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Abstract 

Factor models, fundamental in statistical modeling, provide a versatile framework for 

understanding intricate relationships among variables, particularly valuable in finance where 

variables exhibit strong interconnections. This thesis explores the applications of factor 

models in finance. Chapter 1 relies on factor models for their ability to detect market 

inefficiencies through estimate of idiosyncratic volatility and explores the effectiveness of 

ESG ratings in predicting it. It reveals a negative relationship between ESG ratings and 

volatility. Results emphasize the need to cross-check information from multiple providers 

before ESG integration as divergence leads to lower informative power of ESG ratings in 

predicting risk. Chapter 2 delves into calibration techniques for correlation matrices. 

Unrestricted and restricted factor models, where some betas are set to zero, thus leading to 

specific region or sectoral factors, are considered. Results highlight the superiority of 

restricted latent factor models. We address latent factors using maximum likelihood through 

the Expectation-Maximization algorithm and least squares approaches, implemented with the 

Spectral Projection Gradient algorithm. Chapter 3 introduces an innovative approach based on 

meta-factors to perform stress tests on portfolios, using either historical or hypothetical 

economic scenarios. An application is conducted on actively managed equity portfolios. 

Results offer a better fit than widely used models. The research contributes to the 

understanding of factor model applications in finance, providing empirical insights, 

theoretical developments, and practical methodologies. The findings have implications for 

investors and researchers, guiding ESG integration, correlation estimation, and stress testing 

in financial decision-making. The thesis shows that factor models remain pivotal tools in 

addressing key challenges in finance. 
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ABSTRACT 

Les modèles à facteurs, fondamentaux en modélisation statistique, offrent un cadre polyvalent 

pour comprendre les relations complexes entre plusieurs variables, caractéristique 

particulièrement précieuse en finance où les interconnexions sont fortes. Cette thèse présente 

différentes applications des modèles à facteurs en finance. Le chapitre 1 s’appuie sur les 

modèles à facteurs pour leur capacité à capter les inefficiences de marché, notamment au 

travers de l’estimation de la volatilité idiosyncratique. Le contenu informationnel des 

notations ESG dans la prédiction de cette volatilité est testé. Les résultats soulignent la 

nécessité de vérifier la qualité de la notation auprès de plusieurs fournisseurs de données 

avant d’intégrer l’ESG au processus d’investissement. En effet, la divergence de notation ESG 

pour un même titre est associé à un contenu informationnel plus faible dans la prédiction du 

risque. Le chapitre 2 se penche sur les techniques de calibration des matrices de corrélations 

générées par des modèles à facteurs. Les modèles à facteurs non restreints et restreints, où 

certains bêtas (sensibilités) sont fixés à zéro, et conduisant ainsi à des facteurs régionaux ou 

sectoriels spécifiques, sont considérés. Les résultats mettent en évidence la supériorité des 

modèles à facteurs latents restreints. Nous abordons les facteurs latents en utilisant la méthode 

du maximum de vraisemblance à travers l'algorithme Expectation-Maximization et l’approche 

des moindres carrés au travers de l’algorithme Spectral Projection Gradient. Le chapitre 3 

présente une approche novatrice basée sur des "méta-facteurs" (facteurs de facteurs) pour 

réaliser des stress tests de scénarios économiques passés ou hypothétiques. Une application 

est réalisée sur des portefeuilles d’actions. Les résultats révèlent un comportement des actifs 

stressés plus proche de la réalité que certains modèles, largement utilisés dans l’industrie, 

peuvent suggérer. Cette thèse contribue au développement des modèles à facteurs en finance 

en apportant des éléments empiriques, des développements théoriques et des méthodologies 

pratiques. Les résultats ont des implications pour les investisseurs et les chercheurs, guidant 

l'intégration ESG, l'estimation des corrélations et la conduite de stress tests dans la prise de 

décision financière. La thèse démontre que les modèles à facteurs restent encore aujourd’hui 

des outils essentiels pour l’industrie financière.  
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General Introduction 

Factor models in finance 

Factor models are a fundamental concept in statistical modeling. They provide a framework 

for understanding the complex relationships among variables. These models are particularly 

useful in finance where variables are strongly interrelated. 

One of the key applications of factor models in finance is the extensively use in asset pricing. 

The Capital Asset Pricing Model – CAPM of William Sharpe (1964) and John Litner (1965) 

is considered as a simple form of factor model, where the returns of an asset are explained by 

a market factor (returns of a representative portfolio of stocks, called the market portfolio). 

The model witnesses the emergence of factor models in finance and remains widely used 

nowadays. The power of the CAPM, and factor models in general, lies in their simplicity, 

robustness, and ability to predict relationships (between risk and expected returns in the case 

of the CAPM). Extensions of this model include multi-factor models, such as the Fama-

French three-factor model (Fama, 1993), which introduces additional factors like size (market 

capitalizations) and value (market valuations) to better capture the complexities of stock 

returns.  

In econometrics, factor models are employed to discern underlying economic trends. For 

instance, a macroeconomic factor model may include variables like inflation, interest rates, 

and GDP growth to explain the fluctuations observed in various economic indicators. Beyond 

finance and economics, factor models are also widely used in other fields that exploit large 

and complex datasets. In psychology, for example, a factor model might be applied to 

understand the underlying factors influencing scores on various psychological tests. Besides, 

we will rely on the psychometric literature in the second chapter of this thesis. 
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We distinguish three major types of factor models in finance (Connor, 1995): 

macroeconomic, statistical, and fundamental. Macroeconomic factor models use observable 

economic time series as measures of pervasive factors influencing a financial variable with 

the assumption that this variable is assumed to respond linearly to macroeconomic or financial 

shocks. Statistical factor models use several statistical techniques to estimate the parameters 

of factor models. Principal Component Analysis – PCA (Jolliffe, 2002; Stock et al., 2002) is a 

common method used to identify the underlying factors by capturing the directions of 

maximum variance in the data. Maximum Likelihood Estimation (MLE) and Bayesian 

methods are also employed (Watson and Engle, 1983). Finally, fundamental factor models 

rely on financial assets’ attributes to explain their dynamics (for instance, dividend yield, 

book-to-market ratio, and industry classification can explain a substantial proportion of 

common returns between several stocks or bonds returns).   

Beyond asset pricing, factor models have numerous applications in finance. In portfolio 

management, factor models help to optimize asset allocations by finding sources of 

diversification (Meucci, 2009). In risk management, these models are crucial to quantify and 

manage various sources of risk. For instance, they help institutions understand the impact of 

different factors on portfolio value-at-risk (VaR) and expected shortfall (Jorion, 2007). In 

credit risk modelling and fixed income analysis, factor models can be used to assess the 

creditworthiness of borrowers. They help in identifying common factors that influence the 

credit risk of individual loans (or bonds) and can be used in modeling interest rate risk 

(Altman, 1968; Litterman and Scheinkman, 1991). Factor models find many other 

applications, for instance, in option pricing (Black and Scholes, 1973) or in performance 

attribution (Brinson, 1986). These applications demonstrate the versatility of factor models in 

addressing key challenges and providing valuable insights for the research in finance.  

Factor models offer several advantages that make them still widely used. Dimension 

reduction, where factor models excel, is maybe the most important advantage. Indeed, factor 

models help in reducing the dimensionality of data by capturing commonalities (Fan and 

Liao, 2014). Reducing the dimensionality also leads to improving the interpretability of latent 

structures that drive the observed patterns or confirm the influence of observable factors. This 

feature makes factor models still very useful today despite the emergence of machine learning  
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based models. Indeed, the identified factors often have economic or theoretical meanings, 

making it easier to understand and explain, while some machine learning models, especially 

complex ones like deep neural networks, are often considered "black boxes”. Factor models 

also tend to be more data-efficient, even when dealing with high-dimensional data (Bai and 

Li, 2012). They can effectively capture and summarize the essential information using a 

smaller set of factors while machine learning models may require massive amounts of data to 

perform well thus being costly for financial institutions. 

Factor models come with several limitations, however. Most of these models assume linear 

relationships between observed variables and factors. This assumption might not hold in all 

cases, especially when dealing with complex, non-linear relationships in the data. The lack of 

robustness of some factor models is also a limitation. The performance of factor models can 

be sensitive to the choice of factors and model specifications. Selecting an inappropriate 

number of factors or using an inadequate estimation method can lead to biased results and 

misinterpretations. Finally, two strong limitations should be considered when dealing with 

factor models: the assumption that variables follow a Gaussian distribution and the 

assumption of homoscedasticity. Some factor models assume that the underlying factors and 

idiosyncratic components follow a Gaussian distribution. This assumption may not hold in all 

cases, particularly when dealing with financial data, where extreme events or outliers can 

significantly impact the results (Murray, 2013). Factor models also often assume 

homoscedasticity, meaning that the variance of the idiosyncratic components is constant 

across all observations. In real-world scenarios, this assumption may not hold, particularly 

during periods of high instability and ultimately leads to the inability to capture structural 

breaks.  

In this thesis, we will use factor models to estimate: (i) idiosyncratic volatility, (ii) 

correlations, and (iii) market stress.  
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Estimating idiosyncratic volatility through factor models 

Understanding and quantifying idiosyncratic volatility is crucial in various fields, from 

finance to economics. Idiosyncratic volatility refers to the portion of an asset's total volatility 

that is specific to that asset and not explained by common factors. Factor models offer a 

robust framework for estimating and decomposing this idiosyncratic volatility, providing 

insights into the unique risk associated with individual assets. In the first chapter of this thesis, 

we aim to measure the informative content of a variable in explaining the idiosyncratic 

volatility of stocks. Before doing so, we need a framework to quantify the idiosyncratic 

volatility. Two widely employed factor models for this purpose are the CAPM and the Fama-

French factor model mentioned above. According to the joint hypothesis (Fama, 1991), if 

markets are efficient, the systematic risk should be the only risk for which investors require 

compensation. Hence, the presence of idiosyncratic volatility could indicate the existence of 

factors not captured by the model. 

To estimate idiosyncratic volatility using factor models, we typically follow a two-step 

process. First, we estimate the factor loadings using historical return data and relevant factors 

(such as market returns, size, and value factors). Second, the estimated factor loadings are 

used to compute the systematic risk component, which is then subtracted from the total 

observed volatility to obtain the idiosyncratic volatility. 

One key advantage of using factor models for estimating idiosyncratic volatility is their ability 

to capture the dynamic nature of relationships among assets. Traditional methods often 

struggle with changing market conditions, but factor models can adapt by incorporating new 

factors or modifying existing ones. 

Several studies have explored the effectiveness of factor models in estimating idiosyncratic 

volatility. The research by Ang, Hodrick, Xing, and Zhang (2006) provides insights into the 

application of the Fama-French three-factor model in estimating idiosyncratic volatility in the 

stock market. They find that incorporating size and value factors significantly improves the 

model's explanatory power, enhancing the accuracy of idiosyncratic volatility estimates. 
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Moreover, the work of Bali and Cakici (2008) delves into the role of macroeconomic factors 

in explaining idiosyncratic volatility. They extend traditional factor models by including 

macroeconomic variables, demonstrating that these factors contribute significantly to the 

estimation of idiosyncratic volatility. 

Factor models provide a versatile and powerful framework for estimating idiosyncratic 

volatility, allowing researchers and practitioners to disentangle the unique risk associated with 

individual assets from the broader market movements. 

Estimating correlations through factor models 

Factor models can be specifically designed to uncover underlying structures in multivariate 

datasets. These models acknowledge that observed correlations between variables can be 

influenced by common factors, offering a more nuanced perspective on the interconnections 

within the data. 

The general form of a factor model for correlation matrices can be expressed as: 

Ω = 𝛽𝛽′ + ℰ 

where Ω is the observed correlation matrix, 𝛽 represents the matrix of common factors and ℰ 

is a diagonal matrix capturing the idiosyncratic components. 

Not only factor models are convenient to estimate correlation matrices, but they are also 

recommended by the Basel Committee on Banking Supervision (BCBS) to be used by 

financial institutions. Indeed, banks must deal with a large amount of very complex data. In 

dealing with large cross-sectional dimensions, factor models offer a parsimonious approach1, 

especially relevant for managing corporate counterparties.  

 
1 When using raw pairwise correlations in modelling for 𝑛 assets, we need to estimate:  

𝑛(𝑛−1)

2
 

correlations. It would only be 2𝑛 factor loadings if using 2-factor modelling. Hence, for a banking 

book of 500 names, a financial institution would need to estimate only 1000 parameters instead of 124 

750 correlations.     
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But the Basel 3 requirements involve using a correlation matrix associated with a probabilistic 

factor representation, with at least “two types of systematic risk factors”. It is stated that 

“default correlations must be based on credit spreads or on listed equity prices”. While this 

points to latent factor models that are being dealt with by central bankers and academics, 

linear regression onto observable factors, typically portfolio returns, are often used to build 

correlation matrices compliant with regulatory requirements. 

Ultimately, banks use the factor loadings (of latent factors) generating the closet correlation 

matrix to the historical correlation matrix to model the creditworthiness of individual names 

in their portfolios. Based on this modelling, banks capitalize a default risk charge. These 

requirements lead to practical implications of the two-factor models and correlation 

calibration constraints (Laurent et al., 2016). 

Estimating market stress through factor models 

Stress testing is a critical tool in assessing the robustness of financial systems and institutions 

under adverse conditions. Factor models play a key role in stress testing by providing a 

structured framework to evaluate how various factors impact the performance and stability of 

financial assets. These models help simulate extreme scenarios, enabling financial institutions 

to gauge potential vulnerabilities and develop strategies to mitigate risks. 

In stress testing, a factor model typically incorporates a set of macroeconomic, market, and 

financial variables that are likely to be sources of stress. The model aims to understand how 

changes in these factors can affect the overall portfolio and individual assets. The factors can 

include variables such as interest rates, economic growth rates, exchange rates, and other 

relevant indicators. 

Identifying the key factors that are relevant to the assets under consideration is of foremost 

importance. These factors should capture the major sources of risk. The factor model is then 

used to assess the impact of the stress scenarios on the portfolio. This assessment includes 

evaluating changes in asset prices, market liquidity, credit risk, or other relevant metrics. 



 

7 

 

GENERAL INTRODUCTION 

Regulatory bodies mandate banks to undergo stress tests to ensure their ability to withstand 

adverse economic conditions (as mentioned above). The insights gained from stress testing 

with factor models help financial institutions develop effective risk mitigation strategies 

(Jokivuolle, 2015). Stress-testing through factor models can also help to adjust portfolio 

holdings according to potential market shocks.  

Thesis outline 

In this thesis, organized in three chapters, we exploit factor models to answer current issues in 

the financial industry. We touch upon various fields in the financial research: ESG, risk 

management, portfolio management and banking regulation. The three research articles 

outlined thereafter introduce innovative methods that aim to resolve the following 

problematics:  

(i) Could we use ESG metrics to forecast idiosyncratic risk? 

(ii) What are the most efficient calibration techniques to derive correlation 

matrices associated with factor models? 

(iii) Could we propose a simple but appropriate framework to perform stress tests 

on equity portfolios?  

In the Chapter 1, we rely on factor models for their ability to detect market inefficiencies 

through estimate of idiosyncratic volatility and explores the effectiveness of ESG ratings in 

predicting it. More precisely, we formulate a backtesting procedure to assess the effectiveness 

of ESG ratings in predicting a company's idiosyncratic risk. This involves extending the 

conditional predictive ability test proposed by Giacomini and White (2006) to a panel data 

context. Our approach is applied to forecast stock returns' idiosyncratic volatility, comparing 

two ESG rating systems — Sustainalytics and Asset4 — across three investment regions 

(Europe, North America, and the Asia-Pacific region).  
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While this first chapter provides an empirical methodology, Chapter 2 lies at the intersection 

of theoretical developments and empirical applications. It presents an overview of diverse 

specification and calibration techniques for deriving correlation matrices in factor models. We 

focus on both unrestricted and restricted models, where specific betas (factor loadings) are set 

to zero, leading to region or sectoral factors. We address latent factors through maximum 

likelihood using the Expectation-Maximization (EM) algorithm and least squares approaches 

with the Spectral Projection Gradient algorithm (SPG). Using a dataset of equity returns from 

major US and European credit indices, we conduct a benchmarking exercise by varying the 

number of factors. We evaluate fitting performance, parameter parsimony, ease of 

interpretation, and the ability to handle large pairwise correlations. Finally, Chapter 3 provides 

a robust methodology for practitioners. It introduces an innovative approach using “meta-

factors” for conducting stress tests on portfolios through either historical or hypothetical 

economic scenarios. Stress testing in finance assesses a portfolio's resilience to adverse 

conditions, serving as a valuable supplement to conventional risk measures like volatility, 

VaR, and expected shortfall. Unlike summary statistics, stress testing provides estimates 

linked to specific events, adding meaningful insights. While traditional stress tests often rely 

on historical scenarios by reproducing past events on current holdings, they lack a forward-

looking perspective. Our approach, relies in few parameters, maintains high flexibility, is easy 

to implement, and enhances the understanding of portfolio sensitivities to systematic factors. 

We illustrate the application with actively managed equity portfolios. 

Chapter 1 “Are ESG ratings informative to forecast idiosyncratic risk?” 2 shows a negative 

relationship between ESG ratings and idiosyncratic risk, with higher ratings predicting lower 

levels of idiosyncratic volatility. Furthermore, the predictive accuracy gains are generally 

higher when assessing the environmental dimension of the ratings. Importantly, applying the 

test only to firms over which there is a high degree of consensus between the ESG rating 

agencies leads to higher predictive accuracy gains for all three universes. Beyond providing 

insights into the accuracy of each of the ESG rating systems, this last result suggests that 

information gathered from several ESG rating providers should be cross-checked before ESG 

is integrated into investment processes.  

 
2 This article is under revision in Finance. 
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GENERAL INTRODUCTION 

The results have important implications for investors and researchers. For investors, our 

backtest procedure provides a useful and practical framework for considering ESG rating 

providers before integrating the ratings into the investment process. Our results suggest 

prudence about the information content of ESG ratings when they diverge. For researchers in 

asset pricing, it is crucial to check properly the quality of ESG ratings before using them, 

especially when the ratings are divergent. Moreover, the link between ESG ratings and 

idiosyncratic volatility when the ratings are convergent suggests that ESG investing is not just 

an issue of the preferences of investors, but that ESG ratings can also provide information 

about future fundamentals and risks. Chapter 2 “Correlation matrices with factor structure for 

credit risk exposures”3 finds that besides the fitting performance, parameter parsimony, ease 

of interpretation and ability to deal with large pairwise correlations, restricted latent factor 

models supersede competitors in estimating correlation matrices. We find that when dealing 

with the naïve PCA approach, the final transformation to recover correlation matrix must be 

chosen carefully and restricted versions of optimization-based approaches behave better when 

dealing with intra-classes. It is well known that factor-model tend to smooth the correlation 

matrix, leading to large error for high correlations. Numerical experiments indicate that 

restricted calibration performed better in that aspect too. By restricting the information onto a 

class of issuers that should (a priori) behaves the same way, the restricted version of SPG 

algorithm allows a smaller error on these high empirical correlations than other methods. 

Chapter 3 “Stress-testing: A meta-factor approach”4 shows that meta-factors help to translate 

an economic scenario into market shocks as they exert a significant influence on multiple 

individual factors within the financial system (style or systematic factors in our framework). 

Despite its simplicity, our methodology offers a better fit than other widely use models from 

well-known financial data providers. Beyond the risk management aspects of stress-testing, 

our framework offers the possibility to quickly implement forward or hypothetical stress 

scenarios helping managers to adjust their active portfolios in consequences. 

 

 
3 This article is under further work before submission.  
4 The methodology detailed in this article is implemented as an investment tool for a European asset 

manager. 



 

10 

 

 

1 Are ESG ratings informative to forecast 

idiosyncratic risk5? 

We develop a backtesting procedure that evaluates how well ESG ratings help in predicting a 

company's idiosyncratic risk. Technically, the inference is based on extending the conditional 

predictive ability test of Giacomini and White (2006) to a panel data setting. We apply our 

methodology to the forecasting of stock returns idiosyncratic volatility and compare two ESG 

rating systems from Sustainalytics and Asset4 across three investment universes (Europe, 

North America, and the Asia-Pacific region).  

The results show that the null hypothesis of no informational content in ESG ratings is 

strongly rejected for firms located in Europe, whereas results appear mixed in the other 

regions. In most configurations, we find a negative relationship between ESG ratings and 

idiosyncratic risk, with higher ratings predicting lower levels of idiosyncratic volatility. 

Furthermore, the predictive accuracy gains are generally higher when assessing the 

environmental dimension of the ratings. Importantly, applying the test only to firms over 

which there is a high degree of consensus between the ESG rating agencies leads to higher 

predictive accuracy gains for all three universes.  

Beyond providing insights into the accuracy of each of the ESG rating systems, this last result 

suggests that information gathered from several ESG rating providers should be cross-

checked before ESG is integrated into investment processes. 

 

 
5 Co-authors: Christophe Boucher, EconomiX, CNRS, University Paris Nanterre ; Wassim Le Lann, 

University of Orléans, LEO, Orléans, France ; Sessi Tokpavi, University of Orléans, LEO, Orléans, 

France. 
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CHAPTER 1. ARE ESG RATINGS INFORMATIVE TO FORECAST IDIOSYNCRATIC RISK? 

1.1 Introduction 

Sustainable investing is growing fast, and investors are increasingly integrating 

environmental, social, and governance (ESG) criteria. According to Bloomberg, ESG assets 

are on track to exceed $53 trillion by 2025, representing more than a third of projected total 

assets under management in North America, Europe, and Asia-Pacific capital markets6. To 

integrate extra-financial information into investment processes, investors typically rely on 

ESG ratings provided by rating agencies, which are scores designed to capture companies' 

ESG performance. However, ESG ratings are derived using heterogeneous methodologies and 

can be quite divergent across rating agencies (Berg et al., 2022b; Dimson et al., 2020). This 

issue has raised important concerns regarding the relevance of ESG ratings for guiding 

investment decisions7. Is there any informational content in the various existing ESG rating 

systems? Is this informational content related to companies’ risk exposure? This article aims 

to provide a statistical methodology to answer these questions by developing a backtesting 

procedure allowing to assess the informational content of ESG ratings in forecasting a 

company's risk-related outcome. Our test evaluates the effectiveness of extra-financial metrics 

in predicting a company's risk exposure beyond the information conveyed by traditional 

financial variables. 

The global craze for responsible investment has by now led to an abundant and rich literature 

that has tried, with mixed results, to evaluate how sustainable investment impacts market 

variables, and asset prices. Some studies have found that ESG has a positive impact on asset 

prices (Mozaffar et al., 2016; Amel-Zadeh and Serafeim, 2018; Dycket al., 2019; Hartzmark 

and Sussman, 2019), for instance present evidence that firms doing well on ESG issues 

outperform firms doing poorly on these issues. Amel-Zadeh and Serafeim (2018) reaffirm that 

ESG ratings have a material impact on asset prices and more specifically on the cost of 

capital, as investors expect higher return on equity for companies with strong ESG 

performance.  

 
6https://www.bloomberg.com/professional/blog/esg-assets-may-hit-53-trillion-by-2025-a-third-of-

global-aum 
7 See for example recent SEC discussions on ESG ratings: https://www.sec.gov/news/speech/speech-

peirce-061819. 
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Other contributions highlight that socially responsible investors can substantially reduce the 

cost of capital of responsible companies by tilting their portfolio allocation towards these 

firms Gollier and Pouget, 2022; Zerbib, 2022. Dyck et al. (2019) also demonstrate that 

engagement by investors has a positive impact on ESG performance and ultimately on 

financial returns, especially in countries where ESG issues are important. A study of US 

mutual funds flows confirms that investors find value in sustainability as a positive predictor 

of future returns (Hartzmark and Sussman, 2019). 

Arguing the other side though are some works (Riedl and Smeets, 2017; Pastor et al., 2021; 

Pedersen et al., 2020) based on the impact of investor preferences on the dynamics of asset 

prices (Fama and French, 2007), which report that ESG practices have either a negative or a 

positive impact on asset prices. Considering investor preferences for ESG, Riedl and Smeets 

(2017) notice that investors are willing to accept lower expected returns and higher 

management fees for holding companies with strong ESG performance. Pastor et al. (2021) 

model investor preferences for ESG in a mean-variance framework and show that in 

equilibrium, assets considered green generally have lower expected returns but provide 

greater utility and offer the ability to hedge against climate risk. They also introduce an ESG-

factor that reacts to unexpected change in ESG, then conclude that green assets outperform 

when a positive shock hits this factor. Pedersen et al. (2020) extend the mean-variance-ESG 

framework by adding a third type of investor who is unaware of the ESG performance of 

firms. How the ESG ratings affect expected returns then depends on the wealth of this third 

investor. 

Although this literature provides useful information on the link between extra-financial 

performance and asset price dynamics, it does not provide a formal methodology to assess 

whether the available rating systems are effective in measuring a company's exposure to 

financially material sustainability risks. This gap in the literature is even more worrying as the 

correlations between the ratings of the various available providers are weak.  
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Indeed, the divergence of ESG ratings has been widely documented (Chatterji et al., 2009; 

Semenova and Hassel, 2015; Chatterji et al., 2016; Berg et al., 2022b; Dimson et al., 2020), 

and Berg et al. (2022b) find, for instance, that correlations between the ESG ratings of 

providers are on 54% for a set of six different ESG providers, whereas the credit ratings from 

the main agencies exhibit, on average, a correlation of 99%. They further explore the source 

of this divergence by splitting it into three components and looking at scope, or the selection 

of ESG categories to be measured; measurement, or how the ESG categories are assessed; and 

weight, or the importance given to each category. They observed that measurement explains 

more than 50% of the total divergence8. The divergence of ESG rating systems has important 

implications for sustainable investing. ESG ratings disagreement can lead to completely 

opposite opinions on one and the same company, dispersing ESG preferences of investors 

(Billio et al., 2019). It also makes it difficult to empirically assess the impact of ESG 

performance on stock returns (Berg et al., 2022a) and can result in risk premiums for 

companies with high rating disagreement (Gibson Brandon et al., 2021). 

Against this background, our paper introduces a statistical inferential procedure that allows 

testing the informational content of a given ESG rating system in forecasting a company's 

risk-related outcomes. Our backtest is based on a risk management approach, if informative 

ESG ratings should have significant power in predicting a company's specific risk exposure 

beyond the information conveyed by financial variables. Our procedure evaluates ESG ratings 

by comparing the forecasting abilities of two nested models that differ solely in the inclusion 

or exclusion of ESG ratings within the set of predictor variables. In this setting, our null 

hypothesis of a lack of informational content in ESG ratings is defined as the equality in 

forecast accuracy between the two nested models, implying that integrating ESG ratings 

among predictor variables does not help to forecast the specified target variable. Technically, 

our inferential procedure extends the conditional predictive ability test of Giacomini and 

White (2006) to a panel setting. We derive the Gaussian asymptotic distribution of the test 

statistic under weak assumptions.  

 
8 Unlike credit ratings, ESG ratings are most often created mainly from non-standardized information 

and are not regulated. Methodologies can be opaque and proprietary, leading to substantial rating 

divergence. 
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A notable advantage of our procedure is the robustness of the distribution of our test statistic 

under the null hypothesis to possible misspecifications of the econometric model used to 

measure the relationship between ESG ratings and the outcome variables. Monte Carlo 

simulations, performed under different types of model misspecification, demonstrate that our 

test has good small sample properties, with a good size and increasing power as the number of 

firms and sample length increase. 

Previous research on the relationship between ESG ratings and firm-level risk outcomes has 

focused on different types of outcome variables. A first strand of the literature has 

concentrated on examining the link between ESG ratings and ESG controversies captured 

through news media screening. This type of outcome variable has been typically used as a 

proxy for corporate misbehavior or as an ex-post indicator for ESG risk materialization. 

Research findings in this area have been marked with mixed results. Champagne et al. (2022) 

constructed a controversy variable using articles published in the Wall Street Journal and 

found that ESG performance, as measured by MSCI KLD ratings, is negatively related to the 

likelihood of ESG controversies. On the other hand, Yang (2022) found that MSCI ratings do 

not help forecast future ESG controversies derived from the RepRisk database. Additionally, 

Bams and van der Kroft (2022) used Asset4 (Refinitiv) ESG controversies to build a measure 

of realized sustainable performance and found that ESG scores from leading rating agencies 

are often inversely related to their measure of sustainability performance. 

Other studies have investigated the link between ESG ratings and market-based measures of 

firm risk, such as the idiosyncratic volatility of stock returns (IVOL) (Boutin-Dufresne and 

Savaria, 2004; Lee and Fa, 2009; Jo and Na, 2012; Mishra and Modi, 2013; Bouslah et al., 

2013). IVOL has often been interpreted as a proxy capturing the stock market reaction to the 

arrival of company-specific information (Becchetti et al., 2015), or as a proxy for innovations 

in a missing risk factor (Chen and Petkova, 2012). Under both interpretations, ESG ratings 

might be linked to IVOL: Serafeim and Yoon (2022a) find that ESG ratings moderate the 

stock market reaction to the arrival of firm specific ESG news, while Pastor et al. (2022) show 

that asset prices react to global ESG news.  
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Multiple studies have indeed reported a link between ESG ratings and IVOL. Jo and Na 

(2012) find a negative link between ESG ratings and idiosyncratic risk. Mishra and Modi 

(2013) find that this negative relation is moderated by financial leverage, while Bouslah et al. 

(2013) find that different components of social performance have different effects on 

idiosyncratic risk. Other studies have also investigated the relationship between ESG ratings 

and other market-based outcomes, such as firm beta (Sodjahnin et al., 2017; Albuquerque et 

al., 2019), or downside risk (Diemont et al., 2016). 

In this chapter, we apply our procedure to evaluate ESG ratings for forecasting a company's 

specific risk, as measured by the idiosyncratic volatility of its stock price. While, in practice, 

our testing procedure can be applied to any target variable, we choose a market-based 

measure of firm risk due to the numerous limitations associated with forecasting ESG 

controversies. First, ESG controversies are typically constructed using natural language 

processing methods on media sources to identify corporate adverse events. Variations in the 

media sources used to compute controversies and differences in the extraction methods 

employed can lead to significant variations among existing controversy variables, which has 

important implications for results replicability9. Second, ESG controversies built on news 

media screening suffer from substantial reporting bias. Barkemeyer et al. (2023) find that the 

location of a company's headquarters significantly influences its media coverage, with firms 

based in the United Kingdom and the United States being five times more likely to receive 

press coverage as controversies. This issue implies that ESG controversies are an inadequate 

proxy for corporate misbehavior. Third, ESG controversies are also a poor proxy for ESG 

risks, or financial risks related to ESG events, as they only capture firm-specific events. 

Recent findings indeed show that global events leading to a reevaluation of ESG concerns can 

have a significant impact on asset prices (Ardia et al., 2022; Pastor et al., 2022). These types 

of global events, such as a sudden risk of an increase in carbon prices that may significantly 

affect the valuation of carbon-intensive companies, cannot be captured through ESG 

controversies. 

 
9 For example, we find that the rank correlations between ESG incidents from Sustainalytics and 

Asset4 in our datasets are weak: 43% for Europe, 43% for North America, and 34% for the Asia-

Pacific region. 
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A second rationale for forecasting a market-based measure of financial risks rather than ESG 

controversies is related to what ESG ratings aim to capture and the reason why investors use 

ESG ratings in the first place. Evidence from investor surveys shows that investors primarily 

use ESG ratings for motives related to investment performance (Amel-Zadeh and Serafeim, 

2018). Consequently, as acknowledged by the Global Reporting Initiative, most existing ESG 

rating systems are assessed from a financial materiality perspective, meaning that rating 

agencies seek to capture companies' financial exposure to ESG-related issues (GRI, 2022). On 

the other hand, while ESG incidents can impact stock prices, they are not necessarily followed 

by asset price movements (Serafeim and Yoon, 2022b). Hence, forecasting a market-based 

risk measure seems to be a more direct way to evaluate ESG ratings. 

We conduct empirical applications to illustrate our methodology, using two leading ESG 

rating systems, Sustainalytics and Asset4, for Europe, North America, and the Asia-Pacific 

region. Our results show that the null hypothesis of no informational content in ESG ratings is 

strongly rejected for firms located in Europe, whereas results appear mixed in the other 

regions. Hence, companies headquarter location appears to be a critical moderator for the 

integration of ESG factors into asset prices. In most configurations, we find a negative 

relationship between ESG ratings and idiosyncratic risk, with higher ratings predicting lower 

levels of idiosyncratic volatility. Furthermore, we find that the forecasting power of ESG 

ratings is generally higher when assessing the environmental dimension of ESG ratings. 

Lastly, and importantly, we find that the predictive accuracy gains derived from ESG ratings 

increase with the level of consensus between rating agencies for all three universes. This final 

finding can be linked to that highlighted by Serafeim and Yoon (2022a), who find that the 

market reaction to ESG news is moderated by the consensus rating. From a practical 

standpoint, our results provide crucial information for portfolio managers who integrates ESG 

rating to assess companies' risk profile, as we show that it is necessary to cross-check the 

information gathered from multiple ESG rating providers before integrating ESG into the 

management process. 
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Our contribution is related to previous works investigating the link between ESG ratings and 

idiosyncratic risk but differs in several aspects. First, past studies do not provide a formal test 

to check the informational content of ESG ratings in forecasting firm risks, which is the 

purpose of this article. In contrast to analyses based on an in-sample setting, we test the 

informational content of ESG ratings using a dynamic forward-looking approach in an out-of-

sample environment. This configuration integrates the possibility that the estimated 

relationship between ESG ratings and firm risk might not be generalizable to a future period, 

while recent research suggests that the integration of ESG factors into asset prices varies over 

time (Ardia et al., 2022; Pastor et al., 2022). Second, our approach accounts for possible 

misspecification of the econometric model used to measure the relationship between ESG 

ratings and the outcome variable. This differs from the previous literature, where the 

correctness of the econometric model is critical to establishing the existence of this link. 

Third, while previous studies identify significant correlations between ESG ratings and firm 

risks, they fail to quantify the improvement in model fit resulting from incorporating extra-

financial information. Our method compares the predictive ability of nested models 

containing financial and extra-financial information, allowing for such quantification. 

The rest of the chapter is organized as follows. Section 1.2 describes our backtesting 

procedure for ESG ratings, focusing on the formulation of the null hypothesis, the 

construction of the test statistic and the analysis of its asymptotic distribution. Section 1.3 

simulates the small sample properties of the test statistic under various settings, and empirical 

applications are considered in Section 1.4. The last section concludes the paper. 

1.2 The backtesting procedure 

This section gives a description of the backtesting procedure for evaluating statistically the 

informational content in ESG ratings. In the first part, we fix the notations and clearly define 

the null hypothesis of interest, while in the second part we provide the test statistic and its 

asymptotic distribution for inference. 
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1.2.1 Notations and the null hypothesis 

To formulate the null hypothesis of our test, we consider an investment universe with 𝑛 traded 

firms and let 𝑦𝑖,𝑡 denote the value at month 𝑡 of a target variable that is intended to measure 

firm-specific risks. For instance, a socially motivated investor seeking to manage the 

environmental and social impact of their asset portfolio can use a variable 𝑦𝑖,𝑡 that measures 

ESG incidents, such as the ones provided by well-known providers (Sustainalytics, Asset4, 

TrueValue Labs, etc.), to test whether ESG ratings help predict future corporate misconduct. 

On the other hand, investors who are interested in the materiality of ESG information on 

investment performance can use a target variable that measures a firm's specific exposure to 

financial risks, such as idiosyncratic volatility. Therefore, our framework is general, as it 

enables users to choose a target variable relevant to their investment objectives. 

Let 𝑥𝑖,𝑡 be a vector of length 𝑝 in which the elements are innovations on 𝑝 financial variables 

that measure the financial strength of firm 𝑖 for the month 𝑡. Examples of such variables are 

dividend yield, sales over assets, debt over assets, or the quick ratio. They measure different 

facets of a firm's solvency including its size, returns, risk, liquidity, debt, and leverage. 

Innovations can be obtained through autoregressive filtering on raw financial variables, or 

simply as deviations from the long-term average. Finally, the value of an ESG rating is 

available for each firm 𝑖 at month 𝑡 and we denote it as 𝜔𝑖,𝑡 ∈ ℝ. This can be a global ESG 

rating measuring environmental, social and governance issues, or only one of these three 

components. 

Now let 𝑚𝑖,𝑡+𝜏
(0)

= Ε(y𝑖,t+τ|𝑥𝑖,𝑡) be the unknown expected value of y𝑖,t for firm 𝑖 at time 𝑡 + 𝜏, 

conditional on its financial strength as measured by innovations 𝑥𝑖,𝑡 in financial variables, 

with 𝜏 as a given forecast horizon. We can use a given predictive model, whether parametric, 

semi-parametric or non-parametric, to forecast 𝑚𝑖,𝑡+𝜏
(0)

. The forecast we denote �̂�𝑖,𝑡+𝜏
(0) (�̂�𝑡+𝑏𝑡

(0) ) 

is based on the information set available at time 𝑡 for all firms, so ℱ𝑡
(0)
= {𝑥𝑖,𝑠, 𝑠 = 𝑡 − 𝑏𝑡 +

1,… , 𝑡, 𝑖 = 1,… , 𝑛} where 𝑏𝑡 refers to the size of the estimation sample and �̂�𝑡+𝑏𝑡
(0)

 collects all 

the estimated parameters.  
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In a parametric model like a linear regression, �̂�𝑡+𝑏𝑡
(0)

is the vector of the estimates of the 

unknown parameters. Otherwise, it corresponds to whatever semi-parametric or non-

parametric estimators are used to forecast 𝑚𝑖,𝑡+𝜏
(0)

. 

Let 𝑚𝑖,𝑡+𝜏
(1)

= Ε(y𝑖,t+τ|𝑥𝑖,𝑡, 𝜔𝑖,𝑡) be defined as 𝑚𝑖,𝑡+𝜏
(0)

, but with the conditional set extended to 

 𝜔𝑖,𝑡, so ℱ𝑡
(1)
= {𝑥𝑖,𝑠, 𝜔𝑖,𝑠, 𝑠 = 𝑡 − 𝑏𝑡 + 1,… , 𝑡, 𝑖 = 1, … , 𝑛}. In other words, 𝑚𝑖,𝑡+𝜏

(1)
 is the 

expected value of y𝑖,t+τ for firm 𝑖 at time 𝑡 + 𝜏, conditional on its financial states as given by 

𝑥𝑖,𝑡 and on its ESG rating as given by 𝜔𝑖,𝑠. We denote �̂�𝑖,𝑡+𝜏
(1) (�̂�𝑡+𝑏𝑡

(1) ) as the forecast value at 

time 𝑡 + 𝜏. 

Suppose that we produce 𝑇0 out-of-sample forecasts of both the expected values 𝑚𝑖,𝑡+𝜏
(0)

 and 

𝑚𝑖,𝑡+𝜏
(1)

 for each firm, so �̂�𝑖,𝑡+𝜏
(0) (�̂�𝑡+𝑏𝑡

(0) ) and �̂�𝑖,𝑡+𝜏
(1) (�̂�𝑡+𝑏𝑡

(1) ), 𝑖 = 1,…𝑛, 𝑡 = 1,… , 𝑇0. With a loss 

function at hand that we denote  ℒ(. ), we can evaluate the predictive performance of each 

model, generating two panels of losses as ℒ𝑖,𝑡+𝜏
(0)

≡ ℒ𝑖,𝑡+𝜏
(0) (y𝑖,t+τ, �̂�𝑖,𝑡+𝜏

(0) (�̂�𝑡+𝑏𝑡
(0) )) and ℒ𝑖,𝑡+𝜏

(0)
≡

ℒ𝑖,𝑡+𝜏
(1) (y𝑖,t+τ, �̂�𝑖,𝑡+𝜏

(1) (�̂�𝑡+𝑏𝑡
(1) )), where again y𝑖,t+τ is the value of y𝑖,t for firm 𝑖 at time 𝑡 + 𝜏. 

From these panels, let Δℒ𝑖,𝑡+𝜏 = ℒ𝑖,𝑡+𝜏
(1)

− ℒ𝑖,𝑡+𝜏
(0)

  be the panel of loss differentials, 𝑖 = 1,…𝑛, 

𝑡 = 1,… , 𝑇0, and 𝜇𝑖(�̂�𝑡+𝑏𝑡
(0) , �̂�𝑡+𝑏𝑡

(1) ) the expected value of the loss differentials for firm 𝑖. 

Hence, our null hypothesis of overall equal predictive ability of the two forecasting models 

can be stated as: 

ℋ0 = �̅�(�̂�𝑡+𝑏𝑡
(0) , �̂�𝑡+𝑏𝑡

(1) ) = 0 (1.1) 

with the alternative hypothesis being: 

ℋ1 = �̅�(�̂�𝑡+𝑏𝑡
(0) , �̂�𝑡+𝑏𝑡

(1) ) < 0 (1.2) 
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Where �̅�(�̂�𝑡+𝑏𝑡
(0) , �̂�𝑡+𝑏𝑡

(1) ) is defined as: 

�̅�(�̂�𝑡+𝑏𝑡
(0) , �̂�𝑡+𝑏𝑡

(1) ) =
1

𝑛
∑𝜇𝑖(�̂�𝑡+𝑏𝑡

(0) , �̂�𝑡+𝑏𝑡
(1) ) 

𝑛

𝑖=1

 (1.3) 

This null hypothesis calls for several remarks. First, when it holds, it means that overall (for 

all 𝑖 and 𝑡) including the ESG rating 𝜔𝑖,𝑡 in the information set does not help for forecasting 

𝑦𝑖,𝑡.  

In consequence, we should conclude that the ESG rating system investigated is void of 

information about 𝑦𝑖,𝑡. Under the alternative hypothesis, considering the ESG rating in 

forecasting 𝑦𝑖,𝑡, overall, gives real benefit across all firms and times. 

Second, in contrast to the traditional framework for comparing predictive ability in Diebold 

and Mariano (1995) and West (1996), we can observe that the null hypothesis involves 

𝜇𝑖(�̂�𝑡+𝑏𝑡
(0) , �̂�𝑡+𝑏𝑡

(1) ), which depends on �̂�𝑡+𝑏𝑡
(0)

 and  �̂�𝑡+𝑏𝑡
(1)

 which are the estimated values of the 

parameters instead of their population values. As discussed by Giacomini and White (2006) in 

a pure time series context, this helps preserve the finite sample behaviour of the estimators in 

the evaluation procedure, hence reflecting the effect of estimation uncertainty on the relative 

performance of the forecasts. This estimation uncertainty allows the comparison of nested 

forecasting models contrary to previous tests of predictive ability. However, they underline 

that adopting such a framework means remembering that the null hypothesis does not check 

the equal predictive ability of the competing models, but rather of the forecasting methods, 

where these methods include the models as well as the estimation procedures and the possible 

choices of estimation window. 

This last remark means that some care is required in applying our test procedure to check for 

the validity of the null hypothesis in (1.1). First, the size of the estimation window should be 

kept fixed in the rolling window procedure  𝑏𝑡 = 𝑏 ensure that parameter uncertainty does not 

vanish asymptotically.  
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This naturally rules out an expanding window forecasting scheme but allows for iterated or 

fixed schemes. Second, we should retain the same forecasting model and scheme and the 

same estimation window length to generate the forecasts �̂�𝑖,𝑡+𝜏
(0) (�̂�𝑡+𝑏𝑡

(0) ) and �̂�𝑖,𝑡+𝜏
(1) (�̂�𝑡+𝑏𝑡

(1) ). 

This is an important requirement, as it guarantees that the two forecasts diverge only by the 

set of information used, ℱ𝑡
(0)
 or ℱ𝑡

(1)
, the first of which excludes data on the ESG ratings for 

all firms. 

1.2.2 Test statistic and asymptotic distribution 

In this section, we provide the test statistic to check for the null hypothesis of a lack of 

informational content in an ESG rating system as expressed in (1.1). To do this we use the 

literature on comparing predictive ability in panel data settings (Davies and Lahiri, 1995; 

Timmermann and Zhu, 2019; Akgun et al., 2020). This literature considers extending the 

traditional predictive accuracy test for time series to a panel framework and it provides a test 

for overall equal predictive ability, meaning for all cross-sectional and time units as specified 

in (1.1) and tests for joint equal predictive ability across cross-sectional units or time clusters. 

Specifically, we draw on the framework of Akgun et al. (2020) who extend the test of Diebold 

and Mariano (1995) to a panel data setting, considering the following test statistic based on 

the sample mean of loss differentials over time and units, so 

�̅�𝑛,𝑇0 = (𝑛𝑇0)
−1∑ ∑ Δℒ𝑖,𝑡+𝜏 

𝑇0

𝑡+𝜏=1

𝑛

𝑖=1

 (1.4) 

and is given by  

𝒯𝑛,𝑇0 =
�̅�𝑛,𝑇0 

𝜎𝑛,𝑇0 /√𝑛𝑇0
 (1.5) 

where 
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𝜎2𝑛,𝑇0 = 𝑛
−1∑𝜎𝑖,𝑇0

2 ,

𝑛

𝑖=1

 (1.6) 

and 𝜎𝑖,𝑇0
2 = 𝑣𝑎𝑟(√𝑇0�̅�𝑖,𝑇0 ) is the long run variance of the 𝑖th time series of loss differentials. 

As our null hypothesis is an extension to a panel setting of the unconditional predictive ability 

test of Giacomini and White (2006), rather than the one of Diebold and Mariano (1995), we 

need here assumptions that differ from those of Akgun et al. (2020), to establish the 

asymptotic distribution of the test statistic in (1.5) 

Assumption 1 For a given forecast horizon 𝜏 ≥ 1 and estimation window size 𝑏 <  ∞, 

suppose that (i) {(𝑦𝑖,𝑡, 𝑥
′
𝑖,𝑡, 𝜔𝑖,𝑡)

′
, 𝑡 = 1,… , 𝑇0} for a given 𝑖 is mixing with 𝛷 of size −𝑟/

(2𝑟 − 2), 𝑟 ≥ 2, or 𝛼 of size −𝑟/(𝑟 − 2), 𝑟 > 2; (ii) 𝛦|𝛥ℒ𝑖,𝑡+𝜏 |
2𝑟
< ∞  for all  𝑡 and a given 

𝑖; (iii) 𝜎𝑖,𝑇0
2 = 𝑣𝑎𝑟(√𝑇0𝜇𝑖(�̂�𝑡+𝑏𝑡

(0) , �̂�𝑡+𝑏𝑡
(1) ))  >  0 for all 𝑇0 sufficiently large and a given 𝑖. 

Assumption 2 �̅�𝑖,𝑇0 = 𝑇0
−1∑ 𝛥ℒ𝑖,𝑡+𝜏 , 𝑖 = 1,…𝑛

𝑇0
𝑡+𝜏=1  are independent, and 

𝛦|�̅�𝑖,𝑇0 |
2+𝛿

< 𝐶 < ∞, (1.7) 

for some 𝛿 > 0 for all 𝑖. 𝜎2𝑛,𝑇0 = 𝑛
−1∑ 𝜎𝑖,𝑇0

2 > 𝛿′ > 0 𝑛
𝑖=1 for all 𝑛 sufficiently large. 

Assumption 1 includes regularity conditions for the validity of Theorem 4 in Giacomini and 

White (2006). These conditions ensure that the test statistic for the unconditional predictive 

ability applied to a fixed cross-sectional unit converges to a standard Gaussian distribution, 

with 

𝒯𝑖 =
�̅�𝑖,𝑇0 

𝜎𝑖,𝑇0 /√𝑇0
𝑇0→∞
→    𝑁(0,1)  (1.8) 
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Assumption 2 assumes the independence between the 𝑛 random variables �̅�𝑖,𝑇0 , 𝑖, … , 𝑛, 

meaning the average values over time of the loss differentials for each firm. This assumption 

allows the Central Limit Theory (CLT) applied to independent and heterogeneous random 

variables (White, 2001, Theorem 5.10) to hold. Note that this assumption is not a strong one 

within our framework, as opposed to macroeconomic forecasting. Indeed, our focus is on 

target variables that are related to firm-specific risk, which is by its nature a specific measure 

for each firm and hence primarily driven by firm characteristics rather than common factors. 

The following proposition provides the asymptotic distribution of the test statistic in (1.5). 

Proposition 1 Under the null hypothesis of a lack of informational content in ESG ratings as 

stated in (1.1), and if Assumptions 1-2 hold, we have that 

𝒯𝑛,𝑇0 =
�̅�𝑛,𝑇0 

𝜎𝑛,𝑇0 /√𝑛𝑇0
𝑇0,𝑛→∞
→      𝑁(0,1)  (1.9) 

Thus, we reject the null hypothesis when 𝒯𝑛,𝑇0 < Ζ𝑛 with Ζ𝑛 the quantile of order 𝜂 of the 

standard Gaussian distribution, and 𝜂 the nominal significance level. The proof of Proposition 

1 is straightforward following Akgun et al. (2020), as we may note that under ℋ0, 

√𝑛𝑇0�̅�𝑛,𝑇0 =
1

𝑛
∑√𝑇0�̅�𝑖,𝑇0  

𝑛

𝑖=1

, (1.10) 

with  �̅�𝑖,𝑇0 as defined in Assumption 2. For a fixed 𝑖, if Assumption 1 holds, √𝑇0�̅�𝑖,𝑇0 

𝑇0,𝑛→∞
→      𝜓𝑖   with 𝜓𝑖~𝑁(0, 𝜎𝑖,𝑇0 

2 ) and 𝜎𝑖,𝑇0 
2 = 𝑣𝑎𝑟(√𝑇0𝜇𝑖(�̂�𝑡+𝑏

(0) , �̂�𝑡+𝑏
(1) )). See Theorem 4 in 

Giacomini and White (2006). Hence the rest of the proof proceeds by noting that under 

Assumption 2 the CLT for heterogeneous but independent variables (White, 2001, Theorem 

5.10) holds and 1/√𝑛∑ 𝜓𝑖
𝑛
𝑖=1 𝑇0,𝑛→∞

→     𝑁(0, 𝜎2𝑛,𝑇0 ) where again 𝜎2𝑛,𝑇0 = 𝑛
−1∑ 𝜎𝑖,𝑇0 

2

𝑖

𝑛
𝑖=1 . 
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Note that to compute our test statistic 𝒯𝑛,𝑇0, we need a consistent estimate �̂�𝑛,𝑇0
2 of 𝜎2𝑛,𝑇0 . 

Under the assumption of cross-sectional independence of loss differentials, it follows that 

�̂�𝑛,𝑇0
2 = 𝑛−1∑ �̂�𝑖,𝑇0

2𝑛
𝑖=1  where �̂�𝑖,𝑇0

2  is a suitable HAC estimator of the long-run variance 𝜎𝑖,𝑇0 
2 of 

the 𝑖th time series of loss differentials, with 

�̂�𝑖,𝑇0
2 = 𝑇0

−1 ∑ Δℒ𝑖,𝑡+𝜏
2

𝑇0

𝑡+𝜏=1

+ 2 [𝑇0
−1∑𝑤𝑇0,𝑗

𝑝𝑇0

𝑗=1

× ∑ Δℒ𝑖,𝑡+𝜏

𝑇0

𝑡+𝜏=1+𝑗

Δℒ𝑖,𝑡+𝜏−𝑗] (1.11) 

and {𝑝𝑇0} is a sequence of integers such that 𝑝𝑇0 → ∞ as 𝑇0 → ∞, 𝑝𝑇0 = 𝑜(𝑇0), and 

{𝑤𝑇0,𝑗: 𝑇0 = 1,2, … ; 𝑗 = 1,… , 𝑝𝑇0} is a triangular array such that |𝑤𝑇0,𝑗| < ∞, T0 =

1,2, … ; 𝑗 = 1,… , 𝑝𝑇0, 𝑤𝑇0,𝑗 → 1 as 𝑇0 → ∞,T0 for each 𝑗 = 1,… , 𝑝𝑇0 (Andrews, 1991). 

1.3 Small sample properties 

In this section we use a realistic simulation framework to analyse the small sample properties 

of the test. We begin by describing the simulation setup and then provide results for the sizes 

and the powers of the test under different forms of misspecification for the forecasting method 

retained. 

1.3.1 Simulation setup 

Our simulation setup proceeds by first simulating a vector 𝑥𝑖,𝑡  of length 𝑝 = 10 of 

innovations in financial variables that measure the financial strength of firm 𝑖 at time 𝑡, with 

𝑡 = 1,… , 𝑇 and 𝑇 ∈ {120,180,240} as the sample size corresponding to 12, 15 and 20 years 

of monthly data. To have a realistic setup, these 𝑝 variables are generated from a multivariate 

Gaussian distribution with mean vector �̅� and covariance matrix Ω calibrated using real data  

 



 

25 

 

CHAPTER 1. ARE ESG RATINGS INFORMATIVE TO FORECAST IDIOSYNCRATIC RISK? 

(see Appendix 1 for details about the calibration). With the vector 𝑥𝑖,𝑡 of length 𝑝 ready at 

hand, we generate the logarithmic value of the target variable 𝑦𝑖,𝑡 for firm 𝑖, as10: 

log(𝑦𝑖,𝑡+1) =  𝑐𝑖
∗ + 𝑥𝑖

′𝛽𝑖
∗ + 𝛾𝜔𝑖,𝑡 + 𝑢𝑖,𝑡+1, (1.12)   

with 𝑢𝑖,𝑡+1 following a standard Gaussian distribution, 𝑐𝑖
∗ as the constant term and 𝛽𝑖

∗ as a 

vector of parameters of length 𝑝. Note that we allow for heterogeneity across firms with 

specific values for the parameters for each firm. The values of 𝑐𝑖
∗ are generated as follows: 

𝑐𝑖
∗ = 𝑐∗ + 𝑈(− |

𝑐∗

10
| ; |
𝑐∗

10
| , (1.13) 

with 𝑈(𝑎; 𝑏) as a uniform random variable over the set [𝑎, 𝑏]. The same perturbation principle 

is used to generate each component of the vector 𝛽𝑖
∗, with: 

𝛽𝑖,𝑗
∗ = 𝛽𝑗

∗ + 𝑈(− |
𝛽𝑗
∗

10
| ; |
𝛽𝑗
∗

10
| , (1.14) 

𝑗 = 1,… , 𝑝 = 1. The reference values 𝑐∗ and 𝛽∗ of the parameters are calibrated using real 

data (see Appendix 1 for details). 

In equation (1.12),  𝜔𝑖,𝑗 is the ESG rating, which for firm 𝑖 and at each date 𝑡 is generated 

from a uniform distribution over the set [0,1], and 𝛾 ∈ ℝ− is a parameter11. Note that our null 

hypothesis holds for 𝛾 = 0, since the ESG rating does not have any predictive content for 𝑦𝑖,𝑡. 

With 𝛾 diverging from zero, the null hypothesis does not hold, because high lagged values of 

the ESG rating decrease the values of 𝑦𝑖,𝑡. 

 
10 We use the logarithm, as most of possible candidate variables for 𝑦𝑖,𝑡 are positive, including ESG 

incident variables. 
11 Note that we also considered a setup in which the ESG ratings 𝜔𝑖,𝑗 are generated using a persistent 

AR(1) process to match the stylized fact of infrequent changes in ESG ratings. Simulations results 

available from the authors upon request show similar small sample properties of our inferential 

procedure. 
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Based on our design and for each Monte Carlo replication, with 𝑛 and 𝑇 fixed, the above 

simulation design is run for the 𝑛 firms, with 𝑛 ∈ {100,250,500}. This leads to a pure 

heterogeneous panel for 𝑦𝑖,𝑡 the 𝑝 = 10 innovations in financial variables 𝑥𝑖,𝑡 and the ESG 

rating 𝜔𝑖,𝑡, with 𝑖 = 1,… , 𝑛 and 𝑡 = 1,… , 𝑇. 

1.3.2 Sizes and powers under a medium level of misspecification 

For each Monte Carlo replication, we use the generated variables 𝑦𝑖,𝑡,  𝑥𝑖,𝑡, and 𝜔𝑖,𝑡, 𝑖 =

1, … , 𝑛, 𝑡 = 1, … , 𝑇 and a fixed forecasting method to generate the forecast of 𝑚𝑖,𝑡+1
(0) =

Ε(y𝑖,t+1|𝑥𝑖,𝑡) and 𝑚𝑖,𝑡+1
(1)

= Ε(y𝑖,t+1|𝑥𝑖,𝑡, 𝜔𝑖,𝑡), so �̂�𝑖,𝑡+1
(0) (�̂�𝑡,𝑏

(0)) and �̂�𝑖,𝑡+1
(1) (�̂�𝑡,𝑏

(1)) with b the 

estimation sample that we set to 𝑏 = [0.75𝑇] and [𝑎] the integer part of 𝑎. This means that we 

use the first 75% of the 𝑇 observations for each firm as the estimation sample and generate 𝑇0 

forecasts corresponding to the last 25% of the observations, meaning 𝑇0 = [0.25𝑇] and 𝑇 =

𝑇0 + 𝑏. 

The forecasts for both models are obtained using pooled OLS regression models. This means 

that both forecasting models are misspecified because the true panel structure of the data is 

heterogeneous across units. Besides, there is another form of misspecification that arises 

because the true data generating process uses a linear form for the logarithm of 𝑦𝑖,𝑡 (see Eq. 

1.12), while the pooled OLS regression models are fitted for the raw values of the same 

variable. Our goal is to evaluate how robust our inferential procedure is to these two levels of 

misspecification, which we call medium in comparison to another more severe form of 

misspecification that we will consider next. It may be recalled that the asymptotic behaviour 

of our test statistic under the null hypothesis suggests that with 𝛾 ∈ ℝ− in (1.12) diverging 

from zero, the null hypothesis is more likely to be rejected for 𝑇0, 𝑛 →  ∞, or equivalently, 

𝑇, 𝑛 →  ∞. 

Figure 1.1 displays the rejection frequencies of the null hypothesis with respect to the 

parameter 𝛾 for a given couple (𝑛, 𝑇) with the nominal significance level set to 5%. The 

rejection frequencies are computed over 1,000 simulations.  
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Overall, the test exhibits very good small sample properties, and we observe that the rejection 

frequencies for all couples (𝑛, 𝑇) are close to 5% for 𝛾 and increase monotonically as 𝛾 

diverges from 0. 

We also observe that for a fixed 𝑛 and 𝛾 < 0  the powers increase with 𝑇. Indeed, for 𝑛 =

100 and 𝛾 = −0.25 the rejection frequencies for 𝑇 of 120, 180 and 240 are 39.10%, 53.30% 

and 61.00% respectively. The same behaviour is observed for a fixed 𝑇 and 𝛾 < 0 with the 

powers increasing with 𝑛. For instance, with 𝑇 = 120 and 𝛾 = −0.25 the rejection 

frequencies for 𝑛 = 100, 250 and 500 are respectively 39.10%, 71.50% and 91.30%. Hence 

our inferential procedure exhibits very good small sample properties. Figure A2.1 in 

Appendix 2 displays the rejection frequencies for the same simulation setup using the absolute 

error loss function. We can observe similar small sample properties, offering proof that our 

test is robust to the loss function. 

 
Figure 1.1  Rejection frequencies under a medium level of misspecification with the squared 

error loss function 

1.3.3 Sizes and powers under a high level of misspecification 

We now consider a configuration that will help us evaluate the properties of the test with 

respect to the choice of financial variables.  
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In the last subsection we assumed that the user of the test includes in the forecast models all 

the 𝑝 = 10 innovations in the financial variables that enter the specification of the true model, 

but we make here the assumption that only some of these variables are retained. In each 

Monte Carlo replication, the following two pooled OLS models are estimated to compute out-

of-sample forecasts �̂�𝑖,𝑡+1
(0) (�̂�𝑡,𝑏

(0)) and �̂�𝑖,𝑡+1
(1) (�̂�𝑡,𝑏

(1))  of 𝑚𝑖,𝑡+1
(0)

= Ε(y𝑖,t+1|𝑥𝑖,𝑡) and 𝑚𝑖,𝑡+1
(1)

=

Ε(y𝑖,t+1|𝑥𝑖,𝑡, 𝜔𝑖,𝑡): 

𝑦𝑖,𝑡+1 =  𝑐 + �̇�𝑖,𝑡
′ 𝛽 + 𝑣𝑖,𝑡+1

(0)
, (1.15) 

𝑦𝑖,𝑡+1 =  𝑐 + �̇�𝑖,𝑡
′ 𝛽 + 𝜔𝑖,𝑡𝛾 + 𝑣𝑖,𝑡+1

(1)
, (1.16) 

with 𝑣𝑖,𝑡+1
(0)

 and 𝑣𝑖,𝑡+1
(1)

 as the error terms and �̇�𝑖,𝑡
′  as a vector with 𝑝 = 2 randomly chosen 

financial variables from the 𝑝 = 10 relevant ones as its elements, and �̂�𝑡,𝑏
(0) = (�̂�, 𝛽′̂)

′
, �̂�𝑡,𝑏

(1) =

(�̂�, 𝛽′̂, 𝛾)
′
. Assessing the small sample properties of the test with this additional form of 

misspecification is of great interest because such misspecification could probably arise in 

empirical applications where users are very likely to be wrong in their choice of the financial 

variables that matter. 

Figure 1.2 displays the rejection frequencies over 1,000 simulations. We observe that the 

proposed test is robust to this form of misspecification. Indeed, the rejection frequencies are 

like those displayed in Figure 1.1, suggesting that making a mistake in the choice of financial 

variables is not harmful. Results available from the authors upon request show that the 

robustness holds even when the misspecification is more pronounced as only a quarter of the 

financial variables of interest are chosen. The robustness to the choice of the loss function can 

be seen in Figure A2.2 in Appendix 2. 
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Figure 1.2  Rejection frequencies under a high level of misspecification with the squared error 

loss function 

 

1.4 Empirical applications 

This section illustrates our backtesting procedure using real datasets. We apply our 

methodology to two popular providers of ESG ratings, Sustainalytics and Asset4, over three 

universes from North America, Europe, and the Asia-Pacific region. We first describe our 

datasets and the related variables, and then conduct inferences to evaluate the informational 

content of each of the rating systems. 

1.4.1 Description of the datasets and variables 

The dataset for each of the three universes contains information for 𝑛 firms at a monthly 

frequency over a period ranging from January 2010 to October 2018, giving a total of T=106 

months. Note that we restrict our investigations to this period, as Sustainalytics has made a 

major change in the methodology for constructing its ratings in December 2018, with an 

inconsistency in the chaining of the ratings before and after this date. Precisely, before (after) 

this date, the ratings are performance (risk) measures, with higher (lower) ratings 

corresponding to best practices for environmental, social and governance issues.  
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Obviously, one solution would be to transform the risk-ratings into performance-ratings, but 

such a transformation would be arbitrary, and would not guarantee consistency in the scales of 

values. The North America, Europe and Asia-Pacific datasets gather information on 

respectively n=326, n=238 and n=217 firms. This deep panel structure ensures a high power 

for our backtesting methodology (see Monte Carlo simulations), with a total of 34,556, 25,228 

and 23,002 pooled observations for the North America, Europe, and Asia-Pacific universes. 

Table 1.1 displays pooled descriptive statistics of the ESG ratings for the two providers over 

the three universes. We may note that for both providers, higher values of the ESG ratings 

indicate higher ESG performance. 

Table 1.1  Pooled descriptive statistics of the ESG ratings 

 

The average values of the ESG ratings for the Europe universe are 66.53 for Sustainalytics 

and 64.43 for Asset4. This means the central statistics are similar for both providers, as is 

confirmed by the values of the median of 67.30 for Sustainalytics and 66.13 for Asset4 for the 

Europe universe. This stylised fact holds for the other two universes. However, the Asset4 

ESG ratings have more variability across time and firms as given by the values of the standard 

deviations and ranges. The standard deviations of the Asset4 ESG ratings for instance are 

approximately twice as high as those for Sustainalytics. 
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Figure 1.3 displays the evolution over time of the cross-sectional averages of the ESG ratings 

for the two providers in the three universes. We observe growth over time in the cross-

sectional averages, which suggests a tendency towards upward revisions of the ESG ratings 

for firms. Assuming that ESG ratings accurately reflect ESG performance, this shows an 

overall improvement trend over time in the corporate behaviour of firms across the three 

universes regarding environmental, social, and governance best practices. 

Figure 1.3  Dynamics of the cross-sectional means of the ESG ratings 

(a) Europe 

 

(b) North America 

 

(c) Asia-Pacific 
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Source: The figure displays the scatter plot that shows the graphical relation between the ESG 

ratings for the two providers considered (Sustainalytics and Asset4). The dataset contains 

monthly observations for n=238 firms from January 2010 to October 2018, giving a total of 

106 months. 

To evaluate the link between the two rating systems, Figure 1.4 displays the scatter plot of the 

pooled ESG ratings from the two providers for the Europe universe. The figure also displays 

the fitted least square regression line, along with the adjusted R-squared, which is equal to 

40.88%. Hence the link across firms and time between the two ESG ratings is weak, though it 

is positive. As already underlined, this has been highlighted many times in the literature and 

constitutes the main motivation of our paper, which proposes, in a context of limited 

convergence, a formal backtesting procedure for evaluating the informational content of ESG 

rating systems. The phenomenon is not only European and is also highlighted for the other 

two universes as shown by Figures A2.3 and A2.4 in Appendix 2. The trend is of the same 

order for the North America universe with an R-squared of 46.46%, but we observe a more 

pronounced divergence in the Asia-Pacific universe with an R-squared of only 32.65%. 
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Figure 1.4  Relation between the Sustainalytics and Asset4 ESG ratings: Europe 

 

Source: The figure displays the scatter plot that shows the graphical relation between the ESG 

ratings for the two providers considered (Sustainalytics and Asset4). The dataset contains 

monthly observations for n=238 firms from January 2010 to October 2018, giving a total of 

106 months. 

Information on the target variable 

In this sub-section, we provide information on the target variable. We consider the 

idiosyncratic volatility of stock returns as our dependent variable of interest. These variable 

measures idiosyncratic risk at the firm level that is not captured by traditional risk factors. 

ESG ratings could significantly help predict this target variable as stock markets can react to 

the arrival of firm specific ESG events (Serafeim and Yoon, 2022a) or global news 

corresponding to innovations in an ESG factor (Pastor et al., 2021; Ardia et al., 2022). 

Another choice could be a variable or score measuring ESG incidents from leading providers. 

However, they seem divergent across providers, as the rank correlations between ESG 

incidents from Sustainalytics and Asset4 for instance are weak at 43% for Europe, 43% for 

North America and 34% for the Asia-Pacific region. Moreover, in this paper, we adopt the 

perspective of an investor using ESG information for its materiality on investment 

performance because this is the primary reason why investors use ESG information and many  
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rating agencies adopt this perspective (Amel-Zadeh and Serafeim, 2018). Since ESG news is 

not always financially relevant for investors (Serafeim and Yoon, 2022b), using a direct 

measure of financial risks, such as idiosyncratic volatility, seems more appropriate in our 

context. 

To compute idiosyncratic volatility for each firm 𝑖 we collect daily stock returns 𝑟𝑖,𝑠 over our 

period of investigation from January 2010 to October 2018, with a total of 2,304 observations. 

For each universe, we also collect the daily returns 𝑟𝑚,𝑠 of the MSCI stock index over the 

same period, using MSCI Europe, MSCI USA and MSCI Pacific for the Europe, North 

America, and Asia-Pacific universes. Residual returns are thus extracted assuming that the 

Capital Asset Pricing Model (CAPM) holds, with: 

𝑟𝑖,𝑠 = 𝛼𝑖 + 𝛽𝑖𝑟𝑚,𝑠 + 𝜖𝑖,𝑠, (1.17) 

where 𝛼𝑖 is the alpha of the stock, 𝛽𝑖 is the beta or exposure of the stock to the market, and 

𝜖𝑖,𝑠 is the innovation or residual return for stock 𝑖 at day 𝑠. With the daily residual returns, we 

compute monthly idiosyncratic realized volatility as follows: 

𝐼𝑅𝑉𝑖,𝑡 = ∑ 𝜖�̂�,𝑠𝑘
2

𝑣𝑡

𝑠𝑘=1

, (1.18) 

with 𝑡 the index of the month, 𝑣𝑡 the number of daily observations in month 𝑡, and 𝜖�̂�,𝑠𝑘  the 

𝑠𝑘𝑡ℎ fitted residual returns within month 𝑡. For each firm 𝑖 in a given universe, we obtain a 

time series of monthly idiosyncratic realized volatility of length 106, which thus matches the 

monthly frequency and the length of the ESG data analysed in the previous sub-section. The 

backtesting procedure is then applied using the logarithmic transform of the idiosyncratic 

realized volatility as the target variable. 
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Remark 1 The CAPM model in (1.17) is likely to be misspecified. In this case, our target 

variable 𝑦𝑖,𝑡 ≡ 𝑙𝑜𝑔 (𝐼𝑅𝑉𝑖,𝑡 ) would be correlated across firms. However, recall that 

Proposition 1 does not require cross-sectional independence between 𝑦𝑖,𝑡, but rather between 

loss differentials averaged over time. Besides, we further use a multi-factorial model to check 

the sensitivity of our results to the choice of the factor model. 

Table 1.2  Pooled descriptive statistics of idiosyncratic realized volatility 

 

Table 2.2 displays the pooled descriptive statistics of monthly idiosyncratic volatilities for the 

three universes. The Asia-Pacific universe appears as the one where firms have on average the 

highest levels of idiosyncratic volatility. In terms of dispersion, the North America universe 

has more variability in the measure of the volatility of residual returns, as given by the values 

for the standard deviation and the range. 

To get an overhead view of the monthly series of idiosyncratic realised volatilities, Figure 1.5 

displays the evolution over time of the cross-sectional means of monthly idiosyncratic 

realised volatilities. We observe the typical dynamics, with volatility clusters that nevertheless 

seem less pronounced because we are dealing with idiosyncratic volatility, and not total 

volatility which includes the systematic part. 
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It may be recalled that our backtesting procedure is designed to test the informational content 

of the ESG ratings by checking whether they have predictive power for future idiosyncratic 

risk, as measured here by increased idiosyncratic volatility of stock returns. Hence, the 

relationship that the test aims to validate is that high ESG ratings lead to low idiosyncratic 

volatilities and low ratings lead to high volatilities. 

So, before we apply the backtesting procedure formally, Figures 1.6 and 1.7 try to illustrate 

whether there is such a relationship in the Europe universe. These figures report the 

distribution of the lagged values of the ESG ratings (Figure 1.6 for Sustainalytics and Figure 

1.7 for Asset4) by idiosyncratic volatility quintiles. Overall, we observe that a negative 

relation arises, with high values of lagged ESG ratings associated with low idiosyncratic 

volatilities, while the median values of the lagged ESG ratings decrease with the order of the 

quintiles. Robustness across the universes is confirmed in Appendix 2, with Figures A2.5 and 

A2.6 for the North America universe, and A2.7 and A2.8 for the Asia-Pacific universe. 

Figure 1.5  Dynamics of the cross-sectional means of idiosyncratic realised volatility 

 

Source: The figure displays the evolution over time of the cross-sectional means of monthly 

idiosyncratic realised volatilities. Idiosyncratic realised volatilities are computed from 

residual stock returns from the CAPM. The datasets contain monthly observations from 

January 2010 to October 2018, giving a total of 106 months. The North America, Europe and 

Asia-Pacific datasets contain information on respectively $=326, n=238 and n=217 firms. 
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Figure 1.6  ESG ratings by idiosyncratic volatility quintiles: Sustainalytics (Europe) 

 

Source: For the Europe universe, the figure displays the means of Sustainalytics ESG ratings 

within the five groups defined by the quintiles of idiosyncratic volatility computed with 

residual asset returns from the CAPM. The dataset contains monthly observations for n=238 

firms from January 2010 to October 2018, giving a total of 106 months. 

Figure 1.7  ESG ratings by idiosyncratic volatility quintiles: Asset4 (Europe) 

 

Source: For the Europe universe, the figure displays the means of Asset4 ESG ratings within 

the five groups defined by the quintiles of idiosyncratic volatility computed with residual 

asset returns from the CAPM. The dataset contains monthly observations for n=238 firms 

from January 2010 to October 2018, giving a total of 106 months. 



 

38 

 

CHAPTER 1. ARE ESG RATINGS INFORMATIVE TO FORECAST IDIOSYNCRATIC RISK? 

To control for potential confounding factors of the link between ESG ratings and idiosyncratic 

volatility, retain 𝑝 = 10 financial variables for which the monthly observations are available 

for all firms over the three universes and the timespan considered. These variables are tax 

burden, interest burden, operating margin, asset turnover, leverage, current ratio, net debt to 

earnings before interest, taxes, depreciation, and amortisation (EBITDA), capital expenditure 

(Capex) to depreciation, current assets, and current liabilities (see Table 1.3 for a complete 

description of these variables). Innovations are extracted for each of these financial variables 

and for each firm by centering the raw values on the time average. 

Table 1.3  Description of financial variables 

 

1.4.2 Backtest results 

Using the three categories of variables defined above as ESG ratings, idiosyncratic volatility 

and innovations in financial variables, we compute our test statistics and make inference for 

the predictive content of the two ESG rating systems considered. To predict the target 

idiosyncratic volatility variable, we consider a pooled OLS regression for the two models 

needed to run our backtesting procedure, which are the model that contains only innovations 

in the 𝑝 = 10  financial variables, and the model that extends this set to include the lagged 

values of the ESG ratings. Recall that our procedure compares the predictive performance of 

the two models: 
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log(𝐼𝑅𝑉𝑖,𝑡+1) = 𝛼0 + 𝛽0𝑋𝑖,𝑡 + 𝜖𝑖,𝑡+1
(0)

 (1.19) 

log(𝐼𝑅𝑉𝑖,𝑡+1) = 𝛼1 + 𝛽1𝑋𝑖,𝑡 + 𝛾𝐸𝑆𝐺𝑖,𝑡 + 𝜖𝑖,𝑡+1
(1)

 (1.20) 

where 𝑋𝑖,𝑡 denotes the vector of innovations in financial variables. 

In line with our out-of-sample testing environment, we consider two different forecasting 

schemes: (i) a fixed forecasting scheme where the first 75% of the total T=106 months for 

each firm are used to estimate both models, and the forecasts are computed over the last 25% 

of observations, which are considered as the test sample; (ii) a rolling-window forecasting 

scheme with the forecasts computed by moving the estimation sample forward by including 

one more month and excluding the first, giving different estimation samples with the same 

fixed size of b=[0.75T]. 

Table 1.4 displays the outcome of the test for each provider across the three panel datasets. 

The test statistics are computed using the squared error loss. To gain more insights on the 

predictive power of the ratings, we perform inference on the aggregate ESG ratings of each 

provider and also on the specific dimensions of the ratings (environmental, social and 

governance). The values displayed represent the MSE variation in percentage when the ESG 

rating (in column) is added to the information set containing only innovations in financial 

variables. This presentation allows us to test our null hypothesis and to measure the 

magnitude of the predictive accuracy gain. Negative values are associated to MSE reductions 

with respect to the model excluding information about the ESG rating (or rating component), 

and hence to gains in predictive ability. We also report the sign of the regression coefficient 

associated with the ratings in parentheses. For the rolling window forecasting scheme, the 

coefficient is averaged across the estimation windows. 
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Table 1.4  Backtest of ESG ratings: results for squared error loss and idiosyncratic returns 

from CAPM 
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For the Europe (EU) universe, the inclusion of ESG information significantly improves the 

model's predictive accuracy in all configurations except one. Among Sustainalytics ratings, 

the environmental rating is the strongest predictor of idiosyncratic volatility, with an MSE 

reduction of 3.8% and 4.7% for the rolling and fixed forecasting schemes, respectively. 

Among Asset4 ratings, the social rating provides more information, resulting in a 3.5% (4.5%) 

reduction in MSE using a rolling (fixed) forecasting scheme. Overall, the governance rating 

appears to be less informative in predicting stock return idiosyncratic volatility, as it is 

associated with the lowest predictive accuracy gains in all configurations. The results are 

mixed for the North America (NA) and Asia-Pacific (AP) universes. For the NA universe, and 

for both ESG rating systems, only the inclusion of the environmental rating in the rolling 

window forecasting scheme leads to significant predictive accuracy gains. The predictive 

accuracy gains are also lower than those for the EU universe. For the AP universe, we reject 

our null hypothesis in several configurations, but predictive accuracy gains remain modest 

compared to those for the EU universe. Furthermore, for most rejections of our null 

hypothesis, we find a negative association between ESG ratings and idiosyncratic volatility, 

indicating that higher ESG ratings are, on average, associated with lower stock return 

idiosyncratic volatility. 

1.4.3 Robustness to factor models 

Here we evaluate the sensitivity of our results to the choice of factor model used to compute 

the target idiosyncratic realized volatility variable. We thus extend the CAPM model and 

consider a multifactorial model. This extension is anchored to the findings of academic 

research into the existence of common risk factors beyond the market index. This strand of 

the literature, which can be dated back to the seminal work of Fama and French (1992), has 

discovered many market variables or factors that may be able to explain the cross-sectional 

variations of stock returns. These include the size and value factors in Fama and French 

(1992) and the momentum factor in Jegadeesh and Titman (1993). 
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To consider the multifactorial model, we extend the CAPM model in (1.17) by adding 

investable factors identified in the literature to drive the cross-sectional variations of the 

stock's returns. For the Europe and the North America universes these are the MSCI 

Small/Large Capitalisation factor, which approximates the size anomaly, the MSCI 

Value/Growth factor associated with the value premium, the MSCI Momentum factor, the 

MSCI quality factor, and the MSCI Minimum Volatility factor. The lack of data for the Asia-

Pacific universe means we consider three factors beyond the market, these being the MSCI 

Small/Large Capitalisation factor, the MSCI Value/Growth factor, and the MSCI Minimum 

Volatility factor. Table 1.5 displays the tests results for the idiosyncratic volatility computed 

using a multifactorial model and the squared error loss function. Overall, we reach 

qualitatively similar conclusions, suggesting that our results are robust to the choice of the 

factor model. We also evaluate the sensitivity of the test to the choice of the loss function used 

to evaluate forecasts. Table A2.1 and Table A2.2 replicates the results of Table 1.4 and Table 

1.5 using the absolute error loss to assess models’ predictive performance. In comparison with 

the squared error loss function, the absolute error loss function is more robust to outliers. We 

find that results are highly similar for the two loss functions, suggesting that our conclusions 

are robust to the choice of the loss function. 
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Table 1.5  Backtest of ESG ratings: results for squared error loss and idiosyncratic returns 

from multifactorial model
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So far, our results show that the predictive power of ESG ratings varies depending on the 

universe considered. We find strong evidence that higher ESG ratings are associated with 

lower future stock return idiosyncratic volatility for the European universe, and to a lesser 

extent for the North America and Asia-Pacific universes. This finding can be explained by the 

fact that European regulation on ESG issues is more stringent, with the establishment of a 

high-level expert group on sustainable finance (HLEG) in 2016 and the subsequent 

introduction of the EU taxonomy for sustainable activities12. As a result, European investors 

are more likely to consider ESG information valuable for their investment decisions compared 

to US investors (Amel-Zadeh and Serafeim, 2018). Regarding the rating dimensions, the 

environmental rating appears to carry the most information, followed by the social rating, 

while predictive accuracy gains are consistently lower for the governance rating. This is 

consistent with the findings of Berg et al. (2022b), who reported that the noise in ratings is 

higher for the governance component, followed by the social component, with the 

environmental component being the least noisy. In the next subsection, we conduct additional 

empirical investigations to check the robustness of our results. 

1.4.4 Disagreement between raters and the informational content of the ESG ratings 

Our results suggest that both rating systems are informative for forecasting idiosyncratic 

volatility in Europe, where regulation on ESG is more stringent, and to a lesser extent in other 

regions. Another factor that could affect the link between ESG ratings and return volatility is 

ESG ratings disagreement. Serafeim and Yoon (2022a) analysed the link between ESG ratings 

and ESG risks as measured by ESG-related events and showed that the consensus rating 

predicts future news, but its predictive ability diminishes for firms where there is a large 

disagreement between raters. They also found that the consensus rating moderates the stock 

market reaction to ESG risks. Therefore, the forecasting power of ESG ratings could be 

moderated by ESG rating disagreement as it affects both the likelihood of ESG events and the 

stock market reaction to ESG risk materialization.  

 

 
12 https://finance.ec.europa.eu/publications/high-level-expert-group-sustainable-finance-hleg\_en 
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In our sample, we find that ESG ratings are quite divergent across the three universes. The R-

squared for the linear regression between the two rating agencies is equal to 40.88% for the 

EU universe, 46.46% for the NA universe, and 32.65% for the AP universe (see Figures 1.4, 

A2.3, and A2.4). 

To check for this stylised fact, we replicate the results of Table 1.5 but partition each panel 

into consensus and disagreement groups, based on the firm level correlation between the 

ratings of the two providers. For each universe, the consensus group contains firms belonging 

to the top 25% of highest correlations, while the disagreement group contains firms belonging 

to the top 25% lowest correlations. Among the consensus group, the average correlation 

between ESG ratings of the two providers are equal to 75%, $72% and $70% for the EU, NA 

and AP universes, respectively. Among the disagreement group, these figures are equal to -

35%, -46% and -44%, meaning that there is considerable divergence between ratings. Table 

1.6 shows the sector distribution in the consensus and disagreement samples. Since the 

consensus rating is driven by the different methodologies used by rating agencies rather than 

by firm characteristics (Berg et al., 2022b), we observe a similar distribution of sectors across 

the two groups. 

Table 1.6  Distribution of sectors in consensus and disagreement samples 

 



 

46 

 

CHAPTER 1. ARE ESG RATINGS INFORMATIVE TO FORECAST IDIOSYNCRATIC RISK? 

Table 1.7 displays the backtest results for the consensus and disagreement groups using a 

rolling window forecasting scheme. The results using a fixed window are displayed in 

Appendix 2 (Table A2.3). We observe significant differences in terms of the rejection of the 

null hypothesis between the two groups.  Among the consensus group, we observe 17 

rejections out of 24 tests at the 1% nominal risk level, while this figure drops to 5 rejections 

for the disagreement group. Moreover, the forecasting power of ESG ratings is consistently 

greater for consensus firms across the three universes. For example, considering the EU 

universe, the MSE reduction due to the inclusion of Sustainalytics environmental rating is 

equal to 7.7% in the consensus sample, but only 2.3% in the disagreement sample. For the NA 

universe, these figures are 2.6% for the consensus sample and 0.14% for the disagreement 

sample. Similar conclusions hold for most configurations and universes. 

To assess the sensitivity of the previous results to the threshold used to define the consensus 

firms, we repeated the analysis for alternative levels of ESG consensus. We started with the 

full sample and excluded the top x% of firms with the highest level of disagreement before 

applying our inferential procedure. Figure 1.8 displays the results for values of x ranging 

between 0% and 75% using a rolling window forecasting scheme. Results obtained using a 

fixed window forecasting scheme are displayed in the appendix (Figure A2.9). We find that 

the forecasting power of ESG ratings increases with the level of ESG consensus. This result is 

consistent for both rating agencies and across the three universes. Overall, predictive accuracy 

gains due to the inclusion of ESG information increase with the level of ESG consensus. 
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Table 1.7  Consensus vs disagreement between providers using a rolling window forecasting 

scheme (MSE)
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We next test if the predictive ability of ESG ratings is the same for consensus firms with high 

and low ratings. To do so, we apply our test separately to consensus firms with a high ESG 

rating (above the median) and a low ESG rating (below the median). Results using a rolling 

(fixed) window forecasting scheme are displayed in Table 1.8 (Table A2.4). We find that for 

both rating agencies, the predictive ability is greater for consensus firms with a low rating in 

the NA universe, but that the predictive accuracy gains depend on the rating agency 

considered for the other universes. 

From a practical point of view, our results provide crucial information for portfolio managers 

who integrate ESG information into their investment decisions. We show that it is necessary 

to cross-check the information gathered from multiple ESG rating providers before integrating 

ESG into the management process. The focal point of our results is that consensus about the 

ESG ratings is informative about idiosyncratic risk, while ESG ratings with disagreement are 

less valuable from this viewpoint. 

Figure 1.8  Decrease in forecast error in function of ESG consensus (rolling window) 

 

Source: This figure displays the variation in MSE when ESG information is included in the 

model as a function of the level of consensus between ESG providers. The x-axis represents 

the level of consensus between rating agencies. For a level of consensus x, only the firms with  
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the 1-x highest correlations between the ratings of the two providers were included in the 

sample. 

Table 1.8  Consensus firms: high vs low ESG ratings (rolling window)  
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1.5 Conclusion 

The contribution of this article is to propose a formal statistical procedure for assessing the 

informational content in ESG ratings. The test proceeds by evaluating how well these extra-

financial metrics help in predicting a given target variable intended to measure firm-specific 

risks. Our framework allows users to choose a target variable related to their investment 

objectives. Technically, our inferential procedure for checking the informational content in 

ESG ratings is based on extending the conditional predictive ability test of Giacomini and 

White (2006) to a panel setting. Under weak assumptions, including cross-sectional 

dependencies among loss functions for firms, we derive the Gaussian asymptotic distribution 

of the test statistic. Monte Carlo simulations conducted under different types of model 

misspecification show that the test has good small sample properties. 

Empirical applications are conducted using the idiosyncratic volatility of stock returns, a 

measure of firm-specific risk, as our target variable. We apply our procedure to evaluate two 

leading ESG rating systems (Sustainalytics and Asset4) in three investment universes 

(Europe, North America, and the Asia-Pacific region). The results show that the null 

hypothesis of a lack of informational content in ESG ratings is strongly rejected for Europe, 

while the results are mixed, and predictive accuracy gains are lower for the other regions. 

Furthermore, we find that the predictive accuracy gains are higher for the environmental 

dimension of the ESG ratings. Importantly, we find that the predictive accuracy gains derived 

from ESG ratings increase with the level of consensus between rating agencies in all three 

universes, while they are low for firms over which there is a high level of disagreement. 

The results have important implications for investors and researchers. For investors, our 

backtest procedure provides a useful and practical framework for considering ESG rating 

providers before integrating the ratings into the investment process. Our results suggest 

prudence about the information content of ESG ratings when they diverge. For researchers in 

asset pricing, it is crucial to check properly the quality of ESG ratings before using them, 

especially when the ratings are divergent. Moreover, the link between ESG ratings and 

idiosyncratic volatility when the ratings are convergent suggests that ESG investing is not just  
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an issue of the preferences of investors, but that ESG ratings can also provide information 

about future fundamentals and risks. A future application for investors could be to compare 

the ratings of competing ESG rating agencies since our inferential procedure can be easily 

adapted to compare the informational content in the ESG ratings. This would help investors in 

selecting one agency among several competing ones in non-nested comparisons, or in 

considering additional competing agencies to combine with their already existing ratings in 

nested comparisons. 

1.6 Appendices 

Appendix 1.1: Details on the Monte Carlo simulations 

In this Appendix we provide details about the simulations of innovations in the financial 

variables for generating the small sample properties of the test (see Section 1.3). These 

variables are generated via a multivariate Gaussian distribution with mean vector �̅� and 

covariance matrix Ω calibrated using real data. The dataset we use contains historical monthly 

values of 𝑝 = 10 innovations in the financial variables for 238 European firms from January 

2010 to October 2018, giving a total of 106 months. 

Innovations are computed as deviations from the overall means. The financial variables are, in 

order: tax burden ratio, interest burden ratio, operating margin ratio, asset turnover ratio, 

leverage as measured by the ratio of total assets to total equity, current ratio as measured by 

the ratio of current assets to current liabilities, debt ratio, capex as measured by the ratio of 

capital expenditures to depreciation, current assets as measured by the ratio of current assets 

to total assets, current liabilities as measured by the ratio of current liabilities to total 

liabilities. 
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The mean vector is thus equal to 

�̅� = [0.8137; 0.8333; 0.1391; 0.8265; 3.8713; 1.4031; 1.7466;  1.2779; 0.3634; 0.2880] 

and the covariance matrix Ω equal to 

 

For the simulation of the target variable of idiosyncratic volatility, we run a pooled OLS 

regression with the dependent variable being the logarithm of the monthly time series of 

idiosyncratic realised volatility over the same period (January 2010 to October 2018) for the 

238 European firms. The explanatory variables are the innovations in the 10 financial 

variables as described above. 

 

For the 𝑝 = 10 financial variables, the estimated coefficients are displayed above. These 

estimates are used to generate data for simulating the logarithm of idiosyncratic realised 

volatility, and applying the exponential function leads to the target variable. 
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Appendix 1.2: Additional Tables and Figures 

Figure A2.1: Rejection frequencies under a medium level of misspecification with the 

absolute error loss function 

 

Figure A2.2: Rejection frequencies under a high level of misspecification with the absolute 

error loss function 
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Figure A2.3: Relation between the Sustainalytics and Asset4 ESG ratings: North America 

 

Figure A2.4: Relation between the Sustainalytics and Asset4 ESG ratings: Asia-Pacific 
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Figure A2.5: ESG ratings by idiosyncratic volatility quintiles: Sustainalytics (North America) 

 

Figure A2.6: ESG ratings by idiosyncratic volatility quintiles: Asset4 (North America) 
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Figure A2.7: ESG ratings by idiosyncratic volatility quintiles: Sustainalytics (Asia-Pacific) 

 

Figure A2.8: ESG ratings by idiosyncratic volatility quintiles: Asset4 (Asia-Pacific) 
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Table A2.1: Backtest of ESG ratings: results for absolute error loss and idiosyncratic returns 

from CAPM 
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Table A2.2: Backtest of ESG ratings: results for absolute error loss and idiosyncratic returns 

from multifactorial model 
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Table A2.3: Consensus vs disagreement between providers using a fixed wind forecasting 

scheme (MSE) 
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CHAPTER 1. ARE ESG RATINGS INFORMATIVE TO FORECAST IDIOSYNCRATIC RISK? 

Table A2.4: Consensus firms: high vs low ESG rating (fixed window) 
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2 Correlation matrices with factor 

structure for credit risk exposures13 

We provide an overview of various specification and calibration techniques to derive 

correlation matrices associated with factor models. We consider unrestricted and restricted 

models, where some betas are set to zero, thus leading to specific region or sectoral factors. 

We address latent factors using maximum likelihood through the EM algorithm and least 

squares approaches, implemented with the Spectral Projection Gradient algorithm.  

The case of endogenous observable factors is dealt with algebraic techniques and OLS 

regression. PCA approaches are a bridge between these two approaches. PCA appear as 

optimal regressors on the one hand. On the other, ML estimators in the isotropic model can be 

derived from modified PCA. Simpler specifications such as block correlation matrices, 

associated with constant inner and inter-bucket correlations, are also considered. Based on a 

dataset of equity returns of corporate names included in the major US and European credit 

indices, we conduct a benchmarking exercise, varying the number of factors.  

Besides the fitting performance, parameter parsimony, ease of interpretation and ability to 

deal with large pairwise correlations are considered. In our experiment, restricted latent factor 

models supersede competitors. 

 

 

 
13 Co-authors: Jean-Paul Laurent, Sorbonne & Labex RéFi, University Paris 1 Panthéon ; Michael 

Sestier, Sorbonne & Labex RéFi, University Paris 1 Panthéon. 
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2.1 Introduction 

We consider the estimation of correlation matrices in a credit risk measurement context. The 

Basel 3 (FRTB DRC) requirements involve using a correlation matrix associated with a 

probabilistic factor representation, with at least “two types of systematic risk factors”. It is 

stated that “default correlations must be based on credit spreads or on listed equity prices”. 

While this points to latent factor models, that are being dealt with by central bankers and 

academics, linear regression onto observable factors, typically portfolio returns, are often used 

to build correlation matrices compliant with regulatory requirements. By benchmarking with 

various specifications, including factor analysis, linear regression, and Principal Component 

Analysis (PCA), we conclude that restricted latent models approach supersedes other 

techniques. 

Dealing with covariance/correlation matrices is a standard issue in finance, that we briefly 

review to help the understanding the specificities of the addressed problem. In the case of 

multivariate Gaussian distributions, it is well-known that the Maximum Likelihood (ML) 

estimate of a covariance matrix is closely related to the sample covariance matrix. Even 

though, it is equally well-known to be related to numerous difficulties. For instance, pairwise 

deletion usually leads to non-PSD empirical correlation matrices. This issue also arises in a 

stress-testing context as outlined by Finger (1997). It can be dealt with by a variety of 

techniques, including computing the nearest correlation matrix with respect to the Frobenius 

norm through alternating projections, Newton, and hypersphere algorithms (see for example 

Higham (2002), Rebonato and Jäckel (2000), Qi and Sun (2006, 2010) and the references 

therein)14. While of interest, these methods are not designed to cope with the constraints 

associated with factor models. 

 
14 If 𝑋 is a 𝑛 ×𝑚 matrix, the Frobenius norm of 𝑋 is such that: ‖𝑋‖𝐹

2 = trace(𝑋𝑋∗) = ∑ ∑ 𝑋𝑖𝑗
2𝑚

𝑗=1
𝑛
𝑖=1 . 

It corresponds to the Euclidian norm of the columns of 𝑋 stacked in a single vector. Higham (1988) 

provides the nearest symmetric PSD matrix to a given real matrix with respect to the Frobenius norm: 

When the initial matrix is symmetric, the nearest symmetric PSD matrix is derived from the spectral 

decomposition by replacing the negative eigenvalues by zero. However, the resulting diagonal 
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When the cross-sectional dimension is large, factor models are one way to parsimony: banks 

typically deal with several thousand corporate counterparties. Our work aims at estimating 

constrained correlation matrices, not explaining cross-sectional expected returns, even though 

factor models have been used in these contexts. For instance, expanding upon the single-index 

model of Sharpe (1963), Fama & French (1993) have considered multivariate linear 

regressions on portfolio returns, a technique also used in assessing the validity of the CAPM 

(see MacKinlay (1987), Gibbons et al (1989), Shanken (1992) and the textbook of Campbell, 

Lo & MacKinlay (1997)). On the other hand, Ross (1976) has considered a (latent) 

unrestricted factor model in a pricing context. King (1966) is an early example of applying 

factor analysis technique to security returns (see also Elton et al (2014)). Later, financial 

economists were faced with the correlation of idiosyncratic terms in the returns, the so-called 

“approximate factor model” framework. If 𝑛 denotes the cross-sectional dimension and 𝐾 the 

number of common factors, Chamberlain & Rothschild (1983) assume that the largest 

eigenvalue of the covariance matrix of the returns is bounded as 𝑛 → ∞ or equivalently that 

the 𝐾 + 1  largest eigenvalue of the covariance matrix is bounded as 𝑛 → ∞. This can be 

understood as specific variances becoming negligible compared to communalities, a 

framework under which principal component analysis, factor analysis and low rank 

approximations coincide; see Connor & Korajczyk (1986, 1988, 1993), Bai & Ng (2002) and 

the review paper of Fan, Liao & Liu (2016) for further work on the asymptotic principal 

component technique.  

Factor models are also being used in the context of pricing derivatives in an arbitrage-free 

framework, especially in Libor Market Models, as above with parsimony in mind. Contrasting 

the previous framework, the cross-sectional dimension 𝑛 is fixed, say the number of 

observable forward rates, the number of latent factors 𝐾, such that 𝐾 < 𝑛. The rank of the 

fitted (instantaneous) correlation matrix needs to be equal or lower than 𝐾. We are then led to 

find the closest rank 𝐾 correlation matrix to a given correlation matrix. While Eckart-Young- 

 
elements may differ from one. Finding the nearest correlation matrix is thus involved and requires 

optimisation techniques in most cases. 
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Mirsky theorem provides simple answers for covariance matrices, for a number of matrix 

forms, the problem is more involved when considering correlation matrices. A number of 

approaches, geometric (Grubišić and Pietersz (2007), Rapisarda, Brigo & Mercurio (2007), 

Kercheval (2008) expanding on earlier ideas of Rebonato and Jäckel (2000)), based on 

Lagrange multipliers method (Zhang and Wu (2003), Wu (2002), on majorization (Pietersz 

and Groenen (2004)) have been considered. However, this no-arbitrage pricing and rank 

reduction framework is somehow too parsimonious. It is at odds with sound risk management, 

since it involves setting specific variances to zero, ironing out basis risks. 

Fan, Fan & Lv (2008), Fan, Liao, & Mincheva (2011, 2013) consider observable factor 

models and control for correlation of residuals by using sparsity constraints on the covariance 

matrix of residuals. Sparsity constraints can also be put on the precision matrix (the inverse of 

the covariance matrix) since it appears that a large number of partial correlations are close to 

zero (Dempster (1972)). Sparse estimation can be achieved by penalized ML with the 

graphical lasso (Friedman et al (2008)) or by using MTP2 constraints (Agrawal et al (2019)). 

The use of shrinkage techniques is another approach to large covariance/correlation matrices 

(see for instance Ledoit & Wolf (2004, 2020). The sample covariance matrix might be shrunk 

to a single index (one factor) matrix. However, this is at odds with sound credit risk analysis 

since single factor models typically understate the risk of long-short exposures. In a typical 

credit risk model, the loss involves default indicators, thus is highly non-linear in the 

underlying returns. Our purpose is to provide a proper input for correlation matrices of a 

multivariate Probit model. While assuming latent variables to be normally distributed is 

standard for modelling corporate credit risk, this readily extends to elliptical distributions. 

When validating internal risk models, supervisors favour multivariate Student t distributions. 

As regulatory prescribed, such models are then used to compute values-at-risk over a one-year 

time horizon. Since the Basel Committee prescribes that “correlations must be based on data 

covering a period of 10 years” and given that we use weekly stock returns for which the 

autocorrelations are usually low, our framework will be static and we will consider the 

marginal covariance/correlation matrix, leaving aside potential dynamics of factors. 
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Putting equality constraints on factor loadings, such as some being equal to zero and equality 

among some factor loadings due to homogeneity within buckets of names leads more 

parsimonious models and complements the penalisation techniques for dealing with scarcity. 

This corresponds to the confirmatory factor analysis framework put forward by Joreskög 

(1969a), (see also the textbooks of Bartholomew et al (2011) or Mulaik (2009)). Such 

restricted factor models, typically involving regional and sectoral factors, are associated with 

constrained factor loading structures. They have been considered in the context of 

international dynamic factor models by Banbura, Giannone & Reichlin (2010), Kose, Otrok, 

& Prasad (2012), Miranda-Agrippino & Rey (2015), among others.  In a credit risk context, 

one can refer to Glasserman and Suchintabandid (2007). Further theoretical examples are 

provided by Joreskög (1969b)15. We further assess and benchmark the usefulness of such 

restrictions in our context and show quite significant improvement over existing methods.  

In the latent factor analysis, one needs a discrepancy criterium between the sample correlation 

matrix and the factor constrained matrix. This is the case with Gaussian likelihood or 

(weighted) least-squares (distance associated with Frobenius norms). In most cases, 

minimization relies on numerical algorithms. Maximum likelihood estimates can be computed 

through the EM algorithm or based on first-order conditions. As for the least squares criteria, 

Laurent et al (2016) derived the nearest (from a given input correlation matrix, say the 

empirical correlation matrix) correlation matrix with two (latent) factors structure. They 

considered the iterative principal factor16 and the Spectral Projection Gradient (SPG) 

respectively considered in a credit risk context by Andersen et al (2003), Jäckel (2005) and 

Borsdorf et al (2010). 

 

 
15 As a side remark Jöreskog (1970) has investigated more general covariance structures. These can be 

seen as nested factor models or “Russian dolls” as illustrated in a credit risk context by Gregory and 

Laurent (2004) or Kakushadze (2015). 
16 The iterated principal factor method that relies on iterations of PCA, each one based on the 

optimality result of Eckart-Young theorem. While PCA betas do not provide the optimal factor 

loadings, unless the residual principal components are uncorrelated, there are usually not far from 

optimality, when the number of factors is small and the cross-dimension is large. This usually results 

in a quick convergence of the algorithm. 
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In Ross (1976), in the above-mentioned papers and in Pykhtin (2004), Düllmann and 

Masschelein (2007), Puzanova and Düllmann (2013), there are no constraints on the factor 

loadings. This corresponds to the unrestricted model, often used in explanatory factor 

analysis. A common and useful feature of unrestricted and restricted models is that the 

gradient of the discrepancy function can be easily written. Convergence issues may arise, for 

instance due to non-convexity or to some binding constraints; for instance, specific variances 

being equal to zero (so-called Heywood cases). Optimisation can seldomly be achieved 

through algebraic techniques. For instance, in the isotropic model, where all specific variances 

are equal, Tipping and Bishop (1999) show how ML estimates of latent factor models can be 

computed from the spectral decomposition of the correlation matrix. 

Lastly, a widely used approach is to derive correlation matrices estimates through linear 

regressions of returns on a set of portfolio returns (independent variables). If error terms are 

uncorrelated, one may use ordinary least squares estimation to reconstruct covariance 

matrices from the estimated betas and the covariance matrix of independent variables. When 

the error terms are cross-sectionally correlated, ordinary least squares (OLS) do not anymore 

coincide with maximum likelihood (ML) estimators unless the set of independent variables 

(i.e., portfolio returns) is the same for all dependent variables (individual name returns) as 

outlined in the SUR approach of Zellner (1962). This may be the case for unrestricted models, 

but not anymore for restricted models. Then, generalized least squares (GLS) algorithms 

should provide better estimates of the betas. In our case, this approach is flawed since 

independent variables are linear combinations of dependent variables with fixed weights. For 

instance, CDX or iTraxx credit indices (composing our dataset) are equally weighted. Then, 

the matrix of residuals is degenerate, GLS and ML approaches cannot be considered17. Still  

 

 
17 In a linear regression model, specification of error terms is as important as the choice of regressors. 

In our case, the covariance of error terms is fully determined by the covariance matrix and the 

portfolio weights. 
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OLS can be implemented, corresponding to the minimisation of the Frobenius norm of the 

difference between the design matrix and the matrix of “predicted” returns18.  

In section 2.2, we present restricted and unrestricted latent factor models. In section 2.3, we 

present the design matrix, related concepts and discuss algorithms to compute the nearest 

correlation matrix with latent factor structure in restricted and unrestricted cases. Section 2.4 

is dedicated to analysing and comparing outcomes of the different approaches. 

2.2 Factoring variables driving default 

2.2.1 Latent unrestricted factor models 

When it comes to sovereigns or large corporates in trading book portfolios, typically 

involving long and short exposures, credit models predominantly rely on the multivariate 

probit approach with latent factors. 

For instance, Pykhtin (2004) has considered the standard 𝐾 − factor model, where 𝑋𝑖 is the 

latent variable associated with name 𝑖 ∈ {1,… , 𝑛}. 𝑋 = (𝑋1, … , 𝑋𝑛)
∗ can be written as 

follows, using the matrix representation of Borsdorf et al. (2010): 

𝑋 = 𝛽𝑍 + 𝜎(𝛽)𝜀 

- (𝑍, 𝜀) is a 𝐾 + 𝑛 − standardized Gaussian vector. 𝑍 correspond to 𝐾 ≤ 𝑛 common factors, 

while 𝜀 is associated with residual risks.  

- 𝛽 is a 𝑛 × 𝐾 matrix of factor loadings.  

- 𝜎(𝛽) is a (𝑛 × 𝑛) diagonal matrix, such that: 𝜎2(𝛽) = 𝐼𝑑𝑛×𝑛 − diag(𝛽𝛽∗) where 𝛽∗ 

denotes the transpose of 𝛽 and 𝐼𝑑𝑛×𝑛 is the identity matrix. 

 
18 Let us remark that we consider Frobenius norms related to the design matrix on the one hand and 

Frobenius norms related to the correlation matrix on the other. 
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This results in a covariance/correlation matrix of 𝑋 equal to 𝐶(𝛽) = 𝛽𝛽∗ + 𝜎2(𝛽). The 

(diagonal) terms in 𝜎2(𝛽) are the specific variances, while the diagonal terms in 𝛽𝛽∗ are the 

communalities. The non-diagonal terms of 𝛽𝛽∗ are the pairwise correlations.  

Reiersøl (1950), Th. 3.2 or Anderson and Rubin (1956), Th. 4.1 provide a necessary and 

sufficient condition for the covariance matrix of the 𝑋𝑖 to be consistent with a 𝐾 − factor 

model.  

On top of this, the factor loadings must fulfil the inequalities: ∑ 𝛽𝑖𝑘
2𝐾

𝑘=1 ≤ 1 for 𝑖 = 1, … , 𝑛. 

The vector of factor loadings associated with each name must stay within the unit 𝐾 − 

dimensional sphere19. The set of admissible factor loadings is closed and convex. 

The above model can also be written in expanded form: 

- 𝑋𝑖 = ∑ 𝛽𝑖𝑘𝑍𝑘
𝐾
𝑘=1 + 𝜎𝑖𝜀𝑖 

- 𝜎𝑖
2 = 1 − ∑ 𝛽𝑖𝑘

2𝐾
𝑘=1  

 

Pykhtin (2004), Düllmann and Masschelein (2007), Puzanova and Düllmann (2013) use the 

composite factor representation. Let us define 𝜌𝑖 by 𝜌𝑖 = √1 − 𝜎𝑖
2. Then, we can write the 

latent factors 𝑋𝑖 as: 

- 𝑋𝑖 = 𝜌𝑖𝐹𝑖 +√1 − 𝜌𝑖
2𝜀𝑖,  

- 𝐹𝑖 = ∑ 𝛼𝑖𝑘𝑍𝑘
𝐾
𝑘=1  

- 𝛼𝑖𝑘 = 𝛽𝑖𝑘 𝜌𝑖⁄ , 𝑘 = 1,… , 𝐾, 𝑖 = 1,… , 𝑛 since 𝜌𝑖𝐹𝑖 = ∑ 𝛽𝑖𝑘𝑍𝑘
𝐾
𝑘=1  

 

 
19 If as in Laurent et al (2016), we define 𝛽𝑖 = (𝛽𝑖1… 𝛽𝑖𝐾), the row matrix associated with factor 

loadings of name 𝑖, then the constraints can be written as 𝛽𝑖𝛽𝑖
∗ ≤ 1, 𝑖 ∈ {1,… , 𝑛} 
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Let us remark that since ∑ 𝛼𝑖𝑘
2𝐾

𝑘=1 = 1, the composite factors 𝐹𝑖 have unit variances and are 

also uncorrelated to the idiosyncratic terms 𝜀𝑖. Since 𝑋𝑖 = ∑ (𝜌𝑖 × 𝛼𝑘,𝑖)𝑍𝑘
𝐾
𝑘=1 +√1 − 𝜌𝑖

2𝜀𝑖 

for 𝑖 ∈ {1, … , 𝑛}, the correlation between the latent variables 𝑋𝑖 and 𝑋𝑗 is provided by: 𝜌𝑖𝑗 =

𝜌𝑖 × 𝜌𝑗 × (∑ 𝛼𝑖𝑘𝛼𝑗𝑘
𝐾
𝑘=1 ) = ∑ 𝛽𝑖𝑘𝛽𝑗𝑘

𝐾
𝑘=1 . 

2.2.2 Latent factor models, constraints on idiosyncratic risks 

The special case where 𝜎2(𝜀) is a scalar (or spherical) matrix, i.e., the identity matrix up to a 

multiplicative constant: 𝜎2(𝜀) = 𝜎2 × Id𝑛×𝑛 is known as the isotropic model. There is no 

economic rationale for such a specification. However, it is associated with a simple derivation 

of the Maximum Likelihood estimator. 

2.2.3 Latent restricted factor models, constraints on factor loadings 

What has been described so far is the unrestricted factor model. To ease interpretation of 

factors and minimize the determination and management of unreasonable number of 

parameters, it is useful to consider restricted factor models (Lawley and Maxwell (1963)), 

where some factor loadings are set to zero. This approach is part of so-called confirmatory 

factor analysis.  

As an illustration, consistently with standard credit analysis, we can introduce region and 

sector specific factors in the following way. The latent variable associated with name 𝑖 in 

region 𝐶(𝑖) and sector 𝐼(𝑖) is written as: 

𝑋𝑖 = 𝛽𝑖,𝐺 × 𝑍𝐺 + 𝛽𝑖,𝐶(𝑖) × 𝑍𝐶(𝑖) + 𝛽𝑖,𝐼(𝑖) × 𝑍𝐼(𝑖) +√1 − 𝜌𝑖
2 × 𝜀𝑖 

Where the global factor 𝑍𝐺 , the country specific factors 𝑍𝐶(𝑖) and the industry specific factors 

𝑍𝐼(𝑖) form a set of independent standardized Gaussian variables. As an example, if a name is  
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bucketed to the financial sector, the factor loadings associated with the latent variables 

associated with other sectors, say corporate non-financials and sovereigns will be set to zero. 

Such specification was introduced by Joreskög (1969b) and used by Glasserman and 

Suchintabandid (2007) in a credit risk context. 

For 𝑋𝑖 to have unit variance, the following constraints 𝛽𝑖,𝐺
2 + 𝛽𝑖,𝐶(𝑖)

2 + 𝛽𝑖,𝐼(𝑖)
2 = 𝜌𝑖

2 must be 

met. As a consequence, the composite factor 𝐹𝑖  is such that: 𝜌𝑖 × 𝐹𝑖 = 𝛽𝑖,𝐺 × 𝑍𝐺 +

𝛽𝑖,𝐶(𝑖) × 𝑍𝐶(𝑖) + 𝛽𝑖,𝐼(𝑖) × 𝑍𝐼(𝑖). 

The correlation structure of the latent factors 𝑋𝑖 and 𝑋𝑗, assuming a single global factor and 

that any name is bucketed to a single sector and region is then given by: 

𝜌𝑖,𝑗 = 𝛽𝑖,𝐺𝛽𝑗,𝐺 + 1𝐶(𝑖)=𝐶(𝑗)𝛽𝑖,𝐶(𝑖)𝛽𝑗,𝐶(𝑗) + 1𝐼(𝑖)=𝐼(𝑗)𝛽𝑖,𝐼(𝑖)𝛽𝑗,𝐼(𝑗) 

for 𝑖 ≠ 𝑗 and subject to constraints: 𝛽𝑖,𝐺
2 + 𝛽𝑖,𝐶(𝑖)

2 + 𝛽𝑖,𝐼(𝑖)
2 ≤ 1 for all 𝑖 ∈ {1, … , 𝑛}.  

This is to be compared with the unrestricted three factor model: 

𝑋𝑖 = 𝛽𝑖,1 × 𝑍1 + 𝛽𝑖,2 × 𝑍2 + 𝛽𝑖,3 × 𝑍3 +√1 − 𝜌𝑖
2 × 𝜀𝑖 

with 𝜌𝑖
2 = 𝛽𝑖,1

2 + 𝛽𝑖,2
2 + 𝛽𝑖,3

2  and (for 𝑖 ≠ 𝑗): 

𝜌𝑖,𝑗 = 𝛽𝑖,1𝛽𝑗,1 + 𝛽𝑖,2𝛽𝑗,2 + 𝛽𝑖,3𝛽𝑗,3 

The restricted and unrestricted factor models above involve the same number of parameters, 

i.e., 3 × 𝑛.  
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2.2.4 Latent factor models, constraints on the correlation matrix 

Practitioners often postulates that correlation matrices can be partitioned by blocks, with 

constant inner and outer pairwise correlations, denoted as block CS (compound symmetry) or 

block homogeneous matrices (see below with three buckets): 

 

Figure 2.19Example of block correlation matrix 

Whether such matrices are PSD can simply be answered. Let us consider the matrix with 

diagonal terms equal to the inner bucket correlations (here 0.4 0.3 0.2) and the non-diagonal 

terms to the inter bucket correlations (inter bucket correlations are also known as peripherical 

correlations). This results in a (3 × 3) matrix: (
0.4 0.1 0.1
0.1 0.3 0.15
0.1 0.15 0.2

). Such a transformation is 

known as the block average map. 

Roustant and Deville (2017) have shown that the block CS matrix is PSD if and only if the 

matrix resulting from the block average map (also known as the group level correlation 

matrix) is PSD. As a side consequence, it caps the inter bucket correlations to the geometric 

means of the inter bucket correlations.  

Demey et al (2004), Huang & Yang (2010) provide a factor representation for Gaussian 

distributions with the above block structure. Let us denote by Ο the (𝐾 × 𝐾) group level 

correlation matrix. Let us assume that it is PSD. Let us denote by 𝐺 the (𝐾 × 𝐾) matrix such  
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that 𝐺𝐺∗ = Ο. 𝐺 can be derived from Cholewski decomposition or spectral analysis of Ο. Let 

𝑍𝑚
(𝑘)

 be the 𝑚 −th random variable from bucket 𝑘. Let us consider independent unitary 

Gaussian variables 𝑊1, … ,𝑊𝐾, 𝜀1
(1), … , 𝜀𝑚(1)

(1) , … , 𝜀1
(𝐾), … , 𝜀𝑚(𝐾)

(𝐾)
, where 𝑚(𝑘) is the number of 

names in bucket 𝑘. Then, 

𝑍𝑚
(𝑘) =∑ 𝐺𝑘𝑗𝑊𝑗

𝐾

𝑗=1
+ √1 − 𝜌𝑘 × 𝜀𝑚

(𝑘)
 

where 𝜌𝑘 is the intra bucket 𝑘 correlation, has the stated block correlation structure. Let us 

remark that the group level correlation matrix is the covariance matrix of the common factors. 

Let �̅�𝑘 be such that √𝜌𝑘�̅�𝑘 = ∑ 𝐺𝑘𝑗𝑊𝑗
𝐾
𝑗=1 . Then, 𝑍𝑚

(𝑘) = √𝜌𝑘�̅�𝑘 +√1 − 𝜌𝑘 × 𝜀𝑚
(𝑘)

. �̅�𝑘 can be 

seen as a composite – bucket specific factor. 

2.2.5 Endogenous observable factors, unrestricted and restricted factor models 

In unrestricted and restricted latent factor models, the Gaussian vector (𝑋, 𝑍) is non 

degenerated. By contrast, we consider models where factors 𝑍 are linear functions of the 𝑋. 

These so-called composite variables are weighted averages of the components of 𝑋, for 

instance principal components or equally weighted averages of components of 𝑋. Since 𝑋 is 

associated with financial returns, the factors 𝑍 are both observable and endogenous. As above, 

𝑋 denotes a 𝑛 −dimensional Gaussian vector with standardized returns. The 

covariance/correlation matrix of 𝑋 is denoted by 𝐶 is and assumed to be of full rank. We 

define a 𝐾 −  vector of factors, 𝐾 < 𝑛, as follows: 

𝑍 = 𝑄∗𝑋 
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where 𝑄 is a 𝑛 × 𝐾 matrix of “portfolio weights”20, with rank 𝑄 = 𝐾.  𝑄 may be based on 

financial ideas: for instance, credit indices are usually equally weighted and associated to 

industry, region and/or credit quality. We can also consider principal components of 𝑋.  

Appendix 2 adapted from Rao (1964, 1973), see also Basilevsky (2009), Theorem 3.9 (i) or 

Jolliffe (2010, Sect. 2.1, Property A.5) discusses that point from a correlation matrix 

calibration point of view. 

We then write:  

𝑋 = 𝛽𝑍 + 𝜀 

where 𝛽 is a 𝑛 × 𝐾  matrix of Betas (or factor loadings). As for latent variable models, the 

factors 𝑍 and the residual or idiosyncratic risks 𝜀 are assumed to be independent. Under the 

assumption that 𝑋 is a Gaussian vector, (𝑍, 𝜀) = (𝑄∗𝑋, 𝑋 − 𝛽𝑄∗𝑋) is a Gaussian vector too. 

From 𝐸[𝜀𝑍∗] = 0, 𝛽 = 𝐸[𝑋𝑍∗](𝐸[𝑍𝑍∗])−1 as in the standard linear regression model. We 

end-up with: 

𝛽 = 𝐶𝑄(𝑄∗𝐶𝑄)−1 

Where 𝐶 is the covariance/correlation matrix of 𝑋. While the derivation of factor loadings 

under latent factor model is usually involved, using endogenous observable factors calls on 

simple linear algebra. 

Let us remark that we cannot deal with a strict factor model. Since 𝜀 = 𝑋 − 𝛽𝑍, 𝑄∗𝜀 =

𝑄∗𝑋 − 𝑄∗𝛽𝑄∗𝑋. Since 𝑄∗𝛽𝑄∗ = 𝑄∗, then 𝑄∗𝜀 = 0. Therefore, the residual terms cannot be 

independent.  

 
20 The columns of 𝑄 might not sum-up to one, thus the 𝑍 need to be rescaled to lead to portfolio 

returns. This does not alter projections on subspaces. 
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Still, the approximate factor model framework can be achieved. Let us for instance consider 

the case of constant pairwise correlations 𝜌,−
1

𝑛−1
< 𝜌 < 121. The vector 𝑒 ∈ ℝ𝑛, such that 

𝑒∗ = (1,… ,1) is the first eigenvector of 𝐶. The first eigenvalue equals to 1 + (𝑛 − 1)𝜌,  

while the other eigenvalues are equal to 1 − 𝜌. Since they are bounded, we are indeed the 

framework of an approximate single factor model.  

On the other hand, for 𝜌 ≥ 0, the constant correlation model is associated with the 

probabilistic latent factor representation, 𝑋𝑖 = √𝜌𝑍 + √1 − 𝜌𝜀𝑖, 𝑖 = 1,… , 𝑛, with 

(𝑍, 𝜀1, … , 𝜀𝑛) ∼ 𝑁(0, 𝐼𝑑(𝑛+1)×(𝑛+1)), which corresponds to a strict factor model. This shows 

that the same correlation matrix might be associated either with a latent factor or an 

endogenous factor structure.  

What has been described so far is an unrestricted factor model: factors 𝑍 are common to all 

𝑋𝑖, 𝑖 = 1,… , 𝑛 or equivalently no 𝛽𝑖𝑘 is set to zero. To ease the determination and 

management of an unreasonable number of parameters, it is useful to consider restricted 

factor models. This is indeed common practice, where the factors are typically sector or 

region specific. To parallel the exposition of the latent variable case, 𝑋𝑖 associated with name 

𝑖 in region 𝐶(𝑖) is written as: 

𝑋𝑖 = 𝛽𝑖,𝐶(𝑖)𝑍𝐶(𝑖) +√1 − 𝜌𝑖
2 × 𝜀𝑖 

Where 𝑍𝐶(𝑖) denote the country specific factor. In a credit risk context 𝑍𝐶(𝑖) would be an 

equally weighted average of returns associated with region 𝐶(𝑖). Let us denote by 𝐶(𝑖) the set 

of names belonging to the same region and sector as name 𝑖. Then, proceeding as above, we 

can still write 𝐸[𝜀𝑗|𝑍𝐶(𝑖)] = 0, ∀𝑗 ∈ 𝐶(𝑖), which leads to determining the betas associated  

 
21 The constant correlation model is also the benchmark model in credit risk modelling (i.e. the Basel 2 

framework and the Vasicek (2002) model) and in the pricing of CDO tranches (Laurent & Gregory 

(2005)). It is also considered by Ledoit and Wolf (2004) as the simplest, still useful shrinkage target, 

see also Elton and Gruber (1973).  
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with the relevant factors for bucket 𝐶(𝑖) for all names within that bucket in the same way as 

for the unrestricted case. 

Let us remark that the residual risks 𝜀𝑖 are uncorrelated only with the factors associated with a 

specific bucket 𝐶(𝑖). To ease the exposition, let us assume that the Gaussian vector 𝑍𝐶(𝑖), 𝑍𝐶(𝑗) 

is non-degenerated, i.e., we deal with different factors. We can proceed with orthogonality 

restrictions between 𝜀𝑖 and 𝑍𝐶(𝑖), 𝑍𝐶(𝑗) to uniquely derive some betas such that 𝑋𝑖 =

�̅�𝑖,𝐶(𝑖)𝑍𝐶(𝑖) + �̅�𝑖,𝐶(𝑗)𝑍𝐶(𝑗) +√1 − �̅�𝑖
2 × 𝜀�̅�, and 𝐸[𝜀�̅�|𝑍𝐶(𝑖), 𝑍𝐶(𝑗)] = 0.  

Then, 𝐸[𝜀𝑖|𝑍𝐶(𝑖), 𝑍𝐶(𝑗)] = 𝐸[𝑋𝑖 − 𝛽𝑖,𝐶(𝑖)𝑍𝐶(𝑖)|𝑍𝐶(𝑖), 𝑍𝐶(𝑗)] = (�̅�𝑖,𝐶(𝑖) − 𝛽𝑖,𝐶(𝑖))𝑍𝐶(𝑖) +

�̅�𝑖,𝐶(𝑗)𝑍𝐶(𝑗). For the conditional expectation to be equal to zero, we must have �̅�𝑖,𝐶(𝑗) = 0 (and 

�̅�𝑖,𝐶(𝑖) = 𝛽𝑖,𝐶(𝑖)). Conversely, let us assume that �̅�𝑖,𝐶(𝑗) = 0. Then, 𝐸[𝜀𝑖|𝑍𝐶(𝑖), 𝑍𝐶(𝑗)] =

(�̅�𝑖,𝐶(𝑖) − 𝛽𝑖,𝐶(𝑖))𝑍𝐶(𝑖). Since 𝐸[𝐸[𝜀𝑖|𝑍𝐶(𝑖), 𝑍𝐶(𝑗)]|𝑍𝐶(𝑖)] = 𝐸[𝜀𝑖|𝑍𝐶(𝑖)] = (�̅�𝑖,𝐶(𝑖) −

𝛽𝑖,𝐶(𝑖))𝑍𝐶(𝑖) = 0, we conclude that �̅�𝑖,𝐶(𝑖) = 𝛽𝑖,𝐶(𝑖).  

Therefore, when restricting some betas to zero, the residual terms cannot be independent from 

all the factors, unless the unrestricted model is fully consistent with the restricted one. 

Consequently, labelling a restricted model as a “factor model” is messy: in most cases, the 

residuals will be correlated with some of the factors. 

2.3 Calibration 

The analysis conducted in the previous setting is probabilistic and/or relates to “population” 

rather than “sample”. Let now turn to data. The calibration dataset will involve a rectangular 

matrix (or design matrix) of either equity or credit default swap returns, as required by the 

Basel Committee (the design matrix) 𝑅. In the sequel, we only rely on equities, encompassing 

more names and with deeper historical data. 
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- 𝑛 number of names 

- 𝑇 number of dates 

- 𝑅 = (𝑅𝑡𝑖), 𝑇 × 𝑛 matrix of demeaned and standardized historical returns where 𝑖 ∈

{1,… , 𝑛} is the number of equities to be considered and  𝑡 ∈ {1, … , 𝑇} the number of 

dates. 

- 𝑅∗, the transpose of 𝑅.  

- �̂� =
1

𝑇
× 𝑅∗𝑅, 𝑛 × 𝑛 the empirical (sample) correlation matrix of the returns. 

 

For ease of exposition, we assume that there are no missing data in 𝑅. For simplicity, we 

assume that the returns at different dates have been sampled independently from the same 

multivariate Gaussian distribution. Since we will not further discuss sampling issues, we will 

further denote the empirical correlation matrix by 𝐶 to ease notations. 

We remind (cf. Appendix for details) that the singular value decomposition (SVD) theorem 

states that the rectangular matrix of returns can be written as: 𝑅 = 𝑈Σ𝑉∗  

Where: 

- 𝑈 is a 𝑇 × 𝑇 unitary matrix: 𝑈𝑈∗ = 𝑈∗𝑈 = Id𝑇×𝑇, 

- Σ is a 𝑇 × 𝑛 rectangular diagonal matrix. The diagonal terms of Σ are the singular values, 

the number of them is min(𝑛, 𝑇). 

- 𝑉 is a 𝑛 × 𝑛 unitary matrix: 𝑉𝑉∗ = 𝑉∗𝑉 = 𝐼𝑑𝑛×𝑛.  

The SVD decomposition can be written in extended form as: 𝑅 = ∑ 𝜎𝑘𝑢𝑘𝑣𝑘
∗min(𝑛,𝑇)

𝑘=1 , where the 

𝜎𝑘 are the singular values sorted by decreasing order, 𝑢𝑘 and 𝑣𝑘 are the 𝑘 −th column of 𝑈 

and 𝑉, respectively. If 𝜎1 > 𝜎2 > ⋯ > 𝜎min(𝑛,𝑇), the previous decomposition is unique. 

The empirical correlation matrix 𝐶 is provided by: 𝐶 =
1

𝑇
× 𝑅∗𝑅 =

1

𝑇
× 𝑉Σ∗Σ𝑉∗ 
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The diagonal terms of the (𝑛 × 𝑛) diagonal matrix 
1

𝑇
× Σ∗Σ = Λ = (𝜆𝑘)  are the eigenvalues 

of 𝐶  (𝜆1 ≥ ⋯ ≥ 𝜆𝑛) and, up to a multiplicative 
1

𝑇
 factor, the squared singular values. Due to 

the assumption of no missing data, the eigenvalues of the empirical correlation matrix 𝐶 are 

non-negative (i.e. the empirical correlation matrix is positive semidefinite). 

The 𝑛 columns of 𝑉 (right-singular vectors of 𝑅) are the eigenvectors of 𝐶.  

Remark 1: The rank of 𝐶 (or equivalently of 𝑅) is at most min(𝑇, 𝑛). If we were to consider 

one-year non-overlapping returns (based on the DRC one-year liquidity horizon) and using 10 

years of data, we get  𝑇 = 10. Depending on data frequency, 𝑇 may range from 10 (10Y of 

non-overlapping yearly returns) to 2500 (10Y of daily returns). The number of names 𝑛 can 

range from say, 2500 up to 15000. As an example, take 𝑛 = 15000 and 𝑇 = 250.  We then 

deal with large 𝑛, (rather) small 
𝑇

𝑛
 (the asymptotics of random matrix theory (𝑛 and 𝑇 both 

large, with a controlled ratio 
𝑇

𝑛
) as opposed to the standard asymptotics (fixed 𝑛, 𝑇 → ∞), the 

number of zero eigenvalues of Ĉ is at least min(𝑛 − 𝑇, 0) = 14750. 

We are now to consider various calibration criteria to determine correlation matrices, 

consistent with the above factor specifications. As for latent factor models, two families of 

discrepancy functions between the empirical correlation matrix and the target correlation 

matrix have been considered so far. The first one involves Frobenius norms, while the other 

relates to maximum likelihood estimation. Both approaches involve the minimization of some 

discrepancy function.  

2.3.1 Nearest correlation matrix with 𝑲− factor structure. 

There several algorithms aiming at providing the nearest (with respect to Frobenius norm) 

correlation matrix with 𝐾 − factor structure.  
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This approach is also known as “least squares estimation” in factor analysis22, see Mulaik 

(2009, 8.3.1), Bartholomew et al (2011, 3.8). This involves minimizing (over 𝛽,Ψ) ‖𝐶 −

𝛽𝛽∗ −Ψ‖𝐹
2 , where Ψ is a diagonal matrix with non-negative entries. Mulaik (2009, 15.3.9) or 

Bartholomew et al (2011, 3.8) provide the gradient of that criteria. 

The approach aiming at minimizing ‖𝐶 − 𝐶(𝛽)‖𝐹
2 , where ‖𝑧‖𝐹 stands for the Frobenius norm 

and 𝐶(𝛽) = 𝛽𝛽∗ + 𝐼𝑑𝑛×𝑛 − diag(𝛽𝛽
∗) with diag(𝛽𝛽∗) ≤ 𝐼𝑑𝑛×𝑛 is known as the minres 

problem (Harman and Jones (1966)). Let us remark that ‖𝐶 − 𝛽𝛽∗ −Ψ‖𝐹
2 ≥ ‖𝐶 − 𝐶(𝛽)‖𝐹

2 , 

with equality when Ψ = 𝐼𝑑𝑛×𝑛 − diag(𝛽𝛽
∗). The right-hand term of the inequality is a 

majorization function (see Borg and Groenen (2005)) and as outlined by Jöreskog (2003), see 

also Harman (1976, Subsection 9.2), Comrey and Lee (2013, Subsection 4.2), the two 

minimization problems are equivalent. 

Besides, since the set of 𝐶(𝛽) matrices is closed and convex, the projection (here based on the 

Frobenius norm) is well defined (existence and uniqueness). The iterated principal factor is a 

well-known approach to the least squares problem, see Rencher and Christensen (2012), 

13.3.2 and 13.3.3. It is also known as “principal axis method”, see Gentle (2009, chapter 10). 

This is an alternating projection algorithm, iterating between optimal rank reduction and 

projection onto the set of matrices with diagonal elements equal to one23.  Starting from an 

initial estimate Ψ0, 𝛽0 is computed from the low-rank decomposition of 𝐶 − Ψ, i.e. 𝛽0 is the 

𝑛 × 𝐾 matrix with columns associated with the first 𝐾 eigenvectors of 𝐶 − Ψ. Ψ1 is then set 

as diag(𝐼𝑑𝑛×𝑛 − 𝛽
0𝛽0∗), so that 𝛽0𝛽0∗ + diag(𝐼𝑑𝑛×𝑛 − 𝛽

0𝛽0∗) is a symmetric matrix with 

diagonal elements equal to one (𝛽0𝛽0∗ + diag(𝐼𝑑𝑛×𝑛 − 𝛽
0𝛽0∗) will be a correlation matrix if 

diag(𝛽0𝛽0∗) ≤ 𝐼𝑑𝑛×𝑛) and so on. 

 
22 Not to be confused with the OLS estimation methods, which is related to the residual returns and not 

to the correlation matrix. 
23 Morini and Webber (2006) also consider an alternating projection algorithm. While the principal 

axis method involves the low rank approximation of 𝐶 − Ψ, these authors the low rank approximation 

of 𝐶. In terms of the minres problem, Morini and Webber (2006) consider the low rank approximation 

of 𝛽𝛽∗ + 𝐼𝑑(𝑛×𝑛) − diag(𝛽𝛽∗), contrasting with 𝐶 − 𝐼𝑑(𝑛×𝑛) + diag(𝛽𝛽∗). Thus, they find that their 

method does not lead to an optimum. Their approach can be thought of as an iterated PCA, with 

additive normalization, see below. 
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Zhang and Wu (2003) connected the low rank correlation problem to least squares estimation 

of factor models through a Lagrange multiplier approach with an application to Libor Market 

Models. Andersen, Sidenius and Basu (2003) adapted the idea of iterated low rank 

approximations to the minres problem in a credit risk context. Let us assume that 𝐶 = 𝛽𝛽∗ +

𝐼𝑑(𝑛×𝑛) − diag(𝛽𝛽
∗). Then 𝛽𝛽∗ is the rank 𝐾 approximation of 𝐶 − 𝐼𝑑(𝑛×𝑛) + diag(𝛽𝛽

∗). To 

solve this fixed-point problem, one can start from a guessed 𝛽, say 𝑣 (the first 𝐾 eigenvectors 

of 𝐶), compute the low rank approximation of 𝐶 − 𝐼𝑑(𝑛𝑥𝑛) + diag(𝑣𝑣
∗), derive updated 𝛽 

and so-on. This method might not converge, for instance when the variance associated with 

the factors (the communalities) becomes larger than the variance of the returns. This 

corresponds to so-called Heywood cases. In most practical cases, this constraint is not binding 

and the principal factor method usually only requires a few iterations of PCA to provide the 

nearest (with respect to Frobenius norm) correlation matrix.  

The gradient of 𝑓(𝛽) = ‖𝐶 − 𝐶(𝛽)‖𝐹
2  can be written as ∇𝑓(𝛽) = 4 × (𝛽𝛽∗ × 𝛽 − 𝐶𝛽 + 𝛽 −

diag(𝛽𝛽∗)𝛽) = −4(𝐶 − 𝐶(𝛽))𝛽. Borsdorf et al (2010) investigate several approaches, 

including Andersen, Sidenius and Basu (2003), Newton algorithm and the Spectral Projection 

Gradient (SPG) approach of Birgin, Martínez & Raydan (2000). As in Laurent et al (2016), 

they find good performance of the iterated principal factor, when applied to financial data, 

compared to other methods. As further discussed, our paper confirms previous findings. 

When switching from unrestricted to restricted factor model, the iterated principal factor 

method can no longer be used. However, Newton and SPG algorithms are still readily 

applicable. The textbooks of Mulaik (2009) or Bartholomew et al (2011) show that the first 

order derivatives can be computed in matrix form with respect to individual factor loadings 

and specific variances. In the same vein, we can consider the coordinates of the ∇𝑓(𝛽) =

−4(𝐶 − 𝐶(𝛽))𝛽 associated with the unconstrained betas. 
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Let us remark that the criteria to be minimized 𝛽 → ‖𝐶 − 𝐶(𝛽)‖𝐹
2  is not convex. Therefore, 

the SPG algorithm can converge to a local minimum. The initial value is thus of importance. 

We rely on Marsaglia and Olkin (1984) for randomly generating correlation matrices, then 

computing inception betas as the first principal components, to assess existence of local 

minima. 

2.3.2 Maximum likelihood estimation 

Under the assumption of joint normality, the derivation of the maximum likelihood estimators 

is quite standard. The log-likelihood involves a discrepancy function between the empirical 

correlation matrix 𝐶 and 𝐶(𝛽): −trace(𝐶(𝛽)−1𝐶) + log|𝐶(𝛽)−1𝐶|. 

When it comes to iterative algorithms (iterated principal factors, spectral projection gradient, 

EM algorithm) with the aim of computing optimal factor loadings, 𝛽, an initial guess needs to 

be done. This might be the first 𝐾 −principal components of the correlation matrix or of the 

correlation matrix minus the diagonal matrix of well-chosen specific variances (often used in 

the iterated principal factor method). Since both least-squares 𝛽 → ‖𝐶 − 𝐶(𝛽)‖𝐹
2  and 

maximum likelihood 𝛽 → trace[𝐶−1(𝛽)𝐶] − ln|𝐶−1(𝛽)𝐶| criteria are not convex, SPG 

algorithm and EM algorithm may lead to local optima. As for least squares approaches, we 

rely on Marsaglia and Olkin (1984) to compute random initial betas, to assess the existence of 

local minima.  

Maximum likelihood estimation for isotropic model 

This approach back to Young (1941) and Whittle (1952) who derive the factor loadings 

assuming specific variances are known. Bartlett (1950, 1951) provides a significance test for 

the number of principal components to retain. Lawley (1953), Anderson and Rubin (1956)  
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connect spectral decomposition of the empirical covariance/correlation matrix and first order 

conditions when maximising likelihood. Tipping and Bishop (1999) show that these do 

correspond to the maximum of the likelihood function. Besides truncation, the isotropic 

model also involves random matrix and shrinkage ideas: one potential issue with non-constant 

specific variances is that (the variance of) some idiosyncratic noises can (insignificantly) be 

close to zero. One way to better conditioning the correlation matrix is to consider 

homoscedastic (or isotropic) idiosyncratic noises (in factor analysis terminology, constant 

specific variances).  

Factor representation 

The probabilistic factor representation will be the starting point and we will end-up with a 

calibration to an empirical correlation matrix. 

Let us consider the following specification of a 𝑛 – dimensional random vector of 

standardized returns 𝑋: 𝑋 = 𝑣𝑍 + 𝜀, where 𝑍 is a 𝐾 – dimensional Gaussian vector (𝐾 < 𝑛), 

𝑣 is a (𝑛 × 𝐾) matrix of factor loadings, 𝜀 some idiosyncratic noise vector. 𝜀 and 𝑍 are 

independent and have zero mean. The covariance matrix of 𝜀 is diagonal and denoted by 

𝜎2(𝜀). The 𝐾 × 𝐾 covariance matrix of 𝑍 is diagonal: Λ̃𝐾 = (�̃�𝑘) with non-negative diagonal 

terms �̃�𝑘, 𝑘 = 1,… , 𝐾. The (𝑛 × 𝐾) matrix 𝑣 can be such that 𝑣∗𝑣 = Id𝐾×𝐾. 

Remark 1: The above representation of 𝑋 is not unique: Take any invertible 𝐾 × 𝐾 matrix 𝑄, 

𝑋 = 𝑣𝑄−1(𝑄𝑍) + 𝜀 provides another equivalent representation. 

Remark 2: Thanks to the spectral decomposition of the covariance matrix associated with the 

random vector 𝑣𝑍 (just think of a PCA), we can indeed choose 𝑍 to have orthogonal 

components and 𝑣∗𝑣 = Id𝐾×𝐾. 
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Spectral decomposition 

We assume that 𝜎2(𝜀) is a scalar (or spherical) matrix, i.e., the identity matrix up to a 

multiplicative constant: 𝜎2(𝜀) = 𝜎2 × Id𝑛×𝑛. Therefore, the 𝑛 × 𝑛 covariance matrix of 𝑍 is 

provided by: 

Ω = 𝑣Λ̃𝐾𝑣
∗ + 𝜎2 × Id𝑛×𝑛 

The 𝐾 columns of 𝑣 are eigenvectors of Ω and the corresponding eigenvalues �̃�𝑘 + 𝜎
2. Any 𝑛 

– dimensional vector orthogonal to the space generated by the columns of 𝑣 (i.e., belonging to 

the kernel of 𝑣Λ̃𝐾𝑣
∗) is an eigenvector with corresponding eigenvalue equal to 𝜎2.  Actually, 

𝑣Λ̃𝐾𝑣
∗ + 𝜎2 × Id𝑛×𝑛 is the spectral decomposition of the covariance matrix Ω.  

Remark 3: If 𝜎2 > 0, the covariance matrix of 𝑋 is of full rank. As all eigenvalues are 

bounded below by 𝜎2, we avoid some of the issues dealt with random matrix theory, i.e., very 

small (fake) eigenvalues for large 𝑛. On the other hand, if 𝜎2 = 0, rank(Ω) ≤ 𝐾, which leads 

to low rank covariance matrices.  

Calibration to the empirical correlation matrix 𝐶  

We first build an approximate covariance matrix Ω and then normalize it to a correlation 

matrix. Computation of approximate covariance matrix Ω: 

- Compute the first 𝐾 eigenvectors of 𝐶, 𝑣 (corresponding to the first 𝐾 columns of 𝑉); Ω 

and 𝐶 share the same 𝐾 first eigenvectors.  

- Determining 𝜎2: 𝜎2 =
1

𝑛−𝐾
∑ 𝜆𝑘
𝑛
𝐾+1 . We replace the 𝑛 − 𝐾 smaller eigenvalues of 𝐶 by 

their average. 
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- Set �̃�𝑘 = 𝜆𝑘 − 𝜎
2, 𝑘 = 1,… , 𝐾, where 𝜆𝑘 is the 𝑘𝑡ℎ largest eigenvalue of 𝐶. Therefore, 

the corresponding first 𝐾 eigenvalues of Ω and Ĉ are equal. 

 

Remark 4: Ω has the same first 𝐾 − eigen vectors as 𝐶 and the same eigenvectors as �̃�2. The 

eigenvalues associated with these eigenvectors are the same as those of  Ĉ, i.e. 𝜆𝑘, 𝑘 =

1, … , 𝐾. 

Remark 5: 𝜎2 is such that the sum of the eigenvalues of Ω and Ĉ are equal. Since the sum of 

the eigenvalues of a square matrix equals its trace and the trace of Ĉ equals 𝑛, the trace of Ω is 

also equal to 𝑛. Unless all diagonal elements of Ω are equal to one, some elements will be 

larger than one. The additive normalizing approach, i.e., considering Ω + diag(Id𝑛×𝑛 − Ω) is 

problematic. Since some diagonal elements of Ω will be larger than one, some elements of 

diag(Id𝑛×𝑛 − Ω) will not be positive. Therefore, we cannot readily provide a probabilistic 

factor representation. 

Thus, to end the building, we need transform Ω to a correlation matrix through some 

multiplicative scaling, i.e., through the eigenvalue method of Rousseeuw & Molenberghs 

(1993). Let us denote by 𝜔𝑖𝑖 the diagonal elements of Ω. The matrix: 

�̃�3 = diag((𝜔𝑖𝑖)
−1 2⁄ )Ω diag((𝜔𝑖𝑖)

−1 2⁄ ) 

is the correlation matrix associated with Ω.  

Simulation 

As for simulation, the random vector: 

𝑋 = diag((𝜔𝑖𝑖)
−1 2⁄ ) × (𝑣𝑍 + 𝜀) 
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has a correlation matrix equal to  �̃�3. 

This provides a third way to compute an approximate correlation matrix with underlying 

factor structure.  

Principal Component Method 

The “principal component method” to factor analysis back to Pearson (1901) and Hotelling 

(1933), see Gentle (2009), Rencher and Christensen (2012)). 

Approximate correlation matrix  

We first consider the optimal rank 𝐾 approximation of 𝐶, 𝑣Λ𝐾𝑣
∗24. We then add the diagonal 

matrix diag(Id𝑛×𝑛 − 𝑣Λ𝐾𝑣
∗) to 𝑣Λ𝐾𝑣

∗, thus setting diagonal terms to one. The resulting 

approximate correlation matrix can be written as: 

�̃�2 = 𝑣Λ𝐾𝑣
∗ + diag(Id𝑛×𝑛 − 𝑣Λ𝐾𝑣

∗) 

Let us remark that the diagonal terms of diag(Id𝑛×𝑛 − 𝑣Λ𝐾𝑣
∗) are non-negative. To check 

this, just expand the spectral decomposition of 𝐶 (i.e., Ĉ can be associated with a 𝑛 − factor 

model). The diagonal terms of 𝑣Λ𝐾𝑣
∗ correspond to the variance associated with the 𝐾 first 

factors, while the diagonal terms of Id𝑛×𝑛 − 𝑣Λ𝐾𝑣
∗ correspond to the variance associated 

with the remaining 𝑛 − 𝐾 factors.  

 
24 𝐾 will be subsequently the number of factors. Determining the number of factors based on data and 

statistical analysis is quite standard but uneasy. In a financial context, this is prescribed by law. The 

FRTB requires that the number of factors accounts for two types of systematic risk factors and FAQ3 

suggests a factor model with 𝑀+𝑁 factors (𝑀 regions + 𝑁 industries). If 𝑀 +𝑁 = 10, say, the factor 

structure requirement is not binding and the idiosyncratic risk factor loadings (𝛾𝑖 in FRTB FAQ 

wording) are equal to zero.  
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We denote by 𝜎𝑖
2 = 1 − �̃�𝑖𝑖 the generic term of  

diag(𝐼𝑑𝑛×𝑛 − 𝑣Λ𝐾𝑣
∗). They are usually denoted as “specific variances” while �̃�𝑖𝑖 the 

variance associated with the factors is the “communality”. The off-diagonal terms of 𝑣Λ𝐾𝑣
∗ 

are the approximate pairwise correlations. 

Probabilistic factor representation  

Let (𝑍, 𝜀) be a (𝐾 + 𝑛) – dimensional random vector with independent zero mean and unit 

variance components. The 𝐾 – dimensional random vector 𝑍 will correspond to latent factors 

and the 𝑛 – dimensional random vector 𝜀 to idiosyncratic noises. Let us consider the 𝑛 – 

dimensional random vector: 

𝑋 = 𝑣Λ𝐾
1 2⁄ 𝑍 + diag(𝜎𝑖)𝜀. 

Then the covariance/correlation matrix of 𝑍 is �̃�2.  

Remark 1: This building consists in replacing the matrix associated with the 𝑛 − 𝐾 

eigenvectors corresponding to the smallest eigenvalues by a diagonal matrix, with the same 

diagonal elements. That is, we keep the variance of the residuals unchanged, but we set the 

correlation parameters of the residuals to zero. In factor analysis, the 𝜎𝑖
2 correspond to the 

specific variances and the diagonal elements of 𝑣Λ𝐾𝑣
∗ to the communalities of the factors. 

2.3.3 Observable endogenous factors: use of OLS 

Let us denote by Σ𝜀 ≔ 𝐸[𝜀𝜀∗], the covariance matrix of the residuals. The above model is 

used by practitioners to compute pairwise correlation coefficients by setting the non-diagonal 

terms of Σ𝜀 to zero, i.e. only considering the correlations derived from the factors. These are 

equal to the non-diagonal terms of var[𝛽𝑍] = 𝐸[𝛽𝑍𝑍∗𝛽∗] = 𝐶𝑄(𝑄∗𝐶𝑄)−1𝑄∗𝐶.  
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Setting the diagonal terms to one, we get the approximate (through additive transformation) 

correlation matrix: 

�̃� = diag(𝐼𝑑𝑛×𝑛 − 𝐶𝑄(𝑄
∗𝐶𝑄)−1𝑄∗𝐶) + 𝐶𝑄(𝑄∗𝐶𝑄)−1𝑄∗𝐶 

Let us consider the case of observable (endogenous) factors. For simplicity, we will keep on 

assuming i.i.d. Gaussian returns. To our knowledge, OLS are the usual approach in that 

framework and the covariance matrix of residuals is assumed to be invertible. When the same 

observable factors are used in all regressions, the ML and GLS estimators coincide with OLS. 

This will correspond to the unrestricted model. We are also to consider cases where individual 

returns will be related to bucket specific portfolios mimicking the restricted approach when 

using latent factors. This multivariate setting looks like the seemingly unrelated regression 

(SUR) framework of Zellner. But as mentioned above, when the portfolio factor returns are 

linear combination of individual returns with time-invariant coefficients (e.g., average returns 

within a bucket), the covariance matrix of residuals cannot be of full rank, even if 𝑇 > 𝑛. 

Thus, nor ML, neither feasible GLS can be implemented, while such an inconvenience does 

not occur when using OLS. Besides, since explanatory variables are endogenous, the 

covariance of residuals is determined by the covariance/correlation matrix of returns and 

cannot be set arbitrarily. We will thus focus later OLS, keeping in mind that the focus is the 

building of correlation matrices, rather than linear prediction. 

2.4 Comparative study 

This section aims at comparing the performances of the several factor-model settings 

presented above in approximating a given empirical correlation matrix. It includes both 

unrestricted and restricted algorithms, named “configurations” in the sequel. 

This uses a subset of 186 names from the CDX and iTraxx indices (cf. Appendix), for which 

data could be retrieved over a period of roughly twelve years (12 January 2007 to 8 February 

2019), including two periods of stress, the great financial crisis and the eurozone crisis.  
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The study is based on non-overlapping weekly stock returns. The cross-sectional database is 

composed of T=631 weekly-spaced dates. Given this dataset, one may compute the empirical 

Pearson correlation estimates for all pairs of names and build the (N, N) empirical correlation 

matrix. No spectral adjustment is necessary since the matrix is natively semi-positive defined, 

with the smallest eigenvalue being equal to 0.04.    

In a credit risk management context, the risk horizon often used is 1 year (for regulatory 

capital computation for both the banking and the trading book for instance). However, using 

1-year horizon is quite constraining regarding the dataset size (regulatory texts on capital 

assessment for trading book for instance, require using an empirical dataset of at least 10-year 

depth, but it is often difficult to find much longer time-series for a large set of issuers) if one 

wants avoiding overlapping and its biases. A natural way to deal with such issue is to use a 

smaller horizon for calibrating equity correlations. Weekly or daily data are then preferred by 

practitioners, even if the latter may suffer from microstructure noises and synchronicity 

issues. Indeed, mixing European (EU) and United-States (US) data may incorporate 

synchronization issues in calibrating correlation since the equities might be quoted on 

different marketplaces. This can lead to asynchronous data, biasing the correlation25 

estimation. Basically, daily data may be subject to this phenomenon. Using weekly data may 

reduce drastically this problem. In consequence, weekly equity returns have been preferred to 

daily ones for the subsequent numerical experiments. 

Note also that it is quite common to use equity log returns to calibrate credit risk model since 

the equity market contains more names than the CDS one. From a theoretical point of view, 

this is in line with the Merton Model (1974), where asset of the issuer i is seen as the sum of  

 
25 Let us consider two stocks quoted on two different markets. For illustrative purpose, suppose they 

are driven by the following stochastic differential equation (i = 1,2): dSt
i = St

iσidWt
i where (Wt

i)
t≥0

 

are two standard Wiener processes such that d〈W.
1,W.

2〉t = ρdt. Let t(i) be the closing time of Equity 

i, h a given number of days, and define the log-return between t(i) and t(i) + h  as Rh(i) ≔

ln (
St(i)+h
i

St(i)
i ). If Equity 1 and Equity 2 are quoted on the same market, then t(1) = t(2) leading to 

Corr(Rh(1), Rh(2)) = ρ. Contrarily, if t(1) ≠ t(2), then Corr(Rh(1), Rh(2)) =

ρ
[min(t(1)+h,t(2)+h)−max(t(1),t(2))]

h
≠ ρ. 
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its equity and its total liabilities: i.e., At
i = St

i + Li(t) where we consider t ↦ Li(t) as a 

deterministic function of time. In this context correlation among the asset is coming from 

correlation among stocks. 

2.3.1 Constant correlation benchmark 

As a benchmark, we first consider the case of a constant correlation, which is associated with 

the one factor constant beta model. The paper entitled “Covariance Structure Regularization 

via Frobenius-Norm Discrepancy” (Cui et al (2016)) provides some insights. Section 3.2 

deals with the best approximation, with respect to Frobenius norm, of a given covariance 

matrix by a covariance matrix with constant diagonal terms (variances) 𝜎2 and constant 

correlation parameter 𝜌 (so called CS – Constant Symmetry matrices). When the input 

covariance matrix is a correlation matrix, the best approximation is also a correlation matrix, 

i.e. 𝜎2 = 1 and the optimal correlation parameter �̅� is simply the arithmetic average of 

pairwise correlations26. Thus, in our case �̅� = 38.1%. This result can also be directly derived: 

The solution of min
𝜌
∑ (𝜌𝑖𝑗 − 𝜌)

2
𝑖𝑗  is simply �̅� =

1

|{(𝑖,𝑗),𝑖>𝑗}|
∑ 𝜌𝑖𝑗𝑖>𝑗 , where |{(𝑖, 𝑗), 𝑖 > 𝑗}| is 

the number of non-diagonal elements in the correlation matrix, 
𝑛(𝑛−1)

2
, where 𝑛 = 186 in our 

case study27.  

 

 

 
26 From Theorem 3.2 and equation 3.13,  𝑡 = ∑ 𝜌𝑖𝑗𝑖≠𝑗 , 𝑐 =

𝑡

𝑛(𝑛−1)
= �̅�. 

27 For the constant correlation matrix to be PSD, we must have −
1

𝑛−1
≤ �̅� ≤ 1. Borsdorf, Higham and 

Raydan (2010), Theorem 2.2 state that the optimal constant correlation is the projection of �̅�  on the 

interval [− 1 𝑛 − 1⁄ , 1]. In our case study, we have an inner optimum, i.e., −1 185⁄ < 0.381 < 1. 

Cui et al (2016) project a covariance matrix, which always result to an inner optimum, which may not 

be the case in Borsdorf et al (2016). 
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The distance between the empirical and the best fit constant correlation matrix is based on the 

Frobenius norm, i.e., is the square root of the mean of squared differences between the 

empirical correlation matrix and the optimal constant correlation matrix. The outcome is 

(
1

|{(𝑖,𝑗),𝑖>𝑗}|
∑ (𝜌𝑖𝑗 − �̅�)

2
𝑖>𝑗 )

1

2
= 12.30%. 

2.3.2 Block correlation matrices 

The technicalities of the approach are detailed in the companion note “estimation of block 

correlation matrices”. In our case study, we have four buckets (intersecting two sectors, 

financial vs non-financial, and two regions, EU vs NA). This leads to four intra-bucket 

correlation parameters and six inter-bucket correlations. Up to some extra constraints, not 

binding here, this results in a straightforward extension of the constant correlation case. 

It turns out that the block correlation matrix that minimizes the Frobenius norm is such that 

intra and inter-bucket correlations are set to their average: The squared Frobenius norm is 

equal to the sum of the squared Frobenius norm over the 10 (4 + 6) blocks. Besides, we have 

10 parameters (one correlation per block) to calibrate. The global minimization can be 

decomposed into ten independent unidimensional minimisation problems. As for the four 

inner (intra-bucket) correlation matrices, we know from the above that the average intra-

bucket correlations provide the best fit. As for the six matrices associated with inter-bucket 

correlations, similarly, the best fit is achieved by choosing the corresponding average 

correlation. This leads to the following group level correlation matrix Ο: 

Ο = (

60.3% 44.3% 43.3% 36.1%
44.3% 52.3% 36.2% 40.7%
43.3% 36.2% 42.3% 34.3%
36.1% 40.7% 34.3% 37.6%

) 

The diagonal elements of the group level correlation matrix correspond to the average of the 

intra-bucket correlations, while the non-diagonal terms to the inter-bucket correlations.  
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The average of intra-bucket correlations is 48.1%, while the average of inter-bucket 

correlation equals 39.1%. When the bucketing has economic significance, we do expect that 

intra-bucket correlations are larger than inter-bucket correlations. 

Besides, we have the following nice result which states if Ο is positive semidefinite (PSD), 

then the global (186 × 186) correlation matrix is also PSD. This is the case here since all 

eigenvalues are positive28.  

Demey et al (2004), Huang & Yang (2010) provide a 4 − factor representation for Gaussian 

distributions with the above block structure. The group level correlation matrix Ο is the matrix 

of the four global factors (see companion paper “About the estimation of block correlation 

matrices “). This parametrization is parsimonious, it involves only 4 × 4 = 16 beta 

parameters, to be compared with the 186 betas involved in a one factor model. 

Nevertheless, 4 global factors are not compliant with the FRTB requirement of two types of 

systematic risk factors. We can reduce dimensionality by truncating the eigenvalue matrix, as 

in the first step of Rebonato and Jäckel (2000), see also Huang & Yang (2010). Thanks to 

Higham (1988), this truncation leads to the nearest covariance matrix to the group level 

matrix Ο, with respect to the Frobenius norm.  Besides, the block homogeneous structure of 

the global correlation matrix is kept unchanged. 

2.3.3 One factor calibrated with the centroid method 

As in the constant correlation model, the aim is to provide a straightforward implementation 

of a one factor model, to be used as a benchmark against more involved approaches. The 

latent random vector 𝑋 = (𝑋𝑖) stems from a one factor model: 𝑋𝑖 = 𝛽𝑖𝑍 + 𝜎𝑖𝜀𝑖, with 

𝑍, 𝜀1, … , 𝜀𝑛 being independent and having unit variance and 𝜎𝑖 = √1 − 𝛽𝑖
2.  

 
28 The eigenvalues are equal to 0.017, 0.084, 0.155, 1.67. 
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The correlation between 𝑋𝑖 and 𝑋𝑗, 𝑖 ≠ 𝑗  is 𝑐𝑖𝑗 = 𝛽𝑖 × 𝛽𝑗. Besides, 𝑐𝑖𝑖 = 𝛽𝑖 × 𝛽𝑖 + 𝜎𝑖
2. Thus, 

∑ 𝑐𝑖𝑗
𝑛
𝑗=1 = 𝛽𝑖 × (∑ 𝛽𝑗

𝑛
𝑗=1 ) + 𝜎𝑖

2.  

The calibration of the 𝛽𝑖 relies on neglecting the 𝜎𝑖
2 terms (i.e. the variance of the 

idiosyncratic risks): ∑ 𝑐𝑖𝑗
𝑛
𝑗=1 ≈ 𝛽𝑖 × (∑ 𝛽𝑗

𝑛
𝑗=1 ). Therefore,  ∑ 𝑐𝑖𝑗

𝑛
𝑖,𝑗=1 ≈ (∑ 𝛽𝑗

𝑛
𝑗=1 )

2
. This leads 

to: 

𝛽𝑖 ≈
∑ 𝑐𝑖𝑗
𝑛
𝑗=1

(∑ 𝑐𝑖𝑗
𝑛
𝑖,𝑗=1 )

1 2⁄
 

This calibrated pairwise correlations for 𝑖 ≠ 𝑗 are such that:  

�̃�𝑖𝑗 = 𝛽𝑖 × 𝛽𝑗 =
(∑ 𝑐𝑖𝑗

𝑛
𝑗=1 )(∑ 𝑐𝑖𝑗

𝑛
𝑖=1 )

∑ 𝑐𝑖𝑗
𝑛
𝑖,𝑗=1

 

The numerator of the fraction involves multiplying the averages of pairwise correlations 

involving 𝑖 and involving 𝑗. The denominator is the average of all the terms of the correlation 

matrix (including diagonal elements). This is a straightforward approach to the calibration of 

a one factor model from a given empirical correlation matrix. 

Forthcoming analysis focus on several aspects of the modelling. First subsection presents the 

model fit, measured via the so-called Root Mean Square Error (RMSE), considering all 

pairwise correlations in all factor-model settings. Subsequent subsections then focused on the 

3-N beta case, comparing only models that assign 3 non-null betas to all issuers, linear 

regression being taken as the benchmark methodology for comparison. Analysis is performed 

first on the ability to fit inter and intra class empirical correlations, then on the extreme 

correlation level and the sign of the betas, providing a homogeneity measure of the considered 

classes. 



 

92 

 

CHAPTER 2. CORRELATION MATRICES WITH FACTOR STRUCTURE FOR CREDIT 

RISK EXPOSURES 

2.3.4 RMSE comparison 

To illustrate the performance of the different configurations to fit the empirical correlation 

matrix, one may be first interested in comparing the final objective function obtained at the 

end of the calibration process. To make them comparable, they are all expressed in terms of 

the Root Mean Squared Error (RMSE), formally defined as: 

RMSE ≔ √
1

N × (N − 1)
∑ (Ci,j

Empirical
− Ci,j

Model)
2N

i,j=1
 

Figure 2.2 provides the RMSE of the different calibration configurations when considering 1 

to 4 factors. For convenience purpose, Spectral Projected Gradient (SPG) and Andersen-Basu-

Sidenius (ABS) results have been concatenated altogether in the “Least_Squares_Correlation” 

configuration since they lead to almost the same results in our empirical experiment. Note 

however, that “Least_Squares_Correlation_Restricted” only refers to the restricted version of 

the SPG algorithm, since a similar restricted version seems not attainable for the ABS 

algorithm. 
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Figure 2.210RMSE (model implied correlations vs. empirical correlations) for different 

calibration configurations 

As expected, the RMSE is a decreasing function of the number of factors. This naïve assertion 

should be balanced, however, by the marginal gain to add factors. Indeed, adding one factor to 

a one-factor model allows a significant gain in terms of RMSE (≈ 1.1% absolute gain for the 

“Least_Squares_Correlation” configuration for instance), while adding one factor to a three-

factor model implies only a smaller gain (≈ 0.6%). This suggests that the regulatory 

constraint to use a three-factor model for the capital assessment of the default risk in trading 

book for instance, is a good balance between accuracy and fit, or in regulatory terms: a good 

balance between risk sensitivity and complexity. 
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Going through the configurations, one observes for a given number of factors, the same type 

of model ordering. Basically, naïve methods (“Trader_Like_Model” and 

“Average_Correlation” for the one-factor setting, and “Block_Average_Correlation” for the 

four-factor model) imply only rough fit of the considered empirical matrix. Considering their 

definition, this result is not surprising. Then, PCA, Regression, ML and unrestricted LS 

methods perform quite equivalently for a given factor configuration. One exception occurs, 

however. It concerns the “PCA_Uniform_Noise_Multiplicative”, for which the multiplicative 

transformation has a strong negative impact on the RMSE. 

2.3.5 3N-beta case: conditional RMSE per class 

Focusing on the 3N-beta settings, i.e., 3-factor model for unrestricted algorithms and the two 

restricted models, it is noteworthy that one observes a clear gain to use restricted model. 

Indeed, restricted regression provides better results than unrestricted ones. More importantly, 

restricted least square calibration improves significantly the RMSE, to a level closed to the 

one obtained in the unrestricted case for a four-factor configuration. By referring to the same 

number of non-null beta, the restricted calibration allows therefore a significant gain. 

Coupling with its ability to identify and explain the source of the dependency, it represents a 

good challenger of the unrestricted configurations, more usual in a credit risk modelling 

context.  

To strengthen this last assertion, one may be interested in analysing the fit through the chosen 

classification (or segmentation). Remember that, in the restricted configuration, each issuer 

must be mapped onto a class (or segment). To solve this classification problem, statistical 

approaches, supervised or not, may be invoked. When considering a credit risk model with 

constraint on risk measure production for large portfolios, it is quite common instead to rely 

on an economical approach, based on issuer information like industrial sector or geographical 

region, to perform the classification. While not setting on optimal statistical procedure, this 

approach is readable and easily manageable since it allows a straightforward fallback 

procedure when considering issuers not present in the calibration dataset. 
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The economical classification used in this numerical analysis is based on the couple industry-

region. More especially, 4 couples are considered here: Financial-Europe (FIN-EU), 

Financial-United-States (FIN-US), Non-Financial-Europe (NFIN-EU), Non-Financial-United-

States (NFIN-US).  

Besides, given this classification, the intra-class fit as well as the inter-class fit should be 

different in function of the restriction. These two concepts may be defined is the same way as 

the overall RMSE, in particular:  

RMSEIntra ≔ √
1

nintra
∑ (Ci,j

Empirical
− Ci,j

Model)
2

𝕀Segmenti=Segmentj

N

i,j=1
 

 

RMSEInter ≔ √
1

nInter
∑ (Ci,j

Empirical
− Ci,j

Model)
2

𝕀Segmenti≠Segmentj

N

i,j=1
 

Indeed, it is obvious that RMSE = √(RMSEIntra)2.
nIntra

N-(N−1)
+ (RMSEInter)2.

nInter

N-(N−1)
. Table 1 

provides figures for this analysis.  

 

Table 2.19 RMSE for different calibration configurations according to intra and inter-class 

and bias 

 Configuration  RMSE  RMSE Intra  RMSE Inter  Bias 

Least_Squares_Correlation_Restricted 4.15% 4.64% 3.87% 0.00%

Least_Squares_Correlation_3F 4.57% 5.74% 3.82% 0.00%

PCA_Uniform_Noise_Additive_3F' 4.57% 5.75% 3.82% 0.01%

PCA_Truncated_Additive_3F' 4.60% 5.64% 3.95% -0.27%

Maximum_Likelihood_Restricted 4.64% 4.46% 4.73% 0.43%

Maximum_Likelihood_3F 4.65% 5.96% 3.80% 0.21%

Regression_Unrestricted_3F' 5.03% 6.52% 4.06% -0.29%

PCA_Uniform_Noise_Multiplicative_3F' 5.79% 6.93% 5.10% 0.42%
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Considering the intra-class RMSE, restricted settings perform significantly better than 

unrestricted ones with an RMSE average of 4.55% versus 6.09%. This result is in line with 

expectation and confirms the relevance of the economical classification. Contrarily, for inter-

class RMSE, while the “Least_Squares_Correlation_Restricted” performed the same way as 

the unrestricted algorithms (except the “PCA_Uniform_Noise_Multiplicative” once again), 

the “Maximum_Likelihood_Restricted” algorithm provides poorer fit. This is not surprising 

given its moderate overall RMSE and its very good intra-class RMSE. 

The last column of the table provides the difference of off-diagonal element average between 

empirical correlation and model-implied correlation matrix. Results show that on average, for 

several configurations, the empirical correlation mean is not perfectly replicated, with a high 

(positive or negative) bias for some settings, significantly positive for the 

“Maximum_Likelihood_Restricted” setting for instance. Note however, that once again, the 

“Least_Squares_Correlation_Restricted” model performed very well on this feature. 

2.3.6 3N-beta case: homogeneity score 

To confirm the operational interest to use restricted factor model, one may be interested in the 

sign of the factor loadings. Intuitively, if the issuers affected to a given class are homogeneous 

enough, then the sign of the factor loading, i.e. the sign of the sensitivity to the systematic 

factors, should be the same.  

For a given factor j, one can compute the frequency of positive sign, i.e., Freq(j) ≔

1

N
∑ 𝕀{sign(βi,j)=1}
N
i=1 . Per complementarity, one also obtains the frequency of negative signs as 

1 − Freq(j). Taking the maximum of both frequencies, i.e., max(Freq(j); 1 − Freq(j)) ∈

[50%, 100%], provides us with a homogeneity measure. On the one hand, if this maximum is 

100%, the homogeneity is perfect since all betas have the same sign. On the other hand, if this 

maximum is 50%, then it means that the there are two sub-classes of same cardinal in the 

considered class. 
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Overall, one can finally compute an aggregated metric: the average of the maximum 

frequency, linearly rescaled so that it has values in [0%, 100%]. Formally, this is defined as 

follows:  

AverageFreq ≔∑ 2× (max(Freq(j); 1 − Freq(j)) − 0.5)
J

j=1
∈ [0%, 100%] 

Table 2 provides this homogeneity score for the different calibration configurations.  

 

Table 2.210Homogeneity (i.e., same-sign betas) score 

As expected, restricted algorithms provide better homogeneity in terms of beta signs than 

unrestricted algorithms. This result is in line with expectations and confirms the relevance of 

the economical classification, as previously stated. 

2.3.7 3N-beta case: conditional RMSE on high pairwise correlations 

It is well known that factor models, notably in their unrestricted setting, tend to underestimate 

high correlations (Laurent et al., 2016). These latter are of importance yet for both modelling 

 

 Configuration 
 Homogeneity-

score 

Least_Squares_Correlation_Restricted 75.48%

Least_Squares_Correlation_3F 35.13%

PCA_Uniform_Noise_Additive_3F' 35.48%

PCA_Truncated_Additive_3F' 35.48%

Maximum_Likelihood_Restricted 74.98%

Maximum_Likelihood_3F 43.73%

Regression_Unrestricted_3F' 30.82%

PCA_Uniform_Noise_Multiplicative_3F' 35.48%
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and classification purposes. In consequence, to study the fit to these high correlations, one is 

interested in this subsection by the following mapping (for each configuration):  

[0,0.95] ∋ α ↦ RMSE(α) ≔ √
∑ (Ci,j

Empirical
− Ci,j

Model)
2

. 𝕀
{C
i,j
Empirical

≥Quantile
CEmp

(α)}
N
i,j=1

∑ 𝕀
{C
i,j
Empirical

≥Quantile
CEmp

(α)}
N
i,j=1

 

Which represents the RMSE given empirical pairwise correlations higher or equal to α. Thus, 

with such mapping, one may analysis the behavior of all 3N-beta model configurations when 

α increases (Figure 2.3).  

 

Figure 2.311Conditional RMSE 
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Main comments when reading Figure 2 are the followings. First, PCA with multiplicative 

transformation underperforms all configurations, once again. Then, when considering low to 

moderate pairwise correlations, i.e., from 0% to 60%, all other methods perform equivalently 

even if the restricted approaches, notably the “Least_Square_Correlation_Restricted” 

approach already performed slightly better. A contrary, when dealing with high correlation 

levels, i.e. above 60%, then the restricted algorithms outperform considerably the unrestricted 

ones. This is mainly due to the additional information embedded in the user-provided 

classification. Indeed, issuers in the same class (geographical region and industrial sector) 

tend to exhibit higher correlations. Calibrating betas by incorporating such information clearly 

improve the fit. This feature argues for the use of restricted approaches since high correlations 

fitting is a significant issue for risk-managers as they largely impact risk measures. 

2.3.8 Summary statistics 

By design, the iterative principal factor method (Andersen et al, 2003) and the SPG algorithm 

provide the minimum distance to the empirical covariance matrix, but Principal Component 

and the Maximum Likelihood approach implemented with the EM algorithm perform almost 

as well29. 

These approaches lead to a significant improvement over the constant correlation model, used 

as a naïve benchmark. Block correlation approaches lag slightly behind and provide a poor fit 

to the empirical correlation matrix30. The naïve CDO pricing one does better than block 

correlation approaches, but it involves more betas.  

 
29 In https://www.r-bloggers.com/iterated-principal-factor-method-of-factor-analysis-with-r/ , one also 

concludes that Principal Components and Iterative Principal factors provide similar results. Hair et al 

(1998), p. 103 make the same claim. 
30 Considering a one factor block correlation matrix leads to small improvement to the constant 

correlation matrix. It was stated that constant correlation matrix had some optimality property. These 

statements are not inconsistent since the one factor block correlation matrix involves four beta 

parameters, instead of one in the case of the constant correlation model. 

https://www.r-bloggers.com/iterated-principal-factor-method-of-factor-analysis-with-r/
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When considering calibration to the empirical correlation matrix, Isotropic principal 

component methods lags clearly behind the unconstrained Principal Component Method, due 

to the normalisation to a correlation matrix, through a multiplicative, rather than an additive 

approach.  

Number 

factors 

Block 

Correlation 

Constant 

Correlation 

Centroid 

Method 

Isotropic 

PCA 
PCA SPG EM 

1 12.09% 12.30% 8.10% 7.54% 6.69% 6.69% 6.71% 

2 11.68%   6.69% 5.59% 5.57% 5.64% 

3 11.48%   5.79% 4.60% 4.57% 4.65% 

4 11.47%   5.34% 3.96% 3.92% 3.98% 

5    5.02% 3.46% 3.41% 3.45% 

Table 2.311Distance to empirical correlation matrix (RMSE) 

The following table, based on the distances with respect to Frobenius norm, provides 

improvements in the adjustment to the empirical correlation matrix when adding a global 

factor.  

 

Marginal improvement 

of adding global factors 

from 1 to 2 17% 

from 2 to 3 18% 

from 3 to 4 14% 

from 4 to 5 13% 

Table 2.412Relative reduction in distance to the empirical correlation matrix 

While the reduction in absolute error tends to be lower as the number of global factors 

increases, from a relative point of view, we can view a uniform impact, suggesting that two 

global factors (and even more) might not be enough to adequately capture dependencies. 
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2.4 Conclusion 

We described various approaches to estimate probabilistic models with 𝐾 factors and 

idiosyncratic noises, which can be used to simulate the latent random variables driving 

defaults with applications to the Basel 2.5 and 3 frameworks for credit exposures in the 

trading book (Incremental Risk Charge – IRC and Default Risk Charge – DRC).  

From our results, one may highlight the following items:  

- For a given number of factors, optimization-based approaches provide almost the same 

level performance in terms of RMSE. Restricted configuration being marginally better, 

while non optimized approaches clearly underperform. 

- When dealing with the naïve PCA approach, the final transformation to recover 

correlation matrix must be chosen carefully. In our numerical experiment, multiplicative 

approach, which impact all pairwise correlations, significantly underperforms the additive 

approach, impacting only the diagonal elements. 

- Restricted versions of optimization-based approaches behave better when dealing with 

intra-classes. This is mainly due to the effectiveness of the classification. Even with a 

rough approach, based only on geographical-sector classification, fitting is significantly 

improved.  

- It is well known that factor-model tend to smooth the correlation matrix, leading to large 

error for high correlations. Numerical experiments indicate that restricted calibration 

performed better in that aspect too. By restricting the information onto a class of issuers 

that should (a priori) behaves the same way, the restricted version of SPG algorithm 

allows a smaller error on these high empirical correlations than other methods.  

- Two last items are strengthened by the beta homogeneity for the restricted configurations, 

which allows a better understanding of the underlying latent-factor effect. Even more, in 

this configuration, latent-factor-loadings have a meaningful interpretation. 
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The betas with respect to the 𝐾 factors provided by the principal component method can be 

used as a starting point of an iterative optimisation algorithm: iterated principal factor or 

Spectral Projection Gradient (SPG) for the nearest correlation matrix approach and 

Expectation Maximization (EM) for maximum likelihood estimation.  

2.5 Appendices 

Appendix 2.1: Principal components and optimal choice of regressors in nearest 

correlation matrix problem 

The eigenvectors of 𝐶, 𝑣𝑘, 𝑘 = 1, …𝑛, form a 𝑛 × 𝑛 orthogonal matrix 𝑉 = (𝑣1… , 𝑣𝑛) and 

the spectral decomposition of 𝐶 can be written as 𝐶 = 𝑉Λ𝑉∗, where Λ is the diagonal matrix 

of eigenvalues 𝜆1, … , 𝜆𝑛 sorted by decreasing order.  𝑉∗𝑋 is the 𝑛 −dimensional random 

vector associated with the principal components of 𝑋. These principal components are 

uncorrelated, and their variances are equal to 𝜆1, … , 𝜆𝑛. We denote by 𝑣 = (𝑣1… , 𝑣𝐾) the 

𝑛 × 𝐾 matrix derived from the first 𝐾 columns of 𝑉 and by 𝑍 = 𝑣∗𝑋, the random vector 

associated with the 𝐾 first principal components31. From 𝑉𝑉∗ = Id𝑛×𝑛, 𝑋 = 𝑉(𝑉∗𝑋). 

Splitting columns in 𝑉 and using orthogonality of principal components, we readily have 𝑋 =

𝑣𝑍 + 𝜀, with 𝐸[𝜀|𝑍] = 032. Given that 𝜀 and 𝑍 are uncorrelated, we have: 𝐸[‖𝑋‖2
2] =

𝐸[‖𝑣𝑍‖2
2] + 𝐸[‖𝜀‖2

2], where ‖𝑥‖2 stands for Euclidian norm. 𝐸[‖𝑋‖2
2] = ∑ 𝐸[𝑋𝑖

2]𝑛
𝑖=1 = 𝑛. 

Since ∑ 𝐸[𝑋𝑖
2] = trace(𝐶)𝑛

𝑖=1  and by the properties of the trace operator, trace(𝐶) =

trace(Λ) = 𝜆1 +⋯+ 𝜆𝑛, which stands for the “total (univariate) variance” of 𝑋.  

 
31 As mentioned above, in the case of the constant correlation matrix, 𝑣1 =

1

√𝑛
𝑒. The first principal 

component can be associated to the return of an equally weighted portfolio, a typical choice in credit 

risk analysis, given that credit indices (CDX, iTraxx) are equally weighted. 
32 Let us denote by 𝑍𝑘 , 𝑖 = 1,… , 𝑛 the principal components and by 𝑣𝑖𝑘 the generic term of 𝑉. 𝑋𝑖 =

∑ 𝑣𝑖𝑘𝑍𝑘
𝐾
𝑖=1 + ∑ 𝑣𝑖𝑘𝑍𝑘

𝑛
𝑖=𝐾+1 , 𝑖 = 1,… , 𝑛. Let us denote by 𝜀𝑖 = ∑ 𝑣𝑖𝑘𝑍𝑘

𝑛
𝑖=𝐾+1 . Since the principal 

components are independent 𝐸[𝜀𝑖|𝑍1, … , 𝑍𝐾] = 0. Thus 𝑋𝑖 = ∑ 𝑣𝑖𝑘𝑍𝑘
𝐾
𝑖=1 + 𝜀𝑖 is a linear regression 

model. 
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Let us now consider an arbitrary set of regressors 𝑍 = 𝑄∗𝑋. Let us denote by 𝑊∗𝑋 the 

𝐾 −dimensional random vector associated with the standardized principal components of 𝑍. 

Therefore, the covariance matrix of 𝑊∗𝑋 is the identity matrix, which leads to 𝑊∗𝐶𝑊 =

𝐼𝑑𝐾×𝐾. We will further denote by 𝑤1… ,𝑤𝐾, the 𝐾 columns of 𝑊. For 𝑙 ≠ 𝑘, 𝑤𝑘
∗𝐶𝑤𝑙 = 0 and 

𝑤𝑘
∗𝐶𝑤𝑘 = 1. Since the principal components of 𝑍 span the linear subspace generated by the 

components of 𝑍, 𝐸[𝑋|𝑍] = 𝐸[𝑋|𝑊∗𝑋]. We may look for 𝑊, that will maximise the 

𝐸[‖𝐸[𝑋|𝑊∗𝑋]‖2
2]. Since the components of 𝑊∗𝑋 are uncorrelated and of unit variance, 

decomposition of variance is straightforward: 𝐸[‖𝐸[𝑋|𝑊∗𝑋]‖2
2] = ∑ (∑ (𝐸[𝑤𝑘

∗𝑋𝑋𝑖])
2𝐾

𝑘=1 )𝑛
𝑖=1 , 

corresponding to the sum of the squared regression betas. 𝐸[𝑋𝑋𝑖] = 𝑐𝑖 corresponds to the 

𝑖 −th column of 𝐶. Thus, (𝐸[𝑤𝑘
∗𝑋𝑋𝑖])

2 = 𝑤𝑘
∗𝑐𝑖𝑐𝑖

∗𝑤𝑘. Noticing that ∑ 𝑐𝑖𝑐𝑖
∗𝑛

𝑖=1 = 𝐶2, 

𝐸[‖𝐸[𝑋|𝑊∗𝑋]‖2
2] = ∑ 𝑤𝑘

∗𝐾
𝑘=1 𝐶2𝑤𝑘. Let us now define ℎ𝑘 = 𝐶

1 2⁄ 𝑤𝑘 and 𝐻 the 𝑛 × 𝐾 matrix 

whose 𝑘 −column is ℎ𝑘. We are then looking for maximizing ∑ ℎ𝑘
∗𝐾

𝑘=1 𝐶ℎ𝑘 = trace(𝐻
∗𝐶𝐻), 

under the constraints ℎ𝑘
∗ℎ𝑙 = 0 for 𝑙 ≠ 𝑘 and ℎ𝑘

∗ℎ𝑘 = 1, or equivalently 𝐻∗𝐻 = 𝐼𝑑𝐾×𝐾. The 

maximum is achieved when 𝐻 = 𝑣, see Jolliffe (2010, Sect. 2.1) and equals 𝜆1 +⋯+ 𝜆𝐾. 

Thus, 𝑤𝑘 = 𝐶
−1 2⁄ 𝑣𝑘 = 𝜆𝑘

−1 2⁄ 𝑣𝑘. The corresponding set of regressors is associated with the 

first 𝐾 principal components. [‖𝐸[𝑋|𝑄∗𝑋]‖2
2] = trace(var[𝐸[𝑋|𝑄∗𝑋]]) =

trace(𝐶𝑄(𝑄∗𝐶𝑄)−1𝑄∗𝐶) is maximised when 𝑄 = 𝑣 (see Rao (1964), p. 339. Then, the sum 

of variances of the residual terms (the total variance) in the linear regression is minimized. 

This shows some optimality in choosing the first principal components as optimal regressors, 

i.e., to build an optimal 𝐾 – dimensional subspace on which to project the space spanned by 

the 𝑋𝑖. 

We also have var[𝑣𝑍] = 𝐸[𝑣𝑍𝑍∗𝑣∗] = 𝐶𝑣(𝑣∗𝐶𝑣)−1𝑣∗𝐶 and 𝐶𝑣 = 𝑣Λ𝐾 where Λ𝐾 is a 

diagonal 𝐾 × 𝐾 matrix, with diagonal terms equal to 𝜆1, … , 𝜆𝐾. This leads to 

𝐶𝑣(𝑣∗𝐶𝑣)−1𝑣∗𝐶 = 𝑣Λ𝐾𝑣
∗. Eckart-Young theorem states that 𝑣Λ𝐾𝑣

∗ is the best rank 𝐾 

approximation of 𝐶, with respect to Frobenius norm. Since 𝑄∗𝐶 is a 𝐾 × 𝑛 matrix, 

rank(𝑄∗𝐶) ≤ min(𝑛, 𝐾) = 𝐾. Since var[ 𝛽𝑍] = 𝐶𝑄(𝑄∗𝐶𝑄)−1𝑄∗𝐶, rank(var[ 𝛽𝑍]) ≤ 𝐾. 

Thus ‖𝐶 − 𝐶𝑄(𝑄∗𝐶𝑄)−1𝑄∗𝐶‖𝐹 ≥ ‖𝐶 − 𝐶𝑣(𝑣
∗𝐶𝑣)−1𝑣∗𝐶‖𝐹 = √𝜆𝐾+1

2 +⋯+ 𝜆𝑛2  (see Rao 

(1964)).  
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We cannot however state that  ‖𝐶 − diag(𝐼𝑑(𝑛𝑥𝑛) − 𝐶𝑄(𝑄
∗𝐶𝑄)−1𝑄∗𝐶) −

𝐶𝑄(𝑄∗𝐶𝑄)−1𝑄∗𝐶‖
𝐹
 is minimized when choosing 𝑣 = 𝑄. This criterium differs from ‖𝐶 −

𝐶𝑄(𝑄∗𝐶𝑄)−1𝑄∗𝐶‖𝐹 in that only off-diagonal elements of 𝐶 and 𝐶𝑄(𝑄∗𝐶𝑄)−1𝑄∗𝐶 are 

involved.  

Besides, since 𝐶𝑄(𝑄∗𝐶𝑄)−1𝑄∗𝐶 is a symmetric rank 𝐾 matrix, from its spectral 

decomposition, it can be factorized as 𝛽𝛽∗, where 𝛽 is a 𝑛 × 𝐾 matrix. This leads to consider 

the minimisation of ‖𝐶 − (𝛽𝛽∗ + 𝐼𝑑(𝑛×𝑛) − diag(𝛽𝛽
∗))‖

𝐹
 which corresponds to the least 

squares problem (minres of Harman and Jones (1966))33.  

One may look for optimal regressors, i.e., some matrix 𝑄 minimizing the distance to the true 

correlation matrix 𝐶. We already know that: ‖𝐶 − diag(𝐼𝑑(𝑛×𝑛) − 𝐶𝑄(𝑄
∗𝐶𝑄)−1𝑄∗𝐶) −

𝐶𝑄(𝑄∗𝐶𝑄)−1𝑄∗𝐶‖
𝐹
≥ min
𝛽∈ℝ𝑛×𝐾

‖𝐶 − (𝛽𝛽∗ + 𝐼𝑑(𝑛×𝑛) − diag(𝛽𝛽
∗))‖

𝐹
. However, the 

computation of 𝑄 such that 𝐶𝑄(𝑄∗𝐶𝑄)−1𝑄∗𝐶 = 𝛽𝛽∗ is not always feasible. As an example, 

let us go back to the case of a constant correlation matrix. By symmetry of ‖𝐶 −

diag(𝐼𝑑𝑛×𝑛 − 𝐶𝑄(𝑄
∗𝐶𝑄)−1𝑄∗𝐶) − 𝐶𝑄(𝑄∗𝐶𝑄)−1𝑄∗𝐶‖𝐹, a minimum of the criterium is 

associated with 𝑄 = 𝑒34. Since the constant correlation matrix (with 𝜌 ≥ 0) can be written as 

𝐶 = (𝛽𝛽∗ + 𝐼𝑑𝑛×𝑛 − diag(𝛽𝛽
∗), with 𝛽 = √𝜌𝑒, min

𝛽∈ℝ𝑛×𝐾
‖𝐶 − (𝛽𝛽∗ + 𝐼𝑑𝑛×𝑛 −

diag(𝛽𝛽∗))‖𝐹 = 0. The computation of 𝐶𝑄(𝑄∗𝐶𝑄)−1𝑄∗𝐶 is then straightforward: Pairwise 

correlations are equal to 𝜌 +
1−𝜌

𝑛
. The minimum of ‖𝐶 − diag(𝐼𝑑𝑛×𝑛 − 𝐶𝑄(𝑄

∗𝐶𝑄)−1𝑄∗𝐶) −

𝐶𝑄(𝑄∗𝐶𝑄)−1𝑄∗𝐶‖𝐹 is then (1 − 𝜌)√
𝑛−1

𝑛
. In such cases, factor analysis provides superior 

results to regression models when it comes to fitting a correlation matrix. 

 

 
33 The optimal  𝛽 can be computed through the iterated principal factor method or the SPG algorithm 

of Borsdorf et al (2010). 
34 Multiplying 𝑄 by a non-zero scalar does not change the criterium, thus 𝑄 = 𝑒  consists in using the 

return of equally weighted portfolio as a regressor. 
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Besides, thanks to triangle inequality, ‖𝐶 − (𝛽𝛽∗ + 𝐼𝑑(𝑛×𝑛) − diag(𝛽𝛽
∗))‖

𝐹
≤ ‖𝐶 −

𝛽𝛽∗‖𝐹 + ‖𝐼𝑑(𝑛×𝑛) − diag(𝛽𝛽
∗)‖

𝐹
≤ √𝜆𝐾+1

2 +⋯+ 𝜆𝑛2 +√𝜎1
2 +⋯+ 𝜎𝑛2 , where the 𝜎𝑖

2 are 

the specific variances. 

Appendix 2.2: Low rank approximation of the correlation matrix 

Low rank approximation of a covariance matrix can be achieved equivalently through the 

SVD decomposition of the rectangular matrix of historical returns or the spectral 

decomposition of the empirical correlation matrix, by setting singular value, eigen values to 

zero below rank 𝐾.  Since the outcome is not a correlation matrix, a normalisation step is 

involved. Such approaches have been used in Finance, when the purpose was to cancel out 

idiosyncratic risks, achieve perfect dependency in arbitrage free pricing settings or when 

dimension reduction is required for numerical purpose. Though truncation is also involved as 

a first step in PCA approaches to factor models, the lack of idiosyncratic risk is not 

meaningful in our context. 

SVD viewpoint: Eckart-Young theorem 

Low rank approximations can be built equivalently either from the matrix of demeaned and 

standardised historical returns, from the spectral decomposition of the empirical correlation 

matrix (PCA based techniques). 

Let 𝐾 ≤ min(𝑇, 𝑛) be the targeted number of factors and set:  

�̃� = 𝑈Σ̃𝐾𝑉
∗ 

where Σ̃𝐾 is the same matrix as Σ  except that it contains only the 𝐾 largest singular values 

(the other ones being replaced by zero). 
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Eckart-Young theorem states that �̃� is the rank 𝐾 matrix closest to 𝑅 = 𝑈Σ𝑉∗ with respect to 

the Frobenius norm35. The columns of �̃� can be viewed as time series of pseudo-returns 

associated with the 𝑛 assets; this corresponds to “filtering out” the “noises”. Equivalently, the 

time series of pseudo-returns correspond to the dynamics of the returns associated with the 𝐾 

first principal components. Processing these pseudo-returns is known as the Karhunen-Loève 

transform in signal analysis or as the Hotelling transform after independent work form these 

authors (see Gentle (2009)). 

𝑅 − �̃� is the rectangular matrix of the residuals. Thus, by choosing the 𝐾 first principal 

components, the sum of the squared residuals (across time and names), which corresponds to 

‖𝑅 − �̃�‖
𝐹

2
 is minimized. Equivalently, the variance of the returns explained by 𝐾 dependent 

variables is maximised when these are chosen as the first principal components.  

This relates PCA to regression analysis and least squares estimation. For instance, the sum of 

the squared residuals in a one factor model, where the factor is an equally weighted portfolio 

(say) will be larger than when using the portfolio with weights associated to factor loadings of 

the first principal component. In this case 𝐾 = 1. This readily extends to a multifactor setting. 

As a side remark, Golub, Hoffman & Stewart (1987) provide additional results in an extended 

framework where the minimisation is done under the constraint that some of the rows of the 

matrix 𝑅 are kept unchanged. Therefore, one can build time series of pseudo-returns for all 

names, under the constraint that these pseudo-returns are equal to original returns for a pre-

specified subset of names. 

 
35 Mirsky (1960) extended Eckart and Young result to arbitrarily unitarily invariant norms, i.e., matrix 

norms such that ‖𝑋‖ = ‖𝑈𝑋‖ = ‖𝑋𝑈‖ for any (𝑛 × 𝑛) matrix 𝑋 and any unitary (𝑛 × 𝑛) matrix 𝑈. 

Higham (2002) deals with weighted Frobenius norms. While not further considered in this paper, this 

approach is promising: It allows to deal with the issue of highly correlated names, for which 

confidence intervals are narrow, by increasing weights as pairwise correlation come close to one. 
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The covariance (diagonal terms are not equal to one) matrix associated with these pseudo 

returns is Ω̃ =
1

𝑇
× �̃�∗�̃� =

1

𝑇
× 𝑉Σ̃𝐾

∗ Σ̃𝐾𝑉
∗. This is to be compared with: Ĉ =

1

𝑇
× 𝑅∗𝑅 =

1

𝑇
× 𝑉Σ∗Σ𝑉∗. Σ̃𝐾

∗ Σ̃𝐾 and Σ∗Σ are (𝑛 × 𝑛) diagonal matrices. The diagonal terms are the squares 

of the singular values, but in Σ̃𝐾
∗ Σ̃𝐾 the smallest singular values (below rank 𝐾) have been set 

to zero. 

PCA viewpoint 

As discussed below, we may equivalently consider the low rank approximation of the 

empirical covariance/correlation matrix Ĉ. We denote by 𝜆𝑘, 𝑘 = 1,… , 𝐾, the 𝑘𝑡ℎ largest 

eigenvalue of Ĉ and by 𝑣 the (𝑛 × 𝐾) matrix of the 𝐾 corresponding eigenvectors. 𝑣 

corresponds to the first 𝐾 columns of 𝑉. For simplicity, we assume in the following that 𝜆𝑘 >

0 for 𝑘 = 1,… , 𝐾. 

From Eckart-Young theorem (applied here to the covariance/correlation matrix, not to the 

rectangular matrix of historical returns), the rank 𝐾 approximation of Ĉ is provided by 𝑣Λ𝐾𝑣
∗, 

where Λ𝐾 is the (𝐾 × 𝐾) diagonal matrix with diagonal terms equal to 𝜆𝑘, 𝑘 = 1, . . , 𝐾.  

As stated above, since 
1

𝑇
× 𝑉Σ̃𝐾

∗ Σ̃𝐾𝑉
∗ = 𝑣Λ𝐾𝑣

∗ = Ω̃, SVD and PCA provide the same rank 𝐾 

approximation of Ĉ. 

Multiplicative normalization to a correlation matrix 

However, a final step needs to be considered since Ω̃ is a covariance matrix, but not a 

correlation matrix: the diagonal elements of Ω̃ are not equal to one. 

Let us denote by �̃�𝑖𝑖 the diagonal elements of Ω̃. The matrix 
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�̃�1 = diag((�̃�𝑖𝑖)
−1 2⁄ )Ω̃ diag((�̃�𝑖𝑖)

−1 2⁄ ) = diag((�̃�𝑖𝑖)
−1 2⁄ )𝑣Λ𝐾𝑣

∗ diag((�̃�𝑖𝑖)
−1 2⁄ ) 

is the correlation matrix associated with Ω̃. �̃�1 can be viewed as a rank 𝐾 approximation of the 

empirical correlation matrix Ĉ. This approach is described in Rousseeuw & Molenberghs 

(1993), section 3, as the “eigenvalue method”.  

Probabilistic representation 

Let 𝑍 be a 𝐾 – dimensional random vector with independent, zero mean and unit variance 

components (i.e., latent factors) and consider the 𝑛 – dimensional random vector: 

𝑋 = diag((�̃�𝑖𝑖)
−1 2⁄ )𝑣Λ𝐾

1 2⁄ 𝑍 

The covariance/correlation matrix of 𝑋 is �̃�1. 

A 𝐾 – dimensional only random vector is involved in the simulation, which is appealing from 

a numerical point of view. The low rank approximation might also be suitable for pricing 

purposes or in a counterparty credit risk framework. On the other hand, from a risk 

management or an asset allocation perspective, it is not comfortable to deal with many 

eigenvalues equal to zero since each of them is associated with seemingly risk-free portfolios. 

 

 

 

 



 

109 

 

CHAPTER 2. CORRELATION MATRICES WITH FACTOR STRUCTURE FOR CREDIT 

RISK EXPOSURES 

Appendix 2.3: Data description, list of selected names from iTraxx and CDX NA IG 

 

ANHEUSER-BUSCH INBEV SA/NV Europe NONFIN DANSKE BANK A/S Europe FIN

BARRICK GOLD CORP United States NONFIN DEUTSCHE BANK AG-REGISTERED Europe FIN

ACCOR SA Europe NONFIN DEERE & CO United States NONFIN

CREDIT AGRICOLE SA Europe FIN VINCI SA Europe NONFIN

KONINKLIJKE AHOLD DELHAIZE N Europe NONFIN DIAGEO PLC Europe NONFIN

AMERICAN ELECTRIC POWER United States NONFIN QUEST DIAGNOSTICS INC United States NONFIN

AERCAP HOLDINGS NV Europe NONFIN DR HORTON INC United States NONFIN

AEGON LTD Europe FIN WALT DISNEY CO/THE United States NONFIN

AMERICAN INTERNATIONAL GROUP United States FIN DARDEN RESTAURANTS INC United States NONFIN

AIRBUS SE Europe NONFIN DEVON ENERGY CORP United States NONFIN

AKZO NOBEL N.V. Europe NONFIN OVINTIV CANADA ULC United States NONFIN

ALLSTATE CORP United States FIN EDF Europe NONFIN

AMGEN INC United States NONFIN ELECTROLUX AB-B Europe NONFIN

APA CORP United States NONFIN EASTMAN CHEMICAL CO United States NONFIN

ANADARKO PETROLEUM CORP United States NONFIN BOUYGUES SA Europe NONFIN

ARROW ELECTRONICS INC United States NONFIN ENBRIDGE INC United States NONFIN

AVIVA PLC Europe FIN ENEL SPA Europe NONFIN

AMERICAN EXPRESS CO United States FIN ENGIE Europe NONFIN

AUTOZONE INC United States NONFIN ENI SPA Europe NONFIN

BOEING CO/THE United States NONFIN E.ON SE Europe NONFIN

BARCLAYS PLC Europe FIN EQUITY RESIDENTIAL United States FIN

BASF SE Europe NONFIN EXELON CORP United States NONFIN

BRITISH AMERICAN TOBACCO PLC Europe NONFIN EXPEDIA GROUP INC United States NONFIN

BAXTER INTERNATIONAL INC United States NONFIN FORD MOTOR CO United States NONFIN

BAYER AG-REG Europe NONFIN FIRSTENERGY CORP United States NONFIN

BANCO BILBAO VIZCAYA ARGENTA Europe FIN FORTUM OYJ Europe NONFIN

BEST BUY CO INC United States NONFIN FOX CORP - CLASS A United States NONFIN

BRISTOL-MYERS SQUIBB CO United States NONFIN TOTAL SE Europe NONFIN

DANONE Europe NONFIN VALEO Europe NONFIN

BNP PARIBAS Europe FIN ASSICURAZIONI GENERALI Europe FIN

BERKSHIRE HATHAWAY INC-CL A United States FIN GENERAL ELECTRIC CO United States NONFIN

CARREFOUR SA Europe NONFIN GENERAL MILLS INC United States NONFIN

CARDINAL HEALTH INC United States NONFIN SOCIETE GENERALE SA Europe FIN

CATERPILLAR INC United States NONFIN HALLIBURTON CO United States NONFIN

CHUBB LTD United States FIN HOME DEPOT INC United States NONFIN

COMMERZBANK AG Europe FIN HEIDELBERG MATERIALS AG Europe NONFIN

CBS CORP-CLASS B NON VOTING United States NONFIN HEINEKEN NV Europe NONFIN

CARNIVAL CORP United States NONFIN HENKEL AG & CO KGAA VOR-PREF Europe NONFIN

COMCAST CORP-CLASS A United States NONFIN HESS CORP United States NONFIN

CENTRICA PLC Europe NONFIN HARTFORD FINANCIAL SVCS GRP United States FIN

CANADIAN NATURAL RESOURCES United States NONFIN HANNOVER RUECK SE Europe FIN

CAPITAL ONE FINANCIAL CORP United States FIN HONEYWELL INTERNATIONAL INC United States NONFIN

CONTINENTAL AG Europe NONFIN HP INC United States NONFIN

CONOCOPHILLIPS United States NONFIN H&R BLOCK INC United States NONFIN

CAMPBELL SOUP CO United States NONFIN HSBC HOLDINGS PLC Europe FIN

AXA SA Europe FIN IBERDROLA SA Europe NONFIN

CREDIT SUISSE GROUP AG-REG Europe FIN INTL BUSINESS MACHINES CORP United States NONFIN

CSX CORP United States NONFIN ING GROEP NV Europe FIN

CVS HEALTH CORP United States NONFIN INGERSOLL-RAND INC United States NONFIN

DOMINION ENERGY INC United States NONFIN INTESA SANPAOLO Europe FIN

MERCEDES-BENZ GROUP AG Europe NONFIN ITV PLC Europe NONFIN
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3 Stress-testing: a meta-factor approach 

We propose an innovative approach based on “meta-factors” to perform stress tests on 

portfolios, using either historical or hypothetical economic scenarios. Stress testing in finance 

describes the capacity of a particular portfolio to withstand adverse conditions. Stress testing 

can be a useful complement to usual risk measures, such as volatility, VaR, and expected 

shortfall, since the estimated loss is linked to a specific event, which can be more meaningful 

than a summary statistic of a loss distribution. For convenience reasons, traditional stress tests 

are mostly based on historical scenarios, i.e., reproducing past events on current portfolio 

holdings. However, it lacks the desired forward-looking aspect of stress testing.  

Our approach relies on few parameters, remains highly flexible, easy to implement, and helps 

to better understand portfolio sensitivities to systematic factors. An application on actively 

managed equity portfolios is conducted.    

 

 

 

 

 

 



 

111 

 

CHAPTER 3. STRESS-TESTING: A META-FACTOR APPROACH 

3.1 Introduction 

We propose a simple and intuitive but innovative approach to stress test market value of 

portfolios relying on either historical or hypothetical economic scenarios while staying 

parsimonious to limit the risk of complexity and overfitting.  

“Stress-testing” in finance has been adopted as a generic term describing various techniques 

to gauge the potential vulnerability of a portfolio to exceptional but plausible events. Stress-

tests are part of the overall risk management policy, as specified by the UCITS36 and AIFM37 

directives. Portfolio risk models typically calculate measures such as volatility, Value at Risk 

(VaR) or expected shortfall – summary statistics of the forecast return distribution. While 

these statistics help evaluate potential losses and identify the positions that contribute most to 

portfolio risk, they do not reveal how the losses might occur.  

The key advantage of stress-tests is that they link a loss to a specific event, which can be more 

meaningful than a summary statistic of the loss distribution, especially in the context of 

delegated portfolio management with principal-agent relationship (Stracca, 2006). “Narrative 

stories” about risk can help portfolio managers to better explain risk to their clients. Stress-

tests help identify and manage situations that can result in extreme losses. While banks 

increasingly use stress-tests, and banking regulators increasingly require them, this paper 

focuses on the use of market stress-tests in portfolio risk management, rather than bank 

balance sheet management or liquidity, credit, and counterparty stress-tests. 

By enhancing our understanding of portfolio losses, stress-tests can be valuable at all stages of 

the investment process, including portfolio construction, limit setting, and hedging. Stress 

tests can be used at the different stages of a fund’s life from creation to liquidation, via the 

 
36 Article 51 of Directive 2009/65/EC of the European Parliament and of the Council of 13 July 2009 

(the "UCITS Directive"), and articles 38 and 40 of Commission Directive 2010/43/EU of 1 July 2010. 
37 Articles 15 and 16 of Directive 2011/61/EU of the European Parliament and of the Council of 8 

June 2011 (the “AIFM Directive”), and articles 45 and 48 of Commission Delegated Regulation (EU) 

231/2013 supplementing the AIFM Directive. 
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investment decisions made to manage it during its lifetime. Specifically, AMF Instruction 

DOC-2011-15 on the calculation of global exposure states that the “results of these tests 

should be [...] taken into consideration when making any investment decisions”. 

Traditionally, scenarios were designed using two methods - historical and hypothetical. 

Historical scenarios are based on events in the past, for example the subprime crisis of 2007-

2009 or the Covid crash of 2020. Historical scenarios are easier to formulate and to 

understand intuitively. They are fully articulated, and they involve little judgment in 

implementation. They can be useful when some aspect of a historical scenario is expected to 

reoccur, and the scenario is of an appropriate magnitude.  

However, such scenarios are backward looking and may lose relevance through time. This 

approach can obviously lead to questions about the portfolio’s ability to deal with future 

crises. Clearly, there is nothing to suggest that future crises will be like previous ones. 

Moreover, it is difficult to precisely replicate past crises because data (for example in terms of 

the historic correlation of risk factors) are often incomplete, particularly going back more than 

a decade, and may produce very different scenarios.  

Hypothetical scenarios consider plausible future developments. They allow a flexible 

formulation of an event and can use a mixture of elements—a shock from a previous 

historical event can be combined with other developments that never occurred. The advantage 

of such scenarios is that they can be tailored to be relevant to the risk profile of the portfolio. 

However, the building of a well-articulated hypothetical scenario can be a labour-intensive 

process, especially if the underlying model considers many factors, and it is important to 

understand the implicit assumptions made in scenario construction.  

While model complexity helps to fit more precisely a stress event, it comes with the drawback 

of calibrating many inputs which ultimately might lead to less robust results. As complexity 

increases, interpretability, and efficiency decrease (Blaschke et al., 2001). A too much 

complex model can be well fitted for one for specific stress test scenarios but failed to be 

generalized.  
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Finally, stress tests can provide counterintuitive results (ESMA, 2019), that is being far from 

what could be reasonably expected knowing the portfolio exposures and their related stylized 

facts (e.g., stress-testing could show a value fund react negatively to increasing interest rates 

as this factor is historical associated to market turbulences while in fact value stocks benefit 

from higher rates).    

Our objective is to propose a new method for stress testing market value of portfolios that 

permits both historical and hypothetical (“forward looking”) scenarios while avoiding 

complexity that could lead to lack of robustness of results. Our strategy relies on a simple 

methodology which remains easy to understand and to update (avoiding a kind of black box) 

with the right balance between parsimony and customization. The proposed method considers 

economic factors, named meta-factors, that correlates with usual portfolio-based factors such 

as Fama-French factors. In our framework, historical or hypothetical scenarios of these meta 

factors are impacting portfolios through traditional Fama-French kind of factor models. For 

example, a 20% crash of oil prices will impact potentially value, growth, small capitalization 

stocks and as such the expected return of a portfolio.  Our intuitive and simple method is 

based on a very limited sets of hypotheses or parameters, it limits the use of computational 

and data resources, and provides much more intuitive and coherent results relative to usual 

industrial risk tools. 

Section 3.2 deals with the related literature and the existing models. Section 3.3 explains the 

methodological framework and Section 3.4 presents data and discusses specification of the 

model. Section 3.5 offers an empirical illustration on some equity funds before sharing 

concluding remarks. 

3.2 Related literature 

3.2.1 From the zoo of factors …  

The perpetual quest for systematic factors has led to the discovery of an impressive number of 

potential ones, and recent papers try to navigate within the zoo of factors, questioning the  
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relevance of the supposed drivers of risk (Harvey et al., 2016; McLean and Pontiff, 2016; Hou 

et al., 2020, etc.). McLean and Pontiff (2016) used an out-of-sample approach to study the 

post-publication bias of 97 discovered risk anomalies and concluded that investors learn about 

mispricing from academic publications, based on the empirical facts that portfolio returns are 

26% lower out-of-sample and 58% lower post-publication, with the out-of-sample decline 

being an upper bound estimate of data mining effects. Harvey et al. (2016) found that most 

factors in the zoo are likely false, by adjusting critical values for statistical inference, given 

the underlying intensive data mining. This is like the conclusion of Hou et al. (2020) who 

consider a large set of anomalies and illustrate the p-hacking (i.e., manipulation of data or 

estimation methods in a way that generates desired p-values) concern through anomaly 

replication. See also Green et al. (2017) and Feng et al. (2020). The decline in factor 

performance following their publications can also be explained by crowding. This refers to 

the phenomenon where all investors play the same factor, resulting in a decrease in its 

performance. Arnott et al. (2019) specifically suggest that after 2003, it is likely that the 

returns of popular factors decreased due to crowding. Other studies also tend to demonstrate 

the existence of crowding (Kang et al., 2021; Baltas, 2019). However, crowding is difficult to 

identify due to the lack of an effective measure, as well as the fact that the reasons for 

underperformance of a factor after publication can be explained by the aforementioned factors 

such as data mining and p-hacking. 

In this zoo of factors, the identification of relevant factors poses yet another challenge. In 

addition to the multitude of factors or anomaly, the question of the relevance and selection of 

"observable" variables is complex. Bernanke et al. (2005) discusses the difficulty of 

representing certain factors with observable variables, using the example of economic activity.  

Which variable best represents this concept? Industrial production, GDP... these are merely 

proxies and do not fundamentally capture economic activity. Beyond that, the observable 

"fundamental" variables in the case of stock returns may have the disadvantage of being 

delivered at lower frequencies, rarely changing, and exhibiting correlation among them.   
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Thus, literature has focused on using more statistically oriented models in which the factors 

are directly inferred from the data and has then explore the relationships between observable 

and latent factors. Indeed, the latter, although often more suitable for explaining returns, are 

difficult to interpret (Pukthuanthong et al., 2019; Parker and Sul, 2016). This literature is 

primarily based on the notion that the true factor is a latent one. To identify the "true factors", 

Pukthuanthong et al. (2019) propose an interesting solution. The best observable factors are 

those canonically correlated with the eigenvectors of the variance/covariance matrix of 

returns. The combination of observable variables and latent factors can be the solution, 

although the economic significance behind the latent factor remains challenging to explain. 

Jushan Bai and Serena Ng propose in their paper "Determining the number of factors in 

approximate models" (2002) a criterion for determining the optimal number of factors for 

large-scale models in terms of cross-section and time, which is often the case when trying to 

explain returns. The problem is that these criteria, although playing a major role in literature, 

have two drawbacks. Firstly, they are suitable for static models and assume stable betas. As a 

result, they completely ignore that factor sensitivities vary over time. Baltagi, Kao, and Wang 

(2017) noticed that, assuming stable betas, the criterion overestimates the number of factors, 

since an unstable beta factor model can be represented by the same stable beta factor model 

with an additional factor. Thus, they show that to account for structural instabilities, the 

number of model factors needs to be recalculated each time there is a breakpoint. However, 

this also complicates the model and makes its estimation more challenging. Secondly, this 

criterion is effective when the period is very large (the authors assume it tends to infinity in 

their papers). However, over such time periods, the optimal number of factors can also vary. 

For example, such criteria demonstrate little robustness during periods of crisis. The 

discontinuity in data linearity can lead to the emergence of a new factor that is not truly 

significant.  Since then, other techniques have been proposed to estimate the optimal number 

of factors for dynamic models (Bai and Ng, 2007) or static models (Onatski, 2010). However, 

these methods often lack robustness when compared to each other.  
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3.2.2 … to parsimonious economic meta-factors  

Fama and French (1996) suggest that we could interpret their factors as proxies for state 

variables, whose innovations describe the investment opportunity set. Huberman and Kandel 

(1987), for example, interpret the HML factor as a proxy for profitability. Weak firms with 

long periods of low profits tend to have high book-to-market and positive loadings on HML. 

Investors demand higher expected returns to buy these stocks. The opposite happens to strong 

firms, with long periods of high profits. There was already evidence of this in Chan and Chen 

(1991). Chen and Zhang (1998) presented a similar result a few years later. Subsequently, 

HML's ability to explain expected returns might be confused because the current value of the 

stock is correlated simultaneously with operational profitability and investment (Fama & 

French, 2015). 

Many other interpretations have been made in the last decade, and most of them provide 

support for the risk-based explanation. Jagannathan and Wang (1996) relate the FF factor to 

the return on human capital and the business cycles using a conditional version of CAPM, 

which resembles the multi-factor model of Ross (1976). The authors show that when the 

conditional version of CAPM holds, a two-factor model obtains unconditionally. They also 

use the spread of corporate bonds as a complement to market returns in predicting future 

economic conditions. Lettau and Ludvigson (2001) and Vassalou (2003) show that the 

presence of measures of macroeconomic risk reduces the explanatory power of SMB and 

HML, which suggests that the FF factors are partly embodied in the macroeconomic 

variables. Petkova (2006) applies shocks to the aggregate dividend yield and term spread, 

default spread, and one-month T-bill rate and shows that they are proxies for HML and SMB 

factors. She shows that a model with innovations to these variables performs better than the 

original three-factor model in explaining the cross-section of portfolio returns. Gulen, Xing, 

and Zhang (2011) study the flexibility of value and growth companies in adapting to bad 

economic conditions. Also, Perez-Quiros and Timmermann (2000) indicate that small firms 

have high average returns because they are more susceptible to changes in credit market 

conditions. Since the availability of credit is tied to underlying economic factors, the higher  
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returns to small firms can be viewed as a compensation for the high sensitivity to a credit-

related risk factor. The relationship between FF factors and economic state variables is further 

supported by Liew and Vassalou (2000) who show that the FF factors can predict future GDP 

growth in some countries. In a later study, Vassalou and Xing (2004) conclude that size and 

BM effects are related to default risk and can be viewed as default effects. In the same line, 

Hahn, and Lee (2006) find that changes in term and default yield spreads capture most of the 

systematic risks proxied by size and BM effects. Simpson and Ramchander (2008) show the 

ability of the FF three-factor model to capture information related to a number of 

macroeconomic variables, such as personal consumption, the consumer price index (CPI), 

retail sales, factory orders.  All these results support the hypothesis that SMB and HML act as 

economic state variables of the ICAPM. 

3.2.3 Survey of industry risk models  

We compare three well-known financial services providers, Bloomberg, Barra and 

Riskmetrics. Both, Bloomberg, and Barra, develop stress-testing tools using multi-factor 

models while Riskmetrics prefers a package of risk measurements used to model the risk in a 

portfolio induced by a change in the value of risk factors. 

A simple approach of defining a portfolio risk is to compute its sample covariance matrix 

from historical asset returns. But, following this approach suffers the so-called curse of 

dimensionality as it requires to estimate (𝑁2 − 𝑁)/2 parameters for each portfolio, where N is 

the number of assets within a portfolio. Factor models offer a solution as we would only need 

to estimate N x K sensitivities where K is the number of factors per portfolio. Factor models 

also allow to disentangle systematic risk (factor returns) from residual risk in a simple way. 

Hence, the financial industry relies heavily on three types of factor models: explicit factor 

models where factor returns are known, latent factor models where factors are unobserved and 

statistically determined (often through a principal component analysis), and implicit factor 

models where exposures (sensitivities) are known but factor returns are estimated using cross-

section regression. Bloomberg and Barra build their methodology on this last form of factor  
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models. While implicit factor models offer robust estimates of factor returns, they are data-

intensive and lack parsimony.  

Bloomberg latest equity risk model called MAC3 GRM (Global Risk Model) was developed 

in 202038. While the model serves as a general risk management tool, it can also be used to 

forecast risks or stress-testing. It is a multi-factor model which aims to estimate a covariance 

matrix. An asset return in the MAC3 GRM model is given by :  𝑅 = β𝑓 + ϵ, where 𝑅 is a 

vector of 𝑇 asset returns (observed) , β is the factor loadings matrix (betas : predetermined), 

𝑓 is a vector of 𝐾  factor returns (unobserved) and ϵ is the residual vector representing 

specific risk, thus the total asset covariance matrix can be estimated, given the factor loadings 

matrix, the factor covariance matrix and the specific risk matrix.  

There are 3 types of factors retained in the MAC3 GRM equity model: style factors, country 

factors and industry factors. The aim of introducing country and industry factors is to increase 

the explanatory power of the model and remove the spurious correlation between factor 

returns and residual returns.  

The estimation universe of Bloomberg model corresponds to the full Bloomberg database for 

which are applied some filters. The style factor loadings matrix is estimated using time series 

regression for each stock of the estimation universe. Style factors include Market, Volatility, 

Momentum, Size, Mid-cap, Earnings yield, Valuation, Dividend, Long term reversal, 

Liquidity, Growth, Variability and Leverage. Style factor loadings are computed in the form of 

z-scores, such that the weighted mean (mean over stocks and not over time) of these z-scores 

is 0.  

Once the factor loadings matrix is estimated, it is plugged into the MAC3 GRM model. The 

factor returns 𝑓𝑘 are estimated using cross-sectional regression. In applying this regression, 

the MAC3 GRM model uses a particular weighting scheme: stocks with more residual 

variance are underweighted in the regression whereas stocks with less noise are overweighted.  

 
38 MAC3 Global Equity Risk Model, Methodology Notes, Menchero et al., 2020. 
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The weights of the observations in the cross-sectional regression are thus the inverse of the 

residual variance for each stock, the residual variance being defined as the volatility of 

residual returns estimated from time-series regression. Note that the process explained above 

is used to estimate factor returns for only one date. To get a whole series of factor returns, we 

should repeat the process, reason why this type of model is data intensive. 

Barra also computes factor exposures the same way, only that the factors considered are 

different. Barra does not explicitly mention the factors but describes the methodology to 

select them. Barra regresses the asset returns against each factor and tests their statistical 

significance. Those statistically significant are put together in a regression model and then the 

remaining are added one by one if they add to the explanatory power.   

Barra and Bloomberg methodologies slightly diverge in deriving the factor covariance matrix. 

Barra estimates the factor covariance matrix in 2 steps. Given the factor return series 

estimated, the first step is to compute the sample covariance matrix of these factors (using an 

exponential weighting scheme). Secondly, the factor covariance matrix is scaled such that the 

portfolio volatility estimated through a GARCH equals the portfolio volatility estimated from 

the factor model. Bloomberg blends two approaches when computing the factor covariance 

matrix to account for serial correlations. The first approach consists of simply aggregating 

returns to the desired period in question and estimating the covariances using an exponential 

weighting scheme. The second approach is based on the Newey-West covariance matrix.   

A stress scenario can then be applied either to replay a historical event by applying factor 

returns from an explicit historical period that is specified or specify some changes in market 

variables, then propagate these changes to other factors based on the correlations among the 

historical returns of the changing variables. 

As already mentioned, Riskmetrics is not a multi-factor model, but a package of risk 

measurements used to model the risk in a portfolio induced by a change in the value of risk 

factors.  
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Riskmetrics defines four risk factors — equity prices, exchange rates, commodity prices, and 

interest rates — and makes two important assumptions: risk factor returns are normally 

distributed, and risk factor volatilities are best estimated by exponentially weighting past 

returns. Riskmetrics follows two approaches: use of historical data and assumption on the 

probability distribution of the risk factor. This allows Riskmetrics to define the scenarios used 

to model the portfolio returns. Monte Carlo methods and parametric methods are used to 

generate risk factor scenarios. 

Riskmetrics relies on three types of scenarios: historical scenarios, user-defined simple 

scenarios and used-defined predictive scenarios. The difference between simple and 

predictive scenarios is that simple scenarios do not consider the impact (correlations) of 

stressed risk factors (the factors which value has been changed and which are called core 

factors) on the non-stressed risk factors (peripheral factors). Predictive scenarios are more 

realistic as they consider the correlation between variables.  

Barra also proposes other methods 39 such as reverse stress-testing to define which scenarios 

can lead to a certain loss level. The paper explains the idea of correlated reverse stress tests, 

using a multi-factor model: factors in this model are considered as shocks (scenarios) and the 

aim is to determine the expected loss on each factor (shock) given an X total loss in the 

portfolio, and a factor correlation matrix. Once the loss on each factor (shock) are determined, 

a probabilities is assigned to each shock. Barra recommends considering only the change in 

the levels of variables and to consider the second moment namely the volatility and 

correlations as correlations are likely to rise in periods of high volatility. They also make the 

distinction between sensitive and scenario analysis. Sensitivity analysis corresponds to the 

impact of the change of one factor, whilst scenario analysis considers the impact of change of 

multiple factors simultaneously and considers movements in levels of variables as well as 

movements in their relations (through volatilities and correlations). Scenario analysis is more 

complete and closer to reality.  

 

 
39 Stress Testing in the Investment Process, Ruban and Melas, 2010. 
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3.3 Methodology 

3.3.1 Definitions 

Meta-factor refers to a higher-level or overarching factor that exerts a significant influence on 

multiple individual factors within the financial system. It explains common risk exposures of 

other factors and can be viewed as a factor of factors. By nature, a meta-factor is defined as a 

macroeconomic or financial variable that impacts in a certain degree all markets, sectors, and 

financial instruments.  

More precisely, we expect meta-factors to be intuitive, to have a strong economic value 

(highly recognized financial or macroeconomic variable) and to explain the variance of 

systematic factors affecting asset returns. In this paper, they are higher-level factors that 

capture distinct characteristics or attributes of the underlying systematic factors. 

A systematic factor or a risk factor, is a fundamental driver of risk and return that affects a 

broad set of financial assets or portfolios. It represents a pervasive and persistent influence on 

asset prices or investment performance that extends beyond the idiosyncratic risk.  

3.3.2 Meta-factors selection 

In a first step, we use a clustering approach to reduce the list of available meta-factors from a 

large base of macroeconomic and financial variables. The set of selected meta-factors must be 

parsimonious, sound, straightforward and unambiguous. The set must cover the main areas 

shaping the financial markets. We categorize the variables into five groups: macroeconomics, 

equity, credit, commodities, and currencies. For more convenience, we limit the 

macroeconomics variables to the US region and assume that their European equivalents 

exhibit the same characteristics. 
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In a second step, we select meta-factors by establishing linkages with systematic factors, 

drawing from the existing literature (Bass et al., 2017; Clark, 2022; Swade et al., 2022). 

Finally, it must be easy and coherent to apply a stress scenario to the set of selected meta-

factors.   

3.3.3 Systematic factors selection and modelling 

We consider the usual extended Fama French factors as systematic factors: Market, 

Value/Growth, Size, Momentum, Quality and Volatility which are largely used in the financial 

industry and academic literature.  

We propose a two-step methodology to stress-test assets through innovations in meta-factors. 

In a first step, meta-factors are regressed against systematic factors to estimate the factor 

loadings. In a second step, systematic factors are regressed against the assets we want to 

stress.  

Let  𝑓𝑡,𝑡+𝜏 = {𝑓𝑠,𝑡,𝑡+𝜏, 𝑠 = 1,… , 𝑆} be the set of innovations in the 𝑆 systematic factors 

estimated between time 𝑡 and 𝑡 + 𝜏 where 𝜏 is the length of the stress in days and 𝑡 the length 

estimation window in days, and 𝑚 is the frequency of the calibration variables (e.g. 𝑚 = 30 

days for a monthly frequency).  The estimation of the innovation in the systematic factor 𝑠 

between 𝑡 and 𝑡 + 𝜏 is given by: 

𝑓𝑠,𝑡,𝑡+𝜏 =  Ε(𝑓𝑠,𝑡,𝑡+𝜏|𝐹𝑡,𝑡+𝜏) where 𝐹𝑡,𝑡+𝜏 = {𝐹𝑘,𝑡,𝑡+𝜏, 𝑘 = 1,… , 𝐾} is the set of innovations 

(shocks) in 𝐾 meta-factors between 𝑡 and 𝑡 + 𝜏.  

We assume the following representation of the innovation of each systematic factor 𝑠 between 

𝑡 and 𝑡 + 𝜏:  

𝑓𝑠,𝑡,𝑡+𝜏 = 𝜇𝑠,𝑡 ×
𝜏

𝑚
+∑𝛽𝑘,𝑡

𝑠

𝐾

𝑘=1

𝐹𝑘,𝑡,𝑡+𝜏 + 𝜖𝑠,𝑡 (3.1) 
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Then, let  �̂�𝑖,𝑡,𝑡+𝜏 =  Ε(𝑟𝑖,𝑡,𝑡+𝜏|𝐹𝑡,𝑡+𝜏, 𝑓𝑡,𝑡+𝜏) be the estimation of the return of the stressed asset 

𝑖 between 𝑡 and 𝑡 + 𝜏.   

We assume the following representation of the return of each stressed asset 𝑖 between 𝑡 and 

𝑡 + 𝜏: 

�̂�𝑖,𝑡,𝑡+𝜏 = 𝛼𝑖,𝑡 ×
𝜏

𝑚
+∑𝛽𝑠,𝑡

𝑖

𝑆

𝑠=1

𝑓𝑠,𝑡,𝑡+𝜏 + 𝜖𝑖,𝑡 (3.2) 

From (1) and (2), we can write: 

�̂�𝑖,𝑡,𝑡+𝜏 = 𝛼𝑖,𝑡 ×
𝜏

𝑚
+∑𝛽𝑠,𝑡

𝑖

𝑆

𝑠=1

{𝜇𝑠,𝑡 ×
𝜏

𝑚
+∑𝛽𝑘,𝑡

𝑠

𝐾

𝑘=1

𝐹𝑘,𝑡,𝑡+𝜏 + 𝜖𝑠,𝑡} + 𝜖𝑖,𝑡 (3.3) 

Hence, between 𝑡 and 𝑡 + 𝜏 the return of the stressed asset 𝑖 is given by: 

�̂�𝑖,𝑡,𝑡+𝜏 = Φ𝑖,𝑡 + Λ𝑖,𝑡,𝑡+𝜏 +Ψ𝑖,𝑡 (3.4) 

Where, 

Φ𝑖,𝑡 = (𝛼𝑖,𝑡 +∑𝛽𝑠,𝑡
𝑖

𝑆

𝑠=1

𝜇𝑠,𝑡) ×
𝜏

𝑚
 

is the constant component of the estimated asset return. 

Λ𝑖,𝑡,𝑡+𝜏 =∑∑𝛽𝑠,𝑡
𝑖 𝛽𝑘,𝑡

𝑠 𝐹𝑘,𝑡,𝑡+𝜏

𝐾

𝑘=1

𝑆

𝑠=1
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is the cross-factor sensitivity component or simply the stress applied to the estimated asset 

return. 

Ψ𝑖,𝑡 = 𝜖𝑖,𝑡 +∑𝛽𝑠,𝑡
𝑖

𝑆

𝑠=1

𝜖𝑠,𝑡 

is the residual component of the estimated asset return.  

One can generalize the equation (3.4) to a set of 𝑁 assets using the equation in the matrix 

form: 

�̂�𝑡,𝑡+𝜏 = Φ𝑡 + Λ𝑡,𝑡+𝜏 +Ψ𝑡 (3.5) 

Where Φ𝑡, Λ𝑡,𝑡+𝜏 and Ψ𝑡 are vectors of size 𝑁. 

We note Β𝑡
S = (

𝛽1,𝑡
1 ⋯ 𝛽𝐾,𝑡

1

⋮ ⋱ ⋮
𝛽1,𝑡
𝑆 ⋯ 𝛽𝐾,𝑡

𝑆
) the (𝑆 × 𝐾) matrix of sensitivities between systematic 

factors and meta-factors common to each asset and 

 Β𝑡
N = (

𝛽1,𝑡
1 ⋯ 𝛽𝑆,𝑡

1

⋮ ⋱ ⋮
𝛽1,𝑡
𝑁 ⋯ 𝛽𝑆,𝑡

𝑁
) the (𝑁 × 𝑆) matrix of sensitivities between assets and systematic 

factors.  

Hence, we need to estimate (𝑁 × 𝑆) + (𝑆 × 𝐾) parameters to apply a stress scenario to a 

whole set of assets between 𝑡 and 𝑡 + 𝜏 (excluding the constants). With, 

Φ𝑡  =  𝐴𝑡 + Β𝑡
N𝜇𝑡  
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Λ𝑡,𝑡+𝜏  = Β𝑡
NΒ𝑡

S𝐹𝑡,𝑡+𝜏 

Ψ𝑡  =  E𝑡
N + Β𝑡

NE𝑡
S  

one can rewrite (3.5) as the equivalent of (3.3): 

�̂�𝑡,𝑡+𝜏 = A𝑡
N + Β𝑡

N(𝜇𝑡 + Β𝑡
S𝐹𝑡,𝑡+𝜏 + E𝑡

S) + E𝑡
N (3.6) 

With A𝑡
N the N-vector of 𝛼𝑖,𝑡 ×

𝜏

𝑚
, 𝜇𝑡 the S-vector of 𝜇𝑠,𝑡 ×

𝜏

𝑚
, 𝐹𝑡,𝑡+𝜏 the K-vector of 𝐹𝑘,𝑡,𝑡+𝜏, 

E𝑡
S the S-vector of 𝜖𝑠,𝑡 and E𝑡

N the N-vector of 𝜖𝑖,𝑡.      

3.3.4 Stress scenario applications 

After having estimated the parameters of the model at time 𝑡, one can use this procedure to 

apply a stress by specifying the innovation in each of the meta-factor according to the 

macroeconomic scenario.  

One can also shock only one meta-factor to isolate its impact on the asset returns or use the 

meta-factors covariance matrix to diffuse the shock from one meta-factor to others. This 

methodology allows to diffuse the shock in several risk regimes or to shock a financial 

variable that would not be a meta-factor and diffuse the shock to them using covariances. 

Despite its simplicity, the model is highly flexible and permits the application of a 

combination of shocks that has never been observed in the past in a forward looking way. But 

the procedure also permits to apply a historical scenario by specifying the shock observed on 

the meta-factors at that time. One might argue that asset could be regressed directly against 

meta-factors, but this step would come with a significant drawback. Indeed, it would be 

cumbersome or very approximate to estimate a potential change of sensitivities between the 

asset and the meta-factors while it is easier to make assumptions about the change of the asset 

sensitivities with the systematic factors (e.g., a fund manager switches her style management  
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from growth to value). The model offers a large degree of flexibility for the estimation of the 

(𝑁 × 𝑆) + (𝑆 × 𝐾) parameters (ex-post, ex-ante, penalization, etc.). 

3.4 Data 

3.4.1 Meta-factors 

The dataset contains 58 variables from February 2003 to June 2023 at a monthly frequency. 

We use a K-means clustering algorithm to partition the dataset into five distinct groups. Then, 

we refine the dataset by excluding variables that are too far from their corresponding cluster. 

20 variables are excluded.  

A dendrogram further helps to identify clusters. By visually analysing the dendrogram, we can 

identify clusters of closely related variables that tend to exhibit similar behaviour or patterns. 

Consequently, based on this dendrogram we remove some clusters with low information and 

keep only relevant variables for each cluster.  

 

Figure 3.112Dendrogram of meta-factor candidates 



 

127 

 

CHAPTER 3. STRESS-TESTING: A META-FACTOR APPROACH 

 

Figure 3.213Historical correlation matrix between meta-factor candidates 

Based on these results, considering the existing literature and the objective of the paper, we 

select five variables as meta-factors: the average option-adjusted spread, the term spread (10-

year minus 3-month), the US dollar value, the oil price, and the two-year sovereign yield. 

These variables show the desired characteristics, and they seem to be complementary from 

each other. We can easily shape a stress scenario from this set of variables.  

Option-adjusted spread 

The option-adjusted spread (OAS) measures the impact of embedded options, such as call or 

put options, on the value of a fixed-income instrument. These options provide the issuer or the 

bondholder with the right to exercise certain actions, such as early redemption or conversion,  
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which can affect the bond's cash flows and overall value. The OAS adjusts the yield spread to 

account for the value of these options, providing a more accurate measure of the instrument's 

relative value. As the credit risk is higher, the price of the option increases hence the OAS. 

The OAS considers market expectations regarding future interest rates, volatility, and other 

relevant factors. It captures the consensus view of market participants on the additional yield 

investors demand to compensate for the uncertainty associated with embedded options. By 

incorporating market expectations, the OAS provides a more accurate reflection of the 

economic value of the security. It captures the compensation investors require for taking on 

the potential cash flow volatility resulting from changes in interest rates or other factors. 

The OAS is similar to other measures of implied volatilities such as the VIX Index. Both the 

OAS and the VIX are designed to capture market expectations and sentiment. But the OAS 

exhibits more stability and reflects credit risk. We often observe increasing equity implied 

volatility without an increase of credit risk. 

We use the Bloomberg Aggregate Corporate Average OAS (euro and US) as a proxy for the 

overall credit risk.  

Term-spread 

We consider the term spread between the 10-year and 3-month Treasury yields. This variable 

is an important economic indicator and is closely watched by investors, economists, and 

policymakers. It provides insights into the yield curve slope. 

A positive term spread typically occurs during periods of economic expansion when investors 

expect higher future inflation and higher yields on longer-term investments. A wider term 

spread is often associated with a healthy economic outlook and can be seen as a positive 

signal for economic growth. 
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Conversely, a negative term spread, also known as an inverted yield curve  is often interpreted 

as a signal of potential economic weakness or an impending economic downturn. An inverted 

yield curve has historically been associated with recessions and is closely monitored as a 

potential indicator of future economic conditions. 

US Dollar value 

The US dollar value as a meta-factor seems an obvious choice for several reasons. The US 

dollar is a key consideration in assessing macroeconomic trends and expected asset returns: 

- A global reserve currency: the US dollar is widely recognized as the dominant global 

reserve currency. 

- International trade and investment: the US dollar plays a crucial role in international trade 

and investment activities. Most commodities, such as oil, gold, and major agricultural 

products, are priced and traded in U.S. dollars. 

- Safe-haven status: during times of economic uncertainty the flight to safety strengthens 

the dollar and can impact currency exchange rates, asset prices, and global capital flows. 

- Financial market dominance: US financial markets are the largest and most liquid in the 

world. The depth and breadth of these markets make the US dollar a preferred currency 

for conducting global financial transactions. 

 

We use the DXY Index to proxy the value of the dollar. The DXY Index is a measure of the 

value of the US dollar relative to a basket of other major currencies. It provides a weighted 

average of the dollar exchange rates against six currencies: euro, Japanese yen, British pound 

sterling, Canadian dollar, Swedish krona, and Swiss franc. The DXY is often used as a 

benchmark to gauge the overall strength or weakness of the US dollar in the foreign exchange 

market. 
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Oil price 

Oil price can be considered as a good meta-factor. Oil price has a significant impact on 

various aspects of the economy and financial assets: 

- It is a key input in various industries. Fluctuations in oil prices can reflect changes in 

global demand and supply dynamics. Changes in oil prices affect industries that are 

closely tied to energy costs, but they also have less direct effects on all sectors. 

- It affects consumer spending. Oil prices directly impact the cost of transportation, 

production, and distribution, influencing the prices of goods and services. Higher oil 

prices can contribute to inflationary pressures, affecting consumer spending power and 

business costs. Changes in inflation expectations can impact bond yields and interest rates, 

which can have implications for equity valuations and investor sentiment. 

 

We use the price of the Brent as a measure of oil price. 

Two-year sovereign yield 

Finally, interest rate risk is represented by the two-year sovereign yield as a meta-factor. 

The 2-year yield is closely watched as an indicator of market expectations regarding short-

term interest rates and monetary policy. Changes in the 2-year yield can reflect shifts in 

market sentiment about the overall health of the economy, inflation expectations, and the 

outlook for future interest rate movements. Increasing borrowing costs for businesses affect 

their profitability and investment decisions. To some extent, higher interest rates can also 

make fixed-income investments more attractive compared to equities, leading some investors 

to reallocate their portfolios away from stocks, potentially putting downward pressure on 

equity prices. 
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The 2-year yield might also be used as a risk-free rate. An increasing risk-free rate leads to a 

higher discount rate applied to future cash flows of equities. This results in a decrease in 

equity valuations, as higher discount rates reduce the present value of expected future 

earnings. 

3.4.2 Systematic factors 

In contrast to asset returns, factor returns cannot be directly observed. We rely on regional 

MSCI indices (US and Europe) as proxies of systematic factors. Based on empirical evidence, 

these indices proved to be good candidates to proxy the systematic factors.  

Market factor 

As mentioned on the early CAPM-related literature, the Market factor can be viewed as the 

first and most important equity factor. Alone, the Market factor already explains a large 

amount of an equity fund variance. It represents the overall direction and performance of the 

overall market or a specific market index, such as the S&P 500 or a global equity index. It 

captures the influence of macroeconomic factors, investor sentiment, and broad market trends. 

The Market factor is highly correlated with corporate earnings. We use the MSCI USA and 

the MSCI Europe Index as proxies of the Market factor for the US and Europe region 

respectively. We will use also regional indices for other factors.     

Value/Growth factor 

The Value factor reflects the tendency for assets with lower valuations (e.g., low price-to-

earnings ratio or price-to-book ratio) to generate higher returns compared to assets with higher 

valuations while the Growth factor represents the performance of companies or assets that 

exhibit strong earnings growth, sales growth, or other indicators of future growth potential. 
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The abnormal return associated with the Value factor has been consistently observed by 

researchers in various major securities markets, as documented by Hawawini and Keim 

(2000).  

However, it is worth noting that critics of the value premium raise concerns about the 

potential influence of data mining on empirical evidence. They emphasize that empirical 

studies often rely on specific samples, as highlighted by Black (1993). 

We build a long-short portfolio MSCI Value Index – MSCI Growth Index to proxy this factor. 

MSCI uses the book to price, earnings to price, book value, sales, earnings, cash earnings, net 

profit, dividends, and cash flow of individual stocks to construct these indices.  

Size factor  

The Size factor captures the impact of company size on investment returns. It suggests that 

smaller companies (by market capitalization) tend to outperform larger ones.  

The small-cap premium persists even after accounting for other factors. Various theories have 

been proposed to explain this phenomenon, and the debate surrounding it continues. In the 

efficient market view, Fama and French (1992, 1993) originally suggested that small-cap 

stocks carry higher systematic risk, leading to a higher return premium. Subsequent research 

has proposed that size may proxy for other unobservable risk factors associated with smaller 

firms, such as liquidity (Amihud, 2002), information uncertainty (Zhang, 2006), financial 

distress (Chan and Chen, 1991), and default risk (Vassalou and Xing, 2004). Chan, Chen, and 

Hsieh (1985) argue that the spread between low and high-quality corporate bonds, reflecting 

the macro environment and default risk, is the most significant factor in explaining the size 

effect. 

We build a long-short portfolio MSCI Small Index – MSCI Large Index to proxy this factor. 
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Momentum factor 

The Momentum factor captures the persistence of price trends and the tendency for assets 

with positive price momentum to continue performing well in the short to medium term. 

The momentum premium lacks a widely accepted efficient markets-based theory to explain its 

existence. Instead, behavioural theories are often invoked to account for this phenomenon. 

These theories suggest that investor overreaction (Barberis, Sheleifer, and Vishny 1998; 

Daniel, Hirshleifer, and Subrahmanyam 1998) or underreaction to news (Hong, Lim, and 

Stein 2000) play a role in driving the momentum effect. These behavioural biases stem from 

factors such as overconfidence, self-attribution, conservatism bias, aversion to realizing 

losses, representative heuristic, and limited analyst coverage. Additionally, theories such as 

herding behaviour driven by reputation concerns (Dasgupta, Prat, and Verardo 2011) have 

also been put forward. Other frameworks focus on institutional investing dynamics as a 

source of both momentum and value effects (Vayanos and Woolley 2011). 

We build a long-short portfolio MSCI Momentum Index – MSCI Index (Market) to proxy this 

factor. We sell the Market factor to avoid any redundancy. MSCI uses relative returns (3-mth, 

6-mth, 12-mth) and historical alpha of individual stocks to construct this index.  

Quality factor 

The Quality factor captures excess returns to stocks that are characterized by low debt, stable 

earnings growth, and other “quality” metrics. 

The literature exploring the reasons behind the effectiveness of the Quality factor remains 

limited, mainly due to the lack of a standardized definition for quality. In accordance with the 

Fama-French model, it is believed that all systematic risks ultimately stem from economic 

risks. This viewpoint establishes a connection between stock returns and quality measures 

such as financial leverage and earnings growth. Campbell, Polk, and Vuolteenaho (2010) put  
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forth a "fundamental" explanation, suggesting that the primary source of systematic risks for 

both growth and value stocks can be traced back to cash flow fundamentals rather than market 

sentiments. From a corporate finance perspective, the influence of firm quality on stock prices 

becomes apparent. Well-managed companies exhibit careful capital management practices, 

mitigating the risk of excessive leverage or over-capitalization. Consistent earnings growth 

reduces the reliance on external financing, which contributes to supporting stock prices. This 

positive feedback loop strengthens the company's competitiveness in the eyes of both 

customers and investors. 

For the same reason as for the Momentum factor, we build a long-short portfolio MSCI 

Quality Index – MSCI Index (Market) to proxy this factor. MSCI uses the return on equity, 

earnings stability, dividend growth stability, strength of balance sheet, financial leverage, 

accounting policies, strength of management, accruals, and cash flows of individual stocks to 

build this index. 

Volatility factor  

The volatility factor captures excess returns to stocks with lower-than-average volatility, beta, 

and/or idiosyncratic risk. 

The low volatility anomaly directly challenges the principles of the Efficient Market Theory 

and the assumptions of the Capital Asset Pricing Model. To explain this phenomenon, 

behavioural factors are commonly put forth. One prevalent explanation is the presence of the 

"lottery effect," whereby investors demonstrate a tendency to engage in bets that offer a small 

expected loss but a potentially substantial gain, even though the probability of a loss is 

significantly higher than that of a win. This behaviour resembles the act of purchasing a 

lottery ticket, where individuals pay a small amount in the hopes of winning a large sum, 

despite the low likelihood of success. It is argued that this behavioural bias leads investors to 

overvalue high volatility stocks and undervalue low volatility stocks, reflecting an "irrational" 

preference for volatile stocks. 
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Again, we build a long-short portfolio MSCI Minimum Volatility Index – MSCI Index 

(Market) to proxy this factor. MSCI uses the standard deviation (1-yr, 2-yrs, 3-yrs), downside 

standard deviation, standard deviation of idiosyncratic returns and beta of individual stocks to 

build this index.  

3.5 Application 

This section illustrates our methodology to a real dataset of assets. We apply the methodology 

to a set of equity long only mutual funds managed by a European asset manager. The set is 

diversified enough to observe how the funds with different style exposures would react to 

stress scenarios. These mutual funds show more a less aggressive biases and are solely 

exposed to European or US stocks. We apply different stress scenarios, first we show the 

results for hypothetical scenarios applied to the dataset with either specified shocks on all 

meta-factors or shock on one meta-factor. Then, we show results for the reproduction of 

historical scenarios. When possible, we compare results to Bloomberg MAC 3.  

3.5.1 Parameters calibration  

The dataset contains 6 active mutual funds invested in US stocks and 8 active mutual funds 

invested in European stocks. Mutual funds return sensitivities with systematic factors returns 

are computed at a monthly frequency from inception. For confidentiality reasons, mutual 

funds are kept unnamed. Table 3.1 displays sensitivities with systematic factors and highlights 

the high level of diversity across the dataset. For instance, one would expect a value fund to 

react differently than a growth fund to an increase of interest rates or more aggressive funds to 

react strongly to a stress event compared to more defensive ones. Sensitivities are calibrated 

using a multi-linear regression as described in the methodology section over the whole life of 

the fund (Full) but without the constant to ease the interpretation and be free of specification 

of the length of the shock (𝜏). We also calibrate parameters under different risk regime 

windows using the VIX level as a threshold. We expect stressed assets to react differently in 

low-risk regime (Low: VIX < 30) and high-risk regime (High: VIX > 30).     
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Table 3.113Equity long only mutual funds sensitivities to systematic factors (Full) 

 

Notes: *, **, *** indicate rejection of the null hypothesis of sensitivities equal to 0 at 10%, 

5% and 1% confidence levels. R² are close to 1 for each mutual fund. 

Following the same methodology above, we calibrate meta-factors sensitivities with 

systematic factors. Results are displayed in Table 2. OAS is the main meta-factor in terms of 

predictive power as shown by its high (negative or positive) sensitivity with the Market factor. 

The level of the slope appears to be also significant for almost all systematic factors. Results 

are more divergent for other meta-factors. The level of R² are relatively high except for the 

US Value-Growth. This might be explained by the strong performance contribution of 

technology (growth) stocks in US markets.   

Table 3.214Systematic factors sensitivities to meta-factors (Full) 

 

Notes: *, **, *** indicate rejection of the null hypothesis of sensitivities equal to 0 at 10%, 

5% and 1% confidence levels.  

Market Value-Growth Small-Large Quality Momentum Min. Vol.

US tilt Value 0.95*** 0.18** 0.24* 0.17 -0.12 -0.09

US Blend 0.89*** 0.07 -0.12* 0.22** -0.02 0.01

US Aggressive Growth 0.89*** -0.41*** 0.04 0.14 0.04 -0.28**

US Aggresive Value 1.1*** 0.87*** 0.62** -0.49*** -0.25** -0.76***

US Value 1.01*** 0.44*** 0.05 -0.08 0.15 -0.11

US Defensive Value 1.08*** 0.31** -0.07 -0.52*** -0.16 0.38**

EU Aggresive Value 0.94*** 0.41*** 0.27** -0.66*** -0.11 -0.49**

EU Value 1.02*** 0.16** 0.16 -0.78*** -0.22* -0.34**

EU Growth 0.94*** -0.48*** 0.19 -0.33** -0.08 -0.14

EU tilt Value 0.91*** 0.05 0.19 -0.48** -0.23** -0.11

EU Small Cap 0.91*** -0.21** 0.58*** -0.16 -0.18* -0.01

EU Blend 0.99*** -0.14* 0 -0.04 -0.15* 0.08

EU Defensive Growth 0.99*** -0.46** -0.02 -0.54** 0.12* 0.13

EU Defensive Blend 0.7*** -0.26* 0.1 0.84*** -0.12* -0.41**

ΔOAS ΔTerm spread %USD %Oil Δ2Y rate R²

Market -7.96*** 0.98 -0.54** 0.02 2.39* 50%

Value-Growth 1.07 0.35 -0.07 0.00 0.39 1%

Small-Large -3.27*** 0.44 0.00 0.03** 1.31 20%

Quality 1.12** -0.28 0.10** 0.00 -0.73 21%

Momentum 1.68** -2.19*** -0.04 0.01 2.03** 10%

Min. Vol. 2.73*** -2.03*** 0.14** -0.01 -0.53 41%

Market -11.61** 2.17 0.20** 0.04* 3.17** 50%

Value-Growth -3.47** 2.82*** -0.04 0.01 0.86* 18%

Small-Large -3.54*** -0.97 -0.07 0.02 -0.15 19%

Quality 3.09*** -2.25*** 0.07 0.00 -0.88* 33%

Momentum 3.05*** -2.19*** 0.04 0.00 0.9* 16%

Min. Vol. 3.54*** -2.22*** 0.02 -0.02** -1.96*** 49%

US

EU
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3.5.2 Hypothetical scenarios 

First, we use our methodology to model a market crash. A typical market crash scenario is 

usually accompanied by an increase of credit risk (OAS), a steepening of the yield curve with 

long term interest rates increasing faster than short term ones (term spread), a reinforcement 

of the US dollar which is regarded as a safe-haven asset (USD), a supply shock on oil (Oil) 

and an increase of financing costs (2Y rate). This would quantitatively translate to shocks on 

meta-factors displayed in Table 3.3.   

 

Table 3.315Shocks on meta-factors to model a typical market crash 

Table 4 displays the results of the stress scenario. All mutual funds show a significant 

decrease, but results diverge with style exposures. Funds with higher sensitivity to Growth or 

Value show stronger negative expected performance as they are more sensitive to an 

increasing interest rate or a reversing economic cycle (Table 3.4). More defensive funds (with 

higher exposures to alternative factors such as Quality, Momentum and Min. Vol.) outperform 

aggressive funds in this stress scenario. These results are largely expected and show that our 

modelling is coherent with what is observed when a market crash materialized.     

 

 

 

 

 

ΔOAS ΔTerm spread %USD %Oil Δ2Y rate

US 3.00% 1.00% 5% 70% 1.00%

EU 3.00% 1.00% 5% 70% 1.00%
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Table 3.416Typical market crash scenario results based on shocked meta-factors 

One can also specify a shock on one meta-factors and diffuse the shock on other meta-factors 

using the covariance matrix. We apply two different shocks commonly observed: 1. an 

increase of interest rates and 2. an increase of oil prices. Results of the diffusion differ 

depending on the risk regime (Table 3.5). Without adverse market conditions, an increase in 

interest rates or oil prices is generally associated with positive equity performance. But, as we 

already mentioned, we should observe divergent returns between mutual funds. For instance, 

we expect Value funds to strongly outperform Growth funds in case of increasing rates. 

Results display in Table 3.6 confirm this point. We also compare our results to Bloomberg 

MAC 3 and compute the spearman coefficient to show that we obtain a similar ranking with 

close performance for the increase in oil price scenario while performance is significantly 

higher under our modelling for the increase in interest rates scenario.    

 

Expected return

US tilt Value -21%

US Blend -17%

US Aggresive Growth -21%

US Aggresive Value -30%

US Value -20%

US Defensive Value -21%

EU Aggresive Value -36%

EU Value -37%

EU Growth -26%

US tilt Value -31%

EU Small Cap -30%

EU Blend -25%

EU Defensive Growth -24%

EU Defensive Blend -14%

Value -28%

Growth -23%

Blend -19%

Defensive -20%

Aggresive -29%
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Table 3.517Increase in interest rates scenario and diffusion under different risk regimes 

 

Table 3.618Hypothetical stress scenario results 

3.5.3 Historical scenarios   

Our methodology also allowed for the reproduction of historical scenarios. Table 3.7 shows 

the shocks on meta-factors observed during the Great Financial Crisis market crash following 

Lehman Brothers default in 2008 (from 14/09/2008 to 14/10/2008) and the shocks observed 

after the downgrade of the US debt rating (from 22/07/2011 to 08/08/2011). Our results are 

compared to Bloomberg MAC 3 and realized returns. 

Results in Table 3.8 confirm that our model reproduces accurate expected performances 

during stress periods. In terms of ranking, our model is close to MAC3 and realized returns 

(see spearman coefficients of MAC3 vs realized and Model vs realized). Our model does even  

ΔOAS ΔTerm spread %USD %Oil Δ2Y rate

US -0.49% 0.31% 1.45% 14.70% 1.00%

EU -0.71% -0.23% -4.00% 11.24% 1.00%

US -0.30% 0.30% 1.42% 14.20% 1.00%

EU -0.68% -0.27% -5.10% 13.75% 1.00%

EU -1.13% 0.46% 1.80% 17.49% 1.00%

US -0.80% -0.22% -2.83% 9.13% 1.00%

Full

Low

High

MAC 3 Full Low High MAC 3 Full Low High

US tilt Value 4% 7% 6% 13% 6% 4% 3% 5%

US Blend 2% 5% 4% 10% 4% 3% 3% 4%

US Aggresive Growth 1% 7% 6% 13% 6% 4% 3% 5%

US Aggresive Value 9% 12% 10% 21% 9% 6% 5% 8%

US Value 5% 8% 6% 13% 6% 4% 3% 5%

US Defensive Value 4% 7% 5% 12% 5% 3% 3% 5%

Spearman coeff. - 83% 58% 58% - 89% 70% 89%

EU Aggresive Value 9% 17% 16% 18% 7% 5% 4% 6%

EU Value 9% 16% 15% 18% 7% 5% 4% 6%

EU Growth 4% 12% 11% 13% 5% 4% 3% 4%

US tilt Value 7% 13% 12% 14% 5% 4% 3% 5%

EU Small Cap 3% 12% 12% 14% 4% 4% 4% 5%

EU Blend 4% 11% 10% 12% 4% 3% 3% 4%

EU Defensive Growth 4% 11% 10% 12% 5% 3% 3% 4%

EU Defensive Blend 1% 7% 7% 8% 4% 3% 2% 3%

Spearman coeff. - 86% 78% 79% - 76% 51% 70%

Interest up 100bps Oil up 20%
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better than MAC3 during the Lehman event in terms of magnitude. Results are slightly mixed 

for the US debt downgrade event in terms of ranking but again we do better than MAC3 in 

terms of magnitude.  

 

Table 3.719Observed shocks during 2008 and 2011 market events 

 

Table 3.820Historical stress scenario results 

3.6. Conclusion 

This article contributes by proposing a two-step framework to conduct stress tests through 

meta-factors and systematic factors. We show that we can keep the model simple, easy to 

implement and parsimonious while allowing a high level of flexibility. Indeed, meta-factors 

help to translate an economic scenario into market shocks as they exert a significant influence 

on multiple individual factors within the financial system (style or systematic factors in our  

ΔOAS
ΔTerm 

spread
%USD %Oil Δ2Y rate

US 2.80% 1.40% 11% -40% -0.90%

EU 2.10% 2.00% 11% -35% -1.80%

US 0.60% -0.50% 3% -7% -0.20%

EU 0.80% -0.20% 3% -2% -1.00%

 Debt Ceiling Crisis & 

Downgrade (2011)

Lehman Default (2008)

MAC 3 Model Realized MAC 3 Model Realized

US tilt Value -18% -30% -29% -17% -7% -7%

US Blend -20% -23% -26% -16% -5% -9%

US Aggresive Growth -22% -29% - -18% -7% -

US Aggresive Value -24% -44% -35% -21% -12% -12%

US Value -20% -30% -29% -19% -7% -6%

US Defensive Value -18% -30% -25% -17% -7% -7%

Spearman coeff. 70% 75% 60% 70%

EU Aggresive Value -18% -34% -32% -18% -19% -12%

EU Value -18% -34% - -17% -19% -12%

EU Growth -20% -25% - -16% -12% -

US tilt Value -16% -28% -23% -16% -14% -12%

EU Small Cap -20% -28% -34% -16% -12% -11%

EU Blend -18% -23% -28% -16% -11% -15%

EU Defensive Growth -19% -23% -28% -16% -11% -12%

EU Defensive Blend -17% -16% -23% -14% -6% -6%

Spearman coeff. 83% 83% 83% 46%

 Debt Ceiling Crisis & Downgrade in 2011 Lehman Default - 2008
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framework). Despite its simplicity, our methodology offers a better fit than Bloomberg MAC3 

during two historical market stress. Beyond the risk management aspects of stress-testing, our 

framework offers the possibility to quickly implement forward or hypothetical stress scenarios 

helping managers to adjust their active portfolios in consequences.  

Like any stress test model, our framework has its limitations. A stress test estimates the 

exposure to a specified event, but not the probability of such an event occurring. In addition, 

numerous decisions in the specification of a stress test must be made that rely on the 

judgement and experience of the risk manager. Therefore, there is no guarantee that the risk 

manager will choose the “right” scenarios or interpret the results effectively. Stress tests also 

impose a high computational cost, especially in collecting the data from diverse business units 

and from the need to revalue complex options-based positions. A further limitation is that, at 

present, firms cannot integrate market and credit risks in a systematic way in their stress tests, 

although some interviewed firms are engaged in efforts in this direction.  

The methodology can be further developed in terms of parameters calibration (use more 

advanced tools than the multilinear regression, explore other factors). Additionally, more 

applications can be conducted on different equity universes and asset classes. 
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3.7 Appendices 

Appendix 3.1: List of meta-factors candidates 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Type Transformation

Core inflation Macroeconomic Difference

Inflation surprises Macroeconomic Difference

House prices Macroeconomic Percentage change

LEI Macroeconomic Difference

PMI Manufacturing Macroeconomic Difference

PMI Services Macroeconomic Difference

Trade balance Macroeconomic Percentage change

Current balance Macroeconomic Percentage change

Budget balance Macroeconomic Percentage change

M2 money supply Macroeconomic Percentage change

FED NY forecast GDP growth Macroeconomic Difference

Industrial production Macroeconomic Difference

Consumer confidence Macroeconomic Difference

Unemployment Rate Macroeconomic Difference

Economic surprises Macroeconomic Difference

S&P 500 Equity Percentage change

Average dividend yield Equity Difference

Average earnings growth Equity Difference

Average corporate margin Equity Difference

Average P/E Equity Percentage change

Average Financial leverage Equity Difference

Volatility 30d Equity Difference

Volatility 90d Equity Difference

Volatility 260d Equity Difference

VIX Equity Difference
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General Conclusion 

Through three essays, this thesis demonstrates the applications of factor models in various 

contexts. The articles introduce innovative methods aimed at resolving current issues affecting 

financial institutions (banks and asset managers) and regulators. The following questions were 

addressed:  

(i) Could we use ESG metrics to forecast idiosyncratic risk? 

(ii) What are the most efficient calibration techniques to derive correlation 

matrices associated with factor models? 

(iii) Could we propose a simple but appropriate framework to perform stress tests 

on equity portfolios?  

A test was proposed to evaluate how well extra-financial metrics (ESG ratings) help predict 

firm-specific risks. The focus was on idiosyncratic volatility estimated through factor models, 

revealing a negative relationship between ESG ratings and idiosyncratic risk, with higher 

ratings predicting lower levels of idiosyncratic volatility. 

The findings carry significant implications for both investors and researchers. The backtesting 

approach provides a valuable framework for evaluating ESG rating providers before 

incorporating these ratings into investment strategies. The results underscore the importance 

of being cautious when faced with divergent ESG ratings. For researchers in asset pricing, it is 

imperative to rigorously assess the quality of ESG ratings. Additionally, the observed 

connection between ESG ratings and idiosyncratic volatility, particularly when ratings 

converge, suggests that ESG investing extends beyond investor preferences. ESG ratings can  
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serve as indicators of future fundamentals and risks. A prospective application for investors 

involves comparing ratings from different extra-financial metrics providers. Our inferential 

procedure can be easily adapted for this purpose, assisting investors in selecting the most 

suitable agency in non-nested comparisons. It also facilitates the consideration of additional 

competing agencies for integration with existing ratings in nested comparisons, providing a 

comprehensive approach to decision-making in the realm of ESG investments. 

Subsequently, various approaches to estimating probabilistic models with K factors and 

idiosyncratic noises are described. These models can be used to simulate latent random 

variables driving defaults with applications to the Basel 2.5 and 3 frameworks for credit 

exposures in the trading book. 

It is shown that restricted versions of optimization-based approaches perform better when 

dealing with intra-classes (correlations), primarily due to the effectiveness of classification. 

Even with a rough approach based only on geographical-sector classification, fitting is 

significantly improved. Factor models are known to smooth the correlation matrix, leading to 

large errors for high correlations. Empirical results indicate that restricted calibration 

performs better in this aspect as well. By restricting information to a class of issuers that 

should (a priori) behave the same way, the restricted version of the SPG algorithm allows for 

a smaller error on these high empirical correlations than other methods. Finally, beta 

homogeneity for the restricted configurations provides a better understanding of the 

underlying latent-factor effect. In this configuration, latent-factor loadings have a meaningful 

interpretation. 

The starting point of the iterative optimization could be discussed. The betas with respect to 

the K factors provided by the principal component method can be used as a starting point for 

an iterative optimization algorithm: iterated principal factor or Spectral Projection Gradient 

(SPG) for the nearest correlation matrix approach and Expectation Maximization (EM) for 

maximum likelihood estimation. Further work can also be done on the performance of these 

algorithms before considering implementation in the banking industry. 
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As a last application of factor models, a two-step framework was proposed to conduct stress 

tests through meta-factors and systematic factors. Despite its simplicity, the methodology 

offers a better fit than some well-established models. Beyond the risk management aspects of 

stress-testing, the framework offers the possibility to quickly implement forward or 

hypothetical stress scenarios, helping managers adjust their active portfolios accordingly. 

Like any stress test model, the framework has limitations independent of factor modeling. A 

stress test estimates exposure to a specified event but not the probability of such an event 

occurring. Additionally, numerous decisions in the specification of a stress test must be made, 

relying on the judgment and experience of the risk manager. A further limitation is that, at 

present, firms cannot integrate market and credit risks systematically in their stress tests, 

although some interviewed firms are engaged in efforts in this direction. The methodology 

can be further developed in terms of parameters calibration (using more advanced tools than 

multilinear regression) and exploring other factors. Additionally, more applications can be 

conducted on different equity universes and asset classes, as the methodology remains flexible 

and easy to adapt. 
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Résumé en français 

Les modèles à facteurs sont un concept fondamental en modélisation statistique. Ils 

fournissent un cadre pour comprendre les relations complexes entre les variables. Ces 

modèles sont particulièrement utiles en finance où les variables étudiées sont interconnectées. 

Une des applications clés des modèles à facteurs en finance est leur utilisation intensive dans 

l’évaluation des actifs. Le Modèle d'Évaluation des Actifs Financiers (MEDAF) de William 

Sharpe (1964) et John Litner (1965) est considéré comme une forme simple de modèle à 

facteurs, où les rendements d'un actif sont expliqués par un facteur de marché (les rendements 

d'un portefeuille représentatif d'actions, appelé le portefeuille de marché). Le modèle marque 

l'émergence des modèles à facteurs en finance et reste largement utilisé de nos jours. La force 

du MEDAF, et des modèles à facteurs en général, réside dans leur simplicité, leur robustesse 

et leur capacité à prédire des relations (entre le risque et les rendements attendus dans le cas 

du MEDAF). Des extensions de ce modèle incluent les modèles multifactoriels, tels que le 

modèle à trois facteurs de Fama-French (Fama, 1993), qui introduit des facteurs 

supplémentaires tels que la taille (capitalisations boursières) et la valeur (valorisation 

boursière) pour mieux saisir la complexité des rendements boursiers. 

En économétrie, les modèles à facteurs sont utilisés pour discerner les tendances économiques 

sous-jacentes. Par exemple, un modèle à facteurs macroéconomiques peut inclure des 

variables telles que l'inflation, les taux d'intérêt et la croissance du PIB pour expliquer les 

fluctuations observées dans divers indicateurs économiques. Au-delà de la finance et de 

l'économie, les modèles à facteurs sont également largement utilisés dans d'autres domaines 

exploitant des ensembles de données volumineux et complexes. En psychologie, par exemple, 

un modèle à facteurs pourrait être appliqué pour comprendre les facteurs sous-jacents 

influençant les scores sur divers tests psychologiques. D’ailleurs, nous nous appuierons sur la 

littérature psychométrique dans le deuxième chapitre de cette thèse. 
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Nous distinguons trois principaux types de modèles à facteurs en finance (Connor, 1995) : 

macroéconomiques, statistiques et fondamentaux. Les modèles à facteurs macroéconomiques 

utilisent des séries temporelles économiques observables comme mesures de facteurs 

influençant une variable financière, en supposant que cette variable réponde de manière 

linéaire aux chocs macroéconomiques ou financiers. Les modèles à facteurs statistiques 

utilisent plusieurs techniques statistiques pour estimer les paramètres des modèles à facteurs. 

L'analyse en composantes principales (ACP) (Jolliffe, 2002 ; Stock et al., 2002) est une 

méthode courante utilisée pour identifier les facteurs sous-jacents en capturant les directions 

de la variance maximale dans les données. La méthode d'estimation du maximum de 

vraisemblance (MLE) et les méthodes bayésiennes sont également utilisées (Watson and 

Engle, 1983). Enfin, les modèles à facteurs fondamentaux reposent sur les attributs des actifs 

financiers pour expliquer leur dynamique (par exemple, le rendement des dividendes, le ratio 

cours-valeur comptable et la classification sectorielle peuvent expliquer une proportion 

substantielle de rendements communs entre plusieurs actions ou obligations). 

Au-delà de l’évaluation des actifs, les modèles à facteurs ont de nombreuses applications en 

finance. Dans la gestion de portefeuille, ils aident à optimiser les allocations d'actifs en 

identifiant les sources de diversification (Meucci, 2009). En gestion des risques, ces modèles 

sont cruciaux pour quantifier et gérer diverses sources de risque. Par exemple, ils aident les 

institutions à comprendre l'impact de différents facteurs sur la Value at Risk (VaR) et le risque 

de défaut (Jorion, 2007). Dans la modélisation du risque de crédit et l'analyse des titres à 

revenu fixe, les modèles à facteurs peuvent être utilisés pour évaluer la solvabilité des 

emprunteurs. Ils aident à identifier les facteurs communs qui influent sur le risque de crédit 

des prêts (ou des obligations) et peuvent être utilisés pour modéliser le risque lié aux taux 

d'intérêt (Altman, 1968 ; Litterman and Scheinkman, 1991). Les modèles à facteurs trouvent 

de nombreuses autres applications, par exemple, dans l’évaluation des options (Black and 

Scholes, 1973) ou dans l'attribution de performance (Brinson, 1986). Ces applications 

démontrent la polyvalence des modèles à facteurs dans leur capacité à répondre aux 

problématiques actuelles de la recherche en finance. 
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Les modèles à facteurs présentent de nombreux avantages qui justifient leur utilité. La 

réduction de dimension, dans laquelle les modèles à facteurs excellent, est peut-être l'avantage 

le plus important. En effet, les modèles à facteurs aident à réduire la dimensionnalité des 

données en capturant les similitudes (Fan and Liao, 2014). La réduction de la dimensionnalité 

permet également d'améliorer l'interprétabilité des structures latentes qui génèrent les 

dynamiques observées ou de confirmer l'influence des facteurs observables. Cette 

caractéristique rend les modèles à facteurs toujours très utiles aujourd'hui malgré l'émergence 

de modèles basés sur l'apprentissage automatique. En effet, les facteurs identifiés ont souvent 

un sens économique ou théorique bien identifié, ce qui facilite la compréhension et 

l'explication de la modélisation. Au contraire, certains modèles d'apprentissage automatique, 

en particulier les plus complexes tels que les réseaux neuronaux profonds, sont souvent 

considérés comme des "boîtes noires", ce qui rend difficile leur interprétation. Les modèles à 

facteurs ont également tendance à être plus efficaces sur le plan du traitement des données, 

même lorsqu'ils sont appliqués à des données de haute dimensionnalité (Bai and Li, 2012). Ils 

peuvent capturer et résumer efficacement l'essentiel de l’information à l'aide d'un ensemble 

plus restreint de facteurs, tandis que les modèles d'apprentissage automatique peuvent 

nécessiter d'énormes quantités de données, un coût non négligeable pour les institutions 

financières. 

Les modèles à facteurs présentent cependant plusieurs limitations. La plupart de ces modèles 

suppose des relations linéaires entre les variables observées et les facteurs. Cette hypothèse 

pourrait ne pas être valable dans tous les cas, notamment lorsqu'il s'agit de relations 

complexes et non linéaires dans les données. La faible robustesse de certains modèles à 

facteurs constitue également une limitation. La performance de ces modèles peut être sensible 

au choix des facteurs et aux spécifications du modèle. Choisir un nombre inapproprié de 

facteurs ou utiliser une méthode d'estimation inadéquate peut conduire à des résultats biaisés 

et à des interprétations erronées. Enfin, deux limitations importantes doivent être prises en 

compte lors de la manipulation de modèles à facteurs : l'hypothèse selon laquelle les variables 

suivent une distribution gaussienne et l'hypothèse d'homoscédasticité. Certains modèles à 

facteurs supposent que les facteurs sous-jacents et les composants idiosyncratiques suivent 

une distribution gaussienne. Cette hypothèse peut ne pas être valable dans tous les cas,  
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notamment lorsqu'il s'agit de données financières, ou des événements extrêmes où des valeurs 

aberrantes peuvent avoir un impact significatif sur les résultats (Murray, 2013). Les modèles à 

facteurs supposent également souvent l'homoscédasticité, i.e., la variance des composants 

idiosyncratiques est constante pour toutes les observations. Dans des scénarios réels, cette 

hypothèse peut ne pas être valable, surtout pendant des périodes de grande instabilité, 

entrainant une incapacité à capturer des ruptures structurelles. Dans cette thèse, nous utilisons 

les modèles à facteurs pour estimer : (i) la volatilité idiosyncratique, (ii) les corrélations et (iii) 

les scénarios de stress de marché. 

Comprendre et quantifier la volatilité idiosyncratique est crucial dans divers en finance et en 

économie. La volatilité idiosyncratique fait référence à la partie de la volatilité totale d'un 

actif qui est spécifique à cet actif et qui n'est pas expliquée par des facteurs communs. Les 

modèles à facteurs offrent un cadre robuste pour estimer et décomposer cette volatilité 

idiosyncratique, fournissant une estimation du risque spécifique associé aux actifs étudiés. 

Dans le premier chapitre de cette thèse, nous cherchons à mesurer le contenu informatif d'une 

variable pour expliquer la volatilité idiosyncratique des actions. Nous avons ainsi besoin d'un 

cadre pour quantifier la volatilité idiosyncratique. Deux modèles à facteurs largement utilisés 

à ces fins sont le CAPM et le modèle à trois facteurs de Fama-French mentionnés 

précédemment. Selon l’hypothèse jointe (Fama, 1991), si les marches sont efficients alors le 

seul risqué pour lequel les investisseurs doivent être compenser est le risque systématique. 

Ainsi, la présence de volatilité idiosyncratique peut indiquer l’existence d’un facteur qui n’est 

pas capturé par le modèle. 

Pour estimer la volatilité idiosyncratique à l'aide de modèles à facteurs, nous suivons 

généralement un processus en deux étapes. Tout d'abord, nous estimons les sensibilités aux 

facteurs à l'aide de données historiques des rendements de l’actif et des facteurs pertinents. 

Ensuite, les sensibilités estimées sont utilisées pour calculer la composante du risque 

systématique, qui est ensuite soustraite de la volatilité totale observée pour obtenir la volatilité 

idiosyncratique. Plusieurs études ont exploré l'efficacité des modèles à facteurs dans 

l'estimation de la volatilité idiosyncratique. Les recherches menées par Ang, Hodrick, Xing et 

Zhang (2006) offrent un certain éclairage sur l'application du modèle à trois facteurs de Fama- 
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French pour estimer la volatilité idiosyncratique. Ils constatent que l'incorporation des 

facteurs taille et valeur améliore significativement la puissance explicative du modèle, 

renforçant la précision des estimations de la volatilité idiosyncratique. De plus, le travail de 

Bali et Cakici (2008) explore le rôle des facteurs macroéconomiques dans l'explication de la 

volatilité idiosyncratique. Ils étendent les modèles à facteurs traditionnels en incluant des 

variables macroéconomiques, démontrant que ces facteurs contribuent de manière 

significative à l'estimation de la volatilité idiosyncratique. Les modèles à facteurs offrent ainsi 

un cadre polyvalent et efficace pour estimer la volatilité idiosyncratique, offrant aux 

chercheurs et aux praticiens la capacité de démêler le risque spécifique aux mouvements 

systématiques du marché. 

Les modèles à facteurs peuvent être spécifiquement utilisés pour révéler les structures sous-

jacentes dans les ensembles de données multivariées. La forme générale d'un modèle à 

facteurs pour l’estimation des matrices de corrélation peut être exprimée comme suit : 

Ω = 𝛽𝛽′ + ℰ 

où Ω est la matrice de corrélation observée, 𝛽 représente la matrice des facteurs communs, et 

ℰ est une matrice diagonale capturant les composants idiosyncratiques. 

L’utilisation des modèles à facteurs est recommandée par le Comité de Bâle sur le Contrôle 

Bancaire (BCBS) pour les institutions financières. En effet, les banques doivent traiter une 

grande quantité de données très complexes. Les modèles à facteurs offrent une approche 

parcimonieuse, particulièrement pertinente pour la gestion du risque de contreparties. 

Cependant, les exigences de Bâle 3 impliquent l'utilisation d'une matrice de corrélation 

associée à une représentation factorielle probabiliste, avec au moins "deux types de facteurs 

de risque systématiques". Il est précisé que "les corrélations doivent être basées sur les 

spreads de crédit ou sur les prix des actions cotées en bourse".  
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Bien que cela puisse faire référence aux modèles à facteurs latents utilisés par les banquiers 

centraux et les chercheurs, les régressions linéaires sur des facteurs observables, généralement 

les rendements de portefeuille, sont souvent utilisées pour construire des matrices de 

corrélation conformes aux exigences réglementaires. 

Les banques utilisent alors les sensibilités aux facteurs (des facteurs latents) générant la 

matrice de corrélation la plus proche de la matrice de corrélation historique pour modéliser le 

risque de défaut des contreparties en portefeuille. Sur la base de cette modélisation, les 

banques capitalisent une charge de capital. Ces exigences ont des implications pratiques sur 

les modèles à deux facteurs et les contraintes de calibration des corrélations (Laurent et al., 

2016). 

Les stress tests sont un outil crucial pour évaluer la robustesse des systèmes financiers et des 

institutions dans des conditions adverses. Les modèles à facteurs jouent un rôle clé dans les 

stress tests en fournissant un cadre structuré pour évaluer comment divers facteurs peuvent 

impacter la performance et la stabilité des actifs financiers. Ces modèles aident à simuler des 

scénarios extrêmes et identifient les vulnérabilités potentielles. 

Dans un stress test, un modèle à facteurs intègre généralement un ensemble de variables 

macroéconomiques et financières susceptibles d'être des sources de stress. Le modèle vise à 

comprendre comment les changements dans ces facteurs peuvent affecter un portefeuille et 

ses sous-jacents. Ces facteurs peuvent inclure des variables telles que les taux d'intérêt, les 

taux de croissance économique, les taux de change et d'autres indicateurs pertinents. 

Identifier les principaux facteurs pertinents pour les actifs en question est d'une importance 

primordiale. Ces facteurs doivent capturer les principales sources de risque. Le modèle à 

facteurs est ensuite utilisé pour évaluer l'impact des scénarios de stress sur le portefeuille. 

Cette évaluation peut comprendre l’étude des variations de prix des actifs, la liquidité du 

marché, le risque de crédit, etc. 

Les régulateurs imposent aux banques de se soumettre à des stress tests pour garantir leur 

capacité à résister aux conditions économiques adverses (comme mentionné ci-dessus). Les 

enseignements tirés des stress tests au travers des modèles à facteurs aident les institutions  
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financières à développer des stratégies efficaces de mitigation des risques (Jokivuolle, 2015). 

Les stress tests peuvent également s’avérer être un outil de gestion qui permet aux 

investisseurs d’ajuster leurs positions en portefeuille en prévision des chocs potentiels. 

Cette thèse, organisée en trois chapitres, exploite les modèles à facteurs pour répondre à des 

problématiques actuelles de l'industrie financière. Nous abordons divers domaines de la 

recherche financière : ESG, gestion des risques, gestion de portefeuille et réglementation 

bancaire. Les trois articles de recherche présentés par la suite introduisent des méthodes 

innovantes visant à répondre aux questions suivantes : 

(i) Pouvons-nous utiliser des métriques ESG pour prévoir le risque idiosyncratique ? 

(ii) Quelles sont les techniques de calibration les plus efficaces pour dériver les matrices 

de corrélation associées à des modèles à facteurs ? 

(iii) Pouvons-nous proposer une méthodologie simple mais efficace pour réaliser des stress 

tests de portefeuilles d’actions ? 

Dans le chapitre 1, nous utilisons les modèles à facteurs pour leur capacité à capter les 

inefficiences de marché, notamment au travers de l’estimation de la volatilité idiosyncratique. 

Le contenu informationnel des notations ESG dans la prédiction de cette volatilité est testé. 

Plus précisément, nous formulons une procédure de backtesting pour évaluer l'efficacité des 

notations ESG dans la prédiction du risque idiosyncratique d'une entreprise. Cela implique 

d'étendre le test de capacité prédictive conditionnelle proposé par Giacomini et White (2006) 

à un contexte de données de panel. Notre approche est appliquée dans le but de prédire la 

volatilité idiosyncratique des rendements boursiers, en comparant deux systèmes de notation 

ESG - Sustainalytics et Asset4 - sur trois régions d'investissement (Europe, Amérique du 

Nord et région Asie-Pacifique). Alors que ce premier chapitre fournit une étude empirique, le 

chapitre 2 se situe à l'intersection entre développements théoriques et empiriques. Il présente 

un aperçu des différentes techniques de spécification et calibration pour dériver des matrices 

de corrélation grâce aux modèles à facteurs. Nous nous concentrons à la fois sur des modèles 

non restreints et restreints, où des bêtas spécifiques (sensibilités) sont fixés à zéro, conduisant 

à des facteurs régionaux ou sectoriels. Nous abordons les facteurs latents par la méthode du  
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maximum de vraisemblance en utilisant l'algorithme Expectation-Maximisation (EM) et 

l’approche des moindres carrés avec l'algorithme Spectral Projection Gradient (SPG). À l'aide 

d'un ensemble de données de rendements d'actions provenant des principaux indices de crédit 

américains et européens, nous effectuons un exercice de calibration en faisant varier le 

nombre et la nature des facteurs. Nous évaluons la performance de l'ajustement, la parcimonie 

des paramètres, la facilité d'interprétation et la capacité à gérer les corrélations élevées. Enfin, 

le chapitre 3 fournit une méthodologie robuste pour les praticiens du secteur financier. Il 

présente une approche novatrice s’appuyant sur des "méta-facteurs" pour réaliser des stress 

tests de portefeuilles à travers des scénarios économiques historiques ou hypothétiques. Les 

stress tests en finance évaluent la résilience d'un portefeuille face à des conditions adverses, 

constituant un complément précieux aux mesures de risque conventionnelles telles que la 

volatilité, la VaR et l'expected shortfall. Contrairement aux mesures de risque statistiques, les 

tests de résistance fournissent des estimations liées à des événements spécifiques, apportant 

ainsi un supplément d’information significatif. Alors que les stress tests traditionnels 

s'appuient souvent sur des scénarios historiques en reproduisant des événements passés sur 

des positions financières actuelles, ils manquent souvent d’une approche proactive. Notre 

approche, reposant sur quelques paramètres, conserve une grande flexibilité, est facile à 

mettre en œuvre et améliore la compréhension des sensibilités d’un portefeuille d’actifs aux 

facteurs systématiques. Nous appliquons cette méthodologie à des gestions actives d’actions. 

Le chapitre 1 " Are ESG ratings informative to forecast idiosyncratic risk?" révèle une 

relation négative entre les notations ESG et le risque idiosyncratique, des notations plus 

élevées prédisant des niveaux plus bas de volatilité idiosyncratique. De plus, l’efficacité de la 

prédiction est généralement plus élevée pour la dimension environnementale des notations. 

L'application du test réservé aux entreprises pour lesquelles il existe un haut degré de 

consensus entre les agences de notation ESG révèle un pouvoir informationnel plus élevé pour 

les trois univers. Au-delà de l’évaluation des systèmes de notation ESG, ce dernier résultat 

suggère que les informations recueillies auprès de plusieurs fournisseurs de notations ESG 

devraient être vérifiées avant que ces critères ne soient intégrés aux processus 

d'investissement. Les résultats ont des implications importantes pour les investisseurs et les 

chercheurs. Pour les investisseurs, notre procédure de backtest offre un cadre pratique pour 

prendre en compte la qualité des notations ESG avant d'intégrer celles-ci dans le processus  
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d'investissement. Nos résultats suggèrent de la prudence quant au contenu informationnel des 

notations ESG lorsqu'elles divergent. De plus, le lien entre les notations ESG et la volatilité 

idiosyncratique lorsque les notations convergent suggèrent que l'investissement ESG n'est pas 

seulement une question de préférences des investisseurs, mais que les notations ESG peuvent 

également fournir des informations sur les fondamentaux et les risques futurs. Le chapitre 2 " 

Correlation matrices with factor structure for credit risk exposures " montre que, outre la 

performance, la parcimonie des paramètres, la facilité d'interprétation et la capacité à générer 

des corrélations élevées, les modèles à facteurs latents restreints surpassent ses concurrents 

dans l'estimation des matrices de corrélation. Nous constatons que, lorsqu'il s'agit de 

l'approche naïve PCA, la transformation finale pour retrouver la matrice de corrélation doit 

être choisie avec soin et que les versions restreintes des approches basées sur l'optimisation se 

comportent mieux sur les corrélations intra-classes. Il est bien connu que les modèles à 

facteurs ont tendance à lisser la matrice de corrélation, entraînant une erreur significative pour 

les corrélations élevées. Les expériences numériques indiquent que la calibration contrainte 

est plus performante à cet égard également. En restreignant l'information à une catégorie 

d'émetteurs qui devrait (a priori) se comporter de la même manière, la version contrainte de 

l'algorithme SPG génère une erreur d’estimation plus faible sur les corrélations empiriques 

élevées. Le chapitre 3 " Stress-testing: A meta-factor approach " démontre que l’utilisation de 

méta-facteurs aident à traduire un scénario économique en chocs de marché grâce à leur 

influence significative sur les facteurs observables des actifs financiers (style ou facteurs 

systématiques dans notre étude). Malgré sa simplicité, notre méthodologie offre de meilleurs 

résultats que certains modèles largement utilisés par les praticiens. Au-delà de la gestion des 

risques, notre méthodologie offre la possibilité de mettre en œuvre rapidement des scénarios 

de stress hypothétiques aidant ainsi les gestionnaires à ajuster leurs positions actives en 

conséquence. 


