY16], whichextracts the symbolized mean and the symbolized standard deviation, has been im-proved by the same authors into autoSAXSD S and autoSAXSD M [ZY17] that automati-cally estimate the parameters of SAX and SAX SD. autoSAXSD S chooses the best valueof w using Shannon’s sampling theorem. Alternatively, autoSAXSD M applies adaptivesegmentation based on the change in the mean. Both autoSAXSD S and autoSAXSD Mestimate the best value of A by investigating the distribution of the means values, andespecially its skewness; it iterates over several values of A.

II.3.3 Extracting the length
When using adaptive segmentation, each segment usually has a different length andis considered a feature in certain works. A method that focuses on the analysis ofacceleration signals [SW10] extracts five real-valued features: the variance, the meanalong two axes, the trend information, and the segment length. ABBA [EG20a] aims torepresent the shape of a time series and incorporates two features: the increment andthe length. A weighting parameter enables the user to promote either the incrementor the length, depending on the application.

II.3.4 Extracting extreme points
Rather than using the trend, the dispersion, or the length, Extended SAX (ESAX) [LSK06]focuses on extreme points and represents each segment by its mean, minimum, andmaximum values. It was initially crafted for financial data. On each segment, the sym-bols for the mean, minimum, and maximum are ordered according to their time po-sition in the segment.

II.3.5 Others
Finally, let us describe a quite unique symbolization technique called IMPACTS [HY99].IMPACTS was designed for indexing, and we only describe its symbolization part,which serves as a preprocessing step for indexing. Its segmentation amounts to theuniform one with a fixed number of segments as input. Then, a unique symbol ismapped to each segment: the alphabet size A is the same as the word length w.Hence, no specific feature is extracted: all the sample values in a segment are used.
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Quantization

Model-based
[Lin+03; RKAJB05; SK08; Bai+13; Sun+12]

Non-parametric estimation
[KR20; BTT21a]

Clustering

Time-based
[MU05; BBG13; SH12; BBC16; LS22]

K-means
[PLD10b; PLD10a; BABO12; Zal+12a; Zal+12b;

SP+17; MGAMMM17; EG20a; MG+20]
Vector quantization

[MLW04; Meg+05]

Others
[MF12; Fua12; CG23]

Figure II.7: Taxonomy of quantization techniques in the symbolization literature. Forconciseness, we do not display the symbolization methods that use the exact samequantization as SAX.

II.4 Quantization
Following segmentation and feature extraction, quantization performs a mappingfrom the extracted features to a discrete value called a symbol. Quantization methodsfall into several categories. Model-based methods assume a data model to determinethe quantization bins; for example, SAX assumes that the segment means follow aGaussian distribution. Conversely, non-parametric approaches estimate the quan-tization bins without model assumption. Usually, these two approaches solely dealwith one feature and when there are several features, each one is quantized indepen-dently. On the contrary, clustering methods can directly input several features. Finally,we review methods incorporating time information while encoding the symbols. Notethat some simple and straightforward quantization techniques were described in Sec-tion II.3.1 about extracting the trend feature and are not mentioned in this section.

A taxonomy of quantization methods used in the symbolization literature is pre-sented in Figure II.7.

II.4.1 Model-based
As their name suggests, model-based quantization techniques assume a data modelto determine the quantization bins. Most methods use the same Gaussian assump-tion as SAX: they are mentioned in Table II.1 on page 56 and in previous sections,but are not further described here. Other approaches extend the Gaussian bins ofSAX [SK08; Bai+13]. In indexable SAX (iSAX) [SK08], an iSAX word is a SAX word whereeach symbol is represented using binary numbers (instead of alphabetical letters orintegers). The quantization of iSAX also uses Gaussian bins, but it changes the cardi-nality of the symbols. When the cardinality (alphabet size) is a power of 2, using binarynumbers enables one to change the cardinality of each iSAX word (into another powerof 2) and the cardinality of each symbol inside an iSAX word. Basically, it lowers thealphabet size by aggregating close symbols. In the end, each symbol of an iSAX wordcan have a different alphabet size, which is always a power of 2. iSAX words of differ-ent cardinalities can be compared, and this multi-resolution trick allows one to index
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time series much faster. An improvement of iSAX has been proposed: Auto-iSAX [CA15]estimates the best parameters of iSAX [SK08]: the best w per iSAX word, and the bestvalue of A per symbol inside an iSAX word. Auto-iSAX tunes w by using the complexityestimate defined in Formula (II.1) on page 48 and tunes A by using the standard devia-tion. As for Random Shifting based SAX (rSAX) [Bai+13], it slightly modifies the Gaussianquantization bins of SAX by applying random shifting. The goal of rSAX is to have “softborders”: points that are similar but on the other side of Gaussian borders will have ahigher probability of being mapped to the same symbol. Thus, the quantization binsare more intuitive.Instead of using a Gaussian distribution, Weibull-SAX (W-SAX) [AHWM19] uses aWeibull distribution that is more suitable for predictive maintenance tasks where timeseries are composed of healthy states and degraded ones. W-SAX uses learned pa-rameters for the distribution. Finally, the clipped representation [RKAJB05] is a bit levelrepresentation of time series (A = 2): the unique quantization bin is the time seriesmean. If the value of a sample is above the mean of the time series, its symbol is 1,otherwise 0. There is no segmentation step: all samples are quantized. As it is rec-ommended that the time series are normalized [KK03], the mean should be zero. Theclipped representation uses run-length encoding whilst taking advantage of the binarynature of the symbolic sequences, and also applies numerosity reduction.
II.4.2 Non-parametric estimation
Rather than using a predefined distribution, some methods have tried to estimateit in a data-adaptive fashion. A straightforward approach is to use quantiles [SH12;Zal+12a], the number of quantiles being determined by the number of symbols.Distribution-Wise SAX (dwSAX) [KR20] tackles non-Gaussian distributions. dwSAX esti-mates a data distribution of the PAA values using Kernel Density Estimation (KDE). KDErequires the choice of a kernel function and a bandwidth parameter. After KDE, dwSAXfinds the quantization bins using the Probability Density Function (PDF) so that they cre-ate equal-sized areas under the curve. An improved version called edwSAX [KR21] hasbeen proposed by the same authors. SAX using Kullback-Leibler (SAX-KL) [BTT21a] isan anomaly detection based on a modified version of SAX and the Kullback-Leiblergoodness-of-fit. The modified version of SAX performs adaptive quantization by esti-mating the PDF using KDE as in dwSAX [KR20], then a modified version of the Lloyd-Max algorithm to better detect the modes is applied to obtain the quantization bins.The symbolization step amounts to probabilistic SAX (pSAX) [BTT21b] by the same au-thors, which comes with a high computational cost.
II.4.3 Clustering
Symbolization methods widely use clustering to map the extracted features to sym-bols (see Figure II.7 on page 49). All points in the same cluster are attributed thesame symbol. The K-means algorithm, called Lloyd’s algorithm in one-dimension, isoften used, where the number of clusters K equals the number of symbols A. Inthat case, the symbols are the cluster labels obtained by the clustering algorithm.Most symbolization techniques use K-means clustering (see Figure II.7). Adaptive SAX(aSAX) [PLD10b; PLD10a] uses a uniform segmentation and K-means clustering for thequantization. K-means is applied on a training set of PAA transformations from sev-
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eral time series. aSAX has several applications for data mining tasks. aSAX has beenapplied to indexing with iaSAX [PLD10b] which is the adaptive version of iSAX [SK08].aSAX has been used for anomaly detection with HOT aSAX [PLD10a] which is the adap-tive version of HOT SAX [KLF05]. In R-Kmeans [SP+17], which is similar to aSAX, the clus-tering quantization step is done per class, as this method is applied to time series clas-sification. [SP+17] also introduces SAX-Kmeans which is based on SAX and R-Kmeans,and ESAX-Kmeans which is based on ESAX [LSK06] and R-Kmeans. Rather than apply-ing K-means directly on the PAA representation, [Zal+12a] computes the first-orderdifferences of PAA values, then applies K-means clustering to obtain the symbolicsequences. Some approaches hold more than one feature per segment in order topreserve more information about the segments [BABO12; SW10]. ENhanced SAX (EN-SAX) [BABO12] clusters the mean, the minimum, and the maximum. A symbol-basedprocedure to detect phases of gait signals [SW10] uses piecewise linear segmentation,then K-means clustering on the five features (described in Section II.3.3) per segmentto get the symbols.

In ABBA [EG20a], following a PLR adaptive segmentation described in Section II.2.2,the K-means clustering inputs tuples of the increment over the segment and the seg-ment length. ABBA uses a scaling parameter scl that calibrates the importance of thelength in relation to its increment: the clustering is performed on the increments alonefor scl = 0, while the clustering is done on both the length and increment with thesame importance when scl = 1. Hence, the input parameters are the tolerance tol, thescaling scl, and the alphabet size A. When A is not set by the user, ABBA does severalruns of theK-means algorithm to get the optimal value ofA, resulting in a higher com-putational cost. A recent faster variant of the ABBA method, fABBA [CG23], replacesthe K-means clustering by a sorting-based aggregation procedure that does not re-quire the user to specify the alphabet size. ABBA-LSTM [EG20b] combines ABBA [EG20a]with LSTM for time series forecasting: it converts real-valued time series into symbolicsequences, then a LSTM predicts the symbols that are converted back to real values.
Another category of symbolization methods based on clustering employs VectorQuantization (VQ) [GG92]. PVQA [MLW04] uses uniform segmentation to obtain w seg-ments, then VQ for the quantization. Each segment is attributed to a symbol which isits closest codeword taken from a codebook (or alphabet). The codebook is obtainedfrom a training set of segments by applying the generalized Lloyd algorithm [Llo82],which is similar to K-means clustering. The authors of PVQA [MLW04] also introducedMVQ [Meg+05], which uses codebooks with different resolutions by using codebooksof different sizes.
Other algorithms are stochastic approaches and use genetic algorithms to dothe clustering. Genetic Algorithms-based SAX (GASAX) [MF12] works as SAX, but the binboundaries are determined through a genetic algorithm (which is a class of optimiza-tion procedures). GASAX does not require any specific distribution of the data. DE-SAX [Fua12] works like GASAX, but uses differential evolution instead of genetic algo-rithms to find the breakpoints. Quite differently, eMODiTS [MG+20], which enhancesMODiTS [MGAMMM17], uses evolutionary programming, a multi-objective algorithmto have an alphabet size and quantization bins for each uniform segment.
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II.4.4 Time-based
Apart from the symbol-based procedure to detect phases of gait signals [SW10] andABBA [EG20a] that incorporate directly the length feature when creating their symbols(using clustering), some quantization methods incorporate the temporal informationdifferently. In this section, we describe three independent methods where a symbolconsiders the temporal information without explicitly using the length in the featureextraction.The Persist algorithm [MU05] is based on the persistence score of symbols whichare considered as states, given A states. This persistence score is based on the sym-metric Kullback-Leibler (KL) divergence of the non-self and self-transition probabilitydistributions of the symbols according to a first-order Markov model. The more likelyit is to observe the same segment as the previous one (self-transition is more proba-ble than non-self-transition), the larger the persistence score based on KL. Persist isreviewed and experimentally evaluated in [SW11].Symbolic Aggregate approXimation Optimized by data (SAXO) [BBG13; BBC16] is aparameter-free and adaptive time series symbolization. SAXO was initially used torepresent electricity consumption, where the behavior changes drastically at nightcompared to the day. Hence, a good trade-off between compression and loss of in-formation should have symbols that jointly represent the time and the values. Tothat aim, SAXO applies an unsupervised regularized Bayesian co-clustering methodcalled Minimum Optimized Description Length (MODL) [Bou06]. On each obtained timesegment, the number of symbols and their distribution is different. As a result, SAXOperforms a joint adaptive segmentation and quantization that comes with a large timecomplexity cost.Symbolic Fourier Approximation (SFA) [SH12] is based on the discrete Fourier trans-form. First, SFA selects the w Fourier coefficients of lowest frequencies, and second,uses a procedure called Multiple Coefficient Binning (MCB) to quantize them. In detail,MCB computes a user-defined number A of quantiles per Fourier coefficient acrossall signals of a data set, and each Fourier coefficient is represented by the bin (basedon quantiles) to which it belongs. In a supervised data mining task, the MCB bins arelearned on a training set. SFA naturally provides a low-pass filtering that reduces theinfluence of noise. Also, no distance on SFA’s symbolic representations is described.Note that SFA does not go through a segmentation step but still has the w param-eter that determines the length of the symbolic sequences. SFA has been widelyused for dictionary-based time series classification, for example Bag of SFA Symbols(BOSS) [Sch15] and some extensions [Sch16; MVB19; Lar+19; SL17; SL23; Mid+20]. A re-cent variant of SFA called SFFA [LS22] applies the fractional Fourier transform insteadof the discrete Fourier transform. Similarly to SAX-VSM [SM13], the authors have de-veloped SFFA-VSM.

II.5 Reconstruction
Reconstruction is the inverse transformation of symbolization: the original signal isinferred from its symbolic sequences. Symbolization can be viewed as compression,while reconstruction can be viewed as decompression. Moreover, comparing the dis-tance between the original time series and its reconstruction can give a general ideaof the quality of the time series symbolization. Only a few papers on symbolic rep-
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Figure II.8: Example of reconstruction of a single signal from the Beef data set (UCRTime Series Classification Archive) of original length n = 470 for several methods, with
w = 19 and A = 9.

resentation tackle the signal reconstruction task. ABBA [EG20a] addresses the signalreconstruction task specifically. Papers on SAX, 1d-SAX, and SFA for example, do nottackle signal reconstruction. However, it is easy to infer a reconstruction procedurefor these methods. As done in the tslearn Python package, for SAX1 and 1d-SAX2, thesample values on each segment of the reconstructed signal are based on the Gaussianbins of the look-up tables. For SFA, the reconstructed signal is the Fourier reconstruc-tion based on the quantized Fourier coefficients. The reconstruction is quite smoothand provides low-pass filtering. For ABBA, as described in its original paper [EG20a],the reconstruction holds 3 steps for a symbolic representation. First of all, each sym-bol is associated with its corresponding cluster center. Then, as the lengths encodedin the cluster centers may not be integers, a trick aims at rounding them. Finally, a pro-cedure reconstruction of the piecewise linear continuous approximation. Figure II.8compares the reconstruction from these four symbolization methods for the sameoriginal time series.

II.6 Symbolic representations for multivariate time series
In this section, we describe a main challenge that is still an active area of research: ex-tending symbolization methods to multivariate time series. While most symbolizationtechniques focus on univariate time series, some methods have extended proceduresfor the multivariate case. As illustrated in Figure II.9, there are three main strategiesto tackle multivariate time series symbolization: dimensionality reduction, the inde-pendent strategy, and the dependent strategy.

1https://tslearn.readthedocs.io/en/stable/gen_modules/piecewise/tslearn.piecewise.
SymbolicAggregateApproximation.html2https://tslearn.readthedocs.io/en/stable/gen_modules/piecewise/tslearn.piecewise.
OneD_SymbolicAggregateApproximation.html
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Symbolizationfor multivariatetime series

Dimensionality reduction
[MN14; Moh+20]

Independent strategy
[MN14; AVC20]

Dependent strategy
[MN14]

Figure II.9: Taxonomy of symbolization techniques for multivariate time series.

Dimensionality reduction. The dimensionality reduction techniques reduce themultivariate time series into a univariate time series and then use classic symbol-ization. SAX-PCA [MN14] applies PCA on the time series that are z-normalized oneach dimension, then applies SAX to the projection of the time series on the firstprincipal component, which is one-dimensional. Similarly, multivariate ordinal pat-terns [Moh+20] extend the ordinal pattern representation, which is based on the trendand described in Section II.3.1, to multivariate time series. It uses PCA to transform themultivariate time series into univariate ones, then applies the usual ordinal patternson which the permutation entropy is then computed.

Independent strategies. The independent strategy symbolizes each channel in-dependently and then aggregates them to return a single symbolic sequence. SAX-REPEAT [MN14] applies SAX on each dimension separately, then concatenates the mul-tiple symbolic sequences obtained from each dimension into a single long string. Mul-tivariate SAX (MSAX) [AVC20] applies PAA on each channel, and then a Gaussian distri-bution is associated with each variable. Then, a multivariate Gaussian distribution isformed and used for the quantization to obtain a univariate symbolic sequence. In theindependent strategies, when there is an alphabet of size A for each dimension, thenthe total number of symbols is Ad, where d is the number of dimensions. Hence, thenumber of symbols does not scale well with the number of dimensions. For instance,MSAX was applied to trajectories where d = 2. Moreover, in these large alphabets,many symbols are not used.

Dependent strategies. The dependent strategy symbolizes all channels togetherand returns a single symbolic sequence. SAX-ZSCORE [MN14] starts by applying a mul-tivariate version of the z-normalization step that uses the covariance matrix. Then, itapplies a modified multivariate version of PAA: the mean per segment is a real valuethat corresponds to the average of the L2-norms of each multidimensional sample.

In this section, we excluded symbolization methods that consist in multiple univari-ate symbolizations that are then handled by a data mining algorithm [Esm+12; Son+20;PJ20]. TVA [Esm+12] focuses on multivariate signal classification. SAX-ARM [PJ20] usesSAX to mine association rules efficiently among the deviant events of multivariate timeseries. They do not transform multivariate time series into a single symbolic sequence.
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II.7 Conclusion
In this chapter, we conducted a survey of symbolization techniques. A synthetic sum-mary of all univariate symbolization methods described in this review is provided inTable II.1 on page 56.Symbolic representations are widely used when dealing with time series data forvisualization and many data mining tasks such as classification. Symbolization can beused directly, for example, SAX with the MINDIST distance defined on its symbolic se-quences (described in Section III.4.1) can be used in 1-nearest neighbor classification,or indirectly as an intermediate step, such as in SFA [SH12] which is used in the BOSSclassifier [Sch15]. SAX is the most popular symbolic representation due to its simplicityand has paved the way for numerous SAX variants. Some variants focus on adaptivesegmentation and/or adaptive quantization while extracting more relevant featuresthan the mean per segment. Adaptive segmentation amounts to change-point detec-tion: it looks for important points where there is a change in the mean or the slope, forexample. Adaptive quantization uses distribution models, non-parametric estimation,or clustering to find quantization bins. They can also integrate the time information.These variants mainly focus on univariate time series, but some symbolization for mul-tivariate time series have also been introduced more recently, some of them trying todeal with all channels simultaneously.
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Table II.1: Summary of symbolization techniques for univariate time series found in the literature, ordered by year of publication andacronym.For the feature extraction step, A indicates that the feature is extracted then later symbolized, while R indicates that the feature is usedbut not quantized afterwards (it remains a real value).
†Increment, not exactly the slope.
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SDL (Shape Definition Lan-guage) [Agr+95] ✘ N/A ✘ A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-based
SDA (Shape Description Alpha-bet) [AJB97] ✘ N/A ✘ A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-based
IMPACTS (Interactive Matchingof Patterns with AdvancedConstraints in Time-Seriesdatabases) [HY99]

✘ N/A N/A: no feature extraction ✔ model-based

Ordinal patterns [BP02] ✘ N/A ✘ A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-basedYang et al. [Yan+03] ✘ N/A ✘ A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-basedSAX (Symbolic Aggregate ap-proXimation) [Lin+03; Lin+07] ✘ N/A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-based
PVQA (Piecewise Vector Quan-tized Approximation) [MLW04] ✘ N/A N/A : vector quantization ✔ clustering

Continued on next page.
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Table II.1 – continued from previous pageSegmentation Feature extraction Symbolization
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Clipped representa-tion [RKAJB05] N/A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ model-based
MVQ (Multiresolution VectorQuantized) [Meg+05] ✘ N/A N/A : vector quantization ✔ clustering
Persist algorithm [MU05] ✘ N/A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ time-basedESAX (Extended SAX) [LSK06] ✘ N/A A ✘ ✘ ✘ ✘ ✘ A A ✘ ✘ ✘ model-basedSBSR-L0 (adaptive Segmenta-tion Based Symbolic Represen-tations) [Hug06]

✔ mean A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ clustering

iSAX (indexable SAX) [SK08] ✘ N/A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-basedKP SAX (Key Points SAX) [Qy09] ✔ salient points A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-basedSant’Anna and Wick-ström [SW10] ✔ trend A2 A ✘ ✘ A ✘ ✘ ✘ ✘ A ✔ clustering
aSAX (adaptive SAX) [PLD10b;PLD10a] ✘ N/A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ clustering
DESAX (Differential Evolution-Based SAX) [Fua12] ✘ N/A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ clustering

Continued on next page.
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EFVD (Equal Fixed-Values Dis-cretization) [Zal+12b] ✘ N/A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ clustering
EN-SAX (ENhancedSAX) [BABO12] ✘ N/A A ✘ ✘ ✘ ✘ ✘ A A ✘ ✘ ✔ clustering
GASAX (Genetic Algorithms-based SAX) [MF12] ✘ N/A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ clustering
SFA (Symbolic Fourier Approxi-mation) [SH12] N/A : Fourier coefficients ✔ time-based
TSX (Trend-based Symbolic ap-proximation) [LZY12] ✘ N/A A A3 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-based
TVA (Trend-based and Valued-based Approximation) [Esm+12] ✘ N/A A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-based
VWSAX (Variance-Wise segmen-tation SAX) [Sun+12] ✔ variance A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-based
1d-SAX [Mal+13] ✘ N/A A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-basedrSAX (Random shifting basedSAX) [Bai+13] ✘ N/A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ model-based

Continued on next page.
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SAX DR (SAX with DirectionRepresentation) [LDH13] ✘ N/A A ✘ A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-based
SAXO (Symbolic AggregateapproXimation Optimized bydata) [BBG13; BBC16]

✔ N/A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ time-based

SAX-TD (SAX-Trend Dis-tance) [Sun+14] ✘ N/A A R ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-based
TFSA (Trend Feature SymbolicApproximation) [Yin+15] ✔ trend ✘ A× R ✘ ✘ ✘ ✘ ✘ ✘ R ✘ ✘ model-based
SAX SD (SAX with Standard De-viation) [ZY16] ✘ N/A A ✘ ✘ R ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-based
MODiTS (Multi-objective sym-bOlic Discretization for Time Se-ries) [MGAMMM17]

✘ N/A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ clustering

R-Kmeans (RepresentationKmeans) [SP+17] ✘ N/A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ clustering
TSAX (Trend-basedSAX) [Zha+18] ✘ N/A A A2 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-based

Continued on next page.
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SAX CP (SAX Change-Points) [YAD19] ✔ trend A A× R ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-based
W-SAX (Weibull-SAX) [AHWM19] ✘ N/A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ non-param. est.ABBA (Adaptive Brown-ian Bridge-based Aggrega-tion) [EG20a]

✔ trend ✘ A† ✘ ✘ ✘ ✘ ✘ ✘ ✘ A ✔ clustering

CSAX (Complexity-invariantSAX) [LTN20] ✘ N/A A ✘ ✘ ✘ R ✘ ✘ ✘ ✘ ✘ ✘ model-based
eMODiTS (enhanced Multi-objective symbOlic Discretiza-tion for Time Series) [MG+20]

✘ N/A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ clustering

EN SAX (ENtropy-basedSAX) [ZDX20] ✘ N/A A ✘ ✘ ✘ ✘ R ✘ ✘ ✘ ✘ ✘ model-based
dwSAX (Distribution-WiseSAX) [KR20] ✘ N/A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ non-param. est.
IEPF-TSR (Trend SegmentationRepresentation based on Iter-ative End Point Fitting algo-rithm) [Che+20]

✔ trend A R ✘ ✘ ✘ ✘ ✘ ✘ R ✘ ✘ model-based

Continued on next page.
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TrSAX (Trend SAX) [Rua+20] ✘ N/A A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-basededwSAX [KR21] ✘ N/A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ non-param. est.SAX-KL (SAX using Kullback-Leibler) [BTT21a] ✘ N/A A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ non-param. est.
SFFA (Symbol Fractinal FourierApproximation) [LS22] N/A : Fourier coefficients ✔ time-based
ASAX EN (Adaptive SAX basedon ENtropy) [DAM23] ✔ entropy A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ model-based
ASAX SAE (Adaptive SAX basedon the Sum of Absolute Er-rors) [DAM23]

✔ mean A ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ model-based

fABBA (fast ABBA) [CG23] ✔ trend ✘ A† ✘ ✘ ✘ ✘ ✘ ✘ ✘ A ✔ clustering
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Chapter III
Distance measures on time series,strings, and symbolic sequences

This chapter reviews popular distance measures on time series, strings, and sym-bolic sequences. We first describe distances on univariate time series, including thepopular elastic distances and numerous variants of DTW. Afterwards, we describe dis-tance measures on strings such as the edit distances. Then, we describe distance mea-sures that have been defined on symbolic sequences, i.e. resulting from a symbolicrepresentation. Finally, we describe how distances have been extended to multivariatetime series.
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III.1 Introduction
In this chapter, we survey distance measures on time series, strings, and symbolicsequences. First of all, let us define these objects.

• A time series is a series of real values indexed in time order.
• A string is a series of discrete values indexed in time order, the discrete valuesbeing non-ordered and taken from a fixed alphabet of characters.
• A symbolic sequence is a discrete sequence resulting from the transformation ofa time series using a symbolization process (described in Chapter II).
In the following, A denotes the alphabet, that is, a set of symbols, e.g. A =

{a, b, c, . . .} where a, b, c, ... are symbols. A = |A| is the alphabet size.
III.1.1 Definitions
Measuring the distance (or similarity) between series is key in many machine learningtasks [EA12]. A distance measure computes a real value that quantifies the similaritybetween two sets of values. For two series (with discrete or real values) x and y ofrespective lengths m and n, a distance (or similarity) measure D is defined as

D : Bm × Bn → R
(x, y) 7→ D(x, y)

, (III.1)
where B designates either the alphabet A in case of strings / symbolic sequences orthe set of real number R in case of time series. The challenge of building a distancemeasure is to make it compatible with any series, whatever their nature, their size,
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etc, and also to formalize the human intuition of what makes two series different ornot, although they are not identical from a mathematical viewpoint [EA12].A particular case of distance measure is the metric:
Definition III.1 (Metric). A measure D is a metric if it satisfies the three following funda-mental properties, for any sequences (with discrete or real values) x, y, and z:

1. Identity
D(x, y) = 0⇐⇒ x = y; (III.2)

2. Symmetry
D(x, y) = D(y, x); (III.3)

3. Triangle inequality
D(x, y) ≤ D(x, z) +D(z, y). (III.4)

If any of these three is not verified, then the distance measure is not a metric.
Note that the three properties described in Definition III.1 imply the non-negativityproperty of a metric

D(x, y) ≥ 0. (III.5)
The triangle inequality property is also known as subadditivity [EA12].
III.1.2 Applications of distances measures
III.1.2.1 Data mining tasks
Distance measures are particularly useful in data mining tasks. Let us review the useof distance measures for each of the main data mining tasks on time series.

• Distance measures are omnipresent in indexing and similarity search [GD01;Cha+02; KK03; Din+08; EA12; Rak+12; TWP17]. Indeed, given a query time series,nearest neighbor search looks for the closest point out of a set of candidatepoints, according to a distance measure.
• Distances on time series are crucial in time series clustering, such as for K-means and agglomerative clustering. Reviews on time series clustering, includ-ing a recent one, are available at [War05; Ber06; Fu11; ASY15; HMB23].
• Classifiers such k-nearest neighbors classification require a distance measure.Reviews on univariate and/or multivariate time series classification are availableat [Bag+17; AML19; Rui+21; MSB23; Shi+23] and apply the algorithms to the open-access UCR archive [Dau+19].
• For anomaly detection (also known as outlier detection), a distance on subse-quences can be used [IP14; BBC18]. Anomaly detection is tackled by using clus-tering on subsequences, and considering that some groups are anomalies, whileothers are normal. Reviews including recent ones are available at [Wei04; CBK09;BG+21; Pap+22].
• Moreover, in the forecasting task, to assess the quality of a prediction, a distancemeasure is used to compare the ground truth values with predicted ones.
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• Similarly, in the reconstruction task, a distance measure is needed to comparethe original time series with its reconstruction (after a certain transformation).
The metric property defined in Definition III.1 is particularly useful for some datamining tasks. The triangle inequality can help time series indexing and can be used toaccelerate the time series retrieval task. A lot of algorithms have been optimized toindex and retrieve objects in metric spaces [Ch01]. For example, that is the case of thewidely-used indexing framework called GEMINI (GEneric Multimedia INdexIng) [FRM94].

III.1.2.2 Lower-Bounding property
As stated in [FRM94; Keo+01; HW21], the Lower-Bounding (LB) property, in Defini-tion III.2, is important when performing similarity search such as nearest neighborsearch.
Definition III.2 (Lower-bound of a distance). A lower-bound LB of a distance D is aneasy to compute approximation of D such that for all time series x and y

LB(x, y) ≤ D(x, y). (III.6)
A lower-bound is particularly useful when looking for the nearest neighbor givena time series query x. Indeed, the search investigates each candidate iteratively: for acandidate y ∈ C (where C the set of time series candidates), if LB(x, y) ≥ D(x, ybsf )where ybsf is the current nearest neighbor (”best-so-far” [Keo+09; SB16; Sil+18]), thenwe have D(x, y) ≥ LB(x, y) ≥ D(x, ybsf ) according to Formula (III.6), so candidate ycan not be the nearest neighbor, and there is no need to compute D(x, y). D(x, ybsf )is known as the cut-off [HW21]. Ideally, a lower bound LB is faster to compute thanits corresponding distance D. Typically, a lower bound would have a time complex-ity of one order of magnitude lower than its corresponding distance. Hence, using alower-bound sometimes (e.g. if LB(x, y) ≥ D(x, ybsf )) replaces long computations(e.g. D(x, y)) with faster ones (e.g. LB(x, y)), thus speed up the total search.Moreover, the ideal lower-bound is tight. The Tightness of Lower Bound (TLB) [Keo+01],defined in Definition III.3, measures how close a lower bound is to its correspondingdistance: the closer a TLB is to 1, the tighter (and better). Usually, there is a trade-offbetween the TLB and the computation time efficiency [Sil+18].

Definition III.3 (Tightness of Lower Bound). Given a distance measure D and a lowerbound LB of D, the Tightness of Lower Bound (TLB) is defined as
TLB =

LB(x, y)

D(x, y)
≤ 1. (III.7)

Finally, the LB property ensures exact indexing of data in the sense that there willbe completeness (no false negatives / dismissals) [FRM94].
III.1.3 Outline
A taxonomy of distance measures on time series, strings, and symbolic sequences,that will be described in this chapter, is displayed in Figure III.1. We first describe thedistances on time series. Then, we focus on strings, mainly edit distances along with
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their extension to time series. Next, we present the distances on symbolic sequencewhich are obtained after symbolization (described in Chapter II). Note that a distancemeasure on symbolic sequences can be viewed as a distance measure on strings, aswell as a distance measure on time series when combined with a symbolization pro-cess. Finally, we describe the extensions of distances for multivariate time series. Asummary table of distances on time series is available in Table III.2 on page 93, and asummary table of distances on strings is available in Table III.3 on page 94.

Time seriesSections III.2and III.3.4
StringsSection III.3 Time series

Symbolic sequencesSection III.4

Symbolization (see Chapter II)

Figure III.1: Taxonomy of distance measures on time series, strings, and symbolic se-quences described in this chapter.

III.2 Distance measures on time series
In this section, we describe the univariate measures, while the multivariate ones(which are actually extensions of the univariate ones) will be covered in Section III.5.More in-depth or complementary reviews on distance measures for time series can befound in [Shi+23; EA12; Fu11; HMB23; Wan+13; Rui+21; Rat+10; Cas+12]. Review [Shi+23]focuses on distance measures on multivariate time series but also describes univari-ate ones. Review [EA12] classifies the distance measures into four categories: shape-based, edit-based, feature-based, and structure-based. Some of these categories willnot be covered. Shape-based distances will be covered with the Euclidean distance(and more generally Lp distances) in Section III.2.1, and Dynamic Time Warping (alongwith its variants) in Section III.2.2. [AML19] reviews distance-based time series classifi-cation, while [HMB23] reviews distance-based clustering.

Let us assume that we want to compute the distance between the two univariatereal-valued time series x = (x1, . . . , xn) and y = (y1, . . . , yn) of respective lengths mand n, such as the ones depicted in Figure III.2.

III.2.1 Lp distances
Let us assume that x and y have the same length m = n. The most straightforwardway to calculate a distance between two signals is to use theLp distance [YF00] definedin Definition III.4.
Definition III.4 (Lp distance). The Lp distance where p is the order of the distance, alsoknown as the Minkowski distance, between univariate time series x and y of same length
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Figure III.2: Two equal-size univariate real-valued time series x and y. Note that thereis separate amplitude axis for each time series.

n is defined by
Lp(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

. (III.8)
The L1 (Manhattan) and L2 (Euclidean) distances are widely used. In particular,the Euclidean distance is often used as a baseline in data mining tasks, as it is wellreferenced, holds no parameter, and is easy to implement [KK03].The time complexity of the Lp-norm (whatever p) isO(n). Thus, it is considered asone of the fastest in the community. For p ≥ 1, the Lp distance is a metric. The Lpdistance requires its inputs to have the same length, otherwise it is not defined.An extension of the Euclidean distance is the Complexity-Invariant Distance (CID) [Bat+14]which is invariant to the complexity of a time series (for example a random walk ismore ”complex” than a linear line). The motivation is the following: complex time se-ries are often considered close (by the Euclidean distance) to simple time series ratherthan other complex time series that actually bear a resemblance to them. To circum-vent this issue, the CID introduces a correction factor to the Euclidean distance

DCID(x, y) = L2(x, y) ·DCF (x, y), (III.9)
where DCF is a complexity correction factor defined as

DCF (x, y) =
max (CE(x), CE(y))

min (CE(x), CE(y))
≥ 1, (III.10)

and CE(x) is the complexity estimate of time series x, as defined in Formula (II.1) onpage 48. The DCF term forces time series with very different complexities to havea larger distance according to DCID (relatively to time series with similar complexi-ties). If two time series have the same complexity, their CID corresponds to the classicEuclidean distance.
III.2.2 Dynamic Time Warping (DTW): an elastic distance measure
We now focus on Dynamic Time Warping (DTW) [SC71; SC78; BC94], a distance that cancope with signals of different lengths. Such a distance is called an elastic distance
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measure [AML19; Shi+23], as defined in Definition III.5. Let us assume that x and yhave possibly different lengths m ̸= n. An elastic measure is robust to time warping,which is a contraction or dilatation of the time axis because it is able to ”stretch” or”shrink” [Mar09].
Definition III.5 (Elastic distance measure). An elastic distance measure is a distancemeasure D that can compare two time series x and y, possibly of different lengths m and
n.

Contrary to elastic alignments, Lp distances described in Section III.2.1 are calledlock-step alignment [AML19] due to their one-to-one alignment.
DTW is the most popular elastic distance and has been used in numerous datamining tasks [Shi+23]. Historically, DTW was first used in the speech processing com-munity [SC71; Ita75]. It has also been used in bioinformatics [AC01], health [Cai+98;Ger+22], and entertainment [ZS03], to give a few examples. 1 Nearest-Neighbor (1-NN)classifier with DTW has long been considered as the traditional benchmark algorithmfor time series classification [Bag+17]. Note that DTW can input time series of varyinglengths, but there seems to be no significant difference in accuracies between us-ing variable-length time series and equal-length time series (using reinterpolation) inDTW [RK05].
One important feature of an elastic distance measure such as DTW is its robust-ness to time warping. Contrary to Lp distances, DTW can perform warping, mean-ing one-to-many alignment between samples of two time series, as illustrated in Fig-ure III.3b. Lp distances compute point-to-point differences between correspondingsamples, so they require the timelines between the two signals being compared tohave a perfect match. They cannot align two series that are misaligned in the timedimension (even if the signals have the same length).

(a) Euclidean distance: one-to-one alignment.Sample xi is associated with sample yi.
(b) DTW distance: one-to-many alignment.Sample xik is associated with sample yjk .

Figure III.3: Comparison of the alignments from the Euclidean and DTW distances forthe x and y signals depicted in Figure III.2. In the DTW alignment, the first big peaks ofeach time series are aligned, which makes sense, but not in the Euclidean distance.
Moreover, let us look into a pathological example of bad warping by the Euclideandistance. Let us consider the univariate time series x of length 270 depicted in Fig-ure III.2. Let us denote by a the time series of length 300 obtained from x by padding30 times to the left the first value of x. Let us denote by b the time series of length 300obtained from x by padding 30 times to the right the last value of x. These two signals,
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along with their Euclidean and DTW alignments, are plotted Figure III.4. By construc-tion, a and b are (almost) the same, but the Euclidean distance would attribute thema distance that is high, due to its imperfect fixed warping, contrary to DTW that isable to recognize that these time series are just shifted on the time axis. Indeed, thelarge peak is re-aligned by DTW. Moreover, the first value of b and the last value of aboth have many alignments, because of the construction of a and b upon x. Hence,often, DTW is more suited than the Euclidean distance (including for equal-length sig-nals) [Bag+17]. However, note that, for nearest neighbor search in large data sets, theEuclidean distance has been shown to be quite equivalent in accuracy to DTW [SK08].Indeed, the larger a data set, the larger the probability that there is no need for warp-ing for a close match to happen.

(a) The Euclidean distance can not re-align thetime series. (b) DTW can re-align the time series.

Figure III.4: Comparison of the alignments from the Euclidean and DTW distances oftwo time series a and b that are shifted in time and not synchronized.
An elastic distance measure such as DTW is computed using dynamic program-ming. Dynamic programming simplifies a ”complicated” problem by breaking it downinto ”simpler” sub-problems. Note that dynamic programming is not the same as re-cursion: while recursion combined with memoization can be viewed as top-down dy-namic programming, bottom-up dynamic programming does not involve recursion.An elastic distance computes the alignment cost between two series that mini-mizes the cumulative cost of aligning their individual samples [HW21]. This mapping isnon-linear. A cumulative cost matrix C ∈Mm,n(R) stores each intermediate value: Ci,jis the minimal cumulative cost of aligning the first i points of x with the first j pointsof y. As a consequence, the elastic distance measure D is

D(x, y) = Cm,n. (III.11)
III.2.2.1 Dynamic time warping (DTW)
Now, let us describe in detail how DTW works. Let x and y be two time series of respec-tive lengths m and n, with possibly m ̸= n. As depicted in Figure III.3b, DTW computesa correspondence between the elements of x and those of y using some paths whichare defined in Definition III.6.
Definition III.6 (Path for DTW). A path P is a mapping function

P = ((i1, j1) , . . . , (iKP
, jKP

)) ∈ (N× N)KP KP ∈ N (III.12)
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such that for all k ∈ J1,KP K, (ik, jk) ∈ P if, and only if, yjk is matched with xik .

The length Kp of a path verifies the following bounds
max {m,n} ≤ KP ≤ m+ n− 1. (III.13)

An example of path, the one corresponding to the alignment in Figure III.3b, is givenFigure III.5.

Figure III.5: Optimal warping path between two time series, corresponding to the align-ment in Figure III.3b.
A path P is evaluated through the following cost function

γDTW(P ) =

KP∑
k=1

(xik − yjk)
2 , (III.14)

which is the squared Euclidean distance along the path. Out of the exponential num-ber of possible warping paths, the final DTW distance corresponds to the optimalwarping path and is computed as the minimum value for the cost function
DDTW(x, y) =

√
min
P∈P

γDTW(P ), (III.15)
where P is the set of acceptable paths respecting the conditions defined in Defini-tion III.7. As depicted in Figure III.7, the optimal path is the one that minimizes thetotal cost to go from the first time point (bottom left) to the last one (top right). Notethat if m = n = KP and ik = jk = k for all k ∈ J1,KpK, DTW is equal to the Euclideandistance (and the path would be the anti-diagonal). DTW is actually a generalizationof the Euclidean distance.
Definition III.7 (Set of acceptable paths for DTW). Given two time series x and y oflengths m and n, the set of acceptable paths P must verify the three following conditions:
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1. Continuity

ik − ik−1 ≤ 1 and jk − jk−1 ≤ 1 (III.16)
At each step, continuity restricts the warping path to adjacent cells: it acts as a stepsize condition.

2. Monotonicity
ik−1 ≤ ik and jk−1 ≤ jk (III.17)

The path can only go up (↑) and right (→), or diagonally up and right (↗): ”time canonly move forward”.
3. Boundary conditions

(i1, j1) = (1, 1) and (iKP
, jKP

) = (m,n) (III.18)
The path starts at the bottom left corner by matching together the first elementsof both signals, then finishes at the top right corner by matching together to lastelements of x and y.

Concretely, the three conditions for an acceptable path defined in Definition III.7impose that, at each iteration, to get to (ik, jk), there is a limited set of indexes for theprevious step (ik−1, jk−1)

(ik−1, jk−1) =


(ik − 1, jk)

or (ik, jk − 1)

or (ik − 1, jk − 1)

. (III.19)

An illustration is provided Figure III.6.

(ik − 1, jk − 1) (ik − 1, jk)

(ik, jk − 1) (ik, jk)

Figure III.6: Set of acceptable paths for DTW at an iteration. As in Figure III.5, signal xis on the x-axis and signal y on the y-axis.
In practice, DTW is solved using dynamic programming. It uses a cumulative costmatrix defined in Definition III.8.
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Definition III.8 (Cumulative cost matrix of DTW). The cumulative cost matrix C ∈
Mm,n(R) of DTW is the dynamic programming cost matrix such that

∀i ∈ J1,mK Ci,1 = 0 (III.20)
∀j ∈ J1, nK C1,j = 0 (III.21)

∀(i, j) ∈ J2,mK× J2, nK Ci,j = M2
i,j +min


Ci−1,j−1

Ci,j−1

Ci−1,j

. (III.22)

where M2
i,j is the squared Euclidean distance between xi and yj . The point-to-point dis-

tance cost matrix M ∈ Mm,n(R) is the matrix where each element M2
i,j is the cost ofpairing xi with yj

∀(i, j) ∈ J1,mK× J1, nK M2
i,j = (xi − yj)

2 . (III.23)
The cumulative cost distance matrix of the two signals in Figures III.2, III.3b, III.5is given in Figure III.7. For a fixed time stamp of x, one can look into where the pathshould go next. Contrary to the point-to-point distance cost matrix M which can pre-computed, the cumulative cost matrix C is computed step by step. Note that the cu-

Figure III.7: DTW distance of the two signals in Figures III.2, III.3b, III.5: cumulative costmatrix C with the optimal warping path represented in blue.
mulative cost matrix C enables us to memorize intermediate computations in For-mula (III.22), as the computations of Ci−1,j and Ci,j−1 both require the computationof Ci−1,j−1.The final DTW distance between x and y then corresponds to

DDTW(x, y) =
√
Cm,n. (III.24)

The DTW algorithm is recapitulated on Algorithm 1. The point-to-point distancematrix D is first computed. Then, the cumulative cost distance matrix C is computed(based on D).
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Algorithm 1: Dynamic Time Warping

Data: Time series x ∈ Rm and y ∈ Rn

Result: DTW distance DDTW(x, y)
1 M ← 0m×n;
2 C ← 0m×n;
3 for i← 1 to m do
4 for j ← 1 to n do
5 M(i, j) = (xi − yj)

2;
6 C(1, :) = M(1, :);
7 C(:, 1) = M(:, 1);
8 for i← 2 to m do
9 for j ← 2 to n do

10 C(i, j) = M(i, j) + min {C(i− 1, j − 1), C(i− 1, j), C(i, j − 1)};
11 DDTW(x, y) =

√
C(m,n);

12 return DDTW(x, y);

For time series x and y, DTW holds the following properties: DDTW(x, y) ≥ 0 (non-negativity) and DDTW(x, x) = 0. However, DTW is not a metric since it does not satisfythe triangular inequality nor the identity.Although the number of possible ways to align x and y is exponential in m and
n, thanks to dynamic programming, DTW is quite efficient with O(mn). Still, having aquadratic complexity, a point of focus has been trying to optimize it.In the following, we describe variants of DTW. An outline and taxonomy of theseDTW variants is illustrated in Figure III.8.
III.2.3 Penalized variants of DTW
Looking at a cumulative cost density, such as the one in Figure III.7 on page 73, onecan make the intuitive observation that, if the timelines of x and y are assumed to beapproximately similar, a path would rarely go too far from the diagonal: points thatare too far away are unlikely to be aligned. Moreover, DTW can lead to bad alignmentswhere a relatively small part of one time series maps onto a large section of the otherone [RK04]. In order to avoid these pathological matchings, some extensions of DTWadd a weight to penalize paths that are far from the diagonal. Definition III.9 describesthis general framework.
Definition III.9 (Penalized DTW with global or adaptive regions). For penalized DTW,when creating the point-to-point distance matrix M2, a weight penalty, denoted weighti,j ,is applied. The algorithm of a penalized DTW is the same as unconstrained DTW definedin Section III.2.2.1, except that Formula (III.23) is extended into

M2
i,j = weighti,j · (xi − yj)

2 . (III.25)
Penalization with global regions depend only on the lengths m and n, while penalizationwith adaptive regions depend on the actual values taken by x and y.

In the case of global regions, the weights are often symmetric, and the weightpenalty is then denoted weight|i−j|. There are several ways to set the weight penalty
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DTW

Penalized variants

Other variants

Global regions

Adaptive regions
[RK04; Can+12; Zha+17]

Binary weights
[Ita75; SC78]

Continuous weights
[JJO11]

DTW approximations
[SC04; MMK06; SJA14]

Proprocessing
[KP01]

Early abandoning and pruning
[Keo+09; Rak+12; SB16; Sil+18; TWP17; HW21]

Other extensions
[ZT09; LB15; CB17; Vay+22; HTW23]

Figure III.8: Outline and taxonomy of DTW variants that are described in the remainderof this section.

in Definition III.9 (see Figure III.8): some weights are binary (discrete) while someare continuous ; some are global while others are adaptive. When the weightsare binary (whether global or adaptive), penalized DTW is often called constrainedDTW (CDTW) [RK04; Fu11; JJO11; HMB23]. Note that the classic DTW described in Sec-tion III.2.2.1 uses weights equal to 1 everywhere and is sometimes called unconstrainedDTW [Gel+19]. Hence, penalized / constrained DTW is a generalization of (uncon-strained) DTW.

III.2.3.1 Global regions with binary weights
In the case of binary weights (taking values in {1,∞}), when we have weight|i−j| =∞,
the alignment is simply discarded and there is no need to compute term (xi − yj)

2

in Formula (III.25). Hence, these penalty weights are called ”constraints”. These con-straints actually speed up the computation of DTW as defined in Algorithm 1: it is notnecessary (nor recommendable) to compute all values of the cumulative cost distancematrix C. In general, computations far from the diagonal are avoided in order to forcepaths to be close to the diagonal. One can view these binary penalty weights, whichare excluding some alignments, as a fourth condition in Definition III.7 of acceptablepaths.
A constrained DTW variant uses the Sakoe-Chiba band [SC78] defined in Defini-tion III.10.

Definition III.10 (Sakoe-Chiba band). The Sakoe-Chiba band sets the weight penalty ac-
75



Chapter III. Distance measures on time series, strings, and symbolic sequences
cording to a radius r ∈ R such that

weight|i−j| =

{
1 if |i− j| ≤ r

∞ otherwise (III.26)
In other words, using the Sakoe-Chiba band excludes all computations that are”far” (with a fixed radius r) from the diagonal, directly above or to the right. Figure III.9shows examples of considered elements for several values of r. When r increases,more indexes become valid. Note that r is also known as the warping window width orjust window [Sil+18; HW21]. The best value of r is data dependent [SB16]. When r = 0,

(a) r = 3 (b) r = 5 (c) r = 10

Figure III.9: Visualization of DTW global constraints: Sakoe-Chiba band for several val-ues of radius r, with m = n = 20. Valid index pairs are colored. When r increases,more index pairs are valid. Source: [Tav21].
DTW with the Sakoe-Chiba band is the Euclidean distance. When m = n = r, DTWwith the Sakoe-Chiba band amounts to unconstrained DTW. While most papers haveused a Sakoe-Chiba Band with a 10% width, a wider r does not always lead to a betteraccuracy [RK05]. According to experiments [RK05], there is even a peak in accuracythat occurs at around 4% (on average) which suggests that narrow constraints arebetter. The best value of r depends upon the data set.Another band is the Itakura parallelogram [Ita75] which sets a maximum slope sfor alignment paths, which leads to a parallelogram-shaped constrain as depicted inFigure III.10. Figure III.11 provides more insights into how the Itakura parallelogram is

(a) s = 1.5 (b) s = 2 (c) s = 3

Figure III.10: Visualization of DTW constraints: Itakura parallelogram for several valuesof maximum slope s, with m = n = 20. Valid index pairs are colored. Source: [Tav21].
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built: parameter s determines the slope of the steeper side and the slope of the otherside is set to 1/s, passing through the bottom left (start) and the top right (end). Thepath should not be too steep nor too shallow, so that extremely short subsequencesdo not match with extremely long ones.

(a) s = 1.5 (b) s = 2 (c) s = 3

Figure III.11: Visualization of DTW constraints: Itakura parallelogram for several valuesof maximum slope s, with m = n = 10. Figures are generated using a pyts [FJ20]example.
The Sakoe-Chiba band is more uniform than the Itakura one. A recent pa-per [Gel+19] compares the Sakoe-Chiba and Itakura bands to unconstrained DTW. Itstates that the bands not only speed the computation, but also lead to a better ac-curacy in classification than unconstrained DTW. The Sakoe-Chiba is said to be moreaccurate than the Itakura band, when averaging scores on 85 real-word data sets fromthe UCR archive [Dau+19]. However, it concludes with caution: the best band can varyaccording to the data set at hand.
Note that some lower bounds have been developed on unconstrained DTW orconstrained DTW with Sakoe-Chiba or Itakura bands, such as LB Kim [KPC01], LBKeogh [KR05], Lower Bounding distance measure with Segmentation (LBS) [SYF05], andLB Improved [Lem09].

III.2.3.2 Global regions with continuous weights
Another variant, known as Weighted DTW (WDTW) [JJO11], aims at avoiding large warp-ings by penalizing them using a non-linear multiplicative weight defined in Defini-tion III.11. WDTW is not exactly a constrained extension of DTW, but a penalized exten-sion, as constrained alignments are not plainly forbidden.
Definition III.11 (Weighted DTW). Weighted DTW (WDTW) penalizes large warpings byapplying a non-linear weight to the warpings using the modified logistic function

weight|i−j| =
weightmax

1 + exp
(
−gWDTW ·

(
|i−j|−n

2

)) (III.27)

where |i− j| is the phase difference, weightmax is the upper bound on the weight (set to 1),
n is the series length, and gWDTW is the parameter that controls the penalty level for largewarpings.
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According to [JJO11], gWDTW is usually chosen in [0.01, 0.6] and its best value is datadependent. Smaller values of gWDTW result in less penalty for further points in thesequence (meaning large values of |i−j|), thus WDTW behaves similarly to DTW. When

gWDTW = 0, the weight is constant: all the points have the same weight, and WDTW isclassic (unpenalized) DTW. Larger values of gWDTW impose higher penalty for furtherpoints, leading to a similar behavior to Euclidean distance. As can be observed inFigure III.12 and confirming Formula (III.27), larger values of gWDTW increase the penaltyfor further points (relatively to closer points).

(a) gWDTW = 0.01 (b) gWDTW = 0.05 (c) gWDTW = 0.1

Figure III.12: Visualization of the weighted penalty weight|i−j| in WDTW with m = n =
100. Lighter region indicates matching indexes that are more penalized. Note that foreach figure, the range of the color bar changes.

III.2.3.3 Adaptive regions
Contrary to previously described global constraints (Sakoe-Chiba band, Itakura band,and WDTW), adaptive regions depend on the actual values taken by x and y, and notonly on their lengths. Indeed, the optimal warping path may leave the specified globalregion.The Ratanamahatana-Keogh band (RK-band) [RK04] is a generalization of the Sakoe-Chiba and Itakura bands, as it finds the optimal width and shape of the constrainedband. As wider bands to do not always result in an increased accuracy, the R-K band isautomatically learned from the data, using heuristic search algorithms. The R-K bandoffers a practical balance between the Sakoe-Chiba and Itakura bands, as they eachhave their specific applications. For instance, when dealing with speech recognitiontasks, where most variations occur in the middle rather than at the beginning or end,the Itakura band is more suitable. The R-K band does not only aim to speed up DTW,but also to make it more accurate [RK05]. Contrary to globals regions, the R-K bandhas no reason to be symmetric.Salient feature based DTW (sDTW) [Can+12] identifies salient temporal features in thetime series in order to help the search of the optimal warping path. These featuresare robust to noise and are similar to Scale-Invariant Feature Transform (SIFT) [Low04]used in computer vision. They are used to match salient feature points from the twotime series, on which the optimal warping path then relies on. The Sakoe-Chiba bandis a particular case of sDTW.DTW with Limited warping path Length (LDTW) [Zha+17] introduces an upper bound
LUB on the warping path length in order to avoid singularities. A singularity is definedas a data point from a time series that is matched with a large subsection of the other
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time series, thus leading to pathological alignments. In a supervised learning setting,the best upper bound LUB of warping path lengths is learned from the training set.

III.2.4 Other variants of DTW
III.2.4.1 DTW approximations
A DTW approximation finds an approximation of the optimal warping path of DTW: itfavors speed over accuracy. According to [Sil+18], DTW approximations do not providebounds for the approximation error.

FastDTW [SC04] is a DTW approximation, with linear time complexity thanks to amultilevel strategy. The time series are first down-sampled (coarsening) and an optimalwarping path is found on this lower resolution. Next, this warping path is projectedinto a higher resolution (projection). Then, the optimal path in the neighborhood of theprojected path is found (refinement). The considered neighborhood is controlled by aradius parameter. This multi-level process continues until a warping path is identifiedat the original resolution of the time series.
A similar approach is Multiscale DTW (MsDTW) [MMK06]. MsDTW states that a lim-itation of FastDTW is that an incorrect alignment on a low resolution level becomesincreasingly inaccurate as it propagates to higher levels. Contrary to FastDTW, Ms-DTW iteratively combines global constraints with the multilevel strategy. The differ-ence with FastDTW is that the projected path from a lower level is used to form aglobal constraint region in order to find the optimal warping path. MsDTW was firstapplied to music synchronization: aligning the note events of different interpretationsof a same music.
Lucky Time Warping (LTW) [SJA14] is a DTW approximation with linear time complex-ity. It uses a greedy algorithm to accelerate the distance calculations: it only evaluateselements which are the most likely to be in the optimal warping path, resulting in asuboptimal warping path. It is faster than DTW, but less accurate in nearest neighborclassification.

III.2.4.2 Preprocessing
Some preprocessing can be done to transform the time series before feeding them toDTW (whether constrained or not).
Normalization As for theLp distance, a commonly used preprocessing involves nor-malization. Normalization is used in order to improve the robustness to changes inoffset (amplitude). Note that normalization may increase the sensitivity with respectto additive noise in time series. The need for normalization before measuring the dis-tance between time series is described in [KK03]. z-normalization, where a signal iscentered and scaled to unit variance, is the most popular.
Derivative Another preprocessing involves the derivative. One such variant isDerivative DTW (DDTW) [KP01] which applies DTW, not directly on the raw signals, buton their first derivative. The goal is to prevent unnatural warpings when there is vari-ability in the signals. In DDTW, the derivative transformation x′i of a univariate time
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point xi is defined as

x′i =
xi − xi−1 +

xi+1−xi−1

2

2
, (III.28)

where the first and last element of the signal are not defined. x′i is the average ofthe slopes of the line passing through xi−1 and xi, and of the line passing through
xi−1 and xi+1, and is considered more robust than an estimation using only two datapoints. The time complexity of DDTW is O(mn), same as DTW. When both DerivativeDTW and Weighted DTW are combined, the variant is referred to as Weighted DerivativeDTW (WDDTW) [JJO11].

III.2.4.3 Early abandoning and pruning extensions
Early abandoning and pruning both aim at making computations involving distancesfaster, but their strategies differ from the constrained bands described in Sec-tion III.2.3.

As stated in [HW21], early abandoning is the strategy that abandons a whole compu-tation once it has been determined, through an ”abandoning criterion”, that an exactresult is not necessary. Early abandoning is also known as ”early stopping” [SYF05]. Forexample, the lower-bounding property used for nearest neighbor search, described inthe introduction of this chapter, is a typical example of early abandoning: the wholecomputation between two time series x = (x1, . . . , xm) and y = (y1, . . . , yn) is notdone. As a consequence, early abandoning does not compute an exact similarity score(as it stops when it has a partial score such as the lower bound). Time Series Index-ing (TSI) [TWP17] combines priority search in a hierarchy of K-means clusterings withlower-bounding of DTW in order to index and classify trillions of satellite image timeseries. Given that DTW is not a metric, indexing it is challenging, as explained in theintroduction of this chapter.
Similar yet different, pruning aims at identifying and avoiding unnecessary com-putations [HW21]. Most recent advances aiming at accelerating the DTW computationhave focused on similarity search. However, data mining tasks such as classificationand clustering require the full pairwise distance matrix which early abandoning doesnot provide. Pruning computes the exact similarity score of the full pairwise matrix:the computation itself of the distance between x and y is improved. Pruning is appliedto constrained DTW with PrunedDTW [SB16]. When iteratively computing the cumula-tive cost matrix C of DTW, if Cik,jk has a high value (according to a threshold), then thepath passing through position (ik, jk) would probably not be part of the optimal fullpath. Hence, the pairwise distancesMi,j = (xi − yj)

2 of paths going through (ik, jk)donot need to be computed. Note that only partial computations (xi − yj)
2 are avoided,but not the whole computation DDTW(x, y) as in early abandoning. An improvementof PrunedDTW is suggested in [Sil+18].

The UCR Suite [Rak+12] introduces a set of accelerations, mainly lower-boundingand pruning methods, making subsequence similarity search using DTW faster thanthe Euclidean distance. [Keo+09] focuses on fast rotation-invariant search. EAPruned(Early Abandoning and Pruned) [HW21] combines both pruning and early abandoning.EAPruned can be applied to DTW, but also other elastic distances: unconstrained DTW,WDTW, ERP, MSM, and TWE (that will described in Section III.3.4).
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III.2.4.4 Other extensions
DTW+ and ADTW+ [HTW23] modify the cost function for the point-to-point distance
Mi,j in DTW that was defined in Definition III.15 on page 71. They introduce a familyof cost functions cτ (x, y) = |x− y|τ with a parameter τ to be tuned for DTW, for timeseries classification. It claims that tuning τ improves the classification accuracy for1-NN DTW and another popular classifier called Proximity Forest [Luc+19].Canonical Time Warping (CTW) [ZT09] performs spatio-temporal alignment of timesby combining Canonical Correlation Analysis (CCA) [SCF06] with DTW. CCA is a tech-nique to extract common features from two sets of multivariate data. Originally, CTWaddresses the issue of large temporal scale difference between humans actions andinter/intra subject variability, for example when aligning motion capture data. Theoriginal paper [ZT09] also introduces Local Canonical Time Warping (LCTW) that allowsseveral local spatial deformations (in order to align long sequences). In addition to be-ing able to compare time series of varying lengths, CTW can also compare time seriesof different dimensionality.soft-DTW [CB17] is a differentiable extension of DTW: it uses a smoothed formu-lation of DTW with the soft-min operator. A limit of classic DTW is that it can not bedifferentiated everywhere because of its use of the min operator. For a distance, beingdifferentiable is important in order to be used as a loss function in gradient-based opti-mization that is paramount in machine learning tasks. According to [JCG20], contraryto classic DTW, soft-DTW is not invariant to time-shifts. Some variants of soft-DTWhave been proposed [JCG20; BMV21].DTW with Global Invariances (DTW-GI) [Vay+22] aligns time series jointly in the tem-poral and feature spaces, and thus addresses two sources of variability that are com-monly encountered when dealing with time series: time-shifts and distribution-shifts.The latter, feature space alterations, occur for example when sensors are switchedduring a protocol. While DTW is invariant to time-shifts, (soft)DTW-GI can handle bothtypes of shifts thanks to a joint optimization formulation that can be extended forsoft-DTW.Some ensemble distances are based on the previously described elastic distancemeasures and also others that will be described in Section III.3.4. Indeed, using a di-versity of distance measures for 1-NN classification is significantly more accurate than1-NN with any single measure [LB15]. Ensemble methods help to reduce the varianceof the model. Elastic Ensemble (EE) [LB15] combines eleven elastic measures (to be ap-plied to 1-NN algorithms): Euclidean, DTWF (with full window), DTW (with leave-one-outcross-validated window), DDTWF, DDTW, WDTW, WDDTW, LCSS, ERP, MSM, and TWE.For each measure, EE fine tunes their parameters using cross validation. While beinga relatively accurate classifier [Bag+17], EE is quite slow to train: its time complexity is
O
(
pN2n2

) where N is the number of time series which are of length n, and p is thetotal number of parameters.

III.3 Distance measures on strings
Let us assume that we want to compare two strings denoted by x and y, of respectivelengths m and n. In the string matching community, we are interested in approximatestring matching which addresses string matching while allowing errors [Nav01]. Forexample, an error in a text is a typing or spelling error. We refer an interested reader

81



Chapter III. Distance measures on time series, strings, and symbolic sequences
to [Kru83; Kuk92; WM92; Nav01; Shi+23] for extensive reviews on distances betweenstrings. Note that some extensions for multivariate texts exist [Nav01; NBY99], butthey are not described in this thesis.
III.3.1 The general edit distance framework
A popular distance measure is the edit distance: for two strings x and y, it is the mini-mal cost of a sequence of elementary operations that transform x into y. The allowedelementary operations, each one called an edit operation [YB07], are the following:

1. Insertion [Kru83; Nav01] of an elementary character in a string.
For example, insert d (at the last position):

abc→ abcd (III.29)
2. Deletion [Kru83; Nav01] of an elementary character in a string.

For example, delete b:
abc→ ac (III.30)

3. Substitution [Kru83; Nav01] (a.k.a replacement [Kru83; Nav01] or mutation [BR02;Pin+13]) of elementary characters (with a different one) in both strings.
For example, substitute b by d in the following string:

abc→ adc (III.31)
4. Transposition [Kru83; Nav01] (a.k.a. swapping [Kru83]): substitution of the form

ab→ ba

This operation is particularly interesting in the case of typing errors.
5. Duplication [Pin+13] (a.k.a. amplification [BR02] or expansion [Kru83])

For example, amplify b:
abc→ abbc (III.32)

6. Contraction [Pin+13] (a.k.a. compression [Kru83])
For example, contract b:

abbc→ abc (III.33)
Note that, in [Kru83], the expansion operation amplifies one element into two or more,and the compression operation contracts two or more elements into one. Moreover,in [Kru83], indel covers either insertion or deletion.To each edit operation corresponds a cost, and this cost also depends on the char-acters involved. The cost of a sequence of operations is the sum of the costs of theedit operations. An edit distance can compare strings of different lengths, if it allowsfor insertions, deletions, duplications, or contractions. Otherwise, it can only compareequal-length strings.If all the elementary operations have a cost of 1, whatever the operation or thecharacters involved, it is called the simple edit distance. If the all authorized operations
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have different costs and/or the costs depend on the characters involved, it is calledthe general edit distance.

Note that some of the edit operations can be obtained through a combination ofthe others. For example, a transposition can be seen as an insertion followed by adeletion. However, the main difference is the cost of the total operation. In the caseof the simple edit distance, a transposition has a cost of 1, while insertion followed bydeletion has a cost of 2. Hence, allowing transpositions reduces the impact of swap-ping errors. The same idea applies for substitution which can be viewed as an insertionfollowed by a deletion.
In addition, the main difference between insertion and duplication (and betweendeletion and contraction) is that, in duplication, the operation cost depends on thecurrent character but also its adjacent ones. For example, inserting a at the middleof aa costs less than inserting b at the middle of aa. On the other hand, an inser-tion can be viewed as a duplication followed by a substitution. Hence, duplications orcontractions can allow an edit distance to be invariant to translations.
Let us formalize the general edit distance framework [YB07]. An elementary editoperation is written as a → b where (a, b) ̸= (∅,∅). γed is the weight function whichgives the cost of an edit operation a → b. The forms ∅ → a, a → b, and b → ∅respectively, represent insertions, substitutions, and deletions. The forms ab → ba,

a→ aa, and bb→ b respectively, represent transpositions, duplications, and contrac-tions. Tx,y = T1 ◦ T2 ◦ . . . ◦ TKp is the edit transformation of x into y: it is a sequenceof elementary edit operations transforming x into y. Hence, an edit distance Ded canbe defined as
Ded(x, y) = min

{
γed(Tx,y)

}
. (III.34)

A parallel can be drawn with DTW, described in Section III.2.2, with the notion of pathand a dynamic programming algorithm.

III.3.2 The various edit distances
Based on the general edit distance framework presented in Section III.3.1, several editdistances have been defined over the years, each one allowing a certain set of edit op-erations out of the 6 that are described in Section III.3.1. A summary of their definitionis presented in Table III.3 on page 94, along with some properties. They are furtherdescribed in the next paragraphs.

As the Levenshtein distance (an edit distance which will be described in Sec-tion III.3.2.1) is widely-used, we will describe it with further details compared to theother variants, as an illustrative example. In particular, we will study its simple ver-sion (where all costs are set to 1) as well as its general version where the costs are notuniform. For the other variants, we will only study their simple version.

III.3.2.1 Levenshtein distance
One of the most popular edit distance is the Levenshtein distance [Lev+66] which onlyallows insertions, deletions, and substitutions. Note that sometimes, the Levenshteindistance is simply referred to as the edit distance. Originally, its main application is tocheck for spelling errors.

83



Chapter III. Distance measures on time series, strings, and symbolic sequences
The simple Levenshtein distance is the minimum number of insertions, deletionsand substitutions to make both strings equal. In that case, insertions on x are thesame as deletions in y, and substitutions can be made in x or y.Similarly to DTW, the Levenshtein distance is solved using dynamic programming.The Levenshtein distance between two strings x and y of respective lengths m and nis defined by

∀i ∈ J1,mK Ci,1 = i (III.35)
∀j ∈ J1, nK C1,j = j (III.36)

∀(i, j) ∈ J2,mK× J2, nK Ci,j = min


Ci−1,j−1 +Wsub(i, j)

Ci,j−1 +Wins(j)

Ci−1,j +Wdel(i)

(III.37)

DgLev(x, y) = C(m,n) (III.38)
Algorithm 2 details the implementation of the general edit distance. Comparing Al-

Algorithm 2: General Levenshtein distance, with A the alphabet of size A.
Data: Strings x ∈ Am and y ∈ An; deletion costs Wdel ∈ RA, insertion costs

Wins ∈ RA, substitution costs Wsub ∈ RA×A

Result: General Levenshtein distance DgLev(x, y)
1 C ← 0m×n;
2 for i← 1 to m do
3 C(i, 1) = i;
4 for j ← 1 to n do
5 C(1, j) = j;
6 for i← 2 to m do
7 for j ← 2 to n do
8 C(i, j) = min


C(i, j − 1) +Wins(j)

C(i− 1, j) +Wdel(i)

C(i− 1, j − 1) +Wsub(i, j)

;

9 return C(m,n);
gorithm 2 to Algorithm 1, one can observe that the general edit distance is the equiva-lent of DTW on strings and that their optimization problems are similar, both using dy-namic programming and a warping path. The time complexity to compare two stringsof lengths m and n is O(mn).The simple Levenshtein distance DsLev satisfies all four fundamental properties ofa metric. Hence, the simple Levenshtein distance is a metric. Moreover, we have asimple upper-bound

0 ≤ DsLev(x, y) ≤ max(m,n) (III.39)
for all strings x and y. Note that some tighter bounds are described in [Nav01].According to [YB07], it has been shown that the general edit distance is a metric ifthe following conditions on the costs are satisfied:
∀a, b ∈ A ∪ {∅},
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Chapter III. Distance measures on time series, strings, and symbolic sequences
• γed(a→ a) = 0,

• γed(a→ b) > 0 if a ̸= b,

• γed(a→ b) = γed(b→ a).

III.3.2.2 Other edit distances
The Longest Common SubSequence (LCSS) [NW70; Hir77; AG87] allows only insertionsand deletions. LCSS is widely used as it measures the length of the longest pairing ofcharacters that can be between both strings, so that the pairings respect the orderof the letters. The distance is the number of unpaired characters. The distance issymmetric, and it holds

0 ≤ DLCSS(x, y) ≤ m+ n (III.40)
The Hamming distance [SM83] allows only substitutions. It can only be applied tostrings of the same length m = n. The distance is symmetric. It holds

0 ≤ DHamming(x, y) ≤ m. (III.41)
The Episode distance [Das+97] allows only insertions. It models the case where asequence of events is sought, where all of them must occur within a short period. Thisdistance is not symmetric. Note that it may not be possible to convert x (of length m)into y (of length n) in this case. Hence, dEpisode(x, y) is either (n−m) or∞.Compared to the Levenshtein distance, the Damerau–Levenshtein distance [Dam64;Lev+66] adds the transposition operation. Its main application is spelling error correc-tion. The Lowrance and Wagner algorithm [WL75] has a complexity ofO(mn). Accord-ing to [Bar07], it is a metric. Compared to the Levenshtein distance, the Edit Distancewith Duplications and Contractions (EDDC) [BR02; Pin+13] adds the duplication and con-traction operations. The Jaro–Winkler distance [Win90] allows only transposition. It isnot a metric because it does not satisfy the triangle inequality.Edit distances are used in bioinformatics: many algorithms are used to align DNAsequences of nucleotides, meaning strings composed of the letters A, C, G, and T. Thesealgorithms often use the edit distance as a score. Exhaustive searches look for allpossible alignments and retrieve the alignment(s) with the optimal score, which is verycostly. An alternative is the Needleman-Wunsch algorithm [NW70] which uses dynamicprogramming for global sequence alignment. It determines the optimal alignmentof all possible prefixes of the first sequence with all possible prefixes of the secondsequence by going from the smallest to the largest prefixes. The Smith and Watermanalgorithm [SW81] is a variation of the Needleman-Wunsch algorithm which performslocal sequence alignment.

III.3.3 Normalization
Let us take the example of the Levenshtein distance. It lacks normalization with re-spect to the lengths of the compared strings. It is intuitive that errors occurring whencomparing short strings are more crucial than when comparing long strings. Hence,according the the data mining task at hand, normalizing the Levenshtein distance canbe important.
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There exists several ways to normalize the Levenshtein distance [MV93; WF94].They are based on the editing path lengths or the string lengths, but they do not ver-ify the triangle inequality. The Normalized Levenshtein Distance Metric [YB07] is a nor-malized Levenshtein distance that is also a valid metric valued in [0, 1] (under someconditions on the costs of the edit operations).

III.3.4 Extensions of edit distances to time series
Some previously described edit distances, originally defined on strings, have been ex-tended to input real-valued time series [Shi+23], mainly thanks to thresholds. We willonly describe the univariate cases, as the multivariate setting will be covered in Sec-tion III.5.
III.3.4.1 Longest Common SubSequence (LCSS)
As described in Section III.3.2.2, LCSS was originally defined on strings [Hir77]. It hasthen been extended to real-valued time series [VKG02] thanks to a threshold ε ∈ R.Compared to LCSS on strings, two real values xi and yj are considered a match if

L2 (xi, yj) = |xi − yj | ≤ ε. (III.42)
The relaxed version of LCSS for real-valued signals is the following

CLCSS(i, j) =


0 if i = 0

0 if j = 0

1 + CLCSS(i− 1, j − 1) if L2 (xi, yj) < ε

max (CLCSS(i− 1, j), CLCSS(i, j − 1)) otherwise
. (III.43)

Then, we have
DLCSS(x, y) = CLCSS(m,n). (III.44)

LCSS has a greater robustness against noise compared to DTW, as it allows certain el-ements within the time series to remain unmatched, all while preserving the matchingorder. LCSS verifies the non-negativity and symmetry properties, and DLCSS(x, x) = 0for all time series x. However, LCSS does not verify the triangle inequality, and thus isnot a metric.
III.3.4.2 Edit distance with Real Penalty (ERP)
Edit distance with Real Penalty (ERP) [CN04] and Edit Distance on Real sequence(EDR) [COO05] were both introduced around the same time (with a common co-authorin both). They are based on the Levenshtein distance on strings [Lev+66] (that allowsinsertions, deletions, and substitutions). In EDR, a threshold is used to consider amatch, similarly to LCSS, but the triangle inequality is not respected. On the contrary,ERP is a metric. In the following, we focus on ERP rather than EDR.Rather than using a delete operation, EDR considers a deletion in a time series(e.g. x) as a special symbol in another series (e.g. y). ERP calls it a gap element andits penalty parameter is βERP. According to [COO05], ERP is sensitive to noise. In ERP,

86



Chapter III. Distance measures on time series, strings, and symbolic sequences
the Euclidean distance between elements is employed when there is no gap present,while a constant penalty is applied in cases where a gap exists:

CERP(i, j) = min


CERP(i− 1, j − 1) + L2 (xi, yj)

2

CERP(i− 1, j) + L2 (xi, βERP)2

CERP(i, j − 1) + L2 (yj , βERP)2
. (III.45)

Then, we have
DERP(x, y) = CERP(m,n). (III.46)

Hence, the cost of insertion or deletion depends on the absolute magnitude of thevalue that is inserted or delete.
III.3.4.3 Move-split-merge (MSM)
Move-split-merge (MSM) [SAD13] is inspired by edit distances on strings. It verifies theproperties of a metric. MSM states that, contrary to ERP, it has the particularity ofbeing invariant to translations. It allows three operations: move, split, and merge.Actually, these three operations correspond to edit operations on strings describedin Section III.3.1: move is equivalent to substitution, split to duplication, and merge tocontraction.The cost associated to a substitution is set by the pairwise distance between twopoints, and the cost of a duplication or a contraction depends on a parameter denotedby βMSM

CMSM(i, j) = min


CMSM(i− 1, j − 1) + L2 (xi, yj)

CMSM(i− 1, j) +WMSM (xi, xi−1, yj , βMSM)

CMSM(i, j − 1) +WMSM (yj , xi, yj−1, βMSM)

, (III.47)

where

WMSM (xi, xi−1, yj , βMSM) =


βMSM if xi−1 ≤ xi ≤ yj

βMSM if xi−1 ≥ xi ≥ yj

βMSM +min

{
|xi − xi−1|
|xi − yj |

otherwise
.

(III.48)The algorithm contracts two values or duplicates a value xi if xi is between two adja-cent values (xi−1 and yj ). If a value xi falls two consecutive values (xi−1 and yj ), thealgorithm either performs contraction or duplication.Then, we have:
DMSM(x, y) = CMSM(m,n). (III.49)

III.3.4.4 Time Warp Edit (TWE)
Time Warp Edit Distances (TWED) [Mar09] is based on the edit distance on strings,however it has no straightforward equivalent on strings. Indeed, TWE combines(non-elastic) Lp norms with the (elastic) edit distance. TWED is also referred to asTWE [Shi+23] and is a metric.
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TWE allows three operations called match, deletex, and deletey. When there is amatch, the Lp distance is used, otherwise a constant penalty is added. The deletex (or

deletey) operation is used to remove an element from x (or y) to match y (or x).
The TWE dynamic programming algorithm is thus

CTWE(i, j) = min


CTWE(i− 1, j − 1) + γM match

CTWE(i− 1, j) + γx deletex

CTWE(i, j − 1) + γy deletey

, (III.50)

where
γM = L2 (xi, yj)

2 + L2 (xi−1, yj−1)
2 + 2ν match

γx = L2 (xi, xi−1)
2 + ν + βTWE deletex

γy = L2 (yj , yj−1)
2 + ν + βTWE deletey

(III.51)

with
• ν, the stiffness parameter, controls the elasticity of TWE. When ν = 0, TWE is stiff,similarly to the Lp distance. When ν approaches infinity, TWE becomes less stiffand more elastic, similarly to DTW.
• βTWE is the cost of a delete operation, either deletex or deletey.
Then, we have

DTWE(x, y) = CTWE(m,n). (III.52)

III.4 Distance measures on symbolic sequences
In Chapter II, we reviewed symbolic representations on time series: they transformreal-valued time series into discrete-valued ones called symbolic sequences. In orderto use the learned symbolic representations for tasks such as classification or clus-tering, it is crucial to define a distance measure between symbolic sequences, whichcan be viewed as character strings. Defining an informative measure is a challengethat has received a lot of attention. In this section, we described distance measuresdefined on symbolic sequences obtained from symbolization processes that were de-scribed in Chapter II. Note that symbolic representations do not systematically definea distance measure on their symbolic sequences.

III.4.1 MINDIST
The most popular distance measure on symbolic sequences is the one introducedalong with the SAX representation [Lin+03; Lin+07]: MINDIST. Let x = (x1, . . . , xn) and
y = (y1, . . . , yn) be two time series with n samples. The Euclidean distance between xand y, described in Section III.2.1, is given by

L2(x, y) =

√√√√ n∑
i=1

(xi − yi)
2. (III.53)
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The MINDIST distance measure between the resulting symbolic sequences x̂ and ŷ, oflengths w, mimics the Euclidean distance

DMINDIST (x̂, ŷ) =
√

n

w

√√√√ w∑
i=1

(dist (x̂i, ŷi))
2, (III.54)

where the dist function, based on a so-called look-up table, is illustrated in Table III.1.MINDIST requires the symbolic sequences to be of equal length. For a given value of
Table III.1: Example of look-up table for MINDIST with A = 4. For example, dist(a, d) =
β3 − β1 = 1.34.

a b c d

a 0 0 β2 − β1 β3 − β1
b 0 0 0 β3 − β2
c β2 − β1 0 0 0
d β3 − β1 β3 − β2 0 0

a b c d

a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.34 0.67 0 0

the alphabet size A, this table is calculated only once, and then stored for fast look-up.For all look-up tables, whatever the alphabet size, the value in the cell of indexes (i, j)is given by
celli,j =

{
0 if |i− j| ≤ 1

βmax(i,j)−1 − βmin(i,j) otherwise , (III.55)
where the βk are the boundaries of the bins used by SAX to quantize the segmentmeans. MINDIST is not a true metric, as dist(a, b) = 0 for example (see Table III.1). TheMINDIST distance measure on SAX symbolic sequences lower bounds the Euclideandistance on original signals, i.e.,

DMINDIST (x̂, ŷ) ≤ L2(x, y). (III.56)
As emphasized in the introduction of this chapter, the lower-bounding property im-plies that the similarity matching in the reduced space maintains its meaning withregards to the original space. The ability of SAX to define a lower bound is one of thereasons why SAX is so popular against other time series representation techniques.
III.4.2 Extensions of MINDIST
In the literature, the majority of SAX-like symbolization methods use a MINDIST-likedistance measure on their symbolic sequences.
III.4.2.1 Symbolization methods with one symbol per segment
Symbolization techniques with only one symbol per segment usually use straightfor-ward variants of MINDIST [LSK06; SK08; Qy09; MF12; Fua12; Mal+13; Bai+13; KR20;KR21; LS22; DAM23]. These MINDIST variants generalize equation (III.55) accordingto their modified symbolization(s) step(s): the βk coefficients correspond to the ob-tained quantization bins. For example, SFFA [LS22], which uses a chi-square strategyfor the quantization bins βk, replaces the obtained quantization bins in the MINDIST
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Formula (III.55). As for the Updated Minimum Distance (UMD) [MFM10], it updates thelook up table of MINDIST, so that adjacent symbols do not have a null distance.While having one symbol per segment, a few methods do not use MINDIST-likedistances. SBSR [Hug06] explores distance measures that have additional informationcompared to MINDIST, namely the data set global information, the time series localinformation, and the episode local information.
III.4.2.2 Symbolization methods with at least two symbols per segment
Symbolization techniques that have more than one feature per segment (in additionto the mean) usually include additive term(s) in Formula (III.54) to take into accounttheir added feature(s) [PLD10b; LZY12; LDH13; Sun+14; Zha+18; YAD19; ZDX20; LTN20;Che+20].When the added feature is quantized, a specific predefined look-up table is of-ten defined. For example, SAX DR [LDH13] introduces the direction distance using aprecomputed look-up table between the directions, and TSX [LZY12] uses a precom-puted look-up table for the trends. To give a formalized example in more details,we describe the SAX DR distance. SAX DR symbolizes the mean and the directionfor each segment. Let us consider a time series x = (x1, . . . , xn). We denote by
x̂mean = (x̂mean,1, . . . , x̂mean,w) the symbolic sequence of the symbolized means (i.e.the SAX representation) and x̂dir = (x̂dir,1, . . . , x̂dir,w) the symbolic sequence of thesymbolized directions, where w is the number of segments. x̂ is the total symbolic se-quence, incorporating the means and the directions. The distance measure betweentwo SAX DR symbolic sequences x̂ and ŷ is thus

DSAX DR (x̂, ŷ) = DMINDIST (x̂mean, ŷmean) +
√

n

w

√√√√ w∑
i

(
distdir

(
x̂dir,i, ŷdir,i

))2
w

, (III.57)

where the distdir function is based on a look-up table between symbolized directions.When the added feature is not quantized and remains real-valued, the Euclideandistance can be used. For example, CSAX [LTN20], which extracts a real value for thecomplexity-invariant value CI (which is the normalized complexity estimate CE de-fined in Formula (II.1) on page 48) in addition to the symbolized mean, defines thefollowing distance:

DCSAX (x̂, ŷ) =
√

n

w

√√√√ w∑
i=1

(
dist (x̂i, ŷi) + (CI (x̂i)− CI (ŷi))

2
)
, (III.58)

where CI (x̂i) denotes the complexity-invariant value on the corresponding segment.To give another example that is not using the Euclidean distance, SAX-TD [Sun+14]defines a distance measure called TDIST that includes the trend:

DTDIST (x̂, ŷ) =
√

n

w

√√√√ w∑
i=1

(
(dist (x̂i, ŷi))

2 +
w

n
(disttd(x, y))2

)
, (III.59)

where the trend distance called disttd is defined on the real-valued time series andinvolves the starting and ending points of the segments.
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On the contrary, some methods do not use additive MINDIST-like terms. For exam-ple, TFSA [Yin+15] which uses three features (without the mean): the symbolized trend,the real-valued slope, and the real-valued end point, has multiplicative terms. More-over, as it uses clustering for the quantization, the pSAX [BTT21b] distance betweensymbolic sequences, which are sequences of cluster center labels, is the Euclideandistance between the vectors of cluster centers coordinates.

III.4.2.3 Lower-bounding property
When using a MINDIST-like distance measure, an important aspect is to retain thelower bound. Quite a few methods claim that their proposed distance lowers boundsthe Euclidean distance [LDH13; Bai+13; Sun+14; Yin+15; Zha+18; YAD19; Che+20; LS22;DAM23]. It appears that the definition of the distance measure of SAX SD [ZY16], whichclaims to guarantee the lower bound, is wrong: the properties of the square root arenot respected when going from Equation (10) to Equation (11). Furthermore, somemethods claim to have a tighter lower bound than SAX [LDH13; Bai+13].

III.4.3 Distance measures between extracted features
Other methods use extracted features to compare signals. (i) Some distances extractfeatures from the symbolic sequences. The extracted features are mostly based onthe frequency of symbolic words. SAX-VSM [SM13] uses a Term Frequency - InverseDocument Frequency (TF-IDF) weighting scheme, then the cosine similarity. TF-IDF wasoriginally applied to natural language processing tasks. Other methods are based onhistograms. BOSS [Sch15], a dictionary-based classifier, applies an overlapping slidingon which SFA [SH12] is applied. Two time series are then compared based on their his-tograms of symbolic words. Other methods focus on the permutation entropy, whichis extracted from ordinal patterns applied to a time series [BP02]. The permutationentropy in each time series is then compared. The Permutation Jensen-Shannon Dis-tance (PJSD) [Zun+22] combines ordinal patterns with the Jensen-Shannon divergence.(ii) There are a few works that use the intermediate feature extraction (the step fol-lowing segmentation and preceding quantization) of the symbolization. For instance,EN-SAX [BABO12] uses the cosine similarity between vectors of the extracted featuresper segment (the mean, minimum, and maximum).

III.4.4 Edit distances
The literature on symbolic representations advocates that a major advantage ofsymbolic representations is their ability to leverage the richness of the bioinformat-ics and text processing communities [Lin+07; EG20a]. However, to the best of ourknowledge, only a few symbolic representations make use of distance measuresdefined on strings. Symbolic Vector Quantized Approximation (SVQA) [WML05] ex-tends PVQA [MLW04], described in Section II.4.3, and uses LCSS on the string sym-bolic sequences, where a symbol is a codeword index. Similarly, SAXLCSS and 1D-SAXLCSS [TTK17] respectively use the SAX and 1d-SAX representations, then LCSS forthe distance measure.
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III.5 Distances on multivariate time series
Until now, we have focused on distance measures for univariate series. Indeed,most distances in the literature are univariate. Recently, several strategies have beendesigned to extend DTW to multivariate time series [SY+17]. More recently, a re-view [Shi+23] applies these same strategies to extend seven other elastic distances(that were described in Sections III.2 and III.3.4): DDTW [KP01], WDTW [JJO11], WD-DTW [JJO11], LCSS [VKG02], ERP [CN04], MSM [SAD13], and TWE [Mar09]. Two popularapproaches are used in practice: the independent and dependent strategies. In thefollowing, for each distance, the I subscript indicates the multivariate distance usingthe independent strategy, and the D subscript indicates the dependent strategy. Asstated in [Shi+23], the time complexities of all these multivariate distances increaselinearly with the number of dimensions.Let us illustrate these strategies on DTW. In [SY+17], each dimension of the timeseries is z-normalized in order for the distance measure to be invariant to offset andscale. Thus, the multivariate DTW can handle dimensions of different physical naturesfor example.

• In the independent strategy for multivariate DTW, called DTW-I, the univariateDTW is applied to each dimension separately, and the resulting distances oneach dimension are summed. As its name suggests, all dimensions are treatedindependently and their warping is independent.
• The dependent strategy for multivariate DTW, called DTW-D, considers the multi-variate series as a single series in which each timestamp is associated to a sin-gle multidimensional point. The DTW scheme is applied by using Euclidean dis-tances between the multidimensional points of the two series in Formula (III.23)on page 73. There is a unique warping path that deals with all dimensions.

An empirical review of these two approaches is conducted in [SY+17] and concludesthat, on the nearest neighbor classification tasks, DTW-D performs better than DTW-I on some data sets, while DTW-I outperforms DTW-D on some other data sets: ingeneral, there is no definitive recommendation for a specific strategy to use. If thewarping paths of DTW-I are all the same, then the warping path of DTW-D should besimilar to the ones of DTW-I.For the other elastic distances, the same multivariate strategies are employed. Inthe following, when the independent strategy is straightforward, it is not described.
• For WDTW, the derivatives are obtained separately on each dimension, then arefed to DTW-I to obtain DDTW-I, or to DTW-D to obtain DDTW-D.
• For WDTW-D, the weight is applied to the DTW-D scheme.
• For WDDTW, the derivatives are obtained separately on each dimension, thenare fed to WDTW-I to obtain WDDTW-I, or to WDTW-D to obtain WDDTW-D.
• LCSS-I computes the LCSS for each dimension, but each dimension has its ownthreshold value. LCSS-D works as LCSS but computes the squared Euclidean dis-tance between multidimensional points in Formula (III.43) on page 86.
• ERP-D works as ERP but computes the Euclidean distance between multidimen-sional points in Formula (III.45) on page 87 where the penalty parameter is nowa vector.
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• MSM-D works as MSM but computes the squared Euclidean distance betweenmultidimensional points in Formula (III.47) on page 87 where WMSM is nowadapted to input vectors.
• TWE-D works as TWE but computes the Euclidean distance between multidimen-sional points in Formula (III.51) on page 88.

For more details, we refer an interested reader to the recent review [Shi+23], whichalso introduces Multivariate Elastic Ensemble (MEE), the multivariate extension ofEE [LB15] where each univariate elastic measure of EE is extended to its multivariateversion.

III.6 Conclusion
In this chapter, we have reviewed distance measures that are defined on time series,strings, and symbolic sequences. These distances are at the core of many data miningtasks.

For distance measures on time series, if the input time series do not have thesame length (or do not have the same time synchronization), then an elastic distancemeasure is more suitable. DTW is the most popular elastic distance measure, and alot of variants have proposed to make it more accurate and/or faster (see Figure III.8on page 75). Elastic distance measures, other than DTW, are based on the edit dis-tance originally defined for strings. A summary of distance measures on time seriesis shared in Table III.2.
Table III.2: Summary of distance measures on time series of length n.
§Metric for p ≥ 1.
§§r is the window size.
§§§s is the slope parameter.
†p is the number of parameters. The time complexity reported is for the training time.
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Lp distance [YF00] ✘ ✘ ✘ ✔ ≈§ O(n)Classic DTW [BC94] ✔ ✔ ✘ ✘ ✘ O
(
n2
)

DTW with Sakoe-Chiba band [SC78] ✔ ✔ ✔ ✘ ✘ O(nr)§§DTW with Itakura band [Ita75] ✔ ✔ ✔ ✘ ✘ O(ns)§§§WDTW [JJO11] ✔ ✔ ✔ ✘ ✘ O
(
n2
)

LCSS [VKG02] ✔ ✔ ✘ ✘ ✘ O
(
n2
)

ERP [CN04] ✔ ✔ ✘ ✔ ✔ O
(
n2
)

MSM [SAD13] ✔ ✔ ✘ ✔ ✔ O
(
n2
)

TWE [Mar09] ✔ ✔ ✘ ✔ ✔ O
(
n2
)

EE [LB15] ✔ ✔ ✔ ✘ ✘ O
(
pn2
)†
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For distance measures on strings, they are based on the general edit distanceframework. We have defined 6 edit operations. Each edit distance allows a subset ofthese edit operations in order to model different behaviors in the compared strings.Given the edit operations involved, the properties of each edit distance is impacted.A summary of these edit distances is shared in Table III.3.

Table III.3: Summary of edit distances on strings, with their authorized operations,whether they are a metric, whether they can input strings of varying lengths, and theirtime complexity.
†Depends on how the operation costs are set.
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LCSS [Hir77] ✔ ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✔ O(mn)Hamming [SM83] ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✔ ✘ O(m)Simple Levenshtein dis-tance [Lev+66] ✔ ✔ ✔ ✘ ✘ ✘ ✔ ✔ ✔ O(mn)

General Levenshtein dis-tance [Lev+66] ✔ ✔ ✔ ✘ ✘ ✘ ≈† ≈† ✔ O(mn)

Damerau-Levenshtein ✔ ✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ O(mn)Edit Distance with Dupli-cations and Contractions(EDDC) [BR02; Pin+13]
✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ O

(
|A|m3

)

We have also reviewed distance measures on symbolic sequences, which aremainly based on MINDIST from SAX. A distance measure defined on symbolic se-quences can be viewed as a distance measure on real-valued time series when com-bined with the symbolization technique. Surprisingly, few distance measures on sym-bolic sequences employ edit distances, and the exploration of the multivariate settingis still in its early stages.
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Chapter IV
ASTRIDE: Adaptive Symbolizationfor Time Series Databases

We introduce ASTRIDE (Adaptive Symbolization for Time seRIes DatabasEs), a novelsymbolic representation of time series, along with its accelerated variant FASTRIDE(Fast ASTRIDE). Unlike most symbolization procedures, ASTRIDE is adaptive during boththe segmentation step by performing change-point detection and the quantization stepby using quantiles. Instead of proceeding signal by signal, ASTRIDE builds a dictionaryof symbols that is common to all signals in a data set. We also introduce D-GED (Dy-namic General Edit Distance), a novel distance measure on symbolic representationsbased on the general edit distance. We demonstrate the performance of the ASTRIDEand FASTRIDE representations compared to SAX (Symbolic Aggregate approXimation),1d-SAX, SFA (Symbolic Fourier Approximation), and ABBA (Adaptive Brownian Bridge-based Aggregation) on reconstruction and, when applicable, on classification tasks.These algorithms are evaluated on 86 univariate equal-size data sets from the UCRTime Series Classification Archive.

Contents

IV.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

IV.2 Background and motivations . . . . . . . . . . . . . . . . . . 97

IV.2.1 Overview of symbolic representations . . . . . . . . . . . . . . 97

IV.2.2 Overview of distance measures on symbolic sequences . . . . 99

IV.2.3 Limitations of existing symbolization methods . . . . . . . . 100

IV.2.3.1 The need for adaptive segmentation and quantiza-
tion steps . . . . . . . . . . . . . . . . . . . . . . . . 100

IV.2.3.2 The need for a distance measure on symbolic sequences102

IV.2.3.3 The need for a shared dictionary of symbols across
the signals of a data set . . . . . . . . . . . . . . . . 102

IV.2.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

IV.3 The ASTRIDE method . . . . . . . . . . . . . . . . . . . . . 103

IV.3.1 ASTRIDE segmentation step . . . . . . . . . . . . . . . . . . 104

IV.3.2 ASTRIDE adaptive quantization step . . . . . . . . . . . . . 104

IV.3.3 The D-GED distance measure . . . . . . . . . . . . . . . . . . 106

IV.3.4 Reconstruction of ASTRIDE symbolic sequences . . . . . . . 107

IV.3.5 The FASTRIDE method . . . . . . . . . . . . . . . . . . . . . 108

IV.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . 108

95



Chapter IV. ASTRIDE: Adaptive Symbolization for Time Series Databases
IV.4.1 Classification task . . . . . . . . . . . . . . . . . . . . . . . . 108

IV.4.1.1 Experimental setup . . . . . . . . . . . . . . . . . . 108

IV.4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 109

IV.4.2 Reconstruction task . . . . . . . . . . . . . . . . . . . . . . . 110

IV.4.2.1 Experimental setup . . . . . . . . . . . . . . . . . . 110

IV.4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 113

IV.4.3 Computational complexity . . . . . . . . . . . . . . . . . . . . 115

IV.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

IV.1 Introduction
Over the past decades, the increasing amount of available time series data has ledto a rising interest in time series data mining. In many applications, the collecteddata take the form of complex time series which can be multivariate, multimodal, ornoisy. A fundamental issue is to adopt an actionable representation which takes intoaccount temporal information. In this regard, symbolic representations constitute atool of choice [Lin+07]. Symbolic representations of time series are used for data min-ing tasks such as classification [Lin+07; SM13; Sch15; Ngu+19], clustering [Lin+07], in-dexing [Lin+07; Cam+10], anomaly detection [EG20a; CG23], motif discovery [Sen+18],and forecasting [EG20b]. The domain applications include finance [LSK06; BABO12],healthcare [SW10], and manufacturing [PJ20].Briefly, most symbolization techniques follow two steps: a segmentation stepwhere a real-valued signal y = (y1, . . . , yn) of length n is split into w segments, then aquantization step where each segment is mapped to a discrete value ŷi taken from aset {a1, . . . , aA} of A symbols. The resulting symbolic representation is the discrete-valued signal (or symbolic sequence) ŷ = (ŷ1, . . . , ŷw). The set of symbols {a1, . . . , aA} isusually called an alphabet or dictionary, and A is the alphabet size; the length w of thesymbolic representation is called the word length. While there exist many high-levelrepresentations for time series [Fu11], the two main advantages of symbolic represen-tations are reduced memory usage, and often a better score on data mining tasksthanks to the smoothing effect induced by compression [Lin+07].In the present chapter, we introduce ASTRIDE (Adaptive Symbolization for Time se-RIes DatabasEs) [CTO23b], a novel symbolic representation of time series data bases,along with its accelerated variant FASTRIDE (Fast ASTRIDE). Unlike most symbolizationtechniques, ASTRIDE is adaptive during both the segmentation step by performingchange-point detection and the quantization step by using quantiles. As the segmen-tation and quantization are performed on the whole data set, a notable benefit ofASTRIDE is to define a common dictionary of symbols for all signals in the data setunder consideration, thus further reducing memory usage. ASTRIDE comes with D-GED (Dynamic General Edit Distance), a new distance measure for symbolic sequenceswhich is based on the general edit distance. As we shall see, ASTRIDE provides an in-tuitive symbolic representation which outperforms the state of the art in classificationaccuracy and achieves competitive results in signal reconstruction.The remainder of the chapter is organized as follows. Section IV.2 provides anoverview of symbolic representations and their distance measures, highlights theirlimits, and presents our main contributions. Section IV.3 introduces the novel ASTRIDE
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and FASTRIDE symbolic representations, as well as the new D-GED distance mea-sure. Section IV.4 contains an experimental evaluation of the accuracy of ASTRIDE andFASTRIDE for classification and for signal reconstruction compared to several state-of-the-art symbolization methods. Section IV.5 provides concluding remarks.

IV.2 Background and motivations
This section gives an overview of symbolic representations and their distance mea-sures, then assesses their limits and presents our contributions. It also provides asummary of some symbolization methods in Table IV.2.

IV.2.1 Overview of symbolic representations
In 2003, a popular symbolic representation for time series was introduced: SymbolicAggregate approXimation (SAX) [Lin+03; Lin+07]. In SAX, a symbolic sequence is a chainof characters, for example abbcaabc (or 01120012). SAX has two parameters: the wordlength w and the alphabet size A. For instance, in the symbolic sequence abbcaabc,the parameters are w = 8 (length of the sequence) and A = 3 (number of possiblesymbols). The larger w and A, the better the quality of the SAX representation, butthe lower the compression. Optimal values of w and A are highly dependent on theapplication and the data set. In SAX, each signal is centered and scaled to unit vari-ance, then split into w segments of equal length. Next, the means of all segments aregrouped together in bins and each segment is represented by the bin where its meanfalls into. The bin boundaries are chosen so that all symbols are equiprobable underthe assumption that the means follow a standard Gaussian distribution. A SAX trans-formation of a signal taken from the UCR Time Series Classification Archive [Dau+19]is shown in Figure IV.1.

Since the introduction of SAX, many variants and symbolization techniques havebeen proposed (see Chapter II). First of all, some variants focus on the feature(s) persegment. Extended SAX (ESAX) [LSK06] represents each segment by its mean, minimum,and maximum values. 1d-SAX [Mal+13] represents two features with only one symbolper segment. It uses linear regression to compute the mean and the slope of eachsegment, then discretizes the mean (in Amean symbols) and the slope (in Aslope sym-bols) separately using the same Gaussian assumption as in SAX. The final segmentsymbol is the combination of the mean symbol and the slope symbol. The alphabetsize is therefore A = Amean ·Aslope.
Some symbolization procedures perform an non-uniform segmentation in orderto better adjust to the signal. Adaptive Segmentation Based Symbolic Representations(SBSR) [Hug06] can be viewed as a symbolic version of the Adaptive Piecewise ConstantApproximation (APCA) representation [Cha+02], just as SAX can be viewed as the sym-bolic version of the Piecewise Aggregate Approximation (PAA) [Keo+01; YF00]. In SBSR,segment lengths adapt to the shape of the signal.
Some symbolic representations have an adaptive quantization step in order to re-lax the Gaussian assumption on the data. Adaptive SAX (aSAX) [PLD10a] uses a uniformsegmentation and K-means clustering for the quantization. A symbol-based proce-dure to detect phases of gait signals [SW10] uses piecewise linear segmentation then

K-means clustering on the features per segment to get the symbols. The features per
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Figure IV.1: Example of a SAX (top) and ASTRIDE (bottom) representations of a signalfrom the Meat data set (UCR Time Series Classification Archive). The original length ofthe signal is n = 448, and we use w = 4 and A = 4. The resulting symbolic sequenceis 1131 for SAX, and 1230 for ASTRIDE. (ASTRIDE is described in Section IV.3.)

segment include slope, length, mean, and variance. Symbolization is used in orderto have a interpretable representation of gait signals. However, no distance mea-sure is derived from this representation. Adaptive Brownian Bridge-based Aggregation(ABBA) [EG20a] is adaptive for both the segmentation and quantization steps. It alsochooses w and A through a data-driven procedure. For the segmentation, adaptivepiecewise linear continuous approximation of the signal is used. Each linear piece ischosen given a user-specified tolerance tol: when the value of tol increases, the result-ing number of segments w decreases. The quantization step consists in a K-meansclustering of the tuples of the increment over the segment and the segment length,where the number of clusters is set to A. ABBA uses a scaling parameter scl thatcalibrates the importance of the length in relation to its increment: the clustering isperformed on the increments alone for scl = 0, while the clustering is done on boththe length and increment with the same importance when scl = 1. Hence, the inputparameters are the tolerance tol, the scaling scl, and the alphabet size A. Note thatwhen A is not set by the user, ABBA does several runs the K-means algorithm to getthe optimal value of A, resulting in a higher computational cost. ABBA focuses onsignal reconstruction: there is no mention of a distance measure on symbolic repre-sentations. Reconstruction is the inverse transformation: the original signal is inferredfrom its transformation which is its symbolic sequence. A recent faster variant of theABBA method, fABBA [CG23], replaces the K-means clustering by a sorting-based ag-gregation procedure that does not require the user to specify A.
While previously mentioned methods symbolize each signal independently, someprocedures operate on a data set of signals. These methods share a dictionary ofsymbols across all signals of the considered data set. Symbolic Fourier Approximation
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(SFA) [SH12] is based on the Discrete Fourier transform (DFT). First, SFA selects the wFourier coefficients of lowest frequencies, and second, uses a procedure called Multi-ple Coefficient Binning (MCB) to quantize them. In detail, MCB computes a user-definednumber A of quantiles per Fourier coefficient across all signals of a data set, and eachFourier coefficient is represented by the bin (based on quantiles) to which it belongs.In a supervised data mining task, the MCB bins are learned on a training set. SFA natu-rally provides a low-pass filtering that reduces the influence of noise. Also, no distanceon SFA’s symbolic representations is described. Note that SFA does not go through asegmentation step, but still has the w parameter that determines the length of thesymbolic sequences.Table IV.2 summarizes the main SAX variants as well as our novel ASTRIDE andFASTRIDE representations that will be presented in Section IV.3.
IV.2.2 Overview of distance measures on symbolic sequences
In order to use the learned symbolic representations for tasks such as classificationor clustering, it is crucial to define a distance measure between symbolic sequences,which can be viewed as character strings. Distance measures on symbolic sequenceswere reviewed in Section III.4, while distances on strings were reviewed in Section III.3.Defining an informative measure is a challenge that has received a lot of attention.SAX employs MINDIST, a distance measure on symbolic sequences. Let x =
(x1, . . . , xn) and y = (y1, . . . , yn) be two real-valued time series with n samples. TheEuclidean distance between x and y is given by

L2 (x, y) =

√√√√ n∑
i=1

(xi − yi)
2. (IV.1)

The MINDIST distance measure between the resulting symbolic sequences x̂ and ŷmimics the Euclidean distance

MINDIST (x̂, ŷ) =

√
n

w

√√√√ w∑
i=1

(dist (x̂i, ŷi))
2 (IV.2)

where the function dist(), based on a so-called look-up table, is illustrated in Table IV.1.MINDIST requires the symbolic sequences to be of equal length. For a given value of
Table IV.1: Example of look-up table for MINDIST with A = 4. Forexample, dist(a, d) = 1.34.

a b c d

a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.34 0.67 0 0

the alphabet size A, this table is calculated only once, and then stored for fast look-up.For all look-up tables, whatever the alphabet size, the value in the cell of indexes (i, j)
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is given by

celli,j =

{
0, if |i− j| ≤ 1

βmax(i,j)−1 − βmin(i,j), otherwise (IV.3)
where the βk are the boundaries of the bins used by SAX to discretize the segmentmeans. MINDIST is not a true metric, as dist(a, b) = 0 for example (see Table IV.1).The literature on symbolic representations advocates that a major advantage ofsymbolic representations is their ability to leverage the richness of the bioinformaticsand text processing communities [Lin+07; EG20a]. However, few symbolic represen-tations employ distance measures defined on strings [WML05; TTK17]. A review onstring matching is given in [Nav01]. A popular distance measure is the edit distancewhich is reviewed in Section III.3. For two strings s1 and s2, it is the minimal cost of asequence of operations that transform s1 into s2. The edit distance is also called theLevenshtein distance [Lev+66]. If all the simple operations have a cost of 1, whateverthe operation or the characters involved, it is called the simple edit distance. If the threeauthorized operations have different costs or the costs depend on the characters in-volved, it is called the general edit distance.For each symbolization method presented in Section IV.2.1, Table IV.2 indicateswhether it comes with a compatible distance measure.
IV.2.3 Limitations of existing symbolization methods
IV.2.3.1 The need for adaptive segmentation and quantization steps
As stated above, only a few methods are adaptive, and fewer are adaptive on boththe segmentation and quantization steps. Let us understand with the SAX methodwhy this can be an issue. Note that the same observations apply to SAX-like variants.First, uniform segmentation has flaws. Most signals found in practice containsalient events that are crucial to perform tasks such as classification. However, uni-form segmentation does not detect these events and neglects the phenomena of in-terest. As can be seen on the SAX representation of Figure IV.1, the two peaks aroundtimestamps 280 and 330 are not detected. Uniform segmentation does not depend onthe specific signal or data set at hand, but only on the input word length w. Moreover,because of it, SAX is restricted to input signals of equal length, while real-world signalsare often of varying lengths [Tan+19].As for quantization, the Gaussian assumption of SAX can be inappropriate forsome data sets. SAX considers that the symbols obtained after quantization will beequiprobable because all normalized time series follow a Gaussian distribution. Whilenormalized time series that are independent and identically distributed do tend to fol-low a Gaussian distribution, this in not the case for the means per segment [BK15]. Toillustrate this point, we computed the means per segment for a data set from theUCR Time Series Classification Archive [Dau+19] and their histogram is displayed onFigure IV.2. As observed, the means per segment do not seem to follow a Gaussiandistribution. We also performed the D’Agostino’s K2 normality test, whose null hy-pothesis is that the sample comes from a normal distribution. This test rejects theGaussian assumption at the risk level α = 5%. In total, we computed the mean persegment for each of 86 univariate equal-size data sets from the UCR Time Series Clas-sification Archive (that will be taken into account in the experiments of Section IV.4). Alldata sets reject the normal distribution hypothesis at the risk level α = 5%. Note that
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Table IV.2: Synthetic comparison of some symbolization methods (including our proposed
ASTRIDE and FASTRIDE) for a word length w and an alphabet size A, with a data set composed
of N signals whose values are encoded on nbits bits (for example nbits = 32 bits or nbits = 64

bits.) The Amean, Amin, Amax, Aslope, Aclusters, Acoefficients are respectively the number of symbols
used to encode the mean, the minimum, the maximum, the slope, the number of clusters,
and the number of Fourier coefficients.
†For ESAX, A = Amean = Amin = Amax.
‡For SFA, there is no segmentation.
§For ASTRIDE, the lengths are common to all signals.
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Chapter IV. ASTRIDE: Adaptive Symbolization for Time Series Databases
the authors of SAX [Lin+07] emphasize that, if the normality assumption is not satis-fied, the algorithm is less efficient but still correct due to the lower-bounding property.

Figure IV.2: Example of histogram of the Strawberry data set (UCR Time Series Classi-fication Archive) whose signals are of length n = 235 and for which the word length isset to w = 32. The obtained p-value for D’Agostino’s K2 normality test is 0: the meansper segment do not come from a normal distribution.

IV.2.3.2 The need for a distance measure on symbolic sequences
As seen in Table IV.2, some symbolic representations do not provide a distance mea-sure. Thus, they cannot be used directly for tasks such as classification or clustering.As stated in Section IV.2.2, most symbolization methods that have a distance measureare based on MINDIST from SAX. An issue of MINDIST is that it considers adjacentsymbols to be equal. For example, the MINDIST measure between adjacent symbols
a and b is null, hence symbols that are actually different will be considered equal byMINDIST, which can lead to misclassification of signals. Moreover, MINDIST is basedon a Gaussian assumption. As a result, the MINDIST distance does not adapt to thesignal. In addition, MINDIST is restricted to symbolic sequences of equal lengths. Forexample, MINDIST cannot be applied to the ABBA symbolic sequences.

IV.2.3.3 The need for a shared dictionary of symbols across the signals of a dataset
As stated in the introduction, one of the goals of symbolization is to reduce the mem-ory usage of the data. However, only a few papers mention that, in order to recon-struct a data set of N symbolic sequences, one needs to store the N symbolic se-quences, but also the dictionary of A symbols for each signal. Denote by nbits thenumber of bits needed to store a real value. A symbolic sequence with one symbolper segment requires w log2(A) bits, resulting in Nw log2(A) bits for N symbolic se-quences. A dictionary of symbols with one real value per symbol needs nbitsA persignal, resulting in NnbitsA bits for N symbolic sequences if the dictionary of symbolsis not shared across signals.
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Let us consider the SAX and the ABBA methods. SAX carries a shared dictionaryof symbols across signals, while ABBA does not. For SAX, Nw log2(A) + nbitsA bitsare needed to reconstruct a data set of N symbolic sequences. For the dictionary ofsymbols of ABBA, each symbol is a cluster center, and each cluster center has tworeal values: the length and the increment. Hence, each symbol requires 2nbits bits inmemory. But, contrary to SAX, ABBA needs to store one dictionary of symbols persignal. As a result, we need Nw log2(A)+2nbitsNA bits for the whole data set. For theMeat data set with N = 120, w = 10, A = 9, and nbits = 64 bits, the memory usageto encode the whole data set is 4,380 bits for SAX, and 142,044 bits for ABBA, thus 32times more. For ABBA, encoding the dictionary of symbols costs 36 times more thanencoding the symbolic sequences. As a result, ABBA requires much more memoryusage than SAX because it is adaptive and its dictionary of symbols is not shared. Thememory usage to reconstruct a data set of symbolic sequences for more methods aregiven Table IV.2.

IV.2.4 Contributions
To the best of our knowledge, the ASTRIDE method to be presented in Section IV.3 isthe only symbolic representation offering adaptive segmentation and quantization, ashared dictionary of symbols as well as a compatible distance measure and a recon-struction procedure. Altogether, ASTRIDE circumvents the limitations of the methodsdescribed in Section IV.2.3.

Instead of using uniform segmentation, ASTRIDE performs adaptive segmentation,a.k.a. change-point detection [TOV20], in order to capture salient events. More pre-cisely, we detect changes in the mean, where the number of changes is set by theuser. Moreover, ASTRIDE does not rely on the Gaussian assumption for the quanti-zation: this step is adaptive on the signals at hand. Consequently, ASTRIDE does notrequire any assumption on the distribution of the data.
We also introduce Dynamic General Edit Distance (D-GED), a new distance measureon symbolic representations which is based on the general edit distance. Moreover,unlike MINDIST, the symbolic sequences are not required to be of equal lengths.
Adaptive segmentation and quantization are learned at the level of the data set ofsignals: the change-points as well as the quantiles (for the quantization) are estimatedusing all signals in the data set. ASTRIDE’s dictionary of symbols is the same for allsignals (unlike ABBA), and is thus memory-efficient.

IV.3 The ASTRIDE method
ASTRIDE (Adaptive Symbolization Time seRIes DatabasEs) is a novel symbolic repre-sentation for data sets of signals. It is an offline method inputting univariate signalsthat are required to be of equal size. There are two parameters to be set by the user:the word length w and the alphabet size A. ASTRIDE comes with a new distance mea-sure on symbolic sequences: D-GED (Dynamic General Edit Distance). After describingASTRIDE and D-GED, we introduce FASTRIDE (Fast ASTRIDE), an accelerated version ofASTRIDE.
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IV.3.1 ASTRIDE segmentation step
As a preprocessing step, all times series in the data set are centered and scaled tounit variance. Then, the N signals of length n are segmented. To that end, all sig-nals are stacked, producing a single multivariate signal of length n and dimension
N . ASTRIDE applies multivariate change-points detection with a fixed number of seg-ments on this high-dimensional signal. When w segments are chosen, the segmen-tation provides w − 1 change-points that are the same for each univariate signal.Since the change-points are common to all (univariate) signals, this allows ASTRIDE tobe memory-efficient. The lengths of each resulting symbolic sequence are the same(equal to w). For a given multivariate signal y = (y1, . . . , yn) with n samples, change-point detection finds the w − 1 unknown instants t∗1 < t∗2 < . . . < t∗w−1 where somecharacteristics (here, the mean) of y change abruptly. A recent review of such methodsis given in [TOV20]. In the context of ASTRIDE, the number of changes w− 1 is chosenby the user: it is the desired number of regimes, meaning the length of the resultingsymbolic sequences. The change-point algorithm estimates t̂1, . . . , t̂w−1 which are theminimizers of a discrete optimization problem

(
t̂1, . . . , t̂w−1

)
= argmin

(w,t1,...,tw−1)

w+1∑
k=0

tk+1−1∑
t=tk

∥yt − ȳtk:tk+1
∥2, (IV.4)

where ȳtk:tk+1
is the empirical mean of {ytk , . . . , ytk+1−1}. By convention, t0 = 0 and

tw = n. Formulation (IV.4) seeks to reduce the error between the original signal andthe best piecewise constant approximation. This problem is solved using dynamicprogramming which has a time complexity of O (Nwn2
) where N is the number ofsignals in the data set.Figure IV.1 displays an example of an ASTRIDE representation of a signal, alongwith the SAX representation (for the same parametersw andA). Visually, compared touniform segmentation, adaptive segmentation leads to more meaningful segments.For example, it detects that one segment is sufficient to approximate the signal fromtimestamp 0 to 250, and that there is a peak around timestamp 280 and anotherone around timestamp 330. It shows the importance of our adaptive segmentationscheme. Figure IV.3 depicts how the multivariate change-point detection works. Thealgorithm tries to find the abrupt changes in mean that are common to most (univari-ate) signals in the data set.

IV.3.2 ASTRIDE adaptive quantization step
After segmentation, the means of all segments are computed and grouped into binsbased on the empirical quantiles. Each segment is then symbolized by the bin it be-longs to. This quantization step is similar to the MCB (Multiple Coefficient Binning)procedure of SFA [SH12]. Since the segments found during the segmentation stepcorrespond to mean-shifts, it is reasonable to represent each segment by its meanvalue. The A − 1 quantiles are calculated on the means of all segments of all signalsin the data set, leading to A symbols. The time complexity of the quantization step(computing the means, the quantiles, and applying the binning) is O (Nw), where Nis the number of signals in the data set. By design, all symbols are equiprobable. Fig-ure IV.1 shows an example of an ASTRIDE representation. Compared to SAX, the binsof ASTRIDE represent the quantiles of the means per segment and are quite different
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Figure IV.3: Multivariate change-point detection on (univariate) signals from the CBFdata set (UCR Time Series Classification Archive). Here, n = 128 and w = 5. Thechange-points are obtained from the whole training set, but only a few signals aredisplayed.
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from the ones of SAX. Recall that ASTRIDE is fitted on the whole training set (and noton the displayed signal only).
IV.3.3 The D-GED distance measure
We introduce Dynamic General Edit Distance (D-GED), a novel distance measure onsymbolic representations. D-GED is compatible with symbolic sequences of equalor varying lengths. The distance measure D-GED is based on the general edit dis-tance [Nav01]. D-GED sets the operation costs of the general edit distance so thatthey incorporate the distance between individual symbols as follows:

• The substitution cost sub(a, b) for individual symbols a and b is the Euclideandistance between the mean µa of the mean values attributed to symbol a andthe mean µb of the mean values attributed to symbol b
sub(a, b) = ∥µa − µb∥2 . (IV.5)

• For all characters, the insertion and deletion costs are set to submax, where
submax is the maximum value of the modified substitute costs given in (IV.5).

For the substitution cost, the intuition is that if symbols a and b are ”very different”,then the difference between µa and µb will be wider, and substituting them will havea larger cost in D-GED. By setting the insertion and deletion costs to submax, D-GEDfavors substitutions over insertions and deletions. The worst-case complexity to com-pute the D-GED distance measure of two symbolic sequences of lengths w1 and w2 is
O(w1w2).D-GED is not applied directly on the symbolic representation but on a replicatedversion. Indeed, when a method uses a non-uniform segmentation, the segmentscan have different lengths. Without taking into account the varying segment sizes, D-GED would compare (substitute or delete/insert) symbols corresponding to segmentsof different lengths. To prevent ASTRIDE from losing this information, we proposethe following procedure. Denote by ℓ1, . . . , ℓw the segment lengths obtained with ouradaptive segmentation. By design, they are the same for all signals in the data set.Each segment length is divided by the minimum of all segments lengths and roundedto its nearest integer to obtain the normalized segment lengths ℓ̂1, . . . , ℓ̂w. Then, thesymbolic sequences are modified by replicating the symbol of the first segment ℓ̂1times, then the symbol of the second segment ℓ̂2 times, etc. Finally, the D-GED mea-sure between these replicated symbolic sequences is computed. As an example, con-sider the symbolic sequence from ASTRIDE depicted in Figure IV.1. The symbolic se-quence without incorporating information about the segment lengths is 1230. Thesegment lengths are (266, 47, 40, 95) before normalization (more details on the signalare given in Table IV.3). The smallest segment has 40 samples and, as a result, thenormalized segment lengths are (7, 1, 1, 2). The replicated symbolic sequence basedon the normalized segment lengths is

1111111︸ ︷︷ ︸
7 times

2︸︷︷︸once
3︸︷︷︸once

00︸︷︷︸
twice

(IV.6)

which is of total length 11.
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Table IV.3: Details of the ASTRIDE representation of the signal displayed on Figure IV.1.The parameters of ASTRIDE are w = 4 and A = 4. (The quantized mean feature isdescribed in Section IV.3.4.)

segment start mean symbol quantized mean length normalized length0 −0.17 1 −0.16 266 7266 1.11 2 1.05 47 1313 2.34 3 2.38 40 1353 −1.07 0 −1.06 95 2

IV.3.4 Reconstruction of ASTRIDE symbolic sequences
In ASTRIDE, a signal is reconstructed from its symbolic sequence as follows. Each sym-bol of the symbolic representation is replicated ℓk times, where ℓk is the length of theassociated segment. The length of the reconstructed signal is the same as the originalone. Then, each symbol is replaced by the average of all segment means that belongto the associated bin (the quantized mean). This resulting real-valued signal is thereconstruction by ASTRIDE. As an example, consider the signal shown in Figure IV.1whose symbolic representation is 1230. Details about the segment lengths, symbols,and quantized mean are given in Table IV.3. First, the symbols 1, 2, 3 and 0 are repli-cated 266, 47, 40 and 95 times respectively. Second, each symbol is mapped to itsquantized mean, going from a symbolic signal to a real-valued signal:

-0.16 . . . -0.16︸ ︷︷ ︸
266 times

1.05 . . . 1.05︸ ︷︷ ︸
47 times

2.38 . . . 2.38︸ ︷︷ ︸
40 times

-1.06 . . . -1.06︸ ︷︷ ︸
95 times

(IV.7)

The real-valued signal displayed in Formula (IV.7) is the reconstruction of the 1230symbolic sequence. A reconstructed signal from ASTRIDE is a piecewise constant sig-nal, as displayed in Figure IV.4. Notice how the reconstructed signal in Figure IV.4 is

Figure IV.4: Example of reconstruction by ASTRIDE of the 1230 symbolic sequence(same original signal as in Figure IV.1). Here, w = 4 and A = 4. Note that ASTRIDE isfitted on the whole training set (and not on the displayed signal only).
different from the mean per segment representation in Figure IV.1, as the quantizedmean is used, and not the mean.

The memory cost of ASTRIDE is easily derived. To reconstruct N symbolic se-quences from the ASTRIDE representation withw segments andA symbols, one needs
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to store Nw log2(A) bits for the symbolic sequences. For the shared dictionary of sym-bols, one needs nbitsA bits. In addition to storing the symbolic sequences with theirshared dictionary of symbols, one also needs to store the w segment lengths that arethe same for all symbolic sequences, resulting in nbitsw bits for the whole data set. Intotal, Nw log2(A) + (w +A)nbits are required. To illustrate, let us take the example inSection IV.2.3.3: the Meat data set with N = 120, w = 10, A = 9, and nbits = 64 bits.For ASTRIDE, the memory usage to encode the whole data set is 5,020 bits. Recall thatthe memory usage is 4,380 bits for SAX, and 142,044 bits for ABBA.
IV.3.5 The FASTRIDE method
FASTRIDE (Fast ASTRIDE) is an accelerated variant of ASTRIDE. For the symbolizationprocedure, the only difference is its segmentation step which is uniform, like SAX. Thereconstruction of FASTRIDE is performed in the same way as ASTRIDE. For the dis-tance measure of FASTRIDE, we use D-GED but there is no need to replicate the sym-bolic sequences, as the segment lengths are equal due to the uniform segmentation.FASTRIDE is computationally faster than ASTRIDE because FASTRIDE skips the adap-tive segmentation step, and the input symbolic sequences of the general edit distanceare not replicated, thus are shorter.

IV.4 Experimental results
We compare ASTRIDE and FASTRIDE to several popular symbolic representations (SAX,1d-SAX, SFA, ABBA) on a classification task and a reconstruction task. We show thatASTRIDE and FASTRIDE constitute the best compromises to address both these tasks.Indeed, as will be discussed, some of these methods can be used only on one task; inparticular, SFA and ABBA do not possess a distance measure and, therefore, cannotbe used as such for classification.The adaptive segmentation step of ASTRIDE is implemented with the rupturesPython package [TOV20]. The general edit distance in D-GED uses the weighted-levenshteinPython package [Inf18]. SAX and 1d-SAX are implemented in the tslearn Python pack-age [Tav+20]. SFA is implemented from scratch. ABBA is taken from the authors’GitHub repository1. A Python implementation of ASTRIDE and FASTRIDE, along withcodes to reproduce the figures and scores in this chapter, can be found in a GitHubrepository2.
IV.4.1 Classification task
We first investigate the performances of our approaches on a classification task.
IV.4.1.1 Experimental setup
Data mining task and competitors Our methods ASTRIDE and FASTRIDE are com-pared to SAX and 1d-SAX. One-Nearest Neighbor (1-NN) classification is used to com-pare the quality of both the symbolizations and the distance measures, as often done

1https://github.com/nla-group/ABBA2https://github.com/sylvaincom/astride
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Table IV.4: Presentation of the 86 univariate equal-size data sets fromthe UCR Time Series Classification Archive considered in our classifi-cation experiment.

No. of signals Length No. of classesmean 1,357 644 10min 40 128 250% 687 456 4max 9,236 2,844 60
in the literature [Bag+17]. For ASTRIDE and FASTRIDE, the change-points and the quan-tization bins are learned on the training set.Our comparison is limited to classification techniques based on symbolizations,since our objective is to evaluate the relevance of this step itself and not toachieve state-of-the-art performance on time series classification. Hence, we ex-clude classifiers that are built on top of symbolic representations, namely bag-of-words and ensemble-based algorithms. In particular, SAX-VSM (SAX and Vector SpaceModel) [SM13], BOSS (Bag-of-SFA-Symbols) [Sch15], Mr-SEQL (Multiple symbolic rep-resentations SEQuence Learner) [Ngu+19], WEASEL (Word ExtrAction for time SEriescLassification) [SL17], and TDE (Temporal Dictionary Ensemble) [Mid+20] are out ofthe scope on this study. More details on these techniques can be found in [Bag+17;Rui+21; Aga+21].
Hyperparameters The hyperparameters for all methods are:

• the word length w in {5, 10, 15, 20, 25}
• the alphabet size A in {4, 9, 16, 25}.

For 1d-SAX,A ∈ {4, 9, 16, 25} corresponds to (Amean, Aslope) ∈ {(2, 2), (3, 3), (4, 4), (5, 5)}.
Evaluation of the task The evaluation metric for the classification is the test accu-racy: percentage of correctly classified signals.
Data sets Since SAX and other methods can be applied only to univariate and equal-size times series and we choose our signals to be of length at least 100 (as in the ABBApaper [EG20a]), the scope of our comparisons is restricted to 86 data sets of the UCRTimes Series Classification Archive [Dau+19]. The data sets are both real-world andsynthetic, and come with a default train / test split which is the one used in this study.Our experiments were launched on a total of 66,827,003 samples across all signals ofall data sets. Table IV.4 recaps some key figures of the considered data sets. Whileaveraging accuracies over different data sets, with different sizes and challenges, hassome flaws, it is the best compromise to obtain a global key figure to assess the qualityof a classifier on the UCR Time Series Classification Archive.
IV.4.1.2 Results
Figure IV.5 displays the accuracy scores as a function of the word length w averagedover the selected data sets, for several methods, and for different values of alphabet
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size A. For each method and each alphabet size A, plotting the accuracy in relation to
w tells us which method provides the best representation: the larger the accuracy fora given w, the better the symbolic representation.Our results show that ASTRIDE and FASTRIDE perform better than both SAX and1d-SAX on the classification task. Indeed, for each alphabet size A and each wordlength w, ASTRIDE and FASTRIDE have a higher accuracy than both SAX and 1d-SAX.This shows that the proposed adaptive symbolization process, combined with the D-GED distance measure, is relevant in this classification context.
Influence of the parameters We observe that, for all methods, the accuracy in-creases as the word length w increases. This was expected as the symbolizationbecomes more precise as each signal is represented with more bits. Interestingly,ASTRIDE and FASTRIDE achieve reasonable classification results even for a very smallnumber of segments. For example, when w = 5 and A = 16, ASTRIDE has a score of
57%, while SAX and 1d-SAX have a score of 48%. This confirms the fact that using amore adaptive representation better captures the phenomenon observed in the sig-nals, and thus better compresses the information.For all methods, when the alphabet size A increases, the classification scores im-prove. Yet, ASTRIDE and FASTRIDE are less sensitive to the value of A. For w = 20,the accuracy of ASTRIDE is of 61%, 65%, 67%, and 68%, for A = 4, A = 9, A = 16, and
A = 25 respectively. On the contrary, SAX seems to be very sensitive to the value of A:for w = 20, it reaches 45% for A = 4 and 62% for A = 16. Moreover, the performanceof SAX is worse than 1d-SAX for small values of A, and is slightly better than 1d-SAX(and even largely surpasses it) for large values of A.
Importance of the adaptive approaches According to Figure IV.5, FASTRIDEachieves results similar to those of ASTRIDE, which suggests that the adaptive seg-mentation does not increase performances. As will be seen in the next section, therelevance of the segmentation phase is more acute in the reconstruction task.The importance of the adaptive quantization process based on quantiles can beenassessed by comparing the performances of FASTRIDE to those of SAX, which usesquantization bins based on the standard normal distribution instead of an empiricaldistribution. Based of the results, it appears that using the quantiles to build boththe symbolization and the distance measure allows us to adapt it to the data set ofinterest, and to detect variations between signals that are not captured by the fixedMINDIST costs.We also note that both FASTRIDE and ASTRIDE benefit from the newly introducedD-GED distance, which offers nice performances on this classification task.
IV.4.2 Reconstruction task
In this section, we investigate the performances of our approaches on a reconstructiontask.
IV.4.2.1 Experimental setup
Data mining task and competitors Our ASTRIDE and FASTRIDE representations,SAX, 1d-SAX, SFA, and ABBA are compared on a reconstruction task. Except for ABBA,
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Figure IV.5: Accuracy of SAX, 1d-SAX, ASTRIDE, and FASTRIDE on the classification taskversus the word length w, for several values of alphabet size A, averaged on 86 datasets from the UCR Time Series Classification Archive.
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the papers about SAX, 1d-SAX, and SFA do not tackle signal reconstruction. However, itis easy to infer a reconstruction procedure for these methods. For SAX and 1d-SAX, thesample values on each segment of the reconstructed signal are based on the Gaussianbins. For SFA, the reconstructed signal is the Fourier reconstruction based on thequantized Fourier coefficients.
Hyperparameters The alphabet size is fixed to A = 9 for all methods, and the scal-ing parameter of ABBA is set to scl = 1, as is done in [EG20a]3. The word length wresults from the choice of the tolerance tol in ABBA. For fair comparison, this valueof w is determined by running ABBA with a fixed value of tol. To compare the differ-ent approaches, we apply a protocol inspired from the ABBA paper [EG20a]. For eachsignal, ABBA is first run with a low tolerance tol = 0.05 and it returns the number ofsegments w to approximate the original signal at tolerance tol. If w ≥ nτt, where n isthe length of the original signal and τt is a target memory usage ratio, we successivelyincrease tol by 0.05 and rerun ABBA until w ≤ nτt. This last value is denoted by we. Asin [EG20a], we exclude all signals leading to we < 9, because we choose A = 9.We run this protocol for τt ∈ {5%, 6.7%, 10%, 16.7%, 20%, 25%, 33.3%}. UnlikeABBA, which works signal by signal, SFA, ASTRIDE, and FASTRIDE work on a whole dataset, so their input word length w is the same for all signals in the data set. For the lat-ter methods, we set w equal to the average we of the we’s obtained for each signal byABBA. As a result, each data set and each value of τt is associated with a word length
we. In most cases, the empirical memory usage ratio τe = we/n is smaller than thetarget memory usage ratio τt. The values of τt and their corresponding τe (averagedon all signals irrespective of their data set) are displayed in Table IV.5. In the protocol,if it is not possible to compress a signal at a given tol, τt, and A, then the whole dataset is excluded from our benchmark, which explains why there are different numbersof compatible data sets in Table IV.5.
Evaluation of the tasks The evaluation metrics of the reconstruction task are theEuclidean and DTW (Dynamic Time Warping) which is robust to time-shifts. A dataset of N signals is transformed into N symbolic sequences, then these N symbolicsequences are reconstructed. For each signal, we compute the reconstruction error:the distance between the original signal and its reconstruction. Recall that, for allmethods, each signal is first centered and scaled to unit variance. The reconstructionerror is between the scaled original signal and its reconstruction, as the normalizationis important when conducting benchmarks [KK03].Moreover, because we noticed that the SAX and 1d-SAX implementations from
tslearn (v0.5.2) [Tav+20] poorly handles the last samples of the reconstructed sig-nals when n is not divisible by w, the reconstruction error is computed between thetruncated signals: both the original and reconstructed signals (for all methods) aretruncated so that their length is ⌊n/w⌋w.
Data sets As for the classification task, we use as input the UCR Time Series Classi-fication Archive. The scope of our comparisons is restricted to equal-size data sets oflength at least 100 from the UCR Times Series Classification Archive [Dau+19].

3Note that we obtain similar reconstruction error results with scl = 0.
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Table IV.5: Empirical protocol to set the word lengthw per data set forthe reconstruction benchmark, given a target memory usage ratio τtfor ABBA.

Target memoryusage ratio τt (%) Empirical mem-ory usage ratio τe(%)
Number of com-patible data sets

5 4.0 446.7 5.3 4910 7.6 5616.7 11.7 6420 13.4 6525 15.8 6733.3 19.3 69

IV.4.2.2 Results
Figure IV.6 displays the reconstruction error versus the memory usage ratio, averagedover the compatible data sets, for several methods, and a fixed alphabet size A = 9.We observe that, for both the Euclidean and DTW errors, SFA obtains the best perfor-mances, followed by ASTRIDE.To complement the use of the mean in Figure IV.6, the box-plots in Figure IV.7show the spread of the reconstruction errors and the outliers, for a fixed target mem-ory usage ratio τt = 6.7%. The most extreme outliers are generated by ABBA, whichshows that this method is not robust. A possible explanation is that ABBA is very sen-sitive to noisy signals because of its piecewise linear approximation step and its use ofthe quantized increments. On the contrary, SAX, 1d-SAX, SFA, ASTRIDE, and FASTRIDEseem quite robust.
Influence of the memory usage ratio For SAX, 1d-SAX, SFA, ASTRIDE, and FASTRIDE,the reconstruction error decreases as the memory usage ratio increases. Indeed, asthe memory usage ratio increases, more segments are allowed in the symbolic repre-sentations, resulting in a higher quality of the reconstruction.For very small memory usage ratios (τe ≤ 6%), SFA and ASTRIDE have similar per-formances. Moreover, when τe ≤ 6%, according to the DTW error, ABBA performsbetter than ASTRIDE and FASTRIDE. However, this observation is challenged by thebox-plot in Figure IV.7, which shows that ABBA reaches very large errors and is muchless robust than ASTRIDE. Moreover, the empirical memory usage ratio τe = we/n inFigure IV.6 does not take into account the total memory usage: it ignores the dictionaryof symbols and the fact that the reconstruction is done on a data set of signals (andnot on a single signal). As emphasized in Section IV.2.3.3 and Section IV.3.4, the totalmemory usage of ABBA is much larger than those of ASTRIDE and FASTRIDE, becauseABBA does not share a dictionary of symbols across signals.
Importance of the adaptive approaches According to Figure IV.6, ASTRIDE achievesbetter results than FASTRIDE, thus showing the relevance of the adaptive segmenta-tion on the reconstruction task. Indeed, the segmentation phase allows to focus on the
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Figure IV.6: Reconstruction benchmark for several methods and several empiricalmemory usage ratios τe, averaged over the signals from various data sets from theUCR Time Series Classification Archive, for A = 9.

Figure IV.7: Box-plots of the reconstruction benchmark for several methods over thesignals of 49 data sets from the UCR Time Series Classification Archive, for A = 9 and
τt = 6.7% (leading to τe = 5.3%). For both box-plots, the range of the y-axis is limitedto the 99.99% quantile of the reconstruction error for visualization purposes.

114



Chapter IV. ASTRIDE: Adaptive Symbolization for Time Series Databases
events of interest, which are thus correctly reconstructed. Dedicating a memory sizefor the fine encoding of these events thus seems to be a good strategy to compressthe information contained in the signals. Adaptive quantization based on quantilesdoes not appear particularly useful for signal reconstruction, as FASTRIDE performssimilarly to SAX.

Comparison of the methods on a single signal Figure IV.8 gives an example ofreconstruction of a single signal from the UCR Time Series Classification Archive, forseveral methods. Contrary to ASTRIDE, the change-points from ABBA are not exact butapproximated from the cluster centers. Thus, they are not precise in the reconstruc-tion phase, which explains why ABBA behaves better with the DTW error, which allowsfor time-shifts, than with the Euclidean error. Note that the authors of ABBA empha-size that their method does not focus on approximating the signal values at the exacttimestamps, but rather on capturing the overall behavior. SFA tends to provide accu-rate global – rather than local – reconstruction: as shown in Figure IV.8: depending onthe data set, this property can be an advantage or a drawback. Regarding ASTRIDE,we can see that the segmentation phase allows us to focus on the phenomenon ofinterest in the signal, thus to devote more memory to the encoding of salient events.

IV.4.3 Computational complexity
This section describes an important characteristic of the methods: the computationalcost. The processing times of the different methods are compared on the 1-NN clas-sification task applied to the ECG200 data set from the UCR Time Series Classifica-tion Archive, and are reported in Table IV.6. We ran the experiments using Python3.10.6 on a laptop under macOS 13.0.1 with Apple M1 Chip 8-Core CPU and 7-CoreGPU. All methods mentioned in Section IV.4.1 are compared (SAX, 1d-SAX, ASTRIDE,and FASTRIDE). For SAX, both our implementation and tslearn are tested. Two du-rations are reported: the time to compute the symbolization for all time series in thedata set, and the time to perform the actual 1-NN classification from the symbolizedtime series.

Table IV.6: Processing times on the symbolization and 1-NN classification onthe ECG200 data set (UCR Time Series Classification Archive) composed of 100training signals and 100 test signals of length n = 96, with w = 10 and A = 9.
Method Symbolization pro-cessing time (s) 1-NN classificationprocessing time (s)SAX 0.27 0.08SAX (tslearn) 0.02 0.111d-SAX (tslearn) 0.42 0.21ASTRIDE 0.30 0.17FASTRIDE 0.26 0.07

First, as expected, the ASTRIDE symbolization is more time-consuming than thenon-adaptive ones (SAX for example). An important remark is that the temporalsegmentation is relatively fast: the computation times for ASTRIDE and its variant
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Figure IV.8: Example of reconstruction of a single signal from the Beef data set (UCRTime Series Classification Archive) of original length n = 470 for several methods,with A = 9 and τt = 5% leading to we = 19 and τe = 4.0%. The Euclidean error isrespectively of 9.9, 10.7, 10.7, 18.1, 6.0, and 11.5 for SAX, 1d-SAX, SFA, ABBA, ASTRIDE,and FASTRIDE respectively. Note that SFA, ASTRIDE, and FASTRIDE are fitted on thewhole training set (and not on the displayed signal only). All displayed signals aretruncated (so that their length is ⌊n/w⌋w).
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FASTRIDE without adaptive segmentation are quite similar. 1d-SAX is more expen-sive because it takes into account the mean as well as the slope, then has to combinethem.Second, as far as the classification step is concerned, it appears that the compu-tation of D-GED for ASTRIDE is more expensive than for FASTRIDE because of thereplication of the symbolic sequences which makes them longer. For ASTRIDE, us-ing the normalized segment lengths instead of the raw segment lengths helps mak-ing the replicated symbolic sequences shorter, but a gap remains in comparison toFASTRIDE. Several improvements could further lower the computation time, such asusing more advanced general edit distances (e.g., Weighted Symbols-Based Edit Dis-tance [Bar+10]), which are optimized to deal with redundant series of symbols.

IV.5 Conclusion
We have introduced a new symbolic representation of time series, ASTRIDE, alongwith its accelerated variant FASTRIDE, as well as a novel distance measure on sym-bolic sequences, D-GED. ASTRIDE is the only symbolic representation offering adap-tive discretization on both the time and amplitude dimension, at the scale of a dataset, while having a compatible distance measure and a reconstruction procedure thatis memory-efficient. Hence, ASTRIDE combined with D-GED alleviates the main draw-backs of existing symbolic representations. ASTRIDE uses change-point detection ofmean-shifts instead of uniform segmentation, and adaptive quantization using quan-tiles in place of fixed Gaussian bins. Moreover, D-GED is based on the general editdistance which relies on the quantiles and deals with substitution, deletions and in-sertions, which are not handled by the MINDIST distance measure. In addition, thanksto the multivariate change-points and the quantiles learned from all signals in the dataset, the dictionary of symbols is shared across all signals, thus reducing memory us-age.Our experiments show the quality of our symbolic representations. Indeed, bothASTRIDE and FASTRIDE give better accuracies than SAX and 1d-SAX on the classificationtask, for a same word length. This performance is mainly due to the adaptive quan-tization based on quantiles and the D-GED distance measure. For the reconstructiontask, FASTRIDE and especially ASTRIDE give better errors than SAX, 1d-SAX and ABBA,for a same memory usage ratio. On the reconstruction task, the adaptive segmen-tation is particularly relevant, thus using ASTRIDE rather than FASTRIDE seems moreappropriate.
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Chapter V
d symb: an interpretable distancemeasure for multivariate signals

In many applications, such as behavioral neurology, researchers have to compareand understand large amounts of multivariate time series in an interactive and inter-pretable way. We introduce dsymb, a novel distance measure for comparing multivari-ate non-stationary signals. Unlike most distance measures on multivariate signals,
dsymb takes into account their non-stationarity thanks to a symbolization step. Thisstep is based on a change-point detection procedure that splits a non-stationary signalinto several stationary segments, followed by quantization using K-means clustering.The proposed distance measure leverages the general edit distance and is applied tothe symbolic sequences. The advantages of dsymb are shown on three data sets of phys-iological signals. Moreover, we describe an online tool, called the dsymb playground,that we implemented to allow other researchers to apply dsymb to their uploaded data.
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V.1 Introduction
In numerous applications, large data sets of time series are collected and then com-pared with each other. For instance, in behavioral neurology, subjects (human or an-imal) with various neurological conditions are monitored during long time periods.
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Then, researchers want to compare subjects or groups of subjects or assess a sub-ject’s evolution (longitudinal study) using those signals. The recordings are often mul-tivariate, as they are collected from one or several sensors. Moreover, because ofoperational constraints, subjects are monitored for prolonged periods, yielding largetime series. For example, when monitoring elderly patients in hospitals [Jun+21], set-ting up the sensors is cumbersome and can only be done once. As a result, signals alsocontain several different regimes of interest. In such contexts, researchers focus onthe dynamic or chronology of those regimes: in [Jun+21], medical doctors want to eval-uate their patients’ gait during a 10-minute protocol of several simple activities, e.g.,walking and climbing stairs. In addition, they need intuitive and immediate feedbackin order to make a diagnosis. An informative distance measure between these kindsof signals should consider this non-stationary structure. Such a setting –comparinglong multivariate time series with switching regimes in a fast and interpretable way–is found in a great number of biomedical applications as well as industrial contexts.
Related work. Dynamic Time Warping (DTW) [BC94], which is arguably the mostpopular elastic distance measure, is often used in such situations [Shi+23]. One im-portant feature of DTW is its robustness to time warping, that is, a contraction or di-latation of the time axis. First defined for univariate signals, it was recently extendedto multivariate signals. Two popular approaches are often used in practice: the inde-pendent and dependent strategies [SY+17]. In the independent strategy, the univari-ate DTW is applied to each dimension separately, and the resulting distances on eachdimension are summed. The dependent strategy considers the multivariate series asa single series in which each timestamp is associated with a single multidimensionalpoint. The DTW scheme is then applied using Euclidean distances between the mul-tidimensional points of the two series. Other variants of multivariate DTW exist (seeChapter III). One such variant is Derivative DTW [KP01] which applies DTW, not directlyon the raw signals, but on their first derivative. Another variant, known as WeightedDTW [JJO11], uses custom weights to avoid large warpings. Both Derivative DTW andWeighted DTW can be combined into a variant called Weighted Derivative DTW. Thetime complexity of DTW-based distances is O(dmn) where m and n are the lengthsof the compared time series and d is the dimension. In addition to the high compu-tational cost, DTW-based distances are not always easy to interpret. For long signals,the warping path between two signals is as complex as the original data.Another category of methods is based on symbolic representations (reviewed inChapter II), on which a distance measure is defined. Symbolization transforms a real-valued signal y of arbitrary length n into a discrete-valued signal ŷ of smaller length
w ≤ n, called a symbolic sequence. A common symbolic representation for univariatesignals is Symbolic Aggregate approXimation (SAX) [Lin+03; Lin+07] that has successfullybeen used in several data-mining tasks such as classification [Lin+07; Ngu+19], clus-tering [Lin+07] or indexing [Cam+10]. However, extending a symbolic representationto the multivariate case remains a challenge. A naive approach consists in symboliz-ing each dimension independently and creating meta-symbols that are combinationsof the first symbols. The total number of symbols is then Ad, where A is the num-ber of symbols for each dimension and d is the number of dimensions. However, thisapproach does not scale well when d increases. For instance, MSAX [AVC20], whichis a multivariate extension of SAX, is applied to data sets of trajectories (d = 2) only.As a comparison, the physiological signals that we use in the experiments can have
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hundreds of dimensions. Large alphabets are also less interpretable, even for smallvalues of A and d.

Finally, distances based on feature extraction often lose the temporal aspect thatis essential for time series. Indeed, such methods (reviewed in Section III.4.3) extractfeatures that are mostly based on the frequency of symbolic words [SM13; Sch15].For example, in BOSS [Sch15], symbolic words are computed on overlapping slidingwindows, then signals are compared based on their histograms of symbolic words.

Contributions. We propose a symbolic representation, with a compatible distancemeasure on its symbolic sequences, for a data set of multivariate time series thatcan be non-stationary, called dsymb [CTO23a]. Unlike most distance measures on mul-tivariate signals, dsymb takes into account their non-stationarity thanks to a symbol-ization step. This step is based on a change-point detection procedure that splits anon-stationary signal into several stationary segments, followed by quantization us-ing K-means clustering. The proposed distance measure leverages the general editdistance with custom costs. The advantages of dsymb are shown on three data setsof physiological signals. Experiments show how interpretable the symbolization is: asingle glance at the symbolic sequences provides an immediate and informative de-scription of a data set. Moreover, compared to nine multivariate elastic distances on aclustering task, dsymb preserves a competitive performance while being several ordersof magnitude faster than the other methods. With these desirable characteristics, wedeveloped the dsymb playground [Com+24b], an online tool that allows researchers toapply dsymb to their uploaded data.

Organization of the chapter. In the remainder of this chapter, we describe our
dsymb method in Section V.2 and apply it to three multivariate physiological data setsin Section V.3. Finally, in Section V.4, we present our online tool, the dsymb playground.

V.2 The d symb method
Our method, denoted dsymb, is a novel distance measure on multivariate signalsof possibly different lengths. This distance measure is designed to handle non-stationarity, to be interpretable, and to run fast to allow interactivity. The symbol-ization is computed using the same steps as ASTRIDE: signal segmentation, featureextraction, and quantization. However, there are several noteworthy modificationsin the segmentation and the quantization steps. Each step, of the symbolization andthe resulting distance, is briefly described in the following. Let y = (y1, . . . , yn) be amultivariate signal.

1. Each multivariate signal is partitioned into stationary segments using a change-point detection procedure. Signals are treated individually, unlike ASTRIDE,which deals with the whole data set simultaneously.
Contrary to ASTRIDE, where the number of change-points is fixed by the user,in dsymb, the number of changes is controlled by a penalty parameter denoted
λ. The change-point estimates t̂1, . . . , t̂ŵ (ŵ is the number of detected changes)
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are the minimizers of a discrete optimization problem:

(
ŵ, t̂1, . . . , t̂ŵ

)
= argmin

(w,t1,...,tw)

w+1∑
k=0

tk+1−1∑
t=tk

∥yt − ȳtk:tk+1
∥2 + λw, (V.1)

where ȳtk:tk+1
is the empirical mean of {ytk , . . . , ytk+1−1} and λ > 0 is a penal-ization parameter. (By convention, t0 := 0 and tw+1 := n.) The penalized for-mulation (V.1) seeks a compromise between the reconstruction error given bythe sum of quadratic errors and the complexity given by the number of change-points. Problem (V.1) is solved using the Pruned Exact Linear Time (PELT) algorithm[KFE12], which is shown to haveO(n) complexity under the assumption that thesegment lengths are randomly drawn from a uniform distribution.

Intuitively, the λ parameter penalizes the introduction of a new change-point:when λ is small, many change-points are detected. Once the user chooses apenalty λ, the segmentation procedure returns the segment bins and the esti-mated number of segments.
2. Each signal segment is summarized by its mean vector.
3. All segments of all signals are then pooled together and assigned a symbolthrough K-means clustering. The user-defined alphabet size A is the numberof clusters. Each signal segment is symbolized by its cluster. A complete signalis symbolized by the sequence of symbols, yielding a symbolic representation.This is different from ASTRIDE, which uses quantiles to discretize univariate timeseries.
4. The final distance dsymb is computed as the general edit distance between thesymbolic version of the signals. The distance is the same as for ASTRIDE, ex-cept that substituting one symbol for another has a cost equal to the Euclideandistance between their associated cluster centers.
The differences with ASTRIDE are the following: the time series are segmentedindividually with a penalty (in Step 1), and K-means is used for the quantization (Step3). As a result, compared to ASTRIDE that has the same segment bins for a whole dataset, dsymb loses some compression properties, but the resulting segmentation is betteradapted to each multivariate signal, and the symbolic representation contains moreinformation, as will be seen in the experiments (Section V.3). As each symbol is relatedto a cluster; each cluster center represents an average behavior that is encoded bythe symbol. We will use this property extensively in the experiments to interpret thesymbols produced by dsymb.The theoretical complexity of the segmentation step isO(n). Similarly to ASTRIDE,each symbolic representation is down-sampled. Therefore, the general edit distanceis applied to much shorter sequences than the raw time series. Since the complexityof the general edit distance between two sequences isO(mn) where m and n are thesequences’ lengths, this produces an important speed-up.As for the calibration, the penalty parameter can be derived using the well-knownBayesian Information Criterion (BIC) [Yao88]. The alphabet size A is task-dependentbut should be chosen small enough for interpretation. In our experiments, we foundthat with more than 10 different symbols, the analysis becomes difficult.
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V.3 Applications of d symb
In this section, we apply our distance measure dsymb on several data sets of multivari-ate physiological signals. dsymb’s ability to separate clusters is quantitatively assessedon the JIGSAWS data set. Then, we illustrate how the symbolic representations of
dsymb can provide insights into two behavioral neurology tasks: human gait analysisand upper-limb movement analysis. An open source GitHub repository1, written inPython, is available.
V.3.1 Application on the JIGSAWS data set
Data and task. In order to evaluate the performance of dsymb, we apply it to a clus-tering task on the real-world JIGSAWS data set [Gao+14]. In this data set, eight surgeonshave been monitored while performing “simple” surgical tasks with robotic arms andgrippers. The signals are the kinematic data, e.g. positions and angular velocities, ofthe surgical tools that they manipulated during the trial. Here, we consider two surgi-cal gestures: Knot Tying (39 multivariate time series) and Needle Passing (40 multivari-ate time series). The time series have 76 dimensions, are sampled at 30 Hz, and lastaround 1.5 minutes on average. The objective is to use dsymb to discriminate betweenthe two gestures.For comparison, nine other distances are applied to the time series: DTW(DTW) [BC94], Derivative DTW (DDTW) [KP01], Weighted DTW (WDTW) [JJO11], WeightedDerivative DTW (WDDTW) [JJO11], Move-Split-Merge (MSM) [SAD13], Time Warp Edit(TWE) [Mar09], Longest Common Sub-Sequence (LCSS) [VKG02], Edit distance with RealPenalty (ERP) [CN04], and Edit Distance on Real sequence (EDR) [COO05]. Each of thesedistances is extended to its multivariate version by using the dependent strategy.
Metric and calibration. For a given distance function, the distance between all pairsof signals is computed and fed to an agglomerative clustering algorithm, which se-quentially merges similar clusters together. The number of final clusters is set totwo. Note that this method is unsupervised. The result is compared to the truegesture labels by using the Adjusted Mutual Information (AMI). For two partitions U =
{U1, U2, . . . } and V = {V1, V2, . . . } of {1, 2, . . . , N}, the mutual information is definedby

|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj |
N

log
N |Ui ∩ Vj |
|Ui||Vj |

.

The AMI is an adjustment for chance of the mutual information; it is equal to 1 if U =
V and around 0 if the two partitions are random. All signals are centered and eachdimension is scaled to unit variance. To calibrate the parameters of dsymb (alphabetsize A and penalty λ), we use a training set of 10 signals. The AMI is computed onthe remaining 69 signals. Results are obtained using a computer with Quad-Core IntelCore i5 (2.3 GHz) with 16 GB of RAM.
Results. The clustering performances and execution times are reported on Table V.1.Overall, WDTW and WDDTW have the best AMI, followed by dsymb. Remaining distances

1https://github.com/sylvaincom/d-symb
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Table V.1: Results on the JIGSAWS data set

Distance AMI Timings
dsymb 0.21 38 s
DTW 0.19 35 min
DDTW -0.00 35 min
WDTW 0.34 36 min
WDDTW 0.34 36 min
MSM 0.13 4 h 48 min
TWE -0.00 1 h 46 min
LCSS -0.00 37 min
ERP -0.00 38 min
EDR -0.01 38 min

(DDTW, MSM, TWE, LCSS, ERP, EDR) have markedly worse AMI than dsymb. While our ap-proach has not the best clustering score, it remains competitive –for instance, it ison par with DTW– and more importantly, it does it for a fraction of the time needed byother methods. Indeed, on average, it takes less than a minute to process 79 signals ofdimension 76 and length 2700. Even though our distance has a worst-case complexity,which is quadratic in the number of samples (because of the change-point detection),in practice, it is much faster. Then, after the symbolization, the Levenshtein distanceis applied to far shorter signals. To summarize, dsymb strikes a trade-off between clus-tering performance and speed, making it adapted for interactive but still informativeuse.
Furthermore, the symbolic representation associated with dsymb can be insight-ful. See, for instance, Figure V.1 where three signals from JIGSAWS are shown. Evi-dently, the raw multivariate time series are difficult to interpret. However, it is easierto observe on the symbolic representations that the first two signals (Figure V.1-a andFigure V.1-b) are similar: both roughly start and end with Symbol 4, and have an al-ternation of Symbol 1 and 2 in the middle. The third signal (Figure V.1-c) has moreoccurrences of Symbol 3 during the trial. Note that the first two signals represent thesame gesture (Needle Passing), while the third represents Knot Tying.
Moreover, it is possible to interpret each symbol. Since symbols are associatedwith a cluster of signal segments, we can study the clusters’ centroids to understandthe average behavior that the symbols account for. For each cluster’s centroid, Fig-ure V.2 shows the average positions, linear velocity, and angular velocity of the roboticarms (left and right) used by the surgeon. For instance, looking at Symbol 4, we canobserve that it is associated with motions where both arms are far from each other,compared to other symbols. Moreover, the right arm has the largest linear velocityand the left arm has the largest (in absolute value) angular velocity. Thus, Symbol 4is associated with a gesture where both arms are distant, the right arm moves acrossthe space and the left arm does not move as much but instead turns. We can sim-ilarly analyze Symbols 1 and 2. First, they are located in different parts of the space(Figure V.2-a), and in Symbol 1, the arms are close together, which is not the case ofSymbol 2. Second, looking at the angular velocity (Figure V.2-c), those two symbolshave the largest velocities (in absolute value) for the right arm, with opposite signs.Hence, when alternating between Symbols 1 and 2, the robotic arms change locationand distance from each other, and the right arm changes rotation sign.
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Figure V.1: Three signal examples from the JIGSAWS data set. Signals in (a) and (b) areclose to each other according to dsymb, and are far from (c). Below the raw signals,the symbolic representation associated with dsymb is shown. There are four symbols:Symbol 1 , Symbol 2 , Symbol 3 , Symbol 4 . In (a) and (b), the surgical gestureis Needle Passing; in (c), it is Knot Tying.
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Figure V.2: (a) Positions (x, y, z) of the left (L) and right (R) robotic arms for each symbolcentroid. (b) Idem for the linear velocity norm. (c) Idem for the angular velocity. Allfeatures are expressed in normalized units since all signals are centered and scaledbefore applying dsymb.
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(a) (b)
Figure V.3: (a) Schematic protocol recorded by the sensors that are located with redsquares [Tru+19]. (b) Axis definition in the sensor’s frame.

V.3.2 Application on the human locomotion data set
Human gait is a complex phenomenon that can be altered by many neurological dis-orders. Consequently, medical researchers try to objectively measure gait character-istics to analyze patients’ walking patterns [Oud+18]. The human locomotion dataset [Tru+19] consists of signals from subjects wearing accelerometers on their feet(sampling frequency: 100 Hz). All subjects underwent the same protocol (depicted inFigure V.3-a): standing still, walking 10 meters, then walking back to where they started,and standing still. For this illustrative study, we only keep the angular velocity aroundthe (Oy) axis (see Figure V.3-b for axis definition) of each foot.

Since locomotion is an activity that has a strong periodic component, it is commonin the literature to process such signals in the time-frequency domain. For each uni-variate gait signal, we compute its Short Time Fourier Transform (STFT), with a windowlength equal to 300 samples (3 seconds) and an overlap of 299 samples. Only the 0–5Hz frequency band, where phenomena of interest are contained, is kept. The dsymbsymbolic representation is computed on those 16-dimensional signals. The numberof symbols is set to A = 5, and the change-point detection penalty is set to λ = 2.
Four signal examples are shown in Figure V.5. Note that since the subjects per-form the protocol at different speeds, each recording has a different duration. Thefirst three time series are from healthy subjects, and the last one is from a subjectwith neurological impairment. Simply looking at the raw signals does not provide anyinsight into the gait dynamics. However, as we shall see, the symbolic representationis better adapted to see that all four subjects walk differently. First, note that since

dsymb is computed on the time-frequency representation of the raw signals, clustercentroids are actually power spectral densities, which are shown in Figure V.4. Sym-bol 3 represents the absence of movement (subject standing still). Symbol 1 representswalking with lower-amplitude footsteps. The remaining symbols represent differentwalking patterns.
From the symbolic representations of Figure V.6, we clearly see the activity se-quence of the protocol (standing, walking, turning, walking, standing). Moreover, walk-ing often starts and ends with one or several low amplitude footsteps (Symbol 1), awell-known fact in gait analysis studies [BM+16]. The U-turn strategies, which are aninformative biomarker [BM+17], are also different even among healthy subjects. Forinstance, Subject 1 has a short U-turn; Subject 2 has an asymmetric U-turn with a pauseon the left foot; and Subject 3 does long pauses while turning. When looking at thewalking phases, they are homogeneous for Subject 1 and less consistent for the other
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Figure V.4: Power Spectral Density (PSD) for each symbol centroid of the symbolicrepresentation of Figure V.6.
subjects. We observe a change between walking forward and walking back for Sub-ject 3 that might result from tiredness. Here, in this limited sample, the main distinc-tion between healthy and neurologically impaired subjects is the irregularity of thewalking phase. Indeed, Subject 4 alternates more often between Symbols 4 and 5during the walk. All those observations are made possible thanks to the symbolic rep-resentation and the interpretability of the symbols.
V.3.3 Application on the upper-limb movement analysis
Similarly to human gait, upper-limb movement is an extensively studied biomechan-ical and neurological phenomenon that can be modified by many different medicaldisorders. Quantifying such movement is a central question, and researchers oftenuse 3D position sensors to assess several key features, e.g., smoothness or symme-try. The armCODA data set [Com+24a] contains around 2.5 hours of multivariate timeseries collected from healthy subjects performing pre-defined simple movements. Anonline interactive tool2 is available to download and explore this data set. More pre-cisely, the subjects were asked to perform several types of movements, including el-evation movements of the right arm, the left arm, and both arms simultaneously. Inorder to track these movements, 34 Cartesian Optoelectronic Dynamic Anthropome-ter (CODA) motion system 3D position markers are placed on the upper-limb of theparticipants, each marker recording its positions over time in the 3D space.An example of signal is shown in Figure V.7. For this trial, the subject remainedseated and raised both arms vertically from a resting position (arms along the body)to above the head. This movement was repeated three times. The signal dimension is
34×3 = 102. In its raw form, the signal is not interpretable, therefore, we use the sym-bolization procedure from dsymb to gain more insights. Here, the number of symbolsis manually set to 7. For this illustrative example, we only display the symbolic se-quences of a single subject performing four different movements. These movementsare shown in Figure V.8. The first symbolic sequence (Figure V.8-a) corresponds to theraw signal in Figure V.7. The three other representations correspond to three othermovements: raising both arms while standing (Figure V.8-b), raising the right arm (Fig-ure V.8-c), and the left arm (Figure V.8-d) while standing. On these representations, the

2https://www.ipol.im/pub/art/2024/494/
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Figure V.5: Signal examples from the Human Gait data set. Each row is one trial withthe left foot signal on the left and the right foot signal on the right. The x-axis is thetime in seconds. The first three trials are from healthy subjects, and the last one isfrom a subject with a neurological pathology.
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Figure V.6: Symbolic representations of the signals shown on Figure V.5. There are 5symbols: Symbol 1 , Symbol 2 , Symbol 3 , Symbol 4 , Symbol 5 . The x-axisis the time in seconds.
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0 5 10 15 20 25 30 35 40(a) Sagittal plane elevation (seated, bilateral)

0 5 10 15 20 25 30 35 40(b) Sagittal plane elevation (standing, bilateral)

0 5 10 15 20 25 30 35 40(c) Sagittal plane elevation (standing, unilateral right)

0 5 10 15 20 25 30 35 40(d) Sagittal plane elevation (standing, unilateral left)
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Figure V.8: Symbolic representations of signals from the armCODA data set. Theybelong to the same subject and each one is the repetition of a single movement. Thefirst representation (a) is the signal shown in Figure V.7.

three movement repetitions (as demanded by the protocol), with in-between rest, canbe easily observed. There is a rest symbol for the seated state (Symbol 6) and anotherfor the standing state (Symbol 4). Moreover, each movement has its own symbol, andthere is a last symbol (Symbol 5) for an intermediate state between resting and botharms up (Figure V.8-b). Recall that our symbolization procedure is unsupervised butis still able to recover the salient events and classify each state correctly. A closer lookat the learned symbols in Figure V.9 confirms this observation. Since the cluster cen-ters computed by dsymb are average body positions, it is possible to plot them in the3D space. (Note that only the average positions of the head and forearms are shownfor readability, even though the subject has been monitored with 34 sensors.) Thefront view is particularly revealing. The two symbols seen on the seated movement–Symbol 2 and 6– have the head sensors at around 1.3m high and the arms either up(Symbol 2) or down (Symbol 6). For the standing position, the head is around 1.6mhigh, and three positions are easily interpretable: both arms up (Symbol 7), left armup (Symbol 1), or right arm up (Symbol 4). To summarize, the observation of this rep-resentation is sufficient to discriminate between different types of movements and isinterpretable.

V.4 The d symb playground
In this section, we describe the dsymb playground, available online34, and built usingPython 3.9 and the Streamlit framework [Str]. The dsymb playground, summarized inFigure V.10, is a web interactive tool to explore and compare large multivariate timeseries data sets. This interactive tool allows users to upload and visualize their multi-variate time series and their dsymb symbolizations using the colorbars. With a single

3https://dsymb-playground.streamlit.app4https://github.com/boniolp/dsymb-playground
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Figure V.9: Positions (x, y, z) (in cm and in the laboratory frame) of the head, left fore-arm (L), and right forearm (R) for each symbol centroid.

glance at the colorbars, the symbolization provides an immediate and comprehensiveunderstanding of a data set. Users can also visualize the dsymb pairwise distance ma-trix between the symbolic sequences. Furthermore, users can assess the relevanceof the dsymb distance measure with regards to 9 elastic distance measures, includingvariants of DTW.
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Figure V.10: Summary of the dsymb playground’s inputs and features.
Our system is based on dsymb and inputs a multivariate time series data set. TheGUI is composed of three main frames, shown in Figure V.11: the Individual analy-sis frame, the data set analysis frame, and the Benchmark frame. The individualand data set analysis frames enable users to explore and quickly gain insights thanksto the dsymb symbolization. The benchmark frame allows users to assess the perfor-mance of the dsymb distance compared to 9 existing distance measures on a real-worldapplication.
As shown in Figure V.11(B), for both the individual and data set analysis frames, theuser is required to upload their multivariate time series data set and then select thenumber of symbols to be used in the dsymb symbolization. Each multivariate time se-ries must be stored in a Comma-Separated Values (CSV) file of shape (n timestamps,
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n dim). The user can choose the number of symbols as an integer between 2 and25. Then, the dsymb computation is performed: the symbolization of all time series, aswell as the pairwise distance matrix between the time series, are returned. We nowdescribe the three main frames and their corresponding available actions in more de-tail.

(B) Individual analysis frame(A) Dataset analysis frame (C) Benchmark frame

Figure V.11: Illustration of the three main frames of the dsymb playground.

V.4.1 Individual analysis frame
The dsymb playground enables users to select a single time series and focus on itsexploration. A visualization, shown in Figure V.11(B), allows users to explore the rawmultivariate time series and its corresponding symbolic sequence represented as acolorbar. Therefore, users can interpret the multivariate segmentation from dsymb,which is based on changes in the mean, and investigate how it deals with the poten-tial non-stationarity of the input time series. It also allows one to understand what asymbol represents with regard to real-world events: each symbol can be interpretedas an action with a semantic meaning. For the plot of the raw multivariate time se-ries, by default, the number of displayed dimensions on the same plot is capped at20 for conciseness purposes. The user can investigate each group of 20 dimensionsseparately (while the displayed symbolic sequence is the one corresponding to all di-mensions together). The user can also choose to visualize all dimensions at once.
V.4.2 Data set analysis frame
Instead of focusing on a single time series, the data set analysis frame explores thewhole multivariate time series data set at once. With a quick glance, the colorbarsprovide a compact representation of a data set of multivariate time series, as dis-played in Figure V.11(A). Each row corresponds to the symbolic representation of eachtime series of the data set. In a colorbar, black vertical lines illustrate change-points.Therefore, users can observe the different regimes that occur in the time series. The
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colorbars can be represented in two different ways: (i) the true lengths of the timeseries; or (ii) the normalized lengths. In the latter, all colorbars are stretched to havethe same length. Scrolling down, more visualizations are available to help users under-stand the meaning of the symbols: (i) the histogram of the symbols, (ii) the distributionof the lengths for each symbol, (iii) the time stamps where each symbol occurs, and(iv) two figures illustrating the similarities between each individual symbol. Finally, theusers can also visualize the pairwise distance matrix between the obtained symbolicsequences. Note that the users can modify the number of symbols at any time and,thanks to the fast computation of dsymb, all the visualizations described above are up-dated in real-time.
V.4.3 Benchmark frame
The benchmark frame compares the dsymb distance measure to 9 existing distancemeasures on time series. We apply our benchmark to the real-world JIGSAWS dataset [Gao+14] with the goal of identifying surgeons’ gestures based on kinematic timeseries, as done in Section V.3.1. All results are precomputed (in order to save the userssome computing time). In this data set, we consider two surgical gestures: Knot Ty-ing (39 multivariate time series) and Needle Passing (40 multivariate time series). Asshown in Figure V.11(C), we display the pairwise distance matrix for the chosen dis-tance measure, as well as the clustering accuracy and the execution time (in seconds)for all distance measures in the benchmark.

V.5 Conclusion
We have introduced dsymb, a novel distance measure on multivariate and non-stationary signals, that uses symbolization as an intermediate step. Our method useschange-point detection to segment signals, K-means clustering to create symbolicrepresentations, and the general edit distance with custom costs to compare them.The resulting algorithm is fast and produces interpretable symbols. We have applied
dsymb to several physiological data sets. dsymb has achieved reasonable clusteringperformance while being several orders of magnitude faster than classical methods(such as DTW). In addition, the symbolic sequences allow users to understand, with aglimpse, the dynamic of the multiple signals at hand. Finally, we have implementedan online tool, called the dsymb playground, that allows users to upload their data setand apply dsymb on it.
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Conclusion and perspectives
In this thesis, we have proposed two novel symbolic representations and distancemeasures for time series: ASTRIDE for a data set of univariate time series (Chapter IV),and dsymb for a data set of multivariate time series (Chapter V). These distance mea-sures transform time series into symbolic sequences which are then compared usinga modified version of the Levenshtein distance. We have also conducted two sur-veys: one on the symbolic representations for time series (Chapter II), and one onthe distance measures for time series, strings, and symbolic sequences (Chapter III).We have shown that, compared to the literature, our proposed distance can deal withphysiological signals that are multivariate and non-stationary, thanks to an adaptivesegmentation algorithm. The resulting symbolic sequences are interpretable, as eachsymbol represents a salient event such as walking or turning around in the context ofgait data. ASTRIDE and dsymb are shown to be fast to compute. The dsymb playground,a web-based tool, allows a user to upload its data set of multivariate time series andgain insights into it.

Now, let us look into the perspectives of this thesis. First of all, the proposed sym-bolization methods could be applied to more tasks. (i) ASTRIDE or dsymb could beemployed as an intermediate step in classifiers. They could be used in the shapeletcategory such as in SAX-SEQL [NGI17] and Mr-SEQL [Ngu+19], or in the dictionary cat-egory with SAX-VSM [SM13], BOSS [Sch15], TDE [Mid+20], and PETSC [FCG22]. Thesemethods currently use SAX or SFA as the symbolization step, and involve overlap-ping sliding windows that increase the time and space complexities. These classi-fiers are described in a recent review [MSB23]. Thanks to the adaptive segmenta-tion of ASTRIDE and dsymb, these sliding windows could be used more efficiently. (ii)The ASTRIDE and dsymb symbolic sequences could also be analyzed by methods devel-oped in the bioinformatics community, for example in pattern discovery or anomalydetection. Indeed, research in bioinformatics revolves around the study of sequencesof characters. (iii) Moreover, the obtained symbolic sequences could be modeled byMarkov chains where each symbol would be a state. Examining the probability oftransition between each symbol could provide meaningful information to a medicalpractitioner for example.
dsymb could be extended to adapt to physiological signals with (even) more chal-lenging structures. (i) They could be able to take into account the multi-resolutionaspect. Let us take the example of the human locomotion studied in Chapter V. It isinteresting to detect each global regime (few segments are allowed): standing still,walking, and turning, and also to detect each local regime (many segments are al-
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lowed): first footstep of walking, second footstep, etc. A multi-resolution approachwould allow for a more comprehensive study on the phenomenon. (ii) Furthermore,
dsymb could tackle the correlation between each dimension of physiological signalsdifferently. With physiological signals, the dimension can be of a few hundreds, thususing a dimension selection algorithm could be beneficial [TO22; DNI23; RB23]. Thesegmentation and/or clustering steps could be extended to sparse features.Moreover, our distance measure on symbolic sequences, based on the generalLevenshtein distance, could be investigated further. We have empirically showed thatour distance measure is much faster than DTW, but due to the strong links betweenedit distances and DTW, it would be interesting to study the theoretical properties ofour method and understand better to what extent it is an approximation of the DTW.Moreover, some other theoretical aspects could be studied, such as the possibility tohave a lower-bound.Finally, the multimodal aspect of some physiological signals could be addressed.Indeed, in some protocols developed by the Centre Borelli, several physiological func-tions are analyzed simultaneously (such as brain activity, respiration, movements, car-diac activity...). Constructing a symbolization for this complex multimodal data wouldconstitute a nice challenge and extension of this thesis work. If some dimensions donot have the same sampling frequency, an adaptive segmentation on each modalitycould be applied, which would result in several symbolic sequences that could thenconstitute meta-symbols. Moreover, if the dimensions represent signals with a differ-ent physical nature, then applying change-point detection on the mean for all dimen-sions might not be sufficient. Indeed, some variables might need to detect changesin frequency, while others might need to detect changes in the mean or in the slope:some novel cost functions could therefore be introduced, possibly with some super-vised techniques.
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[EG20b] Steven Elsworth and Stefan Güttel. Time series forecasting using LSTMnetworks: A symbolic approach. arXiv EPrint arXiv:2003.05672v1. arXiv,2020, p. 12. URL: https://arxiv.org/abs/2003.05672.

143

https://doi.org/10.1145/363958.363994
https://doi.org/10.1145/363958.363994
https://doi.org/10.1145/363958.363994
https://doi.org/10.1063/1.1531823
https://doi.org/10.1063/1.1531823
https://doi.org/10.1007/s10618-022-00909-1
https://doi.org/10.1007/s10618-022-00909-1
https://doi.org/10.14778/1454159.1454226
https://doi.org/10.14778/1454159.1454226
https://doi.org/10.14778/1454159.1454226
https://doi.org/10.14778/1454159.1454226
https://doi.org/10.1007/978-3-662-66863-4_2
https://doi.org/10.1007/978-3-662-66863-4_2
https://doi.org/10.1007/978-3-662-66863-4_2
https://doi.org/10.1007/978-3-662-66863-4_2
https://doi.org/10.1007/s10618-020-00689-6
https://arxiv.org/abs/2003.05672


Bibliography
[EA12] Philippe Esling and Carlos Agon. “Time-Series Data Mining”. In: ACMComput. Surv. 45.1 (2012). ISSN: 0360-0300. DOI: 10.1145/2379776.

2379788. URL: https://doi.org/10.1145/2379776.2379788.
[Esm+12] Bilal Esmael, Arghad Arnaout, Rudolf K. Fruhwirth, and Gerhard Thon-hauser. “Multivariate Time Series Classification by Combining Trend-Based and Value-Based Approximations”. In: Computational Scienceand Its Applications – ICCSA 2012. Berlin, Heidelberg: Springer BerlinHeidelberg, 2012, pp. 392–403. ISBN: 978-3-642-31128-4. DOI: 10 .

1007/978-3-642-31128-4_29.
[FRM94] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. “FastSubsequence Matching in Time-Series Databases”. In: Proceedings ofthe 1994 ACM SIGMOD International Conference on Management of Data.SIGMOD ’94. Minneapolis, Minnesota, USA: Association for Comput-ing Machinery, 1994, 419–429. ISBN: 0897916395. DOI: 10 . 1145 /

191839.191925. URL: https://doi.org/10.1145/191839.191925.
[FJ20] Johann Faouzi and Hicham Janati. “pyts: A Python Package for TimeSeries Classification”. In: Journal of Machine Learning Research 21.46(2020), pp. 1–6. URL: http://jmlr.org/papers/v21/19-763.html.
[FCG22] Len Feremans, Boris Cule, and Bart Goethals. “PETSC: pattern-basedembedding for time series classification”. In: Data Min Knowl Disc 36(2022), 1015–1061. DOI: 10.1007/s10618-022-00822-7.
[Fu11] Tak chung Fu. “A review on time series data mining”. In: EngineeringApplications of Artificial Intelligence 24.1 (2011), pp. 164–181. ISSN: 0952-1976. DOI: https://doi.org/10.1016/j.engappai.2010.09.007.URL: https://www.sciencedirect.com/science/article/pii/

S0952197610001727.
[Fua12] Muhammad Marwan Muhammad Fuad. “Differential evolution ver-sus genetic algorithms: towards symbolic aggregate approximationof non-normalized time series”. In: IDEAS ’12. 2012.
[Gao+14] Yixin Gao, S Swaroop Vedula, Carol E Reiley, Narges Ahmidi, Balakrish-nan Varadarajan, Henry C Lin, Lingling Tao, Luca Zappella, BenjamınBéjar, David D Yuh, et al. “The JHU-ISI Gesture and Skill AssessmentWorking Set (JIGSAWS): A Surgical Activity Dataset for Human MotionModeling”. In: Modeling and Monitoring of Computer Assisted Interven-tions (M2CAI) – MICCAI Workshop. 2014.
[GKL01] Zong Woo Geem, Joong Hoon Kim, and G.V. Loganathan. “A NewHeuristic Optimization Algorithm: Harmony Search”. In: SIMULATION76.2 (2001), pp. 60–68. DOI: 10.1177/003754970107600201.
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