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PREFACE

W ith the increasing deployment of decision-making and learning algorithms
in multi-agent systems, it becomes imperative to understand their efficiency

and improve their performance. The design and analysis of these systems,
however, confront significant challenges. These range from practical implemen-
tation issues to the intrinsic complexity of multi-agent dynamics, where agent
interactions can be cooperative, competitive, or a mix of the two. On top of this
is the presence of non-stationarity, driven by either the unpredictable character
of nature or interaction with other strategic entities.

This thesis represents a targeted attempt to navigate this complex landscape,
investigating separately two critical aspects: the impact of delays and the
interactions among agents with non-aligned interests. This dual focus is due to
the relevance of these issues to practical deployment and the inherent difficulty
of learning in such systems, aiming to reveal fundamental insights about
how information flow and strategic interactions influence the overall system’s
learning and decision-making processes. Our approaches are grounded in
decentralized optimization and game theory, using online learning as a principal
methodology to address the non-stationarity of the environment.

Our first series of contributions concerns the study of a dual averaging algo-
rithm in a cooperative online learning setup. This setup features asynchronicity
and delays, which pose a significant obstacle to conventional regret analysis.
To address this difficulty, we introduce the key concepts of virtual iterates and
faithful permutations, which enable us to establish a universal regret bound
for this setting. Our results further extend to an optimistic version of dual
averaging, which leverages slow variation in the sequence of losses encountered
by the agents.

Moving forward, we investigate convergence to Nash equilibrium and in-
dividual performance guarantees, as measured by the agents’ regrets, when
the agents’ interactions are governed by a general, non-cooperative game.
Our algorithms are again based on the principle of optimism, incorporating a
“lookahead” step that reuses the most recent information.

Importantly, across both contexts, we put emphasis on the “adaptivity” of our
algorithms and their resilience in handling “uncertainty” during interactions.
Our methods work without any coordination among agents, and can be imple-
mented even when the agents are completely oblivious of their environment
(and/or the game that they are involved in). A significant aspiration of our
approach is to provide adaptive guarantees, robust to the dynamic nature of
the environments, where uncertainty can stem from a lack of knowledge or be
modeled as we do with a noisy oracle in the learning-in-games setup.
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RÉSUMÉ

Face au déploiement croissant d’algorithmes de décision et d’apprentissage
dans les systèmes multi-agents, il devient impératif de comprendre leur

efficacité et d’améliorer leurs performances. Cependant, la conception et
l’analyse de ces systèmes se heurtent à défis importants, qui s’étendent des
problèmes pratiques d’implémentation jusqu’à la complexité intrinsèque des
dynamiques multi-agents, avec des interactions entre les agents qui peuvent
être coopératives, compétitives ou un mélange des deux.

Cette thèse vise à naviguer dans ce paysage complexe, en examinant sé-
parément deux aspects critiques : l’impact du délai et des interactions entre
agents aux intérêts contradictoires. L’objectif ici est d’établir des connais-
sances fondamentales sur la façon dont le flux d’informations et les interactions
stratégiques influencent les processus d’apprentissage et de prise de décision.
Nos méthodes s’inscrivent dans le cadre de l’optimisation décentralisée et de la
théorie des jeux, en utilisant une approche d’apprentissage en ligne pour gérer
la non-stationnarité de l’environnement.

Concrètement, nos premières contributions concernent l’étude d’un algo-
rithme du type “dual averaging” dans l’apprentissage en ligne coopératif. Nous
considérons pour ceci une configuration qui comporte de l’asynchronicité et
des délais, présentant des obstacles à l’analyse classique du regret. Malgré
cela, nous introduisons plusieurs concepts clés, dont les itérés virtuels et la
permutation fidèle, qui nous permettent d’établir des bornes sur les regrets
dans ce contexte. Nos résultats s’étendent également à une version optimiste du
dual averaging, qui exploite la variation lente de la perte subie par les agents.

Ensuite, nous étudions la convergence vers les équilibres et la garantie de
performance individuelle, mesurée par le regret, dans l’apprentissage dans
les jeux. Le comportement ou la décision de chaque agent peut influencer les
résultats des autres, créant une dynamique complexe qui doit être soigneuse-
ment analysée. Nos algorithmes sont à nouveau basés sur le principe optimiste,
incorporant une étape de prévision qui réutilise l’information la plus récente.

Il est important de souligner que, dans les deux contextes, nous mettons
l’accent sur l’adaptabilité de nos algorithmes et leur résilience face à l’incertitude
lors des interactions. Nos méthodes fonctionnent sans aucune coordination
entre les agents et peuvent être implémentées même par une entité qui ignore
l’environnement avec laquelle elle interagit. Une particularité de notre ap-
proche est qu’elle fournit des garanties adaptatives, robustes face à la nature
dynamique des environnements, où l’incertitude peut découler d’un manque
de connaissance ou être modélisée, comme nous le faisons, avec un bruit dans
la cadre de l’apprentissage dans les jeux.
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1
INTRODUCTION

Existentialists posit that every decision we make contributes to defining
our humanity. But what about the decisions made by machines? This

philosophical contemplation largely bypasses the scope of this thesis, but one
thing is certain. When Sartre wrote down his famous quote “Hell is other
people” in “No exit”, it is unlikely he could have envisaged that it might one day
apply to a machine as well.1 This complexity of a machine making decisions
in the context of interaction with others forms the core subject of this thesis,
where we approach it from a mathematical standpoint.

1.1 philosophical context and scientific positioning

As we stand at the dawn of a new era, the world around us is changing at an
unprecedented pace. News of advancements in artificial intelligence flood the
media, sketching a vivid picture of a future society teeming with intelligent
agents. Soon, factories will become places where robots with unique intelligence
collaborate on complex tasks. Non-player characters in games will operate
without manual programming, and autonomous vehicles will navigate our city
streets. Looking ahead, we can envision a future where every moving object
will be infused with artificial intelligence.

This perspective is a thrilling one, but it is not without its apprehensions.
The deployment of such intelligent agents at a large scale could bring about
unforeseen impacts, from mass unemployment to an exacerbated wealth dis-
parity. Some have even gone so far as to characterize the risk posed by these
developments as “existential”. Amid such uncertainties, it becomes crucial to
approach the design of these entities with caution and strategic forethought.
Given the multi-agent nature of the problem, understanding the interplay and
mutual influence between individual agents is of paramount importance, as it
is these interactions that often shape the overall dynamics and outcomes of the
entire system.

Taking one step back, the study of such complex systems is deeply rooted in
various disciplines, where the interacting entities could represent individuals
in society or populations in nature. Mathematical models have been developed
to explain phenomena observed in these contexts. On top of this is the advent
of the Internet of Things (IoT), which marks the first time in human history
that so many people can interact with each other in a common place. This
massive scale of interaction is nonetheless heavily influenced by algorithms.
In online ad auctions, bidders rely on automated bidding agents to place their
bids. On social media platforms, the content shown to us is largely determined
by underlying machine learning models.

1 “L’enfer, c’est les autres” from “Huis clos” [241] in French. Note that here we are neither using it is
popular (mis)interpretation nor adhering to Sartre’s original meaning of the phrase.
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2 introduction

In parallel, there are systems like sensor networks and robots that may be
physically dispersed yet require cooperation to function effectively. Server farms
spread across geographical distances need to work in unison, as do devices in a
smart home environment. In either case, the challenge is not just explaining
the outcome of interactions, but also designing new entities—algorithms or AI
agents—to efficiently solve specific tasks or handle more general situations.

This thesis delves into this crucial matter, focusing on algorithm design in
decentralized multi-agent systems. Decentralization, in this context, is not just a
technical challenge or an inevitability, but also a philosophical choice. In this era
of AI, ensuring that the power of intelligence is within everyone’s reach is vital,
as this fosters data independence, a concept as crucial for digital consumers as
energy independence is for sovereign countries. The ultimate goal is to design
algorithms that operate from an individual’s perspective but contribute to both
the benefit of the individual and the harmony of the whole system.

Keeping this in mind, this thesis is built on three critical pillars: multi-agent
systems, uncertainty, and adaptivity. We aim to study systems where multiple
agents interact under uncertain conditions and adapt their behaviors in response
to their observations, as we detail below.

multi-agent systems. At the heart of the thesis is the investigation of
decision-making, or learning, within multi-agent systems. This brings to light
a multitude of challenges, both practical and conceptual. In this manuscript,
we focus on mathematical frameworks that capture certain aspects of these
challenges. Particularly, we delve into two distinct yet complementary topics:
the practical challenges that stem from delays and the conceptual challenges
related to strategic interactions in competitive environments.

Such challenges often arise when attempting to deploy multi-agent systems inAsynchronicity and
delayed feedback real-world environments: notably, we have to contend here with asynchronicity

and delayed feedback. Asynchronicity can pertain to the timing of agent
activations, inter-agent communications, local computations, and more. It is
an unavoidable characteristic, often resulting from factors like heterogeneous
computational resources, varying communication channels, or simply the
unplanned nature of real-world environments.

Meanwhile, delayed feedback refers to the situation where the feedback
received by an agent regarding some event occurring in the network arrives
after a certain delay, a natural characteristic of multi-agent systems due to
network latency. These challenges necessitate the development of learning
algorithms that can effectively handle asynchronicity and delay with minimal
performance sacrifice. For some examples of such algorithms, we direct readers
to [12, 135, 231, 281] and references therein.

In Part i of this thesis, we investigate this problem in the realm of cooperativeCooperative learning
and distributed

optimization
learning. Here, the agents share a common objective. A practical example
of this could be a fleet of robots in factories or a cluster of servers in cloud
computing. In this context, a seemingly elementary but already challenging
problem to address is distributed optimization of the following form

min
𝑥∈𝒳

1
𝑁

𝑁∑
𝑖=1

ℓ 𝑖(𝑥). (1.1)

In the above, each ℓ 𝑖 is an agent’s local loss function and the agents aim to find
a single variable 𝑥★ from the shared constraint set 𝒳 that minimizes the sum
of these loss functions. The study of this problem can be traced back at least



1.1 philosophical context and scientific positioning 3

to the works [64, 268, 269] in the context of parallel and distributed numerical
methods; see also the textbook [19] and the surveys [206, 285]. The key obstacle
here comes from the need for communication between agents: in the absence
of communication, the best that each agent can achieve is the minimization of
their own loss functions. This, however, does not in general translate into a
solution for (1.1). Conversely, if all agents could communicate instantaneously,
the problem would reduce to a single-agent optimization one where we can
directly execute operations with respect to the sum of the functions. In practice,
the situation is usually somewhere in between. Agents communicate in a
constrained manner, with communications being local and delayed. It is within
these circumstances that the complexities of asynchronicities and delays, as
outlined earlier, become significantly pronounced and warrant the need for a
specialized treatment.

More concretely, we examine in Part i an extension of the above problem,
where neither the number of agents nor their loss functions are fixed. Instead,
they arrive in an online fashion, and we seek algorithms with minimal regret,
generally defined as the difference between the total loss experienced by the
agents and that incurred by some comparator strategy.

On the other hand, the very nature of multi-agent systems can fundamentally Strategic Interactions
and Interdependencieschange the decision-making problem. Consider for instance the bidding

dynamics in auctions or the path selection process in network routing. In these
scenarios, the loss experienced by an agent is a function of both its own actions
and the actions of others. As a consequence, the complexity in these situations
does not merely originate from the communication process, but also stems from
the intricate interplay of the agents’ actions in shaping their losses. The question
that arises is: can we still draw any insights about the agents’ behaviors amidst
such layered intricacies?

This is where game theory enters the scene. From its early attempts to elucidate
human rationality to its modern adaptations for analyzing evolving populations
in biology and computer networks, game theory offers a mathematical toolbox
tailored to the complex interactions between agents [90, 166, 217].

What is particularly relevant to our study is the dynamics in games, an area Learning in games
explored in various subfields of game theory including evolutionary game
theory [239, 278], repeated games [190], and algorithmic game theory [214].
Our concerns predominantly lie within the paradigm of learning in games,
which we review and study in Part ii of this manuscript. Our aim is to identify
algorithms that, in this context, can ensure stability of the system while also
providing at least some minimal performance guarantee for each agent, as
measured by their regrets.

uncertainty. From the perspective of each individual agent, the landscape
of multi-agent systems is riddled with uncertainties. These uncertainties stem
from a variety of sources. For instance, the inherent unpredictability of the
environment, the volatile nature of other agents’ behaviors, and/or the lack of
complete knowledge about the system, all contribute to an uncertain landscape.
While some of these uncertainties are hard-coded in the multi-agent nature of
the model, others require a dedicated treatment. Among these, we single out
two types of uncertainties: those brought about by delays, and those modeled
by stochastic feedback.

As previously noted, the delayed and asynchronous nature of communication Uncertainty related to
delaysamong agents presents a unique set of challenges. In Chapters 3 and 4,

we dive into the complexities caused by these delays. Uncertainty in this
context manifests in several forms—from an inability to ascertain the number
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of decisions or updates that have been enacted within the system, to a lack of
precise knowledge about when feedback was generated.2 These aspects add an
extra layer of complexity, over the inherent challenge posed by agents having to
operate with outdated information.

On another front, we examine uncertainty related to the value of feedback inUncertainty related to
stochastic feedback Chapters 7 and 8. This uncertainty can be intrinsic to the problem, be caused

by measurement or transmission errors, or be deliberately injected into the
algorithm for efficiency or privacy reasons. To represent these, we incorporate an
unbiased noise component to the true, noiseless feedback. This leads to recursive
approaches commonly studied in stochastic approximation [136, 233, 276]. The
integration of multi-agent dynamics with stochastic feedback, however, presents
new challenges that are not encountered when dealing with each of them
separately.

adaptivity. One crucial, yet challenging, element for effective algorithms
in multi-agent systems lies in the need for these algorithms to be practically
implementable. What qualifies as such largely depends on the problem at hand,
but a universal criterion we strive for is that the algorithm should operate with
minimal knowledge and little to no coordination between agents. Furthermore,
an ideal algorithm should leverage the distinct facets of the interactions to
improve its performance.

From a theoretical perspective, we can either capture this with bounds thatAdaptivity from a
theoretical viewpoint reflect some fine-grained characterization of the interaction process, or by

establishing a collection of optimal guarantees for different situations. In this
context, “adaptive” functions as an umbrella term signifying that an algorithm
meets at least some of the aforementioned criteria.

A significant part of this thesis is devoted to the study of such adaptive
algorithms. We investigate their application in various settings in Chapters 3, 4,
6 and 8. While the algorithms that we consider follow a similar guiding philos-
ophy, as elaborated in Section 2.3, their actual adaptation and the accompanying
analysis is far from straightforward. This exploration results in a rich body of
results that furthers our understanding of the effectiveness of adaptive learning
within multi-agent systems.

1.2 diagrammatic outline

Following the above discussion, the body of this thesis is divided into two parts,
each of them dedicated to a different model for multi-agent decision-making.
In Part i, we extend the distributed optimization problem described in Eq. (1.1)
to an asynchronous, online setup and devise adaptive algorithms to address
this situation. In Part ii, we place ourselves in the framework of learning in
games and investigate how we can make the so-called optimistic algorithms
adaptive and robust to noise. For the sake of illustration, we depict these two
frameworks along with the basic single-agent online learning setup in Fig. 1.1.

Each of the two parts of this thesis begins with a chapter that lays out the
necessary technical preliminaries. The subsequent chapters of each part build
upon these foundations and present novel contributions to the field. Finally, in
Chapter 9, we conclude the manuscript by exploring some potential avenues
for future research.

2 While timestamping each piece of feedback is plausible, it still leaves us unsure of how to order it
relative to the feedback elements that have not yet reached the agent.
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(c) Part ii: Learning in games

Figure 1.1: Illustrations of the learning setups considered in this thesis. The two
multi-agent setups are natural extensions of single-agent online learning and depict
respectively the cooperative and the competitive scenarios. Note that only one agent is
active per round in b and hence the dashed arrows between the inactive agents and the
environment(s).

1.2.1 Part i: Learning in the Presence of Delays and Asynchronicities

We use the framework of online learning for studying sequential decision
making (see Fig. 1.1a). This first part looks into the difficulties that arise from
delayed and asynchronous communications. The agents have a shared objective:
the minimization of their joint regret. Simply put, this is the cumulative regret
incurred over the entirety of the system, thereby serving as a benchmark for
the overall performance of the decision-making process. However, achieving
this objective is far from straightforward: it requires the design and analysis of
robust, adaptive algorithms that can navigate the complexities of delays and
asynchronicities, while still delivering optimal performance guarantees within
these multifaceted settings.

The contributions presented in this part draw from the following publications.

Yu-Guan Hsieh, Franck Iutzeler, Jérôme Malick, and Panayotis Mer-
tikopoulos. Optimization in Open Networks via Dual Averaging. In
IEEE Conference on Decision and Control, 2021.

Yu-Guan Hsieh, Franck Iutzeler, Jérôme Malick, and Panayotis Mer-
tikopoulos. Multi-agent Online Optimization with Delays: Asyn-
chronicity, Adaptivity, and Optimism. Journal of Machine Learning
Research, 2022.

Chapter 2. In this introductory chapter, we establish the mathematical Fundamentals of
Online Optimizationgroundwork for the understanding of online learning, with a particular emphasis

on online convex optimization. In our pursuit, we spotlight two central
algorithms—mirror descent and dual averaging—discussing their difference
and stressing instances where the latter might prove more advantageous than
the former. Our main objective here is to build an understanding of the basics,
set up the notations, and underscore important elements of the regret analysis.
This is why we include proofs of several propositions, even though the results
presented in this chapter are rather standard. As the chapter concludes, we
present AdaGrad-norm, an adaptive learning rate strategy well studied in the
literature. This strategy sets the basis for the design of our adaptive algorithms,
which are discussed in later parts of the thesis.
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𝑋𝑡 𝑥𝑡 = 𝑋𝑡+ 1
2

𝑋𝑡 = 𝑋𝑡+2 𝑋𝑡+3

𝑋𝑡+3 = 𝑋𝑡+5−𝜂𝑔𝑡−3
−𝜂𝑔𝑡−2

−𝜂𝑔𝑡−1
−𝜂𝑔𝑡+1

−𝜂𝑔𝑡+2−𝜂𝑔𝑡

Figure 1.2: Schematic representation of (DOptDA). This algorithm introduced in
Chapter 4 addresses delays with an optimistic step that extrapolates the base state 𝑋𝑡 to
the actual prediction 𝑥𝑡 . The extrapolation is meant to compensate missing feedback
and allows the algorithm to “look into the future” when the feedback sequence varies
slowly. More detailed explanation of this schema is provided in Section 4.2.1

Chapter 3. Formulating a mathematical framework that captures simultane-Multi-Agent Online
Optimization with

Delays
ously the online, multi-agent, and asynchronous aspects is not an easy endeavor,
and this is what we aim to provide in this chapter. Our proposed framework
models the cooperation of asynchronously communicating agents within a
potentially time-varying environment (cf. Fig. 1.1b). To accommodate this
challenging situation, we extend dual averaging to cope with delayed feedback,
and provide in Theorem 3.1 a general regret bound for learning rate sequences
that are non-increasing along a faithful permutation, a permutation of the time
indices that is compatible with the feedback structure (Definition 3.1).

Going beyond this general result, we design adaptive learning rates that
are practically implementable by the agents under different constraints. These
algorithms mostly satisfy the minimum prior knowledge and no coordination
desiderata outlined earlier, all the while enjoy guarantees that reflect both the
magnitude of feedback and the actual delays. We conclude this chapter by
drawing a connection with distributed online learning through alternative
approaches to problem formulation and regret definition. Additionally, we
provide experimental results for the solution of a distributed least absolute
deviation problem in static and open networks.

Chapter 4. We transition our focus in this chapter from the harsh adver-Slow Variation & The
Role of Optimism sarial landscapes of loss sequences to more benevolent environments where

identifiable patterns and slower changes offer opportunities for an improved
regret. Optimistic algorithms, originally developed for such conditions, play a
significant role in our strategy. After revisiting these algorithms, we introduce
adaptations to address the impact of delays. In particular, we find it necessary to
place more weight on the optimistic step to offset the effects of delayed feedback,
as we illustrate in Fig. 1.2. These adaptations are underpinned by lower bounds,
which formally validate the need for such a “learning rate separation” and
certify the optimality of our regret bounds. In a practical vein, we develop
adaptive algorithms specifically designed for the multi-agent setup introduced
in Chapter 3, and provide theoretical guarantees that demonstrate their efficacy
in this context. Lastly, it is important to highlight that this chapter also serves
as a prelude to Part ii, where we rely heavily on optimistic algorithms.

1.2.2 Part ii: Adaptive Learning in Games

In this part, we shift our focus to learning in games, focusing particularly on
learning in continuous games with first-order feedback. While each agent,
or player, is still engaged in an online learning problem, their loss functions
are now dictated by the actions of other players, rather than some ambiguous
external "nature". This transition opens the door for us to devise algorithms
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that provide enhanced performance, especially when players exhibit rational
and non-adversarial behavior.

Notably, unlike the previous part of the manuscript, which explored the
complexities introduced by delays, we consciously put aside this aspect here
to fully immerse ourselves in the challenges and opportunities unique to the
learning-in-games context. Furthermore, this choice also allows us to focus on
the refinement of the algorithms, improving their adaptability across various
scenarios. We particularly look into the adversarial, self-play, and stochastic
feedback settings. This investigation would have been hard to achieve had we
further attempted to take the delays into account.

The development of this part lays down on the following works.

Yu-Guan Hsieh, Franck Iutzeler, Jérôme Malick, and Panayotis Mer-
tikopoulos. Explore Aggressively, Update Conservatively: Stochastic
Extragradient Methods with Variable Stepsize Scaling. In Advances
in Neural Information Processing Systems, 2020.

Yu-Guan Hsieh, Kimon Antonakopoulos, and Panayotis Mertikopou-
los. Adaptive Learning in Continuous Games: Optimal Regret
Bounds and Convergence to Nash Equilibrium. In Conference on
Learning Theory, 2021.

Yu-Guan Hsieh, Kimon Antonakopoulos, Volkan Cevher, and Panay-
otis Mertikopoulos. No-Regret Learning in Games with Noisy Feed-
back: Faster Rates and Adaptivity via Learning Rate Separation. In
Advances in Neural Information Processing Systems, 2022.

Chapter 5. This chapter serves as a gentle introduction to the learning-in- From Online Learning
to Learning in Gamescontinuous-games setup that we study. After presenting the basic definitions

and underlying assumptions, we relate it to variational inequalities to showcase
the potential of our approach. The chapter concludes with a more in-depth
examination of optimistic algorithms, highlighting their improved regret guar-
antees, convergence properties, and a geometric intuition behind the methods.

Chapter 6. The first challenge we aim to address is the need for delicately Learning Rate
Adaptation for Games
with Perfect Feedback

tuning the learning rate for the algorithms to work properly. To account for this,
we propose in this chapter a set of no-regret policies based on optimistic mirror
descent and optimistic dual averaging, bearing the following advantageous
properties:

1. They do not necessitate any prior tuning or knowledge of the game.

2. They all deliver 𝒪(
√
𝑇) regret against arbitrary, adversarial opponents.

3. They converge to the best response against convergent opponents.
4. If employed by all players, they guarantee 𝒪(1) social regret, while the

resulting sequence of play converges to a Nash equilibrium with 𝒪(1)
individual regret in all variationally stable games.

These guarantees shed light on the adaptivity of the method and mark our
initial attempt at enhancing the practical applicability of these algorithms in
real-world settings. Importantly, the convergence of the algorithm, as formally
proved in Theorem 6.9, demonstrates the benefit of adaptive learning rates
beyond regret minimization. Such result is less common in the literature.
In Fig. 1.3, we illustrate this convergence, and showcase how the algorithm
performs under various choices of the learning rate in a bilinear game.
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Figure 1.3: The trajectories of play (and the time-average of one of these trajec-
tories) obtained by running (OptDA) with a quadratic regularizer on the game
min𝜃∈[−4,8]max𝜙∈[−4,8] 𝜃𝜙 using different learning rates. The algorithm is presented in
Chapter 5 and the adaptive learning rate for this setup is introduced in Chapter 6.

Chapter 7. In this chapter and the subsequent one, we tackle the additionalDealing with
Stochastic Feedback I:

Trajectory
Convergence

complexity brought about by stochastic feedback. To do so, we consider a unified
noise model that captures both additive and multiplicative noise components.
The primary objective of our study is to extend the theoretical guarantees of
the methods to these cases where the feedback is subject to such unpredictable
perturbations. Convergence and regret of the algorithms that we examine in
these two chapters are illustrated in Fig. 1.4.

This chapter, in particular, delves into the convergence of the sequence of play
in such scenarios. We focus our attention here on two distinct algorithms: extra-
gradient and optimistic gradient. Through a counterexample, we first show
that these methods fail to converge in the presence of noise. To overcome this
limitation, we propose modifications that, echoing our approach in Chapter 4,
employ two distinct learning rate sequences, wherein the update step is smaller
relative to the optimistic step. This helps to mitigate the effects of noisy feedback
and recover the benefits of the optimistic step. Formally, we establish the
almost sure last-iterate convergence of these revised algorithms in variationally
stable games, complete with convergence rates under an additional error bound
condition. We also introduce localized versions of these results, enabling us to
bypass the stringent global assumptions. These findings all together indicate
the resilience of our methods in stochastic environments.

Chapter 8. Having introduced the necessary modifications for adaptiveDealing with
Stochastic Feedback II:

No-Regret and
Adaptive Learning

algorithm design in Chapter 6 and for dealing with noisy feedback in Chapter 7,
we are naturally led to a question: can these two elements be seamlessly
combined? We set out to answer this question in this final chapter of Part ii. To
this end, we introduce OptDA+, a double-learning-rate variant of optimistic
dual averaging, and analyze its regret and convergence behavior.

A particular focus of this chapter is the scenarios that involve multiplicative
noise exclusively. In this situation, the noise scales with the feedback, thus
offering an opportunity for improved performance. Specifically, we establish
constant bounds on both regret and the sum of squared-gradient norms, both
of which serve as measures for the players’ performances. Compared to the
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Figure 1.4: The behaviors of different algorithms on min𝜃∈R max𝜙∈R 𝜃𝜙 when the
feedback is corrupted by (multiplicative) noise. Left: trajectories of play. Center: regret
of Player 1 with respect to 0. Right: distance to equilibrium. (OG+) and adaptive
(OptDA+) are respectively introduced in Chapters 7 and 8. These algorithms achieve
convergence in stochastic environments through “learning rate separation”.

algorithms studied in Chapter 7, OptDA+ allows each player to use different
learning rates, but we also note that we only manage to prove its almost sure
last-iterate convergence when noise is multiplicative. Pushing this frontier even
further, we develop an adaptive version of the algorithm that achieves these
guarantees automatically. This does not necessitate player coordination or prior
knowledge of the game or noise profile, thereby culminating our journey toward
robust, adaptive learning in games.

1.3 works not included in this thesis

Throughout my Ph.D., I have had the privilege to work on various research
projects. However, for the sake of coherence in this manuscript, I have chosen
to leave out four of these projects, even though they were developed within the
context of my thesis. Brief summaries of these projects are provided below, and
a complete list of my publications is included in Appendix D.

single-call stochastic extra-gradient. In this project, we developed a On the convergence of
single-call stochastic
extra-gradient
methods

synthetic view of single-call extra-gradient methods and provided analyses thereof.
First, we demonstrated these methods retain the 𝒪(1/𝑡) ergodic convergence
rate of the two-call methods in smooth, deterministic problems. Subsequently,
we showed that this rate is also achieved by the last iterate of the algorithms in
stochastic variational inequalities with strongly monotone operators provided
that the optimizer has access to an oracle with bounded variance. Finally,
we derived a high-probability 𝒪(1/𝑡) local convergence rate to solutions of
non-monotone variational inequalities that satisfy a second-order sufficient
condition.

This project was carried out with my Ph.D. advisors in an internship prior
to my Ph.D. It can be regarded as a prelude to the problems that we address
in Part ii, though the distinction between the different single-call methods as
outlined in this work is not present in the current manuscript.

The publication associated to the project is:

Yu-Guan Hsieh, Franck Iutzeler, Jérôme Malick, and Panayotis
Mertikopoulos. On the Convergence of Single-Call Stochastic Extra-
Gradient Methods. In Advances in Neural Information Processing
Systems, 2019.
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Figure 1.5: Illustration of the uplifting bandit model. This example has 3 arms, 5
variables, and each arm affects 2 variables. Dash lines indicate the variables’ payoffs
follow the baseline distribution by default.

push–pull with device sampling. In this project, we considered decen-Push–pull with device
sampling tralized optimization with the objective of minimizing the average of the agents’

local functions, as expressed by (1.1). We were interested in an asynchronous
model where a random portion of agents performed computations at each
iteration, while the information exchange could be conducted between all
the nodes and in an asymmetric fashion. For this setting, we proposed an
algorithm that combined gradient tracking and variance reduction over the
entire network, enabling each node to track the average of the gradients of the
objective functions. The effectiveness of the algorithm was validated both theo-
retically, through a dedicated analysis for the strongly convex setup under mild
connectivity conditions on the network, and numerically, through experiments
on synthetic and real-world datasets.

Importantly, this project offers a unique complement to the results presented
in Part i of the manuscript, in both the design of the algorithms (gossip-based as
opposed to simple aggregation of feedback) and the setup that we operate with
(offline as opposed to online). Nevertheless, both situations feature challenges
related to asynchronicity and communication that are specific to multi-agent
systems. In the realization of this project, I had the pleasure to work with
the former Ph.D. student Yassine Laguel from our team. The fruits of our
collaboration were published in the following journal paper:

Yu-Guan Hsieh, Yassine Laguel, Franck Iutzeler, and Jérôme Malick.
Push–Pull with Device Sampling. IEEE Transactions on Automatic
Control, 2023.

uplifting bandits. In this project, we developed a new stochastic multi-Uplifting bandits
armed bandit model, where the reward is a sum of multiple random variables,
and each arm only alters the distributions of some of them. We visualize this
in Fig. 1.5. After each action, the agent observes the realizations of all the
variables. Our model finds applications in areas like marketing campaigns
and recommender systems, where the variables could represent outcomes on
individual customers, such as clicks. We explored several variations of the
problem, including scenarios where the baseline and affected variables are
unknown. We designed UCB-style algorithms that estimate the uplifts of the
actions over a baseline, and proved sublinear regret bounds for all variations.
We also established lower bounds to justify the necessity of our modeling
assumptions. Furthermore, we conducted numerical simulations to underscore
the benefit of our approach.
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Figure 1.6: Overview of the meta-learning for bandits with diffusion prior framework.

This project was conducted during my internship at Amazon AWS in Tübin-
gen, Germany. The focus on stochastic bandits here offers an interesting contrast
to this thesis, which exclusively tackles adversarial scenarios and learning in
games with first-order feedback. A natural question that arises is: Can we
leverage the structure of the problem in a similar manner under adversarial
settings? This project culminated in the publication of the following article:

Yu-Guan Hsieh, Shiva Kasiviswanathan, and Branislav Kveton.
Upliting Bandits. In Advances in Neural Information Processing Systems,
2022.

thompson sampling with diffusion generative prior. In this project, Thompson sampling
with diffusion
generative prior

we initiated the idea of using denoising diffusion models to learn priors for
online decision-making problems, with a particular focus on the meta-learning
for bandit framework. The entire procedure is illustrated in Fig. 1.6. Precisely,
our goal was to learn a strategy that consistently performs well across bandit
tasks within the same class. To accomplish this, we trained a diffusion model
to learn the underlying task distribution and combined this with Thompson
sampling to deal with new tasks at test time. Our posterior sampling algorithm
was meticulously designed to strike a balance between the learned prior and the
noisy observations resulting from the learner’s interaction with the environment.
In order to accommodate realistic bandit scenarios, we also introduced a novel
diffusion model training procedure that can learn from incomplete and/or noisy
data. The potential of our proposed approach is confirmed by our experimental
evaluations on both synthetic and real-world datasets.

This project was realized during my internship at Amazon AWS in Santa
Clara, USA. The experimental focus and algorithm design emphasis of this
project, alongside the incorporation of cutting-edge deep generative models,
allowed me to view decision-making problems through a different lens. This
viewpoint, while distinct, provides a valuable counterpoint to the more theo-
retical explorations of decision-making in this thesis. The research outcomes of
this project are published at:

Yu-Guan Hsieh, Shiva Kasiviswanathan, Branislav Kveton, and
Patrick Bloebaum. Thompson Sampling with Diffusion Generative
Prior. In International Conference on Machine Learning, 2023.





Part I

LEARNING IN THE PRESENCE OF DELAYS &
ASYNCHRONICIT IES





2
FUNDAMENTALS OF ONLINE OPTIMIZATION

We embark on our journey by delving into the realm of online learning, a
versatile paradigm for sequential decision-making that finds applications

in fields as diverse as portfolio selection, online auctions, and recommender
systems, among others [30, 112, 246]. This approach embraces the dynamic
and time-varying nature of the decision-making process, operating within
environments where cost functions change over time. Furthermore, online
learning encapsulates the view of learning as a continuous process, and pushes
the boundary of distribution-free results.

Following this introductory perspective, we zoom in on the area of online
convex optimization in this chapter. While the scope of this field is vast,
we aim to illuminate its essential elements that are relevant to our study,
providing a compact yet comprehensive overview. The specific framework and
the corresponding algorithms we introduce here lays the groundwork for the
multi-agent settings discussed in the later chapters of this thesis.

outline of this chapter. This chapter unfolds as follows. In Section 2.1, we
formulate the framework of online optimization and elaborate on the concept
of regret. Proceeding to Section 2.2, we turn our attention to two central
algorithms in online convex optimization: mirror descent and dual averaging. We
present their regret guarantees and furnish the necessary tools for proving these
results. Finally, in Section 2.3, we look into adaptive learning rates. They hold a
special place in online learning, as they offer anytime and data-dependent regret
bounds, thereby enhancing the robustness and adaptability of the learning
algorithms.

2.1 online learning and regret

In its most general form, online learning is characterized as a series of repeated Online learning
interactions between a learner and the environment. This process is outlined
in Fig. 2.1. At each round 𝑡, the learner selects an action 𝑥𝑡 from their action set
𝒳. Subsequently, the environment reveals a loss function ℓ𝑡 : 𝒳 → R, and the
learner suffers loss ℓ𝑡(𝑥𝑡). It is important to note that the exact form of the loss
function is generally unknown to the learner before the action selection and
may even be chosen in an adversarial manner.

Specifically, in what is termed the adversarial setup, we do not make any Adversarial setup
statistical assumptions about these loss functions. In other words, we do
not assume any probabilistic model for the generation or selection of these
functions. This framework simulates the hardest case scenario for the learner,
where the sequence of loss functions could be strategically chosen to maximize
the learner’s loss.

In this challenging setting, the standard measure of performance is regret, Regret
which offers a comparison between the learner’s accumulated loss and the total

15
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At each round 𝑡 = 1, 2, . . ., the learner

• Plays an action 𝑥𝑡 ∈ 𝒳

• Suffers loss ℓ𝑡(𝑥𝑡) and receives corresponding feedback

Figure 2.1: The online learning framework.

loss that the learner would have incurred if a specific fixed action had been
consistently chosen throughout the process.

Definition 2.1 (Regret). For any comparator action 𝑧 ∈ 𝒳 and time horizon
𝑇 ∈ N, the regret of the learner relative to 𝑧 after 𝑇 rounds is defined as

Reg𝑇(𝑧) =
𝑇∑
𝑡=1
[ℓ𝑡(𝑥𝑡) − ℓ𝑡(𝑧)].

The notion of regret has its roots in the seminal work of Blackwell [20] and
Hannan [108]. In a wider sense, regret is just a metric that compares the losses
suffered by the learner against the losses that would have been incurred by
a certain baseline. This conceptual framework has given rise to a plethora of
performance measures, including but not limited to internal regret [21, 86],
where the base line is a mapping of the actions, dynamic regret [105, 298],
where the baseline is a sequence of actions that evolves over time, and adaptive
regret [113], where we consider all the time intervals with baselines as fixed
actions over these time intervals. In this context, the specific form of regret
defined in Definition 2.1 is often called “external regret”. This is the principal
variant of regret that we employ in this thesis. For the sake of brevity, we will
henceforth refer to it simply as “regret”.

online convex optimization. For the scope of this thesis, we narrow downOnline convex
optimization our attention to the framework of online convex optimization. In this setting, 𝒳

is a closed convex subset of an ambient finite-dimensional vector space R𝑑, and
the loss functions are always convex and subdifferentiable, as we state below.

Assumption 2.1 (Convexity, closeness, and subdifferentiability). The actionConvexity of action
set and losses set 𝒳 ∈ R𝑑 is convex and close. Moreover, for all 𝑡 ∈ N, the loss function ℓ𝑡 is

convex and subdifferentiable.

In terms of feedback, we consider that the learner receives at the end of eachFirst-order feedback
round 𝑡 a subgradient vector 𝑔𝑡 ∈ 𝜕ℓ𝑡(𝑥𝑡) evaluated at the selected point.1 This
is possible as long as Assumption 2.1 is satisfied. With this, we may consider
the “linearized” loss ℓ̃𝑡 : 𝑥 → ℓ (𝑥𝑡) + ⟨𝑔𝑡 , 𝑥 − 𝑥𝑡⟩. When 𝑔𝑡 is the gradient of ℓ𝑡
at 𝑥𝑡 , this is exactly the first-order approximation of ℓ𝑡 at 𝑥𝑡 . We then define the
linearized regret as the regret with respect to this sequence of losses.

Definition 2.2 (Linearized regret). For any comparator action 𝑧 ∈ 𝒳 and timeLinearized regret
horizon 𝑇 ∈ N, the linearized regret of the learner relative to 𝑧 after 𝑇 rounds is
defined as

LinReg𝑇(𝑧) =
𝑇∑
𝑡=1
⟨𝑔𝑡 , 𝑥𝑡 − 𝑧⟩.

1 In a slight abuse of terminology, the terms gradient and subgradient will be used interchangeably
in the sequel.
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The importance of the convexity assumption lies in that it ensures the
linearized regret to be an upper bound on the actual regret. In fact, by the
definition of subgradient, it holds that

ℓ𝑡(𝑥𝑡) − ℓ𝑡(𝑧) ≤ ⟨𝑔𝑡 , 𝑥𝑡 − 𝑧⟩.

Therefore, summing this up over 𝑡, we get the following lemma.

Lemma 2.1. Suppose that Assumption 2.1 holds. Then, for any sequence of actions Regret upper bounded
by linearized regret(𝑥𝑡)𝑡∈N and any comparator action 𝑧 ∈ 𝒳, we have

Reg𝑇(𝑧) ≤ LinReg𝑇(𝑧).

Lemma 2.1 significantly simplifies the analysis as we essentially reduce the
problem of online learning with convex losses to that of online learning with
linear losses. In particular, the algorithms and results that we present in the
remaining of this chapter hold for any (bounded) sequence of feedback (𝑔𝑡)𝑡∈N

as long as we replace the regret by the linearized regret. More generally, this
lemma is used throughout the thesis whenever we present a result on regret
bounds. Therefore, to avoid repetition, we will not refer to Lemma 2.1 when it
is used, and our proof often ends up with a bound on the linearized regret.

Remark 2.1 (Types of feedback in online learning). Besides the first-order Full-information and
bandit feedbackfeedback that we study in this thesis, there exist various other types of feedback

in online learning. Full-information feedback, for example, provides the learner
with the entire loss function. Such feedback typically arises in learning system
used for prediction tasks like classification or regression, where actions represent
model parameters, and all relevant losses can be computed upon observation of
the data [246]. We will only need this more stringent assumption in Section 4.3.
On the other extreme, bandit feedback simply returns the loss value evaluated
at the executed action [30, 168], presenting additional challenges due to the
minimal information made accessible to the learner. We discuss potential
extensions of our results to this more demanding scenario in the perspectives
(Chapter 9) at the end of this thesis.

Remark 2.2 (Online non-convex optimization). Although there are a few works Online non-convex
optimizationon online non-convex optimization, these works either drastically relax the

definition of the regret [107, 115], or consider randomized algorithms that
require the solution of a non-convex optimization or a sampling problem in each
round [162, 258]. In fact, there is generally no hope to achieve sublinear regret
with a deterministic algorithm when the loss functions are non-convex [258].

2.2 mirror descent and dual averaging

In this section, we present two core algorithms for online convex optimization:
mirror descent (MD) and dual averaging (DA). We recall their regret guarantees
and provide accompanying proofs, which serve as fundamental building blocks
for more complex results presented later in this thesis. For a more comprehensive
understanding of this topic, we recommend readers to consult [29, 143, 189, 191]
and references therein.

2.2.1 Regularizers, Bregman Divergences, and Mirror Maps

In the online convex optimization setup that we described in Section 2.1, the Projected gradient
descent
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most natural algorithm to consider is the (projected) gradient descent method

𝑥𝑡+1 = Π𝒳(𝑥𝑡 − 𝜂𝑡+1𝑔𝑡).

In the above, Π𝒳 : R𝑑 →𝒳 is the Euclidean projector

Π𝒳(𝑧) = arg min
𝑥′∈𝒳

∥𝑥′ − 𝑥∥ (2.1)

and 𝜂𝑡+1 > 0 is the learning rate of the algorithm for the update of 𝑥𝑡+1.
Nonetheless, in certain situations, this method may lead to computational
inefficiency and high regret due to the limitations of the Euclidean distance in
capturing the underlying problem geometry.

In this regard, MD and DA extend these methods to take into account
non-Euclidean geometries, thereby allowing for more flexibility and better
performance in a wide range of problems. To define them, we need a regularizer
defined in the following sense.

Definition 2.3 (Regularizer). Let 𝒳 ⊆ R𝑑. We define a regularizer on 𝒳 as aRegularizer
function ℎ : 𝒳 → R that has the following properties

• ℎ is continuous and 1-strongly convex relative to a norm ∥·∥ on R𝑑.

• The subdifferential of the function 𝜕ℎ admits a continuous selection ∇ ℎ.
That is, ∇ ℎ : dom 𝜕ℎ → R is a continuous function such that ∇ ℎ(𝑥) ∈
𝜕ℎ(𝑥) for all 𝑥 ∈ dom 𝜕ℎ.

Remark 2.3. The function ℎ defined above has several different names in the
literature, ranging from distance generating function [209], Bregman function
[41], to mirror map [29], among others. We use the term “regualrizer”for the
sake of simplicity and to emphasize its role in preventing excessive variation in
the learner’s actions from one round to the next.

We note that unlike in (2.1) where ∥·∥ stands for the L2 norm, in Definition 2.3Notations on norms
∥·∥ can be any norm on R𝑑. Therefore, to avoid confusion, we will use ∥·∥2 for
the L2 norm hereinafter, and similarly, we respectively use ∥·∥1 and ∥·∥∞ to
denote the L1 and the L-infinity norms. As for the notation ∥·∥, we reserve it
for the norm associated to ℎ, i.e., the norm for which ℎ is 1-strongly convex,
unless otherwise stated. Its dual norm is written as ∥·∥∗ and is defined by
∥𝑦∥∗ = max∥𝑥∥≤1 ⟨𝑦, 𝑥⟩.

Moving forward, with the help of a regularizer ℎ, we can then define a sort
of “distance” on the action set 𝒳.

Definition 2.4 (Bregman divergence). The Bregman divergence associated withBregman divergence
a regularizer ℎ between two points 𝑧 ∈ 𝒳 and 𝑥 ∈ dom 𝜕ℎ is defined as

𝐷ℎ(𝑧, 𝑥) = ℎ(𝑧) − ℎ(𝑥) − ⟨∇ ℎ(𝑥), 𝑧 − 𝑥⟩.

We drop the subscript ℎ from 𝐷ℎ whenever the choice of the regularizer is clear
from the context.

Although Bregman divergence is not a distance in the strict mathematical
sense (since it lacks symmetry and the triangle inequality), it serves as a measure
of dissimilarity that captures how far the points are from each other in the
geometry specified by the regularizer. This aspect is both important for the
design of the algorithms and the analyses thereof.

The last element that we would like to introduce is the mirror map, which
maps a vector in the “dual space” to a point in the “primal space”.
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Definition 2.5 (Mirror map). The mirror map associated with a regularizer ℎ is Mirror map
a function 𝑄ℎ : R𝑑 →𝒳 such that for all 𝑦 ∈ R𝑑

𝑄ℎ(𝑦) = arg min
𝑥∈𝒳

⟨−𝑦, 𝑥⟩ + ℎ(𝑥).

Similarly, we drop the subscript ℎ from 𝑄ℎ when there is no confusion.

Remark 2.4. As noted in Remark 2.3, the term mirror map is sometimes used in
the literature to refer to the regularizer ℎ.

As mentioned, the mirror map’s role is to bridge the dual space with the Primal-dual
perspectiveprimal space. In fact, for the algorithms that we are going to consider, it

is convenient to regard the actions taken by the learner as “primal points”
and the received feedback as “dual vectors”. This primal-dual perspective is
tied intrinsically to the definition of a gradient as a linear functional, and is
indispensable when the ambient space is just a Banach space without additional
structure. Even in our setup where both the actions and gradients are vectors in
R𝑑, this viewpoint is still useful in conceptualizing MD and DA as algorithms
that navigate between the primal and the dual spaces via the gradient of the
regularizer ∇ ℎ and the mirror map 𝑄.

Importantly, this passage between the primal and the dual spaces is possible
particularly because the mirror map always produces a value in dom 𝜕ℎ, i.e.,
im𝑄ℎ ⊆ dom 𝜕ℎ. In Appendix A, we provide more technical details on this
fact and other aspects of these elements. While these details are essential for
our analysis, they may not be crucial for a broad understanding of the topic.
Consequently, we have chosen to relegate them to the appendix and instead
focus here on offering concrete examples to illustrate these concepts.
Example 2.1 (Quadratic regularizer). Consider ℎ(𝑥) = ∥𝑥∥22/2. This is known Regularizer examples
as the quadratic regularizer and it is 1-strongly convex with respect to the L2
norm ∥·∥2. For any action set 𝒳 ⊆ R𝑑, the gradient map ∇ ℎ : 𝑥 → 𝑥 is a valid
continuous selection of the subgradient, the associated Bregman divergence
is the squared Euclidean distance, 𝐷ℎ(𝑧, 𝑥) = ∥𝑧 − 𝑥∥22/2, and the associated
mirror map is the Euclidean projector onto 𝒳 defined in (2.1), i.e., 𝑄ℎ = Π𝒳 .
Example 2.2 (Negentropy regularizer for probability simplex). Consider ℎ(𝑥) =∑𝑑
𝑘=1 𝑥𝑘 log(𝑥𝑘) for 𝑥 ∈ 𝒳, where 𝒳 = ∆𝑑 is the probability simplex and 𝑥𝑘 is

the 𝑘-th coordinate of 𝑥. This is called the negentropy regularizer as ℎ(𝑥) is the
negative entropy of the distribution described by 𝑥. One can show that ℎ is
1-strongly convex with respect to the L1 norm ∥·∥1, and a possible continuous
selection of the subgradient is ∇ ℎ : 𝑥 → (log(𝑥1), . . . , log(𝑥𝑑)).2

Regardless of the specific choice of ∇ ℎ, the Bregman divergence associated
with this regularizer is the Kullback–Leibler (KL) divergence,

𝐷ℎ(𝑧, 𝑥) =
𝑑∑
𝑘=1

𝑧𝑘 log
(
𝑧𝑘
𝑥𝑘

)
,

where it is understood that 0 log(0) = 0 and 𝑧𝑘 log (𝑧𝑘/0) = ∞ if 𝑧𝑘 > 0.
Note that, however, in Definition 2.4 we only define Bregman divergence for
𝑥 ∈ dom 𝜕ℎ, which means that 𝑥 would never have a coordinate that equals 0.

Finally, the mirror map in this case is often referred to as the softmax function.
It takes a vector 𝑦 ∈ R𝑑 and returns a point in the simplex 𝒳, with the 𝑘-th
coordinate given by (𝑄ℎ(𝑦))𝑘 = exp(𝑦𝑘)/(

∑𝑑
𝑙=1 exp(𝑦𝑙)).

2 Note that this is not the gradient of ℎ when viewed as a function defined over the entire R𝑑 .
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(a) Agile mirror descent
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(b) Lazy mirror descent

Figure 2.2: Schematic representations of mirror descent. 𝒴 denotes the dual space and
the 𝑦𝑡s are dual variables.

2.2.2 Mirror Descent

The origin of the mirror descent (MD) algorithm traces back to the work ofMirror descent
Nemirovski and Yudin [208]. It uses a regularizer ℎ and its associated Bregman
divergence 𝐷. During each iteration, the algorithm updates the current point
𝑥𝑡 to a new point 𝑥𝑡+1, using a subgradient 𝑔𝑡 ∈ 𝜕ℓ𝑡(𝑥𝑡) as:

𝑥𝑡+1 = arg min
𝑥∈𝒳

⟨𝑔𝑡 , 𝑥⟩ +
𝐷(𝑥, 𝑥𝑡)
𝜂𝑡+1

. (MD)

The above minimization allows to find a balance between moving along the
direction of the gradient and staying close to the current point in terms of the
Bregman divergence. Alternatively, the update (MD) can be formulated as

𝑥𝑡+1 = 𝑄(∇ ℎ(𝑥𝑡) − 𝜂𝑡+1𝑔𝑡).

This formulation illuminates the “mirror” aspect of the algorithm. To compute
𝑥𝑡+1, it first maps the learner’s action 𝑥𝑡 to the dual space via ∇ ℎ, performs an
update in the dual space in the direction of the opposite of the gradient, and
then maps it back to the primal space using the mirror map 𝑄 (see Fig. 2.2a for
an illustration).

Besides this “eager” version that moves back and forth between the primalLazy mirror descent
and the dual space, it is often considered in the literature a “lazy” version of
the algorithm (see e.g., [194, 246]) that, as shown in Fig. 2.2b, outputs directly
the projection of the aggregated gradient vector

𝑥𝑡+1 = 𝑄

(
−

𝑡∑
𝑠=1

𝜂𝑠+1𝑔𝑠

)
. (LMD)

The two variants of MD coincide when ℎ is infinitely "steep" at the boundary of
𝒳—that is, when dom 𝜕ℎ ∩𝒳 = ri𝒳; otherwise, they yield different sequences
of actions [163]. For the sake of illustration, we present below two examples
that employ different regularizers and thus represent different instantiations of
the MD algorithm.

Example 2.3 (Projected gradient descent). Consider the quadratic regularizerExample: projected
gradient descent ℎ = ∥·∥22/2 as discussed in Example 2.1. In this case, ∇ ℎ is the identity function,

and 𝑄 is the Euclidean projector onto 𝒳. The eager version of MD thus
corresponds to projected gradient descent

𝑥𝑡+1 = Π𝒳(𝑥𝑡 − 𝜂𝑡+1𝑔𝑡).
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On the other hand, the lazy version of MD gives rise to lazy gradient descent,
which updates according to

𝑥𝑡+1 = Π𝒳

(
𝑥1 −

𝑡∑
𝑠=1

𝜂𝑠+1𝑔𝑠

)
.

Note that the above is obtained by adjusting the quadratic regularizer to be
centered at 𝑥1, i.e., ℎ = ∥· − 𝑥1∥22/2. Apparently, projected gradient descent and
lazy gradient descent coincide when 𝒳 is an affine subspace of R𝑑, in which
case dom 𝜕ℎ ∩𝒳 = ri𝒳, but they are otherwise two different algorithms.

Example 2.4 (Multiplicative weights update). Consider the negentropy regu- Example:
multiplicative weights
update

larizer ℎ(𝑥) = ∑𝑑
𝑘=1 𝑥𝑘 log(𝑥𝑘) on the probability simplex 𝒳 = ∆𝑑 as discussed

in Example 2.2.3 The mapping via ∇ ℎ turns a probability vector 𝑥 into a
log-probability vector, and the mapping via 𝑄 transforms a vector of scores
into a probability vector by applying the softmax function. This leads to
the multiplicative weights update (MWU) algorithm, whose coordinate-wise
update is

𝑥𝑡+1,𝑘 =
𝑥𝑡,𝑘 exp(−𝜂𝑡+1𝑔𝑡,𝑘)∑𝑑
𝑙=1 𝑥𝑡,𝑙 exp(−𝜂𝑡+1𝑔𝑡,𝑙)

.

If we consider the lazy formulation, we have

𝑥𝑡+1,𝑘 =
𝑥1,𝑘 exp(−∑𝑡

𝑠=1 𝜂𝑠+1𝑔𝑠,𝑘)∑𝑑
𝑙=1 𝑥1,𝑙 exp(−∑𝑡

𝑠=1 𝜂𝑠+1𝑔𝑠,𝑙)
.

It is straightforward to see that these two update rules are equivalent. As a side
note, this algorithm has various names across different fields in the literature,
including exponential weights in multi-armed bandits [13], entropic mirror descent
in optimization [18], Hedge in game theory [88], and weighted majority in machine
learning [178]. While their exact description may differ in detail, they all share
the same underlying principle of modifying the components in a multiplicative
way as determined by the feedback.

regret bound. We next shift our focus to the regret guarantee of MD. We
focus here on the eager version of the algorithm, as described by (MD), but a
similar result can also be proved for the lazy version [246] (in our statement
below, it is sufficient to replace the Bregman divergences by some “Fenchel
couplings” that we introduce in Section 2.2.3).

Proposition 2.2. Suppose that Assumption 2.1 holds and that (MD) is run with Regret of MD
learning rates (𝜂𝑡)𝑡∈N. Then, for any 𝑧 ∈ 𝒳 and 𝑇 ∈ N, the regret of the learner
relative to 𝑧 after 𝑇 rounds is bounded as

Reg𝑇(𝑧) ≤
𝐷(𝑧, 𝑥1)

𝜂2
+

𝑇∑
𝑡=2

(
1

𝜂𝑡+1
− 1
𝜂𝑡

)
𝐷(𝑧, 𝑥𝑡) +

1
2

𝑇∑
𝑡=1

𝜂𝑡+1∥𝑔𝑡 ∥2∗ .

3 In this example, a subscript could denote either a coordinate index or a time index, but this should
cause no confusion. Specifically, coordinate indices are consistently denoted by 𝑘 or 𝑙, while time
indices are denoted by 𝑡 or 𝑠.
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Proof. We proceed to bound the linearized regret of the algorithm. For this, we
decompose it as follows

LinReg𝑇(𝑧) =
𝑇∑
𝑡=1
⟨𝑔𝑡 , 𝑥𝑡 − 𝑧⟩ =

𝑇∑
𝑡=1
⟨𝑔𝑡 , 𝑥𝑡 − 𝑥𝑡+1⟩︸               ︷︷               ︸

𝐴

+
𝑇∑
𝑡=1
⟨𝑔𝑡 , 𝑥𝑡+1 − 𝑧⟩︸              ︷︷              ︸

𝐵

. (2.2)

Sum 𝐴 in (2.2) is sometimes referred to as the prediction drift and it quantifies
how much the learner changes their predictions between consecutive rounds.
We bound it by Young’s inequality as

𝑇∑
𝑡=1
⟨𝑔𝑡 , 𝑥𝑡 − 𝑥𝑡+1⟩ ≤

𝑇∑
𝑡=1

(
𝜂𝑡+1∥𝑔𝑡 ∥2∗

2 + ∥𝑥𝑡 − 𝑥𝑡+1∥2
2𝜂𝑡+1

)
(2.3)

As for sum 𝐵 in (2.2), it may be referred to as the forward regret and it measures
the linearized regret that the learner would have incurred if they had chosen
the more informed prediction 𝑥𝑡+1 in the place of 𝑥𝑡 (note that computing 𝑥𝑡+1
requires the the use of 𝑔𝑡 which is only received in round 𝑡, so this is just a
conceptualized algorithm that can not be implemented in practice). To bound
this term, we resort to the optimality condition (precisely, Lemma A.1) of the
update rule 𝑥𝑡+1 = 𝑄(∇ ℎ(𝑥𝑡) − 𝜂𝑡+1𝑔𝑡). This gives

⟨∇ ℎ(𝑥𝑡+1), 𝑥𝑡+1 − 𝑧⟩ ≤ ⟨∇ ℎ(𝑥𝑡) − 𝜂𝑡+1𝑔𝑡 , 𝑥𝑡+1 − 𝑧⟩

Rearranging and applying the three-point identity for Bregman divergence
(Lemma A.2, Eq. A.1), we get

⟨𝑔𝑡 , 𝑥𝑡+1 − 𝑧⟩ ≤
1

𝜂𝑡+1
⟨∇ ℎ(𝑥𝑡) − ∇ ℎ(𝑥𝑡+1), 𝑥𝑡+1 − 𝑧⟩

≤ 1
𝜂𝑡+1
(𝐷(𝑧, 𝑥𝑡) −𝐷(𝑧, 𝑥𝑡+1) −𝐷(𝑥𝑡+1, 𝑥𝑡)). (2.4)

The regularizer ℎ being 1-strongly convex relative to the norm ∥·∥, we have

𝐷(𝑥𝑡+1, 𝑥𝑡) ≥
∥𝑥𝑡 − 𝑥𝑡+1∥2

2 . (2.5)

Combining (2.2)–(2.5), we then obtain

LinReg𝑇(𝑧) ≤
𝐷(𝑧, 𝑥1)

𝜂2
+

𝑇∑
𝑡=2

(
1

𝜂𝑡+1
− 1
𝜂𝑡

)
𝐷(𝑧, 𝑥𝑡) +

𝑇∑
𝑡=1

𝜂𝑡+1∥𝑔𝑡 ∥2∗
2 .

This concludes the proof. □

As an immediate consequence of Proposition 2.2, we see that (MD) with
properly chosen learning rates guarantees sublinear regret when the feedback
is bounded. Concretely, we assume the following.

Assumption 2.2 (Boundedness). There exists 𝐺 > 0 such that for all 𝑡 ∈ N, weBoundedness of
feedback have ∥𝑔𝑡 ∥∗ ≤ 𝐺.

This boundedness assumption is crucial for achieving sublinear regret.
Otherwise, the loss function of each round can be adversarially chosen so that
the difference between the loss incurred by the selected action and the loss
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incurred by another action is arbitrarily large, making any meaningful control
over the regret unachievable.

With this additional assumption, we are now ready to state a regret bound
for constant learning rate (MD) that is standard across the literature.

Corollary 2.3. Suppose that Assumptions 2.1 and 2.2 hold and that (MD) is run with 𝒪(
√
𝑇) regret of

constant learning rate
MD

constant learning rate

𝜂 =
𝑅

𝐺

√
2
𝑇

.

Then, for any 𝑧 ∈ 𝒳 such that 𝐷(𝑧, 𝑥1) ≤ 𝑅2, the regret of the learner relative to 𝑧 after
𝑇 rounds is bounded as

Reg𝑇(𝑧) ≤ 𝑅𝐺
√

2𝑇.

Remark 2.5. Although Assumption 2.2 requires ∥𝑔𝑡 ∥∗ ≤ 𝐺 to hold for all 𝑡, it
is clear that for any finite-horizon result of this type it is sufficient to have
𝐺 ≥ max1≤𝑡≤𝑇 ∥𝑔𝑡 ∥∗.

As we can see from the statement, the regret bound involves three quantities: Minimax optimality
of 𝒪(
√
𝑇) regret

bound
the time horizon 𝑇, a bound 𝑅 on the distance from the initial point to the
comparator action (measured by the Bregman divergence), and a bound 𝐺 on
the magnitude of feedback (measured by the dual norm). This dependence
on 𝑅, 𝐺, and

√
𝑇 is minimax optimal [1, 114, 245]. Formally, it is shown in

[1, Th. 4.1] that for any online learning algorithm 𝔄 and any 𝑅, 𝐺, and 𝑇,
there exists an action set 𝒳 of diameter 𝑅 (i.e., for any 𝑥, 𝑥′ ∈ 𝒳, we have
∥𝑥 − 𝑥′∥2 ≤ 𝑅), and a sequence of convex loss functions (ℓ𝑡)1≤𝑡≤𝑇 such that
when the learner executes 𝔄 against this sequence, they receive feedback vectors
(𝑔𝑡)1≤𝑡≤𝑇 satisfying ∥𝑔𝑡 ∥2 ≤ 𝐺, and incur regret that is lower bounded as

max
𝑧∈𝒳

Reg𝑇(𝑧) ≥
𝑅𝐺
√
𝑇

2
√

2
.

In this sense, Corollary 2.3 guarantees, up to a constant factor, the best perfor-
mance we can expect in the worst case, encapsulating the essence of the minimax
optimality.

We however note that the learning rate of Corollary 2.3 depends on the Anytime algorithm
and doubling tricktime horizon 𝑇. This dependency is not ideal in real-world scenarios because

we typically desire an anytime algorithm—one that works well irrespective of
the specific time horizon. This issue can be addressed via the well-known
doubling trick [13, 246], which involves halving the learning rate and restarting
the algorithm every time the number of iterations doubles.

Alternatively, we could adopt a simpler solution: a decreasing learning rate of Limitation of MD
with decreasing
learning rate

the form 𝜂𝑡 = 1/
√
𝑡. Yet, as indicated by Proposition 2.2, this strategy guarantees

sublinear regret only when the Bregman divergence is bounded on 𝒳. In fact,
it is formally shown by Orabona and Pál [216] that (MD) with such learning
rate can induce linear or even superlinear regret in the setup considered in
Corollary 2.3. This motivates us to introduce the dual averaging algorithm in
the next subsection, aimed at addressing this shortcoming of MD.

2.2.3 Dual Averaging

Viewed abstractly, the issue with MD is that with decreasing learning rates, new
information enters the algorithm with a diminishing weight. This is problematic
from a learning viewpoint because it gives more weight to earlier, less informed
updates, and less weight to more recent, more relevant ones. An adversary
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𝒳

𝒴

∇ ℎ 𝑄

𝑦1

𝑦2 𝑦3−𝑔1
−𝑔2

×𝜂2

×𝜂3

𝑥1
𝑥2 𝑥3

Figure 2.3: Schematic representations of dual averaging. 𝒴 denotes the dual space and
the 𝑦𝑡s are dual variables defined by 𝑦𝑡 = −𝜂𝑡

∑𝑡−1
𝑠=1 𝑔𝑠 .

could exploit this characteristic and push the algorithm far from an optimal
point in the starting iterations, leading to suboptimal performance of the learner.

The dual averaging (DA) algorithm, introduced by Nesterov [212], provides aDual averaging
solution to this problem. It employs the same weighting for all gradients in the
algorithm. The update rule of DA is given by

𝑥𝑡 = arg min
𝑥∈𝒳

𝑡−1∑
𝑠=1
⟨𝑔𝑠 , 𝑥⟩ +

ℎ(𝑥)
𝜂𝑡

. (DA)

The above form reflects the relation between DA and the follow the regularizedDA as linearized
FTRL leader (FTRL) algorithm [247]. In fact, DA may be viewed as a “linearized”

version of FTRL, and it aligns with FTRL when the encountered loss functions
are linear.

As for the terminology “dual averaging”, it pays homage to the process ofFeedback averaging in
dual space averaging gradients in the dual space before mirroring them back into the action

set 𝒳. This is made explicit by the following alternative form of the update rule
(see also Fig. 2.3)

𝑥𝑡 = 𝑄

(
−𝜂𝑡

𝑡−1∑
𝑠=1

𝑔𝑠

)
.

The difference between (DA) and (LMD) also becomes apparent thanks toDA versus Lazy MD
the above formula. Unlike (LMD), where the learning rate is applied before the
sum of feedback, (DA) applies it after summing the feedback. This seemingly
small difference significantly impacts the performance of the algorithm. As we
will see in the next theorem, it helps derive a regret bound that circumvents the
“finite Bregman diameter” limitation which restrains MD’s applicability.

Proposition 2.4. Suppose that Assumption 2.1 holds and that (DA) is run withRegret of DA
non-increasing learning rates (𝜂𝑡)𝑡∈N. Then, for any 𝑧 ∈ 𝒳 and 𝑇 ∈ N, the regret of
the learner relative to 𝑧 after 𝑇 rounds is bounded as

Reg𝑇(𝑧) ≤
ℎ(𝑧) −min ℎ

𝜂𝑇
+ 1

2

𝑇∑
𝑡=1

𝜂𝑡 ∥𝑔𝑡 ∥2∗ .

Compared to Proposition 2.2, all the Bregman divergence terms 𝐷(𝑧, 𝑥𝑡) are
replaced by the difference ℎ(𝑧) −min ℎ (this equals to 𝐷ℎ′(𝑧, 𝑥1) if we set ℎ to
be 𝐷ℎ′(·, 𝑥1) for some regularizer ℎ′). From this we deduce immediately the
following regret bound that applies to (DA) with 𝜂𝑡 = Θ(1/

√
𝑡) learning rate.
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Corollary 2.5. Suppose that Assumptions 2.1 and 2.2 hold and that (DA) is run with 𝒪(
√
𝑇) regret of

decreasing learning
rate DA

decreasing learning rate

𝜂𝑡 =
𝑅

𝐺

1√
𝑡

.

Then, for any 𝑇 ∈ N and any 𝑧 ∈ 𝒳 such that ℎ(𝑧) −min ℎ ≤ 𝑅2, the regret of the
learner relative to 𝑧 after 𝑇 rounds is bounded as

Reg𝑇(𝑧) ≤ 2𝑅𝐺
√
𝑇.

Corollary 2.5 demonstrates that the minimax optimal regret bound can be
achieved using (DA) with a simple decreasing learning rate schedule.

Another notable distinction between Proposition 2.4 and Proposition 2.2 lies
in the coefficient preceding ∥𝑔𝑡 ∥2∗ . In Proposition 2.2, we have the learning
rate 𝜂𝑡+1 used to compute 𝑥𝑡+1, whereas in Proposition 2.4 we have 𝜂𝑡 . This
shift in index is a necessary trade-off for the anytime property of (DA), and it
significantly affects our analysis of the adaptive variants of these algorithms, as
we will discuss in Section 2.3.

Let us now turn to the proof of Proposition 2.4. Our analysis is based
on the use of Fenchel coupling, an elegant distance measure introduced by
Mertikopoulos and Sandholm [192] (see also [26, 193]).

Definition 2.6 (Fenchel coupling). The Fenchel coupling associated with a Fenchel coupling
regularizer ℎ between a primal point 𝑧 ∈ 𝒳 and a dual vector 𝑦 ∈ R𝑑 is defined
as

𝐹ℎ(𝑧, 𝑦) = ℎ(𝑧) + ℎ∗(𝑦) − ⟨𝑦, 𝑧⟩.

In the above, ℎ∗ : 𝑦 → max𝑥∈𝒳 ⟨𝑦, 𝑥⟩ − ℎ(𝑥) is the Fenchel conjugate of ℎ. Again,
we drop the subscript ℎ from 𝐹ℎ whenever the choice of the regularizer is clear
from the context.

Fenchel coupling may be regarded as a “primal-dual” version of Bregman
divergence. By the definition of the mirror map, we deduce immediately that

𝐹(𝑧, 𝑦) = ℎ(𝑧) − ℎ(𝑄(𝑦)) − ⟨𝑦, 𝑧 −𝑄(𝑦)⟩.

Provided that 𝑦 ∈ 𝜕ℎ(𝑄(𝑦)) (see Lemma A.1), Fenchel coupling is also closely
related to a generalized version of Bregman divergence which is defined for
𝑧 ∈ 𝒳, 𝑥 ∈ dom 𝜕ℎ, and 𝑔 ∈ 𝜕ℎ(𝑥) as 𝐷(𝑧, 𝑥; 𝑔) = ℎ(𝑧) − ℎ(𝑥) − ⟨𝑔, 𝑧 − 𝑥⟩. This
definition is formally introduced by Juditsky et al. [143], but its use in the
literature can be traced back to much earlier works such as [156].

In the analysis that follows, we leverage Fenchel coupling to provide an
alternative formulation for the standard analysis of (DA), as described in
[112, 282]. This formulation not only accentuates the link with the proof of
Proposition 2.2, but it also highlights the role of maintaining uniform weight
for all the feedback in eliminating the undesirable factors in the analysis.

Proof of Proposition 2.4. Following the decomposition of the linearized regret in
(2.2), we start by bounding the forward regret. Let us define the dual variable
𝑦𝑡 = −𝜂𝑡

∑𝑡−1
𝑠=1 𝑔𝑠 so that 𝑥𝑡 = 𝑄(𝑦𝑡). Applying the three-point identity for

Fenchel coupling (Lemma A.2, Eq. A.2) to the update of 𝑥𝑡+1 gives

⟨𝑔𝑡 , 𝑥𝑡+1 − 𝑧⟩ =
〈
𝑦𝑡

𝜂𝑡
− 𝑦𝑡+1

𝜂𝑡+1
, 𝑥𝑡+1 − 𝑧

〉
=

1
𝜂𝑡
⟨𝑦𝑡 − 𝑦𝑡+1, 𝑥𝑡+1 − 𝑧⟩ +

(
1

𝜂𝑡+1
− 1
𝜂𝑡

)
⟨0− 𝑦𝑡+1, 𝑥𝑡+1 − 𝑧⟩
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=
1
𝜂𝑡
(𝐹(𝑧, 𝑦𝑡) − 𝐹(𝑧, 𝑦𝑡+1) − 𝐹(𝑥𝑡+1, 𝑦𝑡))

+
(

1
𝜂𝑡+1
− 1
𝜂𝑡

)
(𝐹(𝑧, 0) − 𝐹(𝑧, 𝑦𝑡+1) − 𝐹(𝑋𝑡+1, 0)).

Since 𝜂𝑡 ≥ 𝜂𝑡+1 and 𝐹(𝑥𝑡+1, 0) ≥ 0, the last term in the above equation can be
dropped. With 𝐹(𝑧, 0) = ℎ(𝑧) − ℎ(𝑄(0)) = ℎ(𝑧) −min ℎ, we then deduce

⟨𝑔𝑡 , 𝑥𝑡+1 − 𝑧⟩ ≤
𝐹(𝑧, 𝑦𝑡)

𝜂𝑡
− 𝐹(𝑧, 𝑦𝑡+1)

𝜂𝑡+1
− 𝐹(𝑥𝑡+1, 𝑦𝑡)

𝜂𝑡

+
(

1
𝜂𝑡+1
− 1
𝜂𝑡

)
(ℎ(𝑧) −min ℎ). (2.6)

To proceed, we bound the prediction drift with the help of Young’s inequality.

⟨𝑔𝑡 , 𝑥𝑡 − 𝑥𝑡+1⟩ ≤
(
𝜂𝑡 ∥𝑔𝑡 ∥2∗

2 + ∥𝑥𝑡 − 𝑥𝑡+1∥2
2𝜂𝑡

)
(2.7)

Moreover, by Lemma A.3, the following inequality holds given that 𝑥𝑡 = 𝑄(𝑦𝑡).

𝐹(𝑥𝑡+1, 𝑦𝑡) ≥
∥𝑥𝑡+1 − 𝑥𝑡 ∥2

2 (2.8)

Putting (2.2) and (2.6)–(2.8) together readily leads to

Reg𝑇(𝑧) ≤
ℎ(𝑧) −min ℎ

𝜂𝑇+1
+ 1

2

𝑇∑
𝑡=1

𝜂𝑡 ∥𝑔𝑡 ∥2∗ .

To see that it is possible to have 𝜂𝑇 instead of 𝜂𝑇+1 in the denominator, just note
that we may define 𝑦′

𝑡+1 = −𝜂𝑡
∑𝑡
𝑠=1 𝑔𝑠 and 𝑥′

𝑡+1 = 𝑄(𝑦′
𝑡+1). Then, (2.6) still holds

after replacing 𝜂𝑡+1, 𝑥𝑡+1, and 𝑦𝑡+1 respectively by 𝜂𝑡 , 𝑦′𝑡+1, and 𝑥′
𝑡+1. We can

thus use this version of inequality for 𝑡 = 𝑇. □

Remark 2.6. As can be seen from the proof of Proposition 2.4, for (DA) there is
actually no need to assume the existence of the continuous selection ∇ ℎ. The
strong convexity itself is sufficient. The same remark applies to (LMD).

Remark 2.7. One may be wondering if there is an “eager” variant of (DA) whose
update is closer to (MD) but applies the same weight to all the feedback. One
possibility to achieve this is via the use of a “stabilization” step [76]. We formally
introduce this in Chapter 6.

2.3 adaptive learning rate

In Section 2.2, we mainly focus on the dependence of the regret on the numberData-dependent regret
bound of rounds 𝑇. In particular, we simply bound the magnitude of feedback by

an upper bound 𝐺 in Corollaries 2.3 and 2.5. Nonetheless, if we look closely
at Propositions 2.2 and 2.4, we may notice that these regret bounds actually
depend on the norm of each piece of feedback. By taking a constant learning
rate of the form

𝜂 =
𝑅√∑𝑇

𝑡=1∥𝑔𝑡 ∥2∗
, (2.9)
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we obtain an optimal 𝒪
(√∑𝑇

𝑡=1∥𝑔𝑡 ∥2∗
)

data-dependent bound (For optimality of

this regret bound, see [216, Th. 5]). This bound is highly advantageous when
dealing with feedback of uneven distribution or scale.

Unfortunately, the learning rate (2.9) cannot be computed in advance as AdaGrad-norm
it requires knowledge of all the feedback norms for the entire course of the
interaction. Instead, the best we can hope for is to use the historical feedback
information collected up to the current instant. This gives rise to the following
learning rate policy.

𝜂𝑡 =
𝑅√

𝛽 +∑𝑡−1
𝑠=1∥𝑔𝑠 ∥2∗

, (AdaGrad-norm)

where 𝑅 > 0 and 𝛽 ≥ 0 are constants chosen by the learner at the beginning
of the learning process. The name AdaGrad-norm is to distinguish it from the
original AdaGrad algorithm introduced by Duchi et al. [68], which uses either
coordinate-wise (diagonal) or “full-matrix” learning rate. In our notation, this
requires to have a different regularizer ℎ𝑡 in each round that is tuned adaptively
according to the feedback.

Generally speaking, both AdaGrad-norm and AdaGrad adjust their learning
rates responsively to the fluctuating landscape of feedback. This flexibility,
as opposed to being confined to a single fixed learning rate, indeed results in
data-dependent regret bounds that are optimal up to a multiplicative constant.

To demonstrate this benefit of the adaptive methods, we rely on the following
standard lemma which provides an upper bound for the sum of a sequence of
non-negative real numbers, each weighted by the inverse of the square root of
their cumulative sum.

Lemma 2.6 (Auer et al. [14, Lem 3.5]). Let 𝑇 ∈ N and 𝜀 ∈ R+. For any sequence of The “inverse sqaure
root of sum” lemmanon-negative real numbers 𝑎1, . . . , 𝑎𝑇 , it holds

𝑇∑
𝑡=1

𝑎𝑡√
𝜀 +∑𝑡

𝑠=1 𝑎𝑠

≤ 2

√√√
𝑇∑
𝑡=1

𝑎𝑡 ,

where it is understood that 0/0 = 0.

With this in mind, the regret bound for adaptive (MD) comes from a straight-
forward combination of Proposition 2.2 and Lemma 2.6. We state it below.

Proposition 2.7. Suppose that Assumption 2.1 holds and that (MD) is run with Regret of adaptive
MDadaptive learning rate (AdaGrad-norm). Then, for any 𝑧 ∈ 𝒳 and 𝑇 ∈ N, the regret

of the learner relative to 𝑧 after 𝑇 rounds is bounded as

Reg𝑇(𝑧) ≤
( sup𝑥∈𝒳 𝐷(𝑧, 𝑥)

𝑅
+ 𝑅

) √√√
𝛽 +

𝑇∑
𝑡=1
∥𝑔𝑡 ∥2∗

Proof. On on hand, we have

𝐷(𝑧, 𝑥1)
𝜂2

+
𝑇∑
𝑡=2

(
1

𝜂𝑡+1
− 1
𝜂𝑡

)
𝐷(𝑧, 𝑥𝑡) ≤

sup𝑥∈𝒳 𝐷(𝑧, 𝑥)
𝜂𝑇+1
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On the other hand, by Lemma 2.6 we know that

1
2

𝑇∑
𝑡=1

𝜂𝑡+1∥𝑔𝑡 ∥2∗ =
𝑅

2

∑
𝑡=1𝑇

∥𝑔𝑡 ∥2∗√
𝛽 +∑𝑡

𝑠=1∥𝑔𝑠 ∥2∗
≤ 𝑅

√√√
𝑡∑
𝑠=1
∥𝑔𝑡 ∥2∗ .

Plugging the above two inequalities into the bound of Proposition 2.2 gives the
desired result. □

In a similar vein, we have the following regret bound for adaptive (DA).

Proposition 2.8. Suppose that Assumptions 2.1 and 2.2 hold and that (DA) is runRegret of adaptive DA
with adaptive learning rate (AdaGrad-norm). Then, for any 𝑧 ∈ 𝒳 and 𝑇 ∈ N, the
regret of the learner relative to 𝑧 after 𝑇 rounds is bounded as

Reg𝑇(𝑧) ≤
(
ℎ(𝑧)
𝑅
+ 𝑅

) √√√
𝛽 +

𝑇∑
𝑡=1
∥𝑔𝑡 ∥2∗ +

𝑅𝐺2√
𝛽

Proof. The main challenge here is that ∥𝑔𝑡 ∥2∗ only scales in 𝑔𝑡 in Proposition 2.4.
To overcome this, we use the following trick

𝜂𝑡 ∥𝑔𝑡 ∥2∗ = 𝜂𝑡+1∥𝑔𝑡 ∥2∗ + (𝜂𝑡 − 𝜂𝑡+1)∥𝑔𝑡 ∥2∗ ≤ 𝜂𝑡+1∥𝑔𝑡 ∥2∗ + (𝜂𝑡 − 𝜂𝑡+1)𝐺2.

Putting this with Proposition 2.4 and Lemma 2.6 completes the proof. □

Proposition 2.7 along with Proposition 2.8 suggest that both (MD) and
(DA) with adaptive learning rate (AdaGrad-norm) can guarantee the optimal

𝒪
(√∑𝑇

𝑡=1∥𝑔𝑡 ∥2∗
)

data-dependent regret bound. Yet, these results come with a

few caveats.
For (MD), the regret bound is only meaningful when the Bregman diameter

sup𝑥∈𝒳 𝐷(𝑧, 𝑥) is finite. This requirement is unavoidable as discussed in
Section 2.2.2. Regarding (DA), we additionally assume Assumption 2.2 in
Proposition 2.8. This is not crucial because we can replace 𝐺 by max1≤𝑡≤𝑇 ∥𝑔𝑡 ∥∗
in the bound as noted in Remark 2.5. What is more problematic is the square
dependence on𝐺 and the the inverse square root dependence on the initialization
parameter 𝛽. This implies that 𝛽 must be set proportional to 𝐺2 for this term
to scale linearly with 𝐺, otherwise, the bound could be excessively large, or
even become vacuous when 𝛽 = 0. Fortunately, this issue is just an artifact of
our analysis rather than an inherent drawback of the algorithm. It is indeed
possible to refine Proposition 2.4 and subsequently Proposition 2.8 to yield a
regret bound for the case 𝛽 = 0, with an additional term that is only in the order
of 𝐺
√
𝑇. We refer the readers to [216] for more details on this result.

Overall, the dual averaging method and its adaptive variants exhibit numerous
advantages and require less stringent assumptions, making them the primary
focus of our investigation in this thesis.

To complete the picture, we note that the value of these adaptive methods isAdaptive methods
beyond online

learning
not limited to the regret guarantees presented here. Specifically, these methods
have also been shown to converge and yield optimal convergence rates in
(non-convex) optimization [174, 275, 294]. In this context, the term “adaptive”
alludes to the algorithm’s capacity to achieve the desired guarantees under
various conditions. This characteristic is further investigated in the context of
learning in games in Chapters 6 and 8.
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Finally, it is important to note that the reach of adaptive methods extends to
its numerous variants. In particular, Adam [155] and AdamW [180], among
others [63, 232, 250, 265, 287], have made significant contributions to current
advancements in deep learning and artificial intelligence. These variants
continue to be at the forefront of this rapidly evolving field, demonstrating their
versatility and effectiveness in handling a wide range of problems.





3
MULTI -AGENT ONLINE OPTIMIZATION WITH DELAYS

# This chapter incorporates material from Hsieh et al. [128, 130]

Having established the basics of online convex optimization in the previous
chapter, we now turn to our main contribution in the cooperative multi-agent

setup: a multi-agent online learning framework with a focus on delays and
asynchronicities.

Imagine deploying an online learning algorithm across a network of agents—it Multi-agent online
learningcould be a group of autonomous vehicles navigating a city [248], a distributed

energy management system optimizing power use across a smart grid [200], or
a recommender system running on servers scattered around the globe [296].
This multi-agent context is not just a mere extension of the single-agent setting
but presents a new frontier with unique challenges and opportunities.

In this multi-agent setting, one particular challenge that becomes increasingly Delay
relevant is delays. It is not uncommon for a significant lag to occur between an
agent taking action and receiving the corresponding feedback. This can be due
to a myriad of factors such as computational overheads [50, 188], communication
latencies between agents (learners) [186, 268], or the inherent complexity of
predicting long-term effects [280]. This delay introduces an additional layer of
complexity and uncertainty into the learning process.

Compounding these difficulties, the multi-agent setting is often devoid of Lack of centralized
controla centralized control mechanism. In particular, agents may not have access

to a global counter to use as a reference point, which represents a substantial
deviation from single-agent situations.

Our framework aims to tackle these challenges by generalizing the methods
and results discussed in the previous chapter, fitting them into this multi-
agent setup with delays. Importantly, we focus on the information available
for producing each action rather than the actual delay associated with each
feedback. The aim is to provide a comprehensive theory for understanding and
dealing with asynchronicities and delays in online learning, not just for specific
applications, but from a broader, more universal standpoint.

contributions and outline. There are three major underlying themes in
our analysis. As we discussed above, the first has to do with delays: due to this
lag between “action” and “reaction”, agents may have to update their actions
based on feedback that is potentially stale and obsolete. The second has to
do with multi-agent systems: in a network setting, learners may have to take
decisions with very different information at their disposal, and with no realistic
means of coordinating their decision-making mechanisms. Expanding further
on this point, the third has to do with adaptivity: we are interested in learning
algorithms that can be run with minimal information prerequisites at the agent
end, while still achieving optimal regret bounds.

31
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To take all this into account, we introduce in Section 3.1 a flexible frame-A framework for
asynchronous online

optimization
work that unifies several models of online learning in the presence of de-
lays—including both single- and multi-agent setups.

Building upon this, we extend the (DA) template to account for delays inDelayed dual
averaging Section 3.2. At the core of our analysis are the notions of dependency graph

and faithful permutation. These allow us to reorder time indices in a way that
is compatible with the decision-making process, effectively helping us tackle
unique challenges that arise from the multi-agent setting.

Our results are concretized in Section 3.3, where we design and analyzeAdaptive methods
adaptive algorithms that achieve optimal data- and delay-dependent regret
bounds in this completely decentralized setting. In addition to this, we also
develop a data- and delay-adaptive algorithm for the single-agent scenario that
bypasses the “bounded delay” assumption.

In an endeavor to showcase the versatility of our framework, we proceed toEffective regret versus
collective regret present an alternative problem formulation in Section 3.4. This formulation

closely resembles those commonly found in distributed online optimization.
Following this, we provide bounds for the agents’ effective and collective regrets
to account for two distinct objectives of the learning system: in the former, the
goal is to perform well on every upcoming request; while in the latter, the goal
is to enhance the collaborative task undertaken by the entire group of agents.

We close up this chapter with numerical simulations in static and openSimulations on static
and open networks networks in Section 3.5. In our experiments, we address a decentralized

least absolute deviation regression problem and compare our methods with
decentralized gradient descent. This concluding analysis provides practical
perspectives, complementing our theoretical findings and highlighting the
broad applicability of our framework.

3.1 a framework for asynchronous online optimization

In this section, we lay out the general asynchronous online optimization
framework that we study throughout this chapter. We also highlight the two
challenges that arise in our framework due to its multi-agent nature.

3.1.1 Problem Setup

Consider a set of agents 𝒩 = {1, . . . ,𝑁} playing against a sequence of time-Problem setup
varying loss functions, with the goal of minimizing their (joint) regret. Formally,
at each time slot 𝑡, one of the agents becomes active, they select an action 𝑥𝑡
from the action set 𝒳, and they incur a loss ℓ𝑡(𝑥𝑡).1 The performance of the
agents is measured by the regret defined in Definition 2.1.

Reg𝑇(𝑧) =
𝑇∑
𝑡=1

ℓ𝑡(𝑥𝑡) −
𝑇∑
𝑡=1

ℓ𝑡(𝑧)

As in Section 2.1, 𝒳 is assumed to be a closed convex subset of R𝑑, each
ℓ𝑡 : R𝑑 → R ∪ {+∞} is convex and subdifferentiable on 𝒳 (Assumption 2.1),
and the agents (learners) receive first-order feedback 𝑔𝑡 ∈ 𝜕ℓ𝑡(𝑥𝑡). Irrespective
of the nature of the problem, we will refer to 𝑥𝑡 interchangeably as the prediction
made by the active agent or the action played by the active agent at time 𝑡, and
we will write 𝑖(𝑡) for the agent that is active at time 𝑡.

1 We discuss the case where multiple agents are active at each time step in Section 3.4.
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Agent 1

Agent 𝑀

...

...

Agent 𝑖(𝑡) EnvironmentCoordinator

plays 𝑥𝑡

suffers loss ℓ𝑡 (𝑋𝑡 )

receives 𝑔𝑡

sends some 𝑔𝑠

receives some 𝑔𝑠

Figure 3.1: Illustration of the considered multi-agent online-learning setup: the case of
coordinator-worker architecture.

Agent 𝑗

Agent 𝑘

Agent 𝑖(𝑡) Environment 𝑖(𝑡)

Environment 𝑗

Environment 𝑘

Time-varying
open network

plays 𝑥𝑡

suffers loss ℓ𝑡 (𝑋𝑡 )

receives 𝑔𝑡

sends some 𝑔𝑠
to neighbors

receives some 𝑔𝑠
from neighbors

Figure 3.2: Illustration of the considered multi-agent online-learning setup: the case of
decentralized open network.

For visualization purposes, the above setup is illustrated in Figs. 3.1 and 3.2. Illustrative examples
We highlight in these two figures the fact that we do not put any restriction on the
communication architecture. In particular, the network may be either centralized,
where agents exchange information through a single coordinator (Fig. 3.1), or
decentralized, and even with agents that join and leave freely (Fig. 3.2).

the delay model. In environments with delayed feedback, 𝑔𝑡 is only received Delayed feedback
by all the agents 𝑖 ∈ 𝒩 a certain amount of time after the generating action 𝑥𝑡
is played. To express this formally, we write [𝑡] = {1, ..., 𝑡} for any 𝑡 ∈ N and
denote the set of gradient timestamps that are available to agent 𝑖 at time 𝑡 as
𝒮 𝑖𝑡 ⊆ [𝑡 − 1] for ; in other words, at time 𝑡, the 𝑖-th agent only has {𝑔𝑠 : 𝑠 ∈ 𝒮 𝑖𝑡 } at
their disposal. Clearly, at each stage 𝑡, the active agent 𝑖(𝑡) can only compute 𝑥𝑡
based on {𝑔𝑠 : 𝑠 ∈ 𝒮 𝑖(𝑡)𝑡 }, the set of subgradients available for it at time 𝑡. This
quantity is of utmost importance in our framework. We thus define

𝒮𝑡 = 𝒮 𝑖(𝑡)𝑡 and 𝒰𝑡 = [𝑡 − 1] \ 𝒮𝑡 (3.1)

for the set of timestamps that are available (resp. unavailable) to the active agent
at time 𝑡.

In a slight abuse of terminology, we will refer to both (𝒮 𝑖𝑡 )𝑡∈[𝑇] and (𝒮𝑡)𝑡∈[𝑇] as
feedback sequences although, strictly speaking, they only contain the timestamps
of the corresponding feedback. Clearly, the non-delayed setting corresponds to
the case 𝒮𝑡 = 𝒮 𝑖𝑡 = [𝑡 − 1] and𝒰𝑡 = ∅.
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∅
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Figure 3.3: Illustration of the type of feedback sequences that may occur in a multi-agent
setting. In the standard single-agent case, the feedback sequence (𝒮𝑡 )𝑡∈N is necessarily
non-decreasing: even though the feedback may not arrive with the same order as the
corresponding actions, the number of available gradients can only grow. This no longer
holds when multiple agents are involved in the optimization process.

3.1.2 Non-Monotonicity of Feedback Sequence and Lack of Synchronization

We now highlight two prominent features of our asynchronous online opti-Non-monotonicity of
feedback mization framework that distinguish it from the large corpus of literature on

single-agent online learning with delays. First, from the point of view of any
single agent 𝑖, the feedback sequence (𝒮 𝑖𝑡 )𝑡∈[𝑇] is non-decreasing by definition,
i.e., 𝒮 𝑖𝑡 ⊆ 𝒮 𝑖𝑡+1 for all 𝑡 ∈ N. However, this may not be the case for the active
feedback sequence (𝒮𝑡)𝑡∈[𝑇] which is in general non-monotone. In fact, due to
communication delays, the same element of feedback may not arrive at each
node at the same time. Thus, as the active agent differs from one time slot to
another, a timestamp contained in 𝒮𝑡 may not belong to 𝒮𝑡+1 (see Fig. 3.3 for an
illustration). This leads to the first challenge we seek to overcome:

Challenge I. Design learning algorithms capable of handling non-monotone
feedback sequences.

Remark 3.1. We stress here that this issue is inextricably tied to the multi-agent
character of our model. In the single-agent case, 𝒮𝑡 is de facto monotone, so this
problem does not arise.

Second, in our model the agents only communicate when they exchangeLack of global
information the received feedback. Without additional coordination, the network does not

maintain any global information about the evolution of the learning process. In
particular, for reasons of privacy and information security, we do not assume
that agents have access to a global counter that indicates how many actions
have been played at any given stage (as this could carry sensitive, identification-
prone information). Similarly, other quantities of interest, such as the current
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cumulative unavailability 𝐷𝑡 defined below, are also unavailable to each agent.
This leads to our second challenge:

Challenge II. Dispense of the need to know 𝑡 or other non-local information.

As shown above, the lack of network synchronization, along with the non-
monotonicity of the active feedback sequence, poses crucial challenges to both
the design of the algorithms and the accompanying analysis. In face of these,
we introduce in Section 3.2.2 an appropriate reordering of time that enables us
to go beyond the algorithms developed for the single-agent setting.

quantifying the impact of delays. As illustrated in Fig. 3.3, having
multiple agents also means that we can no longer associate a single delay to
each individual feedback element. This explains our choice of focusing on the
available subgradients instead of the actual delays, which largely simplifies the
description of the framework. The delays, in turn, are still implicitly encoded
in the sets (𝒮 𝑖𝑡 ). To quantify their effect, it will be convenient to consider the
following measures, defined over a time horizon of 𝑇:

• The maximum delay 𝜏 is the longest wait to receive an element of feedback: Maximum delay
𝜏 = min{𝑠 : [𝑡 − 𝑠 − 1] ⊆ 𝒮𝑡 for all 𝑡 ∈ [𝑇]}.

• The maximum unavailability 𝜈 of the feedback is 𝜈 = max𝑡∈[𝑇] card(𝒰𝑡). This Maximum
unavailabilityis the maximum number of subgradients that could have—but otherwise

haven’t—been communicated to an active agent at activation time. It is
straightforward to see that 𝜈 ≤ 𝜏.2

• The cumulative unavailability 𝐷𝑡 is given by 𝐷𝑡 =
∑𝑡
𝑠=1 card(𝒰𝑠). This Cumulative

unavailabilitygeneralizes the sum of delays to the multi-agent case; clearly, 𝐷𝑡 ≤ 𝜈𝑡.

3.2 delayed dual averaging and faithful permutations

In this section, we present delayed dual averaging, our main algorithmic template
that we use to address the limitations identified in the previous section. We
also introduce the notion of faithful permuation, which plays a major role in the
analysis to come, as illustrated by the template regret bound in Theorem 3.1.

3.2.1 Delayed Dual Averaging

To begin, recall that at each time 𝑡, the active agent 𝑖(𝑡) has access to a collection
of previously received subgradients {𝑔𝑠 : 𝑠 ∈ 𝒮𝑡} where 𝒮𝑡 ⊆ [𝑡 − 1] represents the
set of timestamps corresponding to the subgradients that can be used by the
agent to produce 𝑥𝑡 . Put differently, if 𝑠 ∈ 𝒮𝑡 , then 𝑔𝑠 ∈ 𝜕ℓ𝑠(𝑥𝑠) could be used in
the computation leading to playing 𝑥𝑡 at time 𝑡.

Our candidate algorithm for this asynchronous setup builds on the (DA) Delayed dual
averagingmaster template. Of course, the formulation (DA) stated previously is not a

practical algorithm here since the active agent 𝑖(𝑡) only has at its disposal the
subgradients {𝑔𝑠 : 𝑠 ∈ 𝒮𝑡} at time 𝑡. To resolve this, we propose a natural

2 For any 𝑡 ∈ [𝑇], we have [𝑡 − 𝜏 − 1] ⊆ 𝒮𝑡 and thus 𝒰𝑡 = [𝑡 − 1] \ 𝒮𝑡 ⊆ {𝑡 − 𝜏 − 1, ..., 𝑡 − 1} which
consists of 𝜏 elements. On the other hand, if, for some reason, one feedback is lost, say the first one,
then, the maximum delay is 𝜏 = 𝑇 − 1 while the maximum unavailability is 𝜈 = 1 (suppose all other
feedback arrives with no delays), in which case 𝜈 ≪ 𝜏.
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Algorithm 3.1: (DDA) – from the point of view of agent 𝑖
1: Initialize: 𝒢𝑖 ← ∅, 𝑡 ← 1.
2: while not stopped do
3: asynchronously receive feedback 𝑔𝑠 from time 𝑠
4: 𝒢𝑖 ← 𝒢𝑖 ∪{𝑠}
5: Relay 𝑔𝑠 if necessary
6: if the agent becomes active, i.e., 𝑖(𝑡) = 𝑖 then
7: 𝒮𝑡 ← 𝒢𝑖
8: Update 𝜂𝑡 and play 𝑥𝑡 = arg min𝑥∈𝒳

∑
𝑠∈𝒮𝑡 ⟨𝑔𝑠 , 𝑥⟩ +

ℎ(𝑥)
𝜂𝑡

9: end if
10: end while

adaptation of DA that is suitable for this framework, which we refer to as delayed
dual averaging (DDA).

𝑥𝑡 = arg min
𝑥∈𝒳

{∑
𝑠∈𝒮𝑡

⟨𝑔𝑠 , 𝑥⟩ +
ℎ(𝑥)
𝜂𝑡

}
= 𝑄

(
−𝜂𝑡

∑
𝑠∈𝒮𝑡

𝑔𝑠

)
. (DDA)

In words, (DDA) simply averages all the received feedback in the dual space
and maps it back to the action set via the mirror map to form the prediction.
Clearly, as long as 𝜂𝑡 can be computed locally, (DDA) can indeed be implemented
independently by each agent of the network without requiring a global clock;
for a pseudo-code implementation, see Algorithm 3.1.

Remark 3.2. Naturally, one might also consider extending (MD) to accommodateMD and DA are not
equally robust to

delays
this multi-agent setup. However, apart from the finite Bregman diameter
limitation that could constrain the algorithm when using non-constant learning
rates, the fact that the feedback may arrive in different order to each agent
complicates the adoption of the algorithm in this context. In fact, if feedback
from different rounds arrives out-of-order, the natural extension of the method
would be to incorporate them sequentially following (MD) in the order of
arrival. This process, however, would lead to a final output that varies from
agent to agent once all the feedback has arrived. This is in stark contrast to (DA),
where all gradients contribute to the model with equal weight, ensuring the
actions taken by the agents do not deviate too much from each other when the
delays are small. In particular, the final output will be identical for all agents
once they’ve received all the feedback.

3.2.2 Dependencies and Faithful Permutations

A crucial challenge in (DDA) is the choice of 𝜂𝑡 . Indeed, the standard analysis
of DA requires the learning rate sequence to be non-increasing, a property that
can hardly be ensured in our situation due to the non-monotonicity of the active
feedback sequence and the lack of network synchronization. To sidestep this
issue, we need to rethink what “time”, or the ordering of the timestamps means
to (DDA), and how this can be leveraged to construct a valid algorithm.

Our starting point will be to redefine the algorithm’s internal clock (andDependency graph
corresponding learning rate) based exclusively on the active timestamp sets
(𝒮𝑡)𝑡∈[𝑇]. To that end, we will start by viewing each timestamp as a node in a
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Figure 3.4: The dependency graphs for the two examples of Fig. 3.3. The left and
right graphs correspond respectively to the single- and multi-agent examples presented
therein. The active feedback at time 𝑡 is exactly the set of in-neighbors of vertex 𝑡.

“causal graph”, and we will include a directed edge from 𝑠 to 𝑡 if and only if
𝑠 ∈ 𝒮𝑡 : this represents a “causal dependency” of 𝑡 on 𝑠 in the sense that the
gradient 𝑔𝑠 has been used to define 𝑥𝑡 (cf. Fig. 3.4). We will refer to this graph
as the dependency graph associated to the active feedback sequence (𝒮𝑡)𝑡∈[𝑇], and
we will denote it by 𝔊; for clarity, we also stress here that we do not assume
that this structure is known to the agents.

A first important observation is that the default time ordering 𝑡 = 1, 2, . . .
represents a topological sort of 𝔊, i.e., a linear ordering of its vertices such that
𝑠 < 𝑡 for any directed edge 𝑠 ; 𝑡 in 𝔊.3 Second, since the update structure
of (DDA) is determined entirely by 𝔊 and the value of 𝜂𝑡 at each vertex of 𝔊,
it follows that any reshuffling of time that respects the causal structure of 𝔊
should be an equally viable alternative for the algorithm. We formalize this
idea below via the notion of a faithful permutation.

Definition 3.1 (Faithful permutation). A permutation 𝜋 of [𝑇] is faithful if and Faithful permutation
only if, for all 𝑠, 𝑡 ∈ [𝑇], we have

𝑠 ∈ 𝒮𝑡 =⇒ 𝜋−1(𝑠) < 𝜋−1(𝑡). (3.2)

Equivalently, 𝜋 is faithful if and only if 𝜋(1), . . . ,𝜋(𝑇) is a topological ordering
of 𝔊.

Definition 3.1 means that the feedback used at time 𝜋(𝑡) (whose time indices
are in 𝒮𝜋(𝑡)) form a subset of {𝑔𝜋(1), . . . , 𝑔𝜋(𝑡−1)}. To show this, note that if
𝜋(𝑠) ∈ 𝒮𝜋(𝑡), then 𝑠 = 𝜋−1(𝜋(𝑠)) < 𝜋−1(𝜋(𝑡)) = 𝑡, i.e., 𝑠 ∈ [𝑡 − 1]. Thus, a
faithful permutation can be seen as a reordering of the time that would still be
compatible with the feedback used by each agent at every time. We illustrate
this notion with two examples below.
Example 3.1. Clearly, the identity permutation 𝑡 ↦→ 𝑡 is always faithful. Identity permutation

Example 3.2. In the single-agent setting, we can define the ordering by arrival Ordering by arrival
as follows: if the 𝑘-th received subgradient originates from round 𝑡—i.e.,
𝑔𝑡 ∈ 𝜕ℓ𝑡(𝑥𝑡)—we set 𝜋(𝑘) = 𝑡, so 𝑔𝑡 is the 𝜋−1(𝑡)-th received gradient.4 In this
notation, the timestamps of all feedback received before 𝑔𝑡 can be written as
ℱ𝑡 B {𝜋(1), . . . ,𝜋(𝜋−1(𝑡) − 1)} for that 𝑔𝑡 is the 𝜋−1(𝑡)-th feedback. Along with
the inclusion 𝒮𝑡 ⊆ ℱ𝑡 , which holds because 𝑔𝑡 is necessarily computed with
gradients arriving before itself, we see that 𝜋 is indeed a faithful permutation.
Remark 3.3. A similar notion was considered by Zimmert and Seldin [297], but
for a completely different purpose. There, the authors aimed to provide optimal
algorithms for single-agent adversarial bandits with delays. They defined a
“dependency-preserving permutation” exactly as the inverse of what we call a

3 In particular, this property implies that 𝔊 is a directed acyclic graph (DAG).
4 If multiple gradients arrive at a given round, we resolve ties arbitrarily; this ambiguity in the

definition of 𝜋 plays no role in the analysis.



38 multi-agent online optimization with delays

faithful permutation, and they used this notion to analyze an algorithm that can
“skip” certain rounds of feedback when tuning the algorithm’s learning rate.
Our definition is motivated by—and tailored to—the multi-agent setting, where
the non-monotonicity of the active feedback sequence 𝒮𝑡 plays a major role
(we recall that this phenomenon cannot arise in the single-agent case). These
elements are altogether absent in the single-agent considerations of Zimmert
and Seldin [297].

3.2.3 Bounding the Regret of Delayed Dual Averaging

We are now in a position to state and prove our main, data-dependent regret
guarantee for (DDA) when run with learning rates that are non-increasing along
a faithful permutation. For simplicity, we assume throughout the sequel that ℎ is
non-negative. This is possible because ℎ is strongly convex and we can thus
always replace ℎ by the non-negative function ℎ −min ℎ without affecting our
algorithms.

Similar to [𝑡] and𝒰𝑡 , for a faithful permutation 𝜋, we also define the set of
the first 𝑡 elements under the new ordering and the set of unavailable elements
induced by this ordering as

[𝑡]𝜋 = {𝜋(1), . . . ,𝜋(𝑡)} and 𝒰𝜋
𝑡 = [𝑡 − 1]𝜋 \ 𝒮𝜋(𝑡).

We have the following theorem concerning the regret of (DDA).

Theorem 3.1. Suppose that Assumption 2.1 holds, 𝜋 is a faithful permutation of [𝑇],Template regret bound
for delayed dual

averaging
and (DDA) is run with learning rates (𝜂𝑡)𝑡∈[𝑇] such that 𝜂𝜋(𝑡+1) ≤ 𝜂𝜋(𝑡) for all 𝑡 ∈ [𝑇].
Then, the algorithm enjoys the regret bound

Reg𝑇(𝑧) ≤
ℎ(𝑧)
𝜂𝜋(𝑇)

+ 1
2

𝑇∑
𝑡=1

𝜂𝜋(𝑡)
©­«∥𝑔𝜋(𝑡)∥2∗ + 2∥𝑔𝜋(𝑡)∥∗

∑
𝑠∈𝒰𝜋

𝑡

∥𝑔𝑠 ∥∗ª®¬ . (3.3)

Proof. Our analysis leverages the so-called “perturbed iterate” framework for
analyzing asynchronous algorithms in the spirit of [185] and [141]. Formally,
we define the following virtual iterate sequence

𝑥̃𝑡 = arg min
𝑥∈𝒳

𝑡−1∑
𝑠=1
⟨𝑔𝜋(𝑠), 𝑥⟩ +

ℎ(𝑥)
𝜂𝜋(𝑡)

.

and decompose the sum as:

𝑇∑
𝑡=1
⟨𝑔𝑡 , 𝑥𝑡 − 𝑧⟩ =

𝑇∑
𝑡=1
⟨𝑔𝑡 , 𝑥̃𝜋−1(𝑡) − 𝑧⟩︸                 ︷︷                 ︸

𝐴

+
𝑇∑
𝑡=1
⟨𝑔𝑡 , 𝑥𝑡 − 𝑥̃𝜋−1(𝑡)⟩︸                  ︷︷                  ︸

𝐵

. (3.4)

We now proceed to bound each term separately.
Term A. The first term is exactly the linearized regret of the iterates 𝑥̃1, . . . , 𝑥̃𝑇
that is constructed with the feedback 𝑔𝜋(1), . . . , 𝑔𝜋(𝑇). Thus, as we have shown
in the proof of Proposition 2.4, this term can be bounded as

𝑇∑
𝑡=1
⟨𝑔𝑡 , 𝑥̃𝜋−1(𝑡) − 𝑧⟩ =

𝑇∑
𝑡=1
⟨𝑔𝜋(𝑡), 𝑥̃𝑡 − 𝑧⟩ ≤

ℎ(𝑧)
𝜂𝜋(𝑇)

+ 1
2

𝑇∑
𝑡=1

𝜂𝜋(𝑡)∥𝑔𝜋(𝑡)∥2∗ . (3.5)
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Note that the assumption 𝜂𝜋(𝑡+1) ≤ 𝜂𝜋(𝑡) on the learning rate sequence is crucial
for the derivation of this bound.

Term B. For the second term, we would like to bound the distance between 𝑥𝑡
and 𝑥̃𝜋−1(𝑡), or equivalently, the distance between 𝑥𝜋(𝑡) and 𝑥̃𝑡 (as we consider all
the 𝑡 ∈ {1, . . . ,𝑇}). To that end, we write

𝑥𝜋(𝑡) = 𝑄
©­«−𝜂𝜋(𝑡)

∑
𝑠∈𝒮𝜋(𝑡)

𝑔𝑠
ª®¬ and 𝑥̃𝑡 = 𝑄

©­«−𝜂𝜋(𝑡)
∑

𝑠∈[𝑡−1]𝜋
𝑔𝑠

ª®¬.

Since the permutation 𝜋 is faithful, we have 𝒮𝜋(𝑡) ⊆ {𝜋(1), ..,𝜋(𝑡 − 1)} = [𝑡 −
1]𝜋. We can then use the non-expansivity of the mirror map (Lemma A.4 in
Appendix A) to get

∥𝑥𝜋(𝑡) − 𝑥̃𝑡 ∥ ≤ ∥𝜂𝜋(𝑡)
∑
𝑠∈𝒰𝜋

𝑡

𝑔𝑠 ∥∗ ≤ 𝜂𝜋(𝑡)
∑
𝑠∈𝒰𝜋

𝑡

∥𝑔𝑠 ∥∗.

Subsequently,

𝑇∑
𝑡=1
⟨𝑔𝑡 , 𝑥𝑡 − 𝑥̃𝜋−1(𝑡)⟩ =

𝑇∑
𝑡=1
⟨𝑔𝜋(𝑡), 𝑥𝜋(𝑡) − 𝑥̃𝑡⟩

≤
𝑇∑
𝑡=1
∥𝑔𝜋(𝑡)∥∗∥𝑥𝜋(𝑡) − 𝑥̃𝑡 ∥

≤
𝑇∑
𝑡=1

𝜂𝜋(𝑡)∥𝑔𝜋(𝑡)∥∗
∑
𝑠∈𝒰𝜋

𝑡

∥𝑔𝑠 ∥∗. (3.6)

Combining (3.4), (3.5) and (3.6), we obtain the desired result. □

Theorem 3.1 provides a template regret bound that forms the basis of all
the upcoming analysis of this chapter. To begin, we note that the bound (3.3)
consists of the usual bound for DA (cf. Proposition 2.4) plus a term containing∑
𝑠∈𝒰𝜋

𝑡
∥𝑔𝑠 ∥∗ that reflects the impact of delay. Similar decompositions have been

proven by McMahan and Streeter [188], Joulani et al. [139] and Joulani et al.
[141] respectively for online gradient descent, online mirror descent, and dual
averaging.5 These papers focused on the single-agent (shared-memory) setting
and conducted the analysis by either choosing 𝜋 as the identity or the ordering
by arrival. Theorem 3.1 thus extends these results by providing a larger class of
possible learning rate policies, which enables us to devise efficient and truly
implementable learning rate update schemes for the fully decentralized setting
in Section 3.3.

3.2.4 Constant Learning Rate and Lags

To get an idea of the optimal regret that the algorithm can achieve, we fix a Cumulative lag

5 In [188], the authors work with the specific setting of coordinate-wise unconstrained gradient
methods. Therefore, instead of products of norms they have products of scalars in their analysis.
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constant learning rate 𝜂𝑡 ≡ 𝜂, which we subsequently optimize to minimize the
upper-bound on the regret. To proceed, we define the cumulative lag as

Λ𝜋
𝑡 =

𝑡∑
𝑠=1

©­«∥𝑔𝜋(𝑠)∥2∗ + 2∥𝑔𝜋(𝑠)∥∗
∑
𝑙∈𝒰𝜋

𝑠

∥𝑔𝑙 ∥∗ª®¬ =
∑
𝑠∈[𝑡]𝜋
∥𝑔𝑠 ∥2∗ + 2

∑
{𝑠,𝑙}∈𝒟𝜋

𝑡

∥𝑔𝑠 ∥∗∥𝑔𝑙 ∥∗,

(3.7)
where

𝒟𝜋
𝑡 = {{𝜋(𝑠), 𝑙} : 𝑠 ∈ [𝑡], 𝑙 ∈ 𝒰𝜋

𝑠 }.

In words, {𝑠′, 𝑙} ∈ 𝒟𝜋
𝑡 if (i) 𝑔𝑙 is not used to define 𝑥𝑠′ ; and (ii) after reordering

by 𝜋, 𝑙 comes before 𝑠′ and 𝑠′ comes before 𝜋(𝑡). We also write Λ𝑡 = Λid
𝑡 for

the lag associated to the standard time ordering and define 𝐷𝜋
𝑡 = card(𝒟𝜋

𝑡 ) =∑𝑇
𝑠=1 card(𝒰𝜋

𝑠 ) for the cumulative unavailability under the order induced by 𝜋.
Compared to 𝐷𝜋

𝑡 , the cumulative lag Λ𝜋
𝑡 regroups the actual errors caused

by the inability of the learners to compensate the missing feedback, and gives
the most fine-grained characterization of the effect of delayed feedback on the
regret. In the single-agent setting, Joulani et al. [139] and McMahan and Streeter
[188] also considered the same quantity but in the special case where 𝜋 is the
ordering-by-arrival permutation discussed in Section 3.2.2. In general, it is clear
that Λ𝜋

𝑡 ≤ (𝑡 + 2𝐷𝜋
𝑡 )𝐺2 provided that all subgradients are bounded in norm by

𝐺 (Assumption 2.2); moreover, if 𝜋 is the identity permutation, we further have
𝐷𝜋
𝑡 = 𝐷𝑡 ≤ 𝜈𝑡. With all this in mind, a direct application of Theorem 3.1 gives

the following series of more explicit bounds.

Corollary 3.2. Suppose that Assumption 2.1 holds and (DDA) is run with a constantRegret bounds with
constant learning rate learning rate 𝜂 > 0. Then, for any faithful permutation 𝜋, we have

• If ∥𝑔𝑡 ∥∗ is uniformly bounded (Assumption 2.2) and 𝜂 = Θ

(
1/

√
max(1, 𝜈)𝑇

)
,

then Reg𝑇(𝑧) = 𝒪
(√

max(1, 𝜈)𝑇
)
.

• If ∥𝑔𝑡 ∥∗ is uniformly bounded (Assumption 2.2) and 𝜂 = Θ

(
1/

√
max(𝑇,𝐷𝜋

𝑇
)
)
,

then Reg𝑇(𝑧) = 𝒪
(√

max(𝑇,𝐷𝜋
𝑇
)
)
.

• If 𝜂 = Θ

(
1/

√
Λ𝜋
𝑇

)
, then Reg𝑇(𝑧) = 𝒪

(√
Λ𝜋
𝑇

)
.

Corollary 3.2 recapitulates several types of regret bounds that we can expect
from (DDA), depending on the tuning of 𝜂𝑡 (either by using a pessimistic upper
bound on the delays and the norms of the gradients, or using the actual delays
and/or received gradients). Specifically, if we focus on the standard time
ordering 𝜋 = id, Corollary 3.2 allows us to recover the optimal data-dependent
bound of 𝒪(

√
Λ𝑇) that was previously obtained for the single-agent setting by

Joulani et al. [139] and McMahan and Streeter [188].
Going further, if we assume that ∥𝑔𝑡 ∥∗ ≤ 𝐺 for all 𝑡 ∈ [𝑇], we have Λ𝑇 ≤
(𝑇 + 2𝐷𝑇)𝐺2, which leads to the well-known 𝒪(

√
𝐷𝑇) bound on the regret (see

e.g., Quanrud and Khashabi [226]). Finally, if we only tune our learning rate
based the maximum unavailability 𝜈 (it can also be an upper bound thereof),
we get a regret in 𝒪(

√
𝜈𝑇). In the single-agent case, this is equivalent to the

𝒪(
√
𝜏𝑇) regret bound shown by the pioneering works of Langford et al. [165]

and Weinberger and Ordentlich [279].
On the downside, Corollary 3.2 would seem to suggest that the derived

regret bounds depend on the choice of the permutation 𝜋, a concept that is
relevant for the analysis, but which is otherwise devoid of physical meaning (at
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least, relative to the sequence of events as it unfolds in real time). Because of
this, the computation of the optimal learning rates required by Corollary 3.2
seems beyond reach in practice—even if we assume that the various quantities
involved are somehow known to the agents. However, as we show below,
this is not the case: the values of both 𝐷𝜋

𝑇
and Λ𝜋

𝑇
are independent of 𝜋, and

hence, so are the bounds of Corollary 3.2. To prove this, we first provide a new
characterization of the set𝒟𝜋

𝑡 which is of independent interest:

Proposition 3.3. Let 𝜋 be a faithful permutation. Then Alternative
characterization of the
set𝒟𝜋

𝑡𝒟𝜋
𝑡 = {{𝑠, 𝑙} ⊆ [𝑡]𝜋 : 𝑠 and 𝑙 are not adjacent in 𝔊}. (3.8)

Proof. By definition of the dependency graph, 𝑠 and 𝑙 are not adjacent in 𝔊 if
and only if {𝑠 ∉ 𝒮𝑙 , 𝑙 ∉ 𝒮𝑠}. We will thus show that

𝒟𝜋
𝑡 = {{𝑠, 𝑙} ⊆ [𝑡]𝜋 : 𝑠 ∉ 𝒮𝑙 , 𝑙 ∉ 𝒮𝑠}.

This relies on a two-way inclusion argument.

Inclusion (“⊆ ”). Let 𝑠 ∈ [𝑡] and 𝑙 ∈ 𝒰𝜋
𝑠 = [𝑠 − 1]𝜋 \ 𝒮𝜋(𝑠). By definition of [𝑡]𝜋

we have 𝜋(𝑠) ∈ [𝑡]𝜋 and 𝑙 ∈ [𝑠 − 1]𝜋 ⊆ [𝑡]𝜋. It remains to prove that 𝜋(𝑠) ∉ 𝒮𝑙 .
We exploit the equivalence

𝑙 ∈ [𝑠 − 1]𝜋 ⇐⇒ 𝜋−1(𝑙) ≤ 𝑠 − 1
⇐⇒ 𝜋−1(𝑙) < 𝜋−1(𝜋(𝑠))
⇐⇒ 𝜋(𝑠) ∉ [𝜋−1(𝑙)]𝜋. (3.9)

To conclude, we use the fact that 𝜋 is a faithful permutation and accordingly
𝒮𝑙 ⊆ [𝜋−1(𝑙) − 1]𝜋 ⊆ [𝜋−1(𝑙)]𝜋. Along with (3.9) we deduce that 𝜋(𝑠) ∉ 𝒮𝑙 .
Containment (“⊇ ”). Let {𝑠, 𝑙} ⊂ [𝑡]𝜋 such that 𝑠 ∉ 𝒮𝑙 and 𝑙 ∉ 𝒮𝑠 . We assume
without loss of generality 𝜋−1(𝑙) < 𝜋−1(𝑠). This is equivalent to 𝑙 ∈ [𝜋−1(𝑠) − 1]𝜋
and therefore 𝑙 ∈ 𝒰𝜋

𝜋−1(𝑠). We complete the proof by noting that 𝑠 ∈ [𝑡]𝜋 if and
only if 𝜋−1(𝑠) ∈ [𝑡]. □

In contrast to the original definition of𝒟𝜋
𝑡 , the characterization of Proposi-

tion 3.3—i.e., the non-adjacency of the vertices—is independent of the ordering
of the timestamps. By defining 𝔊𝜋

𝑡 as the subgraph of 𝔊 spanned by the vertices
of [𝑡]𝜋 in 𝔊, the proposition says that 𝒟𝜋

𝑡 contains exactly the non-adjacent
vertex pairs of 𝔊𝜋

𝑡 . With this in mind, we readily obtain the following important
corollary:

Corollary 3.4. For any two faithful permutations 𝜋 and 𝜋′, we have𝒟𝜋
𝑇
= 𝒟𝜋′

𝑇
, and, Independence of the

regret bounds in
relation to 𝜋

a fortiori, 𝐷𝜋
𝑇
= 𝐷𝜋′

𝑇
and Λ𝜋

𝑇
= Λ𝜋′

𝑇
. In other words, the regret bounds of Corollary 3.2

are independent of 𝜋.

Proof. Simply note that [𝑇]𝜋 = [𝑇]𝜋′ = [𝑇]. □

Corollary 3.4 shows that the regret bounds of Corollary 3.2 are indeed
meaningful, as they do not depend on any “virtual” reordering of time by a
faithful permutation. However, given that the quantities Λ𝑇 and 𝐷𝑇 cannot be
assumed known beforehand, the agents might need to employ a much more
conservative learning rate of the order of Θ(1/

√
𝜈𝑇) to minimize their regret.

We address this important issue via the design of suitable adaptive learning
methods in the next section.
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3.3 tuning the learning rate in the presence of delays

In this section, we exploit the template bound of Theorem 3.1 to design efficientRequirements for our
adaptive algorithms leaning rates that provably achieve low regret. To clarify our objective, we begin

by identifying the main desiderata that we seek to achieve:

• Anytime / Restart-free: the algorithm should not require the knowledgeAnytime
of the horizon 𝑇 and/or include a restart schedule where previous
information is discarded.

• Coordination-free: the learning rate of each agent must be computableCoordination-free
based exclusively on local information without any need for coordination.

• Data-dependent bounds: the algorithm’s regret guarantees should featureData-dependent

the actual gradients observed instead of an upper bound thereof.

• Adaptivity to delays: the algorithm’s regret should depend on theDelay-dependent
observed delays and not only on a pessimistic, worst-case estimate thereof.

To derive a learning rate with the above properties, we draw inspirationThe naive adaptation
of AdaGrad is not

implementable
from the (AdaGrad-norm) policy. This is perhaps the easiest to illustrate in
the case 𝜋 = id: here, to obtain an 𝒪(

√
Λ𝑇) regret, we could employ the policy

𝜂𝑡 = 1/
√
Λ𝑡 = 1/

√∑𝑡
𝑠=1 𝜆𝑠 where

𝜆𝑠 = ∥𝑔𝑠 ∥2∗ + 2∥𝑔𝑠 ∥∗
∑
𝑙∈𝒰𝑠

∥𝑔𝑙 ∥∗.

The key in the analysis of this policy is provided by Lemma 2.6. Based on this
lemma, it is straightforward to show that (DDA) with learning rate 𝜂𝑡 = 1/

√
Λ𝑡

incurs at most𝒪(
√
Λ𝑇) regret. However, this policy is not implementable because

it involves unobserved feedback—and hence violates one of our principal
desiderata. In the rest of this section, we show how this difficulty can be
circumvented in many relevant scenarios.

3.3.1 Pessimistic Non-Adaptive Learning Rate

To set the stage for the analysis to come, we begin by assuming that theBounded delay and
bounded feedback agents know 𝜏 an upper bound on the maximum delay and 𝐺 an upper bound

on the norms of the observed gradients. This leads to 𝜆𝑠 ≤ 𝐺2(1 + 2𝜈) ≤
𝐺2(1+ 2𝜏), and subsequently Λ𝑡 ≤ 𝐺2(1+ 2𝜏)𝑡. Given this preliminary result, it
is tempting to choose 𝜂𝑡 = Θ(1/𝐺

√
𝑡(1+ 2𝜏)). This is however still unrealistic

as the agents do not know the exact value of 𝑡, and may only estimate it by
using 𝑡 ≤ card(𝒮𝑡) + 𝜏 + 1. To justify this strategy, we need to prove that
the corresponding learning rate is indeed non-increasing along some faithful
permutation in order to apply Theorem 3.1. For this, we make the following
assumption.

Assumption 3.1. If 𝑠 ∈ 𝒮𝑡 , then card(𝒮𝑠) < card(𝒮𝑡).Assumption on
number of received
feedback elements In words, the assumption requires that if 𝑔𝑠 is used to compute 𝑥𝑡 , then 𝑥𝑠 is

computed with fewer gradients than 𝑥𝑡 . This is a fairly mild requirement which
is in turn implied by the upcoming Assumption 3.2 (see the accompanying
discussion). In particular, if the agents relay the information card(𝒮𝑡) as well,
Assumption 3.1 can be ensured by delaying the actual usage of a received
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feedback when necessary.6 Then, when the actual delays are bounded by 𝜏,
the gradients {𝑔1, . . . , 𝑔𝑡−𝜏−1} can always be used for computing 𝑥𝑡 . Therefore,
introducing this extra delay will not increase the maximum delay and has no
effect on the regret bound of the following proposition.

Proposition 3.5. Suppose that Assumptions 2.1, 2.2 and 3.1 hold and the maximum Regret for anytime but
non-adaptive learning
rate

delay is bounded by 𝜏. Assume further that (DDA) is run with the learning rate

𝜂𝑡 =
𝑅

𝐺
√
(1+ 2𝜏)(card(𝒮𝑡) + 𝜏 + 1)

.

Then, for any 𝑧 such that ℎ(𝑧) ≤ 𝑅2, the algorithm enjoys the regret bound

Reg𝑇(𝑧) ≤ 2𝑅𝐺
√
(𝑇 + 𝜏)(1+ 2𝜏).

Proof. We will in fact prove a stronger variant for which it is sufficient to
assume that 𝜏 is an upper bound on the maximum unavailability (denoted

by 𝜈 previously). Let Λ𝑡 = 𝐺2(1 + 2𝜏)(card(𝒮𝑡) + 𝜏 + 1) so that 𝜂𝑡 = 𝑅/
√
Λ𝑡 .

We choose a permutation 𝜋 that satisfies if Λ𝑠 < Λ𝑡 then 𝜋−1(𝑠) < 𝜋−1(𝑡)
(we just need to sort the time indices using Λ𝑡 and map to this new order).
From Assumption 3.1 and the definition of Λ𝑡 we know that 𝜋 is a faithful
permutation. Moreover, (Λ𝑡)𝑡 is non-decreasing along 𝜋: indeed, if this
were not the case—that is, if Λ𝜋(𝑡+1) < Λ𝜋(𝑡) for some 𝑡—we would have
𝑡 + 1 = 𝜋−1(𝜋(𝑡 + 1)) < 𝜋−1(𝜋(𝑡)) = 𝑡, a contradiction.

We now proceed to prove card(𝒰𝜋
𝑡 ) ≤ 𝜏, or equivalently card(𝒮𝜋(𝑡)) ≥

𝑡 − 1 − 𝜏. For this we show [𝑡]𝜋 ⊆ [card(𝒮𝜋(𝑡)) + 𝜏 + 1], which implies 𝑡 ≤
card(𝒮𝜋(𝑡)) + 𝜏 + 1 and thus the above inequality. Provided that Λ𝑡 is non-
decreasing along 𝜋, for 𝑠 ≤ 𝑡 we have card(𝒮𝜋(𝑠)) ≤ card(𝒮𝜋(𝑡)). Using the
bounded unavailability assumption we get card([𝜋(𝑠) − 1] \ 𝒮𝜋(𝑠)) ≤ 𝜏 so that
𝜋(𝑠) − 1 − card(𝒮𝜋(𝑠)) ≤ 𝜏 and subsequently 𝜋(𝑠) ≤ card(𝒮𝜋(𝑡)) + 𝜏 + 1. This
proves [𝑡]𝜋 ⊆ [card(𝒮𝜋(𝑡)) + 𝜏 + 1].

From card(𝒰𝜋
𝑡 ) ≤ 𝜏 it follows immediately that for all 𝑡

𝜆𝜋
𝑡 B ∥𝑔𝜋(𝑡)∥2∗ + 2∥𝑔𝜋(𝑡)∥∗

∑
𝑠∈𝒰𝜋

𝑡

∥𝑔𝑠 ∥∗ ≤ 𝐺2(1+ 2𝜏).

Along with 𝑡 ≤ card(𝒮𝜋(𝑡)) + 𝜏 + 1 we deduce

Λ𝜋
𝑡 ≤ 𝐺2(1+ 2𝜏)(card(𝒮𝜋(𝑡)) + 𝜏 + 1) = Λ𝜋(𝑡).

6 In this case, 𝒮𝑡 refers to the timestamps of the gradients that are used for the computation of 𝑥𝑡 ;
however, this does not necessarily contain all the gradients that the active agent 𝑖(𝑡) has received by
time 𝑡.
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Applying Theorem 3.1 and Lemma 2.6, we then obtain

Reg𝑇(𝑧) ≤
ℎ(𝑧)
𝜂𝜋(𝑇)

+ 1
2

𝑇∑
𝑡=1

𝜂𝜋(𝑡)

(
∥𝑔𝜋(𝑡)∥2∗ + 2∥𝑔𝜋(𝑡)∥∗

∑
𝑠∈𝒰𝜋

𝑡

∥𝑔𝑠 ∥∗

)
≤ 𝑅

√
Λ𝜋(𝑇) +

𝑅

2

𝑇∑
𝑡=1

𝜆𝜋
𝑡√

Λ𝜋(𝑡)

≤ 𝑅
√
Λ𝜋(𝑇) +

𝑅

2

𝑇∑
𝑡=1

𝜆𝜋
𝑡√
Λ𝜋
𝑡

≤ 𝑅
√
Λ𝜋(𝑇) + 𝑅

√
Λ𝜋
𝑇
≤ 2𝑅

√
Λ𝜋(𝑇).

Our assertion follows by noting that card(𝒮𝜋(𝑇)) ≤ 𝜋(𝑇) − 1 ≤ 𝑇 − 1. □

Proposition 3.5 shows that, even in the fully decentralized case where no
global counter is available, it is still possible to design implementable algorithms
that retain the optimal𝒪(

√
𝜏𝑇) regret bound. Our next step is to further improve

the algorithm so that it can adapt to both the data and the delay of the feedback.
The aforementioned characterization of delay will turn out to be crucial for this.

3.3.2 Adaptation to Delays in Distributed Systems

To design a learning rate policy that adapts to both data and delays, we haveOrdering by arrival at
each agent to find a way to estimate Λ𝑡 by only using local information of each agent.

To that end, define for each agent 𝑖 the individual ordering by arrival as a
permutation 𝜋𝑖 of [𝑇] such that the 𝑘-th received feedback of 𝑖 comes from
𝑥𝜋𝑖 (𝑘) (played by 𝑖 or another player), i.e., the 𝑘-th received feedback of 𝑖 is
𝑔𝜋𝑖 (𝑘) ∈ 𝜕ℓ𝜋𝑖 (𝑘)(𝑥𝜋𝑖 (𝑘)). With this notation, we can define the set of all feedback
received before 𝑔𝑡 by agent 𝑖; since 𝑔𝑡 is the 𝜋−1

𝑖
(𝑡)-th feedback, this set is defined

as ℱ 𝑖
𝑡 B {𝜋𝑖(1),𝜋𝑖(2), . . . ,𝜋𝑖(𝜋−1

𝑖
(𝑡) − 1)}.

Using these definitions and looking closely at the definition of the lag (3.7),Approximation of
cummulative lag we notice that:

1. The quantity
∑𝑡
𝑠=1∥𝑔𝜋(𝑠)∥2∗ cannot be known at instant 𝜋(𝑡) since the set

of gradients available at that time is 𝒮𝜋(𝑡). It is thus natural to consider
approximating it by

∑
𝑠∈𝒮𝜋(𝑡) ∥𝑔𝑠 ∥

2
∗ .

2. For each 𝑡 the quantity
∑
{𝑠,𝑙}∈𝒟𝜋

𝑡
∥𝑔𝑠 ∥∗∥𝑔𝑙 ∥∗, gathering the pairs of feed-

back of [𝑡]𝜋 satisfying the relation {𝑠 ∉ 𝒮𝑙 , 𝑙 ∉ 𝒮𝑠} (Proposition 3.3),
is generally unknown. Building on the works of Joulani et al. [139]
and McMahan and Streeter [188], this sum can be approximated by∑
𝑠∈𝒮𝜋(𝑡)(∥𝑔𝑠 ∥∗

∑
𝑙∈ℱ 𝑖(𝜋(𝑡))

𝑠 \𝒮𝑠 ∥𝑔𝑙 ∥∗). In words, for all 𝑠 ∈ 𝒮𝜋(𝑡), the worker
𝑖(𝜋(𝑡)) aggregates the feedback received before 𝑔𝑠 but was not used to
generate 𝑔𝑠 .

Putting these two points together, a reasonable surrogate for Λ𝜋
𝑡 would be

Γ𝜋(𝑡), where for all 𝑡 ∈ [𝑇], we define

Γ𝑡 =
∑
𝑠∈𝒮𝑡

©­­«∥𝑔𝑠 ∥2∗ + 2∥𝑔𝑠 ∥∗
∑

𝑙∈ℱ 𝑖(𝑡)
𝑠 \𝒮𝑠

∥𝑔𝑙 ∥∗
ª®®¬ .



3.3 tuning the learning rate in the presence of delays 45

To make Γ𝑡 a valid approximation, we would need 𝑠 to satisfy 𝑠 ∉ 𝒮𝑙 whenever
𝑙 ∈ ℱ 𝑖(𝑡)

𝑠 \ 𝒮𝑠 given the characterization of Proposition 3.3. In particular, this is
true if 𝑔𝑠 is not used to generate 𝑥𝑙 whenever 𝑔𝑙 arrives before 𝑔𝑠 at node 𝑖(𝑡).
This leads to the following mild assumption: when an agent receives a gradient
𝑔𝑡 , they must have already received all the feedback used to compute it.

Assumption 3.2. For every worker 𝑖 ∈ 𝒩 and all 𝑡 = 1, 2, . . . , we have 𝒮𝑡 ⊆ ℱ 𝑖
𝑡 . Assumption on

composition of
feedback elementsThe above assumption is notably verified in the following scenarios: (i) a

coordinator-worker scheme in which the transmission of the gradients occurs in
order, in first-come, first-serve manner; (ii) broadcasting of newly received and
computed gradient over a fixed communication network; (iii) whenever two
agents communicate their gradient pools are synchronized and the gradients are
exchanged in the order they become available to the agents. As a consequence,
Assumption 3.2 is satisfied in many relevant setups and can otherwise be
enforced by imposing iii) at the price of a slightly higher communication cost.

Now, since the active agent 𝑖(𝑡) at time 𝑡 knows 𝒮𝑡 (by definition) and ℱ 𝑖(𝑡)
𝑠

for 𝑠 ∈ 𝒮𝑡 (by construction), the quantity Γ𝑡 is indeed computable with purely
local information. The agents can thus run (DDA) with a learning rate of the
form 𝜂𝑡 = Θ(1/

√
Γ𝑡). The obtained algorithm, which we call AdaDelay-Dist, is

detailed in Algorithm 3.2; its principal regret guarantee is given below:

Theorem 3.6. Suppose that Assumptions 2.1, 2.2 and 3.2 hold and the maximum Regret for adaptive
learning ratedelay is bounded by 𝜏. Assume further that (DDA) is run with the learning rate

𝜂𝑡 =
𝑅√

Γ𝑡 + 𝛽
, (AdaDelay–Dist)

where 𝛽 > 0 is a positive constant. Then, for all 𝑧 such that ℎ(𝑧) ≤ 𝑅2, the algorithm
enjoys the regret bound

Reg𝑇(𝑧) ≤ 2𝑅
√
Λ𝑇 + 2𝑅

√
𝛽 + 𝑅√

𝛽
𝐺2(2𝜏 + 1)2.

The bound of Theorem 3.6 differs from the optimal data-dependent bound by
at most a time-independent constant, and this is achieved at the worst-case cost
of transmitting an additional scalar (i.e.,

∑
𝑠∈𝒮𝑡 ∥𝑔𝑠 ∥∗) per element of feedback

sent. Moreover, we should also stress that, similar to the learning rate in
Proposition 3.5, (AdaDelay–Dist) does not use the global time. Time indices are
present in Algorithm 3.2 only for ease of comprehension, notably to highlight the
fact that a worker knows (and keeps track) of the feedback used to produce past
points (i.e.,

∑
𝑠∈𝒮𝑡 ∥𝑔𝑠 ∥∗ for each point 𝑥𝑡 played by the worker). Finally, notice

that although the theorem assumes the gradients and delays to be bounded,
the algorithm itself does not require any knowledge of these bounds. A bad
estimate of these quantities would only cause the method to suffer from higher
regret at the first iterations.

We now proceed to prove Theorem 3.6. For this, let𝒜 𝑖
𝑡 B {{𝑠, 𝑙} : 𝑠 ∈ 𝒮𝑡 , 𝑙 ∈

ℱ 𝑖
𝑠 \ 𝒮𝑠} so that

Γ𝑡 =
∑
𝑠∈𝒮𝑡

©­­«∥𝑔𝑠 ∥2∗ + 2∥𝑔𝑠 ∥∗
∑

𝑙∈ℱ 𝑖(𝑡)
𝑠 \𝒮𝑠

∥𝑔𝑙 ∥∗
ª®®¬ =

∑
𝑠∈𝒮𝑡

∥𝑔𝑠 ∥2∗ + 2
∑

{𝑠,𝑙}∈𝒜 𝑖(𝑡)
𝑡

∥𝑔𝑠 ∥∗∥𝑔𝑙 ∥∗

(3.10)
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Algorithm 3.2: AdaDelay–Dist – from the point of view of agent 𝑖

1: Initialize: 𝒢𝑖 ← ∅, Γ𝑖 ← 𝛽 > 0
2: while not stopped do
3: asynchronously receive 𝑔𝑡 along with

∑
𝑠∈𝒮𝑡 ∥𝑔𝑠 ∥∗ from other agents

4: Γ𝑖 ← Γ𝑖 + ∥𝑔𝑡 ∥2∗ + 2∥𝑔𝑡 ∥∗(
∑
𝑠∈𝒢 𝑖 ∥𝑔𝑠 ∥∗ −

∑
𝑠∈𝒮𝑡 ∥𝑔𝑠 ∥∗)

5: 𝒢 𝑖 ← 𝒢 𝑖 ∪{𝑡}
6: Relay the information if necessary

7: asynchronously receive 𝑔𝑡 as a feedback
8: Retrieve

∑
𝑠∈𝒮𝑡 ∥𝑔𝑠 ∥∗ from the memory

9: Γ𝑖 ← Γ𝑖 + ∥𝑔𝑡 ∥2∗ + 2∥𝑔𝑡 ∥∗(
∑
𝑠∈𝒢 𝑖 ∥𝑔𝑠 ∥∗ −

∑
𝑠∈𝒮𝑡 ∥𝑔𝑠 ∥∗)

10: 𝒢 𝑖 ← 𝒢 𝑖 ∪{𝑡}
11: Send 𝑔𝑡 and

∑
𝑠∈𝒮𝑡 ∥𝑔𝑠 ∥∗ to other agents

12: if the agent becomes active, i.e., 𝑖(𝑡) = 𝑖 then
13: 𝒮𝑡 ← 𝒢𝑖
14: 𝜂𝑡 ← 𝑅/

√
Γ𝑖

15: Play 𝑥𝑡 = arg min𝑥∈𝒳
∑
𝑠∈𝒮𝑡 ⟨𝑔𝑠 , 𝑥⟩ +

ℎ(𝑥)
𝜂𝑡

16: end if
17: end while

To simplify the notation, we will write𝒜𝑡 = 𝒜 𝑖(𝑡)
𝑡 . In the following proposition,

we show that𝒜𝑡 can be characterized in the same way as𝒟𝜋
𝑡 .

Proposition 3.7. Let 𝜋 be a faithful permutation and let Assumption 3.2 hold. ThenAlternative
characterization of the

set𝒜𝑡 𝒜𝑡 = {{𝑠, 𝑙} ⊆ 𝒮𝑡 : 𝑠 and 𝑙 are not adjacent in 𝔊}

Proof. The proof is similar to that of Proposition 3.3. We prove

𝒜𝑡 = {{𝑠, 𝑙} ⊆ 𝒮𝑡 : 𝑠 ∉ 𝒮𝑙 , 𝑙 ∉ 𝒮𝑠}

by a two-way inclusion argument.

Inclusion (“⊆ ”). Let 𝑠 ∈ 𝒮𝑡 and 𝑙 ∈ ℱ 𝑖(𝑡)
𝑠 \𝒮𝑠 . The inclusion 𝑙 ∈ ℱ 𝑖(𝑡)

𝑠 means that
𝑔𝑙 arrives earlier than 𝑔𝑠 on node 𝑖(𝑡). As all the available gradients are used
when playing 𝑥𝑡 and 𝑠 ∈ 𝒮𝑡 , we deduce 𝑙 ∈ 𝒮𝑡 . On the other hand, 𝑙 ∈ ℱ 𝑖(𝑡)

𝑠

also implies 𝑠 ∉ ℱ 𝑖(𝑡)
𝑙

. Using Assumption 3.2 we know that 𝒮𝑙 ⊆ ℱ 𝑖(𝑡)
𝑙

, and
consequently 𝑠 ∉ 𝒮𝑙 .
Containment (“⊇ ”) Let {𝑠, 𝑙} ⊆ 𝒮𝑡 such that 𝑠 ∉ 𝒮𝑙 and 𝑙 ∉ 𝒮𝑠 . Since either
𝑙 ∈ ℱ 𝑖(𝑡)

𝑠 or 𝑠 ∈ ℱ 𝑖(𝑡)
𝑙

(but not both) we conclude immediately {𝑠, 𝑙} ∈ 𝒜𝑡 . □

Thanks to Proposition 3.3 and Proposition 3.7, comparing 𝒟𝜋
𝑡 with 𝒜𝜋(𝑡)

amounts to comparing [𝑡]𝜋 with 𝒮𝜋(𝑡). Using the bounded delay assumption,
we can prove the following properties on a faithful permutation.

Proposition 3.8. Let 𝜋 be a faithful permutation and assume that the maximum delayProperties of a faithful
permutation is bounded by 𝜏. We have

(a) [𝑡]𝜋 ⊆ [𝜋(𝑡) + 𝜏].

(b) [𝑡]𝜋 \ 𝒮𝜋(𝑡) ⊆ {𝜋(𝑡) − 𝜏, ...,𝜋(𝑡) + 𝜏}.

(c) |𝜋(𝑡) − 𝑡 | ≤ 𝜏.
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Proof. (a) Let 𝑠, 𝑡 ∈ [𝑇] such that 𝑠 ≤ 𝑡. We claim that 𝜋(𝑠) ≤ 𝜋(𝑡) + 𝜏.
Assume the opposite, that is, 𝜋(𝑠) > 𝜋(𝑡) + 𝜏. Then, from the bounded
delay assumption, 𝜋(𝑡) ∈ 𝒮𝜋(𝑠). 𝜋 being a faithful permutation, this implies
𝑡 = 𝜋−1(𝜋(𝑡)) < 𝜋−1(𝜋(𝑠)) = 𝑠, a contradiction, and hence the claim. To prove
the inclusion, note that [𝑡]𝜋 = {𝜋(1), . . . ,𝜋(𝑡)} = {𝜋(𝑠) : 𝑠 ≤ 𝑡} and we thus
have [𝑡]𝜋 ⊆ [𝜋(𝑡) + 𝜏]with the aforementioned claim.

(b) This is immediate from (a) and the inclusion [𝜋(𝑡) − 𝜏 − 1] ⊆ 𝒮𝜋(𝑡) which
holds since the maximum delay is assumed to be bounded by 𝜏.

(c) Fix 𝑡 ∈ [𝑇]. For all 𝑠 ≤ 𝑡, we have 𝜋(𝑠) ≤ 𝜋(𝑡) + 𝜏 and therefore
max𝑠≤𝑡 𝜋(𝑠) ≤ 𝜋(𝑡) + 𝜏. 𝜋 being a permutation of [𝑇], it holds max𝑠≤𝑡 𝜋(𝑠) ≥ 𝑡
and subsequently 𝑡 ≤ 𝜋(𝑡) + 𝜏. Similarly, we also have 𝜋(𝑡) − 𝜏 ≤ min𝑡≤𝑠 𝜋(𝑠)
and min𝑡≤𝑠 𝜋(𝑠) ≤ 𝑡. This implies 𝜋(𝑡) − 𝜏 ≤ 𝑡. Combining the two we conclude
|𝜋(𝑡) − 𝑡 | ≤ 𝜏. □

Interestingly, Proposition 3.8(c) shows that when the delays are bounded
by 𝜏, a faithful permutation can at most move an element 𝜏 steps away from
its original position. We are now ready to provide the complete proof of
Theorem 3.6.

Proof of Theorem 3.6. Let Λ𝑡 = Γ𝑡 + 𝛽 so that 𝜂𝑡 = 𝑅/
√
Λ𝑡 and 𝜋 be a permutation

such that (i) if Λ𝑠 < Λ𝑡 then 𝜋−1(𝑠) < 𝜋−1(𝑡); (ii) if Λ𝑠 = Λ𝑡 and 𝑠 ∈ 𝒮𝑡 then
𝜋−1(𝑠) < 𝜋−1(𝑡). (Λ𝑡)𝑡 is obviously non-decreasing along 𝜋 (see proof of
Proposition 3.5). We claim that this is a faithful permutation. For this, let
𝑠 ∈ 𝒮𝑡 and we would like to show 𝜋−1(𝑠) < 𝜋−1(𝑡). By Assumption 3.2 we have
𝒮𝑠 ⊆ ℱ 𝑖(𝑡)

𝑠 and from 𝑠 ∈ 𝒮𝑡 it holds ℱ 𝑖(𝑡)
𝑠 ⊆ 𝒮𝑡 ; accordingly, 𝒮𝑠 ⊆ 𝒮𝑡 . Invoking

Proposition 3.7 we deduce 𝒜𝑠 ⊆ 𝒜𝑡 . Using (3.10) we then get Λ𝑠 ≤ Λ𝑡 . This
inequality along with 𝑠 ∈ 𝒮𝑡 imply 𝜋−1(𝑠) < 𝜋−1(𝑡).

In the remainder of the proof, we will use the notation Γ𝑡 = Λ𝑇 = Λ𝜋
𝑇

for
𝑡 > 𝑇. Let us prove that Γ𝜋(𝑡)+2𝜏+1 ≥ Λ𝜋

𝑡 for 𝑡 ∈ [𝑇]. This is the case when
𝜋(𝑡) + 2𝜏 + 1 > 𝑇 by the previous definition. Otherwise, with (3.7), (3.10),
Propositions 3.3 and 3.7, this is equivalent to proving that [𝑡]𝜋 ⊆ 𝒮𝜋(𝑡)+2𝜏+1. The
inclusion holds since on one hand, by Proposition 3.8(a) we have [𝑡]𝜋 ⊆ [𝜋(𝑡) + 𝜏]
and on the other hand [𝜋(𝑡) + 𝜏] ⊆ 𝒮𝜋(𝑡)+2𝜏+1 by the definition of maximum
delay.

As we have proved that 𝜋 is a faithful permutation, it holds 𝒮𝜋(𝑡) ⊆ [𝑡]𝜋. The
above hence also implies 𝒮𝜋(𝑡) ⊆ 𝒮𝜋(𝑡)+2𝜏+1, and accordingly, Λ𝜋(𝑡)+2𝜏+1 ≥ Λ𝜋(𝑡).
The inequality is still true when 𝜋(𝑡) + 2𝜏 + 1 > 𝑇 as Γ𝑡 ≤ Λ𝑇 always holds by
Propositions 3.3 and 3.7 and 𝒮𝑡 ⊆ [𝑇]. Applying Theorem 3.1 gives

Reg𝑇(𝑧) ≤
ℎ(𝑧)
𝜂𝜋(𝑇)

+ 1
2

𝑇∑
𝑡=1

𝜂𝜋(𝑡)

(
∥𝑔𝜋(𝑡)∥2∗ + 2∥𝑔𝜋(𝑡)∥∗

∑
𝑠∈𝒰𝜋

𝑡

∥𝑔𝑠 ∥∗

)
≤ 𝑅

√
Λ𝜋(𝑇) +

𝑅

2

𝑇∑
𝑡=1

𝜆𝜋
𝑡√

Λ𝜋(𝑡)

= 𝑅

√
Λ𝜋(𝑇) +

𝑅

2

𝑇∑
𝑡=1

©­­«
1√

Λ𝜋(𝑡)+2𝜏+1

+ 1√
Λ𝜋(𝑡)

− 1√
Λ𝜋(𝑡)+2𝜏+1

ª®®¬𝜆𝜋
𝑡 ,
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where as in the proof of Proposition 3.5 we write

𝜆𝜋
𝑡 = ∥𝑔𝜋(𝑡)∥2∗ + 2∥𝑔𝜋(𝑡)∥∗

∑
𝑠∈𝒰𝜋

𝑡

∥𝑔𝑠 ∥∗.

From Proposition 3.8(b) we know that [𝑡]𝜋 \𝒮𝜋(𝑡) ⊆ {𝜋(𝑡) − 𝜏, ...,𝜋(𝑡) + 𝜏}. Since
[𝑡 − 1]𝜋 = [𝑡]𝜋 \ {𝜋(𝑡)} and 𝜋(𝑡) ∉ 𝒮𝜋(𝑡), we deduce that card(𝒰𝜋

𝑡 ) ≤ 2𝜏 and

hence 𝜆𝜋
𝑡 ≤ 𝐺2(1 + 4𝜏). With the non-negativity of 1/

√
Λ𝜋(𝑡) − 1/

√
Λ𝜋(𝑡)+2𝜏+1

and the fact that Λ𝜋
𝑡 ≤ Γ𝜋(𝑡)+2𝜏+1 < Λ𝜋(𝑡)+2𝜏+1 we then get

Reg𝑇(𝑧) ≤ 𝑅
√
Λ𝜋(𝑇) +

𝑅

2

𝑇∑
𝑡=1

𝜆𝜋
𝑡√
Λ𝜋
𝑡

+ 𝑅2

𝑇∑
𝑡=1

©­­«
1√
Λ𝜋(𝑡)

− 1√
Λ𝜋(𝑡)+2𝜏+1

ª®®¬𝐺2(1+ 4𝜏)

≤ 𝑅
√
Λ𝜋(𝑇) + 𝑅

√
Λ𝜋
𝑇
+ 𝑅2

𝑇∑
𝑡=1

©­­«
1√
Λ𝑡

− 1√
Λ𝑡+2𝜏+1

ª®®¬𝐺2(1+ 4𝜏)

≤ 2𝑅
√
Λ𝑇 + 𝛽 +

𝑅

2
√
𝛽
(2𝜏 + 1)(4𝜏 + 1)𝐺2

≤ 2𝑅
√
Λ𝑇 + 2𝑅

√
𝛽 + 𝑅√

𝛽
(2𝜏 + 1)2𝐺2

The second inequality uses Lemma 2.6 and reorders the timestamps of the sum;
the third inequality upper bounds both Λ𝜋(𝑇) and Λ𝜋

𝑇
= Λ𝑇 by Λ𝑇 + 𝛽 for the

first term, and uses telescoping and lower bounds Λ𝑡 by 𝛽 for the second term;
in the last inequality we employ the fact that

√
𝑎 + 𝑏 ≤

√
𝑎 +
√
𝑏 for all 𝑎, 𝑏 ≥ 0.

This concludes the proof. □

3.3.3 Adaptation to Unbounded Delays in the Single-Agent Setting

In this part, we will show that when there is only one agent (i.e., 𝑁 = 1), we can
extend the ideas developed in the previous section to cope even with unbounded
delays. In fact, in this situation the agent knows exactly the delay of each
feedback and how each iterate is computed, so they can tune their learning rate
accordingly. This is in sharp contrast with the decentralized case in which the
agents are in general unable to estimate the number of actions that have been
played in the network but for which they have not received the corresponding
feedback (i.e., card(𝒰𝑡)).

To put all this in motion, let 𝐺 be an upper bound on the norms of gradientsApproximation of
cumulative lag

(single-agent and
unbounded delay)

that we assume to be known by the agent, and let ℱ𝑡 = ℱ 1
𝑡 denotes the set

of feedback (represented by their timestamps) received before 𝑔𝑡 . Our goal
is to provide an upper bound of Λ𝑡 = Λid

𝑡 that is as tight as possible. As in
Section 3.3.2, this is done in two steps (we write below𝒟𝑡 = 𝒟id

𝑡 for simplicity)

1. The quantity
∑𝑡
𝑠=1∥𝑔𝑠 ∥2∗ can be approximated by

∑
𝑠∈𝒮𝑡 ∥𝑔𝑠 ∥2∗ . Clearly,

𝑡∑
𝑠=1
∥𝑔𝑠 ∥2∗ ≤

∑
𝑠∈𝒮𝑡

∥𝑔𝑠 ∥2∗ +𝐺2(card(𝒰𝑡) + 1);
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2. A proxy for
∑
{𝑠,𝑙}∈𝒟𝑡

∥𝑔𝑠 ∥∗∥𝑔𝑙 ∥∗, is
∑
𝑠∈𝒮𝑡 (∥𝑔𝑠 ∥∗

∑
𝑙∈ℱ𝑠\𝒮𝑠 ∥𝑔𝑙 ∥∗). Thanks to

Proposition 3.3 and Proposition 3.7, we have indeed∑
{𝑠,𝑙}∈𝒟𝑡

∥𝑔𝑠 ∥∗∥𝑔𝑙 ∥∗ ≤
∑
𝑠∈𝒮𝑡

(
∥𝑔𝑠 ∥∗

∑
𝑙∈ℱ𝑠\𝒮𝑠

∥𝑔𝑙 ∥∗
)
+𝐺2(card(𝒟𝑡) − card(𝒜𝑡)).

In summary, we have shown that Λ𝑡 ≤ Γ𝑡 + 𝐺2𝜏̃𝑡 where 𝜏̃𝑡 B 𝑡 + 2𝐷𝑡 −
card(𝒮𝑡) − 2 card(𝒜𝑡). This has the following immediate consequences.

Theorem 3.9. Suppose that Assumptions 2.1 and 2.2 hold and the sequence of active Regret for adaptive
learning rate
(single-agent and
unbounded delay)

feedback is non-decreasing, i.e., 𝒮𝑡 ⊆ 𝒮𝑡+1. Assume further that (DDA) is run with
the learning rate sequence

𝜂𝑡 = min

(
𝜂𝑡−1, 𝑅√

Γ𝑡 +𝐺2𝜏̃𝑡

)
(AdaDelay+)

where 𝜏̃𝑡 = 𝑡 + 2𝐷𝑡 − card(𝒮𝑡) − 2 card(𝒜𝑡). Then, for any 𝑧 such that ℎ(𝑧) ≤ 𝑅2,
the algorithm enjoys the regret bound

Reg𝑇(𝑧) ≤ 2𝑅 max
1≤𝑡≤𝑇

√
Γ𝑡 +𝐺2𝜏̃𝑡 ≤ 2𝑅min

(
max
1≤𝑡≤𝑇

√
Λ𝑡 +𝐺2𝜏̃𝑡 ,𝐺

√
𝑇 + 2𝐷𝑇

)
.

Proof. Let Λ𝑡 = 𝑅2/𝜂2
𝑡 so that 𝜂𝑡 = 𝑅/

√
Λ𝑡 . It holds that Λ𝑡 ≥ Γ𝑡 + 𝜏̃𝑡𝐺2 ≥ Λ𝑡 .

The first inequality comes from the definition of 𝜂𝑡 and the second inequality
was shown just above. Applying Theorem 3.1 with 𝜋 = id and Lemma 2.6
yields

Reg𝑇(𝑧) ≤
ℎ(𝑧)
𝜂𝑇
+ 1

2

𝑇∑
𝑡=1

𝜂𝑡

(
∥𝑔𝑡 ∥2∗ + 2∥𝑔𝑡 ∥∗

∑
𝑠∈𝒰𝑡

∥𝑔𝑠 ∥∗

)
≤ 𝑅

√
Λ𝑇 +

𝑅

2

𝑇∑
𝑡=1

1√
Λ𝑡

(
∥𝑔𝑡 ∥2∗ + 2∥𝑔𝑡 ∥∗

∑
𝑠∈𝒰𝑡

∥𝑔𝑠 ∥∗

)
≤ 𝑅

√
Λ𝑇 + 𝑅

√
Λ𝑇 ≤ 2𝑅

√
Λ𝑇 .

Since Λ𝑇 = max1≤𝑡≤𝑇 Γ𝑡 + 𝜏̃𝑡𝐺2, we have already proved the first inequality. For
the second inequality, we use both Γ𝑡 ≤ Λ𝑡 and Γ𝑡 ≤ (card(𝒮𝑡) + 2 card(𝒜𝑡))𝐺2

(cf. (3.10)). □

We refer to this new adaptive scheme as AdaDelay+ and we provide one
possible pseudo-code implementation as Algorithm 3.3. Notice that we do
not use directly 𝜂𝑡 = 𝑅/

√
Γ𝑡 +𝐺2𝜏̃𝑡 since we want the learning rate to be

non-increasing.
According to Theorem 3.9, AdaDelay+ enjoys a regret bound that is both data-

and delay-dependent, all the while bypassing the bounded delay assumption.
To provide a better comparison between the bounds of Theorems 3.6 and 3.9, we
show below that 𝜏̃𝑡 can be further bounded from above if delays are bounded
by a constant.

Proposition 3.10. Assume that the maximum delay is bounded by 𝜏. Then 𝜏̃𝑡 ≤
2𝜏2 + 3𝜏 + 1.

Proof. To begin, we have 𝑡 − card(𝒮𝑡) ≤ 𝜏 + 1 as [𝑡 − 𝜏 − 1] ⊆ 𝒮𝑡 . Next, let us
consider a pair {𝑠, 𝑙} ∈ 𝒟𝑡 \ 𝒜𝑡 . From Propositions 3.3 and 3.7 we know that
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Algorithm 3.3: AdaDelay+
1: Initialize: 𝒢 ← ∅, 𝑡 ← 1, 𝜏̃← 0, Γ← 0.
2: while not stopped do
3: if receive feedback 𝑔𝑡 then
4: 𝜏̃← 𝜏̃ − 1− 2(card(𝒢) − card(𝒮𝑡))
5: Γ← Γ+ ∥𝑔𝑡 ∥2∗ + 2∥𝑔𝑡 ∥∗(

∑
𝑠∈𝒢 ∥𝑔𝑠 ∥∗ −

∑
𝑠∈𝒮𝑡 ∥𝑔𝑠 ∥∗)

6: 𝒢 ← 𝒢∪{𝑡}
7: else if requested to play an action 𝑥𝑡 then
8: 𝒮𝑡 ← 𝒢
9: 𝜏̃← 𝜏̃ + 1+ 2((𝑡 − 1) − card(𝒮𝑡))

10: Λ← max(Γ,Γ+𝐺2𝜏̃)
11: 𝑥𝑡 ← arg min𝑥∈𝒳

∑
𝑠∈𝒮𝑡 ⟨𝑔𝑠 , 𝑥⟩ + (

√
Λ/𝑅)ℎ(𝑥)

12: 𝑡 ← 𝑡 + 1
13: end if
14: end while

{𝑠, 𝑙} ⊈ 𝒮𝑡 , so we have either 𝑠 ∈ {𝑡 − 𝜏, ..., 𝑡} or 𝑙 ∈ {𝑡 − 𝜏, ..., 𝑡}. Without loss of
generality, we suppose 𝑠 < 𝑙, then 𝑙 ∈ {𝑡 − 𝜏, ..., 𝑡}. By Proposition 3.3 we have
𝑠 ∉ 𝒮𝑙 , and thus 𝑠 ∈ {𝑙 − 𝜏, ..., 𝑙 − 1}. This shows card(𝒟𝑡 \ 𝒜𝑡) ≤ 𝜏(𝜏 + 1). We
can therefore conclude 𝜏̃𝑡 ≤ 2𝜏(𝜏 + 1) + 𝜏 + 1 = 2𝜏2 + 3𝜏 + 1. □

Theorem 3.9 along with Proposition 3.10 shows that the regret bound of
AdaDelay+ achieves the best of both worlds:

• When the delays are bounded by 𝜏, we have 𝜏̃ ≤ 2𝜏2 + 3𝜏 + 1, so this
worst-case bound still outperforms (by an additive constant) the data-
dependent bound of Theorem 3.6. In the same setting, Joulani et al. [139]
also proposed an adaptive algorithm based on FTRL-Prox with a regret
bound of the same order.

• It also achieves the optimal square-root dependence on the cumulative
unavailability 𝐷𝑇 no matter whether the delays are bounded or not.

In summary, our analysis suggests that AdaDelay+ could offer improved
performance under various conditions, relative to existing methods for the
single-agent setup. This potential advantage underscores the value of the
insights we’ve presented for this general framework.

3.4 multi-agent online learning for minimization of global losses

Thus far in this chapter, our analysis has focused on the agents’ individual losses
(ℓ𝑡 being the loss of the active agent 𝑖 = 𝑖(𝑡)), and thus leads to regret bounds that
characterize how much the whole network actually pays. While these bounds have
an interest, networks of agents may also want to monitor global losses over the
agents. This is typically the case of distributed online optimization, where the
agents cooperate to solve a time-varying global problem.

In this section, we demonstrate the flexibility of our framework by showing
that the aforementioned algorithms and analyses can be easily extended to
this setup. This, on one hand, bridges the gap between our work and the
broad corpus of literature on distributed online optimization [123, 244, 284],
and, on the other hand, provides the occasion to directly address the case
of open networks where agents can join and depart the optimization process
freely [87, 119, 120].
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3.4.1 From Effective Regret to Collective Regret

In distributed optimization, it is often assumed that multiple predictions are Anonymous and
simultaneously active
agents

made in a same time slot. Formally, we denote by 𝑁𝑡 the number of active
agents at time 𝑡 and identify these agents from 1 to 𝑁𝑡 instead of identifying
each agent independently. This notation clarifies the fact that the agents are
anonymous with respect to the algorithm and each other. The functions and the
played points at time 𝑡 are respectively denoted by ℓ 1

𝑡 , . . . , ℓ𝑁𝑡𝑡 and 𝑥1
𝑡 , . . . , 𝑥

𝑁𝑡
𝑡 .

By directly extending the regret defined in Definition 2.1 to our current setup, Effective regret
we obtain the following:

Regℓ𝑇(𝑧) =
𝑇∑
𝑡=1

𝑁𝑡∑
𝑖=1

ℓ 𝑖𝑡 (𝑥 𝑖𝑡) −
𝑇∑
𝑡=1

𝑁𝑡∑
𝑖=1

ℓ 𝑖𝑡 (𝑧), (Effective Regret)

where the superscript ℓ means that the regret sums over the local costs of the
learners. Each agent only pays for the function it serves and the ultimate goal
for a single agent is to perform well on the functions that it encounters. As an
example, on-device machine learning aims to equip users’ personal devices
with intelligent machine features such as conversational understanding and
image recognition, for the purposes of providing a satisfying user experience to
each individual [251, 274].

In contrast, we can also define global loss functions ℓ𝑡 =
∑𝑁𝑡
𝑖=1 ℓ

𝑖
𝑡 at every Collective regret

instant 𝑡 and evaluate each active agents’ action with respect to this function.
This leads to the following regret formulation:

Reg𝑔
𝑇
(𝑧) =

𝑇∑
𝑡=1

𝑁𝑡∑
𝑖=1

ℓ 𝑖𝑡 (𝑥1
𝑡 ) −

𝑇∑
𝑡=1

𝑁𝑡∑
𝑖=1

ℓ 𝑖𝑡 (𝑧), (Collective Regret)

where, instead of evaluating ℓ 𝑖𝑡 at the point 𝑥 𝑖𝑡 played by learner 𝑖, we now
evaluate all the ℓ 𝑖𝑡 at a single point 𝑥1

𝑡 independently of the worker 𝑖. The choice
of the reference agent can vary with time; it is however possible to fix its index to 1
in advance given that the attribution of the worker indices at each 𝑡 is arbitrary.

When the number of agents are fixed, collective regret reduces to the usual
regret formulation employed in the distributed online optimization literature
[123, 244, 284]. This performance measure suits better the applications related
to wireless sensor networks such as distributed estimation [227] and data fusion
[202, 230]. In fact, sensor networks are mostly deployed for a common objective
shared by all the sensors. To attain this objective, the sensor nodes may need to
cooperate to track some unknown variable or to collaborate to learn a global
assessment of the situation. The collective regret then measures each agent’s
performance with respect to this collective mission, hence the name thereof.

To relate these two different measures, we introduce a stronger version of Lipschitz continuity
of the loss functionsAssumption 2.2 that places constraints on both the loss functions and the

feedback, written as 𝑔 𝑖𝑡 ∈ 𝜕ℓ 𝑖𝑡 (𝑥 𝑖𝑡).

Assumption 3.3. There exists 𝐺 > 0 such that for all 𝑡 ∈ N, 𝑖 ∈ [𝑁𝑡], ℓ 𝑖𝑡 is
𝐺-Lipschitz with respect to the norm ∥·∥, and ∥𝑔 𝑖𝑡 ∥∗ ≤ 𝐺.

Remark 3.4. It is obvious that the boundedness of subgradients would be implied
by the Lipschitz continuity of losses if ℓ 𝑖𝑡 were defined over the entire space R𝑑.
However, provided that we have defined the loss functions as functions on 𝒳,
the subgradients do not need to be bounded even if the functions are Lipschitz.
This is why we state the two conditions separately in the assumption.
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Under this strengthened assumption, we have the following relation betweenInequality relating
collective regret to

effective regret
Reg𝑔

𝑇
and Regℓ

𝑇
.

Lemma 3.11. Suppose that Assumption 3.3 holds. Then,

Reg𝑔
𝑇
(𝑧) ≤ Regℓ𝑇(𝑧) +

𝑇∑
𝑡=1

𝑁𝑡∑
𝑖=1

𝐺∥𝑥 𝑖𝑡 − 𝑥1
𝑡 ∥.

Proof. This is immediate from the definition of the regrets and the Lipschitz
continuity of the losses. □

Finally, let us highlight that our formulation also admits the additionalA note on open
multi-agent systems flexibility of involving different sets and numbers of agents at each iteration.

This is of particularly interest for open multi-agent systems where the agents
can join and leave the system at any moment [87, 119, 120]. Some examples
of such systems include volunteer computing [70], vehicular ad-hoc networks
[92], and elastic distributed training of machine learning models [203]. For the
sake of illustration, we conduct experiments for this setup in Section 3.5.3.

3.4.2 Decentralized Delayed Dual Averaging

Thanks to Lemma 3.11, a bound on the effective regret can be directly translated
into one on the collective regret as long as the distances between the agents’
predictions for a same moment can be controlled. To illustrate this idea, we
adapt (DDA) to the current setup and bound its induced collective regret for
appropriately chosen learning rates. Let us first slightly extend the previously
introduced notations and concepts to the current framework: The set of available
gradients at time 𝑡 for a worker 𝑖, 𝒮 𝑖𝑡 , now represents the set of the (learner,
time) indices of the feedback available for playing 𝑥 𝑖𝑡 so that if (𝑗, 𝑠) ∈ 𝒮 𝑖𝑡 then
necessarily 𝑠 ∈ [𝑡 − 1]. The maximum delay 𝜏 is to be understood with respect
to the global time index 𝑡. That is, for every 𝑠 ∈ [𝑡 − 𝜏− 1] and 𝑗 ∈ [𝑁𝑠]we must
have (𝑗, 𝑠) ∈ 𝒮 𝑖𝑡 . We also introduce the quadratic mean of number of active

agents by 𝑁 =

√
(1/𝑇)∑𝑇

𝑡=1 𝑁
2
𝑡 .

With these notations, the update of decentralized delayed dual averaging (D-DDA)Decentralized delayed
dual averaging writes at time 𝑡 for an agent 𝑖 as7

𝑥 𝑖𝑡 = arg min
𝑥∈𝒳

∑
(𝑗,𝑠)∈𝒮 𝑖𝑡

⟨𝑔 𝑗𝑠 , 𝑥⟩ +
ℎ(𝑥)
𝜂𝑖𝑡

. (D-DDA)

In order to understand the mechanics of collective regret in our setup, we
first consider the case of a fixed learning rate 𝜂𝑖𝑡 ≡ 𝜂. To bound the collective
regret, three elements come into play.

• Effective regret: For this part, we change the time indices to have exactly
one point played at each time. We define 𝑀𝑡 =

∑𝑡
𝑠=1 𝑁𝑠 and 𝑀 = 𝑀𝑇 ;

then, the index of worker 𝑖 at time 𝑡 is changed to 𝜙(𝑖, 𝑡) = 𝑀𝑡−1 + 𝑖 (so

7 It is worth noticing that the original (DDA) is already a decentralized algorithm. We add the term
“decentralized” here to emphasize the similarity of the underlying framework to that of the more
classic setup of decentralized online optimization.
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that only one action is performed at that time). This maps our problem to
the setting of Theorem 3.1 with 𝜂𝑡 ≡ 𝜂. Taking 𝜋 = id, we then get

Regℓ𝑇(𝑧) ≤
ℎ(𝑧)
𝜂
+ 1

2

𝑀∑
𝑚=1

𝜂
©­«∥𝑔′𝑚 ∥2∗ + 2∥𝑔′𝑚 ∥∗

∑
𝑙∈[𝑚−1]\𝒮′𝑚

∥𝑔′𝑙 ∥∗
ª®¬ (3.11)

where 𝑔′
𝜙(𝑖,𝑡) = 𝑔 𝑖𝑡 and 𝒮′

𝜙(𝑖,𝑡) = {𝜙(𝑗, 𝑠) : (𝑗, 𝑠) ∈ 𝒮 𝑖𝑡 }.

• Maximum delay 𝜏: Bounding from above the number of unavailable
gradients for a (learner, time) pair and translating this condition to a
bound on card([𝑚 − 1] \ 𝒮′𝑚), we get

Regℓ𝑇(𝑧) ≤
ℎ(𝑧)
𝜂
+ 𝜂(𝜏 + 1)𝐺2

𝑇∑
𝑡=1

𝑁2
𝑡 . (3.12)

• Non-expansiveness of the mirror map (Lemma A.4): This part enables us
to go from the effective regret to the collective regret using Lemma 3.11.

Putting together these points we manage to show the following bound on the
collective regret.

Theorem 3.12. Suppose that Assumptions 2.1 and 3.3 hold and that the maximum Regret for D-DDA
with constant
learning rate

delay is bounded by 𝜏. Then, for any 𝑧 such that ℎ(𝑧) ≤ 𝑅2, running (D-DDA) with
constant learning rate

𝜂𝑖𝑡 ≡ 𝜂 =
𝑅

𝐺𝑁
√
(2𝜏 + 1)𝑇

Then, for any 𝑧 such that ℎ(𝑧) ≤ 𝑅2, guarantees the following upper bound on the
collective regret

Reg𝑔
𝑇
(𝑧) ≤ 2𝑅𝐺𝑁

√
(2𝜏 + 1)𝑇 = 𝒪(𝑁

√
𝜏𝑇).

Proof. Let us start with (3.11). Thanks to the boundedness of the feedback
(Assumption 3.3), we have

Regℓ𝑇(𝑧) ≤
ℎ(𝑧)
𝜂
+ 1

2

𝑀∑
𝑚=1

𝜂
©­«∥𝑔′𝑚 ∥2∗ + 2∥𝑔′𝑚 ∥∗

∑
𝑙∈[𝑚−1]\𝒮′𝑚

∥𝑔′𝑙 ∥∗
ª®¬

≤ ℎ(𝑧)
𝜂
+
𝜂

2

𝑀∑
𝑚=1
(1+ 2 card([𝑚 − 1] \ 𝒮′𝑚))𝐺2. (3.13)

To bound card([𝑚 − 1] \ 𝒮′𝑚), we write 𝑚 = 𝜙(𝑖, 𝑡). On one hand, the subgradi-
ents

{𝑔 𝑖−1
𝑡 , . . . , 𝑔1

𝑡 } = {𝑔′𝑚−1, . . . , 𝑔′𝑚−𝑖+1}

of instant 𝑡 are necessarily unavailable when making the prediction 𝑥 𝑖𝑡 = 𝑥′𝑚 .
On the other hand, the maximum delay assumption guarantees that all the
subgradients received before time 𝑡 − 𝜏 are used in the computation of 𝑥 𝑖𝑡 . This
leads to the inequality

card([𝑚 − 1] \ 𝒮′𝑚) ≤ 𝑖 − 1+
𝜏∑
𝑠=1

𝑁𝑡−𝑠 ,
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with the convention 𝑁𝑙 = 0 if 𝑙 ≤ 0. Subsequently, for any 𝑡 ∈ [𝑇],

𝑀𝑡∑
𝑚=𝑀𝑡−1+1

card([𝑚 − 1] \ 𝒮′𝑚) ≤
𝑁𝑡(𝑁𝑡 − 1)

2 +𝑁𝑡

𝜏∑
𝑠=1

𝑁𝑡−𝑠

≤ (𝜏 + 1)
2 𝑁2

𝑡 +
1
2

𝜏∑
𝑠=1

𝑁2
𝑡−𝑠 . (3.14)

In the above, we used Young’s inequality to bound the second term in the
second inequality. Substituting (3.14) in (3.13) then yields

Regℓ𝑇(𝑧) ≤
ℎ(𝑧)
𝜂
+ 𝜂(𝜏 + 1)𝐺2

𝑇∑
𝑡=1

𝑁2
𝑡 . (3.15)

At this point, we have proved an upper bound on the effective regret. To go
from this to the collective regret, we need to bound the difference ∥𝑥 𝑖𝑡 − 𝑥

𝑗

𝑡 ∥ for
all 𝑡 ∈ [𝑇] and 𝑖, 𝑗 ∈ [𝑁𝑡]. To that end, we write 𝑥 𝑖𝑡 = 𝑄(−𝑦 𝑖𝑡) and 𝑥

𝑗

𝑡 = 𝑄(−𝑦 𝑗𝑡 )
where 𝑦 𝑖𝑡 = 𝜂

∑
(𝑘,𝑠)∈𝒮 𝑖𝑡

𝑔𝑘𝑠 and 𝑦
𝑗

𝑡 = 𝜂
∑
(𝑘,𝑠)∈𝒮 𝑗𝑡

𝑔𝑘𝑠 . From the maximum delay

assumption we know that 𝒮 𝑖𝑡 and 𝒮 𝑗𝑡 differ by at most
∑𝜏
𝑠=1 𝑁𝑡−𝑠 samples. Using

the boundedness of the feedback and the non-expansiveness of the mirror map
(Lemma A.4), we obtain

𝑁𝑡∑
𝑖=1

𝐺∥𝑥 𝑖𝑡 − 𝑥
𝑗

𝑡 ∥ ≤ 𝜂𝐺2𝑁𝑡

𝜏∑
𝑠=1

𝑁𝑡−𝑠 ≤ 𝜂𝐺2

(
𝜏𝑁2

𝑡

2 + 1
2

𝜏∑
𝑠=1

𝑁2
𝑡−𝑠

)
. (3.16)

With (3.15) and (3.16), invoking Lemma 3.11 gives

Reg𝑔
𝑇
(𝑧) ≤ ℎ(𝑧)

𝜂
+ 𝜂(2𝜏 + 1)𝐺2

𝑇∑
𝑡=1

𝑁2
𝑡 .

The theorem follows immediately. □

Interestingly, our regret bound features the quadratic mean of number of
active agents 𝑁 . If we fix the number of total agents 𝑀 across 𝑇 rounds, then a
larger value of 𝑁 indicates a more important variation in the number of active
agents across iterations. The fact that this causes a larger regret is expected
because the algorithm would need more time to accommodate the change in
such scenarios.

To provide a comparison with the existing literature, let us now zoom in onThe case of fixed
communication

network
the case of a fixed communication network of 𝑁𝑡 ≡ 𝑁 agents over an underlying
graph ℭ. Theorem 3.12 yields an 𝒪(𝑁

√
𝜏𝑇) bound in this situation. Notably,

the maximum delay 𝜏 is typically in the order of the diameter of the graph
diag(ℭ) if (D-DDA) is implemented by broadcasting the receives gradients to
all the neighbors. On the other hand, algorithms that are based on the gossip
protocol [25] often exhibit a regret bound expressed as 𝒪(𝑁

√
𝑇/(1− 𝜍)), where

1− 𝜍 is the spectral gap of the gossip matrix [69, 123].
Given that we have diag(ℭ) = 𝒪(1/(1− 𝜍)) for many gossip matrices that are

used in practice, see e.g., [206], this shows (D-DDA) offers an improvement in
regret over gossip-based methods, at the price of a higher communication cost
(we also refer the readers to [60] for a collection of results on the relationship
between a graph’s diameter and its algebraic connectivity).
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Regarding the more general case of asynchronous distributed online opti-
mization, we are only aware of the work of Jiang et al. [137] that analyzes a
push-sum strategy. It is difficult to compare our result with theirs due to the
difference in assumptions. On the other extreme, when there is no delay 𝜏 = 0
and the number of agents is fixed at 𝑁𝑡 ≡ 𝑁 , we recover a regret in 𝒪(𝑁

√
𝑇).

This matches the regret bound of running (DA) on the loss sequences defined
by ℓ𝑡 =

∑𝑁
𝑖=1 ℓ

𝑖
𝑡 , as each single loss is 𝑁𝐺-Lipschitz (see Corollary 2.5).

3.4.3 A More Practical Learning Rate

The learning rate of Theorem 3.12 requires knowledge of the quadratic mean
of number of agents 𝑁 . Nonetheless, since the network may be evolving, this
average number may often not be available in advance; neither is the time
horizon 𝑇 nor the current time index 𝑡. A first solution can be taking learning
rates of the form 𝜂𝑖𝑡 = 𝜂𝑡 = Θ(1/𝑁max

√
𝜏𝑡). However, this still requires the

knowledge of the global time 𝑡 which is typically out of reach in the setup we
are considering; in addition, it can be overly pessimistic with the dependence in
𝑁max

√
𝜏. To overcome these issues, we exploit the ideas of Section 3.3 and show

that a learning rate scheme similar to the one considered in Section 3.3.1 equally
guarantees low collective regret. To begin with, we rewrite Assumption 3.1 to
accommodate the new notation.

Assumption 3.4. If (𝑗, 𝑠) ∈ 𝒮 𝑖𝑡 then card(𝒮 𝑗𝑠 ) < card(𝒮 𝑖𝑡 ). Assumption on
number of received
feedback elementUnder this assumption, we prove the following theorem which extends

Proposition 3.5 to provide a bound on the collective regret for our current setup.

Theorem 3.13. Suppose that Assumptions 2.1, 3.3 and 3.4 hold and that the maximum Regret for D-DDA
with anytime,
partially adaptive
learning rate

delay is bounded by 𝜏. Then, for any 𝑧 satisfying ℎ(𝑧) ≤ 𝑅2, running (D-DDA) with
learning rates

𝜂𝑖𝑡 =
𝑅

𝐺

√
(5𝜏 + 3)(card(𝒮 𝑖𝑡 ) + (𝜏 + 1)𝑁max)𝑁max

(3.17)

guarantees a collective regret in

Reg𝑔
𝑇
(𝑧) = 𝒪(

√
𝜏𝑀𝑁max).

Proof. With a slight abuse of notation, we only work with the (worker, time)
index pair in this proof, but it should be understood that the change of index 𝜙
intervenes implicitly when we apply the arguments of the previous sections
(notably when we compare the indices). Compared to Theorem 3.12, the two
additional difficulties are: (i) the non-monotonicity of learning rates which are
solved by the introduction of a suitable faithful permutation; (ii) the predictions
of a time instant are not generated by the same learning rate, but we still manage
to control the deviation since these learning rates are close enough.

To begin, we consider a permutation 𝜋 satisfying 𝜋−1(𝑗, 𝑠) < 𝜋−1(𝑖, 𝑡) if
card(𝒮 𝑗𝑠 ) < card(𝒮 𝑖𝑡 ). Such a 𝜋 is necessarily faithful according to Assump-
tion 3.4. We claim that card(𝒰𝜋

𝜋−1(𝑖,𝑡)) ≤ (𝜏+1)𝑁max (where𝒰𝜋
𝜋−1(𝑖,𝑡) = [𝜋

−1(𝑖, 𝑡)−
1]𝜋 \ 𝒮 𝑖𝑡 ). Let 𝑠 ∈ [𝜏] such that 𝑀𝑡+𝑠−𝜏 > card(𝒮 𝑖𝑡 ) ≥ 𝑀𝑡+𝑠−𝜏−1. Then for any
𝑗 ∈ [𝑁𝑡+𝑙]with 𝑙 > 𝑠, it holds

card(𝒮 𝑗
𝑡+𝑙) ≥ 𝑀𝑡+𝑙−𝜏−1 ≥ 𝑀𝑡+𝑠−𝜏 > card(𝒮 𝑖𝑡 )
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Accordingly, 𝜋−1(𝑖, 𝑡) < 𝜋−1(𝑗, 𝑡 + 𝑙). This shows that if 𝜋−1(𝑗, 𝑙) < 𝜋−1(𝑖, 𝑡) for
some 𝑙 ∈ [𝑇] and 𝑗 ∈ [𝑁𝑙], then 𝑙 ≤ 𝑡 + 𝑠, and subsequently card([𝜋−1(𝑖, 𝑡) −
1]𝜋) ≤ 𝑀𝑡+𝑠 . We have therefore

card([𝜋−1(𝑖, 𝑡) − 1]𝜋 \ 𝒮 𝑖𝑡 ) ≤ 𝑀𝑡+𝑠 −𝑀𝑡+𝑠−𝜏−1 =

𝜏∑
𝑙=0

𝑁𝑡+𝑠−𝑙 ≤ (𝜏 + 1)𝑁max.

Since𝜂𝑖𝑡 ≤ 𝜂
𝑗
𝑠 if and only if card(𝒮 𝑖𝑡 ) ≥ card(𝒮 𝑗𝑠 ), we have indeed𝜂𝜋((𝑖,𝑡)+1) ≤ 𝜂𝜋(𝑖,𝑡)

(here and below we use the notation 𝜂 𝑗,𝑠 = 𝜂
𝑗
𝑠). Invoking Theorem 3.1, one has8

Regℓ𝑇(𝑧) ≤
ℎ(𝑧)

𝜂𝜋(𝑁𝑇 ,𝑇)
+ 1

2

𝑇∑
𝑡=1

𝑁𝑡∑
𝑖=1

𝜂𝑖𝑡
©­­«∥𝑔 𝑖𝑡 ∥2∗ + 2∥𝑔 𝑖𝑡 ∥∗

∑
𝑠∈𝒰𝜋

𝜋−1(𝑖,𝑡)

∥𝑔𝑠 ∥∗
ª®®¬

≤ ℎ(𝑧)
min𝑡∈[𝑇],𝑖∈[𝑁𝑡 ] 𝜂𝑖𝑡

+ 1
2

𝑇∑
𝑡=1

(
max
𝑖∈[𝑁𝑡 ]

𝜂𝑖𝑡

)
𝐺2(2𝜏 + 3)𝑁𝑡𝑁max. (3.18)

We next bound the difference ∥𝑥 𝑖𝑡 − 𝑥
𝑗

𝑡 ∥ for all 𝑡 ∈ [𝑇] and all 𝑖, 𝑗 ∈ [𝑁𝑡].
Similar to the proof of Theorem 3.12, we write 𝑥 𝑖𝑡 = 𝑄(−𝑦 𝑖𝑡) and 𝑥

𝑗

𝑡 = 𝑄(−𝑦 𝑗𝑡 )
where 𝑦 𝑖𝑡 = 𝜂𝑖𝑡

∑
(𝑘,𝑠)∈𝒮 𝑖𝑡

𝑔𝑘𝑠 and 𝑦
𝑗

𝑡 = 𝜂
𝑗

𝑡

∑
(𝑘,𝑠)∈𝒮 𝑗𝑡

𝑔𝑘𝑠 . By the non-expansiveness of

the mirror map (Lemma A.4), it is then sufficient to bound ∥𝑦 𝑖𝑡 − 𝑦
𝑗

𝑡 ∥. For ease
of notation, in the rest of the proof we denote by 𝒮∩ the intersection of 𝒮 𝑖𝑡 and
𝒮 𝑗𝑡 , i.e., 𝒮∩ = 𝒮 𝑖𝑡 ∩𝒮

𝑗

𝑡 , and we write 𝒮 𝑖𝑡△𝒮
𝑗

𝑡 for the symmetric difference of these
two sets. It follows

∥𝑦 𝑖𝑡 − 𝑦
𝑗

𝑡 ∥ = ∥(𝜂
𝑖
𝑡 − 𝜂

𝑗

𝑡)
∑
(𝑘,𝑠)∈𝒮∩

𝑔𝑘𝑠 + 𝜂𝑖𝑡
∑

(𝑘,𝑠)∈𝒮 𝑖𝑡 \𝒮∩

𝑔𝑘𝑠 − 𝜂
𝑗

𝑡

∑
(𝑘,𝑠)∈𝒮 𝑗𝑡 \𝒮∩

𝑔𝑘𝑠 ∥

≤ |𝜂𝑖𝑡 − 𝜂
𝑗

𝑡 |
∑
(𝑘,𝑠)∈𝒮∩

∥𝑔𝑘𝑠 ∥ + 𝜂𝑖𝑡
∑

(𝑘,𝑠)∈𝒮 𝑖𝑡 \𝒮∩

∥𝑔𝑘𝑠 ∥ + 𝜂
𝑗

𝑡

∑
(𝑘,𝑠)∈𝒮 𝑗𝑡 \𝒮∩

∥𝑔𝑘𝑠 ∥

≤ 𝐺(|𝜂𝑖𝑡 − 𝜂
𝑗

𝑡 | card(𝒮∩) +max(𝜂𝑖𝑡 ,𝜂
𝑗

𝑡) card(𝒮 𝑖𝑡△𝒮
𝑗

𝑡 ))

≤ 𝐺(|𝜂𝑖𝑡 − 𝜂
𝑗

𝑡 |𝑀𝑡−1 +max(𝜂𝑖𝑡 ,𝜂
𝑗

𝑡)𝜏𝑁max). (3.19)

In the last inequality we use the fact that if one element belongs to one set but
not the other then it must come from the last 𝜏 time steps to bound card(𝒮 𝑖𝑡△𝒮

𝑗

𝑡 ).

To control |𝜂𝑖𝑡 − 𝜂
𝑗

𝑡 |, we note that for any 𝑏 > 𝑎 > 0, it holds

1√
𝑎
− 1√

𝑏
=

𝑏 − 𝑎√
𝑎𝑏(
√
𝑎 +
√
𝑏)
≤ 𝑏 − 𝑎

2𝑎
√
𝑎

.

For every 𝑘 ∈ [𝑁𝑡], we have card(𝒮𝑘𝑡 ) + (𝜏 + 1)𝑁max ≥ 𝑀𝑡 > 𝑀𝑡−1. Therefore,
with the learning rate rule (3.17), we get

|𝜂𝑖𝑡 − 𝜂
𝑗

𝑡 | ≤
𝑅 | card(𝒮 𝑖𝑡 ) − card(𝒮 𝑗𝑡 )|

2𝐺𝑀𝑡−1
√
(5𝜏 + 3)𝑀𝑡𝑁max

≤ 𝑅𝜏𝑁max

2𝐺𝑀𝑡−1
√
(5𝜏 + 3)𝑀𝑡𝑁max

. (3.20)

8 Note that the sum is ordered differently as stated in the theorem.
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Let us denote 𝜂𝑡 = 𝑅/(𝐺
√
(5𝜏 + 3)𝑀𝑡𝑁max); then 𝜂𝑖𝑡 ≤ 𝜂𝑡 for all 𝑖 ∈ [𝑁𝑡]. We

also take

¯
𝜂 =

𝑅

𝐺
√
(5𝜏 + 3)(𝑀𝑁max + (𝜏 + 1)𝑁2

max)

so that 𝜂𝑖𝑡 ≥ ¯
𝜂 for all 𝑡 ∈ [𝑇], 𝑖 ∈ [𝑁𝑡]. We conclude with the help of Lemmas 2.6,

3.11 and A.4, and the inequalities (3.18), (3.19) and (3.20):

Reg𝑔
𝑇
(𝑧) ≤ ℎ(𝑧)

¯
𝜂
+ 1

2

𝑇∑
𝑡=1

(
𝜂𝑡𝐺

2(4𝜏 + 3)𝑁𝑡𝑁max +
𝑅𝐺𝜏𝑁𝑡𝑁max√
(5𝜏 + 3)𝑀𝑡𝑁max

)
=
ℎ(𝑧)

¯
𝜂
+ 1

2

𝑇∑
𝑡=1

𝑅𝐺(5𝜏 + 3)𝑁𝑡𝑁max√
(5𝜏 + 3)𝑀𝑡𝑁max

≤ 𝑅𝐺
√
(5𝜏 + 3)(𝑀𝑁max + (𝜏 + 1)𝑁2

max) + 𝑅𝐺
√
(5𝜏 + 3)𝑀𝑁max.

Accordingly, Reg𝑔
𝑇
(𝑧) = 𝒪(

√
𝜏𝑀𝑁max). □

The bound of Theorem 3.13 is worse than the one shown in Theorem 3.12
since

𝑁
2
𝑇 =

𝑇∑
𝑡=1

𝑁2
𝑡 ≤

𝑇∑
𝑡=1

𝑁𝑡𝑁max = 𝑀𝑁max.

This deterioration seems to be unavoidable if the number of active agents
of each round 𝑁𝑡 is not known by the agents. In spite of this, having the total
number of actions taken in the full process 𝑀 in the bound still suggests that
the algorithm is at least partially adaptive to the number of agents. More
importantly, since card(𝒮 𝑖𝑡 ) is obviously available to each agent at time 𝑡, the
learning rate (3.17) is indeed implementable by every single agent as long as
the constants 𝐺, 𝜏, and 𝑁max are known.

Remark 3.5. From our analysis, we notice that all ℓ 𝑖𝑡 may not happen exactly at
the same time. More generally, the time index 𝑡 can stand for a time interval in
a physical sense. In this case, it is possible to have instantaneous feedback (i.e.,
𝑔 𝑖𝑡 ∈ 𝒮

𝑗

𝑡 for some 𝑖, 𝑗) and a single physical agent can play several times during
the period corresponding to 𝑡. In such situations, the same proof template can
be readily applied.

3.5 simulations in static and open networks

In this section, we carry out numerical simulations based on the formulation
presented in Section 3.4. We focus on agents whose loss functions are fixed,
operating within either a static or an open network, and we use constant learning
rates instead of adaptive ones. Therefore, the findings of these experiments
are rather complementary to the theoretical contributions that we made in
preceding sections, with the online aspect solely coming from the change in the
composition of the network.

3.5.1 Problem Description

Let us consider a decentralized least absolute deviation (LAD) regression model. Least absolute
deviation regression
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(a) In the static network experiment, we use
a fixed 2d grid graph as the underlying
communication graph.

inactive

(b) In the open network experiment, the
active agents of each round are paired
with each other to exchange information.

Figure 3.5: Schematic representation of the communication graphs used in our ex-
periments. These diagrams are simplified representations of the actual graphs, which
contain 64 nodes, and mainly depict the general structure and connectivity.

Given a data set evenly distributed on 𝑁 nodes (𝑎𝑖𝑘 , 𝑏𝑖𝑘)𝑖,𝑘∈[𝑁]×[𝐾] with 𝑎𝑖𝑘 in
R𝑑 and 𝑏𝑖𝑘 ∈ R, it consists in solving

min
𝑥∈R𝑑

{
ℓ (𝑥) B 1

𝑁

𝑁∑
𝑖=1

1
𝐾

𝐾∑
𝑘=1
|𝑎⊤𝑖𝑘𝑥 − 𝑏𝑖𝑘 |

}
. (3.21)

Compared to least square regression, LAD is known to be more resistant to
the presence of outliers [157]. Although the use of absolute value makes the
problem non-differentiable, (D-DDA) can be run with subgradients as suggested
by our analysis. For the experiments, we generate synthetic data as follows:

1. The ground truth model 𝑥★ is uniformly drawn from ∈ [−5, 5]𝑑.

2. The local model 𝑥 𝑖★ of the node 𝑖 is obtained by perturbing 𝑥★ with a
Gaussian noise, i.e., 𝑥 𝑖★ = 𝑥★ + 𝜀𝑖 where 𝜀𝑖 ∼ 𝒩(0, 𝐼𝑑).

3. We sample 𝑎𝑖𝑘 ∼ 𝒩(0, 𝐼𝑑) and compute 𝑏𝑖𝑘 = 𝑎⊤
𝑖𝑘
𝑥 𝑖★+ 𝜀𝑖𝑘 with 𝜀𝑖𝑘 ∼ 𝒩(0, 1).

4. On each node, a random portion of samples are corrupted. For these
samples, we replace 𝑏𝑖𝑘 by a random value generated from a Gaussian
distribution.

In the above, we introduce the second and the fourth steps mainly for two
reasons. First, it makes the problem more heterogeneous, and thus more
difficult. Second, it makes the communication between agents more important
for finding a good approximation of 𝑥★. In the following, we will take 𝑁 = 64
nodes, 𝐾 = 200 samples per node, and dimension 𝑑 = 20. On each node, the
number of corrupted samples is random in {0, ..., 120}. We also verify that the
solution 𝑥̂ of (3.21) is not too far from 𝑥★.9

3.5.2 Static networks

We first investigate the performance of the algorithm on a static network. The
nodes are arranged in a 2d grid of size 8× 8 (a simplified version is illustrated in
Fig. 3.5a). Adjacent nodes exchange gradients at each iteration. Communication-

9 Since (3.21) does not admit a close-form solution, we solve it numerically using the python library
statsmodels. We do the same when evaluating a minimum in the remaining of the experiments.
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Figure 3.6: Comparison of (D-DDA) and (DGD). For a static network we plot in (a) the
averaged suboptimality. For an open network we plot in (b) the averaged instantaneous
suboptimality (3.22) and the averaged running loss (3.23).

computation overlap is allowed for better efficiency. Then, with a constant
learning rate 𝜂 and the use of quadratic regularizer, the (D-DDA) update writes

𝑥 𝑖𝑡+1 = 𝑥 𝑖𝑡 − 𝜂
𝑁∑
𝑗=1

𝑔
𝑗

𝑡−𝜏𝑗,𝑖 ,

where 𝜏𝑗,𝑖 is the distance between the nodes 𝑗 and 𝑖. For illustration purposes, Decentralized
gradient desentwe also compare with a decentralized gradient descent (DGD) method [205]

with constant learning rate 𝛾 and a mixing matrix𝑊 = (𝑤𝑖,𝑗). Its update is

𝑥 𝑖𝑡+1 =

𝑁∑
𝑗=1

𝑤𝑖,𝑗𝑥
𝑗

𝑡 − 𝛾𝑔
𝑖
𝑡 (DGD)

and we take𝑊 as the Metropolis matrix of the graph in our experiments:

𝑤𝑖,𝑗 =


1/(max(deg(𝑖), deg(𝑗)) + 1) if {𝑖, 𝑗} ∈ ℰ,
1−∑𝑁

𝑘=1 𝑤𝑖,𝑘 if 𝑖 = 𝑗,
0 otherwise,

where ℰ stands for the edges of the communication graph and deg(𝑖) denotes
the degree of the node 𝑖.

For a proper comparison of the two algorithms, it is important to notice that Effective learning rate
a subgradient is sent to all the 𝑁 nodes in (D-DDA) while it is averaged out in
(DGD). Therefore, we will take 𝛾 = 𝑁𝜂 and refer to it as the effective learning
rate of both methods. With this in mind, in Fig. 3.6a we plot the convergence of
the averaged optimality gap

1
𝑁

𝑁∑
𝑖=1

ℓ (𝑥 𝑖𝑡) −min
𝑥∈R𝑑

ℓ (𝑥)

for (D-DDA) and (DGD) with different choices of 𝛾.
Interestingly, we observe that when using the same effective learning rate, D-DDA converges to

a point with higher
accuracy

the two algorithms establish similar convergence behavior until reaching their
respective fixed points. However, (D-DDA) is able to converge to a point with
higher accuracy. This is in line with our discussion in Section 3.4.2. In fact, with
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Algorithm 3.4: D-DDA at each node 𝑖 as implemented in Section 3.5.3

1: Initialize: Index set of received subgradeints 𝒮 𝑖1 ← ∅, activation status
𝜁𝑖 ∈ {0, 1}, network parameters 𝐽 ∈ N, 𝑝 ∈ [0, 1]

2: for 𝑡 = 1, 2, . . . do
3: Agent update

4: if 𝜁𝑖 = 1 then
5: Get randomly paired with another active agent 𝑗
6: Predict 𝑥 𝑖𝑡 with (D-DDA) and compute 𝑔 𝑖𝑡 ∈ 𝜕ℓ 𝑖(𝑥 𝑖𝑡)
7: Update 𝒮 𝑖

𝑡+1 ← 𝒮
𝑖
𝑡 ∪𝒮

𝑗

𝑡 ∪{(𝑖, 𝑡)}
8: end if
9: Network evolution

10: if (𝑡 + 1) ≡ 0 mod 𝐽 then
11: Draw a Bernoulli random variable 𝑧 𝑖 ∼ ℬ(𝑝)
12: 𝜁𝑖 ← 𝜁𝑖 + 𝑧 𝑖 mod 2
13: if 𝑧 𝑖 = 1 and 𝜁𝑖 = 1 then
14: Pick randomly 𝑗 ∈ 𝒩𝑡 ∩𝒩𝑡+1

15: Update 𝒮 𝑖
𝑡+1 ← 𝒮

𝑗

𝑡+1
16: end if
17: end if
18: end for

diag(ℭ) and 1− 𝜍 respectively the diameter of the communication graph and the
spectral gap of the mixing matrix, for (D-DDA) we can roughly bound ∥𝑥 𝑖𝑡 − 𝑥

𝑗

𝑡 ∥
by 𝑁𝜂𝜏𝐺 = 𝛾 diag(ℭ)𝐺 as we have shown in the proof of Theorem 3.12. As for
(DGD), we have asymptotically ∥𝑥 𝑖𝑡 − 𝑥

𝑗

𝑡 ∥ ≲ 𝛾𝐺/(1−𝜆) [206, Lem. 11]. Hence,
when diag(ℭ) ≤ 1/(1 − 𝜍), which is effectively the case here, we expect the
variables (𝑥 𝑖𝑡)𝑖∈𝒩 to be closer to each other in (D-DDA), and this translates into
a higher convergence accuracy.

3.5.3 Open networks

Now that we have shown that (D-DDA) performs at least comparably to standard
decentralized optimization methods in a static network, we proceed to study its
behavior in an open multi-agent system (Algorithm 3.4). Following [270], we
model the arrivals and departures of the agents by a Bernoulli process. Initially,
only half of the 64 nodes are active. Then, every 𝐽 = 20 iterations, each agent
may change its activation status (i.e., from active to inactive or vice-versa) with
probability 𝑝 = 0.05. At each iteration, the active nodes are randomly paired
with each other, then each pair synchronizes their gradients.10 Formally, if
nodes 𝑖 and 𝑗 are paired at time 𝑡, then 𝒮 𝑖

𝑡+1 \ {𝑔
𝑖
𝑡 } = 𝒮

𝑗

𝑡+1 \ {𝑔
𝑗

𝑡 } = 𝒮 𝑖𝑡 ∪𝒮
𝑗

𝑡 . In
the spirit of (DGD), we also implement an algorithm which directly updatesDecentralized

gradient descent for
open network

the primal variables as

𝑥 𝑖𝑡+1 =
𝑥 𝑖𝑡 + 𝑥

𝑗

𝑡

2 − 𝛾𝑔 𝑖𝑡 ,

𝑥
𝑗

𝑡+1 =
𝑥 𝑖𝑡 + 𝑥

𝑗

𝑡

2 − 𝛾𝑔 𝑗𝑡 .

In both cases, an agent that becomes active at the end of round 𝑡 − 1 is assigned
the state variable (i.e., 𝒮 𝑖𝑡 or 𝑥 𝑖𝑡) of a random node in𝒩𝑡−1 ∩𝒩𝑡 , where𝒩𝑡−1 and

10 If there is an odd number of nodes, one node is ignored in this process.
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𝒩𝑡 are respectively the agents that are active at round 𝑡 − 1 and 𝑡. We take
𝛾 = 𝑁𝜂/2 in our experiment since on average 𝑁/2 nodes are active.

As for the performance measure, let us recall that the total number of active Instantaneous loss
and running lossworkers over 𝑡 rounds is denoted by 𝑀𝑡 =

∑𝑡
𝑠=1 𝑁𝑠 , Moreover, we define the

instantaneous loss function as ℓ𝑡 = (1/𝑁𝑡)
∑𝑁𝑡
𝑖=1 ℓ

𝑖
𝑡 (note this is smaller than the ℓ𝑡

of Section 3.4.1 by a factor of 1/𝑁𝑡). We then consider the averaged instantaneous
optimality gap ℓ̄ inst(𝑡) and the averaged running loss ℓ̄ run(𝑡) defined by

ℓ̄ inst(𝑡) = 1
𝑁𝑡

∑
𝑖∈𝒩𝑡

ℓ𝑡(𝑥 𝑖𝑡) −min
𝑥∈R𝑑

ℓ𝑡(𝑥) (3.22)

ℓ̄ run(𝑡) = 1
𝑀𝑡

𝑡∑
𝑠=1

∑
𝑖∈𝒩𝑠

ℓ𝑠(𝑥 𝑖𝑠) −min
𝑥∈R𝑑

1
𝑀𝑡

𝑡∑
𝑠=1

𝑁∑
𝑖=1

ℓ 𝑖𝑡 (𝑥). (3.23)

Here, the averaged running loss ℓ̄ run(𝑡) is essentially the collective regret
divided by the total number of function evaluations and averaged across agents.
In fact, if we replace 𝑥 𝑖𝑠 with 𝑥 𝑗(𝑠)𝑠 where 𝑗(𝑠) is an agent that is active at round 𝑠
independent of the index 𝑖, we get exactly the collective regret divided by 𝑀𝑡 .
On the other hand, the averaged instantaneous optimality gap ℓ̄ inst(𝑡) can be
regarded as a “dynamic” counterpart to ℓ̄ run(𝑡). However, it is more challenging
to minimize as the minimum of the instantaneous loss can change abruptly
from one round to another.

In Fig. 3.6b, we plot the evolution of these two measures for 𝛾 = 0.005, which D-DDA is able to
track the solution in
dynamic
environments

roughly corresponds to the largest learning rate that leads to the decrease of
the losses. We see that both algorithms converge to an area where potential
solutions are located whereas (D-DDA) gets much closer to the optimum of ℓ𝑡 .
This leads to a smooth decrease in the running loss which would eventually
stabilize due to the use of constant learning rate. In contrast, the instantaneous
loss for (D-DDA) experiences sharp increases when the set of active agents
changes, but subsequently decreases, indicating the algorithm’s ability to track
the instantaneous solution.





4
SLOW VARIATION AND THE ROLE OF OPTIMISM

# This chapter incorporates material from Hsieh et al. [130]

In the preceding chapter, we have established regret guarantees with respect
to the worst-case scenarios. In particular, the losses that we encounter can

be arbitrary or even adversarial in nature. Nonetheless, the environment we
operate within is not always so unforgiving. Often, it presents a softer, more
predictable landscape where patterns in loss functions may emerge, offering us
opportunities to achieve smaller regret. For instance, loss sequences may vary
slowly or losses may be generated via a game mechanism.

In this chapter, we turn our focus toward the first scenario—loss sequences
that change slowly over time, while reserving the exploration of the second
scenario for Part ii of this thesis. Central to our studies here are optimistic
algorithms. These algorithms are able to exploit the predictability in loss
sequences to yield improved performance guarantees.

This chapter serves a dual purpose. On one hand, it provides a preliminary
introduction to optimistic algorithms. On the other, it investigates their utility
in the multi-agent setup introduced in Chapter 3. For simplicity, our discussion
in this chapter concerns exclusively the unconstrained Euclidean setup, i.e.,
𝒳 = R𝑑, ℎ = 1/2∥·∥22. We thus adopt the notation ∥·∥ = ∥·∥2 throughout
this chapter. A more comprehensive introduction to optimistic algorithms,
including their use in the general setup with arbitrary (closed convex) action
set and regularizer, is deferred to Chapter 5.

contributions and outline. We start this chapter by recalling in Section 4.1
the optimistic gradient algorithm, focusing here on the advantage and the
limitation of the method in vanilla online convex optimization. Following
this, we extend it to the multi-agent setup of Chapter 3 with the introduction
of delayed optimistic dual averaging in Section 4.2. The key ingredient of this
algorithm is the use of two learning rate sequences whose ratio is adjusted
according to the maximum delay. We provide both an upper bound and a
matching lower bound on the method’s regret, while also presenting examples
that justify the necessity of this “learning rate separation”. As we conclude
the chapter, we delve into a more practical examination of the algorithm’s
implementation in a multi-agent environment. To that end, we suggest several
viable choices for the “guess” vector and explore the use of adaptive learning
rates in Section 4.3.

4.1 optimistic gradient descent

As as can be easily deduced from the regret analysis of (MD) and (DA) (cf.
proofs of Propositions 2.2 and 2.4), the forward regret of these algorithms can be
bounded by a constant if the learning rate 𝜂𝑡 is taken constant. However, this
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necessitates playing 𝑥𝑡+1 in place of 𝑥𝑡 , which is not feasible because 𝑔𝑡 is only
revealed to the learner at the end of round 𝑡, and moreover, it is evaluated at 𝑥𝑡 .

To circumvent this limitation, optimistic algorithms estimate the gradient ofOptimistic gradient
ℓ𝑡 by designing a gradient guess 𝑔̃𝑡 = 𝑔̃𝑡(𝑔1, . . . , 𝑔𝑡−1). For concreteness, let us
consider optimistic gradient (OG), one of the most well-known variants of these
algorithms. For the unconstrained setup that we study here, its update can be
simplified as (we only consider delayed feedback starting from the next section)

𝑋𝑡 = 𝑋𝑡−1 − 𝜂𝑡 𝑔𝑡−1, 𝑋𝑡+ 1
2
= 𝑋𝑡 − 𝜂𝑡 𝑔̃𝑡 . (OG)

In the above formulation, (OG) operates with two states per round. The base
state, denoted as 𝑋𝑡 , is updated following the classical online gradient step
𝑋𝑡 = 𝑋𝑡−1 − 𝜂𝑡 𝑔𝑡−1. However, for optimistic methods, the point 𝑋𝑡 is not played
at time 𝑡; instead, the learner plays the leading state 𝑋𝑡+ 1

2
, which is updated

using the estimated gradient 𝑔̃𝑡 . This is the optimistic step (also known as the
extrapolation step or the exploration step in the literature), and it is expressed
as 𝑋𝑡+ 1

2
= 𝑋𝑡 − 𝜂𝑡 𝑔̃𝑡 in the case of (OG). In other words, the played point is

𝑥𝑡 = 𝑋𝑡+ 1
2
.1 The update of the algorithm can thus be alternatively written as

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝑡+1(𝑔𝑡 + 𝑔̃𝑡+1) + 𝜂𝑡 𝑔̃𝑡 .

While this formulation relates directly the actions taken by the learner, thereby
obviating us from the need for introducing the additional variables, we will
systematically work with the (OG) formulation as it facilities both the analysis
and the generalization of the algorithm. Furthermore, the (OG) formulation
clearly highlights the relation between optimistic algorithms and the idealized
strategy of playing 𝑥𝑡+1 instead of 𝑥𝑡 in MD and DA. Indeed, we have the
following regret guarantee for (OG).

Proposition 4.1. Suppose that Assumption 2.1 holds. Then, for any 𝑧 ∈ 𝒳 andRegret bound for OG
𝑇 ∈ N, the regret induced by (OG) relative to 𝑧 after 𝑇 rounds is bounded as

Reg𝑇(𝑧) ≤
∥𝑧 −𝑋1∥2

2𝜂𝑇+1
+

𝑇∑
𝑡=1

𝜂𝑡
2 ∥𝑔𝑡 − 𝑔̃𝑡 ∥

2. (4.1)

Proof. This result is by now standard in the literature, see e.g., [45, 140, 198, 228]
and references therein. □

Proposition 4.1 suggests that we can get much smaller regret if the guess 𝑔̃𝑡 is
an approximation of 𝑔𝑡 , a result that also holds for the more general version
of the algorithm presented in Section 5.3. By optimally choosing the learning

rates (𝜂𝑡)𝑡∈N, we attain a regret in 𝒪
(√∑𝑇

𝑡=1∥𝑔𝑡 − 𝑔̃𝑡 ∥2
)
. We are thus optimistic

in the sense that we hope that this sum of squares of differences is small. On
the other hand, we recover the regret of vanilla online gradient descent for
𝑔̃𝑡 = 0 (no optimistic guess). In practice, one sensible choice is to use the last
received feedback as the guess, i.e., 𝑔̃𝑡 = 𝑔𝑡−1. This choice can lead to favorable
guarantees when the loss functions are smooth and demonstrate slow changes
according to specific measures over time, as evidenced by [45, 140].

1 Note that we use capital 𝑋 to denote the iterates of an optimistic algorithm while the lowercase 𝑥
represents the action taken by the learner. This convention is adopted throughout the manuscript.



4.1 optimistic gradient descent 65

failure of og with decreasing learning rate. Despite the positive
result presented above, (OG) faces the same problem as (MD). Specifically, it
cannot guarantee sublinear regret if used with decreasing learning rates (note
that the Bregman diameter is clearly unbounded for the unconstrained setup).
We illustrate this with the following proposition.

Proposition 4.2. (OG) with learning rate 𝜂𝑡 = 1/
√
𝑡 and guess 𝑔̃𝑡 = 𝑔𝑡−1 cannot OG with decreasing

learning rate induces
superlinear regret

guarantee 𝑜(𝑇) regret against linear loss functions with bounded loss vectors.

Proof. We will actually show that the algorithm cannot guarantee regret in
𝑜(𝑇 3

2 ). For that, let 𝑇 ≥ 2 and consider the loss sequence 𝑔𝑡 = (−1)⌊(2𝑡−1)/𝑇⌋ . In
other words,

𝑔1 . . . 𝑔𝑇 = +1 . . . + 1︸      ︷︷      ︸
⌊𝑇/2⌋

−1 . . . − 1︸      ︷︷      ︸
⌈𝑇/2⌉

.

By the update rule of (OG), we have

𝑥𝑡 =


𝑥1 −

∑𝑡−1
𝑠=1

1√
𝑠
− 1√

𝑡−1
if 2 ≤ 𝑡 ≤ ⌊ 𝑇2 ⌋ + 1

𝑥1 −
∑⌊𝑇/2⌋
𝑠=1

1√
𝑠
+∑𝑡−1

𝑠=⌊𝑇/2⌋+1
1√
𝑠
+ 1√

𝑡−1
if 𝑡 > ⌊ 𝑇2 ⌋ + 1

Therefore, the regret with respect to the initialization point 𝑥1 is

Reg𝑇(𝑥1) =
⌊𝑇/2⌋∑
𝑡=2

(
−
𝑡−1∑
𝑠=1

1√
𝑠
− 1√

𝑡 − 1

)
−

(
−
⌊𝑇/2⌋∑
𝑠=1

1√
𝑠
− 1√
⌊𝑇/2⌋

)
−

𝑇∑
𝑡=⌊𝑇/2⌋+2

©­«−
⌊𝑇/2⌋∑
𝑠=1

1√
𝑠
+

𝑡−1∑
𝑠=⌊𝑇/2⌋+1

1√
𝑠
+ 1√

𝑡 − 1
ª®¬

=

⌊𝑇/2⌋−1∑
𝑠=1

−⌊𝑇/2⌋ + 𝑠 − 1√
𝑠

+ 1√
⌊𝑇/2⌋

+
⌈
𝑇

2

⌉ ⌊𝑇/2⌋∑
𝑠=1

1√
𝑠
−

𝑇−1∑
𝑠=⌊𝑇/2⌋+1

𝑇 − 𝑠 + 1√
𝑠

=

⌊𝑇/2⌋∑
𝑠=1

⌈𝑇/2⌉ − ⌊𝑇/2⌋√
𝑠

+ 1√
⌊𝑇/2⌋

−
⌊𝑇/2⌋−1∑
𝑠=1

1√
𝑠
+
𝑇−1∑
𝑠=1

√
𝑠 − (𝑇 + 1)

𝑇−1∑
𝑠=⌊𝑇/2⌋+1

1√
𝑠

We next drop the two non-negative terms in the second to last line and bound
the terms of the last line from below with integrals. This gives

Reg𝑇(𝑥1) ≥ −1−
∫ ⌊𝑇/2⌋−1

𝑢=1

1√
𝑢
𝑑𝑢 +

∫ 𝑇−1

𝑢=0

√
𝑢 𝑑𝑢 − (𝑇 + 1)

∫ 𝑇−1

𝑢=⌊𝑇/2⌋

1√
𝑢
𝑑𝑢

= 1− 2

√⌊
𝑇

2

⌋
− 1+ 2

3 (𝑇 − 1) 3
2 − 2(𝑇 + 1) ©­«

√
𝑇 − 1−

√⌊
𝑇

2

⌋ª®¬
≥ −2

√⌊
𝑇

2

⌋
− 4
√
𝑇 − 1+

(√
2+ 2

3 − 2
)

2
3 (𝑇 − 1) 3

2 .

Since
√

2+ 2/3− 2 ≥ 0, the last line grows in Θ(𝑇 3
2 )when we increase𝑇, showing

that it is impossible for the algorithm to guarantee a regret in 𝑜(𝑇 3
2 ). □
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Remark 4.1. Stating a lower bound is often delicate. For 𝒥 some function
that maps any finite sequence of 𝑑-dimensional vectors to a real number, in
our statements (see also Theorems 4.5 and 4.6), we simply say that an online
learning algorithm that satisfies a certain criterion cannot guarantee a regret in
𝑜(𝑈) against feedback 𝑔1, . . . , 𝑔𝑇 such that 𝒥(𝑔1, . . . , 𝑔𝑇) ≤ 𝑈 . Concretely, we
show the existence of absolute constants 𝐺, 𝑐 > 0 such that for any algorithm
𝔄 satisfying the criterion and any 𝑁 ∈ N, we can find 𝑇 ∈ N, 𝑈 ≥ 𝑁 , and
a sequence ℓ1, . . . , ℓ𝑇 ensuring the following: if the learner uses algorithm 𝔄

against this sequence, then

1. The learner receives feedback 𝑔1, . . . , 𝑔𝑇 with ∥𝑔𝑡 ∥ ≤ 𝐺 for all 𝑡 and
𝒥(𝑔1, . . . , 𝑔𝑇) ≤ 𝑈 .

2. The learner incurs regret larger than 𝑐𝑈 with respect to some comparator
point 𝑧 that is close to 𝑥1 (e.g., ∥𝑥1 − 𝑧∥ ≤ 1).

As a matter of fact, the above result effectively indicates that for any online
learning algorithm satisfying the criterion, the supremum of regret taken over
all the close enough comparator points, and all the losses such that ∥𝑔𝑡 ∥ ≤ 𝐺
for all 𝑡 and 𝒥(𝑔1, . . . , 𝑔𝑇) ≤ 𝑈 is not 𝑜(𝑈).

In light of the above negative result and the suitability of using DA in the
asynchronous multi-agent setup as discussed in Remark 3.2, our focus of the
next section will be an optimistic version of the (DDA) algorithm.

4.2 delayed optimistic dual averaging

In this section and the next, we places ourselves in the framework of Chapter 3
and present how delayed dual averaging can be extended to incorporate an
optimistic step in the unconstrained Euclidean setup. Importantly, we show
that the dual averaging step has to be done with a smaller learning rate than
the optimistic step.

4.2.1 Algorithmic Template and Regret Analysis

Optimistic methods are able to leverage the slow variation of predictableDelayed optimistic
dual averaging sequences, thereby offering improved regret guarantees. However, when

gradients arrive out of order, the predictability of a loss sequence may be
compromised. To account for this, we introduce below a “separation of
timescales” between the sensing and updating steps of the delayed optimistic
dual averaging (DOptDA) method.2

𝑋𝑡 = arg min
𝑥∈R𝑑

∑
𝑠∈𝒮𝑡

⟨𝑔𝑠 , 𝑥⟩ +
∥𝑥 −𝑋1∥2

2𝜂𝑡
= 𝑋1 − 𝜂𝑡

∑
𝑠∈𝒮𝑡

𝑔𝑠 ,

𝑋𝑡+ 1
2
= arg min

𝑥∈R𝑑

⟨𝑔̃𝑡 , 𝑥⟩ +
∥𝑥 −𝑋𝑡 ∥2

2𝛾𝑡
= 𝑋𝑡 − 𝛾𝑡 𝑔̃𝑡 .

(DOptDA)

Following our delay framework, 𝑋𝑡 is computed using gradients from time
moments𝒮𝑡 . Similarly, 𝑔̃𝑡 must be derived solely based on information available
to the active agent 𝑖(𝑡) at time 𝑡. In addition to these natural restrictions, the
algorithm uses two learning rates at each round: the update learning rate 𝜂𝑡

2 Another related algorithm is optimistic FTRL [140]. It coincides with optimistic dual averaging in
the setup considered here.
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and the optimistic learning rate 𝛾𝑡 . This additional flexibility allows us to
compensate the missing information that have not arrived due to delays, giving
rise to the following regret bound.

Theorem 4.3. Suppose that Assumption 2.1 holds and that the maximum delay is Template regret bound
for DOptDAbounded by 𝜏. Assume further that (DOptDA) is run with learning rate sequences

(𝜂𝑡)𝑡∈[𝑇], (𝛾𝑡)𝑡∈[𝑇] satisfying 𝜂𝑡+1 ≤ 𝜂𝑡 and (2𝜏 + 1)𝜂𝑡 ≤ 𝛾𝑡 for all 𝑡 ∈ [𝑇]. Then, the
regret of the algorithm (evaluated at the points 𝑋 3

2
, . . . ,𝑋𝑇+ 1

2
) satisfies

Reg𝑇(𝑧) ≤
∥𝑧 −𝑋1∥2

2𝜂𝑇
+

𝑇∑
𝑡=1

𝛾𝑡
2

(
∥𝑔𝑡 − 𝑔̃𝑡 ∥2 − ∥ 𝑔̃𝑡 ∥2

)
.

Proof. Let us consider the virtual iterates and the corresponding dual vectors

𝑋𝑡 = 𝑋1 − 𝜂𝑡
𝑡−1∑
𝑠=1

𝑔𝑠 , 𝑌𝑡 = −𝜂𝑡
𝑡−1∑
𝑠=1

𝑔𝑠 .

Notice that the regret is measured with respect to the leading states

⟨𝑔𝑡 ,𝑋𝑡+ 1
2
− 𝑧⟩ = ⟨𝑔𝑡 ,𝑋𝑡+ 1

2
−𝑋𝑡+1⟩ + ⟨𝑔𝑡 ,𝑋𝑡+1 − 𝑧⟩ (4.2)

For the second term, as in the proof of Proposition 2.4 we can show (see
Eq. (2.6))

⟨𝑔𝑡 ,𝑋𝑡+1 − 𝑧⟩ ≤
𝐹(𝑧,𝑌𝑡)

𝜂𝑡
− 𝐹(𝑧,𝑌𝑡+1)

𝜂𝑡+1
− ∥𝑋𝑡+1 −𝑋𝑡 ∥2

2𝜂𝑡

+
(

1
𝜂𝑡+1
− 1
𝜂𝑡

)
(ℎ(𝑧) −min ℎ).

Since ℎ = ∥· −𝑋1∥2/2, the above equals to

⟨𝑔𝑡 ,𝑋𝑡+1 − 𝑧⟩ ≤
∥𝑧 −𝑋𝑡 ∥2

2𝜂𝑡
− ∥𝑧 −𝑋𝑡+1∥2

2𝜂𝑡+1
− ∥𝑋𝑡+1 −𝑋𝑡 ∥2

2𝜂𝑡

+
(

1
𝜂𝑡+1
− 1
𝜂𝑡

)
∥𝑧 −𝑋1∥2

2 . (4.3)

For the other term, we recall the definition 𝒰𝑡 = [𝑡 − 1] \ 𝒮𝑡 and define
𝜈𝑡 = card(𝒰𝑡). Then,

⟨𝑔𝑡 ,𝑋𝑡+ 1
2
−𝑋𝑡+1⟩ = ⟨𝑔𝑡 ,𝑋𝑡+ 1

2
−𝑋𝑡⟩ + ⟨𝑔𝑡 ,𝑋𝑡 −𝑋𝑡⟩ + ⟨𝑔𝑡 ,𝑋𝑡 −𝑋𝑡+1⟩

= ⟨𝑔𝑡 ,−𝛾𝑡 𝑔̃𝑡⟩ + ⟨𝑔𝑡 ,𝜂𝑡
∑
𝑠∈𝒰𝑡

𝑔𝑠⟩ + ⟨𝑔𝑡 ,𝑋𝑡 −𝑋𝑡+1⟩

=
𝛾𝑡
2

(
∥𝑔𝑡 − 𝑔̃𝑡 ∥2 − ∥𝑔𝑡 ∥2 − ∥ 𝑔̃𝑡 ∥2

)
+ 𝜂𝑡

∑
𝑠∈𝒰𝑡

⟨𝑔𝑡 , 𝑔𝑠⟩ + ⟨𝑔𝑡 ,𝑋𝑡 −𝑋𝑡+1⟩

≤ 𝛾𝑡
2

(
∥𝑔𝑡 − 𝑔̃𝑡 ∥2 − ∥𝑔𝑡 ∥2 − ∥ 𝑔̃𝑡 ∥2

)
+ 𝜂𝑡

2 ∥𝑔𝑡 ∥
2 + 1

2𝜂𝑡
∥𝑋𝑡 −𝑋𝑡+1∥2 +

𝜈𝑡𝜂𝑡
2 ∥𝑔𝑡 ∥

2 + 𝜂𝑡
2

∑
𝑠∈𝒰𝑡

∥𝑔𝑠 ∥2.

(4.4)
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𝑋𝑡 𝑥𝑡 = 𝑋𝑡+ 1
2

𝑋𝑡 = 𝑋𝑡+2 𝑋𝑡+3

𝑋𝑡+3 = 𝑋𝑡+5−𝜂𝑔𝑡−3
−𝜂𝑔𝑡−2

−𝜂𝑔𝑡−1
−𝜂𝑔𝑡+1

−𝜂𝑔𝑡+2−𝜂𝑔𝑡

Figure 4.1: Schematic representation of (DOptDA): The delay is fixed at 𝜏 = 2. We use
constant learning 𝜂 and guess vector 𝑔𝑡 = 𝑔𝑡−𝜏−1. Using a larger optimistic step helps
mitigate the effect of delay.

Combining (4.2), (4.3), (4.4) and summing from 𝑡 = 1 to 𝑇 yields

Reg𝑇(𝑧) ≤
∥𝑧 −𝑋1∥2

2𝜂𝑇+1
+

𝑇∑
𝑡=1

𝛾𝑡
2

(
∥𝑔𝑡 − 𝑔̃𝑡 ∥2 − ∥ 𝑔̃𝑡 ∥2

)
+

(
−𝛾𝑡2 +

(𝜈𝑡 + 1)𝜂𝑡
2 +

∑
𝑡∈𝒰𝑙

𝜂𝑙
2

)
∥𝑔𝑡 ∥2. (4.5)

Given that the maximum delay is 𝜏, we have 𝜈𝑡 ≤ 𝜈 ≤ 𝜏 and if 𝑡 ∈ 𝒰𝑙 it
holds 𝑙 > 𝑡 ≥ 𝑙 − 𝜏 and thus card({𝑙 : 𝑡 ∈ 𝒰𝑙}) ≤ 𝜏. Moreover, as (𝜂𝑡)𝑡∈[𝑇] is a
decreasing sequence, 𝑡 ∈ 𝒰𝑙 also implies 𝜂𝑙 ≤ 𝜂𝑡 . The last term of (4.5) can thus
be bounded as following(

−𝛾𝑡2 +
(𝜈𝑡 + 1)𝜂𝑡

2 +
∑
𝑡∈𝒰𝑙

𝜂𝑙
2

)
∥𝑔𝑡 ∥2 ≤

1
2 ((2𝜏 + 1)𝜂𝑡 − 𝛾𝑡)∥𝑔𝑡 ∥2 ≤ 0, (4.6)

where the second inequality leverages the condition 𝛾𝑡 ≥ (2𝜏+ 1)𝜂𝑡 . Combining
(4.5) and (4.6) and setting 𝜂𝑡+1 = 𝜂𝑡 gives the desired result. □

In Theorem 4.3, we successfully show that (DOptDA) retains the desired
property of undelayed optimistic gradient descent: the regret of the algorithm
is solely determined by the distance between 𝑔𝑡 and 𝑔̃𝑡 (see Proposition 4.1).

Precisely, the theorem guarantees a regret in 𝒪
(√

𝜏
∑𝑇
𝑡=1∥𝑔𝑡 − 𝑔̃𝑡 ∥2

)
for fix

learning rate sequences 𝜂𝑡 ≡ 𝜂, 𝛾𝑡 ≡ (2𝜏+ 1)𝜂 that are optimally chosen. Similar
to the case of delayed mirror descent and delayed dual averaging, an additional
factor of

√
𝜏 appears in the regret bound, and their regret is recovered tightly

by setting 𝑔̃𝑡 = 0.
To understand why we take 𝛾𝑡 to be 2𝜏 + 1 times larger than 𝜂𝑡 , we visualizePhilosophy behind the

factor 2𝜏 + 1 the optimistic update in Fig. 4.1. Here, we use constant learning rate 𝜂 and
the delay is fixed at 𝜏 = 2. The latter indicates that 𝑔𝑡 generated at 𝑥𝑡 is used
to compute 𝑋𝑡+3. On the other hand, by playing 𝑥𝑡 = 𝑋𝑡 − 5𝜂𝑔𝑡−3, we have
𝑥𝑡 ≈ 𝑋𝑡+3 if the feedback sequence varies slowly, where 𝑋𝑡+3 = 𝑋𝑡+5 is the iterate
that the learner would have played with (DA) at time 𝑡 + 3 if there were no delay.
In this way, the more aggressive optimistic step makes sure that we update each
𝑋𝑡 with a feedback element that is computed at a point close to 𝑋𝑡 . This mimics
the behavior of the idealized algorithm that updates 𝑥𝑡 with 𝑔𝑡 .

Provided that 𝑔̃𝑡 can be arbitrarily chosen, in terms of algorithm design weAlternative approach
to address delays with

optimism
can also set 𝛾𝑡 = 𝜂𝑡 and use a guess that is much larger (in the order of 𝜏 times
larger than 𝑔𝑡 as explained above). This strategy was adopted by Flaspohler
et al. [80], and they also offer regret bounds that are presented in a different
way. These bounds are much less comparable to the standard result presented
in Proposition 4.1, but provide different insights into the algorithm. We thus
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refer the readers to [80] for an alternative perspective on on how optimistic
algorithms can help mitigate the delays.

Remark 4.2. The dependence on the maximum delay in Theorem 4.3 can More refined regret
boundactually be dropped. Nonetheless, we choose to present in this form for ease

of understanding. Otherwise, denoting 𝜏𝑡 = card(𝒰𝑡) + card({𝑠 ∈ [𝑇] : 𝑡 ∈
𝒰𝑠}) + 1 (in words, we count both the number of gradient unavailable at time 𝑡
and the number of times 𝑔𝑡 is unavailable for the computation of the played
point after time 𝑡) and employing a suitable constant update learning rate

𝜂𝑡 ≡ 𝜂 with 𝛾𝑡 = 𝜏𝑡𝜂, we achieve a regret in 𝒪
(√∑𝑇

𝑡=1 𝜏𝑡 ∥𝑔𝑡 − 𝑔̃𝑡 ∥2
)
. Note that∑𝑇

𝑡=1 𝜏𝑡 = 2𝐷 +𝑇 and when 𝑔̃𝑡 = 0 this bound can be inferred from Theorem 3.1
by choosing 𝜋 = id.

4.2.2 Necessity of Scale Separation for Robustness to Delays

In this part, we discuss the necessity of having a relatively aggressive optimistic
step compared to the update (𝛾𝑡 ≥ 𝜂𝑡) in order to be robust to delay.

For this, we consider linear losses ℓ𝑡 = ⟨𝑔𝑡 , ·⟩ and uniform delay 𝜏 (i.e.,
every feedback becomes available after a delay of 𝜏 time steps). We define the
𝜏-variation of the loss sequence by 𝐶𝜏

𝑇
=

∑𝑇
𝑡=1∥𝑔𝑡 − 𝑔𝑡−𝜏∥2 where we set 𝑔𝑡 = 0

for 𝑡 ≤ 0. For ease of notation we further write 𝐶𝜏+
𝑇

= 𝐶𝜏+1
𝑇

. The following
corollary is immediate from Theorem 4.3.

Corollary 4.4. In the context of linear losses ℓ𝑡 = ⟨𝑔𝑡 , ·⟩ and uniform delay 𝜏 Upper bound on
regret of DOptDA
against linear losses

(𝒮𝑡 = [𝑡 − 𝜏 − 1] for all 𝑡), running (DOptDA) with 𝑔̃𝑡 = 𝑔𝑡−𝜏−1 and constant
learning rates 𝜂 = 𝑅/

√
(2𝜏 + 1)𝐶𝜏+

𝑇
and 𝛾 = (2𝜏+ 1)𝜂 guarantees the following regret

bound for any 𝑧 ∈ 𝒳 such that 𝑅 ≥ ∥𝑧 −𝑋1∥

Reg𝑇(𝑧) ≤ 𝑅
√
(2𝜏 + 1)𝐶𝜏+

𝑇
.

This results indicates that with an optimistic learning rate 𝛾 taken 2𝜏 + 1
times bigger than the update learning rate 𝜂, one can guarantee a regret bound
of the order of the square root of the (𝜏 + 1)-variation. In contrast, we now
demonstrate the impossibility to obtain a regret that is sub-linear in 𝐶𝜏+

𝑇
when

𝛾 = 𝜂 (or even when 𝛾 ≤ 𝜏𝜂).

Theorem 4.5. Consider the setup of Corollary 4.4. Let 𝜂 = 𝜂(𝑅,𝑇, 𝜏,𝐶𝜏+
𝑇
) be uniquely Lower bound on regret

of DOptDA against
linear losses

determined by 𝑅 ≥ ∥𝑧 −𝑋1∥, the time horizon 𝑇, the uniform delay 𝜏, and the (𝜏 + 1)-
variation 𝐶𝜏+

𝑇
. If we run (DOptDA) with 𝑔̃𝑡 = 𝑔𝑡−𝜏−1 and 𝛾 ≤ 𝜏𝜂, it is impossible to

guarantee a regret in 𝑜(max(𝐶𝜏+
𝑇

,
√
𝑇)).

Proof. Assume, for the sake of contradiction, that there exists 𝜂 = 𝜂(𝑅,𝑇, 𝜏,𝐶𝜏+
𝑇
)

and a corresponding 𝛾 with 𝛾 ≤ 𝜏𝜂 such that (DOptDA) with 𝑔̃𝑡 = 𝑔𝑡−𝜏−1
guarantees a regret in 𝑜(max(𝐶𝜏+

𝑇
,
√
𝑇)). Formally, we define for this proof

specifically a “run” of the algorithm as a composition a loss sequence, a
delay mechanism, a initial point 𝑋1, and a competing vector 𝑧, and denote by
𝒞(𝑅,𝑇, 𝜏,𝐶𝜏+

𝑇
) the set of all the runs with time horizon 𝑇, (𝜏 + 1)-variation 𝐶𝜏+

𝑇
,

uniform delay 𝜏, and ∥𝑧 −𝑋1∥ ≤ 𝑅. Then, fixing 𝑅 and 𝜏, for every 𝜀 > 0, we can
find 𝑁 > 0 such that if max(𝐶𝜏+

𝑇
,
√
𝑇) ≥ 𝑁 , the regret achieved by the algorithm

for every instance in 𝒞(𝑅,𝑇, 𝜏,𝐶𝜏+
𝑇
) is smaller than 𝜀max(𝐶𝜏+

𝑇
,
√
𝑇). The proof

then consists in finding two instances of 𝒞(𝑅,𝑇, 𝜏,𝐶𝜏+
𝑇
) such that the regret
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𝒕 𝜏 + 2 . . . 𝑝 𝑝 + 1 · · · 𝑝 + 𝜏 + 1
𝒙𝒕 𝜂 + 𝛾 . . . (𝑝 − 𝜏 − 1)𝜂 + 𝛾 (𝑝 − 𝜏)𝜂 + 𝛾 · · · 𝑝𝜂 + 𝛾

𝒈𝒕 −1 +1

𝒕 𝑝 + 𝜏 + 2 . . . 2𝑝 2𝑝 + 1 . . . 2𝑝 + 𝜏 + 1
𝒙𝒕 (𝑝 − 1)𝜂 − 𝛾 . . . (𝜏 + 1)𝜂 − 𝛾 𝜏𝜂 − 𝛾 . . . −𝛾

𝒈𝒕 +1 −1

Figure 4.2: Illustration of the evolution of (DOptDA) for a period of feedback in the
first example of the proof of Theorem 4.5. The time is taken modulo 2𝑝 starting from
𝑡 = 𝜏 + 2, that is, the first 𝜏 + 1 rounds where the algorithm outputs 0 is not shown here.

achieved by the algorithm on these two instances can not be simultaneously
smaller than 𝜀max(𝐶𝜏+

𝑇
,
√
𝑇).

For this, we fix the delay 𝜏, set 𝑅 = 1 without loss of generality and explicit
these two instances in the following (𝒳 = R):

1. Let 𝐾, 𝑝 > 𝜏 be two positive integers. We first consider a loss sequence of
length 2𝐾𝑝 + 𝜏 + 1 (i.e., 𝑇 = 2𝐾𝑝 + 𝜏 + 1) as illustrated below:

−1 . . . − 1︸      ︷︷      ︸
𝑝

+1 . . . + 1︸      ︷︷      ︸
𝑝

. . . −1 . . . − 1︸      ︷︷      ︸
𝑝

+1 . . . + 1︸      ︷︷      ︸
𝑝︸                                                                ︷︷                                                                ︸

2𝐾𝑝 losses

−1 . . . − 1︸      ︷︷      ︸
𝜏+1

A period is defined as a subsequence of 2𝑝 losses with 𝑝 consecutive −1s
followed by 𝑝 consecutive +1s. The whole loss sequence is then composed of
2𝐾 periods followed by 𝜏 + 1 consecutive −1s. We would like to compute the
regret achieved by (DOptDA) with 𝜂, 𝛾, 𝑔̃𝑡 as specified in the statement and
𝑋1 = 𝑧 = 0.

For the first 𝜏 + 1 steps, the algorithm stays at 𝑋1 = 𝑧 so the accumulative
regret is 0. For the remaining of the run, the algorithm goes through the
same trajectory for each period of delayed feedback vectors it receives and this
happens 𝐾 times. To compute the regret, we just need to match the position of
the iterate with the actual loss at each moment, which is done in Fig. 4.2 (as the
loss vectors of a single period sum to 0, after receiving all the vectors from one
period it is as if we started again from 𝑋1 = 𝑧 = 0). Notice that the algorithm
uses the most recent vector it receives for the optimistic step.

The regret for each period of feedback is thus

Reg𝑝𝑒𝑟 =
−(𝑝 − 𝜏 − 1)(𝑝 − 𝜏)𝜂

2 − (𝑝 − 𝜏 − 1)𝛾 + (𝜏 + 1)(2𝑝 − 𝜏)𝜂
2 + (𝜏 + 1)𝛾

+ (𝑝 − 𝜏 − 1)(𝑝 + 𝜏)𝜂
2 − (𝑝 − 𝜏 − 1)𝛾 − (𝜏 + 1)𝜏𝜂

2 + (𝜏 + 1)𝛾

= (𝜏 + 1)(𝑝 − 𝜏)𝜂 + (𝑝 − 𝜏 − 1)𝜏𝜂 + 2(2𝜏 − 𝑝 + 2)𝛾
= (𝜂 + 2𝜏𝜂 − 2𝛾)𝑝 − 2𝜏(𝜏 + 1)𝜂 + (4𝜏 + 4)𝛾.

Accordingly, the total regret is

Reg1 = 𝐾((𝜂 + 2𝜏𝜂 − 2𝛾)𝑝 − 2𝜏(𝜏 + 1)𝜂 + (4𝜏 + 4)𝛾) ≥ 𝐾(𝑝 − 2𝜏(𝜏 + 1))𝜂,

where for the inequality we use the fact that 𝛾 ≤ 𝜏𝜂.
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Moreover, for every 𝑚 ∈ N0, from time 2𝑚𝑝 + 𝜏 + 2 to 2𝑚𝑝 + 2𝑝 + 𝜏 + 1 the
(𝜏 + 1)-variation increases by 8(𝜏 + 1): there are 𝜏 + 1 switches both from −1
to +1 and from +1 to −1 with each switch contributing 4 to the variation.
Remember also that in the definition of the 𝐶𝜏+

𝑇
we compare the first 𝜏+ 1 losses

with 0. For the whole sequence we therefore count 𝐶𝜏+
𝑇

= (8𝐾 + 1)(𝜏 + 1).

2. We now construct another example with the same 𝑇,𝐶𝜏+
𝑇

as follows (with
𝑝 > 4𝜏 + 4):

0 . . . 0︸ ︷︷ ︸
𝜏+1

1 . . . 1︸ ︷︷ ︸
𝜏+1

. . . 0 . . . 0︸ ︷︷ ︸
𝜏+1

1 . . . 1︸ ︷︷ ︸
𝜏+1︸                                            ︷︷                                            ︸

8𝐾(𝜏+1) losses

0 . . . 0︸ ︷︷ ︸
2𝐾𝑝−8𝐾(𝜏+1)

1 . . . 1︸ ︷︷ ︸
𝜏+1

In particular, 2𝐾𝑝 − 8𝐾(𝜏 + 1) > 2𝐾 > 𝜏 + 1. It follows immediately 𝐶𝜏+
𝑇

=

(8𝐾 + 1)(𝜏 + 1) and of course 𝑇 = 2𝐾𝑝 + 𝜏 + 1.

Let 𝑋1 = 0 and 𝑧 = −1. In the sequence the loss 1 appears (4𝐾 + 1)(𝜏 + 1)
times while the remaining feedback are all 0s. Given that the last 𝜏+ 1 losses are
never received by the algorithm, we have indeed always 𝑥𝑡 ≥ −4𝐾(𝜏 + 1)𝜂 − 𝛾.
The regret can therefore be lower bounded as:

Reg2 =

𝑇∑
𝑡=1

𝑔𝑡(𝑥𝑡 + 1)

=

𝑇∑
𝑡=1

𝑔𝑡𝑥𝑡 + (4𝐾 + 1)(𝜏 + 1)

≥ (4𝐾 + 1)(𝜏 + 1) − 4𝐾(4𝐾 + 1)(𝜏 + 1)2𝜂 − (4𝐾 + 1)(𝜏 + 1)𝛾
≥ (4𝐾 + 1)(𝜏 + 1) − (4𝐾 + 1)2(𝜏 + 1)2𝜂,

where in the last inequality we use again 𝛾 ≤ 𝜏𝜂.

Conclude. We choose 𝐾, 𝑝 so that 𝑝 = (16𝐾 + 9)(𝜏 + 1)2 + 2𝜏(𝜏 + 1) > 4𝜏 + 4.
Notice that 𝑇 and 𝐶𝜏+

𝑇
can be made arbitrarily large. We run the algorithm in

question on the two problem instances described above. We have on one side

Reg1 ≥ 𝐾(𝑝 − 2𝜏(𝜏 + 1))𝜂 = (16𝐾2 + 9𝐾)(𝜏 + 1)2𝜂.

On the other side,

Reg2 ≥ (4𝐾 + 1)(𝜏 + 1) − (4𝐾 + 1)2(𝜏 + 1)2𝜂
≥ (4𝐾 + 1)(𝜏 + 1) − (16𝐾2 + 9𝐾)(𝜏 + 1)2𝜂.

Recalling that 𝐶𝜏+
𝑇

= (8𝐾 + 1)(𝜏 + 1), the above shows

Reg1 +Reg2 ≥ (4𝐾 + 1)(𝜏 + 1) ≥ 𝐶𝜏+
𝑇 /2.

Similarly, we have 𝑇 = 2𝐾𝑝 + 𝜏 + 1 ≤ (32𝐾2 + 22𝐾)(𝜏 + 1)2. As a consequence

Reg1 +Reg2 ≥ (4𝐾 + 1)(𝜏 + 1) ≥
√
𝑇/2.
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To summarize, we have proven for some 𝑇 and 𝐶𝜏+
𝑇

arbitrarily large, we can find
two instances from 𝒞(𝑅,𝑇, 𝜏,𝐶𝜏+

𝑇
) so that the regrets achieved by the algorithm

on these two instances satisfy

max(Reg1, Reg2) ≥ max(𝐶𝜏+
𝑇 ,
√
𝑇)/2.

This is in contradiction with the initial hypothesis by choosing 𝜀 = 1/2. □

The above result is a generalization of the lower bound of Chiang et al. [45]
that applies to the undelayed setup. However, in their proof, the learning rate
was first fixed and then a loss sequence was constructed to yield large regret,
which could possibly also prevent optimistic algorithms to achieve low regret.
Our approach fixes this fallacy by informing the algorithm of the variation in
advance so that optimistic algorithms provably obtain low regrets on these
sequences (cf. Corollary 4.4). In the undelayed setting, we recover the result that

the optimistic step is necessary to guarantee a regret in 𝒪
(√∑𝑇

𝑡=1∥𝑔𝑡 − 𝑔𝑡−1∥2
)
.

Finally, we also demonstrate that among all the online algorithms with the
same prior information, the bound achieved in Corollary 4.4 is tight in its
dependence on 𝜏 and 𝐶𝜏+

𝑇
.

Theorem 4.6. Consider the setup of Corollary 4.4. No online learning algorithm thatGeneral lower bound
for delayed online

learning
solely uses the information of 𝑇, 𝜏, and 𝐶𝜏 ≥ 𝐶𝜏+

𝑇
can guarantee regret Reg𝑇(𝑧) =

𝑜(
√
𝜏𝐶𝜏) for any 𝑧 ∈ ℬ(𝑥1, 1) and any sequence of loss functions of length 𝑇 and

(𝜏 + 1)-variation 𝐶𝜏+
𝑇

.

Proof. Let 𝑁 ∈ N and 𝔄 = 𝔄(𝜏,𝑇,𝐶𝜏) be an arbitrary online algorithm compati-
ble with delayed feedback that at most uses the information about 𝑇, 𝜏, and 𝐶𝜏.
We choose 𝜏 and 𝐶𝜏 such that

√
𝜏𝐶𝜏 ≥ 𝑁 and 𝑝 B 𝐶𝜏/(4(𝜏+ 1)) is a sufficiently

large positive integer. We set 𝑇 = (𝜏 + 1)𝑝.
Following Shalev-Shwartz [245], we consider linear losses with either +1 or
−1 loss vectors. For any online learning algorithm, we know by [245, Thm. 3]
that there exists a such sequence and such that max𝑧∈ℬ(𝑥1,1) Reg𝑝(𝑧) = Ω(√𝑝);
that is, there exists an absolute constant 𝑐 such that when 𝑝 is large enough it
holds max𝑧∈ℬ(𝑥1,1) Reg𝑝(𝑧) ≥ 𝑐

√
𝑝.

We now apply the this lower bound to the following algorithm 𝔄/𝜏: We
repeat each loss 𝜏 + 1 times, send each feedback after a delay of 𝜏, run 𝔄 on this
new loss sequence with delayed feedback and every 𝜏 + 1 iterations we return
𝑥𝑘 =

∑𝑎𝑘+𝜏
𝑡=𝑎𝑘

𝑋𝑡/(𝜏 + 1), where 𝑋𝑡 is the iterate produced by 𝔄 on the constructed
losses and 𝑎𝑘 = (𝑘 − 1)(𝜏+ 1) + 1. In more detail, for the loss sequence 𝑔1, . . . , 𝑔𝑝 ,
at the end of iteration 𝑘(𝜏 + 1) to 𝑘(𝜏 + 1) + 𝜏 we receive feedback 𝑔𝑘 (except
for the case 𝑘 = 0 where we receive nothing) while we suffer loss ⟨𝑔𝑘 , 𝑥𝑡⟩ from
iteration 𝑎𝑘 = (𝑘 − 1)(𝜏 + 1) + 1 to 𝑎𝑘 + 𝜏 = 𝑘(𝜏 + 1). This is a legitimate online
algorithm because 𝑥𝑘 can indeed be computed after receiving 𝑔1, . . . , 𝑔𝑘−1.
Therefore, the Ω(√𝑝) lower bound applies to 𝔄/𝜏.

To conclude, we note that the regret achieved by 𝔄 on the constructed
sequence is exactly 𝜏 + 1 times the regret achieved by 𝔄/𝜏 on the original
sequence. Moreover, the (𝜏 + 1)-variation 𝐶𝜏+

𝑇
of the constructed sequence is

effectively bounded from above by 𝐶𝜏 since (𝜏 + 1) + 4(𝜏 + 1)(𝑝 − 1) < 𝐶𝜏 and
the incurred regret is lower bounded by 𝑐(𝜏+ 1)√𝑝 ∼ 𝑐

√
𝜏𝐶𝜏/2 (where ∼ stands

for asymptotically equivalent). □
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In summary, in this subsection we showed that using (DOptDA) with a double
learning rate strategy enables to achieve an 𝒪(

√
𝜏𝐶𝜏+

𝑇
) regret which is tight among

online learning methods and out of reach of single learning rate (DOptDA).
This justifies both the optimality of our approach and the necessity of the
modification that we brought to the algorithm.

4.3 delayed online learning with slow variation

Now that we have established our foundational results concerning the optimistic
variant of delayed dual averaging, we turn our attention to the specific case
where the loss sequence varies slowly across iterations.

4.3.1 Full Information Setup and Choices of Guess Vectors

We start by investigating the choice of the guess vector 𝑔̃𝑡 . For this, we consider
the case where the losses are differentiable and the full gradient ∇ ℓ𝑡 is obtained
as feedback (and not only 𝑔𝑡 = ∇ ℓ𝑡(𝑋𝑡)). Using this kind of feedback, we
can compute the gradient of the last received function at the current point
immediately,3 and use it as a guess for the current function’s gradient. Formally,
we make the following assumption.

Assumption 4.1. The loss functions are differentiable and the feedback associ- Full-information
feedbackated to time step 𝑡 is the whole vector field 𝑉𝑡 = ∇ ℓ𝑡 , the evaluation of which at

any point 𝑥 ∈ R𝑑 is immediate and does not induce any delay.

The requirement of having access to the entire𝑉𝑡 = ∇ ℓ𝑡 is particularly satisfied
in the “full-information” online learning model as we discussed in Remark 2.1.
With this assumption, we can then set 𝑔̃𝑡 = 𝑉𝑡(𝑋𝑡) where 𝑉𝑡 is some past vector
field (i.e., 𝑉𝑡 = 𝑉𝑠 for some 𝑠 ∈ 𝒮𝑡). However, even in this case, the point where
the gradient is evaluated is still different from the point that is played (𝑋𝑡 versus
𝑋𝑡+ 1

2
). We thus also need the gradient fields to be Lipschitz continuous to

ensure that the difference ∥𝑔𝑡 − 𝑔̃𝑡 ∥ is small.

Assumption 4.2. There exists 𝐿 > 0 such that for all 𝑡 ∈ N, 𝑉𝑡 is 𝐿-Lipschitz Lipschitz continuity
of gradient fieldscontinuous.

Given Assumptions 4.1 and 4.2, we are now in a position to formulate a regret
bounds for a choice of 𝑔̃𝑡 that can be relevant in many applications.

Theorem 4.7. Suppose that Assumptions 2.1, 4.1 and 4.2 hold and that the maximum Regret bound for
DOptDA with guess
evaluated at 𝑋𝑡

delay is bounded by 𝜏. Take 𝑔̃𝑡 = 𝑉𝑡(𝑋𝑡), 𝜂𝑡+1 ≤ 𝜂𝑡 , (2𝜏 + 1)𝜂𝑡 ≤ 𝛾𝑡 , and 2𝛾2
𝑡 𝐿

2 ≤ 1.
Then, the regret of (DOptDA) (evaluated at the points 𝑋 3

2
, . . . ,𝑋𝑇+ 1

2
) satisfies

Reg𝑇(𝑧) ≤
∥𝑧 −𝑋1∥2

2𝜂𝑇
+

𝑇∑
𝑡=1

𝛾𝑡 ∥𝑉𝑡(𝑥𝑡) −𝑉𝑡(𝑥𝑡)∥2.

Proof. The proof is immediate from Theorem 4.3. Indeed,

∥𝑉𝑡(𝑋𝑡+ 1
2
) −𝑉𝑡(𝑋𝑡)∥2 ≤ 2∥𝑉𝑡(𝑋𝑡+ 1

2
) −𝑉𝑡(𝑋𝑡)∥2 + 2∥𝑉𝑡(𝑋𝑡) −𝑉𝑡(𝑋𝑡)∥2.

3 i.e., without any delay, the delays considered here are either due to communication between agents
or inherent to the feedback mechanism.
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Then, using the Lipschitz continuity of𝑉𝑡 and the condition 2𝛾2
𝑡 𝐿

2 ≤ 1, we have:

2∥𝑉𝑡(𝑋𝑡+ 1
2
) −𝑉𝑡(𝑋𝑡)∥2 ≤ 2𝐿2∥𝑋𝑡+ 1

2
−𝑋𝑡 ∥2 = 2𝛾2

𝑡 𝐿
2∥𝑉𝑡(𝑋𝑡)∥2 ≤ ∥𝑉𝑡(𝑋𝑡)∥2.

In other words, we have proven ∥𝑔𝑡 − 𝑔̃𝑡 ∥2 − ∥ 𝑔̃𝑡 ∥2 ≤ 2∥𝑉𝑡(𝑋𝑡) −𝑉𝑡(𝑋𝑡)∥2 and
the bound follows. □

Theorem 4.7 reduces the problem of choosing an adequate vector 𝑔̃𝑡 to that
of choosing a vector field 𝑉𝑡 which approximates well 𝑉𝑡 . In our setup of full
gradient feedback with a loss sequence evolving slowly over time, one natural
option is reuse some recent function for the constitution of 𝑉𝑡 . Since we are in
a distributed setting, the evolution of the loss functions may have both global
and local components. We discuss these two typical cases below.4

Example 4.1 (Global variation). If the loss functions vary slowly following aExamples choice of the
vector field 𝑉𝑡 global trend, we can timestamp every gradient field which makes it possible to

choose 𝑉𝑡 = 𝑉𝑡 where 𝑡 = max𝒮𝑡 , i.e., the active agent 𝑖(𝑡) uses the most recent
data available at hand (independent of its source) when playing 𝑋𝑡 . This would
however require the agents to share the whole vector field 𝑉𝑡 .
Example 4.2 (Local variation). If the loss functions vary slowly for all the
agents, the active agent 𝑖(𝑡) can choose the last feedback corresponding to a
point it played, i.e., 𝑉𝑡 = 𝑉𝑡 where 𝑡 = max{𝑠 ∈ 𝒮𝑡 : 𝑖(𝑠) = 𝑖(𝑡)}. Compared
to Example 4.1, we gain in terms of both data privacy and communication
efficiency since only the gradients 𝑔𝑡 need to be shared among the agents in
this scenario.

Denoting the total deviation of our approximation by 𝐶𝑇 =
∑𝑇
𝑡=1∥𝑉𝑡(𝑥𝑡) −Regret with constant

learning rates 𝑉𝑡(𝑥𝑡)∥2, Theorem 4.7 guarantees a regret of 𝒪(𝑅2𝜏𝐿 + 𝑅
√
𝜏𝐶𝑇) for suitably

chosen constant learning rate sequences 𝜂𝑡 ≡ 𝜂 and 𝛾𝑡 ≡ 𝛾. In both Examples 4.1
and 4.2, 𝐶𝑇 encapsulates the temporal variation of the loss sequence. As such,
we have effectively demonstrated how (DOptDA) can leverage this temporal
variation to its advantage, providing significant benefits over traditional methods
in scenarios where the loss sequence exhibits slow variation over time.

Remark 4.3. When there is no delay, our algorithm simply uses 𝑉𝑡 = 𝑉𝑡−1 andA remark on the name
of the algorithm hence 𝑔̃𝑡 = 𝑉𝑡−1(𝑋𝑡). The evaluation of the gradient at 𝑋𝑡 makes it closer to the

dual extrapolation algorithm of Nesterov [211], which is itself closely related to
the extra-gradient method of Korpelevich [160]. On the other hand, the term
“optimistic” is more frequently used to refer to the case where 𝑉𝑡−1 is evaluated
at 𝑋𝑡− 1

2
. We discuss this point in more detail in Section 5.3.

4.3.2 Adaptive Learning Rate

In general, the deviation 𝐶𝑇 is not known in advance, and hence neither is the
optimal choice of 𝜂 and 𝛾 that allows us to obtain the aforementioned regret
guarantee. To circumvent this issue, we can again design an adaptive learning
rate schedule in the spirit of (AdaGrad-norm). For the sake of simplicity, we
assume for the following result that the agents have access to 𝜏 a bound on the
delay, 𝐺 a bound on the magnitude of the loss gradient, and 𝐿 a bound on the
Lipschitz modulus of these gradients.

4 In the two cases, we may simply set 𝑉𝑡 = 0 when the corresponding set is empty.
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Theorem 4.8. Suppose that Assumptions 2.1, 3.2, 4.1 and 4.2 hold and that the Regret bound for
DOptDA with
adaptive learning rate

maximum delay is bounded by 𝜏. Assume further that both 𝑉𝑡 and 𝑉𝑡 have their norm
bounded by 𝐺. Then, running (DOptDA) with 𝑔̃𝑡 = 𝑉𝑡(𝑋𝑡),

𝛾𝑡 = min
©­­­­«

𝑅
√

4𝜏 + 1

2
√(∑

𝑠∈𝒮𝑡 ∥𝑉𝑠(𝑋𝑠) −𝑉𝑠(𝑋𝑠)∥2 + 4𝐺2(𝜏 + 1)
) , 1√

2𝐿

ª®®®®¬
,

and

𝜂𝑡 = min
©­­­­«

𝑅

2
√
(4𝜏 + 1)

(∑
𝑠∈𝒮𝑡 ∥𝑉𝑠(𝑋𝑠) −𝑉𝑠(𝑋𝑠)∥2 + 4𝐺2(3𝜏 + 1)

) , 1√
2𝐿(4𝜏 + 1)

ª®®®®¬
guarantees for all 𝑧 ∈ 𝒳 such that ∥𝑧 −𝑋1∥ ≤ 𝑅 and all 𝑇 ∈ N that

Reg𝑇(𝑧) ≤ max
(√

2𝑅2𝐿(4𝜏 + 1), 2𝑅
√
(4𝜏 + 1)(𝐶𝑇 + 4𝐺2(3𝜏 + 1))

)
.

Remark 4.4. At the price of a worse dependence on the constants, we can use the
difference ∥𝑉𝑡(𝑋𝑡+ 1

2
) −𝑉𝑡(𝑋𝑡)∥ instead of ∥𝑉𝑡(𝑋𝑡) −𝑉𝑡(𝑋𝑡)∥ in the computation

of the learning rates, which prevents us from an extra evaluation of the vector
field; see e.g., [140, Corollary 9].

Similar to before, we require Assumption 3.2 here to get a practical data-
dependent guarantee in the multi-agent setup. Compared to the optimal regret
that can be achieved with prior knowledge of 𝐶𝑇 , the bound of Theorem 4.8 is
only degraded by a constant factor. Implementing this learning rate schedule
necessitates the computation of both 𝛾𝑡 and 𝜂𝑡 , which in turn requires the agents
to relay ∥𝑉𝑡(𝑋𝑡) −𝑉𝑡(𝑋𝑡)∥ in addition to 𝑔𝑡 = 𝑉𝑡(𝑋𝑡+ 1

2
) after receiving 𝑉𝑡 .

In order prove Theorem 4.8, we generalize both Theorem 4.3 and Theorem 4.7
to the case where the learning rate is non-increasing along a faithful permutation.

Proposition 4.9. Suppose that Assumption 2.1 holds and that the maximum delay
is bounded by 𝜏. Consider a faithful permutation 𝜋 and let (DOptDA) be run
with learning rate sequences (𝜂𝑡)𝑡∈[𝑇], (𝛾𝑡)𝑡∈[𝑇] satisfying 𝜂𝜋(𝑡+1) ≤ 𝜂𝜋(𝑡) and (4𝜏 +
1)max{𝑠:|𝑠−𝑡 |≤𝜏} 𝜂𝑠 ≤ 𝛾𝑡 for all 𝑡. Then, the regret of the algorithm (evaluated at the
points 𝑋 3

2
, . . . ,𝑋𝑇+ 1

2
) satisfies

Reg𝑇(𝑧) ≤
∥𝑧 −𝑋1∥2

2𝜂𝜋(𝑇)
+

𝑇∑
𝑡=1

𝛾𝑡
2

(
∥𝑔𝑡 − 𝑔̃𝑡 ∥2 − ∥ 𝑔̃𝑡 ∥2

)
.

Proof. We define the virtual iterates

𝑋𝑡 = 𝑋1 − 𝜂𝜋(𝑡)
𝑡−1∑
𝑠=1

𝑔𝜋(𝑠).

We then decompose

⟨𝑔𝑡 ,𝑋𝜋(𝑡)+ 1
2
− 𝑧⟩ = ⟨𝑔𝑡 ,𝑋𝜋(𝑡)+ 1

2
−𝑋𝑡+1⟩ + ⟨𝑔𝑡 ,𝑋𝑡+1 − 𝑧⟩.
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Following closely the proof of Theorem 4.3, we obtain

Reg𝑇(𝑧) ≤
∥𝑧 −𝑋1∥2

2𝜂𝜋(𝑇)
+

𝑇∑
𝑡=1

𝛾𝑡
2

(
∥𝑔𝑡 − 𝑔̃𝑡 ∥2 − ∥ 𝑔̃𝑡 ∥2

)
+ ©­«−

𝛾𝜋(𝑡)
2 +

(card(𝒰𝜋
𝑡 ) + 1)𝜂𝜋(𝑡)
2 +

∑
𝜋(𝑡)∈𝒰𝜋

𝑙

𝜂𝜋(𝑙)
2

ª®¬ ∥𝑔𝜋(𝑡)∥2.

Invoking Proposition 3.8, we know that [𝑡]𝜋 \ 𝒮𝜋(𝑡) ⊆ {𝜋(𝑡) − 𝜏, ...,𝜋(𝑡) + 𝜏}.
Given that 𝜋(𝑡) ∉ [𝑡 − 1]𝜋, this implies 𝒰𝜋

𝑡 ⊆ {𝜋(𝑡) − 𝜏, ...,𝜋(𝑡) − 1} ∪{𝜋(𝑡) +
1, ...,𝜋(𝑡) + 𝜏}. Therefore, card(𝒰𝜋

𝑡 ) ≤ 2𝜏 and if 𝜋(𝑡) ∈ 𝒰𝜋
𝑙

then |𝜋(𝑡) −𝜋(𝑙)| ≤ 𝜏
while 𝜋(𝑡) ≠ 𝜋(𝑙), which also shows card({𝑙 : 𝜋(𝑡) ∈ 𝒰𝜋

𝑙
}) ≤ 2𝜏. Accordingly,

(card(𝒰𝜋
𝑡 ) + 1)𝜂𝜋(𝑡)
2 +

∑
𝜋(𝑡)∈𝒰𝜋

𝑙

𝜂𝜋(𝑙)
2 ≤

(4𝜏 + 1)max{𝑠:|𝑠−𝜋(𝑡)|≤𝜏} 𝜂𝑠
2 .

With the assumption 𝛾𝑡 ≥ (4𝜏 + 1)max{𝑠:|𝑠−𝑡 |≤𝜏} 𝜂𝑠 , we effectively deduce

Reg𝑇(𝑧) ≤
∥𝑧 −𝑋1∥2

2𝜂𝜋(𝑇)
+

𝑇∑
𝑡=1

𝛾𝑡
2

(
∥𝑔𝑡 − 𝑔̃𝑡 ∥2 − ∥ 𝑔̃𝑡 ∥2

)
.

This proves the theorem. □

Proposition 4.10. Suppose that Assumptions 2.1, 4.1 and 4.2 hold and that the
maximum delay is bounded by 𝜏. Consider a faithful permutation 𝜋 and take 𝑔̃𝑡 =
𝑉𝑡(𝑋𝑡), 𝜂𝜋(𝑡+1) ≤ 𝜂𝜋(𝑡), (4𝜏 + 1)max{𝑠:|𝑠−𝑡 |≤𝜏} 𝜂𝑠 ≤ 𝛾𝑡 , and 2𝛾2

𝑡 𝐿
2 ≤ 1. Then, the

regret of (DOptDA) (evaluated at the points 𝑋 3
2
, . . . ,𝑋𝑇+ 1

2
) satisfies

Reg𝑇(𝑧) ≤
∥𝑧 −𝑋1∥2

2𝜂𝜋(𝑇)
+

𝑇∑
𝑡=1

𝛾𝑡 ∥𝑉𝑡(𝑋𝑡) −𝑉𝑡(𝑋𝑡)∥2.

Proof. This is proved by applying Proposition 4.9 and bounding the term
∥𝑔𝑡 − 𝑔̃𝑡 ∥2 − ∥ 𝑔̃𝑡 ∥2 as in the proof of Theorem 4.7. □

Thanks to Propositions 4.9 and 4.10, we can now provide regret guarantee
for the case where the learning rate is not non-increasing. In particular, this
enables us to prove Theorem 4.8.

Proof of Theorem 4.8. Let 𝐶𝑡 =
∑
𝑠∈𝒮𝑡 ∥𝑉𝑠(𝑋𝑠) −𝑉𝑠(𝑋𝑠)∥2. We consider a permu-

tation 𝜋 such that (i) if 𝐶𝑠 < 𝐶𝑡 then 𝜋−1(𝑠) < 𝜋−1(𝑡); (ii) if 𝐶𝑠 = 𝐶𝑡 and 𝑠 ∈ 𝒮𝑡
then 𝜋−1(𝑠) < 𝜋−1(𝑡). The sequence (𝐶𝑡)𝑡 is non-decreasing along 𝜋 (see e.g.,
proof of Proposition 3.5) and accordingly the learning rate sequence (𝜂𝑡)𝑡∈[𝑇] is
non-increasing along 𝜋. Moreover, if 𝑠 ∈ 𝒮𝑡 , we have 𝒮𝑠 ⊆ ℱ 𝑖(𝑡)

𝑠 ⊆ 𝒮𝑡 thanks to
Assumption 3.2. This implies 𝐶𝑠 ≤ 𝐶𝑡 ; subsequently 𝜋−1(𝑠) < 𝜋−1(𝑡). The above
shows that 𝜋 is a faithful permutation. The condition 2𝛾2

𝑡 𝐿
2 ≤ 1 is automatically

satisfied by the definition of 𝛾𝑡 . To apply Proposition 4.10, the last missing piece
is to prove (4𝜏 + 1)max{𝑠:|𝑠−𝑡 |≤𝜏} 𝜂𝑠 ≤ 𝛾𝑡 . This boils down to showing that

𝐶𝑠 + 4𝐺2(3𝜏 + 1) ≥ 𝐶𝑡 + 4𝐺2(𝜏 + 1) (4.7)
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for all 𝑠 ∈ [𝑇] ∩{𝑡 − 𝜏, ..., 𝑡 + 𝜏}. The maximum delay being bounded by 𝜏, we
have | card(𝒮𝑠) − card(𝒮𝑡)| ≤ |𝑠 − 𝑡 | + 𝜏. By bounding each ∥𝑉𝑙(𝑋𝑙) −𝑉𝑙(𝑋𝑙)∥2
by 4𝐺2, we indeed prove (4.7) for 𝑠 such that |𝑠 − 𝑡 | ≤ 𝜏.

With all this at hand, applying Proposition 4.10 gives

Reg𝑇(𝑧) ≤
∥𝑧 −𝑋1∥2

2𝜂𝜋(𝑇)
+

𝑇∑
𝑡=1

𝛾𝑡 ∥𝑉𝑡(𝑋𝑡) −𝑉𝑡(𝑋𝑡)∥2.

As the maximum delay is bounded by 𝜏 and the gradients are bounded by 𝐺,
we have 𝐶𝑡 + 4𝐺2(𝜏 + 1) ≥ 𝐶𝑡 . Invoking Lemma 2.6 then gives

Reg𝑇(𝑧) ≤
∥𝑧 −𝑋1∥2

2𝜂𝜋(𝑇)
+ 𝑅
√

4𝜏 + 1
2

𝑇∑
𝑡=1

1√
𝐶𝑡
∥𝑉𝑡(𝑋𝑡) −𝑉𝑡(𝑋𝑡)∥2

≤ 𝑅2

2𝜂𝜋(𝑇)
+ 𝑅

√
(4𝜏 + 1)𝐶𝑇 .

(4.8)

We bound the second term by

𝑅
√
(4𝜏 + 1)𝐶𝑇 ≤ 𝑅

√
(4𝜏 + 1)(𝐶𝑇 + 4𝐺2(3𝜏 + 1)) ≤ 𝑅2

2𝜂𝑇
≤ 𝑅2

2𝜂𝜋(𝑇)
. (4.9)

Combining (4.8) and (4.9) we get Reg𝑇(𝑧) ≤ 𝑅2/𝜂𝜋(𝑇). We can conclude by using
the definition of 𝜂𝜋(𝑇) and 𝐶𝜋(𝑇) ≤ 𝐶𝑇 . □
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ADAPTIVE LEARNING IN GAMES





5
FROM ONLINE LEARNING TO LEARNING IN GAMES

In this part of the thesis, we shift our focus to the specific setup of learning
in games. Unlike Part i, where agents deal with arbitrary feedback and share

a common objective, here the feedback arises from the intricate interaction
among agents, each possessing their own distinct goals. This framework aptly
models numerous real-world scenarios characterized by conflicting interests
among agents, such as financial markets, traffic routing problems, and online
auctions [90, 166, 217].

Inherent to this setup is a nontrivial interdependence between agents, where
the optimal strategy of each player is intricately tied to those of others. This
new context presents its own unique set of challenges that we strive to address
in this part. Notably, we opt to set aside the complexity introduced by delays,
which was the core focus of the first part of this manuscript. Although a few
studies, such as those by Huang and Hu [132] and by Zhou et al. [295], have
made commendable attempts to incorporate delays into learning in games, the
addition of adaptive learning rates, a key pillar of this thesis as mentioned in
Chapter 1, greatly amplifies this complexity.

In this chapter, we aim to provide an introductory overview of the learning-
in-games framework. We elaborate on the objectives, clarify the underlying
assumptions, and offer detailed discussions on the pivotal role of optimistic
algorithms in this context. Further, we illuminate the connection between
learning in games and variational inequalities. This chapter thus forms a
comprehensive base, preparing us for the more intricate discussions and
analyses that follow in the subsequent chapters.

outline of this chapter. This chapter is organized as follows. In Section 5.1,
we introduce the framework of learning in games that forms the basis of our
study. We also outline several important notions and assumptions that are
essential to our analysis. Subsequently, we present variational inequalities
and draw parallels between learning in games and variational inequalities in
Section 5.2. Finally, we zoom in on optimistic algorithms and highlight their
advantages in the realm of learning in games in Section 5.3, thereby setting the
stage for our work in the forthcoming chapters.

5.1 learning in games

Broadly speaking, a game is a mathematical model that captures the strategic
interactions between multiple decision-makers, or players. Games can take
various forms depending on the rules of play and information available to the
players. For instance, games can be classified as extensive-form or normal-form
games, symmetric or asymmetric games, and games with perfect or imperfect
information. In this thesis, we focus exclusively on normal-form games with
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At each round 𝑡 = 1, 2, . . ., each player 𝑖 ∈ 𝒩

• Plays an action 𝑥 𝑖𝑡 ∈ 𝒳 𝑖

• Suffers loss ℓ 𝑖(𝑥1
𝑡 , . . . , 𝑥

𝑁
𝑡 ) and receives corresponding feedback

Figure 5.1: The learning-in-games framework.

continuous action spaces and a finite set of players. We refer to these games as
continuous games and provide the formal definition below.

Definition 5.1 (Continuous games). A continuous game is a normal-form gameContinuous games
played by a finite set of players𝒩 B 1, . . . ,𝑁 . Each player 𝑖 ∈ 𝒩 is associated
with a closed convex action set 𝒳 𝑖 ⊆ R𝑑𝑖 and a loss function ℓ 𝑖 : 𝔛→ R, where
𝔛 B

>𝑁
𝑖=1𝒳 𝑖 denotes the game’s joint action space.

Remark 5.1. In the literature of game theory, it is more common to use words
such as reward, utility, or payoff instead of loss. In that case, the loss of a player
should be the opposite of these quantities.

Continuous games are natural extensions of games with discrete action space.
They arise in a variety of real-world problems, including resource allocation,
network routing, and deep learning. More concretely, typical examples of
continuous games include mixed extension of finite games, auctions, markets,
saddle-point problems, and interactions between multiple neural networks
such as generative adversarial networks (GANs) [101]. In this part of the thesis,
we are going to focus on the “learning” aspect in continuous games. We will
consider repeated interactions between players and investigate the outcome of
these interactions in various situations.

notations. Throughout the following, any quantity associated to player 𝑖
(resp., all players but player 𝑖) is by default written with superscript 𝑖 (resp. −𝑖),
and any ensemble of actions or functions whose definition involves multiple
players is typeset in bold. In particular, we write x = (𝑥 𝑖 , x−𝑖) ∈ 𝔛 for the action
profile of all players, where 𝑥 𝑖 and x−𝑖 respectively denote the action of player 𝑖
and the joint action of all players other than 𝑖.

5.1.1 Interaction Model, Regret, and Equlibrium

In the multi-agent learning model that we consider, players interact with eachLearning in games
other repeatedly via a continuous game. As shown in Fig. 5.1, during each
round 𝑡 of the process, each player 𝑖 selects an action 𝑥 𝑖𝑡 from their action set 𝒳 𝑖
and suffers a loss ℓ 𝑖(x𝑡). At the end of the round, the players receive as feedback
an estimate of their individual loss gradient 1

𝑔 𝑖𝑡 ≈ 𝑉 𝑖(x𝑡) B ∇𝑖 ℓ 𝑖(𝑥 𝑖𝑡 , x−𝑖𝑡 ),

and the process repeats. Concretely, we have 𝑔 𝑖𝑡 = 𝑉
𝑖(x𝑡) in the case of perfect

feedback (Chapter 6), and we discuss the case of stochastic feedback in Chapters 7
and 8 (see Assumption 7.1).

1 Technically speaking, we may sometimes need to define 𝑉 𝑖 as a Lipschitz continuous selection of
subgradient of ℓ 𝑖(·, x−𝑖𝑡 ). Our analysis still holds in this case.
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From the viewpoint of a single player 𝑖 ∈ 𝒩 , the loss of round 𝑡 is exactly Regret
ℓ 𝑖(·, x−𝑖𝑡 ). Therefore, the notion of regret (Definition 2.1) can be readily translated
into this game-theoretic setup as

Reg𝑖𝑇(𝑧
𝑖) =

𝑇∑
𝑡=1

ℓ 𝑖(𝑥 𝑖𝑡 , x−𝑖𝑡 ) − ℓ 𝑖(𝑧 𝑖 , x−𝑖𝑡 ),

where 𝑧 𝑖 ∈ 𝒳 𝑖 is the fixed comparator. It is also convenient to define the regret
with respect to a fixed comparator set𝒵 𝑖 ⊆ 𝒳 𝑖 as

Reg𝑖𝑇(𝒵
𝑖) B max

𝑧 𝑖∈𝒵 𝑖
Reg𝑖𝑇(𝑧

𝑖).

In fact, in the subsequent sections, we will mainly state our regret bounds using
𝒪 notation, and we thus prefer to provide directly the bound with respect to an
entire set.2 We say that a sequence of play 𝑥 𝑖𝑡 of player 𝑖 incurs no regret (at x−𝑖𝑡 )
if Reg𝑖𝑇(𝒵 𝑖) = 𝑜(𝑇) for every (compact) set of alternative strategies.

Besides the online learning interpretation of regret as a minimal performance No-regret and
coarse-correlated
equilibrium

guarantee, it is well known that the empirical frequency of no-regret play
in finite games converges to the set of coarse correlated equilibriums (CCEs)
—also known as the game’s Hannan set [108, 110]. This provides yet another
motivation to study algorithms that provably achieve low regret. Nonetheless,
the aforementioned convergence result is to be taken with a grain of salt. First,
the type of convergence involved does not concern the actual, day-to-day play
but the empirical frequency of play. Moreover, the game’s CCEs set may contain
elements that fail even the most basic rationalizability axioms. In particular,
Viossat and Zapechelnyuk [272] constructed a simple two-player game that
admits CCEs supported exclusively on strictly dominated strategies.

In this regard, it is more favorable to provide guarantee on the optimality of Optimality at a single
roundactual the iterate of play of each round. One such metric is the gap function.

Definition 5.2 (Gap function). Let 𝑖 ∈ 𝒩 and 𝒵 𝑖 ⊆ 𝒳 𝑖 . The gap function of
player 𝑖 with respect to the set𝒵 𝑖 is defined by

Gap𝑖𝒵 𝑖 (x) B ℓ 𝑖(𝑥 𝑖 , x−𝑖) − min
𝑧 𝑖∈𝒵 𝑖

ℓ 𝑖(𝑧 𝑖 , x−𝑖).

In words, it is the best that the player could have gained by switching to any
other strategy in𝒵 𝑖 when all players play x.

The gap function evaluated at a played point 𝑥𝑡 is sometimes referred to as
instantaneous regret or simple regret in the literature. However, instead of
providing a bound on these quantities, we instead focus on another closely
related concept, that of Nash equilibrium.

Definition 5.3 (Nash equilibrium). A Nash equilibrium is strategy profile from Nash equilibrium
which no player has incentive to deviate unilaterally. Formally, a point x★ ∈ 𝒳
is a Nash equilibrium if for all 𝑖 ∈ 𝒩 and all 𝑥 𝑖 ∈ 𝒳 𝑖 , ℓ 𝑖(𝑥 𝑖★, x−𝑖★ ) ≤ ℓ 𝑖(𝑥 𝑖 , x−𝑖★ ).

Nash equilibrium is without doubt the most widely spread solution concept
in game theory. By definition we see that it corresponds exactly to the point
x★ at which Gap𝑖𝒳 𝑖 (x★) = 0 for every 𝑖 ∈ 𝒩 . In the following, we write 𝔛★ for
the set of Nash equilibria of the game. The non-emptiness of 𝔛★ is guaranteed

2 In contrast, we made all constants in the regret bounds explicit in Part i and hence it is straightforward
to derive a bound on Reg𝑖

𝑇
(𝒵 𝑖) from these bounds.
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when 𝔛 is compact and the loss functions are continuous on 𝔛 and quasi-convex
with respect to the players’ own variables [62, 75, 96, 204].

5.1.2 Adversarial Opponents and Self-Play

In the model we just described, each player can exhibit diverse behaviors, which
in turn results in interactions between players that can be arbitrarily complex.
For the sake of analysis, we will mainly focus on the following two situations.

• Playing against adversarial opponents: In this case, we aim to provideAdversarial opponents
regret guarantee for a single player against arbitrary opponents. This
brings us back to the online adversarial learning setup that we studied in
Part i. The goal here is to show that the algorithm in question exhibits no
regret as long as the feedback sequence is bounded.

• Self-play: A more interesting scenario is when all the players are opti-Self-play
mizing their own losses. In particular, we consider the situation when
all the players adopt the same algorithm, or more generally, when all the
players adopt an algorithm that satisfies a certain criteria.

In the latter case, the intricate interplay between no-regret and convergence
to Nash equilibrium has attracted extensive attention in the literature; see e.g.,
[22, 82, 194, 273]. To shed light on this topic, we present below a proposition that
summarizes some relations between regret, gap function, and Nash equilibrium.

Proposition 5.1. Assume that the players’ loss functions are continuous. Then,Relation between
regret, gap function,

and Nash equilibrium (a) If the players stay at a Nash equilibrium, the players have no regret.

(b) If the the sequence of play (x𝑡)𝑡∈N converges to a Nash equilibrium, then Gap𝑖𝒵 𝑖 (x𝑡)
converges to a non-positive number for any 𝑖 ∈ 𝒩 and compact set𝒵 𝑖 ⊆ 𝒳 𝑖 .

(c) If the sequence of play (x𝑡)𝑡∈N converges and the players have no regret, then the
point that (x𝑡)𝑡∈N converges to must be a Nash equilibrium.

Proof. Point (a) is obvious. We prove the other two points below.
(b) It is known that (x𝑡)𝑡∈N converges to a Nash equilibrium x★. Moreover, the

continuity of Gap𝑖𝒵 𝑖 is ensured by Berge’s maximum theorem provided that𝒵 𝑖

is compact. It follows immediately that lim𝑡→+∞Gap𝑖𝒵 𝑖 (x𝑡) = Gap𝑖𝒵 𝑖 (x★) ≤ 0.
(c) Let us write x∞ for the limit of (x𝑡)𝑡∈N. By the no-regret assumption, for

all 𝑖 ∈ 𝒩 and 𝑧 𝑖 ∈ 𝒳 𝑖 , we have
∑𝑇
𝑡=1 ℓ

𝑖(x𝑡) − ℓ 𝑖(𝑧 𝑖 , x−𝑖𝑡 ) = 𝑜(𝑇), and accordingly
lim inf𝑡→+∞ ℓ 𝑖(x𝑡) − ℓ 𝑖(𝑧 𝑖 , x−𝑖𝑡 ) ≤ 0. On the other hand, by continuity of ℓ 𝑖 , we
have

lim
𝑡→+∞

ℓ 𝑖(x𝑡) − ℓ 𝑖(𝑧 𝑖 , x−𝑖𝑡 ) = ℓ 𝑖(x∞) − ℓ 𝑖(𝑥 𝑖𝑡 , x−𝑖∞ ).

In consequence, ℓ 𝑖(x∞) − ℓ 𝑖(𝑧 𝑖 , x−𝑖∞ ) ≤ 0 for all 𝑧 𝑖 ∈ 𝒳 𝑖 and this is true for all
𝑖 ∈ 𝒩 . This shows that x∞ is a Nash equilibrium by definition. □

Despite the positive results stated in Proposition 5.1, it is important to keep inNo-regret does not
imply convergence mind that no-regret algorithms do no converge in general, and non-convergent

examples are prevalent. This ranges from the appearance of cycles [56, 82, 195]
to transition into chaos [44, 218]. More fundamentally, Hart and Mas-Colell
[111] showed that no uncoupled dynamics is guaranteed to converge to a Nash
equilibrium in all games. This aligns with the various negative complexity
results for finding a Nash equilibrium [54, 58, 237].

In the light of the above, in this thesis we mostly restrict our attention to
games for which more favorable guarantees can be derived.
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5.1.3 Assumptions on the Underlying Game

Now that we have formulated the model in question, we move on to discussing
the key assumptions that underpin our analysis.

Assumption 5.1 (Convexity). For all 𝑖 ∈ 𝒩 , ℓ 𝑖(·, x−𝑖) is convex at all x−𝑖 . Convexity

As discussed in Part i, the convexity requirement in Assumption 5.1 is of
paramount importance in the online learning literature, as it enables us to
transform iterative gradient bounds to bona fide regret guarantees (Lemma 2.1).
Moreover, convexity also plays an essential role in game theory provided that
it contributes to the establishment of generalizations of the minimax theorem
[62, 235] and simplifies the computation of equilibria.

Nonetheless, the convexity assumption alone is not sufficient for establishing
the equilibrium convergence results. The algorithms that we study in this
part make use of the slow-variation property of the feedback sequence that we
explored in Chapter 4. We thus make the following regularity assumption.

Assumption 5.2 (Smoothness). For all 𝑖 ∈ 𝒩 , ℓ 𝑖(·, x−𝑖) is differentiable at all x−𝑖 Smoothness
and the individual gradient of each player 𝑉 𝑖 = ∇𝑥 𝑖 ℓ 𝑖 is 𝐿-Lipschitz continuous
with respect to the Euclidean distance.

Assumption 5.2 is helpful for deriving improved regret bound, that is, the
bound that grows slower than the standard 𝒪(

√
𝑇) rate. As for the convergence

result per se, we also rely on an additional stability assumption.

Definition 5.4 (Variational Stability). A continuous game is variationally stable if Variational stability
the set 𝔛★ of Nash equilibria of the game is nonempty, the individual gradient
field 𝑉 𝑖 = ∇𝑥 𝑖 ℓ 𝑖 is well-defined for all 𝑖 ∈ 𝒩 , and

⟨V(x), x− x★⟩ =
𝑁∑
𝑖=1
⟨𝑉 𝑖(x), 𝑥 𝑖 − 𝑥 𝑖★⟩ ≥ 0 for all x ∈ 𝔛, x★ ∈ 𝔛★.

The game is strictly variationally stable if the above inequality holds as a strict
inequality whenever x ∉ 𝔛★.

Assumption 5.3 (Variational Stability). The underlying game is variationally
stable.

Variational stability can be seen as a variant of the convexity assumption
for multi-agent environments, where unilateral convexity assumptions do not
suffice to give rise to a learnable game—for example, finite games are unilaterally
linear, but finding a Nash equilibrium of a finite game is a PPAD-complete
problem [54]. Our equilibrium convergence analyses would thus be focused on
games that satisfy the variational stability condition. Some important families
of games that are covered by this criterion are monotone games (i.e., V is
monotone), which in their turn include convex-concave zero-sum games, zero-
sum polymatrix games, and Cournot oligopolies. For the sake concreteness, let
us provide two detailed examples below.
Example 5.1 (Zero-sum polymatrix games [34, 124]). Polymatrix games are a Zero-sum polymatrix

gamesclass of finite games in which the loss of each player is determined by their
pairwise interactions between other players. Each interaction is represented as
an a bimatrix game, and the total loss for each player is the sum of the losses
from these bimatrix games. Formally, for a mixed profile x, we have

ℓ 𝑖(x) =
∑
𝑗≠𝑖

(𝑥 𝑖)⊤𝐴𝑖 𝑗𝑥 𝑗 ,
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where 𝐴𝑖 𝑗 is the matrix that dictates the loss of player 𝑖 in the interaction with
player 𝑗. A special case of polymatrix games is zero-sum polymatrix games. In
these games, each interaction corresponds to a zero-sum bimatrix game, that
is, 𝐴𝑖 𝑗 +𝐴 𝑗𝑖 = 0. These games, when considered as continuous games over the
mixed profiles, are monotone games.
Example 5.2 (Kelly auctions [151]). Consider an auction of 𝐾 splittable re-Kelly auctions
sources among 𝑁 bidders (players). For the 𝑘-th resource, let 𝑞𝑘 and 𝑐𝑘 denote
respectively its available quantity and the entry barrier for bidding on it; for the
𝑖-th bidder, let 𝑏 𝑖 and 𝑟 𝑖 denote respectively the bidder’s budget and marginal
gain from obtaining a unit of resources. During play, each bidder submits
a bid 𝑥 𝑖

𝑘
for each resource 𝑘 with the constraint

∑𝐾
𝑘=1 𝑥

𝑖
𝑘
≤ 𝑏 𝑖 . Resources are

then allocated to bidders proportionally to their bids, so the 𝑖-th player gets
𝜌𝑖
𝑘
= 𝑞𝑘𝑥

𝑖
𝑘
/(𝑐𝑘 +

∑𝑁
𝑖=1 𝑥

𝑖
𝑘
) units of the 𝑘-th resource. The utility of player 𝑖 ∈ 𝒩

is given by 𝑢 𝑖(x) = ∑𝐾
𝑘=1(𝑟 𝑖𝜌𝑖𝑘 − 𝑥

𝑖
𝑘
), and the loss function is ℓ 𝑖 = −𝑢 𝑖 . This game

is monotone as shown by Bravo et al. [27].
Beyond monotonicity, variational stability is still satisfied when V is only

pseudo-monotone in the sense of Karamardian [147]—that is, for all x, x′ ∈ 𝔛,
we have

⟨V(x), x′ − x⟩ ≥ 0 implies ⟨V(x′), x′ − x⟩ ≥ 0.

As for an example that is not even pseudo-monotone but verifies the variational
stability assumption, we refer the readers to [196].

5.2 variational inequalities

In this section, we delve into the concept of variational inequality (VI), which
provides a unifying framework for understanding learning in convex games
and extends its applicability to a variety of other domains. By drawing a
connection between learning in games and VIs, we aim to demonstrate the
broader relevance and versatility of the techniques and insights obtained from
our study of online learning in convex games.

5.2.1 Problem Formulation

We start by introducing the VI problem. For that, we consider 𝒳 a nonempty
closed convex subset of R𝑑, and 𝑉 : 𝒳 → R𝑑 a single-valued operator on 𝒳.

Definition 5.5 (Variational inequality). The variational inequality (VI) problemStampacchia
variational inequality associated to operator 𝑉 and feasible set 𝒳 is stated as:

Find 𝑥★ ∈ 𝒳 such that ⟨𝑉(𝑥★), 𝑥 − 𝑥★⟩ ≥ 0 for all 𝑥 ∈ 𝒳. (VI)

A schematic representation of the condition in (VI) is presented in Fig. 5.2.
In words, we aim to find 𝑥★ such that the opposite of 𝑉(𝑥★) lies in NC𝒳(𝑥★),
the normal cone of 𝒳 at 𝑥★. Mathematically, this can also be written as finding
𝑥★ ∈ 𝒳 such that

0 ∈ 𝑉(𝑥★) +NC𝒳(𝑥★) B {𝑉(𝑥★) + 𝑣 : 𝑣 ∈ NC𝒳(𝑥★)}. (5.1)

The above equation reformulates (VI) as an inclusion problem with set-valued
mapping 𝑉 +NC𝒳 . In a similar vein, (VI) is also equivalent to the fixed-point
problem of finding 𝑥★ such that Π𝒳(𝑥★−𝑉(𝑥★)) = 𝑥★. We summarize the above
discussion in the proposition below.
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𝒳

TC𝒳(𝑥★)

NC𝒳(𝑥★)

.
𝑥★

𝑥

−𝑉(𝑥★)

Figure 5.2: Schematic representation of the (VI) problem (adapted from [191]). TC𝒳(𝑥★)
and NC𝒳(𝑥★) are respectively the tangent and the normal cones of 𝒳 at 𝑥★.

Proposition 5.2 (Facchinei and Pang [73]). The following three conditions on 𝑥★ ∈ 𝒳 Variational
inequality, inclusion
problem, fixed-point
problem

equivalently define (VI).

(i) ⟨𝑉(𝑥★), 𝑥 − 𝑥★⟩ ≥ 0 for all 𝑥 ∈ 𝒳.

(ii) 0 ∈ 𝑉(𝑥★) +NC𝒳(𝑥★).

(iii) Π𝒳(𝑥★ −𝑉(𝑥★)) = 𝑥★.

In the literature, the VI formulation that we just described is sometimes
called Stampacchia variational inequality (SVI) [256], distinguishing it from what
is referred to as Minty variational inequality (MVI) [94].

Definition 5.6 (Minty variational inequality). The Minty variational inequality Minty variational
inequality(MVI) problem associated to operator 𝑉 and feasible set 𝒳 is stated as:

Find 𝑥★ ∈ 𝒳 such that ⟨𝑉(𝑥), 𝑥 − 𝑥★⟩ ≥ 0 for all 𝑥 ∈ 𝒳. (MVI)

Compared to (VI), the operator 𝑉 is now evaluated at any point 𝑥 ∈ 𝒳, rather
than just at 𝑥★. Therefore, (VI) expresses a local condition on 𝑉 whereas (MVI)
deals with all function values on 𝒳. The names strong and weak solutions are
also occasionally used to indicate respectively the solutions of SVI and MVI.
Importantly, they are related to each other by the well-known Minty Lemma.

Proposition 5.3 (Minty [197, Lem. 1]). The following statements hold. Minty Lemma

(a) If 𝑉 is pseudo-monotone, any solution of (VI) is a solution of (MVI).

(b) If 𝑉 is continuous, any solution of (MVI) is a solution of (VI).

Beyond their use in optimization and in game theory as we will discussed in
Section 5.2.3, VIs have also been fruitfully applied in various other domains,
including obstacle problems [154] and contact mechanics [37]. For a com-
prehensive treatment of the subject, we refer the readers to the textbooks by
Kinderlehrer and Stampacchia [153] and by Facchinei and Pang [73].

5.2.2 Merit Functions

Numerous merit functions have been proposed in the literature to measure the
optimality of a point for a VI problem. Below we introduce some of the most
relevant ones within our context. We continue to use the notations 𝒳 for the
feasible set and 𝑉 for the operator in question.
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Definition 5.7 (Dual Gap). Let𝒵 ⊆ 𝒳 be a compact subset of𝒳. The (restricted)Dual gap function
dual gap function is defined as

DGap𝒵(𝑥) B max
𝑧∈𝒵
⟨𝑉(𝑧), 𝑥 − 𝑧⟩.

We have the following proposition by Nesterov [211].

Proposition 5.4 (Nesterov [211, Lem. 1]). The function DGap is well-defined and
convex. Assume additionally that 𝑉 is continuous and monotone. Then

(a) It holds DGap𝒵(𝑥) ≥ 0 for all 𝑥 ∈ 𝒵.

(b) If 𝑥★ ∈ 𝒵 is a solution of (VI), then DGap𝒵(𝑥★) = 0.

(c) If there exists 𝑥̂, 𝑥′ ∈ 𝒳 and 𝜌 > 0 such that DGap𝒵(𝑥̂) = 0, 𝒳∩ℬ(𝑥′,𝑅) ⊆ 𝒵,
and ∥ 𝑥̂ − 𝑥′∥ < 𝑅, then 𝑥̂ is a solution of (VI).

In the light of Proposition 5.4, the dual gap function is frequently used to access
the quality of a candidate solution when 𝑉 is monotone [142, 211, 212]. In fact,
the definition of DGap uses the (MVI) formulation and we effectively utilize the
fact that (VI) and (MVI) are equivalent for continuous and monotone operator
𝑉 in the proof of Proposition 5.4. Nonetheless, when 𝑉 is non-monotone, it
may be more appropriate to consider the primal gap function.

Definition 5.8 (Primal Gap). Let 𝒵 ⊆ 𝒳 be a compact subset of 𝒳. ThePrimal gap function
(restricted) primal gap function is defined as

PGap𝒵(𝑥) B max
𝑧∈𝒵
⟨𝑉(𝑥), 𝑥 − 𝑧⟩.

Remark 5.2. The appearance of the unrestricted variants of the primal and the
dual gap functions dates back to at least the work of Zukhovitskii, Polyak, and
Primak [299, 300]. Their use have since been widely adopted in the VI literature
[117, 167]. However, the name gap function may be used to refer to either of the
two or other variants thereof. For clarity, we hence borrow the names primal
and dual gaps from Facchinei and Pang [73], despite the fact that the dual gap
function of [73] is actually the opposite of what we define in Definition 5.7.

Compared to the dual gap function, the primal gap function is no longer
convex. It otherwise preserves other properties that we presented Proposition 5.4
without requiring the monotonicity of 𝑉 . It can also be immediately seen that
PGap is always larger than DGap when 𝑉 is monotone.

On the downside, the definition of the (restricted) gap functions necessarily
involves a compact set 𝒵. Selecting an appropriate compact set can be chal-
lenging when dealing with unbounded 𝒳. To overcome this issue, there are
several other alternatives that we can consider.

Definition 5.9 (Natural Residual). Let 𝜂 > 0 be a positive real number. TheNatural residual
natural residual associated to 𝜂 is defined as

Resnat
𝜂 (𝑥) B

1
𝜂
∥𝑥 −Π𝒳(𝑥 − 𝜂𝑉(𝑥))∥2.

Definition 5.10 (Tangent Residual). The tangent residual is defined asTangent residual

Restan
𝜂 (𝑥) B min{∥𝑉(𝑥★) + 𝑣∥2 : 𝑣 ∈ NC𝒳(𝑥★)}.
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The natural and the tangent residuals match respectively the fixed-point
and the inclusion problem perspectives that we present in Proposition 5.2.
Moreover, the two coincide and equal to the operator norm ∥𝑉(𝑥)∥2 when 𝒳
is the entire space R𝑑. For the general case, they are related by the following
proposition.

Proposition 5.5 (Facchinei and Pang [73, Prop. 1.5.14]). For any 𝜂 > 0 and 𝑥 ∈ 𝒳, Natural residual vs.
tangent residualit holds

Resnat
𝜂 (𝑥) ≤ Restan(𝑥).

In a similar spirit, the primal gap function is also related to the tangent
residual.

Proposition 5.6 (Cai et al. [35, Lem. 2]). Let 𝑥 ∈ 𝒳,𝒵 ⊆ 𝒳 be a compact set, and Primal gap function
vs. tangent residual𝑅 B max𝑧∈𝒵 ∥𝑥 − 𝑧∥2. It holds

PGap𝒵(𝑥) ≤ 𝑅Restan(𝑥).

From the above two propositions, it is clear that providing an upper bound on
the tangent residual is the most favorable. Finally, the distance to the solution
set dist(𝑥,𝒳★), where 𝒳★ is the solutions of (VI), is probably the most natural
error metric that one can think of. When the problem is unconstrained (i.e.,
𝒳 = R𝑑) and 𝑉 is 𝐿−Lipschitz continuous (i.e., ∥𝑉(𝑥) −𝑉(𝑥′)∥∗ ≤ 𝐿∥𝑥 − 𝑥′∥ for
all 𝑥, 𝑥′), we have clearly 𝐿dist(𝑥,𝔛★) ≥ ∥𝑉(𝑥)∥∗.

5.2.3 Variational Inequalities and Learning in Games

Throughout Part ii of the thesis, we focus on the learning-in-games framework
and present results within this context. However, our analysis can often
be adapted to cope with VI problems and to provide bounds on the merit
functions introduced in Section 5.2.2. Indeed, a significant portion of our
analysis concentrates solely on the joint vector field, or the pseudo gradient,
V = (𝑉 𝑖)𝑖∈𝒩 , of the players. This is possible thanks to the following first-order
characterization of Nash equilibrium in convex games.

Proposition 5.7. Assume Assumption 5.1 holds and each loss function ℓ 𝑖 is differen- First-order
characterization of
Nash equilibrium

tiable with respect to 𝑥 𝑖𝑡 . Then, a point x★ is a Nash equilibrium if and only if it is a
solution of the VI problem associated to operator V and feasible set 𝔛.

Proposition 5.7 is an immediate consequence of the individual convexity of
the loss functions. With the proposition in mind, to prove convergence to Nash
equilibrium we often start by showing that any cluster point x∞ of the played
sequence (x𝑡)𝑡∈N solves the VI problem ∀x ∈ 𝔛, ⟨V(x∞), x− x∞⟩ ≥ 0.

Regarding regret analysis, as in Part i we rely on the use of Lemma 2.1 and Linearized regret
will systematically establish regret bounds for the linearized regret

LinReg𝑖𝑇(𝒵
𝑖) = max

𝑧 𝑖∈𝒵 𝑖

𝑇∑
𝑡=1
⟨𝑉 𝑖(x𝑡), 𝑥 𝑖𝑡 − 𝑧 𝑖⟩.

When V is monotone, this quantity is related to the dual gap function From linearized regret
to dual gap functionintroduced earlier by the following inequality.

1
𝑇

𝑇∑
𝑡=1
⟨V(x𝑡), x𝑡 − z⟩ ≥ 1

𝑇

𝑇∑
𝑡=1
⟨V(z), x𝑡 − z⟩ =

〈
V(z),

∑𝑇
𝑡=1 x𝑡
𝑇

− z

〉
.
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As a consequence, any upper bound on the sum of the players’ linearized
regrets can be directly translated into an upper bound on the dual gap function
evaluated at the average iterate

∑𝑇
𝑡=1 x𝑡/𝑇. This provides yet another example

on how our analysis can be relevant for VI problems beyond learning in games.

5.3 algorithms

In terms of algorithms, we examine the algorithms that are optimistic. These
algorithms have several advantages over vanilla MD in learning in games, as we
shall see below. For ease of notation, we omit the player index when describing
the algorithms. That is, we consider a player with action set 𝒳 who receives a
sequence of feedback (𝑔𝑡)𝑡∈N.

5.3.1 Optimistic Mirror Descent

To begin, we state the general optimistic mirror descent (OptMD) templateOptimistic mirror
descent that generalizes the OG method to account for the geometry induced by

a regularizer ℎ (the regularizer and Bregman divergence are defined as in
Chapter 2). We recall that the player plays 𝑥𝑡 = 𝑋𝑡+ 1

2
at round 𝑡. For a given

learning rate sequence (𝜂𝑡)𝑡∈N, the algorithm writes

𝑋𝑡+ 1
2
= arg min

𝑥∈𝒳
⟨𝑔̃𝑡 , 𝑥⟩ +

𝐷(𝑥,𝑋𝑡)
𝜂𝑡

,

𝑋𝑡+1 = arg min
𝑥∈𝒳

⟨𝑔𝑡 , 𝑥⟩ +
𝐷(𝑥,𝑋𝑡)
𝜂𝑡+1

.
(OptMD)

In Chapter 4, we have seen how the introduction of the optimistic step
(the step that moves from 𝑋𝑡 to 𝑋𝑡+ 1

2
) helps achieve smaller regret when the

optimistic guess 𝑔̃𝑡 is close to 𝑔𝑡 . In fact, the regret bound of Proposition 4.1
also holds for (OptMD)—we just need to replace ∥𝑧 −𝑋1∥22/2 by 𝐷(𝑧,𝑋1) and
use the corresponding dual norm to measure the variations.

As also suggested in Chapter 4, one natural choice is then to take 𝑔̃𝑡 to be theOptimistic mirror
descent with past

feedback
previous feedback received by the player, which is equivalent to 𝑔̃𝑡 = 𝑔𝑡−1 under
our current setup (we use the notation 𝑔0 = 𝑔 𝑖0 = 0 throughout the thesis). With
this choice, low regret is guaranteed whenever the second-order path length∑
𝑡 ∥𝑔𝑡 − 𝑔𝑡−1∥2∗ is small. This may be notably the case when all the players take

small move to optimize their losses. Formally, it has been shown in the literature
that players enjoy poly-logarithmic or even constant regret when all of them
employ (some instantiation of) (OptMD) with 𝑔̃𝑡 = 𝑔𝑡−1 in certain classes of
games [2, 3, 57, 77, 228].

Equally of interest is the use of the (OptMD) algorithm for saddle-pointOptimistic mirror
descent for VI,

mirror-prox, and
extra-gradient

problems, or for VIs in general. For example, we recover the mirror-prox (MP)
algorithm of Nemirovski [207] if all the players adopt (OptMD) with 𝑔̃𝑡 = 𝑉 𝑖(X𝑡)
(note that X𝑡 is effectively defined in this case). Tracing back even further, the
extra-gradient (EG) algorithm introduced in the pioneer work of Korpelevich
[160] is essentially MP with quadratic regularizer. A large corpus of works has
been dedicated to the study of EG and MP in the context of VI in the past few
decades. This gives rise to a plethora of results that illuminate the convergence
behavior of the algorithm under various assumptions [35, 73, 142, 196, 267].

Nonetheless, it is worth noticing that the update of MP cannot be realizedMirror-prox is not a
valid algorithm for

online learning
within our interaction model since it requires the player to have gradient
feedback at an additional point X𝑡 . Although this can be partially solved by
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reindexing the rounds and considering that a player plays both iterates 𝑋𝑡
and 𝑋𝑡+ 1

2
and receives feedback 𝑔̃𝑡 and 𝑔𝑡 , the resulting algorithm is no longer

no-regret in the sense that we can find a game and a sequence of opponents’
actions such that the regret evaluated at the played actions (𝑋𝑠)𝑠∈N/2 grows
linearly while the feedback is bounded (see [99] for more details).

In contrast, the choice 𝑔̃𝑡 = 𝑔𝑡−1 suggested earlier is indeed legitimate and
leads to a no-regret algorithm. The use of this method can be traced to the
work of Popov [225] where they demonstrated that the algorithm in question
with quadratic regularizer converges to a solution in saddle-point problems.
To summarize, we list below several important properties of the (OptMD)
algorithm with 𝑔̃𝑡 = 𝑔𝑡−1 that are particularly relevant in the scope of this thesis.

Proposition 5.8. Suppose Assumption 5.1 holds and that all players have access to Advantages of
optimistic mirror
descent

perfect feedback 𝑔 𝑖𝑡 = 𝑉
𝑖(x𝑡). The following statements hold true.

(a) Let player 𝑖 follow (OptMD) with 𝑔̃ 𝑖𝑡 = 𝑔 𝑖
𝑡−1 and appropriate learning rate against

a sequence of bounded feedback. Then, for any bounded set𝒵 𝑖 ⊆ 𝒳 𝑖 , we have

Reg𝑖𝑇(𝒵
𝑖) = 𝒪(

√
𝑇).

(b) Let Assumption 5.2 and Assumption 5.3 hold and all players follow (OptMD)
with 𝑔̃ 𝑖𝑡 = 𝑔 𝑖

𝑡−1 and appropriate learning rate. Then, for all players 𝑖 ∈ 𝒩 and
bounded set𝒵 𝑖 ⊆ 𝒳 𝑖 , we have

Reg𝑖𝑇(𝒵
𝑖) = 𝒪(1).

(c) Consider the situation described in (b). Under suitable “reciprocity” condition
(see Section 6.4), the sequence of play converges to a Nash equilibrium.

Proof. We refer the readers to [125, 225, 228] for a series of related result. The
proposition can otherwise be proved by modifying the analysis in Chapter 6 of
adaptive methods. □

Given the desirable properties of (OptMD) outlined in Proposition 5.8, our
primary objective in the subsequent sections is to extend these guarantees
to a wider range of situations. In particular, we aim to address cases where
the player has no information about the underlying game and the interaction
paradigm with the help of adaptive learning rates (Chapter 6), as well as cases
where feedback is corrupted by noise with the help of learning rate separation
(Chapters 7 and 8). It is worth noting that neither (b) nor (c) can be achieved by
vanilla MD. In fact, even in bilinear zero-sum games (which apparently satisfies
Assumptions 5.2 and 5.3), the Ω(

√
𝑇) regret lower bound for MD has been

demonstrated by Chen and Peng [43], and non-convergence of the algorithm is
also well documented in the literature [56, 196].

5.3.2 Optimistic Dual Averaging

As illustrated in Proposition 4.2, (OptMD) with dynamic learning rate can yield Optimistic dual
averaginglinear or even superlinear regret when the associated Bregman divergence is

unbounded on the action set. To address this issue, we will also consider the
optimistic dual averaging (OptDA) method.
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𝑋𝑡+ 1
2
= arg min

𝑥∈𝒳
⟨𝑔̃𝑡 , 𝑥⟩ +

𝐷(𝑥,𝑋𝑡)
𝜂𝑡

,

𝑋𝑡+1 = arg min
𝑥∈𝒳

𝑡∑
𝑠=1
⟨𝑔𝑠 , 𝑥⟩ +

ℎ(𝑥)
𝜂𝑡+1

.
(OptDA)

The algorithm outlined above notably encompasses dual extrapolation (DE)
proposed by Nesterov [211] as a special case. This corresponds to the situation
where all players adopt (OptDA) with 𝑔̃𝑡 = 𝑉 𝑖(X𝑡). However, akin to MP,
DE is not a valid algorithm for online learning in games. It is also clear that
(OptDA) is closely related to the (DOptDA) algorithm studied in Chapter 4.
In fact, the latter operates with delayed feedback but is stated for the special
case 𝒳 = R𝑑 and ℎ(·) = ∥·∥22/2. Finally, with the choice 𝑔̃𝑡 = 𝑔𝑡−1, we obtain the
algorithm that was independently introduced by Song et al. [255] under the
name of optimistic dual extrapolation. This algorithm, for which a version of
Proposition 5.8 holds, will play an important role in the remaining of this thesis.

a note on terminology. In existing literature, the terms optimistic mirror
descent and optimistic dual averaging typically refer to the special cases where
𝑔̃𝑡 = 𝑔𝑡−1. However, in the scope of thesis, we instead use them to represent the
general templates. Generally speaking, we will rely on the associated equations
to differentiate between algorithms, thus avoiding any potential confusion.

5.3.3 Optimistic Gradient as Approximate Projection onto Separating Hyperplane

Numerous attempts have been made in the literature to explain the success
of optimistic gradient methods. These include for example approaches that
conceptualize the optimization process as a discretization of its continuous-time
counterpart [182], interpretations grounded in operator theory that regard
these algorithms as approximations of proximal gradient [199], and the online
learning with guess vector perspective that we adopted in Chapter 4.

In this subsection, we take yet another viewpoint, one that is well documented
in the monograph [73]. This geometric interpretation treats each iteration of
the algorithm as an approximate projection onto a separating hyperplane and
is illustrated in Fig. 5.3. To explain it in detail, we consider the unconstrained
Euclidean setup, in which case the update (OptMD) is written asUpdate in the

unconstrained
Euclidean setup 𝑋𝑡+ 1

2
= 𝑋𝑡 − 𝜂𝑡 𝑔̃𝑡 , 𝑋𝑡+1 = 𝑋𝑡 − 𝜂𝑡+1𝑔𝑡 .

We further look into the case where all the player adhere to the above
algorithm, use the same learning rates, and receive perfect feedback 𝑔𝑡 = 𝑉 𝑖(x𝑡).
This leads to the following global update rule (recall that x𝑡 = X𝑡+ 1

2
).

X𝑡+ 1
2
= X𝑡 − 𝜂𝑡 g̃𝑡 , X𝑡+1 = X𝑡 − 𝜂𝑡+1V(X𝑡+ 1

2
).

Let us write 𝑑 =
∑
𝑖∈𝒩 𝑑

𝑖 for the sum of the individual dimensions so thatSeparating hyperplane
𝔛 ⊆ R𝑑. We consider the hyperplane

ℋ𝑡 = {x ∈ R𝑑 : ⟨V(X𝑡+ 1
2
), X𝑡+ 1

2
− x⟩ = 0}.



5.3 algorithms 93

𝔛★

X𝑡

X
𝑡+ 1

2

ℋ𝑡

V(X
𝑡+ 1

2
)

−𝜂𝑡 g̃𝑡

X𝑡+1

𝜂𝑡+1V(X
𝑡+ 1

2
)

Figure 5.3: Illustration of the “separate and project” principle of the optimistic algorithms.

On one hand, when the game is variationally stable (Assumption 5.3), we
have by definition that for all x★ ∈ 𝔛★,

⟨V(X𝑡+ 1
2
), X𝑡+ 1

2
− x★⟩ ≥ 0.

On the other hand, if g̃𝑡 is effectively close to g𝑡 , we can expect

⟨V(X𝑡+ 1
2
), X𝑡+ 1

2
−X𝑡⟩ = −𝜂𝑡+1⟨g𝑡 , g̃𝑡⟩ ≤ 0.

This is the easiest to illustrate through the choice g̃𝑡 = V(X𝑡) of EG. Then, if the
pseudo-gradient is

√
𝑁𝐿-Lipschitz (Assumption 5.2) and the learning rate 𝜂𝑡 is

sufficiently small, it holds that

⟨V(X𝑡+ 1
2
), X𝑡+ 1

2
−X𝑡⟩ = −𝜂𝑡 ⟨V(X𝑡+ 1

2
), V(X𝑡)⟩

=
𝜂𝑡
2

(
∥V(X𝑡) −V(X𝑡+ 1

2
)∥2 − ∥V(X𝑡)∥2 − ∥V(X𝑡+ 1

2
)∥2

)
≤ 𝜂𝑡

2

(
(𝜂2
𝑡𝑁𝐿

2 − 1)∥V(X𝑡)∥2 − ∥V(X𝑡+ 1
2
)∥2

)
≤ −𝜂𝑡2 ∥V(X𝑡+ 1

2
)∥2

≤ 0. (5.2)

In summary, the hyperplane ℋ𝑡 effectively separates the solution set 𝔛★ from
the current iterate X𝑡 . The update step X𝑡+1 = X𝑡 − 𝜂𝑡+1V(x𝑡) moves X𝑡 in the
direction of the projection onto this hyperplane, and thereby moves it closer to
the solutions.

Going further, we can compute the projection of X𝑡 onto the hyperplane. Projection onto the the
hyperplane

Πℋ𝑡 (X𝑡) = X𝑡 − 𝜂𝑡
⟨g𝑡 , g̃𝑡⟩
∥g𝑡 ∥2

g𝑡

This shows that X𝑡+ 1
2

is indeed “approximately” a projection onto the hyperplane
when g𝑡 ≈ g̃𝑡 and 𝜂𝑡 ≈ 𝜂𝑡+1. From the derivation of (5.2), we particularly know
that for the case g̃𝑡 = V(X𝑡) we get 1/2 ≤ ⟨g𝑡 , g̃𝑡⟩/∥g𝑡 ∥2, so that if 𝜂𝑡+1 ≤ 𝜂𝑡 then
the iterate is necessarily closer to ℋ𝑡 after the update.

As we conclude this discussion, it is worth noting that this perspective offers
not just a conceptual understanding of the algorithm’s mechanism, but also
insightful cues for possible algorithmic modifications, as we will illustrate
in Chapter 7. Moreover, this “separate and project” principle is not unique
to optimistic methods. It has been effectively utilized for solving variational
inequality and monotone inclusion problems, leading to a suite of algorithms
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that directly employ this concept. For further examples and applications of this
principle, we refer the reader to works such as [97, 116, 158, 159, 254].



6
LEARNING RATE ADAPTATION FOR GAMES WITH PERFECT
FEEDBACK

# This chapter incorporates material from Hsieh et al. [127]

Optimistic methods have proven to be valuable tools in online learning in games,
as discussed in Section 5.3. However, their performance are significantly

affected by the precise choice of learning rates (see Fig. 6.1). In light of this
challenge, we turn our attention to adaptive learning rates in this chapter.

The study of adaptive learning rates in this context hold both practical and
theoretical merit. On a practical level, it paves the way for the implementation of
learning algorithms even when prior knowledge about the game’s parameters is
not available, fostering a broader application scope. Theoretically, it allows for a
more nuanced understanding of the crucial elements required for an algorithm
to achieve specific guarantees.

Indeed, focusing on scenarios where all players have access to perfect feedback
𝑔 𝑖𝑡 = 𝑉 𝑖(x𝑡) throughout the chapter, we demonstrate that the local gradient
feedback made available to the players is sufficient for achieving optimal
regret guarantees and convergence to a relevant profile in various contexts.
Importantly, by “sufficient” we mean that the players perform the entire learning
algorithm, including the computation of their learning rates, at an individual
level, without the need for prior knowledge about the game.

contributions and outline. Expanding on the above discussion, the
primary contribution of this chapter is the development of a range of adap-
tive optimistic policies with the following desirable properties (suppose that
Assumptions 5.1 and 5.2 hold):

1. They do not require any prior tuning or knowledge of the game’s param- No need of knowledge
about game parametereters. Each player updates their individual step-size with purely local,

individual gradient information.

2. They guarantee an order-optimal 𝒪(
√
𝑇) regret bound against adversarial Optimal regret

play, and they further enjoy constant social regret (i.e., the sum of the
players’ regrets) when all players employ one of these algorithms.

3. They guarantee convergence to to best response against convergent oppo- Convergence to best
responsenents if the action set of the focal player is compact.

4. If all players follow one of these algorithms, the induced trajectory of play Convergence to Nash
equilibriumconverges to a Nash equilibrium and the regret of each player is bounded

as 𝒪(1) in all variationally stable games.

In terms of organization, we start by introducing our adaptive learning rates
in Section 6.1. Following this, Section 6.2 details the optimistic algorithms that
can successfully leverage these adaptive learning rates. Regret bounds and
convergence analysis are respectively presented in Section 6.3 and Section 6.4.
Finally, we close the chapter with some numerical illustrations in Section 6.5.

95
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(a) (OptMD)/(OptDA) with constant
learning rate 𝜂𝑡 ≡ 0.6 causes played
iterate to diverge and average iterate
to converge to spurious point.
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(b) Convergence of (OptMD)/(OptDA)
with suitable learning rate. Adaptive
method converges faster without re-
quiring knowledge about the game.

Figure 6.1: The trajectories of play (and the time-average of one of these tra-
jectories) obtained by running (OptMD)/(OptDA) with a quadratic regularizer on
min𝜃∈[−4,8]max𝜙∈[−4,8] 𝜃𝜙 using different learning rates (the trajectories of the two
algorithms coincide on this example).

6.1 adaptive learning rate

The success of optimistic methods hinges critically on the careful tuning
of learning rates. In particular, an optimistic algorithm could switch from
convergent to non-convergent by a slight variation of its hyperparameters or a
small perturbation of the game. We illustrate this via the following example.

Importance of
learning rate tuning

Example 6.1 (Non-convergence of inappropriately tuned optimistic methods).
Consider the following bilinear zero-sum game with player variables 𝜃 and 𝜙.

𝒳1 = 𝒳2 = R, ℓ 1(𝜃, 𝜙) = 𝜃𝜙 = −ℓ 2(𝜃, 𝜙).

Suppose that both players run (OptMD) with quadratic regularizer ℎ 𝑖(·) = ∥·∥22/2
and constant learning rate 𝜂𝑖𝑡 ≡ 𝜂 (note that (OptMD) and (OptDA) coincide
in this case). Then, if 𝜂 < 1/

√
3, the sequence of play converges to the game’s

unique Nash equilibrium at (0, 0). On the other hand, if the players misestimate
the critical value 1/

√
3 and choose 𝜂 ≥ 1/

√
3, the method no longer converges, in

either the “ergodic” or “trajectory/last-iterate” sense (for a proof, see e.g., [289]).
Moreover, as we show in Fig. 6.1a, this “off-equilibrium” behavior persists even
if we restrict the players’ actions to compact sets 𝒳1 = 𝒳2 = [−4, 8].

The above example elucidates the pitfalls of improperly chosen learning rates.Adaptive learning rate
Not only may the trajectory diverge, but its average could also converge to an
irrelevant action profile, making such failure difficult to detect. In response to
this predicament, we consider an adaptive policy in the spirit of Rakhlin and
Sridharan [228], namely1

𝜂𝑖𝑡 =
1√

1+∑𝑡−1
𝑠=1 𝛿

𝑖
𝑠

where 𝛿𝑖𝑡 = ∥𝑔 𝑖𝑡 − 𝑔 𝑖𝑡−1∥
2
(𝑖),∗. (Adapt)

1 More generally speaking, all the results that we present in this chapter would still hold if we replace
the 1 in the denominator of 𝜂𝑖𝑡 by another positive constant 𝜏𝑖 and ∥·∥(𝑖),∗ in the definition of 𝛿𝑖𝑡 by
another norm in R𝑑𝑖 . Recall also that we have set 𝑔 𝑖0 = 0.
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In the above, ∥·∥(𝑖),∗ is the dual norm of ∥·∥(𝑖), which is itself the norm associated
to player 𝑖’s regularizer ℎ 𝑖 . Intuitively, in the favorable case (e.g., when the
environment is stationary), the increments 𝛿𝑖𝑡 eventually vanishes, so the policy
(Adapt) will be a proxy for the “constant learning rate” case. By contrast, in
a non-favorable / adversarial setting, we have 𝛿𝑖𝑡 = Θ(1) and 𝜂𝑖𝑡 decreases as
Θ(1/
√
𝑡), which makes the algorithm robust.

We should also note here that (Adapt) involves exclusively player-specific
quantities, and its computation only makes use of information that is available
to each player locally. These methods thus sidestep the need for coordination
between players or global knowledge about the game, which are often required
by algorithms with aggressive predetermined learning rates, e.g., constant,
or even by other adaptive methods [7, 177]. On the other hand, they achieve
faster convergence compared to algorithms with more conservative learning
rate schedule, e.g., 𝜂𝑡 = 1/

√
𝑡 (see Fig. 6.1b).

Importantly, although we also study adaptive learning rate in Part i, we
have quite different objectives in the two setups. In Part i, our focus is to
provide data-dependent regret bounds by dynamically adjusting the learning
rate based on received feedback. Here, with a learning rate adjusted in a similar
way, we can provide even stronger guarantees since the feedback comes from
interaction with other players. Notably, we can show constant regret bound and
convergence of learning trajectory in self-play, both of which are unattainable in
the pure online learning setup. Furthermore, while we did look into adaptive
learning rate of optimistic method in Section 4.3.2, the learning rate proposed
there requires knowledge of various constants of the learning system. It is not
the case anymore.

notations. For the analysis in Sections 6.3 and 6.4, it will be convenient to
write 𝜆𝑖𝑡 B 1/𝜂𝑖𝑡 for the inverse of learning rate and define the norm on the joint
action space as ∥(𝑥 𝑖)𝑖∈𝒩 ∥ B

√∑𝑁
𝑖=1∥𝑥 𝑖 ∥2(𝑖).

6.2 a family of optimistic methods

A recurrent topic in this thesis is the compatibility of an online learning
algorithm with dynamic learning rates. More precisely, in Chapters 2 and 4
we have explained that both MD and OptMD can incur linear or superlinear
regret when run with dynamic learning rate sequence. To cope with this issue,
we have introduced DA and OptDA. This section aims to broaden the scope
of the considered algorithm and highlight the key property that an optimistic
algorithm needs to possess to be used with our dynamic, and notably adaptive
learning rate (Adapt).

For notational convenience, we omit the player index in this section’s presen-
tation, as our focus is on the algorithm taken by a single player.

6.2.1 Compatibility with Dynamic Learning Rate

The theoretical results of this chapter hold for a family of algorithms that we
refer to as being optimistic and compatible with dynamic learning rates. We formally
define this below.

Definition 6.1. A learning algorithm used by a player 𝑖 ∈ 𝒩 is said to be Optimistic agorithms
that are compatible
with dynamic
learning rate

optimistic and compatible with dynamic learning rate if it operates with a regularizer
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ℎ and non-increasing positive learning rates (𝜂𝑡)𝑡∈N to produce a sequence of
iterates (𝑋𝑠)𝑠∈N/2 such that

1. At each round 𝑡 ∈ N, the player plays 𝑥𝑡 = 𝑋𝑡+ 1
2

generated by

𝑋𝑡+ 1
2
= arg min

𝑥∈𝒳
⟨𝑔𝑡−1, 𝑥⟩ + 𝐷(𝑥,𝑋𝑡)

𝜂𝑡
. (6.1)

2. For some non-negative continuous functions (𝜓𝑡)𝑡∈N and 𝜑 defined on 𝒳,
we have, for all 𝑧 ∈ 𝒳 and 𝑡 ∈ N,

𝜓𝑡+1(𝑧)
𝜂𝑡+1

≤ 𝜓𝑡(𝑧)
𝜂𝑡
− ⟨𝑔𝑡 ,𝑋𝑡+ 1

2
− 𝑧⟩ +

(
1

𝜂𝑡+1
− 1
𝜂𝑡

)
𝜑(𝑧)

+ ⟨𝑔𝑡 − 𝑔𝑡−1,𝑋𝑡+ 1
2
−𝑋𝑡+1⟩ −

𝐷(𝑋𝑡+1,𝑋𝑡+ 1
2
)

𝜂𝑡
−
𝐷(𝑋𝑡+ 1

2
,𝑋𝑡)

𝜂𝑡
. (6.2)

For brevity, in the following we will write 𝔄𝑜𝑐𝑑 for the family of such algorithms.

By replacing 𝜑 with max(𝜑,𝜓1) if needed, we may assume 𝜓1 ≤ 𝜑 without
loss of generality. The first point is common to the optimistic algorithms that
we have considered so far and is important for our analysis on last-iterate
convergence. In fact, with Eq. (6.1), 𝑋𝑡 = 𝑋𝑡+ 1

2
implies that ⟨𝑔𝑡−1, 𝑧 −𝑋𝑡⟩ ≥ 0 for

all 𝑧 ∈ 𝒳. This thus shows that X𝑡 is “almost” an equilibrium if x𝑡−1 ≈ X𝑡 . We
will exploit an argument of this kind in Section 6.4 (instead of 𝑋𝑡 = 𝑋𝑡+ 1

2
we

will only have 𝑋𝑡 ≈ 𝑋𝑡+ 1
2

for 𝑡 large enough).
Regarding the second point, it relates the energy of round 𝑡 to that of round

𝑡 + 1. It is thus used to show that this energy converges in convergence analysis
of the learning dynamics. Moreover, summing up this inequality from 𝑡 = 1
to 𝑇, we get directly an upper bound on the linearized regret as shown in the
following lemma.

Lemma 6.1. Let (𝑋𝑠)𝑠∈N/2 be the iterates produced by an algorithm of𝔄𝑜𝑐𝑑 as describedPreliminary bound on
linearized regret in Definition 6.1. Then

𝑇∑
𝑡=1
⟨𝑔𝑡 ,𝑋𝑡+ 1

2
− 𝑧⟩ ≤ 𝜆𝑇+1𝜑(𝑧) +

𝑇∑
𝑡=1

∥𝑔𝑡 − 𝑔𝑡−1∥2∗
𝜆𝑡

−
𝑇∑
𝑡=2

𝜆𝑡−1
8 ∥𝑋𝑡+ 1

2
−𝑋𝑡− 1

2
∥2.

(6.3)

Proof. From (6.2), we get immediately

𝑇∑
𝑡=1
⟨𝑔𝑡 ,𝑋𝑡+ 1

2
− 𝑧⟩ ≤ 𝜆𝑇+1𝜑(𝑧) −𝜆𝑇+1𝜓𝑇+1(𝑧) +

𝑇∑
𝑡=1
⟨𝑔𝑡 − 𝑔𝑡−1,𝑋𝑡+ 1

2
−𝑋𝑡+1⟩

−
𝑇∑
𝑡=1

𝜆𝑡
(
𝐷(𝑋𝑡+1,𝑋𝑡+ 1

2
) +𝐷(𝑋𝑡+ 1

2
,𝑋𝑡)

)
.

= 𝜆𝑇+1𝜑(𝑧) −𝜆𝑇+1𝜓𝑇+1(𝑧)

−𝜆1𝐷(𝑋3/2,𝑋1) −
𝜆𝑇
2 𝐷(𝑋𝑇+1,𝑋𝑇+ 1

2
)

−
𝑇∑
𝑡=2

(
𝜆𝑡−1

2 𝐷(𝑋𝑡 ,𝑋𝑡− 1
2
) +𝜆𝑡𝐷(𝑋𝑡+ 1

2
,𝑋𝑡)

)
+

𝑇∑
𝑡=1

(
⟨𝑔𝑡 − 𝑔𝑡−1,𝑋𝑡+ 1

2
−𝑋𝑡+1⟩ −

𝜆𝑡
2 𝐷(𝑋𝑡+1,𝑋𝑡+ 1

2
)
)

(6.4)
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To deal with the summation in the second to last line, we use strong convexity
of ℎ to bound

∥𝑋𝑡+ 1
2
−𝑋𝑡− 1

2
∥2 ≤ 2∥𝑋𝑡+ 1

2
−𝑋𝑡 ∥2 + 2∥𝑋𝑡 −𝑋𝑡− 1

2
∥2

≤ 4𝐷(𝑋𝑡+ 1
2
,𝑋𝑡) + 4𝐷(𝑋𝑡 ,𝑋𝑡− 1

2
).

As for the last line, we use Young’s inequality to obtain

⟨𝑔𝑡 − 𝑔𝑡−1,𝑋𝑡+ 1
2
−𝑋𝑡+1⟩ −

𝜆𝑡
2 𝐷(𝑋𝑡+1,𝑋𝑡+ 1

2
)

≤
∥𝑔𝑡 − 𝑔𝑡−1∥2∗

𝜆𝑡
+ 𝜆𝑡

4 ∥𝑋𝑡+ 1
2
−𝑋𝑡+1∥2 −

𝜆𝑡
4 ∥𝑋𝑡+ 1

2
−𝑋𝑡+1∥2

=
∥𝑔𝑡 − 𝑔𝑡−1∥2∗

𝜆𝑡
. (6.5)

Putting the above inequalities together we get (6.3). □

Inequality (6.3) in Lemma 6.1 is very similar to the Regret bounded by Variations
in Utilities (RVU) property introduced by Syrgkanis et al. [259], but it now applies
to an algorithm with dynamic learning rate (and, of course, to continuous action
spaces). This upper bound, similar to Proposition 4.1, depends on the choice of
the reference point 𝑧, and on the variation 𝛿𝑡 = ∥𝑔𝑡 − 𝑔𝑡−1∥2∗ . This also justifies
our decision of taking the learning rate 𝜂𝑡 to be almost the inverse of the square
root of the second-order path length. Finally, when all the players play a such
algorithm, the additional negative term cancels out the variation, leading to
improved regret.

6.2.2 Example Algorithms

To begin, (OptDA) with 𝑔̃𝑡 = 𝑔𝑡−1 fulfills the two conditions outlined in Defini-
tion 6.1.

Proposition 6.2. (OptDA) with non-increasing learning rates and 𝑔̃𝑡 = 𝑔𝑡−1 belongs (OptDA) is in 𝔄𝑜𝑐𝑑

to 𝔄𝑜𝑐𝑑. Moreover, inequality (6.2) is satisfied with 𝜓𝑡(𝑧) = 𝐹(𝑧,𝑌𝑡) and 𝜑(𝑧) =
ℎ(𝑧) −min ℎ, where 𝑌𝑡 = −𝜂𝑡

∑𝑡−1
𝑠=1 𝑔𝑠 .

Proof. With 𝜆𝑡 = 1/𝜂𝑡 , the update writes

𝑋𝑡 = arg min
𝑥∈𝒳

𝑡−1∑
𝑠=1
⟨𝑔𝑠 , 𝑥⟩ +𝜆𝑡 ℎ(𝑥),

𝑋𝑡+ 1
2
= arg min

𝑥∈𝒳
⟨𝑔𝑡−1, 𝑥⟩ +𝜆𝑡𝐷(𝑥,𝑋𝑡).

(OptDA)

For the dual averaging step, as shown by (2.6) in the proof of Proposition 2.4,
we have

⟨𝑔𝑡 ,𝑋𝑡+1 − 𝑧⟩ ≤ 𝜆𝑡𝐹(𝑧,𝑌𝑡) −𝜆𝑡+1𝐹(𝑧,𝑌𝑡+1) −𝜆𝑡𝐹(𝑋𝑡+1,𝑌𝑡) + (𝜆𝑡+1 −𝜆𝑡)𝜑(𝑧).
(6.6)

As for the update of 𝑋𝑡+ 1
2
, we note that 𝑋𝑡+ 1

2
= 𝑄(∇ ℎ(𝑋𝑡) − 𝜂𝑡 𝑔𝑡−1). Therefore,

invoking Lemma A.1 gives

⟨∇ ℎ(𝑋𝑡+ 1
2
),𝑋𝑡+ 1

2
− 𝑧⟩ ≤ ⟨∇ ℎ(𝑋𝑡) − 𝜂𝑡 𝑔𝑡−1,𝑋𝑡+ 1

2
− 𝑧⟩.
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For the specific choice 𝑧 ← 𝑋𝑡+1, using the three-point identity for Bregman
divergence (A.1) we obtain

⟨𝑔𝑡−1,𝑋𝑡+ 1
2
−𝑋𝑡+1⟩ ≤ 𝜆𝑡 ⟨∇ ℎ(𝑋𝑡) − ∇ ℎ(𝑋𝑡+ 1

2
),𝑋𝑡+ 1

2
−𝑋𝑡+1⟩

= 𝜆𝑡(𝐷(𝑋𝑡+1,𝑋𝑡) −𝐷(𝑋𝑡+1,𝑋𝑡+ 1
2
) −𝐷(𝑋𝑡+ 1

2
,𝑋𝑡)). (6.7)

Since 𝐹(𝑋𝑡+1,𝑌𝑡) ≥ 𝐷(𝑋𝑡+1,𝑋𝑡) by Lemma A.3, combining (6.6) and (6.7) leads
to

⟨𝑔𝑡 ,𝑋𝑡+ 1
2
− 𝑧⟩ = ⟨𝑔𝑡 − 𝑔𝑡−1,𝑋𝑡+ 1

2
−𝑋𝑡+1⟩ + ⟨𝑔𝑡−1,𝑋𝑡+ 1

2
−𝑋𝑡+1⟩ + ⟨𝑔𝑡 ,𝑋𝑡+1 − 𝑧⟩

≤ 𝜆𝑡𝐹(𝑧,𝑌𝑡) −𝜆𝑡+1𝐹(𝑧,𝑌𝑡+1) + (𝜆𝑡+1 −𝜆𝑡)𝜑(𝑧)
+ ⟨𝑔𝑡 − 𝑔𝑡−1,𝑋𝑡+ 1

2
−𝑋𝑡+1⟩ −𝜆𝑡𝐷(𝑋𝑡+1,𝑋𝑡+ 1

2
) −𝜆𝑡𝐷(𝑋𝑡+ 1

2
,𝑋𝑡).

This proves the generated iterates of (OptDA) satisfy (6.2) with 𝜓𝑡 = 𝐹(·,𝑌𝑡) and
𝜑 = ℎ −min ℎ and accordingly (OptDA) belongs to 𝔄𝑜𝑐𝑑. □

Remark 6.1. If we use two different regularizers ℎ1 and ℎ2 for the optimistic
and the update steps of the algorithm, the above analysis still holds as long
as 𝐹ℎ2(𝑋𝑡+1,𝑌𝑡) ≥ 𝐷ℎ1(𝑋𝑡+1,𝑋𝑡). In particular, if there exists some constants 𝑐1
and 𝑐2 such that ℎ1 = 𝑐1ℎ and ℎ2 = 𝑐2ℎ for a certain regularizer ℎ, then we can
have 𝑐2 ≥ 𝑐1. This corresponds to making the update learning rate smaller than
the optimistic learning rate, as we have discussed in Chapter 4 and will also
investigate in Chapters 7 and 8.

Another algorithm that belongs to𝔄𝑜𝑐𝑑 is dual stabilized optimistic mirror descentDual stabilized
optimistic mirror

descent
(DS-OptMD), which we state recursively as2

𝑋𝑡+ 1
2
= arg min

𝑥∈𝒳
⟨𝑔𝑡−1, 𝑥⟩ +𝜆𝑡𝐷(𝑥,𝑋𝑡),

𝑋𝑡+1 = arg min
𝑥∈𝒳

⟨𝑔𝑡 , 𝑥⟩ +𝜆𝑡𝐷(𝑥,𝑋𝑡) + (𝜆𝑡+1 −𝜆𝑡)𝐷(𝑥,𝑋1).
(DS-OptMD)

The stabilization technique (i.e., the anchoring term that appears in the
second line of the update) was first introduced in Fang et al. [76]. In the said
paper, the authors show that unlike (MD), dual stabilized mirror can achieve
no regret even when the Bregman diameter is unbounded. Moreover, by
standard arguments [76, 143, 163], we can show that when the mirror map is
interior-valued, i.e., im𝑄 𝑖 = ri𝒳 𝑖 (here ri𝒳 𝑖 denotes the relative interior of 𝒳 𝑖),
the update of (DS-OptMD) coincides with that of (OptDA).3 One important
example which falls into this situation is the (stabilized) optimistic multiplicativeOptimistic

multiplicative weights
update

weights update (OMWU) algorithm [53], whose update can be written in a
coordinate-wise way as follows

𝑥 𝑖
𝑡,𝑘 = 𝑋 𝑖

𝑡+ 1
2 ,𝑘 =

exp(−𝜂𝑖𝑡(
∑𝑡−1
𝑠=1 𝑔𝑠,𝑘 + 𝑔𝑡−1,𝑘))∑𝑑𝑖

𝑙=1 exp(−𝜂𝑖𝑡(
∑𝑡−1
𝑠=1 𝑔𝑠,𝑙 + 𝑔𝑡−1,𝑙))

. (OMWU)

In the proposition below, we show that (DS-OptMD) is effectively optimistic
and compatible with dynamic learning rates.

Proposition 6.3. (DS-OptMD) with non-increasing learning rates belongs to 𝔄𝑜𝑐𝑑.(DS-OptMD)
belongs to 𝔄𝑜𝑐𝑑 Moreover, inequality (6.2) is satisfied with 𝜓𝑡 = 𝐷(·,𝑋𝑡) and 𝜑 = 𝐷(·,𝑋1).

2 Here we focus directly on the case 𝑔̃𝑡 = 𝑔𝑡−1.
3 Precisely, this requires to take 𝑔̃𝑡 = 𝑔𝑡−1 in (OptDA) and set𝑋1 = arg min𝑥∈𝒳𝑖 ℎ

𝑖(𝒳) in (DS-OptMD).
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Proof. By definition of the Bregman divergence and the mirror map, the second
step is equivalent to

𝑋𝑡+1 = 𝑄

(
𝜆𝑡
𝜆𝑡+1
∇ ℎ(𝑋𝑡) + (1−

𝜆𝑡
𝜆𝑡+1
) ∇ ℎ(𝑋1) −

𝑔𝑡

𝜆𝑡+1

)
.

This shows that the update of 𝑋𝑡+1 consists in fact of a mixing step in the
dual space with weight 𝜆𝑡/𝜆𝑡+1 followed by a standard mirror descent step.
Applying Lemma A.1 gives

⟨∇ ℎ(𝑋𝑡+1),𝑋𝑡+1 − 𝑧⟩ ≤
〈

𝜆𝑡
𝜆𝑡+1
∇ ℎ(𝑋𝑡) + (1−

𝜆𝑡
𝜆𝑡+1
) ∇ ℎ(𝑋1) −

𝑔𝑡

𝜆𝑡+1
,𝑋𝑡+1 − 𝑧

〉
.

We rearrange the terms and use the three-point identity (A.1) to get

⟨𝑔𝑡 ,𝑋𝑡+1 − 𝑧⟩ ≤ 𝜆𝑡 ⟨∇ ℎ(𝑋𝑡) − ∇ ℎ(𝑋𝑡+1),𝑋𝑡+1 − 𝑧⟩
+ (𝜆𝑡+1 −𝜆𝑡)⟨∇ ℎ(𝑋1) − ∇ ℎ(𝑋𝑡+1),𝑋𝑡+1 − 𝑧⟩
≤ 𝜆𝑡(𝐷(𝑧,𝑋𝑡) −𝐷(𝑧,𝑋𝑡+1) −𝐷(𝑋𝑡+1,𝑋𝑡))
+ (𝜆𝑡+1 −𝜆𝑡)(𝐷(𝑧,𝑋1) −𝐷(𝑧,𝑋𝑡+1) −𝐷(𝑋𝑡+1,𝑋1)) (6.8)

Since 𝑋𝑡+ 1
2

is computed exactly as in (OptDA), inequality (6.7) still holds. We
conclude by putting together (6.8) and (6.7)

⟨𝑔𝑡 ,𝑋𝑡+ 1
2
− 𝑧⟩ = ⟨𝑔𝑡 − 𝑔𝑡−1,𝑋𝑡+ 1

2
−𝑋𝑡+1⟩ + ⟨𝑔𝑡−1,𝑋𝑡+ 1

2
−𝑋𝑡+1⟩ + ⟨𝑔𝑡 ,𝑋𝑡+1 − 𝑧⟩

≤ 𝜆𝑡𝐷(𝑧,𝑋𝑡) −𝜆𝑡+1𝐷(𝑧,𝑋𝑡+1) + (𝜆𝑡+1 −𝜆𝑡)𝐷(𝑧,𝑋1)
+ ⟨𝑔𝑡 − 𝑔𝑡−1,𝑋𝑡+ 1

2
−𝑋𝑡+1⟩ −𝜆𝑡𝐷(𝑋𝑡+1,𝑋𝑡+ 1

2
) −𝜆𝑡𝐷(𝑋𝑡+ 1

2
,𝑋𝑡).

This prove the proposition. □

At this point, we have shown that both (OptDA) and (DS-OptMD) belong
to 𝔄𝑜𝑐𝑑. Nonetheless, as we will discuss in Section 6.4, (DS-OptMD) might be
more favorable if we want to guarantee the convergence of the trajectory of play
in certain situations.

To complete the picture, it is worth noticing that although (OptMD) does so
not satisfy (6.2) in general, it does when sup𝑧,𝑥∈𝒳 𝑖 𝐷(𝑧, 𝑥) < +∞; in this case,
𝜓𝑡 = 𝐷(·,𝑋𝑡) and 𝜑 ≡ sup𝑧,𝑥∈𝒳 𝑖 𝐷(𝑧, 𝑥). Finally, some other algorithm, such as
optimistic follow the regularized leader [140, 198], satisfies (6.2) but not (6.1).
As mentioned earlier, this means that the regret bound would still hold while
our analysis for the trajectory convergence cannot apply.

6.3 optimal regret bounds

In this section, we establish regret bounds for our algorithms under a variety of
conditions, providing an indication of the efficacy of these algorithms.

6.3.1 No-Regret Against Adversarial Opponents

We start with the fallback regret guarantee against any sequence of play realized
by the opponents. The following theorem is a direct consequence of Lemma 6.1
and the choice of our adaptive learning rate (Adapt). It shows that the algorithms
that we consider in this chapter are indeed no-regret in the classical sense.
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Theorem 6.4. Suppose that Assumption 5.1 holds, and a player 𝑖 ∈ 𝒩 adopts an𝒪(
√
𝑇) against

bounded adversarial
feedback

algorithm of 𝔄𝑜𝑐𝑑 with adaptive learning rate (Adapt). Then, if𝒵 𝑖 ⊆ 𝒳 𝑖 is bounded
and 𝐺 = sup𝑡 ∥𝑔 𝑖𝑡 ∥ is finite, the regret incurred by the player is bounded as

Reg𝑖𝑇(𝒵
𝑖) = 𝒪(𝐺

√
𝑇 +𝐺2).

Proof. Combining Lemma 6.1 and Lemma 2.6 we have

𝑇∑
𝑡=1
⟨𝑔 𝑖𝑡 ,𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩ ≤ 𝜆𝑖𝑇+1𝜑

𝑖(𝑧 𝑖) +
𝑇∑
𝑡=1

𝛿𝑖𝑡
𝜆𝑖𝑡

= 𝜆𝑖𝑇+1𝜑
𝑖(𝑧 𝑖) +

𝑇∑
𝑡=1

𝛿𝑖𝑡
𝜆𝑖
𝑡+1
+

𝑇∑
𝑡=1

(
1
𝜆𝑖𝑡
− 1
𝜆𝑖
𝑡+1

)
𝛿𝑖𝑡

≤ (2+ 𝜑𝑖(𝑧 𝑖))

√√√
1+

𝑇∑
𝑡=1

𝛿𝑖𝑡 + 4
𝑇∑
𝑡=1

(
1
𝜆𝑖𝑡
− 1
𝜆𝑖
𝑡+1

)
𝐺2

≤ (2+ 𝜑𝑖(𝑧 𝑖))
√

1+ 4𝐺2𝑇 + 4𝐺2

We conclude by maximizing the above inequality over 𝑧 𝑖 ∈ 𝒵 𝑖 . □

6.3.2 Bound on Social Regret in Self-Play

We next provide a constant regret bound on the social regret, that is, the sum of all
the players’ regrets, when all the players adopt a suitable optimistic algorithm
with our adaptive learning rate policy. For this result, we do not need to assume
that the game is variationally stable.

Theorem 6.5. Suppose that Assumptions 5.1 and 5.2 hold and all players of theConstant social regret
game adopt an algorithm of 𝔄𝑜𝑐𝑑 with adaptive learning rate (Adapt). Then, for every
bounded comparator set𝒵 B>

𝑖∈𝒩 𝒵 𝑖 ⊆ 𝔛, the players’ social regret is bounded as

𝑁∑
𝑖=1

Reg𝑖𝑇(𝒵
𝑖) = 𝒪(1).

Proof. Let z = (𝑧 𝑖)𝑖∈𝒩 ∈ 𝒵. Since 𝒵 is bounded and 𝜑𝑖 is continuous, there
exists 𝑀 𝑖 > 0 such that it always holds 𝜑𝑖(𝑧 𝑖) ≤ 𝑀 𝑖 . Invoking Lemma 6.1 we
get

𝑇∑
𝑡=1
⟨𝑔 𝑖𝑡 ,𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩ ≤ 𝜆𝑖𝑇+1𝑀

𝑖 + ∥𝑉 𝑖(x1)∥2(𝑖),∗

+
𝑇∑
𝑡=2

(
∥𝑉 𝑖(x𝑡) −𝑉 𝑖(x𝑡−1)∥2(𝑖),∗

𝜆𝑖𝑡
−
𝜆𝑖
𝑡−1
8 ∥𝑋

𝑖

𝑡+ 1
2
−𝑋 𝑖

𝑡− 1
2
∥2(𝑖)

)
.

(6.9)
In the current setting, the realized joint action is x𝑡 = X𝑡+ 1

2
. With the norm on 𝒳

defined in Section 6.1 , we have
∑𝑁
𝑖=1∥𝑋 𝑖

𝑡+ 1
2
− 𝑋 𝑖

𝑡− 1
2
∥2(𝑖) = ∥X𝑡+ 1

2
−X𝑡− 1

2
∥2. Note

that 𝜆𝑖𝑡 ≥ 1 for all 𝑡 and 𝑖 by definition. Summing (6.9) from 𝑖 = 1 to 𝑁 and
maximizing over 𝑧 ∈ 𝒵 then gives

𝑁∑
𝑖=1

Reg𝑖𝑇(𝒵
𝑖) ≤

𝑁∑
𝑖=1

(
𝜆𝑖𝑇+1𝑀

𝑖 + ∥𝑉 𝑖(x1)∥2(𝑖),∗
)
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+
𝑇∑
𝑡=2

(
𝑁∑
𝑖=1

∥𝑉 𝑖(X𝑡+ 1
2
) −𝑉 𝑖(X𝑡− 1

2
)∥2(𝑖),∗

𝜆𝑖𝑡
− 1

8 ∥X𝑡+ 1
2
−X𝑡− 1

2
∥2

)
.

(6.10)

In the remainder of the proof, we show that the right-hand side of (6.10) is
bounded from above by some constant. Since all the norms are equivalent in a
finite dimensional space, from Assumption 5.2 we know that for every 𝑖 ∈ 𝒩 ,
there exists 𝐿𝑖 > 0 such that for all x, x′ ∈ 𝒳,

∥𝑉 𝑖(x) −𝑉 𝑖(x′)∥(𝑖),∗ ≤ 𝐿𝑖 ∥x− x′∥. (6.11)

Subsequently,

∥X𝑡+ 1
2
−X𝑡− 1

2
∥2 ≥

𝑁∑
𝑖=1

1
𝑁(𝐿𝑖)2

∥𝑉 𝑖(X𝑡+ 1
2
) −𝑉 𝑖(X𝑡− 1

2
)∥2(𝑖),∗. (6.12)

It is thus sufficient to show that for each 𝑖 ∈ 𝒩 , there exists 𝐶 𝑖 ∈ R+ such that
for all 𝑇 ∈ N,

𝜆𝑖𝑇+1𝑀
𝑖 − 1

16𝑁(𝐿𝑖)2
𝑇∑
𝑡=2
∥𝑉 𝑖(X𝑡+ 1

2
) −𝑉 𝑖(X𝑡− 1

2
)∥2(𝑖),∗ ≤ 𝐶

𝑖 , (6.13)

𝑇∑
𝑡=2

(
∥𝑉 𝑖(X𝑡+ 1

2
) −𝑉 𝑖(X𝑡− 1

2
)∥2(𝑖),∗

𝜆𝑖𝑡
− 1

16𝑁(𝐿𝑖)2
∥𝑉 𝑖(X𝑡+ 1

2
) −𝑉 𝑖(X𝑡− 1

2
)∥2(𝑖),∗

)
≤ 𝐶 𝑖 .

(6.14)

To simplify the notation, we will write 𝛼𝑖 = 1/(16𝑁(𝐿𝑖)2). We recall that 𝜆𝑖𝑡 =√
1+∑𝑡−1

𝑠=1 𝛿
𝑖
𝑡 where 𝛿𝑖𝑡 = ∥𝑔 𝑖𝑡 − 𝑔 𝑖𝑡−1∥

2
(𝑖),∗. Using the inequality

√
𝑎 + 𝑏 ≤

√
𝑎 +
√
𝑏,

we can bound the left-hand side of (6.13) as following

𝑀 𝑖

√√√
1+

𝑇∑
𝑠=1

𝛿𝑖𝑡 − 𝛼
𝑖
𝑇∑
𝑡=2

𝛿𝑖𝑡 ≤ 𝑀 𝑖
√

1+ 𝛿𝑖1 +𝑀
𝑖

√√√
𝑇∑
𝑠=2

𝛿𝑖𝑡 − 𝛼
𝑖
𝑇∑
𝑡=2

𝛿𝑖𝑡

= 𝑓 𝑖
©­«
√√√

𝑇∑
𝑡=2

𝛿𝑖𝑡
ª®¬ . (6.15)

where 𝑓 𝑖 : 𝑦 ∈ R ↦→ −𝛼𝑖𝑦2 +𝑀 𝑖𝑦 +𝑀 𝑖
√

1+ 𝛿𝑖1 is a quadratic function with
negative leading coefficient and is hence bounded from above. This proves
(6.13) by setting 𝐶 𝑖 ≥ max𝑦∈R+ 𝑓

𝑖(𝑦).

Note that (𝜆𝑖𝑡)𝑡∈N is non-decreasing. Therefore, it either converges to some
finite limit or tends to plus infinity. We write lim𝑡→+∞ 𝜆𝑖𝑡 = 𝜆𝑖 ∈ R+ ∪{+∞}. To
prove (6.14), we tackle the two cases separately:

Case 1, 𝜆𝑖 ∈ R+: In other words,
∑+∞
𝑡=2 𝛿

𝑖
𝑡 is finite. Since 𝜆𝑖𝑡 ≥ 1, by taking

𝐶 𝑖 ≥ ∑+∞
𝑡=2 𝛿

𝑖
𝑡 inequality (6.14) is verified.

Case 2, 𝜆𝑖 = +∞: Then lim𝑡→+∞ 1/𝜆𝑖𝑡 = 0. The quantity 𝑡′ = min𝑡{𝑡 :
1/𝜆𝑖𝑡 ≤ 𝛼𝑖} is well-defined and the inequality (6.14) is satisfied as long as
𝐶 𝑖 ≥ ∑𝑡′−1

𝑡=2 (1/𝜆𝑖𝑡 − 𝛼𝑖)𝛿𝑖𝑡 .
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To summarize, we have proved that (6.13) and (6.14) must hold for some
𝐶 𝑖 ∈ R+. Therefore, invoking (6.10) and (6.12) we have effectively proved that
the social regret is bounded by a constant. □

Theorem 6.5 demonstrates the possibility of achieving improved regret with
our algorithms. Compared to [259], which proved constant social regret bound
for finite games, our theorem applies to any continuous game with smooth and
convex losses. Furthermore, our approach incorporates adaptive learning rates
and allows players to adopt different regularizers or even different template
algorithms, enhancing the adoptability of the techniques in practice.
Remark 6.2. The relevance of social regret, as pointed out by Syrgkanis et al.
[259], lies in its relationship with the convergence speed of average social welfare
to the price of anarchy in a family of finite games known as smooth games [236].
Nonetheless, the importance of the above analysis goes beyond its immediate
implications, as it also paves the way for the subsequent findings presented in
this chapter (used especially for proving Proposition 6.7).

6.3.3 Bound on Individual Regret in Self-Play

Building upon the proof of Theorem 6.5, in the following theorem we strengthen
the result for variationally stable games, providing constant regret bound on
each player’s individual regret.
Theorem 6.6. Suppose that Assumptions 5.1–5.3 hold and all players of the game adoptConstant individual

regret an algorithm of 𝔄𝑜𝑐𝑑 with adaptive learning rate (Adapt). Then, for every bounded
comparator set𝒵 𝑖 ⊆ 𝒳 𝑖 , the regret of player 𝑖 ∈ 𝒩 is bounded as

Reg𝑖𝑇(𝒵
𝑖) = 𝒪(1).

Theorem 6.6 provides both improved regret guarantee for individual players
from a learning perspective and faster convergence to CCE from a computational
perspective. It extends a range of results previously proved for finite two-player,
zero-sum games under the use of different learning algorithms [55, 145, 228],
while shaving off the logarithmic factors.

In order to prove the theorem, we start by showing that the inverse of the
learning rate converges to a finite constant (which is equivalent to saying that
the learning rate converges to a positive constant).
Proposition 6.7. Suppose that Assumptions 5.2 and 5.3 hold and that all playersConvergence of

learning rate to
positive constant

𝑖 ∈ 𝒩 adopt an algorithm of 𝔄𝑜𝑐𝑑 with adaptive learning rate (Adapt). Then, for
every 𝑖 ∈ 𝒩 , the sequence (𝜆𝑖𝑡)𝑡∈N converges to a finite constant 𝜆𝑖 ∈ R+ (equivalently,∑+∞
𝑡=1 𝛿

𝑖
𝑡 < +∞).

Proof. In this proof we borrow the notations from the proof of Theorem 6.5. First,
summing the left-hand side of (6.9) from 𝑖 = 1 to𝑁 leads to

∑𝑇
𝑡=1⟨V(X𝑡+ 1

2
), X𝑡+ 1

2
−

z⟩. Since the game is variationally stable, we may take z ← x★ ∈ 𝔛★ a Nash
equilibrium of the game, which gurantees that ⟨V(x), x− x★⟩ ≥ 0 for all x ∈ 𝔛.
Summing (6.9) from 𝑖 = 1 to 𝑁 and using the Lipschitz continuity of the
functions, similar to (6.10), we obtain

0 ≤
𝑁∑
𝑖=1

(
𝜆𝑖𝑇+1𝜑

𝑖(𝑥 𝑖★) + ∥𝑉 𝑖(x1)∥2(𝑖),∗
)

+
𝑇∑
𝑡=2

(
𝑁∑
𝑖=1

∥𝑉 𝑖(X𝑡+ 1
2
) −𝑉 𝑖(X𝑡− 1

2
)∥2(𝑖),∗

𝜆𝑖𝑡
− 1

8 ∥X𝑡+ 1
2
−X𝑡− 1

2
∥2

)
. (6.16)
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Combining (6.13) and (6.14) with the above inequality, we deduce that for any
𝑖 ∈ 𝒩 , setting 𝐶 𝑖 = −2

∑𝑁
𝑗=1 𝐶

𝑗 + 𝐶 𝑖 − ∥V(x1)∥2∗ ensures that for all 𝑇 ∈ N,

𝜑𝑖(𝑥 𝑖★)

√√√
1+

𝑇∑
𝑠=1

𝛿𝑖𝑡 − 𝛼
𝑖
𝑇∑
𝑡=2

𝛿𝑖𝑡 ≥ 𝐶 𝑖 .

Invoking (6.15) then gives 𝑓 𝑖
(√∑𝑇

𝑡=2 𝛿
𝑖
𝑡

)
≥ 𝐶 𝑖 . Since 𝑓 𝑖 is a quadratic function

with negative leading coefficient, lim𝑦→+∞ 𝑓 𝑖(𝑦) = −∞. Accordingly,
∑+∞
𝑡=2 𝛿

𝑖
𝑡 is

finite, which in turn implies 𝜆𝑖 = lim𝑡→+∞ 𝜆𝑖𝑡 < +∞. □

Proposition 6.7 confirms our intuition that, under favorable circumstances,
adaptive algorithms essentially mimic the performance of an algorithm with
suitably chosen constant learning rate. With this result in hand, we are now
poised to establish the constant regret bound for each player.

Proof of Theorem 6.6. From Lemma 6.1 we have

𝑇∑
𝑡=1
⟨𝑔 𝑖𝑡 ,𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩ ≤ 𝜆𝑖𝑇+1𝜑

𝑖(𝑧 𝑖) +
𝑇∑
𝑡=1

𝛿𝑖𝑡
𝜆𝑖𝑡

. (6.17)

As 𝜑𝑖 is continuous and𝒵 𝑖 is bounded, 𝑀 𝑖 = max𝑧 𝑖∈𝒵 𝑖 𝜑𝑖(𝑧 𝑖) is well-defined.
Moreover, 1/𝜆𝑖𝑡 ≤ 1 for all 𝑡. Maximizing (6.17) over 𝑧 𝑖 ∈ 𝒵 𝑖 then gives

Reg𝑖𝑇(𝒵
𝑖) ≤ 𝜆𝑖𝑇+1𝑀

𝑖 +
𝑇∑
𝑡=1

𝛿𝑖𝑡 ≤ 𝜆𝑖𝑀 𝑖 +
+∞∑
𝑡=1

𝛿𝑖𝑡 ,

where 𝜆𝑖 = lim𝑡→+∞ 𝜆𝑖𝑡 and
∑+∞
𝑡=1 𝛿

𝑖
𝑡 are finite according to Proposition 6.7. We

have thus proved Reg𝑖𝑇(𝒵 𝑖) = 𝒪(1). □

6.4 trajectory convergence

The results Section 6.3 focused on “average” measures of performance, namely
the players’ individual and social regret. Even though the derived bounds are
sharp, they cannot be used to draw meaningful conclusions for the players’
actual sequence of play. Our analysis in this section shows that, in fact, the
proposed learning methods do stabilize to a best response or a Nash equilibrium
in a number of relevant cases.

6.4.1 Reciprocity Conditions

To show convergence of the trajectory, we require the sequence (𝜓𝑡)𝑡∈N intro-
duced in Definition 6.1 to satisfy the following assumption.

Assumption 6.1. For some norm ∥·∥ and its associated distance function dist, Assumption on the
seuqence of energy
functions

the sequence (𝜓𝑡)𝑡∈N satisfies

(a) For any 𝑡 ∈ N and 𝑧 ∈ 𝒳 𝑖 , 𝜓𝑡(𝑧) ≥ (1/2)∥𝑋𝑡 − 𝑧∥2.

(b) For any compact set 𝒦 ∈ 𝒳 𝑖 and 𝜀 > 0, there exists 𝜌 > 0 such that if
dist(𝑋𝑡 ,𝒦) ≤ 𝜌 then 𝜓𝑡(𝒦) B min𝑧∈𝒦 𝜓𝑡(𝑧) ≤ 𝜀.
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Recall that for (OptDA) and (DS-OptMD), we have respectively 𝜓𝑡 = 𝐹(·,𝑌𝑡),
where 𝑌𝑡 = −𝜂𝑡

∑𝑡−1
𝑠=1 𝑔𝑠 , and 𝜓𝑡 = 𝐷(·,𝑋𝑡) (see Propositions 6.2 and 6.3).

Therefore, Assumption 6.1(a) is indeed verified (Lemma A.3). This ensures
that the sequence (𝑋𝑡)𝑡∈N converges to 𝑧 whenever the metric 𝜓𝑡 converges
to 0. Assumption 6.1(b) ensures the converse and is implied by the reciprocity
conditions that we define below.

Definition 6.2 (Bregman reciprocity [41, 156]). Bregman reciprocity is satisfiedReciprocity conditions
for regularizer ℎ defined over 𝒳 if for any 𝑧 ∈ 𝒳, and (𝑋𝑡)𝑡∈N a sequence of
primal points such that 𝑋𝑡 → 𝑧, it holds 𝐷(𝑧,𝑋𝑡) → 0.

Definition 6.3 (Fenchel reciprocity [194]). Fenchel reciprocity is satisfied for
regularizer ℎ defined over 𝒳 if for any 𝑧 ∈ 𝒳, and (𝑌𝑡)𝑡∈N a sequence of dual
vectors such that 𝑄(𝑌𝑡) → 𝑧, we have 𝐹(𝑧,𝑌𝑡) → 0.

These two reciprocity conditions are commonly used in the literature for
establishing last-iterate convergence results of MD- and DA-type methods
[41, 194, 196]. It is straightforward to verify that Bregman reciprocity is implied
by Fenchel reciprocity (Lemma A.5), but the opposite is generally not true.
For example, when ℎ is the quadratic regularizer, Bregman reciprocity always
holds while Fenchel reciprocity is only guaranteed when 𝒳 is a polytope. In
this regard, (DS-OptMD) could be more favorable then (OptDA) in terms of
trajectory convergence guarantee.

6.4.2 Convergence to Best Response

A fundamental consistency property for online learning in games is that any
player should end up “best responding” to the action profile of all other players
if their actions stabilize (or are stationary). Formally, a player 𝑖 ∈ 𝒩 is said to
converge to best response if, whenever the action profile x−𝑖𝑡 of all other players
converges to some limit profile x−𝑖∞ ∈

∏
𝑗≠𝑖 𝒳 𝑗 , the sequence of actions 𝑥 𝑖𝑡 ∈ 𝒳 𝑖

of the focal player 𝑖 ∈ 𝒩 converges itself to BR(x−𝑖∞ ) B arg min𝑥 𝑖∈𝒳 𝑖 ℓ 𝑖(𝑥 𝑖 , x−𝑖∞ ).
We establish this key requirement below.

Theorem 6.8. Suppose that Assumptions 5.1 and 5.2 hold, and a player 𝑖 ∈ 𝒩 adoptsConvergence to best
response an algorithm of 𝔄𝑜𝑐𝑑 with adaptive learning rate (Adapt). Assume additionally that

the algorithm verifies Assumption 6.1 and that𝒳 𝑖 is compact. Then, if all other players’
actions converge to a point x−𝑖∞ ∈

∏
𝑗≠𝑖 𝒳 𝑗 , player 𝑖’s realized actions converge to the

best response to x−𝑖∞ .

Proof. The proof of the theorem relies on a “trapping” argument. Specifically,
we show that when the sequence 𝑋 𝑖

𝑡 gets close to a best response, all subsequent
iterates must remain in this neighborhood provided that 𝑡 is sufficiently large.
Subsequently, we also show that the sequence (𝑋 𝑖

𝑡 )𝑡∈N visits any neighborhood
of BR(x−𝑖∞ ) infinitely many times. Therefore, for every neighborhood of BR(x−𝑖∞ ),
the iterates eventually get trapped into that neighborhood, and we conclude by
showing ∥𝑋 𝑖

𝑡+ 1
2
−𝑋 𝑖

𝑡 ∥(𝑖) converges to zero.

We break down this argument into four steps below. To begin, let us define
𝑥 𝑖★ ∈ 𝔛𝑖★ B BR(x−𝑖∞ ) and 𝑀 𝑖 = max𝑥 𝑖★∈𝔛𝑖★ 𝜑(𝑥

𝑖
★).
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(1) Descent inequality. By slightly modifying the proof of Lemma 6.1, we derive
immediately that

𝜆𝑖𝑡+1𝜓
𝑖
𝑡+1(𝑥

𝑖
★) ≤ 𝜆𝑖𝑡𝜓

𝑖
𝑡(𝑥 𝑖★) + (𝜆𝑖𝑡+1 −𝜆

𝑖
𝑡)𝑀 𝑖 +

𝛿𝑖𝑡
𝜆𝑖𝑡
− ⟨𝑉 𝑖(X𝑡+ 1

2
),𝑋 𝑖

𝑡+ 1
2
− 𝑥 𝑖★⟩

−
𝜆𝑖𝑡
4 ∥𝑋

𝑖
𝑡+1 −𝑋

𝑖

𝑡+ 1
2
∥2(𝑖) −

𝜆𝑖𝑡
2 ∥𝑋

𝑖

𝑡+ 1
2
−𝑋 𝑖

𝑡 ∥2(𝑖), (6.18)

The scalar product term is not necessarily non-negative, but with X̃𝑡+ 1
2
=

(𝑋 𝑖

𝑡+ 1
2
, x−𝑖∞ ), x★ = (𝑥 𝑖★, x−𝑖∞ ), and 𝑅 the diameter of 𝒳 𝑖 , we can decompose

⟨𝑉 𝑖(X𝑡+ 1
2
),𝑋 𝑖

𝑡+ 1
2
− 𝑥 𝑖★⟩ = ⟨𝑉 𝑖(X𝑡+ 1

2
) −𝑉 𝑖(X̃𝑡+ 1

2
),𝑋 𝑖

𝑡+ 1
2
− 𝑥 𝑖★⟩

+ ⟨𝑉 𝑖(X̃𝑡+ 1
2
),𝑋 𝑖

𝑡+ 1
2
− 𝑥 𝑖★⟩

≥ −𝑅∥𝑉 𝑖(X𝑡+ 1
2
) −𝑉 𝑖(X̃𝑡+ 1

2
)∥(𝑖),∗ + ℓ 𝑖(X̃𝑡+ 1

2
) − ℓ 𝑖(x★).

(6.19)

In the inequality we have used the convexity of ℓ 𝑖(·, x−𝑖∞ ). Let us write ℓ 𝑖★ =

min𝑥 𝑖∈𝒳 𝑖 ℓ 𝑖(𝑥 𝑖 , x−𝑖∞ ) and define

𝑓 : x−𝑖 ↦→ max
𝑧 𝑖∈𝒳 𝑖
∥𝑉 𝑖(𝑧 𝑖 , x−𝑖) −𝑉 𝑖(𝑧 𝑖 , x−𝑖∞ )∥(𝑖),∗.

Then, combining (6.18), (6.19), using the definition of 𝑓 , and minimizing with
respect to 𝑥 𝑖★ ∈ 𝔛𝑖★ leads to

𝜆𝑖𝑡+1𝜓
𝑖
𝑡+1(𝔛

𝑖
★) ≤ 𝜆𝑖𝑡𝜓

𝑖
𝑡(𝔛𝑖★) + (𝜆𝑖𝑡+1 −𝜆

𝑖
𝑡)𝑀 +

𝛿𝑖𝑡
𝜆𝑖𝑡
+ 𝑅 𝑓 (X−𝑖

𝑡+ 1
2
)

− (ℓ 𝑖(X̃𝑡+ 1
2
) − ℓ 𝑖★) −

𝜆𝑖𝑡
4 ∥𝑋

𝑖
𝑡+1 −𝑋

𝑖

𝑡+ 1
2
∥2(𝑖) −

𝜆𝑖𝑡
2 ∥𝑋

𝑖

𝑡+ 1
2
−𝑋 𝑖

𝑡 ∥2(𝑖).
(6.20)

(2) Convergence of terms that precede with plus sign. We define 𝜒𝑖𝑡 = (𝜆𝑖
𝑡+1 −

𝜆𝑖𝑡)𝑀 + 𝛿𝑖𝑡/𝜆𝑖𝑡 + 𝑅 𝑓 (X−𝑖𝑡+ 1
2
). As 𝑉 𝑖 is continuous, 𝒳 𝑖 is compact, and the iterates

(x−𝑖𝑡 )𝑡∈N converges and is hence bounded, the sequence of feedback received by
player 𝑖 is also bounded. Let us denote this bound by 𝐺. We first show that
a) (𝜆𝑖

𝑡+1 −𝜆
𝑖
𝑡)𝑡∈N and b) (𝛿𝑖𝑡/𝜆𝑖𝑡)𝑡∈N converge to 0.

This trivially holds if lim𝑡→+∞ 𝜆𝑖𝑡 < +∞ (which is equivalent to
∑+∞
𝑡=1 𝛿

𝑖
𝑡 < +∞).

Otherwise, we have 𝜆𝑖𝑡 → +∞. Since 𝛿𝑖𝑡 ≤ 4𝐺2, we deduce the sequence b)
(𝛿𝑖𝑡/𝜆𝑖𝑡)𝑡∈N converges to 0. For the sequence a), we simply note that

𝜆𝑖𝑡+1 −𝜆
𝑖
𝑡 =
(𝜆𝑖
𝑡+1)2 − (𝜆

𝑖
𝑡)2

𝜆𝑖
𝑡+1 +𝜆

𝑖
𝑡

=
𝛿𝑖𝑡

𝜆𝑖
𝑡+1 +𝜆

𝑖
𝑡

≤ 2𝐺2

𝜆𝑖𝑡

𝜆𝑖𝑡→+∞−−−−−−→ 0.

We now turn our attention to the third term that appears in the definition of
𝜒𝑡 . Since 𝒳 𝑖 is compact and 𝑉 𝑖 is continuous, the function 𝑓 is continuous by
Berge’s maximum theorem. Accordingly, 𝑓 (X−𝑖

𝑡+ 1
2
) converges to 0 when 𝑡 goes to

infinity. Combining the above arguments we have shown that lim𝑡→+∞ 𝜒𝑖𝑡 = 0.
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(3) Convergence of 𝑋 𝑖
𝑡 to best response. Below we show that for any 𝜀 > 0, we

have 𝜓𝑖
𝑡(𝔛𝑖★) ≤ 𝜀 for all 𝑡 large enough. This means lim𝑡→+∞ 𝜓𝑖

𝑡(𝔛𝑖★) = 0 and
accordingly lim𝑡→+∞ dist(𝑋 𝑖

𝑡 ,𝔛
𝑖
★) = 0 thanks to Assumption 6.1(a).

To begin, we establish some preliminary results for three different situations.
Since 𝔛𝑖★ ⊂ 𝒳 𝑖 is a compact set, Assumption 6.1(b) ensures the existence of 𝜌 > 0
such that if dist(𝑋 𝑖

𝑡 ,𝔛
𝑖
★) ≤ 𝜌 then 𝜓𝑖

𝑡(𝔛𝑖★) ≤ 𝜀.

Case 1, dist(𝑋 𝑖

𝑡+ 1
2
,𝔛𝑖★) ≥ 𝜌/2: By continuity of ℓ 𝑖(·, x−𝑖∞ ) and compacity of 𝒳 𝑖

this implies the existence of 𝑐 > 0 such that ℓ 𝑖(X̃𝑡+ 1
2
) − ℓ 𝑖★ ≥ 𝑐 whenever we are

in this situation. As lim𝑡→+∞ 𝜒𝑖𝑡 = 0, there exists 𝑡1 ∈ N such that for all 𝑡 ≥ 𝑡1,
𝜒𝑖𝑡 ≤ 𝑐/2. For any 𝑡 ≥ 𝑡1, the inequality (6.20) then gives

𝜆𝑖𝑡+1𝜓
𝑖
𝑡+1(𝔛

𝑖
★) ≤ 𝜆𝑖𝑡𝜓

𝑖
𝑡(𝔛𝑖★) + 𝜒𝑖𝑡 − 𝑐 −

𝜆𝑖𝑡
4 ∥𝑋

𝑖
𝑡+1 −𝑋

𝑖

𝑡+ 1
2
∥2(𝑖) ≤ 𝜆𝑖𝑡𝜓

𝑖
𝑡(𝔛𝑖★) −

𝑐

2 .

Case 2, dist(𝑋 𝑖

𝑡+ 1
2
,𝔛𝑖★) ≤ 𝜌/2 and ∥𝑋 𝑖

𝑡+1 − 𝑋
𝑖

𝑡+ 1
2
∥(𝑖) ≥ 𝜌/2: We define 𝑡2 ∈ N

such that for all 𝑡 ≥ 𝑡2, 𝜒𝑖𝑡 ≤ 𝜌2/32. Then for 𝑡 ≥ 𝑡2,

𝜆𝑖𝑡+1𝜓
𝑖
𝑡+1(𝔛

𝑖
★) ≤ 𝜆𝑖𝑡𝜓

𝑖
𝑡(𝔛𝑖★) + 𝜒𝑖𝑡 − (ℓ 𝑖(X̃𝑡+ 1

2
) − ℓ 𝑖★) −

𝜌2

16 ≤ 𝜆𝑖𝑡𝜓
𝑖
𝑡(𝔛𝑖★) −

𝜌2

32 .

Case 3, dist(𝑋 𝑖

𝑡+ 1
2
,𝔛𝑖★) ≤ 𝜌/2 and ∥𝑋 𝑖

𝑡+1 − 𝑋
𝑖

𝑡+ 1
2
∥(𝑖) ≤ 𝜌/2: By the triangular

inequality this implies dist(𝑋 𝑖
𝑡+1,𝔛𝑖★) ≤ 𝜌 and accordingly 𝜓𝑖

𝑡+1(𝔛
𝑖
★) ≤ 𝜀 by the

choice of 𝜌.

Putting all together: Let us consider the sequence (𝑈 𝑖
𝑡 )𝑡∈N ∈ (R+)N defined

by𝑈 𝑖
𝑡 = 𝜆𝑖𝑡𝜓

𝑖
𝑡(𝔛𝑖★). For 𝑡 ≥ max(𝑡1, 𝑡2), whenever we are in Case 1 or 2, we have

𝑈 𝑖
𝑡+1 ≤ 𝑈

𝑖
𝑡 −min(𝑐/2, 𝜌2/32). Since (𝑈 𝑖

𝑡 )𝑡∈N ∈ (R+)N is non-negative, this can
not happen for all 𝑡 ≥ max(𝑡1, 𝑡2); this means Case 3 must happen for some
𝑡′ ≥ max(𝑡1, 𝑡2). Note that for both Case 1 and 2 we get 𝜓𝑖

𝑡+1(𝔛
𝑖
★) ≤ 𝜓𝑖

𝑡(𝔛𝑖★).
Therefore, with the three cases presented above we see that for all 𝑡 ≥ 𝑡′ + 1 we
have 𝜓𝑖

𝑡(𝔛𝑖★) ≤ 𝜀. We have thus proved that for any 𝜀 > 0, the energy 𝜓𝑖
𝑡(𝔛𝑖★)

becomes eventually smaller than 𝜀.

(4) Convergence of 𝑋 𝑖

𝑡+ 1
2

to best response. Now that we know that 𝑋 𝑖
𝑡 converges to

best response, it is sufficient to show that ∥𝑋 𝑖

𝑡+ 1
2
−𝑋 𝑖

𝑡 ∥(𝑖) → 0. Using (6.20) we
can write

∥𝑋 𝑖

𝑡+ 1
2
−𝑋 𝑖

𝑡 ∥2(𝑖) ≤ 2

(
𝜓𝑖
𝑡(𝔛𝑖★) −𝜓𝑖

𝑡+1(𝔛
𝑖
★) +

𝜒𝑖𝑡
𝜆𝑖𝑡

)
.

As the right-hand side of the above inequality tends to 0 when 𝑡 goes to infinity,
we conclude that ∥𝑋 𝑖

𝑡+ 1
2
−𝑋 𝑖

𝑡 ∥(𝑖) → 0. □

As a direct consequence of the convergence to best response, we deduce that
lim𝑡→+∞Gap𝑖𝒳 𝑖 (x𝑡) = 0 whenever the opponents’ actions converge. Therefore,
the action of the player becomes quasi-optimal as time goes by, in the sense that
what they could earn by switching to any other strategy in a round tends to 0.

Remark 6.3. The compactness assumption can be removed if the opponents are
stationary. In fact, in that case, we may reformulate the question as that of
minimization of a convex function and the convergence to a minimum is then
implied by the more general convergence to Nash equilibrium that we show in
the next section.
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6.4.3 Convergence to Nash Equilibrium

Moving forward, we proceed to establish results concerning the convergence of
the players’ trajectory of play to Nash equilibrium when all players employ an
adaptive learning algorithm of 𝔄𝑜𝑐𝑑 in a variationally stable game.

Theorem 6.9. Suppose that Assumptions 5.1 and 5.2 hold and all players of the game Convergence to Nash
equilibrium in
(strictly) variationally
stable games

adopt an algorithm of 𝔄𝑜𝑐𝑑 with adaptive learning rate (Adapt). Assume additionally
that all the players’ algorithms verify Assumption 6.1. Then, the induced trajectory of
play converges to a Nash equilibrium provided that either of the following is satisfied

a) The game is strictly variationally stable.
b) The game is variationally stable and ℎ 𝑖 is subdifferentiable on all of 𝒳 𝑖 for all 𝑖.

The convergence to a Nash equilibrium x★ implies that for every 𝑖 ∈ 𝒩 and ev-
ery compact set𝒵 𝑖 ∈ 𝒳 𝑖 , lim𝑡→+∞Gap𝑖𝒵 𝑖 (x𝑡) = Gap𝑖𝒵 𝑖 (x★) ≤ 0 (Proposition 5.1).
Thus, in the long run, the players are individually satisfied with their own
choices of each play compared to any other action they could have pick from a
comparator set. Such convergence results for adaptive methods are scarce in
the learning-in-games literature. Among these, the closest antecedent to ours
is the work of Lin et al. [177] where the authors prove convergence to Nash
equilibrium in unconstrained cocoercive games,4 with an adaptive learning rate
that is the same across player (and which therefore requires access to global
information to be computed). In this regard, Theorem 6.9 extends a wide range
of earlier equilibrium convergence results that were obtained with a constant or
diminishing —but not adaptive —learning rate.

In order to prove Theorem 6.9, we start by showing that the distance between
successive iterates (as indexed by 𝑠 ∈ N/2) converges to 0.

Lemma 6.10. Suppose that Assumptions 5.2 and 5.3 hold and that all players of
the game adopt an algorithm of 𝔄𝑜𝑐𝑑 with adaptive learning rate (Adapt). Then,
∥X𝑡+ 1

2
−X𝑡 ∥ → 0 and ∥X𝑡 −X𝑡− 1

2
∥ → 0 as 𝑡 → +∞.

Proof. Let x★ be a Nash equilibrium. We apply (6.4) to 𝑧 𝑖 ← 𝑥 𝑖★, and sum these
bounds for 𝑖 = 1 to 𝑁 , with Young’s inequality (6.5), we get

1
2

𝑇∑
𝑡=1

𝑁∑
𝑖=1

𝜆𝑖𝑡

(
𝐷 𝑖(𝑋 𝑖

𝑡+1,𝑋 𝑖

𝑡+ 1
2
) +𝐷 𝑖(𝑋 𝑖

𝑡+ 1
2
,𝑋 𝑖

𝑡 )
)
≤

𝑁∑
𝑖=1

(
𝜆𝑇𝑡+1𝜑

𝑖(𝑥 𝑖★) +
+∞∑
𝑡=1

𝛿𝑖𝑡
𝜆𝑖𝑡

)
.

(6.21)
The right-hand side of (6.21) is finite by Proposition 6.7. With strong convexity
of ℎ 𝑖 , this implies

+∞∑
𝑡=1

(
∥X𝑡+1 −X𝑡+ 1

2
∥2 + ∥X𝑡+ 1

2
−X𝑡 ∥2

)
< +∞.

Therefore, both ∥X𝑡+ 1
2
−X𝑡 ∥ and ∥X𝑡 −X𝑡− 1

2
∥ converge to 0 when 𝑡 → +∞. □

Another important building block for the proof is the convergence of the
energy function

∑𝑁
𝑖=1 𝜆

𝑖𝜓𝑖
𝑡(𝑥 𝑖★).

Lemma 6.11. Suppose that Assumptions 5.2 and 5.3 hold and that all players 𝑖 ∈ 𝒩
adopt an algorithm of 𝔄𝑜𝑐𝑑 with adaptive learning rate (Adapt). Then,

∑𝑁
𝑖=1 𝜆

𝑖𝜓𝑖
𝑡(𝑥 𝑖★)

converges for all Nash equilibrium x★ ∈ 𝔛★.

4 The class of cocoercive games is defined by the property ⟨V(x)−V(x′), x− x′⟩ ≥ (1/𝛽)∥V(x)−V(x′)∥2∗ .
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Proof. Let x★ be a Nash equilibrium. From the descent inequality (6.2), it is
straightforward to show that

𝑁∑
𝑖=1

𝜆𝑖𝑡+1𝜓
𝑖
𝑡+1(𝑥

𝑖
★) ≤

𝑁∑
𝑖=1

𝜆𝑖𝑡𝜓
𝑖
𝑡(𝑥 𝑖★) − ⟨V(X𝑡+ 1

2
), X𝑡+ 1

2
− x★⟩

+
𝑁∑
𝑖=1

(
(𝜆𝑖𝑡+1 −𝜆

𝑡
𝑡)𝜑𝑖(𝑥 𝑖★) +

𝛿𝑖𝑡
2𝜆𝑖𝑡

)
.

By the choice of x★, ⟨V(X𝑡+ 1
2
), X𝑡+ 1

2
− x★⟩ ≥ 0. On the other hand, thanks

to Proposition 6.7 we know that the term on the second line is summable.
Therefore, by applying Lemma B.1, we deduce the convergence of

∑𝑁
𝑖=1 𝜆

𝑖
𝑡𝜓

𝑖
𝑡(𝑥 𝑖★).

This in particular implies that 𝜓𝑖
𝑡(𝑥 𝑖★) is bounded above for all 𝑖 and 𝑡; hence∑𝑁

𝑖=1(𝜆𝑖 −𝜆𝑖𝑡)𝜓𝑖
𝑡(𝑥 𝑖★) converges to 0, and the convergence of

∑𝑁
𝑖=1 𝜆

𝑖𝜓𝑖
𝑡(𝑥 𝑖★) follows

immediately. □

With the above two lemmas, we are now ready prove Theorem 6.9.

Proof of Theorem 6.9. We first show that in both cases, a cluster point of (X𝑡)𝑡∈N

is necessarily a Nash equilibrium.
a) Let x∞ be a cluster point of (X𝑡)𝑡∈N and x★ be a Nash equilibrium. The

point x∞ is also a cluster point of (X𝑡+ 1
2
)𝑡∈N since lim𝑡→+∞∥X𝑡+ 1

2
− X𝑡 ∥ = 0.

From the proof of Theorem 6.5, we have
∑𝑇
𝑡=1⟨V(X𝑡+ 1

2
), X𝑡+ 1

2
− x★⟩ = 𝒪(1). As

⟨V(X𝑡+ 1
2
), X𝑡+ 1

2
− x★⟩ ≥ 0 for all 𝑡, this implies lim𝑡→+∞⟨V(X𝑡+ 1

2
), X𝑡+ 1

2
− x★⟩ = 0.

Subsequently, ⟨V(x∞), x∞ − x★⟩ = 0 by the continuity of V, which shows that x∞
must be a Nash equilibrium by the strict variational stability of the game.

b) Let x∞ ∈ 𝒳 be a cluster point of (X𝑡)𝑡∈N. We recall that 𝑋 𝑖

𝑡+ 1
2

is obtained by

𝑋 𝑖

𝑡+ 1
2
= arg min

𝑥∈𝒳 𝑖

{
⟨𝑉 𝑖(X𝑡− 1

2
), 𝑥⟩ +𝜆𝑖𝑡𝐷 𝑖(𝑥,𝑋 𝑖

𝑡 )
}

.

For any 𝑧 𝑖 ∈ 𝒳 𝑖 , the optimality condition Lemma A.1 then gives

⟨𝑉 𝑖(X𝑡− 1
2
) +𝜆𝑖𝑡 ∇ ℎ 𝑖(𝑋 𝑖

𝑡+ 1
2
) −𝜆𝑖𝑡 ∇ ℎ 𝑖(𝑋 𝑖

𝑡 ), 𝑧 𝑖 −𝑋 𝑖

𝑡+ 1
2
⟩ ≥ 0. (6.22)

Let (X𝜔(𝑡))𝑡∈N be a subsequence that converges to x∞. With lim𝑡→+∞∥X𝑡+ 1
2
−

X𝑡 ∥ = 0 and lim𝑡→+∞∥X𝑡 − X𝑡− 1
2
∥ = 0 (Lemma 6.10), we deduce X𝜔+ 1

2
→ x∞

and X𝜔− 1
2
→ x∞. Since both ∇ ℎ 𝑖 and 𝑉 𝑖 are continuous (∇ ℎ 𝑖 is a continuous

selection of the subgradients of ℎ 𝑖) and 𝒳 𝑖 ⊂ dom 𝜕ℎ 𝑖 , by substituting 𝑡 ← 𝜔(𝑡)
in (6.22) and letting 𝑡 go to infinity, we get

⟨𝑉 𝑖(x∞) +𝜆𝑖 ∇ ℎ 𝑖(𝑥 𝑖∞) −𝜆𝑖 ∇ ℎ 𝑖(𝑥 𝑖∞), 𝑧 𝑖 − 𝑥 𝑖∞⟩ ≥ 0.

In other words, for all 𝑧 𝑖 ∈ 𝒳 𝑖 , it holds that

⟨∇𝑥 𝑖 ℓ 𝑖(x∞), 𝑧 𝑖 − 𝑥 𝑖∞⟩ ≥ 0.

This is true for all 𝑖 ∈ 𝒩 and all 𝑧 𝑖 ∈ 𝒳 𝑖 , which shows that x∞ is indeed a Nash
equilibrium thanks to the first-order characterization Proposition 5.7.

Conclude. Lemma 6.11 along with Assumption 6.1(a) implies the bounded-
ness of (X𝑡)𝑡∈N. With the above we can readily show that dist(x𝑡 ,𝔛★) → 0 and
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lim sup𝑡→+∞Gap𝑖𝒵 𝑖 (x𝑡) ≤ 0 for all 𝑖 and every compact set𝒵 𝑖 ⊂ 𝒳 𝑖 (x𝑡 = X𝑡+ 1
2

is the realized action at time 𝑡).
Below, we further prove the convergence of the played iterates to a point using

Assumption 6.1(b) and Lemma 6.11. The sequence (X𝑡)𝑡∈N, being bounded,
necessarily possesses a cluster point which we denote by x∞. We have proved
that x∞ must be a Nash equilibrium. Therefore, by Lemma 6.11 the sequence∑𝑁
𝑖=1 𝜆

𝑖𝜓𝑖
𝑡(𝑥 𝑖∞) converges. In Assumption 6.1(b), we take 𝒦 ← {𝑥 𝑖∞} and this

means that when 𝑋 𝑖
𝑡 is close enough to 𝑥 𝑖∞, 𝜓𝑖

𝑡(𝑥 𝑖∞) becomes arbitrarily small.
Consequently,

∑𝑁
𝑖=1 𝜆

𝑖𝜓𝑖
𝑡(𝑥 𝑖∞) can only converge to 0. By invoking Assump-

tion 6.1(a), we then get lim𝑡→+∞ X𝑡 = x∞, and subsequently lim𝑡→+∞ X𝑡+ 1
2
= x∞

thanks to Lemma 6.10. □

6.4.4 Adaptive OMWU Converges in Finite Two-Player Zero-Sum Games

Despite the generality of Theorem 6.9, it fails to cover the case where players use
regularizer ℎ 𝑖 whose subdifferential is not defined on the whole 𝒳 𝑖 (instead it
is only defined on ri𝒳 𝑖) in a game that is variationally stable but not strictly so.
One notable example is when the two players of a finite two-player zero-sum
game use adaptive versions of OMWU. We address this case below.

Theorem 6.12. Suppose that the players of a finite two-player zero-sum game follow Convergence of
adaptive OMWU in
finite two-player
zero-sum games

(OMWU) with adaptive learning rate (Adapt). Then the induced sequence of play
converges to a Nash equilibrium.

Prior to our work, last-iterate convergence of OMWU were shown in [53, 277].
Theorem 6.12 sharpens these results in two key aspects: (i) the players’ learning
rate is not contingent on the knowledge of game-specific constants; and (ii) we
do not assume the existence of a unique Nash equilibrium.

To prove the theorem, we consider the saddle-point formulation of the Saddle-point
formulation and
essential strategy

problem. Let us denote respectively by 𝜃 ∈ ∆𝑚 and 𝜙 ∈ ∆𝑛 the mixed strategy
of the first and the second player. A point (𝜃★, 𝜙★) is a Nash equilibrium if for
all 𝜃 ∈ ∆𝑚 and 𝜙 ∈ ∆𝑛 ,

𝜃⊤★𝐴𝜙★ ≤ 𝜃⊤𝐴𝜙★, 𝜃⊤★𝐴𝜙 ≤ 𝜃⊤★𝐴𝜙★. (6.23)

where𝐴 is the payoff matrix and without loss of generality we assume ∥𝐴∥∞ ≤ 1.
We define 𝑣 = min𝜃∈∆𝑚 max𝜙∈∆𝑛 𝜃

⊤𝐴𝜙 as the value of the game and we write
𝑥[𝑘] for the 𝑘-th coordinate of 𝑥. A pure strategy 𝛼𝑖 of player 𝑖 is called essential
if there exists a Nash equilibrium in which player 𝑖 plays 𝛼𝑖 with positive
probability. We have the following lemma from [195].

Lemma 6.13. Let 𝐴 ∈ R𝑚×𝑛 be the game matrix for a finite two-player zero-sum game
with value 𝑣. There is a Nash equilibrium (𝜃★, 𝜙★) such that each player plays each of
their essential strategies with positive probability, and

∀𝑘 ∉ supp(𝜃★), (𝐴𝜙★)[𝑘] > 𝑣, ∀𝑙 ∉ supp(𝜙★), (𝐴⊤𝜃★)[𝑙] < 𝑣.

With Lemma 6.13, we are now ready to define a series of notations that will Notations for the proof
be used in our proof of Theorem 6.12.

• We write x★ = (𝜃★, 𝜙★) for an equilibrium that meets the description of
Lemma 6.13. As an immediate consequence, we have (𝐴𝜙★)[𝑘] = 𝑣 for all
𝑘 ∈ supp(𝜃★) and (𝐴⊤𝜃★)[𝑙] = 𝑣 for all 𝑙 ∈ supp(𝜙★).
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• The minimum difference between the value and the payoff of a non-chosen
strategy at x★ is denoted by

𝜉 = min
{

min
𝑘∉supp(𝜃★)

(𝐴𝜙★)[𝑘] − 𝑣, 𝑣 − max
𝑙∉supp(𝜙★)

(𝐴⊤𝜃★)[𝑙]
}

.

• For any 𝜃̂ ∈ ∆𝑚 , we use the notation

𝒱𝜃̂ = {𝜃 ∈ ∆𝑚 : supp(𝜃) ⊆ supp(𝜃̂)}

for the set of the points whose support is included in that of 𝜃̂ and define
𝒱𝜙̂ in the same way for any 𝜙̂ ∈ ∆𝑛 .

• We use 𝐷KL to represent the Bregman divergence induced by the negen-
tropy regularizer, i.e., the KL divergence.

• We consider the following continuous gradient selections of the negen-
tropy regularizers:

∇ ℎ1 : (𝜃[𝑘])𝑘∈[𝑚] → (log𝜃[𝑘])𝑘∈[𝑚], ∇ ℎ2 : (𝜙[𝑙])𝑙∈[𝑚] → (log 𝜙[𝑙])𝑙∈[𝑛].

Having established the relevant notations, we proceed to prove the theorem.
We start by presenting several lemmas that are crucial to the analysis. To begin,
we show that 𝜉 lies in the interval (0, 1].

Lemma 6.14. It holds that 0 < 𝜉 ≤ 1.Preparatory lemmas

Proof. The fact that 𝜉 > 0 is immediate from the definition of 𝜉 (which uses
Lemma 6.13). As for the upper bound, we note that

𝜉 ≤
min𝑘∉supp(𝜃★) (𝐴𝜙★)[𝑘] − 𝑣 + 𝑣 −max𝑙∉supp(𝜙★) (𝐴⊤𝜃★)[𝑙]

2

≤
∥𝐴𝜙★∥∞ + ∥𝐴⊤𝜃★∥∞

2
≤ 1. □

The next lemma allows us to construct a Nash equilibrium with the help of a
point that fulfills a condition that is weaker than the one required for a Nash
equilibrium. We draw inspiration from [277] in proving this lemma.

Lemma 6.15. Let x̂ = (𝜃̂, 𝜙̂) ∈ ∆𝑚 ×∆𝑛 satisfy that for all (𝜃, 𝜙) ∈ 𝒱𝜃★ ×𝒱𝜙★ ,

(𝜃 − 𝜃̂)⊤𝐴𝜙̂ + 𝜃̂⊤𝐴(𝜙̂ − 𝜙) ≥ 0. (6.24)

Then x′ = (1− 𝜉/2)x★ + (𝜉/2)x̂ is also a Nash equilibrium.

Proof. We rewrite the left-hand side of (6.24) as

(𝜃 − 𝜃̂)⊤𝐴𝜙̂ + 𝜃̂⊤𝐴(𝜙̂ − 𝜙) = 𝜃⊤𝐴𝜙̂ − 𝑣 + 𝑣 − 𝜃̂⊤𝐴𝜙
= 𝜃⊤𝐴(𝜙̂ − 𝜙★) + (𝜃★ − 𝜃̂)⊤𝐴𝜙. (6.25)

The second equality holds because (𝜃, 𝜙) ∈ 𝒱𝜃★ × 𝒱𝜙★ . With the choice
(𝜃, 𝜙) ← (𝜃★, 𝜙★) and (6.24) we then get

𝜃⊤★𝐴(𝜙̂ − 𝜙★) + (𝜃★ − 𝜃̂)⊤𝐴𝜙★ ≥ 0.
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This implies
𝜃⊤★𝐴(𝜙̂ − 𝜙★) = (𝜃★ − 𝜃̂)⊤𝐴𝜙★ = 0 (6.26)

by the definition of Nash equilibrium (6.23).
We next prove that (𝜃★, 𝜙′) is also a Nash equilibrium with 𝜙′ = (1− 𝜉/2)𝜙★+
(𝜉/2)𝜙̂. From (6.26) we already have

𝜃⊤★𝐴𝜙
′ = 𝜃⊤★𝐴𝜙★ = 𝑣 = max

𝜙∈∆𝑛
𝜃⊤★𝐴𝜙.

It remains to show that 𝜃⊤★𝐴𝜙′ = min𝜃∈∆𝑚 𝜃⊤𝐴𝜙′. By choosing 𝜙 = 𝜙★ in (6.25),
we know that for all 𝜃 ∈ 𝒱𝜃★ , it holds 𝜃⊤𝐴(𝜙̂ − 𝜙★) ≥ 0. In other words,

∀𝑘 ∈ supp(𝜃★), (𝐴(𝜙̂ − 𝜙★))[𝑘] ≥ 0 (6.27)

Let 𝜃 ∈ ∆𝑚 . We decompose

𝜃⊤𝐴𝜙′ =
∑

𝑘∈supp(𝜃★)
𝜃[𝑘](𝐴𝜙′)[𝑘] +

∑
𝑘∉supp(𝜃★)

𝜃[𝑘](𝐴𝜙′)[𝑘]. (6.28)

The first term can be bounded below using (6.27),∑
𝑘∈supp(𝜃★)

𝜃[𝑘](𝐴𝜙′)[𝑘] =
∑

𝑘∈supp(𝜃★)

(
𝜉
2 𝜃[𝑘](𝐴(𝜙̂ − 𝜙★))[𝑘] + 𝜃[𝑘](𝐴𝜙★)[𝑘]

)
≥

∑
𝑘∈supp(𝜃★)

𝜃[𝑘]𝑣. (6.29)

We proceed to lower bound the second term∑
𝑘∉supp(𝜃★)

𝜃[𝑘](𝐴𝜙′)[𝑘] ≥
∑

𝑘∉supp(𝜃★)

(
𝜃[𝑘](𝐴𝜙★)[𝑘] −

𝜉
2 |𝜃[𝑘](𝐴(𝜙̂ − 𝜙★))[𝑘] |

)
≥

∑
𝑘∉supp(𝜃★)

(
𝜃[𝑘](𝐴𝜙★)[𝑘] −

𝜉
2 𝜃[𝑘]∥𝐴∥∞∥𝜙̂ − 𝜙★∥1

)
≥

∑
𝑘∉supp(𝜃★)

𝜃[𝑘]((𝐴𝜙★)[𝑘] − 𝜉)

≥
∑

𝑘∉supp(𝜃★)
𝜃[𝑘]𝑣. (6.30)

In the last inequality we use the definition of 𝜉. Combining (6.28), (6.29),
and (6.30) we have 𝜃⊤𝐴𝜙′ ≥ 𝑣 = x★[𝜃⊤]𝐴𝜙′. We have therefore proved
that (𝜃★, 𝜙′) is a Nash equilibrium. In the same way we can show that with
𝜃′ = (1− 𝜉/2)𝜃★+ (𝜉/2)𝜃̂, the point (𝜃′, 𝜙★) is also a Nash equilibrium. We then
conclude that x′ = (𝜃′, 𝜙′) is indeed a Nash equilibrium. □

Thanks to Lemma 6.15, we can now establish two important properties of the
cluster points of the played sequence.

Lemma 6.16. Suppose that the players of a two-player, finite zero-sum game follow
(OMWU) with adaptive learning rate (Adapt). Then, for any cluster point x∞ of the
sequence of play, we have

(a) The point x′★ = (1− 𝜉/2)x★ + (𝜉/2)x∞ is a Nash equilibrium.

(b) The two points x∞ and x★ have the same support, i.e., supp(x∞) = supp(x★).
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Proof. Let x∞ = (𝜃∞, 𝜙∞) be a cluster point of (X𝑡+ 1
2
)𝑡∈N. By Lemma 6.10, the

distance ∥X𝑡+ 1
2
−X𝑡 ∥ converges to 0 and thus x∞ is also a cluster point of (X𝑡)𝑡∈N.

Moreover, using Lemma 6.11, we know that 𝜆1𝐷KL(𝜃★,𝜃𝑡) +𝜆2𝐷KL(𝜙★, 𝜙𝑡) are
bounded from above. This implies that for all 𝑘 ∈ supp(𝜃★) and 𝑙 ∈ supp(𝜙★),
the coordinates 𝜃𝑡,[𝑘] and 𝜙𝑡,[𝑙] are bounded from below. Accordingly, we deduce
that supp(𝜃★) ⊆ supp(𝜃∞) and supp(𝜙★) ⊆ supp(𝜙∞).

We next show that the point x′★ = (1− 𝜉/2)x★+ (𝜉/2)x∞ is a Nash equilibrium.
Let 𝜃 ∈ 𝒱(𝜃★). For any 𝑡 ∈ N, we define 𝜃′

𝑡+ 1
2

such that 𝜃′
𝑡+ 1

2 ,[𝑘] = 𝜃[𝑘] for
𝑘 ∈ supp(𝜃∞) and 𝜃′

𝑡+ 1
2 ,[𝑘] = 𝜃𝑡+ 1

2 ,[𝑘] for 𝑘 ∉ supp(𝜃∞). Applying the optimality

condition (6.22) to 𝑧1 ← 𝜃′
𝑡+ 1

2
gives∑

𝑘∈supp(𝜃∞)
(𝑉1(X𝑡− 1

2
)
[𝑘]
+ log(𝜃𝑡+ 1

2 ,[𝑘]) −𝜆1
𝑡 (log(𝜃𝑡,[𝑘])))(𝜃[𝑘] − 𝜃𝑡+ 1

2 ,[𝑘]) ≥ 0 (6.31)

As in the proof of Theorem 6.9, we take a subsequence of (X𝑡)𝑡∈N that
converges to x∞ and take the limit of (6.31) along this subsequence. The fact
that 𝜃∞[𝑘] > 0 for all 𝑘 ∈ supp(𝜃∞) ensures that the limits of the log terms
are well defined. With the convergence of ∥X𝑡 − X𝑡− 1

2
∥ and ∥X𝑡+ 1

2
− X𝑡 ∥ to 0

(Lemma 6.10), we get ∑
𝑘∈supp(𝜃∞)

𝑉1(x∞)[𝑘](𝜃[𝑘] − 𝜃∞[𝑘]) ≥ 0.

Since supp(𝜃★) ⊆ supp(𝜃∞), the above can be rewritten as (𝜃−𝜃∞)⊤𝐴𝜙∞ ≥ 0. In
the same way, for all 𝜙 ∈ 𝒱(𝜙★), we have 𝜃⊤∞𝐴(𝜙∞ − 𝜙) ≥ 0. As a consequence,
it follows from Lemma 6.15 that x′★ is effectively a Nash equilibrium.

To conclude, we note that x′★ being a Nash equilibrium, we have supp(x′★) ⊆
supp(x★) by the choice of x★. Along with supp(x★) ⊆ supp(x∞) and 0 < 𝜉 ≤ 1
Lemma 6.14, we deduce that supp(x★) = supp(x∞). □

Finally, we show that the sequence of play has only one cluster point, and
thus this cluster point must be a Nash equilibrium according to Proposition 5.1.

Proof of Theorem 6.12. Let x∞ = (𝜃∞, 𝜙∞) and x′∞ = (𝜃′∞, 𝜙′∞) be two clusterProof of convergence
via the uniqueness of

the cluster point
points of (X𝑡)𝑡∈N (equivalently, of (X𝑡+ 1

2
)𝑡∈N because ∥X𝑡+ 1

2
− X𝑡 ∥ converges

to 0). By Lemma 6.16, we know that x′★ = (1 − 𝜉/2)x★ + (𝜉/2)x∞ is a Nash
equilibrium and supp(x∞) = supp(x★) = supp(x′∞). We write x′★ = (𝜃′★, 𝜙′★).
Using Lemma 6.11, we can define

𝑈∞ = lim
𝑡→+∞

𝜆1𝐷KL(𝜃★,𝜃𝑡) +𝜆2𝐷KL(𝜙★, 𝜙𝑡)

𝑈′∞ = lim
𝑡→+∞

𝜆1𝐷KL(𝜃′★,𝜃𝑡) +𝜆2𝐷KL(𝜙′★, 𝜙𝑡).

Since supp(𝜃∞) = supp(𝜃★) = supp(𝜃′∞) and supp(𝜙∞) = supp(𝜙★) = supp(𝜙′∞),
we can use the continuity of the KL divergence with respect to the second
variable to deduce that

𝜆1𝐷KL(𝜃★,𝜃∞) +𝜆2𝐷KL(𝜙★, 𝜙∞) = 𝑈∞ = 𝜆1𝐷KL(𝜃★,𝜃′∞) +𝜆2𝐷KL(𝜙★, 𝜙′∞),
𝜆1𝐷KL(𝜃′★,𝜃∞) +𝜆2𝐷KL(𝜙′★, 𝜙∞) = 𝑈′∞ = 𝜆1𝐷KL(𝜃′★,𝜃′∞) +𝜆2𝐷KL(𝜙′★, 𝜙′∞).
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In other words, we have

𝜆1
∑

𝑘∈supp(𝜃★)
𝜃★[𝑘] log𝜃∞[𝑘] +𝜆2

∑
𝑙∈supp(𝜙★)

𝜙★[𝑙] log 𝜙∞[𝑙]

= 𝜆1
∑

𝑘∈supp(𝜃★)
𝜃★[𝑘] log𝜃′∞[𝑘] +𝜆2

∑
𝑙∈supp(𝜙★)

𝜙★[𝑙] log 𝜙′∞[𝑙],
(6.32)

and

𝜆1
∑

𝑘∈supp(𝜃★)
𝜃′★[𝑘] log𝜃∞[𝑘] +𝜆2

∑
𝑙∈supp(𝜙★)

𝜙′★[𝑙] log 𝜙∞[𝑙]

= 𝜆1
∑

𝑘∈supp(𝜃★)
𝜃′★[𝑘] log𝜃′∞[𝑘] +𝜆2

∑
𝑙∈supp(𝜙★)

𝜙′★[𝑙] log 𝜙′∞[𝑙],
(6.33)

With (𝜃′★, 𝜙′★) = (1− 𝜉/2)x★ + (𝜉/2)x∞ and 𝜉 > 0, using (6.32) and (6.33) we get

𝜆1
∑

𝑘∈supp(𝜃★)
𝜃∞[𝑘] log𝜃∞[𝑘] +𝜆2

∑
𝑙∈supp(𝜙★)

𝜙∞[𝑙] log 𝜙∞[𝑙]

= 𝜆1
∑

𝑘∈supp(𝜃★)
𝜃∞[𝑘] log𝜃′∞[𝑘] +𝜆2

∑
𝑙∈supp(𝜙★)

𝜙∞[𝑙] log 𝜙′∞[𝑙],

Since supp(𝜃★) = supp(𝜃′∞) and supp(𝜙★) = supp(𝜙′∞), the above is thus
equivalent to

𝜆1𝐷KL(𝜃∞,𝜃′∞) +𝜆2𝐷KL(𝜙∞, 𝜙′∞) = 0

This shows x∞ = x′∞, and therefore (X𝑡+ 1
2
)𝑡∈N has only one cluster point (the

existence of which is guaranteed by the compactness of the actions sets); in
other words, the induced sequence of play converges. We know that the players
have no regret thanks to Theorem 6.6. We can thus conclude with the help of
Proposition 5.1. □

6.5 numerical illustrations

In this section we experimentally illustrate our theoretical results through
two variationally stable games and a general-sum finite game. Precisely, we
investigate the following three different setups.

• A finite two-player zero-sum game with 10×10 cost matrix whose elements Finite two-player
zero-sum gameare drawn uniformly at random from [−1,+1]: We let the two players play

(DS-OptMD) respectively with negentropy and quadratic regularizers.
Note that the convergence of this particular configuration can be proved
following the proof of Theorem 6.12.

• A resource allocation auction (Example 5.2) with 6 resources and 20 Kelly auction
bidders: We fix 𝑐𝑘 = 1, draw 𝑞𝑘 and 𝑟 𝑖 uniformly at random from [4, 6],
and draw 𝑏 𝑖 uniformly at random from [5, 10]. Each player runs either
(OptDA) or (DS-OptMD) with quadratic regularizer.

• A three-player-matching-pennies game introduced by Jordan [138]: Each Three-player-
matching-pennies
game

player has two pure strategies. Player 1 wants to match the pure strategy
of player 2; player 2 wants to match the pure strategy of player 3; and
player 3 wants to match the opposite of the pure strategy of player 1. Each
player receives a loss of −1 if they match as desired, and 1 otherwise. It is
straightforward to see that the unique equilibrium is achieved when all
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Figure 6.2 The (linearized) individual regret (top) and the realized actions (bottom, each
line representing a coordinate of 𝑥 𝑖

𝑡
) of a subset of players in a finite two-player zero-sum

game (left), a resource allocation auction (middle), and a three-player matching-pennies
game [138] (right). All the players use either adaptive (OptDA) or adaptive (DS-OptMD)
as their learning strategies. We observe convergence of the realized actions and the
regrets in the first two examples.

the players uniformly randomize. In this game, we let the three players
run (DS-OptMD) with Euclidean regularizer.

As for the learning rates, we use the L2 norm in the definition of 𝛿𝑖𝑡 . TheDiscussion on
experimental results results are plotted in Fig. 6.2. Provided that the first two games are variationally

stable, we observe the boundedness of individual regrets (measured with
respect to the entire action set) and the convergence of iterates as predicted
by our analysis. For the three-player-matching-pennies game, all the players
oscillate between the two pure strategies, and have their individual regrets
tend to minus infinity. We provided a theorem that partially characterized this
behavior in [127] that this chapter draws from. Interested readers may also refer
to the work of Anagnostides et al. [4] that further examined this phenomenon
after the publication of our work.



7
DEALING WITH STOCHASTIC FEEDBACK I : TRAJECTORY
CONVERGENCE

# This chapter incorporates material from Hsieh et al. [126, 129]

In the previous chapter, we explored and tackled the challenge of adaptive
learning rate tuning for optimistic online learning algorithms. This was a

significant step toward the practical application of these methods. However, it
relied on one crucial assumption: the availability of perfect gradient information.
This assumption often does not hold in practice. For instance, in robotics,
decisions are made based on noisy sensor data or incomplete observations
of the environment [263]. Likewise, in machine learning, dealing with large
datasets often necessitates the use of stochastic gradient methods [24]. Such
stochasticity introduces an element of unpredictability and variance that can
significantly affect the algorithm’s performance and behavior.

This chapter and the next are dedicated to addressing this issue. Our goal Unconstrained setup
is to extend the theoretical guarantees of these algorithms (as presented in
Proposition 5.8) to cases where the feedback is subject to stochastic perturbations.
To do so, we will focus on the unconstrained setup 𝒳 𝑖 = R𝑑𝑖 and on the use of
quadratic regularizer ℎ(·)𝑖 = ∥·∥2/2, where, for the sake of notational simplicity
in the two chapters, we denote the L2 norm as ∥·∥ = ∥·∥2. Using 𝑔̃ 𝑖𝑡 = 𝑔 𝑖

𝑡−1 then Optimistic gradient
gives the OG algorithm.1

𝑋 𝑖

𝑡+ 1
2
= 𝑋 𝑖

𝑡 − 𝜂𝑖𝑡 𝑔 𝑖𝑡−1, 𝑋 𝑖
𝑡+1 = 𝑋 𝑖

𝑡 − 𝜂𝑖𝑡+1𝑔
𝑖
𝑡 . (OG)

The focus of this chapter is on the (last-iterate) convergence of an algorithm Extra-gradient
to a Nash equilibrium. In this regard, although EG is not a valid online learning
algorithm (see the discussion in Section 5.3), it can still be of interest when the
goal is to compute an approximate equilibrium point, either when coordination
between players are allowed, or more drastically, when there is a centralized
entity that performs the computation. Since EG is only defined when used by
all the players, we directly present the update for the joint iterate below.

X𝑡+ 1
2
= X𝑡 − 𝜂𝑡V̂𝑡 , X𝑡+1 = X𝑡 − 𝜂𝑡+1V̂𝑡+ 1

2
. (EG)

In the above, V̂𝑡 and V̂𝑡+ 1
2

are respectively the stochastic estimates of V(X𝑡)
and of V(X𝑡+ 1

2
) (see Assumption 7.1). Moreover, we have assumed that all the

players use the same learning rate 𝜂𝑡 at round 𝑡.

contributions and outline. To motivate our analysis, we first present a Non-convergence and
noise modelcounterexample in Section 7.1. We show that even in bilinear zero-sum games,

where (EG) and (OG) with perfect feedback converge from any initialization,

1 In Chapter 4 we used the same name for the update with general guess vector 𝑔̃𝑡 . In this chapter
we use it to refer to the instantiation with 𝑔̃𝑡 = 𝑔𝑡−1.

117
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stochasticity in the feedback can cause these algorithms to fail. We also present
our noise model in this section.

In response to the failure we’ve observed, we propose EG+ and OG+ inLearning rate
separation and energy

inequalities
Section 7.2. These algorithms utilize distinct learning rates for the optimistic
and the update steps. Through energy inequalities, we illustrate the advantage
of using a smaller update learning rate in the presence of stochastic feedback.

Building upon the aforementioned inequalities, we demonstrate a series ofGlobal convergence
convergence results in Section 7.3. Precisely, we show that both EG+ and OG+
converge with probability 1 in all variationally stable games, and derive explicit
convergence rates for the algorithms’ last iterate under an additional error
bound condition on the pseudo-gradient V of the game.

Finally, we demonstrate in Section 7.4 that it is possible to establish localLocal convergence
versions of the aforementioned results, circumventing the sometimes impractical
global assumptions. Concretely, we show that EG+ converges with (arbitrarily)
high probability provided the game is locally variationally stable and the
pseudo-gradient is locally Lipschitz around a first-order equilibrium point
(i.e., a point where V(x★) = 0). We also provide expected convergence rate,
conditioned on the convergence of the algorithm, when the Jacobian of V at the
equilibrium point is invertible.

7.1 feedback model and failure of optimistic methods

In this section, we present our model for the feedback oracle and illustrate
through an example that noise in feedback may hinder the convergence of (EG)
and (OG) in games where they would have otherwise converged.

7.1.1 Noise Model

To account for stochasticity in the feedback, we consider two noise models,Additive noise versus
multiplicative noise additive noise and multiplicative noise. To illustrate the difference between

these two models, suppose we wish to estimate the value of some quantity
𝑣 ∈ R. Then, an estimate of 𝑣 with additive noise is a random variable
𝑣̂add of the form 𝑣̂add = 𝑣 + 𝜉add for some zero-mean noise variable 𝜉add;
analogously, a multiplicative noise model for 𝑣 is a random variable of the form
𝑣̂mult = 𝑣(1+ 𝜉mult) for some zero-mean noise variable 𝜉mult. The two models
can be compared directly via the additive representation of the multiplicative
noise model as 𝑣̂mult = 𝑣 + 𝜉mult𝑣, which gives Var[𝜉add] = 𝑣2Var[𝜉mult].

With all this in mind, we consider the following oracle feedback model: LetFeedback oracle
X𝑠 = (𝑋 𝑖

𝑠)𝑖∈𝒩 collect the actions taken by all the players at time 𝑠 for some
𝑠 ∈ N/2 (recall that we index the iterates of the optimistic methods by half-
integer). The feedback received by player 𝑖 at time 𝑠 is 𝑉̂ 𝑖

𝑠 = 𝑉
𝑖(X𝑠) + 𝜉𝑖𝑠 , where

𝜉𝑖𝑠 represents the aggregate measurement error relative to 𝑉 𝑖(X𝑠). Moreover,
with (ℱ𝑠)𝑠∈N/2 the filtration such that 𝝃𝑠 = (𝜉𝑖𝑠)𝑖∈𝒩 is ℱ 𝑖

𝑠+ 1
2
-measurable but not

ℱ
𝑖
𝑠 -measurable, and E𝑠[·] = E[· |ℱ𝑠] the corresponding conditional expectation,

we make the following assumption for the noise / measurement error vectors.

Assumption 7.1. The noise vectors (𝝃𝑠)𝑠∈N/2 satisfy the following requirementsZero-mean and
variance control for some 𝜎𝐴, 𝜎𝑀 ≥ 0.

(a) Zero-mean: For all 𝑖 ∈ 𝒩 and 𝑠 ∈ N/2, E𝑠[𝜉𝑖𝑠] = 0.

(b) Variance control: For all 𝑖 ∈ 𝒩 and 𝑠 ∈ N/2, E𝑠[∥𝜉𝑖𝑠 ∥2] ≤ 𝜎2
𝐴
+ 𝜎2

𝑀
∥𝑉 𝑖(X𝑠)∥2.



7.1 feedback model and failure of optimistic methods 119

Let us briefly discuss several special cases of Assumption 7.1. A first straight- Special case:
perfect feedback and
absolute noise

forward observation is that by setting 𝜎𝐴, 𝜎𝑀 = 0 we recover the “perfect
feedback” setup studied in Chapter 6, whereas for 𝜎𝐴 = 0, 𝜎𝑀 > 0 we obtain the
standard “absolute noise” model that often serves as a context-agnostic model
for stochastic first-order methods, cf. [142, 209] and references therein.

A more intriguing case is when 𝜎𝐴 = 0 and 𝜎𝑀 > 0. This particular instance Special case:
relative noiseis sometimes referred to as “relative noise” [224], and it is widely used as a

model for randomized coordinate descent methods [210], randomized player
updates in game theory [8], and physical measurements in signal processing
and control [243]. Although this is actually more general than the multiplicative
noise model described above given that 𝜉𝑖𝑠 and 𝑉 𝑖(X𝑠) may not point to the
same direction, we will, by a slight abuse of terminology, say that the noise is
“multiplicative” whenever 𝜎𝐴 = 0. In our analysis, we show that the regret
bounds and convergence rates have much better dependence on 𝑡 in this case,
essentially recovering the guarantees of the perfect information case. Otherwise,
in the general case both 𝜎𝐴 and 𝜎𝑀 are positive, and we use the term “noise” to
tacitly refer to the presence of both additive and multiplicative components.

noise of all players. Although Assumption 7.1 is stated for the individual Joint noise vector and
joint feedback vectornoise component of each player, it is straightforward to translate it into results

on the joint quantities as demonstrated below.

Proposition 7.1. Suppose that Assumption 7.1 holds. Then, for all 𝑠 ∈ N/2, we have

E𝑠[𝝃𝑠] = 0, E𝑠[∥𝝃𝑠 ∥2] ≤ 𝑁𝜎2
𝐴 + 𝜎

2
𝑀 ∥V(X𝑠)∥2. (7.1)

Moreover, if X𝑠 is ℱ𝑠-measurable for all 𝑠 ∈ N/2, we additionally have

E𝑠[V̂𝑠] = V(X𝑠), E𝑠[∥V̂𝑠 ∥2] ≤ 𝑁𝜎2
𝐴 + (1+ 𝜎

2
𝑀)∥V(X𝑠)∥2 (7.2)

Proof. This follows immediately from the assumptions. □

Remark 7.1. For the algorithms that we consider in this chapter and the next, Natural filtration
(ℱ𝑠)𝑠∈N/2 is nothing but the natural filtration associated to (X𝑠)𝑠∈N/2 (this is for
example not the case for an algorithm that always outputs a same vector). In
particular, we will use the notation V̂1/2 = 𝝃1/2 = 0 and we define ℱ1 as the
𝜎-algebra generated by X1, while ℱ1/2 and ℱ0 denote the trivial 𝜎-algebra.

single-call versus two-call methods. For the learning-in-games setup Notation for
single-call methodsdescribed in Section 5.1, we may write 𝑔 𝑖𝑡 = 𝑉

𝑖(x𝑡) + 𝜉𝑖𝑡 for the gradient feedback
to player 𝑖 at round 𝑡. When using optimistic methods, we have x𝑡 = X𝑡+ 1

2
and

thus 𝑔 𝑖𝑡 = 𝑉̂ 𝑖

𝑡+ 1
2

and 𝜉𝑖𝑡 = 𝜉𝑖
𝑡+ 1

2
. While the equation 𝜉𝑖𝑡 = 𝜉𝑖

𝑡+ 1
2

cannot hold for
“two-call” methods that also evaluate at X𝑡 (e.g., EG), it is a valid notation for
the “single-call” methods that only evaluate at X𝑡+ 1

2
(e.g., OG). For this latter

case, it will also be convenient to write ℱ𝑡 for ℱ𝑡+ 1
2

and E𝑡 for E𝑡+ 1
2
.

7.1.2 Non-convergence of EG and OG with Stochastic Feedback

To ensure convergence of algorithms even in the face of stochasticity, it is
often required to take a learning rate sequence that is square summable but not
summable, i.e.,

∑+∞
𝑡=1 𝜂𝑡 = +∞ and

∑+∞
𝑡=1 𝜂

2
𝑡 < +∞ [233, 276]. Nonetheless, in the

following example, we show that even with such learning rate and even if the
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Figure 7.1: Trajectories of play (left) and distances to equilibrium (right) of (EG),
(OG), (EG+), and (OG+) when they are run on the game min𝜃∈R max𝜙∈R 𝜃𝜙 with
stochastic feedback presented in Example 7.1. The learning rates are 𝛾𝑡 = 1/(𝑡 + 1)𝑟𝛾 and
𝜂𝑡 = 1/(𝑡 + 1)𝑟𝜂 . For sake of readability, we only plot the trajectories of (EG) and (OG),
and we only show the results for the iterates (X𝑡 )𝑡∈N but we observe the same qualitative
convergence behaviors for (X𝑡+ 1

2
)𝑡∈N.

noise is almost surely bounded, neither (EG) nor (OG) with stochastic feedback
converges in the bilinear zero-sum game we defined in Example 6.1.
Example 7.1. Consider the following bilinear zero-sum game with playerNon-convergence

under stochastic
feedback

variables 𝜃 and 𝜙.

𝒳1 = 𝒳2 = R, ℓ 1(𝜃, 𝜙) = 𝜃𝜙 = −ℓ 2(𝜃, 𝜙). (7.3)

If the feedback of the first player is perturbed by noise 𝜉1
𝑡 that takes value 1

and −1 with probability 1/2 for each, then, as shown in Fig. 7.1, even with
𝜂𝑡 = 1/𝑡0.6 which satisfies the square-summable-but-not-summable rule, the
iterates of the neither (EG) nor (OG) (with the same learning rate for the two
players) converges to the unique Nash equilibrium (0, 0).2

The above negative result suggests that, to cope with stochasticity of the
feedback, further modification would be needed to stabilize the methods. With
this in mind, we propose a simple fix in the next section to address this issue.

7.2 learning rate separation and energy inequalities

The goal of this section is to introduce EG+ and OG+, our backbone algorithms
that enable last-iterate convergence when the feedback is corrupted by noise.
Through a series of energy inequalities, we further elucidate how the incorpo-
rated learning rate separation mechanism assists in reducing the detrimental
effects of noise.

7.2.1 Learning Rate Separation as a Remedy: EG+ and OG+

Viewed abstractly, the failure of (EG) and (OG) in the face of noisy feedback
should be attributed to its inability of separating noise from the gradient
variation ∥𝑉 𝑖(X𝑡) −𝑉 𝑖(X𝑡+ 1

2
)∥2 (or ∥𝑉 𝑖(X𝑡− 1

2
) −𝑉 𝑖(X𝑡+ 1

2
)∥2 for (OG)). In fact, in

a noisy environment, the two consecutive pieces of feedback are only close

2 In [126], we formally show that (EG) with any learning rate sequence does not converge in
Example 7.1. This indicates that the non-convergence observed here is inherent to the algorithm
and not contingent on the choice of learning rate.
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in expectation, so a player can only exploit this similarity when the noise is
mitigated appropriately.

To overcome this difficulty, let us recall the interpretation of optimistic meth- Intuition for learning
rate separationods as approximate projection onto hyperplane that we present in Section 5.3.3.

At each iteration, we move from X𝑡 toward a separating hyperplane in the
direction of V(X𝑡+ 1

2
), and the distance between the hyperplane and the current

iterate is in the order of 𝜂𝑡 ∥V(X𝑡+ 1
2
)∥. However, in the stochastic case we only

have access to V̂𝑡+ 1
2
, a stochastic estimate of V(X𝑡+ 1

2
). Consequently, as suggested

by the stochastic approximation literature, if we want the distance between the
iterate and the hyperplane to go to 0, we cannot take the full step 𝜂𝑡V̂𝑡+ 1

2
but

instead we need to take a more conservative step 𝛼𝑡𝜂𝑡V̂𝑡+ 1
2

for some 𝛼𝑡 that
goes to 0.

In other words, we should use different learning rates for the two steps of Learning rate
separationan iteration. This brings us to a strategy already explored in Chapter 4 in the

context of online learning with delayed feedback: taking an optimistic step
that is more aggressive than the update step. To distinguish from the standard
optimistic methods with single learning rate sequence, we refer to the resulting
methods as EG+ and OG+. They are defined with respect to two sequences of
learning rates (𝛾𝑖𝑡 )𝑡∈N and (𝜂𝑖𝑡)𝑡∈N as follows (recall that 𝑉̂ 𝑖

1
2
= 0).

𝑋 𝑖

𝑡+ 1
2
= 𝑋 𝑖

𝑡 − 𝛾𝑖𝑡𝑉̂ 𝑖
𝑡 , 𝑋 𝑖

𝑡+1 = 𝑋 𝑖
𝑡 − 𝜂𝑖𝑡+1𝑉̂

𝑖

𝑡+ 1
2
. (EG+)

𝑋 𝑖

𝑡+ 1
2
= 𝑋 𝑖

𝑡 − 𝛾𝑖𝑡𝑉̂ 𝑖

𝑡− 1
2
, 𝑋 𝑖

𝑡+1 = 𝑋 𝑖
𝑡 − 𝜂𝑖𝑡+1𝑉̂

𝑖

𝑡+ 1
2
. (OG+)

The above formulation effectively demonstrates the close relationship between Alternative
formulation of (OG+)(EG+) and (OG+). Moreover, similar to what we have shown in Section 4.1,

with 𝑥 𝑖𝑡 = 𝑋 𝑖

𝑡+ 1
2

and 𝑔 𝑖𝑡 = 𝑉̂
𝑖

𝑡+ 1
2
, (OG+) can be written in the following form that

directly relates the consecutive actions taken by a player.

𝑥 𝑖𝑡+1 = 𝑥 𝑖𝑡 − (𝛾𝑖𝑡+1 + 𝜂
𝑖
𝑡+1)𝑔

𝑖
𝑡 + 𝛾𝑖𝑡 𝑔 𝑖𝑡−1.

Throughout this chapter, we focus on the case where all the players take
the same learning rates, i.e., 𝛾𝑖𝑡 ≡ 𝛾𝑡 and 𝜂𝑖𝑡 ≡ 𝜂𝑡 (the only exception being
Lemma 7.5), an assumption that is later relaxed in Chapter 8 for the dual
averaging variant. The key observation here is that by taking a larger optimistic
step 𝛾𝑖𝑡 > 𝜂𝑖𝑡 , the noise effectively becomes an order of magnitude smaller relative
to the gradient variation. We demonstrate this via our energy inequalities in the
remaining of this section. As a complement to this, we also provide empirical
evidence in Fig. 7.1, showing that (EG+) and (OG+) indeed achieve convergence
for the game and feedback model described in Example 7.1.

Remark 7.2. In our original paper [126], we used the name double step-size Double step-size
extra-gradient: a note
on naming

extra-gradient (DSEG) for the (EG+) algorithm. Later, the same algorithm
was independently introduced by Diakonikolas et al. [65] under the name of
EG+. The focus there was to solve minimax problems that admit a weak Minty
solution. The name EG+ has since gain popularity in the literature. We follow
this terminology, and in the similar spirit, use the names OG+ and OptDA+
(see Chapter 8) for the double-learning-rate variant of (OG) and of (OptDA).
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7.2.2 Generalized OG+

Let us first analyze a general template that is run with two arbitrary sequences
of vectors (𝑔̃𝑡)𝑡∈N and (𝑔𝑡)𝑡∈N.

𝑋𝑡+ 1
2
= 𝑋𝑡 − 𝛾𝑡 𝑔̃𝑡 , 𝑋𝑡+1 = 𝑋𝑡 − 𝜂𝑡+1𝑔𝑡 . (Generalized OG+)

We have the following preliminary result for this algorithm.

Proposition 7.2. Let (𝑋𝑡)𝑡∈N and (𝑋𝑡+ 1
2
)𝑡∈N be generated by Generalized OG+. ItA basic decomposition

for Generalized OG+ holds for any 𝑧 ∈ 𝒳 and 𝑡 ∈ N that

∥𝑋𝑡+1 − 𝑧∥2 = ∥𝑋𝑡 − 𝑧∥2 − 2𝜂𝑡+1⟨𝑔𝑡 ,𝑋𝑡+ 1
2
− 𝑧⟩

− 2𝛾𝑡𝜂𝑡+1⟨𝑔𝑡 , 𝑔̃𝑡⟩ + (𝜂𝑡+1)2∥𝑔𝑡 ∥2.

Proof. We develop directly

∥𝑋𝑡+1 − 𝑧∥2 = ∥𝑋𝑡 − 𝜂𝑡+1𝑔𝑡 − 𝑧∥2

= ∥𝑋𝑡 − 𝑧∥2 − 2𝜂𝑡+1⟨𝑔𝑡 ,𝑋𝑡 − 𝑧⟩ + (𝜂𝑡+1)2∥𝑔𝑡 ∥2

= ∥𝑋𝑡 − 𝑧∥2 − 2𝜂𝑡+1⟨𝑔𝑡 ,𝑋𝑡+ 1
2
− 𝑧⟩

− 2𝛾𝑡𝜂𝑡+1⟨𝑔𝑡 , 𝑔̃𝑡⟩ + (𝜂𝑡+1)2∥𝑔𝑡 ∥2,

where in the last equality we use the fact that 𝑋𝑡 = 𝑋𝑡+ 1
2
+ 𝛾𝑡 𝑔̃𝑡 . □

Proposition 7.2 is nothing but an elementary decomposition that relates two
consecutive distance measures ∥𝑋𝑡+1 − 𝑧∥2 and ∥𝑋𝑡 − 𝑧∥2. In standard analysis
one would proceed with

−2⟨𝑔𝑡 , 𝑔̃𝑡⟩ = ∥𝑔𝑡 − 𝑔̃𝑡 ∥2 − ∥𝑔𝑡 ∥2 − ∥ 𝑔̃𝑡 ∥2.

This gives rise to the approximation error term ∥𝑔𝑡 − 𝑔̃𝑡 ∥2 that shows up
in all of our analysis of optimistic methods so far (see e.g., Proposition 4.1).
Nonetheless, when the feedback is noisy, it encompasses both the gradient
variation and the noise, making it impossible to cancel out the negative effect of
noise. In view of this issue, we take a different approach, and show through
careful analysis that the noise is actually an order smaller than the gradient
variation in this scalar product term.

7.2.3 Inequalities for EG+

We start with the analysis of (EG+). We work directly with the global update
and for ease of notation we write 𝐿𝑔 for the global Lipschitz constant so that
∥V(x) −V(x′)∥ ≤ 𝐿𝑔 ∥x− x′∥.

Lemma 7.3. Suppose that Assumptions 5.2 and 7.1 hold and all players run (EG+)
with the same learning rates. Then, for all 𝑖 ∈ 𝒩 and 𝑡 ∈ N, it holds

−2 E𝑡[⟨V̂𝑡+ 1
2
, V̂𝑡⟩] ≤ E𝑡

[
− ∥V(X𝑡+ 1

2
)∥2 − ∥V(X𝑡)∥2

+ ∥V(X𝑡+ 1
2
) −V(X𝑡)∥2 + 2𝛾𝑡𝐿𝑔 ∥𝝃𝑡 ∥2

]
(7.4)
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Proof. The estimate V̂𝑡 being ℱ𝑡+ 1
2

measurable, applying the law of total expec-
tation gives

E𝑡[⟨V̂𝑡+ 1
2
, V̂𝑡⟩] = E𝑡[⟨E𝑡+ 1

2
[V̂𝑡+ 1

2
], V̂𝑖

𝑡⟩]

= E𝑡[⟨V(X𝑡+ 1
2
), V̂𝑡⟩]

= E𝑡[⟨V(X𝑡+ 1
2
), V(X𝑡)⟩ + ⟨V(X𝑡+ 1

2
), 𝝃𝑡⟩]. (7.5)

We rewrite the first term as

2⟨V(X𝑡+ 1
2
), V(X𝑡)⟩ = ∥V(X𝑡+ 1

2
)∥2 + ∥V(X𝑡)∥2 − ∥V(X𝑡+ 1

2
) −V(X𝑡)∥2. (7.6)

Regarding the second term, we define

X̃𝑡+ 1
2
= X𝑡 − 𝛾𝑡V(X𝑡) = X𝑡+ 1

2
+ 𝛾𝑡𝝃𝑡 .

This is the leading state that we would obtain if the feedback were not noisy.
Note that X̃𝑡+ 1

2
is ℱ𝑡-measurable, and hence

E𝑡[⟨V(X̃𝑡+ 1
2
), 𝝃𝑡⟩] = ⟨V(X̃𝑡+ 1

2
), E𝑡[𝝃𝑡]⟩ = 0.

It then follows from the Lipschitz continuity of V that

E𝑡[−⟨V(X𝑡+ 1
2
), 𝝃𝑡⟩] = E𝑡[−⟨V(X𝑡+ 1

2
) −V(X̃𝑡+ 1

2
), 𝝃𝑡⟩]

≤ E𝑡[𝐿𝑔 ∥X𝑡+ 1
2
− X̃𝑡+ 1

2
∥∥𝝃𝑡 ∥]

= E𝑡[𝛾𝑡𝐿𝑔 ∥𝝃𝑡 ∥2] (7.7)

Putting (7.5), (7.6), and (7.7) together gives the desired inequality. □

In Lemma 7.3, we effectively separate the gradient variation ∥V(X𝑡+ 1
2
) −

V(X𝑡)∥2 from the noise term 2𝛾𝑡𝐿𝑔 ∥𝝃𝑡 ∥2, which scales in 𝛾𝑡 and can thus be
made arbitrarily small by decreasing 𝛾𝑡 . Along with Proposition 7.2, we then
deduce immediately the benefit of using two different learning rate sequences,
as suggested by the following lemma.

Lemma 7.4. Suppose that Assumptions 5.2, 5.3 and 7.1 hold and all players run Energy inequality for
EG+(EG+) with the same learning rates. Then, for all 𝑡 ∈ N and x★ ∈ 𝔛★, we have

E𝑡[∥X𝑡+1 − x★∥2] ≤ ∥X𝑡 − x★∥2 − 𝛾𝑡𝜂𝑡+1(1− 𝑎𝑡(1+ 𝜎2
𝑀) − 𝑏𝑡𝜎

2
𝑀)∥V(X𝑡)∥

2

− 𝛾𝑡𝜂𝑡+1

(
1−

𝜂𝑡+1(1+ 𝜎2
𝑀
)

𝛾𝑡

)
E𝑡[∥V(X𝑡+ 1

2
)∥2]

+ 𝛾𝑡𝜂𝑡+1

(
𝜂𝑡+1

𝛾𝑡
+ 𝑎𝑡 + 𝑏𝑡

)
𝑁𝜎2

𝐴, (7.8)

where 𝑎𝑡 = 𝛾2
𝑡 𝐿

2
𝑔 and 𝑏𝑡 = 2𝛾𝑡𝐿𝑔 .

Proof. We apply Proposition 7.2 to the global update with 𝑋𝑡 ← X𝑡 and 𝑧 ← x★.
Since the inequality holds for any realization, we can take expectation with
respect to ℱ𝑡 to get

E𝑡[∥X𝑡+1 − x★∥2] = E𝑡[∥X𝑡 − x★∥2 − 2𝜂𝑡+1⟨V̂𝑡+ 1
2
, X𝑡+ 1

2
− x★⟩

− 2𝛾𝑡𝜂𝑡+1⟨V̂𝑡+ 1
2
, V̂𝑡⟩ + (𝜂𝑡+1)2∥V̂𝑡+ 1

2
∥2].
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On one hand, it follows from Assumptions 5.3 and 7.1 that

E𝑡[𝜂𝑡+1⟨V̂𝑡+ 1
2
, X𝑡+ 1

2
− x★⟩] = E𝑡[𝜂𝑡+1⟨V(𝑋𝑡+ 1

2
), X𝑡+ 1

2
− x★⟩] ≥ 0.

On the other hand, the scalar product term E𝑡[−2𝛾𝑡𝜂𝑡+1⟨V̂𝑡+ 1
2
, V̂𝑡⟩] can be

bounded from above thanks to Lemma 7.3. Moreover, with Assumption 5.2
Lipschitz continuity of V and Assumption 7.1 on the noise (using inequality
(7.2) precisely), we deduce that

∥V(X𝑡+ 1
2
) −V(X𝑡)∥2 ≤ 𝐿2∥X𝑡+ 1

2
−X𝑡 ∥2

= 𝛾2
𝑡 𝐿

2
𝑔 ∥V̂𝑡 ∥2

≤ 𝛾2
𝑡 𝑁𝐿

2
𝑔𝜎

2
𝐴 + 𝛾

2
𝑡 𝐿

2
𝑔(1+ 𝜎2

𝑀)∥V(X𝑡)∥
2.

We further bound all the noise terms with help of (7.1) and (7.2). This gives

E𝑡[∥X𝑡+1 − x★∥2] ≤ ∥X𝑡 − x★∥2 − 𝛾𝑡𝜂𝑡+1

(
1−

𝜂𝑡+1(1+ 𝜎2
𝑀
)

𝛾𝑡

)
E𝑡[∥V(X𝑡+ 1

2
)∥2]

− 𝛾𝑡𝜂𝑡+1(1− 2𝛾𝑡𝐿𝑔𝜎2
𝑀 − 𝛾

2
𝑡 𝐿

2
𝑔(1+ 𝜎2

𝑀))∥V(X𝑡)∥
2

+ (𝛾3
𝑡 𝜂𝑡+1𝐿

2
𝑔 + 2𝛾2

𝑡 𝜂𝑡+1𝐿𝑔 + 𝜂2
𝑡+1)𝑁𝜎2

𝐴.

This is exactly (7.8). □

Analyzing the bound of Lemma 7.4 term-by-term gives a clear picture of how
aggressive exploration (i.e., taking a larger optimistic step) can be helpful:

• The term −𝛾𝑡𝜂𝑡+1(1− 𝑎𝑡(1+ 𝜎2
𝑀
) − 𝑏𝑡𝜎2

𝑀
)∥V(X𝑡)∥2 provides a consistently

negative contribution as long as 𝛾𝑡 is small enough.
• Similarly, the term−𝛾𝑡𝜂𝑡+1(1−𝜂𝑡+1(1+ 𝜎2

𝑀
)/𝛾𝑡)E𝑡[∥V(X𝑡+ 1

2
)∥2] is negative

as long as V(X𝑡+ 1
2
) ≠ 0 and 𝜂𝑡+1 is sufficiently small compared to 𝛾𝑡 .

• The term 𝛾𝑡𝜂𝑡+1(𝜂𝑡+1/𝛾𝑡 + 𝑎𝑡 + 𝑏𝑡)𝑁𝜎2
𝐴

is antagonistic and needs to be
made as small as possible.

In summary, the usefulness of the scale separation between the exploration
and the update mechanisms appears in two different places. First, it ensures the
difference 1−𝜂𝑡+1(1+ 𝜎2

𝑀
)/𝛾𝑡 to be non-negative; this is relevant for multiplicative

noise. Moreover, it also ensures the coefficient 𝜂2
𝑡+1 that appears in the last term

is small compared to the coefficient 𝛾𝑡𝜂𝑡+1 of the negative terms; this is relevant
for additive noise. Finally, the coefficients 𝛾2

𝑡 𝜂𝑡+1 and 𝛾3
𝑡 𝜂𝑡+1 also appear in the

last term, and therefore 𝛾𝑡 would also need to be decreasing whenever 𝜎𝐴 > 0.

7.2.4 Inequalities for OG+

We proceed to establish the energy inequality of (OG+). For this, we first prove
the counterpart of Lemma 7.3 for (OG+).

Lemma 7.5. Suppose that Assumptions 5.2 and 7.1 hold and all players run (OG+).
Then, for all 𝑖 ∈ 𝒩 and 𝑡 ≥ 2, it holds

−2 E𝑡−1[⟨𝑉̂ 𝑖

𝑡+ 1
2
, 𝑉̂ 𝑖

𝑡− 1
2
⟩] ≤ E𝑡−1

[
− ∥𝑉 𝑖(X𝑡+ 1

2
)∥2 − ∥𝑉 𝑖(X𝑡− 1

2
)∥2

+ ∥𝑉 𝑖(X𝑡+ 1
2
) −𝑉 𝑖(X𝑡− 1

2
)∥2
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+ 𝐿
©­­«2𝛾𝑖𝑡
√
𝑁 ∥𝜉𝑖

𝑡− 1
2
∥2 +

𝑁∑
𝑗=1

(𝛾 𝑗𝑡 + 𝜂
𝑗

𝑡)2∥𝜉
𝑗

𝑡− 1
2
∥2

2
√
𝑁𝛾𝑖𝑡

ª®®¬
]

Proof. The proof below follows closely that of Lemma 7.3. To begin, we apply
the law of total expectation to get

E𝑡−1[⟨𝑉̂ 𝑖

𝑡+ 1
2
, 𝑉̂ 𝑖

𝑡− 1
2
⟩] = E𝑡−1[⟨E𝑡[𝑉̂ 𝑖

𝑡+ 1
2
], 𝑉̂ 𝑖

𝑡− 1
2
⟩]

= E𝑡−1[⟨𝑉 𝑖(X𝑡+ 1
2
), 𝑉̂ 𝑖

𝑡− 1
2
⟩]

= E𝑡−1[⟨𝑉 𝑖(X𝑡+ 1
2
),𝑉 𝑖(X𝑡− 1

2
)⟩ + ⟨𝑉 𝑖(X𝑡+ 1

2
), 𝜉𝑖

𝑡− 1
2
⟩]. (7.9)

We reformulate the first term as

2⟨𝑉 𝑖(X𝑡+ 1
2
),𝑉 𝑖(X𝑡− 1

2
)⟩ = ∥𝑉 𝑖(X𝑡+ 1

2
)∥2 + ∥𝑉 𝑖(X𝑡− 1

2
)∥2 − ∥𝑉 𝑖(X𝑡+ 1

2
) −𝑉 𝑖(X𝑡− 1

2
)∥2.

(7.10)
Moving on to the second term, for all 𝑗 ∈ 𝒩 , we define

𝑋̃
𝑗

𝑡+ 1
2
= 𝑋

𝑗

𝑡+ 1
2
+ (𝛾 𝑗𝑡 + 𝜂

𝑗

𝑡)𝜉
𝑗

𝑡− 1
2
.

Similar to before, this serves as as a surrogate for 𝑋 𝑗

𝑡+ 1
2

and is obtained by
removing the noise of round 𝑡 − 1. Equivalently, we can write

𝑋̃
𝑗

𝑡+ 1
2
= 𝑋

𝑗

𝑡−1 − (𝛾
𝑗

𝑡 + 𝜂
𝑗

𝑡)𝑉
𝑗(X𝑡− 1

2
).

This shows that X̃𝑡+ 1
2

is ℱ𝑡−1-measurable and hence

E𝑡−1[⟨𝑉 𝑖(X̃𝑡+ 1
2
), 𝜉𝑖

𝑡− 1
2
⟩] = ⟨𝑉 𝑖(X̃𝑡+ 1

2
), E𝑡−1[𝜉𝑖𝑡− 1

2
]⟩ = 0.

Moreover, by definition of X̃𝑡+ 1
2
, we have

∥X𝑡+ 1
2
− X̃𝑡+ 1

2
∥2 =

𝑁∑
𝑗=1
∥𝑋 𝑗

𝑡+ 1
2
− 𝑋̃ 𝑗

𝑡+ 1
2
∥2 =

𝑁∑
𝑗=1
(𝛾 𝑗𝑡 + 𝜂

𝑗

𝑡)
2∥𝜉 𝑗

𝑡− 1
2
∥2

Exploiting the Lipschitz continuity of 𝑉 𝑖 we derive that

E𝑡−1[−⟨𝑉 𝑖(X𝑡+ 1
2
), 𝜉𝑖

𝑡− 1
2
⟩] = E𝑡−1[−⟨𝑉 𝑖(X𝑡+ 1

2
) −𝑉 𝑖(X̃𝑡+ 1

2
), 𝜉𝑖

𝑡− 1
2
⟩]

−E𝑡−1[⟨𝑉 𝑖(X̃𝑡+ 1
2
), 𝜉𝑖

𝑡− 1
2
⟩]

≤ E𝑡−1[𝐿∥X𝑡+ 1
2
− X̃𝑡+ 1

2
∥∥𝜉𝑖

𝑡− 1
2
∥]

≤ E𝑡−1

[
𝐿

(
∥X𝑡+ 1

2
− X̃𝑡+ 1

2
∥2

4𝛾𝑖𝑡
√
𝑁

+ 𝛾𝑖𝑡
√
𝑁 ∥𝜉𝑖

𝑡− 1
2
∥2

)]

= E𝑡−1

𝐿
©­­«𝛾𝑖𝑡
√
𝑁 ∥𝜉𝑖

𝑡− 1
2
∥2 +

𝑁∑
𝑗=1

(𝛾 𝑗𝑡 + 𝜂
𝑗

𝑡)2∥𝜉
𝑗

𝑡− 1
2
∥2

4
√
𝑁𝛾𝑖𝑡

ª®®¬
 .

(7.11)

We conclude by combining (7.9), (7.10), and (7.11). □
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Compared to Lemma 7.3, in Lemma 7.5 we state the inequality in terms of
the feedback received by each individual player. We also take into account
the possibility of using player-dependent learning rates, as we will show in
Chapter 8 that the same inequality also applies to the dual averaging variant
of the algorithm (OptDA+), for which we consider player-dependent learning
rates in the analysis. Except for these differences, the result is much similar to
that of Lemma 7.3. We manage to separate the gradient variation from the noise
term which at most scales in max𝑗∈𝒩 (𝛾 𝑗𝑡 )2/𝜂𝑖𝑡 (assume that 𝜂 𝑗𝑡 ≤ 𝛾

𝑗

𝑡 for all 𝑗).

With Lemma 7.5 we are ready to prove our energy inequalities. We turn our
attention back to player-independent learning rates and we first derive a local
version of the inequality.

Lemma 7.6. Suppose that Assumptions 5.2 and 7.1 hold and all players run (OG+)Individual energy
inequality for OG+ with the same learning rate sequences. Then, for all 𝑖 ∈ 𝒩 , 𝑡 ≥ 2, and 𝑧 𝑖 ∈ 𝒳 𝑖 , it holds

E𝑡−1[∥𝑋 𝑖
𝑡+1 − 𝑧

𝑖 ∥2] ≤ E𝑡−1[∥𝑋 𝑖
𝑡 − 𝑧 𝑖 ∥2 − 2𝜂𝑡+1⟨𝑉 𝑖(X𝑡+ 1

2
),𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩

− 𝛾𝑡𝜂𝑡+1(1− 2𝛾𝑡
√
𝑁𝐿𝜎2

𝑀)∥𝑉
𝑖(X𝑡− 1

2
)∥2

− 𝛾𝑡𝜂𝑡+1

(
1−

𝜂𝑡+1(1+ 𝜎2
𝑀
)

𝛾𝑡

)
∥𝑉 𝑖(X𝑡+ 1

2
)∥2

+
(
𝑎𝑡𝐿

2(1+ 𝜎2
𝑀) +

𝑏𝑡𝐿𝜎2
𝑀√

𝑁

)
∥V(X𝑡− 1

2
)∥2

+ 3(𝛾𝑡−1)2𝛾𝑡𝜂𝑡+1𝐿
2∥V̂𝑡− 3

2
∥2

+ (𝑎𝑡𝑁𝐿2 + (2𝛾2
𝑡 𝜂𝑡+1 + 𝑏𝑡)

√
𝑁𝐿 + (𝜂𝑡+1)2)𝜎2

𝐴],

where 𝑎𝑡 = 3𝛾3
𝑡 𝜂𝑡+1 + 3𝛾𝑡𝜂2

𝑡 𝜂𝑡+1 and 𝑏𝑡 = (𝛾𝑡 + 𝜂𝑡)2𝜂𝑡+1/2.

Proof. Applying Proposition 7.2 to player 𝑖’s update with 𝑋𝑡 ← 𝑋 𝑖
𝑡 and 𝑧 ← 𝑧 𝑖

and taking expectation with respect to ℱ𝑡−1 gives

E𝑡−1[∥𝑋 𝑖
𝑡+1 − 𝑧

𝑖 ∥2] = E𝑡−1[∥𝑋 𝑖
𝑡 − 𝑧 𝑖 ∥2 − 2𝜂𝑡+1⟨𝑉̂ 𝑖

𝑡+ 1
2
,𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩

− 2𝛾𝑡𝜂𝑡+1⟨𝑉̂ 𝑖

𝑡+ 1
2
, 𝑉̂ 𝑖

𝑡− 1
2
⟩ + (𝜂𝑡+1)2∥𝑉̂ 𝑖

𝑡+ 1
2
∥2].

The unbiasedness of noise Assumption 7.1(a) implies

E𝑡−1[𝜂𝑡+1⟨𝑉̂ 𝑖

𝑡+ 1
2
,𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩] = 𝜂𝑡+1 E𝑡−1[⟨𝑉 𝑖(X𝑡+ 1

2
),𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩]. (7.12)

Invoking Lemma 7.5, we then obtain

E𝑡−1[∥𝑋 𝑖
𝑡+1 − 𝑧

𝑖 ∥2] ≤ E𝑡−1

[
∥𝑋 𝑖

𝑡 − 𝑧 𝑖 ∥2 − 2𝜂𝑡+1⟨𝑉 𝑖(X𝑡+ 1
2
),𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩

− 𝛾𝑡𝜂𝑡+1(∥𝑉 𝑖(X𝑡+ 1
2
)∥2 + ∥𝑉 𝑖(X𝑡− 1

2
)∥2)

+ 𝛾𝑡𝜂𝑡+1∥𝑉 𝑖(X𝑡+ 1
2
) −𝑉 𝑖(X𝑡− 1

2
)∥2

+ 2𝛾2
𝑡 𝜂𝑡+1

√
𝑁𝐿∥𝜉𝑖

𝑡− 1
2
∥2

+ (𝛾𝑡 + 𝜂𝑡)
2𝜂𝑡+1𝐿

2
√
𝑁

∥𝝃𝑡− 1
2
∥2 + (𝜂𝑡+1)2∥𝑉̂ 𝑖

𝑡+ 1
2
∥2

]
. (7.13)
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We proceed to bound the variation ∥𝑉 𝑖(X𝑡+ 1
2
) −𝑉 𝑖(X𝑡− 1

2
)∥2 by

∥𝑉 𝑖(X𝑡+ 1
2
) −𝑉 𝑖(X𝑡− 1

2
)∥2 ≤ 3∥𝑉 𝑖(X𝑡+ 1

2
) −𝑉 𝑖(X𝑡)∥2 + 3∥𝑉 𝑖(X𝑡) −𝑉 𝑖(X𝑡−1)∥2

+ 3∥𝑉 𝑖(X𝑡−1) −𝑉 𝑖(X𝑡− 1
2
)∥2

≤ 3𝛾2
𝑡 𝐿

2∥V̂𝑡− 1
2
∥2 + 3𝜂2

𝑡 𝐿
2∥V̂𝑡− 1

2
∥2 + 3(𝛾𝑡−1)2𝐿2∥V̂𝑡− 3

2
∥2.

To conclude, we plug this into (7.13) and bound the noise terms with Assump-
tion 7.1. □

From Lemma 7.6 it is straightforward to obtain the global energy inequality.

Lemma 7.7. Suppose that Assumptions 5.2, 5.3 and 7.1 hold and all players run Global energy
inequality for OG+(OG+). Then, for all 𝑡 ≥ 2 and x★ ∈ 𝔛★, it holds

E𝑡−1[∥X𝑡+1 − x★∥2] ≤ E𝑡−1[∥X𝑡 − x★∥2] + 3(𝛾𝑡−1)2𝛾𝑡𝜂𝑡+1𝑁𝐿
2∥V̂𝑡− 3

2
∥2

− 𝛾𝑡𝜂𝑡+1(1− 𝑎𝑡(1+ 𝜎2
𝑀) − 𝑏𝑡𝜎

2
𝑀)∥V(X𝑡− 1

2
)∥2

− 𝛾𝑡𝜂𝑡+1

(
1−

𝜂𝑡+1(1+ 𝜎2
𝑀
)

𝛾𝑡

)
E𝑡−1[∥V(X𝑡+ 1

2
)∥2]

+ 𝛾𝑡𝜂𝑡+1

(
𝜂𝑡+1

𝛾𝑡
+ 𝑎𝑡 + 𝑏𝑡

)
𝑁𝜎2

𝐴. (7.14)

where 𝑎𝑡 = 3(𝛾2
𝑡 + 𝜂2

𝑡 )𝑁𝐿2 and 𝑏𝑡 = (3𝛾𝑡 + 𝜂2
𝑡 /𝛾𝑡)

√
𝑁𝐿.

Proof. We first apply the individual quasi-descent inequality Lemma 7.6 to
𝑧 𝑖 ← 𝑥 𝑖★ and sum from 𝑖 = 1 to 𝑁 to obtain

E𝑡−1[∥X𝑡+1 − x★∥2] ≤ E𝑡−1

[
∥X𝑡 − x★∥2 − 2𝜂𝑡+1⟨V(X𝑡+ 1

2
), X𝑡+ 1

2
− x★⟩

− 𝛾𝑡𝜂𝑡+1(1− 2𝛾𝑡
√
𝑁𝐿𝜎2

𝑀)∥V(X𝑡− 1
2
)∥2

− 𝛾𝑡𝜂𝑡+1

(
1−

𝜂𝑡+1(1+ 𝜎2
𝑀
)

𝛾𝑡

)
∥V(X𝑡+ 1

2
)∥2

+ 3𝛾𝑡𝜂𝑡+1(𝛾2
𝑡 + 𝜂2

𝑡 )𝑁𝐿2(1+ 𝜎2
𝑀)∥V(X𝑡− 1

2
)∥2

+
(𝛾𝑡 + 𝜂𝑡)2𝜂𝑡+1

√
𝑁𝐿𝜎2

𝑀

2 ∥V(X𝑡− 1
2
)∥2

+ 3(𝛾𝑡−1)2𝛾𝑡𝜂𝑡+1𝑁𝐿
2(1+ 𝜎2

𝑀)∥V(X𝑡− 3
2
)∥2

+ (3𝛾𝑡𝜂𝑡+1((𝛾𝑡−1)2 + 𝛾2
𝑡 + 𝜂2

𝑡 )𝑁𝐿2 + (𝜂𝑡+1)2)𝑁𝜎2
𝐴

+
(
2𝛾2

𝑡 𝜂𝑡+1 +
(𝛾𝑡 + 𝜂𝑡)2𝜂𝑡+1

2

) √
𝑁𝐿𝑁𝜎2

𝐴

]
.

To get (7.14), we drop the scalar product ⟨V(X𝑡+ 1
2
), X𝑡+ 1

2
− x★⟩ which is non-

negative by Assumption 5.3 and use the bound (𝛾𝑡 + 𝜂𝑡)2 ≤ 2𝛾2
𝑡 + 2𝜂2

𝑡 . □

In Lemma 7.7 we recognize the terms that already appear in Lemma 7.4,
albeit with a different definition for 𝑎𝑡 and 𝑏𝑡 , and with X𝑡− 1

2
replacing X𝑡 . In

fact, 𝑎𝑡 and 𝑏𝑡 are still in the same order if 𝜂𝑡 ≤ 𝛾𝑡 . While the analysis becomes
more complex due to our conditioning on the 𝜎-algebra ℱ𝑡−1 of time 𝑡 − 1 and
the presence of the additional term 3(𝛾𝑡−1)2𝛾𝑡𝜂𝑡+1𝑁𝐿

2∥V̂𝑡− 3
2
∥2, these factors do

not really interfere the convergence of the algorithm.
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𝑟𝛾 +
𝑟𝜂 ≤

1

𝑟𝜂 > 1/2

2
𝑟𝛾
+
𝑟𝜂

>
1𝑟 𝛾

>
1/
𝑞

Vanilla EG and OG policies

Eq. (7.15)
Local results

𝑟𝛾

𝑟𝜂

1

0.5

10.50 1/𝑞

𝒪
(

1
𝑡

)
for Affine Operators

𝒪
(

1
𝑡1/3

)

Figure 7.2: The stepsize exponents allowed by condition (7.15) for convergence (shaded
green). Dashed lines are strict frontiers. Note that vanilla (EG) and (OG) (the separatrix
𝑟𝜂 = 𝑟𝛾) passes just outside of this region, explaining the methods’ failures.

7.3 global convergence

In this section we present our main convergence results for (EG+) and for
(OG+). Since we are in the unconstrained setup, with the convexity assumption
(Assumption 5.1), x★ is a Nash equilibrium if and only if V(x★) = 0. We thus
focus on proving that our algorithm converges to a point x★ such that V(x★) = 0.

7.3.1 Asymptotic Convergence

As demonstrated in the energy inequalities of (EG+) and of (OG+) (Lemmas 7.4Robbins-Monro-like
learning rate

condition
and 7.7), 𝛾𝑡𝜂𝑡+1 should be as large as possible to ensure negative shift while
𝛾2
𝑡 𝜂𝑡+1, 𝛾3

𝑡 𝜂𝑡+1, and 𝜂2
𝑡+1 should be as small as possible to reduce the impact of

the additive noise. This leads to the following requirement on the learning rates.

+∞∑
𝑡=1

𝛾𝑡𝜂𝑡+1 = +∞,
+∞∑
𝑡=1

𝛾2
𝑡 𝜂𝑡+1 < +∞,

+∞∑
𝑡=1

𝜂2
𝑡 < +∞. (7.15)

The objective of this subsection is to provide asymptotic convergence results
for learning rate sequences that satisfy the above condition. It essentially posits
that 𝛾𝑡 → 0 and 𝛾𝑡/𝜂𝑡 → 0 as 𝑡 → ∞, and rules out the choice 𝛾𝑡 = 𝜂𝑡 which
would yield the vanilla (EG) and (OG) algorithms. For further illustration, letCandidate learning

rates us consider the following learning rate policy

𝛾𝑡 =
𝛾

(𝑡 + 𝛽)𝑟𝛾 and 𝜂𝑡 =
𝜂

(𝑡 + 𝛽)𝑟𝜂

for some constants 𝛾,𝜂, 𝛽 > 0 and exponents 𝑟𝛾, 𝑟𝜂 ∈ [0, 1]. Condition (7.15)
then translates into 𝑟𝛾 + 𝑟𝜂 ≤ 1, 2𝑟𝜂 > 1, and 2𝑟𝛾 + 𝑟𝜂 > 1 as represented in
Fig. 7.2. On the other hand, when the noise is multiplicative, i.e., 𝜎𝐴 = 0, (7.15) is
no longer necessary and we only need (1+ 𝜎2

𝑀
)𝜂𝑡+1 ≤ 𝛾𝑡 instead. We will show

almost sure convergence for this specific case in Chapter 8 (cf. Theorem 8.13).
Regarding the analyses, our proofs build upon the stochastic quasi-Fejér mono-

tonicity [48, 49] of the iterates that can be derived from the energy inequalities
and the learning rate conditions. With this, we then use the Robbins–Siegmund
theorem [234] for almost-supermartingales to prove the almost sure convergence
of the distance ∥X𝑡 − x★∥ to a finite random variable, that is, a random variable
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that is finite almost surely. Given the importance of this argument, we provide
the full statement of the Robbins–Siegmund theorem below.
Lemma 7.8 (Robbins and Sigmund [234]). Consider a filtration (𝒢𝑡)𝑡∈N and four Robbins–Siegmund

theoremnon-negative real-valued (𝒢𝑡)𝑡∈N-adapted processes (𝑈𝑡)𝑡∈N, (𝛼𝑡)𝑡∈N, (𝜒𝑡)𝑡∈N, (𝜁𝑡)𝑡∈N

such that

E[𝑈1] < +∞,






+∞∏
𝑡=1
(1+ 𝛼𝑡)







∞

< +∞,
+∞∑
𝑡=1

E[𝜒𝑡] < +∞,

and for all 𝑡 ∈ N,
E[𝑈𝑡+1 |𝒢𝑡] ≤ (1+ 𝛼𝑡)𝑈𝑡 + 𝜒𝑡 − 𝜁𝑡 . (7.16)

Then,
(a) (𝑈𝑡)𝑡∈N converges almost surely to a finite random variable𝑈∞ ∈ 𝐿1.

(b)
∑+∞
𝑡=1 E[𝜁𝑡] < +∞ and accordingly

∑+∞
𝑡=1 𝜁𝑡 < +∞ almost surely.

Remark 7.3. There exists another version of Robbins–Siegmund theorem with
both weaker assumptions and weaker results. It focuses on almost sure
convergence of the variables and does not deal with the integrability of the
limits.

As we can see from the statement of the Robbins–Siegmund theorem, one
of the required conditions is E[𝑈1] < +∞. This translates to the following
assumption concerning the initialization of the algorithms.
Assumption 7.2. The algorithms of the players are initialized at points with Assumption on

initialization:
bounded second-order
moment

finite second-moment, i.e., E[∥X1∥2] < +∞.
As a direct consequence of Assumption 7.2, for any x★ ∈ 𝔛★ we have

E[∥X1 − x★∥2] ≤ 2 E[∥X1∥2] + 2 E[∥x★∥2] < +∞.

Besides the Robbins–Siegmund theorem, our proofs also utilize several other
important lemmas for stochastic sequences. In order to maintain the flow of the
main discussion, we defer the presentation of these lemmas to Appendix B.

convergence of eg+. We first establish the almost sure convergence of
(EG+) to a Nash equilibrium in all variationally stable games under suitable
learning rate condition.
Theorem 7.9. Suppose that Assumptions 5.1–5.3, 7.1 and 7.2 hold and all players Convergence of EG+
run (EG+) with learning rate sequences (𝛾𝑡)𝑡∈N and (𝜂𝑡)𝑡∈N satisfying (7.15) and

𝛾𝑡 ≤ min
©­­«

1

2𝐿𝑔
√

1+ 𝜎2
𝑀

, 1
8𝐿𝑔𝜎2

𝑀

ª®®¬ , 𝜂𝑡+1 ≤
𝛾𝑡

1+ 𝜎2
𝑀

for all 𝑡 ∈ N. (7.17)

Then the iterate 𝑋𝑡 converges almost surely to a Nash equilibrium.
Proof. The proof is divided into three steps.

(1) With probability 1, ∥X𝑡 − x★∥ converges for all x★ ∈ 𝔛★. Let x★ ∈ 𝔛★. Lemma 7.4
along with condition (7.17) gives

E𝑡[∥X𝑡+1 − x★∥2] ≤ ∥X𝑡 − x★∥2 −
𝛾𝑡𝜂𝑡+1

2 ∥V(X𝑡)∥2

+
(
(𝜂𝑡+1)2 + 𝛾3

𝑡 𝜂𝑡+1𝐿
2
𝑔 + 2𝛾2

𝑡 𝜂𝑡+1𝐿𝑔

)
𝑁𝜎2

𝐴. (7.18)
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As for the rightmost term, it follows from the stepsize conditions
∑
𝑡 𝜂

2
𝑡 < +∞,∑

𝑡 𝛾
2
𝑡 𝜂𝑡+1 < ∞, and (𝛾𝑡)𝑡∈N being upper-bounded that

+∞∑
𝑡=1
(𝜂𝑡+1)2 + 𝛾3

𝑡 𝜂𝑡+1𝐿
2
𝑔 + 2𝛾2

𝑡 𝜂𝑡+1𝐿𝑔 < +∞.

We can thus apply the Robbins–Siegmund theorem (Lemma 7.8) to inequality
(7.18) with

𝒢𝑡 ← ℱ𝑡 , 𝑈𝑡 ← ∥X𝑡 − x★∥2, 𝛼𝑡 ← 0, 𝜁𝑡 ←
𝛾𝑡𝜂𝑡+1

2 ∥V(X𝑡)∥2,

𝜒𝑡 ←
(
(𝜂𝑡+1)2 + 𝛾3

𝑡 𝜂𝑡+1𝐿
2
𝑔 + 2𝛾2

𝑡 𝜂𝑡+1𝐿𝑔

)
𝑁𝜎2

𝐴.

This gives that (i)
∑+∞
𝑡=1 𝛾𝑡𝜂𝑡+1 E[∥V(X𝑡)∥2] < +∞ and (ii) ∥X𝑡 − x★∥ converges

almost surely. As the seconds point holds true for all x★ ∈ 𝔛★, invoking
Corollary B.7 we deduce that the event {∥X𝑡 − x★∥ converges for all x★ ∈ 𝔛★}
happens with probability 1.

(2) There exists an increasing function 𝜔 : N→N such that ∥V(X𝜔(𝑡))∥2 converges
to 0 almost surely. We have shown that

∑+∞
𝑡=1 𝛾𝑡𝜂𝑡+1 E[∥V(X𝑡)∥2] < +∞. With∑+∞

𝑡=1 𝛾𝑡𝜂𝑡+1 = +∞ we then know that lim inf E[∥V(𝑋𝑡)∥2] = 0. Subsequently,
we prove the claim with the help of Lemma B.5.

(3) Conclude. Let us define the event

ℰ = {∥X𝑡 − x★∥ converges for all x★ ∈ 𝔛★; ∥V(X𝜔(𝑡))∥2 converges to 0}

We have P(ℰ) = 1 from the two previous points. We next show that (X𝑡)𝑡∈N

converges to a point in 𝔛★ whenever ℰ happens.
Let us take a realization of this event. Since 𝔛★ is non-empty, the convergence

of ∥X𝑡 − x★∥ for a x★ ∈ 𝔛★ implies that (X𝑡)𝑡∈N is bounded. R𝑑 being finite-
dimensional, we can then extract a subsequence of (X𝜔(𝑡))𝑡∈N, which we denote
by (X𝜔(𝜓(𝑡)))𝑡∈N that converges to a point x∞ ∈ R𝑑. By continuity of V, we have
V(x∞) = 0, i.e., x∞ ∈ 𝔛★. Accordingly, with the definition of ℰ, we deduce the
convergence of ∥X𝑡 − x∞∥, and

lim
𝑡→+∞

∥X𝑡 − x∞∥ = lim
𝑡→+∞

∥X𝜔(𝜓(𝑡)) − x∞∥ = ∥x∞ − x∞∥ = 0.

This shows that X𝑡 converges to a point of 𝔛★, namely x∞, almost surely. □

Remark 7.4. We may try to further establish a stochastic version of Opial’s
Lemma [215, Lem. 2] for the conclusion part of the proof. However, we use
here the weaker assumption that only the cluster points of a subsequence are
guaranteed to be in the solution set. Therefore, it is not clear whether this can
be generalized to infinite-dimensional Hilbert space or not.

Importantly, the result of Theorem 7.9 concerns the last iterate of the algorithm
and does not require strict variational stability. In particular, this implies the
almost sure convergence of the algorithm for bilinear problems like (7.3) where
(EG) and (OG) do not converge. On the other hand, without learning rate
separation, we can only show convergence either for the average iterate or for
strictly variationally stable games [142, 146, 196].

convergence of og+. In the same spirit, we can also show almost sure
convergence of (OG+) when condition (7.15) is satisfied.
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Theorem 7.10. Suppose that Assumptions 5.1–5.3, 7.1 and 7.2 hold and all players Convergence of OG+
run (OG+) with non-increasing learning rate sequences (𝛾𝑡)𝑡∈N and (𝜂𝑡)𝑡∈N satisfying
(7.15) and

𝛾𝑡 ≤ min
©­­«

1

3𝐿
√

2𝑁(1+ 𝜎2
𝑀
)
, 1

8
√
𝑁𝐿𝜎2

𝑀

ª®®¬ , 𝜂𝑡 ≤
𝛾𝑡

2(1+ 𝜎2
𝑀
)

for all 𝑡 ∈ N.

(7.19)
Then, X𝑡 converges almost surely to a Nash equilibrium.

The significance of Theorem 7.10 lies in the fact that (OG+) is a valid algorithm
for online learning in games while (EG+) is not. Therefore, it suggests it is
possible for the players to follow a specific learning algorithm and converge to
a Nash equilibrium in all variationally stable games despite the stochasticity of
the feedback.

The proof of Theorem 7.10 is however much more involved. First of all, with
the additional term 3(𝛾𝑡−1)2𝛾𝑡𝜂𝑡+1𝑁𝐿

2∥V̂𝑡− 3
2
∥2 in (7.14) we are not able to apply

directly the Robbins–Siegmund Theorem. For this, we modify Lemma 7.7 to
put the inequality in a more suitable form.

Lemma 7.11. Suppose that Assumptions 5.2, 5.3 and 7.1 hold and all players run Modified energy
inequality for OG+(OG+) with non-increasing learning rate sequences (𝛾𝑡)𝑡∈N and (𝜂𝑡)𝑡∈N such that

𝜂𝑡 ≤ 𝛾𝑡 . Then, for all 𝑡 ≥ 2 and x★ ∈ 𝔛★, it holds

E𝑡−1[∥X𝑡+1 − x★∥2 + 𝑐𝑡+1∥V̂𝑡− 1
2
∥2]

≤ E𝑡−1[∥X𝑡 − x★∥2] + 𝑐𝑡 ∥V̂𝑡− 3
2
∥2

− 𝛾𝑡𝜂𝑡+1(1− 𝑎𝑡(1+ 𝜎2
𝑀) − 𝑏𝑡𝜎

2
𝑀)∥V(X𝑡− 1

2
)∥2

− 𝛾𝑡𝜂𝑡+1

(
1−

𝜂𝑡+1(1+ 𝜎2
𝑀
)

𝛾𝑡

)
E𝑡−1[∥V(X𝑡+ 1

2
)∥2]

+ (𝑎𝑡𝛾𝑡𝜂𝑡+1 + 𝑏𝑡𝛾𝑡𝜂𝑡+1 + (𝜂𝑡+1)2)𝑁𝜎2
𝐴. (7.20)

where 𝑎𝑡 = 9𝛾2
𝑡 𝑁𝐿

2, 𝑏𝑡 = 4𝛾𝑡
√
𝑁𝐿, and 𝑐𝑡 = 3(𝛾𝑡−1)2𝛾𝑡𝜂𝑡+1𝑁𝐿

2.

Proof. This is shown by adding 3(𝛾𝑡)2𝛾𝑡+1𝜂𝑡+2𝑁𝐿
2 E𝑡−1[∥V̂𝑡− 1

2
∥2] to the two

sides of inequality (7.14). After that, we bound E𝑡−1[∥V̂𝑡− 1
2
∥2] using (7.2) and

bound various non-negative terms using 𝜂𝑡 ≤ 𝛾𝑡 , 𝛾𝑡+1 ≤ 𝛾𝑡 , and 𝜂𝑡+2 ≤ 𝜂𝑡+1. □

The next challenge is to deal with the E𝑡−1[∥X𝑡 − x★∥2] term on the right-hand
side (RHS) of (7.20). X𝑡 is not ℱ𝑡−1-measurable because of the presence of noise
𝝃𝑡− 1

2
. To account for this, we introduce the surrogate sequence (X̃𝑡)𝑡∈N defined

by X̃1 = X1 and otherwise for 𝑡 ≥ 2

X̃𝑡 = X𝑡 + 𝜂𝑡𝝃𝑡− 1
2
= X𝑡−1 − 𝜂𝑡V(X𝑡− 1

2
). (7.21)

This is similar to how we constructed X̃𝑡+ 1
2

in the proofs of Lemmas 7.3 and 7.5.
The vector X̃𝑡 is ℱ𝑡−1-measurable and it holds that

E𝑡−1[∥X𝑡 − x★∥2] = E𝑡−1[∥X̃𝑡 − 𝜂𝑡𝝃𝑡− 1
2
− x★∥2] = ∥X̃𝑡 − x★∥2 + 𝜂2

𝑡 E𝑡−1[∥𝝃𝑡− 1
2
∥2].

(7.22)
The use of X̃𝑡 effectively allows us to prove the convergence of (OG+), as
demonstrated below.
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Proof. The proof is divided into four steps: In the first three steps we prove
the almost sure convergence of the surrogate sequence (X̃𝑡)𝑡∈N to a solution
of 𝔛★ following the proof of Theorem 7.9; in the last step we show that this
immediately implies the convergence of (X𝑡)𝑡∈N.

(1) With probability 1, ∥X̃𝑡 − x★∥ converges for all x★ ∈ 𝔛★. Let 𝑥★ ∈ 𝔛★ and
𝑐𝑡 = 3(𝛾𝑡−1)2𝛾𝑡𝜂𝑡+1𝑁𝐿

2. Lemma 7.11 along with (7.19) implies that

E𝑡−1[∥X𝑡+1 − x★∥2 + 𝑐𝑡+1∥V̂𝑡− 1
2
∥2] ≤ E𝑡−1[∥X𝑡 − x★∥2] + 𝑐𝑡 ∥V̂𝑡− 3

2
∥2

− 𝛾𝑡𝜂𝑡+1

2 E𝑡−1[∥V(X𝑡+ 1
2
)∥2]

+ (9𝛾3
𝑡 𝑁𝐿

2 + 4𝛾2
𝑡

√
𝑁𝐿 + 𝜂𝑡+1)𝜂𝑡+1𝑁𝜎2

𝐴.

The summability of the rightmost term is guaranteed by (7.15) and the bounded-
ness of (𝛾𝑡)𝑡∈N. We can thus apply the Robbins–Siegmund theorem (Lemma 7.8)
to the inequality with

𝒢𝑡 ← ℱ𝑡−1, 𝑈𝑡 ← E𝑡−1[∥X𝑡 − x★∥2] + 𝑐𝑡 ∥V̂𝑡− 3
2
∥2, 𝛼𝑡 ← 0,

𝜁𝑡 ←
𝛾𝑡𝜂𝑡+1

2 E𝑡−1[∥V(X𝑡+ 1
2
)∥2], 𝜒𝑡 ← (9𝛾3

𝑡 𝑁𝐿
2 + 4𝛾2

𝑡

√
𝑁𝐿 + 𝜂𝑡+1)𝜂𝑡+1𝑁𝜎2

𝐴.

However, Lemma 7.11 only applies to 𝑡 ≥ 2. For 𝑡 = 1, we have by convention
V̂1/2 = 0, X3/2 = X1 and X2 = X1 − 𝜂2V̂3/2, leading to

E[∥X2 − x★∥2] = E[∥X1 − x★∥2 − 2𝜂2⟨V(X3/2), X3/2 − x★⟩ + 𝜂2
2∥V̂3/2∥2]

≤ E[∥X1 − x★∥2 + 𝜂2
2∥V̂3/2∥2],

Subsequently,

E[∥X2 − x★∥2 + 𝑐2∥V̂1/2∥2] ≤ E[∥X1 − x★∥2 + 𝜂2
2(1+ 𝜎2

𝑀)∥V(X1)∥2] + 𝜂2
2𝑁𝜎2

𝐴

(7.23)
We may thus choose 𝜁1 = 0 and 𝜒1 = 𝜂2

2((1+ 𝜎2
𝑀
)E[∥V(X1)∥2] +𝑁𝜎2

𝐴
).

As a consequence of the Robbins–Siegmund theorem, we have both (i) the
almost sure convergence of E𝑡−1[∥X𝑡 − x★∥2] + 𝑐𝑡 ∥V̂𝑡− 3

2
∥2 to a finite random

variable𝑈∞ and (ii)
∑+∞
𝑡=2 𝛾𝑡𝜂𝑡+1 E[∥V(X𝑡+ 1

2
)∥2] < +∞.

To proceed, with equality (7.22) and bounds (7.1), (7.2) we get

+∞∑
𝑡=2

E[E𝑡−1[∥X𝑡 − x★∥2] + 𝑐𝑡 ∥V̂𝑡− 3
2
∥2 − ∥X̃𝑡 − x★∥2]

=

+∞∑
𝑡=2

E[𝑐𝑡 ∥V̂𝑡− 3
2
∥2 + 𝜂2

𝑡 E𝑡−1[∥𝝃𝑡− 1
2
∥2]]

≤
+∞∑
𝑡=3

3(𝛾𝑡−1)2𝛾𝑡𝜂𝑡+1𝑁𝐿
2((1+ 𝜎2

𝑀)E[∥V(X𝑡− 3
2
)∥2] +𝑁𝜎2

𝐴)

+
+∞∑
𝑡=2

𝜂2
𝑡 (𝜎2

𝑀 E[∥V(X𝑡− 1
2
)∥2] +𝑁𝜎2

𝐴)

≤
+∞∑
𝑡=1

𝛾𝑡𝜂𝑡+1

(
𝜎2
𝑀 +

1
6

)
E[∥V(X𝑡+ 1

2
)∥2]

+
+∞∑
𝑡=1
((𝜂𝑡+1)2 + 3𝛾1𝛾

2
𝑡 𝜂𝑡+1𝑁𝐿

2(1+ 𝜎2
𝑀))𝑁𝜎2

𝐴 < +∞.
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In the second to last inequality we use that 3𝛾2
𝑡 𝑁𝐿

2(1+ 𝜎2
𝑀
) ≤ 1/6 which holds

true thanks to condition (7.19). Invoking Lemma B.4, we then deduce

E𝑡−1[∥X𝑡 − x★∥2] + 𝑐𝑡 ∥V̂𝑡− 3
2
∥2 − ∥X̃𝑡 − x★∥2

𝑡→+∞−−−−−→ 0 almost surely.

Thus, together with the almost sure convergence of E𝑡−1[∥X𝑡 − x★∥2] + 𝑐𝑡 ∥V̂𝑡− 3
2
∥2

to 𝑈∞ we obtain the almost sure convergence of ∥X̃𝑡 − x★∥2 to 𝑈∞. To
summarize, we have shown that for all x★ ∈ 𝔛★, the distance ∥X̃𝑡 − x★∥ al-
most surely converges. Applying Corollary B.7, we conclude that the event
{∥X̃𝑡 − x★∥ converges for all x★ ∈ 𝔛★} happens with probability 1.

(2) There exists an increasing function 𝜔 : N → N such that ∥V(X𝜔(𝑡)+ 1
2
)∥2 +

∥X𝜔(𝑡)+ 1
2
− X̃𝜔(𝑡)∥2 converges to 0 almost surely. From Lemma B.5, we know it is

sufficient to show that

lim inf
𝑡→+∞

E[∥V(X𝑡+ 1
2
)∥2 + ∥X𝑡+ 1

2
− X̃𝑡 ∥2] = 0.

Since
∑+∞
𝑡=1 𝛾𝑡𝜂𝑡+1 = +∞, the above is implied by

+∞∑
𝑡=2

𝛾𝑡𝜂𝑡+1 E[∥V(X𝑡+ 1
2
)∥2 + ∥X𝑡+ 1

2
− X̃𝑡 ∥2] < +∞. (7.24)

We already know that
∑+∞
𝑡=2 𝛾𝑡𝜂𝑡+1 E[∥V(X𝑡+ 1

2
)∥2] < +∞. It thus remains to deal

with the term E[∥X𝑡+ 1
2
− X̃𝑡 ∥2]. Using Assumption 7.1 and 𝜂𝑡 ≤ 𝛾𝑡 , we have

E[∥X𝑡+ 1
2
− X̃𝑡 ∥2] = E[∥𝛾𝑡V(X𝑡− 1

2
) + (𝛾𝑡 + 𝜂𝑡)𝝃𝑡− 1

2
∥2]

= 𝛾2
𝑡 E[∥V(X𝑡− 1

2
)∥2] + (𝛾𝑡 + 𝜂𝑡)2 E[∥𝝃𝑡− 1

2
∥2]

≤ 𝛾2
𝑡 (1+ 4𝜎2

𝑀)E[∥V(X𝑡− 1
2
)∥2] + 4𝛾2

𝑡 𝑁𝜎2
𝐴.

With the summability of (𝛾2
𝑡 𝜂𝑡+1)𝑡∈N, (𝛾𝑡𝜂𝑡+1 E[∥V(X𝑡+ 1

2
)∥2])𝑡∈N, and the fact

that the learning rates are non-increasing, we then obtain

+∞∑
𝑡=2

𝛾𝑡𝜂𝑡+1 E[∥X𝑡+ 1
2
− X̃𝑡 ∥2]

≤
+∞∑
𝑡=2

𝛾𝑡𝜂𝑡+1 E[𝛾2
𝑡 (1+ 4𝜎2

𝑀)∥V(X𝑡− 1
2
)∥2 + 4𝛾2

𝑡 𝑁𝜎2
𝐴]

≤
+∞∑
𝑡=1

𝛾2
1𝛾𝑡𝜂𝑡+1(1+ 4𝜎2

𝑀)E[∥V(X𝑡+ 1
2
)∥2] +

+∞∑
𝑡=1

4𝛾1𝛾
2
𝑡 𝜂𝑡+1𝑁𝜎2

𝐴

< +∞. (7.25)

As a consequence, inequality (7.24) holds true and the claim can be deduced
immediately.

(3) (X̃𝑡)𝑡∈N converges to a point in 𝔛★ almost surely. Let us define the event

ℰ = {∥X̃𝑡 − x★∥ converges for all x★ ∈ 𝔛★;
∥V(X𝜔(𝑡)+ 1

2
)∥2 + ∥X𝜔(𝑡)+ 1

2
− X̃𝜔(𝑡)∥2 converges to 0}
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Combining the aforementioned two points we know that P(ℰ) = 1. We now
prove that (X̃𝑡)𝑡∈N converges to a point in 𝔛★ for any realization of ℰ.

Let us consider a realization ofℰ. The set𝔛★ being non-empty, the convergence
of ∥X̃𝑡 − x★∥ for a x★ ∈ 𝔛★ implies the boundedness of (X̃𝑡)𝑡∈N. Therefore, we can
extract (X̃𝜔(𝜓(𝑡)))𝑡 , a subsequence of (X̃𝜔(𝑡))𝑡 , that converges to a point x∞ ∈ R𝑑. As
lim𝑡→+∞∥X𝜔(𝜓(𝑡))+ 1

2
− X̃𝜔(𝜓(𝑡))∥2 = 0, we deduce that (X𝜔(𝜓(𝑡))+ 1

2
)𝑡 also converges

to x∞ ∈ 𝒳. Moreover, we also have lim𝑡→+∞∥V(X𝜔(𝜓(𝑡))+ 1
2
)∥2 = 0. By continuity

of V we then know that V(x∞) = 0, i.e., x∞ ∈ 𝔛★. By definition of ℰ, this implies
the convergence of ∥X̃𝑡 − x∞∥. The limit lim𝑡→+∞∥X̃𝑡 − x∞∥ is thus well defined
and lim𝑡→+∞∥X̃𝑡 − x∞∥ = lim𝑡→+∞∥X̃𝜔(𝜓(𝑡)) − x∞∥. However, lim𝑡→+∞∥X̃𝜔(𝜓(𝑡)) −
x∞∥ = 0 by the choice of x∞. We have therefore lim𝑡→+∞∥X̃𝑡 − x∞∥ = 0. Recalling
that x∞ ∈ 𝔛★, we have indeed shown that (X̃𝑡)𝑡∈N converges to a point in 𝔛★.

(4) Conclude: (X𝑡)𝑡∈N converges to a point in 𝔛★ almost surely . We claim that
∥X𝑡 − X̃𝑡 ∥ converges to 0. In fact, similar to (7.25), it holds that

+∞∑
𝑡=1

E[∥X𝑡 − X̃𝑡 ∥2] =
+∞∑
𝑡=2

𝜂2
𝑡 E[∥𝝃𝑡− 1

2
∥2] < +∞.

Applying Lemma B.4 we then get almost sure convergence of ∥X𝑡 − X̃𝑡 ∥ to 0.
Moreover, we have shown in the previous point that (X̃𝑡)𝑡∈N converges to a
point in 𝔛★ almost surely. Combining the above two arguments we obtain the
almost sure convergence of (X𝑡)𝑡∈N to a point in 𝔛★. □

So far, we have proved convergence of the iterates (X𝑡)𝑡∈N to a Nash equilib-
rium. While it is sufficient for the computation of an equilibrium point, one
should note that this is not the actual iterate of play in the learning-in-games
setup. Instead, the players play x𝑡 = X𝑡+ 1

2
, and provided that the players use

larger optimistic steps, the convergence of X𝑡 does not necessarily imply the
convergence of X𝑡+ 1

2
. In view of this, in the next theorem we derive sufficient

condition for the latter to hold.

Theorem 7.12. Suppose that Assumptions 5.1–5.3, 7.1 and 7.2 hold and all playersConvergence of the
leading state of OG+ run (OG+) with non-increasing learning rate sequences (𝛾𝑡)𝑡∈N and (𝜂𝑡)𝑡∈N satisfying

(7.15) and (7.19). Assume further that 𝛾3
𝑡 = 𝒪(𝜂𝑡) and there exists 𝑞 ∈ (2, 4] and

𝜎 > 0 such that E[∥𝝃𝑡+ 1
2
∥𝑞] ≤ 𝜎𝑞 for all 𝑡 and

∑+∞
𝑡=1 𝛾

𝑞

𝑡 < ∞. Then, the actual point
of play X𝑡+ 1

2
converges almost surely to a Nash equilibrium.

Proof. Since we already know that (X𝑡)𝑡∈N converges to a point in 𝔛★ almost
surely, it is sufficient to show that lim𝑡→+∞∥X𝑡 −X𝑡+ 1

2
∥ = 0 almost surely. By

the update rule of OG+, we have, for 𝑡 ≥ 2, X𝑡 − X𝑡+ 1
2
= 𝛾𝑡V(X𝑡− 1

2
) + 𝛾𝑡𝝃𝑡− 1

2
.

We will deal with the two terms separately. For the noise term, we notice that
under the additional assumptions we have

+∞∑
𝑡=2

E[∥𝛾𝑡𝝃𝑡− 1
2
∥𝑞] ≤

+∞∑
𝑡=2

𝛾
𝑞

𝑡 𝜎
𝑞 < +∞.

Therefore, applying Lemma B.4 gives the almost sure convergence of ∥𝛾𝑡𝝃𝑡− 1
2
∥

to 0. As for the operator term, for 𝑡 ≥ 3 we bound

∥𝛾𝑡V(X𝑡− 1
2
)∥ ≤ 𝛾𝑡 ∥V(X𝑡− 1

2
) −V(X𝑡−1)∥ + 𝛾𝑡 ∥V(X𝑡−1)∥.
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On one hand, as (X𝑡)𝑡∈N converges to a point in 𝔛★ almost surely, the term
𝛾𝑡 ∥V(X𝑡−1)∥ converges to 0 almost surely by continuity of V. On the other hand,
by Lipschitz continuity of V we have

+∞∑
𝑡=2

E[(𝛾𝑡+1)2∥V(X𝑡+ 1
2
) −V(X𝑡)∥2]

≤
+∞∑
𝑡=2
(𝛾𝑡+1)2𝛾2

𝑡 𝑁𝐿
2 E[∥V̂𝑡− 1

2
∥2]

≤
+∞∑
𝑡=2

𝛾4
𝑡 𝑁𝐿

2 E[∥V(X𝑡− 1
2
)∥2] +

+∞∑
𝑡=2

𝛾4
𝑡 𝑁𝐿

2 E[∥𝝃𝑡− 1
2
∥2]. (7.26)

Since 𝛾3
𝑡 = 𝒪(𝜂𝑡), there exists 𝐶 ∈ R+ such that 𝛾3

𝑡 ≤ 𝐶𝜂𝑡 for all 𝑡 ∈ N. Along
with the summability of (𝛾𝑡𝜂𝑡+1 E[∥V(X𝑡+ 1

2
)∥2])𝑡∈N we get

+∞∑
𝑡=2

𝛾4
𝑡 𝑁𝐿

2 E[∥V(X𝑡− 1
2
)∥2] ≤

+∞∑
𝑡=2

𝛾𝑡−1𝜂𝑡𝐶𝑁𝐿
2 E[∥V(X𝑡− 1

2
)∥2] < +∞. (7.27)

Regarding the noise term, we use (i) E[∥𝝃𝑡− 1
2
∥2] ≤ 𝜎2 which holds true because

E[∥𝝃𝑡− 1
2
∥𝑞] ≤ 𝜎𝑞 with 𝑞 > 2, (ii)

∑+∞
𝑡=1 𝛾

𝑞

𝑡 < +∞, and (iii) 𝑞 ≤ 4 to get

+∞∑
𝑡=2

𝛾4
𝑡 𝑁𝐿

2 E[∥𝝃𝑡− 1
2
∥2] ≤

+∞∑
𝑡=2

𝛾
𝑞

𝑡 𝛾
4−𝑞
1 𝑁𝐿2𝜎2 < +∞. (7.28)

Combining (7.26), (7.27), and (7.28) we obtain
∑+∞
𝑡=2 E[(𝛾𝑡+1)2∥V(X𝑡+ 1

2
)−V(X𝑡)∥2] <

+∞, which implies lim𝑡→+∞ 𝛾𝑡+1∥V(X𝑡+ 1
2
) −V(X𝑡)∥ = 0 using Lemma B.4. In

summary, we have shown the three sequences (𝛾𝑡 ∥𝝃𝑡− 1
2
∥)𝑡∈N, (𝛾𝑡 ∥V(X𝑡−1)∥)𝑡∈N,

and (𝛾𝑡 ∥V(X𝑡− 1
2
) −V(X𝑡−1)∥)𝑡∈N converge almost surely to 0. As we have

∥X𝑡 −X𝑡+ 1
2
∥ = ∥𝛾𝑡V(X𝑡− 1

2
) + 𝛾𝑡𝝃𝑡− 1

2
∥

≤ 𝛾𝑡 ∥V(X𝑡− 1
2
) −V(X𝑡−1)∥ + 𝛾𝑡 ∥V(X𝑡−1)∥ + 𝛾𝑡 ∥𝝃𝑡− 1

2
∥,

we can indeed conclude that lim𝑡→+∞∥X𝑡 −X𝑡+ 1
2
∥ = 0 almost surely. □

7.3.2 Convergence Rate

In Section 7.3.1, we have shown that both (EG+) and (OG+) converge to a Nash
equilibrium with suitably chosen learning rates. Nevertheless, it is unclear how
fast this convergence is. In this subsection, we answer this question for games
whose pseudo-gradient satisfies the following error bound condition.

Assumption 7.3 (Error bound). For some 𝜈 > 0 and all x ∈ R𝑑, we have Error bound condition

∥V(x)∥∗ ≥ 𝜈 dist(x,𝔛★). (EB)

This kind of error bound is standard in the VI literature [73, 183]. It serves as a
relatively mild condition under which geometric convergence of an algorithm’s
last iterate can be established [184, 253, 267]. In particular, it is satisfied by

• Strongly monotone operators: here, 𝜈 is the strong monotonicity modulus.
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• Affine operators: for V(x) = 𝑀x+𝑤 where 𝑀 is a 𝑑 × 𝑑 matrix and 𝑤 is a
𝑑-dimensional vector, 𝜈 is the minimum non-zero singular value of 𝑀.

In this sense, Assumption 7.3 provides a unified umbrella for two types of
problems that are typically considered poles apart. More generally speaking,
(EB) is a special case of the metric subregularity concept in operator theory
[67, 172, 175], and is also closely related to the Polyak–Łojasiewicz (PL) condition
in optimization [148, 290]. Both of these are widely used in the literature to
demonstrate the geometric convergence of algorithms.

convergence rate of eg+. With our energy inequality Lemma 7.4 and the
error bound condition, it is straightforward to derive convergence rates for the
(EG+) algorithm.

Theorem 7.13. Suppose that Assumptions 5.1–5.3 and 7.1–7.3 hold and all playersConvergence rate of
EG+ run (EG+) with learning rate sequences (𝛾𝑡)𝑡∈N and (𝜂𝑡)𝑡∈N satisfying (7.15) and

(7.17). Then:

(a) If the learning rates are fixed at 𝛾𝑡 ≡ 𝛾, 𝜂𝑡 ≡ 𝜂, we have:The case of constant
learning rates

E[dist(X𝑡 ,𝔛★)2] ≤ (1−Δ)𝑡−1 E[dist(X1,𝔛★)2] +
𝐶

Δ

with constants 𝐶 = (𝜂2 + 𝛾3𝜂𝐿2
𝑔 + 2𝛾2𝜂𝐿𝑔)𝑁𝜎2

𝐴
and Δ = 𝛾𝜂𝜈2/2. In particular,

the convergence is geometric if the noise is multiplicative (i.e., 𝜎𝐴 = 0).

(b) If the learning rates are set to 𝛾𝑡 = 𝛾/(𝑡 + 𝛽) 1
2−𝑞 and 𝜂𝑡+1 = 𝜂/(𝑡 + 𝛽) 1

2+𝑞 for someThe case of decreasing
learning rates 𝛾,𝜂 > 0, 𝑞 ∈ (0, 1/2), and 𝛽 ∈ N such that 𝛾𝜂𝜈2/2 > 𝑟 B min(1/2− 𝑞, 2𝑞), we

have
E[dist(X𝑡 ,𝔛★)2] ≤

𝐶

Δ− 𝑟
1
𝑡𝑟
+ 𝑜

(
1
𝑡𝑟

)
with constants 𝐶 and Δ defined as in the previous point. In particular, the optimal
rate is attained when 𝑞 = 1/6, which gives E[dist(X𝑡 ,𝔛★)2] = 𝒪(1/𝑡1/3).

Proof. From (7.18) and Assumption 7.3, we get immediately

E𝑡[∥X𝑡+1 − x★∥2] ≤ ∥X𝑡 − x★∥2 −
𝛾𝑡𝜂𝑡+1𝜈2

2 dist(X𝑡 ,𝔛★)2

+
(
(𝜂𝑡+1)2 + 𝛾3

𝑡 𝜂𝑡+1𝐿
2
𝑔 + 2𝛾2

𝑡 𝜂𝑡+1𝐿𝑔

)
𝑁𝜎2

𝐴.

By concavity of the minimum operator, we then obtain

E𝑡

[
min
x★∈𝔛★

∥X𝑡+1 − x★∥2
]
≤ min

x★∈𝔛★

E𝑡[∥X𝑡+1 − x★∥2]

≤ min
x★∈𝔛★

∥X𝑡 − x★∥2 −
𝛾𝑡𝜂𝑡+1𝜈2

2 dist(X𝑡 ,𝔛★)2

+
(
(𝜂𝑡+1)2 + 𝛾3

𝑡 𝜂𝑡+1𝐿
2
𝑔 + 2𝛾2

𝑡 𝜂𝑡+1𝐿𝑔

)
𝑁𝜎2

𝐴.

In other words,

E𝑡[dist(X𝑡+1,𝔛★)2] ≤
(
1− 𝛾𝑡𝜂𝑡+1𝜈2

2

)
dist(X𝑡 ,𝔛★)2

+
(
(𝜂𝑡+1)2 + 𝛾3

𝑡 𝜂𝑡+1𝐿
2
𝑔 + 2𝛾2

𝑡 𝜂𝑡+1𝐿𝑔

)
𝑁𝜎2

𝐴.
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We conclude by taking total expectation and apply respectively Lemma B.2 and
Lemma B.3 to get points (a) and (b). □

The first part of Theorem 7.13 shows that, if (EG+) is run with constant
learning rates, the initial condition is forgotten exponentially fast and the
iterates converge to a neighborhood of 𝔛★. Furthermore, when dealing with
multiplicative noise, the convergence isn’t merely to a neighborhood of the
solution, but is exact—the iterates converge precisely to the solution set itself,
and do so at a geometric rate. More precisely, we can easily show that the
number of iterations that is required to make the expected squared distance to
the solution set to be smaller than 𝜀 in this case is

𝑡𝜀 = 𝒪
(
𝐿2
𝑔(1+ 𝜎2

𝑀)
2/𝜈2 log(1/𝜀)

)
.

On the other hand, we generally do not have exact convergence when 𝜎𝐴 > 0.
To make the neighborhood in question small, we then need to decrease both
𝛾 and 𝛾/𝜂; this would be impossible for vanilla (EG) for which 𝛾/𝜂 = 1. If we
instead take decreasing sequences, an 𝒪(1/𝑡1/3) last-iterate convergence rate
can be achieved, as shown in the second part of the theorem.
Remark 7.5. In [126], we further improve the 𝒪(1/𝑡1/3) rate to 𝒪(1/𝑡) for affine
operators. To achieve this, we need to set the optimistic learning rate as constant
and define the update learning rate in the form of 𝜂𝑡 = 𝜂/(𝑡 + 𝛽). Notably, when
𝜎𝐴 > 0, this results in the non-convergence of the intermediate states (X𝑡+ 1

2
)𝑡∈N,

despite the convergence of the base states (X𝑡)𝑡∈N.

convergence rate of og+. We next establish the counterpart of Theo-
rem 7.13 for (OG+).

Theorem 7.14. Suppose that Assumptions 5.1–5.3 and 7.1–7.3 hold and all players Convergence rate of
OG+run (OG+) with non-increasing learning rate sequences (𝛾𝑡)𝑡∈N and (𝜂𝑡)𝑡∈N satisfying

(7.15) and

𝛾𝑡 ≤
1

12
√
𝑁𝐿(1+ 𝜎2

𝑀
)
, 𝜂2

𝑡 ≤
𝛾𝑡𝜂𝑡+1

2(1+ 𝜎2
𝑀
)

for all 𝑡 ∈ N. (7.29)

Then,

(a) If the noise is multiplicative (i.e., 𝜎𝐴 = 0) and the learning rates are constant, we The case of constant
learning rateshave E[dist(X𝑡 ,𝔛★)2] = 𝒪(exp(−𝜌𝑡)) for some 𝜌 > 0.

(b) If the learning rates are 𝛾𝑡 = 𝛾/(𝑡 + 𝛽)1/3 and𝜂𝑡+1 = 𝜂/(𝑡 + 𝛽)2/3 for some 𝛾,𝜂 > 0 The case of decreasing
learning ratesand 𝛽 ∈ N such that 𝛾𝜂𝜈2 > 4/3, we have E[dist(X𝑡 ,𝔛★)2] = 𝒪(1/𝑡1/3).

Again, we have geometric convergence when the noise is multiplicative and
𝒪(1/𝑡1/3) convergence rate otherwise. The learning rate condition (7.29) is
slightly different from than the one presented in Theorem 7.10, as the proof
is based on another energy inequality that works directly with the surrogate
iterate X̃𝑡 introduced in (7.21).

Lemma 7.15. Suppose that Assumptions 5.2, 5.3 and 7.1 hold and all players run
(OG+) with the same predetermined learning rate sequences. Then, for all 𝑡 ≥ 2 and
x★ ∈ 𝔛★, it holds

E𝑡−1[∥X̃𝑡+1 − x★∥2] ≤ ∥X̃𝑡 − x★∥2 + 3(𝛾𝑡−1)2𝛾𝑡𝜂𝑡+1𝑁𝐿
2∥V̂𝑡− 3

2
∥2

− (𝛾𝑡𝜂𝑡+1(1− 𝑎𝑡(1+ 𝜎2
𝑀) − 𝑏𝑡𝜎

2
𝑀) − 𝜂

2
𝑡 𝜎

2
𝑀)∥V(X𝑡− 1

2
)∥2
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− 𝛾𝑡𝜂𝑡+1

(
1− 𝜂𝑡+1

𝛾𝑡

)
E𝑡−1[∥V(X𝑡+ 1

2
)∥2]

+ (𝑎𝑡𝛾𝑡𝜂𝑡+1 + 𝑏𝑡𝛾𝑡𝜂𝑡+1 + 𝜂2
𝑡 )𝑁𝜎2

𝐴, (7.30)

where 𝑎𝑡 = 3(𝛾2
𝑡 + 𝜂2

𝑡 )𝑁𝐿2, and 𝑏𝑡 = (3𝛾𝑡 + 𝜂2
𝑡 /𝛾𝑡)

√
𝑁𝐿.

Proof. The inequality can be shown by slightly modifying the proofs of Lem-
mas 7.6 and 7.7. First, we use Proposition 7.2 to get

E𝑡−1[∥X̃𝑡+1 − x★∥2] = E𝑡−1[∥X𝑡 − x★∥2 − 2𝜂𝑡+1⟨V(X𝑡+ 1
2
), X𝑡+ 1

2
− x★⟩

− 2𝛾𝑡𝜂𝑡+1⟨V(X𝑡+ 1
2
), V̂𝑡− 1

2
⟩ + (𝜂𝑡+1)2∥V(X𝑡+ 1

2
)∥2].

The second and the third terms on the RHS of the equality can be bounded as
before.3 We conclude with the help of (7.22) and (7.1). □

Lemma 7.15 is crucial for our proof because it allows us to derive recursive
inequality for the squared distance to the solution set dist(X̃𝑡 , x★)2 as done in
proving Theorem 7.13. This cannot be achieved with the presence of expectation
in E𝑡−1[∥X𝑡 − x★∥2] on the RHS of (7.14). Equipped with Lemma 7.15, we now
present the proof of the theorem.

Proof Theorem 7.14. We first notice that condition (7.29) guarantees that

8𝛾2
𝑡 𝑁𝐿

2(1+ 𝜎2
𝑀)

2 + 5𝛾𝑡
√
𝑁𝐿(1+ 𝜎2

𝑀) ≤
1
2 . (7.31)

With 𝜂𝑡+1 ≤ 𝛾𝑡 and 𝜈 ≤ 𝐿 we then have

3𝛾𝑡
√
𝑁𝐿 +

𝛾𝑡𝜂𝑡+1𝜈2

4 ≤ 3𝛾𝑡
√
𝑁𝐿(1+ 𝜎2

𝑀) + 𝛾
2
𝑡 𝑁𝐿

2(1+ 𝜎2
𝑀)

2 ≤ 1.

Therefore,

3(𝛾𝑡−1)2𝛾𝑡𝜂𝑡+1𝑁𝐿
2∥V̂𝑡− 3

2
∥2 ≤

(
1− 𝛾𝑡𝜂𝑡+1𝜈2

4

)
(𝛾𝑡−1)2𝜂𝑡

√
𝑁𝐿∥V̂𝑡− 3

2
∥2.

We now turn back to the quasi-descent inequality (7.30). We add the term
E𝑡−1[𝛾2

𝑡 𝜂𝑡+1
√
𝑁𝐿∥V̂𝑡− 1

2
∥2] to both sides of the inequality, bound it from above

using (7.2), and simplify (with notably 𝜂2
𝑡 𝜎

2
𝑀
≤ 𝛾𝑡𝜂𝑡+1/2), leading to

E𝑡−1[∥X̃𝑡+1 − x★∥2 + 𝛾2
𝑡 𝜂𝑡+1

√
𝑁𝐿∥V̂𝑡− 1

2
∥2]

≤ ∥X̃𝑡 − x★∥2 +
(
1−

𝛾𝑡𝜂𝑡+1𝜈2

4

)
(𝛾𝑡−1)2𝜂𝑡

√
𝑁𝐿∥V̂𝑡− 3

2
∥2

− 𝛾𝑡𝜂𝑡+1

(
1
2 − (6𝛾

2
𝑡 𝑁𝐿

2 + 5𝛾𝑡
√
𝑁𝐿)(1+ 𝜎2

𝑀)
)
∥V(X𝑡− 1

2
)∥2

− 𝛾𝑡𝜂𝑡+1

2 E𝑡−1[∥V(X𝑡+ 1
2
)∥2]

+ (6𝛾3
𝑡 𝜂𝑡+1𝑁𝐿

2 + 5𝛾2
𝑡 𝜂𝑡+1

√
𝑁𝐿 + 𝜂2

𝑡 )𝑁𝜎2
𝐴.

3 Note that the first thing that we do for the equivalence of these terms in previous proofs is exactly
to drop the noise vector 𝜉

𝑡+ 1
2
; see (7.9) and (7.12).
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It follows from Young’s inequality, Lipschitz continuity of V, and the error
bound condition that

∥V(X𝑡+ 1
2
)∥2 ≥ 1

2 ∥V(X̃𝑡)∥
2 − ∥V(X̃𝑡) −V(X𝑡+ 1

2
)∥2

≥ 𝜈2

2 dist(X̃𝑡 ,𝔛★)2 −𝑁𝐿2∥𝛾𝑡V(X𝑡− 1
2
) + (𝛾𝑡 + 𝜂𝑡)𝝃𝑡− 1

2
∥2.

With Assumption 7.1 we can bound

E𝑡−1[∥𝛾𝑡V(X𝑡− 1
2
) + (𝛾𝑡 + 𝜂𝑡)𝝃𝑡− 1

2
∥2] ≤ 𝛾2

𝑡 ((1+ 4𝜎2
𝑀)∥V(X𝑡− 1

2
)∥2 + 4𝑁𝜎2

𝐴).

Combining the above three inequalities, we get

E𝑡−1[∥X̃𝑡+1 − x★∥2 + 𝛾2
𝑡 𝜂𝑡+1

√
𝑁𝐿∥V̂𝑡− 1

2
∥2]

≤ ∥X̃𝑡 − x★∥2 −
𝛾𝑡𝜂𝑡+1𝜈2

4 dist(X̃𝑡 ,𝔛★)2

+
(
1− 𝛾𝑡𝜂𝑡+1𝜈2

4

)
(𝛾𝑡−1)2𝜂𝑡

√
𝑁𝐿∥V̂𝑡− 3

2
∥2

− 𝛾𝑡𝜂𝑡+1

(
1
2 − (8𝛾

2
𝑡 𝑁𝐿

2 ++5𝛾𝑡
√
𝑁𝐿)(1+ 𝜎2

𝑀)
)
∥V(X𝑡− 1

2
)∥2

+ (8𝛾3
𝑡 𝜂𝑡+1𝑁𝐿

2 + 5𝛾2
𝑡 𝜂𝑡+1

√
𝑁𝐿 + 𝜂2

𝑡 )𝑁𝜎2
𝐴. (7.32)

Moreover, we have

(8𝛾2
𝑡 𝑁𝐿

2 + 5𝛾𝑡
√
𝑁𝐿)(1+ 𝜎2

𝑀) ≤ 8𝛾2
𝑡 𝑁𝐿

2(1+ 𝜎2
𝑀)

2 + 5𝛾𝑡
√
𝑁𝐿(1+ 𝜎2

𝑀).

We can thus drop the forth term on the RHS of (7.32) thanks to (7.31). Using
the concavity of the minimum operator as in the proof of Theorem 7.13, we get

E𝑡−1[dist(X̃𝑡+1, x★)2 + 𝛾2
𝑡 𝜂𝑡+1

√
𝑁𝐿∥V̂𝑡− 1

2
∥2]

≤
(
1− 𝛾𝑡𝜂𝑡+1𝜈2

4

) (
dist(X̃𝑡 ,𝔛★)2 + (𝛾𝑡−1)2𝜂𝑡

√
𝑁𝐿∥V̂𝑡− 3

2
∥2

)
+ (8𝛾3

𝑡 𝜂𝑡+1𝑁𝐿
2 + 5𝛾2

𝑡 𝜂𝑡+1
√
𝑁𝐿 + 𝜂2

𝑡 )𝑁𝜎2
𝐴. (7.33)

Taking total expectation and applying either Lemma B.2 or Lemma B.3 to the
above inequality with 𝑎𝑡 ← E[dist(X̃𝑡 ,𝔛★)2 + (𝛾𝑡−1)2𝜂𝑡

√
𝑁𝐿∥V̂𝑡− 3

2
∥2], we can

derive convergence rate for 𝑎𝑡 (either 𝒪(exp(−𝜌𝑡)) or 𝒪(1/𝑡1/3)) for the two
learning rate schemes described in the statement.4 To conclude, we note that

E[dist(X𝑡 ,𝔛★)2] = E

[
E𝑡−1

[
min
x★∈𝔛★

∥X𝑡 − x★∥2
] ]

≤ E

[
min
x★∈𝔛★

E𝑡−1[∥X𝑡 − x★∥2]
]

= E

[
min
x★∈𝔛★

∥X̃𝑡 − x★∥2 + 𝜂2
𝑡 E𝑡−1[∥𝝃𝑡− 1

2
∥2]

]
≤ E

[
dist(X̃𝑡 ,𝔛★)2 + 𝜂2

𝑡 ∥V̂𝑡− 1
2
∥2

]
.

4 Although (7.33) only holds for 𝑡 ≥ 2, one can easily show that 𝑎2 is finite.
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As 𝜂2
𝑡 = Θ(𝛾2

𝑡 𝜂𝑡+1) in the two cases, we have actually E[dist(X𝑡 ,𝔛★)2] = 𝒪(𝑎𝑡 +
𝑎𝑡+1). This ends the proof. □

7.4 local convergence

In this section, we shift our focus to localized analysis, examining the stochastic
stability of the (EG+) dynamics around equilibrium points (we do not consider
(OG+) here for the sake of simplicity). A notable advantage of this approach is
the considerably relaxed set of assumptions compared to the global ones utilized
in the previous section. Concretely, let us consider first-order equilibrium points
defined as {x★ ∈ R𝑑 : V(x★) = 0}. Then, the local assumptions are stated with
respect to a first-order equilibrium x★ and a neighborhood𝒰 of it as below.

Assumption 7.4. The operator V is 𝐿-Lipschitz continuous on𝒰 , i.e., for allLocal assumptions on
the operator x, x′ ∈ 𝒰 ,

∥V(x′) −V(x)∥∗ ≤ 𝐿∥x′ − x∥.

Assumption 7.5. The operator V satisfies ⟨V(x), x− x★⟩ ≥ 0 for all x ∈ 𝒰 .

Assumption 7.4 and Assumption 7.5 mirror respectively Assumption 5.2 and
Assumption 5.3, but they impose restrictions solely on the behavior of V within
a neighborhood𝒰 . These two assumptions are essential for the convergence of
(EG+). On the other hand, while a localized version of Assumption 5.1 ensures
that x★ is a local Nash equilibrium [229], it is not necessary for the convergence
analysis itself.

Moving forward, we also consider a localized version of Assumption 7.1 for
noise or measurement error.

Assumption 7.6. The noise vectors (𝝃𝑡)𝑠∈N/2 satisfy satisfies the followingLocal assumption on
noise requirements for some for some 𝑞 > 2 and 𝜎 ≥ 0.

(a) Zero-mean: E𝑠[𝝃𝑠]1{X𝑠∈𝒰} = 0.

(b) Moment control: E𝑠[∥𝝃𝑠 ∥𝑞]1{X𝑠∈𝒰} ≤ 𝜎𝑞 .

Similar to before, Assumption 7.6 asserts that the noise only needs to be
“well-behaved” when the played point lies in the neighborhood𝒰 . For technical
reason, with 𝑞 > 2 we require here the boundedness of a higher order moment.
While this is a stronger assumption in terms of moment control requirement, it
can still incorporate a multiplicative noise component. In fact, we may choose
𝒰 to be a bounded set without loss of generality. Then the existence of 𝜎 in
Assumption 7.6 is implied by the existence of 𝜎𝐴, 𝜎𝑀 ≥ 0 such that for all 𝑠

E𝑠[∥𝝃𝑠 ∥𝑞]1{X𝑠∈𝒰} ≤ 𝜎
𝑞

𝐴
+ 𝜎𝑞

𝑀
∥V(X𝑠)∥𝑞 .

Precisely, we just take 𝜎 = (𝜎𝑞
𝐴
+ 𝜎𝑞

𝑀
maxx∈𝒰 ∥V(x)∥𝑞)1/𝑞 . Although separating

the two components may allow us to show improved convergence rate when
𝜎𝐴 = 0 as in Theorems 7.13 and 7.14, we do not pursue in this direction.

7.4.1 Stability of Equilibrium

As a principle pillar of our analysis, we first show that any first-order equilibrium
of the game is Lyapunov stable in probability [152] relative to (EG+). To state this
result, we define X̃𝑡+ 1

2
= X𝑡 − 𝛾𝑡V(X𝑡) as in the proof of Lemma 7.3.
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Theorem 7.16. Let x★ be a first-order equilibrium such that Assumptions 7.4–7.6 Stochastic stability of
the equilibrium under
EG+

are satisfied on𝒰 = ℬ𝜌(x★) for some 𝜌 > 0. We fix a tolerance level 𝛿 ∈ (0, 1). For
every 𝛼 ∈ (0, 1), there is a neighborhood𝒰𝛼 of x★ and a constant Γ > 0 such that if
(EG+) is initialized at X1 ∈ 𝒰𝛼 and is run with stepsizes satisfying

∑+∞
𝑡=1 𝛾𝑡𝜂𝑡+1 = ∞,∑+∞

𝑡=1 𝜂
2
𝑡 < Γ,

∑+∞
𝑡=1 𝛾

2
𝑡 𝜂𝑡+1 < Γ and

∑+∞
𝑡=1 𝛾

𝑞

𝑡 < Γ, then

ℰ𝛼
∞ = {X𝑡+ 1

2
∈ ℬ𝜌(x★), X𝑡 , X̃𝑡+ 1

2
∈ ℬ𝛼𝜌(x★) for all 𝑡 ∈ N}

occurs with probability at least 1− 𝛿, i.e., P(ℰ𝛼
∞ | X1 ∈ 𝒰𝛼) ≥ 1− 𝛿.

To put it in simple terms, Theorem 7.16 states that as long as (EG+) is
initialized sufficiently close to the equilibrium point and run with sufficiently
small learning rates (while ensuring

∑+∞
𝑡=1 𝛾𝑡𝜂𝑡+1 = +∞), the iterates produced

by the algorithm remain close to x★ with a probability arbitrarily close to 1.
This stability result would allow us to prove our main convergence theorems in
Theorems 7.19 and 7.21.

Nonetheless, proving Theorem 7.16 is itself challenging. Unlike in the case of
perfect feedback where the stability of an equilibrium is a direct consequence
of the (quasi-)Fejér monotonicity of the iterates, proving the stochastic stability
requires a careful analysis of the involved stochastic sequence. In particular,
we need to control the total noise accumulating from each noisy step, a task
which is made difficult by the fact that the norm of the feedback can only be
upper bounded recursively and thus depends on previous iterates. To tackle
this challenge, we introduce the following lemma for bounding a recursive
stochastic process.

Lemma 7.17. Consider a filtration (𝒢𝑡)𝑡∈N and four (𝒢𝑡)𝑡∈N-adapted processes A lemma on recursive
stochastic process(𝑈𝑡)𝑡∈N, (𝜁𝑡)𝑡∈N, (𝜒𝑡)𝑡∈N, (𝜗𝑡)𝑡∈N such that (𝜒𝑡)𝑡∈N is non-negative and the fol-

lowing recursive inequality is satisfied for all 𝑡 ≥ 1

𝑈𝑡+1 ≤ 𝑈𝑡 − 𝜁𝑡 + 𝜒𝑡+1 + 𝜗𝑡+1.

Fixing a constant 𝐶 > 0, we define the events (𝒜𝑡)𝑡∈N by 𝒜1 B {𝑈1 ≤ 𝐶/2} and
𝒜𝑡 B {𝑈𝑡 ≤ 𝐶} ∩ {𝜒𝑡 ≤ 𝐶/4} for 𝑡 ≥ 2. We consider also the decreasing sequence of
events (ℰ𝑡)𝑡∈N defined by ℰ𝑡 B

⋂
1≤𝑠≤𝑡 𝒜𝑠 . If the following four assumptions hold

true
(i) ∀𝑡, 𝜁𝑡 1ℰ𝑡 ≥ 0,

(ii) ∀𝑡, E[𝜗𝑡+1 |𝒢𝑡]1ℰ𝑡 = 0,

(iii) P(𝒜1) > 0,

(iv)
∑∞
𝑡=1 E[(𝜗2

𝑡+1 + 𝜒𝑡+1)1ℰ𝑡 ] ≤ 𝛿𝜀P(𝒜1),
where 𝜀 = min(𝐶2/16,𝐶/4) and 𝛿 ∈ (0, 1), then P

(⋂
𝑡≥1𝒜𝑡 | 𝒜1

)
≥ 1− 𝛿.

Proof. Let us start by introducing the following two (𝒢𝑡)𝑡∈N-adapted submartin-
gale sequences

𝑆𝑡 B
𝑡∑
𝑠=2

𝜗𝑠 and 𝑄𝑡 B 𝑆2
𝑡 +

𝑡∑
𝑠=2

𝜒𝑠 .

Subsequently, we define an auxiliary sequence of events

ℋ𝑡 B 𝒜1 ∩ {max
2≤𝑠≤𝑡

𝑄𝑠 ≤ 𝜀}

which is also decreasing. With this at hand, we are ready to start our proof.
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(1) Inclusionℋ𝑡 ⊂ ℰ𝑡 . We prove the inclusion by induction. The statement is
true when 𝑡 = 1 asℋ1 = ℰ1 = 𝒜1. For 𝑡 ≥ 2, we write

𝑈𝑡 ≤ 𝑈1 −
𝑡−1∑
𝑠=1

𝜁𝑠 +
𝑡−1∑
𝑠=1

𝜒𝑠+1 +
𝑡−1∑
𝑠=1

𝜗𝑠+1. (7.34)

By induction hypothesis, ℋ𝑡−1 ⊂ ℰ𝑡−1, and thus for all 𝑠 ≤ 𝑡 − 1, we have
ℋ𝑡 ⊂ ℰ𝑡−1 ⊂ ℰ𝑠 . Combining with (i) we deduce that for any realization ofℋ𝑡 ,∑𝑡−1
𝑠=1 𝜁𝑠 ≥ 0. On the other hand, by definition ofℋ𝑡 , it holds 𝑄𝑡 1ℋ𝑡

≤ 𝜀. This
implies (

𝑡−1∑
𝑠=1

𝜗𝑠+1

)
1ℋ𝑡

= 𝑆𝑡 1ℋ𝑡
≤
√
𝜀 ≤ 𝐶/4, (7.35)(

𝑡−1∑
𝑠=1

𝜒𝑠+1

)
1ℋ𝑡
≤ 𝜀 ≤ 𝐶/4. (7.36)

Finally asℋ𝑡 ⊂ 𝒜1 we have𝑈1 1ℋ𝑡
≤ 𝐶/2. Therefore, for any realization ofℋ𝑡 ,

using (7.34) gives
𝑈𝑡 ≤ 𝐶/2− 0+ 𝐶/4+ 𝐶/4 = 𝐶.

In the meantime (7.36) ensures as well 𝜒𝑡 1ℋ𝑡
≤ 𝐶/4 and we have thus proven

ℋ𝑡 ⊂ 𝒜𝑡 . Usingℋ𝑡 ⊂ ℋ𝑡−1 ⊂ ℰ𝑡−1, we concludeℋ𝑡 ⊂ ℰ𝑡 .

(2) Recursive bound on E[𝑄𝑡 1ℋ𝑡−1]. Since ℋ𝑡−1 ⊆ ℋ𝑡−2, it holds ℋ𝑡−1 = ℋ𝑡−2 \
(ℋ𝑡−2 \ℋ𝑡−1). We can therefore decompose

E[𝑄𝑡 1ℋ𝑡−1] = E[(𝑄𝑡 −𝑄𝑡−1)1ℋ𝑡−1] +E[𝑄𝑡−1 1ℋ𝑡−1]
= E[(𝜗2

𝑡 + 2𝜗𝑡𝑆𝑡−1 + 𝜒𝑡)1ℋ𝑡−1]
+E[𝑄𝑡−1 1ℋ𝑡−2] −E[𝑄𝑡−1 1ℋ𝑡−2\ℋ𝑡−1].

From the law of total expectation,ℋ𝑡−1 ⊂ ℰ𝑡−1 and (ii) we have

E[𝜗𝑡𝑆𝑡−1 1ℋ𝑡−1] = E[E[𝜗𝑡 |𝒢𝑡−1]𝑆𝑡−1 1ℋ𝑡−1] = 0.

As 𝜗2
𝑡 + 𝜒𝑡 is non-negative, using againℋ𝑡−1 ⊂ ℰ𝑡−1, we get

E[(𝜗2
𝑡 + 𝜒𝑡)1ℋ𝑡−1] ≤ E[(𝜗2

𝑡 + 𝜒𝑡)1ℰ𝑡−1].

By definition for any realization inℋ𝑡−2 \ℋ𝑡−1, it holds 𝑄𝑡−1 > 𝜀 and thus

E[𝑄𝑡−1 1ℋ𝑡−2\ℋ𝑡−1] ≥ 𝜀E[1ℋ𝑡−2\ℋ𝑡−1] = 𝜀P(ℋ𝑡−2 \ℋ𝑡−1).

Combining the above we deduce the following recursive bound

E[𝑄𝑡 1ℋ𝑡−1] ≤ E[𝑄𝑡−1 1ℋ𝑡−2] +E[(𝜗2
𝑡 + 𝜒𝑡)1ℰ𝑡−1] − 𝜀P(ℋ𝑡−2 \ℋ𝑡−1). (7.37)

(3) Conclude. Summing (7.37) from 𝑡 = 3 to 𝑇 we obtain

E[𝑄𝑇 1ℋ𝑇−1] ≤ E[𝑄2 1ℋ1] +
𝑇∑
𝑡=3

E[(𝜗2
𝑡 + 𝜒𝑡)1ℰ𝑡−1] − 𝜀

𝑇∑
𝑡=3

P(ℋ𝑡−2 \ℋ𝑡−1)

=

𝑇∑
𝑡=2

E[(𝜗2
𝑡 + 𝜒𝑡)1ℰ𝑡−1] − 𝜀P(𝒜1 \ℋ𝑇−1), (7.38)
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where in the second line we use 𝑄2 = 𝜗2
2 + 𝜒2,ℋ1 = ℰ1 = 𝒜1 andℋ1 \ℋ𝑇−1 =

¤⋃
3≤𝑡≤𝑇(ℋ𝑡−2 \ℋ𝑡−1) with ¤⋃ denoting the disjoint union (true since (ℋ𝑡)𝑡≥1 is a

decreasing sequence of events). By repeating the same arguments that are used
before and using the fact that 𝑄𝑇 is non-negative, we have

P(𝒜1 \ℋ𝑇) = P(ℋ𝑇−1 \ℋ𝑇) +P(𝒜1 \ℋ𝑇−1)

≤ 1
𝜀

E[𝑄𝑇 1ℋ𝑇−1\ℋ𝑇 ] +P(𝒜1 \ℋ𝑇−1)

≤ 1
𝜀

E[𝑄𝑇 1ℋ𝑇−1] +P(𝒜1 \ℋ𝑇−1). (7.39)

(7.39), (7.38) along with (iii) lead to

P(𝒜1 \ℋ𝑇) ≤
1
𝜀

𝑇∑
𝑡=2

E[(𝜗2
𝑡 + 𝜒𝑡)1ℰ𝑡−1] ≤ 𝛿 P(𝒜1).

Subsequently,

P(ℋ𝑇 | 𝒜1) = 1− P(𝒜1 \ℋ𝑇)
P(𝒜1)

≥ 1− 𝛿.

With ℋ𝑇 ⊂ ℰ𝑇 this also gives P(ℰ𝑇 | 𝒜1) ≥ 1 − 𝛿. We notice that
⋂
𝑡≥1 ℰ𝑡 =⋂

𝑡≥1𝒜𝑡 . As (ℰ𝑡)𝑡≥1 is decreasing, by continuity from above we conclude

P

(⋂
𝑡≥1
𝒜𝑡 | 𝒜1

)
= lim
𝑡→∞

P(ℰ𝑡 | 𝒜1) ≥ 1− 𝛿. □

Remark 7.6. Lemma 7.17 requires P(𝒜1) > 0. For our local convergence and
stability results, this means that the probability of X1 falling into the appropriate
neighborhood should be strictly larger than 0.

Note that the inequality of Lemma 7.17 concerns the random variables
themselves and not their expectations. We thus need an energy inequality that
holds without taking expectation. We provide such inequality below.

Lemma 7.18. For all x★ ∈ 𝔛★, 𝑡 ∈ N, the iterates generated by (EG+) satisfy the An energy inequality
for EG+ without
expectation

following inequality

∥X𝑡+1 − x★∥2 ≤ ∥X𝑡 − x★∥2 − 2𝜂𝑡+1⟨V(X𝑡+ 1
2
), X𝑡+ 1

2
− x★⟩

− 2𝛾𝑡𝜂𝑡+1∥V(X𝑡)∥(∥V(X𝑡)∥ − ∥V(X̃𝑡+ 1
2
) −V(X𝑡)∥)

− 2𝜂𝑡+1⟨𝝃𝑡+ 1
2
, X𝑡 − x★⟩ − 2𝛾𝑡𝜂𝑡+1⟨V(X̃𝑡+ 1

2
), 𝝃𝑡⟩

+ 2𝛾𝑡𝜂𝑡+1∥V̂𝑡 ∥∥V(X𝑡+ 1
2
) −V(X̃𝑡+ 1

2
)∥ + 𝜂2

𝑡+1∥V̂𝑡+ 1
2
∥2 (7.40)

Moreover, if we assume Assumption 7.4 for some open set𝒰 and that X𝑡 , X̃𝑡+ 1
2
, X𝑡+ 1

2
all lie in𝒰 , then

∥X𝑡+1 − x★∥2 ≤ ∥X𝑡 − x★∥2 − 2𝜂𝑡+1⟨V(X𝑡+ 1
2
), X𝑡+ 1

2
− x★⟩ − 2𝜂𝑡+1⟨𝝃𝑡+ 1

2
, X𝑡 − x★⟩

− 2𝛾𝑡𝜂𝑡+1(1− 𝛾𝑡𝐿)∥V(X𝑡)∥2 − 2𝛾𝑡𝜂𝑡+1⟨V(X̃𝑡+ 1
2
), 𝝃𝑡⟩

+ 2𝛾2
𝑡 𝜂𝑡+1𝐿∥𝝃𝑡 ∥∥V̂𝑡 ∥ + 𝜂2

𝑡+1∥V̂𝑡+ 1
2
∥2. (7.41)

Proof. We develop

∥X𝑡+1 − x★∥2 = ∥X𝑡 − x★∥2 − 2𝜂𝑡+1⟨V(X𝑡+ 1
2
), X𝑡 − x★⟩
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− 2𝜂𝑡+1⟨𝝃𝑡+ 1
2
, X𝑡 − x★⟩ + 𝜂2

𝑡+1∥V̂𝑡+ 1
2
∥2.

We further develop the second term on the RHS of the equality

⟨V(X𝑡+ 1
2
), X𝑡 − x★⟩ = ⟨V(X𝑡+ 1

2
), X𝑡+ 1

2
− x★⟩ + 𝛾𝑡 ⟨V(X𝑡+ 1

2
), V̂𝑡⟩

= ⟨V(X𝑡+ 1
2
), X𝑡+ 1

2
− x★⟩ + 𝛾𝑡 ⟨V(X𝑡+ 1

2
) −V(X̃𝑡+ 1

2
), V̂𝑡⟩

+ 𝛾𝑡 ⟨V(X̃𝑡+ 1
2
), V̂𝑡⟩.

To deal with the last term

⟨V(X̃𝑡+ 1
2
), V̂𝑡⟩ = ⟨V(X̃𝑡+ 1

2
), V(X𝑡)⟩ + ⟨V(X̃𝑡+ 1

2
), 𝝃𝑡⟩

= ⟨V(X̃𝑡+ 1
2
) −V(X𝑡), V(X𝑡)⟩ + ∥V(X𝑡)∥2 + ⟨V(X̃𝑡+ 1

2
), 𝝃𝑡⟩.

By combing all the above, we readily get (7.40) with Cauchy’s inequality. If
Assumption 7.4 holds on a set that X𝑡 , X̃𝑡+ 1

2
, 𝑋𝑡+ 1

2
belong to, we can further

bound

2𝛾𝑡𝜂𝑡+1∥V(X𝑡+ 1
2
) −V(X̃𝑡+ 1

2
)∥∥V̂𝑡 ∥ ≤ 2𝛾2

𝑡 𝜂𝑡+1𝐿∥𝝃𝑡 ∥∥V̂𝑡 ∥,

2𝛾𝑡𝜂𝑡+1∥V(X̃𝑡+ 1
2
) −V(X𝑡)∥∥V(X𝑡)∥ ≤ 2𝛾2

𝑡 𝜂𝑡+1𝐿∥V(X𝑡)∥2,

which gives (7.41). □

With the above two lemmas, we are now ready to prove the stability of (EG+).

Proof of Theorem 7.16. We would like to apply Lemma 7.17, but instead of in-
dexing by 𝑡 ∈ N, we index by 𝑠 ∈ N/2. We invoke (7.40) from Lemma 7.18 and
set the random variables accordingly

∥X𝑡+1 − x★∥2︸         ︷︷         ︸
𝑈𝑡+1

≤ ∥X𝑡 − x★∥2︸      ︷︷      ︸
𝑈𝑡

− 2𝜂𝑡+1⟨V(X𝑡+ 1
2
), X𝑡+ 1

2
− x★⟩︸                           ︷︷                           ︸

𝜁
𝑡+ 1

2

− 2𝛾𝑡𝜂𝑡+1∥V(X𝑡)∥(∥V(X𝑡)∥ − ∥V(X̃𝑡+ 1
2
) −V(X𝑡)∥)︸                                                        ︷︷                                                        ︸

𝜁𝑡

+ (−2𝜂𝑡+1⟨𝝃𝑡+ 1
2
, X𝑡 − x★⟩)︸                       ︷︷                       ︸

𝜗𝑡+1

+ (−2𝛾𝑡𝜂𝑡+1⟨V(X̃𝑡+ 1
2
), 𝝃𝑡⟩)︸                         ︷︷                         ︸

𝜗
𝑡+ 1

2

+ 2𝛾𝑡𝜂𝑡+1∥V̂𝑡 ∥∥V(X𝑡+ 1
2
) −V(X̃𝑡+ 1

2
)∥ + 𝜂2

𝑡+1∥V̂𝑡+ 1
2
∥2︸                                                           ︷︷                                                           ︸

𝜒𝑡+1

(7.42)

We additionally define 𝜒𝑡+ 1
2
B 𝛾

𝑞

𝑡 ∥𝝃𝑡 ∥𝑞 and 𝑈𝑡+ 1
2
B 𝑈𝑡 − 𝜁𝑡 + 𝜒𝑡+ 1

2
+ 𝜗𝑡+ 1

2
so that (7.42) implies 𝑈𝑡+1 ≤ 𝑈𝑡+ 1

2
− 𝜁𝑡+ 1

2
+ 𝜒𝑡+1 + 𝜗𝑡+1. With the definition of

𝑈𝑡+ 1
2

the inequality (7.34) is indeed verified with all half integers. We shall next
verify that the assumptions (i), (ii) and (iii) in Lemma 7.17 are satisfied for a 𝐶
that is properly chosen. Let us write 𝜌′ B 𝛼𝜌, define𝒰′ = ℬ𝜌′(x★), and denote
by 𝑀 the supremum of ∥V(x)∥ for x ∈ 𝒰′. We choose 𝐶 B min(𝜌′2/9, 4(𝜌′/3)𝑞)
and set Γ small enough to guarantee 𝛾𝑡 ≤ min(𝜌′/(3𝑀), 1/𝐿).
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(1) Inclusion ℰ𝑡 ⊂ {X𝑡 , X̃𝑡+ 1
2
∈ 𝒰′} and ℰ𝑡+ 1

2
⊂ {X𝑡 , X̃𝑡+ 1

2
, X𝑡+ 1

2
∈ 𝒰′}. Since

ℰ𝑡 ⊂ 𝒜𝑡 , for any realization of ℰ𝑡 , we have ∥X𝑡 − x★∥2 ≤ 𝐶 ≤ 𝜌′2/9. It follows

∥X̃𝑡+ 1
2
− x★∥2 ≤ 2∥X𝑡 − x★∥2 + 2𝛾2

𝑡 ∥V(X𝑡)∥2 ≤
2𝜌′2

9 + 2𝛾2
𝑡𝑀

2 ≤ 4𝜌′2

9 .

We have shown ℰ𝑡 ⊂ {X𝑡 , X̃𝑡+ 1
2
∈ 𝒰′}. On the other hand, ℰ𝑡+ 1

2
⊂ 𝒜𝑡 ∩𝒜𝑡+ 1

2
⊂

{𝑈𝑡 ≤ 𝐶} ∩ {𝜒𝑡+ 1
2
≤ 𝐶/4}. Therefore for any realization of ℰ𝑡+ 1

2
,

𝛾
𝑞

𝑡 ∥𝝃𝑡 ∥
𝑞 = 𝜒𝑡+ 1

2
≤ 𝐶

4 ≤ (𝜌
′/3)𝑞 .

Subsequently,

∥X𝑡+ 1
2
− x★∥2 ≤ 3∥X𝑡 − x★∥2 + 3𝛾2

𝑡 ∥V(X𝑡)∥2 + 3𝛾2
𝑡 ∥𝝃𝑡 ∥2

≤ 𝜌′2

3 +
𝜌′2

3 + 3
(
𝜌′

3

)2
≤ 𝜌′2.

This proves ℰ𝑡+ 1
2
⊂ {X𝑡 , X̃𝑡+ 1

2
, X𝑡+ 1

2
∈ 𝒰′}.

(2) Assumption (i). We start by 𝜁𝑡+ 1
2
1ℰ

𝑡+ 1
2
≥ 0. This is true because ℰ𝑡+ 1

2
⊂

{X𝑡+ 1
2
∈ 𝒰′} and 𝒰′ ⊂ ℬ𝜌(x★), which allows us to apply Assumption 7.5

to obtain ⟨V(X𝑡+ 1
2
), X𝑡+ 1

2
− x★⟩ ≥ 0 whenever ℰ𝑡+ 1

2
occurs. Similarly, by ℰ𝑡 ⊂

{X𝑡 , X̃𝑡+ 1
2
∈ 𝒰′} and Assumption 7.4 we then have

𝜁𝑡 1ℰ𝑡 ≥ 2𝛾𝑡𝜂𝑡+1(1− 𝛾𝑡𝐿)∥V(X𝑡)∥2 ≥ 0.

(3) Assumption (ii). This is immediate from Assumption 7.6(a), ℰ𝑡 ⊂ {X𝑡 ∈
ℬ𝜌(x★)}, ℰ𝑡+ 1

2
⊂ {X𝑡+ 1

2
∈ ℬ𝜌(x★)}, and the law of the total expectation.

(4) Assumption (iii). By using that ℰ𝑡 ⊂ {X̃𝑡+ 1
2
∈ 𝒰′} and ℰ𝑡 ⊂ {X𝑡 ∈ ℬ𝜌(x★)} ,

we get

E[𝜗2
𝑡+ 1

2
1ℰ𝑡 ] ≤ 4𝛾2

𝑡 𝜂
2
𝑡+1 E[∥V(X̃𝑡+ 1

2
)∥2 1ℰ𝑡 ∥𝝃𝑡 ∥2 1ℰ𝑡 ]

≤ 4𝛾2
𝑡 𝜂

2
𝑡+1𝑀

2 E[∥𝝃𝑡 ∥2 1{X𝑡∈ℬ𝜌(x★)}] ≤ 4𝛾2
𝑡 𝜂

2
𝑡+1𝑀

2𝜎2.

For the last inequality we use Assumption 7.6(b) and Jensen’s inequality to
bound E[∥𝝃𝑡 ∥2 1{X𝑡∈ℬ𝜌(x★)}]. Similarly,

E[∥𝝃𝑡 ∥ 1{X𝑡∈ℬ𝜌(x★)}] ≤ 𝜎,

E[∥𝝃𝑡+ 1
2
∥2 1{X

𝑡+ 1
2
∈ℬ𝜌(x★)}] ≤ 𝜎2.

Using ℰ𝑡+ 1
2
⊂ {X𝑡 , X̃𝑡+ 1

2
, X𝑡+ 1

2
∈ 𝒰′} and Assumption 7.4 then gives

E[𝜒𝑡+1 1ℰ
𝑡+ 1

2
] ≤ 2𝛾2

𝑡 𝜂𝑡+1𝐿E[∥𝝃𝑡 ∥(∥V(X𝑡)∥ + ∥𝝃𝑡 ∥)1ℰ𝑡+ 1
2
]

+ 𝜂2
𝑡+1 E[(∥V(X𝑡+ 1

2
)∥2 + ∥𝝃𝑡+ 1

2
∥2)1ℰ

𝑡+ 1
2
]

≤ 2𝛾2
𝑡 𝜂𝑡+1𝐿E[∥𝝃𝑡 ∥2 1{X𝑡∈ℬ𝜌(x★)}]

+ 2𝛾2
𝑡 𝜂𝑡+1𝐿E[∥𝝃𝑡 ∥ 1{X𝑡∈ℬ𝜌(x★)}∥V(X𝑡)∥ 1{X𝑡∈𝒰′}]

+ 𝜂2
𝑡+1(E[∥V(X𝑡+ 1

2
)∥2 1{X

𝑡+ 1
2
∈𝒰′}] +E[∥𝝃𝑡+ 1

2
∥2 1{X

𝑡+ 1
2
∈ℬ𝜌(x★)}])
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≤ 2𝛾2
𝑡 𝜂𝑡+1𝐿(𝑀𝜎 + 𝜎2) + 𝜂2

𝑡+1(𝑀
2 + 𝜎2). (7.43)

By similar arguments and in particular by invoking ℰ𝑡+ 1
2
⊂ {𝑈𝑡 ≤ 𝐶} and the

definition of 𝐶, it follows

E[𝜗2
𝑡+1 1ℰ𝑡+ 1

2
] ≤ 4

9𝜂
2
𝑡+1𝜌

′2𝜎2,

Combining the above with E[𝜒𝑡+ 1
2
1ℰ𝑡 ] ≤ 𝛾

𝑞

𝑡 𝜎
𝑞 , we have∑

𝑠∈1,3/2,...

(𝜗2
𝑠+ 1

2
+ 𝜒𝑠+ 1

2
)1ℰ𝑠

≤
∞∑
𝑡=1

(
𝛾
𝑞

𝑡 𝜎
𝑞 + 2𝛾2

𝑡 𝜂𝑡+1𝐿(𝑀𝜎 + 𝜎2) + 4𝛾2
𝑡 𝜂

2
𝑡+1𝑀

2𝜎2

+ 𝜂2
𝑡+1(𝑀

2 + 𝜎2 + 4
9𝜌
′2𝜎2)

)
≤

(
𝜎𝑞 + 2𝐿(𝑀𝜎 + 𝜎2) + 4

𝐿
𝑀2𝜎2 +𝑀2 + 𝜎2 + 4

9𝜌
′2𝜎2

)
Γ.

We can thus pick Γ small enough to make (iii) verified.

(5) Conclude. We set 𝒰𝛼 = ℬ√
𝐶/2(x★) so that 𝒜1 = {X1 ∈ 𝒰𝛼}. By invoking

Lemma 7.17 we get P
(⋂

𝑡≥1𝒜𝑡 | 𝒜1
)
≥ 1 − 𝛿. Additionally, (1) along with

𝒰′ ⊂ ℬ𝜌(x★) imply
⋂
𝑡≥1𝒜𝑡 ⊂ ℰ𝛼

∞, concluding the proof. □

7.4.2 Asymptotic Convergence

In the next theorem we strengthen Theorem 7.16 to a high-probability conver-
gence result. It additionally requires the equilibrium x★ to be isolated (i.e., there
is a neighborhood𝒰 of x★ such that x★ is the only equilibrium in𝒰), but can
otherwise be regarded as the localized version of Theorem 7.9.

Theorem 7.19. Let x★ be an isolated first-order equilibrium such that Assump-High-probability
convergence of EG+ tions 7.4–7.6 are satisfied on𝒰 = ℬ𝜌(x★) for some 𝜌 > 0. For every 𝛿 > 0, if (EG+) is

run with small enough 𝛾𝑡 , 𝜂𝑡 satisfying
∑+∞
𝑡=1 𝛾𝑡𝜂𝑡+1 = ∞. and initialized sufficiently

close to x★, its iterates converge to x★ with probability at least 1− 𝛿.

Proof. Let 𝛼 ∈ (0, 1). By Theorem 7.16, we know that if (EG+) is run as stated in
Theorem 7.19, the event ℰ𝛼

∞ occurs with probability 1− 𝛿. With this at hand we
are ready to prove the large probability convergence result. For 𝑡 ∈ N, let us
define the following events

ℰ𝑡 B {X𝑠 , X̃𝑠+ 1
2
∈ ℬ𝛼𝜌(x★) for all 𝑠 ∈ {1, ..., 𝑡}},

ℰ𝑡+ 1
2
B ℰ𝑡 ∩ {X𝑠+ 1

2
∈ ℬ𝜌(x★) for all 𝑠 ∈ {1, ..., 𝑡}}.

We notice that ℰ𝛼
∞ =

⋂
𝑡≥1 ℰ𝑡+ 1

2
. We would like to establish a recursive inequality

in the form of (7.16) by taking𝑈𝑡 = ∥X𝑡 − x★∥ 1ℰ
𝑡− 1

2
. The main difficulty consists

in controlling the term E𝑡[⟨V(X̃𝑡+ 1
2
), 𝝃𝑡⟩ 1ℰ𝑡+ 1

2
], which is generally non-zero

as 1ℰ
𝑡+ 1

2
is not ℱ𝑡-measurable. To achieve this, we rely on the following key

observation.
E𝑡[𝝃𝑡 1ℰ𝑡 ] = E𝑡[𝝃𝑡 1ℰ𝑡+ 1

2
] +E𝑡[𝝃𝑡 1ℰ𝑡\ℰ𝑡+ 1

2
].
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As 1ℰ𝑡 is ℱ𝑡-measurable and ℰ𝑡 ⊂ {X𝑡 ∈ ℬ𝜌(x★)}, E𝑡[𝝃𝑡 1ℰ𝑡 ] is indeed zero and
this implies

∥E𝑡[𝝃𝑡 1ℰ𝑡+ 1
2
]∥ = ∥E𝑡[𝝃𝑡 1ℰ𝑡\ℰ𝑡+ 1

2
]∥. (7.44)

The problem then reduces to finding an upper bound of ∥E𝑡[𝝃𝑡 1ℰ𝑡\ℰ𝑡+ 1
2
]∥. By

definition, for any realization of ℰ𝑡 \ ℰ𝑡+ 1
2
, X̃𝑡+ 1

2
∈ ℬ𝛼𝜌(x★) and 𝑋𝑡+ 1

2
∉ ℬ𝜌(x★).

Since X𝑡+ 1
2
= X̃𝑡+ 1

2
− 𝛾𝑡𝝃𝑡 , we deduce

ℰ𝑡 \ ℰ𝑡+ 1
2
⊂ {∥𝛾𝑡𝝃𝑡 ∥ ≥ (1− 𝛼)𝜌}.

Therefore, using ℰ𝑡 ⊂ {X𝑡 ∈ ℬ𝜌(x★)} along with the Chebyshev’s inequality
yields

P(ℰ𝑡 \ ℰ𝑡+ 1
2
|ℱ𝑡) ≤ P

(
∥𝝃𝑡 ∥ 1{X𝑡∈ℬ𝜌(x★)} ≥

(1− 𝛼)𝜌
𝛾𝑡

�� ℱ𝑡

)
≤

𝜎2𝛾2
𝑡

(1− 𝛼)2𝜌2 .

Applying the Cauchy–Schwarz inequality leads to

∥E𝑡[𝝃𝑡 1ℰ𝑡\ℰ𝑡+ 1
2
]∥ ≤

√
E𝑡[∥𝝃𝑡 1ℰ𝑡 ∥2]

√
E𝑡[12

ℰ𝑡\ℰ𝑡+ 1
2

] ≤ 𝜎2𝛾𝑡
(1− 𝛼)𝜌 . (7.45)

Then, by using (7.44), (7.45) and ℰ𝑡+ 1
2
⊂ ℰ𝑡 , we get

E𝑡[⟨V(X̃𝑡+ 1
2
), 𝝃𝑡⟩ 1ℰ𝑡+ 1

2
] = E𝑡[⟨V(X̃𝑡+ 1

2
)1ℰ𝑡 , 𝝃𝑡 1ℰ𝑡+ 1

2
⟩]

= ⟨V(X̃𝑡+ 1
2
)1ℰ𝑡 , E𝑡[𝝃𝑡 1ℰ𝑡+ 1

2
]⟩

≤ ∥V(X̃𝑡+ 1
2
)1ℰ𝑡 ∥∥E𝑡[𝝃𝑡 1ℰ𝑡+ 1

2
]∥

≤ 𝑀𝜎2𝛾𝑡
(1− 𝛼)𝜌 , (7.46)

where 𝑀 B sup𝑥∈ℬ𝜌(x★)∥V(𝑥)∥. We can now derive a recursive bound on
E[∥X𝑡+1 − x★∥ 1ℰ

𝑡+ 1
2
] by invoking Lemma 7.18. The inequality (7.41) multiplied

by 1ℰ
𝑡+ 1

2
holds true by definition of ℰ𝑡+ 1

2
and Assumption 7.4. The desired

inequality can then be obtained by taking expectation conditioned on ℱ𝑡 . On
the one hand, we use

⟨V(X𝑡+ 1
2
), X𝑡+ 1

2
− x★⟩ 1ℰ

𝑡+ 1
2
≥ 0

E𝑡[⟨𝝃𝑡+ 1
2
, X𝑡 − x★⟩ 1ℰ

𝑡+ 1
2
] = E𝑡[⟨E𝑡+ 1

2
[𝝃𝑡+ 1

2
]1ℰ

𝑡+ 1
2
, X𝑡 − x★⟩] = 0.

On the other hand, the last two terms of (7.41) can be bounded similarly as in
(7.43) and the antepenultimate term can now be bounded thanks to (7.46). We
then obtain

E𝑡[∥X𝑡+1 − x★∥2 1ℰ
𝑡+ 1

2
] ≤ E𝑡[∥X𝑡 − x★∥2 1ℰ

𝑡+ 1
2
]

− 2𝛾𝑡𝜂𝑡+1(1− 𝛾𝑡𝐿)E𝑡[∥V(X𝑡)∥2 1ℰ
𝑡+ 1

2
] + 𝜂2

𝑡+1(𝑀
2 + 𝜎2)

+ 2𝛾2
𝑡 𝜂𝑡+1

𝑀𝜎2

(1− 𝛼)𝜌 + 2𝛾2
𝑡 𝜂𝑡+1𝐿(𝑀𝜎 + 𝜎2). (7.47)
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We additionally suppose that 𝛾𝑡 is small enough such that 𝛾𝑡𝐿 ≤ 1/2, and set

𝜁𝑡 = min
(
∥X𝑡 − x★∥2, 𝛾𝑡𝜂𝑡+1∥V(X𝑡)∥2

)
,

𝑀1 =
2𝑀𝜎2

(1− 𝛼)𝜌 + 2𝐿(𝑀𝜎 + 𝜎2),

𝑀2 = 𝑀2 + 𝜎2. (7.48)

It follows from (7.47) that

E𝑡[∥X𝑡+1 − x★∥2 1ℰ
𝑡+ 1

2
] ≤ E𝑡[(∥X𝑡 − x★∥2 − 𝜁𝑡)1ℰ

𝑡+ 1
2
] + 𝛾2

𝑡 𝜂𝑡+1𝑀1 + 𝜂2
𝑡+1𝑀2.

As ∥X𝑡 − x★∥2 − 𝜁𝑡 ≥ 0 and ℰ𝑡+ 1
2
⊂ ℰ𝑡− 1

2
, this implies

E𝑡[∥X𝑡+1 − x★∥2 1ℰ
𝑡+ 1

2
] ≤ ∥X𝑡 − x★∥2 1ℰ

𝑡− 1
2
−𝜁𝑡 1ℰ

𝑡− 1
2
+𝛾2

𝑡 𝜂𝑡+1𝑀1 + 𝜂2
𝑡+1𝑀2.

Invoking the the Robbins–Siegmund theorem (Lemma 7.8) gives the almost
sure convergence of

∑+∞
𝑡=1 𝜁𝑡 1ℰ𝑡− 1

2
and ∥X𝑡 − x★∥2 1ℰ

𝑡− 1
2
. We use P(ℰ𝛼

∞) > 1− 𝛿
and deduce that

P

©­­­­­­«
ℰ𝛼
∞ ∩

{ ∞∑
𝑡=1

𝜁𝑡 1ℰ
𝑡− 1

2
< ∞

}
∩

{
∥X𝑡 − x★∥2 1ℰ

𝑡− 1
2

converges
}

︸                                                                      ︷︷                                                                      ︸
ℰ

ª®®®®®®¬
≥ 1− 𝛿.

Since ℰ𝛼
∞ =

⋂
𝑡≥1 ℰ𝑡+ 1

2
, for any realization of the above event it holds

∑+∞
𝑡=1 𝜁𝑡 < ∞

and ∥X𝑡 − x★∥2 converges. We assume by contradiction that ∥X𝑡 − x★∥2 converges
to some constant𝑈∞ > 0. From the summability of (𝜁𝑡)𝑡∈N we know that 𝜁𝑡 → 0
and therefore for all 𝑡 large enough we have in fact 𝜁𝑡 = 𝛾𝑡𝜂𝑡+1∥V(X𝑡)∥2. It
follows that

∑+∞
𝑡=1 𝛾𝑡𝜂𝑡+1∥V(X𝑡)∥2 < ∞. Repeating the arguments of the proof of

Theorem 7.9 we then show that ∥X𝑡 − x★∥ → 0, which is a contradiction (we take
𝜌 small enough so that x★ is the only equilibrium point in ℬ𝜌(x★)). We have
therefore proved that ∥X𝑡 − x★∥ → 0 for any realization of ℰ. In conclusion, X𝑡
converges to x★ with probability at least 1− 𝛿. □

7.4.3 Convergence Rate

We proceed to present local convergence rate for (EG+). We focus specifically
on equilibrium points that satisfy the following Jacobian regularity condition.

Assumption 7.7. V is differentiable at x★ and its Jacobian matrix JacV(𝑥★) isInvertibility of
Jacobian invertible.

The link between Assumptions 7.3 and 7.7 is provided below.

Proposition 7.20. If a solution x★ satisfies Assumption 7.7, then for every 𝜀 > 0, thereFrom invertibility of
Jacobian to local error

bound
is a neighborhood𝒰 of x★ such that the error bound condition (EB) is satisfied on𝒰
with constant 𝜈 = 𝜍min − 𝜀 where 𝜍min denotes the smallest singular value of JacV(x★).

Proof. By definition of Jacobian we have

V(x) = V(x★) + Jac𝑉 (x★)(x− x★) + 𝑜(∥x− x★∥). (7.49)
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By the min-max principle of singular value it holds

∥JacV(x★)(x− x★)∥ ≥ 𝜍min∥x− x★∥. (7.50)

Since V(x★) = 0, combining (7.49) and (7.50) gives

∥V(x)∥ ≥ 𝜍min∥x− x★∥ − 𝑜(∥x− x★∥).

We conclude by noticing dist(x,𝔛★) = ∥x− x★∥ when𝒰 is small enough. □

Proposition 7.20 elucidates that if a solution x★ satisfies the Jacobian regularity
condition, a local error bound can be established. This extends the applicability
of our quantitative convergence results to much broader scenarios—on condition
that we manage to establish a localized version of it. This brings us to the
following theorem.

Theorem 7.21. Let x★ be a first-order equilibrium such that Assumptions 7.4–7.7 are Local convergence rate
of EG+satisfied on 𝒰 = ℬ𝜌(x★) for some 𝜌 > 0. Assume further that 𝑞 > 3 and (EG+) is

run with stepsize parameters of the form 𝛾𝑡 = 𝛾/(𝑡 + 𝛽)1/3 and 𝜂𝑡+1 = 𝜂/(𝑡 + 𝛽)2/3.
Then, for every 𝛿 > 0, when 𝛽,𝜂 > 0 and 𝛾 ≥ 𝜂 are taken large enough, there exist
neighborhoods𝒰1,𝒰2 of x★ and an event ℰ𝒰1 such that:

(a) P(ℰ𝒰1 | X1 ∈ 𝒰1) ≥ 1− 𝛿.

(b) P(X𝑡 ∈ 𝒰2 for all 𝑡 | ℰ𝒰1) = 1.

(c) E[∥X𝑡 − x★∥2 | ℰ𝒰1] = 𝒪
(
1/𝑡1/3

)
In words, if (EG+) is not initialized too far from x★, the iterates X𝑡 remain close to x★
with probability at least 1− 𝛿 and, conditioned on this event, X𝑡 converges to x★ at a
rate 𝒪(1/𝑡1/3) in mean square error.

Proof. Both (a) and (b) are direct consequences of Theorem 7.16. In effect,
since 𝑞 > 3, the sum of the series

∑+∞
𝑡=1 𝜂

2
𝑡+1,

∑+∞
𝑡=1 𝛾

2
𝑡 𝜂𝑡+1 and

∑+∞
𝑡=1 𝛾

𝑞

𝑡 can
be made arbitrarily small by taking sufficiently large 𝛽. Moreover, x★ is an
isolated solution because JacV(x★) is non-singular. Therefore, taking ℰ𝒰1 B ℰ𝛼

∞,
𝒰1 B 𝒰𝛼 and𝒰2 B ℬ𝛼𝜌(x★) readily gives (a) and (b).

Finally, to guarantee (c), we need to have 𝛼 small enough and enforce
𝛾𝜂𝜍2

min(1 − 𝛾1𝐿) > 1/6. In fact, from 𝛾𝜂𝜍2
min(1 − 𝛾1𝐿) > 1/6 we deduce the

existence of 𝜀 ∈ (0, 𝜍𝑚𝑖𝑛) such that 𝛾𝜂(𝜍min − 𝜀)2(1− 𝛾1𝐿) > 1/6. Since JacV(x★)
is non-singular, by Proposition 7.20 we can choose 𝛼 > 0 so that the error bound
condition (EB) is satisfied on ℬ𝛼𝜌(x★) with 𝜈 = 𝜍min − 𝜀. Let 𝑀1, 𝑀2 be defined
as in (7.48). We then obtained from (7.47)

E[∥X𝑡+1 − x★∥2 1ℰ
𝑡+ 1

2
] ≤ (1− 2𝛾𝑡𝜂𝑡+1𝜈

2(1− 𝛾𝑡𝐿))E[∥X𝑡 − x★∥2 1ℰ
𝑡+ 1

2
]

+ 𝛾2
𝑡 𝜂𝑡+1𝑀1 + 𝜂2

𝑡+1𝑀2.

Suppose additionally that 𝛽 is large enough such that 2𝛾𝑡𝜂𝑡+1𝜈2(1− 𝛾𝑡𝐿) ≤ 1.
Then, by using ℰ𝑡+ 1

2
⊂ ℰ𝑡− 1

2
, we get

E[∥X𝑡+1 − x★∥2 1ℰ
𝑡+ 1

2
] ≤ (1− 2𝛾𝑡𝜂𝑡+1𝜈

2(1− 𝛾𝑡𝐿))E[∥X𝑡 − x★∥2 1ℰ
𝑡− 1

2
]

+ 𝛾2
𝑡 𝜂𝑡+1𝑀1 + 𝜂2

𝑡+1𝑀2
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Therefore, with the specified stepsize policy and the condition 𝛾𝜂𝜈2(1− 𝛾1𝐿) >
1/6, applying Lemma B.3 yields E[∥X𝑡+1 − x★∥2 1ℰ

𝑡+ 1
2
] = 𝒪(1/𝑡1/3). Finally

E[∥X𝑡 − x★∥2 | ℰ𝛼
∞] =

E[∥X𝑡 − x★∥2 1ℰ𝛼∞]
P(ℰ𝛼

∞)
≤

E[∥X𝑡 − x★∥21ℰ
𝑡− 1

2
]

1− 𝛿 ,

which proves E[∥X𝑡 − x★∥2 | ℰ𝛼
∞] = 𝒪(1/𝑡1/3). □

This theorem offers insight into the rate of convergence under the much
lighter local error bound condition. Taken together, Theorems 7.9 and 7.21 show
that for all variationally stable games with a non-degenerate equilibrium point,
employing the suggested learning rate policy yields an asymptotic 𝒪(1/𝑡1/3)
rate. In more detail, the last point of Theorem 7.21 shows that, with the same
kind of learning rate as in the second part of Theorem 7.13, we can retrieve a
𝒪(1/𝑡1/3) convergence rate provided that the iterates stay close to the solution.



8
DEALING WITH STOCHASTIC FEEDBACK I I : NO-REGRET
AND ADAPTIVE LEARNING

# This chapter incorporates material from Hsieh et al. [129]

The preceding chapter examined how optimistic methods with learning rate
separation can achieve trajectory convergence when the feedback is corrupted

by noise. While our analysis showcased promising results, it suffered from two
limitations. First, these methods rely on coordination among players to agree
on a common learning rate. Second, the learning rates have to be carefully
adjusted for each situation to make sure the guarantees hold up.

To tackle these limitations, we draw inspiration from Chapter 6 and devise
an adaptive method in this chapter. This algorithm can be independently run
by each player without knowledge of either the game or of the noise profile.
Moreover, as in Chapter 6, it offers (near-)optimal guarantees in various scenarios
with a unified learning rate policy, thus eliminating the need for both player
coordination and the selection of situation-specific learning rates.

This chapter also pays particular attention to the multiplicative noise setup.
As we have seen previously, this type of noise often leads to faster convergence.
In this chapter, we further elucidate this point by deriving bounds on the
norm of the pseudo-gradient and regret. Precisely, we focus on the notion of
pseudo-regret.

Definition 8.1 (Pseudo-regret). For any player 𝑖 ∈ 𝒩 , comparator set𝒵 𝑖 ⊆ 𝒳 𝑖 , Pseduo-regret
and time horizon 𝑇 ∈ N, the pseudo-regret of this player relative to𝒵 𝑖 after 𝑇
rounds is defined as

Reg
𝑖

𝑇(𝒵 𝑖) = max
𝑧 𝑖∈𝒵 𝑖

E

[
𝑇∑
𝑡=1
[ℓ 𝑖(𝑥 𝑖𝑡 , x−𝑖𝑡 ) − ℓ 𝑖(𝑧 𝑖 , x−𝑖𝑡 )]

]
.

The expectation is taken over both the randomness of the feedback and of the
algorithm.

Remark 8.1. Another closely related concept is expected regret, defined by

E
[
Reg𝑖𝑇(𝑧)

]
= E

[
max
𝑧 𝑖∈𝑧 𝑖

𝑇∑
𝑡=1
[ℓ 𝑖(𝑥 𝑖𝑡 , x−𝑖𝑡 ) − ℓ 𝑖(𝑧 𝑖 , x−𝑖𝑡 )]

]
.

Compared to pseudo-regret, it targets the action that is optimal against the Expected regret versus
pseudo-regretsequence of realized losses rather than optimal against the expected losses.

Clearly, we always have Reg
𝑖

𝑇(𝒵) ≤ E[Reg𝑖𝑇(𝒵)]. While we focus on deriving
bounds for pseudo-regret throughout this chapter, most of these bounds can be
obtained for the expected regret as well. This follows from a standard technique
that we detail in Appendix C.

151
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For the sake of brevity, we will simply refer to pseudo-regret as “regret”OptDA+: OptDA
with learning rate

separation
hereinafter. Then, to ensure no-regret in the adversarial scenario, our algorithm
of choice is OptDA+, the double-learning-rate variant of (OptDA). Its update is
recursively stated as

𝑋 𝑖

𝑡+ 1
2
= 𝑋 𝑖

𝑡 − 𝛾𝑖𝑡 𝑔 𝑖𝑡−1, 𝑋 𝑖
𝑡+1 = 𝑋 𝑖

1 − 𝜂
𝑖
𝑡+1

𝑡∑
𝑠=1

𝑔 𝑖𝑠 . (OptDA+)

As before, 𝛾𝑖𝑡 and 𝜂𝑖𝑡 are respectively the optimistic and the update learning rates
of the algorithm. Note that (OG+) and (OptDA+) coincide when the update
learning rate 𝜂𝑖𝑡 is taken constant.

contributions and outline. The focus of this chapter is on the following
three types of results: bounds on sum of squared pseudo-gradient norms,
bounds on regret, and last-iterate convergence under multiplicative noise.
To achieve these, we lay out our preliminary inequalities for (OptDA+) in
Section 8.1, which serve as the bedrock of our subsequent analysis. We then
apply these inequalities to provide specific results for predetermined and
adaptive learning rates in Section 8.2 and Section 8.3, respectively. In addition to
the typical 𝒪(

√
𝑇) regret guarantee for the adversarial scenario and the general

noise model, we specifically show that both the regret and the sum of squared
pseudo-gradient norms of (OptDA+) can be bounded by a constant when the
noise is multiplicative. Finally, we corroborate our theoretical results with
numerical illustrations in Section 8.4, demonstrating the efficacy of our methods
in a bilinear game and a toy GAN model.

notations related to the learning rates. For any x = (𝑥 𝑖)𝑖∈𝒩 ∈ 𝔛 = R𝑑

and 𝜶 = (𝜶𝑖)𝑖∈𝒩 ∈ R𝑁
+ , we write the weighted norm as ∥x∥𝜶 =

√∑𝑁
𝑖=1 𝛼

𝑖 ∥𝑥 𝑖 ∥2.
The weights 𝜶 will be taken as a function of the learning rates. It will thus be
convenient to write 𝜼𝑡 = (𝜂𝑖𝑡)𝑖∈𝒩 and 𝜸𝑡 = (𝛾𝑖𝑡 )𝑖∈𝒩 for the joint learning rates. The
arithmetic manipulation and the comparisons of these vectors should be taken
elementwisely. For example, the element-wise division is 1/𝜼𝑡 = (1/𝜂𝑖𝑡)𝑖∈𝒩 .
Provided that 𝜼1 is not needed for the update of (OptDA+), we will simply use
the notation 𝜼1 = 𝜼2 for our analysis.

8.1 preliminary inequalities

The goal of this section is provide a set of template inequalities that hold under
minimal constraints on the learning rates. Importantly, although we have
implicitly assumed that our learning rates are deterministic, i.e., ℱ0-measurable
up to now, this will not be the case for learning rates that are adjusted adaptively
based on stochastic feedback. To account for this, we make the following
assumption concerning the measurability of the learning rates in this section.

Assumption 8.1. For all 𝑡 ∈ N, the learning rates 𝛾𝑖
𝑡+1 and 𝜂𝑖

𝑡+1 are ℱ
𝑖
𝑡 -Measurability of

learning rates measurable.

Assumption 8.1 essentially suggests that 𝛾𝑖
𝑡+1 and 𝜂𝑖

𝑡+1, which are respectively
used in the computation of 𝑋 𝑖

𝑡+ 3
2

and 𝑋 𝑖
𝑡+1, cannot be defined by incorporating

any information that is only available from time 𝑡. This is slightly stricter than
the natural assumption which posits that a player can only determine their
learning rates based on received information, as it excludes the possibility
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of using 𝑔 𝑖𝑡 in defining 𝛾𝑖
𝑡+1 and 𝜂𝑖

𝑡+1 (recall that 𝑔 𝑖𝑡 is not ℱ𝑡-measurable but
ℱ𝑡+1-measurable). Nonetheless, it guarantees that E𝑡[𝛾𝑖𝑡+1𝜂

𝑖
𝑡+1𝜉

𝑖

𝑡+ 1
2
] = 0, which

is crucial for our analysis.

8.1.1 Generalized OptDA+

Similar to Section 7.2.2, we first analyze a generalized version of (OptDA+) that
operates with two arbitrary sequences of vectors (𝑔̃𝑡)𝑡∈N and (𝑔𝑡)𝑡∈N.

𝑋𝑡+ 1
2
= 𝑋𝑡 − 𝛾𝑡 𝑔̃𝑡 , 𝑋𝑡+1 = 𝑋1 − 𝜂𝑡+1

𝑡∑
𝑠=1

𝑔𝑠 . (Generalized OptDA+)

Our goal here is to establish an (in)equality that would serve the same
role as what Proposition 7.2 does in the analysis of (OG+). This necessitates
incorporating the weight 1/𝜂𝑡 into the definition of the Lyapunov function. With
the notation 𝜂1 = 𝜂2, some basic calculations give us the following proposition.

Proposition 8.1. Let (𝑋𝑡)𝑡∈N and (𝑋𝑡+ 1
2
)𝑡∈N be generated by Generalized OptDA+. A basic decomposition

for Generalized
OptDA+

It holds for any 𝑧 ∈ 𝒳 and 𝑡 ∈ N that

∥𝑋𝑡+1 − 𝑧∥2
𝜂𝑡+1

=
∥𝑋𝑡 − 𝑧∥2

𝜂𝑡
− ∥𝑋𝑡 −𝑋𝑡+1∥2

𝜂𝑡

+
(

1
𝜂𝑡+1
− 1
𝜂𝑡

)
∥𝑋1 − 𝑧∥2 −

(
1

𝜂𝑡+1
− 1
𝜂𝑡

)
∥𝑋1 −𝑋𝑡+1∥2

− 2⟨𝑔𝑡 ,𝑋𝑡+ 1
2
− 𝑧⟩ − 2𝛾𝑡 ⟨𝑔, 𝑔̃𝑡⟩ + 2⟨𝑔𝑡 ,𝑋𝑡 −𝑋𝑡+1⟩.

Proof. Using 𝑔𝑡 = (𝑋𝑡 −𝑋1)/𝜂𝑡 − (𝑋𝑡+1 −𝑋1)/𝜂𝑡+1, we can write

⟨𝑔𝑡 ,𝑋𝑡+1 − 𝑧⟩ =
〈
𝑋𝑡 −𝑋1

𝜂𝑡
− 𝑋𝑡+1 −𝑋1

𝜂𝑡+1
,𝑋𝑡+1 − 𝑧

〉
=

1
𝜂𝑡
⟨𝑋𝑡 −𝑋𝑡+1,𝑋𝑡+1 − 𝑧⟩ +

(
1

𝜂𝑡+1
− 1
𝜂𝑡

)
⟨𝑋1 −𝑋𝑡+1,𝑋𝑡+1 − 𝑧⟩

=
1

2𝜂𝑡
(∥𝑋𝑡 − 𝑧∥2 − ∥𝑋𝑡+1 − 𝑧∥2 − ∥𝑋𝑡 −𝑋𝑡+1∥2)

+
(

1
2𝜂𝑡+1

− 1
2𝜂𝑡

)
(∥𝑋1 − 𝑧∥2 − ∥𝑋𝑡+1 − 𝑧∥2 − ∥𝑋1 −𝑋𝑡+1∥2).

Multiplying the equality by 2 and rearranging, we get

∥𝑋𝑡+1 − 𝑧∥2
𝜂𝑡+1

=
∥𝑋𝑡 − 𝑧∥2

𝜂𝑡
− ∥𝑋𝑡 −𝑋𝑡+1∥2

𝜂𝑡
+

(
1

𝜂𝑡+1
− 1
𝜂𝑡

)
∥𝑋1 − 𝑧∥2

−
(

1
𝜂𝑡+1
− 1
𝜂𝑡

)
∥𝑋1 −𝑋𝑡+1∥2 − 2⟨𝑔𝑡 ,𝑋𝑡+1 − 𝑧⟩.

We conclude with the equality

⟨𝑔𝑡 ,𝑋𝑡+1 − 𝑧⟩ = ⟨𝑔𝑡 ,𝑋𝑡+1 −𝑋𝑡⟩ + ⟨𝑔𝑡 ,𝑋𝑡 −𝑋𝑡+ 1
2
⟩ + ⟨𝑔𝑡 ,𝑋𝑡+ 1

2
− 𝑧⟩

= ⟨𝑔𝑡 ,𝑋𝑡+1 −𝑋𝑡⟩ + 𝛾𝑡 ⟨𝑔𝑡 , 𝑔̃𝑡⟩ + ⟨𝑔𝑡 ,𝑋𝑡+ 1
2
− 𝑧⟩,

where we have used 𝑋𝑡 = 𝑋𝑡+ 1
2
+ 𝛾𝑡 𝑔̃𝑡 . □
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With the standard assumption on the non-increasingness of the learning
rates, we can then further refine the above the result into the following corollary.

Corollary 8.2. Let (𝑋𝑡)𝑡∈N and (𝑋𝑡+ 1
2
)𝑡∈N be generated by Generalized OptDA+. For

any 𝑧 ∈ 𝒳 and 𝑡 ∈ N, if 𝜂𝑡+1 ≤ 𝜂𝑡 , it holds that

∥𝑋𝑡+1 − 𝑧∥2
𝜂𝑡+1

≤ ∥𝑋𝑡 − 𝑧∥
2

𝜂𝑡
+

(
1

𝜂𝑡+1
− 1
𝜂𝑡

)
∥𝑋1 − 𝑧∥2 − 2⟨𝑔𝑡 ,𝑋𝑡+ 1

2
− 𝑧⟩

− 2𝛾𝑡 ⟨𝑔, 𝑔̃𝑡⟩ + 𝜂2
𝑡 ∥𝑔𝑡 ∥2 +min

(
𝜂𝑡 ∥𝑔𝑡 ∥2 −

∥𝑋𝑡 −𝑋𝑡+1∥2
2𝜂𝑡

, 0
)

.

Proof. This is immediate from Proposition 8.1 by applying Young’s inequality.
More precisely, we use (1/𝜂𝑡+1 − 1/𝜂𝑡)∥𝑋1 −𝑋𝑡+1∥2 ≥ 0 and

2⟨𝑔𝑡 ,𝑋𝑡 −𝑋𝑡+1⟩

≤ min
(
𝜂𝑡 ∥𝑔𝑡 ∥2 +

∥𝑋𝑡 −𝑋𝑡+1∥2
𝜂𝑡

, 2𝜂𝑡 ∥𝑔𝑡 ∥2 +
∥𝑋𝑡 −𝑋𝑡+1∥2

2𝜂𝑡

)
. □

In, Corollary 8.2 we recognize the two scalar product terms ⟨𝑔𝑡 ,𝑋𝑡+ 1
2
− 𝑧⟩,

⟨𝑔𝑡 , 𝑔̃𝑡⟩, and the squared norm term ∥𝑔𝑡 ∥2 that also appear in Proposition 7.2.
The absence of player-dependent coefficient in front of ⟨𝑔𝑡 ,𝑋𝑡+ 1

2
− 𝑧⟩ enables

the use of player-dependent learning rates in our analysis, as we may just sum
this up from 𝑖 = 1 to 𝑁 and take expectation to get ⟨V(X𝑡+ 1

2
), X𝑡+ 1

2
− z⟩. This

term is non-negative under Assumption 5.3 by choosing z← x★ to be a Nash
equilibrium. While it is also possible to put Proposition 7.2 in this form, this
gives rise to an additional term (1/𝜂𝑡+1 − 1/𝜂𝑡)∥𝑋𝑡 − 𝑧∥2 and it is unclear how
we can control it.

8.1.2 Inequalities for OptDA+

The success of our analysis for double-learning-rate optimistic gradient methods
hinges on our careful treatment of the scalar product ⟨𝑔𝑡 , 𝑔̃𝑡⟩. Below we show
that the bound proved in Lemma 7.5 for this quantity is still valid for (OptDA+).

Lemma 8.3. Suppose that Assumptions 5.2 and 7.1 hold and all players run (OptDA+)
with learning rates satisfying Assumption 8.1. Then, for all 𝑖 ∈ 𝒩 and 𝑡 ≥ 2, it holds

−2 E𝑡−1[⟨𝑉̂ 𝑖

𝑡+ 1
2
, 𝑉̂ 𝑖

𝑡− 1
2
⟩] ≤ E𝑡−1

[
− ∥𝑉 𝑖(X𝑡+ 1

2
)∥2 − ∥𝑉 𝑖(X𝑡− 1

2
)∥2

+ ∥𝑉 𝑖(X𝑡+ 1
2
) −𝑉 𝑖(X𝑡− 1

2
)∥2

+ 𝐿
©­­«2𝛾𝑖𝑡
√
𝑁 ∥𝜉𝑖

𝑡− 1
2
∥2 +

𝑁∑
𝑗=1

(𝛾 𝑗𝑡 + 𝜂
𝑗

𝑡)2∥𝜉
𝑗

𝑡− 1
2
∥2

2
√
𝑁𝛾𝑖𝑡

ª®®¬
]

Proof. This lemma is proved in the same way as Lemma 7.5. The only difference
is in that with 𝑋̃ 𝑗

𝑡+ 1
2
= 𝑋

𝑗

𝑡+ 1
2
+ (𝜂 𝑗𝑡 + 𝛾

𝑗

𝑡 )𝜉
𝑗

𝑡− 1
2
, we now have

𝑋̃
𝑗

𝑡+ 1
2
= 𝑋 𝑖

1 − 𝜂
𝑗

𝑡

𝑡−2∑
𝑠=1

𝑉̂
𝑗

𝑠+ 1
2
− (𝜂 𝑗𝑡 + 𝛾

𝑗

𝑡 )𝑉
𝑗(X𝑡− 1

2
).
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Thanks to Assumption 8.1, the surrogate X̃𝑡+ 1
2

is always ℱ𝑡−1-measurable and
the proof thus remains valid. □

Equipped with Corollary 8.2 and Lemma 8.3, we next establish a series of
energy inequalities and regret and pseudo-gradient bounds for (OptDA+). We
start with the energy inequality at the level of each individual.

Lemma 8.4. Suppose that Assumptions 5.2 and 7.1 hold and all players run (OptDA+) Individual energy
inequality for
OptDA+

with non-increasing learning rates satisfying Assumption 8.1. Then, for all 𝑖 ∈ 𝒩 ,
𝑡 ≥ 2, and 𝑧 𝑖 ∈ 𝒳 𝑖 , it holds

E𝑡−1

[
∥𝑋 𝑖

𝑡+1 − 𝑧 𝑖 ∥2

𝜂𝑖
𝑡+1

]
≤ E𝑡−1

[
∥𝑋 𝑖

𝑡 − 𝑧 𝑖 ∥2

𝜂𝑖𝑡
+

(
1

𝜂𝑖
𝑡+1
− 1
𝜂𝑖𝑡

)
∥𝑋 𝑖

1 − 𝑧
𝑖 ∥2 (8.1a)

− 2⟨𝑉 𝑖(X𝑡+ 1
2
),𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩ (8.1b)

− 𝛾𝑖𝑡 (∥𝑉 𝑖(X𝑡+ 1
2
)∥2 + ∥𝑉 𝑖(X𝑡− 1

2
)∥2) (8.1c)

+ 𝛾𝑖𝑡 ∥𝑉 𝑖(X𝑡+ 1
2
) −𝑉 𝑖(X𝑡− 1

2
)∥2 + 𝜂𝑖𝑡 ∥𝑉̂ 𝑖

𝑡+ 1
2
∥2 (8.1d)

+min

(
−
∥𝑋 𝑖

𝑡 −𝑋 𝑖
𝑡+1∥2

2𝜂𝑖𝑡
+ 𝜂𝑖𝑡 ∥𝑉̂ 𝑖

𝑡+ 1
2
∥2, 0

)
(8.1e)

+ 2(𝛾𝑖𝑡 )2
√
𝑁𝐿∥𝜉𝑖

𝑡− 1
2
∥2 + 𝐿

2
√
𝑁
∥𝝃𝑡− 1

2
∥2(𝜼𝑡+𝜸𝑡 )2

]
.

(8.1f)

Proof. This is an immediate by combining Corollary 8.2 and Lemma 8.3.
We just notice that as 𝛾𝑖𝑡 is ℱ𝑡−1-measurable, we have E𝑡−1[𝛾𝑖𝑡 ⟨𝑉̂ 𝑖

𝑡+ 1
2
, 𝑉̂ 𝑖

𝑡− 1
2
⟩] =

𝛾𝑖𝑡 E𝑡−1[⟨𝑉̂ 𝑖

𝑡+ 1
2
, 𝑉̂ 𝑖

𝑡− 1
2
⟩]. □

To gain insight on how Lemma 8.4 is used in our analysis, it is beneficial to
dissect this bound and examine each term in detail.

• The weighted squared distance to 𝑧 𝑖 , i.e., ∥𝑋 𝑖
𝑡 − 𝑧 𝑖 ∥2/𝜂𝑖𝑡 , telescopes in the

analysis on aggregate performance measures (e.g., regret) and otherwise
plays the role of energy in equilibrium convergence analysis.

• (1/𝜂𝑖
𝑡+1 − 1/𝜂𝑖𝑡)∥𝑋 𝑖

1 − 𝑧 𝑖 ∥2 in (8.1a) also telescopes in the analysis on ag-
gregate performance measures. This leads to a term in the order of 1/𝜂𝑖

𝑇

when we sum to 𝑡 = 𝑇. However, it plays a more delicate role in con-
vergence analysis, and this is what prevents us from showing last-iterate
convergence of the algorithm when 𝜎𝐴 > 0.

• The linearized regret of each player is obtained by summing the pairing
terms in (8.1b). On the other hand, taking x★ ∈ 𝔛★, 𝑧 𝑖 ← 𝑥 𝑖★, and summing
from 𝑖 = 1 to 𝑁 , we obtain −2⟨V(X𝑡+ 1

2
), X𝑡+ 1

2
− x★⟩, which is non-positive

by Assumption 5.3, and can thus be dropped from the inequality.

• The negative term in (8.1c) provides a consistent negative drift that
partially cancels out the noise.

• Thanks to the smoothness assumption, the gradient variation in (8.1d) can
be partially cancelled out by the negative path variation in (8.1e) when we
sum up over 𝑡 and 𝑖. This leaves out terms that are in the order of 𝛾𝑖𝑡 (𝛾

𝑗

𝑡 )2.
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• The remaining terms in lines (8.1d), (8.1e), and (8.1f) are of the order
(𝛾 𝑗𝑡 )2 + 𝜂𝑖𝑡 . To ensure that they are sufficiently small with respect to the
decrease of (8.1c), we again need both (𝛾 𝑗𝑡 )𝑗∈𝒩 and 𝜂𝑖𝑡/𝛾𝑖𝑡 to be small.

With the above in mind, we next provide a template regret bound that holds
for a large range of learning rate sequences, laying out the foundation of our
subsequent regret analysis.

Lemma 8.5. Suppose that Assumptions 5.2 and 7.1 hold and all players run (OptDA+)Bound on linearized
regret with non-increasing learning rates satisfying Assumption 8.1 and 𝜼𝑡 ≤ 𝜸𝑡 for all

𝑡 ∈ N. Then, for all 𝑖 ∈ 𝒩 , 𝑇 ∈ N, and 𝑧 𝑖 ∈ 𝒳 𝑖 , we have

E

[
𝑇∑
𝑡=1
⟨𝑉 𝑖(X𝑡+ 1

2
),𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩

]
≤ E

[
∥𝑋 𝑖

1 − 𝑧 𝑖 ∥2

2𝜂𝑖
𝑇+1

+ 1
2

𝑇∑
𝑡=1

𝜂𝑖𝑡 ∥𝑉̂ 𝑖

𝑡+ 1
2
∥2

+
𝑇∑
𝑡=2

𝛾𝑖𝑡𝐿
2
(
3∥V̂𝑡− 1

2
∥2
𝜸2
𝑡

+ 3
2 ∥X𝑡 −X𝑡−1∥2

)
+

𝑇∑
𝑡=2
((𝛾𝑖𝑡 )2

√
𝑁𝐿∥𝜉𝑖

𝑡− 1
2
∥2 + 𝐿√

𝑁
∥𝝃𝑡− 1

2
∥2
𝜸2
𝑡

)
]
.

Proof. Applying Lemma 8.4, dropping the non-positive terms in (8.1c), (8.1e),
and taking total expectation gives

E

[
∥𝑋 𝑖

𝑡+1 − 𝑧 𝑖 ∥2

𝜂𝑖
𝑡+1

]
≤ E

[
∥𝑋 𝑖

𝑡 − 𝑧 𝑖 ∥2

𝜂𝑖𝑡
+

(
1

𝜂𝑖
𝑡+1
− 1
𝜂𝑖𝑡

)
∥𝑋 𝑖

1 − 𝑧
𝑖 ∥2 + 𝜂𝑖𝑡 ∥𝑉̂ 𝑖

𝑡+ 1
2
∥2

− 2⟨𝑉 𝑖(X𝑡+ 1
2
),𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩ + 𝛾𝑖𝑡 ∥𝑉 𝑖(X𝑡+ 1

2
) −𝑉 𝑖(X𝑡− 1

2
)∥2

+ 2(𝛾𝑖𝑡 )2
√
𝑁𝐿∥𝜉𝑖

𝑡− 1
2
∥2 + 𝐿

2
√
𝑁
∥𝝃𝑡− 1

2
∥2(𝜼𝑡+𝜸𝑡 )2

]
. (8.2)

The above inequality holds for 𝑡 ≥ 2. As for 𝑡 = 1, we notice that with
𝑋 𝑖

2 = 𝑋 𝑖
1 − 𝜂

𝑖
2𝑉̂

𝑖
3/2, we have in fact

∥𝑋 𝑖
2 − 𝑧

𝑖 ∥2 = ∥𝑋 𝑖
1 − 𝑧

𝑖 ∥2 − 2𝜂𝑖2⟨𝑉̂
𝑖
3/2,𝑋 𝑖

1 − 𝑧
𝑖⟩ + (𝜂𝑖2)

2∥𝑉̂ 𝑖
3/2∥

2.

As 𝑋 𝑖
3/2 = 𝑋 𝑖

1 = 0 and 𝜂𝑖1 = 𝜂𝑖2, the above implies

E

[
⟨𝑉 𝑖(X3/2),𝑋 𝑖

3/2 − 𝑧
𝑖⟩
]
= E

[
∥𝑋 𝑖

1 − 𝑧 𝑖 ∥2

2𝜂𝑖2
−
∥𝑋 𝑖

2 − 𝑧 𝑖 ∥2

2𝜂𝑖2
+
𝜂𝑖1∥𝑉̂

𝑖
3/2∥

2

2

]
. (8.3)

Summing (8.2) from 𝑡 = 2 to 𝑇, dividing by 2, adding (8.3), and using 𝜼𝑡 ≤ 𝜸𝑡
leads to

𝑇∑
𝑡=1

E[⟨𝑉 𝑖(X𝑡+ 1
2
),𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩] ≤ 1

2 E

[
∥𝑋 𝑖

1 − 𝑧 𝑖 ∥2

𝜂𝑖
𝑇+1

+
𝑇∑
𝑡=1

𝜂𝑖𝑡 ∥𝑉̂ 𝑖

𝑡+ 1
2
∥2

+
𝑇∑
𝑡=2

𝛾𝑖𝑡 ∥𝑉 𝑖(X𝑡+ 1
2
) −𝑉 𝑖(X𝑡− 1

2
)∥2

+ 2𝐿
𝑇∑
𝑡=2
((𝛾𝑖𝑡 )2

√
𝑁 ∥𝜉𝑖

𝑡− 1
2
∥2 + 1√

𝑁
∥𝝃𝑡− 1

2
∥2
𝜸2
𝑡

)
]
.
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Furthermore, thanks to Lipschitz continuity of 𝑉 𝑖 , we can bound the difference
term by

∥𝑉 𝑖(X𝑡+ 1
2
) −𝑉 𝑖(X𝑡− 1

2
)∥2 ≤ 3∥𝑉 𝑖(X𝑡+ 1

2
) −𝑉 𝑖(X𝑡)∥2 + 3∥𝑉 𝑖(X𝑡) −𝑉 𝑖(X𝑡−1)∥2

+ 3∥𝑉 𝑖(X𝑡−1) −𝑉 𝑖(X𝑡− 1
2
)∥2

≤ 3𝐿2∥V̂𝑡− 1
2
∥2
𝜸2
𝑡

+ 3𝐿2∥V̂𝑡− 3
2
∥2(𝜸𝑡−1)2

+ 3𝐿2∥X𝑡 −X𝑡−1∥2.
(8.4)

Combining the above two inequalities and using V̂1/2 = 0 gives the desired
inequality. □

In Sections 8.2 and 8.3, we will use Lemma 8.5 to bound each player’s regret
in the case where they all play (OptDA+). Nonetheless, as we can see from
the statement, this in turn requires bounds on the second-order path length
and on the sum of the squared pseudo-gradient norms. As a stepping stone
toward such bound, we derive a global energy inequality for (OptDA+), which
additionally, as in Chapter 7, will also server as an important building block for
the derivation of trajectory convergence results.

Lemma 8.6. Suppose that Assumptions 5.2, 5.3 and 7.1 hold and all players run Global energy
inequality for
OptDA+

(OptDA+) with non-increasing learning rates satisfying Assumption 8.1. Then, for all
𝑡 ≥ 2 and x★ ∈ 𝔛★, if 𝜼𝑡 ≤ 𝜸𝑡 , we have

E𝑡−1[∥X𝑡+1 − x★∥21/𝜼𝑡+1
] ≤ E𝑡−1[∥X𝑡 − x★∥21/𝜼𝑡 + ∥X1 − x★∥21/𝜼𝑡+1−1/𝜼𝑡

− ∥V(X𝑡+ 1
2
)∥2𝜸𝑡 − ∥V(X𝑡− 1

2
)∥2𝜸𝑡

− ∥X𝑡 −X𝑡+1∥21/(2𝜼𝑡 ) + 3∥V(X𝑡) −V(X𝑡−1)∥2𝜸𝑡
+ 3𝐿2(∥𝜸𝑡 ∥1∥V̂𝑡− 1

2
∥2
𝜸2
𝑡

+ ∥𝜸𝑡−1∥1∥V̂𝑡− 3
2
∥2(𝜸𝑡−1)2

)

+ 4
√
𝑁𝐿∥𝝃𝑡− 1

2
∥2
𝜸2
𝑡

+ 2∥V̂𝑡+ 1
2
∥2𝜼𝑡 ]. (8.5)

Proof. On one hand, we have

min

(
−
∥𝑋 𝑖

𝑡 −𝑋 𝑖
𝑡+1∥2

2𝜂𝑖𝑡
+ 𝜂𝑖𝑡 ∥𝑉̂ 𝑖

𝑡+ 1
2
∥2, 0

)
≤ −
∥𝑋 𝑖

𝑡 −𝑋 𝑖
𝑡+1∥2

2𝜂𝑖𝑡
+ 𝜂𝑖𝑡 ∥𝑉̂ 𝑖

𝑡+ 1
2
∥2.

On the other hand, we use (8.4) but keep the 3∥𝑉 𝑖(X𝑡) −𝑉 𝑖(X𝑡−1)∥2 term instead
of bounding it from above. That is,

∥𝑉 𝑖(X𝑡+ 1
2
) −𝑉 𝑖(X𝑡− 1

2
)∥2 ≤ 3𝐿2∥V̂𝑡− 1

2
∥2
𝜸2
𝑡

+ 3𝐿2∥V̂𝑡− 3
2
∥2(𝜸𝑡−1)2

+ 3∥𝑉 𝑖(X𝑡) −𝑉 𝑖(X𝑡−1)∥2.

Plugging the previous two inequalities into Lemma 8.4 with 𝑧 𝑖 ← 𝑥 𝑖★, summing
from 𝑖 = 1 to 𝑁 , and using ⟨V(X𝑡+ 1

2
), X𝑡+ 1

2
− x★⟩ ≥ 0, 𝜼𝑡 ≤ 𝜸𝑡 , and ∥𝜸𝑡 ∥1 ≤

∥𝜸𝑡−1∥1 gives (8.5). □

Lemma 8.6 shares a lot of similarity with Lemma 7.7. There are however
two important differences. First, as mentioned previously, the squared distance
is now weighted by 1/𝜼𝑡 . This is common to energy inequalities for DA-type
methods (see the proof of Proposition 2.4). However, it is also this very aspect
that hinders our ability to prove last-iterate convergence of these methods
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when additive noise is present, i.e., when 𝜎𝐴 > 0.1 Second, the presence of
−∥X𝑡 − X𝑡+1∥21/(2𝜼𝑡 ) + 3∥V(X𝑡) −V(X𝑡−1)∥2𝜸𝑡 is also be specific to (OptDA+). It
is written in this form because unlike (OG+), we do not have simple ways to
develop these variation terms here. Otherwise, they can still be controlled using
the smoothness of the losses.

We close this section with a bound on the sum of pseudo-gradient norms. It
can also be understood as a bound on the second-order path length as we have
−∥X𝑡 −X𝑡+1∥21/(2𝜼𝑡 ) on the RHS of the inequality.

Lemma 8.7. Suppose that Assumptions 5.2, 5.3 and 7.1 hold and all players runBound on sum of
squared

pseudo-gradient
norms

(OptDA+) with non-increasing learning rates satisfying Assumption 8.1 and 𝜼𝑡 ≤ 𝜸𝑡
for all 𝑡 ∈ N. Then, for all 𝑇 ∈ N and x★ ∈ 𝔛★, we have

𝑇∑
𝑡=2

E[∥V(X𝑡+ 1
2
)∥2𝜸𝑡 + ∥V(X𝑡− 1

2
)∥2𝜸𝑡 ]

≤ E

[
∥X1 − x★∥21/𝜼𝑇+1

+
𝑇∑
𝑡=1

(
3∥V(X𝑡) −V(X𝑡+1)∥2𝜸𝑡 − ∥X𝑡 −X𝑡+1∥21/(2𝜼𝑡 )

)
+

𝑇∑
𝑡=2

6∥𝜸𝑡 ∥1𝐿2∥V̂𝑡− 1
2
∥2
𝜸2
𝑡

+
𝑇∑
𝑡=2

4
√
𝑁𝐿∥𝝃𝑡− 1

2
∥2
𝜸2
𝑡

+
𝑇∑
𝑡=1

2∥V̂𝑡+ 1
2
∥2𝜼𝑡

]
. (8.6)

Proof. This is a direct consequence of Lemma 8.6. In fact, taking total expectation
of (8.5) and summing from 𝑡 = 2 to 𝑇 gives already

𝑇∑
𝑡=2

E[∥V(X𝑡+ 1
2
)∥2𝜸𝑡 + ∥V(X𝑡− 1

2
)∥2𝜸𝑡 ]

≤ E

[
∥X2 − x★∥21/𝜼2

+ ∥X1 − x★∥21/𝜼𝑇+1−1/𝜼2

+
𝑇∑
𝑡=2
(3∥V(X𝑡) −V(X𝑡−1)∥2𝜸𝑡 − ∥X𝑡 −X𝑡+1∥21/(2𝜼𝑡 ))

+
𝑇∑
𝑡=2

6∥𝜸𝑡 ∥1𝐿2∥V̂𝑡− 1
2
∥2
𝜸2
𝑡

+
𝑇∑
𝑡=2

4
√
𝑁𝐿∥𝝃𝑡− 1

2
∥2
𝜸2
𝑡

+
𝑇∑
𝑡=2

2∥V̂𝑡+ 1
2
∥2𝜼𝑡

]
. (8.7)

We have in particular used V̂1/2 = 0 to bound

𝑇∑
𝑡=2

3𝐿2(∥𝜸𝑡 ∥1∥V̂𝑡− 1
2
∥2
𝜸2
𝑡

+ ∥𝜸𝑡−1∥1∥V̂𝑡− 3
2
∥2(𝜸𝑡−1)2

)

=

𝑇∑
𝑡=2

3∥𝜸𝑡 ∥1𝐿2∥V̂𝑡− 1
2
∥2
𝜸2
𝑡

+
𝑇∑
𝑡=3
∥𝜸𝑡 ∥13𝑁𝐿2∥V̂𝑡− 1

2
∥2
𝜸2
𝑡

≤
𝑇∑
𝑡=2

6∥𝜸𝑡 ∥1𝐿2∥V̂𝑡− 1
2
∥2
𝜸2
𝑡

.

1 While we can try to put the inequality in the form of Lemma 7.7, the appearance of other additional
terms would still undermine the convergence proof.
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To obtain (8.6), we further bound

𝑇∑
𝑡=2

3∥V(X𝑡) −V(X𝑡−1)∥2𝜸𝑡 =
𝑇−1∑
𝑡=1

3∥V(X𝑡) −V(X𝑡+1)∥2𝜸𝑡+1

≤
𝑇∑
𝑡=1

3∥V(X𝑡) −V(X𝑡+1)∥2𝜸𝑡 (8.8)

For 𝑡 = 1, we use (8.3) with 𝑧 𝑖 ← 𝑥 𝑖★; that is

E

[
∥𝑋 𝑖

2 − 𝑥
𝑖
★∥2

𝜂𝑖2

]
= E

[
∥𝑋 𝑖

1 − 𝑥
𝑖
★∥2

𝜂𝑖2
− 2⟨𝑉 𝑖(X3/2),𝑋 𝑖

1 − 𝑥
𝑖
★⟩ + 𝜂𝑖1∥𝑉̂

𝑖
3/2∥

2

]
.

Since X3/2 = X1, summing the above inequality from 𝑖 = 1 to 𝑁 leads to

E[∥X2 − x★∥21/𝜼2
] = E[∥X1 − x★∥21/𝜼2

− 2⟨V(X3/2), X3/2 − x★⟩ + ∥V̂3/2∥2𝜼1
].

Assumption 5.3 ensures ⟨V(X3/2), X3/2 − x★⟩ ≥ 0 and therefore

E[∥X2 − x★∥21/𝜼2
] ≤ E[∥X1 − x★∥21/𝜼2

+ ∥V̂3/2∥2𝜼2
]

≤ E[∥X1 − x★∥21/𝜼2
+ 2∥V̂3/2∥2𝜼1

− ∥X1 −X2∥2(1/2𝜼1)
]. (8.9)

Combining (8.7), (8.8), and (8.9) gives exactly (8.6). □

8.2 optda+ with predetermined learning rates

As a warm up, we consider in this section learning rate sequences that are fixed
from the beginning of play, that is, the learning rates must be ℱ1-measurable.2
Similar to what we have seen in last chapter (Eq. (7.17) and Eq. (7.19)), the
optimistic learning rate 𝛾𝑖𝑡 and the ratio 𝜂𝑖𝑡/𝛾𝑖𝑡 should both be small enough.
Precisely, in the case where all player play (OptDA+), we require the following Upper bound on

learning rates and
their ratio

inequalities to be satisfied for all 𝑡 ∈ N and 𝑖 ∈ 𝒩 .

𝛾𝑖𝑡 ≤
1

2𝐿 min
©­­«

1√
3𝑁(1+ 𝜎2

𝑀
)
, 1

4
√
𝑁𝜎2

𝑀

ª®®¬ and 𝜂𝑖𝑡 ≤
𝛾𝑖𝑡

4(1+ 𝜎2
𝑀
)
. (8.10)

Compared to the results that we obtain in the next section for adaptive
learning rates, we rely on weaker assumptions here and the constants involved
in the bounds are systematically smaller.

8.2.1 No-Regret Against Adversarial Opponents

To begin, we first state a worst-case regret bound when played against arbitrary
opponents.

Theorem 8.8. Suppose that Assumptions 5.1 and 7.1 hold and player 𝑖 run (OptDA+) Regret bound against
bounded adversarial
feedback

with non-increasing learning rates 𝛾𝑖𝑡 = Θ(1/𝑡 1
2−𝑟) and 𝜂𝑖𝑡 = Θ(1/

√
𝑡) for some

2 To avoid redundancy, we will not restate this when presenting the results of this section.
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𝑟 ∈ [0, 1/4]. Then, if there exists 𝐺 ∈ R+ such that supx∈R𝑑 ∥𝑉 𝑖(x)∥ ≤ 𝐺, it holds for
any bounded set𝒵 𝑖 with 𝑅2 ≥ sup𝑧 𝑖∈𝒵 𝑖 E[∥𝑋 𝑖

1 − 𝑧 𝑖 ∥2] that

Reg
𝑖

𝑇(𝒵 𝑖) = 𝒪
(
𝑅2
√
𝑇 + ((1+ 𝜎2

𝑀)𝐺
2 + 𝜎2

𝐴)𝑇
1
2+𝑟

)
.

Proof. Let 𝑧 𝑖 ∈ 𝒵 𝑖 . From Corollary 8.2 and Young’s inequality we get

⟨𝑉̂ 𝑖

𝑡+ 1
2
,𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩ ≤

∥𝑋 𝑖
𝑡 − 𝑧 𝑖 ∥2

2𝜂𝑖𝑡
−
∥𝑋 𝑖

𝑡+1 − 𝑧 𝑖 ∥2

2𝜂𝑖
𝑡+1

−
∥𝑋 𝑖

𝑡 −𝑋 𝑖
𝑡+1∥2

2𝜂𝑖𝑡

+
(

1
2𝜂𝑖

𝑡+1
− 1

2𝜂𝑖𝑡

)
∥𝑋 𝑖

1 − 𝑧
𝑖 ∥2 − 𝛾𝑖𝑡 ⟨𝑉̂ 𝑖

𝑡+ 1
2
, 𝑉̂ 𝑖

𝑡− 1
2
⟩ + 𝜂𝑖𝑡 ∥𝑉̂ 𝑖

𝑡+ 1
2
∥2

≤ 𝑅2

2𝜂𝑖𝑡
−
∥𝑋 𝑖

𝑡+1 − 𝑧 𝑖 ∥2

2𝜂𝑖
𝑡+1

−
∥𝑋 𝑖

𝑡 −𝑋 𝑖
𝑡+1∥2

2𝜂𝑖𝑡
+ 𝜂𝑖𝑡 ∥𝑉̂ 𝑖

𝑡+ 1
2
∥2

+
(

1
2𝜂𝑖

𝑡+1
− 1

2𝜂𝑖𝑡

)
∥𝑋 𝑖

1 − 𝑧
𝑖 ∥2 +

𝛾𝑖𝑡
2 (∥𝑉̂

𝑖

𝑡+ 1
2
∥2 + ∥𝑉̂ 𝑖

𝑡− 1
2
∥2)

As V𝑖
1/2 = 0 and 𝜂𝑖1 = 𝜂𝑖2, summing the above from 𝑡 = 1 to 𝑇 gives

𝑇∑
𝑡=1
⟨𝑉̂ 𝑖

𝑡+ 1
2
,𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩ ≤

∥𝑋 𝑖
1 − 𝑧 𝑖 ∥2

2𝜂𝑖
𝑇+1

−
𝑇∑
𝑡=1

∥𝑋 𝑖
𝑡 −𝑋 𝑖

𝑡+1∥2

2𝜂𝑖𝑡
+

𝑇∑
𝑡=1
(𝛾𝑖𝑡 + 𝜂𝑖𝑡)∥𝑉̂ 𝑖

𝑡+ 1
2
∥2.

(8.11)
Dropping the non-positive term and taking expectation leads to

E

[
𝑇∑
𝑡=1
⟨𝑉 𝑖(X𝑡+ 1

2
),𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩

]
≤ E

[
∥𝑋 𝑖

1 − 𝑧 𝑖 ∥2

2𝜂𝑖
𝑇+1

+
𝑇∑
𝑡=1
(𝛾𝑖𝑡 + 𝜂𝑖𝑡)((1+ 𝜎2

𝑀)∥𝑉
𝑖(X𝑡+ 1

2
)∥2 + 𝜎2

𝐴)
]

≤ 𝑅2

2𝜂𝑖
𝑇+1
+

𝑇∑
𝑡=1
(𝛾𝑖𝑡 + 𝜂𝑖𝑡)((1+ 𝜎2

𝑀)𝐺
2 + 𝜎2

𝐴)

The claim then follows immediately from the choice of the learning rates. □

Remark 8.2. Instead of assuming the operator to be bounded on the entire space,
we may simply assume the feedback to be bounded as done in Theorem 6.4.

The no-regret guarantee provided in Theorem 8.8 should be no surprise to
the readers as it follows almost immediately from the standard analysis of
optimistic gradient methods for online learning. The only subtlety is that we
additionally introduce an exponent 𝑟. From the proposition we see clearly that
taking smaller 𝑟 (i.e., smaller optimistic step) is more favorable in the adversarial
regime. This is because arbitrarily different successive feedback may make the
optimistic step harmful rather than helpful. Nonetheless, as we shall see in the
next section, taking larger 𝑟 (i.e., larger optimistic steps) may be more beneficial
when all the players use (OptDA+).
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8.2.2 Fast Convergence of Pseudo-Gradient in Self-Play

We next shift our attention to the case where all the players take their actions
according to (OptDA+). To begin, we present our results that quantify the
performance of the algorithm with bounds on pseudo-gradient norms.

Theorem 8.9. Suppose that Assumptions 5.2, 5.3, 7.1 and 7.2 hold and all players run Bound on
pseudo-gradient norm(OptDA+) with non-increasing learning rate sequences (𝛾𝑖𝑡 )𝑡∈N and (𝜂𝑖𝑡)𝑡∈N satisfying

(8.10). We have

(a) If there exists 𝑟 ∈ [0, 1/4] such that 𝛾
𝑗

𝑡 = 𝒪(1/𝑡1/4), 𝛾
𝑗

𝑡 = Ω(1/𝑡 1
2−𝑟), and

𝜂
𝑗

𝑡 = Θ(1/
√
𝑡) for all 𝑗 ∈ 𝒩 , then

𝑇∑
𝑡=1

E[∥V(𝑋𝑡+ 1
2
)∥2] = 𝒪

(
𝑇1−𝑟

)
(b) If the noise is multiplicative (i.e., 𝜎𝐴 = 0) and the learning rates are constant

𝛾𝑡 ≡ 𝛾, 𝜂𝑡 ≡ 𝜂, then

𝑇∑
𝑡=1

E[∥V(X𝑡+ 1
2
)∥2] ≤ 2

min𝑖∈𝒩 𝛾𝑖
E

[
dist1/𝜼(X1,𝔛★)2 + ∥V(X1)∥2𝜸𝑡

]
In particular, if the equalities hold in (8.10), then the above is in𝒪(𝑁2𝐿2(1+ 𝜎2

𝑀
)3).

Theorem 8.19 provides an indicator on the “convergence speed” of the
algorithm. However, it is not really a guarantee on the last iterate X𝑡 ; instead, it
measures the average quality of the iterates and suggests that the trajectory of
play would get arbitrarily close to the set of equilibria over time (while it can
still oscillate between being close and being far from the equilibria).

Precisely, when an additive component is present in the noise, the best we can The case of general
noiseachieve is with the choice 𝑟 = 1/4. This gives a rate of 𝒪(𝑡−1/4) for the average

squared pseudo-gradient norm, and this rate worsens as we decrease 𝑟, that
is, when we take smaller optimistic step. In the extreme case, with 𝑟 = 0, we
end up with a trivial 𝒪(𝑇) bound on the sum and thus no guarantee on the
convergence rate. In the meantime, it is this very component that allows us
to get the optimal 𝒪(

√
𝑇) regret in Theorem 8.8 when faced with adversarial

opponents. This reveals a tension between the adversarial and the self-play
setups when it comes to choosing 𝑟, as already discussed in Section 8.2.1.

When the noise is multiplicative, we can further obtain a constant bound The case of
multiplicative noiseon the sum and thus an 𝒪(1/𝑡) rate for the average squared pseudo-gradient

norm. This represents a dramatic improvement in performance, and matches
the rate of the algorithm run with perfect feedback [35, 103]. Of course, there is
no hope to guarantee no regret when using constant learning rates. This will be
addressed by our adaptive learning rate policy of Section 8.3.

Another metric on the trajectory that we may consider here is the second-order second-order path
lengthpath length

∑+∞
𝑡=1∥X𝑡 −X𝑡+1∥2. When this quantity is smaller, the iterates move

less from one one round to another and are thus more “stable”. In the following
lemma, we first provide an bound on both the sum of squared pseudo-gradient
norms and the second-order path length without specifying the form of the
learning rates.
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Lemma 8.10. Suppose that Assumptions 5.2, 5.3 and 7.1 hold and all players run
(OptDA+) with non-increasing learning rates satisfying (8.10). Then, for all 𝑇 ∈ N

and x★ ∈ 𝔛★, we have

1
2

𝑇∑
𝑡=1

E[∥V(X𝑡+ 1
2
)∥2𝜸𝑡 ] +

𝑇∑
𝑡=1

21∥𝜸1∥∞𝑁𝐿2 E[∥X𝑡 −X𝑡+1∥2]

≤ E[∥X1 − x★∥21/𝜼𝑇+1
+ ∥V(X1)∥2𝜸1

]

+
𝑇∑
𝑡=1

(
6∥𝜸𝑡 ∥3∞𝑁𝐿2 + 4∥𝜸𝑡 ∥2∞

√
𝑁𝐿 + 2∥𝜼𝑡 ∥∞

)
𝑁𝜎2

𝐴

Proof. We first apply Lemma 8.7 to obtain (8.6). We bound the expectations of
the following three terms separately.

𝐴𝑡 = 3∥V(X𝑡) −V(X𝑡+1)∥2𝜸𝑡 − ∥X𝑡 −X𝑡+1∥21/(2𝜼𝑡 ),

𝐵𝑡 = 6∥𝜸𝑡 ∥1𝐿2∥V̂𝑡− 1
2
∥2
𝜸2
𝑡

+ 4
√
𝑁𝐿∥𝝃𝑡− 1

2
∥2
𝜸2
𝑡

, 𝐶𝑡 = 2∥V̂𝑡+ 1
2
∥2𝜼𝑡 .

To bound 𝐴𝑡 , we first use 𝜼𝑡 ≤ 𝜸𝑡/(4(1+ 𝜎2
𝑀
)) ≤ ∥𝜸1∥∞/(4(1+ 𝜎2

𝑀
)) to get

∥X𝑡 −X𝑡+1∥21/(2𝜼𝑡 ) ≥
2(1+ 𝜎2

𝑀
)

∥𝜸1∥∞
∥X𝑡 −X𝑡+1∥2.

Moreover, with ∥𝜸1∥2∞ ≤ 1/(12𝑁𝐿2(1+ 𝜎2
𝑀
))we have

2(1+ 𝜎2
𝑀
)

∥𝜸1∥∞
≥ 24𝑁𝐿2(1+ 𝜎2

𝑀)
2∥𝜸1∥∞ ≥ 24𝑁𝐿2∥𝜸1∥∞.

On the other hand, with the Lipschitz continuity of (𝑉 𝑖)𝑖∈𝒩 it holds

3∥V(X𝑡) −V(X𝑡+1)∥2𝜸𝑡 ≤
𝑁∑
𝑖=1

3𝛾𝑖𝑡𝐿
2∥X𝑡 −X𝑡+1∥2 ≤ 3∥𝜸1∥∞𝑁𝐿2∥X𝑡 −X𝑡+1∥2.

Combining the above inequalities we deduce that 𝐴𝑡 ≤ −21∥𝜸1∥∞𝑁𝐿2∥X𝑡 −
X𝑡+1∥2 and accordingly

E[𝐴𝑡] ≤ E[−21∥𝜸1∥∞𝑁𝐿2∥X𝑡 −X𝑡+1∥2]. (8.12)

We proceed to bound E[𝐵𝑡]. Using Assumption 7.1 and the law of total
expectation, we get

E[𝐵𝑡] = E [E𝑡−1[6∥𝜸𝑡 ∥1𝐿2∥V̂𝑡− 1
2
∥𝜸2

𝑡
+ 4
√
𝑁𝐿∥𝝃𝑡− 1

2
∥2𝜸𝑡 ]]

= E

[
𝑁∑
𝑖=1

(
6∥𝜸𝑡 ∥1(𝛾𝑖𝑡 )2𝐿2 E𝑡−1[∥𝑉̂ 𝑖

𝑡− 1
2
∥2] + 4(𝛾𝑖𝑡 )2

√
𝑁𝐿E𝑡−1[∥𝜉𝑖𝑡− 1

2
∥2]

) ]
≤ E

[
6∥𝜸𝑡 ∥2∞𝑁𝐿2(1+ 𝜎2

𝑀)∥V(X𝑡− 1
2
)∥2𝜸𝑡 + 4∥𝜸𝑡 ∥∞

√
𝑁𝐿𝜎2

𝑀 ∥V(X𝑡− 1
2
)∥2𝜸𝑡

+ (6∥𝜸𝑡 ∥3∞𝑁𝐿2 + 4∥𝜸𝑡 ∥2∞
√
𝑁𝐿)𝑁𝜎2

𝐴

]
. (8.13)
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Similarly, 𝜼𝑡+1 being ℱ1-measurable and in particular ℱ𝑡-measurable, we have

E[𝐶𝑡] = E[E𝑡[2∥V̂𝑡+ 1
2
∥2𝜼𝑡 ]] ≤ E

[
2(1+ 𝜎2

𝑀)∥V(X𝑡+ 1
2
)∥2𝜼𝑡 + 2∥𝜼𝑡 ∥∞𝑁𝜎2

𝐴

]
. (8.14)

Putting together (8.6), (8.12), (8.13), and (8.14), we get

𝑇∑
𝑡=2

E[∥V(X𝑡+ 1
2
)∥2

𝜸𝑡−2(1+𝜎2
𝑀
)𝜼𝑡
+ (1− 𝑎𝑡(1+ 𝜎2

𝑀) − 𝑏𝑡𝜎
2
𝑀)∥V(X𝑡− 1

2
)∥2𝜸𝑡 ]

≤ E

[
∥X1 − x★∥21/𝜼𝑇+1

+ 2(1+ 𝜎2
𝑀)∥V(X3/2)∥2𝜼1

−
𝑇∑
𝑡=1

21∥𝜸1∥∞𝑁𝐿2∥X𝑡 −X𝑡+1∥2

+
𝑇∑
𝑡=1
(𝑎𝑡 + 𝑏𝑡 + 2∥𝜼𝑡 ∥∞)𝑁𝜎2

𝐴

]
,

where 𝑎𝑡 = 6∥𝜸𝑡 ∥3∞𝑁𝐿2 and 𝑏𝑡 = ∥𝜸𝑡 ∥2∞4
√
𝑁𝐿. We conclude by using X3/2 = X1

and noticing that under our learning rate requirement it is always true that
1− 6∥𝜸𝑡 ∥2∞𝑁𝐿2(1+ 𝜎2

𝑀
) − 4∥𝜸𝑡 ∥∞

√
𝑁𝐿𝜎2

𝑀
≥ 0 and 𝜸𝑡 − 2(1+ 𝜎2

𝑀
)𝜼𝑡 ≥ 𝜸𝑡/2. □

To prove Theorem 8.9, we then instantiate Lemma 8.10 with specific learning
rates for both 𝜎𝐴 ≠ 0 and for 𝜎𝐴 = 0.

Proof of Theorem 8.9. Let us define 𝑎𝑡 = 6∥𝜸𝑡 ∥3∞𝑁𝐿2 + 4∥𝜸𝑡 ∥2∞
√
𝑁𝐿 + 2∥𝜼𝑡 ∥∞.

From Lemma 8.10 we know that for all x★ ∈ 𝔛★, it holds

𝑇∑
𝑠=1

E[∥V(X𝑡+ 1
2
)∥2𝜸𝑡/2]] ≤ ∥X1 − x★∥21/𝜼𝑇+1

+ ∥V(X1)∥2𝜸1
+

𝑇∑
𝑡=1

𝑎𝑡𝑁𝜎2
𝐴,

Since the learning rates are decreasing, we can lower bound 𝜸𝑡 by 𝜸𝑡 ≥ 𝜸𝑇 ≥
min𝑖∈𝒩 𝛾𝑖

𝑇
. Accordingly,

𝑇∑
𝑠=1

E[∥V(X𝑡+ 1
2
)∥2]] ≤ 2

min𝑖∈𝒩 𝛾𝑖
𝑇

(
∥X1 − x★∥21/𝜼𝑇+1

+ ∥V(X1)∥2𝜸1
+

𝑇∑
𝑡=1

𝑎𝑡𝑁𝜎2
𝐴

)
,

The result then follows immediately from our learning rate choices. For (a), we
observe with ∥𝜸𝑡 ∥∞ = 𝒪(1/𝑡 1

4 ) and ∥𝜼𝑡 ∥∞ = 𝒪(1/
√
𝑡), we have

∑𝑇
𝑡=1 𝑎𝑡 = 𝒪(

√
𝑇),

while 𝛾
𝑗

𝑡 = Ω(1/𝑡 1
2−𝑟), and 𝜂

𝑗

𝑡 = Ω(1/
√
𝑡) guarantee 1/min𝑖∈𝒩 𝛾𝑇𝑡 = 𝒪(𝑇 1

2−𝑟) and
1/min𝑖∈𝒩 𝜂𝑇

𝑡+1 = 𝒪(
√
𝑇). For (b), we take x★ = arg minx∈𝔛★

∥X1 − x∥1/𝜼. □

8.2.3 Improved Regret in Self-Play

Moving on, we dig into the regret guarantee for each individual player.

Theorem 8.11. Suppose that Assumptions 5.1–5.3, 7.1 and 7.2 hold and all players run Regret bound in
self-play(OptDA+) with non-increasing learning rate sequences (𝛾𝑖𝑡 )𝑡∈N and (𝜂𝑖𝑡)𝑡∈N satisfying

(8.10). For any 𝑖 ∈ 𝒩 and bounded set𝒵 𝑖 ⊂ 𝒳 𝑖 with 𝑅2 ≥ sup𝑧 𝑖∈𝒵 𝑖 E[∥𝑋 𝑖
1 − 𝑧 𝑖 ∥2]

, we have

(a) If 𝛾 𝑗𝑡 = 𝒪(1/𝑡
1
4 ) and 𝜂

𝑗

𝑡 = Θ(1/
√
𝑡) for all 𝑗 ∈ 𝒩 , then

Reg
𝑖

𝑇(𝒵 𝑖) = 𝒪
(√
𝑇
)

.
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(b) If the noise is multiplicative (i.e., 𝜎𝐴 = 0) and the learning rates are constant
𝛾𝑡 ≡ 𝛾, 𝜂𝑡 ≡ 𝜂, then

Reg
𝑖

𝑇(𝒵 𝑖) ≤ 𝑅2

2𝜂𝑖
+ 5

4 E

[
dist1/𝜼(X1,𝔛★)2 + ∥V(X1)∥2𝜸

]
.

In particular, if the equalities hold in (8.10), the above is in 𝒪(𝑁2𝐿(1+ 𝜎2
𝑀
)2).

The first part of Theorem 8.11 guarantees the standard 𝒪(
√
𝑇) regret in theThe case of general

noise presence of additive noise, in accordance with existing results in the literature.
Moreover, unlike Theorem 8.9, this result holds for any 𝛾

𝑗

𝑡 = 𝒪(1/𝑡
1
4 ). This is

not surprising providing that we can already guarantee the 𝒪(
√
𝑇) regret for

(DA). Note also that Theorem 8.11(a) is not a consequence of Theorem 8.8 as
there is no a priori reason for the feedback of the players to be bounded.

What is more surprising is the second part of Theorem 8.11 which showsThe case of
multiplicative noise that when the noise is multiplicative (i.e., when 𝜎𝐴 = 0), it is still possible to

achieve constant regret. This is of course closely related to the fast convergence
results that we have shown in Theorem 8.9. More precisely, we make use of
Lemma 8.10. For that, we first refine Lemma 8.5 as follows.

Lemma 8.12. Suppose that Assumptions 5.2 and 7.1 hold and all players run (OptDA+)
with non-increasing learning rates satisfying (8.10). Then, for all 𝑖 ∈ 𝒩 , 𝑇 ∈ N, and
𝑧 𝑖 ∈ 𝒳 𝑖 , we have

E

[
𝑇∑
𝑡=1
⟨𝑉 𝑖(X𝑡+ 1

2
),𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩

]
≤ E

[
∥𝑋 𝑖

1 − 𝑧 𝑖 ∥2

2𝜂𝑖
𝑇+1

+
𝑇∑
𝑡=1

5
8 ∥V(X𝑡+ 1

2
)∥2𝜸𝑡

+
𝑇−1∑
𝑡=1

3∥𝜸1∥∞𝐿2

2 ∥X𝑡 −X𝑡+1∥2

+
𝑇∑
𝑡=1

(
3∥𝜸𝑡 ∥3∞𝑁𝐿2 + 2∥𝜸𝑡 ∥2∞

√
𝑁𝐿 + 𝜂𝑖𝑡

)
𝜎2
𝐴

]
.

Proof. Thanks to Lemma 8.5 and Assumption 7.1, we can bound

E

[
𝑇∑
𝑡=1
⟨𝑉 𝑖(X𝑡+ 1

2
),𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩

]
≤ E

[
∥𝑋 𝑖

1 − 𝑧 𝑖 ∥2

2𝜂𝑖
𝑇+1

+ 1
2

𝑇∑
𝑡=1

𝜂𝑖𝑡

(
(1+ 𝜎2

𝑀)∥𝑉
𝑖(X𝑡+ 1

2
)∥2 + 𝜎2

𝐴

)
+

𝑇∑
𝑡=2

𝛾𝑖𝑡𝐿
2
(
3(1+ 𝜎2

𝑀)∥V(X𝑡− 1
2
)∥2

𝜸2
𝑡

+ 3∥𝜸2
𝑡 ∥1𝜎2

𝐴 +
3
2 ∥X𝑡 −X𝑡−1∥2

)
+

𝑇∑
𝑡=2
(𝛾𝑖𝑡 )2
√
𝑁𝐿(𝜎2

𝑀 ∥𝑉
𝑖(X𝑡− 1

2
)∥2 + 𝜎2

𝐴)

+
𝑇∑
𝑡=2

𝐿√
𝑁
(𝜎2
𝑀 ∥V(X𝑡− 1

2
)∥2

𝜸2
𝑡

+ ∥𝜸2
𝑡 ∥1𝜎2

𝐴)
]
.
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In the following, we further bound the above using (i) 𝜂𝑖𝑡 ≤ 𝛾𝑖𝑡/(4(1 + 𝜎2
𝑀
)),

(ii) 𝜸𝑡+1 ≤ 𝜸𝑡 , (iii) 𝛼𝑖𝑡 ∥𝑉 𝑖(x)∥2 ≤ ∥V(x)∥2𝜶 for any 𝜶 ∈ R𝑁
+ and x ∈ R𝑑, and

(iv) ∥𝜶∥∞ = max𝑖∈𝒩 𝛼𝑖 and in particular ∥𝜶2∥1 ≤ 𝑁 ∥𝜶∥2∞ for 𝜶 ∈ R𝑁
+ .

E

[
𝑇∑
𝑡=1
⟨𝑉 𝑖(X𝑡+ 1

2
),𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩

]
≤ E

[
∥𝑋 𝑖

1 − 𝑧 𝑖 ∥2

2𝜂𝑖
𝑇+1

+
𝑇∑
𝑡=2

3∥𝜸𝑡 ∥2∞𝐿2
(
(1+ 𝜎2

𝑀)∥V(X𝑡− 1
2
)∥2𝜸𝑡 + ∥𝜸𝑡 ∥∞𝑁𝜎2

𝐴

)
+

𝑇∑
𝑡=2
∥𝜸𝑡 ∥∞𝐿𝜎2

𝑀

(
𝛾𝑖𝑡
√
𝑁 ∥𝑉 𝑖(X𝑡− 1

2
)∥2 + 1√

𝑁
∥V(X𝑡− 1

2
)∥2𝜸𝑡

)
+

𝑇∑
𝑡=2

2∥𝜸𝑡 ∥2∞
√
𝑁𝐿𝜎2

𝐴

+
𝑇∑
𝑡=2

3∥𝜸𝑡 ∥∞𝐿2

2 ∥X𝑡 −X𝑡−1∥2 +
1
2

𝑇∑
𝑡=1

(
𝛾𝑖𝑡
4 ∥𝑉

𝑖(X𝑡+ 1
2
)∥2 + 𝜂𝑖𝑡𝜎2

𝐴

) ]
≤ E

[
∥𝑋 𝑖

1 − 𝑧 𝑖 ∥2

2𝜂𝑖
𝑇+1

+
𝑇−1∑
𝑡=1

3∥𝜸1∥∞𝐿2

2 ∥X𝑡 −X𝑡+1∥2

+
𝑇∑
𝑡=1

(
3∥𝜸𝑡 ∥2∞𝐿2(1+ 𝜎2

𝑀) + 2∥𝜸𝑡 ∥∞
√
𝑁𝐿𝜎2

𝑀 +
1
8

)
∥V(X𝑡+ 1

2
)∥2𝜸𝑡

+ 1
2

𝑇∑
𝑡=1

(
6∥𝜸𝑡 ∥3∞𝑁𝐿2𝜎2

𝐴 + 4∥𝜸𝑡 ∥2∞
√
𝑁𝐿𝜎2

𝐴 + 𝜂
𝑖
𝑡𝜎

2
𝐴

) ]
.

To conclude, we notice that under that our learning rate requirements (8.10) it
holds that 3∥𝜸𝑡 ∥2∞𝐿2(1+ 𝜎2

𝑀
) + 2∥𝜸𝑡 ∥∞

√
𝑁𝐿𝜎2

𝑀
≤ 1/2. □

Our main regret guarantees of (OptDA+) with predetermined learning rates
then follows from the combination of Lemmas 8.10 and 8.12.

Proof. Let 𝑧 𝑖 ∈ 𝒵 𝑖 and x★ = arg minx∈𝔛★
∥X1 − x∥1/𝜼. Similar to the proof of

Theorem 8.9, we define 𝑎𝑡 = 3∥𝜸𝑡 ∥3∞𝑁𝐿2 + 2∥𝜸𝑡 ∥2∞
√
𝑁𝐿 + ∥𝜼𝑡 ∥∞. Combining

Lemma 8.10 and Lemma 8.12, we know that

E

[
𝑇∑
𝑡=1
⟨𝑉 𝑖(X𝑡+ 1

2
),𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩

]
≤ E

[
𝑅2

2𝜂𝑖
𝑇+1
+

𝑇∑
𝑡=1

𝑎𝑡𝜎
2
𝐴 +

5
4

(
∥X1 − x★∥21/𝜼𝑇+1

+ ∥V(X1)∥2𝜸1
+ 2

𝑇∑
𝑡=1

𝑎𝑡𝑁𝜎2
𝐴

) ]
.

The claims of the theorem follow immediately. □

8.2.4 Convergence to Equilibrium under Multiplicative Noise

Finally, as in Chapters 6 and 7, we also demonstrate trajectory convergence of
the algorithm. We focus here on the multiplicative noise scenario and show
convergence for players that use constant learning rates. Nonetheless, we fail
to prove a convergence result for the general case where 𝜎𝐴 > 0, due to the
challenges that we highlighted in Section 8.1.
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Theorem 8.13. Suppose that Assumptions 5.1–5.3, 7.1 and 7.2 hold with 𝜎𝐴 = 0 andConvergence to Nash
equilibrium under

multiplicative noise
all players run (OptDA+) with constant learning rates satisfying (8.10). Then, both
X𝑡 and X𝑡+ 1

2
converge almost surely to a Nash equilibrium.

Proof. Following the proof of Theorem 7.10, we define X̃1 = X1 and for all 𝑖 ∈ 𝒩 ,
𝑡 ≥ 2,

𝑋̃ 𝑖
𝑡 = 𝑋 𝑖

𝑡 + 𝜂𝑖𝜉𝑖𝑡− 1
2
= −𝜂𝑖

𝑡−2∑
𝑠=1

𝑉̂ 𝑖

𝑡+ 1
2
− 𝜂𝑖𝑉 𝑖(X𝑡− 1

2
).

X̃𝑡 serves a surrogate for X𝑡 and is ℱ𝑡−1-measurable. Our first step is to show
that

With probability 1, ∥X̃𝑡 − x★∥1/𝜼 converges for all x★ ∈ 𝔛★.

For this, we fix x★ ∈ 𝔛★ and apply the Robbins–Siegmund theorem (Lemma 7.8)
to inequality (8.5) of Lemma 8.6 with

𝒢𝑡 ← ℱ𝑡−1, 𝑈𝑡 ← E𝑡−1[∥X𝑡 − x★∥21/𝜼], 𝛼𝑡 ← 0,

𝜁𝑡 ← E𝑡−1[∥V(X𝑡+ 1
2
)∥2𝜸] + ∥V(X𝑡− 1

2
)∥2𝜸,

𝜒𝑡 ← E𝑡−1[3∥V(X𝑡) −V(X𝑡−1)∥2𝜸 + 4
√
𝑁𝐿∥𝝃𝑡− 1

2
∥2
𝜸2

+ 3𝐿2(∥𝜸∥1∥V̂𝑡− 1
2
∥2
𝜸2 + ∥𝜸∥1∥V̂𝑡− 3

2
∥2
𝜸2) + 2∥V̂𝑡+ 1

2
∥2𝜼].

For 𝑡 = 1 we use (8.9); thus 𝜁1 = 0 and 𝜒1 = ∥V̂3/2∥2𝜼. To see that the
Robbins–Siegmund theorem is effectively applicable, we use Assumptions 5.2
and 7.1 with 𝜎𝐴 = 0 to establish3

E[𝜒𝑡] ≤ E[3∥𝜸∥∞𝐿2∥X𝑡 −X𝑡−1∥2

+ (4∥𝜸∥∞
√
𝑁𝐿𝜎2

𝑀 + 3∥𝜸∥2∞𝑁𝐿2(1+ 𝜎2
𝑀))∥V(X𝑡− 1

2
)∥2𝜸]

+ 3∥𝜸∥2∞𝑁𝐿2(1+ 𝜎2
𝑀)∥V(X𝑡− 3

2
)∥2𝜸 + 2(1+ 𝜎2

𝑀)∥V(X𝑡+ 1
2
)∥2𝜼].

With 2(1+ 𝜎2
𝑀
)𝜼 ≤ 𝜸, it follows immediately from Lemma 8.10 that

∑+∞
𝑡=1 E[𝜒𝑡] <

+∞. the Robbins–Siegmund theorem thus ensures the almost sure convergence
of E𝑡−1[∥X𝑡 − x★∥2] to a finite random variable. By definition of 𝑋̃ 𝑖

𝑡 , we have

E𝑡−1[∥𝑋 𝑖
𝑡 − 𝑥 𝑖★∥2] = E𝑡−1[∥𝑋̃ 𝑖

𝑡 − 𝜂𝑖𝜉𝑖𝑡− 1
2
− 𝑥 𝑖★∥2]

= ∥𝑋̃ 𝑖
𝑡 − 𝑥 𝑖★∥2 + (𝜂𝑖)2 E𝑡−1[∥𝜉𝑖𝑡− 1

2
∥2].

Subsequently,

E𝑡−1[∥X𝑡 − x★∥21/𝜼] = ∥X̃𝑡 − x★∥21/𝜼 +E𝑡−1[∥𝝃𝑡− 1
2
∥2𝜼].

Therefore, by Assumption 7.1 with 𝜎𝐴 = 0 and Lemma 8.10 we get

+∞∑
𝑡=2

E[E𝑡−1[∥X𝑡 − x★∥21/𝜼] − ∥X̃𝑡 − x★∥21/𝜼] =
+∞∑
𝑡=2

E[∥𝝃𝑡− 1
2
∥2𝜼]

≤
+∞∑
𝑡=2

𝜎2
𝑀 E[∥V(X𝑡− 1

2
)∥2𝜼] < +∞.

3 For 𝑡 = 1 and 𝑡 = 2, we remove the terms that involve either X1/2, X0, or X−1/2.
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Following the proof of Theorem 7.10, we deduce with the help of Lemma B.4 and
Corollary B.7 that the claimed argument is effectively true, i.e., with probability
1, ∥X̃𝑡 − x★∥1/𝜼 converges for all x★ ∈ 𝔛★.

Since ∥X𝑡 − X̃𝑡 ∥2 = ∥𝝃𝑡− 1
2
∥2
𝜼2 and ∥X𝑡+ 1

2
− X̃𝑡 ∥2 =

∑𝑁
𝑖=1∥𝛾𝑖𝑉̂ 𝑖

𝑡− 1
2
+ 𝜂𝑖𝜉𝑖

𝑡− 1
2
∥2,

applying the multiplicative noise assumption, Lemma 8.10, and Lemma B.4
we deduce that both ∥X𝑡 − X̃𝑡 ∥ and ∥X𝑡+ 1

2
− X̃𝑡 ∥ converge to 0 almost surely.

Moreover, Lemma 8.10 along with Lemma B.4 also imply the almost sure
convergence of ∥V(X𝑡+ 1

2
)∥ to 0. In summary, we have shown that the event

ℰ B
{

∥X̃𝑡 − x★∥1/𝜼 converges for all x★ ∈ 𝔛★,
lim
𝑡→+∞

∥X𝑡 − X̃𝑡 ∥ = 0, lim
𝑡→+∞

∥X𝑡+ 1
2
− X̃𝑡 ∥ = 0, lim

𝑡→+∞
∥V(X𝑡+ 1

2
)∥ = 0

}
happens almost surely. To conclude, we just need to show that X𝑡 and X𝑡+ 1

2

converge to a point in 𝔛★ whenever ℰ happens. The convergence of ∥X̃𝑡 − x★∥1/𝜼
for a point x★ in particular implies the boundedness of (X̃𝑡)𝑡∈N. Therefore,
(X̃𝑡)𝑡∈N has at least a cluster point, which we denote by x∞. Provided that
lim𝑡→+∞∥X𝑡+ 1

2
− X̃𝑡 ∥ = 0, the point x∞ is clearly also a cluster point of (X𝑡+ 1

2
)𝑡∈N.

By lim𝑡→+∞∥V(X𝑡+ 1
2
)∥ = 0 and the continuity of V we then have V(x∞) = 0,

i.e., x∞ ∈ 𝔛★. This in turn implies that ∥X̃𝑡 − x∞∥1/𝜼 converges, so this limit
can only be 0. In other words, (X̃𝑡)𝑡∈N converges to x∞; we conclude with
lim𝑡→+∞∥X𝑡 − X̃𝑡 ∥ = 0 and lim𝑡→+∞∥X𝑡+ 1

2
− X̃𝑡 ∥ = 0. □

8.3 optda+ with adaptive learning rates

Let’s now turn to the ultimate goal of this chapter: the development of an
algorithm that is both adaptive and resilient to noise.

8.3.1 Adaptivity in the Face of Noise

The learning rates that we have examined so far in Chapters 7 and 8 require
tuning based on various model parameters. Nonetheless, even though a player
might be aware of their own loss function, there is little hope that the noise-
related parameters are also known by the player. On the other hand, the adaptive
method proposed in Chapter 6 can achieve neither last-iterate convergence nor
constant regret bound when the feedback is corrupted by noise. Our goal in
this section, therefore, is to combine the strengths of these methods and to
circumvent their respective limitations. We strive to deliver the best of both
worlds: an algorithm that is adaptive and simultaneously capable of handling
noisy feedback.

In pursuit of this objective, we work toward the design of adaptive methods Desiderata for our
algorithmthat boast the following desirable properties:

• The method should be implementable by every individual player using
only local information and without any prior knowledge of the setting’s
parameters (for the noise profile and the game alike).

• The method should guarantee sublinear individual regret against any
bounded feedback sequence.

• When employed by all players, the method should guarantee𝒪(
√
𝑇) regret

under additive noise and 𝒪(1) regret under multiplicative noise.
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• When employed by all players, the method should converge to a Nash
equilibrium under multiplicative noise.

In order to achieve the above, inspired by the learning rate requirements ofAdaptive learning
rates Theorems 8.8, 8.9 and 8.11, we consider the following adaptive learning rate

schedule that is defined with respect to some 𝑟 ∈ (0, 1/4].

𝛾𝑖𝑡 =
1(

1+∑𝑡−2
𝑠=1∥𝑔 𝑖𝑠 ∥2

) 1
2−𝑟

, 𝜂𝑖𝑡 =
1√

1+∑𝑡−2
𝑠=1

(
∥𝑔 𝑖𝑠 ∥2 + ∥𝑋 𝑖

𝑠 −𝑋 𝑖
𝑠+1∥2

) .

(Adapt+)
As in (AdaGrad-norm), the sum of the squared norm of the feedback appears

in the denominator. This helps controlling the various positive terms appearing
in Lemma 8.4, such as ∥𝝃𝑡− 1

2
∥2(𝜼𝑡+𝜸𝑡 )2 and 𝜂𝑖𝑡 ∥𝑉̂ 𝑖

𝑡+ 1
2
∥2. Nonetheless, this sum

is not taken to the same exponent in the definition of the two learning rates.
This scale separation ensures that the contribution of the term −𝛾𝑖𝑡 ∥𝑉 𝑖(X𝑡+ 1

2
)∥2

appearing in (8.1c) remains negative, and it is the key for deriving constant
regret under multiplicative noise. As a technical detail, the path variation
∥𝑋 𝑖

𝑠 − 𝑋 𝑖
𝑠+1∥2 is involved in the definition of 𝜂𝑖𝑡 for controlling the difference

between the gradient variation and the path variation. Finally, we do not include
the previous received feedback 𝑔 𝑖

𝑡−1 in the definition of 𝛾𝑖𝑡 and 𝜂𝑖𝑡 . This makes
these learning rates ℱ𝑡−1-measurable so that Assumption 8.1 is verified.

Compared to (Adapt), we use feedback norms and not feedback variations
to define the learning rates here. This is feasible because we now work with
unconstrained action sets, and the negative terms in Lemma 8.4 are effectively
the squared norms of the pseudo-gradients. While we believe a learning
rate policy that is much closer to the one described in (Adapt) can also fulfill
the aforementioned criteria, our analysis deals specifically with the (Adapt+)
learning rate rule.

Ultimately, our goal here is to recover automatically the learning rate schedules
of Theorems 8.9 and 8.11. This implies that 𝛾𝑖𝑡 and 𝜂𝑖𝑡 should at least be in
the order of Ω(1/𝑡 1

2−𝑟) and Ω(1/
√
𝑡), suggesting the following boundedness

assumptions on the feedback.

Assumption 8.2. There exist 𝐺, 𝜎̄ ∈ R+ such that (i) ∥𝑉 𝑖(x)∥ ≤ 𝐺 for all 𝑖 ∈ 𝒩 ,Boundedness of
operator and noise x ∈ R𝑑; and (ii) ∥𝜉𝑖𝑡 ∥ ≤ 𝜎̄ for all 𝑖 ∈ 𝒩 , 𝑡 ∈ N with probability 1.

These assumptions are commonplace in the adaptive method literature, as
evidenced by a series of works in the context of learning in games and VIs
[6, 15, 72, 149]. It also aligns with Assumption 2.2 that we have assumed in
Part i for adversarial online learning. We note, however, that the boundedness
of the gradient was not assumed in Chapter 6, thanks to a specific treatment on
the gradient variation in the proof of Theorem 6.5. Unfortunately, that same
technique is not applicable here due to the presence of noise.

In a similar spirit, we also need to strengthen our assumption on the initial-
ization of the algorithm.

Assumption 8.3. There exist 𝜌 ∈ R+ and x★ ∈ 𝔛★ such that ∥X1 − x★∥∞ ≤ 𝜌Assumption on
initialization: almost

sure boundedness
with probability 1.

Provided that both Assumptions 8.2 and 8.3 assume the inequalities to hold
almost surely, all the inequalities that we are going to see in this section only
hold almost surely. To avoid repetition, we will not mention this explicitly in
the following.
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8.3.2 Preliminary Lemmas

In this subsection, we present several basic lemmas concerning our adaptive
learning rates. For ease of notation, we introduce the following quantities

Λ𝑖
𝑡 =

𝑡∑
𝑠=1
∥𝑉̂ 𝑖

𝑠+ 1
2
∥2, Γ𝑖𝑡 =

𝑡∑
𝑠=1
∥𝑋 𝑖

𝑠 −𝑋 𝑖
𝑠+1∥

2.

The learning rate rule (Adapt+) can then be stated as

𝛾𝑖𝑡 =
1

(1+Λ𝑖
𝑡−2)

1
2−𝑟

, 𝜂𝑖𝑡 =
1√

1+Λ𝑖
𝑡−2 + Γ

𝑖
𝑡−2

To begin, we state the apparent fact that Λ𝑖
𝑡 grows at most linearly under

Assumption 8.2.

Lemma 8.14. Suppose that Assumption 8.2 holds. Then, for all 𝑖 ∈ 𝒩 and 𝑇 ∈ N, we
have

Λ𝑖
𝑇 ≤ 2(𝐺2 + 𝜎̄2)𝑇.

Proof. Using Assumption 8.2, we deduce that

∥𝑉̂ 𝑖

𝑡+ 1
2
∥2 ≤ 2∥𝑉 𝑖(X𝑡+ 1

2
)∥2 + 2∥𝜉𝑖

𝑡+ 1
2
∥2 ≤ 2𝐺2 + 2𝜎̄2,

The claimed inequality is then immediate from the definition of Λ𝑖
𝑇
. □

Along with a generalization of Lemma 2.6 that we present in Appendix B
(Lemma B.8), we can then derive the following bound on the weighted sum of
the squared norms of the feedback.

Lemma 8.15. Suppose that Assumption 8.2 holds. Then, for all 𝑠 ∈ N0, 𝑞 ∈ [0, 1),
𝑖 ∈ 𝒩 , and 𝑇 ∈ N, we have

𝑇∑
𝑡=1

∥𝑉̂ 𝑖

𝑡+ 1
2
∥2

(1+Λ𝑖
𝑡−𝑠)𝑞

≤
(Λ𝑖

𝑇
)1−𝑞

1− 𝑞 + 2𝑠(𝐺2 + 𝜎̄2).

Proof. Since 1/(1+Λ𝑖
𝑡)𝑞 ≤ 1/(1+Λ𝑖

𝑡−𝑠)𝑞 and ∥𝑉̂ 𝑖

𝑡+ 1
2
∥2 ≤ 2𝐺2 + 2𝜎̄2, we have(

1
(1+Λ𝑖

𝑡−𝑠)𝑞
− 1
(1+Λ𝑖

𝑡)𝑞

)
∥𝑉̂ 𝑖

𝑡+ 1
2
∥2 ≤

(
1

(1+Λ𝑖
𝑡−𝑠)𝑞

− 1
(1+Λ𝑖

𝑡)𝑞

)
2(𝐺2 + 𝜎̄2).

Subsequently, it follows from Lemma B.8 that

𝑇∑
𝑡=1

∥𝑉̂ 𝑖

𝑡+ 1
2
∥2

(1+Λ𝑖
𝑡−𝑠)𝑞

=

𝑇∑
𝑡=1

©­«
∥𝑉̂ 𝑖

𝑡+ 1
2
∥2

(1+Λ𝑖
𝑡)𝑞
+

(
1

(1+Λ𝑖
𝑡−𝑠)𝑞

− 1
(1+Λ𝑖

𝑡)𝑞

)
∥𝑉̂ 𝑖

𝑡+ 1
2
∥2ª®¬

≤
𝑇∑
𝑡=1

∥𝑉̂ 𝑖

𝑡+ 1
2
∥2

(1+Λ𝑖
𝑡)𝑞
+

𝑇∑
𝑡=1

(
1

(1+Λ𝑖
𝑡−𝑠)𝑞

− 1
(Λ𝑖

𝑡)𝑞

)
2(𝐺2 + 𝜎̄2)

≤
(Λ𝑖

𝑇
)1−𝑞

1− 𝑞 +
0∑

𝑡=−𝑠+1

2(𝐺2 + 𝜎̄2)
(1+Λ𝑖

𝑡)𝑞
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=
(Λ𝑖

𝑇
)1−𝑞

1− 𝑞 + 2𝑠(𝐺2 + 𝜎̄2). □

We also state a variant of the above result that applies to the joint feedback
vectors.

Lemma 8.16. Suppose that Assumption 8.2 holds and (𝜶𝑡)𝑡∈N is a sequence of non-
negative 𝑁-dimensional vectors such that 𝛼𝑖𝑡 ≤ 1/(1+Λ𝑖

𝑡−𝑠)𝑞 . Then, for all Then, for
all 𝑠 ∈ N0, 𝑞 ∈ [0, 1), and 𝑇 ∈ N, we have

𝑇∑
𝑡=1
∥V̂𝑡+ 1

2
∥2𝜶𝑡 ≤

(Λ𝑖
𝑇
)1−𝑞

1− 𝑞 + 2𝑁𝑠(𝐺2 + 𝜎̄2).

Proof. This is immediate from Lemma 8.15. □

Both Lemma 8.15 and Lemma 8.16 are essential for our analysis as they allow
us to control the sum of the positive terms that show up in (8.1d), (8.1e), and
(8.1f). The new upper bound then just contains powers of Λ𝑖

𝑡 which we can
further control in several ways.

Finally, we present a lemma for bounding the inverse of 𝜂𝑖𝑡 that separates the
squared norms of the feedback from the path variations.

Lemma 8.17. Consider the learning rates defined as in (Adapt+). For any 𝑖 ∈ 𝒩 ,
𝑇 ∈ N, and 𝑎, 𝑏 ∈ R+, we have

𝑎

𝜂𝑖
𝑇+1
− 𝑏

𝑇∑
𝑡=1

∥𝑋 𝑖
𝑡 −𝑋 𝑖

𝑡+1∥2

𝜂𝑖𝑡
≤ 𝑎

√
1+Λ𝑖

𝑇−1 +
𝑎2

4𝑏 .

Proof. On one hand, we have

𝑎

𝜂𝑖
𝑇+1

= 𝑎

√
1+Λ𝑖

𝑇−1 + Γ
𝑖
𝑇−1 ≤ 𝑎

√
1+Λ𝑖

𝑇−1 + 𝑎
√
Γ𝑖
𝑇−1.

On the other hand, with 𝜂𝑖𝑡 ≤ 1, it holds

𝑏

𝑇∑
𝑡=1

∥𝑋 𝑖
𝑡 −𝑋 𝑖

𝑡+1∥2

𝜂𝑖𝑡
≥ 𝑏

𝑇∑
𝑡=1
∥𝑋 𝑖

𝑡 −𝑋 𝑖
𝑡+1∥

2 ≥ 𝑏Γ𝑖𝑇−1.

Let us define the function 𝑓 : 𝑦 ∈ R ↦→ −𝑏𝑦2 + 𝑎𝑦. Then

𝑎

√
Γ𝑖
𝑇−1 − 𝑏Γ

𝑖
𝑇−1 ≤ max

𝑦∈R
𝑓 (𝑦) = 𝑎2

4𝑏 .

Combining the above inequalities gives the desired result. □

8.3.3 No-Regret Against Adversarial Opponents

As usual, we derive regret bounds for the algorithm in question when it is used
against adversarial opponents.

Theorem 8.18. Suppose that Assumptions 5.1, 7.1 and 8.2 hold and player 𝑖 runsRegret bound against
bounded adversarial

feedback
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(OptDA+) with learning rates (Adapt+). Then, for any bounded set 𝒵 𝑖 with 𝑅 ≥
sup𝑧 𝑖∈𝒵 𝑖 ∥𝑋 𝑖

1 − 𝑧 𝑖 ∥, it holds

Reg
𝑖

𝑇(𝒵 𝑖) = 𝒪
(
((𝐺2 + 𝜎̄2)𝑇) 1

2+𝑟 + 𝑅2(𝐺 + 𝜎̄)
√
𝑇 + 𝑅4 +𝐺2 + 𝜎̄2

)
.

Proof. To begin, we notice that inequality (8.11) that we established in the
proof of Theorem 8.8 still holds here for any 𝑧 𝑖 ∈ 𝒵 𝑖 . Furthermore, applying
Lemma 8.17 with 𝑎 ← 𝑅2/2, 𝑏 ← 1/2 leads to

𝑅2

2𝜂𝑖
𝑇+1
−

𝑇∑
𝑡=1

∥𝑋 𝑖
𝑡 −𝑋 𝑖

𝑡+1∥2

2𝜂𝑖𝑡
≤
𝑅2

√
1+Λ𝑖

𝑇−1

2 + 𝑅
4

8 .

On the other hand, invoking Lemma 8.15 with 𝑞 ← 1/2 − 𝑟 and 𝑞 ← 1/2
guarantees that

𝑇∑
𝑡=1
(𝛾𝑖𝑡 + 𝜂𝑖𝑡)∥𝑉̂ 𝑖

𝑡+ 1
2
∥2 ≤

2(Λ𝑖
𝑇
)1/2+𝑟

1+ 2𝑟 + 2
√
Λ𝑖
𝑇
+ 8(𝐺2 + 𝜎̄2).

Putting the above inequalities together, we obtain

max
𝑧 𝑖∈𝒵 𝑖

E

[
𝑇∑
𝑡=1
⟨𝑉 𝑖(X𝑡+ 1

2
),𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩

]
≤ E


𝑅2

√
1+Λ𝑖

𝑇−1

2 +
2(Λ𝑖

𝑇
)1/2+𝑟

1+ 2𝑟 + 2
√
Λ𝑖
𝑇


+ 𝑅

4

8 + 8(𝐺2 + 𝜎̄2).

We conclude with the help of Lemma 8.14 and the convexity of ℓ 𝑖 . □

Theorem 8.18 provides exactly the same rate as Theorem 8.8, illustrating in
this way the benefit of taking a smaller 𝑟 for achieving smaller regret against
adversarial opponents. Nonetheless, similar to before, we will also see below
that taking smaller 𝑟 is less favorable in the self-play scenario. In particular,
we require 𝑟 > 0 in order to obtain convergence and constant regret under
multiplicative noise, and this prevents us from obtaining the optimal 𝒪(

√
𝑇)

regret in fully adversarial environments.

8.3.4 Fast Convergence of Pseudo-Gradient in Self-Play

We next derive bounds on the norm of the pseudo-gradients to characterize the
convergence speed of the method.

Theorem 8.19. Suppose that Assumptions 5.2, 5.3, 7.1, 8.2 and 8.3 hold and all Bound on norm of
pseudo-gradientplayers run (OptDA+) with adaptive learning rates (Adapt+). Then,

(a) It holds that
∑𝑇
𝑡=1 E[∥V(X𝑡+ 1

2
)∥2] = 𝒪

(
𝑇1−𝑟 ) .

(b) If the noise is multiplicative, it holds almost surely that
∑+∞
𝑡=1∥V(X𝑡+ 1

2
)∥2 < +∞.

Again, our bounds match those obtained for the non-adaptive version of the
algorithm (cf. Theorem 8.9). Of course, this relies on stronger assumptions, and,
more importantly, we can no longer show that these pseudo-gradient norms are
summable in L2 when the noise is multiplicative. Instead, we can only show
their squares are summable almost surely. A consequence of this difference is
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that we are not able to provide a constant bound on the expected regret here (see
Appendix B). However, we are still able to prove constant pseudo-regret bound
as we will show in Section 8.3.5

Let us now dive into the proof of Theorem 8.19. For this, we present a series
of important lemmas that will be used in next two subsections as well. We
start with a lemma that controls the difference between the gradient variation
and the path variation. As argued earlier, this is the reason that we include
∥𝑋 𝑖

𝑠 −𝑋 𝑖
𝑠+1∥2 in the definition of 𝜂𝑖𝑡 .

Lemma 8.20. Suppose that Assumptions 5.2 and 8.2 hold and the learning rates beBound on gradient
variation defined as in (Adapt+), then for all 𝑇 ∈ N, we have

𝑇∑
𝑡=1

(
3∥V(X𝑡) −V(X𝑡+1)∥2𝜸𝑡 − ∥X𝑡 −X𝑡+1∥21/(4𝜼𝑡 )

)
≤ 432𝑁3𝐿6 + 24𝑁2𝐺2.

Proof. For all 𝑖 ∈ 𝒩 , let us define

𝑡 𝑖 B max
{
𝑡 ∈ {0, ...,𝑇} : 𝜂𝑖𝑡 ≥

1
12𝑁𝐿2

}
,

where we set 𝜂𝑖0 = 1/(12𝑁𝐿2) to ensure that 𝑡 𝑖 is always well-defined. By the
definition of 𝜂𝑖𝑡 , the inequality 𝜂𝑖

𝑡 𝑖
≥ 1/(12𝑁𝐿2) implies Γ𝑖

𝑡 𝑖−2 ≤ 144𝑁2𝐿2. We
next define the sets

𝒯 B
⋃
𝑖∈𝒩
{𝑡 𝑖 − 1, 𝑡 𝑖} ∩{1, ...,𝑇}

Clearly, card(𝒯 ) ≤ 2𝑁 . With 𝜸𝑡 ≤ 1, Assumptions 5.2 and 8.2, we obtain

𝑇∑
𝑡=1

3∥V(X𝑡) −V(X𝑡+1)∥2𝜸𝑡

≤
𝑇∑
𝑡=1

3∥V(X𝑡) −V(X𝑡+1)∥2

=
∑

𝑡∈[𝑇]\𝒯
3∥V(X𝑡) −V(X𝑡+1)∥2 +

∑
𝑡∈𝒯

3∥V(X𝑡) −V(X𝑡+1)∥2

≤
∑

𝑡∈[𝑇]\𝒯
3𝑁𝐿2∥X𝑡 −X𝑡+1∥2 +

∑
𝑡∈𝒯

6
(
∥V(X𝑡)∥2 + ∥V(X𝑡+1)∥2

)
≤

𝑁∑
𝑖=1

∑
𝑡∈[𝑇]\𝒯

3𝑁𝐿2∥𝑋 𝑖
𝑡 −𝑋 𝑖

𝑡+1∥
2 +

∑
𝑡∈𝒯

12𝑁𝐺2

≤
𝑁∑
𝑖=1

3𝑁𝐿2

(
𝑡 𝑖−2∑
𝑡=1
∥𝑋 𝑖

𝑡 −𝑋 𝑖
𝑡+1∥

2

︸              ︷︷              ︸
Γ𝑖
𝑡 𝑖−2
≤144𝑁2𝐿2

+
𝑇∑

𝑡=𝑡 𝑖+1

∥𝑋 𝑖
𝑡 −𝑋 𝑖

𝑡+1∥
2

)
+ 24𝑁2𝐺2 (8.15)

On the other hand, by the choice of 𝑡 𝑖 we know that 1/𝜂𝑖𝑡 ≥ 12𝑁𝐿2 for all
𝑡 ≥ 𝑡 𝑖 + 1; hence

𝑇∑
𝑡=1
∥X𝑡 −X𝑡+1∥21/(4𝜼𝑡 ) =

𝑁∑
𝑖=1

𝑇∑
𝑡=1

∥𝑋 𝑖
𝑡 −𝑋 𝑖

𝑡+1∥2

4𝜂𝑖𝑡
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≥
𝑁∑
𝑖=1

𝑇∑
𝑡=𝑡 𝑖+1

∥𝑋 𝑖
𝑡 −𝑋 𝑖

𝑡+1∥2

4𝜂𝑖𝑡

≥
𝑁∑
𝑖=1

𝑇∑
𝑡=𝑡 𝑖+1

3𝑁𝐿2∥𝑋 𝑖
𝑡 −𝑋 𝑖

𝑡+1∥
2. (8.16)

Combining (8.15) and (8.16) gives the desired result. □

Equipped with Lemma 8.20 and the lemmas introduced in Section 8.3.2,
we are now in position to establish an upper bound on the summation of
two quantities: a weighted sum of squared pseudo-gradient norms, and the
algorithm’s second-order path length. This upper bound is crucial for our
analysis.

Lemma 8.21. Suppose that Assumptions 5.2, 5.3, 7.1, 8.2 and 8.3 hold and all players Auxiliary bound on
norm of
pseudo-gradient and
second-order path
length

run (OptDA+) with adaptive learning rates (Adapt+). Then, for all 𝑇 ∈ N we have

𝑇∑
𝑡=1

E[∥V(X𝑡+ 1
2
)∥2𝜸𝑡 ] +

1
8

𝑇∑
𝑡=1

E[∥X𝑡 −X𝑡+1∥2] ≤ 𝑐1

𝑁∑
𝑖=1

E

[√
Λ𝑖
𝑇

]
+ 𝑐2,

where

𝑐1 = 12𝑁𝐿2 + 8
√
𝑁𝐿 + 𝜌2 + 4,

𝑐2 = 432𝑁3𝐿6 + 24𝑁2𝐺2 + (12𝑁𝐿2 + 8
√
𝑁𝐿 + 8)(𝑁𝐺2 +𝑁 𝜎̄2) +𝑁𝜌2 + 2𝑁𝜌4.

Proof. As in the proof of Lemma 8.10, we proceed to bound in expectation the
sum of the following quantities

𝐴𝑡 = 3∥V(X𝑡) −V(X𝑡+1)∥2𝜸𝑡 − ∥X𝑡 −X𝑡+1∥21/(2𝜼𝑡 ),

𝐵𝑡 = 6∥𝜸𝑡 ∥1𝐿2∥V̂𝑡− 1
2
∥2
𝜸2
𝑡

+ 4
√
𝑁𝐿∥𝝃𝑡− 1

2
∥2
𝜸2
𝑡

, 𝐶𝑡 = 2∥V̂𝑡+ 1
2
∥2𝜼𝑡 .

Thanks to Lemma 8.20, we know that the sum of 𝐴𝑡 can be bounded directly
without taking expectation by

𝑇∑
𝑡=1

𝐴𝑡 =

𝑇∑
𝑡=1

(
3∥V(X𝑡) −V(X𝑡+1)∥2𝜸𝑡 − ∥X𝑡 −X𝑡+1∥21/(4𝜼𝑡 ) − ∥X𝑡 −X𝑡+1∥21/(4𝜼𝑡 )

)
≤ 432𝑁3𝐿6 + 24𝑁2𝐺2 −

𝑇∑
𝑡=1
∥X𝑡 −X𝑡+1∥21/(4𝜼𝑡 ). (8.17)

To obtain the above inequality we have also used 𝜼𝑡 ≤ 1. To bound E[𝐵𝑡],
we use E[∥𝝃𝑡− 1

2
∥2
𝜸2
𝑡

] ≤ E[∥V̂𝑡− 1
2
∥2
𝜸2
𝑡

], ∥𝜸𝑡 ∥1 ≤ 𝑁 , and Lemma 8.16 (as (𝛾𝑖
𝑡+1)2 ≤

1/
√

1+Λ𝑖
𝑡−1) to obtain

𝑇∑
𝑡=2

E[𝐵𝑡] ≤ E

[
𝑇∑
𝑡=2
(6𝑁𝐿2 + 4

√
𝑁𝐿)∥V̂𝑡− 1

2
∥2
𝜸2
𝑡

]
= E

[
𝑇−1∑
𝑡=1
(6𝑁𝐿2 + 4

√
𝑁𝐿)∥V̂𝑡+ 1

2
∥2(𝜸𝑡+1)2

]
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≤ (6𝑁𝐿2 + 4
√
𝑁𝐿)

(
2𝑁(𝐺2 + 𝜎̄2) +

𝑁∑
𝑖=1

2 E

[√
Λ𝑖
𝑇−1

] )
. (8.18)

Similarly, the sum of 𝐶𝑡 can be bounded in expectation by

𝑇∑
𝑡=1

E[𝐶𝑡] ≤ 8𝑁(𝐺2 + 𝜎̄2) +
𝑁∑
𝑖=1

4 E

[√
Λ𝑖
𝑇

]
. (8.19)

Let us choose x★ as the one given by Assumption 8.3 so that ∥X1 − x★∥∞ ≤ 𝜌.
Plugging (8.17), (8.18), and (8.19) into (8.6) of Lemma 8.7, we get readily

𝑇∑
𝑡=2

E[∥V(X𝑡+ 1
2
)∥2𝜸𝑡 + ∥V(X𝑡− 1

2
)∥2𝜸𝑡 ] +

𝑇∑
𝑡=1

E[∥X𝑡 −X𝑡+1∥21/(8𝜼𝑡 )]

≤ E[∥X1 − x★∥21/𝜼𝑇+1
] −

𝑇∑
𝑡=1
∥X𝑡 −X𝑡+1∥21/(8𝜼𝑡 )

+ (12𝑁𝐿2 + 8
√
𝑁𝐿 + 4)

𝑁∑
𝑖=1

E

[√
Λ𝑖
𝑇

]
+ 432𝑁3𝐿6 + 24𝑁2𝐺2 + (12𝑁𝐿2 + 8

√
𝑁𝐿 + 8)(𝑁𝐺2 +𝑁 𝜎̄2) (8.20)

Using Lemma 8.17, we can then further bound the RHS of (8.20) with

∥X1 − x★∥21/𝜼𝑇+1
−

𝑇∑
𝑡=1
∥X𝑡 −X𝑡+1∥21/(8𝜼𝑡 )

=

𝑁∑
𝑖=1

(
∥𝑋 𝑖

1 − 𝑥
𝑖
★∥2

𝜂𝑖
𝑇+1

−
𝑇∑
𝑡=1

∥𝑋 𝑖
𝑡 −𝑋 𝑖

𝑡+1∥2

8𝜂𝑖𝑡

)
≤

𝑁∑
𝑖=1

(
∥𝑋 𝑖

1 − 𝑥
𝑖
★∥2

√
1+Λ𝑖

𝑇−1 + 2∥𝑋 𝑖
1 − 𝑥

𝑖
★∥4

)
≤ 𝑁𝜌2 + 2𝑁𝜌4 +

𝑁∑
𝑖=1

𝜌2
√
Λ𝑖
𝑇−1. (8.21)

Finally, using 𝜼𝑡 ≤ 1 and 𝜸2 = 𝜸1, the left-hand side (LHS) of (8.20) can be
bounded from below by

𝑇∑
𝑡=2

E[∥V(X𝑡+ 1
2
)∥2𝜸𝑡 + ∥V(X𝑡− 1

2
)∥2𝜸𝑡 ] +

𝑇∑
𝑡=1

E[∥X𝑡 −X𝑡+1∥21/(8𝜼𝑡 )]

≥
𝑇∑
𝑡=1

E[∥V(X𝑡+ 1
2
)∥2𝜸𝑡 ] +

1
8

𝑇∑
𝑡=1

E[∥X𝑡 −X𝑡+1∥2]. (8.22)

Combining (8.20), (8.21), and (8.22) gives the desired result. □

Lemma 8.21 will be used multiple times in the remaining of the section. For
ease of notation, we will continue to denote the two constants by 𝑐1 and 𝑐2
without redefining them whenever this is the case.
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Bound for the General Noise Model

From Lemma 8.21 and Lemma 8.25 we can readily derive our main results for
the general noise model.

Proof of Theorem 8.19(a). With Lemma 8.14, for 𝑡 ∈ {1, ...,𝑇}, we can lower bound
the learning rate 𝛾𝑖𝑡 by

𝛾𝑖𝑡 =
1

(1+Λ𝑖
𝑡−2)

1
2−𝑟
≥ 1
(1+ 2 max(𝑡 − 2, 0)(𝐺2 + 𝜎̄2)) 1

2−𝑟
≥ 1
(1+ 2𝑇(𝐺2 + 𝜎̄2)) 1

2−𝑟
.

Lemma 8.21 thus guarantees∑𝑇
𝑡=1 E[∥V(X𝑡+ 1

2
)∥2]

(1+ 2𝑇(𝐺2 + 𝜎̄2)) 1
2−𝑟
≤ 𝑐1

𝑁∑
𝑖=1

E

[√
Λ𝑇
𝑡

]
+ 𝑐2.

Using again Lemma 8.14 we know that E

[√
Λ𝑇
𝑡

]
= 𝒪(
√
𝑇) and thus we have

effectively
∑𝑇
𝑡=1 E[∥V(X𝑡+ 1

2
)∥2] = 𝒪

(
𝑇1−𝑟 ) . □

Bound for the Multiplicative Noise Model

The case of multiplicative noise is more delicate. From Lemma 8.21 it is clear
that we need to control Λ𝑖

𝑡 . We achieve this via the following lemma.

Lemma 8.22. Suppose that Assumptions 5.2, 5.3, 7.1, 8.2 and 8.3 hold and all Bound on Λ𝑖
𝑡

players run (OptDA+) with adaptive learning rates (Adapt+). Assume additionally
Assumption 7.1 with 𝜎𝐴 = 0. Then, with constants 𝑐1 and 𝑐2 defined in Lemma 8.21,
we have for any 𝑇 ∈ N that

𝑁∑
𝑖=1

E

[
(1+Λ𝑖

𝑇)
1
2+𝑟

]
≤ 𝑁

(
(1+ 𝜎2

𝑀)𝑐1 + 1+
(1+ 𝜎2

𝑀
)𝑐2

𝑁

)1+ 1
2𝑟

, (8.23)

𝑁∑
𝑖=1

E

[√
1+Λ𝑖

𝑇

]
≤ 𝑁

(
(1+ 𝜎2

𝑀)𝑐1 + 1+
(1+ 𝜎2

𝑀
)𝑐2

𝑁

) 1
2𝑟

, (8.24)

𝑁∑
𝑖=1

E[Γ𝑖𝑇] ≤ 8𝑁𝑐1

(
(1+ 𝜎2

𝑀)𝑐1 + 1+
(1+ 𝜎2

𝑀
)𝑐2

𝑁

) 1
2𝑟

+ 8𝑐2. (8.25)

Proof. From Lemma 8.21 we know that

𝑇∑
𝑡=1

E[∥V(X𝑡+ 1
2
)∥2𝜸𝑡 ] ≤ 𝑐1

𝑁∑
𝑖=1

E

[√
Λ𝑖
𝑇

]
+ 𝑐2,

Since 𝜸𝑡 is ℱ𝑡-measurable, using the 𝜎𝐴 = 0 and the law of total expectation we
get

E[∥V(X𝑡+ 1
2
)∥2𝜸𝑡 ] =

𝑁∑
𝑖=1

E[𝛾𝑖𝑡 E𝑡[∥𝑉 𝑖(X𝑡+ 1
2
)]∥2]

≥
𝑁∑
𝑖=1

E

𝛾𝑖𝑡 E𝑡


∥𝑉̂ 𝑖

𝑡+ 1
2
∥2

1+ 𝜎2
𝑀


 =

E[∥V̂𝑡+ 1
2
∥2𝜸𝑡 ]

1+ 𝜎2
𝑀

.
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The learning rates 𝜸𝑡 being non-increasing, we can then bound from below the
sum of E[∥V(X𝑡+ 1

2
)∥2𝜸𝑡 ] by

𝑇∑
𝑡=1

E[∥V(X𝑡+ 1
2
)∥2𝜸𝑡 ] ≥

1
1+ 𝜎2

𝑀

𝑇∑
𝑡=1

E[∥V̂𝑡+ 1
2
∥2𝜸𝑡 ]

≥ 1
1+ 𝜎2

𝑀

𝑇∑
𝑡=1

E[∥V̂𝑡+ 1
2
∥2𝜸𝑇+2
]

=
1

1+ 𝜎2
𝑀

𝑁∑
𝑖=1

E


∑𝑇
𝑡=1∥𝑉̂ 𝑖

𝑡+ 1
2
∥2

(1+Λ𝑖
𝑇
) 1

2−𝑟


=

1
1+ 𝜎2

𝑀

𝑁∑
𝑖=1

E

[
Λ𝑖
𝑇
+ 1− 1

(1+Λ𝑖
𝑇
) 1

2−𝑟

]
≥ − 𝑁

1+ 𝜎2
𝑀

+ 1
1+ 𝜎2

𝑀

𝑁∑
𝑖=1

E

[
(1+Λ𝑖

𝑇)
1
2+𝑟

]
.

As a consequence, we have shown that

𝑁∑
𝑖=1

E

[
(1+Λ𝑖

𝑇)
1
2+𝑟

]
≤ (1+ 𝜎2

𝑀)𝑐1

𝑁∑
𝑖=1

E

[√
Λ𝑖
𝑇

]
+ (1+ 𝜎2

𝑀)𝑐2 +𝑁 ,

Subsequently,

𝑁∑
𝑖=1

E

[
(1+Λ𝑖

𝑇)
1
2+𝑟

]
≤

(
(1+ 𝜎2

𝑀)𝑐1 + 1+
(1+ 𝜎2

𝑀
)𝑐2

𝑁

)
𝑁∑
𝑖=1

E

[√
1+Λ𝑖

𝑇

]
.

We deduce (8.23) and (8.24) with the help of Lemma B.9 taking 𝑝 ← 1/2 + 𝑟,
𝑟 ← 1/2, 𝑐 ← (1+ 𝜎2

𝑀
)𝑐1 + 1+ (1+ 𝜎2

𝑀
)𝑐2/𝑁 , and 𝑎 𝑖 ← 1+Λ𝑖

𝑇
. Plugging (8.24)

into Lemma 8.21 gives (8.25). □

As a direct consequence of Lemma 8.22, we show that the learning rates
almost surely converge to positive constants. Therefore, akin to what we have
seen in Chapter 6, the algorithm is basically capable of figure out itself the right
constant learning rates to use and stick to it.

Proposition 8.23. Suppose that Assumptions 5.2, 5.3, 7.1 and 8.2 hold with 𝜎𝐴 = 0Convergence of
adaptive learning

rates to positive
constants

and all players run (OptDA+) with adaptive learning rates (Adapt+). Then,

(a) With probability 1, for all 𝑖 ∈ 𝒩 , (Λ𝑖
𝑡)𝑡∈N and (Γ𝑖𝑡)𝑡∈N converge to finite constant.

(b) With probability 1, for all 𝑖 ∈ 𝒩 , the learning rates (𝛾𝑖𝑡 )𝑡∈N and (𝜂𝑖𝑡)𝑡∈N converge
to positive constants.

Proof. We notice that (b) is a direct consequence of (a) so we will only show (a)

below. For this, we make use of Lemma 8.22 and Lemma B.4. In fact, (
√
Λ𝑖
𝑡)𝑡∈N

is clearly non-decreasing and by Lemma 8.22, sup𝑡∈N E[
√
Λ𝑖
𝑡] < +∞. Therefore,

Lemma B.4 ensures the almost sure convergence of (
√
Λ𝑖
𝑡)𝑡∈N to a finite random

variable, which in turn implies that (Λ𝑖
𝑡)𝑡∈N converges to a finite constant

almost surely. Similarly, (Γ𝑖𝑡)𝑡∈N is non-decreasing and sup𝑡∈N E[Γ𝑖𝑡] < +∞ by
Lemma 8.22. We thus deduce by Lemma B.4 that (Γ𝑖𝑡)𝑡∈N converges to finite
constant almost surely. □
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Intuitively, Proposition 8.23 also suggests that the improvements that we
demonstrated in Section 8.2 for the multiplicative setup, which were achieved
with constant learning rates, can to a large extent be extended to our current
analysis. This is effectively the case, and in particular, we can now prove the
second part of Theorem 8.19.

Proof of Theorem 8.19(b). We define 𝜸∞ = lim𝑡→+∞ 𝜸𝑡 as the limit of the opti-
mistic learning rate vector. This quantity is indeed well-defined as (𝛾𝑖𝑡 )𝑡∈N is
non-negative and non-increasing for every 𝑖 ∈ 𝒩 , which also implies that

+∞∑
𝑡=1
∥V(X𝑡+ 1

2
)∥2𝜸𝑡 ≥

+∞∑
𝑡=1
∥V(X𝑡+ 1

2
)∥2𝜸∞ ≥ min

𝑖∈𝒩
𝛾𝑖∞

+∞∑
𝑡=1
∥V(X𝑡+ 1

2
)∥2.

Consequently, whenever (i)𝐶 B
∑+∞
𝑡=1∥V(X𝑡+ 1

2
)∥2𝜸𝑡 is finite; and (ii) min𝑖∈𝒩 𝛾𝑖∞ > 0,

it holds that
+∞∑
𝑡=1
∥V(X𝑡+ 1

2
)∥2 ≤ 𝐶

min𝑖∈𝒩 𝛾𝑖∞
< +∞.

In the remaining of the proof, we show that both (i) and (ii) hold almost surely,
from which we then deduce that the sum

∑+∞
𝑡=1∥V(X𝑡+ 1

2
)∥2 is almost surely finite.

In fact, from Proposition 8.23 we know already that (ii) holds almost surely. As
for (i), we combine Lemma 8.21 and Lemma 8.22 to get

∑+∞
𝑡=1 E[∥V(X𝑡+ 1

2
)∥2𝜸𝑡 ] <

+∞. After that, we use Lemma B.4 to deduce that
∑+∞
𝑡=1∥V(X𝑡+ 1

2
)∥2𝜸𝑡 < +∞

almost surely. This concludes the proof. □

8.3.5 Improved Regret in Self-Play

Importantly, the (Adapt+) learning rate schedule also ensures optimal depen-
dence on the time horizon for regret in self-play.

Theorem 8.24. Suppose that Assumptions 5.1–5.3, 7.1, 8.2 and 8.3 hold and all Regret bound in
self-playplayers run (OptDA+) with learning rates given by (Adapt+). Then, for any 𝑖 ∈ 𝒩

and bounded set𝒵 𝑖 ⊂ 𝒳 𝑖 , we have

(a) The regret is bounded as

Reg
𝑖

𝑇(𝒵 𝑖) = 𝒪
(√
𝑇
)

.

(b) If the noise is multiplicative (i.e., 𝜎𝐴 = 0), we further get

Reg
𝑖

𝑇(𝒵 𝑖) = 𝒪
(
exp

(
1
2𝑟

))
.

We recover here the bounds presented in Theorem 8.11, and similarly, the
𝒪(
√
𝑇) regret does not depend on the choice of 𝑟 (it can even be shown for

𝑟 ≤ 0). On the contrary, the bound tailored to the multiplicative noise setup,
despite being constant with respect to 𝑇, has an exponential dependence on
1/𝑟. This along with Theorems 8.18 and 8.19 underscore the inherent trade-off
in the choice of 𝑟: larger values of 𝑟 favor the situation where all players adopt
adaptive (OptDA+), while smaller values of 𝑟 provide better fallback guarantees
in adversarial environments.

To prove Theorem 8.24, we refine Lemma 8.5 for adaptive learning rates.
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Lemma 8.25. Suppose that Assumptions 5.1–5.3, 7.1, 8.2 and 8.3 hold and all players
run (OptDA+) with adaptive learning rates (Adapt+). Then, for all 𝑖 ∈ 𝒩 , 𝑇 ∈ N,
and bounded set𝒵 𝑖 ⊂ 𝒳 𝑖 with 𝑅 ≥ sup𝑧 𝑖∈𝒵 𝑖 ∥𝑋 𝑖

1 − 𝑧 𝑖 ∥, it holds that

Reg
𝑖

𝑇(𝒵 𝑖) ≤ E

[ (
𝑅2

2 + 2
√
𝑁𝐿 + 1

) √
Λ𝑖
𝑇
+ (6𝐿2 + 2𝐿)

𝑁∑
𝑗=1

√
Λ
𝑗

𝑇−1

+
𝑅2

√
Γ𝑖
𝑇−1

2 + 3𝐿2

2

𝑇−1∑
𝑡=1
∥X𝑡 −X𝑡+1∥2

+ 𝑅
2

2 + (6𝑁𝐿
2 + 2𝑁𝐿 + 2

√
𝑁𝐿 + 2)(𝐺2 + 𝜎̄2)

]
.

Proof. The learning rate 𝜸𝑡 being ℱ𝑡−1-measurable, from Assumption 7.1(a)
we deduce E[(𝛾𝑖𝑡 )2∥𝜉𝑖𝑡− 1

2
∥2] ≤ E[(𝛾𝑖𝑡 )2∥𝑉̂ 𝑖

𝑡− 1
2
∥] and subsequently E[∥𝝃𝑡− 1

2
∥2
𝜸2
𝑡

] ≤
E[∥V̂𝑡− 1

2
∥2
𝜸2
𝑡

]. Plugging these two inequalities into the inequality of Lemma 8.5

and using 𝛾𝑖𝑡 ≤ 1 gives

max
𝑧 𝑖∈𝒵 𝑖

E

[
𝑇∑
𝑡=1
⟨𝑉 𝑖(X𝑡+ 1

2
),𝑋 𝑖

𝑡+ 1
2
− 𝑧 𝑖⟩

]
≤ E

[
𝑅2

2𝜂𝑖
𝑇+1
+

𝑇∑
𝑡=2

𝛾𝑖𝑡𝐿
2
(
3∥V̂𝑡− 1

2
∥2
𝜸2
𝑡

+ 3
2 ∥X𝑡 −X𝑡−1∥2

)
+

𝑇∑
𝑡=2
((𝛾𝑖𝑡 )2

√
𝑁𝐿∥𝑉̂ 𝑖

𝑡− 1
2
∥2 + 𝐿√

𝑁
∥V̂𝑡− 1

2
∥2
𝜸2
𝑡

) + 1
2

𝑇∑
𝑡=1

𝜂𝑖𝑡 ∥𝑉̂ 𝑖

𝑡+ 1
2
∥2

]

≤ E

[
𝑅2

√
1+Λ𝑖

𝑇−1 + Γ
𝑖
𝑇−1

2 +
𝑇−1∑
𝑡=1
(3𝐿2 + 𝐿)∥V̂𝑡+ 1

2
∥2(𝜸𝑡+1)2

+ 3𝐿2

2

𝑇−1∑
𝑡=1
∥X𝑡 −X𝑡+1∥2

+
𝑇−1∑
𝑡=1
(𝛾𝑖𝑡+1)

2
√
𝑁𝐿∥𝑉̂ 𝑖

𝑡+ 1
2
∥2 + 1

2

𝑇∑
𝑡=1

𝜂𝑖𝑡 ∥𝑉̂ 𝑖

𝑡+ 1
2
∥2

]
.

Since we have both (𝛾𝑖
𝑡+1)2 ≤ 1/

√
1+Λ𝑖

𝑡−1 and 𝜂𝑖𝑡 ≤ 1/
√

1+Λ𝑖
𝑡−2, applying

Lemma 8.15 leads to

𝑇−1∑
𝑡=1
(𝛾𝑖𝑡+1)

2
√
𝑁𝐿∥𝑉̂ 𝑖

𝑡+ 1
2
∥2 + 1

2

𝑇∑
𝑡=1

𝜂𝑖𝑡 ∥𝑉̂ 𝑖

𝑡+ 1
2
∥2

≤ 2
√
𝑁𝐿

(√
Λ𝑖
𝑇−1 +𝐺

2 + 𝜎̄2
)
+

√
Λ𝑖
𝑇
+ 2(𝐺2 + 𝜎̄2).

Similarly, using Lemma 8.16 we deduce

𝑇−1∑
𝑡=1
(3𝐿2 + 𝐿)∥V̂𝑡+ 1

2
∥2(𝜸𝑡+1)2

≤ (3𝐿2 + 𝐿) ©­«2𝑁(𝐺2 + 𝜎̄2) +
𝑁∑
𝑗=1

2
√
Λ
𝑗

𝑇−1
ª®¬

Putting the above inequalities together and using
√

1+Λ𝑖
𝑇−1 + Γ

𝑖
𝑇−1 ≤ 1 +√

Λ𝑖
𝑇−1 +

√
Γ𝑖
𝑇−1 gives the desired result. □
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With all the lemmas that we have established so far, it is how straightforward
to prove Theorem 8.24.

Proof of Theorem 8.24. To prove (a), we note that with Lemma 8.14, we have
clearly

E

[ (
𝑅2

2 + 2
√
𝑁𝐿 + 𝐿2

) √
Λ𝑇
𝑡 + (6𝐿

2 + 2𝐿)
𝑁∑
𝑗=1

√
Λ
𝑗

𝑇−1

]
= 𝒪

(√
𝑇
)

.

Next, thanks to Lemma 8.21 we can bound

E


𝑅2

√
Γ𝑖
𝑇−1

2 + 3𝐿2

2

𝑇−1∑
𝑡=1
∥X𝑡 −X𝑡+1∥2


≤ 𝑅2

2 +E

[(
𝑅2

2 +
3𝐿2

2

) 𝑇−1∑
𝑡=1
∥X𝑡 −X𝑡+1∥2

]
≤ 𝑅2

2 + (4𝑅
2 + 12𝐿2)

(
𝑐1

𝑁∑
𝑖=1

E

[√
Λ𝑇−1
𝑡

]
+ 𝑐2

)
.

This is again in 𝒪(
√
𝑇). Plugging the above into Lemma 8.25 shows the regret

is indeed in 𝒪(
√
𝑇). As for (b) it is immediate by combining Lemma 8.22 and

Lemma 8.25. □

8.3.6 Convergence to Equilibrium under Multiplicative Noise

In closing, we prove the almost sure last-iterate convergence of adaptive
(OptDA+) under multiplicative noise.

Theorem 8.26. Suppose that Assumptions 5.1–5.3, 7.1, 8.2 and 8.3 hold with 𝜎𝐴 = 0 Convergence to Nash
equilirium under
multiplicative noise

and all players run (OptDA+) with adaptive learning rates (Adapt+). Then, both
(X𝑡)𝑡∈N and (X𝑡+ 1

2
)𝑡∈N converge to a Nash equilibrium almost surely.

Proof. We follow closely the proof of Theorem 8.13. To begin, we fix x★ ∈ 𝔛★ and
show that we can always apply the Robbins–Siegmund theorem (Lemma 7.8) to
inequality (8.5) of Lemma 8.6 (or inequality (8.9) for 𝑡 = 1). This gives, for 𝑡 ≥ 2,

𝒢𝑡 = ℱ𝑡−1, 𝑈𝑡 = E𝑡−1[∥X𝑡 − x★∥21/𝜼𝑡 ], 𝛼𝑡 = 0,

𝜁𝑡 = E𝑡−1[∥V(X𝑡+ 1
2
)∥2𝜸𝑡 ] + ∥V(X𝑡− 1

2
)∥2𝜸𝑡 ,

𝜒𝑡 = E𝑡−1[3∥V(X𝑡) −V(X𝑡−1)∥2𝜸𝑡 + ∥X1 − x★∥21/𝜼𝑡+1−1/𝜼𝑡
+ 4
√
𝑁𝐿∥𝝃𝑡− 1

2
∥2
𝜸2
𝑡

+ 3𝐿2(∥𝜸𝑡 ∥1∥V̂𝑡− 1
2
∥2
𝜸2
𝑡

+ ∥𝜸𝑡−1∥1∥V̂𝑡− 3
2
∥2(𝜸𝑡−1)2

) + 2∥V̂𝑡+ 1
2
∥2𝜼𝑡 ].

As for 𝑡 = 1, we replace the above with 𝜁𝑡 = 0 and 𝜒𝑡 = ∥V̂3/2∥2𝜼1
. Using

Assumption 5.2, (8.18), and (8.19), we can bound the sum of the expectation of
𝜒𝑡 by

𝑇∑
𝑡=1

E[𝜒𝑡] ≤
𝑇−1∑
𝑡=1

3𝐿2 E[∥X𝑡 −X𝑡+1∥2] +
𝑁∑
𝑖=1

(
∥𝑋 𝑖

1 − 𝑥
𝑖
★∥2 E

[√
1+Λ𝑖

𝑇−1 + Γ
𝑖
𝑇−1

] )



180 dealing with stochastic feedback ii: no-regret and adaptive learning

+ (6𝑁𝐿2 + 4
√
𝑁𝐿)

(
2𝑁(𝐺2 + 𝜎̄2) +

𝑁∑
𝑖=1

2 E

[√
Λ𝑖
𝑇−1

] )
+

+ 8𝑁(𝐺2 + 𝜎̄2) +
𝑁∑
𝑖=1

4 E

[√
Λ𝑖
𝑇

]
It then follows immediately from Lemma 8.22 that

∑+∞
𝑡=1 E[𝜒𝑡] < +∞. With

the Robbins–Siegmund theorem Lemma 7.8 we deduce that E𝑡−1[∥X𝑡 − x★∥21/𝜼𝑡 ]
converges almost surely to a finite random variable.

As in the proof of Theorem 8.13, we next define X̃1 = X1 and for all 𝑖 ∈ 𝒩 ,
𝑡 ≥ 2,

𝑋̃ 𝑖
𝑡 = 𝑋 𝑖

𝑡 + 𝜂𝑖𝑡𝜉𝑖𝑡− 1
2
= −𝜂𝑖𝑡

𝑡−2∑
𝑠=1

𝑉̂ 𝑖

𝑡+ 1
2
− 𝜂𝑖𝑡𝑉 𝑖(X𝑡− 1

2
).

Then,
E𝑡−1[∥X𝑡 − x★∥21/𝜼𝑡 ] = ∥X̃𝑡 − x★∥21/𝜼𝑡 +E𝑡−1[∥𝝃𝑡− 1

2
∥2𝜼𝑡 ].

Using E𝑡−1[∥𝜉𝑖
𝑡− 1

2
∥2] ≤ E𝑡−1[∥𝑉̂ 𝑖

𝑡− 1
2
∥2], the law of total expectation, the fact that

𝜼𝑡 is ℱ𝑡−1-measurable, Lemma 8.16, and Lemma 8.22, we then get

+∞∑
𝑡=2

E[E𝑡−1[∥X𝑡 − x★∥21/𝜼𝑡 ] − ∥X̃𝑡 − x★∥21/𝜼𝑡 ] =
+∞∑
𝑡=2

E[∥𝝃𝑡− 1
2
∥2𝜼𝑡 ]

≤
+∞∑
𝑡=2

E[∥V̂𝑡− 1
2
∥2𝜼𝑡 ]

≤ 2𝑁(𝐺2 + 𝜎̄2) + sup
𝑡∈N

𝑁∑
𝑖=1

2 E

[√
Λ𝑖
𝑡

]
< +∞. (8.26)

Invoking Lemma B.4 we deduce that E𝑡−1[∥X𝑡 − x★∥21/𝜼𝑡 ] − ∥X̃𝑡 − x★∥21/𝜼𝑡 almost
surely converges to 0. Since we have shown E𝑡−1[∥X𝑡 − x★∥21/𝜼𝑡 ] almost surely
converges to a finite random variable, we now know that ∥X̃𝑡 − x★∥21/𝜼𝑡 almost
surely converges to this finite random variable as well. To summarize, we have
shown that for any x★ ∈ 𝔛★, ∥X̃𝑡 − x★∥1/𝜼𝑡 converges almost surely.

To proceed, let us define 𝜼∞ = lim𝑡→+∞ 𝜼𝑡 . This limit always exists because
(𝜂𝑖𝑡)𝑡∈N is a non-negative non-increasing sequence for every 𝑖 ∈ 𝒩 . Moreover, by
Proposition 8.23 we know that 𝜼∞ is positive almost surely, and thus (1/𝜼∞), the
limit of (1/𝜼𝑡)𝑡∈N is finite almost surely. Applying Lemma B.6 with𝒵 ← 𝔛★,
u𝑡 ← X̃𝑡 , and 𝜶𝑡 ← 1/𝜼𝑡 , we then deduce that with probability 1, ∥X̃𝑡 − x★∥1/𝜼∞
converges for all x★ ∈ 𝔛★.

Next, with ∥X𝑡 − X̃𝑡 ∥2 = ∥𝝃𝑡− 1
2
∥2
𝜼2
𝑡

and ∥X𝑡+ 1
2
− X̃𝑡 ∥2 =

∑𝑁
𝑖=1∥𝛾𝑖𝑡𝑉̂ 𝑖

𝑡− 1
2
+𝜂𝑖𝑡𝜉𝑖𝑡− 1

2
∥2,

following the reasoning of (8.26), we get both
∑+∞
𝑡=1 E[∥X𝑡 − X̃𝑡 ∥2] < +∞ and∑+∞

𝑡=1 E[∥X𝑡+ 1
2
− X̃𝑡 ∥2] < +∞. By Lemma B.4 we then know that ∥X𝑡 − X̃𝑡 ∥ and

∥X𝑡+ 1
2
− X̃𝑡 ∥ converge to 0 almost surely. Finally, from Theorem 8.19(b) we know

that ∥V(X𝑡+ 1
2
)∥ converges to 0 almost surely. To conclude, let us define the event

ℰ B
{

1/𝜼∞ is finite and ∥X̃𝑡 − x★∥1/𝜼∞ converges for all x★ ∈ 𝔛★,
lim
𝑡→+∞

∥X𝑡 − X̃𝑡 ∥ = 0, lim
𝑡→+∞

∥X𝑡+ 1
2
− X̃𝑡 ∥ = 0, lim

𝑡→+∞
∥V(X𝑡+ 1

2
)∥ = 0

}
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We have shown that P(ℰ) = 1. Moreover, with the arguments of Theorem 8.13
we deduce that whenever ℰ happens both (X𝑡)𝑡∈N and (X𝑡+ 1

2
)𝑡∈N converge to a

point in 𝔛★, and this ends the proof. □

8.4 numerical illustrations

In this section, we numerically illustrate the performance of the algorithms that
we studied in the previous two chapters via experiments on a bilinear game
and on a non-monotone game. All the players use the same algorithm in the
these experiments.

8.4.1 A Bilinear Zero-sum Game

For this part we consider the simple problem of finding the Nash equilibrium
of the game

𝒳1 = 𝒳2 = R, ℓ 1(𝜃, 𝜙) = 𝜃𝜙 = −ℓ 2(𝜃, 𝜙).

As already mentioned in Examples 6.1 and 7.1, the unique Nash equilibrium of
this game is located at (0, 0).

We focus here on four different algorithms: gradient descent/ascent (GDA) Algorithms of interest
also known as the vanilla gradient method, (OG), (OG+), and AdaOptDA+,
i.e., (OptDA+) with learning rate (Adapt+). For both (GDA) and (OG) we use
decreasing learning rate of the form 𝜂𝑡 = 𝜂/(𝑡 + 1)𝑟𝜂 . As for (OG+) we use either
constant learning rates or 𝛾𝑡 = 𝛾/(𝑡 + 1)𝑟𝛾 and 𝜂𝑡 = 𝜂/(𝑡 + 1)𝑟𝜂 . We take 𝑟 = 1/4
for AdaOptDA+. In terms of feedback oracle, we examine two situations that
correspond respectively to the case of additive noise (𝜎𝐴 > 0, 𝜎𝑀 = 0) and
multiplicative noise (𝜎𝐴 = 0, 𝜎𝑀 > 0). We use respectively 𝛾 = 𝜂 = 1 and
𝛾 = 𝜂 = 0.1 in the definition of the decreasing learning rates in these two cases.

almost surely bounded additive noise. We first explore the stochastic The case of additive
noisefeedback as described in Example 7.1. In this scenario, the second player receives

perfect feedback while the feedback of the first player is deteriorated by an
additive noise which assumes either 1 or −1 with equal probability. The metrics
used to evaluate performance, as illustrated in Fig. 8.1, are: (i) the first player’s
regret with respect to the comparator point 0 (ii) the distance between the
players’ base state X𝑡 and the Nash equilibrium, and (iii) the distance between
the players’ played/leading state X𝑡+ 1

2
and the Nash equilibrium.

The results for this case is shown in the top row of Fig. 8.1. The leftmost figure
indicates that the adoption of optimistic strategies indeed yields significantly
lower regret, though these regrets still grow slowly over time. The only exception
is represented by the purple curve, leading to high regret due to the use of
a constant optimistic step. In this particular case, we have the convergence
of the base state X𝑡 but the divergence of the played/leading state X𝑡+ 1

2
. This

intriguing phenomenon is in accordance with our analysis in [126] regarding
the use of (EG+) for affine operators (note however that for (EG+) the leading
sate X𝑡+ 1

2
roughly stays at a constant distance from the equilibrium instead of

diverging). For (OG+) with both learning rates decreasing and AdaOptDA+,
we observe convergence of both the base and the leading states, and these
convergence happen at a comparable speed.
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Figure 8.1: Regret of the first player with respect to 0 and the distance between the
iterates and the Nash equilibrium when the players run one of the shown algorithms
in the bilinear game min𝜃∈R max𝜙∈R 𝜃𝜙. In the top row, the feedback is affected by
an additive noise, while in the bottom row, the feedback is affected by a multiplicative
noise. The results are averaged over 50 runs and shaded areas indicate standard errors.

problem with a finite sum structure. We next consider noise that arisesThe case of
multiplicative noise from the sampling of a problem that admits a finite-sum structure. For this, let

us define ℒ1(𝜃, 𝜙) = 3𝜃𝜙 and ℒ2(𝜃, 𝜙) = −𝜃𝜙 so that ℓ 1 = −ℓ 2 = (ℒ1 +ℒ2)/2.
At each round, we randomly draw ℒ1 or ℒ2 with probability 1/2 and return
the gradient of the sampled function as feedback. Assumption 7.1 is clearly
satisfied here with 𝜎𝐴 = 0 and 𝜎𝑀 = 2, so the noise is multiplicative.

The results shown in the bottom row of Fig. 8.1 reveals that (GDA) and (OG)
exhibit similar behavior in this setup. The iterates cycle around the equilibrium
at a fixed distance,4 leading to a regret that oscillates but whose magnitude
grows over time. As for (OG+) (with constant learning rates since the noise is
multiplicative) and AdaOptDA+, we indeed have constant regret and geometric
convergence. This aligns with our theory though we are not able to prove the
geometric convergence of AdaOptDA+.

8.4.2 Linear Quadratic Gaussian GAN

Moving on, we examine below the behaviors of (EG+) and (OG+) in a non
convex-concave linear quadratic Gaussian GAN model as defined by Daskalakis
et al. [56] and Nagarajan and Kolter [201]. This is a saddle-point problem with
the following objective.

ℒ(𝐽,𝑊) = E𝑎∼𝒩(0,Σ)[𝑎⊤𝑊𝑎] −E𝜉∼𝒩(0,𝐼)[𝜉⊤𝐽⊤𝑊𝐽𝜉].

Here, 𝑎 and 𝜉 are vectors in R𝑑 for some 𝑑 > 0 while 𝐽,𝑊 , and Σ are matrices of
size 𝑑 × 𝑑. 𝐼 denotes the 𝑑 × 𝑑 identity matrix. The first player plays 𝐽 and wants
to minimize ℒ, while the second player plays𝑊 and aims to maximize ℒ. This
corresponds to the WGAN formulation [9] without clipping when data are
sampled from a normal distribution with covariance matrix Σ, i.e., 𝑎 ∼ 𝒩(0,Σ),

4 while these iterate may eventually spiral out, this happens at a very low speed due to the use of
decreasing learning rates
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(a) EG+ (b) OG+

Figure 8.2: Convergence of (EG+) and (OG+) in the linear quadratic Gaussian GAN
model. For (OG+), the dashed lines and the solid lines depict respectively the results
for the leading states and the base states. All curves are averaged over 10 runs with the
shaded area indicating the standard deviation.

and the generator and the discriminator are respectively defined by 𝐺(𝜉) = 𝐽𝜉,
𝐷(𝑎) = 𝑎⊤𝑊𝑎. The stochasticity is induced by the sampling of 𝑎 and 𝜉. For the
experiments we take a mini-batch of size 128 and 𝑎 and 𝜉 of dimension 10. Σ is
a randomly generated positive definite matrix whose eigenvalues are uniformly
drawn from the interval [1, 2].

For the algorithms we use the learning rates

𝛾𝑡 =
𝛾

(𝑡 + 19)𝑟𝛾 and 𝜂𝑡+1 =
𝜂

(𝑡 + 19)𝑟𝜂 .

The choice of 19 is arbitrary and the main goal is to avoid too fast decrease
of the learning rates in the early iterations, as otherwise it is hard to see the
progress. However, in this case for fixed 𝛾 and 𝜂 the initial learning rates 𝛾1
and 𝜂2 vary according to the exponents 𝑟𝛾 and 𝑟𝜂. To account for this, we rather
fix the initial learning rates and set 𝛾 = 𝛾1 · 20𝑟𝜂 and 𝜂 = 𝜂2 · 20𝑟𝜂 . Provided that
the game is non-monotone and may possess multiple equilibria, the squared
norm of 𝑉 is traced as the convergence measure.

As we can see from Fig. 8.2, the convergence speeds of (EG+) and (OG+)
are positively related to the difference 𝑟𝜂 − 𝑟𝛾, echoing the results that we have
shown in Theorem 7.13. Moreover, again, choosing 𝑟𝛾 < 𝑟𝜂 is necessary for the
convergence of the algorithm.
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9
CONCLUSION AND PERSPECTIVES

This thesis delves into the intricacies of decision-making in multi-agent systems, Conclusion
focusing primarily on two aspects: communication delays and conflicts of

interest that arise from agents’ selfish behaviors. These elements introduce
unique challenges, absent in single-agent settings, and understanding their
impact on system performance is of paramount importance.

In Part i, we worked toward this goal by examining the impact of delays
in cooperative online learning. We analyzed the regret of a version of dual
averaging that operates with delayed feedback. Precisely, the action taken
by a learner is computed with the sum of the feedback gradients that they
have received so far. Building on the template regret bound demonstrated in
Theorem 3.1, we developed a series of adaptive learning rates that lead to regret
bounds that self-adapt to both the the magnitudes of the feedback and the
delays associated with each piece of feedback. In Chapter 4, we further showed
that by incorporating an optimistic step with an optimistic learning rate that is
in the order of the maximum delay, we can mitigate the impact of delays when
the loss functions vary slowly over time.

Subsequently, in Part ii, we dedicated ourselves to the problem of learning
in continuous games. We respectively looked into adaptive methods, noisy
feedback, and their combination, in Chapter 6, 7, and 8. Our algorithms are
based on optimistic mirror descent and optimistic dual averaging. The adaptive
learning rate scheme resembles that of AdaGrad and allows the algorithms to be
tuned individually by each player even in the absence of prior knowledge about
the game or the noise profile. To handle noisy feedback, we proposed to employ
a double-learning-rate schedule for the algorithms, akin to what we do to handle
delays with optimism in Chapter 4. These algorithms enjoy (near-)optimal
regret guarantees in various situations, while achieving convergence to a Nash
equilibrium in variationally stable games (Definition 5.4) when followed by all
the players, all of which indicate the promise of our approaches.

Despite our efforts, we acknowledge that the real-world scenario is invariably
more complex. Not only we have more complicated models for both cooperative
and competitive learning, but also the nature of multi-agent interaction is rarely
entirely cooperative or competitive. Still, it is our hope that the insights offered
in this thesis will help deepen our comprehension and enhance our ability to
design solutions for this intricate field of learning in multi-agent systems.

Looking forward, our research paves the way for numerous unexplored Perspectives
questions, each presenting exciting opportunities for future inquiry. In the
following, I enumerate some of these questions that have captured my attention
during my Ph.D. This also affords me an opportunity to touch upon related
work from a wider perspective. While the upcoming list is far from exhaustive,
it should provide a useful guide pointing to some of the active research areas in
this field.

187



188 conclusion and perspectives

To begin, we first discuss several points related to the algorithms that we
study and the specific results that we obtain in this manuscript.

double-learning-rate methods with constrained action set(s). In
Chapters 4, 7 and 8, we restrict ourselves to the unconstrained setup. Naturally,
one might wonder if these results extend to the constrained setup. Unfortunately,
such extensions are not straightforward. Concerning the use of optimistic steps
in addressing delays as studied in Chapter 4, Flaspohler et al. [80] indeed
investigated the more general MD and FTRL algorithms. Nevertheless, their
results significantly differ from ours and their analysis does not allow to recover
the
√
𝜏 dependence that we can obtain from Theorem 4.3.

As it relates to the setup for learning in games with noisy feedback considered
in Chapters 7 and 8, it turns out that a simple double-learning-rate strategy
falls short in the general constrained case. This indicates a need for further
modifications to the algorithm. For example, it appears that performing an
optimistic step with some average of the past gradients can be helpful.

Equally, it is essential to remember that there are existing techniques that
have proven effective in achieving convergence under similar conditions, such
as mini-batching [23, 134] and Tikhonov regularization / Halpern iteration
[32, 161]. While these methods offer different strategic approaches, they also
come with their own set of challenges. For example, mini-batching appears to be
less applicable in the online setup, whereas the use of Tikhonov regularization
can slow down the algorithm in situations where geometric convergence could
otherwise be achieved. Another interesting attempt was recently made by
Pethick et al. [222], where a variant of (EG+) with an additional bias correction
term for the optimistic step is considered. An important caveat is however that
their method requires to sample the two stochastic gradients of an iteration
with the same random seed, presenting substantial challenges for its adaptation
to online setups.

the role of learning rate separation in optimistic methods. Inde-
pendent of our work, the benefit of having a larger optimistic step has also
been demonstrated in other situations. Zhang and Yu [289] and Fasoulakis
et al. [79] respectively showed faster convergence of OG+ and OMWU+ (a
version of OMWU with separate learning rate tuning) when the optimistic
learning rate is taken larger than the update one. In another series of work, it is
established that learning rate separation helps achieve convergence in a larger
family of games—those for which a weak Minty solution exists [65, 171, 221, 222].
This leads us to ponder: Is the effectiveness of learning rate separation merely
coincidental? Or could there potentially be a deeper rational that explains its
utility in these diverse scenarios?

last-iterate convergence of stochastic dual averaging. In Chapter 8,
we were unable to show last-iterate convergence of (OptDA+) under the general
noise model. The challenge is tied closely to the use of the dual averaging
template, and more specifically, to the application of a uniform and vanishing
learning rate to all the feedback. Considering the simplicity of the algorithm
and the perceived importance of this result, it is puzzling that no conclusive
results exist regarding the convergence or non-convergence of the last iterate of
dual averaging when run with stochastic feedback.

last-iterate convergence rate in monotone games with stochastic
feedback. Only recently have a series of papers been successful in demys-
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tifying the last-iterate convergence rate of (EG) and (OG) in monotone games
[35, 99, 100, 102]. As measured by the tangent residual (as defined in Defini-
tion 5.10), this rate stands at 𝒪(1/

√
𝑡). Notably, the rate can be further improved

to 𝒪(1/𝑡) by integrating an anchoring step [33, 36, 171]. However, such results
for the stochastic setup are still scarce at present.

Our result in Theorems 7.13 and 7.14 translates into a rate in 𝒪(1/𝑡1/6)
on the norm of pseudo-gradient, which appears suboptimal. One might
then conjecture that by wisely adjusting the batch size in mini-batching or
the regularization parameter in Tikhonov regularization we can get a rate in
𝒪(1/𝑡1/4) under stochastic feedback. However, even this may be suboptimal.
In fact, with more involved methods, Cai et al. [32] obtained an 𝒪(1/𝑡1/3) rate
for stochastic monotone inclusion problems, with Chen and Luo [42] further
improving this to a near-optimal 𝒪(1/

√
𝑡) rate for stochastic convex-concave

saddle-point problems. Unfortunately, these algorithms are not suited to the
learning-in-games setup that we consider. Therefore, it remains to be seen if
such guarantees can be achieved for an algorithm that conforms to our protocol
while fulfilling the basic no-regret requirement.

We next move on to discuss the criteria that we have used to evaluate our
algorithms.

beyond external regret. In this thesis, we focus exclusively on bounding
the agents’ external / static regret, as defined in Definition 2.1. This is arguably one
of the simplest forms of regret that one can imagine. Nonetheless, depending on
the context, this may not always be the most appropriate measure to consider.
For example, taking into account the non-stationary nature of the problem, one
may want to instead control the dynamic regret [105, 298], which is evaluated
with respect to a sequence of comparator points that evolve over time.

Turning our attention to the cooperative setup studied in Chapters 3 and 4,
we could also think of a form of regret that uses a different comparator point
for each agent. Even though it might appear that agents just need to minimize
their own losses and ignore completely the others in this situation, it turns out
that communication between agents can still be advantageous if the tasks that
they tackle exhibit certain similarities. Such a concept has been formalized by
Cavallanti et al. [38] and Cesa-Bianchi et al. [40], among others. Regarding the
setup of learning in games that we examine in Part ii, we may want to account
for the fact that opponents could have modified their actions if we had chosen a
different sequence of actions. This consideration leads to the notion of policy
regret [10, 11].

more complex interaction paradigms. In Part ii of this manuscript, we
primarily assess the performance of our algorithms in two specific situations:
the adversarial scenario and the case where all players utilize the same type of
algorithm. However, real-world applications often present complexities that
go beyond this dichotomy. For instance, it is possible that only a subset of
the players deviate from their prescribed policy. Such occurrences urge us
to investigate the robustness of the results obtained in the self-play scenario
against these partial deviations.

Another compelling direction would be to consider opponent shaping [85, 181],
where players do not just respond to the behavior of others but actively seek
to influence it. Such a scenario reflects a deeper level of strategic thinking and
opens up interesting avenues for exploration. Are there specific tactics that
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prove particularly effective for shaping the behavior of opponents? Can the idea
of no-regret learning be extended to cover these more sophisticated strategies?

Moving forward, another promising direction is to extend our results to
more complex setups, either by considering all the factors that we have tackled
simultaneously, or by considering a more fundamental change of paradigm.

time-varying games. In Part i, we address a situation where the agents’
feedback is non-stationary, arbitrary, and even adversarial. In Part ii, we then
consider a scenario where this non-stationarity originates from the interaction
with other agents through an underlying game, which we assume to be fixed
across time. Yet, in many real-world applications, the game itself evolves over
time. This paradigm of time-varying games can be regarded as the de facto
mix of the non-stationary online learning framework and the learning-in-games
setup, and requires the use of different criteria to evaluate the algorithms
[5, 71, 293]. Naturally, dynamic regret that we just mentioned turns out to
be particularly relevant for this situation. Moreover, insights gleaned from
time-varying optimization [51] might provide valuable guidance here.

learning in games with non-instantaneous feedback. Another notable
distinction between Parts i and ii of this manuscript is that we sidestep issues
related to communication latency in Part ii. Indeed, in Part ii, we work under
the assumption that players receive immediate feedback upon executing each
action, a condition that that may not generally hold true. Recognizing these
limitations, several works have addressed the communication aspect of learning
in games. This body of work encompasses models that adopt the abstraction
of delayed feedback [118, 295], similar to our approach in Chapter 3, as well
as those incorporating a more explicit model with a communication graph
[89, 238, 257, 262, 286]. These studies are complementary to our research, and
combining these approaches with our methodologies constitutes a promising
avenue for future exploration.

beyond variationally stable games. While this thesis primarily focuses
on continuous normal-form games, and especially variationally stable games,
considerable efforts have been made within the community to extend such
low-regret and last-iterate guarantees to a wider scope of games. These efforts
encompass, one one hand, poly-logarithmic regret results obtained in general-
sum finite games [2, 3, 57], extensive-form games [78], and general convex
games [77], and on the other hand, last-iterate convergence results for zero-sum
extensive-form games [169, 223], alongside several dichotomy results for two-
player general-sum finite games [4, 61], and a number of attempts in achieving
convergence in various types of non-convex games [59, 65, 83, 176] (a game is
non-convex if Assumption 5.1 is not satisfied).

The study of these setups, combined with the different challenges that we aim
to address in this thesis, all contribute to a more comprehensive and nuanced
understanding of the learning-in-games framework. The study of non-convex
games is of particular importance given the current surge of interest in deep
learning techniques, which almost inevitably involve non-convex optimization
landscapes. Nonetheless, such games present considerable challenges, and
even the existence of a Nash equilibrium is not guaranteed [58]. For a thorough
discussion on the difficulties and potential directions for learning in non-convex
games, we invite the reader to consult the monograph [52] (note that what
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we call “non-convex game” here is referred to as “non-concave game” in this
monograph as it considers players that aim to maximize their payoffs).

payoff-based learning. The algorithms examined in this manuscript as-
sume access to the gradient feedback or an unbiased estimate thereof. However,
in many practical scenarios, even the latter assumption can be too demanding.
Instead, a learner may only have access to the payoff information at the taken
action, whether it be the conversion rate of a recommendation or the outcome
of an auction. This situation is often referred to as the bandit setup [30, 168].

A large corpus of work has been dedicated to addressing bandit learning in
multi-agent systems. In cooperative bandits, the agents collaborate to minimize
their regrets, similar to the model considered in Part i. For this scenario,
algorithms have been developed to deal with either stochastic or adversarial
feedback, while taking into account the delays induced by communication [17,
39, 164, 187]. Information sharing among agents can turn out to be particularly
helpful here as it allows the agents to perform more aggressive exploration.

Concurrently, payoff-based learning has also been extensively studied in
learning in games. In fact, some of the most well-known algorithms for
learning in games such as fictitious play [28] and regret matching [110] are
widely recognized as payoff-based methods. Particularly relevant to the results
presented in Part ii is the convergence of bandit learning in strictly monotone
games, as shown by Bravo et al. [27] and Tatarenko and Kamgarpour [260].
These approaches employ a single-point estimator to deduce a (biased) estimate
of the gradient from bandit feedback, in the spirit of [81, 213]. More recently,
Gao and Pavel [91] and Tatarenko and Kamgarpour [261] extended these results
to (non-strictly) monotone games through the incorporation of a Tikhonov
regularization scheme. A few works, namely [118, 133], have also tried to
address the challenges posed by delays, learning in games, and bandit feedback
all at the same time. All these works can provide valuable insights into how we
can extend our results to cope with bandit feedback.

Finally, we would also like to highlight two important subjects that are less
related to the works realized in this thesis, but also fall under the umbrella topic
of “decision-making in multi-agent systems”.

meta-learning in multi-agent systems. Despite the non-stationary nature
and heterogeneous composition of many real-world multi-agent environments,
recurring patterns and shared structures are often present. This is observed
in diverse scenarios, such as traffic networks [122], which despite changing
constantly, tend to exhibit regular trends related to the time of day or week. In
federated learning [144], users across different devices strive to improve their
personal models based on locally collected data, while also leveraging shared
knowledge across the network to enhance their learning efficiency. Similarly, for
an autonomous robotic teams, successful strategies in one context often prove
useful in another, even when facing a diverse range of scenarios [131, 266].
This shared structure across varying tasks or environments is the foundation
of meta-learning, or learning to learn [264], a powerful tool for extracting and
applying an inductive bias across tasks, enabling effective adaptation to the
ever-evolving contexts of multi-agent systems.

Some recent works in this direction include for example [98, 109, 150, 173].
Concretely, Kayaalp et al. [150] and Li et al. [173] focused on meta-learning
for decentralized optimization, respectively addressing the problem of meta-
learning the initialization parameter and the mixing weights of the models.
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The problem of meta-learning in games is explored by Harris et al. [109], who
proposed an online learning-based approach that provably achieves lower regret
when the games presented to the players obey a certain notion of similarity.
On the other hand, Goktas et al. [98] investigated learning to compute a
(generalized) Nash equilibrium across a class of (pseudo-)games, and they
introduced a generative adversarial learning mechanism for this purpose.

While these works have made important contributions toward understanding
and implementing meta-learning in multi-agent contexts, there remains much
to explore. Continued advancements in this field could revolutionize how we
approach decision-making and learning in multi-agent systems, leading to a
new generation of adaptable and robust solutions for such complex, dynamic
environments.

multi-agent reinforcement learning. Following the breakthroughs in
deep learning methods, recent years have witnessed substantial advancements
in the domain of multi-agent reinforcement learning (MARL). These developments
have enabled the solution of a spectrum of complex games such as Go [252],
StarCraft [271], and Diplomacy [74], as well as practical applications in traffic
control [46], stock trading [170], and robotics [240], just to name a few. For an
overview on this topic, readers may refer to the surveys [31, 104, 292].

Despite the tremendous success of these methods, our theoretical understand-
ing about them remain relatively limited. From a mathematical perspective,
MARL is mostly modeled as a stochastic game. Introduced in the seminal work of
Shapley [249], this model is also known under the name of Markov game [179],
highlighting the Markovian aspect of the framework. Numerous works have
explored the efficiency and convergence of algorithms within this setting —for
an appetizer, see e.g., [16, 95, 242, 277, 283, 291] and references therein. However,
these investigations are generally constrained in the types of games considered
(mostly restricted to two-player, zero-sum, or potential games) and the variety
of function approximation utilized, if any.

Overall, while MARL has seen impressive progress and is increasingly being
applied to solve complex problems, many challenges remain. These include
developing a deeper theoretical understanding, handling sophisticated aspects
like communication learning [84], partial observability [66, 220], and memory
mechanisms [93], and expanding the scope of current algorithmic approaches.
Addressing these issues is not only essential for further advancements in
the field, but also critical in building more believable agents in multi-agent
systems [219]. As we continue to refine and enhance MARL, the potential for
these systems to mirror, predict, and interact with real-world complex behaviors
grows dramatically.
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APPENDIX





A
BREGMAN DIVERGENCES , MIRROR MAPS , AND FENCHEL
COUPLINGS

In this appendix, we present several basic properties of the Bregman divergence,
the mirror map, and the Fenchel coupling. We follow the notations of Chapter 2.

The learner’s action set and the associated regularizer are thus respectively
𝒳 and ℎ. Moreover, the regularizer ℎ is assumed to be 1-strongly convex
relative to an ambient norm ∥·∥. Let us also recall the definition of the Bregman
divergence, the Fenchel coupling, and the mirror map

𝐷(𝑧, 𝑥) = ℎ(𝑧) − ℎ(𝑥) − ⟨∇ ℎ(𝑥), 𝑧 − 𝑥⟩,
𝐹(𝑧, 𝑦) = ℎ(𝑧) + ℎ∗(𝑦) − ⟨𝑦, 𝑧⟩,
𝑄(𝑦) = arg min

𝑥∈𝒳
⟨−𝑦, 𝑥⟩ + ℎ(𝑥).

The auxiliary results that we are going to present below concerning these three
quantities are not new (see e.g., [142, 194, 209] and references therein); however,
the set of hypotheses used to obtain them varies widely in the literature, so we
still provide the proofs for the sake of completeness.

To begin, our first lemma concerns the optimality condition of the mirror
map. This result is widely used for the analysis of MD-type methods (see e.g.,
Propositions 2.2 and 6.3).

Lemma A.1. Let ℎ be a regularizer on 𝒳. Then, for all 𝑥 ∈ dom 𝜕ℎ and all 𝑦 ∈ R𝑑,
we have

𝑥 = 𝑄(𝑦) ⇐⇒ 𝑦 ∈ 𝜕ℎ(𝑥).

Moreover, if 𝑥 = 𝑄(𝑦), it holds for all 𝑧 ∈ 𝒳 that

⟨∇ ℎ(𝑥), 𝑥 − 𝑧⟩ ≤ ⟨𝑦, 𝑥 − 𝑧⟩.

Proof. For the first claim, we have by the definition of the mirror map 𝑥 = 𝑄(𝑦)
if and only if 0 ∈ 𝜕ℎ(𝑥) − 𝑦, i.e., 𝑦 ∈ 𝜕ℎ(𝑥). For the second claim, it suffices to
show it holds for all 𝑝 ∈ ri𝒳 (by continuity). To do so, we can define

𝜙(𝑡) = ℎ(𝑥 + 𝑡(𝑝 − 𝑥)) − [ℎ(𝑥) + ⟨𝑦, 𝑥 + 𝑡(𝑝 − 𝑥)⟩].

Since ℎ is strongly convex and 𝑦 ∈ 𝜕ℎ(𝑥) by the previous claim, it follows
that 𝜙(𝑡) ≥ 0 with equality if and only if 𝑡 = 0. Moreover, as ri𝒳 ⊂ dom 𝜕ℎ,
∇ℎ(𝑥 + 𝑡(𝑝 − 𝑥)) is well-defined and 𝜓(𝑡) = ⟨∇ℎ(𝑥 + 𝑡(𝑝 − 𝑥)) − 𝑦, 𝑝 − 𝑥⟩ is a
continuous selection of subgradients of 𝜙. Given that 𝜙 and 𝜓 are both
continuous on [0, 1], it follows that 𝜙 is continuously differentiable and 𝜙′ = 𝜓
on [0, 1]. Thus, with 𝜙(𝑡) ≥ 0 = 𝜙(0) for all 𝑡 ∈ [0, 1], we conclude that
𝜙′(0) = ⟨∇ℎ(𝑥) − 𝑦, 𝑝 − 𝑥⟩ ≥ 0, from which our claim follows. □
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We continue with the “three-point identities” which are used in Chapters 2
and 6 to derive the recurrent relationship between the divergence measures of
different steps.

Lemma A.2. Let ℎ be a regularizer on𝒳. Then, for all 𝑧 ∈ 𝒳 and all 𝑥, 𝑥′ ∈ dom 𝜕ℎ,
we have

⟨∇ ℎ(𝑥′) − ∇ ℎ(𝑥), 𝑥 − 𝑧⟩ = 𝐷(𝑧, 𝑥′) −𝐷(𝑧, 𝑥) −𝐷(𝑥, 𝑥′). (A.1)

Similarly, writing 𝑥 = 𝑄(𝑦), for all 𝑧 ∈ 𝒳 and all 𝑦, 𝑦′ ∈ R𝑑, we have

⟨𝑦′ − 𝑦, 𝑥 − 𝑧⟩ = 𝐹(𝑧, 𝑦′) − 𝐹(𝑧, 𝑦) − 𝐹(𝑥, 𝑦′). (A.2)

Proof. We start with the Bregman version. By definition,

𝐷(𝑝, 𝑥′) = ℎ(𝑝) − ℎ(𝑥′) − ⟨∇ℎ(𝑥′), 𝑝 − 𝑥′⟩
𝐷(𝑝, 𝑥) = ℎ(𝑝) − ℎ(𝑥) − ⟨∇ℎ(𝑥), 𝑝 − 𝑥⟩
𝐷(𝑥, 𝑥′) = ℎ(𝑥) − ℎ(𝑥′) − ⟨∇ℎ(𝑥′), 𝑥 − 𝑥′⟩.

The result then follows by adding the two last lines and subtracting the first.
On the other hand, in order to show the Fenchel coupling version we write

𝐹(𝑝, 𝑦′) = ℎ(𝑝) + ℎ∗(𝑦′) − ⟨𝑦′, 𝑝⟩
𝐹(𝑝, 𝑦) = ℎ(𝑝) + ℎ∗(𝑦) − ⟨𝑦, 𝑝⟩.

Then, by subtracting the above we obtain

𝐹(𝑝, 𝑦′) − 𝐹(𝑝, 𝑦) = ℎ(𝑝) + ℎ∗(𝑦′) − ⟨𝑦′, 𝑝⟩ − ℎ(𝑝) − ℎ∗(𝑦) + ⟨𝑦, 𝑝⟩
= ℎ∗(𝑦′) − ℎ∗(𝑦) − ⟨𝑦′ − 𝑦, 𝑝⟩
= ℎ∗(𝑦′) − ⟨𝑦,𝑄(𝑦)⟩ + ℎ(𝑄(𝑦)) − ⟨𝑦′ − 𝑦, 𝑝⟩
= ℎ∗(𝑦′) − ⟨𝑦, 𝑥⟩ + ℎ(𝑥) − ⟨𝑦′ − 𝑦, 𝑝⟩
= ℎ∗(𝑦′) + ⟨𝑦′ − 𝑦, 𝑥⟩ − ⟨𝑦′, 𝑥⟩ + ℎ(𝑥) − ⟨𝑦′ − 𝑦, 𝑝⟩
= 𝐹(𝑥, 𝑦′) + ⟨𝑦′ − 𝑦, 𝑥 − 𝑝⟩

and our proof is complete. □

Since 𝑥 = 𝑄(∇ ℎ(𝑥)) and 𝐹(𝑧,∇ ℎ(𝑥)) = 𝐷(𝑧, 𝑥), the identity (A.1) is indeed a
special case of (A.2). In the general case, the Fenchel coupling and the Bregman
divergence can be related by the following lemma.

Lemma A.3. Let ℎ be a regularizer on𝒵. Then, for all 𝑧 ∈ 𝒵 and 𝑦 ∈ R𝑑, it holds

𝐹(𝑧, 𝑦) ≥ 𝐷(𝑧,𝑄(𝑦)) ≥ ∥𝑧 −𝑄(𝑦)∥
2

2 .

Proof. For the first inequality we have,

𝐹(𝑧, 𝑦) = ℎ(𝑧) + ℎ∗(𝑦) − ⟨𝑦, 𝑧⟩
= ℎ(𝑧) − ℎ(𝑄(𝑦)) + ⟨𝑦,𝑄(𝑦)⟩ + ⟨𝑦,−𝑧⟩
= ℎ(𝑧) − ℎ(𝑄(𝑦)) − ⟨𝑦, 𝑧 −𝑄(𝑦)⟩

Since 𝑦 ∈ 𝜕ℎ(𝑄(𝑦)), by Lemma A.1 we get

⟨∇ℎ(𝑄(𝑦)),𝑄(𝑦) − 𝑧⟩ ≤ ⟨𝑦,𝑄(𝑦) − 𝑧⟩
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With all the above we then have

𝐹(𝑧, 𝑦) = ℎ(𝑧) − ℎ(𝑄(𝑦)) − ⟨𝑦, 𝑧 −𝑄(𝑦)⟩
≥ ℎ(𝑧) − ℎ(𝑄(𝑦)) − ⟨∇ℎ(𝑄(𝑦)), 𝑧 −𝑄(𝑦)⟩
= 𝐷(𝑧,𝑄(𝑦))

and the result follows. The second inequality follows directly from the fact that
the regularizer ℎ is 1-strongly convex relative to ∥·∥. □

We next prove the non-expansiveness of the mirror map which are used
multiple times in the analysis of Chapter 3. (for a reference, see e.g., [121,
Chapter E, Thm. 4.2.1], or [288, Cor. 3.5.11]).

Lemma A.4. The mirror map is non-expansive, i.e., ∥𝑃(𝑦) − 𝑃(𝑦′)∥ ≤ ∥𝑦 − 𝑦′∥∗ for
all 𝑦, 𝑦′ ∈ R𝑑.

Proof. Let 𝑥 = 𝑃(𝑦) and 𝑥′ = 𝑃(𝑦′). By definition of the mirror map,

𝑥 = arg min
𝑥̂∈𝒳

⟨−𝑦, 𝑥̂⟩ + ℎ(𝑥̂), 𝑥′ = arg min
𝑥̂∈𝒳

⟨−𝑦′, 𝑥̂⟩ + ℎ(𝑥̂).

The optimality condition implies that 𝑦 ∈ 𝜕ℎ(𝑥) and 𝑦′ ∈ 𝜕ℎ(𝑥′). Hence, with
the Cauchy–Schwarz inequality and the 1-strong convexity of ℎ with respect to
∥·∥, we have

∥𝑦 − 𝑦′∥∗∥𝑥′ − 𝑥∥ ≥ ⟨𝑦′ − 𝑦, 𝑥′ − 𝑥⟩ ≥ ∥𝑥 − 𝑥′∥2.

It follows immediately ∥𝑦 − 𝑦′∥∗ ≥ ∥𝑥 − 𝑥′∥. □

Remark A.1. Precisely, 𝑃 is non-expansive because we are assuming that the
strong convexity constant of ℎ is 1. Otherwise it would just be Lipschitz
continuous, and clearly this would only influence our results by a constant
factor (that depends on the strong convexity constant of ℎ).

We end up with a simple result showing that Bregman reciprocity (Defi-
nition 6.2) is implied by Fenchel reciprocity (Definition 6.3). This is used in
Chapter 6 to advocate the use of (DS-OptMD) in the place of (OptDA).

Lemma A.5. Let 𝒳 be the action set and ℎ be a regularizer over 𝒳. If Fenchel
reciprocity is satisfied, then Bregman reciprocity is also satisfied.

Proof. We have 𝑥 = 𝑄(∇ ℎ(𝑥)). Hence

𝐹(𝑧,∇ ℎ(𝑥)) = ℎ(𝑧) − ℎ(𝑄(∇ ℎ(𝑥))) − ⟨∇ ℎ(𝑥), 𝑧 −𝑄(∇ ℎ(𝑥))⟩ = 𝐷(𝑧, 𝑥).

Consider (𝑋𝑡)𝑡∈N a sequence of points of 𝒳 such that 𝑋𝑡 → 𝑧. This means
𝑄(𝑌𝑡) → 𝑧 for 𝑌𝑡 = ∇ ℎ(𝑋𝑡) and accordingly 𝐹(𝑧,𝑌𝑡) = 𝐷(𝑧,𝑋𝑡) tends to 0. □





B
TECHNICAL LEMMAS ON NUMERICAL AND STOCHASTIC
SEQUENCES

This appendix collects a series of fundamental lemmas regarding numerical and
stochastic sequences. These lemmas, while crucial for the proofs developed

throughout this thesis, are presented separately here due to their general
applicability. The aim is to prevent the interruption of the main flow of the thesis
with these technical details. Some of these lemmas might be straightforward,
while others might require a deeper understanding of the concepts involved.

convergence of quasi-decreasing sequence. The following lemma,
used in the proof of Lemma 6.11, states that a “quasi-decreasing” sequence
converges. This kind of result is useful when dealing with quasi-Fejér monotone
sequences.

Lemma B.1. Let (𝑈𝑡)𝑡∈N ∈ RN
+ be a non-negative sequence and (𝜒𝑡)𝑡∈N ∈ RN

+ be
summable such that, for all 𝑡 ∈ N,

𝑈𝑡+1 ≤ 𝑈𝑡 + 𝜒𝑡 . (B.1)

Then, (𝑈𝑡)𝑡∈N converges.

Proof. Since (𝜒𝑡)𝑡∈N is summable, we can define 𝑈′𝑡 = 𝑈𝑡 +
∑+∞
𝑠=𝑡 𝜒𝑠 ∈ R+.

Inequality (B.1) then implies 𝑈′
𝑡+1 ≤ 𝑈

′
𝑡 . Therefore, (𝑈′𝑡)𝑡∈N converges, and

accordingly (𝑈𝑡)𝑡∈N converges. □

Remark B.1. We can also derive this lemma from the Robbins–Siegmund theorem
by taking only the trivial 𝜎-algebra but this is clearly using a sledgehammer to
crack a nut.

convergence rate derivation. In the optimization literature, one can find
a myriad of lemmas designed for the purpose of establishing convergence rates
associated with specific (predetermined) learning rates. The crafting of these
learning rates, with the aim of achieving certain convergence rates, is indeed
a discipline in itself. Below we present two such lemmas that we exploit in
Chapter 7 to prove convergence rates under error bound conditions. The reader
is referred to the work of Polyak [224] for a collection of results of this type.

Lemma B.2. Let (𝑎𝑡)𝑡∈N be a sequence of real numbers such that for all 𝑡,

𝑎𝑡+1 ≤ (1− 𝑐)𝑎𝑡 + 𝑐′,

where 1 > 𝑐 > 0 and 𝑐′ > 0. Then,

𝑎𝑡 ≤ (1− 𝑐)𝑡−1𝑎1 +
𝑐′

𝑐
.

215
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The above lemma comes into play when an algorithm is run with constant
learning rate sequences, whereas we resort to the following two lemmas in case
of decreasing learning rate sequences.

Lemma B.3 (Chung [47, Lemma 1]). Let (𝑎𝑡)𝑡∈N be a sequence of real numbers and
𝛽 ∈ N such that for all 𝑡,

𝑎𝑡+1 ≤
(
1− 𝑐

𝑡 + 𝛽

)
𝑎𝑡 +

𝑐′

(𝑡 + 𝛽)𝑟+1 ,

where 𝑐 > 𝑟 > 0 and 𝑐′ > 0. Then,

𝑎𝑡 ≤
𝑐′

𝑐 − 𝑟
1
𝑡𝑟
+ 𝑜

(
1
𝑡𝑟

)
.

Proof. See Chung [47, Lemma 1]. □

lemmas on stochastic sequences. We now shift our focus to several
lemmas on stochastic sequences that are extensively used in Chapters 7 and 8.
The first one translates a bound of expectation into almost sure boundedness.
It is a special case of Doob’s martingale convergence theorem [106], but we
also provide another elementary proof below. Note that we use the term finite
random variable to refer to those random variables which are finite almost
surely.

Lemma B.4. Let (𝑈𝑡)𝑡∈N be a sequence of non-decreasing and non-negative real-valued
random variables. If there exists constant 𝐶 ∈ R such that

∀ 𝑡 ∈ N, E[𝑈𝑡] ≤ 𝐶.

Then (𝑈𝑡)𝑡∈N converges almost surely to a finite random variable. In particular,
for any sequence of non-negative real-valued random variables (𝜒𝑡)𝑡∈N, the fact
that

∑+∞
𝑡=1 E[𝜒𝑡] < +∞ implies

∑+∞
𝑡=1 𝜒𝑡 < +∞ almost surely, and accordingly

lim𝑡→+∞ 𝜒𝑡 = 0 almost surely.

Proof. Let 𝑈∞ be the pointwise limit of (𝑈𝑡)𝑡∈N. Applying Beppo Levi’s
lemma we deduce that 𝑈∞ is also measurable and lim𝑡→+∞E[𝑈𝑡] = E[𝑈∞].
Accordingly, E[𝑈∞] ≤ 𝐶. The random variable 𝑈∞ being non-negative,
E[𝑈∞] ≤ 𝐶 < +∞ implies that𝑈∞ is finite almost surely, which concludes the
first statement of the lemma. The second statement is derived from the first
statement by setting𝑈𝑡 =

∑𝑡
𝑠=1 𝜒𝑠 . □

The next lemma is essential for building almost sure last-iterate convergence,
as it allows to extract a convergent subsequence.

Lemma B.5. Let (𝑈𝑡)𝑡∈N be a sequence of non-negative real-valued random variables
such that

lim inf
𝑡→+∞

E[𝑈𝑡] = 0.

Then, (i) there exists a subsequence (𝑈𝜔(𝑡))𝑡∈N of (𝑈𝑡)𝑡∈N that converges to 0 almost
surely;1 and accordingly (ii) it holds almost surely that lim inf𝑡→+∞ 𝑈𝑡 = 0.

Proof. Since lim inf𝑡→+∞ E[𝑈𝑡] = 0, we can extract a subsequence (𝑈𝜔(𝑡))𝑡∈N

such that for all 𝑡 ∈ N, E[𝑈𝜔(𝑡)] ≤ 2−𝑡 . This gives
∑+∞
𝑡=1 E[𝑈𝜔(𝑡)] < +∞

1 We remark that the choice of the subsequence does not depend on the realization but only the
distribution of the random variables.
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and invoking Lemma B.4 we then know that
∑+∞
𝑡=1𝑈𝜔(𝑡) < +∞ almost surely,

which in turn implies that 𝑈𝜔(𝑡) converges to 0 almost surely. To prove (ii),
we just notice that for any realization such that lim𝑡→+∞𝑈𝜔(𝑡) = 0, we have
0 = lim𝑡→+∞𝑈𝜔(𝑡) ≥ lim inf𝑡→+∞ 𝑈𝑡 ≥ 0 and thus the equalities must hold, i.e.,
lim inf𝑡→+∞ 𝑈𝑡 = 0. □

Finally, since the solution may not be unique, we need a to translate a result
with respect to a single point to one that applies to the entire set. This is
achieved through the following lemma (we reuse the notation from Chapter 8
for vector in dimension 𝑑 split in 𝑁 components and its weighted norm with
respect to a vector of dimension 𝑁).

Lemma B.6. Let𝒦 ⊆ R𝑑 be a closed set, (u𝑡)𝑡∈N be a sequence of R𝑑-valued random
variable, and (𝜶𝑡)𝑡∈N be a sequence of R𝑁 -valued random variable such that

(a) For all 𝑖 ∈ 𝒩 , 𝛼𝑖1 ≥ 1, (𝛼𝑖𝑡)𝑡∈N is non-decreasing and converges to a finite constant
almost surely.

(b) For all x ∈ 𝒦 , ∥u𝑡 − x∥𝜶𝑡 converges almost surely.

Then, with probability 1, the vector 𝜶∞ = lim𝑡→+∞ 𝜶𝑡 is well-defined, finite, and
∥u𝑡 − x∥𝜶∞ converges for all x ∈ 𝒦 .

Proof. As R𝑑 is a separable metric space,𝒦 is also separable and we can find a
countable set𝒵 such that𝒦 = cl(𝒵). Let us define the event

ℰ B {𝜶∞ = lim
𝑡→+∞

𝜶𝑡 is well-defined and finite;

∥u𝑡 − z∥𝜶𝑡 converges for all z ∈ 𝒵.}

The set 𝒵 being countable, from (a) and (b) we then know that P(ℰ) = 1. In
the following, we show that ∥u𝑡 − x∥𝜶∞ converges for all x ∈ 𝒦 whenever ℰ
happens, which concludes our proof.

Let us now consider a realization of ℰ. We first establish the convergence
of ∥u𝑡 − z∥𝜶∞ for any z ∈ 𝒵. To begin, the convergence of ∥u𝑡 − z∥𝜶𝑡 implies
the boundedness of this sequence, from which we deduce immediately the
boundedness of ∥u𝑡 − z∥ as ∥u𝑡 − z∥ ≤ ∥u𝑡 − z∥𝜶𝑡 by 𝜶𝑡 ≥ 𝜶1 ≥ 1. In other
words, 𝐶 = sup𝑡∈N∥u𝑡 − z∥ is finite. Furthermore, we have

0 ≤ ∥u𝑡 − z∥2𝜶∞ − ∥u𝑡 − z∥2𝜶𝑡 =
𝑁∑
𝑖=1
(𝛼𝑖∞ − 𝛼𝑖𝑡)∥𝑢 𝑖𝑡 − 𝑧 𝑖 ∥2 ≤

𝑁∑
𝑖=1
(𝛼𝑖∞ − 𝛼𝑖𝑡)𝐶2. (B.2)

Since 𝛼𝑖∞ − 𝛼𝑖𝑡 converges to 0 when 𝑡 goes to infinity, from (B.2) we get im-
mediately lim𝑡→+∞(∥u𝑡 − z∥2𝜶∞ − ∥u𝑡 − z∥2𝜶𝑡 ) = 0. This shows that ∥u𝑡 − z∥2𝜶∞
converges to lim𝑡→+∞∥u𝑡 − z∥2𝜶𝑡 , which exists by definition of ℰ. We have thus
shown the convergence of ∥u𝑡 − z∥𝜶∞ .

To conclude, we need to show that ∥u𝑡 − x∥𝜶∞ in fact converges for all x ∈ 𝒦 .
Let x ∈ 𝒦 . As𝒵 is dense in𝒦 , there exists a sequence of points (z𝑘)𝑘∈N with
z𝑘 ∈ 𝒵 for all 𝑘 ∈ N such that lim𝑘→+∞ z𝑘 = x. For any 𝑡, 𝑘 ∈ N, the triangular
inequality implies

−∥z𝑘 − x∥𝜶∞ ≤ ∥u𝑡 − x∥𝜶∞ − ∥u𝑡 − z𝑘 ∥𝜶∞ ≤ ∥z𝑘 − x∥𝜶∞ .

Since z𝑘 ∈ 𝒵, we have shown that lim𝑡→+∞∥u𝑡 − z𝑘 ∥ exists. Subsequently, we
get

−∥z𝑘 − x∥𝜶∞ ≤ lim inf
𝑡→+∞

∥u𝑡 − x∥𝜶∞ − lim
𝑡→+∞

∥u𝑡 − z𝑘 ∥𝜶∞
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≤ lim sup
𝑡→+∞

∥u𝑡 − x∥𝜶∞ − lim
𝑡→+∞

∥u𝑡 − z𝑘 ∥𝜶∞

≤ ∥z𝑘 − x∥𝜶∞ .

Taking the limit as 𝑘 → +∞, we deduce that lim𝑘→+∞ lim𝑡→+∞∥u𝑡 − z𝑘 ∥𝜶∞ exists
and

lim inf
𝑡→+∞

∥u𝑡 − x∥𝜶∞ = lim
𝑘→+∞

lim
𝑡→+∞

∥u𝑡 − z𝑘 ∥𝜶∞ = lim sup
𝑡→+∞

∥u𝑡 − x∥𝜶∞ .

This shows the convergence of ∥u𝑡 − x∥𝜶∞ . □

In Lemma B.6, we consider a sequence of random weights (𝜶𝑡)𝑡∈N so that it
also applies when the learning rates are not constant but converge. We only use
this lemma in its most general form in the proof of Theorem 8.26. Otherwise,
the following corollary is sufficient.

Corollary B.7. Let 𝒦 ⊆ R𝑑 be a closed set, (u𝑡)𝑡∈N be a sequence of R𝑑-valued
random variable, and 𝜶 ∈ R𝑁 such that 𝛼𝑖 ≥ 1 for all 𝑖 ∈ 𝒩 , and for all x ∈ 𝒦 ,
∥u𝑡 − x∥𝜶 converges almost surely. Then, with probability 1, ∥u𝑡 − x∥𝜶 converges for
all x ∈ 𝒦 .

Remark B.2. The subtlety in Lemma B.6 and Corollary B.7 is in the position
of the quantifier “for all”. Initially, we have a probability event for each point
and each event holds with probability 1. With the theorem, we show that all
these events can be grouped together to form a single event that holds with
probability 1.

adaptive learning rates. We close this appendix with two lemmas that
are used in Section 8.3 for the analysis of adaptive (OptDA+). The first one
extends Lemma 2.6 to deal with any exponent 𝑟 ∈ [0, 1).

Lemma B.8. Let 𝑇 ∈ N, 𝜀 > 0, and 𝑟 ∈ [0, 1). For any sequence of non-negative real
numbers 𝑎1, . . . , 𝑎𝑇 , it holds

𝑇∑
𝑡=1

𝑎𝑡(
𝜀 +∑𝑡

𝑠=1 𝑎𝑠

) 𝑟 ≤ 1
1− 𝑟

(
𝑇∑
𝑡=1

𝑎𝑡

)1−𝑟

. (B.3)

Proof. The function 𝑦 ∈ R+ ↦→ 𝑦1−𝑟 is concave and has derivative 𝑦 ↦→ (1− 𝑟)/𝑦𝑟 .
Therefore, it holds for every 𝑦, 𝑧 > 0 that

𝑧1−𝑟 ≤ 𝑦1−𝑟 + 1− 𝑟
𝑦𝑟
(𝑧 − 𝑦).

For 𝜀′ ∈ (0, 𝜀), we apply the above inequality to 𝑦 = 𝜀′ +∑𝑡
𝑠=1 𝑎𝑠 and 𝑧 =

𝜀′ +∑𝑡−1
𝑠=1 𝑎𝑠 . This gives

1
1− 𝑟

(
𝜀′ +

𝑡−1∑
𝑠=1

𝑎𝑠

)1−𝑟

≤ 1
1− 𝑟

(
𝜀′ +

𝑡∑
𝑠=1

𝑎𝑠

)1−𝑟

− 𝑎𝑡(
𝜀′ +∑𝑡

𝑠=1 𝑎𝑠

) 𝑟
≤ 1

1− 𝑟

(
𝜀′ +

𝑡∑
𝑠=1

𝑎𝑠

)1−𝑟

− 𝑎𝑡(
𝜀 +∑𝑡

𝑠=1 𝑎𝑠

) 𝑟 . (B.4)
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Moreover, at 𝑡 = 1 we have

𝑎1
(𝜀 + 𝑎1)𝑟

≤ (𝜀′ + 𝑎1)1−𝑟 ≤
1

1− 𝑟 (𝜀
′ + 𝑎1)1−𝑟 . (B.5)

Summing (B.4) from 𝑡 = 2 to 𝑇, adding (B.5), and rearranging leads to

𝑇∑
𝑡=1

𝑎𝑡(
𝜀 +∑𝑡

𝑠=1 𝑎𝑠

) 𝑟 ≤ 1
1− 𝑟

(
𝜀′ +

𝑇∑
𝑡=1

𝑎𝑡

)1−𝑟

.

Provided that the above inequality holds for any 𝜀′ ∈ (0, 𝜀), we obtain (B.3) by
taking 𝜀′→ 0. □

Remark B.3. Similar to Lemma 2.6, we can also take 𝜀 = 0 in Lemma B.8 if we
adopt the notation 0/0 = 0. To see this, assume that 𝑎𝑡′ is the first non-zero
number in the sequence (set 𝑡′ = 𝑇 + 1 if such number does not exist). We can
ignore the sum up to 𝑡′ − 1 and for the remaining terms we use (B.3) starting
from 𝑡′ and take 𝜀→ 0.

As for the second lemma, it allows us to bound the moments of a collection of
random variables through an inequality that relates their moments of different
orders. This lemma is used in the proof of Lemma 8.22.

Lemma B.9. Let 𝑝, 𝑟, 𝑐 ∈ R+ such that 𝑝 > 𝑟, and (𝑎1, . . . , 𝑎𝑁 ) be a collection of 𝑁
non-negative real-valued random variables. If

𝑁∑
𝑖=1

E[(𝑎 𝑖)𝑝] ≤ 𝑐
𝑁∑
𝑖=1

E[(𝑎 𝑖)𝑟], (B.6)

Then
∑𝑁
𝑖=1 E[(𝑎 𝑖)𝑝] ≤ 𝑁𝑐

𝑝
𝑝−𝑟 and

∑𝑁
𝑖=1 E[(𝑎 𝑖)𝑟] ≤ 𝑁𝑐

𝑟
𝑝−𝑟 .

Proof. Since 𝑝 > 𝑟, the function 𝑦 ∈ R+ ↦→ 𝑦
𝑟
𝑝 is concave. Applying Jensen’s

inequality for the expectation gives E[(𝑎 𝑖)𝑟] ≤ E[(𝑎 𝑖)𝑝]
𝑟
𝑝 . Next, we apply

Jensen’s inequality for the average to obtain

1
𝑁

𝑁∑
𝑖=1

E[(𝑎 𝑖)𝑝]
𝑟
𝑝 ≤

(
1
𝑁

𝑁∑
𝑖=1

E[(𝑎 𝑖)𝑝]
) 𝑟
𝑝

. (B.7)

Along with inequality (B.6) we then get

𝑁∑
𝑖=1

E[(𝑎 𝑖)𝑝] ≤ 𝑐
𝑁∑
𝑖=1

E[(𝑎 𝑖)𝑟] ≤ 𝑐𝑁1− 𝑟𝑝

(
𝑁∑
𝑖=1

E[(𝑎 𝑖)𝑝]
) 𝑟
𝑝

. (B.8)

In other words (
𝑁∑
𝑖=1

E[(𝑎 𝑖)𝑝]
)1− 𝑟𝑝

≤ 𝑐𝑁1− 𝑟𝑝 .

Taking both sides of the inequality to the power of 𝑝/(𝑝 − 𝑟), we obtain effectively

𝑁∑
𝑖=1

E[(𝑎 𝑖)𝑝] ≤ 𝑁𝑐
𝑝
𝑝−𝑟

The second inequality combines the above with second part of (B.8). □





C
FROM PSEUDO-REGRET TO EXPECTED REGRET

In this appendix, we explain how can provide bound on expected regret for
the algorithms and setup described in Chapter 8.
To begin, we first observe that Lemma 8.5 can in fact be restated as a bound

on E

[
max𝑧 𝑖∈𝒵 𝑖

∑𝑇
𝑡=1⟨𝑉̂ 𝑖

𝑡+ 1
2
, 𝑥 𝑖𝑡 − 𝑧 𝑖⟩

]
for any comparator set 𝑧 𝑖 ⊆ 𝒳 𝑖 as below.

Lemma C.1. Suppose that Assumptions 5.2 and 7.1 hold and all players run (OptDA+)
with non-increasing learning rates satisfying Assumption 8.1 and 𝜼𝑡 ≤ 𝜸𝑡 for all 𝑡 ∈ N.
Then, for all 𝑖 ∈ 𝒩 ,𝑇 ∈ N, and bounded set𝒵 𝑖 ⊂ 𝒳 𝑖 with𝑅 ≥ sup 𝑧 𝑖 ∈ 𝒵 𝑖 ∥𝑋 𝑖

1− 𝑧 𝑖 ∥,
we have

E

[
max
𝑧 𝑖∈𝒵 𝑖

𝑇∑
𝑡=1
⟨𝑉̂ 𝑖

𝑡+ 1
2
, 𝑥 𝑖𝑡 − 𝑧 𝑖⟩

]
≤ E

[
𝑅2

2𝜂𝑖
𝑇+1
+ 1

2

𝑇∑
𝑡=1

𝜂𝑖𝑡 ∥𝑉̂ 𝑖

𝑡+ 1
2
∥2

+
𝑇∑
𝑡=2

𝛾𝑖𝑡𝐿
2
(
3∥V̂𝑡− 1

2
∥2
𝜸2
𝑡

+ 3
2 ∥X𝑡 −X𝑡−1∥2

)
+

𝑇∑
𝑡=2
((𝛾𝑖𝑡 )2

√
𝑁𝐿∥𝜉𝑖

𝑡− 1
2
∥2 + 𝐿√

𝑁
∥𝝃𝑡− 1

2
∥2
𝜸2
𝑡

)
]
.

Proof. Let us define 𝑧 𝑖★ = arg max𝑧 𝑖∈𝒵 ⟨𝑉̂ 𝑖

𝑡+ 1
2
, 𝑥 𝑖𝑡 − 𝑧 𝑖⟩. This is a random variable

whose value depends on the actual feedback. We note however that ⟨𝑉̂ 𝑖

𝑡+ 1
2
, 𝑥 𝑖𝑡 −

𝑧 𝑖⟩ is in fact exactly the scalar term that appears in Corollary 8.2. Therefore,
we just need to conduct the proof without further modifying this term (in
particular, we do not have anymore E[⟨𝑉̂ 𝑖

𝑡+ 1
2
, 𝑥 𝑖𝑡 − 𝑧 𝑖★⟩] = E[⟨𝑉 𝑖(X𝑡+ 1

2
), 𝑥 𝑖𝑡 − 𝑧 𝑖★⟩])

and we get the desired result. □

Lemma C.1 provides a bound for the linearized regret evaluated with respect
to the noisy feedback. Nonetheless, what we need is a bound for the linearized
regret evaluated with respect to the noiseless feedback, from which we can
then deduce a bound on the expected regret E[Reg𝑖𝑇(𝒵 𝑖)] using the convexity
assumption (Assumption 5.1). To achieve this, we rely on the following lemma.

Lemma C.2. Let 𝑖 ∈ 𝒩 and𝒵 𝑖 ⊂ 𝒳 𝑖 be a compact. Let 𝑅 = max𝑧 𝑖 ∥𝑥 𝑖1 − 𝑧 𝑖 ∥. Then,
under Assumption 7.1, for any ℱ𝑡-adapted sequence of played points (x𝑡)𝑡∈N, it holds

E

[
max
𝑧 𝑖∈𝒵 𝑖

𝑇∑
𝑡=1
⟨𝑉 𝑖(x𝑡), 𝑥 𝑖𝑡 − 𝑧 𝑖⟩

]
≤ E

[
max
𝑧 𝑖∈𝒵 𝑖

𝑇∑
𝑡=1
⟨𝑉̂ 𝑖

𝑡 , 𝑥 𝑖𝑡 − 𝑧 𝑖⟩
]
+ 𝑅

√√√
𝑇∑
𝑡=1

E[∥𝜉𝑖𝑡 ∥2]
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Proof. Let 𝑧 𝑖★ = arg max𝑧 𝑖∈𝒵 ⟨𝑉 𝑖(𝑥 𝑖𝑡), 𝑥 𝑖𝑡 − 𝑧 𝑖⟩. We remark that 𝑧 𝑖★ is a random
variable that depends on the realization of the noises up to time 𝑡. Since
𝑉̂ 𝑖
𝑡 = 𝑉

𝑖(x𝑡) + 𝜉𝑖𝑡 , we have

⟨𝑉 𝑖(x𝑡), 𝑥 𝑖𝑡 − 𝑧 𝑖★⟩ = ⟨𝑉̂ 𝑖
𝑡 , 𝑥 𝑖𝑡 − 𝑧 𝑖★⟩ − ⟨𝜉𝑖𝑡 , 𝑥 𝑖𝑡 − 𝑥 𝑖1⟩ − ⟨𝜉

𝑖
𝑡 , 𝑥

𝑖
1 − 𝑧

𝑖
★⟩ (C.1)

Provided that both 𝑥 𝑖𝑡 and 𝑥 𝑖1 areℱ𝑡-measurable, with the law of total expectation
we deduce that the expectation of the second term is 0,

E[⟨𝜉𝑖𝑡 , 𝑥 𝑖𝑡 − 𝑥 𝑖1⟩] = E[E𝑡[⟨𝜉𝑖𝑡 , 𝑥 𝑖𝑡 − 𝑥 𝑖1⟩]] = E[⟨E𝑡[𝜉𝑖𝑡], 𝑥 𝑖𝑡 − 𝑥 𝑖1⟩] = 0.

On the other hand, the sum of the third term can be bounded using the definition
of 𝑅

E

[
𝑇∑
𝑡=1
⟨𝜉𝑖𝑡 , 𝑥 𝑖1 − 𝑧

𝑖
★⟩

]
≤ E

[




 𝑇∑
𝑡=1

𝜉𝑖𝑡






 ∥𝑥 𝑖1 − 𝑧 𝑖★∥
]
≤ E

[
𝑅






 𝑇∑
𝑡=1

𝜉𝑖𝑡







]

.

Applying Jensen’s inequality we get

E

[




 𝑇∑
𝑡=1

𝜉𝑖𝑡







]
≤

√√√√√
E







 𝑇∑
𝑡=1

𝜉𝑖𝑡






2 =

√√√
𝑇∑
𝑡=1

E[∥𝜉𝑖𝑡 ∥2].

Combining the above we obtain

E

[
𝑇∑
𝑡=1
⟨𝑉 𝑖(x𝑡), 𝑥 𝑖𝑡 − 𝑧 𝑖★⟩

]
≤ E

[
𝑇∑
𝑡=1
⟨𝑉̂ 𝑖

𝑡 , 𝑥 𝑖𝑡 − 𝑧 𝑖★⟩
]
+ 𝑅

√√√
𝑇∑
𝑡=1

E[∥𝜉𝑖𝑡 ∥2]

To conclude, we upper bound the second term by E
[
max𝑧 𝑖∈𝒵 𝑖

∑𝑇
𝑡=1⟨𝑉̂ 𝑖

𝑡 , 𝑥 𝑖𝑡 − 𝑧 𝑖⟩
]
.
□

With Lemmas C.1 and C.2, we see immediately that compared to the pseudo-
regret bound that we provided in Chapter 8, the only additional term is

𝑅

√∑𝑇
𝑡=1 E[∥𝜉𝑖𝑡 ∥2]. Thanks to Assumption 7.1, we have

𝑅

√√√
𝑇∑
𝑡=1

E[∥𝜉𝑖
𝑡+ 1

2
∥2] ≤ 𝑅

√√√
𝑇∑
𝑡=1
(𝜎2
𝑀

E[∥𝑉 𝑖(X𝑡+ 1
2
)∥2] + 𝜎2

𝐴
)

≤ 𝑅

√√√
𝜎2
𝑀

𝑇∑
𝑡=1

E[∥𝑉 𝑖(X𝑡+ 1
2
)∥2] + 𝑅𝜎𝐴

√
𝑇.

Therefore, using Theorem 8.9 we see immediately that the 𝒪(
√
𝑇) and 𝒪(1)

regret bounds of Theorem 8.11 are still valid in the case of predetermined
learning rates that we studied in Section 8.2. As for the case of adaptive learning
rates that we examined in Section 8.3, we have directly 𝑅

√∑𝑇
𝑡=1 E[∥𝜉𝑖

𝑡+ 1
2
∥2] ≤

𝑅𝜎̄
√
𝑇 under Assumption 8.2. As such, the only regret bound that we are not

able to recover is the 𝒪(1) bound of Theorem 8.24. This is because we are not
able to show that the sum

∑+∞
𝑡=1∥V(X𝑡+ 1

2
)∥2 is finite in expectation when we use

adaptive learning rates in the multiplicative noise regime (instead, we show it
is finite almost surely in Theorem 8.19).
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