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Résumé

Au cours des dernières décennies, lŠoptique quantique a évolué des cavités à facteur
de qualité élevé des premières expériences vers de nouvelles conceptions de cavités
impliquant des modes à fuite. Bien que les modèles utilisés dans des expériences
standard soient efficaces pour reproduire ces expériences, les fuites de photons sont la
plupart du temps traitées de manière phénoménologique ce qui limite lŠinterprétation
des résultats et ne permet pas une étude systématique. Dans ce manuscrit, nous
adoptons une approche différente et, à partir des premiers principes, nous dérivons
des modèles effectifs qui permettent la caractérisation complète dŠun photon unique
produit dans la cavité et se propageant dans lŠespace libre. Nous proposons un schéma
atome-cavité pour la génération de photons uniques et analysons rigoureusement
le photon unique sortant dans les domaines temporel et fréquentiel pour différents
régimes de couplage. Nous étendons lŠanalyse en étudiant des modèles de cavités
plus réalistes, prenant notamment en compte la structure diélectrique multicouche
des miroirs de la cavité. Nous évaluons la force du couplage dipolaire entre un seul
émetteur et le champ de rayonnement dans une telle cavité optique. Notre modèle
permet de faire varier librement la fréquence de résonance de la cavité, la fréquence
de la transition lumineuse ou atomique, ainsi que la longueur dŠonde associée à la
mise en forme du miroir diélectrique. En particulier, nous montrons quŠen raison
des effets induits par la nature multicouche du miroir de la cavité, même dans
le régime de cavité haute Ąnesse tel que déĄni habituellement, la description du
système cavité-réservoir peut différer de celle où la structure du miroir est négligée.
Pour les cavités très courtes, la longueur effective utilisée pour déterminer le volume
du mode de la cavité et les longueurs déĄnissant les résonances sont différentes, et
diffèrent notablement de la longueur géométrique de la cavité. Ce nŠest que pour des
cavités beaucoup plus longues que leur longueur dŠonde de résonance que le volume
du mode se rapproche asymptotiquement de celui normalement supposé à partir de
leur longueur géométrique. Sur la base de ces résultats, nous déĄnissons une fonction
de réponse généralisée de la cavité et une fonction de couplage cavité-réservoir, qui
tiennent compte de la structure géométrique du miroir de la cavité. Cela nous
permet de déĄnir une réĆectivité effective pour la cavité avec un miroir multicouche
comme si elle avait une structure négligeable. Nous estimons lŠerreur dŠune telle
déĄnition en considérant des cavités de différentes longueurs et structures de miroir.
EnĄn, nous appliquons ce modèle pour caractériser un photon unique produit dans
une telle cavité et se propageant à lŠextérieur dans lŠespace libre.
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Abstract

Over the last decades, quantum optics has evolved from high-quality-factor cavities
in the early experiments toward new cavity designs involving leaky modes. Despite
efficient models to describe standard experiments, photon leakage is most of the
time treated phenomenologically, which restricts the interpretation of the results and
does not allow systematic studies. In this manuscript, we take a different approach,
and starting from Ąrst principles, we derive effective models that allow complete
characterization of a leaking single photon produced in the cavity and propagating
in free space. We propose an atom-cavity scheme for single-photon generation, and
we rigorously analyze the outgoing single photon in time and frequency domains for
different coupling regimes. We extend the analysis by studying more realistic cavity
models, namely taking into account the multilayer dielectric structure of cavity
mirrors. We evaluate the dipole coupling strength between a single emitter and the
radiation Ąeld within such an optical cavity. Our model allows one to freely vary
the resonance frequency of the cavity, the frequency of light or atomic transition
addressing it, and the design wavelength of the dielectric mirror. In particular, we
show that due to the effects induced by the multilayer nature of the cavity mirror,
even in the standardly deĄned high-Ąnesse cavity regime, the cavity-reservoir system
description might differ from the one where the structure of the mirror is neglected.
For very short cavities, the effective length used to determine the cavity mode volume
and the lengths deĄning the resonances are different, and also found to diverge
appreciably from the geometric length of the cavity. Only for cavities much longer
than their resonant wavelength does the mode volume asymptotically approach that
normally assumed from their geometric length. Based on these results, we deĄne a
generalized cavity response function and cavity-reservoir coupling function, which
account for the geometric structure of the cavity mirror. This allows us to deĄne an
effective reĆectivity for the cavity with a multilayer mirror as if it had a negligible
structure. We estimate the error of such a deĄnition by considering cavities of
different lengths and mirror structures. Finally, we apply this model to characterize
a single photon produced in such a cavity and propagating outside in free space.
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CHAPTER 1
Quantum technologies:

Opportunities and challenges

Nothing in life is to be feared, it

is only to be understood. Now is

the time to understand more, so

that we may fear less.

Marie Curie

Ever since the idea of using the properties of quantum physics in developing quantum
technologies, there have been signiĄcant advancements in the Ąeld, starting from the
Nobel Prize award-winning discoveries (1997: Steven Chu, Claude Cohen-Tannoudji,
William D. Phillips; 2001: Eric Cornell, Wolfgang Ketterle, Carl E. Wieman;
2005: John L. Hall, Theodor W. Hänsch, Roy J. Glauber; 2012: Serge Haroche,
David J. Wineland, 2022: Alain Aspect, John F. Clauser, Anton Zeilinger) to
the Ąrst prototypes of a quantum computer (2018: the 72-qubit processor built by
Google, 2021: 433-qubit processor by IBM ). The word quantum already indicates
that, unlike classical computers, quantum computers rely on the laws of quantum
physics. Quantum features such as superposition and entanglement allow the
quantum computer to approach problems very differently - essentially attacking
them simultaneously rather than sequentially. This ability of quantum computers to
effectively explore thousands of combinations in parallel leads to dramatic increases
in speed when solving certain classes of problems. These problems include some of
societyŠs most pressing issues, such as geophysical analysis, weather and Ąnancial
forecasting, chemical and materials science, pharmaceutical drug discovery and
enhanced security. This potential impact of quantum computers has attracted
worldwide interest in developing quantum technologies contributing to the rapid
development of the Ąeld at the fundamental as well as at the industrial level.

The invention of the quantum computer plays a particularly signiĄcant role in the
security of our information-based society. The long-term secure management of
data is of the highest importance for society and the economy. Development of
the quantum computer makes current data encryption protocols, which are based
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Quantum simulation

Simulating models of the physical world is important in advancing scientiĄc knowl-
edge and developing technologies. The purpose of a simulator is to reveal information
about another real system, i.e., we simulate an idealized model describing the system
of interest. The fact that the simulator reveals features of an idealized model is
less demanding than a full simulation of a real model since, typically, a simulated
model attempts to capture only the most relevant properties of the real system
of interest. There are numerous important questions to which simulations would
provide answers but which remain beyond current technological capabilities [90].
These span a multitude of scientiĄc research areas, from nuclear, atomic [206] and
condensed matter physics [121] to molecular energies in chemistry [93, 128]. Here
comes the idea of using a quantum device to mimic such systems that are impossi-
ble to model on a classical device [63, 90]. While building fully Ćedged universal
quantum computer is difficult (if not impossible), it is possible to develop on the
experimental advances made so far, a simulator that can imitate certain physically
interesting systems that can not be simulated with classical computers [123]. The
difference between a simulator and a computer can be deĄned by the accuracy level
of the results provided. If the accuracy with which a device simulates a model can
be arbitrarily controlled and guaranteed without the need to compare it to a real
system, then that device can be called a computer. While a simulator is a part of a
real system, that simulates an idealized model of it, that then has to be compared
with the real system.

This potential of quantum simulators to simulate problems that can not be modelled
on a classical device poses a question: how can one verify that the result of quantum
simulation is correct? In other words, can one trust the results obtained with a
quantum simulator, and under what conditions are they reliable to a known degree
of uncertainty? An answer to this question, for instance, can be that the simulator
could Ąrst be benchmarked with problems with known solutions. Alternatively, the
results of simulations of different methods and systems could be compared. Apart
from this reliability issue, real-world implementations of a quantum simulation
will always face experimental imperfections, such as noise due to Ąnite precision
instruments and interactions with the environment. Can one predict in advance
where the results of quantum simulators are more sensitive to errors? These and
other important questions led to the notion that a successful quantum simulator
has to satisfy a set of conditions [32, 84]: relevance Ű the simulated models should
be of some relevance for applications and/or for research in the areas mentioned
before, controllability Ű certain control of the parameters of the simulated model
should be possible, reliability Ű one should be ensured that the observed physics
of the simulation corresponds faithfully to the ideal model whose properties are of
the interest, efficiency Ű it is expected that the quantum simulation should solve
problems more efficiently than is practically possible with a classical simulation.

It is difficult to prove that a speciĄc problem can not be simulated efficiently using
classical computers, via algorithms that have not been yet invented, but is possible
to simulate on a quantum simulator. The advantage of a quantum device is that the
size of problems that can be tackled in a reasonable time grows signiĄcantly more
quickly with the size of the simulating device than it does for a classical device, thus
it is expected that quantum devices will one day be able to solve larger problems than
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1. Quantum technologies: Opportunities and challenges

their classical counterparts. It is, however, possible that the experimental difficulty
of scaling up quantum simulation hardware might cause an overhead such that a
quantum device does not surpass the accuracy obtained by a classical algorithm [90].

Apart from all the challenges to build efficient quantum simulators, this emerging
Ąeld of research harbours a number of interesting theoretical questions and promises
to have a pivotal inĆuence on tackling challenges of different research Ąelds.

Quantum metrology

One of the essential processes of physical science is the measurement process.
Originally, metrology focused on measurements using classical or semiclassical
systems, such as mechanical systems described by classical physics or optical systems
modelled by classical wave optics. Quantum metrology and sensing, on the other
hand, deal with the measurement through the use of quantum effects that lead to some
kind of enhancement, e.g., in precision, efficiency, or simplicity of implementation.

The goal of a measurement is to associate a value with a physical quantity, giving an
estimate of it. The challenge is to achieve the highest precision in these estimations
and Ąnd measurement schemes that reach that precision. The precision, however, can
never reach 100% due to the errors of different natures: technical or fundamental. The
technical ones are mostly represented by accidental errors caused by out-of-control
imperfections in the measurement process. Conversely, there are fundamental limits
on the uncertainty imposed by physical laws. In the classical measurement process,
one can reduce errors by repeating the measurement and averaging the results. The
central limit theorem implies that the reduction of the error is proportional to the
square root of the number of repetitions. On the other hand, the exploitation of
quantum systems to estimate unknown parameters overcomes the precision limits
that can be, in principle, obtained by using only classical resources [44]. This idea
is at the basis of the continuously growing research area of quantum metrology
and sensing that aims at reaching the ultimate fundamental bounds on estimation
precision by exploiting quantum probes [67]. The latest advancement in theoretical
and experimental techniques have already led to measuring devices, such as the
gravitational interferometer LIGO [2, 3] exceeding the classical limits. Nevertheless,
in quantum metrology, there are still ultimate limits in precision described by
Heisenberg-like uncertainty relations. Further theoretical study is needed to examine
these limits in order to determine how close, in principle, one can get to the
fundamental limits.

Besides the fundamental interest in ultimate precision limits, quantum metrology
presents different applications. Different research branches can beneĄt from quan-
tum - enhanced sensitivity, such as atomic clocks for synchronization purposes in
data-center operations and navigation (GPS, GNSS) [17, 29, 102], plasmonic sensing
for chemical and biological studies [118], microscopy and imaging [126, 141], etc.
Different platforms that are used to implement quantum measurements involve
measurements with trapped ions [119], interferometry with photons [53], and mag-
netometry with cold atomic ensembles [196]. Each of these Ąelds faces different
challenges, such as the fact that these systems experience losses during the imple-
mentation of the measurement process, which makes it difficult to experimentally
demonstrate how close to the fundamental limit one can get. Nonetheless, there are
already considerable improvements when using quantum features over classical ones,
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1.1. Quantum information processing

and further development of theoretical and experimental techniques will lead to new
methods to overcome these challenges and broaden the potential impact of this Ąeld.

1.1 Quantum information processing

In todayŠs technologies, the manipulation of information is carried out using physical
machines (computers, routers, scanners, etc.) which are governed by the laws of
classical physics. Considering that the classical physics is a special limit of quantum
physics, it leads to the natural question, why should the information processing
be limited to classical physics. Motivated by such thoughts, Feynman [63] and
others [41] pointed the way toward quantum computers. Looking at information
processing from the quantum mechanical point of view allows the use of quantum
features such as superposition and entanglement for applications that are not possible
with classical devices. This offers the potential of improving information processing
quantitatively, e.g., increase in computational power, as well as qualitatively such
as quantum random number generation and quantum cryptography, which are not
doable classically. It is not trivial to say how much one will gain by computing via
quantum computer over classical one, as quantum information processors currently
have only a limited number of known applications. For certain tasks there might
be no advantage in choosing quantum computer over the classical one, while for
others one can reach to exponential speed up, e.g., ShorŠs algorithm [172], where a
quantum computer would be able to factor large numbers exponentially faster than
any known classical computer algorithm [140].

According to Shannon [169], in classical computing, in order to quantify the informa-
tion, a binary digit or bit is taken as the fundamental unit of information. Analogous
to this, in quantum information processing the fundamental unit of information is
the quantum bit or “qubitŤ. Qubits are just quantum two-level systems such as the
spin of an electron, the ground and excited states of an atom or the polarization of a
photon, and, unlike classical bits, they can be prepared in a coherent superposition
state [140]. This allows to store exponentially more information in qubits than in a
comparable set of classical bits.

To implement quantum information processing, efficient and reliable state mapping
between qubits and remote quantum devices is required. This interconnection is
done using quantum as well as classical links, establishing the quantum internet.
Quantum phenomena such as no-cloning, quantum measurement, entanglement and
quantum teleportation, impose new challenging constraints for this network design.
SpeciĄcally, classical network functionalities are based on the assumption that
classical information can be safely read and copied [24]. However, this assumption
does not hold in the case of quantum internet. Hence, the construction of a quantum
network must carefully account for the constraints imposed by quantum nature,
both in fundamental research as well as in engineering designs. To provide a better
understanding of the advances in the Ąeld, in the following, we review some of
the requirements and the proposed architectures for the realization of quantum
information processing.

In his article [43], DiVincenzo provided a set of criteria that need to be satisĄed for
a successful realization of quantum computation. Those include:
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1. Quantum technologies: Opportunities and challenges

1. A scalable physical system with well characterized qubits. This assumes having
qubits with known physical parameters, as well as their interaction with each
other and with the external Ąelds, that are used to manipulate the state of
qubits. Current architectures used to design such qubits include atom/ion traps,
where individual atoms/ions are trapped in an ultra-high vacuum via applying
controlled laser Ąelds; superconductors, where superconducting circuits are
used as qubits; diamonds, where the impurities of diamonds (NV centers) are
used to trap single electrons; quantum dots, where individual electrons are
trapped between the boundaries of different semiconductor materials. These
architectures have been successfully realized for proof of principle, however
establishing a scalable platform with these is still a major challenge.

2. The ability to initialize the quantum system in a well-defined state. This is
a principal requirement for any type of computing; before the start of the
computation, the system performing the computation algorithm should be in
a known state. An example of an initial state can be the lowest energy state
of the system, which, for some of the architectures described above, can be
achieved via applying laser cooling techniques.

3. Long relevant decoherence times. Decoherence times characterize the dynamics
of a quantum system in contact with its environment. Reading or writing
operations with qubits for communication and computation purposes means
interaction between the qubits and the environment, hence decoherence is
unavoidable. Decoherence causes the loss of quantum properties, i.e., due
to system-environment interaction, after some time (decoherence time) the
quantum computer will not be so different from that of a classical machine.
This puts a constraint on decoherence times; they should be long enough such
that one can beneĄt from the quantum features of quantum computation. This
raises a natural concern that depending on the duration of the computation
required, there will be necessity of longer decoherence times. This is rectiĄed
via applying quantum error correction techniques [171, 178, 56], which require
quantum repeaters to be placed periodically along the quantum network.

4. A universal set of quantum gates. Quantum gates act as unitary transforma-
tions applied on a small number of qubits. Unitary transformation implies
that the process is reversible, i.e., the quantum system in principle should
be perfectly isolated. However, not only the perfect isolation is not possible
but, as mentioned above, it is also not desired when one wants to extract
information from the quantum system. Hence, quantum gates can not be
implemented perfectly; there are both systematic and random errors caused
by imperfections and random Ćuctuations. These type of errors can be seen
as another source of decoherence and thus error correction techniques can be
effective for producing reliable computations from imperfect quantum opera-
tions. To characterize these imperfections the quantum Ądelity is introduced
as a fundamental Ągure of merit. The larger is the imperfection of the physical
implementation of an arbitrary quantum operation, the lower is the Ądelity.

5. A qubit-specific measurement capability. Extraction of information in a
quantum computer is nontrivial. To extract the result of the computation,
efficient measurements of speciĄc qubits must be performed. This requires
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strong and controllable interaction of the qubit with its environment, causing
additional constraints on the hardware designs. Measurements on these kind
of quantum systems can never be 100% efficient, however it is still possible
to make reliable quantum computation with less measurement efficiency, via
some tradeoff with other resources (e.g. implementing limited number of
repeated measurements). For these tradeoffs to work, one should keep in
mind the decoherence time of the system. If the time required to perform the
measurement is faster than the decoherence time, then the error correction is
more simpliĄed.

6. The ability to interconvert stationary and flying qubits. Here there is a clas-
siĄcation of two types of qubits: stationary qubits and Ćying qubits. This
separation indicates that the qubits used to transfer information from place to
place can be different from the qubits used for information processing/storing
within a computing devices. Thus, there is a need of efficient interconnection
of these Ćying and stationary qubits. Some of the examples introduced in
point 1 are the main examples of stationary qubits, while for a Ćying qubit, as
discussed in the following section, the state or the polarization of a photon is
used.

7. The ability to faithfully transmit flying qubits between specified locations. Fol-
lowing the previous point, once there is a successful connection between the
Ćying and the stationary qubits, the Ćying qubit now has to faithfully transfer
the information to the distant stationary qubit, using classical, as well as
quantum channels. One method is to simply move the qubits through space,
similar to the transmission of classical bits with electrical currents. However,
this can be very difficult in practice, especially over long distances, as it must
be done without disturbing or measuring the qubit state. Quantum teleporta-
tion, discovered by Bennett [12], offers an alternative method of transmission
without physical contact [140]. This, however, requires entangled qubits both
in the sending and receiving ends.

Whichever channel one uses for the information transfer, they are going to
be noisy, hence the degradation of quantum information will be unavoidable.
This, again, will require quantum error correction to be implemented.

Having these criteria in mind, in the following, we focus on using the properties of
photons as information carriers for quantum information processing.

1.2 Photonic quantum computing

Creating veriĄed communication links capable of sharing and transmitting entan-
glement is essential for networking quantum computers and securing quantum
communication [177]. As mentioned before, the aim of the Ćying qubits is to trans-
port qubits out of the physical quantum devices through the network for conveying
quantum information from the sender to the receiver. Photons are very attractive
to be used for this purpose. The rationale for this choice lays in the advantages
provided by photons: weak interaction with the environment (thus, reduced de-
coherence), easy control with standard optical components as well as high-speed
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low-loss transmissions [24]. Photons can be used as Ćying qubits regardless of the
local quantum system chosen for processing. Moreover, using photons as qubits in
processing devices means that the interconversion between a stationary and a Ćying
qubit can be skipped [177].

In long-distance entanglement distribution, regardless of the qubit chosen, there is a
decay of the entanglement distribution rate as a function of the distance. Therefore,
computing and networking tasks may need photons to be delayed or stored, so extra
devices such as quantum memory and quantum repeater may sometimes be needed.
A full-scale error-corrected universal quantum computer remains a challenging quest
today in any quantum system [177]. One of the Ąrst demonstrations of the possible
scalability of quantum processing was the scheme proposed by Knill, LaĆamme, and
Milburn [100], which inspired a push toward a universal quantum computer with
photons. An important point is the use of a few photons, ideally a single photon, to
beneĄt from quantum properties (otherwise leading to classical coherent states in
the limit of a laser).

With all the advantages that photons offer, there are, however, some drawbacks too
because of the fact that photons do not easily interact with each other or with the
quantum systems in the limit of interest of a few photons. This gives rise to photon
losses due to imperfect detection and the problem of photon generation techniques.

Deterministic generation of single photons

A photon is deĄned as an elementary excitation of a single mode of the quantized
electromagnetic Ąeld [35, 52]. PhotonŠs life in quantum computation starts with its
generation and concludes with its detection. Both processes can not be perfectly
implemented, but they can be efficient enough to provide reliable computing [177].
Advanced single-photon applications require high-performance sources that produce
photons of high quality. The quality of the photons can be described by the following
merits:

• Single-photon purity: quantiĄes to what extent an emitted pulse contains only
one photon. The absence of any two-photon coincidence event signiĄes an
ideal single-photon source [124].

• Identical photons (most often referred to as photon indistinguishability):
quantiĄes to what extent the individual photons in a photon stream are
identical. Two identical photons can increase the number of photons used
simultaneously in an experiment.

• Single-photon generation rate: speciĄes the number of photons that can be
created per second. The operation speed of the sources is ultimately limited
by the radiative lifetime of the emitter.

High-quality photon states can be produced from sources such as trapped ions and
atoms, color centers in diamonds, semiconductors and quantum dots. In experimental
quantum optics spontaneous parametric down-conversion [23, 96] is widely used to
produce photon pairs that are naturally entangled in polarization [112], transverse
spatial modes [38], or frequency [111]. Nonetheless, the disorganized individual
radiators of these sources, in general, produce nondeterministic, incoherent radiation.

10



1.2. Photonic quantum computing

We can expect them to produce single photons at random or uncorrelated crowds
of photons. However, quantum computing requires that the photon generation
is deterministic and operates at high generation probabilities [109]. Moreover,
computing tasks require the capability of simultaneously generating a large number
of such individual photon states [31, 122]. The obvious way to achieve this is to
have a large number of deterministic sources that can simultaneously produce one
and only one photon each at the push of a button [177]. Apart from all these
requirements, single photons should be efficiently collected, such that they are not
lost by absorption, scattering, diffraction, etc.

In this thesis, we focus on the creation of single photons from trapped atoms. In
the simplest case of an atom with two energy levels, a photon is produced each
time the atom decays from the upper energy state to the lower state. In free space,
photons are emitted in all directions or into a continuum of optical modes. A useful
source, however, creates photons in just one optical mode. To develop such a source,
two approaches can be pursued, based on either cavities or waveguides. For tightly
conĄned modes, the atom decays preferentially into a single mode in the cavity or
waveguide. The collected photon can be subsequently coupled into a single-mode
optical Ąber to be transferred to a distant quantum node [19, 42, 124, 155].

Photon detection

One of the key enabling technology for long-distance quantum communication is the
development of quantum repeaters [138, 165]. Quantum repeaters work by breaking
the total communication distance into a series of shorter links [81, 99, 132, 184].
This process critically depends on the performance of both single-photon generation
and single-photon detection, ensuring faithful information read-out [144]. At least
one quantum repeater protocol has been developed that relies only on single-photon
sources and single-photon detectors [7].

A single-photon detector is an extremely sensitive device capable of registering an
absorbed increment of radiation energy [82]. An ideal photon detector clicks every
time a photon hits it and immediately restarts its operation. It does not produce
false positive signals when no real photons were detected (so-called “dark countsŤ )
and it also tells exactly how many photons were detected in the same spatiotemporal
mode [177]. While such an ideal photon detector does not exist, it is still possible
to do quantum computing without having an ideal detector [175]. Nonetheless,
improving the performance of the detector to very high levels is important for a
realistic and scalable platform.

Existing photon detectors are characterized by the following parameters:

• Detection efficiency: This is a quantity that measures the sensitivity of a
detector. Almost all single-photon detectors involve the conversion of a photon
into an electrical signal of some sort. The overall conversion factor from photons
to such detectable photoelectrons characterizes the detection efficiency.

• Reset time: This is the time between two consecutive detections, i.e, the time
needed to restart the detector. This puts a limit on the detection rate marking
that during this time no further detection is possible: photons that arrive
during this interval will not be detected.
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• Detection time jitter: This characterizes the uncertainty on the time delay
between the photon arrival and the detector response. In other words, it
describes the deviation between the photon absorption and the appearance of
the change in the parameter of interest, being detected by the detector.

• Dark count rate: This is the average rate of registered counts without any
incident light. The false detection events are mostly of thermal origin. Dark
counts are characterized by their statistical properties. This rate also depends
on the other parameters of the detector such as the efficiency and reset time.

• Photon-number-resolving capabilities: This characterizes the ability to distin-
guish the number of photons in an incident pulse. Conventional single-photon
detectors are based on photomultipliers and avalanche photodiodes, which are
not photon-number resolving and can only distinguish between zero photons
and more than zero photons.

Over the past few decades, a number of techniques with sufficient sensitivity have
been rapidly developed to detect single and few photons at room temperature, such
as the use of avalanche photodiodes (APDs) [37], photomultiplier tubes (PMTs) [65],
frequency up-conversion devices [91], quantum dot Ąeld-effect transistors (QD-
FETs) [92], superconducting nanowire single-photon detectors (SNSPD) [75, 82] or
single electron transistors [94]. However, combining the overall performance param-
eters of these techniques to reach the stringent requirements of optical quantum
information applications remains a challenge.

Manipulating a photon

Controlled manipulation of single-photon states Ű in particular of their central
frequency, their shape and polarization Ű is crucial for quantum information pro-
cessing and especially for quantum internet [99]. The essential physical resource
for enabling quantum information systems to outperform classical ones is quantum
entanglement. Therefore, precise and accurate control of material and photonic
qubits that provide the entanglement is necessary. Numerous optical techniques are
available to alter characteristics of photons after they have been launched, and use
those characteristics to encode quantum bits in them.

The ability to coherently modify the time and frequency shape of the produced single
photon is of great importance when interfacing the Ćying and stationary qubits. For
example, a quantum-memory element such as an atom, ion, or quantum dot typically
emits a photon wavepacket with an exponentially decaying tail. For propagation in a
Ąber or for writing into a different memory, one may need to convert that shape into
a Gaussian packet or an exponential packet with a decay or growth that differs from
the original one, hence photon reshaping will be required. Several approaches for
modifying the temporal proĄle of the single-photon emission have been proposed by
temporally modulating the excitation or emission pulses of quantum emitters, e.g.,
the shaping of a produced photon via shaping the driving Ąeld [183, 190, 195, 199].

Photons that are created by transitions between discrete quantum states acquire a
carrier frequency equal to the Bohr transition frequency. The creation procedure
alters the envelope of the Ąeld but not its carrier frequency. However, various
techniques can be used to shift the carrier frequency. For example, in optics, the
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parameter to be varied is typically a mediumŠs electronic susceptibility. If strong
light Ąelds cause the susceptibility to oscillate, then energy can be redistributed
between optical modes of various frequencies [176]. When a photon undergoes
frequency conversion, its shape may be altered as a result of changes in its spectral
content and phase structure. However, this does not always have to be considered as
a negative effect: as mentioned above, the reshaping of the photon can be necessary
for qubit interfacing, hence this technique can also be used to alter the shape of the
photon.

In addition to its central frequency and shape, a single-photon is characterized
by its polarization. The advantage of polarization based qubit encoding is that
modern electro-optic elements allow efficient polarization control, such as transparent
materials that have suitable structure can rotate the direction of the electric vector
in controllable ways. Two orthogonal polarization modes can easily be separated by
means of using polarizing beam splitters and this can be used to create polarization-
entangled Bell states [113, 146, 158].

The characteristic parameters of photons and manipulation techniques are not
limited to those discussed here. As mentioned above, the techniques used to alter
one of the parameters can lead to the modiĄcation of another. Thus, these techniques
can be used to transfer information from one parameter to another.

1.3 Quantum nanophotonics: plasmonics and

single plasmons

As discussed above, quantum information carriers and high-performance single-
photon sources are essential in quantum computation. The emission of light by
quantum emitters strongly depends on the environment in which they are placed,
thus, it can be controlled by placing emitters in a designed resonator. While in this
manuscript we primarily focus on the use of optical cavities to enhance light-matter
interaction, there have been signiĄcant efforts in extending the concepts for optical
cavities to the Ąelds of nanophotonics and plasmonics [50, 194]. A major motivation
to explore the nanoscale regime lies in the fact that the electric Ąeld scales inversely
proportional to the volume in which the Ąeld is conĄned. Thus, at this scale, one can,
in principle, achieve strong light-matter coupling that is not attainable with optical
resonators. Such strong coupling opens up new opportunities for the quantum control
of light and the exploration of nonlinear effects with very few photons [136, 208].

One way to achieve such light-matter coupling at the nanoscale is by placing
an emitter next to a plasmonic structure. Plasmons are collective oscillations of
free electrons localized at the surface of a metallic structure. Such structures are
capable of conĄning light far below the diffraction limit. When interacting with
an electromagnetic Ąeld, in metallic particles smaller than the wavelength of the
Ąeld, the conĄnement of conduction electrons provides a restoring force that leads to
oscillation of the electron cloud. The frequency of this oscillation is determined by
the density of electrons, as well as the size and shape of the charge distribution. This
phenomenon is known as a localized surface plasmon (LSP) resonance. Unlike LSPs
which do not propagate, when interfacing a metallic Ąlm with a dielectric, charge
oscillations can propagate along the metal-dielectric interface at frequencies below
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the material plasmon resonance. These propagating surface plasmon polaritons
(SPPs) have a well-deĄned propagation direction and they can be waveguided and
manipulated like photons. Compared with a free-space photon of the same frequency,
an SPP has greater spatial conĄnement. The ability to concentrate light to arbitrarily
small dimensions opens the door to both strong coupling with quantum emitters
and the prospect of designing integrated plasmonic devices and circuits, analogous
to integrated photonics and electrical circuits [18, 21, 40].

In order to perform quantum optics with surface plasmons, a source of a single
plasmon is needed. Such a source can be achieved by illuminating a metallic structure
acting as a plasmon launcher with single photons [25, 58, 135]. One of the major
challenges when realizing this scheme is the momentum mismatch between SPPs and
free-space photons, which makes it difficult to couple into and out of SPP modes.
Another challenge associated with plasmonic structures is that surface plasmons
suffer from large intrinsic losses: the shorter the plasmon wavelength, the higher the
loss. These losses in metallic systems limit propagation lengths for conĄned modes.
For some applications, such as efficient generation of single SPPs, achieving low
losses is essential; for others, the losses can be put to good use, e.g., when controlling
the dissipative quantum dynamics [181, 197]. The promising features of plasmonic
structures make them an attractive platform for quantum information processing.
This, in turn, motivates the ongoing effort to gain a deeper understanding of such
systems.

1.4 Driven open quantum systems

To successfully implement quantum computation related tasks, one should be able
to efficiently manipulate and control the dynamical processes at the level of the
quantum system under consideration. This is typically done by applying properly
designed external electromagnetic Ąelds that drive the quantum system into a
desired target state. As discussed previously, the quantum systems are inherently
inĆuenced by the environment they are in contact with, giving rise to dissipation
and decoherence [20, 69]. Thus, no quantum system can be considered completely
isolated; they are open. Dissipative processes originating from the interaction
with the environment could negatively inĆuence the control protocols designed to
manipulate the quantum system, hence, to efficiently beneĄt from the quantum
features of the system, it is necessary to be able to accurately characterize the
behaviour of the system, speciĄcally by exploring the balance between control
and interaction with the environment. Moreover, by properly engineering the
characteristics of the environment, the dissipative dynamics can be strongly modiĄed
and tuned into a useful tool, e.g., to generate speciĄc states [11, 105].

In the context of modeling open quantum systems, the description of such sys-
tems is often derived under certain approximations, such as the weak-coupling
regime between the system and the environment (which is usually considered as a
bosonic bath) known as Born approximation, and for memoryless dynamics with
time-independent dissipation rates (Markovian approximation). Other common
assumptions concern the absence of initial correlations between the system and its
environment. An alternative route to take into account environmental effects relies
on a phenomenological description of standard dissipative mechanisms, where the
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dissipator is built “by hand,Ť for instance, by inferring the decay rates from experi-
mental data. This approach may lead to a drastic simpliĄcation of the dynamics;
however, there are scenarios for which the phenomenological technique may not be
reliable, as it may not be able to capture all the relevant aspects of the dynamics.
In particular, this problem becomes signiĄcant when an external control Ąeld is
exerted on the system. When modeling the dynamics of such systems, a standard
assumption called Ąxed-dissipator (FD) assumption is applied [114, 116, 166]. This
assumes that the dissipative part of the system is not affected by the control term.
In particular, in Appendix C.1, we study the case of a driven qubit interacting with
a structured environment and analyze the consequences of the FD assumption. We
show that manipulating the environment through reservoir engineering, which is
possible when the environment spectrum is not Ćat, allows one to obtain a collection
of stationary states that can be very different from the ones given by the model with
FD assumption. This serves as an extra motivation to derive effective models describ-
ing the dynamics of open quantum systems that do not rely on phenomenological
approaches.
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CHAPTER 2
Cavity QED Approaches to

Quantum Information Processing

As mentioned before, quantum information processing requires quantum memories
for long-term information storage and quantum state transmitters for long-distance
communication [140]. Due to their weak interaction with the environment, neutral
atoms are attractive candidates to be used in various quantum computing architec-
tures [78, 87, 159], ensuring longer decoherence time and providing the possibility of
manipulating and measuring the qubit state using resonant laser pulses. The weak
interaction with the environment is beneĄcial for information storage, however, for
information extraction and transfer, the atom-environment interaction should be
enhanced in a controlled and coherent manner, such that one can efficiently interface
the stationary qubits (atoms) and the Ćying qubits (photons). In neutral atom-based
architectures, qubits are expressed in terms of the internal electronic states of the
atom, e.g., ground and excited energy levels. The decay of the electronic state of the
atom from the excited to the ground state produces radiation known as spontaneous
emission, which, in general, is an incoherent radiation. The discovery of Purcell that
the decay rate of an emitter depends strongly on the environment the emitter is
placed in [76, 151], paved the way towards the study of light-matter interaction with
the use of an optical cavity, known today as cavity quantum electrodynamics (cavity
QED) [52, 83]. In a properly designed cavity, atoms and photons interact much
more strongly than they do in free space, and this enhancement leads to interesting
applications in quantum information processing [51, 147].

The word cavity in quantum optics means a resonator for electromagnetic radiation.
In this manuscript, we mainly focus on Fabry-Pérot type cavities, which are optical
cavities made from two parallel reĆecting surfaces, namely mirrors [57] (see Fig. 2.1).
Furthermore, from a quantum optics point of view, a photon is the excitation of the
modes of the electromagnetic radiation Ąeld [52]. This leads to the deĄnition of a
vacuum as a state with no photons, i.e., no excitation of the Ąeld. The presence of a
cavity in a vacuum alters the mode structure of the vacuum, speciĄcally, the structure
of electromagnetic Ąeld modes propagating in the vacuum. This is because the cavity,
having a Ąnite length, imposes boundaries on the electromagnetic Ąeld, which results
in the conĄnement of the Ąeld inside the cavity, giving rise to resonances. Having
such resonances is at the basis of enhanced light-matter interaction with cavities,
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Figure 2.1: Fabry-Pérot cavity used in quantum optics experiments. The picture is
taken at the Clarendon Laboratory at University of Oxford [143].

where, ideally, the cavity is loaded with an emitter, e.g. an atom on its excited
level (which can be achieved via applying an appropriate laser pulse that excites
the atom), and is tuned such that the atom couples to one of the cavity resonances,
thus it decays and produces a photon [109]. If the atom is far detuned from the
cavity resonances, then the decay rate will not be as enhanced, and the atom can
not emit a photon into the cavity mode, since the cavity is not able to accept it.
The atom-cavity interaction not only causes the modiĄcation of the spontaneous
emission rate but can also result in atomic energy level shifts (also known as Lamb
shift [22]). This is analogous to the Casimir effect, when the presence of metallic
boundaries alter the modes of the vacuum Ąeld around the atom [27, 83].

Taking into account all these effects, the cavity-atom interaction is separated into
two main regimes: the weak and the strong coupling regimes. The weak coupling
implies that the cavity is such that apart from the atom-cavity coupling, there
are other processes in the system that can result in signiĄcant losses, such as the
escape of the produced photon through the cavity mirrors (cavity decay) or atomic
spontaneous emission non resonant with the cavity (atomic decay). The strong
coupling regime, on the other hand, requires the atom-cavity Ąeld interaction to
be the dominant one such that it overwhelms any loss or decoherence rate (on the
time-scale of the operation designed for the system to perform), including the atomic
level shifts [117]. The strong coupling regime can be achieved with cavities of small
volume and high reĆectivity such that the electric Ąeld inside the cavity is enhanced
providing single photon-single atom coupling, leading to coherent conversion between
the qubit state of the atom into the qubit state spanned by the number of photons
in the cavity [66, 98, 192]. This periodic exchange of excitation between the atom
and the cavity creates entanglement between them, allowing to perform various
quantum information processing schemes and gate operations [5, 55, 152, 203].
Proof-of-principle experiments featuring cavity QEDs have been realized by several
groups [143, 148, 185, 205], in some of which laser-cooled Rydberg atoms are used
as emitters trapped in a cavity.

With regard to DiVincenzo criteria, cavity QED systems are promising candidates in
the realization of quantum computation, satisfying most of the criteria via offering
certain advantages over other architectures as well as facing signiĄcant challenges
that are yet to be overcome [1, 110]. One of the strengths of such systems is that
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they allow straightforward interfacing of matter and Ćying qubits: photons are
relatively easier to produce and transmit than to store them, while atoms are good
for trapping, hence storing information. Moreover, the techniques for initialization
of stationary qubits as well as Ćying qubits in cavity QED systems are relatively
mastered. The state of the atomic qubit can be initialized using optical pumping
techniques, exciting the atom to desired energy level, while the initial state of the
photonic qubit is simply the vacuum state of the cavity.

A major advantage of cavity QEDs over other systems is that they are well understood
from a theoretical standpoint, and the various interactions present in such systems
(coupling to the external Ąeld, coupling to the environment) are, in principle, well
describable, providing a clear understanding of decoherence mechanisms of such
systems. Given the fact that the photon is the excitation of the cavity mode,
single-photons produced from such systems can be characterized by a well-deĄned
frequency, polarization, and mode proĄle. Apart from theoretical advancement,
there has been signiĄcant progress in the experimental realization of such systems
for various applications in quantum information processing. In particular, thanks to
the magneto-optical trapping and cooling techniques, in current experiments one
can observe single atom-cavity mode interaction [129, 137, 145]. Quantum phase
gate operations acting on the emitter as well as on the produced photon have been
realized in such systems [152, 156]. Success rates of these operations are very
dependent on the cavity geometry and mirror quality. This poses a challenge on
efficient experimental realization of cavity QED based schemes, where the proper
cavity design (mirror coating, optimized mirror curvature) is required, such that
one can have the desired light-matter coupling. Additionally, while in theoretical
models the atom is mainly considered as a two or three level system, in practice the
entire level structure of the atom needs to be considered, since the emitter is subject
to external Ąelds that can cause level splittings (Stark effect, non-linear Zeeman
effect) [10].

As mentioned before, cavity QED systems can serve as a platform for long distance
information transfer. Once a single photon is produced in a cavity, it can readily
be transported between sites using optical Ąbers, therefore providing information
transfer between two distant stationary qubits. This assumes considering the reverse
process of the photon generation, i.e., the arriving photon that is generated from
the Ąrst cavity couples to the second cavity and then gets absorbed by the atom
trapped in that cavity. This reversed process of mapping the qubits state from
photon to atomic states can be used as a qubit measurement scheme [129] as well as
to create quantum memory and quantum repeaters. Completing this full cycle of
information transfer, however, is experimentally challenging. Coupling of a single
photon into an outside mode and an outside single photon into a cavity mode with
negligible losses is not straightforward. It is direct when coupling into free space,
but much harder when coupling to a Ąber mode. This requires an asymmetric
cavity of low losses perfectly mode-matched with an output/input mode, i.e., the
mode and the polarization of the Ąber used as an output for the sending and an
input for the receiving cavity [110]. Unlike the photon generation process that
has been successfully demonstrated [143], this reverse process lacks experimental
implementation, due to these difficulties to provide perfect mode matching between
the input channel and the cavity mode.
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Another experimental challenge, that limits the performance of the cavity QED
based quantum computer is the efficient trapping of individual atoms inside a cavity
and the rate of errors arising from the motion of those trapped atoms [45]. The
dimensions of optical cavities are quite small (1-100µm) which makes trapping of
individual atoms inside a cavity challenging. In current cavity QED experiments
the way the atoms appear inside the cavity is via intersecting atomic beams through
the cavity, making this process stochastic. This makes it challenging to localize and
control the atom, so that the coupling with the cavity is well deĄned. In particular,
in the strong coupling regime, since there is a repeated exchange of excitation
between the atom and the cavity Ąeld, the atom gets heated (due to momentum
kicks to the atom) which can lead to its escape from the trap. One proposed way
to reduce this kind of noise is to use adiabatic elimination techniques. Adiabatic
passage schemes are intrinsically fault tolerant [192], i.e., applying such scheme allows
one to avoid errors that otherwise would have to be treated via error correcting
techniques. An example of adiabatic passage scheme is the stimulated Raman
adiabatic passage (STIRAP), found to be very robust against atomic motion and
spontaneous emission [13, 200]. The idea of STIRAP is to make complete transfer
of the atomic population from an initial state to a target state by coupling them
via an intermediate state, which is radiatively decaying (excited state) [198, 200].
This allows one to avoid spontaneous emission that would be present if one would
consider only the initial state and the radiative excited state as a two level system.
Other strategies involve error correcting techniques that are system speciĄc and
revolve around characterizing the errors that occur in a given physical realization of
a quantum computer. Such error correcting techniques have been described by Shor
and Steane [171, 178, 191].

The main issue that the cavity QED based architectures are facing is the scalability.
For achieving the ultimate quantum networking, the model should be advanced
involving many more qubits and quantum registers than the ones used in proof-
of-principle experiments. This includes reproducing the cavity system with nearly
identical parameters such that the produced photons can be considered identical.
Moreover, it will be challenging to preserve the spatial and spectral purity of the
photons that are cascaded through many of such cavities in a row. Additionally, the
Fabry-Pérot cavities used in quantum optics experiments are bulky, and combined
with the rest of experimental setup are not the ideal platforms for scalable systems.
Nevertheless, the environmental isolation that these systems offer is difficult to reach
in other platforms, therefor making cavity systems leading candidates for achieving
robust and controllable processes [14, 31, 108, 109].

There are other types of resonator designs [46] and other types of material qubits that
can play the same role as a Fabry-Pérot cavity with neutral atoms, such as linear ion
traps with optical cavities [150], semiconductor quantum dots systems [9], solid state
ion vacancy systems [134, 168] and photonic band gap cavities [202]. In particular,
the physics of cavity QED has been employed in the study of circuits that opened
the Ąeld of circuit QED [15]. This approach for example has been used by Google
to run simple quantum algorithms on a machine operating on superconducting
qubits [15, 182]. All these advancements prove the worth of the fundamental study
of such cavity QED systems and one can hope that the future advancement of the
Ąeld will overcome the challenges mentioned above leading to the development of
integrated hardware platforms with well-understood decoherence mechanisms and
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sufficient Ądelity of control required for quantum information processing.

Motivated by the discussion above, in this manuscript, we study the light-matter
interaction in optical cavities. We focus on deriving effective models for efficiently
characterizing the dynamics and the properties of a single-photon produced in such
systems and to study the limit of the model for producing single photons (otherwise
unpredictable for phenomenological models). The manuscript is organized as follows:
in Part II we introduce different representations for deriving the dynamics of a leaky
cavity. In particular, starting from Ąrst principles, we derive effective models that
allow us to characterize the dynamics of the cavity, separated from its environment,
while still providing the complete characterization of the Ąeld propagating outside
the cavity. We apply these models to study the production of shaped single-photon
wave packets, using a nonresonant laser pulse scheme for a three-level atom. In
Part III, we extend the analysis by taking into account the geometric structure of
the cavity. We revise the concept of mode volume and cavity resonance frequency for
a cavity formed with multilayered dielectric mirrors. This allows for a discussion on
a more realistic speciĄcation of characteristic parameters of the cavity, particularly
for short cavities used to achieve strong coupling. Taking into account these effects
induced by the multilayer nature of the cavity mirror, starting from Ąrst principles,
we derive a generalized cavity-reservoir coupling function that accounts for the effects
caused by the actual structure of the mirror. The explicit form of this function
allows us to characterize the spectral and spatial properties of the photon produced
in the cavity and propagating outside. Finally, in Part IV, we provide discussion
and perspective of the results demonstrated in this manuscript.
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Propagating single photons from
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CHAPTER 3
Introduction

As we discussed in the previous chapter, cavities play an important role not only in
classical, but also in quantum optics [139]. Cavities are essentially open systems, i.e.,
they are in contact with the continuous Ąeld of environment and the radiation Ąeld
generated inside the cavity propagates outside it through its partially transparent
mirrors. This means that the models used to describe the dynamics of such systems
have to take into account the losses of the system, including the leakage of the
radiation Ąeld through the cavity mirrors. In the ideal case of lossless cavities, i.e.,
cavities with perfectly reĆecting mirrors, the situation is simple in the sense that such
a perfect cavity supports well-deĄned discrete frequencies, and the emitter trapped
in such a cavity interacts with those discrete modes with well-deĄned emitter cavity
coupling. A well-known model to describe such systems is the Jaynes-Cummings
model [88, 156], where a two-level emitter is coupled to a single quantized mode
of a perfect cavity, with well-deĄned dipole interaction. In the models where the
cavity can be treated as an isolated system, with the mirrors separating the Ąeld
inside the cavity from the environment outside, there is a nearly periodic exchange
of energy between the atom and the cavity mode, and the Jaynes-Cummings model
is an accurate approximation. In reality, however, the cavities can never be perfect.
A common approach to model open/leaky optical cavities, in which the input from
the environment and the output into it are taken into account, is based on the
phenomenological construction of the cavity leakage by assuming the environment
to be a reservoir with Ćat spectrum, thus featuring a constant reservoir-cavity
coupling (Markov approximation) [20, 69]. In this formalism, known as input-
output formalism, the properties of the Ąeld exiting the cavity (the output) can be
determined based on knowledge of the input Ąeld and the dynamics of the emitter-
cavity system alone. This formalism, however, does not provide the complete
characteristics of the outgoing Ąeld, namely its spectral and spatial properties.
Moreover, these phenomenological models have been used not only for characterizing
optical cavities but also to model other type of cavities, such as plasmonic cavities.
This, however, led to misinterpretations in nanophotonics [187]. Thus, to explicitly
provide the validity limits of well-known phenomenological models and to provide
a complete description of the system, a derivation from Ąrst principles is highly
desirable and will be discussed throughout this manuscript.

In this chapter, we review the quantization of the electromagnetic Ąeld based on the

25
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solutions of classical MaxwellŠs equations. Following the models introduced in the
literature, we derive the classical modes of an open cavity formed by a perfect mirror
and a partially reĆecting dielectric mirror. We review the concept of cavity response
function and its approximate Lorentzian behavior. Finally, we apply this analysis
to quantize the open cavity Ąeld together with its surroundings as a single closed
system, which we refer to as a “universal quantizationŤ. Having this quantized model,
in Chapter 4, we derive the dynamics of a system consisting of a trapped atom in
a cavity from Ąrst principles and connect this derivation to the phenomenological
models commonly used in the literature.

3.1 Electromagnetic field: from classical to

quantum description

As mentioned before, our aim here is to provide a Ąrst principle derivation of the
dynamics of an open cavity. To ensure such a Ąrst principle derivation means to
construct the model starting from the fundamental laws, i.e., we start by solving
the classical MaxwellŠs equations and quantize the system using those solutions (the
details of the following derivation is presented in Appendix A.1) [59]. The classical
MaxwellŠs equations for linear, passive, and inhomogeneous medium, where there
are no free charges and no electric current, read as follows 1 [80]:

∇ × B =
ε(r)
c2

∂

∂t
E, (3.1)

∇ × E = − ∂

∂t
B, (3.2)

∇ · (ε(r)E) = 0, (3.3)

∇ · B = 0, (3.4)

where c = 1/
√
ε0µ0 is the speed of light, with ε0 and µ0 being the free space

permittivity and permeability, respectively. ε(r) is the relative permittivity with
n2 = ε being the refraction index of the media. E and B represent the electric
and magnetic Ąeld vectors. We proceed by introducing the scalar and vector
potentials associated with the electromagnetic Ąeld: U, A; such that ∇ × A = B

and (∂/∂t) A + E = −∇U . With these deĄnitions, the above MaxwellŠs equation
can be written as:

(︄

∂2

∂t2
+

c2

ε(r)
∇ × ∇×

)︄

A(r, t) = − ∂

∂t
∇U. (3.5)

Moreover, we can introduce the following operator: Ω̂
2

= c√
ε(r)

∇ × ∇ × c√
ε(r)

, and

by applying the Coulomb gauge (i.e., ∇ · (ε(r)A) = 0 (transversality condition),
U = 0 [34]) and deĄning Ã =

√︂

ε0ε(r)A(r), from Eq. (3.5) we can get the following
eigenvalue equation

(︃

Ω̂
2 − ω2

k

)︃

Ã(r) = 0, (3.6)

(3.7)
1The parameters written in bold represent vectors, the product “·” represents the scalar product

and “×” is the vector product.
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3.1. Electromagnetic Ąeld: from classical to quantum description

where ωk are the eigenvalues of the operator Ω̂, with the index k = (k, σ), where k

represents the wavevector with ♣k♣ = ωk/c, and σ represents a possible degeneracy.

Having the full classical description of the Ąeld, we now can quantize it via deĄning
canonically conjugate variables Π̃ = −

√︂

ε0ε(r)E such that the pair
(︂

Ã, Π̃
)︂

forms
a Hamiltonian system. However, these variables are not independent, due to the
constraint ∇ ·

√︂

ε(r)Ã = 0 and ∇ ·
√︂

ε(r)Π̃ = 0 imposed by Coulomb gauge. Thus,
they can not be directly used for quantization and be replaced by their corresponding
operators. Instead, to have independent parameters for quantization, we perform
a canonical transformation (Ã, Π̃) → (qk, pk), where the parameters qk and pk are
independent, canonically conjugate variables. The latter can be quantized using
the principle of correspondence, and this leads to the expressions of the quantized
Ąeld variables in terms of the eigenfunctions Φk(r), the eigenvalues ωk, and the
creation/annihilation operators â†

k, âk:

Ã(r) =
∑︂

k

√︄

ℏ

2ωk

(︂

Φk(r)âk + Φ∗
k(r)â†

k

)︂

, (3.8a)

Π̃(r) = −i
∑︂

k

√︄

ℏωk
2

(︂

Φk(r)âk − Φ∗
k(r)â†

k

)︂

, (3.8b)

with
[︂

âk, â
†
k′

]︂

= δkk′ , (3.9a)

[âk, âk′ ] =
[︂

â†
k, â

†
k′

]︂

= 0. (3.9b)

The functions Φk(r) satisfy the transversality constraint: ∇ · (ε(r)Φk(r)) = 0, and
are the solutions of the following eigenmode equation:

Ω̂
2
Φk(r) = ω2

kΦk(r). (3.10)

Taking the expressions in Eq. (3.8) into account, the Hamiltonian of the electromag-
netic Ąeld can be written as follows:

H =
1
2

∑︂

k

ℏωk
(︂

â†
kâk + âkâ

†
k

)︂

. (3.11)

The above quantization is done for a Ąeld with discrete modes in the Hilbert space
L2(RN , dNq). Direct transition from such discrete mode quantization to continuous
ones is not trivial due to the fact that the Hilbert space with inĄnite degrees of
freedom is not well deĄned. This, however, can be straightforwardly done if we move
from Ąnite-dimensional Hilbert space to an associated Fock space. The quantized
expressions for the continuous electromagnetic Ąeld then read:

Ã(r) =
∫︂

d3k

√︄

ℏ

2ωk

(︂

ψ(k, r)â(k) +ψ∗(k, r)â†(k)
)︂

, (3.12)

Π̃(r) = −i
∫︂

d3k

√︄

ℏωk
2

(︂

ψ(k, r)â(k) −ψ∗(k, r)â†(k)
)︂

. (3.13)
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3. Introduction

Figure 3.1: Description of the single-layered cavity model. A perfect mirror stands
at x = −ℓc, delimiting a cavity of length ℓc with a partially transparent dielectric
material from x = 0 to x = δ.

where the explicit deĄnition of ψ(k, r) is given in Appendix A.1 and
[︂

â(k), â†(k′)
]︂

= δ(k − k′), (3.14a)

[â(k), â(k′)] =
[︂

â†(k), â†(k′)
]︂

= 0. (3.14b)

Similarly, for the Hamiltonian we obtain:

H =
1
2

∫︂

d3k ℏωk
(︂

â†(k)â(k) + â(k)â†(k)
)︂

. (3.15)

Finally, the quantized electric Ąeld expression becomes:

E = − 1
√︂

ε0ε(r)
Π̃ = i

∫︂

d3k

√︄

ℏωk
2ε0ε(r)

(︂

ψ(k, r)â(k) −ψ∗(k, r)â†(k)
)︂

. (3.16)

Taking this analysis into account, below we review the derivation and quantization
of the modes of an open cavity.

3.2 Open cavity with a single-layered dielectric

mirror: the true modes

To analyse the modes of an open cavity, we study the longitudinal propagation of the
Ąeld (paraxial approximation [164]) through the cavity (we omit writing explicitly
the transverse mode structure, any inclusion of which can be absorbed in the mode
function obtained below). Let us model a cavity with Ćat mirrors and of mirror
spacing ℓc. In this analysis, we neglect any polarization effect that may arise within
the cavity. A targeted application of our model is the production of single photons
leaking out from one side of the cavity, thus, we assume that such a cavity has a
perfect mirror on the left side, positioned at x = −ℓc, and a partially transparent
dielectric placed at the origin, with a refractive index n1 and a thickness δ. The
dielectric layer thickness is designed to support a target wavelength, λ0. Typically,
δ = λ0/4n1, with n1 being the refractive index of the dielectric. This structure can
be seen in Fig. 3.1. To get the spatial distribution of the electromagnetic Ąeld modes
for this structure, we solve Eq. (3.10) for one-dimensional case:

(︄

d2

dx2
+ εr(x)

ω2

c2

)︄

Φω(x) = 0, (3.17)
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3.2. Open cavity with a single-layered dielectric mirror: the true modes

where Φω (x) is the space-dependent Ąeld eigenmode of continuous, positive index
ω = 2πc/λ, with λ being the wavelength of the travelling wave. εr(x) is the relative
permittivity of the structure having the following form:

εr (x) =

∏︂

⨄︂

⋃︂

1 x ∈ [−ℓc, 0] ∪ [δ,∞)

n2
1 x ∈ (0, δ)

. (3.18)

The ortho-normalization condition for these modes is given by:

⟨Φω (x) ,Φω′ (x)⟩ =
∫︂

dx εr(x)Φ∗
ω (x) Φω′ (x) = δ(ω − ω′). (3.19)

Under these conditions, Eq. (3.17) is solved by a superposition of plane waves of the
form

Φω (x) = A+e
iω

c

√
εr(x)x + A−e

−iω

c

√
εr(x)x. (3.20)

The distinct solutions are then stitched together by the boundary condition that
Φω (x) and its derivative must ensure continuity throughout the points of disconti-
nuity of εr (x), thus Ąxing the values of the coefficients A+ and A− for every region
(see the details in Appendix A.2). For a single-layered mirror, the solution has the
form

Φω (x) = Φω,ins (x)χ[−ℓc,0] + Φω,mirror (x)χ(0,δ) + Φω,outs (x)χ[δ,∞). (3.21)

Here, χD represents the indicator function within a domain D ⊂ R, i.e., χD (x) = 1
for x ∈ D and 0 otherwise. The normalized mode is described in the three regions
by:

Φω,ins (x) =
2i√

2πcA
ei

ω

c
ℓcT (ω) sin

[︃

ω

c
(x+ ℓc)

]︃

,

Φω,mirror (x) =
ei

ω

c
ℓc

√
2πcA

T (ω)
1 + r1

[︂

(ei
ω

c
ℓc − r1e

−iω

c
ℓc)ei

ω

c
n1x + (r1e

iω

c
ℓc − e−iω

c
ℓc)e−iω

c
n1x
]︂

,

(3.22)

Φω,outs (x) =
1√

2πcA
e2iω

c
ℓc
T (ω)
T ∗(ω)

ei
ω

c
x − e−iω

c
x,

where A is the transverse area of the mode (a quantity which is calculated when
the mode is normalized in three dimensions), and r1 is the single-layer reĆectivity:

r1 =
n1 − 1
n1 + 1

. (3.23)

T (ω) is the cavity spectral response function, which describes the ratio of intensity
between the inside and outside of the cavity, with respect to a particular frequency
ω:

T (ω) =
t(ω)

1 + r(ω)e2iω

c
(ℓc+ δ

2
)
. (3.24)

It depends on the cavity spectral transmission response function t(ω) [201]:

t(ω) =
(1 − r2

1)ei(n1−1) ω

c
δ

1 − e2in1
ω

c
δr2

1

= ♣t(ω)♣eiϕt(ω), (3.25)
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and spectral reĆection response function r (ω):

r(ω) = e−iω

c
δ r1(e2in1

ω

c
δ − 1)

1 − e2in1
ω

c
δr2

1

= ♣r (ω)♣ eiϕr(ω). (3.26)

It is important to stress that both of these parameters are complex and have
associated phases: ϕr (ω), ϕt(ω). Together, t(ω) and r(ω) satisfy the beam splitter
relations

♣t(ω)♣2 + ♣r(ω)♣2 = 1, (3.27a)

r∗(ω)t(ω) + t∗(ω)r(ω) = 0. (3.27b)

With the deĄnitions provided above, the modes (3.22) represent the true modes
leading to the so-called universal quantization.

The absolute value squared of the cavity response function can be decomposed as a
sum of Lorentzian-like functions [52, 201], still having ω̃m and γ1 depending on ω:
(see the details in Appendix A.3):

♣T (ω)♣2 =
∞
∑︂

m=−∞

c

2L1

γ1 (ω)

(ω − ω̃m(ω))2 +
(︂

γ1(ω)
2

)︂2 , (3.28)

where

γ1 (ω) = − c

L1

ln ♣r (ω)♣ , (3.29a)

ω̃m(ω) = m
πc

L1

+
c

2L1

(π − ϕr (ω)) , (3.29b)

L1 = ℓc +
δ

2
. (3.29c)

Index 1 in L1 and γ1 indicates that in the considered model the mirror is made of a
single dielectric layer.

These results for a single-layered cavity are commonly used to model the dynamics of
cavities with highly reĆecting mirrors, assuming that the mirror thickness is negligible
with respect to the cavity length such that L1 ≈ ℓc. Such a high reĆectivity with
a single-layered mirror can be achieved if we assume a dielectric material with a
Ąctitiously high refractive index. In particular, at the perfect cavity limit, i.e.,
taking the limit n1 → ∞, Eq. (3.23) leads to r1 → 1, and the reĆection function
in Eq. (3.26) becomes r(ωm) ≈ −1 = eiπ, making the phase ϕr(ωm) = π, with
ωm = mπc/ℓc being the perfect cavity resonances. Taking these into account, for a
highly reĆective cavity the parameters in decomposition (3.28) can be evaluated at
the resonance frequency ωm leading to

♣T (ω)♣2 ≈
∞
∑︂

m=−∞

c

2ℓc

Γm

(ω − ωm)2 +
(︂

Γm

2

)︂2 , (3.30)

where

Γm = γ1(ωm) = − c

ℓc
ln ♣r (ωm)♣ , (3.31a)

ω̃m = ωm +
c

2ℓc
(π − ϕr (ωm)) ≈ ωm. (3.31b)
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3.2. Open cavity with a single-layered dielectric mirror: the true modes

At this stage, each term in the sum in Eq. (3.30) becomes Lorentzian, each being
centred around the resonance frequency ωm. Additionally, assuming that the width
Γm is much smaller than the spacing ∆ωm

= πc/ℓc between the neighbouring
resonances (− c

ℓc
ln ♣r (ωm)♣ = Γm ≪ πc

ℓc
, i.e., − ln ♣r (ωm)♣ ≪ π, deĄning a high

finesse cavity, which results from a high reĆectivity), the cavity response function
can be written as

T (ω) ≈
∞
∑︂

m=−∞

√︄

c

2ℓc

√
Γm

(ω − ωm) + iΓm

2

=
∞
∑︂

m=−∞

Tm (ω) , (3.32)

where T ∗
m(ω)Tm′(ω) = δmm′♣Tm(ω)♣2. Moreover, deĄning a high quality (high-

Q) cavity as Γm ≪ ωm, we can conclude that high reĆectivity results in high
Ąnesse, which itself implies a high-Q cavity. Thus, high reĆectivity is the quantity
characterizing the targeted features of the cavity. In practice, the reĆectivity is Ąnite
and can not be made high using a single dielectric layer. Realistic cavities feature a
multilayer structure which offers high reĆectivity, as seen in Part III.

Finally, using the modes (3.22) we can write the quantized expression of the Ąeld
corresponding to the semi-inĄnite system composed of the open cavity and its
environment:

E(x) = i
∫︂ ∞

0
dω

√︄

ℏω

2ε0

(︂

Φω(x)aω − Φ∗
ω(x)a†

ω

)︂

, (3.33)

with the corresponding Hamiltonian

H =
1
2

∫︂ ∞

0
dω ℏω

(︂

a†
ωaω + aωa

†
ω

)︂

=
∫︂ ∞

0
dω ℏω

(︃

a†
ωaω +

1
2

)︃

. (3.34)

The term 1
2
ℏω is often omitted with the argument that the zero of the energy can be

chosen at will in non-relativistic quantum physics (otherwise leading to an inĄnite
quantity), reducing the Hamiltonian to

H =
∫︂ ∞

0
dω ℏω a†

ωaω. (3.35)

The quantization (3.33) is known as the universal quantization [52, 101, 142, 201],
since the modes aω describe a closed system that incorporates the cavity and
everything else surrounding it.

In the following we use this decomposition of the cavity response function to
derive different models for cavity induced light-matter interaction and single photon
production.
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CHAPTER 4
Production of a single photon

from a trapped atom

Coherent atom-cavity interaction needed to produce a photon inside the cavity is
achieved in a so-called strong coupling regime, where the atom-cavity coupling rate
surpasses incoherent decay mechanisms [98]. The enhancement to the spontaneous
emission rate of a quantized emitter within a resonant cavity is described by the
Purcell effect. When compared to spontaneous emission into free space, the rate
of emission into the cavity mode for an atom localized at the Ąeld maximum is
enhanced by the factor [151]:

Fp =
3λ3Q

4π2V
, (4.1)

where Q is the quality factor of the resonator, λ is the transition wavelength and V
is the optical mode volume of the resonator. As discussed before, the suppression
of photonic decay within the cavity generally requires the use of highly reĆective
mirrors, leading to a large cavity Ąnesse. Given the representation of Ąnesse as
the ratio of cavity free spectral range to its linewidth, a high Ąnesse additionally
ensures good spectral resolution of each resonance. Therefore, when an emitter with
a comparable transition linewidth is coupled to a high Ąnesse cavity, interaction
with only a single Ąeld mode can be assumed.

Taking into account the quantization and the cavity (true) modes derived in the
previous chapter, in this chapter, we demonstrate the Ąrst principle derivation of
the dynamics of a photon produced from an atom trapped in an optical cavity. We
consider the cavity structure depicted in Fig. 3.1 and the universal quantization
of the true modes (3.22). Our aim is to have the complete characterization of the
produced photon so that it can be used in quantum information transfer and storage.
This implies that we need to have the description of the photon inside as well as
outside the cavity. To reach this goal, we discuss different representations of the
light-matter interaction in an optical cavity. In particular, we introduce the true-
mode representation, corresponding to the universal quantization, and introduce the
inside-outside representation, which, unlike the true-mode representation, assumes a
separation between the cavity (inside) and its environment (outside) modes. This
representation allows us to obtain the complete characterization of the leaking
photon in time as well as in the frequency domain. We analyze the validity of this
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separation by comparing the dynamics obtained via inside-outside representation
to that obtained from the true-mode representation. We demonstrate, that one
can straightforwardly derive the well-known phenomenological models from the
inside-outside and true-mode representations while having the explicit deĄnitions of
the parameters and the approximations applied. To characterize the propagation
of the photon outside the cavity, we derive the quantized Poynting vector from the
true-mode representation, which we then write in terms of the reservoir operators
corresponding to the inside-outside representation. We derive the condition of
correspondence of this reservoir photon number operator to the standard output
photon number operator derived in the input-output formulation [69]. Finally, we
derive the master equation [20, 69, 71, 149] by tracing out the reservoir degrees of
freedom, which allows one to determine the state of the atom-cavity system necessary
to obtain the quantum averages describing the relevant physical observables. This
derivation provides the explicit limit at which the approximate models coincide with
the actual true-mode representation.

4.1 Derivation of the model

We start by considering a single Λ atom with ground ♣g⟩, metastable ♣f⟩, and excited
♣e⟩ states trapped in a cavity, which is designed to sustain a Ąeld of wavelength
λ0 and frequency ω0 = 2πc/λ0. The ♣f⟩ ↔ ♣e⟩ transition, with frequency ωef

and dipole moment dfe, is assumed to be nearly resonant with a cavity mode,
introducing the detuning ∆c = ωef − ω0; the ♣g⟩ ↔ ♣e⟩ transition, with frequency
ωeg and dipole moment dge is assumed to be independently driven by a classical
laser Ąeld E(t) cos(ωLt+ φL), corresponding to the time-dependent Rabi frequency
Ω(t) = −E(t)dge/2ℏ, with a detuning ∆ = ωeg − ωL.

4.1.1 True-mode representation

As demonstrated earlier, the universal quantization procedure, featuring the true
modes (3.22) is a derivation from Ąrst principles, which allows the treatment of the
cavity as part of the environment and the derivation of true (exact) modes for such
a closed system (see Fig. 4.1(a)). Here we consider the same physical situation as
the one in Fig. 3.1 while considering that the length of the dielectric layer can be
neglected with respect to the cavity length [52]. By introducing an atom in such a
cavity, we can write the Hamiltonian for the full atom-environment system: A ⊕ E ,
in a rotating frame deĄned by the unitary operator URW = exp (−iωLt)σg + σe + σf :

H̃(t) = HA(t) +Hint +HE (4.2a)

HA(t) = ℏ (∆ − ∆c − ω0)σf + ℏ∆σe + ℏΩ (σge + σeg) , (4.2b)

HE =
∫︂ +∞

0
dω ℏωa†

ωaω, (4.2c)

Hint = iℏ
∫︂ +∞

0
dω

(︂

η(ω)aωσ† − η∗(ω)a†
ωσ
)︂

, (4.2d)

where HA ≡ HA(t) denotes the atomic Hamiltonian in the rotating wave approxima-
tion (RWA). Here, we have introduced the atomic operators σkℓ ≡ ♣k⟩⟨ℓ♣, σk ≡ σkk
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Furthermore, by using the approximate expression (3.32) for the response function,
and assuming that the atom couples to a single cavity mode ω0, we get the following
coupling function

η(ω) ≈ i

√︄

ω

ℏε0ℓcA
defe

iω

c
ℓc sin

[︃

ω

c
(xA + ℓc)

]︃

√︄

Γc
2π

1
ω − ω0 + iΓc

2

, (4.6)

where Γc is the cavity linewidth corresponding to the mode ω0. In the literature,
the assumptions leading to such a Lorentzian-like coupling function (namely, the
Lorentzian structure of the response function) usually correspond to applying the
high quality factor (high-Q) cavity limit. However, as we show below, the high-Q
assumption by itself is not sufficient, by deĄnition. Instead, we should require a
high-Ąnesse cavity induced by a high reĆectivity, which satisĄes all the conditions
necessary to perform the above approximations. Additionally, we can note, that the
product ℓcA appearing in this coupling strength can be interpreted as the cavity
mode volume. In the case considered here, it happens to be identical to the mode
volume determined by the geometric parameters of the cavity: its mirror separation
(or geometric length, ℓc), and mirror area, A. However, we emphasise that here, the
mode volume was not introduced by normalizing the Ąeld in a perfect resonator of
length ℓc. Instead, it is a result of the Ąnite width of the resonances in Eq. (3.32).
As we show in Chapter 6, where we study more realistic cavity models, recovering
ℓc only appears in the case of a long, high-Ąnesse resonator and this may not prevail
when such condition is not met.

The Hamiltonian (4.2) with the coupling (4.5) describes a true-mode representation,
i.e., with continuous frequencies, but with a structured reservoir [39]. In the following
we break these true modes into inside and outside modes, which allow one to quantize
the cavity and the reservoir separately.

4.1.2 Mode separation into inside and outside modes

We now consider an approximately equivalent model to the one obtained in Sec-
tion 4.1.1 via splitting the modes aω into two parts: cavity modes c (inside) and the
continuum of reservoir modes bω (outside) [Fig. 4.1(b)]. The derivation is formally
shown in Ref. [52], exhibiting an error of order O(♣t♣2), where t is the transmission
rate of the (single-layered) mirror. In Chapter 7, we explicitly demonstrate this
derivation for more realistic cavities made of multilayer dielectric mirrors. This
representation can be interpreted as replacing the semitransparent mirror with a
perfect one, forming a perfect cavity (C), which is coupled to the reservoir (R) (see
Fig. 4.2 for the coupling scheme of the atom with the cavity). We refer to it as the
inside-outside representation. The RWA Hamiltonian of the full system A ⊕ C ⊕ R
reads, in the Schrödinger picture:

H(t) = HA(t) +HAC +HC +HRC +HR (4.7a)

HC = ℏω0c
†c, (4.7b)

HAC = ℏg
(︂

c†σ + σ†c
)︂

, (4.7c)

HR =
∫︂ +∞

0
dω ℏω b†

ωbω, (4.7d)

HRC = iℏ
∫︂ +∞

0
dω

(︂

κc(ω)b†
ωc− κ∗

c(ω)c†bω
)︂

, (4.7e)
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4.1. Derivation of the model

with the atom-cavity coupling factor g = −def

√︂

ω0/ℏε0ℓcA (one-photon Rabi fre-
quency), assuming the atom is localized at the Ąeld maximum. The coupling factor
η(ω) for the true mode picture [Eq. (4.6)] can then be approximated in the limit of
high reĆectivity as

η(ω) ≈ η̂(ω) = − ig

√︄

Γc
2π

1
ω − ω0 + iΓc

2

, (4.8)

which is obtained by evaluating the term gω := −def

√︂

ω/ℏε0ℓcA ei
ω

c
ℓc sin

[︂

ω
c

(xA + ℓc)
]︂

in Eq. (4.6) at the resonance frequency ω0: g = gω0 . The form (4.8) allows the direct
derivation of the pseudomode representation described in Section 4.1.3.

outs

Figure 4.2: Atom-Ąeld interaction in the cavity. Left panel: A single Λ atom is
driven by an external classical laser Ąeld of Rabi frequency Ω and a quantized cavity
Ąeld with coupling strength g. Right panel: The Ąelds are in two-photon resonance
(∆ = ∆c), and the one-photon detuning is ∆. Initially, the atom is in the ground
state ♣g⟩. In the course of the excitation process, one photon is taken from the laser
Ąeld and transferred to the cavity, which eventually leaks out of the cavity through
a semitransparent mirror characterized by the leakage Γc.

In Eq. (4.7), HA(t) is the same as Eq. (4.2b), HC is the free-cavity Hamiltonian,
HAC describes the coupling between the atom and the cavity, HR is the free-reservoir
Hamiltonian, and HRC describes the coupling between the empty cavity and the
free reservoir. The reservoir annihilation and creation operators bω, b†

ω satisfy the
commutation relation

[bω, b
†
ω′ ] = δ(ω − ω′). (4.9)

The cavity-reservoir coupling function κc(ω) can be evaluated in the limit of small
transmission and near resonance as [52] (explicit derivation of this function for
multilayered cavity is presented in Part III, Appendix B.6)

κc(ω) = −i
√︄

Γc
2π
e−iω

c
ℓcsinc

(︃

(ω − ω0)
ℓc
c

)︃

. (4.10)

To derive this function, as it is demonstrated in [52], one should equate the modes
derived in true-mode representation to the modes derived for the model where the
actual single-layered open cavity is replaced by a perfect one which is then coupled to
the semi-inĄnite reservoir delimited by the perfect cavity. From this equivalence the
expression in (4.10) can be obtained for cavities with sufficiently small transmission.
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4. Production of a single photon from a trapped atom

We highlight that in this derivation there is no emitter initially considered in the
system, and the coupling function κc(ω) describes the coupling of the empty cavity
to the environment.

One can notice that the derived inside-outside representation does not feature
the constant cavity-reservoir coupling that is generally assumed in the standard
derivation under certain conditions [69]. The standard approach, albeit leading to
physically accurate results in some limits that are analyzed in the next section, can
lead to mathematical inconsistencies (see Appendix A.4). Here, however, the cavity-
reservoir coupling has a speciĄc form (4.10), which is obtained under mathematically
explicitly deĄned conditions (see the details in Chapter 7) and can be treated
straightforwardly.

4.1.3 Pseudomode representation

We can deĄne a pseudomode representation [Fig. 4.1(c)] via

Ĥ(t) = HA(t) + ĤAC + ĤC (4.11a)

ĤAC = ℏg
(︂

a†σ + σ†a
)︂

, (4.11b)

ĤC = ℏ

(︄

ω0 − i
Γc
2

)︄

a†a, (4.11c)

where, for a single mode,

a†♣∅⟩ = ♣1⟩, (4.12a)

[a, a†] = 1. (4.12b)

As we demonstrate below, this representation can be derived directly from the
true-mode picture with the approximate coupling (4.8). The cavity modes c in (4.7)
and a in (4.11) are different since they apply on different space. c is the perfect
cavity mode, while a is deĄned as:

a =
1
g

∫︂

dω η̂(ω)âω, (4.13)

where âω is the annihilation operator of the true mode deĄned for the approximate
coupling η̂(ω).
We highlight that Hamiltonian (4.11) is for the open system A ⊕C, where the reservoir
is eliminated, while Hamiltonians (4.2) and (4.7) both describe closed systems. Here,
we expect that the annihilation operators a and c represent physically the same
approximate modes. In the following we analyze these different representations by
comparing the dynamics obtained via each Hamiltonian.

4.1.4 Comparison and validity of the different

representations

We numerically analyze the validity of different representations described in Fig. 4.1.
We consider a single atom trapped in the cavity and assume an initial condition
with zero photons. To differentiate the parameters of different representations, we
denote the quantities corresponding to the true-mode picture and the pseudomode

38



4.1. Derivation of the model

picture with a tilde and a hat, respectively. We commence by deriving the dynamics
corresponding to the true-mode representation. Here, one can denote the basis as
♣i⟩♣α⟩ ≡ ♣i, α⟩, with i labeling the atomic states and α describing the state of the
continuum. The state in this basis can then be given by the following:

♣ψ̃⟩ = c̃g,0(t)♣g, ∅⟩ + c̃e,0(t)♣e, ∅⟩ +
∫︂ +∞

0
dω c̃f,1(ω, t)♣f,1ω⟩, (4.14)

with

a†
ω♣∅⟩ = ♣1ω⟩, (4.15a)

aω♣1ω′⟩ = δ(ω − ω′)♣∅⟩. (4.15b)

Using Hamiltonian (4.2) in the time-dependent Schrödinger equation with state (4.14):

iℏ
∂

∂t
♣ψ̃⟩ = H̃♣ψ̃⟩, (4.16)

we obtain the following dynamical equations:

i
d

dt
c̃g,0(t) = Ω c̃e,0(t), (4.17a)

i
d

dt
c̃e,0(t) = ∆ c̃e,0(t) + Ω c̃g,0(t) + i

∫︂ +∞

0
dω η(ω) c̃f,1(ω, t), (4.17b)

i
d

dt
c̃f,1(ω, t) = (∆ − ∆c + ω − ω0)c̃f,1(ω, t) − iη∗(ω)c̃e,0(t), (4.17c)

where η(ω) is the actual coupling function (4.5).

Pseudomode dynamics

If we take into account the approximation in (4.6), we can deĄne the following
coefficient:

ĉf,1 =
1
ĝ

∫︂ ∞

0
dω η(ω)c̃f,1(ω, t) =

1
ĝ

∫︂ ∞

0
dω η(ω)e−i(∆−∆c+ω−ω0)tc̃f,1(ω, t), (4.18)

where ĝ is the normalization factor and we have deĄned the quantity c̃f,1(ω, t) =
ei(∆−∆c+ω−ω0)tc̃f,1(ω, t). With this deĄnition Eq. (4.17c) becomes

d

dt
c̃f,1(ω, t) = −η∗(ω)ei(∆−∆c+ω−ω0)tc̃e,0(t). (4.19)

Calculating the time derivative of Eq. (4.18) using the relation (4.19), and inverting
the order of time and frequency integration we obtain:

d

dt
ĉf,1(t) =

d

dt
ĉ

(0)
f,1(t) − 1

ĝ

∫︂ +∞

0
dω ♣η(ω)♣2c̃e,0(t)

+
i

ĝ

∫︂ t

0
dt′c̃e,0(t′)

∫︂ +∞

0
dω ♣η(ω)♣2(∆ − ∆c + ω − ω0)e−i(∆−∆c+ω−ω0)(t−t′),

(4.20)

where we introduced the time derivative of the coefficient at an initial time, deĄned
as

ĉ
(0)
f,1(t) =

1
ĝ

∫︂ +∞

0
dω η(ω)e−i(∆−∆c+ω−ω0)tc̃f,1(ω, 0). (4.21)
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4. Production of a single photon from a trapped atom

Two integrals appear in (4.20) that are evaluated in Appendix A.5, leading to

I1 =
∫︂ +∞

0
dω ♣η(ω)♣2 ≈ ω0♣dfe♣2

ℏε0Aℓc
sin2

[︃

ω0

c
(xA + ℓc)

]︃

, (4.22)

I2 =
∫︂ +∞

0
dω ♣η(ω)♣2(∆ − ∆c + ω − ω0)e−i(∆−∆c+ω−ω0)(t−t′) (4.23)

≈ ω0♣dfe♣2
2ℏε0Aℓc

(︄

∆ − ∆c − i
Γc
2

)︄

e−i(∆−∆c−iΓc

2
)(t−t′) sin2

[︃

ω0

c
(xA + ℓc)

]︃

,

which are obtained under the approximation ϵ2
1 ≪ 1, with ϵ1 = Γc

c
(xA + ℓc). From

the value for the integral I1, we can deduce the expression of the normalization
coefficient ĝ:

♣ĝ♣2 =
ω0♣dfe♣2
ℏε0Aℓc

sin2
[︃

ω0

c
(xA + ℓc)

]︃

= I1, (4.24)

leading to

ĝ = i

√︄

ω0

ℏε0Aℓc
dfe sin

[︃

ω0

c
(xA + ℓc)

]︃

. (4.25)

Having the evaluation of these integrals, we can now rewrite the dynamical equation
(4.20) as follows:

d

dt
ĉf,1 =

d

dt
ĉ

(0)
f,1(t) − ĝ∗c̃e,0(t) + iĝ∗

∫︂ t

0
dt′c̃e,0(t′)

(︄

∆ − ∆c − i
Γc
2

)︄

e−i(∆−∆c−iΓc

2
)(t−t′).

(4.26)
To evaluate the time integral appearing in this expression, we Ąrst formally integrate
equation (4.19) and put the result in (4.18), it can be shown that

ĉf,1(t) − ĉ
(0)
f,1 = −1

ĝ

∫︂ ∞

0
dω ♣η̂(ω)♣2

∫︂ t

0
dt′c̃e,0(t′)e−i(∆−∆c−iΓc

2
)(t−t′) (4.27)

= −ĝ∗
∫︂ t

0
dt′c̃e,0(t′)e−i(∆−∆c−iΓc

2
)(t−t′), (4.28)

hence Eq. (4.26) becomes

d

dt
ĉf,1(t) =

d

dt
ĉ

(0)
f,1(t) − ĝ∗c̃e,0(t) − i

(︄

∆ − ∆c − i
Γc
2

)︄

(︂

ĉf,1(t) − ĉ
(0)
f,1

)︂

. (4.29)

Considering that at initial time t = 0 the atom is in its ground state and there is no
photon in the environment (c̃f,1(ω, 0) = 0), the above equation reduces to

d

dt
ĉf,1(t) = −ĝ∗c̃e,0(t) − i

(︄

∆ − ∆c − i
Γc
2

)︄

ĉf,1(t). (4.30)

Moreover, we can redeĄne the normalization factor ĝ: g = iĝ, which is the atom-
cavity coupling deĄned in Eq. (4.7), leading to the approximate atom-true mode
coupling (4.8).

Taking these results into account, we can deĄne the photon state of the cavity as:

♣1⟩ =
1
g

∫︂ +∞

0
dω η̂∗(ω)â†

ω♣∅⟩. (4.31)
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4.1. Derivation of the model

Consequently, recalling Eq. (4.17), we can get the dynamics corresponding to the
pseudomode representation, on a reduced basis ¶♣g, ∅⟩, ♣e, ∅⟩, ♣f, 1⟩♢, for the state
given by

♣ψeff⟩ = ĉg,0(t)♣g, ∅⟩ + ĉe,0(t)♣e, ∅⟩ + ĉf,1(t)♣f, 1⟩ :

i
d

dt
ĉg,0(t) = Ω ĉe,0(t), (4.32a)

i
d

dt
ĉe,0(t) = ∆ ĉe,0(t) + Ω ĉg,0(t) + g ĉf,1(t) (4.32b)

i
d

dt
ĉf,1(t) =

(︄

∆ − ∆c − i
Γc
2

)︄

ĉf,1(t) + g ĉe,0(t), (4.32c)

which leads to the Hamiltonian in (4.11).

Inside-outside dynamics

Unlike the case of the true-mode picture, in the inside-outside representation there
is a separation of the photon state into inside and outside ones. Thus the basis
splits into the following states: ¶♣g, ∅⟩, ♣e, ∅⟩, ♣f, 1ins, ∅outs⟩, ♣f, ∅ins, 1ω,outs⟩♢, where
the indices “insŤ and “outsŤ indicate the photon state inside and outside the cavity,
respectively, and

c†♣∅⟩ = ♣1ins⟩, (4.33a)

c♣1ins⟩ = ♣∅⟩, (4.33b)

b†
ω♣∅⟩ = ♣1ω,outs⟩, (4.33c)

bω♣1ω′,outs⟩ = δ(ω − ω′)♣∅⟩. (4.33d)

The dynamical equations corresponding to the Hamiltonian (4.7) with the state

♣ψ⟩ = cg,0(t)♣g, ∅⟩+ce,0(t)♣e, ∅⟩+cf,1,0(t)♣f, 1ins, ∅outs⟩+
∫︂ +∞

0
dω cf,0,1(ω, t)♣f, ∅ins, 1ω,outs⟩

(4.34)

become

i
d

dt
cg,0(t) = Ω ce,0(t), (4.35a)

i
d

dt
ce,0(t) = ∆ ce,0(t) + Ω cg,0(t) + g cf,1,0(t), (4.35b)

i
d

dt
cf,1,0(t) = (∆ − ∆c)cf,1,0 + g ce,0(t) − i

∫︂ +∞

0
dω κ∗

c(ω) cf,0,1(ω, t), (4.35c)

i
d

dt
cf,0,1(ω, t) = (∆ − ∆c + ω − ω0) cf,0,1(ω, t) + iκc(ω) cf,1,0(t). (4.35d)

In order to examine the validity limits of the approximate models derived above,
we compare the dynamics via solving Eqs. (4.17), (4.32), and (4.35) [see details
of the integration of Eqs. (4.17) and (4.35) in Appendix A.6]. For this analysis,
the way the atom is driven to its excited state is irrelevant. Thus we assume that
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Figure 4.3: Comparison of the single-photon shape obtained via true-mode, inside-
outside, and pseudomode pictures. (a) and (b) Spectral shape of the outgoing
photon with (g,Γc, ωm) × T = (0.6, 2, 2416), where ωm = mπc

ℓc
, m being the number

of antinodes inside the cavity. Each curve corresponds to a different representa-
tion: P̃ p,outs = ♣c̃f,1(ω, tf)♣2 (true-mode picture), P̂ p,outs = ♣ĉf,1(ω, tf)♣2 (pseudomode
picture), and Pp,outs = ♣cf,0,1(ω, tf)♣2 (inside-outside picture; see the deĄnition of
the dimensionless parameters ci in Appendix A.6), where tf is the Ąnal time when
the photon is in its steady state. In (a), tf/T = 10, Γc = 2/T is obtained for a
cavity with a length ℓc = ℓ0 and a Ąctitious refractive index n1 = 27.735, leading
to the reĆectivity R = ♣r♣2 = e−2ℓcΓc/c ≈ 0.995 (with ℓ0

cT
= 0.0013), where ℓ0 is the

length for which the cavity sustains a single fundamental mode, i.e., m = 1. In
(b), tf/T = 20, ℓc = 165ℓ0 and n1 = 2.1756, leading to the same Γc = 2/T , for the
m = 165th mode, with the reĆectivity R ≈ 0.42.
(c) and (d) Time proĄles of the outgoing photon, with the Ągures (c) and (d) obtained
via the same parameters introduced in (a) and (b), respectively. P̂ f,1 = ♣ĉf,1(t)♣2,
Pf,1 = ♣cf,1,0(t)♣2 are the coefficients derived from the pseudo-mode and inside-outside
representations, respectively.

the atom is initially in the excited state ♣e⟩ and there is no laser Ąeld applied, i.e.
Ω = 0. We analyze a regime where there are no Rabi oscillations between the atom
and the produced photon, i.e., the leakage from the cavity is stronger than the
atom-cavity coupling: Γc > g. Both the effective Hamiltonian and the inside-outside
representation are derived under the assumption of having a high-Q cavity, i.e.,
Γc ≪ ω0. In Fig. 4.3, we present the results obtained via different representations for
a cavity with a Ąxed quality factor: ω0/Γc ≈ 1200. This factor is obtained either by
Ąxing the mirror refractive index and changing the length of the cavity or vice versa.
In Fig. 4.3(a), the cavity length is such that it sustains half a wavelength of cavity
resonance wavelength λ0: ℓc = ℓ0 = λ0/2. Therefore, there is only a single mode
that the atom can couple to, making the cavity Ąnesse the same as the quality factor:
∆ωm

/Γc ≈ 1200. We recall that the spectral shape of the photon in pseudomode
representation is recovered using the true-mode representation with a coupling η̂(ω),
taking into account the relation in Eq. (4.13). As we can see from the Ągure, both for
detuned and nondetuned cases, the photons obtained with pseudomode and inside-
outside representations match the true-mode representation obtained from eq. (4.17),
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with the coupling (4.5) 1. Furthermore, in Fig. 4.3(b), we consider a cavity of longer
length and a mirror of lower refractive index. To have the same atom-cavity coupling
rate, we change the value of the dipole moment of the atom. While having the same
quality factor, here we get a cavity Ąnesse ∆ωm

/Γc ≈ 7. This low Ąnesse makes the
transition from eq. (4.5) to eq. (4.6) less accurate, i.e., the Lorentzians corresponding
to each mode are not separated well enough to consider

√
∑︁

fm ≈ ∑︁
√
fm. We

emphasize that the approximation (4.6) is used in the derivation of the pseudo-
mode picture as well as the inside-outside representation. Hence, it leads to a
mismatch between the approximate and the actual representations. Equivalently,
as shown in Appendix A.5, in order for the pseudomode derivation to work, the
following condition should hold:

(︂

Γc

c
(xA + ℓc)

)︂2 ≪ 1. Evidently, when we increase
the cavity length while keeping Γc the same, this condition is not well satisĄed,
breaking the validity of this representation. On the other hand, as mentioned before,
the inside-outside representation is derived for the cavities with low transmission
rate, given by ♣t♣2 = 1 − e−2ℓcΓc/c [see Eq. (3.31a)]. For this long-cavity scenario,
similar to the previous argument, this term fails to satisfy the condition ♣t♣2 ≪ 1
(♣t♣2 ≈ 0.58), which leads to the mismatch between the inside-outside and the
true-mode representations. Finally, we can notice that even in the case of ∆c = 0,
the photon obtained from the actual model is slightly shifted from the resonance
frequency ω0. This is because in the actual model where we use the response function
T (ω), apart from the fundamental mode ω0, there are other modes, which, combined
with the low Ąnesse of the cavity, affect the produced photon.

In Figs. 4.3(c) and 4.3(d), we study the corresponding photon shape in the time
domain. Here we compare the cavity photon obtained from the pseudo-mode [ĉf,1(t)]
and the inside-outside representations [cf,1,0(t)]. As we can see from Eq. (4.32),
the photon inside the cavity ĉf,1(t) depends only on the parameters Γc and g, and
these parameters are Ąxed, hence P̂ f,1 is the same both for high (top Ągure) and
low (bottom Ągure) Ąnesse scenarios. On the other hand, in the inside-outside
representation, the coupling κc(ω) explicitly depends on the cavity length, leading
to different curves for the coefficient Pf,1. This, combined with the arguments
introduced in the analysis of Figs. 4.3(a) and (b), lead to the differences between
the photon obtained via pseudomode and inside-outside representations.

In the following, we derive the well-known master equation starting from the inside-
outside representation. We use a method different from the standard derivation
obtained by phenomenological use of the pseudo-mode Hamiltonian.

4.2 Heisenberg-Langevin equations, Poynting

vector, photon density, and photon flux

We wish to derive the effective dynamics of the atom-cavity system S = A ⊕ C,
coupled to the reservoir, from Ąrst principles. Our aim is to control the production
of an outgoing photon leaking from the cavity by driving speciĄcally the atom in the
cavity by the external Ąeld. We will use the convenient inside-outside representation
as it will allow a clear identiĄcation and characterization of the leaking photon

1In the simulation we use the actual response function (3.24) derived for a single-layered mirror
with the atom placed at xa = −ℓc/2 .
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4. Production of a single photon from a trapped atom

propagating in free space. Here, we study the case presented in Fig. 4.2, where the
atom is initially in the ground state, and we consider the two-photon resonance
condition: ∆ = ∆c, leading to ωgf = ω0 − ωL. We use the Poynting vector that we
derive from the true-mode representation and deĄne in the Heisenberg picture. We
highlight that one could use the Poynting vector derived in Ref. [16] in free space
and apply it to the situation with the presence of a cavity; however, as we show
below, the Poynting vector that we derive from Ąrst principles is different from this
one. We then derive the effective model in two steps: We Ąrst deĄne an outgoing Ćux
of photons which is connected to the quantum average of the Heisenberg evolution
of the cavity operator c†c. Next, we derive a master equation of the system S by
eliminating the reservoir degrees of freedom, which will allow the calculation of the
quantum averages.

4.2.1 Derivation of the Poynting vector: photon number

density and flux

During the photon detection process, the detector measures the energy density at
its position [see Fig. 4.4]. Thus, considering that the energy carried by the photons
leaking from the cavity can be characterized by the Poynting vector [52, 16], one
can use this quantity to describe the photon proĄle. The Poynting vector of the
photon produced in the cavity (placed at position x = 0) and propagating in the
positive x direction can be calculated using the modes Φω,outs(x), derived for the
outside of the cavity in the true-mode representation [Eq. (3.22)]:

Souts(x) = − 1
2µ0

(Bouts(x)Eouts(x) + Eouts(x)Bouts(x)) (4.36)

where

Eouts(x) =
i√

2πcA

∫︂ ∞

0
dω

√︄

ℏω

2ϵ0

(︃

(︂

G(ω)ei
ω

c
x − e−iω

c
x
)︂

aω −H.C.
)︃

, (4.37)

Bouts(x) = − i

c
√

2πcA

∫︂ ∞

0
dω

√︄

ℏω

2ϵ0

(︃

(︂

G(ω)ei
ω

c
x + e−iω

c
x
)︂

aω −H.C.
)︃

,(4.38)

with

G(ω) = e2iω

c
ℓc
T (ω)
T ∗(ω)

≈
√︄

2π
Γc

√︃

ω0

ω
α∗(ω)

(︃

ω − ω0 − i
Γc
2

)︃

. (4.39)

α(ω) is the coefficient linking the true mode aω to the discrete cavity mode c:
aω = α(ω)c+

∫︁∞
0 dω′β(ω, ω′)bω′ (the explicit derivation of this term for more realistic

cavities is demonstrated in Part III, Chapter 7), and can be written as follows [see
Eq. (7.23a)]:

α(ω) =
√︄

ω

ω0

√︄

ℓc
πc

sinc

(︄

(ω − ω0)
ℓc
c

)︄

e−iω

c
ℓcT ∗(ω). (4.40)

Taking these into account we get the following Poynting vector, for the propagation
in the positive x direction:

Souts(x) =
ℏ

2πA
∫︂ ∞

0
dωdω′

√
ωω′Re

⎭

G(ω)G∗(ω′)ei
(ω−ω

′)
c

xa†
ω′aω

}︃

. (4.41)
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4.2. Heisenberg-Langevin equations, Poynting vector, photon density, and photon Ćux

Furthermore, by moving from the true-mode representation to the inside-outside
representation via writing aω in terms of the outside operator: aω =

∫︁

dω′β(ω, ω′)bω′

and considering that [52]

i
∫︂

dωdω′ωα∗(ω)β(ω, ω′)bω′ =
∫︂

dωκ∗
c(ω)bω (4.42)

(see Appendix B.6), we obtain the following:

Souts(x) =
ℏ

A
ω0

Γc

∫︂ ∞

0
dωdω′κ∗

c(ω)κc(ω′)ei
(ω−ω

′)
c

xb†
ω′bω. (4.43)

Via introducing the integrated reservoir operator deĄned as

b(x) =
1√
Γc

∫︂ ∞

0
dωκ∗

c(ω)ei
ω

c
xbω, (4.44)

the expression for the Poynting vector becomes

Souts(x) =
ℏω0

A b†(x)b(x). (4.45)

It shows that the Poynting vector includes the coupling between inside and outside
the cavity.

Moreover, recalling the Poynting theorem [52, 70], for the expectation value of
the Poynting vector corresponding to the energy Ćow of linearly polarized light
propagating in one-dimensional space, we can write the following:

∂

∂x
⟨Souts(x)⟩♣ψ(t)⟩ +

∂

∂t
⟨Uouts(x)⟩♣ψ(t)⟩ = 0, (4.46)

where ⟨Uouts(x)⟩♣ψ(t)⟩ is the expectation value of the electromagnetic energy density
and ♣ψ(t)⟩ is the wavefunction (4.34) correspondimg to the inside-outside represen-
tation. As we show below [Eq. (4.68b)], if we write the Poynting vector (4.45) in
the Heisenberg representation, i.e., via operator b(x, t) in Eq (4.63), it can be shown
that this term depends only on t− x/c. Taking this into account, Eq. (4.46) can be
equivalently written as

− ∂

c∂t
⟨Souts(x)⟩♣ψ(t)⟩ +

∂

∂t
⟨Uouts(x)⟩♣ψ(t)⟩ = 0, (4.47)

∂

∂x
⟨Souts(x)⟩♣ψ(t)⟩ − c

∂

∂x
⟨Uouts(x)⟩♣ψ(t)⟩ = 0, (4.48)

leading to the following relation between the Poynting vector and the energy density:

⟨Souts(x)⟩♣ψ(t)⟩

c
= ⟨Uouts(x)⟩♣ψ(t)⟩. (4.49)

Using the fact that we are considering a quasi-monochromatic state, one can deĄne
an averaged coarse-grained photon number density propagating through the area A
at a position x by

Φdensity(x, t) :=
A
ℏω0

⟨Uouts(x)⟩♣ψ(t)⟩, (4.50)
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4. Production of a single photon from a trapped atom

which using (4.49) can be expressed in terms of the averaged Poynting vector as

Φdensity(x, t) :=
A
ℏω0

⟨Souts(x)⟩♣ψ(t)⟩

c
=

1
c
⟨b†(x)b(x)⟩♣ψ(t)⟩ = ⟨b†

xbx⟩♣ψ(t)⟩, (4.51)

where we have deĄned the operator

b†
x =

1√
c
b†(x) =

1√
cΓc

∫︂ ∞

0
dωκc(ω)e−iω

c
xb†
ω, (4.52)

which satisĄes the following commutation relations (see Appendix A.7):

[︂

bx, b
†
x

]︂

=
1

2ℓc
, (4.53)

[︂

bx, b
†
x′

]︂

= 0, when ♣x− x′♣ > 2ℓc. (4.54)

Taking this deĄnition into account, the total photon number outside the cavity
(x > 0) can be written as follows:

N(t) =
∫︂ ∞

0
dx ⟨b†

xbx⟩♣ψ(t)⟩, (4.55)

with ⟨b†
xbx⟩♣ψ(t)⟩ being the mean value of photon number density at a position x.

We remark that this deĄnition is possible due to the fact that we consider a one-
dimensional model for the propagating light and limit the study to a single mode ω0,
which is justiĄed by the fact that when there is an emitter trapped in such a cavity,
the cavity-emitter coupling is designed such that the emitter couples to a single cavity
mode, therefore selecting single mode ω0. As discussed in literature [61, 70, 133],
in a more general case, a deĄnition of a local photon number operator or a local
energy density is not possible since the process of projecting out the transverse
and longitudinal part of a vector Ąeld is a nonlocal operation in position space.
However in the particular case discussed here, we are able to deĄne such a local
operator in a so-called coarse-grained limit, due to the explicit form of κc(ω) in the
deĄnition (4.52) (see the discussion in Appendix A.7).

Furthermore, considering that for a given state, the amount of energy going through
the Ąeld mode area A, during the time dt, is the quantum average of the Ćux of
the Poynting vector through this area: A⟨Souts(x)⟩♣ψ(t)⟩dt = ℏω0⟨b†(x)b(x)⟩♣ψ(t)⟩dt,
by normalizing this expression by ℏω0, we get the averaged number of photons
dn(x, t) ≡ ⟨b†(x)b(x)⟩♣ψ(t)⟩dt going through the mode area during dt, deĄning the
photon Ćux:

Φflux(x, t) :=
dn(x, t)
dt

=
⎬

b†(x)b(x)
⟩︃

♣ψ(t)⟩
, (4.56)

which is related to the photon number density (4.51) by the following relation

Φflux(x, t) = cΦdensity(x, t). (4.57)

Additionally, we can deĄne a general photon state outside the cavity as

♣1outs(t)⟩ =
∫︂ +∞

0
dω Ψ̂(ω, t)b†

ω♣∅⟩, (4.58)
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with the shape Ψ̂(ω, t), where the time dependence appears in the phase correspond-
ing to the propagation such that at all times t

∫︂ ∞

0
dω♣Ψ̂(ω, t)♣2 = 1, (4.59)

which satisĄes

N =
∫︂ ∞

0
dx
⎬

b†
xbx

⟩︃

♣1outs(t)⟩
= 1. (4.60)

We remark that b†
x cannot be interpreted as an operator that creates a photon

at position x; such operator does not exist since the mode of the photon is non-
local [61, 70].

4.2.2 Equations of motion for the operators – Heisenberg

representation

In the above derivations, we have considered time-independent operators in the
Schrödinger representation, where the time dependence is in the wavefunction.
Here we move to the Heisenberg representation and derive the equations of mo-
tion in the Heisenberg picture for the time-dependent reservoir operator bω(t) ≡
Û

†
(t, t0)bωÛ(t, t0) with Û(t, t0) being the propagator of the total Hamiltonian

H(t), whose Heisenberg picture reads H(H)(t) = Û
†
(t, t0)H(t)Û(t, t0). From Ȯ =

− i
ℏ
[O(t), H(H)(t)] for an operator O, assumed to be time independent in the

Schrödinger picture and written as O(H)(t) ≡ O(t) = Û
†
(t, t0)OÛ(t, t0) in the

Heisenberg picture, we write the Heisenberg-Langevin equations:

ḃω(t) = −iωbω(t) + κc(ω)c(t), (4.61a)

ċ(t) = −iω0c(t) −
∫︂ +∞

0
dω κ∗

c(ω)bω(t) − igσ(t). (4.61b)

In the following, we omit the “(H)Ť superscript for the Heisenberg picture Hamilto-
nian H(H)(t) ≡ H(t). The energy carried by the photons leaking from the cavity can
be characterized by the Poynting vector operator in the Heisenberg or Schrödinger
picture, thus, in the following, we write the expressions derived above for the
Poynting vector in the Heisenberg picture:

Souts(x, t) =
ℏω0

A b†(x, t)b(x, t), (4.62)

where b(x, t) is the Heisenberg representation of the integrated reservoir opera-
tor (4.44):

b(x, t) :=
1√
Γc

∫︂ ∞

0
dωκ∗

c(ω)ei
ω

c
xbω(t). (4.63)

Similarly, relation (4.49) in the Heisenberg representation becomes

⟨Souts(x, t)⟩♣ψ(t0)⟩

c
= ⟨Uouts(x, t)⟩♣ψ(t0)⟩, (4.64)
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4. Production of a single photon from a trapped atom

where ♣ψ(t0)⟩ is the initial state. Furthermore, for the photon number density and
Ćux, we can write

Φdensity(x, t) =
A
ℏω0

⟨Souts(x, t)⟩
c

=
1
c
⟨b†(x, t)b(x, t)⟩ = ⟨b†

x(t)bx(t)⟩, (4.65)

Φflux(x, t) =
A
ℏω0

⟨Souts(x, t)⟩ = ⟨b†(x, t)b(x, t)⟩, (4.66)

where we have deĄned the Heisenberg representation of the operator bx:

b†
x(t) =

1√
c
b†(x, t) =

1√
cΓc

∫︂ ∞

0
dωκc(ω)e−iω

c
xb†
ω(t). (4.67)

4.2.3 Integrated reservoir operators: Input-output relation

In eq. (4.63) we have deĄned the integrated reservoir operator, which we can evaluate
by integrating (4.61a) from an initial time t0 to t,

b(x, t) :=
1√
Γc

∫︂ +∞

0
dω κ∗

c(ω)bω(t)eiω
x

c (4.68a)

= bin

(︃

t− x

c

)︃

+
∫︂ t

t0
dt′
∫︂ +∞

0
dω

♣κc(ω)♣2√
Γc

c(t′)e−iω(t−t′)eiω
x

c , (4.68b)

with the input operator deĄned similarly:

bin

(︃

t− x

c

)︃

:=
1√
Γc

∫︂ +∞

0
dω κ∗

c(ω)bω(t0)e−iω(t−t0− x

c
). (4.69)

One can notice that the deĄnition (4.68a) is different from the standard deĄnition,
where b(x, t) is deĄned via a Fourier transform of bω [69, 77, 153] and a Ćat continuum
(see Appendix A.4). Instead, here, from the deĄnition of the Poynting vector, we
have the natural introduction of the function κc(ω) in the deĄnition, and its explicit
form allows one to straightforwardly derive the equation for the output operator.

In order to evaluate the integral over the frequency in (4.68b), we use the expression
(4.10). This gives for the integrated reservoir operator (see details in Appendix A.8):

b(x, t) = bin

(︃

t− x

c

)︃

+
√︂

Γcc
(︃

t− x

c

)︃

, (4.70)

where we have assumed t ≫ 2ℓc
c

, t > t0 + x
c
+ 2ℓc

c
. We further neglect the cavity length,

assuming that the traveling distance of interest is much larger than the cavity length.
Also, considering that the dynamics evolves over a much longer period of time than
the round trip time 2ℓc

c
of the produced photon (coarse-grained approximation), we

get t ≫ 0, t > t0 + x
c

and x > 0 . We deĄne the output operator

bout(t− x/c) := b(x > 0, t); (4.71)

hence,

bout

(︃

t− x

c

)︃

= bin

(︃

t− x

c

)︃

+
√︂

Γc c
(︃

t− x

c

)︃

, (4.72)

which is recognized as the input-output relation [69]. We highlight that the input-
output relation here is a consequence of the concrete form of κc(ω) [Eq. (4.10)],
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4.2. Heisenberg-Langevin equations, Poynting vector, photon density, and photon Ćux

which justiĄes thus the Markov approximation. This formulation allows direct and
transparent interpretation of the bout operator through the Poynting vector as shown
below [see Eq. (4.76)].

At the cavity position, x = 0, we obtain the integrated reservoir operator (see
Appendix A.8):

b0(t) ≡ b(x = 0, t) = bin(t) +

√
Γc
2

c(t). (4.73)

This expression (4.73) is used in the next section to derive the master equation in
the cavity.

We can also simplify the Heisenberg-Langevin equation for c(t) as:

ċ(t) = −
(︄

iω0 +
Γc
2

)︄

c(t) −
√︂

Γcbin(t) − ig σ(t). (4.74)

c

x

x

flux

Figure 4.4: Sketch of the photodetection: The source system S emits a photon with
leakage Γc at position 0, towards a detector D at a position x through the reservoir R.
The photon flux Φflux is measured using the data on the averaged quantized Poynting
vector ⟨S(x, t)⟩.

Using the results obtained in the previous section, we can write the Poynting
vector (4.62) in the inside-outside representation as follows:

Souts(x > 0, t) =
ℏω0

A b†
(︃

t− x

c

)︃

b
(︃

t− x

c

)︃

, (4.75)

leading to the following expression for the photon Ćux (written here for x > 0):

Φflux(x, t) =
⎬

b†
(︃

t− x

c

)︃

b
(︃

t− x

c

)︃⟩︃

. (4.76)

Recalling that b(t − x/c) is the output operator (4.71), we emphasize that this
relation gives the connection between the photon Ćux and this output operator.

If we choose the state of the reservoir to be initially a vacuum state: ρ(t0) =
ρS(t0) ⊗ ♣∅⟩⟨∅♣, the average of the terms involving bin, b

†
in in the expression of the

Ćux (4.76) is nulliĄed. This gives the expression of the outgoing photon Ćux through
the semi-transparent mirror for t > t0 + x

c
, x > 0:

Φflux(x, t) = Γc
⎬

c†
(︃

t− x

c

)︃

c
(︃

t− x

c

)︃⟩︃

. (4.77)

This key result shows that one can determine the Ćux from the quantum average of
the dynamics of the cavity photon number [74].

In the following section, we derive the effective master equation reduced to the
system S which is used to calculate the quantum average of (4.76) in order to derive
the Ćux.
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4. Production of a single photon from a trapped atom

4.2.4 The master equation for the system dynamics

The dynamics of the system S = A ⊕ C, consisting of the atom and the cavity,
derived from the above inside-outside representation can be characterized by a
master equation which is shown to be of Lindblad form. We follow the derivation of
Refs. [20, 26, 69, 127]. We need Ąrst to derive the Heisenberg equation of motion of
the operators XS(t) = U †(t, t0)XSU(t, t0) of the system in the Heisenberg picture.

The dynamics of XS(t) is determined from the Heisenberg-Langevin equation (see
details of the following calculation in Appendix A.9):

d

dt
XS(t) = − i

ℏ

[︃

XS(t), H(H)
S (t)

]︃

+ D†
in,t

(︂

XS(t)
)︂

(4.78)

+ Γc
(︂

c†(t)XS(t)c(t) − 1
2
¶c†(t)c(t), XS(t)♢

)︂

,

where ¶A,B♢ = AB + BA denotes the anticommutation relation, D†
in,t(·) is a

time-dependent dissipator part involving bin(t), acting on XS(t), and H
(H)
S (t) =

U †(t, t0)HS(t)U(t, t0), with HS being the system Hamiltonian:

HS(t) = HA +HAC +HC . (4.79)

In Eq. (4.78) we have used the integrated reservoir operator (4.73) at the position
x = 0 of the cavity.

We deĄne the expectation value of XS:

⟨XS(t)⟩ = TrS¶XSρS(t)♢ = Tr¶XS(t)ρ(t0)♢, (4.80)

where ρ(t0) = ρS(t0) ⊗ ρR(t0) is the complete density operator and ρS(t) =
TrR¶U(t, t0)ρ(t0)U †(t, t0)♢ is the reduced density operator describing S with partial
trace TrR¶·♢ eliminating the degrees of freedom corresponding to its subscript.

We here assume that the reservoir is initially a vacuum state ρR(t0) ≡ ♣∅⟩⟨∅♣ such
that D†

in,t(·) cancels out in averaging. Finally, averaging Eq. (4.78), we Ąnd the
master equation of Lindblad form for ρS(t):

d

dt
ρS(t) = − i

ℏ
[HS(t), ρS(t)] + Γc

(︂

cρS(t)c† − 1
2
¶c†c, ρS(t)♢

)︂

. (4.81)

Here, all system operators σ, c are time independent (Schrödinger picture), and the
remaining time dependence of HS(t) is due to the driving Ąeld Ω(t).
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CHAPTER 5
Single photon shaping

In the previous chapter, we derived models to characterize the single photon pro-
duction from a trapped atom in an open cavity. As an application, in the following,
we derive from the preceding analysis a model for the generation and modiĄcation
of the shape of a single photon using a leaky cavity containing one atom driven by a
pulsed laser of Rabi frequency Ω(t). The production of a single photon in such a
system has been demonstrated with an atom Ćying through the cavity in a resonant
stimulated Raman adiabatic passage conĄguration [108, 143, 195] and for a trapped
ion in a cavity [95]. We apply the model for a non-resonant scheme and show that
it allows a direct and simple way to design and control the photonic wavepacket
on demand. This is obtained for a particular coupling regime, which ensures single
photon production without populating the cavity state. This leads to the production
of a single photon with broad bandwidth, which can be of advantage when coupling
photon states with materials of distinct resonances.

5.1 The model

Since the system of interest involves only the atom and the cavity, in the effec-
tive model, the basis introduced in the inside-outside representation reduces to
¶♣g, ∅⟩, ♣e, ∅⟩, ♣f, 1⟩, ♣f, ∅⟩♢ (see Fig. 4.2), where the third label is dropped due to the
elimination of the reservoir degrees of freedom and the label “inŤ is omitted. Such
dynamics involves the Lindblad equation derived previously (we omit the subscript
S for ρ):

d

dt
ρ(t) = − i

ℏ
[HS(t), ρ(t)] + L[ρ(t)], (5.1)

with the dissipator L[ρ] = Γc(cρc† − 1
2
¶ρ, c†c♢). Equation (5.1) can be rewritten as

d

dt
ρ(t) = − i

ℏ
(H̆(t)ρ(t) − ρ(t)H̆

†
(t)) + Γc cρ(t)c

†, (5.2)

where we introduced a non-Hermitian dissipative Hamiltonian H̆(t) = HS(t)−iℏΓc

2
c†c,

equivalent to (4.11). Expressing the Hamiltonian in a matrix form (in a two photon
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resonance regime: ∆ = ∆c)

HS(t) = ℏ

[︄

H (t) [0]3×1

[0]1×3 −ω0

]︄

, (5.3a)

H (t) =

⋃︁

⋁︁

⨄︁

0 Ω(t) 0
Ω(t) ∆ g

0 g 0

⋂︁

⎥

⋀︁ (5.3b)

shows two decoupled dynamical blocks H (t) and ¶−ω0♢. From the density matrix

ρ(t) =

[︄

ρAA(t) ρA0(t)
ρ0A(t) ρ00(t)

]︄

, (5.4)

we split Eq. (5.2) into two equations:

ρ̇
AA

= −i(H̃ (t)ρAA(t) − ρAA(t)H̃
†
(t)), (5.5a)

ρ̇00 = ΓcDρAA(t)D†, (5.5b)

where D = [0, 0, 1] is a block from the matrix representation c of the annihilation
operator c, H̃ (t) = H (t) − i

2
ΓcD

†D. Choosing the initial condition in ♣g, ∅⟩ makes
the dynamics not involve ρA0 and Eq. (5.5a) corresponds thus to a Schrödinger
equation with losses (i.e. with a non-Hermitian Hamiltonian) derived in Eq. (4.32),
i.e. TrρAA < 1:

i
∂

∂t
♣ψeff⟩ =

⋃︁

⋁︁

⨄︁

0 Ω(t) 0
Ω(t) ∆ g

0 g −iΓc

2

⋂︁

⎥

⋀︁ ♣ψeff⟩, (5.6)

with ♣ψeff⟩ being the state in the pseudomode picture. The population lost from
the subspace spanned by the states ¶♣g, ∅⟩, ♣e, ∅⟩, ♣f, 1⟩♢ (on which the block A is
deĄned) is collected in state ♣f, ∅⟩ (on which the block ¶−ω0♢ is deĄned), so that the
whole system is closed: Pg,0(t) + Pe,0(t) + Pf,1(t) + Pf,0(t) = 1 with the population
Pi,n(t) = ⟨i, n♣ρ(t)♣i, n⟩ = ♣ci,n♣2. We highlight that Eq. (5.6) is obtained from
the inside-outside picture, for the cavity of mode c. This equation coincides with
Eq. (4.32), obtained from pseudomode picture; hence in this limit the modes c and
a are the same.

Rewriting (5.5b), we get:
d

dt
Pf,0(t) = ΓcPf,1(t). (5.7)

On the other hand, from the deĄnition of the average ⟨O⟩ = Tr(ρO), one can write
the photon Ćux (4.77) in terms of the populations:

Φflux(t) ≡ dn(t)

dt
= ΓcPf,1(t). (5.8)

We can then identify Pf,0(t) as the number of outgoing photons: Pf,0(t) ≡ n(t). The
scheme enables us to derive the shape of the leaking photon, through its temporal
Ćux Φflux(t) from the atom-cavity dynamics, which is determined by the Schrödinger
equation (5.6).
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5.2 The scheme for a large detuning

Here we start by analyzing the dynamics for different coupling regimes for a single-
mode cavity (ℓc = ℓ0). We compare the strong coupling regime g > Γc with an
intermediate coupling regime g ≲ Γc. The parameters are chosen such that the
approximate models described in Chapter 4 remain valid. Particular cases for
intermediate and strong coupling regimes are presented in Fig. 5.1. As expected, in
the strong coupling regime the single-photon state inside the cavity is more populated
than the one in an intermediate coupling regime. In Fig. 5.2, we study cavities with
different decay rates and analyze the produced photon inside and outside the cavity,
using the full inside-outside representation [Eq.(4.35)]. In Fig. 5.2(a) the produced
photon inside the cavity is presented (Pf,1). As one would expect, with the decrease
in Γc the probability of the photon state inside the cavity increases. We also notice
that for the given symmetric Ω(t) the shape of the photon takes an asymmetric form
with the decrease in Γc. Figure 5.2(b) shows the shape of the leaked photon in the
frequency domain (Pp,outs). As we can see from the Ągure, the better the effective
quality of the cavity is, the more the leaked photon is centered around the cavity
resonance frequency. As expected, the bandwidth of the photon gets narrower with
the decrease in Γc.

0 0.2 0.4 0.6 0.8 1

0

0.5

1
0

0.5

1

Figure 5.1: Dynamics corresponding to Eq. (5.6) for cavities with different Γc
factors. The system parameters are Ω(t) = Ω0 sin2

(︂

πt
T

)︂

, (g,∆,Ω0, ω0) × T =

(60, 150, 60, 2416). As we can see from the Ągure, the stronger the leakage of the
cavity is, the less the cavity state is populated [see the curve for Pf,1].

The direct control of production of the shape of a single leaking photon can be
achieved for a large detuning ∆ ≫ Ω, g (allowing the adiabatic elimination of the
excited state ♣e, ∅⟩ [173]) and an effective weak coupling regime: Γc ≫ G, g2/∆ with
G = −gΩ/∆ being the (assumed positive) effective Raman coupling [allowing the
adiabatic elimination of the state ♣f, 1⟩ (Fig. 5.1)].
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Figure 5.2: Produced single-photon shape in time (a) and frequency (b) domains for
different values of the cavity linewidth Γc. The other parameters are the same as in
Fig. 5.1.

The adiabatic eliminations lead to

cg,0(t) = eiζ(t)e−
θ(t)

2 , (5.9a)

ζ(t) =
∫︂ t

ti
dt′

Ω2(t′)

∆
, (5.9b)

θ(t) =
∫︂ t

ti
dt′

4G2(t′)

Γc
. (5.9c)

We denote the initial time ti = 0. From cg,0(t), i.e. for given g, ∆, and Ω(t), one can
infer cf,1(t) = −i2(G(t)/Γc)cg,0(t) and Eq. (5.8) then gives the shape of the photon
Ćux:

Φflux(t) = θ̇(t)e−θ(t). (5.10)

The inverse calculation allows one to tailor a desired photon Ćux by deriving explicitly
the corresponding Ω(t) (for given g and ∆). This is achieved by determining θ(t)
from (5.10):

θ(t) = − ln
[︃

1 −
∫︂ t

0
dt′Φflux(t′)

]︃

. (5.11)

We get the simple expression for the Rabi frequency by deriving this latter equation
and from (5.9c):

Ω(t) =
∆

√
Γc

2g

⌜

⃓

⃓

⎷

Φflux(t)

1 − ∫︁ t
0 dt

′Φflux(t′)
. (5.12)

We remark that this deĄnition of the Rabi frequency can diverge at large time. To
prevent this, we introduce an efficiency parameter ν < 1 which will ensure that
Ω(t → +∞) = 0 when Φflux(t → +∞) = 0 [143, 195].
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Numerical results for a chosen Gaussian probability for the single photon shape

Φflux(t) =
ν
√
π

T
e−(πt

T )
2

,
∫︂ +∞

−∞
Φflux(t)dt = ν, (5.13)

are shown in Figs. 5.3(a) and 5.3(b). Using Γc = 90/T , we obtain maxtG(t) ≈
13/T ≪ Γc. We have also checked numerically the resulting Ćux by determining it
from the numerical solution of the Schrödinger equation (5.6) (without considering
the adiabatic elimination) with the Rabi frequency (5.12). The derived photon Ćux
closely follows the desired shape as expected.
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Figure 5.3: (a) and (b) Rabi frequency Ω(t)T (5.12) with (♣g♣, Γc, ∆) × T = (60, 90, 300),
η = 0.99, determined from the desired Gaussian shape flux Φflux(t) (5.13) [desired (dashed
line) and numerically determined from the original model (5.6) (thick line)] of the single
photon through the semitransparent mirror (in units of T ); number of outgoing photons
N =

∫︁ t
−∞ dt′Φflux(t′) = Γc

∫︁ t
−∞ dt′♣cf,1(t′)♣2 during the process (thin line). (c) and (d)

Same as (a) and (b) but for Γc = 10/T and a chosen Gaussian Rabi frequency Ω(t) =
60 exp[− (πt/T )2]/T .

Other, more complex forms can be investigated through (5.12) [30, 104, 154] such
as the ones obtained by the resonant process with Ćying atoms in Refs. [143, 195].

Figures 5.3(c) and 5.3(d) show a different situation with a cavity of better effective
quality: Γc = 10/T and maxtG(t) = 12/T ≈ Γc, where the second adiabatic
elimination cannot be made. In this case, the production of the photon occurs earlier
and faster due to the earlier peak in Ω compared to the case in (a). The smaller
decay rate of the cavity leads to a deformation of the tail of the photonic shape (due
to Rabi oscillations).
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Summary

In this part, we have derived and analyzed models for the system of a Λ atom trapped
in a cavity, featuring a semitransparent mirror and driven by laser pulses allowing the
production of a single photon leaking out from the cavity. We introduced true-mode,
inside-outside and pseudomode representations for describing the system from Ąrst
principles. From the exact modes of the system (the true-mode representation),
we explicitly introduce the cavity-reservoir coupling which allows one to describe
the dynamics without any a priori approximations. We have demonstrated that
under suitable approximations that we formulate, these different representations give
accurate results that are similar to each other, yet generally differ. We particularly
analyze a high-Q cavity scenario and show that this requirement alone, in general,
is not enough for these approximate models to work. This is especially signiĄcant
for the models where one considers cavities with higher losses and mode overlaps,
namely cavities with low refractive indices, such as plasmonic cavities.

In the literature, it is common to phenomenologically introduce the pseudomode
representation. However, this kind of phenomenological approach does not provide
the full description of the produced photon, namely, the outgoing photon shape in the
frequency domain. In contrast, here, we recover the phenomenological model derived
from Ąrst principles; moreover, it is complemented with the complete description
of the system, including the full characteristics of the photon in the time domain
as well as in the frequency domain. This derivation justiĄes explicitly the Markov
approximation producing an input-output relation from Ąrst principles via the
non-trivial cavity-reservoir coupling (4.10).

Finally, concepts, such as the Poynting vector, photon Ćux, input-output operators,
and photon state, that characterize the propagation of the resulting leaking photons,
have been deĄned and connected: We have formulated an input-output relation
taking into account the propagating effects, which allows a direct interpretation of
the bout operator through the Poynting vector and the photon Ćux. The generated
Ćux is then determined from the quantum average of the dynamics of the photon
number in the cavity, which results from a standard master equation that we have
derived using the operators at x = 0. Different coupling regimes have been discussed.
In particular, we have studied an effective weak coupling regime with a large detuning
and a strong cavity leakage, such that the adiabatic elimination of the cavity state
is performed. In this case, one can directly link the envelope of the driving Ąeld to
the pulse shape of the outgoing single photon which can be tailored at will.

In order to demonstrate the concepts in a straightforward way, here we have
considered a simple model for the mirror as a single layer with a Ąctitious large
refractive index. In practice, the large index is produced via a multilayer mirror,
made of dielectric stacks. In the upcoming part, we study the light-matter interaction
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in such, more realistic cavities, and analyze the effects induced by the structure of
the mirror.
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APPENDIX A

A.1 Quantization of the electromagnetic field

In this appendix we demonstrate the quantization of the classical electromagnetic
Ąeld in a discrete Hilbert space, obtained from MaxwellŠs equations. When using the
standard deĄnition of the vector potential (∇ × A = B), and assuming that in the
expression of the vector potential the variables can be separated: A(r, t) = A(r)A(t),
the MaxwellŠs equations (3.5) in the Coulomb gauge (∇· (ε(r)A) = 0, U = 0) reduce
to the following wave equation:

(︃

Ω̂
2 − ω2

k

)︃

Ã(r) = 0, (A.1)
(︄

∂2

∂t2
+ ω2

k

)︄

A(t) = 0, (A.2)

where we have used the deĄnition Ω̂
2

= c√
ε(r)

∇ × ∇ × c√
ε(r)

and made the change

of variables: Ã =
√︂

ε0ε(r)A. We recall that ωk are the eigenvalues of the operator

Ω̂, with the index k = (k, σ), where k represents the wavevector with ♣k♣ = ωk/c,
and σ represents a possible degeneracy.

Having the classical description of the Ąeld, we now want to quantize this Ąeld.
In the standard canonical quantization procedure, one considers a discrete mode
structure of the Ąeld that extends over an N -dimensional Hilbert space. We can
achieve such discrete modes by formally considering the electromagnetic Ąeld to be
in a box with a volume V , satisfying certain boundary conditions (e.g., periodic
boundary condition). Each mode can then be treated as a harmonic oscillator
described by the canonical variables (qk, pk) that satisfy the Hamiltonian equations
of motion [33, 115]

dqk
dt

=
∂H

∂pk
, (A.3)

dpk
dt

= −∂H

∂qk
. (A.4)

Quantization of such harmonic oscillators is achieved by following the principle of
correspondence, i.e., replacing the canonically conjugate variables with the corre-
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sponding operators - (q̂k, p̂k) - acting on a well-deĄned Hilbert space:

qk → q̂k (A.5)

pk → p̂k := −iℏ ∂

∂qk
, (A.6)

where qk and pk are discrete variables, and the corresponding operators satisfy the
following commutation relations:

[q̂k, q̂k′ ] = [p̂k, p̂k′ ] = 0 (A.7)

[q̂k, p̂k′ ] = iℏδkk′ . (A.8)

Following this procedure, we can quantize the Ąeld for the system given by the
Hamiltonian (A.10). Unlike the above-described case, the modes in this Hamiltonian
are, however, continuous. The transition from discrete to continuous modes can be
achieved by pushing the walls of the volume V to inĄnity. This, however, leads to
having a Hilbert space with inĄnite degrees of freedom. Such a Hilbert space is not
well deĄned, which makes the total space not well-deĄned either. This difficulty
can be avoided if we reformulate the theory in a well-deĄned Fock space, which
is isomorphic to the Ąnite-dimensional Hilbert space [48, 59, 157]. Taking these
into account, we perform the quantization of the continuous electromagnetic Ąeld
following the under-listed steps:

• DeĄning a Hamiltonian model satisfying the constraints imposed by Coulomb
gauge (namely, the transversality constraint);

• DeĄning canonically conjugate, independent variables in a well-deĄned Ąnite-
dimensional Hilbert space and applying the principle of correspondence to
these variables;

• Constructing a Fock space which is isomorphic to the considered Ąnite-
dimensional Hilbert space and writing the corresponding operators of the
physical observables in the Fock space representation;

• Taking the limit of the Ąnite degrees of freedom to inĄnity (which is well-
deĄned in Fock space representation) and deriving the quantized Hamiltonian
corresponding to Eq. (A.10).

We commence by writing the energy density of the classical electromagnetic Ąeld [80]

H =
1

2

(︄

ε0ε(r)E(r) · E(r) +
1

µ0

B(r) · B(r)

)︄

, (A.9)

leading to the full energy expression over all space

H =
∫︂

d3r H. (A.10)

Taking into account the deĄnitions of Ω̂
2
, Ã(r) and deĄning a canonically conjugate

variable to Ã(r) as Π̃ = −
√︂

ε0ε(r)E, the Hamiltonian (A.10) becomes:

H =
∫︂

d3r
1

2

(︃

Π̃ · Π̃ + ÃΩ̂
2
Ã

)︃

, (A.11)
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A.1. Quantization of the electromagnetic Ąeld

where to obtain this form, in the term containing B(r)·B(r) = (∇ × A(r)) (∇ × A(r))

we have performed integration by parts and used the deĄnition of Ω̂
2
. Hamiltonian

equations corresponding to Eq. (A.11) read as follows:

∂Ã(r, t)

∂t
=

δH

δΠ̃(r, t)
= Π̃, (A.12)

∂Π̃(r, t)

∂t
= − δH

δÃ(r, t)
= −Ω̂

2
Ã, (A.13)

where the symbol δ represents the variational derivative, i.e., for a functional
L =

∫︁

dxL(x, f(x), f ′(x))

δL

δf(x)
=

∂L
∂f(x)

− d

dx

∂L
∂f ′(x)

. (A.14)

The canonical conjugate variables (Ã, Π̃) are, however, not independent, due to the
constraint ∇·

√︂

ε(r)Ã. Instead, to have independent parameters for quantization, we

perform a canonical transformation (Ã, Π̃) → (qk, pk), where the variables qk and pk
are independent, canonically conjugate variables, corresponding to the development
of Ã and Π̃ in normal modes that satisfy the transversality condition. As a last step
before performing the quantization, we introduce the following variable in complex
space:

Z =
1√
2ℏ

(︃

Ω̂
1/2

Ã + iΩ̂
−1/2

Π̃

)︃

. (A.15)

The variable Z can be expanded in terms of monochromatic modes Φk(r) that form
complete set of basis:

Z =
∑︂

k

Φk(r)ak. (A.16)

Indeed, if we derive the expression of Ã via inverting expression (A.15) and using
expansion (A.16), then from Eq. (A.1) we can deduce that the functions Φk(r) satisfy
the eigenmode equation:

Ω̂
2
Φk(r) = ω2

kΦk(r), (A.17)

with the following ortho-normalization relations:
∫︂

d3r Φ∗
k(r)Φk′(r) = δkk′ , (A.18)

∑︂

k

Φk(r)Φ∗
k(r

′) = δ⊥(r − r′), (A.19)

where δ⊥(r − r′) is the transverse delta function. Additionally, these modes auto-
matically satisfy the transversality condition: ∇ · (

√︂

ε(r)Φk(r)) = 0.

Having the expansion (A.16) and recalling that the eigenvalue corresponding to the
operator Ω̂ is ωk [see Eq. (A.17)], we can now quantize the Ąeld using the coefficients
ak that can be expressed in terms of the variables (qk, pk) as follows:

ak =
1√
2ℏ

(︂

ω
1/2
k qk + iω

−1/2
k pk

)︂

. (A.20)
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Applying the principle of correspondence to these new coordinates we get the
quantized expression of Z:

Ẑ =
∑︂

k

Φk(r)âk, (A.21)

where the creation and annihilation operators â†
k, âk satisfy the commutation rela-

tions
[︂

âk, â
†
k′

]︂

= δkk′ , (A.22)

[âk, âk′ ] =
[︂

â†
k, â

†
k′

]︂

= 0. (A.23)

Using the deĄnition (A.15), we can write the original variables (Ã, Π̃) in terms of
the operators âk, â

†
k:

Ã(r) =
∑︂

k

√︄

ℏ

2ωk

(︂

Φk(r)âk + Φ∗
k(r)â†

k

)︂

, (A.24)

Π̃(r) = −i
∑︂

k

√︄

ℏωk
2

(︂

Φk(r)âk − Φ∗
k(r)â†

k

)︂

. (A.25)

Taking these expression into account, the Hamiltonian in (A.11) becomes

H =
1

2

∑︂

k

ℏωk
(︂

â†
kâk + âkâ

†
k

)︂

. (A.26)

So far, we have considered Ąnite-dimensional Hilbert space, however, as mentioned
earlier, in such a Hilbert space the transition from discrete modes to continuous ones
is not well-deĄned. Thus, to be able to make such a transition without difficulty we
can construct an associated Fock space based on a coordinate that combines all the
modes ak as a vector: a = (ak1 , · · · , akN

), where N is the dimension of the Hilbert
space described above (the details of such analysis can be found in Refs. [48, 59]).
In this representation, the annihilation operator analogous to âk becomes

â :=
1√
2ℏ

(︂

ω
1/2
k q̂ + iω

−1/2
k p̂

)︂

, (A.27)

where (q, p) are the new canonical coordinates: q = (qk1 , · · · , qkN
), p = (pk1 , · · · , pkN

).
In such a Fock space representation we can now consider the continuous modes. In
the considered volume V , the wave vector takes discrete values: k = 2π

(︂

m1

L1
, m2

L2
, m3

L3

)︂

,
where mi is an integer, and Li represents the sides of the box of volume V . When
we increase the volume V , the modes accommodated by this volume become denser
up to becoming continuous, transforming the discrete operators to continuous ones:
âk → â(k). We can deĄne the following quantity

dk = lim
V→∞

2π

V 1/3
(A.28)

and write Eq. (A.24) in the form of an integral (
∫︁

d3k being equivalent to
∫︁

dk
∑︁

σ),
leading to the full quantization of the continuous modes:

Ã(r) =
∫︂

d3k

√︄

ℏ

2ωk

(︂

ψ(k, r)â(k) +ψ∗(k, r)â†(k)
)︂

, (A.29)
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with

â(k) =
âk

√︂

(dk)3
=

√︄

V

(2π)3
âk, (A.30)

ψ(k, r) =

√︄

V

(2π)3
Φk(r), (A.31)

and the commutation relations
[︂

â(k), â†(k′)
]︂

= δ(k − k′), (A.32)

[â(k), â(k′)] =
[︂

â†(k), â†(k′)
]︂

= 0. (A.33)

A.2 Boundary conditions for a cavity with a

single-layered dielectric mirror

As mentioned in Section 3.2, in order to Ąnd the modes of the structure depicted
in Fig. 3.1, we need to solve Eq. (3.17) taking into account the following boundary
conditions:

∏︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⨄︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋃︂

Φω(−ℓc) = 0,

Φω(−ϵ) = Φω(+ϵ), when ϵ → 0,

∂

∂x
Φω(x)

\︄

\︄

\︄

\︄

\︄

\︄

x=−ϵ

− ∂

∂x
Φω(x)

\︄

\︄

\︄

\︄

\︄

\︄

x=ϵ

= 0, when ϵ → 0,

Φω(δ − ϵ) = Φω(δ + ϵ), when ϵ → 0,

∂

∂x
Φω(x)

\︄

\︄

\︄

\︄

\︄

\︄

x=δ−ϵ

− ∂

∂x
Φω(x)

\︄

\︄

\︄

\︄

\︄

\︄

x=δ+ϵ

= 0, when ϵ → 0.

(A.34)

The mode functions for the different regions, corresponding to the decomposition in
Eq. (3.21) can be written as

∏︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⨄︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋃︂

Φω,ins(x) = c1(ω)ei
ω

c
x + c2(ω)e−iω

c
x, when − ℓc ≤ x ≤ 0,

Φω,mirror(x) = d1(ω)ei
ω

c
n1x + d2(ω)e−iω

c
n1x, when 0 ≤ x ≤ δ,

Φω,outs(x) = b1(ω)ei
ω

c
x + b2(ω)e−iω

c
x, when x ≥ δ.

(A.35)

Applying the boundary conditions (A.34) to the modes in (A.35), we can get the
following modes:

Φω,ins(x) = Cω
(︂

ei
ω

c
(x+ℓc) − e−iω

c
(x+ℓc)

)︂

,

Φω,mirror(x) =
Cω

1 + r1

[︂

(ei
ω

c
ℓc − r1e

−iω

c
ℓc)ei

ω

c
n1x + (r1e

iω

c
ℓc − e−iω

c
ℓc)e−iω

c
n1x
]︂

,

Φω,outs(x) =
Cω

1 − r2
1

[︂(︂

[ei
ω

c
ℓc − e−iω

c
ℓcr1]e

in1
ω

c
δ − [ei

ω

c
ℓcr2

1 − e−iω

c
ℓcr1]e

−in1
ω

c
δ
)︂

ei
ω

c
(x−δ)

−
(︂

[e−iω

c
ℓc − ei

ω

c
ℓcr1]e

−in1
ω

c
δ − [e−iω

c
ℓcr2

1 − ei
ω

c
ℓcr1]e

in1
ω

c
δ
)︂

e−iω

c
(x−δ)

]︂

,

(A.36)

63



A.

where we have introduced the quantity

r1 =
n1 − 1

n1 + 1
.

Using the normalization condition, we derive the following expression for the coeffi-
cient Cω:

Cω =
1√

2πcA
ei

ω

c
ℓcT (ω), (A.37)

leading to the modes in Eq. (3.22).

A.3 Loretzian structure of cavity response

function

Following the derivation of the modes of a single-layered cavity in Section 3.2, in
this Appendix we demonstrate the expansion of the cavity response function as a
sum of Lorentzian-like functions. According to Eq. (3.24), the response function of
a single-layered cavity is

T (ω) =
t(ω)

1 + r(ω)e2iω

c
(ℓc+ δ

2
)
. (A.38)

Taking the absolute value squared of this expression, and using the relations in
Eq (3.27) we get:

♣T (ω) ♣2 = 1 − ♣r(ω)♣eiθ
1 + ♣r(ω)♣eiθ − ♣r(ω)♣e−iθ

1 + ♣r(ω)♣e−iθ
, (A.39)

where θ = 2ω
c
(ℓc + δ/2) + ϕr(ω). We can modify each term of this expression using

the geometric series formula
∑︁∞
n=1 q

n = q/(1 − q), when ♣q♣ < 1:

− ♣r(ω)♣eiθ
1 + ♣r(ω)♣eiθ =

∞
∑︂

n=1

(︂

−♣r(ω)♣eiθ
)︂n

=
∞
∑︂

n=1

♣r(ω)♣nein(θ+π), (A.40)

− ♣r(ω)♣e−iθ

1 + ♣r(ω)♣e−iθ
=

∞
∑︂

n=1

♣r(ω)♣ne−in(θ+π) =
1
∑︂

n=−∞

♣r(ω)♣♣n♣ein(θ+π). (A.41)

Taking these into account, the expression in (A.39) becomes:

♣T (ω) ♣2 =
∞
∑︂

n=−∞

♣r(ω)♣♣n♣ein(θ+π). (A.42)

Furthermore, recalling the Poisson summation formula, which states that

∞
∑︂

n=−∞

f(n) =
∞
∑︂

m=−∞

∫︂ ∞

−∞
dx f(x)e−i2πmx =

∞
∑︂

m=−∞

f̃(m), (A.43)

with f̃(m) being the Fourier transform of f(x), we can deĄne f(x) as follows:

f(x) = ♣r(ω)♣♣x♣eix(θ+π) = e♣x♣ ln ♣r(ω)♣+ix(θ+π), (A.44)

64



A.4. Input-output relation with the use of a Dirac delta distribution

leading to

f̃(m) =
∫︂ ∞

−∞
dx e♣x♣ ln ♣r(ω)♣+ix(θ+π)e−i2πmx

=
∫︂ ∞

0
dx ex ln ♣r(ω)♣e−ix(θ+π−2πm) +

∫︂ ∞

0
dx ex ln ♣r(ω)♣eix(θ+π−2πm)

=
∫︂ ∞

0
dx e−xa2 cos (xα), (A.45)

where a = − ln ♣r(ω)♣, α = θ + π − 2πm. Evaluating the integral in Eq. (A.45) (via
performing integration by parts), we get

f̃(m) =
2a

a2 + α2
=

−2 ln ♣r(ω)♣
(ln ♣r(ω)♣)2 + (θ + π − 2πm)

. (A.46)

For the response function we get

♣T (ω) ♣2 =
∞
∑︂

m=−∞

−2 ln ♣r(ω)♣
(ln ♣r(ω)♣)2 + (θ + π − 2πm)

=
∞
∑︂

m=−∞

c

2L1

γ1 (ω)

(ω − ω̃m(ω))2 +
(︂

γ1(ω)
2

)︂2 ,

where

γ1 (ω) = − c

L1

ln ♣r (ω)♣ ,

ω̃m(ω) = m
πc

L1

+
c

2L1

(π − ϕr (ω)) ,

L1 = ℓc +
δ

2
.

(A.47)

A.4 Input-output relation with the use of a

Dirac delta distribution

In the following, we show the mathematical inconsistency of the standard devel-
opment of the input-output relation (4.72) from the Heisenberg-Langevin equa-
tions (4.61) within the Markov approximation applied without a model for the
coupling (see, e.g., Ref. [69]). By assuming a “ĆatŤ continuum via the approximation

κc(ω) ≈
√︄

Γc
2π

(A.48)

and pushing the ω integration from −∞, we approximate the double integral
in (4.68b) (considering for simplicity the case x = 0) as

∫︂ t

t0
dt′
∫︂ +∞

0
dω

♣κc(ω)♣2√
Γc

c(t′)e−iω(t−t′) ≈
√︂

Γc

∫︂ t

t0
dt′c(t′)

∫︂ +∞

−∞

dω

2π
e−iω(t−t′) (A.49a)

=
√︂

Γc

∫︂ t

t0
dt′c(t′)δ(t− t′) =

√
Γc
2
c(t). (A.49b)

The last step, which can be reformulated in a simpler case as
∫︂ 0

−∞
dt c(t)δ(t) =

1

2
c(0), (A.50)
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is mathematically undeĄned. Since the distributions are deĄned on the real line
via the integration on a test function, it indeed necessitates the introduction of a
multiplication with the Heaviside distribution:

∫︂ +∞

−∞
dt c(t)H(−t)δ(t) =

∫︂ 0

−∞
dt c(t)δ(t). (A.51)

However such a product of two non regular distributions is undeĄned, here more
speciĄcally the product of the Dirac delta distribution with the Heaviside distribution
of discontinuity localized where the Dirac delta is inĄnite. This has been analyzed
in Ref. [79].

An explicit analysis can be conducted by deĄning a model for the Dirac delta
distribution using a family of (noneven) functions represented in Fig. A.1,

haϵ (t) =

∏︂

⋁︂

⨄︂

⋁︂

⋃︂

0 for t < (a− 1)ϵ
1/ϵ for (a− 1)ϵ ≤ t ≤ aϵ
0 for t > aϵ,

(A.52)

parametrized by a real number 0 < a < 1, in the limit ϵ → 0. We can indeed check
that they satisfy the Dirac delta distribution [applied on a test function φ(t)] :

lim
ϵ→0

∫︂ +∞

−∞
dt φ(t)haϵ (t) = lim

ϵ→0

1

ϵ

∫︂ aϵ

(a−1)ϵ
dt φ(t) = lim

ϵ→0

∫︂ a

a−1
dsφ(ϵs) = φ(0), (A.53)

where we have applied the change of variable s = t/ϵ. We note that the limit ϵ → 0
guarantees that δ(t) = limϵ→0 h

a
ϵ (t) is an even distribution.

haε(t)

t(a− 1)ε aε

1/ε

Figure A.1: Representation of a family of non-even functions parametrized by a real
number 0 < a < 1 tending to the Dirac delta distribution in the limit ϵ → 0.

Applying this model on (A.50), we obtain

lim
ϵ→0

∫︂ 0

−∞
dt c(t)haϵ (t) = lim

ϵ→0

1

ϵ

∫︂ 0

(a−1)ϵ
dt c(t) = lim

ϵ→0

∫︂ 0

a−1
ds c(ϵs) = (1 − a)c(0). (A.54)

This shows that the result depends on the details of the model of the Dirac delta
distribution [163]. We recover the result of (A.50) only for a particular even-function
model (i.e., a = 1/2).

As a consequence, the derivation (A.49) is not valid in general. It necessitates a
speciĄc model for the coupling κc(ω), as considered from Ąrst principles in this work.
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A.5 Derivation of the pesudomode

representation

In this appendix, we derive the pseudomode representation directly from the true-
mode representation featuring the approximate coupling function (4.6). Taking
into account the dynamical equations (4.17), which are derived for the true-mode
representation via solving the Schrödinger equation with the Hamiltonian (4.2) and
the wavefunction (4.14), we deĄne the following term:

ĉf,1 =
1

ĝ

∫︂ ∞

0
dω η(ω)c̃f,1(ω, t) =

1

ĝ

∫︂ ∞

0
dω η(ω)e−i(∆−∆c+ω−ω0)tc̃f,1(ω, t), (A.55)

where c̃f,1(ω, t) = ei(∆−∆c+ω−ω0)tc̃f,1(ω, t) satisĄes the following equation:

d

dt
c̃f,1(ω, t) = −η∗(ω)ei(∆−∆c+ω−ω0)tc̃e,0(t). (A.56)

Calculating the time derivative of Eq. (A.55) using the relation (A.56) we obtain:

d

dt
ĉf,1(t) =

d

dt
ĉ

(0)
f,1(t) − 1

ĝ

∫︂ +∞

0
dω ♣η(ω)♣2c̃e,0(t)

+
i

ĝ

∫︂ t

0
dt′c̃e,0(t

′)
∫︂ +∞

0
dω ♣η(ω)♣2(∆ − ∆c + ω − ω0)e

−i(∆−∆c+ω−ω0)(t−t′),

(A.57)

where we introduce the time derivative of the initial time deĄned as follows:

ĉ
(0)
f,1(t) =

1

ĝ

∫︂ +∞

0
dω η(ω)e−i(∆−∆c+ω−ω0)tc̃f,1(ω, 0). (A.58)

In the following we evaluate the integral

I1 =
∫︂ +∞

0
dω ♣η(ω)♣2. (A.59)

In order to evaluate this integral we rewrite η(ω) using the expansion sin2 α =
(1 − (e2iα + e2iα)/2) /2:

♣η(ω)♣2 ≈ ω0♣dfe♣2
ℏε0Aℓc

1

2

(︄

1 − e2iω

c
(xA+ℓc)

2
− e−2iω

c
(xA+ℓc)

2

)︄

Γc
2π

1

(ω − ω0)2 +
(︂

Γc

2

)︂2 .

This splits the integral I1 into three parts

I1 = I0 + I+ + I−, (A.60)

with

I0 =
ω0♣dfe♣2
2ℏε0Aℓc

∫︂ ∞

−∞
d∆̃

Γc
2π

1

∆̃
2

+
(︂

Γc

2

)︂2 , (A.61)

where we introduced the change of variables ∆̃ = ω − ω0, and assumed Γc/ω0 ≪ 1,
such that the integration limits can be extended from −∞ to ∞, leading to

I0 =
ω0♣dfe♣2
2ℏε0Aℓc

Γc
2π

2

Γc
arctan

2∆̃

Γc

\︄

\︄

\︄

\︄

\︄

\︄

∞

−∞

=
ω0♣dfe♣2
2ℏε0Aℓc

. (A.62)
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Similarly,

I± = − ω0♣dfe♣2
4ℏε0Aℓc

e±i2
ω0
c

(xA+ℓc)
∫︂ ∞

−∞
d∆̃

Γc
2π

e±i2 ∆̃
c

(xA+ℓc)

∆̃
2

+
(︂

Γc

2

)︂2 . (A.63)

The integrals I± can be evaluated by using complex contour integration. For I+,
since the term xA + ℓc > 0, the integration can be done over upper half complex
plane [see Fig. A.2]:

I+ = lim
R→∞

(︃⌊︂

−
∫︂

CR

)︃

.

The integral over CR is 0, when R → ∞, and
⌊︂

dzf(z) = 2πiResf(z), (A.64)

where

f(z) =
Γc
2π

ei2
z

c
(xA+ℓc)

z2 +
(︂

Γc

2

)︂2 .

Taking this into account

I+ = − ω0♣dfe♣2
4ℏε0Aℓc

ei2
ω0
c

(xA+ℓc)e− Γc

c
(xA+ℓc). (A.65)

−R R

iΓc

2

0

Figure A.2: Curve over which the integral I+ is evaluated.

Similarly, performing integration in lower half plane we can evaluate I−:

I− = − ω0♣dfe♣2
4ℏε0Aℓc

e−i2
ω0
c

(xA+ℓc)e− Γc

c
(xA+ℓc). (A.66)

Finally, the integral I1 becomes

I1 =
ω0♣dfe♣2
2ℏε0Aℓc

(︃

1 − e− Γc

c
(xA+ℓc) cos

[︃

2
ω0

c
(xA + ℓc)

]︃)︃

. (A.67)
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Having obtained the value of I1, we now perform similar calculation to evaluate the
integral I2:

I2 =
∫︂ +∞

0
dω ♣η(ω)♣2(∆ − ∆c + ω − ω0)e

−i(∆−∆c+ω−ω0)(t−t′), (A.68)

which leads to the evaluation of integrals of the form

g0(z) =
Γc
2π

(∆ − ∆c + z) e−i(∆−∆c+z)(t−t′)

z2 +
(︂

Γc

2

)︂2 , (A.69)

and

g±(z) =
Γc
2π
e±i2

ω0
c

(xA+ℓc) (∆ − ∆c + z) e−i(∆−∆c+z)(t−t′)e±i2 z

c
(xA+ℓc)

z2 +
(︂

Γc

2

)︂2 . (A.70)

Performing similar complex plane integration as in the case of I1, we obtain

∫︂

dzg0(z) =

(︄

∆ − ∆c − i
Γc
2

)︄

e− Γc

2
(t−t′)e−i(∆−∆c)(t−t′),

∫︂

dzg−(z) =

(︄

∆ − ∆c − i
Γc
2

)︄

e− Γc

2
(t−t′)e−i(∆−∆c)(t−t′)e−i2

ω0
c

(xA+ℓc)e− Γc

c
(xA+ℓc).

The integral of the function g+(z) can be evaluated in the lower half-plane if
t′ < t − 2

c
(xA + ℓc), and upper half-plane if t − 2

c
(xA + ℓc) < t′ < t. The quantity

2
c
(xA + ℓc) is of the order of ℓc

c
(half-round trip time of a photon) and the typical

time scale at which we observe the dynamics of the system is much grater than this
time, hence the contribution of the interval t− 2

c
(xA + ℓc) < t′ < t is negligible, thus

we evaluate the integral at the lower half plane, and obtain

∫︂

dzg+(z) =

(︄

∆ − ∆c − i
Γc
2

)︄

e− Γc

2
(t−t′)e−i(∆−∆c)(t−t′)ei2

ω0
c

(xA+ℓc)e
Γc

c
(xA+ℓc).

Taking these results into account for the integral I2 we obtain

I2 =
ω0♣dfe♣2
2ℏε0Aℓc

(︄

∆ − ∆c − i
Γc
2

)︄

e−i(∆−∆c−iΓc

2
)(t−t′) (A.71)

×
⋃︁

⨄︁1 − cos
[︃

2
ω0

c
(xA + ℓc)

]︃

cosh

[︄

Γc
c

(xA + ℓc)

]︄

− i sin
[︃

2
ω0

c
(xA + ℓc)

]︃

sinh

[︄

Γc
c

(xA + ℓc)

]︄

⋂︁

⋀︁.

Recalling that the condition Γc ≪ ω0 holds true, the terms containing 2ω0

c
(xA + ℓc)

can be regarded as fast oscillating terms compared to the ones with Γc

c
(xA + ℓc). We

can expand this slow-varying terms using the following Taylor expansion

cosh[ϵ1] = 1 + O(ϵ2
1) (A.72)

sinh[ϵ1] = 0 + O(ϵ2
1) (A.73)

e−ϵ1 = 1 + O(ϵ2
1), (A.74)
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where ϵ1 = Γc

c
(xA + ℓc). With these, the expressions in (A.67) and (A.71) become

I1 =
ω0♣dfe♣2
ℏε0Aℓc

sin2
[︃

ω0

c
(xA + ℓc)

]︃

, (A.75)

I2 =
ω0♣dfe♣2
2ℏε0Aℓc

(︄

∆ − ∆c − i
Γc
2

)︄

e−i(∆−∆c−iΓc

2
)(t−t′) sin2

[︃

ω0

c
(xA + ℓc)

]︃

. (A.76)

A.6 Discretization of the continuous integrals

In this Appendix we demonstrate how one can numerically solve the equations (4.17)
and (4.35) via discretizing the continuum. In order to perform discretization properly,
we analyze the continuous parts of the states (4.14) and (4.34), where the photon
states ♣1ω⟩ and ♣1ω,outs⟩ and the coefficients c̃f,1(ω, t) and cf,0,1(ω, t) all have units
of 1/

√
ω, making the corresponding integrals dimensionless. Thus we can do the

following discretization:

∫︂ ∞

0
dω c̃f,1(ω, t)♣1ω⟩ =

m
∑︂

i=1

√
dωc̃f,1(ωi, t)

√
dω♣1ωi

⟩,
∫︂ ∞

0
dω cf,0,1(ω, t)♣1ω,outs⟩ =

m
∑︂

i=1

√
dωcf,0,1(ωi, t)

√
dω♣1ωi,outs⟩,

where dω is the step of the discretization. By denoting the dimensionless quanti-
ties of the sum as c̃f,1(ωi, t) =

√
dω c̃f,1(ωi, t), ♣1̃ωi

⟩ =
√
dω♣1ωi

⟩ and cf,0,1(ωi, t) =√
dω cf,0,1(ωi, t), ♣1ωi,outs⟩ =

√
dω♣1ωi,outs⟩, we can calculate the probability ampli-

tudes of Ąnding the photon in states ♣1̃ωi
⟩ and ♣1ωi,outs⟩, respectively:

P̃ (ωi, t) = ♣⟨1̃ωi
♣ψ̃⟩♣2 = ♣c̃f,1(ωi, t)♣2,

P (ωi, t) = ♣⟨1ωi,outs♣ψ⟩♣2 = ♣cf,0,1(ωi, t)♣2.

Taking this discretization into account, in Eq. (4.17), the discretization of the
function η(ω) becomes

√
dω η(ω1),

√
dω η(ω2), · · · ,

√
dω η(ωm), and the equations

become:

i
d

dt
c̃g,0(t) = Ω c̃e,0(t),

i
d

dt
c̃e,0(t) = ∆ c̃e,0(t) + Ω c̃g,0(t) + i

∑︂

m

η̃ωm
c̃f,1(ωm, t),

i
d

dt
c̃f,1(ω1, t) = (∆ − ∆c + ω1 − ω0) c̃f,1(ω1, t) − iη̃∗

ω1
c̃e,0(t),

...

i
d

dt
c̃f,1(ωm, t) = (∆ − ∆c + ωm − ω0) c̃f,1(ωm, t) − iη̃∗

ωm
c̃e,0(t),

with η̃ωm
=

√
dω η(ωm).
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Similarly, Eq. (4.35) becomes

iċg,0(t) = Ω ce,0(t),

iċe,0(t) = ∆ ce,0(t) + Ω cg,0(t) + g cf,1,0(t),

iċf,1,0(t) = (∆ − ∆c) cf,1,0 + g ce,0(t) − i
∑︂

m

κ̃∗
c(ωm) cf,0,1(ωm, t),

iċf,0,1(ω1, t) = (∆ − ∆c + ω1 − ω0) cf,0,1(ω1, t) + iκ̃c(ω1) cf,1,0(t),
...

iċf,0,1(ωm, t) = (∆ − ∆c + ωm − ω0) cf,0,1(ωm, t) + iκ̃c(ωm) cf,1,0(t),

where κ̃c(ωm) =
√
dω κc(ωm).

By solving these systems of equations numerically using a sufficiently large number
of states (typically 100000) discretizing the continuum, we obtain the solutions
presented in Fig. 4.3.

A.7 Single photon spatial distribution

In this appendix, we demonstrate that the deĄnition in Eq. (4.55) can be interpreted
as a photon number operator. As discussed in Ref. [70], the attempts to deĄne a
local photon number operator in a Ąnite volume V showed that, in general, such
an operator can not be deĄned since it does not satisfy the commutation relation
for nonoverlapping volumes. However, in the particular system discussed here,
where linearly polarized light produced from a high-Ąnesse cavity propagates in
one-dimensional space, we are able to deĄne such an operator. In order to show that
the deĄnition in Eq. (4.55) is an observable, we evaluate the following commutator
(for convenience we work in Schrödinger representation)

[︂

b†
xbx, b

†
x′bx′

]︂

=
1

(cΓc)2

∫︂

dωdω′dω′′dω̃κc(ω)κ∗
c(ω

′)κc(ω
′′)κ∗

c(ω̃)

× e−iω

c
xei

ω
′

c
xe−iω

′′

c
x′

ei
ω̃

c
x′
[︂

b†
ωbω′ , b†

ω′′bω̃
]︂

. (A.79)

The commutator appearing on the right side of the equation (A.79) can be simpliĄed
as follows

[︂

b†
ωbω′ , b†

ω′′bω̃
]︂

= b†
ωbω′b†

ω′′bω̃ − b†
ω′′bω̃b

†
ωbω′ = b†

ω

(︂

δ(ω′ − ω′′) + b†
ω′′bω′

)︂

bω̃ − b†
ω′′bω̃b

†
ωbω′

= b†
ωbω̃δ(ω

′ − ω′′) + b†
ωb

†
ω′′bω′bω̃ − b†

ω′′bω̃b
†
ωbω′

= b†
ωbω̃δ(ω

′ − ω′′) − b†
ω′′bω′δ(ω − ω̃).

Taking this into account Eq. (A.79) becomes

[︂

b†
xbx, b

†
x′bx′

]︂

=
1

(cΓc)2

∫︂

dωdω′dω̃κc(ω)κ∗
c(ω̃)♣κc(ω′)♣2eiω

′

c
(x−x′)e−iω

c
xei

ω̃

c
x′

b†
ωbω̃

− 1

(cΓc)2

∫︂

dωdω′dω′′κ∗
c(ω

′)κc(ω
′′)♣κc(ω)♣2e−iω

c
(x−x′)ei

ω
′

c
xe−iω

′′

c
x′

b†
ω′′bω′ .
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To evaluate these integrals, below we estimate the value of the integral

I =
∫︂ ∞

0
dω′♣κc(ω′)♣2eiω

′

c
(x−x′) =

Γc
2π

(︃

c

ℓc

)︃2 ∫︂ ∞

0
dω′ sin

2 (ω′ − ω0)
ℓc
c

(ω′ − ω0)2
ei

ω
′

c
(x−x′)

=
Γc
2π

(︃

c

ℓc

)︃2 1

2

∫︂ ∞

0
dω′ 1 − cos 2(ω′ − ω0)

ℓc
c

(ω′ − ω0)2
ei

ω
′

c
(x−x′)

=
Γc
2π

(︃

c

ℓc

)︃2 1

2
ei

ω0
c

(x−x′)

⋃︁

⨄︁

∫︂ ∞

0
dω′ e

i(ω′−ω0)
(x−x

′)
c

(ω′ − ω0)2

− 1

2

∏︁

∐︂

∫︂ ∞

0
dω′ e

i
(ω

′
−ω0)

c
(x−x′+2ℓc)

(ω′ − ω0)2
+
∫︂ ∞

0
dω
ei

(ω
′
−ω0)

c
(x−x′−2ℓc)

(ω′ − ω0)2

⎞

ˆ︁

⋂︁

⋀︁. (A.80)

To calculate the individual terms of this integral, we can evaluate the corresponding
integrals in complex plane, i.e., we evaluate integrals of the following form (details
of this calculation is shown in Appendix A.8):

∫︂ ∞

−ω0

dz
ei

z

c
ζ

z2
≈
∫︂ ∞

−∞
dz
ei

z

c
ζ

z2
,

where we have extended the limits of the integration, assuming that c/ℓc ≪ ω0,
which is satisĄed when we consider high-Ąnesse cavities, where the number of modes
inside the cavity is high. Calculating the integrals in the complex plane one can
show that

I =
Γc
2π

(︃

c

ℓc

)︃2 1

2
ei

ω0
c

(x−x′)

∏︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⨄︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋃︂

0, x′ < x− 2ℓc

−π
c
(x− x′ − 2ℓc), x− 2ℓc < x′ < x

π
c
(x− x′ + 2ℓc), x < x′ < x+ 2ℓc

0, x′ > x+ 2ℓc

.

Taking this result into account, we can conclude that commutator (A.79) is 0 when
♣x′−x♣ > 2ℓc. Equivalently, if we formulate this condition in terms of the propagation
time of the photon, we can write x′ = x+ ct, where t > 2ℓc/c, which is known as
the coarse-grained approximation, which assumes that the time of Ćight of a photon
through the cavity is small compared with the time resolution of interest [201]. Thus,
at this limit, we can interpret b†

xbx as the photon number density.

We highlight that integral I is the integral also appearing in the commutation
relation

[︂

bx, b
†
x′

]︂

=
1

cΓc

∫︂ ∞

0
dωdω′ κ∗

c(ω)κc(ω
′)ei

ω

c
xe−iω

′

c
x′

[bω, b
†
ω′ ]

=
1

cΓc

∫︂ ∞

0
dω♣κc(ω)♣2eiω

c
(x−x′) =

1

cΓc
I, (A.81)

leading to

[︂

bx, b
†
x

]︂

=
1

2ℓc
. (A.82)
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A.8 Evaluation of the integral (4.68b)

In order to evaluate the integral in (4.68b), we use the following expression for κc(ω):

κc(ω) =

√︄

Γc
2π
e−iω

c
ℓcsinc

(︄

(ω − ω0)
ℓc
c

)︄

.

We calculate the following integral:

I =
∫︂ ∞

0
dω ♣κc(ω)♣2e−iωτ =

Γc
2π

(︃

c

ℓc

)︃2 ∫︂ ∞

0
dω

sin2
(︂

(ω − ω0)
ℓc
c

)︂

(ω − ω0)2
e−iωτ , (A.83)

where τ = t− t′ − x
c
. This leads to the evaluation of integrals of the following form

(where we have extended the limits of the integration, assuming that c/ℓeff ≪ ωm,
which is satisĄed when we consider high Ąnesse cavities, where the number of modes
inside the cavity is high):

I1 =
∫︂ ∞

−∞
dz
e−izτ

z2
,

I2 =
∫︂ ∞

−∞
dz
e−iz(τ− 2ℓc

c
)

z2
, (A.84)

I3 =
∫︂ ∞

−∞
dz
e−iz(τ+ 2ℓc

c
)

z2
,

making

I =
Γc
2π

(︃

c

ℓc

)︃2 e−iω0τ

2

[︃

I1 − 1

2
I2 − 1

2
I3

]︃

.

The integrals in Eq. (A.84) can be evaluated using complex plane integration
techniques. The integral I1 can be evaluated in upper half-plane [Fig. A.3] if τ < 0
and lower half-plane if τ > 0. Thus, we analyze the following complex integral
⌊︂

C
dzf(z) =

⌊︂

C
dz
e−izτ

z2
= 0 =

∫︂ −r

−R
dzf(z) +

∫︂

Cr

dzf(z) +
∫︂ R

r
dzf(z) +

∫︂

CR

dzf(z).

0

Figure A.3: Integration path in the upper half-plane. The integrals in (A.84) can
be estimated on this path, when r → 0 and R → ∞.

The integral over the curve CR becomes 0, when R → ∞. We can evaluate the
integral over Cr, as follows

∫︂

Cr

dzf(z) =
∫︂

Cr

dz
e−izτ

z2
=

∏︂

⨄︂

⋃︂

−iπRes(f, 0), τ < 0,

iπRes(f, 0), τ > 0.
(A.85)
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Since we have a second order pole at z = 0, in order to calculate the residue we use
the following formula:

Res(f, 0) =
1

(n− 1)!
lim
z→0

dn−1

dzn−1
(znf(z)) =

d

dz
e−izτ = −iτ,

thus, Eq. (A.85) becomes

∫︂

Cr

dzf(z) =

∏︂

⨄︂

⋃︂

−πτ, τ < 0,

πτ, τ > 0.
(A.86)

Finally,

I1 =
∫︂ ∞

−∞
dzf(z) = lim

R→∞,r→0

∫︂ −r

−R
dzf(z) +

∫︂ R

r
dzf(z) = −

∫︂

Cr

dzf(z) =

∏︂

⨄︂

⋃︂

πτ, τ < 0,

−πτ, τ > 0.

(A.87)

Applying similar estimation for integrals I2 and I3, we can show that

I2 =
∫︂ ∞

−∞
dz
e−iz(τ− 2ℓc

c
)

z2
=

∏︂

⨄︂

⋃︂

π(τ − 2ℓc
c

), τ < 2ℓc
c
,

−π(τ − 2ℓc
c

), τ > 2ℓc
c
,

(A.88)

I3 =
∫︂ ∞

−∞
dz
e−iz(τ+ 2ℓc

c
)

z2
=

∏︂

⨄︂

⋃︂

π(τ + 2ℓc
c

), τ < −2ℓc
c
,

−π(τ + 2ℓc
c

), τ > −2ℓc
c
.

(A.89)

Taking these results into account, the integral in Eq. (A.83) becomes

I =
Γc
2π

(︃

c

ℓc

)︃2 1

2
e−iω0(t−t′− x

c
)

∏︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⨄︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋃︂

0, t′ > t− x
c

+ 2ℓc
c
,

−π(t′ − t+ x
c

− 2ℓc
c

), t− x
c
< t′ < t− x

c
+ 2ℓc

c
,

π(t′ − t+ x
c

+ 2ℓc
c

), t− x
c

− 2ℓc
c
< t′ < t− x

c
,

0, t′ < t− x
c

− 2ℓc
c
.

(A.90)

Having calculated the integral over the frequency, we can now evaluate the time
integral in (4.68b). Taking into account the results in (A.90), we can reduce the
integration range to the following ones

∫︂ t

t0
=
∫︂ t− x

c

t− x

c
− 2ℓc

c

+
∫︂ t− x

c
+ 2ℓc

c

t− x

c

, when x > 2ℓc,

∫︂ t

t0
=
∫︂ t− x

c

t− x

c
− 2ℓc

c

+
∫︂ t

t− x

c

, when 0 < x < 2ℓc

with t > t0 + x
c

+ 2ℓc
c

. Considering that we analyze the dynamics for times much
longer than the round trip time of the produced photon, i.e., t ≫ 2ℓc

c
(coarse-grained

approximation), the integral for the case x < 2ℓc can be evaluated the same way as
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the integral for x > 2ℓc, since t+ 2ℓc/c > t− x/c+ 2ℓc/c ≈ t. Hence the integrals
above can be evaluated as follows:

∫︂ t− x

c
+ 2ℓc

c

t− x

c

dt′f(t′) =
1

2

[︃

f
(︃

t− x

c
+

2ℓc
c

)︃

+ f
(︃

t− x

c

)︃ ]︃

2ℓc
c
,

∫︂ t− x

c

t− x

c
− 2ℓc

c

dt′f(t′) =
1

2

[︃

f
(︃

t− x

c
− 2ℓc

c

)︃

+ f
(︃

t− x

c

)︃ ]︃

2ℓc
c
.

Hence, for the full integral, we obtain
∫︂ t

t0
dt′
∫︂ ∞

0
dω ♣κc(ω)♣2e−iω(t−t′− x

c
)c(t′) = Γcc

(︃

t− x

c

)︃

.

For the case x = 0, the integration over the frequency in (A.83) gives the following
result:

Γc
2π

(︃

c

ℓc

)︃2 1

2
e−iω0(t−t′)

∏︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⨄︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋃︂

0, t′ > 2ℓc
c

−π(t′ − t+ x
c

− 2ℓc
c

), t < t′ < t+ 2ℓc
c

π(t′ − t+ x
c

+ 2ℓc
c

), t− 2ℓc
c
< t′ < t

0, t′ < t− 2ℓc
c
.

(A.91)

Since the upper limit of the time integration is t, the second line of (A.91) does not
contribute to the integration over the time, and the overall integral becomes:

∫︂ t

t0
dt′
∫︂ ∞

0
dω ♣κc(ω)♣2e−iω(t−t′)c(t′) =

Γc
2
c (t) .

A.9 Derivation of the master equation

In the following, we derive the dynamics of XS(t) from the Heisenberg equation,
using Eqs. (4.7) and (4.79):

d

dt
XS(t) = − i

ℏ
[XS(t), H(H)(t)] = − i

ℏ
[XS(t), H

(H)
S (t)] (A.92)

+
∫︂ ∞

0
dω
(︃

κc(ω)b†
ω(t) [XS(t), c(t)] − κ∗

c(ω)
[︂

XS(t), c†(t)
]︂

bω(t)
)︃

.

From the deĄnition (4.68a), we have
∫︁∞

0 dω κ∗
c(ω)bω(t) =

√
Γcb(x = 0, t), for which

we can use the relation (4.73); hence

d

dt
XS(t) = − i

ℏ
[XS(t), H

(H)
S (t)]

+
(︃

√︂

Γcb
†
in(t) +

Γc
2
c†(t)

)︃

[XS(t), c(t)] −
[︂

XS(t), c†(t)
]︂

(︃

√︂

Γcbin(t) +
Γc
2
c(t)

)︃

= − i

ℏ
[XS(t), H

(H)
S (t)] +

√︂

Γcb
†
in(t) [XS(t), c(t)] −

[︂

XS(t), c†(t)
]︂

√︂

Γcbin(t)

+ Γc

(︃

c†(t)XS(t)c(t) − 1

2

{︂

c†(t)c(t), XS(t)
}︂

)︃

.

We further deĄne the time-dependent dissipator

D†
in,t(XS(t)) =

√︂

Γcb
†
in(t) [XS(t), c(t)] −

[︂

XS(t), c†(t)
]︂

√︂

Γcbin(t),
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leading to

d

dt
XS(t) = − i

ℏ
[XS(t), H

(H)
S (t)] + D†

in,t(XS(t)) (A.93)

+ Γc

(︃

c†(t)XS(t)c(t) − 1

2

{︂

c†(t)c(t), XS(t)
}︂

)︃

.

The expectation value of XS can be calculated as follows:

⟨XS(t)⟩ = Tr ¶XS(t)ρ(t0)♢ = Tr
{︂

XSU(t, t0)ρ(t0)U
†(t, t0)

}︂

= TrS
{︂

TrR
{︂

XSU(t, t0)ρ(t0)U
†(t, t0)

}︂}︂

= TrS ¶XSρS(t)♢ ,

where we have used the cyclic property of the trace, and deĄned

ρS(t) = TrR
{︂

U(t, t0)ρ(t0)U
†(t, t0)

}︂

.

Similarly, using the property Tr ¶A+B♢ = Tr ¶A♢+Tr ¶B♢, ∀A, B, we can calculate
the averages on the right hand side of Eq. (A.93):
˜︁

[XS(t), H
(H)
S (t)]

˜︂

= Tr
{︂

[XS(t), H
(H)
S (t)]ρ(t0)

}︂

= Tr
{︂

[XS, HS(t)]U(t, t0)ρ(t0)U
†(t, t0)

}︂

= TrS ¶[XS, HS(t)] ρS(t)♢ = TrS ¶XS [HS(t), ρS(t)]♢ ,

˜︁

c†(t)XS(t)c(t)
˜︂

= TrS
{︂

c†XScρS(t)
}︂

= TrS
{︂

XScρS(t)c†
}︂

,
˜︁

¶c†(t)c(t), XS(t)♢
˜︂

= TrS
{︂{︂

c†c,XS

}︂

ρS(t)
}︂

= TrS
{︂

XS

{︂

ρS(t), c†c
}︂}︂

.

Assuming that the reservoir is initially a vacuum state ρR(t0) = ♣∅⟩⟨∅♣, for the
dissipator part D†

in,t we get

Tr¶b†
in(t) [XS(t), c(t)] ρ(t0)♢ = Tr¶[XS(t), c(t)] ρ(t0)b

†
in(t)♢

= Tr¶[XS(t), c(t)] ρS(t0) ⊗ ρR(t0)b
†
in(t)♢

= Tr¶[XS(t), c(t)] ρS(t0) ⊗ ♣∅⟩⟨∅♣b†
in(t)♢ = 0.

Similarly

Tr
{︂[︂

XS(t), c†(t)
]︂

bin(t)ρ(t0)
}︂

= 0.

Finally, Eq. (A.93) becomes

TrS
⎭

XS
dρS(t)

dt

}︃

= TrS ¶XS [HS(t), ρS(t)]♢

+ Γc

(︃

TrS
{︂

XScρS(t)c†
}︂

− 1

2
TrS

{︂

XS

{︂

ρS(t), c†c
}︂}︂

)︃

.

Furthermore, using the property ∀A, Tr ¶AB♢ = Tr ¶AC♢ ⇔ B = C, we obtain the
master equation for ρS(t):

d

dt
ρS(t) = [HS(t), ρS(t)] + Γc

(︃

cρS(t)c† − 1

2

{︂

ρS(t), c†c
}︂

)︃

.
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Light-matter interaction in open

cavities with dielectric stacks

77





CHAPTER 6
Cavities with multilayer dielectric

stacks

In the models discussed so far, the cavity mirror is modeled as a single dielectric
layer with a Ąctitiously high refractive index. In practice, to achieve high mirror
reĆectivity, highly reĆective dielectric coatings, or Bragg stacks are used as standard
[130]. These comprise layer pairs of quarter-wavelength optical thickness dielectric
material, with alternating refractive indices. Generally, a high reĆectivity is only
achieved for a large number of such layers, implying a notable penetration of the
stack by incident light. A common strategy for enhancing the Purcell factor is the
minimization of mode volume, which generally requires reducing mirror spacing. At
its extreme, the mirror spacing can be of the same order as the resonant wavelength
of interest [97]. This unintentionally increases the relative portion of the cavity mode
within the dielectric stack [6, 130, 207], rendering inaccurate the standard spectral
properties of a Fabry-Pérot resonator, such as its resonance frequency, linewidth and
free spectral range. The propagation of light in cavities limited by dielectric mirrors
has been studied before under the resonance condition where the frequency of the
light matches a resonance frequency of the Fabry-Perot cavity as well as the design
frequency of the dielectric stack forming the mirror [6, 130, 189]. Additionally, this
problem has also been studied numerically for calculating the mode volume of leaky
optical cavities [107, 106, 167]. Here we go a step further in considering the more
general case of a wave of arbitrary wavelength traveling through the stack. Note
that this is always the case if the emitter coupled to the cavity is not resonant with
the cavity mode. To this end, in the following we derive a closed expression for the
coupling between an atom and the Ąeld within a cavity whose mirrors are dielectric
multilayer stacks.

As we can see from the previous derivation for a single-layered cavity case [Section 3.2],
the modes of such a system are normalized in terms of the mode volume, which
is the geometric volume of the optical resonator (V = Aℓc). However, in the case
of the strong coupling resonator we consider below, the concept of mode volume
departs from the standard notion of a geometric volume, suitably modifying the
calculation of the Purcell Factor. This goes substantially beyond the aspects that
have been addressed before [62, 188], now taking into account a large number of
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dielectric layers and the off-resonant case, where the Ąeld and the design wavelength
of the dielectric stacks are different.

In the following, we revise the concept of mode volume and cavity resonance frequency
for a cavity formed from dielectric mirrors. Just like in the case for a cavity with
a single-layered mirror, here we start by describing the system in the true-mode
representation. We expand the theory, derived in the previous part, for the case
of a multilayer stack. From this, we obtain a general expression for the coupling
strength between the Ąeld and the atom. This allows for a discussion on a more
realistic speciĄcation of effective cavity length and corresponding mode volume
for short cavities. We show that the expected resonance frequency of the cavity,
the resonant frequency of the emitter and the design frequency of the dielectric
stack may differ substantially from one another. By considering the boundary to
these effects, we demonstrate that the standard models of optical resonance are
asymptotically re-achieved at extended cavity lengths.

6.1 The model

Having obtained the propagation of light in a cavity with a thin single-layered mirror
in Section 3.2, we now extend this analysis to describe the Ąeld modes in Bragg
stacks. This is done by considering an alternating stack of two dielectric materials.
The Ąrst type of layer has a width δ with refractive index n1, while the second
one has a width α with index n2. The stack has 2N − 1 layers: N − 1 pairs of
dielectric and one additional layer of index n1. As such, the Ąrst and last layers of
the stack have the higher refractive index (n1 > n2) [8]. For the sake of simplicity,
we disregard the substrate on which the coating is deposited, which would normally
correspond to a Ąnal, signiĄcantly thicker, layer of low index material. An updated
cavity model is shown in Fig. 6.1 and the corresponding relative permittivity is
given by:

εr (x) =

∏︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⨄︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋃︂

1 −ℓc < x ≤ 0

n2
1 j1 (δ + α) < x ≤ j1 (δ + α) + δ

n2
2 (j2 − 1) (δ + α) + δ < x ≤ j2 (δ + α)

1 x > N (δ + α) − α

, (6.1)

where j1 ∈ ¶0, 1, 2, ..., N − 1♢ and j2 ∈ ¶1, 2, ..., N − 1♢. Similar to the single-layered
case, the mirror is designed to reĆect best at wavelength λ0, which is used to specify
the quarter wave dielectric layer optical thickness: δ = λ0/4n1 and α = λ0/4n2.
For simplicity, we further consider n2 = 1. By following the continuity of the Ąeld
and its derivative, and imposing a perfect mirror at x = −ℓc, we solve the equation
(3.17) and Ąnd that the mode can be described in terms of the following functions:

B0(ω, x) = ei
ω

c
(x+ℓc),

Bj (ω, x) =

∏︂

⨄︂

⋃︂

1
1−r1

(︂

Bj−1 (ω, x2 (j)) + r1B
∗
j−1 (ω, x2 (j))

)︂

ei
ω

c
(x−x2(j)) j even,

1
1+r1

(︂

Bj−1 (ω, x1 (j)) − r1B
∗
j−1 (ω, x1 (j))

)︂

ei
ω

c
n1(x−x1(j)) j odd,

(6.2)
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Figure 6.2: Mode propagation of a wave of wavelength λ, for a cavity with a
multilayered stack with an index of n1 = 1.25. A perfect mirror stands at x = −ℓc,
forming a cavity of length ℓc with an alternating dielectric stack of 2N − 1 = 21
alternating layers of width δ = λ0/4n1 and α = λ0/4n2 (n2 is taken to be 1). The
propagation frequency ω = 2πc/λ is varied to observe the mode propagation. In (a),
the case when ℓc = λ0/2 and ω exactly matches with the cavity design resonance
frequency ω0 is shown, obtaining the strongest conĄnement of light inside of the
cavity. In (b) and (c), we can see how the intensity changes when the propagating
light is slightly off resonance. Finally, in (d) we increase the cavity length to reach
ℓc = 3λ0/4 and observe that we achieve resonance coupling when ω = 1.1022ω0.
Moreover, we can see that in this case the intensity of the light within the layer
stack exceeds the intensity of the light inside of the cavity.

where Φω,ins (x) describes the mode between the perfect mirror and the Ąrst layer
of the multilayared mirror, and Φω,outs (x) describes the mode outside the cavity,
where there are no dielectric layers anymore. Here, Tω is the response function of
the structure, which has the form

Tω =
e−iω

c
(ℓc+(N−1)(δ+α))

B∗
2N−2(ω)

t(ω)

1 + ei
ω

c
δeiϕB(ω)r(ω)

, (6.10)

where ϕB(ω) = arg
(︃

B2N−2/B
∗
2N−2

)︃

and for simplicity we have omitted the argument

of B2N−2 = B2N−2(ω, x1(2N − 1)). Here, t (ω) and r (ω) remain the same as for the
single-layer case.

If we introduce an indexing of the response function deĄned above, such that
Tω = T N

ω , where the label N stands for the 2N − 1 layers, then it can be shown that
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6.2. Effective cavity response function

e−iω

c
(ℓc+(N−1)(δ+α))

B∗
2N−2(ω)

= T N−1
ω , (6.11)

where T N−1
ω is the response function of a cavity having a dielectric stack with 2N −3

dielectric layers. Figure 6.3 shows a series of different cavity response functions for
different numbers of layer stacks and cavity lengths. Here, our model is seen to
exhibit the standard behavior of an optical cavity by showing a decreased linewidth
as the number of layers increases, as would be expected from increased mirror
reĆectivity. Furthermore, the free spectral range of the cavity decreases as its length
is increased.

Similar to the single-layer case, here we can decompose the square modulus of the
response function as a sum of Lorentzian-like functions, analogous to the one in
Eq. (3.28):

♣Tω♣2 =
∞
∑︂

m=−∞

∏︁

ˆ︂

∐︂

c

δ♣B2N−2(ω)♣2
γN(ω)

(ω − ω̂m(ω))2 +
(︂

γN (ω)
2

)︂2

⎞

ˆ︃

ˆ︁ , (6.12)

where

γN(ω) = −c ln ♣r(ω)♣
δ/2

, (6.13)

ω̂m =
cπ

δ/2
m− c

(ϕr(ω) + ϕB(ω) + π)

δ
. (6.14)

The term ϕB(ω) in the expression of ω̂m accounts for the multilayer nature of the
mirror. In the single-layered case, this has the simple, analytical form ϕB1(ω) =
2ℓcω/c.

As we can see from Fig. 6.3, the multilayer structure leads to a narrowly peaked
Lorentzian response function. In order to obtain the individual Lorentzians corre-
sponding to each peak in the response function, we Ąt each individual peak to the
exact cavity response function shown in Eq. (6.12), obtaining numerical parameters
for the values of L(m)

N , γ(m)
N and ω

(m)
N :

♣Tω♣2 =
∑︂

m

c

2L
(m)
N

γ
(m)
N

(︂

ω − ω
(m)
N

)︂2
+
(︃

γ
(m)
N

2

)︃2 . (6.15)

In the case of a single-layered mirror, we obtain the individual Lorentzians by
evaluating the parameters in (3.29) at the resonance frequencies ωm. Here, however,
we can not follow the same procedure due to the complicated nature of the coefficient
♣B2N−2(ω)♣2. Therefore, we apply a numerical Ątting to recover the accuracy of the
procedure described above.

We now examine what happens when we vary the spacing between the mirrors. By
taking into account the multilayer structure of the mirror, we also observe resonance
frequency shifts from the expected resonances, i.e., for a cavity having a mirror
spacing ℓc, the expected resonance frequency would be ωm = 2πc/λ0 = πm (c/ℓc),
where m is the number of antinodes between the mirrors. However, the resonance
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6. Cavities with multilayer dielectric stacks

frequencies that we obtain with a multilayered structure, in general, do not match
the values of ωm described above (see Fig. 6.4). In other words, if in the multilayered
case we write ωeff = ω

(m)
N = πm (c/ℓeff) for the resonance frequencies, then, in general

ℓeff is different from ℓc. In particular, ℓeff is the same as ℓc only if ℓc = pλ0/2, where
p is an integer. Moreover, the shorter the cavity, the greater the difference between
ωeff and ωm.

Since here we study cavities inducing strong coupling and the more layers, the higher
the cavity Ąnesse, the individual Lorentzian terms in Eq. (6.15) are well separated.
Thus, for the response function we can write

Tω ≈
∑︂

m

√︄

c

2L
(m)
N

√︂

γ
(m)
N

(︂

ω − ω
(m)
N

)︂

+ i
γ

(m)
N

2

=
∑︂

m

Tm (ω) . (6.16)

In Chapter 7 we study the accuracy of this estimation in more details, considering
high as well as low Ąnesse cavities.

6.3 Trapped atom interacting with a multilayer

cavity

Having obtained the response function for the multilayer cavity, we can now study
the single photon production from the atom trapped in such a multilayer cavity.
Starting from the true-mode representation introduced in Section 4.1.1, we can write
the atom-Ąeld coupling strength analogous to Eq. (4.6):

ηω =
∑︂

m

∏︁

ˆ︂

∐︂i

√︄

ω

ℏϵ0L
(m)
N A

dfe e
iω

c
ℓc sin

[︂

ω
c
(xA + ℓc)

]︂

⌜

⃓

⃓

⎷
γ

(m)
N

2π

1
(︂

ω − ω
(m)
N

)︂

+ i
γ

(m)
N

2

⎞

ˆ︃

ˆ︁ .(6.17)

Comparing this result with the single-layer case, we can see that the expressions
are the same, with the exception that for the multilayer case we have L(m)

N instead
of ℓc and γ

(m)
N instead of Γc. Similarly, if we interpret the product L(m)

N A in the
pre-factor as the mode volume, it is no longer deĄned through the geometric length
of the cavity, due to the discrepancy between L

(m)
N and ℓc.

Over the width γ
(m)
N of a single Lorentzian, the prefactor

√
ω can be considered

as constant for ω ≃ ω
(m)
N ± γ

(m)
N , therefore we can further approximate the mode

selective coupling ηω,m as:

ηω,m ≈ i

⌜

⃓

⃓

⎷

ω
(m)
N

ℏϵ0L
(m)
N A

dfe e
iω

c
ℓc sin

[︂

ω
c
(xA + ℓc)

]︂

⌜

⃓

⃓

⎷
γ

(m)
N

2π

1
(︂

ω − ω
(m)
N

)︂

+ i
γ

(m)
N

2

, (6.18)

where xA is the position of the atom inside the cavity.

Using the expression (6.18), we can now move from true-mode representation to
pseudo-mode representation. Analogous to the deĄnition in (4.13), we deĄne the
following operator:

âm =
1

gm

∫︂ ∞

0
dω ηω,m âω, (6.19)
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CHAPTER 7
Effective models for multilayer

cavity dynamics

As we have discussed in Chapter 4, by using frequency dependent cavity-reservoir
coupling function (4.10) corresponding to the inside-outside representation, one can
have the complete characterization of the open cavity dynamics derived from Ąrst
principles. We showed that for the approximate inside-outside model to work, the
cavity must be of high Ąnesse. If we consider Fabry-Pérot type cavities, in practice
the high Ąnesse is achieved via increasing the number of dielectric layers forming
the cavity mirrors. As discussed in the previous chapter, the dielectric structure
of the cavity mirrors may alter the characteristic parameters of the cavity, such as
cavity free spectral range, mode volume and the effective length determining the
cavity resonances. Taking into account these results, in this chapter, we extend the
effective models derived in Chapter 4 for a cavity featuring multilayer mirrors. In
particular, we derive the frequency-dependent cavity-reservoir coupling function for
cavities made of multilayer dielectric mirrors, starting from Ąrst-principles. This
provides the complete characterization of the cavity dynamics, explicitly taking into
account the effects induced by the geometrical structure of the mirror. Based on
this derivation, we introduce a generalized cavity response function and an effective
reĆectivity that allow to describe the behavior of the multilayer cavity in terms of a
single-layered one, whose characteristic parameters account for the actual multilayer
nature of the cavity. We estimate the error of such a reformulated description with
respect to the number of dielectric layers and the cavity length. We follow the
same derivation scheme described in Ref. [52], where the cavity-reservoir coupling is
derived by comparing the modes of a closed system consisting of an open cavity and
its surroundings to the modes of a system where a perfect cavity is coupled to the
semi-inĄnite reservoir of continuous modes. This allows us to derive a generalized
cavity-environment coupling function that accounts for the effects caused by the
actual structure of the mirror. We apply this model to study the dynamics of an
atom trapped in such a multilayer cavity and study the properties of a photon
produced from such a system. In particular, we demonstrate that apart from having
the time proĄle of the produced photon inside the cavity, with this formulation, one
can obtain the spectral shape of the photon as well as its spatial distribution outside
the cavity.
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7. Effective models for multilayer cavity dynamics

7.1 True-mode representation for a multilayer

cavity

Just like for the single-layered cavity, here we start by analyzing a global closed
system consisting of a non-perfect multilayered cavity and its surroundings. In this
representation, we can quantize the model according to the modes (6.9) that extend
over inside as well as outside the cavity:

Φω,ins(x) =
2i√

2πcA
ei

ω

c
ℓcTω sin

[︃

ω

c
(x+ ℓc)

]︃

, (7.1a)

Φω,outs(x) =
1√

2πcA

(︄

e2iω

c
ℓc

Tω
T ∗
ω

ei
ω

c
x − e−iω

c
x

)︄

. (7.1b)

Tω is the multilayer cavity response function derived in Eq. (6.10), which can be
written in the following form:

Tω ≈
∑︂

m

Tm(ω), (7.2a)

Tm(ω) =

√︄

c

2L
(m)
N

√︂

γ
(m)
N

(︂

ω − ω
(m)
N

)︂

+ i
γ

(m)
N

2

, (7.2b)

where the index m spans through 2p−1+2N+⌈2(ℓc−pλ0

2
)⌉, with p being the number

of antinodes within the length ℓc. We recall that L(m)
N is the length determining the

light ampliĄcation strength inside the cavity, while ℓ(m)
eff is the effective cavity length

determined from the resonance frequencies ω(m)
N = mπc/ℓ

(m)
eff .

While for a cavity with a single-layered mirror, a similar expression to (7.2) can be
obtained with analytically deĄned γ

(m)
1 and ω

(m)
1 [see Eqs. (3.29) and (3.31)], for

multilayer structure this expression is obtained numerically via imposing ♣Tω♣ ≈
♣∑︁ Tm(ω)♣, leading to numerically deĄned γ

(m)
N , ω(m)

N and L
(m)
N . We highlight that,

unlike here, in Section 6.2 we performed the Ątting of the function ♣Tω♣2, since we
considered a regime where Tm(ω)Tm′(ω) = δmm′ . However, here we want to consider
a more general case, where there can be overlap between different Tm(ω). In Fig. 7.1,
we illustrate the response function Tω [Eq. (6.10)] and the individual terms Tm(ω) for
cavities with different mirror spacing and dielectric layers. As we can see, for certain
scenarios, the overlap between the neighboring Tm(ω) is signiĄcant, and given the
representation of Ąnesse as the ratio of cavity free spectral range to its linewidth,
the signiĄcant overlap implies that the cavity is of low Ąnesse. For the situations
where the overlap is negligible, around the resonance peak ω0 the full response
function (7.2a) can be reduced to a single term Tm(ω): Tω ≈ Tm(ω) (high-Ąnesse),
where m = 1 for the Lorentzian centred around ω0. In particular, in Fig. 7.2(a), we
show the error of such an approximation for cavities of different mirror spacing ℓc
and dielectric structure. The error is estimated by calculating the term

1 −
\︄

\︄

\︄

\︄

⟨Tω, Tm(ω)⟩
⟨Tω, Tω⟩

\︄

\︄

\︄

\︄

= 1 −
\︄

\︄

\︄

\︄

∫︁

dω TωT ∗
m(ω)

∫︁

dω♣Tω♣2
\︄

\︄

\︄

\︄

, (7.3)

where the integration is done over the region ω
(m)
N − γ

(m)
N /2 < ω < ω

(m)
N + γ

(m)
N /2.

As we can see, for the cases where the number of nodes inside the cavity is not
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7.1. True-mode representation for a multilayer cavity
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Figure 7.1: Response function of a multilayer cavity. Solid lines represent the actual
response function ♣Tω♣, while dashed lines correspond to each term ♣Tm(ω)♣ close to
the resonance frequency ω0. N is the number of dielectric pairs and ℓc is the mirror
spacing, with ℓ0 = λ0/2.

exact, i.e., ℓc/ℓ0 ≠ p, the main resonance peak is not symmetric with respect to the
neighboring peaks, and while it is well separated from one, it can be signiĄcantly
overlapped with the other, increasing the error in the approximation.

Taking into account this analysis of the response function, in the following, we
reformulate Tm(ω) around each peak ω(m)

N in terms of a single-layered cavity response
function derived in Section 3.2. This reformulation can be thought of as replacing a
multilayer mirror with an effective single-layered one with negligible thickness, which
is positioned such that it forms a cavity of mirror spacing ℓ(m)

eff and the resonance
frequency ω(m)

N . The spectral transmission and reĆection functions for this Ąctitious
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7. Effective models for multilayer cavity dynamics
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Figure 7.2: (a): The error of approximating the full response function by a single term
of the form (7.2b) around the resonance peak ω0 for cavities with different lengths
ℓc and with different number of dielectric layer pairs N . (b): ReĆectivity of a mirror
replacing the partially transparent multilayer mirror: ♣rm♣ = rm(ω

(m)
N ) = e−γ

(m)
N

ℓ
(m)
eff /c.

mirror are tm(ω) and rm(ω) respectively, such that (see the details in Appendix B.1):

Tm(ω) ≈ Tm,ω =

⌜

⃓

⃓

⎷

ℓ
(m)
eff

L
(m)
N

tm(ω)

1 + rm(ω)e2iω

c
ℓ

(m)
eff

, (7.4)

with ♣rm(ω
(m)
N )♣ = e−γ

(m)
N

ℓ
(m)
eff /c, rm(ω) = ♣rm(ω)♣eiφr(ω) and φr(ω

(m)
N ) = π. As we can

see, the expression (7.4) is different from the standard single-layered mirror response

function [Eq. (3.24)] by the factor
√︂

ℓ
(m)
eff /L

(m)
N , which tends to 1 only in particular

cases [see Fig. 6.3]. Thus, Eq. (7.4) can be considered as the generalized cavity
response function, that incorporates the effects induced by the cavity structure.
We remark that the function tm(ω) (rm(ω)) is not uniquely deĄned in the whole
spectrum, and the way we deĄne it here does not provide the complete spectral
information of the phase factor φt(ω) (φr(ω)). Additionally, we can interpret the
term ♣rm♣ := ♣rm(ω

(m)
N )♣ as the effective reĆectivity of the multilayer cavity and in

Fig. 7.2(b), we show the dependence of this effective reĆectivity on the number
of dielectric layer pairs and the mirror spacing of the actual cavity. Comparing
Fig. 7.2(b) with the error Ągure Fig. 7.2(a), we can estimate the value of the mirror
reĆectivity for which the complete modes of the cavity can be replaced by individual
ones.
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7.2. Inside-outside representation

7.1.1 Electromagnetic field in the true-mode

representation

Using the modes in Eq. (7.1), we can write the quantized electric and magnetic Ąelds
expressions in true-mode representation [59, 60]. In particular, the Ąelds inside and
outside of the cavity read as follows:

Eins(x) = − i
∫︂ ∞

0
dω

√︄

ℏω

2ε0

(︂

Φω,ins(x)aω − Φ∗
ω,ins(x)a†

ω

)︂

,

=
∫︂ ∞

0
dω

√︄

ℏω

πcAε0

(︃

sin
[︂

ω
c
(x+ ℓc)

]︂

ei
ω

c
ℓcTωaω +H.c.

)︃

, (7.5a)

Eouts(x) = − i
∫︂ ∞

0
dω

√︄

ℏω

2ε0

(︂

Φω,outs(x)aω − Φ∗
ω,outs(x)a†

ω

)︂

,

= − i
∫︂ ∞

0
dω

√︄

ℏω

4πcAε0

(︃[︃

e2iω

c
ℓc

Tω
T ∗
ω

ei
ω

c
x − e−iω

c
x
]︃

aω −H.c.
)︃

, (7.5b)

Bins(x) =
i

c

∫︂ ∞

0
dω

√︄

ℏω

πcAε0

(︃

cos
[︃

ω

c
(x+ ℓc)

]︃

ei
ω

c
ℓcTωaω −H.c.

)︃

, (7.6a)

Bouts(x) =
i

c

∫︂ ∞

0
dω

√︄

ℏω

4πcAε0

(︃[︃

e2iω

c
ℓc

Tω
T ∗
ω

ei
ω

c
x + e−iω

c
x
]︃

aω −H.c.
)︃

, (7.6b)

where aω is the annihilation operator of the true modes describing the whole cavity-
environment closed system. These operators satisfy the commutation relations

[︂

aω, a
†
ω′

]︂

= δ(ω − ω′), (7.7a)

[aω, aω′ ] = 0. (7.7b)

Furthermore, the Hamiltonian for such a closed system in the true-mode representa-
tion can be written

H =
∫︂ ∞

0
dω ℏωa†

ωaω. (7.8)

After writing the modes in the true-mode representation, in the following we separate
these true modes into inside and outside ones.

7.2 Inside-outside representation

In the previous section, we introduced the model in the true-mode representation,
where the modes describe the full cavity-environment closed system. In this section,
we analyze the system in the inside-outside representation presented in Section 4.1.2,
where the inside modes correspond to the discrete modes of a perfect cavity and
the outside modes are the continuous reservoir modes that are delimited by the
perfect cavity. This separation of the modes into the inside and the outside allows
one to study the dynamics of the cavity separated from its environment while still
providing the characterization of the full closed system.
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7. Effective models for multilayer cavity dynamics

In the derivation below, we consider a regime with relatively high effective reĆectivity,
so that we can approximate the full response function with a single term Tm(ω),
corresponding to the strongest resonance peak. Since we consider a single peak
m, for readability, here after we drop the indexing m for the terms ℓ(m)

eff := ℓeff

and L
(m)
N := LN , and redeĄne the resonance frequency ωm := ω

(m)
N and the cavity

linewidth γ
(m)
N = γm.

7.2.1 Electromagnetic field in the inside-outside

representation

The electric and magnetic Ąelds in a perfect cavity of length ℓeff, the left mirror of
which is placed at −ℓc read as follows:

E0,ins(x) =
∞
∑︂

m=1

√︄

ℏωm
ℓeffArε0

(︃

cm + c†
m

)︃

sin
[︃

ωm
c

(x+ ℓc)
]︃

, (7.9a)

B0,ins(x) =
i

c

∞
∑︂

m=1

√︄

ℏωm
ℓeffArε0

(︃

cm − c†
m

)︃

cos
[︃

ωm
c

(x+ ℓc)
]︃

, (7.9b)

where cm/c†
m is the discrete annihilation/creation operator describing the perfect

cavity mode with the resonance frequencies ωm = πcm/ℓeff. These operators satisfy
the following relations:

[︂

cm, c
†
m′

]︂

= δmm′ , (7.10a)

[cm, cm′ ] = 0. (7.10b)

Ar is the transverse area of the mode of the perfect cavity, which is related to
the actual mode area of the multilayer mirror with the following relation: Ar =
(LN/ℓeff) A. Taking this into account the Ąelds in Eq. (7.9) become

E0,ins(x) =
∞
∑︂

m=1

√︄

ℏωm
LNAε0

(︃

cm + c†
m

)︃

sin
[︃

ωm
c

(x+ ℓc)
]︃

, (7.11a)

B0,ins(x) =
i

c

∞
∑︂

m=1

√︄

ℏωm
LNAε0

(︃

cm − c†
m

)︃

cos
[︃

ωm
c

(x+ ℓc)
]︃

. (7.11b)

Analogously, we can deĄne the Ąelds for the outside:

E0,outs(x) =
∫︂ ∞

0
dω

√︄

ℏω

πcAε0

(︃

bω + b†
ω

)︃

sin
[︃

ω

c
(x− d)

]︃

, (7.12a)

B0,outs(x) =
i

c

∫︂ ∞

0
dω

√︄

ℏω

πcAε0

(︃

bω − b†
ω

)︃

cos
[︃

ω

c
(x− d)

]︃

, (7.12b)

which are derived considering that the outside is delimited by a perfect mirror
on the left, placed at d = ℓeff − ℓc. Here, unlike for the inside modes, the mode
area A for the outside is the same as the one for the multilayer cavity. bω/b†

ω is
the annihilation/creation operator of the outside, i.e., the reservoir, satisfying the
commutation relations

[︂

bω, b
†
ω′

]︂

= δ(ω − ω′), (7.13a)

[bω, bω′ ] = 0. (7.13b)
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7.3. Cavity-reservoir coupling function

7.3 Cavity-reservoir coupling function

If the separation into discrete cavity modes (inside) and the semi-inĄnite reservoir
modes (outside) is correct, then the modes in this representation should be equivalent
to those obtained from the true-mode representation. In the following, we impose
such equivalence and analyze its validity via deriving the corresponding cavity-
reservoir coupling function. In order to obtain the relation between the true modes
aω and the inside and the outside modes am and bω we equate the corresponding
electric and magnetic Ąelds of the inside and the outside parts:

E0,ins(x) = Eins(x), (7.14a)

B0,ins(x) = Bins(x), (7.14b)

E0,outs(x) = Eouts(x), (7.14c)

B0,outs(x) = Bouts(x). (7.14d)

From these equivalences, for the cavity operator cm we obtain (see the details in
Appendix B.2)

cm =
1
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√︄

cLN
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∫︂ ∞
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c

]︂

ω + ωm
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c
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†
ω

⎞

ˆ︁ ,

(7.15)

and for the reservoir operator we get (see the details in Appendix B.3):
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′+ω

c
(x−d)

]︃

a†
ω′

⎞

ˆ︁,

(7.16)

where d = ℓeff − ℓc and

Gω = e2iω

c
ℓc

Tω
T ∗
ω

ei
ω

c
d. (7.17)

Applying the limit Tω ≈ Tm(ω) ≈ Tm,ω, Gω simpliĄes to

Gω′ ≈ e−iω
′

c
d + 2iei

ω
′

c
ℓcTm,ω′

√︄

Leff

ℓeff

cos
(︂

ω′

c
ℓeff + φr(ω

′)
)︂

+ ♣rm(ω′)♣ cos
(︂

ω′

c
ℓeff

)︂

♣tm(ω′)♣ .

(7.18)

Using this simpliĄcation the expression in Eq. (7.16) becomes (see the details in
Appendix B.3):

bω = e−iω

c
daω +

1

π

∫︂ ∞

0
dω′

√︄

ω′

ω

√︄

LN
ℓeff

cos
(︂

ω′

c
ℓeff + φr(ω

′)
)︂

+ ♣rm(ω′)♣ cos
(︂

ω′

c
ℓeff

)︂

♣tm(ω′)♣
×
(︃

ei
ω

′

c
ℓcTm,ω′ lim

ϵ→0

1

ω − ω′ − iϵ
aω′ + e−iω

′

c
ℓcT ∗

m,ω′ lim
ϵ→0

1

ω + ω′ − iϵ
a†
ω′

)︃

.
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7.3.1 Separation of the true modes into inside and outside

modes

Above, we derived the expressions of the inside and the outside mode operators in
terms of the true modes aω. Here, we derive the inverse relation, expanding the true
modes in terms of the inside operator cm and the outside operator bω. We start by
assuming that the true modes can be decomposed in terms of the separated modes
as follows:

aω =
∞
∑︂

m=1

[︂

αm1(ω)cm + αm2(ω)c†
m

]︂

+
∫︂ ∞

0
dω′

(︂

β1(ω, ω
′)bω′ + β2(ω, ω

′)b†
ω′

)︂

. (7.19)

Taking the discrete and continuous parts of this deĄnition separately, we further
deĄne the following operators:

aD(ω) =
∞
∑︂

m=1

[︂

αm1(ω)cm + αm2(ω)c†
m

]︂

, (7.20a)

aC(ω) =
∫︂ ∞

0
dω′

(︂

β1(ω, ω
′)bω′ + β2(ω, ω

′)b†
ω′

)︂

, (7.20b)

such that

aω = aD(ω) + aC(ω). (7.21)

If the decomposition (7.19) is indeed true, then the following commutation relation
should hold:

[︂

aω, a
†
ω′

]︂

=
[︂

aD(ω), a†
D(ω′)

]︂

+
[︂

aC(ω), a†
C(ω′)

]︂

. (7.22)

In order to check this relation we Ąrst calculate the coefficients αm1(ω), αm2(ω) and
β1(ω, ω

′), β2(ω, ω
′) (see the details in Appendix B.4):

αm1(ω) = [aω, c
†
m] =

√︄

LN
πc

√︄

ω

ωm
sinc

[︂

(ω − ωm)
ℓeff

c

]︂

e−iω

c
ℓcT ∗

ω , (7.23a)

αm2(ω) = [cm, aω] =

√︄

LN
πc

√︄

ω

ωm
sinc

[︂

(ω + ωm)
ℓeff

c

]︂

e−iω

c
ℓcT ∗

ω , (7.23b)

β1(ω, ω
′) =

[︂

aω, b
†
ω′

]︂

= ei
ω

′

c
dδ(ω − ω′) (7.24a)

+
1

π

√︃

ω

ω′

∏︁

∐︂T ∗
m,ω

√︄

LN
ℓeff

lim
ϵ→0

e−iω

c
ℓc

ω′ − ω + iϵ

cos
(︂

ω
c
ℓeff + φr(ω)

)︂

+ ♣rm(ω)♣ cos
(︂

ω
c
ℓeff

)︂

♣tm(ω)♣

⎞

ˆ︁,

β2(ω, ω
′) = [bω′ , aω] (7.24b)

= − 1

π

√︃

ω

ω′

∏︁

∐︂T ∗
m,ω

√︄

LN
ℓeff

lim
ϵ→0

e−iω

c
ℓc

ω′ + ω − iϵ

cos
(︂

ω
c
ℓeff + φr(ω)

)︂

+ ♣rm(ω)♣ cos
(︂

ω
c
ℓeff

)︂

♣tm(ω)♣

⎞

ˆ︁.

In general, operators (7.20) with coefficients (7.23) and (7.24) do not satisfy the
commutation relation (7.22), however, as we show below, since we are in the limit
where Tω ≈ Tm(ω) ≈ Tm,ω, we can approximate these coefficients such that they
satisfy the commutation relations, therefore justifying the separation of the modes
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7.3. Cavity-reservoir coupling function

into inside and outside. To demonstrate that, we proceed by approximating the
coefficients αmi

(ω) and βi(ω, ω
′):

αm1(ω) ≈ e−iω

c
ℓc

√︃

γm
2π

1

(ω − ωm) − iγm

2

, (7.25a)

αm2(ω) ≈ 0, (7.25b)

β1(ω, ω
′) ≈ ei

ω
′

c
dδ(ω − ω′)

+
1

π

∏︁

∐︂e−iω

c
ℓcT ∗

m,ω

√︄

LN
ℓeff

lim
ϵ→0

1

ω′ − ω + iϵ
(−1)m

−1 + ♣rm(ωm)♣
♣tm(ωm)♣

⎞

ˆ︁, (7.25c)

β2(ω, ω
′) ≈ 0, (7.25d)

where we have evaluated αm1(ω) and β1(ω, ω
′) around the resonance peak ωm

and discarded αm2 and β2(ω, ω
′) treating them as fast oscillating terms. These

approximations lead to the following relation between the true and the separated
inside-outside modes:

aω ≈
∞
∑︂

m=1

αm1(ω)cm +
∫︂ ∞

0
dω′β1(ω, ω

′)bω′ . (7.26)

With this separation the commutation relation (7.22) is satisĄed as long as the terms

of the order
(︂

γm
ℓeff

c

)︂2
are negligible, i.e., the reĆectivity of the mirror is close to 1

[Fig. 7.2(b)] (see the details in Appendix B.5). With these relations between the
true and inside-outside modes, it can also be shown that the modes of the inside
and the outside indeed commute at this limit: [cm, b

†
ω] = 0.

7.3.2 Hamiltonian

Having obtained the relation between the modes of the true-mode and the inside-
outside representations, we can now derive the Hamiltonian describing the separated
inside-outside system from the true-mode Hamiltonian (7.8) (see the details in
Appendix B.6):

H =
∑︂

m=1

ℏωmc
†
mcm +

∫︂ ∞

0
dω ℏω b†

ωbω

+ iℏ
∑︂

m=1

∫︂ ∞

0
dω

(︂

κm(ω)b†
ωcm − κ∗

m(ω)c†
mbω

)︂

, (7.27)

with

κm(ω) = −ie−iω

c
ℓeff

√︃

γm
2π

sinc

[︄

(ω − ωm)
ℓeff

c

]︄

(7.28)

being the coupling between the cavity and the reservoir. As we can see, this term is
not constant and unlike the one obtained for a cavity with a single-layered mirror of
negligible thickness [Eq. (4.10)], Eq. (7.28) features the effective length ℓeff of the
multilayer cavity. Just like the response function (7.4), the coupling function (7.28)
can also be considered as the generalization of the similar expression derived for a
single-layered cavity. Only in a certain limit, where ℓeff = ℓc these formulas coincide.
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7.3.3 Poynting vector

Now that we have a complete description of the model in inside-outside representation,
here we focus on characterizing the Ąeld propagating outside the cavity. Performing
similar derivation to the one demonstrated in Section 4.2.1, we derive the Poynting
vector for the cavity with multilayer mirror. The Poynting vector in the true-mode
representation with the electromagnetic Ąelds (7.5b) and (7.6b), for the propagation
in the positive x direction reads as follows:

Souts(x) =
ℏ

2πA
∫︂ ∞

0
dωdω′

√
ωω′Re

⎭

GωG
∗
ω′ei

(ω−ω
′)

c
xa†

ω′aω

}︃

. (7.29)

Taking the deĄnition in Eq. (7.17) and the expression of the coefficient αm1(ω) given
in Eq. (7.25a), we can reformulate Gω as follows:

Gω ≈ e2iω

c
ℓc

Tm(ω)

T ∗
m(ω)

ei
ω

c
d ≈ ei

ω

c
ℓeffα∗

m1
(ω)

√︄

2π

γm

(︃

ω − ωm − i
γm
2

)︃

. (7.30)

Using Eq. (7.30) and the expansion of true modes in terms of outside modes:
aω =

∫︁∞
0 dω′′β1(ω, ω

′′)bω′′ (since we derive the Poynting vector for the outside part
we do not consider the discrete part of the decomposition (7.26), corresponding to
the inside modes), we can write the Poynting vector for the outgoing Ąeld in the
inside-outside representation:

Souts(x) ≈ ℏωm
Aγm

∫︂ ∞

0
dω dω′ κ∗

m(ω)κm(ω′)b†
ω′bω, (7.31)

where we have evaluated the integral
∫︂ ∞

0
dω′′

(︃

ω − ωm − i
γm
2

)︃

α∗
m1

(ω)β1(ω, ω
′′)bω′′ = −iκ∗

m(ω)bω,

similar to the one calculated in Appendix B.6.

Having obtained the expression for the Poynting vector, we next deĄne the following
operator analogous to Eq. (4.44) that characterizes the spatial distribution of the
photon propagating outside:

b(x) :=
1√
γm

∫︂ ∞

0
dωκ∗

m(ω)ei
ω

c
xbω, (7.32)

and the Poynting vector can be written as

Souts(x) =
ℏωm
A b†(x)b(x). (7.33)

Corresponding coarse-grained photon number density becomes

Φdensity(x, t) =
A

ℏωm

⟨Souts(x)⟩♣ψ(t)⟩

c
=

1

c
⟨b†(x)b(x)⟩ = ⟨b†

xbx⟩, (7.34)

where we have deĄned an operator similar to Eq. (4.67)

b†
x =

1√
c
b†(x) =

1√
cγm

∫︂ ∞

0
dωκm(ω)e−iω

c
xb†
ω, (7.35)
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which satisĄes the following commutation relations:
[︂

bx, b
†
x

]︂

=
1

2ℓeff

, (7.36)
[︂

bx, b
†
x′

]︂

= 0, when ♣x− x′♣ > 2ℓeff. (7.37)

Hence, the total photon number outside the cavity reads

N(t) =
∫︂ ∞

0
dx
⎬

b†
xbx

⟩︃

♣ψ(t)⟩
. (7.38)

The general photon state outside the multilayer cavity can be deĄned the same way
as (4.58)

♣1outs(t)⟩ =
∫︂ +∞

0
dω Ψ(ω, t)b†

ω♣∅⟩. (7.39)

In the following, we use the deĄnitions presented here to analyze the production
and the propagation of a single photon produced from an atom trapped in a cavity.

7.4 Numerical verification of the inside-outside

representation

To verify the validity of the above mode separation, we next study the dynamics
of a Λ-type atom of ground state ♣g⟩, excited state ♣e⟩ and a metastable state ♣f⟩,
trapped in the multilayer cavity (Fig. 7.3). The atom is excited by a classical laser
Ąeld of Rabi frequency Ω(t), introducing a detuning between the laser frequency
ωL and the frequency of excited state ωeg: ∆ = ωeg − ωL. Furthermore, the atom
decays from the excited to the metastable state by coupling to the cavity mode,
emitting a photon, which eventually leaks out of the cavity through the transparent
mirror. To study the dynamics of this process, we start by analysing this model in
terms of the true modes. For this case the overall Hamiltonian can be written as:

H̃(t) = HA(t) +Hint +HE (7.40a)

HA(t) = ℏ(ωfg − ωL)σf + ℏ∆σe + ℏΩ(σge + σeg), (7.40b)

HE =
∫︂ +∞

0
dω ℏωa†

ωaω, (7.40c)

Hint = iℏ
∫︂ +∞

0
dω

(︂

ηωaωσ
† − η∗

ωa
†
ωσ
)︂

, (7.40d)

where the Hamiltonian HE represents the part describing the environment, which
is the multilayer cavity and the reservoir, considered as a single entity. We have
also introduced the atomic operators σij = ♣i⟩⟨j♣. ηω describes the coupling of the
emitter with the true modes aω [Eq. (4.5)]:

ηω = i

√︄

ω

ℏϵ0πcA
dfee

iω

c
ℓc sin

(︃

ω

c
(xA + ℓc)

)︃

Tω. (7.41)

The state corresponding to this representation can be written as follows:

♣ψ̃⟩ = c̃g,0(t)♣g, ∅⟩ + c̃e,0(t)♣e, ∅⟩ +
∫︂ +∞

0
dω c̃f,1(ω, t)♣f,1ω⟩, (7.42)
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γ

(a)

(b)

Δ
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|e, 0 ⟩ins

|g, ⟩0ins

|f, 1 ⟩ins

|f, ⟩0ins

|1 ⟩outs

Figure 7.3: (a) Λ-type atom trapped in a non-perfect cavity. The cavity is formed by
a perfect mirror placed at x = −ℓc and a partially transparent mirror standing from
x = 0 and made of a dielectric stack of alternating layers. The atom is driven by
an external classical laser Ąeld of Rabi frequency Ω(t). gm is the coupling strength
between the atom and the m-th mode of the cavity, and γm is the corresponding
linewidth. (b) Inside-outside representation of the considered model. Initially the
atom is in the ground state ♣g⟩. In the course of the excitation process, one photon
is taken from the laser Ąeld and transferred to the cavity, corresponding to the state
♣f, 1ins⟩. Due to the cavity leakage γm, this photon eventually leaks out of the cavity
to the environment transferring the photon state to the outside (♣1outs⟩).

where

♣1ω⟩ = a†
ω♣∅⟩. (7.43)

Dynamical equations corresponding to the Hamiltonian in (7.40) with the state (7.42)
are:

i
d

dt
c̃g,0(t) = Ω(t) c̃e,0(t), (7.44a)

i
d

dt
c̃e,0(t) = ∆ c̃e,0(t) + Ω(t) c̃g,0(t) + i

∫︂ +∞

0
dω ηω c̃f,1(ω, t), (7.44b)

i
d

dt
c̃f,1(ω, t) = (ω + ωfg − ωL)c̃f,1(ω, t) − iη∗

ω c̃e,0(t). (7.44c)
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Same system in the inside-outside representation has the following Hamiltonian:

H(t) = HA(t) +HAC +HC +HRS +HR (7.45a)

HC =
∑︂

m

ℏωmc
†
mcm, (7.45b)

HAC =
∑︂

m

ℏgm
(︂

c†
mσ + σ†cm

)︂

, (7.45c)

HR =
∫︂ +∞

0
dω ℏω b†

ωbω, (7.45d)

HRC = iℏ
∑︂

m

∫︂ +∞

0
dω

(︂

κm(ω)b†
ωcm − κ∗

m(ω)c†
mbω

)︂

, (7.45e)

where gm is the coupling of the atom with the m-th mode of the perfect cavity:

gm = −dfe

√︄

ωm
ℏϵ0LNA sin

[︃

ωm
c

(xA + ℓc)
]︃

. (7.46)

The state in this representation reads as follows:

♣ψ⟩ = cg,0,0(t)♣g, ∅ins, ∅outs⟩ + ce,0,0(t)♣e, ∅ins, ∅outs⟩ +
∑︂

m

c
(m)
f,1,0(t)♣f, 1(m)

ins , ∅outs⟩

+
∫︂ +∞

0
dω cf,0,1(ω, t)♣f, ∅ins, 1outs,ω⟩,

with

♣1(m)
ins ⟩ = c†

m♣∅⟩, (7.47a)

♣1ω,outs⟩ = b†
ω♣∅outs⟩. (7.47b)

The corresponding dynamical equations can be written as

i
d

dt
cg,0,0(t) = Ω(t) ce,0,0(t), (7.48a)

i
d

dt
ce,0,0(t) = ∆ ce,0,0(t) + Ω(t) cg,0,0(t) +

∑︂

m

gm c
(m)
f,1,0(t), (7.48b)

i
d

dt
c

(m)
f,1,0(t) = (ωfg + ωm − ωL)c

(m)
f,1,0(t) + gm ce,0,0(t) +

∫︂ +∞

0
dω κ∗

m(ω) cf,0,1(ω, t),

(7.48c)

i
d

dt
cf,0,1(ω, t) = (ωfg − ωL + ω) cf,0,1(ω, t) +

∑︂

m

κm(ω) c
(m)
f,1,0(t). (7.48d)

In a regime where the cavity is such that after some time the photon leaks
out of it completely (t → ∞), the outside photon state becomes cf,0,1(ω, t) →
cf,0,1(ω)e−i(ωfg−ωL+ω)t, with

∫︂ ∞

0
dω♣cf,0,1(ω, t)♣2 =

∫︂ ∞

0
dω♣cf,0,1(ω)♣2 = 1. (7.49)

Thus, at this limit we can identify the function Ψ(ω, t) in Eq. (7.39) as

Ψ(ω, t) = cf,0,1(ω)e−i(ωfg−ωL+ω)t. (7.50)
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Figure 7.6: Propagating single-photon state along the propagation direction. The
cavity mirror of the inside-outside representation is placed at d = 0 (for the actual
multilayer mirror ℓc = 10ℓ0, thus ℓeff = ℓc). The solid curves are obtained with
the same parameters as the ones in Fig. 7.4(a), leading to effective reĆectivity
♣rm♣ ≈ 0.95. The curve corresponding to ♣c0,1(x, tm)♣2 describes the photon state at a
time tm, when the photon is not completely out of the cavity yet (in the simulation
the value of tm corresponds to the point tm = 3 in Fig. 7.4(a)). Similarly, ♣c0,1(x, tf)♣2
corresponds to the time tf when the photon has left the cavity and propagates along
the positive x direction. The dashed line is ♣c0,1(x, tf)♣2 but for a cavity with higher
effective reĆectivity ♣rm♣ ≈ 0.98 (N = 10).

relations. Finally, in Fig. 7.6, we study the photon shape along the propagation
direction, corresponding to the term deĄned in Eq. (7.52). From Fig. 7.4 we can
determine the time after which the photon is completely outside the cavity. Using the
expression (7.52) with the solutions of Eq. (7.48), we can describe the propagation
of the photon outside the cavity. As we can see from Fig. 7.6, for the given cavity
length, the width of the spatial distribution of the single photon is of the order
∼ 200ℓc, and the better the effective reĆectivity, the broader the distribution of
the photon outside the cavity. Additionally, we highlight that the sharp start of
the single photon distribution in space is due to the strict limitation imposed by
the speed of light. Notably, this special relativity feature is preserved during the
calculations.
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Summary

In this part, we have extended the analysis of Part II for the more realistic cavity
scenarios, i.e., cavities with mirrors made of multilayer dielectric material. We have
shown that the geometric structure of the mirror can affect the characteristic param-
eters of the cavity, such as cavity mode volume, length and resonance frequencies. In
particular, the effective cavity length ℓeff, as deĄned in the literature [36, 180, 207],
determines the cavity resonance and, as we have shown here, does not correspond
to the coupling factor cavity length L

(m)
N used for determining the strength of the

cavity-emitter coupling. We have found that these two lengths do not correspond to
each other whenever a multilayer structure is taken into consideration. Additionally,
the resonance frequencies through which ℓeff is deĄned no longer coincide with the
expected resonances at integer multiples of πc/ℓc. A pronounced side effect of this
discrepancy is that the most common approach for determining a cavity length
by means of measuring its free-spectral range [164] is bound to fail for very short
cavities. The geometric length of the cavity might differ by up to λ0/2 from its
effective length determining the free spectral range. This difference may be of
importance in applications where the cavity spacings used are very short and the
mirrors are made of dielectric coatings [131, 186].

Moreover, the standard model for light-matter interaction in optical cavities considers
the mode volume of the cavity to be the product between the longitudinal extent
of the mode (considered to be only the separation between the mirrors) and a
factor accounting for the transverse behavior of the mode [174]. However, here
we have shown that this is only valid if the mirrors can be seen as hard mode-
delimiting boundaries. Any physical cavity is very different to that respect. The
mode penetrates into the dielectric mirror stack, couples to the outside and the
light frequency is not quantized in these open systems. However, even though we
do not explicitly consider a mode volume, we show that the atom-cavity coupling
involves a factor having the unit of volume. Only in the case of a perfect cavity
having hard boundaries at the positions of the mirrors, this factor coincides with
the geometric deĄnition of the mode volume. This discrepancy can lead to a Purcell
factor different from the one calculated by using a standard approach, especially
with short mirror spacings.

After obtaining the description of such a multilayer cavity, we then demonstrated
the Ąrst-principle derivation of the cavity-reservoir coupling function for such more
realistic cavities. This derivation is done in the limit where the structure of the
cavity is such that the cavity resonances can be characterized via well-separated
Lorentzian-like functions. In particular, we explicitly estimated the accuracy of such
an approximation with respect to the cavity length and the number of dielectric
layers forming the mirror. We have shown that in this limit one can replace the
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multilayer mirror with an effective single-layered mirror of negligible thickness. We
introduced the generalized cavity response function for this replaced mirror, which,
in general, is different from a single-layered cavity response function and incorporates
the effects caused by the multilayer structure of the actual cavity. Based on this,
we deĄned the effective reĆectivity and showed that even in the regime where the
effective reĆectivity is high, i.e., the cavity is of high Ąnesse, the cavity-reservoir
coupling function derived for the multilayer cavity is different from that derived for
a single-layered cavity.

The models derived here lead to a more general description of the cavity-reservoir
system, where one can take into account the structure of the mirror and freely
vary the frequency of light, the multilayer structure and the position of the cavity
mirror. This is different from the standard open cavity analysis, where the cavity-
reservoir interaction is modeled phenomenologically and is treated as a loss. With
the derivation presented here one can describe the full cavity-reservoir closed system,
while being able to describe the state of the open cavity separated from the reservoir.
Such a model allows to study the spectral shape and the propagation of the produced
single photon outside the cavity. This is particularly useful when studying the reverse
process of photon absorption and the full process of generation and absorption in
more realistic cavity QED systems.
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APPENDIX B
B.1 Effective single-layered cavity response

function

In this appendix we demonstrate how one can reformulate the results derived for the
multilayer cavity in terms of a single-layered one. As it is shown in Appendix A.3,
for a single-layered cavity whose thickness is negligible with respect to the mirror
spacing ℓc, the response function has the following form:

T (ω) =
t(ω)

1 + r(ω)e2iω

c
ℓc

=
∑︂

m

√︄

c

2ℓc

√︂

γ1(ω)

ω − ω̃m(ω) + iγ1(ω)
2

≈
∑︂

m

√︄

c

2ℓc

√
γ1m

ω − ωm + iγ1m

2

,

(B.1)

with

γ1(ω) = − c

ℓc
ln ♣r(ω)♣; γ1m

:= γ1(ωm) = − c

ℓc
ln ♣r(ωm)♣, (B.2)

ω̃m(ω) = m
πc

ℓc
+

c

2ℓc
(π − ϕr(ω)) ; ωm := ω̃m(ωm) ≈ m

πc

ℓc
, (B.3)

with r(ω) = ♣r(ω)♣eiϕr(ω), and ϕr(ωm) ≈ π for a high Ąnesse cavity.

Similar to the expansion (B.1), Eq. (6.10) can be approximated as:

♣Tω♣ ≈
\︄

\︄

\︄

\︄

∑︂

m

Tm(ω)
\︄

\︄

\︄

\︄

(B.4)

Tm(ω) =

√︄

c

2L
(m)
N

√︂

γ
(m)
N

(︂

ω − ω
(m)
N

)︂

+ i
γ

(m)
N

2

, (B.5)

where γ
(m)
N , L(m)

N and ω
(m)
N = mπc/ℓ

(m)
eff are obtained numerically. Taking these

parameters into account and the deĄnitions in (B.2), for the multilayer cavity we
can deĄne a function γm(ω) around each peak m, such that γm(ω

(m)
N ) = γ

(m)
N and

γm(ω) = aγ1(ω), where a is a constant deĄned as: a = γ
(m)
N /γ1(ω

(m)
N ). This can

be interpreted as replacing the multilayer mirror by a single-layered one forming a
cavity of length ℓ

(m)
eff with a spectral reĆection function rm(ω) determined from the

following expression:

γm(ω) = aγ1(ω) = −a c
ℓc

ln ♣r(ω)♣ = − c

ℓ
(m)
eff

a
ℓ

(m)
eff

ℓc
ln ♣r(ω)♣ = − c

ℓ
(m)
eff

ln ♣rm(ω)♣, (B.6)
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with ♣rm(ω)♣ = ♣r(ω)♣a
ℓ
(m)
eff
ℓc . Consequently, we can deĄne the spectral transmission

function tm(ω) from the following relations:

rm(ω) = ♣rm(ω)♣eiφr(ω), (B.7)

tm(ω) = ♣tm(ω)♣eiφt(ω), (B.8)

♣tm(ω)♣2 + ♣rm(ω)♣2 = 1, (B.9)

tm(ω)r∗
m(ω) + t∗m(ω)rm(ω) = 0, (B.10)

φr(ω) − φt(ω) =
π

2
, (B.11)

We highlight that the way we obtain rm(ω) and tm(ω) does not provide the explicit
information about the phase factors φr(ω) and φt(ω).

Taking into account the deĄnitions above we can reformulate the actual response
function in terms of a single-layered cavity response function equivalent to the
multilayer one around each resonance peak:

Tm,ω =

⌜

⃓

⃓

⎷

ℓ
(m)
eff

L
(m)
N

tm(ω)

1 + rm(ω)e2iω

c
ℓ

(m)
eff

. (B.12)

Indeed, we can simplify eq. (B.12) as follows:

♣Tm,ω♣2 =
ℓ

(m)
eff

L
(m)
N

♣tm(ω)♣ 2

\︄

\︄

\︄

\︄

\︄

1 + ♣rm(ω)♣ei
(︂

2 ω

c
ℓ

(m)
eff +φr(ω)

)︂
\︄

\︄

\︄

\︄

\︄

2

=
ℓ

(m)
eff

L
(m)
N

1 − ♣rm(ω)♣ 2

\︄

\︄

\︄

\︄

\︄

1 + ♣rm(ω)♣ei
(︂

2 ω

c
ℓ

(m)
eff +φr(ω)

)︂
\︄

\︄

\︄

\︄

\︄

2

=
ℓ

(m)
eff

L
(m)
N

⋃︁

⋁︁

⋁︁

⨄︁

1 − ♣rm(ω)♣ ei
(︂

2 ω

c
ℓ

(m)
eff +φr(ω)

)︂

1 + ♣rm(ω)♣ei
(︂

2 ω

c
ℓ

(m)
eff +φr(ω)

)︂ − ♣rm(ω)♣ e−i

(︂

2 ω

c
ℓ

(m)
eff +φr(ω)

)︂

1 + ♣rm(ω)♣e−i

(︂

2 ω

c
ℓ

(m)
eff +φr(ω)

)︂

⋂︁

⎥

⎥

⋀︁

=
ℓ

(m)
eff

L
(m)
N

[︄

1 +
∞
∑︂

k=1

♣rm(ω)♣k
(︄

e
ik

(︂

2 ω

c
ℓ

(m)
eff +φr(ω)−π

)︂

+ e
−ik

(︂

2 ω

c
ℓ

(m)
eff +φr(ω)−π

)︂

)︄]︄

=
ℓ

(m)
eff

L
(m)
N

∞
∑︂

k=−∞

♣rm(ω)♣k eik
(︂

2 ω

c
ℓ

(m)
eff +φr(ω)−π

)︂

=
ℓ

(m)
eff

L
(m)
N

∞
∑︂

k=−∞

−2 ln ♣rm(ω)♣
(ln ♣rm(ω)♣)2 +

(︂

2ω
c
ℓ

(m)
eff + φr(ω) − π − 2πk

)︂2

=
ℓ

(m)
eff

L
(m)
N

∞
∑︂

k=−∞

(︄

c

2ℓ
(m)
eff

)︄2 −2 ln ♣rm(ω)♣
(︃

ln ♣rm(ω)♣ c

2ℓ
(m)
eff

)︃2

+
(︃

ω + c

2ℓ
(m)
eff

(φr(ω) − π − 2πk)
)︃2 .

Recalling the deĄnition in (B.6) and deĄning ω̂k(ω) = kπc/ℓ
(m)
eff +(π−φr(ω))c/2ℓ

(m)
eff ,

we obtain

♣Tm,ω♣2 =
∞
∑︂

k=−∞

(︄

c

2L
(m)
N

)︄

γm(ω)

(ω − ω̂k(ω))2 +
(︂

γm(ω)
2

)︂2 ≈
(︄

c

2L
(m)
N

)︄

γ
(m)
N

(︂

ω − ω
(m)
N

)︂2
+
(︃

γ
(m)
N

2

)︃2 ,

(B.13)
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where we considered the fact that the above expansion is done for each resonance
peak of the actual response function separately, hence the sum reduces to a single
term around ω

(m)
N , i.e., ω̂k(ω

(m)
N ) = ω

(m)
N , which makes the phase φr(ω

(m)
N ) = π.

Further, by taking the square root of the above equation, we obtain

Tm,ω =

√︄

c

2L
(m)
N

√︂

γ
(m)
N

(︂

ω − ω
(m)
N

)︂

+ i
γ

(m)
N

2

, (B.14)

which is exactly the same as eq. (B.5). Doing similar expansion around each peak
ω

(m)
N , for the full response function we get:

Tω ≈
∑︂

m

√︄

c

2L
(m)
N

√︂

γ
(m)
N

(︂

ω − ω
(m)
N

)︂

+ i
γ

(m)
N

2

, (B.15)

We highlight that this reformulation does not give uniquely deĄned expressions
for the functions tm(ω) and rm(ω), however just knowing this functions at the
corresponding resonances, i.e. r(ω(m)

N ), is enough for the further derivation.

B.2 Discrete cavity modes in terms of to the

true modes

In this appendix, we demonstrate the relation between the cavity operator in the
inside-outside representation cm and the true modes aω. From the equations

E0,ins(x) = Eins(x),

B0,ins(x) = Bins(x)

we have
∞
∑︂

m=1

√︄

ℏωm
LNAε0

(︂

cm + c†
m

)︂

sin
[︃

ωm
c

(x+ ℓc)
]︃

=
∫︂ ∞

0
dω

√︄

ℏω

πcAε0

(︃

sin
[︂

ω
c
(x+ ℓc)

]︂

ei
ω

c
ℓcTωaω

+ sin
[︂

ω
c
(x+ ℓc)

]︂

e−iω

c
ℓcT ∗

ω a
†
ω

)︃

,

(B.16a)
∞
∑︂

m=1

√︄

ℏωm
LNAε0

(︂

cm − c†
m

)︂

cos
[︃

ωm
c

(x+ ℓc)
]︃

=
∫︂ ∞

0
dω

√︄

ℏω

πcAε0

(︃

cos
[︂

ω
c
(x+ ℓc)

]︂

ei
ω

c
ℓcTωaω

− cos
[︂

ω
c
(x+ ℓc)

]︂

e−iω

c
ℓcT ∗

ω a
†
ω

)︃

.

(B.16b)

which simpliĄes to
∞
∑︂

m=1

√︄

ωm
LN

(cm + c†
m) sin

[︃

ωm
c

(x+ ℓc)
]︃

=
∫︂ ∞

0
dω

√︃

ω

πc

(︃

[︂

sin[ω
c
(x+ ℓc)]e

iω

c
ℓcTω

]︂

aω

+
[︂

sin[ω
c
(x+ ℓc)]e

−iω

c
ℓcT ∗

ω

]︂

a†
ω

)︃

, (B.17a)

∞
∑︂

m=1

√︄

ωm
LN

(︂

cm − c†
m

)︂

cos
[︃

ωm
c

(x+ ℓc)
]︃

=
∫︂ ∞

0
dω

√︃

ω

πc

(︃

cos
[︂

ω
c
(x+ ℓc)

]︂

ei
ω

c
ℓcTωaω

− cos
[︂

ω
c
(x+ ℓc)

]︂

e−iω

c
ℓcT ∗

ω a
†
ω

)︃

. (B.17b)
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If we multiply both sides of Eq. (B.17a) by sin
[︂

ωn

c
(x+ ℓc)

]︂

and integrate over the
interval x = (−ℓc, d), where d = ℓeff − ℓc, we get

(︂

cm + c†
m

)︂

=
1

ℓeff

√︄

cLN
π

∫︂ ∞

0
dω

√︄

ω

ωm

∏︁

∐︂

sin
[︂

(ω − ωm) ℓeff

c

]︂

ω − ωm
−

sin
[︂

(ω + ωm) ℓeff

c

]︂

ω + ωm

⎞

ˆ︁

×
(︂

ei
ω

c
ℓcTωaω + e−iω

c
ℓcT ∗

ω a
†
ω

)︂

. (B.18)

Similarly, if we multiply both sides of Eq. (B.17b) by cos
[︂

ωn

c
(x+ ℓc)

]︂

and integrate
we get

(︂

cm − c†
m

)︂

=
1

ℓeff

√︄

cLN
π

∫︂ ∞

0
dω

√︄

ω

ωm

∏︁

∐︂

sin
[︂

(ω − ωm) ℓeff

c

]︂

ω − ωm
+

sin
[︂

(ω + ωm) ℓeff

c

]︂

ω + ωm

⎞

ˆ︁

×
(︂

ei
ω

c
ℓcTωaω − e−iω

c
ℓcT ∗

ω a
†
ω

)︂

. (B.19)

By taking the sum of equations (B.18) and (B.19), we get the expression for the
discrete cavity operator am:

cm =
1

ℓeff

√︄

cLN
π

∫︂ ∞

0
dω

√︄

ω

ωm

(︄

sin[(ω − ωm) ℓeff

c
]

ω − ωm
ei

ω

c
ℓcTωaω − sin[(ω + ωm) ℓeff

c
]

ω + ωm
e−iω

c
ℓcT ∗

ω a
†
ω

)︄

.

(B.20)

B.3 Continuous reservoir modes in terms of the

true modes

Analogously to Appendix B.2, in this one we derive the relation between the reservoir
operator bω and the operator aω. From the equations

E0,outs(x) = Eouts(x),

B0,outs(x) = Bouts(x),

we get

2
∫︂ ∞

0
dω

√
ω
(︃

bω + b†
ω

)︃

sin
[︃

ω

c
(x− d)

]︃

= −i
∫︂ ∞

0
dω

√
ω
(︃

[︂

e2iω

c
ℓc

Tω
T ∗
ω
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ω

c
x − e−iω

c
x
]︂

aω −H.c.
)︃

,

(B.21)

2
∫︂ ∞

0
dω

√
ω
(︃

bω − b†
ω

)︃

cos
[︃

ω

c
(x− d)

]︃

=
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√
ω
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c
ℓc

Tω
T ∗
ω
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ω

c
x + e−iω

c
x
]︂

aω −H.c.
)︃

.

(B.22)

We multiply both sides of Eq. (B.21) by sin
[︃

ω′

c
(x− d)

]︃

and integrate over the

interval (d,∞), which gives:

(︂

bω′ + b†
ω′

)︂

= − i

πc

∫︂ ∞

d
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0
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ℓ Tω
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c
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c
x
]︂

aω −H.c.
)︂
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[︂ω′

c
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.

(B.23)
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Similarly, if we multiply both sides of equation (B.22) by cos
[︂

ω′

c
(x− d)

]︂

we obtain:

(︂

bω′ − b†
ω′

)︂

=
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d
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c
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(B.24)

If now we sum the expressions in (B.23) and (B.24) we obtain:

bω′ =
1

2πc

∫︂ ∞

d
dx
∫︂ ∞
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(B.25)

We deĄne

Gω := e2iω

c
ℓc

Tω
T ∗
ω

ei
ω

c
d. (B.26)

Considering the limit where Tω ≈ Tm(ω) ≈ Tm,ω, the above expression can be
simpliĄed using the formulation in Eq. (7.4):

Gω ≈ e2iω

c
ℓc
Tm,ω
T ∗
m,ω

ei
ω

c
d = e2iω

c
ℓcei

ω

c
d tm(ω)
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Using this simpliĄcation we can calculate the integral over x in Eq. (7.16)
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Knowing that:
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above integral we get
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′

c
ℓcT ∗

m,ω′ lim
ϵ→0

1

ω + ω′ − iϵ
a†
ω′

)︃

.

B.4 Coefficients relating the true modes to the

inside-outside modes

In this appendix, we derive the coefficients αm1(ω), αm2(ω) and β1(ω, ω′), β2(ω, ω′),
corresponding to the decomposition of true modes into inside-outside modes [Eq. (7.19)].
We start by calculating the following commutators:

αm1(ω) = [aω, c
†
m] =

1

ℓeff

√︄

cLN
π

∫︂

dω′

√︄

ω′

ωm

∏︁

∐︂

sin
[︂

(ω′ − ωm) ℓeff

c

]︂

ω′ − ωm
e−iω

′

c
ℓcT ∗

ω′

[︂

aω, a
†
ω′

]︂

−
sin

[︂

(ω′ + ωm) ℓeff

c

]︂

ω′ + ωm
ei

ω
′

c
ℓcTω′ [aω, aω′ ]

⎞

ˆ︁ =
1

ℓeff

√︄

cLN
π

√︄

ω

ωm

sin
[︂

(ω − ωm) ℓeff

c

]︂

ω − ωm
e−iω

c
ℓcT ∗

ω ,
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where we have used the commutation relations (7.7). Similarly,

αm2(ω) = [cm, aω] =
1

ℓeff

√︄

cLN
π

∫︂

dω′

√︄

ω′

ωm

∏︁

∐︂

sin
[︂

(ω′ − ωm) ℓeff

c

]︂

ω′ − ωm
ei

ω
′

c
ℓcTω′ [aω′ , aω]

− sin[(ω′ + ωm) ℓeff

c
]

ω′ + ωm
e−iω

′

c
ℓcT ∗

ω′

[︂

a†
ω′ , aω

]︂

)︄

=
1

ℓeff

√︄

cLN
π

√︄

ω

ωm

sin[(ω + ωm) ℓeff

c
]

ω + ωm
e−iω

c
ℓcT ∗

ω .

Similar calculation can be done to obtain the coefficients β1(ω, ω
′) and β2(ω, ω

′):

β1(ω, ω
′) =

[︂

aω, b
†
ω′

]︂

= ei
ω

′

c
d
[︂

aω, a
†
ω′

]︂

+
1

π

∫︂ ∞

0
dω′′

√︄

ω′′

ω′

√︄

LN
ℓeff

cos
(︂

ω′′

c
ℓeff + φr(ω

′′)
)︂

+ ♣rm(ω′′)♣ cos
(︂

ω′′

c
ℓeff

)︂

♣tm(ω′′)♣
×
(︃

e−iω
′′

c
ℓcT ∗

m,ω′′ lim
ϵ→0

1

ω′ − ω′′ + iϵ

[︂

aω, a
†
ω′′

]︂

+ ei
ω

′′

c
ℓcTm,ω′′ lim

ϵ→0

1

ω′ + ω′′ + iϵ
[aω, aω′′ ]

)︃

= ei
ω

′

c
dδ(ω − ω′)

+
1

π

√︃

ω

ω′

√︄

LN
ℓeff

cos
(︂

ω
c
ℓeff + φr(ω)

)︂

+ ♣rm(ω)♣ cos
(︂

ω
c
ℓeff

)︂

♣tm(ω)♣ e−iω

c
ℓcT ∗

m,ω lim
ϵ→0

1

ω′ − ω + iϵ
.

Similarly,

β2(ω, ω
′) = [bω′ , aω] = e−iω

′

c
d [aω′ , aω]

+
1

π

∫︂ ∞

0
dω′′

√︄

ω′′

ω′

√︄

LN
ℓeff

cos
(︂

ω′′

c
ℓeff + φr(ω

′′)
)︂

+ ♣rm(ω′′)♣ cos
(︂

ω′′

c
ℓeff

)︂

♣tm(ω′′)♣
×
(︃

ei
ω

′′

c
ℓcTm,ω′′ lim

ϵ→0

1

ω′ − ω′′ − iϵ
[aω′′ , aω] + e−iω

′′

c
ℓcT ∗

m,ω′′ lim
ϵ→0

1

ω′ + ω′′ − iϵ

[︂

a†
ω′ , aω

]︂

)︃

= − 1

π

√︃

ω

ω′

√︄

LN
ℓeff

cos
(︂

ω
c
ℓeff + φr(ω)

)︂

+ ♣rm(ω)♣ cos
(︂

ω
c
ℓeff

)︂

♣tm(ω)♣ e−iω

c
ℓcT ∗

m,ω lim
ϵ→0

1

ω′ + ω − iϵ
.

B.5 Commutation relation for the separated

modes

In this appendix we verify the validity of the commutation relation (7.22) using the
separation (7.26) with the coefficients (7.25):

[︂

aD(ω), a†
D(ω′)

]︂

=
∑︂

m=1

∑︂

m′=1

αm1(ω)α∗
m′

1
(ω′)

[︂

cm, c
†
m′

]︂

=
∑︂

m=1

αm1(ω)α∗
m1

(ω′)

=
∑︂

m=1

e−iω

c
ℓc

√︃

γm
2π

1

(ω − ωm) − iγm

2

ei
ω

′

c
ℓc

√︃

γm
2π

1

(ω′ − ωm) + iγm

2

=
∑︂

m=1

e−i(ω−ω′) ℓc

c

γm
2π

1

(ω − ωm) − iγm

2

1

(ω′ − ωm) + iγm

2

≈
∑︂

m=1

γm
2π

1

(ω − ωm) − iγm

2

1

(ω′ − ωm) + iγm

2

(B.27)
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For the corresponding continuous part we get:

[︂

aC(ω), a†
C(ω′′)

]︂

=
∫︂ ∞

0

∫︂ ∞

0
dω′dω̃ β1(ω, ω

′)β∗
1(ω′′, ω̃)

[︂

bω′ , b†
ω̃

]︂

= δ(ω′′ − ω) + ei
ω

c
d 1

π

(︄

ei
ω

′′

c
ℓcTm,ω′′

√︄

LN
ℓeff

(−1)m
−1 + ♣rm(ωm)♣

♣tm(ωm)♣ lim
ϵ→0

1

ω − ω′′ − iϵ

)︄

+ e−iω
′′

c
d 1

π

(︄

e−iω

c
ℓcT ∗

m,ω

√︄

LN
ℓeff

(−1)m
−1 + ♣rm(ωm)♣

♣tm(ωm)♣ lim
ϵ→0

1

ω′′ − ω + iϵ

)︄

+
LN
ℓeffπ2

(︄

−1 + ♣rm(ωm)♣
♣tm(ωm)♣

)︄2

T ∗
m,ωTm,ω′′

∫︂ ∞

0
dω′ lim

ϵ→0

ei(ω
′′−ω) ℓc

c

ω′ − ω + iϵ
lim
ϵ→0

1

ω′ − ω′′ − iϵ
.

We proceed by applying the following approximation, which is justiĄed by the fact
that we consider a cavity of high reĆectivity:

−1 + ♣rm(ωm)♣
♣tm(ωm)♣ =

−1 + e−γm

ℓeff
c

√︂

1 − e−2γm

ℓeff
c

=
−1 + 1 − γm

ℓeff

c
+ O

(︃

(︂

γm
ℓeff

c

)︂2
)︃

√︄

1 − 1 + 2γm
ℓeff

c
− O

(︃

(︂

γm
ℓeff

c

)︂2
)︃

≈ − γm
ℓeff

c
√︂

2γm
ℓeff

c

= −
√︄

γm
2

ℓeff

c
, (B.28)

where the terms of the order of
(︂

γm
ℓeff

c

)︂2
and higher are neglected based on the above

assumption. With this assumption and using the explicit expression of Tm(ω)(since
Tm,ω ≈ Tm(ω)) the commutator becomes:

[︂

aC(ω), a†
C(ω′′)

]︂

≈ δ(ω′′ − ω)

−
∑︂

m

(−1)m
γm
2π

lim
ϵ→0

1

ω − ω′′ − iϵ

∏︁

∐︂

ei
ω

c
dei

ω
′′

c
ℓc

ω′′ − ωm + iγm

2

− e−iω
′′

c
de−iω

c
ℓc

ω − ωm − iγm

2

⎞

ˆ︁

+
1

π2

∑︂

m

γ2
m

4

ei(ω
′′−ω) ℓc

c

ω − ωm − iγm

2

1

ω′′ − ωm + iγm

2

∫︂ ∞

0
dω′ lim

ϵ→0

1

ω′ − ω + iϵ
lim
ϵ→0

1

ω′ − ω′′ − iϵ

= δ(ω′′ − ω) −
∑︂

m

γm
2π

lim
ϵ→0

1

ω − ω′′ − iϵ

(︄

1

ω′′ − ωm + iγm

2

− 1

ω − ωm − iγm

2

)︄

+
1

π2

∑︂

m

γ2
m

4

ei(ω
′′−ω) ℓc

c

ω − ωm − iγm

2

1

ω′′ − ωm + iγm

2

∫︂ ∞

0
dω′ lim

ϵ→0

1

ω′ − ω + iϵ
lim
ϵ→0

1

ω′ − ω′′ − iϵ

≈ δ(ω′′ − ω) −
∑︂

m

γm
2π

1
(︂

ω′′ − ωm + iγm

2

)︂ (︂

ω − ωm − iγm

2

)︂ , (B.29)

where we have neglected the terms of the order (γm/ωm)2 since we consider cavities of
high quality, i.e., γm/ωm ≪ 1. We also evaluate the following term at the resonance

frequency ωm: ei
ω

c
dei

ω
′′

c
ℓc = ei

ωm

c
dei

ωm

c
ℓc = ei

ωm

c
(ℓeff−ℓc)ei

ωm

c
ℓc = (−1)m.

If we sum equations (B.27) and (B.29) we get the required commutation relation:

[︂

aω, a
†
ω′

]︂

=
[︂

aD(ω), a†
D(ω′)

]︂

+
[︂

aC(ω), a†
C(ω′)

]︂

= δ(ω′ − ω). (B.30)
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B.6 Hamiltonian representation

In this appendix we derive the Hamiltonian for the inside-outside representation,
starting from Hamiltonian (7.8) derived for the true modes. Using the relation (7.26)
we can write the following:

H =
∫︂ ∞

0
dωℏωa†

ωaω

=
∫︂ ∞

0
dωℏω

(︂[︂

∞
∑︂

m=1

α∗
m1

(ω)c†
m +

∫︂ ∞

0
dω′β∗

1(ω, ω′)b†
ω′

]︂[︂

∞
∑︂

m=1

αm1(ω)cm +
∫︂ ∞

0
dω′β1(ω, ω

′)bω′

]︂)︂

=
∫︂ ∞

0
dωℏω

[︂

∑︂

m=1

∑︂

m′=1

αm1(ω)α∗
m′

1
(ω)c†

m′cm

+
∑︂

m=1

∫︂ ∞

0
dω′

(︃

α∗
m1

(ω)β1(ω, ω
′)c†

mbω′ + αm1(ω)β∗
1(ω, ω′)b†

ω′cm

)︃

+
∫︂ ∞

0
dω′dω′′β∗

1(ω, ω′)β1(ω, ω
′′)b†

ω′bω′′

]︂

.

We proceed by analyzing each term of the above equation separately:

HC =
∫︂ ∞

0
dωℏω

∑︂

m=1

∑︂

m′=1

αm1(ω)α∗
m′

1
(ω)c†

mcm′ . (B.31)

Since we are considering a regime where individual resonance peaks of the cav-
ity are well separated, we can apply the following estimation: αm1(ω)α∗

m′
1
(ω) ≈

δmm′♣αm1(ω)♣2, which follows from the assumption Tm(ω)T ∗
m′(ω) ≈ δmm′ . Taking this

into account the expression (B.31) becomes

HC =
∫︂ ∞

0
dωℏω

∑︂

m=1

♣αm1(ω)♣2c†
mcm, (B.32)

where the following integral can be evaluated by using the corresponding complex
integral, assuming that γm/ωm ≪ 1:

∫︂ ∞

0
dω ω♣αm1(ω)♣2 ≈

∫︂ ∞

0
dω

γm
2π

ω

(ω − ωm)2 +
(︂

γm

2

)︂2 , (B.33)

the corresponding complex integral being
⌊︂

C
dz

z + b

z2 + a
, integrated in the upper half

of the complex plane. Taking this into account the integral in (B.33) becomes
∫︂ ∞

0
dω ω♣αn1(ω)♣2 = ωm,

which leads to

HC =
∑︂

m=1

ℏωmc
†
mcm. (B.34)

Next we evaluate the continuous part of the Hamiltonian describing the reservoir:

HR =
∫︂ ∞

0
dω

∫︂ ∞

0
dω′

∫︂ ∞

0
dω′′

ℏωβ∗
1(ω, ω′)β1(ω, ω

′′)b†
ω′bω′′ . (B.35)
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Using the approximation in (B.28) the expression of β1(ω, ω
′) can be written as

follows:

β1(ω, ω
′) ≈ ei

ω
′

c
dδ(ω − ω′) − 1

π
e−iω

c
ℓcT ∗

m(ω)(−1)m
√︄

γmℓeff

2c

√︄

LN
ℓeff

lim
ϵ→0

1

ω′ − ω + iϵ

= ei
ω

′

c
dδ(ω − ω′) − γm

2π
e−iω

c
ℓc
∑︂

m

1

ω − ωm − iγm

2

(−1)m lim
ϵ→0

1

ω′ − ω + iϵ

= ei
ω

′

c
dδ(ω − ω′) −

√︃

γm
2π

∑︂

m

αm1(ω)(−1)m lim
ϵ→0

1

ω′ − ω + iϵ
.

(B.36)

Taking this into account, the Hamiltonian in (B.35) becomes:

HR ≈
∫︂ ∞

0
dω ℏωb†

ωbω

+
1

2π

∫︂ ∞

0
dω′
∫︂ ∞

0
dω′′

ℏ

(︃

lim
ϵ→0

γm
ω′′ − ω′ + iϵ

−ω′′
(︂

ωm + iγm

2

)︂

+ ω′
(︂

ωm − iγm

2

)︂

(︂

ω′ − ωm − iγm

2

)︂ (︂

ω′′ − ωm + iγm

2

)︂

+
∫︂ ∞

0
dω

γ2
m

(ω − ωm)2 +
(︂

γm

2

)︂2 lim
ϵ→0

ω

ω′ − ω − iϵ
lim
ϵ→0

1

ω′′ − ω + iϵ

)︃

b†
ω′bω′′ .

By estimating the integral in the last term via corresponding complex plane integral
(similar to eq. (B.33)), and neglecting the terms of the order (γm/ωm)2, the above
expression reduces to the following:

HR =
∫︂ ∞

0
dω ℏωb†

ωbω.

Finally, we evaluate the term describing the interaction between the perfect cavity
and the reservoir modes:

HCR =
∫︂ ∞

0
dω ℏω

∑︂

m=1

∫︂ ∞

0
dω′

(︂

α∗
m1

(ω)β1(ω, ω
′)c†

mbω′ + αm1(ω)β∗
1(ω, ω′)b†

ω′cm
)︂

.

(B.37)

To simplify this expression we again use the approximated expression (B.36) for
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β1(ω, ω
′), leading to an integral of the form

I1 =
∫︂ ∞

0
dω ℏω

∑︂

m=1

∫︂ ∞

0
dω′α∗

m1
(ω)β1(ω, ω

′)c†
mbω′

=
∫︂ ∞

0
dω ℏω

∑︂

m=1

∫︂ ∞

0
dω′α∗

m1
(ω)

∏︁

∐︂ei
ω

′

c
dδ(ω − ω′)

− 1√
π

∑︂

m′

αm′
1
(ω)(−1)m

′

√︃

γm′

2
lim
ϵ→0

1

ω′ − ω + iϵ

⎞

ˆ︁c†
mbω′

=
∫︂ ∞

0
dω

∑︂

m=1

ℏω α∗
m1

(ω)ei
ω

c
dc†
mbω

−
∫︂ ∞

0
dω

∑︂

m=1

∫︂ ∞

0
dω′

∑︂

m′=1

ℏω (−1)m
′

α∗
m1

(ω)αm′
1
(ω)

√︃

γm′

2π
lim
ϵ→0

1

ω′ − ω + iϵ
c†
mbω′

=
∫︂ ∞

0
dω

∑︂

m=1

ℏω α∗
m1

(ω)ei
ω

c
dc†
mbω

−
∫︂ ∞

0
dω

∑︂

m=1

∫︂ ∞

0
dω′

ℏω (−1)m♣αm1(ω)♣2
√︃

γm
2π

lim
ϵ→0

1

ω′ − ω + iϵ
c†
mbω′ .

The last term can be evaluated similarly to the integral in (B.33), leading to

I1 =
∫︂ ∞

0
dω

∑︂

m=1

ℏω α∗
m1

(ω)ei
ω

c
da†
mbω −

∫︂ ∞

0
dω

∑︂

m=1

ℏ(−1)m
√︃

γm
2π

ωm − iγm

2

ω − ωm + iγm

2

c†
mbω

=
∫︂ ∞

0
dω

∑︂

m=1

ℏ

∏︁

∐︂ei
ω

c
ℓeff

√︃

γm
2π

ω

ω − ωm + iγm

2

− (−1)m
√︃

γm
2π

ωm − iγm

2

ω − ωm + iγm

2

⎞

ˆ︁c†
mbω

≈
∫︂ ∞

0
dω

∑︂

m=1

ℏ

∏︁

∐︂(−1)m
√︃

γm
2π

ω

ω − ωm + iγm

2

− (−1)m
√︃

γm
2π

ωm − iγm

2

ω − ωm + iγm

2

⎞

ˆ︁c†
mbω

=
∫︂ ∞

0
dω

∑︂

m=1

ℏei
ω

c
ℓeff

√︃

γm
2π

sinc

[︄

(ω − ωm)
ℓeff

c

]︄

c†
mbω,

where when writing the last term we recovered the terms we had previously evaluated
at the resonance frequency ωm, i.e., sinc

[︂

(ω − ωm) ℓeff

c

]︂

and ei
ω

c
ℓeff . Further, by

deĄning a coupling function as follows:

κm(ω) = −ie−iω

c
ℓeff

√︃

γm
2π

sinc

[︄

(ω − ωm)
ℓeff

c

]︄

, (B.38)

the full Hamiltonian in terms of separated inside-outside modes becomes:

H =
∑︂

m=1

ℏωmc
†
mcm +

∫︂ ∞

0
dω ℏωb†

ωbω + iℏ
∑︂

m=1

∫︂ ∞

0
dω

(︂

κm(ω)b†
ωcm − κ∗

m(ω)c†
mbω

)︂

.

(B.39)
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The important thing in science

is not so much to obtain new

facts as to discover new ways of

thinking about them.

William Henry Bragg

As a conclusion, in this manuscript, we have examined different models for describing
the light-matter interaction in optical cavities. In particular, we have proposed
approximate methods derived from Ąrst principles, to efficiently characterize such a
process of light-matter interfacing by obtaining the dynamics and complete charac-
terization of a single photon produced in such a system. While in theoretical models
considered in the literature, this is usually done by phenomenologically constructing
the cavity leakage, in more realistic scenarios, since the cavity can never be isolated
from its environment, the light-matter interaction in the cavity can be affected by the
continuous modes of the environment. To account for these effects, we derived the
dynamics of an atom trapped in an open cavity. Based on this derivation, we deĄned
effective models that allow the characterization of the cavity-environment closed
system, directly providing the spectral and spatial properties of the propagating
photon outside the cavity. This analysis is extended for more realistic cavities that
are made of multilayered dielectric mirrors.

The analysis of the multilayer structure enabled a more realistic description of
the characteristic parameters of the cavity, namely cavity resonance frequencies,
effective cavity length and corresponding mode volume. In particular, we have found
that the length parameter deĄning the cavity resonances, the length parameter
describing the cavity-emitter coupling strength and the geometric length describing
the distance between the cavity mirrors, in general, do not coincide. This can lead
to a Purcell factor different from the one calculated by using a standard approach.
Additionally, by applying the effective models derived from Ąrst principles, we were
able to characterize the single photon produced in such a multilayered cavity and
leaking out to the environment. In particular, we focused on the representation
where the quantized modes of the full cavity-environment system can be separated
into inside and outside cavity parts, featuring frequency-dependent cavity-reservoir
coupling. In this representation, we derived the propagating photon state along
the propagation direction outside the cavity, as well as the photon shape in the
frequency domain. This is particularly important when considering the reverse
process, where we can use the spectral and spatial shape of the photon derived here
to efficiently feed it to a distant cavity with a loaded emitter, acting as a stationary
qubit. In this context, the output photon derived here can be considered as an
initial photon state, speciĄcally representing the input state corresponding to the
term bin of Eq. (4.72). This leads to the term D†

in,t in Eq. (4.78) being different from
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0. By correspondingly modifying the master equation, through the incorporation of
the contribution of this term, one can, in principle, characterize the entire process
of single-photon production and absorption. As discussed in the literature [42, 64],
such a process requires optimal driving pulses for efficient state mapping between the
distant cavities, and this process is strongly dependent on the duration of the input
photon (time proĄle) and its spectral distribution, ensuring complete impedance
matching.

Furthermore, we demonstrated that at a high-Ąnesse cavity limit, the multilayer
nature of the mirror can be reformulated in terms of an effective single-layered one,
featuring corrected parameters accounting for the effects induced by the multilayer
nature of the cavity. The discrepancy between these parameters and the ones
standardly used, is particularly signiĄcant for cavities with short mirror spacing,
hence the effects induced by the structure of the cavity mirrors may be of importance
in applications where the cavity spacings used are very short and the mirrors are made
of dielectric coatings [131, 186]. This can be relevant when studying the coupling
of ions [189] and atoms to Ąbre-tip optical cavities [19], quantum dots [125], NV-
centers [89, 97, 186], the use of two different frequencies within a short multilayered
cavity [68] and, in general, whenever there is a very short cavity that couples strongly
to a discrete quantum emitter. In sum, the substantial deviations from the simple
model discussed here would make it impossible to establish strong coupling unless
these corrections were considered. Additionally, in an intermediate coupling regime,
where the photon can escape the cavity easily, to characterize the propagation of
this photon the corrected parameters, derived from the multilayer analysis need
to be taken into account. These results could also prove useful for the spectral
characterization of devices with multilayered structures [85]. Finally, the models
derived here can be applied to study more complex dynamics with a laser-driven
atom trapped in a multilayer cavity, in particular for controlling the photonic states
produced from such cavities. These models can be extended to study the produced
photon as a Ćying qubit, where the information, for example, can be encoded in the
polarization of the photon.

We also note that submicrometric conĄnement of light in (dissipative and dispersive)
metallic media gives rise to surface plasmon polaritons that can be used for quantum
optics at the nanoscale [28]. Albeit these are no multilayered structures, the
construction of quantized models taking into account the resulting losses follow a
similar approach and is based on a microscopic oscillator model for the medium
coupled to the electromagnetic Ąeld [86] with a particular care for Ąnite-size media
[47, 49].
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APPENDIX C

C.1 Microscopic and phenomenological models

of driven systems in structured reservoirs

In this appendix, we study the case of a driven qubit interacting with a structured
environment by means of a microscopic model and analyze the consequences of
the FD assumption. This includes the possibility of using reservoir engineering as
a tool for quantum control. For that purpose, we mainly study the dynamics on
asymptotic timescales and compare the steady states reachable with a microscopic
master equation (MME) with the ones given by a master equation based on a Ąxed
dissipator (FDME). We show that manipulating the environment through reservoir
engineering, which is possible when the environment spectrum is not Ćat, allows one
to obtain a collection of stationary states that can be very different from the ones
given by the FDME.

C.1.1 The model system

For the sake of simplicity, we tackle the problem of comparing microscopic and
phenomenological models of driven systems in structured environments by revisiting
a simple quantum system made of a qubit of frequency ω0 driven by a monochromatic
control laser Ąeld whose frequency is ωL and whose initial phase is φ. We deĄne
the detuning as ∆ = ω0 − ωL and we refer to the Rabi frequency Ω, related to the
intensity of the laser Ąeld, as the driving amplitude. We assume henceforth that ω0

and ωL are much larger than ∆ and Ω. The starting Hamiltonian is given by

H̄S =
ℏω0

2
σz + ℏΩ cos(ωLt+ φ)σx, (C.1)

where σz and σx are Pauli matrices. Under the above condition on the parameters
we may apply the rotating wave approximation on H̄S, obtaining

H̄
RW

S =
ℏω0

2
σz +

ℏΩ

2
[e−i(ωLt+φ)σ+ + ei(ωLt+φ)σ−], (C.2)

where σ+ and σ− are, respectively, the raising and the lowering qubit operator. We
also move to a frame rotating at frequency ωL, by means of the unitary operator
UL = exp [−i(ωLt+ φ)σz/2] (also absorbing the time-independent phase factor φ).
In such a rotating frame, any state ♣ψ̄⟩ is mapped into ♣ψ⟩ = U †

L♣ψ̄⟩, and the
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Schrödinger equation iℏ∂t♣ψ̄⟩ = H̄
RW

S ♣ψ̄⟩ becomes iℏ∂t(UL♣ψ⟩) = H̄
RW

S UL♣ψ⟩, that
can be rewritten as iℏ∂t♣ψ⟩ = HS♣ψ⟩, where HS = U †

LH̄
RW

S UL − iℏ(∂tU
†
L)UL, which

leads to

HS =
ℏ∆

2
σz +

ℏΩ

2
σx. (C.3)

The interaction between the system and the environment, which is assumed not to
depend on the control Ąeld (see, for instance, Ref. [204]), reads as follows:

H̄I =
∑︂

k

ℏ

(︂

gkak + g∗
ka

†
k

)︂

σx, (C.4)

where ak and a†
k are, respectively, the annihilation and the creation operators of the

bosonic bath and gk are the coupling constants. In the above rotating frame, H̄I

becomes HI = U †
LH̄IUL, which gives

HI =
∑︂

k

ℏ(gkak + g∗
ka

†
k)
[︂

ei(ωLt+φ)σ+ + e−i(ωLt+φ)σ−

]︂

. (C.5)

The free Hamiltonian of the environment has the form HE =
∑︁

k ℏωka
†
kak, and,

of course, is not touched by the change of frame. HS can be diagonalized as
HS = ℏν

2
(♣ϕ+⟩⟨ϕ+♣ − ♣ϕ−⟩⟨ϕ−♣), with ν =

√
∆2 + Ω2. Its eigenstates are

♣ϕ+⟩ = C♣e⟩ + S♣g⟩,
♣ϕ−⟩ = C♣g⟩ − S♣e⟩, (C.6)

where ♣g⟩ and ♣e⟩ are, respectively, the ground and the excited state of the quibt
free Hamiltonian (ℏω0/2)σz, C = cos(θ/2), S = sin(θ/2) and

θ = 2 arctan[(ν − ∆)/Ω]. (C.7)

For example, for a given ∆ > 0, θ goes from 0 to π/2 when Ω goes from 0 to inĄnity.

C.1.2 Microscopic master equation

To derive a microscopic master equation, the qubit driven by the Ąeld is treated
Ąrst. The resulting dressed qubit is next coupled to the environment by expressing
HI in terms of the eigenoperators of HS represents the standard Born and Markov
approximations are applied.

DeĄning σ̃z = ♣ϕ+⟩⟨ϕ+♣ − ♣ϕ−⟩⟨ϕ−♣ and σ̃± = ♣ϕ±⟩⟨ϕ∓♣, these are connected to
σz, σ+, and σ− by

σ± = C2σ̃± − S2σ̃∓ + SCσ̃z,

σz = cos θσ̃z − sin θσ̃x. (C.8)

Using the expressions for σ+ and σ−, the qubit operators in HI can be written in
terms of eigenoperators of HS. The detailed derivation of the MME is presented in
the supplementary Section C.3. Its Ąnal form in the Schrödinger picture is

ρ̇ = − i

ℏ
[HS +HLS, ρ] + Dsec(ρ) + Dnsec(ρ), (C.9)
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where HLS is the Lamb shift Hamiltonian, whose role is discussed in Section C.3,
while Dsec(ρ) and Dnsec(ρ) are, respectively, the secular and the non-secular parts of
the dissipator, the latter featuring terms oscillating at frequencies ν and 2ν.

With regards to Dsec(ρ), it is given by:

Dsec(ρ) = γθ−L[σ̃+](ρ) + γθ+L[σ̃−](ρ) + γθzL[σ̃z](ρ), (C.10)

where the Lindblad superoperator is L[X̂](ρ) = X̂ρX̂
† − ¶ρ, X̂†

X̂♢/2, with

γθ− = 2π
{︂

C4J(ωL + ν)n(ωL + ν) + S4 J(ωL − ν)

× [1 + n(ωL − ν)]♢ ,
γθ+ = 2π

{︂

C4J(ωL + ν)[1 + n(ωL + ν)] + S4J(ωL − ν)

×n(ωL − ν) ♢ ,
γθz = 2π

{︂

S2C2J(ωL)[1 + 2n(ωL)]
}︂

, (C.11)

where J(ω) is the spectral density of the environment and n(ω) = 1/[e(ℏω)/(kBT ) − 1]
is the average number of excitations in the bath at frequency ω, with kB being the
Boltzmann constant. The above coefficients can be rewritten as

γθ− = C4γ+n+ + S4γ−(1 + n−),

γθ+ = C4γ+(1 + n+) + S4γ−n−,

γθz = S2C2γ0(1 + 2n0)], (C.12)

where γp = 2πJ(ωL + pν) and np = n(ωL + pν), where p = ¶−1,+1, 0♢ (for any
parameter l depending on p we use the shorthand notation l−1 = l− and l+1 = l+).
Because of the control Ąeld, the qubit experiences dephasing- and thermal-like
dissipative effects already in the case of a zero-temperature bath (np = 0), as shown
by the fact that also in this case all the γθp contribute to the dynamics and the
steady state is not expected to be pure anymore.

The operator Dnsec(ρ) and its coefficients are reported in supplementary Section C.3.
In Sec. C.1.4, we give some comments about when their effect cannot be neglected.
A detailed analysis of the limits of validity of the secular approximation in our
system can be found in Ref. [170].

C.1.3 The reference case: the fixed dissipator

In Sec. C.1.2, we have seen that, in the microscopic approach, the dissipator depends
on the control Ąeld acting on the qubit. The FD approach consists in neglecting
this dependance and in assuming that the dissipative part of the master equation is
equal to the one in the absence of the control Ąeld, i.e., the qubit coupled to the
environment is treated Ąrst, and this single entity is next coupled to the laser. The
application of this procedure is well known in optimal control protocols. Recently,
this approach has been used to determine the control Hamiltonian that counteracts
a given dissipation [166]. In this context, we consider a density matrix evolving
according to a general (Lindblad) master equation

ρ̇ = − i

ℏ
[H, ρ] + Dfd(ρ). (C.13)
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limit of Ćat spectrum, it is possible to see that the Lamb shift computed in this
phenomenological framework is zero (see the Section C.3 for an explanation of how
this can be found in the microscopic approach). The nonsecular terms that one
could obtain using a microscopic derivation applied to the qubit coupled to the
environment in the absence of the driving laser will not be considered here since the
FDME is introduced on phenomenological grounds. The steady states can be then
expressed in the σz basis in terms of some of its density matrix elements (hereafter
we use the notation ρij = ⟨i♣ρ♣j⟩) as (restoring the dependence on φ):

ρfd
ee =

nfd

1 + 2nfd

+
Ω2/(1 + 2nfd)

γ2
fd(1 + 2nfd)2 + 4∆2 + 2Ω2

,

ρfd
eg = −Ω

2∆/(1 + 2nfd) + iγfd

γ2
fd(1 + 2nfd)2 + 4∆2 + 2Ω2

e−iφ, (C.17)

being, of course, for any ρ, ρgg = 1 − ρee and ρge = ρ∗
eg. The FD steady solutions

by varying the control Ąeld parameters, Ω, ∆ and φ, are represented in Fig. C.1
(for T = 0) where they are shown to lie on the surface of an ellipsoid inside the
Bloch sphere. This ellipsoid is a standard geometric structure in Nuclear Magnetic
Resonance [54, 116, 120]. For T ≠ 0, the steady states lie on a smaller ellipsoid
inside the one depicted in Fig. C.1.

C.1.4 Reservoir engineering through microscopic master

equation with structured environment

We present in this section the control of steady states by using the MME of Sec. C.1.2.
In particular, we compare the steady-state solutions of the FDME with the ones
provided by the MME to discuss how the control of the system is modiĄed when
the environment is used as a tool to suitably tailor the asymptotic states. We also
compare some speciĄc dynamics to highlight our results.

In the case of Ćat spectrum, it holds γ− = γ+ = γ0 = γfd and one can show the
remarkable property that, under the approximation n− ≈ n+ ≈ n0 ≈ nfd, the MME
coincides exactly with the FDME (see the supplementary Section C.3 for a complete
derivation). The steady states of the MME and of the FDME are thus the same for
any T . In particular, in the secular limit, in the frame rotating at the laser frequency
(after restoring the phase φ), the MME steady solutions are equal to the ones of
Eq. (C.17) after discarding the terms containing γfd, which are indeed negligible
in this limit. One can show that the geometric form of the steady-state solutions
obtained by varying the control Ąeld parameters, Ω, ∆, and φ, corresponds to the
very same ellipsoid of Fig. C.1. When nonsecular terms are added, the microscopic
steady states coincide with the ones obtained with the FD, given in Eq. (C.17). We
consider below the case of structured environments in which relevant differences can
instead occur.

We consider in particular the MME in the secular regime, noting that this regime is
typically encountered in several contexts such as quantum optics setups [20]. The
steady state ρsec, which satisĄes both [ρsec, HS +HLS] = 0 and Dsec(ρsec) = 0, is

ρsec =
γθ−

γθ+ + γθ−
♣ϕ+⟩⟨ϕ+♣ +

γθ+
γθ+ + γθ−

♣ϕ−⟩⟨ϕ−♣, (C.18)
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where the superscript “secŤ refers to the secular master equation. The collection of
steady states that are obtained as functions of the control parameter θ and of the
phase φ (once it is restored) describes a surface in the Bloch vector representation
which is invariant under a rotation around the z axis.

We consider structured environments characterized by a spectral density varying
notably around ωL on the scale of the dressed frequency ν. In this scenario, even in
the limit where the secular approximation holds, the microscopic approach provides
target steady states that may be not close to the ones obtained with the FDME. In
the Markovian limit, while in the FD case there is only one value of the spectral
density that matters, the two additional sidebands at ωL ± ν must be considered
according to the microscopic derivation [see Eq. (C.11)].

When n+ ≈ n− ≈ n0≈ nfd, Eq. (C.18) gives (after restoring the phase φ)

ρsec
ee ≈ nfd

1 + 2nfd

+
S2C2

1 + 2nfd

S2γ− + C2γ+

S4γ− + C4γ+

,

ρsec
eg ≈ SC

1 + 2nfd

S4γ− − C4γ+

S4γ− + C4γ+

e−iφ. (C.19)

Exploiting the dependence on the two frequencies ωL ± ν opens the possibility for
taking proĄt from reservoir engineering. It indeed allows one to deform the ellipsoid
of Fig. (C.1), thus modifying the family of target states. For instance, one of the
possible consequences is that the equator of the ellipsoid can be broadened, allowing
one to get higher values for the absolute value of the nondiagonal elements of the
density matrix, as it is always possible to reduce the weight of the smaller term in
Eq. (C.18) and then to obtain purer states. We observe that 2♣ρeg♣ is a measure of
the resource named quantum coherence [179].

The case of zero temperature

We start the analysis with the zero-temperature case. The scenarios where J(ωL +
ν) ≷ J(ωL − ν) are compared with the Ćat spectral density case in Fig. C.2, where
the components x and z of the Bloch vector of the steady states, rx = 2 Re[ρeg]
and rz = 2ρee − 1, are plotted. In Fig. C.2(a), we consider Ąxed values for the
ratio µ = γ−/γ+ = J(ωL − ν)/J(ωL + ν) for all values of the dressed energy. This
analysis permits to visualize for any value of the control parameters θ of Eq. (C.7) (or
equivalently of Ω/∆) and φ how much the steady states differ in the two approaches
for a given µ. In the two panels, all the parts of the different lines are obtained
by considering a Ąxed positive ∆ and using Ω, assuming values ≥ 0, and φ, being
equal to 0 or π, as control parameters. In particular, with respect to the FDME,
purer states can be obtained (♣ρeg♣ may become closer to the maximum allowed
value of 1/2) and even the population inversion can be reached. We observe that
the FDME is considered in the case when its dependence on γfd is negligible, and so
the steady state practically coincides with the microscopic secular one in the limit
of Ćat spectrum (or more in general when µ = 1).

As an example, let us consider the case where the target state reached using the FD
dynamics at zero temperature is one of the states with maximally allowed ♣ρeg♣, that is,
a point that lies on its equator [166]. This class of states is obtained using Ω = ±

√
2∆

and, written in the Bloch form, is r⃗mc=¶∓ cosφ/
√

2, ∓ sinφ/
√

2, −1/2♢. We focus
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Figure C.2: Families of steady states (components x and z of the Bloch vector,
rx and rz) determined from the FDME (the dependence on γfd is assumed to be
negligible) and from the secular MME by varying the control Ąeld parameters Ω,
assuming values ≥ 0, and φ, being equal to 0 or π, for a positive Ąxed value of ∆.
(a) The FDME case is represented by the blue solid line while the red dotted and the
black dashed lines represent the microscopic steady states when µ = γ−/γ+ is kept
Ąxed for any ν and equal to, respectively, 0.1 and 10. The three enlightened points
represent the three steady states obtained by using Ω =

√
2∆ and φ = π, which,

in the FDME case, gives the maximum allowed ♣ρeg♣. (b) The family of stationary
states has been calculated either assuming the FDME (solid line) or the Lorentzian
density of states given in Eq. (C.20) with ωc = ω0 and λ = ∆ (dashed line).

on the case Ω =
√

2∆ and φ = π, obtaining then r⃗mc = ¶1/
√

2, 0, −1/2♢. On the
other hand, in the presence of structured reservoir, taking Ω =

√
2∆ and φ = π, we

would end up in r⃗ ≃ ¶0.805, 0,−0.569♢ using µ = 0.1 or in r⃗ ≃ ¶0.134, 0,−0.095♢
using µ = 10. The three states, reached with the same control Ąeld, are visualized
with points in Fig. C.2(a). The distances between these points clearly point out how
much could be the error due to using the FDME to predict the steady state in a
given control protocol.

In order to treat a speciĄc physical scenario where µ varies when the control Ąeld
parameters are changed, we now consider the case in which the spectral density has
the Lorentzian proĄle

JLor(ω) =
γl
2π

λ2

(ω − ωc)2 + λ2
, (C.20)

where the parameter λ deĄnes the width of the curve and ωc its center. We consider
values of λ much greater than γl, such that the Markovian approximation used for
the derivation of the MME is satisĄed. The Ćat spectral density case is recovered in
the limit λ → ∞. Using Eq. (C.20), one can expect that only in some parts of the
parameter space the deformation is relevant. On the tails of the curve, we fall for
instance in something similar to the Ćat spectral density case, which gives the same
results of the FDME. The differences in the case of a Lorentzian spectral density
are depicted in Fig. C.2(b), where we have assumed that the dependence on γfd of
the FDME steady solutions is negligible and calculated the steady states by varying
Ω/∆ in the case of a Ąxed Lorentzian, with λ = ∆ (we have Ąxed a positive value
for ∆ and varied Ω, assuming values ≥ 0, and φ, being equal to 0 or π ).

We have numerically compared the secular MME curve in Fig. C.2(b) with the one
obtained by adding the nonsecular terms at zero temperature and for values of γfd

much smaller than ∆. In general, the nonsecular curve is very close to the MME
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The case of non zero temperature

According to what has been said so far, a structured spectral density allows for a
broader family of target states but, at the same time, would typically give solutions
that are distinct from the ellipsoid predicted by the FDME. We now show that
zero-temperature FDME steady states can be recovered in the case of a structured
environment by exploiting tailored thermal effects.

To this aim, we consider the FDME steady states of Eq. (C.17) in the limit when
the terms depending on γfd are negligible (being always n− ≈ n+ ≈ n0 ≈ nfd):

ρsec
ee (µ = 1) ≈ nfd

1 + 2nfd

+
Ω2/(1 + 2nfd)

4∆2 + 2Ω2
,

ρsec
eg ≈ −Ω∆/(1 + 2nfd)

2∆2 + Ω2
e−iφ, (C.21)

We indicate them with superscript “secŤ since they coincide with the steady states of
the secular MME [see Eq. (C.19)] in the limit of Ćat spectrum (µ = 1). We compare
them at zero temperature with the general case of Eq. (C.19) that depends both
on nfd and on the ratio µ = γ−/γ+, and look, for any given µ, for the existence of
solutions of

ρsec
ee (µ = 1, nfd = 0) = ρsec

ee (µ, nfd)

ρsec
eg (µ = 1, nfd = 0) = ρsec

eg (µ, nfd). (C.22)

The solution of both equations is given by

nfd(µ) =
S4C4(1 − µ)

(C2 − S2)(C4 + µS4)
. (C.23)

Solutions corresponding to physical values of nfd (that is nfd ≥ 0) only appear for
0 ≤ µ ≤ 1, which is easy to understand looking at Fig. C.2(a). In fact, thermal
effects are expected to reduce the value of ♣ρeg♣ of any state, making it impossible
to move from the black line (µ = 10) to the blue one (µ = 1). The behavior of
nfd(µ = 0.1) is plotted in Fig. C.5 as a function of the control Ąeld parameter Ω/∆.
The needed thermal correction is very small as long as Ω < ∆, as the same argument
used to explain the behavior observed in Fig. C.4 holds.

C.2 Discussion and conclusions

Master equations are a powerful tool to analyze the dissipative dynamics of quantum
systems. They are usually obtained by making a series of assumptions that need
to be fulĄlled and to be veriĄed in realistic setups, as, in general, exact solutions
are not available. They are often introduced on the basis on phenomenological
assumptions. Here, we have derived a microscopic master equation for a driven qubit
and compared it with the Ąxed dissipator model, which is widely used, especially
in the quantum control community, as it allows one to explore the behavior of
entire families of control Hamiltonians in a simple way. We have found that, in the
weak-coupling regime, the steady states of the two approaches can be very different
in the case of a structured environment, while they are practically identical for a
Ćat spectrum.
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terms in all other cases. In general, the products f ti f
t−s
j may have parts oscillating

at the laser frequency e±2iωLt. For instance,

f t+f
t−s
+ = [C4ei[ωL(2t−s)+2φ] + S4e−i[ωL(2t−s)+2φ]

− 2C2S2 cosωLs]e
iν(2t−s). (C.26)

On the basis of the condition assumed in Sec. C.1.1, ωL ≫ ∆,Ω, we note that the
Ąrst two fast-oscillating terms in Eq. (C.26) can be neglected. We observe that
neglecting this kind of terms is completely equivalent to obtain the master equation
writing the interaction Hamiltonian in rotating wave approximation:

HI =
∑︂

k

ℏ[gkake
i(ωLt+φ)σ+ + g∗

ka
†
ke

−i(ωLt+φ)σ−]. (C.27)

In this limit, the products linked to the secular terms

f t−f
t−s
+ ≈ e−iνs[C4e−iωLs + S4eiωLs],

f t+f
t−s
− ≈ eiνs[C4eiωLs + S4e−iωLs],

f tzf
t−s
z ≈ 2S2C2 cosωLs, (C.28)

determine the coefficients of Eq. (C.11). Nonsecular terms are determined by the
products

f t+f
t−s
+ ≈ −2C2S2eiν(2t−s) cosωLs,

f t+f
t−s
z ≈ CS(C2eiωLs − S2e−iωLs)eiνt,

f tzf
t−s
+ ≈ eiν(t−s)CS(C2e−iωLs − S2eiωLs), (C.29)

together with f t−f
t−s
− = (f t+f

t−s
+ )∗, f t−f

t−s
z = (f t+f

t−s
z )∗, and f tzf

t−s
− = (f tzf

t−s
+ )∗. The

factors e±iνt and e±2iνt are taken out when one moves back to the Schrödinger
picture. We indicate with f ti f

t−s
j the products f ti f

t−s
j after the elimination of the

factors e±iνt and e±2iνt and, taking the continuum limit, we introduce the spectral
density J(ω) =

∑︁

k ♣gk♣2δ(ω − ωk), such that the trace over the bathŠs degrees of
freedom is transformed into an integral over all the frequencies. The Born-Markov
master equation, assuming a factorized initial condition for the system and its bath,
is then given by [20, 69]

ρ̇ = − i

ℏ
[HS, ρ] +

1

ℏ2

∑︂

i,j=+,−,z

∫︂ ∞

0
ds

[︂

f t∗i f
t−s
j ⟨B(t)B(t− s)⟩(σ̃jρσ̃†

i − σ̃†
i σ̃jρ) +H.c.

]︂

, (C.30)

where H.c. denotes Hermitian conjugation and the bath correlation functions, taking
a thermal equilibrium state ρB at temperature T , are given by

TrB¶B(t)B(t− s)ρB♢ = ℏ
2
∫︂ ∞

0
dωJ(ω)[(1 + n(ω))e−iωs + n(ω)eiωs]. (C.31)

The explicit development of Eq. (C.30) leads to Eq. (C.9). In particular, in order to
calculate the coefficients of the master equation, in the Markovian limit, one makes
use of the identity

∫︂ ∞

0
e±iεtdt = πδ(ε) ± iP 1

ε
, (C.32)
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C.3. Derivation of the microscopic master equation

where δ(ε) is the Dirac δ function and P denotes the Cauchy principal value.

The Lamb shift Hamiltonian of Eq. (C.9) is given by

HLS = ℏ[sθ+σ̃+σ̃− + sθ−σ̃−σ̃+ + sθzσ̃
2
z], (C.33)

where

sθ+ = P
∫︂ ∞

0
dωJ(ω)

[︄

C4(1 + n(ω))

(ωL + ν) − ω
− S4n(ω)

(ωL − ν) − ω

]︄

,

sθ− = P
∫︂ ∞

0
dωJ(ω)

[︄

S4(1 + n(ω))

(ωL − ν) − ω
− C4n(ω)

(ωL + ν) − ω

]︄

,

sθz = P
∫︂ ∞

0
dωJ(ω)

S2C2

ωL − ω
. (C.34)

We observe that it holds [HS, HLS] = 0.

As for the nonsecular part Dnsec(ρ), we have

Dnsec(ρ) = (γθ+++isθ++)σ̃+ρσ̃+ + (γθ+z+is
θ
+z)(σ̃+σ̃zρ− σ̃zρσ̃+) (C.35)

+(γθ−z+is
θ
−z)(σ̃−σ̃zρ− σ̃zρσ̃−) + (γθz++isθz+)(σ̃zσ̃+ρ− σ̃+ρσ̃z)

+(γθz−+isθz−)(σ̃zσ̃−ρ− σ̃−ρσ̃z) + H.c.,

where the various coefficients γθij and sθij can be computed by explicitly developing
Eq. (C.30):

γθ++ = −1

2
C2S2(γ−(1 + 2n−) + γ+(1 + 2n+)),

γθz+ = −1

2
CS

[︂

γ+n+C
2 − γ−(1 + n−)S2

]︂

,

γθz− = −1

2
CS

[︂

γ+(1 + n+)C2 − γ−n−S
2
]︂

,

γθ+z = −1

2
γ0CS

[︂

(1 + n0)C
2 − n0S

2
]︂

,

γθ−z = −1

2
γ0CS

[︂

n0C
2 − (1 + n0)S

2
]︂

, (C.36)

and

sθ++ = −P
∫︂ ∞

0
dωJ(ω)C2S2

[︄

1 + 2n(ω)

(ωL − ν) − ω
− 1 + 2n(ω)

(ωL + ν) − ω

]︄

,

sθz+ = P
∫︂ ∞

0
dωJ(ω)CS

[︄

S2(1 + n(ω))

(ωL − ν) − ω
+

C2n(ω)

(ωL + ν) − ω

]︄

,

sθz− = −P
∫︂ ∞

0
dωJ(ω)CS

[︄

S2n(ω)

(ωL − ν) − ω
+
C2(1 + n(ω))

(ωL + ν) − ω

]︄

,

sθ+z = −P
∫︂ ∞

0
dωJ(ω)CS

[︄

C2 + n(ω)

ωL − ω

]︄

,

sθ−z = P
∫︂ ∞

0
dωJ(ω)CS

[︄

S2 + n(ω)

ωL − ω

]︄

, (C.37)
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C.

For each pair of i, j in Eq. (C.30) the part of the integrals involving the δ function,
gives us the decay rates of Eq. (C.11) when i = j and the ones of Eq. (C.36) when
i ̸= j, for any spectral density. The principal part in Eq. (C.32) leads to the Lamb
shift Hamiltonian of Eq. (C.33). Note that the subscripts of γθi , s

θ
i , γ

θ
ij, and sθij are

chosen independently of the actual values of i and j in Eq. (C.30), leading to the
various terms where these parameters appear.

It can be shown (see for instance Ref. [103]) that, in the case of a Ćat spectral
density, all the terms deriving from the principal part of Eq. (C.32) vanish. This can
be obtained by Ąrst performing the integrals by using a Lorentzian spectral density
and by then taking the width of this Lorentzian to inĄnity. In the case of a non-Ćat
spectrum, we treat these terms, taking again the Lorentzian spectral density. In
the secular MME, the terms in the Lamb shift Hamiltonian lead to nothing but
energy shift, and then their effect is not relevant for the steady states. Instead, the
contribution of the terms deriving from the principal part of Eq. (C.32) appearing in
the nonsecular MME [see Eq. (C.37)], in general, cannot be neglected (see comment
in Sec. C.1.4 on the comparison between secular and nonsecular master equations).

Finally, keeping the terms of Eq. (C.35) in Eq. (C.9), it is possible to show that in the
Ćat-spectrum limit, under the approximation n− ≈ n+ ≈ n0 ≈ nfd, the nonsecular
MME gives exactly the same result as FDME, i.e, using H = HS, Eq. (C.9) becomes
Eq. (C.13), for any γfd.
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Titre : Modèles effectifs pour l’optique quantique à photon unique

Mots clés : Optique quantique, cavité QED, photons uniques

Résumé : Au cours des dernières décennies, l’optique

quantique a évolué des cavités à facteur de qualité

élevé des premières expériences vers de nouvelles con-

ceptions de cavités impliquant des modes à fuite. Bien

que les modèles utilisés dans des expériences stan-

dard soient efficaces pour reproduire leurs résultats,

les fuites de photons sont la plupart du temps

traitées de manière phénoménologique ce qui lim-

ite l’interprétation des résultats et ne permet pas

une étude systématique. Dans ce manuscrit, nous

adoptons une approche différente et, à partir des

premiers principes, nous dérivons des modèles ef-

fectifs qui permettent la caractérisation complète

d’un photon unique produit dans la cavité et se

propageant dans l’espace libre. Nous proposons un

schéma atome-cavité pour la génération de photons

uniques et analysons rigoureusement le photon unique

sortant dans les domaines temporel et fréquentiel

pour différents régimes de couplage. Nous étendons

l’analyse en étudiant des modèles de cavités plus

réalistes, prenant notamment en compte la struc-

ture diélectrique multicouche des miroirs de la cavité.

Nous évaluons la force du couplage dipolaire entre

un seul émetteur et le champ de rayonnement dans

une telle cavité optique. Notre modèle permet de

faire varier librement la fréquence de résonance de

la cavité, la fréquence de la transition lumineuse ou

atomique, ainsi que la longueur d’onde associée à

la mise en forme du miroir diélectrique. En partic-

ulier, nous montrons qu’en raison des effets induits

par la nature multicouche du miroir de la cavité,

même dans le régime de cavité à haute finesse tel

que défini habituellement, la description du système

cavité-réservoir peut différer de celle où la structure

du miroir est négligée. Pour les cavités très courtes,

la longueur effective utilisée pour déterminer le vol-

ume du mode de la cavité et les longueurs définissant

les résonances sont différentes, et diffèrent notable-

ment de la longueur géométrique de la cavité. Sur

la base de ces résultats, nous définissons une fonction

de réponse généralisée de la cavité et une fonction de

couplage cavité-réservoir, qui tiennent compte de la

structure géométrique du miroir de la cavité.

Title: Effective models for single-photon quantum optics

Keywords: Quantum optics, cavity QED, single photons

Abstract: Over the last decades, quantum optics

has evolved from high-quality-factor cavities in the

early experiments toward new cavity designs involv-

ing leaky modes. Despite efficient models to describe

standard experiments, photon leakage is most of the

time treated phenomenologically, which restricts the

interpretation of the results and does not allow sys-

tematic studies. In this manuscript, we take a differ-

ent approach, and starting from first principles, we

derive effective models that allow complete charac-

terization of a leaking single photon produced in the

cavity and propagating in free space. We propose

an atom-cavity scheme for single-photon generation,

and we rigorously analyze the outgoing single photon

in time and frequency domains for different coupling

regimes. We extend the analysis by studying more

realistic cavity models, namely taking into account

the multilayer dielectric structure of cavity mirrors.

We evaluate the dipole coupling strength between a

single emitter and the radiation field within such an

optical cavity. Our model allows one to freely vary

the resonance frequency of the cavity, the frequency

of light or atomic transition addressing it, and the de-

sign wavelength of the dielectric mirror. In particular,

we show that due to the effects induced by the mul-

tilayer nature of the cavity mirror, even in the stan-

dardly defined high-finesse cavity regime, the cavity-

reservoir system description might differ from the one

where the structure of the mirror is neglected. For

very short cavities, the effective length used to deter-

mine the cavity mode volume and the lengths defining

the resonances are different, and also found to diverge

appreciably from the geometric length of the cavity.

Based on these results, we define a generalized cavity

response function and cavity-reservoir coupling func-

tion, which account for the geometric structure of the

cavity mirror.
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