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A B S T R A C T

Representation learning of sentences has been widely studied in NLP. While
many works have explored different pre-training objectives to create contextual
representations from sentences, several others have focused on learning sentence
embeddings for multiple languages with the aim of closely encoding paraphrases
and translations in the sentence embedding space.

In this thesis, we first study how to extend text sentence embedding spaces
to the speech modality in order to build a multilingual speech/text sentence
embedding space. Next, we explore how to use this multilingual and multimodal
sentence embedding space for large-scale speech mining. This allows us to
automatically create alignments between written and spoken sentences in
different languages. For high similarity thresholds in the latent space, aligned
sentences can be considered as translations. If the alignments involve written
sentences on one side and spoken sentences on the other, then these are potential
speech-to-text translations. If the alignments involve on both sides spoken
sentences, then these are potential speech-to-speech translations. To validate
the quality of the mined data, we train speech-to-text translation models and
speech-to-speech translation models. We show that adding the automatically
mined data significantly improves the quality of the learned translation models,
demonstrating the quality of the alignments and the usefulness of the mined data.

Then, we study how to decode these sentence embeddings into text or speech
in different languages. We explore several methods for training decoders and
analyze their robustness to modalities/languages not seen during training,
to evaluate cross-lingual and cross-modal transfers. We demonstrate that we
could perform zero-shot cross-modal translation in this framework, achieving
translation results close to systems learned in a supervised manner with a cross-
attention mechanism. The compatibility between speech/text representations
from different languages enables these very good performances, despite an
intermediate fixed-size representation.

Finally, we develop a new state-of-the-art massively multilingual speech/text
sentence embedding space, named SONAR, based on conclusions drawn from
the first two projects. We study different objective functions to learn such a space
and we analyze their impact on the organization of the space as well as on
the capabilities to decode these representations. We show that such sentence
embedding space outperform previous state-of-the-art methods for both cross-
lingual and cross-modal similarity search as well as decoding capabilities. This

i



ii abstract

new space covers 200 written languages and 37 spoken languages. It also offers
text translation results close to the NLLB system on which it is based, and speech
translation results competitive with the Whisper supervised system. We also
present SONAR EXPRESSIVE, which introduces an additional representation
encoding non-semantic speech properties, such as vocal style or expressivity of
speech.



R É S U M É

L’apprentissage de représentations mathématiques des phrases, sous forme
textuelle, a été largement étudié en traitement automatique des langues (TAL).
Alors que de nombreuses recherches ont exploré différentes fonctions d’objectif
de pré-entraînement pour créer des représentations contextuelles des mots à partir
des phrases, d’autres se sont concentrées sur l’apprentissage de représentations
des phrases par des vecteurs uniques, ou représentations de taille fixe (par
opposition à une séquence de vecteurs dont la longueur dépend de la longueur
de la phrase), pour plusieurs langues. Le but étant d’encoder par des vecteurs
proches entre eux les paraphrases et les traductions d’une même phrase.

Dans cette thèse, nous étudions d’abord comment étendre ces espaces de
représentations de phrases à la modalité de la parole afin de construire un espace
de représentation de phrases multilingue pour la parole et le texte. Ensuite, nous
explorons comment utiliser cet espace de représentation de phrase multilingue
et multimodal pour de la recherche de similarité sémantique entre des phrases
parlées et écrites à grande échelle. Ceci nous permet de créer automatiquement
des alignements entre des phrases écrites et parlées dans différentes langues.
Pour des seuils de similarité élevés dans l’espace de représentation, les phrases
alignées peuvent être considérées comme des traductions. Si les alignements
impliquent d’un côté des phrases écrites et de l’autre des phrases parlées, il
s’agit alors de potentielles traductions parole-texte. Si les alignements impliquent
des deux côtés des phrases parlées, il s’agit alors de potentielles traductions
parole-parole. Pour valider la qualité des données collectées automatiquement,
nous entraînons des modèles de traduction de la parole vers le texte et des
modèles de traduction parole vers parole. Nous montrons qu’ajouter les données
alignées automatiquement améliore significativement la qualité du modèle de
traduction appris, démontrant la qualité des alignements et l’utilité des données
automatiquement alignées.

Ensuite, nous étudions comment décoder ces représentations vectorielles de
phrases en texte ou parole dans différentes langues. Nous explorons plusieurs
méthodes d’apprentissage de modèles décodeurs et analysons leur robustesse
pour décoder des représentations de phrases de langues/modalités non observées
pendant leur apprentissage, afin de quantifier leur capacité de généralisation et
le transfert entre langues et entre modalités des capacités de décodage. Nous
mettons en évidence que l’on peut atteindre des résultats de traduction d’une
modalité à l’autre proches de systèmes appris de manière supervisée avec
un mécanisme d’attention. La compatibilité des représentations parole/texte
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dans différentes langues permet ces très bonnes performances, malgré une
représentation intermédiaire composée d’un seul vecteur.

Enfin, nous montrons comment nous avons développé un nouvel espace de
représentation de phrases pour la parole et le texte qui améliore l’état de l’art
nommé SONAR, grâce aux enseignements tirés de nos travaux précédents. Nous
étudions différentes fonctions d’objectif pour l’apprentissage de cet espace et
nous analysons leur impact sur l’organisation de l’espace ainsi que sur les
capacités de décodage des représentations. Nous montrons que ce nouvel espace
de représentation de phrases améliore significativement l’état de l’art pour la
recherche de similarité entre langues et entre modalités ainsi que les capacités
de décodage de ces représentations. Ce nouvel espace couvre 200 langues écrites
et 37 langues parlées. Il offre également des résultats en traduction du texte
proche du système de traduction NLLB sur lequel il se base, et en traduction de la
parole compétitifs avec le système supervisé Whisper. Nous présentons également
SONAR EXPRESSIVE, qui introduit une représentation supplémentaire encodant
des propriétés de la parole non sémantiques telles que la voix ou l’expressivité.
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I N T R O D U C T I O N

La parole est une sorte de tableau
dont la pensée est l’original.

Denis Diderot, L’Encyclopédie Vol. VII

"Language is a kind of painting of which the thought is the original.", one can read in
L’Encyclopédie from Denis Diderot. This quote first conveys the idea that while an
idea can exist as a thought, one has to express it with language to communicate
it to others. Language has developed throughout history to enable humans to
communicate between each other and has therefore played a major role in human
societies. This expression of thoughts is imperfect, as Diderot highlighted, but tries
to be the most faithful imitation of thoughts (Diderot and d’Alembert 1751). This is
also true with translation as no perfect translation exists. Indeed, multiple possible
translations are often commonly accepted for the same source sentence. Moreover,
some words or expressions may carry a cultural background that cannot be easily
translated. However, translation has also played a major role in human history,
allowing people from different parts of the world to communicate, enabling strong
diplomatic relationships or the sharing of knowledge between different countries.

Since communication is at the heart of human society, dreams of real-time
translation technologies have appeared in several fictions like Star Trek’s Universal
Translator, a computational device that offers translations between any two
languages. To tend towards such technologies, there has been a lot of efforts
to create innovations that can support people for translation for many years. For
example, as early as 1663, Kircher proposed in Polygraphia Nova, a system to
translate from one language to another using a shared code, which can be seen as
a first attempt to perform word-by-word translation. In 1933, Georges Artsrouni
filed and received the first patent for a mechanical translation device. With the
premises of computer science, machine translation started to be explored (Booth
and Richens 1952). Important improvements in machine translation quality was
enabled by machine learning methods which started in 1990 (Brown et al. 1990).

If we analyze again the quote from Denis Diderot, we notice that thought
is the origin, and that language is the mean of expression of it, which tries to

1
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be as faithful as possible to the original thought. In this context, the core idea
of this thesis is a conceptual space where representations can be instantiated
into different languages and modalities and where similar concepts (or ideas
practically defined as sentences) have similar representations.

While representation of words have been studied a lot in machine learning,
other works also studied representations at the sentence level to build
sentence vector representations, also called sentence embeddings (Kiros et al.
2015). We advocate that the sentence is a good scale to build a high-level
conceptual representation space. Indeed, translation has been mainly addressed
at the sentence level (Cho et al. 2014), even though document-level machine
translation should also be addressed for long term consistency and sometimes
disambiguation (Barrault et al. 2019). Sentence representations were also explored
for classification tasks, as well as semantic similarity estimation for several
languages (Artetxe and Schwenk 2019b).

This thesis is situated at the intersection of representation learning of sentences
with multilingual speech/text sentence embeddings and multimodal speech/text
translation.

1.1 Introduction to the research problem

Representation of textual data in Natural Language Processing (NLP) has first
been explored with non-contextual word embeddings (Mikolov et al. 2013),
followed by contextual representations of words (Devlin et al. 2019; Conneau
et al. 2020b). A sentence is then represented as a sequence of word embeddings,
and these representations have variable lengths depending on the number of
words of the encoded sentence (Arora et al. 2017). Representations of sentences
by unique vectors (also called fixed-size representations) have also been explored
for classification purposes or to efficiently estimate semantic similarity between
sentences (from potentially different languages) (Artetxe and Schwenk 2019b;
Feng et al. 2020). Those fixed-size representations for sentences are commonly
called sentence embeddings and have been extremely useful for bitext mining at
scale (Schwenk et al. 2021; Ramesh et al. 2022). Semantic sentence embeddings
for multiple languages in the speech modality were left unexplored when this
thesis started.

In recent sequence-to-sequence models, composed of an encoder and a
decoder, the encoded source sentence is represented as a sequence of contextual
representations that a decoder can attend to (Bahdanau et al. 2014; Vaswani et al.
2017). This attention mechanism on all encoder outputs has significantly boosted
performances of such models. In that context, decoding fixed-size representations
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of sentences has been largely under-explored in NLP with modern architectures
like Transformers (Vaswani et al. 2017). Exploring how much information can
be encoded and decoded into fixed-size sentence representations is therefore
interesting by itself. Moreover, when dealing with multiple modalities, like speech
and text, multi-modal sequence-to-sequence models have difficulties to represent
similarly text and speech inputs, which hinder efficient cross-modal transfer.
Indeed, sequences of contextual representations of speech and text have really
different lengths, which is the first reason of this so-called modality gap (Liu
et al. 2020b). Exploring fixed-size representations at the sentence level, enables
to minimize the modality gap much more easily, with opportunities to explicitly
align modalities in the sentence embedding space. Given this research context,
we try in this thesis to address the following questions:

How can we build language-agnostic and modality-agnostic sentence
embeddings for best semantic similarity estimation between languages and
modalities? How much content is preserved and can be recovered from these
multilingual and multimodal fixed-size sentence representations? We conclude
with perspectives that such compatible representations between speech and text
for multiple languages may open.

To answer these questions, throughout the thesis, we extend existing
semantic representations of text sentences to the speech modality for multiple
languages. We explore decoding of such multilingual and multimodal sentence
representations into speech and text in different languages. Finally, we introduce
a new sentence embedding space for multilingual speech and text, augmented
with a speech-specific representation for non-semantic encoding of speech.

1.2 PhD thesis context

This thesis is part of the CIFRE PhD French program involving both an
academic institution (INRIA Paris, ALMAnaCH team) and an industrial lab (Meta
AI, FAIR team) and followed an internship at Meta AI. In this section, we quickly
contextualize this thesis with related research that was happening in the two labs.

This thesis was initially heavily relying on the existing LASER sentence
embedding space developed by Mikel Artetxe and Holger Schwenk at Meta AI,
a massively multilingual sentence embedding space with interesting semantic
properties that has proven to be useful for bitext mining (Schwenk et al. 2019;
Schwenk et al. 2021). The LASER sentence embedding space was also successfully
used in a project led by Benoît Sagot with one of his former PhD students
Louis Martin to mine paraphrases for multiple languages (Martin et al. 2020).
Representation learning has also been addressed in the ALMAnaCH team with
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the learning of contextual representations for French text with the well-known
CamemBERT (Martin et al. 2019) model.

The beginning of the thesis coincides with the launch of an internal Meta
AI project, later released as No Language Left Behind (NLLB), a state-of-the-art
machine translation model for massively multilingual text, where bitext mining
was scaled to many new languages by leveraging LASER3 (Heffernan et al. 2022).
While I did not take part in the NLLB project, I collaborated with the Universal
Speech Translation (UST) team at Meta on the SpeechMatrix project, where we
scaled speech-to-speech mining to 136 language pairs. Finally, I participated in the
recent Seamless Communication project (Seamless Communication et al. 2023a;
Seamless Communication et al. 2023b) with the integration of our new SONAR
sentence embedding space for large-scale speech mining.

1.3 Contributions

This PhD thesis is structured around exploring massively multilingual
speech/text sentence embeddings for large-scale speech mining and how such
representations may be decoded into multiple languages in text and speech. We
first present the related work in Chapter 2, before presenting our contributions:

• Chapter 3: embedding speech/text sentences and multilin-
gual speech mining

In this chapter, we introduce multilingual and multimodal speech/text
sentence embeddings using a teacher-student approach with the existing
LASER sentence embedding space. We demonstrate that we can perform
semantic similarity estimation between speech and text in different lan-
guages and introduce speech mining as an extension of bitext mining for
the speech modality. We train speech translation systems using the mined
data and demonstrate significant gains with this additional data. Based on
these promising results, we scale speech-to-speech mining to 136 language
pairs to introduce the SpeechMatrix corpus and train several speech trans-
lation systems on this mined data. The work in this chapter has led to two
conference publications:

• Paul-Ambroise Duquenne, Hongyu Gong, and Holger Schwenk (2021).
“Multimodal and multilingual embeddings for large-scale speech
mining”. In: Advances in Neural Information Processing Systems 34

• Paul-Ambroise Duquenne, Hongyu Gong, Ning Dong, Jingfei Du, Ann
Lee, Vedanuj Goswami, Changhan Wang, Juan Pino, Benoit Sagot, and
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Holger Schwenk (July 2023a). “SpeechMatrix: A Large-Scale Mined
Corpus of Multilingual Speech-to-Speech Translations”. In: Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Ed. by Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki. Toronto, Canada: Association for Computational
Linguistics, pp. 16251–16269. url: https://aclanthology.org/2023.
acl-long.899

• Chapter 4: decoding sentence embeddings and zero -shot

cross -modal machine translation

Then, we explore how to efficiently decode these fixed-size representations
into multiple languages and modalities and how we can perform zero-
shot cross-modal machine translation in this framework. We demonstrate
that we can combine independently trained encoders and decoders from
different languages and modalities in a zero-shot way to perform cross-
modal translation. As a second step, we explore multilingual training in
such modular framework, to benefit from cross-lingual learning. The work
in this chapter has led to two conference publications:

• Paul-Ambroise Duquenne, Hongyu Gong, Benoit Sagot, and Holger
Schwenk (Dec. 2022). “T-Modules: Translation Modules for Zero-
Shot Cross-Modal Machine Translation”. In: Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing. Ed. by
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang. Abu Dhabi, United
Arab Emirates: Association for Computational Linguistics, pp. 5794–
5806. url: https://aclanthology.org/2022.emnlp-main.391

• Paul-Ambroise Duquenne, Holger Schwenk, and Benoit Sagot (2023c).
“Modular Speech-to-Text Translation for Zero-Shot Cross-Modal
Transfer”. In: Proc. INTERSPEECH 2023, pp. 32–36

• Chapter 5: sonar : utterance -level representations for

massively multilingual speech and text

Finally, in our last chapter, we draw conclusions from the two first chapters
to introduce SONAR, a state-of-the-art massively multilingual speech/text
sentence embedding space for both cross-lingual and cross-modal similarity
search as well as decoding capabilities. We complement these semantic
sentence representations with a modality specific representation encoding
non-semantic speech properties of an audio signal. The work in this chapter
has led to two preprint publications:

https://aclanthology.org/2023.acl-long.899
https://aclanthology.org/2023.acl-long.899
https://aclanthology.org/2022.emnlp-main.391
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• Paul-Ambroise Duquenne, Holger Schwenk, and Benoit Sagot (2023d).
SONAR: Sentence-Level Multimodal and Language-Agnostic Representations.
url: https://arxiv.org/abs/2308.11466

• Paul-Ambroise Duquenne, Kevin Heffernan, Alexandre Mourachko,
Benoît Sagot, and Holger Schwenk (2023b). SONAR EXPRESSIVE: Zero-
shot Expressive Speech-to-Speech Translation

Finally, we put these contributions into perspective and discuss potential future
research directions in Chapter 6.

https://arxiv.org/abs/2308.11466
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R E L AT E D W O R K

In this chapter, we detail the related work of this thesis. We first introduce
machine learning and the specific fields of Natural Language Processing
(NLP) and Speech Processing. Then, we present different methods to learn
representations for sentences from contextual representations to sentence
embeddings for multiple languages. Finally, we present related work about
multimodal communication tasks including Machine Translation (MT), Automatic
Speech Recognition (ASR), Speech-to-Text Translation (S2TT), Speech-to-Speech
Translation (S2ST) and Expressive speech generation. Throughout this chapter,
we also introduce the different evaluation strategies commonly used to evaluate
the presented tasks.

2.1 From machine learning to natural language
processing and speech processing

2.1.1 Machine learning and neural networks

Machine learning is the general field of algorithms that learn from data.
Supervised learning algorithms are trained to solve specific tasks, which can be
modeled as a mapping between input features X and their label y. For example,
a translation task can be modeled as a mapping of source sentences in a given
language to target sentences in another language. Machine learning can then
be seen as the algorithms to find (or learn) the best mapping between X and
y, called the model, based on some labeled training data. The best model is
searched inside a model class. In neural network learning, the model class is
defined by the architecture of the network as well as parameters of the model. The
architecture is often fixed before training, and the machine learning algorithm
is searching for best parameters to solve the task on the training data. This is
actually an optimization problem, where the parameters are chosen to minimize
a loss function. This optimization is practically approximated in neural network
learning with gradient descent (Cauchy et al. 1847; Rumelhart et al. 1986).

7
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The goal of supervised learning algorithms is to solve a specific task for any
data drawn from an unknown distribution pdata. As this theoretical distribution
is unknown, only a set of instances is sampled and labeled as the training set.
During the training process, the parameters are found to minimize the loss on
the training set.

However, the generalization error or test error of the model is measured on
instances unseen during training called the test set, independently drawn from
pdata. Indeed, the training process may lead to a low training error but a high test
error, which is commonly called over-fitting. This happens when the model class
is too complex and without enough training data: a complex model is learned to
approximate noise and outliers of the training set rather than the true underlying
pattern of labels and instances from pdata. Regularization techniques can help
avoid over-fitting by adding constraints to encourage simpler models (parameter
norm penalties like weight decay), training the model on several similar tasks to
increase generalization, early stopping of the training process, adding noise in the
training (e.g. dropout), using data augmentation techniques etc. Collecting more
training data or simplifying the model class are also two other ways to avoid
over-fitting.

On the other hand, training error may still be high at the end of the training
process which is called under-fitting. This happens when the model class is too
simple and no model in this model class can correctly approximate the underlying
mapping between X and y. Exploring different model classes is important to avoid
under-fitting.

Once the model is trained and evaluated on a separate test set, it can be used to
make predictions. Machine learning has many different applications like image
classification (L. Chen et al. 2021), recommender systems, machine translation
(Brown et al. 1990) and speech recognition (Bahl et al. 1987).

2.1.2 Natural language processing

Among machine learning applications, several ones deal with text data and are
often grouped as NLP tasks. This set of tasks has specificities that we are going to
develop in this section.

The first specificity of NLP tasks is the nature of the textual data. Indeed,
neural networks take vector representations as input and output. To apply neural
networks to NLP tasks, one should first represent text as vectors. There has been
a long history of vector representations of words or subwords (a word split in
several parts) since the beginning of NLP research. Text is then represented by
sequences of vector representations of each word or subword.
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A first method to represent words as vectors is called “one-hot” representations.
Based on a word vocabulary of size N , a word is represented by a vector of
dimension N filled with zeros except at index i (filled with 1), which corresponds
to the index of the encoded word in the vocabulary list. In this way, each word
of the vocabulary can be easily represented. However, the dimensionality of the
vector space increases with the size of the vocabulary, leading to high dimensional
representation spaces for words. Another issue with such representations is that
representations of similar words have nothing in common when represented as
one-hot vectors, which forbids models to generalize well when trained on a subset
of possible words.

To overcome this issue, distributional approaches were introduced. The main
idea is that similar words are appearing in similar contexts (Harris 1954; Firth
1957). Extracting contexts and co-occurrences of words in easily-available raw
text corpora can be used to build vector representations of words, called word
embeddings.

An initial distributional approach, commonly referred as count-based methods,
counts co-occurrence of a word with other words found in its contexts in the
raw text corpus. As a result, words which have similar statistics of neighbouring
words in the raw corpus will be represented similarly if one takes these counts as
a vector representation for each word (Church and Hanks 1990).

Another distributional approach can be summarized as predictive methods.
Word2vec (Mikolov et al. 2013) is maybe the most well-known predictive approach
to build word embeddings, where a neural network is trained to either predict a
word from its neighbouring words (CBoW method) or to predict its neighbouring
words from the word itself (Skip-gram method). The projection hidden layer
is used as words embeddings. Mikolov et al. (2013) have shown that such
embedding spaces have interesting semantic properties. Indeed, interestingly,
some simple linear operations called delta vectors in the embedding space
highlight the good semantic organization of the space. For example, one can
compute embeddings for the words “man”, “woman”, “king” and “queen” among
other words of a vocabulary, as eman, ewoman, eking and equeen. Computing the delta
vector edelta = eking − eman and adding it to ewoman results in a word embedding
close to equeen. This is illustrated, among other examples, in Figure 2.1.

Many other predictive methods exist to build word embeddings such as
(Bojanowski et al. 2017; Pennington et al. 2014). All the word embedding
methods presented so far are called non-contextual embeddings, as each word
is represented the same way in different contexts. However, in many cases, the
meaning of a word is ambiguous if taken separately from its context. This is why
contextual representations of words were introduced, and we will develop such
methods in Section 2.2.1.
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Figure 2.1. – Semantic transformations in Word2vec embedding space. Semantic
transformations can be modeled as delta vectors in the word
embedding space. Image from Google Cloud blog on Word2vec.

Another specificity of NLP tasks is the variable lengths of inputs and outputs.
Simple neural network architectures, like Multi-Layer Perceptron (MLP), were
adapted to perform sequence modeling like Recurrent Neural Network (RNN).
RNN architectures (Rumelhart et al. 1986) are a specific type of neural network
sharing weights for each time-step of the input sequence and taking as input both
the current time-step input representation as well as the previous recurrent hidden
representation. When dealing with long-term dependencies, these architectures
often suffer from either vanishing or exploding gradients (Hochreiter 1991; Bengio
et al. 1994) which makes the learning process with gradient descent difficult. To
overcome these issues, other architectures like Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber 1997) were introduced.

Sequence-to-sequence architectures were also introduced to produce variable-
length outputs, and successfully used for tasks like MT. Sequence-to-sequence
architectures were initially composed of an RNN encoder and an RNN decoder.
The decoder takes as first recurrent input the last recurrent hidden representation
of the encoder, which implies that the full input sequence should be encoded in the
last hidden representation of the encoder. Attention mechanism was introduced
so that the decoder may take as input a learned weighted sum of encoder
hidden representations for each time-step (Bahdanau et al. 2014). This attention
mechanism was extended to encoder and decoder internal model architectures
with multi-head self-attention in the Transformer architecture (Vaswani et al. 2017)
in addition to cross-attention between the decoder and the encoder outputs.

While contextual representations and pre-trained language models are also
key in NLP (and will be presented in a following section), these non-contextual
word representations and specific architectures represent the basics of the NLP

field which aim at addressing several tasks like text classification, sentiment



2.1 from machine learning to natural language processing and speech processing 11

analysis, question answering, information retrieval, dialogue generation, machine
translation or automatic summarization.

2.1.3 Speech processing

Dealing with speech is really different as input features are continuous,
contrarily to text data.

In some modern end-to-end systems, 1-D raw waveforms are directly used as
input. However, historically and in many current systems, pre-computed features
of speech are used, like mel-filterbanks or Mel Frequency Cepstral Coefficients
(MFCC), which tend to replicate the processing of speech in the human inner
ear (Stevens and Volkmann 1940). The main steps to extract those features is a
pre-emphasis step to amplify high frequencies, followed by Short-Time Fourier
Transform (STFT) on successive windowed signals (a Hamming window is used to
avoid spectral leakage). Finally, filter-banks are applied on a mel-scale to mimic
the non-linear human ear perception. This last representation of speech can be
de-correlated using Discrete Cosine Transform (DCT) which gives MFCC features,
that were successfully used in many speech processing models.

In addition to RNN models presented in Section 2.1.2, Convolutional Neural
Network (CNN) (LeCun et al. 1989) have been successfully used to down-sample
speech as well as computing local features. The CNN architecture is also based on
the parameter-sharing idea, as same learned convolutional filters are applied at
different places of the input. The CNN architecture was used for the first time
for speech processing in the time-delay neural network (TDNN) architecture
(Waibel et al. 1989; Lang et al. 1990). Nowadays, speech processing mainly uses
a combination of convolutional and transformer layers, either using CNN as a
feature extractor before feeding a transformer model like in (Baevski et al. 2020),
or stacking self-attention layers and convolutional layers like in the Conformer
architecture (Gulati et al. 2020).

Speech recognition has been the main area of research in speech processing
and is described in Section 2.4.2, from statistical speech recognition to neural
approaches and the recent architectures and objective functions for speech
recognition that converge to methods similar to NLP ones. Another important
application of speech processing is speech synthesis or Text-to-Speech (TTS)
synthesis. The tasks of directly translating speech in a given spoken language
into text or speech in another language is addressed as Direct S2TT or S2ST. These
tasks are also developed in Section 2.4.2 and Section 2.4.3 and have seen large
improvements with the emergence of pre-trained models for the speech modality,
introduced in the next section. Other notable speech processing tasks are speaker
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diarization (distinguishing between different speakers in an audio recording),
keyword spotting (detecting keywords in an audio), language identification
(classifying the language of an audio) or emotion recognition (classifying between
different emotions conveyed in an audio).

2.2 Contextual representations and pre-trained
models

In this section, we develop the main research on contextual representations for
text and speech and for several languages. These contextual representations are
obtained from pre-trained models which are at the core of many research works
in NLP and speech processing.

2.2.1 Contextual representations and pre-trained models for
text

In Section 2.1.2, we introduced non-contextual word embeddings which have
been the basis of word representations in NLP. However, one would be interested
in representing a word in a way that takes into account the context of this word.
Indeed, some words with the same spelling may have really different meanings
depending on their context. To introduce contextual representations of words,
Peters et al. (2018) used internal states of a pre-trained language model based on
the LSTM architecture as word representations, called Embeddings from Language
Models (ELMo). They used a bidirectional LSTM architecture, which means that
the model processes the input in both forward and backward directions. These
representations of words are contextual as the same word with different right and
left contexts will be represented differently.

Devlin et al. (2019) introduced the Masked Language Modeling (MLM) self-
supervised task, where a model is trained to predict masked input tokens from
context words on raw text data. They introduced the popular BERT model,
pre-training a Transformer encoder with MLM task as well as a next sentence
prediction task on large amount of unlabeled text from BookCorpus (Zhu et al.
2015) and English Wikipedia, totalling 3.3 Billion words. In addition to providing
good contextual word embeddings, BERT can be used as a pre-trained model
that can be fine-tuned on new NLP downstream tasks. With their BERT model,
Devlin et al. (2019) improved the previous state-of-the-art on several Question
answering (QA) and language inference tasks. Several variants of BERT were
explored based on these promising results. Liu et al. (2019), with their Roberta
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model, optimized training hyper-parameters, used more data and trained for
more training steps. They also removed the next sentence prediction pre-training
task which they showed was unnecessary for good performance on downstream
tasks. Joshi et al. (2020) introduced SpanBERT with masking of contiguous
spans instead of single subword tokens which brought better performances in
downstream tasks, especially tasks requiring span selection. The ELECTRA work
(K. Clark et al. 2020) introduced a more sample-efficient pre-training task which
consists in discriminating between corrupted and original tokens. The corrupted
tokens are sampled from another small MLM generator trained with maximum
likelihood, but only the discriminator is kept after pre-training to be fine-tuned
for downstream tasks.

A multilingual BERT model, called mBERT, was also introduced. mBERT has
been pre-trained on Wikipedia text data for 104 languages. Similarly to mBERT,
XLM (Conneau and Lample 2019) model presents multilingual pre-training either
with unpaired multilingual text data or with additional bitext training data,
introducing a Translation Language Modeling (TLM) loss as an extension of
the MLM loss for bitext data. The unsupervised version of XLM was scaled with
XLM-R (Conneau et al. 2020b). These methods demonstrate really good zero-shot
cross-lingual transfer on XNLI (Conneau et al. 2018b) benchmark. Additionally,
some monolingual pre-trained models were also introduced as specialized models
for some languages like CamemBERT (Martin et al. 2019) for French and AraBERT
(Antoun et al. 2020) for Arabic.

2.2.2 Contextual representations and pre-trained models for
speech

Contextual representations of speech data was also explored, especially in
recent years, after witnessing the important impact that self-supervised pre-
training methods had on NLP.

The suite of wav2vec papers focused on speech self-supervised pre-training,
starting back in 2019. The first wav2vec paper (Schneider et al. 2019) presented
a pre-training method based on a noise contrastive binary classification task in
order to improve speech recognition downstream tasks while using less training
data. Later, vq-wav2vec (Baevski et al. 2019) introduced self-supervised learning
of discrete representations of speech with Gumbel-Softmax or online k-means.
Then, they apply a NLP pre-training method on quantized speech, similar to span-
BERT. Finally, Baevski et al. (2020) presented Wav2vec2, pre-training a CNN feature
encoder and a Transformer encoder with a contrastive objective over masked latent
representations which are quantized and jointly learned. They demonstrated that
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such pre-training method enables to outperform previous best semi-supervised
baselines in speech recognition after fine-tuning.

Wav2vec2 pre-training was extended to the multilingual setting, introducing
XLS-R (Conneau et al. 2020a) for 53 spoken languages. The multilingual pre-
trained model is then fine-tuned on multilingual speech recognition tasks, and
the authors demonstrated that it outperforms monolingual models trained
independently for low-resource languages. XLS-R multilingual training was
scaled on both model size and number of languages by Babu et al. (2021).
They released 2B parameter model variants pre-trained on half a million hours
of publicly available speech for 128 languages. They fine-tuned and evaluated
their models on a broad range of speech tasks like speech recognition, speech
translation, language identification and improve previous state-of-the-art on these
tasks. Finally, in the MMS project, Pratap et al. (2023) significantly scaled the scope
of languages and pre-trained a 1B XLS-R model on 491K hours in 1,406 languages.

Another main self-supervised approach for speech that builds contextual
representations out of audio inputs is HuBERT (Hsu et al. 2021). HuBERT is based
on a Transformer architecture and trained for several iterations with a masked
prediction task inspired by BERT (Devlin et al. 2019), masking continuous input
speech features. Discrete targets are extracted after an offline clustering ran before
each training iteration. For the first iteration, k-means clustering is ran with 100

clusters on 39-dimensional MFCC features, whereas other iterations are running k-
means with 500 clusters on hidden representations from the model of the previous
iteration at some intermediate transformer layer. Fine-tuned HuBERT matches or
outperforms Wav2vec2 results on speech recognition tasks and the pre-trained
model has also proven to provide good contextual discrete representations of
speech, heavily used in textless spoken language modeling (Lakhotia et al. 2021).

Following Wav2vec2 and HuBERT works, w2v-BERT (Y.-A. Chung et al.
2021) presented a self-supervised pre-training method that combines contrastive
learning and masked prediction learning. The constrastive learning loss, inspired
by Wav2vec2 work, enables to learn a discretization of input speech in order to
produce discriminative speech discrete targets, while the MLM loss enables to
learn contextual speech representations with a masked prediction task on discrete
speech units, inspired by HuBERT work. However, contrarily to HuBERT, discrete
targets are jointly learned and only a single training iteration is needed.

Finally, Chiu et al. (2022) presented a simple yet effective approach called BEST-
RQ. BEST-RQ uses a masked prediction learning task where the discrete targets
are provided by a random-projection quantizer: a randomly initialized matrix
projects the input speech and a randomly initialized codebook is used to find the
nearest neighbor index as target. This approach was successfully scaled in the
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proprietary USM (Zhang et al. 2023) project using 12 Million hours of training
data and covering more than 300 languages.

2.2.3 Joint speech/text contextual representations and pre-
trained models

Joint speech-text pre-training has been addressed recently by several works
to better initialize speech recognition or speech translation systems. In that
context, Y.-A. Chung et al. (2020) jointly pre-trained speech and text encoders
with un-paired speech or text data as well as paired speech-text data introducing
cross-modal token-level and sequence-level alignment losses. Tang et al. (2022)
introduced a unified speech-text pre-training method based on multitask self-
supervised and supervised learning in an encoder-decoder architecture. Another
encoder-decoder joint pre-training approach is called SpeechT5 (Ao et al. 2021),
which leveraged only unlabeled speech and text data, and that, among other
things, tried to unify speech and text representations with a shared vector
quantization codebook for both modalities in a joint pre-training task.

Another line of work is the SLAM (Bapna et al. 2021) and mSLAM (Bapna
et al. 2022) pre-trained models. SLAM introduced a multimodal joint pre-training
method for speech and text for English, using a combination of traditional self-
supervised losses on unlabeled data and Translation Language Modeling (TLM)
loss (as introduced in XLM (Conneau and Lample 2019) but for cross-modal
learning) as well as a Speech Text Matching (STM) loss on ASR training data.
mSLAM (Bapna et al. 2022) extended the SLAM model to massively multilingual
joint speech/text pre-training with the same objective functions (but the STM
loss is replaced by a CTC loss and text is handled at the character level). After
fine-tuning, mSLAM improved the previous state-of-the-art (defined by an XLS-R
finetuned model (Babu et al. 2021)) on speech-to-text translation as well as other
speech processing tasks.

Finally, following Wav2vec2, Baevski et al. (2022) extended speech pre-
training to the multimodal setting with data2vec. Data2vec learned contextual
representations of speech, text and images with the same objective for all
modalities. It used masked prediction learning with a self-distillation approach
where the teacher is an exponentially decaying average of the student.
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2.3 From monolingual to multilingual fixed-size
sentence representations

In this part, we further develop representation learning of sentences with
fixed-size representations of text and speech utterances. As opposed to variable-
length sentence representations, which involve the concatenation of contextual
subword representations, sentence embeddings are single vectors representing
whole sentences. We also introduce bitext mining as well as evaluation strategies
for multilingual sentence embedding spaces.

2.3.1 Monolingual text sentence embeddings

Pre-trained encoder models like BERT achieve strong results on semantic
similarity tasks when inputting a concatenation of two compared sentences to the
model. However, finding most similar sentence pairs in a big set of sentences is a
really computationally expensive operation if one follows such method (Reimers
and Gurevych 2019). In order to efficiently compare sentences at scale (in terms of
semantic similarity), fixed-size sentence representations were introduced, where
a simple similarity metric computation in the embedding space directly provides
an estimation of the similarity between sentences. The performance of such
semantic similarity estimation heavily relies on the organization of sentences
in the embedding space. We review in this section the main methods that were
explored to build good monolingual sentence embedding spaces.

First, Skip-thought (Kiros et al. 2015) is well-known to have extended the
Word2vec Skip-gram approach from words to sentences where a RNN-based
encoder-decoder learns to predict neighbouring sentences. Other methods used
labeled data to learn sentence embeddings. Among them, InferSent (Conneau
et al. 2017) is a supervised method which trains a siamese Bi-LSTM model
on Stanford Natural Language Inference (SNLI) (Bowman et al. 2015) and
MultiGenre Natural Language Inference (multiNLI) (Williams et al. 2017) labeled
data to build sentence embeddings. Universal Sentence Encoder (USE) (Cer et
al. 2018) embeddings used a transformer model trained on both unsupervised
learning tasks and supervised SNLI task.

While BERT was pre-trained with a CLS token to compute a global
sentence representation, using this representation or mean-pooling of contextual
representations (without fine-tuning) as a sentence embedding gives poor
results on semantic similarity tasks (Reimers and Gurevych 2019), even worse
that sentence embeddings obtained by averaging GloVe word embeddings
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(Pennington et al. 2014). In that context, Reimers and Gurevych (2019) introduced
sentence-BERT or SBERT, a sentence embedding encoder based on BERT and fine-
tuned using a siamese network architecture that outperformed previous state-of-
the-art sentence embeddings.

Then, notably, SimCSE (Gao et al. 2021) presented a simple unsupervised
constrative approach based on dropout as augmentation for positive pairs which
performed on par with previous supervised methods. They also introduced
a supervised approach that provided even better results. Some unsupervised
approaches were presented and outperformed simCSE, like DiffCSE (Chuang
et al. 2022). Other contrastive methods, like DeCLUTR (Giorgi et al. 2020), took
different nearby text spans from the same document as positive pairs.

As mentioned before, computing a mean-pooling of BERT contextual
representations performs poorly on semantic textual similarity, when not fine-
tuned. Some works (B. Li et al. 2020; Su et al. 2021) showed that BERT pre-
training introduces a non-smooth anisotropic semantic space of sentences that
may explain the poor performances on semantic similarity. This anisostropy of
BERT sentence representations was addressed by BERT-flow (B. Li et al. 2020)
and (Su et al. 2021) in order to produce better sentence embeddings for semantic
similarity estimation.

Other methods, like Sentence-T5 (Ni et al. 2021) explored how to create sentence
embeddings from encoder-decoder models like T5. Relatedly, TSDAE (K. Wang et
al. 2021) explored sentence representations built out of an encoder-decoder model
with a sequential denoising auto-encoding objective. Finally, data augmentation
has also been used to improve fixed-size sentence representations like Augmented
SBERT (Thakur et al. 2021). Some more recent methods leveraged LLMs to
produce synthetic training data for sentence embedding models (J. Zhang et
al. 2023; L. Wang et al. 2023).

More generic fixed-size text embeddings, beyond sentences only, were also
explored like the OpenAI text embeddings (Neelakantan et al. 2022) scaling
model size and using neighbouring texts as positive pairs, or the E5 embeddings
(L. Wang et al. 2022) using weakly-supervised contrastive learning. These generic
text embeddings appear to perform really well on semantic textual similarity for
sentences.

2.3.2 Multilingual text sentence embeddings

Monolingual sentence embeddings have proven to be useful to efficiently
compare sentences, in terms of semantic meaning, directly in the embedding
space based on cosine similarity calculation. The interesting semantic property of
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such embedding spaces is that paraphrases are closely encoded in the sentence
embedding space. However, one may be interested in comparing sentences
from different languages. Building a multilingual sentence embedding space
could lead to an embedding space where not only paraphrases are close but
also translations. We illustrate these monolingual and cross-lingual semantic
properties of multilingual sentence embedding spaces in Figure 2.2. Moreover,
the increasing number of labeled data in MT could be leveraged as good “cross-
lingual paraphrases” which include inherent word re-ordering and paraphrasing
properties of translations. In this section, we present the main approaches to learn
such multilingual sentence embedding spaces. We will develop the evaluations
and applications of these multilingual embedding space in the next section.

Figure 2.2. – Illustration of multilingual sentence embeddings. Text sentences
from multiple languages can be encoded as vectors in a multilingual
sentence embedding space. Paraphrases and translations are
supposed to be close in the embedding space. Adapted from Meta
blog on LASER sentence embedding space.

Multilingual vector representations for text started with cross-lingual word
embeddings (Ruder et al. 2019; Gouws et al. 2015; Luong et al. 2015) which
enabled to obtain sentence-level vector representations of text using a weighted
sum of the word embeddings (Klementiev et al. 2012; Dufter et al. 2018). Sentence-
level representations are also intrinsically learned in sequence-to-sequence RNN

models and early works on these architectures (Sutskever et al. 2014) noticed that
MT sequence-to-sequence models produce representations of similar sentences
that are close in the embedding space. In that context, some works proposed and
explored multilingual sentence representations for a few languages (Schwenk and
Douze 2017; K. Yu et al. 2018; Schwenk 2018).
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In parallel and subsequent works, massively multilingual representations were
studied for word embeddings (Ammar et al. 2016), and then for contextual
representations of words with XLM (Conneau and Lample 2019) and concurrently
for sentence embeddings for 93 languages with LASER (Artetxe and Schwenk
2019b). Following LASER, LaBSE (Feng et al. 2020) was presented as another
powerful massively multilingual embedding space that follows a dual encoder
approach. These multilingual sentence embedding spaces were proven to be
useful for massively multilingual bitext mining, as presented in the next section.

After this brief historical overview, we can summarize the main different
methods to train such multilingual sentence embeddings.

First, sentence embedding spaces may be learned in a neural machine
translation framework (España-Bonet et al. 2017; Schwenk and Douze 2017;
Kvapilíková et al. 2020). In that context, the LASER (Artetxe and Schwenk
2019b) embedding space scaled sentence embedding training to the massively
multilingual setting, improving previous state-of-the art results. It used an
encoder-decoder LSTM model architecture, that builds a fixed-size representation
of sentences by max-pooling encoder outputs. At each decoding time-step, the
decoder takes as input the input sentence embedding, a language id token, as well
as the previous predicted token. It is trained with a cross-entropy loss on bitext
training data with English and Spanish as target languages (hence the language
id token for the decoder, to either decode into English or Spanish).

Second, contrastive learning has been widely explored to build multilingual
sentence embedding spaces with good semantic properties (Guo et al. 2018;
Y. Yang et al. 2019a), explicitly aligning representations of translations in the
embedding space while pushing apart some "negative" instances to avoid collapse
(i.e. avoid to predict the same embedding for every input). Multitask learning
on monolingual data can also be added to the training (Chidambaram et al.
2018; Z. Yang et al. 2020), and this line of work includes the m-USE embeddings
(Y. Yang et al. 2019b). LaBSE (Feng et al. 2020) scaled language coverage for
contrastive learning and leveraged a pre-trained encoder, presenting a state-of-
the-art sentence embedding model for more than 100 languages.

Third, teacher-student training was introduced to extend a (possibly
monolingual) pre-existing sentence embedding space to new languages. The
existing embedding space is used as teacher to train student encoders for new
languages. Bitext training data is used for this kind of training, where the sentence
in the new language is encoded with a trained encoder, while its translation in
another supported language is encoded with the pre-existing encoder as target.
This approach was first introduced by (Reimers and Gurevych 2020) to extend
a monolingual embedding space from SBERT (Reimers and Gurevych 2019) to
new languages. This method was also used to present LASER3 (Heffernan et al.
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2022), which improved and extended LASER for low-resource languages and
outperformed LaBSE on several low-resource languages. Following LASER3,
LASER3-CO (Tan et al. 2022) was introduced and also followed a distillation
approach but based on contrastive learning.

Finally, some methods explored creation of language-agnostic sentence
embeddings by isolating or removing language-specific information (Wieting
et al. 2019; Tiyajamorn et al. 2021).

2.3.3 Application and evaluation of multilingual sentence
embeddings

One main application of multilingual sentence embeddings is cross-lingual
similarity search of sentences from monolingual corpora. This task, which can be
summarized as finding parallel texts in a source and target language from raw
data, is commonly called bitext mining.

2.3.3.1 Bitext mining

There has been a large body of research focusing on bitext mining. The first
methods that have been explored are following hierarchical or local mining,
where sentence comparisons are only done between sentences from automatically-
matched parallel documents. For example, Resnik and Smith (2003) located web
pages as potential parallel translations based on an improved version of STRAND
algorithm (Resnik 1999) that leverages document structure. Another approach
(Fung and Cheung 2004) used an iterative bootstrapping approach for document
matching and then parallel sentence extraction. Munteanu and Marcu (2005) and
Utiyama and Isahara (2003) performed cross-lingual alignment of news articles in
order to then find parallel translations. Bilingual document alignment has been
extensively explored, especially in the (Buck and Koehn 2016) shared task. Among
the different methods, some were based on n-gram matching, machine translation
models or word translation lexicons.

A well-known initiative of hierarchical mining for all European languages is
the European ParaCrawl project (Bañón et al. 2020), where parallel data was
collected, mining primarily all European languages against English text. This
project identifies parallel sentences with different sentence alignments methods.
The first one is called Hunalign (Varga et al. 2007) and based on a bilingual
dictionary. The second one is called Bleualign (Sennrich and Volk 2010), which
first translates non-English sentences into English before matching them with
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English sentences with a variant of BLEU score. The last method is called Vecalign
(Thompson and Koehn 2019) and based on LASER sentence embeddings.

This Vecalign method was following previous work for cross-lingual similarity
estimation based on multilingual embeddings, where sentences are compared
using cosine similarity between sentence embeddings. Early works, including
(España-Bonet et al. 2017; Guo et al. 2018; Hassan et al. 2018; Y. Yang et al. 2019a),
used bilingual sentence embeddings.

The efficient computation of similarity estimation between sentences using
sentence embeddings enabled global mining, which compares all possible
sentence pairs in large monolingual corpora for several languages. Moreover, the
increasing language coverage, from bilingual to massively multilingual sentence
embeddings, enabled to create a full matrix of alignments for any language
pair. Indeed, massively multilingual embedding spaces allow for the similarity
estimation between sentences from any two languages handled (Artetxe and
Schwenk 2019b; Feng et al. 2020). In this context, LASER was first used to
mine parallel sentences from Wikipedia for 1,620 language pairs with WikiMatrix
(Schwenk et al. 2019).

More recently, Schwenk et al. (2021) extended global mining to CommonCrawl
monolingual corpora, to introduce CCMatrix, mining billions of sentences from
the web with LASER embeddings. CommonCrawl raw text data corresponds
to partial snapshots of the internet totalling terabytes of text data extracted
from web pages in many languages. The authors used the open-source FAISS
library (Johnson et al. 2019) in order to optimize similarity search at scale, where
dimensionality reduction and data compression using product quantization
(Jegou et al. 2010) were applied on LASER sentence embeddings. CCMatrix
was successfully used to train state-of-the-art massively multilingual machine
translation models like M2M100 (Fan et al. 2021) and Deepnet (H. Wang et
al. 2022). Global mining was recently scaled to 200 languages with the newly
trained LASER3 encoders and the mined data was successfully used to train the
NLLB state-of-the-art machine translation model (NLLB Team et al. 2022). Finally,
another recent bitext mining project is Samanantar (Ramesh et al. 2022), which
provides a large publicly available parallel corpus for 11 indic languages, mined
using the LaBSE sentence embedding space.

2.3.3.2 Evaluation of sentence embeddings for bitext mining

In order to iterate and improve multilingual sentence embeddings with the
goal to perform better bitext mining, one has to come up with an efficient
evaluation framework. Indeed, the simplest evaluation idea would be to perform
bitext mining for each new sentence embedding space variant and then train MT
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systems on the mined bitext data. The performance of the MT model on traditional
translation test sets gives a quantitative evaluation of the usefulness of the mined
data to train MT systems. Such thorough evaluation comes at the price of an
important computational cost, as one has to perform large-scale mining and MT

training for each sentence embedding variant that needs to be evaluated.

To overcome this issue, some proxy to bitext mining performance was
introduced. In that way, cross-lingual similarity search, also sometimes called
xsim, is commonly used as an evaluation for multilingual sentence embeddings
(Artetxe and Schwenk 2019b; Feng et al. 2020). Given a translation test set
(si, ti)1,...,N with si being a source sentence in a non-English language and ti
its corresponding target English translation, we encode the source and target
sentences in the sentence embedding space. For each source sentence encoding
sEi , we then search the closest target sentence embedding tEj , counting an error if it
is not the expected one. An error rate on the test set is then reported. Commonly
used test sets for cross-lingual similarity search include BUCC (Zweigenbaum et
al. 2017), Tatoeba, 1 FLoRes (Goyal et al. 2022) and FLoRes-200 (NLLB Team et al.
2022). The latter is interesting as it is a n-way parallel test set for 200 languages
and enables evaluation for a large number of low-resource languages. However,
there are only 1k sentences for each language, making the cross-lingual similarity
search task easy and error rates for mid- to high-resource languages quickly
saturate to 0%.

To overcome this issue, the more challenging xsim++ task was introduced
to evaluate more subtle improvements in bitext mining (M. Chen et al. 2023).
It augments the FLoRes English target sentences with hard-to-distinguish
negative examples for cross-lingual similarity search. These challenging
negatives are automatically created with transformations of the original English
target sentences, such as causality alternation, entity replacement, and number
replacement.

2.3.4 Fixed-size representations for speech utterances

Historically, fixed-size speech representations have been mainly studied at the
word level for different specific tasks, ranging from spoken term detection, speech
pattern discovery, to speech segmentation into words. Different approaches
have been studied to extract a fixed-size representation from speech input.
Holzenberger et al. (2018) introduced a method to extract a fixed-size vector
from speech inputs using Gaussian downsampling, without the need of any
training. Holzenberger et al. (2018) and Y. Chung et al. (2016) introduced an

1. https://tatoeba.org/en/

https://tatoeba.org/en/
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auto-encoder approach based on recurrent neural networks to extract a fixed-
size vector between the encoder and the decoder. Some other works (Settle and
Livescu 2016; Riad et al. 2018; Thiolliere et al. 2015) trained Siamese networks
with a contrastive loss to build a fixed-size representation. Audhkhasi et al. (2017)
studied a keyword search task, building fixed-size representations for audio and
words before inputting these representations to a third neural network.

At the sentence level, text-audio sentiment analysis often intrinsically
introduces a fixed-size cross-modal representation before classifying the input, as
in (K. Yang et al. 2020; Tsai et al. 2019). However, such works did not focus on
speech/text alignments, but rather took advantage of information coming from
both modalities. Even though being more an utterance-level pre-training method
for speech, speech Sim-CLR (Jiang et al. 2020) used pooled representations to
perform contrastive learning on augmented speech inputs. Khurana et al. (2020)
focused on speech representation learning with speech translation data and a
contrastive loss at the sentence level. The model was first evaluated on a retrieval
task but not used for large-scale speech translation mining, the speech encoder
was rather used for a phone recognition task. Harwath et al. (2018), Merkx et al.
(2019), Ilharco et al. (2019), Harwath et al. (2019), and Monfort et al. (2021) built
joint speech/visual embedding spaces at the sentence level and were evaluated
with a retrieval task.

Following our work on building a multilingual speech/text sentence
embedding space (Duquenne et al. 2021) (presented in Chapter 3), Khurana et
al. (2022) applied the same teacher-student strategy using LaBSE multilingual
text encoder instead of LASER. We may also cite notable more recent works
introducing joint representations of audio with other modalities at the sentence
level. For example, MuLan (Q. Huang et al. 2022) used contrastive learning
on pooled representations of music recordings and text to learn an joint
representation of music audio and text while SpeechCLIP (Shih et al. 2023)
bridged speech and text representations through images and evaluated zero-shot
speech-text retrieval.

2.4 Multilingual and multimodal communication
tasks

Multilingual and multimodal communication has been widely studied in
machine learning, from text-based machine translation to recent research tackling
the translation of speech, like the European live translator (ELITR) project
(Bojar et al. 2020) and the recent Seamless Communication project (Seamless
Communication et al. 2023b).
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In this thesis, we deal with several multimodal communication tasks either as
evaluations tasks for our methods which automatically collect speech translation
data, or as tasks performed directly with our sentence representations. We first
present text-to-text MT and speech recognition tasks, before introducing S2TT and
S2ST tasks and concluding with expressive speech generation.

2.4.1 Machine Translation

Machine Translation is one of the most studied machine learning fields and has
been particularly popularized with online services like Google Translate. After
phrased-based machine translation (Koehn et al. 2003), neural machine translation
appeared to be a breakthrough in the field, in particular with the introduction of
sequence-to-sequence models (Kalchbrenner and Blunsom 2013; Cho et al. 2014;
Sutskever et al. 2014). However, first RNN-based sequence-to-sequence models
showed limitations when dealing with long sentence inputs as the decoder takes
as input a single vector computed by the encoder: Cho et al. (2014) showed
the important decrease in performance of encoder-decoder models for MT with
increasing sentence length. To overcome this problem, an attention mechanism
between the encoder and decoder in sequence-to-sequence model was introduced
(Bahdanau et al. 2014), allowing the decoder to attend to different locations of the
input contextual representations during the decoding process and significantly
improved performance for long sentences.

The attention mechanism was extended to self-attention, as well as improved
cross-attention, and led to another breakthrough in sequence-to-sequence
modeling for text, with the Transformer architecture presented in Section 2.1.2.
The transformer architecture is used for almost every MT system nowadays.

In this section, we review some challenges of machine translation, like domain
generalization or low-resource languages handling, which have been addressed
from both data and modeling perspectives. Finally, zero-shot transfer in machine
translation between languages has also been widely studied and will be explored
in this thesis.

Machine translation training data State-of-the-art MT models are relying on
labeled data, also called bitexts, composed of source sentences in one language
paired with target sentences in another language. The amount of available
labeled translation data is heavily dependant on the language direction. The
amount of labeled data decreases quickly for low-resource languages or language
directions involving two non-English languages. There have been several efforts
to gather parallel sentences in different languages. Some labeled data come from
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international organizations like the European Parliament (Koehn 2005) or the
United Nations (Ziemski et al. 2016) but are limited to the political domain. Other
initiatives provide open-source translations of public texts like OPUS (Tiedemann
2012) or OpenSubtitles (Lison and Tiedemann 2016).

To scale the domain and language coverage of bitext data for MT training, some
methods to automatically create or collect parallel text were explored. A first
method is bitext mining, as presented in the previous section, and which was
used in many state-of-the-art systems like M2M100, DeepNet or NLLB.

Another important approach is called back-translation, which leverages
monolingual corpora in the target language to automatically create synthetic
bitext data. Existing labeled data is used to train a MT model in the reverse
language direction. This model is used to translate monolingual data from the
target language to the source language. This synthetic data is used as additional
source-to-target bitext data to train a new MT system. Source sentences have been
generated by a model and are therefore imperfect and noisy, but have shown
not to hurt model performance, but rather significantly improve results when
carefully designed. Back-translation was extensively studied at scale by Edunov
et al. (2018), and heavily used in projects like NLLB.

Finally, monolingual data can also be leveraged as pre-training data like in
mBART (Liu et al. 2020a), where an encoder-decoder model is trained on several
languages with a denoising auto-encoding objective.

Massively multilingual modeling Besides bitext mining, data augmentation
and pre-training techniques, translation of low-resource languages may be
significantly improved with cross-lingual transfer learning between languages
in massively multilingual systems (Zoph et al. 2016; Nguyen and Chiang
2017). Similar languages may benefit each other in these massively multilingual
settings, as demonstrated in several works, e.g. (Arivazhagan et al. 2019b; Fan
et al. 2021). In that context, multilingual models were shown to lead to better
translation performance compared to bilingual models. The development of bitext
mining at scale for many language pairs also enabled the development of such
massively multilingual systems like M2M100, and led to state-of-the-art systems
like DeepNet and then NLLB.

As an increased language coverage often coincides with an increased amount
of training data, scaling in terms of model size has also been an active area of
research: DeepNet scaled MT model size to 200 layers and NLLB used mixture-of-
experts techniques to introduce a 54B parameter model.

Zero-shot cross-lingual transfer in machine translation In machine translation,
cross-lingual transfer to improve low-resource language directions has been
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widely studied. As stated in the previous paragraph, one way to encourage
cross-lingual transfer is building a massively multilingual translation system
as highlighted in (Fan et al. 2021). Some other works such as (M. Zhang et
al. 2022) make an efficient use of MT data involving a pivot language thanks to
weight freezing strategies to force representations to be close to the pivot language
representations. One extreme scenario of cross-lingual transfer learning is called
zero-shot transfer, where one learns to translate one language and directly apply
the decoding process to an unseen language. Several methods have been tried
to improve zero-shot transfer. Arivazhagan et al. (2019a) and Pham et al. (2019)
added language similarity regularization on pooled representations of encoders
outputs as an auxiliary loss to a MT objective in order to improve zero-shot
transfer. Liao et al. (2021), Vázquez et al. (2018), and Lu et al. (2018) introduced
shared weights between language-specific encoders and decoders, commonly
called an interlingua that captures language-independent semantic information.
Finally, Escolano et al. (2020a), Escolano et al. (2021a), and Escolano et al. (2020b)
focused on incremental learning of language-specific encoders and decoders using
cross-entropy loss, alternately freezing parts of the model to ensure a shared
representation between languages.

Evaluations While there exists many evaluation metrics for MT (Papineni et al.
2002; T. Zhang et al. 2019; Rei et al. 2020; Sellam et al. 2020; Banerjee and Lavie
2005; Popović 2015), we only develop here the few metrics used as evaluations in
this thesis.

As stated in Chapter 1, several possible translations exist and are commonly
accepted for a given source sentence. This makes the evaluation of MT models
difficult as paraphrases of some annotated references may also be good
translations. Human evaluation is therefore a good practice to assess the quality
of an MT system, but remains an expensive solution that is not scalable to evaluate
and compare different models or model variants. In that context, automatic
metrics based on labeled references from open-sourced test sets were introduced.
The most commonly used automatic metric is called BiLingual Evaluation
Understudy (BLEU) (Papineni et al. 2002), a corpus-level metric that computes the
geometric mean of n-gram matching precisions between references and generated
translations.

However, it has been shown that the BLEU metric correlates poorly with
human judgements (Callison-Burch et al. 2006). More recently, Bert-score (T.
Zhang et al. 2019) was shown to better correlate with human judgments,
creating soft-alignments between contextual representations of references and
generated translations and then providing semantic similarity scores based on
these alignments.
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Finally, COMET (Rei et al. 2020) proposed a neural evaluation metric
with improved correlation with human judgments. It finetuned cross-lingual
pretrained models on a regression task on labeled quality assessments to mimic
human judgements based on source, hypothesis and reference sentences as inputs.

2.4.2 From speech recognition to direct Speech-to-Text
Translation

Automatic Speech Recognition Speech recognition has been on of the main
task of the speech processing field over the last years. Initial works on ASR used
Hidden Markov Model (HMM) (Baum and Petrie 1966; Baker 1975), later coupled
with Gaussian Mixture Model (GMM) to approximate probability distribution
over vocal states. Neural networks were then integrated with DNN-HMM models
(Bourlard and Morgan 1993; Hinton et al. 2012) closing the gap and then
outperforming GMM-HMM methods (Mohamed et al. 2009; Dahl et al. 2011).
However, neural networks were only a subpart of more complex pipelines.
Later, end-to-end methods for speech recognition with RNN architectures were
introduced (Graves and Jaitly 2014; Maas et al. 2015) with the Connectionist
Temporal Classification (CTC) loss, considering all possible speech-text alignments
while optimizing likelihood. Chan et al. (2016) and Bahdanau et al. (2016) studied
encoder-decoder approaches for speech recognition and the introduction of the
Transformer architecture was quickly used as alternative to RNN-based sequence-
to-sequence models for speech recognition (L. Dong et al. 2018). Finally, self-
supervised speech pre-training improved the state of the art (Babu et al. 2021;
Bapna et al. 2022). and several state-of-the-art models based on encoder-decoder
architectures for a large number of languages were introduced (Radford et al.
2023; Seamless Communication et al. 2023a).

Standard evaluation of ASR models is Word Error Rate (WER) computation
which accounts for the number of insertion, deletion and replacement in generated
transcripts.

Direct speech-to-text translation The parallel development of research on MT

and ASR, enabled to introduce cascaded S2TT systems, which use independently
trained ASR and MT models to first transcribe audio and then translate it
(Stentiford and Steer 1988). Such an approach can leverage state-of-the-art models
from both disciplines and benefit from the important data collection efforts for
MT and ASR. However, such methods are subject to error propagation in the
cascaded pipeline and domain mismatch as models are trained independently.
Indeed, MT training data is often coming from domains which are different from
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conversational data, and the MT models are not trained on source sentences
containing ASR errors.

To overcome these issues, end-to-end S2TT models were explored (Bérard et al.
2016; Bérard et al. 2018) where a model directly translates speech in a source
language into text in a target language. These end-to-end models are also called
direct S2TT models or more simply S2TT models in opposition to cascaded speech-
to-text translation. S2TT has recently been a growing field in machine learning
accompanied by the development of S2TT training datasets like Must-C (Di Gangi
et al. 2019) which provides more than 385 hours of English speech translated in 8

languages, CoVoST2 (C. Wang et al. 2021b), which provides speech translations
in 15 English-to-X (eng-X) directions and 22 X-to-English (X-eng) directions
and EuroparlST (Iranzo-Sánchez et al. 2020) which provides 30 different speech
translation directions from 6 European languages.

Direct S2TT is also motivated by the compute efficiency of end-to-end methods
compared to cascaded systems and recently the translation performance of
these end-to-end models is approaching the performance of cascaded systems
(Seamless Communication et al. 2023a).

Several techniques like self-supervised pre-training (Babu et al. 2021; X. Li et al.
2020), speech mining (Duquenne et al. 2021), pseudo-labeling (Pino et al. 2020),
which is using pre-trained cascaded systems to create synthetic Speech-to-Text
(S2T) data, helped obtain these significant improvements. In this context, during
the past year, several state-of-the-art S2TT models were introduced. Universal
Speech Model (USM) (Zhang et al. 2023), while pre-trained on more than 300

languages, reports S2TT results on 21 CoVoST2 languages. Whisper (Radford et
al. 2023) uses weakly-supervised pre-training on 680k hours of speech and can
perform both ASR and S2TT into English improving the previous state of the
art. The AudioPaLM (Rubenstein et al. 2023) speech-text language model, which
combines PaLM text model (Anil et al. 2023) with audioLM modeling (Borsos et
al. 2023), can perform multiple speech processing tasks, including S2TT for many
languages with new state-of-the-art results. Finally, Seamless Communication et
al. (2023a), in which we participated for speech mining efforts, present massively
multilingual S2TT results in a framework that unifies MT, ASR, S2TT and S2ST for
many languages and defines the current state of the art.

The evaluation of S2TT models is commonly done with BLEU score on S2TT test
sets.

Zero-shot transfer in Speech Translation To bridge the gap with cascaded
systems, some work integrated MT data into the training, with the goal of
cross-modal transfer from the text-to-text translation task to the speech-to-text
translation task. Several works added MT data in S2TT training, using an auxiliary
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loss to bridge the modality gap, like adversarial (Alinejad and Sarkar 2020), and
distance (Q. Dong et al. 2021; Liu et al. 2020b) regularization. (Xu et al. 2021;
X. Li et al. 2020) used adaptor modules to address the length mismatch between
audio and text representations. Several works studied how to efficiently perform
zero-shot cross-modal transfer from text to speech in the frame of direct speech
translation. Following (Escolano et al. 2020a; Escolano et al. 2021a; Escolano et al.
2020b) presented previously for text, Escolano et al. (2021b) learned a speech
encoder compatible with decoders trained on text only, freezing the text decoder
during training and using cross-entropy on the output of the decoder. Other
works such as (Dinh et al. 2022; Dinh 2021) studied zero-shot speech translation
employing a cross-modal similarity regularization as an auxiliary loss. However,
they obtained low zero-shot results possibly due to the mismatch in the encoder
output lengths between speech and text.

2.4.3 Direct Speech-to-Speech translation

Generating speech as output a of machine learning model has first been
explored through TTS synthesis. Recent neural methods like (N. Li et al. 2019;
Ren et al. 2020) rely on phoneme form of the input text and are trained to predict
target waveforms or mel-spectrograms. A spectrogram vocoder can be trained to
obtain a speech waveform. TTS was recently scaled to more than 1000 languages
with MMS (Pratap et al. 2023).

Following research on TTS, S2ST started from cascaded systems consisting of
successive ASR, MT and TTS synthesis (Nakamura et al. 2006; Do et al. 2015).
The reliance on intermediate text outputs poses limitations on cascaded models
to support efficient inference and unwritten languages. Given these challenges,
there has been a recent surge of research interest in direct approaches to speech
translation without the need of texts. Jia et al. (2019b) presented Translatotron,
the first direct S2ST model that directly predict spectrograms of output speech.
This first model, lagging behind cascaded systems, was later improved with a
two-pass decoding method to present Translatotron2 (Jia et al. 2022).

Another line of research on S2ST uses discrete units of speech. Tjandra et al.
(2019) first introduced a encoder-decoder model which translates discrete units
from source language to discrete units from a target language. Lee et al. (2022a)
presented an S2ST model architecture that uses HuBERT units (from k-means
clustering of some intermediate layer representations as extracted for HuBERT
pre-training, see Section 2.2.2) as targets of Speech-to-unit (S2U) model. Similarly
to spectrogram-based vocoders, a unit-based vocoder is introduced based on Hi-
Fi GAN training to produce speech waveforms from discrete units (Polyak et al.
2021).
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Despite this progress on direct S2ST, it is faced with the challenge of data scarcity
of aligned speech with speech in different languages and has often been using
synthetic speech to overcome this issue (Post et al. 2013).

S2ST systems are commonly evaluated with ASR-BLEU metric, which relies on
pre-trained open-sourced ASR models to automatically transcribe the generated
speech before computing BLEU score with text references on a S2TT test set. This
evalutation metric is imperfect as it heavily depends on the quality of the ASR

model used.

2.4.4 From controllable text-to-speech to expressive speech
generation and translation

Expressivity of speech is central in human communication, as a message is often
not only conveyed by content but also other expressive speech characteristics.

Text-to-speech synthesis has recently made great progress in generating natural-
sounding speech (Kim et al. 2021) and many research works are focusing on
controllable methods for output vocal style. Some work learned TTS models
conditioned on some specific speech properties like pitch and energy (Ren et
al. 2020). Others used pre-trained speaker style embeddings (Jia et al. 2018;
Casanova et al. 2022) to condition the speech synthesis. Finally, another line of
work learns low-dimensional residual embeddings or style tokens to extract the
required output speech properties (Wang et al. 2018; Akuzawa et al. 2018; Hsu
et al. 2018). These representations may represent the required vocal style of the
output speech, and relatedly other works like Prosody2Vec learned disentangled
prosody representations using speech reconstruction (Qu et al. 2023).

More recently, high-fidelity neural audio codecs like Soundstream (Zeghidour
et al. 2021) and Encodec (Défossez et al. 2022) were introduced. These
neural audio codecs are learned with an encoder-decoder model and provide
residual quantized acoustic representations of speech from coarse-to-fine learned
codebooks (sets of learned discrete units). Some recent works like Vall-E (Wang
et al. 2023a) or Spear-TTS (Kharitonov et al. 2023) address TTS as a language
modeling task on these new acoustic tokens. Such systems are able to preserve
the acoustic environment and vocal style in output speech using prompting.
Finally, leveraging representations from neural audio codec, and training diffusion
models, NaturalSpeech2 (Shen et al. 2023) can perform singing synthesis. TTS

across languages is even made possible in a zero-shot way in Voicebox (Le et al.
2023) with flow-matching.

Beyond controllable TTS, expressive speech generation can be achieved through
pure speech language modeling as well, without conditioning on text. AudioLM
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(Borsos et al. 2023) generates tokens inspired from HuBERT, followed by vocal
style-preserving Soundstream (Zeghidour et al. 2021) units. Such audio language
modeling techniques can be extended to perform speech processing tasks such as
TTS, like in AudioPaLM (Rubenstein et al. 2023).

Vocal style transfer has also recently been a focus for speech-to-speech
translation. Vocal style is preserved across languages in Translatotron (Jia et al.
2019b), whose synthesizer is conditioned on a speaker embedding. Translatotron 2

(Jia et al. 2022) was trained on vocal style aligned speech generated with a
vocal style preserving TTS model. AudioPaLM model also provides vocal style
preservation for S2ST with audio prompting. Relatedly, Polyvoice (Q. Dong et al.
2023) used two language models: one for translation and one for speech synthesis.
Similarly in (Wang et al. 2023b), speech-to-speech translation with vocal style
preservation leveraged acoustic Soundstream tokens.
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Chapter abstract

As presented in Chapter 2, several multilingual sentence embedding spaces
were developed to address cross-lingual similarity search as well as semantic
comparison of sentences from different languages. However, these methods
were limited to the text modality. In this chapter, we present an approach
to encode a speech signal into a fixed-size representation which minimizes
the cosine loss with the existing massively multilingual LASER text
embedding space, to introduce a multilingual speech/text sentence embedding
space. Sentences are close in this embedding space, independently of their
language and modality, either text or audio. Using a similarity metric in
this multimodal embedding space, we introduce speech mining, where we
automatically align sentences from different languages and modalities as
potential translations (either speech-to-text or speech-to-speech translations).
To evaluate the automatically mined speech translation corpora, we train
neural speech translation systems and demonstrate that adding mined data
to the training can significantly improve BLEU score performance of speech
translation systems.

The work in this section has led to two publications: 1

• Paul-Ambroise Duquenne, Hongyu Gong, and Holger Schwenk (2021).
“Multimodal and multilingual embeddings for large-scale speech
mining”. In: Advances in Neural Information Processing Systems
34

• Paul-Ambroise Duquenne, Hongyu Gong, Ning Dong, Jingfei Du, Ann
Lee, Vedanuj Goswami, Changhan Wang, Juan Pino, Benoit Sagot,
and Holger Schwenk (July 2023a). “SpeechMatrix: A Large-Scale
Mined Corpus of Multilingual Speech-to-Speech Translations”. In:
Proceedings of the 61st Annual Meeting of the Association for

1. This chapter is adapted from these two publications

33
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Computational Linguistics (Volume 1: Long Papers). Ed. by Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki. Toronto, Canada:
Association for Computational Linguistics, pp. 16251–16269. url:
https: // aclanthology. org/ 2023. acl-long. 899

https://aclanthology.org/2023.acl-long.899
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3.1 Introduction

While self-supervised pre-training methods have a growing importance in
Natural Language Processing (NLP) (see Section 2.2) and while there is promising
research on unsupervised Machine Translation (MT) (Lample et al. 2018; Artetxe et
al. 2017), labeled data is still required to achieve best performance in MT. Labeled
data scarcity for language directions involving low-resource languages may lead
to strongly imbalanced training data in multilingual systems and poor translation
performance. To overcome this issue and scale machine translation to hundred
languages (Fan et al. 2021), bitext mining was introduced to automatically collect
parallel data (see Section 2.3.3).

Back in 2021, the available amount of Speech-to-Text Translation (S2TT) training
data was limited. Speech-to-Speech Translation (S2ST) training data was scarcer,
even for some high resource languages. This is still true today for mid-resource
and low-resource languages.

To overcome this training data scarcity in speech translation, we explore in this
chapter speech mining as an extension of bitext mining to the speech modality.
In order to perform speech mining, we introduce a multilingual speech/text
sentence embedding space, with the required semantic properties: two sentences
with similar meaning are closely encoded in the embedding space, independently
of their language or their modality (either speech or text).

Based on this multilingual and multimodal sentence embedding space, we
present and perform speech mining on several raw text and audio corpora,
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and automatically align speech-text pairs and speech-speech pairs in different
languages. Finally, we train S2TT and S2ST translation systems in order to validate
the quality and the usefulness of the mined data.

This chapter is divided into two parts. The first part introduces a multilingual
speech/text sentence embedding space based on LASER and presents speech
mining. The second part scales speech-to-speech mining to build SpeechMatrix
a corpus of mined Speech-to-Speech (S2S) translations for 136 spoken language
pairs.

3.2 Multimodal and multilingual embeddings for
speech mining

In this part, we introduce how we build a multilingual speech/text sentence
embedding space with the desired semantic properties illustrated in Figure 3.1.

Figure 3.1. – Illustration of a multilingual and multimodal sentence embedding
space. Paraphrases, transcriptions, spoken and written translations
are closely encoded in the sentence embedding space. Extended the
original figure from Meta blog on the LASER sentence embedding space.

3.2.1 Speech encoder training

Training a multimodal audio/text fixed-size embedding space could be
motivated by research on training Siamese networks with a contrastive loss, e.g.
(Feng et al. 2020). Instead of two text encoders, one would use one speech encoder
and one text encoder. However, since both encoders are trained from scratch,
such a procedure would probably require a large amount of labeled multimodal
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Figure 3.2. – Architecture of the proposed teacher-student approach. We train a
speech encoder to minimize the cosine loss between speech sentence
embeddings and the existing LASER text sentence embeddings.

training data. Instead, we apply a teacher-student training framework (which was
already explored for text, see Section 2.3.2): we use an existing text encoder as
teacher and train an audio encoder to minimize the cosine loss between the two
encoder outputs. This architecture is summarized in Figure 3.2. It can be trained
with two types of labeled data:

• Speech transcriptions: both encoders use input in the same language, but
differ in the modality;

• Speech-to-text translations: we can also minimize the cosine loss of the
speech embedding with respect to its written translation in one of the
languages supported by the text encoder.

Concretely, we use the multilingual LASER sentence encoder which is
freely available 2 and which was successfully used in large-scale bitext mining
approaches (cf. Section 2.3.3). A thorough comparison with other multilingual
sentence encoders is left for future research, in particular LaBSE (Feng et al. 2020).
The LASER encoder is fixed during teacher-student training.

Our speech encoder is based on the Wav2vec2 architecture and its weights
are initialized with the XLS-R model: 3 we use the XLS-R frozen pre-trained
feature encoder and fine-tune the weights of XLS-R transformer encoder to
obtain our fixed-size audio representation. During fine-tuning, the feature encoder
representations are masked with a strategy similar to SpecAugment (Park et al.
2019) as introduced in Wav2vec2 paper.

2. https://github.com/facebookresearch/LASER
3. https://github.com/pytorch/fairseq/tree/master/examples/wav2vec

https://github.com/facebookresearch/LASER
https://github.com/pytorch/fairseq/tree/master/examples/wav2vec
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We explored several methods to get a fixed-size speech representation, like max-
or mean-pooling of the encoder outputs. Best performance is obtained using the
output of the transformer encoder corresponding to a particular Beginning-Of-
Sentence (BOS) vector. This BOS vector is simply a vector filled with ones (1.0),
added at the beginning of the feature sequence in Wav2vec2 architecture. This
method is inspired by BERT (Devlin et al. 2019) sentence representations for text,
that are often extracted using a Classification (CLS) token at the beginning of the
input sentence.

3.2.1.1 Encoder evaluation

In order to compare different versions of our speech encoder, an evaluation
framework is needed. The ultimate goal is to mine speech translations and
to show improvements when training S2TT or S2ST systems. However, this is
computationally rather expensive and we only apply it for some selected encoders
(see Section 3.2.2). To evaluate a standalone speech encoder, we propose to use
cross-modal similarity search, extending the xsim evaluation metric presented
in Section 2.3.3 for cross-lingual similarity search. Given a multimodal test set
(ai, ti)1,...,N with ai being the audio file and ti its corresponding text, we encode
the speech and texts. We normalize the texts by removing quotes encapsulating
whole sentences and lower casing them. For each speech encoding aEi , we then
search the closest text embedding tEj , counting an error if it is not the expected
one. We adopt the margin based similarity proposed by Artetxe and Schwenk
(2019a) which was reported to outperform simple cosine similarity. The margin
sim(x, y) between two embeddings x and y is defined as the difference between
the cosine similarity between x and y, and the average cosine similarity of its
nearest neighbors in both directions:

sim(x, y) = cos(x, y)−

 ∑
z∈NNk(x)

cos(x, z)

2k
+

∑
z∈NNk(y)

cos(y, z)

2k

 (3.1)

where NNk(x) are the nearest neighbors of x. We use the Dev and Test set of
the CoVoST2 corpus (C. Wang et al. 2021b) which statistics are summarized in
Table 3.1.

3.2.1.2 Single multilingual speech encoder

All our speech encoders are trained and evaluated on the CoVoST2 dataset
(see Table 3.1) released under CC0 license. CoVoST2 is a large-scale multilingual
speech translation corpus based on Common Voice (Ardila et al. 2020). In
this work, we focus on five spoken languages: English (eng), German (deu),
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Table 3.1. – Statistics of CoVoST2 S2TT corpus. Number of hours of speech data
from CoVoST2 used to train and evaluate the speech encoders.

eng deu spa fra rus

Train Dev Test Train Dev Test Train Dev Test Train Dev Test Train Dev Test

Audio [hours] 430 26 25 184 21 22 113 22 23 264 22 23 18 10 11

#sentences 289k 16k 16k 128k 14k 14k 79k 13k 13k 207k 15k 15k 12k 6k 6k

French (fra), Spanish (spa) and Russian (rus). For each audio input language, we
explore different textual training targets, namely the transcriptions encoded with
LASER and the English translation encoded with LASER. We use the German
translations as a teacher for English speech data. We call them respectively, the

“transcription teacher” and the ”translation teacher”. We also train on both, i.e. using
transcriptions and translations as teachers.

In this section, we first train one multilingual speech encoder for all five
languages. To handle unbalanced training data between languages, speech
sentences are sampled according to a multinomial distribution with probabilities
{qi}i=1,..,N (as done for multilingual text in (Conneau and Lample 2019)):

qi =
pαi∑N
j=1 p

α
j

with pj =
nj∑N
k=1 nk

(3.2)

In the following experiments, we use α = 0.2. For all training methods, we
take the checkpoint with the lowest validation loss. The learning rate to fine-tune
XLS-R transformer is set to 10−4, and training was performed on 24 Tesla V100

Graphics Processing Unit (GPU)s.

Our multimodal similarity search results are summarized in Table 3.2. In the
top block of results, we first report the multimodal similarity error rates between
the speech embeddings and the text embeddings of the human transcriptions,
for the three training methods. The error is below 1% for German, French and
Spanish when the training and evaluation criterion are the same (row A.1). The
performance on Russian is significantly worse: about 25% error rate, probably
due to the small amount of training data. Not surprisingly, the error rates are
higher when using the embeddings of translations into English as targets (row
A.2), but also when using both (row A.3).

We then switch to similarity search of speech against the translation into
English (block B). These results are relevant to our use case of speech mining
(see Section 3.2.2). Overall, the error rates are about twice as high. Surprisingly,
performance is slightly better when using transcriptions as the teacher (row B.1)
than translations (row B.2), although this corresponds to the evaluation criteria.
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Table 3.2. – Similarity search results for a multilingual speech encoder. Error
rates for the different training methods with a multilingual speech
encoder on CoVoST2 test set.

Teacher mode eng deu fra spa rus

A) Search audio against transcriptions
A.1 Transcriptions 2.70 1.03 0.79 0.57 25.63

A.2 Translations 3.25 1.93 1.40 0.89 28.32

A.3 Both 3.01 1.21 0.91 0.64 36.19

B) Search audio against translations (eng)
B.1 Transcriptions - 3.58 2.31 1.79 30.46

B.2 Translations - 4.06 2.57 1.88 31.65

B.3 Both - 3.36 2.05 1.66 40.54

C) Search transcriptions against translations (eng)
n/a - 1.96 0.97 1.00 1.05

Best results are obtained when using both (row B.3). Finally, as lower bound,
we calculate the similarity error between the speech transcriptions and their
translations (block C). Both source and target are sentences, i.e. no audio encoder
is used. The error rates are about 1% for French, Spanish and Russian, and 2%
for German. Compared to these numbers, the performance of our multilingual
speech encoder (row B.3) seems to be very good (with exception of Russian).

3.2.1.3 Separate speech encoders per language

We now switch to separate speech encoders, trained with both translations and
transcriptions as teachers. In Table 3.3, we observe a huge improvement for the
Russian speech encoder: the error rate against the English translations went down
from more than 30% to 6.9%.

Table 3.3. – Similarity search results for monolingual speech encoders. Error
rates for separate speech encoders trained with transcription +
translation teachers on CoVoST2 test set.

eng deu fra spa rus

Search audio against transcriptions 2.72 1.44 0.84 0.57 3.46

Search audio against translations (en) - 3.73 1.86 1.78 6.86

Search transcriptions against translations (eng) - 1.96 0.97 1.00 1.05
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Figure 3.3. – Similarity search error rates vs. training data size. We evaluate
similarity search error rates for French speech encoders trained with
a transcription teacher for different training data sizes.

The error rate for French decreased from 2.05% to 1.86%, but those for Spanish
and German are slightly higher than with the multilingual speech encoder. Our
experimental evidence seems to indicate that low-resource languages, e.g. Russian
in our study, which have no similarity with other trained languages are better
handled by an individual speech encoder.

We also studied the quality of the speech encoder in function of the training data
size (transcriptions only, Fig 3.3). As expected, more data gives better performance,
but the curve flattens out quickly and good performance is already achieved for
relatively small amounts of training data.

3.2.2 Speech mining

We now apply the encoder to mine unlabeled raw audio against huge
collections of texts. We could mine either for transcriptions of the audio input, i.e.
texts in the same language, or translations into another language. The encoders
are trained to map sentences with similar meaning close in the embedding space,
independently from the language and the modality. This can include paraphrases,
that is, sentences which express the same meaning but with a different wording.
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Therefore, we argue that adding automatically mined speech transcriptions is
unlikely to improve a speech recognition system, since it requires training
data which are exact word-by-word transcriptions of the speech. Speech-to-text
translations systems however can benefit of paraphrased output, instead of strict
word-by-word translations. We therefore focus on mining speech translations.

3.2.2.1 Speech translation mining

We used Librivox as our set of unlabeled speech data. Librivox is a repository of
open domain audio books in different languages. 4 We focus on German, French,
Spanish and English audio books. Data statistics are reported in Table 3.4. The
very limited amount of Russian raw speech data in Librivox prevented us to
perform speech translation mining for this language.

Table 3.4. – Librivox data statistics. Number of audio books and number of hours
of raw speech data from Librivox for our languages of focus.

deu fra spa eng

#audio books 633 257 343 13 292

#hours 3 529 1 535 1 770 73 511

As English texts, we use five snapshots from Common Crawl as processed in
CCNet (Wenzek et al. 2019). The texts come in paragraphs which we segment
into sentences and deduplicate them. This yielded about 15 billion sentences. We
also mined the English audio against six text languages, chosen to cover various
linguistic features, namely Arabic (arb), French (fra), Spanish (spa), Russian (rus),
Turkish (tur) and Vietnamese (vie). We used the same 32 Common Crawl
snapshots as in (Schwenk et al. 2021). The amount of sentences varies from 786

million (Arabic) to 5684 million (French). The same procedure could be also
applied to all 80 languages supported by the LASER encoder.

Audio segmentation is a key element to obtain high recall in speech mining
since texts in Common Crawl are usually sentences. Librivox audio books are
separated into different chapters, but speech data is not segmented into sentences.
Voice Activity Detection (VAD) is commonly used to segment audio, as it was
done to generate LibriLight (Kahn et al. 2019) or Multilingual LibriSpeech (MLS)
(Pratap et al. 2020). However, those audio segments are not guaranteed to be real
sentences. On one hand, it cannot be excluded that (multiple) silences appear
within a sentence. And on the other hand, several sentences may follow each
other without any silence in between them.

4. https://librivox.org/api/

https://librivox.org/api/
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In this part, we propose to first generate multiple plausible speech
segmentations, and let the mining algorithm decide which ones are best aligned
with the existing texts. Eventually, we filter the mined speech/text alignments to

Well! Jack was terribly flabbergasted, but he faltered out: "And if I don't do it?". "Then," said the master of the house quite calmly, "your life will be the forfeit."

Time (s)
3 4 4,5 6,5 7,5

Audio transcription

Generated segments

0

Figure 3.4. – Example of generated segments by our segmentation. The
transcription is: Well Jack was terribly flabbergasted, | but he faltered
out: | "And if I don’t do it?". | "Then," | said the master of the house
quite calmly, | "your life will be forfeit.".

exclude overlapping segments. For each long audio input, theoretically containing
several sentences, we run VAD with Flashlight 5 pre-trained models. This generates
several detected silences in the audio. Based on these detected silences, we
segment the audio into several parts under the following rules: a segment
boundary is defined by two silence timestamps, a segment should be at least
3 seconds long and at most 20 seconds long. An example of this segmentation
procedure is given in Figure 3.4.

Mining algorithm. Once all audio segments and texts are encoded, we can
apply mining procedures which were successfully applied to large-scale text-to-
text mining, in particular CCMatrix (Schwenk et al. 2021). It has been observed
that an absolute threshold on the cosine distance is globally inconsistent (Guo et
al. 2018). Therefore, we apply a margin criterion as for similarity search evaluation
(see Section 3.2.1). We use the k = 16 nearest neighbors to calculate the average
distance for both directions. To make mining efficient at this scale, in particular
when searching in fifteen billion English sentences, a compact representation and
fast search is needed. The open-source FAISS library 6 for fast index search was
used for this (Johnson et al. 2019), as in several other large-scale text and image
mining projects.

Post-processing. The mining algorithm can align several sentences to the same
speech segment, and vice-versa. We remove all these duplicates keeping those
with highest alignment score. Our segmentation algorithm generates multiple
candidates for each speech segment (see Figure 3.4 above). In Table 3.5 we report

5. https://github.com/flashlight/wav2letter/
6. https://github.com/facebookresearch/faiss/wiki/Faiss-indexes

https://github.com/flashlight/wav2letter/
https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
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the total size of aligned speech segments (row "Sum"), and counting overlapping
sub-segments only once (row "Union").

Table 3.5. – Speech-to-text mined data statistics. Number of hours of speech for
Speech-to-Text (S2T) mined data, either counting the sum and union
of durations or the post-processed duration.

deu-eng fra-eng spa-eng eng-spa eng-fra eng-rus eng-arb eng-tur eng-vie

Sum 2 247 933 1 391 8088 8 327 3 959 1 718 1 851 1 527

Union 1 296 630 798 6825 7 080 3 529 1 606 1 721 1 437

Post-processed 1 074 543 668 6 289 6 544 3 330 1 549 1 656 1 390

We further post-process the mined data, in order to get speech segments
without overlaps. We sort alignments by decreasing order of similarity scores.
Then, following this decreasing order, we successively select alignments involving
speech segments if they are not overlapping with the previously selected segments.
In particular, this post-processing ensures that similar speech segments (for
example a speech segment corresponding to a full sentence, and another segment
corresponding to the same sentence with an additional word at the end), are
not selected twice, and that only the best matching pair is selected. It should be
pointed out that we were able to align a significant percentage of the available
speech, e.g. 1074 hours out of 3529 hours of raw German speech (see Tables 3.4
and 3.5).

3.2.3 Speech-to-text translation with mined data

Finally, we train S2TT systems on the mined speech data. The evaluation of
these S2TT trained models will assess the usefulness of the mined data to improve
S2TT models as well as the quality of the speech-text alignments.

Evaluation of mined X-eng data. We use the well established CoVoST2 task,
following the train-test splits in (C. Wang et al. 2021b). See Table 3.1 for corpus
statistics.

The 2021 best performing S2TT approach, named LNA (X. Li et al. 2020) builds
on extensively pretrained models: a Wav2vec2 speech encoder (Baevski et al. 2020)
and a mBART model (Liu et al. 2020a) as the text decoder. mBART is first pre-
trained on monolingual text data from 100 Common Crawl snapshots, and then
trained on the parallel texts from OPUS (Tiedemann 2012). X. Li et al. (2020) jointly
trained an LNA S2TT system on multiple languages to enhance performance via
cross-lingual transfer. Another strong multilingual S2TT system, E2E S2T, was
proposed in (C. Wang et al. 2021b) for evaluation on the CoVoST2 dataset. It has
an encoder-decoder architecture trained end-to-end. We also report the results
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of a cascaded model (Iranzo-Sánchez et al. 2020): the audio is first transcribed
as texts, and then translated into the target language with a machine translation
model.

We follow exactly the procedure of the LNA approach, but train separate
models for each language pair to independently evaluate the quality of each
mined speech/text corpus. We tune layer norm and multi-head attention
parameters on the train set in each language direction, while other model
parameters are frozen during the fine-tuning stage. The BLEU scores on the
CoVoST2 test set are reported in Table 3.6. Our baseline bilingual LNA model
is on-par with the best performing bilingual models reported in the literature in
2021. In this table, mined data is used and selected with a threshold of t = 1.07,
following an ablation study on this threshold selection.

Indeed, one hyperparameter in our speech translation mining process is
the threshold on the alignment scores. Mined speech-text pairs are kept and
considered as translations if their alignment scores are greater than or equal to the
threshold. Speech translation models are trained on the combination of CoVoST2

train set and mined data at different thresholds. We report the performance of
each model on the dev set of CoVoST2 in Figure 3.5, and find the optimal value
for the threshold.
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t=1.06 t=1.065 t=1.07 t=1.075 t=1.08 t=1.085 t=1.09

de-en es-en fr-en

Figure 3.5. – Speech-to-text translation evaluation of mined data at different
thresholds. BLEU on dev set achieved by S2TT models trained on
CoVoST2 train set + mined data at different thresholds.

Based on Figure 3.5, the optimal threshold is t = 1.07 for deu-eng, spa-eng and
fra-eng directions. As we decrease the threshold, more mined data is added to the
train set improving model performance. When decreasing the threshold below
t = 1.07, the data quality decreases too: despite the larger training data size, the
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translation performance decreases due to more noise. The threshold is t = 1.07 is
used for all experiments with mined data.

Table 3.6. – Speech-to-text evaluation of X-eng mined data. BLEU scores of S2TT
on CoVoST2 test set.

Approach Train deu-eng spa-eng fra-eng

Bilingual models:
Cascaded S2T CoVoST2 23.2 31.1 29.1
E2E S2T CoVoST2 17.1 23.0 26.3
LNA (ours) CoVoST2 24.4 29.9 30.7

LNA (ours)
CoVoST2

+ mined
26.4 31.6 32.0

Multilingual models:
E2E S2T CoVoST2 18.9 28.0 27.0
LNA CoVoST2 28.2 35.2 35.0

In Table 3.6, we notice that adding the mined data brings significant improve-
ments of more than 1.3 BLEU in average for all language pairs. Please note that
our mined data is generic and not selected to match the domain of the CoVoST2

task. The results of the multilingual models are not directly comparable with ours
since they benefit from knowledge transfer across languages. We provide them
here for the completeness of empirical results.

Evaluation of mined eng-X data. We further evaluate the quality mined data
in eng-X directions (for a threshold of 1.07, not particularly optimized for eng-X
directions) using Must-C dataset (Di Gangi et al. 2019) and S2T Transformer (C.
Wang et al. 2020b), considering the established baseline results of S2T Transformer
on Must-C.

S2T Transformer used in this work has 6 encoder layers and 6 decoder layers
with 4 attention heads. The feedforward dimensions are 2048 and 256. Following
the empirical setup in (C. Wang et al. 2020b), S2T Transformer is first trained on
Must-C Automatic Speech Recognition (ASR) data in order to initialize its encoder
parameters. Then the model is trained with Must-C speech translation data in a
given language direction, which serves as a baseline in our experiments.

We augment the train set of speech translations with the mined data. With
the encoder initialized with ASR training, S2T Transformer is trained on the
combination of Must-C and mined data for the task of speech translation for 200k
steps and finetuned on Must-C data only for 100k steps. Table 3.7 reports BLEU
scores of models trained with and without mined data in six eng-X language
directions.
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Table 3.7. – Speech-to-text evaluation of eng-X mined data. BLEU scores of S2TT
on the Must-C test set.

Train data eng-spa eng-fra eng-rur eng-arb eng-tur eng-vie

MuST-C 27.2 32.9 15.3 12.3 9.7 21.4

MuST-C + Mined (t=1.07) 28.7 34.4 16.1 12.8 10.5 21.8

As is shown in Table 3.7, mined data brings improvements in the BLEU score
of 1.5, 1.5, 0.8, 0.5, 0.8 and 0.4, in speech translation from English to Spanish,
French, Russian, Arabic, Turkish and Vietnamese respectively. The performance
improvements again demonstrate that mined speech-to-text data is of good quality
and useful for model training.

3.2.4 Speech-to-speech translation with mined data

The LASER teacher text encoder and all student speech encoder are mutually
compatible. This enables us to perform speech-to-speech mining directly in the
embedding space without the need to transcribe or translate. We use the same
speech embeddings from Librivox as in Section 3.2.2.1 and mine for all pairs of
German, Spanish, French and English speech.

Table 3.8. – Speech-to-speech mined data statistics. Numbers of hours for source
and target languages of S2S mined data, either counting the sum and
union of durations or the post-processed duration.

spa-deu fra-deu fra-spa eng-spa deu-eng eng-fra

Sum 64 / 65 52 / 59 235 / 259 732 / 936 557 / 821 1 049 / 1 210

Union 45 / 47 37 / 43 121 / 133 488 / 486 373 / 421 562 / 518

Post-processed 40 / 41 33 / 38 101 / 111 425 / 442 324 / 363 470 / 447

The amount of automatically mined speech-to-speech alignments are given in
Table 3.8, using the same post-processing as for speech-to-text mining (applied on
the source speech). Overall, we provide a speech-to-speech corpus of 1393 hours
in six language pairs. This should be put into context with the 2021 best practice
in S2ST, which was mostly based on the Fisher Spanish-to-English speech corpus
(Post et al. 2013) of 160 hours of source speech, the target speech being artificially
created by speech synthesis (Jia et al. 2019b).

We first provide an initial human analysis of these alignments highlighting the
quality of the S2S alignments. We randomly sampled one hundred S2S alignments



48 embedding speech/text sentences and multilingual speech mining

Figure 3.6. – Human evaluation of S2S mined data. Human evaluation of 100,
randomly sampled, S2S alignments for the fra-spa pair.

for the French-Spanish pair with alignment scores above t = 1.06. We manually
checked the alignments and reported the accuracy we obtained in Figure 3.6. A
threshold of t = 1.06 corresponds to the one hundred evaluated alignments. We
also report the results when removing the alignments with a score below a given
threshold (varying from 1.06 to 1.14). A higher threshold gives a better accuracy
but less alignments.

To better evaluate the quality of the mined data, we did a research collaboration
with the Universal Speech Translation team from Meta to train S2ST systems on the
mined S2S data. The method is introduced in (Lee et al. 2022b), where the HuBERT
normalized units are extracted from the target speech and used as targets for a
Speech-to-Unit (S2U) model. The speech normalization procedure helps handling
real speech as target, which is exactly the case when dealing with S2S mined
data. The mined data was added to an existing training set of real S2ST data
from VoxPopuli labeled set (C. Wang et al. 2021a). We focused on Spanish-to-
English and French-to-English translation directions where VoxPopuli training
data totals approximately 500h of source speech for each direction. We report
the ASR-BLEU results on CoVoST2 test set of S2ST systems trained on VoxPopuli
training data only and VoxPopuli training data combined with the mined data.
We notice in Table 3.9, that adding mined speech-to-speech translation data to the
training significantly boost the performance of the S2ST system, with more than
50% ASR-BLEU gain on CoVoST2.
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Table 3.9. – Speech-to-speech evaluation of mined data. ASR-BLEU scores of S2ST
on CoVoST2 test set.

spa-eng fra-eng

Speech-to-speech translation
trained on Voxpopuli 9.2 9.6
trained on Voxpopuli + mined data 15.1 15.9

3.3 SpeechMatrix: scaling speech-to-speech trans-
lation mining

In the first part, we presented different ablations on the training of a
multilingual speech/text sentence embedding space and introduced speech
mining. Speech translation evaluations highlighted the quality and usefulness
of the automatically aligned data for a few languages. In this part, we develop the
work we have done to scale S2S mining to 17 spoken languages from the European
Parliament: Czech (ces), German (deu), English (eng), Estonian (est), Finnish (fin),
French (fra), Croatian (hrv), Hungarian (hun), Italian (ita), Lithuanian (lit), Dutch
(nld), Polish (pol), Portuguese (por), Romanian (ron), Slovak (slk) and Slovenian
(slv). In this work, our contribution mainly lies on the speech mining part while
the S2ST model training on the mined data is a research collaboration with the
Universal Speech Translation team from Meta.

3.3.1 Speech-to-speech mining

We follow the speech-to-speech mining approach presented in Section 3.2.2.1,
but train new speech encoders covering our 17 languages of focus. We evaluate
these new encoders and performed mining on raw speech recordings from the
European Parliament.

3.3.1.1 Speech encoders

We follow the teacher-student approach introduced in Section 3.2.1 and train
speech encoders with the supervision of the multilingual LASER text encoder.
Contrarily to the work presented in the first part, we scale all aspects of
speech encoder training to boost the end performance of these models. Both
transcriptions and written translation of the audio utterances are encoded with
LASER text encoder as target vectors for speech encoder training. Speech encoders
are initialized with the 2B-parameter XLS-R model (Babu et al. 2021), which was
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pre-trained on nearly half a million hours of publicly available audios in 128

languages. The fixed-size representation for speech is obtained with max pooling
of the encoder outputs which appeared to work better compared to other pooling
methods on these large XLS-R variants.

We use various publicly available ASR data sets which cover our languages to
train the speech encoders, including CoVoST2 (C. Wang et al. 2020a; C. Wang et al.
2021b), Common Voice (Ardila et al. 2020), EuroparlST (Ardila et al. 2020), mTedx
(Salesky et al. 2021), Must-C (Di Gangi et al. 2019) and VoxPopuli (C. Wang et al.
2021a), as well as speech translation data from the foreign languages into English
and from English into German.

We remove training samples which transcription or written translation consists
of multiple sentences, as LASER has been trained on single sentences only. For
better training efficiency, we train speech encoders for each language family
instead of each language, which has proven to work well for text (Heffernan
et al. 2022). The language grouping is provided in Table 3.10.

Family Languages

Romance spa, fra, ita, por, ron
Slavic (+Baltic) ces, pol, slk, slv, hrv, lit

Germanic eng, deu, nld
Uralic fin, est, hun

Table 3.10. – Language family grouping. Language family groups used to train
speech encoders and HuBERT models. Lithuanian was our only
Baltic language. In order to avoid training it alone, we added it to
the Slavic language family.

To better handle imbalanced training data, we sample the training data from
different languages with the approach presented in Section 3.2.1. For English
(eng), Slovenian (slv), Lithuanian (lit) and Dutch (nld), we also trained separate
monolingual speech encoders that had lower valid cosine losses compared to
multilingual encoders, and these four monolingual encoders were used for
mining.

3.3.1.2 Evaluation of speech encoders

We evaluated similarity search of audios against transcriptions on VoxPopuli
ASR test set in Table 3.11, which is our target domain as we plan to mine unlabeled
speech from VoxPopuli (see Section 3.3.1.3).

We also provide results for similarity search of audios against written
translations or transcriptions on CoVoST2 test set for all languages from CoVoST2
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Sim Search ces deu eng spa est fin fra hrv hun ita lit nld pol por ron slk slv

# test instances 1k 1.7k 1.5k 1.4k 47 0.4k 1.5k 0.3k 1k 1k 39 1k 1.6k — 1.3k 0.6k 0.3k

Error rates 0.6 1.0 0.2 0.7 0.0 0.7 0.5 0.3 1.1 4.9 0.0 0.8 0.9 — 0.9 0.7 3.1

Table 3.11. – Similarity search results on VoxPopuli ASR. Error rates (in %) of
audio against transcriptions on VoxPopuli ASR test set.

covered by our speech encoders in Table 3.12, in order to evaluate cross-
modal similarity search. We also report text-to-text similarity search (last line in
Table 3.12) using the LASER text encoder as lower bound for the speech translation
similarity search error rates, since we use gold transcriptions to search against
written translations. We report error rates (in %) that are percentage of audio
utterances incorrectly matched with text transcripts from the same test set. We
note that error rates are very low for all languages (below 5% and around 1 or 2%
for most languages), which is an initial validation of good-quality speech encoders
before the large-scale mining.

deu eng spa est fra ita nld por slv

# test sentences 14k 16k 13k 2k 15k 9k 2k 4k 0.4k

Audio
vs. transcriptions 1.4 2.9 0.4 0.1 0.5 0.5 1.0 1.1 1.7
vs. en translations 3.3 — 1.3 1.0 1.5 1.7 4.4 1.9 4.4

Text transcription
vs. en translations 2.0 — 1.0 0.1 1.0 1.3 2.4 0.7 0.8

Table 3.12. – Similarity search results on CoVoST2. Error rates (in %) on
CoVoST2 test set for SpeechMatrix speech encoders.

We also compare, in Table 3.13, similarity search results of audio against written
translations with the ones obtained by speech encoders trained in the first part,
and we notice that our new speech encoders have lower error rates compared to
encoders from Section 3.2.1.

Audio vs. en translations deu spa fra

Encoders from Section 3.2.1 3.36 1.66 2.05

SpeechMatrix encoders 3.27 1.26 1.55

Table 3.13. – Similarity search results compared to previous work. Error rates
(in %) on CoVoST2 test set.
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3.3.1.3 Large-scale speech mining

We used VoxPopuli (C. Wang et al. 2021a) as our source of unlabeled speech
for our 17 languages of focus. We downloaded the full unsegmented parliament
session recordings from VoxPopuli. 7 We present in Table 3.14 the number of hours
of unlabeled speech for each language, which range from 8k hours to 24k hours
depending on the language.

We follow the same global speech mining approach as described in Section 3.2.2
and compare all segments in the spoken source language with all segments in the
spoken target language. Similarity scores are calculated in both directions using
the margin as described in Equation 3.1, considering k = 16 neighbors. Segments
are considered to be parallel if the margin score exceeds a threshold, we use 1.06

if not specified otherwise.

Similarly to Librivox recordings, the VoxPopuli recordings have a rather long
duration, e.g. one hour and a half on average for English. We apply VAD using
Silero-VAD (Silero-Team 2021) 8 which supports over 100 languages and we follow
the “over segmentation” approach outlined in Section 3.2.1. Initial experiments
suggested that segments shorter than 1 second or longer than 20 seconds are
unlikely to be aligned and therefore were excluded. After mining, the resulting
speech alignments may have overlap as we over-segment the unlabeled speech.
We follow the post-processing method presented in Section 3.2.2.1 to remove
overlaps between mined speech segments on the source speech side but relax it to
allow for some overlap between mined speech segments: for two audio segments
that overlap on the source side, if the overlap represents more than 20% of the first
segment and of the second segment, we discard the alignment with the lowest
mining score. We did an ablation study on different thresholds of overlap ratio for
one low-resource, one mid-resource and one high-resource direction and found
that 20% was the best overlap threshold in all settings.

We report the statistics of the mined S2S pairs in Table 3.14, with a mining
score threshold of 1.06. We call this corpus of S2S mined data SpeechMatrix.
The mined data totals 418k hours of parallel speech with an average of 1,537

hours of source speech in all translation directions. While some high resource
languages like English, Spanish or French can reach up to 5k hours of aligned
speech with other spoken languages; lower resource languages such as Estonian
and Lithuanian obtain much fewer alignments, with only a few hours of aligned
speech for Lithuanian. We also perform mining of the source speech in sixteen
languages against more than twenty billion English sentences from Common
Crawl. This yielded speech-text alignments between 827 and 3, 966 hours (c.f. the

7. https://github.com/facebookresearch/voxpopuli
8. https://github.com/snakers4/silero-vad

https://github.com/facebookresearch/voxpopuli
https://github.com/snakers4/silero-vad
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last column of Table 3.14). The evaluation of speech-text alignments is not done
in this study.

Speech targets Text
Src/Tgt ces deu eng spa est fin fra hrv hun ita lit nld pol por ron slk slv eng

cs - 2381 3208 2290 952 1312 2476 726 1396 2410 84 2377 2516 1867 1190 2146 452 2528

de 2386 - 4734 3113 901 1477 3536 498 1871 3476 41 3384 2632 2250 1281 1646 361 3073

en 3172 4676 - 4715 1585 2169 5178 824 2266 4897 82 4422 3583 3572 2258 2306 586 -
es 2240 3041 4708 - 862 1373 4446 528 1599 4418 47 3067 2646 3484 1857 1603 308 3966

et 943 892 1593 877 - 1201 934 265 1119 1019 39 1055 949 721 419 780 196 1578

fi 1296 1463 2180 1393 1197 - 1449 306 1473 1599 47 1654 1350 1128 621 977 260 1969

fr 2424 3457 5171 4455 923 1435 - 560 1711 4618 50 3273 2822 3384 1991 1657 326 3966

hr 736 507 854 553 273 317 588 - 328 615 24 546 660 433 277 586 136 1311

hu 1417 1897 2346 1672 1140 1507 1787 328 - 1855 68 1839 1566 1315 808 1064 311 2301

it 2404 3460 4948 4500 1028 1614 4700 607 1823 - 103 3414 2848 3421 1995 1656 474 2891

lt 78 38 79 46 37 44 48 21 61 95 - 77 80 35 18 64 6 827

nl 2322 3305 4396 3066 1040 1633 3269 521 1768 3355 80 - 2459 2399 1352 1646 458 2708

pl 2530 2646 3662 2735 967 1378 2913 656 1554 2883 88 2540 - 2121 1301 1892 431 2871

pt 1849 2224 3606 3525 722 1131 3421 421 1279 3403 37 2436 2087 - 1579 1358 247 3540

ro 1187 1275 2290 1894 423 627 2024 271 789 1996 19 1384 1288 1592 - 870 125 2784

sk 2127 1628 2329 1631 781 982 1685 574 1038 1650 69 1676 1869 1361 867 - 370 2090

sl 436 350 579 307 192 254 324 128 295 461 6 454 413 241 121 359 - 1267

# hours of unlabeled speech
18.7k 23.2k 24.1k 21.4k 10.6k 14.2k 22.8k 8.1k 17.7k 21.9k 14.4k 19.0k 21.2k 17.5k 17.9k 12.1k 11.3k

Table 3.14. – Mined data statistics of SpeechMatrix. Duration statistics (hours
of source speech) of speech-to-speech alignments for each pair
of 17 languages (for mining threshold of 1.06). The last column
provides statistics for alignments of source speech against 21.5 billion
sentences of English texts. The last row provides duration of raw
speech from VoxPopuli used for mining.

3.3.2 Experiments & results

To evaluate the quality of the mined data, we initiated a collaboration with
the Universal Speech Translation team from Meta to train S2ST models on
SpeechMatrix data and report the translation performance.

3.3.2.1 Massively multilingual S2ST evaluation data

Besides the S2S mined data which will be used as the train set, we leverage
labeled public speech datasets as the evaluation sets. We need to gather massively
multilingual test sets for our 272 language directions in order to evaluate S2ST

systems trained on our mined data. In our experiments, we derive test sets from
three public corpora, evaluating translation models trained on mined data across
different domains:



54 embedding speech/text sentences and multilingual speech mining

• EuroparlST (EPST) (Iranzo-Sánchez et al. 2020). It is a multilingual speech-
to-text translation corpus built on recordings of debates from the European
Parliament, containing 72 translation directions in 9 languages. 9

• VoxPopuli (VP) (C. Wang et al. 2021a) S2S data, as part of VoxPopuli
release, provides aligned source and target speech together with source
transcriptions. We prepare the S2T data with target speech and source
transcription as our test set. To ensure that there is no overlap between
the mined data and VoxPopuli test sets, we remove speech from mined
alignments which are from the same session as test samples. In order to
keep as much mined data as possible, we use VoxPopuli test set only when a
language direction is not covered by EPST considering their domain similarity.
Moreover, similarity scores are provided to indicate the quality of VoxPopuli
samples. To choose high-quality data, we sort all sessions in the VoxPopuli
S2S data in a decreasing order of the average similarity score of their samples.
We keep adding samples from highly ranked sessions to the test set until the
test size reaches 1000.

• FLEURS (Conneau et al. 2023). Built upon N-way text translations from
FLoRes (Goyal et al. 2022), FLEURS provides speech for aligned texts and
creates S2S data covering all mined directions. We take its source speech and
target texts as the test data. For this project, in the case where multiple
utterances correspond to one piece of source text, we generate one test
pair for each source utterance respectively. FLEURS texts are from English
Wikipedia, which is a different domain from VoxPopuli and EPST.

Valid sets are prepared for S2ST modeling using VoxPopuli and FLEURS data
in a similar way as test sets. For VoxPopuli, we extract a valid set of about 1000
samples by adding data from highly scored sessions which are not in the test set.
FLEURS valid set is derived from its valid samples.

3.3.2.2 Experimental setup

As discussed in Chapter 2, recent progress in speech-to-speech modeling
suggests to discretize the target speech waveform into a unit sequence, relieving
models from the complexity of predicting continuous values. We borrow the idea
of training S2U model, where units are pre-generated from target speech with a
pre-trained HuBERT model (see Section 2.2.2). During S2U training, models are
periodically evaluated on the valid set of speech-to-unit samples, and the best
checkpoint with the lowest valid loss is saved for model inference.

9. eng, fra, deu, ita, spa, por, pol, ron and nld
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When it comes to inference, speech could be synthesized from the predicted
units with a vocoder, as the output of the S2ST pipeline. It is then transcribed
into texts by an off-the-shelf ASR model for evaluation purposes. A BLEU score
is calculated by comparing the automatic transcriptions against the ground truth
target texts, which serves as the quantitative metric of mined data quality. This
score, called ASR-BLEU score, is not a perfect metric for data quality, as it is
unavoidably affected by the quality of ASR models. Next we discuss each module
of the pipeline.

Speech-to-Unit. The S2U model takes the source speech and predicts a sequence
of target units. It typically has an encoder-decoder architecture, where the encoder
consists of convolutional and Transformer encoder layers, and the decoder is a
Transformer decoder. We have experimented with different model variants, and
discuss bilingual and multilingual training in Section 3.3.3 and Section 3.3.4.

HuBERT. HuBERT is used to extract speech features of audio frames, which are
then grouped into k-means clusters. The continuous features are thus mapped to
corresponding clusters. In this way, speech could be discretized into unit sequence
where units are basically indices of clusters. We reuse the same HuBERT model
and k-means clusters for English, Spanish and French as in (Lee et al. 2022b) for a
fair comparison with existing results. We also train multilingual HuBERT models
to cover other languages in SpeechMatrix, and HuBERT training details can be
found in Appendix A.1.1.

Vocoder. Unit-based HiFi-GAN vocoders are trained to synthesize speech from
unit sequence (Polyak et al. 2021). In our experiments, vocoders are separately
trained from S2U model. We train vocoders on three datasets:

• CSS10 (Park and Mulc 2019). It is a single-speaker corpus which we use to
train vocoders in German, Finnish, Hungarian and Dutch.

• VoxPopuli (C. Wang et al. 2021a). Given its ASR data with speaker id, we sort
speakers based on their speech duration, and keep adding the top speakers
until the speech is more than 20 hours.

• Common Voice (Ardila et al. 2020). Portuguese and Estonian are not covered
by the two corpora above, and thus we turn to Common Voice. Again, we
select top speakers and prepare 12-hour and 10-hour speech for the vocoder
training in Portuguese and Estonian respectively.

Data preprocessing and training details are included in Appendix A.1.3.

ASR. In order to compute ASR-BLEU scores, we use off-the-shelf ASR models to
transcribe the speech generated by vocoders. Details about the ASR models and
their benchmark results of word error rates are provided in Appendix A.1.2.
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3.3.3 Bilingual speech-to-speech translation baselines

In this part, we discuss the bilingual S2ST models trained in each of the 272

language directions in SpeechMatrix. The Textless model architecture is used
for bilingual translation in our experiments (Lee et al. 2022a). A Textless model
consists of a speech encoder, Transformer encoder and decoder.

Training. For a given direction, we extract units for source and target speech
with their corresponding HuBERT models. Taking source speech, the model is
trained to predict target unit sequence with cross-entropy loss as well as source
unit reconstruction as an auxiliary task.

For the training efficiency of extensive S2ST experiments, we use a subset of
mined data as the train set. Mined samples are selected if their alignment scores
are above a preset threshold. We performed an analysis of the threshold selection
in Appendix A.1.4.

Comparison with existing results. Since we adopt the same model as previous
work (Lee et al. 2022a) with the only difference lying in the train set, it is
straightforward to compare with existing results. Table 3.15 shows the results
of S2ST models which are trained on our SpeechMatrix mined data compared to
VoxPopuli S2ST data in each of four language directions: spa-eng, fra-eng, eng-spa
and eng-fra. The threshold of mined data is set as 1.09 for these four directions,
yielding an average of 1, 436-hour train set. Compared with 480-hour labeled
speech from VoxPopuli, SpeechMatrix achieves an an average improvement of 5.4
BLEU, indicating the good quality and usefulness of the mined data.

Train set spa-eng fra-eng eng-spa eng-fra

VoxPopuli
S2S

Hours 532 523 415 451

BLEU 13.1 15.4 16.4 15.8

SpeechMatrix
(t = 1.09)

Hours 1,353 1,507 1,366 1,518

BLEU 20.4 20.7 21.9 19.3

Table 3.15. – Speech-to-speech evaluation of models trained on SpeechMatrix
compared to previous work. BLEU scores on EPST test sets by S2ST
models with different training data.

3.3.3.1 Large-scale bilingual evaluation

A large-scale evaluation is performed covering 272 mined languages directions,
and bilingual models are trained for each direction to establish baseline results in
S2ST.
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ces deu eng spa est fin fra hrv hun ita lit nld pol por ron slk slv

cs - 12.9 22.7 16.7 - 0.6 21.1 4.4 0.5 10.2 0.1 6.1 8.5 - 4.3 16.9 3.0
de 7.3 - 16.3 11.7 - 1.2 10.7 4.5 0.6 3.8 0.1 10.4 3.5 7.1 5.2 3.0 4.1
en 8.2 10.1 - 21.9 - 1.9 19.2 8.4 1.1 11.5 0.3 15.1 8.2 11.8 7.6 5.7 5.5
es 5.2 6.1 20.4 - - 1.3 16.3 3.6 0.7 11.1 0.1 8.0 3.9 13.3 5.2 2.2 2.2
et - - - - - - - - - - - - - - - - -
fi 3.0 9.0 19.7 11.4 - - 14.1 1.5 0.0 5.8 0.1 6.6 4.5 - 4.4 1.7 1.6
fr 5.4 6.3 20.7 18.4 - 0.8 - 5.4 0.7 10.2 0.1 8.4 4.8 13.4 5.6 1.6 1.5
hr - - - - - - - - - - - - - - - - -
hu 2.6 7.3 15.3 9.5 - 0.7 13.8 1.9 - 6.3 0.1 3.0 1.6 - 2.4 0.9 1.2
it 6.4 4.9 18.9 19.6 - 0.4 15.3 5.2 0.7 - 0.1 6.5 3.6 12.4 3.7 2.1 2.8
lt 0.2 0.0 3.1 0.8 - 0.0 0.7 0.1 0.0 0.6 - 0.7 0.1 - 0.0 0.0 0.1
nl 3.5 8.1 18.0 13.2 - 0.5 13.0 3.3 0.4 5.2 0.1 - 3.4 6.7 4.1 1.7 2.1
pl 7.2 2.8 4.9 6.3 - 1.0 5.5 4.5 0.5 5.8 0.2 1.6 - 6.1 3.2 4.7 2.4
pt - 4.7 21.2 23.2 - - 18.1 - - 4.4 - 5.0 3.6 - 4.4 - -
ro 4.6 6.5 22.6 20.1 - 0.8 18.6 2.4 0.4 8.7 0.1 3.5 4.6 10.3 - 2.3 0.7
sk 28.2 10.7 21.4 15.5 - 1.0 19.2 5.0 0.5 4.7 0.1 4.2 5.3 - 4.4 - 3.6
sl 4.0 11.1 19.5 8.6 - 0.8 13.2 4.8 0.4 6.0 0.1 4.5 6.7 - 1.1 1.7 -

Table 3.16. – Mined data evaluation on EPST/VP. BLEU scores of bilingual S2ST
models on EPST/VP test sets. EPST score is underscored.

Table 3.16 summarizes performance of bilingual S2ST models on two test sets.
In each direction, Table 3.16 reports ASR-BLEU scores in the European Parliament
domain, either EPST or VoxPopuli set. Indeed, EPST, while being a well-known test
set, only covers a subset of language directions. EPST ASR-BLEU is underlined to
be distinguished from VoxPopuli ASR-BLEU. Results for FLEURS test data from
the Wikipedia domain can be found in Appendix in Table A.3.

Bilingual results. Empirically we find that translations into high-resource
languages such as eng, spa and fra outperform those into low-resource languages
such as lit and slv based on the amount training data of these languages in
Table 3.14.

It is also found that translation results are not symmetric for some language
pairs, for example, ron-eng has a ASR-BLEU of 22.6 while eng-ron ASR-BLEU
is only 7.6 on EPST. Besides different complexity levels of target languages and
test sets, such asymmetry also results from the dependency of ASR-BLEU scores
on the speech synthesis quality of the vocoder and transcription quality of the
ASR model. For languages whose vocoder and ASR models are not good, they are
likely to obtain low ASR-BLEU scores. In this case, Romanian vocoder and ASR

are not as strong as English models as reflected by its higher word error rate in
speech resynthesis as reported in Appendix A.1.3.
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3.3.4 Multilingual speech-to-speech translation

Multilingual modeling has been explored in tasks of language understanding
and machine translation, demonstrating knowledge transfer among languages.
However, back in 2022, there were only few studies on multilingual S2ST on
real speech, partially due to the lack of multilingual speech-to-speech resources.
With the massively multilingual data we have mined, we are able to explore
multilingual S2ST training.

In this work, we focus on many-to-English translation, studying the translation
from 6 Slavic languages to English in Section 3.3.4.1 and the translation from
all 16 languages in SpeechMatrix to English in Section 3.3.4.2. 10 We present here
multilingual models used in our experiments:

• Textless model. The same model with 70M parameters that we use for
bilingual evaluation is reused in the multilingual experiments. Given diverse
multilingual data, we increase the model size for larger model capacity, trying
multilingual models with 70M and 260M parameters.

• XM Transformer. Inspired by findings which showed that cross-modal pre-
training is beneficial for speech translation (Popuri et al. 2022), we apply
XM Transformer to multilingual training, whose encoder is initialized from
pre-trained XLS-R model with 1B parameters (Babu et al. 2021) and decoder
is initialized from a unit decoder pre-trained in an mBART style (Popuri et al.
2022). With multilingual speech-to-unit data, the model is further fine-tuned
to minimize the cross-entropy loss in target unit prediction.

• XM Transformer with Sparsity. Sparse modeling, in particular Mixture-of-
Experts (MoE), has been widely studied in multilingual machine translation.
MoE increases the number of parameters without sacrificing computation
efficiency. We explored GShard which is a sparse scaling technique proposed
in (Lepikhin et al. 2021). A learnable gating function routes input tokens to
different experts (NLLB Team et al. 2022). We apply GShard architecture on
the decoder of XM Transformer, and expert weights are all initialized with
the pretrained unit mBART.

10. English-to-many or many-to-many translations were not explored in this study from 2022,
but in recent large-scale systems like (Seamless Communication et al. 2023a) which also heavily
relies on mined S2ST data.
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3.3.4.1 Slavic-to-English translation

The six Slavic (+Baltic) languages include Czech (ces), Croatian (hrv), Polish
(pol), Slovak (slk), Slovenian (slv) and Lituanian (lit) (Lithuanian is also included
as our only Baltic language). In the multilingual setting, all mined data from each
these languages into English are combined (without upsampling) as the train set.

Bilingual Multilingual
EPST/VP FLEURS EPST/VP FLEURS EPST/VP FLEURS EPST/VP FLEURS

Textless 70M 260M 70M 260M
Avg. 14.3 5.1 16.8 6.5 14.1 2.5 22.4 11.2

XM Dense(1.2B) Dense (1.2B) GShard (4.3B)
Avg. 18.1 10.1 26.0 15.2 27.0 15.5

Table 3.17. – Speech-to-speech evaluation of Slavic-to-English models. Average
ASR-BLEU of Slavic-to-English models in EPST/VP and FLEURS
domains.

We summarize ASR-BLEU scores of different models averaged over six Slavic-
to-English directions in Table 3.17. As is shown, Textless model benefits from the
parameter increase to 260M, and multilingual training further brings ASR-BLEU
gains of 5.6 and 4.7 in EPST/VP and FLEURS. We tried larger models than 260M
but didn’t see more gains.

Comparing against bilingual Textless model (70M), bilingual XM Transformer
achieves +3.8 ASR-BLEU in EPST/VP and +5.0 ASR-BLEU in FLEURS.
Multilingual training further improves dense XM Transformer by 7.9 and 5.1

ASR-BLEU. GShard with 64 experts brings +1.0 ASR-BLEU over dense XM
Transformer to EPST/VP, and +0.3 ASR-BLEU to FLEURS. Overall the best Slavic-
to-English translation is achieved by XM Transformer with GShard trained in
the multilingual setting. This demonstrates that multilinguality, pre-training and
model sparsity are helpful for speech-to-speech translation modeling.

3.3.4.2 All-to-English translation

We extend the multilingual focus by switching from the Slavic language family
to all languages in SpeechMatrix. We adopt the best models obtained for Slavic-to-
English translation, i.e. multilingual XM Transformer with both dense and sparse
architectures.

Results. Compared with XM Transformer (1.2B) dense model, MoE-GShard64

(4.3B) with the same forward computation time, brings gains of +0.9 and +0.2 ASR-
BLEU to EPST/VP and FLEURS respectively. Similar to our findings in Slavic-to-
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Dense (1.2B) GShard (4.3B)

EPST/VP FLEURS EPST/VP FLEURS

ces 29.9 18.7 30.9 18.2
deu 18.8 19.0 19.3 20.3
spa 22.8 15.2 23.3 15.9
est - 16.7 - 16.7
fin 26.8 14.1 28.2 14.0
fra 23.5 18.3 24.1 18.9
hrv - 16.6 - 16.8
hun 20.2 12.0 21.3 12.5
ita 36.3 16.2 37.8 14.9
lit 21.9 9.8 23.8 10.3

nld 21.4 16.4 22.1 17.3
pol 21.2 12.4 21.3 13.4
por 23.8 21.8 24.2 22.3
ron 25.1 19.7 25.0 19.8
slk 30.8 19.6 32.2 18.2
slv 28.3 13.7 29.9 13.7

avg 25.1 16.3 26.0 16.5

Table 3.18. – Speech-to-speech evaluation of All-to-English multilingual models.
ASR-BLEU of All-to-English multilingual models across FLEURS
and EPST/VP domains (for EPST/VP column, underlined scores are
on EPST data, and others on VoxPopuli data).

English setting, increasing the capacity with sparse modeling benefits in-domain
(EPST/VP) more than out-of-domain FLEURS test set.

Given sparse architecture of XM Transformer with GShard, all-to-English model
shows +0.6 and -0.4 ASR-BLEU difference compared to the Slavic-to-English
model on EPST/VP and FLEURS respectively, averaged over Slavic languages.
Multilingual sparse model benefits from the additional in-domain data in
other languages when evaluated in EPST/VP domain, while sees performance
degradation in out-of-domain data.

3.4 Conclusion

In this chapter, we have applied a teacher-student approach to extend the
existing LASER multilingual sentence embedding space to the speech modality.
The speech encoders leverage pretrained multilingual speech representations of
the XLS-R model. We have explored several training procedures and compared
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multilingual with language specific speech encoders, based on multilingual
and multimodal similarity search error rates. We have empirically shown that
this embedding space is suitable for large-scale speech-to-text and speech-to-
speech mining. The quality of the mined speech-to-text and speech-to-speech
alignments was evaluated by training speech-to-text translation systems for
the well-established CoVoST2 and Must-C tasks as well as speech-to-speech
translation systems for real data, evaluated on CoVoST2.

Based on these promising results, we scaled speech-to-speech mining to
introduce a large-scale multilingual speech-to-speech corpus mined from
VoxPopuli, called SpeechMatrix. In 2022, it was the largest resource of speech
alignments with a coverage of 17 languages. We performed an extensive
evaluation of the mined parallel speech, showing the good quality of the speech
alignments. Multilingual speech-to-speech models can be efficiently trained on
this corpus and we suggested different methods, such as sparse scaling using
Mixture-of-Experts, to further boost translation performance in the multilingual
setting.

Further scaling of speech mining will be presented in Chapter 5 using a new
sentence embedding space called SONAR.
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T R A N S L AT I O N

Chapter abstract

In the previous chapter, we demonstrated that a joint audio/text fixed-
size representation space enables the comparison of sentences in terms of
semantic similarity. However, it is still unclear how much information can be
decoded from these representations. In this chapter, we explore the decoding
of multilingual and multimodal sentence embeddings and how to perform
zero-shot cross-modal machine translation in this framework. Multilingual
speech and text sentences are encoded in a joint fixed-size representation
space. Then, we compare different approaches to decode these multimodal and
multilingual fixed-size representations, enabling zero-shot translation between
languages and modalities. In this framework, models can be trained without
the need of end-to-end cross-modal labeled translation data. Despite a fixed-
size representation, we achieve very competitive results on several text and
speech translation tasks. We also introduce the first results for zero-shot direct
speech-to-speech and text-to-speech translation. Finally, we explore how this
type of approach can be further improved with multilingual training. The
work in this section has led to the writing of two publications: 1

• Paul-Ambroise Duquenne, Hongyu Gong, Benoit Sagot, and Holger
Schwenk (Dec. 2022). “T-Modules: Translation Modules for Zero-
Shot Cross-Modal Machine Translation”. In: Proceedings of the
2022 Conference on Empirical Methods in Natural Language
Processing. Ed. by Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang.
Abu Dhabi, United Arab Emirates: Association for Computational
Linguistics, pp. 5794–5806. url: https: // aclanthology. org/
2022. emnlp-main. 391

1. This chapter is adapted from these two publications
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• Paul-Ambroise Duquenne, Holger Schwenk, and Benoit Sagot (2023c).
“Modular Speech-to-Text Translation for Zero-Shot Cross-Modal Trans-
fer”. In: Proc. INTERSPEECH 2023, pp. 32–36
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4.1 Introduction

In this chapter, we explore how much information can be decoded from
sentence embeddings, training several new decoders. We also analyze how such
decoders may be used to perform zero-shot cross-modal machine translation,
when decoding multilingual and multimodal sentence embeddings.

We notice that while sentence embeddings are fixed-size compact
representations, they are also good candidates for compatible representations
between speech and text across languages. The modality gap, first highlighted by
the length mismatch between audio and text sequences, remains a key challenge
for efficient cross-modal transfer in speech translation (Q. Dong et al. 2021; Liu
et al. 2020b; Alinejad and Sarkar 2020; Ye et al. 2022; H. Zhang et al. 2022).
Overcoming this modality gap could enable to leverage Machine Translation (MT)
text labeled data to benefit speech translation tasks.

In the first part of this chapter, we compare different variants of teacher-student
training to learn better multilingual speech and text representations based on
LASER. This relates to Chapter 3 where we trained speech student encoders. But
in this part, we additionally train student encoders for text in multiple languages.
Then, we learn decoder models to decode these representations into text and
speech in different languages, which enables cross-modal machine translation. We
analyze the zero-shot cross-lingual and zero-shot cross-modal translation results,
combining at inference time, independently trained encoders and decoders. This
architecture is called T-Modules, which stands for Translation Modules.

In the second part, we investigate how such a modular architecture can lead
to better results when multilingual training is used. We investigate the impact
of multilingual text encoders, an English text decoder trained on multilingual
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embedding inputs and multilingual speech encoders, either combining all
languages at hand or only those in the same language family.

Throughout this chapter, we carry out experiments on English (eng), German
(deu), French (fra), Spanish (spa), Catalan (cat), Turkish (tur), Japanese (jpn) and
Mongolian (mon), which were chosen for their linguistic variety as well as
covering both low- and high-resource settings.

4.2 T-Modules: translation modules for zero-shot
cross-modal machine translation

4.2.1 Exploring training strategies

The purpose of this part is to explore how a common fixed-size representation
for multilingual speech and multilingual text, such as the one presented in
Chapter 3, can be efficiently decoded in text and speech in different languages. We
investigate language-specific encoders and decoders compatible with a common
fixed-size representation. Plugging one encoder with one decoder from different
modalities and/or different languages enables performing zero-shot cross-modal
translation.

To this end, we first study how to efficiently decode fixed-size LASER sentence
representation for text. Second, we study how to improve similarity for sentence
embeddings between languages, compared to the original LASER space. After an
ablation study on the Japanese-English text translation direction, we extend the
best training strategy to several other languages and a new modality, speech.

4.2.1.1 Better decoding of sentence embeddings

Motivations First, we studied how multilingual sentence embeddings can be
efficiently decoded. We focused on LASER, like in Chapter 3, as it originally
has a decoder, and we studied how we can improve the decoding of sentence
embeddings. As an initial experiment, we evaluated auto-encoding of English
sentences from FLoRes (Goyal et al. 2022) in Figure 4.1 left, with the original
LASER encoder and decoder, bucketing sentences by length, and reporting BLEU
scores.

The LASER encoder handles several languages: decoding these multilingual
embeddings enables to translate the input sentence into English with the original
LASER decoder. We report the BLEU scores for the different sentence lengths in
Figure 4.1 right for the German-English translation direction from FLoRes. We
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Figure 4.1. – Decoding evaluations of the original LASER decoder and a newly
trained transformer decoder. BLEU vs. sentence length on FLoRes
devtest. English auto-encoding (left), German-to-English translation
(right).

notice that BLEU scores are low for both auto-encoding and translation tasks and
decrease with the sentence length. The fixed-size representation seems to be a
bottleneck for decoding tasks, especially for long sentences. However, the original
LASER decoder is really shallow (one Long Short-Term Memory (LSTM) decoder
layer), an interesting question is: can we improve decoding by training a new
deeper decoder?

Training new decoders We chose to train a new decoder to decode LASER
sentence embeddings, with a transformer architecture and 12 layers. To train this
new decoder, we use an auto-encoding objective, feeding raw English sentences
to the model: we use original LASER encoder, whose weights are not updated
during training, and plug a new transformer decoder to decode the fixed-size
sentence representation output by the LASER encoder (the decoder, using its
cross-attention layers, attends on the sentence embedding output by the encoder
only). We used 15B English sentences from CCNet (Wenzek et al. 2019) to train the
decoder. We compare the new decoder with original LASER decoder on the auto-
encoding task and the German-English translation task of FLoRes in Figure 4.1.

Results First, we notice an important boost on the auto-encoding task with
the new decoder, with high BLEU scores even for sentences with more than 50

words. Second, training a new decoder with an auto-encoding objective improves
the decoding of sentence embeddings from another language, German. The new
decoder can be directly applied to German sentence embeddings because German
embeddings are supposed to be close to their English translations encoded with
LASER.
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4.2.1.2 Making languages closer

Motivations To get an idea of the closeness of translations in the LASER
space, we inspected the L2 squared distances of sentence embeddings in different
languages to their English translations sentence embeddings in Figure 4.2. We
noticed that high resource languages are closer in the LASER space to English,
compared to low resource languages. Figure 4.2 also highlights that Japanese
translations are more distant to English translations compared to German
translations.

Figure 4.2. – Distances between translations in LASER space. L2 squared
distances to English embeddings in LASER space for translations
from FLoRes devtest

Therefore, we studied how our newly trained decoder is performing on a more
distant language in LASER space, Japanese. We report the results of the jpn-eng
translation task using the original decoder and the new decoder in Table 4.1. We
notice that both decoders perform poorly on the jpn-eng translation tasks, but
that the original LASER decoder leads to higher scores. An hypothesis is that the
new decoder has over-fitted English embeddings leading to bad generalization
on distant Japanese embeddings.

jpn-eng

Original encoder + original decoder 6.9
Original encoder + new decoder 5.5
Student - max pooling + original decoder 12.2
Student - BOS pooling + new decoder 19.5
Student - max pooling + new decoder 22.5
Student - max pooling & CE + new decoder 22.6

Table 4.1. – Results of initial decoding experiments. spBLEU scores for jpn-eng
on FLoRes devtest
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Teacher-student training of text encoders To overcome this issue, we suggest
to follow a method introduced by Reimers and Gurevych (2020), as presented
in Section 2.3.2, where new encoders are trained to fit an existing sentence
embedding space. Here, we are trying to make the Japanese translations closer to
English embeddings in our 1024 dimensional space. The original LASER encoder
is fixed during training to encode English translation, behaving as the teacher,
while we train a new Japanese encoder as a student to fit English sentence
embeddings. We use bitexts from CCMatrix for the jpn-eng pair to train the
Japanese text student. Following (Reimers and Gurevych 2020), we minimize
the Mean-Squared Error (MSE) loss (equivalent to L2 squared distance) between
the generated Japanese sentence embedding and the target English sentence
embedding.

The Japanese encoder is not trained from scratch, but we fine-tune XLM-R large.
To extract the sentence embedding, we tested two methods: The classical output
of the encoder corresponding to the Beginning-Of-Sentence (BOS) token, a method
widely used for text classification ; or max-pooling of the encoder outputs, less
common but LASER has been trained with such pooling method.

Finally, we tested another objective that is supposed to better match with our
decoding task: we encode the Japanese sentence with the encoder being trained,
decode the pooled sentence embedding with our new decoder which weights
are not updated during training, and we compute the cross entropy loss of the
output of the new decoder with the English target sentence. The training was
unstable when using XLM-R weights as initialization. Therefore, instead of fine-
tuning XLM-R, we fine-tune the encoder obtained from our previous method
(trained with MSE loss), which leads to a stable training. We report all the results
in Table 4.1. For text-to-text translation results, we use spBLEU of M2M-100 with
the public checkpoint and script to evaluate on FLoRes, in order to compare with
the supervised baselines.

Results In Table 4.1, we first notice that learning a new Japanese student
significantly improves the results for the jpn-eng translation task. The best pooling
method seems to be max-pooling, we suspect that this could be explained by the
fact that LASER has been trained with max-pooling. The second step of fine-
tuning with cross entropy loss does not improve the results for our jpn-eng
translation task, despite of the significant decrease of cross entropy valid loss
during this second step fine-tuning. This validates the use of a simple MSE loss
which seems sufficient for future decoding purposes and is a lot cheaper in terms
of computation compared to cross entropy loss. We conclude that learning a
new Japanese student with max-pooling and MSE loss leads to the best results.
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Using this new Japanese encoder, our new decoder significantly outperforms the
original LASER encoder.

These experiments show that LASER sentence embeddings can be better
decoded by training a new decoder on a large amount of raw text data. This
new decoder can be used to decode sentence embeddings from other languages
handled by LASER. However, translations are still more or less distant in the space,
making them explicitly closer with a MSE loss objective significantly improves the
results on a translation task. Therefore, we decide to extend this idea to other
languages and a new modality, speech, to see if it can help performing cross-
modal translation tasks.

4.2.2 Overall architecture

In this part, we present the overall architecture of our model.

Figure 4.3. – Summary of the T-Modules model architecture. Independently
trained encoders and decoders for speech and text in different
languages which can be combined in a zero-shot way to perform
cross-modal machine translation.
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Text student encoders We now want to train several text students for different
languages, in order to plug, at test time, these encoders to different decoders
to perform translation tasks. We decide to use LASER English embeddings as
our teacher for other text languages (the original multilinguality of LASER is
not used here). This English space has proven to have good semantic properties:
paraphrases are close in the embedding space, and makes it a good teacher for
English translations. Moreover, most of MT data involve English translations that
we will use to learn our text students. We focus on seven languages, namely,
German, French, Spanish, Catalan, Japanese, Turkish, and Mongolian. We use
CCMatrix bitexts to learn our text students, and bitexts mined with LASER3

(Heffernan et al. 2022) for Mongolian.

Text decoders We saw above that we can train a new English decoder with
raw English data, using a fixed encoder and an auto-encoding objective. However,
such an approach can lead to over-fitting to English sentence embeddings and bad
generalization on other languages. We made languages closer together in our 1024

dimensional space thanks to our new student encoders but translations are not
perfectly mapped to a real English sentence embedding in this continuous space.
Therefore, we explore different methods to make the decoders robust locally in
the sentence embedding space in order to generalize better on unseen languages.

First, we can improve our decoder training with an auto-encoding objective
by adding synthetic noise in the sentence embedding space. We add noise
to a sentence embedding by multiplying it by 1 + ϵ, with ϵ ∼ N (0, α). In
our experiments, we took α = 0.25, which leads to an empirical average L2

squared distance of approx. 0.05. between the noisy embedding and the original
embedding.

Second, we tested another approach to make our decoder robust to translations
in the sentence embedding space: we added bitexts from the deu-eng direction
(chosen as it comes with an important amount of bitext data) to the training of
the English decoder. We use bitexts from CCMatrix (Schwenk et al. 2021), and
the English part of the bitexts for the auto-encoding loss in order to have a good
balance between bitexts and raw data.

Finally, we trained decoders for five non-English languages to see how our
approach behaves for other languages. All text decoders are 12-layers transformer
decoders. With the hope that bitext data can help the decoder be robust to other
unseen languages, we trained decoders for German, French, Spanish, Turkish and
Mongolian and use eng-X bitexts, in addition to raw X data to train the decoders.
For all decoder trainings, we use bitexts from CCMatrix (Schwenk et al. 2021),
for the auto-encoding loss we use one side of the bitexts corresponding to the
language that we are trying to decode. However, for Mongolian, we take all the



72 decoding sentence embeddings and zero -shot cross -modal machine translation

raw Mongolian text data from CCNet (Wenzek et al. 2019), to augment the training
data size for this low-resource language.

Speech student encoders In Chapter 3, we showed that it is possible to learn
speech students compatible with the LASER text space. The training of speech
students is in fact similar to the one presented above for text. We use XLS-
R large model variant (Babu et al. 2021) as in the SpeechMatrix project (cf.
Chapter 3), which has more than two billion parameters and extracted the fixed-
size representation for speech with max-pooling to follow what we have done
for text students. We minimize the MSE loss between the output of the speech
encoder and the transcription/translation encoded by one of our text encoders.
Unlike the work we have done in Chapter 3, we did not use the original LASER
encoder to encode text transcripts but our newly trained text students which are
supposed to be close to the LASER English embeddings. As in Chapter 3, we can
use either transcriptions or written translations as teachers for our speech student.
We used CoVoST2 as our training data. Figure 4.4 summarizes the process to
train a speech student with transcriptions only: First, we train a text student for
the language we want to cover, we will use this encoder to encode transcriptions.
Then, we train a speech student to fit text embeddings output by our text student.

Figure 4.4. – Incremental learning of a speech students. As a first step, we
train text students for non-English languages, using LASER English
embeddings as targets. As a second step, we train speech students
using the previously trained text encoders as teachers.

We trained independent speech student encoders for German, French, Turkish,
Japanese and Mongolian spoken languages on the CoVoST2 training set. For
Catalan and Spanish, we trained a single speech student encoder for both
languages as they have high language similarity.
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Speech decoders In this last part, we introduce a speech decoder in our
framework, which can be learned with raw speech data. We focus on English
speech decoding but it could be extended to other languages. To learn to decode
English speech, we follow the work done by Lee et al. (2022b), who learn to
decode HuBERT units. At test time, the generated units are transformed into
speech using a vocoder.

One method is to follow the same approach presented for raw text data to
learn an English decoder. The English speech encoder previously trained to fit
LASER text space on CoVoST2 training set is used to encode raw speech, and its
weights are not updated during training. We trained a unit decoder to decode
sentence embeddings output by the speech encoder. The unit targets correspond
to the ones of the input speech as we are trying to auto-encode speech. We
follow the recipe of Lee et al. (2022b) to prepare target units as we are dealing
with real speech data: we extract HuBERT units from input speech, normalize
the units with their speech normalizer. This preparation of target data is done
unsupervisedly and any raw speech data can be processed with this method.
We summarize the speech decoder training in Figure 4.5. Another method is
to leverage English speech recognition data where English text transcripts are
encoded through LASER encoder which weights are fixed during training and a
decoder predicts the sequence of units of the corresponding speech.

Figure 4.5. – Speech decoder training. We train an embedding-to-unit decoder
in an unsupervised way. Raw speech is encoded in the sentence
embedding space with a frozen speech encoder and the unit decoder
is trained to recover the HuBERT units of the input speech.

Once the English speech decoder is trained, we can plug any text or speech
encoder to perform direct text-to-speech or speech-to-speech translation in a
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zero-shot way. This completes the overall T-Modules architecture, presented in
Figure 4.3.

4.2.3 Results and discussion

Text-to-text translation We present the results for text-to-text translation for
X-eng directions in Table 4.2 for the different decoder training methods on FLoRes
devtest. {en}_en decoder corresponds to the decoder trained with an auto-encoding
objective, {en+noise}_en decoder corresponds to the decoder trained with an auto-
encoding objective and additional noise in the sentence embedding space, and
{en,de}_en decoder corresponds to the decoder trained with a combination of
deu-eng bitexts and English raw data. We compare our zero-shot text-to-text
translation results with two supervised baselines: M2M-100 (Fan et al. 2021), a
massively multilingual trained on many-to-many training data from different
sources, with 24 encoder layers and 24 decoder layers; and DeepNet (H. Wang
et al. 2022) a recent work trained on 1932 language directions from different
sources with 100 encoder layers and 100 decoder layers, which was the best
performing MT system at the time of the experiments. We put these results as
a supervised reference but we recall that in our framework, we perform zero-
shot text-to-text translation for most of the language pairs (all directions except
deu-eng). Please note the cross-lingual transfer we obtain thanks to our training
method: the English decoder has never seen Spanish embeddings before but is
able to achieve competitive results compared to supervised baselines.

deu fra spa cat jpn tur mon

This work - zero-shot except for deu-eng
{en}_en decoder 40.7 41.9 30.4 36.7 22.5 32.8 13.0
{en+noise}_en decoder 39.5 40.6 29.4 35.8 23.7 33.2 16.4
{en,de}_en decoder 44.2 44.9 32.6 40.7 26.5 37.3 19.4
Previous works - supervised
M2M-100 (12B - 48 layers) (Fan et al. 2021) 44.7 45.5 31.1 42.5 26.1 36.9 20.9
Deepnet (3.2B - 200 layers) (H. Wang et al. 2022) 48.0 49.9 35.2 46.2 32.7 44.2 23.9

Table 4.2. – Zero-shot X-eng text-to-text translation. spBLEU on FLoRes devtest
for text-to-text X-eng translation using different English decoders
compared to supervised baselines.

In Table 4.2, we see that adding synthetic noise to the sentence embeddings
helps translating low resource languages unseen by the decoder. However, it
slightly decreases the performance on high resource languages. Moreover, natural
noise from deu-eng translations leads to even better results for both high and low
resource languages, getting closer to the state-of-the-art MT results which have
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been obtained with end-to-end training. Finally, we trained decoders for German,
French, Spanish, Turkish and Mongolian in order to be able to translate from any
of our languages to any other. We present the results in Table 4.3.

eng deu fra spa cat jpn tur mon

Translation into German
This work - zero-shot expect for eng-deu
{en,de}_de decoder 39.1 — 32.6 24.6 29.2 20.9 27.9 12.8
Previous works - supervised
M2M-100 (12B - 48 layers) (Fan et al. 2021) 42.1 — 34.5 27.1 30.9 21.4 28.4 15.9
Deepnet (3.2B - 200 layers) (H. Wang et al. 2022) 46.0 — 36.2 29.2 32.5 24.7 31.9 21.7

Translation into Spanish
This work - zero-shot expect for eng-spa
{en,es}_es decoder 29.1 25.9 26.8 — 26.3 18.6 22.8 12.2
Previous works - supervised
M2M-100 (12B - 48 layers) (Fan et al. 2021) 30.3 27.2 28.2 — 26.6 19.4 24.0 14.9
Deepnet (3.2B - 200 layers) (H. Wang et al. 2022) 32.2 28.3 28.8 — 26.9 21.5 25.9 18.8

Translation into French
This work - zero-shot expect for eng-fra
{en,fr}_fr decoder 49.1 38.3 — 31.2 37.6 25.3 33.4 16.6
Previous works - supervised
M2M-100 (12B - 48 layers) (Fan et al. 2021) 51.4 42 — 32.8 39.7 26.6 35.1 20.8
Deepnet (3.2B - 200 layers) (H. Wang et al. 2022) 54.7 43.4 — 35.2 41.6 29.9 38.2 26.6

Translation into Turkish
This work - zero-shot expect for eng-tur
{en,tr}_tr decoder 31.2 27.1 26.4 21.5 24.2 19.1 — 13.7
Previous works - supervised
M2M-100 (12B - 48 layers) (Fan et al. 2021) 32.8 26.9 26.6 22.3 24.3 18.6 — 16.1
Deepnet (3.2B - 200 layers) (H. Wang et al. 2022) 39.5 32.0 31.6 26.2 28.2 23.2 — 21.0

Translation into Mongolian
This work - zero-shot expect for eng-mon
{en,mn}_mn decoder 15.7 15.8 15.2 13.6 15.2 13.5 15.4 —
Previous works - supervised
M2M-100 (12B - 48 layers) (Fan et al. 2021) 12.0 10.7 10.9 9.2 10.8 9.3 11.0 —
Deepnet (3.2B - 200 layers) (H. Wang et al. 2022) 18.3 16.8 16.2 15.0 15.8 13.7 15.9 —

Table 4.3. – Zero-shot text-to-text translation for non-English decoders. spBLEU
on FLoRes devtest for text-to-text translation for deu, spa, fra, tur and
mon decoders

Similar to what we noticed with our English decoder, we obtain excellent
zero-shot cross-lingual transfer: the German decoder has never seen Japanese
embeddings before and Japanese has never been aligned to German. However,
the jpn-deu results are competitive compared to state-of-the-art translation models
trained in an end-to-end way with much more data.

Speech-to-text translation Then, we tried to plug the decoders trained on
text data to our speech encoders in order to perform zero-shot speech-to-text
translation. We report direct Speech-to-Text Translation (S2TT) results in Table 4.4



76 decoding sentence embeddings and zero -shot cross -modal machine translation

for speech encoders trained with transcriptions as teachers. We have put several
baselines for direct S2TT: two supervised baselines based on finetuning XLS-R
(Babu et al. 2021) or mSLAM (Bapna et al. 2022) with S2TT data, which were the
best performing S2TT systems at the time when our experiments were done. We
also put the results on zero-shot cross-modal transfer from text to speech with the
mSLAM pre-trained multimodal encoder, which is not working in this zero-shot
setting.

deu fra spa cat tur jpn mon

Speech training hours in CoVoST 2 184h 264h 113h 136h 4h 2h 3h

This work - zero-shot
{en}_en decoder 27.3 32.2 34.0 24.7 7.4 3.3 0.1
{en+noise}_en decoder 29.2 33.3 35.3 27.3 10.1 5.2 0.3
{en,de}_en decoder 33.0 35.7 37.1 30.2 11.2 6.1 1.0

Previous work - zero-shot
mSLAM (Bapna et al. 2022) cross-modal zero-shot 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Previous works - supervised
XLSR (2B) (Babu et al. 2021) 33.6 37.6 39.2 33.8 16.7 3.5 1.6
mSLAM (2B) (Bapna et al. 2022) 35.9 39.0 41.0 35.4 24.2 3.3 0.8

Table 4.4. – Zero-shot speech-to-text translation on CoVoST2. BLEU on CoVoST2

test set for zero-shot speech-to-text translation (X-eng) compared to
zero-shot and supervised previous work.

In our framework, the deu-eng S2TT direction benefits from cross-modal transfer
while all other directions benefit from both cross-modal and cross-lingual transfer
as the decoder has been trained on text and has only seen English and German
embeddings. In this zero-shot cross-modal setting, we notice that the results
are really competitive compared to supervised baselines trained end-to-end.
Moreover, the supervised baselines use S2TT data, whereas our approach does
not need S2TT data but only transcriptions. Except for Turkish, which has a really
different morphological structure compared to English, S2TT results are close to
their supervised counterpart trained with XLS-R. An interesting direction is jpn-
eng, as we have a large amount of jpn-eng MT data but a really small amount
of speech transcription data. For this task, we nearly doubled the BLEU score
compared to supervised baselines without the need of Speech-to-Text (S2T) data.

We tested the different possible teachers for speech encoder training,
namely transcription teacher (already presented), translation teacher, and both
transcription and translation teachers. When using translation teacher, we use
English text as the written translations from CoVoST2. We focus on two language
directions, deu-eng (high resource) and jpn-eng (low resource). Results are shown
in Table 4.5. We notice that a translation teacher is better if using the {en}_en
decoder, which was expected as the decoder was trained on English embeddings.
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Teacher mode: Transcript. Translation Both
deu jpn deu jpn deu jpn

{en}_en 27.3 3.3 27.9 3.5 28.1 3.1
{en+noise}_en 29.2 5.2 28.8 4.4 30.2 5.2
{en,de}_en 33.0 6.1 30.6 4.6 33.6 5.4

Table 4.5. – Ablation on different teachers. spBLEU on CoVoST2 test set
for different teachers and decoders for zero-shot speech-to-text
translation.

However, when using a decoder trained on noisy embeddings or with additional
bitexts, results are better for speech encoders trained with transcription teacher
rather than translation teacher. It may come from the fact that there exists a one-
to-one mapping between transcriptions and audios, but not for audio and written
translation (there can be several possible translations). For our high resource
direction deu-eng, the best results are achieved when using both transcriptions
and translations as teacher, reaching same performance level as with the end-to-
end S2TT training of XLS-R.

Finally, we trained an English speech student with transcriptions on the Must-C
training set (the TED talks domain, previous speech encoders were trained on
CoVoST2) and compare our approach with the zero-shot approach by Escolano et
al. (2021b). We report the results in Table 4.6. We notice significant improvements
in the BLEU score compared to the baseline model, which was State-Of-The-
Art (SOTA) at the time these experiments were done, for zero-shot S2TT on the
Must-C dataset.

State of the art in 2022 Our models

eng-deu 6.77 23.78

eng-fra 10.85 32.71

eng-spa 6.75 27.43

Table 4.6. – Zero-shot speech-to-text translation on Must-C. BLEU on Must-C
test set for zero-shot speech translation, compared to the state of the
art for zero-shot approaches in 2022 by (Escolano et al. 2021b).

Translation of text/speech into speech As presented in Section 4.2.2, we
trained English speech decoders with raw English speech only or English
speech transcriptions. We present three training settings: one decoder trained
on raw English speech data from CoVoST2 (∼400h), another trained on raw
English speech data from both Common Voice (CV) (∼2,000h) and Multilingual
LibriSpeech (MLS) (∼40,000h), and finally another trained on English speech
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transcription data from both Common Voice and Multilingual Librispeech. At
test time, we can now plug these English speech decoders to any text or speech
encoder. We focused on spa-eng and fra-eng language directions that were
previously covered for direct Speech-to-Speech Translation (S2ST) in 2022. We
report the results on CoVoST2 test set in Table 4.7. We also present Text-to-Speech
Translation (T2ST) results, plugging text encoders to our speech decoders.

spa-eng fra-eng

Zero-shot text-to-speech
trained on raw speech from CoVoST2 10.0 9.5
trained on raw speech from MLS + CV 22.8 20.9
trained on eng ASR data from MLS + CV 24.4 23.5

Zero-shot speech-to-speech
trained on raw speech from CoVoST 9.9 9.1
trained on raw speech from MLS + CV 21.3 19.8
trained on eng ASR data from MLS + CV 22.4 21.1

(a) This work: zero-shot results

spa-eng fra-eng

Supervised speech-to-speech translation
trained on VP 9.2 9.6
trained on VP + mined data 15.1 15.9

Supervised speech-to-speech via text pivot
trained on VP+EPST+CoVoST2 26.9 27.3

(b) Results from previous supervised models trained
by Lee et al. (2022b) on real (non synthetic) data.

The speech-to-speech via text pivot baseline relies
on speech-to-text by C. Wang et al. (2021a).

Table 4.7. – Zero-shot text-to-speech and speech-to-speech translation. ASR-
BLEU on CoVoST2 test set for text-to-speech and speech-to-speech
translation compared to other speech-to-speech translation baselines.

We compute ASR-BLEU scores on CoVoST2 based on an open-sourced
Automatic Speech Recognition (ASR) system for English. We compare these results
to a supervised baseline (Lee et al. 2022b) trained on real S2ST data from VoxPopuli
(C. Wang et al. 2021a) and mined data from Chapter 3. We also provide a strong
supervised baseline (back in 2022) composed of a Speech-to-text translation model
from (C. Wang et al. 2021a) that is trained on a significant amount of S2TT data
from VoxPopuli, EuroparlST and CoVoST2, followed by a text-to-unit model.

In Table 4.7, we notice that our speech decoders achieve strong results for this
zero-shot setting, even with a limited amount of raw speech data. Incorporating
much more raw speech data in the training, significantly improves the results.
Using textual representation as input helps in speech decoder training, leading to
best results. To the best of our knowledge, these were the first results for zero-shot
direct S2ST. Such method to train a speech decoder based on fixed-size multimodal
and multilingual semantic representations is further explored in Chapter 5.

This last experiment again highlights the compatibility between representations
for different languages and modalities. Our approach enables to efficiently
leverage raw speech data for T2ST and S2ST tasks.

https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self
https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self
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4.3 Multilingual training in the T-Modules architec-
ture

In the previous part, we highlighted the modularity of the T-Modules
architecture, learning separately compatible encoders and decoders. While it can
be seen as a strength, as one does not need to retrain the whole system to add a
new language to the framework, it can also be seen as a limitation as the number of
modules increases linearly with the number of languages. Moreover, multilingual
models are known to benefit from positive cross-lingual transfer which can boost
translation performance. In this part, we first extend the T-Modules architecture
to multilingual training for text and trained a new text decoder on several X-eng
directions. Then, we combine this decoder with speech encoders and explore
multilingual training of speech encoders. A summary of the explored architecture
is summarized in Figure 4.6

Figure 4.6. – Summary of the multilingual T-Modules model architecture.
Multilingual speech and text encoders are trained in the T-Modules
framework. A text decoder is trained with multilingual embedding
inputs.
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4.3.1 Multilingual training for text

We follow the training procedure introduced in Section 4.2, but train a
multilingual text student. We focus on the same set of languages, namely
English, German, French, Spanish, Catalan, Japanese, Turkish and Mongolian. The
multilingual text encoder is initialized with XLM-R Large and finetuned with
bitexts from CCMatrix. As in Section 4.2, we use additional bitext data mined
with LASER3 for Mongolian. We train the multilingual text encoder to fit the
English LASER space, minimizing the MSE loss between the outputs of our trained
encoder and the LASER embeddings of the corresponding English translations.
We will evaluate this new multilingual student encoder by combining it with the
English decoder from Section 4.2 (named {en,de}_en decoder) trained to generate
English translations from English and German sentence embeddings only, but
that can be used on other languages at test time.

Based on this multilingual student encoder, we trained a new English decoder
with bitexts involving all our languages of focus with English. Indeed, in
Section 4.2, we showed that adding deu-eng bitexts to an English decoder training
significantly improved the translation performance compared to a decoder trained
only on monolingual English data. We extend this idea to a more multilingual
setting and analyse the translation performance of this new decoder. For decoder
training, we follow the same architecture as in Section 4.2, using a 12-layer
transformer decoder. We name this new decoder: {en,de,fr,es,ca,ja,tr,mn}_en
decoder.

Encoder Decoder deu fra spa cat jpn tur mon

Student multilingual {en,de}_en 43.6 45.4 32.5 43.5 26.1 36.7 23.0
Student multilingual {en,de,fr,es,ca,ja,tr,mn}_en 43.7 45.6 32.3 44.5 26.4 37.1 23.8

Baselines (previous works)

Student monolingual Section 4.2 {en,de}_en 44.2 44.9 32.6 40.7 26.5 37.3 19.4
M2M-100 M2M100 44.7 45.5 31.1 42.5 26.1 36.9 20.9
DeepNet Deepnet 48.0 49.9 35.2 46.2 32.7 44.2 23.9

Table 4.8. – Text-to-text translation with a multilingual student. BLEU on FLoRes
devtest for text-to-text X-eng translation with a multilingual student.
We compare our results to massively multilingual supervised models,
M2M-100 (Fan et al. 2021) and DeepNet (H. Wang et al. 2022).

We present the MT scores on the FLoRes devtest set (Goyal et al. 2022) in
Table 4.8, obtained by our new multilingual encoder combined with one or the
other of our two English decoders ({en,de}_en and {en,de,fr,es,ca,ja,tr,mn}_en), and
compare them to the scores obtained in Section 4.2. First, decoding the sentence
embeddings produced by our multilingual student with the {en,de}_en decoder
shows significant boosts in BLEU score for cat-eng and mon-eng translation



4.3 multilingual training in the t -modules architecture 81

tasks, with respectively +2.8 and +3.6 BLEU gains compared to the work
from Section 4.2 (line 1 and 3 in Table 4.8). For other language directions,
we notice a performance degradation of −0.24 BLEU on average. Using the
{en,de,fr,es,ca,ja,tr,mn}_en decoder instead significantly improves the translation
results compared to decoding with the {en,de}_en decoder, with an additional gain
of +1.0 and +0.8 for Catalan and Mongolian respectively (line 2 in Table 4.8). All
other directions are also improved except for es-en. We hypothesise that Catalan,
which has much less training data compared to French or Spanish, may benefit
from cross-lingual transfer from those languages, and that Mongolian, which is
our lowest resource language, may benefit from the larger training data size to
avoid over-fitting.

In order to better analyse the cross-lingual transfer happening thanks to this
multilingual training, we evaluate the translation of languages unseen during
student and decoder training. Indeed, XLM-R Large was pre-trained on a larger
set of languages. Aligning a subset of languages with LASER English embeddings
may transfer to other languages in an unsupervised way thanks to cross-
lingual pre-trained representations. Therefore, we encode unseen languages with
different student encoders to analyse how unsupervised cross-lingual transfer
occurs. We chose 4 different languages, Portuguese (por) and Italian (ita), which
are Romance languages close to French, Spanish and Catalan; but also Dutch
(nld), a Germanic language close to German; and Indonesian (ind) which is
not similar to any language used for student and decoder training. We evaluate
BLEU scores on the FLoRes devtest set in Table 4.9, using either the {en,de}_en or
{en,de,fr,es,ca,ja,tr,mn}_en decoder.

Encoder Decoder por ita nld ind

Student deu {en,de}_en 35.2 22.7 24.2 20.3
Student cat {en,de}_en 36.6 24.6 18.0 15.4
Student spa {en,de}_en 40.9 24.9 19.4 16.0

Student multilingual {en,de}_en 42.0 28.2 25.1 22.0
Student multilingual {en,de,fr,es,ca,ja,tr,mn}_en 43.3 28.6 25.7 24.2

Table 4.9. – Unsupervised text-to-text translation. BLEU on FLoRes devtest for
unsupervised text-to-text X-eng translation.

As expected, with monolingual student encoders, Portuguese and Italian are
better translated using the Catalan or Spanish student encoders, while Dutch is
better translated using the German student encoder. This highlights the impact
of language similarity between the training and unseen languages. Remarkably,
Indonesian works better with using the German student encoder than with the
Spanish and Catalan ones. Also, Spanish student works better than the Catalan
student on all unseen languages which may come from the fact that the Spanish
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student was trained on much more training data. Moreover, we notice that
our new multilingual student encoder outperforms all monolingual encoders
by a high margin, thanks to cross-lingual transfer and larger training data size.
Finally, plugging our new {en,de,fr,es,ca,ja,tr,mn}_en decoder further improves
the results. This shows that multilingual training for text may help for translating
low-resource and unseen languages in the T-Modules architecture.

4.3.2 Multilingual training for speech

Using our new {en,de,fr,es,ca,ja,tr,mn}_en decoder, we explore multilingual
training of speech student encoders for either all languages or grouping languages
by family, finetuning XLS-R 2B. In our languages of focus, we analyse the Romance
family composed of French, Spanish and Catalan. Based on best results with
students trained with a transcription teacher, we train a speech student with both
transcription and translation as teachers which has previously shown best results
in Section 4.2. We present results in Table 4.10.

Encoder Decoder deu fra spa cat tur jpn mon

Our models with no cross-modal supervision and full cross-lingual supervision

Monoling. XLS-R student (transcription) {en,de,fr,es,ca,ja,tr,mn}_en 33.0 37.3 37.7 29.4 12.0 6.1 0.8

Multiling. XLS-R student (transcription) {en,de,fr,es,ca,ja,tr,mn}_en 30.9 35.3 37.5 31.9 16.5 0.9 0.7

Romance XLS-R student (transcription) {en,de,fr,es,ca,ja,tr,mn}_en — 37.0 38.4 33.2 — — —

Romance XLS-R student (transcr. + transl.) {en,de,fr,es,ca,ja,tr,mn}_en — 38.3 39.7 34.8 — — —

Our models with no cross-modal supervision and only partial cross-lingual supervision

Monoling. XLS-R student (transcription) {en,de}_en 33.0 35.7 36.3 27.9 11.2 6.1 1.0

Previous work: models with cross-modal and cross-lingual supervision

XLS-R finetuned mBART 33.6 37.6 39.2 33.8 16.7 3.5 1.6
mSLAM mSLAM decoder 35.9 39.0 41.0 35.4 24.2 3.3 0.8
Whisper Large Whisper Large 34.3 34.4 38.0 30.3 26.7 24.2 0.3

Table 4.10. – Zero-shot speech-to-text translation. BLEU on CoVoST2 test set for
speech-to-text X-eng translation using a decoder trained on text
for several X-eng directions. We compare our results to supervised
baselines XLS-R (Babu et al. 2021), mSLAM (Bapna et al. 2022) and
Whisper Large (Radford et al. 2023). Note that the latter was trained
on significantly more speech data.

Then, we conduct the same analysis we have done for text on unseen languages
for speech in Table 4.11. Indeed, XLS-R was pre-trained on a larger set of
languages and we want to study the cross-lingual transfer that can occur when
performing unsupervised S2TT on languages unseen during student training.
Similarly to our findings on text, the German speech student encoder works
better on Dutch, while Catalan, Spanish and Romance student encoders work
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Encoder Decoder por ita nld ind

Deu transcription student {en,de,fr,es,ca,ja,tr,mn}_en 0.4 1.8 3.6 0.2
Spa transcription student {en,de,fr,es,ca,ja,tr,mn}_en 7.3 10.3 0.8 0.2
Cat transcription student {en,de,fr,es,ca,ja,tr,mn}_en 3.8 7.1 0.3 0.2

Romance transcription student {en,de,fr,es,ca,ja,tr,mn}_en 8.9 13.7 1.2 0.2
Multilingual transcription student {en,de,fr,es,ca,ja,tr,mn}_en 7.3 13.4 5.1 0.4

Table 4.11. – Unsupervised speech-to-text translation. BLEU on CoVoST2 test set
for unsupervised speech-to-text X-eng translation.

better on Portuguese and Italian. The Spanish student encoder works better than
the Catalan one on these languages, due to larger training data size. Indonesian
is not working in this unsupervised setting, because it has no similarity with the
languages used for training. Moreover, our findings regarding trained languages
hold for unseen languages: the Romance encoder works better on Portuguese
and Italian than the fully multilingual student and the Catalan or Spanish student
encoders. However, not surprisingly, the fully multilingual student encoder works
better for Dutch than the Romance encoder or the monolingual German one.
This highlights even more that smart multilingual training for speech, grouping
languages by family, yields to best results.

4.4 Conclusion

In this chapter, we extended the analysis of common fixed-size representation
for text and speech in different languages to perform zero-shot cross-
modal translation. By imposing a fixed-size representation and aligning
explicitly languages and modalities, we have overcome the sentence length
mismatch between audio and text, and obtained multilingual and multimodal
representations compatible with decoders trained on other languages and/or
modalities in a zero-shot setting. We have explored independent text and speech
encoders for multiple languages compatible with text decoders for multiple
languages as well as an English speech decoder. To the best of our knowledge,
this was the first work tackling zero-shot direct T2ST and S2ST.

Finally, while we initially focused on zero-shot cross-lingual and cross-modal
transfer in Section 4.2, in a second part, we focused on zero-shot cross-modal
transfer only. We showed that a modular architecture can outperform strong
supervised baselines while being zero-shot cross-modal. In this chapter, we
focused on a limited set of languages, but going multilingual significantly
improved the results. Interestingly, on the speech side, we showed that going
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fully multilingual hurts the translation performance. However, we found that
a language-family-wide encoder produces the best results while being easily
trainable in such a modular framework. This line of work is extended to a large
number of languages through the introduction of a new sentence embedding
space called SONAR, that we present in the next chapter.
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Chapter abstract

Based on conclusions drawn from the first two chapters, we introduce
in this final chapter SONAR (Sentence-level multimOdal and laNguage-
Agnostic Representations), a new massively multilingual speech/text sentence
embedding space. Our single text encoder, covering 200 languages,
substantially outperforms existing sentence embeddings such as LASER3 and
LabSE on the xsim and xsim++ multilingual similarity search tasks. Using the
teacher-student approach presented in previous chapters, speech segments can
be embedded in the same SONAR embedding space using language-specific
speech encoders trained on speech transcription data. Our new speech encoders
outperform the ones based on LASER on similarity search tasks. We also
provide a text decoder for 200 languages, which enables us to perform text-
to-text and speech-to-text machine translation, including zero-shot language
and modality combinations. Our Machine Translation (MT) results are
competitive compared to the state-of-the-art NLLB 1B model, despite the fixed-
size bottleneck representation. Our zero-shot speech-to-text translation results
compare favorably with strong supervised baselines such as Whisper. We
complement the SONAR semantic representation with a modality-specific
additional representation for speech. This representation, encoding non-
semantic speech properties, is learned together with an expressive speech
decoder, that enables zero-shot expressive speech-to-speech translation in the
SONAR framework. We show the effectiveness of our method on the FLEURS
and mExpresso benchmark test sets using multiple metrics which aim to
measure the preservation of the meaning and prosody for zero-shot speech-to-
speech translation from five languages into English. The work in this section
has led to the publication of two papers: 1

1. This chapter is adapted from these two papers
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• Paul-Ambroise Duquenne, Holger Schwenk, and Benoit Sagot (2023d).
SONAR: Sentence-Level Multimodal and Language-Agnostic
Representations. url: https: // arxiv. org/ abs/ 2308. 11466

• Paul-Ambroise Duquenne, Kevin Heffernan, Alexandre Mourachko,
Benoît Sagot, and Holger Schwenk (2023b). SONAR EXPRESSIVE:
Zero-shot Expressive Speech-to-Speech Translation

https://arxiv.org/abs/2308.11466
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5.1 Introduction

In the two first chapters, we introduced multilingual speech/text sentence
embeddings based on an existing text sentence embedding space LASER. While
LASER has proven to have good semantic properties and to be well-suited for
mining, the encoder-decoder model is not based on the Transformer architecture
but on a Long Short-Term Memory (LSTM) architecture (with a shallow decoder).
Moreover, projects like NLLB introduced new bitext training data both human
labeled, back-translated and mined data for language directions involving 200

languages, which represent much more training data that what was used to train
the LASER embedding space. Finally, we can draw conclusions from Chapter 3,
which showed that a text sentence embedding space can be easily extended to the
speech modality, and from Chapter 4 which showed that sentence embeddings
can be efficiently decoded into text or speech, to build a new sentence embedding
space.

In this context, we focus on developing an encoder-decoder model for
multilingual text to build, as an initial step, a new sentence embedding space
for text. Our motivation for using an encoder-decoder approach for the initial
text-based training phase is twofold. First, a multilingual decoder is trained along
the multilingual encoder, which opens possibilities such as cross-modal MT (cf.
Chapter 4). Second, a pre-trained state-of-the-art MT encoder-decoder model can
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be used to initialize the whole encoder-decoder architecture. In contrast to LASER,
we study the effect of different training objective functions on the properties of the
resulting embedding space. In a second step, we train speech student encoders
using our multilingual text encoder as a teacher. We demonstrate the cross-modal
similarity search and Speech-to-Text Translation (S2TT) capabilities of the resulting
SONAR framework.

In Chapter 4, we introduced a speech decoder in the T-Modules framework
using HuBERT semantic discrete units of speech. Recently more acoustic units
were introduced (Défossez et al. 2022) and Text-to-Speech (TTS) models that keep
ones voice by prompting were introduced (Wang et al. 2023a). Inspired by this
line of work, we complement SONAR with a new speech properties embedding
and an expressive speech decoder. We demonstrate that we can perform high-
quality, expressivity preserving zero-shot speech-to-speech translation in such a
framework.

5.2 A state-of-the-art massively multilingual speech/-
text sentence embedding space

In this part, we introduce our new multilingual and multimodal sentence
embedding space SONAR that follows a two-step training strategy inspired by
the work presented in Chapter 3 and Chapter 4.

5.2.1 Multilingual sentence representations for text

Contrarily to LASER’s bidirectional LSTM architecture (Artetxe and Schwenk
2019b), SONAR relies on a Transformer encoder-decoder architecture, initialized
with pre-trained MT model weights. However, as opposed to standard sequence-
to-sequence architectures for MT, the architecture we use to train SONAR on
parallel text data goes through a single vector bottleneck that represents the full
sentence and does not use token-level cross-attention. The fixed-size sentence
representation is computed by pooling the token-level outputs of the encoder.
Instead of doing cross-attention on a variable-length sequence of encoder outputs,
the decoder only attends to this single vector at each decoding step.

Unlike LASER (Artetxe and Schwenk 2019b), we do not only train our encoder-
decoder architecture using an MT objective only. We investigated several other
objectives and combinations thereof and analyzed their effect on the sentence
embedding space and the decoding performance of the resulting model. We
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Figure 5.1. – SONAR architecture. An encoder-decoder with an intermediate
fixed-size representation is trained with a combination of different
objective functions. The resulting sentence embedding space is
extended to the speech modality using teacher-student training.

introduce below the different objectives used to train our encoder-decoder
architecture.

5.2.1.1 Objective functions

Translation objective Following the work of Artetxe and Schwenk (2019b), we
used parallel data to train our encoder-decoder architecture with a translation
objective. To better understand the motivation behind this objective, let us take this
example: Given a triplet of translations x, y, z, where z is the English translation,
decoding x and y into English may be easily achieved by the decoder if the
sentence representation of these two input sentences are similar in the sentence
embedding space. Training a encoder-decoder architecture on a translation
objective may end up in this potential local minimum where translations are
encoded closely to one another, so as to be decoded into the same target language
sentence. However, there is no guarantee to converge to this local minimum.
Nothing explicitly constrains a sentence in a language and its translation in
another language to be encoded closely to one another. As a result, other local
minima are possible, where translations are not encoded closely but still decoded
into the same sentence for a given target language. To mitigate this, shallow
decoders were used by Artetxe and Schwenk (2019b): a deeper decoder can more
easily decode different points into the same sentence, whereas a shallower decoder
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is more likely to need two vectors to be very similar whenever they must be
decoded into the same sentence.

Auto-encoding and denoising auto-encoding objective Auto-encoders have
been widely used to build representations. They have the advantage to encourage
encoding fine-grained details of the input. However, this objective by itself is
not likely to learn semantic representation of sentences. Moreover, this objective
is much simpler to learn compared to a translation objective, which makes the
combination of these two objectives difficult. To mitigate these issues, Liu et al.
(2020a) introduce a denoising auto-encoding task, which has proven to be a good
pre-training objective for translation tasks.

Mean-Squared Error (MSE) loss objective in the sentence embedding space
Teacher-student approaches to multilingual sentence embedding space learning
have shown that ensuring that translations of a same sentence are embedded
close to one another in the sentence embedding space with an MSE loss works
really well (Reimers and Gurevych 2020; Heffernan et al. 2022) and was again
validated in Chapter 4. However, using this kind of loss without a frozen pre-
existing teacher embedding space would lead to collapse (all inputs mapped to the
same embedding), which is why contrastive learning methods were introduced to
learn multilingual sentence embeddings from scratch (Feng et al. 2020). However,
combining an MSE loss with a translation objective and/or a denoising auto-
encoding objective could also prevent collapse from happening, as the model is
forced to keep embeddings distinct to encode and decode different sentences.

Decoder finetuning In Chapter 4, we demonstrated that learning deep decoders
for an existing sentence embedding space (in this case, LASER) can significantly
improve translation and auto-encoding performance. While keeping the existing
embedding space unchanged, such decoders greatly improve the decoding
of sentence embeddings, therefore significantly improving auto-encoding and
translation performance when combined with compatible encoders. This is
of great interest for zero-shot (possibly cross-modal) translation, as shown in
Chapter 4.

We introduce a decoder fine-tuning method called random interpolation decoding.
Based on a trained encoder-decoder model with a bottleneck representation
between the encoder and the decoder, we freeze the encoder weights and fine-
tune the decoder weights only on a specific decoding task: Given a bitext x, y,
we encode x and y with the frozen encoder, randomly draw z as a random
interpolation of x and y embeddings, and learn to decode sentence embedding
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z into y. This can be viewed as a continuous combination of translation and
auto-encoding tasks.

5.2.2 Evaluations for text

To evaluate the semantic properties of the resulting sentence embedding space,
we relied on a number of evaluation tasks on for the text modality:

xsim As presented in Chapter 2, cross-lingual similarity search, also called
xsim, 2 evaluates the similarity between sentence embeddings across languages.

xsim++ More recently, xsim++ was introduced as a more semantically
challenging similarity search task (M. Chen et al. 2023),2 as detailed in Chapter 2.

Translation tasks Multilingual embeddings are decoded into other target
languages to perform MT. We report spBLEU (flores200) scores, in order
to evaluate BLEU scores for low-resource languages as output, and COMET
scores on the generated translations. Decoding sentence embeddings into other
languages partially evaluates how much information is encoded in sentence
embeddings, which is complementary to xsim and xsim++ evaluations. However,
please note that information may also be restored from the internal language
modeling capabilities of the decoder, and not from the sentence embeddings
themselves.

Auto-encoding task Similarly to translation tasks, we decode sentence
embedding in the same language to perform auto-encoding and evaluate the
content preservation of this operation.

All these evaluations for text were performed on FLoRes-200 devtest set, 3 which
provides an N -way parallel corpus of translations in 200 languages.

5.2.3 Experiments on text

In this part, we first trained multilingual sentence embedding spaces using an
encoder-decoder architecture on text and the objective functions presented above.

2. https://github.com/facebookresearch/LASER
3. https://github.com/facebookresearch/flores/tree/main/flores200

https://github.com/facebookresearch/LASER
https://github.com/facebookresearch/flores/tree/main/flores200
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5.2.3.1 Training setup

We initialized our model with the NLLB 1B dense model (NLLB Team et al.
2022), that was trained on translation tasks with full cross-attention on variable
length encoder outputs as it is commonly done for sequence-to-sequence MT

model training. The model is composed of a 24 layers Transformer encoder and
a 24 layers Transformer decoder and trained on a combination of human labeled
data, back-translated data and mined data (NLLB Team et al. 2022). In order
to build our fixed-size sentence representation, we added a pooling operation
on the encoder outputs. The decoder only attends to this vector during training.
As previously presented, several pooling methods are possible to train our new
sentence embedding space: max-pooling as done in (Artetxe and Schwenk 2019b),
mean-pooling as done in (Reimers and Gurevych 2019), or EOS-pooling which use
the output representation of the End-Of-Sentence (EOS) special token appended
at the end of sentences during NLLB training. Contrary to mean-pooling or EOS-
pooling, max-pooling outputs a vector with a different range of values compared
to NLLB training (due to the max operation), leading to worse results in our initial
experiments. Since for EOS-pooling the training happened to be unstable during
initial experiments, we focused on mean-pooling for the rest of our experiments.
We trained our encoder-decoder model for 100k updates with same learning rate
and batch size as NLLB training in the following experiments, unless explicitly
specified. We used all bitext data used in the NLLB training, human labeled
bitexts, back-translated data and mined data. This training dataset involves 200

target languages which contrasts with LASER training that only used English and
Spanish as target languages. We ran an extensive study on the use of different
training objectives, namely MT objective, Auto-Encoding (AE) objective, Denoising
Auto-Encoding (DAE) objective and MSE loss in the sentence embedding space:

L = LMT + α · LMSE + β · LAE/DAE (5.1)

We are using the same training data for auto-encoding and translation objectives,
inputting the target sentences instead of the source sentences to perform auto-
encoding of target sentences only. Incorporating more monolingual data in the
training for the auto-encoding task is left to future work.

5.2.3.2 Initial experiment with translation objective only

We report the results of our experiments on text sentence embedding modeling
in Table 5.1. Our first experiment, using only the translation objective for
our encoder-decoder model with fixed-size intermediate representation, gives
surprisingly good translation performance, given the bottleneck between the
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encoder and the decoder. It yields -2 BLEU on X-eng direction and -3.8 BLEU on
eng-X direction compared to NLLB 1B model with full-cross attention.

Method X-eng↑ eng-X↑ AE↑ xsim↓ xsim++↓

LMT 33.2 21.1 28.6 1.3 19.6
LMT + LAE 17.6 18.6 94.6 15.9 65.7
LMT + 0.1 · LDAE 31.6 20.9 41.6 2.6 26.2
LMT + 0.1 · LMSE 31.7 20.2 27.2 1.3 14.3
SONAR sentence embedding space
LMT + 0.1 · LMSE + 0.01 · LDAE 32.9 20.7 32.4 1.4 15.2
LMT + 0.1 · LMSE + 0.01 · LDAE & fine-tuned dec. 32.7 21.6 41.7 1.4 15.2

MT topline
NLLB 1B 35.2 24.9 39.0∗ 3.7∗ 49.6∗

Similarity search baselines
LaBSE — — — 10.7 36.1
LASER3 — — — 5.1 36.4

Table 5.1. – SONAR text evaluations. Text evaluations on FLoRes-200 devtest set,
averaged on the 200 languages supported by NLLB 1B: translation
spBLEU for X-eng and eng-X directions, auto-encoding spBLEU, xsim
and xsim++ similarity search results on X-eng pairs. Results with *
are zero-shot evaluations of NLLB 1B model which was not trained
to optimize these tasks.

We notice that auto-encoding evaluation (AE) significantly lags behind NLLB 1B
model. This result may come from an inductive bias of the sequence-to-sequence
architecture with full cross-attention, that could bias the model towards copying
encoder inputs.

xsim and xsim++ results are significantly better compared to previous work,
namely LaBSE and LASER3, on our 200 languages of focus, with approximately
45% relative reduction of xsim++ error rate compared to the baseline models.
However, these supervised baselines were not trained for all the 200 languages
of focus and are therefore evaluated in a zero-shot way for a number of them.
We provide an evaluation on the intersecting languages of LASER3, LaBSE and
the final SONAR embedding space in the following sections. Note that averaging
NLLB 1B encoder outputs to perform similarity search already gives good xsim
scores. This directly comes from the translation objective used during NLLB
1B training that encourages to encode multilingual sentences in similar ways
for efficient cross-lingual transfer. However, the more difficult xsim++ evaluation
remains challenging, in this zero-shot setting, for the original NLLB 1B model.
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5.2.3.3 Experiments with auto-encoding objectives

Noticing the gap in the auto-encoding performance between the fixed-size
bottleneck encoder-decoder model and NLLB 1B, we integrated an auto-encoding
objective, hoping to close the gap with the NLLB 1B model. This model was only
trained for 50k steps, as it converged quickly compared to other variants. We
notice that auto-encoding task is easy to learn, even with a fixed-size bottleneck
between the encoder and the decoder, almost reaching 95 BLEU in average on the
200 languages of NLLB. This shows that a lot of information can be efficiently
stored in a fixed-size representation and that the bottleneck should not be seen
as an hard limitation. While the translation performance on eng-X translation
directions is not that much impacted, we see a big drop in translation performance
for X-eng directions (-15,6 BLEU) compared to the fixed-size bottleneck encoder-
decoder model trained only on a translation task. Moreover, we see a big drop
in both xsim and xsim++ evaluations showing that the model is not learning
language-agnostic representations anymore, due to the auto-encoding objective
that seems more easily optimized compared to the translation objective.

To mitigate the negative effects of the auto-encoding objective, while improving
the auto-encoding performance at inference time, we switched to a denoising
auto-encoding criterion, to avoid that the model overfits on the copy task. That
would also make the task harder compared to simple auto-encoding and could
be better combined with the non-trivial translation task. We also scaled down
this denoising auto-encoding objective by a factor 0.1. This mostly mitigated the
performance drops on translation tasks, while significantly boosting the auto-
encoding task (+13 BLEU) compared to the translation-only model. However, the
denoising auto-encoding criterion significantly affects the xsim and xsim++ scores.
This again shows that auto-encoding affects the organization of the sentence
embedding space, learning distinct representations for different languages to
optimize auto-encoding.

5.2.3.4 Experiments with cross-lingual similarity objective

Motivated by the recent distillation approaches to extend a sentence embedding
space to new languages and the work presented in Chapter 4, explicitly aligning
languages with an MSE criterion in the embedding space, we explored the use
of an auxiliary MSE loss in the sentence embedding space. This is in addition to
the translation loss, with the hope to explicitly make translations closer in the
embedding space. In Table 5.1, we notice that this new constraint degrades the
decoding performance of the encoder-decoder model for both translation and
auto-encoding tasks. However, it significantly boosts the xsim++ scores compared
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to the encoder-decoder model trained only on a translation task, with -5.3 xsim++
error rate reduction.

5.2.3.5 Combining the objective functions to introduce the SONAR
embedding space

Based on the conclusions of the previously trained models, we combined the
translation loss, the auxiliary MSE loss and the denoising auto-encoding loss, to
create the SONAR embedding space. In this run, the denoising auto-encoding
loss is further downscaled, motivated by the high xsim++ score of the previously
trained sentence embedding space trained on denoising auto-encoding. First,
in the same tendency from previous training with (denoising) auto-encoding
objective, we notice a slight degradation in xsim++ scores when adding the
denoising auto-encoding in addition to the MSE loss. However, this degradation
is only 0.9% which can be considered as acceptable. Initial experiments on larger
scaling factors for the denoising auto-encoding criterion further increased, as
expected, the xsim++ degradation, and we thus decided to stick with a 0.01 scaling
factor for the denoising auto-encoding objective. On the other hand, for our new
SONAR model, we see improvements on translation tasks compared to the model
trained on MT and MSE loss. This may be due to efficient mitigation of collapse
that could happen with MSE loss, thanks to the denoising auto-encoding objective.
We also see big improvements in auto-encoding task (>+3.8 BLEU) compared
to all models not trained with auto-encoding objectives. This variant seems to
be the best setup in terms of sentence embedding space organization (following
xsim and xsim++ scores) and decoding performance (following translation and
auto-encoding evaluations). We also report the xsim and xsim++ results on the
intersection of languages handled by LaBSE, LASER3 and SONAR in Table 5.2,
and notice again that SONAR outperforms previous state-of-the-art sentence
embedding spaces for multilingual similarity search.

98 languages
xsim ↓ xsim++ ↓

SONAR 0.1 9.3
LASER3 1.1 27.5
LaBSE 1.5 15.4

Table 5.2. – Multilingual similarity search results compared to previous
work. Comparison of similarity search results (error rates) on the
intersection of languages handled by LaBSE, LASER3 and SONAR.

Finally, we tried to improve the decoding performances of our architecture,
freezing the embedding space and our multilingual encoder, while fine-tuning
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only the decoder. We used the random interpolation decoding method introduced
in Section 5.2.1, where we compute a random interpolation of the source and
target sentence embeddings and learn to decode the target sentence tokens.
As the encoder is frozen, the xsim and xsim++ scores won’t change, but the
decoding results will. With this decoder fine-tuning step, we notice similar
translation results on the X-eng direction, while noticing a +0.9BLEU gain on the
eng-X translation directions. More importantly, the auto-encoding performance
is boosted by 9.3 BLEU with decoder fine-tuning method while the sentence
embedding space is not affected. This finetuning step is trained for 50k additional
steps.

We also evaluated the best performing models on translation tasks with
COMET, which has proven to better correlate with human judgments compared
to BLEU scores. We evaluated the two X-eng and eng-X directions involving the
languages on which XLM-R was trained on, which are the languages supported
by COMET (see Table 5.3). We see less that 1 point difference between our SONAR
encoder-decoder model (with fine-tuned decoder) compared to NLLB 1B model
for both eng-X and X-eng directions, showing the good quality of the translations.

Method X-eng eng-X

SONAR 85.9 83.4
SONAR & fine-tuned dec. 85.9 84.2

Topline
NLLB 1B 86.5 85.2

Table 5.3. – COMET text-to-text translation evaluation with SONAR. Translation
evaluations for X-eng and eng-X directions on FLoRes-200 devtest set:
COMET scores averaged on 89 languages supported by both COMET
and NLLB 1B models.

The NLLB 1B model still represents a topline, and to evaluate our SONAR
framework against a more fair baseline involving a fixed-size sentence
representation between the encoder and the decoder, we compared our results
to the decoding of LASER embeddings, introduced in Chapter 4. As LASER3

encoders were trained with a cosine loss, the sentence embeddings cannot be
efficiently decoded with T-Modules decoder from Chapter 4. This is why we
trained new LASER3 encoders with MSE loss, which are really similar to text
students Chapter 4, but added back-translated data from NLLB project in addition
to the original training data of LASER3 encoders. These newly trained LASER3 MSE

encoders can be combined with T-Modules decoder to perform X-eng translation.
We report the results on 4 languages French, Spanish, Swahili and Russian in
Table 5.4 and notice big improvements using SONAR on both X-eng translation
task and xsim++ evaluation.
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fra spa swh rus

X-eng BLEU
SONAR & fine-tuned dec. 46.1 34.5 42.4 37.1
LASER3 MSE & T-mod. 40.4 29.6 27.2 29.7

xsim++
SONAR 4.8 7.9 7.1 6.5
LASER3 MSE 7.6 12.6 15.2 12.4

Table 5.4. – Comparison between SONAR and T-Modules. Comparison to T-
Modules framework based on LASER embedding space. spBLEU
scores for X-eng translation directions on FLoRes-200 devtest set and
xsim++ for X-eng pairs on FLoRes-200 devtest set.

Please note that compared to the T-Modules work, we are able to encode
and decode 200 languages with a single encoder and a single decoder. Finally,
we provide an example of an English sentence auto-encoded with SONAR in
Figure 5.2, to illustrate how it can preserve named-entities in long sentences.

English sentence from FLoRes:
Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of
the clinical and scientific division of the Canadian Diabetes Association cautioned that the research
is still in its early days.
Auto-encoding of the sentence with SONAR:
Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chairman
of the clinical and scientific division of the Canadian Diabetes Association warned that the research
is still in its early stages.

Figure 5.2. – Example of a long sentence with named entities auto-encoded with
SONAR.

5.2.4 Multilingual sentence representations for speech

Based on the experiments and evaluations of multilingual sentence embedding
spaces for text, we chose to rely only in this part on the text embedding space
learned with translation, denoising auto-encoding and MSE objectives which
seems to be a good trade-off between good semantic representation (xsim and
xsim++) and good decoding performance (translation and auto-encoding). We
follow a teacher-student approach to extend this space to the speech modality
for several languages, as presented in the first two chapters of this thesis, using
our newly trained text sentence embedding space as teacher. In this part, we only
used transcriptions as targets, using written translations as targets is left for future
work. As in previous work, we leveraged self-supervised pre-trained models, for
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our speech encoders training, but this time using a W2v-BERT (Y.-A. Chung et al.
2021) pre-trained model as initialization.

5.2.5 Evaluations for speech

Similarly to the evaluations for our newly trained multilingual sentence
embedding space for text, we report results for several evaluation tasks for the
speech modality:

xsim for speech As introduced in Chapter 3, we calculate cross-modal similarity
search. It follows the xsim evaluation presented above for text, but xsim is run on
speech embeddings against English text translation embeddings.

xsim++ for speech In addition to xsim computation for speech, we augment
the English texts of FLEURS with challenging negative examples from the xsim++
modified English sentences of FLoRes.

Zero-shot speech-to-text translation Following the work presented in
Chapter 4, speech student encoders can be combined with text decoders at
inference time. Since the speech encoder were trained on Automatic Speech
Recognition (ASR) data only and the SONAR text decoder was only trained on
text and has never seen speech embeddings during training, this corresponds to
zero-shot S2TT. Similarly to text, it enables evaluating the content encoding in the
speech embeddings. It also evaluates the compatibility between speech and text
representations.

Zero-shot Automatic Speech Recognition: we also decode speech embeddings
into the same language to perform speech recognition.

All these evaluations for speech were performed on FLEURS test set (Conneau
et al. 2023), as it is a N -way parallel speech dataset in 102 languages (built on top
of the text FLoRes benchmark).

5.2.6 Experiments on speech

We first performed an initial extensive study on five languages only: English
(eng), Spanish (spa), French (fra), Russian (rus) and Swahili (swh). We then scale
to 37 languages.
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5.2.6.1 Experiments on 5 languages

We use a pre-trained W2v-BERT (Y.-A. Chung et al. 2021) 600 million parameter
model to initialize the speech encoders and train them on Common Voice 12 ASR

training set (Ardila et al. 2020). For our English speech encoder, we also used ASR

training data from Must-C (Di Gangi et al. 2019), VoxPopuli (C. Wang et al. 2021a)
and Librispeech (Panayotov et al. 2015).

We tested different pooling methods, namely mean-pooling, max-pooling and
attention-pooling. Attention-pooling is performed with a three layer transformer
decoder architecture with cross-attention on all the speech encoder outputs, in
order to output a single vector as our speech sentence embedding (the decoder
only outputs a single vector). Best results are achieved with attention-pooling (see
details in Table A.1.5).

As a baseline, we compared our SONAR speech encoders to speech encoders
trained with LASER as teacher (using our newly trained LASER3 MSE text
encoders), with exact same training data and pre-trained W2v-BERT model, which
makes them directly comparable. We report the xsim and xsim++ cross-lingual and
cross-modal results in Table 5.5 on FLEURS test set for foreign speech embeddings
against English text embeddings.

fra spa swh rus

xsim
SONAR 0.0 0.0 0.0 0.0
LASER3 MSE 0.0 0.0 0.0 0.3

xsim++
SONAR 12.3 13.9 22.8 24.6
LASER3 MSE 17.5 24.9 40.7 42.1

Table 5.5. – Multimodal and multilingual similarity search results. Multilingual
and multimodal similarity search evaluations on FLEURS test set:
xsim and xsim++ error rates on speech translation X-eng pairs.

Similarly to what M. Chen et al. (2023) noticed on FLoRes, xsim scores saturate
to zero error rate on FLEURS test set, not providing useful insights on the
multimodal sentence embedding space organization. Therefore, we also report
xsim++ scores for speech. We notice 41% xsim++ relative reduction when switching
from LASER as teacher to SONAR as teacher.

Following the work from Chapter 4, we decoded the speech sentence
embeddings with our SONAR text decoder, performing zero-shot speech-to-text
translation. Indeed, the text decoder has never seen speech sentence embeddings
during training. Moreover, speech representations were only trained to match
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their transcription representations but never translations. In Table 5.6, we report
our zero-shot speech-to-text translation results on FLEURS test set for X-eng
directions and compare it to the baseline trained on LASER space. We also report
the state-of-the-art results (back at the time of these experiments) for speech-to-
text translation, trained in a supervised way on significantly more training data.
First, we notice large improvements in the BLEU scores compared to the LASER
baseline on French, Spanish and Swahili, with an average 5.5 BLEU gain on these
languages, while being slightly behind on Russian to English translation (-1.2
BLEU). This last result is surprising, as our SONAR speech encoder have much
better xsim++ score on Russian compared to the LASER speech encoder. Second,
we notice that for our two high resource languages, namely French and Spanish,
our zero-shot speech-to-text results are close to Whisper Large v1 supervised
results, while being trained on much less training data. As for Swahili, our
framework significantly outperforms Whisper models. We notice much better
results for Russian-to-English for Whisper which was expected given the amount
of training data and the supervised setting.

fra spa swh rus

Training hours
SONAR/LASER ASR 0.8k 0.4k 0.3k 0.2k
Whisper ASR 10k 11k 0.01k 10k
Whisper S2TT 4k 7k 0.3k 8k
SONAR zero-shot S2TT
SONAR 33.3 25.5 14.9 15.0
SONAR & fine-tuned decoder 33.4 24.8 15.6 14.6

Zero-shot S2TT baseline
LASER3 MSE & T-Modules 30.7 22.9 3.7 16.2

Supervised S2TT toplines
Whisper Large v1 33.8 27.0 5.2 30.2
Whisper Large v2 34.9 27.2 7.6 31.1

Table 5.6. – Zero-shot speech-to-text translation. spBLEU scores on FLEURS test
set for zero-shot S2TT on X-eng directions.

Thanks to the compatibility across modalities and across languages, we decoded
English, French, Spanish, Swahili and Russian speech sentence embeddings into
the 200 text languages supported by our SONAR decoders. We report the zero-
shot speech translation results using the fine-tuned SONAR decoder in Table 5.7.
We notice that BLEU scores remain high for other languages than English, still in
a zero-shot setting, highlighting again the compatibility between representations.

Finally, speech embeddings can be decoded into text in the same language,
which can be seen as speech transcription. Since our model can often paraphrase
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src\tgt eng fra spa swh rus 200
langs

eng 69.7 44.3 26.9 27.8 29.8 17.7
fra 33.4 64.1 21.5 18.2 23.3 13.4
spa 24.8 25.1 58.9 16.0 16.8 11.7
swh 15.6 13.5 9.0 25.7 9.8 7.0
rus 14.6 17.3 11.0 10.4 35.0 8.0

Table 5.7. – Massively multilingual zero-shot speech-to-text translation. spBLEU
scores on FLEURS test set for zero-shot S2TT on {eng,fra,spa,swh,rus}-
X directions. Last column is the average spBLEU S2TT scores for
decoding in the 200 languages supported by SONAR text decoder.

transcriptions, we report in Table 5.8 BLEU scores as well as bert-scores for this
zero-shot transcription task. While being significantly behind on BLEU scores,
which is expected as our model often paraphrases transcriptions, we see much less
gap with Whisper transcriptions with the bert-score metric (which still advantages
real transcriptions compared to paraphrases, but less than BLEU). Training data
amount is also significantly different between the two setups, but it’s interesting
to notice that the gap in terms of bert-score remains reasonable.

eng fra spa swh rus

Training hours
SONAR/LASER ASR 4k 0.8k 0.4k 0.3k 0.2k
Whisper ASR 438k 10k 11k 0.01k 10k
Whisper S2TT — 4k 7k 0.3k 8k

BLEU
SONAR 64.7 54.3 50.0 17.7 29.1
SONAR & fine-tuned dec 69.7 64.1 58.9 25.7 35.0

Whisper v1 80.8 79.8 84.8 26.9 84.3
Whisper v2 81.3 82.0 85.3 36.0 85.3

Bert-score
SONAR 0.948 0.926 0.923 0.808 0.853

SONAR & fine-tuned dec 0.951 0.939 0.936 0.831 0.870

Whisper v1 0.972 0.965 0.977 0.837 0.975

Whisper v2 0.972 0.969 0.979 0.865 0.978

Table 5.8. – Speech recognition with SONAR. Speech recognition spBLEU scores
and Bert-scores on FLEURS test set.
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5.2.6.2 Scaling to 37 languages

Through a research collaboration, the same recipe as described above extended
the coverage of the speech encoders to 37 languages. These speech encoders were
trained by linguistic language family, e.g. Romance or Indian languages, using
speech transcriptions only, from public and licensed sources. Table 5.9 column
"Train" gives statistics on the amount of training data.

As in Section 5.2.6.1, we evaluate the speech encoders by connecting them to the
SONAR text decoder and calculate S2TT translation performance, as measured by
spBLEU. Although our results are fully zero-shot speech translation, we achieve
very competitive performance compared to the state-of-the-art model Whisper
v2 large (Radford et al. 2023). The average on BLEU scores are slightly better
for SONAR compared to Whisper, while being zero-shot speech translation.
Our model performs less well on some high-resource languages like Mandarin
Chinese, German or French, but outperforms Whisper for others like Spanish
or Dutch and for several less common languages, like Swahili or Uzbek. Our
modular approach seems to achieve particular good results on Indian languages:
Bengali, Hindi, Kannada, Telugu, Tamil and Urdu.

In collaboration with the Seamless team at Meta, these encoders were used
to mine S2TT and Speech-to-Speech Translation (S2ST) pairs for SeamlessM4T
project (Seamless Communication et al. 2023a). Speech translation pairs were
mined from 4 million hours of raw audio originating from a publicly available
repository of crawled web data. Duration statistics of raw audio for each language
can be found in Table 5.9. As for raw text data, it is originating from the same
dataset used for NLLB bitext mining (NLLB Team et al. 2022). The amount of
mined data is available in Table 5.9. A subset of this data was used to train
the end model SeamlessM4T and ablation studies showed big improvements
incorporating S2TT mined data (+2.7 BLEU for X-eng direction for instance) and
slight improvements when using S2ST mined data. The reader is invited to read
Seamless Communication et al. (2023a) for additional details.

5.2.7 Discussion

From all the experiments present in Section 5.2.3 and Section 5.2.6, we can draw
a couple of high-level conclusions:

First, we have seen that the auto-encoding task can be greatly solved even
with a fixed-size bottleneck between the encoder and the decoder, showing that
a fixed-size representation should not be seen as a hard limitation, as a lot of
information can be stored in a single vector. Then, similarly to Artetxe and
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ISO Language
Raw Train X-eng S2TT (↑BLEU) Mined audio [h]

audio [h] ASR [h] Ours Whisper Sen2Txx Sxx2Ten Sxx2Sen

arb MS Arabic 106755 822 30.9 26.9 1568 8072 776

ben Bengali 7012 335 21.3 14.1 606 1345 263

cat Catalan 43531 1738 37.7 36.9 1570 4411 354

ces Czech 41318 181 32.0 30.3 1454 6905 602

cmn Mandarin Chinese 79772 9320 18.6 20.8 5440 18760 1570

cym Welsh 24161 99 14.5 13.4 – 4411 278

dan Danish 34300 115 34.9 36.0 2499 6041 583

deu German 490604 3329 36.2 38.8 91715 17634 1921

est Estonian 12691 131 26.1 21.2 1022 3346 607

fin Finish 32858 184 24.9 25.2 651 6086 526

fra French 282179 2057 33.7 34.9 21523 17380 3337

hin Hindi 15118 150 22.6 24.2 1041 2977 530

ind Indonesian 11559 269 28.7 31.9 1938 2658 510

ita Italian 79480 588 29.3 27.5 4378 6508 817

jpn Japanese 75863 17319 20.2 20.8 1973 21287 1141

kan Kannada 1451 114 21.4 13.1 – 232 198

kor Korean 37854 316 17.1 24.2 – 8657 640

mlt Maltese 2122 106 24.4 16.2 131 130 60

nld Dutch 93933 1723 29.3 28.4 3720 6859 1210

pes Western Persian 43788 386 24.4 20.9 – 7122 693

pol Polish 53662 304 21.1 25.8 1324 9389 757

por Portuguese 141931 269 38.3 41.4 4853 8696 928

ron Romanian 18719 135 34.7 34.1 2770 2878 716

rus Russian 103906 259 28.4 31.1 11296 13509 1252

slk Slovak 16954 102 32.3 29.3 1267 3785 491

spa Spanish 324086 1511 28.0 27.2 27778 17388 2727

swh Swahili 18393 361 23.5 7.6 690 2620 484

tam Tamil 100331 245 16.2 10.0 – 1664 867

tel Telugu 3303 84 18.0 14.7 – 985 536

tgl Tagalog 4497 108 14.6 26.8 – 633 266

tha Thai 13421 195 16.9 17.8 2577 3563 542

tur Turkish 23275 174 22.7 29.9 1417 6545 426

ukr Ukrainian 6396 105 30.7 32.5 1220 1717 392

urd Urdu 16882 185 19.7 18.1 773 3416 652

uzn Uzbek 8105 115 20.0 6.6 475 1846 157

vie Vietnamese 34336 194 19.1 21.9 1689 7692 868

Total/avr 2529741 43772 23.3 22.5 202796 239767 29161

Table 5.9. – Statistics on speech encoders and amount of mined data. Sen2Txx,
Sxx2Ten, and SxxSen correspond to English speech paired with
foreign text, foreign speech paired with English Text, and foreign
Speech paired with English speech, respectively. Dashes are unmined
directions. We provide the amount of raw audio data for mining and
the amount of human-provided ASR transcripts to train the speech
encoders. The speech encoders are evaluated for S2TT using spBLEU
on the FLEURS test set. Our model performs zero-shot S2TT. Finally,
the last three columns provide the amount of mined data. (Table and
caption modified from (Seamless Communication et al. 2023a))
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Schwenk (2019b), we noticed that a translation objective is well suited to build
language-agnostic representations while making sure that the encoder model
encodes enough information in the sentence embedding to be efficiently decoded
(in another language). Adding an MSE loss in the training, which explicitly
encourages to align languages in the sentence embedding space, leads to better
language-agnostic representations. Moreover, denoising auto-encoding combined
with MSE loss, can bring gains for decoding tasks, but too much of it affects
the language-agnostic representations. Finally, the teacher-student approach to
extend to the speech modality has once again proven to be effective and the
mutual compatibility between speech and text multilingual embeddings is greatly
highlighted by the fact that speech embeddings can be decoded in foreign text in
a zero-shot way.

5.3 Speech properties embedding and expressive
speech decoding

In this part, we aim at training a speech decoder model in the SONAR
framework and complement the SONAR embeddings with an additional fixed-
size representation for the non-semantic information of a speech signal. Following
the modular training strategy presented in Chapter 4, we trained an English
speech decoder on monolingual raw speech data as well as paired speech-text
data, to decode SONAR embeddings computed with pre-trained encoders (either
speech encoders or text encoder). Compared to the work done in Chapter 4, we
significantly scaled the amount of speech training data and used the new SONAR
sentence embedding space. At inference time, the English speech decoder can
decode spoken languages unseen during training to perform zero-shot speech-to-
speech translation.

In addition to semantic conditioning of the speech decoder with SONAR
sentence embeddings, we introduce an additional supposedly disentangled fixed-
size representation to capture the prosody and expressive content of speech that is
not represented by SONAR semantic embeddings. This additional embedding is
called SpeechProp embedding, as it is supposed to encode prosody and expressive
properties of the speech modality. We define our combined system comprising
the SpeechProp and expressivity-aware speech decoder as SONAR EXPRESSIVE.
Contrarily to the T-Modules work which uses HuBERT discrete units as target
for the unit decoder, we used here EnCodec units in order to be able to generate
diverse speech (Défossez et al. 2022). HuBERT units were built to be more or
less agnostic to the speaker and are often referred as semantic speech tokens. On
the other hand, EnCodec units are trained to build compressed representations
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of audio, carrying much more acoustic information. Moreover, EnCodec model
comes with a decoder, which can generate speech waveforms from units whereas
a separate HiFi-Generative Adversarial Network (GAN) vocoder has to be trained
when using HuBERT units.

Figure 5.3. – Model architecture for SONAR EXPRESSIVE. An expressive
speech decoder is trained to rely on both SONAR semantic
embeddings and SpeechProp embeddings.

5.3.1 Architecture

In addition to the pre-trained SONAR semantic encoders for speech and text
which are frozen during the speech decoder training, our model is composed of
an auto-regressive EnCodec decoder, a non auto-regressive EnCodec decoder and
the SpeechProp encoder. The auto-regressive and non-auto-regressive decoders
follow the architecture introduced by Wang et al. (2023a), with the exception
that, for simplicity, units from different codebooks are gathered into a common
vocabulary on which the softmax operation is applied. Following Wang et al.
(2023a), the auto-regressive decoder predicts the EnCodec units from the first
codebook, while the non auto-regressive decoder takes as input the sum of
embeddings of units from the first n − 1 codebooks to predict EnCodec units
of codebook n. During training, the value of n is uniformly sampled between 2

and 8 for each training step. The SpeechProp encoder is a Transformer encoder
taking as input the sum of EnCodec units embeddings. Its ouputs are mean-
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pooled to form the SpeechProp embedding. We use 16 transformer layers for
the decoders and 12 transformer layers for the SpeechProp encoder. Finally, the
SpeechProp embedding and the SONAR semantic embeddings are concatenated
so that decoders can perform cross-attention on these representations to predict
target EnCodec units (see Figure 5.3).

Training of new EnCodec model The original EnCodec model was trained on
both speech and music with a 75Hz frame rate. In this part, a colleague from
Meta introduced a slightly modified EnCodec model which is trained only on
multilingual speech and with a 25Hz frame rate compared to the original 75Hz
frame rate which makes speech unit sequences three times shorter, improving
memory usage during training. This new model followed the original EnCodec
model design: 128 dimensions for the representation space, 1024 codes in each of 8

codebooks, but a modified subsampling scheme in order to have 25Hz frame rate.
To achieve this lower frame rate, the SEANet encoder/decoder has following ratio:
[8,5,4,4] which effectively downsamples 16kHz into 25Hz (16000/(8*5*4*4)=25).
Natural multilingual speech data was used to train this new EnCodec model
without integrating other audio training data like music in the training contrarily
to the original model training.

Multilingual SONAR speech encoder In this work, we focus on handling
six source languages: English, German, French, Italian, Spanish and Mandarin
Chinese. This choice is motivated by the availability of evaluation data to measure
various prosodic features of speech (see Section 5.3.3.2). In principle, our approach
is generic and could be applied to any language. We use the SONAR English
speech encoder introduced in Section 5.2 and train a new single speech encoder
for the remaining five languages. We follow the recipe of Section 5.2 and train
on public ASR data only. Table 5.10 provides an S2TT evaluation on the FLEURS
test set when connecting this speech encoder to the SONAR text decoder. Despite
being zero-shot for speech-to-text translation, our results compare favorably to a
large system like Whisper v2 large which was trained on large amounts of labeled
data.

Model cmn deu fra ita spa

Ours 17.1 31.6 30.2 25.4 24.1
Whisper 18.4 34.6 32.2 23.6 23.3

Table 5.10. – Speech-to-text evaluation of our multilingual SONAR encoder.
Evaluation of our multilingual speech encoder on S2TT FLEURS test
set (sacreBLEU scores).
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5.3.2 Training setup

Figure 5.4. – SONAR EXPRESSIVE multi-stage training. The first stage of pre-
training of the speech decoder uses only raw speech data and the
speech decoder only relies on SONAR embeddings to predict output
units. The second stage of pre-training uses S2TT data, and the
speech decoder relies on multilingual SONAR text embeddings to
predict output speech. The final stage is fine-tuning, introducing the
SpeechProp encoder in the framework and using a random cropping
strategy as regularization.

5.3.2.1 Multi-stage training

In order to train both the speech decoder and the SpeechProp encoder, we
follow a multi-stage training strategy. Semantic vectors are computed from source
instances: source inputs to SONAR encoders are different for the different stages
of training detailed in the following paragraphs. SpeechProp embeddings are
computed from target speech during unsupervised fine-tuning in order to extract
the missing information to predict output speech from both SONAR embeddings
and SpeechProp embeddings. SpeechProp embeddings are computed from source
speech during inference. More details about training configurations are given in
the following parts.

SONAR and SpeechProp embeddings are concatenated as inputs to the
decoders and we used cross-entropy loss on EnCodec units as our objective
function. This conditioning is replaced by zero vectors with a probability of 0.1
during training, in order to also train the decoders in an unconditional setting, to
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be used to compute classifier-free (CF) guidance (Gafni et al. 2022; Kreuk et al.
2022) during inference.

Initial experiments showed that introducing the SpeechProp embedding from
scratch leads to a state where the speech decoders only rely on the SpeechProp
vector to predict output units (auto-encoding EnCodec units with SpeechProp
encoding) and ignoring the SONAR embedding.

To overcome this collapse, we introduce a multi-stage training strategy which
can be divided into pre-training and fine-tuning stages, namely pre-train1, pre-
train2 and fine-tune:

Pre-training with raw speech. (pre-train1) Only the decoders are trained
during this stage, taking as input SONAR embeddings only, the SpeechProp
embedding is replaced by a vector filled with zero values. A first pre-training
phase uses only raw monolingual speech data, following the training method
introduced in T-Modules work. The raw speech is used in two different forms
either sound frames or unsupervised Encodec units extracted from speech
data. We first start with approximately 1 Million hours of raw English speech
data originating from a publicly available repository of web data (Seamless
Communication et al. 2023b). Raw speech data is then segmented using the SHAS
neural segmenter (Tsiamas et al. 2022). These raw speech segments are embedded
into the SONAR space with a pre-trained English SONAR speech encoder, frozen
during this training. The speech decoders learn to recover the EnCodec units of
input speech only based on the SONAR speech embeddings. This training stage
enables learning an initial conditioning to SONAR embedding as well as internal
language modeling of EnCodec units (this step can be seen as auto-encoding with
a frozen encoder). We trained this first stage of pre-training for 300k gradient
updates which corresponds to 1.5 epochs on our training data.

Pre-training with S2TT data. (pre-train2) A second step of pre-training
consists in using public repositories of ASR data totalling approximately 42k
hours of English speech. Transcriptions from a 2k hours subset were translated by
the NLLB system into our five languages of focus. These multilingual transcripts
are used to compute SONAR embeddings to condition the decoder that learns to
predict the EnCodec units of the corresponding speech. Similarly to the previous
pre-training stage, only the decoders are trained. Multilingual inputs are used
in order to make the speech decoders more robust to other languages, rather
than overfitting on English embeddings, as motivated in the T-Modules work
for the text decoders. This second phase of training is also called pre-training,
as the speech decoders are only attending to SONAR embeddings, and the
SpeechProp embeddings are not yet introduced. It has the advantage to pre-
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train the speech decoders to rely on multilingual semantic SONAR embeddings
to predict EnCodec units. We trained this second stage of pre-training for 100k
gradient updates.

Fine-tuning (fine-tune) Now that the speech decoders have learned to rely on
SONAR embeddings to predict EnCodec units, we introduced the SpeechProp
embeddings, in order to make the decoders not only rely on semantic information
to predict target EnCodec units but also prosody and expressive speech proper-
ties that should be found in the output speech. Target EnCodec units are then
fed to the SpeechProp encoder, and both the SpeechProp encoder and the de-
coders are fine-tuned. In order to efficiently fine-tune the speech decoders, and
avoid over-fitting, we only fine-tuned the cross-attention weights of the decoders.
Moreover, to encourage the decoders to continue relying on semantic embed-
dings during this fine-tuning stage, we introduce a regularization method that
we called random-cropping of target speech. Instead to feeding the entire sequence
of EnCodec units to the SpeechProp encoder, only random crops of the target
EnCodec units are fed. The lengths and positions of the crops are randomly sam-
pled, with minimum length of 10 EnCodec units and maximum length set to the
length of the target sequence. This minimum length ensured stable training of the
SpeechProp encoder. This fine-tuning stage is performed on the same publicly
available data with automatic multilingual transcripts as semantic conditioning.
We trained the model for 40k gradient updates during this fine-tuning stage.

5.3.3 Evaluation

5.3.3.1 Datasets

We evaluate our models on both the FLEURS (Conneau et al. 2023) test set as
well as the new mExpresso benchmark dataset (Seamless Communication et al.
2023b).

mExpresso is a multilingual expressive speech-to-speech translation dataset
which contains speech for five target languages recorded in six different vocal
styles: default (neutral), happy, sad, confused, enunciated, and whispering. There
are four speakers for each language. As interpretation of each vocal style can
vary from speaker to speaker (e.g. happy can be expressed with different levels
of intensity, intonation, rhythm, pause, etc), English speech was first recorded
independently. In order to gather alignments in other target languages, bi-
lingual speakers (native in the target language) listened to the English-side of
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each utterance before recording, in order to ensure they expressed the same
interpretation of vocal style.

An overview of the benchmark datasets is shown in Table 5.11.

FLEURS mExpresso

dev test dev test

cmn → eng 1.27 3.07 3.51 6.40

deu → eng 1.26 3.15 4.85 7.21

fra → eng 0.80 1.95 5.31 6.82

ita → eng 1.55 3.52 5.86 6.64

spa → eng 1.35 3.09 5.20 6.94

Table 5.11. – Data statistics per benchmark dataset. Number of source hours for
FLEURS and mExpresso.

5.3.3.2 Metrics

In order to ensure our expressive translation system is able to maintain content
translation quality, we first evaluate using ASR-BLEU. In order to measure this,
we transcribe using the publicly available Whisper model, 4 and then compare the
transcriptions to the ground truth using sacreBLEU. 5

As there are multiple dimensions of prosody which can be captured by our
SpeechProp vector, it is not straight-forward to find one prosody-based metric
which is able to adequately cover each dimension of vocal style. We therefore
choose to evaluate the prosodic qualities of our translation system using a suite
of expressivity metrics, each of which is described below.

Speaker style similarity. Speaker style embeddings of both source and target
speech are extracted using a pre-trained WavLM-based speaker style encoder (S.
Chen et al. 2022). We then measure speaker style similarity as the cosine between
source and target (Le et al. 2023).

AutoPCP. In order to estimate the quality of sentence-level prosodic similarity,
we use AutoPCP (Seamless Communication et al. 2023b). This is a neural model
trained to predict Prosodic Consistency Protocol (PCP) scores (W.-C. Huang et
al. 2023), which are measured on a likert scale between 1 and 4 (where 4 is the
highest possible score), and have been found to correlate with human judgments
of prosodic similarity.

4. large-v2 model.
5. 13a tokenizer.
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Speech rate and pause alignment. As rhythmic patterns in the utterance are
also an important aspect of expressivity, we aim to capture such characteristics
by comparing both the rate of speech and the pause alignment. The speech rate
is calculated by measuring the number of syllables spoken per second. We then
report the Spearman correlation of the number of syllables spoken between the
source and generated audios. 6 Complementary to the speech rate, another aspect
of rhythm are the lengths of silence left between words. We therefore also report
a pause alignment score measuring how well silences are preserved between
the source and translation. Silences were captured using Silero Voice Activity
Detection (VAD) (Silero-Team 2021). For both speech rate and pause alignment
metrics, we used the open-sourced Rythmic Toolkit implementation (Seamless
Communication et al. 2023b).

5.3.3.3 Inference

We used top-k sampling to generate EnCodec units during inference. EnCodec
units from the first codebook are generated in an auto-regressive manner with the
auto-regressive decoder, while EnCodec units from other codebooks are iteratively
predicted by the non auto-regressive decoder, as presented in (Wang et al. 2023a).

Setup cmn deu fra ita spa

Top-k sampling 5.26 17.64 16.99 12.53 14.98

+ CF guidance 9.25 24.11 22.70 17.15 18.53

Table 5.12. – Experiment on the use of classifier-free guidance for zero-shot S2ST.
ASR-BLEU performance with and without classifier-free guidance
on FLEURS.

Moreover, we used classifier-free (CF) guidance on logits as done in (Gafni et al.
2022; Kreuk et al. 2022), thanks to both conditional and unconditional training of
the decoders. We used k = 10 for top-k sampling and a classifier-free guidance
scale of 3. We report the difference in ASR-BLEU for the model trained to predict
EnCodec units from semantic vectors only (pre-train stage 2) with and without
classifier-free guidance and show the importance of such method when predicting
EnCodec units for direct speech-to-speech translation.

5.3.3.4 Results

In order to first measure the content translation quality of SONAR EXPRESSIVE,
we calculated ASR-BLEU results for each target language across both the FLEURS

6. For Mandarin, characters are treated as syllables.
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FLEURS

pre-train1 pre-train2 fine-tune

SpeechProp ✗ ✗ ✓

Semantic input eng
text

xxx
text

xxx
speech

eng
text

xxx
text

xxx
speech

eng
text

xxx
text

xxx
speech

cmn 51.63 3.50 4.58 65.65 13.82 9.25 57.24 11.49 7.86

deu 52.61 15.60 14.89 67.25 27.74 24.11 59.50 24.90 22.16

fra 51.84 18.00 13.44 65.59 29.14 22.70 54.15 23.86 19.82

ita 51.37 11.32 11.33 66.78 20.34 17.15 62.38 18.90 16.53

spa 53.38 12.44 11.55 66.37 20.79 18.53 61.62 19.52 17.49

mExpresso

pre-train1 pre-train2 fine-tune

SpeechProp ✗ ✗ ✓

Semantic input eng
text

xxx
text

xxx
speech

eng
text

xxx
text

xxx
speech

eng
text

xxx
text

xxx
speech

cmn 82.53 7.07 8.84 80.89 18.33 14.81 69.84 12.77 10.40

deu 82.53 19.71 14.82 80.79 32.13 24.24 71.31 25.61 19.43

fra 81.81 22.82 14.92 80.70 35.01 23.28 67.99 26.97 18.64

ita 81.28 25.65 15.21 80.91 38.72 25.03 68.74 30.71 20.21

spa 81.51 33.28 23.67 80.77 44.66 33.31 68.92 36.52 27.23

Table 5.13. – ASR-BLEU performance of SONAR EXPRESSIVE. Speech
decoding ASR-BLEU evaluation for TTS, Text-to-Speech Translation
(T2ST) and S2ST tasks for the different training stages on FLEURS and
mExpresso test sets.

and mExpresso benchmark datasets during each stage of model training. We
condition the speech decoder with various semantic embeddings in order to
analyze the cross-lingual and cross-modal transfer, given the combination of
different semantic SONAR encoders with our speech decoder. We namely use
three such embeddings: one extracted from target English text, one extracted
from source non-English transcription, and one from non-English source speech.
These three different setups are respectively performing TTS, T2ST and zero-shot
S2ST. Finally, in order to determine the effect of the SpeechProp vector, we also
generate audio without this embedding. Results are shown in Table 5.13.

First, we notice that SONAR EXPRESSIVE is performing TTS very capably
in terms of ASR-BLEU. TTS results are already surprisingly good with the pre-
train1 model, reaching for instance more than 80 BLEU on the French → English
split of mExpresso. This again highlights the zero-shot cross-modal transfer
happening in the SONAR framework as the pre-train1 speech decoder was only
trained to decode speech embeddings. We see that TTS results are better after the
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second stage of pre-training on FLEURS, which can be explained by the length
distribution of FLEURS compared to the training data of the pre-train2 speech
decoder which includes longer audios from ASR training set compared to the
training data of the pre-train1 speech decoder which contains speech instances
which are ∼3 seconds in average. This is to compare with TTS after the second
stage of pre-training on mExpresso, which does not improve compared to the first
stage of pre-training. Indeed, the average duration on mExpresso is 3.51 seconds
(target-side) whereas the average duration on FLEURS is 9.78 seconds (target-
side). After the second stage of pre-training, we get important performance boost
on TTS ASR-BLEU on FLEURS, with more 10 ASR-BLEU gains (comparing “eng
text” columns from pre-train1 and pre-train2).

When starting to introduce SpeechProp embeddings during finetuning, we
notice some loss in ASR-BLEU. This could be explained by the fact that during
training, the model starts to rely on the SpeechProp embeddings of the cropped
target to predict the whole target. But it could also come from the ASR-BLEU
metric itself that relies on automatic transcriptions. The speech recognition system
may perform worse on more expressive speech compared to more normalized
English generated speech output by the pre-training-only based models.

TTS task should be seen as a topline for T2ST and S2ST translation results. It
highlights the ability of the speech decoder to output diverse speech sentences
while conditioned on fixed-size sentence embeddings.

When switching from TTS to T2ST, we notice a clear loss for the pretrain1 model,
showing that it had over-fitted on English embeddings, while the goal is to have a
speech decoder robust to embeddings from other languages. However, we notice
that the second stage of pre-training helps improve the robustness of the speech
decoder to other languages, which validates the incorporation of S2TT data in the
training. For example on French, we see a +11 ASR-BLEU gain when comparing
pre-train1 and pre-train2 models (comparing “xxx text” columns from pre-train1

and pre-train2).

Finally, we introduce zero-shot speech-to-speech translation results. We observe
reasonable ASR-BLEU results after the first stage of pre-training only. It is
important to highlight that this model was trained only to decode English
SONAR speech embeddings into English EnCodec units (which can be seen
as auto-encoding with a frozen semantic encoder). Therefore, the speech-to-
speech translation results shown for this first stage of pre-training are zero-shot
cross-lingual for non-English spoken languages. Second, we notice that adding
multilingual text inputs in the training during pretraining stage 2 significantly
improves ASR-BLEU results (comparing “xxx speech” columns from pre-train1

and pre-train2). It confirms that multilingual inputs, even though coming from
another modality, help to make the speech decoder more robust to multilingual
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inputs from the speech modality. The disparity in results between mandarin and
the other target languages during the first stage of pre-training may be due to
fact that the representations from the SONAR speech encoder for mandarin are
less strong compared to other languages (17.1 S2TT BLEU for cmn compared to
31.6 S2TT BLEU for deu).

The differences in ASR-BLEU between TTS, T2ST and S2ST suggest that
incorporating more S2TT or even S2ST data in the training could boost ASR-BLEU
performances. This is left to future work.

In order to determine the dimensions of expressivity captured by the
SpeechProp embedding, we begin by examining its effect on speaker style
similarity. Results are shown in Table 5.14.

FLEURS mExpresso

pre-train1 pre-train2 fine-tune pre-train1 pre-train2 fine-tune

SpeechProp ✗ ✗ ✓ ✗ ✗ ✓

cmn 0.05 0.06 0.30 0.02 0.04 0.30

deu 0.02 0.04 0.39 0.02 0.03 0.25

fra 0.0 0.03 0.29 0.0 0.03 0.21

ita 0.02 0.05 0.27 0.0 0.02 0.22

spa 0.02 0.04 0.28 -0.01 0.02 0.23

Table 5.14. – Speaker style similarity performance in zero-shot S2ST. Speaker
style similarity evaluation of zero-shot S2ST with SONAR
EXPRESSIVE for the different training stages on FLEURS and
mExpresso test sets.

FLEURS mExpresso

pre-train1 pre-train2 fine-tune pre-train1 pre-train2 fine-tune

SpeechProp ✗ ✗ ✓ ✗ ✗ ✓

cmn 0.06 0.08 0.24 0.13 0.12 0.54

deu 0.19 0.20 0.64 0.10 0.08 0.62

fra 0.04 0.15 0.36 0.08 0.13 0.43

ita 0.14 0.23 0.31 0.09 0.11 0.49

spa 0.17 0.30 0.42 0.10 0.13 0.56

Table 5.15. – Speech rate Spearman correlation in zero-shot S2ST. Speech rate
Spearman correlation evaluation of zero-shot S2ST with SONAR
EXPRESSIVE for the different training stages on FLEURS and
mExpresso test sets.
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As we expected, models which were not trained with SpeechProp embeddings
generate output speech with a very low speaker style similarity given an input
speech. Introducing the SpeechProp embeddings into the training during the
fine-tuning stage significantly boosts speaker style similarity between the source
and target generated speech across all languages. In particular, we observe a
large speaker style similarity increase for German of 0.04 → 0.39 between stages
pretrain2 and fine-tuning.

In order to evaluate the rhythmic capabilities of SONAR EXPRESSIVE, we
report both the speech rate Spearman correlation and pause alignment results
in Tables 5.15 and 5.16 respectively. Similar to our observations on speaker style
similarity, we notice large increases across both metrics and all languages once
the SpeechProp embedding is introduced.

FLEURS mExpresso

pre-train1 pre-train2 fine-tune pre-train1 pre-train2 fine-tune

SpeechProp ✗ ✗ ✓ ✗ ✗ ✓

cmn 0.02 0.19 0.45 0.15 0.07 0.34

deu 0.01 0.24 0.49 0.03 0.14 0.34

fra 0.01 0.30 0.49 0.06 0.12 0.39

ita 0.00 0.18 0.42 0.05 0.14 0.32

spa 0.00 0.31 0.49 0.04 0.14 0.33

Table 5.16. – Pause alignment results in zero-shot S2ST. Pause alignment
evaluation of zero-shot S2ST with SONAR EXPRESSIVE for the
different training stages on FLEURS and mExpresso test sets.

Results from sentence-level prosodic similarity using the AutoPCP metric
are shown in Table 5.17. As defined by the Prosody Consistency Protocol
(cf. Section 5.3.3.2), a score of 1 corresponds to “very different” prosody, 2 to “some
similarities, but more differences”, 3 to “some differences, but more similarities”,
and 4 to “very similar”.

We notice that our speech-to-speech models with SpeechProp embeddings
produces expressive speech with a predicted PCP score of around 3. This grade
is qualified in the evaluation protocol as having “some differences, but more
similarities”, highlighting the expressivity preservation of the output translated
speech.

5.3.3.5 Data generation with SONAR EXPRESSIVE

Back-translation has been heavily used to augment training datasets for
machine translation (Schwenk 2009; Sennrich et al. 2015; Edunov et al. 2018;
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FLEURS mExpresso

pre-train1 pre-train2 fine-tune pre-train1 pre-train2 fine-tune

SpeechProp ✗ ✗ ✓ ✗ ✗ ✓

cmn 1.54 2.42 2.90 2.29 2.46 3.24

deu 1.30 2.28 2.92 1.99 2.41 3.11

fra 1.69 2.67 3.10 1.92 2.43 3.13

ita 1.16 2.40 2.87 1.99 2.41 3.23

spa 1.78 2.64 3.01 2.05 2.51 3.18

Table 5.17. – AutoPCP results in zero-shot S2ST. AutoPCP evaluation of zero-shot
S2ST with SONAR EXPRESSIVE for the different training stages on
FLEURS and mExpresso test sets.

NLLB Team et al. 2022), using generated translations as input to train machine
translation systems. In the same spirit, pseudo-labeling with cascade systems
for speech-to-text and speech-to-speech translation to overcome training data
scarcity was also widely explored (Pino et al. 2020; Jia et al. 2019a; Q. Dong et al.
2022). Finally, generated data was also used to fine-tune Large Language Models
(LLMs) in order to better align with human preferences. For example, Touvron
et al. (2023), used a pre-trained language model to generate several answers. Each
answer is ranked by a reward model, and the top predictions are used as gold
labels to fine-tune the model. They refer to this technique as Rejection Sampling
fine-tuning.

Inspired by such methods, we used SONAR EXPRESSIVE to generate
expressive speech translations for Seamless Communication et al. (2023b). In
order to generate new data, we leverage the same publicly available data which
was used for pre-training (cf. Section 5.3.2.1). SHAS segments from each target
language were then translated into English text using SONAR encoders/decoders,
and then we expressively decoded each segmented into English speech.

5.4 Conclusion

To conclude, we introduced a new multilingual and multimodal sentence
embedding space called SONAR. We conducted an extensive study on objective
functions to build our multilingual teacher sentence embedding space for text.
We extended this new text sentence embedding space to the speech modality
to introduce Sentence-level multimOdal and laNguage-Agnostic Representations
(SONAR). We presented an extensive evaluation of our SONAR framework for
both similarity search and decoding tasks.
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Second, we trained a speech decoder in the SONAR framework which is capable
of decoding both multimodal and multilingual SONAR sentence embeddings
into expressive speech. We showed that the expressive and prosodic content of
the input speech can be encoded into a separate SpeechProp embedding which is
disentangled from the SONAR semantic representations. Our multi-stage training
approach shows that by initially training on unlabeled monolingual speech data
only, and later introducing non-expressivity aligned S2TT data, we are capable of
generating expressively-aligned target speech in a zero-shot cross-modal way. We
validated our approach with various expressivity preservation metrics.
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6
D I S C U S S I O N

In this chapter, we provide a summary of the contributions made in this thesis
and present insights into potential perspectives and future research directions.

6.1 Contributions

In this thesis, we introduced massively multilingual speech/text sentence
embedding spaces. We demonstrated that a teacher-student approach is an
effective way to transfer existing semantic properties to fixed-size representations
for the speech modality. The increasing amount of Automatic Speech Recognition
(ASR), Speech-to-Text Translation (S2TT) and Speech-to-Speech Translation (S2ST)
training data in today’s research may pave the way to multimodal and
multilingual sentence embedding spaces learned from scratch.

Highly compatible representations between speech and text in different
languages at the sentence level, where similar sentences are close in the
embedding space independently of their language or their modality, allowed
us to perform speech mining. We were able to automatically align Speech-
to-Text (S2T) and Speech-to-Speech (S2S) pairs for several languages at scale,
which were helpful to augment speech translation training sets and improved
translation performances of end models. This line of research led to the creation
of SpeechMatrix, totalling 418k hours of aligned S2S data for 136 language pairs,
and used to train many-to-English S2ST models. It was extended in the Seamless
project which scaled speech mining in 4 million hours of raw speech and was
successfully used to train the state-of-the-art SeamlessM4T model.

Then, we analyzed how much we can decode from these fixed-size sentence
representations, and discovered that it is possible to perform zero-shot cross-
modal translation in such a framework. This line of research improved zero-
shot S2TT and presented the first zero-shot S2ST results, leveraging big amounts
of unlabeled speech data. These decoding experiments again highlighted the
compatibility between speech and text representations across several languages.

119
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Finally, based on these findings, we explored how to introduce a new massively
multilingual speech/text sentence embedding space for better results in both
multilingual and multimodal similarity search as well as decoding capabilities.
Analysing the effect of several objective functions, we presented SONAR, a
new sentence embedding space which outperforms previous multilingual and
multimodal sentence embedding approaches. It covers 200 text languages as input
and output and 37 spoken languages. It reduces xsim++ error rates by 58% on
these 200 languages compared to LASER3 or LaBSE, while providing competitive
Machine Translation (MT) results when using the multilingual decoder. The
compatibility between speech and text representations is highlighted with zero-
shot speech decoding into text, introducing zero-shot S2TT that outperforms
Whisper Large supervised results for a number of languages.

When dealing with the speech modality, not only the semantic content is
conveyed, but also other non-semantic speech properties of the audio signal. We
complement the SONAR semantic representations for speech with an additional
embedding called SpeechProp embedding that encodes these expressive speech
properties. Such line of work enabled to perform expressive S2ST from 5 languages
into English based on the SONAR framework.

We demonstrated that SONAR can perform competitive text-to-text, speech-
to-text, text-to-speech and speech-to-speech translation despite a fixed-size
intermediate representation. This is interesting as cross-attention on encoder
outputs has been used in all sequence-to-sequence models nowadays. While it
is still providing best results, the good translation results of SONAR put into
perspective the importance of such cross-attention.

The compatibility of multilingual speech/text representations of sentences
could be further exploited for other Natural Language Processing (NLP) tasks
to benefit from cross-lingual and cross-modal transfer. We discuss about these
opportunities in the next section.

6.2 Perspectives

6.2.1 Multiple representation scales in text and speech

This thesis focused on sentence-level representations to solve multimodal NLP

tasks. We may put this sentence-level focus into perspective with other scales of
representation in NLP and Speech Processing.

Indeed, other scales of representation were explored in NLP, like words, which
may have been the most studied scale of text representations, as presented
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in Chapter 2. Tokenization techniques like BPE (Sennrich et al. 2016) and
SentencePiece (Kudo and Richardson 2018) introduced subword splits to
better handle unknown words and increase generalization. Another scale of
representation of text is the character level (Boukkouri et al. 2020; J. H. Clark
et al. 2022) which was shown to better handle user generated content that is
much more noisy compared to clean text. On the other side of the spectrum,
paragraph and document embeddings aim at representing larger units of text and
have been mainly studied for retrieval tasks like Question Answering (Karpukhin
et al. 2020).

In these different approaches, the modeling of text is biased towards some
specific scale in order to solve some specific tasks. For example, as mentioned in
Chapter 2, comparing two sentences can be easily done by concatenating them and
feeding them to a language model, but it would be computationally intractable
when comparing billions of sentences. By building sentence embeddings, we bias
the representation of text in order to efficiently compare sentences in a vector
space.

Choosing the right scale of the representations also helps to solve some
technicalities, like the quadratic complexity of the self-attention mechanism of
Transformers, which makes it difficult to take sequences of characters as input to
represent long sentences or paragraphs. Interestingly, for a given architecture, the
choice of the scale of input units may impact the language modeling performance
too. For example, some work on spoken language modeling on HuBERT discrete
units (Nguyen et al. 2023) found out that while acoustic consistency is really
well preserved by those language models, the consistency in terms of meaning
quickly drifts, leading to nonsensical continuations. This may be due to the
fact that HuBERT units are phoneme-level representations and that long-term
dependencies are difficult to handle on these low-scale units. Hierarchical
representations for text modeling might be an answer to these technical obstacles
as well as short-term and long-term consistency. For example, Megabyte (L. Yu
et al. 2023) tries to address text with hierarchical representations trained in an
end-to-end way to enable Large Language Models (LLM) to take smaller units as
input.

While most of works in NLP are exploring methods which handle text at the
sub-word level with heavily pre-trained LLMs, we advocate that other scales of
representation should be explored and that pros and cons of each representation
scale should be presented. The main focus of this thesis is the sentence scale.
While the notion of sentence is not well defined for speech, representations
of speech utterances in this thesis were learned to align with text sentence
representations based on sentence-level training pairs. Text sentences have one
big advantage compared to the word scale: it is a natural segmentation of
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thoughts that human introduced to communicate. Moreover, these segments,
representing one or more concepts, may be translated into different languages,
spoken or written, or even illustrated. Therefore, it may be a good scale to bridge
representations between languages and modalities, as presented in this thesis.
Moreover, most of speech or text data is labeled at the sentence level in training
datasets. In this thesis, we demonstrated again that leveraging MT labeled data
can help to build strong semantic representations.

The question on how to successfully leverage all type of annotated data for
several modalities and how to increase generalization in data modeling is still
key nowadays. With an infinite amount of data and compute, end-to-end LLM
modeling could potentially learn the desired underlying patterns in data, but
in compute and data constrained setups, adding a bias in the way to model
inputs has shown big improvements in several fields like Convolutional Neural
Network (CNN) for images compared to general Multi-Layer Perceptron (MLP). In
that context, exploring text modeling at the sentence level would be an interesting
research perspective in the current LLM landscape.

When focusing on fixed-size sentence representations, one hyper-parameter,
which was not explored in this thesis, is the dimensionality of the sentence
embedding space. For both LASER and SONAR sentence embedding spaces, the
dimensional is set to 1024, while LaBSE is using 768 dimensions. While this topic
was explored for sentence embeddings before the transformer era (Conneau et al.
2018a), it may be interesting to study the impact of this hyper-parameter on the
performance and generalization for new sentence embedding spaces like SONAR.
Indeed, on one hand, a bigger dimension may boost linear probing tasks but, on
the other hand, a constrained small dimensionality could act as regularization
and therefore improve generalization or cross-lingual transfer.

6.2.2 From a modular framework to modality-agnostic and
language-agnostic modeling

The SONAR framework offers compatible semantic representations for speech
and text in different languages, as well as decoders to translate back to the
text or speech domain. Moreover, non-semantic content for some modality
specificity can be encoded in a disentangled representation, which can be
taken into account when decoding in that specific modality. Such a framework,
which provides competitive translation results, raises the question of how
much full cross-attention is really needed. Indeed, the intermediate fixed-size
SONAR representation, initially seen as a bottleneck, does not hurt much the
translation performance. Interestingly, we noticed that the traditional Transformer
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architecture (without fixed-size intermediate representation) biases the sequence-
to-sequence modeling of the machine translation task towards good zero-shot
auto-encoding performance. On the contrary, this is not the case when imposing
a fixed-size intermediate representation, and an additional auto-encoding loss
should be added to get similar performances. Once again, it highlights the fact
that architectural choices and inductive biases have impact on generalization
performance, but that constraining the model with alternative objective functions
and enough training data may close the gap.

The multimodality aspect of the SONAR framework could theoretically be
extended. One may interested in adding the visual modality to the SONAR
embedding space, building an image decoder for instance. An image decoder
should be rather straightforward as some auto-regressive or diffusion text-to-
image models are already taking CLIP (Radford et al. 2021) text sentence
embeddings as text conditioning to generate an image. With enough text-image
training data, an image decoder could be trained to be conditioned on English
text sentence embeddings. The zero-shot cross-lingual and cross-modal transfers
could potentially enable zero-shot speech-to-image generation, from any spoken
language handled by SONAR.

However, building a image encoder in the SONAR framework is not well
defined, as images may be described by many semantically different captions.
This one-to-many mapping is clearly different from speech-text synchronous
ASR alignments. One could train an image encoder for retrieval purposes with a
contrastive loss, as done in CLIP. But using existing SONAR decoders to decode
such image embeddings is still undefined, as one may expect many possible
captions as output. One way to overcome such issue would be to train a stochastic
image encoder, that would randomly generate an embedding of one possible
caption in the SONAR embedding space. However, such predicted embedding
would be a partial representation of the input image only. One could also imagine
to extend SONAR to other modalities. For example, some recent work showed
that a model could be trained to translate non-invasive brain recordings into
images (Benchetrit et al. 2023). In this context, the SONAR high-level semantic
space could potentially be used as teacher for a brain recording encoder. Many
other modalities of language may be included in such a framework like sign
language.

Finally, we advocate that some NLP semantic transformation tasks may be
directly modeled in the sentence latent space. This would leverage the efficient
zero-shot cross-lingual and cross-modal transfers in the SONAR framework: one
could learn a semantic transformation in the latent space for one language and
one modality and apply this learned transformation in a zero-shot way to new
languages and new modalities. This is described in Figure 6.1. In this context,
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Figure 6.1. – Semantic transformation in the SONAR sentence latent space.
After computing SONAR embeddings, semantic transformation
learned on one language and one modality could be applied to the
SONAR embeddings before decoding it into either speech or text.

semantic transformations as delta vectors in the SONAR embedding space were
explored by a colleague at Meta, Marco Pennacchiotti, and proved effective for
semantic manipulation like masculine to feminine or singular to plural operations
(not yet released). An example, of these operations on an unseen sentence from
FLEURS (Conneau et al. 2023) is shown in Figure 6.2. The zero-shot transfer
to new languages and new modalities is a significant advantage of the SONAR
framework. These semantic transformations could be coupled with a preservation
of non-semantic properties of the transformed sentence decoded into speech,
handled by the disentangled SpeechProp representation.

As a long-term perspective, more generic NLP tasks could be modeled directly
in the sentence embedding space in the hope of benefiting from cross-lingual
and cross-modal transfers. NLP tasks may be modeled as conditional probability
distributions in this continuous space and techniques like diffusion models (Ho
et al. 2020) could be leveraged to learn such tasks.

The prediction of sentence embeddings also raises the question of the
organization of the embedding space as well as the robustness of decoders.
Indeed, it may be the case that predicting precise sentence embeddings which can
be correctly decoded is a difficult task. The question of the density of the space
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Figure 6.2. – Results of an initial experiment on delta vectors in the SONAR
space. A sentence is transformed directly in the SONAR latent space
and decoded into different languages.

for different sentence lengths remains an open question and could determine the
level of difficulty of predicting sentence embeddings. Moreover, the robustness
of the decoders to imperfect predicted embeddings would also be an area of
research.

6.2.3 Multimodal communication tasks in the LLM landscape

Given the recent democratization and increasing popularity of instruction-
finetuned Large Language Models (LLMs) (Ouyang et al. 2022; Touvron et al.
2023), it is important for any NLP modeling task to be discussed in the light
of the current capabilities of these LLMs. Indeed, machine translation is one
of the NLP tasks that LLMs are starting to master well for a few high-resource
languages, compared to specialized models (Xu et al. 2023). These models are still
limited in terms of language coverage compared to a state-of-the-art MT model
like NLLB, but their multitask instruction finetuning may increase generalization
and comes with several other advantages. Current state-of-the-art MT model
are focusing on sentence level machine translation, whereas a LLM could more
easily address document level translation, keeping long-term consistency in the
translated document. Moreover, LLMs offer more controllability and allows for
refinements of the translations with possible interactions with such general-
purpose chatbots.

However, these Large Language Models come with some limitations. The first
one is the limited language coverage for translation, as highlighted before. Then,
the computational cost of inference with LLMs, which are often models with
billions of parameters, is another important limitation, and prevents them from
running on device. However, leveraging LLMs for data augmentation or back-
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translation to further train specialized MT models may be a good way to benefit
from the advantages of both LLMs and specialized models.

Regarding the speech modality, one way to leverage LLMs for speech inputs
is simply to use an existing ASR model and transcribe the input speech to feed
the generated text to the text-based LLM. This is a cascaded approach that works
well even though suffering from some latency. However, such approach is not
leveraging LLM training and methods to perform multimodal communication
tasks. Other methods like Speech-LLaMA (Wu et al. 2023) learn to map speech
to the continuous LLM input space and then perform low-rank adaptation of
the LLM to perform speech-to-text tasks. Alternative approaches do not adapt
speech to text-based LLMs, but rather try to natively perform language modeling
on discrete speech units. This is the so-called textless NLP field, with audioLM
(Borsos et al. 2023) being one of the state-of-the-art model of this research area.
AudioLM extension for both speech and text inputs is audioPaLM (Rubenstein
et al. 2023) which is fusing audio-based LLM with text-based LLM to enable a
language model to take as input speech and text tokens but also output speech
and text tokens and could therefore perform speech generation. Finetuned on
multimodal communication tasks, such a model can perform MT, S2TT and S2ST,
either directly producing the desired output or outputting intermediate steps in
addition to the desired output (in a self-cascade manner, like performing ASR then
MT to solve S2TT tasks) similarly to chain-of-thoughts techniques for text-based
reasoning (Wei et al. 2022).

However, these LLMs applied to speech come with an important computational
cost too. AudioPaLM is a 8B parameter model compared to seamlessM4T
(Seamless Communication et al. 2023a) sequence-to-sequence model which
outperforms audioPaLM and only has 2.3B parameters. These LLM-based
solution for speech are too big to run on device. Moreover, such architectures are
not suited for streaming applications of speech. For example, streaming speech
translation introduced in the Seamless project (Seamless Communication et al.
2023b), could not be easily performed with an decoder-only architecture like
audioPaLM.

6.3 Conclusion

To conclude, we introduced semantic representations for massively multilingual
speech and text at the sentence level, enabling large-scale speech-to-text and
speech-to-speech mining. Despite being fixed-size, these representations can
encode a lot of information which can be efficiently decoded into different
languages and modalities. Any modality-specific information can be modeled
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in a disentangled additional embedding. These sentence-level representations
enables efficient zero-shot cross-lingual and cross-modal transfer and pave the
way to solving NLP tasks directly in sentence embedding spaces.
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A.1 SpeechMatrix evaluation details

We describe experimental details of speech-to-speech translation evaluations
for SpeechMatrix.

A.1.1 HuBERT models

We train a multilingual HuBERT model for each language family (cf. Table 3.10).
We collect unlabeled VoxPopuli speech for all languages of the same family as
the training data. The HuBERT model consists of 7 convolutional layers and
12 Transformer encoder layers. Each encoder layer has 12 attention heads, the
embedding dimension is 768 and the FFN dimension is 3072. Models are trained
for 3 iterations. For each iteration, pseudo-labels are prepared as the training
targets. In the first iteration, the target labels are based on Mel Frequency Cepstral
Coefficients (MFCC) (cf. Chapter 2). In the second iteration, we extract speech
features from the 6-th layer of the trained HuBERT model and apply k-means
clustering to derive a set of 500 units. In the third iteration, speech features from
the 9-th layer are clustered into 500 units. Lastly after these three iterations, we
try feature extraction from different layers including layer 10, 11 and 12 of trained
HuBERT. As for feature clustering, we also try different numbers of clusters, 800,
1000 and 1200, to derive multiple sets of target units.

To choose the optimal setup, we launch a resynthesis evaluation to select the
HuBERT layer to extract speech features and the number of k-means clusters. We
train a vocoder on each set of units. The synthesized speech is sent to off-the-
shelf Automatic Speech Recognition (ASR) models, and Word Error Rate (WER) is
reported to measure the speech quality. The resynthesis experiments are discussed
in Section A.1.3. The optimal HuBERT layer and number of clusters is selected if
their corresponding vocoder achieves lowest WER.
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A.1.2 ASR models

We use ASR models publicly released on HuggingFace to transcribe the
generated speech in order to calculate WER or BLEU scores in comparison with
ground truth texts. ASR models used in our evaluation are listed in Table A.1.

Lang cs de
ASR comodoro/wav2vec2-xls-r-300m-cs-250 jonatasgrosman/wav2vec2-xls-r-1b-german

Lang et fi
ASR RASMUS/wav2vec2-xlsr-1b-et jonatasgrosman/wav2vec2-large-xlsr-53-finnish

Lang hr hu
ASR classla/wav2vec2-xls-r-parlaspeech-hr jonatasgrosman/wav2vec2-large-xlsr-53-hungarian

Lang it lt
ASR jonatasgrosman/wav2vec2-large-xlsr-53-italian sammy786/wav2vec2-xlsr-lithuanian

Lang nl pl
ASR jonatasgrosman/wav2vec2-xls-r-1b-dutch jonatasgrosman/wav2vec2-xls-r-1b-polish

Lang pt ro
ASR jonatasgrosman/wav2vec2-xls-r-1b-portuguese gigant/romanian-wav2vec2

Lang sk sl
ASR anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm

Table A.1. – HuggingFace ASR models for each language.

A.1.3 Vocoders

Data preprocessing. We applied a denoiser 1 (Defossez et al. 2020) to the speech
of VoxPopuli and Common Voice as the speech preprocessing to increase Signal-
to-Noise Ratio (SNR) given that they are noisier than CSS10 audios. Then we
generate speech units with HuBERT models using the k-means clustering results.
Single-speaker vocoders are trained in CSS10, and languages from VoxPopuli
and Common Voice have multi-speaker vocoders where speaker embeddings are
learned. During inference, we select the speaker with the longest speech duration
to synthesize speech from predicted unit sequences.

Vocoder training and evaluation. Vocoders are trained to synthesize speech
from a given sequence of units. The train sets are speech data from CSS10,
VoxPopuli and Common Voice. As mentioned before, units are derived from
HuBERT models. Table A.2 summarizes WER of ASR models, which reflects the
transcription quality in each language. Besides, we report the training dataset,
vocoder WER of synthesized speech. We include only the vocoder results obtained
from the optimal HuBERT layer and k-means cluster size. Layer 11 is the best

1. https://github.com/facebookresearch/denoiser

https://github.com/facebookresearch/denoiser


A.1 speechmatrix evaluation details 131

HuBERT layer for feature extraction in all languages, and most languages have
the best k-means size of 1000 except Italian (it) whose best label size is 800.

Lang Data ASR WER HuBERT Vocoder WER Lang Data ASR WER HuBERT Vocoder WER

deu CSS10 0.10
Germanic HuBERT
layer 11, km 1000

0.16 nld CSS10 0.19
Germanic HuBERT
layer 11, km 1000

0.27

fin CSS10 0.02
Uralic HuBERT

layer 11, km 1000
0.15 hun CSS10 0.21

Uralic HuBERT
layer 11, km 1000

0.21

est Common
Voice 0.14

Uralic HuBERT
layer 11, km 1000

0.44 ita VoxPopuli 0.23
Uralic HuBERT
layer 11, km 800

0.27

por Common
Voice 0.06

Uralic HuBERT
layer 11, km 1000

0.31 ron VoxPopuli 0.42
Uralic HuBERT

layer 11, km 1000
0.50

ces VoxPopuli 0.15
Slavic HuBERT

layer 11, km 1000
0.23 pol VoxPopuli 0.14

Slavic HuBERT
layer 11, km 1000

0.23

hrv VoxPopuli 0.21
Slavic HuBERT

layer 11, km 1000
0.29 lit VoxPopuli 0.38

Slavic HuBERT
layer 11, km 1000

0.57

slk VoxPopuli 0.28
Slavic HuBERT

layer 11, km 1000
0.41 slv VoxPopuli 0.37

Slavic HuBERT
layer 11, km 1000

0.46

Table A.2. – Benchmark results of ASR models and vocoder resynthesis.

As shown in Table A.2, ASR models are of good quality for high-resource
languages such as deu, fin and por, while suffering from high error rates in
languages such as ron, lit and slv. It is expected to have higher vocoder WER than
ASR WER since the former is obtained from synthesized speech. By measuring the
gap between the two error rates, we can tell how good a vocoder is and also infer
the quality of HuBERT units. For est, por and lit, the gaps are obviously larger
than other languages. It not surprising since we do not have much good-quality
vocoder data for these languages. For example, there is only around 10-hour of
noisy speech from Common Voice for est and por for vocoder training.

A.1.4 Mined data selection

We performed an analysis of translation performance varying with thresholds
from 1.06 to 1.09 on three language pairs: spa-eng, ron-eng and hrv-eng.
Figure A.1 shows the evaluated thresholds, their corresponding speech mined
data size and the resulting BLEU score.

For low-resource directions such as hrv-eng, it is best to include all the mined
data. For high- and medium-resource directions, spa-eng and ron-eng, the optimal
amount of mined data is around 1k hours and it does not bring further gains to go
beyond that data size. Given these observations, we choose the highest threshold
that keeps the source speech duration of mined data more than 1k hour for each
direction. For example, we use a threshold of 1.09 for es-en and of 1.06 for hr-en.
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Figure A.1. – Bilingual Speech-to-Speech Translation (S2ST) BLEU by mined data
at different thresholds.

A.1.5 Bilingual evaluation on FLEURS

We report here the speech-to-speech translation performance of bilingual
models on the Wikipedia domain, i.e., FLEURS test data. We notice that these
results are much lower than the ones on EuroparlST (EPST) and VoxPopuli data,
likely because of the domain mismatch between train and test data.

ces deu eng spa est fin fra hrv hun ita lit nld pol por ron slk slv

cs - 2.0 4.2 4.6 0.1 0.2 7.5 2.1 0.2 2.5 0.1 1.0 2.3 2.8 1.4 3.5 1.7
de 2.3 - 8.3 3.8 0.1 0.2 6.5 2.2 0.2 1.8 0.0 1.2 0.9 3.1 2.1 0.8 1.0
en 2.7 2.7 - 6.0 0.7 0.6 10.4 2.4 0.3 3.6 0.1 3.8 1.3 5.1 2.0 1.2 1.2
es 1.9 1.8 7.5 - 0.1 0.2 9.2 1.0 0.2 4.2 0.1 1.5 1.4 5.9 2.3 0.9 0.8
et 2.1 0.7 8.2 3.0 - 0.7 6.3 1.0 0.7 2.3 0.1 1.5 1.2 1.7 1.4 0.4 0.8
fi 1.5 0.9 5.5 3.8 0.5 - 6.2 0.5 0.0 1.2 0.0 0.8 1.2 2.0 1.1 0.7 0.7
fr 1.5 2.1 9.8 7.6 0.1 0.2 - 1.7 0.2 3.1 0.1 1.3 1.5 5.8 2.4 0.6 0.6
hr 2.5 0.9 7.7 3.1 0.2 0.1 5.8 - 0.2 1.1 0.0 0.9 1.1 2.0 0.6 0.9 0.8
hu 1.3 1.0 4.6 3.0 0.1 0.2 5.7 0.7 - 1.2 0.0 0.1 0.4 2.3 0.9 0.2 0.3
it 1.3 1.0 6.3 8.3 0.1 0.1 11.3 1.3 0.2 - 0.0 0.9 1.1 5.6 1.9 0.4 0.6
lt 0.1 0.0 0.9 0.2 0.0 0.0 0.2 0.0 0.0 0.4 - 0.1 0.0 0.0 0.0 0.0 0.0
nl 1.4 3.1 5.7 4.9 0.2 0.2 7.5 1.8 0.2 1.7 0.0 - 0.9 3.3 1.4 0.4 1.0
pl 1.6 1.6 4.9 4.4 0.1 0.2 5.4 1.2 0.1 1.5 0.0 0.3 - 2.5 1.2 1.1 0.7
pt 1.2 1.0 6.1 8.7 0.1 0.3 11.1 1.1 0.1 1.1 0.1 0.6 0.8 - 1.5 0.6 0.6
ro 1.9 2.2 7.8 7.0 0.4 0.3 11.3 0.9 0.2 3.8 0.1 0.9 1.1 6.0 - 0.7 0.2
sk 9.1 2.1 5.5 5.1 0.3 0.2 7.8 3.0 0.4 2.1 0.0 0.7 1.9 2.3 1.9 - 1.5
sl 2.2 2.0 7.3 3.4 0.2 0.3 4.5 1.1 0.1 1.2 0.0 1.0 1.2 1.5 0.1 0.3 -

Table A.3. – Mined data evaluation on FLEURS. BLEU scores of bilingual S2ST
models on FLEURS test sets.
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A.2 SONAR ablation on pooling methods for
speech

We compare different pooling methods to extract a fixed-size representation
from speech utterances, namely mean-pooling, max-pooling and attention pooling.
We focus on zero-shot Speech-to-Text Translation (S2TT) evaluation of the different
speech encoders, combining, at inference time, the speech encoders with the
SONAR text decoder. Best results are obtained with attention pooling (cf.
Table A.4)

BLEU fra-eng spa-eng

SONAR mean-pooling 25.2 20.6
SONAR max-pooling 31.6 24.5
SONAR attention-pooling 33.3 25.5

Table A.4. – Pooling methods experiments. spBLEU X-eng zero-shot S2TT on
FLEURS test set for different pooling methods.
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