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Titre : Apprentissage non-supervisé sur des données textuelles à partir de représentations
neuronales de texte

Résumé : Les techniques de plongement de mots sont des techniques qui ont pour but
de calculer une représentation vectorielle d’un mot, en capturant son sens sémantique.
Ces représentations sont destinées à alimenter toutes sortes d’algorithmes d’apprentissage
automatique. Toutefois, force est de constater que les techniques de plongement, notamment
les modèles Transformeur, n’ont été que très peu exploités dans le monde non-supervisé.
Dans cette thèse, nous nous intéressons exclusivement à des tâches d’apprentissage non-
supervisé comme l’apprentissage automatique et la détection d’anomalies. Dans un premier
temps, nous tentons de décortiquer ces modèles multi-couches en gardant en tête le contexte
non-supervisé. Dans un second temps, nous proposons plusieurs méthodologies permettant
d’exploiter au mieux les modèles Transformeur, obtenant des résultats satisfaisant sur des
jeux de données réels.

Mots clés : Apprentissage non-supervisé, Plongements de mots, Modèles Transformeur,
Classification automatique, Détection d’anomalies.

Title: Unsupervised Learning from Textual Data with Neural Text Representations

Abstract: Word embeddings are techniques that aim at computing a vector representation
of words, capturing their semantic meaning. These representations are intended to be fed
into various kinds of machine learning algorithms. However, we observed that embedding
techniques, notably Transformer models, have been overlooked in the unsupervised world
of Natural Language Processing. In this thesis, we focus exclusively on unsupervised
learning tasks such as clustering and anomaly detection. First, we attempt to dissect these
multi-layer black-box models while keeping in mind the unsupervised context. Second, we
propose several novel methodologies to make the most of Transformer models, obtaining
satisfactory results on real datasets.

Keywords: Unsupervised learning, Word embeddings, Transformer models, Clustering,
Anomaly detection.





Résumé substantiel

L’ère du numérique induit indubitablement des volumes colossaux de données dont la
majeure partie est non-structurée, ce qui signifie qu’elles ne sont pas organisées sous une
forme déterminée comme par exemple un tableau à valeurs numériques. Les images et
les documents font partie de ces données et nécessitent des traitements particuliers afin
d’en tirer de la valeur. Une difficulté supplémentaire se présente vis-à-vis des données
textuelles, car celles-ci, dans leur forme brute, ne contiennent pas de valeurs numériques,
contrairement aux images, par exemple. Dans ce cas, la question que l’on pourrait se
poser est comment un algorithme peut comprendre que «bénéfique» et «utile» ont un
sens similaire, alors qu’«utile» et «futile» ont un sens opposé ? Pour répondre à cela, des
techniques ont été mises en place afin de transformer automatiquement du texte en données
numériques qu’un algorithme d’apprentissage automatique peut traiter. Ces méthodes sont
appelées plongements de mots et permettent de transformer des mots ou des séquences de
texte en vecteurs à valeurs réelles et de même taille. Ces plongements capturent efficacement
la sémantique de chaque mot et permettent, par exemple, de savoir dans quelle mesure
deux phrases veulent dire la même chose.

Au cours de la dernière décennie, le domaine des plongements de mots a connu un
engouement sans précédent notamment avec l’avènement des modèles Transformeurs, avec
une multitude de méthodes ayant vu le jour pour répondre à toutes sortes de problèmes de
traitement automatique de la langue comme la reconnaissance d’entités nommées, l’analyse
de sentiment ainsi que les systèmes de question-réponse. Toutes ces tâches sont dites
supervisées et nécessitent une labellisationmanuelle afin d’entraîner les modèles apprenants.
Dans cette thèse en revanche, nous nous plaçons dans un contexte non-supervisé où nous
supposons ne disposer d’aucune information experte vis-à-vis des données. Les tâches
non-supervisées constituent un enjeu majeur dans l’industrie, au vu de la quantité de
données disponible et du coût de la labellisation qui nécessite un investissement humain
considérable. L’apprentissage non-supervisé permet de créer de la valeur à partir de larges
volumes de données et a un fort intérêt exploratoire et d’aide à la décision. Parmi les
tâches non-supervisées les plus importantes, on retrouve la classification automatique (ou
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clustering), la détection d’anomalies et la visualisation de données. C’est autour de ces
thématiques que s’articulent les travaux de cette thèse.

Tout d’abord, partant du constat que les modèles Transformeurs sont très peu exploités
dans le monde non-supervisé, nous commençons par explorer leur potentiel au niveau
des multiples représentations mot par mot qu’ils fournissent. Pour cela, nous établissons
une méthodologie empirique et exploratoire qui nous permet de (i) mieux comprendre le
fonctionnement des boites-noires Transformeurs couche par couche, ce qui est un enjeu
majeur dans la recherche dans le domaine, et (ii) avoir une première idée des performances
attendues dans un contexte non-supervisé.

Par la suite, après avoir étudié les similitudes et les différences entre les différentes
couches d’un mêmemodèle Transformeur, nous nous attelons à explorer la complémentarité
de ces différentes couches. Pour cela, nous comparons différentes techniques ditesmultiway
et qui permettent de calculer une matrice de donnéesX en compressant de façon simultanée
les différentes matricesXℓ issues de chaque couche ℓ. Cette matrice consensus est ensuite
utilisée pour réaliser du clustering de mots. Nous montrons que certaines de ces méthodes
sont capables d’effectuer des regroupements de mots de manière efficace et interprétable.
Nous évaluons leurs performances sur une grande variété de modèles Transformeur, de
jeux de données, de techniques multiblocs et de méthodes de décomposition de tenseur
couramment utilisées pour traiter les données qui se présentent sous forme de tables
multiples. Les résultats encourageants obtenus indiquent que chaque couche apporte, en
effet, quelque chose d’unique et d’utile à la tâche de clustering.

Nous nous intéressons ensuite aux représentations de phrases et de documents issues
des modèles Transformeurs. Nous nous basons sur de nombreux constats posés dans de
précédentes études dont la nôtre, pour émettre l’hypothèse que les modèles multicouches
sont très souvent sous-exploités car seule la dernière couche est généralement utilisée.
Toujours dans un contexte non-supervisé, nous proposons une nouvelle méthodologie
permettant d’exploiter au mieux les modèles Transformeurs sans recourir à aucune sorte
de réentraînement. Nous démontrons notamment l’intérêt de l’approche ensembliste pour
(i) améliorer la qualité et la robustesse du clustering de documents tout en exploitant
pleinement les modèles Transformeurs multicouches, et (ii) s’affranchir non seulement du
choix de la couche à utiliser qui est très difficile dans un contexte non-supervisé, mais aussi
du nombre de classes, qui est à ce jour, un problème encore ouvert.

Dans la même lignée, nous nous intéressons de manière plus approfondie aux modèles
Transformeurs et à leur application au clustering et à la visualisation de données. Pour cela,
nous nous focalisons sur les méthodes de transfert d’apprentissage qui consistent à réap-
prendre les modèles Transformeurs pré-entraînés sur une tout autre tâche afin d’améliorer
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leur qualité sur des tâches futures appliquées à des données que le modèle n’aura jamais
vues. Malgré la popularité de ces méthodes, elles n’ont quasiment jamais été évaluées sur
une tâche de clustering alors qu’elles s’y prêtent très bien sur le plan théorique. Nous
démontrons par le biais d’une étude empirique sur un large éventail de modèles que des
méthodes de post-traitement basées sur la réduction de dimension sont nettement plus avan-
tageuses que les stratégies de réapprentissage proposées en grand nombre dans la littérature.
Ensuite, afin d’essayer d’expliquer les performances obtenues par les différentes méthodes
de post-traitement, nous nous intéressons à la notion d’anisotropie, largement abordée
dans la littérature et suspectée de réduire l’expressivité des représentations textuelles.
Cette hypothèse vient du fait que les espaces de représentation fortement anisotropiques
présentent des vecteurs de mots qui n’occupent qu’un cône étroit dans l’espace, ce qui
implique notamment une distance cosinus très resteinte entre les paires de vecteurs de
mots. Cela a conduit à plusieurs tentatives pour contrer ce phénomène à la fois sur des
représentations textuelles statiques et contextuelles. Cependant, malgré cet effort, il n’y a
pas de relation établie entre l’anisotropie et la performance. Afin d’y remédier, nous nous
appuyons sur la tâche de classification automatique comme moyen d’évaluer la capacité des
représentations textuelles à produire des classes pertinentes. Ainsi, de façon surprenante,
nous montrons empiriquement un impact plus que limité de l’anisotropie sur l’expressivité
des représentations textuelles à la fois en termes de directions et de similarité L2.

Enfin, dans la dernière partie de cette thèse, nous nous intéressons à une autre problé-
matique non-supervisée : la détection d’anomalies appliquée à la détection de contenus de
formation non-éligible ou frauduleux dans le cadre du programme du compte personnel
de formation (CPF). Pour cela, nous combinons les capacités qu’ont les plongements pré-
entraînés à capturer les aspects sémantiques à partir de textes courts ainsi que les modèles
de mélange, très utiles pour modéliser des groupes de données de tailles, de volumes et de
formes différentes. Nous proposons un nouveau cadre de détection de contenus textuels
anormaux écrits en français, adapté à deux cas que nous avons identifiés : le cas où les
données concernent une thématique bien précise ainsi que le cas où les données présentent
plusieurs sous-thématiques, dont le nombre n’est pas forcément connu à l’avance. Dans les
deux cas, nous obtenons des résultats supérieurs à l’état de l’art, avec un temps de calcul
nettement inférieur.

Cette partie répond à une problématique industrielle qui est la détection d’anomalies
dans les contenus de formation de la plateforme moncompteformation (https://www.
moncompteformation.gouv.fr/). En effet, au cours des dernières années, de nombreux
efforts ont été consacrés à la lutte contre la fraude dans le CPF, en utilisant plusieurs
types de données telles que l’évolution temporelle du chiffre d’affaires des organismes de

https://www.moncompteformation.gouv.fr/
https://www.moncompteformation.gouv.fr/
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formation, les interactions entre les usagers et les organismes de formation, etc. Un type
important d’anomalies est lorsque les organismes de formation proposent des contenus de
formation factices ou non-éligibles. Nous incluons dans ce contexte les formations qui sont
classées dans la mauvaise catégorie, intentionnellement ou non. Ce travail fait partie d’un
projet avec des objectifs à court et à long terme. À court terme, notre objectif est d’identifier
dans la base de données les contenus de formation atypiques qui peuvent être soit faux, soit
inéligibles, soit mal catégorisés, afin que les formations correspondantes soient corrigées
par les organismes de formation ou désactivées. À plus long terme, l’objectif est d’évoluer
vers un système de détection d’anomalies en temps réel qui sera intégré dans la phase au
cours de laquelle un organisme de formation renseigne les informations sur la formation
proposée. Cela aidera à prévenir l’apparition d’anomalies dans la base de données, ce qui
empêchera par conséquent les utilisateurs de la plateforme de tomber sur des formations
qui ne devraient pas s’y trouver. C’est cet objectif à long terme qui nous motive à accorder
une attention particulière au temps de calcul, car le système de détection d’anomalies doit
être capable de fournir des sorties en temps réel dans un court laps de temps.
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Introduction

This thesis sits at the intersection between two domains: text-mining and natural language
processing. Text-mining seeks to extract meaningful information and discover structures
of interest in text data, while natural language processing (NLP) is focused on enabling
computers to understand and manipulate human language. The two disciplines are inter-
connected, each one finding application into the other. For example, NLP techniques such
as word sense disambiguation and semantic parsing could see significant improvements
through typical unsupervised text-mining approaches like text clustering as shown in (Kok
and Domingos, 2008; Niu et al., 2004; Pantel and Lin, 2002). In the same way, existing
clustering techniques can further be enhanced using common NLP methods such as part-
of-speech tagging and stemming (Baghel and Dhir, 2010; Sedding and Kazakov, 2004), as
part of the pre-processing phase. Both approaches of combining these two important and
complementary fields are considered throughout this thesis.

Context and Motivation

The present work is made in collaboration between “Université Paris Cité - Centre Borelli
UMR9010” and “Caisse des Dépôts et Consignations” (CDC) and aims to achieve both
applied and academic outcomes, with a focus on addressing real-world industrial challenges
and advancing the state of knowledge in the field. In particular, CDC is a general interest
public institution that has a wide field of action and, like many other organizations, each
of its activities generates a great quantity of text data. Examples of such corpora include
(1) mails that need to be directed to the appropriate service according to their topic, (2)
commercial reports that require to be organized and analyzed in order to detect various
signals like complaints and suggestions, and (3) audit reports that need to be classified as
critical or noncritical; those being only examples of use cases involving text data, among
many other.

However, the vast majority of the available corpora are unlabeled and still need to be
exploited to serve diverse purposes. A good example would be the data originating from the
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public training1 platform MonCompteFormation2, where hundreds of thousands of training
sessions are proposed and millions of users are registered. This leads to great volumes of
data utilized in several use cases such as content-based recommendation, skills matching,
course retrieval, and fraud detection.

Moreover, those corpora are of different sizes and contain sequences of different lengths,
from a few words such as titles and skills to hundreds of words as in course and certification
content descriptions. In the case of small corpora of short texts, it can be very challenging
to represent the data samples by vector representations that accurately grasp the meaning
of each text. Modern text representation models address this kind of issue by providing
massively pre-trained models than can be applied to any downstream task. Those appealing
methods have garnered the interest of both researchers and industrialists by their promising
performance results but are still considered black boxes (Yun et al., 2021), full of mysteries.
This is despite the large number of studies devoted to dissecting these models (Clark et al.,
2019; Rogers et al., 2020; Tenney et al., 2019b) and that contributed to lifting the veil on
how pre-trained neural language models work. However, we observed two main gaps in
the overall trend of these studies which are (1) the fact that most of them focus on BERT,
neglecting other similar variants, and (2) the lack of knowledge about their adequacy for
unsupervised learning tasks. One of the objectives of this work is to contribute to filling
these gaps.

The unsupervised learning paradigm has a long history within the field of machine
learning and consists in learning useful patterns in data without explicit supervision like
class labels, rating scores, pair-wise constraints, etc. This gives rise to several challenges
depending on the task such as determining the optimal number of groups, choosing the most
meaningful features, and setting the hyperparameters to their optimal values. Accordingly,
unsupervised systems should ideally not involve any parameterization or at least keep it to
a minimum and ensure that it does not have a critical impact on the outputted results. This
is unfortunately not always the case, which results in techniques that are difficult or even
impossible to use in real-world applications. This underscores the importance of consid-
ering both the academic and industrial perspectives, as it enables a more comprehensive
appreciation of real-world challenges. In this work, we further discuss this topic and show
that it is possible to implement effective unsupervised tools without requiring unrealistic
parameterization.

1not to be confused with the machine learning meaning of “training”.
2https://www.moncompteformation.gouv.fr/

https://www.moncompteformation.gouv.fr/
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Contributions

As mentioned above, although dense text representations are gaining in popularity, their
uptake in the unsupervised learning community is very limited. This work contributes to
closing this gap through different proposed methodologies that revolve around four main
challenges, described as follows:

Shed light on the black-box (Chapters 2 and 3)

The first contribution is part of a continuum of research that tries to decipher popular
neural-based text representations such as BERT. The particularity of our methodology is that
it is exclusively based on data-mining approaches that help us deepen our understanding
of Transformer-based models from a different perspective. We specifically make use of
partitioning and hierarchical clustering techniques as well as multiway and tensor-based
factorial analysis, basing our approach both on exploratory and performance considerations.
We show through our experiments similarities, differences and more importantly, a certain
complementarity between the different layers, which will be more thoroughly harnessed in
the next contributions.

Efficient clustering via Transformer models (Chapter 4)

The second contribution deals with a document-level task which is document clustering.
The same assessment can be reached in this regard: we do not know much about the
expected performance of dense word representations in the clustering task. Moreover, in
view of our previous findings, each layer of the Transformer-based language models seems
to deliver something unique despite their similarity. Looking for the best layer to use is
therefore pointless in addition to being impossible in the absence of labeled data. Thus, we
prove that combining the layers achieves better results than conventional strategies such
as using the last or the second to last layer. More importantly, we show that our proposed
approach based on an ensemble method outperforms the use of the best layer which cannot
even be accurately determined for each dataset in an unsupervised context.

Document clustering and the impact of fine-tuning language models (Chapter 5)

In order to further improve the quality of the text representations outputted by Transformer-
based language models, several fine-tuning strategies have been proposed. The purpose of
such approaches is to provide more transferable text representations, that can be used on
various downstream tasks, especially when fine-tuning is not possible, which is typically the
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case in unsupervised tasks like document clustering. However, although those approaches
are designed to be tailored to all kinds of unsupervised tasks, their effectiveness has only
been assessed on short text similarity. In our third contribution, the primary focus is
on verifying if those popular methods are well suited for clustering long text sequences.
Subsequently, we show how post-processing approaches based on dimension reduction
may prove to be significantly more effective than different kinds of fine-tuning strategies.

Semantic anomaly detection in multi-topic corpora (Chapter 6)

The previous contributions were devoted to gaining insight into how to best use popular
dense text representation in an unsupervised context, with an application to text clustering.
This last contribution addresses a real-world need which is fraud detection in training
contents with an important time efficiency constraint. To this end, we propose an anomaly
detection framework in which we simulate different scenarios. In the first scenario, we
assume that the data samples address one global topic, from which we try to identify deviat-
ing samples. The second scenario assumes that more than one subject is potentially present
in the corpus, the aim being to identify the text samples that do not cover any of the main
underlying themes. To answer both cases, we propose a fully unsupervised methodology
based on mixture models and pre-trained semantic representations in which we suppose
the number of groups unknown. An empirical study conclusively demonstrates that our
proposal significantly outperforms state-of-the-art approaches in terms of performance
and computational efficiency.



Chapter 1

Data Mining and Representation
Learning: A State-of-the-Art Overview

In this chapter, we present a review of the literature to which the next chapters relate
i.e. unsupervised learning applied to textual data. We first discuss text representation (or
vectorization), necessary in order to handle text data. Then, we provide a short overview
of existing approaches to clustering, anomaly detection and dimension reduction, with
examples of real-world applications.

1.1 Text Representation

In this section, we discuss how to mathematically represent text sequences in order to be
processed by any machine learning algorithm. This step is indispensable regardless of the
sought task (classification, information retrieval, clustering, anomaly detection, . . . ) and
can be carried out in several ways. The most classical way of representing a text corpus
is using a document-term matrix, commonly called bag-of-words (BOW). It consists in
building a matrix X of n rows and v columns where n is the number of documents and v
the total number of unique words present in the corpus (vocabulary size). Each value xij of
the BOW matrix usually represents the number of occurrences of the jth word in the ith
document, which leads to a high sparsity of X. This way of representing text is used as
input to different tasks such as recommender systems (Pazzani and Billsus, 2007), question
answering (Li and King, 2010), document clustering (Xu et al., 2003) and anomaly detection
(Kannan et al., 2017). A common way to weight the values of the BOW matrix is TF-IDF
(Term Frequency - Inverse Document Frequency) which consists in giving high importance
to frequent words at the document level (TF) and low importance to frequent words at the
corpus level (IDF). The advantage of the BOW representation is its simplicity since it does
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not require any external information. It is also particularly useful when dealing with a
corpus that is domain-specific or written in a low-resource language. The main drawback of
the bag-of-word representation is that it fails at capturing underlying semantics, especially
when dealing with short texts. It remains suitable as input to techniques that do not rely on
semantic information and that properly handle sparse data such as co-clustering methods
(Ailem et al., 2017a; Dhillon et al., 2003; Salah and Nadif, 2019) that aim at grouping rows
and columns simultaneously. Otherwise, several attempts have been made to inject more
semantics into the BOW like the integration of ontology representations (Hotho et al., 2001)
or the use of linear and non-linear dimension reduction to embed the documents into a
low-dimensional space using Singular Value Decomposition (SVD) as in (Deerwester et al.,
1990) and spectral decomposition as in (He et al., 2004).

1.1.1 Word Embeddings

Transforming words into fixed-size continuous vectors that capture advanced language
properties is called word embeddings. Most of the word embedding techniques are un-
supervised (self-supervised), which means that they learn the syntax and semantics of a
given language based on large corpora, hence providing general and task-independent
representations (Radford et al., 2019). Word embeddings are often divided into two cate-
gories: prediction models and count-based models, both relying on the hypothesis that
words occurring in the same context tend to have the same meaning (Harris, 1954).

Predictivemodels aim to learnword vectors as parameters optimizing a given objective
function. This is usually achieved by extensive pre-training of language models (Bengio
et al., 2000), after deriving supervision from word sequences. For example, given a sequence
of s words w1, . . . , ws, the CBOW model (Mikolov et al., 2013a) is trained to predict a word
wt given its context in a sentence as a classification task through a log-linear classifier.
The hidden weights of the fully trained network are then used as word representations. In
the same paper, the authors proposed skip-gram which in contrast to CBOW, predicts the
surrounding context given a center word by maximizing:

1

s

s∑
t=1

t+m∑
c=t−m
c ̸=t

log p(wc|wt)

where m is the size of the context window, which means that the m words before and
after wt form its context. Skip-gram is originally stated as m × 2 classification tasks,
thus relying on the softmax function to determine the probability of each word within
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Figure 1.1: Illustration of the input and output representations in a word2vec skipgram
model with window sizem = 1, meaning that the model tries to predict one word before
and one word after the center word wt. The input is a one-hot vector of size v.

the context: p(wc|wt) = eδ(wt,wc)/
∑

w∈V e
δ(wt,w), where V is the vocabulary set of size v

and δ(wt, wc) = vwt
· v′

wc
, vw and v′

w being respectively the “input” and “output” vector
representations of the wordw, part of thematricesV = [v1, . . . ,vv]

⊤ andV′ = [v′
1, . . . ,v

′
v]

represented in Figure 1.1. The problem with this formulation is that it is impractical in view
of the massive number of classes that is equal to the number of words in the vocabulary.
To overcome this issue, two strategies were adopted by Mikolov et al. (2013b), namely
hierarchical softmax (Morin and Bengio, 2005) and negative sampling, the latter being
more commonly used. Negative sampling consists in transforming the problem of v-class
classification into a small number of binary logistic classifiers that predict whether a word
is positive (context word) or negative (randomly sampled). Assuming m′ is the number
of negative samples andm the context window size, the problem becomes equivalent to
taking 2m+m′ logistic decisions, leading to the following objective:

minimize
V, V′

s∑
t=1

[ t+m∑
c=t−m
c ̸=t

log(1 + e−δ(wt,wc)) +
∑

wn∈Nt

log(1 + eδ(wt,wn))

]
(1.1)

where Nt is the set of negative samples. This significantly lowers the complexity of skip-
gram, making “skip-gram with negative sampling” (SGNC) the most popular version of
word2vec models (Mikolov et al., 2013a,b). Once the SGNC model is trained, the inner
vectors vw are usually used to represent each word w, although the outer vectors v′

w have
shown interesting properties as well and have been successfully used in combination with
the inner vectors (Garten et al., 2015).
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SGNC has also inspired Bojanowski et al. (2017) who proposed fastText that incorporates
morphological considerations into the learned representations via the n-gram sub-word
information. This choice is motivated by the idea that inflected languages such as Russian
and Finnish contain a large part of words with shared sub-words (roots, suffixes, etc). This
is in line with the aspiration of the authors to provide ready-to-use representations for a
wide range of languages (Grave et al., 2018), including low-resource languages like Kurdish
and Nahuat, both highly inflected. In fastText, Equation 1.1 is optimized where the dot
product is computed over all the sub-words of the center word. δ(wt, wc) hence becomes:

δ(wt, wc) =
∑

wg∈Gwt

zwg · vwc

where Gwt is the set of n-gram sub-words appearing in the word wt and zwg the representa-
tion of the sub-word wg.

Count-based models in contrast to predictive models, do not rely on language mod-
eling to produce word embeddings, but rather on count matrices that provide statistics
about each word (Turney and Pantel, 2010). Various count matrices have been used in the
literature including word-context and word-word co-occurrence matrices. Word-context
matrices count the number of occurrences cij of a given word i in a sequence j referred to
as context. Document-term matrices may be considered as word-context matrices (Turney
and Pantel, 2010) from which it is possible to derive word representations via the LSA/LSI
(Deerwester et al., 1990; Dumais et al., 1988) considering word-wise dimension reduction
instead of documents as mentioned earlier. Lebret and Collobert (2014) argued that the
Hellinger metric, which measures the dissimilarity between probability distributions, is
better suited to deal with word-context representations than the classical Euclidean dis-
tance, inherently used in PCA. Thus, they prefer relying on Hellinger PCA to compute
dense word representations achieving promising results on several NLP downstream tasks.
Word-word co-occurrence matrices, on the other hand, contain pair-wise statistics between
words and are commonly used to compute word embeddings via matrix factorization. In
this spirit, Lund and Burgess (1996) proposed Hyperspace Analogue to Language (HAL)
which uses a weighted version of word-word co-occurrence matrices where each value is
weighted according to the distance between the target word and the context word. Rohde
et al. (2006) analyzed how high-frequency words influence the representations provided
by HAL, leading to biased similarity results. Several weighting strategies have been pro-
posed to overcome this issue such as the use of the Pearson correlation measure (Rohde
et al., 2006), frequency-based normalization (Shaoul and Westbury, 2006) and point-wise
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mutual information (PMI) (Bullinaria and Levy, 2007). It is also worth mentioning that links
have been established between count-based methods and predictive models by Levy and
Goldberg (2014) who brought to light a connection between SGNS and the PMI word-word
co-occurrence matrix factorization (shifted by a constant) and report comparable results on
word similarity with a simple SVD applied to the said matrix.

Halfway between count-based and predictive models, the well-known GloVe model
(Pennington et al., 2014) is based on an objective defined as a factorization of the log-count
matrix. It is sometimes associated with predictive models (Levy et al., 2015) because it
learns word representations by predicting the co-occurrence probabilities of words in a large
training corpus. Concretely, GloVe minimizes the weighted squared difference between the
dot product similarity of two word vectors and their co-occurrence log-probability. The
optimized objective is hence formulated as follows:

minimize
vw,v′

w,∀w∈V

|V|∑
t,c=1

f(xij)(vwt
· v′

wc
+ bwt

+ b′wc
− log(xij))

2

where bwt
and b′wc

are the input and output bias terms. The weighting function f has been
chosen to ensure that rare and frequent word pairs have a relatively lesser impact:

f(x) =

(x/xmax)
α if x < xmax

1 if x ≥ xmax

where xmax is set to 100 and α to 0.75 in (Pennington et al., 2014). As with skip-gram, a
log-linear model is used to optimize GloVe, based on word pairs occurring within the same
context window.

1.1.2 FromWord to Sequence Embeddings

Representing text sequences of variable sizes by fixed-sized semantic vectors is crucial
for several tasks like question answering and sentence similarity. One way of deriving
text sequence embeddings is by aggregating word-level representations, usually using the
arithmetic mean operation. This is possible due to an interesting property discovered about
word embeddings like word2vec and GloVe which is their ability to learn complex patterns
and semantics as relationships between the learned vectors such as male-female analogies.
This is indicated by the fact that linear operations on the vectors often translate to some
meaningful results (Mikolov et al., 2013c), e.g. cardiologist - heart + skin = dermatologist.
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Power means, a generalization of the arithmetic mean, have shown good results on
several word embeddings in (Rücklé et al., 2018) where the benefit of concatenating word
vectors derived from different embedding models into one representation has also been
shown. Arora et al. (2017) proposed a weighted average of word representations followed
by a “common component removal” which consists in deducting the projection on the
first singular vector. This improves the results of existing pre-trained representations but
works only on corpora of sufficient sizes, since the weighting strategy depends on word
frequencies computed over the whole corpus and given that the SVD requires a certain
number of samples to be meaningful.

A criticism often made about this kind of approach is that the word order is not con-
sidered which might lead to inaccurate results especially in demanding NLP tasks. This
statement needs, however, to be nuanced in light of recent findings that have shown that
the word order has only limited importance in supposedly context-aware models even on
complex NLP tasks like natural language inference (NLI) and paraphrase detection (Gupta
et al., 2021; Pham et al., 2021; Sinha et al., 2021). It has also been demonstrated that it is quite
possible to achieve satisfying results without introducing the word order in the training
model (Parikh et al., 2016). Another well-known shortcoming of static word representations
is that they provide one representation for each word, regardless of the surrounding context,
which may be problematic, especially in word-level tasks like word sense disambiguation.
To overcome these issues, word representations are often used to initialize a neural network,
which in turn learns contextual connections in a task-specific fashion. Several works have
adopted this strategy using convolutional (Xu et al., 2015), recurrent (Raganato et al., 2017)
and self-attentive (Ruff et al., 2019) networks, with respective applications to text clustering,
word sense disambiguation and anomaly detection.

1.1.3 Contextual Embedding Models

In contextual word representation, we consider that two words appearing in different
contexts should not have the same representation. Thus, the objective of contextual em-
beddings is to provide context-aware word representations that distinguish between the
different semantic variants of the same word, thus dealing with homography and polysemy.
Dedicated models have been proposed in order to compute such embeddings at different
levels: word, sentence and document.

Doc2vec (Le and Mikolov, 2014), sometimes called paragraph2vec, is an extension of
word2vec that learns document embeddings in two ways: PVDM which is inspired by
CBOW where the input word vectors are concatenated instead of summed; and DBOW,
the document level equivalent of skip-gram. In both versions, a special token is introduced
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among the input words. It is called paragraph ID and its role is not clear beside adding
supervision to the modeling of sequences. Indeed, doc2vec provides a framework that
allows for training sequence representations from scratch, with the possibility to inject
labels via the paragraph token and perform supervised tasks such as sentiment classification.
Although the purpose of doc2vec is not to provide off-the-shelf universal models, Lau and
Baldwin (2016) provided a pre-trained version of doc2vec which is intended to be used on
downstream tasks and applied to unseen data.

We include in the contextual embedding family models that directly provide sequence
representations instead of word representations. Such is the case of skip-thought (Kiros
et al., 2015), another extension of skip-gram that encodes sentences into a fixed-sized
vector space. In the same manner as static word embeddings, skip-thought gets supervision
from large corpora by building a training set made of a center sequence and two context
sequences (one before and one after the center sequence). Predicting the context sequences
is carried out through a recurrent sequence-to-sequence (seq2seq) encoder-decoder with
GRU activations (Chung et al., 2014). On a similar note, Siamese CBOW (Kenter et al., 2016)
is trained to distinguish between context sentences of a given center sentence and negative
examples randomly sampled from the corpus. Siamese CBOW is based on a fully connected
network and offers a lighter alternative to the compute-intensive RNN-based skip-thought.

Pre-training contextual sequence embeddings may also be performed with supervised
objectives via labeled data as is the case for InferSent (Conneau et al., 2017), trained
on language inference on the Stanford Natural Language Inference (SNLI) datasets and
CoVe (McCann et al., 2017) trained on an LSTM seq2seq machine translation task. Those
approaches are based on the hypothesis that models trained on certain NLP tasks produce
transferable sequence representations than can be successfully used on other downstream
tasks. In this same line, Subramanian et al. (2018) proposed a multi-task seq2seq model,
trained on several supervised tasks like natural language inference and constituency parsing.
A combination of supervised and unsupervised learning tasks has been performed by Cer
et al. (2018) who observed an improvement brought about by the supervised NLI training
in addition to an unsupervised objective similar to the one used for skip-thought.

Back to word-level contextual representations, ELMo (Peters et al., 2018b) is a pre-
trained bidirectional contextual embedding model made of two LSTM layers. The objective
of ELMo is to provide universal representations that can be used for any downstream task.
A Fine-tuning step is still performed on supervised tasks but only after freezing the model’s
parameters and plugging a prediction layer on top of it.
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Transformer-based Language Models

Since the seminal work of Vaswani et al. (2017), self-attention has revolutionized the field of
language representation learning, achieving state-of-the-art results in numerous NLP tasks,
featuring enhanced parallelization and improved modeling of long-range dependencies
(Devlin et al., 2019; Radford et al., 2018). Following the methodology used in (Dai and
Le, 2015) and Ramachandran et al. (2017), OpenAI GPT (Radford et al., 2018) is first pre-
trained on an unsupervised language modeling objective and then fine-tuned on supervised
objectives like question answering and text classification. The GPT architecture is based
on a left-to-right self-attention decoder, which is not optimal especially for sentence-level
tasks like named entity recognition for which both past and future contextual information
may be useful. Devlin et al. (2019) addressed this issue and proposed a bidirectional model
based on a Transformer encoder with as many inputs as outputs (one per token). The
set of tokens contains pieces of words obtained using the WordPiece tokenizer which
helps drastically reduce the vocabulary size and allows for representing any sequence of
characters, including unseen words. BERT optimizes two objectives:

1. Masked Language Model (MLM) which consists in predicting one or more missing
tokens using the context as a v-class classification task where v is the vocabulary size
(number of tokens).

2. Next Sentence Prediction (NSP), a binary classification task that consists in predicting
whether two input sentences follow one another or have been drawn randomly from
the training corpus. The two sentences are separated by a [SEP] token and the
classification is performed via a softmax applied on the output corresponding to the
first token, generally set as the classification token or [CLS].

Like GPT, BERT is intended to be fine-tuned on task-specific objectives. For example, the
special token [CLS] can be used to predict the class under a classification purpose, and
for a part-of-speech tagging task, a classifier attached to each token output can be used to
predict the morphosyntactic category.

In only a few years, a plethora of Transformer-based pre-trained variants has been
proposed, amending either the objective, the training data, the architecture, the hyper-
parameters or the strategy used to build the vocabulary (tokenizer). RoBERTa (Liu et al.,
2019b) seeks to improve BERT through a more extensive training with a larger corpus as
well as a dynamic masking strategy while the NSP objective is discarded. XLNet (Yang et al.,
2019b) is based on a Transformer architecture trained on an objective named permutation
language modeling (PLM) (Uria et al., 2016) that has been adapted to the bidirectional setting
of XLNet. The proposed objective considers the dependency between predicted targets in
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addition to the dependency with the context tokens, which is more difficult to optimize,
due to the factorial number of possible permutations. To address this, a hyperparameter is
introduced to adjust the number of tokens used for prediction and lower the number of
permutations. ELECTRA (Clark et al., 2020) uses a Transformer-based architecture trained
on the Replaced Token Detection (RTD) objective, inspired by adversarial training. Two
neural networks with a similar architecture are trained on different objectives: (i) first, a
small generator is trained on the MLM objective and is used to substitute tokens by credible
replacements, then (ii) a discriminator is trained to identify whether the tokens are original
or replaced, using the frozen parameters of the generator. Once trained, the discriminator
is used as an encoder, either for generating embeddings or for fine-tuning it on supervised
tasks. The Transformer architecture have also been used in encoder-decoder models that
are particularly useful for seq2seq tasks like text generation and machine translation. MASS
(Song et al., 2019) has been the first to propose an encoder-decoder Transformer-based
model, followed by several other variants like T5 (Raffel et al., 2020) and BART (Lewis et al.,
2020), both using different objectives and training corpora.

Most of the above-mentioned works provide models pre-trained on English corpora.
However, similar architectures have also been trained in various languages like French
(Le et al., 2020; Martin et al., 2020) and Arabic (Antoun et al., 2020). Several multilingual
versions of existing models have also been proposed like XLM-R (Conneau et al., 2020)
and mT5 (Xue et al., 2021), respectively trained on corpora of 100 and 101 languages.
Besides, within the same language, word distributions may greatly differ from one domain
to another. Considering this, existing pre-trained models have been re-trained on domain-
specific corpora in order to capture more precise concepts with respect to a given field
like biomedical sciences (Lee et al., 2019) and mathematics (Peng et al., 2021). However,
one drawback of using general-purpose models as a starting point lies in the fact that the
tokenizer used is not built from the domain-specific vocabulary in which word frequencies
may be highly different. This may be overcome by training the model from scratch, which
requires, however, a large amount of data and a more extensive training. Two popular
examples of such approaches are FinBERT (Yang et al., 2020) dedicated to the finance domain
and SciBERT (Beltagy et al., 2019) trained on a large corpus of scientific articles.

Given the large number of parameters learned by the multilayered Transformer models,
several attempts have been made to reduce the computational demand of Transformer-
based language models. For example, Sanh et al. (2019) proposed a compact model that is
trained based on the teacher-student paradigm which consists in training a student model
(DistilBERT) to mimic the behavior of a teacher model (BERT), thus retaining most of
the performance of original-sized Transformer-based models. A similar approach called
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XtremeDistil (Mukherjee and Hassan Awadallah, 2020) has been applied to the multilingual
version of BERT, where an SVD-reduced version of the mBERT static input embeddings are
used as initial embeddings. A very different strategy has been adopted by Lan et al. (2020)
who proposed ALBERT, made of 18x fewer parameters than BERT while having the same
number of layers and hidden dimensions. This is made possible particularly by parameter
sharing, which consists in duplicating the learned parameters across layers. This certainly
reduces the number of trained parameters and hence the storage memory but does not
affect the inference time (Lu and MacNamee, 2020), even though a lower training time has
been reported in (Lan et al., 2020). As for the training objective of ALBERT, the authors
argued that the NSP objective is not challenging enough for it is partly comparable to a
topic prediction task. It is hence replaced by the sentence order prediction (SOP) objective
that predicts whether two consecutive sentences appear in the right order, thereby focusing
on the more difficult coherence prediction task.

Pre-trained Transformer models can be used either in a feature-based way or via fine-
tuning. When dealing with supervised tasks like sentiment analysis and named entity
recognition, fine-tuning is recommended in order to enrich the model with task-specific
insights. Otherwise, in an unsupervised setting or a situation where re-training is unfeasible,
the feature-based approach remains a good alternative to produce dense representations
that can be fed into various machine learning algorithms. In order to further improve the
feature-based approach, fine-tuning strategies (Carlsson et al., 2021; Cheng, 2021; Gao et al.,
2021; Liu et al., 2021; Reimers and Gurevych, 2019) have been proposed specifically to make
better quality and more transferable sequence representations.

These are only some examples of the numerous existing Transformer-based contextual
approaches, many others can be found in (Kalyan et al., 2021).

1.2 Clustering

Clustering is a major branch of the unsupervised learning domain that aims at organizing a
set of objects into homogeneous groups (or clusters) so that similar objects are grouped
together. The clustering task is keywhen dealingwith unlabeled data and is utilized in awide
range of domains such as pattern recognition, recommender systems and bioinformatics.
Given a set of n objects (or samples, individuals, instances), each object is commonly
described by d features (or variables) and represented by a vector xi = (xi1, . . . xid), i =

1, . . . , n. The whole set of data is hence represented by a matrix X of size n × d and is
intended to be split into g homogeneous parts.
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Depending inter alia on the data used as input, many options are available regarding
the clustering approach to use. In this section, we describe briefly the main families of
clustering techniques as well as their specificities. For a comprehensive review of the
existing clustering techniques and their applications, the reader is referred to Saxena et al.
(2017) and Xu and Wunsch (2005).

1.2.1 Hierarchical Clustering

Hierarchical clustering methods structure the data samples in the form of a hierarchy, rep-
resented by a binary tree called dendrogram. The hierarchy structure goes from singletons
to the whole set of samples (bottom-up strategy) or inversely (top-down strategy). These
two strategies lead to Agglomerative and Divisive approaches respectively.

Agglomerative clustering approaches first affect each data sample into a singleton
cluster then progressively merge pairs of clusters until obtaining a single group that gathers
the whole set of samples. This process is carried out greedily by merging the clusters that
are the closest according to a predetermined criterion that derives the dissimilarity between
two clusters from the pairwise distances between their members. Any distance/similarity
measure can be used such as the classical Euclidean distance and the Pearson Correlation
score, usually used on genomic data (Bohlin et al., 2009). Once the pairwise distance is
measured between cluster members, several criteria or linkage functions can be used in
order to assess the distance between clusters. The most popular linkage functions are:
single-linkage (Sibson, 1973) which is the distance between the two closest samples in
the two clusters, complete-linkage (Sorensen, 1948) which considers the distance between
the two most distant samples and average-linkage (Sokal, 1958) that uses the mean of the
distances between the two clusters. When dealing with continuous data, another popular
linkage function is Ward’s criterion which minimizes the variance within the clusters to be
merged (Ward Jr, 1963). Many other agglomerative approaches and variants exist in the
literature like BIRCH (Zhang et al., 1996) and CURE (Guha et al., 1998). BIRCH is known
for its scalability and requires only one scan of the whole data by the means of a Clustering
Feature Tree (Zhang et al., 1996), which makes it suitable for large numerical datasets.
CURE is an agglomerative hierarchical approach that is well suited for the clustering of
noisy data. It uses only a handful of data samples (called representatives) in each cluster to
determine the proximity of two clusters.

Divisive clustering approaches, as opposed to agglomerative techniques, first con-
sider a single cluster containing all of the data samples, then proceeds to successive sub-
divisions until either a termination criterion is met, or each cluster is assigned to its own
singleton cluster. Several strategies can be adopted for the splitting process including
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monothetic approaches based on a single variable like MONA (Kaufman and Rousseeuw,
2009) and DIVCLUS-T (Chavent et al., 2007), and polythetic approaches which use all of the
variables such as DIANA (Kaufman and Rousseeuw, 2009) and the Edwards and Cavalli-
Sforza’s method (1965). Divisive approaches are known for their significant computational
complexity (Milligan and Cooper, 1987), for they have to examine an exponential number
of subgroups to determine the best subdivision (Edwards and Cavalli-Sforza, 1965). This
makes the divisive family of hierarchical approaches less popular compared to agglomerative
hierarchical clustering (AHC).

The main advantage of hierarchical clustering approaches is that they do not require the
number of clusters in advance and can provide different clustering partitions according to the
level at which the dendrogram is cut. Another advantage of this family of methods is their
interpretation capabilities thanks to the visualization possibilities offered by dendrograms.
However, agglomerative approaches also tend to have high complexity which makes them
unsuitable for large data analysis. Complete-linkage and single-linkage are though less
slow-running, with a quadratic complexity, againstO(n3) for other agglomerative strategies
and O(2n) for divisive approaches.

1.2.2 Partitioning Approaches

This kind of method is usually opposed to hierarchical techniques and aims to structure
the data into distinct clusters in a non-hierarchical way. k-means is undeniably the most
popular partitioning algorithm. It is highly appreciated for its efficiency and low complexity.
k-means (MacQueen et al., 1967) is an iterative algorithm that aims to find g representatives
(centroids or means) of the data, one for each of the g clusters, so that the samples of the
same cluster are as close as possible. This constitutes the criterion optimized (minimized)
by k-means and is referred to as the Inertia or the Sum of Squared Error (SSE). It is defined
as:

SSE =

g∑
k=1

∑
xi∈ck

d(xi,µk)

where µk is the centroid of the cluster k and ck the set of samples belonging to the cluster
k. d is a distance function that quantifies how far the sample xi is from the centroid µk.
The inertia is optimized through an iterative procedure with the following steps:

1. Initialize randomly the g centroids µ1, . . . ,µg.

2. Assign each sample i to the closest centroid µh such that h = argmink d(xi,µk).
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3. Update each centroid µk, k = 1, . . . , g with the mean of its assigned members.

4. Repeat until the centroids do not change.

In the conventional version of k-means (MacQueen et al., 1967), the squared Euclidean
distance is used but alternative distances can be used such as the cosine distance computed
as:

dcos(xi,xj) = 1− ⟨xi,xj⟩
∥xu∥ ∥xv∥

(1.2)

In this version, the mean representatives are normalized to unit norm. This approach is
called Spherical k-means and is particularly well suited for text clustering (Dhillon and
Modha, 2001).

Other variants of k-means have been proposed such as fuzzy k-means where each data
point can belong to more than one cluster, k-medoid (Rdusseeun and Kaufman, 1987) in
which the centroids are updated as an actual member of the set of samples, and k-medians
(Bradley et al., 1996) that considers the representative of each cluster as the median rather
than the mean of its members and hence assesses the closeness of a sample to a cluster via
the Manhattan (or 1-norm) distance.

1.2.3 Density-based Clustering

Density-based approaches consider clusters are high-density regions of arbitrary shapes,
separated by low-density regions made of noise. The advantage of such methods is their
ability to discover clusters of all shapes and sizes. The most famous density-based algorithm
is DBSCAN (Ester et al., 1996) which relies on two main parameters: the radius ε and the
density threshold minPts. A “core point” is a data point that has at least minPts samples
around its radius, otherwise it is called a “border point”. Each cluster starts with a random
core point and progressively grows by adding density-reachable points and discovering
new core points within the ε-neighborhood, until no progression can be made. At this
point, another cluster is started with another core point, until all the data samples have
been processed. The data points that have not been reached by the gathering process
are considered outliers for they belong to low-density regions. The main drawback of
DBSCAN is its sensitivity to the two parameters ε and minPts, which is problematic in the
unsupervised setting of the clustering task. Another weakness of DBSCAN is its incapacity
to discover clusters of different densities. OPTICS (Ankerst et al., 1999), proposed by the
same authors, addresses both issues by discovering nested clusters with different degrees
of density represented by a hierarchical structure called reachability-plot that corresponds
to a wide range of parameter values. This makes the clustering more interactive and visual.
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DBSCAN and its variants are known for their limitations regarding high dimensional data,
which has led to several approaches to overcome this issue like DENCLUE (Hinneburg and
Keim, 1998) that is designed for handling noisy and high dimensional data.

1.2.4 Graph-based Clustering

This family of methods includes clustering techniques that consider the input data as a
graph G = (V,E) of n = |V | nodes and e = |E| edges connecting pairs of nodes, usually
represented by a squared and symmetric adjacency matrix of size n × n. Graph-based
clustering approaches generally aim to partition the set of nodes of an undirected graph into
clusters (or communities) in such a way that the nodes within a cluster are as connected
as possible whereas fewer edges connect the nodes of different clusters. A simple and
popular formulation of the problem is theminimum cut (ormincut) problem which consists
in finding the partition that minimizes either the number of edges or the sum of edge
weights between clusters. Improved versions such as minimum ratio cut (Leighton and Rao,
1989) and normalized ratio cut (Shi and Malik, 2000) have been proposed in order to avoid
one-node clusters, usually present in the mincut solution (Wu and Leahy, 1993).

Another well-known measure to assess the quality of graph clustering is the modularity
function (Newman and Girvan, 2004) which evaluates to what extent the nodes inside each
cluster are connected in comparison to an expected (or random) edge-density. Modularity
measure lies between -1 and 1 for unweighted (binary) graphs and has been adapted to
weighted graphs in (Newman, 2004a).

Given (i) a weighted graph G of weighted degree w and represented by an adjacency
matrixA, and (ii) a clustering partition represented by a binary membership matrix Z =

(zik) of size n× g, the modularity is expressed as:

Q =
1

2w

n∑
i,j=1

(aij −mij)σij

wheremij =
wiwj

2w
is the expected density between the nodes i and j of weighted degrees

wi = ai. and wj = aj. respectively. σij =
∑g

k=1 zikzjk equals one when the nodes i
and j are assigned to the same clusters and zero otherwise. The modularity criterion
can be optimized w.r.t. Z in different ways like spectral decomposition (Newman, 2006;
White and Smyth), mathematical programming (Agarwal and Kempe, 2008), and meta-
heuristics (Duch and Arenas, 2005; Nicosia et al., 2009; Reichardt and Bornholdt, 2006).
Fast greedy approaches have also shown their effectiveness on large graphs (Clauset et al.,
2004; Newman, 2004b), one of the best-known being the Louvain algorithm (Blondel et al.,
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2008) based on a relatively simple heuristic that finds a hierarchical community structure.
As an agglomerative approach, the Louvain algorithm first assigns each node to its own
community. Then the two following phases are alternated until a local optimum of the
modularity is reached:

• Phase 1: place each node i in the neighboring community C that maximizes the gain
of modularity:

∆Q =

[∑
in +wi,in

2w
−
(∑

tot+wi

2w

)2
]
−
[∑

in

2w
−
(∑

tot

2w

)2

−
(
wi

2w

)2
]

where
∑

tot is the sum of all the edge weights of the nodes in C ,
∑

in is the sum of
the edge weights that connect the nodes inside the community C , and wi,in is the
sum of the weights of the edges that connect the node i with the nodes that belong
to C . This step is repeated until no further improvement can be made.

• Phase 2: build a smaller graph where each community obtained in Phase 1 becomes
a node and the edge weight between two nodes is computed as the sum of the edge
weights connecting the corresponding two communities.

The advantage of Louvain is its low complexity which is mainly due to the simpleness
of the expression of∆Q. Another advantage of Louvain is its hierarchical scheme that may
be helpful when the number of communities is unknown.

Graph clustering may be applied to any type of data, provided that an adjacency matrix
can be derived from the original data representation. In this view, spectral clustering
(Von Luxburg, 2007) may be included in the graph-based clustering family of approaches
since it works on graph representations of the data, like the graph Laplacian matrix, usually
compressed via spectral decomposition then fed into a clustering algorithm like k-means
(Ng et al., 2001; Shi and Malik, 2000). These kinds of methods are well known for their
ability to discover groups of arbitrary shapes since they make few assumptions on cluster
shapes, which constitutes a considerable advantage when dealing with real-world datasets.

Graph-based algorithms may also be used on bipartite graphs represented by a matrix
of size n× n′ with the purpose of finding bi-clusters or co-clusters, i.e. row and column
partitions. This kind of approach is usually proposed for document clustering on sparse
text representations, considering the documents and the words as two distinct node sets of
the same bipartite graph (Ailem et al., 2015; Dhillon, 2001; Labiod and Nadif, 2011).
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1.2.5 Model-based Clustering

Finite mixture models are probabilistic approaches for data clustering and assume that
each group k is generated according to a probability distribution of density function φ
with different parameters θk. Given a data matrixX of size n× d, the probability density
function of the mixture of g models is expressed as follows:

f(X; Θ) =
n∏

i=1

g∑
k=1

πkφ(xi|θk)

where Θ = (π1, . . . , πg, θ1, . . . , θg) contains the parameters of the mixture, φ(xi|θk) is the
density function for observation xi with parameters θk, πk is the probability or proportion
of the kth component (or distribution) such that πk > 0, ∀k = 1, . . . , g and

∑g
k=1 πk = 1.

A mixture of g models assumes that the data samples x1, . . . ,xn are randomly drawn
according to the following generative process:

• Choose a component k ∼ Multinomial(π1, . . . , πg).

• Choose a data sample xi ∼ φ(xi|θk).

In order to estimate the parameter of the generative model, the Maximum Likelihood
approach is commonly used. It consists is finding the parameters Θ that maximizes the
likelihood of the observed data. In other words, the goal is to find the model in which the
observed data is most probable. Given the difficulty of directly optimizing the likelihood
function, the log-likelihood is maximized instead and is written as:

L(X; Θ) =
n∑

i=1

log

(
g∑

k=1

πkφ(xi|θk)
)

This task is commonly performed via the iterative Expectation-Maximization (EM)
algorithm (Dempster et al., 1977) and can be applied to different families of distributions.
One of the most popular model-based approaches for continuous data is the Gaussian
Mixture Model (Banfield and Raftery, 1993; Celeux and Govaert, 1995), which assumes
the data samples to be drawn according to g Gaussian distributions (cf. Section 6.3 for
more details). According to the data type and the hypotheses that can be made, different
distributions can be used such as Bernoulli for binary data (McCallum et al., 1998; Nadif
and Govaert, 1997), Poisson for count data and contingency tables (Boutalbi et al., 2021;
Brijs et al., 2004; Karlis and Meligkotsidou, 2007; Riverain et al., 2022a,b), Multinomial for
categorical data (Jollois and Nadif, 2002), and von Mises-Fisher for directional data (Affeldt
et al., 2021; Banerjee et al., 2005; Gopal and Yang, 2014; Salah and Nadif, 2017b).
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The power of mixture models lies in their flexibility as they are able to deal with specific
situations like noisy, heterogeneous, unbalanced or differently shaped data. Under certain
assumptions like the shape and size of the clusters, some well-known algorithms can be
derived from mixture models. For instance, k-means corresponds to a restrictive mixture of
Gaussian distributions, where the clusters are constrained to be spherical, equally sized and
of equal variance, which translates mathematically into equal spherical covariance matrices
Σk (cf. Section 6.3) as well as equal proportions πk, k = 1, . . . , g. For further detail about
model-based clustering approaches, the reader is referred to McLachlan and Peel (2004) and
Govaert (2009).

1.2.6 Applications

Cluster analysis is a powerful toolbox made available to practitioners in order to synthesize
and create value from huge amounts of data. Clustering techniques can also be used to
improve other machine learning tasks such as text classification (Baker and McCallum,
1998), information retrieval (Anick and Vaithyanathan, 1997), image segmentation (Pappas
and Jayant, 1989) and outlier detection (Jiang et al., 2001).

Many industrial and academic fields also make use of cluster analysis, for different
purposes. For instance, clustering is commonly used in the scientific community like
biomedicine (Yoo et al., 2012) and molecular biology (Gao et al., 2006). In particular, gene
expression microarray data are generally represented by high dimensional numeric matrices
in which each entry represents the expression level of a gene (row) under a given condition
(column). Cluster analysis is commonly used on this kind of data in order to discover
underlying patterns and coexpression of genes and help identify co-regulated or functionally
related genes (Ben-Dor et al., 2002). Clustering approaches are also often used to organize
articles in the academic literature (Aljaber et al., 2010) such as biomedical articles (Yoo and
Hu, 2006). On the same note, text data clustering has benefited several other domains like
forensics (Decherchi et al., 2009) and psychiatry (Abbe et al., 2016). More specifically, topic
modeling approaches like LDA and NMF have been widely used to cluster words, sentences
and documents with applications like web semantic tagging (Allahyari and Kochut, 2016),
web services analysis (Aznag et al., 2013), email surveillance (Berry and Browne, 2005),
biomedical information retrieval (Chen et al., 2012).

Deep clustering has also been exploited to analyze various sources of real-world data.
For instance, deep architectures have often been leveraged to perform clustering on medical
imaging (Kart et al., 2021; Mittal et al., 2021; Moriya et al., 2018), single-cell RNA-seq data
(Brbić et al., 2020; Tian et al., 2019) and textual data (Hadifar et al., 2019; Nadif and Role,
2021; Xu et al., 2017).
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1.2.7 Clustering Validation

Several strategies exist in order to assess the quality of a clustering partition. Some of
them do not require any external information about the group structure and are called
internal measures. They quantify the cohesion between the samples of the same group
(compactness) and the distance between groups (separation). Such is the case, for instance,
of the silhouette index (Rousseeuw, 1987), Dunn’s index (Dunn, 1974) and Davies-Bouldin
index (Davies and Bouldin, 1979). For further details about internal indices, please refer to
Charrad et al. (2014); Lamirel et al. (2016).

In a purpose of performance evaluation and comparison, it is common to rely on external
measures that require to know the ground-truth labels. These measures are analogous to
those used in supervised classification and consist in assessing to what extent the partition
provided by a clustering algorithm matches the given labels. The best-known external
measures include the Normalized Mutual Information (NMI) (Strehl and Ghosh, 2002),
the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985; Steinley, 2004) and clustering
accuracy. The NMI score represents the mutual information between two partitions A and
B, normalized by their entropies. It is computed as:

NMI(A,B) =
MI(A,B)√
H(A)H(B)

whereH(Y ) is the entropy defined by
∑|Y |

i=1 p(yi) log p(yi)where |.| denotes the cardinality,
and MI is the mutual information, defined as:

MI(A,B) =

|A|∑
i=1

|B|∑
j=1

p(i, j) log
p(i, j)

p(i) p(j)

The Rand Index (RI) is another external measure based on the agreements and disagree-
ments between partitions. Given two partitions of size c, RI is computed as (c00 + c11)/

(
c
2

)
and its adjusted version (ARI) as:

ARI(A,B) =
2(c00c11 − c01c10)

(c00 + c01)(c01 + c11) + (c00 + c10)(c10 + c11)

where c00 + c11 is the number of cases where the partitions agree and c01 + c10 the number
of cases where they disagree. The binomial coefficient

(
u
v

)
can be interpreted as the number

of ways to choose u elements from a v-elements set.
Another popular external measure is the clustering accuracy, similar to the one used in

supervised classification, adapted to the unsupervised setting of clustering. It consists in
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computing the accuracy after relabelling the evaluated partition which consists in finding
the best match between the provided true classes and the evaluated clusters. It is computed
as follows:

ACC =
1

n
max

[ ∑
Gk,Lm

T (Gk,Lm)

]
where Gk is the kth cluster in the evaluated partition andLm is the truemth class. T (Gk,Lm)

is the number of entities that are assigned to cluster k while belonging to classm. Caution
must be taken when using this measure since it presents the same drawback as the classifi-
cation accuracy, which is that it is sensitive to data imbalance. It is hence recommended
to use it in conjunction with other measures or to accompany the accuracy score by a
confusion matrix.

1.3 Dimension Reduction

Dealing with high-dimensional data has become commonplace in several domains like
molecular biology (Stears et al., 2003), astrophysics (Richards et al., 2009) and heathcare (Zhu
et al., 2016). In some cases, the number of features attains and even exceeds the number of
observations, which leads to the well-known curse of dimensionality problem, first stated by
Bellman (1961) as the fact that the need for learning samples grows exponentially with the
dimensionality. In such cases, a significant part of the features is usually either redundant
(presence of correlation with other features), or noisy (variables that do not bring any useful
information), or poorly discriminatory (variables that do not help the modeling of data); as
a consequence, the meaningful features are buried under the overwhelming presence of
irrelevant information. Given a dataset X = {x1, . . . ,xn} of n samples xi ∈ Rd, d being
the number features, the objective of dimension reduction is to find a lower-dimensional
representation Y = {y1, . . . ,yn} where ∀i = 1, . . . , n, yi ∈ Rd′ with d′ < d, while
preserving the maximum of the information present in the original data (Fodor, 2002). To
address this problem, it is possible either to filter the features in order to keep only the
most relevant ones, or represent the observations in a whole new reduced space in which
each data point is described by a small number of dimensions.

1.3.1 Feature Selection

Feature or variable selection consists in eliminating the irrelevant features according to a
given criterion (Koller and Sahami, 1996; Quafafou and Boussouf, 2000). The most simple
approach is to set a filtering condition that depends on what is considered irrelevant.
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For example, for tackling redundancy in the features, statistical tests such as the χ2 test,
the Pearson correlation test and the Spearman correlation test can be used to discard
dependant features. The family of methods to which these approaches belong is called
“filter approaches” (Almuallim and Dietterich, 1994; Liu and Setiono, 1996) which includes
techniques that are based only the input data to perform feature selection. These approaches
are naturally well suited in the absence of labels, when the performance cannot be assessed.
In supervised learning, the interdependence can be assessed between the explanatory
features and the target variable in order to keep the most discriminatory features (Kwak and
Choi, 2002; Torkkola, 2003). The feature selection problem can also be formulated as finding
the best minimal subset of variables that satisfies a chosen criterion. This constitutes an
NP-hard problem (Chen et al., 1997) that is usually tackled using “wrapped feature selection”
approaches. These techniques consist in evaluating combinations of features using a black-
box learning algorithm to find a near-optimal solution for several tasks such as pattern
classification (Siedlecki and Sklansky, 1989) and clustering (Dy and Brodley, 2004).

1.3.2 Linear Dimension Reduction

The most popular linear dimension reduction method is Principal Component Analysis
(PCA). It projects the data into a low-dimensional space with maximum variance and
produces a linear mapping between the original variables into the reduced space. In other
words, PCA finds new features that are linear combinations of the original features while
capturing the maximum amount of variation within the dataset. The objective function of
PCA can be written as:

minimize
W,W⊤W=Id′

∥X−XWW⊤∥2F (1.3)

where X is a centered matrix of size (n × d) and W = [w1, . . . ,wd] can be seen as the
orthogonal mapping matrix of size (d× d). It is given by the eigenvectors of the covariance
matrix S = 1

n
X⊤X obtained by the eigen-decomposition of S = WΛW⊤ where Λ is

a diagonal matrix containing the eigenvalues λ1, . . . , λd of S. Note that X⊤X becomes
prohibitively large with increasing d which makes this solution unpractical. In such case, it
is possible to rely on Singular Value Decomposition (SVD) that closely relates to PCA. It
consists in directly decomposing X into X = UΣV⊤, where U is an orthogonal matrix
of size n × n containing the left singular values of X, Σ is a diagonal matrix of size
n × d that contains the singular values of X, V is of size d × d and is made of the right
singular values of X. The eigen-decomposition of X⊤X can be deduced from the SVD
as W is equal to V and each jth eigenvalue λj is equal to the square of the jth singular
value σj (σj =

√
λj, ∀j = 1, . . . , d). The reduced version of X is hence expressed by
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Y = XWd′ = XVd′ = Ud′Σd′ , where the index d′ means that we take only the d′ first
columns.

Several variants of PCA and SVD have been proposed in order to address specific
situations like the presence of outliers (Xu et al., 2010), missing values (Ilin and Raiko, 2010)
or high dimensionality (Zou and Xue, 2018). Besides, other linear techniques exist such
as Locality Preserving Projection (LPP) (He and Niyogi, 2003) that finds linear mapping
the best preserve the neighborhood structure of the dataset, and Nonnegative Matrix
Factorization (NMF) (Lee and Seung, 1999) that incorporates an additional constrain which
is the nonnegativity of both the original and reduced space. NMF is also considered as
a clustering technique, very popular in the text-mining community (Febrissy and Nadif,
2020; Xu et al., 2003). For more details about these and other linear methods, the reader is
referred to Cunningham and Ghahramani (2015).

1.3.3 Manifold Learning

This family of methods is also referred to as nonlinear dimension reduction and is often
considered as a generalization of linear techniques that is able to discover non-linear
structures in high-dimensional data. For instance, Kernel-PCA (Schölkopf et al., 1998b)
is an extension of the classical PCA that first maps the data into a high-dimensional
space in which the data become linearly separable. The mapping is performed using a
nonlinear kernel that preserves the nonlinear structure of the data. During this step,X is
transformed into a positive semi-definite dot-product similarity matrix A of size n × n,
called the kernel matrix. Then, the projection onto a low-dimensional space is given by
the eigendecomposition of A. This makes Kernel PCA well suited to high-dimensional
data since its complexity does not grow with the number of features d. The most typical
kernels used include the Gaussian kernel (also called RBF for radial basis function) and
the Polynomial kernel (Schölkopf et al., 1998a). There are many other popular manifold
techniques such as Multidimensional Scaling (Kruskal and Wish, 1978), Laplacian Eigenmap
(Belkin and Niyogi, 2001), isometric feature mapping (Isomap) (Tenenbaum et al., 2000),
Locally Linear Embedding (Roweis and Saul, 2000), all of which can be shown to be special
cases of Kernel PCA under specific conditions (Bengio et al., 2004; Williams, 2000).

t-Stochastic Neighbor Embedding (t-SNE) (van der Maaten and Hinton, 2008) is a
manifold technique, mainly used for the 2D visualization of high-dimensional data. It is
a variant of the Stochastic Neighbor Embedding (SNE) (Hinton and Roweis, 2002) and
aims at minimizing the Kullback–Leibler divergence between two distributions P and
Q. P represents the proximity or neighborhood of the objects in the high-dimensional
space which means that the more two data points are close, the more they are assigned
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a high probability. Q follows the same scheme, this time in the low-dimensional space.
t-SNE is very popular for its visualization capabilities. However, due to its algorithmic
limitations, it does not scale well on large data and it is not possible to go further than 3

dimensions. Another disadvantage of t-SNE is its sensitivity to hyperparameter tuning,
especially perplexity (connected to the number of data points that can be considered as
neighbors).

More recently, McInnes et al. (2018) have proposed Uniform Manifold Approximation
and Projection (UMAP) which is, like t-SNE, based on KNN-graphs. UMAP creates a uniform
embedding space which means that the radius that determines if two points are close to
each other depends on the density of the region to which the points belong. To this end,
the function used to compute the radius depends on how far the kth nearest neighbor lies;
k being one of the most important hyperparameters of UMAP. Note that UMAP also relies
on simplicial sets that can be viewed as a higher-dimensional generalization of graphs,
which helps drastically lowering the computational complexity. These choices allow for a
better integration of the global structure of the data into the construction of the embedding
space, and are supported by solid mathematical foundations based on the Riemannian
metric and topological spaces. UMAP has a few similarities with t-SNE but brings several
improvements, especially via the graph construction and the loss function. In addition,
UMAP may be used as a pre-processing tool since it has no restrictions regarding the
number of dimensions. However, when the pre-processing precedes an unsupervised task,
the problem of hyperparameter tuning arises yet again, even though UMAP is much less
sensitive to the choice of the number of neighbors k and has fewer parameters to fix.
Another advantage of UMAP is its linear complexity against O(n2) for t-SNE in its exact
version and O(n log n) when the Barnes Hut approximation (van der Maaten, 2013) is used.

Autoencoders

Autoencoders (Hinton and Salakhutdinov, 2006; Rumelhart et al., 1985) are well-known
neural techniques used to perform several tasks such as data denoising and anomaly
detection. In particular, undercomplete (or bottleneck) autoencoders are commonly used for
dimension reduction (Figure 1.2), providing good-quality latent representations on several
types of data. We can define an autoencoder as a neural network trained to compress
the input data samples into a reduced space and decompress them without losing too
much information. In other words, the objective of the autoencoder is to learn a latent
representation of the data from which it is possible to reconstruct a copy of the input data
that is as close as possible to the original. If we use the Euclidean loss to measure the
reconstruction error, we can formulate the objective as finding the functions f and g that
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encoder decoder

Figure 1.2: Example of a bottleneck autoencoder architecture.

minimize:
1

n

n∑
i=1

∥xi − g(f(xi))∥2 (1.4)

where f is the encoding function (encoder) that projects the input data into the reduced
space and g is the decoding function (decoder) responsible for reconstructing the embedded
data into the original dimension. Under this basic formulation (Goodfellow et al., 2016), if f
and g induce linear transformations, then the optimized criterion becomes closely related to
the one optimized by PCA and given by Equation 1.3 (Baldi and Hornik, 1989; Bourlard and
Kamp, 1988). This is the case when both the encoder and the decoder have one single layer
with linear activations. This configuration is rarely used since the power of autoencoders
lies in their non-linearity. Furthermore, regularized versions of autoencoders are more
usually used such as sparse autoencoders in which a regularization term is added to the
objective function that encourages fewer nodes to activate for each data point. The aim of
sparse autoencoders is to reduce the capacity (or freedom) of the model so that the neurons
are activated only when it is most meaningful to do so. This is achieved through an L1

penalty applied to the output of the latent hidden layer. Denoising autoencoders are another
well-known variant that seeks to minimize the difference between xi and g(f(x̃i)) where
x̃i is a copy of the ith data sample xi contaminated with some form of noise. By doing so,
denoising autoencoders learn to compress data into a reduced space while dealing with
noise, which might increase the robustness of the trained model. Variational autoencoders
(VAE) (Kingma and Welling, 2014) are also based on the encoding decoding scheme but
have a different mathematical formulation from traditional autoencoders. Variational
autoencoders belong to the family of variational Bayesian methods and, as such, learn
latent representations made of a mixture of distributions. An analogy can hence be made
between VAE and EM, whereby the encoder and the decoder respectively model the E-step
and M-step (Ghojogh et al., 2021).
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Similarly to other nonlinear techniques, autoencoders exploit the idea that data are
concentrated in a low-dimensional nonlinear manifold (Goodfellow et al., 2016). Thus,
the encoder function constructs a mapping that is not sensitive to variations that are
orthogonal to the manifold and is hence only sensitive to changes along the manifold
directions. This makes autoencoders a parametric dimension reduction technique, more
suitable for online inference and supervised tasks like classification and regression. This is an
important advantage of autoencoders over all the above-mentioned non-linear techniques
such as t-SNE and UMAP that do not learn a mapping of the manifold and cannot be
applied to unseen data. This has led to several attempts to combine autoencoders and local
structure-preserving graph-based techniques. For instance, Sainburg et al. (2021) proposed
a parametric version of UMAP that replaces the gradient descent optimization stage with
an autoencoder, thus obtaining comparable performance results. In a similar vein, Jia et al.
(2015) proposed Laplacian autoencoders that introduce a locality-preserving regularization
into the reconstruction loss of deep autoencoders. Another advantage offered by using
autoencoder architectures is that they can be enhanced to fit different data types such as
images using convolution layers (Chen et al., 2017b) and audio data using recurrent layers
(Fabius et al., 2015).

For more details and examples the reader is referred to Bank et al. (2020) for a recent
survey about autoencoder approaches and to Espadoto et al. (2021); van der Maaten et al.
(2009) for a holistic overview of dimension reduction techniques, including linear and
nonlinear methods.

1.3.4 Combined Dimension Reduction and Clustering

Beside visualization, dimension reduction is commonly used as a pre-processing step either
to reduce computation and storage resources or to translate the original data into a space
that is more propitious for the sought task. Data clustering is one of the tasks that most
usually rely on dimension reduction (Drineas et al., 2004; Niu et al., 2011; Xu et al., 2003).

Non-negatice Matrix Factorisation and clustering

The Non-negative-Matrix Factorization (NMF) due to Lee and Seung (1999) belongs to
the larger family of dimensionality reduction techniques. NMF attempts to decompose a
positive data matrix into two non-negative factor matrices, whose product provides a good
approximation to the original data.

In the context of text data, NMF seeks a decomposition of a document-word matrix X
into two low dimensional factor matrices Z = (zik) ∈ Rn×g

+ and W = (wjk) ∈ Rd×g
+ , such
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thatX ≈ ZW⊤. To infer the latent factor matrices, NMF attemps to solve the following
optimization problem:

minimize
Z,W

∆(X,ZW⊤), s.t. Z, W ≥ 0. (1.5)

where ∆ is a cost function that allows us to quantify the quality of the approximation of
X by ZW⊤; ∆ can be, for instance, the Frobenius norm or I-divergence. As NMF has an
inherent clustering property, the document factor matrix Z is usually considered as a soft
cluster membership matrix, where zik denotes the degree to which document i belongs
to cluster k. A partition of the set of documents can then be obtained by assigning each
document to the most likely cluster. Thus, NMF has become an essential unsupervised
learning technique to analyze positive matrices arising in various areas such as pattern
recognition, recommender systems, bio-informatics and text mining. Note that NMF can
also be seen as a dimensionality reduction technique that seeks to decompose a positive
data matrix into two lower dimensional latent factor matrices, restricted to be non-negative,
whose product provides a good approximation to the original data. The first latent matrix
contains the low dimensional representation of each row while the second contains the
low dimensional representation of each column.

Although clustering is not the primary purpose of NMF, the latter has received a lot
of interest in the clustering community resulting in a new class of clustering algorithms—
based on NMF. In (Ailem et al., 2017b; Febrissy et al., 2022) the authors described Semantic-
NMF, a novel non-negative factorization model which explicitly accounts for the semantic
relationships amongwords. Similar to neural word embedding techniques, themodel follows
the distributional hypothesis so as to leverage the relationships between words. Formally,
Semantic-NMF jointly decomposes the document-word and PPMI word-context matrices,
with shared word factors. The intuition behind this approach is to map words having
similar meanings roughly to the same direction in the latent space. More interestingly, by
capturing more semantics, the model implicitly brings the embeddings of documents which
are about the same topic closer to each other. This results in document factors that are
even better for clustering. Moreover, they identify in which situations Semantic-NMF does
provide the most significant improvements, which allows to gain further insights into the
benefits of leveraging the word relationships.

Note that an extension of Semantic-NMF is also possible by exploiting the extension of
NMF to NMTF (Non-negative Matrix Tri-Factorisation) as proposed by Salah et al. (2018).
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Matrix factorisation approaches

Combining dimensionality reduction and clustering can be performed in several ways: in
a two-phased manner usually called tandem approach, or simultaneously in an end-to-
end fashion. Tandem approaches are made of two disjoint steps. First, the original data
are embedded into a latent space of reduced dimension using any dimension reduction
technique such as PCA for numerical data (Yau et al., 2016) and FAMD (Factor Analysis
of Mixed Data) (Markos et al., 2020; van de Velden et al., 2019). The embedding step has
proven effective in improving the clustering performance as shown in (Boutsidis et al., 2014;
McConville et al., 2021). However, several authors have questioned the tandem approach,
arguing that techniques exclusively made for dimension reduction are not sufficient to
grasp the separability of underlying clusters and hence do not provide an optimal subspace
for data clustering. For instance, Markos et al. (2019); van Aken et al. (2019); Vichi and Kiers
(2001) stated that the reduced space provided by linear dimension reduction techniques like
PCA may discard variables that help discriminate the underlying groups as long as they do
not account for a sufficient amount of variation in the data; see for instance Chang (1983)
for an illustration of this phenomenon. With this in mind, several approaches attempt to
incorporate a clustering side into dimension reduction by optimizing both objectives at
once. Reduced k-means (De Soete and Carroll, 1994) combines PCA and k-means within
the same criterion, expressed as:

minimize
W,F,Z

∥X− ZFW⊤∥2F ; with W⊤W = Id′

Z = (zik)n×g being the binary assignment (or membership) matrix where zik = 1 only
if the ith data sample belongs to the kth cluster. F = [f1, . . . , fg]

⊤ is the centroid matrix
of size g × d′ where fk is the centroid of the kth cluster in the reduced space. W is the
orthogonal loading matrix of size d× d′. A, F and Z are first initialized and then updated
by alternating the following steps until convergence:

1. Update the loading matrix with A = Vd′U
⊤
d′ , where Ud′Σd′V

⊤
d′ is the truncated

singular value decomposition of (ZF)⊤X.

2. Assign each data sample i to the cluster with the closest centroid in the sense of the
k-means criterion: uik = 1 only if k = argminh(∥A⊤xi − fh∥2).

3. Update the centroids with F = (Z⊤Z)−1Z⊤XA.

In the same vein, Factorial k-means (Vichi and Kiers, 2001) and Subspace k-means
(Timmerman et al., 2013) aim at improving k-means clustering by finding a latent space that
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best separates the data into groups following the k-means paradigm of inertia maximization.
Such methods have shown their effectiveness, especially on synthetic data on which the
tandem approach is likely to fail to discover the underlying groups. The reader can also
refer to other close approaches such as (Allab et al., 2016, 2018). Probabilistic variants
have also been proposed such as probabilistic principal component analyzer (Tipping and
Bishop, 1999) and mixtures of factor analyzers (Ghahramani et al., 1996; McLachlan et al.,
2003) that both use a variant of the Expectation Maximization algorithm to solve the log-
likelihood maximization problem in a low-dimensional factor space. Recently, in (Labiod
and Nadif, 2021), the authors proposed an effective clustering algorithm based on a matrix
decomposition technique for learning a spectral data embedding, a cluster membership
matrix, and a rotation matrix that closely maps out the continuous spectral embedding.
Specifically, from a normalized similarity matrixW ∈ Rn×n, the proposed method, referred
to as Regularized Dpectral Data Embedding (RSDE), can be seen as a procedure for finding
the subspace that is the most informative about the clustering structure in the data. It is
defined as the minimizing problem

min
B,M,Q,Z

∥∥W −BM⊤∥∥2 + λ∥B− ZQ∥2 B⊤B = I,Q⊤Q = I,Z ∈ {0, 1}n×g

where Q ∈ Rg×g is a rotation matrix that satisfies the orthogonality conditions Q⊤Q =

QQ⊤ = I. The nonnegative matrix Z = (zik) of size (n × g) is a cluster membership
matrix, B = (bij) of size (n× g) is the embedding matrix, and Q = (qij) of size (g × g) is
the orthonormal rotation matrix that most closely maps B to Z ∈ {0, 1}n×g . M ∈ Rn×g is
an auxiliary variable introduced to improve the efficiency of the optimization.

Those methods are generally used on high-dimensional numerical data like gene ex-
pression microarrays (McLachlan et al., 2003) and RNA-sequencing data (Sun et al., 2019).
For categorical data, usually represented by binary dummy variables, the criterion of the
Multiple Correspondence Analysis (MCA) is often used with the k-means objective either
sequentially (Arimond and Elfessi, 2001) or simultaneously (Hwang et al., 2006; van Buuren
and Heiser, 1989) with prevalent applications to social media profiling (van Dam and van de
Velden, 2015) and preference data analysis (Takagishi et al., 2019).

Autoencoders have also often been used for clustering purposes as part of a tandem
approach where they are followed by a clustering algorithm such as k-means (Huang et al.,
2014; Tao et al., 2021; Tian et al., 2014). Autoencoders are also widely used as the embedding
module in simultaneous approaches combining dimension reduction and clustering into
the same neural network. In particular, variational autoencoders have been extensively
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used for data clustering, generally with a Gaussian prior (Dilokthanakul et al., 2016; Yang
et al., 2019a), sometimes in a two-stage (tandem) manner (Lim et al., 2020).

Deep clustering approaches

With the advent of Deep Neural Networks (Schmidhuber, 2015) and the multiplication
of use-cases involving either unstructured or high-dimensional data, substantial energy
has been devoted to addressing data clustering using deep architectures. Deep clustering
approaches generally include a representation learning component based on autoencoders
(cf. Section 1.3.3) that first translates the input data into a latent space. Beyond reducing
the dimensionality, the aim of learning a latent representation is to project the input data
into a “clustering-friendly” embedding space (Yang et al., 2017), supposed to better separate
the underlying groups. After Xie et al. (2016) have proposed Deep Embedding Clustering
(DEC) based on two separate modules: one for data embedding and one for clustering,
Guo et al. (2017) proposed a variant called Improved Deep Embedding Clustering (IDEC)
where the optimization of both modules is performed simultaneously through a joint loss
function similar to the objectives optimized by DEC. In the same vein, Deep Clustering
Network (DCN) proposed in (Yang et al., 2017) jointly optimizes, in an alternate fashion,
a latent embedding module (autoencoder) and a clustering component with a k-means
loss function. Recently, Fard et al. (2020) proposed Deep k-means (DKM) which, like
DCN, optimizes a k-means objective function along with the reconstruction error of an
autoencoder, simultaneously rather than alternately. Both DCN and DKM perform a pre-
training phase of the embedding module and use k-means to initialize the cluster centroids
(applied to the pre-trained latent representation). The difference between two-phased and
simultaneous approaches is depicted in Figure 1.3.

Deep neural networks have also been used in community detection, where stacked
autoencoders (Bengio et al., 2006; Vincent et al., 2010) are particularly popular. Stacked
autoencoders consist in learning more than one shallow autoencoder in such a way that the
ℓth autoencoder provides a latent representation that in turn feeds the autoencoder ℓ+ 1.
The autoencoders are trained separately and stacked together after the training process has
been completed. For instance, Yang et al. (2016) utilized stacked autoencoders combined
with the k-means algorithm to maximize the modularity for graph-clustering. Another
recent approach makes use of stacked encoders and combines four different similarity
matrices under an ensemble clustering framework for community detection (Xu et al., 2020).
Graph Convolutional Networks (GCN) (Kipf and Welling, 2017) are also often used to tackle
graph-clustering tasks. Graph convolution consists in successively applying learned filters
at each layer, thus generalizing the concept of Convolutional Neural Networks (LeCun
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Figure 1.3: Difference between two-phased and end-to-end (simultaneous) deep clustering
approaches.

et al., 1995) to graphs. The aim of GCNs is to find representations of the nodes based on
both the graph structure and the nodes’ attributes. The obtained representations can be
used for several supervised, semi-supervised and unsupervised tasks. For instance, Bo et al.
(2020) included a GCN module combined with autoencoders to train an end-to-end graph
clustering model.

Many other classical clustering approaches have inspired deep neural approaches, e.g.
model-based clustering (Ben-Yosef and Weinshall, 2018; Tian et al., 2019), and various
neural architectures have been leveraged to perform clustering like Generative Adversarial
Networks (Jia et al., 2019) and Recurrent Neural Networks (Lin et al., 2019). More details
and examples are provided regarding deep clustering approaches in (Aljalbout et al., 2018;
Zhou et al., 2022).

1.3.5 Applications

Linear and nonlinear dimension reduction can be used to achieve diverse objectives such
as data compression, visualization and denoising. Additionally, dimension reduction tech-
niques are often used to perform feature extraction in order to boost other machine learning
tasks such as speech recognition (Tang and Rose, 2008), recommender systems (Sarwar
et al., 2000) and clustering as seen in Section 1.3.4. Inversely, the capacity of clustering to
synthesize data can serve dimension reduction purposes. For instance, in (Karami, 2019),
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fuzzy clustering is used as a dimension reduction technique on text data and has proven to
be faster and more effective than linear dimension reduction on the text classification task.

Like clustering, dimension reduction techniques are very popular in the field of molec-
ular biology either as a pre-processing or a visualization tool (Meng et al., 2016). This is
explained by the fact that gene expression data are often described by thousands of features,
among which only a handful might be significant. Capturing useful information from these
data allows for detecting malignant diseases (e.g. cancer) and can be a challenging task. In
particular, manifold techniques have widely been used on high-dimensional gene expression
data such as UMAP (Becht et al., 2018), t-SNE (Khan et al., 2018) and multidimensional
scaling (Alexandrov et al., 2014).

Dimension reduction is also widely used on text data for various objectives such as
clustering (Kadhim et al., 2014), visualization (Schubert et al., 2017) and classification (Uysal,
2018), with application in several fields like health care (Halpern et al., 2012), education
(Kakkonen et al., 2008) and budget management (Williams and Gong, 2014).

1.4 Anomaly Detection

Anomaly detection, sometimes called outlier detection, is an unsupervised discipline which
seeks to identify anomalous samples, also called outliers, in a dataset. An outlier (an
anomaly, an exception) is defined by Hawkins (1980) as “an observation which deviates so
much from other observations as to arouse suspicions that it was generated by a different
mechanism”.

Given a dataset D = {x1, . . . ,xn}, xi ∈ Rd, we define the objective of an anomaly
detection system as learning amapping function f(.) : D 7→ R that allows for distinguishing
outliers from the global behavior of data samples. To address this objective, a wide range
of methods exist in the literature, based on a variety of approaches. In this section, a
brief description is provided for four main families of methods namely distance-based,
density-based, reconstruction-based and clustering-based. However, other categories of
methods exist such as one-class classification (Hempstalk et al., 2008; Schölkopf et al.,
2001) and subspace-based approaches (Keller et al., 2012; Müller et al., 2012). For a more
detailed overview of the existing approaches for anomaly detection, the reader is referred
to Chandola et al. (2009); Hodge and Austin (2004) and Wang et al. (2019).

It is worth noting that the majority of anomaly detection approaches suppose that the
training set is free of outliers and contains solely normal samples (inliers). This principle
comes from the one-class classification scheme (Schölkopf et al., 1999) that aims at detecting
novelty by discovering instances in the test set that do not resemble those of the training
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set. Novelty detection can be very useful in medical research and real-time monitoring
systems such as intrusion detection systems where already-known anomalies are discarded.
However, the use of inlier-only training sets is also commonplace in the outlier detection
community. Technically speaking, this should not be a major obstacle since it is always
possible to bypass the inlier-only restriction and allow the training set to be contaminated
with potential anomalies (Ding et al., 2022a; Manolache et al., 2021). It is hence important
to assess the robustness of such approaches in the presence of outliers in the training set,
which most of anomaly detection studies do not provide for. Most importantly, although
the inlier-only scheme may reasonably be considered semi-supervised (Aggarwal, 2017), it
is also used in supposedly unsupervised approaches (Akcay et al., 2019; Qiu et al., 2021; Ruff
et al., 2018, 2019; Schlegl et al., 2019) without studying the effect of outlier contamination,
which is a key determinant of the robustness of any unsupervised approach. Accordingly,
the dividing line between anomaly detection and novelty detection can be somewhat fuzzy,
each one borrowing elements from the other, without always setting a realistic framework.
For instance, OC-SVM (Schölkopf et al., 2001) and Isolation Forest (Liu et al., 2008) are
well-known techniques that are used for both anomaly and novelty detection, depending
on the application purpose as well as the experimental setup.

1.4.1 Distance-based and Density-based Approaches

One of the most classical families of methods is distance-based outlier detection (Knorr and
Ng, 1998). Approaches in this category are based on the assumption that anomalies are
isolated from the rest of the data instances in terms of a predetermined distance measure.
In (Ramaswamy et al., 2000) outliers are defined as the data samples whose distance to their
kth nearest neighbor is highest (maximum distance), whereas in (Angiulli and Pizzuti, 2002)
and Eskin et al. (2002), the average distance with the kth nearest neighbors is used. One of
the drawbacks of distance-based methods is that they do not work on non-homogeneous
data that can be structured into several underlying groups.

On the other hand, density-based approaches consider instances lying in low-density
regions as outliers. For instance, Local Outlier Factor (LOF) (Breunig et al., 2000), the
best-known density-based outlier detection method, computes for each data sample the
ratio between the average local density of its k nearest neighbors and its own local density.
This allows handling datasets with various density regions since anomalous samples are
considered as data points with a density that is significantly lower than the density of its
nearest neighbors.
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1.4.2 Reconstruction-based Approaches

As mentioned previously, dimension reduction techniques are commonly used for denoising
various types of data by reconstructing a cleaner version of the input data. This capability
is also often harnessed in the context of anomaly detection, with the assumption that a
well-generalizing model would be unable to accurately reconstruct atypical samples. PCA
is naturally well suited for this purpose since it incorporates the process of compression
and reconstruction (Huang and Kasiviswanathan, 2015; Jablonski et al., 2015). Once the
linear mapping Wd′ is computed (cf. Section 1.3.2), the reconstruction error of the data
point xi can be expressed as ∥xi −Wd′W

⊤
d′ xi∥, which would constitute its anomaly score.

In order to overcome the limitations of PCA, nonlinear methods are used such as
autoencoders, using the reconstruction error of each data sample (Equation 1.4) as the
anomaly score (Schreyer et al., 2017). In (Chen et al., 2017a), an ensemble of independently
trained autoencoders is proposed whereby the median of them reconstruction error values
is used as the final anomaly score. Besides, in each autoencoder, random connections are
removed in order to augment their diversity. Another way to address the diversity problem
would be to use different bottleneck architectures in order to ensure that each autoencoder
is trained with a different level of capacity (cf. Section 1.3.3).

1.4.3 Clustering-based Anomaly Detection

Anomaly detection can also be achieved through clustering approaches, exploiting the
concept of adherence to underlying groups. One way of identifying outliers is relying
on clustering methods that do not force every data sample to belong to a cluster, hence
considering the isolated data points as outliers. Examples of such approaches are DBSCAN
(Ester et al., 1996), CURE (Guha et al., 1998) and WaveCluster (Sheikholeslami et al., 1998).
Other approaches use clustering algorithms and consider the samples that belong to small
and/or low-density clusters as outliers (Eskin et al., 2002; Jiang et al., 2001). Note that these
approaches do not necessarily provide an anomaly score in R but rather a binary label
indicating whether or not a given data point is considered anomalous. This can make it
difficult to compare or rank anomalies based on their relative abnormality.

Another way of identifying anomalies in a given dataset is to make use of a membership
score that determines, within each cluster, the samples that are most likely to constitute
outliers. The way of computing the score naturally depends on the clustering algorithm
used and can be, for instance, the distance to the centroid in the case of k-means and fuzzy
k-means. In the same spirit, model-based clustering methods can also be used to identify
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outliers with various priors such as Gaussian (Mahadevan et al., 2010), Dirichlet (Fan et al.,
2011) and von Mises-Fisher (Zhuang et al., 2017).

1.4.4 Applications

Unsupervised anomaly detection finds application in diverse domains such as health in-
surance (Joudaki et al., 2015), banking (Ahmed et al., 2016) and cybersecurity (Gogoi et al.,
2011). Anomalies are generally perceived as negative phenomena like fraud, intrusions
and health issues. However, finding anomalies in certain domains can induce valuable
advances. This is the case in the astrophysics field where spotting anomalies in data may
lead to important scientific breakthroughs (Rebbapragada et al., 2009). Astrophysics and
astronomy are, indeed, good examples of research domains involving massive volumes
of unlabeled data to analyze. Another discipline that generates large volumes of data is
the climate science domain, in which an anomaly may consist, for example, of an unusual
weather event (Das and Parthasarathy, 2009).

Furthermore, anomaly detection is often applied to images and videos such as optical
tomography images (Schlegl et al., 2019) and surveillance videos (Xiang and Gong, 2005).
Use-cases involving text data include spam detection (Kumar et al., 2019) and insider threat
detection (Kim et al., 2019) and aim at spotting atypical phrase structures or suspicious
vocabulary usage. Another type of data that usually requires monitoring and outlier
detection is log data. For instance, Kuna et al. (2014) proposed to combine the results of
several algorithms such as LOF and DBSCAN in order to minimize the risk of false alarms
in audit logs analysis. Besides the data type, the formatting of data may also differ. For
instance, three-way tensors can be used to characterize each data sample with a fixed sized
matrix that may represent pair-wise interactions. Tensor decomposition methods are then
used on such representations in order to detect, for instance, cyber attacks (Eren et al., 2022)
and botnets (Kanehara et al., 2019).

Anomaly detection is also widely used in graph data with different purposes. Most
usually, anomalous nodes are sought with typical application in social media (Heard et al.,
2010) and the detection of fake users (Hooi et al., 2016; Wang et al., 2011). Other use-cases
seek to identify anomalous edges or connection as in (Chang et al., 2021), where streaming
anomalous connections are identified based on the likelihood of the observed frequency of
each edge. On the other hand, some graph-based approaches focus on spotting suspicious
groups, usually using clustering techniques. For instance, Yu et al. (2015b) discovered
anomalous groups of nodes in social media by analyzing the collective behaviors of the
users. More methods and applications for real-world graph data can be found in (Akoglu
et al., 2015).
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1.5 A Recurring Issue in Deep Unsupervised Learning

In the recent years, deep neural networks have significantly gained in popularity in the
unsupervised realm of machine learning, leading to a series of breakthroughs in several
research domains like clustering, information retrieval and anomaly detection. However, it
is essential to put those approaches in the unsupervised context where they belong. Indeed,
deep learning approaches are known for being highly sensitive to hyperparameter settings
(Hutter et al., 2019; Ozaki et al., 2017) and for having several hyperparameters to tune,
including categorical (e.g. the choice of the activation function) and numerical (e.g. the
weight decay). Some of those hyperparameters (e.g. the learning rate) are crucial, in the
sense that slight changes in the chosen value can lead to serious performance drops (Ozaki
et al., 2017). Beside those hyperparameters, additional ones are usually used for a specific
optimization purpose such as regularization coefficients (Bo et al., 2020; Fard et al., 2020).
Yet another important choice to make concerns the architecture used (e.g. the type of layers
and the number of neurons per layer), which can be decisive for both the quality of the
model and its computational complexity. In a supervised setting where a performance
metric can realistically be optimized, this is only partly inconvenient since it considerably
increases the computational cost of already onerous training models but remains feasible.
This is acheived via hyperparameter tuning, which consists in finding the combination
of hyperparmeter values that maximizes a certain criterion (usually the performance of
the model). Depending on the number of hyperparameters and the number of possible
values of each hyperparameter, several approaches may be used in order to address the
tuning problem. For instance, the grid-search approach is an exact algorithm that evaluates
the whole set of combinations and returns the one yielding the best performance score.
However, the problem can rapidly become intractable given that the number of possible
combinations grows exponentially with the number of hyperparameters (Yang and Shami,
2020). In such case, near-optimal solutions are sought using heuristics like random search
(Bergstra and Bengio, 2012) and particle swarm optimization (Lorenzo et al., 2017).

In a real-world unsupervised scenario, though, it is not only inconvenient but impractical
to perform hyperparameter tuning since labels are only available in research, for evaluation
purposes. Despite that, it is common to encounter in the research community supposedly
unsupervised works that perform different levels of supervised hyperparameter tuning
as shown in Table 1.1. We define “supervised tuning” as the process of setting different
values of hyperparameters for each dataset based on external information (labels) not
supposed to be available in real life. This includes automatic tuning carried out on a
validation set (Fard et al., 2020; Munir et al., 2018) as well as arbitrary choices made for
each dataset (Ji et al.; Yang et al., 2016). Furthermore, as mentioned earlier, we distinguish
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Table 1.1: Examples of unsupervised approaches performing supervised hyper-parameter
tuning (yes is bad, no is good). In the “Task” column, “clustering” stands for general-purpose
clustering, usually applied to images and text and tabular data. The last column is relative
to indications that would help the user choose the tuned hyperparameters and/or model
design on a new unlabeled dataset.

Method Task
Supervised
parameter
tuning

Supervised
architect.
tuning

No
sensitivity
analysis

No
indication
given

AE-k-means
(Huang et al., 2014)

image
clustering yes yes yes yes

SAE
(Tian et al., 2014)

graph
clustering yes yes yes yes

DEC
(Xie et al., 2016) clustering yes no no no

DNR
(Yang et al., 2016)

graph
clustering unk2 yes yes yes

DCN
(Yang et al., 2017) clustering yes yes no1 yes

IDEC
(Guo et al., 2017) clustering yes no no1 yes3

DeepCluster
(Tian et al., 2017) clustering yes no no yes

DSC-Nets
(Ji et al.) clustering yes yes yes yes

DeepAnT
(Munir et al., 2018)

anomaly
detection yes no no yes

DAGMM
(Zong et al., 2018)

anomaly
detection yes4 yes no yes

DKM
(Fard et al., 2020) clustering yes no yes yes

NeuTraL
(Qiu et al., 2021)

anomaly
detection yes no5 no6 yes

1 Sensitivity analysis provided for one dataset.
2 Unknown. No details provided about the chosen values of the hyperparameters.
3 Indication given regarding only one of the six hyperparameters.
4 The batch size and the number of epochs are set arbitrarily for each dataset.
5 Note however that different numbers of transformations are used which influences the num. of neurons.
6 Sensitivity analysis provided for two datasets.
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optimization hyperparameters and model design (or architecture) hyperparameters. We
can observe that most of the mentioned approaches perform supervised hyperparameter
tuning (first column of the table) and do not provide indications as to how to choose the
hyperparameters when no labels are available (last column of the table). In addition, half of
the approaches choose different architectures of the network from one dataset to another
without necessarily explaining these choices. In (Yang et al., 2016), it is not possible to
say how the hyperparameter choices have been made since no information is provided
about the values used by the authors. This raises a reproducibility issue (Haibe-Kains et al.,
2020), which is related to our subject but beyond the scope of this discussion. Table 1.1
contains only a few examples, but supervised tuning is unfortunately common practice
in the unsupervised learning domain and many other examples could have been included
(Park et al., 2020; Peng et al., 2019; Yang et al., 2019a).

This topic has all too seldom been discussed in the literature and is certainly worth
a deeper investigation. Nonetheless, the issue may be addressed by relying on either
(i) unsupervised hyperparameter tuning (Purohit et al., 2020) based on internal rather
than external criteria, (ii) meta-learning that allows for generalizing on new unlabeled
datasets using labeled data (Zhao and Akoglu, 2022; Zhao et al., 2020), or (iii) ensemble
approaches, known for their robustness (Affeldt et al., 2020b; Ding et al., 2022a; Vega-
Pons and Ruiz-Shulcloper, 2011). For instance, to overcome the hyperparameter tuning
problem and still benefit from the capability of deep autoencoders to discover nonlinear
complex structures in data, Affeldt et al. (2022) proposed to use networks with different
hyperparameter settings and combine them as part of an ensemble approach for spectral
clustering. To this end,m affinity matrices, computed via the latent representations ofm
autoencoders, are concatenated and fed into a spectral clustering component which provides
the final consensus clustering partition. In the context of outlier detection, Ding et al.
(2022a) provided an empirical sensitivity study of several well-known approaches, showing
that model selection is inevitable. They also proposed ROBOD, an ensemble approach that
combines (average) anomaly scores provided by the samemodel with different combinations
of hyperparameter values. The proposed framework is based on BatchEnsemble (Wen et al.,
2020) which allows for training the same neural network with different parameters in a
more frugal way, using a shared matrix of weights instead of training each model separately.
ROBOD substantially improves the robustness of existing deep anomaly detection models
and offers a good alternative for hyperparameter tuning. However, although the authors
provided for the presence of models of different depths by multiplying the shared matrix by
a zero-mask, it is unclear how models with very different architectures can be integrated,
e.g. uni/bi-directional, self-attention/RNN, etc.
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It is worth noting that the supervised tuning phenomenon is not confined to deep
approaches and that the other unsupervised techniques are not necessarily spared. Only,
as mentioned earlier, deep neural networks are much more prone to hyperparameter
sensitivity and involve substantially more parameters to tune. Also, we do not discuss the
open problem of setting the number of groups in clustering approaches, even though it can
utterly be viewed as a hyperparameter as it can significantly affect the clustering quality
(Xu and Gong, 2004; Xu et al., 2003).

1.6 Conclusion

In this chapter we introduced a summary of the current state of research is four major
unsupervised learning fields: text representation, clustering, dimension reduction and
anomaly detection; including some recent advances and developments as well as real-world
data applications. Some of these disciplines are related to each other, if not complementary.
Indeed, we show in the next chapters how different tasks may be combined to achieve
a given unsupervised objective, such as text representation, dimension reduction and
clustering. Naturally, this overview is by no means exhaustive, but it provides a general
sense of the state of the art.

We also highlighted an important issue often encountered in the unsupervised learning
field, especially in deep neural approaches, which is the supervised hyperparameter tuning.
In the remainder of this thesis, a special effort is made to address this issue in all of our
contributions in the spirit of reusability, robustness, and transparency.





Chapter 2

Unsupervised Methods for the Study of
Transformer Embeddings

Over the last decade neural word embeddings have become a cornerstone of many impor-
tant text mining applications such as text classification, sentiment analysis, named entity
recognition, question answering systems, etc. Particularly, Transformer-based contextual
word embeddings have gained much attention with several works trying to understanding
how such models work, through the use of supervised probing tasks, and usually em-
phasizing on BERT. In this chapter, we propose a fully unsupervised manner to analyze
Transformer-based embedding models in their bare state with no fine-tuning. We more
precisely focus on characterizing and identifying groups of Transformer layers across 6
different Transformer models.

2.1 Introduction

Transformer-based word embeddings provided by neural language models are today in-
creasingly used as the initial input to many text mining applications where they greatly
contribute to achieve impressing performance levels. This has motivated a growing number
of researchers to investigate the reasons behind this effectiveness as part of the general
effort to unlock the black box of AI models. Since a Transformer model produces several
embeddings for each word (one for each layer of its deep architecture), it is natural to
study the nature of the embeddings learned at the different layers of the model. So far,
the common way of doing this is to feed them as input to some supervised probing tasks
(text classification, question answering, etc.) and then measure how well they perform on
these tasks. From the observed performance, and depending on the probing task used, one
may deduce, for example, that a given set of layers seems to be good at capturing some
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features of language while another set seems to encode another kind of information. While
these experiments have allowed to draw some conclusions, the observed results depend
both on the tasks and the train and test datasets, and so are not always generalizable. This
observation prompted us to explore if it could be possible to gain additional insight into
the behavior of the layers without having to rely on supervised probing tasks and external
datasets.

In this chapter, we propose unsupervised techniques that completely dispense of probing
tasks, and demonstrate their interest by applying them to real datasets and several widely
used Transformer models. The contributions of the study are as follows:

1. We propose a set of unsupervised methods that allow to gain insights into the nature
of the embeddings available at the different layers of a Transformer model, and how
these embedding layers relate to each other. This approach, which directly leverages
the intrinsic features of the layers, is in contrast to other studies that rely on probing
tasks.

2. The experimental section shows that applying these methods on real datasets allows
to acquire new knowledge about the layers of several Transformer models that seem
to best perform on the important word clustering task.

3. Also, while most layer interpretation studies have so far focused mainly on BERT we
provide a performance comparison for 3 different models namely BERT, RoBERTa
and ALBERT, in both their base and large versions.

2.2 Related Work

In the supervised learning realm, a growing body of research has been devoted to inves-
tigating the linguistic features learned by contextual word embedding models including
LSTM-based models as in (Peters et al., 2018a) and Transformer-based models like BERT as
in (Tenney et al., 2019a). Both authors agreed to say that early layers encode most local syn-
tactic phenomena while more complex semantics appear at the higher layers. In (Liu et al.,
2019a), the authors evaluated the performance of contextualized word representations on
several supervised tasks and compare layers with each other, including ELMo, BERT (base
and large) and OpenAI Transformer models. They especially observe that Transformers’
middle layers allow for a better transferability. On the other hand, the authors in (Hao et al.,
2019) observed that the early layers of BERT are more invariant across tasks and hence
more transferable. It has also been shown in (van Aken et al., 2019) that, after fine tuning
BERT on Question Answering, the model acts in different phases starting from capturing
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the semantic meaning of tokens in the first layers to separating the answer token from the
others in the last layers. It has been concluded that the closer we get to the last layer, the
more task specific the representations are. This explains the results obtained in (Kovaleva
et al., 2019) which studies the changes between pre-trained and fine-tuned BERT-base
model in terms of attention weights. A significant change in the two last layers in terms
of cosine similarity between original and fine-tuned attention weights has been observed
on 6 GLUE tasks. The authors deduced that the BERT-base’s two last layers learn more
task specific features. Several papers focus on identifying the linguistic structure implicitly
learned by the models (Clark et al., 2019; Jawahar et al., 2019). For example, Goldberg
(Goldberg, 2019) evaluates how well BERT captures syntactic information for subject-verb
agreement. Ethayarajh (2019) tried to assess how context-specific are the representations
at the different layers of ELMo, BERT and GPT-2. More examples of works dedicated to
understanding neural language models are given in (Belinkov and Glass, 2019; Rogers et al.,
2020).

In contrast to the above studies we propose to identify coherent groupings of layers,
based on the intrinsic characteristics of the layers and not only by resorting to external
probing tasks.

2.3 Unsupervised Methods for Layer Analysis

Deep Transformer models may have dozens of layers (see Table 2.3). In order to better
understand their behavior we argue that it is useful to compare them, and try to identify
groups with similar characteristics.

2.3.1 Matrix and Vector Representation of Layers

In this section, we propose several alternative (matrix- and vector-based) representations
for a Transformer layer, thus allowing to study their correlations from multiple points of
view. Given a dataset of n words, and a Transformer model with b layers and embedding
dimension d, the dataset can be represented by b different matricesX1, . . . ,Xb of size n×d,
where each matrix Xℓ corresponds to the dataset at the ℓ-th layer. An alternative way
of representing a layer ℓ is by averaging the rows of its Xℓ matrix, leading to a vector
representation vℓ of the layer. Additional intermediate data structures are then computed
from these initial representations (Table 2.1). The pseudo-code in Algorithm 1 describes in
detail how these data structures are created and used during the analysis process.
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Table 2.1: Definitions and notations

Symbol Description
n Number of words of the dataset.
d Number of dimensions: 768 for base models and 1024 for large ones.
b Number of layers: 12 for base models and 24 for large ones.
Xℓ Matrix of size (n× d): data matrix of layer ℓ (cf. Figure 2.1).
xℓi The ith row ofXℓ.
Sℓ Matrix of size (n× n): corresponds to the square matrix ofXℓ.
vℓ Vector of size d: computed for a layer ℓ as the average of rows ofXℓ.
rℓ Vector of size n: similarity ranks of words regarding vℓ.
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Figure 2.1: Construction of the data matrix Xℓ from the contextual word embeddings
provided by the ℓth layer. The context of the word “retina“ is used to compute its embedding,
which constitutes the ith sample vector representation in theXℓ data matrix w.r.t. to the
layer ℓ.

2.3.2 Measuring the Correlations between Layers

In this section and the following one, we propose unsupervised methods for comparing the
layers against each other the goal being to exhibit layers that share some characteristics.

When using a matrix representation for the layers (the Xℓ matrices of Table 2.1), an
appropriate correlation measure is the Rv coefficient (Robert and Escoufier, 1976) which
can be used in order to visualize the layers’ similarities and distinguish any possible bloc
structures. The Rv coefficient can be interpreted as a non centered squared coefficient of
correlation between two given data matrices Xℓ and Xℓ′ (cf. Algorithm 1). This proportion
varies between 0 and 1 and the closer to 1 it is, the better is Xℓ′ as a substitute for Xℓ

(and vice-versa) to characterize the n samples of the dataset. In order to draw a similarity
tendency across layers, we compute for each layer ℓ an Average-Rv which corresponds
to the mean of Rv values between the layer ℓ and the rest of the layers. The heatmap
representation of these values allows to spot groupings of layers.

The vector representation of the layers (the vℓ vectors) allow for other possibilities.
They can be used as input to a clustering algorithm (this will be described in Sections 2.3.3
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Algorithm 1: Unsupervised Process of Layers’ Analysis
Input: a dataset D of n words; a Transformer modelM with b layers and
embedding dimension d; a clustering algorithm C; a ranking function rank.
Step 1. Build matrix and vector representations of layers, for each ℓ = 1 . . . b:

Xℓ ← vertical stacking of the n word embeddings provided by the ℓth layer
Sℓ ← XℓX

T
ℓ

vℓ ←
∑

i xℓi, where xℓi is the ith row of Xℓ

eℓi ← cosine similarity between the word vectors xℓi and vℓ, i = 1 . . . , n
rℓi ← rank(eℓi), i = 1 . . . , n
Compute the Rv coefficient:

Rv(Xℓ,Xℓ′) =
trace(Sℓ × Sℓ′)√

trace(S2
ℓ)× trace(S2

ℓ′)
, ∀ℓ, ℓ′ = 1, . . . , b

Compute the Spearman coefficient:

ρ(rℓ, rℓ′) =
6
∑n

i=1(rℓi − rℓ′i)
2

n(n2 − 1)
, ∀ℓ, ℓ′ = 1, . . . , b

Step 2. Identify groups of layers
Visualize the Rv and Spearman coefficients as heatmap matrices.
V← vertical stacking of the b vectors vℓ, ℓ = 1 . . . b
clusters← C(V)
Visualise clusters

Step 3. Interpret the groups identified in step 2.

and 5.3). But they can also serve as a basis for measuring the correlations between layers.
For each layer ℓ, we first compute the cosine similarity of its vector vℓ with all the word
vector xℓi. A ranking vector rℓ is then computed where rℓi is the ranking assigned to word
i by layer ℓ. Since for two layers ℓ and ℓ′ rℓ and rℓ′ contain word ranks, a suitable measure
of comparison is the Spearman correlation coefficient ρ that measures the rank correlation
between two variables. From the ρ values between each pair of layers we can construct a
heatmap matrix of size b× b which, as with the matrix of Rv values, also allows to identify
groupings of layers (cf. Algorithm 1).

2.3.3 Clustering Layers

The next step of the study is to perform a cluster analysis to confirm the potential groups
using the techniques described in the previous section. The data samples are the b layers of
a given model where each layer ℓ is represented by its corresponding average vector vℓ.
In theory, any kind of clustering algorithm could be used at this stage. In practice, since
the number of layers is relatively low and the number of cluster is unknown (although the
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techniques of the previous section can give an estimate of it), we often used Agglomerative
Hierarchical Clustering (AHC) methods in our experiments. The hierarchical arrangement
of the samples provided by the dendrograms indeed allows for a better interpretation of
the clustering results as will be shown in the experiments section.

2.3.4 Interpreting Layers

In order to provide a more qualitative analysis of layers’ behavior, we use the vector
representation rℓ and visualize the ranking of the firstm words regarding their similarity to
vℓ. We can also deepen our analysis of layers by using the interpretation abilities offered by
dimension reduction techniques such as the Principal Component Analysis (PCA). When
applying PCA on theXℓ matrices, the samples are the word representations and the features
represent the dimensions of the embeddings. The cos2 measure denotes the correlation
between a principal component and a given dimension (feature). It also measures the quality
of representation of the feature, which allows us to select only the features that are more
influential for interpretation.

2.4 Experiments

In this section, we first apply the process described in Algorithm 1 to several word datasets,
in a step by step manner. Then, in order to validate the above methods and better understand
the results they provide, we cluster our word datasets and evaluate each layer in terms of
clustering performance. To achieve that, we perform word clustering experiments on the
Xℓ matrices. Each clustering run provides a partition containing the cluster label of each
word. To evaluate the partition obtained with each layer, we rely on a standard external
measure for assessing clustering quality, namely Normalized Mutual Information (NMI)
measure (Strehl and Ghosh, 2002).

2.4.1 Datasets and Models Used

The datasets of size n used in the experiments are described in Table 2.2. The first dataset,
referred to as UFSAC3, is extracted from the UFSAC dataset (Vial et al., 2018) which
consolidates multiple popular datasets annotated with WordNet (such as SemEval and
SensEval) into a uniform format. The examples are manually divided into three topics:
Body, Botany and Geography. The second dataset, UFSAC4, is a slightly more difficult
dataset since it includes a fourth class (words related to Information Technology) and is
augmented with some polysemous examples (such as "lobes" which appears in Body and
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Botany with different contexts). The third dataset yahoo4, is extracted from the Yahoo!
Answers dataset (Zhang et al., 2015) by manually selecting sets of words for each category
and some corresponding contexts.

Table 2.3 describes the 6 pre-trained Transformer-based embedding models used for the
experiments, without any fine-tuning.

Table 2.2: datasets description: k denotes the
number of clusters.

datasets n k clusters’ sizes

UFSAC3 583 3 body: 266, geo: 227,
botany: 90

UFSAC4 691 4 body: 275, geo: 227,
botany: 99, IT:90

yahoo4 528 4

finance: 150,
science-maths.: 152,

computers-internet: 144,
music: 82

Table 2.3: Transformer models’ de-
scription.

b d vocab size

BERT-base-cased

12 768

28,996

RoBERTa-base 50,265

ALBERT-base-v2 30,000

BERT-large-cased

24 1024

28,996

RoBERTa-large 50,265

ALBERT-large-v2 30,000

2.4.2 Investigating the Correlations between Layers

For comparing the layers with each other, we experimented with the Rv coefficient and the
Spearman’s rank correlation coefficient (cf. Section 2.3.2) . Figure 2.2 shows the similarities
computed between the layers of each model in terms of the Rv coefficient which uses the
matrix-based representations of the layers. As a result of the way in which Transformer
models operate, one would expect that a layer is similar to the one following it. This is
indeed what is observed globally in Figure 2.2. However, when taking a closer look, some
interesting remarks can be made:

• Several rectangular blocks can be spotted. This is confirmed by the curve of the
averageRv valuewhich is drawn on top of the heatmaps. Clearly there are breakpoints
separating groups of layers that share common characteristics in terms of affinities
with other layers.

• One can observe a significant decrease of average similarity on the three last layers
with the last layer sometimes having a distinctive behavior.

• ALBERT-large is very different from the other large models in terms layer-wise
similarity in the sens that each layer is similar to the previous one and has much
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Figure 2.2: Rv-coefficient based layer-wise similarity computed between UFSAC4’s data
matricesXℓ.

lower similarity as we move further away in the network. The same happens on the
last layers, with not break noticed at the end of the network 1.

Additional insights can be gained from the Spearman correlation coefficients computed on
pairs of layers using their ranking vectors rℓ (Figure 2.3).

These coefficients allow to refine the observations made on Figure 2.2, we can notice
an even bigger difference between the 1st layer and the rest of the network in terms of
correlation for BERT-base, moving from ρ = 0.82 between layers 1 and 2 to ρ = 0.95

between 2 and 3. Overall, Figure 2.3 reveals a certain block structure with groups {1},
{2, 3, 4} and {5, 6, 7, 8}. Finally, another break can be observed between layers 11 and 12

where ρ = 0.88 while it was ρ = 0.94 between layers 10 and 11 leading to two new groups
{9, 10, 11} and {12}. The same kind of block structure can also be observed when looking
at the other models.

1This could be explained by the parameter sharing technique used to train the ALBERT model, which
consists of duplicating the same parameters for all layers (Lan et al., 2020).
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Figure 2.3: Layer-wise agreements using Spearman correlation coefficient: the agreement
coefficient between two layers ℓ and ℓ′ is the Spearman correlation coefficients ρ calculated
between rℓ and rℓ′ .

2.4.3 Identifying Clusters of Layers

In order to have another look at the possible groupings of layers, we perform an AHC
and draw the associated dendrograms (cf. Section 2.3.3). Figure 2.4 shows the results
obtained using the Ward and Average linkage criteria, used respectively with the euclidean
and cosine distances. If we look at the results for BERT-base that are obtained using the
Euclidean distance, we can see that the clusters are close to the groupings suggested by
the methods of Section 2.4.2 (compare with the top-left heatmap in Figure 2.3), with the
exception of layer 12 which strangely seems to be close to layer 1. This can be explained by
the fact that we use the euclidean distance, which tends to be sensitive to the amplitude of
data. If we look at BERT-base’s box plots in Figure 2.5, it can be seen that the variance of the
last layer is very close to that of the 1st layer. To confirm that this wrong assignment was
due to an amplitude issue, we experimented with the same AHC algorithm using a cosine
distance (known to be insensitive to vector magnitude) with the "average" linkage strategy.
With this configuration, the 1st layer is even more separated from the following ones and
as expected, the last layer is much less close to the 1st and is assigned to a separate cluster,
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which is coherent with the previous observations (Section 2.4.2). This intuition is confirmed
when looking at RoBERTa-large, for which we don’t have the problem of differing variances
across layers (Figure 2.5) and hence presenting almost the same groupings using the two
distances. Overall, clustering the layers leads to the following observations:

• As shown in Figure 2.4 for BERT-base, the 4th layer is merged with the {2, 3} cluster
before the 1st layer, which confirms the break between the first layer and the following
ones. In fact, the first layer is, for most models, isolated in its own cluster. This
behavior is visible in Figure 2.2 and even more in Figure 2.3 where the 1st layer (1st
row) has darker colors than its following neighbors, which indicates lower correlation
values compared to the other layers.

• For RoBERTa-large we can also see that the 1st layer joins the 2nd only after layers
3 and 4 (especially in the Cosine version). The last layer is also isolated, joining a
cluster only at the 3rd merge of the AHC. The rest of the clusters generally contain
successive layers (like {5, 6, 7}). When cutting at the second merge level we end
up with the following partition {1}, {2, 3, 4}, {5, 6, 7}, {8, 9, 10}, {11, 12, 13, 14},
{15, 16, 17}, {18, 19, 20, 21}, {22, 23}, {24}.
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Figure 2.4: Dendrograms obtained with AHC from the set of layers where each layer is
represented by vℓ a d−dimensional vector computed on UFSAC4.
In Figure 2.5, we use the vector representation vℓ to draw box plots to analyze the distribu-
tion’s evolution of layers over the network. We first observe that the three models present
different behaviors in terms of variance with from the smallest to the largest: RoBERTa,
BERT and ALBERT. Despite that, all distributions are centered around zero with the lower
and upper boundaries being quite symmetric. Besides, for BERT (base and large), we can
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observe a certain break at the last layers (progressive increase followed by a sudden drop)
corresponding to the breaks of similarity observed in Figures 2.2 and 2.3.
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Figure 2.5: Evolution of box plots (without outliers) over layers: each layer is represented
by its average vector vℓ of the UFSAC4 dataset.

2.4.4 Qualitative Interpretation

Table 2.4 shows the first m = 30 words that are the closest to the vℓ representations
of a selection of layers (due to space limitations) of BERT-base for the UFSAC4 dataset.
Confirming the insights provided by the previous rank-based comparisons between layers
as well as the clustering experiments, one can note a significant break between layer 1 and
its immediate neighbors. Layers 2, 3 and 4 resemble each other more than they resemble
layer 1, and share more words such as axons, sclera and scrotum. The correlation scores
displayed on top of each pair of layers in Table 2.4 confirm this visual inspection. Between
layers 5 and 8 (not shown here), we observed a continuous shift of words in the sense that
a limited number of words appeared and disappeared from a layer to another, with the
vanishing of Botany words from the 5th layer.

More new words start to appear on the 9th layer like Bermuda, sinus and hepatic with
an increasing number of Geography words, until layer 11 inclusive. Layer 12 includes



54 Unsupervised Methods for the Study of Transformer Embeddings

Table 2.4: Ranking of the words (colored according to their topic) that are closest to vℓ

representations the BERT-base layers for the UFSAC4 dataset. The first row contains the
pairwise Spearman correlation coefficient.

ρ = 0.82 ρ = 0.95 ρ = 0.94 ρ = 0.93 ρ = 0.94 ρ = 0.88

1 2 3 4 9 10 11 12
cerebellar cerebellar cerebellar bronchial adenoids adenoids anus penis
bulbs kernels bronchial cerebellar atrium cerebellum eardrum eardrum

perennials maxillae sclera molars hipbones anus penis anus
orchids bronchial bronchioles cranial anus Bermuda armpit ribs

bronchioles sclera clavicles axons cerebellum atrium cortical cortical
lymphocyte cerebellum cerebellum arterioles armpit eardrum Bermuda sphincter
mosses deserts cranial sclera gyral armpit cerebellum clitoris

rootstocks clavicles molars bronchioles Bermuda penis atrium pelvic
bronchial axons axons clavicles sinus gyral skull bulbar
clavicle bronchioles arterioles cerebellum sphincter sphincter Egyptian calf
leaflets arterioles brachial follicle leg Armenia breastbone skull
follicle molars maxillae epidermis clitoris clitoris adenoids armpit

arteriovenous hindbrain axon axon brachial pelvic pelvic peritoneum
occipital interface cervical brachial breastbone hipbones Bavaria palmar
maxillae bulbs rootstocks scrotum incisors breastbone clitoris cerebellum
cheekbone scrotum kernels cervical skull calf Armenia Carpal
cerebellum cranial scrotum cheekbone eardrum skull gyral gallbladder
cranial pods interface hindbrain hepatic sinus sphincter distal

epidermis sphincter cerebrum maxillae brain arteriovenous liver leg
mucosa pylorus deserts peritoneum arcuate Egyptian calf wrist
clavicles rootstocks epidermis saliva cheekbone leg peritoneum hips
pods epidermis follicle incisors eye Bavaria sinus gut

herbaceous areolae sphincter triceps muscles cortical membrane bronchial
brachial follicle peritoneum aorta bones arcuate Syria anal
metatarsal axon hindbrain rootstocks rump body bulbar scrotum
kernels glomeruli saliva atrium liver liver arcuate brachial
arterioles peritoneum cheekbone lumbar cilia CNS leg fibula
pylorus lymphocyte triceps cerebrovascular Armenia hepatic hipbones Bermuda

metatarsus arteriovenous cerebrovascular gyral ribs rump palmar liver
molars occipital arteriovenous kernels dental cardiovascular hips basal

new words that do not appear before like ribs, Carpal and gallbladder and fewer number
of Geography words. Overall, the qualitative analysis seems to be in good agreement
with what was observed with the previous methods. For example, it seems to attest to the
existence of five groups of layers in the standard BERT-base model, namely {1}, {2, 3, 4},
{5, 6, 7, 8}, {9, 10, 11} and {12}.

2.4.5 Quantitative Interpretation Using Dimension Reduction

In this section, relying on PCA, the objective is to go further in the unsupervised analysis
of embeddings at different layers. Figure 2.6 presents visual representations provided by
PCA applied to theXℓ matrices of each layer. First, on the projections of samples, one can
observe a significant enhancement of the separability of samples between the layers 1 and
2 whereas it is almost the same between 2 and 3. We noticed another difference between
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layers 4 and 5 with a sort of rotation of samples along with a higher increase of variance
explained by the two first components. The separability remains more or less stable until
layer 11 inclusive and deteriorates in the 12th layer, which also knows a significant increase
of explained variance. These differences in separability indicate that the extremities of the
network are not only different, but may be much less efficient. Concerning the correlation
circles, we notice more differences between layers 1 and 2 than between 2 and 3, this
confirms that the 1st layer constitutes a singleton. We also observe a shift across layers
with many dimensions that appear in few consecutive layers and then disappear (like 643
appearing in the 2nd layer and disappearing in the 5th layer). Another significant break
is observed at the last layer, where dimensions like 223 and 636 disappear while being
important for layers 9, 10 and 11. These observations reinforce our previous groupings for
BERT-base.
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Figure 2.6: PCA on BERT-base’s data matricesXℓ, ℓ = 1, . . . , b - Projections (left): coordi-
nates of words on the two first principal components colored w.r.t. their topic. - Correlation
circle (right): only the 20 dimensions that are most correlated with the two first components
are displayed.

2.4.6 Results Validation Using a Clustering Performance Metric

In this section, we provide numerical results assessing the layer-wise performance on word
clustering using NMI scores (Figure 2.7) on clustering partitions obtained with K-means
applied to Xℓ matrices. In doing so, we aim to validate the layer groups that have been
identified in the previous sections. The main question we try to answer is: Do the previously
identified groups share characteristics in terms of clustering performance? This study also
gives us an idea of the transferability of each layer and each model for the unsupervised
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Table 2.5: NMI scores on blocks of layers with UFSAC4 - The first table corresponds to
BERT-base and the second to RoBERTa-large. The groups obtained based on word clustering
performance fairly closely correspond to the groups that had been spotted using correlation
and cluster analyses.

ℓ 01 02 03 04 05 06 07 08 09 10 11 12
NMI 0.64 0.78 0.81 0.88 0.9 0.94 0.9 0.92 0.91 0.91 0.88 0.83

ℓ 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
NMI 0.51 0.57 0.55 0.61 0.81 0.87 0.9 0.7 0.64 0.62 0.63 0.62 0.61 0.62 0.61 0.55 0.53 0.51 0.48 0.41 0.41 0.58 0.57 0.38

task of word clustering. By separating layers into groups based on the NMI scores they
achieve, one can find clusters of layers that quite resemble the breakdown suggested by
the dendograms in Section 5.3 (compare the values in Table 2.5 with the corresponding
dendograms depicted in Figure 2.4). For BERT-base, in the same way as layer 1 is isolated
in its own singleton cluster, its NMI score is also the worst. The group formed by 1, 2 and 3
achieves values between 0.78 and 0.88, while the best performers are the layers from 5 to
8. Performance then decreases, with a marked drop at the last layer, again in agreement
with the grouping patterns observed in Figures 2.3 and 2.4. The same observations extend
to RoBERTa-large where the cluster {5, 6, 7} contains the best performing layers. We also
clearly see a breaking point of performance between the 1st layer and the following, and
another one (more acute) at the last layer. These breaking points are visible in Figures
2.2 and 2.3. In addition, these observations allow us to confirm some findings presented
in the supervised study (Liu et al., 2019a) showing that BERT models achieve their best
performance on the intermediate layers. We also extend this observation to RoBERTa with
fewer well performing layers, situated more earlier in the network.
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Figure 2.7: NMI scores obtained by the word clustering on theXℓ data matrices for each
layer ℓ.

More generally, on both base and large versions, BERT outperforms the three other
models, followed by RoBERTa and far away by ALBERT. This is surprising considering that
ALBERT is supposed to outperform BERT and RoBERTa when fine-tuned on supervised
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tasks. We then show that in a no fine-tuning configuration, BERT word embeddings are
of higher quality (BERT-large is the only model to achieved the perfect score on UFSAC3).
Finally, ALBERT is the only model for which the base version is better than the large one.
Moreover, both versions present very poor results on word clustering (especially the large
version) and we can notice a better (but still poor) performance with the first layers. One
possible explanation is that ALBERT’s layers start to be task specific from the beginning
of the network, particularly in view of the architecture of ALBERT where all parameters
(including attention parameters) are shared across layers.

2.5 Conclusion

Knowing more about contextualized word embeddings and what can really be expected
from them is an important topic. In this chapter, we proposed a novel way of analysing
Transformer embeddings, based on unsupervised methods, more specifically a correlation
and cluster analysis of the layers. Applying these methods to real datasets made it possible to
spot precise groups of layers (e.g. 5 groups of layers in BERT-base and 9 in RoBERTa-large)
which subsequently proved to fairly closely match the groups obtained when grouping
layers based on their clustering performance. This suggests that the proposed method,
when applied to a dataset is capable of identifying in advance groups of layers that are
likely to best or worst perform on the clustering task. This study also allowed to bring
out major differences between Transformer models on the important text clustering task,
for example the specificity of ALBERT, which is most likely due to its different network
architecture, or the fact that BERT seems to outperform RoBERTa on the clustering task.
Future path for research is to further investigate these differences as well as the potential of
dimension reduction techniques on contextual word embeddings, an issue that deserves to
be the subject of further study, allowing in particular to highlight the potential redundancies
present in the Transformer networks.





Chapter 3

Contextual Word Embeddings
Clustering through Multiway Analysis

Transformer-based contextual word embedding models are widely used to improve several
NLP tasks such as text classification, question answering and named entity recognition.
Knowledge about these multi-layered models is growing in the literature, with several
studies trying to understand what is learned by each of the layers. However, little is
known about how to combine the information provided by these different layers in order
to make the most of the deep Transformer models. On the other hand, even less is known
about how to best use these modes for unsupervised text mining tasks such as clustering.
We address both questions in this chapter, and propose to study several multiway-based
methods for simultaneously leveraging the word representations provided by all the layers.
We show that some of them are capable to perform word clustering in an effective and
interpretable way. We evaluate their performances across a wide variety of Transformer
models, datasets, multiblock techniques and tensor-decomposition methods commonly
used to tackle three-way data.

3.1 Introduction

Transformer-based contextual word embedding models have revolutionized the NLP state
of the art. When fed with a word sequence, a Transformer model produces several different
embeddings (one at each layer of the network) for each word in the sequence. Thus, in a
word clustering context, for a dataset with n words and a model with b layers and latent
dimension d, we can form a 3-way array of shape n× b× d (Figure 3.1) where each word is
represented by b vectors.
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Figure 3.1: Description of the proposed approach that leverages the whole Transformer
model by performing multiway clustering using all of the layers’ representations.

The information captured at the different layers greatly varies: typically, the early layers
may encode local syntactic phenomena while more complex semantic aspects are captured
at the higher layers (Tenney et al., 2019a). As a consequence it is no surprise that using as
input the embeddings produced at different layers may result in very different performance
levels on a given downstream task. Figure 3.2 exemplifies this phenomenon in the case of
text clustering.

This problem can be overcome in a supervised context, where it is always possible
to train and evaluate the model on all the layers and, using labels, determine the one
that maximises a certain metric. In contrast, in the unsupervised setting it is difficult to
determine the best layer in advance with no a priori information about the data. In the
absence of ground truth, since there is no easy way of knowing which layer has given the
best result, the solution is to design a technique guaranteeing a performance level better
than that provided by the best layer, or at worst better than the mean of all layers’s scores.
More specifically, as a word described by several embedding vectors can be regarded as
an input data observation described by several sets (blocks) of variables, we propose a
multiblock approach (Escofier et al., 1983) to make the best use of the information provided
by the different layers in a word clustering context. Also, since the data matrices that
can be derived from the different layers can be seen as the slices of a 3D-tensor, we also
propose an approach based on tensor-decomposition (TD) techniques (Kolda and Bader,
2009). We measure the results of these mutiblock- and tensor-based approaches on a word
clustering task, and compare them with the performance obtained either with other ways of
aggregating the information contained in all the layers such as unfolding (or matricization)
or with layer-wise, non-multiway clusteringmethods where each layer is handled separately.
To the best of our knowledge, this is the first study that relies on multiway clustering to
make the best use of Transformer-based word representations. The main contributions of
this study are as follows:
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• While the performance delivered by Transformer embeddings is mostly assessed in
the context of supervised tasks, we study the behavior of these embeddings in the
unsupervised setting, and provide a thorough investigation into how to make the
best use of them for word clustering purposes, across a large variety of Transformer
models.

• We show that certain multiway methods, simultaneously considering the features
provided by all the embedding layers, are capable of delivering a performance level
better than that provided by the best layer or at worst better than the mean of all
layers’s scores.

3.2 Related Work

Several studies focus on explaining how language models like BERT work. Some of them
investigate the linguistic features learned by Transformer word embedding models like
BERT as in (Tenney et al., 2019a) where it has been showed that early layers encode most
local syntactic phenomena while more complex semantics appear at the higher layers. Liu
et al. (2019a) evaluated the performance of contextualized word representations on several
supervised tasks and compare layers with each other, including ELMo, BERT (base and
large) and OpenAI transformer algorithms. They especially observe that Transformers’
middle layers present a better transferability. On the other hand, Hao et al. (2019) observed
that the early layers of BERT are more invariant across tasks and hence more transferable.

It has also been shown in (van Aken et al., 2019) that, after fine tuning BERT on
Question Answering, the model acts in different phases starting from capturing semantic
sense of tokens in the first layers to separating the answer token from the others in the
last layers. This suggests that the closer we get to the last layer, the more task specific the
representations are. This explains the results obtained by Kovaleva et al. (2019) who studied
the changes between pre-trained and fine-tuned BERT-base model in terms of attention
weights. A significant change in the two last layers in terms of cosine similarity between
original and fine-tuned attention weights has been observed on 6 GLUE tasks. The authors
deduced that the BERT-base’s two last layers learns more task specific features.

The same kind of analysis has not yet been performed for important unsupervised tasks
such as clustering. When performing a downstream task using pre-trained Transformers
embeddings, an emprirical approach is frequently taken. For example, in (Li et al., 2020b) the
authors used pre-trained BERT-base’s embeddings to perform document clustering, using
the second-to-last layer without real justification. On the other hand, when using popular
tools such as "BERT as a service" to build embeddings of text snippets, most practitioners
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uses the second last layer as it is the default layer used by the service (the last one deemed
to be biased towards the Masked Language Model training function).

We show that this choice of layer is not optimal for a clustering task, where the best
performance is most often achieved by using the middle layers, especially for large Tran-
former models (see Figure 3.2). Moreover, it will even be shown (see Figure 3.2) that, if
post-processed using a standard, the last layer, which is in indeed quite useless in its raw
form, may become an extremely valuable input for a word clustering task. More importantly,
since, unlike syntactic information which is generally concentrated in a few layers, semantic
features are spread out across the entire network (Tenney et al., 2019a), and since both
syntactic and semantic features can be helpful in word and text clustering, the conclusion is
that one should try to benefit from all the representations provided by Transformer models
to perform unsupervised learning.

Some papers have considered the use of multiway techniques in text-mining applications
like Kolda et al. (2005) who proposed to use a CP-like method on sparse three-way web data
where the three modes are webpages× webpages× anchor text, allowing to identify topics
while grouping webpages. In text classification, Liu et al. (2005) proposed to represent
each document by a character level tensor T of size 27 × 27 × 27 considering 27 as the
size of the vocabulary (including the 26 letters and ’_’ for the rest of characters) where
each value Tijk corresponds to a tri-gram formed by the ith, jth and kth characters of
the vocabulary. Overall, these studies, focusing on tensor-decomposition techniques, first
are far from having explored the broad spectrum of possibilities offered by the mutltiway
techniques, and second they all predate the appearance of Transformer models.

3.3 Word Clustering Using Transformer Embeddings

For a given dataset of n words, and a model with b embedding layers, we obtain b different
raw representations of size d, one from each layer. The dataset can then be represented by
b matricesX1, . . . ,Xb of size n× d as shown in Figure 2.1.

One can then choose to use each of these matrices individually, the problem being
that in an unsupervised context it is not possible to determine in advance which matrix is
likely to help achieve the best performance. One alternative is to try to benefit from the
information provided by all the layers, simultaneously. We therefore investigate different
clustering methods, taking as input, for a given dataset:

1. Each raw matrixXℓ in isolation from the other (obtaining one clustering partition
per layer).
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2. A dimension-reduced version of each raw matrix Xℓ, using PCA (obtaining one
clustering partition per layer as in the previous case).

3. A matricized version of the Xℓ, ℓ = 1, . . . , b matrices, where these matrices are
concatenated horizontally into amatrix of size n×(b×d) (obtaining a single clustering
partition).

4. A PCA-reduced version of the matricization of the Xℓ, ℓ = 1, . . . , b matrices (obtain-
ing a single clustering partition).

5. The p common components obtained with all of the Xℓ, ℓ = 1, . . . , b matrices as
blocks given as input to the multiblock methods described in Section 3.3.3 (obtaining
a single clustering partition).

6. The p mode-1 factors that compose the matrix A obtained with all of the Xℓ, ℓ =

1, . . . , bmatrices as slices of a three-way tensor given as input to tensor-decomposition
methods, as described in Section 3.3.4 (obtaining a single clustering partition).

Using each layer’s output separately result in b different clustering partitions. As already
said, considering the unsupervised setting of our task and the absence of true labels, it is
impossible to determine in advance the best performing layer. In addition, it is worth noting,
as demonstrated by the experiments described later in the chapter, that it is impossible to
determine a unique layer for all datasets, since the best layer highly depends on the dataset
used, and there is no satisfying universal choice. Therefore, we propose an alternative that
benefits from all the network’s layers, which we show to be very efficient while freeing us
from the impossible task of choosing a unique layer to perform clustering.

3.3.1 Layer-wise Clustering

In layer-wise clustering, we use the K-means algorithm and give it as input a matrix Xℓ

of n rows, corresponding to the output of the ℓth layer of the model, and eventually post-
processed using PCA. The PCA-reduced representations are formed by the p first principal
components of Xℓ. Since we cannot tune the p parameter in our unsupervised setting, we
set it to the same value (p = 15) for all experiments.

For a model with b layers, one can think of running the clustering algorithm on each
of the b Xℓ matrices, and then pick the one that yields the "best" result. However, in the
unsupervised setting where no labels are available, there is no easy way of knowing which
layer Xℓ has given the best result. The solution is to use a technique that frees us from
the impossible task of choosing the best layer while guaranteeing a performance level
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better than that provided by the best layer or at worst better than the mean of all layers’s
scores. As will be shown in the experiments section, an Ensemble approach can meet these
requirements.

In layer-wise clustering, we use the K-means algorithm with as input a matrix Xℓ of n
rows provided by the ℓth layer of the model. We also perform clustering on the PCA-reduced
representations, that are formed by the p first principal components of Xℓ. Layer-wise
clustering is referred to as LW when using the raw embeddings and LW-PCA when using
the post-processed versions with PCA.
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Figure 3.2: Layer-wise clustering performance results: NMI scores. The obtained perfor-
mance highly depends on the layer which is used as input to the clustering task.

3.3.2 Unfolding Layers’ Representations

To try to unleash the potential of all the layers, a simple approach consists in concatenating
the matrices Xℓ, ℓ = 1, . . . , b into a unique data matrix X of size n× (b× d). For example,
given a base model with 12 layers and 768 dimensions which provides 12 matricesXb of
size n× 768, we obtain after the unfolding a matrix of size n× 9 216. We call UN the use
of X directly by a clustering algorithm. We also perform clustering after reducing X using
PCA and call this approach UN-PCA.

3.3.3 Multiblock Analysis

With a view to taking advantage of each layer of a given Transformer language model, we
propose to harness multiblock –or multitable– methods: Consensus PCA (CPCA) (Wold
et al., 1987), Generalized Canonical Correlation Analysis (GCCA) (Carroll, 1968), Multiple
Co-Inertia Analysis (MCIA) (Chessel and Hanafi, 1996), Multiple Factor Analysis (MFA)
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Figure 3.3: Construction of the multiblock reduced data matrix using MFA, λℓ1 being the
first eigenvalue ofXℓ.

(Abdi et al., 2013; Escofier et al., 1983), STATIS (Escoufier, 1980), Common Components and
Specific Weights Analysis (CCSWA) (Qannari et al., 2000). These methods are designed
to deal with simultaneous dimensionality reduction in b blocks (with different features
describing the same observations) and are particularly popular for analyzing multi-omics
data (Argelaguet et al., 2018; Li et al., 2012) as well as sensory profiling data (Llobell et al.,
2020; Wilderjans and Cariou, 2016). Thereby we argue that they can be very useful to tackle
word clustering from three-way data.

In our case, we consider each layer ℓ as a block and each corresponding data matrix
is represented byXℓ of size n× d and Sℓ = XℓX

T
ℓ , where n is the number of samples in

the dataset and d the number of features of the word representations (d is the same for
all of the layers). The objective is to represent the b blocks by a unique matrixW of size
n× p formed by p component vectors q1,q2, . . . ,qp each one of size n× 1 that optimally
resumes the overall information present in the blocks.

The MFA method can be seen as an extension of PCA adapted to multiblock data. It
consists in applying a standard PCA on a data matrixX whose features are composed of all
the variables (dimensions) weighted according to the block (layer) they belong to in order
to balance the influence of each block of variables. The balance is achieved by normalizing
each data blockXℓ using the first eigenvalue λℓ1. X is then obtained by concatenating the b
resulting matrices. Another formulation of the problem is finding the vector q1 that is the
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most linked to all the weighted variables. More formally, MFA maximizes:

b∑
ℓ=1

Lℓ(Xℓ,q1) =
b∑

ℓ=1

1

λℓ1

d∑
j=1

cov2(xℓ.j ,q1) (3.1)

where xl.j corresponds to the jth variable of the data blockXℓ and q1 to the first component
of MFA. The next component maximizes the same criterion while being orthogonal to q1.

The STATIS method is similar to MFA, and differs in the weighting step. With STATIS,
instead of weighting the data blocks according to their corresponding eigenvalues, each
data block is weighted using the first eigenvector v1 of the inner product matrix C of size
b× b where each element cℓ,ℓ′ is computed as follows:

cℓ,ℓ′ = trace(Sℓ × Sℓ′) =
n∑

i=1

n∑
k=1

si,k,ℓsi,k,ℓ′ . (3.2)

The weighting vector α is computed by α = v1 × (vT
1 1)

−1 so that the elements of α sum
to one (1 being the unit vector). In (Hanafi et al., 2011), the authors discussed the difference
between CPCA, MCIA and GCCA and show their similarity, which lies in the optimized
criterion that aims to reveal covariant patterns in and between the different blocks by
finding scores vectors qℓ

1 for each block ℓ which are as much linked as possible to a global
score vector q1:

∑b
ℓ=1 cov

2(qℓ
1,q1) where qℓ

1 and q1 are n × 1 vectors. This criterion is
maximized by the three multiblock methods, with different constraints. The same function
is maximized to find the higher order components, using a deflated version of the current
data blocks at each iteration. The deflating function used with CPCA is as follows:

X
(t+1)
ℓ = X

(t)
ℓ −

qtq
′
t

q′
tqt

Xℓ. (3.3)

The CCSWA (Qannari et al., 2000) method (sometimes called ComDim) also computes the
components iteratively. The first component q1 and their weights γ11 , . . . , γb1 are computed
as to minimize the expression:

∑b
ℓ=1

∥∥Sℓ − γℓ1q1q
T
1

∥∥2 where γℓ1 represents the salience
value of the ℓth block for the first component (common axis) represented by the vector q1.
The CCSWA algorithm aims to find the parameters γ1t , . . . , γbt and qt for t = 1, 2, . . . , p

that maximizes an overall loss function at each iteration t:

b∑
ℓ=1

||Sℓ −
t∑

k=1

γℓ1qkq
T
k ||2. (3.4)
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This proportion belongs to [0, 1] and the closer to 1 it is, the better is Xℓ′ as a substitute for
Xℓ (and vise-versa) to characterize the n samples of the dataset.

Whatever the method used, the p first common components q1, . . . ,qp are used as
input to a clustering algorithm as shown in Algorithm 2, thus leveraging all of the word
representations provided by the multi-layered Transformer models. The common com-
ponents can be obtained using the R package FactoMineR (Lê et al., 2008) for MFA and
mogsa (Meng, 2019) for CPCA, GCCA, MCIA, and STATIS. For CCSWA, we used our Python
implementation.

Algorithm 2:Multiblock Clustering Procedure
Input: a dataset D of n words; a Transformer modelM of b layers; a clustering
algorithm C; a multiway decomposition function F , number of components p
Output: a clustering partition p
Step 1. Build data matrices, for each ℓ = 1 . . . b:
Xℓ ←M(D, ℓ) as in Figure 2.1;
Step 2. Perform multiblock factorial decomposition:
q1, . . . ,qp ← F([X1, . . . ,Xb], p);
W← horizontal stacking of the p components q1, . . . ,qp;
Step 3. Perform clustering:
p← C(W);
return p

3.3.4 Tensor Decomposition

In this family of methods, data matricesXℓ, ℓ = 1, . . . , b can be viewed as a three-way or
three-modal tensorX of size n×d× bwhere each matrixXℓ (obtained with the ℓth layer of
the model) is considered as a slice of the tensor (cf. Figure 3.4). Two of the most popular TD
techniques are CANDECAMP/PARAFAC (CP) (Carroll and Chang, 1970; Harshman et al.,
1970) and Tucker decomposition (Tucker, 1966). For the sake of simplicity, we describe
these two techniques for three-mode tensors, but they can be generalized for m-mode
tensors (m > 3). A CP decomposition of rank p aims to find three factor matrices A, B
and C of size n× p, d× p and b× p respectively, and λ that minimizes the approximation
error of X by finding:

min
X∗
∥X−X∗∥ where X∗ =

p∑
j=1

λjaj ◦ bj ◦ cj (3.5)
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Figure 3.4: Construction of a tensor to be used for multiway clustering with TD techniques.

where aj , bj and cj being the jth column ofA, B and C respectively. The “◦” stands for
the outer product between two vectors. The outer product of the three vectors aj , bj and
cj results in a three-way tensor with the sames dimensions as X. One of the most popular
procedures to optimize this criterion is the Alternating Least Squares (ALS) (Carroll and
Chang, 1970; Harshman et al., 1970). The Tucker decomposition also computes three factor
matrices A, B and C, this time of size n × p, d × q and b × t respectively. Unlike in CP,
the ranks of the three modes (p, q and t) are not necessarily equal. In addition to the factor
matrices, a core tensorG of size p× q × t is computed so as to optimize:

min
X∗
∥X−X∗∥ where X∗ =

p∑
i=1

q∑
j=1

t∑
k=1

gijk ai ◦ bj ◦ ck (3.6)

gijk being the intersection if the ith row (mode 1), the jth column (mode 2) and the kth
tube (mode 3) of the tensor G. To solve this optimization problem, a popular approach
named Higher-Order Orthogonal Iteration (HOOI) (De Lathauwer et al., 2000) and similar
to ALS consists in fixing two factor matrices to compute the third one by using two-way
singular vector decomposition (further details can be found in (De Lathauwer et al., 2000)).

In our experiments, we use for both CP and Tucker the matrix A as input to the
clustering algorithm. The p columns of A can be seen as the principal components in
the first mode of X. We use two Python implementations of ALS and HOOI to perform
CP and Tucker decomposition respectively. The first implementation is provided by the
TensorD (Hao et al., 2018) package, based on the TensorFlow framework, allowing GPU
acceleration. The second is available in the TensorLy (Kossaifi et al., 2019) package which
flexibly leverages several CPU and GPU backends.
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3.4 Experimental Study

3.4.1 Datasets and Models Used

The datasets used are described in Table 3.1 by the words, their contexts and the corre-
sponding topic. The first dataset, denoted as UFSAC3 is extracted from the UFSAC dataset
(Vial et al., 2018) which consolidates multiple popular WSD datasets (such as SemEval and
SensEval) into a uniform format. The examples are manually divided into three topics:
Body, Botany and Geography. The second dataset, denoted as UFSAC4, is a slightly more
difficult dataset; it includes a fourth class (words related to information technology) and is
augmented with some polysemous examples (such as "lobes" which appears in Body and
Botany with different contexts). The two last datasets yahoo4 and yahoo6, are extracted
from the Yahoo! Answers dataset (Zhang et al., 2015) by manually selecting sets of words
for each category and some corresponding contexts.

Table 3.1: Datasets description: k denotes the number of clusters.

datasets n k clusters’ sizes

UFSAC3 583 3 body: 266, geo: 227, botany: 90

UFSAC4 691 4 body: 275, geo: 227, botany: 99, IT:90

yahoo4 528 4 finance: 150, music: 82, science-maths.: 152,
computers-internet: 144

yahoo6 852 6 health: 201, finance: 150, computers-internet: 144,
music: 82, science-maths.: 152, sports: 123

From each set of documents, we compute multiple contextual representations from 6
pre-trained models which are the base (12 layers) and large (24 layers) versions of BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019b) and XLNet (Yang et al., 2019b) with a
vocabulary size of 28,996 for BERT, 50,265 for RoBERTa and 32,000 for XLNet.

3.4.2 Clustering Evaluation

In all the experiments, we used K-means (Lloyd, 1982) with a known number of clusters
(any other clustering algorithm can be used), which are run with 10 different initializations
on different matrix representations of words occurrences, surrounded by a given context.
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To validate the results produced by the clustering algorithm we relied on standard external
measures devoted to assessing cluster quality, namely NormalizedMutual Information (NMI)
(Strehl and Ghosh, 2002), the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985; Steinley,
2004) and the clustering accuracy. When performing dimension reduction, a number of
components p has to be fixed. Since we cannot tune the p parameter in our unsupervised
setting, we set it to the same value (p = 15) for all experiments. This corresponds either
to the number of principal components of PCA (cf. Sections 3.3.1 and 3.3.2), the number
of common components present in theW matrix computed by the multiblock techniques
(cf. Section 3.3.3) or the rank of the matrix A computed by the TD methods (cf. Section
3.3.4). Table 3.2 contains the NMI scores obtained by each method over the 6 Transformer
models and the 4 datasets. For comparison purposes, we also included the results obtained
when using fastText word embeddings or the representations obtained by the Transformers’
layers individually (as described in the next section). FastText (Bojanowski et al., 2017) was
used as a representative of the Word2Vec family of embeddings since it provides for the
Out-of-Vocabulary issue which otherwise would distort comparisons. The suffixes TensD
and TensL in Table 3.2 stand for the packages TensorLy and TensorD respectively.

3.4.3 Layer-wise Clustering Experiments

To have an idea on the performance obtained by each layer, we perform layer-wise clustering
and present the results (NMI) in Figure 3.2.We also perform clustering on the PCA-reduced
representations and present the results (NMI) in Figure 3.5 only for two datasets, due to
the lack of space. In Table 3.2, we call LW and LW-PCA the average of the scores obtained
by all of the b clustering experiments run on each matrix Xℓ separately before and after
applying PCA respectively. We also present the highest of the layers’ scores in order
to compare it to the multiway approaches scores, even if these layers are unfortunately
impossible to determine in the absence of labels. We call this score BE-LW when using the
raw representations and BE-PCA when using the reduced version.

3.4.4 Multiway Clustering Experiments

Since the obtained results may greatly vary with each layer, as clearly visible in Figure 3.5,
and since determining which one is the best is impossible in the absence of labels when
dealing with real datasets, a sensible solution to overcome this incertitude is to use multiway
techniques as described in Sections 3.3.2, 3.3.3 and 3.3.4 using the Xℓ data matrices ℓ =
1, . . . , b of each model. Table 3.3 provides an overview of the overall performance obtained
by themultiway techniques with themean rank of eachmethod. Themean rank corresponds
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Table 3.2: NMI scores of multiway clustering on Transformer and fastText embeddings.

Datasets Method BERT-base BERT-large RoBERTa-base RoBERTa-large XLNet-base XLNet-large fastText

UFSAC3

LW 0.89±0.07 0.81±0.3 0.71±0.14 0.64±0.16 0.38±0.17 0.38±0.26 0.92
LW-PCA 0.91±0.07 0.8±0.31 0.78±0.16 0.66±0.16 0.48±0.12 0.4±0.24 0.92
BE-LW 0.96 1 0.96 0.98 0.56 0.9 -
BE-PCA 0.98 1 0.96 0.98 0.8 0.91 -

UN 0.96 1.0 0.94 0.66 0.04 0.0 -
UN-PCA 0.98 1.0 0.97 0.65 0.54 0.55 -
MFA 0.98 1.0 0.97 0.77 0.55 0.54 -

STATIS 0.96 0.98 0.97 0.77 0.55 0.5 -
CPCA 0.76 0.71 0.68 0.53 0.56 0.48 -
GCCA 0.8 0.76 0.74 0.65 0.61 0.52 -
MCIA 0.7 0.76 0.72 0.69 0.5 0.49 -
CCSWA 0.58 0.58 0.77 0.68 0.63 0.47 -
CP-TensD 0.66 0.28 0.01 0.64 0.44 0.26 -
CP-TensL 0.92 0.66 0.57 0.56 0.36 0.02 -

Tuck-TensD 0.68 0.75 0.78 0.83 0.61 0.48 -
Tuck-TensL 0.73 0.81 0.89 0.69 0.47 0.49 -

UFSAC4

LW 0.86±0.08 0.72±0.28 0.67±0.11 0.6±0.13 0.36±0.14 0.33±0.19 0.77
LW-PCA 0.88±0.06 0.75±0.25 0.74±0.1 0.63±0.11 0.44±0.06 0.39±0.18 0.84
BE-LW 0.94 0.98 0.86 0.9 0.53 0.7 -
BE-PCA 0.95 0.96 0.91 0.89 0.55 0.69 -

UN 0.96 0.97 0.67 0.65 0.16 0.01 -
UN-PCA 0.97 0.99 0.76 0.65 0.47 0.5 -
MFA 0.97 0.99 0.73 0.67 0.47 0.49 -

STATIS 0.96 0.95 0.9 0.68 0.47 0.48 -
CPCA 0.75 0.84 0.75 0.59 0.59 0.53 -
GCCA 0.76 0.75 0.82 0.7 0.58 0.46 -
MCIA 0.81 0.76 0.79 0.67 0.56 0.49 -
CCSWA 0.73 0.82 0.76 0.76 0.61 0.28 -
CP-TensD 0.43 0.59 0.06 0.46 0.04 0.44 -
CP-TensL 0.61 0.55 0.48 0.61 0.41 0.39 -

Tuck-TensD 0.75 0.85 0.84 0.62 0.51 0.58 -
Tuck-TensL 0.81 0.86 0.79 0.65 0.49 0.55 -

yahoo4

LW 0.81±0.07 0.59±0.24 0.54±0.17 0.59±0.14 0.37±0.22 0.43±0.22 0.42
LW-PCA 0.83±0.07 0.58±0.25 0.84±0.04 0.66±0.15 0.54±0.24 0.53±0.23 0.51
BE-LW 0.91 0.91 0.78 0.79 0.67 0.79 -
BE-PCA 0.92 0.94 0.9 0.89 0.89 0.86 -

UN 0.9 0.82 0.63 0.71 0.03 0.04 -
UN-PCA 0.93 0.91 0.91 0.82 0.74 0.73 -
MFA 0.92 0.91 0.91 0.83 0.73 0.74 -

STATIS 0.91 0.89 0.9 0.82 0.71 0.75 -
CPCA 0.93 0.74 0.87 0.82 0.76 0.66 -
GCCA 0.88 0.71 0.85 0.79 0.63 0.73 -
MCIA 0.85 0.76 0.86 0.8 0.67 0.7 -
CCSWA 0.7 0.73 0.81 0.8 0.89 0.62 -
CP-TensD 0.04 0.08 0.17 0.07 0.41 0.38 -
CP-TensL 0.44 0.55 0.41 0.63 0.18 0.55 -

Tuck-TensD 0.81 0.66 0.81 0.79 0.72 0.75 -
Tuck-TensL 0.83 0.73 0.85 0.8 0.8 0.7 -

yahoo6

LW 0.73±0.08 0.58±0.21 0.61±0.15 0.62±0.16 0.37±0.2 0.37±0.22 0.42
LW-PCA 0.73±0.06 0.57±0.22 0.79±0.08 0.69±0.14 0.51±0.19 0.45±0.24 0.42
BE-LW 0.86 0.87 0.78 0.8 0.65 0.74 -
BE-PCA 0.87 0.87 0.93 0.81 0.85 0.78 -

UN 0.92 0.8 0.72 0.79 0.11 0.04 -
UN-PCA 0.94 0.81 0.81 0.81 0.65 0.66 -
MFA 0.93 0.83 0.81 0.81 0.65 0.67 -

STATIS 0.74 0.75 0.8 0.81 0.66 0.69 -
CPCA 0.94 0.9 0.88 0.84 0.69 0.7 -
GCCA 0.96 0.85 0.88 0.83 0.65 0.69 -
MCIA 0.93 0.86 0.9 0.83 0.68 0.69 -
CCSWA 0.82 0.7 0.65 0.76 0.85 0.77 -
CP-TensD 0.53 0.18 0.09 0.11 0.31 0.21 -
CP-TensL 0.6 0.74 0.57 0.46 0.14 0.3 -

Tuck-TensD 0.87 0.71 0.78 0.81 0.82 0.65 -
Tuck-TensL 0.85 0.66 0.79 0.81 0.8 0.64 -
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Table 3.3: Mean ranks of multiblock and tensor-based methods (the lower the better). The
suffixes Ly and D stand for the packages TensorLy and TensorD respectively.

UN UN-PCA MFA STATIS CPCA GCCA MCIA CCSWA CP-D CP-Ly Tuck-D Tuck-Ly
NMI 11.02 5.6 4.85 5.92 6.71 6.88 6.79 9.04 15.12 13.71 8.25 8.12
ARI 10.73 5.06 4.65 5.79 7.75 7.42 7.58 8.46 14.88 13.5 8.17 8.12
ACC 11.27 5.73 5.27 6.21 7.98 7.21 7.04 8.02 14.5 13.5 8.08 7.88
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Figure 3.5: Compared clustering performance (NMI) across layers of the original represen-
tations of base models (using all of the 768 dimensions of the Xℓ matrices) vs. reduced
representations (using 15 principal components ofXℓ), with ℓ = 1, . . . , b (b ∈ {12, 24}).

to the average of all the ranks assigned to a givenmethod based on its performance compared
to the other methods, over all the model-dataset combinations. Table 3.2 gives further
details of the performance of each method over all the models and datasets.

3.5 Discussion and Interpretation

In this section, we discuss the benefit of applying multiway methods in the unsupervised
setting due to a diversity of the information provided by each layer. Thereby, from the
representations of each layer used separately we first evaluate the performance in terms
of word clustering. We aim to show that the results might greatly vary according to the
dataset.
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To tackle this issue, for each dataset we propose to use all layers. We perform a
dimensionality reduction in different ways and from a simplified representation, a clustering
algorithm is applied and quality of word clustering is measured. Further, using user-friendly
visualization tools, we show how the classes are arranged in a low-dimensional space, how
detecting the most influential words and measuring the role of each layer.

3.5.1 Layer-wise Clustering Results

Figures 3.2 and 3.5 show that BERT presents better performance than RoBERTa and XLNet,
even if the latter are more recent and outperforms BERT in the supervised tasks. We can see
in the same figures that BERT models achieve their best performance on the intermediate
layers (which is in line with the findings issued in (Liu et al., 2019a)). Especially, BERT-large
reaches a perfect NMI score on UFSAC3 from the 9th to the 14th layer, with a sudden drop
of performance on the 5 last layers. Overall, we can see this decrease for all the models.
Figure 3.5 also shows that reducing the number of dimensions to only 15 (which constitutes
less than 2% of features for the base models and 1.5% for the large ones) leads to very
competitive performance scores, achieving even better results than raw representations,
which indicates a high redundancy in the pre-trained embeddings. Interestingly, in the case
of RoBERTa and XLNet, the PCA reduction significantly improves the performance of the
last layers, which as said previously perform very poorly in their raw form. For example,
on yahoo4, the raw vectors provided by the last layer of XLNet-base yield an NMI of 0.03
while they achieve 0.89 with PCA, moving the last layer from the worst to the best layer.

3.5.2 Multiway Clustering Results

One first observation from Table 3.2 concerning the multiway clustering results is that
multiblock methods seem more effective compared to TD techniques. This is confirmed by
Table 3.3 whereMFA has the best mean rank, followed by UN-PCA and STATIS. Furthermore,
Tucker seems more suitable for our data than CP. Besides, Table 3.2 shows that in the case of
BERT (base and large), the multiblock techniques are very competitive and can outperform
the best layer of the models. Moreover, MFA, UN-PCA and STATIS on BERT-large have no
difficulty in achieving the perfect score on UFSAC3 even if the last layers present very poor
results separately (cf. Figure 3.2). For RoBERTa-large, multiblock techniques are not as
powerful as the best layer, but are still better than the mean of all layers’s scores. In general,
the performance of MFA is much higher than the average performance of the layers used
separately. This indicates that it is very effective for capturing the valuable information
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Figure 3.6: 2D projections of UFSAC3 and yahoo4 words on the two first common compo-
nents of MFA, colored according to the known topics

present in the d× b features of each model (9 216 for the base models and 24 576 for the
large ones) in only 15 dimensions.

In Table 3.2 we observe that the raw unfolding (UN) is much less powerful than when
reduced with PCA (UN-PCA). This brings out the interest of factor decomposition and
dimension reduction in improving performance in the clustering task while combining all
layers. This difference in performance is in line with the observations made on Figure 3.5
where the use of PCA noticeably improved the layer-wise clustering, which explains the
enhancement observed with UN-PCA.

3.5.3 Visual Interpretation of Factorial Analysis Results

In addition to being one of the best performing multiway techniques, MFA offers several
visual interpretation possibilities that are presented in Figures 3.6, 3.7 and 3.8.

Figure 3.6 provides the words’ projections on the two first common factors of MFA. Com-
paring the 6 Transformer models in terms of points’ dispersion, we obtain the same ranking
of models as made previously, except that RoBERTa-base seems better than RoBERTa-large,
which is in line with the numerical results described by MFA’s row in Table 3.2.
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Figure 3.7: The 20 most contributory words (of UFSAC4) to the first three dimensions of
MFA applied to all the layers of BERT-base and RoBERTa-base

Figure 3.7 shows the contribution of the first 20 words to the first three components of
MFA for BERT-base and RoBERTa-base. We see that for BERT-base, among the 20 most
contributory words, the classes are perfectly distributed over the 3 first dimensions (Geog-
raphy, Botany, IT and Body contribute the most to dimensions 1, 2, 3 and 4 respectively).
For RoBERTa-base, the distribution is less homogeneous, the three classes contributing
equally to the last dimension.

Figure 3.8 shows the contribution and NMI score of each layer with the 6 models. The
contribution of a layer to a component is the sum of the contributions of its variables.
More formally, the contribution of the ℓth layer to the jth component is computed as∑

k∈Gℓ
αℓ × uk,j where uk,j is the loading of the kth variable for the jth component,

αℓ =
1
λℓ
1
is the weight of the ℓth layer and Gℓ is the set of variables of the ℓth layer. The

contribution of each variable takes values between 0 and 1 and sums to 1 for a given
component. The values of contribution displayed in Figure 3.8 are percentages. The NMI
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Figure 3.8: The contribution of each block (layer) to the first common component of MFA
(UFSAC3). The NMI (in red) of a layer ℓ is obtained with clustering separately theXℓ matrix
made of the original word representations.

metric of each layer ℓ is the same as in Figure 3.2 (UFSAC3). We observe from Figure 3.8 that
MFA seems to sum up the relevant information present in the layers of the models, without
taking into account the most outlying (and less performing) layers, especially for BERT. For
the other models, the drop of performance occurring at the end of some models coincides
with a significant decrease of contribution. We can also see that for RoBERTa-base, the best
performing layer (layer 5) is also the most contributory to the first component of MFA.

3.6 Conclusion

The present study has shown that a multiway-based approach to word clustering has
a twofold benefit. It first removes the need to choose, among the different layers of a
Transformer, the one supposed to be the most useful input, something impossible to
determine in an unsupervised setting. Second, across a variety of Transformer models as
well as datasets for which labels were available for evaluation, multiway techniques have
been shown to deliver a performance that most often outperforms that obtained with the
most useful layer. Among the multiway techniques, multiblock approaches, especially MFA,
stand out as the best performers, outscoring standard tensor-decomposition methods. This
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can be attributed to the fact that MFA aims to give a balanced role to the layers. It is based
on a factor analysis in which the variables are weighted and these weights are identical for
the dimensions of the same layer (and vary from one layer to another). Thereby, we have
shown for the first time the interest of using such a method in NLP.

Paths for future research include experimenting with other clustering scenarios, and
investigating how to make supervised tasks such as text classification benefit frommultiway
techniques.





Chapter 4

An Ensemble Approach for Text
Clustering with Transformers

Pre-trained Transformer-based word embeddings are now widely used in text mining where
they are known to significantly improve supervised tasks such as text classification and
named entity recognition and question answering. Since the Transformer models create
several different embeddings for the same input, one at each layer of their architecture,
various studies have already tried to identify those of these embeddings that most contribute
to the success of the above-mentioned tasks. In contrast the same performance analysis
has not yet been carried out in the unsupervised setting. In this chapter we evaluate the
effectiveness of Transformer models on the important task of text clustering. In particular,
we present a clustering ensemble approach that harnesses all the network’s layers. Numeri-
cal experiments carried out on real datasets with different Transformer models show the
effectiveness of the proposed method compared to several baselines.

4.1 Introduction

Starting with BERT (Devlin et al., 2019), Transformer-based contextualized word embed-
dings provided by neural language models have been increasingly used as the initial input to
many NLP applications where they greatly contribute to achieving impressing performance
levels.

A Transformer model produces several representations for each word (one at each
layer of the network architecture) and studies in the realm of supervised learning have
tried to determine the kind of information captured by these different layers. For example,
using pre-trained Transformer embeddings as input to a suite of NLP tasks, the authors
in (Peters et al., 2018a; Tenney et al., 2019a) have agreed that early layers encode most
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Figure 4.1: Different ways of combining the ℓ layers’ embeddings of a Transformer language
model. x(ℓ)

i is the document vector computed by averaging the representations (obtained at
layer ℓ) of the tokens contained in document i. This vector forms the i-th row of theX(ℓ)

matrix, which is the representation of the dataset at layer ℓ.

local syntactic phenomena while more complex semantics appear at the higher layers. This
observation has also been made on other languages (de Vries et al., 2020). On the other
hand, looking more specifically at the generalization capabilities of contextualized word
representations (including ELMo, BERT and OpenAI Transformer algorithms), Liu et al.
(2019a) have observed that Transformers’ middle layers present a better transferability while
Hao et al. (2019) observed that the early layers of BERT-large (24 layers) are more invariant
across tasks than the higher layer and hence more transferable. In another line of research,
some studies have concentrated on the impact of fine-tuning and have experimentally
verified that the closer we get to the last layer, the more task specific the representations
are (Kovaleva et al., 2019; van Aken et al., 2019).

The main takeaway of these studies is that embeddings available at the different layers
clearly capture different information, thus leading to very different results when used as
input to a given text mining task. The problem is that it is not possible to know in advance
which one will help to best perform on a given task. When using pre-trained embeddings, a
common empirical rule is to exclude the last layer on the assumption that it is biased to the
training targets. The very first layers are also commonly excluded since they are deemed
to be too close to the original word information. Another approach for selecting a layer
to perform a given task is to utilize a labeled dataset as a development set to determine
the best layer to use for new datasets (Zhang et al., 2020a). We show that this approach is
not optimal in our case, since the best layer is often different from one dataset to another.
In addition, we believe that semantic features can be very helpful in text clustering, and
it has been observed in (Tenney et al., 2019a) that, unlike syntactic information, which is
generally concentrated in a few layers, semantic features are spread out across the entire
network. This is why, instead of choosing a unique layer, we prefer leveraging all the
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representations provided by Transformer models to perform unsupervised learning. To
achieve that, we propose to separately cluster the document representations computed at
each layer, then deduce a consensual partition, taking advantage of all the information
provided at each level of the deep network. In order to evaluate our approach, we compare
it to formerly used baselines including the concatenation and averaging of layers, the use of
the second-to-last layer as well as the combination of the four last layers. We also compare
our results to those obtained with a standard Bag-Of-Words representation.

Also, we investigate the effect of dimension reduction on the Transformer-based em-
beddings, a topic which has rarely been studied so far. For a review of this question in the
context of word embeddings that predate BERT such as Word2vec, fastText and GloVe, the
reader is referred to Raunak et al. (2019) who showed that it was possible to half vector
dimensions without significantly altering performance, as well as Mu and Viswanath (2018)
who used PCA to remove the dominant components when reconstructing the representation
matrix. The present work aims at contributing to fill this gap in the context of Transformer
embeddings. We show in Section 3.3 that combining clustering ensemble and dimension
reduction allows to significantly increase clustering performance on several real datasets.
Section 4.3 then highlights an important advantage of the clustering ensemble, namely the
effective estimation of the number of clusters along with an efficient partitioning of data
samples, which is very useful when the exact number of clusters is not known.

4.2 Clustering Transformer Embeddings

For a dataset of n documents and a Transformer model with b layers, one obtains b dense
representations of size d, one from each layer. Given a layer ℓ, the representation of the
i-th document of the dataset is obtained from the embeddings of its 512 first tokens that
are pooled together using the mean function as suggested in (Reimers and Gurevych, 2019;
Xiao, 2018). This leads to obtain a vector x(ℓ)

i of size d, which constitutes the i-th row of the
matrixX(ℓ). The dataset can then be represented by b matricesX(1), . . . ,X(b) of size n× d
as shown in Figure 4.1. We call a partition the result provided by one of the clustering runs
and it contains n labels where the i-th label corresponds to the cluster to which the i-th
document is assigned.

For a model with b layers, one can think of running the clustering algorithm on each of
theX(ℓ) matrices, and pick the one that yields the "best" result. However, in the unsupervised
setting where no labels are available, there is no easy way of knowing which matrixX(ℓ)

has given the best result. Hence, we propose and describe two main ways of leveraging
the various representations provided by a Transformer model: (1) by aggregating the
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X(ℓ), ℓ = 1, . . . , bmatrices; (2) by using theX(ℓ) matrices individually as part of an ensemble
approach. We also assess the performance obtained when using a PCA-based dimension
reduction step, reducing the dimensions to d′ = 100.

4.2.1 Post-processing of the Transformer Representations

The use of linear dimension reduction is commonplace in NLP and has shown promising
improvements on various representations (Mu and Viswanath, 2018; Raunak et al., 2019;
Xu et al., 2003). In our study, we investigate the power of principal components in reducing
the dimension of dense document representations while preserving the information they
contain. In particular, we observed that the use of the first principal components does
not alter the performance, even when compressing the original vectors to 10% of the
dimensions. More importantly, we show that an additional whitening operation applied on
the principal components leads to surprising improvements of the clustering performance
while drastically reducing the dimensionality. Considering the definition given in Section
1.3.2, the reduced representation of each vector xi is given by yi = xiWd′ . In the whitened
version of PCA, it is obtained as follows:

yij =
xiwj√
σj
∀i = 1, . . . , n ; j = 1, . . . , d′

where wj is the jth eigen vector ofX⊤X and σj its jth eigenvalue, variance 1. We show
that instead of removing the dominant principal components from the reconstruction of
X then recompute the principal components, as proposed in (Mu and Viswanath, 2018;
Raunak et al., 2019) for word level tasks, directly normalizing the principal components by
their eigenvalues is sufficient to mitigate the impact of the dominant principal components
and significantly improve the clustering results.

4.2.2 Prior Aggregation of the Layered Representations

For a document i, the first combination method consists in averaging the b vectors x(ℓ)
i , ℓ =

1, . . . , b, thus obtaining a unique vector of size d, as experienced in (Vulić et al., 2020).
We refer to this method as AVG. The second method, which we call Concat, consists in
concatenating the b vectors x(ℓ)

i , which results in a unique vector of size b×d, as performed
in (Devlin et al., 2019) using the last layers. On top of these aggregated representations,
we optionally perform a PCA-based dimension reduction before running the clustering
algorithm, obtaining representations of size d′ = 100.
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4.2.3 Clustering Ensemble Approach

Another way of combining the information provided by all layers, is not to physically
aggregate them, but to rely on a consensus procedure. This clustering ensemble or con-
sensus is referred to as ENS. Ensemble learning has been considered in different machine
learning contexts where it generally helps in improving results by combining several models
(Affeldt et al., 2020a; Dietterich, 2000). The ensemble approach allows a better predictive
performance and a more robust clustering as compared to the results obtained with a single
model (Berikov and Pestunov, 2017; Strehl and Ghosh, 2002).

Algorithm 3: Clustering Ensemble
input :A dataset D; a Transformer modelM of b layers, two clustering

algorithms C1 and C2; the number of clusters g
output :A consensual clustering partition p∗

1 foreach ℓ = 1, . . . , b do
2 X(ℓ) ← document embeddings computed usingM(D) at the ℓ-th layer (as

shown in Figure 4.1);
3 p(ℓ) ← C1(X(ℓ), k);
4 end
5 H← the association matrix of the p(ℓ) partitions;
6 Hr ← The null-model association matrix from random permutations of the

partitions p(ℓ);
7 τ = average (Hr) ;
8 foreach i, j from 1 to n do
9 if hij < τ then
10 hij ← 0;
11 end
12 end
13 p∗ ← C2(H);
14 return p∗;

Vega-Pons and Ruiz-Shulcloper (2011) identified two main steps in the clustering en-
semble process: the generation step and the consensus step. The generation mechanism is
responsible for creating the set of partitions and can be carried out in several way such as
using different clustering algorithms (Strehl and Ghosh, 2002), different solution initializa-
tions (Alizadeh et al., 2014), different sets of hyperparameters (Jia et al., 2011) and different
data representations (Tsai et al., 2014). Our approach belongs to the last category as we use
different vector representations of the same documents, given as input to the same model,
with the same hyperparameters. In Section 6.3.1 we use the same representation and the
same algorithm but vary the number of classes. This can be considered as belonging to the
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“different hyperparameter” approach since the number of classes can be considered as a
hyperparameter. The approach we propose in Section 4.3 lies at the intersection between
the two categories since we vary both the input representations and the number of clusters.

Ensemble approaches can also be categorized according to the consensus function they
make use of. One common approach is to perform a majority vote after relabeling the
cluster partitions so that the pairwise correspondence of the groups is maximized. The
consensus vote can be achieved with different strategies adapted to both hard (Fred, 2001)
and fuzzy (Dimitriadou et al., 2002) clustering partitions. Another approach is to rely on a
bipartite graph that connects the n samples and the g clusters using an association matrix
of size n× g (Fern and Brodley, 2004). Alternatively, Jafarzadegan et al. (2019) used PCA to
combine several hierarchical clustering partitions represented by descriptor matrices, thus
considering the relation between each element when computing the ensemble partition.

In our present work, following the ensemble paradigm, we use the association matrix
Hn×n = (hij) (called similarity matrix in Strehl and Ghosh 2002) to compute the consensus
partition as described in Algorithm 3, where the clustering algorithm C1 is used on the Xℓ

matrices to obtain the b partitions, while C2 is used onH to compute the consensus partition
p∗. hij denotes the number of partitions within p(ℓ), ℓ = 1, . . . , b that assign the individuals
i and j to the same cluster. In order to leverageH, we propose to use a simplified and faster
version of the approach proposed in (Bassett et al., 2013). Note thatH can be assimilated to
a graph adjacency matrix. To cluster the H matrix, we use as the parameter C2 a clustering
algorithm that doesn’t necessarily require to set the number of clusters in advance. In our
experiments we used the Louvain algorithm (Blondel et al., 2008) to obtain the consensus
partition, which worked better than K-means onH. In step 7 of Algorithm 3, we use the
mean of the null association matrix Hr instead of the max used in (Bassett et al., 2013).
The reason is that in our case, the number of partitions (equal to the number of layers b)
is relatively small. This conducts the largest value of the randomly shuffled association
matrix to tend easily to the largest possible value (i.e. the number of partitions b).

We use the following example to illustrate the ensemble approach, inwhich the partitions
p(1),p(2),p(3) correspond to the p(ℓ) partitions:

p(1) p(2) p(3)

1 0 0

1 0 1

1 0 0

2 1 2

2 1 2

3 1 2

agreement−−−−−→
matrix

H =



3 2 3 0 0 0

2 3 2 0 0 0

3 2 3 0 0 0

0 0 0 3 3 2

0 0 0 3 3 2

0 0 0 2 2 3


modularity−−−−−−→

maximization

p∗

0

0

0

1

1

1
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4.2.4 Experimental Study and Compared Results

In the clustering experiments, we use as C1 in Algorithm 3 the best of 10 runs (in terms of
inertia) of k-means and as C2 the Louvain Algorithm. To validate the results produced by
the clustering we rely on standard external measures devoted to assessing cluster quality
namely Normalized Mutual Information (NMI) (Strehl and Ghosh, 2002) and Adjusted Rand
Index (ARI) (Hubert and Arabie, 1985; Steinley, 2004).

Datasets and Models Used

The datasets used for clustering experiments are described in Table 4.1, where the balance
is the ratio between the smallest and largest cluster sizes. We used classic3 and classic4
datasets of Cornell University, the BBC news dataset proposed in (Greene and Cunningham,
2006) and random extracts of DBPedia (Lehmann et al., 2015) and AG-news1 of size 12,000
and 8,000 respectively. From each set of documents, we compute multiple contextual
representations from 4 pre-trained models which are the base (12 layers) and large (24
layers) versions of BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019b), with a
vocabulary size of 28,996 for BERT and 50,265 for RoBERTa.

Table 4.1: Datasets’ description.

classic3 classic4 DBPedia AG-news BBC
Clusters 3 4 14 4 5
Balance 0.71 0.32 0.92 0.97 0.76
Samples 3,891 7,095 12,000 8,000 2,225

Layer-wise Clustering Results

Layer-wise clustering results are presented in Figure 4.2 for two datasets. The Figure shows
that reducing the number of dimensions to only 100 (which constitutes less than 10% of
the large model’s features) leads to a significant improvement of performance, especially in
the case of RoBERTa-base, for which we observe an increase of at least 0.54 in NMI score
for all layers on the classic3 dataset. We can also observe that, from a dataset to another,
the best layer is not always the same. Indeed, if we take the example of BERT-base, the best
layers for the 5 datasets are respectively the 1-st, 11-th, 9-th, 2-nd and 1-st. Moreover, we
sometimes observe several layers presenting good results, which indicates that all layers

1http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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can bring useful information, potentially different from one to another as discussed in
(Peters et al., 2018a; Tenney et al., 2019a; Vulić et al., 2020).
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Figure 4.2: Clustering performance (NMI) across layers of the original representations of
pre-trained models (using all of the d dimensions of theX(ℓ) matrices) compared to reduced
representations (d′ = 100), with ℓ = 1, . . . , b.

Multi-layer Clustering Results

Since the obtained results may greatly vary with each layer, as clearly visible in Figure 4.2,
and since determining which one is the best is very difficult in the absence of labels, we
propose to simultaneously use all the X(ℓ) data matrices ℓ = 1, . . . , b provided by the
network as describes in Sections 4.2.2 and 4.2.3. Table 4.2 presents the NMI obtained by
each technique assuming that the number of clusters g is known.

We compare the all-layered approach to several baselines. The first one is the use
of a Bag-Of-Words (BOW) representation as input to a Spherical K-means (Dhillon and
Modha, 2001) algorithm, known to be well suited to directional sparse data compared to
K-means. Two other baselines are the use of the second-to-last layer (Devlin et al., 2019;
Xiao, 2018) as well as the combination of the four last layers (Devlin et al., 2019). The mean
rank corresponds to the average of all the ranks assigned to a given method based on its
performance compared to the other methods, over all the model-dataset combinations.

A first observation is the effectiveness of the PCA-based dimension reduction when
comparing the scores obtained with raw vectors and their reduced version (e.g. for AVG,
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Table 4.2: NMI scores of multi-layer clustering techniques over the four Transformer
models on document clustering. LW (layer-wise) corresponds to the mean of the NMI
scores obtained by each layer ℓ (usingX(ℓ)) and the value between brackets to the score
obtained by the best layer, a layer that unfortunately can’t be identified in the absence of
labels. Note that the lower the meank rank, the better.

Dataset/ BOW LW mean (best) 2nd-to-last 4 last layers (raw) All layers (raw) 4 last (PCAw) All (PCAw)
Model Raw PCAw Raw PCAw AVG UN ENS AVG UN ENS AVG UN ENS AVG UN ENS

cl
as
sic

3 BERTb

0.95

0.86 (0.89) 0.94 (0.98) 0.87 0.82 0.85 0.87 0.87 0.85 0.87 0.88 0.95 0.78 0.98 0.98 0.92 0.98
BERTl 0.84 (0.93) 0.95 (0.99) 0.93 0.85 0.93 0.92 0.93 0.9 0.91 0.9 0.84 0.82 0.98 0.98 0.95 0.99
RoBERTab 0.3 (0.43) 0.97 (0.99) 0.33 0.98 0.06 0.33 0.33 0.06 0.33 0.34 0.98 0.94 0.98 0.94 0.95 0.98
RoBERTal 0.86 (0.91) 0.98 (0.99) 0.88 0.98 0.89 0.89 0.89 0.86 0.86 0.86 0.99 0.96 0.99 0.97 0.97 0.99

cl
as
sic

4 BERTb

0.64

0.55 (0.64) 0.61 (0.68) 0.64 0.63 0.62 0.64 0.64 0.61 0.63 0.53 0.61 0.59 0.74 0.63 0.56 0.73
BERTl 0.51 (0.68) 0.59 (0.66) 0.4 0.61 0.52 0.54 0.58 0.68 0.53 0.53 0.56 0.57 0.64 0.66 0.6 0.74
RoBERTab 0.24 (0.29) 0.55 (0.67) 0.24 0.61 0.24 0.24 0.24 0.23 0.24 0.25 0.59 0.65 0.7 0.58 0.55 0.74
RoBERTal 0.52 (0.72) 0.6 (0.71) 0.54 0.63 0.55 0.55 0.54 0.51 0.52 0.54 0.67 0.61 0.75 0.69 0.67 0.75

D
BP

ed
ia BERTb

0.69

0.64 (0.67) 0.72 (0.76) 0.55 0.72 0.65 0.61 0.57 0.69 0.67 0.69 0.75 0.74 0.71 0.74 0.72 0.75
BERTl 0.63 (0.73) 0.7 (0.77) 0.51 0.57 0.61 0.59 0.61 0.68 0.65 0.73 0.67 0.67 0.62 0.71 0.71 0.76
RoBERTab 0.54 (0.6) 0.69 (0.72) 0.6 0.7 0.57 0.58 0.54 0.55 0.56 0.49 0.73 0.69 0.56 0.72 0.69 0.7
RoBERTal 0.64 (0.69) 0.68 (0.73) 0.68 0.66 0.69 0.68 0.68 0.69 0.66 0.68 0.67 0.7 0.58 0.66 0.7 0.73

AG
-n
ew

s BERTb

0.46

0.39 (0.48) 0.43 (0.46) 0.33 0.39 0.4 0.37 0.39 0.44 0.42 0.41 0.43 0.44 0.36 0.43 0.36 0.54
BERTl 0.3 (0.57) 0.38 (0.53) 0.0 0.06 0.17 0.01 0.0 0.49 0.21 0.49 0.11 0.03 0.0 0.5 0.2 0.54
RoBERTab 0.39 (0.44) 0.47 (0.5) 0.44 0.42 0.43 0.44 0.43 0.41 0.42 0.41 0.46 0.47 0.47 0.48 0.44 0.58
RoBERTal 0.44 (0.53) 0.46 (0.54) 0.52 0.49 0.53 0.53 0.52 0.51 0.49 0.46 0.46 0.46 0.53 0.53 0.47 0.59

BB
C

BERTb

0.75

0.55 (0.77) 0.61 (0.67) 0.47 0.59 0.46 0.45 0.45 0.6 0.51 0.55 0.63 0.66 0.74 0.54 0.61 0.8
BERTl 0.67 (0.85) 0.57 (0.66) 0.78 0.45 0.82 0.82 0.79 0.79 0.78 0.79 0.43 0.4 0.62 0.53 0.5 0.88
RoBERTab 0.36 (0.52) 0.56 (0.6) 0.38 0.5 0.37 0.38 0.39 0.34 0.38 0.38 0.53 0.54 0.64 0.62 0.48 0.83
RoBERTal 0.66 (0.87) 0.5 (0.58) 0.86 0.44 0.86 0.86 0.86 0.74 0.74 0.74 0.52 0.5 0.65 0.51 0.57 0.79

Mean rank 5.58 - - 10.35 9.05 9.55 9.35 9.75 9.68 10.45 9.88 7.32 8.32 6.10 5.58 7.45 1.60

Concat and ENS using all layers, we move from a mean rank of 9.68, 10.45 et 9.88 to 5.58,
7.45 et 1.6 resp.). The results also show that the use of the second-to-last layer is not reliable,
as its effectiveness highly depends on the model and the dataset. Combining the four last
layers is more effective but presents lower performance than the use of the all of the layers.
This suggests that the useful information provided by the embeddings is different from one
layer to another. Also, all of the useful information seems to be efficiently captured by the
reduced dimensions (see the Concat results, for which we move from d ∈ {9 216, 24 576}
to only 100). Moreover, our results clearly show a significant advantage of the ensemble
technique over the other approaches of combining layers, presenting the highest results in
terms of NMI and the lowest mean rank by far. This is further confirmed in Table 4.3 by
two other metrics (ARI and Accuracy) that both place our ensemble approach in the first
position.
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Table 4.3: Mean rank values according to three different performance metrics.

Metric BOW 2nd-to-last 4 last layers (raw) All layers (raw) 4 last (PCAw) All (PCAw)
Raw PCAw AVG UN ENS AVG UN ENS AVG UN ENS AVG UN ENS

NMI 5.58 10.35 9.05 9.55 9.35 9.75 9.68 10.45 9.88 7.32 8.32 6.1 5.58 7.45 1.60
ARI 3.98 9.75 9.65 8.85 9.12 8.9 9.02 9.72 10.15 7.75 8.95 6.75 6.32 8.32 2.75
ACC 5.03 9.82 9.0 8.7 8.88 9.52 8.12 9.22 9.78 7.35 8.55 7.45 6.22 8.38 3.98

4.3 Clustering with an Estimated Number of Clusters

All the results presented previously are based on the assumption that the exact number
of clusters is known in advance, which is not realistic in real life. In contrast, another
significant advantage offered by the proposed approach is the use of an algorithm for which
the number of clusters is not known a priori (Louvain in our experiments). This means that
the consensus returns a partition with clusters that respect the original cluster assignments
as much as possible, without necessarily providing the same number of clusters as the
input partitions. It is therefore a good alternative when the exact number of clusters is
unknown. Also, the number of clusters for each partition is not necessarily the same,
which is an interesting feature of the ensemble clustering. In order to benefit from this
property, given a set G of some selected values of g, we ensure that each K-means run
takes as input a value g ∈ G while covering as much as possible the whole set of values.
We use in our experiments G = [gr − 5, gr + 5] where gr is the real number of clusters,
e.g. for the DBPedia dataset where gr = 14 using a “base” model with 12 layers, the list
of the 12 values of g could possibly be {9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 9}, obtaining
12 partitions p(1), . . .p(ℓ), . . .p(12) from which we compute the consensual partition p∗ as
described in Algorithm 3. The p∗ partition then groups in the same cluster the individuals
that are usually grouped together in the input partitions without having the constraint of a
fixed g. This guarantees a robust clustering performance while automatically estimating
the number of clusters. Table 4.4 shows the results of the ensemble algorithm (using the
compressed representations) obtained with varying g ∈ [gr− 5, gr +5] (gr is given in Table
4.1).

We observe from Table 4.4 that the performance is not significantly altered, even when
the estimated number of clusters is not equal to gr. For classic3, classic4 and AG-news,
the clustering ensemble with varying g always finds gr clusters, except for classic4 using
RoBERTa-base, where a partition of 5 clusters is found but with a high NMI, which is
explained by the fact that the extra cluster corresponds to the split of the “cacm” class
(cf. Figure 4.3). On the contrary, the number of clusters is underestimated for the BBC
dataset (4 clusters instead of 5), for which the classes “tech” and “entertainement” seem to
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Table 4.4: Performance obtained by clustering ensemble using all the layers with an esti-
mated number of clusters.

Model classic3 classic4 DBPedia AG-news BBC
k̂ NMI ARI k̂ NMI ARI k̂ NMI ARI k̂ NMI ARI k̂ NMI ARI

BERT-base 3 0.98 0.99 4 0.74 0.52 8 0.71 0.49 4 0.55 0.56 4 0.69 0.62
BERT-large 3 0.98 0.99 4 0.73 0.52 9 0.77 0.54 4 0.5 0.45 4 0.74 0.64

RoBERTa-base 3 0.98 0.99 5 0.79 0.65 10 0.78 0.59 4 0.52 0.49 4 0.74 0.65
RoBERTa-large 3 0.98 0.99 4 0.74 0.53 7 0.68 0.41 4 0.59 0.51 4 0.75 0.65
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Figure 4.3: Confusion matrices obtained by clustering with an estimated number of clusters
(as described in Section 4.3).

be merged, as well as the “politics” class and some “business” examples. For DBPedia, the
representations provided by RoBERTa-base are the ones presenting an estimation of g that
is the closest to gr, along with a high NMI score. In that case, as for BBC, some classes are
merged together such as “animal” with “plant” and “film” with “written work”.

4.4 Comparison with End-to-End Approaches

In this section, we compare our results with multi-view techniques that concomitantly
learn from several numerical representations of the same objects.

Graph-based Approach

Tensor GraphModularity (TGM) (Boutalbi et al., 2022) is a graph-basedmulti-view technique
that relies on a three-way version of the modularity function. The objective function of
TGM is the generalization of the two-way modularity (Ailem et al., 2015; Labiod and Nadif,
2011) to tensor data. The modularity is commonly used to estimate the quality of graph
clustering by comparing the edge density belonging to a cluster (or community) against
the expected density of a random graph.
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Given v graphs represented by v adjacency matrices A(ℓ), ℓ = 1, . . . , v of size n× n
and each containing n nodes and e(ℓ) edges, the aim of TGM is to find the partition matrix
Zn×k = (zig) that minimizes the three-way modularity, where (zig) = 1 if the ith document
is affected to the gth cluster and 0 otherwise. The objective function of TGM can be written
as:

minimize
Z

v∑
ℓ=1

1

a(ℓ)..

Trace[(A(ℓ)Z−M(ℓ)Z)Z⊤] (4.1)

where M(ℓ) = (m
(ℓ)
ij ) = (

a
(ℓ)
i. a

(ℓ)
.j

2e(ℓ)
) and represents the expected probabilities of ℓth graph

edges. For more detail about the optimisation of TGM, the reader is referred to our recently
published paper (Boutalbi et al., 2022).

The idea behind TGM is to leverage v different representations of a corpus D, including
sparse (BOW and entity linking) and dense vector representations (GloVe, BERT and
SRoBERTa). Each vectorization technique provides a representation X(ℓ) from which
a graph adjacency matrix A(ℓ) is computed. In our particular case, we use the v = b

representations provided by a given Transformer model (cf. step 2 in Algorithm 3) to
construct the adjacency matricesA(ℓ), ℓ = 1, . . . , b. Originally, the adjacency matrices we
derive from sparse representations contain the number of words or entities shared by each
pair of documents. In the case of dense representations, we compute a pair-wise similarity
matrix computed as follows:

a
(ℓ)
ij =

1 if f(x(ℓ)
i ,x

(ℓ)
j ) ≥ p

0 otherwise
,

where x
(ℓ)
i and x

(ℓ)
j are the ith and jth row of X(ℓ) and correspond to the ith and jth

document representations at the bth layer. f is the similarity measure used to assess the
proximity between two vector representations x(ℓ)

i and x(ℓ)
j . p is the percentile that depends

on the desired sparsity of the similarity matrix. In our experiments, we use the percentile
that leads to a sparsity of 97%. The same process is used for the b layers, thus obtaining
A(1), . . . ,A(b) adjacency matrices.

Multi-view Linear Approach

We also consider a multi-view version of simultaneous dimension reduction and clustering
proposed in (Fettal et al., 2023) for graph clustering but that can be generalized to other
data types. We investigate this approach for it may be considered as a multi-view version
of simultaneous clustering (via the k-means criterion) and linear embedding (De Soete and
Carroll, 1994), which makes it closely related to our ensemble approach.
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In order to adapt LMGEC (Linear Multi-view Graph Embedding and Clustering) to our
work on Transformers, we make a few adjustments. First, to make it suitable to our work
on Transformers, we skip the graph-specific pre-processing steps and use each of our X(ℓ)

matrices as a feature matrix, used as input into the algorithm. We hence use only the part
of the algorithm that minimizes the criterion:

b∑
ℓ=1

αℓ∥X(ℓ) − ZFW(ℓ)⊤∥2F (4.2)

where W(ℓ) can be associated to the encoding or embedding matrix of size d× d′, F is the
g × d matrix containing the centroids and Z the membership matrix of size n× g. In real
terms, the objective is to find the partition (parameters Z and F) as well as the subspaces of
size d′ (parametersW(ℓ), ℓ = 1, . . . , b) so that the reconstruction of the centroidsZFW(ℓ)⊤

is as close as possible to the original data X(ℓ), ∀ℓ = 1, . . . , b. For more detail about the
optimization process, please refer to Fettal et al. (2023).

Whitening. We add a whitening step to the optimization process in order to make it
more suitable for our data and improve the results. The whitening step is injected in two
ways:

• InitializingW(ℓ): givenUΣVT = TuncatedSVD(X(ℓ)),W(ℓ) is initialized asV/Σ, ∀ℓ =
1, . . . , b.

• UpdatingW(ℓ): at each iteration, each columnw(ℓ)
j of W(ℓ) = [w

(ℓ)
1 , . . . ,w

(ℓ)
j , . . . ,w

(ℓ)
d′ ]

is computed as:

w
(ℓ)
j =

Uvj√
σ2(X(ℓ)Uvj)

; j = 1, . . . , d′; ℓ = 1, . . . , b

where U and V = [v1, . . . ,vj, . . . ,vd′ ]
T contain respectively the left and right

singular vectors of (X(ℓ)ZF) and σ2(y) =

∑n
i=1(yi − ȳ)2

n
is the variance of the

vector y of size n and mean ȳ.

These adjustments lead to an end-to-end version of our ensemble approach and is referred
to as LMGECw. Both whitening steps have proven effective and significantly improve the
clustering results of the algorithm (cf. Figure B.2 in the Appendix).
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Dataset Model NMI ARI Accuracy
TGMw LMGECw ENSw TGMw LMGECw ENSw TGMw LMGECw ENSw

classic3

BERT-base 0.936 0.878 0.983 0.962 0.914 0.992 0.987 0.971 0.997
BERT-large 0.966 0.907 0.987 0.983 0.938 0.994 0.994 0.979 0.998

RoBERTa-base 0.945 0.060 0.985 0.969 0.060 0.993 0.989 0.435 0.997
RoBERTa-large 0.96 0.871 0.989 0.979 0.908 0.995 0.993 0.968 0.998

classic4

BERT-base 0.854 0.523 0.734 0.873 0.320 0.525 0.954 0.516 0.771
BERT-large 0.875 0.531 0.737 0.889 0.327 0.526 0.96 0.519 0.771

RoBERTa-base 0.766 0.404 0.744 0.764 0.306 0.529 0.91 0.553 0.772
RoBERTa-large 0.78 0.526 0.748 0.771 0.322 0.532 0.914 0.519 0.774

DBPedia

BERT-base 0.672 0.666 0.751 0.503 0.487 0.51 0.619 0.594 0.543
BERT-large - 0.709 0.759 - 0.517 0.537 - 0.603 0.543

RoBERTa-base 0.642 0.557 0.699 0.504 0.327 0.426 0.607 0.454 0.442
RoBERTa-large - 0.639 0.728 - 0.426 0.478 - 0.502 0.52

AG-news

BERT-base 0.491 0.391 0.543 0.488 0.329 0.545 0.751 0.583 0.797
BERT-large 0.488 0.448 0.54 0.485 0.414 0.57 0.744 0.716 0.802

RoBERTa-base 0.379 0.434 0.576 0.342 0.408 0.53 0.565 0.721 0.754
RoBERTa-large 0.456 0.497 0.585 0.445 0.465 0.531 0.704 0.752 0.732

BBC

BERT-base 0.597 0.583 0.802 0.526 0.524 0.758 0.715 0.761 0.882
BERT-large 0.688 0.675 0.877 0.59 0.580 0.889 0.697 0.691 0.953

RoBERTa-base 0.741 0.393 0.827 0.744 0.294 0.84 0.889 0.545 0.931
RoBERTa-large 0.671 0.546 0.794 0.654 0.444 0.757 0.836 0.611 0.879

Table 4.5: Clustering results according to NMI, ARI and Accuracy on the five datasets with
four models. Missing values are due to out of memory errors.

Compared Results

The obtained clustering results are depicted in Table 4.5 with 10 different initializations. We
show the results of the whitened version of TGM, LMGEC and ENS for they provide the best
results compared to the basic version. TGMw means that we use the PCAw post-processing
before we compute the similarity matrices A(ℓ), ℓ = 1, . . . , b. For LMGECw we set the
temperature τ = 10 as recommended in (Fettal et al., 2023), which gives a greater weight
to high-inertia layers (in the sense of the SSE criterion).

Overall, the two end-to-end techniques achieve competitive performance scores, espe-
cially TGMw which outperforms ENSw and LMGECw on classic4 with all of the models.
LMGECw seems to be the approach that least benefits from the whitening operation. Indeed,
even though the results are improved, it still struggles with RoBERTa-base, that provides
representations of poor quality, unless they’re post-processed using PCAw (as shown in
Figure 3.2). TGMw does not seem impacted by the poor results of RoBERTa-base in contrast
to when TGM is used without PCAw. The ensemble approach remains the most competitive,
especially on classic3 and BBC.
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4.5 Results on Word Clustering Datasets

Table 4.6 presents the NMI obtained by each technique assuming that the number of clusters
g us known. We observe from Table 4.6 that in the case of BERT (which is the best model in
both the base and large version), combining all the layers can perform better than the best
layer of the same model. Moreover, ENS and Concat with BERT-large have no difficulty
in achieving the perfect score on UFSAC3 even if the last layers present very poor results
separately (Figure 3.2). For RoBERTa, the consensus is not as powerful as the best layer,
but is still better than the mean of all layers’s scores. Multi-layer clustering using the
PCA-reduced version of word embeddings can often be even more competitive, e.g. for
RoBERTa-base on UFSAC3, applying PCAw allows to move from NMI scores of 0.94, 0.72
and 0.94 to 0.96, 0.96 and 0.97 for AVG, ENS and Concat respectively.

Table 4.6: Compared performance (NMI scores) of over the four models and fastText. For
“Raw“ and “PCAw“ the scores correspond to averages over all the layers (except of course
for fastText). The value between brackets corresponds to the score obtained by the best
layer, a layer that unfortunately can’t be identified in the absence of labels.

Dataset Model fastText LW mean (best) AVG UN ENS
Raw PCAw Raw PCAw Raw PCAw Raw PCAw Raw PCAw

UFSAC3

BERT-base

0.92 0.92

0.89 (0.96) 0.91 (0.98) 0.95 0.98 0.96 0.98 0.97 0.98
BERT-large 0.81 (1.00) 0.80 (1.00) 0.98 0.99 1.00 1.00 1.00 1.00

RoBERTa-base 0.87 (0.95) 0.90 (0.97) 0.94 0.96 0.94 0.97 0.95 0.97
RoBERTa-large 0.86 (0.98) 0.88 (0.98) 0.76 0.79 0.66 0.65 0.95 0.96

UFSAC4

BERT-base

0.77 0.84

0.86 (0.94) 0.88 (0.95) 0.90 0.96 0.96 0.97 0.95 0.96
BERT-large 0.72 (0.98) 0.75 (0.96) 0.93 0.97 0.97 0.99 0.99 0.99

RoBERTa-base 0.78 (0.86) 0.84 (0.91) 0.87 0.91 0.67 0.76 0.88 0.91
RoBERTa-large 0.80 (0.90) 0.81 (0.91) 0.64 0.68 0.65 0.65 0.88 0.87

yahoo6

BERT-base

0.42 0.42

0.73 (0.86) 0.73 (0.87) 0.91 0.93 0.92 0.94 0.85 0.85
BERT-large 0.58 (0.87) 0.57 (0.87) 0.82 0.81 0.80 0.81 0.88 0.84

RoBERTa-base 0.61 (0.78) 0.79 (0.93) 0.74 0.83 0.72 0.81 0.73 0.87
RoBERTa-large 0.62 (0.80) 0.69 (0.81) 0.79 0.79 0.79 0.81 0.78 0.78

4.6 Conclusion

Wehave studied the performance of embeddings obtained from four pre-trained Transformer
models when used as input to a document clustering algorithm. This is a contribution to
the use of Transformer representations in the unsupervised learning setting.

Our experiments show that the proposed clustering ensemble method combined with
PCA-based reduction allows to make the most of Transformer-based models, achieving even
better performance than that provided by the best layer (which is very difficult to identify
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in an unsupervised context). We also show the advantage of using an ensemble procedure
instead of end-to-end multi-view techniques. Paths for future research include continuing
to improve the ensemble procedure, especially the estimation of the number of clusters and
experimenting with other dimension reduction techniques. Another perspective would be
to assess the impact of fine-tuning Transformer models on text clustering.



Chapter 5

On an Alternative to Fine-tuning: a
Tandem Approach

Dense text representations are gaining great interest in several tasks such as Text Clas-
sification and Question Answering. However, while many challenges are faced in the
unsupervised learning domain, much less is known about how suitable those various repre-
sentations are when dealing with an unlabeled dataset. In this chapter, we investigate the
use of such representations when performing unsupervised tasks: document clustering and
visualization. Thereby, to address the document clustering objective, we propose the use
of a tandem approach combining dimensionality-reduction techniques and clustering. We
first show the benefit of relying on the subspace obtained by UMAP to perform clustering
rather than using PCA-based dimension reduction. Then, through experiments performed
on real datasets with static and contextual representations, we show the effectiveness of
the proposed tandem approach on pre-trained representations in comparison to fine-tuning
strategies proposed in the literature.

5.1 Introduction

Unsupervised learning is a ubiquitous task in data science. When dealing with an unlabeled
dataset, clustering and visualization, for instance, can be very helpful to create value from
textual data. In the document clustering context, however, the first problem to address
is the way of representing the documents. A wide range of representations is offered
to practitioners, such as Bag-Of-Words (BOW), static word embeddings like Word2vec
(Mikolov et al., 2013b) and GloVe (Pennington et al., 2014) as well as contextual embeddings
provided by ELMo (Peters et al., 2018b) and Transformer-based Pre-trained LanguageModels
(T-PLM) like BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019b) and DistilBERT
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(Sanh et al., 2019). However, while many challenges are faced in the unsupervised learning
domain, much less is known about how suitable those various representations are when
dealing with an unlabeled dataset. In particular, Transformer-based embeddings are gaining
more and more interest, achieving state-of-the-art results in many NLP tasks such as
Question Answering, Semantic Textual Similarity (STS) and Named Entity Recognition
(NER) but are much less present in the unsupervised realm of NLP. It has been shown in
(Reimers and Gurevych, 2019) that the performance obtained by BERT on unsupervised
STS (USTS) is poorer than those obtained by GloVe, but the study focused only on the
last layer of BERT and without any post-processing, whereas it has been shown that this
is far from being the best strategy to benefit fully from the T-PLM representations (Ait-
Saada et al., 2021; Li et al., 2020a). Furthermore, several studies have shown that the last
layers of T-PLMs tend to be task-specific (Kovaleva et al., 2019; van Aken et al., 2019) and
hence perform poorly (Carlsson et al., 2021). In order to improve the semantic quality of
those representations, several works propose a fine-tuning of T-PLMs on a wide range of
supervised and unsupervised tasks. One of the most famous approaches is Sentence-BERT
(Reimers and Gurevych, 2019) which consists in fine-tuning T-PLMs on supervised tasks
and using the last layer’s representation as input to unsupervised tasks. This approach is
intended to be well suited to perform downstream unsupervised tasks including clustering
but has not been evaluated on the latter.

In this chapter, we conduct a fully unsupervised study to determine which of those
representations are the most suitable to perform document clustering. Each of them is also
evaluated when post-processed using dimensionality reduction techniques such as PCA,
t-SNE, and UMAP. This tandem approach allows to distill the information provided by
pre-trained representations, thus obtaining a surprising improvement in the results along
with a drastic reduction of the dimensions. This topic has not been thoroughly tackled yet
in the context of text representations.

The main contributions of this study are as follows:

• We address the question of choosing the right representation to perform effective doc-
ument clustering and visualization. A comparative study is performed to assess the
performance of pre-trained and fine-tuned models as well as static representations.

• We evaluate different post-processing techniques based on dimension reduction, as part
of a tandem clustering approach, showing that we can do better than formerly used
PCA-based approaches, both in terms of clustering and 2D visualization.
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5.2 Related Work

Given a text-mining task, several vector representations of the documents can be given
as input, and the choice of which one to use is not straightforward, especially in an unsu-
pervised context. Hence we propose to evaluate several text representations in terms of
clustering performance. The first baselines are the classical sparse BOW and dense BOW
such as Word2vec (Mikolov et al., 2013b), GloVe (Pennington et al., 2014), and fastText (Bo-
janowski et al., 2017), also referred to as static word embeddings, the vector of a given word
being fixed regardless of its context. More recent text representations are those provided
by T-PLMs like BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019b) that provide
token-wise representations, usually averaged together to obtain a unique representation for
each document. To further improve the quality of T-PLMs, several fine-tuning strategies are
proposed in the literature. Reimers and Gurevych (Reimers and Gurevych, 2019) fine-tune
a siamese T-PLM on the NLI and STS tasks, thus improving the performance obtained by
the last layer of BERT and RoBERTa on the USTS task. DvBERT (Cheng, 2021) also uses a
siamese network, in which the sentence embeddings are augmented with word-level inter-
action features, requiring labeled data. On the other hand, several unsupervised approaches
are proposed (Carlsson et al., 2021; Gao et al., 2021; Liu et al., 2021; Yan et al., 2021; Zhang
et al., 2020b), all based on self-supervised objectives and do not require any labeled data.
All the aforementioned approaches have been exclusively evaluated on the USTS task and
it is not known whether they are well suited to perform document clustering.

Another way of improving the results obtained by pre-trained representations is to
rely on post-processing techniques applied to the output embeddings. Those approaches
mostly use PCA-based dimension reduction which has proven efficient enough to capture
the semantic information present in the pre-trained representations in fewer dimensions.
In the case of static word embeddings, a PCA-based approach proposed in (Raunak et al.,
2019) is used to halve the dimensions without altering the performance. Regarding T-PLMs,
the benefit of PCA-based dimension reduction along with a whitening step (cf. Section 5.3)
has been assessed in (Huang et al., 2021; Su et al., 2021) for the USTS task and (Ait-Saada
et al., 2021) for document clustering where it has shown a significant improvement in the
performance.

In this study, we evaluate both the pre-trained and fine-tuned versions of the Trans-
former models, each one using several ways of leveraging the representations it provides.
Each document’s representation is obtained by an average pooling of its tokens’ representa-
tions. We use the vectors provided by the last layer (“last“) as performed in (Carlsson et al.,
2021; Cheng, 2021; Reimers and Gurevych, 2019) as well as the combination (average) of
the last two layers (“avg two last“) as suggested in (Li et al., 2020a; Yan et al., 2021). We also
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investigate the use of all of the layers (“avg all“) as in (Ait-Saada et al., 2021). The results
obtained using the last two layers are given in Figure C.1 in the Appendix. In this study,
we discard the use of the [CLS] token that is still utilized in some sentence embedding
approaches (Gao et al., 2021; Liu et al., 2021) but is not relevant given the models used in
this work.

5.3 Tandem Approach

Given a datasetD of n documents, several ways of representing it are possible. In the case of
a Transformer model of b layers, we end up with b different data matrices Xℓ, ℓ ∈ 1, . . . , b

with an average pooling of the tokens (Reimers and Gurevych, 2019). We derive from
those matrices one unique matrix X by combining a certain number of layers (as described
in Algorithm 4, step 2). The tandem approach consists in combining both dimension
reduction and clustering, as described in Algorithm 4. In this case, dimension reduction is
seen as a post-processing step and aims at compressing X and improving the quality of
clustering. Given a matrixX(n×d), we call its reduced versionY(n×d′), d′ ≪ d. To respect
the unsupervised context of the study and make a fair comparison between dimension
reduction techniques, we use a constant value of d′ = 10, no tuning of this parameter
being possible in the absence of labels. Besides, dimension reduction techniques are also
commonly used for visualization with d′ = 2 whereY can be visualized in a 2D plane.

In previous works, post-processing of text representations has usually been performed
using PCA-based dimension reduction (Ait-Saada et al., 2021; Huang et al., 2021; Raunak
et al., 2019; Su et al., 2021). We define X’s reduced representation classically derived by
PCA as the projections Y = XQ, where Q is composed of the d′ first eigenvectors of
XTX. In this study, we assess the impact of the whitening operation that has proven its
effectiveness on Transformer embeddings (Ait-Saada et al., 2021; Huang et al., 2021; Su et al.,
2021) but has not been compared to other dimension reduction approaches. The whitening
operation consists in using Y = XQ/

√
∆ instead of XQ, ∆ being the first d′ eigenvalues

of XTX. Another way of reducing the dimension used in this work is UMAP (McInnes
et al., 2018), which is a nonlinear manifold technique of dimension reduction that starts
with the construction of a graph that approximates the structure of the data points in the
original space, followed by a projection into a lower dimension space. UMAP has proven
effective in improving several tasks including clustering (Allaoui et al., 2020; McConville
et al., 2021). We preferred using UMAP instead of t-SNE (van der Maaten and Hinton, 2008)
due to the computation restrictions of t-SNE that make it unsuitable for post-processing
with d′ > 3. Another notable difference is that UMAP yields a better balance between local
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Algorithm 4: Tandem Approach on Transformers
input :D a dataset of n documents;M a Transformer model, L a set of layer

indices, C a clustering algorithm; k the number of clusters; d′ the number
of dimensions,R a dimension reduction function, Q a set of t label
initializations of size n

output :A clustering partition p
1 Compute theXℓ matrix representations usingM, ℓ ∈ L;
2 X← average (Xℓ), ℓ ∈ L;
3 Y ← R(X, d′);
4 i← 1;
5 foreach q ∈ Q do
6 p(i) ← C(Y, k,q);
7 c(i) ← criterion (C,p(i));
8 i← i+ 1;
9 end

10 i∗ ← argmax
i∈1,...,t

(c(i))

11 p← p(i∗);
12 return p;

and global structures. Especially, UMAP efficiently preserves the global structure thanks to
its topological approximation based on Reimannian geometry assumptions.

5.4 Experimental Study

In this study, six different models are used: BERT and RoBERTa, SBERT, and SRoBERTa
(Reimers and Gurevych, 2019), SBERT-CT and SRoBERTa-CT (fine-tuned using the unsuper-
vised Contrastive Tension objective (Carlsson et al., 2021)). We focus on “large“ models with
b = 24 and d = 1024. In addition, those representations are compared to several baselines
namely BOW weighted with TFIDF of size n× v, v being the size of the vocabulary as well
as Word2vec, GloVe, and fastText, all of which provide n× d matrices with d = 300. As
regards data, we use the exact same datasets used in Chapter 4 (cf. Table 4.1).

All the clustering experiments are carried out using k-means (MacQueen et al., 1967),
except for the BOW representation for which Spherical k-means (Buchta et al., 2012) is
preferred, leading to significantly better results than k-means, due to the directional nature
of the obtained data matrix. We perform clustering over t = 30 different initializations and
keep the one providing the highest value of within-cluster inertia, as described in Algorithm
4, where C is set to k-means. In order to assess the quality of the clustering results, we rely
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Table 5.1: Clustering scores (NMI in %) obtained using different strategies applied to BERT-
large text representations.

Dataset BOW Static Pre-trained Fine-tuning Tandem
fastText GloVe BERT SBERT SBERT-CT PCA PCAw UMAP

A
ll
la
ye
rs

classic3 0.952 0.795 0.887 0.9 0.895 0.887 0.899 0.948 0.964
classic4 0.689 0.218 0.547 0.68 0.462 0.643 0.681 0.712 0.744
BBC 0.81 0.439 0.738 0.788 0.693 0.748 0.763 0.797 0.867
AG-news 0.487 0.03 0.529 0.484 0.355 0.516 0.439 0.47 0.556
DBPedia 0.714 0.452 0.727 0.698 0.532 0.634 0.619 0.613 0.74

La
st
la
ye
r

classic3 0.952 0.795 0.887 0.932 0.873 0.912 0.931 0.949 0.971
classic4 0.689 0.218 0.547 0.202 0.607 0.658 0.202 0.693 0.728
BBC 0.81 0.439 0.738 0.768 0.799 0.815 0.756 0.757 0.779
AG-news 0.487 0.03 0.529 0.002 0.197 0.416 0.002 0.208 0.196
DBPedia 0.714 0.452 0.727 0.562 0.413 0.567 0.437 0.437 0.553

Table 5.2: Clustering scores (NMI in %) obtained using different strategies applied to
RoBERTa-large text representations.

Dataset BOW Static Pre-trained Fine-tuning Tandem
fastText GloVe RoBERTa SRoB. SRoB-CT PCA PCAw UMAP

A
ll
la
ye
rs

classic3 0.952 0.795 0.887 0.864 0.861 0.896 0.861 0.928 0.956
classic4 0.689 0.218 0.547 0.51 0.645 0.687 0.505 0.695 0.737
BBC 0.81 0.439 0.738 0.741 0.701 0.845 0.736 0.838 0.892
AG-news 0.487 0.03 0.529 0.513 0.548 0.575 0.497 0.567 0.533
DBPedia 0.714 0.452 0.727 0.687 0.696 0.711 0.605 0.629 0.687

La
st
La
ye
r classic3 0.952 0.795 0.887 0.915 0.848 0.904 0.908 0.959 0.983

classic4 0.689 0.218 0.547 0.719 0.634 0.673 0.711 0.721 0.751
BBC 0.81 0.439 0.738 0.874 0.573 0.835 0.864 0.764 0.907
AG-news 0.487 0.03 0.529 0.501 0.336 0.408 0.466 0.518 0.509
DBPedia 0.714 0.452 0.727 0.715 0.623 0.704 0.574 0.598 0.676

on Normalized Mutual Information (NMI) (Strehl and Ghosh, 2002) which is a standard
external measure that is less sensitive to the class imbalance in comparison to accuracy.

5.4.1 Document Clustering

Tables 5.1 and 5.2 show the clustering performance (NMI) obtained using different strategies.
The following can be observed:

• The BOW model shows its limits against Word2vec and GloVe when UMAP is used.
Word2vec and GloVe even show competitive results compared to Transformers except in
the case of DBpedia and AG-news where the clusters are ill-separated.

• The UMAP-based approach with the RoBERTa model appears to be the wisest choice
for clustering with all strategies (last layer and all layers). It shows better performance
compared to BERT, with and without fine-tuning.
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• Using only a few components of PCA (linear method) does not alter considerably the
results and even improves the clustering quality when the whitening is used (PCAw),
though leading to a lesser improvement in comparison to UMAP (nonlinear method).

• Neither supervised (Reimers and Gurevych, 2019) nor unsupervised (Carlsson et al., 2021)
fine-tuning approaches bring any significant improvement to text clustering and are even
outperformed by pre-trained models. For example, when we look at the last layer (as
used in (Reimers and Gurevych, 2019)), SRoBERTa performs significantly poorer than
RoBERTa almost in all experiments. This might be due to the fact that we are dealing
with long documents whereas SBERT and SRoBERTa are trained on NLI and STS, both
involving short sentences.
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Figure 5.1: Distribution of the NMI (in %) over 30 initializations. The blue star symbol
corresponds to the score of the solution selected using k-means’ criterion (values given in
Tables 5.1 and 5.2) and the orange line to the median.
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Fig. 5.1 shows the distribution of NMI obtained with different approaches. We first
observe the advantage of using all of the layers instead of using only the last one, in terms
of clustering quality and also in terms of robustness. We indeed notice that the NMI score
is much less dependent on the initialization when using all of the layers. Further, we can
see from Fig. 5.1 how robust the representations provided by UMAP are, especially in
comparison to PCAw which presents a much higher variance along with a significantly
lower median. This shows the reliability and robustness of using UMAP as part of the
tandem approach in comparison to the PCA-based approaches and the use of the original
representations.

5.4.2 Data Visualisation

Fig. 5.2 shows 2D projections obtained using different dimension reduction techniques with
d′ = 2. The given NMI score is computed using the real labels and the agreement “Agr“ is
an unsupervised measure proposed in (France and Akkucuk, 2021) which quantifies the
agreement between the original and the latent space. It is computed as:

Agrk =
1

kn

n∑
i=1

[
aik −

k

n− 1

]
(5.1)

where k is the neighborhood size parameter that we vary between 1 and 100 while aik
represents the shared elements by the first k columns of the ranking matricesNX(n×n) and
NY(n×n) containing in each row i the indices of samples from the closest to the farthest
w.r.t. a certain metric (euclidean in our case), usingX andY resp.

Due to the difficulty to tune dimension reduction’s hyperparameters of t-SNE and
UMAP, we set the perplexity and the number of nearest neighbors to 15 and retain the
euclidean distance. Overall, we observe the difference in terms of cluster separability.
Thereby, UMAP is capable of better separating the clusters followed by t-SNE then PCA
which, hardly surprisingly, shows very poor separability of clusters. This is corroborated
by the NMI score, which is always higher for UMAP. To go further, the agreement score is
much lower for PCA, however, it is higher for t-SNE in comparison to UMAP. This means
that t-SNE respects better the original local structure of data. However, t-SNE does not
allow a better separability of clusters, which makes UMAP a good trade-off between data
embedding and separability between clusters. This also suggests that the distortion brought
by UMAP is more beneficial to clustering and shows how UMAP better respects the global
data structure in the latent space.
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Figure 5.2: 2D projections obtained by PCAw, t-SNE and UMAP respectively. The NMI
score (%) corresponds to the clustering performance applied to the reduced version Y(n×d′)

with d′ = 2. The Agr score (%) is the agreement measure between the original and reduced
space. Data points are colored according to the real classes. This graphics confronts three
versions of the same model: RoBERTa-large.

5.4.3 What about Simultaneous Approaches?

The tandem approach used so far is usually opposed to simultaneous (or end-to-end) meth-
ods that optimize dimension reduction clustering in a concomitant way. We have shown
via the empirical study conducted in the previous chapter that simultaneous techniques are
not necessarily better than multi-stage approaches, especially on the dense representations
delivered by pre-trained language models. In this section, we compare two-way end-to-end
techniques with tandem approaches using the same size for the embedding space.

The first approach we use is Reduced k-means (RKM, De Soete and Carroll 1994) which
combines a linear dimension reduction with the k-means criterion (cf. Section 1.3.4). We
also evaluate two previously mentioned approaches based on deep neural networks namely
DCN (Yang et al., 2017) and DKM (Fard et al., 2020) that jointly optimize the reconstruction
loss of an autoencoder and a clustering loss based on k-means. For both models, we use
the same architecture as in (Fard et al., 2020) and vary the values of the hyperparameter
λ between 10−4 and 103 but instead of using the best value for each dataset, we choose
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Table 5.3: NMI scores obtained by simultaneous and tandem approaches. The bold numbers
correspond to the best score in each row and the underlined numbers are for the second-best
performance score.

Dataset Model Simultaneous Tandem

RKM DCN DKM PCA PCAw UMAP

classic3 BERT 0.91 0.93 0.95 0.9 0.95 0.96
RoBERTa 0.87 0.86 0.89 0.86 0.93 0.96

classic4 BERT 0.68 0.66 0.7 0.68 0.71 0.74
RoBERTa 0.66 0.62 0.69 0.5 0.7 0.74

BBC BERT 0.79 0.78 0.83 0.76 0.8 0.87
RoBERTa 0.74 0.6 0.65 0.74 0.84 0.89

DBPedia BERT 0.66 0.64 0.67 0.62 0.61 0.74
RoBERTa 0.61 0.69 0.73 0.6 0.63 0.69

AG-news BERT 0.45 0.54 0.57 0.44 0.47 0.55
RoBERTa 0.52 0.57 0.58 0.5 0.57 0.53

the one that yields the best overall results λ = 1 for DKM and λ = 0.01 for DCN. Note
that this gives an advantage to DKM and DCN since RKM and PCA do not require any
hyperparameter tuning and that we use the recommended hyperparameters of UMAP
instead of performing any tuning. We use the TensorFlow implementation of DCN and
DKM provided by Fard et al.1 and our implementation of RKM. Table 5.3 contains the NMI
score obtained with simultaneous approaches. We first observe that combining PCA and
k-means simultaneously (RKM) achieves better results than the tandem approach with
PCA. However, PCAw and UMAP outperform RKM by far. Particularly, UMAP achieves
the best performance scores and beats all the simultaneous techniques except on AG-news
and DBPedia using RoBERTa. Among the simultaneous approaches, DKM yields the best
overall results, particularly on AG-news.

5.5 The Real Impact of Anisotropy

In the last few years, several studies have been devoted to dissecting dense text repre-
sentations in order to understand their effectiveness and further improve their quality.
Particularly, the anisotropy of such representations has been observed, which means that
the directions of the word vectors are not evenly distributed across the space but rather
concentrated in a narrow cone. This has led to several attempts to counteract this phe-

1https://github.com/MaziarMF/deep-k-means

https://github.com/MaziarMF/deep-k-means
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Figure 5.3: Isotropy versus performance with different transformations (T0 = no transfor-
mation).

nomenon both on static and contextualized text representations. However, despite this
effort, there is no established relationship between anisotropy and performance. In this
section, we aim to bridge this gap by investigating the impact of the transformations used
in the previous section on both the isotropy and the performance in order to assess the true
impact of anisotropy. To this end, we rely on the clustering task as a means of evaluating
the ability of text representations to produce meaningful groups. Thereby, we empirically
show a limited impact of anisotropy on the expressiveness of sentence representations both
in terms of directions and L2 closeness.

5.5.1 Background

It is now well established that language models in general (Gao et al., 2019) and Transformer
word embedding models in particular (Ethayarajh, 2019; Wang et al., 2020) produce an
anisotropic embedding space. This concretely means that the directions of trained dense
word representations do not occupy uniformly the embedding space, which is suspected to
limit their expressiveness and thus their expected performance on downstream tasks. The
main question addressed in this section is how harmful this anisotropy really is regarding
the quality of text representations.

Several approaches have been proposed to increase the isotropy of dense representa-
tions, based on different strategies. In the context of static word embeddings like GloVe
and word2vec, both Raunak et al. (2019) and Mu and Viswanath (2018) proposed a post-
processing method that consists in removing the first principal components before recon-
structing the word vectors as opposed to the traditional approach of removing the weakest
components. This approach improves the quality of word vectors on several downstream
tasks while reducing their anisotropy (Mu and Viswanath, 2018).
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As to contextualized representations provided by Transformer models, several ap-
proaches have been proposed in order to alleviate the anisotropy problem. For instance,
based on the idea that anisotropic representations tend to have high expected pairwise
cosine similarity, Wang et al. (2020) proposed to apply a cosine similarity regularization
term to the embedding matrix. In the same vein, Gao et al. (2019) proposed a method named
“spectrum control” that allows for increasing the isotropy of Transformer representations
and improving the performance of the machine translation task. To this purpose, they
propose regularization terms that hamper the singular value decay of the embedding matrix.
However, despite the success of these optimization tricks in lowering the anisotropy of
Transformer representations, Ding et al. (2022b) have recently shown that they do not bring
any improvement, relying on several tasks like summarization and sentence similarity. They
even observed a certain deterioration of the performance brought by anisotropy mitigation
techniques.

In contrast, Rajaee and Pilehvar (2021, 2022) showed that post-processing methods made
for increasing isotropy are also responsible for a performance increase in the sentence
similarity task in both monolingual and cross-lingual settings. Similarly, the whitening
operation, which consists in using the principal components normalized by their inertia,
has shown an increase in isotropy as well as a better performance in sentence similarity (Su
et al., 2021) and clustering (Ait-Saada et al., 2021). However, there is no evidence that the
decrease of anisotropy brought by such transformations is directly responsible for the gain
of performance, as shown in Figure 5.3, which gives a first idea of the question addressed
in this section.

Indeed, despite the great energy devoted to studying and mitigating the anisotropy of
dense text representations, there is no clear connection between isotropy and performance,
which seems to depend, inter alia, on the sought task. In order to contribute to settling this
question, we consider using a task that has never been used for this purpose: document
clustering. The rationale behind this choice is to evaluate, under different degrees of isotropy,
the capability of text representations to facilitate the clear separation and identification of
meaningful groups of documents through clustering algorithms. The main contributions of
this study are:

• We extend the isotropy study of word embeddings to document representations.

• We investigate the correlation between different isotropy measures.

• We assess the connection between isotropy and quality of representation.
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5.5.2 Isotropy and Performance: Experimental Study

In this study, we aim to determine to what extent the anisotropy actually affect the quality of
the representations and their ability to discriminate data samples through separable clusters.
To this end, we use both measures to evaluate the anisotropy of the original embedding
space before and after post-processing. We also compare the changes in isotropy with the
corresponding cluster performance in order to establish a potential relationship between
the two concepts.

Relying on several isotropy measures allows us to consolidate confidence in our con-
clusions and, at the same time, verify if the measures agree with each other. In the same
spirit, using different clustering methods and performance measures insures more rigorous
assertions.

Isotropy measures

Let X = {xi} be a set of v vector representations, characterizing either v words or v
documents. In (Mu and Viswanath, 2018), the isotropy is assessed using the partition
function ψ as follows:

min∥c∥=1 ψ(c)

max∥c∥=1 ψ(c)
; where ψ(c) =

v∑
i=1

e⟨xi,c⟩

This approach is inspired by the theoretical findings issued by Arora et al. (2016) who
proved that, for isotropic representations X , the partition function ψ can be approximated
by a constant for any unit vector c, thus leading to a min/max ratio score of 1. As there is
no analytic solution c that maximizes or minimizes ψ(c), Mu and Viswanath proposed to
use the eigenvectors of the covariance matrix as the set of unit vectors, which leads to:

Ipf (X ) =
minwj

ψ(wj)

maxwj
ψ(wj)

(5.2)

where pf stands for the partition function, wj is the jth eigenvector of X⊤X (X being the
representation matrix). In our experiments, X contains representations of either words
or sentences/documents. In addition to this measure, (Wang et al., 2020) quantify the
anisotropy by the standard deviation of the partition function normalized by the mean:

A(X ) =

√∑d
j=1(ψ(wj)− ψ̄))2

d ψ̄2
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where ψ̄ is the average value of the partition function. Perfectly isotropic representations
lead to A(X ) = 0 and greater values denote a higher anisotropy. For our purpose, we
derive the isotropy score as the square root of the precision score τ = 1/σ, which leads to:

Ipf2(X ) =
1√
σ
=

1

A(X )

σ being the variance normalized by dψ̄2.
On the other hand, the study of (an)isotropy provided in (Ethayarajh, 2019) has been

applied to word representations and the empirical results have been obtained using a high
number of words picked randomly. The authors relied on the assumption that the expected
similarity of two words uniformly randomly sampled from an isotropic embedding space is
zero and that high similarities thus denote an anisotropic embedding space. They hence
use the average cosine similarity between randomly sampled words in order to assess the
anisotropy level of word representations. The isotropy is defined as:

Icos := Ei ̸=i′(1− cos (xi,xi′)) (5.3)

where the score is computed overm random pairs (xi,x
′
i) of vector representations.

Quality measures

In order to assess the quality of text representations X , we rely on the clustering task. To
this end, we estimate the ability of a clustering algorithm to accurately distinguish groups of
documents in a corpus, represented by X . This is achieved using two well-known measures:
Normalized Mutual Information (NMI, Strehl and Ghosh 2002), the Adjusted Rand Index
(ARI, Hubert and Arabie 1985; Steinley 2004). Both are often used to compare two clustering
partitions, even when the number of clusters is different (cf. Section 1.2.7).

Euclidean vs. cosine

As a recall, anisotropic vector directions occupy a narrow cone in the geometrical space.
Given this definition, we can expect directional techniques based on the angles between vec-
tors to be particularly sensitive to the alleged lack of expressiveness induced by anisotropy.
With this in mind, we use Spherical k-means (Dhillon and Modha, 2001), a variant of
k-means made for directional data and based on the cosine distance instead of the L2 metric.
For both clustering algorithms, we use 10 different initialization and keep the partition that
yields the best within-cluster inertia.
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Figure 5.4: Isotropy against clustering performance. The first row is obtained using the
last layer of BERT while the second row uses all the layers averaged together. NMIkm
and NMIskm correspond to the NMI score obtained by k-means and spherical k-means
respectively. Icos represents the cosine isotropy score computed using Equation 5.3.

Table 5.4: Pearson correlation coefficient values between several isotropy and performance
measures. The corresponding p-values are given in Table C.1 in the Appendix. “Dataset”
means that the isotropy has been computed within the same dataset on which NMI and
ARI are computed. “External” means that the isotropy has been evaluated using an external
dataset either at the “word” or “sentence” level.

NMI ARI Dataset External (word) External (sentence)
km skm km skm cos pf pf2 cos pf pf2 cos pf pf2

N
M
I km 1.0 0.83 0.94 0.74 -0.05 0.02 -0.05 -0.14 0.02 0.02 -0.07 0.01 0.01

skm 0.83 1.0 0.74 0.92 -0.09 -0.05 -0.15 -0.05 -0.05 -0.05 -0.08 -0.06 -0.05

A
RI km 0.94 0.74 1.0 0.78 -0.07 0.01 -0.07 -0.12 0.01 0.01 -0.07 -0.0 0.01

skm 0.74 0.92 0.78 1.0 -0.01 0.04 -0.07 0.07 0.04 0.04 0.02 0.04 0.04

D
at
as
et cos -0.05 -0.09 -0.07 -0.01 1.0 0.96 0.9 0.84 0.95 0.95 0.98 0.96 0.95

pf 0.02 -0.05 0.01 0.04 0.96 1.0 0.95 0.76 1.0 1.0 0.94 1.0 1.0
pf2 -0.05 -0.15 -0.07 -0.07 0.9 0.95 1.0 0.73 0.95 0.95 0.89 0.95 0.95

Ex
t-w

cos -0.14 -0.05 -0.12 0.07 0.84 0.76 0.73 1.0 0.76 0.76 0.89 0.78 0.75
pf 0.02 -0.05 0.01 0.04 0.95 1.0 0.95 0.76 1.0 1.0 0.94 1.0 1.0
pf2 0.02 -0.05 0.01 0.04 0.95 1.0 0.95 0.76 1.0 1.0 0.94 1.0 1.0

Ex
t-s

cos -0.07 -0.08 -0.07 0.02 0.98 0.94 0.89 0.89 0.94 0.94 1.0 0.96 0.93
pf 0.01 -0.06 -0.0 0.04 0.96 1.0 0.95 0.78 1.0 1.0 0.96 1.0 1.0
pf2 0.01 -0.05 0.01 0.04 0.95 1.0 0.95 0.75 1.0 1.0 0.93 1.0 1.0

5.5.3 Discussion

Figure 5.4 confronts one quality measure (NMI) and one isotropy measure (Icos) using
different post-processing techniques. We first observe that PCAw produces, by far, the most
isotropic representations while increasing the performance of the raw vectors. Indeed, an
appealing explanation of the success of the whitening operation is that it considerably alle-
viates the anisotropy of the embedding space (Su et al., 2021). Applying that reasoning, PCA
and UMAP should deteriorate the performance since they both exacerbate the anisotropy
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(in all cases for PCA and in most cases for UMAP). Nonetheless, the performance of PCA is
comparable to that of the raw embeddings and UMAP achieves even better performance
than PCAw even though it significantly reduces the isotropy. Overall, averaging the whole
set of layer representations achieves better results, even though it clearly decreases the
isotropy, compared to using the last layer as traditionally performed. Also, it is worth
noting that even when the directions of the vectors are used (skm), the decrease in isotropy
has a negligible impact on the performance. All these observations suggest that, although
the anisotropy reduces the spectrum of directions taken by sentence vectors, it does not
necessarily alter their expressiveness.

In order to confirm this supposition, we directly compare isotropy and quality measures
in a wide range of situations. To this end, we compute the correlation between several
isotropy measures and performance scores on 2 models (BERT and RoBERTa) with 2
different strategies (“all layers” and “last”), using 5 datasets and 4 transformations, leading
to a total of 80 occurrences for each measure. For external evaluation of isotropy, we make
use of the dataset used by Rajaee and Pilehvar (2022) which contains sentences extracted
from Wikipedia. We use this dataset to evaluate the isotropy measures like Icos, computed
betweenm = 5000 pairs of words and sentences. The 10 000 resulting representations are
also used to compute Ipf and Ipf2 .

To assess the linear correlation between two measures, we use the Pearson correlation
coefficient ρ (Pearson, 1896) and test its significance. The ρ coefficient between two random
variables X and Y indicates how much one of the variables increases with the growth of
the other. It is computed as:

ρX,Y =
cov(X, Y )√

σXσY

where X et Y are two random variables of variance σX et σY respectively and cov(X, Y )

is the covariance between X and Y . In order to test the significance of ρ we rely on the
p-value which is a probability that denotes how likely it is that the observed variables have
occurred under the null hypothesis which is that the two variables are perfectly correlated
(ρX,Y = 0). Thus, high ρX,Y values indicate a stronger linear relationship and the closer
the p-value gets to zero, the more we consider significant the correlation betweenX and Y .
The values of correlation are given in Table 5.4 and the associated p-values in Table C.1 in
the Appendix.

From Table 5.4, we first observe a high correlation (associated with a near-zero p-value in
Table C.1) between measures within the same family (e.g. Icos and Ipf ). This indicates that
the selected measures agree with each other which denotes a certain coherence. However,
when looking at the correlation between the two families of measures, it is clear that there
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is no significant relationship between isotropy and quality measures, since all the values
of the correlation coefficient are close to zero, which is corroborated by relatively high
p-values, denoting a non-significant correlation. Note that the same observations can be
made using the Spearman correlations of ranks (Spearman, 1987).

5.6 Conclusion

As T-PLM representations showed poor performance on downstream tasks, several ap-
proaches have been proposed in order to address this issue. These approaches are based
either on fine-tuning the pre-trained models or post-processing the output representations,
or combining both operations. In this chapter, we assess the impact of such approaches on
two tasks – text clustering and 2D visualization. Thereby, we show that fine-tuning, even
though beneficial to the USTS task, does not bring any significant improvement in either of
the two tasks. Post-processing, however, in addition to being simpler, shows much more
impressive improvements. More specifically, we highlight the potential of UMAP. Even
with a low-dimensional subspace, UMAP shows a surprising improvement in the clustering
performance.

On another note, it has been known to happen that transformations that tend to decrease
the anisotropy of text representations also improve the performance of downstream tasks.
In stark contrast, we observe in the present study that transformations that exacerbate the
anisotropy phenomenon may also improve the results, which calls into question the impor-
tance of isotropy in text representation. To draw this important conclusion, we relied on the
clustering task and several empirical measures to assess the relationship between isotropy
and quality of representations, using several datasets. Most importantly, we show that even
a directional approach for clustering, which should be primarily affected by anisotropy,
does not undergo any performance loss resulting from low-isotropy representations. In
addition, we show the advantage of using UMAP as a post-processing step, which provides
good-quality representations using only a handful of dimensions, despite a high resulting
anisotropy.

This opens an interesting path of research to which we intend to dedicate our fu-
ture work, especially on how to benefit from the non-linearity and strong mathematical
foundations of UMAP in a parametric fashion using neural networks.





Chapter 6

Unsupervised Anomaly Detection in
Multi-Topic Short Text Corpora

Unsupervised anomaly detection seeks to identify deviant data samples in a dataset without
using labels and constitutes a challenging task, particularly when the majority class is
heterogeneous. This chapter addresses this topic for textual data and aims to determine
whether a text sample is an outlier within a potentially multi-topic corpus. To this end,
it is crucial to grasp the semantic aspects of words, particularly when dealing with short
texts, since it is difficult to syntactically discriminate data samples based only on a few
words. Thereby we make use of word embeddings to represent each sample by a dense
vector, efficiently capturing the underlying semantics. Then, we rely on the Mixture Model
approach to detect which samples deviate the most from the underlying distributions of the
corpus. Experiments carried out on real datasets show the effectiveness of the proposed
approach in comparison to state-of-the-art techniques both in terms of performance and
time efficiency, especially when more than one topic is present in the corpus.

6.1 Introduction

Anomaly Detection (AD) is a task that can address various objectives such as mining frauds
(Deng and Mei, 2009), diseases (Han et al., 2021) and intrusions (Pu et al., 2021). AD takes
several forms: supervised, unsupervised or semi-supervised. Unsupervised AD implies
that no prior information about the dataset is provided. In this case, the solution usually
consists of identifying samples that deviate in a certain way from the others among the same
dataset; anomalies being, by definition, rare phenomena. Particularly, anomalies in a textual
dataset can be defined as samples having an atypical vocabulary (lexical anomaly) or a
deviating global meaning (semantic anomaly). Identifying abnormalities in textual data can
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Figure 6.1: Problem statement of the industrial application of anomaly detection. Green
boxes correspond to internal actions while purple boxes are for actions made by the training
providers.

be very useful in many industrial use-cases. A good example is the detection of non-eligible
and/or fraudulent course contents in the public French plateform MonCompteFormation1

where millions of course sessions are available with no possibility of controlling training
organizations in a supervised fashion (using labeled data). Hence, to assess the effectiveness
of our approach, we rely on an external labeled dataset that closely relates to course contents
and that is dedicated to course certifications. The dataset is described in Section 6.4.1. In
addition to the difficulty of mining anomalies in short-text corpora of varying sizes, we also
have an important computational cost constraint that is also addressed by the proposed
solution.

Over the last years, a great deal of effort has been devoted to combat fraud in MCF, using
several types of data such as the temporal evolution of the turnover of training providers, the
interactions between the users and the providers, etc. One important kind of fraud is when
training providers propose fake or ineligible training contents. We include in this context
trainings that are put in the wrong category whether on purpose or not. This present work
is part of a project with short-term and long-term purposes, as described in Figure 6.1. In

1https://www.moncompteformation.gouv.fr/ (MCF) developed by « Caisse des Dépôts et Consignations »
(CDC)

https://www.moncompteformation.gouv.fr/
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the short term, our objective is to identify in the database atypical training contents that can
be either fake, ineligible or wrongly categorized, so that the corresponding trainings may be
corrected or removed. In the longer term, the goal is to work towards a real-time anomaly
detection system that will be included in the phase during which a training provider fills the
information about the training. This will help prevent the occurrence of anomalies in the
database, which will in turn prevent the users of the plateform from encountering trainings
that should not be there. This long-term objective motivates us to pay extra attention to the
computational efficiency, as the anomaly detection system must provide real-time outputs
within a short timeframe.

Table 6.1: Example illustrating the importance of semantic representations when dealing
with a small corpus of short texts.

Les lignes de commande Linux pour débutants inlier
Formation: Introduction au Shell Bash inlier

Administration système Unix pour les nuls inlier
Apprendre à utiliser le terminal Ubuntu/Debian inlier

Formation en Espagnol pour débutants outlier

Capturing the semantics of a given text is usually performed using Word Embeddings,
which consist in representing a word or a piece of text by a fixed-size vector, supposed to
detain its meaning. Several word embedding techniques are available such as word2vec
(Mikolov et al., 2013b), GloVe (Pennington et al., 2014), fastText (Bojanowski et al., 2017),
BERT (Devlin et al., 2019), DistilBERT (Sanh et al., 2019), etc. Each of the mentioned works
provides ready-to-use models that are pre-trained on very large corpora and intended to
be general for a given language and suitable for several NLP downstream tasks. Indeed,
relying on such pre-trained models has proved efficient in several tasks (Das et al., 2017;
Kim, 2014) and is particularly useful when dealing with small corpora (Buechel et al., 2018).
If we consider the small corpus given in Table 6.1, we can observe that the inlier samples
(training titles about Linux shell programming) do not have any words in common. Thus,
based only on the syntactic information of the samples, it would be impossible to isolate the
outlier (about learning Spanish), even though it is the only one that does not have anything
to do with shell programming. This can easily occur when dealing with short-text corpora,
especially when the number of samples is not sufficient to learn the different syntactic
variants of a word or a concept.

Depending on the data type and the assumptions that can be made, the definition of
an outlier may differ, and the choice of the model is crucial, especially in an unsupervised
context (Aggarwal, 2017). In this chapter, we propose a probabilistic anomaly detection
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methodology based onMixtureModels, that effectively identifies the most deviating samples
in short-text datasets, even in the case where several topics are present in the inlier class.
We also show the effectiveness of using the knowledge learned by word embedding models
in capturing the underlying semantics of short texts and efficiently identifying outliers.
The main contributions of this study are:

• We address the challenge of mining anomalies in short texts written in french

• We tackle the classical one-class inlier scheme and also a more challenging multi-class
inlier setting.

• We propose an effective anomaly detection approach that outperforms previously
proposed anomaly detection techniques in both scenarios.

6.2 Related Work

Anomaly detection is an active research area, and a large number of approaches are proposed
in several application domains. Specifically, our work relates to unsupervised anomaly
detection for text and clustering-based anomaly detection. Unsupervised anomaly detection
is gaining more and more interest in research due to the constant growth of data volumes
while labeling data samples is not getting any cheaper. One of the most important family
of methods contains reconstruction-based approaches that assume that a well-generalizing
model would struggle at compressing rare anomalous samples. This kind of approaches
include linear models such as PCA (Jablonski et al., 2015) and deep autoencoder models
based on convolutional networks (Oza and Patel, 2018), recurrent networks (Hsieh et al.,
2019), etc.

6.2.1 Clustering-based Anomaly Detection

In the clustering-based anomaly detection approaches, anomalies are generally seen as
data samples that present a lower adhesion to the underlying groups. Several two-phase
approaches have been proposed and consist in using a clustering algorithm such as DBSCAN
(Sheridan et al.), K-means (Deng and Mei, 2009) and Affinity Propagation (Marcos Alvarez
et al., 2013), then compute an anomaly score from the obtained clustering partition. Similarly
in (Mahadevan et al., 2010), to detect temporal anomalies in videos, inlier behaviors are
modeled as a mixture of Gaussian distributions. A deep GMM-based approach called
DAGMM is proposed in (Zong et al., 2018) to detect outliers in numerical data, where the
input data are compressed into a lower-dimensional space using an autoencoder and then
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fed into a GMM component. The autoencoder’s reconstruction loss and the log-likelihood
of the GMM component are optimized jointly, without performing any pre-training phase.

6.2.2 Anomaly Detection in Text Data

Unlike images, time series, and numerical data, relatively few anomaly detection studies
are dedicated to textual data. Document-term matrix representations (also called sparse
bag-of-words) have previously been used in (Kannan et al., 2017) to perform anomaly
detection based on Nonnegative Matrix Factorisation (NMF) and isolate an outlier matrix,
used to compute the anomaly scores. Sparse representations are also used by Manevitz and
Yousef (2001) as input to a One-Class Support Vector Machine (OC-SVM) (Schölkopf et al.,
2001) and later to a shallow autoencoder (Manevitz and Yousef, 2007). Word embeddings
like word2vec are used for anomaly detection in (Zhuang et al., 2017) along with a von Mises
Fisher (vMF) mixture model where more general words are penalized when computing the
overall outlierness score of a given document. Pre-trained fastText word vectors are used
in (Ruff et al., 2019) as the embedding layer of a multi-head attention network to perform
anomaly detection as a one-class classification task. Recently, a deep end-to-end approach
has been proposed by Manolache et al. (2021) that does not use any knowledge transfer.
The authors used the transformer architecture of ELECTRA (Clark et al., 2020) that contains
two adversarial components: a generator and a discriminator. The model is trained from
scratch on a given dataset by optimizing a loss function based on token replacement.

6.2.3 Semantic Text Representations

Tremendous advances in various NLP tasks have been made in recent years thanks to
dense vector representations of words and text sequences. Static word embeddings like
word2vec (Mikolov et al., 2013b), GloVe (Pennington et al., 2014) and fastText (Bojanowski
et al., 2017) provide one unique dense representation for each word whereas contextual
word embedding models like ELMo (Peters et al., 2018b), BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019b) provide word representations that depend on the surrounding
context. Contextual word embedding models are based on deep neural networks, which
makes them resource-intensive and difficult to use in some industrial contexts. Both kinds
of word embeddings have proved effective in several unsupervised downstream tasks like
semantic textual similarity (Arora et al., 2017; Ranasinghe et al., 2019), clustering (Boutalbi
et al., 2022) and anomaly detection (Zhuang et al., 2017).
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6.3 Gaussian Mixture Models

Given a corpus D of n short texts (d1, . . . , dn), we represent each sample by a fixed size
vector, thus obtaining a matrix X = (x1, . . . ,xn) of size n ×m. To tackle the anomaly
detection problem, we postulate that the samples follow a mixture of distributions, from
which the anomalous samples deviate.

Admittedly, the family of t-distributions provides a heavy-tailed alternative to the
Gaussian family for anomaly detection. However, as pointed out by Yuan and Huang (2009),
although useful frommodeling perspective, the practical use of multivariate t-distribution is
often limited by the difficulty in parameter estimation, particularly so for high dimensional
data. Note that, in our proposal, the consideration of the time consumption is important.
Therefore, considering a t mixture model leads to estimate a supplementary parameter (in
addition to the estimation of vector means and covariance matrices) that is the degree of
freedom of each component. Moreover, since we suggest to consider an ensemble method
allowing to combine results by varying the number of components (cf. Section 6.3.1),
we would therefore increase yet the computation time for estimation of the parameters.
However, Gaussian Mixture Model (GMM)-based approaches, more parsimonious than
t-mixture model, have shown their effectiveness in anomaly detection, such as DAGMM
(Zong et al., 2018). For these reasons we retain GMM to address our purpose.

In a finite GMM, the data (x1, . . . ,xn) are taken to constitute a sample of n independent
instances of a random variableX in Rm. Density can be expressed as:

f(xi; Θ) =

g∑
k=1

πkφk(xi|µk,Σk),∀i ∈ {1, . . . , n}

where Θ = (π1, . . . , πg, µ1, . . . , µg,Σ1, . . . ,Σg), φk(xi|µ,Σk) is the kth component density
for observation xi with parameters (µk,Σk), (π1, . . . , πg−1) are the mixing weights or
probabilities (such that πk > 0,

∑g
k=1 πk = 1) and g is the number of mixture components.

Thus, clusters are ellipsoidal, centered at the mean vector µk, and with other geometric
features, such as volume, shape and orientation, determined by the covariance matrix Σk

(Banfield and Raftery, 1993; Celeux and Govaert, 1995). To estimate Θ we rely on the
maximisation of the log-likelihood given by:

L(X; Θ) =
n∑

i=1

log

(
g∑

k=1

πkφk(xi|µk,Σk)

)
.

The maximization is commonly performed by Expectation-Maximization (Dempster et al.,
1977); an iterative algorithm based on the maximization of the conditional expectation of
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the complete data log-likelihood given Θ′:

Q(Θ|Θ′) =
∑
i

∑
k

sik log(πkφk(xi|µk,Σk))

where sik ∝ πkφℓ(xi|µk,Σk) are the posterior probabilities.
In real terms, the algorithm is broken down into two steps (E-M steps) and the unknown

parameters of Θ are updated thanks to the previously computed probabilities. For each
component k, we have

πk =

∑
i sik
n

µk =

∑
i sikxij∑
i sik

and Σk =

∑
i sik(xi − µk)

⊤(xi − µk)∑
i sik

.

The procedure used to identify anomalies is described in Algorithm 5. It takes as input a

Algorithm 5: Unsupervised anomaly detection with GMM
Input: D = {d1, . . . dn}, g the number of components,M an embedding module,

α the desired number of output samples;
1 xi ←M(di), i = 1, . . . n;
2 X← (x1, . . . ,xn);
3 Initialize Θ′ from a partition obtained with k-means
4 repeat
5 E-step: Compute Q(Θ|Θ′);
6 M-step: Update πk, µk and Σk;
7 until Convergence;
8 si ← −maxk(sik), k = 1, . . . , g;
9 s← (si, . . . , sn);

10 r←argsort(s);
11 return dj, j = r1, . . . , rα;

set of short texts and returns the ones that are the most likely to constitute an anomaly. The
maximum density as normality score denotes the confidence of the assignment. Multiplied
by -1, it denotes the uncertainty of the assignment and is similar to using the entropy of s
since

∑
k sik = 1. The number of returned text samples depends on the user’s needs and is

specified by the cutoff parameter α. In the evaluation section, we evaluate the anomaly
detection performance with every possible value of α using the AUROC score.
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6.3.1 Proposed Solution for Multi-Class Inliers

In the standard setting of anomaly detection where we consider one large inlier class,
we set the number of components to its smallest possible value g = 2, which provides
satisfactory results. In this study, we also consider the more challenging scenario where
several underlying topics are present in the dataset. In this context, we make the distinction
between extreme values and outliers (Aggarwal, 2017) as shown in Figure 6.2. A Gaussian
mixture model would not have any difficulty in spotting both types of outliers since it is
capable of modeling clusters of different shapes. Furthermore, we expect GMM to show
good results in the multi-class context, since one of its fundamental assumptions is the
multiplicity of inherent distributions among the data samples. However, this property
requires to know the number of components in advance, which is not always possible in
real life. To address this issue, we propose to use GMME, an ensemble of several models,
obtained with different values of g. To this end, we use Algorithm 5 with varying gk ∈ G
and combine the output scores s(gk) as follows:

ei = −
1

|G|
∑
k

rank(s(gk)i ), ∀i = 1, . . . , n. (6.1)

The intuition behind using an ensemble approach is to make each of the models separate
the dataset into clusters in a different way and assign an anomaly score according to the
formed clusters. Combining those different anomaly scores leads to a more robust and
meaningful overall score, even when the optimal number of clusters is not included in G.
This is corroborated by the empirical study conducted in Section 6.4.5.

outlier

extreme
value

Figure 6.2: Difference between outlier and extreme value. This example illustrates the
benefit of the clustering-based anomaly detection approaches in general and Gaussian
mixture models in particular.
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6.4 Experimental Study

To assess the effectiveness of our approach and compare it to state-of-the-art, we conduct a
set of experiments on real datasets and discuss the results in this section.

6.4.1 Datasets

We run our anomaly detection experiments on three datasets described in Table 6.2. MLSUM
(Scialom et al., 2020) and COVID-news (Cortal, 2022) are both news datasets from which
we extract the title to constitute our short-text corpora. RNCP is a dataset we built from an
official french repository that lists training certifications.

Table 6.2: Datasets’ description. The sizes correspond to the whole set of samples (training
and test set).

Dataset Classes Smallest Largest Medial
RNCP 16 763 9,510 3,101
COVID 9 236 3,235 1,270
MLSUM 10 2,573 26,024 13,054

Given a classification dataset, we first remove the classes that are too small to constitute
an anomaly detection dataset, thus obtaining ℓ classes. We then derive ℓ sets of samples in
which there is one inlier (majority) class and a certain rate r of outliers picked randomly
from the other classes.

Construction of the RNCP dataset

The RNCP (Répertoire National des Certifications Professionnelles) dataset is composed of
certification contents that are provided by an organization named « France-Compétences ».
All the data used here are publicly available2.

In order to label data we first get the ROME codes of each certification that correspond
to the professions related to the certification. Each ROME code is assigned to a topic in
the file « Arborescence thématique » of the same repository. We use the ROME code
as intermediate to have the topic (thématique) of each certification. We hence obtain a
multi-label classification dataset.

2https://www.data.gouv.fr/fr/datasets/

https://www.data.gouv.fr/fr/datasets/
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Given a certification ci, let Ti be the set of its corresponding topics. In the one-class
setting with inlier class h, the label of ci is established as follows:

yi =

0 if h ∈ Ti
1 otherwise.

In the multi-class setting with inlier classes symbolized byH, the anomaly labels are defined
as:

yi =


0 ifH ⊂ Ti
1 ifH ∩ Ti = ∅
N/A otherwise

where yi = 1 means ci is categorized as an anomaly.

6.4.2 Experimental Settings

In order to empirically evaluate our approach and compare it to other anomaly detection
techniques, we rely on the Area Under the Receiver Operating Curve (AUROC), originally
used as a metric in the classification task. In our case, it takes as input the anomaly scores
as well as the ground truth labels and determines at what extent it is possible to accurately
identify outliers using the anomaly score. It is equivalent to evaluating the performance of
anomaly detection at every possible value of α in Algorithm 5. For each anomaly detection
approach, we compute the AUROC on the test set over 5 different initializations, except for
OC-SVM that is a deterministic model.

In our study, we discard the case where we train the model on the majority class as
a one-class classification task (Manevitz and Yousef, 2001; Manolache et al., 2021; Ruff
et al., 2019), for it is not a realistic scenario. Indeed, in the context of anomaly detection, in
contrast to novelty detection for example, one rarely has access to a large enough amount of
inlier-only labeled samples in real life. Thus, we consider in this study a fully unsupervised
scenario, where no labels are available and both inlier and outlier samples are present in
the training set. To this end, we contaminate both sets with up to r = 10% of outliers as in
(Manolache et al., 2021). The set of labels is used only during the evaluation phase.

Text representation. Given a raw corpus D of short texts, we first perform a minimal
pre-processing that consists in removing stop words and lowercasing the input text. Then,
we use a pre-trained fastText model (Bojanowski et al., 2017) to represent texts by fixed-size
vectors and build the X matrix. The model is trained on French Wikipedia and represents
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each word by a vector of size m = 300. Using those word vectors, we represent a text
sequence by the arithmetic mean of its tokens’ representations as in (Arora et al., 2017;
Ranasinghe et al., 2019). We show that this way of representing text sequences is well suited
to shorts texts and is very beneficial in capturing text semantics for anomaly detection.
One noticeable advantage of fastText is its ability to represent out-of-vocabulary words
thanks to sub-word embeddings. Another advantage of fastText is that pre-trained word
representations are provided in a wide range of languages3. We do not use contextual word
embeddings to represent text sequences since they significantly increase the computational
cost and do not seem to bring any performance gain in the anomaly detection task (Ruff
et al., 2019).

Baselines. We compare our approach to other anomaly detection techniques: OC-SVM
(Schölkopf et al., 2001), AE, DAGMM (Zong et al., 2018) and DATE (Manolache et al.,
2021). For OC-SVM, AE and DAGMM, we use as input the same matrix X as for GMM.
Concerning OC-SVM, we set ν = 0.05, which is the value that presents the best results
among {0.05, 0.1, 0.2, 0.5} by far. For the autoencoder (AE) we train a model with three
encoder layers and three decoder layers of size 256, 128 and 64, a learning rate of 0.001 and
a weight decay of 10−8. Concerning DAGMM, the authors chose the parameters relating
to the architecture of the neural network according to the dataset and do not provide
a method to reproduce this choice. This way of configuring the model is not suitable
for the unsupervised case, in which no tuning of the hyperparameters is possible. We
therefore opt for a standard architecture in decreasing powers of 2 starting fromm = 300

(i.e. 256, 128, . . . ). We choosem′ = 5 as the encoding dimension because it gives the best
overall performance. For DATE, we use the same parameters as used in the original paper
for AG-news (Manolache et al., 2021).

Hyperparameter tuning. Our present work falls within the context of unsupervised
learning, where we’re not supposed to have access to ground truth labels. In this respect,
as discussed in Section 1.5, it is not feasible in real life to tune the hyperparameters of
a given model to fit unlabeled data, since the performance score is simply impossible to
compute. We therefore consider hyperparameter tuning in this context unrealistic and
possibly leading to hiding instabilities that can neither be detected nor fixed by practitioners.
Hence, robustness and insensitivity to parameters are key in the unsupervised setting. For
this reason, regarding the baselines, we use the recommended parameters provided in
the original papers when available, in order to reproduce real-world conditions. When

3https://fasttext.cc/

https://fasttext.cc/
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no recommended parameters are provided, we use the ones that maximize the overall
performance even though it does not play in favor of our proposed approach which does
not require any parameter tuning. By doing so, we guarantee a fair evaluation of our
proposal and show its robustness in the unsupervised context we address in this chapter.

6.4.3 Results with One-Class Inliers (classical setting)

The obtained performance is given in Table 6.3 with an anomaly rate r = 10%. We first
observe the effectiveness of GMM on the three datasets, in comparison to all of the baselines,
offering the best AUROC in most of the cases. Furthermore, the state-of-the-art DATE
shows its limits on short texts and presents competitive but poorer results in comparison to
GMM. OC-SVM is competitive on short texts in comparison to DATE but presents poorer
overall performance. AE is the model that provides the lowest AUROC values, right after
DAGMM. This might be due to the fact that the encoding (or embedding) step of the encoder
(for both AE and DAGMM) is performed beforehand using pre-trained word embeddings
and becomes pointless when applied to this kind of representation.
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Figure 6.3: CD plots from the Nemenyi test over different datasets. This graphic summarizes
the rank of each approach with different contamination rates r.

The results obtained with different values of contamination rate r are summarized by
Critical Difference (CD) diagrams in Figure 6.3. The aim of CD diagrams (Demšar, 2006) is to
visualize the performance ranks of each approach over the different datasets. If we take the
example of r = 10%, the CD diagram summarizes the scores given in Table 6.3. It depicts
the average rank of each method and the bold line corresponds to the critical difference,
based on the post-hoc Nemenyi test (Nemenyi, 1963). Note that the presence of a higher
number of outliers increases the difficulty of the anomaly detection task and decreases
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Table 6.3: AUC scores obtained with anomaly r = 10%. The bold numbers correspond to
the best score in each row and the underlined numbers are for the second-best performance
score.

Inlier OC-SVM AE DAGMM DATE GMM

RNCP

environ. 0.622 0.621 0.528 0.658 0.684
défense 0.580 0.462 0.525 0.622 0.743
intelli. 0.667 0.654 0.591 0.790 0.801
recherc. 0.686 0.645 0.580 0.753 0.777
nautism. 0.649 0.629 0.530 0.682 0.731
aéronot. 0.637 0.594 0.498 0.761 0.780
sécurit. 0.598 0.547 0.513 0.750 0.800
multimé. 0.578 0.563 0.513 0.645 0.712
humanit. 0.567 0.596 0.534 0.690 0.721
nucléai. 0.651 0.587 0.599 0.749 0.751
enfance 0.610 0.601 0.650 0.721 0.789
saisonn. 0.505 0.475 0.508 0.488 0.749
assista. 0.451 0.507 0.564 0.525 0.632
sport 0.511 0.561 0.468 0.663 0.733
ingénie. 0.669 0.601 0.572 0.753 0.742
sans di. 0.454 0.369 0.537 0.393 0.599

COVID

culture. 0.497 0.401 0.434 0.403 0.537
environ. 0.569 0.550 0.502 0.552 0.662
interna. 0.620 0.537 0.531 0.624 0.651
people 0.639 0.474 0.497 0.518 0.640
politiq. 0.672 0.601 0.516 0.681 0.792
science. 0.555 0.383 0.606 0.645 0.666
société 0.489 0.475 0.553 0.570 0.551
sport 0.685 0.356 0.554 0.526 0.690
économi. 0.527 0.494 0.507 0.540 0.594

MLSUM

afrique 0.700 0.505 0.620 0.743 0.755
police-. 0.783 0.744 0.529 0.770 0.829
politiq. 0.703 0.603 0.496 0.746 0.757
livres 0.712 0.658 0.484 0.581 0.659
argent 0.477 0.364 0.517 0.822 0.634
culture 0.595 0.498 0.524 0.458 0.514
sante 0.787 0.562 0.552 0.865 0.875
science. 0.531 0.355 0.496 0.710 0.552
societe 0.730 0.730 0.489 0.754 0.790
sport 0.749 0.565 0.452 0.692 0.817



126 Unsupervised Anomaly Detection in Multi-Topic Short Text Corpora

COVID MLSUM RNCP

−40

−20

0

20

40

% ↑

Figure 6.4: Gain of performance between GMM and VMF-Q using word2vec embeddings of
sizem = 200. Positive values give advantage to GMM.

the overall performance scores. We can observe that the more we inject anomalies in the
training set, the more GMM gets competitive against the other approaches in terms of
AUROC score. This shows GMM’s robustness to outliers and its generalization capabilities
while other techniques tend to overfit in the presence of noise in the training set.

Also, it is worth noting that GMME yields similar results in comparison to GMM,
which makes it a universal solution, well suited to anomaly detection even in the one-class
scenario.

Comparison with VMF-Q. To make a fair comparison between GMM and VMF-Q
(Zhuang et al., 2017), we reproduce the exact same setting for the two approaches. VMF-Q
is based on the von Mises-Fisher distribution that relies on a Bessel function to estimate
the parameter κ. The model is originally trained using embeddings of sizem = 200, but
encounters numerical difficulties with higher dimensions, due to the approximations made
by the Bessel function that depends, inter alia, on m. We hence use, for both GMM and
VMF-Q, another pre-trained model of sizem = 200, that is provided by Fauconnier (2015).
The gain of performance from VMF-Q to GMM is summarized in Figure 6.4. We can observe
a clear advantage of GMM in comparison to VMF-Q on the three datasets, especially on
MLSUM, where GMM outperforms VMF-Q on all the subsets. We also report poorer overall
results using word2vec withm = 200 in comparison to the fastText model we use in the
rest of our experiments.

6.4.4 Performance and Data Size

Figure 6.5 shows the gain of performance from baselines to GMM according to the size of
the datasets. We see that the percentage of improvement is greater on small datasets but
remains positive on large datasets. Note that detecting anomalies can be trickier on small
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datasets, especially when dealing with short texts (cf. Table 6.1) which makes GMM a good
solution to tackle this difficulty.
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Figure 6.5: Percentage of improvement of GMM in comparison to baselines w.r.t. to the
train set’s size. Positive values give advantage to GMM.

6.4.5 Multi-Class Inliers

We investigated in the previous sections the detection of semantic anomalies in a dataset
classically composed of one unique class. In this section, we consider a dataset with several
underlying topics and identify the samples that do not belong to any of them. To evaluate
our approach in such a context, we create datasets as described in Section 6.4.1 but this time,
by combining ĝ random classes to form one inlier class then inject anomalous samples with
a rate r = 10%. We then proceed similarly to identify anomalies and validate the obtained
results. Note that we make sure in our experiments to put aside enough “anomalous“ classes
so that we have a sufficient diversity of anomalies and avoid forming an additional cluster
with the anomalous samples. To this end, we limit ĝ according to the available classes in the
dataset. We use the obtained datasets to assess the performance of GMME (cf. Section 6.3)
and compare it to GMM and two other baselines: DBSCAN and DATE. DBSCAN natively
deals with outliers and considers the samples that cannot be assigned to any existing cluster
as anomalies (they are assigned the -1 label). We use this information to determine whether
a text sample is an anomaly. We set the parameters ϵ = 1 and min_samples = 3 which
yielded better results than the default values available in the scikit-learn implementation.
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Table 6.4: Comparison of DBSCAN, DATE, GMM and GMME approaches: AUROC scores
obtained with multiple classes as inliers.

Dataset # inlier DBSCAN DATE GMM GMMEclasses

RNCP

2 0.634 0.756 0.886 0.892
3 0.628 0.705 0.824 0.839
4 0.646 0.776 0.802 0.82
5 0.657 0.635 0.816 0.807
6 0.617 0.567 0.655 0.645
7 0.584 0.488 0.606 0.626
8 0.604 0.568 0.632 0.634

COVID

2 0.515 0.593 0.652 0.638
3 0.506 0.513 0.541 0.542
4 0.507 0.535 0.562 0.563
5 0.5 0.511 0.526 0.527

MLSUM

2 0.505 0.7 0.742 0.746
3 0.502 0.496 0.551 0.544
4 0.506 0.47 0.55 0.555
5 0.507 0.457 0.531 0.538

Table 6.4 shows the performance obtained by GMME with values of gk ∈ G = {2, 3, 4}.
We first observe that the ensemble approach further improves the performance of the
simple GMM, which still performs better in comparison to the other baselines. DBSCAN
presents the poorest results after DATE, which is less competitive in the multi-class context,
especially on the RNCP dataset. Thus, GMME is the most competitive approach in the
multi-topic scenario, even when the real number of clusters is not included in G.

6.4.6 Computation Time Analysis

Table 6.5 contains the execution time of both the training and evaluation steps. It is estimated
over three different runs, on the three-class datasets used in Section 6.4.5. The sizes of the
training sets are 1034, 6342, 46253 and the test sets are of size 444, 2718, 5837 for RNCP,
COVID-news and MLSUM respectively. The experiments on DATE are performed on an
NVIDIA RTX2070 GPU.

We first notice that GMM is the fastest approach both during the training and evaluation
phase. It is followed by GMME that is relatively quick, especially during evaluation. GMM
scales better with an increasing number of samples in comparison to OC-SVM that takes
more than four times as much time to train. DATE is the approach that takes the most
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Table 6.5: Execution time in seconds. The rowX corresponds to the computation time of
the embedding matrixX using fastText. “train“ stands for the training time and “eval“ for
the evaluation time.

Dataset Step 1-SVM GMM GMME DATE

RNCP
X 3.7 -

training 3e-01 3e-01 1.2 78.49
evaluation 1e-01 3e-03 3e-02 2.0

COVID
X 3.7 -

training 5.7 3.5 16.2 512.97
evaluation 1.8 2e-02 8e-02 14.1

MLSUM
X 3.9 -

training 450.6 10.0 94.8 3639
evaluation 33.0 4e-02 2e-01 30.2

time to train and evaluate, which is due to its deep architecture. The computational time
of DATE can be partially amortized with a more powerful GPU but can still represent an
impediment, especially in an industrial context.

We also observe that the computation time of X does not depend much on the size
of the dataset, simply because the task that takes the longest is loading the model from
memory. Hence, this way of representing text scales well, especially when used along with
GMM or GMME.

6.5 Anomaly Examples with RNCP

Table 6.6 presents some examples of anomalies predicted on two subsets of the RNCP
dataset: « aéronotique » (meaning aeronautics) and « nucléaire » (meaning nuclear). The
aéronautique test set contains 1585 samples, 154 of which are labeled as anomalies, and
the nucléaire set contains 1431 samples including 131 anomalies. In both cases we set α to
250 (cf. Algorithm 5). We observe in both cases that DATE has more difficulty in detecting
anomalous text sequences when they are very short. For example, in the nucléaire set,
the certification Livreur (meaning delivery person) does not have anything to do with
the nuclear field. Yet DATE does not place it among the 250 most deviant samples and
makes it the 355th anomalous sample while it is only 3rd according to GMM. This might
be explained by the fact that DATE is trained from scratch and does not benefit from the
semantic knowledge inherited by transfer learning.
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Table 6.6: Examples illustrating the difference of prediction between GMM and DATE
according to the length of the text sequence, with α = 250.

Subset Certification GMM DATE Real

aé
ro
no

tiq
ue

Sciences, Technologies, Santé - Mention : Automatique et
informatique industrielle - Spécialité : Automatismes industriels Inlier Inlier Inlier

Production industrielle option ingénierie des matériaux nouveaux Inlier Inlier Inlier
Actuaire Outlier Inlier Outlier

Sciences Politiques Outlier Inlier Outlier
CQP Animateur de patinoire option hockey sur glace Outlier Outlier Outlier
Décor architectural opt. B Domaine du décor du mur Outlier Outlier Outlier

nu
cl
éa
ire

Culture et communication Mention : Création, innovation,
information numériques Spécialité : Gestion de
l’information et du document Domaine : Culture

et communication

Inlier Inlier Inlier

Responsable d’ingénierie des systèmes d’information
et de communication, option "analyse et développement",

option "systèmes et réseaux" et option "télécommunications"
Inlier Inlier Inlier

Livreur Outlier Inlier Outlier
Architecte d’intérieur Outlier Inlier Outlier

Responsable conception, mise en place et
maintenance des installations frigorifiques et climatiques Outlier Outlier Outlier

Urbanisme et Aménagement Spécialité DYATER
(Dynamiques et Aménagement des espaces, Territorialités) Outlier Outlier Outlier

6.6 Improving the Results with Transformers

In the previous experiments, we relied on fastText static embeddings in order to show that
is it possible to perform effective and fast anomaly detection without having access to
important computational resources. However, it is possible to achieve even better results
using Transformer representations. We use for our experiments CamemBERT (Martin et al.,
2020) and FlauBERT (Le et al., 2020), both trained on French corpora.

Table 6.7: Description of the French Transformer models used for anomaly detection.

Model Layers Dimensions Tokens Training data
CamemBERT-base 12 768 32k 138 GBCamemBERT-large 24 1,024
FlauBERT-small 6 512

50k 71 GBFlauBERT-base 12 768
FlauBERT-large 24 1,024
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Table 6.8: Comparison between different embedding representations in terms of AUC score
with anomaly rate r = 10%. The bold numbers correspond to the best score in each row
and the underlined numbers are for the second best performance score. flauB and camB
stand respectively for FlauBERT and CamemBERT and the subscript is for the number of
layers, which indicates the model size (6 for small, 12 for base and 24 for large).

Dataset # Inlier
classes

DATE GMME
fastText flauB6 flauB12 flauB24 camB12 camB24

RNCP

2 0.756 0.892 0.854 0.644 0.797 0.838 0.846
3 0.705 0.839 0.746 0.703 0.689 0.782 0.798
4 0.776 0.820 0.785 0.751 0.702 0.831 0.818
5 0.635 0.807 0.802 0.596 0.745 0.800 0.816
6 0.567 0.645 0.610 0.571 0.639 0.665 0.666
7 0.488 0.626 0.657 0.704 0.692 0.693 0.722
8 0.568 0.634 0.538 0.512 0.621 0.665 0.665

COVID

2 0.593 0.638 0.600 0.540 0.595 0.612 0.561
3 0.513 0.542 0.547 0.481 0.556 0.563 0.539
4 0.535 0.563 0.557 0.513 0.532 0.575 0.556
5 0.511 0.527 0.552 0.496 0.515 0.555 0.530

MLSUM

2 0.700 0.746 0.697 0.646 0.623 0.763 0.809
3 0.496 0.544 0.611 0.495 0.579 0.609 0.629
4 0.470 0.555 0.608 0.405 0.582 0.616 0.619
5 0.457 0.538 0.608 0.432 0.581 0.613 0.637

CamemBERT and FlauBERT are both based on the RoBERTa variant of Transformer
language models (Liu et al., 2019b). While FlauBERT uses the exact same objective and
tokenization process as in (Liu et al., 2019b), plus a French-specific pre-processing, Camem-
BERT makes use of the SentencePiece tokenizer (Kudo and Richardson, 2018) and the
whole-word masking strategy that consists in masking words instead of sub-word tokens.
The major difference between the two models is the training set of data. CamemBERT uses
the French part of OSCAR, a large multilingual corpus extracted from Common Crawl4,
while FlauBERT is trained on a set of 24 corpora. More information about the two models
are given in Table 6.7.

Table 6.8 contains the results obtained using several input representations. We recall the
results obtained by DATE for comparison purposes since it is also based on a Transformer
architecture. We first observe the significant difference in performance between Camem-
BERT and FlauBERT with a clear advantage for CamemBERT in both its base and large

4https://commoncrawl.org/

https://commoncrawl.org/
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versions. The large variant of CamemBERT achieves the best overall results, especially on
MLSUM. CamemBERT-base yields competitive results, achieving the best AUROC scores on
the COVID dataset. We also notice that, in all cases, the two-phased approach that consists
in computing Transformer representations and then use an ensemble of model-based clus-
tering models (GMME) is more efficient than the end-to-end Transformer-based approach
(DATE). It is worth noting that fastText embeddings remain competitive and surpass the
three FlauBERT models. It is therefore a very good alternative in real-time use cases when
computational speed is a critical issue.

6.7 Industrial Application

In order to assess the effectiveness of the anomaly detection process in a real world situation
where no labels are available, we apply GMME using fastText on an unlabeled dataset
provided by the service « Direction de la Formation Professionnelle » (DFP) for qualitative
evaluation purposes. This dataset corresponds to a particular category of training courses
called « Actions de formation dispensées aux créateurs et repreneurs d’entreprise » (ACRE)
and is supposed to contain trainings that are targeted for the users who are involved in the
acquisition of a business. The motivation for the choice of this set of data are as follows:

• The ACRE category is known by the experts of the DFP for being particularly prone
to anomalies. This is explained by the fact that training providers are obliged to
specify the category to which the training belongs (cf. Figure 6.1) since the courses
that do not belong to any pre-determined category are considered non-eligible. This
leads some training providers to specifying a default category to their training, and it
has been observed that their first choice is usually the ACRE category, which makes
it an absolute priority within the anomaly detection objective.

• The presence of a high number of anomalies makes the task of outlier detection
more challenging, since it becomes more difficult to differentiate inlier classes and
anomalies.

• ACRE is a relatively broad category in which several sub-topics can be present such
as accounting and legal issues, which makes the GMME approach more suitable.

To respect the real-time perspective, we use the same experimental setting described
previously, which consists in training the model on a training set and evaluate it on a test set.
Also, in order to better simulate the real-world configuration, we choose the latest samples
as the test set. Specifically, we considered as the training set all the trainings specified
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Table 6.9: Anomaly detection examples on a real-world unsupervised dataset with GMME
using fastText.
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Figure 6.6: Distribution of the normalized anomaly score obtained with GMME on the
ACRE category.

as bellonging to the ACRE category and created before November 2022, which results in
13,293 observations. For the test set, we take the trainings created since November 2022,
resulting in 669 samples. The degree of abnormality is computed using equation 6.1, after a
minmax normalization which consists in using ei−emin

emin−emax
, thus producing values between

0 and 1 without altering the original shape of data. The distribution in both the training
and test set are given in Figure 6.6 in which we observe a similar distribution between the
two sets of data, with a relatively high number of values between 0.9 and 1 as well as a
slightly lower median in the test set.

In addition, examples with different degrees of abnormality are provided in Table 6.9.
We first observe that the more the anomaly score gets higher, the more we veer off the
subject of « création d’entreprise » both in the training and thet test set. For example,
moderate anomalies include « Les bases de la gestion du temps » and « Prévenir et gérer les
conflits interpersonnels » in the train set and « Créer votre entreprise en soins esthétiques
hautes technologies Microblading » and « Développer mon activité dans les ongle » in the test
set, all of which are too specific to be considered eligible. In order to qualitatively evaluate
the precision of the model, i.e. the relevance of the anomalies detected, we can analyse the
highest anomaly scores such as « Formation HTML / CSS » and « Transformation du porc »
in the train set and «Massage aux pierres chaudes » and « Les fondamentaux de la lutte contre
les maladies de la Vigne » in the test set, all of which are clearly irrelevant and are likely to
be deliberately put in the ACRE category. On the other hand, example that are likely to
constitute unintentional mistakes are « Bilan de compétences », « Apprentissage des langue »
since categories corresponding to these training contents are available, which makes them
eligible trainings. Both scenarios are, of course, targeted by the anomaly detection system
and require either the correction or the withdrawal of the anomalous training session.
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6.8 Conclusion

This chapter addresses semantic anomaly detection in short texts with an additional con-
straint in time efficiency. In addition to the classical framework where one class is used
as the inlier class, we also consider the scenario where several underlying subgroups are
present in the normal class. We see anomaly detection as a probabilistic clustering problem,
in which we learn a Gaussian mixture model and consider the low posterior probability
samples as belonging to none of the modeled clusters and more likely to constitute outliers.
This uncertainty score proved effective with different numbers of subgroups. In the multi-
class setting, we propose GMME, an ensemble approach that improves the performance of
GMM when several topics are present in the inlier class. The two approaches outperform
state-of-the-art anomaly detection techniques in both scenarios, with an impressively low
computation time.

In our proposal, we rely on the Gaussian Mixture model for its flexibility. This choice is
motivated by the presence of the proportions πk of each cluster and the spectral decompo-
sition of the covariance matrix Σk taking into account the volume, shape, and orientation
of each cluster (as depicted in Figure 6.2). The characteristics of the clusters should not be
overlooked when tackling the problem of anomaly detection through a clustering approach.
Furthermore, note that our approach can be extended to latent block models, devoted to
co-clustering, which may constitute an interesting and promising future path of research.





General Conclusion and Perspectives

This thesis has been dedicated to extending the knowledge about the use of neural text
representations in the unsupervised domain of machine learning, with applications to
clustering, visualization and anomaly detection. The studies conducted throughout this
work are intended to respect as much as possible the constraints of unsupervised learning,
in which very few elements are known a priori about the data. The key results and findings
of this thesis can be summarized as follows:

• We first contribute to enriching the knowledge about the black-box multi-layered
Transformer models, by analyzing the behavior of each layer. In Chapter 2, we con-
duct an unsupervised study in order to compare layers with each other and establish
similarities as well as discrepancies across layers and between different Transformer
models. Our study allowed us to identify groups of layers that present similar be-
haviors both in terms of external statistical measures and quality. In Chapter 3, we
investigate the complementarity between the different layers of the same Transformer
model, by combining them into one common data representation, obtained using
multiway techniques. These methods free us from the need of choosing the right layer
to perform clustering, while combining the useful information brought by each layer
of the deep architecture. We observed through our empirical study the superiority
of multiblock techniques, especially MFA, as opposed to tensor-based approaches in
summarizing the useful information present in 24 layers into only 10 dimensions.

• In Chapter 4, we focus on document-level representations to perform document clus-
tering. To this end, we propose an ensemble approach that successfully harnesses the
whole set of layers in a fully unsupervised way. Combined with PCA-based dimension
reduction along with a whitening operation, the results are further improved, achiev-
ing better results than the best-performing layer, which is impossible to determine
in the absence of labels. Known for its robustness, the ensemble paradigm, as used
in our approach, has shown significant improvement over simultaneous approaches.
This might be explained by the fact that simultaneous approaches may observe a
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certain influence between layers, while the ensemble approach, via its downstream
combination of information, allows more freedom to each layer-wise partition. In
order to take our unsupervised study even further and show its applicability, with
satisfying results, in the case where the exact number of clusters is unknown. To this
end, we take advantage of the ensemble approach by varying the number of clusters
during the layer-wise clustering phase, which allows for achieving results that are
comparable to the classical setting where the exact number of clusters is a priori
known.

• In Chapter 5, we go further and investigate more dimension reduction techniques in
order to further improve the quality of pre-trained text representations, as part of a
tandem approach that combines dimension reduction and clustering. Among the eval-
uated approaches, UMAP stood out from the rest, showing impressive results while
drastically reducing the dimensionality. More importantly, we show that the tandem
approach significantly outperforms the fine-tuning strategies previously proposed
in the literature and is supposed to be well-suited to any unsupervised downstream
task. In this chapter, we also investigate the reasons behind such performance lev-
els, by verifying if the improvements brought by the tandem approach are due to a
decrease in the anisotropy of the embedding space. The anisotropy phenomenon,
observed in several dense text representations, is characterized by narrow angles
between embedding vectors, which has been suspected to reduce the expressiveness
of pre-trained representations. By using the clustering performance as a measure
of the quality of representations, we show that the impact of anisotropy has been
overstated and that it does not have any noticeable effect on the capability of the
document vectors representations.

• In Chapter 6, we address an industrial problem encountered in the platform mon-
compteformation, which is to spot training contents that are either non-eligible or
wrongly categorized. Since we do not rely on any labeled data, this problem can be
formulated as an unsupervised anomaly detection task in which we aim at identifying,
given a category Ci of training contents, atypical instances that are less likely to truly
belong to Ci. More specifically, we intended to build a system that evaluates, in a short
timeframe, the degree of abnormality of a set of short texts, containing an unknown
number of sub-categories. To this end, we propose to use a set of Gaussian mixture
models in order to identify semantically deviating samples. A fast approach that
uses static word embeddings has shown substantial improvements in comparison to
previously proposed approaches, both in terms of performance and time efficiency.
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Further performance improvements have been observed using Transformer models,
which constitutes a good alternative in the absence of time computation constraint.

Overall, the findings issued throughout this thesis highlighted the potential of pre-
trained neural text representations in unsupervised text-mining tasks and may motivate
further investigations such as:

• In our studies, we included several static and contextual models, thus observing
different behavior patterns from one model to another. It is worthwhile considering
other architectures like adversarial (Clark et al., 2020) and generative (Lewis et al.,
2020; Raffel et al., 2020), that would potentially present new patterns and different
performance levels in unsupervised tasks. Besides, other promising static embedding
models may be used to perform unsupervised learning such as the directional model
JoSE (Meng et al., 2019) which has the characteristic of producing embedding vectors
that lie in the unit hypersphere. Hence, some co-clustering algorithms derived from
appropriate von-Mises Fisher mixture models or latent block models proposed in
(Affeldt et al., 2021; Govaert and Nadif, 2013; Salah and Nadif, 2017a, 2019) deserve to
be tested on such embeddings.

• Regarding the clustering task, we exclusively investigated the use of pre-trained
representations, which has led to promising results, provided a proper use of the raw
vectors. An ambitious path for future work is to learn text representations that are
specifically well suited to the clustering task. The objective of such models may be
inspired by manifold dimension reduction techniques such as UMAP (McInnes et al.,
2018) that handily combines local and global information to produce meaningful and
well-separated clusters.

• Admittedly, our investigation of anomaly detection in short text data may be deepened
and paths for future research are multiple. For instance, the undeniable potential
of mixture models can be further investigated by making them even more robust to
outliers and specifically designed for anomaly detection. An interesting idea proposed
by Yu et al. (2015a) for the univariate setting consists in incorporating a sparse mean-
shift penalization that preferentially pulls the outliers to the mean with the aim of
performing robust parameter estimation and, simultaneously, identifying atypical
samples in the set of observations. A promising perspective is to investigate the
impact of such penalization on the multivariate version of mixtures models.

• In this work, we have shown a great benefit of the French pre-trained embedding
models like fastText (Bojanowski et al., 2017) and Camembert (Martin et al., 2020) in
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the general-purpose anomaly detection task. In order to better meet the industrial
objective of spotting anomalies in training contents, it would be interesting to go
further and adapt themodels not only to the language but also to the education domain.
Indeed, the vocabulary used in the course contents is very specific, and a specialized
model should help distinguish subtle turns of phrases within the educational textual
contents. To this end, it is possible to follow the process applied to other areas
such as law (Chalkidis et al., 2020) and the clinical domain (Alsentzer et al., 2019),
possibly by taking Camembert a starting point and retraining it on the data issued
from moncompteformation, RNCP as well as other educational French datasets.
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Appendix A. Additional Word-level Experiments
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Figure A.1: Sensitivity to context: these graphics depict the 5 first principal components of
5 words appearing in different contexts. The color of the word determines the topic of the
sentence it appears in.
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Figure A.2: Multidimensional scaling visualizations of the averagedword vectors of UFSAC4.

Appendix B. Additional Results for Chapter 4

Before proceeding to the partitioning of the representations from the Transformers, we
analyze the two-dimensional compressions of the embeddings provided by the different
layers of four models. For this, we use t-SNE (van der Maaten and Hinton, 2008) with the
same parameters (perplexity at 15 and learning rate at 200) at each execution. We report
the evolution of the layers in the figure B.1.

We can observe a variability of the structure in classes according to the layers. For
example, for BERT-base, the separability of the four classes of classic4, where the classes
are not very well separated, deteriorates when approaching the end of the network, with in
particular the appearance of an additional class. However, the representations provided by
RoBERTa seem to allow a better separability of classes in general compared to BERT, with
better results, in particular, on the last layers. This suggests that, like PCAw, t-SNE allows
to alleviate the difficulty regarding the poor quality representations of RoBERTa-base.
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Figure B.1: Two-dimensional projections obtained with t-SNE. The colors correspond to
the real class labels.
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Figure B.2: Comparison between whitened and non-whitened versions of step-wise and
end-to-end consensus approaches.

Appendix C. Additional Results for Chapter 5

Figure C.1 show the NMI score obtained with two post-processing strategies using different
values of d′. It shows the power of post-processing on different representations when using
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less than 10% of the dimensions (for BERT) and 30% for static representations. This graphic
also shows the relative instability of PCAw despite its effectiveness, especially on classic4
and BBC. One way of overcoming this instability is to rely on the ensemble approach (as
seen in Chapter 4) that allows for reducing the impact of low-performance representations.
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Figure C.1: Clustering performance with two post-processing strategies using different
values of d′.

Table C.1: p-values of the pearson test of correlation between several isotropy and perfor-
mance measures. The corresponding correlation coefficients are given in Table 5.4. Values
under 10−3 are considered near-zero.

NMI ARI Dataset External (word) External (sentence)
km skm km skm cos pf pf2 cos pf pf2 cos pf pf2

N
M
I km 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 0.647 0.858 0.644 0.225 0.88 0.86 0.54 0.964 0.896

skm ≈ 0.0 0.0 ≈ 0.0 ≈ 0.0 0.453 0.662 0.195 0.642 0.64 0.658 0.476 0.616 0.635

A
RI km ≈ 0.0 ≈ 0.0 0.0 ≈ 0.0 0.562 0.921 0.542 0.297 0.946 0.925 0.542 0.98 0.96

skm ≈ 0.0 ≈ 0.0 ≈ 0.0 0.0 0.934 0.71 0.517 0.56 0.742 0.722 0.877 0.755 0.741

D
at
as
et cos 0.647 0.453 0.562 0.934 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0

pf 0.858 0.662 0.921 0.71 ≈ 0.0 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0
pf2 0.644 0.195 0.542 0.517 ≈ 0.0 ≈ 0.0 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0

Ex
t-w

cos 0.225 0.642 0.297 0.56 ≈ 0.0 ≈ 0.0 ≈ 0.0 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0
pf 0.88 0.64 0.946 0.742 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0
pf2 0.86 0.658 0.925 0.722 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0

Ex
t-s

cos 0.54 0.476 0.542 0.877 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 0.0 ≈ 0.0 ≈ 0.0
pf 0.964 0.616 0.98 0.755 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 0.0 ≈ 0.0
pf2 0.896 0.635 0.96 0.741 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 0.0
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