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Abstract

This thesis presents novel numerical algorithms and conducts a comprehensive study of
some existing numerical methods to address high-dimensional challenges arising from the
electronic Schrödinger equation in quantum chemistry. Focusing on two specific problems,
our approach involves the identification and exploitation of symmetries and low-rank
structures within matrices and tensors, aiming to mitigate the curse of dimensionality.

The first problem considered in this thesis is the efficient numerical evaluation of the
long-range component of the range-separated Coulomb potential and the long-range two-
electron integrals 4th-order tensor which occurs in many quantum chemistry methods.
We present two novel approximation methods. This is achieved by relying on tensorized
Chebyshev interpolation, Gaussian quadrature rules combined with low-rank approxima-
tions as well as Fast Multipole Methods (FMM). This work offers a detailed explanation
of these introduced approaches and algorithms, accompanied by a thorough comparison
between the newly proposed methods.

The second problem of interest is the exploitation of symmetries and low-rank struc-
tures to derive efficient tensor train representations of operators involved in the Density
Matrix Renormalization Group (DMRG) algorithm. This algorithm, referred to as the
Quantum Chemical DMRG (QC-DMRG) when applied in the field of quantum chem-
istry, is an accurate iterative optimization method employed to numerically solve the
time-independent Schrödinger equation. The aim of this work is to understand and inter-
pret the results obtained from the physics and chemistry communities and seek to offer
novel theoretical insights that, to the best of our knowledge, have not received significant
attention before. We conduct a comprehensive study and provide demonstrations, when
necessary, to explore the existence of a particular block-sparse tensor train representa-
tion of the Hamiltonian operator and its associated eigenfunction. This is achieved while
maintaining physical conservation laws, manifested as group symmetries in tensors, such
as the conservation of the particle number.

The third part of this work is dedicated to the realization of a proof-of-concept Quan-
tum Chemical DMRG (QC-DMRG) Julia library, designed for the quantum chemical
Hamiltonian operator model. We exploit here the block-sparse tensor train representa-
tion of both the operator and the eigenfunction. With these structures, our goal is to
speed-up the most time consuming steps in QC-DMRG, including tensor contractions,
matrix-vector operations, and matrix compression through truncated Singular Value De-
compositions (SVD). Furthermore, we provide empirical results from various molecular
simulations, while comparing the performance of our library with the state-of-the-art
ITensors library where we show that we attain a similar performance.

Keywords—Numerical linear algebra, Multilinear algebra, High-dimensional problems,
Quantum chemistry, Schrödinger equation, Two-electron integrals, Symmetries, low-rank ap-
proximation, SVD, Tensor train representations, Hamiltonian operator, QC-DMRG.
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Résumé en français

La représentation de l’information repose souvent sur des matrices et des tenseurs. Ces
outils mathématiques ont trouvé leur utilité dans divers domaines, allant des mathéma-
tiques pures aux disciplines appliquées telles que la physique, la chimie et l’économie. Ils
ont été utiles pour résoudre des défis du monde réel depuis des décennies. Cependant, le
développement technologique récent et rapide apporte de nouveaux défis mathématiques
et informatiques, ouvrant la voie à de nouvelles orientations de recherche. Pour relever
ces nouveaux défis, il est nécessaire de continuer à progresser dans le domaine de l’algèbre
linéaire et multilinéaire.

L’un des défis majeurs d’aujourd’hui concerne le traitement d’ensembles de données vo-
lumineux résultant de divers problèmes de la vie réelle, tels que les simulations numériques
de modèles physiques pour simuler tout système composé de composants physiques réels.
On peut rencontrer cela dans de nombreux domaines, notamment l’astrophysique, la bi-
ologie, la climatologie, la chimie quantique, etc. Ce problème est couramment connu sous
le nom de curse of dimensionality, un terme inventé par Bellman dans le contexte de la
théorie de l’approximation [8]. Ce terme fait référence à la nécessité d’utiliser un nombre
de degrés de liberté en croissance exponentielle à mesure que la dimension du problème
augmente. Par conséquent, il existe deux principales voies : l’une consiste en le développe-
ment continu d’outils matériels puissants et coûteux pour résoudre ces problèmes de haute
dimension, et l’autre consiste en le développement d’algorithmes innovants qui rendent la
haute dimensionnalité gérable. Pour le deuxième point, on peut étudier et exploiter les
structures sous-jacentes des matrices ou des tenseurs impliqués dans la représentation de
ces problèmes.

Notamment, une technique d’algèbre linéaire établie pour traiter cette question im-
plique la méthode d’approximation de rang faible, obtenue par la décomposition en valeurs
singulières (SVD) pour les matrices, par exemple. La SVD a notamment trouvé une large
utilité dans de nombreuses disciplines, dont la science des données, l’astronomie, la chimie
quantique, le traitement des signaux et la science du climat. Comme les dimensions con-
tinuent de s’étendre, il devient de plus en plus pertinent d’explorer d’autres formats de
représentation des données, tels que les tenseurs.

Il est à noter que les tenseurs sont connus et utilisés depuis des décennies, sous dif-
férentes notations et concepts au sein de différentes communautés, notamment la physique,
la chimie et les mathématiques. Le terme tenseurs a initialement émergé dans le contexte
de la mécanique, introduit par Hamilton en 1854 [41]. Par la suite, entre 1880 et 1916,
les tenseurs ont été utilisés comme généralisation des scalaires, des vecteurs et des ma-
trices dans les domaines de la géométrie différentielle et de la physique, notamment dans
la théorie de la relativité générale d’Einstein [97]. Entre 1927 et 2011, le concept de
décomposition tensorielle est apparu, tel qu’introduit par Hitchcock en 1927 [46], per-
mettant la représentation de tenseurs de haute dimension sous la forme d’une série de
composants de dimension inférieure. En conséquence, entre 1960 et 1970, de nombreux
algorithmes de factorisation ont été proposés, tels que la décomposition canonique (CP)
et la décomposition de Tucker [68]. En outre, dans les années 2010 et 2011, Grasedyck a
introduit la décomposition hiérarchique de Tucker, et Osledets a décrit le format du train
de tenseurs (TT) [92], qui correspond au concept Matrix Product States (MPS) introduit
précédemment dans la communauté physique dès 1989. Ce concept de réseau de tenseurs
est ensuite devenu intimement lié au Density Matrix Renormalization Group (DMRG),
une technique d’optimisation populaire introduite par White en 1992 pour approximer
l’état fondamental, c’est-à-dire l’état d’énergie la plus basse, des systèmes quantiques
fortement corrélés.

Dans ce travail, notre objectif est de développer de nouveaux algorithmes numériques,
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d’étudier des méthodes numériques existantes pour traiter les défis de grande dimen-
sion en chimie quantique, et de fournir une analyse numérique approfondie des méthodes
proposées. La résolution des équations mécaniques quantiques à l’aide de méthodes de
discrétisation de base peut rapidement conduire à des problèmes de grande dimension et
demandant beaucoup de calculs. Simultanément, les solutions doivent maintenir un haut
niveau de précision pour être pratiquement utiles. Même aujourd’hui, ces limites compu-
tationnelles sont déjà atteintes lorsqu’il s’agit de problèmes de chimie quantique de petite
ou moyenne taille. Dans ce manuscrit, on se concentre sur deux problèmes contribuant
tous deux à un objectif commun : résoudre l’équation de Schrödinger dans un contexte
de grande dimension.

Cette thèse comporte quatre chapitres qui peuvent être décrits dans l’ordre suivant.
Le chapitre 1 introduit les notations matricielles et tensorielles, les techniques de dé-

composition à rang faible qui conduisent à des factorisations exactes ou approximatives de
matrices ou de tenseurs à rang faible. En particulier, on revisite la décomposition TT, met-
tant en évidence ses avantages pour effectuer efficacement des opérations arithmétiques
au sein du format TT. Par ailleurs, on introduit deux algorithmes connus pour représen-
ter des tenseurs en format TT ou les compresser en conséquence, à savoir la TT-SVD
et le TT-rounding, respectivement. En outre, notre intérêt se porte sur des applications
pratiques dans le domaine de la chimie quantique, en mettant particulièrement l’accent
sur la résolution de l’équation de Schrödinger indépendante du temps. Au fil des années,
les méthodes et algorithmes élaborés pour rendre ce problème complexe gérable ont révélé
plusieurs étapes coûteuses nécessitant une attention particulière. Cela inclut notamment
le traitement efficace du tenseur d’ordre 4 des intégrales biélectroniques, un composant
essentiel présent dans de nombreuses méthodes de chimie quantique. La discussion est
ensuite étendue à l’une des méthodes d’optimisation les plus renommées dans ce contexte,
à savoir le DMRG, et son utilisation pour ajuster variationnellement la représentation de
la fonction propre du Hamiltonien en TT. Le formalisme de la seconde quantification est
également revu, ainsi que l’expression de l’opérateur Hamiltonien moléculaire. On fournit
également des informations sur les complexités des étapes de calcul les plus coûteuses
dans le DMRG.

Le chapitre 2 se concentre sur l’évaluation numérique de la fonction multivariée (tenseur)
qui représente la composante à longue portée du potentiel de Coulomb à séparation de
portée. Cela conduit à l’introduction de deux nouvelles méthodes d’approximation pour
évaluer numériquement la partie à longue portée du potentiel de Coulomb à séparation de
portée et les intégrales bi-électroniques à longue portée. Cela est réalisé en s’appuyant sur
l’interpolation Chebyshev tensorielle, la règle de quadrature gaussienne combinée avec des
approximations à rang faible ainsi que des méthodes déjà établies pour résoudre les prob-
lèmes à N corps, telles que la FMM. De plus, on étend ces approches pour approximer le
tenseur d’ordre 4 d’intégrales bi-électroniques à longue portée. Nous présentons en détail
les algorithmes qui sous-tendent ces méthodes, et on présente également une comparaison
détaillée entre les approches introduites. Il est à noter que ce chapitre intègre le contenu
de notre article publié disponible dans [4].

Le chapitre 3 se concentre principalement sur la représentation TT de l’opérateur
Hamiltonien, qui est au cœur de l’algorithme DMRG. On commence par fournir un aperçu
des méthodes existantes pour construire une représentation TT exacte ou approximative
de l’opérateur Hamiltonien. On revisite l’approche naïve impliquant l’algorithme de TT-
rounding et montrons comment il peut introduire des instabilités numériques : perte de
symétrie, rupture des relations de commutation impliquant l’opérateur Hamiltonien, et
apparition d’interactions virtuelles, à plus de deux corps, pour un opérateur à deux corps.
On explique du point de vue théorique l’origine de certaines de ces instabilités numériques.
On démontre ensuite la présence d’une structure creuse par blocs dans la représentation
TT d’un opérateur Hamiltonien à p corps (p ∈ N), c’est-à-dire un opérateur qui implique
au plus des interactions à p corps, lorsqu’il commute avec l’opérateur de nombre de par-
ticules. Cette partie de notre travail s’inspire du travail de [2]. Bien que l’existence de
cette structure inhérente soit reconnue au sein de la communauté de la physique et de
la chimie, nous offrons ici une dérivation constructive directe. À notre connaissance, la
représentation de la structure creuse par blocs dans la représentation TT de l’opérateur
Hamiltonien n’a pas été présentée précédemment de cette manière. Poursuivant dans cette
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voie, on propose une analyse approfondie de la structure de la représentation TT de la
fonction propre de l’opérateur, notamment lorsque des conditions supplémentaires telles
que des symétries non-Abéliennes, comme SU(2) correspondant à la conservation du spin
total, sont considérées. Notre objectif est d’offrir des perspectives théoriques nouvelles,
lorsque cela est nécessaire, qui n’ont pas reçu une attention significative auparavant.

Dans le chapitre 4, on présente une partie importante de notre travail consacrée à la
réalisation d’une bibliothèque prototype en Julia, conçue pour le modèle de l’opérateur
Hamiltonien de chimie quantique qui intègre la conservation du nombre de particules. On
exploite ici la représentation TT creuse par blocs de l’opérateur ainsi que celle de sa fonc-
tion propre associée. Tout d’abord, on donne un aperçu des logiciels basés sur des tenseurs
couramment utilisés pour les calculs de structure électronique. Ensuite, on explique la mo-
tivation derrière la conception de notre propre bibliothèque et on fournit des algorithmes
utilisés pour exploiter la structure creuse par blocs dans les représentations TT. Avec ces
structures, notre objectif est d’accélérer les étapes les plus coûteuses de QC-DMRG, no-
tamment les contractions de tenseurs, les opérations matrice-vecteur et les compressions
de matrices par SVD. De plus, on présente des résultats empiriques de diverses simu-
lations moléculaires, tout en comparant les performances de notre bibliothèque avec la
bibliothèque ITensors de pointe, où on montre qu’on atteint des performances similaires.
Il est à noter que cette bibliothèque est destinée à être accessible. Elle vise à permettre
aux chercheurs, au sein de notre groupe et au-delà, de réaliser leurs propres simulations
DMRG ou d’explorer des approches créatives pour améliorer ses performances. Cette
bibliothèque sera rendue publiquement accessible et sa parallélisation est en cours.

Dans la dernière partie de cette thèse, on présente nos conclusions et perspectives fu-
tures. En ce qui concerne les annexes, dans l’annexe .1, on fournit un pseudo-algorithme
implémenté en C++ qui utilise la bibliothèque defmm, comme introduite dans le chapitre 2.
Cette bibliothèque est centrale pour la deuxième méthode numérique qu’on introduit
pour l’évaluation du tenseur d’intégrales bi-électroniques à longue portée. De plus, dans
l’annexe .2, on présente une autre application de la première méthode numérique dans le
chapitre 2, spécifiquement dans l’évaluation des matrices d’échange et Hartree-Fock util-
isées dans les calculs Hartree-Fock [44]. Dans les annexes .3 et .4, on offre des explications
concises des méthodes analytiques existantes utilisées pour construire une représentation
TT exacte de l’opérateur Hamiltonien de la chimie quantique, comme introduit dans le
chapitre 1. Dans l’annexe .5, on examine une interprétation graphique de la structure
de la représentation TT de la fonction propre lorsque la conservation du nombre de par-
ticules est maintenue. On montre qu’une fonction propre, étant un vecteur propre d’un
opérateur du nombre de particules avec une valeur propre N (où N représente le nombre
de particules fixé dans le système) peut être construite à travers une chaîne récursive
de transformations orthogonales en utilisant les TT-cores de la représentation TT des
fonctions propres. De plus, les rangs TT théoriques peuvent être dérivés à l’aide d’une
illustration graphique.

Cette thèse a conduit aux publications et pré-publications suivantes :

• Journal paper published S.Badreddine, I.Chollet, and L.Grigori. Factorized
structure of the long-range two-electron integrals tensor and its application in quan-
tum chemistry. In: Journal of Computational Physics.

• Journal paper in preparation S.Badreddine, M.Dupuy, E.Cancès, and L.Grigori.
Sparse and symmetry preserving compression of tensor trains arising in QC-DMRG.

• Journal paper in preparation S.Badreddine, M.Dupuy, E.Cancès, L.Grigori,
D.Torres. Algorithmic design and numerical experiments with QC-DMRG.

Ce projet a reçu un financement du Conseil européen de la recherche (ERC) dans le
cadre du programme de recherche et d’innovation Horizon 2020 de l’Union européenne
(accord de subvention n° 810367).
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Introduction

In today’s data-driven world, information representation often relies on matrices and ten-
sors, i.e, multidimensional generalizations of matrices. These mathematical tools have
found use in various fields, ranging from pure mathematics to applied disciplines like
physics, chemistry, and economics. They have been useful in solving real-world challenges
for decades. However, the recent and rapidly advancing technological developments bring
new mathematical and computational challenges, paving the way to new research di-
rections. To tackle these new challenges, continued progress in the realm of linear and
multilinear algebra is required.

One of the foremost challenges today revolves around dealing with large set of data
arising from various real-life problems, such as the numerical simulations of physical mod-
els for simulating any system that consists of real physical components. This can be en-
countered in many fields, including astrophysics, biology, climatology, quantum chemistry
etc.Ṫhis problem is commonly known as the curse of dimensionality, a term coined by
Bellmann in the context of approximation theory [8]. The curse of dimensionality refers
to the necessity of employing an exponentially increasing number of degrees of freedom as
the dimensionality of the problem grows. Therefore, to tackle these problems, two main
avenues are available to us: one is the continuous development of powerful and expensive
hardware to tackle these high-dimensional problems, and the other is the development
of innovative algorithms that render the high-dimensionality tractable. Concerning the
latter, one can study and exploit the underlying structures of the matrices or tensors
involved in representing the high-dimensional problems. One established linear algebra
technique for addressing this issue involves the low-rank approximation method, achieved
through truncated Singular Value Decomposition (SVD) for matrices, for example. No-
tably, the SVD has found a wide-ranging utility across many disciplines, including data
science, astronomy, quantum chemistry, signal processing, and climate science. As the
amount of data needed continue to expand, it becomes increasingly pertinent to explore
other formats of data representations such as tensors.

It is worth noting that tensors have been known and employed for decades, under
varying notations and concepts within different communities, notably physics, chemistry,
and mathematics. The term tensors initially emerged in the context of mechanics, in-
troduced by Hamilton in 1854 [41]. Subsequently, between 1880 and 1916, tensors found
application as a generalization of scalars, vectors, and matrices within the realms of dif-
ferential geometry and physics, notably in Einstein’s theory of general relativity [97].
Between 1927 and 2011, the concept of tensor decomposition emerged as elucidated by
Hitchcock in 1927 [46], allowing the representation of high-dimensional tensors as a series
of lower-dimensional components. Consequently, between 1960 and 1970 many factoriza-
tion algorithms were proposed such as the Canonical Decomposition (CP), and Tucker
decomposition [68]. Furthermore, in the years 2010 and 2011, Grasedyck introduced the
hierarchical Tucker decomposition [37], and Osledets described the tensor train format
(TT-format) [92] , which corresponds to the concept of Matrix Product State (MPS) [17],
previously explored within the physics community as early as 1989. This concept of ten-
sor network, later became intertwined with the Density Matrix Renormalization Group
(DMRG) algorithm, also known as the Quantum Chemical DMRG (QC-DMRG) in the
realm of quantum chemistry, originated as a successful approach pioneered by White in
1992 [131]. This algorithm serves as a popular optimization technique to approximate the
ground state, i.e lowest-energy state, of strongly correlated quantum systems.

In this work, our goal is to develop new numerical algorithms and study existing
numerical methods to address high-dimensional challenges in quantum chemistry. We
will narrow our focus to two problems in quantum chemistry, both contributing to a
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common goal: solving the fundamental equation of quantum chemistry, the electronic
Schrödinger equation.

To begin, we consider the approximation of a multivariate function that defines the
long-range component of the range-separated Coulomb potential. Here, the Coulomb po-
tential is defined by 1

∥x−y∥ ,x,y ∈ R3. Then, we focus on the numerical approximation
of the long-range two-electron integrals tensor, an important component in various quan-
tum chemistry methods. Our attention shifts then to the application of tensor networks,
particularly the TT decomposition, for solving the Schrödinger equation. Indeed, this
equation defines a multidimensional problem whose dimension increases linearly with the
number of the electrons in the system and the task of solving it using basic discretization
methods can quickly lead to high-dimensional, curse of dimensionality, and computation-
ally demanding problems. Simultaneously, the solutions must maintain a high level of
accuracy to be practically useful. At this stage, the use of tensor networks in particular
tensor trains and low-rank decomposition methods turns out to be useful to numerically
solve this equation and break the curse of dimensionality. However, when diving into the
literature on tensor networks, one encounters a notable barrier: results obtained from
different communities, such as mathematics, physics, or chemistry, are not always easily
communicated between communities. Consequently, one can find several papers address-
ing the same problem but using different terminologies, and some already established
results from one community could be rediscovered by another. Therefore, in the second
part of the work, the aim is to understand and interpret the results obtained from the
physics and chemistry communities and seek to offer novel theoretical insights that, to
the best of our knowledge, have not received significant attention before. Within this
context, we focus on the DMRG algorithm combined with tensor networks, in particular
the TT decomposition. We mainly study the tensor train representation of the operator,
referred to as TTO, achieved through low-rank approximation method and particularly
when physical conservation laws are preserved, which manifest as group symmetries in
the tensors. This thesis has four chapters that can be described in the following order.

Chapter 1 gives an overview on high-dimensional problems arising in quantum chem-
istry and associated tensor representations. It starts by introducing notations and basic
operations for tensors. It then discusses low-rank decomposition techniques that lead to
either exact or approximate decompositions for both matrices and tensors. In particu-
lar, for tensors, we revisit the TT decomposition, highlighting its benefits in performing
efficiently arithmetic operations within the TT format. Furthermore, we introduce two
known algorithms for representing tensors in TT format or compressing them accordingly.
Additionally, we go towards practical applications within the realm of quantum chemistry,
such that the concern centers around solving the time-independent Schrödinger equation.
Over the years, problem-adapted methods and algorithms designed to make this com-
plex problem tractable showed to have several time-consuming steps which need careful
consideration. One such critical step involves the efficient treatment of the two-electron
integrals 4-th order tensor, an important component that appears in many quantum
chemistry methods. The discussion is then further extended to one of the most renowned
optimization methods in this context, namely, DMRG, and its use to variationally tune
tensor train representation of the eigenfunction of the Hamiltonian operator. The second
quantization formalism is reviewed as well as the expression of the quantum chemical
Hamiltonian operator. We also provide some insights into the time complexities of the
most time-consuming computational steps in DMRG.

Chapter 2 focuses on the numerical evaluation of the multivariate function (tensor)
that represents the long-range component of the long-range Coulomb potential. This
yields to introducing two novel approximation methods for numerically evaluating the
long-range part of the range-separated Coulomb potential and the long-range two-electron
integrals. This is achieved by relying on the tensorized Chebyshev interpolation, Gaussian
quadrature rule combined with low-rank approximations as well as already established
methods for solving N-body problems, FMM. Furthermore, we extend these approaches
to approximate the high dimensional long-range two-electron integrals tensor. We provide
comprehensive insights into the algorithms behind these methods, and we also provide
a detailed comparison between the introduced approaches. It is worth noting that this
chapter incorporates content from our published paper available in [4].
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Chapter 3 focuses primarily on the TTO representation of the Hamiltonian operator
which is at the core of the DMRG algorithm. We start by providing an overview of existing
methods to construct an exact or approximated TTO representation of the Hamiltonian
operator. We revisit the naive approach involving the TT-rounding algorithm and show
how it can introduce numerical instabilities: loss of symmetry, breakdown of the com-
mutation relations involving the Hamiltonian operator, and the occurrence of more than
2-body interactions for a strictly 2-body operator, an operator that involves at most 2-
body interactions. We explain from a theoretical point of view the origin of some of these
numerical issues. We subsequently demonstrate the existence of a block-sparse struc-
ture within the TT-cores of the TTO representation for a p-body Hamiltonian operator
(p ∈ N), particularly when it commutes with the particle number operator. This part
of our work is inspired by the contributions of [2]. While the existence of this inher-
ent structure is acknowledged within the physics and chemistry community, we offer a
straightforward constructive derivation. To the best of our knowledge, the specific repre-
sentation of the block-sparse structure within the TT-cores of the TTO representation of
the Hamiltonian operator has not been presented previously in this manner. Continuing
in this fashion, we provide a comprehensive study of the structure of the TT-cores in the
TT representation of the eigenfunction. We are interested in the underlying structure of
the TT-cores when additional conditions are applied, such as non-Abelian symmetries like
SU(2) symmetry corresponding to the total spin conservation. Our aim is to offer novel
theoretical insights, when necessary, that have not received significant attention before.

Chapter 4, is dedicated to the realization of a proof-of-concept QC-DMRG Julia li-
brary, designed for the quantum chemical Hamiltonian operator model which incorporates
particle number conservation. We exploit here the block-sparse TTO representation of
the operator as well as it’s associated eigenfunction. First, we give an overview of existing
tensor-based software packages commonly employed for electronic structure calculations,
i.e the calculation of electronic states and energies. Then, we explain the motivation be-
hind designing our own library and provide algorithms used to exploit the block sparsity
within the TT representations. With these structures, our goal is to speed up the most
time consuming steps in QC-DMRG, including tensor contractions, matrix-vector opera-
tions, and matrix compression through SVD. Furthermore, we provide empirical results
from various molecular simulations, while comparing the performance of our library with
the state-of-the-art ITensors library where we show that we attain a similar performance.
It is worth noting that our library is intended to be accessible and user-friendly. It is in-
tended to allow researchers, within our group and beyond, to carry out their own DMRG
simulations or explore creative approaches to enhance its performance. Our library will
be made publicly available and its parallelization is ongoing effort.

In the final part of this thesis, we present our conclusions and future perspectives
as well as the appendices, that contain supplementary material. In particular, in Ap-
pendix .1, we provide a pseudo-algorithm implemented in C++ that uses the defmm
library, as introduced in Chapter 2. This library is central to the second numerical
method we introduce for the evaluation of long-range two-electron integrals tensor. Ad-
ditionally, in Appendix .2, we provide another application of the first numerical method
in Chapter 2, specifically for the evaluation of Hartree-Fock exchange matrices employed
in Hartree-Fock calculations [44]. In Appendices .3 and .4, we offer concise explanations
of the existing analytical methods used to construct an exact TTO representation, i.e
without low-rank approximation, of the quantum chemical Hamiltonian operator, as in-
troduced in Chapter 1. In Appendix .5, we review an interesting graphical interpretation
of the TT representation structure of the eigenfunction when particle number conserva-
tion is maintained. We show that an eigenfunction, serving as an eigenvector of a particle
number operator with eigenvalue N (representing the fixed number of particles in the sys-
tem), can be constructed recursively. This construction involves a recursive sequence of
orthogonal transformations using the TT-cores from the TT-representation of eigenfunc-
tions. Theoretical minimal TT-ranks are then derived through a graphical illustration.
In Appendix .6, a diagram is presented, offering an overview of key structures within our
proof-of-concept library.

This thesis has led to the following publications and upcoming pre-prints

• Journal paper published S.Badreddine, I.Chollet, and L.Grigori. Factorized
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structure of the long-range two-electron integrals tensor and its application in quan-
tum chemistry. In: Journal of Computational Physics.

• Journal paper in preparation S.Badreddine, M.Dupuy, E.Cancès, and L.Grigori.
Sparse and symmetry preserving compression of tensor trains arising in QC-DMRG..

• Journal paper in preparation S.Badreddine, M.Dupuy, E.Cancès, L.Grigori,
D.Torres. Algortihmic design and numerical experiments with QC-DMRG.

This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (grant agreement
No 810367).
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Chapter 1

An overview of high-dimensional
problems in quantum chemistry and
associated tensor representations
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In this section, we start by introducing the most frequently used mathematical objects
and notations in this work. We provide as well some definitions of basic operations, linear
and multilinear operations, commonly performed on matrices and tensors. We begin by
introducing four essential operations in the matrix and tensor framework: the tensor prod-
uct, the Kronecker product, the Hadamard product, and the Khatri-Rao product. Then,
we give background on low-rank approximation methods for matrices and tensors par-
ticularly relevant for addressing high-dimensional problems like those encountered when
solving the Schrödinger equation in a high-dimensional context. This guides the reader
into a brief introduction of essential concepts in quantum chemistry necessary to under-
stand the topics covered in our manuscript. The background information provided con-
tains the many-body Schrödinger equation, definitions of one and two-electron integrals
tensors, the second quantization formalism, and an explanation of how tensor networks
are applied in quantum chemistry, combined with the well-known DMRG algorithm.

1.1 Notations and definitions
• Scalars are either lowercase letters x, y, z, α, β, γ or uppercase latin letters N ,
M , T . Vectors are denoted by lowercase boldface letters such as a, b, c, matrices
are denoted by uppercase boldface letters such as A,B,C, tensors are denoted by
calligraphic symbols such as A,B, C.

• Generic algebraic field is denoted by A, vector spaces are denoted by A and linear
or multilinear operators on finite-dimensional vector spaces are denoted by Â.

• [N ]defines the set {i ∈ N | 1 ≤ i ≤ N}.
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• The object A ∈ Rn1×n2 is a matrix with n1 rows and n2 columns and A∗ ∈ Rn2×n1

is its transpose. 0n1×n2 ∈ Rn1×n2 denotes a matrix with zero entries. Occasionally,
when notations become complex, we may use only the notation 0 for simplicity.

• The object A ∈ Rn1×···×nd is a tensor. Here, d ∈ N is called the order of the tensor,
and nk defines the k-th mode size for k ∈ [d], i.e., the size of the k-th dimension in
the tensor.

• a(i) is the i-th entry of the vector a, A(i; j) is the (i, j)-th entry of the matrix A,
A(i1; . . . ; id) is the (i1, . . . , id)-th entry of the tensor A of order d ∈ N.

• A[:, j] (Julia/Matlab notations) denotes the subvector containing the column of A
indexed by j, A[j, :] denotes the subvector containing the row of A indexed by j,
A[:, :, j] denotes the submatrix extracted from A at index j, A[:, :, :, j] denotes the
subtensor extracted from A at index j associated with the fourth mode.

• A|Si×Sj
denotes the restriction of the matrix A ∈ Rn×m to a submatrix indexed by

a couple (i, j) of size Si × Sj, i.e, we consider only the rows and columns specified
by the dimensions i and j, respectively, from the original matrix A.

• ∥x − y∥ =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 is the euclidean distance between
two points x,y ∈ R3 with coordinates (x1,x2,x3), (y1,y2,y3) respectively.

• The Kronecker delta is
δij =

{
0 if i ̸= j,
1 if i = j.

• ∥.∥F is the Frobenius norm.

• In is the identity matrix of size n×n and In1×n2 is the identity matrix of size n1 ×n2.

• |x| is the absolute value of x.

• # is the cardinality (or size) of a given set, while dim() denotes the dimension of a
finite-dimensional vector space.

• ⊗K is the Kronecker product.

• ⊗ is the tensor product.

• ⋄ is the row-wise Khatri-Rao product and • is the column-wise Khatri-Rao product.

• ⊙ is the Hadamard product.

• ⊕ is the Direct sum.

• ⟨·, ·⟩ is the inner product.

• ∼= is the symbol that represents isomorphism between vector spaces.

• ≡ is the equivalent symbol.

• ≈ is the symbol denoting approximate equality.

Definition 1. (Kronecker product) The Kronecker product between matrices A ∈ Rn1×m1

and B ∈ Rn2×m2 which we denote A ⊗K B ∈ Rn1n2×m1m2 , is defined as:

A ⊗K B =


A(1; 1)B A(1; 2)B · · · A(1;m1)B
A(2; 1)B A(2; 2)B · · · A(2;m1)B

... ... . . . ...
A(n1; 1)B A(n1; 2)B · · · A(n1;m1)B

 (1.1)

.

3



Remark 1.1.1. For ease of notation, we can also use the compact product notation
d⊗

k=1
K .

Given d matrices Ak ∈ Rnk×mk , k ∈ [d], the Kronecker product of d matrices denoted as

d⊗
k=1

K Ak ∈ R

( d∏
k=1

nk
)

×
( d∏
k=1

mk

)
, is given by:

d⊗
k=1

K Ak = A1 ⊗K A2 ⊗K . . .⊗K Ad. (1.2)

Definition 2. (Tensor product) Let U and V be vector spaces over the same field F.
If U and V are finite-dimensional spaces with respective basis BU = {ui, i ∈ [I]} and
BV = {vj, [J ]}, then, the tensor product U⊗V has basisBU⊗V = {ui ⊗ vj, i ∈ [I] , j ∈ [J ]}.

Remark 1.1.2. When discussing the tensor product between vectors, it is important to
note that we are referring to the outer product, denoted by the symbol ⊗ as well. For
example, the tensor product between two vectors v ∈ Rn and u ∈ Rm, denoted as v ⊗ u,
is defined as an n × m matrix. This tensor product is a special case of the Kronecker
product, and it can be expressed as:

v ⊗ u = v ⊗K u∗. (1.3)

Definition 3. (Hadamard product) The Hadamard product between matrices A ∈ Rn1×n2

and B ∈ Rn1×n2 which we denote A ⊙ B ∈ Rn1×n2 , is defined as:

A ⊙ B =


A(1; 1)B(1; 1) A(1; 2)B(1; 2) · · · A(1;n2)B(1;n2)
A(2; 1)B(2; 1) A(2; 2)B(2; 2) · · · A(2;n2)B(2;n2)

... ... . . . ...
A(n1; 1)B(n1; 1) A(n1; 2)B(n1; 2) · · · A(n1;n2)B(n1;n2).

 . (1.4)

Definition 4. (Column-wise Khatri-Rao product) Consider two matrices:

A =
[
A[:, 1] A[:, 2] . . . A[:,m1]

]
∈ Rn1×m1 ,

and
B =

[
B[:, 1] B[:, 2] . . . B[:,m1]

]
∈ Rn2×m1 ,

where A[:, k] ∈ Rn1×1 and B[:, k] ∈ Rn2×1 for each k ∈ [m1] . The column-wise Khatri-Rao
product between A and B which we denote A • B ∈ R(n1n2)×m1 , is defined as:

A • B = [A[:, 1] ⊗K B[:, 1] A[:, 2] ⊗K B[:, 2] . . . A[:,m1] ⊗K B[:,m1]] , (1.5)

The row-wise, that we denote by the symbol ⋄ is related to the column-wise Khatri-Rao
product as follows:

(A • B)∗ = A∗ ⋄ B∗. (1.6)

Remark 1.1.3. For ease of notation, we use the following compact notation. Given d
matrices Ak ∈ Rn1×mk , k ∈ [d], the row-wise Khatri-Rao product of d matrices, denoted

as ⋄dk=1Ak ∈ R
n1×

( d∏
k=1

mk

)
, is given by:

⋄dk=1Ak = A1 ⋄ A2 ⋄ . . . ⋄ Ad, (1.7)

and given d matrices Ak ∈ Rnk×m1 , k ∈ [d], the column-wise Khatri-Rao product of d

matrices, denoted as •dk=1Ak ∈ R

( d∏
k=1

nk
)

×m1
, is given by:

•dk=1Ak = A1 • A2 • . . . • Ad. (1.8)

Definition 5. (Direct sum) The direct sum between matrices A ∈ Rn1×m1 and B ∈ Rn2×m2

is defined as the block diagonal matrix A ⊕ B ∈ R(n1+n2)×(m1+m2) such that

A ⊕ B = diag(A,B) =
[

A 0n1×m2

0n2×m1 B

]
. (1.9)
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Remark 1.1.4. We will also encounter the direct sum of finite-dimensional vector spaces,
we denote as well by ⊕, which is defined as follows: let V be a vector space, let U and
W be two subspaces such that for every v ∈ V ,

• there exist vectors u ∈ U ,w ∈ W such that v = u + w,

• If v = u1 + w1 and v = u2 + w2 where u1,u2 ∈ U , w1,w2 ∈ W then u1 = u2 and
w1 = w2.

Then V is the direct sum of U and W . We write V = U ⊕ W .

In the following proposition, we give useful relations among these matrix products
that we will use in our derivations.

Proposition 1.1.1 ([81]). Consider matrices A ∈ RI1×J1 , B ∈ RI1×J2 , C ∈ RJ1×J3, and
D ∈ RJ2×J4, then

(A ⊗K B)(C ⊗K D) = (AC) ⊗K (BD). (1.10)
Additionally,

(A ⋄ B)(C ⊗K D) = (AC) ⋄ (BD). (1.11)
Additionally, if J4 = J3, it holds that

(A ⋄ B)(C • D) = (AC) ⊙ (BD). (1.12)

In what follows, we provide the definition of tensors and basic multilinear operations.
We start by viewing tensors from a practical point of view as commonly used in computer
science, where they are regarded as multidimensional arrays (data structures). Just as
a matrix represents a two-dimensional array, a tensor extends this concept to higher
dimensions. A visual representation of tensors with different orders is given in Figure 1.3,

A(1; 1) A(1; 2)
A(2; 1) A(2; 2)

Figure 1.1: 2-order tensor/matrix of di-
mension 2 × 2.

A(3; 1; 1) A(3; 1; 2)
A(3; 2; 1) A(3; 2; 2)

A(2; 1; 1) A(2; 1; 2)
A(2; 2; 1) A(2; 2; 2)

A(1; 1; 1) A(1; 1; 2)
A(1; 2; 1) A(1; 2; 2)

Figure 1.2: 3-order tensor of dimension
2 × 2 × 3.

Figure 1.3: Tensors of order d ∈ {2, 3}.

It should be noted that, from a multilinear algebra point of view, tensors can be seen
as elements of the tensor product of linear spaces denoted by V . Given a vector space V
of dimension n ∈ N, let BV = {vi, i ∈ [n]} be a basis of V so any element v in V can be
written as follows:

v =
n∑
i=1

λivi, (1.13)

with λi ∈ R, i ∈ [n] .

Definition 6. Let V1, · · · ,Vd be d vector spaces with respective dimension nk ∈ N, and
respective basis BVk

= {vik , ik ∈ [nk]} for k ∈ [d]. According to Definition 2, V1 ⊗· · ·⊗Vd

is a vector space with the following basis:

BV1⊗...⊗Vd
= {vi1 ⊗ · · · ⊗ vid , 1 ≤ i1 ≤ n1, · · · , 1 ≤ id ≤ nd} .

By linearity, any tensor A ∈ V1 ⊗ · · · ⊗ Vd can be written as follows:

A =
n1∑
i1=1

. . .
nd∑
id=1

A(i1; · · · ; id)vi1 ⊗ · · · ⊗ vid . (1.14)

Here, A is called a d-order tensor with entries A(i1; · · · ; id). Therefore, a tensor, which is
an element of a tensor product space, can be identified as a multidimensional array once
a basis for the tensor product is established.
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Another important interpretation of tensors is that they are regarded as multilinear
operators analogous to the matrix case. For example, consider a matrix A ∈ Rn1×m1 ,
which describes the action of a linear operator from Rm1 to Rn1 with respect to a given
basis on both spaces. In the case of tensors, we can define a multilinear operator as
Â : Rn1 ⊗ · · · ⊗ Rnd1 → Rm1 ⊗ · · · ⊗ Rmd2 , where A ∈ R(n1×···×nd1 )×(m1×···×md2 ) is the
multidimensional array representing the multilinear operator with fixed basis for tensor
product spaces Rn1 ⊗ · · · ⊗ Rnd1 and Rm1 ⊗ · · · ⊗ Rmd2 . The latter can be referred to as
the tensor operator of order d1 + d2 that acts on tensors of order d2.

In the following, we present a concise overview of various multilinear operations on
tensors, which will be essential for understanding the content of this manuscript.

When working with tensors, it is possible to modify their shape or dimensions while
keeping the total number of elements unchanged. This operation is commonly referred
to as reshaping and involves rearranging the elements of a tensor to match a desired new
shape. Reshaping is often used to convert tensors into a matrix or a vector, respectively,
which are known as matricization or unfolding and vectorization operations, respectively.
These operations allow for different ways of organizing and accessing the tensor elements
to suit specific computational requirements or algorithms.

Definition 7. (Multi-index) For each k ∈ [d], consider a subset Sk = [nk]. Define the
function ξ : S1 × . . .× Sd → N such that

ξ(i1; . . . ; id) = 1 +
d∑
l=1

(
(il − 1)

l−1∏
m=1

nm

)
, (1.15)

Moving forward, the expression of a multi-index i1, . . . , id denotes the image of ξ, i.e
ξ(i1; . . . ; id) := i1, . . . , id.

Definition 8. Let A ∈ Rn1×n2×···×nd , nk ∈ N, k ∈ [d], be a d-order tensor. The mode-k
matricization or unfolding of a tensor A, denoted as A(k) ∈ Rnk×(n1n2···nk−1nk+1···nd), k ∈ [d],
is defined element-wise as follows, for ik ∈ [nk] and j ∈ [n1 . . . nk−1nk+1 . . . nd] :

A(k)(ik; j) = A(k)(ik; i1, . . . , ik−1, ik+1, . . . , id), (1.16)

where j is related to the multi-index j := i1, . . . , ik−1, ik+1, . . . , id and has value

j = 1 +
d∑
l=1
l ̸=k

(il − 1)
l−1∏
m=1
m̸=k

nm

 .
Definition 9. Let A ∈ Rn1×n2×···×nd be a d-order tensor. The mode-(1 : k) matricization
of a tensor A denoted as A<k> ∈ R(n1···nk)×(nk+1···nd), k ∈ [d], is defined element-wise as
follows, for j1 ∈

[∏k
i=1 ni

]
and j2 ∈

[∏d
i=k+1 ni

]
:

A<k>(j1; j2) = A<k>(i1, · · · , ik; ik+1, . . . , id), (1.17)

with j1 = 1 +∑k
l=1

(
(il − 1)∏l−1

m=1 nm
)

and j2 = 1 +∑d
l=k+1

(
(il − 1)∏l−1

m=k+1 nm
)
.

Definition 10. Let A ∈ Rn1×n2×···×nd be a d − th order tensor. The vectorization of A,
denoted as a = vec(A) ∈ Rn1...nd can be defined element-wise as follows, for j ∈ [n1 . . . nd] :

a(j) := a(i1, i2, . . . , id) = vec(A)(j) = A(i1; . . . ; id), (1.18)

with j = 1 +∑d
l=1

(
(il − 1)∏l−1

m=1 nm
)
.

Example 1.1.1. Let A ∈ R2×2×2 be a 3-order tensor given in the following figure

1 2
3 45 6

7 8

Figure 1.4: 3-order tensor of dimension 2 × 2 × 2.
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One way to vectorize the tensor A with entries A(i1, i2, i3) involves horizontally con-
catenating elements A(i1; i2; i3) while keeping indices i2, i3 ∈ {1, 2}.

a = vec(A) =
[
A(1; 1; 1) A(2; 1; 1) A(1; 2; 1) A(2; 2; 1) A(1; 1; 2) A(2; 1; 2) A(1; 2; 2) A(2; 2; 2)

]∗
=
[
5 7 6 8 1 3 2 4

]∗
.

(1.19)
One way to obtain the mode-1 matricization of A is:

A(1) =
[
5 6 1 2
7 8 3 4

]
(1.20)

Remark 1.1.5. The matricization of a tensor can be related to the Kronecker product
as follows: let A ∈ Rn1×n2×···×nd be a d-order tensor. Suppose that A is expressed in the
basis of Rn1×n2×···×nd as follows:

A =
n1∑
i1=1

. . .
nd∑
id=1

A(i1; · · · ; id)vi1 ⊗ · · · ⊗ vid . (1.21)

The mode-k matricization of A, k ∈ [d], using Kronecker products, can be expressed as:

A(k) =
n1∑
i1=1

. . .
nd∑
id=1

A(ik; i1, · · · , ik−1, ik+1, · · · , , id)vik ⊗K (
d⊗
l ̸=k
l=1

Kvil)∗. (1.22)

It is noted that the reshaping operations described above will be of particular interest
for tensor trains that will be introduced in Section 1.2.

Remark 1.1.6. The vectorization as well as matricization (tensor unfolding) operations
can be interpreted by the existence of vector space isomorphism such that 1

Rn1 ⊗ . . .⊗ Rnk ⊗ . . .⊗ Rnd ∼= R(n1...nk)×(nk+1...nd) ∼= Rn1...nk...nd . (1.23)

We will now proceed to discuss one of the most commonly used operations between
tensors, known as tensor contraction. This operation combines two tensors by summing
over a pair of indices, where one index of the first tensor is contracted with the corre-
sponding index of the second tensor. This is also a generalization of the matrix-vector or
matrix-matrix products as described in the following definition

Definition 11. (Tensor contractions) Consider two tensors A ∈ Rn1×···×nd1 and B ∈ Rm1×···×md2 ,
of orders d1 and d2, respectively. For k ∈ [d1] , h ∈ [d2], if nk = nh, the contraction product
between these two tensors is denoted by A ×kh B and the resulting tensor
C ∈ Rn1×···×nk−1×nk+1×···×nd×m1×···×mh−1×mh+1×···md is defined element-wise as follows:

C(i1; . . . ; ik−1; ik+1; . . . ; id1 ; j1 . . . ; jh−1; jh+1; . . . ; jd2) =
nk∑
ℓ=1

A(i1; . . . ; ℓ; . . . ; id1)B(j1; . . . ; ℓ; . . . ; jd2).

(1.24)
and we have:

C = A ×kh B. (1.25)

For the sake of simplicity and consistency throughout the manuscript, we use the
notation A ×k B to represent the contraction product between two tensors when nk = nh.

So far, we have discussed the contraction between tensors with a single common index
or mode. However, this concept can be extended to involve multiple modes such that
instead of only summing over the index ℓ in Equation (1.24), we can generalize the con-
traction to include all common indices. Therefore, in the contraction notation, we will
replace the single index k with a set of common indices, denoting the contracted modes.
For example, given two tensors A ∈ Rn1×...×nd1 ×m1×...×md2 and B ∈ Rm1×...×md2 ×n′

1×...×n′
d3 ,

1A vector space isomorphism is a bijective linear mapping between two vector spaces that preserves
the vector space structure.
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the contraction product between tensors A and B is denoted by A ×{d1+1...d1+d2} B and
the resulting tensor C ∈ Rn1×...×nd1 ×n′

1×...×n′
d3 is defined element-wise as follows:

C(i1; . . . ; id1 ; j1; . . . ; jd3) =
m1∑
ℓ1=1

. . .

md2∑
ℓd2 =1

A(i1; . . . ; id1 ; ℓ1; . . . ; ℓd2)B(ℓ1; . . . ; ℓd2 ; j1; . . . ; jd3).

(1.26)
Furthermore, it is important to note that throughout this work, we will encounter the
contraction product between a tensor and a matrix. This operation is defined as follows:
let A ∈ Rn1×···×nd be a d-order tensor and B ∈ Rm1×m2 , if for a fixed k ∈ [d], nk = m1,
then the contraction product between A and B is denoted by A ×k B. We keep the first
common index, i.e k in the contraction symbol.

Further details about basic tensor operations as tensor unfolding, contractions and
several tensor products as inner product, outer product, are provided in [3, 68, 70, 73].

1.2 Low-rank approximation for matrices and tensors

1.2.1 Introduction
In what follows, we give a brief introduction on low-rank approximation techniques for
matrices and tensors that aim to represent data more efficiently by approximating high-
dimensional matrices and tensors with low dimensional counterparts. We begin by intro-
ducing the Singular Value Decomposition (SVD) and QR decomposition [49] which are
well-known tools used for exploiting low-rank structures in matrices. Additionally, we
introduce the Tensor Train (TT) decomposition as a generalization of SVD for tensors,
showcasing its potential for efficient data representation in high-dimensional settings.

1.2.2 Low-rank approximation for matrices
Singular value decomposition (SVD)

Definition 12. (Singular value decomposition (SVD)) The Singular Value Decomposition
of a matrix A ∈ Rm×n with rank(A) = min {m,n} is defined as:

A = UΣV∗, (1.27)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, Σ ∈ Rm×n is a diagonal
matrix composed of non-negative real numbers on the diagonal called singular values.
The factorization in (1.27) is equivalent to the following expression

A =
min{m,n}∑
k=1

σkU[:, k] ⊗ V[:, k], (1.28)

where σk is the k-th singular value for k ∈ [min {m,n}], U[:, k], respectively V[:, k] is
the k-th column of the matrix U, respectively V. Additionally, the number of nonzero
singular values is equal to the rank of A.

It is known that the SVD of A is related to the eigenvalue decomposition of the
matrices AA∗ and A∗A, with the singular values corresponding to the positive square
roots of their respective eigenvalues. Additionally, for non-degenerate or distinct singular
values, the SVD decomposition is said to be unique up to permutations of the columns of
the orthogonal matrices U and V.

Definition 13. (Low-rank matrix) A ∈ Rm×n is said to have low-rank if its rank, denoted
by rank(A) = r, satisfies r ≪ min {m,n}.

The aim here is to approximate a given matrix A ∈ Rm×n by a low-rank matrix. The
key idea of low-rank approximation is that a given matrix may not be necessarily of exact
low-rank, meaning it does not have a decomposition that exactly reproduces the original
matrix. Nevertheless, it can be well approximated by a low-rank matrix. In what follows,
we describe the truncated SVD (tSVD) method to obtain a low-rank approximation of a
given matrix.
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Truncated singular value decomposition

Definition 14. (truncated SVD (tSVD)) Let A ∈ Rm×n be a matrix of full rank,
rank(A) = min {m,n}. For a chosen r ∈ N such that r < rank(A), one can construct the
so-called truncated SVD of A denoted by Ã as follows:

A ≈ Ã = ŨΣ̃Ṽ∗ =
r∑

k=1
σkŨ[:, k]Ṽ[:, k]∗, (1.29)

where Ũ ∈ Rm×r, (resp. Ṽ), is the matrix containing the first r columns of U (resp. V),
and Σ̃ ∈ Rr×r is the top-left submatrix of Σ, with σk, k ∈ [r] being the truncated singular
values of A.

It is obvious that the rank of Ã is r. Ã is the best rank-r approximation of the matrix
A when the approximation error is measured in an unitarily invariant norms: the 2-norm
or the Frobenius norm. The error of this approximation is given by (showing only the
Frobenius norm): ∥∥∥A − Ã

∥∥∥
F

=
 ∑
k≥r+1

σ2
k

1/2

. (1.30)

This rank-r approximation method, known as the tSVD, is a popular technique for di-
mensionality reduction. Indeed, if r ≪ min {n,m}, then the storage cost of the matrix
Ã reduces significantly from O(mn) to O(r(m+ n+ 1)). Additionally, when multiplying
Ã with another matrix B ∈ Rn×q, the computational cost of the product ÃB reduces
from O(mnq) to O(rq(m+n+ 1)). However, it is worth noting that for large dimensions,
computing the tSVD can become expensive as it requires first computing the full rank
SVD, which costs O(mn min {m,n}), and then extracting the leading singular values
based on a specified threshold.

From a geometric point of view, the existence of a best approximation of any matrix
A by another matrix of rank at most r implies the following proposition (see [126])

Proposition 1.2.1. The set of matrices of rank at most r is defined as:

M≤r =
{
A ∈ Rm×n : rank(A) ≤ r

}
(1.31)

is a closed subset of Rm×n.

This proposition suggests that any continuous and bounded function on this set reaches
a minimum within this set. The distance from this set, given by Equation (1.30), im-
plies that the matrix A has a good low-rank approximation in Frobenius norm if the
singular values decay sufficiently fast. This set is an algebraic variety, not smooth on
the elements A with rank strictly less than r. Therefore, when dealing with geometri-
cal optimization methods, these are often performed on smooth manifolds. In this case
the smooth variety of M≤r is considered which is the set of matrices with fixed ranks
M=r = {A ∈ Rm×n : rank(A) = r}. While we refrain from delving into details regarding
the geometrical properties of this manifold, interested readers can find comprehensive
insights in [126].

QR decomposition

Throughout this work, we will encounter a popular factorization method, which is known
as the QR decomposition. This decomposition is described in the following definition

Definition 15. (QR Decomposition) For a given matrix A ∈ Rm×n, the QR decom-
position expresses A as the product of an orthogonal matrix Q ∈ Rm×m and an upper
triangular matrix R ∈ Rm×n

A = QR, (1.32)
where Q∗Q = Im.

One common approach to compute these matrices is by employing the Gram-Schmidt
procedure on the columns of A or alternatively the Householder transformations [50].
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1.2.3 Low-rank approximation for tensors
Consider the canonical basis of Rn1 ⊗ Rn2 · · · ⊗ Rnd denoted as:

BRn1 ⊗Rn2 ···⊗Rnd = {ei1 ⊗ ei2 ⊗ · · · ⊗ eid , 1 ≤ i1 ≤ n1, · · · , 1 ≤ id ≤ nd} . (1.33)

Then, any tensor A ∈ Rn1 ⊗ Rn2 ⊗ · · · ⊗ Rnd can be expressed as:

A =
n1∑
i1=1

n2∑
i2=1

· · ·
nd∑
id=1

A(i1; · · · ; id)ei1 ⊗ ei2 ⊗ · · · ⊗ eid , (1.34)

where A(i1; · · · ; id) is the (i1, · · · , id)-th entry of A. The number of coefficients in the
example (1.34) clearly grows as O(nd), with n = max1≤k≤d {nk}. This exponential depen-
dency, known as the curse of dimensionality, poses a significant computational challenge.
Various decomposition techniques have been proposed over the years to alleviate this
challenge [68, 92]. These techniques aim to efficiently represent tensors through exact
or approximate decompositions involving tensors with lower dimensions than the original
tensor.

In the following, we first introduce a graphical representation of tensors which aims to
simplify tensor notations. We describe three main tensor decompositions: the canonical
decomposition (CP) decomposition, the Tucker decomposition, and the tensor train (TT)
decomposition. We highlight their distinctive computational aspects and discuss why the
TT decomposition is the most suitable when dealing with problems in high-dimensions,
thus the focal point of Chapters 3 and 4.

Graphical representation of tensors

It is useful to visualize tensors and tensor operations by employing tensor network dia-
grams using nodes and edges. Figure 1.5 illustrates tensor diagrams representing a vector
v ∈ Rn, a matrix M ∈ Rm×n and a 3-order tensor A ∈ Rm×n×l. Each of these objects
is represented by a node and one edge for each dimension along a specific mode. For
instance, as illustrated in Figure 1.5(a), the vector v ∈ Rn is represented by a node with
one edge labeled with n to denote the dimension along the first mode, which is n. Edges
connecting nodes represent the indices shared between tensors in a tensor contraction,
as illustrated in Figure 1.5(d). This figure illustrates the contraction product denoted as
A ×2 B of a tensor A ∈ Rn1×n2×n3 and a tensor B ∈ Rm1×m2×m3 , with n2 = m2. Fig-
ure 1.5(e) represents the SVD of a matrix of size m × n of rank r using the diagrams
where orthogonal matrices U ∈ Rn×r and V ∈ Rm×r are represented by half filled circles
and the diagonal matrix Σ ∈ U ∈ Rr×r by a white circle.

n
v

(a)

m n
M

(b)

n

m
l

A

(c)

n1 n2 = m2
A

n3

m1

m3

B

(d)

n r
U

r
Σ

m
V∗

(e)

Figure 1.5: Graphical representation of (a) a vector v ∈ Rn, (b) a matrix M ∈ Rm×n, (c) 3-
order tensorA ∈ Rm×n×l, (d) the contraction product between two tensors A ∈ Rn1×n2×n3

and B ∈ Rm1×m2×m3 with n2 = m2, and (e) the SVD of a matrix of size n×m and of rank
r.

CP and Tucker decomposition

The (CP) [46] and Tucker decomposition [125] can be seen as high-order extensions of the
SVD of matrices. Before delving into these decompositions, it is essential to establish the
following definition regarding tensor rank.
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Definition 16. (Simple tensor and tensor rank [68]) Let A ∈ Rn1×n2×···×nd be a d-order
tensor. A is a simple/rank-1 tensor if it is expressed as follows:

A = e1 ⊗ e2 · · · ⊗ ed. (1.35)

It follows that for a general d-order tensor T ∈ Rn1×n2×···×nd with rank r, the rank r is
defined as the minimum number of simple tensors needed to sum to generate T .

Definition 17. (CP decomposition) Let A ∈ Rn1×n2×···×nd be a d-order tensor. The
CP decomposition of A can be expressed as the linear decomposition involving r rank-1
(simple) tensors:

A =
r∑

i1=...=id=1
λrui1 ⊗ · · · ⊗ uid ,uik ∈ Rnk , (1.36)

where λr ∈ R and BRr = {uik , ik ∈ [r]} is the orthonormal basis of a subset of Rnk of size
r for each k ∈ [d]. The rank of the tensor A is denoted r.

The CP decomposition can also be expressed in terms of the contraction product as
follows:

A = ((C ×1 U2) ×2 U1) . . .×d Ud). (1.37)
Here, C ∈ Rr×...×r is a d-order tensor with nonzero elements solely on its super-diagonal,
i.e., C(i1; . . . ; id) = λr if i1 = . . . = id, and C(i1; . . . ; id) = 0, otherwise. Additionally, the
matrices Uk ∈ Rnk×r are defined such that Uk[:, ik] = uik for ik ∈ [r] and k ∈ [d]. The
graphical notation for the CP format is given in Figure 1.6.

n1

A

n2

n3

nd. . .
≈

n1 n3

r
r

n2

r

nd

r
. . .

Figure 1.6: Graphical representation of CP decomposition: the white circle represents the
super-diagonal tensor C ∈ Rr×...×r with super-diagonal elements λr.

Clearly the storage cost is reduced from O(nd) to O(ndr) with n = max
1≤k≤nk

{nk}, r
is the tensor rank and d is its order. For matrices, the best rank-r approximation is
often determined by analyzing the decay of singular values and selecting the leading ones
according to a threshold, by employing tSVD. However, this approach does not directly
extend to high-order tensors. Unlike matrices, high-order tensors exhibit a more complex
structure, and their best rank-r approximation is not always straightforward to find. For
example, in the sense of the CP decomposition, the best rank-r approximation is ill-posed.
This was exemplified in [68], where it was illustrated that a rank-3 tensor, i.e expressed
as a linear combination of 3 rank-1 tensors can be effectively approximated by a rank-2
tensor, i.e expressed as a linear combination of 2 rank-1 tensors. Further details can be
found in [68]. This difficulty can also be understood from a geometric viewpoint, where
the set of tensors with CP decomposition with tensor rank less than or equal to r is not
a closed set, in contrast to what is known for matrices, as indicated in Proposition 1.2.1
[68].

Definition 18. (Tucker decomposition) Let A ∈ Rn1×···×nd be a d-order tensor. The
Tucker decomposition of A can be expressed as:

A =
r1∑
i1=1

· · ·
rd∑
id=1

C(i1; · · · ; id)ui1 ⊗ · · · uid , (1.38)

where C ∈ Rr1×···×rd is a d-order tensor, also-called the core tensor, rk are the ranks of the
mode-k matricization of A denoted by A(k) and BRrk = {uik , ik ∈ [rk]} is the orthonormal
basis of a subspace of Rnk of dimension rk, for k ∈ [d].
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The Tucker decomposition can also be expressed in terms of the contraction product
as follows:

A = (C ×1 U1) ×2 U2) · · · ×d Ud), (1.39)
where Uk ∈ Rnk×rk are orthogonal matrices, referred to as the factor matrices, such that
Uk[:, ik] = uik , ik ∈ [rk] , k ∈ [d]. The graphical notation of the Tucker decomposition is
given in Figure 1.7.

n1

A

n2

n3

nd. . .
≈

n1 n3

r3
r1

n2

r2

nd

rd
. . .

Figure 1.7: Graphical representation of Tucker decomposition.

We observe that the storage cost of the Tucker decomposition can be smaller than
that of the original tensor. However, it still grows exponentially with the order of the
tensor d, resulting in a storage complexity of O(rd + dnr), with r = max

1≤k≤d
{rk} and

n = max
1≤k≤d

{nk}. The exponential growth primarily arises from the storage of the core
tensor in the Tucker decomposition, which makes this decomposition more efficient for
tensors with small orders d. Therefore, alternative decompositions have been proposed
to overcome the exponential scaling. One promising technique is the Tensor Train (TT)
decomposition, which will be the subject of Chapter 3 and Chapter 4. The TT decom-
position has emerged as an ideal choice for several applications, particularly in quantum
chemistry, where the Density Matrix Renormalization Group (DMRG) method, as will
be introduced in Section 1.3, can involve the manipulation of tensors with large orders d
to compute the ground-state, lowest energy, of a quantum many-body system.

Tensor train decomposition

The TT decomposition described in detail by Osledets [91, 92], is a powerful representation
that addresses the exponential scaling associated with high-order tensors. Originating as a
mathematical formulation of the Matrix Product States (MPS) in the physics community,
the TT decomposition gained widespread recognition following the introduction of the
DMRG algorithm pioneered by White [131]. The TT decomposition can be viewed as a
specific case of tensor networks and offers an elegant solution to efficiently handle high-
dimensional tensors.

At its core, the TT decomposition expresses a d-order tensor as a contraction product
of 2-order and 3-order tensors with reduced dimensions. This decomposition will be the
focal point of Chapters 3 and 4, due to its ability to tackle high-dimensional problems
effectively.

A TT decomposition of a tensor can be defined as follows:

Definition 19. (Tensor train decomposition [92]) Let A ∈ Rn1×···×nd be a d- order tensor.
The set (A1, · · · ,Ad) is said to be a tensor train decomposition of A, if A decomposes as:

A = A1 ×3 A2 ×3 · · · ×3 Ad−1 ×3 Ad, (1.40)

where Ak ∈ Rrk−1×nk×rk are the so-called TT-cores and rk are the TT-ranks with k ∈ {2, . . . , d− 1},
r0 = rd = 1 where A1 ∈ R1×n1×r1 and Ad ∈ Rrd−1×nd×1.

Alternatively, let Ak[ik] := Ak[:, ik, :] ∈ Rrk−1×rk , for fixed ik ∈ [nk], for each k ∈ [d].
The (i1, · · · , id)-th element of A is given as:

A(i1; . . . ; id) = A1[i1] · · · Ad[id]. (1.41)

Remark 1.2.1. (Minimal TT-rank [47]) The TT decomposition (A1, · · · ,Ad) of a d-
order tensor A ∈ Rn1×···×nd is said to be of minimal ranks , if all the TT-cores have full
left (resp. right) ranks, i.e for each k ∈ [d], the mode-(1:2) matricization of Ak denoted
by A<2>

k ∈ Rrk−1nk×rk is of rank rk. (resp. the mode-(1) matricization of Ak denoted by
A(1)
k ∈ Rrk−1×nkrk is of rank rk−1).
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The graphical representation of the TT decomposition is given as follows: each node
corresponds to a TT-core as denoted by Ak[ik] ∈ Rrk−1×rk , ik ∈ [nk] , k ∈ [d], edges
connecting nodes are labeled by the TT-ranks as denoted by rk, k ∈ [d], and edges without
connections are labeled by the dimension of the tensor along each mode as denoted by
nk, k ∈ [d] .

n1 n2 nd−1 nd

. . .
r1 r2 rd−1 rd

Figure 1.8: Graphical representation of a TT decomposition.

We next recall one of the main theorems of the TT decomposition which gives a way
to construct the TT decomposition of a given tensor of order d.

Theorem 1. ([91] Theorem 2.1) Let A ∈ Rn1×...×nd be a d-order tensor and let
A<k> ∈ R(n1...nk)×(nk+1...nd) be the mode-(1:k) matricization of A for k ∈ [d]. If for each k:

rank(A<k>) = rk, (1.42)

then there exists a TT decomposition of A of the form (1.40) with TT-ranks less or equal
to rk, k ∈ [d].

In order to obtain a TT decomposition of a given d-order tensor A ∈ Rn1×···×nd ,
the TT-SVD method is employed. The latter can be viewed as a sequential series of
SVDs on auxiliary matrices: Given the input tensor A, the tensor is first reshaped along
the first mode n1, resulting in an auxiliary matrix which is the mode-(1) matricization
of A denoted by B1 = A(1) ∈ Rn1×(

∏d

i=2 ni) with rank r1, then an SVD is performed
yielding the decomposition B1 = UΣV∗. The matrix U is then reshaped into the first
TT-core A1 ∈ R1×n1×r1 , where r1 is the TT-rank of the first TT-core and suppose that
r0 = 1. The product of matrices ΣV∗ ∈ Rr1×(

∏d

i=2 ni) is then reshaped into a new matrix
B2 ∈ Rr1n2×(

∏d

i=3 ni) assumed to be with rank r2. Another SVD is performed on that
matrix to extract the second TT-core, denoted by A2 ∈ Rr1×n2×r2 . This iterative process
continues, resulting in d TT-cores. Algorithm 1 provides a detailed description of the
TT-SVD method, for more details see [92].

In Algorithm 1, the Reshape function, a default function implemented in Julia or
MATLAB. It constructs an array with same entries but with different dimensions. The
syntax for the Reshape function is as follows:

Reshape(A, dims), (1.43)

where A is the data-structure (it can be a vector, matrix or a tensor) that we want to re-
shape and dims is a tuple specifying the desired dimensions of the reshaped array. For in-
stance, in line 7 of Algorithm 1, for k ∈ [d], the operation Reshape(U, (rk−1, nk, rk)) rep-
resents the tensor folding of U into a tensor of size rk−1 ×nk×rk. Similar operation is per-
formed in line 9. In line 8, the operation Bk+1 = Reshape(ΣV∗, (rknk+1,

n∏k+1
i=1 ni

)) corre-

sponds to representing the matrix ΣV∗ ∈ Rrk×(
∏d

i=k+1 ni) as a matrix Bk+1 ∈ R

(
rknk+1

)
×
(

n∏k+1
i=1 ni

)
.
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Algorithm 1 TT-SVD algorithm proposed by Osledets (see [92])
1: procedure TT-SVD(A) ▷ Input: Tensor A ∈ Rn1×···×nd .

2: r0 = 1, rd = 1, n =
d∏
i=1

ni.

3: Mode-1 matricization of A into the matrix A(1) ∈ Rn1×(
∏d

i=2 ni).
4: B1 = A(1) and r1 = rank(B1) ≤ min

{
n1,

d∏
i=2

ni

}
.

5: for k = 1 to d− 1 do

6: UΣV∗ = SVD(Bk) ▷ U ∈ Rrk−1nk×rk , Σ ∈ Rrk×rk , V ∈ R

(∏d

i=k+1 ni

)
×rk .

7: Ak = Reshape(U, (rk−1, nk, rk)).
8: Bk+1 = Reshape(ΣV∗, (rknk+1,

n∏k+1
i=1 ni

)).
9: end for

10: Ad = Reshape(Bd, (rd−1, nd, rd)).
11: return TT decomposition with TT-cores (A1, · · · ,Ad).
12: end procedure

Remark 1.2.2. It is worth mentioning that the TT decomposition is a special case of
the Hierarchical Tucker decomposition, which is a hierarchical tree-like decomposition, we
refer the reader to [37] for more details on this decomposition.

Remark 1.2.3. (Unicity of the TT decomposition [47]) The TT decomposition is not
unique. For a tensor A ∈ Rn1×···×nd in TT format, with TT-cores (A1, . . . ,Ad), there
exist square invertible matrices Uk ∈ Rrk×rk for k ∈ [d] such that

A(i1; · · · ; id) = A1[i1] · · · Ak[ik] · · · Ad[id] = B1[i1] . . .Bk[ik] · · · Bd[id], (1.44)

where
B1[i1] = A1[i1]U1,Bd[id] = U−1

d−1Ad[id],
Bk[ik] = U−1

k−1Ak[ik]Uk.
(1.45)

This results into another equivalent TT representation with new TT-cores.

In what follows, we present a definition of the concepts of left and right orthogonal-
ization in the context of the TT decomposition.

Definition 20. ([92]) Let A ∈ Rn1×···×nd be a d-order tensor and let (A1, · · · ,Ad) be its
TT decomposition according to Definition 19. The TT-cores are said to be left orthogonal
if the following is satisfied:

(A<2>
k )∗A<2>

k =
nk∑
ik=1

(Ak[ik])∗Ak[ik] = Irk
, (1.46)

where Ak[ik] := Ak[:, ik, :], and A<2>
k ∈ Rrk−1nk×rk is the mode-(1:2) matricization of the

TT-core Ak ∈ Rrk−1×nk×rk , for each k ∈ [d]. The TT-cores are said to be right orthogonal
if the following is satisfied:

A(1)
k (A(1)

k )∗ =
nk∑
ik=1

Ak[ik](Ak[ik])∗ = Irk−1 , (1.47)

where A(1)
k ∈ Rrk−1×nkrk is the mode-(1) matricization of the TT-core Ak ∈ Rrk−1×nk×rk ,

for each k ∈ [d].

Algorithm 1 yields a left-orthogonal TT decomposition. To obtain a right-orthogonal
TT decomposition, we can simply apply the same iterative procedure backward. One of
the benefits of achieving this orthogonalization is the simplified calculation of the tensor’s
norm. For a left (resp. right) orthogonal TT decomposition, the tensor’s norm can be
obtained simply from the last (resp. first) TT-core of the decomposition. To illustrate,
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let us consider a left-orthogonal TT decomposition (A1, · · · ,Ad) of the d-order tensor
A ∈ Rn1×···×nd . The Frobenius norm of A can be given as follows:

∥A∥2
F =

n1∑
i1=1

· · ·
nd∑
id=1

(A(i1; · · · ; id))2

=
n1∑
i1=1

· · ·
nd∑
id=1

(A1[i1]A2[i2] · · · Ad[id])2

=
n1∑
i1=1

· · ·
nd∑
id=1

(Ad[id]∗Ad−1[id−1]∗ · · · A1[i1]∗)(A1[i1]A2[i2] · · · Ad[id])

=
nd∑
id=1

Ad[id]∗Ad[id] = ∥Ad∥2
F .

(1.48)

Remark 1.2.4. ([47] Theorem 1) As highlighted in [47], a TT-SVD of a tensor A ∈ Rn1×···×nd

gives a TT-decomposition of minimal ranks, the orthogonalization helps with making the
TT decomposition unique up to orthogonal transformations, i.e let (A1, · · · ,Ad) be a TT
decomposition of the tensor A, then there exist orthogonal matrices Qk ∈ Rrk×rk such
that

A(i1; · · · ; id) = A1[i1] · · · Ak[ik] · · · Ad[id] = B1[i1] · · · Bk[ik] · · · Bd[id], (1.49)

where

B1[i1] = A1[i1]Q1, Bk[ik] = Q∗
k−1Ak[ik]Qk, and Bd[id] = Q∗

d−1Ad[id]. (1.50)

In the literature [26], this is commonly referred to as the reduction of the gauge freedom
in the TT representation.

In what follows, we review some of the important arithmetic operations that can be
performed among tensors in the TT-format.

Proposition 1.2.2. Let A and B ∈ Rn1×...×nd be two d-order tensors, with TT decompo-
sitions given by:

A(i1; . . . ; id) = A1[i1] . . .Ad[id], (1.51)
B(i1; . . . ; id) = B1[i1] . . .Bd[id]. (1.52)

with Ak[ik] ∈ Rr
A
k−1×rA

k ,Bk[ik] ∈ Rr
B
k−1×rB

k , k ∈ [d] and rA0 = rAd = rB0 = rBd = 1. The
following statements hold:

1. Addition of two tensor trains : the tensor C ∈ Rn1×...×nd defined as the addition
of two tensors, A and B in TT-format with TT-ranks (rA1 , . . . , rAd ), (rB1 , . . . , rBd ), has
a TT decomposition with TT-ranks (rA1 + rB1 , . . . , r

A
d + rBd ).

2. Multiplication by a scalar: the multiplication of a TT by a scalar keeps the
TT-ranks invariant.

Proof. 1. Let C ∈ Rn1×···×nd be the addition of two tensors A and B. Then we can
write C entry-wise as:

C(i1; · · · ; id) = A1[i1] . . . Ad[id] + B1[i1] . . . Bd[id]

=
[
A1[i1] B1[i1]

]
︸ ︷︷ ︸

∈R(rA
0 +rB

0 )×(rA
1 +rB

1 )

[
A2[i2] 0rA

1 ×rB
2

0rB
1 ×rA

2
B2[i2]

]
︸ ︷︷ ︸
∈R(rA

1 +rB
1 )×(rA

2 +rB
2 )

· · ·
[
Ad[id]
Bd[id]

]
.︸ ︷︷ ︸

∈R(rA
d−1+rB

d−1)×(rA
d

+rB
d )

(1.53)

This results into a TT with TT-ranks (rA1 + rB1 , . . . , r
A
d + rBd ) as required.

2. Let α ∈ R, the product B = αA is equivalent to scaling only one of the tensor cores
of the TT.

Ak =
{
αÃk, if k = 1
Ãk, if k > 1. (1.54)

This results into a TT with the same TT-ranks.
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Computational aspects and memory requirements

Let A ∈ Rn1×...×nd be a d-order tensor and let (A1, . . . ,Ad) be its TT decomposition,
with Ak ∈ Rrk−1×nk×rk , k ∈ [d] , r0 = rd = 1. It can readily be checked that the storage
cost of the TT decomposition is only O(dnr2) where r = max

1≤k≤d
{rk} and n = max

1≤k≤d
{nk}.

This implies that memory requirements increase linearly with the tensor order d [91] and
dimension n and quadratically with the TT-ranks, which is contrasted with the Tucker
decomposition described in Definition 18. Therefore, the TT decomposition becomes
advantageous for making computational costs affordable, especially when the TT-ranks
are bounded or small.

One significant limitation of the TT-format does arise during arithmetic operations,
such as the addition operation as described in Proposition 1.2.2, that tends to increase the
TT-ranks. To mitigate this issue, compression methods become crucial. As mentioned in
[91], it is possible to achieve an approximate TT decomposition with reduced TT-ranks
in comparison to the original TT decomposition. This can be achieved by performing
truncated SVD, at a given accuracy δ during each iteration, instead of the full SVD
as outlined in Algorithm 1. In this case, an error bound can be estimated. Given
Algorithm 1, suppose that instead of SVD, tSVD is performed at each iteration such
that the singular values of the auxiliary matrices are truncated at accuracy δ, the relative
error between the original tensor A and its approximation denoted by Aϵ is given by (see
[91]):

∥A − Aϵ∥F ≤
√
d− 1δ. (1.55)

Therefore, to obtain the relative accuracy ϵ for the approximated tensor Aϵ, one should
choose δ = ϵ∥A∥F√

d−1 .
Similarly to matrices, a geometric viewpoint on the set of TT with TT-ranks that are

bounded element-wise by r = (r1, . . . , rd), can also be found in the literature [47], where
the TT-SVD with tSVD plays the same role as SVD with truncation for matrices

Proposition 1.2.3 ([47]). The set of TT of TT-ranks at most r = (r1, . . . , rd) defined
as:

MTT≤r =
{
A ∈ Rn1×···×nd is a tensor of TT ranks ≤ r

}
, (1.56)

is a closed set.

The proof can be established by expressing the set as follows:

MTT≤r =
d−1⋂
k=1

{
A ∈ Rn1×···×nd , rank(A(1:k)) ≤ rk

}
. (1.57)

Since each set in the intersection is a closed set (as per Definition 1.2.1), it follows that
the set MTT≤r is also a closed set. This property is advantageous when compared to the
CP decomposition, as it ensures that every d-order tensor A ∈ Rn1×···×nd admits a best
approximation by a TT in MTT≤r.

Remark 1.2.5. [126] Similarly to the matrix case, the set of TT of TT-ranks at most
r = (r1, . . . , rd) as defined in Proposition 1.2.3, is an algebraic variety but not a smooth
manifold. Instead, the study of geometrical optimization methods is carried out on the
set of TT with fixed TT-ranks which is known to be a smooth manifold (see [126]).

In what follows, we will introduce another used algorithm to reduce the TT-ranks of
a tensor already given in TT-format. Such process is known as TT-rounding [92] and is
given in Algorithm 2. Let A ∈ Rn1×···×nd be a d-order tensor with a TT decomposition
(A1, · · · ,Ad) according to Definition 19. Algorithm 2 can be broken down into two
main steps: right to left orthogonalization and then left to right truncation. The right
to left orthogonalization step involves a sequence of LQ-decompositions2 of the mode-1
matricization of each TT-core denoted by A(1)

k ∈ Rrk−1×nkrk moving backward starting
from k = d until k = 2 . In the LQ-decomposition, the matrix is factored into the
product of a lower-triangular matrix L and an orthonormal matrix Q with orthonormal
rows. The triangular factor L is then applied to the preceding TT-core Ak−1. The left

2The LQ decomposition of a matrix is the QR decomposition of its transpose.
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to right truncation step employs a sequence of truncated SVDs applied to the mode-(1:2)
matricization of each TT-core denoted by A<2>

k ∈ Rrk−1nk×rk , k ∈ [d− 1]. The next TT-
core Ak+1 is then updated by multiplying it with the truncated singular values and right
singular vectors. The direction of these two steps can be reversed.

Algorithm 2 TT-rounding algorithm [92]
1: procedure TT-rounding(A, ϵ) ▷ Input: TT decomposition (A1, · · · ,Ad) with

TT-ranks rk, k ∈ [d], accuracy ϵ ∈ R+.
2: {right to left orthogonalization}.
3: for k = d to 2 do
4: L,Q = LQ(A(1)

k ), ▷ L ∈ Rrk−1×rk−1 ,Q ∈ Rrk−1×nkrk ,Q∗Q = I.
5: Ak = Reshape(Q, (rk−1, nk, rk)).
6: Ak−1 = Ak−1 ×3 L.
7: end for
8: Compute ∥A∥F = ∥A1∥F and δ = ϵ∥A1∥F√

d−1
9: {left to right truncation}

10: for k = 1 to d− 1 do
11: UΣV∗ = tSVD(A<2>

k , δ) ▷ U ∈ Rrk−1nk×rk , Σ ∈ Rrk×rk , V ∈ Rrk×rk .
12: Ak = Reshape(U, (rk−1, nk, rk)).
13: Ak+1 = (ΣV∗) ×2 Ak+1.
14: end for
15: return TT-cores (A1, · · · ,Ad) with reduced TT-ranks.
16: end procedure

Here, the term tSVD represents a function that takes a matrix and a specified threshold
δ as input. It uses this threshold to truncate singular values and provides the resulting
truncated decomposition, which serves as an approximation to the input matrix in line
10 of Algorithm 2.

In practice, the drawback of using TT-SVD is that we need to store the full ten-
sor A ∈ Rn1×···×nd in advance, which scales exponentially with its order d. Therefore, if
the tensor is already in TT-format, it is possible to reduce the TT-ranks using the TT-
rounding algorithm yielding an approximate TT decomposition with reduced ranks. The
latter is beneficial in reducing the computational cost when performing basic operations
involving tensors in TT-format. The computational complexity of the TT-rounding al-
gorithm is O(dnr3) [92], with r = max

1≤k≤d
{rk} and n = max

1≤k≤d
{nk}. This complexity is

obtained from the cost of applying the LQ and SVD operations on the matricization of
each TT-core Ak ∈ Rrk−1×nk×rk , k ∈ [n] which requires a computational complexity of
O(nr3).

1.2.4 High-dimensional eigenvalue problems
In this thesis, we address the problem of finding the smallest eigenvalue of a matrix, which
is a fundamental task intensively used in diverse scientific domains. The goal is to identify
the minimal eigenpair consisting of the smallest eigenvalue and its corresponding eigen-
function. This particular eigenpair holds significant importance in various applications,
including quantum chemistry (for more details, refer to Section 1.3).

Mathematically, we seek to reformulate the problem as follows: given a symmetric
square matrix A ∈ Rn×n, the eigenvalue problem can be given as follows:

Ax = λx,x ̸= 0, λ ∈ R. (1.58)

Equation (1.58) can equivalently correspond to finding the stationary points of the func-
tional RA : Rn\0 → R such that

RA(x) = 1
2

⟨Ax,x⟩
⟨x,x⟩

, (1.59)

where RA(x) is the Rayleigh quotient. Finding the smallest eigenvalue from the Equation
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(1.58) corresponds to minimizing the Rayleigh quotient over x ∈ Rn.

λmin = min
x∈Rn,x ̸=0

1
2

⟨Ax,x⟩
⟨x,x⟩︸ ︷︷ ︸
RA(x)

. (1.60)

Over the years, substantial efforts have been dedicated to solving this problem, employing
diverse approaches: classical direct methods such as calculating the roots of the character-
istic polynomial or iterative methods such as the inverse power method, Krylov subspace
methods. [101]. However, despite their effectiveness, these methods are inherently limited
by the dimensionality of the problem.

To render the problem tractable, instead of minimizing over the entire space, the
minimization is performed over the manifold of tensors represented in the TT-format
with bounded TT-ranks as defined in Definition 1.2.3. This idea originates from DMRG
method in the context of quantum chemistry, which uses Matrix Product States (MPS)
representations, (see Section 1.3). This means that one can interpret the problem as the
following modified minimization problem: assuming that x can be viewed as a tensor
denoted by X ∈ Rn1×...×nd , with n = ∏d

i=1 ni and with a TT decomposition with TT-rank
at most equal to r = (r1, . . . , rd), then:

λmin = min
X ∈MTT≤r ,X ̸=0

1
2

⟨A vec(X ), vec(X )⟩
⟨vec(X ), vec(X )⟩ , (1.61)

with vec(X ) ∈ Rn1...nd being the vectorization of the tensor X . While solving (1.61) has
existed in the physics community since the work of White [17], its formulation in the
mathematical literature in the context of tensor trains is done by researchers from the nu-
merical linear algebra, in particular Holtz, Rohwedder, Schneider and Uschmajew [47, 48].
They proposed the terminologies of ALS (Alternating Least Squares) and MALS (Mod-
ified Alternating Least Squares) for solving the eigenvalue problem using tensors in the
TT-format. This modified minimization problem is the one used in the following section
which focuses on the eigenvalues of the Hamiltonian operator in quantum chemistry.

1.3 High-dimensional problems arising in quantum
chemistry

1.3.1 Introduction
As mentioned previously, our primary focus in this thesis is tackling high-dimensional
problems that arise in quantum chemistry. The upcoming section provides the motiva-
tion behind introducing the concept of matrices and tensors, along with their low-rank ap-
proximation techniques, particularly in the context of high-dimensional problems. As part
of the Extreme-Scale Mathematically-based Computational Chemistry (EMC2) project,
we engaged in insightful discussions with chemists to explore how the ideas introduced
in the previous section could be beneficial to speed up some applications in molecular
simulations.

Our work focuses on two key applications. The first application revolves around ap-
proximating the long-range two-electron integrals 4-th order tensor, discussed in Chap-
ter 2. The second application, extensively discussed in Chapter 3 and Chapter 4, centers
around the efficient TT representation of the Hamiltonian operator and how it is employed
in DMRG method to evaluate the ground-state energy of a given molecular system. Both
applications involve the use of tensors, low-rank approximation techniques and symme-
tries.

1.3.2 Many-body electronic Schrödinger equation
The Schrödinger equation is a fundamental equation in quantum mechanics that de-
scribes the quantum state of a physical system. Consider a molecule with N electrons
at position x = (x1,x2, . . . ,xN) ∈ R3N , xi = (xi, yi, zi) and with discrete spin-variable3

3The spin-variable is one of the four non-relativistic coordinates of electrons (the other three are the
spatial position). The latter can be spin up, 1

2 , or spin down, −1
2 .
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si ∈
{
±1

2

}
, i ∈ [N ] and M nuclei at position r = (r1, r2, . . . , rM) ∈ R3M . Under the

Born–Oppenheimer [1] approximation, since the nuclei are much heavier than the elec-
trons, these behave like classical particles whereas electrons are treated quantumly. The
electronic properties of the molecule can be inferred from the spectrum of the electronic
Hamiltonian operator Ĥ given by:

Ĥ =
N∑
i=1

−1
2∆i −

M∑
k=1,k ̸=i

Zk
∥xi − rk∥

+ 1
2

N∑
j=1,j ̸=i

1
∥xi − xj∥

 , (1.62)

where ∆i denotes the Laplacian operator with respect to the i-th spatial coordinate xi

and Zk > 0 denotes the nuclear charges. The first term in (1.62) is the kinetic energy, the
second term corresponds to the Coulomb interaction with the nuclei and the last term is
the electron-electron Coulomb repulsion.

The ground-state denoted by Ψ is then the eigenfunction associated to the lowest
eigenvalue of Ĥ denoted by E0 and referred to as the ground-state energy. The eigenvalue
equation is given by [39]:

ĤΨ = E0Ψ. (1.63)

Remark 1.3.1. In the literature, the eigenfunctions of the Hamiltonian operator are
commonly referred to as the wavefunctions.

The function Ψ is a multivariable function and is defined by the following mapping
[105]:

Ψ :
(

R3 ⊗
{

±1
2

})N
→ C, Ψ (x1, s1, . . . ,xN , sN) , (1.64)

where Ψ belongs to the Hilbert space L2(R3 ⊗
{
±1

2

}
), which is the function space of square

integrable functions, with L2-inner product:

⟨Ψ1,Ψ2⟩L2 =
∑

sk=± 1
2

∫
R3N

Ψ1 (x1, s1, . . . ,xN , sN)Ψ2 (x1, s1, . . . ,xN , sN) dx1 . . . dxN ,

(1.65)
with Ψ1,Ψ2 ∈ L2(R3 ⊗

{
±1

2

}
) and Ψ1 (x1, s1, . . . ,xN , sN) denoting the conjugate of the

complex value Ψ1 (x1, s1, . . . ,xN , sN). The wavefunction must obey the Pauli exclusion
principle [39] such that

Ψ (x1, s1, . . . ,xi, si, . . . ,xj, sj, . . . ,xN , sN) = −Ψ (x1, s1, . . . ,xj, sj, . . . ,xi, si, . . . ,xN , sN) .
(1.66)

It follows that Ψ belongs to the antisymmetric tensor subspace denoted by ∧Ni=1 L
2(R3 ⊗

{
±1

2

}
)

which can be defined as follows:
N∧
i=1

L2(R3 ⊗
{

±1
2

}
)

=
{

Ψ ∈ L2(
(

R3 ⊗
{

±1
2

})N
) : Ψ (x1, s1, . . . , xi, si, . . . , xj , sj , . . . , xN , sN ) =

− Ψ (x1, s1, . . . , xj , sj , . . . , xi, si, . . . , xN , sN )
}

.

(1.67)

The Hamiltonian operator Ĥ is a self-adjoint operator acting on the Hilbert space∧N
i=1 L

2(R3 ⊗
{
±1

2

}
). Without going into details we refer readers to [98] for a comprehen-

sive analysis and insights into the properties of this operator.
The Equation (1.63) can be seen as a linear eigenvalue equation, which becomes nu-

merically intractable with standard discretization schemes as soon as we deal with more
than a few electrons. This is again the so-called curse of dimensionality. By Rayleigh-Ritz
principle, the search of the lowest eigenvalue can be recasted into the following minimiza-
tion problem:

E0 = min
{〈

Ψ, ĤΨ
〉
, ∥Ψ ∥L2 = 1,Ψ ∈ VN

}
, (1.68)

where the solution Ψ must be restricted to the so-called variational space VN , on which
Ψ is minimized, defined by (see [98, 105] for more details):

VN = H1
((

R3 ⊗
{

±1
2

})N)
∩

N∧
i=1

L2
(

R3 ⊗
{

±1
2

})
, (1.69)

19



where H1
((

R3 ⊗
{
±1

2

})N)
refers to the Sobolev space defined as the function space of

all first derivatives belonging to L2
((

R3 ⊗
{
±1

2

})N)
.

A standard way to solve the problem (1.68), is by approximating the wavefunction Ψ
as the product of separable functions, i.e tensor product wise, and by taking into account
the antisymmetry constraint, as described in Equation (1.66). An ideal candidate is the
Slater determinant. Consider a finite-dimensional subspace of VN , with dimension d with
d ≥ 2N , with the following basis:

Bd :=
{
φil(xl, sl) ∈ H1

(
R3 ⊗

{
±1

2

})
, il ∈ [d] , l ∈ [N ]

}
, (1.70)

where the functions φil are L2-orthonormal.

Remark 1.3.2. In quantum chemistry, φil might be referred to as the single-site basis
functions. They are commonly referred to as the spin-orbital basis since they depend on
spatial coordinates xil ∈ R3 and the spin-variable s = ±1

2 .

We define the Slater determinant of N -particles by the following basis functions [105]:

Φ[i1,...,iN ](x1, s1, · · · ,xi, si, · · · ,xj, sj, · · · ,xN , sN)

= 1√
N !
det


φi1 (x1, s1) φi2 (x1, s1) · · · φiN (x1, s1)
φi1 (x2, s2) φi2 (x2, s2) · · · φiN (x2, s2)

... ... . . . ...
φi1 (xN , sN) φi2 (xNsN) · · · φiN (xN , sN)


= 1√

N !
det (φil (xj, sj))Nl,j=1 ,

(1.71)

Example 1.3.1. For N = 2, with N being the number of electrons. The Slater deter-
minant of 2-particles in terms of two orthonormal functions φ1, φ2 ∈ H1

(
R3 ⊗

{
±1

2

})
is:

Φ[1,2](x1, s1,x2, s2) = 1√
2
det

(
φ1 (x1, s1) φ2 (x1, s1)
φ1 (x2, s2) φ2 (x2, s2)

)
= φ1 (x1, s1)φ2 (x2, s2) − φ1 (x2, s2)φ2 (x1, s1) .

(1.72)

It can be verified that Φ[1,2](x1, s1,x2, s2) satisfies the antisymmetry constraint defined in
(1.66).

Now, we regard these Slater determinants as the basis functions spanning a finite-
dimensional space known as the Full Configuration Interaction (FCI) space, denoted by
Vd
N , and defined as: let d be the number of single-site basis functions φil , il ∈ [d] , l ∈ [N ]

where N is the number of electrons. Let Vd
N be defined as:

Vd
N := Span

{
Φ[i1,...,iN ](x1, s1, . . . ,xi, si, . . . ,xN , sN)

∣∣∣1 ≤ i1 < · · · < iN ≤ d,xk ∈ R3, sk ∈
{

±1
2

}
k ∈ [d]

}
.

(1.73)
It can be seen that

Vd
N ⊂ VN . (1.74)

Typically, the solution to Equation (1.68), denoted as Ψ0, is approximated by confining
the space VN to a subspace Vd

N . This specific solution, denoted as Ψ0 ∈ Vd
N , is commonly

known as the FCI solution. It follows that Ψ0 can be expressed as a linear combination
of Slater determinants as follows:

Ψ0 =
∑

1≤i1<···<iN ≤d
Ci1...iN Φ[i1,...,iN ], (1.75)

with Ci1...iN ∈ R being the coefficients of this linear combination.

Remark 1.3.3. The representation of the wavefunction through a single Slater determi-
nant, i.e., a function of the form described in Equation (1.71), is the so-called discrete
Hartree Fock (HF) approximation, and the HF energy is the energy obtained by solving
the minimization problem (1.68) over this single Slater determinant term.
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For an N-electron system, the dimension of the space Vd
N can be understood as the

number of possible configurations the system can exhibit in a d-dimensional space. This
dimension is given by the binomial coefficient:

dim(Vd
N) =

(
d
N

)
= d!
N !(d−N)! , (1.76)

which signifies the various ways N electrons can be arranged among d single-site basis
functions. As the number of electrons N increases, this dimension grows rapidly, approx-
imately as O

(
dN
)
. Hence, effective approximation techniques become essential to render

the problem tractable. A clever approach relies on parameterizing the coefficients in the
linear combination presented in Equation (1.75) within second-quantization formalism.
The second-quantization and this parameterization are detailed in Section 1.3.4. Then,
by employing the Density Matrix Renormalization Group (DMRG) method, based on the
tensor factorization of the newly parameterized coefficients, an approximate solution is
obtained. The latter will also be described in Section 1.3.4.

1.3.3 Two-electron integrals tensor
Let N be the number of electrons, one can write the Hamiltonian operator as the sum of
one-electron operator and two-electron operator as:

Ĥ = −
N∑
i=1

h(xi) + 1
2

N∑
i=1

N∑
j=1,j ̸=i

K(xi,xj), (1.77)

where h(xi),xi ∈ R3,i ∈ [N ] is the so-called one-electron operator defined as:

h(xi) = 1
2∆i +

M∑
k=1

Zk
∥xi − rk∥

, (1.78)

and K(xi,xj),xi,xj ∈ R3, i, j ∈ [N ] is the so-called two-electron operator defined as:

K(xi,yj) = 1∥∥∥xi − yj
∥∥∥ . (1.79)

Let d be the number of Slater determinant basis functions as defined in Equation (1.71)
that span the finite-dimensional variational space Vd

N as defined in Equation (1.73). Let
H be the matrix representation of the Hamiltonian operator Ĥ within the basis of Vd

N

spanned by the Slater determinants defined in (1.71). Then the entries of the matrix
representation of the Hamiltonian operator denoted by H(µ, ν) is defined as:

H(µ, ν) =
〈
Φµ, ĤΦν

〉
L2

= −
〈

Φµ,
N∑
i=1

h(xi)Φν

〉
L2

+ 1
2

〈
Φµ,

N∑
i=1

N∑
j=1,j ̸=i

K(xi,xj)Φν

〉
L2

,
(1.80)

where µ := [i1, . . . , iN ] and ν := [j1, . . . , jN ], il ∈ [d] , l ∈ [N ]. The evaluation of the L2-
inner products in (1.80) can be obtained by the Slater-Condon Rules [117]. These rules

show that the first term in (1.80),
〈

Φµ,
N∑
i=1

h(xi)Φν

〉
L2

, is written in terms of the so-called

one-electron integrals and the second term
〈

Φµ,
N∑
i=1

N∑
j=1,j ̸=i

K(xi,xj)Φν

〉
L2

is written in

terms of the so-called two-electron integrals. These integrals are defined in Equations
(1.81) and (1.82) where {φil}il∈[d],l∈[N ] are the single-site basis functions defined in Equa-
tion (1.70). We refer the reader to [117] for more details about the calculations of these
inner products.

The one-electron integrals obtained from the Slater-Condon rules are defined as:

hi1j1 =
∑

s1=± 1
2

∫
R3
φi1 (x1, s1)h(x1)φj1 (x1, s1) dx1. (1.81)
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The two-electron integrals obtained from the Slater Condon rules are defined as:

vi1j1i2j2 =
∑

s1,s2=± 1
2

∫
R3
φi1 (x1, s1)φi2 (x2, s2)K(x1,x2)φj1 (x1, s1)φj2 (x2, s2) dx1 dx2,

(1.82)
where i1, i2, j1, j2 ∈ [d]. The order of the indices i1, j1, i2, j2 in (1.82) follows Mulliken’s
convention [44], i.e the indices i1, j1 label the single-site basis functions with variables
(x1, s1) and the indices i2, j2 label the single-site basis functions with variables (x2, s2).

Remark 1.3.4. (Spatial-orbital basis functions [118]) The single-site basis functions
φil(xl, sl), il ∈ [d], sl = ±1

2 , also referred to as the spin-orbital basis, are commonly written
as the product of separable functions. For l ∈ [N ], one function in H1(R3) depends on the
spatial coordinate xl ∈ R3 while the other function depends on the spin sl = ±1

2 . Suppose
that d is even, let us define the orthonormal basis set

{
ϕil(xl) ∈ H1(R3), il ∈

[
d
2

]
, l ∈ [N ]

}
such that [118], for each spatial-orbital of the form ϕil(xl), there are 2 spin-orbitals of the
form φil(xl,

1
2) and φil(xl,

−1
2 ) and the following holds:

φ2il(xl, sl) = ϕil(xl)η+(sl), η+(sl) =
1, if sl = 1

2 ,

0, otherwise,

φ2il−1(xl, sl) = ϕil(xl)η−(sl), η−(sl) =
1, if sl = −1

2 ,

0, otherwise.

(1.83)

Hence, from d
2 spatial-orbital basis functions ϕil , il ∈

[
d
2

]
, a set of d spin-orbital basis

functions φil , il ∈ [d] can be formed. To ensure clarity and prevent confusion, moving
forward, when referring to the number of orbitals, we will be using the number of spin-
orbital basis functions denoted as d which is supposed to be even. Consequently, the
number of spatial orbitals, denoted as dspatial, is defined as half the number of spin-orbitals,
i.e., dspatial = d

2 .

According to Remark 1.3.4 and in the interest of practicality and simplification, it
is common to overlook the spin indices denoted by s1, s2 in the Equations (1.81) and
(1.82) when dealing with integrals. This can be justified as follows: we define hĩ1,j̃1 for
ĩ1, j̃1 ∈ [dspatial] as follows:

hĩ1,j̃1 = h2i1,2j1 + h2i1−1,2j1 + h2i1,2j1−1 + h2i1−1,2j1−1, i1, j1 ∈ [d] . (1.84)

According to Equations (1.83), we have h2i1−1,2j1 = h2i1,2j1−1 = 0. This yields:

hĩ1,j̃1 = h2i1,2j1 + h2i1−1,2j1−1

= 2
∫

R3
ϕĩ1 (x1)h(x1)ϕj̃1 (x1) dx1, ĩ1, j̃1 ∈ [dspatial] .

(1.85)

Note here that the one-electron integrals hĩ1,j̃1 do not depend on the spin-variable s1 = ±1
2 ,

i.e the indices s1 are dropped. However, for each couple of indices ĩ1, j̃1 ∈ [dspatial], we
need two one-electron integrals of the form

∫
R3 ϕĩ1 (x1)h(x1)ϕj̃1 (x1) dx1. In a similar

way, we employ a comparable approach to handle the two-electron integrals outlined in
Equation (1.82). This adaptation allows us to work within the space of d spatial basis
functions, specifically within H1(R3). Consequently, the modified form of the integrals
can be expressed as follows, for i1, j1, i2, j2 ∈ [d]:

hi1j1 =
∫

R3
ϕi1(x)h(x)ϕj1(x)dx, (1.86)

and

vi1j1i2j2 =
∫

R3

∫
R3
ϕi1 (x1)ϕi2 (x2)K(x1,x2)ϕj1 (x1)ϕj2 (x2) dx1 dx2, (1.87)

with ϕ2l−1(x) = ϕ2l(x), l ∈
[
d
2

]
. Given integration rules, these integrals exhibit symmetry

properties given as follows:
hi1j1 = hj1i1 , (1.88)
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and

vi1j1i2j2 = vi2j2i1j1 = vi2j2j1i1 = vj2i2j1i1 = vj2i2i1j1 = vi1j1j2i2 = vj1i1j2i2 = vj1i1i2j2 . (1.89)

To simplify the mathematical treatment of spatial-orbital basis functions, commonly
known as molecular orbitals, in many quantum chemistry methods, the representation of
these functions are expanded over alternative basis functions. LetBg = {gµ(x) ∈ H1 (R3) , µ ∈ [Nb]}
be a finite-dimensional basis of dimension Nb. The basis functions ϕi, i ∈ [d], are repre-
sented as follows:

ϕi(x) =
Nb∑
µ=1

Cµigµ(x), i ∈ [d] ,x ∈ R3, (1.90)

where Cµi ∈ R represent the expansion coefficients of the spatial basis functions.
Remark 1.3.5. In the literature [117], Equation (1.90) corresponds to the so-called Linear
Combination of Atomic Orbitals (LCAO) theory, where gµ, µ ∈ [Nb] function are referred
to as the atomic orbitals.

Plugging the expansion (1.90) in the Equation (1.87) yields the so-called two-electron
integrals corresponding to the finite-basis {gµ}1≤µ≤Nb

, gµ ∈ H1 (R3):

Bµνκλ =
∫

R3

∫
R3

gµ(x)gν(x)gκ(y)gλ(y)
∥x − y∥

dxdy, with µ, ν, κ, λ ∈ [Nb] . (1.91)

The choice of the basis is restricted by the analytic integrability and required accuracy
for an efficient computation of these integrals. In literature [84], the basis set commonly
used are Slater type functions or Cartesian Gaussian type functions. The Slater type
functions are characterised by quantum numbers[1], i.e set of parameters that describe
various properties of electrons, denoted by n, l,m and exponents ζ. Slater type functions
are of the form:

fnlm(x, θ, ϕ) = (x − r)n−1e−ζ∥x−r∥Y m
l (θ, ϕ),x, r ∈ R3, (1.92)

where every µ number corresponds to specific quantum numbers (n, l,m), x is the position
of the electron, Y m

l (θ, ϕ) are the spherical harmonic functions defined on the spherical
angular coordinates θ and ϕ, and r refers to the coordinates of the atom nucleus that
is fixed and known in practice. On the other hand, cartesian Gaussian type functions,
also-called primitive Gaussian type functions are of the form:

fµ(x) =
3∏
l=1

(xl − rl)pµ(l)e−αµ∥(xl−rl)∥2
, xl, rl ∈ R, µ ∈ [Nb] , (1.93)

where the exponent αµ is a parameter whose reference value is found, for instance, in [94]
and pµ is a vector with three coordinates which are exponents depending on the chosen
basis function, i.e value of µ, see example 1.3.2.
Example 1.3.2. Let us consider the electronic configurations of two example molecules:
water (H2 O) and Di-Hydrogen (H2) as depicted in Figure 1.9.

Figure 1.9: Electronic configurations of Water molecule as well as Di-Hydrogen molecule
[58].
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For the water molecule, each Hydrogen atom has one s atomic orbital denoted by 1s,
while the Oxygen atom has 5 atomic orbitals: two s atomic orbitals denoted by 1s, 2s and
three atomic orbitals px, py, pz denoted by 2px, 2py, 2pz. For the Di-Hydrogen molecule,
each Hydrogen atom has one s atomic orbital denoted by 1s. Relating this example to
the index µ and pµ: each µ corresponds to an atomic orbital. If µ corresponds to s,
then pµ = (0, 0, 0); if µ corresponds to px, then pµ=(1,0,0); if µ corresponds to py, then
pµ=(0,1,0); and if µ corresponds to pz, then pµ=(0,0,1). Overall, the tuple values pµ for
µ ∈ [Nb] depend on the electronic configuration of the selected molecule. Each µ can be
associated to a specific atomic orbital within the constituent atoms of the molecule.

The analytical properties of Gaussian-type basis functions make them the dominant
choice in many molecular quantum chemistry methods. Indeed, the computation of inte-
grals (1.87) is simple when employing Gaussian-type functions, in contrast to Slater-type
functions. The difficulties in employing Slater-type functions arise when attempting to
efficiently compute the product of two such functions situated on distinct nucleus centers.
Furthermore, a common practice involves the linear combination of multiple Gaussian-
type functions to fulfill the cusp condition (discontinuous derivative) at x = r, with x
being the position of electrons and r being the coordinates of the atom nucleus, we refer
the interested reader to [34] for a more comprehensive understanding of the choice of the
basis functions. It follows that each gµ function is expressed as a linear combination of
primitive Gaussian functions, defined in (1.93). This results into the following expansion
of the basis functions {gµ}1≤µ≤Nb

, gµ ∈ H1 (R3):

gµ(x) =
Iµ∑
j=1

cjf
(j)
µ (x), Iµ ∈ N,x ∈ R3, (1.94)

where f (j)
µ corresponds to the j-th primitive Gaussian function, as defined in Equa-

tion (1.93), cj ∈ R are the expansion coefficients and Iµ is the number of primitive
Gaussians used in the linear combination.

Once the type of the basis functions is decided, an additional consideration is the
number of basis functions {gµ}1≤µ≤Nb

, Nb. This typically depends on the choice of the
basis set as exemplified in the Table 1.1 for the molecule H2 O. Indeed, the accurate
description of the basis functions gµ(x) depends on the choice of expansion coefficients
and exponents which defines the so-called basis set. We refer the reader to [45] for more
details and explanations of Gaussian basis sets for molecular simulations.

Basis set STO-3G 6-311G CC-PVDZ
Nb 7 19 25

Table 1.1: Example: total number of basis functions of molecules vs choice of basis [94].

Now, back to Equation (1.91), the latter represents six-dimensional integrals which
constitute the entries of a 4-th order tensor, referred to as B, such as B(µ; ν;κ;λ) := Bµνκλ,
with µ, ν, κ, λ ∈ [Nb]. This tensor has O(N4

b ) entries with Nb being the number of basis
functions {gµ}1≤µ≤Nb

. Considerable efforts have been devoted to minimize the cost of the
integrals evaluation which is a challenging computational problem as they are at the core
of many quantum chemistry calculations. Note that computing this tensor requires the
evaluation of O(N4

b ) six-dimensional integrals that are singular due to the presence of the
Coulomb potential, or the two-electron operator 1

∥x−y∥ and where Nb increases drastically
with the molecular system size and the choice of the basis set, Nb = O(dspatial), with
dspatial being the number of spatial-orbital basis functions.

Numerous studies can be found in existing literature, covering both analytical and
numerical methods to calculate these integrals, as outlined in Chapter 2. One of these
methods involves employing a regularization technique through the range separation of the
two-electron operator described in Equation (1.79). This operator, which is also-called the
Coulomb potential, is split into a smooth long range-part and a singular short-range part.
The range separation technique and the efficient numerical evaluation of the resulting
long-range two-electron integrals will be the focal point and one of the main contributions
of the Chapter 2.
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Finally, let us point out that computing the integrals consists in one of the first com-
putational steps within numerous quantum chemistry approaches for the search of the
ground-state and the corresponding ground-state energy. Among these methods, in what
follows, we review the DMRG approach, a well known approach to numerically approxi-
mate the eigenfunction of the Hamiltonian operator associated to the lowest eigenvalue.

1.3.4 Density Matrix Renormalization Group (DMRG)
As discussed in Section 1.3, the pioneering DMRG approach introduced by White [131]
in 1992 and later rediscussed in the mathematical community under the name of MALS
method [48], a modification of ALS, is a powerful optimization technique for tackling high-
dimensional linear systems or eigenvalue problems. Further details about this method and
its various applications can be found in [48, 106, 118, 127, 131].

In the physics and chemistry community, the DMRG approach finds significant appli-
cation in finding the ground-states of Hamiltonians of quantum many-body systems. As
already discussed in Section 1.2.4, this is achieved through the reformulation of the linear
eigenvalue problem as the minimization of a Rayleigh quotient, given as:

RH(Ψ) = ⟨Ψ,HΨ⟩
⟨Ψ,Ψ⟩

. (1.95)

Here, Ψ ∈ Rn1...nd represents the eigenfunction, which is a vector of dimension n = ∏d
i=1 ni,

d ∈ N, and H ∈ R(n1...nd)×(n1...nd) denotes the symmetric matrix that represents the Hamil-
tonian operator, in the context of the second quantization formalism. We now explain
the rudiments of the second quantization approach.

Discrete Fock space and second quantization

Let N be the number of electrons, and let d be the number of Slater determinants spanning
the finite-dimensional variational space Vd

N (also-called the FCI space). This space is
defined as follows (see Equation (1.73)):

Vd
N := Span

{
Φ[i1,...,iN ](x1, s1, . . . ,xi, si, . . . ,xN , sN)

∣∣∣1 ≤ i1 < · · · < iN ≤ d, sk ∈
{

±1
2

}
, k ∈ [N ]

}
,

(1.96)
with Φ[i1,...,iN ] being the Slater determinant basis functions defined in Equation (1.71) for
ik ∈ [d] , k ∈ [N ]. Then, we define the discrete Fock space Fd as:

Fd :=
d⊕

N=0
Vd
N , (1.97)

The discrete Fock space is defined as the direct sum of subspaces Vd
N (larger than the

FCI space ). The dimension of the Fock space is:

dim(Fd) =
d∑

N=0
dim(Vd

N) =
d∑

N=0

(
d

N

)
= 2d. (1.98)

For all Ψ,Φ ∈ Fd, the discrete Fock space is a Hilbert space equipped with the following
inner product:

⟨Ψ,Φ⟩Fd
=

d∑
k=0

⟨Ψk,Φk⟩L2 , Ψ =
d⊕

N=0
ΨN ,Φ =

d⊕
N=0

ΦN ,ΨN ,ΦN ∈ Vd
N . (1.99)

It is important to discuss the alternative representation of the elements within the Fock
space, i.e Slater determinants. Note that a clever way to obtain a simpler represen-
tation of Slater determinants Φ[i1,...,iN ], il ∈ [d], l ∈ [N ], is to use binary labeling
(ξ1, . . . , ξd) ∈ {0, 1}d as explained in the following definition.

Definition 21. (Occupation number representation [118]) Consider a binary tuple (ξ1, . . . , ξd)
where ξi ∈ {0, 1} for i ∈ [d], representing the presence or absence of spin-orbital basis
functions φi in the Slater determinant function Φ[i1,...,iN ]. If ξi = 1, we designate the or-
bital φi, as defined in (1.70), as occupied in the Slater determinant. Conversely, if ξi = 0,
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we indicate that the orbital φi is unoccupied in the Slater determinant. The notation
used is:

Φξ1...ξd
:= Φ[i1,...,iN ], ξi ∈ {0, 1} , i ∈ [d] . (1.100)

Furthermore, for any eigenfunction Ψ ∈ Fd, Ψ can be expressed as:

Ψ =
∑

ξ1...ξd∈{0,1}d

Ψξ1...ξd
Φξ1...ξd

, (1.101)

with Ψξ1...ξd
∈ R being the coefficients of the expansion over the new representation of the

Slater determinants basis functions.

Let ΨN ∈ Vd
N be an N -electron eigenfunction, following the previously defined expres-

sion of ΨN in Equation (1.75), as:

ΨN =
∑

1≤i1<···<iN ≤d
Ci1...iN Φ[i1,...,iN ], (1.102)

where Ci1...iN ∈ R, il ∈ [d] , l ∈ [N ]. Following Definition 21, ΨN can be associated to the
new representation of the eigenfunction as follows:

ΨN :=
∑

ξ1...ξd∈{0,1}d

Ψξ1...ξd
Φξ1...ξd

, (1.103)

with

Ψξ1...ξd
=
{

0 if ∑d
i=1 ξi ̸= N,

Ci1...iN if ξi = 1 when i ∈ {i1, . . . , iN} , i1 < . . . < iN .
(1.104)

We note that by the normalization of ΨN , we have:∑
ξ1...ξd∈{0,1}d

|Ψξ1...ξd
|2 = 1. (1.105)

To make this more concrete, we consider the following example.

Example 1.3.3. Let us consider a 2-electron eigenfunction, N = 2, expanded on 6 Slater
determinant basis functions, d = 4, such that

Ψ2 =
∑

1≤i1<i2≤4
Ci1i2Φ[i1,i2]

= C12Φ[12] + C13Φ[13] + C23Φ[23] + C14Φ[14] + C24Φ[24] + C34Φ[34].
(1.106)

The first term in Equation (1.106), represented as Φ[12], signifies the occupation of only
the spin-orbitals φ1 and φ2, with φ3 and φ4 remaining unoccupied, given that d = 4.
Following the Definition 21, Φ[12] is associated to Φ1100. The same reasoning applies for
the remaining terms, leading to the subsequent equivalent expression:

Ψ2 := Ψ1100Φ1100 +Ψ1010Φ1010 +Ψ0110Φ0110 +Ψ1001Φ1001 +Ψ0101Φ0101 +Ψ0011Φ0011. (1.107)

With this new parameterization of Slater determinant basis functions, as defined in
Definition 21, one can perform transformations on these basis functions by adjusting their
occupation numbers. Through these transformations, it becomes possible to transition
from the space Vd

N to Vd
N+1 using the creation operator and from Vd

N to Vd
N−1 using the

annihilation operator. We define now these operators as follows:

Definition 22. (Creation and annihilation operators [118]) Let N be the number of
electrons, let Vd

N be the finite-dimensional variational space as defined in (1.96), spanned
by d Slater determinant basis function. Using the occupation number representation,
see Definition 21, for a single Slater determinant basis functions, Φξ1...ξd

∈ Vd
N , ξl ∈

{0, 1} , l ∈ [d], we define the annihilation operator, denoted by ai : Vd
N → Vd

N−1, i ∈ [d],
as the operator acting on Φξ1...ξd

∈ Vd
N such that the following holds:

aiΦξ1,...,ξd
:=
{

0 if ξi = 0
(−1)ℓi−(i−1)Φξ1,...,ξi−1,...,ξd

otherwise.
(1.108)
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We define the creation operator, denoted by a∗
i : Vd

N → Vd
N+1, i ∈ [d], as the operator

acting on Φξ1...ξd
∈ Vd

N such that the following holds:

a∗
iΦξ1,...,ξd

:=
{

0 if ξi = 1
(−1)ℓi−(i−1)Φξ1,...,ξi+1,...,ξd

otherwise,
(1.109)

with
ℓi =

i−1∑
l=1

ξl, ξl ∈ {0, 1} , i ∈ [d] . (1.110)

The annihilation operator, represented here as ai, operates on Slater determinants,
transforming them into other Slater determinants with a reduced number of particles,
effectively destroying one particle at the spin-orbital indexed by i, i ∈ [d]. Whereas, the
creation operator, represented here as a∗

i , operates on Slater determinants, transforming
them into other Slater determinants with an increased number of particles, effectively
creating one particle at the spin-orbital indexed by i, i ∈ [d].

To make again this more concrete, we consider the following example.

Example 1.3.4. Let us consider a 2-electron eigenfunction, N = 2, expanded on 6 Slater
determinant basis functions, d = 4, such that according to Example 1.3.3:

Ψ2 := Ψ1100Φ1100 +Ψ1010Φ1010 +Ψ0110Φ0110 +Ψ1001Φ1001 +Ψ0101Φ0101 +Ψ0011Φ0011, (1.111)

Restricting our focus to the initial Slater determinant basis, denoted as Φ1100 in Equa-
tion (1.111), we aim to either introduce a particle into the first orbital or eliminate one,
and this can be reformulated, using Definition 22, as:

a1Φ1100 = Φ0100, a
∗
1Φ1100 = 0. (1.112)

The result of a1Φ1100 is interpreted as the annihilation of a particle at the first occupied
orbital, and the outcome of a∗

1Φ1100 is understood as the creation of a particle at the first
occupied orbital. However, in accordance with Pauli’s exclusion principle[117], the latter
operation results in 0.

For a more abstract representation of these operators, in the literature, they serve
as generators for the algebra of canonical anti-commutation relations (CAR) [95]. In
this specific case, they operate over a finite-dimensional Hilbert space and adhere to the
so-called anti-commutation relations, expressed as follows for i, j ∈ [d]:

aiaj + ajai = 0,
a∗
i a

∗
j + a∗

ja
∗
i = 0,

aia
∗
j + a∗

jai = δij.

(1.113)

By the Slater-Condon rules, employed to derive the expression of the one and two-electron
integrals as defined in Equations (1.86), (1.87), the electronic Hamiltonian operator Ĥ
acting on the Fock space Fd in terms of the creation and annihilation operators, can be
represented as follows (for more details on its derivation, refer to [117]):

Ĥ =
d∑

i,j=1
hija

∗
i aj + 1

2

d∑
i,j,k,ℓ=1

vijkℓa
∗
i a

∗
kaℓaj, (1.114)

where hij and vijkℓ are the one and two-electron integrals defined in (1.86) and (1.87).
Equation (1.114) is a formulation of the Schrödinger equation, defined in (1.62), in the so-
called second quantization formalism. It is common to view Ĥ as a sum of 1-body terms
(the initial terms in the sum (1.114), of the form a∗

i aj) and 2-body terms (the subsequent
terms in the sum (1.114), of the form a∗

i a
∗
kaℓaj).

Remark 1.3.6. In the physics and chemistry communities, this Hamiltonian defined in
Equation 1.114 is also referred to as a 2-body Hamiltonian operator due to the presence
of up to 2-body interactions (second term in Equation (1.114)). It is also commonly
known as the molecular Hamiltonian, the quantum chemical Hamiltonian operator, the
second-quantized fermionic Hamiltonian, or the ab initio electronic Hamiltonian.
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Note that by introducing the Fock space, we have lost track of the total number of
particles N , i.e the Fock space can be seen as a space with all possible combinations
of states with different number of particles. To reinstate this constraint, we define the
particle number operator, denoted as N̂ : Vd

N → Vd
N , as follows:

N̂ =
d∑
i=1

a∗
i ai. (1.115)

Let Ψ ∈ Vd
N ⊂ Fd be a wavefunction with N electrons. Using Equations (1.103),(1.104),

(1.108), (1.109), and (1.115) it can be showed that

N̂Ψ = NΨ. (1.116)

By considering the constraint over the particle number N , one needs to solve the con-
strained minimization problem (1.68) that writes:

min
{
⟨Ψ, ĤΨ⟩Fd

,Ψ ∈ Fd, ∥Ψ∥Fd
= 1, N̂Ψ = NΨ

}
, (1.117)

where ⟨., .⟩Fd
is defined in Equation (1.99) and ∥Ψ∥2

Fd
= ⟨Ψ,Ψ⟩Fd

.
Now, by expressing Slater determinants through binary labeling, see Definition 21,

it is common to associate each Slater determinant Φξ1...ξd
∈ Fd with exactly one unit

vector eµ1...µd
∈ R2d [118]. We define these unit vectors as follows: let (ξ1, . . . , ξd) be a

binary tuple which labels the Slater determinant Φξ1...ξd
, such that for each index ξk ∈

{0, 1} , k ∈ [d], we associate a unit vector eµk
∈ R2 with µk ∈ {1, 2}. Let us define the

following mapping function:
q2 : {1, 2} → {0, 1} . (1.118)

This function serves as a one-to-one mapping between indices and occupation numbers.
This corresponds to labeling two possible occupation states where 1 or |−⟩ refers to absent
(the occupation number is 0) , 2 or |1⟩ refers to occupation with a particle (the occupation
number is 1). Now, each unit vector eµk

, k ∈ [d] , is defined as:

eµk
=



1
0

 if ξk = q2(µk) = 0,

0
1

 if ξk = q2(µk) = 1.

(1.119)

We define eµ1µ2...µd
∈ R2d as follows:

eµ1µ2...µd
= eµ1 ⊗K eµ2 ⊗K . . .⊗K eµd

. (1.120)

By associating each Slater determinant Φξ1...ξd
∈ Fd with exactly one unit vector eµ1...µd

∈ R2d
,

we have an isomorphism between the Fock space and R2d . Let us denote this isomorphism
by g : Fd → R2d , such that

g(Φξ1...ξd
) := g(Φq2(µ1)...q2(µd)) := eµ1...µd

, g(Ψ) := Ψ ∈ R2d

,Ψ ∈ Fd. (1.121)

For example, consider the Slater determinant Φ1100, with d = 4, following Equation (1.121),
we have:

g(Φ1100) := g(Φq2(2)q2(2)q2(1)q2(1)) := e2211

= e2 ⊗K e2 ⊗K e1 ⊗K e1 =
(

0
1

)
⊗K

(
0
1

)
⊗K

(
1
0

)
⊗K

(
1
0

)
.

(1.122)

By embracing this viewpoint, the creation and annihilation operators can be seen from
a linear algebra perspective as high-dimensional square matrices defined as follows (see
[118]): the matrix representation of the annihilation operator, denoted as Ai ∈ R2d×2d for
i ∈ [d], is given by:

g ◦ ai ◦ g−1 := Ai =
(
i−1⊗
k=1

KS
)

⊗K A ⊗K

 d⊗
k=i+1

KI2


= S ⊗K · · · ⊗K S︸ ︷︷ ︸

i−1 terms

⊗KA ⊗K I2 ⊗K · · · ⊗K I2︸ ︷︷ ︸
d−i−1 terms

,
(1.123)
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where ◦ refers to the operation of function composition. The matrix representation of the
creation operator, which is defined as the transpose of Ai ∈ R2d×2d , see Equation (1.123),
is given by:

g ◦ a∗
i ◦ g−1 := A∗

i =
(
i−1⊗
k=1

KS
)

⊗K A∗ ⊗K

 d⊗
k=i+1

KI2


= S ⊗K · · · ⊗K S ⊗K A∗ ⊗K I2 ⊗K · · · ⊗K I2,

(1.124)

where
S =

(
1 0
0 −1

)
, A =

(
0 1
0 0

)
. (1.125)

Remark 1.3.7. One can represent Ai concisely using as follows:

Ai =
d⊗
l=1

KXl, Xl =


S if l < i,

A if l = i,

I if l > i.

i ∈ [d] . (1.126)

In this work, we will frequently encounter partial representations of Kronecker product
structures as in (1.126), which can be defined as:

(Ai)<s =
s−1⊗
l=1

KXl, (Ai)≤s =
s⊗
l=1

KXl, (1.127)

and similarly

(Ai)>s =
d⊗

l=s+1
KXl, (Ai)≥s =

d⊗
l=s

KXl, (1.128)

where s ∈ [d]. As for the Hamiltonian operator, we define it as:

g ◦ Ĥ ◦ g−1 : R2d → R2d

, (1.129)

where Ĥ is defined in Equation (1.114). The matrix representation of the Hamiltonian
operator, denoted as H ∈ R2d×2d , is expressed as follows:

g ◦ Ĥ ◦ g−1 = H =
d∑

i,j=1
hijA∗

iAj + 1
2

d∑
i,j,k,ℓ=1

vijkℓA∗
iA∗

kAℓAj, (1.130)

and the matrix representation of the particle number operator is given by:

g ◦ N̂ ◦ g−1 = N =
d∑
i=1

A∗
iAi. (1.131)

One can easily verify that the Hamiltonian matrix H ∈ R2d×2d is symmetric.

Remark 1.3.8. Considering the matrix representation structure of the creation and anni-
hilation operators, it is crucial to emphasize that the Hamiltonian in (1.130) is formulated
as a sum involving a series of Kronecker products of matrices. Each term within this sum,
constituting a Kronecker product of multiple matrices, is a rank-1 tensor train. In this
context, every TT-core is effectively represented by an individual matrix derived from
that particular Kronecker product.

Remark 1.3.9. For simplicity in representation, we have employed the binary occupa-
tion number representation, i.e dealing only with spin-orbital basis function φi, i ∈ [d].
However, in Quantum Chemical DMRG (QC-DMRG), as it will be described in the fol-
lowing subsections, it is more common to deal with spatial-basis functions denoted by
ϕi, i ∈ [dspatial], with d = 2dspatial see Equation (1.83). In this framework, each spatial-
orbital basis function ϕi is associated to two spin-orbital basis functions φi. Therefore,
there is a modification of the occupation number for the Slater determinant. We consider
a tuple (ξ1, . . . , ξdspatial) ∈ {0, 1, 2}dspatial . Depending on the presence or absence of ϕi,
where i ∈ {i1, . . . , iN}, in the Slater determinant function Φ[i1,...,iN ]. The meaning of ξi
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is defined as follows: if ξi = 0, the spatial-orbital ϕi is unoccupied in the Slater determi-
nant; if ξi = 1, the spatial-orbital ϕi can be occupied with a spin-up, i.e ↑, in the Slater
determinant or occupied with a spin-down, i.e ↓, in the Slater determinant; if ξi = 2, the
spatial-orbital ϕi is doubly occupied with both spin-up and spin-down.

We can define new annihilation and creation operators, which act on Slater determi-
nants spanned over spatial-orbital basis functions ϕi, i ∈ [dspatial]. These operators create
or remove a particle with a spin value s ∈

{
±1

2

}
at a specific orbital i. We represent

the annihilation operator as ai,s and the creation operator as a∗
i,s. These operators satisfy

anti-commutation relations, expressed as follows, for s, s′ ∈
{
±1

2

}
, i, j ∈ [dspatial]:

ai,saj,s′ + aj,s′ai,s = 0,
a∗
i,sa

∗
j,s′ + a∗

j,s′a∗
i,s = 0,

ai,sa
∗
j,s′ + a∗

j,s′ai,s = δijδss′ .

(1.132)

In alignment with Remark 1.3.9, we recognize that each spatial-orbital basis ϕi, i ∈ [dspatial]
can be linked to two spin-orbital basis functions φi, i ∈ [d]. Within this framework, the
Fock space Fdspatial is isomorphic to R4dspatial . In this context, for each ξk ∈ {0, 1, 2},
where k ∈ [dspatial], we identify a unit vector eµk

∈ R4, µk ∈ {1, 2, 3, 4}. Let us define the
following mapping function:

q4 : {1, 2, 3, 4} → {0, 1, 1, 2} . (1.133)

This function serves as a mapping between indices and occupation numbers. This cor-
responds to labeling four possible occupation states such that in physics or chemistry
language 1 or |−⟩ refers to absent (the occupation number is 0) , 2 or | ↑⟩ refers to present
with spin-up only (the occupation number is 1), 3 or | ↓⟩ refers to present with spin-down
only (the occupation number is 1), and 4 or | ↑↓⟩ refers to present with both spin-up and
spin-down (the occupation number is 2). Now, each unit vector eµk

, k ∈ [d], is defined
as:

eµk
=


1
0
0
0

 if ξk = q4(µk) = 0, eµk
=


0
1
0
0

 if ξk = q4(µk) = 1, µk = 2,

eµk
=


0
0
1
0

 if ξk = q4(µk) = 1, µk = 3, and eµk
=


0
0
0
1

 if ξk = q4(µk) = 2.

(1.134)

It follows that each Slater determinant Φξ1...ξdspatial
is identified by a unit vector

eµ1...µdspatial
= eµ1 ⊗K . . .⊗K eµdspatial

∈ R4dspatial . Within this context, the matrix represen-
tations of the creation and annihilation operators are given by:

The matrix representation of the annihilation operator, denoted by Ai,s ∈ R4dspatial×4dspatial ,
where i ∈ [dspatial] and s = ±1

2 , can be expressed as:

Ai,s =
(
i−1⊗
k=1

KZ
)

⊗K As ⊗K

dspatial⊗
k=i+1

KI4


= Z ⊗K · · · ⊗K Z ⊗K As ⊗K I4 ⊗K · · · ⊗K I4.

(1.135)

and the matrix representation of the creation operator, which is the transpose of Ai,s

where i ∈ [dspatial] and s = ±1
2 , can be expressed as:

A∗
i,s =

(
i−1⊗
k=1

KZ
)

⊗K A∗
s ⊗K

dspatial⊗
k=i+1

KI4


= Z ⊗K · · · ⊗K Z ⊗K A∗

s ⊗K I4 ⊗K · · · ⊗K I4.

(1.136)

Here

As =
A ⊗K I2, if s = 1

2 ,

S ⊗K A, if s = −1
2 .
, and Z = S ⊗ S ∈ R4dspatial ×4dspatial

, (1.137)
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with A and S being defined in Equation (1.125). While this formalism, the Hamiltonian
matrix Hspatial ∈ R4dspatial ×4dspatial and the matrix representation of the particle number
denoted by N ∈ R4dspatial ×4dspatial are:

Hspatial =
dspatial∑
i,j=1

∑
s=± 1

2

hijA∗
i,sAj,s + 1

2

dspatial∑
i,j,k,ℓ=1

∑
s,s′=± 1

2

vijkℓA∗
i,sA∗

k,s′Aj,s′Aℓ,s, (1.138)

and

N =
dspatial∑
i=1

∑
s=± 1

2

A∗
i,sAi,s. (1.139)

Henceforth, for the sake of simplicity, we continue working in the spin-orbital formulation,
with d being the number of spin-orbital basis functions. We designate n = 2 and continue
to denote the Hamiltonian matrix by H ∈ Rn

d×nd .
With increasing number of d, the dimensions of both the Hamiltonian matrix H ∈ Rn

d×nd

and the eigenfunction Ψ ∈ Rn
d grow exponentially, as O(n2d) for H and O(nd) for Ψ. To

alleviate this growth efficiently, we can employ the TT-format for both H and Ψ. The
TT representation of Ψ can be defined according to Definition 19 in the following:
let (U1, . . . ,Ud), U ∈ Rrk−1×n×rk , rd = r0 = 1 be the TT decomposition of the tensor
folding of Ψ ∈ Rn

d denoted by ψ ∈ Rn×...×nand let Uk[µk] := Uk[:, µk, :] ∈ Rrk−1×rk , for a
fixed value of µk ∈ [n], for each k ∈ [d]. The (µ1, · · · , µd)-th element of the tensor ψ is
given as:

ψ(µ1; . . . ;µd) = U1[µ1] · · · Ud[µd]. (1.140)
In the following, we refer to the TT representation of the Hamiltonian operator as TTO,
also known as Matrix Product Operator (MPO) in the physics community [2, 48, 106, 131].
Let H ∈ Rn

d×nd , its TTO representation can be described by the contraction product
of 3-order and 4-order TT-cores, denoted by (H1, . . . ,Hd), where Hk ∈ RRk−1×n×n×Rk

(R0 = Rd = 1), where Rk are referred to as the TTO-ranks. The TTO decomposition is:

H = H1 ×4 H2 ×4 . . .×4 Hd−1 ×4 Hd. (1.141)

By defining Hk[µk, νk] := Hk[:, µk, νk, :], µk, νk ∈ [n], k ∈ [d], the (µ1, . . . , µd, ν1, . . . , νd) − th
element of H satisfies:

H(µ1; . . . ;µd; ν1; . . . ; νd) = H1[µ1, ν1] . . .Hd[µd, νd]. (1.142)

A graphical description of the TTO is given in the following Figure 1.10.

n1

n1

n2

n2

nd−1

nd−1

nd

nd

. . .
R1 R2 Rd−1 Rd

Figure 1.10: Graphical representation of TTO with n1 = . . . = nd = n.

Remark 1.3.10. (TTO representation in physics literature) In the physics literature, we
often encounter an alternative decomposition of H ∈ Rn

d×nd , expressed as:

H =
R0∑
β0=1

R1∑
β1=1

. . .
Rd−1∑
βd−1

Rd∑
βd=1

H′
1(β0; β1) ⊗K . . .⊗K H′

d(βd−1; βd), (1.143)

where we define H′
k(βk−1; βk) := Hk[βk−1, :, :, βk] ∈ Rn×n, βk ∈ [Rk], k ∈ [n].

Remark 1.3.11. (Representation with strong Kronecker product) We also encounter the
following representation of the TTO:

H = H<2>
1 ▷◁ H<2>

2 ▷◁ . . . ▷◁ H<2>
d , (1.144)
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where H<2>
k ∈ RRk−1n×nRk , k ∈ [d] is the mode-(1 : 2) matricization of Hk and ▷◁ refers to

the strong Kronecker product, (see [2, 73]). For example, for two block matrices X,Y we
have [

X1,1 X1,2
X2,1 X2,2

]
▷◁

[
Y1,1 Y1,2
Y2,1 Y2,2

]

=
[

X1,1 ⊗K Y1,1 + X1,2 ⊗K Y2,1 X1,1 ⊗K Y1,2 + X1,2 ⊗K Y2,2
X2,1 ⊗K Y1,1 + X2,2 ⊗K Y2,1 X2,1 ⊗K Y1,2 + X2,2 ⊗K Y2,2

]
,

where Xi,j,Yi,j represent dense blocks for i, j ∈ {1, 2}.

Expressing the operator in TTO format enables to compute smartly basic algebraic
operations, such as the matrix-vector product and the matrix-matrix product as explained
in the following propositions (for a general case of operators).

Proposition 1.3.1. (Matrix-vector product with TT decompositions) Let a vector u ∈ Rn1...nd

and a matrix H ∈ R(m1...md)×(n1...nd) be represented by TT decompositions. Let U ∈ Rn1×...×nd

be the tensor folding of u with TT decomposition (U1, . . . ,Ud), with Uk ∈ Rrk−1×nk×rk ,
r0 = rd = 1 and let H ∈ Rm1×...×md×n1×...×nd be the tensor folding of H with TTO de-
composition (H1, . . . ,Hd), with Hk ∈ RRk−1×mk×nk×Rk , R0 = Rd = 1. Let (T1, . . . , Td)
be the TT decomposition of the resulting matrix-vector product Hu. The latter can be
represented as:

(Hu)(µ1, . . . , µd) =
n1∑
ν1=1

. . .
nd∑
νd=1

H(µ1; . . . ;µd; ν1; . . . ; νd)U(ν1; . . . ; νd)

=
n1∑
ν1=1

. . .
nd∑
νd=1

(H1[µ1, ν1] . . .Hd[µd, νd]) (U1[ν1]) . . .Ud[νd]))
(1.145)

where Hk[µd, νd] := Hk[:, µk, νk, :] and Uk[νk] := Uk[:, νk, :], µk ∈ [mk] , νk ∈ [nk] , k ∈ [d].
By using the Kronecker product property defined in (1.10), we have:

(Hu)(µ1, . . . , µd) =
 n1∑
ν1=1

(H1[µ1, ν1] ⊗K U1[ν1])


︸ ︷︷ ︸
T1[µ1]∈Rr0R0×r1R1

. . .

 nd∑
νd=1

(Hd[µd, νd] ⊗K Ud[νd])


︸ ︷︷ ︸
Td[µd]∈Rrd−1Rd−1×rdRd

,

(1.146)
where Tk[µk] := Tk[:, µk, :], µk ∈ [mk] , k ∈ [d].

Proposition 1.3.2. (Matrix-Matrix product with TT decomposition) Let a matrix H ∈ R(m1...md)×(n1...nd)

and a matrix H̃ ∈ R(n1...nd)×(m′
1...m

′
d) be represented by TTO decompositions. Let H ∈ Rm1×...×md×n1×...×nd

be the tensor folding of H with TTO decomposition (H1, . . . ,Hd), with Hk ∈ RRk−1×mk×nk×Rk ,
R0 = Rd = 1 and let H̃ ∈ Rn1×...×nd×m′

1×...×m′
d be the tensor folding of H̃ with TTO de-

composition (H̃1, . . . , H̃d), with H̃k ∈ RR
′
k−1×nk×m′

k×R′
k , R′

0 = R′
d = 1. Let (T1, . . . , Td)

be the TT decomposition of the resulting matrix-matrix product HH̃. The latter can be
represented as:

(HH̃)(µ1, . . . , µd; ν1, . . . , νd) =
n1∑
z1=1

. . .
nd∑
zd=1

H(µ1; . . . ;µd; z1; . . . ; zd)H(z1; . . . ; zd; ν1; . . . ; νd)

=
n1∑
z1=1

. . .
nd∑
zd=1

(H1[µ1, z1] . . .Hd[µd, zd])
(
H̃1[z1, ν1] . . . H̃d[zd, νd]

)
,

(1.147)
where Hk[µd, νd] := Hk[:, µk, νk, :] and H̃k[µd, νd] := H̃k[:, µk, νk, :], µk ∈ [mk], νk ∈ [m′

k],
k ∈ [d]. By using the Kronecker product property defined in (1.10), we have:

(HH̃)(µ1, . . . , µd; ν1, . . . , νd) =
 n1∑
z1=1

(H1[µ1, z1] ⊗K H̃1[z1, ν1])


︸ ︷︷ ︸
T1[µ1,ν1]∈RR′

0R0×R′
1R1

. . .

 nd∑
zd=1

(Hd[µd, zd] ⊗K H̃d[zd, νd])


︸ ︷︷ ︸
Td[µd,νd]∈R

R′
d−1Rd−1×R′

d
Rd

,

(1.148)
where Tk[µk, νk] := Tk[:, µk, νk, :], µk ∈ [mk] , νk ∈ [m′

k] , k ∈ [d].
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Constructing the TTO is at the core of the QC-DMRG algorithm. Several different
approaches have been proposed for the construction of an efficient TTO representation
of the quantum chemical Hamiltonian operator, see Equation (1.138). These approaches
yield a compact TTO representation with TTO-ranks that grow quadratically with the
system size as O(d2), see [2, 17]. This will be reviewed and explained in Chapter 3.

DMRG algorithm

Back to Equation (1.61), let d be the size of the system, i.e number of spin-orbitals basis
functions, let n = 2, let ψ ∈ Rn×...×n be the d-order tensor defined as the tensor folding
of the eigenfunction Ψ. Assume that ψ has a TT decomposition with at most TT-rank
equal to r = (r1, . . . , rd), let H ∈ Rn

d×nd be the Hamiltonian symmetric matrix. Then
the minimization problem is:

λmin = min
ψ∈MTT≤r ,ψ ̸=0

RH(vec(ψ)),

= min
ψ∈MTT≤r ,ψ ̸=0

1
2

⟨H vec(ψ), vec(ψ)⟩
⟨vec(ψ), vec(ψ)⟩ ,

(1.149)

with vec(ψ) being the vectorization of the tensor ψ, see Definition 10, and MTT≤r being
the set of TTs with TT-ranks less or equal to r = (r1, . . . , rd), as introduced in Propo-
sition 1.2.3. The key idea behind DMRG is the alternating optimization of Rayleigh
quotient over the TT manifold defined in Proposition 1.2.3.

Let (U1, . . . ,Ud) be the TT decomposition of ψ, where Uk ∈ Rrk−1×n×rk , r0 = rd = 1.
Let P̂k : Rrk−1nrk → Rn

d
, k ∈ [d] be the linear operator with the property that for all

Xk ∈ Rrk−1×n×rk , the element-wise expression of P̂k(vec (Xk)) is given by:

(
P̂k(vec (Xk))

)
(µ1, . . . , µd) = U1[µ1] . . .Uk−1[µk−1]Xk[µk]Uk+1[µk+1] . . .Ud[µd], (1.150)

where Xk[µk] = Xk[:, µk, :] for k ∈ [d].
In each step of the DMRG algorithm, as elaborated in [48, 106], the reduced mini-

mization problem that is tackled involves minimizing the following Rayleigh quotient:

RH
(
P̂k(vec (Xk))

)
= 1

2

〈
P̂k(vec (Xk)),HP̂k(vec (Xk))

〉
〈
P̂k(vec (Xk)), P̂k vec (Xk))

〉 . (1.151)

Definition 23. Let P̂k : Rrk−1nrk → Rn
d
, k ∈ [d] be the linear operator with the property

defined in Equation (1.150), the matrix representation of P̂k denoted as Pk ∈ R(n1...nd)×(rk−1nrk)

is given by:
Pk = L<k−1>

k−1 ⊗K In ⊗K

(
R(1)
k+1

)∗
∈ Rn

d×(rk−1nrk), (1.152)
where

Lk−1 = U1 ×3 . . .×3 Uk−1 ∈ R

n× . . .× n︸ ︷︷ ︸
k−1 terms

×rk−1

, (1.153)
and

Rk+1 = Uk+1 ×3 . . .×3 Ud ∈ R

rk×n× . . .× n︸ ︷︷ ︸
d−k terms . (1.154)

where L<k−1> is the mode-(1 : k − 1) matricization of Lk−1 and R(1) is the mode-1
matricization of Rk+1. According to the Definition 23, it can readily checked that for
Xk ∈ Rrk−1×n×rk :

P̂k(vec (Xk)) = Pk vec (Xk) . (1.155)
Assuming that the TT-cores (U1, . . . ,Uk−1) and (Uk+1, . . . ,Ud) are left-orthogonal and

right-orthogonal, respectively, then Pk is an orthogonal matrix. Therefore, the solution
of the minimization problem (1.149) is the solution of the first order condition given by
(see [48]):

∇RH
(
P̂k(vec (Xk))

)
= 1

∥ vec (Xk) ∥

(
P∗
kHPk vec (Xk) − ⟨P∗

kHPk vec (Xk) , vec (Xk)⟩
⟨vec (Xk) , vec (Xk)⟩

P∗
kPk vec (Xk)

)

= 1
∥ vec (Xk) ∥

(Mk vec (Xk) − λk vec (Xk))

= 0, vec (Xk) ̸= 0,
(1.156)
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with ∇RH
(
P̂k(vec (Xk))

)
being the gradient of RH

(
P̂k(.)

)
with respect to vec (Xk), and

Mk = P∗
kHPk. The matrix Mk, also called the reduced matrix, is commonly known as

the effective Hamiltonian. It is symmetric, as outlined in the following proposition:

Proposition 1.3.3. The reduced matrices Mk = P∗
kHPk ∈ R(rk−1nrk)×(rk−1nrk) are square

and symmetric matrices.

Proof. The proof is based on the symmetry of the matrix H ∈ Rn
d×nd . Indeed, we have:

M∗
k = P∗

kH∗Pk = P∗
kHPk = Mk. (1.157)

Remark 1.3.12. It is worth noting that if the TT-cores are not left-orthogonal or right-
orthogonal, the expression in (1.156) leads to a generalized eigenvalue problem.

By defining u = vec(Xk), the reduced eigenvalue problem, for each k ∈ [d], is given
by:

Mku = λku, (1.158)
We now have all the necessary ingredients to state the DMRG algorithm in Algorithm 3.
In Algorithm 3, each iteration within the main loop, corresponds to a half-sweep, and the
eigenvalue problem solved during each half-sweep is termed as a microstep. Completing
two consecutive loops is what we refer to as a sweep.

Algorithm 3 1-site DMRG (ALS)
Input:

• Initial guess of TT-cores (U1, . . . ,Ud).

• Right-orthogonalized TT-cores (U2, . . . ,Ud) (see Equation (1.47)).

• TTO decomposition (H1, . . . ,Hd) of the Hamiltonian operator H ∈ Rn
d×nd , see

Equation (1.141).

Output: λ and a TT decomposition (U1, . . . ,Ud), such that the resulting vector
Ψ ∈ Rn

d from this TT, see Equation (1.140), is the eigenfunction of the lowest eigenvalue
λ.

1: procedure DMRG
2: while not converged do
3: for k = 1 to d− 1 do ▷ Forward half-sweep
4: u = vec (Uk), Mk = P∗

kHPk

5: Solve Mku = λku, ▷ see Equation (1.156)
6: λ = λk
7: U = Reshape(u, (rk−1n, rk)),
8: Q,R = QR(U), ▷ QR decomposition.
9: Uk = Reshape(Q, (rk−1, n, rk)), ▷ Q ∈ Rrk−1n×rk , R ∈ Rrk×rk .

10: Uk+1 = R ×2 Uk+1.
11: end for
12: for k = d to 2 do ▷ Backward half-sweep
13: u = vec (Uk),
14: Solve Mku = λku,
15: λ = λk,
16: U = Reshape(u, (rk−1, nrk)),
17: L,Q = LQ(U), ▷ LQ decomposition.
18: Uk = Reshape(Q, (rk−1, n, rk)), ▷ Q ∈ Rrk−1×nrk , L ∈ Rrk−1×rk−1 .
19: Uk−1 = Uk−1 ×3 L.
20: end for
21: end while
22: end procedure

Since the 1-site DMRG involves optimizing over a single fixed-rank TT-core during
each microstep, its main limitation is the lack of rank adaptivity: 1-site DMRG typically
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employs fixed ranks during the optimization process. Therefore the initial guess of TT-
ranks must be well chosen to have a satisfactory convergence. It is however true that
one can increase the ranks by introducing random orthogonal vectors to Uk. This can
impact the algorithm convergence. An alternative approach is the 2-site DMRG, also
known as Modified ALS (MALS), where the optimization in each microstep occurs over
two consecutive TT-cores instead of one. This enables a certain rank adaptivity between
these two components.

In the framework of 2-site DMRG, an alternative linear operator is given in the fol-
lowing definition.

Definition 24. Let Xk,k+1 ∈ Rrk−1×n×n×rk+1 be a 4-order tensor defined as:

Xk,k+1 = Xk ×3 Xk+1, k ∈ [d− 1] , (1.159)

where Xk ∈ Rrk−1×n×rk and Xk+1 ∈ Rrk×n×rk+1 . Let P̂k,k+1 be a linear operator, operating
within vector spaces according to:

P̂k,k+1 : Rrk−1n
2rk+1 → Rn

d

, k ∈ [d− 1] , (1.160)

with the property that for all Xk,k+1 ∈ Rrk−1×n×n×rk+1 , the element-wise expression of
P̂k,k+1(vec (Xk,k+1)) is given by:(
P̂k,k+1(vec (Xk,k+1))

)
(µ1, . . . , µd) = U1[µ1] . . .Uk−1[µk−1]Xk[µk]Xk+1[µk+1]Uk+1[µk+1] . . .Ud[µd],

(1.161)
where Xk[µk] = Xk[:, µk, :], and Xk+1[µk+1] = Xk+1[:, µk+1, :], for k ∈ [d] . The matrix
representation of P̂k,k+1 denoted as Pk,k+1 is given by:

Pk,k+1 = L<k−1>
k−1 ⊗K In ⊗ In ⊗K (R<1>

k+2 )∗, (1.162)

where L<k−1>
k−1 is the mode-(1 : k − 1) matricization of Lk−1 defined in Equation (1.153)

and R<1>
k+2 is the mode-1 matricization of Rk+2 defined as:

Rk+2 = Uk+2 ×3 . . .×3 Ud ∈ R

rk+1×n× . . .× n︸ ︷︷ ︸
d−k−1 terms . (1.163)

In 2-site DMRG, each microstep involves solving, during the first half-sweep, the
following:

Mk,k+1 vec (Xk,k+1) = P∗
k,k+1HPk,k+1 vec (Xk,k+1) = λk,k+1 vec (Xk,k+1) , k ∈ [d− 2] ,

(1.164)
and likewise during the second half-sweep:

Mk−1,k vec (Xk,k+1) = P∗
k−1,kHPk−1,k vec (Xk,k+1)k,k+1 = λk,k+1vec (Xk,k+1)k,k+1 , k ∈ {3, . . . , d} .

(1.165)
At each microstep, after solving the eigenvalue problem, an SVD is performed on the
mode-(1 : 2) matricization of Xk,k+1 denoted as X<2>

k,k+1 to update the components Uk = Xk

and Uk+1 = Xk+1 and to recover the left (resp. right) orthogonality.
Note that employing a TTO decomposition of the Hamiltonian operator during the

initialization step in Algorithm 3 is essential for efficiently computing Hku, as elucidated
in the subsequent explanation.

In what follows, we give some details about DMRG implementation using tensor dia-
grams. Additionally, we provide a table summarizing the different complexities involved
in various computational steps in 1-site (resp. 2-site) DMRG.
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Figure 1.11: Graphical representation of the minimization problem at each microstep:
the left most part corresponds to Mk vec(Xk)=P∗

kHPkvec(Xk), for k ∈ [d], rk are the
TT-ranks of the TT representation of the eigenfunction Ψ, Rk are the TTO-ranks of the

TTO representation of the Hamiltonian operator and n = 2.
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Figure 1.12: Graphical representation of the minimization problem at each microstep:
the left most part corresponds to Mk,k+1 vec(Xk,k+1)=P∗

k,k+1HPk,k+1vec(Xk,k+1), for
k ∈ [d], rk are the TT-ranks of the TT representation of the eigenfunction Ψ, Rk are the

TTO-ranks of the TTO representation of the Hamiltonian operator and n = 2.

The expressions of tensors of the left and right components denoted respectively as
G≤k−1, G>k−1 (resp. G>k) for the 1-site (resp. 2-site) DMRG, in terms of the TT-cores
of the TT decomposition of the eigenfunction Ψ as well as the Hamiltonian operator, are
given in the following definition

Definition 25. Let (U1, . . .Ud) be the TT decomposition of the eigenfunction Ψ and let
(H1, . . .Hd) be the TTO decomposition of the Hamiltonian operator. Let Zk ∈ Rr

2
k−1Rk−1×r2

kRk ,
k ∈ [d] be matrices defined as follows:

Zk =
n∑

µk=1

n∑
νk=1

Uk[µk] ⊗K Hk[µk, νk] ⊗K Uk[νk]. (1.166)

The definition of tensors G≤ℓ, for ℓ ∈ [d− 1] (resp. ℓ ∈ [d− 2]) for the 1-site (resp. 2-site)
DMRG, is given as follows:

vec(G≤ℓ) = Z1Z2 . . .Zℓ, (1.167)

where vec(G≤ℓ) ∈ Rr
2
ℓRℓ is the vectorization of G≤ℓ. The definition of tensors G>ℓ, for

ℓ ∈ {2, . . . , d} (resp. ℓ ∈ {3, . . . , d}) for the 1-site (resp. 2-site) DMRG, is given as
follows:

vec(G>ℓ) = Zℓ+1 . . .Zd−1Zd, (1.168)

where vec(G>ℓ) ∈ Rr
2
ℓ+1Rℓ+1 is the vectorization of G>ℓ.

In terms of the left and right components, one can derive the expression of the reduced
matrices, Mk = P∗

kHPk ∈ Rr
2
k−1n×nr2

k for the 1-site DMRG, for k ∈ [d]. The tensor folding
of Mk, denoted as Mk ∈ Rrk−1×n×rk−1×rk×n×rk , is given by:

Mk = G≤k−1 ×2 Hk ×3 G>k−1. (1.169)

36



It is possible to derive the expression of the reduced matrix, Mk,k+1 = P∗
k,k+1HPk,k+1 ∈

Rr
2
k−1n

2×r2
kn

2 for the 2-site DMRG, for k ∈ [d− 1]. The tensor folding of Mk,k+1, denoted
by Mk,k+1 ∈ Rrk−1×n×n×rk−1×rk+1×n×n×rk+1 , is given by:

Mk,k+1 = G≤k−1 ×2 (Hk ×4 Hk+1) ×3 G>k. (1.170)

As can be seen from the tensor diagrams and Equations (1.169), (1.170), the DMRG
algorithm entails many tensor contraction products between the TT representation of Ψ
and the TTO decomposition of the Hamiltonian operator. In what follows, in Table 1.2, we
provide insights into the computational complexities of the steps in the DMRG algorithm.

Computational steps 1-site/ALS 2-site/MALS
Building G≤k−1 and G>k−1 (resp. G>k) O(nr3R + n2r2R2) O(nr3R + n2r2R2)

Building Mk vec (Xk) resp. Mk,k+1 vec (Xk,k+1) O(nr3R + n2r2R2) O(nr3R + n2r2R2 + n4R3)
QR/SVD O(nr3) O(n3r3)

Table 1.2: Time-complexities of some computational steps of each iteration k of DMRG.

Here, the ranks r and R are defined as follows: r = max
1≤k≤d

{rk} , R = max
1≤k≤d

{Rk}. Note
that in the site DMRG, additional terms are included in the complexity O(n4R3 + n2r3),
which arises from the contraction product performed between two consecutive TT-cores
when constructing Mk,k+1X<4> for the 2-site DMRG. In Table 1.2, when the TT-ranks
r are large, the second step involving several matrix-vector multiplications becomes the
most dominant step.

Remark 1.3.13. Several key factors impact the efficiency and performance of the DMRG
algorithm. In order to solve the reduced eigenvalue problem, as defined in Equation (1.158),
one can use an iterative eigensolver like for example the Lanczos algorithm. This iterative
algorithm includes matrix-vector multiplications of the form Mk vec(Xk) or Mk,k+1 vec(Xk,k+1).
These operations stand out as the most time-intensive component, as highlighted in Ta-
ble 1.2. To improve computational speed and mitigate the time complexities, reducing the
TT-ranks without compromising the algorithm’s convergence requires optimizing both the
efficient TT representation of Ψ and the operator. This point is addressed in Chapter 3,
where we focus on a popular physics and chemistry approach, which revolves around the
use of low-rank approximation and various conservation laws.

Regarding the algorithm’s convergence, a well-chosen initial Ψ input greatly accel-
erates convergence and prevents convergence issues linked to local minima. Lastly, the
sequence in which spin-orbital basis φi, i ∈ [d], as defined in (1.70) are ordered can have
an influence on the algorithm’s convergence behavior, underlining the importance of this
factor in achieving optimal results. Yet, it is noteworthy that, as of today, there is no
well-established theory for the global convergence of DMRG method. Despite this, nu-
merical experiments consistently show convergence within a finite number of iterations or
sweeps, which are not necessarily dependent on the system size. While a comprehensive
theory for global convergence is lacking, there are some theoretical insights into the local
convergence of the algorithm where this analysis assumes the invertibility of the Hessian
of the functional RH at a critical point, i.e the solution of (1.156) when the TT-ranks are
estimated correctly (see [99] for further details).

1.4 Concluding remarks
In conclusion, this introductory section consisted of two primary sections, each contribut-
ing to a comprehensive understanding of tensor algebra, underlying arithmetic, and exact
or approximate decompositions of matrices/tensors. Furthermore, it gives insights on
their applications in the field of quantum chemistry.

The first section provides an overview of matrix and tensor notations, various linear
operations and decomposition methods yielding either to exact or approximate low-rank
matrix or tensor decompositions. Particularly, detailed explanations are given on the TT
decomposition, highlighting the advantages of performing arithmetic operations within
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the TT format. Additionally, we present two commonly used algorithms for the TT rep-
resentation or the compression of tensors in TT format. These algorithms are commonly
known as TT-SVD and TT-rounding, respectively. The second section shifts focus to
tensor-based high-dimensional problems arising from the electronic Schrödinger equation
in quantum chemistry. Notably, we start by the efficient treatment of the 4-th order ten-
sor of two-electron integrals, as it appears in many quantum chemistry methods for the
search of the ground-state energy. The discussion is further extended to one of the well-
known approximation methods, DMRG and its integration with TT representations. We
initiated with an overview of the second quantization formalism and the representation of
the Hamiltonian operator within this framework. We further elaborated its representation
in a TTO-format. Then, we gave a detailed description of the algorithm alongside time
complexities of key computational steps, outlining the most time-consuming one. As we
transition from this introductory section, our focus now shifts to the first tensor-based
high-dimensional problem, namely, the treatment of the 4-th order two-electron integrals
tensor in the upcoming chapter.
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Chapter 2

Low-rank approximation of
long-range two-electron integrals
tensors
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2.1 Introduction
In the initial introductory chapter, we highlighted the importance of the two-electron in-
tegrals 4-th order tensor as a key element in various quantum chemistry methods. These
integrals are essential but challenging to compute due to the presence of singularity as well
as the exponential scaling in terms of the number of basis functions. To address this chal-
lenge, our attention was drawn to an efficient approach for the treatment of singularities,
that is based on the range-separation technique. Therefore, in this chapter, we intro-
duce two new approximation methods for the numerical evaluation of the long-range part
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of the range-separated Coulomb potential and the approximation of the resulting high
dimensional Two-Electron Integrals tensor (TEI) with long-range interactions. The first
method exploits the tensorized structure of the compressed two-electron integrals obtained
through two-dimensional Chebyshev interpolation combined with Gaussian quadrature.
The second method exploits the Fast Multipole Method (FMM) which we briefly review in
this chapter. Numerical experiments for different medium size molecules on high quality
basis sets outline the efficiency of the two methods. Detailed algorithmic is provided in
this chapter as well as numerical comparison of the introduced approaches. This chapter
corresponds to our publication [4]. Igor Chollet (assistant professor in LAGA, Sorbonne
university) also contributed to this work by bringing his expertise in FMM method and
actively participating in the testing of his library, defmm1. The initial inspiration for
this work came from Julien Toulouse (assistant professor in Sorbonne university), who
introduced us to the chemistry background and the crucial role of these integrals in the
quantum package, [33], they were developing for running molecular simulations. These
integrals posed a significant time and memory challenge in their simulations.

2.2 Context and related work
As already introduced in Section 1.2, given a finite basis set {gµ}1≤µ≤Nb

, gµ ∈ H1(R3),
these integrals are defined as:

Bµνκλ =
∫

R3

∫
R3

gµ(x)gν(x)gκ(y)gλ(y)
∥x − y∥

dxdy, with µ, ν, κ, λ ∈ {1, .., Nb} . (2.1)

These six-dimensional integrals are the entries of a fourth-order tensor, referred to as
B, with O(N4

b ) entries with Nb being the number of basis functions {gµ}1≤µ≤Nb
. We

denote each entry of the tensor B by B(µ; ν;κ;λ) := Bµνκλ. These integrals arise in
various quantum chemistry methods: ab initio Hartree-Fock (HF) calculations, post-HF
models, Density Functional Theory (DFT) and they are involved in the generation of the
Hamiltonian appearing in QC-DMRG calculations [13, 14, 44, 105, 117]. Considerable
efforts have been devoted to minimize the cost of the integrals evaluation which is a
challenging computational problem since it requires the evaluation N4

b six-dimensional
integrals that are singular due to the presence of the two-electron operator, also known
as the Coulomb potential 1

∥x−y∥ and where Nb increases drastically with the molecular
system size.

Indeed, many works exist in the literature for the evaluation of these integrals. Ini-
tially, they were calculated analytically, in the particular case of Gaussian type basis
functions as defined in (1.93), which made it easy to derive analytical formulas. But
since the analytical evaluation is specific to each integral, the last does not allow for a
systematic evaluation. To address this issue, exact evaluation of these integrals appeared,
using various techniques such as recurrence relations and Rys quadrature, McMurchie and
Davidson method[25, 44, 65, 87]. These techniques are restricted to certain types of basis
functions, in particular Gaussian-type functions. Efficient screening techniques can be
used, as discussed in [100], with aim to minimize the number of computed integrals. So
far, these evaluations could potentially become a computational bottleneck due to their
dependence on the chosen basis set and the lack of systematic evaluations. To address this
issue, more recently, many works has focused on developing numerical approximations to
speed-up the evaluation of these integrals. Two commonly used methods for approximat-
ing the TEI tensor are Density Fitting (DF) [109, 132] and Cholesky decomposition [67].
Both methods construct a low-rank approximation of the TEI tensor. On one hand, the
DF method employs an auxiliary fitting basis substituting the calculation of four-index
tensor integrals with the computation of three-index tensor integrals. The accuracy of
the approximation depends on the choice of this basis. On the other hand, the Cholesky
decomposition approximates the matricized TEI tensor, which is a symmetric positive
semi-definite matrix, with a low-rank approximate matrix whose rank depends on the
desired accuracy of the approximation. Better compression can be achieved with Contin-
uous Fast Multipole Methods (CFMM)[130] where linear scaling can be obtained in terms

1https://github.com/IChollet/defmm
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of the number of basis functions Nb. By using multipole expansion and exploiting the fact
that well-separated charge distributions (the product of the two basis functions gµ and gν)
can be well approximated, the two-electron integrals can be represented in a compressed
form. This approach is particularly useful for the construction of the Coulomb matrix,
which appears in HF and DFT calculations [75]. Additionally, there exist more efficient
algebraic generalizations of CFMM, as discussed in [136]. Another method proposed in
[62] uses tensor-product numerical integration. It involves performing operations along
one dimension, such as the 1D Hadamard product, 1D convolution product, and 1D scalar
product, to evaluate the TEI tensor, instead of performing 3D algebraic operations. It
can be generalized to any low-rank basis sets and can achieve high accuracy with fine 3D
Cartesian grids. In [62], the representation of the TEI tensor is further compressed using
Quantized Tensor Train (QTT)[63] and low-rank Cholesky decomposition.

An alternative approach to tackle the evaluation of the two-electron integrals is to
develop methods dealing with smooth potential. We consider in this chapter an approach
that relies on the range-separation of the Coulomb potential where the last is split into a
smooth long-range part and a complementary diverging short-range part. This partition
strategy, known as Ewald method introduced in 1921 by Paul P. Ewald as well, has been
employed in many quantum chemistry methods [35, 71, 72, 79, 96, 102, 110, 120, 121,
122, 123]. Specifically, it is prominent in hybrid methodologies [96, 121, 123], where
both wave-function-based methods such as HF and density-based approach such as DFT
are combined to exploit their respective strengths. One of the primary goals of using
range separation technique in electronic structure calculations are efficiency and accuracy
[30, 96]. It is particularly relevant for improving the accuracy of DFT, which depends
on an approximate exchange-correlation functional that treats the electron correlation
effects [14]. However, it has been shown that these approximate functionals may be less
reliable and accurate when dealing with systems involving long-range or static electron
correlation effects [30, 96, 121]. In order to cope with this, two different strategies have
been considered. Correcting the available functional or introduce post-HF methods by
means of range separation. The range separation technique allows to apply two different
methods: when wave-function-based methods are used for the long-range part, accurate
and faster convergence is achieved with respect to the basis set [30], and when DFT is
used for the short-range part, low computational costs are achieved. As a result, the
total energy of a given molecular system is computed via wave-function-based methods,
such as self-consistent field method (SCF) [117], for long-range contributions and DFT
for short-range contributions. These hybrid methods involve the evaluation of long-range
two-electron integrals, long-range Coulomb and exchange matrices [79] which is the focus
of this work.

The splitting of the Coulomb potential is done through the error function erf(ω ∥x − y∥)
as follows:

1
∥x − y∥

= erfc (ω ∥x − y∥)
∥x − y∥

+ erf (ω ∥x − y∥)
∥x − y∥

, 0 ≤ ω < ∞, (2.2)

with
erf (ω ∥x − y∥)

∥x − y∥
= 2

∥x − y∥
√
π

∫[
0,ω∥x−y∥

] e−t2dt, (2.3)

and
erfc (ω ∥x − y∥) = 1 − erf (ω ∥x − y∥) , (2.4)

where x = (x1, x2, x3),y = (y1, y2, y3) ∈ R3, ω is a positive parameter that controls the
separation range. The long-range contribution in equation (2.3) is a smooth function such
that, for small ω, the singularity is eliminated at ∥x − y∥ = 0. When ω = 0, the long-
range part vanishes and when ω → ∞, it approaches the Coulomb potential 1

∥x−y∥ . The
short-range contribution (the complementary function in Equation (2.2)) has singularity
at ∥x − y∥ = 0.

Some numerical methods exist already for handling the long-range kernel (2.3). One
approach, as shown in [22, 71], employs spherical numerical integration of the kernel’s
Fourier transform in spherical coordinates in reciprocal space kernel. In [78, 79], the
numerical integration uses spherical harmonics and spherical Bessel functions. In both
cases, a truncated sum of the product of separable functions expressed in terms of the

41



3D coordinates of electrons is obtained. Notably, The range separation has found ap-
plication in other contexts, such as solving the linear and nonlinear Poisson-Boltzmann
equations, in [9, 10, 69]. In these studies, the authors adopt a more generalized inter-
pretation of range separation, one that does not necessarily rely on the error function.
By combining the Laplacian Gaussian transform with sinc-quadratures and by consid-
ering a fine 3D Cartesian grid, a canonical representation is obtained for the Coulomb
potential. Subsequently, this representation is partitioned into distinct long-range and
short-range components based on the quadrature points and the underlying functions’
support. By noting that the long-range component inherent in the canonical tensor rep-
resentation exhibits low canonical rank, it is further compressed using the canonical to
Tucker decomposition technique [64].

Now, following Equation (2.2), the two-electron integrals tensor can be expressed as
the sum of two terms:

B(µ; ν;κ;λ) =
∫

R3

∫
R3

erf (ω ∥x − y∥) gµ(x)gν(x)gκ(y)gλ(y)
∥x − y∥

dxdy︸ ︷︷ ︸
Blr(µ;ν;κ;λ)

+
∫

R3

∫
R3

erfc (ω ∥x − y∥) gµ(x)gν(x)gκ(y)gλ(y)
∥x − y∥

dxdy︸ ︷︷ ︸
Bsr(µ;ν;κ;λ)

,

(2.5)

with µ, ν, κ, λ ∈ [Nb] , Blr refers to the long-range TEI tensor and Bsr refers to the short-
range TEI tensor. In this work, we focus on the numerical treatment of the long-range
kernel, that we denote K(x,y) = erf(ω∥x−y∥))

∥x−y∥ ,x,y ∈ R3, and on the approximation of the
long-range two-electron integrals given by:

Blr(µ; ν;κ;λ) =
∫

R3

∫
R3
gµ(x)gν(x)K(x,y)gκ(y)gλ(y)dxdy, µ, ν, κ, λ ∈ [Nb] . (2.6)

We consider restrictions of the finite basis functions {gµ}1≤µ≤Nb
to sufficiently large com-

pact support [−b, b]3 ⊂ R3 such that we have:

Blr(µ; ν;κ;λ) =
∫

[−b,b]3

∫
[−b,b]3

gµ(x)gν(x)K(x,y)gκ(y)gλ(y)dxdy, µ, ν, κ, λ ∈ [Nb] . (2.7)

In what follows, we introduce two numerical approaches for the numerical evaluation of
the smooth long-range interaction and the approximation of the long-range TEI tensor.
First, instead of performing a naive numerical computation of K(x,y) over N×N×N 3D
Cartesian grids, we consider two-dimensional Chebyshev interpolation method using only
N

1
3 ×N

1
3 isotropic Chebyshev grids combined with Gaussian-quadrature rule in order to

approximate K(x,y). We refer to this approach as TA for Tensorized Approximation and
we denote the approximation method for the evaluation of the long-range two-electron
integrals by LTEI-TA. This numerical approximation yields to a tensorized expression of
the six-dimensional integrals with erf -interaction leading to substantial time complexity
reduction to evaluate one integral of the form Blr(µ; ν;κ;λ). In practice, especially in HF
calculations, multiple matrix-vector or matrix-matrix multiplication using this fourth-
order tensor are performed, which is one of the most-time consuming step. Therefore, we
introduce, using LTEI-TA approach, a new alternative way to approximate these integrals
by means of a factorized representation of the fourth-order tensor Blr ∈ RNb×Nb×Nb×Nb ,
leading to an efficient application of the matricization of Blr to a vector with a significant
reduction in time complexity to O(ϵN4/3), ϵ ≪ N instead of O (N2) given a naive com-
putation. These complexities may be further reduced, if a Gaussian basis is used, due
to their interesting properties. Additionally, we propose to express the high dimensional
fourth-order tensor Blr in a more compressed format by using screening techniques and
low-rank approximation methods.

On a second note, we consider Chebyshev interpolation combined with FMM [29, 38]
leading to linear time complexity when computing the FMM-accelerated matrix vector
product involving the two-electron integrals tensor. This method is referred to as LTEI-
FMM. We provide detailed comparison between the two approaches and discuss to what
extent the relative performances of these methods make them attractive for different
application cases. In order to test the performance of our algorithm, we use the data
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sets of molecular properties calculated from quantum chemistry for some moderate size
molecules. These data sets are extracted from quantum package [33].

This chapter is organized as follows: in Section 2.3, we describe our new tensorized
method to approximate K(x,y) and we present our LTEI-TA scheme for the element-wise
evaluation of the two-electron integrals based on the underlying tensorized structure. We
describe also using LTEI-TA a factorized expression of the two-electron integrals tensor
and we derive error bounds and theoretical complexities for the approximation process
we use. In Section 2.4 we demonstrate that our kernel K(x,y) is asymptotically smooth,
so that we can benefit from fast hierarchical methods (especially FMM) in order to effi-
ciently evaluate the two-electron integrals decompositions. Hence, we reformulate these
decompositions as N -body problems on non-uniform particle distributions. In Section 2.5,
we showcase a practical application within electronic calculations, which is the evalua-
tion of the Coulomb and Exchange matrices arising in SCF calculations, by using the
decompositions of the two-electron integrals tensor obtained through the new introduced
approaches. In Section 2.6.1, further compression techniques are also presented, extending
screening approaches and low rank approximation methods to our new decompositions.
Finally, results of numerical tests of both methods are presented as well as a summary of
our findings. We use Julia open-source language to test the new approximation method
TA and the evaluation scheme LTEI-TA2 and the C++ library defmm3for LTEI-FMM.

We review in the following several definitions and properties that we use in the sub-
sequent sections.

In the different approximations derived in this work, the product of two Gaussian
type functions is often used. Therefore, we recall the general product rule between two
Gaussian functions.

Proposition 2.2.1 ([66]). Let g1(x) = e−c1∥x−r1∥2
, g2(x) = e−c2∥x−r2∥2 be Gaussian func-

tions with x, r1, r2 ∈ R3, c1, c2 ∈ R. The product of these functions is:

g12(x) = g1(x)g2(x) = e
−c1c2
c1+c2

∥x−r12∥2
e−(c1+c2)∥x−r12∥2

, (2.8)

where r12 = c1
c1+c2

r1 + c2
c1+c2

r2.

We also have recourse to two-dimensional Chebyshev interpolation. Therefore, we give
the expressions of the Chebyechev polynomials as well as the Chebyshev coefficients.

Definition 26 (Two dimensional Chebyshev interpolation [103, 124]). For a given con-
tinuous function f(x,y) on [a, b]2, a, b ∈ R, the two-dimensional Chebyshev interpolation
of this function is given by its interpolating polynomial that we denote:

f̃(x, y) =
N∑

n,m=0
αnmTn(x)Tm(y), (2.9)

where N is the number of interpolation nodes, Tn(x) = cos(n acos(x)), x ∈ [a, b], n ∈ [N ]
are the Chebyshev polynomials:

αnm = cnm
N2

N∑
k,k′=1

f(xk, y′
k)Tn(xk)Tm(y′

k), cn,m =


1 if m = n = 0
2 if m ̸= n = 0 or n ̸= m = 0
4 if m ̸= 0, n ̸= 0

(2.10)
are Chebyshev interpolation coefficients. The nodes xk, y

′
k form the Chebyshev two-

dimensional grids such as Chebyshev-Gauss points (first kind):

xk = cos θk, θk = (2k − 1)π
2N , k = 1, . . . , N, (2.11)

or Chebyshev-Lobatto points (second kind):

xk = cosϕk, ϕk = (k − 1)π
N − 1 , k = 1, . . . , N. (2.12)

2https://github.com/sbadred/LTEI_TA.jl.git
3https://github.com/IChollet/defmm

43



The following proposition gives the interpolation error of the two-dimensional Cheby-
shev approximation.

Proposition 2.2.2 (Interpolation error [54]). Let f̃(x, y) be an interpolating polynomial
of f(x, y) on [a, b]2 at Chebyshev N interpolation nodes and suppose that the partial deriva-
tives ∂N+1f(x,y)

∂xN+1 and ∂N+1f(x,y)
∂yN+1 exist and are continuous for all (x, y) ∈ [a, b]2. We have:

|f(x, y) − f̃(x, y)| ≤

(
b−a

2

)N+1

2N (N + 1)!c1 +
δ
(
b−a

2

)N+1

2N (N + 1)!c2, (2.13)

where

c1 = max
ξ∈[a,b]

∣∣∣∣∣∂N+1f(ξ, y)
∂ξN+1

∣∣∣∣∣ , c2 = max
(ξ,η)∈[a,b]2

∣∣∣∣∣∂N+1f(ξ, η)
∂ηN+1

∣∣∣∣∣ , (2.14)

δ = max
s∈[a,b]

N∑
i=0

|Li,N(s)| . (2.15)

The so-called Lebesgue constant δ grows only logarithmically if Chebyshev interpolation
nodes are used, Li,N(s) are Lagrange polynomials of degree N .

The following proposition recalls the upper bound of Gaussian-quadrature rule error.

Proposition 2.2.3 (Quadrature error, Section 5.2 [57]). Let [a, b] be a real closed interval
of length |b− a| > 0 and let f ∈ C2Nq([a, b]), Nq ≥ 1, the integration of f over [a, b] can
be given as follows, using Gaussian quadrature rule:
∫

[a,b]
f(x)dx =

∫
[−1,1]

f

(
b− a

2 z + a+ b

2

)
dx

dz
dz = b− a

2

Nq∑
i=1

wif

(
b− a

2 zi + a+ b

2

)
+RNq ,

(2.16)
where wi and xi are the weights and nodes of the quadrature rule, Nq is the number of
quadrature points and RNq refers to the Gaussian quadrature error. This last quantity
verifies:

|RNq | ≤ |b− a|2Nq+1 (Nq!)4

(2Nq + 1)[(2Nq)!]3

∥∥∥∥∥ d2Nq

ds2Nq
f(s)

∥∥∥∥∥
∞,[a,b]

. (2.17)

2.3 Long-range two-electron integrals tensor factor-
ization through tensorized approximation

2.3.1 The element-wise evaluation of the two-electron integrals
tensor

In this section we introduce a new numerical method that allows to evaluate efficiently
the two-electron integrals through the factorization of the long-range Coulomb potential.
This method, that we refer to as TA, factorizes the fourth order long-range two-electron
integrals tensor Blr through the approximation of the long-range kernel K(x,y) with
two-dimensional Chebyshev interpolation and Gaussian quadrature. Error bounds for
the numerical approximation of the long-range two-electron integrals are also provided.

2.3.2 The element-wise evaluation of the long-range TEI tensor
We first describe the efficient evaluation of the six-dimensional integrals Blr(µ; ν;κ;λ)
defined in (2.6). We start by presenting our approach for computing the long-range
function K(x,y) defined as:

K(x,y) = erf(ω ∥x − y∥)
∥x − y∥

= 2√
π

∫
[0,ω∥x−y∥] e

−t2dt

∥x − y∥
,x,y ∈ R3. (2.18)

Let t = s ∥x − y∥. With this change of variable, we obtain:

K(x,y) = 2√
π

∫
[0,ω]

e−s2∥x−y∥2
ds,x,y ∈ R3. (2.19)
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Using the Gaussian quadrature rule (see Proposition 2.2.3), we can evaluate numerically
the integral in (2.19) as:

∫
[0,ω]

e−s2∥x−y∥2
ds = ω

2

∫
[−1,1]

e−( ω
2 + ω

2 z)2∥x−y∥2
dz ≈ ω

2

Nq1∑
i=1

wie
−( ω

2 + ω
2 zi)2∥x−y∥2

, (2.20)

where wi are the Gaussian quadrature weights, zi are the Gaussian quadrature nodes,
and Nq1 is the number of quadrature points. The coordinates of x and y are denoted by
(x1, x2, x3), (y1, y2, y3) respectively. The exponential term in (2.20) can be written as:

e−( ω
2 + ω

2 zi)2∥x−y∥2
=

3∏
l=1

e−( ω
2 + ω

2 zi)2(xl−yl)2
, l ∈ {1, 2, 3} . (2.21)

Given the truncated computational box [−b, b]3, b ∈ R, each function of the form e−( ω
2 + ω

2 zi)2(xl−yl)2 ,
i ∈ [Nq1 ] , l ∈ {1, 2, 3} is smooth, differentiable (hence continuous) on [−b, b]2, so that it is
an excellent candidate for two-dimensional Chebyshev interpolation. According to Defi-
nition 26, the interpolated function can be written as:

e−( ω
2 + ω

2 zi)2(xl−yl)2 ≈
Ni∑

nl,ml=1
α(i)
nlml

T (i)
nl

(xl)T (i)
ml

(yl), (2.22)

where Ni is the number of interpolation nodes for i ∈ [Nq1 ], xl, yl ∈ [−b, b], and
l ∈ {1, 2, 3} .

Remark 1. As opposed to polynomial interpolation for fast evaluation methods for sin-
gular kernels (often also based on Chebyshev grids [29]) as appearing in integral equations,
we here deal with non-singular asymptotically smooth kernels (see Proposition (2.4.1))
(3D long-range kernel with erf interaction as well as exponential 1D kernels in equa-
tion (2.22)), allowing to perform interpolations in the whole domain at once, without
caring about admissibility conditions. This is the reason why error estimates, as well as
required number of quadrature points and interpolation nodes depend on ωb instead of
ratio between well-separated cell centers and distance (see Section 2.4).

We recall that among the advantages of using two-dimensional Chebyshev interpola-
tion method is that forming two-dimensional Chebyshev grids Ni × Ni for each function
(2.22) takes O(N2

i ) storage complexity, where Ni is the number of interpolation points
needed. Furthermore, Chebyshev-Lobatto nodes can be obtained in linearithmic time
using Fast Fourier Transform (FFT) [93]. This is one of the reasons for which we use
Chebyshev basis. Our implementation that we discuss in more details in Section 2.7 uses
FFTW [31] routine in Julia and the chebfun2 library [124] to find the number of interpo-
lation points Ni of the functions in (2.22). By replacing (2.22) and (2.20) in (2.19), the
numerical approximation of the kernel K(x,y) becomes:

K(x,y) ≈ ω√
π

Nq1∑
i=1

wi

 Ni∑
n1,m1,

··· ,n3,m3=1

3∏
l=1

α(i)
nlml

T (i)
nl

(xl)T (i)
ml

(yl)

 , (2.23)

where ω ⩾ 0 is the parameter that regulates the separation range of the long-range/short-
range interactions, α(i)

nlml
are the Ni Chebyshev nodes, T (i)

nl
(xl), T (i)

ml
(yl) are the Chebyshev

polynomials (see Definition 26) and wi are the Gaussian quadrature weights with i ∈ [Nq1 ].
All along this work, we denote N the maximum number of interpolation points in the
tensorized Chebyshev grid in all directions such that N = ( max

1≤i≤Nq1
{Ni})3. The pre-

computation cost here to approximate the kernel (2.23) is O(Nq1N
1
3 (log(N 1

3 ) + N
1
3 )) :

O(Nq1N
1
3 log(N 1

3 )) FLOPS4 for the evaluation of the Chebyshev coefficient matrices using
FFT algorithm, linearithmic in the number of interpolation points in a single direction
N

1
3 and linear in the number of quadrature points, and O(Nq1N

2
3 ) FLOPS for forming

the Chebyshev two-dimensional grids. Figure 2.1, displays the accuracy of the approxi-
mation of the long-range kernel for ω = 0.1 on the computational box [−10, 10]3 by using

4Floating Point Operations Per Second
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a Chebyshev grid with maximum number of interpolation points N = 8000 and Nq1 = 11
by varying only x1, y1 ∈ [−10, 10].

-10 -5 0 5 10 -10
-5

0
5

10

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.05

0.06

0.07

0.08

0.09

0.10

0.11

-10 -5 0 5 10 -10
-5

0
5

10 0.15E 14-

0.175E 14-

0.2E 14-

0.225E 14-

0.25E 14-

Figure 2.1: Approximation of the long-range Coulomb potential and associated relative
error in Frobenius norm, for ω = 0.1.

We consider now the finite six-dimensional integral Blr(µ; ν;κ;λ) defined in (2.7) on
the same truncated computational box [−b, b]3 × [−b, b]3, b ∈ R with µ, ν, κ, λ ∈ [Nb],
where Nb is the number of basis functions that we defined in (1.94) and b is the size of the
computational box that is chosen according to the most slowly decaying basis functions.
We discuss this aspect in more details in Section 2.6.2. By replacing K(x,y) with its
approximation from (2.23), the numerical approximation of Blr(µ; ν;κ;λ), denoted by
Blr
LTEI−TA(µ; ν;κ;λ), writes:

BlrLTEI−TA(µ; ν; κ; λ) = ω√
π

Nq1∑
i=1

wi

(∫
[−b,b]3

∫
[−b,b]3

gµν(x)gκλ(y) Ni∑
n1,m1,

··· ,n3,m3=1

3∏
l=1

α(i)
nlml

T (i)
nl

(xl)T (i)
ml

(yl)

 dxdy,

(2.24)

where gµν(x) = gµ(x)gν(x), gκλ(y) = gκ(y)gλ(y) such that according to (1.94) we have
(showing only gµν expression)

gµν(x) = gµ(x)gν(x) =
Iµ∑
j1=1

Iν∑
j2=1

cj1cj2

3∏
l=1

f (j1)
µ (xl)f (j2)

ν (xl) =
Iµν∑
j=1

cj
3∏
l=1

f (j)
µν (xl),(2.25)

where Iµν = IµIν , cj = cj1cj2 , f
(j)
µν (xl) = f (j1)

µ (xl)f (j2)
ν (xl). Expressing the three dimen-

sional function gµν(x) as a sum of separable functions is important to reduce the evalua-
tion cost of Blr

LTEI−TA(µ; ν;κ;λ) such that after replacing the Gaussian basis functions in
(2.24) by their separable expression (2.25) we obtain:

BlrLTEI−TA(µ; ν; κ; λ) = ω√
π

Nq1∑
i=1

wi

∫[−b,b]3

∫
[−b,b]3

gµν(x)gκλ(y)

 Ni∑
n1,m1,

··· ,n3,m3=1

3∏
l=1

α(i)
nlml

T (i)
nl

(xl)T (i)
ml

(yl)

 dxdy



= ω√
π

Nq1∑
i=1

wi

∫[−b,b]3

∫
[−b,b]3

Iµν∑
j=1

Iκλ∑
j′=1

cjcj′

3∏
l=1

f (j)
µν (xl)f

(j′)
κλ (yl)


 Ni∑

n1,m1,
··· ,n3,m3=1

3∏
l=1

α(i)
nlml

T (i)
nl

(xl)T (i)
ml

(yl)

 dxdy


= ω√

π

Nq1∑
i=1

wi

Iµν∑
j=1

Iκλ∑
j′=1

cjcj′

Ni∑
n1,m1,

··· ,n3,m3=1

3∏
l=1

(
α(i)
nlml

∫
[−b,b]

f (j)
µν (xl)T (i)

nl
(xl)dxl

∫
[−b,b]

f
(j′)
κλ (yl)T (i)

ml
(yl)dyl

)
︸ ︷︷ ︸

≈Fi(j;j′)

.

(2.26)
We note that the expression of Blr

LTEI−TA(µ; ν;κ;λ) in (2.26) involves the numerical
evaluation of one dimensional integrals. We associate each such integral with the element
of a matrix and obtain two matrices W(i,l)

µν ∈ RIµν×Ni and W(i,l)
κλ ∈ RIκλ×Ni defined entry-

wise as:

W(i,l)
µν (j;nl) =

∫
[−b,b]

f (j)
µν (xl)T (i)

nl
(xl)dxl and W(i,l)

κλ (j′;ml) =
∫

[−b,b]
f

(j′)
κλ (yl)T (i)

ml
(yl)dyl.

(2.27)
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We use one-dimensional Gaussian quadrature rule for the evaluation of (2.27). Their
approximation is denoted by W(i,l)

µν (j;nl)(resp.W(i,l)
κλ (j′;ml). We further define matrices

Fi, i ∈ [Nq1 ], as displayed in (2.26). By replacing the expressions of W̃(i,l)
µν and W̃(i,l)

κλ , we
obtain

Fi(j; j′) =
Ni∑

n1,m1,
··· ,n3,m3=1

3∏
l=1

(
α(i)
nlml

W̃(i,l)
µν (j;nl)W̃(i,l)

κλ (j′;ml)
)
. (2.28)

By changing the order of summation in (2.28) and exploiting Khatri-Rao as well as Kro-
necker structures (see their definitions in Section 1.1), we obtain the factorized represen-
tation of Blr

LTEI−TA as given in the following theorem.

Theorem 2. The long-range two-electrons integrals has a factorized representation that
writes

Blr
LTEI−TA(µ; ν;κ;λ) = ω√

π

Nq1∑
i=1

wi

Iµν∑
j=1

Iκλ∑
j′=1

cjcj′Fi(j; j′), (2.29)

where Fi ∈ RIµν×Iκλ

Fi = (⋄3
l=1W̃(i,l)

µν )(
3⊗
l=1

KAi)(⋄3
l=1W̃

(i,l)
κλ )∗ = ⊙3

l=1W̃(i,l)
µν AiW̃(i,l)∗

κλ , (2.30)

where Ai ∈ RNi×Ni are the Chebyshev coefficients matrices such that Ai(nl;ml) = α(i)
nlml

for nl,ml ∈ [Ni] , l ∈ {1, 2, 3} with α(i)
nlml

defined in (2.22),W̃(i,l)
µν ∈ RIµν×Ni and W̃(i,l)

κλ ∈ RIκλ×Ni

are the numerical approximation of the one-dimensional integrals defined in (2.27).

It is noted that the work of [62] also yields a factorization similar to ours for the
two-electron integrals without the range separation, but with a different discretization
scheme.

In what follows, algorithm 4 computes the approximated entries (Blr
LTEI−TA)µνκλ (2.29)

given the coefficient matrix obtained from the two-dimensional Chebyshev interpolation
Ai ∈ RNi×Ni , for i ∈ [Nq1 ] and for any given pairs of µ, ν, κ, λ. This approach allows to re-
duce the storage complexity (resp. arithmetic complexity) to O

(∑Nq1
i=1 Ni(Ni + Iµν + Iκλ)

)
∼

O
(
Nq1N

1
3 (N 1

3 + Iµν + Iκλ)
)

(resp. O
(∑Nq1

i=1 NiIκλ(Ni + Iµν)
)

∼ O
(
Nq1N

1
3 Iκλ(N

1
3 + Iµν)

)
),

with N 1
3 = max

1≤i≤Nq1
{Ni}, instead of O(N(N+Iµν +Iκλ)) (resp. O(NIκλ(N + Iµν + Iκλ))),

using naïve tensorized three dimensional quadrature on the computational box [−b, b]3.
Numerical results for this element-wise factorization are summarized in Section 2.7.

Algorithm 4 Compute Blr
LTEI−TA(µ; ν;κ;λ)

Input: Chebyshev coefficient matrices Ai, µ, ν,κ, λ, wi for i ∈ [Nq1 ] . Output:
Blr
LTEI−TA(µ; ν;κ;λ)
1: procedure element-wise LTEI-TA
2: Set s = 0.
3: for i=1 to Nq1 do
4: Compute W̃(i,l)

µν , l ∈ {1, 2, 3} , ▷ Iµν ×Ni matrices (according to (2.27)).
5: Compute W̃(i,l)

κλ , l ∈ {1, 2, 3} , ▷ Iκλ ×Ni matrices (according to (2.27)).
6: Fi = ⊙3

l=1W̃(i,l)
µν AiW̃(i,l)∗

κλ .
7: s = s+ wi

∑Iµν

j=1
∑Iκλ
j′=1 cjcj′Fi(j; j′).

8: end for
9: Blr

LTEI−TA(µ; ν;κ;λ) = ω√
π
s.

10: end procedure

2.3.3 Error bound of the two-electron integrals numerical ap-
proximation

In what follows, we give a theoretical error bound associated with the element-wise nu-
merical approximation of Blr(µ; ν;κ;λ) introduced in (2.29).
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Proposition 2.3.1. The element-wise error ϵ between the long-range two-electron inte-
grals Blr(µ; ν;κ;λ), given a finite box [−b, b]3, and it’s approximation Blr

LTEI−TA can be
bounded as follows:

|ϵ| :=
∣∣∣Blr(µ; ν;κ;λ) − Blr

LTEI−TA(µ; ν;κ;λ)
∣∣∣ ≤ c1(ω,Nq1 , b) sup

x,y∈[−b,b]3

∥∥∥∥∥ d2Nq1

ds2Nq1
f(s,x,y)

∥∥∥∥∥
∞,[0,ω]


+ ω√

π
c2(Nq1 , b, N

1
3 ),

where we define the multivariate function:

f(s,x,y) = exp(−s2 ∥x − y∥2), s ∈ [0, ω] ,x,y ∈ [−b, b]3 . (2.31)

ϵ is the approximation error, Nq1 is the number of quadrature points, c1 and c2 are defined
in the following proof.

Proof. We start by introducing the following function

h(zi, ω) =
∫

[−b,b]3

∫
[−b,b]3

gµν(x)gκλ(y)exp
(

−(ω2 + ω

2 zi)
2 ∥x − y∥2

)
dxdy (2.32)

=
Iµν∑
j=1

Iκλ∑
j′=1

cjcj′

( 3∏
l=1

∫
[−b,b]2

f (j)
µν (xl)f (j′)

κλ (yl)exp
(

−(ω2 + ω

2 zi)
2(xl − yl)2

)
dxldyl

)
,

(2.33)

with zi, i ∈ [Nq1 ] being the Gaussian quadrature nodes. The upper bound of ϵ can be
found as follows:

|ϵ| =
∣∣∣Blr(µ; ν; κ; λ) − BlrLTEI−TA(µ; ν; κ; λ)

∣∣∣ ≤

∣∣∣∣∣∣Blr(µ; ν; κ; λ) − ω√
π

Nq1∑
i=1

wih(zi, ω)

∣∣∣∣∣∣︸ ︷︷ ︸
ϵ1

+

∣∣∣∣∣∣ ω√
π

Nq1∑
i=1

wih(zi, ω) − BlrLTEI−TA(µ; ν; κ; λ)

∣∣∣∣∣∣︸ ︷︷ ︸
ϵ2

,

(2.34)
Using Proposition 2.2.3, triangle inequality, and Stirling formula given by n! ≈

√
2πn

(
n
e

)n
,

ϵ1 is bounded as follows:

ϵ1 ⩽ c1(ω,Nq1 , b) sup
x,y∈[−b,b]3

∥∥∥∥∥ d2Nq1

ds2Nq1
f(s,x,y)

∥∥∥∥∥
∞,[0,ω]

 , (2.35)

where
c1(ω,Nq1 , b) =

2eNq1√
π
b6 ∥gµν∥∞,[−b,b]3 ∥gκλ∥∞,[−b,b]3 , (2.36)

with eNq1
= ω2Nq1 +1e2Nq1 (Nq1π)

1
2

26Nq1 +1N
2Nq1
q1 (2Nq1 +1)

. The error bound of ϵ2 needs a more detailed explanation.

We replace Blr
LTEI−TA(µ; ν;κ;λ) by its expression defined in (2.29) such that

|ϵ2| =
∣∣∣∣∣∣ ω√π

Nq1∑
i=1

wi

h(zi, ω) −
Iµν∑
j=1

Iκλ∑
j′=1

cjcj′Fi(j; j′)
∣∣∣∣∣∣ ≤ ω√

π

Nq1∑
i=1

|wi|

∣∣∣∣∣∣h(zi, ω) −
Iµν∑
j=1

Iκλ∑
j′=1

cjcj′Fi(j; j′)
∣∣∣∣∣∣ ,

(2.37)
with Fi(j; j′) being defined in (2.28). Using the triangle inequality, the expression of∣∣∣h(zi, ω) −∑Iµν

j=1
∑Iκλ
j′=1 cjcj′Fi(j; j′)

∣∣∣, for i ∈ [Nq1 ], can be bounded as follows:∣∣∣∣∣∣h(zi) −
Iµν∑
j=1

Iκλ∑
j′=1

cjcj′Fi(j; j′)

∣∣∣∣∣∣ ≤
Iµν∑
j=1

Iκλ∑
j′=1

cjcj′

∣∣∣∣∣
3∏
l=1

∫
[−b,b]2

f
(j)
µν (xl)f

(j′)
κλ (yl)e−( ω

2 + ω
2 zi)2(xl−yl)2

dxldyl − Fi(j; j′)
∣∣∣∣∣ .

(2.38)
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In order to evaluate the bound of (2.38), one needs to evaluate the error bound of the
following expression using Proposition 2.2.2 and Proposition 2.2.3∣∣∣∣∣∣
∫

[−b,b]2
f

(j)

µν (xl)f
(j′)

κλ (yl)e−( ω
2 + ω

2 zi)2(xl−yl)2 −
Ni∑
nl,ml

α(i)
nlml

W̃(i,l)
µν (j;nl)W̃(i,l)

κλ (j′;ml)
∣∣∣∣∣∣ ≤ βi, l ∈ {1, 2, 3} ,

(2.39)

where for i ∈ [Nq1 ] , j ∈ [Iµν ] , and j′ ∈ [Iκλ], βi is defined as follows:

βi =(2b)2∥f (j)
µν ∥∞,[−b,b]∥f (j′)

κλ ∥∞,[−b,b]eNi

+ eNq2

∥f (j′)
κλ ∥∞,[−b,b]

∥∥∥∥∥d
2Nq2 (f (j)

µν T
(i)
n1 )(x)

dx2Nq2

∥∥∥∥∥
∞,[−b,b]

+Nq2 max
1≤i≤Nq2

(wi)∥f (j)
µν ∥∞,[−b,b]∥∥∥∥∥∥d

2Nq2 (f (j′)
κλ T

(i)
m1)(y)

dy2Nq2

∥∥∥∥∥∥
∞,[−b,b]

 ,
(2.40)

with eNq2
= (2b)2Nq2 +1e2Nq2 (Nq2π)

1
2

26Nq2 +1N
2Nq2
q2 (2Nq2 +1)

. The term eNi
is defined as follows:

eNi
= bNi+1

21+Ni

e−Ni+1√
2π (Ni + 1)

(
1 +N

(Ni+1)
i

) [ max
−b≤ξ≤b

∣∣∣∣∣∂Ni+1F (zi, ξ, y)
∂ξNi+1

∣∣∣∣∣+ δ max
−b≤ξ,η≤b

∣∣∣∣∣∂Ni+1F (zi, ξ, η)
∂ηNi+1

∣∣∣∣∣
]
,

(2.41)
where F (zi, x, y) = e−( ω

2 + ω
2 zi)2(x−y)2 with zi being the Gaussian quadrature points and δ is

defined in (2.2.2). Now, by factorizing (2.38) and using (2.39), one arrives at the desired
error bound of ϵ2:

ϵ2 ≤ ω√
π
c2(Nq1 , b, N

1
3 ), (2.42)

with

c2(Nq1 , b, N
1
3 ) = Nq1 sup

1≤i≤Nq1

|wi|
Iµν∑
j

Iκλ∑
j′
cjcj′

(2b)4∥f (j)
µν ∥2

∞,[−b,b]∥f
(j′)
κλ ∥2

∞,[−b,b]

sup
1≤n1,m1≤Ni

(
(1 +Niα

(i)
n1,m1 + (Niα

(i)
n1,m1)2)βi

))
.

(2.43)

Throughout this study, we maintain a constant number of quadrature points Nq2 , for
evaluating (2.27). It is important to note that our analysis does not focus on varying the
parameter Nq2 , as it remains fixed.

As we notice here, the approximation error bound depends on the value of ω, the
number of quadrature points Nq1 , the number of interpolation points N , the regularity
of the function f , the Gaussian-type functions and the dimension of the hypercube b. It
is worth noting that for fixed values of ω and b, c1(ω,Nq1 , b) → 0 when Nq1 → ∞ and
c2(Nq1 , b, N

1
3 ) → 0 when N

1
3 → ∞.

2.3.4 A new decomposition of the two-electron integrals tensor
through a tensorized approximation approach

As already discussed in the introduction, one of the main steps in many methods in quan-
tum chemistry involves the application of the two-electron integrals tensor Blr ∈ RNb×Nb×Nb×Nb

to a vector with N2
b elements or a set of such vectors. To perform efficiently this contrac-

tion operation, we introduce in this section a factorized representation of the fourth-order
two-electron integrals tensor Blr that expands the factorized representation of its ele-
ments summarized in Theorem 2. We show also that the obtained tensorized structure is
beneficial to accelerate contraction operations involved in HF calculations.
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Factorized expression of Blr

In what follows we derive the factorized representation of
(
Blr

)<2>
(mode-(1:2) matriciza-

tion of Blr ∈ RNb×Nb×Nb×Nb). We slightly modify the expression of the approximation of
the two-electron integrals (see Theorem 2) by changing the order of summation to obtain:

Blr
LTEI−TA(µ; ν;κ;λ) = ω√

π

Nq1∑
i=1

wi

 Ni∑
n1,m1,

···n3,m3=1

Iµν∑
j=1

cj
3∏
l=1

W̃(i,l)
µν (j;nl)

 3∏
l=1

α(i)
nlml

 Iκλ∑
j′=1

cj′

3∏
l=1

W̃(i,l)
κλ (j′;ml)


 .

(2.44)
We introduce the matrices MTA

i ∈ RN
2
b ×N3

i with single entries ∑Iµν

j=1 cj
∏3
l=1 W̃(i,l)

µν (j;nl),
µ, ν ∈ [Nb], nl ∈ [Ni] , l ∈ {1, 2, 3} such that

(
Blr
LTEI−TA

)<2>
writes

(
Blr
LTEI−TA

)<2>
= ω√

π

Nq1∑
i=1

wiMTA
i (

3⊗
l=1

KAi)
(
MTA

i

)∗
∈ RN

2
b ×N2

b , (2.45)

and

MTA
i (µ, ν; n1, n2, n3) =

Iµν∑
j=1

cj

3∏
l=1

W̃(i,l)
µν (j; nl), i ∈ [Nq1 ] . (2.46)

Fast evaluation of tensor products

In practice, it is sufficient to compute the matrix MTA
i with the largest number of interpo-

lation points, denoted as N . This matrix is represented by MTA,max ∈ RN
2
b ×N . Notably,

the remaining matrices MTA
i ∈ RN

2
b ×N3

i , where N3
i ≤ N and i ∈ [Nq1 ], share common

elements with MTA,max . For example, given the two following matrices MTA
i ∈ RN

2
b ×N3

i

and MTA
j ∈ RN

2
b ×N3

j with Ni < Nj and i, j ∈ [Nq1 ], we have:

MTA
i (µ, ν;n1, n2, n3) = MTA

j (µ, ν;n1, n2, n3), n1, n2, n3 ∈ [Ni] . (2.47)
This can also be illustrated in Figure 2.2. Therefore, the storage complexity for storing
MTA,max is O(NN2

b ).

. . .

N
1
3

︸ ︷︷ ︸

N
1 3

︸
︷︷

︸ N

1
3︸ ︷︷
︸

N
1
3

︸ ︷︷ ︸

N
1 3

︸
︷︷

︸ N

1
3︸ ︷︷
︸

Tensor MT A
i [1, :, :, :] ∈ R1×Ni×Ni×Ni

︸ ︷︷ ︸
N2

b

Figure 2.2: The tensor MTA,max ∈ RN
2
b ×N

1
3 ×N

1
3 ×N

1
3 is obtained through the tensor folding

of the matrix MTA,max ∈ RN
2
b ×N .

By doing so, we can extract MTA
i ∈ RN

2
b ×Ni×Ni×Ni tensors that we unfold back to

matrices MTA
i ∈ RN

2
b ×N3

i through mode-1 matricization. We can exploit the tensorized
structure of the factorized long-range TEI tensor in Equation (2.45) to reduce the applica-

tion cost of the product between the tensorized form
3⊗
l=1

KAi ∈ RN
3
i ×N3

i and MTA
i ∈ RN

2
b ×N3

i

from O (N6
i N

2
b ) to O (N4

i N
2
b ). This complexity reduction is achieved as follows: given the

Definition 1.16, the product
( 3⊗
l=1

KAi

)(
MTA

i

)∗
can be defined entry-wise by

(( 3⊗
l=1

KAi

)(
MTA

i

)∗
)

(n; j) =
Ni∑

m1,m2,m3=1

( 3∏
l=1

Ai(nl;ml)
)(

MTA
i

)∗
(m1,m2,m3; j)

=
Ni∑

m1,m2,m3=1

( 2∏
l=1

Ai(nl;ml)
)(

Ai

(
MTA

i

)(4)
)

(n3;m1,m2, j),

(2.48)
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where
(
MTA

i

)(4)
is the mode-4 matricization of the fourth order tensor MTA

i ∈ RN
2
b ×Ni×Ni×Ni .

From (2.48), we notice that we need to perform three times the matrix-matrix products
of sizes Ni × Ni and Ni × N2

i N
2
b , leading to an overall time complexity of O (3N4

i N
2
b ) ∼

O (N4
i N

2
b ). If we want to compute the whole tensor, we need to sum over i ∈ [Nq1 ] which

yields to a complexity of O
(
N

4
3N2

b

)
.

In practical applications, it is unnecessary to compute the complete two-electron in-
tegrals tensor; instead, maintaining its tensorized structure allows for efficient matrix
operations when applying it to vectors or matrices. Further insight into a specific appli-
cation case will be provided in Section 2.5.

An important point when implementing these tensor product evaluations is that the
presented method can benefit from BLAS operations [24]. Indeed, (2.48) can be inter-
preted as the application of a sequence of products of permutation matrices and block-
diagonal matrices (with the same blocks Ai along the diagonal) to

(
MTA

i

)(k)
, k ∈ {2, 3, 4}.

Matrix-vector products with block-diagonal matrices of this form can be numerically re-
formulated as matrix-matrix products between one of these diagonal blocks and a matrix
composed of the concatenation of subvectors of the original one [18]. Since matrix-matrix
products can be performed more efficiently than matrix-vector products using BLAS
routines (namely BLAS-3 instead of BLAS-2), this optimization results in efficient im-
plementations. In our case, we have even larger concatenation of subvectors because we
apply these tensor products to matrices (not simply vectors), resulting in even better
exploitation of BLAS-3 routines.

2.4 Long-range two-electron integrals tensor factor-
ization through Fast Multipole Methods

Moving forward, we will provide a brief overview of Fast Multipole Methods (FMM) and
its relevance to our problem. This will be preceded by a demonstration of the asymptotic
smoothness of our kernel. Furthermore, we will give a comparison between the LTEI-TA
and LTEI-FMM methodologies for approximating Blr, highlighting their resemblances and
distinctions. First, we start by providing the definition of asymptotically smooth kernel.

Definition 27 (Definition 5.1 in [15]). A kernel K(., .) : R3 × R3 → R is said to be
asymptotically smooth if there exist two constants c1, c2 and a singularity degree σ ∈ N0
such that ∀z ∈ {xl,yl} ∈ R, ∀n ∈ N0,∀x ̸= y,∣∣∣∣∣ ∂n∂znK(x,y)

∣∣∣∣∣ ≤ n!c1 (c2 ∥x − y∥)−n−σ .

Based on this property, efficient hierarchical schemes can be derived for the evaluation
of N -body problems involving asymptotically smooth kernels.

2.4.1 Fast Multipole Methods
Considering two point clouds with NX, NY points, where we denote these clouds by
{xn}NX

n=1 , {yn}NY
n=1 ⊂ R3 (whose elements are referred to as 3D points or particles), q : {yn}NY

n=1 → R
and an asymptotically smooth function K : (R3 × R3) \{0} → R, one may express the
associated N -body problem as the computation of p : {xn}NX

n=1 → R such that

p(x) :=
∑

y∈{yn}NY
n=1

K(x,y)q(y). (2.49)

Computing p naively requires O(N2) floating point operations, with N = max {NX, NY}.
Thanks to hierarchical methods, such as hierarchical matrices or Fast Multipole Methods
(FMM), which is a fast and a popular, initially introduced by Greengard and Rokhlin in
1985 [38], this complexity can be reduced to O(N logN) or even O(N) (but at the cost of
an error we can control). These methods rely on decompositions of {xn}NX

n=1 and {yn}NY
n=1

into groups of particles whose interaction can be efficiently performed through low-rank
matrix approximations if their distance is sufficiently large compared to their radius. For
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non-oscillatory kernels K, FMMs are able to reach the O(N) complexity, so that they are
attractive algorithm for efficiently solving N -body problems.

Among the different formulation of FMMs, we seek for particular features needed for
our application case. Indeed, the method has to:

• perform efficiently (actually in a linear time with respect to the number of points)
on highly non-uniform point distributions, such as the three-dimensional Chebyshev
grids,

• handle the kernel K (which is non-standard kernel in the FMM community),

• be able to reach the precision required in realistic chemistry applications.

2.4.2 Application of Fast Multipole Methods to two-electron
integrals

First, in order to exploit FMM on the two-electron integrals, one has to check that the
underlying kernel is asymptotically smooth. In our case, we want the FMM to act on
the long-range kernel K(x,y),x,y ∈ R3 (see (2.19)), which leads us to demonstrate the
result of Proposition 2.4.1.

Proposition 2.4.1. K(x,y) = erf(ω∥x−y∥))
∥x−y∥ ,x,y ∈ R3, 0 ≤ ω < ∞ is asymptotically

smooth.

Proof. Given the function K(x,y) = erf(ω∥x−y∥))
∥x−y∥ ,x,y ∈ R3, 0 ≤ ω < ∞, we want to

evaluate the function’s partial derivative upper bound with respect to x1 ∈ R such that
∀n ∈ N0,∀x ̸= y, the nth derivative of K(x,y) with respect to x1 writes

∂n

∂xn1
K(x,y) = ∂n

∂xn1
( 2√

π

∫ ω

0
exp

(
−s2 ∥x − y∥2

)
ds) (2.50)

= 2n+1
√
π
n!
∫ ω

0

[ n
2 ]∑

k=0

(−1)n−2k2−2k(x1 − y1)n−2k

k!(n− 2k)! s2n−2kexp
(
−s2 ∥x − y∥2

)
ds.

(2.51)

If n is even, the term under the integral in (2.50) is positive. Otherwise, it is either
negative or positive. Therefore, (2.50) can be bounded by the absolute value of the nth
derivative of the Coulomb potential that writes:

∂n

∂xn1

1
∥x − y∥

= 2n+1
√
π
n!
∫ ∞

0

[ n
2 ]∑

k=0

(−1)n−2k2−2k (x1 − y1)n−2k

k!(n− 2k)! s2n−2kexp
(
−s2

∥∥∥x − y2
∥∥∥) ds,
(2.52)

and
∂n

∂xn1
K(x,y) ≤

∣∣∣∣∣ ∂n∂xn1
1

∥x − y∥

∣∣∣∣∣ . (2.53)

Since 1
∥x−y∥ is asymptotically smooth [7, 40], this shows thatK(x,y) is also asymptotically

smooth. This proof applies for all the other directions.

Hence, thanks to the asymptotically smooth behavior of K, FMM can be applied
to this kernel and the far field contribution of the N -body problem can be efficiently
approximated, especially by exploiting polynomial interpolation. Similar to the previous
sections, we consider the finite six-dimensional integral Blr(µ; ν;κ;λ) defined in (2.7) on
a truncated computational box [−b, b]3 × [−b, b]3, b ∈ R as follows:

Blr(µ; ν;κ;λ) =
∫

[−b,b]3

∫
[−b,b]3

gµν(x)K(x,y)gκλ(y)dxdy. (2.54)

Instead of applying Gaussian quadrature rule on the kernel K(x,y) as we did in the previ-
ous Section 2.3, we use Chebyshev polynomials evaluated in a six-dimensional Chebyshev
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grid, the low-rank approximation of K(x,y) can be written, as explained in [29], as
follows:

K(x,y) =
N∑
i=1

L(xi,x)
N∑
j=1

K(xi,yj)L(yj,y)
︸ ︷︷ ︸
N-body problem as in Eq. 2.49

, (2.55)

where N is the total number of Chebyshev interpolation points (we use the same N as
the one introduced in Section 2.3), xi = (xi1 ,xi2 ,xi3) and yi = (yi1 ,yi2 ,yi3) ∈ R3N , for
i ∈ {1, 2, . . . , N}, il, jl ∈ [N ] , l ∈ {1, 2, 3}. We also have:

L(xi,x) = L(1) (xi1 ,x1)L(2) (xi2 ,x2)L(3) (xi3 ,x3) . (2.56)

L(l) (xil ,xl) = 1
N

1
3

+ 2
N

1
3

N
1
3∑

k=2
Tk(xil)Tk(xl), l ∈ {1, 2, 3} . (2.57)

One may notice that the Equation (2.57) appears as a simple reformulation of the inter-
polation presented in Definition 26, combining the equation (2.9) and the equation (2.10).
The important point here is that we want the kernel to explicitly appear (evaluated on
Chebyshev interpolation nodes) in the expression, so that a FMM algorithm can be de-
rived, following [18, 29]. Chebyshev polynomials are used here as interpolation basis and
were already defined in Definition 26. The long-range two-electron integrals in (2.7) can
be written as follows:

Blr
LTEI−FMM(µ; ν;κ;λ) =

N∑
i=1

∫
[−b,b]3

gµν(x)L(xi,x)dx︸ ︷︷ ︸
zµν(i)


N∑
j=1

K(xi,yj)
∫

[−b,b]3
gκλ(y)L(yj,y)dy︸ ︷︷ ︸

zκλ(j)


(2.58)

=
N∑
i=1

zµν(i)
 N∑
j=1

K(xi,yj)zκλ(j)
 .

Equation (2.58) can be written in matrix formulation as follows for fixed µ, ν, κ, λ ∈ [Nb]:

Blr
LTEI−FMM(µ; ν;κ;λ) = zµνKz∗

κλ, zµν , zκλ ∈ RN ,K ∈ RN×N , (2.59)

with K(xi; yj) = erf(ω∥xi−yj∥))

∥xi−yj∥ , i, j ∈ [N ] .
The last term into parenthesis in (2.58) corresponds to an N -body problem as in

Equation (2.49), whose evaluation can be performed in O(N) FLOPS using FMM. One
may notice that the FMM accuracy can be chosen accordingly to the interpolation error
in equation (2.58). For all µ, ν, κ, λ ∈ [Nb], the factorized representation of the mode-(1,2)
matricization of the fourth-order tensor Blr

LTEI−FMM (2.58) is then given by:(
Blr
LTEI−FMM

)<2>
= MFMMK

(
MFMM

)∗
∈ RN

2
b ×N2

b , MFMM ∈ RN
2
b ×N , (2.60)

with MFMM [µν, :] = zµν ∈ RN , for µ, ν ∈ [Nb]. Hence, the entire computation of (2.60)
requires the application of the FMM method to each column of MFMM , the overall eval-
uation complexity of FMM becomes O(N ×N2

b ) to compute K
(
MFMM

)∗
.

Remark 2. The FMM formulation we opted for relies on precomputations (at a linear
cost with respect to the number of particles) for the construction of low-rank approxi-
mations (see Section 2.4.1) that depends only on the particle distribution. Because the
interpolation points are the same for each zκλ(j), our particle distributions do not change,
so these precomputations can be performed only once and reused for each FMM applica-
tion.

To summarize, LTEI-FMM is the combination of two steps:
• a global interpolation of the kernel, mainly introduced to switch integrals to basis

functions: Chebyshev polynomials basis,

• the application of a fast linear-complexity summation method for N -body prob-
lems to the induced highly non-uniform distribution of tensorized Chebyshev nodes
(possibly relying itself on local polynomial interpolations, such as in [29]).
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2.4.3 Similarities and differences
In table 2.1 we summarize the approximated expressions of (2.7) obtained through LTEI-
TA and LTEI-FMM approaches.

Table 2.1: Factorization of TEI

Approaches LTEI-TA LTEI-FMM
Distribution N Chebyshev points N Chebyshev points
Entry-wise Blr

LTEI−TA(µ; ν;κ;λ) Blr
LTEI−FMM(µ; ν;κ;λ)

evaluation := ω√
π

∑Nq1
i=1 (wi

∑Iµν

j=1
∑Iκλ
j′=1 cjcj′Fi(j; j′)) := zµνKz∗

κλ.

Factorized
(
Blr
LTEI−TA

)<2> (
Blr
LTEI−FMM

)<2>

representation := ω√
π

∑Nq1
i=1 wiMTA

i (
3⊗
l=1

KAi)
(
MTA

i

)∗
∈ RN

2
b ×N2

b . := MFMMK
(
MFMM

)∗
∈ RN

2
b ×N2

b .

We discuss here the differences and similarities between both approaches. On one
hand, for TA approach, we start by applying a change of variable to the long-range kernel
K(x,y) (2.19) in order to remove the term 1

∥x−y∥ , then we apply one-dimensional Gaussian
quadrature (see (2.20)) with Nq1 quadrature points. In addition to that, we apply two-
dimensional Chebyshev interpolation on 2D smooth exponential functions which yields a
tensorized form obtained in (2.29), (2.45). Thus, we need to evaluate MTA,max ∈ RN

2
b ×N

which involves the evaluation of one-dimensional integrals over [−b, b]. On the other hand,
when applying interpolation directly on the original kernel K, one ends up with a three
dimensional N-body problem that can be efficiently handled using FMM approach given
that our kernel is asymptotically smooth. Thus, we need to compute MFMM ∈ RN

2
b ×N

which involves also the evaluation of one-dimensional integrals over [−b, b]. The simi-
larities between both approaches consist in employing Chebyshev interpolation with the
same total number of interpolation points N .

Remark 3. One may mention that for low level optimisations (such as explicit formula for
the polynomials or fast FFT-based assembling of the interpolation coefficients), we opted
for slightly different interpolation nodes in the two methods. Indeed, Gauss-Chebyshev-
Lobatto nodes are used for LTEI-TA method while Chebyshev nodes are used for LTEI-
FMM. These last points are defined as (showing only xil expression):

xil = cos
(

2k − 1
2N 1

3
π

)
, k ∈

[
N

1
3
]
, l ∈ {1, 2, 3} . (2.61)

However, for both cases, the same number of interpolation nodes is considered for a given
targeted precision, N 1

3 per direction, so that this detail does not impact the complexity
estimates and the comparison between them.

2.5 Application to electronic structure calculations
We describe in what follows an application case for the long-range two-electron integrals
tensor using LTEI-TA as well as LTEI-FMM. The application case consists in the con-
struction of the long-range Coulomb matrix arising in the Hartree-Fock calculations for
solving the Hartree-Fock equations using the iterative Self Consistent Field (SCF) method
as detailed in [61, 79, 82, 117, 136], the evaluation of the long-range exchange matrix is
outlined in Appendix .2 . This approach is often used in the context of range-separated
hybrid approximation approaches [32, 55, 96]. We define in the following the long-range
Coulomb matrix in the molecular spatial-orbital basis set {ϕi}1≤i≤d defined in (1.90). In
this basis, the Coulomb long-range integral reads

Jlr(i; j) =
∫

R3

∫
R3
K(x,y)

d∑
i=1

|ϕi(x)|2
d∑
j=1

|ϕj(y)|2 dxdy (2.62)

=
Nb∑

µ,ν,κ,λ=1

d∑
i,j=1

CiµCiν

(∫
R3

∫
R3
K(x,y)gµν(x)gκλ(y)CjκCjλdxdy

)
, (2.63)
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with Ciµ being the coefficients of the expansion of {ϕi}1≤i≤d with d ∼ Nb .
Let us define the rectangular matrix Q ∈ Rd×N2

b with entries Q(i;µ, ν) = qiµqiν such
that Jlr writes in matrix notation as

Jlr = Q
(
Blr

)<2>
Q∗ ∈ Rd×d, (2.64)

where
(
Blr

)<2>
∈ RN

2
b ×N2

b is the mode-(1,2) matricization of Blr. A naive approach to
evaluate (2.64), given ω, the matrix Q ∈ Rd×N2

b , and the long-range two-electron integrals(
Blr

)<2>
, is to first compute the matrix product BlrQ∗ and then perform Q

(
BlrQ∗

)
. The

last has an arithmetic cost of O(N4
b d). Given a truncated computational box [−b, b]3, one

can use the factorized structure
(
Blr
LTEI−TA

)<2>
defined in (2.45) or

(
Blr
LTEI−FMM

)<2>

defined in (2.60) to evaluate (2.64) efficiently. Given the two approximation approaches
(LTEI-TA and LTEI-FMM), we arrive at the following matrix representations:

JlrLTEI−TA = ω√
π

Nq1∑
i=1

wi
(
QMTA

i

)( 3⊗
l=1

KAi

)(
QMTA

i

)∗
(2.65)

and
JlrLTEI−FMM =

(
QMFMM

)
K
(
QMFMM

)∗
. (2.66)

We provide an overview of the storage complexities achieved by the LTEI-TA and LTEI-
FMMmethods for evaluating the long-range two-electron integrals tensor element-wise as
well as the storage complexities when the latter is applied to compute the long-range
Coulomb matrix defined in Equation (2.64).

Table 2.2: Storage complexity comparison

LTEI-TA LTEI-FMM
Element-wise TEI O(N 1

3Nq1(N 1
3 + Iµν + Iκλ)) O(N)

Application (2.64) O(N 2
3 (dN 1

3 +Nq1)) O(N(1 + d))

The storage complexity of the element-wise evaluation for LTEI-FMM is a consequence
of (2.59), i.e. linear with regard to the number of interpolation points N . The storage
complexities for the evaluation of (2.64) are obtained as follows: for LTEI-TA approach

1. Instead of forming all matrices QMTA
i for i ∈ [Nq1 ], we form only (as explained in

Section 2.3.4) QMTA,max that requires O(dN) storage.

2. As discussed before, we keep
( 3⊗
l=1

KAi

)
in tensorized form. Hence, forming all coef-

ficient matrices Ai of size Ni ×Ni, for i ∈ [Nq1 ] requires O(∑Nq1
i=1 N

2
i ) ∼ O(Nq1N

2
3 )

storage.

So in total, the storage complexity is O(N 2
3 (dN 1

3 +Nq1)). For LTEI-FMM approach

1. Forming QMFMM requires O(dN) of storage.

2. Forming K requires O(N) of storage.

So in total, the storage complexity is O(N(1 + d)). According to Table.2.2, the storage
demand for this evaluation seems lower (in order) for LTEI-TA compared to LTEI-FMM.
However, we cannot conclude on the best method in terms of storage complexity since
Nq1 and N

1
3 depend on the value of ω and the chosen computational box [−b, b]3. This

motivates numerical comparisons between the two approaches for different parameters
(see Section 2.7).
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2.6 Compression techniques for the factorized long-
range two-electron integrals tensor

2.6.1 Compression by using low-rank methods
One of the main precomputation steps required to obtain the factorized representation
of
(
Blr

)<2>
is based on the evaluation of MTA,max ∈ RN

2
b ×N (resp. MFMM ∈ RN

2
b ×N)

matrix. This step tends to be expensive in terms of both computational and memory
requirements for molecules of moderate size, as we consider in our experiments. In this
section we address this problem by discussing different approaches to compress MTA,max,
with some of these techniques potentially being applicable to MFMM . In many cases,
the matrix MTA,max is numerically low-rank as we will discuss in the numerical exper-
iments section (see Figure 2.12). It is possible to reduce its dimensions by exploiting
its low rank structure. Additionally, when employing Gaussian-type basis functions, the
compression can be extended even further through the screening technique [100]. This
approach consists in simply discarding "negligible" pairs of Gaussian type basis functions
as explained in 2.6.3. Methods for low-rank approximation, such as truncated SVD, can
also be directly employed on MTA,max. However, it’s worth noting that this approach can
be computationally demanding, with a complexity that scales as O(N2

bN min {N2
b , N}).

We introduce in this section a different compression method that exploits the Khatri-rao
products and associated properties.

Let W̃(i,l) ∈ RN
2
b Iµν,max×Ni be defined by for i ∈ [Nq1 ]:

W̃(i,l) =
[

W̃(i,l)
µν

0

] }
Iµν ×Ni}
(Iµν,max − Iµν) ×Ni, Iµν,max = max

1≤µ,ν≤Nb

{Iµν} .
(2.67)

Its low rank Ri,l approximation can be written as:

W̃(i,l) ≈ U(i,l)
(
V(i,l)

)∗
, (2.68)

where U(i,l) ∈ RN
2
b Iµν,max×Ri,l and

(
V(i,l)

)∗
∈ RRi,l×Ni . Given the decomposition (2.68),

Proposition 1.1.1 is used to obtain the following expression

(
⋄3
l=1(W̃(i,l))

)( 3⊗
l=1

KAi

)(
•3
l=1(W̃(i,l))∗

)
=
(
⋄3
l=1(U(i,l)V(i,l))

)
(Ai ⊗ Ai ⊗ Ai)

(
•3
l=1(U(i,l)V(i,l))∗

)
=
(
⋄3
l=1U(i,l)

)
(

3⊗
l=1

KV(i,l)) (Ai ⊗ Ai ⊗ Ai) (
3⊗
l=1

K

(
V(i,l)

)∗
)
(
•3
l=1(U(i,l))∗

)

=
(
⋄3
l=1U(i,l)

) 3⊗
l=1

K(V(i,l)Ai

(
V(i,l)

)∗
)
(
•3
l=1(U(i,l))∗

)
.

(2.69)

By replacing the low rank approximation of the matrix W̃(i,l) in the expression of
(
Blr

)<2>

LTEI−TA
in equation (2.45), we obtain:

(
Blr
LTEI−TA

)<2>
≈ ω√

π

Nq1∑
i=1

wiŨi

3⊗
l=1

K(V(i,l)Ai

(
V(i,l)

)∗
)Ũ∗

i , (2.70)

where Ũi = ∑Iµν,max

j=1 cjUi[j, :, :] ∈ RN
2
b ×
∏3

l=1 Ri,l with Ui ∈ RIµν,max×N2
b ×
∏3

l=1 Ri,l the tensor
folding of

(
⋄3
l=1U(i,l)

)
∈ RIµν,maxN2

b ×
∏3

l=1 Ri,l . In practice, we compute only the matrix

Ũi ∈ RN
2
b ×(max1≤i≤Nq1 {∏3

l=1 Ri,l}) with the maximum rank max
1≤i≤Nq1

{ 3∏
l=1

Ri,l

}
as discussed

in Section 2.3.4. Through this compression, the storage complexity for the evaluation
of the long-range Coulomb matrix in (2.64) can be reduced to O(R 2

3 (Nq1 + dR
1
3 ) where

R =
(

max
1≤i≤Nq1

{ 3∏
l=1

Ri,l

})3

.
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2.6.2 Adaptive approach for the choice of the integration do-
main for Gaussian type basis functions

We discuss now an adaptive approach for the choice of the integration domain [−b, b]. For
each pair of Gaussian functions, we identify its numerical support [−b, b]. We cluster to-
gether these numerical supports to obtain overallNpartitions supports, {[−bs, bs]}s∈[Npartitions].
For each pair of Gaussian functions (µ, ν), µ, ν ∈ [Nb], we proceed as follows: Given the
general Gaussian product rule (Definition 2.2.1), the product of two primitive Gaussian
type functions f (j)

µν (xl) = f (j1)
µ (xl)f (j2)

ν (xl) is:

f (j)
µν (xl) = f (j1)

µ (xl)f (j2)
ν (xl) = (xl − rl)pµl (xl − r′

l)pνle
−

µj1 νj2
µj1 +νj2

(rl−r′
l)

2

σµj1νj2
(xl), (2.71)

where

σµj1νj2
(xl) = e

−(µj1 +νj2 )(xl−
µj1 rl+νj2 r′

l
µj1 +νj2

)2

, j1 ∈ [Iµ] , j2 ∈ [Iν ] , (2.72)
and (see (1.93))

f (j1)
µ (xl) = (xl − rl)pµle−µj1 (xl−rl)2 and f (j2)

ν (xl) = (xl − r′
l)pνle−νj2 (xl−r′

l)
2
, (2.73)

with j = (j1, j2) ∈ [Iµν ], Iµν = IµIν , l ∈ {1, 2, 3}, µ, ν ∈ [Nb] . The numerical support
[−b, b] is chosen according to a cutoff threshold τadaptive > 0 such that

σµj1νj2
(xl) ⩽ τadaptive, l ∈ {1, 2, 3} . (2.74)

To illustrate this adaptive approach, for a given pair (µ, ν), we represent in Figure 2.3 the
exponential terms σµj1νj2

(x1) in the expression (2.71) for j ∈ [Iµν ] with respect to the first
direction (l=1). The exponential decay of these functions enables us to limit the range
of the numerical grid according to a chosen threshold τadaptive. Through this adaptive
technique, Figure 2.4 illustrates the distribution of the numerical support (dimension b).
Each bar represents the percentage of Gaussian function pairs (µ, ν) associated to the
exponential terms σµj1νj2

(xl) lying in the range [−b, b]. It is showed that the distribution
depends on the molecule choice as well as the number of basis functions Nb.

Figure 2.3: Identifying numerical sup-
ports of different pairs of Gaussian func-
tions. Each color in the plot represents
the exponential term σµj1νj2

(x1). Here
the selected numerical support is [−4, 4].

Figure 2.4: Distribution of numerical
supports [−b, b] for a given threshold
τadaptive = 10−20. The x-axis shows the
dimension b of the box, and the y-axis
shows the percentage of the Gaussian
function pairs.

The advantages of using this approach is that there is no need to fix in advance the size
of the numerical box b since it is determined by the support of these Gaussian functions.
Moreover, it is possible to reduce the storage demand since instead of storing the matrix
MTA,max ∈ RN

2
b ×N , smaller matrices of sizes N2

b,s × Ns are stored, where N2
b,s are the

pairs of Gaussian functions associated to the integration domain [−bs, bs] and Ns is the
maximum number of Chebyshev interpolation points in the interval [−bs, bs]. We must
point out that by using this adaptive method, multiple tensor contraction calculations
need to be performed to compute (2.65) which will depend on the number of partitions
Ps. This can be costly if we consider a sequential algorithm. However, this adaptive
approach offers a possibility to parallelize the evaluation of (2.65).
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2.6.3 Compression through screening
It is possible to further reduce the dimensions of MTA,max by exploiting the properties of
the Gaussian type basis functions. In fact, given the product of two-primitive Gaussians
introduced in (2.71), we notice that f (j)

µν (xl) = f (j)
νµ (xl), for j ∈ [Iµν ] , µ, ν ∈ [Nb] and

l ∈ {1, 2, 3}. Therefore, there are only Nb

2 (Nb + 1) choices for N2
b combinations of µ and

ν. We also apply the screening technique that is often used by chemists to reduce the
computational cost of the evaluation of integrals [100]. From the Gaussian product rule
(2.71), the higher the exponent of a primitive Gaussian, the faster the products with
primitives from other centers decay with distance and the sooner they become negligible.
Therefore, for large enough molecules, it is possible to discard a consistent number of
pairs of primitive Gaussians which is illustrated in the numerical experiment section in
Figure 2.12. In practice, we discard the primitive pair that satisfies the following condition
for a given threshold τscreening:

e
−

µj1 νj2
µj1 +νj2

∑3
l=1(rl−r′

l)
2

≤ τscreening. (2.75)

2.7 Numerical results
In this section, we evaluate numerically our novel method LTEI-TA5 by using a prototype
implementation in Julia language version 1.5.3. We also compare it with LTEI-FMM
method using defmm library [18]. The defmm library is a C++ code6 that is particularly
well-suited for the two-electronic integrals context since it implements various important
features with O(N) complexity on non-oscillatory kernels in both precomputation and
application cost. More precisely, defmm is

• kernel-independent, meaning that the user has to provide only a routine evaluating
K(x,y) to use the code and the handling of erf function can be added at minimal
implementation effort,

• adaptive, meaning that the algorithm automatically adapts to the potential non-
uniformity of the particle distribution. Similar performance was observed for defmm
using non-oscillatory kernels applied on uniform and highly non-uniform distribu-
tions [18] (such as our tensorized Chebyshev grids),

• convergent for any asymptotically smooth kernel, including our kernel K(x,y) (see
Proposition 2.4.1), as proven in [19].

An example of a call to defmm library is provided in Appendix .1. defmm is compiled
using the intel C++ compiler (version 19.1.2.254) and FFTW3 (since defmm relies on
FFTs for the far field compression/evaluation). We remind that the evaluation algorithm
in LTEI-TA, which is written in Julia, is based on matrix-matrix products, performed with
optimized BLAS operations (see Section 2.3.4) for the dense linear algebra computations.
Hence, the effect of the programming language choice has a negligible impact for LTEI-
TA. This justifies the comparison between c++ calls (defmm) and our implementation of
LTEI-TA in Julia. We are also aware that results presented in the following correspond to
prototypes in which we simply link defmm with outputs from our Julia code, regardless of
further possible optimizations. All the calculations are carried out using Cleps cluster from
Inria, Paris, France. This machine has 4 partitions. We use cpu-homogen partition which
contains 20 nodes with hyper-threading such that we can allocate a maximum of 64 logical
cores per node (Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz) with a memory of 6GB
per core. We start always by the data initialization step which consists in reading input
files generated from quantum package. These files contain molecular properties: number
of atoms, number of basis functions, coordinates of the nuclei, basis set parameters. For
all molecules we use the “cc-pVDZ” Gaussian basis set [94].

5https://github.com/sbadred/LTEI_TA.jl.git
6https://github.com/IChollet/defmm
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2.7.1 Approximation error and computational cost
The following numerical results present the approximation errors with respect to different
parameters ω, N , and Nq1 . We start by providing the approximation error for the element-
wise evaluation of the long-range two-electron integrals tensor and then we provide the
numerical error convergence obtained for the evaluation of the long-range Coulomb matrix
as defined in (2.64) using both methods: LTEI-TA and LTEI-FMM.

Approximation error

First we provide convergence results of LTEI-TA method for the evaluation of the long-
range two-electron integrals given in equation (2.29). For the following numerical tests,
we consider small sized molecules : NH3 and CO2, where we represent the mean relative
error of 103 randomly chosen elements from the tensor Blr. In Figure 2.5, on the left-hand
side, we maintain a constant number of Chebyshev interpolation points N , while varying
the value of Nq1 . On the right-hand side of Figure 2.5, we fix the number of quadrature
points Nq1 , while varying N .
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Figure 2.5: Approximation error of the long-range two-electron integrals using LTEI-TA,

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

10
-10

10
-8

10
-6

10
-4

10
-2

(a) ω = 0.5

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(b) ω = 5

Figure 2.6: Approximation error of the element-wise evaluation of the two-electron inte-
grals (2.29) with respect to (#interpolation points per direction, #quadrature points )
≡ (N 1

3 ,Nq1) for the optimal accuracy using NH3 molecule in the cc-pVDZ basis set for
different values of ω. The colorbar shows the mean relative approximation error.

In Figure 2.5, with fixed ω = 0.5, we notice the fast convergence of the relative error
towards the value of 10−7 for both subfigures such that the analytical results, generated
from quantum package, and numerical results are in reasonably good agreement for both
molecules. We note that the stagnation of the error is a consequence of the approximations
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used (Chebyshev interpolation and Gaussian quadrature rule), hence in order to optimize
our method for a desired accuracy, we need to find a good compromise between the
parameters N 1

3 and Nq1 , as shown in Figure 2.6(b). Indeed, we note that in Figure 2.6(b),
for each number of interpolation points, there is a number of quadrature points that allows
to reach a small relative error (up to 10−10). Another noteworthy aspect is that due to
the truncation of the support of the primitive Gaussians, the error is constrained by b ,
which corresponds to the bounds of the integration box. This constraint is emphasized in
the error bound provided in Proposition 2.3.1.
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Figure 2.7: (Leftmost figure) The approximation error of the element-wise evaluation of
the two-electron integrals with respect to ω for both approaches: LTEI-TA and LTEI-
FMM. (Middle figure) The number of interpolation points N needed to reach the imposed
accuracy (relative error smaller than 10−4) with respect to ω. (Rightmost figure) The
number of quadrature points Nq1 needed to reach the imposed accuracy (relative error
smaller than 10−4) with respect to ω.

Figure 2.7 displays the number of interpolation points N (middle figure) and the num-
ber of quadrature points Nq1 (rightmost figure) with respect to ω for computing a single
entry of the long-range two-electron integrals tensor Blr through LTEI-TA and LTEI-FMM
approaches. The entry Blr(µ; ν;κ;λ) is chosen randomly and we impose that the relative
error is smaller than 10−4, where the relative error is defined as |Blr(µ;ν;κ;λ)−Blr

LT EI−T A(µ;νκ;λ)|
|Blr(µ;ν;κ;λ)|

for LTEI-TA, and as |Blr(µ;ν;κ;λ)−Blr
LT EI−F MM (µ;ν;κ;λ)|

|Blr(µ;ν;κ;λ)| for LTEI-FMM, respectively. We ob-
serve that the number of interpolation points N and the number of quadrature points
Nq1 needed to reach the desired accuracy grow with ω, as it can be seen in the middle
and rightmost figures. This is explained by the fact that when ω → ∞, LTEI-TA needs
to approximate a nearly singular kernel, which increases its cost. The leftmost figure also
shows that the accuracy of LTEI-TA and LTEI-FMM for the evaluation of an element
of Blr is comparable for the same number of interpolation points N . This is because
both approaches are based on Chebyshev interpolation. We note that the quadrature
in LTEI-TA is chosen to be at least as precise as the interpolation and the FMM error
is controlled by a parameter [18] whose value is practically calibrated so that this error
equals the numerical interpolation. Both methods thus lead to the expected accuracy.
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Figure 2.8: Approximation error of the evaluation of the long-range Coulomb matrix
using LTEI-TA and LTEI-FMM with respect to the number of interpolation points N for
various values of ω: convergence rate estimation. These calculations were carried for the
Glycine molecule with Nb = 100 in the cc-pVDZ basis set.

Figure 2.8 considers the evaluation of the long-range Coulomb matrix using LTEI-TA
and LTEI-FMM approaches as described in (2.65). It displays the relative error with re-
spect to the number of interpolation points N for different values of ω, where the relative
error of LTEI-TA (resp. LTEI-FMM ) is ∥Jlr−Jlr

LT EI−T A∥
F

∥Jlr∥
F

(resp. ∥Jlr−Jlr
LT EI−F MM∥

F

∥Jlr∥
F

). We
note that we were not able to evaluate theoretically the convergence rate of this evalua-
tion with respect to the number of interpolation points N . We observe, however, that the
numerical error seems to have an almost linear-scaling in the 3D tensorized interpolations
grid size N for small values of ω, i.e ω ≤ 1. However, this scaling is lost for larger ω.
Indeed, we expect our method to be far less efficient for very large ω since the underlying
kernel tends to the (singular) Coulomb one when ω → +∞.

Computational cost

We first discuss the execution time required for the evaluation of an element of the long-
range tensor Blr, as displayed in Figure 2.9 . The computational complexity of this
evaluation is of order O(Nq1N

1
3 Iκλ(N

1
3 + Iµν)) as discussed in Section 2.3.2. For small

values of Nq1 and a few number of interpolations points N 1
3 , we obtain linear scaling with

respect to N 1
3 as shown in Figure 2.9. This is explained by the fact that the term IκλIµν

dominates the overall complexity for small ω. However, when ω increases, a quadratic
complexity is observed with respect to N 1

3 , which correponds to O(Nq1N
1
3 Iκλ(N

1
3 + Iµν)).

We also compare LTEI-TA with LTEI-FMM and with a naive numerical computation such
that the two-electron integrals are computed with an integration overN×N×N tensorized
three dimensional Cartesian grids. We notice here that the LTEI-FMM approach has a
linear scaling with regards to the number of interpolation points N as expected. We
conclude that for the element-wise evaluation, LTEI-TA is the most efficient method.
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Figure 2.9: Computational time versus the maximum number of interpolation points N
for different values of ω for the evaluation of the long-range two-electron integrals with
relative error smaller than ⩽ 10−4.
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Figure 2.10: The leftmost plot represents the precomputation time for each approximation
approach (LTEI-TA and LTEI-FMM) with respect to the maximum number of Chebyshev
interpolation points N . We impose here that the relative error denoted by ϵ is smaller than
⩽ 10−4. We provide in the other plots a comparison in terms of the computational time
required for the evaluation of (2.64) between both approaches by varying the error bound
ϵ and ω . We use the Glycine molecule C2 H5 NO2 with fixed Nb = 100 and Norb = 95 in
the cc-pVDZ basis set.

Second, we compare the precomputation cost required to approximate the long-range
kernel K(x,y), as given in (2.19), by using both approaches LTEI-TA and LTEI-FMM
and by varying ω from 0.1 to 5. The results are displayed in the leftmost part of Fig-
ure 2.10. We observe that the runtime of LTEI-FMM depends linearly on the total
number of interpolation points O(N), independently of the value of ω. LTEI-TA has
also a precomputation time in accordance with the theory O(Nq1N

1
3 (log(N 1

3 ) + N
1
3 )) as

explained in Section 2.3 . We observe that LTEI-TA is two orders of magnitude faster
than LTEI-FMM for all the considered values of ω (which is a consequence of its small
precomputation complexity). Hence, according to these numerical evidences, small test
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cases (i.e. small ωb values) should better be handled using LTEI-TA while larger ones
should better be considered through the LTEI-FMM.

Third, we discuss the time required to evaluate the long-range Coulomb matrix, as
given in equation (2.64), which involves the multiplication of the matricization of Blr

with a matrix. Figure 2.10 illustrates the execution time with respect to the number
of interpolation points N needed to achieve different relative errors for various values
of ω for the evaluation of the Coulomb matrix. The relative error of LTEI-TA (resp.
LTEI-FMM ) is ∥Jlr−Jlr

LT EI−T A∥
F

∥Jlr∥
F

(resp. ∥Jlr−Jlr
LT EI−F MM∥

F

∥Jlr∥
F

). We observe in Figure 2.10
that the evaluation of the long-range Coulomb matrix using LTEI-FMM approach scales
linearly with the number of interpolation points O(N), but more than linearithmically for
LTEI-TA. This reflects the complexity analysis of LTEI-TA method, O(Nq1N

4
3 ), provided

in Section 2.3.4. However, LTEI-TA is still faster than LTEI-FMM for relatively small
values of ω and for different relative errors. This numerical gain can be explained by the
important prefactor of the LTEI-FMM approach: even if the complexity is linear, there is
an important constant hidden in the big O notations [83]. While for small values of ω, Nq1

is small and hence LTEI-TA is more efficient. However, LTEI-TA is not asymptotically
competitive with respect to LTEI-FMM approach. Indeed, as ω controls the regularity
of the erf -interaction function, when ω increases, LTEI-TA needs a larger number of
interpolation points N as well as quadrature points Nq1 to achieve a given accuracy. As
a consequence, LTEI-TA becomes more costly and less efficient than LTEI-FMM.

To summarize, these results demonstrate two major things: first, LTEI-TA is a numer-
ically highly efficient method, able to outperfom LTEI-FMM on tested cases. Second, we
are able to reach the linear complexity (with regard to the total number of interpolation
points) by exploiting LTEI-FMM, which allows to deal with more singular cases (with
large values of ω). In the following, we want to study the efficiency of our numerical
approaches for variable Nb.
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Figure 2.11: Execution time(s) required for the evaluation of (2.64) using the TEI tensor
Blr for different values of Nb, for ω = 0.05, ω = 0.1, ω = 0.4, and ω = 1 with imposed
relative error smaller than 10−5.

Figure 2.11 displays the execution times required to evaluate (2.64) with respect to the
number of basis functions Nb for different values of ω and different molecules. We impose
here that the relative errors of LTEI-TA and LTEI-FMM approaches for the evaluation
of the long-range Coulomb matrix are smaller than 10−5. We compare the running times
between three approaches: the first approach involves the computation of the long-range
Coulomb matrix via tensor contraction using the full two-electron integrals tensor, which
is denoted by

(
Blr

)<2>
∈ RN

2
b ×N2

b (times for Nb > 175 are obtained by extrapolation),
such that its entries are pre-computed through quantum package [33]. The second (resp.
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third) approach exploits the factorized structure of
(
Blr

)<2>
obtained through LTEI-TA

(resp. LTEI-FMM) to compute (2.64). For small ω, we notice that a faster computation
of (2.64) is obtained through LTEI-TA and LTEI-FMM methods: LTEI-TA is about one
order of magnitude faster than LTEI-FMM. For important values of ω (ω=1), the new
introduced approaches, LTEI-TA and LTEI-FMM, are less efficient given the high number
of interpolation points N needed as well as the number of quadrature points Nq1 for LTEI-
TA method as we notice in Figure 2.10. However, as Nb increases, the tensor contractions
using the direct method become more computationally intensive and memory-demanding.
In certain cases, the size of Blr can even exceed available memory capacity . Therefore in
some cases, it would be beneficial to use one of the new factorization methods to reduce the
computational and storage cost. The numerical results are obtained for different molecules
with different topologies. Therefore, in order to preserve the accuracy, in practice, we
choose the size of the computational box [−b, b] depending on the size of the molecule as
well as the Gaussian functions decay as explained previously in Section 2.3, or one can
opt for the adaptive approach explained in Section 2.6.2.

2.7.2 Tensor compression techniques
In this section we study numerically compression techniques to reduce the computation
and storage cost of MTA,max ∈ RN

2
b ×N or MFMM ∈ RN

2
b ×N in order to speed up the

evaluation of the Coulomb matrix (2.64). These techniques were discussed in Section 2.6.1.
First, the number of basis functions Nb can be reduced by using screening techniques that
exploit the symmetries of the pairs of basis functions as well as the properties of Gaussian
type-functions. Indeed, Figure 2.12(b) shows that the number of pairs of Gaussian type
basis functions N2

b can be reduced by using screening. Second, for small values of ω and
different numbers of basis functions Nb, Figure 2.12(a) shows that the singular values
of MTA,max decay quickly , so MTA,max can be approximated by a low-rank matrix.
Therefore, we had recourse to three different approaches for the compression of MTA,max:
the first approach, denoted by SVD, consists in approximating MTA,max using ϵ-truncated
SVD; the second approach, denoted by KR, exploits the Khatri-Rao product properties
as discussed in Section 2.6.1; and the third approach, denoted by ADAP+KR, includes
the partitioning of pairs of basis functions in terms of their numerical supports combined
with KR approach as explained in Section 2.6.2.

Figure 2.13 (resp. Figure 2.14) displays the compression rate obtained between uncom-
pressed MTA,max matrix (resp. screened MTA,max matrix ) and its compressed represen-
tation, for different molecules with different number of basis functions Nb in the basis set
cc-pVDZ. We notice that the best compression rate, i.e (1− size of compressed version

size of original
)∗100, is

obtained through the ADAP+KR approach as observed in Figure 2.14 (86% for Nb = 175)
compared to the other approaches SVD (75% for Nb = 175) and KR (83% for Nb = 175).
We observe that for SVD, the larger Nb (Nb ≥ 50), the better the compression. While
screening techniques reduce the storage requirements of the matrix MTA,max [100], bet-
ter compression results are obtained when they are combined with additional techniques
introduced here. Figure 2.15, shows the computational time required for the compres-
sion of MTA,max. The worst execution time is obtained for SVD method as expected, in
particular for large values of Nb (Nb ≥ 100).

In summary, the adaptive approach leads to the best reduction in terms of storage while
being the fastest among the tested methods. Moreover, the choice of the dimension of the
computational box b does not have to be fixed in advance, since it depends on the pairs
of Gaussian type-functions (1.94). We further investigate the accuracy of this method in
Table 2.3. We display in this table the relative error obtained when approximating the
Coulomb matrix (2.64) by using either MTA,max compressed by the adaptive approach or
a fixed computational box [−b, b]. The results show that the adaptive approach is more
accurate than the ones obtained by fixing the computational box in advance. However,
by using the adaptive method, the computation of the Coulomb matrix requires multiple
matrix-matrix multiplications, and this can be more costly than fixing the computational
box [−b, b] in advance. However, since these multiplication can be performed in parallel,
parallelization might be a key component to speed up the computation of the long-range
Coulomb matrix (2.64).
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Figure 2.12: (a) Singular values of MTA,max ∈ RN
2
b ×N for different molecules with ω = 0.1

and Nq1 = 3. (b) Number of reduced pairs of basis functions obtained by exploiting
symmetry (yellow curve), as well as symmetry+properties of Gaussian type functions
with τscreening = 10−10 (red curve).
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Figure 2.13: Compression rate between
the original computed MTA,max matrix
and its compressed representation for
ω = 0.3 for different values of Nb, for
the different molecules displayed in Fig-
ure 2.12.
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Figure 2.14: Compression rate between
MTA,max matrix (after screening) and its
compressed representation for ω = 0.3
for different values of Nb, for the differ-
ent molecules displayed in Figure 2.12.
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Figure 2.15: Execution time(s) of different compres-
sion methods defined in Section 2.6.1 for ω = 0.3, for
different values of Nb, for the different molecules dis-
played in Figure 2.12.

Table 2.3: Adaptive method, ω = 0.5

Molecule C2H5NO2 C4H8N2O3 C6H11N3O4
Nb 100 175 250
Adaptive approach 1.0354e-7 2.4882e-8 4.587e-7
b = 15 1.6058e-7 1.8332e-7 8.2245e-7
b = 10 3.7359e-07 0.001 0.02068

2.8 Concluding remarks and perspectives
This work introduces two new compression methods for the long-range kernel K and the
approximation of the long-range six-dimensional two-electron integrals tensor. The first
approach, referred to as LTEI-TA, relies on two-dimensional Chebyshev interpolation,
Gaussian quadrature for numerical integration, and FFT for computing Chebyshev coef-
ficients. The approximation of the long-range two-electron integrals tensor Blr by using
this method allows to exploit a tensorized structure that leads to an efficient application of
the matricization of Blr to evaluate the long-range Coulomb matrix for fixed Nb and Norb,
with O(Nq1N

4
3 ) complexity, where N is the number of Chebyshev interpolation points and

Nq1 is the number of quadrature points. The second approach, referred to as LTEI-FMM,
relies on kernel-independent Fast Multipole Methods, with O(N) complexity. It exploits
the asymptotically smooth behaviour of the long-range kernel K. The storage and time
complexity of the presented methods were analysed and compared numerically, exhibiting
both the high efficiency of LTEI-TA and the linear complexity of LTEI-FMM. We further
investigated the compression of Blr by using screening techniques, low-rank methods, and
an adaptive approach. LTEI-TA approach is particularly efficient for small values of ω,
where ω is the separation parameter that controls the regularity of K. However, for large
values of ω, in order to preserve accuracy, the number of interpolation points as well as
the number of quadrature points becomes important for LTEI-TA and thus LTEI-FMM
becomes more efficient. It’s worth noting that if we use a low-rank basis {gµ}1≤µ≤Nb

where basis functions are expressed as tensor products of one-dimensional functions both
novel approximation methods introduced here can be adapted to accommodate various
low-rank basis functions, not just Gaussian-type ones. However, for the adaptive method
discussed in Section 2.6.2, the use of Gaussian-type functions is still necessary.

In conclusion, our study has introduced promising methodologies to effectively ad-
dress the long-range component of the range-separated Coulomb potential as well as the
efficient evaluation of the long-range TEI tensor within our computational framework.
Nevertheless, it’s crucial to acknowledge the existing established approaches aimed at
handling similar kernels, as initially highlighted in the introduction. One common tech-
nique involves factorizing the long-range kernel through Fourier transforms in spherical
coordinates, combined with spherical numerical integration, as it was considered in the
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works of [71, 79, 110]. This approach expresses the kernel as a sum of product of separable
functions, similar to what was obtained with our factorization methods, but using dis-
tinct discretization strategies. While it was not covered in this manuscript, we anticipate
that a comparative analysis against our proposed methods could yield valuable insights.
Such a comparison would involve considering various parameters, including the number
of required discretization nodes, achieved accuracy, and suitability for high-performance
computing (HPC) implementations. Additionally, as future work, we are planning to
explore the potential of LTEI-TA for small values of ω in a boarder range of quantum
chemical contexts as post-HF models with range separation or hybrid approaches such as
(long-range) DMRG–short-range DFT [43]. Such work might be also beneficial for Parti-
cle Mesh Ewald methods [21]. We also acknowledge the importance of investigating the
treatment of the short-range TEI tensor, as its computational cost and accuracy depend
on the value of ω, which is the trade-off between the long-range and short-range parts,
and the numerical method used. Therefore, it would be interesting to link LTEI-FMM
with singular quadrature based evaluation for short-range. Additionally, efficient paral-
lelization of FMM could also benefit to LTEI-FMM on distributed memory architecture.
Now, we shift our focus to the second tensor-based high-dimensional problem: the efficient
representation of the tensor train decomposition involved in the DMRG method, which
will be the subject of the upcoming chapter.
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Chapter 3

Symmetry-preserving tensor train
representations
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3.1 Introduction
This chapter presents the outcomes of a collaborative project with Eric Cancès (Professor
at the Ecole des Ponts - ParisTech), Mi-Song Dupuy (Associate professor at Sorbonne
university), and my supervisor, Laura Grigori. The foundation for this project was estab-
lished during the Cemracs summer school in 2021 and several workshops held in Roscoff
part of the EMC2 project. Our primary goal is to gain a deeper understanding of the
efficient TTO representation of the Hamiltonian operator, through low-rank approxima-
tion methods such as truncated SVD. We aim also to investigate how the incorporation of
physical symmetries as the conservation of particle number yields to practical advantages
from a numerical point of view. Indeed, imposing physical symmetries yields a block
structure in the TT-cores of the TT representaion of both the operator and its eigenfunc-
tion/wavefunction. Thereby, we show that the structure obtained allows to speed-up the
most time-consuming steps in QC-DMRG computations, including contractions, compres-
sion, and matrix-vector multiplications encountered in the eigensolver. After revisiting
the fundamental properties of the quantum chemical Hamiltonian operator and surveying
various existing approaches for constructing a TTO representation in Section 3.2.2, the
primary contributions of this chapter unfold with

• In Section 3.2.3, we demonstrate that the low-rank approximation during a TT-SVD
process, using tSVD with respect to the degenerate singular values (i.e, for a specific
numerical threshold, if the truncation lies within a set of degenerate singular values,
this set is either truncated or kept entirely) preserves important properties of the
Hamiltonian operator as outlined in Theorem 3. Specifically, it retains the property
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of the Hamiltonian being represented by a symmetric matrix and preserves Abelian
symmetries associated, for example, with the conservation of particle number. We
also show that applying tSVD, based on some numerical thresholds, affects addi-
tional properties preserved by the Hamiltonian operator. These include non-Abelian
symmetries associated to the conservation of total spin, as well as the emergence
of non-existing interaction terms for an operator limited to at most 2-body interac-
tions.

• In Section 3.3.1, inspired by the work of [2], we offer a constructive demonstration
showcasing the block-sparse structure inherent in the TT-cores of the TTO decom-
position of a general p-body particle-number preserving Hamiltonian operator, as
highlighted in Theorem 4. Further investigation revealed that the block sparsity in
tensor trains stemming from the preservation of the particle number, is known in the
chemistry and physics communities but has not been introduced in this particular
representation before.

• In Section 3.3.2, with invaluable assistance from Eric Cancès, we invest significant
effort in understanding the structure of the TT decomposition of eigenfunctions
when non-Abelian symmetries such as SU(2), associated with the conservation of
the total spin, are applied. This is provided in Theorem 5. We provide a comprehen-
sive study of the TT representation of these eigenfunctions, presenting preliminary
theoretical insights and providing results in a simplified manner with examples to
ensure accessibility for readers who may not possess a background in physics. It
is worth noting that some of the findings we present have already been established
within the physics and chemistry communities.

3.2 Structure preserving TTO representation
The numerical study of large and strongly correlated quantum systems remains a chal-
lenging problem due to the exponential growth of the Hilbert space with the system size
d. One promising approach to tackle this problem is the use of tensor networks methods
as the TT representation [27, 74, 90], introduced in Section 1.2.3. As such, the con-
struction of the TTO representation, known as the matrix product operator (MPO) in
physics language, of an Hamiltonian operator is at the core of the QC-DMRG algorithm,
as introduced in Section 1.3.4. In what follows, we review the properties of the electronic
Hamiltonian operator and we recall known approaches that have been proposed for the
construction of a TTO representation of the quantum chemical operator with at-most
2-body interactions.

Remark 4. Let d denote the size of the system, i.e., the number of considered orbitals,
and n represent the number of possible states occupying each orbital. As outlined in
Remarks 1.3.4 and 1.3.9, when working in the spatial-orbital basis, we set d := dspatial and
n = 4. Conversely, in the spin-orbital basis, we have d := 2dspatial and n = 2. Moving
forward, we maintain the notation for the system size and number of possible states as d
and n, respectively, and specify the basis whenever necessary.

3.2.1 Properties of the electronic Hamiltonian operator
The 2-body Hamiltonian operator under consideration can be represented by the matrix
H ∈ Rn

d×nd and is subject to specific properties, as outlined in [36, 106, 133], that must
be fulfilled. Here, we consider two distinct types of symmetries: permutation symme-
tries of tensors (invariance under the permutation of specific modes) and physical/group
symmetries arising from conservation laws, as elaborated below

1. Symmetric Hamiltonian matrix: H ∈ Rn
d×nd is symmetric, let H ∈ Rn×...×n be the

2d-th order tensor folding of H and let H̃ ∈ Rn×...×n be its permutation according
to specific modes such that, for µk, νk ∈ [n] , k ∈ [d], the following holds:

H(µ1, . . . , µd; ν1, . . . , νd) = H(ν1, . . . , νd;µ1, . . . , µd)
⇔ H̃(µ1; ν1; . . . ;µd; νd) = H̃(ν1;µ1; · · · ; νd;µd),

(S)
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2. Particle number conservation: The Hamiltonian is an operator that preserves the
number of particles, i.e it commutes with the particle number operator represented
by the matrix N ∈ Rn

d×nd as defined in (1.139) (if n = 4), such that

NH − HN = 0

⇔ H(µ1, . . . , µd; ν1, . . . , νd) ̸= 0 ⇒
d∑

k=1
qn(µk) =

d∑
k=1

qn(νk),
(PN)

where depending on the value of n, q2 : {1, 2} 7→ {0, 1} and q4 : {1, 2, 3, 4} 7→ {0, 1, 1, 2}
are mapping functions, see Equations (1.118) and (1.133).

3. Conservation of the z-component of the total spin: the Hamiltonian matrix H ∈ R4d×4d ,
expressed in the spatial-orbital basis, commutes with the z-component of the total
spin operator represented by the matrix Sz ∈ R4d×4d . The matrix Sz is given by:

Sz = 1
2

d∑
i=1

(
A∗
i, 1

2
Ai, 1

2
− A∗

i,−1
2

Ai,−1
2

)
. (3.1)

Let us define the following mapping function:

qz : {1, 2, 3, 4} 7→
{

0, 1
2 ,

−1
2 , 0

}
. (3.2)

This function serves as a mapping between tensor indices and the spin of the occu-
pation state of the orbital. A spatial orbital, when occupied, can accommodate a
spin-up electron with a spin value of 1

2 , a spin-down electron with a spin value of
−1

2 , or both a spin-up and spin-down electron with a spin value of 0. Overall, each
occupation is linked to a spin value, which can be 1

2 , −1
2 , or 0. It is important to

note that the spin value is 0 when the orbital is unoccupied. Now, the following
conditions hold:

SzH − HSz = 0

⇔ H(µ1, . . . , µd; ν1, . . . , νd) ̸= 0 ⇒
d∑

k=1
qz(µk) =

d∑
k=1

qz(νk).
(SZ)

Later in our discussion, we show that the image of the function qz corresponds to
the eigenvalues of (Sz)≤1 = 1

2

(
A∗

1, 1
2
A1, 1

2
− A∗

1,−1
2

A1,−1
2

)
.

4. Conservation of the total spin: the Hamiltonian matrix H ∈ R4d×4d commutes with
the total spin operator, denoted in the literature as Ŝ2. We maintain this notation
when representing the operator by a matrix, such that it is defined as:

Ŝ2 = (Sx)2 + (Sy)2 + (Sz)2

= 1
2
(
S+S− + S−S+

)
+ SzSz ∈ R4d×4d

,
(3.3)

where

Sx = 1
2

d∑
k=1

(
A∗
k, 1

2
Ak,−1

2
+ A∗

k,−1
2

Ak, 1
2

)
, Sy = 1

2i

d∑
k=1

(
A∗
k, 1

2
Ak,−1

2
− A∗

k,−1
2

Ak, 1
2

)
,

(3.4)
and

S+ = Sx + iSy, S− = Sx − iSy, i2 = −1. (3.5)

Remark 5. In quantum physics, operators that commute with the Hamiltonian op-
erator, as the particle number operator N, represent observables or physical quan-
tities. These observables are self-adjoint operators, implying that their spectrum
consist of real numbers. The eigenvalues of these observables correspond to physical
quantities known as quantum numbers, examples of which include the number of
particles denoted by N .
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5. p-body interactions: the Hamiltonian matrix H is derived from an operator with at
most p-body interactions, p ∈ N, such that

H(µ1, . . . , µd; ν1, . . . , νd) ̸= 0 ⇒
d∑

k=1
|qn(µk) − qn(νk)| ≤ 2p. (pB)

For the 2-body Hamiltonian operator as defined in (1.138) or in (1.130), p = 2, (due
to the presence of 2-body terms along with 1-body terms, see Remark 1.3.6).

Remark 6. We observe that the electronic Hamiltonian operator, under consideration,
commutes with both the particle number operator, denoted as N, and the azimutal spin
operator, denoted as Sz. In the context of physics, this implies that the Hamiltonian H is
a particle-preserving operator and also preserves the z-component of the total spin. This
conservation property arises from the fact that these operators commute with an opera-
tor that remains invariant under symmetry transformations associated with the Abelian
unitary group U(1) [111]. Moreover, the electronic Hamiltonian operator commutes with
the total spin operator Ŝ2, signifying the conservation of the total spin. This invariance
under symmetry transformations is related to the non-Abelian group SU(2) [112].

In the existing literature, there are two approaches for constructing the TTO repre-
sentation of the 2-body electronic Hamiltonian operator. The first method is the exact
construction, optimally hand-crafted according to the expression of the operator. This
involves a great effort to capture all the specific rules required for constructing the TTO
decomposition due to its unique structure. In Section 3.2.2, we provide an overview of the
various approaches used to construct an exact TTO representation of the Hamiltonian
operator. The second approach is the generic/naïve construction of an approximate TTO
representation, which relies on the analytical description of the Hamiltonian as a sum of
rank-1 tensor trains and uses the defined arithmetic operations (as outlined in 1.2.3) with
additional compression to systematically and automatically generate the TTO decompo-
sition with optimal TTO-ranks. While this approach provides high adaptability and can
be applied to a wide range of operator models due to their analytical description as a sum
of rank-1 tensor trains, as discussed in Section 3.2.3, it does have numerical limitations
that we will address later.

3.2.2 Related work: Exact construction of TTO representation
of Hamiltonian operators with at most 2-body interactions

The most commonly used method involves manual design of the TTO decomposition,
achieved by deriving recursive relationships between operators at consecutive iterations,
either between k and k + 1 or between k − 1 and k, see [17], with k ∈ [d]. For in-
stance, it starts by partitioning the number of orbitals into left and right components at
a specific splitting index, denoted as k, and subsequently identifies a recurrence relation
that incorporates the TT-cores within the TTO representation. This process can be ex-
plained as follows: let (H1, . . . ,Hd) be a TTO representation of the Hamiltonian operator
H ∈ Rn

d×nd , with Hk ∈ RRk−1×n×Rk , R0 = Rd = 1, for k ∈ [d]. H can be expressed as, see
(1.143):

H =
R1∑
β1=1

. . .
Rk−1∑
βk−1=1

Rk∑
βk=1

. . .
Rd−1∑
βd−1=1

H1(1; β1) ⊗K . . .⊗K Hk(βk−1; βk) ⊗K . . .Hd(βd−1; 1),

(3.6)
where we denote the matrices Hk(βk−1; βk) := Hk[βk−1, :, :, βk] ∈ Rn×n. Following a
partition into left blocks L≤k and right blocks R>k, the operator can be expressed as:

H =
Rk∑
βk=1

HL≤k
[:, βk] ⊗K HR>k

[βk, :], (3.7)

where

HL≤k
[:, βk] =

R1∑
β1=1

. . .
Rk−1∑
βk−1=1

H1(1; β1) ⊗K . . .⊗K Hk(βk−1; βk) ∈ Rn
k×nk

,
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and

HR>k
[βk, :] =

Rk∑
βk=1

. . .
Rd−1∑
βd−1=1

Hk+1(βk; βk+1) ⊗K . . .⊗K Hd(βd−1; 1) ∈ Rn
d−k×nd−k

.

Now, it is notable that the left HL≤k
and right HR>k

operators are explicitly linked to
their counterparts at partitions k + 1 and k − 1 as follows:

HL≤k+1 [:, βk+1] =
Rk∑
βk=1

HL≤k
[:, βk] ⊗K Hk+1(βk; βk+1), (3.8)

and
HR>k−1 [βk−1, :] =

Rk∑
βk=1

Hk(βk−1; βk) ⊗K HR>k
[βk, :]. (3.9)

Therefore, in the systematic derivation of a TTO representation, the authors in [17]
start by determining the partitioning expression of the quantum chemical Hamiltonian
operator. Subsequently, they manually design the TT-cores following specific recursion
rules between neighboring orbitals indexed at k, k+1, or k−1, k, as depicted in (3.8) and
(3.9). For a comprehensive understanding of this process, please refer to Appendix .3.
As explained in Appendix .3, manually deriving the TTO representation may introduce
redundant terms in the TT-cores, resulting in a sub-optimal representation. This issue
can be mitigated by introducing complementary operators, as exemplified in Appendix .3
and discussed in [17]. In [59], the authors employ a similar approach, often referred to
as fork-merge or fork-merge-merge operations, to efficiently reuse common intermediate
terms that appear in the TT-cores. In [113], the authors use an alternative approach,
involving the search for an efficient TTO representation of the various sums of creation
and annihilation operators in the expression of the Hamiltonian operator, which involves
also the factorization of the one-electron and two-electron integrals. We review this process
next. We begin by defining the following simple operator in a spin-orbital basis:

O =
d∑
i=1

tiA∗
iAi, ti ∈ R. (3.10)

Let (H1, . . . ,Hd) be the TTO decomposition of O and let H<2>
k ∈ R2rk−1×2rk be the

mode-(1:2) matricization of Hk, k ∈ [d]. Given the definitions of operators Ai and A∗
i , see

(1.124) and (1.123) respectively, the TTO representation of (3.10), employing the strong
Kronecker product, as defined in (1.144), is expressed as follows:

O =
[
I2 t1A∗A

]
︸ ︷︷ ︸

H<2>
1 ∈R(1∗2)×(2∗2)

▷◁

[
I2 t2A∗A
0 I2

]
︸ ︷︷ ︸

H<2>
2 ∈R(2∗2)×(2∗2)

▷◁ .... ▷◁

[
tdA∗A

I2

]
︸ ︷︷ ︸

H<2>
d

∈R(2∗2)×(2∗1)

, (3.11)

where A is defined in (1.125). O has a TTO representation with a maximum TTO-rank
of 2, as indicated by the highlighted red values in Equation (3.11). The construction
process of (3.11) is explained in Appendix .4. Now, it is more complicated to express
the Hamiltonian in Equation (1.130) in a TTO form. In order to achieve this, we begin
by examining the 1-body operator, which corresponds to the first sum in (1.130). To
simplify, we consider the spin-orbital basis. The one-body term, denoted as H(1), can be
divided into two separate sums.

H(1) =
d∑

i,j=1
hijA∗

iAj

=
d∑
i=1

hiiA∗
iAi︸ ︷︷ ︸

T1

+
∑

1≤i<j≤d

(
hijA∗

iAj + hijA∗
jAi

)
︸ ︷︷ ︸

T2

,
(3.12)

with hij being the one-electron integrals defined in Equation (1.81). Similarly to (3.11),
the first sum T1 leads to a TTO of the form:

T1 =
[
I2 h11A∗A

]
▷◁

[
I2 h22A∗A
0 I2

]
▷◁ .... ▷◁

[
hddA∗A

I2

]
. (3.13)
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For the second term T2, the author in [113] employs a factorization of the one-electron inte-
grals matrix, articulated as follows: Let M ∈ Rd×d be the matrix with entries M(i; j) := hij
of rank r ≤ d, for i, j ∈ [d] , 1 ≤ i < j ≤ d. Suppose that there exist matrices U,V ∈ Rd×r,
such that M decomposes as:

M(i; j) = hij =
r∑
ℓ=1

U(i; ℓ)V∗(ℓ; j), (3.14)

then, it follows:

∑
1≤i<j≤d

hijA∗
iAj =

∑
1≤i<j≤d

r∑
ℓ=1

U(i; ℓ)V∗(ℓ; j)A∗
iAj =

∑
1≤i<j≤d

r∑
ℓ=1

(U(i; ℓ)A∗
i ) (V∗(ℓ; j)Aj) .

(3.15)
Now, by construction, one can write the TTO of H(1) as follows:

H(1) = T1 + T2

=
[
I2 h11A∗A

]
▷◁

[
I2 h22A∗A
0 I2

]
▷◁ .... ▷◁

[
hddA∗A

I2

]

+
r∑
ℓ=1

[
I2 U(1; ℓ)A∗ 0

]
▷◁

 I2 U(2; ℓ)A∗ 0
0 S V∗(ℓ; 2)A
0 I2

 ▷◁ · · · ▷◁

 0
V∗(ℓ; d)A

I2



+
r∑
ℓ=1

(I2 U(1; ℓ)A 0) ▷◁

 I2 U(2; ℓ)A 0
0 S V∗(ℓ; 2)A∗

0 I2

 ▷◁ · · · ▷◁

 0
V∗(ℓ; d)A∗

I2


= H1 ▷◁ H2 ▷◁ · · · ▷◁ Hd.

(3.16)

H(1) can be expressed as a sum of TTO decompositions with TTO-ranks of 2 and 3. By
leveraging the properties of the sum of TTO decompositions, as elucidated in Proposi-
tion 1.2.2, H(1) has a TTO decomposition with a TTO-rank that scales linearly with d
where r ≤ d.

Representing the 2-body operator, which is the second sum in (1.130), in TTO form is
a more challenging task. It involves using anti-commutation relations and expressing the
two-electron integrals in a factorized format, similar to the approach employed for the one-
body operator. For more details on this, we refer the reader to [113]. In Bachmayr’s work
[2], alternative exact TTO representations with optimal ranks for the one- and 2-body
operators are explored.

While these representations provide optimal TTO representations for the quantum
chemical Hamiltonian operator with TTO-ranks that scale quadratically with the num-
ber of orbitals, i.e O(d2) see [2], and demonstrate hand-crafted intelligent design, it is
important to note that more complicated Hamiltonian operators may require individual
redesign and re-implementation. It gets complicated when dealing with models beyond
the 2-body electronic Hamiltonian operator that involve more than 2-body interactions.
Within this category, there are Hamiltonian operators introducing 3-body interactions,
such as the nuclear Hamiltonian operator usually encountered in nuclear physics [119], or
the transcorrelated Hamiltonian [5, 6], a non-Hermitian 3-body operator. This renders
the previously introduced approaches for constructing a compact and exact TTO repre-
sentation less generic and automatic when dealing with these operators. A thoughtful
redesign is necessary. In the following, we revisit the second well-known naive approach
for constructing the TTO decomposition of Hamiltonian operators expressed as the sum
of Kronecker products of matrices, as the case of the quantum chemical Hamiltonian
operator in (1.130).

3.2.3 Generic and compression-based construction of TTO
An approximate TTO representation can be obtained through a naive construction which
relies on applying a sequence of tSVD factorizations and arithmetic operations involving
tensor trains as addition, or by eliminating linearly dependent terms, see [52]. While
this approach offers generality and automation across different operators, it undoubtedly
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introduces a numerical error whose impact on subsequent calculations may be challenging
to quantify in advance. Additionally, the time required for numerical compression can
become significant when dealing with large TTO-ranks.

We start by briefly reviewing the naive construction method. The annihilation and cre-
ation operators, denoted by Ai and A∗

i in (1.123) and (1.124), can be regarded as rank- 1
TTO. Consequently, we can represent these operators as a set of rank-1 TT-cores. With
the creation and annihilation operators expressed as tensor trains, we employ arithmetic
operations such as addition to construct the TTO representation of H. The product be-
tween rank-1 TT-cores followed by multiplication to a scalar such as (hijA∗

iAj, i, j ∈ [d])
will keep the rank equal to 1 (see Proposition 1.2.2). However, adding these terms to-

gether (
d∑

i,j=1
hijA∗

iAj), will increase linearly the ranks (i.e O(d2)) for the 1-body operator

and O(d4) for the 2-body operator). In order to avoid this scaling, a compression process
is necessary, which can be accomplished through truncated SVD. Such process is known
as the TT-rounding as described in Algorithm 2 such that the accuracy δ = ϵ√

d−1 is chosen
a priori and the compressed TTO decomposition is ϵ-close to the original TTO decom-
position. The construction of the compressed TTO representation given the Hamiltonian
operator is described in Algorithm 5. We specify a priori a parameter τ that controls
the number of tensor trains added before truncation.

Algorithm 5 TTO representation of H
Input: One-electron integrals hij, two electron integrals vijkl, τ , creation and

annihilation operators in the TTO-format (rank-1 tensor trains).
Initialization: count = 0, empty TT-cores H1,H2, · · · ,Hd.
Output: Compressed TTO representation (H1,. . . ,Hd).

1: procedure TTO representation of H
2: for i, j = 1 to d do
3: Add rank-1 TTs obtained from (hijA∗

iAj) to the TT-cores using Proposi-
tion 1.2.2.

4: count = count+ 1.
5: if mod(count, τ) = 0 then
6: Reduce the TTO-ranks of the TT-cores with Algorithm 2.
7: end if
8: end for
9: for all pairs (i, j, k, ℓ) = 1 to d do

10: Add rank-1 TTs obtained from (vijklA∗
iA∗

kAℓAj) to the TT-cores using Propo-
sition 1.2.2.

11: count = count+ 1.
12: if mod(count, τ) = 0 then
13: Reduce the TTO-ranks of the TT-cores with Algorithm 2.
14: end if
15: end for
16: end procedure

Remark 7. It is possible to improve Algorithm 5 by neglecting small values of one-
electron integrals and two-electron integrals, and taking into account all of the symmetries
that appear in these integrals. This includes the two-fold symmetry of one-electron inte-
grals and the eight-fold symmetry of two-electron integrals, see Equations (1.88), (1.89).

Most generic methods rely on arithmetic operations between different TTO represen-
tations, but the compression techniques may vary [52]. It has been shown that SVD often
provides quasi-optimal approximation, i.e best-approximation, of a TTO with TTO-ranks
in alignment with the theoretical ranks. However, it should be applied with caution, as
it can lead to the destruction of the key properties of the Hamiltonian operator that we
will explain in the following section.
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3.2.4 Numerical instabilities of rounding process and theoretical
conditions

Constructing the TTO representation of the quantum chemical Hamiltonian operator
through low-rank approximation methods, such as truncated SVD, can result in the non-
conservation of the operator’s properties, as defined in Section 3.2.1. These properties
include the symmetry of the Hamiltonian operator matrix, the conservation of particle
number, the conservation of the z-component of the total spin, the conservation of the
total spin, and the operator’s structure, which involves, here, at most 2-body interactions.
A visual representation of these compromised properties is presented in Figures 3.2(a),
3.2(c), 3.2(b), and 3.1.

To address the preservation of symmetry, particle number conservation, and the z-
component of the total spin, the observed phenomenon in Figures 3.2(a), 3.2(b), and 3.1
can be linked to the careless compression that occurs during the truncation process, es-
pecially when dealing with degenerate singular values, i.e the presence of equal singular
values when applying SVD. When using a fixed threshold value, denoted as δ, for the trun-
cation of singular values, it becomes possible to unintentionally discard other degenerate
singular values. This is illustrated by the Careless truncation shown in the Figures 3.2(a),
3.2(b), and 3.1. This shows to significantly impact the properties of the original opera-
tor. Moreover, numerical observations indicate that this issue has significant implications
for the eigenvalue problem, as well, at each microstep within the DMRG algorithm, as
described in Chapter 1. During this step, it is essential that the effective Hamiltonian, as
denoted by Mk, k ∈ [d] in (1.156), remains symmetric, as elaborated in Proposition 1.3.3.
To address this challenge, two potential solutions can be proposed in practice. First, one
may introduce a symmetrization step for each microstep in the DMRG iterations for Mk.
Alternatively, if the truncation lies within a set of degenerate singular values based on
the numerical threshold δ, the degenerate subspace, defined by the set of singular vectors
associated to the same singular value will either be entirely truncated or entirely kept.
To further emphasize the importance of considering degeneracy in the truncation process,
we offer the following theoretical insights, particularly focusing on the preservation of
symmetry within the Hamiltonian operator matrix.

Theorem 3. Consider a symmetric matrix H ∈ Rn
d×nd representing the Hamiltonian

operator, and satisfying Equation (S). Suppose (H1, . . . ,Hd) represents its compressed
TTO decomposition with accuracy ϵ, obtained through truncated SVD while preserving
the degenerate subspaces. Then, the approximated matrix, denoted as Hϵ ∈ Rn

d×nd ,
resulting from the TTO decomposition is also symmetric and satisfies Equation (S).

To prove Theorem 3, we start by introducing the Proposition 3.2.1. Let us first estab-
lish the mathematical concept of a tensor with invariant entries under a given permutation
of its indices.

Consider a d-th order tensor H ∈ Rn1×n2×...×nd , nk ∈ N, k ∈ [d] with entries that remain
invariant with respect to a permutation of its indices, denoted by π. This permutation
can be represented by the permutation operator P̂π : Rn1×n2×...×nd → Rn1×n2×...×nd , and
we have for µk ∈ [nk] , µπ(k) ∈

[
nπ(k)

]
, k ∈ [d]:

H = P̂π(H) ⇔ H(µ1; . . . ;µd) = H(µπ(1); . . . ;µπ(d))
⇔ H<k>(µ1, . . . , µk;µk+1, . . . , µd) = (P̂π(H))<k>(µπ(1), . . . , µπ(k);µπ(k+1), . . . , µπ(d)).

(3.17)
We introduce permutation matrices P≤k

π ∈ R(n1...nk)×(n1...nk), and P>k
π ∈ R(nk+1...nd)×(nk+1...nd),

k ∈ [d]. These matrices can be defined entry-wise as follows:

P≤k
π (j;µ) = 1 if j = π(µ) = µπ otherwise P≤k

π (j;µ) = 0,
with µ = µ1, . . . , µk, and µπ = µπ(1), . . . , µπ(k),

(3.18)

and
P>k
π (µ; j) = 1 if j = π(µ) = µπ, otherwise P>k

π (µ; j) = 0
with µ = µk+1, . . . , µd, and µπ = µπ(k+1), . . . , µπ(d).

(3.19)

Thus we have:
H<k> = P≤k

π H<k>P>k
π . (3.20)
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Here, H<k> ∈ R(n1...nk)×(nk+1...nd) is the mode-(1 : k) matricization of H. Moving for-
ward, let {σℓ}ℓ∈[p] be distinct singular values of the SVD of H<k>, each with respective
multiplicities {ml}l∈[p]. The SVD of H<k> can be represented as:

H<k> =
p∑
i=1

σiUiV∗
i , Ui ∈ Rn1...nk×mi ,Vi ∈ Rnk+1...nd×mi . (3.21)

The expression (3.21) can also be defined entry-wise as follows:

H<k>(µ1, . . . , µk;µk+1, . . . , µd) =
p∑
i=1

σi

mi∑
j=1

Ui(µ1, . . . , µk; j)V∗
i (j;µk+1, . . . , µd)

 ,
(3.22)

and the expression of the SVD of the permuted matrix can be defined entry-wise as follows:
(P≤k

π H<k>P>k
π )(µπ(1), . . . , µπ(k);µπ(k+1), . . . , µπ(d))

=
p∑
i=1

σi

mi∑
j=1

Ui(µπ(1), . . . , µπ(k); j)V∗
i (j;µπ(k+1), . . . , µπ(d))

 , (3.23)

with µk ∈ [nk] , µπ(k) ∈
[
nπ(k)

]
and k ∈ [d]. With these concepts in place, we can now

introduce the following proposition.
Proposition 3.2.1. If the d-order tensor H ∈ Rn1×...×nd exhibits invariant entries under
a specified index permutation denoted as π, and {σl}l∈[p] represent distinct singular val-
ues of its mode-(1:k) matricization, denoted as H<k>, with corresponding multiplicities
{ml}l∈[p], then the orthogonal matrices resulting from the SVD of H<k>, as outlined in
Equation (3.22), satisfy the following equality: for all k ∈ [d], µk ∈ [nk], µπ(k) ∈

[
nπ(k)

]
and i ∈ [p]:
mi∑
j=1

Ui(µ1, . . . , µk; j)V∗
i (j;µk+1, . . . , µd) =

mi∑
j=1

Ui(µπ(1), . . . , µπ(k); j)V∗
i (j;µπ(k+1), . . . , µπ(d)).

(3.24)
Proof of Proposition 3.2.1. Suppose that {σl}l∈[p] are distinct singular values of the matrix
H<k>, k ∈ [d], with multiplicities {ml}l∈[p]. Suppose that r ≤ min

{∏k
l=1 nl,

∏d
l=k+1 nl

}
is

the rank of H<k>. We define the matrix Sr = diag(σ1Im1 , σ2Im2 , . . . , σpImp) ∈ Rr×r such

that S =
[

Sr 0
0 0

]
. The SVD of H<k> writes:

H<k> = USV∗. (3.25)

with U ∈ R(n1...nk)×(n1...nk) and V ∈ R(nk+1...nd)×(nk+1...nd) being orthogonal matrices. Let
Û ∈ R(n1...nk)×(n1...nk) and V̂ ∈ R(nk+1...nd)×(nk+1...nd) be orthogonal matrices as well. Now,
according to Autonne’s uniqueness theorem, see [49], if H<k> = USV∗ = ÛSV̂∗, then

there exist orthogonal matrices G1 ∈ Rm1×m1 , . . . ,Gp ∈ Rmp×mp , Ũ ∈ R

(∏k

l=1 nl−r
)

×
(∏k

l=1 nl−r
)
,

and Ṽ ∈ R

(∏d

l=k+1 nl−r
)

×
(∏d

l=k+1 nl−r
)

such that we can define block-diagonal matrices

Q1 ∈ R

(∏k

l=1 nl

)
×
(∏k

l=1 nl

)
and Q2 ∈ R

(∏d

l=k+1 nl

)
×
(∏d

l=k+1 nl

)
as:

Q1 = diag
(
G1, · · · ,Gp, Ũ

)
, Q2 = diag

(
G1, · · · ,Gp, Ṽ

)
. (3.26)

It follows:
Û = UQ1, and V̂ = VQ2. (3.27)

Given (3.20), we have:
H<k> = USV∗ = P≤k

π USV∗P>k
π . (3.28)

According to Equation (3.27), we can assert the following, for i ∈ [p]:

(UiGi)(ViGi)∗ = P≤k
π (UiGi)(ViGi)∗P>k

π , (3.29)

where the matrices Ui and Vi are defined in Equation (3.21). Thus, we obtain:

UiV∗
i = P≤k

π UiV∗
iP>k

π , (3.30)
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As indicated in Proposition 3.2.1, it becomes evident that when certain sets of de-
generate singular values are disregarded, the Equation (3.24) may not remain true. This
makes (3.24) an essential condition for preserving the matrix invariance under specific
index permutations. With all the necessary components now in place, we can proceed to
prove Theorem 3. This theorem ensures that preserving the degenerate singular values
during the truncation process is key to achieving an approximate TT representation with
preserved desired symmetry, as the one considered in Equation (S).

Proof of Theorem 3. Consider the matrix representation of a given Hamiltonian operator
H ∈ R(n1,...,nd)×(n1,...,nd). Suppose that H is symmetric, see (S). Let H ∈ Rn1×n2×...×nd×n1×n2×...×nd

be the tensor folding of H and H̃ ∈ Rn1×n1×n2×n2...×nd×nd the permutation of H over spe-
cific modes. Since H is symmetric, according to (3.24), we have P̂π(H̃) = H̃ and for
k ∈ [d], we have:

H̃<2k> = P≤2k
π H̃<2k>P>2k

π , (3.31)
where H̃<2k> is the mode-(1 : 2k) matricization of H̃ and where the permutation over
indices denoted by π can be evaluated as follows:{

π(ℓ) = ℓ− 1, if ℓ is even
π(ℓ) = ℓ+ 1, if ℓ is odd, ,∀ℓ ∈ [2k] . (3.32)

In this context, ℓ denotes the position of a specific index within the multi-index used to
label an entry in the tensor, as seen in H̃(µ1; ν1; . . . ;µd; νd). For instance, the position of
ν1 is indicated by ℓ = 2. Now for k = 1, let {σ1,l}l∈[p1] be the distinct singular values of
H̃<2> ∈ R(n1n1)×(n2n2...ndnd) with respective multiplicities {m1,l}l∈[p1] and let
S1 = diag(σ1,1Im1,1 , σ1,2Im1,2 , . . . , σ1,p1Im1,p1

). Let R1 be the rank of H̃<2>. The SVD of
H̃<2> writes:

H̃<2> = U1︸︷︷︸
∈R(n1n1)×R1

S1V∗
1︸ ︷︷ ︸

∈RR1×(n2n2n3n3...ndnd)

⇔ H̃<2>(µ1, ν1;µ2, ν2, . . . , µd, νd) =
R1∑
α1=1

U1(µ1, ν1;α1) (S1V∗
1) (α1;µ2, ν2, . . . , µd, νd).

(3.33)
Using Proposition 3.2.1, we have for i1 ∈ [p1]:
m1,i1∑
j1=1

U1,i1(µ1, ν1; j1)V∗
1,i1(j1;µ2, ν2, . . . , µd, νd) =

m1,i1∑
j1=1

U1,i1(ν1, µ1; j1)V∗
1,i1(j1; ν2, µ2, . . . , νd, µd),

(3.34)
where U1,i1 ∈ R(n1n1)×m1,i1 and V1,i1 ∈ R(n2n2...ndnd)×m1,i1 .

We denote W = S1V∗
1 ∈ RR1×(n2n2n3n3...ndnd). Let W ∈ RR1×n2×n2×n3×n3...×nd×nd be the

tensor folding of W. The next step in TT-SVD algorithm consists in applying an SVD
over W<3> of rank R2 such that

W<3> = U2︸︷︷︸
∈R(R1n2n2)×R2

S2V∗
2︸ ︷︷ ︸

∈RR2×(n3n3...ndnd)

. (3.35)

Given (3.35), we can restore the elements of H̃ as follows:

H̃(µ1; ν1; . . . ;µd; νd) =
R1∑
α1=1

R2∑
α2=1

U1(µ1, ν1;α1)U2(α1, µ2, ν2;α2) (S2V∗
2) (α2;µ3, ν3, . . . , µd, νd)

⇔ H̃<4> = Ũ2 (S2V∗
2) ,

(3.36)
where Ũ2 ∈ R(n1n1n2n2)×R2 is the mode-(1 : 4) matricization of U1 ×3 U2, with U1 and U2
being the tensor folding of the matrices U1 and U2 respectively. Using Proposition 3.2.1,
we have:
m2,i2∑
j2=1

Ũ2,i2(µ1, ν1, µ2, ν2; j2)V∗
2,i2(j2; µ3, ν3, . . . , µd, νd) =

m2,i2∑
j2=1

Ũ2,i2(ν1, µ1, ν2, µ2; j2)V∗
2,i2(j2; ν3, µ3, . . . , νd, µd),

(3.37)
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where Ũ2,i2 ∈ R(n1n1n2n2)×m2,i2 and V2,i2 ∈ R(n3n3...ndnd)×m2,i2 , i2 ∈ [p2]. Then, by construc-
tion, at iteration k ∈ [d], it follows:

H̃(µ1; ν1; . . . ; µd; νd) =
R1∑
α1=1

R2∑
α2=1

. . .
Rk∑
αk=1

U1(µ1, ν1; α1)U2(α1, µ2, ν2; α2)

. . . Uk(αk−1, µk, νk; αk) (SkV∗
k) (αk; µk+1, νk+1, . . . , µd, νd)

⇔ H̃<2k> = Ũk (SkV∗
k) ,

(3.38)

where Ũk ∈ R(n1n1n2n2...nknk)×Rk represents the mode-(1 : 2k) matricization of U1 ×3 U2 ×4 . . .×4 Uk.
Using Proposition 3.2.1, we have:

mk,ik∑
jk=1

Ũk,ik(µ1, ν1, µ2, ν2, . . . , µd, νd; jk)V∗
k,ik

(jk;µk+1, νk+1, . . . , µd, νd)

=
mk,ik∑
jk=1

Ũk,ik(ν1, µ1, ν2, µ2, . . . , νd, µd; jk)V∗
k,ik

(jk; νk+1, µk+1, . . . , νd, µd),
(3.39)

with Ũk,ik ∈ R(n1n1...nknk)×mk,ik and Vk,ik ∈ R(nk+1nk+1...ndnd)×mk,ik , ik ∈ [pk]. Hence, the
condition in (3.39) must be verified at each iteration k ∈ [d] in order to obtain a symmetric
Hamiltonian operator matrix. Therefore, if the degenerate subspaces are not respected
during the compression process, the condition in (3.39) is not verified which yields to
loosing the symmetry property.

As per Theorem 3, it is observed that a careless truncation during the SVD process can
lead to the loss of symmetry property of the Hamiltonian operator matrix. Furthermore,
we numerically observe that this also affects its commutation relations with the particle
number operator represented by N as well as the z-component of the spin operator rep-
resented by Sz, see Figure 3.2. We can illustrate this with a straightforward example in
the spin-orbital basis for simplification, which demonstrates that failing to preserve the
degenerate singular values disrupts the inherent block-sparse structure that arises when
the Hamiltonian operator commutes with the particle number operator. We consider the
following trivial example for d = 2, n1 = n2 = 2.

Example 3.2.1. Let H ∈ R22×22 . Suppose that H and the particle number operator N
commute, as shown by (PN). This implies that for µk, νk, k ∈ {1, 2}:

NH − HN = 0 ⇔ H(µ1, µ2; ν1, ν2) ̸= 0 ⇒
2∑

k=1
q2(µk) =

2∑
k=1

q2(νk), (3.40)

where q2 : {1, 2} 7→ {0, 1} is a mapping function between tensor indices and occupation
numbers in the spin-orbital basis. Here, we can observe that the Hamiltonian operator
H, with entries H(µ1, µ2; ν1, ν2), has a block-sparse structure represented as follows:

H =


H(1, 1; 1, 1) 0 0 0

0 H(1, 2; 1, 2) H(1, 2; 2, 1) 0
0 H(2, 1; 1, 2) H(2, 1; 2, 1) 0
0 0 0 H(2, 2; 2, 2)

 . (3.41)

Now, let H ∈ R2×2×2×2 be the tensor folding of H, and H̃ be the permuted tensor de-
fined by its entries H̃(µ1; ν1;µ2; ν2), µk, νk, k ∈ {1, 2}. The mode-(1:2) of H̃, denoted as
H̃<2> with entries H̃<2>(µ1, ν1;µ2, ν2), also exhibits a block-sparse structure represented
as follows:

H̃<2> =


H̃(1, 1; 1, 1) H̃(1, 1; 2, 2) 0 0
H̃(2, 2; 1, 1) H̃(1, 2; 1, 2) 0 0

0 0 0 H̃(1, 2; 2, 1)
0 0 H̃(2, 1; 1, 2) 0

 . (3.42)

To compress H̃<2>, one can apply a truncated SVD to each block separately. Let us
focus on the second block, that we denote by B, which can be expressed as:

B =
(

0 H̃(1, 2; 2, 1)
H̃(2, 1; 1, 2) 0

)
. (3.43)
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Due to symmetry, we have H̃(1, 2; 2, 1) = H̃(2, 1; 1, 2), which allows us to represent the
SVD as follows:

B = λ1u1v
∗
2 + λ1u2v

∗
1. (3.44)

Here, λ1 refers to the degenerate singular value, and u1, v1, u2, and v2 are the singular
vectors associated with the singular value λ1. Since λ1 is degenerate, there is more freedom
in choosing the singular vectors. In other words, any vector that is a linear combination
of u1, u2, v1, and v2 is a singular vector associated with λ1, satisfying

B = λ1(αu1 + βu2)(αv∗
2 + βv∗

1) + λ1(αu2 − βu1)(αv∗
1 − βv∗

2), (3.45)

where α2 +β2 = 1. When retaining only the first singular value during truncation, it leads
to B(1; 1) ̸= 0 and B(2; 2) ̸= 0 resulting in the failure to preserve the particle number as
well as the block-sparse structure.

In what follows, we give error portraits using two truncation methods: the Careful
truncation (which maintains degenerate singular values and preserves the desired proper-
ties of the Hamiltonian operator) and Careless truncation . In Figures 3.2(b),3.2(a),and
3.2(c), we illustrate how the careless truncation impacts the commutation relations in-
volving H with N, Sz, and S2. Additionally, we evaluate the relative compression error
between the original Hamiltonian operator H and its compressed format, denoted as Hϵ,
with ϵ representing the desired accuracy. In the figures presented below, we focus on a
H4 molecule with a dimension of d = 8. We have intentionally chosen a small system
size to facilitate the evaluation of numerical compression errors. Forming the complete
H for larger systems can be computationally expensive. Nonetheless, this choice provides
insights into potential numerical issues that can be encountered when dealing with larger
systems.
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Figure 3.1: The left figure displays how the relative error in Frobenius norm between the
original operator matrix H and the compressed matrix Hϵ changes with varying accuracy
ϵ. The right figure illustrates the variation in the relative error between Hϵ and its
transpose H∗

ϵ as accuracy ϵ varies.
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Figure 3.2: The figures above illustrate the impact of truncation on the commutation
relations between Hϵ and various operators: particle number operator N (a), the z-
component of spin operator Sz (b), and the total spin operator Ŝ2(c).

In Figure 3.2, we observe that careful implementation of truncation during compression
results in the preservation of the Hamiltonian operator’s essential properties, including
symmetry and the conservation of particle number, as well as the z-component of the
total spin. However, for the conservation of the total spin, we currently lack a theoretical
explanation for the observed behaviour in Figure 3.2(c). It is evident however that the
error varies with the chosen accuracy ϵ.

We also observe, as illustrated in Figure 3.3, that compression at certain threshold,
ϵ > 10−5, can lead to the emergence of virtual interactions in a strictly one-body operator
Hamiltonian (as shown in the left side of the Figure 3.3) or a two-body operator (as
shown in the right side of the Figure 3.3). We briefly explain the evaluation of these
interactions. For simplification, we consider the spin-orbital basis. A general p-body
Hamiltonian operator, with at most p-body interactions can be expressed in terms of
creation and annihilation operators as follows, see [95]:

H≤p =
∑

J,J ′⊆X
C(J ; J ′)

∏
x∈J

A∗
x

∏
x′∈J ′

Ax′ , (3.46)

whereX represents a set of multi-indices defined byX = {(ξ1, 0, . . . , 0), (ξ1, ξ2, 0, . . . , 0), . . . , (ξ1, ξ2, . . . , ξp)},
ξk ∈ [d] , k ∈ [p] , and #X = p. x and x′ represent a vector of indices such that

A∗
x = A∗

x1 . . .A
∗
xp
, (3.47)

Ax′ = Ax′
1
. . .Ax′

p
, (3.48)

with the convention Axk
= I2 if xk = 0, for k ∈ [p]. The entries of H≤p expressed in

(3.46) can be obtained by evaluating the following so called vacuum expectation value:

H≤p(α; α′) =
∑

J,J ′⊆X
C(J ; J ′) Φ∗

0...0

∏
α∈J

Aα

∏
x∈J

A∗
x

∏
x′∈J ′

Ax′
∏

α′∈J ′
A∗

α′

Φ0...0︸ ︷︷ ︸
M(α,α′;x,x′)

=
∑

x∈J,x′∈J ′
C(x; x′)M(α,α′; x,x′).

(3.49)
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with Φ0...0 = e1 ⊗K . . .⊗K e1 ∈ R2d , where e1 are unit vectors introduced in (1.119). H≤p
can be obtained through matrix-vector multiplication as follows:

vec(H≤p) = M vec(C). (3.50)

For instance, in the case of a 1-body operator with p = 1, see Equation (1.130):

H≤1 =
d∑

i,j=1
hijA∗

iAj. (3.51)

To align with the general expression of a p-body operator, we have here X = {(ξ1)},
J = (ξ1), J ′ = (ξ′

1), and C(J ; J ′) = C(ξ1; ξ′
1) = hξ1ξ′

1
. One way to identify undesired

interactions is by following these steps

• Compute the resulting compressed Hamiltonian operator from a compressed TTO
decomposition with truncated SVD at accuracy ϵ. The compressed matrix is denoted
as (H≤p)ϵ.

• Evaluate the matrix M defined in the Equation (3.49). The entries of this matrix
can be evaluated using Wick’s theorem. More details about this theorem can be
found in [108].

• Evaluate the matrix containing all the new coefficients, denoted as C̃, using Equa-
tion (3.50).

• Recompute the matrix (H̃≤p)ϵ using the Equation (3.46), and the matrix C̃.

• Evaluate the relative error between (H≤p)ϵ and (H̃≤p)ϵ.

We applied these steps to both 1-body and 2-body operator Hamiltonians, as illustrated
in Figure 3.3.
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Figure 3.3: Presence of spurious interactions in a 1-body Hamiltonian operator (left figure)
(resp. 2-body Hamiltonian operator (right figure)) at a fixed accuracy ϵ.

3.3 Symmetry-preserving TT representations
As discussed in the previous section, several different approaches exist for the efficient
TTO construction of the Hamiltonian operator. Shifting our focus to compression-based
methods for constructing a compressed TTO representation, the straightforward approach
is the TT-SVD, elaborated upon in [92]. This algorithm involves applying multiple trun-
cated SVDs on tensor unfoldings. Obviously, in practice TT-SVD is not suitable for our
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application case since it requires the access to all the entries of the operator, yielding to
an exponential scaling with the system size d. As previously discussed in the preceding
section, we have also described an alternative approach that scales linearly with the sys-
tem size d. This method leverages the structure of the Hamiltonian operator within the
second quantization formalism, enabling it to be represented as a sum of rank-1 TTs. This
approach begins with a tensor already in TT-format, with the goal of achieving a com-
pressed representation that closely approximates the original one. To accomplish this, the
TT-rounding algorithm, as described in [92], is employed. This approach does not require
forming the entire tensor explicitly, however the time cost spent for numerical compres-
sion is not negligible when the number of terms in the sum is large (large TT-ranks). As
demonstrated in previous numerical examples, a brute-force compression method, if done
naively, may fail to preserve essential properties of the Hamiltonian operator, including
the symmetry of the Hamiltonian operator matrix, the emergence of virtual interactions,
and the preservation of the natural block structure that arises from particle number con-
servation for instance. Moreover, performing an SVD on a matrix with a high degree of
sparsity will typically yield to a dense matrix.

An essential feature when handling operators arising in quantum chemistry is that
their matrix representation exhibits a block-sparse structure when physical/group sym-
metries are exploited. This includes the conservation of the particle number conservation,
the z-component of the total spin and the total spin. Incorporating these symmetries
can lead to more effective TT structure, in particular a block-sparse TT representation.
In this section, we provide an extensive review and a comprehensive study about the
different structures that emerge in the TT representations of both the eigenfunction and
the Hamiltonian operator through the exploitation of Abelian symmetries (conservation
of the particle number and the z-component of total spin). Notably, the latter has a long
history, particularly in the context of the representation of the eigenfunctions (MPS in
physics language). This can lead to a block structure in the TT-cores of the TT decom-
position of the eigenfunction, as well as in the TT-cores of the TTO representation of the
Hamiltonian operator.

Indeed, such a structure has been previously exploited in the literature, see [2, 51, 60,
85, 86, 106, 107, 111, 112, 129, 134]. In particular, the authors of [2] have shown that
within the context of Abelian symmetries, a block-sparse structure can emerge within the
TT-cores of the TT decomposition of the eigenfunction. This occurs when the latter is
an eigenvector of the particle number operator, i.e the particle number is conserved.

We will provide a concise overview of this specific structure. Additionally, inspired by
the work of [2], we can extend it by showing that enforcing Abelian symmetries, such as
particle number conservation or the conservation of the z-component of the total spin,
results in an interesting block-sparse structure in the TT-cores of the TTO representation
of a general p-body Hamiltonian operator. To the best of our knowledge, this structure
has not been presented in this way before. Nevertheless, we recognize a comparable
structure was shown in the study mentioned in [60]. The block-sparse TT representations
of both the eigenfunction and the Hamiltonian operator offer significant memory and
computational advantages, as will be detailed in Chapter 4:

• it minimizes memory footprint: dense blocks in the TT representation are stored
into a list format,

• it allows to efficiently perform block-wise compression and orthogonalization, which
can be performed in parallel,

• it is particularly useful when carrying out block-wise contractions with block-structured
tensor trains which is a commonly used operation in QC-DMRG,

• it is beneficial to speed-up matrix-vector operations encountered when solving the
reduced eigenvalue problem, see Equation (1.156).

Extending these structures to non-Abelian symmetries, such as SU(2) corresponding to
the conservation of the total spin, is less straightforward since more complex algebra
is involved. We show that the incorporation of non-Abelian symmetries results as well
in a block structured TT representations with fewer blocks. However, it requires the

82



introduction of additional coupling coefficients, which we will elaborate on in the Sec-
tion 3.3.2, specifically for the TT representation of the eigenfunction which is considered
as an eigenvector of the total spin operator represented by Ŝ2.

3.3.1 Block-sparse TT representations
Block-sparse structure in the TT decomposition of the eigenfunction

In this section, we present an interesting Corollary that will be employed throughout this
thesis. This Corollary is derived from a theorem established in [2], with slight modifica-
tions made to align its notations with those used in this manuscript. We introduce this
Corollary specifically for the case involving the spin-orbital basis, assuming n = 2, yet it
can similarly be extended to the spatial-orbital basis.
Corollary 3.3.1. [2] Let Ψ ∈ Fd, Ψ ̸= 0 be an eigenvector of the particle number
operator represented by N, see Equation (1.131), such that

NΨ = NΨ, N ∈ [d] . (3.52)
Let ψ ∈ Rn×n×...×n, with n = 2, be the d-order tensor folding of Ψ. Let (U1, . . . ,Ud) be the
TT decomposition of ψ with TT-ranks (r1, . . . , rd).

Then the TT-cores have a block-sparse structure with at most N+1 nonzero blocks such
that the following holds: for k ∈ [d], and for µk ∈ [n], the matrices Uk[µk] := Uk[:, µk, :] ∈ Rrk−1×rk

have nonzero entries only in the following blocks of sizes, denoted as ρΨ
k−1,ik−1

× ρΨ
k,ik

:

Uk[µk]|ρΨ
k−1,ik−1

×ρΨ
k,ik

:= U(ik−1,ik)
k [µk] ̸= 0 if ik−1 + qn(µk) = ik, (3.53)

where qn is defined in (PN). Additionally, i0 = 0, id = N + 1, and ρΨ
0,0 = ρΨ

d,N+1 = 1 and
for k ∈ {2, . . . , d− 1}, we have:

rk−1 =
∑

ik−1∈SΨ
k−1

ρΨ
k−1,ik−1

, rk =
∑
ik∈SΨ

k

ρΨ
k,ik
, (3.54)

where
SΨ
k−1 = {max {1, N − d+ k} , . . . ,min {N + 1, k}} , (3.55)

SΨ
k = {max {1, N − d+ k + 1} , . . . ,min {N + 1, k + 1}} , (3.56)

For clarification, we give in what follows an example to illustrate the block-sparse
representation of the TT representation of an eigenvector of the particle number operator.
Example 3.3.1. Consider the case d = 6, n = 2, k ∈ [d] and N = 2. Suppose that Ψ has
a TT representation, such that ∀ (µ1, . . . , µd) ∈ {1, 2}d, ψ(µ1; · · · ;µd) = U1[µ1]U2[µ2] · · · Ud[µd].
The TT representation takes the following form, where each TT-core Uk[µk] has a maxi-
mum of 3 nonzero blocks for a fixed value of µk ∈ {1, 2}.

U1[2]

U1[1]

U3[2] =

ρΨ
3,1 ρΨ

3,2 ρΨ
3,3( )0 U(1,2)

3 [2] 0 ρΨ
2,1

0 0 U(2,3)
3 [2] ρΨ

2,2
0 0 0 ρΨ

2,3

U3[1] =

ρΨ
3,1 ρΨ

3,2 ρΨ
3,3( )

U(1,1)
3 [1] 0 0 ρΨ

2,1
0 U(2,2)

3 [1] 0 ρΨ
2,2

0 0 U(3,3)
3 [1] ρΨ

2,3

Remark 3.3.1. In the case of spatial-orbital basis, i.e n = 4 and dspatial = d
2 , a similar

block-sparse TT representation can be derived, such that the TT-cores exhibit a block-
sparse structure with at most N + 1 nonzero blocks.
Remark 3.3.2. Ψ acting as an eigenvector of the particle number operator with the
eigenvalue N , is the wavefunction. An interesting interpretation of its TT representation
as discussed in [77], is that this TT representation can be seen as a recursive orthogonal
transformation of elements in the basis of the discrete Fock space Fk, as defined in (1.97),
at each iteration k, with the TT-cores acting as successive linear maps, leading to the
target wavefunction Ψ with a fixed particle number of N . For more details, we direct the
reader to Appendix .5 for further elaboration.
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Block-sparse structure of the TTO representation

In Section 3.2.1, we discussed the properties of the Hamiltonian operator that need to be
preserved during compression. In what follows, we show that enforcing physical symme-
tries such as the conservation of the particle number or the z-component of the total spin,
i.e the Hamiltonian operator satisfies (PN) and (SZ) results into a similar block-sparse
structure in the TT-cores of the TTO representation of H as the one described in the
Corollary 3.3.1. This motivates the introduction of the following theorem. It considers a
general Hamiltonian operator with p-body interactions where p is a non-negative integer.
In particular, it can be applied to the 2-body operator defined in the spin-orbital basis or
the spatial-orbital basis. The following result is inspired by the work in [2].

Theorem 4. Let H ∈ Rn
d×nd , n ∈ {2, 4}, be the symmetric matrix representation of the

particle-number preserving Hamiltonian operator with at most p-body interactions, i.e
satisfying (PN), (pB), (S). Let (H1, . . . ,Hd) be its TTO representation with TTO-ranks
(R1, . . . , Rd). Then,

(a) there is a block-sparse representation of the TT-cores Hk ∈ RRk−1×n×n×Rk , k ∈ [d].
This can be expressed formally as follows:
For fixed µk, νk ∈ [n], Hk[µk, νk] := Hk[:, µk, νk, :] ∈ RRk−1×Rk are block matrices.
These blocks are denoted by:

Hk[µk, νk]|ρH
k−1,jk−1

×ρH
k,jk

:= H(jk−1,jk)
k [µk, νk] ∈ R

ρH
k−1,jk−1

×ρH
k,jk , (3.57)

where j0 = 0, jd = 0, ρH
0,0 = ρH

d,0 = 1 and for k ∈ {2, . . . , d− 1}, we have:

Rk−1 =
∑

jk−1∈SH
k−1

ρH
k−1,jk−1

, Rk =
∑
jk∈SH

k

ρH
k,jk

, (3.58)

where
SH
k = {−βk, . . . , βk} ,with βk = min

{
n

2k, (d− k)n2 , 2p
}
, (3.59)

p denotes the number of p-body interactions considered and we have:

jk−1 + tk = jk, (3.60)

where tk = qn(µk) − qn(νk), and qn is defined in (PN). One has the following
representation

• If tk = 0,

Hk[µk, νk] =


H(−βk−1,−βk−1)
k [µk, νk]

. . .
. . .

H(βk−1,βk−1)
k [µk, νk]

 , (block-diagonal matrix)

• If tk ∈ {−1,−2}

Hk[µk, νk] =


0

H(−βk−1,−βk−1+tk)
k [µk, νk] 0

. . . . . .
H(βk−1,βk−1+tk)
k [µk, νk] 0

 ,

• If tk ∈ {1, 2}

Hk[µk, νk] =


0 H(−βk−1,−βk−1+tk)

k [µk, νk]
. . . . . .

0 H(βk−1,βk−1+tk)
k [µk, νk]

0

 ,
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It follows that for k ∈ [d], the TT-cores Hk[µk, νk] have at most 2βk + 1 nonzero
blocks. Each element of H can be expressed in terms of these blocks as:

H(µ1, . . . , µd; ν1, . . . , νd) =
n
2∑

t1,··· ,td=− n
2

H(0,t1)
1 [µ1, ν1] · · · H

(∑k−1
l=1 tl,

∑k

l=1 tl

)
k [µk, yk] . . . H

(∑d−1
l=1 tl,0

)
d [µd, νd].

(3.61)

(b) The nonzero blocks in the TT-cores can be related to one another through the
existence of orthogonal matrices Q for each jk ∈ {−βk, · · · , βk}, such that

H(jk,jk+tk)
k [µk, νk] = H(−jk,−jk−tk)

k [νk, µk]Q, (3.62)

Remark 3.3.3. The results in Theorem 4 are also valid for complex hermitian matrices.
As a consequence, if H is a particle-number preserving Hamiltonian with p-body interac-
tions, all the matrices f(H) in the C∗-algebra generated by H via functional calculus for
hermitian matrices share the same block representation.

In the following, we split the proof of Theorem 4 into three lemmas.
Outline The first Lemma establishes the block-sparse structure in the TT-cores of

an Hamiltonian operator that satisfies (PN). The second lemma assesses the maximum
number of nonzero blocks present in the TT-cores derived from an operator satisfying
both (PN) and (pB). The third lemma demonstrates that the nonzero blocks within the
TT-cores are interrelated through the incorporation of orthogonal matrices.

Lemma 3.3.2. Consider the Hamiltonian operator matrix H ∈ Rn
d×nd with a TTO repre-

sentation (H1, . . . ,Hd) and TTO-ranks (R1, . . . , Rd). We have that the Hamiltonian and
the particle number operator commute, i.e., HN = NH, then the TTO representation of
H exhibits a block-sparse structure, as depicted in statement (a) of Theorem 4.

Proof. We start by recalling the orthonormal basis {eµk
}k∈[d],µk∈[n], as introduced in

(1.119), such that vectors eµ1µ2...µd
:= eµ1 ⊗K eµ2 ⊗K . . . ⊗K eµd

is a basis of the Fock
space Fd. eµ1µ2...µd

are eigenvectors of N. We have that H and N commute, H can be
expanded in the set of the eigenvectors of N. This allows us to write H as follows:

H =
n∑

µ1,··· ,µd,
ν1,··· ,νd=1

H(µ1, . . . , µd; ν1, . . . , νd)eµ1µ2...µd
e∗
ν1ν2...νd

, (3.63)

where H(µ1, . . . , µd; ν1, . . . , νd) are the entries of H. Let H ∈ Rn×n×···×n be the 2d-th
tensor folding of H. Let H̃ ∈ Rn×n×···×n be the permuted tensor that can be defined as
follows: for k ∈ [d], the mode-(1 : 2k) matricization of H̃ denoted by H̃<2k> ∈ Rn

2k×n2d−2k

is given by:

H̃<2k> =
d∑

µ1,··· ,µd,
ν1,··· ,νd=1

H(µ1, ν1, . . . , µk, νk; µk+1, νk+1, · · · , µd, νd)eµ1ν1...µkνk
⊗K e∗

µk+1νk+1...µdνd
.

We define the following functions:

Q≤k : {1, . . . , n}k → N0 Q>k : {1, . . . , n}d−k → N0

µ≤k →
k∑
l=1

qn(µl), µ>k →
d∑

l=k+1
qn(µl),

(3.64)

with µ≤k = (µ1, . . . , µk) and µ>k = (µk+1, . . . , µd).
For k ∈ [d], by enforcing the particle number conservation, the following condition

must be satisfied (see (PN)), we have:
d∑

k=1
tk = 0, (3.65)

where tk = qn(µk) − qn(νk), k ∈ [d]. The range of values for tk depends on the basis. In
the case where n = 2, tk ∈ {−1, 0, 1}, otherwise, for n = 4, tk ∈ {−2,−1, 0, 1, 2}, thus,
for n ∈ {2, 4}, tk ∈

{
−n

2 , . . . ,
n
2

}
.
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Hence, H̃<2k> has the following expression:

H̃<2k> =
∑

µ≤k,µ>k
ν≤k,ν>k

∑
t1,··· ,tk

H(µ≤k, ν≤k; µ>k, ν>k)
[
δ

Q≤k(µ≤k)−
∑k

l=1 tl
Q≤k(ν≤k) eµ≤kν≤k

]
[
δ

Q>k(µ>k)
Q>k(ν>k)−

∑d

l=k+1 tl
eµ>kν>k

]∗

,

(3.66)

where for simplicity in notation, we modified the Kronecker delta notation δi,j := δji .
H(µ≤k, ν≤k;µ>k, ν>k) := H(µ1, ν1, . . . , µk, νk;µk+1, νk+1, · · · , µd, νd), eµ≤kν≤k

:= eµ1ν1...µkνk
,

and eµ>kν>k
:= eµk+1νk+1...µdνd

.
To obtain the TTO decomposition of this operator, we use the classical TT-SVD

procedure. For k=1, H̃<2> ∈ Rn
2×n2d−2 can be defined entry-wise as follows:

H̃<2> =
n
2∑

t1=− n
2

(H)µ>1,ν>1
µ1,ν1

[
δ

Q1(µ1)−t1
Q1(ν1) eµ1ν1

] [
δ

Q>1(µ>1)
Q>1(ν>1)−t1eµ>1ν>1

]
. (3.67)

It is noted that H̃<2> has a block form. Let us begin by defining the following sets for
k ∈ [d], and tk ∈

{
−n

2 , . . . ,
n
2

}
:

Sk,tk = {µk, νk ∈ [n] , qn(µk) − qn(νk) = tk} , (3.68)

S>k,t =
µl, νl ∈ [n] ,

d∑
l=k+1

qn(µl) − qn(νl) = t

 , (3.69)

S≤k,t =
{
µl, νl ∈ [n] ,

k∑
l=1

qn(µl) − qn(νl) = t

}
, (3.70)

with cardinality #Sk,tk ∈
[
n2k

]
, and #S>k,t ∈

[
n2d−2k

]
, such that the matrix representation

of H̃<2> can be represented by the following anti-diagonal block matrix:

H̃<2> =



#S>1,− n
2

. . . #S>1,0 . . . #S>1,n
2

#S1,− n
2

H̃<2>|#S1,− n
2

×#S>1, n
2

... . . .

#S1,0 H̃<2>|#S1,0×#S>1,0

... . . .

#S1,n
2

H̃<2>|#S1, n
2

×#S>1,− n
2



.

(3.71)
The matrix H̃<2> can be also expressed as the product between a diagonal matrix and
an anti-diagonal matrix as follows:

H̃<2> = D1P1, (3.72)

where

D1 =



#S>1,n
2

· · · #S>1,0 · · · #S>1,− n
2

#S1,− n
2

H̃<2>|#S1,− n
2

×#S>1, n
2

... . . .

#S1,0 H̃<2>|#S1,0×#S>1,0

... . . .

#S1,n
2

H̃<2>|#S1, n
2

×#S>1,− n
2



,
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and

P1 =



#S>1,− n
2

. . . #S>1,0 . . . |S>1,n
2

#S>1,n
2

I#S>1, n
2

×#S>1, n
2

... . . .

#S>1,0 I#S>1,0×#S>1,0

... . . .

#S>1,− n
2

I#S>1,− n
2

×#S>1,− n
2



, (3.73)

Suppose that D1 is of rank R1. We apply a block-wise SVD on D1, such that

D1 = U1(S1V∗
1), (3.74)

where U1 ∈ Rn
2×R1 and S1V∗

1 ∈ RR1×n2d−2 such that

U1 =



ρH
1,− n

2
· · · ρH

1,0 · · · ρH
1,n

2
#S1,− n

2
ρH

0,0 U1|#S1,− n
2
ρH

0,0×ρH
1,− n

2

... . . .

#S1,0ρ
H
0,0 U1|#S1,0ρH

0,0×ρH
1,0

... . . .

#S1,n
2
ρH

0,0 U1|#S1, n
2
ρH

0,0×ρH
1, n

2



,

and

(S1V∗
1) =



#S>1,n
2
ρH
d,0 · · · #S>1,0ρ

H
d,0 · · · #S>1,− n

2
ρH
d,0

ρH
1,− n

2
(S1V∗

1)|ρH
1,− n

2
×#S>1, n

2
ρH

d,0

... . . .

ρH
1,0 (S1V∗

1)|ρH
1,0×#S>1,0ρH

d,0

... . . .

ρH
1,n

2
(S1V∗

1)|ρH
1, n

2
×#S>1,− n

2
ρH

d,0



,

where ρH
1,t1 are the sizes of the ranks of the nonzero blocks for t1 ∈

{
−n

2 , · · · , n2
}

such that∑
t1 ρ

H
1,t1 = R1, ρ

H
0,0 = ρH

d,0 = 1. For t1 ∈
{
−n

2 , · · · , n2
}
, µ1, ν1 ∈ S1,t1 , and µ>1, ν>1 ∈ S>1,t1 .

We note that

H̃<2>(µ1, ν1;µ>1, ν>1) =
n
2∑

t1=− n
2

R1∑
γ1=1

U1(µ1, ν1; γ1) ((S1V∗
1)P1) (γ1;µ>1, ν>1)δQ1(µ1)−t1

Q1(ν1) δ
Q>1(µ>1)
Q>1(ν>1)−t1 ,

(3.75)
it follows that: (

U1|ρH
0,0#S1,t1 ×ρH

1,t1

)
(α0, σ1; α1) = U1(µ1, ν1; γ1)δQ1(µ1)−t1

Q1(ν1) , (3.76)

and(
(S1V∗

1)P1) |ρH
1,t1

×#S>1,t1ρ
H
d,0

)
(α1; σd−1, αd) = ((S1V∗

1)P1) (γ1; µ>1, ν>1)δQ>1(µ>1)−t1
Q>1(ν>1) , (3.77)
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where we select only the indices γ1 ∈
{∑t1−1

ℓ=− n
2
ρH

1,ℓ + 1, · · · ,∑t1
ℓ=− n

2
ρH

1,t1

}
, α0 = αd = 1,

α1 ∈
[
ρH

1,t1

]
, σ1 ∈ [#S1,t1 ], σd−1 ∈ [#S>1,t1 ].

For simplicity, we introduce the following notation:

U(0,t1)
1 [µ1, ν1](α0; α1) = U1(µ1, ν1; γ1)δQ1(µ1)−t1

Q1(ν1) , t1 ∈
{

−n

2 , · · · ,
n

2

}
, (3.78)

where U(0,t1)
1 [µ1, ν1] ∈ Rρ

H
0,0×ρH

1,t1 . Similar notations are applied for the blocks of (S1V∗
1)P1

such that

((S1V∗
1)P1)(t1,0) [µ>1, ν>1](α1; αd) = ((S1V∗

1)P1) (γ1; µ>1, ν>1)δQ>1(µ>1)−t1
Q>1(ν>1) , (3.79)

where ((S1V∗
1)P1)(t1,0) [µ>1, ν>1] = ((S1V∗

1)P1)(t1,0) [µ2, ν2, · · · , µd, νd] ∈ Rρ
H
1,t1

×ρH
d,0 . Since

H̃<2> = U1(S1V∗
1)P1, it can be defined entry-wise as follows, using the new notations in

(3.78) and (3.79):

H̃<2>(µ1, ν1; µ>1, ν>1) =
n
2∑

t1=− n
2

U(0,t1)
1 [µ1, ν1] ((S1V∗

1)P1)(t1,0) [µ>1, ν>1]

=
n
2∑

t1=− n
2

H(0,t1)
1 [µ1, ν1] ((S1V∗

1)P1)(t1,0) [µ>1, ν>1].

(3.80)

Here, we define:

H(0,t1)
1 [µ1, ν1] = U(0,t1)

1 [µ1, ν1] ∈ Rρ
H
0,0×ρH

1,t1 , t1 ∈
{

−n

2 , · · · , n2

}
. (3.81)

It follows that for k = 1, n = 4, µ1, ν1 ∈ {1, 2, 3, 4} , the first TT-core denoted by H1 has
the following block-sparse structure:

H1[µ1, ν1] =



H(0,−2)
1 [µ1, ν1] = U(0,−2)

1 [µ1, ν1] ∈ Rρ
H
0,0×ρH

1,−2 , if µ1, ν1 ∈ S1,−2,

H(0,−1)
1 [µ1, ν1] = U(0,−1)

1 [µ1, ν1] ∈ Rρ
H
0,0×ρH

1,−1 , if µ1, ν1 ∈ S1,−1,

H(0,0)
1 [µ1, ν1] = U(0,0)

1 [µ1, ν1]Rρ
H
0,0×ρH

1,0 , if µ1, ν1 ∈ S1,0,

H(0,1)
1 [µ1, ν1] = U(0,1)

1 [µ1, ν1] ∈ Rρ
H
0,0×ρH

1,1 , if µ1, ν1 ∈ S1,1,

H(0,2)
1 [µ1, ν1] = U(0,2)

1 [µ1, ν1] ∈ Rρ
H
0,0×ρH

1,2 , if µ1, ν1 ∈ S1,2.

(3.82)

In what follows, we aim at proving that this property is preserved for the remaining
TT-cores by construction. It can be verified that

δ
Q>1(µ>1)
Q>1(ν>1)−t1 =

n
2∑

t2=− n
2

δ
qn(µ2)−t2
qn(ν2) δ

Q>2(µ>2)
Q>2(ν>2)−(t1+t2), (3.83)

then by replacing (3.83) in (3.77), one obtains:

((S1V∗
1)P1)(t1,0) [µ>1, ν>1](α1;αd) =

n
2∑

t2=− n
2

δ
qn(µ2)−t2
qn(ν2) ((S1V∗

1)P1) (γ1;µ>1, ν>1, αd)δQ>2(µ>2)
Q>2(ν>2)−(t1+t2)

=
n
2∑

t2=− n
2

δ
qn(µ2)−t2
qn(ν2) ((S1V∗

1)P1) (γ1, µ2, ν2;µ>2, ν>2, αd)δQ>2(µ>2)
Q>2(ν>2)−(t1+t2).

(3.84)

Now, suppose that (3.84) are the entries of the following tensor W ∈ R.

(∑n
2
t1= −n

2
ρH

1,t1

)
×n× . . .× n︸ ︷︷ ︸

2d−2

×ρH
d,0

It is noted that the mode-(1:3) matricization of W denoted by W<3> ∈ R
(n2
∑n

2
t1= −n

2
ρH

1,t1
)×(n2d−4ρH

d,0)

is a block-sparse matrix and can be represented as follows:
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W<3> =



#S>2,−n . . . #S>2,0 · · · #S>2,n
#S2,− n

2
ρH

1,− n
2

W<3>|#S2,− n
2
ρH

1,− n
2

×#S>2,n

... . . .

#S2,− n
2
ρH

1,n
2

W<3>|#S2,− n
2
ρH

1, n
2

×#S>2,0

... ...
#S2,n

2
ρH

1,− n
2

W<3>|#S2, n
2
ρH

1,− n
2

×#S>2,0

... . . .

#S2,n
2
ρH

1,n
2

W<3>|#S2, n
2
ρH

1, n
2

×#S>2,−n


.

In a similar way, this matrix can be expressed as the product of a diagonal matrix and
an anti-diagonal matrix such that

W<3> = D2P2 ∈ R
(n2
∑n

2
t1= −n

2
ρH

1,t1
)×(n2d−4ρH

d,0)
. (3.85)

Here, D2 (resp. P2) has a similar structure as D1 (resp. P1). As previously demonstrated,
a block-wise SVD is applied on D2, supposed to be of rank R2, such decomposition writes:

D2 = U2(S2V∗
2). (3.86)

This decomposition has the following matrix representation:

U2 =



ρH
2,−n · · · ρH

2,0 · · · ρH
2,n

#S2,− n
2
ρH

1,− n
2

U2|#S2,− n
2
ρH

1,− n
2

×ρH
2,−n

... . . .

#S2,− n
2
ρH

1,n
2

· · · #S2,n
2
ρH

1,− n
2

U2|(#S2,− n
2
ρH

1, n
2

+···+#S2, n
2
ρH

1,− n
2

)×ρH
2,0

... . . .

#S2,n
2
ρH

1,n
2

U2|#S2, n
2
ρH

1, n
2

×ρ2,n



,

and

(S2V∗
2) =



#S>2,nρ
H
d,0 . . . #S>2,0ρ

H
d,0 . . . #S>2,−nρ

H
d,0

ρH
2,−n (S2V∗

2)|ρ2,−n × #S>2,nρ
H
d,0

... . . .

ρH
2,0 (S2V∗

2)|ρH
2,0×#S>2,0ρH

d,0

... . . .

ρH
2,n (S2V∗

2)|ρH
2,n×Sd−2,−nρ

H
d,0



,

where ∑n
2
t1,t2=− n

2
ρH

2,t1+t2 = R2. As a result, W<3> can be defined entry-wise as follows:

W<3>(α1, µ2, ν2; µ>2, ν>2, αd) = H(t1,t1+t2)
2 [µ2, ν2] ((S2V∗

2)P2)(t1+t2,0) [µ>2, ν>2], (3.87)

where

H(t1,t1+t2)
2 [µ2, ν2](α1;α2) = U2(α1, µ2, ν2; γ2)δQ2(µ2)−t2

Q2(ν2) , (3.88)

and

((S2V∗
2)P2)(t1+t2,0) [µ>2, ν>2](α2;αd) = ((S2V∗

2)P2) (γ2;µ>2, ν>2, αd)δQ>2(µ>2)
Q>2(ν>2)−(t1+t2),

(3.89)
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with α1 ∈
[
ρH

1,t1

]
, α2 ∈

[
ρH

2,t1+t2

]
, αd = 1 and γ2 ∈

{∑t2−1
ℓ=− n

2
ρH

2,t1+ℓ + 1, · · · ,∑t2
ℓ=− n

2
ρH

2,t1+ℓ

}
.

For k = 2, the entries of the mode-(1 : 4) matricization of H̃, denoted by H̃<4>, are given
by:

H̃<4>(µ1, ν1, µ2, ν2; µ>2, ν>2) =
n
2∑

t1,t2=− n
2

H(0,t1)
1 [µ1, ν1]H(t1,t1+t2)

2 [µ2, ν2] ((S2V∗
2)P2)(t1+t2,0) [µ>2, ν>2].

(3.90)
Here, the second TT-core, denoted by H2 ∈ RR1×n×n×R2 , can be derived such that
H2[µ2, ν2] = H2[:, µ2, ν2, :] ∈ RR1×R2 are block-sparse matrices with at most kn+1 = 2n+1
nonzero blocks H(t1,t1+t2)

2 [µ2, ν2] ∈ Rρ
H
1,t1

×ρH
2,t1+t2 . By iteration, until k = d, the elements of

the mode-(1 : 2d) matricization of H̃, denoted by H̃<2d>, are given by:

H̃<2d>(µ1, ν1, · · · , µd, νd) =
n
2∑

t1,··· ,td=− n
2

H(0,t1)
1 [µ1, ν1] · · · H

(∑k−1
l=1 tl,

∑k

l=1 tl

)
k [µk, yk] . . . H

(∑d−1
l=1 tl,

∑d

l=1 tl

)
d [µd, νd],

(3.91)

where∑d
l=1 tl = 0 and for k ∈ [d], the matrices H

(∑k−1
l=1 tl,

∑k

l=1 tl

)
k [µk, νk] ∈ R

ρH
k−1,
∑k−1

l=1 tl

,ρH
k,
∑k

l=1 tl

are the blocks of the TT-cores Hk[µk, νk].
Hk[µk, νk] are block-sparse matrices with at most kn + 1 nonzero blocks on sets{

ρH
k−1,

∑k−1
l=1 tl

× ρH
k,
∑k

l=1 tl

}
k∈[d]

. A similar reasoning can be employed when using TT-SVD,

starting from right to left. This yields block-sparse TT-cores Hk[µk, νk] with a maximum
of (d − k)n + 1 nonzero blocks on sets

{
ρH
d−k,

∑d−k

l=1 tl
× ρH

d−k,
∑d−k

l=1 tl

}
k∈[d]

. Therefore, we

say that Hk[µk, νk] are block-sparse matrices with at most min {kn+ 1, (d− k)n+ 1}
blocks.

We now introduce the following lemma, which complements the previous lemma

Lemma 3.3.3. Let H ∈ Rn
d×nd be a Hamiltonian operator in TTO-format, n ∈ {2, 4} and

let p be a non-negative integer. Assume that the operator has at most p-body interactions
and that it commutes withe the particle number operator. Then, for each k ∈ [d] and
for µk, νk ∈ [n], the TT-cores Hk[µk, νk] have at most min {kn+ 1, (d− k)n+ 1, 2p+ 1}
nonzero blocks.

Proof. Let H ∈ Rn
d×nd be a Hamiltonian operator with TTO decomposition, and let p be

a non-negative integer. Assume that H is derived from an operator that exhibits at most
p-body interactions and that preserves the particle number, it satisfies (PN) and (pB).
Then for µk, νk ∈ [n] and k ∈ [d]:

H(µ1, µ2, · · · , µd; ν1, ν2, · · · , νd) ̸= 0 ⇔
{∑d

k=1 |tk| ≤ 2p,∑d
k=1 tk = 0, (3.92)

with tk = qn(µk) − qn(νk), k ∈ [d]. According to Lemma 3.3.2, the matrices Hk[µk, νk]
have nonzero blocks on sets{
ρH
k−1,

∑k−1
l=1 tl

× ρH
k,
∑k

l=1 tl

}
k∈[d]

. Given (3.92), and given the following set (t1, t2, . . . , td−1, td),

there are at most 2p terms with tk = ±1 for k ∈ [d]. Therefore, max
1≤k≤d

{
k∑
l=1

tl

}
= min

{
n

2 (d− k), n2k, p
}

and min
1≤k≤d

{
k∑
l=1

tl

}
= max

{
−n

2 (d− k),−n

2k,−p
}

. Overall, the maximum number of

nonzero blocks in the TT-cores of the TTO representation of H is reduced from dn + 1
to min {kn+ 1, (d− k)n+ 1, 2p+ 1} for k ∈ [d].

The nonzero blocks within the TT-cores can be interrelated by introducing orthogonal
matrices, denoted as Q. This is outlined in the following lemma:

Lemma 3.3.4. Let H ∈ Rn
d×nd be the symmetric matrix representation of the Hamilto-

nian operator with TTO decomposition, satisfying equations (PN), (S), and (pB). For
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βk = min {kn+ 1, (d− k)n+ 1, 2p+ 1} and for each jk = ∑k
l=1 tl ∈ {−βk, . . . , βk}, where

k ∈ [d], there exist an orthogonal matrix Q such that

H(jk,jk+tk)
k [µk, νk] = H(−jk,−jk−tk)

k [νk, µk]Q, (3.93)

with tk = qn(µk) − qn(νk).

Proof. Let H ∈ Rn
d×nd be a symmetric Hamiltonian operator matrix satisfying the equa-

tions (PN), (S), and (pB). Let H̃ ∈ Rn×···×n be the 2d-th folding tensor of the per-
muted matrix H according its indices with entries H̃(µ1; ν1; . . . ;µd; νd). As described in
Lemma 3.3.2, the TT-cores of the TTO decomposition denoted by Hk[µk, νk] ∈ RRk−1×Rk ,
for fixed values of µk, νk ∈ [n] and k ∈ [d] are block-sparse. Additionally, let H̃<2k> be
the mode-(1 : 2k) matricization of H̃. It can be observed that for a fixed value of k, the
matrix H̃<2k> can be represented in the form of a block-sparse matrix. The matrix can
be written as follows:

H̃<2k> =



#S>k,−βk
· · · #S>k,0 · · · #S>k,βk

#S≤k,−βk
B(−βk,βk)

... . . .

#S≤k,0 B(0,0)

... . . .

#S≤k,βk
B(βk,−βk)


, (3.94)

where S≤k,jk and S>k,jk are defined in (3.69) and B(jk,−jk) are nonzero blocks, for jk ∈ {−βk, · · · , βk}.
Since H is symmetric, the following relation holds:

H̃<2k>(µ1, ν1, · · · , µk, νk;µk+1, νk+1, · · · , µd, νd) = H̃<2k>(ν1, µ1, · · · , νk, µk; νk+1, µk+1, · · · , νd, µd).
(3.95)

From this equality, we can deduce the following relation for the block matrices B(jk,−jk)

entry-wise:

B(−jk,jk)(µ1, ν1, · · · , µk, νk;µk+1, νk+1, · · · , µd, νd) = B(jk,−jk)(ν1, µ1, · · · , νk, µk; νk+1, µk+1, · · · , νd, µd).
(3.96)

It can be verified that the matrices B(−jk,jk) and B(jk,−jk) can be expressed in terms of
the nonzero blocks of the TT-cores as follows:

B(jk,−jk)(µ1, ν1, · · · , µk, νk; µk+1, νk+1, · · · , µd, νd) = H(0,t1)
1 [µ1, ν1]H(t1,t2+t1)

2 [µ2, ν2] · · ·

H(jk,jk+tk)
k [µk, νk] · · · H

(
jk+
∑d−1

l=k+1 tl,0
)

d [µd, νd],
(3.97)

where tk = qn(µk) − qn(νk) and
d∑
l=1

tl = 0. And

B(−jk,jk)(ν1, µ1, · · · , νk, µk; νk+1, µk+1, · · · , νd, µd) = H(0,−t1)
1 [ν1, µ1]H(−t1,−t2−t1)

2 [ν2, µ2] · · ·

H(−jk,−jk−tk)
k [νk, µk] · · · H

(
−jk−

∑d−1
l=k+1 tk,0

)
d [νd, µd].

(3.98)
The nonzero blocks in the TT-cores are the result of applying SVD to equal matrices
due to the property of symmetry. By the properties of SVD, it is possible to find an
orthogonal matrix Q such that

H(jk,jk+tk)
k [µk, νk] = H(−jk,−jk−tk)

k [νk, µk]Q. (3.99)

Given a p-body particle-number preserving Hamiltonian operator, it is noteworthy
that Theorem 4 yields an intriguing result. The block sparsity in the TT-cores allows
one to reduce the memory usage when manipulating tensor cores. If we suppose that
all the blocks in the TT-cores are of equal sizes, the required memory can be reduced
from R2 to R2

(np+1) with R = max1≤k≤d {Rk}. Moreover, by combining this block-sparse
TTO representation of H with the block-sparse structure in the TT representation of the
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eigenfunction , as described in [2] and in the Corollary 3.3.1, basic operations on tensor
trains are less expensive as they are performed over independent smaller blocks instead
of the whole tensor which makes it possible to use parallelization techniques. Overall,
using physical symmetry as the particle number conservation permits the tensor trains to
be in a block form which allows one to reduce the computational costs while explicitly
preserving some of desired properties of the Hamiltonian operator.
Remark 3.3.4. In quantum chemistry, for the 2-body quantum chemical Hamiltonian
operator H ∈ R4d×4d with p = 2, as defined in (1.138), not only is the particle number
conserved, but also the z-component of the total spin. It follows that if the Hamiltonian
operator, expressed in the spatial-orbital basis, commutes with both N and Sz:HN = NH

HSz = SzH.
(3.100)

then the blocks in the TT-cores of the TTO representation of H are themselves block-
sparse. Specifically, if H satisfies (PN), (SZ), and (pB), ensuring the following conditions
on the entries:

H(µ1, . . . , µd; ν1, . . . , νd) ̸= 0 if


∑d
k=1 q4(µk) = ∑d

k=1 q4(νk),∑d
k=1 qz(µk) = ∑d

k=1 qz(νk),∑d
k=1 |q4(µk) − q4(νk)| ≤ 2p,

(3.101)

where qz : {1, 2, 3, 4} 7→
{
0, 1

2 ,
−1
2 , 0

}
and q4 : {1, 2, 3, 4} 7→ {0, 1, 1, 2}, the TT-cores of the

TTO representation of H denoted by H(jk−1,jk)[µk, νk] ∈ Rρk−1,jk−1×ρk,jk with jk ∈ {−βk, . . . , βk},
µk, νk ∈ {1, 2, 3, 4}, have themselves a block representation with nonzero blocks on the
sets ρH

k−1,jk−1,sk−1
× ρH

k,jk,sk
where s0 = sd = 1 and for k ∈ {2, . . . , d− 1}, we have

sk ∈
{

− min
{
p

2 , k, d− k
}
,− min

{
p

2 , k, d− k
}

+ 1
2 , . . . , 0, . . . ,min

{
p

2 , k, d− k
}}

,

and
∑
sk

ρH
k,jk,sk

= ρH
k,jk

.To establish this block structure, we employ a procedure analogous

to the proof outlined in Lemma 3.3.2. We start by introducing the following functions:

Q̃≤k : {1, 2, 3, 4}k → N0 Q̃>k : {1, 2, 3, 4}d−k → N0

µ≤k →
k∑
l=1

qz(µl), µ>k →
d∑

l=k+1
qz(µl),

(3.102)

where qz is defined in (SZ). By enforcing the particle number conservation as well as Sz
symmetry, for a fixed value of k, H̃<2k> has the following expression:

H̃<2k> =
d∑

µ1,··· ,µd
ν1,··· ,νd=1

H(µ≤k, ν≤k;µ>k, ν>k)g(µ≤k, ν≤k, µ>k, ν>k), (3.103)

where

g(µ≤k, ν≤k, µ>k, ν>k) =
∑

s1,··· ,sk∈{0,−1
2 , 1

2 ,0}

2∑
t1,··· ,tk=−2

[
δ

Q≤k(µ≤k)−
∑k

l=1 tl
Q≤k(ν≤k) δ

Q̃≤k(µ≤k)−
∑k

l=1 sl

Q̃≤k(ν≤k) eµ≤k
⊗K eν≤k

]
[
δ

Q>k(µ>k)
Q>k(ν>k)−

∑k

l=1 tl
δ

Q̃>k(µ>k)
Q̃>k(ν>k)−

∑k

l=1 sl

eµ>k
⊗K eν>k

]∗
,

where tk = q4(µk)−q4(νk) and sk = qz(µk)−qz(νk). The newly derived expression for the mode-
(1 : 2k) matricization of the Hamiltonian operator, as presented in Equation (3.103), reveals
that for each value of k, the corresponding mode-(1 : 2k) matricization is a block-sparse matrix.
Based on the preceding analysis, we can proceed in a manner analogous to that used in the
proof of Lemma (3.3.2) in order to arrive at the desired conclusion.

Up to this point, our considerations have focused on symmetries as the conservation of the
particle number and z-component of total spin, associated with the Abelian unitary group U(1).
However, when dealing with other symmetries, such as the conservation of total spin linked to
the non-Abelian group SU(2). The analysis becomes more intricate. The reasoning employed
earlier to derive the block-structure in the TT-cores does not directly apply. We delve into
this complexity in the following section, where our aim is to derive the structure of the TT
representation of the wavefunction acting as an eigenfunction of the total spin operator.
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3.3.2 A comprehensive study of the TT representation of the
wavefunction as the eigenfunction of the total spin opera-
tor: preliminary theoretical insights

In Section 3.3.1, we reviewed the TT representation of the wavefunction, which serves
as an eigenfunction of the particle number operator (i.e invariant under U(1) symme-
try), resulting in a block-sparse structure for the TT-cores. In this section, we consider
a wavefunction that acts as an eigenfunction of the total spin operator represented by
Ŝ2, see Equation (3.3). Here, we aim to formulate the TT-cores expression within the
TT-representation of the eigenfunction invariant under these symmetries. This TT rep-
resentation stands apart from the one obtained earlier in Section 3.3.1. Here, we will
consider the wavefunction as an eigenfunction of three operators: the particle number
operator represented by N, the z-component of the total spin operator represented by Sz,
and the total spin operator represented by Ŝ2, defined in (1.115), (3.1), and (3.3) respec-
tively. First, we justify the choice of transitioning from the canonical basis, as introduced
in (1.120), to a more suitable symmetry-adapted basis as will be introduced in Defini-
tion 30, in which the wavefunction can be expanded effectively. Using this basis, we give
the new decomposition of the Fock spaces. Subsequently, we present the expression for
reshaping the wavefunction, for a singlet state, in the context of a bipartite system which
yields to a block-diagonal matrix. Moving forward, we use the properties of SVD and
revisit the TT-decomposition of the wavefunction in the canonical basis. By doing so, we
derive the formulation for the TT-cores within the TT-decomposition of the wavefunction
in the symmetry-adapted basis as will be outlined in Theorem 5.

Remark 3.3.5. We consider the spatial-orbital basis, where each orbital has four possible
occupation states: absent (0), occupied with spin up (↑), occupied with spin down (↓),
and present with both spin up and down (2). Moving forward, we represent the number of
spatial-orbitals as d. Previously, within the spatial-orbital basis, we labeled tensor indices
as shown in (PN) for instance, with µk ∈ {1, 2, 3, 4}, k ∈ [d]. Each value of µk corresponds
to one of the possible orbital occupation states. For clarity and ease of explanation going
forward, we will directly describe the values of µk by their corresponding occupation
states, i.e:

µk ∈ {1, 2, 3, 4} := {0, ↑, ↓, 2} . (3.104)

Fock space and SU(2) symmetry

We begin by recalling the definitions of the discrete Fock space associated with d spatial-
orbitals, denoted as Fd. Similarly, we consider the discrete Fock space for the initial k
spatial-orbitals denoted as Fk , as well as the discrete Fock space for the remaining d− k
orbitals, referred to as Fd−k.

Definition 28. Let Fd, as already defined in (1.97), be the fermionic Fock space defined
by:

Fd := Span
{
Φµ1...µd

∣∣∣µk ∈ {0, ↑, ↓, 2}, k ∈ [d]
}
, (3.105)

with dimension dim(Fd) = 4d and Φµ1...µd
being the Slater determinants as introduced in

(1.71) and in Definition 21.

Definition 29. Let Fk be the fermionic Fock space of the k first orbitals defined by:

Fk := Span
{
Φµ1...µk

∣∣∣µi ∈ {0, ↑, ↓, 2}, i ∈ [k]
}
, (3.106)

with dimension dim(Fk) = 4k, and Fd−k be the fermionic Fock space of the remaining
d− k orbitals defined by:

Fd−k := Span
{
Φµk+1...µd

∣∣∣µi ∈ {0, ↑, ↓, 2}, i ∈ {k + 1, . . . , d}
}
, (3.107)

with dimension dim(Fd−k) = 4d−k.

By showing that Fd is isomorphic to R4d , see Remark 1.3.9, each wavefunction repre-
sented by Ψ ∈ R4d , writes as:

Ψ =
∑

µ1,··· ,µd∈{0,↑,↓,2}
Ψµ1···µd

eµ1...µd
,∈ R4d

, (3.108)
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with eµ1...µd
= eµ1 ⊗K . . . ⊗K eµd

. Suppose that Ψ satisfies the following eigenvalue
relations, see [2, 111, 133]:

NΨ = NΨ, Ŝ2Ψ = J(J + 1)Ψ, SzΨ = MΨ. (3.109)

The eigenvalues depending on N ,M and J are the so-called quantum numbers. N ac-
counts for the number of particles, J is the total spin with J ∈

{
0, 1

2 , 1,
3
2 , · · · , d2

}
and

M ∈ {−J, . . . , J} is the angular momentum projection onto the z-axis. The vector eµk

for k ∈ [d] is an eigenvector of the particle number operator, the z-component of the total
spin operator and the total spin operator, such that

N≤1eµk
=


0 if µk = 0,

1 if µk =↑ or µk =↓,

2 if µk = 2,

(Sz)≤1eµk
=


0 if µk = 0,
1
2 if µk =↑,
−1
2 if µk =↓,

0 if µk = 2,

, (3.110)

and

(Ŝ2)≤1eµk
=


0 if µk = 0, (J = 0),
3
4 if µk =↑ or µk =↓, (J = 1

2),
0 if µk = 2, (J = 0),

(3.111)

with N≤1, (Sz)≤1, (Ŝ2)≤1 are defined in Equations (1.115), (3.1), and (3.3) by taking d = 1.
We already observe that J depends only on singly occupied orbitals. Additionally, we
observe that a single vector, eµk

, serves as an eigenvector for all three operators, however,
this does not hold for certain elements within the chosen canonical basis of the Fock
space Fd = Span

{
eµ1...µd

∣∣∣µk ∈ {0, ↑, ↓, 2}, k ∈ [d]
}
, as illustrated in the Example 3.3.2.

It is more convenient to write the wavefunction in the common basis of the eigenvectors
of N, Ŝ2 and Sz. We illustrate this explicitly in the following example.

Example 3.3.2. Suppose d = 2, Ψ writes as, in terms of the canonical basis {eµ1µ2}µ1,µ2∈{0,↑,↓,2},
as follows:

Ψ = Ψ00e00 + Ψ↑0e↑0 + Ψ↓0e↓0 + Ψ0↑e0↑ + Ψ0↓e0↓ + Ψ↑↑e↑↑ + Ψ↓↓e↓↓

+ Ψ↑↓e↑↓ + Ψ↓↑e↓↑ + Ψ20e20 + Ψ02e02 + . . . ,
(3.112)

with ∑µ1,µ2∈{0,↑,↓,2} |Ψµ1µ2|2 = 1. If Ψ is an eigenvector of both Sz and N with respective
eigenvalues M and N , certain conditions are imposed on the entries of Ψ as follows:

Ψµ1···µd
̸= 0 if

d∑
i=1

q4(µi) = N and
d∑
i=1

qz(µi) = M, (3.113)

where q4 : {0, ↑, ↓, 2} 7→ {0, 1, 1, 2} and qz : {0, ↑, ↓, 2} 7→
{
0, 1

2 ,
−1
2 , 0

}
. Back to (3.112),

by supposing that N = 2 and M = 0, we observe a reduction in the number of terms in
Equation (3.114). Here, we denote ΨN,M as the target wavefunction with a total particle
number of N = 2 and spin of M = 0, such that

ΨN,M := Ψ2,0 = Ψ↑↓e↑↓ + Ψ↓↑e↓↑ + Ψ02e02 + Ψ20e20. (3.114)

We can see that ΨN,M ∈ Span {e↑↓, e↓↑, e02, e20}. Now, a simple calculation shows that
e↑↓ and e↓↑ are not eigenvectors of Ŝ2.

Ŝ2e↓↑ = (1
2(S+S− + S−S+) + SzSz)e↓↑

= (1
2(S+S− + S−S+)(e↓↑) + SzSz(e↓↑)︸ ︷︷ ︸

=0

= α−
1
2 ,

1
2
α+

1
2 ,

−1
2

(e↓↑ + e↑↓),
(3.115)

with α−
1
2 ,

1
2
α+

1
2 ,

−1
2

being the coefficients obtained by applying S+ and S− operators, defined
in (3.5). The new basis would naturally be the span of the eigenvectors of Ŝ2,Sz and N
referred to as the symmetry-adapted basis.

In what follows, we establish a well-defined expression for the total particle number
N : let Np be the number of orbitals that are doubly occupied, i.e occupied with both
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spin up and spin down, and let Ns be the number of orbitals that are singly occupied,
i.e., occupied by a spin up or a spin down, such that N can be expressed as:

N = 2Np +Ns. (3.116)

For instance, the first term in the example (3.114), Np = 0 and Ns = 2 which corresponds
to having 2 singly occupied orbitals: a spin up in the first orbital and spin down in
the second orbital. Now, we have all the ingredients to write down ΨN,M in terms of
the symmetry-adapted basis that we denote by ξ

Np,Ns,t
d,N,J,M , where t is the degeneracy of the

corresponding subspace. Let ΨN,M be the wavefunction with N being the particle number
and M being the z-component of the total spin, such that

Ψ2,0 = Ψ1,0,1
2,2,0,0ξ

1,0,1
2,2,0,0 + Ψ1,0,2

2,2,0,0ξ
1,0,2
2,2,0,0 + Ψ0,2,3

2,2,0,0ξ
0,2,3
2,2,0,0 + Ψ0,2,1

2,2,1,0ξ
0,2,1
2,2,1,0, (3.117)

where we can readily identify that

ξ1,0,1
2,2,0,0 = e02, ξ1,0,2

2,2,0,0 = e20, (3.118)

ξ0,2,3
2,2,0,0 = e↑↓ − e↓↑√

2
, (3.119)

ξ0,2,1
2,2,1,0 = e↑↓ + e↓↑√

2
, (3.120)

Ψ0,2,3
2,2,0,0 = Ψ↑↓ − Ψ↓↑√

2
,Ψ0,2,1

2,2,1,0 = Ψ↑↓ + Ψ↓↑√
2

, (3.121)

Ψ1,0,1
2,2,0,0 = Ψ02,Ψ1,0,2

2,2,0,0 = Ψ20. (3.122)

The symmetry-adapted basis is assigned labels based on the quantum numbers N, J,M ,
and the value Np and Ns such that N = 2Np+Ns. We note that the use of the symmetry-
adapted basis provides a clearer physical insight which allows to target specific states with
targeted quantum numbers. Additionally, it is noted that in this example t ∈ {1, . . . , 3}
refers to the degeneracy of J . Now, suppose that the total spin is J = 0, then Ψ0,2,1

2,2,1,0 = 0.
Let ΨN,J,M be the wavefunction with N particle number, M z-component of the total
spin , and J the total spin , such that

ΨN,J,M := Ψ2,0,0 = Ψ1,0,1
2,2,0,0ξ

1,0,1
2,2,0,0 + Ψ1,0,2

2,2,0,0ξ
1,0,2
2,2,0,0 + Ψ0,2,3

2,2,0,0ξ
0,2,3
2,2,0,0. (3.123)

Back to Equation (3.110), we see that the total spin J only depends on the number
of singly occupied orbitals. We derive in what follows the theoretical bounds on the total
spin J , in terms of only Ns. By employing a recurrence approach, we can establish the
boundaries for J , as outlined in the following proposition.

Proposition 3.3.5. Let Ns be the number of singly occupied orbitals, then the following
holds true:

mod(Ns, 2)
2 ≤ J ≤ Ns

2 , (3.124)

with J referring to the total spin of the wavefunction.

Proof. We recall that if we have two singly occupied spatial-orbitals, associated with J1
and J2, respectively, when combined together, the resulting total spin represented as J
satisfies the following condition, see [128]:

|J1 − J2| ≤ J ≤ |J1 + J2| . (3.125)

Suppose that the number of singly occupied orbitals is denoted by Ns. Proceeding with
the recurrence, as we transition from one orbital to another, Ns increases by one. We
initiate the proof by confirming its validity for Ns = 2. Let us combine the two singly
occupied orbitals, with J≤1 := J1 = 1

2 and J2 = 1
2 being their respective total spins. Let

J≤2 be the resulting total spin. According to (3.125), one obtains:

0 ≤ J≤2 ≤ 1. (3.126)

Now, assuming that for all Ns ∈ [d], we have the following bounds:
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mod(Ns, 2)
2 ≤ J≤Ns ≤ Ns

2 . (3.127)

We aim to demonstrate that for Ns + 1, the following also holds true:

mod(Ns + 1, 2)
2 ≤ J≤Ns+1 ≤ Ns + 1

2 . (3.128)

By combining Ns singly occupied orbitals with an additional singly occupied orbital fea-
turing JNs+1 = 1

2 , we establish an upper bound:

J≤Ns+1 ≤ J≤Ns + JNs+1 = J≤Ns + 1
2 ≤ Ns + 1

2 . (3.129)

For the lower bound, if Ns is even:∣∣∣∣∣mod(Ns, 2)
2 − 1

2

∣∣∣∣∣ = 1
2 =

∣∣∣∣∣mod(Ns + 1, 2)
2

∣∣∣∣∣ . (3.130)

If Ns is odd: ∣∣∣∣∣mod(Ns, 2)
2 − 1

2

∣∣∣∣∣ = 0 =
∣∣∣∣∣mod(Ns + 1, 2)

2

∣∣∣∣∣ . (3.131)

Thus, we conclude:

mod(Ns + 1, 2)
2 ≤ J≤Ns+1 ≤ Ns + 1

2 . (3.132)

This concludes the proof.

In the following, we give the expression of the decomposition of the fermionic Fock
space Fd when employing the symmetry-adapted basis.

Proposition 3.3.6. The fermionic Fock space Fd has the following decomposition:

Fd =
2d⊕
N=0

d⊕
Ns,Np=0

2Np+Ns=N

J=Ns

2⊕
J=

mod (Ns,2)
2

J⊕
M=−J

FNp,Ns

d,N,J,M . (3.133)

For all values of N,Np and Ns such that N = 2Np + Ns, for all J,M , there are vector
spaces P

Np,Ns

d,N,J and Sd,J,M such that

FNp,Ns

d,N,J,M = P
Np,Ns

d,N,J ⊗ Sd,J,M , (3.134)

where Sd,J,M is a one-dimensional space. Moreover P
Np,Ns

d,N,J has dimension:

dim(PNp,Ns

d,N,J ) =
(
d

Np

)(
d−Np

Ns

)
τNs,J , (3.135)

with
τNs,J =

(
Ns

Ns

2 − J

)
−
(

Ns
Ns

2 − J − 1

)
, (3.136)

and ⊕J
M=−J Sd,J,M is a (2J + 1)-dimensional space.

Proof. The decomposition in Equation (3.133) arises from the fact that the Fock space
is spanned by the eigenvectors of the operators N, Sz, and Ŝ2, all of which share a com-
mon basis. As a result, Fd can be expressed as the direct sum of distinct eigenspaces
associated with these operators. Equation (3.134) is derived from a well-established
result involving the action of SU(2) symmetry on the finite-dimensional vector sub-
spaces FNp,Ns

d,N,J,M spanned by the orthonormal symmetry-adapted basis sets denoted as{
ξ
Np,Ns,t
d,N,J,M

}
t∈[dim(PNp,Ns

d,N,J
)]

[104, 112]. This action allows to decompose the Fock space into

the direct sum of vector spaces denoted by P
Np,Ns

d,N,J spanned by the orthonormal basis,
denoted as

{
ϱ
Np,Ns,t
d,N,J

}
t∈[dim(PNp,Ns

d,N,J
)]
, with t referring to the degeneracy of the total spin
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J , along with a (2J + 1)-dimensional vector space spanned by the orthonormal basis,
denoted as {sd,J,M}M∈{−J,...,J}. The dimension of P

Np,Ns

d,N,J can be determined through fur-
ther manipulations, which we will discuss with an illustration for a more comprehensive
explanation.

The dimension dim(PNp,Ns

d,N,J ) refers to the degeneracy associated with the total spin
J which also means the number of times ⊕J

M=−J Sd,J,M appears in the decomposition,
and τNs,J can be interpreted as the number of potential paths required, while keeping
Ns fixed, to reach the value of J . J can be reached by progressively coupling total spins
starting from the first orbital and proceeding to the last one. To explain this process,
we start by combining the first two orbitals, characterized by different total spins J1
and J2. This results in a new state with total spin J≤2, which satisfies the condition
|J1 − J2| ≤ J≤2 ≤ |J1 + J2|. We then proceed by coupling this newly obtained state with
the next orbital associated with a total spin J3, yielding a further new state with J≤3

satisfying
∣∣∣J≤2 − J3

∣∣∣ ≤ J≤3 ≤
∣∣∣J≤2 + J3

∣∣∣. This process continues until we reach a state
with the target total spin value of J , which satisfies the condition

∣∣∣J≤d−2 − Jd−1

∣∣∣ ≤ J ≤∣∣∣J≤d−2 + Jd−1

∣∣∣. To summarize, according to (3.110), each orbital offers two options for
the total spin: J = 0 when the orbital is either doubly occupied or empty, and J = 1

2
when the orbital is singly occupied. Notably, the value of J relies on the presence of
singly occupied orbitals. Therefore, our focus narrows to the singly occupied orbitals,
wherein each coupling step introduces a choice: either increasing or decreasing the value
of J . Therefore, we can interpret this by having upward or downward paths. Figure 3.4
illustrates this concept for d = 4, assuming all orbitals are singly occupied, i.e Ns =
4, resulting in a structured pattern resembling a half binary tree. The goal here is to
determine τNs,J which is the total number of paths required to attain the desired total
spin value J .

·
k = 0

J0 = 0
·

J≤1 = 1
2

·

J≤2 = 0

k = 1

c

·

J≤2 = 1

·

J≤3 = 1
2

k = 2

·

J≤4 = 0

k = 4

·

J≤4 = 1·

J≤3 = 3
2

·

·

J≤4 = 2

(a)

·
k = 0

J0 = 0
·

J≤1 = 1
2

·

J≤2 = 0

k = 1

·

·

J≤2 = 1

·

J≤3 = 1
2

k = 2

·

J≤4 = 0

k = 4

·

J≤4 = 1
g

J≤3 = 3
2

·

·

J≤4 = 2

(b)

Figure 3.4: The total number of schemes needed to reach J = J≤4 = 0 is 2, with a fixed
Ns = 4, corresponding to the configurations highlighted in blue and red.

Now, to establish a general formulation for the number of paths required to reach the
total spin J , we start by considering a binary tree structure. In this binary tree, each level
consists of nodes, with each node on a given level having at most two children, labeled as
J≤k, where k ∈ [Ns]. For simplicity, we assign an identifier to each node on every level,
ranging from 0 to the number of nodes within that level, as depicted in Figure 3.5.
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·
ℓ = 0

·
·

·
· i = 4

· i = 3
·

·

· i = 2·
·

ℓ = 1

·
·

c
·

ℓ = 2

·
·

·
·

ℓ = 3

· i = 1

·
ℓ = 4

i = 0

Figure 3.5: Binary tree structure: levels are denoted by ℓ and target node is denoted by
i.

To reach a node i within level ℓ, one typically requires
(
ℓ
i

)
paths. For instance, in

Figure 3.5, to reach node i = 0 at level ℓ = 4, there is only, one possible scheme (
(

4
0

)
=

1). However, since we consider a half binary tree structure, we need to account for the
exclusion of certain paths, referred to as "bad paths". These "bad paths" are the ones
that involve dashed arrows (as illustrated in Figure 3.5). To address this, we introduce
the following mapping:

ϕℓi : P̄ℓ
i 7→ Pℓ

i−1, (3.137)
where

Pℓ
i−1 = {Set of all paths leading to node i− 1 within level ℓ} , #Pℓ

i−1 =
(

ℓ

i− 1

)
,

(3.138)
and

P̄ℓ
i = {Set of all bad paths leading to node i within level ℓ} . (3.139)

Each element within the set P̄ℓ
i can be represented as a sequence (m1,m2, . . . ,mℓ), where

mk = ±1 for k ∈ [ℓ]. We can define ϕℓi as follows:

ϕℓi(m1,m2, . . . ,ms, . . . ,mℓ) = (−m1,−m2, . . . ,−ms,ms+1, . . . ,mℓ), (3.140)

where s is defined as ∑ℓ
k=smk = (ℓ − 2i + 1). On can verify that ϕℓi is a bijective

function by showing that is both injective and surjective. Therefore, we establish that
#Pℓ

i−1 = #P̄ℓ
i =

(
ℓ
i−1

)
. Consequently, the number of desired paths, can be calculated as(

ℓ
i

)
−
(

ℓ
i−1

)
, in our case ℓ = Ns and i = Ns

2 − J . Therefore, we conclude that, the number
of good paths is

(
Ns

Ns
2 −J

)
−
(

Ns
Ns
2 −J−1

)
. In Figures 3.6 and 3.7, we illustrate the concept of

"bad paths" and how the mapping ϕℓi transforms these bad paths in Figure 3.8.

·
ℓ = 0

·
·

·
· i = 4

· i = 3
·

·

· i = 2·
·

ℓ = 1

·
·

c
·

ℓ = 2

·
·

·
·

ℓ = 3

· i = 1

·
ℓ = 4

i = 0

(a)

·
ℓ = 0

·
·

·
· i = 4

· i = 3
·

·

· i = 2·
·

ℓ = 1

·
·

c
·

ℓ = 2

·
·

·
·

ℓ = 3

· i = 1

·
ℓ = 4

i = 0

(b)

Figure 3.6: Bad paths (blue schemes) to reach node 2, i.e i = 2, at level ℓ = 4.
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· i = 4

· i = 3
·

·

· i = 2·
·

ℓ = 1

·
·

c
·

ℓ = 2

·
·

·
·

ℓ = 3

· i = 1

·
ℓ = 4

i = 0

(a)

·
ℓ = 0

·
·

·
· i = 4

· i = 3
·

·

· i = 2·
·

ℓ = 1

·
·

c
·

ℓ = 2

·
·

·
·

ℓ = 3

· i = 1

·
ℓ = 4

i = 0

(b)

Figure 3.7: Bad paths (blue schemes) to reach node 2, i.e i = 2, at level ℓ = 4.

We give the following illustration to show how the mapping function is applied

·→
·

·

(−1, 1, 1, 1)

·
·

·
·

·

(1,−1,−1, 1)

·
· → ϕ4

2

Figure 3.8: ϕ4
2(1,−1,−1, 1) = (−1, 1, 1, 1) and s = 3.

Moving forward, we introduce the following definition

Definition 30 (Symmetry-adapted basis). Let
{
ϱ
Np,Ns,t
d,N,J

}
t∈[dim(PNp,Ns

d,N,J
)]

be a basis of P
Np,Ns

d,N,J

and {sd,J,M}M∈{−J,...,J} be a basis of Sd,J,M . We say that ξ
Np,Ns,t
d,N,J,M = ϱ

Np,Ns,t
d,N,J ⊗K sd,J,M is

a symmetry-adapted basis of Fd. According to Proposition 3.3.6, vector spaces FNp,Ns

d,N,J,M

can be defined as:

FNp,Ns

d,N,J,M := Span
{
ξ
Np,Ns,t
d,N,J,M

∣∣∣t ∈
[
dim(PNp,Ns

d,N,J )
]}

= Span
{
ϱ
Np,Ns,t
d,N,J ⊗K sd,J,M

∣∣∣t ∈
[
dim(PNp,Ns

d,N,J )
]}
.

(3.141)

Remark 3.3.6. We observe that eµk
serves as an eigenvector for the operators Ŝ2, N,

and Sz, as outlined in (3.110), with corresponding eigenvalues J(µk), N(µk), and M(µk).
The latter can be defined as follows:

N(µk) =


0 if µk = 0,
1 if µk =↑ or µk =↓,
2 if µk = 2,

(3.142)

and

J(µk) =
0 if µk = 0 or µk = 2,

1
2 if µk =↑ or µk =↓,

M(µk) =


0 if µk = 0 or µk = 2,
1
2 if µk =↑,
−1
2 if µk =↓ .

(3.143)

Thus, we can define eµk
in terms of the symmetry-adapted basis as follows:

eµk
:= ξ

Np(µk),Ns(µk),1
N(µk),J(µk),M(µk) ≡ ϱ

Np(µk),Ns(µk),1
N(µk),J(µk) ⊗K sJ(µk),M(µk). (3.144)

99



To present a comprehensive representation of Ψ within the Fock space, considering its
decomposition as indicated in (3.133), we introduce the following Corollary.

Corollary 3.3.7. Let Ψ ∈ Fd, such that, according to Proposition 3.133

NΨ = NΨ, Ŝ2Ψ = J(J + 1)Ψ, and SzΨ = MΨ.

Ψ =
2d∑
N=0

d∑
Np,Ns=0

N=2Np+Ns

Ns
2∑

J= mod(Ns,2)
2

J∑
M=−J

dim(PNp,Ns
d,N,J

)∑
t=1

ΨNp,Ns,t
d,N,J,Mξ

Np,Ns,t
d,N,J,M

=
2d∑
N=0

d∑
Np,Ns=0

N=2Np+Ns

Ns
2∑

J= mod(Ns,2)
2

J∑
M=−J

dim(PNp,Ns
d,N,J

)∑
t=1

ΨNp,Ns,t
d,N,J,Mϱ

Np,Ns,t
d,N,J ⊗K sd,J,M ,

(3.145)

with ΨNp,Ns,t
d,N,J,M ∈ R.

Now, in order to express the TT-cores in the TT representation of Ψ, we first require
the decomposition of the Fock space Fd for a bipartite system with a fixed value of k ∈ [d].
As it turns out, for the total spin, a tensorization of a symmetry-adapted basis of Fk and
Fd−k does not necessarily yield an eigenvector of Fd that satisfy Equation (3.109). One
needs to linearly combine the tensorization of the symmetry-adapted basis to retrieve
a symmetry-adapted basis of the full Fock space Fd. This requires the introduction of
coupling coefficients, as detailed in the following proposition.

Proposition 3.3.8. Let ϱ
(Np,Ns,t)≤k

k,(N,J)≤k ⊗K sk,(J,M)≤k (resp. ϱ
(Np,Ns,t)>k

d−k,(N,J)>k ⊗K sd−k,(J,M)>k) be
an orthonormal symmetry-adapted basis of Fk (resp. Fd−k).

Then

ϱ
Np,Ns,t
d,N,J ⊗K sd,J,M ≡

∑
M≤k,M>k

N≤k,N>k,N≤k
p ,N>k

p ,N≤k
s ,N>k

s

J≤k,J>k,t≤k,t>k

χ
N,Np,Ns,J,t

(N,Np,Ns,J,t)≤k,(N,Np,Ns,J,t)>kC
JM
J≤kJ>kM≤kM>k

ϱ
(Np,Ns,t)≤k

k,(N,J)≤k ⊗K ϱ
(Np,Ns,t)>k

d−k,(N,J)>k ⊗K sk,(J,M)≤k ⊗K sd−k,(J,M)>k ,

(3.146)
is a symmetry-adapted basis of Fd, where (N, J)≤k, (Np, Ns, t)≤k, and (J,M)≤k refer to
labels N≤k, N≤k

p , N≤k
s , t≤k resp. J≤k,M≤k.

CJM
J≤kJ>kM≤kM>k are the so-called Clebsch-Gordan coefficients [53, 117] which are nonzero

if: ∣∣∣J≤k − J>k
∣∣∣ ≤ J ≤ J≤k + J>k,

M≤k +M>k = M,
(3.147)

and χN,Np,Ns,J,t

(N,Np,Ns,J,t)≤k,(N,Np,Ns,J,t)>k are chosen to be nonzero if:

N≤k
p +N>k

p = Np, N
≤k
s +N>k

s = Ns, N
≤k +N>k = 2Np +Ns = N. (3.148)

Proof. According to Proposition 3.3.6, Fk and Fd−k decompose as follows:

Fk =
⊕

N≤k,N≤k
s ,N≤k

p

2N≤k
p +N≤k

s =N≤k

J≤k

P
(Np,Ns)≤k

k,(N,J)≤k ⊗

⊕
M≤k

Sk,(J,M)≤k

 , (3.149)

where (N, J)≤k, (Np, Ns)≤k, and (J,M)≤k refer to labels N≤k, N≤k
p , N≤k

s resp. J≤k,M≤k

and

Fd−k =
⊕

N>k,N>k
s ,N>k

p

2N>k
p +N>k

s =N>k

J>k

P
(Np,Ns)>k

d−k,(N,J)>k ⊗

⊕
M>k

Sd−k,(J,M)>k

 . (3.150)
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Now, let ϱ
Np,Ns,t
d,N,J ⊗K sd,J,M be an orthonormal symmetry-adapted basis element of the full

Fock space Fd. By noting that

I =
∑

N≤k,N≤k
s ,N≤k

p ,J≤k,M≤k,t≤k

N>k,N>k
s ,N>k

p ,J>k,M>k,t>k

(ϱ(Np,Ns,t)≤k

k,(N,J)≤k ⊗K ϱ
(Np,Ns,t)>k

d−k,(N,J)>k ⊗K sk,(J,M)≤k ⊗K sd−k,(J,M)>k)

(ϱ(Np,Ns,t)≤k

k,(N,J)≤k ⊗K ϱ
(Np,Ns,t)>k

d−k,(N,J)>k ⊗K sk,(J,M)≤k ⊗K sd−k,(J,M)>k)∗.

(3.151)
The latter is the so-called completeness relation. It follows:

ϱ
Np,Ns,t
d,N,J ⊗K sd,J,M = I

(
ϱ
Np,Ns,t
d,N,J ⊗K sd,J,M

)
=

∑
N≤k,N≤k

s ,N≤k
p ,J≤k,M≤k,t≤k

N>k,N>k
s ,N>k

p ,J>k,M>k,t>k

(ϱ(Np,Ns,t)≤k

k,(N,J)≤k ⊗K ϱ
(Np,Ns,t)>k

d−k,(N,J)>k ⊗K sk,(J,M)≤k ⊗K sd−k,(J,M)>k)

(ϱ(Np,Ns,t)≤k

k,(N,J)≤k ⊗K ϱ
(Np,Ns,t)>k

d−k,(N,J)>k ⊗K sk,(J,M)≤k ⊗K sd−k,(J,M)>k)∗
(
ϱ
Np,Ns,t
d,N,J ⊗K sd,J,M

)
=

∑
N≤k,N≤k

s ,N≤k
p ,J≤k,M≤k,t≤k

N>k,N>k
s ,N>k

p ,J>k,M>k,t>k

(
χ
N,Np,Ns,J,t

(N,Np,Ns,J,t)≤k,(N,Np,Ns,J,t)>kC
JM
J≤kJ>kM≤kM>k

)
ϱ

(Np,Ns,t)≤k

k,(N,J)≤k ⊗K

ϱ
(Np,Ns,t)>k

d−k,(N,J)>k ⊗K sk,(J,M)≤k ⊗K sd−k,(J,M)>k ,

(3.152)
where χN,Np,Ns,J,t

(N,Np,Ns,J,t)≤k,(N,Np,Ns,J,t)>k and CJM
J≤kJ>kM≤kM>k are scalar values defined as:

χ
N,Np,Ns,J,t

(N,Np,Ns,J,t)≤k,(N,Np,Ns,J,t)>k = (ϱ(Np,Ns,t)≤k

k,(N,J)≤k ⊗K ϱ
(Np,Ns,t)>k

d−k,(N,J)>k)∗ϱ
Np,Ns,t
d,N,J , (3.153)

and
CJM
J≤kJ>kM≤kM>k = (sk,(J,M)≤k ⊗K sd−k,(J,M)>k)∗sd,J,M , (3.154)

Notably, (3.152) can be interpreted as the basis change between ϱ
Np,Ns,t
d,N,J ⊗K sd,J,M and

ϱ
(Np,Ns,t)≤k

k,(N,J)≤k ⊗K ϱ
(Np,Ns,t)>k

d−k,(N,J)>k ⊗K sk,(J,M)≤k ⊗K sd−k,(J,M)>k .
Using that for finite-dimensional spaces Vi, Ṽi, Ui, and Ũi, there exists a canonical

isomorphism between the following spaces:
(⊕

i

(Vi ⊗ Ṽi)
)

⊗

⊕
j

(Uj ⊗ Ũj)
 ∼=

⊕
ij

(
Vi ⊗ Ṽi ⊗ Uj ⊗ Ũj

) ∼=
⊕
ij

(
Vi ⊗ Uj ⊗ Ṽi ⊗ Ũj

)
,

(3.155)
we see that Fd is isomorphic to the decomposition:

⊕
N≤k,N≤k

p ,N≤k
s ,J≤k,M≤k

N>k,N>k
p ,N>k

s ,J>k,M>k

2N≤k
p +N≤k

s =N≤k

2N>k
p +N>k

s =N>k

(
P

(Np,Ns)≤k

k,(N,J)≤k ⊗ P
(Np,Ns)>k

k,(N,J)>k

)
⊗
(
Sk,(J,M)≤k ⊗ Sk,(J,M)>k

)
. (3.156)

Remark 3.3.7. One can verify from the definitions of dim(P(Np,Ns)≤k

k,(N,J)≤k ) and dim(P(Np,Ns)>k

d−k,(N,J)>k)
that, at fixed k, we have:

dim(PNp,Ns

d,N,J ) =
∑

N≤k,N≤k
s ,N≤k

p ,J≤k

N>k,N>k
s ,N>k

p ,J>k

|J≤k−J>k|≤J≤J≤k+J>k

2(N≤k
p +N>k

p )+N≤k
s +N>k

s =N

dim(P(Np,Ns)≤k

k,(N,J)≤k ) dim(P(Np,Ns)>k

d−k,(N,J)>k). (3.157)

To provide context for the concepts introduced, we give the following simplified ex-
ample.
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Example 3.3.3. Let d = 4, N = 4, Ns = 4, Np = 0, J = 0 and M = 0, in the canonical
basis, the wavefunction can be expanded as follows:

Ψ = Ψ↑↑↓↓e↑↑↓↓ + Ψ↓↓↑↑e↓↓↑↑ + Ψ↑↓↑↓e↑↓↑↓ + Ψ↓↑↓↑e↓↑↓↑ + Ψ↑↓↓↑e↑↓↓↑ + Ψ↓↑↑↓e↓↑↑↓.
(3.158)

By the normalization of Ψ, we have:

Ψ2
↑↑↓↓ + Ψ2

↓↓↑↑ + Ψ2
↑↓↑↓ + Ψ2

↓↑↓↑ + Ψ2
↑↓↓↑ + Ψ2

↓↑↑↓ = 1. (3.159)

The question that arises is how to choose the coefficients in order for Ψ to be an eigenvector
of N, Sz, and Ŝ2 with J = 0, M = 0 and N = 4. This involves finding the correct
linear combination within the canonical basis. To achieve this, one must work within
the symmetry-adapted basis first, as discussed previously. This results in the subsequent
expansion of Ψ. According to Corollary 3.3.7, when N = 4, Np = 0, Ns = 4, J = 0, and
M = 0 are fixed, we obtain:

Ψ =
dim(P0,4

4,4,0)∑
t=1

Ψ0,4,t
4,4,0,0ξ

0,4,t
4,4,0,0 =

2∑
t=1

Ψ0,4,t
4,4,0,0ξ

0,4,t
4,4,0,0,

= Ψ0,4,1
4,4,0,0ξ

0,4,1
4,4,0,0 + Ψ0,4,2

4,4,0,0ξ
0,4,2
4,4,0,0,

(3.160)

where dim(P0,4
4,4,0) = 2 according to (3.135). Now, for k = 2, according to Proposi-

tion 3.3.8, we have

Parameter Value
N≤2 2
N≤2
s 2

N≤2
p 0

N>2 2
N>2
s 2

N>2
p 0

J≤2 = J>2 {0, 1}
M≤2

{
−J≤2, . . . , J≤2

}
M>2 {−J>2, . . . , J>2}
t≤2, t>2 1

where J≤2 = J>2, given J = 0. It follows:

ξ0,4,1
4,4,0,0 ≡ C0,0

0,0,0,0︸ ︷︷ ︸
=1

ϱ0,2,1
2,2,0 ⊗K ϱ0,2,1

2,2,0 ⊗K s2,0,0 ⊗K s2,0,0,

ξ0,4,2
4,4,0,0 ≡ C0,0

1,1,−1,1︸ ︷︷ ︸
= 1√

3

ϱ0,2,2
2,2,1 ⊗K ϱ0,2,2

2,2,1 ⊗K s2,1,−1 ⊗K s2,1,1 + C0,0
1,1,1,−1︸ ︷︷ ︸
= 1√

3

ϱ0,2,2
2,2,1 ⊗K ϱ0,2,2

2,2,1 ⊗K s2,1,1 ⊗K s2,1,−1

+ C0,0
1,1,0,0︸ ︷︷ ︸

=− 1√
3

ϱ0,2,2
2,2,1 ⊗K ϱ0,2,2

2,2,1 ⊗K s2,1,0 ⊗K s2,1,0.

(3.161)
The Clebsch-Gordan coefficients can be obtained from [53]. By replacing (3.161) in
(3.160), one writes:

Ψ ≡ Ψ0,4,1
4,4,0,0(ϱ0,2,1

2,2,0 ⊗K ϱ0,2,1
2,2,0 ⊗K s2,0,0 ⊗K s2,0,0) + Ψ0,4,2

4,4,0,0(
1√
3

ϱ0,2,2
2,2,1 ⊗K ϱ0,2,2

2,2,1 ⊗K s2,1,−1 ⊗K s2,1,1

+ 1√
3

ϱ0,2,2
2,2,1 ⊗K ϱ0,2,2

2,2,1 ⊗K s2,1,1 ⊗K s2,1,−1 − 1√
3

ϱ0,2,2
2,2,1 ⊗K ϱ0,2,2

2,2,1 ⊗K s2,1,0 ⊗K s2,1,0).
(3.162)

According to Definition 30, we obtain:

Ψ ≡ Ψ0,4,1
4,4,0,0(ξ0,2,1

2,2,0,0 ⊗K ξ0,2,1
2,2,0,0) + Ψ0,4,2

4,4,0,0(
1√
3

ξ0,2,2
2,2,1,−1 ⊗K ξ0,2,2

2,2,1,1

+ 1√
3

ξ0,2,2
2,2,1,1 ⊗K ξ0,2,2

2,2,1,−1 − 1√
3

ξ0,2,2
2,2,1,0 ⊗K ξ0,2,2

2,2,1,0),
(3.163)
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we also have:

ξ0,2,1
2,2,0,0 = (e↑↓ − e↓↑)√

2
, ξ0,2,2

2,2,1,0 = (e↑↓ + e↓↑)√
2

, ξ0,2,2
2,2,1,1 = e↑↑, ξ0,2,2

2,2,1,−1 = e↓↓. (3.164)

Therefore, by using the expression of (3.164) in (3.162), one ends up with:

Ψ =
Ψ0,4,1

4,4,0,0

2 [e↑↓↑↓ − e↑↓↓↑ − e↓↑↑↓ + e↓↑↓↑]

+
Ψ0,4,2

4,4,0,0√
3

[e↑↑↓↓ + e↓↓↑↑ −1
2 (e↑↓↑↓ + e↑↓↓↑ + e↓↑↑↓ + e↓↑↓↑)

]
.

(3.165)

We deduce that the coefficients in the linear combination of (3.158) must be chosen such
that

Ψ↑↑↓↓ = Ψ↓↓↑↑ =
Ψ0,4,2

4,4,0,0√
3

,

Ψ↑↓↑↓ = Ψ↓↑↓↑ =
(

Ψ0,4,1
4,4,0,0

2 −
Ψ0,4,2

4,4,0,0

2
√

3

)
,

Ψ↑↓↓↑ = Ψ↓↑↑↓ = −
(

Ψ0,4,1
4,4,0,0

2 +
Ψ0,4,2

4,4,0,0

2
√

3

)
.

(3.166)

with (Ψ0,4,2
4,4,0,0)2 + (Ψ0,4,1

4,4,0,0)2 = 1.

TT representation of a singlet state

As defined in Equation (1.140), let (U1,U2, . . . ,Ud) be the TT representation of the d-order
tensor ψ ∈ R4×...×4, which represents the tensor folding of Ψ ∈ R4d , with Uk ∈ Rrk−1×4×k,
k ∈ [d]. We have for µk ∈ {0, ↑, ↓, 2}:

ψ(µ1;µ2; . . . ;µd) = U1[µ1]U2[µ2] · · · Ud[µd],

=
r1∑

α1=1

r2∑
α2=1

. . .
rd−1∑

αd−1=1
U1(1;µ1;α1)U2(α1;µ2;α2) · · · Ud(αd−1;µd; 1),

(3.167)
where Uk[µk] := Uk[:, µk, :] ∈ Rrk−1×rk and r0 = rd = 1. As outlined in Definition 20, we
recall that a TT-core Uk ∈ Rrk−1×4×rk is said to be left-orthogonal if∑

µk

Uk[µk]∗Uk[µk] = Irk
,

and right-orthogonal if ∑
µk

Uk[µk]Uk[µk]∗ = Irk−1 .

Moving forward, we assume that for all k ∈ [d], there is a TT representation (U1, . . . ,Ud)
such that all TT-cores (U1, . . . ,Uk−1) are left-orthogonal and (Uk+1, . . . ,Ud) are right-
orthogonal.

Remark 3.3.8. We introduce the following notation regarding a matrix block, which
will be encountered in subsequent discussions. Let V be a finite-dimensional vector space
that writes V = U1

⊕U2, where U1 and U2 are subspaces with fixed basis. Let A be the
matrix representation of the linear operator, denoted by Â : V → V , with respect to this
basis. The matrix has a block format, and each block corresponds to the restriction of A
to the subspace U i × U j, where i, j ∈ {1, 2} and is denoted by:

A
∣∣∣∣
U i×Uj

. (3.168)

Henceforth, for simplification, our focus shifts to the singlet state. The latter is char-
acterized by J = 0 and M = 0 with fixed particle number N , denoted by ΨN,0,0. Our
goal lies in deriving the underlying structure of the TT representation for a singlet state.
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Theorem 5. Let ΨN,0,0 ∈ Fd such that

NΨN,0,0 = NΨN,0,0, Ŝ2ΨN,0,0 = 0, and SzΨN,0,0 = 0. (3.169)

Let (U1,U2, . . . ,Ud) be the TT representation of ΨN,0,0. For all k ∈ [d− 1], there are
subspaces P̃k,(N,J)≤k and S̃k,(J,M)≤k such that

Rrk ∼=
⊕

N≤k,J≤k,M≤k

P̃k,(N,J)≤k ⊗ S̃k,(J,M)≤k , (3.170)

with N≤k ∈ [2k], J≤k ∈
{
0, 1

2 , 1, . . . ,
k
2

}
, and M≤k ∈

{
−J≤k, . . . , J≤k

}
. Additionally, we

have dim(S̃k,(J,M)≤k) = 1 and
∑

N≤k,J≤k

(2J≤k + 1) dim(P̃k,(N,J)≤k) = rk.

Moreover, if the TT-cores are such that (U1, . . . ,Uk−1) are left-orthogonal and (Uk+1, . . . ,Ud)
are right-orthogonal, see Definition 20, then there are orthogonal matrices Gk−1 ∈ Rrk−1×rk−1 ,
Gk ∈ Rrk×rk and matrices Ũk ∈ Rr̃k−1×3×r̃k , with r̃k =

∑
N≤k,J≤k

dim(P̃k,(N,J)≤k), such that

by denoting Ũk[N(µk)] := Ũk[:, N(µk), :], we have (see Figure 3.9):

(G∗
k−1Uk[µk]Gk)

∣∣∣(
P̃

k−1,(N,J)≤k−1 ⊗S̃
k−1,(J,M)≤k−1

)
×
(

P̃
k,(N,J)≤k ⊗S̃

k,(J,M)≤k

)
= (Ũk[N(µk)])

∣∣∣
P̃

k−1,(N,J)≤k−1 ×P̃
k,(N,J)≤k

(
J≤k−1 J(µk) J>k

M≤k−1 M(µk) M>k

)
,

(3.171)

where given that ΨN,0,0 is a singlet state, i.e it satisfies Equation (3.169), we have:

J≤k = J>k, M≤k−1 +M(µk) = M≤k = −M>k and N≤k−1 +N(µk) = N≤k = N −N>k.
(3.172)(

J≤k−1 J(µk) J>k

M≤k−1 M(µk) M>k

)
are the 3-j symbols [11] which can be given in terms of the

Clebsch–Gordan coefficients as follows:(
J≤k−1 J(µk) J>k

M≤k−1 M(µk) M>k

)
:= (−1)J≤k−1−J(µk)−M>k

√
2J>k + 1

CJ>k,−M>k

J≤k−1,J(µk),M≤k−1,M(µk). (3.173)

The diagrammatic representation of the TT-cores according to the Theorem 3.154 can
be given as:

αk−1 ∈ [rk−1]
µk
αk ∈ [rk]

G∗
k−1Uk[µk]Gk

=
α̃k−1 ∈ [r̃k−1]

N(µk)

α̃k ∈ [r̃k]

Ũk[N(µk)]

α̂k−1 α̂kM(µk)
Ck

Figure 3.9: Tensor diagram depicting the TT-cores of the TT representations of
eigenfunctions, satisfying eigenvalue relations (3.169), for each µk ∈ {0, ↑, ↓, 2}.

Here, α̂k−1 ∈

 ∑
J≤k−1

(2J≤k−1 + 1)
 and α̂k ∈

∑
J≤k

(2J≤k + 1)
. The matrix

Ck ∈ R

( ∑
J≤k−1

(2J≤k−1 + 1)
)

×
(∑
J≤k

(2J≤k + 1)
)

comprises 3-j symbols from (3.173). The
dashed line denotes the block-wise Kronecker product between the block matrices in
Ũk[N(µk)] and Ck, sharing the same indices J≤k and J≤k−1.

Now, to prove this theorem, we first look at the structure of the mode-(1 : k) matri-
cization of ψN,0,0, the tensor folding of ΨN,0,0, denoted as (ΨN,0,0)<k>.
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Proposition 3.3.9. Let ΨN,0,0 ∈ Fd such that

NΨN,0,0 = NΨ, Ŝ2ΨN,0,0 = 0, and SzΨN,0,0 = 0.

For all k ∈ [d− 1], there exist orthogonal matrices QL and QR and matrices
Θ(N,Np,Ns,J)>k

(N,Np,Ns,J)≤k of size dim(P(Np,Ns)≤k

k,(N,J)≤k ) × dim(P(Np,Ns)>k

d−k,(N,J)>k) such that

(
QL

(
(ΨN,0,0)<k>

)
QR

)∣∣∣∣(
P

(Np,Ns)≤k

k,(N,J)≤k
⊗S

k,(J,M)≤k

)
×
(

P
(Np,Ns)>k

d−k,(N,J)>k
⊗S

d−k,(J,M)>k

) = Θ(N,Np,Ns,J)>k

(N,Np,Ns,J)≤k .

(3.174)
The matrix Θ(N,Np,Ns,J)>k

(N,Np,Ns,J)≤k is nonzero only if 2(N>k
p + N≤k

p ) + N≤k
s + N>k

s = N and

J≤k = J>k, with mod(N≤k
s ,2)

2 ≤ J≤k ≤ N≤k
s

2 , mod(N>k
s ,2)

2 ≤ J>k ≤ N>k
s

2 .

Proof. According to Corollary (3.3.7) and Proposition 3.3.8, ΨN,0,0 can be expanded as
follows, for a fixed k ∈ [d]:

ΨN,0,0 ≡
∑

t,Np,Ns

ΨNp,Ns,t
N,0,0


∑

N≤k,N≤k
p ,N≤k

s ,J≤k

N>k,N>k
p ,N>k

s ,J>k

t≤k,t>k

χ
N,Np,Ns,0,t
(N,Np,Ns,J,t)≤k,(N,Np,Ns,J,t)>k

 ∑
M≤kM>k

C0,0
J≤kJ>kM≤kM>k(ϱ(Np,Ns,t)≤k

k,(N,J)≤k ⊗K ϱ
(Np,Ns,t)>k

d−k,(N,J)>k ⊗K sk,(J,M)≤k ⊗K sd−k,(J,M)>k)

 ,

(3.175)

ΨN,0,0 ≡


∑

N≤k,N≤k
p ,N≤k

s ,J≤k

N>k,N>k
p ,N>k

s ,J>k

t≤k,t>k

ΨNp,Ns,t
N,0,0 χ

N,Np,Ns,0,t
(N,Np,Ns,J,t)≤k,(N,Np,Ns,J,t)>kδN≤k+N>k,NδN≤k

p +N>k
p ,Np

δ
N≤k

s +N>k
s ,Ns

 ∑
M≤kM>k

C0,0
J≤kJ>kM≤kM>k(ϱ(Np,Ns,t)≤k

k,(N,J)≤k ⊗K ϱ
(Np,Ns,t)>k

d−k,(N,J)>k ⊗K sk,(J,M)≤k ⊗K sd−k,(J,M)>k)
 ,

(3.176)
where

N = N≤k +N>k, Np = N≤k
p +N>k

p , Ns = N≤k
s +N>k

s , (3.177)

and t ∈
[
dim(PNp,Ns

d,N,J )
]

refers to each couple (t≤k, t>k) with ranges satisfying the condition
elaborated in (3.157). The coefficients C00

J≤kJ>kM≤kM>k are given by , see [53]:

C00
J≤kJ>kM≤kM>k = δJ≤k,J>kδM≤k,−M>k

(−1)J≤k−M≤k

√
2J≤k + 1

. (3.178)

We denote the entries of the vector ΨN,0,0 as
(
ΨN,0,0

)(N,Np,Ns,J,M,t)>k

(N,Np,Ns,J,M,t)≤k
. By combining the

Equations (3.178) and (3.176), these entries can be defined as:

(
ΨN,0,0

)(N,Np,Ns,J,M,t)>k

(N,Np,Ns,J,M,t)≤k
= ΨNp,Ns,t

N,0,0 χ
N,Np,Ns,0,t
(N,Np,Ns,J,t)≤k,(N,Np,Ns,J,t)>kδJ≤k,J>k

(−1)J≤k

√
2J≤k + 1︸ ︷︷ ︸

θ
(N,Np,Ns,J,t)>k

(N,Np,Ns,J,t)≤k

δM≤k,−M>k(−1)−M≤k

.

(3.179)
By introducing left and right orthogonal matrices that serve as the change of basis from
the canonical basis to the symmetry-adapted basis, the mode-(1 : k) matricization of
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ψN,0,0, the tensor folding of ΨN,0,0, writes:

QL((ΨN,0,0)<k>)QR =


∑

N≤k,N≤k
p ,N≤k

s ,J≤k

N>k,N>k
p ,N>k

s ,J>k t≤k,t>k

θ
(N,Np,Ns,J,t)>k

(N,Np,Ns,J,t)≤k ϱ
(Np,Ns,t)≤k

k,(N,J)≤k ⊗K

ϱ
(Np,Ns,t)>k∗
d−k,(N,J)>k

) J≤k∑
M≤k=−J≤k

sk,(J,M)≤k ⊗K s∗
k,(J,M)≤k

 .

(3.180)

Let Θ(N,Np,Ns,J)>k

(N,Np,Ns,J)≤k of size dim(P(Np,Ns)≤k

k,(N,J)≤k ) × dim(P(Np,Ns)>k

d−k,(N,J)>k) denote matrices with en-
tries θ(N,Np,Ns,J,t)>k

(N,Np,Ns,J,t)≤k , where(
QL

(
(ΨN,0,0)<k>

)
QR

)∣∣∣∣(
P

(Np,Ns)≤k

k,(N,J)≤k
⊗S

k,(J,M)≤k

)
×
(

P
(Np,Ns)>k

d−k,(N,J)>k
⊗S

d−k,(J,M)>k

) = Θ(N,Np,Ns,J)>k

(N,Np,Ns,J)≤k .

(3.181)
where

Θ(N,Np,Ns,J)>k

(N,Np,Ns,J)≤k ̸= 0, if 2(N≤k
p +N>k

p ) +N≤k
s +N>k

s = N≤k +N>k = N, and J≤k = J>k.

(3.182)

Alternatively, one can write:(
QL

(
(ΨN,0,0)<k>

)
QR

)
= diag(Θ(N,J)>k

(N,J)≤k ⊗K I(2J≤k+1)×(2J>k+1)), (3.183)

with (
Θ(N,J)>k

(N,J)≤k

)∣∣∣∣
P

(Np,Ns)≤k

k,(N,J)≤k
×P

(Np,Ns)>k

d−k,(N,J)>k

= Θ(N,Np,Ns,J)>k

(N,Np,Ns,J)≤k . (3.184)

Moving forward, we introduce the spaces Pk,(N,J)≤k , Pd−k,(N,J)>k , defined as:

Pk,(N,J)≤k =
⊕

N≤k
p ,N≤k

s ,2N≤k
p +N≤k

s =N≤k,

N≤k
s ∈{2J≤k,2J≤k+2,...,k−mod(2J≤k,2)}

P
(Np,Ns)≤k

k,(N,J)≤k , (3.185)

and
Pd−k,(N,J)>k =

⊕
N>k

p ,N>k
s ,2N>k

p +N≤k
s =N>k,

N>k
s ∈{2J>k,2J>k+2,...,(d−k)−mod(2J>k,2)}

P
(Np,Ns)>k

d−k,(N,J)>k , (3.186)

such that Θ(N,J)>k

(N,J)≤k is of size dim(Pk,(N,J)≤k) × dim(Pd−k,(N,J)>k).
Remark 3.3.9. The preceding proposition can be established by using Schur’s lemma
from the group representation theory [20]. One needs to establish commutation relations
between between (ΨN,0,0)<k> at fixed k and the generators of the SU(2) symmetry group
representation [112], notably operators defining Ŝ2, see (3.3), described on the basis of
Fock spaces Fk resp. Fd−k such as

(
Sx
)≤k

,
(
Sx
)>k

,
(
Sy
)≤k

,
(
Sy
)>k

, and
(
Sz
)≤k

,
(
Sz
)>k

,
where (showing only the expression of Sz, with a similar reasoning for Sx or Sy), given
the definition of Sz

Sz = 1
2

d∑
i=1

(
A∗
i, 1

2
Ai, 1

2
− A∗

i,−1
2

Ai,−1
2

)
, (3.187)

where
A∗
isAi,s =

(
⊗i−1
l=1I

)
⊗K (A∗

sAs) ⊗K

(
⊗d
l=i+1I

)
, s ∈

{
±1

2

}
. (3.188)

It follows:

Sz =
k∑
i=1

(
⊗i−1
l=1I

)
⊗K

(
A∗

1
2
A 1

2
− A∗

−1
2

A−1
2

)
⊗K

(
⊗k
l=i+1I

)
⊗K

(
⊗d
l=k+1I

)
(3.189)

+
d∑

i=k+1

(
⊗k
l=1I

) (
⊗i−1
l=k+1I

)
⊗K

(
A∗

1
2
A 1

2
− A∗

−1
2

A−1
2

)
⊗K

(
⊗d
l=i+1I

)
(3.190)

=
(
Sz
)≤k

⊗K

(
⊗d
l=k+1I

)
+
(
⊗k
l=1I

)
⊗K

(
Sz
)>k

, (3.191)
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where
(
Sz
)≤k

=
k∑
i=1

(
⊗i−1
l=1I

)
⊗K

(
A∗

1
2
A 1

2
− A∗

−1
2

A−1
2

)
⊗K

(
⊗k
l=i+1I

)
, (3.192)

(
Sz
)>k

=
d∑

i=k+1

(
⊗i−1
l=k+1I

)
⊗K

(
A∗

1
2
A 1

2
− A∗

−1
2

A−1
2

)
⊗K

(
⊗k
l=i+1I

)
. (3.193)

Thus, SzΨN,0,0 = 0 can be written as Sz
≤k
(
ΨN,0,0

)<k>
+
(
ΨN,0,0

)<k>
Sz

>k = 0. Using
the Schur’s lemma, we deduce that Ψ<k> is diagonal in the basis diagonalizing Sz

≤k and
Sz

>k.

Now, from the TT representation of Ψ (3.167), one writes:

Ψ =
rk−1∑

αk−1=1

rk∑
αk=1

L≤k−1[:, αk−1]⊗K

 ∑
µk∈{0,↑,↓,2}

Uk(αk−1;µk;αk)eµk

⊗KR>k[αk, :], (3.194)

where

L≤k−1[:, αk−1] =
∑
µ1

. . .
∑
µk−1

(U1[µ1] . . .Uk−1[µk−1]) (µ1, . . . , µk−1;αk−1)eµ1...µk−1 ,

(3.195)
R>k[αk, :] =

∑
µk+1

. . .
∑
µd

(Uk+1[µk+1] . . .Ud[µd]) (αk;µk+1, . . . , µd)eµk+1...µd
. (3.196)

We suppose here that the TT-cores in (U1, . . . ,Uk−1) are left-orthogonal and the TT-
cores in (Uk+1, . . . ,Ud) are right-orthogonal, for k ∈ {2, . . . , d− 1}, if k = 1, (U2, . . . ,Ud)
are right-orthogonal and if k = d, (U1, . . . ,Ud−1) are left-orthogonal. The matrix L≤k−1
(resp. R>k) is the matrix representations of the operator L̂≤k−1 : Rrk−1 → Fk−1 (resp.
R̂>k : Fd−k → Rrk).

Proposition 3.3.10. For all k ∈ [d− 1], there exist vector spaces P̃k,(N,J)≤k and S̃k,(J,M)≤k

such that Rrk decomposes as:

Rrk ∼=
⊕

N≤k,J≤k,M≤k

(
P̃k,(N,J)≤k ⊗ S̃k,(J,M)≤k

)
, (3.197)

where N≤k ∈ {0, . . . , 2k}, J≤k ∈
{
0, 1

2 , 1, . . . ,
k
2

}
, and M≤k ∈

{
−J≤k, . . . , J≤k

}
. There

exist linear operators that act on these spaces denoted by ˆ̃L≤k−1 : Rrk−1 → Fk−1, ˆ̃R>k :
Fd−k → Rrk , and orthogonal matrices Gk−1 ∈ Rrk−1×rk−1, and Gk ∈ Rrk×rk , such that

L̃≤k−1 = QLL≤k−1Gk−1, R̃>k = G∗
kR>kQR. (3.198)

The matrices L̃≤k−1 and R̃>k are block-diagonal.

Proof. For clarity, we introduce shorthand notations as follows: Let Ξ be the index set
defined as:

Ξ≤k =
{

(N, J)≤k ∣∣ 0 ≤ N≤k ≤ 2k,
mod(N≤k

s , 2)
2 ≤ J≤k ≤ N≤k

s

2 , for all N≤k
s and N≤k

p with

0 ≤ N≤k
p ≤ k, 0 ≤ N≤k

s ≤ k, 2N≤k
p + N≤k

s = N≤k
}

.

(3.199)
and let Ξ>k be the index set defined as:

Ξ>k =
{

(N, J)>k
∣∣ 0 ≤ N>k ≤ 2(d − k), mod(N>k

s , 2)
2 ≤ J>k ≤ N>k

s

2 , for all N>k
s and N>k

p with

0 ≤ N>k
p ≤ d − k, 0 ≤ N>k

s ≤ d − k, 2N>k
p + N>k

s = N>k

}
.

(3.200)
with N≤k +N>k = N and J≤k = J>k.
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Using the Proposition 3.3.9, we have:

QL(
(
ΨN,0,0

)<k−1>
)QR = diag(ΘΞ>k−1

Ξ≤k−1 ⊗K I(2J≤k−1+1)×(2J>k−1+1)). (3.201)

Since J = 0, we have J≤k−1 = J>k−1. The SVD of matrices ΘΞ>k−1

Ξ≤k−1 is given by:

ΘΞ>k−1

Ξ≤k−1 = Uk−1Sk−1V∗
k−1, (3.202)

with Uk−1,Vk−1 being orthogonal matrices and Sk−1 being a diagonal matrix. By using
the following notations:

UΞ≤k−1

Ξ≤k−1 := Uk−1, VΞ>k−1

Ξ≤k−1 := Sk−1V∗
k−1, (3.203)

it follows that the block-wise SVD of QL(
(
ΨN,0,0

)<k−1>
)QR yields to

QL(
(
ΨN,0,0

)<k−1>
)QR = diag

(
UΞ≤k−1

Ξ≤k−1 ⊗K I(2J≤k−1+1)×(2J≤k−1+1)

)
(3.204)

diag
(
VΞ>k−1

Ξ≤k−1 ⊗K I(2J≤k−1+1)×(2J≤k−1+1)

)
, (3.205)

or we have according to Equation (3.194):
(
ΨN,0,0

)<k−1>
= L≤k−1 (R>k−1) , (3.206)

therefore, we obtain

QLL≤k−1 (R>k−1) QR = diag
(
UΞ≤k−1

Ξ≤k−1 ⊗K I(2J≤k−1+1)×(2J≤k−1+1)

)
diag

(
VΞ>k−1

Ξ≤k−1 ⊗K I(2J≤k−1+1)×(2J≤k−1+1)

)
,

(3.207)

with J≤k−1 = J>k−1. Since the matrices QL and L≤k−1 are orthogonal, we can introduce
an orthogonal matrix denoted as Gk−1, associated with the operator Ĝk−1 : Rrk−1 → Rrk−1

such that by defining:

L̃k−1 = diag
(
UΞ≤k−1

Ξ≤k−1 ⊗K I(2J≤k−1+1)×(2J≤k−1+1)

)
, (3.208)

we have:
QLL≤k−1 = L̃k−1G∗

k−1. (3.209)
The proof is straightforward and is connected to the gauge freedom inherent in left-
orthogonal TT decomposition, see [47]. Similarly, the SVD of matrices ΘΞ>k

Ξ≤k is given
by:

ΘΞ>k

Ξ≤k = UkSkV∗
k, (3.210)

with Uk,Vk being orthogonal matrices and Sk being a diagonal matrix. By using the
following notations:

UΞ≤k

Ξ≤k := UkSk, VΞ>k−1

Ξ≤k−1 := V∗
k. (3.211)

The block-wise SVD of QL

(
ΨN,0,0

)<k>
QR yields to

QL

(
ΨN,0,0

)<k>
QR = diag(ΘΞ>k

Ξ≤k ⊗K I(2J≤k+1)×(2J≤k+1)) (3.212)

= diag
(
UΞ≤k

Ξ≤k ⊗K I(2J≤k+1)×(2J≤k+1)

)
(3.213)

diag
(
VΞ>k

Ξ≤k ⊗K I(2J≤k+1)×(2J≤k+1)

)
(3.214)

= QLL≤k (R>k) QR. (3.215)

By defining:
R̃k+1 = diag

(
VΞ>k

Ξ≤k ⊗K I(2J≤k+1)×(2J≤k+1)

)
. (3.216)

and given that the matrices QR and R>k are orthogonal, similar to what we did previously,
we can introduce an orthogonal matrix Gk associated with the operator Ĝk : Rrk → Rrk ,
such that

(R>k) QR = GkR̃k+1. (3.217)
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L̃k−1 and R̃k+1 are block-diagonal matrix representations of the following linear operators:

ˆ̃L≤k−1 : Rrk−1 → Fk−1,
ˆ̃R>k : Fd−k → Rrk , (3.218)

where for Rrk , it decomposes as:

Rrk ∼=
⊕

N≤k,J≤k,M≤k

(
P̃k,(N,J)≤k ⊗ S̃k,(J,M)≤k

)
, (3.219)

and where for k ∈ [d]:

rk = dim(Rrk) =
∑

N≤k,J≤k

2(J≤k + 1) dim(P̃k,(N,J)≤k), (3.220)

with dim(P̃k,(N,J)≤k) ≤ min


∑

N≤k
p ,N≤k

s

dim(P(Np,Ns)≤k

k,(N,J)≤k ),
∑

N>k
p ,N>k

s

dim(P(Np,Ns)>k

d−k,(N,J)>k)

.

Let L≤k−1,(N,J)>k (resp . R>k,(N,J)>k) denote matrices defined as:

L≤k−1,(N,J)≤k−1 = UΞ>k−1

Ξ≤k−1 , (3.221)

respectively
R>k,(N,J)>k = VΞ>k

Ξ≤k . (3.222)

Now that we have all the necessary elements in place, we can express the TT-cores of
the TT representation of a singlet state.

Proof of Theorem 5. As ΨN,0,0 represents a singlet state (J = 0) with fixed particle num-
ber N , it must adhere to the following condition:

ΨN,0,0 ∈ Span
{

ϱ
Np,Ns,t
d,N,0 ⊗K sd,0,0

∣∣0 ≤ Np ≤ d, 0 ≤ Ns ≤ d, 2Np + Ns = N, t ∈
[
dim(PNp,Ns

d,N,0 )
]}

.

(3.223)
To satisfy this condition, the 3j-Wigner condition, see [11], must be met, for fixed k:

J≤k−1∑
M≤k−1=−J≤k−1

J(µk)∑
M(µk)=−J(µk)

J>k∑
M>k=−J>k

sk,(J,M)≤k−1 ⊗K sJ(µk),M(µk) ⊗K sd−k,(J,M)>k

(
J≤k−1 J(µk) J>k

M≤k−1 M(µk) M>k

)

= sd,0,0,
(3.224)

with J(µk) and M(µk) being defined in Equation (3.143). By Proposition 3.3.10, we have:

L̃≤k−1 = diag
(

L≤k−1,(N,J)≤k−1 ⊗K I(2J≤k−1+1)×(2J≤k−1+1)

)
, (3.225)

and
R̃>k = diag

(
R>k,(N,J)>k ⊗K I(2J≤k+1)×(2J≤k+1)

)
. (3.226)

For ease of notation, we introduce the following block-matrix, denoted as Bµk
, for each

µk ∈ {0, ↑, ↓, 2}, such that it can be defined as:

Bµk
= (G∗

k−1Uk[µk]Gk)
∣∣∣∣(

P̃
k−1,(N,J)≤k−1 ⊗S̃

k−1,(J,M)≤k−1

)
×
(

P̃
k,(N,J)≤k ⊗S̃

k,(J,M)≤k

). (3.227)

It follows, from Equation (3.194), we have:

ΨN,0,0 =
∑

N≤k−1,N>k=N−N≤k,
J≤k−1,J>k=J≤k

∑
M≤k−1,M>k

[ dim(P̃
k−1,(N,J)≤k−1 )∑
i=1

dim(P̃
k,(N,J)≤k )∑
j=1

L≤k−1,(N,J)≤k−1 [:, i]

⊗K

(∑
µk

Bµk
(i; j)eµk

)
⊗K R>k,(N,J)>k [j, :]

]
.

(3.228)
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Thus, necessarily using the 3j-Wigner condition (3.224), it follows that there exist block
matrices, denoted as Ũk ∈ Rr̃k−1×3×r̃k , such that

(G∗
k−1Uk[µk]Gk)

∣∣∣(
P̃

k−1,(N,J)≤k−1 ⊗S̃
k−1,(J,M)≤k−1

)
×
(

P̃
k,(N,J)≤k ⊗S̃

k,(J,M)≤k

)
= (Ũk[N(µk)])

∣∣∣
P̃

k−1,(N,J)≤k−1 ×P̃
k,(N,J)≤k

(
J≤k−1 J(µk) J>k

M≤k−1 M(µk) M>k

)
,

(3.229)

where Ũk[N(µk)] := Uk[:, N(µk), :], N(µk), J(µk) andM(µk) are defined in Equations (3.142)
and (3.143). Additionally, (showing only the expression of r̃k)

r̃k =
∑

N≤k,J≤k

dim(P̃k,(N,J)≤k). (3.230)

Remark 3.3.10. In Equation (3.220), we observe that rk is related to dim(P̃k,(N,J)≤k)
in the following manner:

rk = dim(Rrk) =
∑

N≤k,J≤k

2(J≤k + 1) dim(P̃k,(N,J)≤k). (3.231)

Consequently, when expressing the TT-core Uk[µk] in a compact form, we only need to
store the new TT-cores, denoted as Ũk, with nonzero blocks (Ũk[N(µk)])

∣∣∣∣
P̃

k−1,(N,J)≤k−1 ×P̃
k,(N,J)≤k

.

It is worth noting that there is an advantage in using SU(2) symmetry, which leads to a
reduction in the TT-rank to approximately rk∑

J≤k (2J≤k+1) . This reduction becomes partic-
ularly evident when J≤k for k ∈ [d] are sufficiently large. Moreover, it is always possible
to further reduce these TT-ranks by a truncated SVD.

3.4 Concluding remarks and perspectives
In this chapter, we have focused on the TTO decomposition of the quantum chemical
Hamiltonian operator which is at the core of the QC-DMRG algorithm. We started by
giving a comprehensive review of both the exact and approximate approaches for con-
structing the TTO decomposition of the operator. One of the key takeaways has been
the necessity to carefully employ the low-rank approximation method through tSVD. We
showed that it is imperative to respect degenerate singular values, as this ensures the
preservation of essential operator properties, including symmetry, particle number con-
servation, as well as the conservation of the z-component of the total spin. Furthermore,
we have presented numerical results showing that employing tSVD with some numerical
thresholds can lead to the non-conservation of the total spin and can impact the operator’s
structure. This impact manifests in the emergence of non-existent virtual interactions,
even when dealing with an operator with at most 2-body interactions. Inspired by the
work of [2], we have provided a constructive demonstration of the structure of the TT-
cores within the TTO decomposition of a general particle-preserving p-body Hamiltonian
operator. Our findings illustrate a particular block-sparse structure in this context with
at-most 2p+ 1 blocks per TT-core. Additionally, we have offered preliminary theoretical
insights into the structure of the TT-cores within the TT decomposition of the correspond-
ing eigenfunction, the wavefunction, that is assumed to be invariant under non-Abelian
symmetries, such as SU(2), which leads as well to block structured TT-cores with fewer
blocks. Our analysis were only limited for the case of the singlet state (J = 0). While
these insights might not be entirely novel within the physics and chemistry communities,
our goal has been to present this content in a more accessible and reader-friendly manner.
Looking ahead, our ongoing work focuses on exploring the structure of the Hamiltonian
operator under SU(2) symmetries and implementing these findings in our forthcoming
library, which we will introduce in the following chapter.
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Chapter 4

Algorithmic design and numerical
experiments with QC-DMRG

Contents
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4.3 Algorithmic aspects of QC-DMRG . . . . . . . . . . . . . . . . 113

4.3.1 Block-sparse TTO construction . . . . . . . . . . . . . . . . . . 116
4.3.2 Basic operations on block-sparse structured TT representations: 130

4.4 Concluding remarks and perspectives . . . . . . . . . . . . . . 143

4.1 Introduction
In this chapter, we present the algorithmic design for the major operations in QC-DMRG,
which have been implemented in our proof-of-concept QC-DMRG library. This library
is specifically tailored for the quantum chemical Hamiltonian operator model defined in
Equation (1.138). Notably, it incorporates particle number conservation as specified in
Equation (PN). While I am the main developer of the library, this collaborative effort
includes Mi-Song Dupuy and my supervisor, Laura Grigori. Additionally, we have the
valuable contribution of Daniel Torres (Research Engineer at Inria) who has contributed
to both code development and the ongoing parallelization effort of specific parts of the
algorithms using MPI. Our goal is to create a user-friendly QC-DMRG library that is based
on the block-sparse structures of the TT decomposition of the operator and eigenfunction,
see Corollary 3.3.1 and Theorem 4. This library will be accessible to researchers both
within our group and beyond, making it easier for them to perform their own numerical
simulations. This chapter includes the findings intended for submission of a paper with
Laura Grigori, Daniel Torres, Mi-Song Dupuy and Eric Cancès.

The core of this implementation is built upon exploiting the block-sparse TTO de-
composition of the Hamiltonian operator, as discussed in Section 3.3.1, along with its
corresponding eigenfunction, as already derived in [2] and revisited in Section 3.3.1. This
particular representation leads to performing matrix-free operations on the nonzero blocks
within QC-DMRG calculations. These specific techniques are detailed in Section 4.3.
While existing DMRG libraries certainly offer robust tools for practical applications, as
reviewed in Section 4.2, developing our own library allows us to engage directly with the
algorithm on a deeper level and be able to design algorithms for key steps of QC-DMRG.

This library was driven by specific research goals. On a technical level, we aim to design
a generic method for the construction of a block-sparse TTO decompositions of quantum
chemical particle-preserving Hamiltonian operators, based only on the knowledge of the
particle number N , number of orbitals d, and the one and two-electron integrals tensors.
This approach can also be extended to Hamiltonian operators involving p-body interac-
tions, as commonly encountered in nuclear physics [119]. Additionally, we aim to exploit
as well the block-sparse structure present in the TT decomposition of the associated eigen-
function, assumed to be an eigenvector of the particle number operator, to develop an
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heuristic scheme for block-sparse tensor contractions, which are present in QC-DMRG
calculations. Furthermore, we seek to leverage this block sparsity to enhance the speed
of matrix operations in the iterative eigenvalue solver during each sweep. Further details
can be found in Section 4.3. At a broader level, our proof-of-concept library is designed
to be accessible, adaptable, and user-friendly, enabling researchers within our group or
beyond who wish to conduct their own simulations using DMRG or explore innovative
ideas to improve its performance, while being able to study relevant realistic systems.

Hence, it is important to emphasize that our implementation is currently in the pro-
totyping phase, and our goal is not necessarily to directly compete with existing libraries
which are under development for more than a decade. However, we do aspire to achieve
a level of performance comparable with the cutting-edge libraries used for molecular sim-
ulations with tensor networks as ITensor library [28]. To ensure the utmost accessibility
and flexibility of this implementation, we chose to use the high-level Julia programming
language. To validate our code functionality, we can perform QC-DMRG calculations
on diverse molecules. For this purpose, we can extract essential molecular properties,
such as the number of orbitals considered, i.e size of the system, number of particles, and
the one- and two-electron integrals (defined in Equations (1.81) and (1.82)), from files
named FCIDUMP, generated using the Pyscf library [116] which can be called through
our Julia-based code. In terms of computational efficiency, the execution times within our
code are primarily dominated by tensor contractions on blocks, which ultimately involve
multiple matrix multiplications. These multiplications are efficiently carried out using
the well-known Julia library, TensorOperations.jl [23], which in turn calls BLAS routines.
In the context of constructing TTO decomposition of the Hamiltonian operator for large
molecules, we use Distributed.jl [89] library within Julia for distributed and parallel com-
puting. All the calculations are carried out using Cleps cluster from Inria, Paris, France.
This machine has 4 partitions. We use cpu homogen partition which contains 20 nodes
with hyper-threading such that we can allocate a maximum of 64 logical cores per node
(Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz) with a memory of 6GB per core.

In our implementation, we use several composite types also known as struct in Julia
which mimic the behaviour of traditional classes. Each composite type has fields (at-
tributes) to store data, similar to instance variables in other programming languages. We
refer interested readers to Appendix .6, which features a comprehensive diagram providing
an overview of the fundamental structures within our proof-of-concept library.

The reminder of Chapter 4 is organized as follows: we start by describing the construc-
tion approach for a block-sparse TTO decomposition of the quantum chemical Hamilto-
nian operator. Initially designed for 2-body interactions in the spatial-orbital basis, the
approach is extended to accommodate a general p-body particle-preserving Hamiltonian
operator. Then, we cover the algorithms for basic arithmetic operations on block-sparse
TT representations such as compression and orthogonalization. Leveraging the block-
sparse structure in the TT decomposition of the eigenfunction and the TTO decomposi-
tion of the operator, efficient block-sparse tensor contractions are discussed. Numerical
experiments are conducted on various molecules, including a Hydrogen chain, LiH, and
Nitrogen. Comparative evaluations of computational time for QC-DMRG calculations,
with fixed sweeps, are performed between the developed code and the ITensor library and
each presented subsection concludes with numerical results.

4.2 Related work
In this section, we provide an overview of existing tensor-based software packages com-
monly employed for electronic structure calculations. These software packages can be
categorized into two main groups that we detail here.

1. The first group offer a versatile framework for a wide range of tensor-based algo-
rithms including DMRG, suitable for applications in quantum many-body physics,
condensed matter physics, and quantum chemistry. Among these packages, the
most popular library is ITensor [28] primarily written in C++ which also provides
a native Julia interface. It is renowned for its efficiency in handling tensor operations
and memory management. It offers a 2-site DMRG implementation with the flexi-
bility of constructing a TTO decomposition for a wide range of Hamiltonian models.
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It employs SVD-based compression techniques to reduce the TTO-ranks. Addition-
ally, ITensor supports Abelian symmetries such as the particle number conservation
and plans to include SU(2) spin symmetry in a future version. TenPy [42] is also a
well-known software for large-scale numerical simulations involving tensor networks.
TenPy’s implementation primarily relies on Python, with some components in C++.
It has some similar features to ITensor: generation of TTO decomposition of Hamil-
tonian models, support of Abelian symmetries, implementation of both 1-site and
2-site DMRG.

2. The second group of software packages is specifically designed for ab initio1 quantum
chemistry calculations, with a strong focus on efficiently implementing QC-DMRG
method tailored for quantum chemistry applications. Within this category, there are
four notable codes developed by different research groups: Block/Block2 [137, 138],
CheMPS2 [134], QCMaquis [59] and the recently developed package Kylin 1.0 [135].
Most of these packages are primarily written in the C++ programming language and
are compatible with various interfaces like PySCF (the first three codes), allowing for
the generation of quantum chemistry integrals: the one- and two-electron integrals.
They offer support for various symmetries, including Abelian symmetries (ensuring
the conservation of particle number) and SU(2) spin symmetries. They also provide
both 1-site and 2-site QC-DMRG implementations.

4.3 Algorithmic aspects of QC-DMRG
Prior to delving into the detailed aspects of algorithms within our library, we revisit the
block-sparse structure inherent to the TTO decomposition of the Hamiltonian operator,
as demonstrated in Theorem 4. Additionally, we revisit the block-sparse structure of
the TT decomposition of its eigenfunction, as described in Corollary 3.3.1, and provide
illustrations for more clarity. Here, we employ the spin-orbital basis, as introduced in
(1.70). Let n = 2 and d be the number of spin-orbital basis functions considered. All
along this chapter, we suppose that the particle number is conserved.

• Block-sparse TT decomposition of the eigenfunction ψ ∈ R2×...×2. Let
ψ ∈ R2×...×2 be a d-order tensor, let (U1, . . . ,Ud) be the TT decomposition of ψ with
TT-ranks (r1, . . . , rd). We recall that Uk ∈ Rrk−1×2×rk , for k ∈ {2, . . . , d− 1}, and
U1 ∈ R1×2×r1 , Ud ∈ Rrd−1×2×1 such that r0 = rd = 1. According to Corollary 3.3.1,
the TT-cores have a block-sparse structure. For a fixed value of µk ∈ {1, 2}, the
matrices Uk[µk] := Uk[:, µk, :] ∈ Rrk−1×rk are block matrices. These blocks are de-
noted by U(ik−1,ik)

k [µk] ∈ R
ρΨ

k−1,ik−1
×ρΨ

k,ik , µk ∈ {1, 2} for k ∈ [d], i0 = 0, id = N + 1,
and ρΨ

0,0 = ρΨ
d,N+1 = 1. For k ∈ {2, . . . , d− 1}, we have:

rk−1 =
∑

ik−1∈SΨ
k−1

ρΨ
k−1,ik−1

, rk =
∑
ik∈SΨ

k

ρΨ
k,ik
, (4.1)

where

SΨ
k−1 = {max {1, N − d+ k} , . . . ,min {N + 1, k}} , (4.2)

SΨ
k = {max {1, N − d+ k + 1} , . . . ,min {N + 1, k + 1}} , (4.3)

with N being the number of particles and

ik−1 + q2(µk) = ik, (4.4)

with q2 : {1, 2} → {0, 1}. We provide in Figure 4.1, an illustration presenting the
corresponding structure of the TT-cores within the block-sparse TT representation
of the eigenfunction, according to the description above.

1Here, equations are derived directly from the Schrödinger equation, based only on first principles,
without any reliance on experimental input or additional assumptions.
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U1[2] =

ρΨ
1,1 ρΨ

1,2( )
0 U(1,2)

1 [2] ρΨ
0,0

U1[1] =

ρΨ
1,1 ρΨ

1,2( )
U(1,1)

1 [1] 0 ρΨ
0,0

U2[2] =

ρΨ
2,1 ρΨ

2,2 ρΨ
2,3( )

0 U(1,2)
2 [2] 0 ρΨ

1,1
0 0 U(2,3)

2 [2] ρΨ
1,2

. . .

U2[1] =

ρΨ
2,1 ρΨ

2,2 ρΨ
2,3( )

U(1,1)
2 [1] 0 0 ρΨ

1,1
0 U(2,2)

2 [1] 0 ρΨ
1,2

. . .

Uk[2] =

ρΨ
k,1 ρΨ

k,2 . . . ρΨ
k,N+1


0 U(1,2)

k
[2] 0 . . . ρΨ

k−1,1
0 0 U(2,3)

k
[2] . . . ρΨ

k−1,2
...

...
. . . . . .

...
0 0 . . . U(N,N+1)

k
[2] ρΨ

k−1,N

0 0 . . . 0 ρΨ
k−1,N+1

. . .

Uk[1] =

ρΨ
k,1 ρΨ

k,2 . . . ρΨ
k,N+1


U(1,1)

k
[1] 0 0 . . . ρΨ

k−1,1
0 U(2,2)

k
[1] 0 . . . ρΨ

k−1,2

0 0
. . . . . .

...
...

... . . .

...
0 0 . . . U(N+1,N+1)

k
[1] ρΨ

k−1,N+1

. . .

Ud[2] =

ρΨ
d,N+1( )

U(N,N+1)
d

[2] ρΨ
d−1,N

0 ρΨ
d−1,N+1

Ud[1] =

ρΨ
d,N+1( )

0 ρΨ
d−1,N

U(N+1,N+1)
d

[1] ρΨ
d−1,N+1

Figure 4.1: Block-sparse TT decomposition of ψ ∈ Rn×n×...×n. For each TT-core, Uk[µk]
with fixed µk ∈ {1, 2} and k ∈ [d], a distinct block structure is present: a block-diagonal
matrix when µk = 1 and a block matrix with nonzero blocks only on the upper diagonal
when µk = 2.

• Block-sparse TTO decomposition of the Hamiltonian matrix H ∈ R2d×2d .
Let (H1, . . . ,Hd) be the TTO decomposition of H with TTO-ranks (R1, . . . , Rd).
We recall that Hk ∈ RRk−1×2×2×Rk , for k ∈ {2, . . . , d− 1}, H1 ∈ R1×2×2×R1 and Hd ∈
RRd−1×2×2×1 such that R0 = Rd = 1. According to Theorem 4, the TT-cores have a
block-sparse structure. For fixed values of µk, νk ∈ {1, 2}, Hk[µk, νk] := Hk[:, µk, νk, :
] ∈ RRk−1×Rk are block matrices. These blocks are denoted by H(jk−1,jk)

k [µk, νk] ∈
R
ρH

k−1,jk−1
×ρH

k,jk , µk, νk ∈ {1, 2} for k ∈ [d], j0 = 0, jd = 0, ρH
0,0 = ρH

d,0 = 1, and for
k ∈ {2, . . . , d− 1}, we have:

Rk−1 =
∑

jk−1∈SH
k−1

ρH
k−1,jk−1

, Rk =
∑
jk∈SH

k

ρH
k,jk

, (4.5)

where
SH
k = {−βk, . . . , βk} . (4.6)

Here βk = min {k, d− k, p}, for k ∈ [d], where p denotes the number of p-body
interactions considered. Additionally, we have:

jk−1 + tk = jk, (4.7)

where tk = q2(µk) − q2(νk). We provide in Figure 4.2, an illustration presenting the
corresponding structure of the TT-cores within the block-sparse TTO representation
of the Hamiltonian operator, according to the description above.
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H1[2, 1] =

ρH
1,−1 ρH

1,0 ρH
1,1( )

0 0 H(0,1)
1 [2, 1] ρH

0,0

H1[1, 1] =

ρH
1,−1 ρH

1,0 ρH
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0 H(0,0)
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· · ·
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ρH
k,−βk+1 . . . ρH
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(−βk−1,−βk+1)
k

[2, 1] 0 . . . ρH
k−1,−βk−1

0 0
. . . 0

...

0 . . . 0 H
(βk−1−1,βk)
k

[2, 1] ρH
k,βk−1−1

0 . . . . . . 0 ρH
k,βk−1

Hk[1, 1] =

ρH
k,−βk

. . . ρH
k,βk H

(−βk−1,−βk)
k

[1, 1] 0 . . . ρH
k−1,−βk−1

0
. . . 0

...

0 . . . H
(βk−1,βk)
k

[1, 1] ρH
k−1,βk−1

Hk[1, 2] =

ρH
k,−βk

. . . ρH
k,βk−1 ρH

k,βk


0 . . . 0 . . . ρH
k−1,−βk−1

H
(−βk−1+1,−βk)
k

[1, 2] 0 . . . 0 ρH
k−1,−βk−1+1

0
. . . . . .

...
...

0 . . . H
(βk−1,βk−1)
k

[1, 2] 0 ρH
k,βk−1

· · ·

Hd[2, 1] =

ρH
d,0( )H(−1,0)

d
[2, 1] ρH

d−1,−1
0 ρH

d−1,0
0 ρH

d−1,1

Hd[1, 1] =

ρH
d,0( )0 ρH

d−1,−1
H(0,0)

d
[1, 1] ρH

d−1,0
0 ρH

d−1,1

Hd[1, 2] =

ρH
d,0( )0 ρH

d−1,−1
0 ρH

d−1,0
H(1,0)

d
[1, 2] ρH

d−1,1

Figure 4.2: TTO decomposition of the Hamiltonian operator: for k ∈ [d], Hk[1, 1] and
Hk[2, 2] share the same block-sparse structure. For each TT-core, Hk[µk, νk] with fixed
µk, νk ∈ {1, 2} and k ∈ [d], a distinct block structure is present: a block-diagonal matrix
when (µk, νk) = (1, 1) or (µk, νk) = (2, 2), a block matrix with nonzero blocks only on the
upper diagonal when (µk, νk) = (2, 1), and a block matrix with nonzero blocks only on
the lower diagonal when (µk, νk) = (1, 2).

In the following sections, we start by describing the construction approach employed to
generate a block-sparse TTO decomposition of the quantum chemical Hamiltonian oper-
ator, with at most 2-body interactions in the spatial-orbital basis (refer to Remark 1.3.9),
as defined in (1.138), such that we explain how its expression can be reformulated within
the spin-orbital basis. Subsequently, we extend this construction approach to accommo-
date a general p-body particle-preserving Hamiltonian operator, as defined in (3.46). The
algorithms presented cover basic arithmetic operations, including the multiplication and
addition of two block-sparse TT representations. We also introduce algorithms for the
compression and orthogonalization of TT representations in a block-sparse structure.

Taking advantage of the block-sparse structure in both the TT decomposition of the
eigenfunction (see Figure (4.1)) and the TTO decomposition of the operator (see Fig-
ure 4.2), we offer insights into efficient block-sparse tensor contractions. Additionally, we
elaborate on how these inherent structures can be leveraged to accelerate matrix-vector
multiplications involved in the eigensolver at each micro-step of the QC-DMRG algorithm.

Notes on numerical experiments: The experiments are conducted using various
molecules. We will look at a Hydrogen chain, going from the Di-Hydrogen molecule H2
to the molecule H16, where d = 4 denotes the minimum number of spin-orbitals, and
d = 32 represents the maximum number of spin-orbitals in the chain, in the STO-3g basis
set. Furthermore, we will look at the LiH molecule in the cc-pVDZ basis set, considering
d = 38. Additionally, we will consider the Nitrogen molecule N2 in the cc-pVDZ basis set,
as well, with d = 52. Throughout our analysis, we present a comparative evaluation of the
computational time required for QC-DMRG calculations, with fixed sweeps, between our
code and the state-of-the-art library ITensor. In this chapter, following each subsection,
numerical results are presented.
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4.3.1 Block-sparse TTO construction
In this subsection, we provide a comprehensive explanation of the construction approach
we have chosen for generating the TTO decomposition of the quantum chemical 2-body
Hamiltonian operator defined in (1.138), while preserving the particle number and thereby
ensuring a block-sparse structure in its TT-cores as explained in Section 3.3.1. We will
also introduce the related key algorithms. Importantly, the approach we present can be
extended to a p-body Hamiltonian operator, as defined in (3.46).

This section is structured into four main parts. Firstly, we recall the expression of
the 2-body Hamiltonian operator in the spatial-orbital basis, by showcasing how it can
be further simplified through the application of anti-commutation relations between the
creation and annihilation operators as defined in (1.132). Secondly, we explain how the
Hamiltonian operator can be expressed in the spin-orbital basis, elucidating the various
essential transformation operations involved. Thirdly, we explain the primary construc-
tion steps involved in creating the TTO decomposition of the 2-body Hamiltonian with
block-sparse structure. Lastly, we conclude by providing an extension of this construction
to a p-body Hamiltonian operator.

Quantum chemical Hamiltonian operator

We recall the 2-body Hamiltonian operator expressed in the spatial-orbital basis, as de-
fined in (1.138). Let dspatial be the number of spatial-orbital basis functions, see Re-
mark 1.3.9, the Hamiltonian matrix Hspatial ∈ R4dspatial ×4dspatial is:

Hspatial =
dspatial∑
i,j=1

∑
s=± 1

2

hijA∗
i,sAj,s + 1

2

dspatial∑
i,j,k,ℓ=1

∑
s,s′=± 1

2

vijkℓA∗
i,sA∗

k,s′Aℓ,s′Aj,s, (4.8)

where hij (resp. vijkℓ) are the one-electron integrals (resp. two-electron integrals) defined
in Equation (1.86) (resp. (1.87)). The matrices Ai,s, i ∈ [dspatial], s ∈

{
±1

2

}
are the matrix

representation of the creation and annihilation operators, defined in Equations (1.135),
(1.136).

Given the anti-commutation relations between the creation and annihilation operators,
as specified in (1.132), we revisit these relations in the following by employing the matrix
representations of these operators. For s, s′ ∈

{
±1

2

}
, i, j ∈ [dspatial], we have:

Ai,sAj,s′ + Aj,s′Ai,s = 0,
A∗
i,sA∗

j,s′ + A∗
j,s′A∗

i,s = 0,
Ai,sA∗

j,s′ + A∗
j,s′Ai,s = δijδss′I4dspatial .

(4.9)

By using the relations in (4.9), the second terms in Equation (4.8), denoted by A∗
i,sA∗

k,s′Aℓ,s′Aj,s

for i, k, ℓ, j ∈ [dspatial] , s, s′ ∈
{
±1

2

}
, can be expressed as:

A∗
i,sA∗

k,s′Aℓ,s′Aj,s = A∗
k,s′A∗

i,sAj,sAℓ,s′

A∗
i,sA∗

k,s′Aℓ,s′Aj,s = −A∗
k,s′A∗

i,sAℓ,s′Aj,s

A∗
i,sA∗

k,s′Aℓ,s′Aj,s = −A∗
i,sA∗

k,s′Aj,sAℓ,s′ ,

(4.10)

and
A∗
i,sA∗

k,s′Aℓ,s′Aj,s = A∗
i,s(δℓ,kI4dspatial − Aℓ,s′A∗

k,s′)Aj,s

= δℓ,kA∗
i,sAj,s − A∗

i,sAℓ,s′A∗
k,s′Aj,s.

(4.11)

Additionally, we define, see [2, 17]:

wijkℓ =
{

1
2 (vijkℓ + vkℓij − vkjiℓ − viℓkj) , i < k, ℓ < j,
0, otherwise. (4.12)

By using Equations (4.12),(4.11), and (4.10), one obtains a simplified expression of Hspatial
as follows:

Hspatial =
dspatial∑
i,j=1

∑
s=± 1

2

hijA∗
i,sAj,s+

dspatial∑
k,j=1

k−1∑
i=1

j−1∑
ℓ=1

∑
s,s′=± 1

2

wijkℓ
(
δℓ,kA∗

i,sAj,s − A∗
i,sAℓ,s′A∗

k,s′Aj,s

)
.

(4.13)
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By noting that A∗
i,sA∗

k,s′Aℓ,s′Aj,s = 0 if i = k, ℓ = j, and s = s′, (4.13) can be further
simplified as follows:

Hspatial =
dspatial∑
i=1

∑
s=± 1

2

(
hiiA∗

i,sAi,s + wiiii
(
A∗
i,sAi,s − A∗

i,sAi,−sA∗
i,−sAi,s

))

+
dspatial∑
i,j=1
i ̸=j

∑
s=± 1

2

hijA∗
i,sAj,s +

dspatial∑
j=1

j−1∑
ℓ=1

ℓ−1∑
i=1

∑
s,s′=± 1

2

wijℓℓ
(
A∗
i,sAj,s − A∗

i,sAℓ,s′A∗
ℓ,s′Aj,s

)

−
dspatial∑
k,j=1

k−1∑
i=1

j−1∑
ℓ=1
k ̸=ℓ

∑
s,s′=± 1

2

wijkℓA∗
i,sAℓ,s′A∗

k,s′Aj,s.

(4.14)
To construct the Hamiltonian matrix Hspatial, we need to carry out numerous operations
involving A∗

i,sAj,s′ for i, j ∈ [dspatial] and s, s′ ∈
{
±1

2

}
, which we will refer to as the

one-body terms. For the sake of simplicity, we can work within the spin-orbital basis.
Consequently, we need to represent the Hamiltonian in this basis as described in the
following.

Spin-orbital basis transformation

As defined in (1.136),(1.135), the creation and annihilation operators can be expressed as
follows:

Ai,s =
(
i−1⊗
k=1

KZ
)

⊗K As ⊗K

dspatial⊗
k=i+1

KI4

 (4.15)

and

A∗
i,s =

(
i−1⊗
k=1

KZ
)

⊗K A∗
s ⊗K

dspatial⊗
k=i+1

KI4

 , (4.16)

where i ∈
[
ddspatial

]
and s ∈

{
±1

2

}
. Given that

As =
A ⊗K I2, if s = 1

2 ,

S ⊗K A, if s = −1
2 .
, and Z = S ⊗ S ∈ R4dspatial ×4dspatial

, (4.17)

with
S =

(
1 0
0 −1

)
, A =

(
0 1
0 0

)
. (4.18)

Ai,s and A∗
i,s can be expressed differently as follows:

Ai,s =
2(i−1)⊗

k=1
KS

⊗K A ⊗K

2dspatial⊗
k=2i+1

KI2

 , (4.19)

and

A∗
i,s =

2(i−1)⊗
k=1

KS

⊗K A∗ ⊗K

2dspatial⊗
k=2i+1

KI2

 . (4.20)

Following Remark 1.3.9, let d be the number of spin-orbital basis functions such that
d = 2dspatial. One can verify that Ai,s can be expressed as follows: for i ∈ [dspatial] , η ∈ [d]

Ai,s = Aη, (4.21)

with Aη being defined in Equation (1.123) such that

η = 2(i− 1) + 1 if s = 1
2 , η = 2(i− 1) + 2 if s = −1

2 . (4.22)

As an illustration, consider the case where i = 2 and s = 1
2 . According to (4.19), we

obtain:
A2, 1

2
= S ⊗K S ⊗K A = A3. (4.23)
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By combining (4.21) with (4.14), the formulation of the Hamiltonian in the spin-orbital
basis, denoted by H ∈ R2d×2d , is as follows:

H = H(1) + H(2), (4.24)

where

H(1) =
d∑
i=1

2∑
l=1

(hii + wiiii)
(
A∗

2(i−1)+lA2(i−1)+l
)

+
d∑

i,j=1
i ̸=j

2∑
l=1

hij
(
A∗

2(i−1)+lA2(j−1)+l
)

+
d∑
j=1

j−1∑
ℓ=1

ℓ−1∑
i=1

2∑
l,l′=1

wijℓℓ
(
A∗

2(i−1)+lA2(j−1)+l′
)
,

(4.25)

and

H(2) = −
d∑
i=1

2∑
l=1

wiiii
(
A∗

2(i−1)+lA2(i−1)+l+(−1)l+1A∗
2(i−1)+l+(−1)l+1A2(i−1)+l

)

−
d∑

k,j=1

k−1∑
i=1

j−1∑
ℓ=1
k ̸=ℓ

2∑
l,l′=1

wijkℓ
(
A∗

2(i−1)+lA2(ℓ−1)+l′A∗
2(k−1)+l′A2(j−1)+l

)

−
d∑
j=1

j−1∑
ℓ=1

ℓ−1∑
i=1

2∑
l,l′=1

wijℓℓ
(
A∗

2(i−1)+lA2(ℓ−1)+l′A∗
2(ℓ−1)+l′A2(j−1)+l

)
.

(4.26)

Here, H(1) denotes the 1-body operator, which is written as a sum over products of
matrices in the form A∗

ηAκ ∈ R2d×2d , where η, κ ∈ [d]. The product A∗
ηAκ is referred to

as the 1-body term. On the other hand, H(2) represents the 2-body operator, written as a
sum over products of two 1-body terms, i.e (A∗

ηAκ)(A∗
γAλ) ∈ R2d×2d , where η, κ, λ, γ ∈ [d].

The product(A∗
ηAκ)(A∗

γAλ) is referred to as the 2-body term.
In the upcoming discussion, we explain the process of deriving the block-sparse TTO

decomposition for both the 1-body and 2-body operators, using Theorem 4. This involves
employing arithmetic operations on TTs, as outlined in Proposition 1.2.2.

Block-sparse TTO decomposition of the 1-body operator

As elaborated in Section 3.2.3, the sum of 1-body term, leads to the construction of a
TTO decomposition for the 1-body operator. This representation can be viewed as a
sum of rank-1 TTO decompositions, i.e TTO decompositions where all the TTO-ranks
are equal to 1. In what follows, we explain the process of building a block-sparse TTO
decomposition for the 1-body operator, as described in Section 3.3. First, let us examine
the matrix elements of the 1-body terms. Let A∗

ηAκ ∈ R2d×2d
, η, κ ∈ [d] be the matrix

with entries
(
A∗
ηAκ

)
(µ1, . . . , µd; ν1, . . . , νd), for µk, νk ∈ {1, 2}, k ∈ [d]. There are three

distinct cases to consider, as outlined in [113]: η = κ, η > κ, and η < κ.
Assume η = κ, then(

A∗
ηAη

)
(µ1, . . . , µd; ν1, . . . , νd) = δµ1,ν1 . . . δµη ,νηδνη ,1 . . . δµd,νd

. (4.27)

Assume η < κ, then(
A∗
ηAκ

)
(µ1, . . . , µd; ν1, . . . , νd) = (−1)νη+...+νκ−1δµ1,ν1 . . . δµη ,νη+1 . . . δµκ,νκ−1 . . . δµd,νd

.

(4.28)
Assume η > κ, then(

A∗
ηAκ

)
(µ1, . . . , µd; ν1, . . . , νd) = (−1)1+νκ+...+νη−1δµ1,ν1 . . . δµκ,νκ−1 . . . δµη ,νη+1 . . . δµd,νd

.

(4.29)
Let (T1, . . . , Td) be the block-sparse TTO decomposition of a 1-body term (see Theorem 4),
with Tk ∈ R1×2×2×1, k ∈ [d] such that all TTO-ranks are equal to 1. The matrix elements
of the 1-body terms are given by (see (1.142)):(

A∗
ηAκ

)
(µ1, . . . , µd; ν1, . . . , νd) = T1[µ1, ν1]T2[µ2, ν2] . . .Td[µd, νd], (4.30)
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with η, κ ∈ [d] and Tk[µk, νk] := Tk[:, µk, νk, :], µk, νk ∈ {1, 2} , k ∈ [d]. According to
Theorem 4, Equation (4.30) can be written as follows:
(
A∗
ηAκ

)
(µ1, . . . , µd; ν1, . . . , νd) = T(0,t1)

1 [µ1, ν1]T(t1,t1+t2)
2 [µ2, ν2] . . .T

(
∑d−1

l=1 tl,
∑d

l=1 tl)
d [µd, νd],

(4.31)
with ∑d

l=1 tl = 0 and where tk = q2(µk) − q2(νk) with q2 being defined in Equation (1.118)
and T(jk−1,jk)

k [µk, νk] are the block matrices within the TT-cores Tk[µk, νk] with jk−1 +
tk = jk, k ∈ [d], as illustrated in Figure 4.2. In this case, for a single 1-body term
we have Tk[µk, νk] = T(jk−1,jk)

k [µk, νk]. There are scalar values defined as follows: for
jk−1 = ∑k−1

l=1 tl, jk = jk−1 + tk, we have:

Tk[µk, νk] = T(jk−1,jk)
k [µk, νk] =

{δµk,νk
, δµk,νk

δνk,1} if η = κ

{δµk,νk
, δµk,νk+1, δµk,νk−1} otherwise

(4.32)

with η, κ ∈ [d]. Here, we must point out that for k ∈ [d − 1], jk−1, jk ∈ {−1, 0, 1} as per
Equation (4.38). This corresponds to p = 1, indicating the number of p-body interactions,
in this case being equal to 1 due to the presence of only 1-body terms.

The following example provides a better clarification on the construction of Tk[µk, νk] =
T(jk−1,jk)
k [µk, νk]:

Example 4.3.1. Let d = 2 be the number of spin-orbital basis functions. Initially, we
consider the case η = κ = 1. Let (T1, T2) be the block-sparse TTO decomposition of the
1-body term A∗

1A1. According to (4.27), for µ1, ν1, µ2, ν2 ∈ {1, 2} we have:

(A∗
1A1)(µ1, µ2; ν1, ν2) = δµ1,ν1δν1,1︸ ︷︷ ︸

T1[µ1,ν1]

δµ2,ν2︸ ︷︷ ︸
T2[µ2,ν2]

, (4.33)

For µ1 = ν1 = µ2 = ν2 = 1, we have

(A∗
1A1)(1, 1; 1, 1) = 1︸︷︷︸

T1[1,1]

1︸︷︷︸
T2[1,1]

, (4.34)

Here we set T1[1, 1] = T(0,0)
1 [1, 1] and T2[1, 1] = T(0,0)

2 [1, 1] with t1 = t2 = 0.
Now, let us consider the case η = 1 < κ = 2 and let (T1, T2) be the TTO decomposition

of the 1-body term A∗
1A2. According to (4.28), we have:

(A∗
1A2)(µ1, µ2; ν1, ν2) = (−1)ν1δµ1,ν1+1︸ ︷︷ ︸

T1[µ1,ν1]

δµ2,ν2−1︸ ︷︷ ︸
T2[µ2,ν2]

. (4.35)

For µ1 = 2, ν1 = 1, µ2 = 1, ν2 = 2,

(A∗
1A2)(2, 1; 1, 2) = −1︸︷︷︸

T1[2,1]

1︸︷︷︸
T2[1,2]

. (4.36)

with T1[2, 1] = T(0,1)
1 [2, 1] and T2[2, 1] = T(1,0)

2 [1, 2] such that t1 = 1, t2 = −1.

We note that in some cases (see Example 4.3.1, Equations (4.35),(4.36)) we need to
multiply the first TT-core by a factor of −1.

In the following, we present Algorithm 6 for constructing the TTO decomposition of
a single 1-body term of the form A∗

ηAκ, η, κ ∈ [d], where BSTT stands for Block-Sparse
Tensor Train.
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Algorithm 6 Create 1-body TT-cores
Input: pairs (η, κ), η, κ ∈ [d] .
Output: Block-sparse TTO decomposition (T1, . . . , Td) with block matrices
T(jk−1,jk)
k [µk, νk], µk, νk ∈ {1, 2}, jk−1, jk ∈ {−1, 0, 1} , k ∈ [d].

1: procedure BSTT_Onebody
2: if η = κ then
3: find pairs (µk, νk) , µk, νk ∈ {1, 2} , k ∈ [d] such that

δµ1,ν1 . . . δµη ,νη δνη ,1 . . . δµd,νd
̸= 0

4: end if
5: if η < κ then
6: find pairs (µk, νk) , µk, νk ∈ {1, 2} , k ∈ [d] such that

(−1)νη+...+νκ−1δµ1,ν1 . . . δµη ,νη+1 . . . δµκ,νκ−1 . . . δµd,νd
̸= 0

7: end if
8: if κ > η then
9: find pairs (µk, νk) , µk, νk ∈ {1, 2} , k ∈ [d] such that

(−1)1+νη+...+νκ−1δµ1,ν1 . . . δµκ,νκ−1 . . . δµη ,νη+1 . . . δµd,νd
̸= 0

10: end if
11: Construct T(0,t1)

1 [µ1, ν1], . . . , T(
∑k−1

l=1 tl,
∑k

l=1 tl)
k [µk, νk], . . . ,T

(
∑d−1

l=1 tl,
∑d

l=1 tl)
d [µd, νd], ▷

tl = q2(µl) − q2(νl), jk−1 = ∑k−1
l=1 tl, jk = ∑k

l=1 tl, and jk, jk−1 ∈ {−1, 0, 1} .
12: end procedure

Now, let (T̃1, . . . , T̃d) be the block-sparse TTO decomposition of the 1-body operator
H(1), that is derived by summing individual TTO decompositions (T1, . . . , Td) from 1-body
terms, refer to Equation (4.30), and by employing the additive property among TTs, as
explained in Proposition 1.2.2. Suppose that T̃k ∈ RR

H(1)
k−1 ×2×2×R

H(1)
k for k ∈ {2, . . . , d− 1},

and T̃1 ∈ R1×2×2×R
H(1)
1 and T̃d ∈ RR

H(1)
d−1 ×2×2×1 such that RH(1)

0 = R
H(1)
d = 1. According to

Theorem 4 and as illustrated in Figure 4.2, the TT-cores can be arranged in a block-sparse
structure. For fixed µk, νk ∈ {1, 2}, T̃k[µk, νk] := T̃k[:, µk, νk, :] ∈ RR

H(1)
k−1 ×R

H(1)
k has block

structure. These blocks are denoted by T̃(jk−1,jk)
k [µk, νk] ∈ R

ρ
H(1)
k−1,jk−1

×ρ
H(1)
k,jk , µk, νk ∈ {1, 2}

for k ∈ [d], ρH(1)
0,0 = ρ

H(1)
d,0 = 1 and for k ∈ {2, . . . , d− 1}, we have:

Rk−1 =
∑

jk−1∈S
H(1)
k−1

ρ
H(1)
k−1,jk−1

, Rk =
∑

jk∈S
H(1)
k

ρ
H(1)
k,jk

, (4.37)

where

SH(1)
k = min {− min {k, d− k, 1} , . . . ,min {k, d− k, 1}} = {−1, 0, 1} . (4.38)

The set SH(1)
k is obtained according to Equation (4.38), by considering the case where

p = 1, with p representing the number of p-body interactions; here it is equal to 1,
due to the presence of only 1-body terms. This TTO has the following structure: for
k ∈ {2, . . . , d− 1}

T̃k[1, 1] =

ρ
H(1)
k,−1 ρ

H(1)
k,0 ρ

H(1)
k,1


T̃(−1,−1)
k [1, 1] 0 0 ρ

H(1)
k−1,−1

0 T̃(0,0)
k [1, 1] 0 ρ

H(1)
k−1,0

0 0 T̃(1,1)
k [1, 1] ρ

H(1)
k−1,1

, T̃k[2, 2] =

ρ
H(1)
k,−1 ρ

H(1)
k,0 ρ

H(1)
k,1


T̃(−1,−1)
k [2, 2] 0 0 ρ

H(1)
k−1,−1

0 T̃(0,0)
k [2, 2] 0 ρ

H(1)
k−1,0

0 0 T̃(1,1)
k [2, 2] ρ

H(1)
k−1,1

(4.39)

T̃k[1, 2] =

ρ
H(1)
k,−1 ρ

H(1)
k,0 ρ

H(1)
k,1


0 0 0 ρ

H(1)
k−1,−1

T̃(0,−1)
k [1, 2] 0 0 ρ

H(1)
k−1,0

0 T̃(1,0)
k [1, 2] 0 ρ

H(1)
k−1,1

, T̃k[2, 1] =

ρ
H(1)
k,−1 ρ

H(1)
k,0 ρ

H(1)
k,1


0 T̃(−1,0)

k [2, 1] 0 ρ
H(1)
k−1,−1

0 0 T̃(0,1)
k [2, 1] ρ

H(1)
k−1,0

0 0 0 ρ
H(1)
k−1,1

.

(4.40)
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For k = 1 respectively k = d,

T̃1[1, 1] =
ρ

H(1)
1,−1 ρ

H(1)
1,0 ρ

H(1)
1,1( )

0 T̃(0,0)
k [1, 1] 0 ρ

H(1)
0,0

, T̃1[2, 2] =
ρ

H(1)
1,−1 ρ

H(1)
1,0 ρ

H(1)
1,1( )

0 T̃
(0,0)
1 [2, 2] 0 ρ

H(1)
0,0

, (4.41)

T̃1[1, 2] =
ρ

H(1)
1,−1 ρ

H(1)
1,0 ρ

H(1)
1,1( )

T̃
(0,−1)
1 [1, 2] 0 0 ρ

H(1)
0,0

, T̃1[2, 1] =
ρ

H(1)
1,−1 ρ

H(1)
1,0 ρ

H(1)
1,1( )

0 0 T̃
(0,1)
1 [2, 1] ρ

H(1)
0,0

(4.42)

T̃d[1, 1] =

ρ
H(1)
d,0


0 ρ

H(1)
d−1,−1

T̃
(0,0)
d [1, 1] ρ

H(1)
d−1,0

0 ρ
H(1)
d−1,1

, T̃d[2, 2] =

ρ
H(1)
d,0


0 ρ

H(1)
d−1,−1

T̃
(0,0)
d [2, 2] ρ

H(1)
d−1,0

0 ρ
H(1)
d−1,1

(4.43)

T̃d[1, 2] =

ρ
H(1)
d,0


0 ρ

H(1)
d−1,−1

0 ρ
H(1)
d−1,0

T̃
(1,0)
d [1, 2] ρ

H(1)
d−1,1

, T̃d[2, 1] =

ρ
H(1)
d,0


T̃

(−1,0)
d [2, 1] ρ

H(1)
d−1,−1

0 ρ
H(1)
d−1,0

0 ρ
H(1)
d−1,1

(4.44)

where ρH(1)
0,0 = ρ

H(1)
d,0 = 1. Let us consider the following example for further clarification.

Example 4.3.2. Let d = 4 be the number of spin-orbital basis functions. Consider the
following sum over 1-body terms S = h11A∗

1A1 +h12A∗
1A2 +h43A∗

4A3. Let (T̃1, T̃2, T̃3, T̃4)
be the TTO decomposition of S ∈ R24×24 . Initially, we look at the matrix elements of S:

S(µ1, µ2, µ3, µ4; ν1, ν1, ν2, ν3, ν4) = h11(A∗
1A1)(µ1, µ2, µ3, µ4; ν1, ν1, ν2, ν3, ν4)

+ h12(A∗
1A2)(µ1, µ2, µ3, µ4; ν1, ν1, ν2, ν3, ν4)

+ h43(A∗
3A2)(µ1, µ2, µ3, µ4; ν1, ν1, ν2, ν3, ν4)

= h11δµ1,ν1δν1,1δµ2,ν2δµ3,ν3δµ4,ν4 + (−1)ν1h12δµ1,ν1+1δµ2,ν2−1δµ3,ν3δµ4,ν4

+ (−1)1+ν3h43δµ1,ν1δµ2,ν2δµ3,ν3−1δµ4,ν4+1.
(4.45)

According to the Proposition 1.2.2, each element S(µ1, µ2, µ3, µ4; ν1, ν1, ν2, ν3, ν4) is
equal to:

[
h11δµ1,ν1δν1,1 (−1)ν1h12δµ1,ν1+1 (−1)h43δµ1,ν1

]
︸ ︷︷ ︸

T̃1[µ1,ν1]

δµ2,ν2

δµ2,ν2−1
δµ2,ν2


︸ ︷︷ ︸

T̃2[µ2,ν2]

δµ3,ν3

δµ3,ν3

δµ3,ν3−1


︸ ︷︷ ︸

T̃3[µ3,ν3]

 δµ4,ν4

δµ4,ν4

δµ4,ν4+1


︸ ︷︷ ︸

T̃4[µ4,ν4]

.

(4.46)
Here, we rearrange the nonzero values within the TT-core T̃3[1, 1], aligning them to adhere
to the block-sparse structure. The same idea extends to the other TT-cores.

T̃3[1, 1] =

ρ
H(1)
3,−1 ρ

H(1)
3,0 ρ

H(1)
3,1



0︸︷︷︸
T̃(−1,−1)

3 [1,1]

0 0 ρ
H(1)
2,−1

0
[
1 0
0 1

]
︸ ︷︷ ︸

T̃(0,0)
3 [1,1]

0 ρ
H(1)
2,0

0 0 0︸︷︷︸
T̃(2,1)

3 [1,1]

ρ
H(1)
1,1

. (4.47)

To summarize, constructing the block-sparse TTO decomposition of the 1-body operator
H(1) involves an initial step of building the TTO decomposition for individual 1-body
terms, as detailed in Algorithm 6. Subsequently, the block-sparse TTO representations
of these single 1-body terms are combined by concatenating their corresponding nonzero
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blocks. This yields the final block-sparse TTO representation. However, the TTO-ranks
will inevitably increase, enlarging the size of the blocks within the TT-cores. To manage
this expansion, one can employ the TT-rounding approach outlined in Algorithm4.3.2.
This method involves applying tSVD per block. Further elaboration will be provided in
Section 4.3.2.

Block-sparse TTO decomposition of the 2-body operator

In what follows, we detail the process of obtaining a block-sparse TTO decomposition
of the 2-body operator H(2) ∈ R2d×2d , see Equation (4.26). This is achieved through
the sum of the TTO decompositions of 2-body terms of the form

(
A∗
ηAκ

) (
A∗
γAλ

)
for

η, κ, γ, λ ∈ [d]. The TTO decomposition of each 2-body term can be obtained through
the multiplication of the TTO decomposition of two 1-body terms.

For fixed values of η, κ, γ, λ ∈ [d], let (T1, . . . , Td) (resp. (T ′
1 , . . . , T ′

d ) ) be the TTO
decomposition of A∗

ηAκ (resp. A∗
γAλ ), with Tk, T ′

k ∈ R1×2×2×1, k ∈ [d]. Let us con-
sider (W1, . . . ,Wd) the TTO decomposition of

(
A∗
ηAκ

) (
A∗
γAλ

)
. According to Proposi-

tion 1.3.2, each TT-core Wk, k ∈ [d] is expressed as, for µk, νk ∈ {1, 2}:

Wk[µk, νk] =
2∑
z=1

(Tk[µk, z] ⊗K T′
k[z, νk]), (4.48)

where Tk[µk, z] := Tk[:, µk, z, :],T′
k[z, νk] := T ′

k [:, z, νk, :], and Wk[µk, νk] := W [:, µk, µk, :],
for νk, µk, z ∈ {1, 2}.

As previously explained, for a single 1-body term, the TT-cores Tk[µk, z] and T′
k[z, νk]

are nonzero if they satisfy the following conditions (see Equation (4.32)):

Tk[µk, z] = T(jk−1,jk)
k [µk, z] ̸= 0 if jk + tk = jk−1,

T′
k[z, νk] = T′(j

′
k−1,j

′
k)

k [z, νk] ̸= 0 if j′
k + t′k = j′

k−1,
(4.49)

where tk = q2(µk) − q2(z), t′k = q2(z) − q2(νk), and jk−1, j
′
k−1, jk, j

′
k ∈ {−1, 0, 1}, for

k ∈ {2, . . . , d− 1} and j0 = j′
0 = jd = j′

d = 0 otherwise.
It is clear that the matrices Wk[µk, νk] in Equation (4.48) can be arranged into a block-

sparse. We denote the nonzero blocks of Wk[µk, νk] by W(γk−1,γk)
k [µk, νk] where γk−1 =

jk−1 + j′
k−1 and γk = jk + j′

k. In the case of the TTO decomposition of a single 2-body
term, defined by the product

(
A∗
ηAκ

) (
A∗
γAλ

)
, we have Wk[µk, νk] := W(γk−1,γk)

k [µk, νk]
such that

W(γk−1,γk)
k [µk, νk] =

2∑
z=1

T(jk−1,jk)
k [µk, z] ⊗K T′(j

′
k−1,j

′
k)

k [z, νk] ̸= 0 if γk−1 + tk + t′k = γk.

(4.50)

It can be showed that γk ∈ {−2,−1, 0, 1, 2} for k ∈ {2, . . . , d− 2}, γ1, γd−1 ∈ {−1, 0, 1}
and γ0 = γd = 0.

Now, let (W̃1, . . . , W̃d) be the block-sparse TTO decomposition of the 2-body operator
H(2), that is derived by summing individual TTO decompositions (W1, . . . ,Wd) from 2-
body terms (refer to Equation (4.30)) and by employing the additive property among
TTs, as explained in Proposition 1.2.2. We suppose that W̃k ∈ RR

H(2)
k−1 ×2×2×R

H(2)
k for

k ∈ {2, . . . , d− 1}, and W̃1 ∈ R1×2×2×RH(2) and W̃d ∈ RR
H(2)
d−1 ×2×2×1 such that RH(2)

0 =
R

H(2)
d = 1. The TT- cores can be arranged in a block-sparse structure, such that for fixed

µk, νk ∈ {1, 2}, W̃k[µk, νk] := W̃k[:, µk, νk, :] ∈ RR
H(2)
k−1 ×R

H(2)
k has a block structure. These

blocks are denoted by W̃
(γk−1,γk)
k [µk, νk] ∈ R

ρ
H(2)
k−1,jk−1

×ρ
H(2)
k,jk , µk, νk ∈ {1, 2} for k ∈ [d],

ρ
H(2)
0,0 = ρ

H(2)
d,0 = 1 and for k ∈ {2, . . . , d− 1}, we have:

R
H(2)
k−1 =

∑
γk−1∈S

H(2)
k−1

ρ
H(2)
k−1,γk−1

, R
H(2)
k =

∑
γk∈S

H(2)
k

ρ
H(2)
k,γk

, (4.51)

where
SH(2)
k = min {− min {k, d− k, 2} , . . . ,min {k, d− k, 2}} , (4.52)
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such that

SH(2)
k = {−2,−1, 0, 1, 2} , k ∈ {3, . . . , d− 2} and SH(2)

2 = SH(2)
d−1 = {−1, 0, 1} . (4.53)

More generally, the block-sparse representation of the TT-cores W̃k can be obtained as
follows, for k ∈ {3, . . . , d− 2}:

W̃k[1, 1] =

ρ
H(2)
k,−2 ρ

H(2)
k,−1 ρ

H(2)
k,0 ρ

H(2)
k,1 ρ

H(2)
k,2



W̃
(−2,−2)
k [1, 1] 0 0 0 0 ρ

H(2)
k−1,−2

0 W̃
(−1,−1)
k [1, 1] 0 0 0 ρ

H(2)
k−1,−1

0 0 W̃
(0,0)
k [1, 1] 0 0 ρ

H(2)
k−1,0

0 0 0 W̃
(1,1)
k [1, 1] 0 ρ

H(2)
k−1,1

0 0 0 0 W̃
(2,2)
k [1, 1] ρ

H(2)
k−1,2

,

(4.54)

W̃k[2, 2] =

ρ
H(2)
k,−2 ρ

H(2)
k,−1 ρ

H(2)
k,0 ρ

H(2)
k,1 ρ

H(2)
k,2



W̃
(−2,−2)
k [2, 2] 0 0 0 0 ρ

H(2)
k−1,−2

0 W̃
(−1,−1)
k [2, 2] 0 0 0 ρ

H(2)
k−1,−1

0 0 W̃
(0,0)
k [2, 2] 0 0 ρ

H(2)
k−1,0

0 0 0 W̃
(1,1)
k [2, 2] 0 ρ

H(2)
k−1,1

0 0 0 0 W̃
(2,2)
k [2, 2] ρ

H(2)
k−1,2

,

(4.55)

W̃k[1, 2] =

ρ
H(2)
k,−2 ρ

H(2)
k,−1 ρ

H(2)
k,0 ρ

H(2)
k,1 ρ

H(2)
k,2



0 0 0 0 0 ρ
H(2)
k−1,−2

W̃
(−1,−2)
k [1, 2] 0 0 0 0 ρ

H(2)
k−1,−1

0 W̃
(0,−1)
k [1, 2] 0 0 0 ρ

H(2)
k−1,0

0 0 W̃
(1,0)
k [1, 2] 0 0 ρ

H(2)
k−1,1

0 0 0 W̃
(2,1)
k [1, 2] 0 ρ

H(2)
k−1,2

,

(4.56)

W̃k[2, 1] =

ρ
H(2)
k,−2 ρ

H(2)
k,−1 ρ

H(2)
k,0 ρ

H(2)
k,1 ρ

H(2)
k,2



0 W̃
(−2,−1)
k [2, 1] 0 0 0 ρ

H(2)
k−1,−2

0 0 W̃
(−1,0)
k [2, 1] 0 0 ρ

H(2)
k−1,−1

0 0 0 W̃
(0,1)
k [2, 1] 0 ρ

H(2)
k−1,0

0 0 0 0 W̃
(1,2)
k [2, 1] ρ

H(2)
k−1,1

0 0 0 0 0 ρ
H(2)
k−1,2

.

(4.57)
This is the same structure as described in Section 3.3, where p = 2.

For additional clarity, we give the following example.

Example 4.3.3. Consider the matrix S ∈ R2d×2d along with its TTO decomposition
(T̃1, . . . , T̃4) as defined in Example 4.3.2. We want to derive the expression of the TTO
decomposition of S2 which describes the sum over 2-body terms. Let (W̃1, . . . , W̃4) be the
TTO decomposition of S2. According to Proposition 1.3.2, each TT-core W̃k, k ∈ {1, . . . , 4}
is given, for µk, νk ∈ {1, 2} as:

W̃k[µk, νk] =
2∑
z=1

T̃k[µk, z] ⊗K T̃k[z, νk]. (4.58)

We provide in (4.59) a partial matrix representation of W̃3[1, 1]. This matrix is block-
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diagonal, with grouped blocks sharing the same labels γ1, γ2 ∈ {−2,−1, 0, 1, 2}.

W̃3[1, 1] =





T̃(−1,−1)
3 [1, 1] ⊗K T̃(−1,−1)

3 [1, 1]︸ ︷︷ ︸
=W̃(−2,−2)

3 [1,1] (
T̃(0,0)

3 [1, 1] ⊗K T̃(−1,−1)
3 [1, 1] T̃(0,−1)

3 [1, 2] ⊗K T̃(−1,0)
3 [2, 1]

0 T̃(−1,−1)
3 [1, 1] ⊗K T̃(0,0)

3 [1, 1]

)
︸ ︷︷ ︸

=W̃(−1,−1)
3 [1,1]

. . .
. . .

. . .

.

(4.59)

Block-sparse TTO decomposition of the Hamiltonian operator

Now, to construct the block-sparse TTO decomposition, denoted by (H1, . . . ,Hd) (see
Figure 4.2), of the Hamiltonian operator H = H(1) + H(2) one needs to combine the
TTO representations of 1-body and 2-body operators. This can be achieved using the
Algorithm 7.

Algorithm 7 Addition of two block-sparse TTO decompositions
Input: Block-sparse TTO representations of the 1-body operator and the 2-body

operator, denoted as (T̃1, · · · , T̃d), and (W̃1, · · · , W̃d) respectively.

Output: Compute the block-sparse TTO representations (H1, . . . ,Hd).
1: procedure BSTT_sum
2: for k = 1 to d do
3: for µk, νk = 1 to 2 do ▷ tk = q2(µk) − q2(νk)
4: for γk−1 ∈ S

H(2)
k−1 , jk−1 ∈ S

H(1)
k−1 do

5: if γk−1 = jk−1 and γk = γk−1 + tk = jk−1 + tk then
6:

H(γk−1,γk)
k [µk, νk] = diag(T̃(jk−1,jk)

k [µk, νk],W̃(γk−1,γk)
k [µk, νk]), (4.60)

7: else
8:

H(γk−1,γk)
k [µk, νk] = W̃(γk−1,γk)

k [µk, νk]. (4.61)
9: end if

10: end forReturn Hk[µk, νk] as a list of nonzero blocks.
11: end for
12: end for
13: end procedure

Remark 4.3.1. In Algorithm 7, when k = 1 or k = d, instead of performing the
operation described in line 6, one should carry out horizontal concatenation/stacking or
vertical concatenation, respectively between blocks with matching row index jk−1 = γk−1
or column index jk = γk respectively, as depicted in Figure 4.3.

In Figure 4.3, we provide a comprehensive example of combining block-sparse TTO
representations of 1-body operator (red illustration) with 2-body operator (blue illustra-
tion)
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· · · · · · + · · · · · ·

= · · · · · ·

Figure 4.3: Addition of two block-sparse TT representations. The symbol + refers to
summing two tensors in TTO formats, see Proposition 1.2.2.

While the TT-cores of the TTO decomposition of the operator initially exhibit a
memory-efficient block structure that preserves the particle number, performing addition
and product operations inevitably increases the ranks of these blocks. To ensure that the
TTO-ranks per block remain reasonable, it becomes essential to apply compression during
each summation of terms. This compression can be independently applied to blocks, see
Algorithm 8, using tSVD with a predefined threshold.

Remark 4.3.2. Extension to a p-body Hamiltonian Operator A general p-body
Hamiltonian operator as described in (3.46), with at most p-body terms, can be expressed
in terms of the creation and annihilation operators in the spin-orbital basis as follows:

H≤p =
∑

J,J ′⊆X
C(J ; J ′)

2∑
l=1

∏
x∈J

A∗
2(x−1)+l

∏
x′∈J ′

A2(x′−1)+l, (4.62)

whereX = {(ξ1, 0, . . . , 0), (ξ1, ξ2, 0, . . . , 0), . . . , (ξ1, ξ2, . . . , ξp)}, l = (l1, . . . , lp), x = (x1, . . . , xp),
ξk ∈ [d] , k ∈ [p], and we define A2(x−1)+l and A2(x′−1)+l as follows:

A2(x−1)+l = A2(x1−1)+l1 . . .A2(xp−1)+lp , (4.63)
A2(x′−1)+l = A2(x′

p−1)+lp . . .A2(x′
1−1)+l1 , (4.64)

where A2(xk−1)+lk = I, if xk = 0 for k ∈ [p] (same applies to A2(x′−1)+l). It is important to
observe that in Equation (4.62), if the number of creation operators exceeds the number of
annihilation operators (or vice versa), the resulting matrix product is zero. Now, our goal
is to represent each term within the sum in (4.62) that characterizes p-body interactions
as a sum of products of 1-body terms, similar to what we did for the 2-body term.
For example, in (4.62), the p-body term can be obtained by taking J = ξ1, ξ2, . . . , ξp,
J ′ = ξ′

1, ξ
′
2, . . . , ξ

′
p as follows:

H(p) =
d∑

ξ1,...,ξp

ξ′
1,...,ξ

′
p
=1

C(ξ1, . . . , ξp; ξ′
1, . . . , ξ

′
p)

2∑
l1...lp=1

(
A∗

2(ξ1−1)+l1 . . .A
∗
2(ξp−1)+lpA2(ξ′

p−1)+lp . . .A2(ξ′
1−1)+l1

)
.

(4.65)

To relate this general expression to the 2-body Hamiltonian operator H defined in (1.138),
we can write:

H = H≤2 = H(1) + H(2), (4.66)
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where the matrix entries are related to one-electron and two-electron integrals as: C(ξ1; ξ′
1) = hξ1ξ′

1

and C(ξ1, ξ2; ξ′
1, ξ

′
2) = 1

2vξ1ξ′
1ξ2ξ′

2
. As explained in Section 3.3, the TTO representation of

H(p), denoted as (H1, . . . ,Hd), exhibits a block-sparse structure with a maximum of 2p+1
nonzero blocks per TT-core. To construct a block-sparse representation for the p-body
Hamiltonian, we can employ the same approach used for the 2-body operator H(2). By
exploiting the anti-commutation relations of the creation and annihilation operators, one
obtains:

H(p) =
∑
ξ1,ξ′

1

∑
ξk,ξ

′
k ̸=ξ1,ξ′

1
k∈{2,...,p−1}

C(ξ1, . . . , ξp; ξ′
1, . . . , ξ

′
p)cξk,ξ

′
k
A∗

2(ξ1−1)+l1A2(ξ′
1−1)+l1

+
∑

ξ1,ξ′
1,ξ2,ξ′

2

∑
ξk,ξ

′
k ̸=ξ1,ξ′

1,ξ2,ξ′
2

k∈{3,...,p−2}

C(ξ1, . . . , ξp; ξ′
1, . . . , ξ

′
p)cξk,ξ

′
k
A∗

2(ξ1−1)+l1A2(ξ′
2−1)+l2A∗

2(ξ′
1−1)+l2A2(ξ2−1)+l1

+ . . .+
d∑

ξ1,...,ξp

ξ′
1,...,ξ

′
p
=1

C(ξ1, . . . , ξp; ξ′
1, . . . , ξ

′
p)A∗

2(ξ1−1)+l1A2(ξp−1)+lp . . .A∗
2(ξp−1)+lpA2(ξ′

1−1)+l1 .

(4.67)
Here, cξk,ξ

′
k

represents additional terms arising from the deltas in the anti-commutation
relations. After expressing (4.65) in terms of 1-body terms, we employ a similar approach
as described earlier to derive a TTO representation of H(p) with a block-sparse structure.
However, in this case, there are additional terms to incorporate into the summation.

Numerical results

Now, we provide numerical results concerning the construction of the block-sparse TTO
representation of the Hamiltonian operator for various molecules with different number
of spin-orbitals d.

We present in Figure 4.4 the mean time required to execute a single operation among
the most dominant steps within a generic algorithm for constructing the TTO representa-
tion of the quantum chemical Hamiltonian operator, as defined in Equation (1.138). The
x-axis indicates the number of spin-orbitals d, while the y-axis indicates the average time
required for each operation. Figure 4.4(a) displays the construction of the block-sparse
TTO decomposition, using Algorithms 6 and 7. The steps highlighted include the mul-
tiplication of TTOs in a block-sparse format for the construction of the 2-body operator,
denoted as Multiplication, the addition of TTOs in a block-sparse format, referred to as
Addition, and the TTO-rank reduction achieved through tSVD after each rounding step
to maintain reasonable TTO-ranks, identified as Compression. Similarly, Figure 4.4(b)
displays the time consumption associated with the naive construction of the TTO decom-
position using Algorithm 2. It is noted that all calculations are carried out using single
thread for a Hydrogen chain in the STO-3g basis set.

From Figure 4.4, we can notice that the computational time of the compression in-
creases with the number of spin-orbitals d in both figures, which aligns with our expec-
tations. As the number of orbitals grows, more terms need to be considered within the
sums, resulting in the generation of larger blocks within the TT-cores that subsequently
require compression. However, it is important to highlight a significant advantage pro-
vided by the block-sparse structure in this context. Due to this structure and the ability
to perform operations such as SVD, addition, and multiplication on individual blocks, we
observe a noteworthy acceleration in the execution of operations like addition and com-
pression when compared to their counterparts in the naive construction method. Upon
closer examination of the first three number of orbitals, for d ∈ {8, 12, 16}, it is noteworthy
that the addition of two TTs exhibits significantly faster computation, nearly one order of
magnitude, when using a block-structured TT, see Figure 4.4(a). This observation holds
true for the compression process using the tSVD algorithm as well.
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Figure 4.4: Average time in seconds spent by the most time-consuming steps in the
numerical construction of the TTO decomposition of the quantum chemical Hamiltonian
operator as defined in (1.138). The left figure (Figure 4.4(a)), displays the execution time
associated with the construction of the block-sparse TTO decomposition, whereas the
right figure (Figure 4.4(b)), displays the execution time associated with the naive TTO
decomposition. The chosen accuracy is ϵ = 1e− 12.

Figures 4.5 and 4.6 provide a visual representation of the sparsity within the TT-cores
when the particle number condition is satisfied. This sparsity results from enforcing the
block-sparse structure in the TTO decomposition, as explained in previous sections. In
contrast, when employing the naive methods, the TT-cores tend to become dense. In
Figure 4.6, we present the sparsity within the TT-cores, illustrating the block-sparse TT
decomposition of the eigenfunction of H, as described in Section 3.3.1.

(a) (b) (c)

Figure 4.5: The TTO decomposition of H ∈ R2d×2d for d = 8 is obtained through three
methods: (1) using the TT-SVD algorithm (refer to Algorithm 1), (2) employing the
sum of rank-1 TTOs+TT-rounding algorithm (see Section3.2.3), and (3) enforcing the
block-sparse structure in the TT-cores. These approaches are represented in the left,
middle, and right figures, respectively.
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Figure 4.6: Average sparsity within TT-cores and TT-ranks. For each block-sparse TT-
core, sparsity is measured as the ratio of zero elements to the total number of elements.
The left figure depicts the sparsity within the TT-cores of the TTO decomposition while
varying the TTO-ranks. The right figure showcases the sparsity within the TT-cores of
the TT decomposition of the eigenfunction at different TT-ranks. Both illustrations are
conducted for a Hydrogen chain, taking into account the block-sparse structure.

To properly put this construction of the block-sparse TTO decomposition into con-
text, we conduct in Figure 4.7 a comparison with the state-of-the art tensor network soft-
ware ITensor, which implements QC-DMRG. We focus here on a Hydrogen chain where
d ∈ {4, . . . , 20}. We begin by measuring the time needed to construct the TTO decom-
position of the Hamiltonian operator while ensuring the preservation of particle number
for both our method and ITensor. It is worth noting that while ITensor also yields block-
sparse tensors, they are not stored in the same manner or follow the same structure as
our method. We then compare these times with a straightforward naive construction
approach that does not consider the block-sparse structure in the TT decompositions.
Additionally, we verify whether the TTO-ranks obtained from both libraries align with
the expected theoretical TTO-rank, which scales quadratically with the system’s size d,
i.e O(d2), (for further insights on the derivation of this scaling, we direct the reader to
[2, 17]). All benchmark tests are conducted using a single thread to maintain consistency
and fairness in our evaluations.

It is noteworthy that when d > 4, our method exhibits a notable advantage, being ap-
proximately one order of magnitude faster than the naive construction method. However,
it is also observed to be about one order of magnitude slower than ITensor’s approach.
ITensor’s out-performance can be attributed to the use of a highly efficient functionality
known as AutoMPO/OpSum, which allows for the efficient addition of sums of rank-1 TTs,
see [28] for more details on this functionality. Nevertheless, it is essential to highlight that
the construction of the TTO can be readily parallelized, as elucidated in Figure 4.13(a).
This parallelization offers a promising avenue to speedup the TTO construction, which is
a crucial preliminary step before beginning the QC-DMRG procedure. Additionally, from
the Figure 4.7, we note that the obtained numerical TT-ranks are in accordance with the
expected theoretical TTO-ranks.
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Figure 4.7: Comparison between three methods, ITensor, Sparse Block Tensor Train
(SBTT), and the naive TTO construction, for computing the TTO decomposition of
Hamiltonian operators within a Hydrogen chain in the STO-3g basis set.

In Figure 4.8, the left figure illustrates the variation of TTO-ranksRk for each k ∈ {1, . . . , 38}
while varying the compression threshold δ. These results are for the LiH molecule in the
cc-pVDZ basis set, with d = 38 and N = 4 electrons. In the right figure, we present
the corresponding relative error of the QC-DMRG energies to evaluate the impact of
compression.

Notably, for this molecule, at around ϵ = 10−5 with a maximum rank of 534 (which
is less than the theoretical rank of 781), we already achieve a relative error of 10−5.
This shows that while the exact representation (without compression, as introduced in
Section 3.2.2) is advantageous in avoiding numerical errors that can arise from numerical
compression, compression is also valuable for reducing TTO-ranks, which may not be
straightforward to achieve with exact representations.
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Figure 4.8: Left figure: TTO-ranks at each fixed iteration k for different accuracies ϵ.
Right figure: relative error obtained for numerically finding the ground-state energy with
QC-DMRG vs accuracy ϵ.
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4.3.2 Basic operations on block-sparse structured TT represen-
tations:

Compression and orthogonalization with block-sparse structured TT repre-
sentations

Given the block-sparse structure in the TT-cores of both the TTO decomposition of the
Hamiltonian operator (refer to Figure 4.1) and the eigenfunction denoted as Ψ (refer to
Figure 4.2), substantial reductions in computational costs can be realized. This proves
particularly valuable during compression, orthogonalization, and contraction which are
common operations in QC-DMRG calculations.

As outlined in the introductory section, reducing the TT-ranks of a tensor in TT-
format can be achieved using TT-rounding, see Algorithm 2. This algorithm involves
applying a tSVD to the matricization of the TT-cores. Orthogonalization is an integral
part of the TT-rounding algorithm, and it serves also as a prerequisite for obtaining
left-orthogonal or right-orthogonal TT-cores within the TT representation of Ψ.

Let (U1, . . . ,Ud) be the block-sparse TT decomposition of Ψ ∈ R2d , with Uk ∈ Rrk−1×2×rk ,
k ∈ [d], r0 = rd = 1. Let (H1, . . . ,Hd) be the block-sparse TTO decomposition of
H ∈ R2d×2d , with Hk ∈ RRk−1×2×2×Rk , k ∈ [d], R0 = Rd = 1.

Here, we need to perform QR and SVD operations on the mode-(1:2) matricization
or the mode-(1) matricization, of the TT-cores Uk, k ∈ [d], as well as the mode-(1:3)
matricization or the mode-(1) matricization of the TT-cores Hk, k ∈ [d]. Importantly,
these operations can be optimized by exploiting the block structure present in the TT-
cores.

Notably, the matricization of the block-sparse TT-cores results in a block-diagonal
matrix form. The latter can be represented as follows, for k ∈ [d]:

U<2>
k = diag(L1

k,L2
k, . . . ,L

nk
k ), (4.68)

and
U(1)
k = diag(R1

k,R2
k, . . . ,R

nk−1
k ), (4.69)

where U<2>
k ∈ R2rk−1×rk is the mode-(1 : 2) matricization of Uk ∈ Rrk−1×2×rk , U(1)

k ∈ Rrk−1×2rk

is the mode-(1) matricization of Uk, and

nk = min {N + 1, k + 1} − max {1, N − d+ k + 1} + 1. (4.70)

For each ℓ ∈ [nk], there exist corresponding pairs (ik−1, ik); ik ∈ SΨ
k , ik−1 ∈ SΨ

k−1, with
SΨ
k , SΨ

k−1 being defined in (4.2), such that the block matrices Lℓ
k and Rℓ

k are given by:

L1
k = U(max{1,N−d+k},max{1,N−d+k+1})

k [1], Lℓ
k =

U(ik−1,ik)
k [2]

U(ik−1,ik)
k [1]

 =
(

U(ik−1,ik)
k [2]

U(ik,ik)
k [1]

)
, (4.71)

and

Rnk
k = U(min{N+1,k},min{N+1,k+1})

k [1], Rℓ
k =

(
U(ik−1,ik)
k [1] U(ik−1,ik)

k [2]
)

=
(
U(ik−1,ik−1)
k [1] U(ik−1,ik−1+1)

k [2]
)
.

(4.72)
Here U(ik−1,ik)

k [µk] ∈ R
ρΨ

k−1,ik−1
×ρΨ

k−1,ik−1 are the blocks of the TT-cores Uk[µk] with µk ∈ {1, 2},
and ik−1 + q2(µk) = ik for k ∈ [d].

Let (H1, . . . ,Hd) be the block-sparse TTO decomposition of H. The expression of the
matricization of the TT-cores is given as follows, for k ∈ [d]:

H<3>
k = diag(L̃1

k, L̃2
k, . . . , L̃

mk
k ). (4.73)

and
H(1)
k = diag(R̃1

k, R̃2
k, . . . , R̃

mk
k ). (4.74)

where mk = 2βk + 1, with βk = min {k, d− k, 2}. Here, for ℓ ∈ [mk], L̃ℓ
k represents the

concatenation of blocks within the TT-cores sharing the same column-index j′
k ∈ SH

k , SH
k is

defined in (4.6) for the mode-(1 : 3) matricization of Hk. R̃ℓ
k represents the concatenation
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of blocks within the TT-cores, sharing the same row-index j′
k−1 ∈ SH

k−1 for the mode-(1)
matricization of Hk.

Algorithm 8, outlines the main steps to achieve a left-orthogonal block-sparse TT
decomposition of Ψ.

Algorithm 8 Left-orthogonalization of block-sparse TT representation
Input: block-sparse TT representations (U1, · · · ,Ud)
Output: Compute the block-sparse TT representation (U1, . . . ,Ud) with left-

orthogonal TT-cores.
1: procedure BSTT_QR
2: for k = 1 to d− 1 do
3:

QR( U<2>
k︸ ︷︷ ︸

∈R2rk−1×rk

) = QR(


L1
k

L2
k

. . .
Lnk
k

) =


Q1

Q2

. . .
Qnk




R1

R2

. . .
Rnk

 .

4: U<2>
k := diag(Q1,Q2, · · · ,Qnk).

5: for j = 1 to nk do
6: Rj

k+1 := RjRj
k+1. ▷ Update the blocks Rj

k+1, see (4.69).
7: end for
8: U(1)

k+1 := diag(R1
k+1, . . . ,R

nk
k+1).

9: end for
10: end procedure

This algorithm can also be extended to the TT-cores of the TTO decomposition of the
Hamiltonian operator, assuming prior knowledge of the matricization of the block-sparse
structure, see Equations (4.73) and (4.74).

Remark 4.3.3. (Time complexity) One can estimate the time complexity of the step
3 in Algorithm 8, by making certain assumptions. For simplification, assume that all
the blocks in the TT-core at iteration k are of equal sizes with n ≤ (N + 1) being the
number of blocks, i.e r = nρ̃Ψ with ρ̃Ψ = max

ik−1∈SΨ
k−1,ik∈SΨ

k

{
ρΨ
k−1,ik−1

, ρΨ
k,ik

}
, where SΨ

k−1, SΨ
k

are defined in Equations (4.2). Under these assumptions, the computational time needed
for executing a block-sparse QR at step 3 scales as O

(
r3

n2

)
. This implies performing QR

decomposition on blocks n times. Additionally, when it comes to compression, a similar
approach can be adopted. Here, one simply applies a tSVD with a defined threshold δ,
instead of a QR factorization which gives as well an estimation of the computational time
of O( r3

n2 ) under the same assumptions.

Remark 4.3.4. In order to perform a right-to-left orthogonalization, an analogous ap-
proach is employed by iterating backward from k = d to k = 2 and using LQ factorization
instead of QR.

Remark 4.3.5. While the operations we have discussed so far are encountered in 1-site
QC-DMRG calculations, as explained in the introductory section, it is important to note
that to take advantage of rank adaptivity, one can perform 2-site QC-DMRG. In 2-site
QC-DMRG, optimization within each micro-step occurs between consecutive TT-cores of
the TT representation of Ψ. This involves an additional operation in each micro-step,
which is the contraction product between consecutive TT-cores of the TT representation of
Ψ and the contraction product between consecutive TT-cores of the TTO decomposition.

Exploiting the block-sparse structure within the TT-cores results in a similar block-
sparse structure within the newly contracted TT-cores. This new representation allows all
the operations described earlier to be seamlessly performed on the newly obtained block-
sparse contracted TT-cores. To illustrate this, consider the contraction product between
two block-sparse TT-cores from the TT representation of Ψ at fixed indices k and k+1, k ∈
[d− 1], which produces a new TT-core, denoted as Uk,k+1 = Uk ×3 Uk+1 ∈ Rrk−1×2×2×rk+1 .
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Let Uk,k+1[wk] := Uk,k+1[:, µk, νk, :] ∈ Rrk−1×rk+1 , with wk = µk + 2(νk − 1) ∈ {1, 2, 3, 4},
such that

Uk,k+1[wk] = Uk[µk]Uk+1[νk]. (4.75)

The matrix Uk,k+1[wk] ∈ R
ρΨ

k−1,jk−1
×ρΨ

k+1,jk+1 has a block-sparse structure, such that each
block is expressed as:

U(jk−1,jk+1)
k,k+1 [wk] =

∑
jk∈SΨ

k

U(jk−1,jk)
k [µk]U(jk,jk+1)

k+1 [νk], (4.76)

with jk−1 ∈ SΨ
k−1, jk+1 ∈ SΨ

k+1 and SΨ
k is defined in (4.2). Here, we provide the matrix

representations of U(jk−1,jk+1)
k,k+1 [wk] for wk ∈ {1, 2, 3, 4}, assuming that the matrices Uk[µk]

and Uk+1[νk] each have N + 1 blocks, where N is the number of particles:

Uk,k+1[1] =


U(1,1)
k,k+1[1] 0 · · · 0

0 U(2,2)
k,k+1[1] · · · 0

... ... . . . ...
0 0 · · · U(N+1,N+1)

k,k+1 [1]

 , Uk,k+1[2] =


0 U(1,2)

k,k+1[2] · · · 0
... ... . . . ...
0 0 · · · U(N,N+1)

k,k+1 [2]
0 0 · · · 0

 ,
(4.77)

Uk,k+1[3] =


0 U(1,2)

k,k+1[3] · · · 0
... ... . . . ...
0 0 · · · U(N,N+1)

k,k+1 [3]
0 0 · · · 0

 , Uk,k+1[4] =



0 0 U(1,3)
k,k+1[4] · · · 0

... ... . . . . . . ...
0 0 · · · U(N−1,N+1)

k,k+1 [4]
... ... . . . . . . ...
0 0 · · · 0 0


.

(4.78)
Likewise, a block-sparse structure can be obtained by contracting consecutive TT-cores
of the TTO decomposition of the Hamiltonian operator, i.e performing
Hk,k+1 = Hk−1 ×4 Hk ∈ RRk−1×2×2×2×2×Rk+1 .

Tensor contractions with block-sparse structured TT representations

One of the fundamental operations during QC-DMRG sweeps, using the TT representa-
tion of both the operator and the eigenfunction, involves constructing the left and right
components, referred to as G≤k−1 and G>k−1, as depicted in Figure 1.11 in the context of
1-site QC-DMRG. In what follows, we aim to derive a block-sparse representation of these
contraction products by exploiting the structures of the TT-cores. This allows us to de-
sign a scheme to perform these contractions effectively, as they are frequently encountered
in QC-DMRG calculations.

We recall the expressions of G≤k−1 and G>k−1 as introduced in Definition 25. Let
(H1, · · · ,Hd) be the TTO representation of the Hamiltonian operator with Hk ∈ RRk−1×2×2×Rk ,
R0 = Rd = 1. Let (U1, · · · ,Ud) be the TT representation of the eigenfunction, with
Uk ∈ Rrk−1×2×rk , r0 = rd = 1. Let vec

(
G≤k−1

)
∈ Rr

2
k−1Rk−1 (resp. vec

(
G>k−1

)
∈ Rr

2
kRk)

be the vectorization of G≤k−1 (resp. G>k−1) such that

vec
(
G≤k−1

)
= Z1 · · · Zk−1 ∈ Rr

2
k−1Rk−1 , (4.79)

vec
(
G>k−1

)
= Zk+1 · · · Zd ∈ Rr

2
kRk , (4.80)

where Zk ∈ Rr
2
k−1Rk−1×r2

kRk are matrices defined as follows, see Equation (1.166):

Zk =
2∑

µk=1

2∑
νk=1

Uk[µk] ⊗K Hk[µk, νk] ⊗K Uk[νk]. (4.81)

Each TT-core Uk and Hk exhibits a block-sparse structure, with each block satisfying the
following conditions:

U(ik−1,ik)
k [µk] ̸= 0 if ik−1 + q2(µk) = ik,

U(i′k−1,i
′
k)

k [µk] ̸= 0 if i′k−1 + q2(νk) = i′k,

H(jk−1,jk)
k [µk, νk] ̸= 0 if jk−1 + (q2(µk) − q2(νk)) = jk,

(4.82)
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where ik, i
′
k ∈ SΨ

k , and jk ∈ SH
k . We have also

∑
ik∈SΨ

k

ρΨ
k,ik

=
∑
i′
k

∈SΨ
k

ρΨ
k,i′

k
= rk, and

∑
jk∈SH

k

ρH
k,jk

= Rk.

Equation (4.82) indicates that Zk represents a block-sparse matrix subject to specific
constraints on its block entries. Here, we define ℓk−1 and ℓk as follows, for k ∈ [d− 1]:

ℓk−1 = jk−1 + ik−1 + i′k−1, (4.83)
ℓk = jk + ik + i′k. (4.84)

such that ℓk−1 ∈ SZk−1
k−1 and ℓk−1 ∈ SZk

k−1, where for k ∈ {2, . . . , d− 1}, SZk−1
k−1 and SZk

k−1 can
be defined as:

SZk−1
k−1 := {−βk−1 + 2 max {1, N − d+ k} , . . . , βk−1 + 2 min {N + 1, k}} ,

SZk
k := {−βk + 2 max {1, N − d+ k + 1} , . . . , βk + 2 min {N + 1, k + 1}} ,

(4.85)

with βk being defined in (4.6), ℓ0 = 2 and ℓd = 2(N + 1).
We denote the nonzero blocks of Zk as Z(ℓk−1,ℓk)

k . The blocks are determined by group-
ing together, via concatenation, the matrices sharing identical indices ℓk−1 = ik−1 + i′k−1 +
jk−1 and ℓk = ik + i′k + jk. These matrices have the following expression:

2∑
µk=1

2∑
νk=1

(
U(ik−1,ik)
k [µk] ⊗K H(jk−1,jk)

k [µk, νk] ⊗K U
(i′k−1,i

′
k)

k [νk]
)

∈ R
(ρΨ

k−1,ik−1
ρΨ

k−1,i′
k−1

ρH
k−1,jk−1

)×(ρΨ
k,ik

ρΨ
k,i′

k

ρH
k,jk

)
.

(4.86)
We refer the reader to Example 4.3.4, Equation (4.89) for more clarification on the gen-
eration of the blocks Z(ℓk−1,ℓk)

k .
Now, according to the conditions outlined in Equation (4.82), we have:

Z(ℓk−1,ℓk)
k ̸= 0 if ℓk − ℓk−1 = 2η, η ∈ {1, 2} . (4.87)

We provide in (4.88) the block-sparse matrix illustration of Zk ∈ Rr
2
k−1Rk−1×r2

kRk :

Zk =



. . . . . .

. . .

. . .
. . .



. (4.88)

Remark 4.3.6. The variable diagonal_number in the DiagonalQuadraticForm struct, as
illustrated in Appendix .6, refers to either the first diagonal in (4.88) (diagonal_number
= 1) or the second diagonal (diagonal_number = 2).

Example 4.3.4. Consider the contraction product between the TT-cores Uk and Hk at
iteration k = 2, obtained from a TT representation for a system with d = 4 spin-orbitals,
N = 2 particles, and p = 2. According to Equation (4.86), the matrix Z2 takes the
following form:

Z2 =


Z(1,1)

2 Z(1,3)
2

. . . . . .
. . .

Z(5,5)
2 Z(5,7)

2

 ,
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and Z(1,1)
2 , for example, can be constructed by concatenating matrices sharing the same

indices ℓ1 = 1 and ℓ2 = 1, as follows:

Z(1,1)
2 =

[ 2∑
µk=1

2∑
νk=1

(
U(1,1)

2 [µk] ⊗K H(−1,−1)
2 [µk, νk] ⊗K U(1,1)

2 [νk]
)

2∑
µk=1

2∑
νk=1

(
U(1,1)

2 [µk] ⊗K H(−1,−2)
2 [µk, νk] ⊗K U(1,2)

2 [νk]
)

2∑
µk=1

2∑
νk=1

(
U(1,2)

2 [µk] ⊗K H(−1,−2)
2 [µk, νk] ⊗K U(1,1)

2 [νk]
) ]

.

(4.89)

It can be showed that the maximum number of nonzero blocks that we can obtain
within matrices Zk, k ∈ [d] is 4(N + 1) + 2p− 2.

Now, given this block-sparse representation of matrices Zk, we want to design a con-
traction scheme to compute left (resp. right) parts of vec

(
G≤k−1

)
as defined in (4.79)

(resp. vec
(
G>k−1

)
as defined in (4.81)). For the left component, defined as vec

(
G≤k−1

)
,

we can express it differently, using the nonzero blocks of Zk as follows: we denote the
nonzero blocks of vec

(
G≤k−1

)
by

(
vec

(
G≤k−1

))(ℓ0,ℓk−1)
, such that

(
vec

(
G≤k−1

))(ℓ0,ℓk−1)
=

∑
ℓ1∈SZ1

1

∑
ℓ2∈SZ2

2

. . .
∑

ℓk−2∈S
Zk−2
k−2

(Z(ℓ0,ℓ1)
1 Z(ℓ1,ℓ2)

2 . . .Z(ℓk−2,ℓk−1)
k−1 ). (4.90)

By construction and according to Equation (4.87), we can deduce that for k ∈ {2, . . . , d}:(
vec

(
G≤k−1

))(ℓ0,ℓk−1)
̸= 0, if ℓk−1 ∈ SZk−1

k−1 ∩ {ℓ0, ℓ0 + 2, ℓ0 + 4, . . . , ℓ0 + 2(k − 1)} . (4.91)

Thus, vec
(
G≤k−1

)
can be represented as a block-sparse vector with a maximum of k

blocks. According to the expression of ℓ0, see Equation (4.83), we have ℓ0 = 2. In a
similar way, we can write down the right part vec

(
G>k−1

)
as follows:

(
vec

(
G>k−1

))(ℓk,ℓd)
̸= 0, if ℓk ∈ SZk

k ∩ {ℓd, ℓd − 2, ℓd − 4, . . . , ℓd − 2(d− k)} . (4.92)

To provide a clearer understanding, we present an example illustrating the construction
of the left part vec

(
G≤k−1

)
at a fixed iteration k. The same example also extends to the

right part.

Example 4.3.5. Let d = 4, N = 2, and p = 2. The representation of vec
(
G≤d

)
, according

to Equations (4.79) and (4.86), can be expressed as:

vec
(
G≤d

)
=
(
Z(2,2)

1 Z(2,4)
1

)


Z(1,1)
2 Z(1,3)

2
. . . . . .

. . .
Z(5,5)

2 Z(5,7)
2





Z(2,2)
3 Z(2,4)

3
. . . . . .

Z(6,8)
3

. . .
Z(8,8)

3




Z(4,6)

4

Z(6,6)
4


.

(4.93)

The construction of vec
(
G≤k−1

)
can be performed using block matrix multiplications.

For example, at k = 3:

vec
(
G≤2

)
=
(
Z(2,2)

1 Z(2,4)
1

)


Z(1,1)
2 Z(1,3)

2

Z(2,2)
2 Z(2,4)

2
. . . . . .

Z(4,4)
2 Z(4,6)

2

Z(5,5)
2 Z(5,7)

2


=


(
vec

(
G≤2

))(2,2)

︸ ︷︷ ︸
Z(2,2)

1 Z(2,2)
2

(
vec

(
G≤2

))(2,4)

︸ ︷︷ ︸
Z(2,2)

1 Z(2,4)
2 +Z(2,4)

1 Z(4,4)
2

(
vec

(
G≤2

))(2,6)

︸ ︷︷ ︸
Z(2,4)

1 Z(4,6)
2

 . (4.94)
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As you may have noticed, in Equation (4.94), we selectively used only the red nonzero
blocks for the multiplication to form vec

(
G≤2

)
. When constructing vec

(
G≤3

)
, we use

the result obtained for vec
(
G≤2

)
and apply it to Z3. This approach extends to all iter-

ations where k ∈ {4, · · · , d}. For each iteration, specific blocks from the matrices Zk−1

are required to build the left part vec
(
G≤k−1

)
. The same methodology applies when

computing the right part. It is important to note that, in practice, we do not store these
block matrices formed through Kronecker products, except when required.

Algorithm 9 gives the formal procedure to perform a left to right contraction product
with block-sparse TT representations. The final result vec

(
G≤k

)
, k ∈ [d], is stored as a

list of nonzero blocks.

Algorithm 9 Left to right contraction product
Input: block-sparse TT decomposition of both the Hamiltonian operator (H1, · · · ,Hd)
and eigenfunction (U1, · · · ,Ud), iteration number k
Output: vec

(
G≤k−1

)
.

Initialization: vec
(
G≤1

)
=
(
Z(2,2)

1 Z(2,4)
1

)
, list1 = SZ1

1 ∩ {ℓ0, ℓ0 + 2}.
1: procedure ContractionProductLR
2: for m=2 to k-1 do
3: listm = SZm

m ∩ {ℓ0, ℓ0 + 2, ℓ0 + 4, . . . , ℓ0 + 2m}.
4: for n in listm do
5:

(
vec

(
G≤m

))(ℓ0,n)
= ∑

j∈listm−1

(
vec

(
G≤m−1

))(ℓ0,j) Z(j,n)
m .

6: end for
7: vec

(
G≤m

)
=
[ (

vec
(
G≤m

))(ℓ0,ℓ0)
,
(
vec

(
G≤m

))(ℓ0,ℓ0+2)
, . . . ,

(
vec

(
G≤m

))(ℓ0,ℓ0+2m)
]
.

8: end for
9: end procedure

Remark 4.3.7. (Time complexity) For a fixed value of k, k ∈ [d], the time complexity
required to compute the left part denoted by vec

(
G≤k−1

)
scales as:

O
(

d

n̄2m̄

(
r3R

n̄
+ r2R2

m̄

))
. (4.95)

This can be derived by making some assumptions. Let m̄ be the minimum number of
blocks in the TT-cores of the TTO decomposition of the Hamiltonian operator, such
that m̄ ≤ 2p + 1. Assume that all the blocks per TT-core are of the same size, i.e
R = m̄max

k∈[d]
max
jk∈SH

k

{
ρH
k,jk

}
. Additionally, let n̄ be the minimum number of blocks in the

TT-cores of the TT decomposition of the eigenfunction, such that n̄ ≤ N + 1 and assume
that all blocks per TT-core are of the same size, i.e r = n̄max

k∈[d]
max
ik∈SΨ

k

{
ρH
k,ik

}
. At iteration k,

each block in the block-sparse vector vec
(
G≤k−1

)
can be evaluated recursively as follows:

(
vec

(
G≤k−1

))(ℓ0,ℓk−1)
=

∑
ℓk−2∈S

Zk−2
k−1 ∩{ℓ0,...,ℓ0+2(k−2)}

(
vec

(
G≤k−2

))(ℓ0,ℓk−2)
Z(ℓk−2,ℓk−1)
k−1

=
2∑

µk−1=1

2∑
νk−1=1

∑
jk−2∈SH

k−2,ik−2,i
′
k−2∈SΨ

k−2

jk−2+ik−2+i′k−2∈S
Zk−2
k−1 ∩{ℓ0,...,ℓ0+2(k−2)}

(
vec

(
G≤k−2

))(ℓ0,jk−2+ik−2+i′k−2)

(
U(ik−2,ik−1)
k−1 [µk−1] ⊗K H(jk−2,jk−1)

k−1 [µk−1, νk−1] ⊗K U
(i′k−2,i

′
k−1)

k−1 [νk−1]
)

,

(4.96)

where we replaced ℓk−1 by ℓk−1 = ik−1 + i′
k−1 + jk−1 for a given set of indices (ik−1, i′

k−1, jk−1).
Equation (4.96) comprises multiple terms involving the product of a vector with a series of

Kronecker products of matrices. By assuming that
(
vec

(
G≤k−1

))(ℓ0,ℓk−1)
∈ R

r2R
m̄n̄2 , the time com-

plexity for evaluating each term in the sum of Equation (4.96) scales as O
(

1
n̄2m̄

(
r3R
n̄ + r2R2

m̄

))
.

This complexity is achieved through the efficient application of multiplication techniques involv-
ing vectors and a series of Kronecker products of matrices, as elaborated upon in Section 2.3.4.
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Considering that we have k nonzero blocks
(
vec

(
G≤k−1

))(ℓ0,ℓk−1)
to construct the entire left

part vec
(
G≤k−1

)
, the total time complexity can be in order of O

(
d

n̄2m̄

(
r3R
n̄ + r2R2

m̄

))
.

Remark 4.3.8. Note that the variables left_tensors respectively right_tensors, as de-
picted in Appendix .6, correspond to a list of vec

(
G≤k−1

)
, k ∈ [d], respectively list of

vec
(
G>k

)
, k ∈ {2, . . . , d}. Each block within vec

(
G≤k−1

)
, denoted as

(
vec

(
G≤k−1

))(ℓ0,ℓk−1)

corresponds to a variable of type BlockContractions. This variable is characterized by
its diagonal_number, representing its position in the list, and an associated array of vec-
tors. Further details about this array of vectors will be explained in Remark 4.3.9.

Numerical results

Figure 4.9 displays the efficiency of our block-sparse contraction scheme. We employ
Algorithm 9 to perform a left-to-right contraction product, to evaluate vec

(
G≤d

)
, which

results in a scalar. This computation is then compared against a naive contraction, which
does not take into account the block sparsity, using the optimized Julia library for tensor
contractions, known as TensorOperations [23].

In this context, it is important to note that we keep the TTO-rank constant R = 326,
with R = max

1≤k≤d
{Rk}, while allowing the TT-rank of the TT representation of the eigen-

function to vary, indicated as r = max
1≤k≤d

{rk}. Notably, as the TT-Rank r exceeds 130,
we observe that the block-sparse tensor contractions outperforms the direct contraction
approach by approximately one order of magnitude. Additionally, it demonstrates align-
ment with the expected theoretical computational complexity. This numerical result is
conducted for the H12 molecule with d = 24, N = 12 in the STO-3g basis. All numerical
results are conducted using a single thread.
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Figure 4.9: Comparison between execution times for block-sparse tensor contractions and
direct contraction products across different TT-ranks of the TT representation of the
eigenfunction.

Remark 4.3.9. In practice, the blocks in the block-sparse vector vec
(
G≤k−1

)
are con-

structed by concatenating multiple vectors resulting from Kronecker products between
different blocks of the TT representation of the operator and the eigenfunction, sharing
the same index ℓk−1. Indeed, each block in vec

(
G≤k−1

)
has the following form:

(
vec

(
G≤k−1

))(ℓ0,ℓk−1)
:=
[
vL1 vL2 . . . vLnℓk−1

]
, (4.97)

where ℓk−1 ∈ {ℓ0, ℓ0 + 2, . . . , ℓ0 + 2(k − 1)}. Here, nℓk−1 refers to the number of nonzero

vectors vLi ∈ R
ρΨ

k−1,ik−1
ρH

k−1,jk−1
ρΨ

k−1,i′
k−1 for i ∈

[
nℓk−1

]
satisfying jk−1 + ik−1 + i′k−1 = ℓk−1.

For more clarification, we give the following example.
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Example 4.3.6. Let d = 4, N = 2 and k = 2. According to Equation (4.91), vec
(
G≤1

)
is a block-sparse vector that can be viewed as a list of blocks as the following:

vec
(
G≤1

)
:=
[(

vec
(
G≤1

))(2,2) (
vec

(
G≤1

))(2,4)
]
, (4.98)

where ℓ0 = 2, ℓ1 = 2, ℓ2 = 4. Now, if we focus on the block
(
vec

(
G≤1

))(2,2)
, we need to

find all indices (i1, j1, i
′
1) satisfying i1 + j1 + i′1 = 2, for i1, i′1 ∈ SΨ

1 and j1 ∈ SH
1 . It can

be verified that (i1, j1, i
′
1) ∈ {(2,−1, 1), (1,−1, 2), (1, 0, 1)}, such that

(
vec

(
G≤1

))(2,2)
is

stored as a list of blocks:

(
vec

(
G≤1

))(2,2)
:=

(vec
(
G≤1

))(2,2−1+1)

︸ ︷︷ ︸
vL

1

(
vec

(
G≤1

))(2,1−1+2)

︸ ︷︷ ︸
vL

2

(
vec

(
G≤1

))(2,1+0+1)

︸ ︷︷ ︸
vL

3

 ,
(4.99)

such that according to Equations (4.86) and (4.90), (showing only the expression of
vL1 ∈ R

ρΨ
1,i1

×ρH
1,j1

×ρΨ
1,i′

1 ), we have:

vL1 :=
2∑

µ1=1

2∑
ν1=1

(
U(1,2)

1 [µ1] ⊗K H(0,−1)
1 [µ1, ν1] ⊗K U(1,1)

1 [ν1]
)

= U(1,2)
1 [2] ⊗K H(0,−1)

1 [1, 2] ⊗K U(1,1)
1 [1].

(4.100)

Similarly, for the right part, each block in vec
(
G>k−1

)
has the following form:

(
vec

(
G>k−1

))(ℓk,ℓd)
:=
[
vR1 vR2 . . . vRnℓk

]∗
, (4.101)

where ℓk ∈ {ℓd, ℓd−2, . . . , ℓd−2(d−k)}. Here, nℓk refers to the number of nonzero vectors
vRi ∈ R

ρΨ
k,ik

ρH
k,jk

ρΨ
k,i′

k for i ∈ [nℓk ], satisfying ℓk = jk + ik + i′k.
Within QC-DMRG calculations, as we will elaborate on in the subsequent section, es-

pecially for the matrix-vector operations within the eigensolver, our attention is directed
toward the tensorized representation of these vectors, designated as VL

i ∈ R
ρΨ

k−1,ik−1
×ρH

k−1,jk−1
×ρΨ

k−1,i′
k−1

and VR
i ∈ R

ρΨ
k,ik

×ρH
k,jk

×ρΨ
k,i′

k .

Matrix-vector multiplication within the eigensolver with block-sparse struc-
tured TT representations

In this section, we will provide an explanation on how the block-sparse structure in the
TT representation can be exploited to speed-up iterative methods for solving the reduced
eigenvalue problem, see Equation (1.151), during QC-DMRG micro-steps. Performing
the matrix-vector multiplication in iterative methods for solving the eigenvalue problem
stands out as the most time and memory consuming operation, see Figures 4.11(a), 4.11(b)
and Table 1.2.

Let (U1, . . . ,Ud) be the block-sparse TT decomposition of the eigenfunction Ψ ∈ R2d ,
with Uk ∈ Rrk−1×2×rk , r0 = rd = 1, and k ∈ [d], see Corollary 3.3.1. Let (H1, . . . ,Hd)
be the block-sparse TTO decomposition of the Hamiltonian operator H ∈ R2d×2d , with
Hk ∈ RRk−1×2×2×Rk , R0 = Rd = 1, and k ∈ [d], see Theorem 4. As already discussed in
the introductory section, each micro-step in QC-DMRG calculations requires solving (for
the 1-site QC-DMRG, see line 13 in Algorithm 3 for k ∈ [d], the following eigenvalue
equation:

P∗
kHPk︸ ︷︷ ︸

Mk∈R
2r2

k−1×2r2
k

vec (Uk) = λk vec (Uk) , (4.102)

where Pk is given in Definition (23). Let wk := Mk vec (Uk) ∈ R2rk−1rk . The time com-
plexity for computing wk scales as O(2r3R2), where r = max

1≤k≤d
{rk} and R = max

1≤k≤d
{Rk}.

Now, let Wk ∈ Rrk−1×2×rk be the tensor folding of wk. Wk is given by:

Wk = (G≤k−1 ×2 Hk ×3 G>k−1︸ ︷︷ ︸
∈Rrk−1×2×rk−1×rk×2×rk

) ×{3,4,5} Uk, (4.103)
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where ×{3,4,5} refers to the contraction product over the three common modes, see the ex-
ample in (1.26). G≤k−1 ∈ Rrk−1×Rk−1×rk−1 and G>k−1 ∈ Rrk×Rk×rk are defined in Equations
(4.79) and (4.79). As explained in Remark 4.3.9, in practice, each block in the block-
sparse vectors vec

(
G≤k−1

)
and vec

(
G>k−1

)
is stored as a list of tensors. An example is

given in Figure 4.10 for k = 2.
In the following we provide a step-by-step illustration in Figure 4.10 of the operations

involved in constructing Wk. It is worth noting that the TT-cores Wk maintain the same
block-sparse structure as Uk, as demonstrated in [2]. For a fixed set of indices (ik−1, µk, ik),
we denote the blocks in the matrices, defined as Wk[µk] := Wk[:, µk, :], for µk ∈ {1, 2},
by:

W(ik−1,ik)
k [µk] := Wk[µk]|ρΨ

k−1,ik−1
×ρΨ

k,ik

∈ R
ρΨ

k−1,ik−1
×ρΨ

k,ik , (4.104)

where ik ∈ SΨ
k , with SΨ

k being defined in (4.2). The block W(ik−1,ik)
k [µk] can be generated

in three steps; for a fixed set of indices (ik−1, µk, ik):

• Step 1 (depicted in Figure 4.10, step 1): involves contracting the nonzero blocks in
the right part G>k−1 (stored as a list of tensors, as explained in Remark 4.3.9) with
the nonzero blocks in Uk[νk], leading to the generation of temporary objects. These
temporary objects denoted by T 1[νk] can be defined as follows, for νk ∈ {1, 2}:

T 1[νk] = VR
i ×3

(
U(i′k−1,i

′
k)

k [νk]
)∗

∈ R
ρΨ

k,ik
×ρH

k,jk
×ρΨ

k,i′
k−1 , (4.105)

where tensors VR
i ∈ R

ρΨ
k,ik

×ρH
k,jk

×ρΨ
k,i′

k are introduced in Remark 4.3.9, for i ∈ [nℓk ].

Consider that all the blocks per TT-core are of the same size, i.eR = m̄max
k∈[d]

max
jk∈SH

k

{
ρH
k,jk

}
,

with m̄ ≤ 2p+ 1. Additionally, let n̄ be the minimum number of blocks in the TT-
cores of the TT decomposition of the eigenfunction, such that n̄ ≤ N + 1 and assume
that all nonzero blocks per TT-core are of the same size, i.e r = n̄max

k∈[d]
max
ik∈SΨ

k

{
ρH
k,ik

}
.

It follows that, this first step scales as O(R
m̄
r3

n̄3 ).

• Step 2 (depicted in Figure 4.10, step 2): involves contracting the nonzero blocks in
the left part G≤k−1 (stored as a list of tensors, as well, as explained in Remark 4.3.9)
with the temporary objects T 1[νk]. This results into the generation of second tem-
porary objects denoted by T 2

l [νk], for νk ∈ {1, 2}:

T 2
l [νk] = VL

i ×3 T 1[νk] ∈ R
ρΨ

k−1,ik−1
×ρH

k−1,jk−1
×ρΨ

k,ik
×ρH

k,jk . (4.106)

The tensors VL
i ∈ R

ρΨ
k−1,ik−1

×ρH
k−1,jk−1

×ρΨ
k−1,i′

k−1 are introduced in Remark 4.3.9, where
i ∈

[
nℓk−1

]
. Here, each temporary object, T 2

l [νk], is uniquely identified by an index l,
where l refers to a set of indices (ik−1, jk−1, jk, ik) satisfying the condition ℓk−ℓk−1 =
2q2(µk), with ℓk = i′k + jk + ik, ℓk−1 = i′k−1 + jk−1 + ik−1, for all i′k ∈ SΨ

k , i′k−1 ∈ SΨ
k−1,

with i′k−1 = i′k − q2(νk) and jk−1 = jk − (q2(µk) − q2(νk)).

• Step 3 (depicted in Figure 4.10, step 3): consists in contracting the temporary object
T 2
l [νk] with the corresponding nonzero blocks in the TT-cores Hk[µk, νk]. We denote

the number of the corresponding nonzero blocks by τµk
such that τµk

<
∑k
i=1

∑d−k+1
j=1 nℓi−1nℓj ,

where nℓi−1 , and nℓj are introduced in Remark 4.3.9.

The blocks W(ik−1,ik)
k [µk] can be obtained as follows:

W(ik−1,ik)
k [µk] =

τµk∑
l=1

 2∑
νk=1

H(jk−1,jk)
k [µk, νk] ×{1,2} T 2

l [νk]
 . (4.107)

The optimal scaling of the second and third steps combined scale as O(τ(R2

m̄2
r2

n̄2 + Rr3

m̄n̄3 )),
with τ = max

k∈[d]
max

µk∈{1,2}
τµk

.

Note that a similar approach is conducted for the 2-site QC-DMRG.
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Figure 4.10: Let d = 4, N = 2, k = 2. Illustration of the blocks involved in computing
W(i1,i2)

1 [µ1] for a specific set of indices that we denote by (i1, µ1, i2) = (2, 1, 2), correspond-
ing to the blue square. Only the red squares contribute to the construction of W(i1,i2)

1 [µ1].
The labels on the leftmost cubes, elements of the nonzero blocks of vec

(
G≤1

)
, denote

indices (i1, j1, i
′
1) representing the sizes (ρΨ

1,i1 , ρ
H
1,j1 , ρ

Ψ
1,i′1

) , while the labels on the right-
most cubes, elements of the nonzero blocks of vec (G>1), correspond to indices (i2, j2, i

′
2)

representing the sizes (ρΨ
2,i2 , ρ

H
2,j2 , ρ

Ψ
2,i′2

). The three steps are described in equations (4.105),
(4.106), (4.107).
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Numerical results

In line with the numerical results previously presented for the TTO construction, we
now provide in Figures 4.11(a) and 4.11(b) the average computational time required for
performing the key steps in a 2-site QC-DMRG calculations. These steps include:

• Eigsolve: The search for the smallest eigenvalue of the reduced eigenvalue problem,
described in Equations (1.164) and (1.165), and referred to as Eigsolve, where the
Lanczos iterative method is used, (we typically used here few Lanczos iterations,
say 2 iterations per reduced eigenvalue problem).

• Compression: This step involves the compression of the TT-cores resulting from
the eigensolver through tSVD.

• Contraction: The process of updating either the left G≤k−1 or the right parts G>k

through contractions, for k ∈ [d].

As expected, we can observe that the most computationally demanding step is the eigen-
solver, which requires matrix multiplications by Hk. However, it is worth highlighting
that the block-sparse structure offers a noteworthy advantage in accelerating this op-
eration when compared to a conventional, naive matrix-vector calculation using tensor
contractions ( without the block-structure representation) in Figure 4.11(b). We note
that a gain of almost one order of magnitude is obtained when using a block structured
TT representation for all the steps outlined above.

83 337 562
10

-3

10
-2

10
-1

10
0

10
1

10
2

(a)

83 337 562
10

-4

10
-3

10
-2

10
-1

10
0

(b)

Figure 4.11: Comparing average computational times for performing the most dominant
steps in a 2-site QC-DMRG calculations. The numerical illustrations were carried out for
a H10 molecule, with d = 20, a STO-3g basis, and with a maximum TTO-Rank equal to
232.

Once again, to accurately assess the performance of our QC-DMRG algorithm de-
signed for the inherent block-sparse structure of the TT representations, we compare it to
ITensor, as illustrated in Figure 4.12. To ensure meaningful comparisons, both libraries
employ BLAS2 for matrix multiplication, run on the same Julia version, and share simi-
lar parameters. These parameters include the number of Lanczos steps performed at the
core of each QC-DMRG half-sweep, truncation parameters to achieve similar TT-ranks
in the TT representation of the eigenfunction, and the number of sweeps. It is essential
to emphasize that in ITensor, a sparse representation of the Hamiltonian is achieved by
invoking the splitblocks command, see [28]. It is noted also that these benchmark tests
are conducted using a single thread. Additionally, we provide a comparison with a naive
QC-DMRG calculation.

As it can be seen from the figures, as the value of d increases, the performance of
both libraries appears remarkably similar. Furthermore, Itensor exhibits slightly superior
performance for d values within the set {4, 8, 12, 16}. However, our library demonstrates
slightly better performance for the largest TT-ranks, with value 3740, and TTO-ranks,
with a maximum value of 436, studied, d = 28. It is worth noting that both libraries
consistently outperform the naive QC-DMRG calculation.
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Figure 4.12: Comparison between ITensor, SBTT and naive QC-DMRG calculations.
The leftmost figure presents the TTO-ranks vs the number of spin-orbitals d, the middle
figure presents the TT-ranks vs d, and the rightmost figure presents the computational
time required to perform QC-DMRG calculations after 5 sweeps. These numerical results
are conducted for a Hydrogen chain d ∈ {4, . . . , 28} in the STO-3g basis.

Note on parallelization strategies

As previously mentioned, constructing the TTO representation of the Hamiltonian op-
erator can be efficiently parallelized. The coarse-grained approach involves decomposing
the Hamiltonian, in Equation (1.138), into individual sub-Hamiltonian terms, each asso-
ciated with specific orbital indices. This construction process is then parallelized across
#procs processors, where #procs represents the number of processors. Each processor is
responsible for independently constructing a TTO representation by following the steps
detailed in Section 4.3.1. Subsequently, the results from all processors are gathered and
further compressed to yield the TTO representation of the 2-body Hamiltonian opera-
tor. Figure 4.13(a) provides insights into the execution time for constructing the TTO
representation versus the number of processors employed. We note that by using 64
processors, we are able to achieve a 99% reduction in execution time. Additionally, we
present the TTO-ranks obtained from constructing the TTO representations of Hamil-
tonians associated with larger number of orbitals using 64 processors. Work is currently
underway to address the challenge of parallelizing the QC-DMRG algorithm by exploiting
the block-sparse structure. QC-DMRG is inherently sequential and iterative, with each
step often relying on the outcomes of previous steps. This inherent sequential nature
can limit the potential for significant parallel speedup. However, when simulating large
molecules with more than 100 orbitals, parallelization becomes necessary. Efforts to intro-
duce parallelism to specific aspects of QC-DMRG have been proposed in various works.
The most straightforward approach involves parallelizing all linear algebra operations
within QC-DMRG computations involving dense matrix-matrix multiplications. Con-
sidering the block-sparse structure, parallelization over dense blocks, often referred to as
parallelization over symmetry sectors [12, 76, 88, 135], becomes particularly relevant when
implementing QC-DMRG with symmetry restrictions, as is the case in our work. The
block sparsity within the TT-cores provides the advantage of independently handling var-
ious operations such as contractions [76, 114], compression, and matrix-vector operations
within the eigensolver [88]. These operations can be executed simultaneously since each
operation is conducted between matching nonzero blocks, as illustrated in Figure 4.10.
An alternative known approach, as described in [115], involves partitioning the system
into a finite number of partitions, effectively dividing the set [d] into several subsets. In
this approach, the full sweep performed by the sequential algorithm is replaced with con-
current partial sweeps. Each process conducts its sweep along the TT-cores within its
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designated partition. When it reaches the boundary of its partition, it communicates the
results with its neighboring process to update the local TT-core. This update is achieved
through optimization over the contraction of two neighboring orbitals, each belonging to
a distinct partition and the update of TT-cores is achieved through SVD.
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Figure 4.13: The left figure illustrates the parallel TTO construction for the molecule
N2 in the cc-pVDZ basis, with d = 56. This construction was carried out while varying
the number of processors. The right figure showcases the parallel TTO construction of
molecules with large number of spin-orbitals d, employing 64 processors. It provides
a comparison between the obtained numerical ranks and theoretical ranks for a given
compression threshold of ϵ = 10−14.

The tables 4.2 and 4.1, represent the relative energy errors obtained from our imple-
mented QC-DMRG algorithm and ITensor’s for various TT-ranks. We consider the N2
molecule in the cc-pVDZ basis, typically consisting of N = 14 particles and d = 56 spin-
orbitals. The TTO decomposition of the corresponding Hamiltonian matrix H ∈ R256×256

is built in parallel using 64 processors during the pre-computational steps. In this ex-
ample, we have a reference solution that approximates the full configuration interaction
solution, i.e the energy of the exact eigenvalue on R256 , obtained from [56], which is:

λref = −109.280319Eh, (4.108)

where Eh is the unit of the energy, Hartree. Tables 4.2 and 4.1 provide a comprehensive
view of how the TT-ranks evolve as the number of sweeps increases and how the rela-
tive error decreases with each successive sweep. Notably, the second table for ITensor
also highlights a significant challenge – running out of memory during the third sweep,
indicating a limitation of handling this specific computational task, compared to our code.
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Sweeps TT-ranks Relative error

SBTT

1 445 10−2

2 1589 10−3

3 1884 10−4

Table 4.1: N2 molecule in cc-pVDZ basis set with N = 14, d = 56, and maximum TTO-
rank is 1280.

Sweeps TT-ranks Relative error

ITensor

1 445 10−2

2 1589 10−3

3 1884 Out-of-memory

Table 4.2: N2 molecule in cc-pVDZ basis set with N = 14, d = 56, and maximum TTO-
rank is 1280.

4.4 Concluding remarks and perspectives
In this chapter, we introduced our proof-of-concept QC-DMRG library, which is specifi-
cally designed for the particle-preserving quantum chemical 2-body Hamiltonian operator.
In this library, both the TT decomposition of the operator and the eigenfunction are repre-
sented using a block-sparse structure. Subsequently, we centered our attention on building
the block-sparse TTO representation of a 2-body Hamiltonian operator, while having both
the one and two-electron integrals. We illustrated how this approach can be extended to
accommodate any p-body Hamiltonian operator, which can prove to be advantageous for
the TT decomposition of operators employed in nuclear physics or for representing com-
plex Hamiltonians, such as the transcorrelated Hamiltonian [5], a non-Hermitian 3-body
operator. In addition to the construction process, we provided insights into the main algo-
rithms involved, including main algebraic operations such as multiplication and addition
between block-sparse TT-cores.

Our attention then turned to the integration of the block-sparse structure within the
TT decompositions of both the operator and the eigenfunction, optimizing the block-
sparse tensor contractions, as they are essential operations frequently employed during
QC-DMRG sweeps. Additionally, we elaborated on how these structures can be used
to accelerate matrix-vector multiplications within the eigensolver. To contextualize our
proof-of-concept library, we conducted a comprehensive comparison of the fundamen-
tal operations employed, with both naive computations and the state-of-the-art ITensor
library. This yielded to notable conclusions: the block-sparse structure provides a sub-
stantial advantage in speeding up the construction of the Hamiltonian operator, tensor
contractions, and the eigensolver. While ITensor demonstrates superior performance in
the construction of the TTO, it is worth noting that this is an embarrassingly parallel
problem, and parallelization can be employed to accelerate the construction process. Ad-
ditionally, we are actively exploring other avenues for improvement, such as optimizing
the most time-consuming operations, like compression. This includes investigating alter-
natives to the costly truncated SVD approach. Ultimately, both ITensor and our proof-
of-concept library appear to exhibit similar performances when executing QC-DMRG for
a Hydrogen chain as illustrated in this chapter. In future work, we plan to investigate
parallelization strategies to optimize all operations within our library, by exploiting the
block sparsity within the TT decompositions. Additionally, we aim to generalize the
construction of the operator to accommodate a broader range of p-body operators char-
acterized by block-sparse TT decomposition. While the investigation into the algorithm’s
convergence falls beyond the scope of this thesis, in future work we are inclined towards
delving into this aspect. It is noteworthy that, from a theoretical standpoint, there is still
a deficiency in a comprehensive theory addressing global convergence. However, there are
numerous numerical attempts to speed-up convergence, as referenced in Remark 1.3.13.
On our part, we look into the exploration of innovative approaches, such as the potential
incorporation of randomization methods.
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Conclusion and perspectives

In this thesis, we have showed that it is possible to efficiently solve two high-dimensional
problems arising in quantum chemistry by thoroughly investigating and exploiting the
inherent structures of the matrices and tensors involved to overcome the curse of dimen-
sionality. The main novel contributions of this thesis are summarized in the following
list.

• Efficient numerical evaluation of the long-range component of the Coulomb
potential and the long-range 4-th order two-electron integrals tensor In
Chapter 2, our initial focus was on obtaining a low-rank approximation of the
multivariate function (tensor) representing the long-range component of the range-
separated Coulomb potential. In this context, we introduced two novel compres-
sion methods for the long-range component and for the long-range 4-th order six-
dimensional two-electron integrals tensor.
The first approach, referred to as LTEI-TA, relied on two-dimensional Chebyshev
interpolation and Gaussian quadrature for numerical integration. This resulted in
an expansion in terms of tensorized polynomials, as given in Theorem 2, for the
evaluation of a single integral. An error bound for this approximation was provided
in Proposition 2.3.1, showcasing that the approximation error depends on the value
of ω, the separation parameter that controls the regularity of the long-range kernel,
the number of quadrature points Nq1 , the number of interpolation points N , and
the dimension of the hypercube b. Furthermore, we extended this approximation
approach to the 4-th order two-electron integral tensor employed in quantum chem-
istry calculations. This extension resulted in a novel factorized structure, elaborated
in Equation (2.45). We showed that this tensorized structure provides significant
advantages in speeding up basic algebraic operations, notably matrix-matrix multi-
plications. After confirming that the underlying long-range kernel is asymptotically
smooth, as demonstrated in Proposition 2.4.1, the second approach, termed as LTEI-
FMM, employs kernel-independent Fast Multipole Methods to derive a factorized
expression of the kernel and the associated 4-th order two-electron integral tensor,
outlined in Equations (2.55) and (2.60). Following a comparative study between
both methods across various molecules in order to evaluate the long-range Coulomb
matrix, our findings revealed that the LTEI-TA approach exhibits particular effi-
ciency and outperforms LTEI-FMM for small values of ω. However, for large values
of ω, in order to preserve accuracy, the number of interpolation points as well as the
number of quadrature points becomes important for LTEI-TA and thus LTEI-FMM
becomes more efficient. We further investigated the compression of the long-range
4-th order tensor by using screening techniques, low-rank methods, and an adaptive
approach, as described in Section 2.6.2. Most content of this chapter is based on
our publication [4].

• Symmetry preserving tensor train representations arising in QC-DMRG
calculations In Chapter 3, our focus centered on investigating the efficient TTO
representation of the Hamiltonian operator, moving from the classical 2-body quan-
tum chemical Hamiltonian operator to a more general p-body Hamiltonian operator.
This representation is at the core of the QC-DMRG algorithm and can be achieved
through low-rank approximation methods and the exploitation of physical/group
symmetries. By focusing on the derivation of approximate TTO representations,
one of the key takeaways of this work has been the necessity to carefully employ the
low-rank approximation method through truncated SVD, as given in Theorem 3.
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We showed that it is imperative to respect degenerate singular values, as this en-
sures the preservation of essential operator properties. In particular, it maintains
its representation as a symmetric matrix and upholds Abelian symmetries, as the
conservation of particle number and the conservation of the z-component of the total
spin. Our numerical findings further showcased that the application of truncated
SVD with specific thresholds affects additional properties retained by the Hamilto-
nian operator, such as non-Abelian symmetries and the occurrence of non-existing
interaction terms, especially for operators constrained to at most 2-body interac-
tions. Moreover, considering the specified conditions on the entries of the particle-
preserving Hamiltonian operator matrix, we derived a constructive demonstration
showcasing the block-sparse structure inherent within the TT-cores of the TTO de-
composition of a general p-body particle-number preserving Hamiltonian operator,
as highlighted in Theorem 4, such as the TT-cores have a block-sparse represen-
tation with at most 2p + 1 nonzero blocks. The TTO representation derived has
not been introduced in this particular representation before for a general p-body
particle-preserving Hamiltonian operator. Furthermore, we laid the groundwork for
theoretical insights into the block structure of the TT-cores within the TT decom-
position of the eigenfunction, the wavefunction. This wavefunction is presumed to
be invariant under non-Abelian symmetries, such as SU(2). In this study, we have
derived a novel theoretical formulation for the required number of configurations
to achieve a wavefunction with specific target quantum numbers, as described in
Equation (3.135). This formulation, outlined in Proposition 3.3.6, to the best of our
knowledge, has not been previously proposed. Furthermore, we have showed that
the number of blocks within the TT-cores is further reduced when incorporating
SU(2) symmetry, as illustrated in Theorem 5.

• Efficient algorithmic design of basic operations in QC-DMRG and numer-
ical experiments In chapter 4, we have presented our proof-of-concept QC-DMRG
library, designed for the quantum chemical Hamiltonian operator model that incor-
porates particle number conservation (PN). It can be generalized to accommodate
a more general p-body particle-preserving operator, although this extension is not
currently supported in the existing version. The library exploits the block-sparse
structure of both the TT decomposition of the operator and the eigenfunction. We
outlined key algorithms exploiting the block-sparse representation of the TT-cores,
including algebraic operations encountered in QC-DMRG algorithm. Numerical
results across diverse molecules, thus different system sizes d, highlight the bene-
fits of employing block-sparse TT decompositions, including generic construction
of the TTO representation of the Hamiltonian operator, block-wise compression
and orthogonalization, tensor contractions and matrix-vector multiplication within
the eigensolver. Comparisons were made with the state-of-the art ITensor library.
Ultimately, both ITensor and our proof-of-concept library appear to exhibit sim-
ilar performances when executing QC-DMRG for a Hydrogen chain as illustrated
in this chapter. Still, ITensor outperforms our library in constructing the TTO
decomposition.

In the following, we outline potential avenues for future research directions arising
from the findings presented in this thesis.

• In the first part of this work, as highlighted in Chapter 2, it is crucial to acknowl-
edge existing established approaches aiming at handling similar long-range kernels.
Therefore, we anticipate that a comparative analysis against our proposed meth-
ods with the existing methods could yield valuable insights. In our forthcoming
research, we aim also to delve deeper into the potential applications of LTEI-TA for
small values of ω across a wider spectrum of quantum chemistry contexts. This ex-
ploration will encompass post-Hartree-Fock models featuring range separation and
hybrid approaches like (long-range) DMRG–short-range DFT [43]. Additionally, we
anticipate potential benefits for Particle Mesh Ewald methods [21] through these in-
vestigations. Furthermore, we acknowledge the significance of examining the treat-
ment of the short-range TEI tensor, as its computational cost and accuracy depend
on the value of ω, which is the trade-off between the long-range and short-range
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parts, and the numerical method used. A natural extension to this work would be
the treatment of the short-range part. It would be interesting to link LTEI-FMM
with singular quadrature-based evaluation methods for short-range. Additionally,
efficient parallelization of FMM could also benefit to LTEI-FMM on distributed
memory architecture.

• In the second part of this work, as elaborated in Chapter 3, many open questions
remain to be answered. Our current research is dedicated to further exploring
the invariance under SU(2) symmetry and its implications on TT representations.
In this dissertation, in Section 3.3.2, our analysis was limited to the singlet state
(J = 0). An important next step, is to extend this work to encompass any value of
the target total spin J and to examine the resulting TT representation not only for
the eigenfunction but also for the Hamiltonian operator. To do so, we are currently
exploring an alternative parametrization of the wavefunction in order to define a
different basis compatible with the particle-number and spin-symmetry, instead of
the symmetry-adapted basis introduced in Section 3.3.2. This work is still in its
early stages and requires further investigation into the significant algebra involved.

• In the third part of this work, as elaborated in Chapter 4, we will focus on further
optimizing all the library’s operations, expanding the operator’s construction to a
broader range of p-body symmetry-preserving operators including SU(2) symmetry.
We aim to investigate innovative numerical techniques for accelerating the eigen-
solver convergence, such as randomization. Furthermore, the ongoing work involves
the parallelization of the basic operations within the QC-DMRG algorithm using
Message Passing Interface (MPI) on large scale architectures by exploiting the in-
herent block-structure. However, beyond the parallelization of the basic algebraic
operations, we are interested in exploring alternative approaches to parallelize the
serial iterative process within DMRG. We are looking into a new approach inspired
by Parareal method [80], originally developed for parallelizing time-dependent prob-
lems, in order to adapt its concepts to this context.
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Appendices

.1 The defmm library
The defmm library2 is a easy to use C++ implementation of the directional interpolation-
based Fast Multipole Method exploiting equispaced interpolation combined with Fast
Fourier Transforms. Mainly, defmm ensures a O(N) complexity independently of the
particle distribution. Here, we provide an example of a short program calling defmm:
only five lines are needed to construct and apply the FMM matrix to a vector.

1 #inc lude "path to defmm/ inc lude / i n t e r f a c e . hpp "
2 us ing namespace defmm ;
3 i n t main ( ){
4

5 const i n t DIM = 3 ; // Dimension
6 const i n t ORDER = 4 ; // I n t e r p o l a t i o n order
7 const i n t NCRIT = 32 ; // Number o f p a r t i c l e per l e a f c e l l
8 const f l t KAPPA = 0 . ; // Wavenumber ( for o s c i l l a t o r y k e r n e l s )
9 const i n t N = 41334 ; // Number o f po in t s

10

11 // Get random charge vec to r
12 Vecc Q(N) , P(N) ;
13 for ( i n t n = 0 ; n < N; n++){
14 Q[ n ] = cplx ( urand ) ; }
15

16 IBFMM_Mat<DIM> A; // FMM matrix
17 A. addSourcePart ic les INP ( "Y. inp " ,N) ; // Read source p a r t i c l e s in Y. inp
18 A. addTargetPart ic lesINP ( "X. inp " ,N) ; // Read t a r g e t p a r t i c l e s in X. inp
19 A. prcmpt (ORDER,NCRIT,KAPPA) ; // Precompute
20 gemv(A,Q,P) ; // Compute P = A Q
21

22 return 0 ;
23 }

As a header-only library, defmm does not need to be compiled before calling. However,
the library calls both BLAS and the FFTW3 library [31]. Input files for the listing of
source and target particles (that can be the same) are given as a sequence of particle
coordinates (one particle per line, coordinates separated by blanks).

.2 The Hartree-Fock exchange
The efficient construction of the long-range exchange matrix in the Fock matrix is also
interesting [62, 79, 79] and it is considered more expensive than the Coulomb matrix.
This matrix is calculated by using the long-range two-electron integrals tensor Blr. The
long-range exchange matrix is given by:

Klr(µ; ν) = 2
d∑
j=1

N2
b∑

λ,κ=1
qjλqjκBlr(µ;λ;κ; ν), µ, ν ∈ [Nb] , (109)

with qjλ, qjκ, and d being defined in Section 2.5. Using the long-range two-electron in-
tegrals tensor Blr, The evaluation of Klr(µ; ν) costs O(N2

b d). One can use the factorized
structure Blr

LTEI−TA defined in (2.45) to reduce the computational cost to O(Nd(Nb +Nq1N
1
3 )

for LTEI-TA approach with N being the number of Chebyshev interpolation points and

2https://github.com/IChollet/defmm
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Nq1 being the number of quadrature points. We obtain the following representation

Klr
LTEI−TA(µ; ν) = 2

d∑
j=1

Nq1∑
i=1

wi
(
QjM(i)

TA,µ

) 3⊗
l=1

KA(i)
(
QjM(i)

TA,ν

)∗
 , (110)

where for a fixed j ∈ [d] and λ ∈ [Nb], we have Qj ∈ RNb and (Qj)λ = qjλ. The
matrices M(i)

TA,µ ∈ RNb×N3
i , i ∈ [Nq1 ] are obtained by fixing the index µ ∈ [Nb] in the

tensorized representation of M(i)
TA ∈ RN

2
b ×N3

i . These tensor representations are denoted by
M(i)

TA ∈ RNb×Nb×N3
i such that

M(i)
TA[µ, :, :] = M(i)

TA,µ. (111)
Figure 14 displays the execution times required to evaluate the long-range exchange matrix
(109) with respect to the number of basis functions Nb, for small values of ω ∈ {0.05, 0.1}.
We impose that the relative error of LTEI-TA approach for this evaluation is smaller than
10−5 and we compare the running times between a direct computation of (109) given
Blr ∈ RN

2
b ×N2

b and the factorized structure of Blr using Blr
LTEI−TA. It can be seen that

in the case of small values of ω, we notice that a faster construction of (109) is obtained
through LTEI-TA. Compression techniques introduced in Section 2.6.1, can be used here
to get better running times.
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Figure 14: Execution time(s) required for the evaluation of (2.64) using the TEI tensor
Blr for different values of Nb, for ω = 0.05 and ω = 0.1 with imposed relative error smaller
than 10−5.

.3 Method 1: Exact construction of the TTO repre-
sentation of the quantum chemical Hamiltonian

The quantum chemical Hamiltonian is given as follows: for simplicity we consider the
Hamiltonian operator expressed in the spin-orbital basis, as defined in (1.130).

H =
d∑

ij=1
hijA∗

iAj +
d∑

ijkl=1
vijklA∗

iA∗
kAlAj (112)

We start by partitioning the system into left L≤s = {1, . . . , s} and right partsR>s = {s+ 1, . . . , d}.
From this partitioning, we have four different partitions for the first term in the sum in
(112): (L≤s, L≤s), (R>s, R>s), (L≤s, R>s), (R>s, R>s), as well as 16 different partitions for
the second term in the sum: (L≤s, L≤s, L≤s, L≤s), (R>s, R>s, R>s, R>s), (R>s, L≤s, L≤s, L≤s),
(L≤s, R>s, L≤s, L≤s), (L≤s, L≤s, R>s, L≤s), (L≤s, L≤s, L≤s, R>s),
(L≤s, R>s, R>s, R>s), (R>s, L≤s, R>s, R>s), (R>s, R>s, L≤s, R>s),
(R>s, R>s, R>s, L≤s), (L≤s, L≤s, R>s, R>s), (L≤s, R>s, L≤s, R>s), (L≤s, R>s, R>s, L≤s),

161



(R>s, L≤s, L≤s, R>s), (R>s, R>s, L≤s, L≤s), (R>s, L≤s, R>s, L≤s). By exploiting the anti-
commutation relations between the creation and annihilation operators, as well as the
symmetries in the one-electron and two-electron integrals, we arrive at the following ex-
pression for the Hamiltonian operator

H =
∑

ij∈L≤s

hijA∗
iAj + 1

2
∑

ijkl∈L≤s

vijklA∗
iA∗

jAlAk

+
∑

ij∈R>s

hijA∗
iAj + 1

2
∑

ijkl∈R>s

vijklA∗
iA∗

jAlAk + Interactions(L≤s,R>s),

(113)

where

Interactions(L≤s,R>s) = 1
2

 ∑
i∈L≤s,j∈R>s,

hijA∗
iAj +

∑
i∈L≤s,j∈R>s

hjiA∗
jAi

+
∑

(i,k)∈L≤s,(l,j)∈R>s,

vijklA∗
iA∗

kAlAj +
∑

(i,k)∈L≤s,(l,j)∈R>s

vijklA∗
lA∗

jAiAk

+
∑

(i,k)∈L≤s,(l,j)∈R>s

(viklj − vkijl)A∗
iAkA∗

lAj +
∑

(i,k)∈L≤s,(l,j)∈R>s

(
viklj − vkijl)A∗

jAlA∗
kAi

+
∑

i∈L≤s,(j,k,l)∈R>s

(viklj − vkilj) A∗
iA∗

kAlAj +
∑

i∈L≤s,(j,k,l)∈R>s

(viklj − vkilj) A∗
jA∗

lAkAi

+
∑

i∈R>s,(j,k,l)∈L≤s

(viklj − vkilj) A∗
iA∗

kAlAj +
∑

i∈R>s,(j,k,l)∈L≤s

(viklj − vkilj) A∗
jA∗

lAkAi.

(114)
Going from one partition R>s to the previous one R>s−1 (for example from right to left)
gives rise to the following recursive relation

HR>s−1 = I2 ⊗K ĤR>s + Ĥs ⊗K I2d−s + Interactions(s,R>s), (115)

where

ĤR>s =
∑

ij∈R>s

hij(A∗
i )>s(Aj)>s + 1

2
∑

ijkl∈R>s

vijkl(A∗
i )>s(A∗

k)>s(Al)>s(Aj)>s, (116)

with (A∗
i )>s being defined in (1.128). and

Ĥs = hss(A∗A) + 1
2vssss(A

∗A∗AA), (117)

with A being defined in (1.125).
Matrices A∗

i and Ai, as defined in (1.124), can be viewed as a TTO representation of
rank one. Each term in the sums presented in (115) corresponds to a TTO decomposition
with TTO-ranks equal to one. When applying arithmetic operations between sums of
TTO representations, one ultimately obtains a TTO representation. However, it is not
an optimal representation, as some of the terms in the TT-cores may be redundant.

Let (H1, . . . ,Hd) be the TTO decomposition of H. As a reminder, the recursive
relation in (115) using the TT-cores of a TTO representation have the following expression

HR>s−1 [βs, :] =
Rs∑
βs=1

Hs(βs−1; βs) ⊗K HR>s [βs, :], (118)

with

HR>s [βs, :] =
Rs∑
βs=1

. . .
Rd−1∑
βd−1=1

Hs+1(βk; βs+1) ⊗K . . .⊗K Hd(βd−1; 1) ∈ Rn
d−s×nd−s

.

where Hs(βs; βs+1) := Hs[βs, :, :, βs+1]. Let H<2>
s ∈ RRs−1n×nRs be the mode-(1:2) matri-

cization of Hs. We have the following alternative expression of HR>s−1

HR>s−1 = H<2>
s ▷◁ HR>s , (119)

with HR>s ∈ RRs+1nd−s−1×nd−s−1 .
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Now, with these recursive relations in mind, the goal is to derive the expressions for
both the entries of HR>s and the TT-core H<2>

s . To illustrate this, let us consider an
example in the case of d = 4 and s = 1, focusing only on the one-body term that we
denote by H(1), i.e the first sum in (112).

H(1) =
4∑

ij=1
hijA∗

iAj =h11A∗A ⊗K (I ⊗K I ⊗K I) + I ⊗K (h22A∗A ⊗K I ⊗K I) + I ⊗K (I ⊗K h33A∗A ⊗K I)

+ h12A∗ ⊗K (A ⊗K I ⊗K I) + h21A ⊗K (A∗ ⊗K I ⊗K I) + h13A∗ ⊗K (I ⊗K A ⊗K I)
+ h31A ⊗K (I ⊗K A∗ ⊗K I) + I ⊗K (h32A ⊗K A∗ ⊗K I) + I ⊗K (h23A∗ ⊗K A ⊗K I)
+ h14A∗ ⊗K (I ⊗K I ⊗ A) + I ⊗K (h24A∗ ⊗K I ⊗ A) + I ⊗K (I ⊗K h34A∗ ⊗K A)
+ h41A ⊗K (I ⊗K I ⊗K A∗) + I ⊗K (h42A ⊗K I ⊗K A∗) + I ⊗K (I ⊗K h43A ⊗K A∗)
+ I ⊗K (I ⊗K I ⊗K h44A∗A),

(120)
For s = 1, we have

HR>0 = H(1) = H<2>
1 ▷◁ HR>1 . (121)

Here it is clear that

HR>1 =
[

(I ⊗K I ⊗K I) , (h22A∗A ⊗K I ⊗K I) , (I ⊗K h33A∗A ⊗K I) , (A ⊗K I ⊗K I) , (A∗ ⊗K I ⊗K I) ,

(I ⊗K A ⊗K I) , (I ⊗K A∗ ⊗K I) , (h32A ⊗K A∗ ⊗K I) , (h23A∗ ⊗K A ⊗K I) , (I ⊗K I ⊗K A),
(h24A∗ ⊗K I ⊗K A), I ⊗K h34A∗ ⊗K A), (I ⊗K I ⊗K A∗), (h42A ⊗K I ⊗K A∗), (I ⊗K h43A ⊗K A∗),

(122)

(I ⊗K I ⊗K h44A∗A)
]∗

. (123)

and the first TT-core denoted by H<2>
1 is given by:

H<2>
1 =

[
h11A∗A, I, I, h12A∗, h21A, h13A∗, h31A, I, I, h14A∗, I, I, h41A, I, I, I

]
, (124)

H<2>
1 has TTO-rank equals to 16, however, it is notable that there are many redundant

terms in H<2>
1 that can be avoided by employing the following changes

HR>1 =
[

(I ⊗K I ⊗K I)︸ ︷︷ ︸
I22

, (h22A∗A ⊗K I ⊗K I + I ⊗K h33A∗A ⊗K I + h32A ⊗K A∗ ⊗K I

+ h23A∗ ⊗K A ⊗K I + h24A∗ ⊗K I ⊗K A + I ⊗K h34A∗ ⊗K A + h42A ⊗K I ⊗K A∗

+ I ⊗K h43A ⊗K A∗ + I ⊗K I ⊗K h44A∗A), (h12A ⊗K I + h13I ⊗K A) ,
(h13I ⊗K A ⊗K I + h12A ⊗K I ⊗K I + h14I ⊗K I ⊗K A),

(h21A∗ ⊗K I ⊗K I + h31I ⊗K A∗ ⊗K I + h41I ⊗K I ⊗K A∗)
]∗

,

(125)
and

H<2>
1 =

[
h11A∗A︸ ︷︷ ︸

Ĥ1

, I︸︷︷︸
I2

,A∗,A
]
. (126)

According to Equation (115), we note that

ĤR>1 = h22A∗A ⊗K I ⊗K I + I ⊗K h33A∗A ⊗K I + h32A ⊗K A∗ ⊗K I
+ h23A∗ ⊗K A ⊗K I + h24A∗ ⊗K I ⊗K A + I ⊗K h34A∗ ⊗K A + h42A ⊗K I ⊗K A∗

+ I ⊗K h43A ⊗K A∗ + I ⊗K I ⊗K h44A∗A,
(127)

This leads to a TTO-rank equal to 4, effectively reducing the rank of the TT-representation.
Therefore, the approach is to combine terms that share common right/left operators, re-
sulting in what is referred to as a complementary operator, see [17]. While constructing
these complementary operators, particularly for the interaction term in the quantum
chemical Hamiltonian operator, can be considerably more complicated, the authors in
[17] have developed a concise formalism for (114).
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Interaction(L≤s,R>s) = 1
2

 ∑
i∈L≤s

A∗
iS

R>s
i + h.c. +

∑
i∈R>s

A∗
iS

L≤s

i + h.c.


+ 1
2

 ∑
ij∈L≤s

OL≤s

ij PR>s
ij + h.c.


− 1

2

 ∑
ij∈L≤s

BL≤s

ij QR>s
ij + h.c.

 ,
(128)

where the complementary operators are defined as:

• SL≤s/R>s

i = ∑
j∈L≤s/R>s

hijAj +∑
jkl∈L≤s/R>s

(vijkl − vjikl)A∗
jAkAl

• Oij = A∗
iA∗

j .

• Bij = A∗
iAj

• PR>s
ij = ∑

kl∈R>s
vijklAkAl

• QR>s
ij = ∑

kl∈R>s
(viklj − vkilj) A∗

kAl.

with h.c referring to hermitian conjugate. By noting that

PR>s−1
ij = I2 ⊗K P̂R>s

ij + P̂s
ij ⊗K I2d−s +

∑
k∈R>s

vijklA ⊗K (Ak)>s , (129)

HR>s−1 can be represented using the following strong Kronecker product

HR>s−1[
PR>s−1
ij

]
i,j=s−1[

SR>s−1
i

]
i=s−1...[

QR>s−1
ij

]
i,j=s−1

I2d−s+1


=



I2 Ĉs Ĥs

0 P̂1
s

P̂2
s

0 Ŝ1
s

Ŝ2
s

...
0 Q̂1

s
Q̂2

s

0 0 I2


▷◁



ĤR>s[
PR>s
ij

]
i,j=s[

SR>s
i

]
i=s...[

QR>s
ij

]
i,j=s

Î2d−s


. (130)

with ▷◁ being defined in (1.144) and the terms in (130) can be found by using the recursion
rules as explained in [16, 17].

.4 Method 2: Exact construction of the TTO repre-
sentation of a 1-body operator

Consider the following simple operator

O =
d∑
i=1

tiA∗
iAi, ti ∈ R. (131)

Let us consider the case of d = 2 such that

O = t1A∗
1A1 + t2A∗

2A2, (132)

with
A∗

1A1 = A∗A ⊗K I2, A∗
2A2 = I2 ⊗K A∗A (133)

We can write then
O =

[
I2 t1A∗A

]
▷◁

[
t2A∗A

I2

]
. (134)

Now, for d = 3, we have

A∗
1A1 = A∗A ⊗K I2 ⊗K I2, A∗

2A2 = I2 ⊗K A∗A ⊗K I2, A3 = I2 ⊗K I2 ⊗K A∗A, (135)
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which yields to

O =
[
I2 t1A∗A

]
▷◁

[
I2 t2A∗A
0 I2

]
▷◁

[
t3A∗A

I2.

]
(136)

The general case for d ∈ N can be expressed as follows:

O =
[
I2 t1A∗A

]
︸ ︷︷ ︸

H1

▷◁

[
I2 t2A∗A
0 I2

]
︸ ︷︷ ︸

H2

▷◁ .... ▷◁

[
tdA∗A

I2

]
︸ ︷︷ ︸

Hd

. (137)

O has a TTO representation of TTO-ranks 2.

.5 Particle number preserving MPS
The goal of this appendix is to provide a graphical perspective on the block-sparse struc-
ture of the TT decomposition of a particle-preserving wavefunction, as described in [77].
We find this interpretation to be particularly intriguing. We show that the target wave-
function, representing a system with fixed N particles, can be constructed through a
recursive chain of orthogonal transformations using the TT-cores. The latter can be
viewed as linear maps. Then we delve into the characterization of these linear maps and
aim to derive the minimal TT-ranks based on the graphical representation.

A general N -electron wavefunction, denoted as ΨN ∈ Vd
N ⊂ Fd, with Fd being

defined in (1.97), satisfies
NΨN = NΨN , (138)

where n = 2. ΨN can be expressed in the orthonormal basis as follows:

ΨN =
n∑
µ1

. . .
n∑
µd

ΨN(µ1, . . . , µd)eµ1 ⊗K . . .⊗K eµd
∈ Rn

d

, (139)

and
ΨN(µ1, . . . , µd) =

{
ΨN(µ1, . . . , µd),

∑d
k=1 qn(µk) = N,

0, otherwise.
(140)

with the mapping function qn being defined in (PN). Let (U1, . . . ,Ud) be a left-orthogonal
TT decomposition of ΨN , see Definition 20, with TT-ranks (r1, . . . , rd). Each coefficient
from (139) can be written in terms of the TT-cores as follows:

ΨN(µ1, . . . , µd) =
r1∑

α1=1
· · ·

rd−1∑
αd−1=1

U1[µ1](1;α1)U2[µ2](α1;α2) · · · Ud[µd](αd−1; 1), (141)

where Uk[µk] ∈ Rrk−1×rk , k ∈ [d], and r0 = rd = 1. It follows that

ΨN =
n∑

µ1=1

n∑
µ2=1

· · ·
n∑
µd

 r1∑
α1=1

· · ·
rd−1∑

αd−1=1
U1[µ1](1;α1)U2[µ2](α1;α2) · · · Ud[µd](αd−1; 1)

 eµ1⊗K . . .⊗Keµd
.

(142)
By rewriting (142) in the following way,

ΨN =
 ∑
αd−1,µd

Ud[µd](αd−1; 1) · · ·
[ ∑
α1,µ2

U2[µ2](α1;α2)
[∑
µ1

U1[µ1](1;α1)eµ1

]
⊗K eµ2

]
⊗K · · · ⊗K eµd

 .
(143)

One observes that, for k ∈ [d], the TT-cores U<2>
k ∈ Rnrk−1×rk can be regarded as linear

maps defined as follows:
U<2>
k : Wk → Wk−1 ⊗K eµk

. (144)
We define the spaces Wk as follows: the recursive chain towards reaching the target state
ΨN can be elaborated as follows:

ΨN1
1,α1 =

∑
µ1

U1[µ1](1;α1)eµ1 ∈ Rn, (145)

ΨN2
2,α2 =

∑
µ2,α1

U2[µ2](α1;α2)ΨN2
1,α1 ⊗K eµ2 ∈ Rn

2
, (146)

... (147)
ΨN := ΨNd

d,1 =
∑

µd,αd−1

Ud[µd](αd−1; 1)ΨNd−1
d−1,αd−1

⊗K eµd
∈ Rn

d

, (148)
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where ∑d
k=1 Nk = N , Wk := Span

{
ΨNk
k,αk

∣∣∣αk ∈ [rk]
}

⊆ Fk = ⊕k
Nk=0Vk

Nk
and

dim(Wk) = rk ≤ dim(Fk) = nk. For N -electron wavefunction, intermediate vectors, de-
noted here by ΨNk

k,αk
are required to be eigenvectors of the partial particle number operator

as discussed in [2, 77]. The latter can be expressed as N≤k = ∑k
i,j=1 A∗

iAj, such that for
k ∈ [d]

N≤kΨNk
k,αk

= NkΨNk
k,αk

, (149)
This restriction over the particle number yields a block-sparse structure in the TT-cores of
the TT representation as established in [2] and as described in [77], a graphical representa-
tion of the recursive transformation can be provided to illustrate the block-sparse structure
and to derive the minimal TT-ranks. Suppose d = 3, we represent the following illustra-
tion of linear mapping between different Wk spaces through matrices U<2>

k ∈ Rnrk−1×rk .
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Figure 15: Graphical representation for d = 3

Figure 15(a) has a tree structure where each level corresponds to a spin-orbital k and

each node represents the subspace Vk
Nk

, labeled by its dimension, such that dim(Vk
Nk

) =
(
k
Nk

)
.

One can recognize that the arrows between different nodes in the graph represent the map-
ping from one state at k to a new state at k+ 1 through the TT-cores Uk[µk] ∈ Rrk−1×rk ,
i.e depending on whether the state k is occupied µk = 2, q2(µk) = 1, or unoccupied
µk = 1, q2(µk) = 0, a new state in k + 1, can be created or it remains the same. It is
noted that without any restriction on the target particle number of the system, we have
Wk = ⊕k

Nk=1 VNk
k and therefore, the TT-ranks increase drastically with the number of

orbitals d, here the TT-ranks, defined as the sum of labels of the nodes at level k, are
(r1, r2, r3) = (2, 4, 9), if no truncation is made. Now suppose that the target particle
number is N := N3 = 1 while keeping d = 3. As shown in Figure 15(b), the TT-ranks rk
are reduced to (2, 3, 3). As described in [77], it is interesting to investigate the minimal
TT-rank rk for a particle preserving state. To do so, one needs to consider a bipartite
system: we divide our system into two distinct parts, namely left and right parts, such
that at each iteration k

ΨN =
n∑

µ1,...µk=1

n∑
µk+1...µd=1

ΨN(µ1, . . . µk;µk+1, . . . µd)e≤k ⊗K e>k, (150)

where e≤k = eµ1 ⊗K . . .⊗K eµk
, e>k = eµk+1 ⊗K . . .⊗K eµd

. One can identify the minimal
TT-rank r by the rank of the matrix (ΨN)<k> of entries ΨN(µ1, . . . µk;µk+1, . . . µd). To
determine the appropriate minimal TT-rank, we can employ graphical notations. Specifi-
cally, we set r as the minimum of rLk and rRk , where rLk represents the sum of the dimensions
of subspaces Wk obtained at level k while recursively constructing the target state from
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left to right, as depicted in Figure 15(b). Similarly, rRk denotes the sum of dimensions
for the subspaces Wk at level k when constructing the target state from right to left,
as shown in Figure 16(a). In Figure 16(b), we provide a graphical representation of the
minimal TT-ranks for various subspaces by simply taking the minimum dimensions of
left and right subspaces displayed in Figure 15(b) and Figure 16(b), respectively. In this
context, the minimal TT-ranks are given as (2, 2, 1).
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Figure 16: Graphical representation for d = 3

.6 Proof-of-concept of a QC-DMRG library
We present below a diagram that provides a fundamental overview of key structures
within our proof-of-concept library, showcasing their respective fields and illustrating the
different relationships between them. Each struct is described in the following

• Dmrg: includes ksites which denotes the number of sites or the number of spin
orbitals, denoted previously by dspin , mpo of type Mpo which corresponds to the
TT representation of the Hamiltonian operator used in the calculation, while mps of
type Mps stands for the TT representation of the eigenfunction. left_tensors and
right_tensors are components obtained through contraction operations performed
within QC-DMRG sweeps. They are illustrated in Figure 1.11 as G≤k−1 and G>k−1

for a 1-site QC-DMRG at fixed k ∈ [d] and are represented as lists of objects of type
BlockContractions. Additionally, the qf of type QuadraticForm and indices,
list of objects of type IndexDmrg, attributes contain matching block indices used
for calculations within QC-DMRG sweeps, such as updating left and right compo-
nents and solving local eigenvalue problems that involve multiple dense block matrix
multiplications.

• Mpo: includes the number of sites ksites, the number of interactions p (where p
equals to 2 for a 2-body Hamiltonian model) and w represents the list of TT-cores.
Each TT-core follows a block sparse structure as elaborated in Section 3.3.1 and is
represented as a collection of objects of type BlockDiagonalMpo.

• Mps: includes the number of sites ksites, the number of particles nparticles and
x represents a list of TT-cores. Each TT-core follows a block sparse structure as
elaborated in Section 3.3.1 and is represented as a collection of objects of type
BlockDiagonalMps.

• BlockDiagonalMpo/BlockDiagonalMps includes the variable diagonal_number,
where diagonal_number ∈ {1, 2} for mps and ∈ {1, 2, 3, 4} for mpo. It also de-
pends on the parameter nblocks, which represents the number of blocks per diago-
nal_number. For mps, the maximum number of blocks is nparticles + 1, and for
mpo, it is 2p + 1. Within this struct, we have a list of dense matrices mat, which
serves as the representation of the blocks in the sparse block TT-cores. Additionally,
block_index indicates the position of these blocks, and tt_coresizes is of type Dict
(dictionary) and specifies the size of each block.
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• DiagonalQuadraticForm: includes the position of blocks block_indices, and their
respective sizes, referred to as block_sizes. The latter are computed using block
Kronecker products between the TT-cores of mps and mpo at each site. The variable
diagonal_number ∈ {1, 2}, will be elaborated upon further in Section 4.3. It is
important to note that we do not store the resulting matrices from these Kronecker
products, except when required as explained in Section 4.3. Instead, we retain only
the corresponding block indices in memory. Further explanation of this can be found
in Section 4.3.

• QuadraticForm: includes a list of objects of length ksites denoted by block_info
and of type DiagonalQuadraticForm.

• BlockContractions: is caracterized by a diagonal_number and a vector of dense
matrices denoted by contraction. These dense matrices play a crucial role in the
construction of G≤k−1 or G>k−1 (for the 1-site QC-DMRG) or G>k (for the 2-site
QC-DMRG) at a selected site k ∈ [d].

Dmrg
mpo: Mpo
mps: Mps
ksites: Integer
left_tensors:Vector<Vector<BlockContractions>>
right_tensors: Vector<Vector<BlockContractions>>
qf: QuadraticForm
indices: Vector<IndexDmrg>

BlockContractions
diagonal_number: Integer
contraction: Vector<Matrix>

Mpo
ksites: Integer
p: Integer
w: Vector<Vector<BlockDiagonalMpo> >

Mps
ksites: Integer
nparticles: Integer
x:Vector<Vector<BlockDiagonalMps>>

QuadraticForm
block_info:Vector<Vector<DiagonalQuadraticForm>>BlockDiagonalMpo/BlockDiagonalMps

diagonal_number: Integer
nblocks: Integer
x: Vector<Matrix>
block_index: Matrix
tt_coresizes: Dict DiagonalQuadraticForm

diagonal_number: Integer
block_indices: Vector<Tuple>
block_sizes: Vector<Tuple>

Figure 17: Visualization of key structs and their interactions in our QC-DMRG proof-of-
concept library.
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