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Résumé

Les attaques par canaux auxiliaires sont une menace pour la con�dentialité des don-

nées, en particulier sur les systèmes embarqués. La contre-mesure de masquage con-

stitue une approche de protection sûre et prouvée. Néanmoins, des réalités physiques

réduisent les garanties de sécurité prouvées. En particulier, dans le contexte logiciel,

le jeu d'instructions (ISA) supporté par un processeur cache au concepteur du schéma

de masquage l'une des causes de cette réduction de la sécurité : la micro-architecture.

Ainsi, le concepteur ne peut pas déterminer les sources de fuite induites par la micro-

architecture et leur impact sur la sécurité d'une implémentation logicielle. Des informa-

tions peuvent fuire, par exemple, lors des transitions d'état dans les registres cachés, ou

si les signaux dans des éléments combinatoires ont des temps de propagation di�érents.

À cela s'ajoutent les e�ets de mécanismes spéculatifs potentiels et de la structuration du

système mémoire. Plusieurs méthodologies permettent d'atténuer l'impact de la micro-

architecture sur les implémentations logicielles masquées, mais ces travaux requièrent une

connaissance �ne de la micro-architecture, ce qui a plusieurs inconvénients : portabilité

limitée des garanties de sécurité entre di�érentes micro-architectures, connaissance sou-

vent incomplète de la micro-architecture, complexité des micro-architectures. On peut

donc se demander s'il existe des approches moins dépendantes de la micro-architecture

sous-jacente. Dans cette thèse, nous abordons, selon deux axes, la problématique du

développement de logiciels masqués sécurisés en pratique contre les attaques par canal

auxiliaire.

Le premier axe vise le développement automatisé de logiciel masqué résistant aux

fuites en transitions. Nous proposons une méthodologie qui tire parti des compilateurs

optimisants : étant donné une implémentation logicielle, annotée avec des informations

relatives aux données sensibles, et une description de la micro-architecture cible, nous

montrons comment l'ordonnancement des instructions et l'allocation des registres peut

atténuer les fuites basées sur les transitions de manière automatisée.

Le deuxième axe vise une approche indépendante de l'architecture cible. Dans la lit-

térature, les travaux se concentrent en majorité sur l'atténuation de l'impact de la micro-

architecture sur les implémentations logicielles protégées par le schéma de masquage
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Booléen. D'autres types de schémas de masquage ont été montrés plus résistants aux

fuites en transition en théorie, et donc potentiellement aux e�ets de la micro-architecture

de la cible. Cependant, leur résistance en pratique n'a pas été étudiée. De plus,

l'exploitation potentielle d'informations provenant du parallélisme des données, poten-

tiellement induit par la micro-architecture, n'a pas été étudié pour les implémentations

logicielles. Nous étudions ainsi la sécurité en pratique o�erte par les schémas de masquage

de premier ordre Booléen, arithmétique et produit scalaire contre les fuites induites par la

micro-architecture, y compris le parallélisme des données. D'abord, nous montrons que le

parallélisme de données se manifeste même sur de simples micro-architectures scalaires.

Ensuite, nous étudions l'impact des fuites en transition et du parallélisme de données

sur les valeurs masquées avec les schémas de masquage étudiés. En�n, nous étudions

l'impact de ces fuites sur des implémentations masquées du cryptosystème AES-128.

Nous montrons qu'aucun des schémas de masquage étudiés n'apporte de protection par-

faite face aux fuites micro-architecturales considérées, bien que leur résistance soit très

hétérogène.



Abstract

Side-channel attacks are recognized as a threat for the con�dentiality of data, in partic-

ular on embedded systems. The masking countermeasure constitutes a provably secure

protection approach. Nonetheless, physical non-idealities reduce its proven security guar-

antees. In particular, in the software implementations, the Instruction Set Architecture

(ISA) supported by a processor hides to the masking scheme designer one cause of such

physical non-idealities: the micro-architecture. As such, the designer is not aware of

the actual micro-architecture-induced side-channel sources and their security impact on

a software implementation. Information can leak, for instance, during the state transi-

tion of hidden registers, or in the case signals of combinatorial elements exhibit di�erent

propagation times. Furthermore, speculative features and the memory subsystems can

play a role in such information leakage. Several methodologies allow the mitigation of

the impact of the micro-architecture on masked software implementations, but these

approaches depend on the detailed knowledge of the micro-architecture, which implies

several shortcomings: limited portability of the security guarantees between di�erent

micro-architectures, incomplete knowledge of the microarchitecture, complexity of the

micro-architecture design. Thus, one might wonder whether there exist approaches less

dependent on the underlying micro-architecture. With this thesis, we address, along

two axes, the problem of developing practically secure masked software. The �rst axis

targets the automated development of masked software resilient to transition-based leak-

ages. We propose a methodology that takes advantage of optimizing compilers: given

in input a software implementation, annotated with sensitive-data-related information,

and a description of the target micro-architecture, we show how to exploit the instruc-

tion scheduling and register allocation tools to mitigate transition-based leakages in an

automated manner. The second axis targets an architecture-independent approach. In

literature, most of the works focuses on mitigating the impact of the micro-architecture

on software implementations protected with the so-called Boolean masking scheme. The-

oretical studies show the better resilience of alternative types masking schemes against

transition-based leakages, suggesting their employment against micro-architectural leak-

age. Yet, their practical resilience has not been explored. Furthermore, the potential

iii
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exploitation of the information leaked by data parallelism, potentially induced by the

micro-architecture, has not been studied for software implementations. As such, we study

the practical security o�ered by �rst-order Boolean, arithmetic and Inner-Product mask-

ing against micro-architecture-induced leakage, encompassing data parallelism as well.

We �rst show that data parallelism can manifest also on simple scalar micro-architectures.

Then, we evaluate the impact of transition-based leakage and data parallelism on values

masked with the studied masking schemes. Eventually, we evaluate the impact of such

information leakages on di�erent masked implementations of the AES-128 cryptosystem.

We show that, although their di�erent leakage resilience, none of the studied masking

schemes can perfectly mitigate the considered micro-architectural leakages.
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Chapter 1

Introduction

Don't you realize there's a war on?

We can't bring our cryptographic

operations to a screeching halt based

on a dubious and esoteric laboratory

phenomenon. If this is really

dangerous, prove it.

U.S. Signal Corps on EM-based Side

Channel [Boa73, p. 90].

In the 10th and last of his lectures, David G. Boak reports one of the �rst docu-

mented traces of what we could de�ne a side channel : during World War II, the Bell

Telephone discovered that the 132-B2, an encryption device used by the U.S. Signal

Corps, emitted an electromagnetic radiation which allowed the reading of the plaintext

during its encryption operated by the device. The above quote, extracted from the same

lecture, documents the skepticism about a phenomenon which, still today, makes raise

an eyebrow when heard of it for the �rst time.

Far from being a �dubious and esoteric laboratory phenomenon", side channels rep-

resent a concrete and serious threat to any setting concerned with the protection of some

sensitive asset: con�dential communications and intellectual property just to name a

couple.

The study of side channels and their exploitation (side-channel analysis) has experi-

enced an exponential development. This introductory chapter sets the context, motiva-

tion and contributions of this thesis, and terminates with an overview of the manuscript

organization.

1
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1.1 Context

With side channel we mean any alternative communication channel through which one

can gain (partial) information on some fact or system. With side-channel analysis we

refer to any analysis methodology relying on the information conveyed through a side

channel to derive some conclusions with a certain probability. For instance, one could

measure a room's temperature (the side channel), compare the recorded temperature

with respect to the mean room's temperature when empty (the analysis) to know whether

someone has been there (the conclusion).

This methodology �nds wide-spread application in the cryptology �eld. To ensure

con�dential communications, cryptography provides mathematically-strong algorithms

(ciphers or cryptosystems), which cannot be broken, in feasible time, by relying solely

on their mathematical structure (the main communication channel). We refer to this

cryptanalytical approach as black-box cryptanalysis: the attacker can only interact with

the inputs and outputs, exploiting the mathematical structure to recover information on

the cryptographic key. Instead of resorting solely on this black-box view of the targeted

cryptosystem, the attacker can exploit information on the ongoing computations to re-

cover the employed cryptographic key. This information stems from the interaction of

the computing platform with the surrounding environment, generating informative side

channels.

The research community widely investigates and studies e�ective countermeasures

against this kind of analyses. The key idea behind any side-channel countermeasure is

to limit the acquisition of exploitable information by the attacker.

Such idea can materialize as a suppression of the side channel, or a reduction of the

quality of the information signal. The �rst case consists in removing, either physically or

logically, the source of the side channel. The second case, instead, consists in increasing

the noise a�ecting the side channel.

Concerning the second case, we can categorize the countermeasures into hiding and

masking. Hiding conceals the informative signal behind the noise a�ective the side chan-

nel. Masking splits secret-dependent information in several random values, such that the

attacker needs to recover all of them to gain useful information. Masking has acquired

particular attention from the research community, thanks to its framework to de�ne and

prove speci�c security guarantees.

Despite this formal veri�cation of security, the proofs often rely on hypotheses that

are hardly met in the real world. This discrepancy between theoretical and physical

contexts impacts both hardware and software applications of masking. In particular,

when employed to provide side-channel protection to software implementations, one faces

a more subtle problematic, as the so-called Instruction Set Architecture (ISA) supported
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by a CPU hides to the masking scheme designer the reasons explaining the discrepancy.

According to Hennessy and Patterson, an ISA consists in the portion of the computer

architecture visible to the programmer or compiler writer and the ISA serves as the

boundary between software and hardware [HP12]. Gao et al. have further elaborated

on the concept of ISA, describing it as an interface between what the programmer can

access to (the architecture) and what the programmer cannot interact with (the micro-

architecture) [Gao+20b]. A micro-architecture encompasses high-level aspects of a CPU,

such as the memory system and the CPU's design [HP12]. By acting as a contract

between software and hardware, an ISA allows semantics equivalence when executed

on di�erent CPUs supporting the same ISA, although these CPUs potentially di�er

in terms of micro-architecture. As a concrete example, a program described with the

ARMv7 ISA is expected to provide the same output if executed on the simple ARM

Cortex-M4 CPU, or on the more performant ARM Cortex-M7, although their micro-

architecture substantially di�er. Thus, in the end, the masking scheme designer can

directly interact solely with the architectural features of a microprocessor to not convey

information through the possible side channels. In the more general sense, due to the

opaque nature of the micro-architecture, the designer is not aware of the actual security

impact that the micro-architecture has on a software implementation.

In the side-channel literature, the role of the micro-architecture on the security of soft-

ware implementations is relatively new, with the �rst publication linking the information

leakage to the underlying micro-architecture dating back to 2017 [PV17]. Since then,

more publications have investigated the di�erent sources of leakages encompassed within

the micro-architecture. These sources (registers within the micro-architecture, signal

glitches characterizing micro-architecture's combinatorial elements, speculative features

and the memory subsystem) have been found as the root cause of informative side chan-

nels [BP18; Gao+20a; Gao+20b; MMT20; GPM21; MPW22].

1.2 Motivation

The impact of the micro-architecture is a problem more and more acknowledged, as

witnessed by the increase of bodies of work concerned with the investigation of micro-

architecture-induced side-channels [Zon+18; BP18; Gao+20a; Bar+21; MPW22; dHM22].

Due to the hardware nature of the problem, a long-term solution would be to provide

micro-architecture designs (and their physical implementation) oriented towards the miti-

gation of micro-architecture-induced leakages. In this regard, a branch of the side-channel

literature promotes the conception of a micro-architecture supporting the secure execu-

tion of masked software, either by providing mechanisms to securely compute masked

operations directly in hardware [Kia+20; CPW24], or by making the ISA software/hard-
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ware contract less opaque through mechanisms to control, from the software layer, the

potential side-channel threat [Gao+20b].

However, at the current state of a�airs, most of the commercial CPUs do not provide

any hardware-based leakage mitigation mechanism. As such, masked software imple-

mentations running on these processors are left exposed to the impact of the micro-

architectural leakage. A branch of the literature focuses on the identi�cation of short-

term solutions. To support this goal, the side-channel community has developed tools for

the veri�cation of masked software implementations [CGD18; Gig+21; KS22; ZMM23]

and methodologies to enable the secure execution of these implementations [Gao+20b;

She+21b; GD23]. With methodologies, we mean guidelines for the secure development

of masked software, or approaches to automate the development process, taking into

account the micro-architecture threat. These guidelines are an important ingredient, as

they state general principles to avoid the leakage of sensitive information. In the same

vein, approaches for the automated generation of micro-architecture-secure implemen-

tations constitute a relevant aspect, as they ease the development of masked software,

while meeting more practical aspects, like the time-to-market in the case of an industrial

product.

However, these methodologies exhibit a degree of dependence on the targeted micro-

architecture, which materializes several challenges. The portability of the implemen-

tation's security is not guaranteed in the general case, as the ISA enables behavioral

diversity while preserving functional compatibility [Gao+20b]. Furthermore, the devel-

opment of a micro-architecture-aware implementation strictly relies on the knowledge of

the micro-architecture itself. Such knowledge is typically limited to the public available

information, if any, as being part of an intellectual property. As a result, the imple-

mentation does not cover the whole attack surface provided by the micro-architecture.

Another point of di�culty is represented by the complexity of the micro-architecture

design: as the micro-architecture provides more performance-oriented features, the more

increase the potential sources of side-channel leakage. Attempting to address all of them

might result in a costly solution in terms of execution time, for instance; in particular

cases, it might result in an impossible task. The problematic exacerbates when con-

sidering the types of leakage: attempting to cover, at the same time, transition-based,

glitch-based and coupling-based leakages potentially increases the di�culty of the task.

Thus, one might wonder whether there exist approaches more agnostic with respect to

the underlying micro-architecture.

More generally, one could ask if and how we can design and develop side-channel

masked software practically secure in the context of micro-architectural leakage.
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1.3 Contributions

With this thesis, we address, along two axes, the issue of developing masked software

practically secure in the context of micro-architectural leakage.

The �rst axis deals with the automated development of masked software resilient to

(micro-)architecture-induced transition-based leakages. Indeed, from the state of the art,

the existing automated approaches either rely on overly simpli�ed models of the micro-

architecture, or only consider leakage e�ects stemming from the architectural elements

of the CPU, or address the problem with a we �x what we detect approach. Moreover,

part of these approaches work at the machine-code level, losing the opportunities that an

approach operating on a higher level of the compilation process would bring in terms of

performance. The �rst contribution of this thesis describes a methodology for the auto-

mated development of masked software resilient against transition-based leakages. This

methodology takes advantage of the code generation phase of optimizing compilers: given

in input a software implementation�annotated with side-channel-related information�

and a description of the target micro-architecture, we show how to exploit instruction

scheduling and register allocation to mitigate transition-based leakages in an automated

manner. With respect to the current state of the art, this methodology tackles the

problem from a di�erent level of the compilation process, acting on an intermediate rep-

resentation of the masked program. At the same time, by employing code generation

tools, we render the micro-architecture-induced leakage mitigation part of the compila-

tion process, acquiring all the bene�ts of the latter. Last but not least, the approach

relies on a micro-architectural description fed as an input to the code generation tools.

This approach provides a separation of concerns, as the design of the code generation

algorithms does not depend on the speci�c target micro-architecture. The level of se-

curity we can reach strictly depends on the quality of the model integrated within this

description.

The second axis concerns with a more target-agnostic approach to counteract the

micro-architecture-induced leakages. As we remarked above, relying on the micro-architectural

details comes with a huge burden for the masking scheme designer. Not relying on these

details potentially improves the situation, in particular in terms of portability of the se-

curity of the solution across CPUs supporting the same ISA. If we look at the literature,

most of the works focus on protecting Boolean-masked software, but Boolean masking

is well-known to be sensitive to recombination e�ects. Some bodies of work show the

robustness of other masking schemes against recombination e�ects, which are likely to

occur in a micro-architecture. One might wonder what are the practical security guar-

antees of these masking schemes in the presence of micro-architecture-induced leakages.

At the same time, the state of the art seems to overlook the potential exploitation of the
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parallelism capabilities of modern CPUs. The design of current processors has evolved to

increase the number of instructions per clock cycle that they might process and, in some

cases, complete at the same time. As a consequence, the processor can process di�erent

data in parallel. Such parallel capabilities stem from di�erent and orthogonal hardware-

oriented techniques. Among these, there is pipelining, which we can also �nd in simple

CPUs, like commercial microcontrollers. Motivated by these two observations, we study

the practical security o�ered by �rst-order Boolean, arithmetic-sum and inner-product

masking schemes, considering both transition-based leakages and the leakage induced by

data parallelism. At �rst, we elaborate and practically show how the side-channel leakage

induced by data parallelism can manifest in simple CPU designs. We evaluate the leak-

age resilience of �rst-order masking encoding when impacted by transition-based leakages

and the leakage induced by data parallelism. Finally, we evaluate the leakage resilience of

several software implementations of the AES-128 cryptosystem, each masked with one of

the �rst-order masking schemes we study. Such study highlight how, although the better

resilience of some of the considered masking schemes, all of them do not withstand the

exploitation of the considered sources of leakage.

1.4 Document Organization

We structure the remainder of this thesis manuscript in 5 chapters. In Chapter 2, we

introduce the background information essential for the following chapters. In Chap-

ter 3, we put forward a literature review concerning the state-of-the-art methodologies

to mitigate micro-architectural leakages. In Chapter 4, we present the �rst contribution

of this thesis: an automated methodology, acting from the software layer, to mitigate

transition-based leakages induced by the micro-architecture. In Chapter 5, we present

the second contribution of this thesis: the study of the leakage resilience of di�erent

�rst-order masking schemes when impacted by transition-based leakage and the leakage

induced by data parallelism, both induced by the micro-architecture. Eventually, with

Chapter 6, we conclude this thesis and we outline interesting future research lines.



Chapter 2

Background

This chapter puts forward the essential background required for the remainder of this

thesis manuscript. We �rst introduce the employed notation. Then, we introduce the

concept behind a passive Side-Channel Analysis (or Attack) (SCA), the attacks steps

and main elements required to mount such type of attack. We continue presenting the

masking countermeasure, its key idea and its formal security model. We conclude with

an overview of two evaluation approaches to assess the security of an implementation,

either hardware or software, of some algorithm.

Table 2.1: Notation summary for Chapter 2.

Notation Meaning

A Set
X Random variable
x Realization of X
X Sampling space of the random variable X
X (Row) vector of random variables Xi, 0 ≤ i <m
x (Row) vector of realizations (Xi)j , 0 ≤ i <m, 0 ≤ j < n
xT Transposition of vector x.
Xj j-th element of m-dimensional vector X, 0 ≤ j <m
xj j-th column of the n ×m matrix x, 0 ≤ j <m
1 n ×m matrix of 1s

⟨A;B⟩ Inner product between vectors A and B
○ Function composition

7
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HYPOTHESES
GENERATION

TRACE
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Figure 2.1: Overview of a typical SCA process.

2.1 Notation

In this section, we introduce the general notation employed throughout the remainder of

this manuscript. Table 2.1 reports the notation in compact form.

With a blackboard bold letter A we denote a generic set. We refer to random variables

with a capital letterX. We denote the sampling space ofX with the calligraphic notation

X , whereas x denotes a realization of X. With a bold capital letter X we denote an m-

dimensional (row) vector of random variables Xi, whereas the small bold letter x denotes

an n-dimensional (row) vector of realizations of X. Implicitly, the transposition xT can

be also seen as an n×m matrix. We denote with Xj and xj the j-th column of the matrix

X and x, respectively. The symbol 1 refers to an n×m matrix full of 1, whose dimensions

are inferred by the context. With ⟨A;B⟩ we denote the inner product operation between

the two vectors A and B.

2.2 Passive Side-Channel Attacks

As overviewed in Chapter 1, an SCA is a cryptanalytical tool exploiting additional in-

formation on the cryptographic implementation got from an alternative communication

channel, the side channel. This information can come from a passive observation of the

implementation's activity, or from its active manipulation [MOP07]. The scope of this

thesis focuses on the former category, which we overview in this section. For the sake of

brevity, in the rest of the manuscript we refer to passive SCA simply as SCA.

2.2.1 Principle

In a classical cryptanalysis attack, the attacker attempts to recover the full cryptographic

key K by solely interacting with the input/output interface of the target cryptosystem C.
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On the contrary, an SCA attacker takes further advantage of some measurable quantity

M characterizing an implementation I of C. Such quantityM might be the instantaneous

power consumption dissipated by I, or the variation of its electromagnetic �eld [MOP07].

M constitutes the side channel through which I leaks information.

Figure 2.1 reports the typical �ow of an SCA. At �rst, the attacker measures (or

probes) the side channel M , acquiring (partial) knowledge on one or more processed

key-dependent intermediate values V = f(P,K), where P is the plaintext employed to

compute V . The attacker records the side channel as a time-dependent signal called

(side channel) trace, represented as an s-dimensional vector T = [Ti], where Ti is the i-th

time instant (or sample) of the trace. Due to the noisy nature of the measurements, for

instance due to thermal noise [Nyq28], the attacker increases the probability to recover

the key by collecting several traces, represented as an m-dimensional vector t = [(ti)j],
where m stands for the number of traces; implicitly, r = tT can be seen as an m × s
matrix. To improve the e�ciency of the analysis, traces can be optionally pre-processed.

At the same time, the attacker builds a model L of the expected variation of the side

channel: the leakage model (or function). The attacker uses the built model to generate

an m × ∣K∣ matrix of hypotheses (or guesses) h = [hi,j] for the key-dependent value V ,

where hi,j = f(P = pi,K = kj), pi is the plaintext employed to collect the i-th trace and

kj is the key guess to test. Finally, the hypotheses h and the traces r get analyzed by a

statistical tool D(k) called distinguisher :

D(k) ≜ [D(hk, rj)j] (2.1)

such that the (most likely) employed key, at sample j, is k̂j = argmaxk[D(k)j]. The
key k̂j does not necessarily match the correct one, but only represents the most likely

candidate. Several factors, such as the insu�cient number of traces or an inadequate

leakage model, potentially compromise the success of an SCA.

We evaluate the interest of an attack by its complexity. In the context of SCAs, one

bottleneck stems from the trace acquisition, both in terms of acquisition time, storage

and analysis. Thus, a �rst metric to evaluate the attack's complexity is the number of

traces m required to successfully recover the key [Pap+23].

But what part of the cryptosystem does the attacker observe? To reduce the com-

plexity of the attack, induced by the dimension of h, the attacker aims at those parts

of C where V depends on a small part of K; that is, the �rst rounds of C. With such

approach, the attacker can adopt a divide-et-impera approach to get the key K, as they

can independently target di�erent intermediate values covering a di�erent part of K. As

a consequence, the attacker can consider a smaller h, reducing the complexity of the

attack.
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2.2.2 Leakage Model

As overviewed in Section 2.2.1, to mount an SCA, the attacker has to select a model L to

describe the variation of the side channel. The accuracy of the model plays a paramount

role in the complexity of the attack, but a too accurate one can prevent its application

to broader contexts, for instance other implementations of the same cryptosystem.

The selection of the leakage model starts from some assumptions on the character-

istics of the side channel. A classic assumption is to consider the side-channel signal as

the superposition of a deterministic component Ld and a random one representing the

Additive Gaussian Noise (AGN) a�ecting the measured signal [DFS19]. Equation 2.2

reports this additive model, where σ is the noise' standard deviation.

L(X) = Ld(X) +N(0, σ). (2.2)

Concerning the deterministic part Ld, di�erent assumptions can be made. For in-

stance, one might assume that the leakage of a variable X is a linear combination of the

leakage of its bits. Literature refers to it as a linear leakage model:

Ld(X) = ⟨w;X⟩ (2.3)

where w ∈ Rn expresses the contribution of each bit of X to the side channel. Further

assumptions can be made according the particular technology employed. In CMOS-based

technology, the update (transition) of a memory element is assumed to leak information

according to the number of cells changing their state. Literature refers to such linear

model as Hamming Distance (HD) model [MOP07]:

Ld(X,Y ) =HD(X,Y ) ≜ ⟨1;X ⊕ Y ⟩. (2.4)

The Hamming Weight (HW) model (Equation 2.5) represents a particular case of

the HD model, where the memory cell is assumed to transition from a constant X = c
(usually, c = 0).

Ld(X,Y ) =HD(c, Y ) =HW (Y ) ≜ ⟨1;Y ⟩. (2.5)

The HD leaks information on the state-transition of the memory elements�hence,

revealing information on both X and Y �whereas the HW one leaks only on Y . Literature

refers to the former as a transition-based leakage model, whereas the latter is referred to

as value-based leakage model [Bal+14].
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2.2.3 Statistical Distinguisher

Once the attacker has generated the hypotheses h and collected the optionally prepro-

cessed traces t, they provide these elements to the statistical tool employed to distin-

guishing the best hypotheses hk. Such tool�the distinguisher D(k)�provides a score for

each hypothesis hk, which expresses the likelihood that a given value k of the key is em-

ployed. Usually, the computation of Dk requires the knowledge of the true distributions

of h and t. Hence, the attacker computes an estimation D̂(k), such that:

lim
m→∞

E[(D̂(k) −D(k))2] → 0 (2.6)

where m represents the number of analyzed traces [GHR15].

The literature populates with several types of distinguishers, ranging from the simple

Di�erence of Means [KJJ99], to more accurate and complex ones, such as the Mutual

Information [Gie+08]. In the following, we brie�y present the two most employed dis-

tiguishers in literature which we employ in the rest of this manuscript.

Pearson's Correlation Coe�cient

The Pearson's Correlation Coe�cient (PCC) ρ provides a normalized measure, in the

range [−1,+1], of the linear correlation existing between two random variables X and

Y . In the side-channel context, X = H and Y = T, respectively the hypotheses and the

side-channel traces. Recalling that r = tT can be seen as an m × s matrix, Equation 2.7

reports the estimator ρ̂ of this distinguisher:

ρ̂ (h, r) ≜
⎡⎢⎢⎢⎢⎣

⎛
⎝

⟨hi; rj⟩ −mµhi
µrj

[(⟨1;h2
i ⟩ −mµ2

hi
)(⟨1; r2j ⟩ −mµ2

rj
)]
⎞
⎠
i,j

⎤⎥⎥⎥⎥⎦
(2.7)

where m is the number of analyzed traces.

Heuser et al. have showed that PCC represents an optimal distinguisher when the

leakage model L is in the form of Equation 2.2, it is linear and it deviates from the real

leakage behaviour for a multiplicative constant factor [HRG14].

Mutual Information

The Mutual Information (MI), an Information-Theoretic (IT) tool, quanti�es the infor-

mation content shared between two random variables:

MI(H,T) ≜ [(H(Hi) −H(Hi ∣Tj))i,j] (2.8)

where H(X) (respectively, H(X ∣Y )) is the entropy of X (respectively, the condi-

tional entropy of X given Y ), de�ned as:
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H(X) ≜ −E[log2 P (X)] (2.9)

H(X ∣Y ) ≜ −E[log2 P (X ∣Y )] (2.10)

The MI provides better distinguishing capabilities, being able to capture both linear

and non-linear relationships between the two target variables.

Unfortunately, the power of this metric stems from employment of the conditional

distribution P (Hi∣Tj), which, in general, can be only estimated [VS09]. The accuracy

of such estimation depends on (1) the number of side-channel traces collected and (2)

the estimation technique [VS09; Bro+19].

When computing the MI by means of the estimated conditional entropy, we refer to

it as Hypothetical Information (HI), which re�ects that the information quantity comes

from a hypothetically correct model of the leakage distribution [Bro+19]. Renauld et

al. have introduced a further approximation of the MI, called Perceived Information

(PI) [Ren+11]. This metric quanti�es the perceived information under the estimated

distribution when the real one potentially di�ers.

Bronchain et al. show that HI and PI are, respectively, an upper bound and lower

bound for the true MI [Bro+19].

2.2.4 Further Aspects

In this section, we have overviewed the fundamental elements characterizing SCAs. Still,

there are two aspects that we consider worthwhile to mention: the direction of an SCA

and the pro�led SCA.

Vertical and Horizontal Attacks

To succeed in their goal, the attacker can analyze a single, key-dependent variable V

working on a portion of the key K, selecting a suitable sample s of the collected traces.

In such case, we say that the attacker performs a vertical SCA.

One might remark that the attacker implementation potentially manipulates V across

a single execution. Furthermore, another variable W might depend on the same key-

portion K too. Therefore, an attacker might take advantage of this additional sources of

information in the rest of the trace, by considering more than one sample. In such case,

the attacker mounts a horizontal, or multivariated, SCA [MOP07].

Pro�led Attack

The process depicted in Figure 2.1 represents the simplest form of an SCA, a so-called

unpro�led attack. In an unpro�led attack, the attacker relies on an assumed leakage
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model. As mentioned in Section 2.2.2, the accuracy of the model impacts the complexity

of the attack.

Under this observation, and when the attacker has access to an identical copy of

the implementation, they may characterize, or pro�le, the probability distribution of

the leakage L(V ) for each potential value of the key; in other words, they estimate the

conditional probability distribution P (L(V ) ∣K). With this a priori knowledge, they

retrieve the key hypothesis k̂ maximizing the likelihood on the a posteriori knowledge:

k̂ = argmaxk∏
P (L(V ) ∣K = k) ⋅ P (K = k)

∑∣K∣j=0 ((∏P (L(V ) ∣K = kj)) ⋅ P (kj))
(2.11)

Historical examples of such attacks are the Stochastic Approach and the Template

Attacks [SLP05; CRR02].

All the approaches mentioned up to now, both unpro�led and pro�led, target in-

termediate values dependent on a small part of the key. The Algebraic Side-Channel

Analysis (ASCA) takes another direction, combining leakage pro�ling with algebraic at-

tacks [RS09]. The idea is to maximize the probability to recover the full key by exploiting

the information from all the intermediate variables. In practice, the attacker builds a

system of equations representing the cryptographic algorithm and injects in them the

acquired a priori knowledge gained from the leakage pro�ling of each variable.

Soft-Analytical Side-Channel Analysis (SASCA) represents an evolution of ASCA,

which follows the same principle, but improves the e�ciency of the latter under several

aspects [VGS14].

2.3 The Masking Countermeasure

The power of an SCA attacker stems from their ability to observe the internal state of

the running implementation, getting knowledge on the processed intermediate variables.

To increase the di�culty of the attack, it is possible to wisely split the key-dependent

variables, such that (1) only their observation as a whole is informative, (2) exploitation of

the information requires a higher number of measurements. The masking countermeasure

satis�es these two properties. Informally, masking ampli�es the noise a�ecting the side-

channel measurements. Such ampli�cation e�ect masks the statistical relation between

the side-channel leakage and the key-dependent variables, hindering the e�ciency of the

attack. In this section, we report the basic notions behind masking and its relevant

challenges.
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2.3.1 Principle

When targeting a key-dependent variable V , an SCA attacker gets information on a

portion of the key K. In its simplest form, the attacker probes a single sample s of the

side-channel trace T.

An intuitive approach to defeat them is to employ a secret sharing scheme: the

key-dependent intermediate V gets split in two or more intermediate variables Vi called

shares, such that the information on V is shared among them [Sha79]. As such, the

attacker cannot recover V by probing a single sample. We call the tuple V = (Vi)ni=0 an

encoding of V :

De�nition 2.1 (Encoding). Given a random variable X ∈ X the tuple X = (Xi)ni=0 ∈
X (n+1) is an encoding of X. The random variables Xi ∈ X are called shares.

The encoding of V is built from an nth-order masking scheme M , where n represents

the number of shares (the masking order). Informally, an nth-order masking scheme is

an invertible vector-valued function M ∶ X ↦ X (n+1), such that it satis�es correctness

(De�nition 2.2) and dth-order security (De�nition 2.3).

De�nition 2.2 (Correctness). Let M be an nth-order masking scheme, and X an

encoding of X. Then, X =M−1(X).

De�nition 2.3 (dth-Order Security). Let M be an nth-order masking scheme. M

satis�es dth-order security if and only if, for each encoding of X ∈ X , any subset of (at

most) d shares does not statistically depend on X. d ≤ n de�nes the security order of M.

According to the sharing strategy, we obtain di�erent kinds of encodings:

De�nition 2.4 (Boolean Encoding). Let us consider X ∈ X , where k ≥ 1 and X =
(Xi)ni=0 = BM(X) the boolean encoding of X. Then X = ⊕n

i=0Xi, where ⊕ is the eXclusive

OR.

De�nition 2.5 (Arithmetic-Sum Encoding). Let us consider X ∈ X , where k ≥ 1

and X = (Xi)ni=0 = ASM(X) the arithmetic-sum encoding of X. Then X = ⊞ni=0Xi, where

⊞ is the arithmetic sum.

De�nition 2.6 (Inner-Product Encoding). Let us consider X ∈ X , where k ≥ 1

and X = (Xi)ni=0 = IPM(X) the inner-product encoding of X. Then X = ⟨L;X⟩. L =
(1, Li)ni=1 ∈ X (n+1) is a public random vector, and ⟨⋅; ⋅⟩ is the inner-product operator.
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Once the key-dependent intermediates get shared, the original algorithm C has to be

compiled into a semantically equivalent algorithm G able to process the encodings. We

call this G a gadget of C:

De�nition 2.7 (Gadget). Let us consider an algorithm Y = C(X) and a masking

scheme M . We call gadget of C an algorithm G such that (M−1 ○G)(X) = C(X).

The transformation of a variable into an encoding (conversely, of an encoding into a

variable) is operated by an encoding (decoding) gadget.

The chosen masking scheme provides a set of transformations to mask (or compile) C

to G. Hence, we can de�ne a masking scheme as a strategy specifying (1) the encoding

transformation and (2) the set of rules to compile the algorithm C.

The usual strategy to compile an algorithm C is by decomposition: considering C as

the composition of m smaller algorithms C0,C1, . . . ,Cm−1, we can mask each of them,

such that:

G =M(C) =M(Cm−1) ○ . . . ○M(C0).

The masking scheme M de�nes a base B of atomic algorithms in which C can be

decomposed, as well as the set of transformations to mask each element of B. Other

approaches, instead, attempt to �nd ad hoc solutions for a speci�c algorithm C. For

instance, in the case of lookup-based Substitution Box (SBox), it is possible to follow a

recomputation approach, where the whole lookup table gets masked [Cha+99; Cor14].

When adopting a decomposition approach, the masking of an element b ∈ B has

a di�erent impact on the complexity according to the nature of b. According to the

employed masking scheme, we can distinguish two types of algorithms: linear and non-

linear. When dealing with, for instance, a binary linear algorithm C(A,B), a sound

strategy is to apply C directly on the shares of A and B, such that:

G(A,B) = (C(A0,B0),C(A1,B1))

Hence, the time and randomness complexity increase linearly in the number of shares.

Concerning non-linear computation, the matter becomes more complex, as non-linear

terms, called cross-terms, appear in the equation. For illustration purposes, let us con-

sider the masking of the �nite �eld multiplication C = A ⊙ B. According to Rivain et

al. [RP10], we can expand the multiplication as:

C = A⊙B = ⊕
0≤i,j≤n

Ai ⊙Bj .
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Thus, the masked multiplication (Algorithm 1) requires a time complexity quadratic

in the masking order. Such results hold for every non-linear computation. In general,

masking non-linear computations comes with an expansion phase, where all the n2 cross-

terms are computed, and a compression phase, where the cross-terms are recombined

and the n shares of the output are generated [Rep+15].

The compression phase intrinsically leads to information leakage. To counteract this,

the usual strategy is to add to the cross-terms a new fresh random variable. As we

get n2 cross-terms from the expansion phase, the additionally required randomness is

asymptotically O(n2).
The generation of randomness is a costly task, which impact on the time complexity

(and area, in the case of hardware implementations) of the �nal gadget G. Hence, also

the randomness complexity has to be considered.

Algorithm 1: Gadget SecMult
Input: A, B

Output: C =A⊙B

1 begin

2 for i from 0 to n do

3 Ci ←Ai ⊙Bi;

4 for i from 0 to n do

5 for j from i + 1 to n do

6 Ri,j ← U2k ;
7 Ci ←Ci ⊕Ri,j ;

8 Ti ←Ai ⊙Bj ;

9 R
′

i,j ← Ri,j ⊕Ti;

10 T
′

i ←Aj ⊙Bi;

11 Cj ←Cj ⊕ (R
′

i,j ⊕T
′

i);

12 return C

2.3.2 Security Models

The masking countermeasure �nds its appeal in the formal framework where its security

guarantees can be proven. We call this framework a security model. Within its scope,

the masking scheme designer de�nes the model of the leakage and of the attacker against

which they want to prove the security of the masking design.

Several security models have been proposed in literature. Chari et al. have introduced

the noisy security model, in which they prove that an n-th order masking exponentially

increases the number of traces m�that is, the di�culty of a successful attack�for an
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attacker observing the leakage of the whole encoding, where each share independently

leaks a su�ciently noisy function of their value [Cha+99].

Isahi et al. have introduced the so-called t-probing security model. The t-probing

model considers an implementation leaking a noise-free function of each intermediate

computation of the algorithm C and the attacker is limited to observe, at most, t-out-

of-(t + 1) of these computations. Under such model, an implementation is said to be

t-probing secure if and only if an SCA attacker cannot retrieve any portion of the key K

from the t observations [ISW03].

The t-probing model is quite simple, as the attacker is assumed to have limited knowl-

edge and the leakage model is noise-free. The simplicity of the t-probing model makes

the security evaluation of masking implementations simpler and amenable to automation.

Yet, it was proven that an implementation secure in the t-probing model implies security

in the more realistic setting captured by the noisy model [DDF14].

As said, the security model provides speci�c assumptions on how the implementa-

tion leaks and how the attacker observes the leaked information. When one of these

assumptions does not hold, the proven security guarantees do not too. As we will discuss

in Section 2.3.3, a typical example is represented by the leakage model, which does not

capture certain physical e�ects. To bridge this gap, new models have been developed,

adapting and extending more abstract ones.

2.3.3 Leakage Independence and Physical E�ects

Masked algorithms are proven secure under a speci�c model of security. In reality, these

models hardly comply with the real behavior of the implementation. A recurrent as-

sumption is the so-called Independent Leakage Assumption (ILA) [Bal+14]. Under this

assumption, each probe provides information on at most one share. Unfortunately, hard-

ware and software implementations are characterized by physical e�ects violating the

ILA. That is, these e�ects recombine the shares, allowing the attacker to learn, through

a single probe, information on multiple shares at once.

These e�ects can stem from three di�erent sources, which are the mirror of three

di�erent physical phenomena characterizing a circuit design: memory transitions, signal

glitches and coupling (or wire cross-talking) [MPW22; GPM21; De +17].

Memory transitions (or just transitions) leaks an amount of information related to

the older and new state of the involved memory element (for instance, a register). Signal

glitches (or just glitches) is a well-known phenomenon a�ecting combinatorial hardware:

the relative delay between the input signals of a combinatorial circuit let the latter's

output go through several temporary states before stabilizing, leaking information on

the input signals. Coupling e�ects emerge when two hardware elements (for instance,
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two wires) are close enough to interact with each other, or due to power supply noise [De

+17].

Balasch et al. have formalized the impact of recombination e�ects through the Security

Order Reduction theorem [Bal+14]:

Theorem 2.1 (Security Order Reduction). A d-th order secure implementation

against value-based leakage functions is d
2 -th order secure against transition-based leakage

functions.

Yet, such theorem considers recombination e�ects a�ecting two shares, for instance

memory updates. Gigerl et al. have practically proved that signal glitches potentially

recombine more than two shares, further reducing the security order claimed by the above

theorem [GPM21].

To counteract these e�ects, several masking techniques have been developed, such as

Threshold Implementation (TI) [Bil+14] and Domain-Oriented Masking (DOM) [GMK16],

two design paradigms for the development of masking schemes resilient to glitch-based

leakages. In order to provide a formal analysis and design process of leakage-resilient

implementations, new security models extending the original d-probing model have been

proposed [Fau+18].

Correctness Yet, the design of masked implementations resilient against recombi-

nation e�ects can be challenging in software as the hardware design of a CPU is �xed.

If we think about a software implementation as a virtualization of a hardware design,

the only way to avoid recombination e�ects is to carefully craft the software implemen-

tation, such that it properly selects which hardware component employ to perform the

computations.

2.4 Security Evaluation of Implementations

When developing cryptographic implementations, the designer (or the evaluator thereof)

naturally wants to understand what are the security guarantees of the implementation.

A straightforward way to assess the security level is to attempt to recover the crypto-

graphic key through an attack. Yet, the obtained security level is linked to the speci�c

attack employed. In other words, a leakage-exploitation approach does not provide the

derivation of generic results concerning the security of the implementation [Pap+23].

Indeed, an evaluator is likely interested to understand the implementation' security level

independently of a speci�c attacker model [SMY09].

A natural observation is that an SCA attacker can recover the key if and only if the

implementation leaks key-dependent information. A �rst approach is to check whether

the implementation leaks or not. Such method takes the form of statistical hypothesis
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testing. A second methodology relies on the quanti�cation of the amount of information

the worst-case attacker might exploit; dually, this translates to quantify the amount of

information the implementation leaks.

2.4.1 Statistical Hypothesis Testing

When performing security evaluations of a cryptographic implementation I, the evaluator

aims to certify whether I leaks or not in the most general setting (i.e., independently of

the attacker's capabilities).

To this end, the evaluator can employ statistical hypothesis testing : given a null

hypothesis H0 and an alternative one H1, the procedure computes a measure called

statistic and a threshold, through which the evaluator can decide whether reject or not

the null hypothesis. In terms of SCA security evaluation, usually we have that H0 ∶=
Idoes not leak and H1 ∶= Ileaks.

Among the di�erent hypothesis testing procedures, the Test Vector Leakage Assess-

ment (TVLA) is extensively used in literature [SM15]. In its simplest form, the TVLA

certi�es whether an implementation leaks by testing whether two sets of side-channel

traces S�xed and Srandom can be distinguished by their means. Srandom refers to side-

channel traces collected while the implementation processes a di�erent plaintext for each

trace, whereas S�xed refers to the usage of the same plaintext for each trace. Both sets

are collected employing the same cryptographic key, kept �xed across the measurements.

The evaluator computes the t-statistic t:

t = µ̂�xed − µ̂random√
σ̂2

�xed

n�xed
+ σ̂2

random

nrandom

(2.12)

where µ̂�xed, µ̂random refer to the sample mean, σ̂2
�xed, σ̂

2
random to the sample variance

and n�xed, nrandom to the number of traces of the �xed and random set, respectively.

The rejection of H0 happens when the t-statistic overcomes a given t-threshold. Such

threshold tells the evaluator that the H0 can be rejected with a certain probability.

Usually, evaluators set it to ±4.5, meaning that they can reject the null hypothesis with

a probability con�dence of 99.999%.

As said, the TVLA relies on a hypothesis testing procedure. These testing procedures

are a�ected by statistical errors. We distinguish between Type-I errors (or false positives)

and Type-II errors (or false negatives) [Ros10]. Type-I errors refer to the cases where the

test fails (null hypothesis rejected), although the implementation does not leak. Type-II

errors, on the other hand, refer to the acceptance of the null hypothesis, although the

implementation actually leaks. Type-II errors are the most troublesome, as they would

report an implementation as leakage-free when it is not. As a mitigation technique
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against these types of errors, a strategy is to repeat the TVLA several times, each with

a distinct �xed key [SM15].

Eventually, TVLA, and hypothesis testing in general, can only tell whether a given

implementation leaks or not. Even in the case of a leaking device, they cannot provide

any insight on the di�culty of an SCA [Pap+23].

As we present in the next section, TI tools, in particular the MI, have been con-

nected to metrics quantifying the SCA di�culty, providing security projections of an

implementation in the worst case [DFS19].

2.4.2 Information Leakage Quanti�cation

As informally elaborated at the beginning of this section, another approach to evaluate

the security of an implementation is to understand how much information does the imple-

mentation leak. The idea is that an SCA attacker cannot exploit more information than

the one leaked by the implementation. In Chapter 5, we will rely on this quanti�cation

approach to evaluate the leakage resilience of di�erent masking schemes.



Chapter 3

State of the Art and Research

Questions

Although masking constitutes a provably-secure methodology against passive side-channel

attacks, in practice certain physical e�ects, such as memory transitions, hinder its e�cacy.

In the software context, these e�ects stem from the underlying hardware of the platform

executing the masked implementation; in particular, from the so-calledmicro-architecture

of CPUs. Di�erent works attempt to address such problematic, re-establishing the the-

oretical security guarantees of masking. This chapter provides a literature review of the

existing leakage mitigation approaches.

3.1 Preliminaries

In this section, we overview some key concepts paramount for the remainder of the

chapter. We cover the concept of Instruction Set Architecture (ISA), micro-architecture

and the software/hardware contract, the recombination e�ects generated by the micro-

architecture and the variability of the leakage behavior across micro-architecture designs.

3.1.1 ISA and Micro-architecture

When developing software, the implementation is encoded in a machine-code speci�ca-

tion compliant with the ISA supported by the target platform. Informally, the ISA serves

as an interface between what the software can access to (the architecture) and what

it cannot interact with (the micro-architecture) [Gao+20b]. With micro-architecture,

literature refers to the high-level aspects of the CPU's organization; for instance, its

logical design [HP12]. In practice, the ISA establishes a software/hardware contract:

given the same ISA, the underlying micro-architecture provides the speci�ed function-

21
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Figure 3.1: Simpli�ed model of a three-stage, in-order pipelined micro-architecture.

alities [MPW22]. In such way, the same piece of code will produce the same output,

regardless of the particular micro-architecture design.

According to the number of completed instructions per clock cycle, micro-architecture

designs can be distinguished into scalar and super-scalar. A scalar micro-architecture can

issue and complete at most 1 instruction per clock cycle, whereas super-scalar ones can

issue and complete multiple instructions per clock cycle. Also, we can describe designs

as in-order (instructions are issued and completed according to the order speci�ed by

the machine code) or out-of-order (instruction issuing and completion does not follow

the machine code's order).

One hardware-oriented technique extensively employed to maximize the number of

completed instructions per clock cycle is instruction pipelining [HP12]. According to

this technique, the micro-architecture is partitioned into several stages, where each stage

takes care of a part of the instruction's life cycle. We refer to this sequence of stages

as the execution pipeline. Figure 3.1 depicts a simpli�ed three-stage, in-order pipelined

micro-architecture. In such example, the Instruction Fetch (IF) stage fetches the next

instruction to be executed, the Instruction Decode (DE) interprets the instruction (e.g., se-

lecting operands from the Register File), whereas the Instruction Execute (EXE) executes

the instruction.

In the next section, we explain how micro-architectures can induce information leak-

age sources, reducing the security of masked software.

3.1.2 Micro-architectural Leakage

As described in Section 3.1.1, an ISA de�nes an interface between the architecture and the

micro-architecture of a CPU. Both of them encompass combinatorial and sequential (or
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Table 3.1: Summary of selected works concerning micro-architectural leakage investi-
gation. For each leakage source, interaction type and origin, we report the work who
observed the e�ect. Concerning the coupling-based leakages, the only work we are aware
of does not precise the origin of the leakage.

Leakage SourceInteraction
Origin

RF Memory Pipeline Speculation FU Instr.
Enc.

Transition
Intra - - - - [BP18] -
Inter [PV17] [BP18;

MPW22]
[BP18] [MPW22] [BP18] [dHM22]

Glitch
Intra [GPM21] - - - [Gao+20a] -
Inter - [She+21b] [GPM21] - - -

Coupling [LBS19]

memory) resources (e.g., physical registers, reported in blue in Figure 3.1). In particular,

due to their sequential nature, memory resources can preserve a state across several clock

cycles. We de�ne (micro-)architectural state the set of states of the (micro-)architectural

memory resources at given clock cycle.

Architectural and micro-architectural resources (both combinatorial and sequential)

have been witnessed as the sources of several and di�erent sources of leakage hindering

the theoretical security of masked software implementations. According to the resource

(architectural or micro-architectural) from which the information leakage originates, we

de�ne the leakage as architectural (or architecture-induced) or micro-architectural (or

micro-architecture-induced).

Literature distinguishes recombination e�ects in:

� Transition-based: the recombination stems from the update of sequential elements

(for instance, general-purpose registers) [Bal+14].

� Glitch-based: the recombination stems from the signal instability in combinatorial

elements due to signal glitches [MPW22].

� Coupling-based: the recombination stems from the proximity of physical compo-

nents (for instance, wires) or power supply noise [De +17].

Leakages can be further classi�ed according to the type of interaction: a leakage

causes inter-bit interaction when the recombination e�ects involve the bits of two distinct

intermediate values; a leakage causes intra-bit interaction when the recombination e�ects

involve the bits of the same intermediate value [GD23].

In this section, we overview the main leakage sources which stem from the micro-

architecture. Yet, the goal is not to perform a review of all the works investigating
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micro-architecture-induced leakage; rather, to present, for each recombination e�ect,

a work that investigated it and found a new physical origin. When more than one

work investigates the same e�ect, we tie the break by choosing the one that provides

more insights on the said e�ect. For instance, both Papagiannopoulos et al. [PV17]

and Marshall et al. [MPW22] have observed transition-based leakages stemming from

the memory; yet, the latter evaluates this e�ect in more depth and across di�erent target

micro-architectures.

Table 3.1 resumes the selected investigation works and explored leakages according

to the above classi�cation.

Transition-based Leakages Papagiannopoulos et al. have empirically observed the

presence of inter-bit recombination e�ects when the same architectural register is over-

written [PV17]. Marshall et al. have systematically analyzed the recombination e�ects

stemming from memory accesses [MPW22]. In particular, they have observed inter-bit

interactions between consecutive and non-consecutive memory accesses. Barenghi et

al. have further observed inter-bit interaction on micro-architectures endowed with store

bu�ers [BP18]. Barenghi et al. have pointed out that inter-stage pipeline registers induce

inter-bit interaction between the operands of consecutively issued instructions [BP18].

They have also observed that functional units can originate inter- and intra-bit interac-

tion, for instance from the realignment bu�er of the Load-Store unit and from the output

register of the barrel-shifter, respectively. Marshall et al. have observed inter-bit interac-

tion due to speculative execution [MPW22]. Finally, de Grandmaison et al. have showed

that di�erent encodings of the same instruction can lead to di�erent leakage behaviors,

and so di�erent inter-bit interactions [dHM22].

Glitch-based Leakages Gigerl et al. have observed that glitches in the address decode

logic of the register �le can lead to inter-bit interaction [GPM21]. The same authors

have also witnessed how inter-bit interaction can take place due to signal glitching in

the forwarding mechanism of the execution pipeline. Shelton et al. have observed an

inter-bit interaction potentially stemming from the memory bus [She+21b]. Finally,

Gao et al. have showed how glitches in the barrel-shifter potentially lead to intra-bit

interactions [Gao+20a].

Coupling-based Leakages By means of acquisition setup manipulation, Levi et al.

have detected coupling-based leakages, although they didn't identify their speci�c ori-

gin [LBS19].
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Table 3.2: Synthesis of works related to the exploration of micro-architectural leakage.
We use n to indicate that the solution supports masking (up to) a �xed order. (✓):
potentially handled. S.Scal: Super-Scalar, O.o.O: Out-of-Order. NC: Non-completeness.
B: boolean; A: arithmetic.

Work Method Source Bit Inter. µ−Arch Order Masking
Trans. Glitch Intra Inter Scalar S.Scal. O.o.O.

[SSG17] ISA ✓ - - ✓ ✓ - - 1 B
[WSW19] ISA ✓ - - ✓ ✓ - - 1 B
[Ath+20] ISA ✓ - - ✓ ✓ - - 1 B
[Abr+21] ISA (✓) (✓) (✓) (✓) ✓ - - 1 B
[She+21b] ISA ✓ - ✓ ✓ ✓ - - 1 B
[She+21a] ISA ✓ - ✓ ✓ ✓ - - Any B
[Tso+23] ISA ✓ - - ✓ ✓ - - 1 B

[Kia+20] ISE ✓ ✓ ✓ ✓ ✓ - - 1,3 B
[KS20] ISE ✓ ✓ ✓ ✓ ✓ - - 1 B, A
[Gao+20b] ISE ✓ - - ✓ ✓ - - Any Any
[MP21] ISE ✓ ✓ ✓ ✓ ✓ - - n B, A
[Gao+21] ISE - ✓ ✓ ✓ ✓ - - 1 B, A
[CPW24] ISE ✓ - - ✓ ✓ - - Any B, A

[MMT20] NC ✓ ✓ ✓ ✓ ✓ ✓ ✓ Any B
[GPM21] NC ✓ ✓ - ✓ ✓ ✓ - Any B
[GD23] NC ✓ ✓ ✓ ✓ ✓ - - 1 B

3.1.3 On the Variability of the Leakage Behavior

The leakage behavior of a given piece of code is not consistent across di�erent platforms

and across platforms supporting the same ISA [MMT20; MP21]. The reason is found

on the transparency of the hardware/software contract implemented by the given ISA.

According to such contract, the logical design of the micro-architecture can take any

physical form, as long as it supports the ISA [Aro+21]. From a functional point of view,

such transparency provides code portability (although it does not guarantee that the code

exploits at best the underlying platform hardware). On the other hand, from a security

point of view, it forbids a transfer of the security guarantees veri�ed on a given platform.

Furthermore, Arora et al. have empirically showed that the physical implementation of

two instances of the same CPU can exhibit di�erent leakage behaviors, worsening the

leakage transferability problem [Aro+21].

3.2 Mitigation of Recombination E�ects in Software

In Section 2.3.3 we have discussed the security reduction of masked algorithms when

executed on real platforms. The root cause of the discrepancy between the proven security

and the practical one are physical e�ects which recombine the shares of a masked value.

A natural way to bridge the gap between the theory and practice is to restore the violated

ILA; in other words, enforcing data isolation [Bel+23].
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A way to enforce data isolation is through a �ushing mechanism. With �ushing, we

refer to any hardware or software mechanism that overwrites (�ush) the content of a

memory resource (e.g., a register) with some value not related to any masked variable.

By interleaving the consecutive writing of two shares to the same memory resource with

a �ush of the latter, we mitigate the transition-based leakage.

In this section, we present a systematic review of the literature concerning method-

ologies to mitigate the recombination e�ects in software, narrowing the gap between the

theoretically proven security and the practical one.

3.2.1 Scope of the Review

The scope of this literature review focuses on the methodologies which aim to mitigate

the impact of (micro)-architectural leakage on masked software implementations. We

de�ne the following research criteria to lead the literature investigation:

� Masking-speci�c Approach: the methodology must speci�cally target masked soft-

ware implementations. We do not consider works providing general protection re-

gardless of the software executed, for instance [Gro15; Gro+16; MGH19; SLP+19;

ABP21; BJ22].

� Active Mitigation: the methodology must not only produce or support the exe-

cution of masked software, but also attempt to mitigate the security degradation

implied by (micro-)architectural leakage. For instance, in literature there are works

providing automated approaches for the generation of masked software, but they

do not tackle micro-architectural leakage [Bel+18].

From the literature investigation, we have identi�ed 13 works matching the research

criteria (Section 3.2.1). From their analysis, we have identi�ed 6 attributes of interest:

1. Method: it describes what method the work adopts to mitigate (micro-)architectural

leakages: ISA-based, Instruction Set Extension (ISE)-based, non-completeness-based.

2. Source: it describes what leakage sources the work addresses: transition-based,

glitch-based leakages. To the best of our knowledge, no works addresses coupling-

based leakages.

3. Bit Interaction: it describes whether the work addresses the interaction between

bit of the same machine word (intra) and/or of di�erent machine words (inter).

4. µ-Architecture: it describes the type of micro-architecture the work considers:

scalar, super-scalar (s.scalar), out-of-order (o.o.o.).
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Table 3.3: Synthesis of works exploring the mitigation of micro-architectural leakages by
means of ISA-based approaches.

Work Approach Scope Input Output Order Detect.
Arch. µArch. Masked Determ. Converge

[WSW19] Proact. ✓ - ✓ ✓ - 1 Model
[Tso+23] Proact. ✓ ✓ ✓ ✓ - 1 Model
[SSG17] Proact. ✓ ✓ ✓ - - 1 Model

[Abr+21] React. ✓ ✓ - ✓ ✓ 1 None
[Ath+20] React. ✓ - ✓ ✓ ✓ 1 Model
[She+21b] React. ✓ ✓ ✓ ✓ ✓ 1 Pro�led
[She+21a] React. ✓ ✓ ✓ ✓ ✓ Any Pro�led

5. Order: it describes the order of the masked software executed on the target plat-

form.

6. Masking: it describes the type of masking applied to the executed software.

Table 3.2 resumes the identi�ed works. For the classi�cation of these works, we chose

the method attribute. The reason stems from the fact that, as we discuss in Section 3.3,

each di�erent approach has a di�erent degree of portability, e�cacy and invasiveness.

3.2.2 ISA-based Methodology

To deal with the leakage e�ects stemming from the micro-architecture, the developer

can employ the instructions provided by the target ISA to mitigate the impact of such

leakages by hand [PV17; GPM21]. Although it is possible to proceed via a by-hand

approach, the hardening of software implementations is time-consuming and error-prone.

Therefore, in this section we focus solely on approaches relying on automated strategies

for the generation of leakage-resilient masked software.

From the literature exploration, we have identi�ed 7 distinct works and 6 attributes

of interest:

1. Approach: it describes whether the work reactively mitigate the sources of leakage

(hence, directly on the binary code) or it proactively generates leakage-resilient

code.

2. Scope: it describes whether the work mitigates architectural and/or micro-architectural

leakages.

3. Input Masked: it describes whether the input program must be masked or not.



28 CHAPTER 3. STATE OF THE ART AND RESEARCH QUESTIONS

4. Output: it describes whether the approach acts deterministically (given the same

input, produces the same hardened code) and if the approach converges to a

leakage-free implementation.

5. Order: it describes the masking order of the output. In those instances where the

input must be masked, it matches also the input's masking order.

6. Detection: it describes whether the detection of leakages comes from the use of a

model of the micro-architecture, or it originates from a pro�ling of the leakage.

We classify the identi�ed works according to the approach attribute. The reason

stems from the fact that proactive approaches allow the direct generation of protected

implementations from high-level speci�cations (hence, they can take advantage of opti-

mizations made during the whole compilation process), whereas reactive ones can only

deal with already-generated code but do not have to deal with programs optimizations

(which might alter the applied masking).

Proactive Approaches

Seuschek et al. has attempted to automate the elimination of micro-architecture-induced

transition-based leakages by programming an instruction scheduling and a register al-

location engine to, respectively, reorganize the machine code of 1-st order masked im-

plementations, such that sequences of instructions do not leak on microcontrollers, and

provide a leakage-free assignment of registers [SSG17]. The tool employs a precompiled

list of some instruction pairs that leak on the given target micro-architecture. On the

downside, the tool converges probabilistically towards a leakage-free implementation.

Wang et al. has handled the transition-based leakages stemming from architectural

register overwrites at the register-allocation level [WSW19]: given in input a high-level

speci�cation of a 1-st order masked implementation, they model the register allocation

as an optimization problem with a leakage constraint to identify a leakage-free allocation

of registers to intermediate variables. Their solution does not require any �ush of the

architectural registers.

Tsoupidi et al. has mitigated the transition-based leakages stemming from architec-

tural registers overwrites and from consecutive memory accesses [Tso+23]. To achieve

their goal, they have formulated the register allocation and the instruction scheduling as

optimization problems, which are solved by means of an SMT solver. In contrast to the

work of Wang et al., the potential lies in the exploration of all possible solutions to the

formulated problem, keeping only the ones with minimum cost and which prevent any

leakage.
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Reactive Approaches

Athanasiou et al. have developed BATTL, a tool for the automated identi�cation and mit-

igation of transition-based leakages stemming from architectural registers overwrite [Ath+20].

Their tool takes in input a 1-st order masked binary, perform symbolic execution to iden-

tify transition-based leakages and removes them by �ushing the leaking registers.

Abromeit et al. have pursued a modular approach for the protection of an unmasked

machine-code speci�cation of an algorithm, which integrates the application of 1-st or-

der Boolean masking with the protection against micro-architectural leakages [Abr+21].

Their approach consists in porting the concept of compositional reasoning [Bar+16] in the

software domain: (1) leaking computations are replaced by semantically equivalent 1-st

order leakage-resilient gadgets; (2) glue-code is inserted before and after each gadget invo-

cation for ensuring their secure composition. As a hypothesis, the authors have assumed

the existence of a set of 1-st order masked gadgets secure against micro-architectural

leakages.

Shelton et al. have proposed ROSITA, a tool for the automated application of code

patches to 1-st order masked machine code [She+21b]. The tool acts in two iterative

phases: (1) identi�cation of code patterns that leak information; (2) replacement of

leaking code patterns via hand-made patches speci�c for the target micro-architecture.

A target-tailored leakage emulator provides the simulated side-channel traces for the

identi�cation of leaking code patterns. The iterative process terminates once no leakage

is detected from the simulated traces.

Shelton et al. have developed ROSITA++, an enhanced version of ROSITA able to

handle also higher-order masked implementations [She+21a].

Discussion Almost all the known tools deal with already-masked implementations;

only the instance from Abromeit et al. is able to generate a hardened masked imple-

mentation from an unprotected machine-code speci�cation [Abr+21]. Resorting on tools

that are able to handle unmasked inputs comes at the advantage of the developer, who

(1) does not require any knowledge on masking and (2) does not bother with potential

errors in the application of the masking scheme on the high-level speci�cation.

Concerning the masking order, almost every tool focus on 1-st order masking: avoid-

ing recombination of shares without incurring in high performance penalties is a di�cult

task. To the best of our knowledge, only ROSITA++ handles higner-order masked im-

plementations [She+21a].

Concerning on how the transition-based leakages are mitigated, most of the ap-

proaches rely on instruction sequences to �ush the (micro-)architectural state. This

can increase the performance penalties of the implementation in terms of code size and
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execution time [She+21b; She+21a]. On the other hand, Wang et al. and Tsoupidi et

al. have provided solutions which do not require �ushing the micro-architectural state:

their solutions rely on modelling register allocation and instruction scheduling as an

optimization problem and choosing a solution which does not leak [WSW19; Tso+23].

Although proven on small/medium-sized use-cases, it is unclear whether their approach

always converges to a solution. As a consequence, they cannot guarantee the conver-

gence to a solution in the general case. The work of Seuschek et al. shares the same

convergence problem [SSG17]: due to the nature of their approach, the convergence can

probabilistically fail, requiring several calls to the tool to converge.

To detect the leakage induced by the micro-architecture, Seuschek et al. [SSG17] and

Tsoupidi et al. [Tso+23] have relied on a model of the target micro-architecture. In prin-

ciple, the knowledge of the micro-architectural details allows a precise mitigation of the

leakages. Still, these two works rely on incomplete models, either missing certain fea-

tures that induce leakages (such as inter-stage registers) or do not consider the execution

activity of the micro-architecture, which potentially impacts on the observed leakage.

The tools ROSITA and ROSITA++ are interesting as they do not require knowledge

of micro-architectural details. Their strength stands on the on-the-�y emulation of the

leakage of the input machine code, which allows to iteratively test and patch the imple-

mentation until �xing all leakage points. Yet, they are characterized by a low degree of

portability: the emulation requires a model of the target's leakage behavior extracted

by pro�ling the target platform. Such pro�ling is extremely dependent on the actual

physical implementation of the pro�led target architecture [Aro+21], the measured side

channel and the employed experimental setup.

Finally, none of the tools o�cially support glitch-based leakage mitigation: the work

of Abromeit et al. only speci�es the presence of a library of leakage-free gadgets; thus,

the mitigation capabilities of their approach strictly depends on such library. Although

ROSITA and ROSITA++ can detect glitch-based leakages, none of the hand-made

patches handle them.

3.2.3 ISE-based Methodology

ISE are a mean to enrich the properties of an ISA, usually by introducing new functional

features (for instance, SIMD paradigm) or non-functional ones (for instance, capabili-

ties [Wat+20]). In the context of leakage-resilient cryptography, they found application

to support masked software. The idea behind the usage of ISEs is to expose a more

friendly software/hardware contract, such that the software can take advantage of some

hardware mechanism to mitigate the security degradation due to micro-architectural

leakages [Gao+20b].
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Table 3.4: Synthesis of works exploring the mitigation of micro-architectural leakages by
means of ISE-based approaches. We use n to indicate the solution supports masking (up
to) a �xed order. B: Boolean; A: Arithmetic.

Work Deleg. Source Scope Order Masking
Transition Glitch Pline Cache Mem.

[KS20] HW ✓ ✓ ✓ ✓ - 1 B, A
[Gao+20b] HW ✓ - ✓ - ✓ Any Any

[Kia+20] HW/SW ✓ ✓ ✓ - - 1,3 B
[MP21] HW/SW ✓ ✓ ✓ - - n B, A
[Gao+21] HW/SW ✓ ✓ ✓ - - 1 B, A
[CPW24] HW/SW ✓ - ✓ - - Any B, A

We have identi�ed 6 distinct works dealing with a leakage-resilient execution of

masked software implementations through the aid of ISEs.

We have identi�ed 5 attributes of interest concerning these works:

1. Leakage Mitigation Delegation: it denotes whether the mitigation of the leakage

happens at hardware level or a mix of hardware and software.

2. Leakage Source: it denotes the sources of leakage handled: transition-based and/or

glitch-based.

3. Scope: it denotes what part of the core are handled: pipeline, cache and/ormemory.

4. Masking Order: it denotes the supported masking order.

5. Masking Type: it denotes the supported masking type: Boolean and/or arithmetic.

Table 3.4 summarizes the attributes associated to each work. We perform the classi-

�cation of the works according to the Leakage Mitigation Delegation.

The reason stems from the fact that the �rst attribute can provide a �rst qualitative

metric to understand where does the complexity lie (on the software developer or on the

hardware designer), as well as the potential cost in terms of area, code size and execution

time.

Hardware Delegation

Kiaei et al. have developed a pure ISE-based approach to allow the execution of leakage-

free 1-st order masked software [KS20]. Their strategy bases on two principles: (1) the

introduction of dedicated instructions for computing masked data and (2) an isolated data

path. The �rst point is addressed by extending the RISC-V ISA. From the hardware

side, the new instructions are processed by a DOM-based masked ALU, which handles,
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in a glitch-free manner, both Boolean and arithmetic 1-st order masked operations. The

isolated data path hosts the masked ALU and supports the secure manipulation of masked

data by (1) duplicating the register �le and data caches, where each copy stores a given

share domain, (2) transparently refresh load and store instruction's operands to mitigate

transition-based leakages.

Gao et al. have followed a di�erent approach, by preventing transition-based leakages

by �ushing the memory elements that might leak [Gao+20b]. Such refreshing is hinted

by the software by means of dedicated RISC-V fence instructions. The modi�cation

brought to the whole system concerns also the memory interface, allowing prevention of

transition-based leakages stemming from elements outside the CPU core. The solution

provides �exibility to the developer to choose which elements the hardware should �ush.

The solution transparently supports any type of masking and masking order.

Hardware/Software Delegation

Kiaei et al. have introduced SKIVA, a RISC-V extension to support transition-based

leakage-free 1-st and 3-rd order Boolean masking and fault detection [Kia+20]. Con-

cerning masking, the approach relies on a share-sliced representation of data to avoid

transition-based leakages [Gao+20a]. For such purpose, the ISE introduces dedicated

instructions to convert from and to the share-sliced representation of masked data, plus

a specialized rotate instruction for the in-place rotation of the encodings. The share-

sliced representation transparently mitigates the transition-based leakages stemming from

memory accesses. Yet, this comes at the cost of implementing the algorithm such that

it can work on this data representation.

Marshall and Page have mitigated glitch- and transition-based leakages via an over-

loaded extension of the RISC-V ISA, where the security semantics of the instructions

is chosen according to the input registers and implemented through DOM-based gad-

gets [MP21]. The register �le is replicated in n register banks, each for a given share

domain, where the n is set via software at con�guration time by the software designer.

Concerning transition-based leakages stemming from load and store instructions, the au-

thors delegate such operation to the software developer to schedule such instructions in

order to avoid share recombination.

Gao et al. have provided an ISE for the RISC-V supporting 1-st order Boolean and

arithmetic-sum masking [Gao+21]. The approach bases on dedicated instructions, which

are implemented by a masked DOM-based masked ALU, mitigating glitch-based leakages.

The micro-architectural data path is modi�ed in order to accommodate the masked ALU

and secure the manipulation of masked data (for instance, map each share domain to a

dedicated inter-stage pipeline register), mitigating transition-based leakages. Concerning
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the transition-based leakage from memory accesses, it is up to the software designer to

properly schedule them or use instructions to �ush the micro-architectural state.

Cheng, Page, and Wang have extended the RISC-V ISA to deal with transition-based

leakages: new instructions, copying the semantics of already existing ones, are introduced

and used to communicate to the micro-architecture to mitigate the leakage [CPW24]. The

authors provide two proofs of concept: a latency-optimized version, which mitigates all

the transition-based leakages at hardware level; an area-optimized version, which miti-

gates the architecture-induced transition-base leakages (for instance, register overwrites)

via hardware, whereas the ones stemming from loads and stores are removed decoding the

instructions in a specialized sequence of general-purpose instructions. The latter solution

modi�es at the minimum the underlying decoding logic, following a CISC approach: the

micro-architecture decodes the instruction in a speci�c instruction sequence to remove

the leakage.

Discussion

A fair comparison between the ISE-based approaches represent a hard task, as they are

more proofs of concept to show the ISE's potential to achieve leakage-resilient masked

software [MP21]. Even willing, it is not possible to compare in terms of security, as

evaluation are not performed [MP21], are done on small code sequences [CPW24] or

the modi�ed architectures are di�erent [Kia+20; Gao+20b] or unspeci�ed [KS20]. The

usage of di�erent/unspeci�ed modi�ed architectures forbids a fair comparison in terms

of occupied silicon area and latency.

Nonetheless, it is still possible to perform some general observations concerning their

mitigation capabilities and their invasiveness (that is, the degree of hardware changes).

In general, pure hardware delegation enables better leakage mitigation, as the hardware

can precisely �ush micro-architectural elements (and not only) and/or handle masked

data with hardware-secured operations. On the downside, these solutions potentially can

come with non-negligible hardware cost in terms of silicon area and require a substantial

modi�cation of the core.

On the other hand, hardware/software delegation approaches represent a compromise,

where a part of the leakage mitigation is delegated to the software: for instance, instead

of having a hardware module to protect memory accesses, implementation's code has to

be properly scheduled to avoid information leakage [MP21; Gao+21].

All in all, both approaches have the potential to mitigate transition-based leakages

and glitch-based leakages to a local extent: indeed, the implementation of masked oper-

ations with glitch-free gadgets make the single computation secure against both types of

leakages [KS20; MP21; Gao+21]. Yet, there is still a lack of mitigation for more subtle
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sources, as for the forwarding path in the execution pipeline [Gao+20b].

3.2.4 Non-Completeness-based Methodology

The non-completeness property has been introduced with the TI masking paradigm [Bil+14].

In essence, a non-complete operation (or function) works on a strict subset of the shares,

such that whatever recombination takes place, the attacker will always miss a piece of

information to recover the secret.

Non-completeness can be viewed as a weak form of data isolation, according to which

only a strict subset of shares can leak. At the time of writing, few works put forward the

idea to mitigate recombination of shares by enforcing this property in software.

Meyer et al. have proposed to decompose a high-level implementation in subfunctions,

each working on a strict subset of the shares [MMT20]. Gigerl et al. have proposed

to mitigate glitch-based leakages by applying a stricter version of non-completeness at

pipeline-level [GPM21]: at each clock cycle, one and only one share of a masked variable

can be processed within the pipeline. Gaspoz and Dhooghe have mitigated the e�ects of

share recombinations applying the non-completeness at the register �le level [GD23].

Discussion Enforcing the non-completeness property at software level is an interesting

approach, which does not prevent the implementation to leak, but let it do it in such a

way the attacker cannot exploit recombinations. The approach is similar to the original

idea behind masking.

This property potentially minimizes the e�orts to mitigate certain leakage e�ects by

relying on few, public information concerning the micro-architecture (e.g., the depth of

the execution pipeline). Furthermore, the employment of such properties potentially

promote an increased portability of the implementation, as long as the running CPUs

share a similar micro-architecture design.

On the other hand, as remarked by Gaspoz and Dhooghe, non-completeness provides

a necessary but not su�cient property to bridge the gap between the theoretically-proven

security and the witnessed one in practice, as certain micro-architectural features (e.g.,

micro-architectural registers) can still reduce the implementation's security [GD23].

3.3 Discussion

In this literature review, we have investigated the di�erent approaches to mitigate the

e�ect of micro-architectural leakages on the security of masked software implementations.

From the analysis of the works, we have identi�ed three attributes of interest:

� E�cacy: it qualitatively describes the mitigated leakages sources.
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Figure 3.2: Qualitative comparison of ISA-based, ISE-based and Non-Completeness-
based approaches.

� Invasiveness: it qualitatively describes the degree of hardware changes required.

� Portability: it qualitatively describes the easiness with which the security guar-

antees of a software implementation can be transferred across micro-architectures

without modi�cation.

Figure 3.2 reports a qualitative radar chart of the di�erent approaches with respect

to e�cacy, invasiveness and portability.

Concerning the type of covered leakage sources (or e�cacy), ISA-based approaches

focus on transition-based ones. ISE-based solutions provide better mitigation capabil-

ities, as they can cover also glitch-based leakages. Non-completeness-based approaches

show some instances able to cover both leakage sources.

From an invasiveness point of view, ISA and non-completeness-based solutions do

not require any hardware modi�cation, whereas ISE ones might require non-negligible

modi�cations to the hardware [CPW24].

In terms of portability, ISA-based approaches show the lowest degree of portability,

as an implementation potentially has to be modi�ed to transfer the same security guar-

antees to di�erent micro-architectures. ISE-based ones show slightly better portability,

as architectures supporting the same ISE contract will provide the same security guar-

antees for the same implementation; yet, this is granted as long as the ISEs implement

the same hardware/software contract. Non-completeness-based approaches guarantee

the highest degree of portability, since the software speci�cation (potentially, a high-level

one) has to just ensure the non-completeness property. Looking at the supported micro-

architectures, ISA-based and ISE-based approaches have only been applied to scalar

micro-architectures, whereas the non-completeness method has also been explored on

more complex ones.
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3.4 Open Problems and Research Questions

In this section, we present the identi�ed open problems and research questions that this

thesis addresses.

3.4.1 Open Problems

From the literature investigation we have identi�ed the following open problems:

Micro-architecture Knowledge and Security Guarantees The security guaran-

tees provided by ISA-based approaches strictly depend on the knowledge of the micro-

architecture. For instance, to protect an implementation against transition-based leak-

ages, the solution requires a precise knowledge of all the memory elements that might

leak information on two intermediate values when consecutively stored. Such a piece of

information might be unknown; for instance, it is part of the intellectual property cover-

ing the micro-architecture. Thus, the employment of ISA-based to close the gap between

theory and practice is potentially prevented by the lack of information concerning the

micro-architecture.

Lack of Portable Security Implementations generated by ISA-based approaches gen-

erally are not portable from a security point of view. Indeed, as explained at the begin-

ning of this chapter, several micro-architecture implementations can satisfy the contract

described by a given ISA. By consequence, since two implementations potentially ex-

hibit di�erent leakage behaviors, a piece of code secure on a given micro-architecture

potentially is not on another one.

This problem is partially handled by ISE-based approaches: by extending the ISA

contract with speci�c security guarantees, the same piece of code shows the same security

guarantees on two micro-architectures implementing the ISE. Nonetheless, such outcome

is restricted only to implementations satisfying the very same extended contract.

Simple Models of the Micro-architecture Some of the ISA-based methodolo-

gies target simple models of the micro-architecture, either excluding well-known leakage

sources, such as inter-stage pipeline registers [Tso+23], or not considering the actual ac-

tivity of the micro-architecture which in�uences the observed leakage [SSG17]. As such,

the usage of a simpli�ed model (or the lack thereof) forbid the generation of leakage-

resilient masked software implementations.
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No Convergence Guarantees Certain ISA-based methodologies do not guarantee

the generation of a machine-code implementation free of any (micro-)architecture-induced

leakage [SSG17; Tso+23].

Performance Overhead Part of the ISA-based methodologies mitigate micro-architecture-

induced leakages on the machine-code version of the implementation [Abr+21; She+21b;

She+21a]. Acting on this code representation, these methods apply hand-made patches

designed to properly mitigate the leakages while preserving the semantics of the program.

The design of these patches faces two major performance-related challenges:

� the designer must know the execution state of the micro-architecture when the

patch is executed

� the designer must cope with an already-generated code: a given modi�cation po-

tentially implies an avalanche of modi�cations, requiring further patching. As such,

it is in the interest of the designer to localize the impact of the patch, potentially

generating a less performant code.

Practical Higher-order Security is Unexplored Except for the works of Shelton et

al. [She+21a] and Gigerl et al. [GPM21], all the reviewed approaches focus on achieving

practical 1-st order security.

Lack of Super-Scalar and Out-of-Order Micro-Architectures The complexity of

simple micro-architectures and the lack of their complete knowledge complicates achiev-

ing practical security. Only few works provide approaches to reach practical security

even on more complex micro-architectures [MMT20; GPM21].

Glitches: a yet-to-be explored cases Several works concern with recombination

e�ects stemming from transition-based leakages. Although highlighted as a real prob-

lem [Gao+20a; GPM21], software-based mitigation of glitch-based leakages is practi-

cally unexplored, except for works promoting the non-completeness property [MMT20;

GPM21; GD23].

3.4.2 Research Questions

From this literature review, it clearly emerges how achieving practical security of masked

software in a general sense�that is, providing a masked implementation secure against

worst-case attackers on any micro-architecture�is still an open problem. Reducing the
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scope, it is still challenging to achieve 1-st order security on simple scalar architec-

tures against attackers exploiting only transition-based leakages. As highlighted in Sec-

tion 3.4.1, the main reason is the lack of complete micro-architectural models.

Two orthogonal challenges are the containment of the performance overhead and the

guarantee of an approach always converging to a leakage-free solution.

Most of the works focus on Boolean masking and the risk implied by transition-based

leakages. Meyer et al. have remarked that Boolean masking and transition-based leakages

share the same algebraic structure [MMT20]. From this observation, they suggest em-

ploying masking schemes with a di�erent algebraic structure to mitigate recombination

e�ects. However, few works investigated their employment in software [Che+21; Wu+22;

Bec+22] and none studied the impact of the micro-architecture on their practical security.

In this thesis, we follow four research directions:

1. What mitigation capabilities can we reach by considering complete models of the

micro-architecture

2. Can we contain the performance overhead while mitigating (micro-)architectural

leakage

3. Can we ensure the convergence towards a leakage-free solution

4. What is the impact of the micro-architecture on the practical security of masking

schemes with a di�erent algebraic structure from the Boolean one.



Chapter 4

An Automated Methodology to

Mitigate Transition-based Leakages

at Software Level

This chapter bases on an ongoing joint work with the Politecnico di Milano.

As it has emerged from the previous chapter, preserving the security guarantees

of �rst-order masked software implementations is an open problem. Current ISA-based

methodologies (Section 3.2.2) addressing both architectural and micro-architectural transition-

based leakages, exhibit three shortcomings: performance overhead [She+21b; She+21a],

partial leakage mitigation and no convergence guarantees [SSG17; Tso+23].

With this chapter, we aim to address these drawbacks. We propose an ISA-based

proactive methodology (Section 3.2.2) for the automated generation of �rst-order masked

software implementations resilient to both architectural and micro-architectural transition-

based leakages.

Given an intermediate representation of the masked program, the approach relies on

two code generation algorithms�register allocation and instruction scheduling�to gener-

ate a machine-code implementation while mitigating transition-based leakages. These al-

gorithms mitigate the leakages through a careful assignment of physical registers and code

reorganization. These two operations are driven by an accurate simulation of the micro-

architectural state evolution, allowed by a description of the target micro-architecture's

model we provide. This description encompasses public information concerning both

the micro-architectural resources inducing transition-based leakages and the information

related to the structure of the micro-architecture and the execution latencies of each

instruction. In the unfortunate case where the algorithms cannot mitigate the occurring

39
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leakage, preventing the convergence towards a solution, a �ush mechanism removes the

leakage.

By mitigating the leakages during the machine code generation, we potentially reduce

the performance overhead (shortcoming #1). The employment of an accurate micro-

architectural model not only helps to reduce the performance overhead of the implemen-

tation (shortcoming #1), but also supports a more complete mitigation of the leakages

(shortcoming #2 ). At the same time, with the �ushing mechanism we guarantee the

convergence of the approach towards a leakage-free solution (shortcoming #3), as long as

we verify the mitigation capabilities of the mechanism for the target micro-architecture.

We exemplify the core idea of our mitigation strategy through some use-cases and

provide the rationale supporting it (Section 4.2).

By viewing the register allocation and instruction scheduling (Section 4.3) as opti-

mization problems, we show how to extend existing algorithms to integrate transition-

based leakages as a further problem's constraint (Section 4.4).

We implement our approach in the LLVM Core Libraries (Section 4.3.5, Section 4.5) and

we experimentally evaluate it along two axes: a security evaluation and an overhead eval-

uation (Section 4.6). For these evaluations, carried out on the scalar, in-order pipelined

ARM Cortex-M4 CPU, we generate several implementations of the SIMON128/128 cryp-

tosystem: an unmasked one, a �rst-order masked, a micro-architecturally protected �rst-

order masked and a second-order masked. In the security evaluation, according to the

TVLA methodology, we assess the information leaked by each implementation. In the

overhead evaluation, we assess the impact of our approach in terms of execution time,

code size and required randomness, measuring them on the SIMON128/128 implemen-

tations.

At the time of writing, the implementation of our approach does not allow fair compar-

isons with the second-order masked implementation and the other ISA-based methodolo-

gies. Yet, we show that our automated method contributes to the mitigation of leakages

while nullifying the overhead on the required randomness; a factor with a signi�cant

impact on the implementation's execution time (Section 4.6.3).

4.1 Notation

We start the chapter by extending the notation presented in Section 2.1. We use these ex-

tended notation to describe the algorithms presented in the following sections. Table 4.1

reports the notation in compact form.

With the capital letter Q, we refer to a generic queue of elements. With the capital

letter P , we refer to a generic program. For simplicity, we model a program as a queue
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Table 4.1: Notation summary for Chapter 4.

Notation Meaning

Q Queue
P Program
M Association (or map)
↦ Left-to-right association operator
[⋅] Access operator for generic map M
[] Empty queue or map
∅ Empty set
← Assignment, enqueue, dequeue, set insertion and extraction operator
⋃ Union of two sets or two queues
⋂ Intersection of two sets
a A generic element
=,≠ Equality/inequality boolean predicate
� No value assigned, e.g., a = �
fun A procedure named fun
P A generic program

of instructions. With the capital letter M , we refer to an association (or map) A ↦ B
between two generic sets, with the direction of the map �owing from left to right.

The notation [⋅] represents the access operator for a map M . With [] we refer to the
empty queue or the empty map. With ∅, we refer to the empty set. The ← represents the

assignment operator. When a queue appears on the left-hand side (right-hand side) of

←, this latter also enqueues (dequeues) an element in (from) the queue. In case left- and

right-hand sides are both queues, ← copies in the queue on the left the content of the one

on the right; the queue on the right empties out. When a set appears on the left-hand

side (right-hand side) of ←, this latter also inserts (extracts) an element in (from) the

set. The ⋃ (⋂) represents the union (intersection) between two sets. When we apply ⋃
to queues, it creates a set containing the elements of the involved queues.

With an small italic letter we refer to a generic element. For instance, we use i to refer

to a generic instruction. If not explicitly stated, the context de�nes the actual element

represented by this notation.

The = and ≠ represent, respectively, the equality and inequality boolean predicate.

For a map M , given an element a, we signal the absence of a mapped value with �, i.e.,
M[a] = �. We use the same notation to indicate that a generic element a has no value

assigned, i.e., a = �.
Finally, we use the truetype font family to refer to a procedure (or function). Within

an algorithm, the name of a procedure implicitly triggers its execution at that point of



42
CHAPTER 4. AN AUTOMATED METHODOLOGY TO MITIGATE

TRANSITION-BASED LEAKAGES AT SOFTWARE LEVEL

the program.

4.2 Transition-based Leakage Mitigation

When we talk about transition-based leakage mitigation, we mean the act of reducing or

suppressing the impact that such type of leakage has on implementations proven secure

under the t-probing model. Under the t-probing model, we assume that the masked

implementation leaks a noise-free function of the handled input, intermediate and output

variables, while the attacker can observe (at most) t of such variables.

Before presenting our methodology, we provide some examples to explain how instruc-

tion scheduling and register allocation algorithms can mitigate transition-based leakages.

For each example, we illustrate how (1) a di�erent register allocation or code organiza-

tion and (2) a software-based �ush mechanism can mitigate the observed transition-based

leakage. The following list of examples is not exhaustive, covering only a subset of the

known sources of leakage. Without lack of generalization, we report each example in the

ARM Thumb-2 assembly language. In each example, we manipulate some shares of two

�rst-order masked intermediate variables X and Y . We denote these shares with X0,X1

for X, and Y0,Y1 for Y . In some of these examples, we also handle values statistically

independent of X and Y . We refer to them with rnd0, rnd1 and rnd2. In the rest of

this section, we assume the case of a scalar, in-order pipelined micro-architecture.

We conclude the section by providing a rationale behind the correctness (i.e., we

mitigate the leakage) of the adopted mitigation strategies.

Cautionary note Although the principle behind our mitigation approach holds in

general, its actual materialization strictly depends on the target micro-architecture. By

consequence, in order to provide a sound implementation of our methodology, the miti-

gation applied via register allocation, instruction scheduling and the �ushing mechanism

must undergo a thorough security evaluation, e.g., according to the methodology of Mar-

shall et al. [MPW22] or de Grandmaison et al. [dHM22].

4.2.1 Architectural Register Overwrite

A typical case of leaking transition stems from the consecutive overwrite of the same

architectural register. Figure 4.1 exempli�es this case. Before this code snippet, the

architectural registers r0, r1 and r2 contain, respectively, the random value rnd0, rnd1

and rnd2. The load instructions at 0x80000000 and 0x80000010 read the two shares

X0,X1 from memory, respectively, and write them in the same register r0. By reusing
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0x80000000  ldr.w r0, [sp, #48] @ r0: rnd0 -> X0

0x8000000c  ldr.w r1, [sp, #52] @ r1: rnd1 -> Y0

0x80000010  ldr.w r0, [sp, #56] @ r0: X0   -> X1

#48
#52
#56

...

...

...
STACK
...

X0
Y0
X1

...
... ...

... ...

INSTRUCTION STREAM

Figure 4.1: Architectural register overwrite.

0x80000000  ldr.w r0, [sp, #48] @ r0: rnd0 -> X0

0x8000000c  ldr.w r1, [sp, #52] @ r1: rnd1 -> Y0

0x80000010  ldr.w r2, [sp, #56] @ r2: rnd2 -> X1

#48
#52
#56

...

...

...
STACK
...

X0
Y0
X1

...
... ...

... ...

INSTRUCTION STREAM

Figure 4.2: Architectural register overwrite�Register reallocation.

0x80000000  ldr.w r0, [sp, #48] @ r0: rnd0 -> X0

0x8000000c  mov.w r0, r1        @ r0: X0 -> rnd1

0x80000010  ldr.w r1, [sp, #52] @ r1: rnd1 -> Y1

#48
#52
#56

...

...
STACK
...

X0
Y0
X1

...
... ...

... ...

INSTRUCTION STREAM

0x80000014  ldr.w r0, [sp, #56] @ r0: rnd1 -> X1
...

Figure 4.3: Architectural register overwrite�Register �ushing.

the same register, we induce a transition-based leakage, which provides information on

the masked variable X.

As depicted in Figure 4.2, a di�erent register allocation�assigning r2 to the load at

address 0x80000010�can mitigate the problem.

In the case such reallocation might not possible, it is possible to �ush the leaking

register. Figure 4.3 exempli�es such case: before storing X1 in register r0, we overwrite

the latter with the random value rnd1 stored in register r1. In this manner, the transition-

based leakage does not involve anymore the two shares, and we successfully prevent

leaking information on X.

4.2.2 Micro-architectural Register Overwrite�Pipeline Registers

In pipelined micro-architectures, another typical example of leaking transition happens

in the registers between the pipeline stages. Figure 4.4 reports a code snippet exhibiting

this case. We assume the following content for the involved architectural registers, before

the execution of the reported snippet: r1 and r2 contain, respectively, the random
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0x80000000  eor.w r0, r1, r2 @ rnd0 ^ rnd1

0x8000000c  and.w r3, r4, r5 @ X0 & Y1     

0x80000010  and.w r6, r7, r8 @ X1 & Y0     

...

...

...
INSTRUCTION STREAM

Figure 4.4: Micro-architectural registers overwrite�Pipeline registers.

0x80000008  and.w r3, r4, r5 @ X0 & Y1     

0x8000000c  eor.w r0, r1, r2 @ rnd0 ^ rnd1 

0x80000010  and.w r6, r7, r8 @ X1 & Y0     
...

...
INSTRUCTION STREAM

Figure 4.5: Micro-architectural registers overwrite�Pipeline registers: instruction
rescheduling.

0x80000000  eor.w r0, r1, r2 @ rnd0 ^ rnd1

0x8000000c  and.w r3, r4, r5 @ X0 & Y1     

0x80000010  and.w r0, r0, r0 @ rnd0 & rnd0 

...

...

...
INSTRUCTION STREAM

0x80000014  and.w r6, r7, r8 @ X1 & Y0     

Figure 4.6: Micro-architectural registers overwrite�Pipeline registers: micro-architectural
registers �ushing.

values rnd0 and rnd1; r4 and r7 contain, respectively, the two shares X0 and X1 of the

variable X; r5 and r8 contain, respectively, the two shares Y1 and Y0 of the variable Y .

Furthermore, we assume that the architectural registers r0, r3 and r6 contain random

values not related to the variables X and Y .

In simple pipelined micro-architectures, the content of input registers at the same

position (for instance, r4 and r7) might be stored in the same pipeline registers (e.g., the

ones associated to ALU's input operands). As such, when executed back-to-back (that

is, one after the other), the two and.w instructions will generate two leaking transitions:

the �rst one due to r4 and r7, the second one due to r5 and r8.

Since the back-to-back execution of the two instructions represents the root cause of

the leaking transition, we can provide a di�erent code organization to remove the leaking

transition. Figure 4.5 provides an example. For the involved architectural registers, we

assume the same initial content reported in the previous example. In this code snippet,

the eor.w instruction, handling random values, is scheduled between the two and.w
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0x80000000  lsr.w r0, r1, #8 @ BS_Reg: rnd0     -> X0[31:8] 

0x8000000c  eor.w r2, r3, r4 @ rnd1 ^ rnd2                  

0x80000010  lsr.w r5, r6, #8 @ BS_Reg: X0[31:8] -> X1[31:8] 

...

...

...
INSTRUCTION STREAM

Figure 4.7: Micro-architectural registers overwrite�Separated data paths.

0x80000000  lsr.w r0, r1, #8 @ BS_Reg: rnd0     -> X0[31:8] 

0x8000000c  eor.w r2, r3, r4 @ rnd1 ^ rnd2                  

0x80000010  lsr.w r5, r2, #8 @ BS_Reg: X0[31:8] -> r2[31:8] 

...

...

...
INSTRUCTION STREAM

0x80000014  lsr.w r5, r6, #8 @ BS_Reg: X0[31:8] -> X1[31:8] 

Figure 4.8: Micro-architectural registers overwrite�Separated data paths: data path
�ushing.

instructions. In this example, we assume that changing the position of the eor.w (1)

does not change the semantics of the program, (2) mitigates the observed transition-

based leakages and (3) it does not originate further transitions-based leakages.

In case one cannot satisfy one of these three conditions, we can get rid of the leakage

by introducing a �ushing instruction between the two leaking instructions. Figure 4.6

exempli�es this strategy. Again, we assume the same initial register content as in the

example of Figure 4.4. In this snippet, between the two leaking and.w, we interleave a

third crafted and.w instruction, which handles random values. In this particular example,

the random values are sequentially stored in register r0. To be e�ective, there must be

at least one random value available, and the strategy must not change the program

semantics (that is, the crafted instruction must write the results in an unused register).

In the example of Figure 4.5, we have employed an eor.w instruction to mitigate the

transition-based leakage generated by the and.w. As we will show in the next example,

under the hood the micro-architecture might employ two di�erent data paths for the

two instructions, implying partial mitigation of the leakage. Thus, in general, to miti-

gate the transition-based leakages, we must apply the �ushing mechanism employing an

instruction using the same data path; conservatively, the very same instruction.

4.2.3 Micro-architectural Register Overwrite�Separated Data paths

A further example of micro-architecture-induced leaking transition stems from the over-

write of registers hosted in di�erent data paths. Let us assume that shift instructions
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employ a distinct data path with respect to all the other instructions. This data path

hosts a dedicated functional unit, called barrel-shifter ; furthermore, this unit temporarily

saves its output in a dedicated register. Figure 4.7 reports an example: two logical shift

right instructions, interleaved by an eor.w instruction. We assume the following con-

tent for the involved (micro-)architectural registers, before the execution of the snippet:

BS_Reg, r3 and r4 contain, respectively, the random values rnd0, rnd1 and rnd2; r1

and r6 contain, respectively, the two shares X0 and X1 of the variable X; r0, r2 and

r5 contain random values unrelated to the variable X. When executed, we observe a

transition-based leakage occurring from the BS_Reg update, which locates on a data path

separated from the one used by the eor.w instruction.

As for the pipeline register case, we can mitigate the problem by rescheduling the

code or crafting a �ushing instruction. In both cases, the �ushing instruction must (1)

operate on random inputs and (2) employ (at least) all the data paths of the instruction

originating the leakage (Figure 4.8).

4.2.4 Rationale Behind the Mitigation Strategies

With the previous examples, we have exempli�ed potential occurrences of transition-

based leakages and the approaches we can employ to mitigate them on a scalar, in-order,

potentially pipelined micro-architecture. One might question the correctness of such

strategies, where with correctness we intend that the strategy mitigates the targeted

transition-based leakage. Whereas the mitigation carried out by the register allocation

can be easily understood (i.e., use two distinct architectural registers to store two shares

Xi,Xj), the case of mitigation by means of instruction scheduling and �ushing requires

a bit more of elaboration. Before proving the correctness of these two last strategies, we

put forward some concepts for the proof.

(Micro-)Architectural State We observe that a CPU contains several resources that

preserve a state across several clock cycles, such as architectural and micro-architectural

registers. We refer to such resources as memory elements (or resources), which we denote

with m. With JmK, we refer to the (memory) state (or content) of a memory resource

m.

Such memory elements can be visible from the ISA or not; respectively, we de�ne

them as architectural and micro-architectural memory resources. Hence, we can see the

architecture of a CPU as the set of its architectural memory elements. In the same vein,

we can see a CPU micro-architecture as the set of the CPU's micro-architectural memory

resources.
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Since each memory element carries a state, so does a set of memory elements. Thus,

we informally de�ne a CPU's architectural state as the ensemble of the states of each mem-

ory element in the CPU's architecture. Likewise, we de�ne a CPU's micro-architectural

state as the set of states of each memory element in the CPU's micro-architecture.

Instructions and (Micro-)Architectural State Modi�cation We observe that,

when processed, an instruction modi�es a (non-strict) subset of the architectural and

micro-architectural resources of the CPU. For instance, on the ARM Cortex-M4 CPU,

the Thumb-2 instruction eor.w (1) modi�es the content of an architectural register to save

the result and (2) modi�es some micro-architectural registers devoted to temporarily store

its input operands or the intermediate results obtained by the processing of these input

operands. Therefore, we assign to each instruction i in an ISA a set of architectural and

micro-architectural memory resources that it modi�es when executed.

(Micro-)Architectural Transition-based Leakage A transition-based leakage might

stem from the change of state of an architectural memory resource (architecture-induced),

from a micro-architectural memory resource (micro-architecture-induced), or from both.

We remark that a (micro-)architectural transition-based leakage can be traced back to

the processing of a speci�c instruction i: this leakage originates from the modi�cation

of some memory resource which state, in turns, gets modi�ed by an instruction i. For

instance, considering the example in Figure 4.7, the micro-architecture-induced leakage

stems from the change of state of the barrel-shifter's output register; a change caused by

the lsr.w instruction at address 0x80000010.

Flushing: a Generic Approach to Mitigate Transition-based Leakages To

mitigate the security degradation implied by transition-based leakages, one needs to

forbid the involvement of shares in such phenomena. In the rest of this section, otherwise

stated, when we refer to a transition-based leakage, we imply the involvement of shares

masking the same variable.

Recalling that a transition-based leakage originates from a change of state of a mem-

ory resource, the generic strategy we employ�the �ushing�is to cause a change in the

(micro-)architectural state by means of a random or constant value. That is, considering

a generic memory resource m, two shares Xi,Xj and a random or constant value $, we

cause the following transitions of state (⇒):

JmK =Xi ⇒ JmK = $⇒ JmK =Xj .

As such, each transition does not involve the two shares.
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In practice, we apply such strategy by means of some sequence of instructions, each

with random or constant input operands, which modi�es the set of (micro-)architectural

memory resources originating the transition-based leakage.

To show that this �ushing approach is correct, we need to prove that (1) we modify all

the (micro-)architectural memory resources from which the leakage stems and (2) show

that the modi�cation by a random or constant value is a su�cient condition to mitigate

the transition-based leakage.

As stated at the beginning of this section, the principle behind �ushing applies in

general. Yet, in the following elaborations we strictly consider scalar, in-order, potentially

pipelined architectures.

Concerning the �rst point, we observe that when the CPU starts the execution of an

instruction i, it modi�es the set of (micro-)architectural memory resources assigned to i.

Hence, by executing some sequence of instructions modifying (at least) the same set of

(micro-)architectural memory resources employed by i, we are sure to have some impact

on the transition-based leakages. Note that such instruction sequence must be executed

before i to prevent all the occurring transition-based leakages.

Concerning the second point, we can prove it by contradiction.

Theorem 4.1 (Security Order Preservation). Let P be a (t + 1)-order masked

implementation proven secure at order t in the t-probing model. Then, P is secure at

order t in the t-probing model extended to transition-based leakages, if we mitigate all the

transition-based leakages by �ushing the memory resources originating the information

leakage.

Proof. The proof works by contradiction: we mitigate all the transition-based leakages

occurring with the execution of P by a random or constant value $, but P is (t−k) order
secure in the t-probing model extended with a transition-based leakage model, where

0 < k < t.
Let us represent the i-th observation, performed by an attacker, with oi. Each obser-

vation oi provides information on one of the following elements:

{($,Xi),Xi,$}

where Xi represents a share of a variable X of interest for the attacker, and $ repre-

sents a random or constant value independent on X, such that, given a strict subset of

shares S = {Xi}:

$ ∪ S ≁X.
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The element ($,Xi) represents the information got by a transition-based leakage

involving $ andXi. Since we mitigate all transition-based leakages by $, the case (Xi,Xj)
cannot occur.

By assumption, an attacker can observe O = {oi} ∧ ∣O∣ ≤ t − k to mount a t − k or-

der attack to recover information on X. We remark that each observation oi provides

information on (at most) one share of X; thus, the set of observations O provides infor-

mation on (at most) t − k shares. This is a contradiction: recalling that P is secure in

the t-probing model, we have that O ≁X.

Thus, when �ushing the memory resources originating the transition-based leakages,

P is secure also in the t-probing model extended to transition-based leakages.

Equivalence of Flushing and Instruction Scheduling based Mitigation We

remark that the mitigation carried out by the instruction scheduler is equivalent to the

�ushing mechanism. This can be easily understood by observing that, to mitigate the

micro-architecture-induced leakages, the scheduler has to select an instruction:

1. which employs those resources leaking information

2. the instruction's input operands do not induce other transition-based leakages

The �ushing mechanism needs to satisfy the same requirements. As such, we can see

the instruction selected by the scheduler as a �ushing instruction already available in the

program to protect; thus, we can apply the same reasoning to prove the correctness of

the instruction scheduling based mitigation.

4.3 Compilers and Compilation

In the previous section, we illustrated how register allocation and code reorganization

can mitigate transition-based leakages stemming from a CPU (micro-)architecture. In

modern compilers, we can �nd algorithms designed speci�cally to handle these two tasks.

With this section, we overview the general organization of such tools and the process of

compiling the high-level speci�cation of a program into a low-level one, amenable for

the execution on a given target machine. We conclude by describing the code generation

module provided by the LLVM core libraries, a set of libraries through which we provide an

implementation of our automated methodology. Speci�cally, we describe the enhanced

instruction scheduling and register allocation algorithms.
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Figure 4.9: Compiler organization and compilation process.

4.3.1 Compiler Organization

In its simplest form, we de�ne a compiler as a tool for translating a program P , written in

some high-level language, into a semantically equivalent program P ∗ expressed in terms

of a low-level language, such that it is amenable for the execution on some execution

device.

Modern compilers do not take only the challenge of language translation, but also

embed several steps (or passes) to optimize the translated program. These steps work on

an Intermediate Representation (IR) of the original high-level speci�cation. Usually, the

IR lifts the high-level speci�cation, moving language-speci�c constructs to abstract ones.

In such representation, each program's variables is assigned to a virtual representation

of a physical registers, which we call virtual register. Working on the IR version of a

program has a twofold advantage: �rst, the compiler can handle programs described in

di�erent high-level languages; second, it allows architecture-agnostic code optimizations.

Figure 4.9 provides a high-level overview of the modular organization of a modern

compiler. The Front(-End) module translates the high-level speci�cation to an IR. The

Middle(-End) module carries out several target-independent optimizations on the IR. Fi-

nally, the Back(-End) module translates the IR to an IR closer the low-level language sup-

ported by the target machine, and runs target-dependent optimization on this low-level

IR. Eventually, the compiler's back-end produces the optimized low-level speci�cation of

the input program P .

The back-end module embeds several passes to optimize the IR input. Among these,

we �nd the code generation passes. A code generation step �rst converts the input IR

to an instance of the optimization problem it tries to solve. Then, it goes through the

solving process, until it converges to a solution. We remark that, in most cases, these

optimization problems belong to the class of NP-complete problems. As such, most of the

code generation algorithms implement heuristic approaches, which provide, in general,

suboptimal solutions.

Among these algorithms, we typically �nd Register Allocation and Instruction Schedul-

ing. For brevity, we will refer to these two algorithms also as allocator and scheduler,

respectively. Before detailing these two algorithms, we overview a particular IR form
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SSA IR CODEIR CODE

z    <- bitw_xor(x_01,   r)

...

...

x_10 <- bitw_and(a_1,  b_0)
z    <- bitw_xor(z,   x_10)

SSA

CONVERSION

z_0  <- bitw_xor(x_01,   r)

...

x_10 <- bitw_and(a_1,  b_0)
z    <- bitw_xor(z_0, x_10)

...

Figure 4.10: Conversion to SSA form of an example code.

Figure 4.11: Liveness intervals of variables in an example code.

called Static Single-Assignment (SSA) form, fundamental for the e�ciency of several

code optimizations.

4.3.2 Static Single-Assignment Form

To simplify the application of a large class of code optimizations, modern optimizing

compilers rely on an IR form known as SSA form [MP02]. Under an SSA-based IR, each

variable de�nition is unique; in other words, rede�nitions of a variable are forbidden.

By consequence, each virtual register can be de�ned only once. Figure 4.10 reports a

simple example of conversion of a piece of IR code from non-SSA to SSA form. As

depicted in the left listing, the code snippet de�nes the variable z twice. In this example,

when converting the code snippet to SSA form, we change the �rst de�nition of z to the

de�nition of a new variable z_0. To preserve the semantics of the program, we replace

all the uses of z, prior to its rede�nition, with the use of z_0. The conversion of code

to SSA involves the handling of more complex cases (e.g., loops), whose description we

omit as not fundamental for the remainder of the chapter. In the rest of the chapter,

we refer to the SSA form only to explain certain simpli�cations or passages in the text.

Otherwise stated, we will always refer to IR code in SSA form.

4.3.3 Register Allocation

In its simplest form, the register allocation pass maps (also assigns or allocates) the

intermediate variables employed by the program to the �nite set of architectural physical
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registers available on the target architecture. In general, a register allocation algorithm

works on the concept of liveness interval of a variable.

Let us consider an enumeration of all the instruction in a generic program, such that

we uniquely identify an instruction by the positive integer number associated. Each

number identi�es a point in the program.

Let us consider a variable X and two instructions idef, iuse de�ning and using X,

respectively, and their enumeration idef ↦ h, iuse ↦ k. Informally, the liveness interval of

X represents the interval of points l = [h, k) in the program such that iuse represents the

last use of X. We recall that we consider the IR input in SSA form. Thus, between idef

and iuse can only appear instructions using X.

Figure 4.11 reports the liveness intervals on an example code. On the left side of the

listing, we report a hypothetical enumeration of the example code. On the right of the

�gure, we report a graphical representation of the liveness intervals for each intermediate

variable in the example code. For instance, we associate to the intermediate variable

tmp the liveness interval [48,51). In the rest of the chapter, we employ a left-closed,

right-opened interval notation to denote a liveness interval.

We say that two variables X and Y interfere if and only if their liveness intervals

overlap; that is, the two variables need a physical register at the same time. We call this

overlap a liveness interference. From the example in Figure 4.11, the variables tmp and

x_10 interfere as their liveness intervals overlap. Also, given two intervals l = [i, j), l′ =
[h, k), l precedes l′ (<) if and only if j ≤ h.

With the notions of liveness interval and interference, the register allocation algo-

rithm looks for an allocation of the physical registers which does not raise any liveness

interference. Due to the di�culty of the underlying optimization problem [Cha+81],

existing algorithms rely on heuristic approaches. These heuristics do not guarantee the

identi�cation of a solution free of interferences. In such worst case, they put in place a

spilling procedure. To spill an already-allocated variable means to deallocate it from its

physical register and temporally store it in memory. Such procedure makes a physical

register available to another live variable. The problem with spilling is that it implies the

insertion of code (1) to write to memory (spill code) and (2) to read from memory (reload

code) before any instruction using the spilled variable. Spill and reload code potentially

imply an overhead. Thus, register allocation algorithms usually attempt to minimize the

spilling of frequently used variables.

4.3.4 Instruction Scheduling

The instruction scheduling pass modi�es the order of the instructions of the IR input,

such that the reorganized code minimizes (or maximizes) a given cost metric. The exe-
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cution time of a piece of code represents a typical cost metric the instruction scheduler

attempts to minimize. At the same time, the instruction scheduler has to respect some

constraints during the reorganization; in particular, it must avoid any reorganization that

modi�es the semantics of the program. Usually, instruction scheduling algorithms resort

on a description of the target micro-architecture, which provides information to reach a

solution near the optimal one. As an example, when we want to minimize the execution

time, the micro-architecture description might provide information about the execution

time of each instruction, about the functional units available and the multiple-issue ca-

pability of the micro-architecture. Instruction scheduling can take place both before

and after register allocation. In the former case, we talk about Pre-Register-Allocation

(Pre-RA) instruction scheduling; in the latter, we talk about Post-Register-Allocation

(Post-RA) instruction scheduling. The Pre-RA instruction scheduling works on the IR

of the program in SSA form, in which intermediate variables do not have an associated

physical register. Hence, we reduce the risk of violating the semantics of the program,

since the algorithm needs only to preserve the de�nition order of each variable. On the

other hand, the Post-RA instruction scheduling works on programs with allocated phys-

ical registers. As such, it has to preserve the de�nition order of each physical registers.

By consequence, the Pre-RA version has more freedom to reorganize the code. Still, the

Post-RA version can reduce the overhead introduced by the register allocator due to spill

code.

4.3.5 Code Generation in the LLVM Core Libraries

The LLVM Core Libraries (from now on, simply LLVM) is a set of algorithms and data struc-

tures for the development of compilers according to the modular organization described

in Section 4.3. In the scope of this thesis, we are interested in the code generation tools

provided by LLVM; in particular, in the instruction scheduling and register allocation al-

gorithms. Before describing the instruction scheduling and register allocation algorithms

we enhance, we overview the code generation infrastructure that LLVM provides.

LLVM provides a Target-Independent code generation infrastructure: the algorithms

operate in a target-independent fashion, but rely on an interface to query the infras-

tructure for target-speci�c information. As an example, a particular code generation

algorithm might require to know whether a given instruction reads or writes to memory.

Thanks to the target-independent interface, the algorithm can use a single function to

retrieve the information, whatever is the target machine for which we generate the code.

LLVM encodes the target-speci�c information, stored in Target Description (.td) �les,

by means of a domain-speci�c language implemented through the TableGen language.

For the register allocation, dedicated .td �les encode information concerning the available
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LLVM-IR CODE

%tmp  = i32 xor %x_01, %r

%x_01 = i32 and %a_0,  %b_1

...

...

%x_10 = i32 and %a_1,  %b_0

%z    = i32 xor %tmp,  %x_10

%a_0 %b_1

%x_01%r

%a_1

%x_10

%b_0

%z

%tmp

DATA-DEPENDECY GRAPH

Figure 4.12: Data-dependence graph of an example LLVM-IR code.

physical registers, the physical register banks and calling conventions. For the instruction

scheduling, dedicated .td �les contain information concerning the micro-architecture:

number of instructions that can be executed in parallel, misprediction penalty, hosted

functional units (with execution latency and whether they are pipelined or not) and

presence of forwarding paths. Furthermore, these �les maps each instruction i to a

subset of micro-architectural resources Ri = Rin
i ∪ Rout

i , where Rin
i and Rout

i contain the

resources employed by i's inputs and output, respectively.

The .td �les are processed and converted into C++ �les, which the target-independent

interface queries when asked.

Now, we describe the instruction scheduling and register allocation algorithms pro-

vided by LLVM. Speci�cally, we consider the algorithms that LLVM version 9.0.1 provides

(commit a10a70238ac) and on which we implement our automated approach. This ver-

sion of LLVM provides one instruction scheduling algorithm, the Machine Scheduler (MS),

and four di�erent register allocation algorithms: the fast, the basic, the greedy and the

PBQP allocators. Since we primarily aim to evaluate the methodology from a secu-

rity point-of-view, we decide to enhance the simple allocation strategy which the Basic

Register Allocator (BasicRA) implements. We remark that LLVM supports Pre-Register-

Allocation and a Post-Register-Allocation instruction scheduling phases, both relying on

the same MS algorithm.

Machine Scheduler (MS)

The MS works on a Direct Acyclic Graph (DAG) representation of the input program

P . This graph�the Data-Dependence Graph (DDG)�encodes the data dependencies

between variables: a node represents a variable, an edge the data dependency between

two variables. Since an instruction computes a variable in the DDG, a node equivalently

represents an instruction and an edge the data dependency between two instructions.

This algorithm performs a micro-architecture-accurate scheduling of the instructions:

it simulates and tracks the evolution of the micro-architectural state. With micro-
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Algorithm 2: Machine Scheduler
Input: P , program to schedule
Data: Mµ, micro-architectural state
Output: P ∗, scheduled program

1 begin

2 QReady ← []; QPending ← []; P ∗ ← [];
3 for i← P do // Initialize ready queue

4 if inputsReady(i,Mµ) then

5 QReady ← i

6 else

7 P ∗ ← i

8 while QReady ≠ [] do
9 c← pickBest(QReady,Mµ) ; // Get best candidate

10 P ∗ ← c ; // Schedule best candidate

11 QPending ← successors(c);
12 QTmp ← QPending ; // Copy to temporary queue

13 for i← QTmp do // Release ready instructions

14 if inputsReady(i,Mµ) then

15 QReady ← i

16 else

17 QPending ← i

18 return P ∗;

architectural state, we refer to the state of each micro-architectural feature, for instance,

if the Arithmetic-Logic Unit (the feature) is busy and in how many clock cycles it will

be freed (the state). To schedule an instruction, the algorithm checks the data depen-

dencies in the DDG, and it veri�es if the involved micro-architectural features computed

the input operands.

The algorithm classi�es a DDG node (thus, the variables) as:

Ready: the algorithm scheduled all the parent nodes and they have been computed

Pending: the algorithm either (1) scheduled at least one parent node, but not all of

them, or (2) scheduled all the parent nodes, but some of them have still to be

computed

Unvisited: the algorithm didn't schedule any of the parent nodes

Since we can associate a variable to the instruction computing it, we classify instructions

in the same way.
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Figure 4.12 reports the DDG of an LLVM-IR example code. We report ready, pending

and unvisited nodes in green, red and gray, respectively.

Algorithm 2 reports the pseudocode description of the MS algorithm. Internally, the

algorithm tracks ready and pending instructions by means of the QReady and QPending

queues, respectively. The algorithm tracks the evolution of the micro-architectural state

with the map Mµ. This map associates micro-architectural resources to their state. The

scheduler gets the set of available resources in the micro-architecture by querying the

target-independent code generation interface. At the beginning, the algorithm marks

each micro-architectural resource as free.

The algorithm resorts on three helper procedures:

inputsReady: given an instruction i and a micro-architectural stateMµ, it checks whether

all i's input operands have been scheduled and computed or not.

pickBest: given a queue of instructions Q and a micro-architectural state Mµ, it re-

turns the best instruction to schedule, according to some internal heuristics. These

heuristics take into account the current micro-architectural state Mµ and its poten-

tial evolution. The procedure simulates the evolution of Mµ following the micro-

architectural description accessible through the Target-Independent interface.

successors: given an instruction i, it returns the set of instructions depending on i's

output.

At the beginning, the algorithm scans the DDG and populates QReady with ready

instructions (Line 3�7). We remark that, since working on a queue-based representation

of the program P , by dequeuing and re-enqueueing we preserve the original program's

order (Line 7). Then, the algorithm starts the reorganization of the input program

P (Line 8�17). The reorganization happens by selecting the best instruction c from

QReady (Line 9), which the scheduler enqueues in P ∗, the scheduled program (Line 10).

Once moved the successors of c to QPending (Line 12), the scheduler checks whether

any new instruction changed from pending to ready state and moves them to the ready

queue QReady (Line 13�17). Eventually, the scheduler returns the scheduled program P ∗

(Line 18).

Basic Register Allocation (BasicRA)

The BasicRA implements an enhanced version of the linear scan algorithm [MP02].

Roughly, the BasicRA prioritizes the allocation of physical registers to liveness intervals

with the highest spill weight. The spill weight quanti�es the impact on the execution

time when spilling a given variable. In case a liveness interference occurs, the algorithm
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Algorithm 3: Basic Register Allocator (BasicRA)
Input: QLIs, queue of live intervals
Data: MLI,W, map liveness intervals to spill weights

QPhysRegs, list of physical registers
Output: MLI,PhysRegs, map live intervals to physical registers

1 begin

2 MPhysReg,LIs ← []; MLI,PhysRegs ← [];
3 for l ← QLIs do

4 LPhysCands ← [];
5 for p← QPhysRegs do // Assign PhysReg or track it for spilling

6 if collectInterfs(MPhysReg,LIs[p],l) = ∅ then

7 assign(MPhysReg,LIs,MLI,PhysRegs, p, l);
8 break;

9 else LPhysCands ← p ;

10 if MLI,PhysRegs[l] ≠ � then
11 continue ; // Register assigned

12 for c← LPhysCands do // Spill cheaper interval

13 QEvict ← []; canEvict← true;
14 for l′ ← collectInterfs(MPhysReg,LIs[c],l) do

15 if MLI,W[l′] >MLI,W[l] then
16 canEvict← false;
17 break;

18 QEvict ← l′;

19 if canEvict then
20 for e← QEvict do

21 QLIs ← evict(MPhysReg,LIs,MLI,PhysRegs, c, e);
22 break;

23 assign(MPhysReg,LIs,MLI,PhysRegs, c, l);

24 if MLI,PhysRegs[l] ≠ � then
25 continue ; // Register assigned

26 QLIs ← spill(l) ; // Spill analyzed interval

27 return MLI,PhysRegs;

applies a spilling procedure. For completeness, we remark that this spilling procedure

not only inserts spill and reload code, but also splits the spilled liveness interval. Indeed,

we recall that the BasicRA works on an SSA form of the IR.

To understand why, let us consider a generic liveness interval l = [i, j), where i < j.
When adding spill code, the allocator terminates the original liveness interval at a point

i < h < j in the program, creating a new liveness interval l0 = [i, h). When inserting

reload code, the allocator de�nes a new variable at a point h ≤ k < j, with a new liveness
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interval associated l1 = [k, j). As such, spilling l implies splitting it in two new intervals

l0 and l1. We refer to this operation with the term splitting. Once created, the new

intervals get the highest possible spill weight. In this way, the allocator will allocate

them once visited. Yet, for the sake of simplicity, we just refer to spilling and reloading

the original interval l.

Algorithm 3 reports the pseudocode description of the BasicRA algorithm. Internally,

the algorithm employs three maps: MPhysReg,LIs, MLI,PhysRegs and MLI,W. MPhysReg,LIs

tracks the set of liveness intervals associated to a given physical register. MLI,PhysRegs

tracks the set of physical registers associated to a given liveness interval. MLI,W asso-

ciates each liveness interval to its spill weight. At the beginning, the allocator implicitly

computes the spill weight for each liveness interval and populates the map MLI,W. Also,

the allocator implicitly populates the queue QPhysRegs of available architectural physical

registers on the target architecture by querying the target-independent code generation

interface.

The algorithm resorts on four helper procedures:

assign: given a physical register p, a liveness interval l and the maps MPhysReg,LIs and

MLI,PhysRegs, it records the assignment of p to l in the two maps.

collectInterfs: given the set MPhysReg,LIs[p] of liveness intervals associated to the

physical register p and a liveness interval l, it returns the set of liveness intervals

assigned to p and interfering with l.

spill: given a liveness interval l, it inserts instructions to spill and reload the interval

l. The allocator enqueues in QLIs the intervals obtained from splitting l.

evict: given a physical register p, a liveness interval l and the maps MPhysReg,LIs,

MLI,PhysRegs, it removes the allocation of p to l from the two maps. Then, it

spills l.

The BasicRA proceeds in three phases. At �rst, the BasicRA veri�es whether there

is a physical register p available to the currently analyzed liveness interval l (Line 5�9).

If it �nds such p, it assigns p to l (Line 7) and proceeds with the visit of a new interval

(Line 10�11). The BasicRA tracks, for later use, the physical registers which do not

satisfy the above condition (Line 9).

In case the �rst phase does not end with an allocation, the BasicRA proceeds with

the second phase (Line 12�23). The BasicRA checks if all intervals l′ assigned to p and

interfering with l can be spilled and have less spill weight than l (Line 12�18). In the

positive case, it evicts all the interfering intervals, assigns l to p and proceeds with the

visit of a new interval (Line 24�25). Otherwise, it spills l (Line 26).



4.4. ENHANCING CODE-GENERATION MODULES 59

4.4 Enhancing Code-Generation Modules

In this section, we provide a description of the general approach to enhance code gen-

eration algorithms, of the IR annotation to support the enhancement and the enhanced

version of the MS and BasicRA algorithms.

4.4.1 General Approach

In Section 4.2, we exempli�ed how simple strategies can e�ectively address micro-architecture-

induced transition-based leakages; for instance, a di�erent assignment of physical registers

and a di�erent organization of the instruction order. We can take advantage of the reg-

ister allocation and instruction scheduling code generation algorithms to automate the

application of these mitigation strategies.

As stated at the beginning of this chapter, our approach enhances existing algorithms

with leakage-awareness. This awareness materializes as an additional constraint to the

optimization problem that the code generation algorithm attempts to solve.

In essence, during the selection of an intermediate solution, the code generation algo-

rithm also checks whether the candidate solution induces some leaking transitions; if not,

the algorithm accepts the candidate solution and moves on in the process. Otherwise, it

looks for another non-leaking candidate solution.

The additional constraint potentially reduces the set of available intermediate solu-

tions; in the worst case, the solution set empties out. Such unfortunate case implies the

irrevocable interruption of the whole code generation process. To solve the situation, the

algorithm carries out a �ush of the micro-architectural state. This operation acts on the

state of the micro-architecture, removing the transition-based leakages that prevent the

selection of an intermediate solution. Since we are presenting an ISA-based approach

(Section 3.2.2), we develop the �ushing procedure as an instruction sequence which acts

on the micro-architectural state. To select solutions which satisfy the leakage constraint,

the code generation algorithm requires a model of the (micro-)architecture encompassing

leakage-related information. In the case of a register allocation algorithm, such model

speci�es which architectural register leaks according to a transition-based model. In the

case of an instruction scheduler algorithm, the model speci�es the micro-architectural

features leaking according to a transition-based model.

Among the possible strategies (e.g., act on the whole micro-architectural state), we

opt for a minimal �ushing policy: the code generation algorithm �ushes the smallest

subset of the micro-architectural state. Such choice is driven by performance reasons:

minimizing the part of the state to change, we potentially minimize the number of in-

structions composing the �ush mechanism which, in turns, reduces the performance
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overhead.

As we have already stated in Section 4.2, the correctness of the mitigation approaches

strictly depends on the micro-architecture. The mechanisms we propose and implement

are valid for our scope: scalar, in-order, potentially pipelined architectures.

The last ingredient our methodology needs is a piece of information that the code

generation algorithms can employ to identify the occurrence of a transition-based leakage.

We provide this information by annotating (or tagging) all the intermediate variables in

the input IR with encoding tags, which we describe in the next section.

4.4.2 Intermediate Value Tagging

As stated at the end of the previous section, to pursue the generation of a leakage-

free program (goal), the code generation algorithm requires detecting whether a given

intermediate solution to the optimization problem (for instance, the assignment of a

physical register to a liveness interval) might induce a transition-based leakage or not

(requirement #1 ). Moreover, we must ensure that no false negative (i.e., an intermediate

solution induces an information leakage, although the algorithm does not detect it) can

occur (requirement #2 ).

Forbidding false positives (i.e., the algorithm detects an intermediate solution as

leaking, although it does not) is not a necessary requirement for our goal: the algorithm

would put in place a strategy to avoid a solution which does not induce any security

degradation. In the worst case, it simply increases the cost (e.g., the execution time) of

the protected implementation.

To satisfy the �rst and second requirement, the code generation algorithm must:

1. uniquely identify each share in the masked program

2. uniquely identify each random variable

3. know the set of shares an intermediate variable depends on

4. know the set of random variables an intermediate variable depends on

5. put in relation intermediate variables whose recombination leaks information

In the following paragraphs, we describe the solution we employ to address these �ve

points.

We remind that we target the protection of software implementations masked via

�rst-order boolean masking. Without loss of generality, we assume to deal only with

unary and binary functions.
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Tracking shares and share dependencies In order to satisfy the �rst four points,

we enrich the IR input with a piece of information called Encoding Tag (ETag):

De�nition 4.1 (Enconding Tag). A pair ⟨e, s⟩ ∈ N × (N ∪ {�}), where e uniquely

identi�es the encoding, and s uniquely identi�es the share within the given encoding.

Now, we can describe how we track share dependencies. We associate (tag) to each

instruction (thus, to each computed intermediate variable V in the program) two sets EV

and FV of ETags. The �rst set tracks all the input shares and random variables on which

a variable depends on. The second set only tracks the input shares and random variables

with uniform statistical distribution. Implicitly, a non-empty FV indicates that V has a

statistical distribution independent on any secret. As we will see later, we require such

redundancy in order to avoid false negative cases.

Rule #1 (Input Share Tagging): for each share Xi:

Xi ↦ EXi
= FXi

= {⟨eX , i⟩}

where eX identi�es the encoding of the variable X, and i the share within the

enconding.

Rule #2 (Random Variable Tagging): for each random variable R:

R ↦ ER = FR = {⟨eR,�⟩}

where eR represents a brand-new encoding identi�er

Rule #3 (Tags Propagation): for each intermediate variable V = f(X,Y ):

V ↦ EV = EX ∪EY ,FV =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(FX ∪ FY ) ∖ (FX ∩ FY ) , f is the xor function,

∅ , otherwise.

The idea of this rule is to propagate all the dependencies according to the DDG

(union of the E sets), while tracking the random variables that mask any statistical

dependency on any of the masked variables. In case f is the xor function, we

remove only the common random variables. Otherwise, we empty the set FV . This

choice guarantees to prevent any false negative: indeed, in case V comes from a

function f di�erent from the xor, we assume its statistical distribution is not secret-

independent. Admittedly, it is a conservative choice, as the statistical distribution

of V might still be independent on any masked variable. As such, we potentially

increase the number of false positive leakages that the code generation algorithms

mitigate. Since our main concern is to avoid false negative, we leave as a future

work the formalization of a less conservative propagation rule.
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LLVM-IR CODE

%tmp  = i32 xor %x_01, %r

%x_01 = i32 and %a_0,  %b_1

...

...

%x_10 = i32 and %a_1,  %b_0

%z    = i32 xor %tmp,  %x_10

%a_0 %b_1

%r

%z

%x_01

%a_1 %b_0

%tmp

%x_10%x_10

DATA-DEPENDECY GRAPH

Figure 4.13: Example of leakage relation.

Identifying leaking recombinations To address the �fth and last point, upon the

concept of ETag we de�ne a leakage relation between intermediate variables. The code

generation algorithms employ this relation to determine whether an intermediate solution

induces an information-leaking recombination.

De�nition 4.2 (Leakage Relation). Let us consider the set V of intermediate values

appearing in a program P . We de�ne the relation Rleak such that:

Rleak ≜ {(X,Y ) ∈ V ×V ∣ (((FX ∖ (FX ∩EY )) ∪ (FY ∖ (FY ∩EX))) = ∅)
∧

∃ ⟨eA, sA⟩ ∈ EX , ⟨eB, sB⟩ ∈ EY ∶ eA = eB ∧ sA ≠ sB}.

In other words, two intermediate variablesX and Y leak if there is no random variable

on which only X or only Y depends and X and Y depend on two shares of the same

encoding.

Tagging: a SecMult-based example To illustrate the employment of this informa-

tion and the tagging process, let us consider the example depicted in Figure 4.13. In this

example, we report the DDG of a (partial) LLVM-IR implementation of the SecMult gad-

get (Algorithm 1, Section 2.3). When operating on this code snippet, the code generation

algorithm has to avoid the recombination of the following intermediate variables:

(%a_0,%a_1), (%a_0,%x_10), (%a_1,%x_01)
(%b_0,%b_1), (%b_0,%x_01), (%b_1,%x_10),
(%x_01,%x_10), (%r,%z)

Hence, we can put in relation the variables that leak when recombined. The DDG in

Figure 4.13 reports this leakage relation by additional dash red lines.

Given i, j, k ∈ N ∶ i ≠ j ≠ k, we can tag as follows %a_0, %a_1, %b_0, %b_1 (rule #1)

and %r (rule #2):
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Figure 4.14: Example of ETags assignment for the SecAnd gadget.

%a_0↦ E%a_0 = F%a_0 = {⟨i,0⟩}, %a_1↦ E%a_1 = F%a_1 = {⟨i,1⟩},
%b_0↦ E%b_0 = F%b_0 = {⟨j,0⟩}, %b_1↦ E%b_1 = F%b_1 = {⟨j,1⟩},
%r↦ E%r = F%r = {⟨k,�⟩}.

For the variables %x_01, %x_10, %tmp and %z, we employ rule #3 as follows:

%x_01↦ E%x_01 = {⟨i,0⟩, ⟨j,1⟩},F%x_01 = ∅
%x_10↦ E%x_01 = {⟨i,1⟩, ⟨j,0⟩},F%x_10 = ∅,
%tmp↦ E%tmp = {⟨k,�⟩, ⟨i,0⟩, ⟨j,1⟩},F%tmp = {⟨k,�⟩},
%z↦ E%z = {⟨k,�⟩, ⟨i,0⟩, ⟨j,1⟩, ⟨i,1⟩, ⟨j,0⟩},F%z = {⟨k,�⟩}.

Figure 4.14 reports the DDG augmented with a hypothetical correct ETag set as-

signment for each intermediate variable (hence, for each instruction in the IR input).

For the rest of the chapter, we assume that code generation algorithms always con-

sume an IR input annotated with a tagging preventing false negative detections of

transition-based leakages.

4.4.3 Leakage-aware Machine Scheduler (MS)

In this section, we describe the leakage-aware enhancement of the original MS scheduler

(Section 4.3.5). Algorithm 4 reports the pseudocode of the leakage-aware MS. With
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Algorithm 4: Leakage-Aware Machine Scheduler (MS)
Input: P , program to schedule
Data: Mµ, micro-architectural state
Output: P ∗, scheduled program

1 begin

2 QReady ← []; QPending ← []; P ∗ ← [];
3 for i← P do // Initialize ready queue

4 if inputsReady(i,Mµ) then

5 QReady ← i

6 else

7 P ← i

8 while QReady ≠ [] do
// Get best non-leaking candidate

9 c← pickNonLeakingBest(QReady,Mµ);
10 if c = � then // Flush micro-architectural state

11 i← pickBest(QReady,Mµ);
12 P ∗ ← flushUarchState(i,Mµ);
13 QReady ← i;
14 c← pickNonLeakingBest(QReady,Mµ);

15 P ∗ ← c ; // Schedule best non-leaking candidate

16 QPending ← successors(c);
17 QTmp ← QPending ; // Copy to temporary queue

18 for i← QTmp do // Release ready instructions

19 if inputsReady(i,Mµ) then

20 QReady ← i

21 else

22 QPending ← i

23 return P ∗;

respect to the original algorithm, we extend with leakage-related information the map

Mµ tracking the evolution of the micro-architectural state. Speci�cally, for each micro-

architectural resource r leaking according to a transition-based model, we also associate

the last intermediate variable V that employed this resource.

As in the original algorithm, the scheduler collects this information by querying the

target-independent code generation interface. At the beginning, the scheduler marks each

micro-architectural resource as available and with no intermediate variable associated.

Furthermore, we enhance the scheduler to take into account the precise data path each

instruction's input operand employs, an important aspect to correctly address the micro-

architecture-induced leakages.
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Algorithm 5: flushUarchState�Leakage-aware MS
Input: i, instruction originating the leakage

Mµ, micro-architectural state
Output: f , instruction �ushing the micro-architectural state

1 begin

2 f ← cloneInstr(i);
3 replaceInputsWith(f,constOp);
4 updateUarchState(f,Mµ);
5 return f ;

We extend the set of available procedures with two new ones:

pickNonLeakingBest: given a queue Q and a micro-architectural stateMµ, it acts as the

original pickBest (Section 4.3.5), but it also performs a leakage detection check:

when choosing a potential candidate instruction i, the procedure queries for the set

Ri = Rin
i ∪Rout

i of input and output resources employed by i. Then, denoted with

V the output variable and with Ii the set of input variables of i, the procedure

veri�es the following conditions:

∀ r ∈ Rin
i , ∀ W ∈ Ii ∶ (Mµ[r],W ) ∉ Rleak

∀ r ∈ Rout
i ∶ (Mµ[r], V ) ∉ Rleak.

flushUarchState: given an instruction i causing the leakage and a micro-architectural

state Mµ, this procedure mitigates the leakage by �ushing the micro-architectural

resources employed by i. Speci�cally, the procedure enqueues in P an instruction

f created for the leakage mitigation.

The enhanced version of the MS scheduler extends the original one by �rst looking

for non-leaking candidate instructions with pickNonLeakingBest (Line 9). In the case it

fails, it �ushes the micro-architectural state with flushUarchState (Line 11�12) before

looking again for the best non-leaking candidate (Line 14). As we will explain later,

the flushUarchState procedure guarantees to solve the detected information leakage,

allowing the scheduler to �nd a non-leaking instruction to schedule. Then, it proceeds

as in the original scheduler.

We highlight that right after �ushing the state, we put back in QRead the instruction

i we have used to determine which micro-architectural resources to �ush (Line 13). We

have opted for this choice for performance reasons: as we �ush the micro-architectural

state, some pending instructions might become ready for execution; scheduling one of

them, rather than the instruction i, might be more pro�table. Thus, we enqueue i back

and leave the scheduler choose the best instruction.
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Concerning flushUarchState, we report its pseudocode in Algorithm 5. It resorts

on three helper functions:

clone: given an instruction i, it returns a copy of the instruction, encompassing inputs

and output operands too.

replaceInputsWith: given an instruction i and an operand o, it replaces i's input

operands with the operand o.

updateUarchState: given an instruction f and a micro-architectural stateMµ, it queries

the target-independent code generator interface for the set Rf = Rin
f ∪Rout

f of input

and output resources employed by f . Denoting with V the output variable and

with If the set of input variables of f , it updates the micro-architectural state as

follows:

∀ r ∈ Rin
f , ∀ W ∈ If ∶Mµ[r] =W
∀ r ∈ Rout

f ∶Mµ[r] = V.

Eventually, it also updates the execution state of the resources r ∈ Rf (for instance,

r is busy for a given number of clock cycles).

When executed, the procedure clones the leaking instruction i, generating the in-

struction f (Line 2). Then, resorting to replaceInputsWith, it replaces the inputs of f

with a constant operand constOp, assumed available to the program P (Line 3). Even-

tually, it calls updateUarchState (Line 4) and returns the �ushing instruction f . The

procedure flushUarchState always guarantees to �nd a candidate instruction to sched-

ule. Indeed, the instruction f , being a copy of the leaking i, will use the same data paths

and micro-architectural registers of i, overwriting them with a constant value. Thus, the

scheduler can, at least, schedule i as next instruction.

4.4.4 Leakage-aware Register Allocator

In this section, we describe the leakage-aware enhancement of the original BasicRA al-

gorithm (Section 4.3.5). We recall that, since the BasicRA works on an IR in SSA

form, there is a one-to-one correspondence between a variable's liveness interval and the

instruction de�ning that variable. Thus, a liveness interval inherits the ETag sets associ-

ated to the de�ning instruction. By checking the leakage relation Rleak (Section 4.4.2) on

the liveness intervals, the allocator veri�es whether a physical register assignment leaks.

According to the approach we have described in Section 4.4.1, the allocator assigns

physical registers to liveness intervals per the original algorithm speci�cation, but it also

checks whether the assignment does not imply a transition-based leakage.
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(a) Leakage Interference (b) Flush Leakage Interference

(c) Assign Leakage Interference

Figure 4.15: Occurrences of leakage interferences between live intervals.

To this end, we add a new type of interferences: the leakage interference. Given

two liveness intervals l, l′ and their associated variable V,W , a leakage interference puts

in relation l and l′ if and only if l < l′ ∧ (V,W ) ∈ Rleak. We stress the importance of

the l < l′ condition, which allows the two intervals to be consecutively assigned to the

same physical register (Section 4.3.3). As such, their consecutive assignment induces a

transition-based leakage. Figure 4.15(a) depicts an example of leakage interference: the

allocator attempts to assign the physical register to the liveness interval associated to

the share Y0. Although no liveness interference occurs, the allocator can't perform the

assignment, as there is a leakage interference with the Y1's interval (dash red line).

We remark that the two types of interference, liveness and leakage, can occur to-

gether. Figure 4.16(a) reports an example of this case: the allocator tries to allocate

Y0's interval to the physical register, but both a liveness interference (with X0's in-

terval) and a leakage interference (with Y1's interval) occur. To provide a leakage-free

allocation, it is important that the allocator also checks for leakage interferences when a

liveness interference occurs. Otherwise, considering our example, it might evict X0 and

replace it with Y0, which would induce a transition-based leakage.

When the allocator detects a leakage interference (alone or in conjunction with a

liveness interference), it can either postpone or solve the leakage. With postponing, the

allocator delays the allocation of l, optimistically hoping that the allocation of another in-

terval solves the detected leakage interference. With solving, the allocator applies a �ush

procedure to remove the detected interference leakage, the flushArchState procedure
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(a) Liveness + Leakage Interference (b) Flush Liveness + Leakage Interference

(c) Liveness + Leakage Interference (d) Flush Liveness + Leakage Interference

Figure 4.16: Occurrences of leakage interferences between live intervals.

Table 4.2: Decisions the Register Allocator takes (top-most row) according to occuring
interference (left-most column).

Evict Spill Postpone Flush Evict + Flush

Liveness ✓ ✓ - - -
Leakage - - ✓ ✓ -

Liveness + Leakage - ✓ ✓ - ✓

(Algorithm 9).

This procedure creates a �ush instruction (by means of the helper function createInstr)

to overwrite the content of the target physical register p with a constant value constValue.

We place this instruction before the interval l which would generate the leakage. Fig-

ure 4.15(b) and Figure 4.15(c) show the application of the flushArchState: the �ush

instruction, represented by a spiral, is placed before Y1's interval; now, the allocator

can assign Y0's interval to the target register p. From such example, it is easy to see

that this procedure allows the allocation of an interval for which we have detected a

transition-based leakage.

In the case a liveness interference occurs together with a leakage inteference, the

allocator performs �rst an eviction, then it �ushes the architectural state. Figure 4.16

reports an example: the allocator evict X0's interval, assuming X0's interval is cheaper

(Figure 4.16(b)); then, it �ushes the target physical register (Figure 4.16(c)); eventually,

the allocator assigns Y0's interval to the physical register (Figure 4.16(d)). In case the
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eviction is not possible (X0's interval is more expensive), the allocator spillsY0's interval.

By spilling Y0's interval, we implicitly remove the leakage interference, as this interval

won't be assigned to the given physical register. Thus, the allocator does not �ush the

architectural state.

Table 4.2 summarizes the decisions for the leakage-aware register allocation, according

to the di�erent interferences.

Before continuing with the description of the enhanced BasicRA algorithm and its

helper procedures, we remark an important fact: liveness, leakage and liveness + leakage

interferences can occur at the same time on a physical register. Figure 4.17(a) reports

an example of this simultaneous occurrence. We observe a leakage interference in the

interval [48,51), a leakage + liveness interference in the interval [50,55) and a liveness

interference in the interval [58,60). To take care of all them, the allocator proceeds as

follows, assuming X0's intervals are cheaper than Y0's intervals: the allocator removes

all the liveness interferences by eviction (Figure 4.17(b)); then, it removes all the leakage

interferences by �ushing the physical register (Figure 4.17(c)); �nally, it assigns Y0's

intervals to the physical register (Figure 4.17(d)). In case at least one among X0's

intervals has a higher spill weight than one Y0's interval, the allocator cannot evict and

opts for spilling Y0's intervals.

Now, we proceed with the description of the enhanced BasicRA algorithm. The

enhanced register allocation composes of a driver component (Algorithm 6) and of the

assignPostponeOrFlush helper procedure (Algorithm 10).

The driver component proceeds in two phases. In the �rst phase (Line 3�12), the

allocator operates as the original algorithm, but postponing the allocation to a liveness

interval in case a leakage interference or a liveness + leakage interference occurs. In

this phase, if a physical register gets assigned to an interval, the driver prioritises the

allocation of postponed intervals (Line 4�7)

In the second phase (Line 13�14), the allocator operates as the original algorithm, but

it solves the (liveness +)leakage interferences by (evicting +)�ushing the architectural

state.

The helper procedure assignPostponeOrFlush extends the original allocation strat-

egy (Algorithm 3, Section 4.3.5). Before detailing it, we describe the �ve new helper

functions on which it relies:

collectLiveInterfs: given the set MPhysReg,LIs[p] of liveness intervals associated to

the physical register p and a liveness interval l, it returns the set of liveness intervals

assigned to p and interfering with l (liveness interference case).

collectLeakInterfs: given the set MPhysReg,LIs[p] of liveness intervals associated to

the physical register p and a liveness interval l, it returns the set of liveness intervals
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(a) The three interference types occur at the same time.

(b) We evict X0.

(c) Flush before allocation.

(d) Allocate the physical register to Y0.

Figure 4.17: Handling of liveness interval assignment when the three types of interferences
occur at the same time. We assume Y0 has a higher spill weight than X0.

assigned to p and interfering with l (leakage interference case).

collectLiveLeakInterfs: given the set MPhysReg,LIs[p] of liveness intervals associated
to the physical register p and a liveness interval l, it returns the set of liveness

intervals assigned to p and interfering with l (liveness + leakage interference case).

handleLiveInterfs: this procedure takes in input a physical register p, a liveness

interval l and attempts to evict the liveness intervals l′ (assigned to p) for which it

detects a liveness interference with l. It returns true if it has evicted the interfering

intervals, false otherwise. This is the very same eviction procedure reported in
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Algorithm 6: Leakage-Aware Basic Register Allocator (Driver)
Input: QLIs, queue of liveness intervals
Data: MPhysReg,LIs, map physical registers to liveness intervals

MLI,PhysRegs, map liveness intervals to physical registers
MLI,W, map liveness intervals to spill weights
QPhysRegs, list of physical registers

Output: MLI,PhysRegs, map liveness intervals to physical registers

1 begin

2 MPhysRegs, LIs ← []; MLI, PhysRegs ← []; QPost ← [];
3 while QLIs ≠ [] do
4 for l ← QPost and MLI,PhysRegs[l] = � do // Handle postponed first

5 assignPostponeOrFlush(l,/*canPostpone=*/true);
6 if MLI,PhysRegs[l] = � then
7 QPost ← l;

8 l ← QLIs; // Allocate new interval

9 assignPostponeOrFlush(l,/*canPostpone=*/true);
10 if MLI,PhysRegs[l] = � then
11 QPost ← l;

12 QLIs ← QPost ; // Copy QPost's content

13 while l ← QLIs do // Handle lasts postponed

14 assignPostponeOrFlush(l,/*canPostpone=*/false);
15 return MLI,PhysRegs;

Algorithm 3 (Line 12�Line 23, Section 4.3.5), for which we have already provided

a description.

handleLeakInterfs: this procedure takes in input a physical register p and a liveness

interval l and �ushes p. It �rst collects all the liveness intervals l′ assigned to p and

in leakage interference with l. Then, it determines whether the �ushing mechanism

should �ush p before or after the interval l.

Now, we detail the assignPostponeOrFlush procedure (Algorithm 10). For reference,

we �nd the original register allocation logic in the snippets between Line 4�Line 6 (collect

liveness interferences), Line 11�Line 12 (assign free physical register), Line 14�Line 19

(evict cheaper liveness intervals) and Line 35 (spill analyzed liveness interval).

The procedure considers the presence of leakage interferences and the possibility to

postpone liveness intervals. The new allocation strategy develops as follows:

1. Interferences collection (Line 4�Line 12): for each available physical register p in

QPhysRegs, the allocator collects the liveness intervals assigned to p and interfering
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Algorithm 7: handleLiveInterfs�Leakage-aware BasicRA.
Input: p, candidate physical register

l, liveness interval to assign
Data: MPhysReg,LIs, map physical registers to liveness intervals

MLI,PhysRegs, map liveness intervals to physical registers
MLI,W, map liveness intervals to spill weights
QLIs, queue of liveness intervals

Output: true, if p available for assignment; false otherwise

1 begin

2 QEvict ← []; canEvict← true;
3 for l′ ← collectLiveInterfs(MPhysReg,LIs[p],l) do

4 if MLI,W[l′] >MLI,W[l] then
5 canEvict← false;
6 break;

7 QEvict ← l′;

8 if canEvict then
9 for e← QEvict do // Free candidate physical register p
10 QLIs ← evict(MPhysReg,LIs,MLI,PhysRegs, p, e);

11 return;

Algorithm 8: handleLeakInterfs�Leakage-aware BasicRA.
Input: p, candidate physical register

l, liveness interval to assign
Data: MPhysReg,LIs, map physical registers to liveness intervals

MLI,PhysRegs, map liveness intervals to physical registers
Output: true, if p available for assignment; false otherwise

1 begin

2 for l′ ← collectLeakInterfs(MPhysReg,LIs[p],l) do

// Make available candidate physical register p
3 if l < l′ then
4 flushArchState(p, l′);
5 else

6 flushArchState(p, l);

7 return ; // Register assigned

with the currently analyzed interval l. When a given interference is detected, the

allocator stores the register p in a speci�c queue to track the occurring interference.

2. Assign free physical register (Line 11�Line 12): in case the allocator does not detect

any interference, it assigns the analyzed interval l to the physical register p.
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Algorithm 9: flushArchState�Leakage-aware BasicRA
Input: p, a physical register

l = [i, j), a live interval
Data: P , the program under analysis
Output: None

1 begin

2 f ← createInstr(move, p,constValue);
3 addAt(P, i, f);
4 return;

3. Evict cheaper intervals (Line 14�Line 19): the allocator scans the physical registers

on which we only have liveness interferences (QPhysLives), and attempts to evict

all the already-assigned intervals from one of them. If it succeeds, it assigns the

analyzed interval l to the freed physical register; otherwise, the allocator discards

the register, since it cannot be freed.

4. Postpone (Line 20�Line 21): in case the allocator calls this procedure during the

driver's �rst phase, it postpones the assignment of a physical register if, on all

the available physical register, it detects a leakage interference (either alone or in

conjunction with a liveness interference).

5. Flush and assign (Line 23�Line 28): if the allocator has detected only leakage

interferences on a physical register (excluding also the ones in conjunction with

liveness interferences) it �ushes the physical register and assigns it to the analyzed

interval.

6. Evict, �ush and assign (Line 29�Line 34): the allocator has detected multiple

interferences at the same time on all the available physical registers. We remark

that, at this point, the queue QPhysLeaks is empty. Thus, we omit it from this

snippet. It �rst attempts the eviction of all the intervals for which there is a liveness

interference. If the eviction succeeds, the allocator �ushes the leakage interferences

and assigns the freed physical register to the analyzed interval.

7. Spill (Line 35): if the allocator could not �nd a free physical register (or it could not

free one), it spills the analyzed interval l and do not allocate any physical register.
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Algorithm 10: assignPostponeOrFlush�Leakage-aware BasicRA.
Input: l, liveness interval to assign

canPostpone, boolean variable
Data: MPhysReg,LIs, map physical registers to liveness intervals

MLI,PhysRegs, map liveness intervals to physical registers
MLI,W, map liveness intervals to spill weights
QPhysRegs, list of physical registers
QLIs, queue of liveness intervals

Output: None

1 begin

// Queues of liveness intervals

2 QLives ← []; QLeaks ← []; QLiveLeaks ← [];
// Queues of physical registers

3 QPhysLives ← []; QPhysLeaks ← []; QPhysLivesLeaks ← [];
4 for p← QPhysRegs do // Collect PhysRegs with Interfs

5 if collectLiveInterfs(MPhysReg,LIs[p],l) ≠ ∅ then

6 QPhysLives ← p

7 if collectLeakInterfs(MPhysReg,LIs[p],l) ≠ ∅ then

8 QPhysLeaks ← p

9 if collectLivesLeakInterfs(MPhysReg,LIs[p],l) ≠ ∅ then

10 QPhysLivesLeaks ← p

// If no interfs, assign

11 if p ∉ (QPhysLives⋃QPhysLeaks⋃QPhysLivesLeaks) then
12 assign(MPhysReg,LIs,MLI,PhysRegs, p, l); return ; // Register assigned

// Only liveness interfs: evict cheaper intervals

13 QTmpPhysLives ← QPhysLives ; // Copy to temporary queue

14 for p← QTmpPhysLives do

15 if p ∈ (QPhysLeaks⋃QPhysLivesLeaks) then
16 QPhysLives ← p; continue;

17 isAvailable← handleLiveInterfs(p, l);
18 if isAvailable then
19 assign(MPhysReg,LIs,MLI,PhysRegs, p, l); return ; // Register assigned

20 if (QLeakIntfs ⋃ QLiveLeakIntfs) ≠ ∅ ∧ canPostpone then
21 return ; // Postpone analyzed interval

// Only leakage interfs: flush and assign

22 QTmpPhysLeak ← QPhysLeak ; // Copy to temporary queue

23 for p← QTmpPhysLeaks do

24 if p ∈ (QPhysLives⋃QPhysLivesLeaks) then
25 QPhysLeaks ← p; continue;

26 handleLeakInterfs(p, l);
27 assign(MPhysReg,LIs,MLI,PhysRegs, p, l);
28 return ; // Register assigned

// Multiple interfs types: evict, flush and assign

29 for p← (QPhysLives⋃QPhysLivesLeaks) do
30 isAvailable← handleLiveInterfs(p, l);
31 if isAvailable then
32 handleLeakInterfs(p, l);
33 assign(MPhysReg,LIs,MLI,PhysRegs, p, l);
34 return ; // Register assigned

35 QLIs ← spill(l); // Spill analyzed interval

36 return;



4.5. IMPLEMENTATION ASPECTS 75

4.5 Implementation Aspects

In this section, we describe the relevant elements characterizing the implementation of

our methodology in the LLVM libraries.

4.5.1 Intermediate Value Tagging

In Section 4.4.2, we described the principles and the rules for tagging the intermediate

variables of a masked program. The tags associated to a variable must �ow through

the compiler's back-end untouched, in order to reach the enhanced code generation al-

gorithms and enable the leakage-free generation of masked programs.

In the LLVM-IR, there is no data structure explicitly representing the concept of

variable. On the other hand, as the LLVM-IR is in SSA form, there is one, and only

one, instruction de�ning a given variable. Thus, we can equivalently tag the instruction

de�ning a certain variable.

Although LLVM supports the association of custom metadata, this can be modi�ed or

removed when �owing through the compiler's back-end. As an alternative, we rely on ad

hoc intrinsic functions. An intrinsic function marks a particular code pattern for which

the target architecture might have special hardware support. The LLVM libraries do not

support out-of-the-box processing of new intrinsics, leaving them untouched throughout

the whole compilation process.

For each LLVM-IR instruction we target, we introduce an ad hoc intrinsic function

to which, in addition to the same input operands of the original instruction, we assign

as additional input operands the ETags. Since we work on Boolean-masked implemen-

tations, we target the following instructions: bitwise and, eXclusive or, logical shift left

and right, bitwise negation. In addition, we consider load and store instructions, which

we require in case of memory accesses.

4.5.2 Micro-architectural Model

In the following experimental evaluations (Section 4.6), we target the ARM Cortex-

M4 CPU. To support our leakage-aware instruction scheduler, we provide it with a

leakage-enhanced model of the Cortex-M4 micro-architecture. We encode these leakage-

related information within the .td �les describing the Cortex-M4 micro-architecture

(Section 4.3.5), such that we can take advantage of the target-independent code genera-

tor interface provided by LLVM.

Speci�cally, we take as a base the micro-architectural description provided in the

LLVM version 9.0.1. This description encodes a very basic model of the Cortex-M4 micro-

architecture, modelling the whole execution pipeline as a pipelined functional unit to
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Figure 4.18: Leakage-enhanced micro-architectural model for the Cortex-M4.

which every instruction has access. No other functional unit �nds description. Instruction

latencies match the reported public information. Also, the model correctly describe the

CPU as single-issue.

These model lacks of several details paramount for our methodology. We resort on

public information [Bar+21; dHM22; MPW22] to extend it as follows:

� We add the description of the di�erent functional units hosted on the micro-

architecture (ALU, barrel-shifter, Load-Store Unit)

� We extend the description of the execution pipeline with information on the micro-

architectural registers between each pipeline stage

� We extend the description of each functional unit with information on the micro-

architectural register it hosts (the Load-Store Unit register)

� We map each instruction to the correct set of micro-architectural resources it em-

ploys.

Figure 4.18 reports the described leakage-enhanced model, highlighting in blue the

micro-architectural registers that induce transition-based leakages.

We recall that the code generation algorithms work on a low-level IR speci�cation of

the original program, derived from the original IR in input to the compiler's back-end

(Section 4.3). We also remind that the LLVM libraries do not support the addition of

new intrinsics out-of-the-box (Section 4.5.1), in particular their conversion to equivalent

low-level versions. Thus, to enable the actual application of our approach, we need (1)

to extend the low-level IR with ad hoc instructions representing the intrinsic functions

carrying ETags (Section 4.5.1) and (2) to instruct the compiler's back-end to convert each
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Figure 4.19: Toolchain integration. In grey, we report the modi�ed passes.

ad hoc intrinsic function into their low-level equivalent and properly copy the ETags from

the former to the latter.

4.5.3 Toolchain Integration

We integrate our code generation-based approach to an internally developed LLVM-based

compilation toolchain (based on our same commit), which automate the generation of

Boolean-masked software implementations from an unmasked C speci�cation. Figure 4.19

reports a schematic of the full compilation toolchain.

The toolchain masks the whole program after application of almost all the optimiza-

tion passes speci�ed for the -O3 level of CLANG. In particular, the toolchain applies an

aggressive loop unrolling, which provides a fully unrolled IR version of the input program.

From these optimizations, we exclude the ones promoting vectorization and conversion

of memory operations (for instance, memory copy) to instructions with speci�c hardware

support. Such cases require additional handling at middle-end and back-end level, which

we leave as future work.

The application of Boolean masking consists in replacing each instruction with se-

mantically equivalent, LLVM-IR-based gadgets (Masking block, Figure 4.19). Speci�cally,

we implement each gadget by means of the ad hoc LLVM intrinsic functions. The middle-

end inlines each gadget implementation. By inlining, the implementation does not pay

the cost of several function calls to the gadgets, and allows our code-generation-based

methodology to fully bene�ts of the higher degree of instruction parallelism.
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Since LLVM does not support the addition of new intrinsics function out-of-the-box,

we modi�ed the back-end's instruction-selection phase to lower the ad hoc intrinsics to

low-level IR equivalent instructions.

Notice that, right after the post-RA instruction scheduling, the compiler back-end

can run further optimizations. Such optimizations might introduce code modi�cations

jeopardizing the work done by the leakage-aware code generation algorithms.

This is the case when targeting the ARM targets: the toolchain runs several passes to

minimize the code size. Such optimization attempts to convert the encoding of a Thumb-2

32-bit into a semantically equivalent 16-bit variant. In particular, one of them exploits

the commutativity of register-tied instructions (instructions reading and writing the same

architectural register) before attempting the above instruction encoding conversion. Since

32-bit and 16-bit encodings potentially exhibit di�erent leakage patterns [dHM22], and

since commuting the input register operands of an instruction potentially induce leaking

transitions, we force the code generation phase to emit only Thumb-2 32-bit instructions

via speci�c compiler options.

4.5.4 Instruction Scheduling

Here we describe two implementation aspects concerning the �ushing mechanism and the

instruction scheduling algorithm.

Flushing

As reported in Algorithm 5 (Section 4.4.3), the �ushing mechanism resorts on a constant

value. We store this value on a �xed stack location at the beginning of the program.

When the instruction scheduler needs to �ush the micro-architectural state, it �rst reads

the constant value from its stack location.

Post-RA Instruction Scheduling and Flushing

The post-RA instruction scheduling works on an IR version of the implementation which

handle physical registers instead of virtual ones. By working with physical registers, in-

structions crafted to �ush the micro-architectural state potentially generate an output.

Since we must preserve the semantics of the program, we instruct the instruction sched-

uler to save the result of a �ushing instruction in a dead physical register (i.e., a register

that will be overwritten before being read again).

In case no physical register can be safely used to store the �ush result, the instruction

scheduler (1) spills an intermediate variable V from its physical register p (taking care

it does not induce leaking transitions with a previous memory instruction), (2) �ushes
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the micro-architecture, (3) saves the output in the register p and (4) reload the spilled

variable V in the register p.

4.6 Experimental Evaluations

In this section, we put forward the experimental procedure carried out to evaluate our

automated methodology.

Our analyses develop along two axes: a security analysis and an overhead analysis.

For these evaluations, we have selected as a use-case the SIMON128/128 block cipher, a

lightweight cryptosystem developed by the National Security Agency (NSA) [Bea+13].

Starting from a common speci�cation in C language, we compile several implementations

of the block cipher: unmasked, �rst-order masked (with and without micro-architectural

protection) and second-order masked. In the security evaluation, we assess the infor-

mation leaked from each of these implementations with the TVLA methodology. In the

overhead evaluation, we assess the impact of our approach in terms of execution time,

code size and required randomness for each implementation.

We �rst overview the employed experimental setup: we describe the side-channel

acquisition setup, the analyzed SIMON128/128 software implementations, the security

and overhead analysis procedures and the employed experimental parameters. We follow

with the presentation of the security analysis results �rst, of the overhead analysis then. A

discussion section elaborates on the observed results, and we provide a critical comparison

with the state of the art. We conclude the chapter with considerations on potential future

works.

4.6.1 Experimental Setup

Here, we present the experimental setup employed in our analyses. We �rst provide

an overview of the side-channel acquisition setup and of the target device on which

we execute the SIMON128/128 software implementations. Then, we describe the SI-

MON128/128 software implementations we execute and analyze. We �nish with a de-

scription of the experimental procedure for both the security and the overhead analysis.

Acquisition Equipment and Target Device

We execute the SIMON128/128 implementations on the STM32F303 microcontroller,

hosting an ARM Cortex-M4 CPU.

To reduce the execution time variability across runs of the same code, we fetch code

from the Flash, disable the instruction and data cache and set the Flash access latency

to 0 clock cycles. We collect power-based side-channel traces via the ChipWhisperer
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setup, with an acquisition board CW-308 UFO and the CW-1200 oscilloscope [NEWa].

We set the microcontroller clock frequency to 7.384MHz, and the oscilloscope samples

the power consumption at a rate of 29.538MHz. Hence, 4 samples per clock cycle are

measured.

SIMON128/128 Software Implementations

Each SIMON128/128 implementation comes from the compilation of the same round-

reduced unmasked C speci�cation, which follows the o�cial description [Bea+19]. We re-

sort on a round-reduced version, due to limited amount of Flash memory available on our

target device. We contextually specify the number of rounds composing the implemen-

tation. We carry out the compilation thanks to the toolchain we have described in Sec-

tion 4.5.3, generating implementations tuned for the ARM Cortex-M4 micro-architecture.

We report and discuss the results concerning 4 distinct implementations: an unmasked

implementation; a �rst-order masked implementation (without micro-architectural pro-

tection); a �rst-order masked implementation (with micro-architectural protection); a

second-order masked implementation (without micro-architectural protection). To dis-

tinguish between the two �rst-order variants, we employ the adjectives unprotected and

protected. Concerning this last implementation, we generate it enabling the leakage-aware

variant of both the pre-RA and post-RA instruction scheduling, as well as of the register

allocation.

In order to provide fair comparisons, we enable pre-RA instruction scheduling, register

allocation and post-RA instruction scheduling for all the implementations. We control

the execution of each leakage-aware variant through a compiler option.

Concerning the masked implementations, we provide them the required randomness

via a pointer to a stack location containing a vector �lled with fresh random values. We

�ll this randomness pool before each invocation of the implementation by means of the

PRNG xoroshiro** 1.0 [BV21].

Security Evaluation

To evaluate the protection applied by our approach, we resort on the TVLA methodology

(Section 2.4.1). For each of the 10-round-reduced implementations, we run a �xed-vs-

random plaintext on a set of 75k traces (10k for the unmasked implementation). We

measure each trace considering both the key scheduling and the body of the cipher.

Each t-test employs the o�cial SIMON128/128 test vectors [Bea+13].
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Overhead Evaluation

To evaluate the overhead implied by our approach, we measure the following three met-

rics: execution time (in clock cycles), code size (in bytes) and required randomness (in

bytes). In particular, this last metric counts for the randomness required to mask the

cipher and to mitigate the transition-based leakages.

We provide these metrics for di�erent number of rounds, measuring them for the 10,

15, 20 and 25-round-reduced versions.

We collect the execution time, considering both the key scheduling and the body of

the cipher, by measuring the number of samples for which the oscilloscope's trigger is

set high (trig_count attribute provided by the class scope.adc of the ChipWhisperer

software). Dividing by the number of samples per clock cycle, we get the corresponding

number of clock cycles. We remark that the execution time metric does not encompass

the time spent for the generation of randomness, as it is externally generated and provided

as an input to the masked program.

For code size, we measure the size of the executable's .text segment. We do not

consider also the .data and .bss segments as they remain unchanged.

Finally, for the number of randomness bytes, we get the measure from an option

speci�c to the employed compilation toolchain (Section 4.5.3).

4.6.2 Security Evaluation Results and Discussion

In the following, we present and discuss the results of the security analysis carried out on

the 10-round-reduced software implementations of SIMON128/128. The analysis com-

plies with the description provided in Section 4.6.1.

Results

Figure 4.20 reports the results of the leakage assessments on the unmasked (Figure 4.20(a)),

unprotected �rst-order masked (Figure 4.20(b)), protected �rst-order masked (Figure 4.20(c))

and second-order masked (Figure 4.20(d)).

Since we have performed the side-channel acquisition on the whole implementation,

also encompassing the unprotected key scheduling, we remove the �rst 2.5k samples. We

also remove the last 300 samples from the masked implementations, to leave out the

epilogue of the program, which handles the unmasked variables.

We observe that both the unmasked and unprotected �rst-order masked implemen-

tations leaks consistently along the whole execution. The t-test plot for the protected

�rst-order implementation reports an overall reduction of the information leakage along

the side-channel traces. Quantitatively, we witness a ×6 reduction factor (from 6,026 to
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(a) Unmasked (b) 1-st Order Masked

(c) Pre-RA + Post-RA Instr. Sched. + Reg.
Alloc. (d) 2-nd Order Masked

Figure 4.20: Non-speci�c T-test results carried out on the following SIMON128/128 soft-
ware implementations (10-round-reduced variants): unmasked (Figure 4.20(a)), unpro-
tected 1-st order masked (Figure 4.20(b)), protected 1-st order masked (Figure 4.20(c))
and 2-nd order masked (Figure 4.20(d)).

984) of the occurring leaking samples between the unprotected and protected �rst-order

implementations. The second-order version does not exhibit any leaking samples, except

in the window 18k-21k: the leakage originates from a decoding gadget (and subsequent

manipulation of the unmasked variables) which the compiler emits before the end of the

implementation.

Discussion

The information leakage a�ecting the unmasked and unprotected �rst-order implemen-

tations meets the predictions. The results regarding the second-order masked implemen-

tation agree with the theoretic expectations, as they predict that a second-order masking

provides �rst-order security in the presence of transition-based leakages, Section 2.3.3).

As already pinpointed, the protected �rst-order masked version addresses a large

amount of the leaking points in the unprotected counterpart, although not covering all

of them. This outcome is counterintuitive: the leakage-aware post-RA scheduler should
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Figure 4.21: Correlation plots for the UB-ST-LD-LD (Listing 4.1) and UB-ST-NOP-
LD-LD (Listing 4.2) workloads. We have ran the correlation analysis on a set of 20k
power-based traces, collected from our STM32F303 target.

address the remaining micro-architecture-induced leakages; for instance, the ones due

to spill and reload code. We �nd an explanation in the incompleteness of the leakage-

enhanced micro-architectural model the scheduler employs: while investigating the root

causes of the observed leakages, we have discovered a novel leakage interaction between

memory-related instructions.

Listing 4.1: UB-ST-LD-LD workload

<workload_st_ld_ld >:

str.w R_src , addr[Z] ; Z -> addr[Z]

ldr.w R_dst0 , addr[X] ; R_dst0 <- addr[X]

nop

nop

nop

nop

ldr.w R_dst1 , addr[Y] ; R_dst1 <- addr[Y]

Listing 4.2: UB-ST-NOP-LD-LD workload

<workload_st_nop_ld_ld >:

str.w R_src , addr[Z] ; Z -> addr[Z]

nop

ldr.w R_dst0 , addr[X] ; R_dst0 <- addr[X]

nop

nop

nop

nop

ldr.w R_dst1 , addr[Y] ; R_dst1 <- addr[Y]
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In Listing 4.1 we report a minimal code snippet to exhibit the e�ect: the variable

Y , loaded by the second ldr.w, interacts with the variable Z, stored by the str.w

instruction; one would expect such iteration to not take place due to the �rst ldr.w

loading the variable X. We found out that spacing the memory write and read by 1

clock cycles is enough to get rid of the e�ect (Listing 4.2). Figure 4.21 reports the

correlation plot for these two microbenchmarks (left plot for Listing 4.1, right plot for

Listing 4.2).

A potential explanation stands in hardware-oriented optimization characterizing the

memory subsystem: when scheduled back to back, the memory subsystem logic might

serve �rst the load, putting the store on hold. Thus, the variable requested by the �rst

load transits on the memory bus, followed by the one handled by the store; eventually, this

latter interacts with the variable demanded by the second load, explaining the witnessed

transition-based leakage.

We now move to presentation of the overhead results, which will help us to discuss

the overhead implications of our approach.
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Table 4.3: Execution time (in clock cycles) of each SIMON128/128 implementation. The
�gures do not encompass the time spent to generate randomness. We sort table entries
by increasing execution time. With unprotected and protected, we refer to the �rst-order
masked implementation without and with micro-architectural protection, respectively.

Implem. 10 Rounds 15 Rounds 20 Rounds 25 Rounds

Unmasked 550 815 1,088 1,366

Unprotected 2,474 3,712 5,884 6,255
Protected 4,499 6,902 9,366 13,647

2-nd 5,448 7,908 11,799 16,004

4.6.3 Overhead Evaluation Results and Discussion

With the previous section, we have analyzed the contributions carried by our automated

approach from a security point of view. Now, we present and discuss the results of

the overhead analyses of each SIMON128/128 software implementation. The analysis

complies with the description we have provided in Section 4.6.1. To ease the reading, we

sort the entries of each table by increasing value of the metric.

Results

We start by presenting the results concerning the execution time. Table 4.3 reports the

execution time measurements (in clock cycles) for each implementation. We observe a

positive monotone trend along the �round� axis, for all the considered implementations.

Along the �implementation� axis, the unmasked implementation exhibits the lowest exe-

cution time. Among the masked implementationd, the unprotected �rst-order one is the

fastest, whereas the second-order the slowest. The protected �rst-order implementation

reports intermediate execution time overhead with respect to the other masked variants.

Table 4.4 reports the size (in bytes) of the .text segment for each implementation.

We leave out the �gures concerning the .data and .bss segments, as they do not vary

across the analyzed implementations. We report the very same trend witnessed for

the execution time metric: a positive monotone trend along the �rounds� axis, with

lower and upper bounds de�ned by the unprotected �rst-order and the second-order

masked implementations, respectively. Again, the protected �rst-order one locates in an

intermediate position among the other masked variants.

Table 4.5 reports the randomness requirement measurement (in bytes) for each imple-

mentation. When applying our approach, we witness the same randomness requirement

with respect to the unprotected one, whereas the second-order shows a ×5 increase.
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Table 4.4: Segment .text size (in bytes) of each SIMON128/128 implementations. We
sort table entries by increasing values of segment size. With unprotected and protected,
we refer to the �rst-order masked implementation without and with micro-architectural
protection, respectively.

Implem. 10 Rounds 15 Rounds 20 Rounds 25 Rounds

Unmasked 9,524 10,360 11,228 12,080

Unprotected 15,676 19,560 23,760 27,644
Protected 22,632 30,544 38,628 46,380

2-nd 25,108 33,388 45,040 51,536

Table 4.5: Number of random bytes of each SIMON128/128 implementation. We sort
table entries by increasing values of randomness. With unprotected and protected we refer
to the �rst-order masked implementation without and with micro-architectural protec-
tion, respectively.

Implem. 10 Rounds 15 Rounds 20 Rounds 25 Rounds

Unmasked - - - -

Unprotected
76 116 156 196

Protected

2-nd 376 576 776 976

Again, we report a positive monotone trend along the �round� axis, for all the masked

implementations. For the unmasked version, we report no randomness overhead.

Discussion

We �rst comment the positive monotone trend along the �rounds� axis as expected: as

the number of rounds composing the cipher's body increases, so does the number of

instructions, which potentially handle randomness bytes. By consequence, execution

time, randomness requirements and code size increase as well.

Discussing the execution time and code size overhead along the �implementation� axis,

we ascribe the higher impact on the second-order implementation to the intrinsic cost

of higher-order masking. Concerning the �rst-order masked implementations, we �rst

recall that the execution time and code size increase also relates to (micro-)architectural

state �ushing: by �ushing, we introduce new instructions to mitigate the transition-based

leakages. Thus, we impute the lower overhead a�ecting the unprotected �rst-order im-

plementations to the lack of a leakage constraint: the instruction scheduling and register

allocation algorithms have the possibility to provide more performant�but insecure�
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solutions. Being an implementation encompassing no side-channel countermeasure, as

expected, the unmasked implementation reports the lowest execution time and code size

overhead.

Concerning the randomness overhead, we observe a null overhead concerning the

implementations generated by our methodology. We impute this to the fact that the

leakage-aware instruction scheduling and register allocation do not use randomness to

mitigate transition-based leakages. The higher randomness requirement of the second-

order implementation complies with the employment of a higher-order masking scheme.

Clearly, for the unmasked version, no overhead can a�ect it as it does not rely on any

random value.

Eventually, we observe that a fair comparison between the protected �rst-order

masked implementation and the second-order masked one is not possible. Indeed, the

former relies on an incomplete model of the Cortex-M4 micro-architecture. Since the

execution time and code size increase (also) relates to micro-architectural state �ushing,

a more complete model might imply a heavier implementation in terms of execution time

and code size.

Yet, regarding the randomness overhead, our approach does not rely on fresh random-

ness to mitigate transition-based leakages. Thus, even considering more precise models

of the micro-architecture, we would not pay any randomness cost. This feature advan-

tages our approach with respect to relying on higher-order masking. We recall that,

although in our analyses we have considered the required randomness to be immediately

available�thus, nullifying its impact on the execution time�a real masked implemen-

tation would generate the required randomness on the �y by means of a PRNG. Either

provided as software or hardware modules, a PRNG has a limited throughput (bytes of

randomness per clock cycle), which can represent the main bottleneck for the masked

implementation.

We exemplify the PRNG throughput impact on the execution time considering the

overhead �gures we have collected for our protected �rst-order and second-order masked

implementations.

We consider two potential cases: an ideal one and a real one. In the ideal one, a

byte of randomness is ready and accessible at each clock cycle (1 cycles/byte). The

real one considers a hardware PRNG generating randomness at two di�erent frequency:

PRNG and CPU runs at the same frequency (10 cycles/byte) and the PRNG runs slower

than the CPU (40 cycles/byte) (reference �gures for the LFSR-based PRNG on the

STM32F405 [Mic]). The bar chart in Figure 4.22 reports the ratio of the whole execution

time of the protected masked implementation and the second-order implementation with

respect to the unprotected one (25-round-reduced implementations). On top of each bar,

we also report the overhead factor.
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Figure 4.22: Execution time overhead induced by on-the-�y randomness generation. We
consider three possible PRNG throughput (1, 10, 40 cycles/byte). On top of each bar, we
report the overhead factor with respect to the unprotected �rst-order implementation.
With 1st-P we refer to the protected �rst-order masked implementation. We consider
the 25-round-reduced implementations.

From the chart, we observe how the more limited is the PRNG throughput, the higher

is the cost we pay in terms of execution time, for each byte of randomness needed. In

the ideal case, we observe that the higher randomness requirement for the second-order

implementation induces a higher execution time than the protected �rst-order one (×2.15
vs ×2.63). In the real case, already in the 10 cycles/byte case, we observe a pronounced

di�erence between the protected �rst-order and the second-order implementations (×1.90
vs ×3.14); in the 40 cycles/byte case, we observe an almost ×4 factor for the second-order
implementation, whereas the protected �rst-order one shows a mild ×1.52 overhead fac-

tor. These �gures consider a simple, non-cryptographically secure LFSR PRNG, which

provides a good throughput. A recent work of Cassiers et al. has showed the potential

insecurity on masked implementations of such PRNGs, suggesting relying on crypto-

graphically secure, but slower constructions [Cas+23]. Thus, the actual impact on a

second-order masked implementation potentially worsen.

To conclude, even in the case the employment of a more complete micro-architectural

model induces a higher impact on the execution time, the higher randomness requirement

of second-order masking plays a major drawback; a drawback that our methodology does

not su�er. These considerations suggest that our approach potentially bene�ts all those

applications where software is executed on resource-limited platforms, in particular in

terms of PRNG throughput.
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4.7 Related Work

In this chapter, we have presented a code generation-based methodology to automate

the mitigation of micro-architecture-induced transition-based leakages. With respect

to most of the micro-architecture-aware ISA-based solutions (Section 3.2.2), our ap-

proach operates on the IR speci�cation of the masked program. A �rst advantage is

the higher portability of the solution: given a single implementation, we can generate

micro-architecture-resilient implementations for any platform whose micro-architectural

model is known. A second advantage is the exploitation of the code generation phase:

by integrating a leakage constraint in the optimization problems, we potentially gen-

erate more performant code while being intrinsically leakageresilient. With respect to

the gadget-based approach proposed by Abromeit et al. [Abr+21], which replaces each

instruction with a function call to an equivalent micro-architecture-resilient gadget, our

methodology works at a �ner granularity. Indeed, given an annotated IR implemen-

tation, where also the gadgets implementations are inlined, we can take advantage of

the instruction scheduling to provide interleaved gadget execution. With respect to the

former solution, which serializes the evaluation of the gadgets, the interleaved execu-

tion potentially improves the execution time of the whole program. Yet, this comes to

the disadvantage of more potential leaking transitions, as the two gadgets, sharing the

same hardware resources (that is, the micro-architecture), have more chances to interact.

Wang et al. [WSW19] and Tsoupidi et al. [Tso+23] have proposed two approaches relying

on SMT solvers to �nd a leakage-free register allocation and instruction scheduling. In

contrast, our approach is more greedy�we do not look for the absolute optimal�and

does not rely on external components, although the resulting solution might be more

expensive. Furthermore, these two methods assume to always �nd a leakage-free solu-

tion. On the other hand, we do not rely on this strong assumption, and we instruct code

generation algorithms to proactively solve the detected leaking transitions.

The work of Seuschek et al. [SSG17] shares a similar concept to our approach. Their

approach provides probabilistic convergence to a leakage-free solution. Speci�cally, when

their instruction scheduling algorithm cannot identify a leakage-free reorganization of the

code, the whole process aborts. Such probabilistic behavior potentially requires iterated

attempts until a secure solution is found. Moreover, the approach does not provide any

performance guarantees, as it relies on a simpli�ed micro-architectural model which does

not take into consideration, for instance, the execution latencies of the instructions.

On the contrary, given a certain input program, our solution has the potential to

deterministically converges towards a leakage-free solution. Also, relying on a more com-

plete model of the micro-architecture, we can better address certain micro-architectural

e�ects while containing the performance impact.
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The existing leakage-simulator-based solutions [She+21b; She+21a] rely on a model

of the leakage behavior of the target platform, which comes from a preliminary leakage

pro�ling step. Their mitigation capability depends on the completeness of this model,

which, in turn, strictly depends on the measured side channel and the employed mea-

surement setup. As we have experienced (Section 4.6.2), our approach su�ers from the

same model dependency, as certain information concerning the micro-architecture might

be classi�ed or simply undocumented. Still, the methodology we have proposed mitigates

the transition-based leakage (1) knowing what shares are manipulated and (2) knowing

the micro-architectural state. Thus, the code generation algorithms can consciously gen-

erate code that does not leak, while containing the performance overhead. Indeed, during

the generation of the code, we avoid as much as possible the introduction of leakages,

attempting also to minimize the employment of potentially expensive mechanisms (i.e.,

�ushing) to remove the latter. On the other hand, leakage-simulator-based ones do not

possess such information, and have to go through an iterative patching process until no

more leakage is detected. We remark that a local modi�cation of the code might in-

duce further leakages in the surrounding code. As such, this iterative process potentially

implies a higher impact on the performances.

4.8 Conclusion

With this chapter, we have presented a methodology for the automated generation of

�rst-order masked software resilient against transition-based leakages induced by a CPU

micro-architecture. The approach�an ISA-based proactive one (Chapter 3)�operates

on an annotated intermediate representation of the masked software. We enhance in-

struction scheduling and register allocation algorithms to automate the generation of

masked software implementations resilient against transition-based leakages induced by

the executing micro-architecture.

We integrate this methodology as part of an LLVM-based compilation toolchain, which

generates �rst-order Boolean-masked implementations from an unmasked C input speci-

�cation. We evaluate our methodology both from a security and a performance perspec-

tive. To this end, thanks to the enhanced LLVM-based compilation toolchain, we generate

several micro-architecture-protected �rst-order implementations of the SIMON128/128

cryptosystem, which we compare against an unmasked implementation, a �rst-order

masked implementation and a second-order masked implementation.

From the security analyses, we remark that our methodology addresses a large part

of the leakage impacting the unprotected �rst-order implementation. Nonetheless, at

the time of writing, the current implementation does not mitigate all the transition-
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based leakages. Bugs in the implementation and, in particular, the lack of a precise and

complete model of the micro-architecture justify the remaining leaking points.

Thus, a fair comparison between the protected �rst-order implementation and the

second-order one is not possible. Yet, from the overhead analysis, we highlight an in-

teresting fact: not relying on additional randomness to mitigate the transition-based

leakages, we do not su�er from the exponential execution time penalties experienced by

higher-order masking.

Concerning the potential future works, we remark that we target transition-based

leakages. To some extent, our approach could be employed to automate the mitigation

of glitch-based leakages. For instance, Gigerl et al. [GPM21] suggest mitigating glitch-

based leakages, generated from the forwarding logic of execution pipelines, by separating

the issuing of instructions handling shares by a number of clock cycles dependent on the

micro-architecture. The micro-architectural description can encode such information,

and the instruction scheduler uses it to check whether an instruction might be issued or

not.

The solution proposed in this chapter focuses on �rst-order masking and scalar, in-

order CPUs. Two clear follow-ups would be the extension of our approach to higher-order

masked implementations and the protection against leakages induced by more complex

micro-architectures. e.g., super-scalar ones.

Although it is unlikely our approach could address all the possible leakage sources

generated by the micro-architecture (for instance, glitch-based), we remark that it could

be paired with other approaches to reach better security guarantees in practice. For

instance, our approach could be easily adapted to take advantage of the hardware-based

�ushing mechanism proposed by Gao et al. [Gao+20b]. This combination enables the

automated generation of code and minimization of the micro-architectural �ushing with

a precise �ushing mechanism. We leave as a future work the investigation of such com-

bination of approaches.

We remark that our approach natively takes advantage of instruction-level paral-

lelism, thanks to the employment of the instruction scheduling module. As such, im-

plementations relying on programming or masking techniques promoting the concept of

parallelism would gain particular advantage; for instance, bit-slicing ([Bih97]) or thresh-

old implementations ([Bil+14]). Connected to this last observation, we remark that our

approach works on an annotated intermediate representation of the masked program. It

is completely independent of any optimization or transformation done before the com-

piler's back-end. As we have done for the LLVM-based toolchain we employed, we could

transparently integrate our methodology to any tool for which we support the IR (the

LLVM-IR in our particular case), as long as the tool generates and annotates the IR

as described in Section 4.4.2. Thus, we could enhance existing tools (for instance, the
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compiler-based threshold implementation tool CATI [Luo+17]) to investigate the poten-

tial security enhancement stemming from the combination. We leave this exploration as

an interesting line of work.



Chapter 5

On the Practical Resilience of

Masked Software Implementations

In Chapter 3, we put forward the di�culties to provide practically secure masked software

implementations, and how the current state of the art faces such challenge. Recombi-

nation e�ects allow an attacker to acquire information on multiple shares through one

single observation, degrading the proven security of masking. To bridge the gap between

the theoretical and the practical security of masking in software, the recent literature

relies on the suppression of these recombinations.

An intrinsic limitation of this approach is the dependence on the target micro-

architecture running the implementation, with several downsides. By proposing an auto-

mated methodology to suppress transition-based leakages (Chapter 4), we have directly

witnessed such limitations; for instance, the need of an accurate model of the target

micro-architecture.

In addition to the literature gaps identi�ed in Chapter 3, we highlight two further

gaps: (1) the limitation to Boolean masking and (2) the limitation to recombination

e�ects. Concerning the �rst point, few works explored the theoretical impact of recombi-

nation e�ects on other types of masking schemes, such as the Arithmetic-Sum Masking

and the Inner-Product Masking (Chapter 2); to the best of our knowledge, none has at-

tempted a comprehensive analysis of the practical impact of micro-architecture-induced

leakages on such schemes. Concerning the second point, current works do not take into

account the data parallelism intrinsic to modern micro-architectures. Such data paral-

lelism potentially induces Parallel Processing of Shares (PPS), which an attacker can

fruitfully take advantage of.

The literature urges for a more comprehensive analysis of the security degradation

of masking schemes when impacted by micro-architecture-induced recombination e�ects

93
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and data parallelism.

With this chapter, we take on this challenge. We evaluate the practical security o�ered

by �rst-order Boolean, arithmetic-sum and inner-product masking against transition-

based leakages and PPS-based leakages in software. We develop our study in three main

steps:

1. We characterize micro-architectural leakage e�ects: we carefully handcraft mi-

crobenchmarks to assess the presence of transition-based and PPS-based leakages

in software (Section 5.2).

2. We characterize the impact of the observed leakage e�ects on masking encod-

ings: we quantify the leaked information and investigate its exploitability (Sec-

tion 5.3, Section 5.4).

3. We characterize the impact of the observed leakage e�ects on masked implementa-

tions: once evaluated the leakage impact on the encodings, we assess the practical

security of fully-masked software implementations (Section 5.5). Speci�cally, we

target as a use-case the AES-128 block cipher [NIS01].

To provide a comprehensive analysis, we split the security assessment in a �rst infor-

mation leakage assessment, to analyze the information leaked by the encoding or the

fully-masked implementation, and in an information leakage exploitation, to evaluate

the exploitability of such information. In addition, as the design and implementation

of the execution platform potentially impacts the observed leakage [MMT20; Aro+21;

MPW22], we lead our investigation on two di�erent microcontrollers, an STM32F215

and an STM32F303.

5.1 Preliminaries

In this section, we �rst introduce a leakage model to describe the leakage behavior of

PPS. Second, we detail a preprocessing technique to exploit the information intrinsic to

the PPS phenomenon. We employ these two elements to analyze PPS in the remainder

of the chapter.

5.1.1 A Leakage Model for Parallel Processing of Shares

The CMOS technology is still mainstream in digital design, and the overall power con-

sumption of a CMOS-based circuit is the superposition of the power consumption of its

subelements [MOP07]. We can describe the induced leakage via the Sum-of-Hamming-

Weights leakage function:
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Figure 5.1: SHW distributions obtained for various secret values masked with �rst-order
Boolean masking. x is the secret value, and x1 a random value used for Boolean mask-
ing. Top row: distributions of SHW without preprocessing. Bottom row: distribution
obtained when keeping only the lowest k% values (k = 25% here). While the mean is in-
dependent of the secret without preprocessing, it becomes dependent on the secret when
only the lowest k% samples are kept.

L(X,Y ) = SHW(X,Y ) +N(0, σ). (5.1)

Such AGN model assumes as its deterministic component the SHW function:

SHW(X,Y ) = HW(X) +HW(Y ). (5.2)

In the remainder of the chapter, we use the binary form of the SHW function, which

can be readily extended to any number of arguments.

5.1.2 Biasing Leakage Distributions to Attack Masked Parallel

Implementations

The strength behind masking stands in the need, for an attacker, to compute higher-order

statistical moments and/or to perform multivariate statistical analyses. When consider-

ing hardware masked implementations, security evaluators assume a parallel computation

model. Under this computation model, the implementation can treat related shares at

the same time sample. Considering a nth-order masking scheme, the attacker, who ob-

serves all the n+1 shares of a key-dependent encoded value, needs at least the statistical
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moment of order n + 1 to detect any key-dependent information. Moos and Moradi

have proposed a preprocessing technique to reduce such minimal key-dependent order

moment [MM17]. Informally, the technique consists in selecting, for each trace sample,

a subset of the measured traces, preserving only certain leakage values. Such Biasing

Leakage Distribution (BLD) preprocessing biases the leakage distribution of each trace

sample, converting higher-order leakages to lower-order ones.

To exemplify this technique, let us consider a �rst-order BM encoding of X ∈ X22 .

Further, let us assume that the two shares X0,X1 are processed in parallel, and that

the implementation leaks according to a noise-free SHW model (Eq. 5.1). Figure 5.1,

top row, reports the marginal distributions of each realization of X. Each marginal

distribution exhibits the same �rst-order moment (e.g., mean). That is, the �rst-order

moment is independent on the encoded value X, as it is expected for a �rst-order masking

scheme. Figure 5.1, bottom row, reports the marginal distributions of the realizations

of X after a preprocessing keeping the k = 25% of samples with the lowest values of

the leakage distributions [MM17]. The preprocessed �rst-order moments of the marginal

distributions depend on the secret value, making possible to mount �rst-order attacks. In

practice, the resulting order reduction varies depending on the value of threshold k, and

on the heuristic used to prune the traces (e.g., keeping the ones with the lowest leakage

values) [MM17].

5.2 Parallel Processing of Shares in Software

As our goal is to evaluate the practical security of masked software implementations (Sec-

tion 5.3, Section 5.4, Section 5.5), we need �rst to assess the potential sources of leakage.

To this end, we proceed as follows: �rstly, we provide a rationale explaining how the

complexity of a CPU micro-architecture potentially induces PPS (Section 5.2.1). Then,

we describe the three carefully hand-crafted assembler code (called microbenchmarks, or

UBenches) that we have designed to investigate the presented rationale (Section 5.2.2).

To con�rm or reject the presence of PPS, we run side-channel analyses on each UBench

(Section 5.2.4).

As presented in Section 3.1.2, the micro-architecture of modern CPUs constitutes a

rich source of recombination e�ects; in particular, of transition-based leakages. Hence, we

also include a UBench exercising a micro-architecture-induced transition-based leakage.

We have released these microbenchmarks (C and binary code) as publication artifacts

(https://zenodo.org/record/8094516).

https://zenodo.org/record/8094516
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Figure 5.2: Simpli�ed model of a three-stage, in-order pipelined micro-architecture.

5.2.1 Rationale

As explained in Section 3.1.1, the micro-architecture of modern CPUs extensively relies on

hardware-oriented techniques to increase the instruction throughput [HP12]. Figure 5.2

reports a simpli�ed three-stage, in-order pipelined micro-architecture. We recall that the

Instruction Fetch (IF) stage fetches the next instruction to be executed, the Instruction

Decode (DE) interprets the instruction (e.g., selecting operands from the Register File),

whereas the Instruction Execute (EXE) executes the instruction. In such example, we

assume that the execution of memory-related instructions (e.g., load and store) requires

2 clock cycles, whereas arithmetic-logic instructions require 1. For memory accesses, the

target address is sent to the memory in the �rst cycle of the EXE stage. During the

second cycle, the data to be stored is sent to the memory, or the data to be read is

received from the memory. The address computation phase employs the ALU. To avoid

any resource con�ict, during the address computation phase, the fetch and decode stages

are stalled. Although being quite simple, such model captures the micro-architecture

organization of real microcontroller-graded CPUs (e.g., ARM Cortex-M3 and Cortex-

M4 [dHM22; Bar+21]). With such model in mind, it gets easy to understand how PPS

can happen in software. Indeed, as mentioned above, each stage takes care of one part

of the instruction's life cycle: the execution of the DE stage happens in parallel with the

execution of the EXE stage. As a consequence, whenever the two stages of the simpli�ed

micro-architecture manipulate related shares, the micro-architecture processes shares in

parallel.
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Listing 5.1: Common structure of leakage microbenchmarks
<ubench_template >:

<preamble_ubench > ; Prepare UArch state

<padding > ; eor with random inputs x4

bl <trigger_high > ; begin traces collection

<padding > ; eor with random inputs x8

<workload_ubench > ; See Listing 2, 3, 4, 5

<padding > ; eor with random inputs x8

bl <trigger_low > ; end traces collection

5.2.2 Microbenchmarks

We design three distinct microbenchmarks, one for each potential PPS case we iden-

ti�ed. Each UBench shares the same structure: a preamble followed by a workload

(Listing 5.1). We implement the UBenches in Thumb-2 assembler, targeting ARM-based

target platforms (Section 5.2.3).

The UBench preamble consists of a sequence of machine instructions preparing the

architectural and micro-architectural states and the inputs for the workload. The prepa-

ration of the micro-architectural state consists in the randomization of the state of speci�c

elements (e.g., micro-architectural registers, memory data path), which may otherwise

induce unintended leakage. The workload consists in a sequence of machine instructions

attempting to exercese a desired leakage e�ect. The trigger_high() and trigger_low()

functions, which surround the workload, respectively start and stop the collection of

power-based side-channel traces. To clearly identify the workload-induced leakage ef-

fect, we pad the workload's beginning and ending with eor.w instructions provided with

random inputs. To make clear the handling of these values, we comment each UBench

instruction with its e�ect.

Notation We denote the UBench target words as X0 and X1, whereas rndN refers to

one of the UBench random input values. We denote with R_val a generic 32-bit register

containing the value val. As a special case, we denote with R_destN a 32-bit register

containing the result of the N -th UBench instruction. We refer to the immediate address

of a value val with addr[val]. We denote a constant value const with #const.

PPS-related UBench #1 The �rst PPS-related UBench stimulates the parallel ma-

nipulation of bytes when loading a speci�c one from a given memory address. The

preamble crafts a 32-bit word and stores it on the memory stack. Such word contains the

least-signi�cant byte (LSB) of both X0 and X1. The workload reads the X0's LSB by ac-

cessing to its address. The manipulation of the LSB of each share allows di�erent word's
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layouts. Listing 5.2 reports the workload employed in our evaluations, hereafter referred

to as UB-SHW-LDRB. We comment the workload with a byte-oriented representation

of the word's layout (LSB on the right).

Listing 5.2: UB-SHW-LDRB workload

<workload_ubench_shw >:

; [R_addr] = [ LSB(X1) | 0 | LSB(X0) | 0 ]

; R_dst0 <- [ 0 | 0 | 0 | LSB(X0) ]

ldrb.w R_dst0 , [R_addr , #1]

PPS-related UBench #2 The second PPS-related UBench stimulates the parallel

manipulation of values while reading of X0 and X1 from the memory and the register

�le, respectively. Listing 5.3 reports the corresponding workload, hereafter referred to

as UB-SHW-LDR-EOR. The ldr.w instruction enters the EXE stage at clock cycle #k.

X0 enters the micro-architecture at clock cycle #k+1. Due to the pipeline stall inserted

during the address generation, the eor.w instruction passes the DE stage at clock cycle

#k+1. During the DE stage, the X1 is read from the register �le. As a consequence, at

clock cycle #k+1, the values X0 and X1 are simultaneously alive in the micro-architecture.

Listing 5.3: UB-SHW-LDR-EOR workload

<workload_ubench_shw_ldr_eor >:

ldr.w R_dst0 , addr[X0] ; R_dst0 <- X0

eor.w R_dst1 , R_rnd0 , R_X1 ; R_dst1 <- rnd0 ^ X1

PPS-related UBench #3 The third PPS-related UBench stimulates the parallel ma-

nipulation of values by processing X0 and X1, each handled by a distinct ALU instruction.

Listing 5.4 reports the corresponding workload, hereafter referred to as UB-SHW-MOV-

EOR. The mov.w instruction (and thus, its input operand X0) enters in the EXE stage at

clock cycle #k. At the same clock cycle, the eor.w instruction enters the DE stage, where

the target value X1 is read from the register �le. As a consequence, the values X0 and X1

will be both in the micro-architecture within the same clock cycle #k.

Listing 5.4: UB-SHW-MOV-EOR workload

<workload_ubench_shw_mov_eor >:

mov.w R_dst0 , R_X0 ; R_dst0 <- X0

eor.w R_dst1 , R_X1 , #0 ; R_dst1 <- X1
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Transition-related UBench This UBench tests the transition-based leakage stem-

ming from the update of the inter-stage pipeline registers. Listing 5.5 reports the cor-

responding workload, hereafter referred to as UB-HD. At clock cycle #k, the �rst eor.w

instruction enters the DE stage. X0 is read from the register �le and stored in the DE/EXE

inter-stage register. At clock cycle #k+1 the second eor.w enters the DE stage. X1 is read

from the register �le, and it is stored in the DE/EXE register. The update of the DE/EXE

potentially causes a transition-based leakage.

Listing 5.5: UB-HD workload

<workload_ubench_hd >:

eor.w R_dst0 , R_X0 , R_rnd0 ; R_dst0 <- X0 ^ rnd0

eor.w R_dst1 , R_X1 , R_rnd1 ; R_dst1 <- X1 ^ rnd1

5.2.3 Experimental Setup

In this subsection, we brie�y present the experimental setup (target devices, compilation

toolchain and side-channel acquisition setup).

We execute the UBenches on the STM32F215 and STM32F303 microcontrollers. The

former hosts an ARM Cortex-M3 CPU, whereas the latter an ARM Cortex-M4 CPU.

We compile each UBench with the arm-none-eabi-gcc (version 9.2.1) toolchain. We

tune the compilation with -Os, -mthumb, and -mcpu=cortex-m3 and -mcpu=cortex-m4

for the STM32F215 and the STM32F303, respectively. To minimise execution time vari-

ability across runs of the same code, we fetch code from the Flash, disable the instruction

and data cache and set the Flash access latency to 0 clock cycles. We collect power-based

side-channel traces via the ChipWhisperer setup, with an acquisition board CW-308 UFO

and the CW-1200 oscilloscope [NEWa]. We set the microcontrollers' clock frequency to

7.384MHz, and the oscilloscope samples the power consumption at a rate of 29.538MHz;

hence, 4 samples per clock cycle are measured. The STM32F215 comes with an internal

voltage regulator, which we leave turned on and set to 1.2V [NEWb].

5.2.4 Evaluation

For each UBench, we generate two datasets of randomly chosen input values: the test

dataset and the control dataset. Then, for each input dataset, we collect a trace set of

30,000 power consumption traces, each of 90 samples. Finally, for both sets, we compute

ρ(L(X0,X1)d,Ti
30k×90), where i ∈ [0,90) and X0, X1 belong to the test dataset (i.e., the

control input dataset is unused). With this procedure, we verify that any correlation

stems from X0 and X1 manipulation, and not from other experimental factors.
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The two leftmost columns of Figure 5.3 report the results under the SHW leakage

model (Eq. 5.1), whereas the two rightmost columns report the results under the HD

leakage model (Eq. 2.4). Except for the UB-SHW-LDRB on the STM32F215, we observe

that, when using the proper leakage model (i.e., SHW and HD for PPS-oriented and

transition-oriented UBenches, respectively) we observe a higher correlation in the test

traces, con�rming the presence of the targeted leakage e�ect. When looking for other

e�ects (i.e., transitions in the PPS-oriented UBenches, or PPS in transition-oriented

UBenches), we do not observe any signi�cant correlation, indicating that the searched

e�ect is negligible. Concerning the UB-SHW-LDRB, as explained in Section 5.2.2, we

test all the di�erent word layouts. For the sake of brevity, we only report the results of

UB-SHW-LDRB for the layout illustrated in Listing 5.2, but all the other word layouts

give similar results.

Finally, we observe lower correlation values for the STM32F215 as compared to the

STM32F303. Such di�erence, potentially stemming from micro-architectural di�erences

and/or the noise generated by the STM32F215's internal regulator (Section 5.2.3), pro-

vides us two distinct noise settings for the same leakage model. We will take advantage

of this di�erence to explore the practical resilience of BM, ASM and IPM in di�erent

noise settings.

In this section, we have experimentally shown that both transition-based and PPS-

based leakages potentially occur in software. In the following section, we employ the

developed UBenches to assess the security of masking encodings against transition-based

and PPS-based leakages.
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Figure 5.3: PCorrl -based evaluation of PPS-based and transition-based leakages. Each
row reports the PCorrl from a di�erent UBench: �rst row for UB-SHW-LDRB (List-
ing 5.2), second row for UB-SHW-LDR-EOR (Listing 5.3), third row for UB-SHW-MOV-
EOR (Listing 5.4), fourth row for UB-HD (Listing 5.5). The two �rst columns report the
results under the SHW leakage model, and the two last columns under the HD leakage
model. The �rst and third column report the results for the STM32F215 board, whereas
the second and fourth ones for the STM32F303 board. Each UBench is evaluated on two
sets (test and control) of 30,000 power consumption traces.
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Figure 5.4: Information-theoretic leakage-resilience analysis results. The plot reports
the numerically estimated MI(X,L(X0,X1)) evolution according to an increasing noise
variance σ2 (both in Log10 scale). We describe the leakage L as an AGN leakage model
(Eq. 2.2), where L(⋅)d = SHW or L(⋅)d = HD, for PPS-based and transition-based leak-
ages, respectively. Due to estimation errors, for σ2 ≥ 102, the SHW curve diverges from
the expected straight line. As IPM reaches perfect independence from X in the HD case,
we omit the related curve.

5.3 Evaluation of the Practical Resilience of Masking

Encodings

In the previous section, we have veri�ed the presence of both transition-based and PPS-

based leakages on our two target microcontrollers. The current section evaluates the

practical resilience of �rst-order masking encodings against such leakage sources. We

develop the evaluation in two settings: an ideal one (leakage model and leakage e�ect

match); a real one (leakage model and leakage e�ect potentially di�er). For the latter

case, we rely on the UBenches designed to assess the presence of PPS and transition-based

leakages (Section 5.2.2). We analyze the encodings' resilience in two steps: (a) quanti�-

cation and comparison of the leaked information (Section 5.3.1); (b) exploitation of the

leaked information through �rst-order analyses (Section 5.3.2).

5.3.1 Theoretical Evaluation

As remarked in Section 5.2.4, the SHW and HD leakage models might not perfectly de-

scribe the actual behavior of our target boards. In order to evaluate the leakage resilience

in the case such models capture the leakage behavior, we �rstly conduct an information-

theoretic analysis. For such purpose, we numerically estimate MI(X,L(X0,X1)), where
X ∈ X24 and the shares X0,X1 ∈ X24 encode X according to BM, ASM or IPM. For IPM,

we arbitrarily select L = (1,6) ∈ F2
24 . We describe the leakage L via an AGN leakage
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Figure 5.5: PCorrl -based leakage resilience analyses results on simulated traces. The plot
reports ρ(HW(X),L(X0,X1)) according to an increasing noise variance σ2 (Log10 scale),
for the HD and SHW models. We generate 1,000,000 power consumption traces, each of
1 sample. We simulate the traces according to an AGN leakage model (Eq. 2.2), where
L(⋅)d = SHW or L(⋅)d = HD, for PPS-based and transition-based leakages, respectively.
The metric does not detect correlation with X under the SHW for BM, ASM and IPM.

model (Eq. 2.2). According to the targeted leakage e�ect, we employ either L(⋅)d = SHW
or L(⋅)d = HD.

Figure 5.4 reports the results of the information-theoretic leakage evaluation. We

observe that the BM encoding leaks the most, while the IPM one leaks the least. Com-

paring the information leakage between the two leakage models, the SHW model not

only provides the least information quantity, but it decreases faster. This is witnessed

by the slope of the curves, as the SHW curve reports a slope of −2, whereas the HD

one reports a slope of −1. As reported by Duc et al., such slope reports the minimal

statistical moment to break the encoding [DFS19].

We verify this observation by mounting a �rst-order correlation analysis on simulated

power consumption traces. Speci�cally, we generate 1,000,000 traces, each of 1 sample,

via an AGN leakage model, and we compute ρ(HW(X),L(X0,X1)), where X,X0,X1 ∈
X24 . Figure 5.5 reports the results of the �rst-order analyses. As expected, under the HD

model, we detect correlation for both the BM and ASM encodings. Consistently with

the information-theoretic analysis, we do not detect correlation for the IPM encoding.

Concerning the SHW case, the �rst-order analysis does not identify correlation with the

encoded value X. Such evidence illustrates the need of, at least, a second-order statistical

moment to correlate with X.

From the information-theoretic analyses, we have observed that ASM and IPM encod-

ings tend to better mitigate transition-based and PPS-based leakages. We corroborated

such analyses by �rst-order moment analyses, evaluating the correlation between the en-
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coded value and the simulated power consumption. We have observed results consistent

with the information-theoretic ones. Furthermore, we have highlighted how �rst-order

moments cannot detect any information in the presence of PPS-based leakage.

Having obtained an overview of the resilience of �rst-order BM, ASM and IPM in an

ideal setting (i.e., the leakage models perfectly describes the target leakage e�ect), in the

next section we evaluate the resilience of such encodings in a more realistic context.

5.3.2 Experimental Evaluation

In the previous subsection, we have analyzed the information-theoretic resilience of �rst-

order BM, ASM and IPM. We have completed the analyses with a PCorrl -based evalu-

ation on simulated traces. Such evaluation has remarked the better leakage resilience of

ASM and IPM encodings. Although the interest provided by an ideal setting (i.e., simu-

lated traces), masked software implementations are executed in an imperfect one, where

the leakage behavior potentially deviates from the hypothetical one. As such, in this sec-

tion we evaluate the leakage resilience of the three masking schemes when the �rst-order

encodings are manipulated on our two boards, the STM32F215 and STM32F303. For

this purpose, we reuse the UBenches of Section 5.2.2, which stimulate PPS-based and

transition-based leakages. Di�erently from the information-theoretic analyses, for IPM

we arbitrarily select L = (1,170) ∈ F2
28 .

For each UBench, we capture 4,000,000 traces, each of 90 samples. We quantify the

leaked information by computing HI(X,Ti
4M×90). We set the random target inputs X0,

X1, manipulated by each UBench, to the realization of the shares X0, X1 ∈ X28 , in each

of the studied masking encodings BM, ASM, and IPM. As stated in Section 2.2.3, the

HI provides an upper bound of MI. This property is of particular interest in our case as

we want to conservatively assess the amount of leakage. HI also converges towards the

true MI as the number of traces gets higher [Bro+19].

The �rst two columns of Figure 5.6 present the results of the HI analysis for the

considered masking encodings and UBench. We compute the HI via the ENNEMI Python

library [Laa22] which implements a k-nearest-neighbor-based algorithm. Although the

high number of traces and the univariate setting which favors HI convergence, we observe

weak information leakage on the STM32F215 for both UB-SHW-LDR-EOR and UB-

SHW-LDRB. As shown in Figure 5.3, PPS leakage seems very low on this board, which

may explain this result. On the STM32F303, UB-SHW-LDR-EOR and UB-SHW-LDRB

show a tiny peak of information, which signi�cance is uncertain. By contrast, peaks of

information are clearly visible for UB-SHW-MOV-EOR and the UB-HD on both boards.

As expected, the BM encoding leaks the most information, while leakage is hardly visible

for the IPM with the given number of traces.
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Figure 5.6: Experiment-based quanti�cation of the transition-based and PPS-based leak-
ages. Each row reports the PCorrl from a di�erent UBench: �rst row for UB-SHW-LDRB
(Listing 5.2), second row for UB-SHW-LDR-EOR (Listing 5.3), third row for UB-SHW-
MOV-EOR (Listing 5.4), fourth row for UB-HD (Listing 5.5). The �rst two columns
report the HI metric, whereas the last two report the PCorrl metric. The �rst and third
column reports the results for the STM32F215 board, whereas the second and fourth one
for the STM32F303 board. For each UBench and board, we compute the PCorrl on a
4,000,000 power consumption trace set.
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Figure 5.7: Evaluation of the BLD approach (Section 5.1.2). We collect 4,000,000 power
consumption traces and apply the BLD approach for k = 10. We compute the PCorrl by
means of the HW model. We collect the traces during the execution of the UB-SHW-
LDRB (Listing 5.2) on the STM32F303 board.

For completeness, we also run �rst-order moment analyses on the same trace sets.

Speci�cally, we compute ρ(HW(X),Ti
4M×90) where i ∈ [0,90). The last two columns of

Figure 5.6 report the results.

Unexpectedly, we observe a correlation peak for the UB-SHW-MOV-EOR. As ex-

plained in Section 5.3.1, a �rst-order moment cannot detect correlation with an encoded

value via PPS-based leakage. Still, the peak takes place at the same time sample where

we have veri�ed the presence of PPS-based leakage (Section 5.3). Hence, we ascribe the

observed correlation to a recombination e�ect that occurs simultaneously with the PPS

event.

Up to now, we have evaluated the leakage resilience of di�erent masking encodings

against transition-based and PPS-based leakages. Concerning transition-based leakages,

the results highlight the better leakage resilience of ASM and IPM encodings. Concerning

the PPS-based ones, although the use of 4,000,000 traces, the HI-based analyses hardly

identify any PPS-based information leakage. Nonetheless, a di�erent approach e.g., use of

the BLD preprocessing [MM17], could take better advantage of the existing information

leakage.

With this last remark, we employ the BLD preprocessing proposed by Moos and

Moradi [MM17]. Their approach takes advantage of the PPS, converting higher-order

leakages into lower-order ones, reducing the security order of the encoding (Section 5.1.2).

We directly focus on experimental analyses, as simulation-based ones are extensively

provided in the original work [MM17]. Due to its high correlation with the PPS-based

leakage (Figure 5.3), we limit our analysis to the trace set collected with the UB-SHW-

LDRB execution on the STM32F303. From experimental attempts, we identi�ed k = 10%
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(i.e., 400,000 traces per sample) as a good threshold. Figure 5.7 provides the correlation

curves from the BLD-based analyses. This time, we detect correlation peaks for both

BM and ASM encodings, con�rming the potential exploitability of PPS-based leakage.

In this section, we have shown that transition-based and PPS-based leakages repre-

sent a concrete vulnerability in software masking implementations, leaking exploitable

information through simple �rst-order analyses. Among the selected candidates, the IPM

was found to be the least vulnerable, preventing even the exploitation of higher-order

leakages by means of the BLD approach. Yet, such approach relies on the HW model's

distribution of the encoded value X, independently of the targeted masking scheme and

leakage source. In reality, the distribution of HD and SHWmodel changes with the mask-

ing encoding. In the following section, we take advantage of this observation to break all

the evaluated masked software implementations of AES with �rst-order analysis.

5.4 Exploitation of Leakage Model Distribution in

Improved Correlation Attacks

In the previous section, we have evaluated the resilience of BM, ASM and IPM �rst-

order encodings, remarking the better leakage resilience of ASM and IPM ones. This

result stems from the consistent employment of the HW to model the leakage of the

encoded variable X. In general, such model provides low discrimination capabilities

when targeting recombination e�ects as transitions. For instance, given a �rst-order

IPM encoding of an arbitrary X, HD(X0,X1) ≠ HW(X). The same observation holds

for PPS-based leakages. In this section, we take advantage of the above remark to enhance

the practical security investigation of masking encodings. We proceed as follows: �rst,

we elaborate on the unsuitability of the HW model when targeting transition-based and

PPS-based leakages, and we discuss how to exploit the leakage model's distribution to

build more e�cient ones. Then, we put in practice the developed models, mounting

�rst-order analyses and compare the new security results with the previous ones.

5.4.1 Rationale

When targeting leakages involving multiple shares, generally the HW model provides low

discrimination capabilities. Considering the case of transitions and PPS-based leakages,

the HD and SHW distributions are di�erent from the HW one (Eq. 5.3, Eq. 5.4).

D(HD(X0,X1),X) ≠ D(HW(X),X) (5.3)

D(SHW(X0,X1),X) ≠ D(HW(X),X) (5.4)
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Figure 5.8: Distribution of the HD and SHW leakage models. Given X ∈ X24 , the �rst
column reports D(HD(X0,X1),X), whereas the second one reports D(SHW(X0,X1),X), where
X0,X1 ∈ X24 represent the shares obtained from the application of BM (�rst row), ASM
(second row) or IPM (third row) to X.

Figure 5.8 reports the distributions D(HD(X0,X1),X) and D(SHW(X0,X1),X) for BM,

ASM and IPM. As the distributions di�er, so the marginal distributions do. It is possible

to exploit such di�erence to de�ne (statistical-)moment-based leakage models.

For instance, we can associate to each X's realization the �rst-order moment of the

marginal D(HD(X0,X1),X=x):

HDfo(x) =
1

∣F28 ∣2
∑

xi∈F28 ,x=⊙i xi

HD(x0,x1) (5.5)
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Figure 5.9: Experiment-based comparison of the HDfo and the HW leakage models. We
consider the ASM case. We compute PCorrl on 4,000,000 power consumption traces.
We collect traces during the execution of the UB-HD (Listing 5.5) on the STM32F215
and the STM32F303 boards.

Nevertheless, such moment-based approach cannot improve the PCorrl results in the

IPM case, as the D(HD(X0,X1),X) is independent of X (and thus, any statistical moment

is independent of X).

Concerning the SHW model, which we use to model the PPS-based leakages, the

D(SHW(X0,X1),X)'s �rst-order moment is independent of X, for all the three masking

schemes. Thus, we can not straightforwardly employ the moment-based version:

SHWfo(x) =
1

∣F28 ∣2
∑

xi∈F28 ,x=⊙i xi

SHW(x0,x1) (5.6)

Yet, we can resort on the BLD preprocessing to make D(HD(X0,X1),X)'s mean secret-

dependent. We de�ne the biased version of the SHWfo model:

SHWfo,k%(x) =
1

∣F28 ∣2
∑

xi∈F28 ,x=⊙i xi

SHWk%(x0,x1) (5.7)

where

SHWk%(x0,x1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

SHW(x0,x1), if SHW(x0,x1) ∈ Ok%(x)
0, otherwise

and Ok%(x) contains the k% lowest (or highest) realization of SHW(X0,X1) whenX = x.

5.4.2 Evaluation

We start with a �rst evaluation of the HDfo leakage model for transition-based leakages.

We target the ASM scheme, as for BM we cannot improve the results, and the IPM is in-

trinsically immune to this leakage type. We compute ρ(HDfo(X),Ti
4M×90), with T4M×90

the trace set collected from the STM32F303 board executing UB-HD. Figure 5.9 con�rms
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Figure 5.10: Experiment-based comparison of the HW and the SHWfo,k% model. We
consider the case of the BLD-based PCorrl analyses, for k = 10 (Section 5.1.2). For the
SHWfo,k% model, we set k = 10. We compute PCorrl over 4,000,000 power consumption
traces. We collect the traces during the execution of the UB-SHW-LDRB (Listing 5.2)
on the STM32F303 board.

the better suitability of the �rst-order moment leakage model, as we get a higher PCorrl

value with respect to the HW model. Then, we test the improvements concerning the ex-

ploitation of PPS-based leakages. We employ the SHWfo,k% model against each masking

scheme, computing ρ(SHWfo,k%(X),Ti
4M×90), with T4M×90 the trace set collected from

the STM32F303 board executing UB-SHW-LDRB. We experimentally select k = 10%

(i.e., 400,000 traces per each 0 ≤ i < 90 sample) as it works well for BM, ASM and IPM.

Figure 5.10 compares the PCorrl when employing the HW model and our moment-based

leakage model. The HW allows the detection of correlation peaks in the case of BM and

ASM schemes, but none in the IPM case. In contrast, our moment-based model not only

improves the correlation results for the ASM, but it detects a correlation peak in the

IPM case.

Such results corroborate the observations made in Section 5.3, remarking the better

leakage resilience of ASM and IPM encodings against transition-based and PPS-based

leakages.

5.5 Side-Channel Resilience of Software Masked AES-128

With Section 5.3 and Section 5.4, we assessed the practical security of di�erent �rst-order

masking encodings. Such analyses are fundamental to get insights on the achievable se-

curity of masked implementations. Inner-product encoding has showed perfect resistance

against transition-based leakage, while Boolean and arithmetic encodings were more vul-

nerable. All masking encodings have showed vulnerability to PPS-based leakage. We

question how these �ndings translate to a full implementation.
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This section aims at evaluating the impact of transition-based and PPS-based leak-

ages on 4 software implementations of the AES-128 block cipher: an unprotected version

(vanilla from now on) and three masked ones, one for each masking scheme investi-

gated. We have released the investigated implementations (both C and binary codes)

as publication artefacts (https://zenodo.org/record/8094516).

Our security assessment splits in two phases: �rstly, we evaluate whether the masked

implementations leak information; secondly, we assess the resistance of these implemen-

tations against the exploitation of the (potential) leakage. The �rst phase relies on the

TVLA methodology (Section 2.4.1) to provide an assessment independent on the class

of the attacker. The second phase relies on the same techniques employed to analyze

the masking encodings (Section 5.3, Section 5.4). We start by exploiting univariate �rst-

order moment leakages, then we exploit univariate higher-order moment leakages with

the BLD technique (Section 5.1.2). This last phase is particularly important to assess

the practical security against PPS, since its �rst-order moment leakages can't be directly

exploited (Section 5.3.1).

5.5.1 Experimental Setup

The vanilla implementation follows the FIPS-PUB-197 speci�cation [NIS01], except for

the key scheduling: the implementation generates the next round key between the Sub-

Byte and the MixColumns steps.

Each �rst-order masked implementation follows by the manual application of the re-

lated masking scheme to the vanilla implementation. In particular, the BM and IPM

ones follow the speci�cation of Rivain et al. [RP10] and Balasch et al. [BFG15], respec-

tively. For the IPM version, we resort to L = (1,170) ∈ F2
28 , the same we have employed

for the experiment-based analyses (Section 5.3, Section 5.4). We implement the �nite

�eld multiplication using log/exp tables [GR17].

Concerning the ASM implementation, an inherent di�culty is the masking of the

�eld addition (i.e., the eXclusive-OR, XOR). Indeed, the XOR is non-linear with respect

to the arithmetic-sum operation. We mask the XOR operation by means of a masked

lookup table. A straightforward tabulation of the operation would require 216 byte of

memory. To reduce the memory consumption, we tabulate the XOR on 4 bits, where

the concatenation of the least (and most) signi�cant inputs' nibbles indexes the table.

We compute the XOR between two 8-bit inputs as a double access to such table: one to

process the least signi�cant nibbles of the inputs, and one to process the most signi�cant

ones. We remark that, the output carry of the arithmetic-sum potentially leaks informa-

tion on the processed values. To prevent such leakage, we precharge the landing bit of

the output carry with a fresh random value.

https://zenodo.org/record/8094516
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Table 5.1: Mean execution time (in clock cycles), number of calls to the PRNG, and
segment size (in bytes) of each AES-128 implementation.

Version
Execution time PRNG Segment size

STM32F303 STM32F215 calls .text .data .bss

Vanilla 3,524 4,180 0 1,016 525 0
BM 70,310 73,478 35 4,384 276 324
ASM 469,615 498,805 13,463 14,936 280 840
IPM 202,318 213,580 3,234 12,836 8,756 152

In the vanilla implementation, for performance reasons, we tabulate the SBOX and

the XTIME functions. In the ASM implementation, we implement the same functions

by means of masked lookup tables. Concerning the BM and IPM implementations, we

compute those functions on the �y.

We resort to the experimental setup introduced in Section 5.2.3 (software toolchain

and side-channel measurement setup). We develop each implementation in C language,

and compile them with the compiler toolchain and compilation options reported in Sec-

tion 5.2.3. Table 5.1 reports the mean execution time, number of PRNG calls, and

memory usage of each AES-128 implementation. We report these metrics for both the

STM32F215 and STM32F303. Each masked implementation draws fresh randomness

from the xoroshiro64** 1.0 PRNG [BV21]. The execution time from Table 5.1 in-

cludes the time spent in the PRNG. We remark the long execution time (500,000 clock

cycles on the STM32F215) for the ASM implementation. We ascribe it to the Mix-

Columns step, which performs several accesses to the table-based XOR implementation.

Our experimental setup provides us with correctly aligned side-channel traces. Hence,

we do not require any realignment of the traces.

For the purpose of our analyses (e.g., leakage resilience against physical e�ects), we

have to guarantee the correct application of the masking scheme. Each of the selected

scheme considers a value-based leakage model. Thus, we verify that no value-based

leakage can be detected in each implementation. To this end, we run TVLA analyses

on simulated traces collected during the execution of each implementation on a ISA-

level simulator of the ARMv7 pro�le. Speci�cally, we simulate the power consumption

stemming from the usage of the register �le and memory requests via load and store

instructions. For all the implementations, we accept the null hypothesis (i.e., the imple-

mentation does not leak in the value-based model), proving the correct application of the

three considered masking schemes.
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T-STATISTIC
STM32F215 STM32F303

(a) Vanilla AES-128 (b) Vanilla AES-128

(c) ASM AES-128 (d) ASM AES-128

(e) BM AES-128 (f) BM AES-128

(g) IPM AES-128 (h) IPM AES-128

Figure 5.11: TVLA results on the four AES-128 implementations. In red, we report
the maximum t-statistic between two t-tests. In blue, the t-statistic threshold (±4.5) for
the null hypothesis rejection. We execute each t-test by using a distinct �xed key. The
�rst column refers to the STM32F215 board, whereas the second one to the STM32F303
board. Each plot refers to a 15,000-vs-15,000 t-test, except for the IPM AES-128, which
refers to a 90,000-vs-90,000 t-test.
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5.5.2 Information Leakage Evaluation

As a �rst step in the leakage resilience assessment of our AES-128 implementations,

we proceed with the TVLA methodology. Precisely, we analyse the �rst round of each

implementation, except for the ASM implementation: as pointed out in Section 5.5.1, the

MixColumns step accounts for the largest part of the execution time. To reduce the trace

collection time without compromising the validity of our results, we exclude the ASM's

MixColumns from the leakage evaluation. As introduced in Section 2.4.1, the TVLA

allows an evaluator to determine whether an implementation leaks or not, independently

on the particular attack or leakage model. For the vanilla, BM and ASM implementations,

we collect 15,000 power consumption traces for both �xed and random sets, respectively.

Concerning the IPM implementation, we have observed that it is characterised by a higher

leakage resilience (Section 5.3, Section 5.4). To be more con�dent in the evaluation, we

perform the same assessment with 90,000 power-based traces for both the �xed and

random trace set. As explained in Section 2.4.1, the TVLA methodology is prone to

errors of type I and II, where the latter represents the most problematic ones. To cope

with them, for each implementation, we repeat the TVLA assessment two times, each

with a distinct �xed key, and we measure the maximum absolute t-statistic for each

sample point of the traces. Figure 5.11 reports the TVLA results for each AES-128

implementation and each target board.

The vanilla, BM and ASM implementations leak information along the whole �rst

round. As we have veri�ed that the masking countermeasure is correctly applied at

binary level, and as �rst-order statistical moments cannot detect leakage from PPS, we

ascribe such leakage to recombination e�ects (e.g., transitions).

We remark that the ASM implementation presents fewer leaking samples than the

BM. The algebraic structure of the ASM encoding potentially contribute to such obser-

vation.

Unexpectedly, the leakage assessment on the IPM implementations reveal several

leakage points along the �rst round. We found out that the source of such leakages stems

from recombination e�ects that impact the log/exp-based �eld multiplication. Speci�-

cally, we have veri�ed the statistical dependence between HD(log3(X0), log3(X1)) and
the encoded value x. We conjecture that the non-linear nature of the logarithm function

introduces some bit-interaction e�ect between the share's bits. Such e�ect counteracts

the randomness di�usion of the IPM, making transition-based leakage again exploitable.

Yet, we remark that, despite the higher number of employed traces, we observe a way

lower magnitude of the t-statistic with respect to the one of the other implementations.
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PEARSON's CORRELATION COEFFICIENT
STM32F215 STM32F303

(a) Vanilla AES-128, SBOX Out-
put, HW

(b) Vanilla AES-128, SBOX Out-
put, HW

(c) BM AES-128, SBOX Output,
HW

(d) BM AES-128, SBOX Output,
HW

(e) ASM AES-128, SBOX Out-
put, HDfo

(f) ASM AES-128, SBOX Output,
HDfo

(g) IPM AES-128, SBOX Input,
HDfo,log

(h) IPM AES-128, SBOX Input,
HDfo,log

(i) IPM AES-128, SBOX Output,
SHWfo,k%, k = 0.5%

(j) IPM AES-128, SBOX Output,
SHWfo,k%, k = 0.5%

Figure 5.12: CPA results for the four AES-128 implementations. In grey, the wrong key
hypotheses, whereas in red the correct one. Figure 5.12(f), 5.12(g) and 5.12(h) report the
PCorrl in Log10 scale. For each implementation, we employ a di�erent leakage model
(Table 5.2). For the SHWfo,k% model, the X-axis reports the number of collected traces
(i.e., before applying the BLD technique). Each row refers to a di�erent implementa-
tion/leakage model combination. First and second columns refer, respectively, to the
STM32F215 and STM32F303 board.
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Table 5.2: Summary of the leakage models used for the side-channel analysis of each
AES-128 implementation.

Implementation(s)
Leakage Model

Transitions PPS

Vanilla, BM HW (Eq. 2.5) -
ASM HW, HDfo (Eq. 5.5) -
IPM HW, HDfo,log (Eq. 5.8) SHWfo,k% (Eq. 5.7)

5.5.3 Information Leakage Exploitation

In the previous section, we have assessed the leakage resilience of our AES-128 imple-

mentations. We have observed results consistent to the encoding analyses (Section 5.3,

Section 5.4), except for the IPM. In fact, we have observed unexpected leakage stemming

from the �nite �eld multiplication. Despite the presence of leakage, the TVLA method-

ology does not provide any clue concerning the exploitability of the leaked information.

With this section, we explore the resilience of our masked software implementations

against information leakage exploitation; speci�cally, against univariate side-channel at-

tacks.

To this end, we rely on standard, BLD-based (Section 5.1.2) and moment-based CPA

attacks (Section 5.4). For each implementation and target board, we measure 1,000,000

power traces.

The side-channel analysis proceeds as follows. We analyze the usage of the �rst secret

key byte during the SubByte step of the �rst round, and we compute ρ(L(X)d,Tj
1M×m),

wherem varies according to the target implementation. Table 5.2 summarises the leakage

models L(⋅)d employed to attack each implementation.

For the IPM implementations, we also target the SubByte's input, which comes as

result of the �eld implementation. We employ the �rst-order-moment leakage model

HDfo,log:

HDfo,log(x) =
1

∣F28 ∣2
∑

xi∈F28

HD(log3(x0), log3(x1)) (5.8)

Figure 5.12 reports the results of the di�erent CPA attacks, and Table 5.3 reports

the minimum number of traces required to mount a successful CPA attack. Despite the

correct application of the masking scheme on the binaries, we use only 140 and 241,000

traces to break the BM and ASM implementations, respectively. Consistently with the

result from Section 5.4, the HDfo model improves the attack e�ciency against the ASM

implementation, reducing up to ×8.6 times the minimum number of traces to mount a

successful CPA attack, with respect to a plain use of the HW model.
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Table 5.3: Minimum number of traces to mount a successful CPA attack against the
AES-128 implementations. We report failed in case of attack failure with 1,000,000
traces.

Device STM32F215 STM32F303

Version Vanilla BM ASM IPM Vanilla BM ASM IPM

Number
of traces

5 140
2970
1710

(HW)
(HDfo)

failed (HW)
867k (HDfo,log)

16 49
241k
28k

(HW)
(HDfo)

failed (HW)
82k (HDfo,log)

By targeting the SBOX input, we successfully retrieve the target key byte on IPM

implementations. This suggests that the design of masking schemes should also consider

the implementation of the employed algorithms (e.g., �nite �eld multiplication). We

remark that the attack on the STM32F215 takes longer to succeed. This may be due to

the lower accuracy of the HD model for this device and/or the higher noise a�ecting the

platform (Section 5.2.4).

We conclude the leakage exploitation analyses with the BLD-based CPA attacks

(Section 5.1.2). We evaluate the resilience of each implementation according to several

k values. Table 5.4 reports the rank of the correct key hypothesis with 1,000,000 traces,

and the minimum traces number to reach that rank. On the STM32F303, the correct

key hypothesis frequently appears among the best correlated key candidates. Table 5.4

reports the number of traces necessary to observe the correct key byte hypothesis among

the four best correlated key candidates. Then, an attacker can enumerate the 416 possible

128-bit keys.

We remark that (1) the choice of the threshold value k is relevant to mount a successful

CPA attack, (2) that low k values increase the probabilities of a successful side-channel

attack. We ascribe this to the higher noise setting compared to more controlled context

of the encoding analyses (Section 5.3, Section 5.4).

Our results emphasize the threat that PPS and recombination e�ects represent. Also,

we highlight the practical security impact of di�erent representations of data in a masked

software implementation (e.g., logarithm of a share). As a �rst guideline to mitigate PPS-

based leakages exploitation, developers should avoid packing shares within the same word

(Listing 5.2). However, such condition is necessary but not su�cient, as PPS potentially

stems from other sources (Section 5.2.2).

5.6 Discussion

In this section, we warn about unanticipated sources of weaknesses in masked implemen-

tations, then we discuss how parallel-oriented architectures and programming models
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Table 5.4: Key rank of the correct key guess when employing the SHWfo,k% against IPM
implementations. We report the correct key guess rank and related number of traces for
k ∈ {0.1%,0.2%, . . . ,1%,2%}. We omit the entries for k > 2%, as we have not succeeded
in the attack. The number of traces corresponds to the number of collected traces (i.e.,
not the number of traces actually analyzed).

Threshold (%) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2

ST
M
32
F
21
5 Key rank at 1M traces 1 1 1 1 1 1 1 1 6 7 1

Number of traces to
get to this rank

430k 608k 417k 333k 430k 512k 430k 426k 417k 417k 814k

Number of traces to
get to top 4 rank

416k 417k 235k 333k 412k 401k 417k 417k � � 531k

ST
M
32
F
30
3 Key rank at 1M traces 3 6 10 7 2 1 4 4 7 7 4

Number of traces to
get to this rank

460k 998k 997k 368k 368k 997k 997k 994k 974k 987k 784k

Number of traces to
get to top 4 rank

460k � � � 324k 494k 997k 994k � � 784k

can introduce PPS in software, and we give some principles to prevent the vulnerabilities

created by PPS.

5.6.1 On the Resilience of IPM to Transition-based Leakage

In Section 5.3, we have showed that IPM encodings are immune to transition-based

leakages, which is consistent with literature knowledge. Yet, in Section 5.5 we have

successfully attacked IPM masked implementations through a model targeting such leak-

ages. We found the root cause in the use of logarithms in the �nite �eld multiplication

implementation. Transition-based leakages on logarithm representation of the encodings

have induced exploitable leakage. Such gap underlines the importance of studying the

masking resistance both theoretically and practically. It suggests that the di�erent rep-

resentations of masked encodings used in an implementation should all be considered for

security assessment.

5.6.2 PPS and Parallel-Oriented Architectures

The PPS threat emerges whenever data processing parallelism can be achieved. From a

hardware point of view, PPS readily extends to any architecture encompassing any kind of

feature implying data parallelism. In our work, we focused on simple micro-architectures

encompassing instruction pipelining, which implies a sort of data parallelism. Gigerl et
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al. show that super-scalar micro-architectures exhibit more sources of transition-based

leakage [GPM21] due to pipeline depth and multiple issuing of instructions. In such

micro-architectures, data parallelism is exacerbated, and so the possible occurrence of

PPS.

Instruction Set Extensions (ISE) play an important role in the introduction of PPS.

Miayjan et al. suggest the employment of SIMD (Single Instruction Multiple Data)

ISE to provide e�cient and secure masked software implementations [Miy+15]. The

SIMD ISE enables data-level parallel processing, handling multiple data via a single

instruction [HP12]. The explicit data parallelism naturally implies PPS. Such remark

extends also to GPU architectures, designed to intrinsically support data-level paral-

lelism. Still, we are not aware of any work concerning their usage to accelerate masked

software implementations. Finally, FPGAs represent an interesting case: they can be

employed for either the implementation of hardware designs, or for the implementation

of full CPUs [GMV20]. In both cases, the designs might rely on some parallel features,

e.g., [VRM17], potentially introducing the PPS vulnerability.

5.6.3 Preventing PPS in Software

PPS emerges whenever the micro-architecture handles related shares in parallel. As

discussed, architectures encompassing parallel features and certain programming models

potentially introduce the PPS threat. As a naïve solution, the programmer should rely on

programming techniques which do not promote data parallelism, and execute the imple-

mentation on architecture not endowed with parallel features. Yet, such approach would

increase the high cost of a masked implementation, in particular for masked instances of

order n > 1.
Instead, we advocate for a more principled approach, based on the concept of Non-

Completeness. Non-Completeness is a security property de�ned in the context of Thresh-

old Implementations [Bil+14]. Informally, by seeing an n-th order masked algorithm as

a composition of subfunctions, each subfunction has to handle no more than n shares.

Gaspoz and Dhooghe extend this property to provide necessary security properties

against micro-architecture-induced recombination e�ects [GD23]. In particular, we re-

mark their Horizontal Register Non-Completeness as a necessary condition to avoid PPS.

Such property contrasts certain programming techniques, e.g., share-slicing [Gao+20a],

which aim at the e�cient implementation of masked software implementations.

Yet, their notion of non-completeness does not take into consideration the PPS stem-

ming from the pipeline's depth (i.e., number of pipeline stages). Indeed, PPS originates

also from related shares manipulated in di�erent pipeline stages. It is possible to extend

the non-completeness property at pipeline level, requiring that the pipeline does not pro-
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cess more than n shares at a time. Gigerl et al. suggest a stricter version of this Pipeline

Non-Completeness property, separating the processing of related shares according to the

pipeline's depth and number of instructions that can be executed in parallel to prevent

glitch-based leakage [GPM21].

Admittedly, register and pipeline non-completeness might not be su�cient to prevent

PPS. Indeed, the register �le, caches and memory, potentially store all the shares of an

encoding. Static power leakage potentially allows an attacker to observe these shares,

enabling successful attacks [Mor14]. The risk implied by static power leakage is still

unexplored in the software context.

We conclude this discussion by remarking that the IPM scheme (more generally, the

family of code-based masking) can amplify the naturally expected security order [Wan+16;

Che+21; Wu+22]. That is, given a masking of order n, according to the particular pub-

lic vector L, the security order can be higher than n. Although we have analyzed IPM

instantiated with non-optimal codes (i.e., which do not amplify the security order), the

use of optimal codes can be a sound way to better mitigate PPS-based leakage. We

leave as an interesting future work the investigation of the practical security guaran-

tees of optimal code-based software masked implementations when register and pipeline

non-completeness are satis�ed.

5.7 Conclusion

Recent literature has highlighted the CPU micro-architecture as a rich source of re-

combination e�ects (e.g., transitions), which severely decrease the security of masking.

Although the pervasiveness of such e�ects, our work shows that they do not represent

the only threat to the practical security of masking in software: the parallel processing

of share (PPS), exercised by a CPU micro-architecture, represents a potential threat

too. Relying on an adaptation of the preprocessing technique proposed by Moos and

Moradi [MM17], we show how to exploit PPS-based leakage against �rst-order instances

of Boolean, arithmetic-sum and inner-product masking. Furthermore, despite the fact

that some schemes, such as the inner-product masking, provide immunity to transition-

based leakage, particular operations can remove such immunity. Speci�cally, we show

how the employment of the log operation in the �nite �eld multiplication algorithm

allows the successful exploitation of transition-based leakage against the inner-product

masking.





Chapter 6

Conclusion and Perspectives

With this sixth and conclusive chapter, we provide the conclusion we can draw up from

each thesis' contribution. We close the thesis by elaborating on the potential research

perspectives and potential future works.

6.1 Conclusion

Masking schemes provide a sound and proven approach to counteract the exploitation

of side-channel information. However, the physical e�ects characterizing the micro-

architecture of CPUs severely reduce the proven security guarantees. Long-term so-

lutions ask for a CPU hardware taking into account such problematic. On the other

hand, the lack of mitigation mechanisms in current CPU designs calls for short-term so-

lutions to develop leakage-resilient masked implementations in practice. With this thesis,

we have addressed the challenge of developing practically-secure masked software. As a

�rst contribution, we have presented an automated methodology for the development of

�rst-order masked software resilient to micro-architecture-induced transition-based leak-

ages. This methodology relies on code generation algorithms to automate the generation

of masked implementations while mitigating transition-based leakages stemming from

both the architectural and micro-architectural details of the target CPU. Operating on

an annotated intermediate representation of a masked software, and supported by a de-

scription of the (micro-)architectural features involved with transition-based leakages, we

have enhanced the register allocation and instruction scheduling algorithms with leakage-

awareness. By implementing our approach as part of the LLVM Core Libraries, and in-

tegrating it with an LLVM-based toolchain for the automated generation of �rst-order

Boolean-masked software implementations, we have showed how our approach mitigates

portions of the leaking samples occurring on a plain �rst-order implementation, while

containing the overhead of the protected implementations in terms of execution time,

123
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randomness requirements and code size with respect to a second-order masked solution.

Yet, this approach, as the rest of the current existing works in the state of the art, relies

on a description of the leaking micro-architectural features. This kind of dependence

impacts the quality of the �nal solution�in terms of practical security and overhead�

as well as the portability of the security guarantees across di�erent micro-architecture

designs.

A natural question is whether one can envision a more target-independent approach

to achieve security in practice, despite the security degradation implied by the micro-

architecture. In this regard, our second contribution consists in the evaluation of the

impact of micro-architecture-induced leakages on di�erent masking schemes. Speci�cally,

we have investigated the practical security guarantees on �rst-order arithmetic-sum and

inner-product masking, comparing them to �rst-order Boolean masking. At the same

time, we have explored the impact that the data parallelism, potentially induced by the

CPU's micro-architecture, might have on the practical security of a masked software

implementation. The investigation has �rst elaborated and showed how data parallelism

can manifest and induce information leakage even on simple scalar microcontrollers. As

a second step, we have evaluated the side-channel resilience of the masked variables

when exposed to transition-based leakages and the leakage induced by data parallelism.

Eventually, we have evaluated the security guarantees of several software implementations

of the AES-128 cryptosystem, each masked at �rst-order with one of the studied masking

schemes. We remark that, within this investigation, we have not suppress the informative

side channels but, rather, we evaluated the intrinsic mitigation of the information leakage

provided by each considered masking schemes. With this study, we have showed that,

although the di�erent side-channel resilience of the considered masking schemes, their

as-it application is not viable since, by relying on slightly elaborated attacks, they do

not withstand the exploitation of both types of information leakage.

6.2 Perspectives

In the scope of each contribution, we can elaborate several future works. Concerning

our approach to automate the mitigation of micro-architecture-induced leakages, its in-

tegration with approaches that expose more instruction-level parallelism could provide

highly e�cient, side-channel resilient implementations. For instance, we �nd in Threshold

Implementation masking and the bit-slicing paradigm potential candidates: the former

splits the masking of an algorithm in the masking of several subfunctions, which can be

potentially computed in parallel; the latter naturally exhibit parallel computation of data,

which has been already studied in the masking context [Bel+20]. Natural extensions of

the approach encompass higher-order masking, other types of masking schemes (for in-
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stance Inner-Product masking) and description of more complex micro-architectures (for

instance, super-scalar ones) and explore the potential bene�ts our code-generation-based

method in such contexts. Along the idea of promoting collaboration between hardware

and software, the combination of our approach with ISE-based ones has the potential to

generate e�cient and practically secure implementations. Indeed, a leakage-aware gen-

eration of the code potentially minimize the need to �ush the micro-architecture, which

an underlying hardware mechanism can handle to precisely target the leakage sources.

Concerning the study we have conducted on the leakage resilience of di�erent masking

schemes, we remark that for the Inner-Product masking we employed an arbitrary code

for the construction of the masked variables. Cheng et al. have investigated codes opti-

mizing the leakage resilience of such type of masking scheme against value-based leakage

models [Che+21]. As such, we leave as an interesting future work the analysis of the

contribution of such optimal codes might provide in practice against micro-architectural

leakages. Our study limits to �rst-order masked implementations. Thus, a natural follow-

up is the evaluation of the side-channel resilience of higher-order masking schemes. In

particular, in light of the threat that data parallelism can represent, we �nd interesting

to challenge the idea of resorting to higher-order masking to provide �rst-order secu-

rity. Another interesting research direction we consider is the evaluation of the practical

side-channel resilience in the context of more complex CPU designs. One might wonder

what are the consequences, in terms of side-channel resilience, when more performant

architectures get in the way of the masking designer. Barenghi et al. and Gigerl et al.

have already started this investigation with respect to the potential recombination e�ects

characterizing super-scalar CPUs [BP18] [GPM21]. As overviewed in Chapter 3, a highly

performant processor potentially exhibits increased parallelism capabilities. Such higher

degree of parallelism becomes a potential detriment not only for �rst-order masked im-

plementations, but also for higher-order ones, challenging the idea of using higher-order

masking to provide practical side-channel security.





Résumé - Version Étendue

Introduction

Les premières traces historiques documentées de ce que nous pourrions dé�nir comme un

canal auxiliaire remontent à la seconde guerre mondiale. D'abord quali�és de phénomène

de laboratoire douteux et ésotérique, les canaux auxiliaires ont rapidement été reconnus

comme une menace pratique pour la protection des biens sensibles, tels que les com-

munications con�dentielles. Par le terme canal auxiliaire, nous entendons tout canal

de communication alternatif pouvant transmettre des informations (partielles) concer-

nant un fait ou un système. L'analyse et l'exploitation de ces informations (partielles) -

l'analyse du canal auxiliaire - peuvent amener celui qui analyse (l'analyste ; l'attaquant,

dans certains contextes) à dégager des conclusions avec une probabilité donnée. L'analyse

des canaux auxiliaires a trouvé un terrain fertile dans le domaine de la cryptologie, où

elle est largement utilisée comme un puissant outil cryptoanalytique contre la sécurité

mathématique des systèmes cryptographiques modernes. La parade à l'exploitation d'un

canal auxiliaire prend la forme de suppression du canal auxiliaire ou de limitation de

l'information. Dans le premier cas, le concepteur de la contre-mesure élimine le canal

auxiliaire, tandis que dans le second cas, il limite la quantité d'informations que le canal

auxiliaire peut transmettre. En ce qui concerne la seconde approche, l'idée consiste à

augmenter le bruit a�ectant le canal auxiliaire. À cet égard, nous pouvons classer les

contre-mesures en deux catégories : la dissimulation - le bruit cache le signal informatif -

et le masquage - nous codons les informations dépendant du secret avec plusieurs valeurs

aléatoires. Grâce à son cadre formel de sécurité, il est possible de dé�nir et de prouver

les garanties de sécurité du masquage. Malgré cette véri�cation formelle de la sécurité, le

caractère non idéal du matériel physique viole les hypothèses sur lesquelles repose le cadre

formel. Par conséquent, l'application pratique du masquage ne tient pas les promesses de

sécurité prouvées. Cette divergence entre le contexte théorique et le contexte physique a

une incidence sur les applications matérielles et logicielles du masquage. En particulier,

lorsqu'il est utilisé pour fournir une protection contre les attaques par canaux auxiliaires

pour des implémentations logicielles, un problème plus subtil se pose, car l'ISA prise
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en charge par un processeur cache au concepteur du schéma de masquage les raisons

physiques qui expliquent la divergence entre sécurité théorique et pratique. Selon Hen-

nessy and Patterson, une ISA consiste en la partie de l'architecture informatique visible

pour le programmeur ou l'auteur du compilateur et l'ISA sert de frontière entre le logiciel

et le matériel [HP12]. Gao et al. développe davantage le concept d'ISA, le décrivant

comme une interface entre ce à quoi le programmeur peut accéder (l'architecture) et

ce avec quoi le programmeur ne peut pas interagir (la micro-architecture) [Gao+20b].

Une micro-architecture englobe les aspects de haut niveau du processeur, tels que le

système de mémoire et le design du processeur [HP12]. En agissant comme une sorte

de contrat entre le logiciel et le matériel, une ISA permet une équivalence sémantique

lorsqu'un code est exécuté sur di�érents processeurs supportant la même ISA, bien que

ces processeurs di�èrent potentiellement en termes de micro-architecture. Pour don-

ner un exemple concret, un programme décrit avec l'ISA ARMv7 produira le même

résultat s'il est exécuté sur le processeur simple ARM Cortex-M4 ou sur le processeur

plus performant ARM Cortex-M7, bien que leur micro-architecture soit sensiblement

di�érente. Ainsi, en �n de compte, le concepteur du schéma de masquage ne peut inter-

agir directement qu'avec les caractéristiques architecturales d'un microprocesseur pour

ne pas transmettre d'informations par les canaux auxiliaires représentés par les e�ets de

recombinaison. D'une manière plus générale, en raison de la nature opaque de la micro-

architecture, le concepteur n'est pas conscient de l'impact réel de la micro-architecture

sur la sécurité d'une mise en ÷uvre logicielle. Dans la littérature sur les canaux auxili-

aires, ce sujet - le rôle de la micro-architecture sur la sécurité par canaux auxiliaires des

logiciels - est relativement nouveau, la première publication liant la fuite d'informations

à la micro-architecture sous-jacente remontant à 2017 [PV17]. Depuis lors, d'autres

publications se sont concentrées sur l'impact de la micro-architecture en termes de fuites

d'informations, en explorant et en classant les di�érentes sources de fuites englobées dans

la micro-architecture. Ces sources vont des registres cachés dans les pipelines d'exécution,

typiques d'une micro-architecture dite pipelinée, aux défauts de signal caractérisant les

éléments combinatoires de la micro-architecture, aux caractéristiques spéculatives et aux

sous-systèmes de mémoire, qui se sont avérés être la cause première de canaux auxil-

iaires informatifs [BP18; Gao+20a; Gao+20b; MMT20; GPM21; MPW22]. L'impact

de la micro-architecture est un problème de mieux en mieux compris, comme en té-

moigne l'augmentation du nombre de travaux sur le sujet, allant de l'étude des canaux

auxiliaires induits par la micro-architecture, aux outils de véri�cation des implémenta-

tions logicielles masquées et aux méthodologies permettant leur exécution sécurisée. Par

méthodologies, nous entendons des lignes directrices pour le développement sécurisé de

logiciels masqués, ou des approches pour automatiser le processus de développement, en

tenant compte de la menace de la micro-architecture, ou des modi�cations matérielles



6.2. PERSPECTIVES 129

pour permettre une exécution sécurisée. Ces lignes directrices sont un ingrédient im-

portant, car elles énoncent des principes généraux permettant d'éviter la génération de

canaux auxiliaires informatifs. Dans le même esprit, les approches de génération au-

tomatisée d'implémentations sécurisées par la micro-architecture constituent un volet

important, car elles facilitent le développement de logiciels masqués, tout en répondant

à des aspects plus pratiques, comme le délai de mise sur le marché dans le cas d'un

produit industriel. Les modi�cations matérielles, pour leur part, appellent une approche

di�érente pour aborder le développement de logiciels sécurisés par des canaux auxiliaires

: au lieu d'intervenir uniquement du côté logiciel, elles préconisent la conception d'une

micro-architecture tenant davantage compte des canaux auxiliaires, soit en fournissant

des mécanismes pour calculer les opérations masquées de manière sécurisée, soit en ren-

dant le contrat logiciel/matériel, instancié par l'ISA, moins opaque et en fournissant au

logiciel des mécanismes pour mieux contrôler la menace potentielle des canaux auxiliaires.

Par ailleurs, le fait d'aborder la sécurité des implémentations logicielles masquées via

une telle approche en boite blanche rend toutes les approches, ou du moins les implé-

mentations qui en résultent, strictement dépendantes de la micro-architecture cible. Par

conséquent, la portabilité de la sécurité n'est pas garantie dans le cas général. De plus,

le développement d'une implémentation tenant compte de la micro-architecture repose

strictement sur la connaissance de la micro-architecture elle-même. Cette connaissance

est généralement limitée aux informations publiques disponibles, souvent incomplètes ;

par conséquent, la mise en ÷uvre qui en résulte ne couvre pas toute la surface d'attaque

o�erte par la micro-architecture. Un autre point de di�culté est lié à la complexité de

la conception de la micro-architecture : plus la micro-architecture o�re de fonctionnal-

ités pour des raisons de performance, plus elle génère de canaux auxiliaires potentiels.

Ainsi, tenter de les traiter tous peut aboutir à une solution coûteuse en termes de temps

d'exécution, par exemple, ou pourrait même s'avérer être une tâche impossible dans cer-

tains cas. Le problème est encore plus complexe si l'on considère les di�érents types de

fuites : tenter de couvrir en même temps les fuites basées sur les transitions, les fuites

basées sur les glitchs et les fuites basées sur le couplage augmente potentiellement la dif-

�culté de la tâche. On peut donc se demander s'il existe des approches plus agnostiques

en ce qui concerne la micro-architecture sous-jacente.

Contributions

Dans cette thèse, nous nous intéressons, en suivant deux axes, à la tâche de développe-

ment de logiciels masqués sécurisés contre les attaques par canaux auxiliaires en pratique.

Le premier axe concerne le développement automatisé de logiciels masqués résistants aux

fuites en transition. En e�et, dans l'état actuel des connaissances, les approches actuelles
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s'appuient sur un modèle trop simpli�é de la micro-architecture, ou ne prennent en

compte que les e�ets de fuite provenant des éléments architecturaux du processeur, ou

abordent le problème avec une approche de type nous corrigeons ce que nous détectons.

De plus, une partie de ces approches fonctionne au niveau du code machine, perdant les

opportunités en termes d'e�cacité et de sécurité qu'une approche opérant à un niveau

plus élevé du processus de compilation apporterait. La première contribution de cette

thèse améliore l'état actuel de l'art en décrivant une méthodologie pour le développement

automatisé de logiciels masqués résistants aux fuites en transition. Cette méthodologie

tire pro�t de la phase de génération de code des compilateurs optimisants : étant donné

une implémentation logicielle annotée avec des informations relatives aux canaux auxili-

aires et une description de la micro-architecture cible, nous montrons comment exploiter

les outils d'ordonnancement des instructions et d'allocation des registres pour atténuer

les fuites en transition de manière automatisée. Par rapport à l'état de l'art actuel, cette

méthodologie aborde le problème à un niveau di�érent du processus de compilation, en

agissant sur une représentation intermédiaire du programme masqué. Par ailleurs, en

utilisant des outils de génération de code, nous intégrons l'atténuation des fuites induites

par la micro-architecture dans le processus de compilation, ce qui permet d'en tirer tous

les avantages. En�n, l'approche s'appuie sur une description de la micro-architecture qui

sert d'entrée aux outils de génération de code. Cette approche permet une séparation

des problèmes, car les algorithmes de génération de code sont totalement agnostiques par

rapport à la micro-architecture cible, et le niveau de sécurité que nous pouvons atteindre

dépend strictement de la qualité du modèle intégré dans cette description.

Le deuxième axe concerne une approche plus agnostique de la cible pour contrer les

fuites induites par la micro-architecture. Comme nous l'avons fait remarquer précédem-

ment, le fait de s'appuyer sur les spéci�cités de la micro-architecture représente une

charge considérable pour le concepteur du masquage. Le fait de ne pas dépendre de ces

informations améliore potentiellement la situation, en particulier en termes de portabil-

ité de la sécurité de la solution entre les processeurs supportant la même ISA. Si l'on

examine la littérature, la plupart des travaux se sont concentrés sur la protection des

logiciels par le masquage booléen, car celui-ci est bien connu pour être sensible aux

e�ets de recombinaison. Dans le même temps, des études théoriques sur d'autres sché-

mas de masquage pourraient suggérer leur utilisation comme un moyen de répondre à la

question de recherche sur ce deuxième axe. Cependant, peu de travaux ont été menés

en pratique, ce qui nous amène à nous demander quelles sont les garanties de sécurité

pratiques d'autres types de systèmes de masquage en présence de fuites induites par la

micro-architecture.

Comme contribution complémentaire, nous soulignons que la menace potentielle provenant

de la micro-architecture ne se limite pas aux e�ets de recombinaison. Les capacités de
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parallélisme que les processeurs modernes peuvent o�rir constituent un aspect particulier

qui semble être négligé. En e�et, les processeurs modernes ont évolué pour augmenter

le nombre d'instructions par cycle d'horloge qu'ils peuvent traiter et, dans certains cas,

calculer en même temps. Ces capacités parallèles découlent de techniques matérielles dif-

férentes et orthogonales. Parmi celles-ci, l'une des plus répandues est le pipelining, que

l'on trouve également dans les microcontrôleurs actuels. En ciblant des microcontrôleurs

simples, nous expliquons comment ce parallélisme peut se manifester et nous montrons

concrètement comment il in�ue sur la sécurité des implémentations logicielles masquées.

État de l'Art et Questions de Recherche

Comme indiqué dans le chapitre d'introduction, l'ISA d'un processeur constitue une

couche abstraite entre le logiciel exécuté et le matériel qui exécute ce logiciel. Cette

couche permet au matériel sous-jacent de mettre en ÷uvre des fonctionnalités spé-

ci�ques de manière transparente, tout en préservant l'équivalence sémantique. Selon

l'implémentation sous-jacente de la micro-architecture, un certain nombre d'instructions

peuvent être exécutées par cycle d'horloge. Lorsque ce nombre atteint le minimum de 1,

on parle d'architectures scalaires. Lorsque plusieurs instructions peuvent être exécutées

au cours des mêmes cycles d'horloge, nous parlons d'architectures super-scalaires. Une

autre distinction concerne l'ordre dans lequel une instruction est exécutée. On parle

d'architectures dans l'ordre lorsque le processeur exécute les instructions conformément

à leur ordre dans le programme ; dans le cas contraire, on parle d'architectures dans le

désordre. L'avantage des architectures dans le désordre réside dans l'augmentation du

débit des instructions.

En ce qui concerne les types potentiels de fuites pouvant provenir de la micro-

architecture, nous trouvons des fuites en transition, des fuites basées sur les glitchs et des

fuites basées sur le couplage. Ces trois types de fuites impliquent une recombinaison des

valeurs impliquées dans le phénomène. Les fuites basées sur les transitions proviennent

de la mise à jour des éléments de mémoire au sein de la (micro-)architecture ; les fuites

basées sur les glitchs proviennent des instabilités de signal au sein de la logique combina-

toire qui compose la micro-architecture ; les fuites basées sur le couplage proviennent du

voisinage physique entre les composants physiques de la micro-architecture ou du bruit

de l'alimentation électrique. Nous pouvons également classer les fuites en fonction du

type de recombinaison qu'elles impliquent. On parle de fuite inter-bit lorsque la recombi-

naison implique des bits de valeurs distinctes, alors qu'on parle de fuite intra-bit lorsque

la recombinaison implique des bits d'une même valeur. Le type de fuite et le type de

recombinaison sont orthogonaux l'un par rapport à l'autre.
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Revue de l'État de l'Art En ce qui concerne l'atténuation des fuites induites par

la micro-architecture, la littérature se concentre sur les approches visant à appliquer le

principe d'isolation des données a�n d'éviter la recombinaison des shares, ce qui permet

de restaurer les hypothèses de sécurité nécessaires au cadre formel du masquage. La

revue de la littérature présentée dans ce chapitre porte sur les approches conçues pour

protéger activement les implémentations logicielles masquées. Nous avons identi�é 13

travaux d'intérêt, que nous classons selon l'approche méthodologique considérée pour

corriger les fuites induites par la micro-architecture : basées sur l'ISA, basée sur une ISE

et basée sur le principe de non-complétude.

Dans le cas des approches basées sur l'ISA, nous considérons toutes les méthodes qui

réduisent les fuites en recourant uniquement à une interaction indirecte avec la micro-

architecture au moyen de l'ISA, de manière automatisée. Nous classons les méthodes

basées sur l'ISA en fonction de leur pro-activité (elles génèrent du code limitant in-

trinsèquement les fuites) [Abr+21; WSW19; Tso+23] ou réactivité (elles modi�ent un

code pré-existant pour corriger les fuites) à l'atténuation de la fuite [SSG17; Ath+20;

She+21b; She+21a].

Dans le cas des approches basées sur une ISE, nous considérons toutes les méthodes

qui appliquent la réduction des fuites en recourant à une version étendue de l'ISA, qui

o�re plus de contrôle sur le comportement de la micro-architecture en matière de fuites.

Nous pouvons classer les approches basées sur les ISE en fonction de la manière avec

laquelle l'atténuation des fuites est gérée : par le matériel seul [Gao+20b; KS20] ou via

une combinaison de matériel et de logiciel [Kia+20; MP21; Gao+21; CPW24].

Dans le cas des approches basées sur la non-complétude, nous considérons toutes les

méthodes qui appliquent la propriété de non-complétude [Bil+14] pour éviter une ou

plusieurs classes de fuites [MMT20; GPM21; GD23].

Nous pouvons comparer qualitativement les trois approches di�érentes en termes

d'e�cacité (qui décrit la quantité de sources de fuites atténuées), d'invasivité (qui décrit

la modi�cation matérielle à appliquer à la micro-architecture) et de portabilité (qui décrit

la facilité avec laquelle les garanties de sécurité d'une mise en ÷uvre logicielle peuvent

être transférées d'une micro-architecture à l'autre). En ce qui concerne l'e�cacité, les

solutions actuelles basées sur l'ISA montrent une application limitée aux fuites en tran-

sitions, englobant à la fois les interactions inter-bit et intra-bit. Les méthodes basées sur

une ISE, grâce à la possibilité de modi�er la micro-architecture sous-jacente, s'étendent

également aux fuites basées sur les glitchs. Les méthodes de non-complétude peuvent

atténuer à la fois les fuites en transitions et les fuites basées sur les glitchs. En ce qui

concerne le caractère invasif, les méthodes basées sur l'ISA et la non complétude n'ont

pas d'impact en termes de modi�cation du matériel, alors que les méthodes basées sur

une ISE peuvent nécessiter des modi�cations non négligeables. En ce qui concerne la
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portabilité, les méthodes basées sur l'ISA présentent le degré le plus bas parmi les trois

méthodologies, étant donné que la mise en ÷uvre du logiciel nécessite potentiellement des

modi�cations pour être sécurisée sur di�érentes micro-architectures. Les méthodes basées

sur une ISE sont légèrement meilleures que celles basées sur l'ISA, car elles ne nécessitent

aucune modi�cation du logiciel tant que les CPU fournissent une ISE avec les mêmes

garanties de sécurité. Les approches qui englobent les propriétés de non-complétude sont

celles qui nécessitent le moins de modi�cations du logiciel pour assurer la portabilité.

Problèmes non Résolus et Questions de Recherche L'analyse de la littérature

nous a permis d'identi�er plusieurs problèmes non résolus. Tout d'abord, nous remar-

quons le lien étroit entre les garanties de sécurité fournies par les approches basées sur

l'ISA et la connaissance de la micro-architecture cible. Deuxièmement, nous constatons le

manque de portabilité des garanties de sécurité entre les di�érentes micro-architectures.

Troisièmement, les approches actuelles basées sur les ISAs reposent sur des modèles trop

simpli�és de la micro-architecture cible, ce qui empêche l'atténuation totale des fuites

induites par cette dernière. Quatrièmement, les approches actuelles se concentrent prin-

cipalement sur la fourniture d'une sécurité pratique pour les implémentations masquées

de premier ordre. Cinquièmement, de nombreuses recherches ont été menées pour fournir

une sécurité pratique sur les processeurs d'ordre simple, mais ce problème reste une tâche

complexe. En�n, une grande partie de l'état de l'art se concentre sur les fuites en tran-

sitions, négligeant les e�ets des fuites basées sur les glitchs.

Il apparaît clairement que la fourniture d'une sécurité de premier ordre sur des ar-

chitectures simples est un dé� actuellement non résolu, qui doit faire l'objet d'une étude

plus approfondie. Parallèlement, de nombreuses recherches ont porté sur l'impact des

fuites induites par la micro-architecture sur le masquage booléen et sur les méthodes

permettant d'atténuer cet impact. Aucun des travaux dont nous avons connaissance n'a

tenté d'étudier l'impact de la micro-architecture sur la sécurité pratique d'autres types

de schémas de masquage.

En �n de compte, dans le cadre de cette thèse, nous abordons les questions de

recherche suivantes : (1) quelles capacités d'atténuation pouvons-nous atteindre en con-

sidérant des modèles plus complets de la micro-architecture ; (2) quel est l'impact de la

micro-architecture sur la sécurité pratique des schémas de masquage avec une structure

algébrique di�érente de celle du masquage booléen.
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Une Méthodologie Automatisée pour Atténuer les Fuites en

Transitions par Modi�cation Logicielle

L'examen de l'état de l'art a fait ressortir la di�culté actuelle de fournir une mise en

÷uvre masquée sécurisée au premier ordre lorsqu'elle est exécutée sur un processeur. Les

méthodes basées sur l'ISA sont particulièrement touchées par ce problème, car elles ne

peuvent intervenir que de manière indirecte pour prévenir les fuites micro-architecturales,

sans aucun mécanisme matériel pour les atténuer. En outre, les approches actuelles ne

permettent qu'une atténuation partielle des fuites basées sur les transitions, car elles

s'appuient sur des modèles simples de la micro-architecture. Ce chapitre décrit une

amélioration des méthodologies actuelles basées sur l'ISA : une approche proactive pour

automatiser la génération d'implémentations logicielles masquées au premier ordre résis-

tantes aux fuites en transitions induites par la micro-architecture. En observant que la

modi�cation de l'ordre des instructions dans le programme et une a�ectation di�érente

des registres physiques peuvent éliminer les fuites basées sur les transitions, la solution

proposée améliore les algorithmes d'ordonnancement des instructions et d'allocation des

registres a�n de générer des implémentations masquées de premier ordre tout en élim-

inant les sources de fuites. Lorsqu'une telle implémentation ne peut être générée - par

exemple, l'un des deux algorithmes ne peut éviter une fuite en transition - nous nettoyons

l'état de la micro-architecture : nous mettons à jour le contenu des éléments de mémoire

au sein de la micro-architecture a�n d'éliminer les fuites potentielles. Une fois le nettoy-

age de l'état de la micro-architecture e�ectué, les deux algorithmes peuvent reprendre

leur tâche. L'approche s'articule autour de trois points principaux : l'annotation du pro-

gramme d'entrée (ou tagging), la description de la micro-architecture et l'amélioration

des algorithmes.

Le tagging sert à identi�er précisément les shares manipulées par le programme

masqué. Nous codons ces informations à l'aide du concept de balise d'encodage, une paire

de nombres naturels représentant deux identi�ants uniques : l'identi�ant de l'encodage

et l'identi�ant du share au sein de l'encodage donné. Nous partons de l'hypothèse qu'une

entité externe fournit un programme d'entrée annoté avec ces balises d'encodage. Sur la

base du concept de balises d'encodage, nous dé�nissons une relation de fuite, qui per-

met de comprendre si deux variables induisent des fuites informatives en transitions en

examinant uniquement les balises d'encodage attribuées.

La description micro-architecturale fournit des informations sur les caractéristiques

micro-architecturales du processeur cible. Nous enrichissons cette description en indi-

quant lesquelles de ces composantes induisent des fuites en transitions.

L'amélioration des algorithmes d'ordonnancement des instructions et d'allocation des

registres suit un raisonnement simple : ces algorithmes tentent de résoudre un problème
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d'optimisation. Les problèmes d'optimisation sont constitués d'un coût de la fonction

et d'un ensemble de contraintes au problème. L'amélioration consiste donc à ajouter

l'évitement des fuites en transitions en tant que contrainte supplémentaire. En pratique,

pendant leur exécution, les algorithmes évaluent chaque solution intermédiaire poten-

tielle. Quand une solution candidate est trouvée, l'algorithme véri�e en outre si, compte

tenu de l'état actuel de la micro-architecture et de la description de la micro-architecture

disponible, la solution intermédiaire induit une fuite en transition conformément à la

relation de fuite dé�nie. Si, parmi toutes les solutions intermédiaires potentielles, aucune

ne satisfait à la contrainte de fuite, l'algorithme nettoie l'état de la micro-architecture. La

manière dont le nettoyage est e�ectué dépend de l'algorithme. Néanmoins, comme dans

toutes les approches basées sur l'ISA, l'idée principale est d'ajouter une (séquence d')

instruction(s) précise(s) a�n d'éliminer toute fuite potentielle en transition. Une fois la

micro-architecture nettoyée, les algorithmes peuvent fonctionner à nouveau et converger

vers une solution complète et sans fuite.

Nous avons mis en ÷uvre notre approche en nous basant sur les librairies de LLVM

et l'avons intégrée à une chaîne d'outils de compilation pour la génération automatisée

d'implémentations logicielles masquées par masquage booléen de premier ordre. Nous

avons évalué notre approche en évaluant les garanties de sécurité pratiques et les coûts

asociés pour la protection d'implémentations masquées en masquage booléen de pre-

mier ordre de l'algorithme de chi�rement par blocs SIMON128/128. Pour toutes les

analyses, nous avons généré 10 implémentations distinctes issues d'une implémentation

réduite à 10 de rondes de SIMON128/128 : une implémentation non masquée, une im-

plémentation masquée au premier ordre, une implémentation masquée au second ordre

et plusieurs implémentations masquées au premier ordre pour lesquelles nous appliquons

activons séparément nos passes d'ordonnancement des instructions et d'allocation des

registres. A�n de fournir des chi�res plus représentatifs, nous avons également considéré

des implémentations à 15, 20 et 25 rondes pour nos analyses de surcoût.

Nous e�ectuons l'analyse de sécurité conformément à la méthodolie de TVLA Test

Vector Leakage Assessment. A�n de faire face aux fuites en transition impliquant à la fois

la clé et le texte clair utilisés par SIMON128/128, nous e�ectuons, pour chaque implé-

mentation, deux t-tests non spéci�ques, l'un sur la clé et l'autre sur le texte clair. Nous

condensons les résultats en conservant, entre les deux tests, la valeur de la t-statistique

la plus élevée. D'après les analyses de sécurité, en comparant avec les implémentations

simplement masquée au premier ordre et au second ordre, nous observons une réduc-

tion systématique des fuites lorsque l'ordonnancement des instructions et l'allocation

des registres fonctionnent. Pris isolément, nous remarquons que l'ordonnancement des

instructions pré-allocation de registres seul permet déjà une réduction substantielle des

points de fuite, alors que la seule application de l'allocation des registres utilisée seule
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aggrave les fuites observées. L'ordonnancement des instructions post-allocation de reg-

istres atténue mieux les fuites observées que l'utilisation de l'allocation de registres

seule, ce qui suggère que la plupart des fuites ont une origine micro-architecturale ;

par ailleurs, l'ordonnancement des instructions post-allocation de registres n'est pas en

mesure d'atténuer tous les points de fuites. Nous trouvons une explication potentielle

dans le caractère incomplet du modèle micro-architectural que nous employons, comme le

prouve concrètement une nouvelle source de fuite en transitions que nous avons observée

sur notre plateforme cible. Les sous-combinaisons des di�érents algorithmes ne montrent

aucune amélioration par rapport à l'utilisation simultanée de tous les algorithmes, ce

qui suggère que, pour atténuer e�cacement les fuites basées sur les transitions au cours

du processus de compilation, l'ensemble de la chaîne d'outils de compilation doit être

impliqué dans le processus, et pas seulement une partie de celle-ci.

Pour l'évaluation du coût de l'approche, nous avons évalué chaque implémentation

selon trois métriques : le temps d'exécution, le nombre de nombres aléatoires requis et la

taille du code. Nous observons que les implémentations simplement masquées au premier

ordre et au second ordre encadrent les coûts de toutes les implémentations masquées.

Nous observons que l'utilisation de l'ordonnancement des instructions pré-allocation de

registres réduit systématiquement à la fois le temps d'exécution et la taille du code, ce

qui suggère que la plus grande liberté qui lui est accordée dans sa tâche peut aider à

contenir l'impact sur les performances tout en atténuant les fuites en transition. En

termes de nombres aléatoires requis, nous n'augmentons ce nombre que de 4 octets dans

le pire cas, alors que l'implémentation au second ordre demande un nombre bien plus

important, comme prédit par la théorie.

En combinant les résultats des deux analyses, nous observons que l'activation des trois

algorithmes de notre approche o�re un compromis intéressant en terme de réduction des

fuites et de performance par rapport aux implémentations masquées compilées sans nos

passes.

En comparaison avec l'état de l'art, nous remarquons qu'en travaillant sur la représen-

tation intermédiaire du programme, nous pouvons fournir une implémentation résiliente

aux fuites en transition pour toute cible pour laquelle nous disposons d'une description

micro-architecturale augmentée par les informations sur les fuites. Un deuxième avantage

découle de l'emploi de l'ordonnancement des instructions et de l'allocation des registres :

en intégrant une contrainte de fuite dans le problème d'optimisation sous-jacent, nous

générons potentiellement des implémentations plus performantes et résilientes aux fuites.

Concernant les travaux futurs potentiels, notre approche pourrait automatiser l'élimination

des fuites basées sur les glitchs en ajoutant des directives spéci�ques à nos algorithmes.Notre

méthodologie peut être aussi associée à d'autres approches pour obtenir de meilleures

garanties de sécurité dans la pratique, par exemple avec le mécanisme de nettoyage
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matériel de l'approche basée sur ISE proposé par Gao et al.[Gao+20b]. Pour nos anal-

yses, nous avons utilisé un seul cas d'utilisation, le cryptosystème SIMON128/128. Un

futur travail potentiel consiste à fournir des analyses plus exhaustives considérant dif-

férents cas d'utilisation. Notre approche tire nativement parti du parallélisme au niveau

des instructions, grâce au module d'ordonnancement des instructions. La mise en ÷uvre

de logiciels reposant sur des techniques de programmation ou de masquage favorisant

le parallélisme pourrait être particulièrement favorable.Comme nous l'avons fait pour

la chaîne d'outils basée sur LLVM que nous avons utilisée, nous pourrions améliorer

d'autres outils existants pour étudier l'amélioration potentielle de la sécurité découlant

de la combinaison de plusieurs approches.En�n, nous laissons comme travail futur la for-

malisation de notre méthodologie en termes d'atténuation des fuites, de terminaison et

de préservation de la sémantique du programme protégé.

À Propos de la Résilience en Pratique des Implémentations

Logicielles Masquées

Pour combler le fossé entre la sécurité théorique et la sécurité pratique du masquage dans

les logiciels, la littérature récente s'appuie principalement sur la suppression des fuites

en transition et en glitch induites par la micro-architecture. Une limitation intrinsèque

de cette approche réside dans un certain degré de dépendance à l'égard de la micro-

architecture cible, ce que nous avons directement mis en évidence en proposant une

méthodologie automatisée pour éliminer les fuites en transitions. Outre les manques

identi�és dans la littérature, nous avons formulé deux observations supplémentaires :

(1) la limitation des approches au masquage booléen et (2) la limitation aux e�ets de

recombinaison. Peu de travaux ont exploré l'impact théorique des e�ets de recombinaison

sur d'autres types de schémas de masquage, tels que le masquage arithmétique et le

masquage par produit scalaire ; parmi eux, aucun n'a tenté une analyse complète de

l'impact pratique des fuites induites par la micro-architecture sur de tels schémas. En ce

qui concerne le deuxième point, les travaux actuels ne tiennent pas compte du parallélisme

des données intrinsèque aux micro-architectures modernes, qui implique potentiellement

un traitement en parallèle des shares (PPS), un phénomène dont l'attaquant peut tirer

pro�t [MM17].

Motivés par le besoin d'une compréhension plus complète de l'impact de la micro-

architecture sur la sécurité pratique des schémas de masquage, nous évaluons dans ce

chapitre la sécurité pratique o�erte par le masquage booléen, arithmétique et produit

scalaire de premier ordre contre les fuites basées sur les transitions et les fuites basées

sur le PPS dans les logiciels. Nous développons l'étude en trois étapes principales :
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(1) caractérisation des fuites basées sur la transition et sur le PPS induites par la micro-

architecture ; (2) impact des fuites basées sur la transition et sur le PPS sur les encodages

de masquage de premier ordre ; (3) impact des fuites basées sur la transition et sur le

PPS sur les implémentations logicielles masquées au premier ordre du chi�rement par

blocs AES-128. Pour tenir compte également de la variabilité des fuites que l'on peut

observer entre di�érents processeurs [MMT20; Aro+21; MPW22], nous e�ectuons toutes

nos analyses sur deux plates-formes distinctes : un STM32F215, hébergeant un ARM

Cortex-M3, et un STM32F303, hébergeant un ARM Cortex-M4.

Dans l'étape de caractérisation de notre étude, nous avons analysé la présence de

chaque e�et induit par la micro-architecture sur nos plates-formes expérimentales. La

caractérisation commence par le choix de modèles de fuite appropriés pour capturer les

deux e�ets. Nous nous appuyons sur les modèles somme des poids de Hamming (SHW) et

distance de Hamming (HD) pour les fuites basées sur le PPS et les fuites en transitions,

respectivement. Ensuite, nous concevons et développons plusieurs micro-benchmarks

pour tester la présence de ces e�ets. Pour con�rmer ou in�rmer la présence d'un e�et

donné, nous e�ectuons des analyses de corrélation sur des mesures de puissance collectées

pendant l'exécution des micro-benchmarks.

Après avoir établi certains scénarios d'utilisation bien contrôlés dans lesquels chaque

e�et de fuite se produit en raison de l'activité de la micro-architecture, nous exploitons

ces mêmes micro-benchmarks pour étudier l'impact pratique de ces e�ets sur les en-

codages de masquage du premier ordre. Dans un premier temps, nous nous appuyons sur

une simple analyse de corrélation de premier ordre et sur de l'information hypothétique

pour avoir une première compréhension de l'impact que ces e�ets de fuite ont sur les

encodages de masquage. Les résultats montrent qu'il est possible d'exploiter les informa-

tions divulguées par des fuites en transitions, alors que, conformément à la théorie, nous

ne sommes pas en mesure d'exploiter les fuites basées sur le PPS. Dans la deuxième étape

de l'analyse, nous avons recours à la technique de prétraitement proposée par Moos and

Moradi pour exploiter les fuites basées sur le PPS [MM17]. Nous exploitons avec succès

les informations divulguées par PPS lors du traitement des shares de masquage booléen

et arithmétique, mais pas pour l'encodage du produit scalaire.

Nous remarquons que le modèle de fuite que nous avons utilisé pour e�ectuer les

analyses de corrélation ne permet pas une exploitation optimale des informations divul-

guées. Sur la base de cette observation, nous tirons parti de la distribution statistique

des modèles de fuite de la distance de hamming et de la somme des poids de hamming

pour construire de meilleurs modèles de fuite. En appliquant cette approche et en la

combinant avec la technique de Moos and Moradi, nous améliorons l'exploitation des

informations contre les trois encodages considérés.

En�n, après avoir compris l'impact pratique de ces e�ets de fuite sur les codages
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de masquage, nous passons à l'analyse des implémentations de premier ordre entière-

ment masquées du chi�rement par blocs AES-128. A�n de fournir une analyse complète,

nous avons divisé l'évaluation de la sécurité en deux parties : l'évaluation des fuites

d'informations, pour analyser les informations divulguées par l'implémentation entière-

ment masquée, et l'exploitation des fuites d'informations, pour évaluer l'exploitabilité de

ces informations.

L'évaluation de la fuite d'informations repose sur le t-test non spéci�que, réalisé

conformément à la méthodologie TVLA. Pour éliminer les faux négatifs, nous e�ectuons

les tests deux fois, avec un texte en clair �xe di�érent, et nous condensons les résultats

en conservant, pour chaque échantillon de canal auxiliaire, celui dont la valeur de la

t-statistique est la plus élevée. Les analyses nous ont permis de constater une meilleure

atténuation des fuites pour le masquage par produit scalaire, bien qu'il présente encore

des points de fuite. En enquêtant, nous avons découvert que la fuite a�ectant la mise en

÷uvre du produit scalaire trouve sa cause première dans l'algorithme de multiplication

de corps �nis que nous employons.

L'exploitation des fuites d'informations comporte plusieurs analyses basées sur les

corrélations, chacune étant caractérisée par un modèle de fuite di�érent ou une combi-

naison d'approches (par exemple, la technique de Moos and Moradi et l'exploitation de

la distribution du modèle de fuite). Les analyses con�rment les résultats obtenus lors de

l'évaluation des fuites d'informations.

En résumé, notre étude montre que, malgré l'omniprésence et l'impact des e�ets

de recombinaison, comme les fuites en transitions et les glitchs, ceux-ci ne représentent

pas la seule menace pour la sécurité pratique du masquage dans les logiciels. En nous

appuyant sur une adaptation de la technique de prétraitement proposée par Moos et

Moradi [MM17], nous montrons comment exploiter de manière fructueuse les fuites basées

sur PPS contre les instances de premier ordre du masquage booléen, arithmétique et

produit scalaire. En outre, malgré le fait que certains schémas, tels que le masquage

par produit scalaire, o�rent une immunité contre les fuites basées sur les transitions, des

opérations particulières peuvent lever cette immunité. Plus précisément, nous montrons

comment l'utilisation de l'opération log dans l'algorithme de multiplication de corps �ni

permet d'exploiter avec succès une fuite en transitions contre le masquage par produit

scalaire.

Conclusion et Perspectives

Par cette thèse, nous avons contribué à relever le dé� du développement de logiciels

masqués sécurisés en pratique. Comme première contribution, nous avons présenté une

nouvelle méthodologie pour combler le fossé entre les hypothèses soutenant les modèles
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de sécurité où les schémas de masquage sont prouvés sûrs et la réalité du monde physique

où les implémentations masquées sont exécutées. Cette méthodologie s'appuie sur des

algorithmes de génération de code pour automatiser la génération d'implémentations

masquées tout en atténuant les fuites en transitions provenant des détails architecturaux

et micro-architecturaux du processeur cible. En opérant sur une représentation intermé-

diaire annotée d'un logiciel masqué, et en s'appuyant sur une description des caractéris-

tiques (micro-)architecturales impliquées dans les fuites en transitions, nous améliorons

l'allocation des registres et les algorithmes d'ordonnancement des instructions en leur

faisant prendre en compte les fuites potentielles. En mettant en ÷uvre notre approche

dans le cadre des bibliothèques de base LLVM, et en l'intégrant à une chaîne d'outils

basée sur LLVM pour la génération automatique d'implémentations logicielles masquées

par masquage booléen au premier ordre, nous montrons comment notre approche élim-

ine certaines des fuites que nous trouvons sur une implémentation de premier ordre, tout

en contenant coût en termes de temps d'exécution, d'exigences en matière d'aléa et de

taille de code contenus par rapport à une solution masquée au second ordre. Cependant,

cette approche, comme le reste des travaux existants dans l'état de l'art, repose sur une

description des caractéristiques micro-architecturales impliquées dans les fuites. Ce type

de dépendance a une incidence sur la qualité de la solution �nale, en termes de sécurité

pratique et de coûts, ainsi que sur la portabilité des garanties de sécurité entre di�érentes

plateformes. Une question naturelle est de savoir si l'on peut envisager une approche plus

agnostique pour atteindre la sécurité dans la pratique, malgré les dégradations de sécurité

impliquées par la micro-architecture. À cet égard, notre deuxième contribution consiste

à évaluer l'impact des fuites induites par la micro-architecture sur di�érents schémas

de masquage. Plus précisément, nous avons étudié les garanties de sécurité pratiques

sur le masquage arithmétique et produit scalaire au premier ordre, en les comparant au

masquage booléen au premier ordre. L'étude a d'abord évalué la résistance aux fuites

des encodages de premier ordre, puis a porté sur des implémentations masquées au pre-

mier ordre du cryptosystème AES-128. Nous remarquons que, dans le cadre de cette

étude, nous n'avons pas tenté d'atténuer ou de supprimer les canaux auxiliaires infor-

matifs, mais plutôt d'évaluer l'atténuation intrinsèque de la fuite d'informations fournie

par des schémas de masquage ayant une structure mathématique di�érente. Cette étude

a montré que le masquage par produit scalaire au premier ordre permet de mieux gérer

les fuites provenant des caractéristiques architecturales et micro-architecturales du pro-

cesseur, même s'il n'est pas en mesure d'y résister complètement lorsque des approches

d'exploitation des fuites un peu plus élaborées sont appliquées. Nous avons également

étudié l'impact que le parallélisme des données peut avoir sur la sécurité des systèmes de

masquage.

En ce qui concerne notre approche de l'automatisation de l'atténuation des fuites
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induites par la (micro-)architecture, son intégration avec des approches qui exposent

davantage de parallélisme au niveau des instructions pourrait fournir des implémentations

très e�caces et résistantes. Les extensions naturelles englobent le masquage d'ordre

supérieur, d'autres types de schémas de masquage et la description de micro-architectures

plus complexes (par exemple, super-scalaires). En�n, dans l'idée de promouvoir une plus

grande collaboration entre le matériel et le logiciel, on pourrait intégrer notre approche

à celles basées sur une ISE, a�n d'automatiser l'emploi de mécanismes tenant compte du

matériel.

En ce qui concerne la résilience des di�érents schémas de masquage, une piste de

recherche intéressante consisterait à comprendre quels sont les meilleurs codes optimaux

pour le masquage par produit scalaire. En e�et, nos résultats concernant le masquage

par produit scalaire découlent de l'utilisation d'un seul code, choisi arbitrairement. Dans

le même ordre d'idées, il serait intéressant d'étudier l'existence de codes optimaux à la

fois dans le cas de fuites basées sur la transition et dans le cas de fuites basées sur le

PPS. Notre étude se limite bien sûr à des processeurs simples et dans l'ordre. On peut

se demander quelles sont les conséquences, en termes de résilience des canaux auxiliaires,

lorsque des architectures plus performantes gênent le concepteur du schéma de masquage.

Par exemple, les architectures super-scalaires favorisent intrinsèquement un degré plus

élevé de parallélisme.





Abstract - Extended Version

Introduction

First documented historical traces of what we could de�ne as a side-channel trace back

to the II World War. Being at �rst labelled as a dubious and esoteric laboratory phe-

nomenon, the side-channels quickly became recognized as a practical threat for the pro-

tection of sensitive assets, such as con�dential communications. With the term side-

channel, we refer to any alternative communication channel that can convey (partial)

information concerning on some fact or system. The analysis and exploitation of this

(partial) information�the side-channel analysis�can lead who analyse (analyser ; at-

tacker, in certain context) to draw some conclusion with a given probability. Side-channel

analysis found a fertile land in the �eld of cryptology, where it is extensively employed

as a powerful cryptoanalytic tool against the mathematical security of modern crypto-

graphic systems. Counteraction against the exploitation of a side-channel takes the form

of side-channel suppression of information bounding. In the �rst case, the countermea-

sure designer eliminates the side-channel, whereas in the second case the countermeasure

designer limits the amount of information the side-channel can convey. Concerning the

second approach, the idea consists in increasing the noise a�ecting the side-channel. In

this regard, we can classify countermeasures into hiding�the noise hides the informa-

tive signal�and masking�we encode secret-dependent information with several random

value. Thanks to its formal framework of security, one can de�ne and prove the security

guarantees of masking. Despite such formal security veri�cation, physical non-idealities

violate hypotheses on which the formal framework stands. By consequence, the practical

application of masking do not met the proven security guarantees. This discrepancy

between theoretical and physical context impacts both hardware and software applica-

tion of masking. In particular, when employed to provide side-channel protection to

software implementations, one faces a more subtle problematic, as the so-called Instruc-

tion Set Architecture (ISA) supported by a CPU processor hides to the masking scheme

designer the physical reasons explaining the discrepancy. According to Hennessy and

Patterson, an ISA consists in the portion of the computer architecture visible to the pro-
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grammer or compiler writer and the ISA serves as the boundary between software and

hardware [HP12]. Gao et al. further elaborates on the concept of an ISA, describing it

as an interface between what the programmer can access to (the architecture) and what

the programmer cannot interact with (the micro-architecture) [Gao+20b]. A micro-

architecture encompasses high-level aspects of a CPU, such as the memory system and

the CPU's design [HP12]. By acting as a sort of contract between software and hard-

ware, an ISA allows semantic equivalence when executed on di�erent CPUs supporting

the same ISA, although these CPU potentially di�ers in terms of micro-architecture.

As a concrete example, a program described with the ARMv7 ISA will provide the

same output if executed on the simple ARM Cortex-M4 CPU, or the more performant

ARM Cortex-M7, although their micro-architecture substantially di�er. Thus, in the

end, the masking scheme designer can directly interact solely with the architectural

features of a micro-processor to not convey information through the side-channels repre-

sented by recombination e�ects. In the more general sense, due to the opaque nature of

the micro-architecture, the designer is not aware of the actual security impact that the

micro-architecture has on a software implementation. In the side-channel literature, this

subject�the role of the micro-architecture on the side-channel security of software�is

relatively new, with the �rst publication linking the information leakage to the underlying

micro-architecture dating back to 2017 [PV17]. From then, more publications focused

on the impact of the micro-architecture in terms of information leakage, exploring and

classifying the di�erent sources of leakages encompassed within the micro-architecture.

Such sources range from hidden registers within the execution pipelines, typical for a

so-called pipelined micro-architecture, signal glitches characterizing the combinatorial el-

ements of the micro-architecture, speculative features and the memory subsystems have

been found as the root cause of informative side-channels [BP18; Gao+20a; Gao+20b;

MMT20; GPM21; MPW22]. The impact of the micro-architecture is a problem more

and more understood, as witnessed by the increase of body of works concerned with the

topic, ranging from investigation of micro-architecture-induced side-channels, tools for

the veri�cation of masked software implementations and methodologies for to enable their

secure execution. With methodologies we mean guidelines for the secure development of

masked software, or approaches to automate the development process, taking into account

the micro-architecture threat, or hardware modi�cations to enable a secure execution.

These guidelines are an important ingredient, as they state general principles to avoid

the generation of informative side-channels. In the same vein, approaches for automated

generation of micro-architecture-secure implementations constitute an important aspect,

as they ease the development of masked software, while meeting more practical aspects,

like the time-to-market in the case of an industrial product. Hardware modi�cations,

instead, call for a di�erent approach to tackle the development of side-channel secure
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software: instead of intervening solely on the software side, they promote the conception

of a more side-channel-aware micro-architecture, either by providing mechanisms to com-

pute masked operations is secure manner, or by making the software/hardware contract,

instantiated by the ISA, less opaque and providing to the software with mechanisms to

better control the potential side-channel threat.

On the other hand, tackling the security of masked software implementations in such

a white-box manner makes all the approaches, or at least the resulting implementations,

strictly dependent on the target micro-architecture. Indeed, the ISA enables behavioural

diversity while preserving functional compatibility [Gao+20b]. As a result, the portability

of the security is not guaranteed in the general case. Furthermore, the development of

a micro-architecture-aware implementation strictly relies on the knowledge of the micro-

architecture itself. Such knowledge is typically limited to the public available information,

if any, as being part of an intellectual property; as a result, the resulting implementation

does not cover the whole attack surface provided by the micro-architecture. Another

point of di�culty is represented by the complexity of the micro-architecture design: as

the micro-architecture provides more and more features for performance reasons, the

more are the potential side-channels generated. Thus, attempting to address all of them

might result in a costly solution in terms of execution time, for instance; or it might result

in an impossible task in particular cases. The problematic exacerbates when considering

the types of leakages: attempting to cover, at the same time, transition-based, glitch-

based and coupling-based leakages potentially increase the di�culty of the task. Thus,

one might wonder whether there exist approaches more agnostic with respect to the

underlying micro-architecture.

Contributions

With this thesis, we address, along two axes, the task of developing side-channel se-

cure masked software in practice. The �rst axis concerns with the automated develop-

ment of masked software resilient to transition-based leakages. Indeed, from the current

state of the art, current approaches either rely on oversimpli�ed model of the micro-

architecture, or consider only leakage e�ects stemming from the architectural elements

of the CPU, or address the problem with a we �x what we detect approach. Moreover,

part of these approaches works at the machine-code level, losing the opportunities, both

in terms of e�ciency and security, that an approach operating on a higher-level of the

compilation process would bring. The �rst contribution of this thesis improves the cur-

rent state of the art by describing a methodology for the automated development of

masked software resilient against transition-based leakages. This methodology takes ad-

vantage of the code-generation phase of optimizing compilers: given in input a software
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implementation�annotated with side-channel-related information� and a description

of the target micro-architecture, we show how to exploit the instruction scheduling and

register allocation tools to mitigate transition-based leakages in an automated manner.

With respect the current state of the art, this methodology tackles the problem from a

di�erent level of the compilation process, acting on an intermediate representation of the

masked program. At the same time, by employing code-generation tools, we render the

micro-architecture-induced leakage mitigation part of compilation process, acquiring all

the bene�ts of this latter. Last but not least, the approach relies on a micro-architectural

description fed as an input to the code-generation tools. This approach provides a sep-

aration of concerns, as the code-generation algorithms are totally agnostic to the target

micro-architecture, and the level of security we can reach strictly depend on the quality

of the model integrated within this description.

The second axis concerns with a more target-agnostic approach to counteract the

micro-architecture-induced leakages. As we remarked right before, relying on the micro-

architectural details comes with a huge burden for the masking designer. Not relying on

these details potentially improves the situation, in particular in terms of portability of the

security of the solution across CPUs supporting the same ISA. If we look at the literature,

most of the works focused on protecting boolean masked software, as boolean masking

is well-known to be sensitive to recombination e�ects. At the same time, theoretical

studies on other masking schemes might suggest their employment as a mean to address

the research question along this second axis. Yet, little has been explored in practice,

letting one wonder what are the practical security guarantees of other types of masking

schemes in the presence of micro-architecture-induced leakages.

As a side contribution, we highlight that the potential threat originated from the

micro-architecture does not limit to recombination e�ects. One particular that seems

to be overlooked are the parallelism capabilities that modern CPUs potentially provide.

Indeed, modern CPUs have evolved to increase the number of instruction per clock

cycles that they might process and, in some cases, complete at the same time. Such

parallel capabilities stem from di�erent and orthogonal hardware-oriented techniques.

Among these, one of the most wide-spread is the pipelining, which we can �nd also in

current micro-controllers. Targeting simple micro-controllers, we elaborate on how this

parallelism can manifest and we practically show how it impact on the security of masked

software implementations.

State of the Art and Research Questions

As introduced in the introductory chapter, the ISA of a CPU provides an abstract layer

between the software executed and the hardware running this software. This layer enables
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the underlying hardware to implement speci�c functionalities in a transparent fashion,

while preserving semantic equivalence. According to the underlying implementation of

the micro-architecture, a certain number of instructions can be completed per clock

cycles. When such number reaches the minimum of 1, we refer to such architectures

as scalar architectures. When more than one instructions can be completed within the

same clock cycles, we deal with super-scalar architectures. Also, a further distinction

considers the order in which an instruction gets executed. When talk about in-order

architectures when the CPU executes the instructions according to their order in the

executed program; otherwise, we talk about out-of-order architectures. We �nd the

advantage of out-of-order architectures in an increased instruction throughput, although

it comes with several shortcomings to preserve semantic correctness.

Concerning the potential types of leakages that can originate from the micro-architecture,

we �nd transition-based leakages, glitch-based leakages and coupling-based leakages. All

of the three imply a recombination of the values involved in the phenomenon. Transition-

based leakages originates from the update of memory elements within the (micro-)architecture;

glitch-based leakages derives from signal instabilities within the combinatorial logic com-

posing the micro-architecture; coupling-based leakages stem from the physical vicinity

between physical components of the micro-architecture or due to power supply noise.

Also, we can classify leakages according to the type of recombination they imply. We talk

about inter-bit leakage when the recombination involves bits of distinct values, whereas

we deal with intra-bit leakage when the recombination involves bits of the same value.

The type of leakage and the type of recombination are orthogonal to each other.

State of the Art Review Concerning the mitigation micro-architecture-induced leak-

ages, literature focuses on approaches to enforce data-isolation to avoid recombination of

shares, implying a restoration of the violated hypotheses supporting the formal security

framework behind masking. The literature review presented in this chapter focuses on

approaches designed to actively protect masked software implementations. We identi-

�ed 13 works of interest, which we classify according to the methodological approach

considered to mitigate micro-architecture-induced leakages: ISA-based, ISE-based and

Non-completeness-based.

With ISA-based approaches, we consider all the methods that apply leakage mit-

igation by resorting solely on the indirect interaction with the micro-architecture by

means of the ISA, in an automated fashion. We classify ISA-based methods according to

their pro-activity (it generates code intrinsically mitigating leakage) [Abr+21; WSW19;

Tso+23] or reactivity (it modi�es the code to mitigate the leakage) to the mitigation of

leakage [SSG17; Ath+20; She+21b; She+21a].

With ISE-based approaches, we consider all the methods that apply leakage miti-
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gation by resorting on an extended version of the ISA, which provides more control on

the leakage behaviour of the micro-architecture. We can classify ISE-based approaches

according to who the leakage mitigation is delegated: to the hardware [Gao+20b; KS20]

of a mix of hardware and software [Kia+20; MP21; Gao+21; CPW24].

With Non-completeness-based approaches, we consider all the methods that enforce

the non-completeness property [Bil+14] to avoid one or more classes of leakages [MMT20;

GPM21; GD23].

We can qualitatively compare the three di�erent approaches in terms of e�cacy (it

describes the amount of leakage sources mitigated), invasiveness (it describes the hard-

ware modi�cation to apply to the micro-architecture) and portability (it describes the

easiness with which security guarantees of a software implementation can be transferred

across micro-architectures). Concerning the e�cacy, the current ISA-based solutions

show an application limited to transition-based leakages, encompassing both inter-bit

and intra-bit interactions. ISE-based methods, thanks to the possibility to modify the

underlying micro-architecture, extend also to glitch-based leakages. Non-completeness

methods can mitigate both transition-based and glitch-based leakages. Concerning the

invasiveness, we ISA-based and Non-completeness-based ones have no impact in terms

of hardware modi�cation, whereas ISE-based ones might required non-negligible modi�-

cations. Concerning the portability, ISA-based ones exhibit the lowest degree among the

three methodologies, as the software implementation potentially requires some modi�ca-

tion to be secure on di�erent micro-architectures. ISE-based ones slightly improve with

respect to ISA-based ones, as they do not require any software modi�cation as long as

the CPUs provide an ISE with the same security guarantees. Approaches encompassing

non-completeness properties require the less amount of modi�cation to the software.

Open Problems and Research Questions From the literature review, we iden-

ti�ed several open problems. First, we remark the strict link between the security

guarantees provided by ISA-based approaches and the knowledge concerning the tar-

get micro-architecture. Second, we have the lack of portability of the security guaran-

tees between di�erent micro-architectures. Third, current ISA-based approaches rely on

overly-simpli�ed models of the target micro-architecture, preventing the total mitigation

of the leakages induced by the latter. Fourth, current approaches mainly focus on pro-

viding practical security for �rst-order masked implementations. Fifth, there is strong

research to provide practical security on simple in-order CPUs, which still results in a

complex task. Finally, a major part of the state of the art focuses on a transition-based

leakages, neglecting the e�ects of glitch-based ones.

It comes clear that providing �rst-order security on simple in-order architectures is

a currently unsolved challenge, which require further investigation. At the same time,
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lot of research investigated the impact of micro-architecture-induced leakages on boolean

masking and related methods to mitigate the impact on it. None of the works we are

aware of attempted to investigate the impact of the micro-architecture on the practical

security of other types of masking schemes.

In the end, within this thesis we address the following research questions: (1) what

mitigation capabilities can we reach by considering more complete models of the micro-

architecture; (2) What is the impact of the micro-architecture on the practical security

masking schemes with a di�erent algebraic structure from the boolean one.

An Automated Methodology to Mitigate Transition-based

Leakages at Software Level

The state of the art review made emerge the current di�culty to provide �rst-order

secure masked implementation when executed on a CPU. ISA-based methodology par-

ticularly feel this problematic, since they can only indirectly intervene to prevent micro-

architectural leakages, without any hardware mechanism to support their mitigation.

Furthermore, current approaches provides partial mitigation of transition-based leakages,

as they resort on simple models of the micro-architecture. This chapter describes an im-

provement to the current ISA-based methodologies in the state of the art: a pro-active

approach to automate the generation of �rst-order masked software implementations re-

silient against micro-architecture-induced transition-based leakages. By observing that

changing the order of the instructions in the program and a di�erent assignment of

the physical registers can remove transition-based leakages, the proposed solution en-

hances instruction scheduling and register allocation algorithms to generate �rst-order

masked implementations while mitigating the sources of leakage. When such implemen-

tation cannot be generated�for instance, the one of the two algorithms cannot avoid

a transition-based leakage�we �ush the state of the micro-architecture: we update the

content memory elements within the micro-architecture to remove the potential leakages.

Once performed the �ushing of the micro-architectural state, the two algorithms can pro-

ceed again with their task. The approach rolls out on three main points: input program

annotation (or tagging), micro-architectural description and algorithms enhancements.

The tagging serves to precisely identify the shares manipulated by the masked pro-

gram. We encode such information through the concept of encoding tag, a pair of natural

numbers representing two unique identi�ers: the identi�er for the encoding and the iden-

ti�er of the share within the given encoding. We rely on the assumption that an external

entity provides an input program annotated with such encoding tags. Upon the concept

of encoding tags, we de�ne a leakage relation, which allow to understand whether two
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variables induce informative transition-based leakages by looking only to the assigned

encoding tags.

The micro-architectural description provides information on the micro-architectural

features characterizing the target CPU. We enrich this description by marking which of

these feature induces transition-based leakages.

The enhancement of the instruction scheduling and register allocation algorithms

follow a simple rationale: these algorithms attempt to solve an optimization problem.

Optimization problems are made of a function cost and a set of constraints to the prob-

lem. Thus, the enhancement consists in adding the avoidance of transition-based leakages

as a further problem constraint. In practice, while operating, the algorithms evaluate

each potential intermediate solutions. When a candidate one is found, the algorithm ad-

ditionally checks whether, given the current micro-architectural state and the available

micro-architectural description, the intermediate solution induces a transition-based leak-

age according to the de�ned leakage relation. If among all the potential intermediate so-

lutions, none satisfy the leakage constraint, the algorithm �ushes the micro-architectural

state. How the �ushing is done is algorithm-dependent. Nevertheless, as in all ISA-based

approaches, the main idea is to add a precise (sequence of) instruction(s) in order to re-

move any potential transition-based leakage. Once �ushed, the algorithms can operate

again, converging towards a complete, leakage-free solution.

We implemented our approach as part of the LLVM Core Libraries and integrated it

to a compilation tool-chain for the automated generation of �rst-order, boolean-masked

software implementations. We evaluated our approach by evaluating the practical secu-

rity guarantees and the implied overheads when protecting �rst-order, boolean-masked

implementations of the SIMON128/128 block cipher. For all the analyses, we generated

10 distinct implementations of a 10-round-reduced implementation of SIMON128/128:

an unmasked one, a �rst-order one, a second-order one and several �rst-order ones where

we apply di�erent combinations of instruction scheduling and register allocation micro-

architectural protections. In order to provide better projections, for the overhead analyses

we also considered 15, 20 and 25-round-reduced implementations.

We carry out the security analysis according to the Test Vector Leakage Assessment.

In order to cope with transition-based leakages involving both the key and the plaintext

used by SIMON128/128, for each implementation, we perform two non-speci�c t-tests,

one on the key and one on the plaintext. We condense the results by preserving, between

the two tests, the highest t-statistic value. From the security analyses, by comparing with

respect to plain �rst-order and second-order implementations, we observe a systematic re-

duction of the leakages when both instruction scheduling and register allocation operates.

When took in isolation, we remark how the pre-RA instruction scheduling alone already

provides a substantial reduction of the leakage points, whereas the solely application of
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register allocation worse the witnessed leakage. Post-RA instruction scheduling better

mitigate the observed leakages than the employment of the register allocation, suggesting

that most of the leaking samples has micro-architectural origin; at the same time, the

post-RA instruction scheduling is not able to mitigate all the leakage points. We �nd a

potential explanation in the incompleteness of the micro-architectural model we employ,

as practically proven by a novel source of transition-based leakage we observed on our

target platform. Combinations of the di�erent algorithms do not show any improvement

with respect to the simultaneous employment of all them, suggesting that, to e�ectively

mitigate transition-based leakages during the compilation process, the whole compilation

tool-chain should be involved in the process, and not only a part of it.

Concerning the overhead evaluation, we evaluated each implementation along three

metrics of interest: execution time, randomness requirement and code size. We observe

how the plain �rst-order and second-order masked implementations lower bound and

upper bound, respectively, all the other masked implementations. We observe the em-

ployment of the pre-RA instruction scheduling systematically reduces both the execution

time and code size overheads, suggesting that the higher freedom given to it in its task

can help to contain the overhead impact while mitigating transition-based leakages. In-

deed, we get the worst results when the implementations are not protected also with this

version of the instruction scheduling. In terms of randomness requirements, we increment

the requirement only by 4 bytes at worst, whereas the second-order implementation, as

expected by the theory, exhibit an exponential increment.

Combining the results from the two analyses, we observe that the activation of all

the three algorithms provides the best security/performance trade-o�s with respect to a

second-order masked implementation.

When comparing to the state of the art, we remark that, by working on the interme-

diate representation of the program, we can virtually provide transition-based leakage re-

silient implementation for any target for which we have a micro-architectural description

augmented with leakage information. A second advantage stems from the employment of

instruction scheduling and register allocation: integrating a leakage constraint in the un-

derlying optimization problem, we potentially generate more performant, leakage-resilient

implementations. Although potentially less performant than solutions that look for the

optimal solution, we do not rely on the assumption that we always �nd a leakage-free

implementation, coping with this possibility by �ushing the micro-architectural state.

Concerning the potential future works, our approach can automate the mitigation of

glitch-based leakages by encoding certain guidelines envisioned to avoid speci�c sources

of glitch-based leakages. Our methodology can be paired with other approaches to reach

better security guarantees in practice, for instance with hardware-based �ushing mecha-

nism of the ISE-based approach proposed by Gao et al.[Gao+20b]. For our analyses, we
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employed a single use case, the SIMON128/128 cryptosystem. A potential future work

consists in more exhaustive analyses considering di�erent use cases. Our approach na-

tively takes advantage of instruction-level parallelism, thanks to the instruction schedul-

ing module. Software mplementation relying on programming or masking techniques

promoting parallelism would gain particular advantage. As we did for the LLVM-based

tool-chain we employed, we could enhance existing tools to investigate the potential se-

curity enhancement stemming from their combination. Finally, we leave as a future work

the formalization of our methodology in terms of leakage mitigation, termination and

preservation of the protected program' semantic.

On the Practical Resilience of Masked Software

Implementations

To bridge the gap between the theoretical and the practical security of masking in soft-

ware, the recent literature mainly relies on the suppression of the transition-based and

glitch-based leakages induced by the micro-architecture. An intrinsic limitation of this

approach stands in some degree of dependency from the target micro-architecture running

the implementation, which we directly witnessed by proposing an automated method-

ology to remove transition-based leakages. In addition to the identi�ed literature gaps,

we put forward two additional observations: (1) the limitation to boolean masking and

(2) the limitation to recombination e�ects. Few works explored the theoretical impact

of recombination e�ects on other types of masking schemes, such as the Arithmetic-Sum

Masking and the Inner-Product Masking; among them, none attempted a comprehensive

analysis of the practical impact of micro-architecture-induced leakages on such schemes.

On the second point, current works do not take into account the data-parallelism intrinsic

to modern micro-architectures, which potentially implies the parallel processing of shares

(PPS), a phenomenon that attacker can fruitfully take advantage of [MM17].

Motivated by the need of a more comprehensive understanding of the micro-architecture

impact on the practical security of masking schemes, in this chapter we evaluate the

practical security o�ered by �rst-order Boolean, arithmetic-sum and inner-product mask-

ing against transition-based leakages and PPS-based leakages in software. We develop

the investigation in three main steps: (1) micro-architecture-induced transition-based

and PPS-based leakages characterization; (2) impact of transition-based and PPS-based

leakages on �rst-order masking encodings; (3) impact of transition-based and PPS-based

leakages on �rst-order masked software implementations of the AES-128 block cipher.

To take into account also the leakage variability that one might witness across di�er-

ent CPUs [MMT20; Aro+21; MPW22], we carry out all of our analyses on two distinct
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platforms: an STM32F215, hosting an ARM Cortex-M3, and a STM32F303, hosting an

ARM Cortex-M4.

In the characterization step of our investigation, we analysed the presence of each

micro-architecture-induced e�ect on our experimental platforms. The characterization

starts with the choice of suitable leakage models to capture the two e�ects. Being

developed out-of CMOS technology, we resort on the Sum-of-Hamming-Weights and

Hamming-Distance models for the PPS-based and transition-based leakages, respectively.

Then, we carefully design and develop several machine-code micro-benchmarks to test

the presence of these e�ects. To con�rm or disregard the presence of a given e�ect, we

carry out correlation-based analyses on power-based side-channel traces collected during

the execution of the micro-benchmarks.

Once established some well-controlled use cases where each leakage e�ect occurs due

to the activity of the micro-architecture, we exploit the very same micro-benchmarks to

investigate the practical impact of these e�ects on �rst-order masking encodings. As a

�rst step, we rely on simple �rst-order correlation analysis and hypothetical information

to have a �rst understanding of the impact that these leakage e�ects have on the mask-

ing encodings. The results show exploitability of the information leaked by transition-

based side-channels, whereas, compliant with the theory, we are not able to exploit the

PPS-based leakages. In the second step of the analysis, we resort on the preprocessing

technique proposed by Moos and Moradi to exploit PPS-based leakage [MM17]. We

positively exploit the information leaked by PPS when handling shares of boolean and

arithmetic masking, but none for the inner-product encoding.

We remark that the leakage model we used to perform the correlation analyses does

not allow an optimal exploitation of the leaked information. According to this observa-

tion, we take advantage of the statistical distribution of the hamming-distance and of

the sum-of-hamming-weights leakage models to build better leakage models. Applying

this approach, and combining it with the Moos and Moradi's technique, we improve the

information exploitation against all the three masking encodings.

Finally, once understood the practical impact of these leakage e�ects on masking

encodings, we move our analyses to fully-masked �rst-order implementations of the AES-

128 block cipher. To provide a comprehensive analysis, we split the security assessment in

a �rst information leakage assessment, to analyse the information leaked by the encoding

or the fully masked implementation, and in a information leakage exploitation, to evaluate

the exploitability of such information.

The information leakage assessment relies on the non-speci�c t-test, carried out ac-

cording to the TVLA methodology. To get rid of false negatives, we perform the tests

two times, each a di�erent �xed plaintext, and we condensed the results by keeping, for

each side-channel sample, the one with the highest t-statistic value. From the analy-
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ses, we remark a better mitigation of the leakages for inner-product masking, although

it still shows leaking points. By investigating, we discovered that the leakage a�ecting

the inner-product implementation �nds the root cause in the �nite �eld multiplication

algorithm we employ.

The information leakage exploitation carries out several correlation-based analyses,

each characterized by a di�erent leakage model or combination of approaches (for in-

stance, Moos and Moradi's technique and exploitation of the leakage model distribution).

The analyses con�rm the results obtained from the information leakage assessment.

All in all, our investigation shows that, although the pervasiveness and impact of re-

combination e�ects, as transition-based and glitch-based leakages, these do not represent

the only threat to the practical security of masking in software. Relying on an adaptation

of the preprocessing technique proposed by Moos and Moradi [MM17], we show how to

fruitfully exploit PPS-based leakage against �rst-order instances of Boolean, arithmetic-

sum and inner-product masking. Furthermore, despite the fact that some schemes, such

as the inner-product masking, provide immunity to transition-based leakage, particular

operations can remove such immunity. Speci�cally, we show how the employment of the

log operation in the �eld multiplication algorithm allows the successful exploitation of

transition-based leakage against the inner-product masking.

Conclusion and Perspectives

With this thesis, we contributed to the challenge of developing practically-secure masked

software. As a �rst contribution, we presented a novel methodology to bridge the gap

between the hypotheses supporting security models where masking schemes are proven

secure and the reality of the physical world where the masked implementations gets

executed. This methodology relies on code-generation algorithms to automate the gen-

eration of masked implementations while mitigating transition-based leakages stemming

from both the architectural and micro-architectural details of the target CPU. Operating

on an annotated intermediate representation of a masked software, and supported by a

description of the (micro-)architectural features involved with transition-based leakages,

we enhance the register allocation and instruction scheduling algorithms with leakage-

awareness. By implementing our approach as part of the LLVM Core Libraries, and

integrating it with an LLVM-based tool-chain for the automated generation of �rst-

order, boolean-masked software implementations, we show how our approach mitigate

portions of the leaking samples we �nd on a plain �rst-order implementation, while

containing the overheads of the protected implementation in terms of execution time,

randomness requirements and code size with respect to a second-order masked solution.

Yet, this approach, as the rest of the current existing works in the state of the art, rely



6.2. PERSPECTIVES 155

on a description of the leaking micro-architectural features. This kind of dependence

impacts the quality of the �nal solution�in terms of practical security and overheads�

as well as the portability of the security guarantees across di�erent micro-architecture

designs. A natural question is whether one can envision more target-agnostic approach

to achieve security in practice, despite the security degradations implied by the micro-

architecture. In this regard, our second contribution consists in the evaluation of the

impact of micro-architecture-induced leakages on di�erent masking scheme instances.

Speci�cally, we investigated the practical security guarantees on �rst-order arithmetic-

sum and inner-product masking, comparing them to �rst-order boolean masking. The

investigation �rst evaluated the side-channel resilience of the �rst-order encodings, then

moved to full �rst-order masked implementations of the AES-128 cryptosystem. We re-

mark that, within this investigation, we didn't attempt the mitigation or suppression of

the informative side-channels but, rather, we evaluated the intrinsic mitigation of the

information leakage provided by masking schemes with a di�erent mathematical struc-

ture. This investigation remarked how �rst-order inner-product masking better cope

with the side-channels originated from architectural and micro-architectural features of

a CPU, although not able to withstand them when slightly more elaborate leakage ex-

ploitation approaches are applied. As a side-contribution, we investigated the impact

that data-parallelism can have on the security of masking schemes.

In the scope of each contribution, we can elaborate several future works. Concerning

our approach to automate the mitigation of (micro-)architecture-induced side-channel,

its integration with approaches that exposes more instruction-level parallelism could

provide highly e�cient, side-channel resilient implementations. Natural extensions en-

compass higher-order masking, other types of masking schemes and description of more

complex micro-architectures (for instance, super-scalar ones). Eventually, along the idea

of promoting more collaboration between hardware and software, one might integrate our

approach with ISE-based ones, in order to automate the employment of hardware-aware

mechanisms.

Concerning the resilience of di�erent masking schemes, an interesting research di-

rection would be understanding the best optimal codes for the inner-product masking

against transition-based leakages. Indeed, our results concerning inner-product masking

stem from the employment of a single, arbitrarily-chosen code. On the same line, it

would be interesting to investigate the existence of optimal codes both in the case of

transition-based and PPS-based leakages. For sure, our study limits to simple, in-order

CPUs. One might wonder what are the consequences, in terms of side-channel resilience,

when more performant architectures get in the way of the masking scheme designer. For

instance, super-scalar architectures intrinsically promote a higher degree of parallelism.
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