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Titre : Imagerie par résonancemagnétique et mutations génomiques dans le gliome infiltrant dutronc cérébral : méthodes d’apprentissage automatique pour une analyse de données détailléeMots clés : radiomique, GITC, apprentissage automatique, analyse de survie, IRM, traitementd’images médicales
Résumé : Le diagnostic du gliome infiltrant dutronc cérébral (GITC) chez les enfants est l’undes plus éprouvants en oncologie pédiatrique.Malgré de nombreux essais cliniques explorantdivers traitements, le pronostic reste sombre,la plupart des patients succombant entre 9 et11mois après le diagnostic. Lesmutations géné-tiques clé associées au GITC incluent H3K27M,ACVR1 et TP53. Chaque mutation a des carac-téristiques distinctes, poussant les médecins àsuggérer des thérapies personnalisées, souli-gnant l’importance d’une détection précise desmutations pour guider le traitement. Situéesdans la région cruciale du tronc cérébral, lestumeurs GITC présentent des risques signifi-catifs liés à la biopsie en raison de potentielsdommages neurologiques. L’IRM est une mé-thode indispensable pour le diagnostic de cestumeurs, évaluant leur extension et permet-tant de mesurer l’évolution de la maladie aucours de la thérapie. Une prédiction des mu-tations, combinée à l’identification des patientssurvivant plus de deux ans, pourrait améliorerla thérapie proposée à ces patients. Dans cecontexte, la radiomique transforme les imagesen vastes sources de données, extrayant descaractéristiques comme la forme et la texturepour aider à la prise de décision. L’objectif decette thèse est de prédire les principales muta-

tions génétiques et d’identifier les survivants àlong terme, en mettant l’accent sur la normali-sation des images et l’applicabilité desmodèlesradiomiques. Notre étude a utilisé une basede données rétrospective de l’Institut GustaveRoussy, comprenant les données IRM de 80 pa-tients et leurs données cliniques respectives.Les données d’IRM ont mis en évidence desproblèmes pour les études radiomiques, telsque l’inhomogénéité du champ de biais et l’ef-fet "scanner". Pour répondre à ces défis, un pi-peline de normalisation d’images IRM a été misen place, et les caractéristiques radiomiquesont été harmonisées par la méthode ComBat.Pour faire face au problème demodalités man-quantes dans l’ensemble de données, une stra-tégie multi-modèles a été employée, condui-sant à 16 modèles distincts reposant sur di-verses combinaisons de caractéristiques radio-miques et cliniques. Cette approche a ensuiteété rationalisée en une méthode multimodale,réduisant le nombre de modèles à cinq, aprèsune phase de sélection de caractéristiques in-dépendantes. Les résultats de l’approchemulti-modale se sont avérés être prometteurs. Cettestratégie multimodale a été essentielle pouridentifier les patients survivant plus de deuxans et a été complétée par l’approche ICAREpour une analyse de survie détaillée.



Title :Magnetic Resonance Imaging and Genomic Mutation in Diffuse Intrinsic Pontine Glioma :Machine Learning Approaches for a Comprehensive AnalysisKeywords : radiomics, DIPG, machine learning, survival analysis, MR, medical image processing
Abstract : The diagnosis of diffuse intrinsicpontine glioma (DIPG) in children stands asone of the most harrowing within pediatric on-cology. Despite numerous clinical trials explo-ring various treatments, the prognosis remainsbleak, with most patients succumbing between9 to 11 months post-diagnosis. Key gene mu-tations linked to DIPG include H3K27M, ACVR1,and TP53. Each mutation has distinct charac-teristics, leading physicians to suggest tailo-red therapies, underscoring the importance ofaccurate mutation detection in guiding treat-ment. Located in the crucial region of thebrainstem, the pons, DIPG tumors pose signi-ficant biopsy risks due to potential neurologi-cal damage. Hence, MRI could become a pri-mordial diagnostic tool for these tumors, as-sessing their spread and gauging therapy res-ponses. Its use to predict accurate gene muta-tion, and identify long-term survivors, could en-hance patient care significantly. Within this fra-mework, radiomics transforms images into vastdata sources, extracting features like shape andtexture to aid decision-making. The objectiveof this thesis is to refine mutation prediction

and pinpoint long-term survivors, emphasizingimage normalization and the applicability of ra-diomic models. Our study utilized a retrospec-tive database from Gustave Roussy Institute,encompassing 80 patients MRI data and theirrespective clinical data. TheseMRI images high-lighted issues in radiomic studies, such as biasfield inhomogeneity and the "scanner effect".To address these challenges, a dedicated MRimage normalization pipeline was implemen-ted, and radiomic features underwent Com-Bat harmonization. Given the dataset’s mis-singmodalities, amulti-model strategywas em-ployed, leading to 16 distinct models based onvarious radiomic and clinical feature combina-tions. This approach was then streamlined intoamulti-modal method, reducing the number ofmodels to five. The results from the ensembleof these models proved to be the most promi-sing. This multi-modal strategy incorporated afeature selection phase, pinpointing the mostpertinent features. Additionally, this methodwas applied to identify long-term survivors andwas complemented by the ICARE frameworkfor a nuanced survival analysis output.
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Synthèse en Français

Ce travail a été réalisé au Laboratoire d’Imagerie Translationnelle en Oncologie (LITO) de l’Institut Curie sous la

direction de Frédérique Frouin (directrice de thèse) en collaboration avec l’INSERM et les données ont été col-

lectées à l’Institut Gustave Roussy grâce notamment au Dr Jacques Grill, qui a recruté la cohorte de patients et a

lancé l’étude. Les tumeurs cérébrales sont aujourd’hui le cancer le plus courant et la première cause de décès lié

au cancer chez les enfants de moins de 15 ans. Les cancers infantiles rares représentent environ 185 nouveaux

cas diagnostiqués chaque année en France, soit un taux d’incidence annuel moyen de 243 pour un million. Le

gliome infiltrant du tronc cérébral (GITC) représente environ 75-80% des tumeurs pédiatriques du tronc cérébral.

Le GITC, désormais considéré comme gliome de la ligne médiane, est une tumeur pédiatrique maligne avec une

survie moyenne de 11 mois. La localisation de la tumeur rend l’ablation chirurgicale impossible, la radiothérapie est

donc le traitement proposé, offrant une amélioration temporaire dans de nombreux cas. Des analyses génomiques

basées sur des biopsies tumorales ont révélé que plus de 85% des patients atteints de DIPG présentent des

mutations des gènes de l’histone H3, en particulier la substitution de la lysine 27 en méthionine (H3-K27M). Les

deux variantes les plus courantes de l’altération H3-K27 sont H3.1 et H3.3. Ces deux mutations et le type non

muté H3, se retrouvent associées à différents profils d’âge et de survie. Par exemple, les patients plus jeunes

avec la mutation H3.1 montrent souvent une meilleure réponse à la radiothérapie et ont des survies plus longues.

Ces mutations H3 K27M coexistent fréquemment avec des mutations somatiques des gènes TP53 et ACVR1.

Alors que les mutations TP53 se retrouvent principalement chez les patients H3.3 et que les mutations ACVR1

se produisent principalement chez les patients H3.1, il est essentiel d’identifier séparément ces mutations lors de

l’exploration de nouvelles options de chimiothérapie. Des recherches récentes suggèrent que la mutation TP53

pourrait contribuer à la radiorésistance chez les patients atteints de GITC, fournissant des informations précieuses

pour adapter les stratégies de ré-irradiation. De plus, la combinaison de vandétanib et d’évérolimus pourrait of-

frir des bénéfices thérapeutiques pour les patients présentant des mutations ACVR1. Ces nouvelles avancées

soulignent la nécessité de prédire la présence de mutations H3.1, ACVR1 et TP53 dans la tumeur à l’aide de

données disponibles au moment du diagnostic, telles que les informations de base du patient (âge et sexe) et les

résultats de l’IRM multimodale. Cette stratégie de prédiction aiderait à concevoir des traitements personnalisés, en

particulier lorsque la biopsie cérébrale ne peut pas être réalisée ou ne donne pas de résultats concluants. Nous
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émettons l’hypothèse que l’imagerie médicale pourrait offrir de précieuses informations qui permettraient de prédire

la présence de mutations spécifiques chez les patients diagnostiqués avec un DIPG. Cette imagerie non invasive

in vivo permet d’évaluer la totalité de la tumeur et de son micro-environnement à divers moments de la chronologie

du traitement. Avec l’intégration de l’intelligence artificielle, le potentiel diagnostique de l’imagerie médicale a été

considérablement amélioré, la transformant en une riche source de données. Cette nouvelle approche a le poten-

tiel de révolutionner le pronostic pour les DIPG, car elle facilite la détection de mutations cruciales sans nécessiter

de biopsie invasive ou d’opération chirurgicale, ouvrant ainsi la voie à des stratégies de traitement plus person-

nalisées et efficaces. Les prédictions radiogénomiques peuvent être améliorées en utilisant des données d’IRM

multimodales régulièrement acquises, à condition que les étapes appropriées de prétraitement soient suivies. La

radiomique, un domaine de recherche récent, permet une quantification extensive des phénotypes radiographiques,

fournissant ainsi des informations précieuses sur les hétérogénéités tumorales. Cependant, ces caractéristiques

radiomiques sont influencées par des facteurs tels que les paramètres d’acquisition et l’implémentation logicielle

utilisée pour leur calcul. Pour stabiliser ces valeurs, un prétraitement approfondi est nécessité. L’IRM, connue

pour sa haute résolution spatiale et son contraste, est cruciale pour les tumeurs pédiatriques du système nerveux

central. L’extraction de caractéristiques radiomiques cohérentes nécessite des procédures de standardisation, y

compris l’utilisation de paramètres de séquence d’impulsion uniformes, de tailles de voxels identiques et de normal-

isation de l’intensité de l’image. Malgré la standardisation, les caractéristiques radiomiques peuvent varier en raison

des différents imageurs, des bobines de gradient et des paramètres d’acquisition. Diverses stratégies, comme la

normalisation par le Z-score et l’utilisation d’un tissu de référence pour la normalisation, ont été proposées pour

réduire cette variabilité.

Figure 1: Illustration des données IRM d’un patient de 4 ans, porteur de mutations H3.1 et ACVR1, ne présentant
pas de mutation TP53. Les données IRM sont affichées après normalisation de l’intensité à l’aide de la méthode
hybride de la bande blanche. Du côté gauche vers le côté droit: images T1, T1c, T2 et FLAIR, en utilisant la dis-

position
Coronal
Sagittal

∣∣∣∣Axial pour chacune modalité. Les contours de la sphère utilisée pour calculer les caractéristiques

radiomiques d’intensité et de texture à l’intérieur de la tumeur sont indiqués en jaune. couleur sur chaque vue. Les
contours de la tumeur utilisés pour calculer les caractéristiques de forme sont indiqués en rose.

Pour les patients atteints de DIPG, une procédure spécifique excluant du processus de normalisation les coupes

du tronc cérébral porteuses de la tumeur a été suggérée. La méthode ComBat offre également un moyen d’harmoniser
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les caractéristiques radiomiques extraites sur différents scanners, réduisant ainsi la variabilité liée au scanner.

Dans le Chapitre 1 de cette thèse, nous avons fourni un aperçu du scénario clinique que cette recherche aborde.

Nous introduisons les caractéristiques cliniques, radiologiques et génétiques du Gliome Infiltrant du Tronc Cérébral

(GITC), une tumeur pédiatrique, qui désormais est considéré comme une sous-catégorie du Gliome Diffus de la

Ligne Médiane (GLM) par l’Organisation Mondiale de la Santé. Le chapitre décrit également les options thérapeutiques

actuelles et les avancées qui lient les données radiologiques avec le pronostic du patient. De plus, il présente les

séquences d’IRM classiquement utilisées (figure 1) pour l’étude du GITC et conclut avec une présentation des

bases de données des patients atteints de GITC utilisées pour cette recherche, en introduisant les caractéristiques

principales de notre ensemble de données, incluant 80 patients.

Le Chapitre 2 présente l’utilisation de la radiomique pour l’analyse des examens IRM réalisés dans notre cohorte.

Ici, nous explorons l’utilisation d’indices prédéfinis tels que les indices de forme, ceux extraits de l’histogramme des

intensités, ou ceux liés à la texture à partir des images. Ce processus est encapsulé en huit étapes nécessaires,

représentées de manière schématique (la figure 2). Dans ce chapitre, nous passons en revue la standardisation des

données IRM, le rôle de la radiomique notamment en imagerie cancérologique et les différentes caractéristiques

radiomiques. Nous abordons ensuite les principaux éléments d’un modèle d’apprentissage automatique en vue de

réaliser des tâches de prédiction, et nous présentons une technique de sélection de caractéristiques basée sur une

approche récursive. Finalement, nous introduisons différentes approches pour l’analyse de survie en proposant

notamment une nouvelle approche ’ Individual Coefficient Approximation for Risk Estimation (ICARE) ’ qui nous a

permis de remporter le grand challenge HECKTOR lors de la conférence MICCAI en 2022.

Le Chapitre 3 présente l’intérêt des caractéristiques radiomiques pour construire des modèles efficaces de

prédiction de la mutation H3K27 de type H3.1. Dans ce chapitre, nous nous concentrons sur l’IRM multimodale

(incluant les séquences pondérées T1 sans contraste et après injection de contraste, les séquences pondérées T2

et FLAIR), pour résoudre la question des modalités manquantes. En effet, sur les 80 patients atteints d eGITC,

56 avaient les quatre modalités d’IRM tandis que les 24 autres avaient une ou plusieurs modalités manquantes.

Nous avons proposé une méthode originale sans imputation pour relever ce défi. Seize modèles d’apprentissage

automatique sont construits reposant sur les différentes combinaisons de caractéristiques cliniques et radiomiques

extraites de chaque modalité d’IRM. En utilisant le cadre de validation croisée ”leave one out”, nous avons calculé

le score F1 pondéré obtenu par chaque modèle pour prédire H3K27M, le modèle ayant le score le plus élevé étant

le modèle 2 qui accepte les informations cliniques du patient ainsi que les caractéristiques T1w uniquement pour

une valeur de F1 pondéré égale à 0.85. La variabilité présente dans l’ensemble de données en raison de sa nature

multicentrique est également abordée dans ce chapitre. L’harmonisation ComBat a été adaptée, et les résultats ont

montré un réalignement à travers les caractéristiques extraites des patients de différents centres, comme le montre
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la figure 3. Le succès de l’approche à 16 modèles pour la prédiction de la mutation H3K27M a ouvert la voie à

l’optimisation de cette approche et à la prédiction de la présence des mutations sur ACVR1 et TP53.

Figure 2: Représentation des types de caractéristiques radiomiques. (A) L’histogramme ou les caractéristiques
de premier ordre reflètent uniquement la distribution de l’intensité des voxels. (B) Les caractéristiques texturales
ou de second ordre dérivées de matrices de texture (par exemple, co-occurrence, longueur de course, taille-ton,
différence, dépendance) reflètent l’arrangement spatial complexe et unique des voxels. Tiré de [1]
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Le Chapitre 4 introduit un nouveau pipeline de prédiction qui s’appuie sur la radiomique et l’apprentissage

automatique. Trois aspects sont particulièrement étudiés : la sélection des caractéristiques, la performance et

l’interprétabilité. La sélection des caractéristiques implique d’identifier les caractéristiques les plus pertinentes pour

le modèle de prédiction, tandis que la performance évalue l’exactitude et la robustesse du modèle. L’interprétabilité

vise à fournir des éclairages sur la manière dont le modèle est parvenu à ses prédictions. En utilisant une approche

”leave one out” pour avoir une prédiction pour chaque patient de l’ensemble de données, nous reconnaissons

également les limites de notre ensemble de données, qui comporte des données manquantes, en conservant la

validation croisée par leave-one-out de l’approche à 16 modèles. Sur le total combiné de 316 caractéristiques

radiomiques, nous sélectionnons un maximum de 16 caractéristiques, quatre par modalité. La sélection des car-

actéristiques est réalisée par un algorithme d’élimination de caractéristiques récursif modifié pour ne retenir que

les quatre caractéristiques les plus importantes si elles sont plus nombreuses. Au lieu de 16 modèles, nous

développons cinq modèles monomodaux basés sur la régression logistique, un pour chacune des 4 modalités

d’IRM et un modèle clinique + caractéristiques de forme combinant les données cliniques et les caractéristiques

de forme extraites de la tumeur délimitée (un exemple est présenté dans la figure 4). Les prédictions des modèles

monomodaux sont moyennées pour former le modèle multimodal. Les précisions équilibrées enregistrées pour la

prédiction des mutations H3K27M (H3.1 vs H3.3, H3.2, type sauvage), ACVR1 et la mutation TP53 obtenues dans

la validation croisée sont respectivement de 87,8 %, 82,1 % et 78,3 %. Le choix du classificateur et de la validation

croisée par ’leave-one-out’ a été testé en adaptant différents classifieurs tels que les machines à vecteurs de sup-

port et les forêts aléatoires dans des validations croisées ’leave-one-out’, à 5 et à 10 plis. Enfin, les caractéristiques

sélectionnées pour la tâche de prédiction ont également été étudiées. Le cadre final adapté est appelé l’approche

multi-modèles avec validation croisée ’leave one out’ pour les modalités d’imagerie manquantes. La suite du travail

concerne l’analyse de survie globale pour les patients au sein de notre ensemble de données.

Au Chapitre 5, nous fournissons un examen exhaustif et détaillé de la littérature existante la plus pertinente,

en nous focalisant sur les études menées sur les patients diagnostiqués avec un GITC. Dans le GITC et le gliome

de la ligne médiane, l’analyse de survie est généralement effectuée en utilisant des données de temps jusqu’à

l’événement, telles que le temps du diagnostic jusqu’à la mort. Les méthodes les plus courantes utilisées dans

l’analyse de survie sont la méthode de Kaplan-Meier et le modèle de risques proportionnels de Cox. Sur la base de

la littérature, nous effectuons une analyse de Kaplan-Meier sur les patients en utilisant les caractéristiques cliniques

et génomiques. De plus, nous avons mis en œuvre l’approche multimodale du chapitre 4 pour prédire les patients

survivant plus de 2 ans dans la cohorte. La littérature souligne le fait qu’un patient donné, s’il est prédit comme

pouvant vivre longtemps au moment du diagnostic, pourrait bénéficier de stratégies thérapeutiques plus ciblées, qui

peuvent procurer un allongement de la durée de vie. La sélection des caractéristiques adaptée pour la prédiction

des patients survivant plus de deux ans a abouti à de nouvelles caractéristiques radiomiques et le modèle multi-
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Figure 3: Boı̂tes à moustaches d’une caractéristique radiomique (FLAIR 90 Percentile, glszm Small Area Emphasis,
glcm Homogénéité1 et glcm Entropy) pour les valeurs de caractéristiques acquises à l’aide du scanner 1,5T (Tesla)
(à gauche), du scanner 3T à aligner (au milieu) et du 3T scanner après la procédure de réalignement à l’aide de
ComBat (à droite).
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Patient 1 – Clinic, T1w, T2

Patient 2 – Clinic, T1c, FLAIR

Patient 3 – Clinic, T1c, T2, FLAIR

Patient 4 – Clinic, T1w, T1c, T2, FLAIR

Majority voting of the models that are available for one given patient

Final Prediction

H3.3
H3.3
H3.1
H3.3

Figure 4: La figure illustre quatre patients hypothétiques évalués par l’approche à 16 modèles.

modal atteint une précision équilibrée de 89% dans le cadre de la validation croisée par ”leave one out”. L’approche

multimodale s’est avérée efficace une fois de plus et supérieure aux approches monomodales considérées indi-

viduellement. Dans ce chapitre, nous testons également la prédiction de l’indice de concordance en utilisant le

nouvel algorithme ICARE. Cet algorithme a gagné le challenge de prédiction de survie HECKTOR MICCAI 2022.

La caractéristique la plus pertinente de cet algorithme est qu’il peut gérer les problèmes de modalités manquantes

contrairement au modèle de Cox. Le modèle ICARE a été adapté avec une méthode de validation croisée ’leave pair

out’ pour rendre l’approche la plus comparable à celle retenue pour l’approche multi-modèles. ICARE nécessite un

réglage des hyperparamètres pour des résultats optimaux. En résumé, cette thèse a offert d’importantes avancées

méthodologiques dans la formulation d’un pipeline d’analyse complet pour créer des modèles radiomiques. Ces

modèles, fondés sur l’imagerie par résonance magnétique, sont conçus pour être résilients dans la réalisation

de prédictions à travers des données obtenues de deux institutions différentes, chacune ayant des imageurs IRM

différents et des protocoles d’acquisition différents. Nous avons identifié des pistes dans la quête d’informations per-

tinentes pour prévoir certaines mutations génétiques sans nécessiter de biopsie et avons estimé les caractéristiques

des patients survivant plus de deux ans. Les efforts futurs visent à solidifier ces résultats en utilisant des cohortes

plus larges, tout en incluant les images de diffusion et/ou de perfusion, pour anticiper la réponse thérapeutique

dans les gliomes infiltrant du tronc cérébral au stade le plus précoce possible. L’exploitation des images acquises

pendant le traitement devra être réalisée pour mieux caractériser les répondeurs à la radiothérapie d’une part et

aux nouvelles chimiothérapies d’autre part.
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2 Représentation des types de caractéristiques radiomiques. (A) L’histogramme ou les caractéristiques
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Introduction

Diffuse Intrinsic Pontine Glioma (DIPG) is a devastating pediatric brain tumor, primarily afflicting children. This grade

4 tumor stands out for its aggressive nature and is notorious for its grim prognosis. Despite its lethal nature, biopsies

for DIPG are traditionally avoided. This is due to the tumor’s location in the pons, a crucial part of the brainstem,

where any invasive procedure poses significant risks, including potential neurological damage.

Some therapeutic approaches have shown a longer survival, but the choice of therapy depends on the type of

mutation associated with the tumor. Diffuse Intrinsic Pontine Glioma (DIPG) is characterized by several genetic

mutations, with the H3K27M mutation being the most prevalent, leading to a specific change in the histone H3 gene.

Additionally, ACVR1 mutations are observed in a subset of DIPG cases, especially in conjunction with the H3.1K27M

mutation. Furthermore, TP53 mutations frequently co-occur with the H3K27M mutation, adding to the complex ge-

netic landscape of this tumor. Timely detection of these mutations plays a vital role in treatment planning. Given

the limitations of biopsies, Magnetic Resonance Imaging (MRI) becomes an indispensable tool in diagnosing and

assessing DIPG. Medical imaging serves as a vital supplement to biopsies, providing a non-invasive and repeatable

method to evaluate lesions comprehensively, including their surrounding microenvironment. With advancements

in artificial intelligence, the capabilities of medical imaging have expanded, viewing images as rich data reservoirs

suitable for tasks like predictive analysis. Radiomics, a burgeoning domain, operates on the principle that a tumor’s

morphology and variance reveal insights about its inherent biological traits. Through the extraction of features, such

as shape, intensity, or texture, radiomics taps into the concealed or challenging-to-measure biological data within

images.

In the age of technological advancements, the field of MR radiomics emerges as a beacon of hope. Radiomics,

in essence, transforms MR images into a treasure trove of data. This data, rich in details, goes beyond mere visual

interpretation. It dives deep into the morphological nuances, intensity patterns, and texture features of the tumor.

These intricate details are believed to harbor insights about the tumor’s biological properties, aggressiveness, and

potential response to treatments.
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Harnessing the power of radiomics, researchers aim to decode this hidden information in the MR images. By

doing so, they aspire to develop predictive models that can aid in treatment decisions, potentially offering a glimmer

of hope in the otherwise bleak landscape of DIPG. The ability to accurately predict tumor behavior and response

could revolutionize patient care, guiding treatment protocols, and offering more tailored therapeutic interventions for

these young patients.

Undertaking quantitative evaluations on MRI presents multiple complexities. Notably, there’s the challenge of lo-

cal inconsistencies in tissues due to bias field amplification and the task of contrasting MR intensities across varied

images, given that MR details aren’t typically articulated in uniform measures. Additionally, radiomic attributes de-

rived from medical scans are profoundly swayed by data collection parameters, such as the types of scanners or

sequences. This phenomenon, often termed as ”Scanner effect”, complicates the application of radiomic models

crafted from images of one diagnostic facility to datasets from different establishments.

In recent years, many MRI-based radiomic studies investigated mutation prediction and overall survival in patients

with DIPG, sometimes limiting the models to specific modalities or clinical features, to handle the missing modalities

issue.

The focus of this thesis is thus to improve the prediction of DIPG mutations and overall survival of patients while

tackling missing modality issues and comparing them with the models found in the literature, with a particular focus

on the standardization of images and radiomic features and the exportability of radiomic models.

This work was conducted at the “Laboratoire d’Imagerie Translationnelle en Oncologie” (LITO) under the super-

vision of Dr. Frédérique Frouin, in collaboration with INSERM and Gustave Roussy with a special thanks to Dr.

Jacques Grill, who recruited the cohort of patients and launched the study.

This thesis consists of five chapters.

Chapter 1 introduces DIPG and DMG (Diffuse midline glioma) with respect to neuro-oncology. It provides the

2021 World Health Organization (WHO) brain tumor grading for tumors, highlighting the main changes introduced.

Furthermore, the most common mutations of DIPG are presented. Medical imaging and its modalities are presented

with a special focus on the advancements in MR technology. Finally, the cohort of 80 patients is introduced, with

its main clinical features (age, sex and volume) along with the mutation status of the three mutations under study

(H3.1, ACVR1, and TP53). The number of MR modalities present for each patient is also indicated, highlighting the

missing modality issue associated with the cohort.
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Chapter 2 focuses on MR standardization techniques and the main pipeline adapted for the MR scans used in

this thesis work. Radiomics and its main characteristics are presented in detail. Machine learning model-building

tools are briefly presented which are used later in this thesis for developing prediction models for mutation and

survival.

Chapter 3 introduces a multi-model approach developed for mutation prediction and presents results for the pre-

diction of H3.1 mutation. Radiomic features extracted from MR scanners having different field strengths (1.5 and

3 Tesla) are realigned using ComBat harmonization. The construction of 16 models is explained considering the

missing modality issue and a voting mechanism is introduced to have the multi-model prediction result. This chapter

presents the paper published at the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine

& Biology Society (EMBC) [2].

Chapter 4 presents an updated multi-model approach from Chapter 3 called the Multi-modal approach in leave-

one-out cross-validation with missing imaging modalities (LOO-CV-MIM). This approach involves the construction

of four radiomic models based on each of the four MR modalities and a fifth model of clinical and shape features. A

recursive feature elimination with cross-validation (RFE-CV) approach for feature selection is also introduced aim-

ing to further define the relevant information that can be found in MR images and improve prediction results. This

framework is tested to perform the prediction of all three mutations H3.1, ACVR1, and TP53. The Chapter also

presents a paper published in Frontier in Medicine [3].

Chapter 5 presents the work done on survival analysis for the patients in the cohort. Kaplan-Meier analysis us-

ing clinical and known mutation status of patients to identify patient survival using this data. The prediction of

long-term survivors (2 years) using the Multi-modal framework from Chapter 4 for the identification of patients who

may be good candidates for testing targeted therapies for prolongation of life. Furthermore, a new algorithm called

ICARE for continuous survival output of patients is tested, this algorithm can adapt to missing data. This chapter

also presents a comprehensive literature review of studies investigating survival analysis of patients with DIPG in

recent years using radiomic and clinical information.

Conclusions and plans for future work, including new methodological developments, are finally exposed.
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Chapter 1

Clinical context

This chapter is an introduction to Diffuse Midline glioma (DMG)/ Diffuse intrinsic pontine glioma (DIPG). It presents

the characteristics of this pediatric tumor in clinic, radiology and genetics, placing them in the classifications pro-

posed by the World Health Organization WHO. The chapter gives a brief state of the art of the treatments offered

at present, as well as the state of the art of discoveries making it possible to associate radiological information with

the prognosis of patients. This chapter also takes stock of the studies which come close to radiomics within the

framework of the DIPG. Finally, the databases that we used for this thesis work are presented.

1.1 Neuro-oncology

The discipline of neuro-oncology is a vast and swiftly advancing domain, incorporating elements of neurology, neuro-

surgery, medical oncology, radiation oncology, neuroradiology, neuropathology, cancer rehabilitation, and palliative

care. Its emphasis lies in the identification and treatment of both primary and metastatic malignancies within the

central nervous system (CNS), as well as addressing complications arising from systemic cancers or their respec-

tive treatments.

Primary tumors of the CNS refer to abnormal growths that occur within the brain or spinal cord. These tumors

can be benign (non-cancerous) or malignant (cancerous) and can originate from various cell types within the CNS.

Common types of CNS tumors are classified based on their cell of origin and behavior.

1. Gliomas are the most common type of brain tumors. Astrocytic, oligodendroglial, and ependymal gliomas

are the most common cell types associated with glioma are primary brain tumors which don’t usually spread

outside of the brain or spine but range from low-grade to high-grade in terms of aggressiveness. Treatment

options for brain gliomas include surgery, radiation therapy, and chemotherapy. The prognosis of individuals

with brain gliomas depends on various factors, including the grade of the tumor and the patient’s overall health.
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2. Meningiomas are a type of brain tumor that originate from the meninges, which are the protective covering

of the brain and spinal cord. These tumors are considered to be benign, or non-cancerous, and typically

grow slowly. They are more common in women than men and are usually diagnosed in people over the

age of 50. Symptoms of meningiomas can vary depending on the location of the tumor, but may include

headaches, seizures, visual changes, and weakness or numbness in the limbs. Diagnosis is usually made

through imaging studies such as CT or MRI scans. Treatment options for meningiomas include surgery,

radiation therapy, and sometimes a combination of both. Surgery is the most common treatment and is usually

the most successful in removing the tumor and relieving symptoms. In some cases, doctors may choose to

closely monitor the tumor instead of treating it immediately, especially if it is not causing symptoms or growing

rapidly. Overall, meningiomas tend to have a good prognosis, with a high chance of successful treatment and

long-term survival. However, it is important to note that the location and size of the tumor can play a significant

role in the outcome, and recurrent meningiomas can occur in some cases.

3. Schwannomas, also known as acoustic neuromas, are benign, slow-growing tumors that originate from the

Schwann cells of the cranial nerve VIII, which is responsible for balance and hearing. They typically occur

in adults between the ages of 30 and 60 and are more common in people with a genetic disorder called

neurofibromatosis type 2. Symptoms include hearing loss, tinnitus, balance problems, and facial weakness.

Large tumors can also cause headaches, vision problems, and difficulty with speech. Imaging studies such

as CT or MRI scans are usually used to diagnose the tumor. Treatment options include surgery, radiation

therapy, and a combination of both. Surgery is the most common treatment and is usually successful in

removing the tumor and relieving symptoms. The outcome for people with schwannomas is generally good

with a high chance of successful treatment and long-term survival, but location and size of the tumor can

affect the outcome, and recurrent tumors can occur. In addition, surgical removal of the tumor can result in

loss of hearing and facial weakness if the tumor has grown on the nerve that controls the facial movement and

hearing.

4. Malignant, rapidly growing brain tumors called medulloblastomas often affect children but can also affect

adults. These tumors are categorized as embryonal tumors, indicating their beginning in fetal or embry-

onic cells, and they develop in the cerebellum, the lower rear region of the brain in charge of balance and

coordination. Despite being aggressive in nature, many people with medulloblastomas have a good prognosis

if they receive prompt diagnosis and treatment. Chemotherapy, radiation therapy, and surgery are frequently

used in conjunction as treatment techniques.

5. Central Nervous System (CNS) lymphomas are a rare subset of non-Hodgkin lymphomas that arise within

the brain, spinal cord, or surrounding meninges. Unlike systemic lymphomas, which affect the lymph system,

CNS lymphomas are confined to the neurological environment. They can be particularly aggressive, and their
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onset is often rapid, presenting symptoms like altered mental functions, focal neurological deficits, or seizures.

Treatment typically involves high-dose methotrexate-based chemotherapy, sometimes followed by whole-brain

radiation therapy. The prognosis varies based on the patient’s age, overall health, and the extent of the disease

at the time of diagnosis.

Treatment options for CNS tumors vary depending on the type and stage of the tumor, as well as the patient’s overall

health. Surgery, radiation therapy, and chemotherapy are all common treatments for CNS tumors. Additionally,

targeted therapy and immunotherapy are also being studied as potential treatment options for certain types of brain

tumors.

1.2 Grading of brain tumors/ WHO classification

The fifth edition of the WHO Classification of Tumors of the Central Nervous System published in 2021 follows the

previously published versions from 1979, 1993, 2000, 2007, and 2016 ([4]). It incorporates numerous advancements

in the field that transpired post the 2016 classification, and also takes into account the advice from the Consortium

to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW). The classification empha-

sizes the significance of molecular diagnostics in classifying CNS tumors, all the while still recognizing and utilizing

other traditional tumor characterization methods, such as histology and immunohistochemistry.

1.2.1 Division of diffuse gliomas into adult-type and pediatric- type

Significantly, the WHO CNS5 acknowledges the clinical and molecular variations existing between diffuse gliomas

predominantly found in adults (referred to as ”adult-type”) and those primarily appearing in children (referred to as

”pediatric-type”). It is crucial to emphasize the word ”primarily” used here, as pediatric-type tumors occasionally

manifest in adults, especially those in their youth, while adult-type tumors are sporadically seen in children. How-

ever, splitting the classification into adult-type and pediatric-type diffuse gliomas serves as a progressive move in

distinctly separating these prognostically and biologically different tumor groups. This separation has been contem-

plated for an extended period, and the discovery of molecular disparities now makes it achievable. It is anticipated

that this distinction will foster enhanced care for children and adults diagnosed with CNS tumors.

1.2.2 Pediatric-type low-grade and high-grade diffuse gliomas

The categorization has been updated to include two novel groupings of pediatric-type of diffuse gliomas low-grade

and high-grade. The low-grade category is comprised of four distinct entities, all exhibiting diffusive growth in the

brain. However, these entities often present with less distinctive and occasionally overlapping histological traits. In
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Figure 1.1: Recognized tumor types in the 2021 WHO classification of Tumors of the Central Nervous System.
Reprinted from (David N. Louis et al 2021). [5]

such cases, molecular investigations are critical in specifying the type of lesion. The four subtypes identified include

Diffuse astrocytoma with MYB or MYBL1 alterations; Angiocentric glioma; Polymorphous low-grade neuroepithelial

tumor of the young (PLNTY); and Diffuse low-grade glioma with MAPK pathway alterations. The last subtype in-

cludes tumors displaying either astrocytic or oligodendroglial morphologies. Precise classification of these tumors,

like most other glioma types, necessitates molecular characterization and the combination of histopathological and

molecular data in a layered diagnostic approach. Uncovering the specific molecular characteristics in turn lays

the groundwork for more targeted treatment strategies. The high-grade grouping also includes four types: Diffuse

midline glioma, marked by H3K27M alterations; Diffuse hemispheric glioma, H3 G34 mutant; Diffuse pediatric-type

high-grade glioma, H3-wildtype and IDH-wildtype; and Infant-type hemispheric glioma. The Diffuse midline glioma

with H3 K27 alterations was previously classified in 2016, while in the CNS5, the remaining three are newly ac-

knowledged types. The Diffuse pediatric-type high-grade glioma, which is defined as H3-wildtype and IDH-wildtype,

is identified as possessing the wildtype for both H3 and IDH gene clusters. Similar to many other CNS tumor vari-

ants, this subtype calls for molecular examination and the confluence of histopathological and molecular findings for

accurate diagnostics. The Infant-type hemispheric glioma stands out as a unique high-grade glioma, predominantly
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affecting newborns and infants and bearing a distinctive molecular footprint

1.3 Diffuse Midline Gliomas

1.3.1 Introduction

Diffuse midline gliomas (DMGs) are a type of brain tumor that typically occur in the midline of the brain, which

includes the thalamus, brainstem, and spinal cord. They are considered to be malignant and are often challenging

to treat. On imaging, such as CT or MRI scans, diffuse midline gliomas usually appear as a mass that has spread

in the middle area of the brain, which most often forms in the pons in the brainstem, thalamus, spinal cord, and

cerebellum. It’s uncommon for these tumors to occur in other areas of the CNS. The tumors are named, in part,

based on the locations where these tumors most often occur. Therefore, tumors in other brain or spine locations

thought to be diffuse midline glioma should be reviewed by neuro-oncology providers with experience in treating

people with these tumors. Fragments from biopsy-exeresis (open surgery) or fine-needle micro biopsies performed

after identification are used to determine the ”integrated diagnosis” [6]. Since DMG can be hard to tell them apart,

they require molecular testing. Some diffuse midline gliomas have changes in histone-related genes, the most

common is H3K27M. Review by a neuropathologist is recommended to confirm this diagnosis. The tumor shows

degrees of brightness when contrasted with normal brain tissue. The diagnosis of diffuse midline glioma cannot

be made solely based on imaging alone because the tumors can resemble other high-grade brain cancers such as

glioblastomas. They can also mimic other tumors that occur in the same area such as lymphomas, metastasis and

other midline tumors.

Fragments from biopsy-exeresis (open surgery) or fine-needle micro biopsies performed after identification are used

to determine the ”integrated diagnosis” [6]. These samples include information that explains the patient’s clinical

state, including the location of the anomaly physically and its radiological properties, such as contrast changes

and border analyses. Therefore, a biopsy is usually required to confirm the diagnosis and to differentiate it from

other tumors. This addition to imaging, molecular profiling and genetic testing can be used to confirm a diagnosis

of diffuse midline glioma and to help guide treatment decisions. Due to their location and the difficulty of treating

these tumors, diffuse midline gliomas often have a poor prognosis. Due to the aggressive nature of these tumors

and the challenges in treating them, new treatment options such as targeted therapy and immunotherapy are being

researched to improve the outcomes for individuals with diffuse midline gliomas.

1.3.2 Genetic alterations associated with DMG/ DIPG

Brain tumors called diffuse midline gliomas (DMG), which now include diffuse intrinsic pontine gliomas (DIPG), may

have distinctive genetic mutations. The H3 K27M mutation in the histone H3 gene is one example of such a change.
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DMGs and DIPGs also frequently have mutations in the TP53 , ACVR1, and PIK3CA genes. According to Wu et

al. (2014)[7], TP53 mutations, which are present in around 30–50% of cases, interfere with this tumor suppressor

gene’s normal operation and cause uncontrolled cell development. The H3 K27M mutation frequently co-occurs

with ACVR1 alterations in DIPG, such as the ACVR1 R206H mutation [8]. Additionally, some DIPG cases have

PIK3CA mutations, which impact a crucial protein in a cell signaling pathway [9].

H3 K27M

The H3 K27M mutation, is a mutation in which the lysine (K) at position 27 in the histone H3 protein is changed to

a methionine (M). This mutation is linked to the development and spread of DIPG and has a significant effect on

the control of gene expression [10]. Interestingly, the WHO classification of brain tumors includes this mutation as

a distinguishing criterion for the diagnosis of DIPG because it is present in more than 70% of DIPGs. Furthermore,

it has been demonstrated that DIPG patients with the H3 K27M mutation had a worse prognosis than patients

without the mutation [11]. The histone H3 gene exists in several variants, and the mutation can be found in different

isoforms, namely H3.1, H3.3, and H3.2.

H3K27M Mutations in Different Isoforms:

1. H3.3K27M: This is the most common mutation associated with DIPG and other pediatric high-grade gliomas.

Tumors with this mutation often show a specific loss of H3K27 trimethylation, leading to altered gene expres-

sion patterns and promoting oncogenesis [10].

2. H3.1K27M: This variant is less frequent than H3.3K27M, the H3.1K27M mutation has been found in some

pediatric gliomas. This mutation occurs in the HIST1H3B gene, which encodes the H3.1 variant [12].

3. H3.2K27M: This mutation is relatively rare, with limited reports in the literature. Like the other two mutations,

it is associated with a decrease in H3K27 trimethylation, but its specific clinical implications and distribution in

tumors require further research [13].

IDH1 and IDH2 gene mutations

Two variants of the enzyme isocitrate dehydrogenase (IDH) are encoded by the genes IDH1 and IDH2, depending

on their mutational status [14]. These mutations result in hypermethylation that results in the production of alpha-

ketoglutarate. According to present knowledge, this trait that inhibits tumor suppressor genes promotes glioma

formation. Because cancers are the result of IDH1 or IDH2 gene mutations, they are collectively referred to as

”IDH-mutant” tumors. Nearly all grade II and grade III gliomas (87%) and the glioblastomas that develop from them

(85%) have these mutations [15]. The prognosis for grades II, III, and IV gliomas is excellent when IDH mutant

status is detected [16].
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TP53

The TP53 gene, which typically serves as a tumor suppressor, is frequently discovered to be altered. The regulatory

mechanisms that typically stop unchecked cell proliferation are disabled by TP53 mutations, which aid in the devel-

opment and spread of malignancies. In between 30-50% of patients of DIPG, the TP53 gene has been found to

have mutations [7]. The genetic complexity of these tumors is highlighted by the identification of the co-occurrence

of TP53 mutations and the histone H3 K27M mutation, a defining trait of DIPG [17]. It is critical to comprehend the

function of TP53 mutations in DIPG since doing so could aid in the creation of more focused and efficient treatments.

ACVR1

Pediatric brain tumors with ACVR1 gene mutations are a particularly aggressive variety of tumors. A protein in the

bone morphogenetic protein (BMP) pathway, which is crucial for cell development and differentiation, is encoded for

by the ACVR1 gene. Mutations in ACVR1 result in hyperactivity, which promotes unchecked cell proliferation and

aids in the development of tumors. The histone H3 K27M mutation frequently co-occurs with ACVR1 in DIPG [8].

Contrarily, DIPG cases with TP53 gene mutations often do not have ACVR1 mutations, suggesting that various DIPG

subtypes may have unique genetic profiles [18]. In order to create specialized treatment plans for this aggressive

disease, research into the role of ACVR1 mutations in DIPG is still ongoing.

1.4 Medical imaging in neuro-oncology

1.4.1 Introduction

Medical imaging stands as a crucial pillar in managing brain tumors, (see table [1.1]). It is used for a variety of

tasks, such as diagnosis, predicting illness progression, and directing treatment strategies. For instance this entails

finding the exact place for biopsies, figuring out the extent of the surgical resection, and defining and quantifying

the radiation dosage used in radiation therapy. Imaging is essential for assessing the effectiveness of the provided

therapy and estimating the volume of tumor tissue that hasn’t been completely removed post-treatment. It serves

as a surveillance tool to monitor tumor evolution during the follow-up phase and to distinguish between resurgent

tumor growth and tissue changes brought on by therapies like radiation therapy, such as radiation necrosis. Different

types of complementary imaging modalities (CT, PET and MRI) may be used depending on the characterization ob-

jectives (see table [1.2]). CT scans are useful in pinpointing the presence of brain cancers, facilitating the planning

of radiation therapy, and revealing instances of hemorrhage or edema in the brain. Positron Emission Tomog-

raphy (PET) provides an avenue for assessing brain tumors, distinguished by a heightened cell proliferation rate

compared to normal tissue, through the use of specialized tracers. These tracers signify the absorption of amino
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acids by brain cells and include 11C-methionine, 18F-fluorothymidine (FLT), 18F-fluoro-ethyl-tyrosine (FET), and

18F-dihydroxyphenylalanine (DOPA) [19],[20], [21].

1.4.2 Conventional MRI

Conventional MRI is a non-invasive imaging modality that has emerged as an indispensable tool in clinical diagnos-

tics and research, particularly in the realm of neurological, musculoskeletal, and cardiovascular systems [22]. Unlike

X-rays, MRI leverages the principles of nuclear magnetic resonance to visualize internal structures, relying on the

inherent magnetic properties of atomic nuclei within the human body, predominantly hydrogen protons [23]. The

conventional MRI protocols typically encompass T1-weighted (T1w) and T2-weighted (T2w) imaging sequences.

T1w images provide excellent anatomical detail, highlighting fat tissues as bright signals. Conversely, T2w images

are adept at visualizing fluids, rendering cerebrospinal fluid in the brain as bright, which is crucial for detecting

pathologies like edema or tumors [24]. One of the advantages of MRI over other imaging modalities is its ability to

produce images in any plane without physical repositioning, a feature that is invaluable in neuroimaging. Moreover,

the absence of ionizing radiation in MRI makes it safer for repeated studies, a factor that is critical in longitudinal re-

search or in monitoring disease progression [25]. In the landscape of medical imaging, while newer MRI modalities

continue to evolve, conventional MRI remains foundational, providing pivotal anatomical insights that guide clinical

decisions and research explorations.

T1 T1c T2 FLAIR

Figure 1.2: Examples of the four most commonly used MR anatomical sequences: T1- weighted (T1), T1-weighted
post-gadolinium contrast (T1c), T2- weighted (T2) and FLAIR fluid-attenuated inversion recovery. These images
were taken from patient’s scan with DIPG. A pink ring is placed with in the tumor region.

1.4.3 Advancements in MRI

In order to enhance the capabilities of standard MRI, novel magnetic resonance methods have been developed in

neuroradiology [26],[28],[29]. These methods, which include Diffusion-Weighted Imaging (DWI), Perfusion-Weighted

Imaging (PWI), Diffusion Tensor Imaging (DTI), and Magnetic Resonance Spectroscopy (MRS). These techniques

provide information on the metabolic composition (MRS), white matter infiltration (DTI), tissue perfusion and perme-

ability (PWI), and tumor cellularity (DWI).
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Role of Radiology Imaging Techniques
Preoperatively Detection

Characterization localization
size
margins
extension
midline shift
compression
contrast enhancement
vascularity
supplying vessels
perifocal oedema

Differentiation benign vs malignant
Staging
tumour embolization
surgical planing

Intraoperative surgical navigation
Postoperatively monitoring the effect of treatment

exclude recurrence
distinguishing recurrent tumour from radiation necrosis

Table 1.1: Role of imaging techniques in brain tumors. Reprinted from [26]

Perfusion-weighted imaging

An advanced magnetic resonance imaging (MRI) method called perfusion-weighted imaging (PWI) measures the

rate at which a contrast agent is administered intravenously passes through the capillaries in the brain to assess

tissue blood flow [30]. The dynamics of this process make it possible to extract hemodynamic variables including

mean transit time (MTT), cerebral blood flow (CBF), and cerebral blood volume (CBV), which offer substantial in-

sights into tissue microvascular characteristics [30]. It is essential to comprehend these circulatory characteristics in

the context of brain tumors. The vascular characteristics of these tumors frequently align with their degree of malig-

nancy and propensity for proliferation. PWI has made a substantial contribution to the ability to differentiate between

different tumor grades based on their perfusion profiles and to discriminate tumor recurrence from post-therapeutic

changes [31]. The importance of PWI in treatment planning and monitoring is becoming more established as the

field of neuro-oncology increasingly embraces customized therapy. Its capacity to provide thorough assessments

solidifies its status as a vital tool in the diagnosis and treatment of brain tumors [32].

Arterial Spin Labeling

Arterial Spin Labeling (ASL) is a non-invasive MRI technique used to quantify cerebral blood flow (CBF). ASL uses

the water in arterial blood as an endogenous tracer, in contrast to other perfusion imaging techniques that rely

on the introduction of exogenous contrast agents. Blood magnetization in the main arteries supplying the brain is

changed by ASL using magnetically tagged blood water protons. An picture is taken after a predetermined post-

labeling delay, during which time tagged blood water protons enter the imaging zone. To create a perfusion-weighted
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Imaging technique Major utility in brain tumor imaging
CT Mass effect, herniation, hydrocephalus, hemorrhage, calcifications
Pre and post-contrast T1 Enhancement characteristics, necrosis, extent of the enhancing portion of the tumor
T2/T2 FLAIR Peri-tumoral edema (vasogenic and infiltrative), non-enhancing tumor
T2* susceptibility sequence (SWI) Blood products, calcifications, radiation induced chronic micro-hemorrhages
DWI/ADC Reduced in highly cellular portions of tumor, post-operative injury
DTI Tractography for surgical planning/navigation
Perfusion (generally DSC) Tumor/tissue vascularity
MR spectroscopy Metabolic profile
fMRI Pre-operative functional mapping, research into treatment effects
PET/MR Potential new radiotracers

Note. ADC, apparent diffusion coefficient; CT, computed tomography; DSC, dynamic susceptibility contrast-enhanced; DTI, diffusion ten-
sor imaging; DWI, diffusion weighted imaging; FLAIR, fluid attenuated inversion recovery; fMRI, functional magnetic resonance imaging;
PET, positron emission tomography; SWI, susceptibility weighted imaging.

Table 1.2: Imaging techniques and their major utilities in brain tumor imaging. Reprinted from [27].

picture, this labeled image is subsequently subtracted from a control image that does not undergo labeling [33]. ASL

is especially well suited for repeated measurements, longitudinal investigations, and pediatric or fragile populations

where contrast administration may be prohibited since it may quantify cerebral perfusion without using exogenous

contrast agents [34]. ASL methods have improved over time, including pulsed, continuous, and pseudo-continuous

ASL. This has increased its sensitivity and reliability, allowing it to be used in a variety of clinical and scientific

situations. These applications include functional brain mapping and the evaluation of neurodegenerative illnesses,

tumor perfusion, and cerebrovascular diseases ([35]).

Diffusion weighted imaging (DWI)

The theory is centered on the spontaneous movement of water molecules across different tissues. This ”Brown-

ian motion” hinges on tissue cellularity, cell membrane integrity, and vascularization extent. These factors, when

increased, lead to restricted molecular diffusion, assessed by calculating the Apparent Diffusion Coefficient (ADC)

[36]. These coefficients can be utilized to generate a voxel-level mapping (ADC map), revealing the water diffusion

properties of brain tissue. ADC value variations allow for the delineation of morphological features such as edema,

necrosis, and viable tumor tissue [37]. Furthermore, it aids in identifying tumor infiltrated regions that other MRI se-

quences might not disclose [38]. This technique offers an increased certainty in distinguishing brain abscesses from

cystic or necrotic brain tumors compared to traditional MRI [39]. In adults with diffuse gliomas, ADC values show a

correlation with the IDH mutation status and overall survival [40]. IDH wild-type gliomas, compared to IDH-mutant

gliomas, exhibit lower ADC values and a shorter overall survival period.
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Diffusion Tensor imaging (DTI)

Diffusion Tensor Imaging (DTI) is an advanced MRI technique that captures the intricate movement of water molecules

within tissues, revealing the structural organization of white matter tracts in the brain [41]. DTI reveals the microstruc-

tural traits and coherence of white matter networks by quantifying water diffusion patterns [42]. DTI has become a

crucial technique for understanding the effects of brain malignancies, identifying changes or displacements brought

on by the tumor in these tracts [43]. This knowledge enables medical professionals to differentiate between different

tumor subtypes based on their diffusion characteristics and to plan surgical or therapeutic procedures that protect

vital brain pathways [44].

Figure 1.3: Diffuse midline glioma H3K27Mmut.(A) Conventional MRI: T2 (axial section), contrast-enhanced T1
(axial section), FLAIR (coronal section).(B) PWI: dynamic susceptibility contrast (DSC) curve (red and orange:
tumor ROIs; green: normal-appearing white matter (NAWM)), DSC-cerebral blood volume (CBV) (red: tumor ROI),
arterial spin labeling (ASL)-cerebral blood flow (CBF). DSC ROI evaluation revealed “aggressive” perfusion features
(red ROI: CBVmax, 4 mL/100 g; CBVmax/CBVNAWM, 6.48); ASL-CBF showed highly perfused spots within the
tumor tissue.(C) DWI: a clinically feasible single-slice ROI evaluation revealed low diffusion parameters (blue ROI:
ADCmean, 0.87mm2/s; ADCmean/ADCN AWM ratio, 1.19).(D) Q-ball tractography of corticospinal tracts, exhibiting
a mild ventrolateral dislocation of the left tract due to the mass effect of the lesion. Reprinted from [45]
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Magnetic resonance spectroscopy (MRS)

Magnetic resonance spectroscopy (MRS) is a technique used to analyze the metabolic characteristics of tissues

by detecting signals emitted by atomic nuclei within molecules. These signals are identified based on variations in

proton resonance frequencies. In the context of tumor pathology, there are six metabolites that hold significant im-

portance [[46], [47]]. These include N-Acetyl Aspartate (NAA), which serves as a neuronal marker; creatine (Cr), in-

dicating overall metabolism and cellularity; choline (Cho), which increases in cell proliferation scenarios; myoinositol

(MI), a sugar specific to glial cells; free lipids (Lip), indicating cellular necrosis; and lactate (Lac), which accumulates

due to altered metabolism caused by increased glycolysis. Various metabolic ratios have been identified as relevant

for tumor classification and predicting malignancy [[48], [49]]. Figure 1.4 provides an example of short Time-Echo

(TE) spectra from glioblastoma multiforme and intracerebral metastases, illustrating typical patterns observed.

Figure 1.4: Example of MRS spectra for GBM and metastasis (typical short TE spectra). (A) Glioblastoma multiforme
and (B) intracerebral metastases. Reprinted from [50]

1.5 The Dataset

In this Ph.D., we focus on two types of data. The first type is imaging data, which was collected using conventional

MRI scans and then analyzed using radiomic features. The second type is biological data, which was obtained from

biopsy samples and from which we could gather genetic information. In addition clinical data sample were use (age

and sex). Our main interest lies in pre-biopsy detection of some somatic mutation and overall survival (OS) through

radiomic features. In this thesis, we utilized two cohorts: PREBIOMEDE and a portion of the BIOMEDE study. The

patients’ families provided consent to use the clinical and radiological data gathered during the treatment process
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for research purposes. These consents were obtained following the guidelines of the Institutional Review Board

(IRB) at Gustave Roussy.

The images were originally obtained in the Digital Imaging and Communications in Medicine (DICOM) format.

For the purpose of this thesis, these images were consistently anonymized and converted into the Neuroimaging

Informatics Technology Initiative (NIfTI) format.

Genomic characteristics of the cohort

The final cohort consisting of 80 patients with at least 1 of the 4 MR modalities (T1,T1c,T2 and FLAIR) available

along with mutation status of H3K27M , ACVR1 and TP53 for most patients. In the case of Histone (H3), mutation

infromation is availabe for H3.1, H3.3, H3.2 along with not mutated wild type WT. For ACVR1 and TP53 mutated

or not mutated. In this thesis we worked with the combined sets of patients. The pooled characteristics of the final

cohort are presented in table 1.3 and individual patient information is displayed in clinical trial the patient data table

present in appendix A.1.

The PREBIOMEDE database concerns patients diagnosed at Necker hospital between the years 2009 and 2014.

The database called BIOMEDE [51], [52] contains some of the patients of the National Cancer 2011 BIOMEDE. The

full study is a multi-centric study spanning the years 2014 and 2019. The differences between PREBIOMEDE and

BIOMEDE are related to therapies. For BIOMEDE, radiotherapy is combined with three different targeted therapies:

dasatinib, erlotinib and everolimus. The majority of patients underwent an imaging protocol that included T1w , T2w

,T1c and FLAIR images at the time of diagnosis. A tumor sample was taken by biopsy to determine the genetic

mutations associated with the tumor. For some patients, the biopsy was not possible or did not bring conclusive

results.

Number of Patients 80
Boys / Girls 45 / 35
Average age at Diagnosis(yr) 8.05 ±4.39
H3.1 / H3.3 / H3.2 / WT / UnK 14/ 44/ 1/ 4/ 17
ACVR1 / WT / UnK 14/ 49 /17
TP53 / WT / UnK 34/ 27 /19
Average Overall Survival (
OS)1 in days 388.96 ±271.56

Table 1.3: Summary of characteristics of patients with DIPG in the combined cohort (PREBIOMEDE and BIOMEDE).
1 Includes 7 patients with CENSORED OS

Imaging characteristics of the cohort

The table 1.4 presents the imaging modalities available for the total number of patients on the dataset. The acqui-

sition scanner used for obtaining the scans is also known. A key point to highlight and to take into account several

patients scans have missing modalities. Out of the 80 patients 47 patients have all four modalities.
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1.5T 3.0T Missing
Patients 65 15

T1 60 13 7
T1c 58 14 8
T2 60 14 6

Flair 56 11 13

Table 1.4: Patient modalities available (T1, T1c, T2 and FLAIR) with the scanner field strenght

28



Chapter 2

Dedicated tools for classification and

survival analysis based on radiomic

features

2.1 Introduction

In the preceding chapter, we introduced Diffuse Intrinsic Pontine Glioma (DIPG) within the realm of Neuro-oncology,

showed its classification under the updated (2021) World Health Organization’s grading of pediatric tumors. Based

on the characteristics of the data set that was in this Ph.D., we introduce different tools that will be used for testing this

dataset for both classification and survival analysis. Binary classification will be used to predict genomic mutations

from MRI acquired at diagnosis time. Survival analysis will be based on the combination of MRI data and gennomic

data. In this chapter, we will focus to the MRI standardization, the role of Radiomics in MR imaging. We will delve

into the primary constituents of a machine learning model, specifically adopting a wrapper-based feature selection

technique, and ultimately, we introduce a different tool for survival analysis the HECKTOR MICCAI [53] challenge-

winning classifier (ICARE).
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2.2 MRI standardization

The requirement for standardization is critical in the field of Magnetic Resonance imaging (MRI), particularly in the

use of multicentric data. Data from many scanners, each with possibly distinct hardware, software, and scanning

methods, ends up with researchers for development of standardization applications as described for instance in

[54],[55],[56]. Different scanning techniques can cause inconsistencies in MR images that can result in changes in

the image features that are further extracted. Machine learning models, which assume that the training data used

is indicative of the data they would encounter in test conditions, are particularly affected by this [57],[58]. The data

may become significantly more heterogeneous as a result of the following modification in image capture parameters

including field strength, pulse sequence, coil design, slice thickness, and pixel size, among others. The objective of

MR image standardization is to harmonize the scanning parameters and protocols across various scanners so that

the final pictures are equivalent, no matter where they were acquired. Furthermore, to take into account variations

due to retrospective studies. Intensity alignment can reduce discrepancies, enhancing the quality of modeling [59].

Furthermore, standardized MR images can improve data transmission and comparison between various research

and institutions as well as allow the creation of imaging biomarkers that are robust and repeatable in a variety of

scanning situations [60]. A step by step description of the pre-processing pipeline applied to the dataset used in this

thesis is presented in the work of Goya et al 2018 [61], which is an adaptation of the pipeline proposed by Shinohara

et al [62] dedicated to brain tumors. A brief description of the main steps is presented below:

Inhomogeneity Correction

The N4 bias field correction is an algorithm created to correct the magnetic field, generating intensity inhomo-

geneities in MR data. A bias field appears as slow-varying spatial modulations in MRI scans, creating an artifact

that may impair further image interpretation. The older N3 (nonparametric nonuniform intensity normalization) tech-

nique has been replaced by the N4 algorithm [63]. By changing the B-spline fitting procedure, the N4 method

improves upon the N3 approach by making it more resilient in the presence of strong-intensity inhomogeneities.

By estimating and reducing the multiplicative bias field, the N4 bias field correction aims at restoring similar in-

tensities of each specific tissue in the images. For hypothesis and mathematical understanding refer to [63]. It’s

crucial to account for bias field during the preprocessing phase of MRI data analysis. Subsequent analysis, such as

segmentation, registration, and any quantitative data obtained from the MRI, may be significantly impacted by it.

Multimodal Co-registration

Registering MRI scans is an essential step in many neuroimaging analyses, and it serves several crucial purposes

[64]:

Alignment for comparison: Often, researchers or clinicians need to compare MRI scans taken at different points
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Figure 2.1: Workflow of MR Intensity standardization. Compared to the hWS method (Shinohara et al 2014) [62],
the adaptations needed to analyze DIPG scans are shown in purple. Reprinted from [61]

in time (longitudinal studies) or from different individuals (cross-sectional studies). Registration allows these images

to be aligned in a common space, making direct comparisons possible.

Multimodal imaging: In many cases, different types of imaging modalities (e.g., T1 ,T2, T2c) are used to study

the same subject. Each modality provides different types of information (structural, functional, metabolic), and

registration allows these different types of images to be superimposed or fused together so that their information

can be integrated.

Atlas-based analysis: MRI scans are often compared to standard brain templates or atlases, which might contain

predefined anatomical regions or functional networks. Registration allows individual scans to be mapped onto these

atlases, enabling region-specific analysis.

Preprocessing for machine learning applications: For machine learning applications, registration is an important

preprocessing step to ensure that the same anatomical or functional locations align across all input data. In this

work, the different modalities associaated with one patient were realigned to the T2 diagnostic scan (subject’s space)

using rigid registration in FSL-FLIRT [65]. Registrations were systematically checked visually and were always found
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to be satisfactory.

Hybrid White Stripe

The Hybrid White Stripe (HWS) approach is a brain MR instensity normalization technique developed by Shinohara

et al [62]. The original White Stripe technique developed for T1 weighted images has been expanded with the

Hybrid White Stripe (HWS) approach. HWS uses a statistical normalizing technique is dedicated to multi-modal

MR images account for the entire intensity distribution of the picture, not only the white matter. With the use of

histogram distribution of this hybrid strategy, MR images will be more reliably and robustly normalized, enhancing

the comparability of images both within and across patients as shown in figure 2.2. The HWS approach is particularly

crucial in neuroimaging investigations because changes in image intensities can impair the capacity to identify and

measure changes in brain tissue that are caused by diseases. From the R package ‘WhiteStripe: WM Normalization

for Magnetic Resonance Images using WhiteStripe, Version 1.1.1’, some modifications were introduced to better

take into account the specificities of our data. A detailed description of the modifications can be found in the work

of goya-outi et al. [61].

Figure 2.2: Histograms of intensities in WM and GM before and after standardization for T1, T2, post injection
T1 (T1c) and FLAIR scans. Each blue line corresponds to a pre-biopsy scan and each pink line to a post-biopsy
scan. For each type of MR scan, the mean Hellinger distance (HD) and its standard deviation between each pair of
histograms are shown. Reprinted from [61]
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2.3 Radiomics in medical imaging

Radiomics is a computational approach that involves extracting a vast number of quantitative image features from

radiographic images, such as CT, MR, and PET scans [66]. This process transforms traditionally used simple med-

ical images, which were primarily intended for visual assessment, into a rich and complex dataset that is amenable

to high-dimensional analysis and mining [67],[68].Radiomics aims to create robust decision support tools by inte-

grating radiomic data with other available patient characteristics. This integration enhances the predictive power

and effectiveness of decision support models, enabling more accurate and informed clinical decisions [69]. Ra-

diomics encompasses the extraction of morphological and intra-tumoral heterogeneity properties from medical im-

ages. These properties are quantified using diverse image processing techniques, which involve the computation

of shape parameters, first-, second-, and higher-order intensity. Surface reconstruction is used to extract shape

characteristics, and the intensity histogram is used to produce first-order metrics. Using texture analysis techniques

on the image, second and higher-order statistics are obtained (Table 2.1). RJ Gillies et al [70] were the first to

coin the term ’Radiomics’ in 2010, to denote these qualitative image features[68]. Subsequent to its introduction,

radiomics has been utilized in diverse fields such as predicting treatment outcomes and survival rates, categorizing

and staging tumors, and even establishing correlations between radiomics and genomics. Further details about the

application of radiomics in these domains can be found in the referenced materials provided in Table 2.1.

Handcrafted features

Handcrafted features are computed utilizing predefined mathematical algorithms suggested by experts in the field

of image processing. These features encompass both semantic and agnostic elements. Semantic features denote

the conventional tumor descriptors traditionally used in radiology. Conversely, agnostic features comprise entirely of

computational elements based on region of interest in volume. These agnostic features can be categorized further

into groups that represent the shape, intensity, and texture inside the region or volume of interest. With numerous

alternative methods and formulas available for computing these features, strict adherence to IBSI standards is

strongly recommended [71]. In order to accomplish this, several freely available software solutions exist, including

stand-alone programs, modules, and libraries like CERR [72], MITK[73], RaCaT [74], S-IBEX [73] , LIFEx [75] and

Pyradiomics [76] that adhere to the IBSI standard.

Shape-based features

The term ”shape” or ”morphology” refers to a segmented creation’s two-dimensional or three-dimensional geomet-

rical structure. These characteristics, which are determined from the segmentation overlay, are unrelated to the

dispersion of grey level intensity contained in a picture. Examining characteristics like the surface area, volume,

density, planarity, extensiveness, or roundness of the volume of interest under investigation is particularly benefited
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by features based on form. The spiculated characteristics of the lesions suggest a proclivity for expansion and are

frequently associated with more progressive stages of the condition [77]. On the other hand, non-threatening or less

harmful tumors usually have clear, well-marked edges[78]. A particular research indicated that a significant number

of radiomic shape attributes exhibited pronounced direct associations or consistent inverse correlations with the

speculated nature of the tumor [79].

Intensity-based features

The features based on intensity, often referred to as first-order statistical characteristics, portray the dispersion of

voxel intensities within the region or volume of interest. They utilize straightforward descriptors like the upper limit,

lower limit, average, range, peakness, and asymmetry of the grey scale intensities as illustrated in Figure 2.3A.

Texture based features

Texture-oriented features, alternatively termed as second-order statistical characteristics, deliver insights on the

organization of grey scale values within the region or volume of interest. Texture matrix-derived indices offer a robust

approach to capturing tumor heterogeneity. Frequently encountered texture feature classifications encompass Grey

Level Cooccurrence Matrix (GLCM), Grey Level Run Length Matrix (GLRLM), Grey Level Size Zone Matrix (GLSZM),

Neighbouring Grey Tone Difference Matrix (NGTDM), and Grey Level Dependence Matrix (GLDM). A demonstration

of how the various matrix categories are computed is illustrated in the Figure 2.3B. These different matrices thus

provide complementary information:

• The Grey Level Co-occurrence Matrix signifies the likelihood of identifying a pair of values in voxels at a

specified distance and in a particular direction [78].

• The Grey Level Run-Length Matrix gauges the count of sequential voxels possessing identical value, arranged

in a specific direction for each intensity value [79] [80] [81] [82].

• The Grey Level Size-Zone Matrix quantifies the count of adjacent voxels sharing the same intensity, for every

intensity value [83].

• The Neighborhood Grey-Tone Difference Matrix calculates the disparity in intensity between adjacent voxels[84].

• The Grey Level Dependency Matrix estimates the interdependencies of the grey scales in an image, that is,

the count of neighboring voxels identical to the central voxel [85].
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Figure 2.3: Representation of radiomic feature types. (A) Histogram or first-order features reflect voxel intensity
distribution only. (B) Textural or second-order features derived from texture matrices (eg, co-occurrence, run length,
size-tone, difference, dependence) reflect the complex and unique spatial arrangement of voxels. Reprinted from
[1]
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Applications Study Modality

Radiomic definition
Haralick et al., [78], Galloway et al., [79], Pentland et al., [86],
Rahmim et al., [? ], Amadasun et al., [84], Davnall et al., [87],
Thibault et al., [83]

Predicting treatment
response and
survival

Johansen et al., [88], Baek et al., [89], Shukla-Dave et al., [90],
Foroutan et al., [91], King et al., [92],
Peng et al., [93] ,

MRI

Eary et al., [94], El Naqa et al., [95], Yang et al., [96],
Cooket al., [97], Tixier et al., [98], Zhang et al., [99] PET

Aerts et al., [100], Parmar et al., [101], Tateishi et al., [102],
Kim et al., [103], Tixier et al., [104] CT

Vallires et al., [105] MRI + PET
Tumor Staging Donget al., [106], Muet al., [107] PET

Ganeshanet al., [108] CT
Zacharaki et al., [109] MRI

Tumor classification Lerski et al., [110], Kjaer et al., [111], MRI
Mahmoud-Ghoneimet al., [112], Nie et al., [113],
McNitt-Gray et al., [114], Kidoet al., [115],
Petkovska et al., [116], Wayet al., [117]

CT

Xu et al., [118], Yuet al., [119], PET + MRI

Radiogenomics Diehn et al., [120], Ellingson et al., [121], Naeini et al., [122],
Gutman et al., [123] MRI

Nair et al., [124], Nair et al., [125] PET

DIPG Radiogenomics

Khalid et al.,[2][3] Goya-outi et al., [61] [126],
Kandemirli., et al [127], Li et al., [128], Chilaca-Rosas et al., [129],
Lv et al.,[130], Gou et al., [131],Wagner et al., [132],
Tam et al., [133]

MRI

Table 2.1: List of the main publications based on Radiomics according to their application and the imaging modality
studied. Modified from Yep et al., [134] and Desseroit et al., [135]

2.4 Feature Selection

The goal of feature selection is to optimize the performance of prediction models, comprehend the inherent pro-

cedure that produced the data, and, in most instances, provide predictors that are more time-efficient and cost-

effective. Assuming a training dataset composed of N instances and P predictive variables or features Xi (i =

1, ..., P ) and a class Y in 1, 2, ..., C, the goal of feature selection is to choose a concise subset of variables or

features, without compromising the predictive information relevant to Y . It’s important to understand that feature

selection involves choosing a subset from the original set of features, which may offer greater interpret ability com-

pared to feature extraction methods, such as principal component analysis, that generate new features through

transformations of the initial feature set [136]. The three types of feature selection approaches are filter methods,

wrapper methods, and embedding methods. Wrapper approaches, such as forward and backward selection, evalu-

ate subsets of variables using the intended machine learning as a black box to score them based on their predictive

power. On the other hand, filter approaches choose subsets of variables prior to the predictor, for example, using

criteria based on correlation. Finally, embedded approaches, which are often specialized to machine learning like

logistic regression(LR), support vector machines (SVM), and random forests (RF) (Section 2.7), incorporate vari-
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able selection throughout the training process [137]. Feature selection is extensively employed in fields such as

gene selection, aiming to enhance interpretability and mitigate the dimensionality curse, a challenge presented by

high-dimensional data [138] [139]. Sophisticated wrapper or embedded methods improve predictor performance

compared to sim- pler variable ranking methods like correlation methods, so in this work we used an embedded

method associated with LR in a cross validation: Logistic Regression Recursive Feature Elimination with cross

validation (LR-RFECV) [138].

2.5 Learning models for medical data

2.5.1 Machine Learning

There has been a remarkable surge in the application of machine learning (ML) algorithms in the field of medical

imaging over the past two decades, as illustrated in Figure 2.4. Innovative software has been designed to automate

a wide array of tasks within clinical oncology, ranging from tumor identification and segmentation to therapeutic

decision-making [140] [141] [142]. Increasingly, these sophisticated systems are demonstrating performance that

surpasses human specialists. As we accumulate more data, enhance image quality, and harness the capabilities

of more potent computing systems, it is projected that machine learning-powered automation will revolutionize the

operations within clinical medicine [143] [144].

Machine learning algorithms can essentially be categorized into three groups: supervised learning, unsupervised

learning, and reinforcement learning. Supervised learning makes use of data that is labeled, meaning the desired

output is already known, to train a model. This model is then applied to make forecasts. Conversely, unsupervised

learning uses unlabeled data, constructing models that identify patterns or structures in the data, like data clustering.

Reinforcement learning, on the other hand, involves a model that learns through a series of actions guided by a

feedback mechanism. A notable example of this is the AlphaGo program which, in 2015, became the first computer

program to defeat a professional Go player [145]. In this manuscript, our focus will be on supervised learning.

2.5.2 Deep learning

Deep learning, a specialized subfield of machine learning, employs intricate architectures consisting of multiple

layers of neurons known as neural networks [146]. These vast networks undergo optimization during training by

minimizing a predefined loss function using gradient descent-based algorithms. Among the various deep learning

techniques, Convolutional Neural Networks (CNNs) stand out for their suitability in image analysis. In contrast to

handcrafted radiomics, which extracts features from a specific Region of Interest (ROI), deep learning generally

processes the entire image. This approach allows CNNs to understand the spatial relationships between voxels

through the use of filters and convolutions. In the realm of medical imaging, CNNs are extensively utilized for tasks
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Figure 2.4: Results on PubMed using the keyword search “Machine Learning” by year up to April 2023 , showing
the rapid growth of interest in machine learning.

such as lesion and organ segmentation, abnormality detection, and other prediction or classification challenges

comparable to what traditional radiomic models aim to achieve [146, 147]. One notable advantage of CNNs is the

elimination of the need for tumor delineation, often a limiting factor in radiomic studies. However, the effective training

of CNNs necessitates a considerable volume of data to yield meaningful models and mitigate overfitting risks.

Given that CNNs often encompass millions of parameters, their optimization demands substantial computational

resources.

Supervised Learning

Supervised learning is carried out using a collection of labeled inputs, also known as training data. This training

data is leveraged to effectively establish the model. Once this function is appropriately trained, it can be employed to

scrutinize an unfamiliar data set and accurately forecast the anticipated result. If the new input data were previously

identified, the outcome labels can be evaluated for their exactness and precision.

Unsupervised Learning

Unsupervised learning is realized by deducing the function or algorithm for a labeled data set. In this mode of

learning, the outputs are unknown, necessitating that the function ascertain the appropriate response. Algorithms
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used in unsupervised learning tackle intricate problems using only the input data.

General principles of model estimation

The field of machine learning lacks a universally accepted standard for mathematical notation. In this context, we’ll

represent the training set as (x(i), y(i)) where 1 ≤ i ≤ n represent the n training examples. x is be the input data

and y is the predicted variable/class. The training example x(i) consists of a number of features m:

x =




x1

x2
...

xm




(2.1)

Training of a Model

Considering an input (for instance, a collection of radiomic features), our objective is to construct a model capable of

generating a prediction (such as determining the presence of cancer in a patient). From a mathematical perspective,

we aim to identify a function, f

f(x) = y (2.2)

If y is not continuous but has distinct categories, we’re dealing with a classification problem (like identifying if

a patient has cancer). On the other hand, if y is continuous, it’s a regression problem (like estimating how long a

patient will survive). We find this function (or get as close as we can to it) by using the data and labels in the training

set to train a machine learning model. Optimizing the weights of the model enables this which we donate as θi in

the case of linear model.

f(θ)(x) = θ0 + θ1x1 + θ2x2 (2.3)

The parameter of the function θi. Their determination is achieved with the help of a loss function, also known

as a cost function, which tells us how well the function f(x) matches the actual value, y. Typically, we start with

random values for the weights and then gradually improve them during training using methods like gradient descent.

Gradient descent works in an iterative manner to minimise the loss function:

θt+1
i = θti − α

∂J(θti)

∂θ
(2.4)

J is the loss function and t is the iteration in the gradient decent. α is the learning rate and controls the magnitude

of the iteration update. This parameter is crucial to adjust during the training process. If it’s too small, the method
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of gradient descent will take a long time to reach the optimal point; if it’s too large, it might not get there at all.

Usually, the learning rate α stays the same, but there are numerous strategies suggested to modify α as the training

continues (a deeper insight is presented in [148]).

Evaluating a Model

After training the model enough, we need to check how good it is. A model might do great on the training data but

not do well on new data. This issue is known as overfitting. On the other hand, a model might not be strong enough

to correctly identify patterns in a dataset, which is referred to as underfitting. Figure 2.5 illustrates these scenarios.

Figure 2.5: Examples of underfitting and overfitting using least squares regression. In (a) we have fit a straight line
to the points, which slightly underfits the data. Adding another parameter, (b) is a quadratic curve, which fits the
data well. (c) is an 8th degree polynomial fit. Although it fits these data points well (the training data), it will probably
not generalise well to new data points and is therefore overfitting the data.

To really know how well a model is doing, the data is divided into three parts: training, validation, and test sets.

We use the training data to teach the model. We use the validation data to check how the model is doing as we

adjust things like learning rate and loss function. Once we’ve made the model as good as we can, we use the test

set to see how it does on new data. This step is important to make sure the training is reliable. The validation and

test sets have to be big enough so we can see clear differences in how well different models or methods work. To

evaluate the performance of a model, we usually break our data into three parts: training, validation, and test sets.

We use the training data to teach the model. We use the validation data to check how the model is doing as we

adjust things like learning rate and loss function. Once we’ve made the model as good as we can, we use the test

set to see how it does on new data. This step is important to make sure results are transferable. The validation

and test sets have to be big enough so we can see clear differences in how well different models or methods

work. In certain scenarios, especially within the medical domain where available data might be limited (for instance,

around 100 images), employing a technique called cross-validation can be more effective than relying on a test
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set. In this approach, there isn’t a distinct test set. Rather, the data is partitioned into ’k’ random subsets, leading

to the term k-fold cross-validation. One of these subsets is reserved solely for validation. After model tuning with

the initial partition, the model undergoes ’k’ training iterations, each time utilizing a different subset for validation.

Subsequently, by averaging the results, an approximate performance measure of the model can be obtained. This

strategy minimizes potential biases that might arise from relying solely on a single validation set outcome, especially

when overfitting is a concern due to excessive fine-tuning. In situations where ’k’ equals the dataset size, resulting in

a single datapoint for validation, it’s termed leave-one-out-cross-validation (LOOCV). However, it’s important to note

that lacking a distinct test set means that cross-validation may not provide the most robust assessment of model

performance. This becomes particularly relevant with complex models, such as deep learning architectures, where

numerous training parameters require adjustment. Some research indicates that even with LOOCV, there’s potential

for overestimating model performance compared to evaluations using an independent test set [149].

The performance evaluation of the final models was done using accuracy, sensitivity and specificity. The defini-

tions for accuracy, sensitivity, and specificity are as follows:

Sensitivity =
TP

TP + FN
(2.5)

Specificity =
TN

TN + FP
(2.6)

Precision =
TP

(TP + FP )
(2.7)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.8)

BalancedAccuracy =
(Sensitivity + Specificity)

2
(2.9)

In these expressions, TP denotes the count of true positives, TN represents the count of true negatives, FP is

the count of false positives, and FN signifies the count of false negatives [150]. The incorporation of sensitivity and

specificity alongside accuracy ensured robust classification for all patient groups.

Optimisation Algorithms Gradient

Gradient descent is the most basic optimization method, which uses the first set of changes (we call these ”first-

order derivatives”) in the loss function. It’s simple to understand and put into action. However, newer optimization

methods have mostly taken its place. Let’s quickly go over the most important ones:
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Stochastic and Mini-Batch Gradient Descent

The weights and biases are often changed in the conventional gradient descent approach only after the dataset’s

loss function has been determined. The optimal point might not be reached for a very long time if the dataset is really

large. To get around this issue, the dataset may be broken up into smaller groups, or ”batches,” and the parameters

can be changed after each batch. We get at the best position more quickly since we update the settings more

frequently. However, we maintain the loss constant between batches by selecting a reasonable batch size. When

optimizing a neural network, the batch size is a crucial aspect to take into account. Stochastic gradient descent

(SGD), which is also known as mini-batch gradient descent, is what happens when we employ a batch size of one.

Adaptive Moment Estimation

The Adaptive Moment Estimation (Adam) optimizer uses separate learning rates for each parameter and alters them

as the learning process progresses rather than having a single learning rate for all parameters. The published study

[151] has all the details regarding this. Adam still uses mini-batches and has a parameter α which sets the overall

learning rate of parameters.

Figure 2.6: Converge rates of several optimisation algorithms using a multilayer neural network on a handwritten
classification challenge. Taken from [151]

The Adam optimization technique is perhaps the most popular and is typically suggested as the first choice
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[152] although in data science especially machine learning there are exceptions as mentioned in [153].Adam is

the quickest when comparing the converge rates of various optimization techniques, as seen in figure 2.6 from the

original Adam article.

2.5.3 Loss Functions

The shape of the loss function dictates the changes during gradient descent, and as a result, sets the final pa-

rameters of the tweaked model. So, it’s crucial that this loss function accurately mirrors the performance measure

we’re trying to boost. In other words, reducing the loss should lead to better performance. Let’s go through the loss

functions that are relevant for this discussion:

Mean Square Error Loss

Mean Square Error (MSE) is a simple quadratic loss, commonly used in regression problems

J(θ) =

∑n
i=1(ŷ

i − yi)2

n
(2.10)

Here ŷ
(i)
θ ≡ fθ(x(i)) are the predictions. Because the loss function is squared, it pays more attention to extreme

outliers that are far from the predicted value. When the predicted value (let’s call it ˆy) is close to the actual value

(y), the change in the gradient is small. This means that the gradient descent process is slower and, as a result,

more precise.

Cross-Entropy Loss

Cross-entropy is the go-to loss function for problems where we need to classify something, and it needs input values

that range from zero to one. For a problem where we need to classify something into two categories, we define the

cross-entropy loss as:

J(θ) = − 1

n

n∑

i=1

[
y(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i))

]
(2.11)

when simplified to

J(θ) = − 1

n

n∑

i=1

1∑

j=0

y
(i)
j log(ŷ

(i)
j ) (2.12)

Here, the sum J considers the classes 0 and 1. For problems where you need to classify something into more

than two categories (let’s say K categories), we can expand this concept:
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J(θ) = − 1

n

n∑

i=1

k∑

j=1

y
(i)
j log(ŷ

(i)
j ) (2.13)

DICE Loss

The DICE loss is often used in segmentation problems

J(θ) = 1−
n∑

i=1

2ŷ(i)y(i)

ŷ(i) + y(i) + 1
(2.14)

Hinge Loss

J(θ) =

n∑

i=1

max(0, 1− ŷ(i)y(i)) (2.15)

2.6 Class Balancing

In many machine learning scenarios, we often encounter a situation where the classes are not balanced, for exam-

ple, we might have far more negative diagnoses than positive ones. This can be tricky when we use a loss function,

because the model could simply predict the majority class all the time to minimize the loss. There are several ways

to handle this issue. One is to under-sample the majority class or over-sample the minority class. Another way

is to adjust the weight of the classes in the loss function, so that there’s a larger penalty when the model wrongly

classifies the minority class. Additionally, we can create synthetic data using methods such as the synthetic minority

over-sampling technique (also known as SMOTE) [154] or data augmentation.

2.7 Classifiers

2.7.1 Logistic Regression

One of the most often used Machine Learning algorithms, within the category of Supervised Learning, is logistic

regression. Using a specific collection of independent factors, it is utilized to predict the categorical dependent

variable. Logistic Regression, as a classifier, is primarily a statistical approach that uses a logistic function to

describe a binary dependent variable, while it may also be used for multiclass classification issues [155]. This

method, which is a specific instance of linear regression where the result is a binary classification, predicts the

likelihood that an event will occur by fitting data to a logistic function.

The typical logistic regression model is represented as follows:

P (Y = 1|X = x) =
1

1 + e−(β0+β1x)
(2.16)
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In this context, P (Y = 1|X = x) indicates the conditional probability of the event Y = 1, assuming X = x.

The element e corresponds to the base of natural logarithms, and β0 and β1 are the model’s parameters to be

determined, with x embodying the independent variable [156].

The logistic regression model, when used with a classifier, computes the odds ratio (a measure of association

between an exposure and an outcome) in a multivariate environment and offers a quantitative estimate of the

likelihood that a specific event will occur [157]. This offers an in-depth comprehension of the likelihood of events

in a manner that takes complicated, real-world data sets with numerous inputs into account [158]. The model is

particularly well-suited to applications in the social sciences and in medicine, where it is frequently necessary to

comprehend how several interconnected factors affect a binary result.

2.7.2 Support Vector Machine

Support Vector Machines (SVM) are supervised learning models primarily used for classification and regression

tasks. They work by figuring out which hyperplane categorizes a dataset into classes the best. The hyperplane that

maximizes the margin between the two classes is the one that is selected. When the data cannot be separated

linearly, SVM employs a kernel technique to convert the input space into a higher-dimensional space and then

locates the best hyperplane there. The equation for the hyperplane can be given as:

w · x+ b = 0

Where:

• w is the weight vector, perpendicular to the hyperplane.

• x is the input data.

• b is the bias term.

The decision function that assigns a class to a new data point x is:

f(x) = sign(w · x+ b)

For a linearly separable dataset, the SVM aims to maximize the margin between the two classes. The margin

is defined by the distance between the hyperplane and the closest data points from each class, known as support

vectors. The equations for the hyperplanes defined by the support vectors are:

w · x+ b = 1 (for the positive class)
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w · x+ b = −1 (for the negative class)

The margin M can be computed as:

M =
2

∥w∥

SVMs have been widely employed in a variety of domains, including text categorization, picture classification,

and bioinformatics, because of their robustness against overfitting and capacity for handling huge feature spaces.

SVMs are a common solution for many classification issues due to their efficiency in high-dimensional spaces and

the flexibility provided by the availability of many kernel functions [159, 160].

2.7.3 Random Forest

Random Forest is a versatile and widely-used ensemble learning method that constructs a multitude of decision

trees during training and outputs the mode of the classes for classification tasks or the mean prediction for regression

tasks [161]. It operates by bootstrapping the data for each tree and selecting a random subset of features at each

node of the tree, which ensures the decorrelation of the trees and helps in achieving a lower variance and higher

accuracy [162]. One of the primary strengths of Random Forest is its capability to handle large datasets with higher

dimensionality. It can manage missing values, and it’s relatively unaffected by outliers. It also provides a good

indicator of feature importance, making it a valuable tool for feature selection in complex datasets [163]. Due to its

robustness and ease of use, Random Forest has been widely adopted in various fields, including medical imaging,

bioinformatics, and financial modeling.

The working principle of the Random Forest can be described as follows:

1. Bootstrapping the data: Random Forest starts by selecting random samples with replacement from the

training dataset. This is known as bootstrapping. Each of these samples is used to train a decision tree.

2. Feature selection: Instead of using all features to make a decision at a node, it randomly selects a subset

of features and then determines the best split from that subset. This introduces further randomness into the

model.

3. Tree construction: Trees are grown to the fullest extent without pruning, leading to large fully-grown trees.

4. Aggregation (majority voting or averaging):

• For classification: For a new data point, each tree in the forest predicts a class label. The class label that

gets the majority of votes is chosen as the final prediction.
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• For regression: For a new data point, each tree in the forest predicts a continuous value. The final

prediction is the average of these values.

Mathematically, for classification, the predicted class y is given by:

y = mode{y1, y2, . . . , yT }

where yi is the class predicted by the ith tree and T is the total number of trees.

For regression, the predicted value y is:

y =
1

T

T∑

i=1

yi

where yi is the value predicted by the ith tree.

2.8 Survival Analysis

A crucial field of study in medical imaging is survival analysis, which aims to link image-derived characteristics

to time-to-event outcomes like patient survival or disease recurrence. Researchers want to identify prognostic

indicators that can forecast clinical outcomes by collecting quantitative information from medical imaging or biopsy.

The most often used methods in this field include:

1. Kaplan-Meier Analysis: A fundamental method for visualizing and analyzing survival data. Patients are often

based on specific feature, and the survival curves in the different groups are compared to discern differences

in outcomes.

2. Cox Proportional Hazards Model: A regression model that relates several variables to the time of a particular

event. In the context of medical imaging, this could involve associating multiple radiomic features with survival

time.

3. Deep Learning Models: With the advent of artificial intelligence, deep learning models, especially convo-

lutional neural networks (CNNs), are increasingly being used to directly predict survival outcomes from raw

image data or in combination with radiomic features.

4. Time-to-Event Neural Networks: These are specialized neural network architectures tailored for survival

analysis, combining the strengths of deep learning with traditional survival models.

Harnessing these techniques, medical imaging is evolving into a potent tool not just for diagnosis, but also for

predicting patient outcomes and personalizing treatment strategies.
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2.8.1 Kaplan Meier curves and Log-rank tests

A key statistical tool used to examine and display survival data is the Kaplan-Meier (KM) estimate. It offers a means

to display the survival curve and estimate the survival function using lifetime data. Recently, survival analysis, includ-

ing the Kaplan-Meier approach, has been combined with radiomic characteristics, which are quantitative features

generated from medical pictures, to give insights into patient prognosis and disease development.

Kaplan-Meier Survival Analysis:

1. Basic Mechanism: The Kaplan-Meier estimator calculates the probability of an event (e.g., death, relapse)

occurring over a defined period. It’s particularly suitable for handling ”censored” (censored data refers to

observations where the event of interest (e.g., death) has not yet occurred or is not observed during the study

period.) data, where the event of interest was unknown.

2. Survival Curve: The KM estimator is often visualized as a ”survival curve,” which shows the proportion of

subjects surviving (or free from some event) over time. A drop in the curve indicates an event occurrence.

3. Log-Rank Test: To compare survival curves between two or more groups, the log-rank test is often used. This

test determines if there’s a statistically significant difference between the groups in terms of survival [164].

In studying DIPG through Kaplan-Meier analysis integrated with radiomics, MRI scans are analyzed to extract

radiomic features, which include aspects like shape, texture, and intensity of the tumors. Given the vastness of

the radiomic dataset, feature selection techniques are crucial to pinpoint the most clinically relevant attributes.

These features then guide the stratification of patients into distinct risk categories, such as ”high” or ”low” based on

tumor characteristics. For each category, Kaplan-Meier survival curves are plotted, shedding light on the survival

probabilities over time. Ultimately, to discern the predictive power of specific radiomic features for DIPG prognosis,

the survival curves of various groups undergo comparison via the log-rank test [165]. Significant curve disparities

highlight the prognostic significance of the corresponding radiomic features.

2.8.2 Concordance Index

The Concordance Index (C-index) in survival analysis is a metric used to evaluate the discriminative ability of a

survival model. Specifically, it quantifies the degree of concordance between the model’s predicted risk scores and

the actual outcomes. A C-index value of 0.5 suggests no discrimination (akin to random guessing), while a value

of 1.0 indicates perfect discrimination. For survival data, it measures the pairwise concordance of predicted risks:

given two randomly chosen subjects, the one with the higher risk should experience the event (e.g., death) earlier

than the other. Mathematically, for each pair of subjects (i, j), if the actual event time Ti for subject i is less than Tj

and the predicted risk for i is also higher than for j, then the pair is considered concordant. The C-index [166] is

then computed as the proportion of all pairs that are concordant. The C-index is analogous to the area under the
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receiver operating characteristic (ROC) curve used in binary classification, but it is adapted for censored survival

data.

2.8.3 ICARE algorithm

During the thesis I took part in an international challenge, the HECKTOR (HEad and neCK TumOR segmentation

and outcome prediction in PET/CT images) presented in the MICCAI 2022 conference. Data and challenge de-

scription can be found in the link provided ([53]). Working closely with my colleagues we won the challenge with

1st position for the outcome prediction task and 4th position for the segmentation task. The developed algorithm

for outcome prediction is a binary weighted model which was later developed by Louis Rebaud into a scikit learn

package called ICARE [167]. We hypothesized that it is challenging to precisely quantify the value of a biomarker in

outcome prediction based on the literature and our experience. In fact, there is a possibility of biased estimate of the

feature weights due to data noise, censoring of the target, such as progression free survival, and very few training

samples. We suggested minimizing the learned information in order to counteract this impact and estimating simply

the sign that should be given to each feature when estimating the goal. The introduced binary-weighted model’s

(ICARE) fundamental working principle is this.

Algorithm: There are N samples and M features in the training dataset. Numerous radiomic traits have strong

correlations. Only one out of a group of linked features should be preserved in order to uphold the fundamental

tenet of the binary-weighted model because using all of them as input would artificially give the information a huge

weight. As a result, the p characteristics by determining the absolute Pearson correlation coefficient for each pair of

features. The value over which two traits are regarded to be too linked is determined by a threshold. In this scenario,

one of the two features is picked at random and removed.

Considering Cindex to be the Harrell’s concordance index [166]. Every given feature xi is evaluated on its ability

to correctly predict the target value y with:

ci = Cindex (2.17)

To lessen the possibility of incorrect sign assessment, the features with |ci| <Cmin are dropped, where |ci| =

max

{
1− ci, ci

}
and Cmin is a hyperparameter in [0.5, 1]. The remaining features are assigned the following sign:

S(i) =





+1, if ci ≥ 0.5

−1, otherwise
(2.18)

In order to scale the feature values to the same range, a normalizing step is introduced. Otherwise, the final
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prediction would give more weight to traits with high absolute values. The model does this by calculating the z-score

of each feature.

zi =
xi − µi

σi
(2.19)

where µi and σi are the mean and standard deviation of xi in the train set. The estimate ŷ of the target y is

computed with:

ŷ =
1

M

M∑

i

si × zi (2.20)

The computation of ŷ, µi and σi are done by ignoring the missing values of the dataset. This allows the model

to use features with missing values. Here, Cmin and p are the only two hyperparameters of the model.

An important characteristic of the defined algorithm is that it can handle missing data which is one of the key

aspects explored in this thesis. Indeed we focused on the development of models and approaches which can accept

missing data/features without introducing any imputation. Since the DIPG cohort with missing modalities and a few

censored patients it was interesting to test and analyze results of ICARE on this cohort.

2.9 Conclusion

In this chapter, we delve into the significance of MRI standardization, elaborating on the diverse techniques em-

ployed to attain unbiased standardization of MR images acquired from multiple centers, each operating under dis-

tinct scanning protocols. We provide an in-depth discussion on radiomics, focusing on its various classes of features

and the specific types of information they encapsulate. These include first-order features, second-order texture fea-

tures, and shape features. Machine and deep learning models are presented and their salient features for optimized

output are presented, the frequently used classifiers which we see in later chapters such as logistic regression ,

support vector machine and random forest are also discussed. Additionally, we introduce some conventional tools

used for survival analysis and finally we present the ICARE classifier, a novel tool that contributes significantly to

the field. Then, we explore the critical facets of machine learning, with an emphasis on aspects such as feature

selection, underscoring their role in constructing effective predictive models.
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Chapter 3

A first multi-model approach for H3K27M

mutation prediction using radiomics and

clinical features

3.1 Introduction

In the preceding chapters, we introduced MRI imaging techniques used in the clinical management of DIPG tumors

and impact of radiomic features and machine learning models to build better predictive models. In this chapter,

we focus on multimodal framework dealing with classification of MRI (including T1-weighted pre and post-contrast,

T2-weighted, and FLAIR sequences), to address the issue of missing modalities. We propose a unique imputation-

free method to tackle this challenge. The main objective of this chapter is to develop and validate a methodological

framework for predicting H3K27 mutation in DIPG using the aforementioned MRI sequences. We also investigate

the impact of ComBat harmonization on the prediction task.
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3.1.1 Radiomic studies in how to deal with missing data multiple scanners

A first approach was proposed by Goya-outi et al 2019 [126] selecting patients having the four modalities. In this

preliminary study 30 patients were used to predict H3 mutations to better take into account the characteristics of the

population (missing data). Several approaches are possible including imputation. Imputation refers to the process

of replacing missing data with estimated values based on the information available in the dataset. In the context

of medical imaging mutation prediction, missing data may arise due to various reasons, such as technical errors

in data acquisition, or incomplete patient data. Imputation can have both positive and negative effects on machine

learning algorithms, depending on how it is performed and the characteristics of the dataset. There are several

imputation methods commonly used in machine learning, including:

1. Mean imputation: In this method, the missing values are replaced with the mean value of the non-missing

values for that feature [168].

2. Median imputation: Similar to mean imputation, but the missing values are replaced with the median value of

the non-missing values [169].

3. Mode imputation: For categorical features, the missing values are replaced with the mode (most common

value) of the non-missing values [170].

4. Hot deck imputation: In this method, the missing values are replaced with values from other similar observa-

tions in the dataset. For example, if a missing value is in a patient record, it can be imputed using the value of

the same feature from another patient with similar characteristics [171].

5. K-nearest neighbors imputation: This method imputes missing values by finding the k-nearest neighbors to

the observation with missing values and replacing them with the average or median value of those neighbors

[171].

6. Regression imputation: In this method, a regression model is trained to predict the missing values based on

the other features in the dataset. The predicted values are then used to impute the missing data [172].

7. Multiple imputation: This method involves creating multiple imputed datasets, each with different imputed

values, and then combining the results from the analyses on each dataset to obtain a final estimate.

However, the use of imputation methods for a prediction task can affect the accuracy and reliability of the prediction

model. An imputation methods can indeed introduce bias in the imputed values, leading to biased estimates of the

model parameters and reduced accuracy of the prediction model. A study by Vaida and Xu (2000) [173] showed

that imputation methods such as mean imputation, regression imputation, and multiple imputation can lead to bi-

ased estimates of the model parameters in linear regression models. A study by Barnard and Rubin (1999) [174]

showed that multiple imputation can underestimate the variance of the imputed values, leading to overconfidence
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in the model predictions. A study by Jerez et al (2010) [175] showed that imputation methods such as regression

imputation and KNN imputation can impute noise into the missing values, leading to increased variability in the

prediction model and reduced accuracy. A study by Little and Rubin (2002) [176] showed that different imputation

methods can lead to different estimates of the missing values, leading to different model predictions. In conclusion,

while imputation methods are a useful tool for handling missing data, they have same drawbacks that can affect

the accuracy and reliability of the prediction model. The use of imputation methods should be carefully considered

and justified based on the specific characteristics of the dataset and the research question. Generative Adversarial

Networks (GANs) have been heralded as a breakthrough in many domains, including the imputation of missing

modalities in medical imaging.However, they are not without challenges. One of the primary concerns with GANs is

mode collapse, a phenomenon where the network produces a limited variety of outputs rather than a broad repre-

sentation of the data [177]. This limitation is particularly concerning in medical imaging where diverse pathologies

and anatomical variations are essential to capture. Additionally, GANs are notoriously unstable during training, often

leading to oscillations or divergence which can result in the creation of unrealistic images [178]. The lack of a ground

truth for the produced outputs, which makes it difficult to quantify image quality, presents a more particular issue

to medical image synthesis [179]. Additionally, there is a chance of overfitting when GANs are trained on small

datasets, which might result in the replication of patient-specific characteristics in created pictures, causing difficul-

ties with accuracy and privacy [180]. Even while GAN-synthesized pictures could look realistic, they could contain

anatomical and pathological discrepancies that could result in inaccurate clinical interpretations [181]. Last but not

least, the fact that many GAN-based synthesis approaches lack thorough clinical validation is a major source of

worry in the medical sector. It is crucial to guarantee that these synthetic pictures are not only aesthetically accurate

but also clinically valid and do not add diagnostic errors [182].

Alternative methods that can handle missing data directly without imputation should thus be considered, by defining

for instance different models computing 1, 2,.. N types of data as illustrated in Figure 3.1

3.1.2 How to deal with multi-scanner data

Medical imaging data can fluctuate significantly between institutions, locations, devices, and even moments in time.

The generalization of machine learning models, which may have been trained on data from one distribution but

are anticipated to function well on another, presumably different distribution, is hampered by this variance. Medical

imaging models are typically trained on small, single-scanner datasets that do not generalize well to data obtained

from different scanners. The quality of the machine, its parameters, the acquisition protocol, and epidemiological

variations among patient populations can all impact imaging data. Domain shift refers to the mismatch between

the training data distribution, often collected in clinical research settings, and the real-world clinical data distribution.

Limited datasets from a single scanner may fail to capture the full range of variability present in imaging data from di-
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Patient 1 – Clinic, T1w, T2

Patient 2 – Clinic, T1c, FLAIR

Patient 3 – Clinic, T1c, T2, FLAIR

Patient 4 – Clinic, T1w, T1c, T2, FLAIR

Majority voting of the models that are available for one given patient

Final Prediction

H3.3
H3.3
H3.1
H3.3

Figure 3.1: The figure illustrates four hypothetical patients evaluated by the 16 model approach.

verse scanners commonly used in clinical practice. This lack of generalizability hinders the successful application of

these models to real-world scenarios. Models trained on small datasets predominantly representing a specific pop-

ulation which may struggle to generalize their predictions to populations with different characteristics. To overcome

the challenges of domain shift, researchers have proposed various strategies. Augmenting training datasets with a

wider range of scanner types and imaging protocols allows models to capture greater variability and improve gener-

alizability. Transfer learning techniques, involving pre-training models on specific datasets and fine-tuning on smaller

clinical datasets, enable adaptation to the specific characteristics of the target domain. Addressing domain shift is

essential for the successful clinical implementation of automated medical image analysis, especially those based

on artificial intelligence. By developing models that can effectively generalize across different scanners, acquisition

protocols, and patient populations, we can enhance the reliability and applicability of these automated approaches

in real-world healthcare settings. This has been demonstrated in the following studies [183], [184], [185], [186], [187]

and [188]. Several solutions have been proposed to solve the problem of domain shift. For instance in [187],[188]

and [186] by merging information from various scanners, the heterogeneity of training datasets was increased to

produce more generalizable models. This method’s drawback is that data must be shared between centers, which is

sometimes impractical due to concerns about data privacy. Utilizing transfer learning, which was initially developed

using data from a different scanner, is an additional approach. In this case, only the model needs to be shared; the

data need not be.This method has been used to adapt models in several studies [189],[190],[191] and [192].
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In prospective clinical studies, it is advisable to synchronize imaging protocols at an earlier stage across multiple

centers, thereby mitigating the potential influence of disparate imaging protocols on feature values [193], [194]. In

order to reduce the effect of multi scanner acquisitions several groups have proposed to reduce the variability by

re-sampling the images to a common voxel size or by filtering the images to match spatial resolution [195] , [196].

However, this requires accessing the images retrospectively and the filtering procedure reduces the quality of im-

ages acquired using the most recent devices. Others apply a z-score transformation [197] to each feature value

based on mean and standard deviation measured in each center for that feature, but this assumes that images

produced by the different centers have been obtained in similar patient samples (e.g., same proportion of advanced

and early-stage tumors), which is sometimes difficult to achieve. In genomics, researchers face a similar problem

called batch effect and caused by the handling of scans by different scanners, different technicians, or different days

that can obscure individual variations. To deal with that problem in genomics, the ComBat realignment method was

introduced [198].

To reduce batch effects and improve the dependability of radiomic characteristics, ComBat harmonization was also

applied to radiomic analysis. Radiomic readings may contain unwelcome variability brought on by batch effects,

which might result from changes in acquisition techniques or scanner types [183], [199]. The effect of ComBat har-

monization on radiomic characteristics in MR imaging has been investigated in a number of research. For instance,

in the work of Vallières et al. (2015) [105] improved the prediction accuracy of lung metastases in soft-tissue sar-

comas by using ComBat harmonization to coupled FDG-PET and MRI texture data. The study published by [200]

investigated the application of ComBat harmonization in brain MRIs, highlighting its potential for lowering batch

effects and increasing cancer recurrence predicting models. The work of Parmar et al. (2015) [101] highlighted

the impact of batch effects on radiomic characteristics and stressed the importance of harmonization strategies in

enhancing radiomics-based biomarkers, although not being particular to ComBat. Collectively, these investigations

highlight how crucial harmonization is for improving the reliability and consistency of radiomic characteristics.

3.2 Paper published at the 2021 annual international conference of the

IEEE in medicine and biology society
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Impact of ComBat and a Multi-Model approach to deal with
multi-scanner and missing MRI data in a small cohort study.

Application to H3K27M mutation prediction in patients with DIPG.

Fahad Khalid1, Jessica Goya-Outi1, Vincent Frouin2, Nathalie Boddaert3, Jacques Grill4 and Frédérique Frouin1

Abstract— Radiomics was proposed to identify tumor phe-
notypes non-invasively from quantitative imaging features.
Calculating a large amount of information on images, allows
the development of reliable classification models. In multi-
modal imaging protocols, the question arises of adding an
imaging modality to improve model performance. In addition,
in the implementation of clinical protocols, some modalities
are not acquired or are of insufficient quality and cannot be
reliably taken into account. Furthermore, multi-scanner studies
generate some variability in the acquisition and data. Some
methodological solutions using ComBat and a multi-model
approach were tested to take these two issues into account.
It was applied to a cohort of 88 patients with Diffuse Intrinsic
Pontine Glioma (DIPG). Sixteen models using radiomic features
computed using 0, 1, 2, 3 or 4 MRI modalities were proposed.
Based on Leave-One-Out Cross-Validation, F1 weighted scores
ranged from 0.66 to 0.85. A model of majority voting using the
prediction of all the models available for one given patient was
finally applied, reducing drastically the number of unclassified
patients.

Clinical relevance— In case of patients with DIPG, the
prediction of H3 mutation is of prime importance in case of
inconclusive biopsy or in the absence of it. It could suggest
orientations for new chemotherapy drugs associated with the
radiation therapy.

I. INTRODUCTION

Diffuse intrinsic pontine glioma (DIPG) is a highly aggres-
sive pediatric tumor, with a median survival of 9–11 months
[1]. Due to its position in the brainstem, surgical interven-
tion is not an option, and conventional chemotherapy has
proven to be ineffective. Currently, radiation therapy is the
only standard care that temporarily mitigates the symptoms,
delays disease progression, and extends median survival by a
few months. Recent studies have shown that approximately
80% of DIPG harbor mutations at genes encoding histone
H3K27M. Most current mutations are H3.1 (HIST1H3B) and
H3.3 (H3F3A). These mutations are currently identified from
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1LITO U1288, Inserm - Institut Curie, 91400 Orsay, France
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biopsy samples and are associated with patient response to
therapy [2]. Some clinical trials to assess therapy options ac-
cording to these mutations are currently under investigation.
In a previous work, we have proposed to predict the two
types of histone H3K27M mutations non-invasively using
MRI-based radiomic features [3]. The ultimate achievement
would be to define whether this could avoid biopsy, or at
least replace it when it is not feasible or not conclusive,
and guide patient care from diagnosis time. The present
work aims at optimizing this predictive model [3] in a larger
cohort. However, the introduction of new patients (coming
from the same center) introduces some variability in the
image database due to the use of two different scanners
(1.5T and 3T scanners). Furthermore, our first model was
based on the joint use of clinical data and four types
of structural MR images: T1-weighted (T1w), T2-weighted
(T2w), T1-weighted post-contrast injection (T1c) and T2-
weighted FLAIR (FLAIR) images. To increase the number of
patients, and the predictive power of the prediction models,
we consider patients having less than four modalities (at least
one among the four).
Radiomics consists in the extraction of quantitative imaging
features to identify tumor phenotypes with some predictive
values. It faces the critical issue of lack of reproducibility
that hampers the successful translation of radiomic model
discovery into better diagnosis, patient classification or mon-
itoring. With the introduction of an additional cohort with
differences in scanner field and settings, radiomic features
were expected to differ between the two scanners, hence
ComBat harmonization was introduced [4]. In addition to
image intensity standardization [5], ComBat is dedicated
to the harmonization of the radiomic features which are
associated with one specific tissue, the tumor in the present
case. Furthermore, to take advantage of all the MR modalities
available for each patient, a multi-model approach is built,
using the 16 combinations of the four MR modalities.

II. PATIENTS AND METHODS

A. Clinical and image data

This monocentric retrospective study (2014-2019) in-
cluded 88 patients with DIPG, scanned at the diagnosis time
with one of the two scanners of our center and at least one
of the four structural MRI modalities: T1w, T2w, T1c and
FLAIR (see Table I).
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TABLE I
MRI DATASET PROPERTIES

1.5T 3.0T
Patients 71 17

T1w 55 10
T1c 52 12
T2w 51 15

FLAIR 50 12

A total of 88 patients were scanned using either a 1.5T
(Signa HDxt, GE Medical Systems) or a 3T scanner (MR-
750, GE Medical Systems). Among them, 17 presented H3.1
mutation type, 47 H3.3 mutation type and 24 were wild type
(WT), or presented another mutation type, or their mutation
status was unknown. A total of 17 patients was scanned
using the 3T scanner; among them, 9 were H3.3 mutated, 2
were H3.1 mutated, and 6 mutations were unknown or wild
type. The clinical feature set consisted of age at the time
of diagnosis and sex of patients (see Table II). Patients with
H3.3 mutations were older at diagnosis than patients with
H3.1 mutation (Wilcoxon test, p<0.01). Table III indicated
the number of patients with H3.1 or H3.3 mutation available
by considering each combination of 1 to 4 MR modality.
Only 47/64 patients (73%) presented the four MR modalities.

TABLE II
CLINICAL CHARACTERISTICS OF PATIENTS INCLUDED IN THE STUDY

H3.1 H3.3 WT/Unknown
Patients 17 47 24

Age (years) 4.9 ± 1.7 8.7 ± 3.6 8.8 ± 6.1
Girls/boys 10g/7b 22g/25b 9g/15b

B. Image feature extraction

Images were pre-processed by a dedicated pipeline [5]
including intensity standardization according to the hy-
brid white stripe approach, resampling to isotropic voxels
(1 mm3) and multi-modal image registration to each T2w
scan (when available, T1 or FLAIR otherwise). For each
patient, a large spherical region was drawn inside the tumor
on the T2w scans (if available, T1 or FLAIR otherwise) and
reported in T1w, T1c and FLAIR scans. Radiomic features
were extracted using PyRadiomics [6]. A total of 79 features
including first-order and texture features were computed for
each MRI modality.

C. Harmonization of features using ComBat

In brain MR, standardization approaches have been pro-
posed to correct for the intensity variability. For instance, the
hybrid white stripe method proved to be successful in the
context of neurodegenerative diseases and brain cancer [5].
However, we showed that this procedure was not sufficient
to explain differences in radiomic features observed for the
same patients undergoing 1.5T and 3T scans [4]. The further
use of ComBat to harmonize radiomic features has been
validated. For each radiomic feature y, computed for one

given modality, measured in patient j with scanner i, the
scanner effect on feature yij can be modelled as (1):

yij ∼ α+ γi + σiεij , (1)

where α is the overall value of the radiomic feature y, γi
is an additive scanner effect and σi a multiplicative scanner
effect associated to an error term εij . ComBat estimates the
α̂, γ̂i, and σ̂i terms, and corrected values y∗ij are computed
by (2):

y∗ij =
yij − α̂− γ̂i

σ̂i
+ α̂ (2)

Finally, values y∗∗2j obtained for the second scanner (3T) are
realigned to the values obtained for the first scanner (1.5T)
according to (3), with µ̂ = σ̂1/σ̂2:

y∗∗2j = µ̂y2j + α̂(1− µ̂) + (γ̂1 − µ̂γ̂2) (3)

D. Machine Learning Models

Five feature sets were considered as the inputs of the
predictive models: one feature set per MRI modality and
one clinical feature set. To benefit from all the available
patient modalities, 16 models (Mk, 1≤k≤16 ) were built.
Table III represents for each model the type of modality it
accepts. This allows the original data set to stay unchanged
while addressing the missing data handling problem. For
each model, a three steps selection procedure was applied
to the imaging features:

• Features were selected according to their robustness to
the spherical delineations. Based on features computed
in dilated and eroded versions of the tumor region,
the absolute agreement intrac lass correlation coefficient
(ICC) of each feature was computed. Only features with
ICC > 0.9 were kept.

• Only features presenting an individual Area Under the
Receiver Operating Characteristic Curve (AUC) greater
than 0.75 for the classification task were kept. This
threshold was defined to exclude features that could
degrade the model.

• To reduce the total number of features, hierarchical
clustering was performed, keeping the minimum abso-
lute Spearman’s rank-order correlation between cluster
members greater than 0.85. The feature with the greatest
AUC of each cluster was finally selected.

Classification task was then achieved using a logistic regres-
sion model. Leave-One-Out Cross-Validation (LOOCV) was
applied systematically to estimate the performance of each
of the 16 models. Feature selection and standardization was
performed inside each LOOCV fold, as described in [3].
All experiments have been achieved using radiomic features
before the use of ComBat and after the use of ComBat.
Finally, an additional prediction model (MMV) was defined
as the majority voting of all the models in which each patient
can participate.
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TABLE III
TABLE SHOWING THE INFORMATION (MARKED BY ’X’) USED FOR THE DESIGN OF EACH OF THE 16 MODELS, AND THE NUMBER OF PATIENTS THAT

ARE AVAILABLE TO ESTIMATE EACH MODEL

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16
Clinical features x x x x x x x x x x x x x x x x

T1w features x x x x x x x x
T2w features x x x x x x x x

FLAIR features x x x x x x x x
T1c features x x x x x x x x

Nb of Patients 64 54 54 51 53 52 51 49 51 52 48 50 49 47 48 47
H3.1 17 13 13 12 14 12 13 12 12 14 12 12 13 12 12 12
H3.3 47 41 41 39 39 40 38 37 39 38 36 38 36 35 36 35

Fig. 1. Box plots of one radiomic feature (FLAIR 90 Percentile) for values
coming from the 1.5 T scanner (left), the 3T scanner to be aligned (middle)
and the 3T scanner after the realignment procedure using ComBat (right).

III. RESULTS

A. ComBat harmonization

Fig. 1 illustrates the values of one specific radiomic
feature (90 Percentile computed in the tumor region of
FLAIR image) for the patients acquired with 1.5 T and 3T
scanners. After the realignment based on ComBat procedure,
we observe a reduction of the values issued from the 3T
scanner, which better fit with the values coming from the
1.5T scanner. The ComBat procedure was applied to each
radiomic feature independently. Table IV provides the se-
lected features by each of the 16 models without and after
the realignment procedure. Following the feature selection,
twelve parameters (out of the 318 tested) are involved in the
building of the 32 models. Age is selected by all the models.
After the realignment procedure based on ComBat, the 15
radiomic models (M02 to M16) are reduced to two features:
age and one radiomic feature, this number of features being
equal to 2 (7 models), 3 (2 models) and 4 (5 models) when
ignoring the realignment procedure. Table V provides the
F1 weighted score, obtained by the 16 models following
LOOCV without and with realignment. The model showing
the lowest performance (M01) is highlighted in red color
and the model generating the highest performance (M02) is
highlighted in blue color.

B. Prediction of mutation using the multi-model approach

Fig. 2 provides the prediction results obtained by the
model showing the highest performance according to
LOOCV (M02) and the majority voting process (MMV).
Both models used radiomic features after their realignment
using ComBat. Of note, for the model MMV, results are quite
similar before and after ComBat, one H3.3 case that was
miss-classified before Combat was classified as undecided
after ComBat, with an equal number of votes for each class.
The number of undetermined cases is drastically reduced
when using MMV : two patients are left undecided, with
a equal number of votes for both tumor mutation whereas
10 patients could not be classified using M02 approach, due
to missing data (lack of T1 modality in that case).

Fig. 2. Prediction results provided by the best radiomic model (M02) and
by the majority voting approach (MMV).

IV. DISCUSSION

The presented approach makes it possible to adapt pre-
diction of the H3 mutation to the real conditions of an
examination and to propose models that adapt to the available
data. Indeed, the prediction of the H3 mutation is of prime
interest in cases where it is not possible to perform the biopsy
or when its results are not conclusive. The different proposed
models will be tested on additional data coming from a
new clinical trial. As the number of subjects will increase,
it will then be possible to refine the models by possibly
incorporating more clues. The model M16 that we initiated
in [3] incorporates patients with all the 4 MR modalities,
in our augmented database, about 25% of the patients could
not be analyzed using this model. Model M01 is based on
age only and clearly shows worse performance than other
models using LOOCV (see Table V). The development of the
multi-model approach fills to main objectives, it avoids any
imputation based methods for missing data handling along
with the benefit of pooling in additional data if a modality
is made available for the study.
The MR scanner affects the radiomic feature values extracted
from MR images, introducing major confounding factors in

58



TABLE IV
FEATURES SELECTED BY EACH MODEL BEFORE (IN BLACK COLOR) AND AFTER (IN BLUE COLOR) REALIGNMENT PROCEDURE USING COMBAT FOR

THE CLASSIFICATION TASK (H3.1 VERSUS H3.3 MUTATION).

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16
Clinical Age Age Age Age Age Age Age Age Age Age Age Age Age Age Age Age

T1w Id11 Id6 Id1 Id6 Id1 Id1 Id1 Id1
T2w Id2

FLAIR Id3, Id4 Id3, Id4 Id3 Id3, Id4 Id3 Id3 Id3 Id3 Id3
T1c Id5 Id5 Id5 Id5 Id5 Id5 Id5

Clinical Age Age Age Age Age Age Age Age Age Age Age Age Age Age Age Age
T1w Id6 Id9 Id9 Id9 Id6 Id9 Id6 Id9
T2w Id2 Id2

FLAIR Id7
T1c Id8 Id10 Id11 Id11

1Id1: T1w firstorder median Id2: T2w glcm entropy Id3: FLAIR glcm homogeneity1 Id4: FLAIR firstorder 90Percentile Id5: T1c firstorder 10Percentile
Id6: T1w firstorder root meansquared Id7: FLAIR glszm small area emphasis Id8: T1c glcm Idn Id9: T1w firstorder mean Id10: T1c glrlm short run

emphasis Id11: T1c glcm Entropy

TABLE V
F1 WEIGHTED SCORE OBTAINED BY LOOCV FOR THE 16 MODELS

WITHOUT AND WITH REALIGNEMENT BASED ON COMBAT

Model without ComBat with ComBat
M01 0.66 0.66
M02 0.88 0.85
M03 0.70 0.69
M04 0.75 0.68
M05 0.71 0.74
M06 0.87 0.78
M07 0.82 0.77
M08 0.84 0.82
M09 0.76 0.74

M010 0.70 0.75
M011 0.77 0.77
M012 0.82 0.75
M013 0.83 0.82
M014 0.81 0.78
M015 0.77 0.77
M016 0.81 0.78

multi-centric studies [4]. Here, we validated a harmonization
procedure ComBat realignment for MR radiomic features
extracted from different scanners. In patients scanned with
1.5T and 3T scanners, we showed that this harmonization
procedure realigns radiomic feature distributions (Fig. 1).
In radiomics especially in the light of oncological studies,
pooling images acquired using different devices and different
acquisition and reconstruction protocols is often needed to
increase the size of cohort, or combining different cohorts.
In that context, we demonstrated that ComBat could realign
feature values so that all data could be analyzed together,
even if images had been acquired with different scanners.
It is important to highlight that the effects of ComBat on
our prediction task are small in with respect to the final
decisions. However, changes are seen in feature selection
by individual models to decide upon the type of mutation
as shown in the Table IV. Fewer features are selected after
the feature were subjected to ComBat harmonization. This
further reinforces the positive impact of ComBat as it seems
to increase the level of robustness. This effect needs to be
further investigated, increasing the number of patients with
3T scans.

V. CONCLUSION

The findings of this work demonstrated ComBat har-
monization method could efficiently remove the scan-
ner/protocol effect while preserving the individual varia-
tions in MR modalities coming from different patients and
scanners. Furthermore, it allows the data set to stay un-
changed without the need for adding artificially constructed
data addressing missing data problem which is commonly
used in medical imaging. This approach enables large MR
multicentric studies to highlight the added value of radiomic
analysis in features acquired from different scans. Further-
more, ComBat harmonization may display visible change in
values and rather adds a level of robustness. The multi-model
concept utilizes all the available data performs well due to
the individual model prediction mechanism. Voting by each
model could be associated to a level of confidence for each
prediction.
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3.3 Conclusion

In conclusion, the automatic analysis pipeline suggested in this chapter uses a multi-model strategy that includes 16

different models. This design mimics real-world clinical situations closely and strives to adapt to missing modalities.

The pipeline’s adaptability is demonstrated by its ability to handle patient exams at several locations and at various

times. Additionally, each patient’s output for predicting the H3K27M mutation is guaranteed by the Leave-One-Out

Cross-Validation (LOOCV) approach, offering a vital tool for quantitative comparisons between various patients.

The models’ selectivity, with each model often picking just two features, is significant. It’s interesting to note that

various models occasionally choose the same features. This may cause duplication, but it also highlights how

important some features are. For instance, the fact that different models frequently choose the clinical feature ”age”

shows that it has increased significance. Such knowledge could help determine which traits should be given more

weight, thereby improving prediction accuracy.

Although the literature [201] [202] implies that ComBat may not be the optimal choice for every dataset, its application

has its merits. The box plot evidence underscores a more aligned representation of features from two distinct

scanners post-ComBat application. Additionally, ComBat harmonization affects the choice of features. Notably,

after harmonization, fewer traits are selected, suggesting less redundancy. Thankfully, this simplified option does

not compromise forecast accuracy. These observations have led us to decide to keep ComBat harmonization in the

finished pipeline.

The pipeline does have certain restrictions, though. The 16 models use a majority vote process to determine the final

forecasts. This strategy could result in situations where the votes are evenly divided, making a definitive forecast

difficult to make. The next chapter’s main focus will be on dealing with this uncertainty and the aforementioned

issues.

Future research on DIPG stand to benefit greatly from the pipeline architecture, which enables the smooth addition

of additional modalities to the database. The pipeline developed in [2], lays the door for an expanded analysis and

assessment of imaging data coupled with clinical aspects, giving researchers a powerful tool for further initiatives.
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Chapter 4

A second Multi-Model approach based on

the complementarity between the different

sources of data

4.1 Introduction

This chapter introduces a novel prediction pipeline that builds on the strengths of radiomics and machine learning.

Specifically, we focus on three key aspects of the approach: feature selection, performance, and interpretability. Fea-

ture selection involves identifying the most relevant features for the prediction model, while performance assesses

the accuracy and robustness of the model. Interpretability aims to provide insights into how the model arrived at

its predictions. We do not fill in missing data with estimated values. Instead, we have implemented a specialized

approach that takes into account the missing data and adjusts the model accordingly. This consideration ensures

that our prediction pipeline is robust and can provide accurate predictions even when there is missing data in the

input. By addressing this limitation, we are confident that our approach will provide valuable insights for medical

imaging analysis and contribute to advancing the field of radiomics and machine learning. This pipeline was initially

tested for the prediction of H3.1 versus all (H3.3,H3.2, wild type), then applied to the prediction of ACVR1 and TP53

mutations.

The paper published in Frontiers in Medicine and the second part providing additional experiments analysing the

approach from different perspectives.
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4.2 Paper published in Frontiers in Medicine
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ABSTRACT2

Purpose: Predicting H3.1, TP53, and ACVR1 mutations in DIPG could aid in the selection3
of therapeutic options. The contribution of clinical data and multi-modal MRI were studied for4
these three predictive tasks. To keep the maximum number of subjects, which is essential for a5
rare disease, missing data were considered. A multi-modal model was proposed, collecting all6
available data for each patient, without performing any imputation.7

Methods: A retrospective cohort of 80 patients with confirmed DIPG and at least one of the8
four MR modalities (T1w, T1c, T2w, FLAIR), acquired with two different MR scanners was built. A9
pipeline including standardization of MR data and extraction of radiomic features within the tumor10
was applied. The values of radiomic features between the two MR scanners were realigned11
using the ComBat method. For each prediction task, the most robust features were selected12
based on a recursive feature elimination with cross-validation. Five different models, one based13
on clinical data and one per MR modality, were developed using logistic regression classifiers.14
The prediction of the multi-modal model was defined as the average of all possible prediction15
results among five for each patient. The performances of the models were compared using a16
leave-one-out approach.17

1
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Results: The percentage of missing modalities ranged from 6% to 11% across modalities and18
tasks. The performance of each individual model was dependent on each specific task, with19
an AUC of the ROC curve ranging from 0.63 to 0.80. The multi-modal model outperformed20
the clinical model for each prediction tasks, thus demonstrating the added value of MRI.21
Furthermore, regardless of performance criteria, the multi-modal model came in the first place22
or second place (very close to first). In the leave-one-out approach, the prediction of H3.1 (resp.23
ACVR1 and TP53) mutations achieved a balanced accuracy of 87.8% (resp. 82.1%, and 78.3%).24

Conclusion: Compared with a single modality approach, the multi-modal model combining25
multiple MRI modalities and clinical features was the most powerful to predict H3.1, ACVR1,26
and TP53 mutations and provided prediction, even in the case of missing modality. It could be27
proposed in the absence of a conclusive biopsy.28

Keywords: MRI, Radiomics, Prediction, Missing Data, Genomic Mutation, Diffuse Intrinsic Pontine Glioma29

INTRODUCTION

The diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric tumor, with a median overall30
survival of 11 months (1, 2). Since this tumor is inoperable, radiotherapy is the standard option that31
can be proposed systematically, generating in most cases transient improvement (3). Genomic analyses32
based on tumor biopsies have shown that more than 85% of patients with DIPG harbor mutations(4, 5)33
at genes encoding histone H3, leading to lysine 27 to methionine substitution (H3-K27M). The new34
WHO classification of this disease is diffuse midline gliomas, H3 K27-altered (6). Most frequent H3-35
K27 alterations are H3.1 and H3.3 variants. These two alterations and the H3-wildtype are associated36
with different age profiles and different overall survivals, patients with H3.1 being younger, having37
better response to radiotherapy and better overall survivals (1). Furthermore, these H3 K27M mutations38
are frequently associated with TP53 and ACVR1 somatic mutations (7). If TP53 mutations are mainly39
encountered in H3.3 patients while ACVR1 mutation mostly occur in H3.1 patients, these mutations need40
to be separately identified for testing new chemotherapy options. It was recently shown that TP53 mutation41
can drive radio-resistance in patients with DIPG (8). Thus, the knowledge of this mutation could help to42
refine re-irradiation strategies. Furthermore, the combination of vandetanib and everolimus was identified43
as a possible therapeutic option for patient harboring ACVR1 mutations (9). These recent advances in44
the DIPG patient care, raised the issue of predicting H3.1, ACVR1, and TP53 mutations within tumor45
independently from each other, using data available at diagnosis time: basic clinical data (age and sex)46
and multi-modal MRI to help define a personalized treatment strategy when brain biopsy is not possible47
or is not conclusive.48

Indeed, multi-modal MRI images are always acquired to confirm diagnosis (10, 11). These data could49
also be used for radiogenomic prediction tasks, provided that some pre-processing steps are taken.50
Radiomics is a recent field of research which refers to the comprehensive and automated quantification51
of this radiographic phenotype (12, 13). This approach aims at enhancing some relevant information52
contained in the images and made them available to clinicians. It is based on medical image post-53
processing algorithms and features computation from specific regions of interest (14, 15, 16). Radiomic54
features belong to different families, including morphological, global image intensity, histogram image55
intensity distribution and texture families. Texture indices are based on image intensity comparison56
between neighboring voxels, and potentially reflect biological properties such as tumor heterogeneities57
(12, 17, 18). The high number of radiomic features and their systematic analysis have accelerated the58
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discovery of potential new biomarkers and has definitively modified the research tools in radiology and59
nuclear medicine, giving a larger weight to data analysis. However, end-users of radiomic tools should be60
aware of the pitfalls inherent in these tools (16, 19), including the dependency of radiomic features values61
to the acquisition parameters and to software implementation, and thus the need of image preprocessing62
to make these features more reproducible.63

Magnetic resonance imaging (MRI) with its high spatial resolution and high brain tissue contrast is the64
imaging modality of choice for children with central nervous system tumors. Current recommendations65
include the acquisition of T1-weighted images without contrast (T1w) and following the injection of66
gadoterate meglumine (T1c), T2-weighted images (T2w), and fluid attenuated inversion recovery images67
(FLAIR) (10, 11). As MRI intensities are non-standardized (20), this prevents the extraction of robust68
radiomic features, except if specific standardization procedures are defined, including the use of similar69
pulse sequence parameters and identical size of voxels, and applying image intensity normalization as70
a preprocessing step (21, 22, 23). Of course, intensity variations depend on the MR scanner and the71
acquisition parameters, but also on each acquisition. To reduce this variability, many approaches have been72
proposed (24), including Z-score normalization, and dedicated procedures using a reference tissue, such73
a white matter for brain studies (25). A refined procedure was proposed for patients with DIPG, removing74
the slices corresponding to pontine location to avoid the inclusion of the tumor in the normalization75
process (21). However, despite intensity standardization, some variations in the radiomic features can be76
due to coils, scanners and/or scanning parameters as it was demonstrated on a breast phantom study (26).77
To reduce this impact, the ComBat method, providing harmonization of radiomic features across different78
acquisition scanners (27, 28), has been proposed.79

In the constitution of our global approach, two specific issues were taken into account: 1) missing data:80
due to practical constraints some MRI modalities were missing or non-usable; 2) data scarcity for the81
training of our model: the cohort of patients was small, since DIPG is a rare disease. A compromise82
was made to incorporate as much relevant information as possible. In a preliminary work of our group, a83
radiomic model was proposed to distinguish the two types of histone H3-K27M mutations (H3.3 versus84
H3.1) using a subset of patients having the four MRI modalities (T1w, T1c, T2w, and FLAIR) and clinical85
data (29). To increase the number of patients (about 20% for each prediction task), all the patients having86
at least one of the four MRI modalities were included. To have a prediction for each patient, a multi-87
model strategy was proposed using all the data types among clinical, T1w, T1c, T2w, and FLAIR that88
were available.89

MATERIALS AND METHODS

Patient Database90

This retrospective mono-centric study includes 80 patients having DIPG, who had biopsy and were91
treated between 2009 and 2018 at Gustave Roussy cancer center (Villejuif, France). Patients were scanned92
at the time of diagnosis, before biopsy, with either Signa HDx, 1.5T (GE Healthcare) MRI machine or93
Discovery MR750w, 3T (GE Healthcare) MRI scanner in the pediatric radiology department at Necker94
Hospital (Paris, France).95

At least one of the four structural MRI modalities (T1w, T1c, T2w and FLAIR) (see Table 1) was96
acquired and basic clinical information (age and sex) was also collected. Typical acquisition parameters97
were described in (21). Figure 1 shows two cases of patients issued from the database. A total of 57 (71%)98
patients had the four MRI modalities (T1w, T1c, T2w and FLAIR) of sufficient quality, the remaining99
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patients had at least one missing MRI modality. Following the genomic analysis consecutive to biopsy, 63100
patients have known H3 status, 63 patients (partly different from the H3 subgroup) have known ACVR1101
status and 61 patients have known TP53 status, as summarized in Table 2. For histone H3, the H3.1102
mutation was observed in 14 patients, the H3.3 mutation in 44 patients, the H3.2 mutation in 1 patient103
and histone H3 wild type in 4 patients. Due to the small numbers in the last two classes, the binary task104
was to predict patients with H3.1 mutation against all other patients grouped together. Three binary tasks105
of classification were thus defined: prediction of H3.1, ACVR1 and TP53 mutations. Figure 2 gives an106
overview of the construction of the model which is defined for each prediction task, and the different steps107
are detailed in the following subsections.108

MRI Preprocessing and Radiomic Features Extraction109

All MR Images were first processed through a dedicated pipeline fully described in (21) including bias110
field correction of MRI using N4 algorithm (30), MRI intensity normalization according to an adaptation111
of the hybrid white stripe approach (25), resampling to isotropic voxels of 1 mm3 and multimodal image112
registration on each T2w scan (when available, T1w or FLAIR otherwise) using FSL FLIRT (31).113

For each patient, a spherical region was drawn (the largest sphere within the tumor) and transferred to the114
realigned MR volumes. This region always included the location of the biopsy. For each MRI modality, 79115
radiomic features were extracted within the spherical region using PyRadiomics (14), including 19 first-116
order features derived from the distribution of intensity inside the tumor and 60 texture features computed117
using three different matrices: the grey level co-occurrence matrix (GLCM), the grey level run length118
matrix (GLRLM), and the grey level size zone matrix (GLSZM). All histogram-based and texture-based119
features were computed with a fixed bin width equal to 2 (21). As the MRI were acquired using two120
different scanners, the ComBat harmonization (27, 28) was then applied independently to each radiomic121
feature to make it more comparable across scanners (32). The spherical region is quick and easy to define122
and has already shown some promising results (32), but it does not bring any information related to the123
shape of the tumor. To overcome this drawback, tumor contours were delineated by two skilled operators124
and 14 additional shape features were extracted. As these features were available for each patient, they125
were further merged with clinical data. Results of this additional study are provided in supplemental data.126

Feature Selection127

A recursive feature elimination cross-validation (RFE-CV) method (33) was used to select the most128
relevant features. This procedure was repeated for each of the three classification tasks and for each129
modality m (1 ≤ m ≤ 5). It was implemented using the scikit-learn, a free machine learning library in130
Python (34). The RFE-CV method iteratively fits a model - a logistic regression model was chosen for our131
application - and removes progressively the weakest feature. Therefore, the RFE-CV method eliminates132
dependencies and co-linearity between the different features in the model. To apply the L1 penalty used133
for the logistic regression model, we used a grid analysis introducing a variation (between 0.1 and 1 with134
a step size of 0.1) for the inverse of the regularization strength, the C parameter. Feature importance was135
assessed on the validation set by computing the Brier score loss. The RFE process was repeated 40 times,136
based on a two-fold cross-validation. The up to four most frequently selected features were kept. The137
RFE-CV provided a subset of K features fkm, 1 ≤ k ≤ K, associated with the modality m.138
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Definition of the Mono-Modal and Multi-Modal Models139

Due to the small number of patients and due to missing imaging modalities, a leave-one-out cross-140
validation (LOO-CV) framework, named LOO-CV-MIM, was proposed to compare the different models,141
as illustrated in Figure 3. For each training set, a logistic regression model was defined, using a L1 penalty142
with C = 0.5 (the selected features using the previously described RFE-CV procedure were frequently143
selected using this C value), and a balanced mode to automatically adjust weights inversely proportional144
to class frequencies of the input data. This process was applied separately to each prediction task.145

To explain the process more deeply, we have to consider every patient Pi, having mi modalities such as146
2 ≤ mi ≤ 5, since each patient has one clinical modality and at least one among four MR modalities.147
For each patient Pi, having the modality m, a logistic regression model M i

m is built from the K features148
fkm selected at the previous step, the feature values inserted in the training set being computed for all the149
patients for which the modality m is available, except for the patient Pi. The logistic regression model150
M i

m is then tested on the patient Pi, providing a probability Pr(Pi, M i
m) that the patient Pi had the151

mutation under study, according to the model M i
m. Using these Pr(Pi,M

i
m) values for all the patients, and152

the ground truth classification, receiver operator characteristic (ROC) curve is defined and its associated153
area under the curve (AUC) (35) is computed as a first figure of merit. After applying the conventional154
threshold of 0.5 to define the final classification: if Pr(Pi,M

i
m) ≥ 0.5, the patient Pi is classified as155

having the mutation under study, else as not having this mutation, confusion matrices are then built. Three156
additional figures of merit are then computed: sensitivity, specificity (35), and balanced accuracy (mean157
value of sensitivity and specificity). The number of patients for which the prediction is possible is defined158
as an additional figure of merit.159

Finally the multi-modal model approach (MMulti) is defined, the probability Pr(Pi,M
i
Multi) that the160

patient Pi has the mutation under study based on this ensemble model is equal to the mean probability161
computed for each model M i

m (see equation 1):162

Pr(Pi,M
i
Multi) =

1

mi
.

mi∑

m=1

Pr(Pi,M
i
m) (1)

Since the number mi of models for one patient Pi is between 2 and 5, the Pr(Pi,M
i
Multi) term can be163

defined for each patient. The five figures of merit (AUC, sensitivity, specificity, balanced accuracy and164
number of patients for which the prediction can be done) are defined for the multi-modal model MMulti,165
too.166

RESULTS

Feature Selection167

Two clinical features (age and sex) and 79 radiomic features per imaging modality were initially168
considered. The RFE-CV procedure was applied to each modality (Clinical, T1w, T1c, T2w, FLAIR)169
independently for the three classification tasks (prediction of H3.1, ACVR1 and TP53 mutations). From170
1 to 4 features were selected per modality and resulting features are listed for each task in Tables 3, 4 and171
5. From clinical data, age was selected for the three tasks. For imaging modalities, in most cases, both172
first-order (between 1 and 2) and texture features were jointly selected. The four feature sets selected173
for the four MRI modalities, showed some overlap across the three tasks, but none of these subsets174
totally overlapped. Supplemental Figure S1 displays the correlogram between the radiomic features (79175
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per modality) across the 61 patients selected for prediction of TP53 mutation, showing the potential176
interest of the four modalities, due to low or moderate correlation between features extracted from two177
different modalities. Supplemental Table S1 provides the features selected when merging clinical and178
shape features for each of the three classification tasks.179

To further investigate the interest of each MR modality, the correlograms between the selected features180
are displayed in Figure 4. For the prediction of H3.1 mutation (Figure 4 A), four features (h3, h8, h12,181
and h14) extracted from T1w, T1c, T2w and FLAIR MRI showed high correlation. For the prediction182
of ACVR1 mutation (Figure 4B), three features (a5, a12, and a15) extracted from T1w, T2w and FLAIR183
MRI were also highly correlated. For the prediction of TP53 mutation (Figure 4C), two features (t2 and t9)184
extracted from T1w and T2w MRI were also highly correlated. Interestingly, as shown in Figure 4D, all185
these nine features had correlation greater than 0.73 with the sphere volume, which could be considered as186
a surrogate marker of the tumor volume. Except for these nine features, there were no high redundancies187
between selected features extracted from different modalities, showing the high complementarity between188
these four MRI modalities. Furthermore, no selected radiomic feature was correlated with age.189

Prediction Performance190

Table 6 reports the five figures of merit (number of cases, AUC, sensitivity, specificity, and balanced191
accuracy) obtained by the six models, for the three prediction tasks, using the LOO-CV framework.192
Supplemental Figures S2, S3, and S4 illustrates for each patient the results of the prediction of H3.1,193
ACVR1, and TP53 mutations by the six types of models: MClinic, MT1w, MT1c, MT2w, MFLAIR and194
MMulti. Supplemental Table S2 displays the five figures of merit for two additional models: MClinicSh195
and MMultiSh for which the shape features were merged with the clinical features.196

Three points emerge from the analysis of these results.197

Radiomics increase the performance of the predictors. Indeed, the simple clinical feature ”age”198
provided alone some pretty good results with a balanced accuracy equal to 71.4% for predicting H3.1199
mutation, 70.5% for predicting TP53 mutation and 65.3% for predicting ACVR1 mutation. These values200
could be considered as baseline. When compared to baseline, adding MR radiomic data through the multi-201
modal model enabled an increase of 16 percentage points of the balanced accuracy for predicting H3.1202
and ACVR1 mutations and of 8 percentage points for predicting TP53 mutation. Finally, the addition of203
the 14 shape radiomic features slightly improved the prediction of TP53 mutation, with an increase of 1.4204
percentage point of the balanced accuracy.205

Ensembled multi-modal model outperforms mono-modal predictors. Noticeably the multi-model206
approach provided the best (or second best) performances for all the figures of merit whatever the207
predictive tasks. Thanks to its inception, it provided a prediction for each patient, even in case of missing208
MR data. Following results in Table 6, missing MR data varies between 6% and 11%, according to the209
MR modality and the task of prediction. The AUC associated with the MMulti model was the highest for210
predicting ACVR1 (0.91) and TP53 (0.88) mutations, and the second highest for predicting H3.1 mutation211
(0.91 versus 0.92 for MT1c). Sensitivity was the highest for predicting H3.1 and ACVR1 mutation.212
It reaches the third position for predicting TP53 mutation (67.6% versus 69.7% for MT2w and 71.9%213
for MFLAIR), but for that task, it achieves the highest specificity. Taking into account the balanced214
accuracy as a compromise between sensitivity and specificity, this figure of merit was the highest for215
predicting H3.1 mutation (87.6%) and ACVR1 mutation (82.1%) and the second highest for predicting216
TP53 mutation (78.3% versus 78.6% for MT2w), having a prediction for the 61 patients versus 57 for217
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MT2w. The same effects were observed when the clinical features were replaced by the clinical and the218
shape features, showing the value of the multi-modal model in a slightly different configuration.219

Each MR modality brings specific information. Depending on the task, the ranking of the four models220
built from each MR modality varied. For instance, the T2w modality appears to be less relevant for221
predicting H3.1 and ACVR1 mutations, but it proves to have very high figures of merit for the prediction222
of TP53 mutation. The FLAIR modality appears to be very relevant for predicting ACVR1 mutation but223
less relevant for predicting TP53 mutation. Furthermore, the shape features which could be extracted224
without missing values could have an impact for predicting TP53 mutation, too. These results underline225
the necessity to acquire all the structural modalities to achieve multi-objective classification tasks.226

DISCUSSION

The proposed approach provides a good prediction of three important mutations (H3, ACVR1 and TP53)227
encountered in patients with DIPG, within a constrained experimental setting including missing data and228
small cohort. This result could have a real impact in the coming years to propose a more personalized229
therapy to patients with DIPG. Our approach is based on clinical and MR data and could be applied in230
case of absent or not conclusive biopsy. As reported in the literature (1), age was shown to be a relevant231
predictor of the three mutations, but this study shows that some radiomic models can outperform this232
baseline predictor, with radiomics originated from T1w, T1c and FLAIR for H3.1 mutation, T1c and233
FLAIR for ACVR1 mutation, and T2w and the shape features for TP53 mutation (see Tables 6 and S2).234
With our ensembled multi-modal approach, a prediction can be done for each patient, even if she/he235
lacks one or more MR modalities, and all the figures of merit were among the highest. In the LOO-CV236
framework, the number of false positive and false negative cases was reduced to 19% (resp. 24% and237
23%) for the prediction of H3.1 (resp. ACVR1 and TP53) mutations. This DIPG study illustrates thus the238
positive impact of radiomic approaches for these three predictive tasks.239

From a methodological point of view, radiomic studies rely on a succession of steps which have to240
be optimized. As our database is small, several methods are admissible and can bring some equivalent241
solutions. Users are recommended to follow best practices (36), some of which depending on MRI. In242
clinical studies involving MRI, we have demonstrated the interest of MR data preprocessing with image243
standardization (21, 37) and radiomic feature harmonization (26, 28) to provide more comparable features244
across scanners, sequences and patients. Furthermore, if automatic tumor segmentation is a major issue245
to solve and requires additional developments, the precision of segmentation that is required depends on246
the task to solve. It appears for this study of mutation prediction in DIPG, the definition of a large sphere247
inside the tumor was sufficient to provide good results and the fine delineation of the tumor in 3D was not248
absolutely necessary for this discovery step. For feature selection, several approaches are possible. Using249
a different approach based on feature filtering (and not on RFE-CV) in some preliminary works (29, 32),250
we found that similar features were found to be predictive of H3.1 mutation. As there are many correlated251
features for the same MR modality (as shown in Supplemental Figure S1), some equivalent models can252
be defined using different sets of features.253

This study shows also a pragmatic but efficient approach to deal with missing (or insufficient quality254
data) MR modalities, while taking advantage of the complementarity among them. Our objective was255
to use all the information that was available without data rejection or data imputation. Data rejection,256
for instance removing patients having less than 4 MR modalities, would have considerably reduced the257
number of cases (from 80 to 57 patients), and therefore likely decreased the performance of the models258
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(38). In their recent study related to prediction of H3K27M mutation in diffuse midline glioma using259
multi-modal MRI, more than 50% of patients were excluded due to missing data or insufficient quality260
(39). Our multi-modal model could remedy such a situation, and enable studies with larger number of261
patients providing more robust results. Among other conventional approaches used to deal with missing262
data, MR data imputation appeared to be complex for two main reasons: the low number of cases that263
were initially available, and the low correlation between the features coming from different modalities264
(except from those which are highly correlated with the volume or the shape of the region), as underlined265
by Figure 4. For similar reasons, generative adversarial networks (40) to synthesize missing MR volumes266
were not retained as a feasible option.267

In our preliminary work (32), 16 models were defined to deal with missing data for the prediction of268
H3.1 mutation: one clinical model based on age, four mono-modal models combined with age and 11269
additional models merging two (providing 6 models), three (providing 4 models) and four (providing 1270
model) MRI modalities. However, these 11 additional models proved to be redundant with the 4 mono-271
modal models since they were based on very similar sets of features. Thus the majority voting on all272
possible models that was applied to each patient could be partially biased.273

Radiogenomic studies in neuro-oncological studies (41) have shown a small number of studies devoted274
to DIPG or diffuse midline glioma (DMG). For the specific classification tasks we aimed at solving, we275
did not find any strictly comparable studies. Indeed, if several studies (39, 42, 43, 44) have proposed some276
radiomic models to distinguish between H3K7M mutation and Histone H3 Wild-Type groups, all of them277
included an adult population with DMG, which manifest themselves in several different ways compared to278
pediatric cancers. Therefore, features and models proposed by those studies could not be compared with279
ours. Furthermore, we did not find any study aiming at predicting ACVR1 mutations or TP53 mutations280
in patients with DIPG or DMG.281

Our study presents several limitations. Despite the selection of a reduced number of features (4 or less282
features per mono-modal model), some over-fitting could still be present, especially for the prediction283
of H3.1 and ACVR1 mutations, for which the data sets were strongly imbalanced. However, we are284
confident in the interest of the multi-modal model, since it proves its superiority for the three different285
tasks considered here. As the different mono-modal models have the same weight in the definition of286
the multi-modal approach, optimizing their weight according to their performances could also be tested.287
However, following this direction, first attempts consisting in removing the ’worst’ modality did not288
show any significant changes. The radiological interpretation of selected features, apart those close to289
volume or shape, needs also to be refined. For this point, we should test the use of decision maps, as290
recently introduced in (45). Furthermore, a recent study (46) has shown the superiority of segmenting291
tumor volume over its ellipsoidal approximation to assess tumor burden in DIPG. The fine delineation of292
contours will make possible to further test the impact of additional morphological features, including293
the histogram of oriented gradients (47) for the estimation of the genomic mutations. The manual294
segmentation is however tedious and its reproducibility still needs to be tested. This task is also difficult295
to automate due to the particularities of DIPG and the difficulties of obtaining a cohort with numerous296
data (48). Finally, several works remain to be done. To get rid of the data leakage which was present297
in our feature selection, the external test of our different models should be done to validate them or to298
propose some simplified models to travel across the different centers. The model of logistic regression299
was chosen due to its simplicity and its robustness, and this choice proves to be informative in our context300
of small number of cases and of imbalanced classes. Regarding prediction performance, our results are301
certainly overestimated, especially with the LOO-CV process. With a larger database, the performances302
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will be better assessed, and different machine learning models could also be tested, tuned, and compared.303
Measuring the added value of perfusion and diffusion studies (49), for which the number of missing304
modalities will be higher, is also a challenge to solve. The interest of MR radiomics to define prognosis305
(50, 51) should also be further analyzed when compared to simpler models (50, 52, 53).306

CONCLUSION

The interest of using MRI radiomics in addition to clinical data to predict mutations of H3.1, ACVR1307
and TP53 was shown on a retrospective cohort of 80 subjects. Each MR modality (T1w, T1c, T2w and308
FLAIR) demonstrates its interest for at least one of the three prediction tasks. Compared to single-modal309
models, the multi-modal model combining multiple MRI modalities and clinical features was the most310
powerful and could provide a prediction for every patient, even in the case of missing MR modalities. It311
could thus be tested as an alternative in the absence of biopsy or in case of non-conclusive results of the312
genetic analysis.313
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The authors thank Irène Buvat, Raphaël Calmon, Christophe Nioche, and Fanny Orlhac for their helpful322
comments.323

SUPPLEMENTAL DATA

Supplemental data include one excel file DIPGFeatures.xlsx and one pdf file, including supplemental324
Figures and Tables.325

DATA AVAILABILITY STATEMENT

Supplemental file DIPGFeatures.xlsx contains the clinical and biological information, and the radiomic326
features used for the present study.327

Frontiers 9

71



Khalid et al. MR radiomics for genomic characterization of DIPG

REFERENCES

1 .Cohen KJ, Jabado N, Grill J. Diffuse intrinsic pontine gliomas—current management and new biologic328
insights. Is there a glimmer of hope? Neuro Oncol 19 (2017) 1025–1034. doi:10.1093/neuonc/nox021.329

2 .Hoffman LM, Veldhuijzen van Zanten SE, Colditz N, Baugh J, Chaney B, Hoffmann M, et al. Clinical,330
Radiologic, Pathologic, and Molecular Characteristics of Long-Term Survivors of Diffuse Intrinsic331
Pontine Glioma (DIPG): A Collaborative Report From the International and European Society for332
Pediatric Oncology DIPG Registries. J Clin Oncol 36 (2018) 1963–1972. doi:10.1200/JCO.2017.75.333
9308.334

3 .Vanan MI, Eisenstat DD. DIPG in Children – What Can We Learn from the Past? Front Oncol 5335
(2015). doi:10.3389/fonc.2015.00237.336

4 .Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y, et al. The genomic landscape of diffuse intrinsic337
pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46 (2014) 444–450. doi:10.338
1038/ng.2938.339

5 .Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N, Boddaert N, et al. Histone H3F3A and340
HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different341
prognosis and phenotypes. Acta Neuropathol 130 (2015) 815–827. doi:10.1007/s00401-015-1478-0.342

6 .Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 who343
classification of tumors of the central nervous system: a summary. Neuro Oncol 23 (2021) 1231–1251.344
doi:10.1093/neuonc/noab106.345

7 .Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L, Dzamba M, et al. Genomic346
analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent347
activating ACVR1 mutations. Nat Genet 46 (2014) 451–456. doi:10.1038/ng.2936.348

8 .Werbrouck C, Evangelista CC, Lobón-Iglesias MJ, Barret E, Le Teuff G, Merlevede J, et al. TP53349
Pathway Alterations Drive Radioresistance in Diffuse Intrinsic Pontine Gliomas (DIPG). Clin Cancer350
Res 25 (2019) 6788–6800. doi:10.1158/1078-0432.CCR-19-0126.351

9 .Carvalho DM, Richardson PJ, Olaciregui N, Stankunaite R, Lavarino C, Molinari V, et al. Repurposing352
Vandetanib plus Everolimus for the Treatment of ACVR1 -Mutant Diffuse Intrinsic Pontine Glioma.353
Cancer Discov 12 (2022) 416–431. doi:10.1158/2159-8290.CD-20-1201.354

10 .Avula S, Peet A, Morana G, Morgan P, Warmuth-Metz M, Jaspan T, et al. European Society355
for Paediatric Oncology (SIOPE) MRI guidelines for imaging patients with central nervous system356
tumours. Childs Nerv Syst 37 (2021) 2497–2508. doi:10.1007/s00381-021-05199-4.357

11 .Cooney TM, Cohen KJ, Guimaraes CV, Dhall G, Leach J, Massimino M, et al. Response assessment358
in diffuse intrinsic pontine glioma: recommendations from the response assessment in pediatric neuro-359
oncology (rapno) working group. Lancet Oncol 21 (2020) E330–E336.360

12 .Gillies R, Anderson A, Gatenby R, Morse D. The biology underlying molecular imaging in oncology:361
From genome to anatome and back again. Clin Radiol 65 (2010) 517–521. doi:10.1016/j.crad.2010.362
04.005.363

13 .Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data.364
Radiology 278 (2016) 563–577. doi:10.1148/radiol.2015151169.365

14 .van Griethuysen JJ, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational366
Radiomics System to Decode the Radiographic Phenotype. Cancer Res 77 (2017) e104–e107. doi:10.367
1158/0008-5472.CAN-17-0339.368
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TABLES

MR Scanner Type T1w T1c T2w FLAIR

1.5 T 60 58 60 56
3 T 13 14 14 11

Table 1. Number of modalities available according to each type of MR scanner

Number of patients (F/M) Mean Age (y)

All patients 80 (35/45) 8.1 ± 4.4

Histone H3 mutation status
Known 63 (30/33) 7.7 ± 3.7

H3.1 14 (8/6) 5.0 ± 1.6
H3.2 1 (0/1) 4.5
H3.3 44 (20/24) 8.7 ± 3.7
WT 4 (2/2) 6.9 ± 4.6
Others 49 (22/27) 8.5 ± 3.8

Unknown 17 (5/12) 9.3±6.4

ACVR1 mutation status
Known 63 (28/35) 7.9 ± 3.6

ACVR1 mutation 14 (7/7) 5.9 ± 3.0
WT 49 (21/28) 8.4 ± 3.6

Unknown 17 (7/10) 8.8±6.6

TP53 mutation status
Known 61 (29/32) 7.8 ± 3.7

TP53 mutation 34 (14/20) 9.0 ± 3.4
WT 27 (15/12) 6.3 ± 3.5

Unknown 19 (6/13) 8.8±6.2

Table 2. Main clinical (age and sex) and molecular features. For Histone H3, ”Others” gather H3.2
mutation, H3.3 mutation and Wild-Type (WT).
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H3.1 mutation Features name Features identifier

MClinic Age h1 (a1, t1)

MT1w glcm ClusterShade h2
glrlm GrayLevelNonUniformity h3 (a5)
firstorder 90Percentile h4 (a2, t4)
firstorder Skewness h5 (a4)

MT1c glcm ClusterShade h6 (a6)
glrlm ShortRunLowGrayLevelEmphasis h7
glszm IntensityVariability h8
firstorder 10Percentile h9

MT2w glszm LowIntensitySmallAreaEmphasis h10
glszm HighIntensityLargeAreaEmphasis h11 (a10)
firstorder TotalEnergy h12 (a12, t9)
firstorder Minimum h13

MFLAIR glrlm RunLengthNonUniformity h14 (a15)
firstorder Skewness h15 (a13)
glcm ClusterShade h16
glcm DifferenceVariance h17

Table 3. Subsets of features selected by the five different models MClinic, MT1w, MT1c, MT2w, and
MFLAIR to predict H3.1 mutation. Inside brackets, features selected by one or two other tasks of mutation
prediction.
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ACVR1 mutation Features name Features identifier

MClinic Age a1 (h1, t1)

MT1w firstorder 90Percentile a2 (h4, t4)
glcm Correlation a3
firstorder Skewness a4 (h5)
glrlm GrayLevelNonUniformity a5 (h3)

MT1c glcm ClusterShade a6 (h6)
glszm IntensityVariabilityNormalized a7
glcm ClusterProminence a8
glrlm LongRunHighGrayLevelEmphasis a9

MT2w glszm HighIntensityLargeAreaEmphasis a10 (h11)
firstorder Skewness a11 (t8)
firstorder TotalEnergy a12 (h12, t9)

MFLAIR firstorder Skewness a13 (h15)
glcm Idmn a14
glrlm RunLengthNonUniformity a15 (h14)
glszm LowIntensityLargeAreaEmphasis a16

Table 4. Subsets of features selected by the five different models MClinic, MT1w, MT1c, MT2w, and
MFLAIR to predict ACVR1 mutation. Inside brackets, features selected by one or two other tasks of
mutation prediction.
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TP53 mutation Features name Features identifier

MClinic Age t1 (h1, a1)

MT1w glrlm RunLengthNonUniformity t2
glcm SumAverage t3
firstorder 90Percentile t4 (h4, a2)
glszm ZoneEntropy t5

MT1c glszm HighIntensityLargeAreaEmphasis t6

MT2w glcm SumAverage t7
firstorder Skewness t8 (a11)
firstorder TotalEnergy t9 (h12, a12)
glcm AverageIntensity t10

MFLAIR glszm IntensityVariability t11

Table 5. Subsets of features selected by the five different models MClinic, MT1w, MT1c, MT2w, and
MFLAIR to predict TP53 mutation. Inside brackets, features selected by one or two other tasks of mutation
prediction.
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Models MClinic MT1w MT1c MT2w MFLAIR MMulti

H3.1 mutation
Number of patients 63 (14) 58 (13) 58 (14) 59 (13) 56 (12) 63 (14)
AUC 0.82 0.87 0.92 0.71 0.74 0.91
Sensitivity (%) 85.7 84.6 78.6 92.3 83.3 100
Specificity (%) 57.1 75.6 77.3 52.2 72.7 75.5
Balanced Accuracy (%) 71.4 80.1 77.9 72.2 78.0 87.8

ACVR1 mutation
Number of patients 63 (14) 58 (13) 58 (13) 59 (13) 56 (13) 63 (14)
AUC 0.74 0.78 0.77 0.72 0.83 0.91
Sensitivity (%) 85.7 76.9 76.9 84.6 76.9 92.9
Specificity (%) 44.9 60.0 71.1 58.7 74.4 71.4
Balanced Accuracy (%) 65.3 68.5 74.0 71.7 75.7 82.1

TP53 mutation
Number of patients 61 (34) 56 (33) 57 (32) 57 (33) 54 (32) 61 (34)
AUC 0.78 0.83 0.63 0.86 0.75 0.88
Sensitivity (%) 55.9 66.7 28.1 69.7 71.9 67.6
Specificity (%) 85.2 78.3 88.0 87.5 54.5 88.9
Balanced Accuracy (%) 70.5 72.5 58.1 78.6 63.2 78.3

Table 6. Prediction results for the six models: MClinic, MT1w, MT1c, MT2w, MFLAIR and MMulti in
a LOO-CV framework. For each prediction task and for each model, five figures of merit are reported:
the total number of patients for which the prediction was possible (the number of patients with mutation
is between brackets), the AUC under the ROC curve, the sensitivity, the specificity and the balanced
accuracy. For each figure of merit, best results are in bold characters and second best results are underlined.

Frontiers 18

80



Khalid et al. MR radiomics for genomic characterization of DIPG

FIGURES

Figure 1. Illustration of MRI data for a 4 year-old patient, having H3.1 and ACVR1 mutations, having no
TP53 mutation. MRI data are shown after intensity normalization using the hybrid white stripe method.

From the left side to the right side: T1w, T1c, T2w and FLAIR images, using
Sagittal
Coronal

∣∣∣∣Axial layout for

each modality. The contours of the sphere used for computing intensity and texture radiomic features
inside the tumor are outlined in yellow color on each view. The contours of the tumor used for computing
the shape features are outlined in purple color.

• 6 Models Building (LOO)
• Up to 6 Predictions per 

Patient 
• Comparison of 5 Figures 

of Merit per Model

Model Building & 
Comparison

• Recursive Feature
Elimination using CV

• Inter Modalities
Comparison

Feature Selection

• Sphere Definition
• Radiomic Features

Computation
• Radiomic Feature

Harmonization

Feature Extraction

• N4 Correction
• MRI Registration and 

Resampling
• Hybrid White Stripe

Normalization

MR Preprocessing

Figure 2. Main steps of the construction of the six machine learning models to predict a molecular
mutation.
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Figure 3. Illustration of the LOO-CV-MIM framework, i.e. the Leave-One-Out Cross-Validation
framework dealing with Missing Imaging Modalities. The LOO-CV-MIM framework is applied to a
binary classification task (the prediction of a mutation in our current study). The database given as a
fictitious example includes four patients (P1, P2, P3, and P4, displayed in orange, grey, yellow, and green
colors), P1 and P3 having the five modalities (clinical data, T1w, T1c, T2w and FLAIR MRI), P2 having
one missing modality (T1c), and P4 having also one missing modality (FLAIR). For P1 (resp. P3), five
models Mj (with j ∈ {Clinic, T1w, T1c, T2w,FLAIR}), are defined using as training database all
the patients except P1 (resp. P3) for which the modality is present (the training database includes three
patients for MClinic, MT1w, and MT2w, and two patients for MT1c and MFLAIR). These five models are
then tested onto the remaining patient P1 (resp. P3), providing five probabilities of mutation Pr(P1,Mj),
with 0 ≤ Pr(P1,Mj) ≤ 1 (resp. Pr(P3,Mj)) and thus five predictions of mutation. A sixth prediction
of mutation corresponding to MMulti, is defined as the mean value of the five probabilities Pr(P1,Mj)
(resp. Pr(P3,Mj)). For patients P2 (resp. P4) having one missing modality, a similar process is applied
but only four (and not five) models Mj are defined (there is no model MT1c for P2, no model MFLAIR

for P4), providing four probabilities Pr(P2,Mj) (resp. Pr(P4,Mj)). A fifth prediction of mutation
corresponding to MMulti, is then defined as the mean value of the four probabilities Pr(P2,Mj) (resp.
Pr(P4,Mj)).
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Figure 4. Correlation heatmaps between the features that have been selected by the five different
models to predict H3.1 mutation (A), ACVR1 mutation (B), and TP53 mutation (C). Tables 3, 4, and
5 provide correspondence between feature identifiers and the full feature name according to PyRadiomics
nomenclature. In (D), correlation matrix heatmap between the previously selected features which are
highly correlated with tumor volume. Feature identifiers (on the right side) of identical features found by
the different predictive tasks are shown in color.
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Supplementary Material

SUPPLEMENTARY DATA

Supplemental file DIPGFeatures.xlsx contains the clinical and biological information, and the radiomic
features used for the present study. The first sheet, entitled Classif, provides for each of the 80 subjects,
subject code, MR field of the scanner, sex (0 for female, 1 for male), age (in years), volume of tumor (in
mm3), H3 mutation (1 for H3.1, 2 for H3.2, 3 for H3.3, 0 for H3 Wild-Type, na when unknown), ACVR1
mutation (1 for ACVR1 mutation, 0 for Wild-Type, na when unknown), TP53 mutation (1 for TP53
mutation, 0 for Wild-Type, na when unknown). Then T1w, T1c, T2w, and FLAIR entitled sheets provide
the 79 radiomic features after extraction from T1w, T1c, T2w and FLAIR images (without ComBat
transformation), for each subject having the corresponding modality.

SUPPLEMENTARY TABLES AND FIGURES

Classification task Features name Features identifier

H3.1 mutation Age h1 (a1, t1)
shape Elongation h18 (a17)
shape Flatness h19 (t12)
shape SurfaceVolumeRatio h20 (a19, t13)

ACVR1 mutation Age a1 (h1, t1)
shape Elongation a17 (h18)
shape Maximum2DDiameterRow a18
shape SurfaceVolumeRatio a19 (h20)

TP53 mutation Age t1 (h1, a1)
shape Flatness t12 (h19)
shape SurfaceVolumeRatio t13 (h20)

Table S1. Subsets of features selected by the model MClinicSh merging clinical features and shape features to predict H3.1, ACVR1, and TP53 mutations.
Inside brackets, features selected by one or two other tasks of mutation prediction.
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Models MClinic MClinicSh MMulti MMultiSh

H3.1 mutation
Number of patients 63 (14) 63 (14) 63 (14) 63 (14)
AUC 0.82 0.87 0.91 0.95
Sensitivity (%) 85.7 92.9 100 100
Specificity (%) 57.1 61.2 75.5 73.5
Balanced Accuracy (%) 71.4 77.0 87.8 86.7

ACVR1 mutation
Number of patients 63 (14) 63 (14) 63 (14) 63 (14)
AUC 0.74 0.80 0.91 0.93
Sensitivity (%) 85.7 92.9 92.9 92.9
Specificity (%) 44.9 55.1 71.4 67.3
Balanced Accuracy (%) 65.3 74.0 82.1 80.1

TP53 mutation
Number of patients 61 (34) 61 (34) 61 (34) 61 (34)
AUC 0.78 0.83 0.88 0.91
Sensitivity (%) 55.9 64.7 67.6 70.6
Specificity (%) 85.2 88.9 88.9 88.9
Balanced Accuracy (%) 70.5 76.8 78.3 79.7

Table S2. Prediction results for four models: MClinic, as defined in the main text, which is based on age only, MClinicSh, combining clinical features
and 14 shape features, MMulti as defined in the main text, including clinic and intensity and texture radiomic features, MMultiSh including clinic, shape,
intensity and texture radiomic features, in the LOO-CV-MIM framework. For each prediction task and for each model, the five figures of merit defined in the
main text are reported: the number of patients (all of them for the four models), the AUC of the ROC curve, the sensitivity, the specificity and the balanced
accuracy. The best performances (in boldface) are provided by the multi-model approaches. There is no clear improvement brought by the introduction of the
shape features in the prediction of the H3.1 and ACVR1 mutations. However, there is a slight trend of improvement for the prediction of the TP53 mutation.
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Supplementary Material

T1w

T1c

T2w

FLAIR

T1w T1c T2w FLAIR

Figure S1. Correlation matrix heatmap between the 4x79 features computed for each modality: T1w,
T1c, T2w, and FLAIR. The general trend is that the correlations between two features from two different
modalities is less than the correlation between two features from the same modalities and when comparing
modalities two by two, the features computed for T2w and FLAIR modalities seem to be the most
correlated.
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Supplementary Material

Figure S2. Predictive results of H3.1 mutation by the six models for each patient of the database having
a ground truth (n=63). Patients (one per column, being ordered by age) along with the age distributions
(yellow/green/blue color). From top raw to bottom raw: age, binary output of the six predictive models
MClinic, MT1w, MT1c, MT2w,MFLAIR, MMulti and ground truth (GT). MU (dark blue color) stands for
mutated cases, Not MU (pink color) stands for not H3.1 mutated cases, NA (cyan color) stands for not
available modality.

Figure S3. Predictive results of ACVR1 mutation by the six models for each patient of the database,
having a ground truth (n=63). Patients (one per column, being ordered by age) along with the age
distributions (yellow/green/blue color). From top raw to bottom raw: age, binary output of the six
predictive models MClinic, MT1w, MT1c, MT2w,MFLAIR, MMulti, and ground truth (GT). MU (dark
blue color) stands for mutated cases, Not MU (pink color) stands for not mutated cases, NA (cyan color)
stands for not available modality.
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Supplementary Material

Figure S4. Predictive results of TP53 mutation by the six models for each patient of the database, having
a ground truth (n=61). Patients (one per column, being ordered by age) along with the age distributions
(yellow/green/blue color). From top raw to bottom raw: age, binary output of the six predictive models
MClinic, MT1w, MT1c, MT2w,MFLAIR, MMulti and ground truth (GT). MU (dark blue color) stands for
mutated cases, Not MU (pink color) stands for not mutated cases, NA (cyan color) stands for not available
modality.
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4.3 Additional validation studies

The following section will present additional experiments that were conducted to estimate the performance of dif-

ferent classifiers for the prediction task with their integration in the multi-modal approach. The stability of results

were tested by comparing 5 and 10 folds cross validation with LOOCV. Finally the clinical feature age holding signif-

icance in literature with respect to mutation association is utilized for profiling patients and an age weighted model

is introduced and evaluated.

4.3.1 Classifier comparison

We have exploited benchmarked machine learning techniques for building predictive models. The four following

binary classifiers have been tested:

1. Logistic regression: this linear model forecasts the likelihood that an input will belong to a specific class using

a sigmoid function.

2. Decision tree: This model, makes predictions using a series of if-else expressions, based on ones pecific

feature for each branch.

3. Random forest: This ensemble model makes predictions by combining various decision trees.

4. AdaBoost : Gives additional weight to incorrectly categorized instances throughout each iteration, it combines

several weak classifiers into a powerful classifier.

The following experiment was conducted for each specific modality, comparing performance of classifiers by build-

ing classification models. The radiomics features were in addition evaluated by iteratively adding features to the

classifier. The four classifiers were tested in a leave one out - cross validation framework (LOO-CV) using their

default parameters, no hyper parameter optimization was done. The 79 radiomic features extracted from FLAIR, T1,

T1c and T2 were iteratively added from 1st till 79th feature to the four classifier separately in the same order. The

MR modality performing the best is also identified. Figures 4.1 and 4.2 present the accuracy obtained by LOOCV

classification for ACVR1 mutation prediction using the four classifiers by considering the full set of features added

iteratively.
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Figure 4.1: Top (FLAIR features) and Bottom (T1 features) figures illustrates the performance of four classifiers for
predicting the presence of ACVR1 mutation. The y-axis displays the accuracy achieved in (%) the x-axis present
the 79 radiomic features extracted from the modality. The blue colored line represents the accuracies achieved by
Decision tree classifier and how the addition of features impacts the accuracy achieved. Similarly the orange colored
line for Ada-boost, green for Logistic Regression and red for random forest. For visual assistance a dashed line is
drawn at 75%.
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Figure 4.2: Top (T1c features) and Bottom (T2 features) figures illustrate the performance of four classifiers for
predicting the presence of ACVR1 mutation. The y-axis displays the accuracy achieved in (%) the x-axis present
the 79 radiomic features extracted from the modality. The blue colored line represents the accuracies achieved by
Decision tree classifier and how the addition of features impacts the accuracy achieved. Similarly the orange colored
line for Ada-boost, green for Logistic Regression and red for random forest. For visual assistance a dashed line is
drawn at 75%.
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The four plots displayed in figures 4.1 and 4.2 indicate the changes on the balanced accuracy recorded as the

features are added. All classifiers except logistic regression (LR) display low and high peaks in accuracy. In the case

of LR, the default parameter incorporates a LASSO effect hence after addition of the 5th feature the model drops

all added features and maintains the same accuracy. Considering performances of the four classifiers using FLAIR

features its seems that only logistic regression achieves accuracies above 75% while the rest of the classifiers

fluctuate mostly between 60-70% barely crossing 70% accuracy. Similarly, for classifiers based on T1w features

LR achieves the higher accuracy. The iterative addition of T1w features seems to worsen the performance of Ada

Boost and Decision Tree classifier. When classifiers are evaluated using T2w features, a global improvement is

seen for RF and AdaBoost. Based on the results achieved it was decided to continue with logistic regression for

feature selection and mutation prediction, the reason being its simplicity in prediction. These results display the

importance of a feature selection step and the individual importance of each MR modality. For instance features

extracted from FLAIR and T1c seem to have better predictive power then T1w and T2w as the accuracies curves are

better overlapped. In the next section we will see further evaluation of a few classifiers embedded in the multi-modal

and missing imaging modality (MM-LOOCV-MIM) frame work.

4.3.2 SVM, RF and LR evaluated in the Multi-Model approach

Logistic regression was adapted as the final classifier for the study given the low number of cases and the un-

balanced datasets in two out of three mutations being studied (H3.1 and ACVR1). In the previous section eval-

uating a few classifiers, logistic regression displayed simple and robust classification performance as it does not

require tuning a large number of parameters, making it a convenient choice for the multi-modal frame work ex-

plained in the paper (section Methods and Materials). In addition to LR two additional classifiers SVM and RF

were tested. Differing from the previous experiments in last section of this chapter here we will evalute them in the

MM-LOOCV-MIM framework. Only results for TP53 mutation prediction are presented, as the class labels are fairly

balanced for this mutation compared to H3.1 and ACVR1. Thus, SVM and Random Forest classifiers were used

with their default parameters, (documented with the scikit-learn library, version 1.1.1), with the exception of adding

classweight=’balanced’. Experimental results validated the choice of logistic regression in the final framework. All

three classifiers used the same set of features selected by the RFE-CV (Recursive Feature Elimination with Cross-

Validation) procedure. To make comparisons easier, the Table using Logistic Regression (LR) given in the Results

section of the paper is reported here (Table.4.1). Results displaying performance of SVM and RF classifiers are

reported in Tables 4.2 and 4.3, respectively.
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TP53(LR) Sensitivity (%) Specificity (%) Balanced accuracy (%)
MClinc 56 85 70
MT1w 67 78 72
MT1c 28 88 68
MT2 70 87 79
MFLAIR 72 54 63
MMulti 68 89 78

Table 4.1: Prediction results for TP53 for the six models: MClinic, MT1w, MT1c, MT2, MFLAIR and MMulti in a
LOO-CV framework using Logistic Regression classifier. For each prediction task and for each model three figures
of merit are reported: sensitivity, specificity and balanced accuracy.

TP53(SVM) Sensitivity (%) Specificity (%) Balanced accuracy (%)
MClinc 73 67 70
MT1w 82 67 76
MT1c 69 44 57
MT2 82 71 76
MFLAIR 84 41 63
MMulti 94 59 77

Table 4.2: Prediction results for TP53 for the six models: MClinic, MT1w, MT1c, MT2, MFLAIR and MMulti in a
LOO-CV framework using Support Vector Machine classifier. For each prediction task and for each model three
figures of merit are reported: sensitivity, specificity and balanced accuracy.

TP53(RF) Sensitivity (%) Specificity (%) Balanced accuracy (%)
MClinc 88 85 87
MT1w 94 87 90
MT1c 88 76 82
MT2 91 79 85
MFLAIR 90 71 81
MMulti 100 96 98

Table 4.3: Prediction results for TP53 for the six models: MClinic, MT1w, MT1c, MT2, MFLAIR and MMulti in a
LOO-CV framework using Random Forest classifier. For each prediction task and for each model three figures of
merit are reported: sensitivity, specificity and balanced accuracy.

In this case of ’approximately balanced labels’ task the three tables display similar trend i.e the performances

(especially the balanced accuracy) improves when applying the multi-model. Balanced accuracies for logistic re-

gression and SVM are very similar in the multi-model approach, while RF displays very high-performance metrics.

LR and SVM are both linear classifiers, RF on the other hand is a non-linear classifier and can capture non-linear

relationships between the input features and the output. Furthermore, RF is less sensitive to outliers compared to

logistic regression and SVM. Outliers can indeed have a significant impact on the performance of logistic regression

and SVM since they try to optimize the decision boundary based on all data points. It was also interesting to test

how the three classifiers may or may not differ for a non balanced prediction task, Results for H3.1 prediction in the

multi-modal LOO-CV framework using LR, SVM and RF are presented in tables 4.4, 4.5, and 4.6, respectively.
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H3.1 (LR) Sensitivity (%) Specificity (%) Balanced accuracy (%)
MClinc 86 57 71
MT1w 85 76 80
MT1c 79 77 78
MT2 92 52 72
MFLAIR 83 73 78
MMulti 100 76 88

Table 4.4: Prediction results for H3.1 for the six models: MClinic, MT1w, MT1c, MT2, MFLAIR and MMulti in a
LOO-CV framework using Logistic Regression classifier. For each prediction task for each model three figures of
merit are reported: sensitivity, specificity and balanced accuracy.

H3.1 (SVM) Sensitivity (%) Specificity (%) Balanced accuracy (%)
MClinc 14 98 56
MT1w 46 98 72
MT1c 29 98 63
MT2 0 100 50
MFLAIR 8 98 53
MMulti 0 100 50

Table 4.5: Prediction results for H3.1 for the six models: MClinic, MT1w, MT1c, MT2, MFLAIR and MMulti in a
LOO-CV framework using Support Vector Machine classifier. For each prediction task for each model three figures
of merit are reported: sensitivity, specificity and balanced accuracy.

H3.1 (RF) Sensitivity (%) Specificity (%) Balanced accuracy (%)
MClinc 72 91 82
MT1w 85 89 87
MT1c 71 93 82
MT2 69 98 84
MFLAIR 67 93 80
MMulti 93 100 96

Table 4.6: Prediction results for H3.1 for the six models: MClinic, MT1w, MT1c, MT2, MFLAIR and MMulti in a
LOO-CV framework using Random Forest classifier. For each prediction task for each model three figures of merit
are reported: sensitivity, specificity and balanced accuracy.

In this case of “unbalanced-label” task, two ML classifiers (LR and RF) show similar trends to those already

described in the previous experiment i.e., the performances (especially the balanced accuracy) are improved when

applying the multi-modal model. However, for the linear SVM, the performance metrics when applying the multi-

modal model are not improved. Indeed, too many models have low performances (for instance, sensitivities are

always less than 50%) and the mean value of predictions cannot correct for this default.

The different characteristics of classifiers have an impact on how well a particular prediction task is achieved in

a LOOCV framework. From the comparison between the three classifiers, the model of logistic regression based on

its simplicity and its robustness proves to be informative in our context of small number of cases and of balanced

or imbalanced classes. Regarding prediction performance, the results can be overestimated, especially with the

LOO-CV process. With a larger database, the performances will be better assessed, and different machine learning

models could also be tested, tuned, and compared.
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4.3.3 Comparing K-Fold cross validation with Leave one out cross validation

Cross validation is an accepted method in machine learning, used in order to choose and assess models. Cross

validation is crucial when working with small sample numbers to ensure model generalization. Given the specific

characteristics of our data set (small sample size, unbalanced data for two of the three mutations under study,

and some missing imaging modalities), it was challenging to apply the 10-fold or 5-fold cross validation pattern

universally on the multi-modal method. This constraint would prevent a direct comparison of the various methods

because it is difficult to have comparable folds for the various modalities. But, we put this 10-fold and 5-fold strategy

to the model using the T1w modality as an example. The LOO-CV, 10-fold, and 5-fold CV for three classifiers (LR,

SVM, and RF) for the prediction of TP53 mutation (roughly balanced-class task) were compared in the Tables 4.7,

4.8 and 4.9. Performances are presented as the mean values and after stratifying and repeating the 10-fold and

5-fold cross-validation procedures 100 times (standard deviation).

LR (TP53)
T1w Sensitivity (%) Specificity (%) Balanced accuracy (%)

LOO-CV 67 78 72
5 fold-CV 56(3) 75(3) 65(3)
10 fold-CV 55(3) 74(2) 65(2)

Table 4.7: Prediction results for TP53 using features from T1w modality only using LOO-CV and 5 and 10 fold CV
using Logistic regression. For each prediction frame work three figures of merit are reported: sensitivity, specificity
balanced accuracy.

SVM (TP53)
T1w Sensitivity (%) Specificity (%) Balanced accuracy (%)

LOO-CV 82 67 76
5 fold-CV 64(3) 79(2) 72(2)
10 fold-CV 64(3) 80(2) 73(2)

Table 4.8: Prediction results for TP53 using features from T1w modality only using LOO-CV and 5 and 10 fold CV
using SVM. For each prediction frame work three figures of merit are reported: sensitivity, specificity balanced
accuracy.

RF (TP53)
T1w Sensitivity (%) Specificity (%) Balanced accuracy (%)

LOO-CV 94 87 90
5 fold-CV 48(8) 64(5) 56(7)
10 fold-CV 47(7) 64(6) 55(6)

Table 4.9: Prediction results for TP53 using features from T1w modality only using LOO-CV and 5 and 10 fold CV
using Random forest. For each prediction frame work three figures of merit are reported: sensitivity, specificity
balanced accuracy.

As anticipated, using a 5-fold CV or 10-fold CV causes a decrease of all predicted metrics as compared to

LOO. If the interpretations of these reductions are the same for the LR and SVM models, they reveal a significant

decrease for Random Forest models, suggesting a potential overfitting of this model that was not apparent when
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merely taking the LOO-CV into account. Studies using 5 and 10 fold cross validation demonstrate the robustness

of the logistic regression model. To recap, employing LR instead of other classifiers like SVM and RF allows for the

estimated values of performance metrics to remain informative (without fine tuning of their parameters). Because

of its simplicity and robustness, the logistic regression model was chosen, and this decision proves to be instructive

in our setting of few examples and unbalanced classes. Our results are definitely overstated in terms of prediction

performance, especially when using the LOO-CV approach. A larger database will allow for improved performance

evaluation and the testing, tuning, and comparison of various machine learning models.

4.4 Will an Age dependent weight improve results of the multi-model ap-

proach?

The four radiomic models and the clinic model were given equal weights for the final multi-model computation. From

literature review we know the mutation H3.1 is more frequent in younger children (age <10 years) and the mutation

H3.3 is more frequent in older people. The ACVR1 mutation is mostly associated with H3.1 mutations. Since we

predict for instance H3.1 against H3.3, H3.2 and wildtype, it was interesting to test a clinic (Age) weighted model.

This was done by considering the predictions for patients less then 10 years of age. Considering there was no

mutation H3.1 for patients older then 10 years, this model was called the Multi-model with Age weights (MMA). This

new model is used to evaluate prediction results for the three mutations. Results of the multi-model and multi-model

with age weights are displayed in table 4.10. The multi-model with added age weights for H3.1 prediction does not

display any change as compared to the non weighted multi-model. Balanced accuracy achieved by both approaches

is 87.7%. This is due to the fact all the patient with H3.1 mutation are below 10 years in age. The model clinic and

the multi-model predicts these patients as non mutated hence finally the multi-model with age has no effect for H3.1

prediction. Whereas for ACVR1 the balanced accuracy drops by 4%, this is because a patient having age greater

then 10 years is miss classified by the age weighted model, initially this patient was accurately classified by the

multi-model appraoch. Multi-modal with age displays increase in balanced accuracy by 3% for TP53 prediction. Two

patients which were miss classified by the multi model where corrected by the multi-model with age weights. Due to

the low number of positive class for H3.1 and ACVR1 results for multi model with age weights did not seem to work

so well. A better evaluation of this idea will be important to test on a larger cohort.
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Models MClinic MT1 MT1c MT2 MFLAIR MMulti MMAge

H3.1 mutation
Number of patients 63 (14) 58 (13) 58 (14) 59 (13) 56 (12) 63 (14) 63 (14)
Sensitivity (%) 85.7 84.6 78.6 92.3 83.3 100 100
Specificity (%) 57.1 75.6 77.3 52.2 72.7 75.5 75.5
Balanced Accuracy (%) 71.4 80.1 77.9 72.2 78.0 87.8 87.8

ACVR1 mutation
Number of patients 63 (14) 58 (13) 58 (13) 59 (13) 56 (13) 63 (14) 63 (14)
Sensitivity (%) 85.7 76.9 76.9 84.6 76.9 92.9 85.7
Specificity (%) 44.9 60.0 71.1 58.7 74.4 71.4 71.4
Balanced Accuracy (%) 65.3 68.5 74.0 71.7 75.7 82.1 78.5

TP53 mutation
Number of patients 61 (34) 56 (33) 57 (32) 57 (33) 54 (32) 61 (34) 61 (34)
Sensitivity (%) 55.9 66.7 28.1 69.7 71.9 67.6 73.5
Specificity (%) 85.2 78.3 88.0 87.5 54.5 88.9 88.9
Balanced Accuracy(%) 70.5 72.5 58.1 78.6 63.2 78.2 81.2

Table 4.10: Prediction results for the seven models: MClinic, MT1, MT1c, MT2, MFLAIR, MMulti and MMAge in
a LOO-CV framework. For each prediction task and for each model, four figures of merit are reported: the total
number of patients for which the prediction was possible (the number of patients with mutation is between brackets),
the sensitivity, the specificity and the balanced accuracy. For each figure of merit, best results are in bold characters
and second best results are underlined.

4.5 Discussion

Indeed the selection of logistic regression proved to be an appropriate choice for classifier. When integrating SVM in

the multi-modal approach the prediction performance was similar to that of LR in the LOO-CV frame-work. Balanced

accuracies of 78% in the LOO-CV using LR for TP53 mutation prediction (relatively balanced classes) and of 77%

when using SVM are recorded. Whereas when using RF we observe a jump in balanced accuracies for each of

the mono-modality model and hence so for the multi-modal model, this maybe due to the very high number of

trees (100) assigned to the classifier as a default. On the other hand, when predicting H3.1 versus all mutation

a relatively unbalanced prediction task, LR maintains its good performance, SVM seems to be not working well

and RF display yet again over estimated results. LR was adapted for feature selection integrating a wrapper based

feature elimination method. Introducing age profiling of patients in the MM-LOOCV-MIM framework for H3.1 mutation

prediction did not seem to enhance or deteriorate performances. Where as, for ACVR1 mutation prediction by Multi-

modal model with age weight (MMAge) seemed to have dropped, when investigated this is due to miss-classification

of 2 patients by the model. TP53 mutation prediction was seen to have increased its accuracy by 3% by the Age

profiling. Published literature highlights most patients with age (>10 years) often do not have H3.1 mutation nor

ACVR1 mutation. However, the experiments we conducted setting the age profiling cutoff to 10 years may not be

the best for the three mutations. The importance of age alone stands evident for mutation prediction as the mono-

model clinic achieves 70% balanced accuracy for two out of the three mutations. When comparing cross validation

5, 10 fold and the leave one out indicates a potential overestimation of performances by the LOO-CV approach
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but when working with a relatively small cohort with missing imaging modalities and having an estimation for each

patient LOO-CV best suited this purpose.

4.6 Conclusion

Integrating clinical data with radiomic features derived from MR to predict genomic mutations such as H3.1, ACVR1,

and TP53 has yielded enhanced outcomes. The evolution from the 16-model strategy shown in chapter 3 to the

Multi-modal model within the LOOCV framework has improved mutation prediction accuracy and solved some lim-

itations inherent in the 16-model strategy. The feature selection process efficiently identifies the three or four most

pertinent features, which adeptly forecast the presence or absence of mutations. Among various classifiers eval-

uated in the MM-LOOCV-MIM approach, logistic regression consistently outperformed random forest and support

vector machine for the triad mutation prediction task. The inherent LOOCV methodology provides individual patient

prediction results, showcasing its capability to manage missing modalities. This approach might offer physicians a

viable alternative in situations where biopsies are unfeasible.
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Chapter 5

Radiomic analyses to predict overall

survival and long survivors DIPG

5.1 Introduction

Survival analysis involves using statistical methods to analyze time until an event such as death occurs. The

methods are used to identify factors that are associated with longer survival times. The most common methods

used in survival analysis are the Kaplan-Meier curves and Cox proportional hazard model. The Cox proportional

hazards model is a parametric method that estimates the hazard ratio (i.e., the probability of an event occurring in a

small time interval) for one group of patients to the hazard rate for another group of patients. In the context of DIPG

and DMG, survival analysis may take into account imaging features, such as tumor size, shape and location, as

well as patient characteristics, such as age, sex, and genomic data. These data can be used to identify prognostic

factors and to develop predictive models that can be used to guide treatment decisions and to maybe improve

patient outcomes.

99



5.2 State of the Art: Survival analysis for DIPG

A Pubmed (https://pubmed.ncbi.nlm.nih.gov/ ) search with ((DMG or DIPG AND MRI AND survival)) OR ((DIPG Cox

Overall survival ]) OR ((DIPG radiomics Overall survival ]) (“2008” until [April 2023])) criteria highlighted 34 articles.

From these two [132] [133] were about developing radiomic models for predicting overall survival (OS) or PFS while

the others focused on radiological; clinical and genomic criteria for addressing survival prediction tasks.

5.2.1 Meta analysis for high grade brain stem glioma

The work of (Hassan et al in 2017) [217] includes sixty-five studies (2336 participants) reports a systematic review

and meta-analysis undertaken to determine the survival rates and assess potential prognostic factors including se-

lected interventions. Studies included involved pediatric participants with high grade brain stem gliomas diagnosed

by magnetic resonance imaging or biopsy reporting overall survival rates. Meta-analysis was under- taken using

a binomial random effects model Meta-analysis showed 1 year overall survival (OS) of 41% (2083 participants),

2 year OS of 15.3% (1329 participants) and 3 year OS of 7.3% (584 participants). Subgroup analysis comparing

date of study, classification of tumor, use of temozolomide, non-standard interventions or phase 1/2 versus other

studies demonstrated no difference in survival outcomes. There was insufficient data to undertake subgroup meta-

analysis of patient age, duration of symptoms, K27M histone mutations and AVCR1 mutations. Survival outcomes

of high grade brain stem gliomas have remained very poor, and do not clearly vary according to classification, phase

of study or use of different therapeutic interventions. Future studies should harmonize out- come and prognostic

variable reporting to enable accurate meta-analysis and better exploration of prognosis. Survival from high-grade

brain stem gliomas in childhood remains very poor, with this systematic review estimating that only four in ten young

people diagnosed with a DIPG will be alive at one year after diagnosis. The studies do not clearly demonstrate an

improvement over time, or show any major impact of chemotherapy or alternative radiotherapy approaches.

5.2.2 Use of MRI to predict survival in DIPG or DMG

The papers encompass all studies reporting on diffuse intrinsic pontine glioma (DIPG) or diffuse midline glioma

(DMG), which use magnetic resonance (MR) imaging to investigate tumor localization and characteristics along

with overall survival and progression-free survival. Three publications [208], [209] and [210] between 2008 and

2011 that focus on the ability and effectiveness of MR imaging for DIPG prognosis. In one such study, conducted by

Darren Hargrave et al. in 2008 [208], 39 patients with confirmed DIPG were included in the analysis. Of these, 37

patients, 2 patients where still alive at the time of follow up, a median survival of 9.5 months was calculated. Overall

survival was calculated using Kaplan-Meier methodology, which estimated survival rates of 78% at 6 months, 32%

at 1 year, and 5% at 2 years. The authors investigated the clinical and MRI characteristics of patients treated for
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DIPG before and after treatment (biopsy 23%, radiotherapy 97% and chemotherapy 54%) to assess their predictive

value for overall survival. Interestingly, no MRI parameter from either the diagnostic or the response scans predicted

the prognosis. The study suggests that DIPG clinical trials should focus on overall survival as their primary endpoint

and emphasizes the potential of advanced imaging techniques over traditional MRI response criteria. Another study

published in 2008 by Robert M. Hayward et al. [209] evaluated inter-observer variability in DIPG measurements

using MR imaging. The study used 50 MR scans consisting of fluid-attenuated inversion recovery (FLAIR), T2-

weighted, and T1-weighted images from 16 patients with DIPG. The results showed significant variability in DIPG

tumor measurements between observers, and FLAIR imaging was the most consistent. Therefore, for patients on

clinical trials, DIPG measurements should be performed by a single reader while comparing prior images side-by-

side. Lastly, a study published in 2011 by Steffen-Smith et al. [210] evaluated changes in magnetic resonance

spectroscopy (MRS) biomarkers in 38 patients with DIPG. The median overall survival for the entire cohort was 14.8

months, with six patients having a survival rate greater than 24 months. Using MRS features in a univariate cox

proportional hazards model, the study found that patients with higher single voxel spectroscopy (SVS) Cho:NAA

values at their first scan were at greater risk of mortality compared to patients with lower SVS Cho:NAA values.

Several studies have explored the use of apparent diffusion coefficient (ADC) as a potential biomarker for predicting

survival outcomes in patients with brain tumors. A study by Lober et al. (2014) [211] utilized diffusion-weighted

MRI-derived ADC values to categorize tumors into low and high diffusion groups, with distinct median survivals of

3 and 13 months, respectively in 30 patients. The study found that low ADC tumors were only observed in male

patients, while high ADC tumors were observed in both male and female patients. Another study by Poussaint et

al. (2016) [213] analyzed pre- and post-treatment ADC histograms to identify tumor characteristics associated with

shorter or longer progression-free survival (PFS) and overall survival (OS). The study found that tumors with higher

ADC was associated with PFS, while enhancing tumors with bimodal enhancement histograms had worse PFS and

OS compared to unimodal cases. This study also used the Cox proportional hazards model to analyze the relation-

ship between imaging features and survival outcomes.

In this work Tinkle et al in 2020 [223] used log-rank and Gray’s tests and Cox proportional hazard model for identi-

fying survival predictors. Calmon et al [218] examined 43 children with DIPG who had undergone multimodal MRIs

at four time points. The patients were divided into two groups based on whether they showed conventional MRI

changes that resembled disease progression. The study recorded values for each tumor voxel, avoiding necrotic

areas, of the apparent diffusion coefficient, arterial spin labeling cerebral blood flow (ASL-CBF), and dynamic sus-

ceptibility contrast perfusion relative cerebral blood volume (DSCrCBV) and flow (DSCrCBF). The study found that

44% of the patients showed radiological signs that mimicked progression after radiotherapy. However, 16 of these

patients survived for more than six months, and their pseudo progression lasted for a median of 8.9 months and a

maximum of 35.6 months. The study also found that all patients showed an increase in blood volume and flow after

radiotherapy, but those with signs of pseudo progression had a greater increase of ASL-CBF. There was no signifi-
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cant difference in survival between the two groups. During true progression, only patients who had not experienced

pseudo progression showed an increase in DSCrCBF and DSCrCBV values. In the study of Colafati et al in 2019

[220] the authors investigate the involvement of cranial nerve V (CN V) was investigate at diagnosis and its utility as

predictor of poor overall survival. Differences in overall survival (OS) and time to progression (TTP) were analyzed

for involvement of CN V, sex, age, tumor size, ring enhancement, and treatment regimen. The study claims direct

involvement of the cranial nerve V with short surviving patients in a cohort of 29 patients after excluding long sur-

vivors. The authors conclude that in DIPG direct involvement of CN V should be routinely evaluated on diagnostic

scans.

5.2.3 Survival analysis based on FDG PET and MR

The work of Zukotynski 2017 et al in[230] describes baseline 18F-FDG PET voxel characteristics in pediatric diffuse

intrinsic pontine glioma (DIPG) and to correlate these metrics with baseline MRI apparent diffusion coefficient (ADC)

histogram metrics, progression-free survival (PFS), and overall survival. The authors indicate In the Pediatric Brain

Tumor Consortium’s clinical trials for DIPG, 33 children underwent baseline brain scans using both 18F-FDG PET

and MRI. The resulting images from 18F-FDG PET, post gadolinium MR, and ADC MR were aligned to the initial

FLAIR scan. Three-dimensional regions of interest were generated on FLAIR images and T1c MRI 18F-FDG PET

and MRI ADC histograms inside each modality. Metrics evaluated included peak number, skewness, and kurtosis.

Correlation between PET and MR ADC histogram metrics was evaluated. PET pixel values within the region of

interest for each tumor were plotted against MR ADC values. The association of these imaging markers with

survival was described. The work concludes that F-FDG PET and MR ADC histogram metrics in pediatric DIPG

demonstrate different characteristics with often a negative correlation between PET and MR ADC pixel values. A

higher negative correlation is associated with a worse PFS, which may indicate higher-grade elements within the

tumor.

Another similar study exploring the importance of PET and MR imaging published by G. Morana et al in 2020

[231] evaluated the contribution of 18F-dihydroxyphenylalanine (DOPA) PET in association with conventional MRI

in predicting treatment response and survival outcome of pediatric patients with DIPGs. Using a cohort of 19

patients, was evaluated the correlation between 18F-DOPA uptake tumor volume at admission and MRI tumor

volume following treatment along with statistical analysis of overall survival. Kaplan-Meier OS curves for all the

main risk factors were analyzed in this study. Subjects with Telomere to Single-copy gene (T/S) ratios > 1 (markedly

increased uptake) had a significantly higher risk of death. Univariate analysis reported that H3K27M-mutant lesions

and patients with ring enhancement on post-contrast T1-weighted images had a significantly lower overall survival.

Patients with larger MRI tumor volumes at admission did not show lower OS. By contrast, post-treatment MRI tumor

volume at maximum response and tumor volume reduction following treatment were significantly associated with
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OS. Median age and gender were not correlated with OS. In conclusion, the study reports ring enhancement and

MRI tumor volume reduction following treatment resulted to be significant predictors of OS.

5.2.4 New therapeutic protocols: Onc201

Research on therapy measures for DIPG is ongoing and aims to improve the survival rate and quality of life of

patients with this disease. Current therapeutic measures being researched for DIPG include radiation therapy,

chemotherapy, immunotherapy, and targeted therapies. Radiation therapy is the standard of care for DIPG and can

help to relieve symptoms and prolong survival.

ONC201, also known as TIC10 (TRAIL-inducing compound 10), is a small molecule that exhibits anti-cancer prop-

erties. Its mechanism of action is distinct; ONC201 induces a potent anti-cancer protein called TRAIL (TNF-related

apoptosis-inducing ligand) in various tumor types, leading to selective cancer cell death [232]. Interestingly, ONC201

has been shown to specifically target and kill cancer stem-like cells, which are often resistant to conventional ther-

apies [233]. This molecule works by activating an integrated stress response that results in the up regulation of a

transcription factor called ATF4, which in turn leads to the induction of the TRAIL gene [228]. Moreover, ONC201

has demonstrated effectiveness against chemotherapy-resistant colorectal cancer stem-like cells, exerting its effects

through an Akt/Foxo3a/TRAIL-dependent mechanism [233]. Clinically, ONC201 has shown promise in early-phase

trials. For instance, a first-in-human clinical trial demonstrated its safety and potential efficacy in patients with refrac-

tory solid tumors [234]. Another notable aspect of ONC201’s mechanism is its ability to induce the ATF4 transcription

factor through an atypical integrated stress response, leading to p53-independent apoptosis in hematological ma-

lignancies [235]. Given these attributes, ONC201 has garnered attention as a potential novel treatment for various

cancers.

Cantor et al in 2022 [226] conducted a study to test the effectiveness of the drug ONC201 on children with

H3K27M-mutant glioma, a type of brain cancer. Patients enrolled in the trial underwent serial lumbar puncture for

cell-free tumor DNA analysis, and the results were compared to radiographic changes in the tumor. The study found

that a decrease in the level of H3K27M variant allele fraction (VAF) over time, as measured in both cerebrospinal

fluid (CSF) and plasma samples, was associated with prolonged progression-free survival (PFS) in non recurrent

patients. VAF spikes, which are sudden increases in VAF levels, were found to precede tumor progression in a

significant percentage of cases. In some individual cases, an early reduction in H3K27M VAF levels predicted a

long-term clinical response to ONC201, and did not increase the risk of later-defined pseudo-progression. The

multicenter, open-label, single-arm phase II clinical trial reported in [236] aimed to evaluate the effects of ONC201

in pediatric patients diagnosed with H3K27M-mutant DIPG. Within the study, a cohort of 50 pediatric patients,

predominantly male (58%) with a median age of 6.3 years, was administered oral ONC201 bi-weekly until either

disease progression or the manifestation of unacceptable toxicity. MRI assessments were routinely carried out
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every 8 weeks, and available archived tumor samples underwent molecular profiling. In terms of efficacy, the 6-

month progression-free survival (PFS6) rate was recorded at 28%, with a median progression-free survival of 4.4

months and an overall survival median of 11.8 months. Notably, ONC201 exhibited commendable tolerability. The

predominant treatment-related adverse events reported were increased ALT/AST levels and mild mood alterations.

Molecular analysis, available for 24 patients, revealed that 67% had TP53 mutations, 33% manifested ACVR1

mutations, and 29% exhibited both. However, these molecular subgroups did not significantly influence survival

outcomes. In conclusion, the study indicates that ONC201 demonstrates moderate single-agent activity in pediatric

H3K27M-mutant DIPG patients. Given its well-tolerated nature, there’s a compelling case for subsequent studies

to explore ONC201 in combination with other therapeutic agents. Another study evaluating the effects of ONC201

was conducted by Jackson et al [229] to assess the safety, tolerability, and preliminary effectiveness of ONC201

when combined with Paxalisib for patients diagnosed with H3K27M-mutant diffuse midline gliomas. The research

encompassed a cohort of 15 patients, with an average age of 38.7 years, ranging from 6 to 70 years. These

individuals were either new to treatment or had exhibited progression post-standard therapy. Patients in the study

were administered ONC201 orally on a weekly basis, in conjunction with a daily dose of Paxalisib. Treatment efficacy

was routinely monitored through radiographic evaluations. From the results, 3 out of the 15 participants showed a

partial response to the treatment, while 8 maintained stable disease. This translated to an overall response rate of

20% and a disease control rate of 73.3%. In terms of survival metrics, the median progression-free survival stood

at 8.1 months, with the median overall survival yet to be determined at the time of reporting. In relation to the

treatment’s safety profile, 13 out of the 15 patients encountered treatment-related adverse events, predominantly

of a low grade, including symptoms like elevated liver enzymes, fatigue, and rash. Conclusively, the combined

treatment regimen of ONC201 and Paxalisib appears to hold therapeutic promise for H3K27M-mutant DMG patients,

presenting a commendable safety record and encouraging preliminary efficacy results. This is particularly significant

considering the aggressive nature of the disease and the limited therapeutic alternatives currently at hand.

5.2.5 Radiomics

Two articles were based on radiomics to access DIPG’s, study conducted by Matthias W. Wagner et al 2022 [132],

used a conditional survival forest model to predict progression-free survival (PFS). Having a dataset of 89 patients

that they divided (80:20 Training: test). Tumor segmentation was performed by a 4th year radiology resident using 3D

Slicer. Semi-automated tumor segmentation on FLAIR and nonenhanced T1-weighted sequences was performed

with the Level-Tracing-Effect tool. A final placement of tumor contour was done by an expert of 7-year pediatric

neuroradiology research experience. The scans underwent bias field correction along with z-score normalization.

Radiomic features extracted included histogram, shape, and texture features with and without wavelet-based filters.

The authors provide details of feature extraction in supplementary document. 107 FLAIR and 149 T1 features were
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selected after removing features with a high degree of correlation (>90%). The stability of radiomic features across

scanners was measured using intraclass correlation coefficient (ICC). The patients were assigned to a training set

consisting of 80% of the available cases (66 patients with FLAIR sequences and 54 patients with nonenhanced

T1-weighted sequences). The remainder of the patients comprised the test sets (16 patients with FLAIR sequences

and 13 patients with nonenhanced T1-weighted sequences). Conditional survival forest-based concordances of the

test set were averaged over 100 randomized repeats at 3, 4, 5, 6, and 7 months PFS for both sequences. For the

combined prediction of FLAIR and nonenhanced T1-weighted sequences, averaged concordances were .74 at 3

months, .84 at 4 months, .72 at 5 months, .63 at 6 months, and .63 at 7 months. The study concluded that MRI-

based radiomic features hold significant potential as non-invasive biomarkers for predicting progression-free survival

in pediatric patients with DIPG. This radiomic signature could serve as an essential tool for risk stratification, guiding

therapeutic decisions, and tailoring individualized treatment plans for these patients.

The second article presented by Lydia Tam et al 2021 [133] is based on the analysis of an international data set

of 177 treatment naive patients with DIPG. Manual delineation of tumor boundaries was performed independently on

T2-MRI and over the corresponding tumor boundary on T1-MRI regardless of enhancement using Osirix software.

Prior to feature extraction, images were normalized and resampled to isotropic 1 mm voxels. Image features are

extracted using T1, T2 images from within the tumor region using open source pyradiomics. A total of 900 features

were extracted on each T2-MRI and T1-MRI. Extracted features included size, shape, first-order, and texture-based

features computed on original, wavelet, and Laplacian of Gaussian filtered images. The complete dataset was

randomly divided into training (60%, n = 106) and test (40%, n = 71) sets. The training set was used to select

the optimal features to predict overall survival (OS) and build a Cox regression model. Clinical features alone

(age at diagnosis and sex), radiomic features alone, and the combination of clinical and radiomic features were

considered. The authors performed 100 repetitions of 10-fold cross-validation to fit a Cox regression model using

the least absolute shrinkage and selection operator (LASSO) regularization (α = 1). It is important to note not all

patients had both T1 and T2 scans available. The authors proceeded by using 95 patients with both T1 and T2

as in the training dataset. The lambda value with the minimum cross- validated error across the 100 repetitions

resulted in a total of 5 features with non-zero coefficients. The T1-MRI features included wavelet (LLH) gray-level

co-occurrence matrix (GLCM) inverse difference normalized (IDN), wavelet (LHH) GLCM informational measure of

correlation 2 (IMC2), and wavelet (HHH) GLCM IMC2. The T2-MRI features were wavelet (LLH) GLCM IDN and

wavelet (HHH) first-order mean. The study evaluated the performance of the three T1 features on all patients with

gadolinium-enhanced T1-MRI available. Likewise, the two T2 features were evaluated on all patients who had T2-

MRI available. The performance of individual sequences was lower compared to the combination of T1 and T2 MRI

radiomic features. When clinical features were combined with radiomics, the model performance increased. No

significant correlation was found between the selected radiomic features and with clinical features. The developed

radiomics signature showcased impressive predictive capabilities, with an Area Under the Curve (AUC) of 0.883
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in the training dataset and 0.867 in the validation set, indicating its robustness and reliability. Additionally, the

calibration curve of the signature revealed a strong alignment between the predicted and actual outcomes, further

emphasizing its accuracy. Through decision curve analysis, the study also highlighted the potential clinical utility of

the radiomics signature. In conclusion, the results underscore the potential of MRI-based radiomics as a valuable

tool in predicting the prognosis of pediatric patients with DMG carrying the H3K27M mutation. The study advocates

for the further exploration and incorporation of radiomics in clinical practices to enhance patient management and

treatment decisions.

5.3 Methods for assessing Overall Survival

Our aim is to find potential imaging biomarkers or genomic mutations that may be linked to improved outcomes by

predicting the long-term survival of DIPG patients. This information could be used to propose targeted medicines

and better understand the disease. In addition to conventional tools used for survival analysis, I implemented the

Multi-modal (LOOCV-MIM) approach introduced in the previous chapter for predicting survival of patients surviving

at least 2 years, 18 months, and 1 year. The data used for predicting long survival patients is defined in the table

A.1. We have survival information for all 80 patients. From these 80 patients, seven are censored, indicating one

patient is censored after 1787 days. This patient was included for the long survival (2 years) prediction task. The

six censored patients (P36, P46, P47, P61, P64, P69) were removed. For the 74 patients clinical features age, sex

and tumor volume are known. Fourteen shape based features extracted from delineated tumor are also known.

Hence, a dedicated model (MClinic+Shape) combining clinical and shape features was developed. The mono-modal

MR based radiomic models with missing modalities stay the same as described in the previous chapter.

5.3.1 Prediction of long survivors using the multi-model framework

The extraction of radiomic characteristics is a standard procedure in the field of medical imaging analysis. These

features are typically hand-crafted or automatically extracted to find distinguishing patterns in the imaging data.

When several features are extracted they are connected due to several redundancies. In addition to shape-based,

first-, second-, and higher order statistical features were computed, as well as model-based features like fractals

and dynamic features they may include a variety of statistical determinants. When dealing with outcome modeling,

it’s not unusual to deal with hundreds radiomic features, especially when combining features extracted from different

modalities in this study. Thus, choosing the best feature subset or feature representation that correlates the most

with the endpoint while also having the lowest correlation with other features is a crucial step. Based on the feature

subset that has been obtained, various machine learning techniques can be used. The feature selection method

described in chapter 4 was used. This approach gradually eliminates the weakest feature while iteratively fitting
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a model, a logistic regression model was chosen for this purpose. As a result, the wrapper based RFE approach

removes co-linearity and interdependence between the various model features. A grid analysis is employed to

introduce variation (between 0.1 and 1 with a step size of 0.1) for the C parameter, which is the inverse of the

regularization strength, in order to apply the L1 penalty used for the logistic regression model. On the validation

set, feature importance was determined by computing the Brier score loss. A two-fold cross-validation was used to

guide the 40 RFE iterations. The top four features that were most commonly chosen were selected. The method is

applied to the five models the model based on clinic and shape features and the four models with features extracted

from the four MR modalities.

5.3.2 Predicting Long Term Survivors

For predicting long surviving patients we implement the Multi-model approach as it is well adapted to handling the

missing data issue. The approach consists of a leave-one-out cross-validation (LOO-CV) framework to compare

and combine the independent mono-models to take advantage of all available data with missing MR modalities. We

made six separate models using logistic regression for each of the four MRI types, as well as one for combined shape

and clinical features, and another that included genomic mutation details. We then combined the predictions from

these six models to make our final combined model. We tested how well these models predicted outcomes using

a leave-one-out cross-validation method. Suitable criteria, including balanced accuracy, sensitivity and specificity

were used to assess each model’s performance. The LOO-CV study results gave insights into how well the models

predicted the outcomes and made it possible to choose the top-performing model for predicting long surviving

patients. The applied methodology offers a mythological strategy for contrasting and choosing models in datasets

with few samples and missing data.

5.3.3 Survival Prediction continuous output ICARE

The binary weighted model (ICARE) was employed in survival analysis to find patient prognostic features. Each

feature in this model is given a binary weight, indicating whether or not it is a predictor of survival. The risk of

mortality is then predicted by the model using these binary weights. A leave-pair-out (LPO) technique and the

concordance index (C-index) can be combined to assess ICARE performance for patients in the DIPG cohort. This

strategy is not too dissimilar from the leave one out strategy used in the multi-modal with missing modalities strategy.

The LPO method entails fitting the model to all patient pairs, except in one pair, then utilizing the results to forecast

how the remaining pair will do. Repeated for all pairs the fraction of couples that were correctly predicted is used

to determine the C-index. A score of 0.5 for the C-index means that the model’s predictions are no better than

random chance, the C-index ranges from 0.5 (random chance) to 1.0 (perfect prediction). A C-index of 0.7 or higher

is typically regarded as a solid performance, while a score of above 0.8 is regarded as excellent. Overall, the LPO
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methodology and the C-index offer a thorough and reliable technique for assessing ICARE’s performance in survival

analysis.

5.4 Results

The following section will display results recorded by the experiments conducted for Kaplan Meier analysis, the

prediction of long term survivors and using the MM-LOOCV-MIM and the ICARE algorithm.

5.4.1 Kaplan Meier curves and Log-rank tests for overall survival

The figures 5.1, 5.2, 5.3, and 5.4 display Kaplan Meier (KM) curves according to sex, and the three mutations, H3.1

versus others, ACVR1 and TP53. The construction of each curve was based on the Python lifelines library. The

p-values of the Logrank test are displayed on each graph. The presence of the TP53 mutation is more aggressive

than its absence, tumors with a mutation of H3.1 suggest a slightly higher risk of death, and those with H3.2 or H3.3

mutation and the absence of the ACVR1 mutation is more aggressive than its presence.
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Figure 5.1: Kaplan Meier curves for patients stratified by Sex of patient
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Figure 5.2: Kaplan Meier curves for patients with known H3.1 mutation status
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Figure 5.3: Kaplan Meier curves for patients with known ACVR1 mutation status
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Figure 5.4: Kaplan Meier curves for patients with known TP53 mutation status

5.4.2 Predicting long surviving patients (2 years) using the Multi-modal approach

Feature selection

The final selected features for long survival prediction are presented in the table 5.2. These features are obtained

using 74 patients for the model combined clinic and shape having a combined set of 17 features, 15 shape features

pooled with two clinic features age and sex. Each MR modality had 79 retrieved radiomic characteristics. A total

of 67 patients for T1 MR modality, 71 patients for T1c MR modality, 72 patients for T2 MR modality and 66 for

FLAIR modality. The final features selected from the MR modalities are mostly first order and a few Gray Level

Co-occurrence Matrix (GLCM) features. The final four features selected for the clinical + shape data are volume,

MajorAxisLength, Elongation and Flatness. High elongation values are observed for long survivors. Major Axis

Length is related to the size of the tumors. The flatness characteristic determine the lesion extent along a specific

axis, its partly correlated with elongation.
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Mono-Modal Features Name Features Identifier
MT1 T1 original firstorder InterquartileRange F1

T1 original glcm Imc2 F2
T1 original firstorder Skewness F3
T1 original firstorder Uniformity F4

MClinic+Shape original shape MajorAxisLength F5
Volume F6
original shape Elongation F7
original shape Flatness F8

MT1c T1c original glrlm RunLengthNonUniformity F9
T1c original firstorder TotalEnergy F10
T1c original firstorder Kurtosis F11
T1c original glcm Imc2 F12

MT2 T2 original firstorder Minimum F13
T2 original firstorder Skewness F14
T2 original firstorder Kurtosis F15
T2 original firstorder 10Percentile F16

MFLAIR FLAIR original glcm ClusterShade F17
FLAIR original glcm Idmn F18
FLAIR original glcm InverseVariance F19
FLAIR original firstorder Minimum F20

Table 5.2: Subsets of features selected by the five different models MClinic+Shape, MT1, MT1c, MT2, and MFLAIR

to predict 2 years long survivors. MClinic+Shape contains the combined features from clinic and shape data.

Figure 5.5: The box plots represent the distribution of 20 selected feature for long term survivors. The feature values
are scaled between 0 and 100. The blue box plot represent the feature values of patients who are not long survivors
marked as ’0’ and the orange box represents the feature distribution for long term survivors marked as ’1’. The
x-axis denotes the feature IDs from table 5.2. The y-axis denotes the feature values scaled between 0 and 100.
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The figure 5.5 displays a box plot representing the distribution of the twenty selected feature values for long and

short term surviving patients. For better visual assessment, the feature values are scaled between 0 and 100. The

box plots display how the selected feature values differ between the two groups of patients. For instance features

F1, F2, F4, F5, F9, F10, F16, F18 and F19 have large differences in distribution and median values for the two

groups of patients. Features F6, F7, F8, F12, F13, F14, F15 and F20 exhibit smaller difference in median values in

the two groups. Finally three features, F3, F11 and F17 have very close median values between the two groups.

Feature Correlation

The figure 5.6 illustrates the correlation of the final features selected by the five models (MClinic+Shape, MT1, MT1c,

MT2, and MFLAIR) for predicting long surviving patients. Features selected for predicting long surviving patients

T1c features glrlm RunLenghtNonUniformity (F9) and firstorder TotalEnergy (F10) show high correlation and again

the features from T1 modality firstorder InterquartileRange (F1) and firstorder Uniformity (F4) are highly correlated.

For the correlation is moderate to substantially low correlation. Notably, volume (F6) displayed a strong correlation

with other features in the context of mutation prediction, whereas in the context of long-term survival prediction, its

correlation with features F9 and F10 was only moderate.

Performance of models

The table 5.3 reports the four figures of merit (number of patients, sensitivity, specificity and balanced accuracy)

for the six mono-modal models and then for two multi-modal models combining clinical and shape, radiomic (4 MR

modalities) and genomic models. As mutation status is known for the three mutation types (H3.1, ACVR1 and TP53)

for 57 patients a model is constructed (MGenomic) using mutation status as input features for long term survival

prediction. The genomic model (MGenomic) achieves a balanced accuracy of 69.86% The second model using

only the selected clinic and shape MClinic+Sh features achieves a balanced accuracy of 72.53%. The balanced

accuracies achieved by the four (MT1, MT1c, MT2 and MFLAIR ) radiomic models are (66.94%, 75.51%, 75%,

79.17%) respectively. The model using FLAIR radiomic features achieves the best balanced accuracy for predicting

long surviving patients whereas the model based on T1 features the lowest. The ensembled multi-modal MMulti

prediction of the five models (MClinicSh, MT1, MT1c, MT2 and MFLAIR ) achieves the highest balanced accuracy

of 89.39% with a sensitivity 100% and a specificity 78.78%. The MMulti performs better then the individual models,

improving the balanced accuracy of the best performing radiomic model based on FLAIR features by 10% and

provides an estimation for the 74 patient included in this analysis. Introducing the genomic model in the multi-

modal approach present in the last column entitled MMG does not improve the sensitivity, specificity and balanced

accuracy any further but does not deteriorate it.
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Figure 5.6: Pearson correlation heat-maps between the features that have been selected by the five different models
to predict long surviving patients
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Figure 5.7: Kaplan Meier estimation of long term surviving patients.

Metric MGenomic MClinicSh MT1 MT1c MT2 MFLAIR MMulti MMG

Patients 57 74 67 71 72 66 74 74
Sensitivity 85.71 87.5 66.66 83.33 87.5 83.33 100 100
Specificity 54 57.58 67.21 67.69 62.5 75 78.78 78.78
Balanced
Accuracy 69.86 72.54 66.94 75.51 75 79.17 89.39 89.39

Table 5.3: The prediction result of long term survivors using the five mono modality models and two multi-modal
models, combined: MGenomic, MClinicSh, MT1, MT1c, MT2, MFLAIR, MMulti and MMG in a LOO-CV framework.
For each prediction task and for each model, four figures of merit are reported: the total number of patients for which
the long term survival was possible, the sensitivity, the specificity and the balanced accuracy. For each figure of
merit, best results are in bold characters and second best results are underlined
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5.4.3 Predicting long surviving patients (18 months) using the Multi-modal approach

For forecasting 18-month survival rates, a group of 74 patients was evaluated using the comprehensive multi-

modal strategy. This group included seven individuals classified as censored, notably incorporating one individual

censored on the 1787 th day into the analysis. A systematic approach was adopted for feature selection, which

involved analyzing sets of features from four different MR (Magnetic Resonance) imaging modalities, alongside

clinical characteristics of the patients. The selection of pertinent features was carried out through a recursive feature

elimination methodology, aimed at refining the pool of features for more accurate analysis.

The results of this feature selection process are detailed in Table 5.4. This table organizes the selected features

into categories based on their origins, including mono-modal features and those that combine clinical observations

with shape data, labeled as MClinic+Shape.

Mono-Modal Features Name Features Identifier
MT1 T1 glcm Energy F1

T1 glcm SumAverage F2
T1 firstorder Skewness F3
T1 glrlm ShortRunLowGrayLevelEmphasis F4

MClinic+Shape shape Maximum2DDiameterSlice F5
shape VoxelVolume F6

MT1c T1c glcm Energy F7
T1c glcm Idn F8
T1c glszm HighIntensityLargeAreaEmphasis F9
T1c glszm IntensityVariability F10

MT2 T2 firstorder Kurtosis F11
T2 glszm HighIntensityLargeAreaEmphasis F12

MFLAIR FLAIR firstorder Skewness F13
FLAIR glcm ClusterShade F14
FLAIR firstorder Minimum F15
FLAIR firstorder Kurtosis F16

Table 5.4: Subsets of features selected by the five different models MClinic+Shape, MT1, MT1c, MT2, and MFLAIR

to predict 18 months survival. MClinic+Shape contains the combined features from the model clinic and shape.

Figure 5.8 presents a correlation heatmap that visualizes the relationships among the chosen features from

the five predictive models. Out of an extensive pool of 332 potential features, 16 were meticulously selected for

their relevance and potential impact on the study’s outcomes. The heatmap reveals predominantly low to moderate

correlations among these selected features, indicating a diverse set of data points with minimal overlap in the

information they convey.

A noteworthy observation from the heatmap is the highest recorded correlation coefficient of 0.84, which occurs

between Feature 5 (shape Maximum2DDiameterSlice), representing the Maximum 2D Diameter Slice (a morpho-

logical attribute), and Feature 6 (shape VoxelVolume), denoting the Voxel Volume (an original shape characteristic).

This particular correlation suggests a significant relationship between these two morphological features, possibly

due to their shared basis in the physical dimensions of the observed structures. The heatmap underscores the
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distinctiveness of the 16 chosen features, with their low to mild inter-correlations affirming the efficacy of the fea-

ture selection process in capturing a wide-ranging and complementary set of variables for analysis. This diversity

in the selected features is crucial for constructing a robust and nuanced predictive model that leverages multiple

dimensions of the data to forecast 18-month survival rates.

Figure 5.8: Correlation heatmap between the features that have been selected by the five different models to predict
18 months survival. Feature identifiers (on the right side) of identical features found by the different predictive tasks
are shown in color.

The predictive performance of the various models deployed in this study is documented in Table 5.5. The

analysis encompassed eight distinct predictive models tailored to assess survival rates. Within the subset of single-

modality models, the MT1 model, which exclusively utilizes features derived from T1-weighted, emerged as the most

effective, achieving a balanced accuracy rate of 70.51%. This model outperformed others in its category, notably

surpassing the model that integrates genetic mutation status, which itself demonstrated a commendable balanced

accuracy of approximately 64.44%.

Of particular note is the performance of the multi-modal model including clinical, genetic, and imaging modalities.

This comprehensive approach yielded a superior balanced accuracy rate of 73.79%, underscoring the potential ben-
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efits of leveraging a diverse array of data types in predictive modeling. The multi-modal model’s superior accuracy

highlights the value of integrating multiple data streams to enhance the predictive precision of survival outcomes,

suggesting a promising direction for future research in prognostic modeling.

Metric MGenomic MClinicSh MT1 MT1c MT2 MFLAIR MMulti MMG

Patients 57 74 64 68 71 63 74 74
Sensitivity 66.67 66.67 83.33 69.23 87.5 83.33 93.33 86.67
Specificity 62.22 47.46 57.69 58.18 38.09 42.11 54.23 52.54
Balanced
Accuracy 64.44 57.06 70.51 63.71 62.80 62.72 73.79 69.60

Table 5.5: The prediction result for the Six models: MClinicSh, MT1, MT1c, MT2, MFLAIR and MMulti in a LOO-CV
framework. For each prediction task and for each model, four figures of merit are reported: the total number of
patients for which the long term survival was possible, the sensitivity, the specificity and the balanced accuracy. For
each figure of merit, best results are in bold characters and second best results are underlined.
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5.4.4 Predicting long surviving patients (1 year) using the Multi-modal approach

To forecast 1-year survival rates, the multi-modal approach subjected to a cohort of 75 patients. Within this group,

seven patients were identified as censored, with two specifically noted for their censorship status post the 365-

day mark; these individuals were nevertheless included in the analysis to ensure a comprehensive evaluation. The

methodology for selecting pertinent features in this context mirrored the approach previously employed for the 2-year

survival prediction analysis, emphasizing consistency in the study’s analytical methods.

A recursive feature elimination was employed to select a subset of predictive variables. This method systemati-

cally whittled down the feature set by iteratively removing the least significant features, ensuring that only the most

impactful variables were retained for the final analysis.

The culmination of this rigorous feature selection process is detailed in Table 5.6, which enumerates the final set

of features that were deemed most indicative of 1-year survival outcomes. This table serves as a crucial reference

point in the study, highlighting the selected features that combine various data dimensions—ranging from imaging

to clinical insights—to enhance the predictive accuracy of the survival models.

Mono-Modal Features Name Features Identifier
MT1 T1 glrlm ShortRunLowGrayLevelEmphasis F1

T1 glszm HighIntensityLargeAreaEmphasis F2
MClinic+Shape shape Sphericity F3

shape Elongation F4
Age F5
shape SurfaceVolumeRatio F6

MT1c T1c glszm ZoneVariance F7
T1c glszm ZoneEntropy F8
T1c glszm HighIntensityLargeAreaEmphasis F9

MT2 T2 firstorder Kurtosis F10
T2 firstorder Skewness F11

MFLAIR FLAIR firstorder Skewness F12
FLAIR firstorder Kurtosis F13
FLAIR glcm ClusterShade F14
FLAIR firstorder Uniformity F15

Table 5.6: Subsets of features selected by the five different models MClinic+Shape, MT1, MT1c, MT2, and MFLAIR

to predict 1 year survival. MClinic+Shape contains the combined features from the model clinic and shape.
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The Figure 5.9 illustrated the correlation heatmap between the selected features from from the five models. The

15 selected features from a total of 332 features display very low correlation. The highest correlation recorded is

0.7 between F12 (FLAIR firstorder skewness) and F14 (FLAIR glcm ClusterShade). Overall the heatmap displays

very low to mild correlation between the 15 selected features.

Figure 5.9: Correlation heatmap between the features that have been selected by the five different models to predict
1 year survival. Feature identifiers (on the right side) of identical features found by the different predictive tasks are
shown in color.

The prognostic outcomes can be found in Table 5.7. A total of eight predictive models were assessed for this

task. Among the mono-models, the model MFLAIR, which leverages FLAIR features, registered the pinnacle of

balanced accuracy at 78.34%. This was succeeded by the model incorporating both shape and clinical features,

which achieved a balanced accuracy nearing 67%. The multi-modal model recorded a balanced accuracy of 76%.

Notably, the integration of genomic data into the multi-modal model led to an enhancement of 4%, elevating the

balanced accuracy to 80.84%.
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Metric MGenomic MClinicSh MT1 MT1c MT2 MFLAIR MMulti MMG

Patients 58 75 64 64 73 64 75 75
Sensitivity 57.1 69.70 51.85 51.85 87.1 96.15 87.87 87.88
Specificity 70 64.29 67.67 67.57 45.23 60.53 64.29 73.81
Balanced
Accuracy 63.5 66.99 59.71 59.71 66.17 78.34 76.08 80.84

Table 5.7: The prediction result for the eight models: MGenomic, MClinicSh, MT1, MT1c, MT2, MFLAIR, MMulti and
MMG in a LOO-CV framework. For each prediction task and for each model, four figures of merit are reported: the
total number of patients for which the long term survival of 1 year was possible, the sensitivity, the specificity and
the balanced accuracy. For each figure of merit, best results are in bold characters and second best results are
underlined.

5.4.5 Results for ICARE

The binary weighted model ICARE was evaluated in a leave pair out approach using the DIPG cohort. As the model

is developed for handling missing data and accepts patient survival censoring, all 80 patients were used, presented

in the table A.1. The total number of features was equal to 336, 79 radiomic features from each of the four MR

modalities, 15 shape features, 2 clinical features age and sex and 3 mutation status of the three known mutations

H3, ACVR1 and TP53. The hyper parameter ’ρ’ value determines the correlation of features above which the

features are dropped. C-min determines the minimum c-index achieved by each feature and max features controls

the total number of features presented to each model created by the ICARE model. The table 5.8 below presents

the parameters used to achieve the highest concordance index of 0.578 by the leave pair our approach. The

final selected features are presented in Figure 5.10. A binary weight of +1 or -1 is assigned to selected features.

From the twenty clinic, genomics and shape features, seven features are selected age, sex from clinic, H3 and

TP53 mutation status and from shape features SurfaceVolumeRatio, Flatness and Sphericity shape features. Eight

radiomic features from FLAIR images are selected, seven radiomic features from each of the three (T1 ,T1c and T2)

modalities are selected. The table 5.9 presents the identifiers of the features selected by ICARE and the correlation

between these different features are presented in the figure 5.11.

Hyperparameter Value
ρ 0.65
C-min 0.50
Max Features 0.95

Table 5.8: The three hyperparameters used to achieve the highest concordance index of 0.578
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Figure 5.10: Importance of the clinical, shape and MR radiomic features. A positive value(red) shows a positive
correlation with the risk and a negative value (blue) is a negative correlation.
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ID Feature Name
F1 T1c original glszm IntensityVariability
F2 T1 original glcm Correlation
F3 original shape SurfaceVolumeRatio
F4 original shape Flatness
F5 FLAIR original glrlm ShortRunLowGrayLevelEmphasis
F6 FLAIR original glszm HighIntensitySmallAreaEmphasis
F7 FLAIR original glcm InverseVariance
F8 T1 original firstorder Median
F9 original shape Sphericity
F10 FLAIR original glcm Correlation
F11 T2 original glrlm RunPercentage
F12 FLAIR original glrlm GrayLevelVariance
F13 FLAIR original glszm IntensityVariability
F14 T1 original glcm ClusterProminence
F15 T1c original glszm HighIntensityLargeAreaEmphasis
F16 T1c original glrlm ShortRunLowGrayLevelEmphasis
F17 FLAIR original glszm SizeZoneVariabilityNormalized
F18 T1c original firstorder Uniformity
F19 T1 original glszm SmallAreaEmphasis
F20 Age
F21 TP53
F22 Sexe
F23 H3
F24 T1 original glcm InverseVariance
F25 T1 original glrlm ShortRunHighGrayLevelEmphasis
F26 FLAIR original firstorder Skewness
F27 T1c original glcm Correlation
F28 T1c original glcm Idmn
F29 T2 original firstorder Kurtosis
F30 T2 original firstorder Minimum
F31 T2 original firstorder Skewness
F32 T2 original glcm Imc1
F33 T2 original glrlm LongRunLowGrayLevelEmphasis
F34 T2 original glszm IntensityVariability
F35 T1 original glcm Idn
F36 T1c original firstorder Kurtosis

Table 5.9: The table presents the genomic, clinical, shape and MR radiomic features selected by ICARE binary
weighted model.
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Figure 5.11: Correlation heatmaps between the selected features by ICARE models to predict long surviving patients
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5.5 Discussion

This chapter examines the survival outcome of the cohort of patients with Diffuse Intrinsic Pontine Glioma (DIPG).

The interpretation using Kaplan-Meier (KM) curves to estimate the survival probabilities of patients based on dif-

ferent factors such as sex and the presence of specific genetic mutations, the multi-modal approach with missing

modalities and the recently developed ICARE binary weighted model were tested. Similarly, KM analysis based on

the presence of H3.1 and ACVR1 mutations displays curves for mutated and non-mutated patients are very close

together and overlap with a p-value of 0.01 and 0.09 respectively, indicating that these mutations are not strong

predictors of survival. In contrast, the curves for patients with TP53 mutations are slightly more separated, suggest-

ing that this mutation may be a better predictor of survival. The multi-modal approach for predicting the long-term

survivors with over two years of survival demonstrates strong performance. Notably, this approach selects features

from all groups of features, including MR radiomics, shape radiomics, and clinical factors, which were not selected

for mutation prediction in the previous chapter (Chapter 4). However, the feature selection process could be further

improved, as evidenced by the high correlation observed between two T1c features, namely RunLengthNonUnifor-

mity and TotalEnergy, in the correlation plot presented in Figure 5.6. Similarly, a correlation of 0.85 is observed

between the two T1 features InterquartileRange and Uniformity. Therefore, it may be beneficial to drop highly cor-

related features and retain only the most relevant features in the model. The study revealed that the FLAIR-based

mono-modal model demonstrated the best performance, whereas the T1c and T2 mono-modals exhibited relatively

similar performance. However, the multi-modal approach that combined the mono-modals resulted in the most

optimal performance. The addition of the genomic mono-modal did not surpass any of the other modalities in per-

formance, but it also did not negatively impact the results of the multi-modal approach. The KM curve in Figure

5.7 was able to separate the the two groups of patients well based on the probablistic mean achieved by the Multi-

model. The adaptation of leave pair out cross validation for testing ICARE binary models is the closest comparison

of the approach with the multi-modal approach. The ability of the binary weighted model to accept missing data

without any interpolation methods is coherent with the multi-modal approach with missing data management. Both

strategies select the most relevant features and perform their independent survival task. The features selected by

both approaches could be similar or different features appear which are highly correlated surrogates of each other.

Even thought the rho parameter for ICARE is set to 0.65, two features correlation in figure 5.11 are correlated at

0.67 and 0.69. This could be due to random dropping correlated features. The figure 5.12 illustrates distribution of

overall survival of patients, showing a large peak between 9 and 11 months. This cluster of patients may explain the

low values of the C-index evaluation especially in a leave pair out approach. It may seem the Multi-model performs

well achieving high accuracies it is important to test both approaches independently on a data set. An analysis of

the two radiomic studies by L.Tam et al [133] and Wagner et al [132] with the work done during this thesis highlight

the transformative potential of MRI-based radiomics in the prognosis and prediction related to pediatric DIPG. A
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common thread running through these works is the reliance on MRI as the foundational data acquisition modality

and the pivotal role of radiomic features, especially those pertaining to intensity and texture. Notably, the synergistic

combination of radiomic and clinical features frequently emerged as a superior predictive tool, underscoring the mul-

tifaceted nature of DIPG prognosis. A pivotal clinical factor that stood out, particularly in Wagner’s study, was age,

emphasizing its significance in pediatric studies of this nature. However, while these similarities form the bedrock of

DIPG research, the nuances in methodologies set each study apart. Lydia Tam’s approach leaned on LASSO Cox

regression, Wagner employed a conditional survival forest model, and in this thesis we delved into the intricate realm

of radiomic feature realignment across MRI scanners. Additionally, the focus on specific radiomic features and their

consequential importance varied, painting a picture of a research landscape that is both rich in diversity and ripe for

exploration. The variance in patient numbers among the studies—177 for Lydia Tam, 89 for Wagner, and 80 used

in this thesis work highlights the challenges and opportunities in DIPG research. The Multi-models ability to handle

missing data is indeed a point which makes it stand out compared to bench mark approaches. In essence, while

each study offers unique insights, their collective contribution accentuates the evolving nature of DIPG prognosis

research and the promising horizon of MRI-based radiomics.

Figure 5.12: Histogram distribution displaying overall survival of patients with DIPG
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5.6 Conclusion

This chapter delves deeply into the realm of survival analysis, focusing on our patient cohort with a keen eye on

innovation and precision. At the heart of our discussion is the MM-LOOCV-MIM methodology, which has emerged

as a beacon of hope in accurately predicting those who will surpass the critical two-year survival threshold. This

milestone is of paramount importance in the clinical world, offering a beacon for navigating the complex journey

of patient care. The success of the MM-LOOCV-MIM in this context is not just a testament to its robustness but

also a clear indication of the untapped potential residing within radiomic features. These features go beyond mere

data points; they encapsulate a wealth of insights into the genetic underpinnings of diseases, offering a window into

the mutation status of patients and illuminating the path to identifying individuals with a heightened probability of

extended survival.

The introduction of novel features into our analytical framework has significantly broadened our understanding,

revealing the intricate layers of information that radiomic data can provide. These features, which were meticulously

discussed in preceding chapters, serve as a critical bridge to essential insights concerning mutation status. They

open up new avenues for predicting patient outcomes, particularly in identifying those with a promising prognosis.

Amidst this backdrop, the ICARE algorithm has risen to prominence, distinguished by its adept handling of missing

and censored data. This capability sets it apart from traditional models like the Cox proportional hazards model,

which struggles with incomplete datasets and often relies on imputation, potentially compromising the integrity of

the analysis.

The dual focal points of mutation status prediction and identification of long-term survivors form the cornerstone

of our discussion. The ability to predict mutation status before any therapeutic intervention could revolutionize the

treatment landscape, offering a pathway to a biopsy-free clinical workflow. This advancement is not merely proce-

dural; it has the potential to transform patient experiences, reducing the invasiveness of diagnostic procedures and

allowing for a more targeted therapeutic approach based on specific genetic mutations. In parallel, pinpointing long-

term survivors is crucial for optimizing the design and implementation of clinical trials. These individuals represent

a unique subset of the patient population, whose resilience and response to treatment make them ideal candidates

for exploring novel therapeutic strategies.

Our investigative journey into the predictive value of mutation status for survival outcomes has shed light on its

potential significance. Although our findings are preliminary, they hint at a broader narrative where mutation status

could play a pivotal role in determining patient prognosis. This area of research beckons for a deeper dive, with a

more extensive dataset promising to unveil richer insights.

The application of a multimodal approach to survival prediction has unequivocally demonstrated its worth. Our

analyses, spanning one year, eighteen months, and two years, have not only confirmed the predictive capabilities

of this approach but also highlighted an intriguing pattern: the consistency of certain features across different time
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points and the variability of others. This observation raises compelling questions about the nature of the features that

influence long-term survival and suggests that a more granular exploration could unlock the secrets to understanding

the determinants of patient longevity.

A critical evaluation of conventional survival analysis tools, such as Kaplan-Meier curves and the log-rank test,

revealed their inadequacies in discriminating between patient groups based solely on mutation status. This limitation

was starkly contrasted by the significant improvement observed when Kaplan-Meier curves were constructed using

the radiomic features we identified. This contrast not only underscores the limitations of traditional methodologies in

capturing the nuanced dynamics of patient data but also highlights the transformative potential of radiomic features

in redefining the landscape of survival analysis.

In weaving together these threads—advanced analytical techniques, the incorporation of novel features, and the

strategic use of sophisticated algorithms like ICARE—this chapter paints a comprehensive picture of the current

state and future direction of survival analysis. It underscores the importance of adopting a holistic, data-driven

approach to understanding patient data, one that transcends conventional methodologies and embraces the com-

plexity and richness of radiomic information. Through this lens, we aspire to advance the field of personalized

medicine, ensuring that each patient’s journey is informed by the most accurate, nuanced, and personalized in-

sights available, thereby paving the way for more effective and targeted treatment strategies. This endeavor, while

challenging, holds the promise of transforming patient care, ushering in an era of treatment that is not only more

effective but also more attuned to the individual needs and circumstances of each patient.
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Conclusion and Future work

The exploration of prognostic predictions for genetic mutations in pediatric patients afflicted with Diffuse Intrinsic

Pontine Glioma (DIPG) has surged to the forefront of scientific inquiry, propelled by the rapid advancements in the

field of precision medicine. The early detection of such mutations harbors the potential to revolutionize the landscape

of treatment such as ONC21, paving the way for therapeutic strategies that are meticulously tailored to the individual

nuances of each patient’s condition. While the burgeoning body of current research, particularly studies focusing on

MRI-driven radiomic signatures, demonstrates considerable promise in the realms of mutation and survival outcome

prediction, it is universally acknowledged that this is an area ripe for further exploration, refinement, and innovation.

A notable challenge that was progressively refined within the scope of this thesis was the inherent variability

introduced by the employment of two disparate scanning devices within our dataset. To counteract the potential dis-

crepancies this variability might introduce, a comprehensive standardization pipeline was meticulously implemented.

This was further complemented by the application of ComBat harmonization to the extracted features, ensuring a

level of consistency and reliability in the data that forms the backbone of our analysis. This strategic approach

stands in contrast to the methodologies employed in previous studies, such as those conducted by Lydia Tam et

al. [133], who undertook standardization efforts for datasets emanating from scanners of diverse field strengths

but refrained from adjusting the extracted features post-extraction. Similarly, the work of Wagner et al.[132], which

focused predominantly on extracting features from FLAIR images to construct a radiomic model, is augmented by

our research, which not only emphasizes the predictive capabilities inherent in individual modalities through mono

models but also corroborates the enhanced performance that can be achieved through the synergistic integration of

clinical and radiomic features in model development—a finding that resonates with the conclusions drawn by both

Tam et al.[133] and Wagner et al [132].

The evolution from an initial array of sixteen distinct model strategies to the refined deployment of multi-modal

models has shed light on the vast untapped potential that radiomic features hold, particularly in the context of rare

tumors where the absence of certain imaging modalities could potentially pose a significant challenge. The marked

success of mono models in achieving precision in prediction underscores the intrinsic value of each distinct imaging

modality, reinforcing the notion that each modality brings a unique perspective to the table. This methodological rigor,

characterized by a meticulous harnessing of all available data while consciously eschewing data augmentation,
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represents a significant forward leap in our approach. The robustness of the multi-modal strategy, particularly

evident in its prowess in predicting long-term survivor outcomes, achieving optimal feature selection, and realizing

predictive performance, serves as a testament to the approach’s efficacy.

As we cast our gaze towards the horizon, future work beckons with the promise of further enhancements. A

critical component of this future trajectory involves the expansion of feature extraction to encompass the entire

tumor region, leveraging both texture and image-based features. From the work of Fontaine et al [237] it is evident

dedicated contours have a greater impact on features extracted from precise tumor segmentation as compared

to the implementation of automatic segmentation pipelines it would be interesting to test for DIPG patients. In

order to estimate the impact of surrounding tissues on the final features selection this endeavor is anticipated to

significantly refine the development of a comprehensive Computer-Aided Diagnosis (CAD) system, bolstering the

model’s performance with the infusion of new patient data. While the impact of segmentation on the results may not

be pronounced within the confines of the current patient cohort, its importance is projected to magnify exponentially

when applied to larger datasets.

The prospect of achieving a more balanced dataset, comprising data drawn from a diverse array of scanners,

accentuates the critical importance of further validating the ComBat harmonization process. A harmonized dataset

is poised to streamline the feature selection process, potentially unmasking relevant features that may currently be

obscured by the heterogeneity that is inherently present in data derived from different scanners.

An additional dimension that merits exploration is the testing of the multi-model approach on a validation set.

This crucial step is poised to provide a rigorous assessment of the approach’s efficacy and the judicious selection

of classifiers. It holds paramount importance for the validation of the Leave-One-Out Cross-Validation (LOOCV)

framework, ensuring its robustness and applicability to a validation set. Moreover, in light of the heterogeneity

characteristic of tumors, segmented tumor masks could serve as a conduit for the extraction of radiomic features at

a voxel level. The generation of feature maps from these extractions could unveil regions of varying feature intensity

within the tumor, offering a treasure trove of insights when these maps are correlated with clinical data or patient

survival metrics.

In the domain of survival analysis, the infusion of additional data is anticipated to facilitate a more comprehen-

sive comparison between the ICARE results and those derived from traditional models such as the Cox model.

With a dataset of sufficient breadth and depth, a comparative analysis of ICARE versus Cox could yield invaluable

insights into the interplay between different clinical or radiomic features and their impact on survival outcomes. This

expanded dataset will not only serve to validate existing methodologies but will also pave the way for more nuanced

and detailed analyses, potentially enhancing the predictive accuracy and clinical relevance of our models.

In summation, the trajectory of future research in this domain is laden with potential, holding the promise of

evolving into a robust CAD system that could serve as an indispensable tool for clinicians. This system, by of-

fering precise tumor classification, mutation prognosis, and survival predictions from the initial MR scans, could
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significantly augment the clinical decision-making process. Realizing this vision will necessitate not only increased

collaborative efforts and data sharing, especially given the rarity of conditions like DIPG, but also a steadfast com-

mitment to refining and validating our models against more expansive and diverse datasets. This endeavor, while

daunting, is imbued with the potential to fundamentally transform the paradigm of patient care, ushering in an era

where treatment is not only more effective but also deeply personalized, reflecting the unique genetic and clinical

profile of each patient.
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Appendix A

Patient data

The following table presents the clinical and radiomic information available for all the 80 patients present in the

cohort. Clinical features include sex, tumor volume and mutation status for the three mutation types H3K27M,

ACVR1 and TP53 and the overall survival in days along with patient censoring. In case of H3K27M the sub mutations

available are (H3.1K27M denoted by ’1’ , H3.3K27M denoted by ’3’, H3.2K27M denoted by ’2’, ’0’ when no mutation

or wild-type and ’na’ when the status is not available). The age of patients is presented in years with 1 significant

figure. The four MR modalities present for which ever patient are indicated by the modality name for example the

patient labeled P2 has all four modalities.
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Patient ID Sex ACVR1 TP53 H3 Age Volume T1 T2 T1C FLAIR OS status OS(days)
P1 0 na na 3 2,2 13997 T1 T2 FLAIR 1 1228
P2 1 1 0 1 3,3 15421 T1 T2 T1C FLAIR 1 804
P3 0 0 0 0 3,3 22400 T2 T1C FLAIR 1 469
P4 1 1 0 1 3,4 24303 T1 T2 T1C FLAIR 1 445
P5 0 1 0 1 3,5 11513 T1C 1 303
P6 1 0 0 1 3,7 6472 T1 T2 T1C FLAIR 1 260
P7 0 0 0 3 3,9 10144 T1 T1C 1 387
P8 0 0 0 3 4,1 17071 T1 T2 T1C FLAIR 1 265
P9 0 1 0 1 4,1 11459 T1 T2 T1C FLAIR 1 543
P10 0 1 0 1 4,4 13424 T1 T2 T1C FLAIR 1 513
P11 1 0 1 0 4,4 6272 T1 T2 T1C FLAIR 1 267
P12 1 0 1 2 4,5 12067 T1 T2 T1C FLAIR 1 272
P13 0 1 0 1 4,6 13424 T1 T2 T1C FLAIR 1 287
P14 0 na na na 4,7 3544 T1 T2 T1C FLAIR 1 569
P15 1 1 0 1 4,7 18656 T1 T2 T1C FLAIR 1 569
P16 0 0 0 3 4,7 8144 T1 T2 T1C FLAIR 1 358
P17 0 na 0 na 4,8 6272 T1 T2 T1C FLAIR 1 285
P18 1 na na na 4,8 14045 T1 T2 FLAIR 1 139
P19 0 0 1 3 5,1 8144 T1 T2 T1C FLAIR 1 169
P20 0 1 0 1 5,2 12712 T1 T2 T1C FLAIR 1 531
P21 0 1 1 1 5,2 9093 T1 T2 T1C FLAIR 1 272
P22 0 na na na 5,5 17071 T1 T2 T1C FLAIR 1 255
P23 0 0 0 3 5,5 10144 T1C FLAIR 1 107
P24 0 na na na 5,6 10905 T1 T2 T1C 1 33
P25 0 1 0 1 5,7 17071 T1 T2 T1C FLAIR 1 290
P26 1 0 0 3 5,7 18656 T1 T2 T1C FLAIR 1 318
P27 0 0 1 3 5,7 14136 T1 T2 T1C FLAIR 1 390
P28 0 0 1 0 5,7 8658 T1 T2 T1C FLAIR 1 240
P29 0 0 1 1 5,8 13424 T1 T2 T1C FLAIR 1 755
P30 1 0 1 3 5,8 24303 T1 T2 T1C FLAIR 1 292
P31 1 0 na 3 5,9 20476 T1 T2 T1C FLAIR 1 298
P32 1 0 0 3 5,9 10144 T1 T2 T1C FLAIR 1 297
P33 1 na na na 6 17071 T1 T2 T1C FLAIR 1 337
P34 1 na na na 6 15408 T2 T1C 1 321
P35 0 0 1 3 6,2 2512 T1 T2 T1C FLAIR 1 295
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Patient ID Sex ACVR1 TP53 H3 Age Volume T1 T2 T1C FLAIR OS status OS(days)
P36 1 na na na 6,3 14045 T2 T1C CENSORED 50
P37 0 0 0 3 6,5 10144 T1 T2 T1C FLAIR 1 387
P38 0 0 0 3 6,6 10144 T1 T2 T1C FLAIR 1 811
P39 1 0 1 3 6,6 15408 T1 T2 T1C 1 376
P40 0 na na 3 6,7 12067 T1 T2 T1C FLAIR 1 188
P41 1 0 0 3 6,7 15775 T2 CENSORED 1787
P42 1 0 1 3 6,9 12712 T1 T2 T1C FLAIR 1 134
P43 0 0 1 3 7 6272 T1 T1C FLAIR 1 161
P44 1 0 1 3 7,1 15408 T1 T2 FLAIR 1 191
P45 1 0 1 3 7,1 9714 T1 T2 T1C FLAIR 1 243
P46 1 1 na na 7,1 12712 T1 T2 T1C FLAIR CENSORED 19
P47 1 0 0 3 7,2 29985 T1 T2 CENSORED 193
P48 1 na na na 7,4 3544 T1 T2 FLAIR 1 340
P49 1 1 0 1 7,5 12067 T1 T2 T1C FLAIR 1 1043
P50 0 0 1 3 7,8 5950 T1 T2 T1C FLAIR 1 212
P51 1 na na na 7,9 13997 T1 T2 T1C FLAIR 1 224
P52 0 0 1 3 7,9 8658 T1 T2 T1C FLAIR 1 302
P53 1 0 0 1 8,6 12712 T1 T2 T1C 1 595
P54 1 0 1 3 9,1 12712 T1 T2 FLAIR 1 295
P55 1 0 1 3 9,3 2969 T1 T2 T1C FLAIR 1 373
P56 1 0 1 3 9,3 7679 T1 T2 T1C FLAIR 1 663
P57 1 0 1 3 9,4 9168 T1 T2 T1C FLAIR 1 231
P58 1 0 1 3 9,6 14045 T1 T2 T1C FLAIR 1 288
P59 0 0 1 3 9,7 2332 T1 T2 T1C FLAIR 1 362
P60 1 na na na 9,7 8144 T1 T2 T1C 1 270
P61 1 1 na na 10 7123 T1 T2 FLAIR CENSORED 27
P62 1 0 1 3 10 4139 T1 T2 T1C FLAIR 1 594
P63 1 0 1 3 10,2 17071 T1 T2 T1C FLAIR 1 314
P64 1 0 1 3 10 6272 T1 T2 T1C FLAIR CENSORED 329
P65 0 0 1 3 10,6 5950 T1 T2 T1C FLAIR 1 249
P66 0 na na na 11 1403 T1 T1C FLAIR 1 508
P67 0 0 1 3 11,4 11459 T1 T2 T1C FLAIR 1 478
P68 0 0 1 3 11,5 3872 T1 T2 T1C FLAIR 1 86
P69 1 0 1 3 11,8 8658 T1 T2 T1C FLAIR CENSORED 390
P70 0 0 1 3 12,8 11459 T2 T1C 1 786
P71 1 0 1 3 14 4166 T1 T2 T1C FLAIR 1 291
P72 1 na na na 14,2 8144 T1 T2 T1C 1 561
P73 1 1 0 0 14,2 5184 T1 T2 T1C FLAIR 1 858
P74 1 0 1 3 14,7 11510 T1 T2 T1C FLAIR 1 424
P75 0 0 0 3 15,2 11510 T1 T2 T1C FLAIR 1 580
P76 1 0 1 3 15,4 15408 T1 T2 T1C FLAIR 1 189
P77 1 0 0 3 16,2 11459 T1 T2 T1C FLAIR 1 488
P78 1 na na na 16,5 18656 T1 T2 T1C 1 415
P79 1 0 1 3 19,1 3544 T1 T2 T1C FLAIR 1 428
P80 1 na na na 30,2 6203 T1 T1C FLAIR 1 221

Table A.1: The table presents in detail patients age, sex, volume and genomics mutation for H3, ACVR1 and TP53
along with the modalities available and the OSstatus. Sex:1 boy, 0 girl, mutation if present is represented by ’1’ if
not present represented by ’0’ and ’na’ if the mutation status is not known to be present or absent. Age: is given in
years,

.
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Appendix B

Radiomic Features

Here we give an overview of the radiomic features used in the thesis. Table B.1 gives a full list of the features

used, and full mathematical formulations can be found in the PyRadiomics documentation [238]. These are mostly

based on IBSI feature definitions [239]. Unless otherwise stated we used the default PyRadiomic settings for feature

calculation.
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Feature Type Features

Shape (2D)
Mesh Surface, Pixel Surface, Perimeter, Perimeter to Surface Ratio Sphericity,
Spherical Disproportion, Maximum 2D Diameter, Major Axis Length,
Minor Axis Length, Elongation.

Shape (3D)

Mesh Volume, Voxel Volume, Surface Area, Surface Area to Volume Ratio,
Sphericity, Compactness1,Compactness2, Spherical Disproportion,
Maximum 3D Diameter, Maximum 2D Diameter (by slice, column, row),
Major Axis Length, Minor Axis Length, Least Axis Length,
Elongation, Flatness.

First-Order

Energy, Total Energy, Entropy, Minimum, 10th Percentile, 90th Percentile,
Maximum, Mean, Median, Interquartile Range, Mean Absolute Deviation,
Robust Mean Absolute Deviation, Root Mean Squared, Standard Deviation,
Skewness, Kurtosis, Variance, Uniformity.

GLCM

Autocorrelation, Joint Average, Cluster Prominence, Cluster Shade Cluster
Tendency, Contrast, Correlation, Difference Average, Difference Entropy,
Difference Variance, Joint Energy, Joint Entropy, Informational Measure of
Correlation 1, Information Measure of Correlation 2, Inverse Difference Moment,
Maximal Correlation Coefficient, Inverse Difference Moment Normalised,
Inverse Difference, Inverse Difference Normalised, Inverse Variance,
Maximum Probability, Sum Average, Sum Entropy, Sum of Squares.

NGTDM Coarseness, Contrast, Busyness, Complexity, Strength

GLRLM

Short Run Emphasis, Long Run Emphasis, Grey Level Non-Uniformity,
Grey Level Non-Uniformity Normalised, Run Length Non-Uniformity,
Run Length Non-Uniformity Normalised, Run Percentage, Grey Level Variance,
Run Variance, Run Entropy, Low Grey Level Run Emphasis, High Grey
Level Run Emphasis, Short Run Low Grey Level Run Emphasis, Short Run
High Grey Level Emphasis, Long Run Low Grey Level Emphasis,
Long Run High Grey Level Emphasis

GLSZM

Small Area Emphasis, Large Area Emphasis, Grey Level Non-Uniformity,
Grey Level Non-Uniformity Normalised, Size-Zone Non-Uniformity,
Size Zone Non-Uniformity Normalised, Zone Percentage,
Grey Level Variance, Zone Variance, Zone Entropy,
Low Grey Level Zone Emphasis, High Grey Level Zone Emphasis, Small Area Low
Grey Level Emphasis, Small Area High Grey Level
Emphasis, Large Area Low Grey Level Emphasis,
Large Area High Grey Level Emphasis

GLDM

Small Dependence Emphasis, Large Dependence Emphasis,
Grey Level Non- Uniformity, Dependence Non-Uniformity, Dependence
Non-Uniformity Normalised, Grey Level Variance, Dependence Variance,
Dependence Entropy, Low Grey Level Emphasis, High Grey Level Emphasis,
Small Dependence Low Grey Level Emphasis, Small Dependence High Grey
Level Emphasis, Large Dependence Low Grey Level Emphasis,
Large Dependence High Grey Level Emphasis

Table B.1: Texture features by feature type Full mathematical details of the features can be found at [238]
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Glossary

ACVR1 Activin A Receptor Type I. 20

ADC Apparent Diffusion Coefficient. 24

ASL Arterial Spin Labeling. 23

CBF cerebral blood flow. 23

CBV cerebral blood volume. 23

cIMPACT-NOW Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy . 17

CNN Convolutional Neural Network. 37

CNS central nervous system. 15

CT Computed Tomography . 16, 21

DICE Sørensen–Dice coefficient. 44

DICOM Digital Imaging and Communications in Medicine. 27

DIPG Diffuse Intrinsic Pontine Glioma. 15

DMG Diffuse Midline glioma. 15

DOPA 18F-dihydroxyphenylalanine. 22

DTI Diffusion Tensor Imaging. 22

DWI Diffusion-Weighted Imaging. 22

FDG-PET Fluorodeoxyglucose Positron Emission Tomography. 55

FET 18F-fluoro-ethyl-tyrosine. 22
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FLT 18fluorothymidine. 22

fMRI Functional Magnetic Resonance Imaging. 24

FN False Negative. 41

FP False Positive. 41

GAN Generative Adversarial Networks. 53

GLCM Gray Level Co-occurrence Matrix. 34

GLDM Gray Level Dependence Matrix. 34

GLRLM Gray Level Run Length Matrix. 34

GLSZM Gray Level Size Zone. 34

GM Grey Matter. 5, 32

H3 Histone H3. 18

H3K27M Histone H3 Lysine 27 to Methionine mutation. 18

HD Hellinger distance. 5, 32

HECKTOR Head And Neck Tumor segmentation and prediction in PET/CT Images . 29

HWS Hybrid White Stripe. 32

ICARE The Medical Image Computing Assisted Intervention Society. 29

IDH Isocitrate Dehydrogenase. 18

IRB Institutional Review Board. 27

KM Kaplan-Meier. 48

KNN K-Nearest Neighbour. 53

LASSO least absolute shrinkage and selection operator . 106

LOOCV Leave One Out Cross Validation . 41

LPO leave-pair-out . 108

LR Logistic Regression. 36
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LR-RFECV Logistic Regression Recursive Feature Elimination with cross validation. 37

MI myoinositol. 26

MICCAI The Medical Image Computing Assisted Intervention Society. 29

ML Machine Learning. 37

MM-LOOCV-MIM multi-modal and missing imaging modality. 92

MRI Magnetic Resonance Imaging. 16, 21

MRS Magnetic Resonance Spectroscopy. 22

MSE Mean Square Error. 43

MTT mean transit time. 23

N4 Non-Parametric Non-Uniform Intensity Normalization. 30

NGTDM Neighbouring Grey Tone Difference Matrix. 34

NIfTI Neuroimaging Informatics Technology Initiative. 27

OS Overall Survival. 26

PET Positron Emission Tomography . 21

PFS progression-free survival. 102

PIK3CA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha. 20

PLNTY Polymorphous low-grade neuroepithelial tumor of the young. 18

PWI Perfusion-Weighted Imaging. 22, 23

RF Random Forest. 36

ROI Region of Interest. 37

SGD Stochastic Gradient Descent. 42

SMOTE Synthetic Data Augmentation for Tabular Data. 44

SVM Support Vector Machine. 36
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SWI Susceptibility Sequence. 24

T1w T1 weighted. 22

T2w T2 weighted. 22

TE Time-Echo. 26

TN True Negative. 41

TP True Positive . 41

TP53 Tumor Protein p53. 20

WHO World Health Organization. 15, 17

WM White Matter. 32

WT Wild Type. 27
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[41] D. K. Jones, T. R. Knösche, and R. Turner, “White matter integrity, fiber count, and other fallacies: the do’s

and don’ts of diffusion mri,” Neuroimage, vol. 73, pp. 239–254, 2013.

[42] J.-D. Tournier, R. Smith, D. Raffelt, R. Tabbara, T. Dhollander, M. Pietsch, D. Christiaens, B. Jeurissen, C.-H.

Yeh, and A. Connelly, “Mrtrix3: A fast, flexible and open software framework for medical image processing

and visualisation,” Neuroimage, vol. 202, p. 116137, 2019.

[43] S. Van Cauter, J. Veraart, J. Sijbers, R. R. Peeters, U. Himmelreich, F. De Keyzer, S. W. Van Gool,

F. Van Calenbergh, S. De Vleeschouwer, W. Van Hecke, et al., “Gliomas: diffusion kurtosis mr imaging in

grading,” Radiology, vol. 263, no. 2, pp. 492–501, 2012.

[44] M. Jolapara, C. Kesavadas, V. Radhakrishnan, B. Thomas, A. Gupta, N. Bodhey, S. Patro, J. Saini, U. George,

and P. Sarma, “Role of diffusion tensor imaging in differentiating subtypes of meningiomas,” Journal of Neu-

roradiology, vol. 37, no. 5, pp. 277–283, 2010.

[45] F. Sanvito, A. Castellano, and A. Falini, “Advancements in neuroimaging to unravel biological and molecular

features of brain tumors,” Cancers, vol. 13, no. 3, p. 424, 2021.

[46] B. Ross and S. Bluml, “Magnetic resonance spectroscopy of the human brain,” The Anatomical Record: An

Official Publication of the American Association of Anatomists, vol. 265, no. 2, pp. 54–84, 2001.

[47] D. Soares and M. Law, “Magnetic resonance spectroscopy of the brain: review of metabolites and clinical

applications,” Clinical radiology, vol. 64, no. 1, pp. 12–21, 2009.
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M. L. Garrè, et al., “Pediatric diffuse midline gliomas h3 k27m-mutant and non-histone mutant midline high-

grade gliomas in neurofibromatosis type 1 in comparison with non-syndromic children: a single-center pilot

study,” Frontiers in Oncology, vol. 10, p. 795, 2020.

[222] J. L. Leach, J. Roebker, A. Schafer, J. Baugh, B. Chaney, C. Fuller, M. Fouladi, A. Lane, R. Doughman,

R. Drissi, et al., “Mr imaging features of diffuse intrinsic pontine glioma (dipg) and relationship to overall

survival: Report from the international dipg registry,” Neuro-Oncology, 2020.

[223] C. L. Tinkle, B. Simone, J. Chiang, X. Li, K. Campbell, Y. Han, Y. Li, L. D. Hover, J. K. Molitoris, J. Becksfort,

et al., “Defining optimal target volumes of conformal radiation therapy for diffuse intrinsic pontine glioma,”

International Journal of Radiation Oncology* Biology* Physics, vol. 106, no. 4, pp. 838–847, 2020.
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[239] A. Zwanenburg, S. Leger, M. Vallières, and S. Löck, “Image biomarker standardisation initiative - feature

definitions,” arXiv, 2016.

167


	Clinical context
	Neuro-oncology
	Grading of brain tumors/ WHO classification
	Division of diffuse gliomas into adult-type and pediatric- type
	Pediatric-type low-grade and high-grade diffuse gliomas

	Diffuse Midline Gliomas
	Introduction
	Genetic alterations associated with DMG/ DIPG 

	Medical imaging in neuro-oncology
	Introduction
	Conventional MRI
	Advancements in MRI

	The Dataset

	Dedicated tools for classification and survival analysis based on radiomic features
	Introduction
	MRI standardization
	Radiomics in medical imaging
	Feature Selection
	Learning models for medical data
	Machine Learning
	Deep learning
	Loss Functions

	Class Balancing
	Classifiers
	Logistic Regression
	Support Vector Machine
	Random Forest

	Survival Analysis
	Kaplan Meier curves and Log-rank tests
	Concordance Index
	ICARE algorithm

	Conclusion

	A first multi-model approach for H3K27M mutation prediction using radiomics and clinical features
	Introduction
	Radiomic studies in how to deal with missing data multiple scanners
	How to deal with multi-scanner data

	Paper published at the 2021 annual international conference of the IEEE in medicine and biology society
	Conclusion

	A second Multi-Model approach based on the complementarity between the different sources of data
	Introduction
	Paper published in Frontiers in Medicine
	Additional validation studies
	Classifier comparison
	SVM, RF and LR evaluated in the Multi-Model approach
	Comparing K-Fold cross validation with Leave one out cross validation

	Will an Age dependent weight improve results of the multi-model approach?
	Discussion
	Conclusion

	Radiomic analyses to predict overall survival and long survivors DIPG
	Introduction
	State of the Art: Survival analysis for DIPG
	Meta analysis for high grade brain stem glioma
	Use of MRI to predict survival in DIPG or DMG
	Survival analysis based on FDG PET and MR
	New therapeutic protocols: Onc201
	Radiomics

	Methods for assessing Overall Survival
	Prediction of long survivors using the multi-model framework
	Predicting Long Term Survivors
	Survival Prediction continuous output ICARE

	Results
	Kaplan Meier curves and Log-rank tests for overall survival
	Predicting long surviving patients (2 years) using the Multi-modal approach
	Predicting long surviving patients (18 months) using the Multi-modal approach
	Predicting long surviving patients (1 year) using the Multi-modal approach
	Results for ICARE

	Discussion
	Conclusion

	Patient data 
	Radiomic Features
	Glossary

