
HAL Id: tel-04574280
https://theses.hal.science/tel-04574280

Submitted on 14 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulating Autonomous Agent in Connected Virtual
Environments

Lysa Gramoli

To cite this version:
Lysa Gramoli. Simulating Autonomous Agent in Connected Virtual Environments. Modeling and
Simulation. INSA de Rennes, 2023. English. �NNT : 2023ISAR0009�. �tel-04574280�

https://theses.hal.science/tel-04574280
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’INSTITUT NATIONAL DES SCIENCES
APPLIQUÉES RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique
Spécialité : Informatique

Par

Lysa GRAMOLI
Simulating Autonomous Agents in Connected Virtual Environ-
ments

Thèse présentée et soutenue à l’IRISA Rennes, le 28 Septembre 2023
Unité de recherche : IRISA, Institut de Recherche en Informatique et Systèmes Aléatoires
Thèse No : 23ISAR 26 / D23 - 26

Rapporteurs avant soutenance :

Julie DUGDALE Professeure à l’Université Grenoble-Alpes
Nicolas SABOURET Professeur à l’Université Paris-Saclay

Composition du Jury :

Président : Jean-Pierre JESSEL Professeur à l’Université de Toulouse 3 (UT3) - Paul Sabatier
Examinateurs : Ronan QUERREC Professeur à l’ENIB

Jean-Pierre JESSEL Professeur à l’Université de Toulouse 3 (UT3) - Paul Sabatier
Dir. de thèse : Valérie GOURANTON HdR, Maître de conférences à l’INSA Rennes
Co-dir. de thèse : Jérémy LACOCHE Chercheur, Orange Rennes
Co-encadrant : Anthony FOULONNEAU Chercheur, Orange Rennes

Invité(s) :

Bruno ARNALDI Professeur émérite à l’INSA Rennes

ACKNOWLEDGEMENT

Je tiens tout d’abord à remercier mes parents et mes soeurs Cloé et Lola, pour leur
amour, leur soutien inconditionnel ainsi que les très bons moments passés ensemble durant
ces trois années de thèse. Merci infiniment pour tous vos encouragements, vos conseils et
votre bonne humeur qui m’ont été très précieux durant toutes les étapes de la thèse, et
plus largement toutes les étapes de la vie.

Je tiens aussi à remercier particulièrement Rodri, mon amour. Merci infiniment pour
tout le bonheur que tu me donnes ainsi que ton soutien sans faille, ta gentillesse et tes
conseils qui m’ont beaucoup aidée tout au long de la thèse.

J’adresse également toute ma reconnaissance à mes encadrants de thèse, Valérie, Jérémy,
Anthony et Bruno pour m’avoir guidée tout au long de ces trois ans. Vos conseils et votre
perspicacité m’ont permis d’arriver avec succès jusqu’au bout de cette thèse. Je remercie
aussi Pr. Sabouret et Pr. Dugdale pour avoir accepté d’être mes rapporteurs ainsi que
Pr. Jessel et Pr. Querrec pour avoir été mes examinateurs.

Je souhaite aussi remercier toute ma famille, en particulier mes grands-parents, ma
tante, mes oncles et mes cousins pour leur soutien très précieux. J’ai une pensée partic-
ulière pour mon Grand-Père qui m’a toujours soutenue jusqu’au bout.

Je veux également remercier mon amie d’enfance Carla, mes amis de Télécom Saint-
Etienne, mes amis d’Orange, ainsi que mes amis d’Hybrid pour tous les très bons moments
passés ensemble et pour vos encouragements si précieux.

Je tiens enfin à remercier tous mes collègues d’Orange et d’Hybrid pour m’avoir si bien
accueillie, que ce soit au sein de l’entreprise ou du laboratoire, et pour tous les bons
moments passés ensemble.

3

TABLE OF CONTENTS

List of plots 11

Tables 12

Introduction 13
Context . 15

Industrial Context . 15
Other Application Contexts . 16

Challenges . 17
Automatically producing Credible Human Behaviors 18
Offering a compromise between Control and Autonomy over Behaviors . . 19
Validating the Credibility of the Generated Behaviors 20

Contributions . 21

1 Related Work on Human Simulation and Data Generation 23
1.1 Simulations to generate Data related to Human Behaviors 23

1.1.1 Types of Environment used to generate Data 24
1.1.2 Ways to simulate Humans Behaviors for Data Generation 28
1.1.3 Methods to validate the Credibility of the Generated Data 31

1.1.3.1 A priori Approaches . 32
1.1.3.2 A posteriori Approaches 32

1.1.4 Conclusion . 34
1.2 Agent-based Models to simulate Humans 34

1.2.1 Definitions related to Autonomous Agents 35
1.2.1.1 Definitions related to Virtual Environment 35
1.2.1.2 Definitions regarding the Notion of Agent 36
1.2.1.3 Definition regarding the Notion of Autonomy 37
1.2.1.4 Definitions related to Need, Resource,Activity, Task, and

Action . 38

5

TABLE OF CONTENTS

1.2.2 Relationships between Agents and Environments through Intelli-
gent Virtual Environments (IVE) 40

1.2.3 Models with Predefined Behaviors: The Automatons 42
1.2.4 Models with Goal-Oriented Behaviors 44

1.2.4.1 Reactive-Based Models . 44
1.2.4.2 Planning-Based Models 49
1.2.4.3 Scheduling-Based Models 53
1.2.4.4 Probabilistic-Based Models 57
1.2.4.5 Learning-Based Models and Cognitive-Based Models . . . 59
1.2.4.6 Approaches mixing several Models 62

1.2.5 Ways to validate the Credibility of Agent Behaviors 63
1.2.6 Conclusion about Agent-Based Models 65

1.3 Conclusion . 67

2 Agent Model allowing both Autonomy and Control on the Behaviors 71
2.1 From Specifications to Agent Model . 72
2.2 Interactions between the 3D Environment and the Agent 75
2.3 Global Structure of the Agent Model . 77
2.4 Internal State Model . 83
2.5 Decision-Making Model . 87
2.6 Task Executor Model . 94
2.7 Functional Validation . 96

2.7.1 Global Implementation . 97
2.7.2 Functional Validation with Full-Autonomy 98
2.7.3 Functional Validation with an Input Calendar of Activities given by

the User . 100
2.8 Conclusion . 104

3 Additional Model to better address dynamic environments 107
3.1 Motivations and Specifications to address Dynamic Environments 109

3.1.1 Motivations to address Dynamic Environments 109
3.1.1.1 Providing diversity on the synthetic data and simulated

situations . 109
3.1.1.2 Offering Multi-agent simulations 110

3.1.2 Specifications related to Dynamic Environments 112

6

TABLE OF CONTENTS

3.2 Overview of Resource and Event Models 115
3.2.1 Considered Resources . 115
3.2.2 Considered Events . 117
3.2.3 Models to manage Resources and Events 118

3.3 Resource Manager . 122
3.4 Interruption Manager . 132

3.4.1 Managing Resources at the execution level 133
3.4.2 Managing Events at execution level 135

3.5 Plan Checker . 137
3.5.1 Checking Plan Resources . 137
3.5.2 Checking Plan after Interruption 139

3.6 User-Experiment Protocol . 142
3.6.1 Part 1: Evaluate behaviors at the execution level 142
3.6.2 Part 2: Evaluate behaviors at the scheduling level 144

3.7 Conclusion . 147

4 Methods to validate the Credibility of the Data generated by the Agent149
4.1 Replication of a Real Database . 151

4.1.1 Introducing Orange4Home . 151
4.1.2 Replication of the Real Environment 153
4.1.3 Replication of Real Sensors and Effectors 154
4.1.4 Replication of the Experimental Protocol 158

4.2 Validation with Activity Recognition . 159
4.2.1 Recognition Performances on Real and Simulated Data 161
4.2.2 Using Simulated Data for Real Situations 161
4.2.3 Comparing Performances on Real Data with all Sensors 163

4.3 Validation with Future Activity Prediction 164
4.3.1 Impact of Non-Markovian Depth 165
4.3.2 Predicting Performances on Real and Simulated Data 166
4.3.3 Using Simulated Data for Real Situations 167

4.4 Conclusion and Discussions . 168
4.4.1 Insights on replicating Datasets . 168
4.4.2 Generalization to Other Contexts 170

5 Conclusion 171

7

TABLE OF CONTENTS

Conclusion 171
Contributions . 171
Perspectives . 173

Short Term Perspectives . 173
Long Term Perspectives . 177

Published Papers 179

Résumé Etendu en Français 181

Bibliography 197

8

LIST OF PLOTS

1 Global view of our 3D simulator . 14
2 Examples of 3D Indoor Virtual Environments made by Orange researchers

to generate synthetic data . 16

1.1 Examples of existing environments. 26
1.2 Examples of virtual humans. 31
1.3 Examples of Automaton-based approaches. 43
1.4 Examples of Reactive-Based approaches. 46
1.5 Architecture of BDI and example of a BDI implementation. 48
1.6 Pseudo-code of HTN algorithms and examples of some implemented HTNs. 50
1.7 Example of a Markov Decision Process. 57
1.8 Example of existing reinforcement learning approaches. 61

2.1 2-story apartment used in our validation experiments and replicated from
the real one used in the creation of the real Orange4Home database 76

2.2 other examples of 3D connected buildings where the agent was simulated . 77
2.3 Diagram of the BDI Architecture . 78
2.4 Diagram of our proposed Agent Model . 79
2.5 Sequence Diagram of the Decision-Making Model showing the interactions

with other models . 81
2.6 Representation of Maslow’s Pyramid of Needs 84
2.7 Main Steps of the activity scheduler . 88
2.8 Example of the different steps made by the Activity Scheduler 89
2.9 Second example of the different steps made by the Activity Scheduler . . . 90
2.10 Example of an activity execution with #SEVEN model implemented with

Xareus Software . 95
2.11 Diagram of our Global Implementation . 96
2.12 Timeline of three-day samples showing all activities satisfying needs during

the daytime . 98

9

LIST OF PLOTS

2.13 Frequency of start time activities satisfying needs during 10 Days according
to the hour of day . 99

2.14 Comparison between theoretic and simulated timelines for a same day with
a strict calendar . 101

2.15 Comparison between theoretic and simulated timelines for a same day with
a moderate calendar . 102

2.16 Interface illustrating the urgency of needs with gauges and their evolution
through time. 102

2.17 Comparison between the user’s activity calendar in blue and the activity
performed by the agent in Orange . 103

3.1 Diagram of our Agent Model for Dynamic Environments 120
3.2 Example of plan creation with resources (steps 1,2, and 3). 123
3.3 Example of plan creation with resources (steps 4 and 5). 125
3.4 Example of plan creation with resources (continued step 5). 128
3.5 Example of plan creation with resources (step 6). 129
3.6 Example of plan creation with resources (Steps 7 and 8). 130
3.7 Example of situations where the actions of one agent impact the other . . . 131
3.8 Example of missing resource management at the execution level 133
3.9 Example of an event management at the execution level 136
3.10 Example of a plan adjustment made by the Plan Checker after a missing

resource . 138
3.11 Example of a plan adjustment made by the Plan Checker after a short Event139
3.12 Example of a plan adjustment made by the Plan Checker after a resource

interruption . 140
3.13 Example of a plan rescheduling made by the Plan Checker after a long Event141
3.14 Calendars that will be used for the user Experiment 145
3.15 User Interface prototype to schedule daily-activities 146

4.1 A sample of the input activity calendar that must be followed by the real
participant in order to create the real Orange4Home database. 151

4.2 Illustration of an occupant and our virtual agent performing the same ac-
tivities . 153

4.3 The plan of the floors of the home used in Orange4Home and replicated in
the virtual environment . 154

10

LIST OF PLOTS

4.4 Sections of the Office, Kitchen, and living room, as seen in the real Or-
ange4Home apartment and in our virtual environment 155

4.5 Real data retrieved from the real water sensor placed on the real kitchen tap156
4.6 Example of a range detection sensor . 157
4.7 Sample One-Day Orange4Home calendar 158

5.1 Vue d’ensemble de notre simulateur 3D . 182
5.2 Exemples d’environnements virtuels 3D crées par les chercheurs d’Orange

afin de générer des données synthétiques 183
5.3 Diagramme de notre modèle d’Agent . 188
5.4 Diagramme de notre Modèle d’Agent pour les Environnements Dynamiques 191
5.5 Sections du bureau, de la cuisine et du salon, tels qu’ils sont vus dans

l’appartement réel d’Orange4Home et dans notre environnement virtuel . . 193

11

TABLES

1.1 Contribution of the different existing approaches for our three challenges . 67

2.1 Activities and Needs implemented in our experimentation 97
2.2 Example of needs configured with specific hours and their associated ac-

tivities compared to their input configuration 100
2.3 Example of needs configured with specific periods and their associated ac-

tivities compared to their input configuration 101

3.1 Examples of Resources and activities using them 116
3.2 Exemple of events that can be managed with the activities managing them 118

4.1 Activities, sensors and effectors implied in the Orange4Home dataset that
were replicated . 160

4.2 Activity recognition accuracy using simulated and real data. 161
4.3 Prediction accuracy with varying non-Markovian depth on simulated data. 165
4.4 Activity prediction accuracy using simulated and real data. 167

5.1 Contribution des différentes approches existantes utilisant des modèles d’agent186

12

INTRODUCTION

Understanding human behaviors is essential to develop autonomous and adaptive sys-
tems aiming to assist people in their daily life [90]. An example of such system is a smart
home where an adequate understanding of occupants can provide appropriate services
such as medical care [96] or energy consumption optimization [99], [156]. To acquire
this knowledge about daily human behaviors, the use of real databases coming from ex-
perimentation or surveys can be a solution. This knowledge can then be exploited by
machine learning algorithms trained on these real data. However, due to the high sen-
sitivity of these algorithms related to environment settings (architecture, the number of
furniture, sensors, etc.) and occupant behaviors (preferences, hobbies, etc.), collecting
such representative data in diverse environments (houses, buildings, cities, etc.) is a ma-
jor difficulty: there are too many different environment settings and occupant behaviors
to collect a global database [92]. In addition, the creation of such datasets in real envi-
ronments is extremely costly in terms of time, money, and human resources. It can also
induce privacy issues since data are collected from real people.

A promising way to deal with this problem consists in simulating these environments
and their occupants to generate diverse and less expensive data [88], [90], [92]. These
synthetic data, containing diverse information to understand human behaviors (daily
routines, labeled daily performed activities, sensors triggered after an action, and so on)
could then be used to complete real databases, create new ones, or replicate existing ones.
In addition, since we know which activity is performed in real-time, we can automatically
label the generated data. This automation is really useful for developers since the labeling
step is really time-consuming, as explained by Chen et al. [45]. These labeled data can
then be used to train human context-understanding models instead of real ones. However,
if we want to substitute real data with simulated ones, we must ensure that such synthetic
data are sufficiently credible.

The credibility of synthetic data directly depends on the credibility of the simulated
environment and the behavior of virtual humans performing daily activities. One of the
main issues induced by this dependency is the simulation of virtual humans able to
produce credible behaviors while being compatible with data generation. This

13

Introduction

Figure 1 – Global view of our 3D simulator and the agent performing activities.

compatibility induces the capacity to interact with Virtual Environments (VE) that can
generate data by monitoring the performed actions. In addition, to check the credibility
of these behaviors, setting up robust methods of validation is also required. In this thesis
entitled Simulation of autonomous agents in connected virtual environments, we present
our research works to answer this problem. More precisely, we explain how the design of an
agent model, able to provide both autonomous and controllable behaviors while allowing
the execution of activities in a 3D-connected environment, is a promising approach for
solving this problem. We also study the methods to validate the credibility of the synthetic
data and those of the agent behaviors as well as the limitations of this kind of solution.
Our model is addressed to people (researchers, developers, etc.) wanting to exploit virtual
humans to generate synthetic data, populate environments, or improve the performance
of their existing simulators. These people will be called Users throughout this thesis.

To test the effectiveness of our agent model and its compatibility with data genera-
tion, we use 3D simulations representing connected environments equipped with sensors
generating data by monitoring the agent actions. These sensors are non-intrusive since
they are not microphones or cameras and rather retrieve ambient information such as
water flow, movements in a room, door opening, etc. Figure 1 shows an example of
our 3D simulation where an autonomous agent, simulating an occupant, performs daily
activities such as Working or Eating. In this simulator, the agent is autonomous in its

14

Introduction

decision-making and activity execution, but can also be configured in input to control
the generated behavior when desired. An interface also indicates the state of agent needs
(hunger, thirst, etc.). The simulated date time which can be modified before the launch
is also displayed.

Context

Industrial Context

This thesis was funded by Orange 1, a french major telecommunication company that
also provides digital services. More specifically, Orange proposes new services in connected
environments such as smart homes, buildings, and cities. These environments enriched
with sensors and effectors are used to offer services adapted to the occupant’s needs such as
call management, intelligent assistant, smart TV, security services, network management,
and so on. To study and simulate these services, several research platforms were devel-
oped. Some of them are transversal to our thesis since they have similar requirements.
This is the case for the Home’In Platform 2 dedicated to connected indoor environments,
where simulating credible virtual humans is essential to properly study home automation
services. The same need also exists for the Plug’In Platform 3 dedicated to connectivity,
since human’s actions can impact the network performance. Finally, using virtual humans
is also useful for the Thing’In Platform 4 developed to study digital twins (i.e. the virtual
replication of a real object whose the state is synchronized in real-time). Virtual humans
are used in this platform to simulate the impacts of human actions on such objects. Our
thesis is a part of the internal project including the latter platform, aiming to study the
potential of digital twins and simulators for future Orange services.

To improve these services, retrieving human behavior knowledge is needed. Re-
searchers had therefore developed machine learning algorithms specialized in understand-
ing human context. However, since these algorithms require a large amount of labeled
data, and real data are scarce, expensive, and could induce privacy issues, the company
wanted to explore synthetic data generation. For this purpose, 3D environments able to

1. Orange Website: https://www.orange.fr/portail
2. Home’In Platform:

https://hellofuture.orange.com/en/sensitive-home-built-rebuilt-homein-platform/
3. Plug’In Platform:

https://hellofuture.orange.com/en/lets-design-5g-network-together-plugin-platform/
4. Thing’In Platform: https://hellofuture.orange.com/en/thingin-the-things-graph-platform/

15

https://www.orange.fr/portail
https://hellofuture.orange.com/en/sensitive-home-built-rebuilt-homein-platform/
https://hellofuture.orange.com/en/lets-design-5g-network-together-plugin-platform/
https://hellofuture.orange.com/en/thingin-the-things-graph-platform/

Introduction

capture data and virtual humans were designed by the Orange researchers to generate
new data. 3D environments are effectively well suited for this use case since they provide
a finer granularity of performed activities, and enable the simulation of sensors that are
environment-dependent, such as presence sensors. Figure 2 shows an example of the 3D
environments created by Orange researchers to generate synthetic data. However, the pro-
vided virtual humans had predefined behaviors inducing very limited behaviors compared
to what a human could do, thus degrading the diversity of synthetic data. Therefore,
this thesis was conceived with the aim of improving these behaviors by making the agents
autonomous in their decisions and their activity execution, but also configurable for users
(to allow several agent profiles, to impose activities at a specific time, etc.).

Figure 2 – Examples of 3D Indoor Virtual Environments made by Orange researchers to generate
synthetic data. The two images at the top left are the same 2-floor virtual smart home replicated from a
real one. The two images situated at the top right and the bottom left are fictional virtual smart homes.
At the bottom right, an image of a smart building replicated from a real one.

Other Application Contexts

Beyond our industrial context, designing credible virtual humans able to interact with
VE is also required for other fields of research and use cases.

16

Introduction

As mentioned previously, virtual agents can be used in research fields aiming to gener-
ate data about human behaviors. They can also be used to improve existing simulators to
create new data from existing simulations. This is notably the case where researchers and
developers would seek to generate data about the understanding of inhabitants at home
through the use of simulators based on computer vision (VirtualHome) [144] or on data
coming from connected objects (OPENSHS) [4]. Researchers working in the building and
energy sectors can be also concerned to know the energy consumption of a household or
the impact of building insulation and weather conditions on behaviors [99], [156].

Exploiting credible virtual humans is also essential to populate virtual environments
in a credible way. This is the case for the fields of video games, entertainment, cultural
heritage, and training courses. Regarding video games [60], Non-Player Characters (or
NPC) are used to have a better immersion of the player by showing NPC having habits of
life impacted by the time of the day or having different behaviors according to the player’s
choices. In the field of cultural heritage, virtual agents can be used in Archaeology to
reproduce an ancient civilization that had other ways of life [173] or to simulate tour
guides in museums [76]. Virtual agents can also be really useful for training courses
where they can assist or challenge the user faced with specific situations [113], [168]. In
the Inria/IRISA Laboratory 5 where the thesis takes place, the use of credible virtual
humans is useful to populate Virtual Reality (VR) environments sometimes used for
training courses [48] but also to simulate a crowd having individual behaviors [94].

Finally, virtual agents can be useful for fields related to climate change and sociology
where researchers can measure the impact of individual behaviors at the societal level
faced with specific situations (climate changes, disaster impacts, cultural influences, and
so on.)[29], [113]

Challenges

To simulate credible human behaviors that can be used for data generation and thus
answer the issue defined previously, several challenges must be addressed such as auto-
matically producing credible human behaviors, giving a compromise between
control and autonomy on behaviors, and validating the credibility of these
behaviors.

5. Inria: https://www.inria.fr/en; IRISA: https://www.irisa.fr/

17

https://www.inria.fr/en
https://www.irisa.fr/

Introduction

Challenge 1: Automatically producing credible human behaviors

In order to correctly simulate a human, it is important to generate behaviors that are
close to what a human could do. The simulated behaviors must therefore be credible.

In our case Credibility must be distinguished from Realism, which seeks to reproduce
as exactly as possible the physical world. However, simulating an ultra-realistic behavior
is very complex and in our use case, reaching such a degree is unnecessary since the
granularity of data produced by the virtual sensors located in the Virtual Environment
is not sufficient. We rather seek to produce a sufficiently credible behavior so
that the sensors of the connected environment react correctly and the data
produced is close to those collected with a real human.

Believability in the behavior of an intelligent virtual agent consists
in demonstrating coherence in the agent’s reactions and its moti-
vational states and consistency among similar kinds of situations.
Definition taken from the work of Avradinis et al. [11]

Credibility in human behaviors

To avoid scripted behaviors (i.e. behaviors written manually), which would make the
realization too expensive and would produce too limited and robotized behaviors, it is
essential to generate diversified human behaviors in an autonomous way. This require-
ment is also confirmed in some existing works, such as the works of Avradinis et al. [11]
and Handel et al.[86]. According to their analysis, if we want to obtain credible behav-
iors (whose definition, taken from the work of Avradinis et al. [11], is stated above),
autonomy is essential since the agent could thus satisfy its own desires and
objectives as a human would.

Judging from the definition of Credibility, the design of credible behaviors concretely
implies:

1. Coherence in the reactions of the agent and its motivational states. This means
being coherent in interaction with the environment and in reaction to events. It
also needed to be coherent with the agent internal state (such as physiological
needs, preferences, etc.), but also coherent with the initial constraints that could
be imposed on the agent (remaining resources, activities possible at certain times,
etc.).

18

Introduction

2. Consistency of behaviors in similar kinds of situations.

Another parameter that is essential to improve the credibility of behaviors is the
diversity of the generated behaviors. Effectively, since humans do not produce
identical routines or behaviors to perform the same activity, this criterion is considered
in addition to the coherence and consistency of the behaviors.

To summarize, to simulate human behaviors that can be used for data generation,
we must respect this first challenge involving generating credible human behaviors in an
autonomous way. To reach this credibility, the simulated behaviors must be coherent,
diversified, and consistent when faced with the same type of situation.

Challenge 2: Offering a Compromise between Control and Au-
tonomy over Behaviors

As detailed before, our goal is to propose a credible virtual human compatible with
data generation. To do this, we need to produce an agent model providing a balance
between control and autonomy over behaviors to allow the user to configure their simu-
lated agents as desired. The respect of imposed constraints will thus compete with the
management of the needs (thirst, hunger, etc.) and unforeseen events. Consequently, our
agent model must be able to manage and anticipate them to avoid conflict.

The strong constraints given by users will be mainly related to the protocols used to
supervise synthetic data creation. These protocols are often designed to impose specific
situations which can then be analyzed or exploited by algorithms, such as those used for
future activity prediction [52]. The purpose of using synthetic data is to counterbalance
the lack of real ones due to their cost in terms of time, human resources, and money.
Simulated data can thus be used for several purposes: to complete a real database, create
a new one, or replicate a real one. In these three cases, experimental protocols can be
imposed by users to lead the creation of their data, such as a calendar of activities to
perform at a specific time or with a specific list of actions, the number of days, the
protocol to label data, and so on. When users want to create a new database, they
often would like to simulate a specific situation they cannot test in reality. Imposing
specific constraints on the simulation and on the agent thus becomes necessary. In the
same way, to complete a real database or to replicate one, the same situation and the
same experimental protocol used during the creation of the real data must be respected.
Otherwise, too many biases will be introduced and strong heterogeneous data will be

19

Introduction

obtained. Examples of such experimental protocols can be found in the survey of Htun
et al. [92] where authors explain that some protocols can impose specific activities to
perform (called Low spontaneous acting) or can let the participant choose (called high
spontaneous acting). Another example of protocols can be found in the real Orange4Home
real database [51] where we can find experimental protocols containing a calendar of
activities that must be performed at specific times. Respecting these protocols also enables
a comparison of effectiveness between simulated data and real ones for validation purposes.

Therefore, our agent must be able to respect this kind of protocol to create correct
synthetic data. It is also necessary to let the agent be autonomous when it is not sub-
mitted to these constraints. To do this, anticipation processes must be set up so that
the agent can be ready at the required moment. To achieve this compromise, the human
behavior model must be designed to allow a good balance between control and auton-
omy. These controllability aspects led us to favor agent-based approaches rather than
data-based approaches such as Generative Adversarial Networks (GAN) [78] since these
aspects impact the generated data and GAN-style approaches are not optimal to manage
them, contrary to agents.

To summarize, in order to have virtual humans that can be used for data generation,
we must respect this second challenge of having an agent able to manage strong user
constraints while remaining able of producing credible behaviors.

Challenge 3: Validating the credibility of the generated Behaviors
and Data

To ensure that the synthetic data generated by the behaviors are sufficiently credible
to be used as real data, validation methods must be set up. These methods must both
verify the credibility of the behaviors by evaluating the criteria stated in Challenge 1,
and also verify the credibility of the simulated data produced by the virtual environment
(VE) to know if the agent is sufficiently accurate in its interactions so that the synthetic
data can provide results close to real ones.

Diverse validation methods exist to either validate behaviors or synthetic data. Un-
fortunately, few existing approaches propose multiple validation methods to validate their
model: they are often limited to a single type of assessment and a single context. Propos-
ing several validation methods is yet essential to ensure that the model generally pro-
duces credible behavior. Effectively, some situations or some virtual environments could

20

Introduction

negatively or positively impact the agent behaviors. For example, if a situation involves
an activity interruption, we need to make sure that the model supports this situation.
The same requirement, imposing the implementation of multiple validations, has to be
also respected for synthetic data to avoid the case where data is credible in one situation
but not in another. In parallel, approaches validating both their model functioning and
its use in practical applications are still scarce.

Contributions and thesis organization

Unfortunately, few existing approaches are designed to deal with all these challenges
at once. Some of them propose totally controllable agents that lose credibility whereas
others propose totally autonomous agents that lack control. Moreover, multiple validation
methods are rarely proposed to assess the credibility of the generated behaviors and data
in an accurate way. Meeting these challenges is even rarer in multi-agent approaches
where the control over the agents is often limited and validations are difficult to apply.

Through the different chapters of this thesis, we propose both an agent model able
to give a compromise between control and autonomy (respecting Challenges 1 and 2),
and validation methods (respecting Challenge 3) to answer our main issue regarding
the simulation of human behaviors that are credible and usable in data generation. To
illustrate our use case, we place ourselves in the context of a 3D smart home that was
replicated from a real one where a real database, called Orange4Home, was created [51].
This database contains the data of sensors having recorded 4 weeks of daily activities
performed by a real human. The thesis is structured as follows:

Chapter 1 deals with existing works about the simulation of virtual humans for data
generation with their validation methods, the ways to interact with a 3D Virtual Environ-
ment, and the existing methods to simulate an autonomous agent with their validation
methods.

In Chapter 2, we propose our agent model inspired by BDI architecture [162] and
enriched with a reactive scheduler [164] to provide a compromise between control and
autonomy over behaviors while keeping credible behaviors (Challenges 1 and 2). Our
model is composed of three components: the Internal State Model managing human
needs to provide autonomy, the Decision-Making Model containing the reactive scheduler
to adapt the level of autonomy according to constraints, and the Execution Model to
execute the chosen activities in a 3D smart home. An Input-Output method is also

21

Introduction

proposed to make a first validation regarding the credibility of behaviors (Challenge 3).
Chapter 3 develops the aspects of the agent aiming to improve credibility and adap-

tation to dynamic environments (Challenges 1 and 2), necessary to introduce multi-agent
systems. We thus explain how world resources and unexpected events coming from the
environment are managed. A user-experiment protocol is also proposed to validate the
credibility of synthetic data in the context of Dynamic Environments.

Chapter 4 explains our approach to validating the credibility of simulated data coming
from the sensors triggered by the agent’s actions (Challenge 3). For this, we use the real
Orange4Home database [51] as ground truth and the virtual replication of the real smart
home to generate similar synthetic data. This approach aims to show that simulated
data can be used as a substitute for real ones. To show this, we train with these data
on two machine learning algorithms specialized in human-context understanding: current
activity detection and future activity prediction. We then compare their performance rate
to know if synthetic data can produce similar results compared to real ones.

In Chapter 5, we conclude the thesis by summarizing our contributions and by ex-
plaining the advantages and limitations related to our solution. We also detail our future
works from short-term and long-term perspectives.

22

Chapter 1

RELATED WORK ON HUMAN

SIMULATION AND DATA GENERATION

In this chapter, we explore existing works related to the simulation of humans in
virtual environments as well as simulations that are used to generate data about daily
activities. In the introduction, three challenges were put forward to provide a simulated
human compatible with data generation: automatically producing credible human behav-
iors (Challenge 1), providing a compromise between control and autonomy over behaviors
(Challenge 2), and validating the credibility of the generated behaviors (Challenge 3).
We assess state-of-the-art works related to the simulation of human behaviors to know
whether they can answer these challenges at the same time and if they could be usable in
data generation. We also introduce definitions related to autonomous agents.

More concretely, Section 1.1 is dedicated to existing simulations especially configured
to generate synthetic data about daily-activities. We also explore the ways to validate the
credibility of synthetic data produced by such simulations. After this, Section 1.2 details
the existing agent models and provides definitions related to agents, environments, and
activities. We also explore some existing methods to validate the credibility of behaviors
without using synthetic data.

1.1 Simulations to generate Data related to Human
Behaviors

In this section, we explore several approaches creating simulations and virtual humans
to generate synthetic data. Some of them simulate humans in very large outdoor envi-
ronments such as a city [24], [86], [93], [94], whereas others simulate humans in smaller
indoor spaces such as buildings or houses [4], [88], [104], [117], [159], [181]. Regarding
Humans, they can be simulated in various forms depending on the environment or the

23

Chapter 1 – Related Work on Human Simulation and Data Generation

type of data that must be produced. For example, human behaviors can be generated
through autonomous agents [117], real users controlling avatars [4], or by extrapolating
data coming from real databases [2]. To know if we could use existing simulations for our
use case (e.g. simulate a human in a smart home to generate data about daily activi-
ties and human routines), we analyze if the simulated environments, virtual humans, and
interaction between them are sufficiently developed to produce synthetic data accurate
enough to be used as real ones. Effectively, as said in Introduction, since real data are
costly and rare, we would like to complete them with synthetic ones. In this section,
we study some existing works using simulations to generate synthetic data about daily
activities and human routines. We detail in section 1.1.1 what is the most accurate en-
vironment to produce data when sensors and effectors are simulated to generate them.
Finally, we also study in section 1.1.2 what is the most accurate way to simulate humans
for addressing our three challenges.

1.1.1 Types of Environment used to generate Data

The accuracy of the simulated environment is essential to create credible synthetic
data. Effectively, when we want to replicate real datasets, complete real ones, or even
create new ones, the simulated data must be of the same data type with the same level of
accuracy as real ones. Otherwise, the set of real and simulated data will be heterogeneous
and difficult to use. Judging from our use case explained in Introduction, synthetic data
are created from sensors and effectors simulated in a smart home to capture information
from movements, sounds, and so on. We thus explore in this section what kinds of
environments are used for data generation and which one could be the most accurate when
sensors and effectors are used to capture data. We distinguish 3 types of environments:
Abstract Environments, 2D environments, and 3D environments. An example of each
environment can be shown in Figure 1.1.

Abstract Environments: Some approaches use abstract environments to generate
data about human behaviors. In this type of environment, the world and the objects
are represented in a schematic and a semantic form (lists of objects, hierarchies, Inter-
face, etc). Unlike 2D or 3D environments, human movements in this environment are not
simulated, and the visual representation of the world and humans is often absent. Data
that can be retrieved from abstract environments can be activity calendars or statistical
results. For instance, In the work of Meister et al. [127], they propose an agent model

24

1.1. Simulations to generate Data related to Human Behaviors

simulating journeys within an abstract environment representing a city to produce activ-
ity calendars depending on individual and social features. In the TASHA model proposed
by Roorda et al. [129], [152] and ADAPTS proposed by Auld et al. [10], travel data
are generated by extracting probabilities on real ones. No environment is thus required
to create synthetic data. Similarly, Airale et al. [2] use a generative-based model called
SocialInteractionGAN to create synthetic data about the sequence of actions by using
and analyzing real data and thus avoiding the simulation of environments. Concerning
Elbayoudi et al. [68], an older adult’s behavior is simulated in an abstract house by the
use of probabilistic approaches that generate statistics about the distribution of activities
throughout the day. Regarding the SMACH Model developed by Amouroux et al. [6], a
schematic interface of the environment is given to the participants during an experiment
to control and modify the scenario of the autonomous agent simulating their daily rou-
tines. In output, the generated data are statistics about household routines, activities,
and energy consumption. For their part, Kashif et al. [99], use an abstract Java interface
called Brahms to simulate the behaviors of agents, their communications, the objects of
the world, the geographical position, and the activity model. As the output, they can
produce an activity calendar and statistical results about the energy consumption of de-
vices. With these kinds of data created from abstract environments, we have a global
idea of what objects are used and what is the routine of the agents. However, no details
are given about how the activity unfolded and how the agent moves and interacts with
the objects. These details may be missing if we want to understand how humans behave
in a specific activity for instance. In addition, simulating correctly a smart home with
this kind of environment is difficult since some sensor behaviors, such as presence sensors,
have their performance directly impacted by their location in a room. It will thus be
hard to insert their data in real databases coming from smart home environments such
as the Orange4Home dataset proposed by Cumin et al.[51], or the ARAS dataset used by
Alemdar et al. [3]. Abstract environments are also unsuitable to create datasets captur-
ing synthetic data through cameras as proposed in the Virtual Home approach created
by Puig et al. [144]. Yet, these camera data are useful to train activity recognition al-
gorithms as explained in the survey of Chaquet et al. [42]. On our side, since we want
to generate data from sensors and effectors that are sensitive to their environment, these
abstract environments are then not suitable.

25

Chapter 1 – Related Work on Human Simulation and Data Generation

Figure 1.1 – Examples of existing environments. On the left, an abstract environment proposed by
Kashif et al. [99]; on the middle, a 2D environment proposed by Renoux et al. [148]; on the right, a 3D
environment proposed by Zhao et al. [181]

2D Environments: Some other approaches use 2D environments to capture their data.
In this kind of environment, the virtual human can move in a 2D world to interact with
different objects. To do this, most approaches use 2D architecture plans, enriched with
points that locate the interesting objects and the agent. These environments can thus
generate more diversified data than in abstract environments (such as data on movements
and certain sensors). 2D environment are used for instance in the work of Renoux et
al. [148] through a 2D smart house equipped with sensors capturing the activities of a
virtual human. A similar approach is found in the work of Klein et al. [104] where several
occupants can interact with electrical appliances (light, desktop, thermostat) sending data
about their energy consumption. We also have the approach of Lundström et al. [121]
where avatars are used in a 2D smart home to store daily activities data. In the MASSHA
model created by Kamara et al. [97], agents are used to simulate daily activities in 2D
smart homes capturing data through its sensors. Finally, regarding the work of Bourgais
et al. [29] where a multi-agent system called BEN is implemented, they propose a 2D
nightclub created with the GAMA platform 1 where agents are simulated by triangles.
This simulation gives in output statistics about the evacuation scenario reproducing a
real one that turned into a tragedy (personality impacts, number of deaths, etc.). These
2D environments provide additional information about the movements of agents and the

1. GAMA platform: https://gama-platform.org/

26

https://gama-platform.org/

1.1. Simulations to generate Data related to Human Behaviors

location of specific devices needed for activities. However, this is still not enough for some
databases created from smart homes that use, for example, presence sensors whose height
can impact performances. In addition, this kind of environment is not adapted if we
would like to produce synthetic data through a camera for activity recognition purposes
[42], [144]. The interaction between the agent and environment is only represented by
navigation. Consequently, a fine granularity of activities is therefore not recoverable, and
some sensors requiring a finer level of granularity cannot be be simulated (e.g. closet
opening sensors). All this imprecision limits the credibility and diversity of ways to
perform an activity. This is also not sufficient for our use case since we have sensors (like
presence sensors) that need to consider the height.

3D Environments: Some existing approaches use 3D environments to generate data.
In these environments, virtual humans can move in 3D world to interact with 3D objects.
These environments can be created with 3D modeling tools (e.g. Blender 2), scans of
real environments, or files coming from architecture such as BIM (Building Information
Modeling). This is the case for the works of Roitberg et al. [151] where 3D houses were
created with The Sims 4 3 game to replicate real houses. In the work of Alshammari
et al. [4] they developed OPENSHS, an open-source 3D smart home simulator platform
built to generate daily activities datasets in smart homes. In OPENSHS, the simulated
environment and sensors are easily configurable to adapt to the user’s needs. Concerning
the work of Ho et al. [90], a smart home was created with Unity Engine 4. Regarding
Srivastava et al. [166] they propose the BEHAVIOR Benchmark to create new activities
with Virtual Reality (VR) tools. The authors use the 3D virtual houses provided by
iGibson [118] to allow VR and capture data with virtual cameras. In the BIM SIM 3D
approach proposed by Zhao et al. [181], agents are simulated in a 3D smart home designed
in Unity Engine with the help of BIM used in architecture. A 3D smart home with an
agent following a predefined scenario to create data for activity recognition can also be
found in the work of Helal et al. [88]. This approach, called Persim 3D also compares
its simulated data with a real dataset called Persim 1.5. In the same trend, we have also
SIMACT proposed by Bouchard et al. [28] where a 3D smart home is implemented in
Java to be used for activity recognition. Experimenters can also add new scenarios coming
from real humans. Finally, in Kashif et al. [100], a real user interacts with a 3D house

2. Blender : https://www.blender.org/
3. The Sims 4 : https://www.ea.com/fr/games/the-sims/the-sims-4
4. Unity Engine: https://unity.com

27

https://www.blender.org/
https://www.ea.com/fr/games/the-sims/the-sims-4
https://unity.com

Chapter 1 – Related Work on Human Simulation and Data Generation

through an avatar. Data are retrieved by the use of 3D sensors capturing the performed
activities. Data produced by these 3D simulations are sufficiently complete for the most
of real databases and for our use case. However, there is sometimes little information
about how sensors are simulated, and whether they are inspired by real ones.

The analysis of existing environments used for data generation allows us to explain why
we privileged 3D environments rather than other environments. Effectively, in contrast to
2D and Abstract environments, 3D environments provides a finest granularity in activities
and can thus offer more detailed data. However, they are also more cumbersome to
simulate. Since we want to make our agent compatible with data generation with any
kinds of environment, it must be compatible with 3D ones which are the most complex.
3D environments also essential in the case where data must be generated with sensors
and effectors that are sensitive to their environment (as in our use case). The choice to
use 3D environments also impacts our agent model design since stronger precision about
human interaction is required. In the following section, we study the different ways to
simulate humans to know what is the most accurate to reach our challenges explained in
Introduction.

1.1.2 Ways to simulate Humans Behaviors for Data Generation

To simulate virtual humans that are compatible with data generation, several ap-
proaches exist such as agents, avatars, or data-based models. Figure 1.2 shows examples
of diverse approaches to simulate virtual humans.

Avatars-based approaches: Avatars are virtual humans controlled by real users. Some
approaches use them to generate daily activity data such as in OpenSHS [4] where users
perform activities through the use of Virtual Reality. These activities are then blended
with other sets of activities to create routine datasets. In the BEHAVIOR model [166],
VR is also used to register a sequence of actions performed by a real user to generate
new datasets. In the work of Roitberg et al. [151], data are retrieved with cameras to
capture activities. Players were asked to move their avatars around The Sims 4 3 game
environment to record videos of the performed activities. In parallel, virtual videos were
compared with those coming from the Toyota real Dataset [54]. To do this, they virtually
reproduced the real houses and occupants registered in the real dataset. Some examples
of avatars can be found in the work of Kashif et al. [100] where users can interact with the

28

1.1. Simulations to generate Data related to Human Behaviors

devices of a 3D environment to keep their avatar in its thermal comfort zone. Finally, in
the work of Lundström et al. [121], 2D avatars managed by players are used to generate
synthetic data about daily activities. Generally, Avatars-based approaches are interesting
to retrieve credible data since real persons are used to generate synthetic data. However,
they remain limited to use since datasets cannot generate long-time periods. They are also
costly to produce in human resources and time. In addition, people might not interact
in a 3D environment as they would in a real setting, limiting sometimes the realism of
the performed activities even though they come from real humans. Moreover, requiring
recording sessions is costly and limits the possibility to obtain activities performed in
diverse ways.

Data-based approaches: Some other approaches use data-based approaches to sim-
ulate humans through generative models. To do this, they directly generate new data
by analyzing their input data. Many diverse input data can be provided, regardless of
the environment or context where these data come from (activity calendar, sensors data,
paths, etc.) and these models will generate the same type of data that the input ones.
The main difference between data-based models and agent-based models using learning
approaches is the necessity to interact with the environment when data are generated.
In data-based models, data are directly generated without any simulation of interactions
between the virtual human and its environment. On the contrary, agent-based models
can generate data only after an action or a decision to interact with the VE. Some data-
based approaches can use for instance GAN-based models [89], [154], such as the work
of Airale et al. [2] proposing the SocialInteractionGAN model to generate multi-person
interaction sequences. The authors propose to use a Generative Adversarial Net (GAN)
neural network to generate simulated human activity data. These data can be used to
complete real databases for instance, since little heterogeneity will appear between real
and simulated data. The motivation for this approach is that an adversarial strategy can
act as a way to enforce the credibility of generated data. In adversarial strategy, an algo-
rithm called Discriminator will discriminate the results produced by the other algorithm
called Generator. The discriminator is thus trained to distinguish between generated and
real data, forcing the generator to improve the realism of its generated data. To evaluate
the quality of generated interaction sequences, they propose different metrics based on
score and distance to assess the quality of the synthetic image generated by GANs [89],
[154]. These approaches can thus generate new data that are close to their input. They

29

Chapter 1 – Related Work on Human Simulation and Data Generation

only require a trained generative model and thus can be trained with many diverse data,
regardless of the environment or context where these data come from. However, control-
lability over behaviors can be limited due to their nature: If new real data are added
or if the input parameters must be changed, re-training is often required. Consequently,
some real databases that require protocols could not be easily completed or replicated
with Data-based approaches. Furthermore, since data used to train algorithms are not
dependent on the actions triggered in the environment, it can generate data that appears
to be consistent but actually impossible to produce in the environment. For instance,
if we want to generate data about a human’s navigation between rooms in a house, the
algorithm could generate path navigation between two rooms that seems logical (such
as between the kitchen and the living room) but actually impossible to achieve in the
house where data must be generated (for example if the kitchen and dining room are not
connected).

Agent-based Approaches: Humans can also be simulated through virtual Agents to
produce data. These agents are individual entities that can perceive, make decisions, and
act in their environment. In contrast to avatars, they are not controlled by a real user
but by an algorithm, and unlike Data-based approaches, an environment is required to
perform actions. Agents are well-suited to automatically produce data during long-time
periods in an inexpensive way. With the diversity and flexibility of agent architectures, the
authors can simulate diverse human cognitive processes such as decision-making, mem-
ory, motivations, perception, and so on. For all these reasons, agent-based models are
one of the most used approaches to simulate humans. Among agent-based models used
to produce data, we can find the work of Ho et al. [90], and those of Zhao and al. [181]
proposing BIM Sim 3D, where an agent performs activities in a 3D smart home where
sensors are placed to capture data. Regarding the work of Renoux et al. [148], 2D agents
are simulated in a 2D building where sensors are also placed to capture data. In the
SMACH model [6], the work of kashif et al. [99], [101] and those of Klein and al. [104],
they use agents to interact with electronic devices and generate data about energy con-
sumption. In SIMACT proposed by Bouchard et al. [28] as well as in Persim 3D proposed
by Helal et al. [88], agents follow the predefined scenarios of activities coming from real
datasets and user experiments. Finally, regarding the work proposed by Puig et al. [144]
and those of Egami et al. [67], agents can perform activities to generate video data by
the use of virtual cameras recording the agent actions. Generally, due to their flexibility

30

1.1. Simulations to generate Data related to Human Behaviors

and diversity of design, agent-based models can keep a compromise between control and
autonomy which is essential to address Challenge 2. In addition, they can quickly create
synthetic data for long-time periods in comparison with avatar-based approaches. Re-
garding data-based approaches, agent models are more demanding for designing since the
rule of the environment has to be respected by the agent, necessitating a simulation of
this environment. In return, agents will not generate data that are incompatible with the
simulated environments, which is required to address our Challenge 1. For all these rea-
sons, agents-based approaches are in our case the best approach to respect our challenges
while being compatible with data generation.

Figure 1.2 – Examples of virtual human simulations. On the left, avatars controlled by players in VR
in the BEHAVIOR framework [166]; On the middle, a data-based approach to generate new data from
real ones proposed by Airale et al.[2]; On the right, an agent simulated in a 3D smart home proposed by
Ho et al. [90]

The analysis of these different ways to simulate virtual humans allows us to explain
why we privileged agents rather than avatars or data-based approaches. Effectively, agents
will not generate data that are incompatible with the simulated environments in contrast
to data-based approaches. They are also less costly to produce and enable simulations
over long-time periods in contrast to avatars.

1.1.3 Methods to validate the Credibility of the Generated Data

In this section, we present existing methods to validate the credibility of synthetic data.
We find two main paradigms for asserting credibility. Some contributions generate credible
data with a priori arguments: the models used to generate data were constructed based
on real data, which should lead to credible data by design. Other contributions assess
credibility with a posteriori arguments: generative models are still based on real data,

31

Chapter 1 – Related Work on Human Simulation and Data Generation

but credibility is evaluated through the use of specific metrics on these data compared to
real data.

1.1.3.1 A priori Approaches

Methods using a priori arguments involve the use of real data to design the model
and produce credible data. Among them, Jang et al. [93] proposes a deep Q-network
trained on large datasets coming from social networks, which is an a priori way to ensure
the credibility of generated goals. However, only global surveys completed by a large
population, and storing the start times and duration of activities are used to construct
and verify the credibility of generated data. This is not enough to know whether each
agent can behave in credible ways in the choice of their activities, the diversity of their
choices, and the execution of these activities. Regarding the case of SIMACT proposed
by Bouchard et al. [28] and Persim 3D proposed by Helal et al. [88], a priori way is
also used since agents follow predefined scenarios coming from real datasets: All their
acting and decision are bounded by these real input dataset. The model can therefore
provide realistic data as these are scenarios reproduced from real humans. However, the
agent behavior is entirely scripted, and new simulated data cannot be generated without
registering a human with these approaches, preventing experimenters from completing
existing databases for example. On the side of OpenSHS [4], a priori arguments are also
used to construct and validate the credibility of generated data. Since action sequences
were set directly by real humans, we could expect that the generated data would be more
credible. However, as said in section 1.1.2 people might not interact in a 3D environment
as they would in a real setting, and the possibilities of control and variability are limited
due to the cost in comparison with agent-based models.

1.1.3.2 A posteriori Approaches

Methods using a posteriori arguments involve using metrics to check whether the data
produced is credible or not. Among them, we can find the work of Renoux et al. [148]
where an agent can perform daily activities in a 2D simulation. The generated data are
validated by real experimenters that have to guess if the presented activity calendars
are made of real or simulated activities. However, this kind of assessment may involve
bias or uncertainty due to the subjectivity of experimenters. In addition, people may
have difficulty imagining what a real schedule would look like. This is why, even though
collecting the subjective opinions of users is relevant, an additional objective method is

32

1.1. Simulations to generate Data related to Human Behaviors

necessary to validate the credibility of data. Regarding TASHA, proposed by Roorda et al.
[129], [152], a comparison between simulated travel scheduling and the real GTA (Great
Toronto Area) dataset is used to validate the agent model. For their part, Ordoñez et
al. [135] compared real daily-activity schedules, coming from socio-demographic data and
geographical information, with their simulated ones generated by their genetic algorithm
(GA). In the MASSHA model proposed by Kamara-Esteban et al. [97], an a posteriori
approach is also proposed where durations and frequencies of simulated activities and the
behavior of virtual sensors are compared to real ones. Finally, in the work of Handel et
al. [86], [87], they statistically compare real data made of video and interviews with the
result of their agent model.

In the recent works of SMACH proposed by Reynaud et al. [149], [156], the generated
routines data produced in an abstract house are analyzed by a priori approaches (time-
use surveys and statistics methods to design the model) and a posteriori approaches
(microscale level assessment with 8 real occupants and macroscale level assessment with
population surveys). The authors also suggest other ways to evaluate a posteriori the
credibility of generated data by the use of clustering simulated samples: when clusters
are found with both real and simulated samples, then real and simulated data are hard
to separate and thus simulated data can be considered as credible. Even though these
proposed validations can address our second challenge, SMACH is difficult to use in a
database such as Orange4Home, where mandatory activities are required at specific times,
since the choice of activities is based on probabilities.

In the recent works of Kashif et al. [99], a posteriori approaches are also used to
validate the simulation and the agent behavior model. Concretely, they use the real Irise
dataset [55] as well as experimental studies to make a comparison between the consump-
tion distribution of devices (such as fridges) obtained by the simulation with the one
stored in the Irise dataset. If the gap between the both is too large, the input parameters
of the simulation (environmental parameters, time parameters, agent parameters, etc.)
are tuned to fit better with the real results. This approach can effectively improve the
credibility of the data generated by the model through the use of this tuning. However,
the model could become too specialized for the Irise database and could be no longer
valid in other environments or other databases without repeating this tuning process in
the new environments.

In the SocialInteractionGAN approach [2], which is a data-based approach explained
in section 1.1.2, statistical comparisons based on metrics (Inception score and Inception

33

Chapter 1 – Related Work on Human Simulation and Data Generation

Distance) provides interesting insight but do not guarantee that data is credible for the
task it will be used for. For example, a simulated sample might be very similar to a real
sample according to these metrics but lacks subtle information essential for distinguishing
human activities since their produced data do not directly depends on any environment.

1.1.4 Conclusion

Through this section, we studied some existing approaches that simulate humans to
generate synthetic data about daily activities. We first examine the simulated environ-
ment proposed by existing approaches and we showed that 3D environments are the most
accurate to illustrate a smart home since some sensors can be sensitive to environments
(such as cameras, presence sensors, and so on). We then study the different approaches
to simulate a Virtual Human and we sorted them into three main categories: Avatars-
based approaches, Data-based approaches, and Agent-based approaches. We explained
that agents are more accurate to address our challenges while being compatible with data
generation. Finally, we studied different approaches to validate the credibility of syn-
thetic data. We observed that a posteriori approaches are the most suitable to make this
but must not be limited to the statistical comparison that can induce imprecision in the
results. In the next section, we precisely study the existing agent-based model to know
which one could address our three challenges. In contrast to this section, the next one
will be extended to approaches that are not always used for data generation.

1.2 Agent-based Models to simulate Humans

In the previous section 1.1, we saw that using agent-based models with 3D environ-
ments is the most accurate and flexible approach to have a human simulation compatible
with any data generation, including those having strict protocol. However, many ap-
proaches exist among agent-based models, providing more or less sophisticated behaviors.
As said in Introduction, we try to propose an agent compatible with data generation and
able to address three major challenges: automatically producing credible human behav-
iors (Challenge 1), providing a compromise between Control and Autonomy (Challenge
2), and validating the credibility of the generated behaviors (Challenge 3). In this section,
we study the existing agent-based approaches to analyze whether they can address our
three challenges at the same time. Before this, we introduce some definitions related to

34

1.2. Agent-based Models to simulate Humans

the agent concepts in section 1.2.1.

1.2.1 Definitions related to Autonomous Agents

In this section, we can find some definitions related to autonomous agents. In section
1.2.1.1, we give a definition of Virtual Environments that are essential to simulate agents.
In section 1.2.1.2, we define what is an agent exactly. We then explain in section 1.2.1.3
the means of Autonomy in our context. Finally, we define in section 1.2.1.4 what is a
need, activity, task, and resource in the agent context.

1.2.1.1 Definitions related to Virtual Environment

In this section, we give definitions related to Virtual Environment. More particularly,
we describe the environment features that influence agents, in contrast with the previous
section, where virtual environments were analyzed in a broader sense. Virtual Environ-
ment is a global notion to define the simulated world where a virtual human can interact.
Judging from the definition of Dorri et al. [62]: The environment refers to the place where
the agent is located. [...] An agent uses the information sensed from the environment for
decision-making. According to the same authors, environments can have several features
affecting the complexity of an agent-based system (All the below definitions come from
their works):

Accessibility: This is related to the capacity of the agent to perceive environment data.
When the environment is accessible, these data can be easily retrieved and updated by the
agent. Otherwise, the agent can only perceive noisy or incomplete data (non-omniscience).

Determinism: This is related to the predictability of the results coming from the agent
action. When an environment is deterministic, the result is predictable and the next state
of each action is precisely known by the agent. An environment became undetermined
when factors unknown by the agent can influence the next state.

Dynamism: This is related to the changes occurring in the environment that are inde-
pendent of the agent actions. Environments only impacted by the agent are considered
static. Otherwise, they are dynamics.

35

Chapter 1 – Related Work on Human Simulation and Data Generation

Continuity: This is related to the discreteness of the environment. A continuous envi-
ronment uses a continuous function to affect the agent state (ex: agent moving in a 3D
environment). On the contrary, a discrete environment forces the agent to be in a set of
predetermined states. (ex: A timestamped position to move a 3D agent).

For our case where we seek to generate credible behaviors, our agent model must
manage environments being at least Dynamic (since humans are influenced by their en-
vironment) and Continuous (since the real world is continuous). Regarding Accessibility,
having a non-omniscient agent can be desirable for multi-agent simulations and dynamic
environments and will be progressively set up in our thesis. Concerning determinism, hav-
ing a deterministic environment is more suitable in our case since the generated behavior
will be more controllable (Challenge 2) and the decision-making will have less complexity.

Some existing works also introduce Intelligent Virtual Environments (IVE) [13], [46],
[138], [174], sometimes called Informed Virtual Environments [32]. These environments
are enriched with useful information to describe objects and their possible interactions
through the use of semantic databases [31], [32] or ontology-based methods [46], [71], [107].
Introducing IVE is essential to simulate interactions between agent and environment but
also to identify which object is useful to perform an activity [174]. For example, if it wants
to read a book, it needs to identify which objects in the world are books. Because of their
properties, IVE is required to address our Challenge 1 since IVE allows us to produce
more credible behavior through the simulation of interactions and world knowledge.

1.2.1.2 Definitions regarding the Notion of Agent

Agent is a wide term associated with several definitions. In one of the most global ones
stated by the Collins Dictionary 5, an agent is a person or thing that acts or has the power
to act. This is thus more related to the capacity of an entity to perform actions than its
nature. In the field of Artificial Intelligence (AI), Agent also encompasses any virtual
entity able to act and make decisions. According to Handel et al. [86] and Cardoso et al.
[35], agent-based models became popular in the 1990s since they can efficiently simulate
complex systems and help in problem-solving tasks. We thus find agents such as robots,
routers, virtual machines, task schedulers, intelligent objects, virtual living beings, etc.
The creation of models allowing the interaction between several agents, called Multi-Agent
Systems (MAS), allows scientists to solve some NP-complete problems while limiting the

5. Collins Dictionary website indicating the agent definition: https://www.collinsdictionary.com/
dictionary/english/agent

36

https://www.collinsdictionary.com/dictionary/english/agent
https://www.collinsdictionary.com/dictionary/english/agent

1.2. Agent-based Models to simulate Humans

explosion of complexity. The definition that we officially use is the one proposed by Dorri
et al. [62] in their survey:

Agent: An entity that is placed in an environment and senses
different parameters that are used to make a decision based on the
goal of the entity. The entity performs the necessary action on the
environment based on this decision. Definition taken from the work
of Dorri et al. [62]

Agent definition

In our use case, the entity is a virtual character used to simulate a human, and the
environment is a 3D environment equipped with sensors and effectors used to collect data.

We can also add that Agent, Virtual Agent [24], Intelligent Agent [117], Intelligent
Virtual Agent (IVA) [7] are often synonymous in the literature. In the field of video
games, we also have Virtual Characters and Non-Player Characters (NPC) [167] that
are commonly used in the gaming vocabulary to talk about virtual humans that are not
controlled by players. They are thus synonyms of agents. Regarding the notion of Virtual
Human, it includes all the way to simulate a human, as explained in section 1.1.2, making
it less accurate than the agent notion.

1.2.1.3 Definition regarding the Notion of Autonomy

Among existing approaches, we can find more specific notions defining the Agent
such as Cognitive Agent [125], Autonomous Agent [117], Motivated Agent [12] or even
Conversational Agent [76]. These diverse nuances allow the authors to clarify which
human features are mainly studied in their work. For instance, conversational agents are
more related to human natural language whereas motivated agents are more related to
what motivated the agent to make a decision.

In this thesis, we are particularly focused on the autonomy process regarding decision-
making and the execution of chosen activities. We thus use the term of autonomous agent
in our case. According to Cardoso et al. [35] and Avridinis et al. [11], Autonomy is an
essential feature to have credible agents. Nevertheless, Avridinis et al. point out that Au-
tonomy is often confused with Automation. According to them, an agent is automated
if the user gives an explicit list of all goals to perform and all the steps to reach them.

37

Chapter 1 – Related Work on Human Simulation and Data Generation

Judging from them, the agent must be able to generate and manage its proper goals to
obtain a truly autonomous agent. This assumes that it has intrinsic motivating mecha-
nisms (needs, emotions, etc.) pushing it to act. A more precise definition of Autonomy
can be found in the work of Brustoloni et al. [34], Castelfranchi et al. [37], [38], Dorri
et al. [62], and Franklin et al. [73] where an agent is considered as autonomous when it
has the Power to interpret the VE, create its motivations, and find out how to drive and
achieve its own goals. In this thesis, we officially take the definition of Castelfranchi et
al. [38] that summarizes this idea:

Autonomy: Autonomy actually is a matter of power (the capa-
bility of maintaining and of satisfying adaptive functions and goals
through appropriate behaviors); this requires specific powers that
can be distinguished in external and internal. Definition coming
from Castelfranchi et al. [38]

Autonomy definition

Judging from the authors, External Powers are all the action conditions and resources
allowing the agent to successfully act in the environment. In parallel, Internal Powers
are the cognitive capabilities allowing the agent to collect information, create goals, and
schedule plans to achieve its proper goals.

For our case, having an autonomous agent rather than an automated one is required
since Autonomy allows a greater diversity in decisions and actions while keeping coherent
and consistent behaviors (see Introduction).

1.2.1.4 Definitions related to Need, Resource,Activity, Task, and Action

In this section, we define Need, Resource, Activity, Tasks in relation to the context of
daily life.

Needs: They are related to the human daily needs defined in Maslow’s theory of needs
[124]. In this theory, recognized by the psychological field, needs are ordered according
to their urgency level by following the hierarchical structure called Maslow’s pyramid of
needs. Concretely, physiological needs (hunger, etc.), which are simple but imperative to
satisfy, are thus distinguished from more elaborate needs, which are more complex but

38

1.2. Agent-based Models to simulate Humans

less urgent to satisfy (self-esteem, etc.). Needs are often used as a source of motivation
that will push the agent to act in the environment to satisfy them. They therefore
enable autonomy since the agent is able to choose its proper goals according to its needs
urgency. Among the physiological needs, we can also distinguish needs that are initiated
by internal factors induced by the organism (food, water, energy, etc.) and those that
are initiated by external factors induced by the environment (temperature, humidity,
etc.).

Activity: An activity is a concrete formulation of the way to satisfy a goal or a need. For
example, if the agent wants to satisfy its hungry, then Eating can be an activity. However,
it is not atomic enough to be applied directly in a virtual environment. For example, if the
selected need is Need to be Entertained, then possible activities may include Watching TV,
or Reading. No indication is given of where and how they are performed. Our definition
of Activity is first based on the work of Cumin et al. [51]: An activity is a set of tasks (or
operations), a task being a set of actions. We also base our definition on the theory of the
Action Cycle developed by Norman [133]. In this theory, Norman explains what drives
humans to perform actions in specific contexts. According to him, a system of perception
is used to compare the world state with the internal needs. If needs cannot be satisfied
in this world state, a series of actions are set up to satisfy them. Such a series of actions
serve as a basis for performing the activities in our work.

Task: To be executable in a virtual environment, activities are broken down into tasks.
According to Cumin et al. [51], Tasks are concrete formulations of basic action sequences
(such as animation) that can be directly executed by the agent. They can indicate the
needed resources, the location, the name of used objects, etc. For instance, in the activity
Watching TV, tasks can include turning on the TV, or sitting on the sofa.

Resource: They are related to the natural resources offered by the environment. Our
definition comes from the work of Laborie et al. [110]: We define a resource as any
substance or set of objects whose cost or availability induces constraints on the actions
that use them. This definition was chosen since it is well suited to our context where our
agent has to manage resources in its daily life such as food, phone, car, etc.

39

Chapter 1 – Related Work on Human Simulation and Data Generation

1.2.2 Relationships between Agents and Environments through
Intelligent Virtual Environments (IVE)

As explained in section 1.2.1.1 the use of an Intelligent Virtual Environment (IVE) is
essential to allow relationships between the agent and its environment. Effectively, if the
agent must interact with a simulated environment to produce data, each object must be
well recognized. This is why, it is necessary to enrich the environment with information
describing and explaining how interactions can be executed. For example, the chair
must be distinguishable from an apple so that the chair can be used for sitting and not
used as food. This semantic enrichment can be made through two kinds of knowledge
representation models: Semantic databases [84] and Ontology-based models [71].
In this section, we explain the advantages and drawbacks of each existing method and
if they can be used in our context to allow the agent to perform daily activities in an
accurate way.

Semantic databases: Also called knowledge bases, they are concepts explicitly describ-
ing different content features at different levels of abstraction [71]. These concepts can
be set up with several kinds of structures such as metadata, database, languages, rules,
etc. Among them, we have the object-relation-based model called #FIVE, proposed by
Bouville et al. [31], which is implemented in the XR toolkit Xareus 6. In #FIVE, the de-
scription is oriented towards possible interactions between the objects and other objects.
#FIVE thus describes the world in how objects and humans can interact. For instance,
we can group doors and drawers in the same category, since they share the same interac-
tion: humans can open or close them. A hierarchy between them can also be set up to
create more specific interactions. Another approach can be found in the work of Gutierrez
et al. [84] where the rule-based standardized framework called MPEG-7 is introduced to
reuse the virtual objects in other simulations while keeping intact their geometrical infor-
mation. In the work of Gröger et al. [82], the CityGML standardized semantics, based
on Geography Markup Language is also proposed to manage the semantic aspects of 3D
city models such as their structures, taxonomies, etc. This allows users to employ virtual
3D city models for advanced analysis and visualization tasks. Other approaches also use
rule-based approaches through constraint programming where the Prolog language [13]
can be used to describe the features of objects. Sometimes, Unified Modeling Language

6. Xareus Software: https://team.inria.fr/hybrid/xareus/

40

https://team.inria.fr/hybrid/xareus/

1.2. Agent-based Models to simulate Humans

(UML) is used as semantics to describe virtual objects [171]. There is also the use of
BIM processes [181] to describe 3D objects. With semantics-based approaches, there is
an explicit description of the relationships and features of virtual objects. They can be
shareable with other simulations using the same kind of objects and can be ordered in
a hierarchy. Their structure is generally less complex than ontologies, allowing an easier
integration into a new environment, easier addition of new objects, and easier modifi-
cation of existing objects. However, they cannot manage implicit knowledge, and they
sometimes lack formalism [71].

Ontology-based models: Judging from the definition of Flotynski and al. [71], an
ontology is defined as specifications of conceptualization, in which objects, concepts, and
other entities that are assumed to exist in some area of interest and the relationships that
hold among them are included. As with semantics approaches, ontologies use concepts to
describe objects and relationships at different levels of abstraction. The main difference
is that object description can be implicit. For instance, if we group metallic objects
together to give them a special characteristic such as conductivity, then we can implicitly
define other objects as non-metallic and therefore non-conductive objects. With this,
new useful interactions can be managed, such as in our example the search for isolating
objects without being forced to explicitly define the category since metallic ones exist.
Among existing ontologies, we can find the surveys of Flotynski et al. [71] describing
several categories of ontologies such as Web Semantics [59] and the Resource Description
Framework (RDF) which are the first ontologies used for web contents. Other semantics
web standards also exist such as the Web Ontology Language (OWL) 7. Some approaches
use ontologies to describe the contents of video games such as Kessing et al. [102] while
some other approaches use ontology in a knowledge-based scenario framework to support
agent planning processes [41]. Other approaches use ontologies for modeling VR scenarios
such as in the work of Dragoni et al. [63] or for Augmented Reality (AR) content such
as in the work of Walczac et al. [175]. In the work of Chevailler et al. [46], they
present MASCARET, a UML-based ontology, developed for VR applications to describe
3D objects in terms of geometry, interaction with users, and physical constraints. Finally,
some works also use ontologies to describe the decision-making content in a structured way
[83]. The main assets of ontologies are the possibility to describe contents in an explicit
and implicit way. However, their level of complexity due to many layers of abstraction

7. https://www.w3.org/OWL/

41

Chapter 1 – Related Work on Human Simulation and Data Generation

can be harder to understand and integrate into a specific simulation than other semantics-
based approaches.

To conclude this section, we could observe that most of the semantic databases and
ontology-based models are sufficiently suitable to be used for our case. Effectively, we need
to have semantics that can categorize objects according to their possible interactions and
that can be reusable in several environments. This is why, semantics models such as
OWL, #FIVE, MASCARET, or BIM can all be used in our case. In the next session, we
then focus more on the way to simulate agent behaviors.

1.2.3 Models with Predefined Behaviors: The Automatons

To start our exploration of the existing approaches that propose agent models, we
study the ones simulating predefined behaviors. For this, they use Automatons or Auto-
mated agents to automatically launch behaviors in a fully controlled way: all the decision-
making steps of the agents are explicitly described through graphs or scripts that display
the different available possibilities that can be chosen to manage the current situation.
Figure 1.3 shows some examples of such automatons. Among the existing approaches
using them, we can find the Persim 3D [88] and SIMACT [28] using predefined scenarios
to control their agents. we can also find approaches using Finite State Machines (FSM)
models [116] where a finite number of states is represented showing the possible agent
states. The FSM can change the agent state when a new situation happens or a new
condition is reached. This change from one state to another is called a transition.

We also have Petri-Nets-based approaches [140] where a token is used to pass from
one place to another one. The places are linked by transitions letting the token pass when
the condition is reached. Transition can also trigger effects, such as animations, when the
token passes through it. A multi-level improvement of these Petri-Nets can be found in
the work of Claude et al. and Lecuyer et al. [49], [114], [115] where a scenario model
called #SEVEN, which is implemented in the XR Toolkit Xareus 8, is proposed to create
scenarios for Virtual Reality (VR) applications.

We can also find Behavior Tree (BT) approaches [27] where agent states can be ordered
as a tree. Concretely, BT is a directed acyclic graph composed of Nodes and edges. Each
parent node can take four types: Sequence, Selector, Parallel, and Decorator whereas

8. Xareus Software: https://team.inria.fr/hybrid/xareus/

42

https://team.inria.fr/hybrid/xareus/

1.2. Agent-based Models to simulate Humans

child nodes can be Actions or Conditions. Parents continuously check the state of their
children to know if they succeed or fail. Depending on the type of parent, the success
condition will not be the same. For instance, the parent being a Sequence type returns a
success when all its children return a success, whereas a Selector type returns a success
when at least one of its children returns a success. Actions are used to execute methods
changing the system or the environment state.

Figure 1.3 – Examples of Automaton-based approaches. On the left, an example of a transition model
made with Finite State Machine [116]; On the middle, an example of a Petri-nets model coming from
#SEVEN [114]; On the right, an example of a Behavior Tree used to implement the task Preparing Coffee

Such fully controlled techniques have the advantage of quickly producing behaviors.
However, agents are not able to adapt to a situation that is not considered in the struc-
ture. They also cannot anticipate their future constraints (activity to make at specific
times, unavailable resources, etc.). In addition, scalability is limited since the complexity
quickly increases and the addition of new content can be a tedious task. For all these
reasons, automated agents cannot offer sufficiently credible behaviors and address our
first challenge. Nevertheless, they can be interesting to use as a complementary approach
to manage the execution of activities for instance, in order to let the researcher control
how the agent can perform an activity and thus better match with its expectations.

43

Chapter 1 – Related Work on Human Simulation and Data Generation

1.2.4 Models with Goal-Oriented Behaviors

In this section, we explore approaches using a goal-oriented agent model to simulate
agents in a better autonomous way than automatons. According to the definition of
autonomy given in section 1.2.1.3, an agent can be considered as autonomous if it can
produce its proper goals and choose the way to satisfy them. In the next sections, we study
existing works that use goal-oriented methods to obtain an autonomous agent. We then
analyze these approaches to know whether they can address all 3 challenges mentioned in
Introduction at the same time.

1.2.4.1 Reactive-Based Models

In reactive-based methods, the agent chooses and executes the most appropriate action
according to the current context. With these kinds of approaches, the agent can quickly
react to changes caused by the environment or by its internal constraints (needs, emotions,
preferences, etc.).

In this category, we can find approaches using action selection mechanisms either
based on motivation-based methods or needs-based methods. Figure 1.4 shows
some examples of such approaches. Generally, a threshold system is used to assess which
motivation or need must be urgently satisfied and then which activity must be performed
in priority to satisfy them. The difference between motivation and need is relatively subtle.
Needs are more based on what physical and mental processes coming from biological as-
pects can affect the human’s actions whereas Motivations can encompass broader sources
of action that may not necessarily come from a need (habits, emotions, preferences, etc.).
Most approaches using needs are based on Maslow’s definition [124] described in section
1.2.1.4. Nevertheless, motivation and needs are sometimes used as synonyms.

Needs-based approaches with internal factors : Among needs-based approaches
simulating needs caused by internal factors, we have the work for Avradinis et al. [11],
[12] where an agent in a 3D house satisfies its needs inspired by Maslow’s Pyramid of
Needs [124]. In this approach, they simulate the interdependence between needs with
mathematical functions based on medical studies. In addition, Positive and negative
thresholds are implemented to indicate when a need should be addressed or avoided. In
the work of Lee et al. [117] and those of De Sevin et al.[159], activity selection systems
are proposed to choose the best activity according to the context and the agent needs.
Regarding De Sevin et al., a viability zone inspired by the work of Meyer et al. [128] is

44

1.2. Agent-based Models to simulate Humans

proposed, where 3 zones estimate the urgency of needs (comfort, tolerance, and danger
zones). In the work of Handel et al. [86], they simulate agents in a 3D square where needs
are modeled with Dynamic systems describing how they are impacted by actions and other
needs. However, in all these approaches, no external factors are simulated and few clues
are given to understand the relationship between time and needs. Thus, time drifts may
appear after a certain time and needs not being urgent every day cannot be simulated.
This limits credibility during long time periods and their use for data generation. Finally,
in the work of Bogdanovych et al. [24], where they propose to simulate the daily life of
a Mesopotamian population, they compare the need-based approach developed by The
Sims 9 game with the Goal-Oriented Action Planning (GOAP) [136]. In The Sims game,
each need has a decay rate represented by a mathematical polynomial function bounded
between -100 and 100. When a need value reaches 100, this need is considered as totally
satisfied. The value of each need decreases over time and can increase when the agent
interacts with objects. In this approach, each agent aims to maximize its mood value
which is the sum of needs ones. In contrast, the GOAP approach uses planning-based
approaches to trigger a goal when a need reaches a critical value and construct a plan of
action to reach it. Both approaches are interesting since they are adapted for long periods
and can manage several agents. However, the authors notice that The Sims game approach
produces scripted behaviors, has scalability issues when a new object is added [24], and
provides few hints about needs satisfaction due to its commercial nature. Challenge 1 is
thus difficult to address. Regarding GOAP, a lack of anticipation is observed since agents
only react to changes and do not anticipate future constraints, limiting the possibility to
address our Challenge 2.

Needs-based approaches with external factors: Some approaches simulate needs
that are induced by external factors coming from the environment such as temperature
or humidity. This is the case in the model proposed by Kashif et al. [99], [101] where air
quality, temperature, and humidity are considered in addition to hunger. In the work of
Kim et al. [103], they simulate occupants trying to reduce their total energy consumption
while improving Indoor Environmental Quality (IEQ) score impacted by external factors
(thermal comfort, acoustic comfort, air quality, etc.). For this, a hybrid optimization
function is used to optimize this ratio. Thermal comfort preferences are also simulated
in the work of Klein et al. [104] and SMACH [156]. However, judging from several

9. The Sims, official website: https://www.ea.com/fr-fr/games/the-sims

45

Chapter 1 – Related Work on Human Simulation and Data Generation

reviews related to the impact of occupant behavior on energy consumption in indoor
environments, the credibility of the simulated agent considering external factors is not
sufficient to retrieve relevant synthetic data [58], [66], [119], [158], [180]. More particularly,
according to Li et al. [119] and Ebuy et al. [66], simulations are not yet sufficiently efficient
to produce synthetic data usable to predict the energy consumption caused by occupants
since external and internal factors are rarely simulated simultaneously.

Figure 1.4 – Examples of Reactive-Based approaches. At the top left: the needs model of The Sims
game tested by Bogdanovych et al. [24]; At the top right: the agent thermal comfort proposed by Kashif
et al. [99]; At the bottom left: Dynamic systems used by Handel et al. [86] to simulate needs; At the
bottom right: the MAGE model proposed by Avridinis et al. [11] to simulate needs.

Motivation-based models: Other approaches not only use needs as the main moti-
vation for the agent but also use other cognitive factors such as preferences, emotions,
personality, coping, appraisal, or social factors. For instance, Bourgais et al. propose in
their works a review of the existing emotional models used in agent models [30] as well
as the BEN social agent model [29] where emotions are included and based on the OCC
cognitive appraisal theory proposed by Ortony, Clore and Collins [137]. According to
this theory, emotions are caused by the evaluation of 3 types of stimuli: The desirability
of an event in accordance with its goals, the merit of an action respecting standards,

46

1.2. Agent-based Models to simulate Humans

and the attractiveness towards an object or a person. In addition, the OCEAN model
(or the big five-factor model) [77] is also used to give personalities to their agents. In
this model, personalities are a combination of five parameters (Openness, Consciousness,
Extroversion, Agreeableness, and Neuroticism) bounded between -1 and 1. OCC and
OCEAN are cognitive models that have the advantage of broadly making a consensus in
the scientific community as a way to simply represent human emotions and personalities.
They are used in other simulations of emotions such as the ALMA model [74], ERiSA
model [47], and FAtiMA toolkit [123]. In the work of Shirvani et al. [160], emotions based
on the OCC theory are used in a story-telling system as the main factor impacting the
decision-making to create a story. In the HUMANS model [113], agents are simulated
in critical situations through the REPLICANT module including OCEAN, OCC, and
relationships between agents to manage new situations caused by the user trying to solve
the situation. Although OCC and OCEAN can simplify the representation of emotions
and personalities, they are sometimes difficult to configure when we want to simulate a
particular emotion or personality, since they are the result of several variables. Some ap-
proaches simulate other cognitive processes such as appraisal and coping that come into
play when a person is faced with a critical or unexpected situation that is hard to manage.
Coping and appraisal processes are explained and simulated in the work of Marsella et al.
[122] in the use case of medicine where a doctor has to make a decision causing serious
consequences. As another possible motivation, some approaches use the time of day to
select the next activity to perform. This is the case for SMACH [5], [149], [156] where a
time-of-day-dependent probability law based on real data is used to select the next one.

BDI architectures: In addition to action selection mechanisms approaches that can
use either needs-based methods or motivation-based methods, we also have other existing
reactive-based approaches such as Beliefs-Desires-Intentions (BDI) architectures. This
well-known reactive-based architecture, which can be shown in Figure 1.5, was created
by the philosopher Bratman [33]. In BDI, a perception system interpreting the state
of the world is modeled through beliefs, the choice of possible goals is modeled through
desires, and the choice of predefined sequences of actions to satisfy these goals is done by
intentions. When Intentions are chosen, they are executed and the Desires are updated to
consider the goal satisfaction. One of the first implementations is proposed by Rao et al.
[147] and surveys about BDI are given by De Silva et al. [162] and by Adam et al. [1]. BDI
architecture has inspired many agent-programming languages such as AgentSpeak [147],

47

Chapter 1 – Related Work on Human Simulation and Data Generation

CAN [177], or CAN-PLAN [155] and a lot of implementations exists, giving an interesting
adaptability. Among classic BDI frameworks, we have the Procedural Reasoning System
(PRS) proposed by Myers [130], JACK proposed by Howden et al. [91], or Jason by
Bordini et al. [26] which was also integrated into the JaCaMo platform proposed by
Boissier et al.[25]. This last platform mixes three existing ones: Jason for managing
the autonomous agents, Moise for agent organizations, and CArtAgO for integrating
shared environments. We also have JADE, an open-source Java framework, developed
by Bellifemine et al. [18] and improved by Nunes et al. [134] through the BDI4JADE
platform and by Pokahr et al. [141] through Jadex. Among BDI-based implementations,
some improvements were made for BDI such as preferences [36], needs [99], [153], planning
[57], [179] or emotions [29]. We also have the work of Vosinakis et al. [173] where BDI
agents having physiological needs simulate an ancient Greek population. We have also the
work of Ramos et al. [146] using BDI agents for serious games, the MASSHA model [97]
simulating BDI agents in a smart house as well as the MOVICLOUD platform proposed
by Barriuso et al. [16] where disabled BDI agents are modeled in a 3D building.

Figure 1.5 – On the left, a diagram of the global BDI Architecture proposed by Saadi et al. [153] where
Brf means Belief Revision Function, used to update the agent beliefs. On the right, an example of BDI
agents proposed in Virtual Agora [173]

The massive implementation of BDI architecture in the agent domain can be explained
by its advantages: BDI allows the simulation in real-time of agents adapted to dynamic

48

1.2. Agent-based Models to simulate Humans

environments. BDI is also a flexible architecture where extensions can be easily added.
In addition, it is well-suited for MAS while allowing the agent to act in an individual way.
Since the agent uses the perceived information to choose its own goals and the accurate
action plan, BDI allows for both consistency and diversity in behaviors, enabling us to
address Challenge 1. However, the main implementations of BDI architecture, without
mixing with planning-based approaches, do not allow the creation of plans during the
simulation. Actually, plans of action are rather retrieved from predefined plans stored in
a library. This is why, BDI used alone is not sufficient to address Challenge 2 related
to giving a compromise between control and autonomy since no anticipation process can
be made with the existing platforms, except those that combine BDI with planned-based
approaches which are detailed in the section 1.2.4.6.

To conclude this section, reactive-based approaches are particularly well suited to
dynamic environments and multi-agent issues. Most of them can also produce credible
behaviors and thus address our first Challenge. However, imposing strong constraints is
more difficult since no anticipation mechanism is set up to prepare the agent for future
constraints that can be imposed by experimental protocols of a real dataset for instance:
the agent cannot anticipate the depletion of resources and be sure to be ready at a specific
time to perform an imposed activity. Consequently, used alone, they are not sufficient
to give a compromise between control and autonomy, making it difficult to address our
second challenge. These approaches stay limited in the control over the agent’s decision-
making since the activities are chosen in reaction to a situation and not in anticipation
of a future situation.

1.2.4.2 Planning-Based Models

In contrast to reactive-based methods, other approaches use planning-based methods
and scheduling-based methods to set up a plan according to the current context and
constraints. Unlike reactive-based approaches, it is easier to impose strong constraints on
agent behavior. Among the constraints that can be managed by these models, we can find
the management of resources [64], [109], goal [70], [75], space [43], [94], [129], preference
[142], or time [94], [127], [148]. In the literature, confusion may arise between schedulers
and planners. Judging from Smith et al. [163] Planners are designed to manage the
ordering of actions, tasks, or activities in order to achieve a goal. The structures used
can be tree, loop, or parallel actions. The aim is to find a series of actions to reach the

49

Chapter 1 – Related Work on Human Simulation and Data Generation

goal. However, they may have difficulties in managing resources and time constraints. In
contrast, Schedulers are specifically designed to deal with time and resource constraints
but may have some difficulties to order actions, tasks, or activities. However, with recent
methods, the frontier between both methods tends to be less perceptible. In this section,
we explore the planner-based approaches and in the next section, we study the scheduling-
based approaches.

Figure 1.6 – Pseudo-code of HTN algorithms and examples of some implemented HTNs. At the top
left: HTN Pseudo-code proposed by Smith et al. [163]. At the top right: Example of HTN used by
Cavazza et al. [40]. At the bottom left: HTN processes and complexities described by Trescak et al.
[170] and explained in section 1.2.4.5. At the bottom right: Example of HTN used by Jang et al. [93].

Existing planners are extremely broad and domain-dependent. Therefore, our study
focuses on the main planner categories that can be used to simulate human decision-
making. Generally, planners are used to find a way to achieve a set of goals. They also
manipulate 3 inputs written in a formal language (either STRIPS [70] or PDDL [126])
that use logical predicates. The first input is the description of the world state, the second
one is the description of the goal to reach, and the last one is the set of possible actions
(also called operators). Each action can contain preconditions that must be satisfied in
the current state to be applicable and post-conditions that can apply effects and change
the world state. As indicated in the works of Smith et al. [163], McDermott [126], Trentin

50

1.2. Agent-based Models to simulate Humans

et al. [169], and Köckemann et al. [105], several categories of planners can be found and
are detailed below:

Classical Planning: In classical planning, the aim is to produce a solution executable
in the initial state to reach a situation where the targeted goal is true. The solution
is often a sequence of actions or activities. In classical planning, the problem is often
treated in the same way as in graph exploration: The planner explores a set of states that
can be represented by nodes and linked by edges including possible actions and allowing
the transition between nodes. The resulting plan is then the set of edges to take that
leads to the targeted state. Formally, a classical planning problem is defined by a tuple
< S, A, T, s0, G > where S is a set of states, A is the set of actions, T is the transition
function between two states stored in an action, s0 is the initial state, and G is the set of
goal states. Several techniques can be used to explore the set of states and build a plan
of action and are described below:

• Fast-Forward technique: In this technique, the planner starts from the initial
state and chooses an action where preconditions are satisfied to construct a new
state by applying its effects. Search continues until the desired state is reached.

• Backwards technique: In this technique, the planner starts from the goals and
constructs the plan going backward. To do this, an action that can accomplish one
of the goals is chosen and replaced by subgoals corresponding to its preconditions.
The process is then repeated until the remaining subgoals are included in the initial
conditions. Backward techniques are used for instance by STRIPS [70] and its
derivations such as GOAP [167], but also by the MASCARET multi-agent model
[145]. In contrast to other planners, GOAP (Goal-Oriented Action Planning) has
the particularity to be well suited for real-time simulations as shown in the work of
Bogdanovych et al. [24], where a Mesopotamia population can manage its needs
and resources through this planner. The MASCARET multi-agent model [145] is
also optimized for real-time simulations since it simulates agents in 3D simulations
to train Firemen.

• GraphPlan: In this technique created by Blum et al. [22], the planner either
returns a shortest-possible partial-order plan or indicates that no valid plans exist.

51

Chapter 1 – Related Work on Human Simulation and Data Generation

A partial-ordered plan, contrary to totally-ordered plans, indicates the actions to
perform without imposing a specific action ordering, unless when essential.

If we want to use Classical planners, two assumptions must be met, restricting their
use. Firstly, the actions must be deterministic, i.e. we know in advance the effects they will
produce. Secondly, the agent must be omniscient, i.e. it must know the state of the world
in its entirety. Regarding our case, planners will systematically propose the most optimal
solution, which leads to a loss of diversity in solution, which is not suitable to address
our Challenge 1.Classical planners are more focused on scheduling actions according to
the current situation rather than on anticipating resources and time constraints. Even
with GOAP, the agent cannot anticipate when a resource will be critical, and will only
act when the resource is yet exhausted. Some of them also have difficulties to manage
unexpected changes impacting the planning.

Hierarchical Planning: In contrast to Classical planning, Hierarchical planning starts
planning at a higher level and then goes into detail when it is required. According to Erol
et al. [69], Georgievski et al. [75] and Smith et al. [163], Complex Actions and objectives,
becoming Compound Task, can be decomposed into more basic actions called Primitive
Tasks or in other Compound Tasks. Primitive tasks are those that can act directly on
the environment and are often formalized with STRIPS. Among compound tasks, we
have specific tasks called Goal Tasks only made of conditions that must be true to finish
the task. To enable this kind of planning, the hierarchical description of the actions
must be indicated. All the compound tasks and primitive tasks are linked with a task
network called Hierarchical Task Network (HTN) [69], [75]. The possible decomposition
of a compound task is stored inside methods. These methods allow to link between the
parent task and its children’s tasks and thus constitute the task network. The methods
also contain the conditions for completing the concerned task. Figure 1.6 shows some
examples of HTN, as well as the HTN pseudo-code proposed by Smith et al. [163]. We
can find HTN in approaches such as SHOP [131], SHOP2 [132], PANDA [19], or in the
work of Cavazza et al. [40]. In this last work, the authors use HTN to control autonomous
agents and their interactions with the player and environment. HTN has the advantage
of being easily combined with other approaches such as schedulers to reduce the search
space or automatons to execute concrete actions in the environment. In our case, even
though time and resource variables can be added to some HTN extensions, it remains

52

1.2. Agent-based Models to simulate Humans

difficult to integrate an anticipation mechanism to foresee a future resource depletion or
a future time constraint. The reactivity of the planner to manage rapid changes in the
current situation is also limited.

Temporal Planning: These planners allow the management of the time and resource
variables. To improve STRIPS and PDDL languages that are not well suited to manage
time and durations, a new language called PDDL2.1 is proposed by Fox et al. [72] to
allow the integration of actions with variable durations. Temporal planning thus allows
the expression of action durations as well as conditions and effects at the beginning, at
the end, and during the action. Some approaches have also proposed improvements to
consider the time while pruning the search space to reduce the complexity, such as Vidal
et al. [172]. Temporal planners are mainly used to solve Simple Temporal Problems
(STP) that use the start and end bounds of a time interval. Temporal constraints are
then propagated and bounds are reduced until a solution is found, or an impossibility is
returned. As with classic planners, these algorithms will lack diversity in the solutions
concerning the plans produced and have difficulties managing quick changes caused by the
environment. In addition, using a temporal planner alone does not enable us to consider
other future constraints such as future urgent needs or resources.

To conclude this study about planning-based approaches, we found that most of them
have limitations regarding the reactivity to changes in the current situation. In addition,
no anticipatory mechanisms are integrated in most cases. Moreover, planners are often
used to find the best solution to a problem, which is not our purpose since we want
diversity in the produced solutions. Effectively, humans do not perform activities all the
time in the same way and do not choose the same plan of activities for the same situation.
We thus just need to have a plan of activities that can work with the current situation
without obligatory being the best one. The credibility of behaviors is thus limited and
not enough to satisfy our Challenge 1.

1.2.4.3 Scheduling-Based Models

After exploring planning-based approaches, we now focus on scheduling-based ap-
proaches to know if they could address Challenges 1 and 2. Schedulers are algorithms
developed to solve optimization problems implying time and resource constraints. Glob-
ally, they allow the assignment of limited resources and variable durations to tasks in order

53

Chapter 1 – Related Work on Human Simulation and Data Generation

to optimize several objectives. According to the work of Smith et al. [163], their definition
is based on three principles: The core of schedulers is to reason about time and resources,
they almost always solve optimization problems, and they involve choices regarding the
implied resources, the duration of actions and the order of actions. For instance, a given
task may have several alternatives with different costs or durations. Sometimes planners
can work with schedulers to speed up their search for solutions. Several scheduling tech-
niques have been used to manage different constraints (time, resources, space, etc.) of
daily life in their simulation. We study below some essential categories of schedulers:

Constraint-based scheduler: The most common approach to solving a scheduling
problem is to represent the problem as a set of constraints to satisfy. These constraints can
be described either in the form of a Constraint Satisfaction Problem (CSP) or a Resource
Constraint Satisfaction Problem (RCSP) and can be solved by a specified language such as
Prolog. In the work of Kökemann et al. [106], they propose a constraint-based scheduler to
create plans managing time during the run time that will be adapted in the work of Renoux
et al. [148] to schedule the activities of agents in a 2D smart home. With this, they can
force activities to start in a time interval as well as before and after some other activities.
The duration is also bounded between a min and a max value and can change randomly.
We also have the work of Anastassakis et al. [7], where they present a tool based on
Prolog to schedule the agent behaviors in a virtual environment. Unfortunately, for all of
these kinds of schedulers, agents often have difficulties to manage unexpected events that
disrupt the plan during the simulation. In addition, it could be really difficult to design
such constraints: The developer has to make sure that there are no conflicting, redundant,
or missing constraints. This can become a very hard and tedious task, especially since all
the constraints of everyday life must be considered. The addition of a new constraint must
be done with great care to avoid the solver getting stuck. Different heuristic methods can
be used when solutions require finding the minimum cost value or the maximum utility
value. Among them, we can find the Local Search heuristic, where the neighbor of the
candidate is explored in an iterative way. This heuristic is used in the work of Pougala et
al. [143] to schedule daily collaborative activities. To do this, a utility function was set
up to calculate the efficiency of the produced activities plan according to their duration,
location, number of involved agents, and mode of transport. The goal is to maximize the
utility function and a Local Search-based method called Metropolis-Hasting algorithm is
used. Another heuristic is the Constructive Search, where at each level of search, the

54

1.2. Agent-based Models to simulate Humans

algorithm tries to assign a value to a non-assigned variable and make a backward process
when the value is inconsistent [163]. The main risk with these heuristics is to fall into a
local extremum (i.e. minimum or maximum), preventing to find a global extremum.

Meta-heuristics: Meta-heuristics can combine several heuristics to find a global opti-
mum. We can find algorithms such as simulated annealing algorithms, ant colonies, Tabu
search, graph exploration, or genetic algorithms. Regarding the simulation of virtual
agents performing daily activities, we can find the work of Charypar et al. [43] where
a genetic algorithm (GA) is used to schedule activities during a day. In this work, a
city is simulated and the agent has to schedule activities according to their distance from
the location, their duration, and the opening time. The GA uses a fitness function to
evaluate the performance of the produced plan. In the context of activity scheduling, a
fitness function can be defined as a function gathering the utilities (or the cost) of the
activities contained in the plans. The main goal is then to maximize (or minimize) the
utility (or cost) of this function. In a synthetic way, GA proceeds as follows: They take
a population of daily plans containing activities and calculate the utility of each plan
by applying the fitness function. It will then eject the plans that have the lowest score.
After this, a new plan is created by mixing the activities of two plans randomly selected.
Finally, a mutation process is used in the activities of the plans with a certain probability
to change, for example, their duration or their position in the plan. The algorithm then
repeats until it finds a plan that exceeds a certain utility threshold or after a finite number
of iterations. A Similar GA approach can also be found in the work of Meister et al. [127]
to schedule daily activities performed in a house. In the work of Jorgersen et al. [94], a
graph-based approach is used to generate a crowd with individual agent behavior in a vir-
tual city. Concretely, a combination of a topological graph and an activity graph is used
for decision-making. An A* algorithm is used to explore these graphs and find the best
compromise between the distance, the duration, and the load carried by the agents that
can change their travel speed. The agents can thus schedule their own activities based on
space and time constraints. Similarly, we can find the work of ordoñez et al. [135] where
a graph exploration algorithm is used to schedule activities and construct the travel path.
Concretely the agent tries to maximize its utility path function. This approach has the
advantage to plan activities during a time window controllable by a user. This allows
for better control over the agent’s activities since the user can indicate where the agent
should be at a certain time and thus prepare them to perform a specific activity: we

55

Chapter 1 – Related Work on Human Simulation and Data Generation

can therefore have a certain form of anticipation and a certain control over the agent’s
actions at certain times. Unfortunately, this model does not consider the internal state,
and the effects of activities occurring in another time window are not included. All of
them limit the consistency between the behaviors and thus limit the credibility and their
use for global data generation, preventing us to reach Challenge 1.

Econometrics-based models: These approaches use formulas coming from economics
to schedule activities according to their costs or utility. They are often based on the op-
timization of a budgetary cost (such as limited time budget, limited resource budget,
limited travel budget, etc.) to guide the decision during the activity scheduling process.
Among econometrics-based model, we can find the work of Habib et al. [85] where a
Random Utility Maximization (RUM), coming from economics, is proposed to dynam-
ically plan the daily activities of a weekend. We can also find the work of Bhat et al.
[20], [21], [79] where RUM is also used in their simAGENT model to schedule activities of
each agent living in a 2D city to manage travel constraints, time constraints and vehicle
constraints.

To conclude this section we saw that schedulers have the advantage of being special-
ized to solve complex problems implying constraints such as time, resource, space, or
global costs in a reasonable time. To allow this, they provide a solution working with the
situation without being necessarily the best one. Solutions are thus more diversified than
planners. Unfortunately, used alone, some of them cannot concretely execute activities
in an environment: they must be combined with other approaches to allow this. In ad-
dition, most of them have difficulties in quickly reacting when something happens that
strongly impacts the plan. Consequently, most existing schedulers cannot really manage
the interruptions of activities that can occur when an unexpected event happens (a re-
source is depleted at the last minute, a need becomes too urgent and requires interrupting
the current activity, etc.). Finally, most existing approaches do not propose schedulers
that can consider needs or motivation but only constraints related to time, resources, and
space. Some limitations can appear regarding the simulation of punctual activities that
not happening every day and having no specific constraints. For all of these reasons, they
have limitations regarding the credibility of behaviors if they are used alone, and thus not
entirely manage Challenge 1.

56

1.2. Agent-based Models to simulate Humans

1.2.4.4 Probabilistic-Based Models

Figure 1.7 – Examples of a Markov Decision Process given by Smith et al. [163] on the left, and
Kushmerick et al. [108] on the right. GD means Gripper Dry, HB means Holding Block

In the literature, some approaches try to deal with decision-making when the results
of actions become uncertain. These approaches are used to select activities by following
probability laws or to construct plans with activities that cause uncertain effects. In
this section, we thus study two kinds of probabilistic-based models: approaches that use
probabilistic planners and those using probabilistic schedulers.

Probabilistic Planners: Also called Stochastic Planners, they were initiated by the
works of Kushmerick et al. [108]. In this planning, the effects of actions are described
with probabilities and the goal is to construct a plan that optimizes the likely rewards
produced by some action effects. An optimization process close to schedulers is thus
used to maximize this reward. The decision model takes the form of a decision tree
(Markov Decision Process (MDP) in its graphical form) or an influence diagram (Bayesian
Network). Among approaches that use MDP for daily activities simulations, we can find
the work of Banovik et al. [15] where a routine model captures the causal relationships
between situations and actions. To do this, they retrieve the results of predictive models to
establish the probabilities between an action and a situation. In the work of Au et al. [9],
MDP can also be used to optimize the management of several agents simultaneously. Some
examples of MDP can be found in Figure 1.7. The main problem with these approaches
is that the impact of actions becomes uncertain. Consequently, The user is not sure that
the agent will be in a desired situation at a specific moment: The agent cannot actually
anticipate its needs or constraints with accuracy since even the consequences of its action

57

Chapter 1 – Related Work on Human Simulation and Data Generation

become uncertain. Probabilistic planning is useful for managing situations where the
outcome is unknown by agents but at the cost of losing control over their behaviors.

Probabilistic Schedulers: They select activities and construct a plan by respecting
probability laws. In contrast to the previous case, activities do not have uncertain effects
but they have a defined probability to occur at a specific situation. To know this proba-
bility, real databases are often used as input to analyze the occurrence and the duration of
activities according to the time of day and other parameters (such as preferences, previous
activities, etc.). A probability law can be then established to select activities according
to the situation. They are mainly used to obtain a routine reaching a level of credibility
close to the used real data. Among the existing approaches, we can find the BIM SIM
3D approach proposed by Zhao et al. [181] where activities are randomly selected with
a specific weight during the plan construction. Users can also request to enter specific
activities to perform during the day, but not for a specific time. However, the control over
behaviors is not sufficient since strong constraints are not sure to be respected. Roorda et
al. [152] also propose the TASHA model, where probabilistic functions established from
real databases are used to schedule daily activities during 24H. In the same trend, the
MASSHA model proposed by Kamara-Esteban et al. [97], where an agent can perform
activities in a 2D smart home. In this case, daily activities are selected according to their
priority based on the desired (or mandatory) start time, duration, preconditions, current
time, and preferences. If the activity is not mandatory, activities are taken randomly by
considering their weight through a Roulette Wheel. However, although MASSHA can
handle mandatory activities and time constraints, it is not certain whether the agent will
be ready to start a mandatory activity in time. Effectively, there is no guarantee to re-
spect the start time and duration of the required activities since they are selected just
before being done, without anticipation process. Control over behavior is thus insufficient.

To conclude this section, we explored probability-based approaches, using either prob-
abilistic planners or probability-based action selection mechanisms. They offer interesting
aspects, notably on the diversity of behaviors and on the credibility of the generated rou-
tines which can be close to real ones when real databases are a priori used to retrieve the
selection probability laws. However, strong constraints are hard to impose on these ap-
proaches, such as an activity to execute at a specific time. These approaches do not offer
any certainty that the agent will be ready at the desired time since the choice is based

58

1.2. Agent-based Models to simulate Humans

on probabilities and the agent does not really anticipate its future constraints. There is,
therefore, a lack of control over the behavior that prevents us from meeting Challenge 2.

1.2.4.5 Learning-Based Models and Cognitive-Based Models

Some approaches use learning-based models and cognitive-based models to design their
autonomous agent models. Among them, we can find approaches using reinforcement
learning, case-based planning, and cognitive approaches based on the use of memory
and past experiences. Among cognitive approaches, we can find ones managing past
experience with rules-based models such as SOAR and ACT-R. Regarding case-based
planners, memory is used to store plans that are worked in a specific situation.

Reinforcement learning: Judging from the definition given by McCall et al. [125] and
Schwartz et al. [157], reinforcement learning (RL) in the case of agent models is a form of
machine learning in which software agents learn to optimize their behavior through a trial-
and-error exploration of their environments. Agents will therefore attempt to respond to a
situation by trying several activities. Typically a reward system is used to indicate to the
agent when it chooses the right choice. The reward is then optimized by testing several
activities or tasks during a situation. The best sequence allowing it to have the best reward
is then memorized. Thus, when a similar situation occurs again, this sequence can be
tested in priority. Some examples of reinforcement learning can be found in Figure 1.8. In
the work of McCall et al. [125], they propose to use the cognitive LIDA model based on RL
to simulate human cognitive processes such as emotions, memory, decision-making, and
appraisal (to quickly manage urgent situations). Some Reinforcement learning approaches
[61], [93] are used to simulate needs. For instance, the PSI model proposed by Dörner
et al. [61] is an RL approach where needs are simulated using liquids levels representing
satisfaction levels. When the tank is not full, there is a need to satisfy. PSI structure
works as a reward system: the more urgent the need is, the stronger the unpleasant signal
is. The systems learn through these signals to avoid situations involving displeasure.

Among reinforcement learning methods, we can also find approaches using Q-Learning
that were initially proposed by Watkins et al. [176]. In contrast to R-Learning where
short-term rewards and future rewards have the same importance, Q-Learning will rather
prioritize the short-term rewards than the future ones. Q-Learning methods can be found
in the work of Charypar et al. [44] where they are used to build 24-h daily activities
plans. In this approach, reward tables giving the utility per time slot are used to execute

59

Chapter 1 – Related Work on Human Simulation and Data Generation

an activity. This reward depends on the activity type, time of day, travel time, and
starting time. Q-learning is also used by Jang et al. [93] where a double deep Q-network
(DQN) approach is proposed to find the most appropriate goals according to the agent’s
needs, the input real data, and the time of day. To find the best sequence of actions to
reach the selected goal, an HTN manager also dynamically builds in real-time an HTN
containing the task sequence to perform. This approach also uses Maslow’s Pyramid of
needs to guide decision-making. Real data coming from Social Networks were used to
train the double DQN and to learn the relationships between needs, time, and goals. The
behavior of virtual humans, as well as animals living in the 3D city, are thus simulated
with a level close to the ones found in real data. Generally, Reinforcement Learning
approaches are efficient to produce credible data according to the unexpected situation
or those that are close to those encountered before. However, agents have difficulties to
manage strong constraints since they do not have sufficient anticipation mechanisms.

Cognitive-based models: Cognitive-based models use memory processes to improve
the speed of decision-making when a similar situation happens. In addition, natural lan-
guage, adaptation, activity selection, or emotional processes can also be set up in cognitive
models. To implement them, some approaches use rule-based approaches (or symbolic-
based approaches), such as ACT-R and Soar models [112] where explicit rules and previous
experiences stored in memory are used to manage the agent decision-making. Different
kinds of memory (Procedural Memory and Declarative Memory) are used to select the
appropriate action according to the current situation. However, imposing punctual strong
constraints on agent behavior is difficult since the agent reacts to the situation according
to internal rules and past experiences. In the FALCON-X model proposed by Kang et al.
[98], a fusion between ACT-R and a Reinforcement Learning-based model called Adap-
tative Resonance Theory (ART) is proposed. This model is used to simulate non-player
characters (NPC) in a 3D virtual environment. Soar-based models are also found in the
Virtual Human model proposed by Swartout et al. [168] where agents are simulated in
critical situations.

Case-based planning: Case-based planning is a category of planners using a memory
system to register plans that have already worked in a previous situation. These plans
(or some parts of them) will then be reused and adapted when a similar situation occurs.
If no plan works, heuristics are used to create a new plan. Among existing approaches

60

1.2. Agent-based Models to simulate Humans

using Case-based planning to simulate agents in VE, we can find the work of Trescak et
al. [170] which is an improvement of the previous works made by Bogdanovych et al. [24].
In this approach, the authors propose to use case-based planning to schedule activities by
considering the resources of a Mesopotamian population. Another example can be found
in the ADAPTS model proposed by Auld et al. [10] where a memory module is added
to a planning model to improve the process of decision-making. With the reuse of past
plans, These planners are faster and more robust than conventional ones. However, as
with reinforcement learning, the control we can have over them stays limited.

Figure 1.8 – Example of existing reinforcement learning approaches. On the left, the results and global
structure of the Double DQN approach proposed by Jang et al. [93]. On the right, global structure of
the PSI approach proposed by Dörner et al. [61]

Generative models: The most recent advances in AI are beginning to make such
cognitive approaches more controllable, particularly with the use of a Natural Language-
based model as in the work of Park et al. [139] where ChatGPT 10 allows the user to put a
text containing the input parameters and constraints of the agents. These are approaches
that became publicly available during the writing of this manuscript. However, these
models are only dependent on input data: they may produce behaviors that are not
consistent with the simulated environment. The control we can have over the agent is not

10. ChatGPT : https://openai.com/blog/chatgpt

61

https://openai.com/blog/chatgpt

Chapter 1 – Related Work on Human Simulation and Data Generation

obvious since it depends on the interpretation of the input text. Challenge 2 is therefore
not certain to be achievable with this approach.

In this section, we explored existing learning-based approaches to know whether they
could address or not our challenges. These approaches use memory to adapt more quickly
to situations already experienced in order to accelerate the agent’s reactivity while increas-
ing autonomy. Unfortunately, control of the behavior stays limited, due to the nature of
these learning-based approaches since the agent is fully autonomous. Imposing strong
constraints can be difficult without re-training or significantly modifying the system. In
addition, if we want to add or change input parameters such as new preferences or physical
characteristics, it is necessary to retrain the model to adapt plans to the new preferences.
For all these reasons, challenge 2 is thus difficult to reach.

1.2.4.6 Approaches mixing several Models

To obtain a more efficient and credible agent model, some approaches have merged
several categories mentioned in the previous sections to recover the advantages of each
method. We present here some of the existing approaches that could meet our challenges
by merging several approaches.

Reactive schedulers: Reactive schedulers are a mix between reactive-based approaches
and scheduling-based approaches: they can quickly adapt the plans when unexpected
events disturb them. Based on the works of Smith and al. [164], they can thus be used
in dynamic environments to construct plans that can be quickly adapted to unexpected
situations. To do this, corrective mechanisms (replanning, reorganization, etc.) are set
up to check and adapt the rest of the plan after unexpected events. Among existing
approaches using this, we can find the work of Wockbe et al. [178] and those of Azvine
et al. [14] where an intelligent assistant, based on reactive schedulers, is proposed to help
the user with communication, information, and time management. However, it is difficult
to use it in our context, since the proposed model is a user-oriented approach and the
use cases are distinct. Another approach combining reactive scheduling and multi-agent
systems can be found in the work of Archimede et al. [8] to manage cooperation between
agents in manufacturing systems. However, no simulation of an agent performing daily
activities in a virtual environment is proposed. Actually, few implementations of reactive
schedulers have been used to simulate autonomous agents performing daily activities

62

1.2. Agent-based Models to simulate Humans

in a virtual environment. This shows that interesting contributions can be made in
this category since they have the potential to offer a compromise between control and
autonomy, allowing us to address Challenge 2.

Approaches mixing BDI with planners: In some existing works, we can find com-
binations between BDI models and planners to create plans during execution rather than
retrieving predefined plans. This is the case in the work of De Silva et al. [161] and in Xu
et al. [179] where First Principle Planning (FPP) or HTN are used with BDI. However,
they are not really focused on the problem of offering different levels of autonomy. Thus,
the control that we can have over them is insufficient for our case. In addition, they do not
propose a concrete simulation where the agent could interact with a virtual environment.
In addition, no validation is proposed to validate the generated behaviors.

In this section, we study some approaches mixing diverse methods that offer better
flexibility between control and autonomy. Challenges 1 and 2 could therefore be met by
these methods, but few of them offer concrete implementations. In addition, they rarely
focus on this ratio. They also do not propose validation methods, necessary to reach
Challenge 3. This study nevertheless allows us to know which solutions are promising to
achieve our goals. In the next section, we explore what solutions are proposed to validate
the generated behaviors and thus address Challenge 3.

1.2.5 Ways to validate the Credibility of Agent Behaviors

In this section, we show the possible validations to assess the credibility of the agent
behaviors. Since we studied in section 1.1.3 the use of real data to validate behaviors,
this section more focus on other validation methods that do not require real databases.

Output-Input comparison: Among these alternative approaches, we have methods
that compare the effects of input parameters on results. This is the case of Trescak et
al. [170] where they statistically analyze the behavior of their agents according to the
changes they made in input (overpopulation, decreasing resources, etc.). This is also the
same approach used in the work of De Sevin et al. [159] where 32000 iterations of the
simulation are made to analyze the time-sharing of activities, the impact of motivation
over the action selection mechanism as well as the moments where the needs are in the
comfort zone, tolerance zone, and danger zone. In the work of Charypar et al. [44], their

63

Chapter 1 – Related Work on Human Simulation and Data Generation

Q-Learning method is validated through the use of 3D plots showing the reward value
according to the duration and the starting time (opening hours, maximum duration,
etc.). Finally, In the work of Meister et al. [127], they analyze the impact of the agent’
jobs on the travel and on their activity timeline generated by a genetic algorithm. The
output-input comparison method has the advantage of objectively assessing whether the
generated behaviors are those expected with the given input parameters. This validation
is also less complex to implement than other methods since no user or real data are
involved. However, the credibility assessment stays limited and needs to be combined
with other validation methods to avoid design bias.

User Questionnaire: A user questionnaire can be used to ask participants whether the
agent’s behavior seems credible, such as in the work of FALCON-X [98], Park et al. [139]
and SMACH [156]. In the work of Renoux et al. [148], participants are asked to say if
the given daily activity planning has been generated by a human or an agent. Regarding
the work of Darty et al. [53], a validation method combining a user questionnaire and a
clustering method is used to find out whether participants can distinguish a human driving
a car from an agent performing the same task. User questionnaire methods are interesting
to get a subjective view of what real people think about the generated behaviors. However,
biases may be present when users are not really able to identify the characteristics of
behaviors or schedules that would be credible.

Human-Agent objective comparison: Some approaches compare the behaviors of
an agent with those of a human in a specific situation. They then are compared with
objective validation methods such as Clustering or Statistical Comparison. Regarding
the Statistical Comparison, approaches compare the gap between the behaviors of agents
and those of real experimenters for the same task. This validation method can be found
in the work of Jorgersen et al. [95] where they study the statistical distribution of tasks
sequences localized in a city between those performed by a human and those provided by
their agent model. The gap between them is then analyzed in order to know if the agents
can generate activities plan close to those of a human. In the work of Park et al.[139], This
kinds of test is also used to compare answers given by their agents regarding questions
written in Natural Language about their daily-activities schedules in comparison with
those given by a real human. Regarding Clustering, they are used by Darty et al. [53], to
compare a human driving a car with an agent executing the same task. In concrete terms,

64

1.2. Agent-based Models to simulate Humans

the clustering method will compare logs corresponding to the same type of behavior and
will create two clusters for the agent and human logs. A k-means method is then used to
calculate the distance between the logs and aggregate the parts of the agent’s cluster that
are close to the human’s ones. These approaches are interesting since they are objective.
However, behaviors are often compared with a single human in a specific task, which can
produce biases. Generally, these methods need to be combined with other approaches to
avoid overestimating the results.

To conclude this section, we explored several ways to validate the credibility of behav-
iors, which can be used for our proper validations. During this analysis, we noted that few
approaches in the field of planners-based approaches propose validation methods. In the
majority of the remaining cases, the input-output comparison approach is favored since
its implementation is simpler and fundamental to verify the consistency of the generated
behaviors. However, as said before, this is not sufficient to validate the credibility of the
agent’s behaviors. Few approaches go further by adding new validation methods based
for example on User Experiences, Human-Agent comparison, or real data. In the case of
real data explained in section 1.1, the vast majority of approaches study behavior at a
global level (through statistics analysis) but few at an individual level.

By studying existing validation methods, we noted that many possibilities to validate
agent models exist, but few approaches combine both subjective and objective validations
at both global and individual levels. There are many reasons for this, such as the lack
of available real data, the lack of time to construct sophisticated studies, or the lack of
human, material, or technical resources. Challenge 3 is therefore partially met by existing
approaches and a combination of validation techniques is still to be tested.

1.2.6 Conclusion about Agent-Based Models

To conclude this section focusing on the ways to simulate autonomous agents, we can
deduce that the literature is wide in proposals to offer an agent able to make decisions
according to the environment, its own motivations, the input constraints, the possible
rewards, or its past. It can sometimes execute them in 3D environments. We first studied
how we could simulate the interaction between agents and virtual environments through
the Intelligent Virtual Environment (IVE) where we concluded that most of the semantics
methods can meet our requirements regarding the description of objects and interactions.

We then studied the approaches proposing models of autonomous agents. Table 1.1
summarises the advantages and disadvantages of each approach in relation to our three

65

Chapter 1 – Related Work on Human Simulation and Data Generation

challenges. We can see that automatons approaches do not allow us to reach our Challenge
1 since there is a lack of autonomy to offer credible behaviors. Regarding the Reactive-
based approaches, they are well suited to address our Challenge 1, but they do not provide
sufficient control over behaviors which is a limitation to address our Challenge 2. In
contrast, Planned-based approaches have difficulties offering diversity in the solutions and
managing unexpected events. Consequently, they do not fully address Challenge 1. On the
scheduling side, they provide a good diversity and reactivity, while enabling a compromise
between control and autonomy. Unfortunately, they still have limitations to address
Challenge 1 since reactivity is not sufficient to allow activities to be interrupted when
an unforeseen event occurs. Concerning probabilistic methods, they have the advantage
of offering a great diversity of possibilities and are the least deterministic approaches.
However, the controllability of behavior becomes more difficult since there is no certainty
that the agent will select the desired activity at the desired time, making it difficult to
reach our Challenge 2. We also explored learning-based and cognitive-based approaches
using memory and learning to simulate agents. They have the advantage to provide
great reactivity and adaptation in the behaviors when faced with a situation similar to
those encountered in the past. The generated behaviors can thus provide interesting
credibility since the agent has "learned" as a human would. The drawbacks are the
controllability of behaviors and the difficulty to change initial parameters since re-training
is often required to memorize new choices and to ensure that past experiences are coherent
with the current choices. Challenge 2 is thus hard to address in this case. Finally, we
studied approaches that mix several methods which are the best positioned to meet both
challenges 1 and 2. Unfortunately, They do not focus on offering a compromise between
control and autonomy, but rather on the best performance rate. They also rarely propose
concrete methods to validate the credibility of behaviors, which is limiting to address
Challenge 3. Nevertheless, hybrid approaches stay promising to address our challenges.

After this, we gather all the approaches to see which validation methods exist. We
found that planners and mixed methods offered the least validation regarding credibility
since their validation is more oriented on the performance rate. The most advanced vali-
dation methods are given by schedulers and probabilistic approaches. The most common
method is input-output verification because it is the simplest and the most fundamental to
implement since it enables to check if the algorithm respects the input parameters. How-
ever, it remains insufficient to ensure that generated behaviors are credible. In addition
to validation using real data described in section 1.1.3, we can find validation methods

66

1.3. Conclusion

Table 1.1 – Contribution of the different existing approaches for our three challenges
Existing Challenge 1 Challenge 2 Challenge 3

Approaches (Generate (compromise (Existing
Credible between Control Validations of

Behaviors) and Autonomy) Credibility)
Automatons - - - + -

Reactive-based approaches + + + - - +
Planning-based approaches - - + + - - -

Scheduling-based approaches + + + + +
Probabilistic-based approaches + + - - - + + +

Learning-based approaches + + - - - +
Mixed approaches + + + + + - - -

such as user questionnaires to assess the credibility of behaviors in comparison with real
humans, and objective comparison between humans and agents for a same task through
statistic or clustering methods. Due to their complexity of implementation, the scarcity
of real data, or the high demand in terms of human resources or time, these approaches
remain unfortunately in a minority in the literature, limiting the number of methods that
can handle Challenge 3.

1.3 Conclusion

To conclude our state-of-the-art, we can say that many existing approaches can address
some parts of our challenges detailed in the Introduction (Model able to generate credible
behaviors, able to offer a compromise between control and autonomy, or able to validate
the credibility of generated behaviors). However, no approach can address all of them
at the same time. In addition, since we want to have an agent model compatible with
data generation, we need to simulate 3D virtual environments to allow interactions and
activity execution.

We first noticed that some approaches generating data have limitations related to
their simulation in a 3D environment, restricting their use for the generation of smart
home data and human activities. Actually, approaches not using 3D environments are
not able to accurately simulate some sensors and activities. Some of them have also

67

Chapter 1 – Related Work on Human Simulation and Data Generation

limitations related to validating their simulated data. We have found two main processes
for assessing the credibility of data in the literature: A priori approaches, relying on the
use of real datasets to build behavior models and ensure a degree of credibility by design,
and A posteriori approaches, proposing experimental protocols to compare the credibility
of simulated data with real ones through the use of specific metrics. However, these
metrics are often statistical arguments that do not guarantee the credibility of behavior
when they are taken individually at a specific time. For example, in the case of human
activity recognition, simulated samples might be statistically close to real samples but
not when samples are taken individually.

Some approaches have also limitations related to their agent behavior regarding our
challenges. Many interesting strategies are proposed to control agents or make them fully
autonomous, but few allow flexibility between controllable and autonomous behaviors.
Interruptions of activities caused by unforeseen events are also seldom managed in most
proposed approaches. We believe that these shortcomings are drawbacks for the simula-
tion of credible human activities compatible with data generation: control is important
to simulate situations when we seek to generate datasets, whereas autonomy is important
to have diversified, credible behaviors and long-term simulations without human inter-
vention. Interruptions of activities are also common in everyday life and should thus be
allowed. In addition, many existing works do not propose sufficient methods to validate
the credibility of behaviors, even though some of them propose original validation that
will inspire us for our works. We saw that the closest approaches able to address our
challenges are schedulers and mixed-based approaches combining reactive-based methods
with schedulers (such as reactive schedulers). However, schedulers have some difficul-
ties in handling sudden interruptions that disturb their initial plan. Concerning mixed
approaches, they do not really focus on managing control and autonomy and few imple-
mentations and validation are set up. As a result, no existing approach simultaneously
addressing our 3 challenges at the same time.

Since the existing approaches does not simultaneously address our challenges, we pro-
pose an agent model compatible with data generation and able to generate
credible behaviors (Challenge 1) while offering a compromise between con-
trol and autonomy (Challenge 2). In addition, we propose several validation
methods to validate the credibility of behaviors and synthetic data (Challenge
3). Concretely, to make our agent compatible with data generation and to address our
first challenge, we propose a BDI-based model where an internal state model representing

68

1.3. Conclusion

Desire could manage needs and preferences. This model can also execute activities in a
3D environment. To address our second challenge, we then integrate a reactive scheduler
to manage the strong constraints of time, resources, and preferences, but also to manage
the possible interruptions caused by the needs or environment. It is also calibrated to
anticipate time and resource constraints imposed by a user or other agents. Concretely,
our agent model is detailed in Chapter 2 where we explain the global structure as well
as the management of time constraints and needs. After this, in Chapter 3, we explain
how our model can manage Dynamic Environments through the management of resources
and unexpected events coming from the environment. Finally, to address our third chal-
lenge, we propose in Chapter 2 to first use an input-output validation to be sure that our
agent model respect input constraints. We then propose in Chapter 3 a user-experiment
protocol to validate the credibility of behaviors in Dynamic Environments. We finally
propose in Chapter 4 to validate the data generated by our agent model by comparing
their results with those produced by real data for two human context understanding tasks:
Future activity prediction and current activity detection.

69

Chapter 2

AGENT MODEL ALLOWING BOTH

AUTONOMY AND CONTROL ON THE

BEHAVIORS

In this chapter, we present a new agent model able to give a compromise between
control and autonomy in order to respect Challenges 1 and 2 presented previously. Effec-
tively, we deduced in Chapter 1 that existing approaches do not simultaneously address
our challenges at the same time. More concretely, some of them do not produce sufficient
credible behaviors (Challenge 1) due to insufficient reactivity to adapt to sudden changes.
On the contrary, some others cannot offer a compromise between control and autonomy
(Challenge 2) due to a lack of anticipation regarding future constraints to have an agent
ready at the desired time. In parallel, we show that few existing approaches provide
multiple validation methods to check the credibility of behaviors and data (Challenge 3).

This lack of complete existing solutions led us to create our own agent model de-
signed to respect these requirements. Concretely, we propose to set up a 3D animated
agent whose behaviors are generated by a BDI-based model [162] enriched with a reactive
scheduler able to adapt the level of autonomy according to users’ constraints and the
agent’s internal motivations, such as needs (hunger, tiredness, etc.). As said before, users
can be developers or researchers wanting to use our simulation to generate data, populate
environments or improve their own simulators. This is why, they could want to control
our agent model to produce specific situations or to follow a specific protocol required for
the generation of their data, such as an activity calendar containing activities to perform
at a specific time. This is why, allowing control over some parts of the autonomous agent
model is essential in our case. In our agent model, interruption mechanisms are also added
to relax users’ constraints when the agent needs to have additional time to satisfy some
urgent needs. These interruptions can thus improve the credibility of simulated behaviors
while letting users have the choice to authorize them or not.

71

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

In this chapter, we focus on the global structure of our agent model as well the man-
agement of time constraints and agent needs (such as thirst, tiredness, etc.). Our system
is also designed to support Dynamic Environments with rescheduling methods to be com-
patible with data generation requiring several agents, limited resources, or unexpected
events (this part is more detailed in Chapter 3). We also provide in this chapter a first
functional validation based on an Input-Output comparison method. As explained in
Chapter 1, this method is used to know whether the outputs of our model are coherent
with the input parameter.

More concretely, we explain in this chapter the initial requirements that lead us to
create an agent model in Section 2.1. In section 2.2, we explain how our agent can interact
with a 3D environment to be compatible with activity data generation. In section 2.3, we
explain the global structure of our agent model and we detail its components related to
The Internal State Model in section 2.4, The Decision-Making Model in section 2.5, and
The Task Executor Model in section 2.6. The functional results based on Input-Output
Comparison methods are summarized in Section 2.7. We conclude and discuss about our
agent model in section 2.8.

2.1 From Specifications to Agent Model

Our agent model was designed to respect specifications coming from our challenges
and our necessity to produce a model compatible with data generation. Although our
model could be used for other purposes such as populating environments, The Orange
industrial context of this thesis requires the creation of an agent model for data generation.
Effectively, these synthetic data are needed to train some algorithms specialized in human-
context understanding which requires a large amount of labeled data. In this use case,
3D environments are chosen as simulations for several reasons. Firstly, as developed in
Chapter 1, 3D environments are well-suited to generate any daily activity data since they
enable precise simulation of environment-dependent sensors and a finer granularity of the
performed activities. Secondly, these 3D environments are also used by Orange researchers
to simulate test environments that do not exist in reality and to create digital twins of
real connected buildings (i.e. virtual replicas of real buildings in which the states are
synchronized in real-time with those of real buildings). All these reasons lead to our first
requirement: our agent must accurately interact with 3D environments and thus contain
a process enabling it.

72

2.1. From Specifications to Agent Model

Our thesis was initially created to help Orange researchers to make their agents au-
tonomous since the latter had predefined behaviors that degraded the credibility of their
synthetic data. This issue also led to our thesis problem: Proposing a virtual human able
to produce credible behaviors while being compatible with data generation. As detailed
previously, three main challenges were stated to address our thesis issue: Automatically
producing credible human behaviors (Challenge 1), giving a compromise be-
tween control and autonomy on behaviors (Challenge 2), and validating the
credibility of these behaviors (Challenge 3). These challenges allow us to build the
following specifications for our agent model:

To address Challenge 1, our agent model has to produce credible behaviors. Judging
from the definition of credibility detailed in the Introduction, Autonomy is an essential
part since the agent can choose its proper objectives. These goals can be related to
satisfying human needs (hunger, thirst, etc.), preferences, or even emotions. This is
why, we need to integrate a process able to generate the proper agent motivations such
as needs, and a decision-making process to automatically select activities satisfying these
motivations. In addition, three requirements must also be respected to offer credibility:

• Coherence in the reactions of the agent and its motivational states. Concretely,
this means keeping coherence with what motive the agent: activities must be
chosen by respecting the agent profile (preferences, etc.) and the urgent need which
must be satisfied in priority. In addition, the agent must be coherent with the
environment state: interactions with objects must be accurate (opening a door
and not crossing it, turning on the TV before watching it, etc.) while considering
the world constraints and its available resources. Finally, having coherence re-
garding reactions faced to unexpected disturbances. When an unexpected
event happens either coming from the agent internal state (needs being too urgent,
etc.) or environment (resource depletion, the intervention of another agent, etc.),
our agent must be able to interrupt activities in progress. All activities must be
interrupted in a coherent way (for instance, if reading must be interrupted to an-
swer the phone, the used book must be first closed and the agent has to wake up
before going to the phone). All of this requires having an adaptive agent model
to face unexpected situations. This is why a perception model must be included
to update the world state and communicate with the other models to quickly adapt
the decision and motivations according to the new situations. All the parts of our
agent model are thus concerned with coherence.

73

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

• Consistence of behaviors in similar kinds of situations. To do this, our decision-
making model must recognize the set of activities solving the same situation and
select one of them when this situation happens (e.g. if a Hungry must be satisfied,
the Eating activity must be selected and not Sleeping; if the phone rings, then
Answer the phone must be selected; etc.).

• Diversity of behaviors. Since humans do not systematically choose the same
activity or the same task sequences to reach a goal, our agent must be able to
perform activities in different ways. Even with routines, our model has to create
variations between the days to avoid the agent repeating the same pattern with
the exact activity sequences, start times, and duration, as a robot would. To do
this, our execution model must have the choice between several ways to perform
activities. In addition, our decision-making model must be able to change activity
duration, select randomly equivalent activities, and schedule recurrent activities
with some variations in their start time (ex: For Eating, our agent cannot exactly
go to eat at 12:02 p.m. every day).

To address Challenge 2, our agent model must give a compromise between control and
autonomy to be compatible with data generation. As said in Introduction, the users of our
agent model such as researchers could want to impose strong constraints when they create
synthetic data, to simulate for instance specific situations, or respect the same protocols
used to create the real database they desire to enrich. To allow this, our decision-making
model must be able to respect strong constraints while keeping credible behaviors. These
constraints can be related to input parameters where users can indicate the activities
to perform at a specific time, agent profile (preference, etc.), or even initial available
resources (treated in the next chapter). Anticipation mechanisms must be set up to make
the agent aware of these future constraints and thus adapt its schedule according to them.
Judging from the conclusion of our state-of-the-art, addressing Challenge 2 thus leads us
to use a reactive scheduler in our Decision-making to create activity plans, anticipate
future constraints, and allow plan adaptation when faced with unexpected events.

To address Challenge 3, the credibility of generated behaviors must be checked. This
is why, we use several validation methods to assess credibility. We must first use an Input-
Output comparison method to compare the resulting behaviors with the input parameters.

74

2.2. Interactions between the 3D Environment and the Agent

We can thus assess whether our agent can produce coherent behaviors in comparison with
the input parameter, but also consistent behaviors facing a similar situation (e.g. Eating
activity is systematically chosen when Hungry is urgent) while keeping diverse behaviors
to avoid identical routines causing loss of credibility. As said in the stat-of-the-art, the
Input-Output comparison method is essential but not sufficient to validate the credibility
of behaviors. It will therefore be necessary to combine it with other validation methods
such as the performance obtained by using synthetic data in comparison with real ones.

In the next sections, we explain more precisely the contents of our agent model, but
also how the agent can concretely interact with the VE (section 2.2) and the results
obtained with our agent model (section 2.7).

2.2 Interactions between the 3D Environment and
the Agent

Before describing our agent model, we explain how the agent is able to interact with
a 3D environment in order to be compatible with our use case and more generally for
data generation. Effectively, 3D sensors and effectors are used in our use case to generate
synthetic data. The animated agent is situated in a 3D smart home created with Blender 1

and simulated on Unity Engine 2. This example of a smart home, depicted in Figure 2.1,
is the environment used in this chapter, but other 3D smart homes and buildings are
available and could also be employed, as shown in Figure 2.2. This virtual home is a
replication of the 2-story real apartment used to collect the Orange4Home dataset [51].
To create this connected environment as well as the others described in this figure, a
Virtual reality (VR) tool given by Lacoche et al. [111] is used to easily place interactive
objects such as furniture but also virtual sensors and effectors.

All virtual objects, whether they are sensors, rooms, or tangible objects such as doors
or plates, must be defined and classified to be identified and correctly used by the agent.
To do this, we use #FIVE, an object-relation-based model proposed by Bouville et al.
[31], and its implementation in the XR toolkit Xareus 3. With this toolkit already inte-
grated into Unity, we can add new object types and relations in a reasonable time (around
15 min). This information allows the agent to interact with the VE since all the interac-

1. Blender : https://www.blender.org/
2. Unity Engine: https://unity.com
3. Xareus Software: https://team.inria.fr/hybrid/xareus/

75

https://www.blender.org/
https://unity.com
https://team.inria.fr/hybrid/xareus/

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

Figure 2.1 – 2-story virtual apartment used in our validation experiments and replicated from the real
one used in the creation of the real Orange4Home database [51]

tions can be described for each 3D object represented. As mentioned in Chapter 1, this
description is essential to turn a 3D static VE into an accessible VE where the agent can
automatically recognize and interact with the objects required for its activities. It also
avoids aberrations such as an agent washing a telephone instead of a plate. In addition,
#FIVE allows the classification of all objects of interest, according to the actions and
behaviors they can have. With this model, we can group objects by interaction similarity
describing how the objects and the agent can interact. We can also construct a hierarchy
between them to produce more specific interactions. For example, we can group sofas and
chairs of the VE in the same category, since they share the same interaction: the agent
can sit on them. In order to make two objects interact with each other (for example an
agent with a chair, a glass with a water tap, etc.), we can assign a relation between them,
which can include a 3D animation representing this relation. For example, for the relation
"Washing a plate", an animation is assigned in our VE such that the agent makes circular
motions with its hand on the plate that it holds. Our animations are based on two main
blocks: Inverse kinematics with FinalIK 4 solution and a bank of animation 5 [56] storing
everyday activities.

The agent displacements made in the VE are based on a navigation grid, called
NavMesh 6, which is part of Unity Engine. Using a collision detection algorithm, Unity
computes a Navmesh showing the grid of places where an agent of a given height and
width can fit in the VE. This grid forms the basis of a graph used by the agent to choose
what path to select to go from point A to point B.

4. FinalIK: https: // assetstore. unity. com/ packages/ tools/ animation/ final-ik-14290
5. Mocap: http: // mocap. cs. cmu. edu/
6. Unity NavMesh: https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html

76

https://assetstore.unity.com/packages/tools/animation/final-ik-14290
http://mocap.cs.cmu.edu/
https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html

2.3. Global Structure of the Agent Model

Figure 2.2 – Other examples of 3D connected buildings where the agent was simulated

2.3 Global Structure of the Agent Model

We present in this section our agent model used to simulate the human decision-
making process involved in the choice and execution of daily activities. The structure of
our model is inspired by BDI architectures which can be shown in Figure 2.3. As said in
Chapter 1, BDI is composed of three parts: The Beliefs simulating a perception system
to interpret the state of the world, the Desires storing the possible goals updated in
accordance with Beliefs, and Intentions using a filtering system to choose the predefined
sequences of actions satisfying the goals given by Desires. When the sequences are chosen,
they are executed and Desires are updated to consider the goal satisfaction.

We choose to base our model on BDI for its intuitive and flexible approach to the
human decision model. In addition, it was chosen for its compatibility with our require-
ments: BDI can theoretically allow us to combine modules managing autonomy (such as
needs in Desires) and also modules dedicated to the control of behaviors (such as the in-
sertion of schedulers in Intentions) even though the existing BDI implementations rarely
focus on it. The other important reason is its compatibility with several cognitive theories
that can be used as a basis for simulating credible human behavior. Among them, we
find the Norman theory of action [133] explaining through the Action Cycle what drives

77

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

Figure 2.3 – Diagram of the BDI Architecture inspired by the diagram of Saadi et al. [153]

humans to perform actions in specific contexts. According to him, humans use a system
of perception to compare the world state with their internal needs. If needs cannot be
satisfied in this world state, a series of actions are set up to satisfy them. This concept is
really close to what BDI proposes, showing a certain consensus in the literature on what
could represent a relatively credible model of human decision-making.

All these reasons explain our choice to base our agent model on BDI since it is a
flexible and intuitive architecture, able to implement what Norman theorized. However
as shown in Chapter 1, BDI models are reactive-based approaches that more focus on
the reaction of humans facing situations than on the anticipation of future constraints.
They are thus adapted to manage the autonomous part of our model but not really for
anticipation processes, making it difficult to address Challenge 2. This is also not enough
to manage our use case where we want to consider users’ constraints which can be a
calendar of activities to perform at a specific time for instance. As said previously, these
users can be researchers or developers wanting to generate synthetic data through the
use of our agent model. Among the methods studied in Chapter 1, we concluded that
mixing approaches such as using reactive schedulers [164] are promising to manage our
Challenges. Unfortunately, few implementations exist and they do not really focus on
these issues. This is why a reactive scheduler was added to our BDI-based model in order

78

2.3. Global Structure of the Agent Model

to manage simultaneously autonomy and strong constraint anticipation. In addition, our
model can take as input a calendar that lists all activities to be performed at a specific
time. This allows the user to impose easily specific activities that might be required to
replicate a real database such as Orange4Home [51].

Our model is also built to handle dynamic environments through our reactive scheduler
able to reschedule if situations have changed. Our approach is also modular, allowing us
to change each function indicated in each sub-models, without modifying the structure.
Our agent model, described in Figure 2.4, is made of four models, in contrast to BDI
where three are used. In fact, we choose to create the Task Execution model, in addition
to the ones existing in BDI, since we want to have better accuracy in activity execution.
We also add the Agent Parameter process to centralize the initial agent settings so that
the user can configure it more easily. Based on this organization, our agent model is
structured as follows:

Figure 2.4 – Diagram of our proposed Agent Model

Agent Parameters : This process gathers all initial parameters and user constraints
that must be considered during the simulation. The user can give an input activity
calendar to provide activities that must be performed at a specific period. This calendar
gathers all the mandatory activities given by the user. These activities are

79

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

mainly used in the Decision-Making Model to be integrated into the plan
with the correct times and duration. For instance, a Mandatory Activity can be
a Medical Appointment on Thursday, March 3 from 3 p.m. to 4 p.m. The user is also
able to configure activity, need, and task features such as duration or occurrence. By
modifying the needs parameters, specific agent profiles can be created (the agent eating
more often, going to bed later, etc.), thus increasing the diversity of behaviors. All these
constraints are used for the control of the agent’s behavior.

External Perception model : This model is similar to Beliefs in BDI since all relevant
data from the VE are stored in its world database managed by the #FIVE model [31].
Our agent is for now omniscient in contrast with BDI, explaining why we call this part
the External Perception model rather than Beliefs. This model is mainly used to filter
activities according to their constraints and provide the objects and interactions needed
to make the execution possible in the VE.

Internal State Model : Similar to desires in BDI, it models the agent’s motivation
to perform an activity. However, in contrast to Desires, other cognitive models could
be added such as preferences or emotions. For now, it is mainly used to update the
urgency of needs and apply the input agent profile on them, such as preferences. Needs
are inspired by human fundamental needs defined in Maslow’s theory of needs [124].
They can be physiological, such as hunger, or they can be more sophisticated, such as
self-esteem. This model is used for the autonomy of the agent since it defines goals that
must be reached during free time periods. It is also involved when an interruption must
occur. The needs are configured by using a temporal function, as in the work of De Sevin
and Thalmann [159]. Concretely, to calculate the urgency of needs, a priority value is
evaluated according to a tolerance threshold, used to know when a need becomes urgent,
as well as the need intensity evolving through time. The user can also indicate whether a
need is able to interrupt activities in case of urgency.

Decision-making Model : This process manages the agent decision-making, and can
be related to Intentions in BDI models. However, in contrast to BDI, our model does not
retrieve a predefined plan of activities but instead sets up plans during the simulation.
This plan is built to respect user constraints while producing autonomous choices to
satisfy needs during free-time periods. Our decision-making model contains two main

80

2.3. Global Structure of the Agent Model

Figure 2.5 – Sequence Diagram of the Decision-Making process showing the interactions with other
models

81

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

processes shown in Figure 2.4: the Activity Scheduler and the Activity Selector. These
processes, as well as their interaction with other ones, are shown in Figure 2.5 through
a sequence diagram. On the one hand, the Activity Scheduler builds an activity plan
within a time window given by the Activity Selector. This scheduler considers both
initial constraints stored in the Agent Parameters and needs whose levels of urgency in
the present and the future are computed by the Internal State Model. Our Activity
Scheduler is designed to be able to reschedule at any time, making it compatible with
dynamic environments. Interruptions are also managed when a need is too urgent and
when an activity can be interrupted. During the creation of the plan, activities satisfying
needs are placed after assessing the approximate time when their need becomes urgent
within the plan period. If the agent still has free time after scheduling activities satisfying
its needs, default activities, such as entertainment activities, are added to keep the agent
busy. These default activities are chosen randomly with optional weights affected by the
agent’s preferences. The approximation of needs urgency as well as the random choice
of the default activities allows us to introduce diversity in the behaviors while remaining
coherent: the same input constraints do not cause the same sequence of activities in
output. On the other hand, The Activity Selector gradually retrieves the activity to be
performed from the generated plan. If no activity can be performed anymore or if an
activity failed (i.e. prematurely stopped for various reasons), the Activity selector sends
a message to the scheduler to rebuild a plan until the next mandatory activity or for a
predefined time window. The Activity Selector also transmits the selected activity to the
Task Execution Model and receives the activity state in return. In BDI, a single filter
function is used to select Intentions. Effectively, since the plans already exist, filtering is
sufficient to retrieve a plan. However, in our case, since we want to build plans during the
simulation, we replaced the filtering function with our Activity Scheduler. Regarding the
Activity Selector, we add it to supervise and synchronize the scheduler with the rest of
the system: the Scheduler is launched when the Activity Selector requests it to schedule
a given time period. The scheduler thus creates a plan step by step and not over a whole
day or even a week. This allows us to limit complexity while allowing greater reactivity:
if an event occurs, only a small part of the day is impacted. The agent is thus able to
adapt more easily than if it had planned for the whole day. This idea of partitioning plans
for better reactivity is inspired by the work of Ordoñez et al. [135] where a user-defined
time window is used to define the scope of a genetic scheduler algorithm.

82

2.4. Internal State Model

Task Execution model : This process executes the selected activity in the Virtual
Environment (VE) by executing the related task sequence. These tasks are made of basic
actions and animations that can be directly executed in the VE. For instance, the activity
Showering includes the task Getting dry. This process is new in contrast to BDI, and it
was chosen to allow better management of the activity execution. This model receives
the activity to perform from the Decision-Making model. In exchange, the activity state
is returned. In our use case, the sequence of tasks is represented by a Petri-Net-based
scripting model called #SEVEN [49] implemented in Xareus Software3, where a token,
moving from one place to another place, triggers an interaction defined by the #FIVE
[31] semantics model described in section 2.2. The token progression can be managed by
checkpoints verifying if the conditions are achieved. #SEVEN have several advantages
for activity execution: We can launch them in parallel (allowing multi-tasking), create
junctions to offer diverse way to perform a task, design loops, make scenarios without any
code [115], easily see the advancement of activities through visual feedback, control the
execution of the task with checkpoints and easily modify scenarios.

2.4 Internal State Model

The Internal State Model simulates all the human internal modules that can influ-
ence the decision-making process, as shown in Figures 2.4 and 2.5. It can be related to
fundamental needs such as hunger, thirst, or tiredness, but also other modules such as
preferences or emotions. In this thesis, needs and preferences coming from the agent pro-
file are considered, but other processes could be added such as personality or emotions.
The agent internal state is used by the Decision-Making mode for the autonomy phases
when the agent has free time and must decide which activities to perform. It is also
implied in the interruption process since it indicates to the Activity Scheduler what needs
are still urgent to satisfy after the designing of a plan.

All simulated needs are inspired by Maslow’s Pyramid of Needs [124] showed in figure
2.6. In this theory, needs are ordered according to their level of urgency. At the bottom
of the pyramid, we have physiological needs that are basic but imperative to satisfy. For
instance, we can find Hungry, Thirst, Tiredness, or Toilet needs. On the contrary, at the
top of the pyramid, we have the most elaborate needs that are more complex but less
urgent to satisfy. For example, we can have Hobbies or Sport needs. To integrate Maslow’s
hierarchy, an integer value called Pyra ∈ {1, . . . , 5} is introduced where 1 corresponds to

83

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

Figure 2.6 – Representation of Maslow’s Pyramid of Needs

basic needs and 5 to the most elaborated ones.
Needs are configured by using a function depending on the time that calculates their

level of urgency throughout the simulation (see Equation 2.2), as in the work of De
Sevin and Thalmann [159]. Contrary to existing need-based approaches, our function
can simulate needs that are not urgent every day. Effectively, unlike state-of-the-art
approaches, the relationship between time and need is more important, enabling us to
calculate the precise evolution of a need over several days. In addition, needs are not reset
each day, allowing continuity through time. We can thus simulate occasional activities
that do not happen daily, such as Doing Sports which can be performed every day, a few
times a week, or a few times a month. The use of a temporal function is not the only way
to simulate needs. Effectively, other approaches use fuzzy-logic approaches to simulate
them such as in the work of Jang et al. [93]. Both approaches give satisfactory results, but
the urgency of the need with a fuzzy-logic approach is less predictable. We thus preferred
to use a more deterministic approach to ensure the exact number of needs to be satisfied
in a period of time. It is effectively a decisive element in the scheduling process since the
entire construction of the plan is based on the number of needs to be satisfied in a given
period of time. However, The use of fuzzy-logic functions could be used to configure the
agent internal state model from real statistics, as shown in the work of Jang et al. [93].

84

2.4. Internal State Model

Therefore, our model is an example of motivation-based model that can be modified and
improved at any time to make it more credible and effective.

For now, each need has several input parameters that can be configured by the user.
The first one is the Pyra parameter described above. We then have the input parameters
involved in the three following steps used to calculate the urgency of a need called PNeed:

(1) Tolerance threshold Initialization ThNeed: This threshold seeks to simulate
the tolerance limit for a need, i.e. the moment when a person feels urgent to satisfy
this need. For instance, it could represent the point where someone starts to feel thirsty
and think about how to satisfy it. People have different tolerance limits depending on
their habits or preferences: For example, someone who likes to eat might want to eat
more often. This is why our threshold value is variable. In our simulation, The tolerance
threshold is used to indicate when a need becomes urgent to consider. Each threshold
has a default value Thd ∈ (0, 1) that can be editable by the user. In our work, we put a
neutral value of 0.5. Preferences could influence this threshold by deviating the threshold
from its neutral value, thus modifying the time when the need is considered urgent. The
closer this value is to 0, the closer the urgency thresholds will be in time, and the more
frequently the agent will choose an activity satisfying this need. For instance, if we want
to simulate an agent which is always hungry, we will set the hunger threshold close to 0.
This would allow us to simulate various personalities such as being greedy, energetic, and
so on.

(2) Need intensity i(t): This parameter simulates how intensely a person feels a
need: the greater the intensity is, the more disturbed the person will be by the concerned
need. This intensity can vary due to several factors: too much time has passed since the
last need satisfaction, a performed activity has increased the intensity, etc. For example,
someone who has not eaten for a while will become increasingly hungry and obsessed
with its satisfaction. In our case, all needs have an intensity value evolving through time.
Equation 2.1 shows how the intensity is calculated. This value will evolve over a time
interval T ∈ (tstart, tend). Inspired by the work of De Sevin and Thalmann [159] and
Avradinis et al. [11], the intensity curve is a semi-parabola going from i(tstart) = 0 to
i(tend) = 1. These parameters (intensity value and period of time) allow us to control the
evolution of needs intensity over long periods. When the intensity reached its maximum
value, it will stay at this value until the satisfaction of the related need. There is two way
to configure the time interval T ∈ (tstart, tend):

85

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

— Specific hours: The time interval is configured so that intensity starts and peaks
at specific times. For instance, we can constrain Hunger to start at 12 p.m. and
peak at 13 p.m. every day.

— Periods of time: The time interval is set so that intensity peaks at regular time
intervals. For example, to simulate the Toilet need, which is not constrained by
specific hours, we can set a time slot for its intensity at regular intervals of 3 hours.

i(t) =
(

t − tstart

tend − tstart

)2
(2.1)

(3) Need priority PNeed: This parameter enables the agent to know which need
is urgent and has priority over another. In concrete terms, it illustrates the analysis
that someone would make about his needs: I want to sleep more than to eat, I am more
thirsty than hungry, etc. The priority of each need is then used to orientate the choice
of activities accordingly. The need priority PNeed ∈ (−1, 1) evolves proportionally to the
need intensity i(t) while considering the level in Maslow’s pyramid of needs Pyra and the
Threshold value ThNeed, as shown in Equation 2.2. The evolution of PNeed is thus a linear
function of the intensity. When the needs priority value PNeed reaches the threshold value
ThNeed described above, the corresponding need starts to be a priority. Pyra is used to
change the slope coefficient of PNeed. This allows primitive needs to have a higher priority
over a more elaborate one, even though they have the same Threshold ThNeed and the
same Intensity i(t). This priority could also depend on something else like another need.
For instance, if the agent drinks, then the need to go to the Toilets could evolve faster.
However, this interdependence is not implemented for now to facilitate the anticipation
of urgent needs during the scheduling phase.

PNeed = i(t) − ThNeed

Pyra · (1 − ThNeed) (2.2)

For each need, the user can also modify another parameter which is the ability to
interrupt an activity when the related need is urgent. This parameter is useful when an
activity plan is built by the decision-making module described in the next section. If this
latter is not able to place in the plan an activity satisfying the urgent need, the Internal
State can indicate to the Decision-making Model that this need is ready to interrupt. If
the activity is interruptible, an interruption can be triggered to integrate the need in the

86

2.5. Decision-Making Model

slot of this activity.

2.5 Decision-Making Model

The decision-Making model is the main process to control the level of autonomy ac-
cording to strong constraints. The goal is to produce an activity plan including the user’s
constraints and the Internal State ones. It also selects the activity to send to the execu-
tion. Two main processes are involved to do this: the Activity Scheduler and Activity
Selector. They are described below.

The Activity Selector : It is used to select the next activity to send to the Task
Executor. In return, the activity state (started, finished, etc.) is retrieved. When the
Activity Selector sends the activity to the executor, it also gives the duration of this
activity. The Activity Selector also communicates with the Activity Scheduler to gradually
retrieve the activities of the generated plan. When all the activities of the plan have been
performed, the Activity Selector asks the scheduler for a new plan. To do this, as shown
in Figure 2.5, The Activity Scheduler first establishes the time window to schedule. This
window will start at the current time and ends at the next mandatory activity indicated
by the user’s calendar. This mandatory activity is also sent to the Activity scheduler to
be inserted into the future plan from the start. With this, the activities given in the user’s
calendar are sure to be considered at the right times. If the input calendar is empty or if
no more mandatory activity must be performed, then a default duration, configurable by
the user, is employed.

The Activity Scheduler : The Activity Scheduler is inspired by the principle of re-
active schedulers where some implementations can be found in the work of Smith et al.
[164] and Azvine et al. [14]. Since our scheduler can be relaunched at any time, our model
is also compatible with dynamic environments. The use cases showing these features are
more developed in chapter 3, where additional models are introduced to manage resources
and unexpected events. The scheduler uses several functions to build a plan described
below and summarized in figure 2.7. At the same time, Figures 2.8 and 2.9 give some
examples of a concrete plan construction.

87

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

Figure 2.7 – Main Steps of the activity scheduler

Step 1. Retrieving Plan Boundaries and Time Budget: During this step, the agent
evaluates the duration of its free time before the next mandatory activity, while consid-
ering the activity already performed. Concretely, the scheduler receives a request from
the Activity Selector to start a new plan. The duration of the plan given by the Activity
selector is converted into a time budget that must be respected to avoid impacts on the
next mandatory activity. The activity already performed and the ones starting just after
the plan are also stored to consider their effects. If the time budget is too short to put any
activity, all the next steps until the checking interruption step is skipped. In the example
given by figure 2.8, we have a time budget of 3 hours between the Working activity just
performed and the next mandatory activity Watching TV. In the other example shown
in Figure 2.9, the time budget is 20 min between both mandatory activities.

Step 2. Filtering possible activities: At this step, the agent identifies what activities
are possible during its free time. Activities are excluded if they meet one of the following
conditions: their minimum duration is greater than the remaining time budget, their daily
maximum occurrence is exceeded, or they are not authorized to be performed during this
time window. If no activity is found, all the next steps until the Filling Gap step are
skipped, and default activities configurable by the user will be selected to fill the plan.

Step 3. Anticipating future urgent needs: In this step, the agent tries to anticipate

88

2.5. Decision-Making Model

Figure 2.8 – Example of the different steps made by the Activity Scheduler

89

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

Figure 2.9 – Second example of the different steps made by the Activity Scheduler

90

2.5. Decision-Making Model

its needs that will be urgent during its free time. As shown in Figure 2.5, the Scheduler
requests the Internal State model to retrieve the list of needs that will be urgent during
the plan time window. To do this, the Internal State calculates the urgency level of needs,
evaluated at each time step by launching the process described in section 2.4. This time
step has a 5 minutes default value but can be configured to obtain more or less accuracy.
Through this process, The Internal State Model calculates an interval of urgency delimited
by the time when the need starts to be urgent and the time when its urgency is maximum.
We choose this calculation method since it is independent of the way used to establish
needs urgency (time functions, interdependence functions, statistics, etc.). If the time
window of the plan is large, the same need can become urgent several times. This is
why, this process is repeated until all possible urgency intervals are found for each need.
For instance, if the plan lasts 7 hours and that Thirst becomes urgent every 3 hours,
then the Internal State model finds 2 intervals of urgency. All of them are then sent
to the Activity Scheduler. After this, the Scheduler chooses a random time called tNeed

inside each interval. This time is used as a reference point to place the activity satisfying
the regarded need but also to obtain a better diversity: needs will never be satisfied
at the same time, even though the simulation is repeated with exactly the same input
parameters. In the first example given in Figure 2.8, emergency intervals were found for
Thirst, Toilets, Hygiene, and Sport respectively. A tNeed is assigned to them to illustrate
their emergency time. For the second example given in Figure 2.9, emergency intervals
were found for Hygiene, Thirst, and Toilets.

Step 4. Associating needs to activities: When the agent has finished identifying its
future needs, it will try to choose an activity satisfying them. For this, the scheduler
tries to place an activity satisfying a need at each occurrence of tNeed that belongs to this
need. The activity is placed with its minimum duration. Before the simulation, needs,
and activities are linked together to know which activities can satisfy which needs: each
need is imperatively linked to at least one activity. However, an activity is not necessarily
linked to a need, such as the activities Waiting and Getting some fresh air. To choose
which activity will be chosen in the plan, the process starts with the tNeed that is the closest
to the starting point of the plan and continues to retrieve the next ones in chronological
order. This operation also ensures that two activities do not start at the same time.
If several activities are possible for the same need, a random selection is used where
preference parameters can be associated to put weight on the choice. When an activity

91

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

is placed, the minimum duration of this activity is removed from the remaining time
budget. This step ends when there is no more tNeed to associate with an activity, or when
the time budget is reached. In this last case, all remaining tNeed having no yet associated
activities are deleted. Finally, in the case where the mandatory activity satisfies a need,
all the tNeed related to this same need and close to this mandatory one are deleted to avoid
redundancy. If we look at Figures 2.8 and 2.9, Drinking was associated with Thirst, and
its start time is placed at the related tNeed, with its minimum duration. The same process
was made to associate Toilet Need with Going to the Toilets activity, Hygiene Need with
Showering activity, and Sports Need with Doing Sport activity. However, in the second
example, the time budget is exceeded for the last need related to Toilets. Consequently,
the associated Going to Toilets activity is not added to the plan.

Step 5. Positioning activities and adjustment of their duration: In this step, the agent
adjusts the duration of activities and their start time in order to be ready at the end of its
free time. Concretely, The scheduler shifts the start time and end time of the activities
so that all planned activities do not overlap and exceed the time window allocated to the
plan. This process is done by trying to keep the activities as close as possible to their
tNeed. To do this, starting with the first planned activity, the algorithm first moves the
activities whose start times are located before the beginning of the plan or whose end
times are placed after the start of the next activity. Then, starting this time with the last
planned activity, the algorithm moves activities whose end time exceeds the end time of
the plan or those whose start time is placed before the end of the previous activity. With
this round trip, activities are sure to start and end within the plan without overlapping
with other placed activities.

After this, starting with the first planned activity, the duration of each activity is ex-
tended either until its maximum duration or the start of the next activity if the maximum
is larger. In the example of Figure 2.8, Drinking overlaps Going to the Toilets and Doing
Sports finishes after the end of the plan. To avoid this, when start times are analyzed, the
algorithm first shifts Going To the Toilets to start just after Drinking and does not move
the others since their start times are well placed. Then, when end times are analyzed,
Doing Sport is shifted to finish before the end of the plan, and the rest is not changed since
their end times are well placed. After this, Drinking is not extended since it is stuck with
Going To Toilets. However, Going To the Toilets and Showering are extended to their
maximum duration. Doing Sport activity is not extended since it finishes at the end of

92

2.5. Decision-Making Model

the plan. The same process is shown in Figure 2.9: Drinking starts earlier to avoid ending
up after the plan and Showering starts also earlier to avoid overlapping with Drinking.
After this, Drinking is slightly extended since few minutes left before the end of the plan.
The rest is not extended because the time budget is yet reached.

Step 6. Filling gaps: If the agent still has free time after scheduling activities satisfying
its needs, it will include default activities, such as entertainment activities, to not stay
inactive. Concretely, at this step, empty slots can be still present where no activity is
scheduled. Here, gaps are considered as moments when the agent has no constraints
coming from the user or the Internal State Model. Therefore, during these free-time
periods, the default activities which are configurable by the user, are chosen. For instance,
in our experiments, we choose to use entertainment activities such as Watching TV,
Computing, or Reading, but also Waiting in case of small gaps. Figure 2.8 shows that
Reading, Watching TV, and Computing activities are placed to fill gaps between the
activities satisfying needs. Since the time budget is exhausted in the second example, no
default activities are added.

Step 7. Checking Interruptions: Sometimes the agent does not have enough time to
satisfy all its urgent needs. To solve this, the user can indicate which activities can be
interrupted and which needs can interrupt activity in case of emergency. During this step,
the scheduler first checks if the activity starting just after the plan is interruptible (this one
can be the next mandatory activity or the last scheduled one when no mandatory activity
is indicated). It then verifies if a need that may interrupt and already urgent before
the plan has no moments of satisfaction in the plan. If these conditions are reached,
the scheduler triggers an interruption process and chooses a possible activity satisfying
this need. At this stage, we check if the interrupted activity has a sufficient duration to
support a reduction equal to the duration of the interruption, without falling below its
minimum duration. In this case, a random moment of interruption is retrieved between
the start and the end of the activity. Depending on this moment value, the interruption
can start before, after, or during the interrupted activity, without exceeding its initial
duration. In our second example shown in Figure 2.9, Going to Toilets activity could not
be added to the plan to satisfy the Toilet need since the time budget was not sufficient.
Therefore, as Watching TV can be interrupted, the scheduler launches an interruption so
that this activity can be inserted. Watching TV, having a sufficient duration, is then cut

93

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

in half and shortened to insert Going to Toilets.

When these steps are finished, the plan is delivered to the Activity Selector in order to
retrieve the activities to execute. The Activity Scheduler will then wait until a message
coming from the Activity Selector is sent to restart a plan in a defined time window.

2.6 Task Executor Model

The Task Execution Model is used to execute the activity given by the Activity Selector
in the Virtual Environment (VE). To do this, it launches sequences of predefined tasks
containing animations and moves related to this activity. The state of the activity is also
returned to the Activity Selector. The External Perception Model is also used to retrieve
the information about objects and places coming from #FIVE for each task to correctly
perform this activity. With this, we can obtain a dynamic adaptation to environments
since in global cases, the user only defines an object type or feature and the agent selects
the one having this type or feature to perform an activity. For instance, to sit down, the
agent could choose a sittable object such as a chair or a sofa, regardless of the name they
can have in different environments. In addition, a specific object can also be mentioned
by the user for situations requiring it. For instance, to use the laptop located on the desk,
the agent has to sit down on the desk chair and not on another sittable object.

To concretely execute activities in the VE, each task defined in the Task Execution
Model is linked to an action sequence based on Petri-Nets [140]. These action sequences
are designed with the help of the #SEVEN model [49]. This scenario-based model gives
a graphical representation of the Petri-Nets and each transition, which can contain check-
points or effectors able to trigger interactions, can be configured by the user and linked
to semantics coming from the #FIVE model. Execution of a task sequence can thus vary
depending on context. The location of objects and appliances, as well as the current loca-
tion of the agent, are automatically considered. In addition, the duration of activities is
updated each time they are launched, by retrieving information coming from the Activity
Selector. The object implied in the activities can also be changed, chosen randomly, or
chosen with specific conditions (the closest object, the preferred one, etc.) in the input
parameters of the tasks as long as they can interact in the same way with the agent.
For example, the agent can randomly sit on a chair or on a sofa, can prefer to eat a

94

2.6. Task Executor Model

pizza rather than a sandwich, can choose between going to the toilets situated on the
first floor or the one located on the ground floor according to its position, and so on. If
the agent has different ways of performing the same activity (such as cooking a pizza or
pasta), the choice can be made either using randomness or with another condition (such
as preferences). If the agent can perform an activity in one of two rooms, then the Task
Execution model can be configured to choose the closest room. When the execution of
the task sequence is finished, the given activity is considered done and a signal is sent to
the Activity Selector, which then selects the next one to perform.

Figure 2.10 – Example of the Washing Dishes activity performed with the #SEVEN model [49] imple-
mented with Xareus Software 3 (located on the right)

This approach based on Petri-nets has the advantage of being able to create a sequence
of tasks and actions in a simple, fast, and accurate way. Moreover, contrary to methods
that automatically build the sequence of tasks to be performed like STRIPS [70], this kind
of predefined approach allows the user to better control the content of the task sequence.
Moreover, it brings more diversity in activities since the user can put different objects,
implement randomized choices between several possibilities or place different paths ac-
cording to the situation or the agent preferences. Effectively, STRIPS-based methods
always choose the most efficient way, thus limiting the diversity of results. Nevertheless,
this kind of approach can still be used as an alternative to Petri-nets.

95

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

2.7 Functional Validation

After explaining the content of our agent model, we now focus on experimentation
enabling the functional validation of our model. This validation uses an input-output
comparison method to know whether the produced behaviors are diversified, consistent
facing the same situation, and coherent in comparison to the input parameters. Since
diversity, coherence, and consistency are essential parameters for assessing credibility [11],
it allows us to make a first validation of the credibility of agent behaviors. As detailed in
Chapter 1, the Input-Output comparison method is essential to evaluate the reliability of
the generated behaviors in comparison with input parameters. This approach is used by
several existing approaches such as those proposed by Trescak et al. [170], De Sevin et
al. [159], or Charypar et al. [44].

Figure 2.11 – Diagram of our Global Implementation

In our case, by comparing the input and output of our model, we check if the agent
model is coherent with the input parameters and consistent faced with a similar situa-
tion. Concretely, regarding the coherence of behaviors, we evaluate if all the mandatory
activities coming from the user’s schedule are performed on time, whether the schedule is
strict or moderate. We also check if calendar activities can be interrupted when a need
allowed to interrupt is too urgent. Finally, we assess if all needs are satisfied within the
expected time frame during the free-time period (average satisfaction in the emergency
range of needs). Concerning the diversity and consistency of behaviors, we evaluate if, for
the same input constraints, our agent model is able to produce different output activities
and different moments of need satisfaction.

96

2.7. Functional Validation

Table 2.1 – Activities and Needs implemented in our experimentation

Need Name Maslow’s Hierarchy
(1 to 5) Related Activities

Hunger 1 Eating
Thirst 1 Drinking

Tiredness 1 Napping, Sleeping
Hygiene 1 Using the Sink, Showering
Toilets 1 Going to the Toilets

House Hygiene 2 Cleaning
Sport 4 Doing Sport

Hobbies 5
Watching TV, Reading, Computing,

Using the Phone
(also used as default activities)

None No
Getting Some Fresh Air, Preparing, Cooking,

Dressing, Entering, Leaving, Working
Washing Dishes, Waiting (default)

2.7.1 Global Implementation

Figure 2.11 shows the global structure of our implementation used in our experiments.
First of all, the user can give initial parameters to configure the agents (needs values,
preferences, available tasks, etc.). Among them, a calendar including all mandatory
activities can also be given. It enables the insertion of mandatory activities to allow the
user to simulate activities at specific times or to respect the same protocol of the real
databases the user wishes to enrich or replicate. This is particularly our case since we
want to reproduce the real Orange4Home database for validation purposes (see Chapter
4). The decision-making process is then launched and chosen activities are then executed
with a #SEVEN scenario. This scenario is then sent to the 3D animated agent to perform
activities in the 3D environment.

Regarding the configuration of the parameters that have been used, the preferences
have not been included here to know the generic functioning of our model and its credi-
bility. More than 20 daily activities were implemented and animated as well as 8 needs to
represent the agent’s internal states. They are summarized in Table 2.1. All the simula-
tions last 10 simulated days. For these simulations, needs and activities were configured

97

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

as detailed in Tables 2.2 and 2.3. A video of our use case can be viewed at the following
link: https://youtu.be/v8GxXCAAV1k. The numbers of activities and needs are for il-
lustrative purposes: the user can add activities as many as necessary without impacting
the model’s working. The resources of the world are considered here as always available
throughout the process.

2.7.2 Functional Validation with Full-Autonomy

Figure 2.12 – Timeline of three-day samples showing all activities satisfying needs during the day-
time. The activities satisfying the same need are put together. For instance, Hobbies contains Reading,
Watching TV, Computing, and so on.

In this section, we analyze the reaction of our model when no input activity calendar
is given by the user. This allows us to know how the agent is autonomous throughout
the different days simulated continuously. This approach also enables us to validate the
coherence of behaviors with respect to the input parameters of the needs. It also allows
us to analyze the routines to see if they are diversified while being coherent with input
parameters. Validation is done first on a specific day, then over the long term by analyzing
several days to obtain quantitative results.

Tables 2.2 and 2.3 summarize information about the satisfaction of needs according to
the initial parameters. We can see that needs are satisfied when they are urgent since the
average start time of activities satisfying needs is inside the bracket between the time when
needs start to be urgent and the time when their maximum urgency is reached. Better
accuracy is also observed when specific hours are used rather than periods to configure
the needs. Moreover, activities satisfying needs are launched each time the related need
is urgent during the day. Effectively, few differences between theoretical and simulated
frequencies are observed: their gap is inferior to 0.05%. The minimum and maximum

98

https://youtu.be/v8GxXCAAV1k

2.7. Functional Validation

Figure 2.13 – Frequency of start time activities satisfying needs during 10 Days according to the hour
of day

durations of activity satisfying needs are also strictly respected since not exceeded. The
sleeping phase (between 12 a.m. and 6 a.m.) has been excluded from the calculations
made in Table 2.3, since no needs can be satisfied during this period. These tables show us
that behaviors produced are coherent with the input parameters since activities satisfying
needs start inside the period of urgency and with respect to their minimal and maximal
duration. They are also launched for all the time slots when the related need becomes
urgent. In addition, the generated routines are diversified since activities do not start at
the same time from one day to another day whereas the parameters of needs are the same
for all days: the difference in start times can vary from a few minutes to over an hour.

Variations in duration are also observed where the gap can reach 30 minutes while
respecting the maximum and minimum durations of activities. However, an exception
is noted with Sleeping, where the duration remains at its minimum every day, reflecting
a limitation of our model: activities that are really long and uninterruptible lead to an
accumulation of urgent needs after them, which makes it difficult to extend their duration
beyond their minimum. This same limitation is also seen in Figure 2.13 where a stronger
accumulation of different activities is observed between 6 a.m. and 8 a.m. to satisfy
all the needs that could not be satisfied during sleep hours. To address this limitation,

99

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

a two-speed evolution of needs could be proposed: one for the day and another for the
night, in order to delay the urgency of needs during the night. Another solution could
be to develop the impact of Sleeping and Napping on other needs: When executed, they
could slow down the evolution of other needs, so they will not all be urgent as soon as
the agent wakes up.

Regarding the timeline shown in figure 2.12, we can observe that the periodic satis-
faction of needs creates a routine having some variations due to the variety of possible
activities and the number of occurrences per day. For instance, Eating is satisfied three
times per day around the same periods. The variations in the choice of activities and
in their start time are interesting to produce more credible behaviors since diversity is
provided while respecting coherence about input parameters. Figure 2.13 shows the start
times of activities performed by the agent during 10 days according to the time of day.
Judging from this figure, a routine seems to appear, since the agent eats and sleeps at
regular times. All these results are encouraging in the sense that our model could create
credible behavior when the agent is totally autonomous. Effectively, behaviors are coher-
ent with the input parameters and diversified. They are also consistent: when a need is
urgent, the chosen activity is always the one related to its satisfaction.

Table 2.2 – Example of needs configured with specific hours and their associated activities
compared to their input configuration

Min/Max Mean and Mean Mean Min/Max Min/Max
Need Related Theoretic start standard Frequency Frequency Duration Duration
name activities time slot time deviation per day per day (theoretic) and Mean

start time (theoretic) (simulated) Duration with
standard deviation

(simulated)

Hungry Eating
[7 a.m., 9.30 a.m.]

[12 p.m., 1.30 p.m.]
[7 p.m. , 9 p.m.]

7.19 a.m./ 7.48 a.m.
12.04 p.m./ 1.12 p.m.
7.04 p.m. / 8.47 p.m.

7.34 a.m. ± 0h11m
12.36 p.m.± 0h27m
7.53 p.m. ± 0h37m

3 3.0 0h10m/1h 0h10m/1h
0h28m ± 0h21m

Tiredness Sleeping [10 p.m., 12 a.m.] 10.08 p.m./ 10.40 p.m. 10.24 p.m. ± 0h12m 1 1.0 8h/11h 8h/8h
8h ± 0m

2.7.3 Functional Validation with an Input Calendar of Activities
given by the User

In this section, we analyze the reaction of our model when an input activity calendar
is given by the user. This allows us to know how the agent can manage autonomy while
respecting strong constraints throughout the different days simulated continuously. This
approach also enables us to assess the coherence of behaviors in comparison with the

100

2.7. Functional Validation

Table 2.3 – Example of needs configured with specific periods and their associated activ-
ities compared to their input configuration

Min/Max Mean and Mean Mean Min/Max Min/Max
Need Related Theoretic gap between standard Frequency Frequency Duration Duration
name activities periods 2 satisfactions deviation per day per day (theoretic) and Mean

(between 6 a.m. between 2 between 6 a.m. between 6 a.m. Duration with
and 12 a.m.) satisfactions and 12 a.m. and 12 a.m. Standard Deviation

(theoretic) (simulated) (simulated)

Thirst Drinking Every 3 hours
(urgency 2h05m) 2h13m/3h41m 2h57m ± 0h26m 6 5.75 0h01m/0h05m 0h01m/0h05m

0h04m ± 0h01m

Toilets Going to the Toilets Every 3 hours
(urgency 2h05m) 1h06m/3h36m 2h53m ± 0h24m 6 5.88 0h05m/0h10m 0h05m/0h10m

0h08m ± 0h02m

Hygiene Showering
Using the Sink

Every 6 hours
(urgency 4h02m) 4h25m/6h40m 5h29m ± 0h45m 3 3.0 0h15m/1h

0h05m/0h20m

0h15m/0h35m
0h21m ± 0h08m
0h05m/0h20m

0h14m ± 0h06m

House Hygiene Cleaning Every 10 hours
(urgency 7h04m) 7h40m/11h26m 8h56m ± 1h13m 2 2.0 0h10m/2h 0h10m/1h50m

0h30m ± 0h28m

Sport Doing Sport Every 48 hours
(urgency 33h56m) 34h57m/37h22m 36h10m ± 1h12m 0.5 0.50 0h15m/2h 0h15m/0h38m

0h19m ± 0h09m

user’s input parameters. It also allows us to analyze the routines to check if they are
diversified and coherent with input parameters during free time periods.

Figure 2.14 – Comparison between theoretic and simulated timelines for the same day with a strict
calendar

The first result presents the case where the user provides a calendar with no free
time. To illustrate it, Figure 2.14 compares timelines between a day coming from a
theoretic calendar without free time with the results obtained after the simulation of
this day. Here, Thirst and Toilet needs have been authorized to interrupt the calendar.
Some calendar activities such as Using the Phone or Reading are interruptible. These
results show that mandatory activities are performed on time and with the right duration:
Among activities that were not interrupted, the observed maximum deviation was for
Doing Sport with a one-minute deviation from the imposed activity. Interruptions are
indicated by blue triangles for thirst and yellow triangles for toilets. Thus, the agent is
able to interrupt mandatory activities to satisfy its needs allowed to interrupt. This kind
of activity interruption due to an urgent need enables the introduction of diversity when

101

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

Figure 2.15 – Comparison between theoretic and simulated timelines for the same day with a moderate
calendar

a schedule that does not offer free time is given. Since needs do not always interrupt
at the same time, a large number of schedules can be created even with really strict
activity schedules. Moreover, despite the interruption, all schedules given by the user
are respected. This proves that our model is coherent with the user’s requirements while
offering diversity. The activity selection is also consistent when the same urgent need
happens since the same set of activities is selected to satisfy it. If the agent cannot
interrupt any activity to satisfy its needs, then the urgency gauges of the needs indicated
in the interface will reach their maximum value, as shown in Figure 2.16. The user is then
aware of the agent’s incapacity to satisfy its needs with the given strong constraints.

Figure 2.16 – Interface illustrating the urgency of needs with gauges and their evolution through time.
When the need starts to be urgent, a red color is indicated.

Figure 2.15 compares timelines between a day coming from a theoretic calendar con-
taining free time with the results of the same-day simulation. In addition, Figure 2.17
shows a comparison between a user’s input activity calendar with the output one per-
formed by the agent. To handle such moderate calendars, the agent must rigorously
manage its free time to be ready for the next required activity. As seen in both figures,
the agent accurately schedules its activities during its free time while considering the
satisfaction of its needs. The difference between the simulated and the theoretical calen-

102

2.7. Functional Validation

dars is the same order as the strict calendar, proving that the agent respects the strong
constraints. Figure 2.17 also shows that some mandatory activities are interrupted to
manage needs that could not be satisfied before, such as Thirst or Toilet ones.

When mandatory activities are scheduled, they can sometimes satisfy needs. Redun-
dancies may then appear between the mandatory activities and those chosen by the sched-
uler: for example if Hunger becomes urgent at the same time when Eating is scheduled
by the user, the Eating activity may appear twice in a row. Consequently, as explained
in Section 2.5, we make sure that the scheduler considers the effects of the next manda-
tory activity by removing the impacted needs that are too close. The obtained results
confirm that no redundancy is observed when the calendar activities satisfying needs are
positioned close to the times when these needs are urgent.

Figure 2.17 – Comparison between the user’s activity calendar in blue and the activity performed by
the agent in Orange

The results presented in this section show that our agent can perform activities in the
VE while respecting its input constraints and its urgent needs. In this way, our model is
able to adjust the level of autonomy according to the user’s configurations and the agent’s
internal state, providing a compromise between control and autonomy.

This Input-Output comparison method allowed us to know whether our system is

103

Chapter 2 – Agent Model allowing both Autonomy and Control on the Behaviors

coherent with the input parameters while producing diversity. We also evaluated if the
system is consistent in activity selection to satisfy needs (e.g. when Hunger is urgent,
Eating will be selected and not Doing sports). The results obtained in this section are
promising and provide us a first validation of our model robustness in facing diverse
situations where time and need constraints are more or less significant. Our results also
show that our agent can be fully controllable, partially controllable, or fully autonomous
without modifying its structure. Concerning the credibility evaluation, the results are
promising since behaviors are coherent with the input parameters, diversified in most
cases, and consistent for the same need satisfaction. However, as we said in Chapter
1, this comparison method is essential but not sufficient to evaluate the credibility of
behaviors.

2.8 Conclusion

Our agent model was designed to address our challenges and some shortcomings of the
state-of-the-art approaches related to the generation of daily activity data. In addition,
this agent model version is yet sufficient to address a part of our use case: users can exploit
our model to simulate situations including one occupant and to generate, replicate, or
complete databases containing information about these situations. This is the case for
the Orange4Home real database proposed by Cumin et al. [51] for instance which can be
replicated or completed by synthetic data generated by our model. Effectively, our agent
model offers a compromise between control and autonomy since the agent can strictly
respect the users’ constraints (such as an input activity calendar to perform) while staying
autonomous to satisfy its proper objectives during free time. This controllability aspect
enables the accurate replication of real datasets since we can closely follow given activity
schedules that were used for real dataset collection protocols. The autonomy aspects are
also essential to produce credible synthetic data since a lack of autonomy would generate
rigid data with little variability, losing credibility. By balancing these two aspects, the
agent can thus anticipate future constraints and adapt its free time to satisfy its proper
needs while preparing itself for the following imposed activity. In addition, our agent
can relax the users’ constraints to satisfy urgent needs by interrupting imposed activities
when permitted by users. This enables us to offer more diversity in the behaviors even in
cases where too many constraints prevent the agent from satisfying its own needs. Finally,
our model is compatible with data generation since the agent can execute activities in a

104

2.8. Conclusion

3D environment and can thus trigger the sensors and effectors to produce synthetic data.
With our model, the agent is thus compatible with data generation and can be
fully autonomous during the simulation, fully controlled based on a schedule,
or any mix of both.

A first validation based on Input-Output comparison was also presented in this Chap-
ter to evaluate the reliability of our agent model and the credibility of behaviors. However,
as we said in Chapter 1, this kind of method is essential but not sufficient to prove credibil-
ity and fully address Challenge 3. This is why, another a posteriori validation approach
is presented in Chapter 4 to reinforce our results and evaluate whether our agent can
produce credible behaviors while respecting strong constraints.

The contents of this Chapter have been published at two international conferences.
The first one, concerning the Internal State Model, was published in the MARCH work-
shop organized by the IEEE AIVR conference in 2021 [81]. The second one, concerning
the whole agent model with the presented results, was published at the PAAMS conference
in 2022 [80].

As explained before, this agent model version is yet sufficient to address a part of our
use case for the reasons stated above. To go further, we propose in Chapter 3 additional
models improving the adaptation to Dynamic Environments. This improvement allows
users to simulate new situations including several occupants or unexpected changes com-
ing from the environment. Users could also generate, replicate, or generate data related to
these new situations. Effectively, even though our scheduler is compatible with such en-
vironments since rescheduling processes can be launched when required, some limitations
can be observed regarding the management of resources and unforeseen events coming
from the environments (such as managing telephone calls). These processes are essen-
tial to simulate several agents in the same environment where resources are limited and
unexpected events can be triggered by other agents.

105

Chapter 3

ADDITIONAL MODEL TO BETTER

ADDRESS DYNAMIC ENVIRONMENTS

In the previous chapter, we explained the global structure of our agent model as well as
how this model can both address our challenges and a part of our use case. In this chapter,
we focus on the additional models to better address dynamic environments, since Chapter
2 was focused on managing time and need constraints, without insisting on adaptations
to changes coming from the environment (resources, events from the VE, other agents).
Although the scheduler is compatible with dynamic environments since it can reschedule
when needed, it has limitations regarding the management of resources and unexpected
events happening suddenly and coming from the environment (telephone calls, the sudden
disappearance of a resource, requests from another agent, etc.). In addition, this model
version cannot suddenly interrupt activities in progress if unforeseen events happen or if
resources are missing. Since the virtual environment proposed in Chapter 2 to test our
agent model is static (because the agent is the only one to act on it, and resources are
not exhaustible), the interruption of ongoing activity caused by the environment does
not occur. This was not an issue if users wants to exploit our model to simulate one-
person situations and create, generate, or replicate databases related to these situations.
In addition, for the part of our use case including the replication of the Orange4Home
real dataset explained in Chapter 4, using this model version was sufficient since one
person was considered in the real database and no unexpected changes coming from the
environment were included. Consequently, issues related to dynamic environments were
not fully considered previously. For all these reasons, the credibility of behaviors and
scenarios related to dynamic environments remains limited to fully addressing Challenge
1. Yet, if users want to simulate several agents, trigger unexpected situations when
they desire, and produce, replicate or complete multi-person databases, an agent model
addressing dynamic environments is required.

According to the conclusion of Chapter 1, existing approaches rarely propose a model

107

Chapter 3 – Additional Model to better address dynamic environments

simultaneously managing resources, time, unexpected events coming from the environ-
ment, agent internal motivations, and activity execution. In addition, most of them do
not manage resources and unexpected events, both at the execution level (interrupting
animations, resuming interrupted activities, etc.) and scheduling level (adapting the plan
to disruptions, anticipating future missing resources while respecting time constraints,
etc.). Moreover, most existing agent-based approaches do not provide any process to
interrupt and resume ongoing activities. Concretely, current solutions rarely propose to
manage the case where the agent is interrupted in a state where it could not immediately
perform any other activity. For example, if the agent is interrupted while reading on a
sofa, it cannot perform any other activities until it has closed the book, put it down, and
stood up. In addition, solutions are also rarely proposed to return the agent to a state
where it can continue the interrupted activity. For example, if the agent wants to go back
to reading, the agent has to pick up the book, sit down again and open it. Finally, the
control that users can have over the agents in dynamic environments is often too limited.

This lack of complete solutions in the state of the art led us to propose
our solution to address dynamic environments by handling resources and un-
expected events at the execution and scheduling levels while respecting other
constraints such as time and needs. For this, we propose a new model designed to
handle dynamic environments and made of three sub-models: The Resource Manager
to anticipate resources during the plan creation, the Interruption Manager to inter-
rupt the executed activity when a missing resource or an event suddenly happens, and the
Plan Checker to verify if interruptions caused by missing resources or unexpected events
impact the rest of the plan. This models is independent from other processes present in
our agent model, and can thus be disabled or integrated into global agent structures such
as BDI [162]. More concretely, we explain more precisely in section 3.1 why considering
dynamic environments is relevant for our use case and to better address Challenge 1. We
also develop in this section the specifications related to these environments. After this, we
propose in section 3.2 an overview of the three sub-models managing resources and events
both at the scheduling and execution levels. We then detail these models by starting
with the Resource Manager in section 3.3. We then explain the Interruption Manager in
section 3.4. After this, we study the Plan Checker in section 3.5. Finally, we propose in
section 3.6 a user-experiment protocol to validate the credibility of agent behaviors in the
case of dynamic environments.

108

3.1. Motivations and Specifications to address Dynamic Environments

3.1 Motivations and Specifications to address Dy-
namic Environments

In this section, we explain why managing dynamic environments is relevant to our
case and what are the required specifications to well address them.

3.1.1 Motivations to address Dynamic Environments

As explained in Introduction, our aim is to propose virtual humans able to generate
credible behaviors while being compatible with data generation. We also introduced
our main use case aiming to offer an agent model for users wanting to simulate virtual
humans in daily-living situations and generate exploitable synthetic data related to these
situations. In Chapter 2, we proposed an agent model specially designed to address our
main issue and some parts of our use case. We thus detail in this section why considering
dynamic environment may be relevant for our use case.

3.1.1.1 Providing diversity on the synthetic data and simulated situations

The first reason to manage dynamic environments is the possibility to generate be-
haviors and synthetic data that are more diversified. Effectively, even when the agent
configuration will be the same, each simulation will lead to more different results since
unexpected events affecting the agent and not caused by its actions may occur at any time.
This diversity improves the credibility of behaviors and allows us to better address Chal-
lenge 1. The diversity of synthetic data is an essential feature to limit some bias caused
by insufficient data, improve the credibility of the results, and allow the consideration of
more different situations.

Finally, by proposing tools to configure resources and unexpected events, users ex-
ploiting our agent model will be able to simulate new situations that were not possible
before, such as simulating a device failure situation (TV that does not work anymore, the
fire alarm that goes off, and so on) or a situation where a lack of resources prevents the
agent from performing the desired activities (there is no food anymore, the bathroom is
blocked by another agent for 2 hours, and so on).

109

Chapter 3 – Additional Model to better address dynamic environments

3.1.1.2 Offering Multi-agent simulations

Managing dynamic environments is also essential for multi-agent simulations where
several agents share the same environment. In this situation, their actions can impact
others since they can deplete or block some required resources, or trigger events such as
soliciting others. They could also synchronize to perform activities together. The capacity
to manage simultaneously several agents would enable users to produce multi-person data
that can be really interesting to simulate workers in a building, a family in a house, and so
on. In addition, since real multi-person datasets are less frequent than real mono-person
ones, the simulation of multi-agents could allow researchers to generate new datasets and
improve their model for multi-occupant understanding.

The credibility of such data mainly depends on the level of interaction between them.
The more precise and diversified these interactions are, the closer they will be to reality.
Judging from the literature about multi-agent systems, and more particularly the survey
of Risk et al. [150], several levels of interaction between agents may exist:

• Competitive (Negative Interaction): This interaction happens when agents
have conflicting goals. The agents could thus deliberately disturb others to achieve
their goals.

• Conflict (Negative Interaction): This interaction happens when there are not
sufficient resources to reach all the goals. The agent can thus enter into conflict to
retrieve these limited resources.

• Coordinative (Positive Interaction): This interaction happens when agents
complete their individual goals and work together to minimize interference. This
interaction thus allows several agents to coexist at the same time. In this situation,
agents mainly exchange critical information to limit the impact on other agents,
such as indicating that the bathroom is occupied. However, agents are not going
to help others to achieve their personal goals. Such interaction can be found in
MASSHA [97] where agents can live together in the same 2D house and perform
their activities separately. We also have the work of Jorgersen et al. [95], where
agents can move in a city to perform their daily activities by avoiding collisions with
others. However, no collaborative activities are performed with such interactions.

110

3.1. Motivations and Specifications to address Dynamic Environments

• Collective (Positive Interaction): This interaction happens when agents share
common goals (i.e. each agent contributes to this goal). However, the agent is
unaware of other agents and works on the part of this goal individually.

• Cooperative (Positive Interaction): This interaction happens when agents
share common goals (i.e. each agents contribute to this goal). The agent is aware
of other agents and communicates with them to advance these goals.

• Collaborative (Positive Interaction): This interaction happens when agents
do not share common goals. They help each other to fulfill their individual ones. In
this situation, agents can perform collaborative activities such as helping another
agent in their work or agreeing to eat together despite different schedules. Several
existing approaches use collaboration in the literature for daily-activity simulations
since they are the most well-suited to give credible behaviors in this case. This is
the case for several reactive-based approaches such as the work of Kashif et al. [99]
where agents can communicate by chat and ask for collaborative activities such as
eating together, those of Schumann et al. [156] where incitement messages are sent
to make collaborative activities, or those of Bogdanovych et al. [24], [170], where
the agents having roles in the Mesopotamian community can exchange resources
(such as pottery for fish). In the case of Planning-Based approaches, we can
find the MASCARET multi-agent model proposed by Querrec et al. [145] where
simulated firemen have roles to make collaborative tasks, but also GOAP tested
by Bogdanovych et al. [24]. These are also some Probabilistic-based approaches
BIM SIM 3D [181], where a probabilistic scheduler can synchronize collaborative
activities in the plans of agents during the period when this activity is likely to
occur. We also have some Learning-Based approaches such as Double DQN [93]
where agents satisfy their social needs by discussing with other agents. Regarding
Scheduling-based approaches, we can find the work of Meister et al. [127] where
joint activities can be scheduled by a Genetic Algorithm.

To synchronize agents, decision-making can be either centralized or decentralized [150].
In a centralized decision, agents can receive instructions from a leader having a global view
of the goals to reach. This leader chooses and dispatches the tasks among the agents to
achieve these goals. A dashboard can also be used in a centralized approach. In this case,

111

Chapter 3 – Additional Model to better address dynamic environments

the agents choose which activity displayed on the dashboard they take according to their
own availability. Such centralized approaches are used for instance in Probabilistic-based
approaches such as BIM Sim 3D [181] or MASSHA [97], but also in scheduling-based
approaches such as the work of Meister et al. [127]. In a decentralized approach, each
agent performs tasks in parallel. If they need another agent to complete their task, they
communicate either through an intermediary agent knowing the status and location of
others or by talking directly to the concerned agent. Such decentralized approaches are
mainly used by reactive-based approaches such as Kashif et al. [99] and learning-based
approaches such as Jang et al. [93] since agents can be interrupted more easily than other
approaches.

In the context of daily-living simulations, using a decentralized approach is most ac-
curate to simulate a family, workers, or citizens. In addition, enabling collaborative,
cooperative, conflict, and coordinative interactions between agents are the most relevant
to simulate daily-living situations for several reasons. Firstly, in contrast to collective
interactions, agents are aware of other agents since their share the same environment.
Secondly, daily-living situations does not induce competition between agents since agents
will not deliberately try to prevent others from achieving their own objectives. In our
case, the final objective would to propose an agent model able to manage these four
kinds of interactions. Effectively, existing approaches cannot really all these interactions
in the same simulation. More concretely existing approaches simulating collaborative in-
teractions have simplified some aspects related to dynamic environments to facilitate the
integration. For instance, some of them do not consider limiting resources such as the
amount of food left in the kitchen, or do not include unexpected events (in this case, the
collaboration between agents is scheduled from the beginning and thus not triggered by
sudden events). Consequently, coordinative and conflicting interactions are difficult to
manage since agents will not be able to adapt their actions to avoid blocking situations.
In our case, with the management of unexpected events and resources, we can
simulate agents having coordinative or conflicting interactions. The two other
interactions will be considered in our future works, since integrating a communication
system to synchronize agents is required to allow them to start a joint activity together.

3.1.2 Specifications related to Dynamic Environments

Regarding specifications related to the management of dynamic environments, they
are based on the three challenges required to address our main issue. These specifications

112

3.1. Motivations and Specifications to address Dynamic Environments

complement those detailed in Chapter 2.

Specifications regarding Challenge 1 : To produce credible behaviors in the case
of dynamic environment, and better address Challenge 1, the agent must respect the
following features:

• Coherence: The agent must be coherent with the current resources of the world
by respecting their availability. For instance, the agent should not start to eat if no
food is available. This is why, and as a first specification, we need to have a pro-
cess automatically checking the availability of resources during activity execution
and interrupting this last one if a resource is unavailable. In the same trend, the
agent must be coherent with the unexpected event coming from the environment.
For this, the agent has to address these events during their period of action. For
instance, if the phone is ringing, the agent could only answer during the ringing
time. Events thus become a priority and consequently, agents must interrupt their
activity as soon as possible to address them. In addition, they must be able to
automatically resume the interrupted activity after treating events. Consequently,
and as our second specification, we need to have a process to quickly interrupt and
resume executed activities when an event happens. Another specification regards
the automation of these processes: These processes must detect and apply interrup-
tions in an automatic and coherent way. In other words, the interruptions cases
do not have to be explicitly described by users in the activities. This means that
users will not have to worry about interruption cases when they create or modify
activities: everything is automatically managed by the agent model. By respecting
these specifications, we could make several agents coexist.

• Consistence: The agent must also be consistent in its reaction when the same
activity is interrupted at the same moment between different simulations (e.g. If
the agent is interrupted when it is holding a plate, it must release this plate before
treating the event). It must be also consistent in its reaction when the same event
happens (e.g. The agent will answer the phone when this last is ringing, and
will not choose to open the entrance door). Nevertheless, this does not exclude
diversity to manage the same situation, just only solutions that are not related.
This is why, and as our third specification, we need to have a process producing

113

Chapter 3 – Additional Model to better address dynamic environments

consistent reactions facing similar interruptions happening at the same time for
the same activity.

• Diversity: When several activities are possible to restore a resource or address
an unexpected event, the agent does not have to choose systematically the same
activity every time. For instance, if Food needs to be restored, the agent can
choose between Cooking or Shopping. Our next specification is therefore to propose
processes capable of selecting different activities to restore the same resource or
address the same event when several choices are possible.

Specifications regarding Challenge 2 : In Dynamics Environment, the control the
users can have over agents is more difficult to maintain. Effectively, more unexpected
situations induce less control over resulting behaviors. For instance, if the agent answers
the phone and talks for one hour, this can disrupt what the agent had planned to do
afterward, especially for activities scheduled to start during this hour. The same issue
happens when an activity imposed by users does not have sufficient resources to start.
To keep some control over behaviors in the situation of dynamic environments, the agent
must be able to anticipate its future exhausted resource. To ensure maximum compliance
with the activities imposed by users at specific times, the agent must optimize its free
time to restore the missing resources required by these mandatory activities. If there is
any time left, the agent has to satisfy its own needs, while respecting time and current
resources. This is why, and as our next specification, we need to have a process able to
anticipate future missing resources and schedule activities restoring them. In parallel, if an
activity was interrupted due to a missing resource or an unexpected event, the feasibility
of the rest of the plan must be checked. This is why, the next specification induces to have
a process to adapt the rest of the plan after an interruption. In parallel, resources and
events must be configurable to enable users to have some control over their occurrence.
This is why, our following specification implies having a process letting users configure
resources and unexpected events before and during the simulation.

Specifications regarding Challenge 3 : The credibility of behaviors and resulting
data has to be checked by diverse methods in the case of dynamic environments. This
is why, and as our last specification, we need to propose validation methods to check the

114

3.2. Overview of Resource and Event Models

credibility of the generated behaviors and data for dynamic environments.

3.2 Overview of Resource and Event Models

After describing our specifications, we now detail the resources and events that are
considered in our simulation. We then explain in a general way the three processes created
to better address dynamic environments.

3.2.1 Considered Resources

In this section, we detail the resource categories used in this Chapter. Judging from
the literature, several categories of resources can exist [65], [120], [165] and three of them
are considered in our work:

• Consumable resources: These resources become unavailable after their use.
If the agent wants to recover a consumable resource, an activity restoring this
resource must be made (such as shopping). Concretely, consumable resources are
implemented with the following parameters: the name of the object (e.g. Pizza),
the resource category (e.g. Foods), and the initial quantity represented by an
integer (e.g. 1). When this quantity falls to 0, the resource is consumed and
cannot be reused anymore. Among the resources considered consumable, we can
find foods, cans, ingredients, pasta boxes, or milk. Some of them can be used
several times such as milk or pasta box.

• Reusable resources: These resources are temporally blocked during their use and
released after. Concretely reusable resources are implemented with the following
parameters: the object name (e.g. computer), the resource category (e.g. electrical
devices), their availability (blocked/available), and the time of use which is updated
each time the resource is used by an activity. In the case of multi-agents, this time
of use is shared between the agents to help their activity scheduling and avoid
conflicts. These resources must be released by the same activity that blocked
them. Consequently, the time of use is at most equal to the activity duration using
the resource. Among reusable resources, we can find chairs, sofas, limited rooms,
computers, and so on.

115

Chapter 3 – Additional Model to better address dynamic environments

Table 3.1 – Examples of Resources and activities using them
Resource
Category

Resource
Type Object Name Consumed/Used

by activities
Restored

by activities

Foods Consumable Pasta, Pizza,
Sandwich Eating Shopping,

Cooking

Ingredients Consumable Pasta Box,
Frozen Pizza Cooking Shopping

Drinks Consumable Soda Can, Milk Drinking Shopping

Plates
Renewable

(Dirty, Clean
Filled)

Plate1, Plate2,
Plate3 Eating, Cooking Washing

Dishes

Battery Devices
Renewable
(Charged,

Discharged)
Phone Using Phone Charging

Other Dishes
Renewable

(Dirty, Clean
Filled)

Sauce Pan, Colander Cooking Washing
Dishes

Glasses
Renewable

(Dirty, Clean
Filled)

Glass1, Glass2 Drinking Washing
Dishes

Sittable Objects Reusable
Sofas, Chairs,
Desk Chair,

Bed

Eating, Computing,
Using Phone,
Watching TV,

Reading

Same activities
(since free
after use)

Layed Objects Reusable Bed Sleeping, Napping Same activities
(same reason)

Limited Rooms Reusable Toilets, BathRoom,
Office, BedRoom

Napping, Sleeping,
Computing,
Showering,

Using The Sink,
Going To Toilets

Same activities
(same reason)

Book Reusable Book1, Book2 Reading Same activities
(same reason)

Sinks Reusable Kitchen Sink,
Bathroom Sink

Using the Sink,
Cooking, Going to

the Toilets,
Washing Dishes

Same activities
(same reason)

Electrical
Devices Reusable Computer, Hood,

Oven, TV, HotPlate

Cooking,
Computing,

Watching TV

Same activities
(same reason)

116

3.2. Overview of Resource and Event Models

• Renewable resources: Renewable resources have several states that can be modi-
fied by activities. Each defined state is reversible and can be met again by executing
one or more activities. Contrary to consumable resources, renewable resources stay
in the world, and activities just impact their current state: their change is thus
reversible. Concretely, renewable resources are implemented with the following pa-
rameters: The object Name (e.g. Plate1), the resource category (e.g. Plates), and
the possible states the resource can take with the transitions between each state
(e.g. Clean, Filled, Dirty). These transitions will be defined in the activities acting
on these resources: these activities indicate as input the state of the resource they
use and as output the state they produce. If renewable resources are not in the
requested state, they cannot be used. It will then be necessary to bring them into
the desired state with the help of other activities. For instance, if Eating requires
a clean plate to be executable and all plates are dirty, it cannot be launched. To
solve this, Washing Dishes can be executed before to get clean plates. Among
the possible renewable resources, we can find rechargeable batteries, dishes (which
become clean or dirty), etc.

To become a resource, the objects located in the environment can be associated with
one of these three categories. For instance, all Food-type objects can also be considered as
Consumable Resources. Users can turn any object into resources. Table 3.1, summarizes
all the resources managed in our use case. This table also shows the activities using these
resources and those restoring them.

3.2.2 Considered Events

We detail in this section the unexpected events that can be considered during our
simulation. These events are currently related to home environments but they can be
enriched at any time, as with resources. In Table 3.2, we stored all the unexpected events
considered in our simulation as well as the possible activities to manage them. The
duration of activities indicated in the Table are given by way of example and may be
modified at any time. Events can be triggered by another agent, by a script indicating
the moment when they happen, or by users who could use an interface to trigger them at
any time. Users can thus schedule these events in advance if they wish, or trigger them
in real-time. In any case, these events are unknown to the agent since they will not be

117

Chapter 3 – Additional Model to better address dynamic environments

in its plan: The agent will therefore know neither when nor which event will be triggered
during the simulation. The time required to resolve the event is very short since these
events have a short duration. For instance, the phone only rings for a few seconds. After
this short duration, the event cannot be addressed anymore. This is why, the agent
must be able to quickly pause the activity currently performed to address the
event before its expiration. Users can change the event duration as they want.

Table 3.2 – Exemple of events that can be managed with the activities managing them

Event Name Max Event
Duration Event Activity

Min/Max
Event Activity

Duration
Phone Ringing 30 seconds Answering the Phone 10 min / 1h

The bell Ringing 5 min Welcoming the person 5 min / 20 min
Receiving an SMS 20 min Replying to the SMS 2 min / 5 min

Solicitation 10 min Talking to the person 15 min / 1h
Fire Alarm Triggered 10 min Disabling Fire Alarm 2 min / 3 min

3.2.3 Models to manage Resources and Events

In this section, we explain the sub-models added to our agent model to fully address
dynamic environments. Effectively, we explained in the conclusion of Chapter 1, there
is a lack of complete solutions to manage Resources and unexpected events both at the
scheduling and execution levels. More precisely, Reactive-based approaches and Learning-
Based approaches are well suited to manage dynamic environments since the agent can
quickly react to unexpected events. Nevertheless, they cannot anticipate future missing
resources and time constraints. In contrast, scheduling-based approaches can anticipate
such constraints, but they have difficulties in quickly reacting when unexpected events
occur and disturb the rest of the plan. Regarding Planning-Based approaches such as
STRIPS [70], HTN [39] or GOAP [24], they can manage resource constraints and adapt
the plan when an unexpected event happens. This is why STRIPS is used in robotics
for instance, as it can handle the unexpected events of the real world (a missing object,
a human cutting the path, etc.). However, they have difficulties anticipating future time
constraints and they cannot prepare activities providing resources in advance to avoid
future resource depletion. For instance, with these approaches, Shopping could be sched-
uled just before Eating to provide food, but it could not be scheduled two hours earlier to

118

3.2. Overview of Resource and Event Models

provide food in advance and enable the performance of Eating later. Finally, even though
Probabilistic-based approaches and Mix-based approaches could manage these kinds of
environments, they rarely focus on managing resources and events both at the execution
and scheduling levels. Generally, most existing agent-based approaches do not provide
any process for stopping an activity in progress where animations could generate errors
if stopped abruptly. Moreover, few of them provide both a process to return the agent
to a state where it can perform other activities and a process to resume an interrupted
activity. Finally, the control users can have over agents in dynamic environments is often
limited.

For all these reasons, we propose new models to address dynamic environments. The
specifications described in our previous section are the starting points of the conception of
these models. According to these specifications, we first need to have a model to anticipate
future missing resources. In parallel, we need to have a second model to interrupt and
resume activities when they occur. Finally, we need to have a model to adapt the rest
of the plan to the consequences of the interruptions. We explain below how these three
models are integrated into agent models. It should be noticed that these models are
independent of other models already present, and can be disabled for static environments.

The first model located at the scheduling level is the Resource Manager that acts
during the creation of activity plans to anticipate future missing resources. This process
can work closely with a time scheduler (such as our reactive scheduler) to restore missing
resources while respecting the remaining time. The second one is the Interruption
Manager located at the execution level. It was set up to interrupt ongoing activities
when a missing resource or an unexpected event happens. It also ensures that the agent
can continue other activities or resume the current one after this sudden interruption.
The last one is the Plan Checker located at the scheduling level. It was done just before
the selection of the next activity to verify its feasibility. This checkpoint is essential to
verify if the plan is always feasible after a possible interruption. Figure 3.1 shows our
updated agent model where these three models are integrated to fully address dynamic
environments. We present below their global processes as well as the modification made
in the External Perception Model to record changes in the world state:

External Perception Model: At the initialization phase, the External Perception
Model retrieves all resources to store them in the World Database. In parallel, all events
happening in the environment are also stored in this database. Each time a resource

119

Chapter 3 – Additional Model to better address dynamic environments

Figure 3.1 – Diagram of our Agent Model for Dynamic Environments

changes or an event happens, the External Perception Model will register the changes
and send them to the different models.

Resource Manager: The resource manager is used to detect and restore the missing
resources related to each activity that the agent wants to schedule. To restore them, a
process is launched to select activities producing the missing resources. Consequently,
the manager works closely with the Activity Scheduler which is a reactive scheduler in
charge of building the plan of activities. Concretely, we thus have the reactive scheduler
to manage the time constraints given by users and the agent needs constraints given by
the Internal State Model. In parallel, we have the Resource Manager to ensure that
each scheduled activity is compatible with the currently available resources. To know
this current state, the Resource Manager retrieves this information from the External
Perception Model. In addition, it also retrieves information from the Activities Database
to know which resources are consumed and produced by which activity. During the
creation of the plan, the Scheduler sends to the Resource Manager each activity that
should be scheduled as well as the remaining time. In return, the Resource Manager
will send an ordered list of activities restoring resources to schedule before the concerned
activity. To find this list, the Resource Manager checks the availability of the resources
consumed by the input activity. If some resources are unavailable, the process explained

120

3.2. Overview of Resource and Event Models

above is launched to find activities restoring these resources while respecting the remaining
time. The final plan is then created by the Activity Scheduler and sent to the Activity
Selector. More details of this step are given in section 3.3.

Interruption Manager: After receiving the plan, the Activity Selector sends the next
scheduled activity to the Task Executor to be launched. During execution, some resources
can suddenly be exhausted or an event can occur. For instance, if during Eating, another
agent eats the food before its use, then Eating cannot continue. The Interruption Man-
ager was thus conceived to address these unexpected changes and manage interruptions.
The Interruption Manager concretely receives as input a notification from the External
Perception Model indicating that an unexpected change happened. The Interruption
Manager then works in collaboration with the Task Executor to stop the current activity
in a safe way (i.e. without generating animation errors). An process is then launched by
the Interruption Manager to let the agent return to a state where it can perform another
activity. To do this, Undo actions cancelling the reversible changes caused by the current
activity are executed. If necessary, a process can also be launched to return the agent
to the state where the interrupted activity was stopped. In this case, actions applying
again the reversible changes caused by the interrupted activities are executed. With this,
the agent is able to resume interrupted activities. In the case of unexpected events, the
Interruption Manager also launches the activity addressing this event. When the interrup-
tion process is finished, the Task Executor is notified by the manager to either continue
the paused activity or finish it prematurely. The Task Executor then notifies the Plan
Checker that an interruption has occurred. More details about the Interruption model
are explained in section 3.4

Plan Checker: The Plan Checker checks if the rest of the plan is always feasible after
the execution of any activity. For this, the availability of resources that are consumed by
the next activity is checked. If an interruption notification is also received, the current
time is also checked to know whether the agent is early or late. Depending on the impact
of these interruptions, the Plan Checker can either make some adjustments to the plan or
request a rescheduling by emptying the rest of the plan. The modified plan is then sent
to the Activity Selector which either selects the next activity or requests a new plan to
the Activity Scheduler if the modified one is empty. More details are given in section 3.5.

121

Chapter 3 – Additional Model to better address dynamic environments

3.3 Resource Manager

In this section, we detail the process of the Resource Manager to anticipate future
missing resources and to create a plan being coherent with the currently available re-
sources. To reach this, the Resource Manager works with the Activity Scheduler to check
if the solutions proposed to restore missing resources are compatible with the remaining
time allocated to the plan. The priority is first to schedule activities restoring the missing
resources used by the future mandatory activity indicated in the user’s calendar. Actu-
ally, doing everything possible to avoid their failure is essential to respect user constraints
as much as possible and address our Challenge 2. After managing the mandatory activ-
ity, both models work together to schedule activities that can satisfy urgent needs while
respecting time and resource constraints. If there is still time to place other activities,
default activities are scheduled in the plan to keep the agent busy. To prevent these activ-
ities from disrupting those already scheduled, default activities only depend on reusable
resources. After this, relaxing user constraints is possible to satisfy an urgent need by
interrupting the mandatory activity if resources and time constraints are respected. To
illustrate these changes, we proposed an example in Figures 3.2, 3.3, 3.4, 3.5, and 3.6.
The whole process of plan creation including resource constraints is given below:

1. Retrieve time budget and current resources: The Activity Selector gives to
the Activity Scheduler the time window of the plan and the next mandatory activity
happening at the end of the plan (if there is one). The scheduler then turns this time
window into a time budget. In parallel, the Resource Manager retrieves the current state
of resources from the External Perception Model. All the missing resources are stored in a
smaller database called RMissing. This database is essential to know this since the sched-
uled activities consuming resources will impact the rest of the plan. RMissing is updated
each time an activity is scheduled in the plan to consider the consumed and produced
resources. In the example shown in Figure 3.2, we have a 3-hours time budget to schedule
and Eating as the next mandatory activity. In parallel, the Resource Manager detects
that Food, Cleaned Plates, and Cleaned Glasses are exhausted and that the Bathroom is
blocked until 6 p.m. These missing resources are thus stored in RMissing.

2. Filter activity according to time and resource constraints: In this step, we
seek to reduce the range of possibilities by keeping only activities whose minimal duration
is below the time budget. This filtering process is made by the Scheduler to exclude any

122

3.3. Resource Manager

activity that cannot be scheduled during the plan. For instance, if the time budget is equal
to 3 hours, the Sleeping activity is automatically excluded since its minimum duration is
equal to 8 hours. After this, all these possible activities are sent to the Resource Manager
to categorize them according to the resources they produce. This classification is used to
facilitate the selection of activities to restore a missing resource.

Figure 3.2 – Example of plan creation with resources (steps 1,2, and 3). CR means Consumed Resources,
PR means Produced Resources

3. Managing the Resources of the Mandatory Activity: Before considering ac-
tivities satisfying needs, the agent has to ensure that the resources of the Mandatory
Activity are available. If they are unavailable, they must be restored during the plan by
scheduling activities producing them. If no mandatory activity is indicated, this step is
skipped. To do this, the mandatory activity as well as the time budget is first sent to the
Resource Manager. In return, the Resource Manager sends to the Scheduler the list of
activities restoring the required missing resources. They are then scheduled just before
the mandatory activity and the time budget is updated by subtracting their duration.
If no resource is required, the Resource Scheduler just sends a notification to continue.
In the case where no suitable activity can restore one of the missing resources, the Re-
source Manager asks the Scheduler to postpone the mandatory activity. With this, the
time budget is extended to offer more possibilities to restore the missing resources. The
mandatory activity can only be postponed until the start time of the mandatory one
scheduled after. If postponement is impossible, the mandatory activity is canceled. We

123

Chapter 3 – Additional Model to better address dynamic environments

give below the process made by the Resource Manager to select the activities restoring
the missing resources required by the mandatory one:

a. Checking reusable resources: The Resource Manager first checks the reusable re-
sources used by the Mandatory Activity. If one of them is blocked, the manager
asks the Scheduler to postpone the Mandatory activity at the time when the re-
source is available again.

b. Checking missing resources: After this, the renewable and consumable resources
are also checked. Since the Mandatory Activity is scheduled at the end of the plan,
its produced resources are not considered. For each missing resource required by
the mandatory activity, the Resource Manager tries to find activities restoring it.
These last ones are first filtered as follows: the priority is given to those consuming
no missing resources. After this, the manager keeps those consuming only one
missing resource without putting priority. To limit the complexity, the Manager
ignores those having a duration exceeding the time budget, those consuming more
than one missing resource, or those requiring one blocked resource. After this,
the Resource Manager randomly selects a remaining activity by putting a weight
on those having a priority. If the selected one consumes missing resources, the
same process is made to find an activity restoring these resources and consuming
no missing resources. If no such activity is found, the Resource Manager selects
another activity and tries again the process. If no solution is found either, the
Resource Manager asks the Scheduler to postpone the Mandatory Activity. When
activities restoring a missing resource are definitively selected, their consumed and
produced resources are stored temporally and considered for the next selections.
This avoids interlocking and conflicts with the activities selected to restore other
missing resources. Each new activity is ordered before the ones yet placed. When
all the missing resources are treated, the Resource Manager sends to the Scheduler
the ordered list of activities restoring the missing resources. This list is also kept
by the Resource Manager to check if the Mandatory Activity is always executable,
even when activities satisfying needs are scheduled before.

In the example stated in Figure 3.2, Eating requires one renewable resource (Cleaned
Plate) and one consumable resource (Food) to be executable. However, Foods and Cleaned
Plate are not available in the current state. This is why, the Resource Manager first
looks for an activity restoring Food. Among the possible activity producing Food, the

124

3.3. Resource Manager

Manager can find Shopping and Cooking. Since both of them have no missing resources,
the Manager randomly selects one. Cooking is thus chosen and placed before Eating. Since
Cooking needs to have 1 Ingredient to be executable, this resource is temporally stored
to be not used by the activities that will be selected to restore other missing resources.
After this, the Resource Manager looks for an activity producing Cleaned Plates. Among
the possible activities, we have Washing Dishes which does not use missing resources and
washes all the dirty dishes. Washing Dishes is thus selected and placed before Cooking. In
the end, Cooking and Washing Dishes are sent to the Scheduler. They are then scheduled
just before Eating and the time budget is reduced by the duration of both activities.

4. Anticipating Future Urgent Needs: As explained in Chapter 2 section 2.5, the
scheduler first asks the Internal State Model to give the list of future needs that will be
urgent during the plan with their urgency interval. A time of urgency called tNeed is then
extracted from intervals to help the placement of activities satisfying needs. The Resource
Manager is not involved in this step. In our example shown in Figure 3.3, four urgent
needs are found: Hygiene, Sport, Thirst, House Hygiene, and Toilets.

Figure 3.3 – Example of plan creation with resources (steps 4 and 5). CR means Consumed Resources,
PR means Produced Resources

125

Chapter 3 – Additional Model to better address dynamic environments

5. Associate Needs to Activities: In this step, activities satisfying needs will be
scheduled if they respect the time and resources constraints. By starting with the tNeed

closest in time, the Scheduler first sends to the Resource Manager the remaining time
budget, the current tNeed, and the possible activities to satisfy the related need whose
duration is below the time budget. Since activities and needs are linked at the beginning of
the simulation, the scheduler can quickly retrieve them. In return, the Resource Manager
sends the activity selected to satisfy the need with the list of activities restoring the
missing resources consumed by this one. The Scheduler then places these activities just
after tNeed and reduces the time budget by their minimal duration. To avoid useless
redundancy, a list of activities to delete can also be sent if the found activities restore
some missing resources used by the Mandatory Activity. If no activities are found, the
Manager sends a notification to either postpone tNeed or to delete it, depending on the
cause. The scheduler then applies the request, chooses the next tNeed, and sends the new
activities. The tNeed can only be postponed until the end of the plan. If postponing is
impossible or if the need can be satisfied later by another occurrence in the plan, then the
tNeed is deleted. The process used by the Resource Manager to select activities according
to their resources is given below:

a. Choosing an activity satisfying the need: Since the Scheduler can send several
activities to satisfy a need, one of them must be first chosen by the Resource
Manager. To do this, they are first ordered according to the number of missing
resources that are required: The highest priority is given to those not using missing
or blocked resources. After this, we find those using only one missing or blocked
resource and finally those requesting more than one missing and blocked resource.
The Resource Manager selects the less restrictive activity and then performs steps
b and c in the case where some missing resources are requested by this activity. If
no activity is found to restore the missing ones, a second activity able to satisfy the
need is tested. If the process fails again, the manager sends a message to cancel
the tNeed. The limitation in the number of tested activities before abandoning is
voluntarily restricted to limit the complexity of our solution. However, this number
can be modified if desired.

b. Checking missing resources: The Resource Manager first checks the missing re-
sources used by the activity satisfying the need. Activities able to restore each
missing resource are then searched. The process is the same as the one explained

126

3.3. Resource Manager

in Step 3. The activities found to restore a missing resource are placed before
those yet placed, and their consumed resources are temporally memorized to avoid
conflicts with the future ones selected to restore other missing resources. In the
case where no activity is found to restore one of the missing resources, the Resource
Manager returns to step a.

c. Checking reusable resources: The Resource Manager checks the reusable resources
used by the activity satisfying the need. If one of them is blocked, a message is
sent to the Activity Scheduler to postpone the tNeed at the time when the resource
is available again.

d. Detecting conflicts with the Mandatory Activity: After selecting the activity sat-
isfying the need and the potential activities restoring its missing resources, the
Resource Manager checks the resource states of the Mandatory Activity. To do
this, RMemory is updated by applying the effects of these new activities. In the
case where RMemory changed, the manager first detects if some resources used
by the Mandatory Activity are restored by these effects. If some of them are ef-
fectively restored, then activities scheduled in step 3 restoring the same resource
are placed in a delete list to avoid redundancy. After this, the manager detects
if some resources used by the Mandatory Activity are now missing due to these
new effects. If some of them are effectively missing and cannot be counterbalanced
by the activities yet scheduled in step 3, then the activity satisfying needs cannot
be placed and the process returns to step a. RMissing is then reset. Otherwise,
the activity satisfying the need is sent to the Scheduler in addition to the list of
activities restoring its missing resource and the list of activities to delete. In this
case, RMissing keeps the changes.

In the example shown in Figure 3.3, the Hygiene tNeed is postponed after 6 p.m.
because all the activities satisfying Hygiene use the bathroom, which is blocked until
this time. Since Hygiene is postponed, the Scheduler takes the next one (Sport need).
The Resource Manager then selects Doing Sport which has no missing resources. This
activity is then placed at the Sport tNeed. After this, Hygiene is selected and Showering
can be now placed since the Bathroom is now available. The process continues with
Thirst, where Drinking is found to satisfy it (shown in Figure 3.4). However, Drinking
requires a Cleaned Glass which is missing. Therefore, a second activity must be found to

127

Chapter 3 – Additional Model to better address dynamic environments

produce a Cleaned Glass. Washing Dishes is thus selected since all its consumed resources
are available. At this step, the Resource Manager detects that Cleaned Plates are also
restored by this new Washing Dishes. Consequently, one of the missing resources related
to Eating is restored. This is why, the Washing Dishes previously scheduled to restore a
resource of Eating is not useful anymore and thus deleted. Washing Dishes and Drinking
activities are then placed at the Thirst tNeed. After this, Cleaning is placed to satisfy
House Hygiene. Finally, Going to the Toilets activity, requiring no missing resources, is
found for the last need and scheduled.

Figure 3.4 – Example of plan creation with resources (continued step 5). CR means Consumed Re-
sources, PR means Produced Resources

6. Positioning Activities and Adjustment of their Duration: When all activities
satisfying needs are placed in the schedule, their start time and end time will be shifted by
the Scheduler to avoid overlapping. Concretely, the scheduler first starts at the beginning
of the plan to check if start times are well positioned. The scheduler then starts at the end
of the plan to check if end times are well positioned. After this, the Resource Manager is
solicited to check if the activity impacted by blocking resources starts at the time when

128

3.3. Resource Manager

these resources are available. It should be noticed that the activities placed at the end
of the plan to restore the resource of the mandatory activity are not concerned by this
shifting step. In the end, the shifted activities ending after those linked to the Mandatory
one are deleted. In the example given in Figures 3.5, Showering is first shifted since the
start time is before the end of Doing Sport. The other ones are not shifted. The process
then checks the end times. Going to the Toilets and Cleaning are first shifted to start
earlier since they overlap Cooking. This move implies shifting the previous activities to
avoid overlap. However, due to this shifting, Showering starts earlier and now begins
when the Bathroom is blocked. This is why, the Resource Manager notifies it must be
shifted again to start at the right times. This move implies shifting the next activities to
avoid overlap. Consequently, Going to the Toilets exceeds the time limit and is deleted
from the plan.

Figure 3.5 – Example of plan creation with resources (step 6). CR means Consumed Resources, PR
means Produced Resources

Activities are then extended by the Activity Scheduler in the same way explained in
Chapter 2. The small change is that activities having blocked resources during the plan

129

Chapter 3 – Additional Model to better address dynamic environments

which cannot start earlier to avoid conflicts. However, they can be extended to finish
later if there is free time after it. In the example shown in Figure 3.6, Doing Sport and
Drinking have free time around them, they are thus extended until their maximum time.
After them, Washing Dishes is also extended until Drinking.

7. Filling Gaps: Default activities can be selected by the Scheduler to fill the free
time periods between activities. Since these activities only use reusable resources, the
Resource Manager only checks if the used resources are not blocked at the desired time.
The Scheduler also checks if their minimum duration is inferior to the free time period.
In the example detailed in Figure 3.6, there is a gap between Doing Sport and Showering.
Consequently, the Watching TV default activity is placed with the duration of this gap.

Figure 3.6 – Example of plan creation with resources (Steps 7 and 8). CR means Consumed Resources,
PR means Produced Resources

8. Checking interruptions: This interruption step is used to relax the duration of
the mandatory activity in the case where an urgent need could not be satisfied. The
activity satisfying the urgent need can only interrupt if its minimum duration is included

130

3.3. Resource Manager

in the duration of the interrupted one and if this last one is interruptible. In addition, to
be able to interrupt, all the resources of the activity must be available and the resources
used by the interrupted one must not be consumed. The Scheduler will be in charge of
integrating this interruption and the Resource Manager is also implicated to check the
resource constraints. In the example shown in Figure 3.6, the Toilets need could not be
satisfied, and Eating was considered interruptible. Since Going To the Toilets activity
has not missed resources and does not use the resources consumed by Eating, it is then
scheduled with its minimum duration. Eating is then reduced by this duration.

Figure 3.7 – Example of situations the actions of one agent impact the other

In this section, we shown an example of a plan construction in the case where resources
are considered. The Resource Manager is essential for multi-agent situations to simulate
coordinative and conflicting interactions as said in section 3.1.1.2 since this model can
provide plans in accordance with the resources yet used by other agents. An example of
a situation where the agent actions can impact other agents can be shown in Figure 3.7
where two agent calendars are shown in parallel. In this figure, we are at the point where
Agent 2 has ended its last scheduled activity (Eating) and is preparing to build a new
plan. Since Eating was executed, there is no available food anymore. In parallel, Agent
1 keeps performing its proper scheduled activities: at midday, Agent 1 is still performing
Showering. Consequently, the Bathroom is blocked when Agent 2 starts to schedule its
new plan. In this situation, any activity using the Bathroom such as Showering or Using
the Sink will thus not be scheduled by Agent 2 during the blocking period. Finally, since
Agent 2 has consumed the available food, this missing resource will disturb Agent 1 plan
in the future since Eating is scheduled later. This situation will be managed by the Plan

131

Chapter 3 – Additional Model to better address dynamic environments

Checker at the moment when Agent 1 will end Computing.

3.4 Interruption Manager

In this section, we detail the Interruption Manager used to manage resources and
events at the execution level. Effectively, even though the plan is created in a coherent way
and checked each time after an executed activity, unexpected events or missing resources
can suddenly happen. Unfortunately, we concluded in Chapter 1 that existing approaches
rarely propose solutions to manage interruptions for 3D environments. This is why, we
offer a process to interrupt and allow the agent to recover a state where it can correctly
perform any other activity. In addition, we also suggest a process to allow the agent to
return to the state where it can resume the interrupted activity.

By using the Interruption Manager, we also want to automatically detect and treat
interruption cases. When interruptions are considered in the literature, users often have
to manually add interruption cases inside their activities [182] when Automatons such as
Petri-nets or Finite state machines are used. This means that every time they want to
create or modify a new task, they must imagine all the interruption cases and implement
new branches to consider interruptions. More concretely, if they want to create a Filling
a glass task requiring cleaned glass, a breakpoint must be created by hand to consider
the case where no cleaned glass is present. They also have to manually indicate any undo
tasks to be done when interruptions happen, so that the agent returns to a state where it
can perform any other activity. For example, if the agent is holding a glass and is sitting
down when the phone is ringing, users have to manually create a breakpoint and add
the Put the glass down and Stand up actions so that the agent is ready to answer the
phone. Consequently, creating or modifying an activity becomes a very cumbersome task.
This is why, the idea behind the Interruption Manager is to automatically take care of
all interruption processes when Automatons are used so that users can concentrate solely
on the case where the activity works normally. This model is thus flexible since it auto-
matically adapts to the situation in which the interruption occurs. It is also independent
of the executed activity: any activity can be interrupted automatically without manually
adding any specific code or actions. Our model was inspired by GOAP and STRIPS [70],
but we propose in our case a solution compatible with Automatons. This compatibility
is also useful for our use case since the #SEVEN model [115] implemented in the Xareus

132

3.4. Interruption Manager

Software 1 and based on Petri-Nets is used for activity execution. In addition, we wanted
to develop a solution that was easier for users to configure compared to STRIPS or GOAP
where preconditions and effects must be added for each activity. To do this, the manager
concretely records the reversible changes caused by the executed activity and executes
actions canceling them when an interruption happens. More generally, two different pro-
cesses can be launched by the Interruption Manager to handle interruptions, depending
on whether the interruption is due to exhausted resources (section 3.4.1) or unexpected
events (section 3.4.2).

3.4.1 Managing Resources at the execution level

During the activity execution, the requested resources can be suddenly unavailable.
To manage this situation, the process illustrated in Figure 3.8 is launched:

Figure 3.8 – Example of missing resource management at the execution level

1. Stopping the current scenario: When an activity is launched, the associated
sequence of tasks is launched to execute actions in the 3D environment. In the case where
a task consumes a resource, the External Perception Model is automatically notified to
give the state of this resource. If this resource is not available, the condition required to
execute the tasks is not reached and the scenario is blocked. The Interruption Manager

1. Xareus Software: https://team.inria.fr/hybrid/xareus/

133

https://team.inria.fr/hybrid/xareus/

Chapter 3 – Additional Model to better address dynamic environments

is then noticed and the scenario is stopped. In our example shown in Figure 3.8, the
agent started to perform Computing. However, when the agent has to interact with
the computer, this last one is unavailable. Consequently, Computing is stopped by the
Interruption Manager before the use of the computer. Concretely, the token moving in
our #SEVEN scenario based on Petri-Nets is stopped by the resource sensor detecting
that the computer is not available.

2. Undo process to cancel reversible changes: When an interruption happens, the
agent can be in a state where it cannot perform any other activities. For instance, the
agent may be sitting while reading a book. Consequently, it cannot immediately perform
another activity if no actions to release the book and get up are launched. To solve this,
the Interruption Manager has memorized in a stack all the reversible changes caused by
each executed task. These changes concern the blocking of a reusable resource (chairs,
books, etc.), the agent body state (sitting, laying, etc.), the objects taken in hands, and the
devices turned on. The irreversible changes such as the consumed or renewable resources
are not considered. Effectively, renewable resources take too much time to return to their
previous state (ex: the agent must perform Washing Dishes to turn a dirty plate into
a clean plate). After stacking the changes, an Undo process is launched to return the
agent as quickly as possible to a state suitable for other activities. For each unstacked
change, actions canceling the reversible changes are launched. For instance, if an object
is grabbed, then an action to release this object is launched. These actions are selected
by starting with the one solving the last change. The treated changes are then removed
from the stack, and when this stack is empty, the process is stopped. In our example,
Computing ended due to a missing resource (computer blocked). Before this interruption,
Reversible actions such as Light turned on and Agent is seated were registered when the
related tasks were executed. When Computing is interrupted, the Interruption Manager
unstacks reversible changes and executes the corresponding Undo Actions: The first one
is Getting Up to cancel Sitting Down and the next one is Turning Off Lights to cancel
Turning On Lights. These Undo actions are made through #SEVEN scenarios in our
implementation.

3. Notify Interruption: When this process is finished, The Task Executor is notified
and an interruption notification is sent to the Plan Checker. In our example, a notification
indicating that Computing ended prematurely is sent to the Plan Checker.

134

3.4. Interruption Manager

3.4.2 Managing Events at execution level

Managing events at the execution level is challenging since they can happen at any time
during an activity execution. This is why, we need to have a process able to interrupt
activities at any time while avoiding animation errors caused by a sudden stop. This
process only concerns executed activities that are indicated as interruptible by users: if
an event happens during a non-interruptible activity, then this one is not considered.
Showering is an example of such activity: if the phone is ringing, the agent cannot answer
since it is under the shower.

When an event happens, the External Perception model detects the event and sends
it to the Interruption Manager. This last one then checks if the executed activity is
interruptible. In this case, the process illustrated in Figure 3.9 is launched as followed:

1. Pausing after the current task: In this step, the Interruption Manager identifies
two cases: the case where the current task contains an animation lasting a few seconds and
the case where the animation is repeated to last several minutes. When the animation
lasts a few seconds, the activity is stopped after this animation to avoid errors due to
no ended movements. This is the case for grabbing an object, turning on a device, etc.
When an animation is repeated during a determined duration, the duration is shortened
to the minimum to let the animation finish its last loop. The scenario is then stopped
just after. In contrast to the resource case, the scenario stays active to enable relaunch
after the event. In Figure 3.9, the agent is performing Cooking when the Phone Rings.
This event happens at the moment when the agent is picking up the pasta box. The
Interruption Manager then waits for the end of Grabbing Pasta action before pausing
Cooking by stopping the token of the #SEVEN scenario.

2. Undo process: To address events, the agent must be in a state where it can launch
any other activities. Consequently, the same Undo process explained in section 3.4.1 is
also used in this step. Concretely, by launching Undo actions to cancel reversible changes
caused by executed tasks, the agent can reach this state. In the case of events, the
reversible changes caused by the interrupted activity are kept in memory after executing
undo activities since they will be applied again to resume the activity, as explained in
step 4. The localization of the agent is also memorized to allow the agent to return to
the room after addressing the event. In the example shown in Figure 3.9, the reversible
changes made by Cooking are Turning on Plates and Grabbing Pasta. Undo actions are

135

Chapter 3 – Additional Model to better address dynamic environments

Figure 3.9 – Example of an event management at the execution level

thus executed to release the pasta box and turn off the hotplates before answering the
phone. In addition, the Kitchen room is also memorized.

3. Launching the scenario addressing the event: When the activity is paused
and the undo actions are executed, the Interruption Manager then executes an activity
addressing the event. As default activities, these activities can only exploit reusable
resources to avoid resource conflicts after. In the example shown in Figure 3.9, the agent
launches Answering Phone to address the event.

4. Resume the interrupted activity: When the event is managed, the Interruption
Manager executes actions to apply again the list of changes that were caused by the paused
activity. This process enables the agent to be in the same situation as the moment when it
was interrupted. The activity can be thus continued when it was stopped. After executing
these actions, the Task Executor is notified to resume the paused activity. Before this,
the Task Executor checks if the current time exceeds the end time of the paused activity.
In the case where the time is not exceeded, the paused activity is relaunched with a
reduced duration to end at the expected times when it is possible (by respecting the
minimal duration limit). Otherwise, the new duration will correspond to the minimum
duration minus the duration already spent by the activity before the interruption. When
the duration is established, the activity is resumed with the newly allocated duration. In
the example illustrated in Figure 3.9, the agent hangs up the phone and uses this process

136

3.5. Plan Checker

to go back to the kitchen, turn on hotplates, and take the pasta box. The token of the
#SEVEN scenario is then released and the agent can now pour the pasta in the saucepan.

5. Notify Interruption: When the activity is finished, the Task Executor sends an
interruption notification to the Plan Checker.

3.5 Plan Checker

When an executed activity ended, the Plan Checker verifies if the rest of the plan is
still feasible. In the case where the activity ended normally, only resources used by the
next activity are checked. Otherwise, an interruption happened and the Plan Checker
verifies whether the agent is now behind or ahead of schedule. After this checking, some
adjustments can be applied by the Checker to adapt the rest of the plan. If the changes
have too much impact, rescheduling is required. This section describes more precisely
how the Plan Checker checks the next activity resources (section 3.5.1) and the impacts
of interruptions (section 3.5.2).

3.5.1 Checking Plan Resources

Whether the executed activity was completed normally or affected by interruptions,
the Plan Checker always verifies the resources of the next activity. Effectively, even
though the plan is coherent with the resources available at the beginning of this plan,
resources can independently evolve from the agent actions. Consequently, some resources
that were not used by the executed activities could also disappear during their executions,
without impacting them since they are not used. However, these new missing resources
could impact the next activity scheduled after. For instance, if the agent is performing
Cooking, the fact that another agent uses the computer is not an issue. However, if the
next scheduled activity is Computing, this last one will be impacted if the computer is still
being used by the other agent when this activity has to start. This is why, it is essential
to set up a process checking the activity resources just before its launching.

Each time a resource changes, the External Perception Model updates the world
database. To check the next activity scheduled in the plan, the External Perception
Model is requested to know if the resources related to this activity are always available.
If the answer is negative, the activity cannot be performed.

137

Chapter 3 – Additional Model to better address dynamic environments

To limit the use of rescheduling processes, the Plan Checker first checks if this failed
activity can be replaced by another activity producing the same kind of resources. If none
of them is found, the Plan Checker tries to replace the failed activity with the activity
scheduled just after. To do this, the required resources of this last activity are checked as
well as its maximum duration to know whether the activity can be extended to take the
time slot of the failed activity in addition to its initial one. If it is possible, the duration
of the next activity is extended to start now and end at the expected time.

Otherwise, a process of rescheduling is launched: The rest of the activity plan is
dropped and the Plan Checker sends the empty plan to the Activity Selector. Since no
activity is scheduled, the Activity Selector asks the Scheduler to produce a new plan for
the remaining period of the failed plan.

In the example shown in Figure 3.10, Food is exhausted when the agent is executing
Washing Dishes. This situation can happen if users voluntarily drop all the available
foods or if another agent decided to eat this food for its proper objectives. Since Food
is not required by this current activity, the agent can finish normally Washing Dishes.
After this, the Plan Checker checks the resources of Eating. However, since Food is
missing, this activity could not be performed anymore: a plan adjustment is required.
The Plan Checker thus checks if the Computing activity situated after Eating can start
now. Since Computing can be extended and executable with the current resources, the
plan is adjusted to start Computing now. The rest of the plan is not changed.

Figure 3.10 – Example of a plan adjustment made by the Plan Checker after a missing resource: above,
the initial plan, and below, the adjusted one.

138

3.5. Plan Checker

3.5.2 Checking Plan after Interruption

In the case where the Plan Checker receives an Interruption notification from the Task
Executor, a deeper verification is launched to assess whether the agent is now behind or
ahead of schedule. Before checking resources, the Plan Checker will first compare the
current time with the one that was supposed to be reached at the end of the executed
activity. Three cases can thus happen:

The interrupted activity ended in time: This situation can happen when the inter-
ruption caused by an unexpected event was sufficiently short to not delay the interrupted
activity. The process to check resources detailed in the previous section is thus launched.
In the example given in Figure 3.11, Reading was interrupted by Receiving an SMS. Since
Answering an SMS is a short activity, Reading ended at the scheduled times. The rest of
the plan is thus not impacted by this interruption.

Figure 3.11 – Example of a plan adjustment made by the Plan Checker after a short Event: above, the
initial plan, and below, the adjusted one.

The interrupted activity ended earlier: An activity can finish earlier if a required
resource is suddenly missing during its execution. Consequently, the interrupted activity
could not be completed, and some effects may not be realized, such as resource production.
For instance, if Cooking was suddenly stopped because the Pasta Box was empty, the Food
resource was not restored during the execution. This may have an impact on the next
activities, such as Eating if Cooking was prematurely stopped. This is why, the Plan

139

Chapter 3 – Additional Model to better address dynamic environments

Checker first verifies whether the next scheduled activity can still be performed despite
the early termination of the current activity. If possible, the duration of the next activity is
extended to start now in the case where its maximum duration is not exceeded. Otherwise,
The Plan Checker verifies if another activity producing the same kind of resources can
be scheduled during the gap by checking its minimum duration and the availability of
its required resources. In the case where no activity is possible, a default activity is put
to fill the free time period. In the example shown in Figure 3.12, the ingredients were
exhausted during the execution of Cooking before their use. This exhaustion could be
due to another that already used the ingredient just before or due to the users’ actions
voluntarily wanting to drop ingredients to observe the agent reaction. Users can effectively
interact with the simulator to trigger events or deplete resources at any time through the
use of an interface or specific keyboard keys. Due to this, Cooking ended earlier and could
not produce any food. Nevertheless, a similar activity called Shopping is found to produce
Food. Since Shopping can be performed with the current resources and with the imposed
duration, it is scheduled in the plan to start now. The rest of the plan is not changed.

Figure 3.12 – Example of a plan adjustment made by the Plan Checker after a resource interruption:
above, the initial plan, and below, the adjusted one.

The interrupted activity ended later: This situation can arise when the interrupted
activity was delayed due to an unexpected event taking too long time to address. If the
current time is within the time slot of the next activity, the Plan Checker tries to cancel
the delay by reducing the duration of this next activity by the amount of lost time. This
solution works only if the minimum duration of the next one is sufficient to support this
time diminution. Otherwise, the plan is considered compromised: The rest of the plan
is dropped and the empty plan is sent to the Activity Selector to trigger a rescheduling.

140

3.5. Plan Checker

Actually, this rescheduling is used to limit the delay impacts over the next mandatory
activities. In the specific case where mandatory activities had to start before the current
time and were prevented from doing it due to the event, the plan is dropped. The manda-
tory ones impacted by this delay are then consecutively added to the empty plan with
their minimum duration if they have sufficient resources. The plan is then sent to the Ac-
tivity Selector to be executed. In this way, the delay should be limited while avoiding the
cancellation of many mandatory activities. In the example given in Figure 3.13, Reading
was interrupted by the Phone Rings event. Since Answering the Phone is a long activity,
Reading ended later and impacted the next activities: Doing Sport and Computing are
strongly compromised. In the case where they are not mandatory, a rescheduling process
is chosen: the plan is emptied. Otherwise, if Computing is mandatory, then the rest of
the plan is emptied, and Computing is added to the plan to start now with its minimum
duration.

Figure 3.13 – Example of a plan rescheduling made by the Plan Checker after a long Event: above,
the initial plan, and below, the impacted one.

141

Chapter 3 – Additional Model to better address dynamic environments

3.6 User-Experiment Protocol

In this section, we propose a preliminary version of a user-experiment protocol to
validate our agent model for dynamic environments. This protocol may therefore
evolve before making the experiment. In addition, pilot tests will be set up to check
and adjust the parameters proposed in this experiment protocol, such as the number of
videos, the number of questions, the duration of activities, and so on. The main question
related to this experiment is the following one: Does our agent model produce behaviors
close to what a human would do when confronted with dynamic environments?

Global process: This experiment will be split into two parts. The first part, explained
in section 3.6.1, is designed to evaluate the credibility of the agent behaviors at the
execution level. In this step, participants will be invited to analyze the credibility of the
agent reactions in the situation where this last one is interrupted by an unexpected event
when an activity is currently executed. The second part, explained in section 3.6.2, is set
up to assess the credibility of the agent behaviors at the scheduling level. In this part,
participants will be invited to schedule an activity calendar after an interruption. This
calendar will be then compared to the one produced by our agent through the use of
objective validation methods such as statistical analysis. This protocol was inspired by
several existing works detailed in Chapter 1 proposing user questionnaires or comparison
methods between agents and humans to validate the credibility of the generated behaviors.
For instance, the work of Jorgensen et al. [95], those of Park et al. [139], those of Darty et
al. [53], and those of SMACH [156], propose the protocols that are particularly relevant
to evaluate behavior credibility.

Participants: This experiment is not submitted to any specific restrictions regarding
participants. Ideally, we would like to have at least twenty participants. We also want
to cover different age brackets (from 18 years old), respect gender parity, and have peo-
ple working from different fields (not just those working in IT or research). The same
participants will be used for the both following parts.

3.6.1 Part 1: Evaluate behaviors at the execution level

This first experiment part aims to show that our agent can interrupt and resume
activities in a credible way from a human’s point of view when an unexpected event

142

3.6. User-Experiment Protocol

occurs. With this, we could have a credibility assessment concerning the agent behaviors
in the case of dynamic environments. The collected data are the participants’ answers
of a questionnaire retrieving their feelings. The main hypothesis of this first part is the
following: Participants have the feeling that the agent reacts as a human would facing an
unexpected event. To do this, we propose the following protocol:

Setting up the Experiment: Before making the experiment, several video showing an
activity execution will be created to retrieve the different feelings of participants for the
same situation. We decided to choose 3 activities that are relevant for interruption cases
since they impact a lot the environment with reversible and non-reversible changes. These
activities are Cooking (Pasta), Cooking (Pizza), and Washing Dishes). In addition, we
also choose 3 non-interruptible activities to retrieve the participants’ opinions regarding
situations where activities are not interrupted during an event. These non-interruptible
activities are Showering, Going To The Toilets, and Dressing. In parallel, 4 events are
chosen for the experiment to diversify the kinds of interruption: Fire alarm activated,
Phone ringing, Receiving SMS, and Doorbell ringing. After this, Each activity will be
simulated with one of the 4 events (for instance Wahsing Dishes will be interrupted by
Phone Ringing). These events will be programmed before the simulation to happen
precisely at the desired moment. We will finally obtain 6 different videos (1 for each
activity) that will be used for the experiment. Videos should be between 2 and 5 minutes:
the simulated time is effectively faster that the real time to prevent participants for
watching too long.

1. Video Observation: Participants start the experiments by watching the 6 videos
showing the 6 different activities disturbed by one of the 4 unexpected events described
above. Each video will be shown in a precise order: The order of the videos will be the
same for all participants, alternating between interruptible and non-interruptible activi-
ties. After each video, the questionnaire detailed in step 3 is given. Viewing and answering
questions should take about 40 minutes.

2. Active interaction with the simulator: In this part, participants will directly
interact with the simulator to trigger real-time interruptions during the execution of an
activity. Only one interruption will be authorized by activity. An interface is first
shown to choose between the 6 activities listed above. Once an activity is chosen, the

143

Chapter 3 – Additional Model to better address dynamic environments

activity will start whenever the participant decides. At any time during the simulation,
the participant can trigger one of the 4 events listed previously. If participants have
not triggered any interruptions, the trial is not counted and they will be asked try again.
Otherwise, after each interruption simulation, the questionnaire detailed in step 3 is given.
This step should also take about 40 minutes.

3. Questionnaire: After watching a video or interacting with the simulator, a ques-
tionnaire is given to the participants to retrieve their feeling about the credibility of the
agent reactions facing unexpected events. These questions listed below are inspired by
those proposed by Schumann et al. [156], Renoux et al.[148], Jorgersen et al.[94] and Darty
et al. [53] to evaluate the credibility of their agent behaviors during activity execution or
activity scheduling:

1. In your opinion, was the agent in a situation where it could interrupt its work?
The answers can be Yes, No, I do not know.

2. In your opinion, did the agent react to the unexpected event in a reasonable time?
A scale from 1 to 5 is given as the answer. 1 corresponding to Too Slow and 5
corresponding to Too fast.

3. In your opinion, did you find the agent address the situation in a credible way? A
scale from 1 to 5 is given as the answer. 1 corresponding to Not at all credible and
5 corresponding to Very credible

4. In the case of interruption, did you find the agent resumes the activity in a cred-
ible way? (Excluding animation) A scale from 1 to 5 is given as the answer. 1
corresponding to Not at all credible and 5 corresponding to Very credible

5. In the case where the agent’s behavior does not seems credible to you for handling
unexpected events, would you have any suggestions to improve this behavior? The
answer is a paragraph written by the participant

Analysis: A statistical evaluation using means and standard deviation will be performed
to study the answers.

3.6.2 Part 2: Evaluate behaviors at the scheduling level

This second part of the experiment aims to show that the schedules produced by
the agents after an interruption are close to those produced by a human. In this way,

144

3.6. User-Experiment Protocol

Figure 3.14 – Calendars that will be used for the user Experiment

we could have a credibility assessment concerning the agent behaviors produced at the
scheduling level in the case of dynamic environments. The main hypothesis of this part
is the following: There is little difference between an activity schedule made by a human
and one made by an agent after an interruption. To do this, the following protocol is
proposed:

Scheduling a Calendar: In this second part, the same participants will then complete
two already-started calendar (one for the morning and one for the evening) that were
stopped just after the management of an interruption. The calendar to complete ends
with a mandatory activity having not sufficient resources to be executable in the current
situation. The objective is therefore to fill the schedule between the current moment
situated just after the interruption and the moment when the future mandatory activity
starts. The two schedules given to the participant is shown in Figure 3.14. To place
activities in the plan, Participants will interact with a 2D interface illustrated in Figure
3.15 containing the plan to be completed at the top, the activities currently possible at
the bottom, and the missing resources on the left side. The participant can drag and drop
activities into the schedule and can also adapt the activity duration between a minimal
and a maximal value. Activities that cannot be performed due to missing resources are

145

Chapter 3 – Additional Model to better address dynamic environments

greyed out. The moment where needs start to be urgent are also displayed to users
to provide the same information level that agents can have during their scheduling. The
participant can choose from 15 activities indicated in Figure 3.15. This second part should
last around 30 minutes. Before the experimentation, the agent will be simulated in the
same situation and the output calendar will be retrieved.

Figure 3.15 – User Interface prototype to schedule daily activities. CR means Consumed Resources
and PR means Produced Resources. (1) shows how users can drag and drop activities on the plan and
(2) shows how users can extend durations

Analysis: We propose objective validation methods to assess the credibility of agent
behaviors. For this purpose, the participants’ schedules will be compared with the agent
one through the following metrics:

• The activities chosen by both participants and the agent, and their occurrence.
• The mean duration and start time retrieved for each activity chosen by participants

and the agent.
• The activities only chosen by humans and those only chosen by agents.
• Error rate related to the case where the mandatory activity scheduled at the end

cannot be performed with the proposed plan because resources were not restored.
• The number of satisfied needs for the agent and participants
• The sequences of activities both found in the participant and agent calendars (e.g.

Cooking -> Eating -> Washing Dishes) and their occurrence.

146

3.7. Conclusion

By using these metrics, statistical analysis, as made by Jorgersen et al. [95], or clus-
tering methods, as made by Darty et al. [53], can be performed to analyze results and
check our hypothesis.

3.7 Conclusion

During this chapter, we propose a new model made of three sub-models to better ad-
dress dynamic environments. The first is the Resource manager used to anticipate future
missing resources and produce a plan coherent with the currently available resources. The
second one is the Interruption Manager used to manage resources and unexpected events
at the execution level. The last one is the Plan Checker used to check whether the rest of
the plan is always feasible after an interruption. These models allow the agent to consider
resources and unexpected events at both scheduling and execution levels while manag-
ing the other constraints described in Chapter 2 (time, needs, etc.). We also detailed in
section 3.6, the preliminary version of a user experiment protocol to validate the agent
model in the case of dynamic environments through the inclusion of missing resources
and unexpected events impacts.

With this new agent model version presented in this Chapter, new scenarios and
situations are accessible for users wishing to use our model to generate data, populate
environments, or enhance their existing simulators. For example, they can now simulate
several agents simultaneously, whereas it was previously complicated to do this due to
the impact of each one on the activities of others. Multi-agent data can therefore be
created. They can also simulate scenarios specific to dynamic environments such as the
case where there no food is available, the bathroom is occupied this morning, and so
on. In addition, with the ability to schedule events in advance or trigger them during
the simulation, they can also simulate situations implying unexpected events such as the
telephone ringing at 12 p.m., an object breaking down during the evening, the fire alarm
going off during Cooking, and so on. Actually, if we have simulated such situations with
the version proposed in Chapter 2, the agent would have ignored the unexpected event
and continued as if nothing had happened.

Regarding the three challenges that we want to address, these 3 models enable us
to better address Challenge 1 related to the credibility of behaviors since environmental
impacts are now handled. Regarding Challenge 2 requiring a compromise between control

147

Chapter 3 – Additional Model to better address dynamic environments

and autonomy, our models are designed to respect the constraints given by users as long as
they are compatible with the environment state. However, in order to address Challenge
3 related to validating the credibility of behaviors and data, we must perform the user-
experiment protocol proposed in this section as well as some Input-Output comparisons
checking the respect of input parameters. Following this idea of strengthening validation,
we propose in Chapter 4 another validation method that compares the effectiveness of
simulated data with real ones to train machine learning algorithms.

148

Chapter 4

METHODS TO VALIDATE THE

CREDIBILITY OF THE DATA GENERATED

BY THE SIMULATOR

Chapters 2 and 3 showed how we can address the first and the second challenges
through the design of an agent model that can give control and autonomy over behaviors
and execute daily activities in a 3D environment. In particular, the ability to perform
activities in a 3D Environment allows the generation of accurate synthetic data, as ex-
plained in our Chapter 1. Now, we present our a posteriori validation method to meet the
third challenge regarding the way to validate the credibility of the synthetic data gener-
ated by the agent. To address this challenge, we propose to replicate a real data collection
experiment in a virtual home, using our agent model in place of a human subject. To find
out whether our simulated data can be used in the same way as real data, we propose
to evaluate the credibility of simulated data by using them for context-aware
machine-learning models.

To evaluate this, we have chosen two human understanding tasks: current activity
recognition and future activity prediction tasks. According to chapter 1, several possible
validation methods can be used to compare simulated data with real data for activity de-
tection or prediction, as shown in the survey of Chaquet et al. [42] which summarizes the
existing approaches using synthetic data for activity detection. Among the existing a pos-
teriori validation methods for activity detection and prediction, we have the comparison
of the performance rate obtained from the algorithms between the case where synthetic
data are used and the case where real data are used. This is the type of validation that
we use here to compare the credibility and effectiveness of our synthetic data. The final
objective of this credibility assessment is to show whether simulated data can replace real
ones to train machine-learning models that can recognize and predict real situations.

Activity recognition described in section 4.2 allows us to assess the credibility of the

149

Chapter 4 – Methods to validate the Credibility of the Data generated by the Agent

interactions performed by the agent in the environment as well as the sensor behaviors.
By comparing the performance gap in activity recognition, we can find out whether the
agent interacts with the environment in a coherent and accurate way, and whether the
performed tasks are close to those recorded in reality. We can also know if the diversity of
performed tasks is sufficient for the detection algorithm to be robust when analyzing real
activities. This also enables the detection of missing or imprecise interactions between the
agent and the virtual sensors/effectors. In parallel, we can also assess if sensors located
in the VE can capture the agent interactions in an accurate way.

Activity prediction described in section 4.3 allows us to assess the credibility of
the agent decision-making model. By comparing the gap in performances of prediction
between the use of real and synthetic data, we can evaluate whether the agent can schedule
activity routines close to real ones. Effectively, since this algorithm predicts the future
activity in relation to the activities performed just before, it can identify logical patterns
and habits in the choice of activities. For example, if a person has prepared food and
cooked, then the Eating activity is likely to happen after. By analyzing the performance
of the prediction algorithm according to whether they have been trained with real or
simulated data, we can check if the agent’s choices are sufficiently coherent and diversified
to produce routines giving enough robustness to this algorithm to predict real routines
with similar performances. We could then reinforce the assumption that the routines
produced by the agent are sufficiently credible to substitute real data in this domain.

Whether it is activity detection or prediction, our aim is not to outperform the result
obtained with real data, but rather reduce the gap between them. For example, if the
successful prediction rate is 20% when the algorithm is trained with real data, then we
also aim to have a prediction around 20% when this algorithm is trained with synthetic
ones. For fair comparisons between real and simulated data, it is important to replicate
as closely as possible the real home, the real sensors, the real subject, and the real exper-
imental protocol used to collect the real dataset. Section 4.1 thus describes how the real
environment and experimental protocol have been replicated.

It should be noted that the agent model used for these validation experiments is the
one presented in Chapter 2. The additional model presented in Chapter 3 is thus not used
here. Effectively, they were not required to replicate this real database since unforeseen
events coming from the environment or resource management were not considered in the
real experiment protocol (the resource reloading was done outside the data collection
periods).

150

4.1. Replication of a Real Database

4.1 Replication of a Real Database

In this section, we detail the real Orange4Home dataset [51] that we propose to repli-
cate as well as the details about the replication of the home, sensors, effectors, and
experimental protocol used for this specific dataset. It should be noticed that the results
presented in this section are related to only one real database: testing our approach on
other databases will thus be necessary in the future to validate the credibility of our model
in a robust way. For the moment, this experiment essentially serves as a preliminary test
to know whether substituting real data with simulated one is really possible in a specific
case.

4.1.1 Introducing Orange4Home

Figure 4.1 – A sample of the input activity calendar that must be followed by the real participant in
order to create the real Orange4Home database.

Orange4Home is a database that was created by the Orange company where the initial
goal is to test its developed activity recognition and prediction machine-learning algo-
rithms (These algorithms will be the ones used in this chapter). A two-story apartment

151

Chapter 4 – Methods to validate the Credibility of the Data generated by the Agent

was thus made available to one participant to do the experiment for 4 weeks. This person
was asked to follow an input activity calendar containing mandatory activities that must
be performed at specific times. A sample of this calendar is shown in Figure 4.1. Real
data contained in the Orange4Home database were created by the sensors located in the
flat and by the effectors triggered by the participant. Concretely, The occupant had a
mobile app to indicate when an activity started and when it finished. In addition to the
mandatory activities, the Going to the Toilet activity, which was not originally scheduled
in the initial calendar, can also be indicated by the participant during the experimen-
tation. This unscheduled activity was introduced to generate more diversity in the real
data. More details about the creation of this database can be found in the work of Cumin
et al. [51] and more explanations about the use of Orange4Home to train the activity
prediction and detection algorithms can be found in the next work of the same author
[50], [52]. During this thesis, we extended these results by testing our synthetic data on
these algorithms in order to compare the obtained results with the previous ones based
on real data. This analysis allows us to know if the produced synthetic data can be as
efficient as the real ones in our specific case. We can thus check whether our agent model
could be used for data generation. Figure 4.2, shows in parallel the occupant performing
an activity and our agent performing the same activity.

Orange4Home dataset [51] was chosen in our experiments for multiple reasons:
• Orange4Home is freely open to researchers 1, which improves the reproductibility

of our experiments.

• Orange4Home comprises 4 weeks of labeled daily-living activities at home. We
will thus judge the credibility of varied activities simulated by our approach on
relatively long time scales.

• Orange4Home was recorded in a two-story home comprising 8 different rooms, in-
strumented with 236 heterogeneous sensors and effectors. Our virtual environment
will thus replicate a realistic home setting, and we have a large selection of sensors
and effectors to select for replication. These sensors and effectors are detailed in
section 4.1.3.

• We worked with the authors who created the Orange4Home database and machine
learning algorithms to develop these new results. This enables more accurate

1. See: https://amiqual4home.inria.fr/orange4home/

152

https://amiqual4home.inria.fr/orange4home/

4.1. Replication of a Real Database

replication of the dataset and thus fairer comparisons between real and simulated
data.

Figure 4.2 – Illustration of an occupant and a virtual agent performing the same activities. On the
top, the performed activity is Computing, and on the bottom, the performed activity is Cooking

4.1.2 Replication of the Real Environment

The home occupied for the recording of Orange4Home was recreated in our virtual
environment, following the plans established for the real apartment, reported in Figure
4.3. This replication also includes most of the furniture, objects, and appliances that the
real subject interacted with during Orange4Home’s collection. In particular, special care
was taken for the replication of elements that are instrumented by sensors or effectors,
which will thus impact the quality of data generated when interacting with them. In
Figure 4.4, we present a side-by-side view of the living room captured from a similar
point of view, in both the real apartment and our simulated replication. Photorealism is

153

Chapter 4 – Methods to validate the Credibility of the Data generated by the Agent

not sought-after since our data are not impacted by this.

Figure 4.3 – The plan of the ground floor (left) and first floor (right) of the home used in Orange4Home
and replicated in the virtual environment shown below.

4.1.3 Replication of Real Sensors and Effectors

Simulating credible data requires that virtual sensors and effectors have credible be-
haviors. Real sensor data include artifacts, rather than being the result of perfect sensing
capabilities. For example, real presence sensors often do not detect seemingly motion-
less people, whereas a perfect simulated presence sensor would always detect movement
regardless of amplitude. Replicating credible behavior thus requires the replication of
artifacts and quirks that occur with real sensors. In this section, we present the general
principles for simulating sensors and effectors in our VE as well as those used for our
validation experiments.

There are in general two ways to replicate credible sensor behavior from real sensor
behavior. First, manufacturer data can be used to know how each sensor or effector
generally behaves. For example, we can obtain information on the field of view of a
presence sensor, the threshold at which a pressure sensor is triggered, or the frequency of
data collection. With this data, we can replicate the general behavior of sensors. However,
such documentation is not always available for specific device models or versions, or we

154

4.1. Replication of a Real Database

Figure 4.4 – Sections of the Office (right corner), Kitchen (top left corner), and living room (bottom
left corner), as seen in the real Orange4Home apartment (left part) and in our virtual environment (right
part).

sometimes do not know which device model or version we want to specifically replicate.
We generally cannot replicate artifacts in data from these specifications.

To overcome this issue, the second way to replicate credible behavior is to observe the
behavior of real sensors and effectors in collected datasets. We can then extract behaviors
from statistical analysis, which can include their artifacts. This approach requires that
there is enough representative data for the device we seek to replicate. Ideally, both
approaches should be combined to replicate sensors and effectors behavior with maximum
credibility, but this is not always feasible.

Most of the simulated sensors in our VE rely on the analysis of both manufacturer
and statistical data. Among these sensors, two categories may be distinguished:

• Sensors notifying when their state changes. Among these sensors, we can find
the devices sending a notification when they are turned on or off such as ovens,
microwaves, hoods, and so on. We have also door-opening sensors (opened/closed),
lights (on/off), and shutters (opened/closed) that send a notification when they
are triggered. Finally, we have switches sending a notification when pressed (on)
and then a notification when released (off).

• Sensors notifying when their state changes, and then sending a notification of their
state with a regular frequency. For example, smart TV sends a notification when
turned on or off, and a notification of its state (on/off) every minute as well.

Some sensor behaviors in our VE are based only on statistical analysis, performed on

155

Chapter 4 – Methods to validate the Credibility of the Data generated by the Agent

Figure 4.5 – Real data retrieved from the real water sensor placed on the real kitchen tap. On the left,
a box plot of the real water flow values; on the middle, the number of real flow occurrences according to
their value; on the right, an illustration of the simulated water sensor placed on the virtual kitchen tap.

the Orange4Home dataset [51]:
• Water flow sensors, notifying when their state changes as well as the flow of con-

sumed water at a specific frequency while active. Water flow sensors are used for
taps (for both hot and cold water independently) and toilet flushes. Virtual sensors
measure water flow based on a Gaussian distribution, parameterized based on the
analysis of real water flow sensor behavior, which is illustrated in Figure 4.5.

• Presence sensors notifying when the agent is detected in its field of view. This
latter is simulated by Unity Colliders 2, detecting when the agent enters into its
conical detection area (110°) as shown in Figure 4.6. We observed in real data
that these sensors have a 10-second window of blindness where no new notification
is sent after detecting a presence. In addition, the person is often undetected
after a certain duration of immobility and then detected again. To replicate this
behavior, the simulated sensor does not detect the agent if it does not move during
a given period of time. After this period, if the agent moves, the sensor detects it
again. Otherwise, the sensors detect the immobile agent after a random duration

2. Unity Collider : https://docs.unity3d.com/ScriptReference/Collider.html

156

https://docs.unity3d.com/ScriptReference/Collider.html

4.1. Replication of a Real Database

(corresponding to the detection of small movements that occur in real situations).

Figure 4.6 – Example of a range detection sensor (110°)

For our experiment, synthetic data are generated from the selection of sensors and ef-
fectors we have replicated based on the original Orange4Home experiment, which contains
236 real sensors. In close collaboration with the authors who created the Orange4Home
database, we have replicated 63 of these sensors in the VE which seemed to be useful
to recognize activities since they are not redundant and are frequently triggered by the
agent during activities: lights, door and cupboard openings, presence detection, switches,
electricity instantaneous consumption, hot and cold water instantaneous consumption,
shutters, and TV statuses. These virtual sensors were placed accurately to their corre-
sponding real equivalent. Functional dependencies for certain sensors were also properly
replicated: links between switches and lights, between water consumption and faucets,
door opening sensors and doors, and so on. Sensors that were not replicated fall into one
of 2 categories:

• Sensors for which we do not have a virtual equivalent yet: temperatures, CO2
levels, weather information, noise levels, etc. Replicating some of these sensors
accurately requires specific simulations of environmental variables, which we have

157

Chapter 4 – Methods to validate the Credibility of the Data generated by the Agent

not investigated in this experiment.

• Sensors that correspond to settings, are redundant or seldom triggered: heater
settings, total accumulated consumptions, unused switches, unused appliances, etc.

4.1.4 Replication of the Experimental Protocol

Figure 4.7 – Sample of a one-day Orange4Home calendar that was given in input (Blue one) and
performed by the agent (Orange one). An interruption was also triggered by the agent to satisfy Toilet
need

To match Orange4Home’s experimental protocol, we generated 4 weeks of simulated
activity data, excluding evenings, nights, and weekends since they were excluded in the
real dataset. The agenda that the real participant had to follow in order to create Or-
ange4Home was given as an input calendar in the agent model. Figure 4.7 shows a one-day
sample of this calendar that was performed by the agent and whose results are presented
in the format of an output calendar. In total, 23 different activity classes were simulated
(24 including moments during which no activity occurs, labeled none)1. The Cleaning ac-
tivity was simulated only in the kitchen, living room, bathroom, and office. Orange4Home
activities, sensors, and effectors that were replicated can be found in Table 4.1.

158

4.2. Validation with Activity Recognition

Since the activity schedule of Orange4Home is strict, little room for maneuvering was
left to the occupant. He could therefore interrupt an activity to satisfy his own needs such
as going to the toilet for example. To have an agent able to reproduce such behaviors, the
introduction of interruption mechanisms, when a need becomes urgent, is thus necessary
for our use case. The schedule was voluntarily strict to obtain well-structured data for
the training of future activity prediction and current activity recognition algorithms. In
addition, the first two weeks were very similar between days whereas the last two were
very different. With this, the first two weeks can be used as training data and the last
two weeks containing less predictable activities can be used to test the efficiency and
robustness of these machine-learning algorithms.

4.2 Validation with Activity Recognition

As said before, activity recognition allows us to know if the tasks and interactions exe-
cuted by the agent are sufficiently coherent and diversified to look like what could happen
in real life. With this experiment, we can thus check the credibility of our Task Executor
model by verifying whether the agent can interact with enough devices and effectors, and
can be detected by enough sensors compared to a real person. We could then deduce
if simulated data can be exploited in the same way as real data. More concretely, the
comparison between the performances obtained in the case where the detection algorithm
is trained with real data and the case where it is trained with simulated ones will allow us
to know if the simulated data give enough contents (devices, effectors, triggered sensors)
compared to the real ones and thus conclude whether they are exploitable. In parallel,
the ability of simulated sensors to capture data in a credible way can also be assessed by
checking their occurrence during a specific activity compared to real ones for the same
activity.

The activity recognition used in this Chapter to compare the efficiency of synthetic
data is based on a Multi-Layer Perceptron (MLP) model which is a category of Artificial
Neural Networks. The input to this MLP is a vector of the last reported value of each
sensor and effector. For instance, if the agent turned on the TV, the vector will contain
this notification with the time of day. In output, we obtain the name of the recognized
activity that will be then included in the calculation of the overall performance rate. For
instance, if the agent was detected in the bathroom (by the presence sensor) and the
shower tap was turned on, the algorithm can deduce that Showering is performed. Our

159

Chapter 4 – Methods to validate the Credibility of the Data generated by the Agent

goal in this experiment is not to obtain the best performance but rather to
get close results between the case where real data are used for training and
the case where synthetic data are used. For a fair comparison, we restrict real data
to sensors that were replicated in the simulated environment (see Section 4.1.3). Both
the real and simulated data thus share the same input feature size.

Table 4.1 – Activities, sensors and effectors implied in the Orange4Home dataset that
were replicated

Locations Simulated Orange4Home Activities Simulated Sensors
and Effectors

Entrance Entering Leaving Door, Switches,
Lights

Kitchen Preparing Cooking Washing Dishes Cleaning

Sink tap, Switches,
Lights, Oven, Hood,
Cupboard Doors,
Cooktop, Presence

Living Room Eating Watching TV Computing Cleaning
Presence, TV,
Shutters, Switches,
Lights

Toilet Using The Toilets Switches, Lights,
Toilet Flush, Door

Staircase Going Up Going Down Switches,
Lights

Office Computing Watching TV Cleaning
Presence, TV,
Door, Shutters,
Switches, Lights

Bathroom Using The Sink Using The Toilets Showering Cleaning

Presence, Switches,
Lights, Shower tap,
Sink tap, Door,
Toilet Flush

Bedroom Dressing Reading Napping

Lights, Shutters,
Switches, Door,
Drawer Doors,
Closet Door

Following the experimental protocol set in [52], the first two weeks of data are used
for the training phase, the third week as validation data to optimize training parameters,
and the fourth week for testing (which are the results reported here), for both real and
simulated data. Concretely, the algorithm was first trained with the first three weeks of
Orange4Home data, to be then tested on the last week of real and synthetic data. After
this, the algorithm was trained with the first three weeks of our synthetic data, to be then
tested on the last week of real and synthetic data. These four cases and the obtained
performance rate are given in Table 4.2 and studied in the next section.

160

4.2. Validation with Activity Recognition

4.2.1 Recognition Performances on Real and Simulated Data

We report in table 4.2 the recognition accuracy of the MLP on simulated and real
data. We see that the model is quite accurate (88.70%) at recognizing activities from real
situations when it was trained on real data, with only the selected subset of real sensors
also replicated in our VE.

Table 4.2 – Activity recognition accuracy using simulated and real data.
Training data Test data Test accuracy

Real Real 88.70%
Simulated Simulated 79.40%
Simulated Real 80.10%

Real Simulated 55.00%

We see that the recognition accuracy in simulated situations is also high when it was
trained on synthetic data, although lower than in real situations (79.40% compared to
88.70%). This shows that virtual activities are globally recognized with simulated training
data, even if some are harder to identify than with real instances. Several reasons can
explain these difficulties: the agent might interact in simplified movements, triggering
less useful sensor events compared to a real occupant. Another possibility is that virtual
sensors necessary to identify a specific activity might not be as informative as the real
ones.

Comparing performance in different activity classes can help identify which parts of
the simulation can be improved. For example, the Using the sink activity in the bathroom
reaches an accuracy of 37.14% on real data, compared to 3.91% on simulated data. In this
example, we noticed that most of the misclassifications concern the Showering activity,
which occurs in the same place. Therefore, we can assume that some human actions
related to both activities are important to distinguish them, and were not integrated
into our agent. We can also assume that the replicated bathroom and sensors might not
capture all significant information related to these activities.

4.2.2 Using Simulated Data for Real Situations

Ideally, simulated data could reduce the need for labeled datasets collected in real
situations to train machine learning models. In this case, simulated data must be rep-
resentative of real situations, so that a model trained on simulated data can provide

161

Chapter 4 – Methods to validate the Credibility of the Data generated by the Agent

accurate recognition when processing real situations. To illustrate this case, we train our
activity recognition model with simulated data by following the same process, and we test
it on real data (using the last real week). The resulting model, as reported in table 4.2,
reaches a recognition accuracy of 80.10%. These performances, although inferior to the
ones obtained when real data are used for training (88.70%), show that it is possible
to reach high recognition accuracy of real situations, from purely simulated
training data.

When the detection algorithm is trained with simulated data, the same detection
mistakes are observed when it is tested on simulated data as on real data. For instance,
the success rate reached with Using the Sink is as low on simulated data as on real data.
This shows that simulated data still lack the accuracy required for the algorithm to be
effective in detecting some activities. We can also observe that the activities being well
detected in the simulated data are also well detected in the real ones. For these activities,
the synthetic data are sufficiently rich and accurate to enable the algorithm to identify
them. All of this shows that our simulated data are generally usable since most activities
are well recognized when the detection algorithm is trained on simulated data. However,
some adjustments still need to be made for some activities to improve the success rate
and come closer to the one reached with real data.

For completeness sake, we also tried to recognize simulated data with the algorithm
trained on real data. We observe a large drop in performances compared to the case where
it was trained on simulated data, as reported in Table 4.2 (55.00% vs 79.40%). Activities
that were well detected when the model was trained and tested on the same type of
data (real and synthetic) exhibit very low accuracies in this case. This global drop is not
observed across all activity classes: some well-classified activities in the previous cases stay
well-classified. One explanation could be that real data contain richer information than
our simulation. Effectively, when we created the task sequences, we asked the authors of
Orange4Home to give us the main tasks performed by the participant in the real house.
This gave us an overall idea of which main sensors and objects were used in each activity.
However, our simulated activities stay approximate since we did not use real videos to
create our activities: we just used a list of sensors and objects implied in activities.
This inevitably leads to approximations in the simulated data, since some participant
behaviors that could trigger additional sensors containing no indispensable information
for recognition are not simulated. This could explain why we get a good result when our
algorithm is trained on simulated data and tested on real data: information stored in the

162

4.2. Validation with Activity Recognition

simulated data are sufficient to distinguish activities, but we probably do not include all
events triggered by a real human. Consequently, when we train the algorithm on real
data to test it on simulated data, information that is not essential to detect an activity
can become a key selection criterion for the algorithm. For instance, if the location of
an object is not the same between real and virtual environments, the participant could
take a different path from what the agent would take and thus trigger additional sensors
(other presence sensors, additional cupboard opening, etc.). To summarize, the algorithm
is more demanding when trained on real data, since it has access to a greater amount
of information. More key criteria are thus considered than in the case where synthetic
data are used for training: if all the sensors considered as recognition criteria are not
triggered in the simulation, the activity performed by the agent will be harder to identify.
Conversely, when synthetic data are used for training, fewer key criteria will be found,
but all of them will be present in the real data, enabling accurate activity detection.

4.2.3 Comparing Performances on Real Data with all Sensors

In previous experiments on real data, we have limited ourselves to only using the list
of sensors that were replicated in the simulation (see Section 4.1.3), thus ensuring fair
comparisons to be able to use our model trained on simulated data for real test situations
(and vice-versa). However, it can be valuable to compare these performances obtained on
real data using all available sensors in Orange4Home. This model reaches a recognition
accuracy of 93.20% when it was trained and tested on real data, which is slightly more
accurate than the model trained with the limited list of sensors (88.70%), as expected.

We see that the gap in performance is weak, showing that the list of sensors we have
chosen to replicate in the simulation provides most of the required information to recognize
human activities accurately. This experiment also allows us to identify certain sensors
that ought to have been simulated: for example, the model trained with all sensors is very
accurate for class Napping (99.19%), compared to the model trained with limited sensors
(46.13%). This large discrepancy helps us identify a posteriori that the bed pressure
sensor, which was not replicated, is in fact essential to correctly classify this activity.

163

Chapter 4 – Methods to validate the Credibility of the Data generated by the Agent

4.3 Validation with Future Activity Prediction

In order to judge the credibility of simulated activity routines, we propose to test
the use of simulated data for the task of future activity prediction. For this task, we
seek to predict the next activity, using previous activities and other high-level contextual
information such as place and time. Therefore, the main factor in the quality of simulated
data for this task is the agent model. As said at the beginning of this chapter, since this
algorithm predicts future activity in relation to activities performed just before, it can
identify logical patterns and habits in the choice of activities. Effectively, prediction is
based on the assumption that people have daily routines that are repeated over time
and can therefore be detected and used to predict what will happen once this routine
has begun. Of course, isolated activities that occur in reaction to a situation, or those
chosen by default to keep busy cannot be easily predicted. To ensure that the algorithm
is able to detect routines, the initial Orange4Home calendar, followed by the participant,
deliberately introduces the sequences of activities that are repeated every day to create
routines (such as the Preparing, Cooking, Eating sequence). Since the agent follows the
same calendar as the real person, it can theoretically produce routines with the same
precision. By comparing the performance obtained when the algorithm is trained with
simulated data and when it is trained with real data, we can find out whether the agent
can choose activities in an accurate and coherent way to give this algorithm enough
robustness to predict real routines with similar performances. These experiments are
thus an indicator of the agent model’s ability to generate credible activity
routines. The credibility of the agent interactions and the quality of virtual sensors are
less important here since we do not use them directly to predict future activities: The
data used here are the output calendars containing all the activities performed either by
the participant or the agent, with their durations and locations.

To compare behaviors of activity prediction on simulated and real data, we use the
model proposed in [52], which was previously evaluated with the Orange4Home real
database. This model is a Dynamic Bayesian Network (DBN) in which nodes repre-
senting activity, room, hours of the day, and day of the week, are represented for both
current and future situations. This model is used to predict the future activity that will
occur. Cumin et al. [52] proposed different ways to improve activity prediction. One
of those propositions is that sequences of human activities do not satisfy the Markov
property. In other words, the choice of a human to perform an activity does not only

164

4.3. Validation with Future Activity Prediction

depend on their current activity but can also depend on other past activities as well. In
our experiment, we will focus on testing different non-Markovian depths for prediction,
as in [52]. For example, a non-Markovian depth of 3 indicates that the model uses the
current activity as well as the 2 previous activity instances for prediction.

Following the experimental protocol set in [52], we use the first two weeks of data for
the training phase, the third week as validation data to optimize training parameters,
and the fourth week for testing (which are the results reported here), for both real and
simulated data.

4.3.1 Impact of Non-Markovian Depth

Table 4.3 – Prediction accuracy with varying non-Markovian depth on simulated data.
Non-Markovian depth

1 2 3 4 Average
79.12% 85.71% 89.01% 89.01% 85.71%

Before comparing the obtained performances between simulated and real data, we first
study in this section the impact on performance induced by the initial configuration of the
algorithm. More specifically, we study this impact when the algorithm is configured with
different non-Markovian depths. We thus present in Table 4.3 the prediction accuracy
obtained with different non-Markovian depths when the prediction algorithm was trained
on simulated data. A depth of 1 implies that only the current activity (with the nodes of
place, the hour of the day, and the day of the week) is used to predict the future activity,
whereas a depth of 3 implies that the current and previous two activities are used to
predict the next activity.

We see that performances are higher with a depth of 3 or 4 (89.01%), and lower with a
depth of 1 or 2 (79.12% or 85.71%). This behavior was also observed on 5 real datasets as
reported in [52], where multiple datasets reached their highest performance with a depth
of 3, except for one dataset (the least predictable) reaching a depth of 1.

These experiments show that the sequences of daily activities generated
through our agent model exhibit similar non-Markovian behaviors to those
of real datasets reported in previous works [52]. Whatever the data used (real or
synthetic), the past sequence of 3 activities provides the most information on which next
activity will occur for this dataset. Only using 1 past activity is generally not informative

165

Chapter 4 – Methods to validate the Credibility of the Data generated by the Agent

enough, whereas using sequences longer than 5 activities introduce noise and unneeded
complexity to our predictive model.

4.3.2 Predicting Performances on Real and Simulated Data

After studying the impact of different non-Markovian depths, we can now compare
the performance obtained when the algorithm is trained with simulated data and when it
is with real ones. To do this, we choose a depth of 3, which is generally the most effective
as detailed in the previous section. We report in Table 4.4 the prediction accuracy of
this model on simulated and real data. We see that real data from Orange4Home is
quite predictable (91.18%) since the occupant followed a strict schedule of activities. To
evaluate the efficiency of simulated data, two cases were examined: the case where the
agent had the right to interrupt an activity to satisfy the Toilet need, and the case where
it could not. The first case is interesting since it enables us to introduce variability into
the data in a controllable way to make the predictions more robust. In addition, the agent
is placed in the same situation as the participant who had the right to interrupt activities
to go to the toilet. For the second case, where the agent cannot interrupt, we wanted
to know whether the simulated data could already provide high prediction performance
when the agent is not disturbed by an unexpected event. Effectively, these events will
automatically reduce the level of prediction since they are not linked to routines but
rather to a reaction caused by a sudden change. According to Table 4.4, when our agent
cannot interrupt activities, this leads to very predictable activities (91.86%). This first
result thus indicates that the agent model is able to reproduce routines with similar levels
of predictability compared to real data.

We also obtain slightly less predictable activity sequences when our agent model en-
ables interruptions (89.01%). This performance rate thus remains close to the one reached
with real data. Such interruptions, allowing the satisfaction of needs when there is not
sufficient free time, can thus be used to introduce variability in generated data, in a con-
trolled manner. In this way, our agent model could generate different datasets of the
same environment using different degrees of activity predictability, which is valuable to
design and improve such predictive models. Prediction accuracies obtained in those first
experiments are all significantly higher than a random predictor (5%, assuming identical
predictive randomness across the 20 activities).

166

4.3. Validation with Future Activity Prediction

Table 4.4 – Activity prediction accuracy using simulated and real data.
Training data Test data Test accuracy

Real Real 91.18%3

Simulated Simulated 89.01%3

Simulated,
without interruptions

Simulated,
without interruptions 91.86%3

Simulated Real 82.35%3

Real Simulated 82.42%3

Non-Markovian depths used for each reported result are indicated with superscripts.

4.3.3 Using Simulated Data for Real Situations

Ideally, simulated data could reduce the need for labeled datasets collected in real
situations to train machine learning models. In this case, simulated data must be repre-
sentative of real situations, so that a model trained on simulated data can provide accurate
predictions when processing real situations.

To illustrate this case, we trained the activity prediction model on simulated data
(following the same protocol used previously), and tested it on real data. The result-
ing model reaches a predictive accuracy of 82.35% (with a non-Markovian depth of 3)
as shown in Table 4.4. Even though it is lower than a model trained directly on real
data (91.18%), these performances are still very high and vastly superior compared to a
random model, indicating that simulated data can thus be very useful to train
these kinds of models. This gap between performances may be due to several factors.
Firstly, the person did not interrupt the activities at the same time that our agent (and
often the real interrupted activities were different from the simulated ones). The location
of Cleaning sometimes changed and was not necessarily the same for the agent and the
person at the same time. Finally, since activity duration was also an input parameter for
the algorithm, it could be used as a prediction criterion. Consequently, even if most of
the durations are close, time differences are sometimes observed. Effectively, the person
sometimes shortened some activities (such as Showering, which was sometimes shortened
by 20 minutes) and lengthened others to compensate (such as Working, which was length-
ened by 1 hour). The agent, on the other hand, adhered strictly to the times indicated
in the schedule, leading to these gaps. It should be noted that in this experiment, we

167

Chapter 4 – Methods to validate the Credibility of the Data generated by the Agent

wanted the agent to strictly respect the duration of mandatory activities. However, our
model is able to apply variations in the duration of mandatory activities. For instance, we
could change the duration or start time of the next mandatory activity before launching
the scheduler. The planner could then be executed normally, with just a different time
budget.

For completeness sake, we also trained our activity prediction model on real data and
tested it on simulated data. The resulting model reached a predictive accuracy of 82.42%
(with a non-Markovian depth of 3) as shown in Table 4.4. There are still performance
gaps to a model trained on simulated data (89.01%), but performances are again far
beyond random prediction, which reaffirms that simulated data are in some
way representative of real data. The gap in performance found here is due to the
same reasons as the case explained just above.

4.4 Conclusion and Discussions

In this Chapter, we propose a validation approach to better address our Challenge 3
regarding the way to validate the credibility of generated behaviors and data. For this
purpose, we replicated a real collection experiment in a virtual home, using our agent
model in place of real occupants. The real database used for replication purposes is the
Orange4Home database proposed by Cumin et al. [51]. The credibility of synthetic data
was then evaluated in two human understanding tasks: Activity Detection and Activity
Prediction. To do this, we used two machine learning algorithms specialized in these both
tasks to compare their performance rate between the case where they are trained on real
data and the case where they are trained on synthetic ones. The obtained results show
that these rates are relatively close, despite some inaccuracies, demonstrating that it is
possible to use synthetic data in place of real data without strongly dropping performance
in at least this specific case.

4.4.1 Insights on replicating Datasets

In this chapter, activity recognition and prediction models were used as indirect mea-
sures to assess the credibility of simulated data and agent behaviors. Our focus on these
human understanding fields has multiple justifications. First, we wanted to evaluate the
interactions made by the agent to know if it can execute activities in a credible way. In

168

4.4. Conclusion and Discussions

addition, we wanted to have a way to evaluate the credibility of the sensors capturing
data. Activity recognition is a task that encompasses those elements and is thus suitable
for this evaluation. Second, we wanted to evaluate the credibility of activity routines
generated by our agent model. Future activity prediction allows comparisons between the
predictability of real and simulated routines. It is thus suitable for this evaluation. We
have shown in this chapter that data generated by our simulation can be effectively used
as training data for activity recognition and prediction tasks applied to real situations in
Orange4Home. The results obtained in our experiments are convincing, showing that
using simulated data as training sets to counterbalance the lack of real data
is a promising research avenue. Our experiments also allowed us to identify the
improvements we could make to refine the results.

Among the improvement to make, some specific activity classes are not well classified
when using simulated training data, compared to real data. This indicates that credi-
bility discrepancies exist, depending on which activity class is simulated. One source of
discrepancies we have discussed in Section 4.1.3 is the actions of the agent which can
be not enough accurate compared to humans. Concretely, since we simulated activities
in a generic way, some tasks or interactions that could trigger additional sensors were
sometimes not simulated. When these missing sensors are essential to correctly detect
activity, the performance rate is impacted in all the studied cases. Further analysis is
therefore required to find out which important interaction was missing. When the miss-
ing sensors are not indispensable to correctly detect activity, some limitations can be
observed in the case where the algorithm, trained on real data, tries to identify simulated
activities. Effectively, it has access to more information during its training and becomes
more demanding in its classification criteria. Regarding activity prediction, the differences
between the moments of interruption, the durations, or the start times have an impact on
performance. To summarize, these experiment allows us to identify which parts
of the simulation model are not credible enough and need to be improved.
Another source of discrepancies can be the behavior of virtual sensors. Our efforts on
replicating realistic behaviors of sensors have helped limit the drop in performances, but
not completely remove it. In the general case, we might not have access to the behavior
of all sensors of the environment we are trying to replicate. Limiting such discrepancies
would thus prove difficult. This experiment also allows us to know which sensors and
effectors are actually essential to correctly detect some activities.

In future work, all this information can be used to enrich our agent and our simulation.

169

Chapter 4 – Methods to validate the Credibility of the Data generated by the Agent

Regarding the agent, this allows us to detect missing interactions that are essential to de-
tect activities. We can also see what limitations exist in the choice of activities to produce
more credible routines. Regarding the simulation, this information can be used to enrich
our simulation with missing sensors. Conversely, we could use our replication strategy to
check the importance of different sensors (measured by the drops in performances), for
applications aiming at reducing the number of redundant sensors in smart environments.

4.4.2 Generalization to Other Contexts

Our credibility validation approach, which uses activity recognition and prediction
models, has only been tested on the Orange4Home dataset. As it stands, we cannot
extrapolate our results to other datasets or generalize our observations to any smart
environment. It is required to test this simulation and validation approaches in various
other contexts that offer accurate real data for comparison.

The validation methods presented in this chapter are a further step to address Chal-
lenge 3 concerning the way to validate the credibility of simulated human behaviors. The
results reported in this chapter are promising and show that simulated data could be
used in place of real data without a drastic loss in algorithm performance, for at least the
specific cases presented here. These results also reinforce the ones presented in Chapter
2, where an input-output comparison of the agent model was implemented. In addition,
since we have shown that simulated data could substitute real ones in at least one case,
this also shows that our agent model can be compatible with data generation and could
produce sufficient credible behaviors to be exploitable. However, testing our solution
against many more varied datasets stay required to ensure that generated behaviors and
data will be credible enough to be exploitable in any virtual environment and situation.

170

Chapter 5

CONCLUSION

During this thesis, we address the simulation of virtual humans compatible with daily
activity data generation. To reach this objective, we explained that three challenges
must be addressed. The first one involves proposing a human behavior model able to
generate credible behaviors. This implies having an autonomous virtual human producing
behaviors that are coherent, consistent, and diversified. The second one involves proposing
a model providing a compromise between control and autonomy in order to be compatible
with data generation. Finally, the last one involves implementing validation methods to
check the credibility of the generated behaviors and synthetic data. These validations
are effectively essential to know whether synthetic data can replace real ones for various
human understanding tasks.

In an age where collecting data has become a major challenge in many domains, we
hope that proposing new approaches able to generate exploitable synthetic data could en-
rich existing real databases, create new ones for situations that are difficult to achieve in
real life, and also limit the collection of data coming from real users. In parallel, address-
ing Challenge 2 led us to develop an approach having the advantage to be controllable,
configurable, and transparent in its functioning. This goes against the flow of the new
generation of machine learning algorithms, where it becomes difficult to control output
behaviors and to know how these behaviors were obtained. In addition, our approach
has the advantage of not relying on any data to operate. With these advantages, we
can address several use cases: we have shown in this thesis that our agent model can be
applied for data generation, but it can also be used for other purposes, such as populating
environments.

Contributions

In Chapter 1, we presented the existing works related to agent behaviors models and
data generation. We first explored approaches simulating humans to generate daily activ-

171

ity data. We stated that agent-based models were the most suited to address the challenges
stated above. We also concluded that 3D environments are well-suited to simulate any
sensors capturing data (particularly environment-dependent ones), but also to produce
any daily activity data, and achieve greater granularity in the simulated activities. In
the second part of our related works, we explored the existing agent models, the ways
to interact with virtual environments, and the existing validation methods. We finally
noticed that among existing agent models, some limitations were observed to address our
three challenges at the same time.

In Chapter 2, we thus proposed an agent model to address our three challenges. This
model, inspired by the BDI architecture that was enriched with a reactive scheduler, is
made of the following parts: The External Perception Model to retrieve informa-
tion about the environment, the Internal State Model to manage the autonomous
part by simulating the agent motivations coming from needs (Hunger, Thirst, etc.) and
preferences, the Decision-Making Model to make a compromise between control and
autonomy in behaviors, and finally, the Task Executor Model to execute activities in a
3D environment and allow their interruptions. In addition to these four systems, a mod-
ule called Agent Parameters enables users to configure the model, such as providing
an input activity calendar to impose activities at a specific time. In the Decision-Making
model, we propose a reactive scheduler to create activity plans according to constraints,
and an activity selector to select the activities of the plan while synchronizing the sched-
uler with the rest of the system. A validation method was also proposed to check whether
our model can respect the input constraints and the agent needs. The results were encour-
aging and showed that our model can cover a part of our use case and address Challenges
1 and 2. With this version, users can effectively use our agent model to make one-person
simulations and generate, replicate, or complete databases related to these situations.

In Chapter 3, we proposed an extension of this model to better address Dynamic
Environments, our use case, and Challenge 1. Effectively, the management of such envi-
ronments, which can change independently of agent actions, allows users to obtain more
diversified data and simulate several agents simultaneously. To manage Dynamic Envi-
ronments, a new model made of three sub-models is proposed to manage resources and
unexpected events at scheduling and execution levels. Among these sub-model, we have
The Resource Manager to anticipate resources during the plan creation, the Inter-
ruption Manager to interrupt the executed activity when a missing resource or an event
suddenly happens, and the Plan Checker to verify if interruptions caused by missing

172

resources or unexpected events impact the rest of the plan. We these sub-models, the pro-
duced activity plans are coherent with the constraints of time, needs, and now resources.
In addition, the plan can be revised to know whether the remaining activities can still
be performed after an interruption. The agent can also interrupt the current executed
activity when an unexpected event happens or a resource is missing. With this process,
the agent can take the necessary actions to stop the activity and be ready to perform
another one. In addition, it can also perform the required actions to resume interrupted
activity if needed. A preliminary version of a user-experiment protocol was also proposed
to validate the proposed model. With this new version, users can exploit our agent model
to simulate multi-person situations or situations where unexpected changes happen in the
Environment. They could also generate, replicate, or complete databases related to these
situations.

In Chapter 4, we proposed a validation method to better address Challenge 3 and
to know whether our agent model can produce synthetic data sufficiently credible to
substitute real data, at least for activity detection and prediction in a specific context.
For this purpose, we replicated the real Orange4Home dataset by using a digital twin of
the real environment that is composed of the apartment geometry and the exact positions
of its sensors and effectors. We used our virtual agent model to simulate an occupant, and
we followed the same experimentation protocol used for the creation of Orange4Home.
We then tested our synthetic data on the training of two machine learning algorithms
used for human-understanding tasks: Activity Recognition and Activity Prediction. We
compared their performance rates obtained with the case when they are trained on real
data. The obtained results are promising and allow us to know that simulated data could
be used instead of real data, at least in a specific case. However further validations must
be set up to know whether our model can produce synthetic data exploitable in more
global cases.

Perspectives

Short Term Perspectives

Regarding our future work in the short-term, several axes could be explored:

173

Model Completion and Authoring Tools: Since we want to validate our system
in other use cases (such as buildings or factories) and propose an agent model ready for
use by users coming from various fields, our system will be confronted with new types
of environments and new activities. In parallel, we also want to increase the number of
activities and tasks to enable the agent to perform more diversified actions. Consequently,
designing authoring tools will be essential to facilitate the initial configuration of the
agent, as well as the creation of activities and animations. Regarding activities authoring,
offering this kind of tool would enable users to create their own animations without
needing any knowledge of the field. In addition, we could quickly obtain specific animation
sequences that are not available in animation banks. To allow this, it could be interesting
to propose a VR tool to create the animations and activities. Some existing approaches
such as the work of Lécuyer et al. [115] propose interesting methods to create VR scenarios
without using any code. With this approach, we could yet produce the sequence of tasks
contained in the future activity. However, animations contained in each task must be yet
implemented. This is why, we could go further by proposing methods inspired by Inverse
Kinematics 1 to track the users’ controllers and headsets and construct the animation
performed during a new interaction. In addition, visual feedback could be used to allow
users to observe their new animations or even their new activity by seeing in VR the agent
performing it. They could then fix some parts by doing again the concerned animations.
Regarding the agent configuration, a user interface could be developed to configure each
agent in an accurate way. Existing approaches such as SMACH [156] and the work of
Bogdanovich et al. [23] propose some interesting possibilities to configure several agents
at the same time, such as using Genetic Algorithms to automatically generate diverse
crowds or the use of interfaces to configure each agent.

Additional Validation Methods: We also would like to set up an Input-Output com-
parison method to check whether the output of the model detailed in Chapter 3 is coherent
with the state of the environment (missing resources, occurred events, etc.) and the ini-
tial agent parameters. We could thus assess whether our model can adapt to unexpected
changes caused by Dynamic Environments while respecting users’ constraints as soon as
possible. In addition, we would like to apply the user experimentation protocol proposed
in Chapter 3 to make an additional validation. With this, Challenge 3 will be better
addressed since the case of a Dynamic Environment will be considered. We also want to

1. Inverse Kinematics: https://docs.unity3d.com/Manual/InverseKinematics.html

174

https://docs.unity3d.com/Manual/InverseKinematics.html

improve the results obtained in Chapter 4 by deeply analyzing the activities that were
not well predicted and detected to know which interactions and sensors must be added
or improved. To fully address Challenge 3, extending our validation to other databases,
environments, and contexts is essential. We thus would like to replicate other databases
and their validation methods to know if our agent model can be used in different use cases
to generate synthetic data credible enough to replace real ones. We could start with the
real CASAS 2 dataset since experimentation was yet performed by Cumin et al. [52] to
assess the performance rate of their Activity prediction and Activity detection algorithms
that are already used in Chapter 4.

Generating more credible behaviors by simulating needs Interdependence:
We also would like to go further with the needs by proposing a greater interdependence
between them. For example, satisfying Thirst may also affect Toilets, satisfying Sports
may affect Tiredness, and so on. This interdependence will allow us to improve the cred-
ibility of generated behaviors and thus better address our Challenge 1. Considering these
new aspects will have an impact on our scheduler since needs will be impacted by two
parameters: the time of day and the effects of other needs. Consequently, their moment
of urgency will be more difficult to anticipate and the method used to calculate the level
of their urgency will therefore have to evolve. One possibility would be to use a confi-
dence interval regarding the evolution of needs. Concretely, the scheduler will consider
the worst-case scenario to optimize the chances of planning correctly. If, despite this,
the need reaches its maximum level of urgency at another time, an event is triggered.
Another solution would be that satisfied needs would increase or decrease the value of
other needs by a fixed percentage (for example, Doing Sports would increase Tiredness by
10%). By using a constant effect, urgent needs can still be anticipated by requiring the
scheduler to not delete any scheduled activity satisfying needs. Starting with the urgent
need closest in time, the scheduler will gradually readjust the need urgency each time
they are impacted by the schedule of a new activity.

Generating more diverse behaviors through preferences and emotions: We
finally would like to test more precisely the impacts of preferences over the agent model
and develop some other cognitive processes such as emotions or personality to diversify
behaviors. Effectively, some preferences have been developed to impact the choice between

2. CASAS dataset: https://casas.wsu.edu/datasets/

175

https://casas.wsu.edu/datasets/

two activities satisfying the same goal (to satisfy Hobbies, the agent could prefer to choose
Watching TV rather than Reading) or between the different ways to perform an activity
(between Eating a Sandwich or Eating Pasta for instance). To avoid the systematic
selection of the preferred choice over others, the agent randomly chooses one of them by
putting a stronger weight on the preferred one. However, testing the impact of these
preferences must be carried out to ensure that they effectively influence the final plan.
For other cognitive processes, further studies must be done to determine which emotions
and personalities are relevant to simulate in the case of daily life. Regarding emotions,
they could be treated as unexpected events: for example, if the agent is stressed, some
effects could happen such as dropping objects, forgetting mandatory activities given by
users, or performing activities incorrectly (e.g. sleeping badly), and therefore not fully
achieving what was planned. However, such changes could have a major impact on the
scheduler and the control over the agent behaviors. Consequently, further thoughts will
have to be done to ensure a certain level of control.

Generating more credible and diverse behaviors through environment and
social factors: We would like to implement new kinds of needs that can be impacted
by the environmental state such as Temperature, Humidity, and so on. With such features,
the agent will be sensitive to environmental changes. Considering these needs are essential
for users wanting to observe the impacts of the environment on human behaviors, by
retrieving data about energy consumption for instance. In contrast to precedent needs,
they will have two tolerance thresholds bounding a comfort zone [159]. The goal of the
agent would thus be to stay inside this zone by performing activities either increasing the
value or decreasing it. In addition, they do not evolve according to time but according
to the environment. Since they are unpredictable, one solution to integrate them without
impacting the scheduler is to consider them as events when they become urgent. A second
kind of need will be influenced by social factors. Social needs could be used to motivate
the agent to interact with others when the need is urgent. As with the previous ones, they
have a comfort zone to target. Above this zone, the agent needs to talk with others or
participate in collaborative activities. Below this zone, the agent needs to stay alone and
will refuse any solicitation made by others. These needs increase over time and decrease
when social activity is performed: they can thus be scheduled as other needs. With this
type of requirement, we could trigger interactions between agents and offer them the
possibility of accepting or rejecting proposals.

176

Long Term Perspectives

Regarding our future work in the long-term, we would like to integrate deeper changes:

Generating other kinds of data and exploring other use cases: Our credibility
evaluation approach could be extended to a large array of different human context analysis
tasks. For example, tasks such as room occupation detection or occupant positioning could
be used as another way to evaluate the credibility of synthetic data. By adding virtual
cameras in the simulation, we could retrieve videos to train visualization-based algorithms
such as Recognition algorithms in order to check the efficiency of our synthetic data, as
shown by Puig et al. with Virtual Home [144]. However, a great improvement in the
agent animations would be needed to avoid mistakes in activity recognition.

Developing multi-agent simulations including collaboration and cooperation:
We would like to implement collaborative activities between agents to allow them to
interact with each other and share activities. Developing multi-agent simulations are
useful for generating multi-person data since real activity data involving several people
is rarer than those involving a single person. To synchronize agents, we could develop
some activities triggered by social needs (such as Talking with others) to plan future
collaborative activities (such as eating together, going out at a specific time, etc.). These
collaborative activities would then be scheduled as mandatory activities to be sure to be
performed. The agents could also negotiate between them to find a timeslot suiting their
needs and imperatives. In addition, having a multi-agent model will be useful for users
wishing to simulate larger environments (city, buildings, etc.) to either generate data,
populate them or enhance their existing simulators. After making our model compatible
with multi-agent, we would like to validate the generated multi-person data with a similar
process made in Chapter 4. Concretely, we will compare the performance obtained when
the same algorithms are trained on synthetic multi-person data with those obtained when
trained on real ones. As multi-person real databases, CASAS could be used since some
data concern several people. Additional results could be thus obtained regarding the
credibility of behaviors when several agents are implied to better address Challenge 3.

Human-Agent interaction: As an ultimate test of the robustness of our model facing
unexpected events, we could go further than multi-agent situations by testing our model in
a situation where the agent performs collaborative activities with a real human controlling

177

an avatar. Our agent will thus be aware of the existence of this avatar. We could also
make an experiment where participants in VR can impact the environment to disrupt
the agent, such as removing resources, changing the temperature, or triggering events.
This would allow us to finalize the validation of our agent model in the case of Dynamic
Environments. To go further, this kind of collaboration opens up new perspectives for
users wishing to populate environments since humans and agents sometimes share the
same environment in these use cases.

Checking the impact of bias on credibility evaluation: Finally, regarding the
method used for validation purposes, we believe that the use of machine learning models
specialized in human understanding is a promising avenue of research to assess synthetic
data. We also believe that designing meaningful yet non-biased credibility evaluations for
simulated data is difficult to achieve. Instead, further work should focus on evaluating the
impact of such biases on credibility evaluation. To do this, some checking approaches could
be developed such as cross validations [17] to determine whether the machine learning
algorithms used for our validation could induce Overfitting (i.e. the algorithm will have
too great capacities to capture information, and will have difficulties generalizing and
obtaining good performances on new data: even a small fluctuation or noise in the trained
data will be considered an important feature) or Underfitting (i.e. the algorithm will not
be able to capture enough information to offer good performance, even with training
data.). We could also assess whether combining real data with synthetic ones during the
training phase could reduce these biases, by assuming that simulated data could provide
more diversity in the input ones.

178

PUBLISHED PAPERS

Articles in Peer-Reviewed Conference Workshops

L. Gramoli, J. Lacoche, A. Foulonneau, V. Gouranton, and B. Arnaldi. Needs Model
for an Autonomous Agent during Long-term Simulations. In the Modeling and Animating
Realistic Crowds and Humans (MARCH) Workshop, proposed by 2021 IEEE International
Conference on Artificial Intelligence and Virtual Reality (AIVR) (pp. 134-138). 2021,
November.

Articles in Peer-Reviewed Conference Proceedings

L. Gramoli, J. Lacoche, A. Foulonneau, V. Gouranton, and B. Arnaldi. Control
Your Virtual Agent in its Daily-activities for Long Periods. In Advances in Practical
Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The
PAAMS Collection: 20th International Conference, PAAMS 2022, L’Aquila, Italy, July
13–15, 2022, Proceedings (pp. 203-216). Cham: Springer International Publishing. 2022,
October.

Articles in Submission

L. Gramoli, J. Cumin, J. Lacoche, A. Foulonneau, V. Gouranton, and B. Arnaldi.
Generating and Evaluating Virtual Data of Daily Activities with an Autonomous Agent
in a Smart Home. Submitted to the Special Issue on Realistic Synthetic Data: Genera-
tion, Learning, Evaluation, proposed by the ACM Journal on Transactions on Multimedia
Computing, Communications, and Applications (ACM TOMM). (In Review)

Articles in Preparation

L. Gramoli, J. Lacoche, A. Foulonneau, V. Gouranton, and B. Arnaldi. Managing
Resources and Events Coming from a Dynamic Environment at Scheduling and Execution

179

Levels. (In preparation)

Other Articles

A. Cheymol, G. Fouché, L. Gramoli, Y., Hirao, E., Hummel, M., Mavromatis, Y.
Moullec, F. Argelaguet, and F. Nouviale. The rubber slider metaphor: Visualisation of
temporal and geolocated data. In 2022 IEEE Conference on Virtual Reality and 3D User
Interfaces Abstracts and Workshops (VRW) (pp. 904-905). IEEE. 2022, March

180

RÉSUMÉ ETENDU EN FRANÇAIS

Introduction

Comprendre le comportement humain est essentiel pour développer des systèmes au-
tonomes et adaptatifs tels que des environnements connectés. Pour parvenir à cela, des
données réelles sont alors nécessaires, mais elles sont rares et coûteuses à produire. Une
solution consisterait à générer des données synthétiques en simulant les environnements et
leurs occupants. Cependant, nous devons nous assurer qu’elles sont suffisamment crédi-
bles pour être utilisable et cette crédibilité va notamment dépendre de celle des humains
simulés et de leur capacité à interagir avec des environnements virtuels pouvant pro-
duire de telles données. Cette approche soulève alors la question suivante: Comment
simuler des humains virtuels capables de produire des comportements crédi-
bles tout en étant compatible avec la génération de données ? Être compat-
ible avec la génération de données signifie que l’agent doit avoir la capacité d’interagir
avec des environnements virtuels qui peuvent générer des données simulées en capturant
leurs actions. De plus, pour vérifier la crédibilité des données et des comportements, des
méthodes robustes de validation devront être appliquées. Pour répondre à cette problé-
matique, nous proposons dans nos travaux de thèse un modèle d’agent autonome capable
de fournir des comportements à la fois autonomes et contrôlables tout en permettant
l’exécution d’activités dans des environnements 3D. Notre modèle s’adressera aux per-
sonnes (chercheurs, développeurs, etc.) qui souhaiteraient utiliser des humains virtuels
pour générer des données synthétiques, peupler des environnements ou améliorer les per-
formances de leurs algorithmes déjà existants. Nous nommerons ces personnes Utilisateur
tout au long de cette thèse.

Pour tester l’efficacité de notre modèle d’agent et voir s’il est compatible avec la généra-
tion de données, nous allons utiliser des simulateurs 3D comportant des environnements
connectées dotés de capteurs capables de générer des données en capturant leurs actions.
Les capteurs à l’intérieur de ces environnements sont non-intrusifs car ce ne sont pas des
micros ou des caméras. Ce sont plutôt des capteurs qui récupèrent des données sur le
bruit ambiant, les mouvements, des débits d’eau, les ouvertures de portes ou de placard,

181

ou encore l’activation ou non d’un interrupteur. Figure 5.1 montre un exemple d’une
de nos simulation 3D où un agent autonome exécute des activités quotidiennes comme
Manger ou Travailler. L’agent est autonome dans sa prise de décision et dans l’exécution
de ses activités. De plus, il peut être configuré par les utilisateurs à l’initialisation pour
générer les comportements souhaités. Une interface montrant l’état des besoins de l’agent
(faim, soif, etc.) est aussi indiquée. La date et l’heure exacte de la simulation est aussi
affichée et peut aussi être modifiée initialement.

Figure 5.1 – Vue d’ensemble de notre simulateur 3D et de l’agent perfomant des activités

Contexte Industriel

Cette thèse a été réalisée en partenariant avec Orange 3, une entreprise française ma-
jeure spécialisées dans les télécommunications, réseaux, et services numériques. Plus
récemment, Orange propose de nouveaux services en lien avec les environnements connec-
tées. Pour étudier et simuler ces services, Orange a développé de nombreux simulateurs
et plateformes, dont certaines d’entre elles ayant des besoins liés à notre problématique
sont transverses à notre thèse. Notre thèse quant à elle fait partie d’un des projets interne
qui étudie le potentiel des jumeaux numériques pour les futurs services de l’entreprise.

Afin de pouvoir améliorer ses services, Orange avait besoin de connaissances sur les
comportements humains dans la vie quotidienne. Les chercheurs avaient donc développé

3. site web Orange: https://www.orange.fr/portail

182

https://www.orange.fr/portail

des algorithmes d’apprentissage automatique spécialisés dans la compréhension du con-
texte humain. Cependant, puisque ces algorithmes avaient besoin d’une quantité im-
portantes de données labellisées et que les données réelles étaient rares, coûteuses et
pouvaient poser des problèmes de vie privées, l’entreprise a souhaité explorer la généra-
tion de données synthétiques. Des environnements 3D ainsi que des humains virtuels ont
été conçus par l’entreprise pour répondre à ces besoins de nouvelles données. En effet,
les environnements 3D ont l’avantage d’offrir une granularité plus fine des activités réal-
isées mais aussi de permettre la simulation de certains capteurs qui sont dépendants de
l’environnement, comme des capteurs de présence. Figure 5.2 donne un exemple de ces
environnements 3D qui ont été créés par les chercheurs d’Orange. Cependant, ces humains
virtuels qui étaient fournis avaient des comportements prédéfinis étaient très limités par
rapport à ce qu’un humain pourrait faire. C’est dans le but d’améliorer le comportement
de ces humains virtuels que la thèse a été conçue.

Figure 5.2 – Exemples d’environnements virtuels 3D crées par les chercheurs d’Orange afin de générer
des données synthétiques. Les deux images situées en haut à gauche représentent les deux étages d’un
même appartement virtuel répliqué depuis celui d’un réel. Les maisons intelligentes présentés en haut
à droite et en bas à gauche sont fictives. En bas à droite, une image d’un bâtiment intelligent répliqué
depuis un bâtiment réel.

183

Autres contextes d’application

Les humains virtuels sont aussi importants pour d’autres domaines de recherches et
d’autres cas d’usage que le contexte de l’entreprise. En effet, ils peuvent servir pour
d’autres domaines de recherche souhaitant générer des données d’activité quotidiennes.
comme le bâtiment et l’énergie qui souhaitent récupérer des données sur la consommation
énergétique des foyers. Les chercheurs se penchant sur le changement climatique pour-
raient aussi utiliser les humains virtuels pour tester certaines situations. Ils peuvent aussi
être utilisés pour peupler des environnements comme c’est le cas dans le domaine du jeu
vidéo, de l’héritage culturel ou encore la formation. Au sein du laboratoire Inria/IRISA
où la thèse se déroule, les humains virtuels sont utiles pour peupler des environnements de
Réalité Virtuelle (RV) afin de faire des applications de formations mais aussi pour simuler
des foules ayant des comportements individuels.

Enjeux

Afin d’obtenir des humains virtuels produisant des comportements crédibles tout en
étant compatible avec la génération de données, et ainsi répondre à notre problématique,
3 défis majeurs doivent être adressés:

Défi 1: Produire automatiquement des comportements crédible: D’après les
travaux d’Avridinis et al. [11], la crédibilité peut être atteinte en permettant à l’agent
d’être autonome dans ses choix et ses objectifs et en respectant deux critères: (1) La
cohérence des réactions de l’agent et de ses motivations, (2) La consistance des com-
portements face à une situation similaire. En plus de ces deux points, nous ajoutons aussi
la diversité des comportements générées afin que l’agent ne produise pas des routines
identiques et n’exécute pas toujours les activités de la même manière.

Défi 2: Offrir un compromis entre contrôle et autonomie: Afin que nos agents
virtuels puissent être utilisables pour la génération de données, il est important que d’avoir
un modèle offrant un compromis entre contrôle et autonomie. Le respect de contraintes
fortes peuvent alors rivaliser avec les objectifs propres à l’agent (comme les besoins physi-
ologiques). C’est pourquoi, il sera important d’avoir un modèle d’agent capable d’anticiper
les contraintes futures pour éviter les conflits. Ces contraintes fortes proviendront des util-
isateurs qui pourraient vouloir configurer notre modèle afin de l’adapter à leurs exigences

184

ou aux protocoles qui peuvent régir la création de certaines base de données. Ces proto-
coles pourraient par exemple contenir un calendrier d’activité à faire à des heures précises.

Défi 3: Valider la crédibilité des comportements et des données générées:
Afin de s’assurer que notre modèle d’agent produise des comportements suffisamment
crédible afin que les données synthétiques puissent être exploitables, il est important de
proposer plusieurs méthodes de validation. Ces validations peuvent évaluer la crédibilité
des comportements et des données générées.

Contribution

Bien qu’il existe des approches de la littérature pouvant atteindre un de nos 3 défis,
aucune d’entre elles peut gérer les trois en même temps. C’est pourquoi, nous proposons
dans cette thèse un modèle d’agent spécifiquement conçu pour gérer simultanément ces
défis. Pour cela, nous proposons un modèles d’agent capable d’offrir un compromis entre
contrôle et autonomie tout en gardant des comportements crédibles (Défis 1 et 2). De
plus, plusieurs méthodes de validation seront proposées pour vérifier la crédibilité des
comportements et des données (Défi 3).

Chapitre 1: Etat de l’Art

Au sein de l’état de l’art, il existe tout d’abord des approches qui utilisent des simula-
teurs avec des humains virtuels afin de créer des données synthétiques. En étudiant tout
d’abord les environnement simulés proposées par les approches existantes, nous constatons
que les environnements 3D sont les plus précis pour illustrer un environnement connecté
car certains capteurs peuvent être sensibles aux environnements (comme les caméras, les
capteurs de présence, etc.). Du côté des humain virtuels utilisés pour la génération de
données, trois catégories peuvent être relevées. La première approche est basées sur les
avatars où un véritable humain contrôle l’agent. La seconde est basées sur les données,
où un algorithme génère directement des données à partir d’une base de données d’entrée
sans avoir besoin d’une simulation d’environnement. La dernière possibilité sont les ap-
proches basées agents où un agent (c’est à dire une entité qui peut agir et raisonner sur
son environnement) est utilisé pour déclencher des capteurs dans l’environnement afin de
produire les données. En étudiant les apports de chacun par rapport à nos défis, il est

185

constaté que les agents sont plus précis. Enfin, certaines approches utilisant des simula-
teurs pour générer des données proposent aussi des méthodes pour valider la crédibilité
des données synthétiques. Parmi elles, nous avons les approches a priori, où l’on utilise
des données réelles en entrée pour concevoir le modèle et ainsi obtenir des résultats crédi-
bles. Nous avons aussi les approches a posteriori, qui utilisent des métriques (comme
des comparaisons statistiques) pour évaluer la crédibilité des données produites. Nous
observons alors que les approches a posteriori sont les plus adaptées pour s’assurer de la
crédibilité mais ne doivent pas se limiter à la comparaison statistique qui peut induire
une imprécision dans les résultats.

Table 5.1 – Contribution des différentes approches existantes utilisant des modèles d’agent
Approches Défi 1 Défi 2 Défi 3
Existantes (Générer des (Compromis (Validations

Comportements entre Contrôle Existantes de
Crédibles) et Autonomie) la Crédibilité)

Automatons - - - + -
Approches Réactives + + + - - +

Approches basées Planification - - + + - - -
Approches basées Ordonnancement + + + + +

Approches Probabilistes + + - - - + + +
Approches basées Apprentissage + + - - - +

Approaches Mixtes + + + + + - - -

Puisque les modèles d’agents sont intéressants pour à la fois permettre la compatibilité
avec la génération de données mais aussi pour respecter nos trois défis, nous étudions plus
précisément les modèles d’agent existant pour savoir si l’un d’eux pourrait répondre à nos
trois défis simultanément. Contrairement à précédemment, cette étude sera étendue à
des approches qui ne sont pas toujours utilisées pour la génération de données. Parmi les
approches existantes, nous pouvons distinguer 6 catégories dont les apports par rapport
à nos trois challenges sont rassemblées dans le Tableau 5.1. On remarque qu’aucune
approche existante ne permet de répondre à nos 3 défis simultanément.

186

Chapitre 2: Modèle d’agent permettant à la fois le
contrôle et l’autonomie sur les comportements

Comme les approches existantes ne répondent pas simultanément à nos défis, nous
proposons dans ce chapitre un modèle d’agent compatible avec la génération de données,
capable de générer des comportements crédibles (Défi 1) tout en offrant un compromis
entre contrôle et autonomie (Défi 2).

Concrètement, nous proposons un modèle d’agent basé sur BDI [162] enrichi d’un
ordonnanceur réactif capable d’adapter le niveau d’autonomie en fonction des contraintes
des utilisateurs et des motivations propres de l’agent comme ses besoins (faim, fatigue,
etc.). Dans ce chapitre, nous nous concentrons sur la structure globale de notre modèle
d’agent ainsi que sur la gestion des contraintes de temps et des besoins (tels que la
soif, la fatigue, etc.). Cette structure est inspirée des architectures BDI [162] qui est
constitué de trois composantes principales: Les croyances récupérant les informations
pertinentes de l’environnement, les désirs produisant les objectifs de l’agent en fonctions
de ses croyances, et les intentions sélectionnant les actions qui permettront de satisfaire
un désir. Nous avons décidé de baser notre modèle sur cette architecture car elle est
réputée dans la communauté pour sa flexibilité et son approche intuitive pour simuler la
prise de décision. Nous l’avons cependant enrichie d’un ordonnanceur car l’architecture
de base ne permet pas d’anticiper les contraintes futures, et donc d’adresser notre Défi
2. En plus des trois composantes principales de BDI, nous avons ajouté un quatrième
composant pour gérer plus finement les activités au niveau de l’exécution. Notre modèle
d’agent illustrée en Figure 5.3 est donc composé des modèles suivants:

Agent Parameter: Ce processus rassemble tous les paramètres initiaux et les con-
traintes de l’utilisateur qui doivent être pris en compte lors de la simulation. L’utilisateur
peut donner un calendrier d’activités en entrée pour fournir les activités qui doivent être
effectuées à une période spécifique. Ce calendrier rassemble toutes les activités
obligatoires données par l’utilisateur. Ces activités sont principalement util-
isées dans le modèle de prise de décision pour être intégrées dans le plan avec
les heures et les durées correctes. En modifiant les paramètres de besoins, des pro-
fils d’agents spécifiques peuvent être créés (l’agent mange plus souvent, se couche plus
tard, etc.), augmentant ainsi la diversité des comportements. Toutes ces contraintes sont
utilisées pour le contrôle du comportement de l’agent.

187

Figure 5.3 – Diagramme de notre modèle d’Agent

External Perception Model: Semblable aux croyances dans BDI, Ce modèle stocke
toutes les données pertinentes de l’Environnement Virtuel (EV) dans sa base de données
gérée par le modèle #FIVE [31] mis en œuvre dans Xareus 4. Ce modèle est principalement
utilisé pour filtrer les activités en fonction de leurs contraintes et fournir les objets et
interactions nécessaires pour rendre l’exécution possible dans l’EV.

Internal State Model: Semblable aux désirs dans BDI, il modélise la motivation de
l’agent à réaliser une activité. Pour l’instant, il est principalement utilisé pour mettre à
jour l’urgence des besoins et appliquer les préférences de l’agent. Les besoins s’inspirent
des besoins fondamentaux de l’être humain définis dans la théorie des besoins de Maslow
[124]. Ils peuvent être physiologiques, comme la faim, ou plus sophistiqués, comme l’estime
de soi. Ce modèle est utilisé pour l’autonomie de l’agent puisqu’il définit des objectifs à
atteindre pendant les périodes de temps libre. Les besoins sont configurés à l’aide d’une
fonction temporelle, comme dans les travaux de De Sevin et Thalmann [159]. Concrète-
ment, pour calculer l’urgence des besoins, une valeur de priorité est évaluée en fonction
d’un seuil de tolérance, utilisé pour savoir quand un besoin devient urgent, ainsi que
l’intensité du besoin évoluant dans le temps. L’utilisateur peut également indiquer si un

4. Xareus Software: https://team.inria.fr/hybrid/xareus/

188

https://team.inria.fr/hybrid/xareus/

besoin peut interrompre des activités en cas d’urgence.

Decision-making Model: Ce modèle gère la prise de décision de l’agent et peut être lié
aux intentions des modèles BDI. Mais contrairement à BDI, notre modèle établit des plans
pendant la simulation. Ce plan est construit de manière à respecter les contraintes de
l’utilisateur tout en produisant des choix autonomes pour satisfaire les besoins pendant les
périodes de temps libre. Ce modèle contient deux processus principaux: l’Activity Sched-
uler et l’Activity Selector. L’Activity Scheduler est un ordonnanceur réactif qui élabore un
plan d’activités dans une fenêtre de temps donnée par l’Activity Selector. Il tient compte
à la fois des contraintes initiales et de l’urgence future des besoins. Notre ordonnanceur
est conçu pour replanifier à tout moment, ce qui le rend compatible avec les Environ-
nements Dynamiques. Les interruptions sont également gérées lorsqu’un besoin est trop
urgent et qu’une activité peut être interrompue. Lors de la création du plan, les activités
satisfaisant les besoins de l’agent sont placées au moment où ces besoins sont urgents.
Si l’agent dispose encore de temps libre après avoir programmé des activités satisfaisant
ses besoins, des activités par défaut, sont ajoutées pour occuper l’agent. Ces dernières
sont choisies au hasard en tenant comptre des préférences de l’agent. L’approximation
de l’urgence des besoins ainsi que le choix aléatoire des activités par défaut nous permet-
tent d’introduire de la diversité: les mêmes contraintes d’entrée n’entraînent pas la même
séquence d’activités en sortie. Concernant l’Activity Selector, il récupère progressivement
l’activité à réaliser à partir du plan généré. Si aucune activité ne peut être exécutée ou a
échoué, il envoie un message à l’ordonnanceur pour construire un nouveau plan jusqu’à la
prochaine activité obligatoire. L’Activity Selector transmet également l’activité à réaliser
au Task Executor qui renvoie ensuite l’état de l’activité.

Task Execution Model: Ce modèle exécute l’activité choisie dans l’EV en lançant la
séquence de tâches correspondante. Ces tâches sont constituées d’actions et d’animations
qui peuvent être directement exécutées. Ce processus, nouveau par rapport à BDI, permet
une meilleur gestion de l’execution des activités. Ce modèle reçoit l’activité à exécuter de
l’Activity Selector et renvoie en échange l’état de celle-ci. Dans notre implémentation, la
séquence de tâches est réalisée avec un modèle basé sur les réseaux de Petri [140] appelé
#SEVEN [49] mis en œuvre dans Xareus4, où un jeton, se déplaçant d’un endroit à un
autre, déclenche une action. La progression des jetons peut être gérée par des points de
contrôle vérifiant si les conditions sont remplies.

189

Dans ce Chapitre, nous avons aussi appliqué une méthode de comparaison Entrée-
Sortie pour vérifier la crédibilité des comportements générés. Les résultats obtenus dans
cette section sont prometteurs et nous fournissent une première validation de la robustesse
de notre modèle face à diverses situations où les contraintes de temps et de besoin sont
plus ou moins importantes. Nos résultats montrent également que notre agent peut être
entièrement contrôlable, partiellement contrôlable ou entièrement autonome sans modifier
sa structure. Avec ceci, notre modèle répond à une partie de notre cas d’usage. Concernant
l’évaluation de la crédibilité, les résultats sont aussi prometteurs puisque les comporte-
ments sont cohérents avec les paramètres d’entrée, diversifiés dans la plupart des cas, et
consistants pour un même besoin satisfait. Cependant, cette méthode bien qu’essentielle
n’est pas suffisante pour évaluer pleinement la crédibilité des comportements: d’autres
méthodes de validation devront être réalisées.

Chapitre 3: Extension du modèle pour améliorer la
gestion d’Environnements Dynamiques

Au sein de ce Chapitre, nous proposons un nouveau modèle permettant d’améliorer la
gestion des Environnements Dynamiques pour mieux adresser notre Défi 1. En effet, bien
que notre ordonnanceur soit compatible avec les Environnements Dynamiques, il reste
cependant limité face à la gestion d’événements imprévus provenant de l’environnement
(coups de téléphone, objet en panne etc.) et la gestion de ressources limitées (exemple:
il n’y a plus de nourriture). Les interruptions des activités en cours quand une ressource
est manquante ou quand un événement imprévu se produit n’est pas non plus géré avec
la version précédente de notre modèle. Bien que notre cas d’usage puisse être déjà en
partie atteint avec la version proposées dans le Chapitre 2, nous souhaitons aller plus loin
afin de permettre aux utilisateurs d’utiliser notre modèle pour simuler plus de situations
et générer des données plus diversifiés. Cela permettrait aussi de pouvoir faire coexister
plusieurs agents en même temps et ainsi pouvoir créer des bases de données multi-agent.
Au sein de l’état de l’art, nous avons aussi pu remarquer un manque de solutions pour
gérer les ressources et les événements imprévus à la fois au niveau de la planification (an-
ticipation des futures ressources manquantes, adaptation du plan après une interruption,
etc.) et de l’exécution (interruption et reprise des activités en cours, etc.). C’est pourquoi,
nous proposons dans ce Chapitre un modèle composé de 3 sous-modèles permettant de

190

gérer les ressources et les événements. Ces modèles décrits ci-dessous sont ajoutés dans
notre modèle d’agent comme illustrés dans la Figure 5.4:

Figure 5.4 – Diagramme de notre Modèle d’Agent pour les Environnements Dynamiques

Le Ressource Manager: Il est utilisé pour trouver et restorer les ressources man-
quantes liées à chaque activité que l’agent souhaite programmer et ainsi anticiper les
futures ressources manquantes. Pour cela, un processus est lancé pour trouver les ac-
tivités restorant ces ressources. Par conséquent, il travaille en étroite collaboration avec
l’Activity Scheduler chargé de construire le plan d’activités. Ce dernier gère aussi les
contraintes de temps données par les utilisateurs et les besoins de l’agent. En paral-
lèle, nous avons le Ressource Manager qui s’assure que chaque activité programmée soit
compatible avec les ressources actuellement disponibles. Pour connaître l’état actuel, le
Ressource Manager récupère ces informations dans l’External Perception Model. En par-
allèle, il récupère également des informations de la base de données des activités pour
savoir quelles ressources sont consommées et produites par chacune d’entre elles. Lors de
la création du plan, l’ordonnanceur envoie au Resource Manager chaque activité qui doit
être planifiée ainsi que le temps restant. Ce dernier vérifie ensuite la disponibilité des
ressources consommées par cette activité. Si certaines ressources sont indisponibles, un
processus est lancé pour trouver les activités restorant les ressources manquantes tout en
respectant le temps restant. Le plan final est ensuite envoyé à l’Activity Selector.

191

L’Interruption Manager: Ce modèle travaille en collaboration avec le Task Executor
pour gérer les interruptions des activités exécutées. Au cours de l’exécution de l’activité,
certaines ressources peuvent soudainement être épuisées ou un événement imprévu peut
se produire. Ces changements soudains sont communiqués à l’Interruption Manager par
l’External Perception Model. Par exemple, si pendant Manger, un autre agent mange
la nourriture avant qu’elle ne soit utilisée, alors Manger ne peut pas continuer. Pour
gérer ces changements inattendus, l’Interruption Manager peut arrêter l’activité en cours
en toute sécurité. Un processus Undo est alors lancé par l’Interruption Manager pour
permettre à l’agent de revenir à un état dans lequel il peut effectuer une autre activité. Si
nécessaire, il peut également lancer un processus pour ramener l’agent à l’état où il peut
reprendre l’activité interrompue. Dans le cas d’événements imprévus, l’Interruption Man-
ager lance également l’activité traitant cet événement. Lorsque le processus d’interruption
est terminé, le Task Executor est informé pour soit poursuivre l’activité interrompue, soit
la terminer prématurément. Le Task Executor informe ensuite le Plan Checker.

Le Plan Checker: Le Plan Checker vérifie si le reste du plan est toujours réalisable
après l’exécution d’une activité. Pour cela, il vérifie la disponibilité des ressources con-
sommées par l’activité suivante. Si une notification d’interruption est également reçue,
l’heure actuelle est également vérifiée pour savoir si l’agent est en avance ou en retard.
En fonction de l’impact de ces interruptions, le Plan Checker peut soit apporter quelques
ajustements au plan, soit demander une replanification en vidant le reste du plan. Le
plan modifié est ensuite envoyé à l’Activity Selector qui sélectionne l’activité suivante ou
demande un nouveau plan à l’Activity Scheduler si le plan modifié est vide.

Dans ce Chapitre, nous proposons aussi une version préliminaire d’un protocole d’expérience
utilisateur afin d’évaluer notre modèle d’agent dans les Environnements Dynamiques. Le
protocole se déroule en deux phases. La première permet de vérifier l’hypothèse suivante:
Les participants ont le sentiment que l’agent réagit comme le ferait un humain face à un
événement imprévu. Cette étape permettrait d’évaluer si les comportements générées au
niveau de l’execution sont crédibles aux yeux des utilisateurs dans le cas d’interruptions.
La seconde phase permettrait de vérifier l’hypothèse suivante: Il y a peu de différence
entre un calendrier d’activité établi par un humain et celui établi par un agent après
une interruption. Cette étape permettrait d’évaluer si les choix générées par l’agent au
niveau de la planification sont proches de ce qu’un humain ferait après avoir subit une

192

interruption.

Chapitre 4: Méthodes pour valider la crédibilité des
données synthétiques

Les Chapitres précédents ont permis de montrer comment nous pouvions addresser
nos Défis 1 et 2 ainsi qu’une partie du Défi 3. Nous proposons maintenant dans ce
Chapitre une méthode de validation afin de mieux adresser notre Défi 3. Pour relever ce
défi, nous proposons de reproduire une expérience de collecte de données réelles dans une
maison virtuelle, en utilisant notre modèle d’agent à la place d’un sujet humain. Pour
savoir si nos données simulées peuvent être utilisées de la même manière que les données
réelles, nous proposons d’évaluer la crédibilité des données simulées en les utilisant pour
des modèles d’apprentissage automatique spécialisés dans la compréhension du contexte
humain. Pour cela, nous avons choisis deux tâches de compréhension humaine: La pré-
diction d’activité future et la reconnaissance de l’activité actuelle. La reconnaissance des
activités nous permet d’évaluer la crédibilité des interactions effectuées par l’agent dans
l’environnement ainsi que les comportements des capteurs. En parallèle, la prédiction
d’activité va permettre d’évaluer la crédibilité du modèle de prise de décision mais aussi
des routines générées.

Figure 5.5 – Sections du bureau, de la cuisine et du salon, tels qu’ils sont vus dans l’appartement réel
d’Orange4Home et dans notre environnement virtuel.

La base de données réelle que nous avons souhaités répliquer est celle d’Orange4Home

193

[51]. Pour cela, nous avons reproduit en virtuel la maison intelligente dans laquelle les
données réelles ont été générées comme illustré en Figures 5.5. Nous avons aussi répli-
quer les capteurs qui étaient les plus importants pour permettre la reconnaissance des
activités. Ces capteurs concernent tous ceux dont l’état change après l’action d’un agent
(interrupteurs, bouton ON/OFF des appareils, ouverture et fermeture des portes, etc.)
mais aussi ceux qui mesurent des débits d’eau et ceux qui détectent la présence de l’agent
dans une pièce (comme les détecteurs de présence). Enfin, nous avons aussi respecté le
même protocole que la personne réelle qui a généré les données d’Orange4Home en respec-
tant notamment le calendrier d’activité à réaliser à des heures précise. Ce calendrier a été
placé en entrée de notre modèle d’agent afin qu’il soit considérer comme une contrainte
forte par notre agent.

Pour vérifier si nos données synthétiques peuvent se substituer au données réelles, nous
avons entraînés les deux algorithmes de prédiction et de détection d’activité avec d’une
part des données synthétiques et d’autres part des données réelles. Nous avons ensuite
comparé l’écart de performance entre les deux. Si les écarts sont faibles, alors cela signifie
que les données synthétiques offre le même niveau d’efficacité que les données réelles
dans ce contexte précis. Les résultats obtenus sont prometteur car l’écart entre les deux
est relativement faible même si quelques imperfections ont été constatées dans certains
cas. Cela montre donc qu’utiliser des données synthétiques à la place de données réelles
pour entraîner des algorithmes de machine learning est prometteur. Cette expérience
n’est cependant pas suffisante pour valider le fait que notre modèle produise des données
synthétiques suffisamment crédibles pour être substituable aux données réelles. Elles
permettent cependant de confirmer que la substitution est possible dans un cas particulier.
D’autres tests avec d’autres bases de données seront nécessaire dans le futur pour valider
notre modèle et ainsi pleinement adresser notre Challenge 3.

Conclusion

Dans cette thèse, nous avons tenter de proposer une solution pour simuler d’humains
virtuels générant des comportements crédibles tout en étant compatibles avec la généra-
tion de données d’activité quotidienne. Pour y parvenir, nous avons expliqué que trois
défis devaient être relevés. Le premier consiste à proposer un modèle de comportement
humain capable de générer des comportements crédibles. Le second consiste à proposer
un modèle offrant un compromis entre contrôle et autonomie afin d’être compatible avec

194

la génération de données. Enfin, la dernière consiste à mettre en place différentes méth-
odes de validation pour vérifier la crédibilité des comportements générés et des données
synthétiques.

A une époque où la collecte de données est devenue un défi majeur dans de nombreux
domaines, nous espérons que proposer de nouvelles approches capables de générer des
données synthétiques exploitables permettrait d’enrichir les bases de données réelles ex-
istantes, avoir des informations sur les situations difficiles à réaliser dans la vie réelle, et
limiter la collecte de données provenant d’utilisateurs réels. En parallèle, relever le défi 2
nous a amené à développer une approche ayant l’avantage d’être contrôlable, configurable
et transparente dans son fonctionnement. Ceci va à l’encontre de la nouvelle génération
d’algorithmes basés sur l’apprentissage, où il devient difficile de contrôler les comporte-
ments de sortie et de savoir comment ces comportements ont été obtenus. De plus, notre
approche a l’avantage de ne dépendre d’aucune donnée pour fonctionner.

Dans nos travaux futurs à court terme, nous souhaitons améliorer les résultats obtenus
dans le Chapitre 4 et réaliser l’expérience utilisateur proposée dans le Chapitre 3. Nous
souhaiterions ensuite améliorer les relations entre l’agent et son environnements en pro-
posant de nouveaux besoins qui dépendraient de facteurs externes tels que la température
ou l’humidité mais aussi de facteurs sociétaux tels que l’envie ou non de partager des
activités avec d’autres agents. Nous souhaiterions ensuite rendre interdépendants les be-
soins afin que la satisfaction de l’un impacte l’urgence de l’autre (par exemple Faire du
Sport augmenterait la soif). Nous aimerions ensuite étudier plus finement l’impact des
préférences sur les comportements. Enfin, nous souhaiterions aussi proposer de nouveaux
outils pour créer plus facilement de nouvelles activités et de nouvelles animations, mais
aussi pour offrir de nouveaux moyens de configurer l’agent.

Concernant nos travaux sur le long terme, nous souhaiterions développer la collab-
oration entre plusieurs agents afin qu’il puisse se synchroniser et réaliser des activités
quotidiennes ensembles. Pour aller plus le loin dans le test de la robustesse de notre mod-
èle, nous souhaiterions faire collaborer un agent avec un humain. Nous aimerions ensuite
étendre notre modèle sur d’autres types de données comme la capture vidéo afin d’avoir
d’autres méthodes de validation. Enfin, nous souhaiterions proposer des méthodes pour
détecter les potentiels biais qui seraient produits par les algorithmes d’apprentissage ser-
vant à vérifier la crédibilité de nos données, en étudiant notamment l’impact des données
synthétiques sur les biais d’apprentissage.

195

BIBLIOGRAPHY

[1] C. Adam and B. Gaudou, « Bdi agents in social simulations: a survey », The
Knowledge Engineering Review, vol. 31, 3, pp. 207–238, 2016.

[2] L. Airale, D. Vaufreydaz, and X. Alameda-Pineda, « Socialinteractiongan: multi-
person interaction sequence generation », IEEE Transactions on Affective Com-
puting, 2022.

[3] H. Alemdar, H. Ertan, O. D. Incel, and C. Ersoy, « Aras human activity datasets
in multiple homes with multiple residents », in 2013 7th International Conference
on Pervasive Computing Technologies for Healthcare and Workshops, IEEE, 2013,
pp. 232–235.

[4] N. Alshammari, T. Alshammari, M. Sedky, J. Champion, and C. Bauer, « Openshs:
open smart home simulator », Sensors, vol. 17, 5, p. 1003, 2017.

[5] E. Amouroux, T. Huraux, F. Sempé, N. Sabouret, and Y. Haradji, « Simulating hu-
man activities to investigate household energy consumption », in 5th International
Conference on Agents and ARTificial intelligence (ICAART 2013), 2013.

[6] É. Amouroux, T. Huraux, F. Sempé, N. Sabouret, and Y. Haradji, « Smach: agent-
based simulation investigation on human activities and household electrical con-
sumption », in Agents and Artificial Intelligence: 5th International Conference,
ICAART 2013, Barcelona, Spain, February 15-18, 2013. Revised Selected Papers
5, Springer, 2014, pp. 194–210.

[7] G. Anastassakis and T. Panayiotopoulos, « A tool for programming the behaviour
of intelligent virtual agents in Prolog », en, in 2015 6th International Conference on
Information, Intelligence, Systems and Applications (IISA), Corfu, Greece: IEEE,
Jul. 2015, pp. 1–6.

[8] B. Archimede and T. Coudert, « Reactive scheduling using a multi-agent model:
the scep framework », Engineering Applications of Artificial Intelligence, vol. 14,
5, pp. 667–683, 2001.

197

[9] T.-C. Au, U. Kuter, and D. Nau, « Planning for interactions among autonomous
agents », in Programming Multi-Agent Systems: 6th International Workshop, Pro-
MAS 2008, Estoril, Portugal, May 13, 2008. Revised Invited and Selected Papers
6, Springer, 2009, pp. 1–23.

[10] J. Auld and A. K. Mohammadian, « Activity planning processes in the agent-based
dynamic activity planning and travel scheduling (adapts) model », Transportation
Research Part A: Policy and Practice, vol. 46, 8, pp. 1386–1403, 2012.

[11] N. Avradinis, T. Panayiotopoulos, and G. Anastassakis, « Behavior believability
in virtual worlds: agents acting when they need to », en, SpringerPlus, Dec. 2013.

[12] N. Avradinis, T. Panayiotopoulos, and G. Anastassakis, « Modelling basic needs as
agent motivations », International Journal of Computational Intelligence Studies
10, vol. 2, 1, pp. 52–75, 2013.

[13] R. Aylett and M. Cavazza, « Intelligent virtual environments-a state-of-the-art
report. », in Eurographics (State of the Art Reports), 2001.

[14] B. Azvine, D. Djian, K. C. Tsui, and W. Wobcke, « The intelligent assistant: an
overview », Intelligent Systems and Soft Computing, pp. 215–238, 2000.

[15] N. Banovic, T. Buzali, F. Chevalier, J. Mankoff, and A. K. Dey, « Modeling and
understanding human routine behavior », in Proceedings of the 2016 CHI Confer-
ence on Human Factors in Computing Systems, 2016, pp. 248–260.

[16] A. L. Barriuso, F. De la Prieta, G. Villarrubia González, D. H. De La Iglesia,
and Á. Lozano, « Movicloud: agent-based 3d platform for the labor integration of
disabled people », Applied Sciences, vol. 8, 3, p. 337, 2018.

[17] M. M. Bejani and M. Ghatee, « A systematic review on overfitting control in
shallow and deep neural networks », Artificial Intelligence Review, pp. 1–48, 2021.

[18] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, « Jade: a software frame-
work for developing multi-agent applications. lessons learned », Information and
Software technology, vol. 50, 1-2, pp. 10–21, 2008.

[19] P. Bercher, S. Keen, and S. Biundo, « Hybrid planning heuristics based on task
decomposition graphs », in Proceedings of the International Symposium on Com-
binatorial Search, vol. 5, 2014, pp. 35–43.

198

[20] C. R. Bhat, K. G. Goulias, R. M. Pendyala, R. Paleti, R. Sidharthan, L. Schmitt,
and H.-H. Hu, « A household-level activity pattern generation model with an ap-
plication for southern california », Transportation, vol. 40, pp. 1063–1086, 2013.

[21] C. R. Bhat, K. G. Goulias, R. M. Pendyala, R. Paleti, R. Sidharthan, L. Schmitt,
and H.-h. Hu, « A household-level activity pattern generation model for the sim-
ulator of activities, greenhouse emissions, networks, and travel (simagent) system
in southern california », in 91st Annual Meeting of the Transportation Research
Board, Washington, DC, 2012.

[22] A. L. Blum and M. L. Furst, « Fast planning through planning graph analysis »,
Artificial intelligence, vol. 90, 1-2, pp. 281–300, 1997.

[23] A. Bogdanovych and T. Trescak, « Generating Needs, Goals and Plans for Virtual
Agents in Social Simulations », en, in Intelligent Virtual Agents, D. Traum, W.
Swartout, P. Khooshabeh, S. Kopp, S. Scherer, and A. Leuski, Eds., vol. 10011,
Series Title: Lecture Notes in Computer Science, Cham: Springer International
Publishing, 2016, pp. 397–401.

[24] A. Bogdanovych and T. Trescak, « To plan or not to plan: lessons learned from
building large scale social simulations », in Intelligent Virtual Agents: 17th Interna-
tional Conference, IVA 2017, Stockholm, Sweden, August 27-30, 2017, Proceedings
17, Springer, 2017, pp. 53–62.

[25] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi, « Multi-agent
oriented programming with jacamo », Science of Computer Programming, vol. 78,
6, pp. 747–761, 2013.

[26] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming multi-agent systems
in AgentSpeak using Jason. John Wiley & Sons, 2007.

[27] B. Bouchard, S. Gaboury, K. Bouchard, and Y. Francillette, « Modeling human
activities using behaviour trees in smart homes », in Proceedings of the 11th PEr-
vasive Technologies Related to Assistive Environments Conference, 2018, pp. 67–
74.

[28] K. Bouchard, A. Ajroud, B. Bouchard, and A. Bouzouane, « Simact: a 3d open
source smart home simulator for activity recognition », in Advances in Computer
Science and Information Technology: AST/UCMA/ISA/ACN 2010 Conferences,

199

Miyazaki, Japan, June 23-25, 2010. Joint Proceedings, Springer, 2010, pp. 524–
533.

[29] M. Bourgais, P. Taillandier, and L. Vercouter, « Ben: an architecture for the behav-
ior of social agents », Journal of Artificial Societies and Social Simulation, vol. 23,
4, 2020.

[30] M. Bourgais, P. Taillandier, L. Vercouter, and C. Adam, « Emotion modeling in
social simulation: a survey », Journal of Artificial Societies and Social Simulation,
vol. 21, 2, 2018.

[31] R. Bouville, V. Gouranton, T. Boggini, F. Nouviale, and B. Arnaldi, « #FIVE :
High-level components for developing collaborative and interactive virtual environ-
ments », en, in 2015 IEEE 8th Workshop on Software Engineering and Architec-
tures for Realtime Interactive Systems (SEARIS), Arles, France: IEEE, Mar. 2015,
pp. 33–40.

[32] D. A. Bowman, C. North, J. Chen, N. F. Polys, and P. S. Pyla, « Information-Rich
Virtual Environments: Theory, Tools, and Research Agenda », en, p. 10, 2003.

[33] M. Bratman, « Intention, plans, and practical reason », 1987.

[34] J. C. Brustoloni, Autonomous agents: Characterization and requirements. Citeseer,
1991.

[35] R. C. Cardoso and A. Ferrando, « A review of agent-based programming for multi-
agent systems », Computers, vol. 10, 2, p. 16, 2021.

[36] A. Casali, L. Godo, and C. Sierra, « A graded BDI agent model to represent and
reason about preferences », en, Artificial Intelligence, vol. 175, 7-8, pp. 1468–1478,
May 2011.

[37] C. Castelfranchi, « Guarantees for autonomy in cognitive agent architecture »,
in Intelligent Agents: ECAI-94 Workshop on Agent Theories, Architectures, and
Languages Amsterdam, The Netherlands August 8–9, 1994 Proceedings 1, Springer,
1995, pp. 56–70.

[38] C. Castelfranchi and R. Falcone, « From automaticity to autonomy: the frontier
of artificial agents », Agent autonomy, pp. 103–136, 2003.

[39] M. Cavazza, « Al in computer games: Survey and perspectives », en, Virtual Real-
ity, vol. 5, 4, pp. 223–235, Dec. 2000.

200

[40] M. Cavazza, F. Charles, and S. J. Mead, « Interacting with virtual characters in
interactive storytelling », in Proceedings of the first international joint conference
on Autonomous agents and multiagent systems: part 1, 2002, pp. 318–325.

[41] P. H.-M. Chang, Y.-H. Chien, E. C.-C. Kao, and V.-W. Soo, « A knowledge-based
scenario framework to support intelligent planning characters », in IVA, Springer,
2005, pp. 134–145.

[42] J. M. Chaquet, E. J. Carmona, and A. Fernández-Caballero, « A survey of video
datasets for human action and activity recognition », Computer Vision and Image
Understanding, vol. 117, 6, pp. 633–659, 2013.

[43] D. Charypar and K. Nagel, « Generating complete all-day activity plans with ge-
netic algorithms », Transportation, vol. 32, 4, pp. 369–397, 2005.

[44] D. Charypar and K. Nagel, « Q-learning for flexible learning of daily activity
plans », Transportation Research Record, vol. 1935, 1, pp. 163–169, 2005.

[45] K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, and Y. Liu, « Deep learning for sensor-
based human activity recognition: overview, challenges, and opportunities », ACM
Computing Surveys (CSUR), vol. 54, 4, pp. 1–40, 2021.

[46] P. Chevaillier, T.-H. Trinh, M. Barange, P. De Loor, F. Devillers, J. Soler, and R.
Querrec, « Semantic modeling of virtual environments using mascaret », in 2012
5th Workshop on Software Engineering and Architectures for Realtime Interactive
Systems (SEARIS), IEEE, 2012, pp. 1–8.

[47] A. Chowanda, P. Blanchfield, M. Flintham, and M. Valstar, « Erisa: building emo-
tionally realistic social game-agents companions », in Intelligent Virtual Agents:
14th International Conference, IVA 2014, Boston, MA, USA, August 27-29, 2014.
Proceedings 14, Springer, 2014, pp. 134–143.

[48] G. Claude, V. Gouranton, and B. Arnaldi, « Roles in collaborative virtual envi-
ronments for training », in Proceedings of International Conference on Artificial
Reality and Telexistence Eurographics Symposium on Virtual Environments, 2015,
pp. 1–8.

[49] G. Claude, V. Gouranton, R. B. Berthelot, and B. Arnaldi, « Short paper: #SEVEN,
a sensor effector based scenarios model for driving collaborative virtual environ-
ment », in ICAT-EGVE, International Conference on Artificial Reality and Telex-
istence, Eurographics Symposium on Virtual Environments, 2014, pp. 1–4.

201

[50] J. Cumin, G. Lefebvre, F. Ramparany, and J. L. Crowley, « Human activity recog-
nition using place-based decision fusion in smart homes », in International and
Interdisciplinary Conference on Modeling and Using Context, Cham: Springer In-
ternational Publishing, 2017, pp. 137–150.

[51] J. Cumin, G. Lefebvre, F. Ramparany, and J. L. Crowley, « A dataset of routine
daily activities in an instrumented home », in Ubiquitous Computing and Ambient
Intelligence - 11th International Conference, UCAmI 2017, Philadelphia, PA, USA,
November 7-10, 2017, Proceedings, S. F. Ochoa, P. Singh, and J. Bravo, Eds.,
ser. Lecture Notes in Computer Science, vol. 10586, Springer, 2017, pp. 413–425.

[52] J. Cumin, G. Lefebvre, F. Ramparany, and J. L. Crowley, « PSINES: activity
and availability prediction for adaptive ambient intelligence », ACM Trans. Auton.
Adapt. Syst., vol. 15, 1, 1:1–1:12, 2021.

[53] K. Darty, J. Saunier, and N. Sabouret, « Agents behavior semi-automatic analysis
through their comparison to human behavior clustering », in Intelligent Virtual
Agents: 14th International Conference, IVA 2014, Boston, MA, USA, August 27-
29, 2014. Proceedings 14, Springer, 2014, pp. 154–163.

[54] S. Das, R. Dai, M. Koperski, L. Minciullo, L. Garattoni, F. Bremond, and G.
Francesca, « Toyota smarthome: real-world activities of daily living », in Proceed-
ings of the IEEE/CVF international conference on computer vision, 2019, pp. 833–
842.

[55] A. De Almeida, P. Fonseca, B. Schlomann, and N. Feilberg, « Characterization
of the household electricity consumption in the eu, potential energy savings and
specific policy recommendations », Energy and buildings, vol. 43, 8, pp. 1884–1894,
2011.

[56] F. De la Torre, J. Hodgins, A. Bargteil, X. Martin, J. Macey, A. Collado, and
P. Beltran, « Guide to the carnegie mellon university multimodal activity (cmu-
mmac) database », 2009.

[57] L. De Silva, S. Sardina, and L. Padgham, « First principles planning in bdi sys-
tems », in Proceedings of The 8th International Conference on Autonomous Agents
and Multiagent Systems, International Foundation for Autonomous Agents and
Multiagent Systems (IFAAMAS), 2009, pp. 1105–1112.

202

[58] E. Delzendeh, S. Wu, A. Lee, and Y. Zhou, « The impact of occupants’ behaviours
on building energy analysis: a research review », Renewable and sustainable energy
reviews, vol. 80, pp. 1061–1071, 2017.

[59] L. Ding, P. Kolari, Z. Ding, and S. Avancha, « Using ontologies in the semantic
web: a survey », Ontologies: A Handbook of Principles, Concepts and Applications
in Information Systems, pp. 79–113, 2007.

[60] D. Djaouti, J. Alvarez, and J.-P. Jessel, « Classifying serious games: the g/p/s
model », in Handbook of research on improving learning and motivation through
educational games: Multidisciplinary approaches, IGI global, 2011, pp. 118–136.

[61] D. Dörner and C. D. Güss, « PSI: A Computational Architecture of Cognition,
Motivation, and Emotion », en, Review of General Psychology, vol. 17, 3, pp. 297–
317, Sep. 2013.

[62] A. Dorri, S. S. Kanhere, and R. Jurdak, « Multi-agent systems: a survey », Ieee
Access, vol. 6, pp. 28 573–28 593, 2018.

[63] M. Dragoni, C. Ghidini, P. Busetta, M. Fruet, and M. Pedrotti, « Using ontologies
for modeling virtual reality scenarios », in The Semantic Web. Latest Advances and
New Domains: 12th European Semantic Web Conference, ESWC 2015, Portoroz,
Slovenia, May 31–June 4, 2015. Proceedings 12, Springer, 2015, pp. 575–590.

[64] F. Dvorák and R. Barták, « Ai planning with time and resource constraints », in
Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning
and Scheduling Problems (COPLAS 2010), 2010, pp. 5–13.

[65] F. Dvořák, « Ai planning with time and resource constraints », 2009.

[66] H. T. Ebuy, H. Bril El Haouzi, R. Benelmir, and R. Pannequin, « Occupant be-
havior impact on building sustainability performance: a literature review », Sus-
tainability, vol. 15, 3, p. 2440, 2023.

[67] S. Egami, S. Nishimura, and K. Fukuda, « Virtualhome2kg: constructing and
augmenting knowledge graphs of daily activities using virtual space. », in ISWC
(Posters/Demos/Industry), 2021.

[68] A. Elbayoudi, A. Lotfi, C. Langensiepen, and K. Appiah, « Modelling and sim-
ulation of activities of daily living representing an older adult’s behaviour », in
Proceedings of the 8th ACM International Conference on PErvasive Technologies
Related to Assistive Environments, 2015, pp. 1–8.

203

[69] K. Erol, J. A. Hendler, and D. S. Nau, « Umcp: a sound and complete procedure
for hierarchical task-network planning. », in Aips, vol. 94, 1994, pp. 249–254.

[70] R. E. Fikes and N. J. Nilsson, « Strips: A new approach to the application of the-
orem proving to problem solving », en, Artificial Intelligence, vol. 2, 3-4, pp. 189–
208, Dec. 1971.

[71] J. Flotyński and K. Walczak, « Ontology-Based Representation and Modelling of
Synthetic 3D Content: A State-of-the-Art Review: Ontology-Based Representation
and Modelling of Synthetic 3D Content », en, Computer Graphics Forum, vol. 36,
8, pp. 329–353, Dec. 2017.

[72] M. Fox and D. Long, « Pddl2. 1: an extension to pddl for expressing temporal
planning domains », Journal of artificial intelligence research, vol. 20, pp. 61–124,
2003.

[73] S. Franklin and A. Graesser, « Is it an agent, or just a program?: a taxonomy for
autonomous agents », in International workshop on agent theories, architectures,
and languages, Springer, 1996, pp. 21–35.

[74] P. Gebhard, « ALMA: a layered model of affect », en, in Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems -
AAMAS ’05, The Netherlands: ACM Press, 2005, p. 29.

[75] I. Georgievski and M. Aiello, « An overview of hierarchical task network planning »,
arXiv preprint arXiv:1403.7426, 2014.

[76] N. Ghouaiel, S. Garbaya, J.-M. Cieutat, and J.-P. Jessel, « Mobile augmented re-
ality in museums: towards enhancing visitor’s learning experience », International
Journal of Virtual Reality, vol. 17, 1, pp. 21–31, 2017.

[77] L. R. Goldberg, « An alternative" description of personality": the big-five factor
structure. », Journal of personality and social psychology, vol. 59, 6, p. 1216, 1990.

[78] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, « Generative adversarial networks », Communications
of the ACM, vol. 63, 11, pp. 139–144, 2020.

204

[79] K. G. Goulias, C. R. Bhat, R. M. Pendyala, Y. Chen, R. Paleti, K. C. Konduri, G.
Huang, and H.-H. Hu, « Simulator of activities, greenhouse emissions, networks,
and travel (simagent) in southern california: design, implementation, preliminary
findings, and integration plans », in 2011 IEEE Forum on Integrated and Sustain-
able Transportation Systems, IEEE, 2011, pp. 164–169.

[80] L. Gramoli, J. Lacoche, A. Foulonneau, V. Gouranton, and B. Arnaldi, « Control
your virtual agent in its daily-activities for long periods », in International Confer-
ence on Practical Applications of Agents and Multi-Agent Systems, Springer, 2022,
pp. 203–216.

[81] L. Gramoli, J. Lacoche, A. Foulonneau, V. Gouranton, and B. Arnaldi, « Needs
model for an autonomous agent during long-term simulations », in Modeling and
Animating Realistic Crowds and Humans (MARCH) Workshop, IEEE Interna-
tional Conference on Artificial Intelligence and Virtual Reality, AIVR 2021, Taichung,
Taiwan, November 15-17, 2021, IEEE, 2021, pp. 134–138.

[82] G. Gröger and L. Plümer, « Citygml–interoperable semantic 3d city models »,
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 71, pp. 12–33, 2012.

[83] R. Guizzardi, B. G. Carneiro, D. Porello, and G. Guizzardi, « A core ontology
on decision making », in Proceedings of the XIII Seminar on Ontology Research
in Brazil and IV Doctoral and Masters Consortium on Ontologies (ONTOBRAS
2020), CEUR-WS, vol. 2728, 2020, pp. 9–21.

[84] M. Gutierrez, F. Vexo, and D. Thalmann, « Semantics-based representation of vir-
tual environments », International journal of computer applications in technology,
vol. 23, 2-4, pp. 229–238, 2005.

[85] K. M. N. Habib, « A random utility maximization (rum) based dynamic activity
scheduling model: application in weekend activity scheduling », Transportation,
vol. 38, 1, pp. 123–151, 2011.

[86] O. Handel, « Modeling dynamic decision-making of virtual humans », Systems,
vol. 4, 1, p. 4, 2016.

[87] O. Handel and A. Borrmann, « Analyzing a multi-agent-system decision archi-
tecture aiming to model the behavior of virtual humans », in Proc. of the 16th
International Conference on Computing in Civil and Building Engineering, 2016.

205

[88] A. Helal, K. Cho, W. Lee, Y. Sung, J. Lee, and E. Kim, « 3d modeling and simu-
lation of human activities in smart spaces », in 2012 9th International Conference
on Ubiquitous Intelligence and Computing and 9th International Conference on
Autonomic and Trusted Computing, IEEE, 2012, pp. 112–119.

[89] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, « Gans
trained by a two time-scale update rule converge to a local nash equilibrium », in
Proceedings of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17, Long Beach, California, USA: Curran Associates Inc., 2017,
pp. 6629–6640.

[90] B. Ho, D. Vogts, and J. Wesson, « A smart home simulation tool to support the
recognition of activities of daily living », in Proceedings of the South African In-
stitute of Computer Scientists and Information Technologists 2019, 2019, pp. 1–
10.

[91] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas, « Jack intelligent agents-
summary of an agent infrastructure », in 5th International conference on au-
tonomous agents, vol. 6, 2001.

[92] S. N. N. Htun, S. Egami, and K. Fukuda, « A survey and comparison of activi-
ties of daily living datasets in real-life and virtual spaces », in 2023 IEEE/SICE
International Symposium on System Integration (SII), IEEE, 2023, pp. 1–7.

[93] H. Jang, S. Hao, P. M. Chu, P. K. Sharma, Y. Sung, and K. Cho, « Deep Q-
network-based multi-criteria decision-making framework for virtual simulation en-
vironment », en, Neural Computing and Applications, p. 15, Apr. 2020.

[94] C.-J. Jorgensen and F. Lamarche, « Space and Time Constrained Task Scheduling
for Crowd Simulation », Research Report PI 2013, Jan. 2014.

[95] C.-J. Jørgensen and F. Lamarche, « Combining activity scheduling and path plan-
ning to populate virtual cities », in Proceedings of the 2013 international conference
on Autonomous agents and multi-agent systems, 2013, pp. 1129–1130.

[96] D. B. Jørgensen, K. Hallenborg, and Y. Demazeau, « Extending agent based tele-
health platform with activities of daily living reasoning capabilities », in 2016 IEEE
International Conference on Healthcare Informatics (ICHI), IEEE, 2016, pp. 168–
176.

206

[97] O. Kamara-Esteban, G. Azkune, A. Pijoan, C. E. Borges, A. Alonso-Vicario, and D.
López-de-Ipiña, « Massha: an agent-based approach for human activity simulation
in intelligent environments », Pervasive and Mobile Computing, vol. 40, pp. 279–
300, 2017.

[98] Y. Kang and A.-H. Tan, « Self-organizing cognitive models for virtual agents », in
Intelligent Virtual Agents: 13th International Conference, IVA 2013, Edinburgh,
UK, August 29-31, 2013. Proceedings 13, Springer, 2013, pp. 29–43.

[99] A. Kashif, S. Ploix, and J. Dugdale, « A modern approach to include represen-
tative behaviour models in energy simulations », Towards Energy Smart Homes:
Algorithms, Technologies, and Applications, pp. 489–542, 2021.

[100] A. Kashif, S. Ploix, J. Dugdale, P. Reignier, and M. K. Shahzad, « Virtual simu-
lation with real occupants using serious games », in Proceedings of the 14th Inter-
national Conference of the International Building Performance Simulation Asso-
ciation, 2015, pp. 2712–2719.

[101] A. Kashif, S. Ploix, J. Dugdale, and X. H. B. Le, « Simulating the dynamics of
occupant behaviour for power management in residential buildings », Energy and
Buildings, vol. 56, pp. 85–93, 2013.

[102] J. Kessing, T. Tutenel, and R. Bidarra, « Designing semantic game worlds », in
Proceedings of the The third workshop on Procedural Content Generation in Games,
2012, pp. 1–9.

[103] J. Kim, T. Hong, J. Jeong, M. Lee, M. Lee, K. Jeong, C. Koo, and J. Jeong, « Es-
tablishment of an optimal occupant behavior considering the energy consumption
and indoor environmental quality by region », Applied Energy, vol. 204, pp. 1431–
1443, 2017.

[104] L. Klein, J.-y. Kwak, G. Kavulya, F. Jazizadeh, B. Becerik-Gerber, P. Varakan-
tham, and M. Tambe, « Coordinating occupant behavior for building energy and
comfort management using multi-agent systems », Automation in construction,
vol. 22, pp. 525–536, 2012.

[105] U. Köckemann, « Constraint-based methods for human-aware planning », Ph.D.
dissertation, Örebro university, 2016.

207

[106] U. Köeckemann, F. Pecora, and L. Karlsson, « Inferring context and goals for
online human-aware planning », in 2015 IEEE 27th International Conference on
Tools with Artificial Intelligence (ICTAI), IEEE, 2015, pp. 550–557.

[107] D. Kudryavtsev, T. Gavrilova, M. Smirnova, and K. Golovacheva, « Modelling
consumer knowledge: the role of ontology », Procedia Computer Science, vol. 176,
pp. 500–507, 2020.

[108] N. Kushmerick, S. Hanks, and D. S. Weld, « An algorithm for probabilistic plan-
ning », Artificial Intelligence, vol. 76, 1-2, pp. 239–286, 1995.

[109] P. Labone and M. Ghallab, « Planning with sharable resource constraints », in
International Joint Conference on Artificial Intelligence, 1995.

[110] P. Laborie, « Algorithms for propagating resource constraints in ai planning and
scheduling: existing approaches and new results », Artificial Intelligence, vol. 143,
2, pp. 151–188, 2003.

[111] J. Lacoche, M. Le Chénéchal, E. Villain, and A. Foulonneau, « Model and tools
for integrating iot into mixed reality environments: towards a virtual-real seamless
continuum », in ICAT-EGVE 2019-International Conference on Artificial Reality
and Telexistence and Eurographics Symposium on Virtual Environments, 2019.

[112] J. E. Laird, « An analysis and comparison of act-r and soar », arXiv preprint
arXiv:2201.09305, 2022.

[113] V. Lanquepin, K. Carpentier, D. Lourdeaux, M. Lhommet, C. Barot, and K.
Amokrane, « Humans: a human models based artificial environments software plat-
form », in Proceedings of the Virtual Reality International Conference: Laval Vir-
tual, 2013, pp. 1–8.

[114] F. Lécuyer, V. Gouranton, A. Lamercerie, A. Reuzeau, B. Caillaud, and B. Ar-
naldi, « Unveiling the implicit knowledge, one scenario at a time », en, The Visual
Computer, vol. 36, 10-12, pp. 1951–1963, Oct. 2020.

[115] F. Lécuyer, V. Gouranton, A. Reuzeau, R. Gaugne, and B. Arnaldi, « Action
sequencing in vr, a no-code approach », Transactions on Computational Science
XXXVII: Special Issue on Computer Graphics, pp. 57–76, 2020.

[116] D. Lee and M. Yannakakis, « Principles and methods of testing finite state machines-
a survey », Proceedings of the IEEE, vol. 84, 8, pp. 1090–1123, 1996.

208

[117] W. Lee, S. Cho, P. Chu, H. Vu, S. Helal, W. Song, Y.-S. Jeong, and K. Cho,
« Automatic agent generation for IoT-based smart house simulator », en, Neuro-
computing, vol. 209, pp. 14–24, Oct. 2016.

[118] C. Li, F. Xia, R. Martin-Martin, M. Lingelbach, S. Srivastava, B. Shen, K. Vainio,
C. Gokmen, G. Dharan, T. Jain, A. Kurenkov, K. Liu, H. Gweon, J. Wu, L. Fei-
Fei, and S. Savarese, « Igibson 2.0: object-centric simulation for robot learning of
everyday household tasks », arXiv preprint arXiv:2108.03272, 2021.

[119] J. Li, Z. J. Yu, F. Haghighat, and G. Zhang, « Development and improvement
of occupant behavior models towards realistic building performance simulation: a
review », Sustainable Cities and Society, vol. 50, p. 101 685, 2019.

[120] D. Long, M. Fox, L. Sebastia, and A. Coddington, « An examination of resources
in planning », in Proc. of 19th UK Planning and Scheduling Workshop, Milton
Keynes, 2000.

[121] J. Lundström, J. Synnott, E. Järpe, and C. D. Nugent, « Smart home simulation
using avatar control and probabilistic sampling », in 2015 IEEE International Con-
ference on Pervasive Computing and Communication Workshops (PerCom Work-
shops), IEEE, 2015, pp. 336–341.

[122] S. Marsella and J. Gratch, « Modeling coping behavior in virtual humans: don’t
worry, be happy », in Proceedings of the second international joint conference on
Autonomous agents and multiagent systems, 2003, pp. 313–320.

[123] S. Mascarenhas, M. Guimarães, P. A. Santos, J. Dias, R. Prada, and A. Paiva,
« Fatima toolkit–toward an effective and accessible tool for the development of
intelligent virtual agents and social robots », arXiv preprint arXiv:2103.03020,
2021.

[124] A. H. Maslow, « A theory of human motivation. », Psychological review, vol. 50,
4, p. 370, 1943.

[125] R. J. McCall, S. Franklin, U. Faghihi, J. Snaider, and S. Kugele, « Artificial Motiva-
tion for Cognitive Software Agents », en, Journal of Artificial General Intelligence,
vol. 11, 1, pp. 38–69, Jan. 2020.

[126] D. M. McDermott, « The 1998 ai planning systems competition », AI magazine,
vol. 21, 2, pp. 35–35, 2000.

209

[127] K. Meister, M. Frick, and K. W. Axhausen, « Generating daily activity sched-
ules for households using genetic algorithms », in 5th Swiss Transport Research
Conference (STRC 2005), STRC, 2005.

[128] J.-A. Meyer, « Artificial life and the animat approach to artificial intelligence », in
Artificial intelligence, Elsevier, 1996, pp. 325–354.

[129] E. J. Miller and M. J. Roorda, « Prototype model of household activity-travel
scheduling », Transportation Research Record, vol. 1831, 1, pp. 114–121, 2003.

[130] K. L. Myers, « User guide for the procedural reasoning system », SRI International
AI Center Technical Report. SRI International, Menlo Park, CA, 1997.

[131] D. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila, « Shop: simple hierarchical ordered
planner », in Proceedings of the 16th international joint conference on Artificial
intelligence-Volume 2, 1999, pp. 968–973.

[132] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Ya-
man, « Shop2: an htn planning system », Journal of artificial intelligence research,
vol. 20, pp. 379–404, 2003.

[133] D. Norman, The design of everyday things: Revised and expanded edition. Basic
books, 2013.

[134] I. Nunes, C. J. De Lucena, and M. Luck, « Bdi4jade: a bdi layer on top of jade »,
in Ninth International Workshop on Programming Multi-Agent Systems:(ProMAS
2011), Taipei, Taiwan, 2011, pp. 88–103.

[135] S. A. Ordóñez Medina, « Personalized multi-activity scheduling of flexible activi-
ties », Arbeitsberichte Verkehrs-und Raumplanung, vol. 1099, 2015.

[136] J. Orkin, « Applying goal-oriented action planning to games », AI game program-
ming wisdom, vol. 2, pp. 217–228, 2003.

[137] A. Ortony, G. L. Clore, and A. Collins, The cognitive structure of emotions. Cam-
bridge university press, 1990.

[138] A. Ospina-Bohórquez, S. Rodríguez-González, and D. Vergara-Rodríguez, « On the
synergy between virtual reality and multi-agent systems », Sustainability, vol. 13,
8, p. 4326, 2021.

210

[139] J. S. Park, J. C. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein,
« Generative agents: interactive simulacra of human behavior », arXiv preprint
arXiv:2304.03442, 2023.

[140] J. L. Peterson, « Petri nets », ACM Computing Surveys (CSUR), vol. 9, 3, pp. 223–
252, 1977.

[141] A. Pokahr, L. Braubach, and W. Lamersdorf, « Jadex: a bdi reasoning engine »,
Multi-agent programming: Languages, platforms and applications, pp. 149–174,
2005.

[142] J. Pougala, T. Hillel, and M. Bierlaire, « Capturing trade-offs between daily schedul-
ing choices », Journal of choice modelling, vol. 43, p. 100 354, 2022.

[143] J. Pougala, T. Hillel, and M. Bierlaire, « Choice set generation for activity-based
models », in Swiss Transport Research Conference, 2021.

[144] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba, « Virtual-
home: simulating household activities via programs », in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 8494–8502.

[145] R. Querrec, C. Buche, E. Maffre, and P. Chevaillier, « Sécurévi: virtual environ-
ments for fire-fighting training », in 5th virtual reality international conference
(VRIC’03), 2003, pp. 169–175.

[146] M. A. Ramos, V. Munoz-Jimenez, F. F. Ramos, J. R. M. Romero, A. L. Lopez,
and B. E. Ordoñez G, « Evolutive autonomous behaviors for agents system in
serious games », in 2015 International Conference on Computational Science and
Computational Intelligence (CSCI), IEEE, 2015, pp. 226–231.

[147] A. S. Rao and M. P. Georgeff, « Bdi agents: from theory to practice. », in Icmas,
vol. 95, 1995, pp. 312–319.

[148] J. Renoux and F. Klugl, « Simulating daily activities in a smart home for data
generation », in 2018 Winter Simulation Conference (WSC), IEEE, 2018, pp. 798–
809.

[149] Q. Reynaud, Y. Haradji, F. Sempé, and N. Sabouret, « Using time use surveys in
multi agent based simulations of human activity. », in ICAART (1), 2017, pp. 67–
77.

211

[150] Y. Rizk, M. Awad, and E. W. Tunstel, « Decision making in multiagent systems:
a survey », IEEE Transactions on Cognitive and Developmental Systems, vol. 10,
3, pp. 514–529, 2018.

[151] A. Roitberg, D. Schneider, A. Djamal, C. Seibold, S. Reiß, and R. Stiefelhagen,
« Let’s play for action: recognizing activities of daily living by learning from life
simulation video games », in 2021 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), IEEE, 2021, pp. 8563–8569.

[152] M. J. Roorda, E. J. Miller, and K. M. Habib, « Validation of tasha: a 24-h activity
scheduling microsimulation model », Transportation Research Part A: Policy and
Practice, vol. 42, 2, pp. 360–375, 2008.

[153] A. Saadi, R. Maamri, and Z. Sahnoun, « A natural inclusion of motives inside bdi
agents », in 2019 International Conference on Theoretical and Applicative Aspects
of Computer Science (ICTAACS), IEEE, vol. 1, 2019, pp. 1–5.

[154] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
« Improved techniques for training gans », in Advances in Neural Information Pro-
cessing Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, D. D. Lee, M. Sugiyama, U. von
Luxburg, I. Guyon, and R. Garnett, Eds., 2016, pp. 2226–2234.

[155] S. Sardina and L. Padgham, « A BDI agent programming language with failure
handling, declarative goals, and planning », en, Autonomous Agents and Multi-
Agent Systems, vol. 23, 1, pp. 18–70, Jul. 2011.

[156] M. Schumann, Q. Reynaud, N. Sabouret, F. Sempé, Y. Haradji, B. Charrier, J. Al-
bouys, and C. Inard, « Multi-agent based simulation of human activity for building
and urban scale assessment of residential load curves and energy use », in Building
Simulation 2021 Conference, 2021.

[157] A. Schwartz, « A reinforcement learning method for maximizing undiscounted re-
wards », in Proceedings of the tenth international conference on machine learning,
vol. 298, 1993, pp. 298–305.

[158] M. Schweiker, E. Ampatzi, M. S. Andargie, R. K. Andersen, E. Azar, V. M.
Barthelmes, C. Berger, L. Bourikas, S. Carlucci, G. Chinazzo, L. P. Edappilly,
M. Favero, S. Gauthier, A. Jamrozik, M. Kane, A. Mahdavi, C. Piselli, A. L.
Pisello, A. Roetzel, A. Rysanek, K. Sharma, and S. Zhang, « Review of multi-

212

domain approaches to indoor environmental perception and behaviour », Building
and Environment, vol. 176, p. 106 804, 2020.

[159] E. de Sevin and D. Thalmann, « A motivational model of action selection for virtual
humans », en, in International 2005 Computer Graphics, Stony Brook, NY, USA:
IEEE, 2005, pp. 213–220.

[160] A. Shirvani and S. Ware, « A formalization of emotional planning for strong-story
systems », in Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 16, 2020, pp. 116–122.

[161] L. de Silva, « BDI Agent Reasoning with Guidance from HTN Recipes », en, in
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Sys-
tems, São Paulo, Brazil: International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC, 2017, pp. 759–767.

[162] L. d. Silva, F. Meneguzzi, and B. Logan, « BDI Agent Architectures: A Survey »,
en, in Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, Yokohama, Japan, Jul. 2020, pp. 4914–4921.

[163] D. E. Smith, J. Frank, and A. K. Jónsson, « Bridging the gap between planning
and scheduling », The Knowledge Engineering Review, vol. 15, 1, pp. 47–83, 2000.

[164] S. F. Smith, « Reactive scheduling systems », in Intelligent scheduling systems,
Springer, 1995, pp. 155–192.

[165] S. F. Smith and M. A. Becker, « An ontology for constructing scheduling systems »,
in Working Notes of 1997 AAAI Symposium on Ontological Engineering, AAAI
Press Stanford, CA, 1997, pp. 120–127.

[166] S. Srivastava, C. Li, M. Lingelbach, R. Martin-Martin, F. Xia, K. Vainio, Z. Lian,
C. Gokmen, S. Buch, C. K. Liu, S. Savarese, H. Gweon, J. Wu, and L. Fei-Fei,
« Behavior: benchmark for everyday household activities in virtual, interactive,
and ecological environments », arXiv preprint arXiv:2108.03332, 2021.

[167] D. A. Suyikno and A. Setiawan, « Feasible npc hiding behaviour using goal oriented
action planning in case of hide-and-seek 3d game simulation », in 2019 Fourth In-
ternational Conference on Informatics and Computing (ICIC), IEEE, 2019, pp. 1–
6.

[168] W. R. Swartout, J. Gratch, R. W. Hill Jr, E. Hovy, S. Marsella, J. Rickel, and
D. Traum, « Toward virtual humans », AI Magazine, vol. 27, 2, pp. 96–96, 2006.

213

[169] I. Trentin, O. Boissier, and F. Ramparany, « Insights about user-centric contex-
tual online adaptation of coordinated multi-agent systems in smart homes », in
Rencontres des Jeunes Chercheurs en Intelligence Artificielle 2019, 2019, pp. 35–
42.

[170] T. Trescak and A. Bogdanovych, « Simulating complex social behaviours of virtual
agents through case-based planning », Computers & Graphics, vol. 77, pp. 122–
139, 2018.

[171] T.-H. Trinh, R. Querrec, P. De Loor, and P. Chevaillier, « Ensuring semantic
spatial constraints in virtual environments using uml/ocl », in Proceedings of the
17th ACM Symposium on Virtual Reality Software and Technology, 2010, pp. 219–
226.

[172] V. Vidal and H. Geffner, « Branching and pruning: an optimal temporal pocl
planner based on constraint programming », Artificial Intelligence, vol. 170, 3,
pp. 298–335, 2006.

[173] S. Vosinakis and N. Avradinis, « Virtual agora: representation of an ancient greek
agora in virtual worlds using biologically-inspired motivational agents. », Mediter-
ranean Archaeology & Archaeometry, vol. 16, 5, 2016.

[174] S. Vosinakis and T. Panayiotopoulos, « Programmable agent perception in intelli-
gent virtual environments », in Intelligent Virtual Agents: 4th International Work-
shop, IVA 2003, Kloster Irsee, Germany, September 15-17, 2003. Proceedings 4,
Springer, 2003, pp. 202–206.

[175] K. Walczak, D. Rumiński, and J. Flotyński, « Building contextual augmented re-
ality environments with semantics », in 2014 International Conference on Virtual
Systems & Multimedia (VSMM), IEEE, 2014, pp. 353–361.

[176] C. J. Watkins and P. Dayan, « Q-learning », Machine learning, vol. 8, pp. 279–292,
1992.

[177] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah, « Declarative & pro-
cedural goals in intelligent agent systems », KR, vol. 2002, pp. 470–481, 2002.

[178] W. Wobcke and A. Sichanie, « A reactive scheduling agent architecture for coordi-
nating autonomous assistants », in Intelligent agent technology: Systems, method-
ologies, and tools, Citeseer, 1999.

214

[179] M. Xu, K. Bauters, K. McAreavey, and W. Liu, « A formal approach to embedding
first-principles planning in bdi agent systems », in International Conference on
Scalable Uncertainty Management, Springer, 2018, pp. 333–347.

[180] D. Yan, W. O’Brien, T. Hong, X. Feng, H. B. Gunay, F. Tahmasebi, and A. Mah-
davi, « Occupant behavior modeling for building performance simulation: current
state and future challenges », Energy and buildings, vol. 107, pp. 264–278, 2015.

[181] Y. Zhao, F. F. Pour, S. Golestan, and E. Stroulia, « Bim sim/3d: multi-agent hu-
man activity simulation in indoor spaces », in 2019 IEEE/ACM 5th International
Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS),
IEEE, 2019, pp. 18–24.

[182] V. A. Ziparo, L. Iocchi, P. U. Lima, D. Nardi, and P. F. Palamara, « Petri net
plans: a framework for collaboration and coordination in multi-robot systems »,
Autonomous Agents and Multi-Agent Systems, vol. 23, pp. 344–383, 2011.

215

Titre : Simulation d’Agents Autonomes dans des Environnements Virtuels Connectés

Mot clés : Agents Autonomes, Génération de données synthétiques, Activités quotidiennes,

Environnements Virtuels Connectés, Intelligence Artificielle, Ordonnanceur, Modèle BDI

Résumé : Comprendre le comportement hu-
main est essentiel pour développer des sys-
tèmes adaptatifs tels que des environnements
connectés. Des données réelles sont alors né-
cessaires, mais elles sont rares et coûteuses
à produire. Une solution consisterait à géné-
rer des données synthétiques en simulant les
environnements et leurs occupants. Cepen-
dant, nous devons nous assurer qu’elles sont
suffisamment crédibles pour être utilisables.
Cette crédibilité va notamment dépendre de
celle des humains simulés et de leur capacité
à interagir avec leurs environnements virtuels
pouvant produire de telles données. Cette ap-
proche soulève alors la question suivante :
Comment simuler des humains virtuels ca-

pables de produire des comportements cré-
dibles tout en étant compatible avec la géné-
ration de données? Pour répondre à cela, 3
défis majeurs doivent être adressés : (1) Pro-
duire automatiquement des comportements
humains crédibles, (2) Offrir un compromis
entre contrôle et autonomie sur les comporte-
ments, et (3) Valider la crédibilité des données
et des comportements. Pour relever ces défis,
nous proposons un modèle d’agent autonome
capable de fournir des comportements à la
fois autonomes et contrôlables tout en per-
mettant l’exécution d’activités dans des envi-
ronnements 3D. Nous proposerons différentes
méthodes validant la crédibilité des données
et des comportements.

Title: Simulating Autonomous Agents in Connected Virtual Environments

Keywords: Autonomous Agents, Synthetic data generation, Daily-activities, Connected Virtual

Environments, Artificial Intelligence, Scheduling, BDI Model

Abstract: Understanding human behavior is
essential to develop adaptive systems such as
connected environments. To do this, real data
are required but they are scarce and costly
to produce. One solution would be to gen-
erate synthetic data by simulating the envi-
ronments and their occupants. However, we
need to ensure that these data are sufficiently
credible. This credibility particularly depends
on the simulated virtual humans’ credibility
and their ability to interact with virtual environ-
ments producing such data. This approach
raises the following question: How can we
simulate virtual humans able to produce credi-

ble behaviors while being compatible with data
generation? To address this, 3 major chal-
lenges must be addressed: (1) Automatically
producing credible human behaviors, (2) Of-
fering a compromise between control and au-
tonomy over behaviors, and (3) Validating the
credibility of data and behaviors. To address
these challenges, we propose an autonomous
agent model providing both autonomous and
controllable behaviors, while enabling activity
execution in 3D environments. Various valida-
tion methods are also proposed to assess the
credibility of the behaviors and synthetic data.

	List of plots
	Tables
	Introduction
	Context
	Industrial Context
	Other Application Contexts

	Challenges
	Automatically producing Credible Human Behaviors
	Offering a compromise between Control and Autonomy over Behaviors
	Validating the Credibility of the Generated Behaviors

	Contributions

	Related Work on Human Simulation and Data Generation
	Simulations to generate Data related to Human Behaviors
	Types of Environment used to generate Data
	Ways to simulate Humans Behaviors for Data Generation
	Methods to validate the Credibility of the Generated Data
	A priori Approaches
	A posteriori Approaches

	Conclusion

	Agent-based Models to simulate Humans
	Definitions related to Autonomous Agents
	Definitions related to Virtual Environment
	Definitions regarding the Notion of Agent
	Definition regarding the Notion of Autonomy
	Definitions related to Need, Resource,Activity, Task, and Action

	Relationships between Agents and Environments through Intelligent Virtual Environments (IVE)
	Models with Predefined Behaviors: The Automatons
	Models with Goal-Oriented Behaviors
	Reactive-Based Models
	Planning-Based Models
	Scheduling-Based Models
	Probabilistic-Based Models
	Learning-Based Models and Cognitive-Based Models
	Approaches mixing several Models

	Ways to validate the Credibility of Agent Behaviors
	Conclusion about Agent-Based Models

	Conclusion

	Agent Model allowing both Autonomy and Control on the Behaviors
	From Specifications to Agent Model
	Interactions between the 3D Environment and the Agent
	Global Structure of the Agent Model
	Internal State Model
	Decision-Making Model
	Task Executor Model
	Functional Validation
	Global Implementation
	Functional Validation with Full-Autonomy
	Functional Validation with an Input Calendar of Activities given by the User

	Conclusion

	Additional Model to better address dynamic environments
	Motivations and Specifications to address Dynamic Environments
	Motivations to address Dynamic Environments
	Providing diversity on the synthetic data and simulated situations
	Offering Multi-agent simulations

	Specifications related to Dynamic Environments

	Overview of Resource and Event Models
	Considered Resources
	Considered Events
	Models to manage Resources and Events

	Resource Manager
	Interruption Manager
	Managing Resources at the execution level
	Managing Events at execution level

	Plan Checker
	Checking Plan Resources
	Checking Plan after Interruption

	User-Experiment Protocol
	Part 1: Evaluate behaviors at the execution level
	Part 2: Evaluate behaviors at the scheduling level

	Conclusion

	Methods to validate the Credibility of the Data generated by the Agent
	Replication of a Real Database
	Introducing Orange4Home
	Replication of the Real Environment
	Replication of Real Sensors and Effectors
	Replication of the Experimental Protocol

	Validation with Activity Recognition
	Recognition Performances on Real and Simulated Data
	Using Simulated Data for Real Situations
	Comparing Performances on Real Data with all Sensors

	Validation with Future Activity Prediction
	Impact of Non-Markovian Depth
	Predicting Performances on Real and Simulated Data
	Using Simulated Data for Real Situations

	Conclusion and Discussions
	Insights on replicating Datasets
	Generalization to Other Contexts

	Conclusion
	Conclusion
	Contributions
	Perspectives
	Short Term Perspectives
	Long Term Perspectives

	Published Papers

	Résumé Etendu en Français
	Bibliography

