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Abstract

This thesis presents novel numerical algorithms and conducts a comprehensive study of
some existing numerical methods to address high-dimensional challenges arising from the
electronic Schrodinger equation in quantum chemistry. Focusing on two specific problems,
our approach involves the identification and exploitation of symmetries and low-rank
structures within matrices and tensors, aiming to mitigate the curse of dimensionality.

The first problem considered in this thesis is the efficient numerical evaluation of the
long-range component of the range-separated Coulomb potential and the long-range two-
electron integrals 4th-order tensor which occurs in many quantum chemistry methods.
We present two novel approximation methods. This is achieved by relying on tensorized
Chebyshev interpolation, Gaussian quadrature rules combined with low-rank approxima-
tions as well as Fast Multipole Methods (FMM). This work offers a detailed explanation
of these introduced approaches and algorithms, accompanied by a thorough comparison
between the newly proposed methods.

The second problem of interest is the exploitation of symmetries and low-rank struc-
tures to derive efficient tensor train representations of operators involved in the Density
Matrix Renormalization Group (DMRG) algorithm. This algorithm, referred to as the
Quantum Chemical DMRG (QC-DMRG) when applied in the field of quantum chem-
istry, is an accurate iterative optimization method employed to numerically solve the
time-independent Schrédinger equation. The aim of this work is to understand and inter-
pret the results obtained from the physics and chemistry communities and seek to offer
novel theoretical insights that, to the best of our knowledge, have not received significant
attention before. We conduct a comprehensive study and provide demonstrations, when
necessary, to explore the existence of a particular block-sparse tensor train representa-
tion of the Hamiltonian operator and its associated eigenfunction. This is achieved while
maintaining physical conservation laws, manifested as group symmetries in tensors, such
as the conservation of the particle number.

The third part of this work is dedicated to the realization of a proof-of-concept Quan-
tum Chemical DMRG (QC-DMRG) Julia library, designed for the quantum chemical
Hamiltonian operator model. We exploit here the block-sparse tensor train representa-
tion of both the operator and the eigenfunction. With these structures, our goal is to
speed-up the most time consuming steps in QC-DMRG, including tensor contractions,
matrix-vector operations, and matrix compression through truncated Singular Value De-
compositions (SVD). Furthermore, we provide empirical results from various molecular
simulations, while comparing the performance of our library with the state-of-the-art
[Tensors library where we show that we attain a similar performance.

Keywords—Numerical linear algebra, Multilinear algebra, High-dimensional problems,
Quantum chemistry, Schréodinger equation, Two-electron integrals, Symmetries, low-rank ap-
proximation, SVD, Tensor train representations, Hamiltonian operator, QC-DMRG.
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Résumé en francais

La représentation de I'information repose souvent sur des matrices et des tenseurs. Ces
outils mathématiques ont trouvé leur utilité dans divers domaines, allant des mathéma-
tiques pures aux disciplines appliquées telles que la physique, la chimie et I’économie. Ils
ont été utiles pour résoudre des défis du monde réel depuis des décennies. Cependant, le
développement technologique récent et rapide apporte de nouveaux défis mathématiques
et informatiques, ouvrant la voie a de nouvelles orientations de recherche. Pour relever
ces nouveaux défis, il est nécessaire de continuer a progresser dans le domaine de 'algebre
linéaire et multilinéaire.

L’un des défis majeurs d’aujourd’hui concerne le traitement d’ensembles de données vo-
lumineux résultant de divers problemes de la vie réelle, tels que les simulations numériques
de modeles physiques pour simuler tout systeme composé de composants physiques réels.
On peut rencontrer cela dans de nombreux domaines, notamment ’astrophysique, la bi-
ologie, la climatologie, la chimie quantique, etc. Ce probléeme est couramment connu sous
le nom de curse of dimensionality, un terme inventé par Bellman dans le contexte de la
théorie de 'approximation [§]. Ce terme fait référence a la nécessité d’utiliser un nombre
de degrés de liberté en croissance exponentielle a mesure que la dimension du probleme
augmente. Par conséquent, il existe deux principales voies : 1'une consiste en le développe-
ment continu d’outils matériels puissants et cotiteux pour résoudre ces problemes de haute
dimension, et 'autre consiste en le développement d’algorithmes innovants qui rendent la
haute dimensionnalité gérable. Pour le deuxiéme point, on peut étudier et exploiter les
structures sous-jacentes des matrices ou des tenseurs impliqués dans la représentation de
ces problemes.

Notamment, une technique d’algebre linéaire établie pour traiter cette question im-
plique la méthode d’approximation de rang faible, obtenue par la décomposition en valeurs
singulieres (SVD) pour les matrices, par exemple. La SVD a notamment trouvé une large
utilité dans de nombreuses disciplines, dont la science des données, I’astronomie, la chimie
quantique, le traitement des signaux et la science du climat. Comme les dimensions con-
tinuent de s’étendre, il devient de plus en plus pertinent d’explorer d’autres formats de
représentation des données, tels que les tenseurs.

Il est & noter que les tenseurs sont connus et utilisés depuis des décennies, sous dif-
férentes notations et concepts au sein de différentes communautés, notamment la physique,
la chimie et les mathématiques. Le terme tenseurs a initialement émergé dans le contexte
de la mécanique, introduit par Hamilton en 1854 [41]. Par la suite, entre 1880 et 1916,
les tenseurs ont été utilisés comme généralisation des scalaires, des vecteurs et des ma-
trices dans les domaines de la géométrie différentielle et de la physique, notamment dans
la théorie de la relativité générale d’Einstein [97]. Entre 1927 et 2011, le concept de
décomposition tensorielle est apparu, tel qu’'introduit par Hitchcock en 1927 [46], per-
mettant la représentation de tenseurs de haute dimension sous la forme d’une série de
composants de dimension inférieure. En conséquence, entre 1960 et 1970, de nombreux
algorithmes de factorisation ont été proposés, tels que la décomposition canonique (CP)
et la décomposition de Tucker [68]. En outre, dans les années 2010 et 2011, Grasedyck a
introduit la décomposition hiérarchique de Tucker, et Osledets a décrit le format du train
de tenseurs (TT) [92], qui correspond au concept Matriz Product States (MPS) introduit
précédemment dans la communauté physique des 1989. Ce concept de réseau de tenseurs
est ensuite devenu intimement lié au Density Matriz Renormalization Group (DMRG),
une technique d’optimisation populaire introduite par White en 1992 pour approximer
I’état fondamental, c’est-a-dire 1’état d’énergie la plus basse, des systéemes quantiques
fortement corrélés.

Dans ce travail, notre objectif est de développer de nouveaux algorithmes numériques,

vii



d’étudier des méthodes numériques existantes pour traiter les défis de grande dimen-
sion en chimie quantique, et de fournir une analyse numérique approfondie des méthodes
proposées. La résolution des équations mécaniques quantiques a 'aide de méthodes de
discrétisation de base peut rapidement conduire a des problemes de grande dimension et
demandant beaucoup de calculs. Simultanément, les solutions doivent maintenir un haut
niveau de précision pour étre pratiquement utiles. Méme aujourd’hui, ces limites compu-
tationnelles sont déja atteintes lorsqu’il s’agit de problémes de chimie quantique de petite
ou moyenne taille. Dans ce manuscrit, on se concentre sur deux problemes contribuant
tous deux a un objectif commun : résoudre 1’équation de Schrédinger dans un contexte
de grande dimension.

Cette these comporte quatre chapitres qui peuvent étre décrits dans 1’ordre suivant.

Le chapitre [1] introduit les notations matricielles et tensorielles, les techniques de dé-
composition a rang faible qui conduisent a des factorisations exactes ou approximatives de
matrices ou de tenseurs a rang faible. En particulier, on revisite la décomposition T'T, met-
tant en évidence ses avantages pour effectuer efficacement des opérations arithmétiques
au sein du format TT. Par ailleurs, on introduit deux algorithmes connus pour représen-
ter des tenseurs en format T'T ou les compresser en conséquence, a savoir la TT-SVD
et le TT-rounding, respectivement. En outre, notre intérét se porte sur des applications
pratiques dans le domaine de la chimie quantique, en mettant particulierement 1’accent
sur la résolution de I’équation de Schrodinger indépendante du temps. Au fil des années,
les méthodes et algorithmes élaborés pour rendre ce probleme complexe gérable ont révélé
plusieurs étapes cotliteuses nécessitant une attention particuliere. Cela inclut notamment
le traitement efficace du tenseur d’ordre 4 des intégrales biélectroniques, un composant
essentiel présent dans de nombreuses méthodes de chimie quantique. La discussion est
ensuite étendue a I'une des méthodes d’optimisation les plus renommeées dans ce contexte,
a savoir le DMRG, et son utilisation pour ajuster variationnellement la représentation de
la fonction propre du Hamiltonien en TT. Le formalisme de la seconde quantification est
également revu, ainsi que 'expression de 'opérateur Hamiltonien moléculaire. On fournit
également des informations sur les complexités des étapes de calcul les plus cotiteuses
dans le DMRG.

Le chapitre[2se concentre sur 'évaluation numérique de la fonction multivariée (tenseur)
qui représente la composante a longue portée du potentiel de Coulomb a séparation de
portée. Cela conduit a l'introduction de deux nouvelles méthodes d’approximation pour
évaluer numériquement la partie a longue portée du potentiel de Coulomb a séparation de
portée et les intégrales bi-électroniques a longue portée. Cela est réalisé en s’appuyant sur
I'interpolation Chebyshev tensorielle, la regle de quadrature gaussienne combinée avec des
approximations a rang faible ainsi que des méthodes déja établies pour résoudre les prob-
lemes a N corps, telles que la FMM. De plus, on étend ces approches pour approximer le
tenseur d’ordre 4 d’intégrales bi-électroniques a longue portée. Nous présentons en détail
les algorithmes qui sous-tendent ces méthodes, et on présente également une comparaison
détaillée entre les approches introduites. Il est a noter que ce chapitre integre le contenu
de notre article publié disponible dans [4].

Le chapitre [3] se concentre principalement sur la représentation TT de 'opérateur
Hamiltonien, qui est au coeur de I'algorithme DMRG. On commence par fournir un apercu
des méthodes existantes pour construire une représentation T'T exacte ou approximative
de l'opérateur Hamiltonien. On revisite ’approche naive impliquant ’algorithme de TT-
rounding et montrons comment il peut introduire des instabilités numériques : perte de
symétrie, rupture des relations de commutation impliquant 'opérateur Hamiltonien, et
apparition d’interactions virtuelles, a plus de deux corps, pour un opérateur a deux corps.
On explique du point de vue théorique 'origine de certaines de ces instabilités numériques.
On démontre ensuite la présence d’'une structure creuse par blocs dans la représentation
TT d’un opérateur Hamiltonien & p corps (p € N), c’est-a~dire un opérateur qui implique
au plus des interactions a p corps, lorsqu’il commute avec l'opérateur de nombre de par-
ticules. Cette partie de notre travail s’inspire du travail de [2]. Bien que l'existence de
cette structure inhérente soit reconnue au sein de la communauté de la physique et de
la chimie, nous offrons ici une dérivation constructive directe. A notre connaissance, la
représentation de la structure creuse par blocs dans la représentation T'T de 'opérateur
Hamiltonien n’a pas été présentée précédemment de cette maniere. Poursuivant dans cette
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voie, on propose une analyse approfondie de la structure de la représentation T'T de la
fonction propre de l'opérateur, notamment lorsque des conditions supplémentaires telles
que des symétries non-Abéliennes, comme SU(2) correspondant a la conservation du spin
total, sont considérées. Notre objectif est d’offrir des perspectives théoriques nouvelles,
lorsque cela est nécessaire, qui n’ont pas recu une attention significative auparavant.

Dans le chapitre [ on présente une partie importante de notre travail consacrée a la
réalisation d’une bibliotheque prototype en Julia, congue pour le modele de l'opérateur
Hamiltonien de chimie quantique qui integre la conservation du nombre de particules. On
exploite ici la représentation T'T creuse par blocs de 'opérateur ainsi que celle de sa fonc-
tion propre associée. Tout d’abord, on donne un apercu des logiciels basés sur des tenseurs
couramment utilisés pour les calculs de structure électronique. Ensuite, on explique la mo-
tivation derriere la conception de notre propre bibliotheque et on fournit des algorithmes
utilisés pour exploiter la structure creuse par blocs dans les représentations TT. Avec ces
structures, notre objectif est d’accélérer les étapes les plus cotiteuses de QC-DMRG, no-
tamment les contractions de tenseurs, les opérations matrice-vecteur et les compressions
de matrices par SVD. De plus, on présente des résultats empiriques de diverses simu-
lations moléculaires, tout en comparant les performances de notre bibliotheque avec la
bibliotheque ITensors de pointe, ou on montre qu’on atteint des performances similaires.
Il est a noter que cette bibliotheque est destinée a étre accessible. Elle vise a permettre
aux chercheurs, au sein de notre groupe et au-dela, de réaliser leurs propres simulations
DMRG ou d’explorer des approches créatives pour améliorer ses performances. Cette
bibliotheque sera rendue publiquement accessible et sa parallélisation est en cours.

Dans la derniere partie de cette these, on présente nos conclusions et perspectives fu-
tures. En ce qui concerne les annexes, dans I'annexe [.1], on fournit un pseudo-algorithme
implémenté en C++ qui utilise la bibliotheque defmm, comme introduite dans le chapitre[2]
Cette bibliotheque est centrale pour la deuxieme méthode numérique qu’on introduit
pour 'évaluation du tenseur d’intégrales bi-électroniques a longue portée. De plus, dans
I'annexe [.2] on présente une autre application de la premiére méthode numérique dans le
chapitre [, spécifiquement dans I’évaluation des matrices d’échange et Hartree-Fock util-
isées dans les calculs Hartree-Fock [44]. Dans les annexes|.3|et[4] on offre des explications
concises des méthodes analytiques existantes utilisées pour construire une représentation
TT exacte de 'opérateur Hamiltonien de la chimie quantique, comme introduit dans le
chapitre [I] Dans l'annexe [5] on examine une interprétation graphique de la structure
de la représentation TT de la fonction propre lorsque la conservation du nombre de par-
ticules est maintenue. On montre qu’une fonction propre, étant un vecteur propre d’un
opérateur du nombre de particules avec une valeur propre N (ot N représente le nombre
de particules fixé dans le systeme) peut étre construite a travers une chaine récursive
de transformations orthogonales en utilisant les TT-cores de la représentation TT des
fonctions propres. De plus, les rangs TT théoriques peuvent étre dérivés a 1’aide d’'une
illustration graphique.

Cette these a conduit aux publications et pré-publications suivantes :

o Journal paper published S.Badreddine, I.Chollet, and L.Grigori. Factorized
structure of the long-range two-electron integrals tensor and its application in quan-
tum chemistry. In: Journal of Computational Physics.

« Journal paper in preparation S.Badreddine, M.Dupuy, E.Cances, and L.Grigori.
Sparse and symmetry preserving compression of tensor trains arising in QC-DMRG.

e Journal paper in preparation S.Badreddine, M.Dupuy, E.Cances, L.Grigori,
D.Torres. Algorithmic design and numerical experiments with QC-DMRG.

Ce projet a regu un financement du Conseil européen de la recherche (ERC) dans le
cadre du programme de recherche et d’innovation Horizon 2020 de 1’Union européenne
(accord de subvention n° 810367).
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Introduction

In today’s data-driven world, information representation often relies on matrices and ten-
sors, i.e, multidimensional generalizations of matrices. These mathematical tools have
found use in various fields, ranging from pure mathematics to applied disciplines like
physics, chemistry, and economics. They have been useful in solving real-world challenges
for decades. However, the recent and rapidly advancing technological developments bring
new mathematical and computational challenges, paving the way to new research di-
rections. To tackle these new challenges, continued progress in the realm of linear and
multilinear algebra is required.

One of the foremost challenges today revolves around dealing with large set of data
arising from various real-life problems, such as the numerical simulations of physical mod-
els for simulating any system that consists of real physical components. This can be en-
countered in many fields, including astrophysics, biology, climatology, quantum chemistry
ete. This problem is commonly known as the curse of dimensionality, a term coined by
Bellmann in the context of approximation theory [8]. The curse of dimensionality refers
to the necessity of employing an exponentially increasing number of degrees of freedom as
the dimensionality of the problem grows. Therefore, to tackle these problems, two main
avenues are available to us: one is the continuous development of powerful and expensive
hardware to tackle these high-dimensional problems, and the other is the development
of innovative algorithms that render the high-dimensionality tractable. Concerning the
latter, one can study and exploit the underlying structures of the matrices or tensors
involved in representing the high-dimensional problems. One established linear algebra
technique for addressing this issue involves the low-rank approximation method, achieved
through truncated Singular Value Decomposition (SVD) for matrices, for example. No-
tably, the SVD has found a wide-ranging utility across many disciplines, including data
science, astronomy, quantum chemistry, signal processing, and climate science. As the
amount of data needed continue to expand, it becomes increasingly pertinent to explore
other formats of data representations such as tensors.

It is worth noting that tensors have been known and employed for decades, under
varying notations and concepts within different communities, notably physics, chemistry,
and mathematics. The term tensors initially emerged in the context of mechanics, in-
troduced by Hamilton in 1854 [41]. Subsequently, between 1880 and 1916, tensors found
application as a generalization of scalars, vectors, and matrices within the realms of dif-
ferential geometry and physics, notably in Einstein’s theory of general relativity [97].
Between 1927 and 2011, the concept of tensor decomposition emerged as elucidated by
Hitchcock in 1927 [46], allowing the representation of high-dimensional tensors as a series
of lower-dimensional components. Consequently, between 1960 and 1970 many factoriza-
tion algorithms were proposed such as the Canonical Decomposition (CP), and Tucker
decomposition [68]. Furthermore, in the years 2010 and 2011, Grasedyck introduced the
hierarchical Tucker decomposition [37], and Osledets described the tensor train format
(TT-format) [92] , which corresponds to the concept of Matrix Product State (MPS) [17],
previously explored within the physics community as early as 1989. This concept of ten-
sor network, later became intertwined with the Density Matrix Renormalization Group
(DMRG) algorithm, also known as the Quantum Chemical DMRG (QC-DMRG) in the
realm of quantum chemistry, originated as a successful approach pioneered by White in
1992 [131]. This algorithm serves as a popular optimization technique to approximate the
ground state, i.e lowest-energy state, of strongly correlated quantum systems.

In this work, our goal is to develop new numerical algorithms and study existing
numerical methods to address high-dimensional challenges in quantum chemistry. We
will narrow our focus to two problems in quantum chemistry, both contributing to a
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common goal: solving the fundamental equation of quantum chemistry, the electronic
Schrodinger equation.

To begin, we consider the approximation of a multivariate function that defines the
long-range component of the range-separated Coulomb potential. Here, the Coulomb po-
tential is defined by m, x,y € R®. Then, we focus on the numerical approximation
of the long-range two-electron integrals tensor, an important component in various quan-
tum chemistry methods. Our attention shifts then to the application of tensor networks,
particularly the TT decomposition, for solving the Schrodinger equation. Indeed, this
equation defines a multidimensional problem whose dimension increases linearly with the
number of the electrons in the system and the task of solving it using basic discretization
methods can quickly lead to high-dimensional, curse of dimensionality, and computation-
ally demanding problems. Simultaneously, the solutions must maintain a high level of
accuracy to be practically useful. At this stage, the use of tensor networks in particular
tensor trains and low-rank decomposition methods turns out to be useful to numerically
solve this equation and break the curse of dimensionality. However, when diving into the
literature on tensor networks, one encounters a notable barrier: results obtained from
different communities, such as mathematics, physics, or chemistry, are not always easily
communicated between communities. Consequently, one can find several papers address-
ing the same problem but using different terminologies, and some already established
results from one community could be rediscovered by another. Therefore, in the second
part of the work, the aim is to understand and interpret the results obtained from the
physics and chemistry communities and seek to offer novel theoretical insights that, to
the best of our knowledge, have not received significant attention before. Within this
context, we focus on the DMRG algorithm combined with tensor networks, in particular
the T'T decomposition. We mainly study the tensor train representation of the operator,
referred to as TTO, achieved through low-rank approximation method and particularly
when physical conservation laws are preserved, which manifest as group symmetries in
the tensors. This thesis has four chapters that can be described in the following order.

Chapter (1| gives an overview on high-dimensional problems arising in quantum chem-
istry and associated tensor representations. It starts by introducing notations and basic
operations for tensors. It then discusses low-rank decomposition techniques that lead to
either exact or approximate decompositions for both matrices and tensors. In particu-
lar, for tensors, we revisit the T'T decomposition, highlighting its benefits in performing
efficiently arithmetic operations within the T'T format. Furthermore, we introduce two
known algorithms for representing tensors in TT format or compressing them accordingly.
Additionally, we go towards practical applications within the realm of quantum chemistry,
such that the concern centers around solving the time-independent Schrédinger equation.
Over the years, problem-adapted methods and algorithms designed to make this com-
plex problem tractable showed to have several time-consuming steps which need careful
consideration. One such critical step involves the efficient treatment of the two-electron
integrals 4-th order tensor, an important component that appears in many quantum
chemistry methods. The discussion is then further extended to one of the most renowned
optimization methods in this context, namely, DMRG, and its use to variationally tune
tensor train representation of the eigenfunction of the Hamiltonian operator. The second
quantization formalism is reviewed as well as the expression of the quantum chemical
Hamiltonian operator. We also provide some insights into the time complexities of the
most time-consuming computational steps in DMRG.

Chapter [2] focuses on the numerical evaluation of the multivariate function (tensor)
that represents the long-range component of the long-range Coulomb potential. This
yields to introducing two novel approximation methods for numerically evaluating the
long-range part of the range-separated Coulomb potential and the long-range two-electron
integrals. This is achieved by relying on the tensorized Chebyshev interpolation, Gaussian
quadrature rule combined with low-rank approximations as well as already established
methods for solving N-body problems, FMM. Furthermore, we extend these approaches
to approximate the high dimensional long-range two-electron integrals tensor. We provide
comprehensive insights into the algorithms behind these methods, and we also provide
a detailed comparison between the introduced approaches. It is worth noting that this
chapter incorporates content from our published paper available in [4].
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Chapter [3] focuses primarily on the TTO representation of the Hamiltonian operator
which is at the core of the DMRG algorithm. We start by providing an overview of existing
methods to construct an exact or approximated TTO representation of the Hamiltonian
operator. We revisit the naive approach involving the TT-rounding algorithm and show
how it can introduce numerical instabilities: loss of symmetry, breakdown of the com-
mutation relations involving the Hamiltonian operator, and the occurrence of more than
2-body interactions for a strictly 2-body operator, an operator that involves at most 2-
body interactions. We explain from a theoretical point of view the origin of some of these
numerical issues. We subsequently demonstrate the existence of a block-sparse struc-
ture within the TT-cores of the TTO representation for a p-body Hamiltonian operator
(p € N), particularly when it commutes with the particle number operator. This part
of our work is inspired by the contributions of [2]. While the existence of this inher-
ent structure is acknowledged within the physics and chemistry community, we offer a
straightforward constructive derivation. To the best of our knowledge, the specific repre-
sentation of the block-sparse structure within the TT-cores of the TTO representation of
the Hamiltonian operator has not been presented previously in this manner. Continuing
in this fashion, we provide a comprehensive study of the structure of the TT-cores in the
T'T representation of the eigenfunction. We are interested in the underlying structure of
the TT-cores when additional conditions are applied, such as non-Abelian symmetries like
SU(2) symmetry corresponding to the total spin conservation. Our aim is to offer novel
theoretical insights, when necessary, that have not received significant attention before.

Chapter [, is dedicated to the realization of a proof-of-concept QC-DMRG Julia li-
brary, designed for the quantum chemical Hamiltonian operator model which incorporates
particle number conservation. We exploit here the block-sparse TTO representation of
the operator as well as it’s associated eigenfunction. First, we give an overview of existing
tensor-based software packages commonly employed for electronic structure calculations,
i.e the calculation of electronic states and energies. Then, we explain the motivation be-
hind designing our own library and provide algorithms used to exploit the block sparsity
within the TT representations. With these structures, our goal is to speed up the most
time consuming steps in QC-DMRG, including tensor contractions, matrix-vector opera-
tions, and matrix compression through SVD. Furthermore, we provide empirical results
from various molecular simulations, while comparing the performance of our library with
the state-of-the-art [Tensors library where we show that we attain a similar performance.
It is worth noting that our library is intended to be accessible and user-friendly. It is in-
tended to allow researchers, within our group and beyond, to carry out their own DMRG
simulations or explore creative approaches to enhance its performance. Our library will
be made publicly available and its parallelization is ongoing effort.

In the final part of this thesis, we present our conclusions and future perspectives
as well as the appendices, that contain supplementary material. In particular, in Ap-
pendix [I we provide a pseudo-algorithm implemented in C++ that uses the defmm
library, as introduced in Chapter [2l This library is central to the second numerical
method we introduce for the evaluation of long-range two-electron integrals tensor. Ad-
ditionally, in Appendix [2] we provide another application of the first numerical method
in Chapter [2] specifically for the evaluation of Hartree-Fock exchange matrices employed
in Hartree-Fock calculations [44]. In Appendices |.3] and , we offer concise explanations
of the existing analytical methods used to construct an exact TTO representation, i.e
without low-rank approximation, of the quantum chemical Hamiltonian operator, as in-
troduced in Chapter [I} In Appendix [5] we review an interesting graphical interpretation
of the TT representation structure of the eigenfunction when particle number conserva-
tion is maintained. We show that an eigenfunction, serving as an eigenvector of a particle
number operator with eigenvalue N (representing the fixed number of particles in the sys-
tem), can be constructed recursively. This construction involves a recursive sequence of
orthogonal transformations using the TT-cores from the TT-representation of eigenfunc-
tions. Theoretical minimal TT-ranks are then derived through a graphical illustration.
In Appendix [.6] a diagram is presented, offering an overview of key structures within our
proof-of-concept library.

This thesis has led to the following publications and upcoming pre-prints

o Journal paper published S.Badreddine, I.Chollet, and L.Grigori. Factorized
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structure of the long-range two-electron integrals tensor and its application in quan-
tum chemistry. In: Journal of Computational Physics.

o Journal paper in preparation S.Badreddine, M.Dupuy, E.Cances, and L.Grigori.
Sparse and symmetry preserving compression of tensor trains arising in QC-DMRG..

o Journal paper in preparation S.Badreddine, M.Dupuy, E.Cances, L.Grigori,
D.Torres. Algortihmic design and numerical experiments with QC-DMRG.

This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (grant agreement
No 810367).



Chapter 1

An overview of high-dimensional
problems in quantum chemistry and
associated tensor representations
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In this section, we start by introducing the most frequently used mathematical objects
and notations in this work. We provide as well some definitions of basic operations, linear
and multilinear operations, commonly performed on matrices and tensors. We begin by
introducing four essential operations in the matrix and tensor framework: the tensor prod-
uct, the Kronecker product, the Hadamard product, and the Khatri-Rao product. Then,
we give background on low-rank approximation methods for matrices and tensors par-
ticularly relevant for addressing high-dimensional problems like those encountered when
solving the Schrodinger equation in a high-dimensional context. This guides the reader
into a brief introduction of essential concepts in quantum chemistry necessary to under-
stand the topics covered in our manuscript. The background information provided con-
tains the many-body Schrodinger equation, definitions of one and two-electron integrals
tensors, the second quantization formalism, and an explanation of how tensor networks
are applied in quantum chemistry, combined with the well-known DMRG algorithm.

1.1 Notations and definitions

o Scalars are either lowercase letters x, y, z, «, [, v or uppercase latin letters N,
M, T. Vectors are denoted by lowercase boldface letters such as a,b, ¢, matrices
are denoted by uppercase boldface letters such as A, B, C, tensors are denoted by
calligraphic symbols such as A, B,C.

o Generic algebraic field is denoted by A, vector spaces are denoted by A and linear
or multilinear operators on finite-dimensional vector spaces are denoted by A.

o [N]defines theset {ie N|1<i < N}.
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e The object A € R™*"™ is a matrix with n; rows and ns columns and A* € R"2*™
is its transpose. 0,,xn, € R"*™ denotes a matrix with zero entries. Occasionally,
when notations become complex, we may use only the notation 0 for simplicity.

o The object A € R™**"d ig a tensor. Here, d € N is called the order of the tensor,
and ny, defines the k-th mode size for k € [d], i.e., the size of the k-th dimension in
the tensor.

 af(i) is the i-th entry of the vector a, A(;j) is the (i, j)-th entry of the matrix A,
A(iy;...;1q) is the (i1, ...,iq)-th entry of the tensor A of order d € N.

o Al:,j] (Julia/Matlab notations) denotes the subvector containing the column of A
indexed by j, Alj,:] denotes the subvector containing the row of A indexed by 7,
Al:,:, j] denotes the submatrix extracted from A at index j, A[:,:, :, j] denotes the
subtensor extracted from A at index j associated with the fourth mode.

¢ Als s, denotes the restriction of the matrix A € R™™ to a submatrix indexed by
a couple (7, j) of size S; x S;, i.e, we consider only the rows and columns specified
by the dimensions ¢ and 7, respectively, from the original matrix A.

e |lx—yl| = \/(wl —yy)? + (22 — Y3)? + (3 — y3)? is the euclidean distance between
two points @,y € R*® with coordinates (z1, ®s, ©3), (y;, Yy, Y5) Tespectively.

e The Kronecker delta is
0 ifi#j,
6ij - e
1 ifi=y.
* |I.|| is the Frobenius norm.
e I, is the identity matrix of size n x n and I,,, «,,, is the identity matrix of size n; X ns.

e |z| is the absolute value of z.

o # is the cardinality (or size) of a given set, while dim() denotes the dimension of a
finite-dimensional vector space.

e ®g is the Kronecker product.

e ® is the tensor product.

o ¢ is the row-wise Khatri-Rao product and e is the column-wise Khatri-Rao product.
e (© is the Hadamard product.

e @ is the Direct sum.

e (-,-) is the inner product.

e = is the symbol that represents isomorphism between vector spaces.

e = is the equivalent symbol.

e = is the symbol denoting approximate equality.

Definition 1. (Kronecker product) The Kronecker product between matrices A € R™"*"™
and B € R™*™2 which we denote A @ B € R™™*™1™2 g defined as:

A(L;1)B A(1;2)B --- A(1;m)B
A2;1)B A(2;2) B --- A(2;m)B

A®K B = . . . (11)
A(nl.; 1)B A(nll; 2)B - A(n;;mp)B



d

Remark 1.1.1. For ease of notation, we can also use the compact product notation ®K.
k=1
Given d matrices Ay € R™ > [k ¢ [d], the Kronecker product of d matrices denoted as

PR | EORI 1 €8

k=1

, is given by:

d

QR Ak = A1 Ox Ay @k ... Ok Ay (1.2)

k=1
Definition 2. (Tensor product) Let U and V be vector spaces over the same field F.
If U and V are finite-dimensional spaces with respective basis By = {u;,i € [I]} and
By = {vj,[J]}, then, the tensor product UV has basis Bygy = {u; ® v;,i € [I],j € [J]}.

Remark 1.1.2. When discussing the tensor product between vectors, it is important to
note that we are referring to the outer product, denoted by the symbol ® as well. For
example, the tensor product between two vectors v € R” and u € R™, denoted as v ® u,
is defined as an n x m matrix. This tensor product is a special case of the Kronecker
product, and it can be expressed as:

VRU=vVRgU". (1.3)

Definition 3. (Hadamard product) The Hadamard product between matrices A € R™*"2
and B € R™*"2 which we denote A ® B € R"*"2_is defined as:

ALDB(1; 1) A(1L2)B(1;2) - A(1ing)B(15ny)
AGB— A(2;1)‘B(2;1) A(2;2)'B(2;2) A(2;nz)‘B(2;n2) (1.4)
Al DB 1) A 2B(ui2) o Al na)Blusna)
Definition 4. (Column-wise Khatri-Rao product) Consider two matrices:
A=[A[1] A[L2) ... Al,my)] e R,
and
B=[B[,1] B[2] ... Bl,m]|eR™*™,

where A[:, k] € R"*! and BJ[:, k] € R"2*! for each k € [m;]. The column-wise Khatri-Rao
product between A and B which we denote A ® B € R("™2)x™1 ig defined as:

AeB=[A[,1]®x B[:;,1] A,2] ®x B[:,2] ... Al,mi]®k B[:;,m]], (1.5)

The row-wise, that we denote by the symbol ¢ is related to the column-wise Khatri-Rao

product as follows:
(AeB)"=A"0oB". (1.6)

Remark 1.1.3. For ease of notation, we use the following compact notation. Given d
matrices Ay € R™*™ [ € [d], the row-wise Khatri-Rao product of d matrices, denoted

d
n1X ( H mk>

as o{_;Ar €R k=1 " s given by:

ol A =A10Ar0...0A,, (1.7)
and given d matrices Ay € R™ ™ L € [d], the column-wise Khatri-Rao product of d

d
( H nk) X my

matrices, denoted as o¢_; A, € R k=1 , is given by:

.ZzlAk = A1 ® A2 e...0 Ad. (18)

Definition 5. (Direct sum) The direct sum between matrices A € R™*™ and B € R">*™2
is defined as the block diagonal matrix A @ B € R(m+n2)x(mitm2) gych that

A- O?’LleQ ‘|

1.9
0n2Xm1 B ( )

A & B = diag(A,B) = l
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Remark 1.1.4. We will also encounter the direct sum of finite-dimensional vector spaces,
we denote as well by &, which is defined as follows: let ¥V be a vector space, let U and
W be two subspaces such that for every v € V,

o there exist vectors w € U, w € VW such that v = u + w,

e If v =u; +w; and v = uy + wy where uy, us € Y, wy, wy € W then u; = uy and
wi, = Ws.

Then V is the direct sum of U and W. We write YV =U O W.

In the following proposition, we give useful relations among these matrix products
that we will use in our derivations.

Proposition 1.1.1 ([81]). Consider matrices A € Rl B € Ri*%2  C e R and
D € R72*/4_ then
(A (297 B)(C 127 D) = (AC) (297 (BD) (1.10)
Additionally,
(A oB)(C®x D)= (AC)¢ (BD). (1.11)
Additionally, if J, = Js, it holds that

(Ao B)(CeD) = (AC) ® (BD). (1.12)

In what follows, we provide the definition of tensors and basic multilinear operations.
We start by viewing tensors from a practical point of view as commonly used in computer
science, where they are regarded as multidimensional arrays (data structures). Just as
a matrix represents a two-dimensional array, a tensor extends this concept to higher
dimensions. A visual representation of tensors with different orders is given in Figure|1.3],

A(1;1) A(1;2) — 1 A(
A(2;1) A(2;2)

Figure 1.1: 2-order tensor/matrix of di-
mension 2 X 2. Figure 1.2: 3-order tensor of dimension

2 x2x3.

Figure 1.3: Tensors of order d € {2, 3}.

It should be noted that, from a multilinear algebra point of view, tensors can be seen
as elements of the tensor product of linear spaces denoted by V. Given a vector space YV
of dimension n € N, let By, = {v;,7 € [n]} be a basis of V so any element v in V can be
written as follows:

v=> \v, (1.13)
i=1
with \; € R,i € [n].
Definition 6. Let V1, -,V be d vector spaces with respective dimension n, € N, and

respective basis By, = {v;,, i € [ny]} for k € [d]. According to Definition[2) V1®--- @V,
is a vector space with the following basis:

By g gy, ={0i, ® - ®@v;,, 1 <i3 <nq,--- 1 <iig <ng}.

By linearity, any tensor A € V; ® --- ® V,; can be written as follows:

ni ng
A= Al sia)vi, ® - Q vy, (1.14)
=1 ig=1
Here, A is called a d-order tensor with entries A(iy;- - - ;i4). Therefore, a tensor, which is

an element of a tensor product space, can be identified as a multidimensional array once
a basis for the tensor product is established.
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Another important interpretation of tensors is that they are regarded as multilinear
operators analogous to the matrix case. For example, consider a matrix A € R™*™1,
which describes the action of a linear operator from R™ to R™ with respect to a given
basis on both spaces. In the case of tensors, we can define a multilinear operator as
A:R"® - @R — R™ @ ... @ R™:2, where A € RmXxna)x(mix-xma,) jg the
multidimensional array representing the multilinear operator with fixed basis for tensor
product spaces R ® --- ® R"1 and R™ ® --- ® R™42. The latter can be referred to as
the tensor operator of order d; 4+ ds that acts on tensors of order ds.

In the following, we present a concise overview of various multilinear operations on
tensors, which will be essential for understanding the content of this manuscript.

When working with tensors, it is possible to modify their shape or dimensions while
keeping the total number of elements unchanged. This operation is commonly referred
to as reshaping and involves rearranging the elements of a tensor to match a desired new
shape. Reshaping is often used to convert tensors into a matrix or a vector, respectively,
which are known as matricization or unfolding and vectorization operations, respectively.
These operations allow for different ways of organizing and accessing the tensor elements
to suit specific computational requirements or algorithms.

Definition 7. (Multi-index) For each k € [d], consider a subset S = [ng]. Define the
function & : 51 x ... x §; — N such that

E(iy;. . i) = 1+i<(il—1)ﬁlnm>, (1.15)

Moving forward, the expression of a multi-index 7y, ...,i; denotes the image of £, i.e
g(il;‘-.;id) =01, ..., 0

Definition 8. Let A € Rm*m2x>na n, € N k € [d], be a d-order tensor. The mode-k
matricization or unfolding of a tensor A, denoted as A®) € Rmw>(mnz-nk—inpi1-na) - | [d],
is defined element-wise as follows, for iy € [ng] and j € [ny ... ng_1ng1 ... 0y :

AP (i 7) = AW (s 00, ity T ts - 5 0d), (1.16)
where j is related to the multi-index 7 :=141,...,%_1, %41, ..., 24 and has value
d -1
i=1+> |G —-1) ] nm
[k ik

Definition 9. Let A € R"*"2X*"d he a d-order tensor. The mode-(1 : k) matricization
of a tensor A denoted as A<F> ¢ R(mu=m)x(mei1-na) | ¢ [d] is defined element-wise as

follows, for j; € [H,’f:l nz} and jp € [H?:k+1 n,}

A<k>(j1;j2) = A<k>(i17 e 7ik;ik+17 <o 7id)7 (117>

with ji =1+ Y7, ((Zl - DI nm) and jo =1+ Zf:kﬂ ((Zl -1) Hi;ik-i-l nm) :

Definition 10. Let A € R™*"2X"X"d he g d — th order tensor. The vectorization of A,
denoted as a = vec(A) € R"™ can be defined element-wise as follows, for j € [n;...ng4| :

a(jy) == a(iy, iz, ..., iq) = vec(A)(J) = A(ir;...;1q), (1.18)
with j = 1450, (i = 1) ITLy )
Example 1.1.1. Let A € R?*?*2 be a 3-order tensor given in the following figure

—

2
613 4
8

5
7

Figure 1.4: 3-order tensor of dimension 2 x 2 x 2.



One way to vectorize the tensor A with entries A(i1, iz, i3) involves horizontally con-
catenating elements A(iy;i5;73) while keeping indices i, i3 € {1,2}.

a=vec(A) = [AL11) A21L1) AL21) AZ21) ALL2) A212) AL22) AQ22%2)]
=[5 7681324,

(1.19)
One way to obtain the mode-1 matricization of A is:
5 6 1 2
1 —
A [7 3 3 4] (1.20)

Remark 1.1.5. The matricization of a tensor can be related to the Kronecker product
as follows: let A € R™*"2X"X"d he a d-order tensor. Suppose that A is expressed in the
basis of R™"1*m2X X" a9 follows:

=1 ig=1

The mode-k matricization of A, k € [d], using Kronecker products, can be expressed as:

ni nd d
AW =57 0N Ak i1, ity ikt i)V, @ (Rrevi,)" (1.22)
=1 ig=1 1#k
=1
It is noted that the reshaping operations described above will be of particular interest
for tensor trains that will be introduced in Section [L.2l

Remark 1.1.6. The vectorization as well as matricization (tensor unfolding) operations
can be interpreted by the existence of vector space isomorphism such thatE]

R" ®...@ R" @ ... @R" 2 RO-m)XMkr1na) o2 Rra-ni-na, (1.23)

We will now proceed to discuss one of the most commonly used operations between
tensors, known as tensor contraction. This operation combines two tensors by summing
over a pair of indices, where one index of the first tensor is contracted with the corre-
sponding index of the second tensor. This is also a generalization of the matrix-vector or
matrix-matrix products as described in the following definition

Definition 11. (Tensor contractions) Consider two tensors 4 € R™ > *™1 and B € R™ > *™Mdy
of orders d; and dy, respectively. For k € [d],h € [ds], if ny, = ny, the contraction product
between these two tensors is denoted by A Xy, B and the resulting tensor

C € R/MX X1 X1 X XN XM X Xy -1 XMh41XMd {g defined element-wise as follows:

ng
C(t1; e k13015 - -3 0dys J1 e -5 TRt Thtd - -+ Jdy) = ZA(il;...;@;...;idl)B(jl;...;E;...;de).
/=1

(1.24)
and we have:

For the sake of simplicity and consistency throughout the manuscript, we use the
notation A x;, B to represent the contraction product between two tensors when n;, = ny,.

So far, we have discussed the contraction between tensors with a single common index
or mode. However, this concept can be extended to involve multiple modes such that
instead of only summing over the index ¢ in Equation , we can generalize the con-
traction to include all common indices. Therefore, in the contraction notation, we will
replace the single index k& with a set of common indices, denoting the contracted modes.
For example, given two tensors A € RMX-Xna XmiXeXma, apnd B g RMIXXMdy XM X Xngy

LA vector space isomorphism is a bijective linear mapping between two vector spaces that preserves
the vector space structure.



the contraction product between tensors A and B is denoted by A X (4,41, 4,44, B and

n1X...XNgy xn}

the resulting tensor C € R XMy s defined element-wise as follows:

mi Mdy
Cliv; . 30q5 0153 Jds) = Z Z Alin; .o sias O e lay) By o5 ags J1s - 25 Jds)-
=1 =1
(1.26)
Furthermore, it is important to note that throughout this work, we will encounter the
contraction product between a tensor and a matrix. This operation is defined as follows:
let A € R"**" he a d-order tensor and B € R™>*™2_if for a fixed k € [d], nx, = my,
then the contraction product between A and B is denoted by A x; B. We keep the first
common index, i.e k in the contraction symbol.
Further details about basic tensor operations as tensor unfolding, contractions and
several tensor products as inner product, outer product, are provided in [3], 68, 70, [73].

1.2 Low-rank approximation for matrices and tensors

1.2.1 Introduction

In what follows, we give a brief introduction on low-rank approximation techniques for
matrices and tensors that aim to represent data more efficiently by approximating high-
dimensional matrices and tensors with low dimensional counterparts. We begin by intro-
ducing the Singular Value Decomposition (SVD) and QR decomposition [49] which are
well-known tools used for exploiting low-rank structures in matrices. Additionally, we
introduce the Tensor Train (TT) decomposition as a generalization of SVD for tensors,
showcasing its potential for efficient data representation in high-dimensional settings.

1.2.2 Low-rank approximation for matrices
Singular value decomposition (SVD)

Definition 12. (Singular value decomposition (SVD)) The Singular Value Decomposition
of a matrix A € R™*" with rank(A) = min {m, n} is defined as:

A =USV, (1.27)

where U € R™™ and V € R™" are orthogonal matrices, 3 € R™*™ is a diagonal
matrix composed of non-negative real numbers on the diagonal called singular values.
The factorization in ((1.27)) is equivalent to the following expression

min{m,n}
A= > o U[}Lkl® V[, k|, (1.28)

k=1

where oy is the k-th singular value for & € [min{m,n}|, U[:, k], respectively V[, k] is
the k-th column of the matrix U, respectively V. Additionally, the number of nonzero
singular values is equal to the rank of A.

It is known that the SVD of A is related to the eigenvalue decomposition of the
matrices AA* and A*A, with the singular values corresponding to the positive square
roots of their respective eigenvalues. Additionally, for non-degenerate or distinct singular
values, the SVD decomposition is said to be unique up to permutations of the columns of
the orthogonal matrices U and V.

Definition 13. (Low-rank matrix) A € R™*™ is said to have low-rank if its rank, denoted
by rank(A) = r, satisfies r < min {m,n}.

The aim here is to approximate a given matrix A € R™*" by a low-rank matrix. The
key idea of low-rank approximation is that a given matrix may not be necessarily of exact
low-rank, meaning it does not have a decomposition that exactly reproduces the original
matrix. Nevertheless, it can be well approximated by a low-rank matrix. In what follows,
we describe the truncated SVD (tSVD) method to obtain a low-rank approximation of a
given matrix.



Truncated singular value decomposition

Definition 14. (truncated SVD (tSVD)) Let A € R™ ™ be a matrix of full rank,
rank(A) = min {m, n}. For a chosen 7 € N such that r < rank(A), one can construct the
so-called truncated SVD of A denoted by A as follows:

Ax~A=UEV"=Y 0,0} KV, k], (1.29)

where U € R™*" | (resp. V), is the matrix containing the first » columns of U (resp. V),
and 3 € R™" is the top-left submatrix of 3, with oy, k € [r] being the truncated singular
values of A.

It is obvious that the rank of A is . A is the best rank-r approximation of the matrix
A when the approximation error is measured in an unitarily invariant norms: the 2-norm
or the Frobenius norm. The error of this approximation is given by (showing only the
Frobenius norm):

1/2
|A- A - ( > ) | (130)
k>r+1

This rank-r approximation method, known as the tSVD, is a popular technique for di-
mensionality reduction. Indeed, if » < min {n, m}, then the storage cost of the matrix
A reduces significantly from O(mn) to O(r(m +n + 1)). Additionally, when multiplying
A with another matrix B € R"*9, the computational cost of the product AB reduces
from O(mnq) to O(rqg(m+n+1)). However, it is worth noting that for large dimensions,
computing the tSVD can become expensive as it requires first computing the full rank
SVD, which costs O(mn min{m,n}), and then extracting the leading singular values
based on a specified threshold.

From a geometric point of view, the existence of a best approximation of any matrix
A by another matrix of rank at most r implies the following proposition (see [126])

Proposition 1.2.1. The set of matrices of rank at most r is defined as:
Mo, = {A € R™" :rank(A) < 7"} (1.31)
is a closed subset of R™*™.

This proposition suggests that any continuous and bounded function on this set reaches
a minimum within this set. The distance from this set, given by Equation (|1.30]), im-
plies that the matrix A has a good low-rank approximation in Frobenius norm if the
singular values decay sufficiently fast. This set is an algebraic variety, not smooth on
the elements A with rank strictly less than r. Therefore, when dealing with geometri-
cal optimization methods, these are often performed on smooth manifolds. In this case
the smooth variety of M«, is considered which is the set of matrices with fixed ranks
M_, = {A € R™*" : rank(A) = r}. While we refrain from delving into details regarding
the geometrical properties of this manifold, interested readers can find comprehensive
insights in [126].

QR decomposition

Throughout this work, we will encounter a popular factorization method, which is known
as the QR decomposition. This decomposition is described in the following definition

Definition 15. (QR Decomposition) For a given matrix A € R™*" the QR decom-
position expresses A as the product of an orthogonal matrix Q € R™*™ and an upper

triangular matrix R € R"™*"
A =QR, (1.32)

where Q*Q =1,,.

One common approach to compute these matrices is by employing the Gram-Schmidt
procedure on the columns of A or alternatively the Householder transformations [50].



1.2.3 Low-rank approximation for tensors

Consider the canonical basis of R @ R™2 ... ® R"™ denoted as:
Bruigrrs..grie = {€5; ® €, @ ---®e;,, 1 <ip <ng,--- 1 <idg <ngj. (1.33)

Then, any tensor A € R" @ R™ ® --- ® R™ can be expressed as:

niy no ng
‘A:ZZ"'ZA(il;"‘;id)ei1®ei2®“'®eid, (1.34)

i=lig=1  ig=1
where A(iq;- - ;14) is the (i, - ,i4)-th entry of A. The number of coefficients in the

example clearly grows as O(n?), with n = max;<z<q {n}. This exponential depen-
dency, known as the curse of dimensionality, poses a significant computational challenge.
Various decomposition techniques have been proposed over the years to alleviate this
challenge [68, 02]. These techniques aim to efficiently represent tensors through exact
or approximate decompositions involving tensors with lower dimensions than the original
tensor.

In the following, we first introduce a graphical representation of tensors which aims to
simplify tensor notations. We describe three main tensor decompositions: the canonical
decomposition (CP) decomposition, the Tucker decomposition, and the tensor train (TT)
decomposition. We highlight their distinctive computational aspects and discuss why the
TT decomposition is the most suitable when dealing with problems in high-dimensions,
thus the focal point of Chapters [3] and []

Graphical representation of tensors

It is useful to visualize tensors and tensor operations by employing tensor network dia-
grams using nodes and edges. Figure illustrates tensor diagrams representing a vector
v € R, a matrix M € R™™ and a 3-order tensor A € R™*"*!. Each of these objects
is represented by a node and one edge for each dimension along a specific mode. For
instance, as illustrated in Figure the vector v € R" is represented by a node with
one edge labeled with n to denote the dimension along the first mode, which is n. Edges
connecting nodes represent the indices shared between tensors in a tensor contraction,
as illustrated in Figure [1.5(d)l This figure illustrates the contraction product denoted as
A X9 B of a tensor A € R"*"2%X" and a tensor B € R™*™M2XM3 " with ny = my. Fig-
ure |1.5(e)| represents the SVD of a matrix of size m x n of rank r using the diagrams
where orthogonal matrices U € R**" and V € R™*" are represented by half filled circles
and the diagonal matrix 3 € U € R™" by a white circle.

A B
v M n A ni Ng = My my
® n m ® n m ! n::,T m;;T
(a) (b) (c) (d)
u X A%
Moﬂ

Figure 1.5: Graphical representation of|(a) a vector v € R", @ a matrix M € R™*" |(c)| 3-
order tensor4 € R™*nx!, @ the contraction product between two tensors A € R *m2xn3
and B € R™M*™2X"3 with ny = msy, and l@the SVD of a matrix of size n x m and of rank
r.

CP and Tucker decomposition

The (CP) [46] and Tucker decomposition [125] can be seen as high-order extensions of the
SVD of matrices. Before delving into these decompositions, it is essential to establish the
following definition regarding tensor rank.
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Definition 16. (Simple tensor and tensor rank [68]) Let A € R™*"2%X"d he a d-order
tensor. A is a simple/rank-1 tensor if it is expressed as follows:

A=e Qe - R ey. (1.35)

It follows that for a general d-order tensor 7 € R™*"2X*"a with rank r, the rank r is
defined as the minimum number of simple tensors needed to sum to generate 7T .

Definition 17. (CP decomposition) Let A € R™*™2X*" he a d-order tensor. The
CP decomposition of A can be expressed as the linear decomposition involving r rank-1

(simple) tensors:

A= > Nu, ®--- Quy,u, € R™, (1.36)
1= =ig=1
where A\, € R and Brr = {u;,, i € [r]} is the orthonormal basis of a subset of R™ of size
r for each k € [d]. The rank of the tensor A is denoted r.

The CP decomposition can also be expressed in terms of the contraction product as
follows:

A:((C X1 UQ) XQUl)...XdUd). (137)
Here, C € R"™*" is a d-order tensor with nonzero elements solely on its super-diagonal,
e, C(iy;...;1q) = A\ ifig = ... =g, and C(iy;...;iq) = 0, otherwise. Additionally, the

matrices U, € R™*" are defined such that Uyg[:,ix] = u;, for iy € [r] and k € [d]. The
graphical notation for the CP format is given in Figure [1.6]

ng

®
2

n ns
Uz

Figure 1.6: Graphical representation of CP decomposition: the white circle represents the
super-diagonal tensor C € R™*" with super-diagonal elements A,.

Clearly the storage cost is reduced from O(n?) to O(ndr) with n =  ax {ng}, r
SRS

is the tensor rank and d is its order. For matrices, the best rank-r approximation is
often determined by analyzing the decay of singular values and selecting the leading ones
according to a threshold, by employing tSVD. However, this approach does not directly
extend to high-order tensors. Unlike matrices, high-order tensors exhibit a more complex
structure, and their best rank-r approximation is not always straightforward to find. For
example, in the sense of the CP decomposition, the best rank-r approximation is ill-posed.
This was exemplified in [68], where it was illustrated that a rank-3 tensor, i.e expressed
as a linear combination of 3 rank-1 tensors can be effectively approximated by a rank-2
tensor, i.e expressed as a linear combination of 2 rank-1 tensors. Further details can be
found in [68]. This difficulty can also be understood from a geometric viewpoint, where
the set of tensors with CP decomposition with tensor rank less than or equal to r is not
a closed set, in contrast to what is known for matrices, as indicated in Proposition [I.2.1]
[68].

Definition 18. (Tucker decomposition) Let A € R™* " be a d-order tensor. The
Tucker decomposition of A can be expressed as:

T1 Td
i1=1 ig=1

where C € R"*"*"d ig a d-order tensor, also-called the core tensor, r; are the ranks of the
mode-k matricization of A denoted by A® and Brry, = {u;,,ix € [rg]} is the orthonormal
basis of a subspace of R" of dimension ry, for k € [d].

11



The Tucker decomposition can also be expressed in terms of the contraction product
as follows:
A:(C X1 Ul) XQUQ)"'XdUd), (139)

where U, € R™*" are orthogonal matrices, referred to as the factor matrices, such that
Ul ik] = wi,, ik €[],k € [d]. The graphical notation of the Tucker decomposition is
given in Figure [1.7]

ng

®
2

Figure 1.7: Graphical representation of Tucker decomposition.

We observe that the storage cost of the Tucker decomposition can be smaller than
that of the original tensor. However, it still grows exponentially with the order of the
tensor d, resulting in a storage complexity of O(r? + dnr), with r = nax {rx} and

n = max {nr}. The exponential growth primarily arises from the storage of the core

tensor in the Tucker decomposition, which makes this decomposition more efficient for
tensors with small orders d. Therefore, alternative decompositions have been proposed
to overcome the exponential scaling. One promising technique is the Tensor Train (TT)
decomposition, which will be the subject of Chapter [3| and Chapter 4 The TT decom-
position has emerged as an ideal choice for several applications, particularly in quantum
chemistry, where the Density Matrix Renormalization Group (DMRG) method, as will
be introduced in Section [1.3] can involve the manipulation of tensors with large orders d
to compute the ground-state, lowest energy, of a quantum many-body system.

Tensor train decomposition

The TT decomposition described in detail by Osledets [91),92], is a powerful representation
that addresses the exponential scaling associated with high-order tensors. Originating as a
mathematical formulation of the Matrix Product States (MPS) in the physics community,
the TT decomposition gained widespread recognition following the introduction of the
DMRG algorithm pioneered by White [I31]. The TT decomposition can be viewed as a
specific case of tensor networks and offers an elegant solution to efficiently handle high-
dimensional tensors.

At its core, the TT decomposition expresses a d-order tensor as a contraction product
of 2-order and 3-order tensors with reduced dimensions. This decomposition will be the
focal point of Chapters [3] and [4] due to its ability to tackle high-dimensional problems
effectively.

A TT decomposition of a tensor can be defined as follows:

Definition 19. (Tensor train decomposition [92]) Let A € R™**" be a d- order tensor.
The set (A, -+ ,.Ag) is said to be a tensor train decomposition of A, if A decomposes as:

A= ./41 X3 ./42 X3+ X3 Ad—l X3 Ad, (140)

where Ay, € R™=1%"*"% are the so-called TT-cores and ry, are the TT-ranks with k € {2,. ..
ro = rq = 1 where A; € R*™>*" and Ay € Rra-1xnaxl,

Alternatively, let Ag[ix] := Axl:, ix,:] € R for fixed iy € [ng], for each k € [d].
The (i1, - ,iq4)-th element of A is given as:

Remark 1.2.1. (Minimal TT-rank [47]) The TT decomposition (Ajy,---,.A4) of a d-
order tensor A € R™**" is gaid to be of minimal ranks , if all the TT-cores have full
left (resp. right) ranks, i.e for each k € [d], the mode-(1:2) matricization of Ay denoted
by A% € R 1"k ig of rank ry. (resp. the mode-(1) matricization of A; denoted by
A,(Cl) € R"=1X™"k jg of rank 75_1).

12
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The graphical representation of the TT decomposition is given as follows: each node
corresponds to a TT-core as denoted by Ay[ix] € R™ " 4, € [ng],k € [d], edges
connecting nodes are labeled by the TT-ranks as denoted by ry, k € [d], and edges without
connections are labeled by the dimension of the tensor along each mode as denoted by
nk,k € hﬂ.

ny N2 Ng—1 Ng

‘ ™ ‘ T Td—1 ‘ Td ‘

Figure 1.8: Graphical representation of a T'T decomposition.

We next recall one of the main theorems of the T'T decomposition which gives a way
to construct the T'T decomposition of a given tensor of order d.

Theorem 1. ([91] Theorem 2.1) Let A € R™**"d be a d-order tensor and let
A<F> g Rim-mi)x(mes1--m4) he the mode-(1:k) matricization of A for k € [d]. If for each k:

rank(A<F>) = 7y, (1.42)

then there exists a T'T decomposition of A of the form ([1.40)) with TT-ranks less or equal
to ry, k € [d].

In order to obtain a TT decomposition of a given d-order tensor A4 € R™M> " xn"d,
the TT-SVD method is employed. The latter can be viewed as a sequential series of
SVDs on auxiliary matrices: Given the input tensor A, the tensor is first reshaped along
the first mode n, resulting in an auxiliary matrix which is the mode-(1) matricization

of A denoted by B; = AWM ¢ R x([Ti, o) with rank 71, then an SVD is performed
yielding the decomposition B; = UXV*. The matrix U is then reshaped into the first
TT-core A; € R>*™X"1 where r; is the TT-rank of the first TT-core and suppose that

d
ro = 1. The product of matrices XV* € R (T2 s then reshaped into a new matrix

B, ¢ R””ZX(Hfzs ") assumed to be with rank ro. Another SVD is performed on that
matrix to extract the second TT-core, denoted by Ay € R™*"2*™2 This iterative process
continues, resulting in d TT-cores. Algorithm [1| provides a detailed description of the
TT-SVD method, for more details see [92].

In Algorithm [I| the Reshape function, a default function implemented in Julia or
MATLAB. It constructs an array with same entries but with different dimensions. The
syntax for the Reshape function is as follows:

Reshape(A, dims), (1.43)

where A is the data-structure (it can be a vector, matrix or a tensor) that we want to re-
shape and dims is a tuple specifying the desired dimensions of the reshaped array. For in-
stance, in line 7 of Algorithm(l} for k € [d], the operation Reshape(U, (ry_1, ng, 1)) rep-
resents the tensor folding of U into a tensor of size ry_1 X ng X rx. Similar operation is per-
formed in line 9. In line 8, the operation By, = Reshape(XV*, (rrngi1, Hk+n)) corre-

i=1 "

(rumers )< ()

d
sponds to representing the matrix XV* € R*(Ilizesr ™) a5 a matrix B €R i=1 M7
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Algorithm 1 TT-SVD algorithm proposed by Osledets (see [92])

1: procedure TT-SVD(A) > Input: Tensor A € R™>xnd,
d

2: Tozl,rdzl,n:Hni.
i=1

3: Mode-1 matricization of A into the matriXdA(l) € R”lx(Hj:z ni),
4: B; = A®W and r; = rank(B;) < min {nl, H nl}

i=2
5: fork=1tod—1do

6: UXV* = SVD(By) > U € RI-1M5rh | 53 € RXTh V€ R )
7: Ay = Reshape(U, (ry_1, g, 7%)).

8: Bi1 = Reshape(XV*, (ryng1, Hk+n>>

9 end for -

10: Ag = Reshape(Bd, (’f’d_l, ng, Td)).
11: return TT decomposition with TT-cores (Ay, -+ ,.Aq).
12: end procedure

Remark 1.2.2. It is worth mentioning that the TT decomposition is a special case of
the Hierarchical Tucker decomposition, which is a hierarchical tree-like decomposition, we
refer the reader to [37] for more details on this decomposition.

Remark 1.2.3. (Unicity of the TT decomposition [47]) The TT decomposition is not
unique. For a tensor A € R™*"*" in TT format, with TT-cores (Ay,...,.Aq), there
exist square invertible matrices Uy € R™*"* for k € [d] such that

where . . _ ) »
Bili1] = A4[i1]Uy, Bylia) = Uy~ Aglial,
By[ir] = Uyt Aglin] Uy

This results into another equivalent TT representation with new T'T-cores.

(1.45)

In what follows, we present a definition of the concepts of left and right orthogonal-
ization in the context of the TT decomposition.

Definition 20. ([92]) Let A € R"* %" he a d-order tensor and let (Ay,--- ,.A4) be its
TT decomposition according to Definition[I9] The TT-cores are said to be left orthogonal
if the following is satisfied:

ng
(AT )AL = D (Alin])"Axli] = I, (1.46)
ig=1
where Ay[i] == Ap[:,ir, :], and AT?> € R™%=1"X"k i5 the mode-(1:2) matricization of the

TT-core Ay € R™=2*">*"k for each k € [d]. The TT-cores are said to be right orthogonal
if the following is satisfied:

ADAD) = 3 A (A =L, (1.47)

ip=1

where Ag) € R=1X""k s the mode-(1) matricization of the TT-core Ay € R™—1%mkxTk
for each k € [d].

Algorithm|I]yields a left-orthogonal TT decomposition. To obtain a right-orthogonal
TT decomposition, we can simply apply the same iterative procedure backward. One of
the benefits of achieving this orthogonalization is the simplified calculation of the tensor’s
norm. For a left (resp. right) orthogonal TT decomposition, the tensor’s norm can be
obtained simply from the last (resp. first) TT-core of the decomposition. To illustrate,
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let us consider a left-orthogonal TT decomposition (A, ---,.Ay) of the d-order tensor
A € Rm>xma The Frobenius norm of A can be given as follows:

LG = 3 3 (Al 40)°
= 3 S (Al Asfis] - Al
o (1.48)
- .Zl A 'Z_I(Ad[id]*Ad—l[id—l]* - Aqli]) (Aa[ia] Agfio] - - Aglia])
= 3" A Adid = 1A

Remark 1.2.4. ([47] Theorem 1) As highlighted in [47], a TT-SVD of a tensor A € R *"*"d
gives a T'T-decomposition of minimal ranks, the orthogonalization helps with making the
TT decomposition unique up to orthogonal transformations, i.e let (A, --- ,.A4) bea TT
decomposition of the tensor A, then there exist orthogonal matrices Qp € R™*"* such
that

where

Bl[’il] = A—l[il]Q17 Bk[lk] = szlAk[Zk]Qka and Bd[’Ld] = Q271Ad[id]- (150)

In the literature [26], this is commonly referred to as the reduction of the gauge freedom
in the TT representation.

In what follows, we review some of the important arithmetic operations that can be
performed among tensors in the TT-format.

Proposition 1.2.2. Let A and B € R™* X" be two d-order tensors, with TT decompo-
sitions given by:
Aty .. iq) = Aqlin] ... Aglial, (1.51)
B(iy;...;iq) = Bqli1] ... Bglia)- (1.52)
with Agliy] € RETE Byliy] € Rk € [d] and it =rd =0 =P = 1. The
following statements hold:

1. Addition of two tensor trains : the tensor C € R™**"d defined as the addition
of two tensors, A and B in TT-format with TT-ranks (ri*, ... .r3), (rE, ..., rP), has
a TT decomposition with TT-ranks (ri +r8 ... rd +1rP).

2. Multiplication by a scalar: the multiplication of a TT by a scalar keeps the
TT-ranks invariant.

Proof. 1. Let C € Rm* > he the addition of two tensors A and B. Then we can
write C entry-wise as:

C(il; cee ;id) = Al[ll] - Ad[ld] + Bl[’Ll] . Bd[ld]

_ [Al[m Bl[m} [(;A‘;[j?l (Lz[xzﬂ Ad[?d]].

A, Ay, —
T el ot p)

(1.53)

This results into a TT with TT-ranks (r +r5,... r4 +rF) as required.

2. Let a € R, the product B = a.A is equivalent to scaling only one of the tensor cores

of the TT. _
. OéAk, ifk=1
A= { Ay, if k> 1. (1.54)

This results into a TT with the same TT-ranks.
O
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Computational aspects and memory requirements

Let A € Rm**" he a d-order tensor and let (A;,...,A4;) be its TT decomposition,
with Ay € R™%=1*"x"% L e [d],rg = rq = 1. It can readily be checked that the storage
cost of the TT decomposition is only O(dnr?) where r = max, {rr} and n = max, {ni}.

This implies that memory requirements increase linearly with the tensor order d [91] and
dimension n and quadratically with the TT-ranks, which is contrasted with the Tucker
decomposition described in Definition [I§ Therefore, the TT decomposition becomes
advantageous for making computational costs affordable, especially when the TT-ranks
are bounded or small.

One significant limitation of the TT-format does arise during arithmetic operations,
such as the addition operation as described in Proposition[1.2.2] that tends to increase the
TT-ranks. To mitigate this issue, compression methods become crucial. As mentioned in
[91], it is possible to achieve an approximate TT decomposition with reduced TT-ranks
in comparison to the original TT decomposition. This can be achieved by performing
truncated SVD, at a given accuracy 0 during each iteration, instead of the full SVD
as outlined in Algorithm [I] In this case, an error bound can be estimated. Given
Algorithm [1] suppose that instead of SVD, tSVD is performed at each iteration such
that the singular values of the auxiliary matrices are truncated at accuracy ¢, the relative
error between the original tensor A and its approximation denoted by A, is given by (see
[91):

|A— Al < Vd—16. (1.55)

Therefore, to obtain the relative accuracy € for the approximated tensor A., one should
choose § = —éuﬁﬂf .

Similarly to matrices, a geometric viewpoint on the set of TT with TT-ranks that are
bounded element-wise by r» = (ry,...,r4), can also be found in the literature [47], where

the TT-SVD with tSVD plays the same role as SVD with truncation for matrices

Proposition 1.2.3 ([47]). The set of TT of TT-ranks at most r = (ry,...,rq) defined
as:
Mryr<y = {A € R™ > ig 3 tensor of TT ranks < r} , (1.56)

s a closed set.

The proof can be established by expressing the set as follows:

d—1
MTTST = ﬂ {.A c R”lx'”xnd,rank(A(lzk)) S T’k} . (157)
k=1

Since each set in the intersection is a closed set (as per Definition [1.2.1)), it follows that
the set Mrr<, is also a closed set. This property is advantageous when compared to the
CP decomposition, as it ensures that every d-order tensor A € R™* %" admits a best
approximation by a TT in Mpr<,.

Remark 1.2.5. [I126] Similarly to the matrix case, the set of TT of TT-ranks at most
r = (ry,...,74) as defined in Proposition is an algebraic variety but not a smooth
manifold. Instead, the study of geometrical optimization methods is carried out on the
set of TT with fixed TT-ranks which is known to be a smooth manifold (see [126]).

In what follows, we will introduce another used algorithm to reduce the TT-ranks of
a tensor already given in TT-format. Such process is known as TT-rounding [92] and is
given in Algorithm [2| Let A € R™>*" he a d-order tensor with a TT decomposition
(Ay,---,Aq) according to Definition . Algorithm [2| can be broken down into two
main steps: right to left orthogonalization and then left to right truncation. The right
to left orthogonalization step involves a sequence of LQ—decompositionsE] of the mode-1
matricization of each TT-core denoted by A,(Cl) € R™—1X™"k moving backward starting
from k = d until £k = 2 . In the LQ-decomposition, the matrix is factored into the
product of a lower-triangular matrix L and an orthonormal matrix Q with orthonormal
rows. The triangular factor L is then applied to the preceding TT-core Aj_;. The left

2The LQ decomposition of a matrix is the QR decomposition of its transpose.
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to right truncation step employs a sequence of truncated SVDs applied to the mode-(1:2)
matricization of each TT-core denoted by A;?*> € R™-1"*" | € [d — 1]. The next TT-
core Ay, is then updated by multiplying it with the truncated singular values and right
singular vectors. The direction of these two steps can be reversed.

Algorithm 2 TT-rounding algorithm [92]

1: procedure TT-ROUNDING(A, €) > Input: TT decomposition (A, -- -, Ay) with
TT-ranks ry, k € [d], accuracy € € Ry.

2: {right to left orthogonalization}.

3: for k =d to 2 do

4 L,Q=LQAM), > L e R-1xm-1 Q e Ri-1mirk Q*Q = 1.
5: A = Reshape(Q, (rx—1, 1k, 7%))-

6: A1 =Ax1 x5 L.

7: end for

8 Compute [|A]; = A1 and § = L2l

9: {left to right truncation}

10: for k=1tod—1do

11: USV* = tSVD(AS?>, ) > U € RI-1mxTe | 33 € RIXme 'V € RIEXT,
12: A = Reshape(U, (ry_1, g, 71)).

13: Ak+1 = (EV*) X9 Ak;—i—l-

14: end for
15: return TT-cores (Ay,--- ,.A4) with reduced TT-ranks.
16: end procedure

Here, the term tSVD represents a function that takes a matrix and a specified threshold
0 as input. It uses this threshold to truncate singular values and provides the resulting
truncated decomposition, which serves as an approximation to the input matrix in line
10 of Algorithm [2]

In practice, the drawback of using TT-SVD is that we need to store the full ten-
sor A € R"**"d in advance, which scales exponentially with its order d. Therefore, if
the tensor is already in TT-format, it is possible to reduce the TT-ranks using the TT-
rounding algorithm yielding an approximate T'T' decomposition with reduced ranks. The
latter is beneficial in reducing the computational cost when performing basic operations
involving tensors in TT-format. The computational complexity of the TT-rounding al-

. : 3\ e . - -~ . o
gorithm is O(dnr?) [92], with r = max, {ry} and n = max, {ni}. This complexity is
obtained from the cost of applying the LQ and SVD operations on the matricization of
each TT-core Ay € R™ =17k L € [n] which requires a computational complexity of

O(nr?).

1.2.4 High-dimensional eigenvalue problems

In this thesis, we address the problem of finding the smallest eigenvalue of a matrix, which
is a fundamental task intensively used in diverse scientific domains. The goal is to identify
the minimal eigenpair consisting of the smallest eigenvalue and its corresponding eigen-
function. This particular eigenpair holds significant importance in various applications,
including quantum chemistry (for more details, refer to Section .

Mathematically, we seek to reformulate the problem as follows: given a symmetric
square matrix A € R"*"  the eigenvalue problem can be given as follows:

Ax =) x,z #0,\ €R. (1.58)

Equation (1.58)) can equivalently correspond to finding the stationary points of the func-
tional Ra : R"\0 — R such that

1 {Az,z)

Ra(x) = 2 (@@ (1.59)

where R () is the Rayleigh quotient. Finding the smallest eigenvalue from the Equation
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(1.58) corresponds to minimizing the Rayleigh quotient over & € R™.

1 (Ax, x
Amin = min 7M (1.60)
zeRmz#0 2 (X, )
—_——————
Ra(x)

Over the years, substantial efforts have been dedicated to solving this problem, employing
diverse approaches: classical direct methods such as calculating the roots of the character-
istic polynomial or iterative methods such as the inverse power method, Krylov subspace
methods. [I01]. However, despite their effectiveness, these methods are inherently limited
by the dimensionality of the problem.

To render the problem tractable, instead of minimizing over the entire space, the
minimization is performed over the manifold of tensors represented in the TT-format
with bounded TT-ranks as defined in Definition [I.2.3] This idea originates from DMRG
method in the context of quantum chemistry, which uses Matrix Product States (MPS)
representations, (see Section . This means that one can interpret the problem as the
following modified minimization problem: assuming that & can be viewed as a tensor
denoted by X' € R™**"a with n = [T, n; and with a TT decomposition with TT-rank
at most equal to r = (rq,...,ry), then:

min 1 (A vec(&X), vec(X))
XeMypr<, X£02 (vec(X),vec(X)) ’

with vec(X) € R™~" being the vectorization of the tensor X. While solving has
existed in the physics community since the work of White [17], its formulation in the
mathematical literature in the context of tensor trains is done by researchers from the nu-
merical linear algebra, in particular Holtz, Rohwedder, Schneider and Uschmajew [47, 148].
They proposed the terminologies of ALS (Alternating Least Squares) and MALS (Mod-
ified Alternating Least Squares) for solving the eigenvalue problem using tensors in the
TT-format. This modified minimization problem is the one used in the following section
which focuses on the eigenvalues of the Hamiltonian operator in quantum chemistry.

Amin = (1.61)

1.3 High-dimensional problems arising in quantum
chemistry

1.3.1 Introduction

As mentioned previously, our primary focus in this thesis is tackling high-dimensional
problems that arise in quantum chemistry. The upcoming section provides the motiva-
tion behind introducing the concept of matrices and tensors, along with their low-rank ap-
proximation techniques, particularly in the context of high-dimensional problems. As part
of the Extreme-Scale Mathematically-based Computational Chemistry (EMC2) project,
we engaged in insightful discussions with chemists to explore how the ideas introduced
in the previous section could be beneficial to speed up some applications in molecular
simulations.

Our work focuses on two key applications. The first application revolves around ap-
proximating the long-range two-electron integrals 4-th order tensor, discussed in Chap-
ter 2 The second application, extensively discussed in Chapter [3]and Chapter [ centers
around the efficient T'T representation of the Hamiltonian operator and how it is employed
in DMRG method to evaluate the ground-state energy of a given molecular system. Both
applications involve the use of tensors, low-rank approximation techniques and symme-
tries.

1.3.2 Many-body electronic Schrodinger equation

The Schrodinger equation is a fundamental equation in quantum mechanics that de-
scribes the quantum state of a physical system. Consider a molecule with N electrons
at position & = (1, xs,...,xy) € R, x; = (75,9, z;) and with discrete spin—variabl

3The spin-variable is one of the four non-relativistic coordinates of electrons (the other three are the

spatial position). The latter can be spin up, %, or spin down, ’71
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s; € {j:%} ,i € [N] and M nuclei at position r = (r{,7y,..., 7)) € R*. Under the
Born-Oppenheimer [I] approximation, since the nuclei are much heavier than the elec-
trons, these behave like classical particles whereas electrons are treated quantumly. The
electronic properties of the molecule can be inferred from the spectrum of the electronic
Hamiltonian operator H given by:

A | M Zy, 1 Y 1

H=> -0 - Y ——m—+- Y — |, (1.62)
i=1 2 k=1,k+£i sz - Tk” 2 G=1,j#i le - w]H

where A; denotes the Laplacian operator with respect to the i-th spatial coordinate x;

and Z;, > 0 denotes the nuclear charges. The first term in is the kinetic energy, the

second term corresponds to the Coulomb interaction with the nuclei and the last term is

the electron-electron Coulomb repulsion.

The ground-state denoted by W is then the eigenfunction associated to the lowest
eigenvalue of H denoted by Fy and referred to as the ground-state energy. The eigenvalue
equation is given by [39]:

HY = By (1.63)

Remark 1.3.1. In the literature, the eigenfunctions of the Hamiltonian operator are
commonly referred to as the wavefunctions.

The function W is a multivariable function and is defined by the following mapping
[105]:

1 N
v (R3®{:|:2}> —C, VY (x1,81,...,&ZN,SN), (1.64)

where ¥ belongs to the Hilbert space L*(R3® {:l:%}), which is the function space of square
integrable functions, with L?-inner product:

(Uq, W), = Z /RSN\111(whsl,...,:I;N,SN)\IIQ(wl,sl,...,:cN,sN)dacl...d:cN,

sp==%1
(1.65)
with Uy, ¥y € L*(R® ® {j:%}) and Uy (¢, sq,...,xyN,Sy) denoting the conjugate of the
complex value Wy (@1, $1,...,&N,sy). The wavefunction must obey the Pauli exclusion
principle [39] such that
U (@1, 815+ s iy Siy e v oy &gy Sjye o BN, SN) = =V (X1, 81, ., Tj, Sjy o, Tiy Siy - o, TN, SN) -
(1.66)

It follows that W belongs to the antisymmetric tensor subspace denoted by AY., L?(R®* ® {j:% })
which can be defined as follows:

Z\ILQ(R3® {j:;})

1\ N 1.67
:{\I/ELQ((R3®{i2}> ):\Il(ccl,sl,...,wi,si,...,mj,sj,...,mN,sN): ( )

—‘11(2131,81,...,ZL']',S]',...,ZL'Z‘,SZ',...,CBN,SN)}.

The Hamiltonian operator His a self-adjoint operator acting on the Hilbert space
AV LR ® {j:%}) Without going into details we refer readers to [98] for a comprehen-
sive analysis and insights into the properties of this operator.

The Equation can be seen as a linear eigenvalue equation, which becomes nu-
merically intractable with standard discretization schemes as soon as we deal with more
than a few electrons. This is again the so-called curse of dimensionality. By Rayleigh-Ritz
principle, the search of the lowest eigenvalue can be recasted into the following minimiza-
tion problem:

Eo = min {{¥, AV) ||¥ ||, = 1,0 € Yy}, (1.68)

where the solution ¥ must be restricted to the so-called variational space YV, on which
U is minimized, defined by (see [98] [105] for more details):

Vy = H' <<R3®{i;}>N> mZ\lL2 (R3® {:I:;}) (1.69)

19



N
where H*! (<R3 ® {i%}) ) refers to the Sobolev space defined as the function space of
N
all first derivatives belonging to L? ((R3 ® {:I:%}) > :

A standard way to solve the problem (1.68)), is by approximating the wavefunction ¥
as the product of separable functions, i.e tensor product wise, and by taking into account
the antisymmetry constraint, as described in Equation (1.66)). An ideal candidate is the
Slater determinant. Consider a finite-dimensional subspace of V, with dimension d with
d > 2N, with the following basis:

By = {gpil(wl,sl) c H! (R3 ® {i;}) i €1d], 1€ [N]}, (1.70)

where the functions ¢;, are L*-orthonormal.

Remark 1.3.2. In quantum chemistry, ¢;, might be referred to as the single-site basis
functions. They are commonly referred to as the spin-orbital basis since they depend on
spatial coordinates x;, € R® and the spin-variable s = i%.

We define the Slater determinant of N-particles by the following basis functions [105]:

Dpiying(T1, 81, @iy S0y X, 84, T, SN)
@i (T1,51) @iy (®1,81) @iy (@1, 51)
L e (@2, 82) @i, (T2,82) -+ piy (T2, 52)
VN! : : : (1.71)
i, (TN, 5N) @i, (®NSN) -+ @iy (BN, 5N)

N

1
= Nl det (p;, (x5, Sj))z,jzl ’

Example 1.3.1. For N = 2, with N being the number of electrons. The Slater deter-
minant of 2-particles in terms of two orthonormal functions ¢, ¢, € H* (R3 ® {j:l})

2
is:
1 p1(x1,51) w2 (1, 51)
Py (@1, 1, X2, o) = —=det ’ ’
[172]< 121, &2 2) \/§ (@l (QJQ, 52) ©2 (w% 82)
= @1 (@1, 51) P2 (T2, 52) — @1 (@2, 52) P2 (@1, 51) -

It can be verified that ®p g(x1, 51, T2, 52) satisfies the antisymmetry constraint defined in
(T.66).

(1.72)

Now, we regard these Slater determinants as the basis functions spanning a finite-
dimensional space known as the Full Configuration Interaction (FCI) space, denoted by
V%, and defined as: let d be the number of single-site basis functions ¢;,, 4; € [d],1 € [N]
where N is the number of electrons. Let V% be defined as:

1
Vﬁi\, = Span{CID[ihm,iN](wl,sl, e X, Sy ,ch,sN))l <ip<---<iy<d,x, €R3 s, € {iz}k € [d]}

(1.73)
It can be seen that
V§ C Vn. (1.74)

Typically, the solution to Equation , denoted as Yy, is approximated by confining
the space Vy to a subspace V4. This specific solution, denoted as ¥, € V%, is commonly
known as the FCI solution. It follows that W, can be expressed as a linear combination
of Slater determinants as follows:

\IIO = Z C'L'lu-i[\]@[’h,“.,’i]\]]) (175)

1<i1 < <in<d

with C} € R being the coefficients of this linear combination.

1odn

Remark 1.3.3. The representation of the wavefunction through a single Slater determi-
nant, i.e., a function of the form described in Equation , is the so-called discrete
Hartree Fock (HF) approzimation, and the HF energy is the energy obtained by solving
the minimization problem over this single Slater determinant term.
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For an N-electron system, the dimension of the space V% can be understood as the
number of possible configurations the system can exhibit in a d-dimensional space. This
dimension is given by the binomial coefficient:

dim(V4%) = ( ]Cé ) = N!(ddiN)!, (1.76)

which signifies the various ways N electrons can be arranged among d single-site basis
functions. As the number of electrons IV increases, this dimension grows rapidly, approx-
imately as O (dN ) Hence, effective approximation techniques become essential to render
the problem tractable. A clever approach relies on parameterizing the coefficients in the
linear combination presented in Equation ([1.75) within second-quantization formalism.
The second-quantization and this parameterization are detailed in Section [1.3.4. Then,
by employing the Density Matrix Renormalization Group (DMRG) method, based on the
tensor factorization of the newly parameterized coefficients, an approximate solution is
obtained. The latter will also be described in Section [1.3.4

1.3.3 Two-electron integrals tensor

Let N be the number of electrons, one can write the Hamiltonian operator as the sum of
one-electron operator and two-electron operator as:

N 1 N N
—Egh(fvz 52 Z (@i, ), (1.77)
i= =1 j=1,j

where h(z;), z; € R%i € [N] is the so-called one-electron operator defined as:

h(x;) = AJFZH:;:Z (1.78)

il

and K (x;, z;), x;,x; € R%, i, j € [N] is the so-called two-electron operator defined as:

K(@1y,) - ’1

: (1.79)
Ti = %H

Let d be the number of Slater determinant basis functions as defined in Equation ([1.71))
that span the finite-dimensional variational space V¢ Vv as defined in Equation ((1.73 - Let
H be the matrix representation of the Hamiltonian operator H within the basis of V§ N
spanned by the Slater determinants defined in ((1.71)). Then the entries of the matrix
representation of the Hamiltonian operator denoted by H(u, v) is defined as:

H(u,v) = (2, H®,)

:—<q)w§;h(wi)q)”>ﬂ <<I>M,Z S K(x,x;)® >L2,

1=1j=1,j7i

(1.80)

where p := [i1,...,iy] and v := [j1,...,jn],4 € [d],l € [N]. The evaluation of the L*
inner products in ([1.80) can be obtained by the Slater-Condon Rules [I117]. These rules

N
show that the first term in (|1.80)), <<D;u > h(zci)fl),,> , is written in terms of the so-called
i=1

L2
N N

one-electron integrals and the second term <<I>M, Z Z K(x;, a:j)(I),,> is written in
i=1j=1,j#i >
terms of the so-called two-electron integrals. These integrals are defined in Equations
(1.81) and (1.82) where {¢;}, el e[ re the single-site basis functions defined in Equa-
tion (L.70). We refer the reader to [I17] for more details about the calculations of these
inner products.
The one-electron integrals obtained from the Slater-Condon rules are defined as:

hiljl = / Piq zcl, 81) h(:Bl)(le (131,51) de (181)

s1= il
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The two-electron integrals obtained from the Slater Condon rules are defined as:

Uijrisjs = D /RS Py (@1, 51) @iy (T2, 52) K (@1, ®2) 05, (%1, 51) @5, (2, 52) Ay daa,
51,5221%

(1.82)
where iy, 149, j1, jo € [d]. The order of the indices i1, 1,42, j2 in (1.82)) follows Mulliken’s
convention [44], i.e the indices iy, j; label the single-site basis functions with variables
(x1,s1) and the indices i, jo label the single-site basis functions with variables (xs, s9).

Remark 1.3.4. (Spatial-orbital basis functions [I18]) The single-site basis functions
i, (xr, 81), 9 € [d], s = j:%, also referred to as the spin-orbital basis, are commonly written
as the product of separable functions. For [ € [N], one function in H'(R?) depends on the
spatial coordinate ; € R® while the other function depends on the spin s; = :I:%. Suppose

that d is even, let us define the orthonormal basis set {%(331) € H'(R?),i; € [%} e [N]}

such that [I18], for each spatial-orbital of the form ¢; (x;), there are 2 spin-orbitals of the
form ¢;, (2, 3) and ¢; (z;, 5F) and the following holds:

1, ifs =1,
©ai, (1, 51) = b5, ()11 (81), n1-(81) = { ‘T

0, otherwise,
(1.83)

1, ifs ==L
ria(1.5) = By @ (3, 1) = { ot

0, otherwise.

d
2

functions ¢;,, i, € [d] can be formed. To ensure clarity and prevent confusion, moving
forward, when referring to the number of orbitals, we will be using the number of spin-
orbital basis functions denoted as d which is supposed to be even. Consequently, the
number of spatial orbitals, denoted as dgpatial, is defined as half the number of spin-orbitals,

Hence, from ¢ spatial-orbital basis functions ¢;,, i; € {%}, a set of d spin-orbital basis

: _d
L.e., dspatial — 3

According to Remark and in the interest of practicality and simplification, it
is common to overlook the spin indices denoted by si,ss in the Equations and
(1.82) when dealing with integrals. This can be justified as follows: we define h;, 5 for
i, 1 € [dspatial] as follows:

h; = = haiy 25, + hoiy—1.2jy + P2iy 251-1 + haiy—1.25,-1, 41, J1 € [d]. (1.84)

11,71

According to Equations (1.83), we have ho;, 125, = haj; 2j,—1 = 0. This yields:

by, 50 = haiy 2, + haiy 1251

T 1.85
- QAS ¢%1 (:131) h(w1)¢51 (wl) dwbilajl € [dspatial] . ( )

Note here that the one-electron integrals h; 5 donot depend on the spin-variable s; = j:%,
i.e the indices s; are dropped. However, for each couple of indices 51,51 € [dspatial], We
need two one-electron integrals of the form [s ¢;, (®1) h(1)¢;, (1) de;. In a similar
way, we employ a comparable approach to handle the two-electron integrals outlined in
Equation (1.82). This adaptation allows us to work within the space of d spatial basis
functions, specifically within H!(R?). Consequently, the modified form of the integrals

can be expressed as follows, for iy, j1, 2, j2 € [d]:

hi1j1 = /R3 ®iy (m)h(w)¢J1 (CL‘)dCB, (186)
and

Virjuings = /R3 /R3 iy (1) G, (®2) K (@1, 22) b5, (1) @5, (®2) day dezs, (1.87)

with ¢g_1(x) = ¢o(x), | € [g] Given integration rules, these integrals exhibit symmetry
properties given as follows:

hi1j1 = h]iin (188)
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and

Vivjrisje = Visjaivji = Vigjajiin = Vjaigjrin = Ujaisini = Virjujaia = Ujrirjaio = Ujrinizja-  (1-89)
To simplify the mathematical treatment of spatial-orbital basis functions, commonly
known as molecular orbitals, in many quantum chemistry methods, the representation of
these functions are expanded over alternative basis functions. Let B, = {g,(x) € H' (R?),u € [N,]}
be a finite-dimensional basis of dimension N,. The basis functions ¢;,i € [d], are repre-
sented as follows:

(@) = S Cugu(@), i € [d) @ € R, (1.90)

where C),; € R represent the expansion coefficients of the spatial basis functions.

Remark 1.3.5. In the literature [117], Equation ((1.90]) corresponds to the so-called Linear
Combination of Atomic Orbitals (LCAO) theory, where g, u € [IVy] function are referred
to as the atomic orbitals.

Plugging the expansion (1.90)) in the Equation (1.87) yields the so-called two-electron
integrals corresponding to the finite-basis {g.}, <y, » 9u € H'(R3):

B = /3 3 96(2)9(@)9W)INY) 0 10 ith v\ € [N, (1.91)
R R

lz —yll
The choice of the basis is restricted by the analytic integrability and required accuracy
for an efficient computation of these integrals. In literature [84], the basis set commonly
used are Slater type functions or Cartesian Gaussian type functions. The Slater type
functions are characterised by quantum numbers[I], i.e set of parameters that describe
various properties of electrons, denoted by n, [, m and exponents (. Slater type functions
are of the form:

frm(x,0,0) = (x — r)”_le_q‘w_’"”Ylm(Q, ®),x,r € R?, (1.92)

where every u number corresponds to specific quantum numbers (n, [, m), @ is the position
of the electron, Y;™ (6, ¢) are the spherical harmonic functions defined on the spherical
angular coordinates # and ¢, and r refers to the coordinates of the atom nucleus that
is fixed and known in practice. On the other hand, cartesian Gaussian type functions,
also-called primitive Gaussian type functions are of the form:

3

fulz) = H(wl - Tl)p”(l)e_a“”(ml_m”Q7 zi, T €R, 1€ [N}], (1.93)

=1
where the exponent «, is a parameter whose reference value is found, for instance, in [94]
and p, is a vector with three coordinates which are exponents depending on the chosen
basis function, i.e value of u, see example [1.3.2]

Example 1.3.2. Let us consider the electronic configurations of two example molecules:
water (Hy O) and Di-Hydrogen (H,) as depicted in Figure [1.9]

Wiater molecule Dihydrogen molecule
/N
H H H—H
Atomic orbitals included: Atomic orbitals included:
y y y
y
z z ' oz
.’ . Q) N P ‘ N ‘)/ =z
X
1s 2s 2py
1s
y y

Figure 1.9: Electronic configurations of Water molecule as well as Di-Hydrogen molecule
[58].
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For the water molecule, each Hydrogen atom has one s atomic orbital denoted by 1s,
while the Oxygen atom has 5 atomic orbitals: two s atomic orbitals denoted by 1s,2s and
three atomic orbitals p,, p,, p. denoted by 2p,,2p,,2p.. For the Di-Hydrogen molecule,
each Hydrogen atom has one s atomic orbital denoted by 1s. Relating this example to
the index p and p,: each p corresponds to an atomic orbital. If u corresponds to s,
then p, = (0,0,0); if y corresponds to p,, then p,=(1,0,0); if u corresponds to p,, then
p,=(0,1,0); and if p corresponds to p., then p,=(0,0,1). Overall, the tuple values p, for
i € [Ny] depend on the electronic configuration of the selected molecule. Each p can be
associated to a specific atomic orbital within the constituent atoms of the molecule.

The analytical properties of Gaussian-type basis functions make them the dominant
choice in many molecular quantum chemistry methods. Indeed, the computation of inte-
grals is simple when employing Gaussian-type functions, in contrast to Slater-type
functions. The difficulties in employing Slater-type functions arise when attempting to
efficiently compute the product of two such functions situated on distinct nucleus centers.
Furthermore, a common practice involves the linear combination of multiple Gaussian-
type functions to fulfill the cusp condition (discontinuous derivative) at & = r, with x
being the position of electrons and r being the coordinates of the atom nucleus, we refer
the interested reader to [34] for a more comprehensive understanding of the choice of the
basis functions. It follows that each g, function is expressed as a linear combination of
primitive Gaussian functions, defined in (1.93). This results into the following expansion
of the basis functions {g,},,<, »9u € H' (R%):

I, _
gu(x) = chflgj)(:c),lu eN,z R, (1.94)

j=1

where fU) corresponds to the j-th primitive Gaussian function, as defined in Equa-
tion , c; € R are the expansion coefficients and I, is the number of primitive
Gaussians used in the linear combination.

Once the type of the basis functions is decided, an additional consideration is the
number of basis functions {g,}, <u<Ny’ N,. This typically depends on the choice of the
basis set as exemplified in the Table for the molecule Hy O. Indeed, the accurate
description of the basis functions g,(x) depends on the choice of expansion coefficients
and exponents which defines the so-called basis set. We refer the reader to [45] for more
details and explanations of Gaussian basis sets for molecular simulations.

Basis set | STO-3G | 6-311G | CC-PVDZ
N, 7 19 25

Table 1.1: Example: total number of basis functions of molecules vs choice of basis [94].

Now, back to Equation , the latter represents six-dimensional integrals which
constitute the entries of a 4-th order tensor, referred to as B, such as B(j; v; k3 A) = B,
with p, v, k, A\ € [Ny]. This tensor has O(N;}) entries with N, being the number of basis
functions {g,}, <u<n,- Considerable efforts have been devoted to minimize the cost of the
integrals evaluation which is a challenging computational problem as they are at the core
of many quantum chemistry calculations. Note that computing this tensor requires the
evaluation of O(N}}) six-dimensional integrals that are singular due to the presence of the
Coulomb potential, or the two-electron operator m and where N, increases drastically
with the molecular system size and the choice of the basis set, N, = O(dspatial), With
dspatial Deing the number of spatial-orbital basis functions.

Numerous studies can be found in existing literature, covering both analytical and
numerical methods to calculate these integrals, as outlined in Chapter 2l One of these
methods involves employing a regularization technique through the range separation of the
two-electron operator described in Equation . This operator, which is also-called the
Coulomb potential, is split into a smooth long range-part and a singular short-range part.
The range separation technique and the efficient numerical evaluation of the resulting
long-range two-electron integrals will be the focal point and one of the main contributions

of the Chapter 2
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Finally, let us point out that computing the integrals consists in one of the first com-
putational steps within numerous quantum chemistry approaches for the search of the
ground-state and the corresponding ground-state energy. Among these methods, in what
follows, we review the DMRG approach, a well known approach to numerically approxi-
mate the eigenfunction of the Hamiltonian operator associated to the lowest eigenvalue.

1.3.4 Density Matrix Renormalization Group (DMRG)

As discussed in Section [1.3] the pioneering DMRG approach introduced by White [I31]
in 1992 and later rediscussed in the mathematical community under the name of MALS
method [48], a modification of ALS, is a powerful optimization technique for tackling high-
dimensional linear systems or eigenvalue problems. Further details about this method and
its various applications can be found in [48] 106, 118, 127 131].

In the physics and chemistry community, the DMRG approach finds significant appli-
cation in finding the ground-states of Hamiltonians of quantum many-body systems. As
already discussed in Section [I.2.4] this is achieved through the reformulation of the linear
eigenvalue problem as the minimization of a Rayleigh quotient, given as:

(U, HY)

Ru(¥) = -3 (1.95)

Here, ¥ € R™ " represents the eigenfunction, which is a vector of dimension n = Hle n;,
d € N, and H € R("1-ma)x(m1-m4) denotes the symmetric matrix that represents the Hamil-

tonian operator, in the context of the second quantization formalism. We now explain
the rudiments of the second quantization approach.

Discrete Fock space and second quantization

Let N be the number of electrons, and let d be the number of Slater determinants spanning
the finite-dimensional variational space V% (also-called the FCI space). This space is
defined as follows (see Equation (1.73)):

1
Vﬁl\, = Span{d)[ihm,m](wl,sl, e X, Siy ,acN,sN)‘l < <---<iy<d,s€ {i2},k
(1.96)

with ®;, iy being the Slater determinant basis functions defined in Equation (1.71) for
ix, € |d],k € [N]. Then, we define the discrete Fock space F, as:

d
N=0

The discrete Fock space is defined as the direct sum of subspaces V% (larger than the
FCI space ). The dimension of the Fock space is:

d d
d
dim(F,) = Y dim(Vy) = Y ( ) =24, (1.98)
N=0 o \V

For all ¥, ® € F,, the discrete Fock space is a Hilbert space equipped with the following
inner product:

d d d
(U, @) e, = > (VF oMy 2, U =PIV, &= oV, vV, oV e VY. (1.99)
k=0 N=0 N=0
It is important to discuss the alternative representation of the elements within the Fock
space, i.e Slater determinants. Note that a clever way to obtain a simpler represen-
tation of Slater determinants ®p, .1, 4 € [d], | € [N], is to use binary labeling
(&1,.... &) € {0,1}" as explained in the following definition.

Definition 21. (Occupation number representation [118]) Consider a binary tuple (&1, ..., &)

where & € {0,1} for i € [d], representing the presence or absence of spin-orbital basis
functions ¢; in the Slater determinant function @, ;.. If § = 1, we designate the or-
bital ¢;, as defined in ([1.70]), as occupied in the Slater determinant. Conversely, if & = 0,
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we indicate that the orbital ¢; is unoccupied in the Slater determinant. The notation
used is:

(I)Elmfd = q)[ihn-,iz\r]vgi € {07 1} S [d] . (1-100)
Furthermore, for any eigenfunction ¥ € F,;, ¥ can be expressed as:
¥ = Z \ijluqu)&...ﬁda (1101)

&1..£4€{0,1}4

with W¢, ¢, € R being the coefficients of the expansion over the new representation of the
Slater determinants basis functions.

Let UV € V‘fv be an N-electron eigenfunction, following the previously defined expres-
sion of UV in Equation (1.75), as:

v = > Ciy i @i, ind (1.102)

1<i1<--<in<d

where C;, i € R,i; € [d],l € [N]. Following Definition UY can be associated to the
new representation of the eigenfunction as follows:

Vo= 3T e e, Py e (1.103)
€1...64€{0,1}%

with

o T aAN,
\Ijglmfd - { Cil.,.iN if fz =1 when: € {il, R ,iN} S < ... <ipn. (1104)

We note that by the normalization of UV we have:

Z |\II§1---€d|2 =1 (1.105)
&...6q€{0,1}¢

To make this more concrete, we consider the following example.

Example 1.3.3. Let us consider a 2-electron eigenfunction, N = 2, expanded on 6 Slater
determinant basis functions, d = 4, such that

\112 = Z Ciﬂ'zq)[il,lé]
1<iy <ip<4 (1.106)
= C12Ppg + C13Ppa) + Co3Ppag) + Cra®pugy + CosPpoyg + Cs4Pay).

The first term in Equation , represented as @19, signifies the occupation of only
the spin-orbitals ¢; and ¢, with 3 and ¢4 remaining unoccupied, given that d = 4.
Following the Definition P19 is associated to ®11099. The same reasoning applies for
the remaining terms, leading to the subsequent equivalent expression:

U = Wi100P 1100+ Y1010P1010+ Po110Por10+ Y1001 L1001 + Vo101 Poro1 + Poor1 Poorr- (1.107)

With this new parameterization of Slater determinant basis functions, as defined in
Definition 21} one can perform transformations on these basis functions by adjusting their
occupation numbers. Through these transformations, it becomes possible to transition
from the space V% to V%, using the creation operator and from V% to V% _, using the
annihilation operator. We define now these operators as follows:

Definition 22. (Creation and annihilation operators [I18]) Let N be the number of
electrons, let V% be the finite-dimensional variational space as defined in (1.96]), spanned
by d Slater determinant basis function. Using the occupation number representation,
see Definition , for a single Slater determinant basis functions, ®¢ ¢, € V‘fv, & €
{0,1}, 1 € [d], we define the annihilation operator, denoted by a; : Vi — V% _,, i € [d],
as the operator acting on ®¢, ¢, € V4 such that the following holds:

0 if &=0

ai®e, g, = {(_1)&_(2‘_1)@51’”&Lm’gd otherwise. (1.108)
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We define the creation operator, denoted by af : Vi — V% 41,0 € [d], as the operator
acting on &, ¢, € Vﬁl\, such that the following holds:

a; Pey ey = {(_1)éi_(i_1)®§17"'v£’i+17--'7§d otherwise, (1.109)

with -
=Y & &e€{0,1},ied. (1.110)

=1

The annihilation operator, represented here as a;, operates on Slater determinants,
transforming them into other Slater determinants with a reduced number of particles,
effectively destroying one particle at the spin-orbital indexed by 7,7 € [d]. Whereas, the
creation operator, represented here as a}, operates on Slater determinants, transforming
them into other Slater determinants with an increased number of particles, effectively
creating one particle at the spin-orbital indexed by 7,7 € [d].

To make again this more concrete, we consider the following example.

Example 1.3.4. Let us consider a 2-electron eigenfunction, N = 2, expanded on 6 Slater
determinant basis functions, d = 4, such that according to Example [1.3.3}

U = Wi100P 1100+ Y1010P1010+ Por10Por10+ Y1001 L1001 + Vo101 Poro1 + Poor1 Poorr, (1.111)

Restricting our focus to the initial Slater determinant basis, denoted as ®199 in Equa-
tion ([1.111]), we aim to either introduce a particle into the first orbital or eliminate one,
and this can be reformulated, using Definition [22], as:

a1P1100 = Po100, @1P1100 = 0. (1.112)

The result of a;Pqq is interpreted as the annihilation of a particle at the first occupied
orbital, and the outcome of aj®q1¢p is understood as the creation of a particle at the first
occupied orbital. However, in accordance with Pauli’s exclusion principle[I17], the latter
operation results in 0.

For a more abstract representation of these operators, in the literature, they serve
as generators for the algebra of canonical anti-commutation relations (CAR) [95]. In
this specific case, they operate over a finite-dimensional Hilbert space and adhere to the
so-called anti-commutation relations, expressed as follows for i, j € [d]:

a;a; + aja; = 0,
a;a; +aza; =0, (1.113)
a;a; + aja; = d;;.
By the Slater-Condon rules, employed to derive the expression of the one and two—electrop
integrals as defined in Equations , , the electronic Hamiltonian operator H

acting on the Fock space F, in terms of the creation and annihilation operators, can be
represented as follows (for more details on its derivation, refer to [117]):

d d
2 1
H = > hijaa; + 2 Y Vijked; agagay, (1.114)
ij=1 i,k f=1

where h;; and v;ji are the one and two-electron integrals defined in ((1.86) and (1.87).
Equation is a formulation of the Schrédinger equation, defined in @, in the so-
called second quantization formalism. It is common to view H as a sum of 1-body terms
(the initial terms in the sum (1.114)), of the form afa;) and 2-body terms (the subsequent
terms in the sum (L.114)), of the form a}ajacay).

Remark 1.3.6. In the physics and chemistry communities, this Hamiltonian defined in
Equation [I.114] is also referred to as a 2-body Hamiltonian operator due to the presence
of up to 2-body interactions (second term in Equation ([1.114])). It is also commonly
known as the molecular Hamiltonian, the quantum chemical Hamiltonian operator, the
second-quantized fermionic Hamiltonian, or the ab initio electronic Hamiltonian.
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Note that by introducing the Fock space, we have lost track of the total number of
particles N, i.e the Fock space can be seen as a space with all possible combinations
of states with different number of particles. To reinstate this constraint, we define the
particle number operator, denoted as N: Vﬁl\, — Vﬁl\,, as follows:

d
]\A/:Zafai. (1.115)
i=1

Let ¥ € V]d\; C F4 be a wavefunction with N electrons. Using Equations (1.103)),(1.104)),
(1.108]), (1.109), and (1.115)) it can be showed that

NU = NU. (1.116)

By considering the constraint over the particle number N, one needs to solve the con-
strained minimization problem ((1.68) that writes:

min {(¥, HV) 7, U € Fy, | V|7, =1, NV = NU}, (1.117)

where (.,.) 7, is defined in Equation and [|V]|%, = (¥, V)£,

Now, by expressing Slater determinants through binary labeling, see Definition [21]
it is common to associate each Slater determinant ®¢ ., € F4 with exactly one unit
vector ey, ., € R2’ [118]. We define these unit vectors as follows: let (&;,...,&;) be a
binary tuple which labels the Slater determinant ®¢ ¢, such that for each index &, €
{0,1} ,k € [d], we associate a unit vector e,, € R?* with u, € {1,2}. Let us define the
following mapping function:

¢ {1,2} — {0,1}. (1.118)
This function serves as a one-to-one mapping between indices and occupation numbers.
This corresponds to labeling two possible occupation states where 1 or |—) refers to absent
(the occupation number is 0) , 2 or |1) refers to occupation with a particle (the occupation
number is 1). Now, each unit vector e,,, k € [d], is defined as:

(é) if & = s () = O,

€, = (1.119)

(2) if & = qa(pr) = 1.

We define €,,,,..,, € R2’ as follows:
eNlNQ---Hd - ep,l ®K eu2 ®K ... ®K e,“d' (1120)

By associating each Slater determinant ®¢, ¢, € F; with exactly one unit vector e, ,, € RQd,

we have an isomorphism between the Fock space and R2’. Let us denote this isomorphism
by g:Fq— R, such that

d
g(q)&---&d) = g(q)tp(m).-.lp(ud)) =€y g(qj) =W e R? Ve Fg. (1'121)

For example, consider the Slater determinant ®199, with d = 4, following Equation ([1.121])),
we have:

9(®1100) = 9( Py (2 (22 (1)2(1)) = €221

0 0 1 1 (1.122)
=e Qg e Yk e Qi e} = 1 QK 1 QK 0 Rk E

By embracing this viewpoint, the creation and annihilation operators can be seen from
a linear algebra perspective as high-dimensional square matrices defined as follows (see
[118]): the matrix representation of the annihilation operator, denoted as A; € R2"*2" for
i € [d], is given by:

i—1 d
goa;og ti=A;, = <®KS> Qrx A QK ( ®K12)
el k=i+1 (1.123)

=S®k A SKA R L Rk -+ - R Is,
—_—

i—1terms d—i—1 terms
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where o refers to the operation of function composition. The matrix representation of the
creation operator, which is defined as the transpose of A; € R2dX2d, see Equation (1.123]),
is given by:

i—1 d
goaiog li=A= <®KS> ®Rr A" Q@ ( ®KIQ>
k=1

(1.124)

=S®k -k Sk A" Rk Ih k- Rk 1o,

S - (é _01> A= (8 é) (1.125)

Remark 1.3.7. One can represent A; concisely using as follows:

where

J S ifl<i,
Ai=QRxX;, Xi={A ifl=i iecld. (1.126)
(=1 I ifl>i.

In this work, we will frequently encounter partial representations of Kronecker product
structures as in ((1.126]), which can be defined as:

s—1 S
(A)< = QrXi,  (A)= = QrXi, (1.127)
=1 =1
and similarly
d d
(A)™° = QrXi, (A)™ = QRkX, (1.128)
l=s+1 l=s

where s € [d]. As for the Hamiltonian operator, we define it as:
goHog ' :R¥ - RY, (1.129)

where H is defined in Equation (1.114)). The matrix representation of the Hamiltonian
operator, denoted as H € R2'*2*_ is expressed as follows:

d d
N 1
7’7]:1 i,j,k,f:l

and the matrix representation of the particle number operator is given by:
A d
goNog™ :N:ZAIA,-. (1.131)
i=1

One can easily verify that the Hamiltonian matrix H € R2*2" is symmetric.

Remark 1.3.8. Considering the matrix representation structure of the creation and anni-
hilation operators, it is crucial to emphasize that the Hamiltonian in ((1.130)) is formulated
as a sum involving a series of Kronecker products of matrices. Each term within this sum,
constituting a Kronecker product of multiple matrices, is a rank-1 tensor train. In this
context, every TT-core is effectively represented by an individual matrix derived from
that particular Kronecker product.

Remark 1.3.9. For simplicity in representation, we have employed the binary occupa-
tion number representation, i.e dealing only with spin-orbital basis function ¢;,i € [d].
However, in Quantum Chemical DMRG (QC-DMRG), as it will be described in the fol-
lowing subsections, it is more common to deal with spatial-basis functions denoted by
Giyi € |dspatial], With d = 2dgpatial see Equation . In this framework, each spatial-
orbital basis function ¢; is associated to two spin-orbital basis functions ;. Therefore,
there is a modification of the occupation number for the Slater determinant. We consider
a tuple (&1, .., &dpum) € {0, 1,2}% - Depending on the presence or absence of ¢,
where ¢ € {i1,...,ix}, in the Slater determinant function ®j, ;.. The meaning of ¢

N]*
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is defined as follows: if & = 0, the spatial-orbital ¢; is unoccupied in the Slater determi-
nant; if £ = 1, the spatial-orbital ¢; can be occupied with a spin-up, i.e 1, in the Slater
determinant or occupied with a spin-down, i.e |, in the Slater determinant; if £ = 2, the
spatial-orbital ¢; is doubly occupied with both spin-up and spin-down.

We can define new annihilation and creation operators, which act on Slater determi-
nants spanned over spatial-orbital basis functions ¢;,7 € [dspatial]. These operators create
or remove a particle with a spin value s € {:l:%} at a specific orbital 7. We represent
the annihilation operator as a; ; and the creation operator as a; ;. These operators satisfy

anti-commutation relations, expressed as follows, for s, s’ € {i%} .1, J € [dspatial]:

Qi sQj s + Aj s Qs = 07
* % * %
ai,saj,s’ + a’j,s’ai,s = 07 (1132)

* *
aiysa]}s, + aj7s,ai75 = 52']‘558/.

In alignment with Remark , we recognize that each spatial-orbital basis ¢;, i € [dspatiall
can be linked to two spin-orbital basis functions ;,7 € [d]. Within this framework, the
Fock space Fy,,,., is isomorphic to RA™™™  In this context, for each & € {0,1,2},
where k € [dgpatial], we identify a unit vector e,, € R, ux € {1,2,3,4}. Let us define the
following mapping function:

g1 :{1,2,3,4} = {0,1,1,2}. (1.133)

This function serves as a mapping between indices and occupation numbers. This cor-
responds to labeling four possible occupation states such that in physics or chemistry
language 1 or |—) refers to absent (the occupation number is 0) , 2 or | 1) refers to present
with spin-up only (the occupation number is 1), 3 or | |) refers to present with spin-down
only (the occupation number is 1), and 4 or | 1)) refers to present with both spin-up and
spin-down (the occupation number is 2). Now, each unit vector e,,, k € [d], is defined
as:

1 0
0f]. 11.
€u = | g | &k = qu(pr) =0, ey, = o ifér= qu(pr) =1, = 2,
0 0
1.134
0 0 (1.134)
0f. 0f.
eu = | 4 if & = qa(pe) = 1, . = 3,and e, = 0 if & = qa(pr) = 2.
0 1
It follows that each Slater determinant ®¢, dypatial is identified by a unit vector
Curbdgyy — €m Rk ... Ok €l i € R4 \Within this context, the matrix represen-

tations of the creation and annihilation operators are given by:

spatia dspatia
The matrix representation of the annihilation operator, denoted by A; , € R xa%patiel,

where @ € [dspatial] and s = i%, can be expressed as:

i—1 dspatial
A= <®KZ> QK As @k ( ®KI4) (1.135)

k=1 k=it+1
=Z Qg QgL R Ay Qg 14 Q- Rk 1.

and the matrix representation of the creation operator, which is the transpose of A,
where i € [dspatial] and s = i%, can be expressed as:

i—1 dspatial
Al = 7)ok A @ |
| (;@K ) A ( R ) (1.136)

k=i+1
=7ZQRk kLR A, O 1, k- QK 1.

Here

B A®KIQ, ifSI%,

.= , Cand Z =S ® S ¢ RATre el (1.137)
SRk A, ifs=-—

N[
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with A and S being defined in Equation ((1.125[). While this formalism, the Hamiltonian
matrix Hgpatial € Ra%patialxaratial o | the matrix representation of the particle number
denoted by N € RApetielxabeatial .

dspatial 1 dspatial
* * *
HSpatial = Z Z hl]A’Z,SAjys + § Z Z Uijsz'i,sA'kﬁ’Aj,S,A&S? (1138)
17]:1 S::t% i7j7k7€:1 S,S/::l:%
and
dspatial

N= Y > Al A, (1.139)

i=1 s::t%

Henceforth, for the sake of simplicity, we continue working in the spin-orbital formulation,
with d being the number of spin-orbital basis functions. We designate n = 2 and continue
to denote the Hamiltonian matrix by H € R xn

With increasing number of d, the dimensions of both the Hamiltonian matrix H € R xn
and the eigenfunction ¥ € R™ grow exponentially, as O(n2%) for H and O(n?) for ¥. To
alleviate this growth efficiently, we can employ the TT-format for both H and ¥. The
T'T representation of ¥ can be defined according to Definition [19]in the following:
let (Uy,...,Us), U € R==1""k r; = ry = 1 be the TT decomposition of the tensor
folding of ¥ € R™ denoted by ¢ € R™*"and let U] := Usl:, pus, :] € R™=1%7%_ for a
fixed value of uy € [n], for each k € [d]. The (u1,--- , ua)-th element of the tensor ¢ is
given as:

d

(-5 pa) = Usfpa] -+ Uglpa). (1.140)

In the following, we refer to the TT representation of the Hamiltonian operator as TTO,
also known as Matrix Product Operator (MPO) in the physics community [2, 48], 106}, 131].
Let H € R"dX"d, its TTO representation can be described by the contraction product
of 3-order and 4-order TT-cores, denoted by (Hi,...,Hg), where H; € REx-1xnxnxfi
(Ro = Rq = 1), where Ry, are referred to as the TTO-ranks. The TTO decomposition is:

H = Hl X4 7‘[2 Xg ... Xy %d—l X4 Hd. (1.141)

By defining Hy [, vi] := Hil:, prs Vi, ], e, vi € [n], k € [d], the (pa, ..., g, 11, - va) — th
element of H satisfies:

H(p; - pas vy -5 va) = Halpa, ] - Halpa, val. (1.142)

A graphical description of the TTO is given in the following Figure [I.10}

ny N2 Ng—1 Ng
L Ry LRz Ry A Ry A
ni n2 Nd—1 Nq
Figure 1.10: Graphical representation of TTO with ny = ... =ng =n.

Remark 1.3.10. (TTO representation in physics literature) In the physics literature, we
often encounter an alternative decomposition of H € R xn, expressed as:

Ro R1 Rd— 1 Rd

H = Z Z e Z Z H(80; 51) Qk - .. @k H)(Ba—1; Ba), (1.143)
Bo=1p1=1 Ba—1 Ba=1
where we define H(8x_1; k) := Hi[Pr-1,::, Bk] € R™*™, B € [Ry], k € [n].

Remark 1.3.11. (Representation with strong Kronecker product) We also encounter the
following representation of the TTO:

H=H* < Hy*” >a... > H?, (1.144)
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where Hi?> € REs—1mnBi | ¢ [d] is the mode-(1 : 2) matricization of Hj, and > refers to
the strong Kronecker product, (see [2], [73]). For example, for two block matrices X, Y we

have
[ X1 Xip ] o [ Yii Yio ]
X1 X Yo1 Yoo
Xi1®rk Y11+ X120k Yo Xi1®k Yi2+Xi2®K Yoo
Xo1 ®r Y11+ Xo2®k Yo1 Xo1 @k Yo+ Xoo Qr Yoo

where X, ;,Y; ; represent dense blocks for i, j € {1, 2}.

Expressing the operator in TTO format enables to compute smartly basic algebraic
operations, such as the matrix-vector product and the matrix-matrix product as explained
in the following propositions (for a general case of operators).

Proposition 1.3.1. (Matriz-vector product with T'T decompositions) Let a vector u € R™ "
and a matriz H € R(m--ma)x(n...na) po represented by TT decompositions. LetU € R™**"d
be the tensor folding of w with TT decomposition (U, ... ,Uy), with Uy € RTE=1<"XTk
ro = rqg = 1 and let H € R™>-Xmaxmx..xnd pe the tensor folding of H with TTO de-
composition (Hy, ..., Ha), with Hy, € RE—1xmexmxl o — Ry = 1. Let (Ty,...,Tq)
be the T'T decomposition of the resulting matriz-vector product Hu. The latter can be
represented as:

(Huw) (g, - fla) = Z Z’H(,ul;...;,ud;yl;...;yd)L{(Vl;...;Vd)

S (1.145)
= Zl . Zl (Hy[pr, 1] - .- Hapa, va]) (Ui[ra]) - .. Uglvd)))

where Hypa, va] := Hil:, e, Vi, ;] and Uglvg] = Ug[:, vk, 2], e € [mu] s ve € [ni] & € [d].
By using the Kronecker product property defined in (1.10), we have:

(Huw) (@i, Ha) = (i (Hy g1, 1] @k Ul[”l])) (id: (Halpg, va) ®x Ud[’/d])>;

v1=1 vg=1

Ty [u1]€RT0Ro X1 Ry Td[Md]ERTd_le_l xrgRg
(1.146)
where Trlpx] := Tels, i, 2], e € [mu] s k € [d].

Proposition 1.3.2. (Matriz-Matriz product with T'T decomposition) Let a matrizc H € R(m1.ma)x(n1...nd)
and a matriz H € R(-na)x(mi..my) pe represented by TTO decompositions. Let H € R™1*--Xmaxnix...xnd
be the tensor folding of H with TTO decomposztwn (Ha, .-, Ha), with Hy € REwk—1xmxny xRy

Ry = Ry =1 and let H € R™MX-XnaxmixXexmy po the tensor folding ofH with TTO de-

composition (7—[1,.. Hd) with Hy, € RF—1xmsxmix , Ry = Ry = 1. Let (Th,...,Ta)

be the TT decomposition of the resulting matriz- matmx product HH. The latter can be

represented as:

(HH) (77, flas 71, - Va Hlpas o5 pay 2155 2a) Mz -5 2a3 01525 V4)

H1 w1, 21) - Halpa, za)) (ﬁﬂzh 21 -ﬁd[zdy Vd]) ;

B N (1.147)
where Hy[pa, va] == Hil:, pr, vi, 2] and Hy[pa, va] = Hils, s v, 0], g € [, v € [my],
k € [d]. By using the Kronecker product property defined in (1.10)), we have:

(Hﬁ)(,ul, BT, V) = (i (Hy[p1, 21] @K ﬁl[zl,yl])) (i (Halpa, za) @K ﬁd[zd,ud])),

z1=1 zqg=1

(RoxR| Ry Ry_1xR' Ry

R’/ 3
Tglpg,vg]€R d-1"¢72""4d

(1.148)

T1[p1, Vl]ER 0

where Trlpn, vi] = Til, trs Vi, 2|, 1 € [mu] s vk € [ml ], k € [d].
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Constructing the TTO is at the core of the QC-DMRG algorithm. Several different
approaches have been proposed for the construction of an efficient TTO representation
of the quantum chemical Hamiltonian operator, see Equation . These approaches
yield a compact TTO representation with TTO-ranks that grow quadratically with the
system size as O(d?), see [2, [I7]. This will be reviewed and explained in Chapter [3|

DMRG algorithm

Back to Equation (|1.61)), let d be the size of the system, i.e number of spin-orbitals basis
functions, let n = 2, let ¢ € R™*™ be the d-order tensor defined as the tensor folding
of the eigenfunction ¥. Assume that ¢ has a TT decomposition with at most TT-rank

equal to r = (r1,...,74), let H € R™>*n* he the Hamiltonian symmetric matrix. Then
the minimization problem is:
Ain = oin Joftm(vec(v)),
1 (H vec(v), vee(v)) (1.149)

Y

T peMrrar 402 (vec(v), vec()))
with vec(¢)) being the vectorization of the tensor 1, see Definition and Mrr<, being
the set of TTs with TT-ranks less or equal to r = (rq,...,rg), as introduced in Propo-
sition [1.2.3] The key idea behind DMRG is the alternating optimization of Rayleigh
quotient over the T'T manifold defined in Proposition [1.2.3

Let (U, ...,Uy) be the TT decomposition of ¢, where U, € R™=1X"X"k py = 1y = 1.
Let P, : Rre—1mm — R | € [d] be the linear operator with the property that for all
X, € R=1Xm%7% the element-wise expression of Py(vec (X)) is given by:

(Pu(vee (%)) (=) = Uslm] - U [ K1) U (i) - Ualpal, - (1.150)

where Xp[ux] = Xk, g, ;] for k € [d].
In each step of the DMRG algorithm, as elaborated in [48] [106], the reduced mini-
mization problem that is tackled involves minimizing the following Rayleigh quotient:
1 {Py(vec (X)), HPy(vec (X)) )

Hu (Pk(vec (Xk))) T2 <]5k(vec (X4)), Pe vec (Xk))> . )

Definition 23. Let P, : R=-1"v — R | € [d] be the linear operator with the property
defined in Equation (1.150]), the matrix representation of P, denoted as P, € R("1-ma)x(rk—1n7k)
is given by:

Py =L @ I, @k (R{Y,) € R 0eamm), (1.152)
where
n X ... XN Xrp_1
Li_1=U X3...xX3Uj_; € R F*-1terms , (1.153)
and

rEeXT X ... XN
—— ———
Rii1 =Upi1 X3...xX3U; €R d—kterms (1154)

where L<F=1> is the mode-(1 : k — 1) matricization of £;,_; and R(Y) is the mode-1

matricization of Ryy1. According to the Definition it can readily checked that for
Xk; 6 RTk,1><’n><T‘k:

Py(vee (X)) = Py vec (X) . (1.155)

Assuming that the TT-cores (U, ..., Ux—1) and (Ug1, .. .,Uy) are left-orthogonal and

right-orthogonal, respectively, then P, is an orthogonal matrix. Therefore, the solution

of the minimization problem ([1.149)) is the solution of the first order condition given by
(see [48]):

b (vec _ 1 . voc B (PrHPy, vec (Xy) , vec (X)) . vec
V Ry (Pi(vee (X)) [vee () | (P’fHP’“ (%) (Ve () vec () T REE (X’“)>
_ W (M vee (&) — Ae vee (X))
=0, vec(AXy) #0,
(1.156)
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with V Ry (pk(vec (Xk))) being the gradient of Ry (ﬁk()> with respect to vec (Xy), and
M, = P;HP;,. The matrix My, also called the reduced matrix, is commonly known as
the effective Hamiltonian. 1t is symmetric, as outlined in the following proposition:

Proposition 1.3.3. The reduced matrices M, = PHP), € RE-1nre)X(re1n7k) qre square
and symmetric matrices.

Proof. The proof is based on the symmetry of the matrix H € R**"". Indeed, we have:
M; = P, H'P, = P,HP, = M,. (1.157)
O

Remark 1.3.12. It is worth noting that if the T'T-cores are not left-orthogonal or right-
orthogonal, the expression in ([1.156]) leads to a generalized eigenvalue problem.

By defining u = vec(AX}), the reduced eigenvalue problem, for each k € [d], is given
by:
We now have all the necessary ingredients to state the DMRG algorithm in Algorithm [3]
In Algorithm [3] each iteration within the main loop, corresponds to a half-sweep, and the

eigenvalue problem solved during each half-sweep is termed as a microstep. Completing
two consecutive loops is what we refer to as a sweep.

Algorithm 3 1-site DMRG (ALS)
Input:

o Initial guess of TT-cores (U, ..., Uy).

« Right-orthogonalized TT-cores (Us, . ..,U;) (see Equation (1.47)).

d

o TTO decomposition (Hi,...,Hy) of the Hamiltonian operator H € R xn , see

Equation ((1.141]).

Output: A and a TT decomposition (Uy,...,Uy), such that the resulting vector
¥ € R™ from this TT, see Equation (1.140)), is the eigenfunction of the lowest eigenvalue
A

1: procedure DMRG

2 while not converged do

3 for k=1tod—1do > Forward half-sweep
4: u = vec (Uy), M, = P;HPy,

5: Solve Mu = \u, > see Equation
6: A=A

7 U = Reshape(u, (r4_1n,7%)),

8 Q,R = QR(U), > QR decomposition.
9: Uy, = Reshape(Q, (151, 1,7%)), > Q e R 1"k R € R"™*"k,
10: Z/{k+1 =R X, Uk+1.
11: end for
12: for £k =d to 2 do > Backward half-sweep
13: u = vec (Uy,),
14: Solve M,u = A\ u,
15: A= Mg,
16: U = Reshape(u, (rp_1,n1%)),

17: L,Q =LQ(U), > LQ decomposition.
18: U, = Reshape(Q, (rx_1,n,7%)), > Q € R —1X"k I, € RMk=1%Tk—1,
19: Uy, 1 = U1 x3 L.
20: end for
21: end while

22: end procedure

Since the 1-site DMRG involves optimizing over a single fixed-rank T'T-core during
each microstep, its main limitation is the lack of rank adaptivity: 1-site DMRG typically
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employs fixed ranks during the optimization process. Therefore the initial guess of TT-
ranks must be well chosen to have a satisfactory convergence. It is however true that
one can increase the ranks by introducing random orthogonal vectors to Uy. This can
impact the algorithm convergence. An alternative approach is the 2-site DMRG, also
known as Modified ALS (MALS), where the optimization in each microstep occurs over
two consecutive TT-cores instead of one. This enables a certain rank adaptivity between
these two components.

In the framework of 2-site DMRG, an alternative linear operator is given in the fol-
lowing definition.

Definition 24. Let &} ;41 € R™-1"X"*"+1 be a 4-order tensor defined as:
Xk,k—H = Xk X3 Xk+1> ke [d — 1] s (1159)

where &), € R™-1*"*" and X}, € R™*™* " +1. Let Py ;41 be a linear operator, operating
within vector spaces according to:

Djpyr : R0 5 RY e [d—1], (1.160)

with the property that for all X, € R™-1X"*™X7k+1 the element-wise expression of
P py1(vec (Xy pq1)) is given by:

(pk,k-i-l(VeC (Xk,k+1))> (o, ) = U] -+ Upa o1 ) X [ X1 [0611 ] Ut [pres1] - - - Ualpeal s
(1.161)

where Xy[ux] = )fk[:,uk,:}, and Xyi1[per1] = Xerl:, a1, ], for k& € [d]. The matrix

representation of Py 41 denoted as Py 41 is given by:

Prir1 =L @ L, 9 L, @k (Re3)", (1.162)

where L;**> is the mode-(1 : k — 1) matricization of £;_; defined in Equation (T.153)

and R[5 is the mode-1 matricization of Ry4o defined as:

rk+1><n><...><n
~—_——

Riro =Upio X3... xX3Uy €R d=k—lterms (1163)

In 2-site DMRG, each microstep involves solving, during the first half-sweep, the
following;:

Mk,k+1 vec (Xk,k—H) = Pz,k.;.lHPk,k—&-l vec (Xk,k—f—l) = /\k,k+1 vec (Xk,k—I—l) s k e [d - 2] s
(1.164)
and likewise during the second half-sweep:

Mkfl,k vec (Xk,k+1) = P;;—l,k:HPkfl,k vec (Xk7k+1)k,k+1 = )\k7k+1U€C (kakJFl)k,k—&-l s ke {3, c. ,d} .
(1.165)
At each microstep, after solving the eigenvalue problem, an SVD is performed on the
mode-(1 : 2) matricization of X ;41 denoted as XZ%L to update the components U, = A},
and Uy1 = X411 and to recover the left (resp. right) orthogonality.
Note that employing a TTO decomposition of the Hamiltonian operator during the
initialization step in Algorithm [3]is essential for efficiently computing Hyu, as elucidated
in the subsequent explanation.
In what follows, we give some details about DMRG implementation using tensor dia-
grams. Additionally, we provide a table summarizing the different complexities involved

in various computational steps in 1-site (resp. 2-site) DMRG.
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Figure 1.11: Graphical representation of the minimization problem at each microstep:
the left most part corresponds to My, vec(AXy)=P;HPvec(X),), for k € [d], 1, are the
TT-ranks of the T'T representation of the eigenfunction ¥, R, are the TTO-ranks of the
TTO representation of the Hamiltonian operator and n = 2.

r1 Tk—2 Tk+2 Td—1
n n n n
Ry Ry_o | [Rr—1 Ry, Riih L Riyo Ry
A1 @@ —
Tk—1 Tk Tk+1
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gfk—l c Rrk,lka,lxrk,l g>k c Rrk+1XRk+1X"'k+1

Figure 1.12: Graphical representation of the minimization problem at each microstep:
the left most part corresponds to My, 41 VCC(X;{,T;(,JH):Pz7k+1HPk7k+1VCC(Xk?kurl), for
k € [d], r are the TT-ranks of the TT representation of the eigenfunction W, Ry, are the
TTO-ranks of the TTO representation of the Hamiltonian operator and n = 2.

The expressions of tensors of the left and right components denoted respectively as
Gsk=1 G>k=1 (resp. G>*) for the 1-site (resp. 2-site) DMRG, in terms of the TT-cores
of the TT decomposition of the eigenfunction ¥ as well as the Hamiltonian operator, are
given in the following definition

Definition 25. Let (U, ...U;) be the T'T decomposition of the eigenfunction ¥ and let

(Hi,...Ha) be the TTO decomposition of the Hamiltonian operator. Let Zj, € erzflR"‘—lsz’“,

k € [d] be matrices defined as follows:
Zy = Z Z U] @ x Hig [, vie) @ Ug[wg). (1.166)
pr=1vp=1

The definition of tensors G=, for £ € [d — 1] (vesp. £ € [d — 2]) for the 1-site (resp. 2-site)
DMRG, is given as follows:
vec(G=Y) = Z,Zy ... 7y, (1.167)

where vec(G=f) € R"7% is the vectorization of G=¢. The definition of tensors G, for
¢ e {2,...,d} (resp. ¢ € {3,...,d}) for the 1-site (resp. 2-site) DMRG, is given as
follows:

vec(G™Y) = Zoyy ... Zg 12y, (1.168)

where vec(G>%) € R7é+1f+1 ig the vectorization of G>t.

In terms of the left and right components, one can derive the expression of the reduced
2 2
matrices, M, = PtHP € R"1"*""k for the 1-site DMRG, for k € [d]. The tensor folding
of My, denoted as M, € R"e-1X"XTk-1XTk XXk g ojyen by:

My =G 5 Hy x5 G7F L (1.169)
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It is possible to derive the expression of the reduced matrix, My, xy1 = Pt HPy 341 €

R7—1"* %77 for the 2-site DMRG, for k € [d — 1]. The tensor folding of My .1, denoted
by Mk,k+1 c Rrk,lxnxnxrk,lxrk+1><n><n><rk+17 is given by

Mk’k/‘_l'_l = ggk_l X9 (Hk X4 Hk—l—l) X3 g>k. (1170)

As can be seen from the tensor diagrams and Equations (1.169)), (1.170]), the DMRG
algorithm entails many tensor contraction products between the T'T representation of ¥
and the TTO decomposition of the Hamiltonian operator. In what follows, in Table[1.2] we
provide insights into the computational complexities of the steps in the DMRG algorithm.

Computational steps 1-site/ALS 2-site/ MALS
Building GSF~1 and G>*~1 (resp. G>F) O(nr3R + n*r?R?) O(nr3R + n*r?R?)
Building My, vec (Xg) resp. My g1 vee (Xg 1) | O(nr3 R+ n?r2R%) | O(nr3R + n?*r?R? + n'R?)
QR/SVD O(nr3) O(n3r3)

Table 1.2: Time-complexities of some computational steps of each iteration k& of DMRG.

Here, the ranks r and R are defined as follows: » = max {ry}, R = max {R}. Note
1<k<d 1<k<d

that in the site DMRG, additional terms are included in the complexity O(n*R3 + n%r3),
which arises from the contraction product performed between two consecutive TT-cores
when constructing My, ;1 X< for the 2-site DMRG. In Table , when the TT-ranks
r are large, the second step involving several matrix-vector multiplications becomes the
most dominant step.

Remark 1.3.13. Several key factors impact the efficiency and performance of the DMRG
algorithm. In order to solve the reduced eigenvalue problem, as defined in Equation (1.158)),
one can use an iterative eigensolver like for example the Lanczos algorithm. This iterative
algorithm includes matrix-vector multiplications of the form My, vec(AX}) or My 41 vee( Xy k41).
These operations stand out as the most time-intensive component, as highlighted in Ta-
ble[I.2] To improve computational speed and mitigate the time complexities, reducing the
TT-ranks without compromising the algorithm’s convergence requires optimizing both the
efficient TT representation of ¥ and the operator. This point is addressed in Chapter [3],
where we focus on a popular physics and chemistry approach, which revolves around the

use of low-rank approximation and various conservation laws.

Regarding the algorithm’s convergence, a well-chosen initial ¥ input greatly accel-
erates convergence and prevents convergence issues linked to local minima. Lastly, the
sequence in which spin-orbital basis ¢;, € [d], as defined in are ordered can have
an influence on the algorithm’s convergence behavior, underlining the importance of this
factor in achieving optimal results. Yet, it is noteworthy that, as of today, there is no
well-established theory for the global convergence of DMRG method. Despite this, nu-
merical experiments consistently show convergence within a finite number of iterations or
sweeps, which are not necessarily dependent on the system size. While a comprehensive
theory for global convergence is lacking, there are some theoretical insights into the local
convergence of the algorithm where this analysis assumes the invertibility of the Hessian
of the functional Ry at a critical point, i.e the solution of when the TT-ranks are
estimated correctly (see [99] for further details).

1.4 Concluding remarks

In conclusion, this introductory section consisted of two primary sections, each contribut-
ing to a comprehensive understanding of tensor algebra, underlying arithmetic, and exact
or approximate decompositions of matrices/tensors. Furthermore, it gives insights on
their applications in the field of quantum chemistry.

The first section provides an overview of matrix and tensor notations, various linear
operations and decomposition methods yielding either to exact or approximate low-rank
matrix or tensor decompositions. Particularly, detailed explanations are given on the T'T
decomposition, highlighting the advantages of performing arithmetic operations within
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the TT format. Additionally, we present two commonly used algorithms for the TT rep-
resentation or the compression of tensors in TT format. These algorithms are commonly
known as TT-SVD and TT-rounding, respectively. The second section shifts focus to
tensor-based high-dimensional problems arising from the electronic Schréodinger equation
in quantum chemistry. Notably, we start by the efficient treatment of the 4-th order ten-
sor of two-electron integrals, as it appears in many quantum chemistry methods for the
search of the ground-state energy. The discussion is further extended to one of the well-
known approximation methods, DMRG and its integration with T'T representations. We
initiated with an overview of the second quantization formalism and the representation of
the Hamiltonian operator within this framework. We further elaborated its representation
in a TTO-format. Then, we gave a detailed description of the algorithm alongside time
complexities of key computational steps, outlining the most time-consuming one. As we
transition from this introductory section, our focus now shifts to the first tensor-based
high-dimensional problem, namely, the treatment of the 4-th order two-electron integrals
tensor in the upcoming chapter.
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Chapter 2

Low-rank approximation of
long-range two-electron integrals
tensors
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2.8 Concluding remarks and perspectives| . . . .. ... ... ... 66

2.1 Introduction

In the initial introductory chapter, we highlighted the importance of the two-electron in-
tegrals 4-th order tensor as a key element in various quantum chemistry methods. These
integrals are essential but challenging to compute due to the presence of singularity as well
as the exponential scaling in terms of the number of basis functions. To address this chal-
lenge, our attention was drawn to an efficient approach for the treatment of singularities,
that is based on the range-separation technique. Therefore, in this chapter, we intro-
duce two new approximation methods for the numerical evaluation of the long-range part
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of the range-separated Coulomb potential and the approximation of the resulting high
dimensional Two-Electron Integrals tensor (TEI) with long-range interactions. The first
method exploits the tensorized structure of the compressed two-electron integrals obtained
through two-dimensional Chebyshev interpolation combined with Gaussian quadrature.
The second method exploits the Fast Multipole Method (FMM) which we briefly review in
this chapter. Numerical experiments for different medium size molecules on high quality
basis sets outline the efficiency of the two methods. Detailed algorithmic is provided in
this chapter as well as numerical comparison of the introduced approaches. This chapter
corresponds to our publication [4]. Igor Chollet (assistant professor in LAGA, Sorbonne
university) also contributed to this work by bringing his expertise in FMM method and
actively participating in the testing of his library, defmm[}] The initial inspiration for
this work came from Julien Toulouse (assistant professor in Sorbonne university), who
introduced us to the chemistry background and the crucial role of these integrals in the
quantum package, [33], they were developing for running molecular simulations. These
integrals posed a significant time and memory challenge in their simulations.

2.2 Context and related work

As already introduced in Section , given a finite basis set {g.}, ,<y,. 9 € H'(R?),
these integrals are defined as: o

Bius = / 90@) 90 @)Y ot ith v x € {1, N} (2.1)
RS JR® |z -y

These six-dimensional integrals are the entries of a fourth-order tensor, referred to as
B, with O(N,) entries with N, being the number of basis functions {9 <pen,- We
denote each entry of the tensor B by B(u;v;k;A) := Buex. These integrals arise in
various quantum chemistry methods: ab initio Hartree-Fock (HF) calculations, post-HF
models, Density Functional Theory (DFT) and they are involved in the generation of the
Hamiltonian appearing in QC-DMRG calculations [13], 14}, 44, 105, [117]. Considerable
efforts have been devoted to minimize the cost of the integrals evaluation which is a
challenging computational problem since it requires the evaluation N;' six-dimensional
integrals that are singular due to the presence of the two-electron operator, also known
as the Coulomb potential m and where N, increases drastically with the molecular
system size.

Indeed, many works exist in the literature for the evaluation of these integrals. Ini-
tially, they were calculated analytically, in the particular case of Gaussian type basis
functions as defined in (1.93]), which made it easy to derive analytical formulas. But
since the analytical evaluation is specific to each integral, the last does not allow for a
systematic evaluation. To address this issue, exact evaluation of these integrals appeared,
using various techniques such as recurrence relations and Rys quadrature, McMurchie and
Davidson method[25], 44 [65], 87]. These techniques are restricted to certain types of basis
functions, in particular Gaussian-type functions. Efficient screening techniques can be
used, as discussed in [100], with aim to minimize the number of computed integrals. So
far, these evaluations could potentially become a computational bottleneck due to their
dependence on the chosen basis set and the lack of systematic evaluations. To address this
issue, more recently, many works has focused on developing numerical approximations to
speed-up the evaluation of these integrals. Two commonly used methods for approximat-
ing the TEI tensor are Density Fitting (DF) [109, [132] and Cholesky decomposition [67].
Both methods construct a low-rank approximation of the TEI tensor. On one hand, the
DF method employs an auxiliary fitting basis substituting the calculation of four-index
tensor integrals with the computation of three-index tensor integrals. The accuracy of
the approximation depends on the choice of this basis. On the other hand, the Cholesky
decomposition approximates the matricized TEI tensor, which is a symmetric positive
semi-definite matrix, with a low-rank approximate matrix whose rank depends on the
desired accuracy of the approximation. Better compression can be achieved with Contin-
uous Fast Multipole Methods (CEFMM)[130] where linear scaling can be obtained in terms

Thttps://github.com/IChollet/defmm
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of the number of basis functions N,. By using multipole expansion and exploiting the fact
that well-separated charge distributions (the product of the two basis functions g, and g,)
can be well approximated, the two-electron integrals can be represented in a compressed
form. This approach is particularly useful for the construction of the Coulomb matrix,
which appears in HF and DFT calculations [75]. Additionally, there exist more efficient
algebraic generalizations of CFMM, as discussed in [136]. Another method proposed in
[62] uses tensor-product numerical integration. It involves performing operations along
one dimension, such as the 1D Hadamard product, 1D convolution product, and 1D scalar
product, to evaluate the TEI tensor, instead of performing 3D algebraic operations. It
can be generalized to any low-rank basis sets and can achieve high accuracy with fine 3D
Cartesian grids. In [62], the representation of the TEI tensor is further compressed using
Quantized Tensor Train (QTT)[63] and low-rank Cholesky decomposition.

An alternative approach to tackle the evaluation of the two-electron integrals is to
develop methods dealing with smooth potential. We consider in this chapter an approach
that relies on the range-separation of the Coulomb potential where the last is split into a
smooth long-range part and a complementary diverging short-range part. This partition
strategy, known as Ewald method introduced in 1921 by Paul P. Ewald as well, has been
employed in many quantum chemistry methods [35, [71) [72] [79, ©6] 102] 110, 120, 121]
122 123]. Specifically, it is prominent in hybrid methodologies [96, 121], 123], where
both wave-function-based methods such as HF and density-based approach such as DFT
are combined to exploit their respective strengths. One of the primary goals of using
range separation technique in electronic structure calculations are efficiency and accuracy
[30, ©@6]. It is particularly relevant for improving the accuracy of DFT, which depends
on an approximate exchange-correlation functional that treats the electron correlation
effects [14]. However, it has been shown that these approximate functionals may be less
reliable and accurate when dealing with systems involving long-range or static electron
correlation effects [30} 96, 121]. In order to cope with this, two different strategies have
been considered. Correcting the available functional or introduce post-HF methods by
means of range separation. The range separation technique allows to apply two different
methods: when wave-function-based methods are used for the long-range part, accurate
and faster convergence is achieved with respect to the basis set [30], and when DFT is
used for the short-range part, low computational costs are achieved. As a result, the
total energy of a given molecular system is computed via wave-function-based methods,
such as self-consistent field method (SCF) [117], for long-range contributions and DFT
for short-range contributions. These hybrid methods involve the evaluation of long-range
two-electron integrals, long-range Coulomb and exchange matrices [79] which is the focus
of this work.

The splitting of the Coulomb potential is done through the error function er f(w ||z — y||)
as follows:

1 :mfdww—ym+eﬁ@ww—muogw<“% (2.2)
|z —y| |z -y |z — yl|
with 5
erf(wlz—yl) _ / . 2.3)
|z —yl| Iz —yll v J[octevl]
and

erfe(wle—yl) =1—erf(wlle—yl), (2.4)

where = (71, 22,%3),y = (y1,%2,y3) € R®, w is a positive parameter that controls the
separation range. The long-range contribution in equation is a smooth function such
that, for small w, the singularity is eliminated at ||z — y|| = 0. When w = 0, the long-
range part vanishes and when w — oo, it approaches the Coulomb potential m The

short-range contribution (the complementary function in Equation (2.2))) has singularity
at ||z — yl| = 0.

Some numerical methods exist already for handling the long-range kernel (2.3)). One
approach, as shown in [22] [7T], employs spherical numerical integration of the kernel’s
Fourier transform in spherical coordinates in reciprocal space kernel. In [78], [79], the
numerical integration uses spherical harmonics and spherical Bessel functions. In both
cases, a truncated sum of the product of separable functions expressed in terms of the
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3D coordinates of electrons is obtained. Notably, The range separation has found ap-
plication in other contexts, such as solving the linear and nonlinear Poisson-Boltzmann
equations, in [9 10, 69]. In these studies, the authors adopt a more generalized inter-
pretation of range separation, one that does not necessarily rely on the error function.
By combining the Laplacian Gaussian transform with sinc-quadratures and by consid-
ering a fine 3D Cartesian grid, a canonical representation is obtained for the Coulomb
potential. Subsequently, this representation is partitioned into distinct long-range and
short-range components based on the quadrature points and the underlying functions’
support. By noting that the long-range component inherent in the canonical tensor rep-
resentation exhibits low canonical rank, it is further compressed using the canonical to
Tucker decomposition technique [64].

Now, following Equation , the two-electron integrals tensor can be expressed as
the sum of two terms:

erf (wlz —yll) gu(®) g0 (®)g:(y)9r(y)
B(p;v;r; A) = /RB/R3 Iz —yl dxdy

BT (u;v5630)
/ / erfe(wllz —yl) gu(®) g () 9:(y) 91 (y)
RS JR3 |z -yl

BsT (u;v5650)

(2.5)

dxdy,

with u, v, k, A € [Ny], B refers to the long-range TEI tensor and B*" refers to the short-
range TEI tensor. In this work, we focus on the numerical treatment of the long-range
kernel, that we denote K(x,y) = erflwle=y)) g y € R?, and on the approximation of the

llz—yll
long-range two-electron integrals given by:

B (s v; ks A)I/R3 o In(@) gy (@)K (2, 4) 90 (Y97 (y)dwdy, p, v, 5, X € [Ny] . (2.6)

We consider restrictions of the finite basis functions {g,}, <u<n, O sufficiently large com-
pact support [—b, b]*> C R3 such that we have:

B (115 v 5 \) = / - / s (200 (@) K (. 9)0(0)ga(y)ddy, v, 5,0 € [N (27)

In what follows, we introduce two numerical approaches for the numerical evaluation of
the smooth long-range interaction and the approximation of the long-range TEI tensor.
First, instead of performing a naive numerical computation of K (x,y) over N x N x N 3D
Cartesian grids, we consider two-dimensional Chebyshev interpolation method using only
N3 x N3 isotropic Chebyshev grids combined with Gaussian-quadrature rule in order to
approximate K (x,y). We refer to this approach as TA for Tensorized Approximation and
we denote the approximation method for the evaluation of the long-range two-electron
integrals by LTEI-TA. This numerical approximation yields to a tensorized expression of
the six-dimensional integrals with er f-interaction leading to substantial time complexity
reduction to evaluate one integral of the form B (u;v; k; \). In practice, especially in HF
calculations, multiple matrix-vector or matrix-matrix multiplication using this fourth-
order tensor are performed, which is one of the most-time consuming step. Therefore, we
introduce, using LTEI-TA approach, a new alternative way to approximate these integrals
by means of a factorized representation of the fourth-order tensor B € RNoXNoxNox Ny
leading to an efficient application of the matricization of B to a vector with a significant
reduction in time complexity to O(eN*/3), ¢ < N instead of O (N?) given a naive com-
putation. These complexities may be further reduced, if a Gaussian basis is used, due
to their interesting properties. Additionally, we propose to express the high dimensional
fourth-order tensor B in a more compressed format by using screening techniques and
low-rank approximation methods.

On a second note, we consider Chebyshev interpolation combined with FMM [29] [3§]
leading to linear time complexity when computing the FMM-accelerated matrix vector
product involving the two-electron integrals tensor. This method is referred to as LTEI-
FMM. We provide detailed comparison between the two approaches and discuss to what
extent the relative performances of these methods make them attractive for different
application cases. In order to test the performance of our algorithm, we use the data
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sets of molecular properties calculated from quantum chemistry for some moderate size
molecules. These data sets are extracted from quantum package [33].

This chapter is organized as follows: in Section we describe our new tensorized
method to approximate K (x,y) and we present our LTEI-TA scheme for the element-wise
evaluation of the two-electron integrals based on the underlying tensorized structure. We
describe also using LTEI-TA a factorized expression of the two-electron integrals tensor
and we derive error bounds and theoretical complexities for the approximation process
we use. In Section we demonstrate that our kernel K (x,y) is asymptotically smooth,
so that we can benefit from fast hierarchical methods (especially FMM) in order to effi-
ciently evaluate the two-electron integrals decompositions. Hence, we reformulate these
decompositions as N-body problems on non-uniform particle distributions. In Section [2.5]
we showcase a practical application within electronic calculations, which is the evalua-
tion of the Coulomb and Exchange matrices arising in SCF calculations, by using the
decompositions of the two-electron integrals tensor obtained through the new introduced
approaches. In Section[2.6.1] further compression techniques are also presented, extending
screening approaches and low rank approximation methods to our new decompositions.
Finally, results of numerical tests of both methods are presented as well as a summary of
our findings. We use Julia open-source language to test the new approximation method
TA and the evaluation scheme LTEI—TAE] and the C++ library de fmmE]for LTEI-FMM.

We review in the following several definitions and properties that we use in the sub-
sequent sections.

In the different approximations derived in this work, the product of two Gaussian
type functions is often used. Therefore, we recall the general product rule between two
Gaussian functions.

Proposition 2.2.1 ([66]). Let gi(x) = e~@lz=m1l* gy () = e=<2l==r2I" pe Gaussian func-
tions with &, 71,79 € R%,c1,co € R. The product of these functions is:

—c1¢2

912(w> — 91(-’13)92(.’13) — eoiter ||w—7'12||267(C1+62)||a:77‘12H2’ (2.8)

—_ _ca c2
where T12 = c1+ch1 + o1t To.

We also have recourse to two-dimensional Chebyshev interpolation. Therefore, we give
the expressions of the Chebyechev polynomials as well as the Chebyshev coefficients.

Definition 26 (Two dimensional Chebyshev interpolation [103, 124]). For a given con-
tinuous function f(x,y) on [a,b]? a,b € R, the two-dimensional Chebyshev interpolation
of this function is given by its interpolating polynomial that we denote:

F@,y) = > awmTu(z)Tn(y), (2.9)

n,m=0

where NN is the number of interpolation nodes, T),(x) = cos(n acos(x)),x € [a,b], n € [N]
are the Chebyshev polynomials:

N 1 ifm=n=0
Oy, = Cj\% S f@ry) Ta(@e)Tn(yy), Gam =142 ifm#n=0o0rn#m=0
kk/=1 4 ifm#0,n#0
(2.10)
are Chebyshev interpolation coefficients. The nodes zj,y;, form the Chebyshev two-
dimensional grids such as Chebyshev-Gauss points (first kind):

2k — 1)
Ty = cos b, ek:(QN)’ k=1,...,N, (2.11)
or Chebyshev-Lobatto points (second kind):
k—1
Ty = COS Oy, <bk:(N)17T, k=1,...,N. (2.12)

Zhttps://github.com /sbadred /LTEI_TA.jl.git
3https://github.com/IChollet /defmm
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The following proposition gives the interpolation error of the two-dimensional Cheby-
shev approximation.

Proposition 2.2.2 (Interpolation error [54]). Let f(x,y) be an interpolating polynomial

of f(x,y) on [a,b]* at Chebyshev N interpolation nodes and suppose that the partial deriva-

tives 81;%91’9) and 8N£]ﬁf’y) exist and are continuous for all (x,y) € [a,b]?. We have:

()™ 5

2

—_ r < .
[z, y) = @, y)] < 5 it N DI (2.13)
where
Ny ONTf(&,m)
c = Efél[%’b] 7@5]\”‘1 Cy = v 73771\”‘1 , (2.14)
§ = ma>l;:] Z |Lin(s) (2.15)
SE a

The so-called Lebesgue constant & grows only logarithmically if Chebyshev interpolation
nodes are used, L; x(s) are Lagrange polynomials of degree N.

The following proposition recalls the upper bound of Gaussian-quadrature rule error.

Proposition 2.2.3 (Quadrature error, Section 5.2 [57]). Let [a,b] be a real closed interval
of length |b —a| > 0 and let f € C*Na([a,b]), N, > 1, the integration of f over [a,b] can
be given as follows, using Gaussian quadrature rule:

b—a a+0b\ dr b—a e a+b
f(:c)d:c_/[_lﬁl]f< = >dzdz > wif ( G+ >+RNq,
(2.16)
where w; and x; are the weights and nodes of the quadrature rule, N, is the number of
quadrature points and Ry, refers to the Gaussian quadrature error. This last quantity
verifies:

[a,b]

d2Nq

b — a* T (N}
ds2Na (S)

(2Ng + D(2N)!?

Ry, | < (2.17)

00,[a,b]

2.3 Long-range two-electron integrals tensor factor-
ization through tensorized approximation

2.3.1 The element-wise evaluation of the two-electron integrals
tensor

In this section we introduce a new numerical method that allows to evaluate efficiently

the two-electron integrals through the factorization of the long-range Coulomb potential.

This method, that we refer to as TA, factorizes the fourth order long-range two-electron

integrals tensor B through the approximation of the long-range kernel K (zx,y) with

two-dimensional Chebyshev interpolation and Gaussian quadrature. Error bounds for
the numerical approximation of the long-range two-electron integrals are also provided.

2.3.2 The element-wise evaluation of the long-range TEI tensor

We first describe the efficient evaluation of the six-dimensional integrals B (u;v; k; \)
defined in (2.6). We start by presenting our approach for computing the long-range
function K (x,y) defined as:

_ 42
erfwllz—yl) _ 2 Jowla—yn® " 9t
|l -yl VT e -y

Let t = s ||z — y||. With this change of variable, we obtain:

2
V7 S

K(z,y) = ,x,y € R (2.18)

K(x,y) = e levlgs @y € R?. (2.19)
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Using the Gaussian quadrature rule (see Proposition [2.2.3)), we can evaluate numerically

the integral in (2.19) as:
/ —lz—yl? gy — @ / —(g+%22 eyl g % §+52)%e—yl” (2.20)
e S = = e 22 Zz W; e v .
[0.0] 2 Ji-1]

where w; are the Gaussian quadrature weights, z; are the Gaussian quadrature nodes,
and N, is the number of quadrature points. The coordinates of & and y are denoted by
(1,9, 23), (Y1, Y2, y3) respectively. The exponential term in (2.20) can be written as:

3
e~ (5 H5a)levl® _ TTe-(5+5=0°@w? | ¢ (1,23} (2.21)
=1

Given the truncated computational box [—b, b]?, b € R, each function of the form e_(%+%zi)2(xl_yl)2,
i € [Ny],l€{1,2,3} is smooth, differentiable (hence continuous) on [—b, b]?, so that it is
an excellent candidate for two-dimensional Chebyshev interpolation. According to Defi-
nition 26} the interpolated function can be written as:

N;
6_(%4-%,%)2(3:1—3/1)2% Z a(i) T(i)(xZ)Tf,fZ(yz), (2'22)

nym;T ng
ny;,m;=1

where N; is the number of interpolation nodes for ¢ € [Ny], @, v € [—b,b], and
1e{1,2,3}.

Remark 1. As opposed to polynomial interpolation for fast evaluation methods for sin-
gular kernels (often also based on Chebyshev grids [29]) as appearing in integral equations,
we here deal with non-singular asymptotically smooth kernels (see Proposition ((2.4.1))
(3D long-range kernel with erf interaction as well as exponential 1D kernels in equa-
tion ([2.22))), allowing to perform interpolations in the whole domain at once, without
caring about admissibility conditions. This is the reason why error estimates, as well as
required number of quadrature points and interpolation nodes depend on wb instead of
ratio between well-separated cell centers and distance (see Section [2.4)).

We recall that among the advantages of using two-dimensional Chebyshev interpola-
tion method is that forming two-dimensional Chebyshev grids N; x N; for each function
takes O(N?) storage complexity, where N; is the number of interpolation points
needed. Furthermore, Chebyshev-Lobatto nodes can be obtained in linearithmic time
using Fast Fourier Transform (FFT) [93]. This is one of the reasons for which we use
Chebyshev basis. Our implementation that we discuss in more details in Section [2.7] uses
FFTW [31] routine in Julia and the chebfun? library [124] to ﬁnd the number of interpo-

lation points V; of the functions in (2.22)). By replacing (2.22) and - in - the
numerical approximation of the kernel K (x,y) becomes:

Ny N; 3 '
K(z sz > H a® T ()T () | (2.23)
ni,mi, =1
- yng,m3z=1

where w > 0 is the parameter that regulates the separatlon range of the long-range/short-
range interactions, a/) are the N; Chebyshev nodes, T\ (z;), T\ (y,) are the Chebyshev
polynomials (see Definition [26)) and w; are the Gaussian quadrature weights with ¢ € [Ny, ].
All along this work, we denote N the maximum number of interpolation points in the

tensorized Chebyshev grid in all directions such that N = (1 Inax {N;})?. The pre-

computatlon Cost here to approximate the kernel (2.23) is O(N, N 3(log(N3) + N3)) :
O(N,, N3log(N3)) FLOPE' for the evaluation of the Chebyshev coeﬂi(nent matrices using
FFT algorithm, linearithmic in the number of interpolation points in a single direction
N3 and linear in the number of quadrature points, and O(N, N %) FLOPS for forming
the Chebyshev two-dimensional grids. Figure displays the accuracy of the approxi-
mation of the long-range kernel for w = 0.1 on the computational box [—10, 10]* by using

4Floating Point Operations Per Second
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a Chebyshev grid with maximum number of interpolation points N = 8000 and N, = 11
by varying only z1,y; € [—10,10].
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Figure 2.1: Approximation of the long-range Coulomb potential and associated relative
error in Frobenius norm, for w = 0.1.

We consider now the finite six-dimensional integral B (u;v; s; \) defined in on
the same truncated computational box [—b,b]> x [=b,b]?,b € R with pu,v, Kk, A € [Ny,
where Ny, is the number of basis functions that we defined in and b is the size of the
computational box that is chosen according to the most slowly decaying basis functions.
We discuss this aspect in more details in Section m By replacing K (x,y) with its
approximation from -, the numerical approximation of B (u;v;k;)), denoted by
BY o pr ra(p; v k5 \), writes:

qu
Bl o / / i
LrE—TA( V3 K Zw < o J; bb]3 %) gk (Y)
(2.24)

Z H anlml nl T( )(Yl) dXdya

ni,mau, =1
-,ng,m3=1

where g () = 9,(2)9 (@), gon(y) = 9e(¥)ga(y) such that according to (L3) we have
(showing only g,, expression)

I, 1, Tuv 3
g (@) = gu(@)g,(®) = D D ey, HJ”1 ) [ (1) Z H )(2.25)
Jj1=172=1 j=1 =1

where 1, = I,1,,¢c; = cjlch,flE{;)(ml) = f,ﬁjl)(ml)fﬁh)(azl). Expressing the three dimen-
sional function g, (x) as a sum of separable functions is important to reduce the evalua-
tion cost of B g ra(; v; k3 A) such that after replacing the Gaussian basis functions in

(2.24) by their separable expression ([2.25)) we obtain:

qu 3
By, VLR A) wj / / ” K o T (g7 dxd
rEr—TA(H IZ o Jbp Qu x)gur(Y) n;h H my l(yz) Y
- ,n3,m3= 1
an Iuv Tiox i
Wil [y Jae |2 2 e H (@) £33 () Z Hamml (@) TS () | dady
[ bb bb]3 j=14'=1 ni,mau, 1
©,n3,Mm3=

qu Il“’ Tpox

zw,zz%, > H( O [, 8 @0TE) (@) /[b 18wty )dyl>

= j=1j'=1 ni,mi,
-,n3,m3=1

~F;(j;5')
(2.26)
We note that the expression of BYrpr 7a(p;v;k;)) in involves the numerical
evaluation of one dimensional integrals. We associate each such integral with the element
of a matrix and obtain two matrices W) € RTw>*Ni and WU ¢ REaxN: defined entry-

wise as:

W(Z l)(J ny) = /[_b . f,Sf/)@l) (wl)dl‘l and W (J/;ml) = b fé{\)(yz)Trgl)(yz)dyk
(2.27)
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We use one-dimensional Gaussian quadrature rule for the evaluation of (2.27). Their

approximation is denoted by W 2D (5;my) (resp. W,(f/’\l (j';my). We further define matrices

Fi,i € [N, ], as displayed in - By replacing the expressions of W (@) and W,(;,\l , we
obtain

N;

Fi(j;i)= > lj(mml WD () W (7 my) ) (2.28)

ni,mi,
--,ng,ma=1
By changing the order of summation in (2.28)) and exploiting Khatri-Rao as well as Kro-
necker structures (see their definitions in Section [1.1]), we obtain the factorized represen-
tation of BYr5; 74 as given in the following theorem.

Theorem 2. The long-range two-electrons integrals has a factorized representation that

writes
qu [I»“J IK)\

ZLTTEI—TA(MV Py szz Z cjci Fi(J; ) (2.29)

— j=1j'=1

where F; € RIu*Tex
F; = (o), WED)( ®KA (o, Wi = 0F , WEDA, W™, (2.30)

where A; € RY>Ni are the Chebyshev coefficients matrices such that A;(n; ml) = oz(i)

nymg
for ny,m; € [N;],1 € {1,2,3} with o), defined in [2:22), W) € Rl >N and W5 € RIa<Vi
are the numerical approximation of the one-dimensional mtegrals defined in (2. 27 ).

It is noted that the work of [62] also yields a factorization similar to ours for the
two-electron integrals without the range separation, but with a different discretization
scheme.

In what follows, algorithm |4] computes the approximated entries (BYpr_74) uwr
given the coefficient matrix obtained from the two-dimensional Chebyshev interpolation
A; € RN*Nifor i € [N, ] and for any given pairs of y, v, k, \. This approach allows to re-

duce the storage complexity (resp. arithmetic complexity) to O (va:q{ Ni(N; + 1, + Im)) ~
O (N, N%(N% + L + L)) (vesp. O (S04 NiIua(Ni + 1)) ~ O (N NS Lo (N5 + 1,) ),
with N# = max {N;}, instead of O(N(N +1,, + 1)) (resp. O(NI\(N + 1, + 1,:0))),

1<i<N,
using naive tensorlzed three dimensional quadrature on the computational box [—b, b]3.

Numerical results for this element-wise factorization are summarized in Section 2.7

Algorithm 4 Compute BY g, 7a(i; v 55 X)

Input: Chebyshev coefficient matrices A;, u, v,k A, w; for i € [N,,]. Output:
BZLTTEFTAW% VRS )\)
1: procedure ELEMENT-WISE LTEI-TA
2: Set s = 0.

3 for i=1 to IV, do

4 Compute W )1 e{1,2,3}, > I, x N; matrices (according to (2.27))).
5: Compute W,{A J1e€{1,2,3}, > I, x N; matrices  (according to (2.27)).
6 F, = ®?21w(zl A, W(z l)*'

7 s:s+wizl“"2,1c]c],F(] Jh.

8 end for

w

9 Birprralsvis;A) = Ve
10: end procedure

2.3.3 Error bound of the two-electron integrals numerical ap-
proximation

In what follows, we give a theoretical error bound associated with the element-wise nu-

merical approximation of B (u; v; k; \) introduced in ([2.29)).
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Proposition 2.3.1. The element-wise error € between the long-range two-electron inte-
grals B (p;v; k3 N), given a finite box [—b,b]3, and it’s approzimation BYrg; 74 can be
bounded as follows:

dQqu

o] )
d82NQ1 00,[0,w]
CQ(NQU ba Né)?

le| := ‘BlT(MaV Ky A) — BLTEI Al Vs K; )\)’ < cl(w,qu,b) sup <|

x,y€[—b,b]®

LY
NZs

where we define the multivariate function:
f<57 a:,y) = 61’])(—82 HCL' - yHQ)v s € [va] L, Y € [_b7 b]3 (231)

€ s the approximation error, Ny, is the number of quadrature points, ¢, and cy are defined
in the following proof.

Proof. We start by introducing the following function

2 2
Mow) = [ ] ol gm\(y)e:cp< & + 57 e -yl dudy (2.32)
Ll " woow
= Z Z CjCj (H/ J (yl)exp( (2 + 521')2(331 _ yl)2> dl'ldw) ’
Jj=ly'=1
(2.33)

with z;,1 € [IV,,] being the Gaussian quadrature nodes. The upper bound of € can be
found as follows:

N‘Il
el = \Bl’"(u;vm; N) = Blrgr—ralpsvis; A)] B (s v3 1 \) sz Zi W
€1
NLZl
Z wih(zi,w BLTEI Al vy Ky A,
€2
(2.3
Using Proposition [2.2.3] triangle inequality, and Stirling formula given by n! ~ /27n (%)
€1 is bounded as follows:
d2Nq1
€1 < Cl(waqub) sup 5 mj‘(svmvy) ) (235)
xz,yE€[—b,b] [0,w]
where
€qu 6
c1(w, Ny, b) = NG b ”g;w” [—b,b]3 Hgm\” [—b,b)? > (2.36)
. w2Nap T1¢2Ngy (N, 77)% . .
with e Ny, = 4 . The error bound of €3 needs a more detailed explanation.

3 2N,
20Nar HE NG 9L (2N, +1)

We replace BYrp; 7413 v; k; A) by its expression defined in ([2.29)) such that

Ny Ty Tx Ny T Iex
€] = sz hzi,w) = > > cieyFilj; 5') Z Jwil |A(zi,0) = > X cieiFilj; )
\/_ j=1j'=1 Jj=1j'=1

(2.37)
with F;(j;5) being defined in (2.28)). Using the triangle inequality, the expression of
‘h(zi, w) — ZI“” Z L¢iciFi(g; 4|, for i € [N, ], can be bounded as follows:

I,u,u IH)\ I.U«V IN)\

() ( " W W N2 (e )2 ..
=2 g FiGi)| 0D ejeyr H/ ; N (e GTER @ quydy, — Fi(5557)] -
j=1j5'=1 j=1j'=1

(2.38)
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In order to evaluate the bound of (2.38]), one needs to evaluate the error bound of the
following expression using Proposition [2.2.2] and Proposition [2.2.3

N.
) (") (w2 (g & D x3r(id) /- = (i0) /.
e o 05 (e BF P00t S 0l WD (m) WD ()| < 61 € {1,2,8),
0 ng,my
(2.39)
where for i € [Ny,],7 € [1u], and j' € [I], B is defined as follows:
B; =)’ ISD oo, -1 Lk oo -1,
: PN (FDTD) )
(") vin
+en,, (Hf,.;& | oo, [—b,¢] d;Qqul ‘
00,[—b,b]
+ N,, max (w; (J;) 0o.[— (2.40)
0 1§i§Nq2( i oo, .01
PN (£ T ()
2N, ’
dy ” 00,[—b,b]

1
'th . (2b)2Ng2+162Nq2 (Nq27r)§
with €n,, = 9ONgy +1 N2 Naz o g
g (2Ngy+1)

. The term ey, is defined as follows:

bNiJrl eiNiJrl aNiJrlﬁ(Zia §7 y) aNiJrlg(Zi; 57 77)
€N = oI N VD | Hex N +0 max N
2N o (N; + 1) (1+ N ) —b<€<b OEN _b<Em<b AN
(2.41)

where 7 (z;, x,y) = e~ (5+52)°(@v)” with being the Gaussian quadrature points and 9§ is
defined in (2.2.2)). Now, by factorizing (2.38) and using (2.39)), one arrives at the desired

error bound of €s:

€2 S \C/L%C?(Nqn ba Né)? (242)

with

Tuv Iox
1
CQ(NQ17b7N§):NQ1 sup (‘wi|zzcjcj'
q1 7 g

<i<
0 £ oy L e o (2.43)
su 1+ Na®  + (N;a® )6 ).
1§n1,m1?§Ni (( n,ml ( nl,ml> )5)
O

Throughout this study, we maintain a constant number of quadrature points N,,, for
evaluating . It is important to note that our analysis does not focus on varying the
parameter N, , as it remains fixed.

As we notice here, the approximation error bound depends on the value of w, the
number of quadrature points N, the number of interpolation points N, the regularity
of the function f , the Gaussian-type functions and the dimension of the hypercube b. It
is worth noting that for fixed values of w and b, ¢;(w, N,,,b) — 0 when N, — oo and

c2(Ng,, b, N3) — 0 when N3 — oco.

2.3.4 A new decomposition of the two-electron integrals tensor
through a tensorized approximation approach

As already discussed in the introduction, one of the main steps in many methods in quan-

tum chemistry involves the application of the two-electron integrals tensor B! € RNoXNoXNox Ny

to a vector with N? elements or a set of such vectors. To perform efficiently this contrac-
tion operation, we introduce in this section a factorized representation of the fourth-order
two-electron integrals tensor B that expands the factorized representation of its ele-
ments summarized in Theorem [2. We show also that the obtained tensorized structure is
beneficial to accelerate contraction operations involved in HF calculations.
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Factorized expression of B

2
In what follows we derive the factorized representation of (B”) - >(mode—(l:Q) matriciza-

tion of BI" € RNo*NoxNoxNo) = \We slightly modify the expression of the approximation of
the two-electron integrals (see Theorem [2) by changing the order of summation to obtain:

Ng, N; 1
BLTEI a5 K5 A) sz Z (ZCJ HW(” (75 ) Hanlml (ZC] HW (7" )
r1—1 —

ni,mi,

1 =
-m3,maz=1 /

(2.44)
We introduce the matrices M4 € RNy *N? with single entries Z]If;”l ¢ 111, VVSJ) (j;m),

w,v € [Np], ny € [N;],1 € {1,2,3} such that (Bi{TEI_TA> < rites

Ng, 3
<2> w *
(BlfTEI—TA) =/ > wM (R As) (MZ»TA) e RNy xN, (2.45)
& =1 =1
and
L
M7 (v ar na,ng) = ZCJHW(” (jsm),i € [Ny (2.46)
7=1 =

Fast evaluation of tensor products

In practice, it is sufficient to compute the matrix M?4 with the largest number of interpo-
lation points, denoted as N. This matrix is represented by Mz ymaz € RN xN, Notably,
the remaining matrices M4 € RN:*N? | where N} < N and i € [N,], share common
elements with MTA maz - For example, given the two following matrices M74 € RNy <N
and M4 € RVN) with N; < N; and 4, j € [N,,], we have:

M A (1,7, i, g, mig) = M (11,5 i, Mg, M3), i, ng, mis € [Ni] (2.47)

This can also be illustrated in Figure Therefore, the storage complexity for storing
MTA,maz is O(NNZ)2)

Tensor ./\/liTA[ yiyny i) € RIXNaXNi XN

e )

a5
3

1 1 1
Figure 2.2: The tensor Moy mae € RN N3 XNIXN jg ohtained through the tensor folding
of the matrix Mra ez € RNy XN
By doing so, we can extract MT4 e RN *NixNixNi tensors that we unfold back to
matrices M74 € RN N through mode-1 matricization. We can exploit the tensorized
structure of the factorized long-range TEI tensor in Equation (2.45) to reduce the applica-
3

tion cost of the product between the tensorized form ®KAi e RV*N and MT4 e RN X N7
I=1
from O (NSN?) to O (NAN?). This complexity reduction is achieved as follows: given the

3
| the product (@KA,) (MiTA) can be defined entry-wise by
=1

Definition [1.1

D

(@) o) =5 (fhtas) O
= i (ﬁ Ay ) <Ai (M?A)M)) (ng;my, ma, j),

mi1,ma,m3=1 \l=1
(2.48)



where M';FA) ) is the mode-4 matricization of the fourth order tensor MTA g RNy Nix NixNi,
From ([2.48)), we notice that we need to perform three times the matrix-matrix products
of sizes N; x N; and N; x N2NZ, leading to an overall time complexity of O (3N!NZ) ~
O (NAN?). If we want to compute the whole tensor, we need to sum over i € [N,,] which
yields to a complexity of O (N ng).

In practical applications, it is unnecessary to compute the complete two-electron in-
tegrals tensor; instead, maintaining its tensorized structure allows for efficient matrix
operations when applying it to vectors or matrices. Further insight into a specific appli-
cation case will be provided in Section [2.5

An important point when implementing these tensor product evaluations is that the
presented method can benefit from BLAS operations [24]. Indeed, can be inter-
preted as the application of a sequence of products of permutation matrices and block-

diagonal matrices (with the same blocks A; along the diagonal) to (MiTA> ® ke {2,3,4}.
Matrix-vector products with block-diagonal matrices of this form can be numerically re-
formulated as matrix-matrix products between one of these diagonal blocks and a matrix
composed of the concatenation of subvectors of the original one [I§]. Since matrix-matrix
products can be performed more efficiently than matrix-vector products using BLAS
routines (namely BLAS-3 instead of BLAS-2), this optimization results in efficient im-
plementations. In our case, we have even larger concatenation of subvectors because we
apply these tensor products to matrices (not simply vectors), resulting in even better
exploitation of BLAS-3 routines.

2.4 Long-range two-electron integrals tensor factor-
ization through Fast Multipole Methods

Moving forward, we will provide a brief overview of Fast Multipole Methods (FMM) and
its relevance to our problem. This will be preceded by a demonstration of the asymptotic
smoothness of our kernel. Furthermore, we will give a comparison between the LTEI-TA
and LTEI-FMM methodologies for approximating B'", highlighting their resemblances and
distinctions. First, we start by providing the definition of asymptotically smooth kernel.

Definition 27 (Definition 5.1 in [15]). A kernel K(.,.) :R®x R?® — R is said to be
asymptotically smooth if there exist two constants ¢y, co and a singularity degree o € Ny
such that Vz € {x;,y,} € R,Vn € Ny, Va # y,

"

%K(ﬂ%y)

)—n—a

< nley (2 [l — y

Based on this property, efficient hierarchical schemes can be derived for the evaluation
of N-body problems involving asymptotically smooth kernels.

2.4.1 Fast Multipole Methods

Considering two point clouds with Nx, Ny points, where we denote these clouds by
{wn}ivfl , {yn}ﬁ[;{1 C R3 (whose elements are referred to as 3D points or particles), q : {yn}ivzl —R

and an asymptotically smooth function K : (R® x R?)\{0} — R, one may express the
associated N-body problem as the computation of p : {wn}gi‘l — R such that

plx) = Y K(z,y)qy) (2.49)

N-

Computing p naively requires O(N?) floating point operations, with N = max { Nx, Ny }.
Thanks to hierarchical methods, such as hierarchical matrices or Fast Multipole Methods
(FMM), which is a fast and a popular, initially introduced by Greengard and Rokhlin in
1985 [38], this complexity can be reduced to O(N logN) or even O(N) (but at the cost of
an error we can control). These methods rely on decompositions of {a, }.%, and {y,}",
into groups of particles whose interaction can be efficiently performed through low-rank
matrix approximations if their distance is sufficiently large compared to their radius. For
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non-oscillatory kernels K, FMMs are able to reach the O(N) complexity, so that they are
attractive algorithm for efficiently solving N-body problems.

Among the different formulation of FMMs, we seek for particular features needed for
our application case. Indeed, the method has to:

o perform efficiently (actually in a linear time with respect to the number of points)
on highly non-uniform point distributions, such as the three-dimensional Chebyshev
grids,

« handle the kernel K (which is non-standard kernel in the FMM community),

« be able to reach the precision required in realistic chemistry applications.

2.4.2 Application of Fast Multipole Methods to two-electron
integrals

First, in order to exploit FMM on the two-electron integrals, one has to check that the
underlying kernel is asymptotically smooth. In our case, we want the FMM to act on
the long-range kernel K (z,y),z,y € R® (see (2.19)), which leads us to demonstrate the
result of Proposition [2.4.1]

Proposition 2.4.1. K(x,y) = W,w,y € R0 < w < oo is asymptotically
smooth.

Proof. Given the function K(x,y) = W,m,y € R30 < w < oo, we want to

evaluate the function’s partial derivative upper bound with respect to ;1 € R such that
Vn € No, Vo # y, the nth derivative of K(x,y) with respect to x; writes

an
K — d 2.
i) = (= [ e (<7~ o) (250
2n+1 n 2k2 2k( 1_y1)n—2k _— ) 5
/0 2 F(n— 25) s exp (—3 |z —y|| )ds

(2.51)

If n is even, the term under the integral in (2.50]) is positive. Otherwise, it is either
negative or positive. Therefore, (2.50) can be bounded by the absolute value of the nth
derivative of the Coulomb potential that writes:

8“ 1 2n+1 n 2k2 2k (1,1 o yl)ank S ) ,
ozt o -yl / Z k\(n — 2k)! s eap (—s* o — o) ds
(2.52)
and
LK(w y) < > | (2.53)
Ozt o7 ||@ — yH '

Since Toay 19 asymptotically smooth [7,[40], this shows that K (x, y) is also asymptotically
smooth. Tuhls proof applies for all the other directions. n

Hence, thanks to the asymptotically smooth behavior of K, FMM can be applied
to this kernel and the far field contribution of the N-body problem can be efficiently
approximated, especially by exploiting polynomial interpolation. Similar to the previous
sections, we consider the finite six-dimensional integral B (u; v; k; \) defined in on
a truncated computational box [—b,b]*> x [—b,b]3,b € R as follows:

B“’---/\:/ / @)K (2, y) g (y)dzdy. 2.54
(:uu Vi K ) [—b,b}g’ [—b,b]3 g,LL (.’L‘) (.’,U y)g )x(y) €T y ( )

Instead of applying Gaussian quadrature rule on the kernel K (x,y) as we did in the previ-
ous Section we use Chebyshev polynomials evaluated in a six-dimensional Chebyshev
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grid, the low-rank approximation of K(x,y) can be written, as explained in [29], as

follows:
N

N
K(wvy) = ZL T, T ZK mlvy] ijy) ) <255)
i=1 7j=1

N-body problem as in Eq.
where N is the total number of Chebyshev interpolation points (we use the same N as
the one introduced in Section , x; = (T, 2y, @) and y; = (Y,,,Y,,.Ys,) € RPN, for
ie{1,2,...,N}, i,7 € [N],l € {1,2,3}. We also have:

L(xz;,x) = LM (T, x1) L® (i, 22) L3 (T, T3) - (2.56)
1 o N3

L(l) (mizvml) = 1 ZTk T Tk(ml> le {]-a 273} : (257)
N3 N3 k=2

One may notice that the Equation appears as a simple reformulation of the inter-
polation presented in Definition [26] combining the equation and the equation ([2.10]).
The important point here is that we want the kernel to explicitly appear (evaluated on
Chebyshev interpolation nodes) in the expression, so that a FMM algorithm can be de-
rived, following [I8] 29]. Chebyshev polynomials are used here as interpolation basis and
were already defined in Definition The long-range two-electron integrals in can
be written as follows:

N

BLTE] (V5 K A) = Z/ b3 G () L(2;, x)dx ZK(wiayj)/[ b gnA(!-/)L(yjay)dy
i=1 5

Zpw (3) zrx(d)

(2.58)

= Zz,ﬂ, (ZK az,,y])z,.i)\(])> )

j=1
Equation (2.58) can be written in matrix formulation as follows for fixed p, v, k, A € [IVy):
Brgr ey (15575 5 ) = 2Kz, 2, Zex € RY, K € RV, (2.59)

— ==l e .

The last term into parenthesis in (2.58) corresponds to an N-body problem as in
Equation (2.49), whose evaluation can be performed in O(N) FLOPS using FMM. One
may notice that the FMM accuracy can be chosen accordingly to the interpolation error
in equation (2.58)). For all p, v, k, A € [NV}, the factorized representation of the mode-(1,2)

matricization of the fourth-order tensor BYrpr_parar ([-58) is then given by:

with K(z;;y;)

2 *
(BZLTTEI—FMM)< 7 MEMMEK (MFMM> € RNEXNE  \MFMM ¢ RNFXN (2.60)

with MFMM [ ] = 2, € RY, for u,v € [N,]. Hence, the entire computation of ([2.60)
requires the application of the FMM method to each column of MMM the overall eval-
uation complexity of FMM becomes O(N x N?) to compute K (MF MM ) :

Remark 2. The FMM formulation we opted for relies on precomputations (at a linear
cost with respect to the number of particles) for the construction of low-rank approxi-
mations (see Section that depends only on the particle distribution. Because the
interpolation points are the same for each z,,(j), our particle distributions do not change,
so these precomputations can be performed only once and reused for each FMM applica-
tion.

To summarize, LTEI-FMM is the combination of two steps:

« a global interpolation of the kernel, mainly introduced to switch integrals to basis
functions: Chebyshev polynomials basis,

« the application of a fast linear-complexity summation method for N-body prob-
lems to the induced highly non-uniform distribution of tensorized Chebyshev nodes
(possibly relying itself on local polynomial interpolations, such as in [29]).
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2.4.3 Similarities and differences

In table we summarize the approximated expressions of (2.7)) obtained through LTEI-
TA and LTEI-FMM approaches.

Table 2.1: Factorization of TEI

Approaches LTEI-TA LTEI-FMM
Distribution N Chebyshev points N Chebyshev points
Entry-wise NBLTEI TA(MaV ki A) BYrpr—rana (15 V5 65 )
evaluation ==Y Hw E Z 2 ciciFi(g; 7)) =z, Kz},
. Ir <2> Ir <2>
Factorized (BLTE]—TA) (BLTEI—FMM)
representation | := = S, MTA( (R A, (MiTA>* € RNV | = MPMMEK (MFMM)* e RNy N,
I=1

We discuss here the differences and similarities between both approaches. On one
hand, for TA approach, we start by applying a change of variable to the long-range kernel
K(z,y) in order to remove the term W’ then we apply one-dimensional Gaussian
quadrature (see (2.20))) with N,, quadrature points. In addition to that, we apply two-
dimensional Chebyshev interpolation on 2D smooth exponential functions which yields a
tensorized form obtained in , . Thus, we need to evaluate My pmar € RNy XN
which involves the evaluation of one-dimensional integrals over [—b, b]. On the other hand,
when applying interpolation directly on the original kernel K, one ends up with a three
dimensional N-body problem that can be efficiently handled using FMM approach given
that our kernel is asymptotically smooth. Thus, we need to compute MMM ¢ RNy xN
which involves also the evaluation of one-dimensional integrals over [—b,b]. The simi-
larities between both approaches consist in employing Chebyshev interpolation with the
same total number of interpolation points N.

Remark 3. One may mention that for low level optimisations (such as explicit formula for
the polynomials or fast FFT-based assembling of the interpolation coefficients), we opted
for slightly different interpolation nodes in the two methods. Indeed, Gauss-Chebyshev-
Lobatto nodes are used for LTEI-TA method while Chebyshev nodes are used for LTEI-
FMM. These last points are defined as (showing only x;, expression):

2k — 1
T, = cos (2 ) ke N3] le{1,23}. (2.61)
3
However, for both cases, the same number of interpolation nodes is considered for a given
1
targeted precision, N5 per direction, so that this detail does not impact the complexity
estimates and the comparison between them.

2.5 Application to electronic structure calculations

We describe in what follows an application case for the long-range two-electron integrals
tensor using LTEI-TA as well as LTEI-FMM. The application case consists in the con-
struction of the long-range Coulomb matrix arising in the Hartree-Fock calculations for
solving the Hartree-Fock equations using the iterative Self Consistent Field (SCF) method
as detailed in [61] [79), 82, 117, [136], the evaluation of the long-range exchange matrix is
outlined in Appendix [.2]. This approach is often used in the context of range-separated
hybrid approximation approaches [32) 55, [06]. We define in the following the long-range
Coulomb matrix in the molecular spatial-orbital basis set {¢;},.;., defined in (1.90). In
this basis, the Coulomb long-range integral reads o

3653) = [, fo Kl L lo@)l 2 los(w)l* dady (262)

= Z Z%Cw (/ / (x, Y) g (x )gHA(y)Cjan)\dwdy>, (2.63)

wv kA A=11%,5=1
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with Cj, being the coefficients of the expansion of {¢;}, ., with d ~ N, .

Let us define the rectangular matrix Q € RN with entries Q(7; i1, v) = ¢ipGin Such
that J writes in matrix notation as

Jlr — Q (Blr><2> Q* c Rdxd’ (264)

2

where (B”>< ” € RM*M s the mode-(1,2) matricization of B. A naive approach to

evaluate ([2.64)), given w, the matrix Q € R and the long-range two-electron integrals
<2>

(B“") , is to first compute the matrix product B Q* and then perform Q (B”Q*). The

last has an arithmetic cost of O(N;d). Given a truncated computational box [—b, ]*, one

2 2
can use the factorized structure BZLTTEI_TA>< ” defined in (2.45) or (BILTTEI_FMM>< g
defined in (2.60) to evaluate (2.64) efficiently. Given the two approximation approaches
(LTEI-TA and LTEI-FMM), we arrive at the following matrix representations:

Ng,

3 *
I rpr-ra = \C/L% Zz::l w; (QMZ'TA) <§KA1> (QM;TFA> (2.65)

and )
Iirer-ran = (QMFMM> K (QMFMM) : (2.66)

We provide an overview of the storage complexities achieved by the LTEI-TA and LTEI-
FMMmethods for evaluating the long-range two-electron integrals tensor element-wise as

well as the storage complexities when the latter is applied to compute the long-range
Coulomb matrix defined in Equation (12.64]).

Table 2.2: Storage complexity comparison

LTEL-TA LTEI-FMM
Element-wise TEL | O(N3N,, (N5 + L, + L.»)) O(N)
Application (2.64) O(N3(dN3 + N,,)) O(N(1+4d))

The storage complexity of the element-wise evaluation for LTEI-FMM is a consequence
of (2.59)), i.e. linear with regard to the number of interpolation points N. The storage
complexities for the evaluation of (2.64]) are obtained as follows: for LTEI-TA approach

1. Instead of forming all matrices QM7 * for i € [N,,], we form only (as explained in
Section [2.3.4)) QMTa max that requires O(dN) storage.

3
2. As discussed before, we keep (@KA,) in tensorized form. Hence, forming all coef-
=1
ficient matrices A; of size N; x N;, for i € [N,,] requires O(Zﬁi}i N2) ~ O(N, N3)
storage.

So in total, the storage complexity is O(N g(dN 5+ N,,)). For LTEI-FMM approach

MFMM

1. Forming Q requires O(dN) of storage.

2. Forming K requires O(N) of storage.

So in total, the storage complexity is O(N(1 + d)). According to Table[2.2] the storage
demand for this evaluation seems lower (in order) for LTEI-TA compared to LTEI-FMM.
However, we cannot conclude on the best method in terms of storage complexity since
Ny, and N 3 depend on the value of w and the chosen computational box [—b,b]?. This
motivates numerical comparisons between the two approaches for different parameters

(see Section [2.7).
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2.6 Compression techniques for the factorized long-
range two-electron integrals tensor

2.6.1 Compression by using low-rank methods

One of the main precomputation steps required to obtain the factorized representation

of (B”’)<2> is based on the evaluation of My mar € RNN (resp. MFMM ¢ RNIXN)
matrix. This step tends to be expensive in terms of both computational and memory
requirements for molecules of moderate size, as we consider in our experiments. In this
section we address this problem by discussing different approaches to compress Mz 4 maq,
with some of these techniques potentially being applicable to MMM In many cases,
the matrix Mra e, is numerically low-rank as we will discuss in the numerical exper-
iments section (see Figure . It is possible to reduce its dimensions by exploiting
its low rank structure. Additionally, when employing Gaussian-type basis functions, the
compression can be extended even further through the screening technique [100]. This
approach consists in simply discarding "negligible" pairs of Gaussian type basis functions
as explained in Methods for low-rank approximation, such as truncated SVD, can
also be directly employed on My 4 e, However, it’s worth noting that this approach can
be computationally demanding, with a complexity that scales as O(NZN min {N?, N}).
We introduce in this section a different compression method that exploits the Khatri-rao

products and associated properties.
Let WA ¢ RNplwmarxNi be defined by for i € [N,,]:

~ /. A7 (i,0) I v X Nz
nr,max nv iy Ltpuv,maxr — 13[“%%(]% uv s -
Its low rank R;; approximation can be written as:
WD~ Ul (VED) (2.68)

where UG ¢ RN luvmasxRit apnd (VW))* € RE.Ni - Given the decomposition (2.68)),
Proposition is used to obtain the following expression

(0?:1(W(i’l))> (éKAz> ('?zl(w(i’l))*)

= (G, (UEOVED)) (A; @ A; @ Ay) (o, (UEDVED))

= (0?:1U(i’l)) ( 3 V) (A, @ A; ® A)) (é)z( (V(N))*) (.?:1(U(i,1))*) (2.69)
=1 =1

= (o, u™) éK(VWAi