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Résumé 

 Les matériaux granulaires sont des ensembles de particules solides de formes, 

matériaux et tailles variés. Dans le passé, des expériences ont permis une première 

compréhension de leurs comportements complexes. Des simulations via la méthode des 

éléments discrets ont ensuite été largement utilisées. L’expérimentation n’a pas été aussi 

répandue à cause de difficultés de préparation et d’instrumentation. Au cours des 

dernières décennies, les techniques de mesure de champs sans contact par caméras se sont 

rependues dans la communauté de la mécanique expérimentale. Certaines ont été utilisées 

pour étudier des milieux granulaires bidimensionnels (2D) : vélocimétrie d’images de 

particules (VIP) pour mesurer des motifs de déformation ; corrélation d’images 

numériques (CIN) pour mesurer les déformations de particules ; photoélasticimétrie pour 

mesurer le cisaillement dans des particules biréfringentes ; analyse thermoélastique des 

contraintes (ATC) par thermographie infrarouge (TIR) pour mesurer la pression 

hydrostatique dans les particules. Certaines techniques ont permis d’identifier les forces 

interparticulaires via des traitements appropriés, dans les limites de chaque technique. Les 

milieux granulaires souples ont rarement été étudiés via ces techniques. Dans ce contexte, 

l’objectif de la thèse est de développer d’autres techniques de mesure de champs pour 

identifier : 1) les forces de contact par la méthode des champs virtuels (MCV) à partir des 

déformations obtenues par analyse spectrale localisée (ASL) ; 2) les couplages 

thermomécaniques dans des particules souples par TIR. 

 Des déformations fournies par modèle éléments finis ont d’abord été utilisées pour 

le premier objectif. Il a été démontré que si la réponse mécanique du matériau constitutif 
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est connue, les forces peuvent être identifiées puisqu’elles sont proportionnelles à une 

intégrale des déformations mesurées, pondérées par leurs pendants virtuels. Différentes 

stratégies ont été testées pour proposer des champs de déplacements virtuels 

cinématiquement admissibles. La robustesse de l’identification a été étudiée par rapport 

à diverses sources d’erreur. Des mesures par ASL, offrant un compromis pertinent entre 

résolution de déformation et résolution spatiale, ont ensuite été effectuées sur un système 

à trois particules et sur des systèmes plus grands constitués de particules cylindriques en 

PA66. Outre les équations de la MCV, l’équilibre des particules et la troisième loi de 

mouvement de Newton ont été pris en compte pour proposer une stratégie adaptée au 

traitement de données expérimentales. L’analyse statistique de systèmes bidisperses et 

tridisperses a permis de caractériser les lois exponentielles et lois de puissance dans les 

réseaux de forces forts et faibles respectivement, que l’on trouve habituellement dans les 

systèmes polydisperses secs. 

 Pour le second objectif, des milieux granulaires constitués de cylindres en 

polyuréthane thermoplastique (TPU) de section ellipsoïdale ont été soumis à une 

compression cyclique confinée. Le TPU a été choisi pour son élasticité entropique, lui 

conférant une signature thermique supérieure à celle des matériaux utilisés pour la ATC. 

Ce matériau confère également un caractère souple aux systèmes granulaires produits. 

Sur la base de considérations d’adiabaticité et de cycles thermodynamiques, un fort 

couplage thermoélastique (CTE) a été révélé dans toutes les zones de contact entre 

particules en raison des concentrations de contrainte. Une forte dissipation mécanique 

liée à l’endommagement, la viscosité et le frottement a été constatée à des contacts 

spécifiques et au sein de certaines particules. Les données CTE ont été traitées pour un 

système granulaire comprenant environ 600 contacts, fournissant ainsi des informations 

statistiques. Il est montré que la TIR fournit des informations précieuses qui ouvrent des 

perspectives pour la construction de modèles thermodynamiques pertinents adaptés aux 

matériaux granulaires souples. 

Mots-clés: Matériaux granulaires, Techniques de mesure de champs, Méthode des 

Champs Virtuels, Analyse Spectrale Localisée, Thermomécanique, Force de 

contact  
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Abstract 

 Granular materials are collections of solid particles of various shapes, materials and 

sizes, making their behavior complex. In the past, effective understanding was mainly 

derived from experiments, which were limited by the equipment available at the time. 

Numerical approaches based on the Discrete Element Method were then developed. 

These are powerful, reliable and widely used as efficient tools for studying granular 

media. In comparison, experimentation was not as widespread due to difficulties of 

preparation and instrumentation. In recent decades, non-contact full-field measurement 

techniques based on cameras have become increasingly familiar and attractive in the 

experimental mechanics community. This is due to rapid advances in equipment. Some 

of these were used to study two-dimensional (2D) granular media under mechanical 

loading: particle image velocimetry (PIV) to measure strain patterns; digital image 

correlation (DIC) to measure strains within deformable particles; photoelasticimetry to 

measure shear stresses in particles made of birefringent material; and thermoelastic stress 

analysis (TSA) based on infrared thermography (IRT) to measure hydrostatic stresses in 

particles. Some of these techniques enabled identifying the interparticle forces using 

appropriate image processing. However, there are certain limitations due to the 

specifications of each technique. Besides, soft granular materials have rarely been studied 

with these techniques. In this context, the aim of the thesis is to develop other full-field 

techniques for two purposes: 1) to identify contact forces using the virtual fields method 

(VFM) from knowledge of the strain distribution obtained by localized spectrum analysis 

(LSA); 2) to identify thermomechanical couplings in soft particles using IRT. 
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 Synthetic strain data provided by a finite element model were first used for the first 

objective. It was shown that if the mechanical response of the constitutive material is 

known, the contact forces applied to a particle can be identified since they are proportional 

to an integral of the measured strains weighted by their virtual counterparts. Various 

strategies were tested to propose kinematically admissible fields for the virtual 

displacements. Identification robustness was studied with respect to various sources of 

error. Measurements by LSA, providing a relevant compromise between strain resolution 

and spatial resolution, were then performed on a three-particle system and bigger systems 

made of PA66 cylindrical particles. In addition to the VFM equations, particle 

equilibrium and Newton’s third law of motion were considered to propose a relevant 

strategy for processing the experimental data. The statistical analysis for bidisperse and 

tridisperse systems allowed to characterize the exponential and power laws for the strong 

and weak force networks, respectively, that are usually found in polydisperse dry systems. 

 For the second objective, granular media made of thermoplastic polyurethane 

(TPU) cylinders with ellipsoidal cross-section were subjected to cyclic confined 

compression while being observed by an IRT camera. TPU was chosen because it features 

entropic elasticity, which gives a higher thermal signature than the materials used for 

TSA. This material also lends a soft character to the granular systems produced. Based 

on considerations of adiabaticity and thermodynamic cycle completion, strong 

thermoelastic coupling (TEC) was revealed in the contact areas between all particles due 

to stress concentrations. Strong mechanical dissipation (MD) was found at specific 

contacts and within some particles due to damage, viscosity and friction. TEC data was 

processed for a granular system comprised of about 600 interparticle contacts, providing 

statistical information. It is demonstrated that IRT provides valuable information to open 

prospects for building thermodynamically relevant models suitable for soft granular 

materials. 

Keywords: Granular materials, Full-field measurement techniques, Virtual Fields 

Method, Localized Spectrum Analysis, Thermomechanics, Contact force  
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Résumé étendu 

 Les matériaux granulaires sont un type de matière que l'on trouve partout et que l'on 

utilise dans la vie quotidienne (par exemple : le sucre, le sel et le poivre) et dans de 

nombreux domaines industriels (par exemple : le sable, les cailloux et les briques sont 

nécessaires à la construction ; les poudres sont utilisées dans certains processus de 

fabrication industrielle). Un matériau granulaire se définit comme un ensemble de 

particules solides. Ces dernières peuvent être constituées de grains de forme, de matériau 

et de taille variés. Ils peuvent aller du sable à la roche, voire à des agrégats interplanétaires 

(anneaux de planètes, astéroïdes). Le comportement des matériaux granulaires est 

complexe et difficile à prévoir à l'échelle des particules. Les matériaux discrets peuvent 

se comporter macroscopiquement comme des solides ou des liquides, en fonction de 

nombreux paramètres. C'est l'une des raisons pour lesquelles ils sont complexes à 

modéliser de manière générale. 

 
Exemples de matériaux granulaires. 

Il y a plusieurs décennies, des chercheurs et des scientifiques se sont intéressés aux 

matériaux discrets alors que la théorie de la mécanique des milieux continus semblait 

plutôt bien développée. En 1944, Casagrande et Carillo ont été des pionniers en étudiant 

le comportement des matériaux granulaires par le biais d'expériences et de simulations 

numériques. Ils ont distingué deux types de résistance, à savoir l'anisotropie induite et 
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l'anisotropie inhérente. Quelques décennies plus tard, Dantu a mis en évidence une 

hétérogénéité significative dans la distribution des forces de contact dans des matériaux 

granulaires bidimensionnels (2D) en utilisant la photoélasticité. Biarez a développé le 

concept de fabric anisotropy en relation avec la distribution des orientations de contact 

en étudiant des empilements de disques. La relation contrainte-dilatation proposée par 

Rowe est aujourd'hui largement utilisée en mécanique des sols. En 1966, Weber a proposé 

une formule reliant les forces de contact locales à un tenseur de contrainte spécifique de 

type Cauchy, à savoir un tenseur de contrainte moyen sur un groupe de particules. Ces 

résultats significatifs et la compréhension des milieux granulaires au cours de ces 

décennies ont été principalement obtenus à partir d'expériences menées sur des matériaux 

analogues ainsi que sur des matériaux réels. Des études théoriques basées sur des 

mélanges de particules idéalisées ont également été développées. Cependant, ces types de 

matériaux étaient plutôt difficiles à analyser expérimentalement à l'échelle locale en 

raison des techniques et des instrumentations disponibles à l'époque. En 1971, Cundall a 

mis au point une approche numérique appelée méthode des éléments distincts (Distinct 

Element Method, ou DEM) qui s'appuie sur la mécanique des roches. Cette méthode 

considère la matière comme un système à contacts multiples, contrairement à la méthode 

classique des éléments finis. Chaque grain d'un matériau granulaire est considéré comme 

un corps rigide individuel régi par les lois du mouvement de Newton et interagissant avec 

ses voisins par le biais de lois de contact frictionnel. Il existe deux approches de la DEM : 

la méthode dite smooth DEM connue sous le nom de dynamique moléculaire (Molecular 

Dynamics, ou MD) et la méthode dite non-smooth DEM connue sous le nom de 

dynamique non régulière des contacts (Non-Smooth Contact Dynamics – NSCD ou 

Contact Dynamics – CD). La première approche est basée sur un algorithme explicite qui 

prend en compte l'interaction entre les contacts en fonction des déplacements relatifs et 

des vitesses des particules. La seconde approche est basée sur l'analyse convexe, 

proposant un cadre cohérent pour les lois « non-smooth » impliquées dans le contact, 

comme le frottement sec. Les simulations numériques constituent un outil de recherche 

puissant, fiable et largement utilisé dans le domaine des matériaux granulaires. En 

parallèle, l'expérimentation n'est pas si répandue en raison des difficultés de préparation 

et d'instrumentation, ainsi que du nombre souvent limité de particules utilisables dans les 
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tests. De nos jours, les techniques de mesure de champs, qui sont sans contact et non 

destructives, sont de plus en plus populaires parmi les ingénieurs et les scientifiques en 

mécanique expérimentale grâce aux progrès des équipements, c'est-à-dire des caméras, 

des capteurs, des ordinateurs et des systèmes de traitement d'images. Certaines de ces 

techniques ont été utilisées pour étudier des milieux granulaires 2D : la méthode dite 

Vélocimétrie d’Image de Particules (VIP) pour mesurer des motifs globaux de 

déformation ; la Corrélation d’Images Numériques (VIN) pour mesurer les déformations 

des particules elles-mêmes ; la photoélasticimétrie pour mesurer les contraintes de 

cisaillement dans des particules faits en matériau biréfringent ; et la Analyse 

Thermoélastique des Contraintes (ATC) basée sur la thermographie infrarouge (TIR) 

permettant de mesurer les contraintes hydrostatiques dans les particules. Ces techniques 

permettent d'accéder à des grandeurs physiques distribuées spatialement, telles que des 

températures, des déplacements et des déformations, en fonction du type de capteur et du 

post-traitement des données. Elles sont puissantes et avantageuses par rapport aux 

méthodes traditionnelles qui reposent sur des mesures locales effectuées à l'aide 

d'équipements courants tels que des thermocouples, des capteurs de déplacement ou des 

jauges de déformation. Elles peuvent fournir des champs de caractérisation locale 

permettant de mieux comprendre la réponse globale du matériau. On peut noter que les 

techniques de mesure de champs ne sont pas nouvelles en mécanique des matériaux 

granulaires. En effet, Dantu a utilisé la photoélasticimétrie pour étudier ces matériaux en 

1950. Depuis, la littérature sur les matériaux granulaires étudiés par des techniques de 

mesure de champs s'est multipliée. 

 Dans ce contexte, l'objectif de cette thèse est de développer d'autres techniques de 

mesure de champs dans deux buts : 1) identifier les forces de contact en utilisant la 

méthode des champs virtuels (MCV) à partir de la connaissance de la distribution des 

déformations par analyse spectrale localisée (ASL) ; 2) identifier les couplages 

thermomécaniques dans des particules souples en faisant de la calorimétrie de 

déformation (Deformation Calorimetry, ou DC) à partir de champs de température 

obtenus par TIR. 
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 L'identification des forces de contact interparticulaires est un problème difficile 

dans la communauté des matériaux granulaires. Cette thèse a traité ce problème dans un 

cas 2D (en utilisant des cylindres empilés) en employant la MCV et la ASL, qui sont 

respectivement une technique de mesure de champs de déformation et une stratégie 

d'identification. Des données de déformation synthétiques fournies par un modèle 

éléments finis (avec du bruit ajouté) ont d'abord été utilisées comme données d'entrée 

pour adapter et développer la MCV afin d'identifier les forces de contact dans des 

systèmes granulaires 2D simples. Plusieurs cas ont été simulés : une particule soumise à 

4 contacts puis à 6 contacts ; trois particules soumises à une compression confinée. La 

MCV, qui repose sur la forme faible de l'équation d'équilibre, est généralement utilisée 

pour identifier des paramètres « matériau » lorsque l'on connaît le chargement mécanique. 

Inversement, elle a rarement été utilisée pour mesurer les forces appliquées lorsque l'on 

connaît l'équation constitutive du comportement mécanique du matériau et les valeurs des 

paramètres associés. Les forces de contact appliquées à une particule peuvent être 

identifiées via la MCV car elles sont proportionnelles à la moyenne pondérée des 

composantes de la déformation, les poids étant les composantes des déformations 

virtuelles. En résumé, chaque particule peut être considérée comme un capteur de force 

multidirectionnel, qui fournit directement les forces de contact qui lui sont appliquées en 

traitant convenablement la distribution des déformations avec le principe du travail 

virtuel. Différentes stratégies ont été testées pour proposer des champs de déplacement 

virtuels cinématiquement admissibles (kinematically admissible, ou KA). Il a été 

démontré qu'un choix pertinent de champs de déplacement virtuel KA consiste à utiliser 

une interpolation naturelle basée sur une triangulation entre les points de contact. Diverses 

simulations ont illustré l'impact du choix des champs virtuels et la robustesse de la 

technique d'identification, à savoir l'influence de l’amplitude du bruit, un décalage 

potentiel entre les champs de déformation virtuels et réels, et des données manquantes le 

long des bords des particules. Différents systèmes multi-contacts ont été étudiés pour 

cette étude, ce qui a ouvert des perspectives d'application expérimentale. Une première 

expérience a été réalisée sur un système composé de trois particules soumises à une 

compression confinée en s'appuyant sur des mesures de déformation obtenues par ASL. 

Des cylindres en PA66 de 40 mm, 50 mm et 60 mm de diamètre et de 30 mm de longueur 
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ont été utilisés pour constituer les particules. La ASL est une technique de mesure de 

champs permettant d’obtenir des champs de déformation en s'appuyant sur les images 

d'un motif périodique placé à la surface du matériau avant et après chargement 

mécanique, offrant un compromis intéressant entre résolution de mesure et résolution 

spatiale. Un motif en damier avec des carrés de 75 µm de côté a été créé à la surface des 

cylindres à l'aide d'une graveuse laser. Les cylindres ont ensuite été placés dans un cadre 

rectangulaire en acier de 150 mm de largeur et soumis à une compression confinée à l'aide 

d'une machine d'essais uniaxiale. Une force de compression verticale de 10 kN a été 

appliquée à très faible vitesse de chargement afin de limiter la part visqueuse de la 

déformation et de supposer une loi de comportement élastique linéaire isotrope pour 

l’utilisation de la MCV. Il a été estimé que le bruit sur les cartes de déformation présentait 

un écart-type de l’ordre de 2×10-4, pour une résolution spatiale de 1.05 mm. 

 
Expérience sur un système à trois particules : a) particules cylindriques en PA66 soumises à 

une compression confinée ; b) photo du dispositif expérimental ; c) cartes de déformation 

mesurées par ASL pour une force de compression verticale de 10 kN. 

L'expérience a montré que les forces de contact obtenues par la MCV seule ne vérifiaient 

pas parfaitement l'équilibre des forces, l'équilibre des moments et la troisième loi du 

mouvement de Newton (principe d'action-réaction au niveau des contacts 
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interparticulaires). Cela peut être dû à des mouvements hors-plan ou à une erreur dans les 

paramètres élastiques du matériau des particules. D'autres approches d'identification des 

forces ont donc été proposées en ajoutant des équations issues de l'équilibre local de 

chaque particule et de la troisième loi du mouvement de Newton. Étant donné que le 

nombre d'équations disponibles devient alors supérieur au nombre d'inconnues (les 

composantes des forces de contact), plusieurs stratégies ont été comparées afin de 

déterminer la meilleure façon de traiter ces équations pour l'identification des forces de 

contact. La meilleure stratégie a été obtenue en utilisant les équations de la MCV avec 

des multiplicateurs de Lagrange permettant respecter strictement l'équilibre des forces et 

des moments pour chaque particule ainsi que la troisième loi du mouvement de Newton 

à chaque contact interparticulaire.  

 
Forces de contact identifiées par MCV superposées aux champs de déformation mesurés, pour 

une force de compression verticale de 10 kN. 

Cette stratégie a ensuite été employée sur trois systèmes granulaires correspondant à des 

configurations monodisperse, bidisperse et tridisperse, à partir de cylindres en PA66 de 

diamètre 12 mm, 15 mm et 20 mm, tous de longueur 20 mm. La configuration 

monodisperse était composée uniquement de petites particules, au nombre de 108. La 

configuration bidisperse était composée de particules petites et moyennes : 56 et 29 

respectivement. La configuration tridisperse est composée des trois types de particules : 
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54 petites, 22 moyennes et 4 grosses. Pour chaque configuration, les cylindres ont été 

empilés aléatoirement dans le même cadre rectangulaire que précédemment, lui-même 

placé dans la machine d'essais afin appliquer la compression confinée. Les difficultés de 

préparation et de mise en œuvre et les solutions trouvées pour y remédier sont décrites 

dans la thèse. Les forces de contact identifiées ont ensuite été analysés en termes de 

réseaux de forces, de distributions de forces angulaires et de fonctions de distribution de 

probabilité (Probability Density Function, ou PDF) des forces normales. Les réseaux de 

forces ont été séparés en deux ensembles pour l'analyse : les réseaux dits forts et faibles, 

selon que la force normale est supérieure ou inférieure à la force normale moyenne. Les 

forces « fortes » ont été trouvées orientées en diagonale pour la configuration 

monodisperse, tandis qu'elles étaient orientées à la fois en diagonale et verticalement pour 

les configurations bidisperse et tridisperse. En termes de PDF des forces normales, il est 

clairement apparu que les forces « fortes » et « faibles » sont caractérisées par une 

décroissance exponentielle et une loi de puissance respectivement, comme prévu pour des 

configurations polydisperses selon la littérature. 

 
Résultats expérimentaux utilisant la ASL et la MCV : a)-c) réseaux de forces normales et 

distributions de forces angulaires ; d)-h) fonctions de distribution de probabilité (PDF) des 

forces normales normalisées. 
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Il a été démontré que les résultats statistiques étaient cohérents avec ceux des études 

numériques et expérimentales réalisées dans le passé. On peut noter que l'identification 

des forces de contact proposée ici est théoriquement applicable à tout type de système 

granulaire 2D si l'équation constitutive du matériau de base est connue. Notons également 

que la procédure permet d'identifier complètement les deux composantes de toutes les 

forces de contact dans un système granulaire 2D : les forces normales et les forces 

tangentielles sont simultanément identifiées à partir des champs de déformation mesurés. 

Des simulations de type MD ont ensuite été réalisées pour valider les résultats 

expérimentaux. Il a été conclu que la procédure expérimentale basée sur la MCV et la 

ASL est opérationnelle pour l'analyse statistique de systèmes granulaires 2D réels. 

L'approche expérimentale peut donc être utilisée pour d'autres travaux, en particulier pour 

réaliser des tests avec beaucoup plus de contacts, des formes de particules plus complexes 

ou des particules souples. 

 L'identification des couplages thermomécaniques dans des matériaux granulaires 

souples 2D a ensuite été réalisée par TIR et DC. Il convient de noter que l'analyse du 

comportement mécanique des solides continus a déjà bénéficié d’une telle approche dans 

le passé. En effet, la mise en évidence expérimentale de couplages locaux entre les 

réponses mécaniques et thermiques a permis une véritable analyse des phénomènes 

hétérogènes dans les matériaux continus dans un cadre thermodynamique rigoureux. 

Jusqu'à présent, les matériaux granulaires ont été globalement exclus de cette approche 

dans la communauté de la mécanique expérimentale. Nous avons considéré que ce type 

de matériau pouvait être étudié de la même manière que les matériaux continus via des 

mesures de température durant un chargement mécanique. Cela permettrait de fournir des 

informations intéressantes pour la compréhension de leurs comportements mécaniques. 

Quelques travaux traitent de cette question dans la littérature. Les études réalisées dans le 

passé montrent que des variations de température significatives peuvent être facilement 

obtenues dans des particules souples présentant une élasticité entropique. L'objectif de 

l’étude ici est de distinguer les variations de température associées au couplage 

thermoélastiques (CTE) et à la dissipation mécanique (DM). Des particules cylindriques 

ont été fabriquées à partir d'un matériau caoutchoutique, à savoir du polyuréthane 

thermoplastique (TPU), afin de bénéficier du fort CTE associé à l'élasticité entropique 
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ainsi que d’une faible conductivité thermique. Des formes elliptiques ont été considérées 

pour les sections droites des cylindres constituant les particules. L’idée est d’ouvrir la 

voie à des études sur des géométries plus complexes dans le futur, afin de se rapprocher 

progressivement des formes de particules de milieux granulaires réels. Les cylindres 

différaient par la longueur de l’axe principal des sections elliptiques : 15 mm, 18 mm et 

22,5 mm. La longueur de l’axe secondaire était la même pour toutes les particules, à 

savoir 10 mm. Les particules ont ensuite été empilées aléatoirement dans un cadre en 

métal pour créer trois configurations distinctes : monodisperse (16 petites particules) et 

bidisperse (7 petites et 7 grandes particules) pour des observations préliminaires, ainsi 

que tridisperse (32 petites, 31 moyennes et 30 grandes particules) pour une analyse 

statistique. 

 
Dispositif expérimental pour l'analyse thermomécanique de milieux granulaires 

souples en TPU via des mesures par thermographie infrarouge. 

Les réponses thermiques des systèmes monodisperse et bidisperse ont d'abord été 

mesurées au cours d'une compression confinée cyclique. Différentes vitesses de 

sollicitation ont été testées afin d’évaluer l’impact d’une viscosité sur la DM. Une 

oscillation de la température à la même fréquence que le chargement a été observée. 
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Pendant les phases de compression, des points chauds ont été identifiés à tous les contacts 

interparticulaires. Ce phénomène s'explique par le CTE de type entropique activé par les 

concentrations de contraintes au niveau des contacts, avec une contribution potentielle de 

la DM associée à des phénomènes irréversibles tels que la viscosité et le frottement. Un 

auto-échauffement au cours des cycles a également été observé autour de contacts 

spécifiques, ainsi qu'à l'intérieur de certaines particules. Ce phénomène est associé à la 

DM en considérant que la chaleur associée au CTE s’annule au cours d'un cycle 

thermodynamique. Des taux d'auto-échauffement allant jusqu'à environ 0,01°C/cycle ont 

été mesurés en régime permanent. Une plus grande contribution de la DM a été observée 

au cours des premiers cycles mécaniques. Une comparaison entre les systèmes 

monodisperse et bidisperse à même niveau de chargement macroscopique a montré une 

signature thermique plus forte dans le premier cas, en accord avec les différences 

attendues dans l'intensité des forces de contact. Une approche calorimétrique nous a 

ensuite permis de calculer les chaleurs associées aux variations de température mesurées. 

On a estimé que l'intensité de la chaleur générée par le CTE entropique pouvait atteindre 

plus de 600 kJ/m3/compression (chaleur produite sur la durée de la compression 

uniquement) dans les zones de contact, alors que celle associée à la DM était limitée à 

environ 30 kJ/m3/cycle en régime permanent (et à environ 300 kJ/m3/cycle dans le régime 

transitoire initial). Cela montre que le CTE est un couplage fort. 
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Réponse thermique d’un matériau granulaire souple en TPU soumis à un chargement 

mécanique de compression confinée cyclique. 

 
Analyse calorimétrique : a-b) chaleur produite par le couplage thermoélastique 

(CTE) durant la phase de compression ; c-d) chaleur produite par la dissipation 

mécanique (DM) sur un cycle charge-décharge. 
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Ensuite, les données CTE ont été traitées pour le système tridisperse composé d'environ 

600 contacts interparticulaires. Les informations statistiques sur la distribution de la 

chaleur associée au CTE (chaleur produite sur la durée de la compression uniquement) au 

niveau des contacts interparticulaires montrent un changement dans les distributions en 

fonction du niveau de compression appliqué. Plusieurs extensions de ce travail peuvent 

être proposées : réaliser des expériences avec beaucoup plus de particules ou des formes 

de section de cylindre plus complexes (angles vifs, géométrie non-convexe) ; réaliser des 

expériences en couplant mesure dans le visible (pour accéder aux champs de déformation) 

et mesure dans l’infrarouge (pour accéder aux chaleurs), ce qui permettrait de faire des 

bilans d’énergie. La comparaison entre résultats numériques et résultats expérimentaux 

de type thermodynamique est aussi une perspective. Une dernière étape consisterait à 

proposer un modèle thermodynamique macroscopique adapté au comportement des 

milieux granulaires souples. Cette approche nécessiterait des opérations de moyenne 

appropriées pour obtenir des données calorimétriques macroscopiques à mettre en 

relation avec des variables mécaniques moyennes (fabric stress ou fabric strain). Cela 

pourrait conduire à la proposition de techniques de mesure des contraintes 

macroscopiques/mésoscopiques en utilisant uniquement la température, de la même 

manière que cela se fait pour les matériaux continus par ATC. 
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General Introduction 

 Granular materials are a type of material that can be found everywhere and used in 

everyday life. Everyone inevitably encounters granular materials, but not everyone can 

recognize their existence. This is quite surprising given how plentiful and ubiquitous they 

are. Let us cite some examples: sugar, salt and pepper are used for cooking; sand, pebbles 

and bricks are required for construction; powders are used in certain industrial 

manufacturing processes. A granular material is defined as a collection of solid particles. 

The latter consists of grains that come in a variety of shapes, materials and sizes. They 

can range from sand to rock, and even interplanetary aggregates (planet rings, asteroids). 

The behavior of granular materials is complicated and difficult to predict at the particle 

scale. This is a major issue for their modelling [2, 23]. Despite that, discrete materials can 

be considered as continuous matters at a macroscopic level. Granular materials can 

behave macroscopically like solids or liquids at a macroscopic level, depending on certain 

parameters. For instance, throwing a bowling ball into a pile of sand, the ball moves a 

short distance before stopping. The sand pile thus behaves like a solid. On the other hand, 

throwing the same bowling ball into a fluidized-bed pile of sand causes the ball to travel 

through the sand. The latter behaves here like a fluid. This example demonstrates that the 

behavior of granular materials is not only interesting but also complex. Researchers and 

scientists have primarily focused on studying continuous materials. Several decades ago, 

a few researchers and scientists paid attention to discrete materials, while continuum 

mechanics theory seemed to be rather completely developed. The reminded paper is the 

study published in 1944 by Casagrande and Carillo, who seem to be the pioneers for 

scientifically investigating discrete materials. They enhanced the understanding of the 

behavior of anisotropic granular materials through experiments and numerical 

simulations. They distinguished strength into two types, namely induced anisotropy and 

inherent anisotropy [24]. A few decades later, Dantu applied photoelasticity on two-

dimensional (2D) piles of translucid disks and discovered a significant heterogeneity of 

the contact forces distribution in these 2D granular materials [25]. Biarez developed the 

concept of fabric anisotropy in connection with the distribution of contact orientations, 
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by studying 2D analogue materials (piles of disks) [26]. The stress-dilatancy relation, 

which is well-known and widely employed in soil mechanics, was proposed by Rowe, 

relying on the basis of the minimum energy principle [27]. In 1966, Weber presented a 

now-classic formula linking local contact forces in a granular material with a specific 

Cauchy-like stress tensor, namely an average stress tensor over a group of particles [28]. 

Other researchers attempted to connect the angle of friction measured at local scale with 

the classical internal angle of friction used in soil mechanics [29-32]. 

These effective outcomes and understanding of granular media during those 

decades were mainly obtained from experiments carried out on analogue materials and 

actual materials. Some theoretical attempts based on compositions of idealized particles 

were also developed. These kinds of materials were rather difficult to analyze 

experimentally at the local scale due to the techniques and instruments available at that 

time. At the end of the 1960s, it seems that the researchers confronted a dead-end due to 

the lack of experimental data at local scale. In 1971, Cundall developed a numerical 

approach named Distinct Element Method (DEM) that he employed to rock mechanics 

[33]. This approach considers the matter as a multi-contact system, in contrast to the 

classical Finite Element Method (FEM). Each grain in a granular material is regarded as 

an individual rigid body governed by the Newton’s laws of motion and interacting with 

its neighbors through frictional contact laws. There are two widespread employed DEM 

approaches: the smooth DEM method known as molecular dynamics (MD); and the non-

smooth DEM method known as non-smooth contact dynamic (NSCD) or contact dynamic 

(CD). The former approach is based on an explicit algorithm that takes the interaction 

between contacts into account as a function of relative displacements and velocities of 

particles. Furthermore, the interaction of contacts is governed by the generalized 

Coulomb’s law of dry friction. The latter approach was established by J.J. Moreau [34]. 

It is based on Convex Analysis which proposes a consistent framework for the non-

smooth laws involved in frictional contact, such as dry friction. Moreover, it is an implicit 

numerical algorithm which handles the equations of the Newton’s law of motion and the 

non-smooth frictional contact laws. In terms of computational time, the CD method 

outperforms the MD method in some cases. The reason for this is that MD requires a fine 

time step (temporal resolution) for numerical integration of the Newton’s second law 
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(equation of motion). The MD method appears to be less precise than the CD method in 

terms of friction handling. However, the CD method cannot be employed in some 

situations involving the deformation of the particles because it treats the particles as rigid 

(“undeformable”) bodies and disregards the elasticity of the contacts [8, 34, 35]. Since 

that time until now, numerical simulations have been a powerful, trustworthy and widely 

used research tool in the field of granular materials. In comparison, the experimentation 

is not so widely used due to the difficulties of preparation and instrumentation, as well as 

the often limited number of particles used in the tests. 

 Nowadays, non-contact measurement methods, also known as full-field 

measurement techniques, are becoming increasingly familiar and attractive to engineers 

and scientists working in the field of experimental mechanics. This is due to the rapid 

advances in equipment such as camera technology, sensors, computers and image 

processing software [36, 37]. Full-field measurements are non-destructive, meaning that 

they do not change or disturb the mechanical system under consideration. These methods 

give access to spatially distributed physical quantities such as temperatures (scalars), 

displacements (first-order tensors), strains (second-order tensors), depending on the type 

of sensor and after adequate calibration and suitable data processing [36]. Full-field 

measurement techniques are powerful and advantageous tools compared to traditional 

measurement techniques that rely on local measurement using common equipment such 

as thermocouples, displacement transducers or strain gauges. These traditional 

measurement techniques allow to characterize the material response at a small number of 

locations, whereas full-field measurement techniques can provide fields of local 

characterization that can lead to a better understanding of the global response of the 

material. It is interesting to note that full-field measurement techniques are actually not 

that new in the community of granular materials. In the 1950, photoelasticimetry was 

employed to granular materials by Dantu [25]. Since then, the amount of literature on 

granular materials investigated by full-field measurement techniques has increased. Some 

of them concentrate on kinematic information in the volume of the granular medium: 

digital speckle radiography [38-40], X-ray tomography [41-43], electrical capacitance 

tomography [44-46], magnetic resonance imaging [47-49] and positron emission particle 

tracking [50-52]. 
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 Certain full-field measurement techniques have been employed to measure strains 

or stresses in 2D granular systems composed of cylinders stacked in parallel. Note that 

these 2D systems are called Schneebeli materials [53]. The mechanical loading is applied 

perpendicularly to the axis of the cylinders while a camera acquires images of the free 

ends of the cylinders. These 2D techniques are: 

- particle image velocimetry (PIV) — From the displacement of particles considered 

as rigid, it is possible to measure strain patterns within Schneebeli materials [15, 

54, 55]. The pioneering works of Calvetti [56] and Misra [57] identified 

deformation patterns by using wood, aluminum and plastic rods under a variety of 

2D loads (compression, shear, compression/shear; displacement-controlled 

boundaries, mixed stress-controlled/displacement-controlled boundaries); 

- photoelasticimetry, using cylindrical particles (disks) made of a transparent 

birefringent material as mentioned above — The technique first allows to extract 

the fields of the difference of the principal stresses (i.e., the shear stress) in the disks 

using polarizing filters [4, 25, 58, 59]. From the photoelastic patterns, Majmudar 

and Behringer were able then to identify contact force networks in various 2D 

granular systems [4]. The limitation of this technique is that the particles must be 

made from a birefringent material; 

- digital image correlation (DIC) — The technique first allows the measurement of 

the fields of the in-plane components of the strain tensor in deformable particles, 

see for instance Refs [60-62]. It was then possible to extract interparticle contact 

forces by combining experimental strain data with FEM [63-65]; 

- thermoelastic stress analysis (TSA), which relies on infrared (IR) thermography 

[66-68] — The idea is to measure first the fields of temperature amplitudes at the 

particle surface during a cyclic mechanical loading and to convert the quantities in 

terms of sums of the principal stresses (which are proportional to the hydrostatic 

stresses) from the thermoelastic coupling equation. This technique is rather new for 

granular community. It was employed in a few granular studies [21, 69]. It allowed 

to measure “stress networks” but, for the moment, it was not possible to use TSA 

data to identify interparticle contact force networks. Note that IR thermography was 
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also employed in the granular material community for the characterization of heat 

generation (mechanical dissipation) in granular flows [70] and in soil and sand 

under vibratory loading [20, 71, 72]. Let us cite observations at the micro-scale [73, 

74]. 

 

In this context, this dissertation proposes other experimental routes for investigating the 

solid-like mechanical behavior 2D granular systems: 

- using the localized spectrum analysis (LSA) and the virtual fields method 

(VFM), which are a full-field strain measurement technique and an identification 

strategy respectively [14, 75, 76] — LSA relies on images of a periodic pattern 

placed at the material surface before testing, providing an interesting compromise 

between measurement resolution and spatial resolution [75, 76]. VFM, which relies 

on the weak form of the equation of equilibrium, is usually employed to identify 

material parameters knowing the mechanical loading. It was rarely used for the 

measurement of forces knowing the material response [14]. The objective for us is 

to identify interparticle force networks in 2D granular systems relying on strain data 

obtained by LSA; 

- performing “deformation calorimetry” using IR thermography (IRT) — The 

objective is to distinguish thermoelastic effects (reversible mechanical response) 

and mechanical dissipation effects (irreversible mechanical response such as 

friction or damage) from the temperature evolution of a granular material subjected 

to cyclic mechanical loading at constant room temperature. 
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The outline of this dissertation is: 

- Chapter 1 presents the concepts, theories and experimental techniques discussed 

in the dissertation. It provides a background on mechanics of granular materials, 

thermomechanics of continuous materials, full-field measurement and post-

processing techniques used in this work (VFM, LSA and IRT), as well as a 

reminder of full-field techniques already applied to granular materials; 

- Chapter 2 presents the principle to interparticle contact force identification by 

using synthetic strain fields provided by a finite element model. The robustness 

of the identification procedure, relying on VFM, will be assessed with respect 

to various sources of error in the strain data; 

- Chapter 3 is dedicated to various experimental applications of the approach 

developed in the previous chapter by processing strain maps obtained using 

LSA for each particle. The number of particles used in the experiments will 

enable us a statistical processing; 

- Chapter 4 is dedicated to the use of IRT for the analysis of thermomechanical 

couplings in soft granular systems. Let us note that it is independent from the 

previous two chapters, offering another point of view based on temperature 

measurement only. 
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CHAPTER 1 

Theoretical Background 

1.1 Introduction 

 The purpose of this chapter is to remind, review and summarize the concepts, 

theories and experimental techniques that are discussed in this dissertation. This 

bibliography is structured as follows: 

- Section 1.2 provides an overview of the granular materials. Their behaviors are 

rather different from those of classical materials due to their discrete nature. 

Granular materials exhibit complex mechanical responses which can be assimilated 

to fluid-like or solid-like behavior depending on various parameters. This section is 

focused on the solid-like case at static equilibrium, which is the context of our 

research work. The granular texture will thus be used to discuss some interesting 

properties of a granular material in static condition in terms of compaction, solid 

fraction, coordination number, mechanical fabrication, force distribution, and stress 

tensor. Next, the molecular dynamics (MD) method is presented. It is one of the 

commonly used numerical simulations for granular media. The MD method 

employs the Newton’s equation of motion and Gear predictor-corrector to identify 

the contact forces and kinematic quantities in the considered granular system. 

Finally, the thermal behavior of granular media is discussed from a numerical 

modeling of heat production and transmission. 

- Section 1.3 presents the theory of thermomechanics of continuous materials, as 

a base to understand later the response within individual particles. It recalls the first 

and second principles of thermodynamics as well as the heat diffusion equation. A 

focus is on the calorific effects associated to reversible mechanical response 
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(thermoelastic coupling) and irreversible mechanical response (intrinsic 

dissipation, also called mechanical dissipation). 

- Section 1.4 presents the experimental measurement techniques and post-processing 

approaches that are applied in our work. First, infrared (IR) thermography (IRT) 

is described in broad terms, recalling the fundamentals of the IR radiation and the 

Stefan-Boltzmann law to measure temperatures. After that, the basic concepts of IR 

imaging systems are explained. Second, the full-field strain measurement technique 

called localized spectrum analysis (LSA) is presented, including details on the 

preparation of the periodic pattern to be placed preliminary at material surface. 

Finally, the virtual fields method (VFM) is presented in its usual application, i.e. 

the identification of material properties from measured strain fields and the 

knowledge of the external mechanical loading. The method will be used in Chapter 

2 to identify interparticle contact forces. 

- Section 1.5 is dedicated to the use of full-field measurements applied to granular 

materials in the literature. It includes photoelasticimetry, particle image 

velocimetry (PIV), digital image correlation (DIC) and IRT. 

 

1.2 Mechanics of granular material 

 Granular materials are omnipresent. They are all around us in our daily lives (salt, 

sand, snow and soil) and they can be found far away in asteroids and planet rings. They 

can be found in various fields, such as in agriculture for food products (rice and wheat), 

in civil engineering for constructions (rocks and cement), as well as in pharmaceutics for 

medicine (drugs and pills). In addition, granular movements or granular flows are also 

involved in natural phenomena like avalanches and landslides. Examples of granular 

materials are illustrated in Figure 1.1.  

 Granular material is one kind of discrete material. It can then be defined in 

engineering terms as a collection of solid particles whose mechanical behavior at 

macroscopic level is governed by interparticle forces [23, 77]. They are typically 

composed of grains distributed in a variety of ways, with different shapes, materials and 

sizes. Granular media, as discussed here, typically has particle sizes larger than 100 µm. 
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Despite their extreme diversity, all granular materials share fundamental characteristics. 

They can behave like a fluid or a solid at macroscopic level depending on a set of 

parameters. They exhibit phenomena such as avalanches, segregation and convection. 

Figure 1.2 illustrates the behavior of bead pile in different regions. However, granular 

media are disordered, unmanageable and unpredictable at microscopic level (grain level) 

[2]. More than with the classical materials like solids, liquids and gases, understanding 

and modelling of granular materials pose many complicated challenges.  

 
Figure 1.1 Examples of granular materials. 

 
Figure 1.2 Gas, liquid, and solid region of a bead pile [1]. 

 The interactions between particles are non-trivial and non-linear. They involve 

many phenomena such as friction, inelastic collision, adhesive force, and capillary 
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cohesion. These make the behavior complex and difficult to predict at the grain level. 

Other difficulties are that granular media easily dissipate energy due to friction and 

inelastic collision (although thermal agitation is negligible when the particle size is 

greater than 1 µm). These difficulties can thus be seen as a non-Brownian motion. Next, 

the lack of a clear separation of scales between the microscopic scale, i.e., grain size, and 

the macroscopic scale i.e., flow size, also complicates the continuum description of 

granular media. When sand flows down on a pile, the flow thickness is typically 10-20 

particle diameters. Similarly, the breakdown of a granular soil is frequently localized in 

faults or shear bands a few tens of grain wide. This lack of scale separation calls into 

question the validity of the continuum approach. 

 This section will not deal with granular materials as a whole. It will only concern 

granular solids and the numerical simulation, including numerical modeling of heat 

production and transmission in static equilibrium conditions. In this frame, interesting 

and significant properties of granular media are described further below. The contact 

force between two dry grains is generally separated into two components: normal force 

and tangential force. Surface roughness, local mechanical properties, and physical and 

chemical properties all play a role in the physical origin of these forces at the microscopic 

level. So, we will focus also on the macroscopic laws of solid contact by Hertz contact 

and Coulomb’s law. The granular texture, which refers to contact force and contact 

networks in multi-contact systems, is also discussed in this section. Heat production and 

transmission is a minor property of granular media, but they are also presented as an 

interesting topic which can be related to thermomechanics. 

1.2.1 Elastic contact 
 Considering two spherical particles radius R squeezed together by an external force, 

the particles move toward each other by a distance 2δ. With the assumption of elastic and 

smooth spheres, the normal contact force can be then expressed as follows when δ ≪ R 

[78]: 

 
3
2

NF E Rδ≈   (1.1) 
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where E is the Young’s modulus of material. It must be noted that the general equation 

depends on the geometries of the surfaces in contact (plane, sphere, cylinder, cone, etc.) 

and the material properties of each body [79].  

1.2.2 Solid friction & Rolling friction 
 In addition to the normal component, a tangential component is commonly 

observed as a result of friction between the surfaces in contact. It is also called tangential 

force, friction force, sliding force, sliding friction, or solid friction [80]. Friction is an 

important factor at all the scales, from grain level to packing level in a granular medium. 

Solid friction is classically governed by the Coulomb-Amontons laws, which are 

expressed as follows: 

- the friction force is directly proportional to normal force; 

- the friction force is independent of the contact area; 

- kinematic friction is independent of sliding velocity. 

The Coulomb-Amontons laws are robust and widely used to explain many phenomena 

[80]. The tangential friction force can be written as follow: 

  T NF Fµ=  (1.2) 

where µ is a coefficient of friction. Furthermore, there are two types of coefficients of 

friction: dynamical coefficient of friction (µd) and static coefficient of friction (µs). These 

two coefficients are constant and depend on the materials in contact. Typically, 0 < µs < 

µd < 1. 

 Sliding friction is well-known and primarily considered in general. It represents the 

resistance to translational motion between two solids in contact. Another type of friction 

occurs at the contact, known as "rolling friction". It is the resistance to rolling motion 

when one body rolls on a solid surface [80, 81]. Rolling friction is caused by the 

asymmetry of the contact area due to the presence of adhesive joints between the surfaces 

in contact. When the grain is rolling, force dissipation occurs in the contact zone, resulting 

in hysteresis between compression and extension forces at contact. 
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1.2.3 Granular packing 

 Granular packing is one of significant properties which characterizes the rigidity 

and flow of granular materials [77]. That is a reason why granular packing has been 

studied since the 1950s [82-84]. Engineers were interested in optimizing the storage of 

granular materials. This was an important issue for many industries at that time. Volume 

fraction, void fraction, and porosity are some of the variables that can be used to 

characterize the packing of granular materials. The volume fraction η, also known as the 

solid fraction, is the ratio of the volume Vgrains occupied by the grains inside the 

representative elementary volume (REV) to the volume VREV of the REV: 

  grains

REV

V
V

η =  (1.3) 

The maximum volume fraction is obviously equal to 1. This case indicates that the grains 

fill in the entire volume or REV. Literature has introduced other variables to measure the 

compacity of a granular material. The porosity ε is generally used in the porous media 

community. It indicates the ratio of the volume Vvoids of voids to the entire volume. It can 

be expressed as: 

  1voids

REV

V
V

ε η= = −  (1.4) 

Another variable is the void fraction 𝑒𝑒𝑉𝑉, which is frequently used in soil mechanics. It 

represents the ratio of the volume of voids to the volume of grains. It can be written as: 

  1voids
V

grains

Ve
V

η
η
−

= =   (1.5) 

Since all these quantities are equivalent, we will only use the volume fraction η for the 

discussion in the rest of the dissertation. Stable packing normally exists in a finite range 

of volume fraction when the granular system is composed of frictional grains. Dense (high 

η) or loose (low η) packings can be obtained, depending on the packing technique used. 

The volume fraction is thus between a minimum value corresponding to the loosest 

packing and a maximum value corresponding to the densest packing. Vibration-induced 

compaction holds the potential to disturb the packing. It can make the packing evolve. 
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 Now, let consider the simplest packing, i.e., an assembly of spheres of the same 

size. This granular assembly is not only the simplest model of a pile but it is also a useful 

model for discovering the molecular structure of liquids and glassy materials [85, 86]. It 

is generally called “monodisperse”. The densest packings of spheres for this system 

correspond to regular crystalline organizations, such as the face-centered cubic and the 

close-pack hexagonal lattices, which have the same volume fraction η = 0.74 [2, 87, 88]. 

These regular packings were first discovered by Johannes Kepler in 1611, achieved with 

cannonballs. About four centuries later, Hales achieved the mathematical proof to support 

this conjecture [89]. Although crystalline packings correlate with the global minimum of 

potential energy, achieving them in practice is rather difficult. When a collection of 

spherical grains is shaken, the grains generally self-rearrange and settle into a stable 

random configuration. This packing is known as “the random close packing”. This stable 

random packing typically has a volume fraction that falls between two limits: the random 

close packing (RCP) limit and the random loose packing (RLP) limit. This random close 

packing is referred to as the densest configuration achieved by randomly packing [90]. It 

is well-known that the volume fraction in RCP limit is approximately 0.64 [87, 88, 91]. 

The definition of random loose packing, in contrast to RCP, is the loosest feasible random 

packing that still maintains mechanical stability [90, 92, 93]. The volume fraction of RLP 

limit is about 0.55. These packings of monodisperse spheres are simple and provide 

interesting models for initial investigation. However, many applications involve mixtures 

of grains of various sizes. Such systems are referred to as “polydisperse”. They are rather 

complex and still unclearly understood. The volume fraction is still used to describe the 

properties of these configurations. It was demonstrated that the packings of polydisperse 

systems are denser than those of monodisperse systems [88, 94]. This can be extended to 

an extreme case, namely a mixture composed of various sizes referred to as Apollonius 

packing. It completely fills the space with a series of smaller and smaller grains, as shown 

in Figure 1.3. This extreme case is employed to improve composite material, e.g., high-

strength concretes. Practically, it is difficult to create a homogeneous pattern of 

Apollonius packing. 

 In general, granular packing depends on several influences such as the preparation 

method (dropping type, dropping height), material properties (coefficient of friction, 
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coefficient of restitution), grain size distribution (monodisperse, polydisperse), grain 

shape (sphere, ellipsoid, polyhedron), and absolute grain size (fine to coarse grains). 

These can significantly affect the interaction between particles [95-97]. These influences 

on granular packing were investigated in terms of influence of the volume fraction [93, 

95, 96, 98-103]. 

 
Figure 1.3 Schematic sketch of an Apollonius packing [2]. 

 Another parameter related to compactness can be considered, given that all particles 

in a granular packing interact with each other at a finite number of contact points. This 

parameter is defined as the average number of contacts per particle, referred to as the 

coordination number z [2, 104]. It can be calculated by the total number of contacts 2Nc 

in the granular packing divided by the total number of particles N, as expressed in 

following equation. 

  2 cNz
N

=   (1.6) 

It must be noted that the total number of contacts is multiplied by 2 because there are two 

particles at each contact point. 

 The coordination number is an important quantity because contacts between 

particles in a granular packing require a sufficient number of mechanical constraints to 

ensure the global stability. Considering a d-dimensional static granular packing (with d = 

1, 2 or 3) consisting of N frictionless particles, it needs d×N equilibrium equations for 

determining the Nc contact forces between each particle. The coordination number in a 
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static granular packing to maintain the stability against the external disturbances is equal 

to 4 in the two-dimensional (2D) case and 6 for three-dimensional (3D) case. These 

packings are referred to as “isostatic”, indicating systems that are statically determinate 

[2, 104-106]. This isostatic packing implies that the total number of contacts equals the 

equations of equilibrium. It is worth noting that the isostatic granular packing is rather 

sensitive to external disturbances because even a single contact breaking can disrupt the 

stability of the system. In the case of a granular packing system with frictional particles, 

the number of contact forces in 2D and 3D is equal to 2Nc and 3Nc, respectively. 

Consequently, a static granular packing needs 3N and 6N equilibrium equations for the 

2D and 3D cases, respectively. A dry granular packing consisting of frictional particles 

thus has a coordination number in the range of 3 ≤ z ≤ 4 in two dimensions and 4 ≤ z ≤ 6 

in three dimensions. A static granular packing containing frictional particles might then 

be “hyperstatic” and the contact forces are undetermined [2]. However, despite that the 

concept of isostaticity based on spherical grains, its analysis helps to clarify the role of 

friction plays in granular systems. Investigating acoustic propagation and vibration modes 

in granular packings can also benefit from this approach [107-109]. 

1.2.4 Forces in a granular packing 

 In the previous section, the equilibrium of static granular packings was discussed. 

The uniqueness of the contact forces in a random packing was discussed in terms of 

number of contacts. In this section, we present more in detail the statistics of the contact 

forces and the fundamental properties of their distribution. It is commonly understood 

that contact forces are transmitted from one particle to another through the contacts. First, 

the contact forces can be used to display the force network, which is a chain-like structure 

in the granular packing. The force network is the distribution of contact forces located at 

every single contact. Contact networks have specific features linked to the mechanical 

properties of the static granular matter. The mechanics of granular materials has the basic 

goal to improve the understanding of the contact forces and their spatial correlation, 

particularly the capability of bearing the external loading from the boundaries of the 

system. An example of a force network in a static granular system is presented in Figure 
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1.4. The black lines are referred to as contact forces, which the thickness represents the 

amplitude of contact force. 

 
Figure 1.4 Example of normal force network obtained by simulation [3]. 

 Contact forces in granular materials can be experimentally measured using a variety 

of techniques already indicated in the general introduction of this thesis. A first technique 

relies photoelasticimetry, which was employed for granular materials for the first time in 

1957 by Dantu [25]. This technique relies on particles made of photoelastic materials, 

such as plexiglass, pyrex or polymer, which exhibit the property of a transient 

birefringence under strain. Figure 1.5-a shows an example of photoelastic image under a 

high-stress isotropically compressed state. However, it is rather complicated to extract 

the contact forces at each contact. Majmudar and Behringer were the first to successfully 

solve this issue in 2005 [4]. A second technique is the carbon paper method, which was 

employed to measure contact forces at the boundary of granular systems. This technique 

requires placing a piece of carbon paper on a wall of the container containing the particles. 

When applying an external force, the particles create spots on the carbon paper. The sizes 

of the spots are proportional to the normal forces exerted by the particles on the carbon 

paper [5]. An example of this technique is shown in Figure 1.5-b. This technique was first 

performed by Liu et al [110] in 1995. In practice, it can be employed to measure contact 

forces in the 2D and 3D cases. However, it is limited to measuring at the boundaries of 

the system and it requires a sufficiently high external loading to create visible spots on 
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the paper. Later, this measurement technique was improved by using geomembranes and 

contact papers for measuring contact forces [6, 7]. These two techniques can give better 

results than the carbon paper method due to a higher sensitivity to contact forces, as 

shown in Figures 1.5-c and -d. The discrete element method (DEM), which is numerical 

approach, enables to calculate all the contact forces in the bulk of three-dimension 

granular packings neglecting uncontrollable experimental parameters. Moreover, the 

simulations offer a higher measurement precision on the small contact forces. However, 

they are still not sufficiently realistic to represent experiments. 

 
Figure 1.5 Contact force measurement in the literature: a) photoelastic 

image of a 2D system under isotropic compression [4], b) setup for the 

carbon paper method [5], c) setup and result using geomembranes [6], 

d) setup and result of the contact paper method [7]. 

 In previous paragraphs, it was seen that contact forces can be measured by a few 

experimental methods, with the final objective to obtain force networks within granular 

systems. Despite this, it is difficult to compare at the local scale the results of one granular 

system with those of another system. The better way is to compare the results in terms of 

statistical properties at a macroscopic level. Probability density functions (PDFs) are thus 

classically employed to represent the macroscopic properties of a granular system. Figure 
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1.6 shows an example of PDF of normal contact forces obtained from 2D simulations [8]. 

Note that the graph shows a semi-logarithmic plot, with x- axis in logarithmic scale and 

y- axis in normal scale.  

 
Figure 1.6 Probability density function (PDF) of the normal contact forces 

normalized by the mean normal contact force [8], for two values of the 

coefficient of friction between particles (white, 0.1 and black, 0.4). 

 On this graph, the first significant observation is that the range of force amplitude 

is wide. Strong heterogeneities are observed in the force network (not shown here). More 

precisely, it can be seen in the graph that large forces, up to six times the mean, can be 

found while near-zero forces also exist. The second observation is the shape of the PDF. 

It can be split into two complementary parts, above and below the mean contact force, 

defining the strong and weak networks respectively. The strong network is a set of 

contact forces which are greater than the mean contact force. On the contrary, the weak 

network is a set of contact forces which are lower than the mean contact force. The 

distribution of the strong network was well-found to be an exponential decay in all studies 

(revealed by the linear part of the PDF), while the weak network is very flat and can be 

approximately by a power law. These distributions can thus be expressed as [3, 111]: 
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where k is the normalization coefficient given by: 

  1 1 1
1k α β

= +
−

  (1.8) 

In addition, the relationship between the two coefficients of these two distribution 

functions is given by: 

  2 (1 )(2 )β α α= − −   (1.9) 

Several studies revealed such contact force distributions similarly in experiments, 

numerical simulations and theoretical models [4-6, 8, 18, 19, 112-115]. According to 

some of these studies, the exponential decrease of the strong forces is a robust 

characteristic of force distributions in both 2D and 3D granular materials. On the other 

hand, the initial state of the packing (experimental or numerical preparation of the 

granular sample) can affect the force distribution in the weak network. The number of 

particles in a weak network is approximately 60% of all particles in the granular 

system. A strong network thus contains only 40% of the particles [3, 8]. The 

difference in behavior between strong- and weak-force networks, as well as the existence 

of an exponential tail in the strong network, are both very robust characteristics. It can be 

noted that the force distribution has the same shape in the case of frictional and frictionless 

particles, regardless of whether the packing is regular or random.  

 Other researchers studied the micromechanics of granular packings at the jamming 

point. Figure 1.7 illustrates the PDF of normalized normal contact forces by using 

numerical simulation, namely the CD method, for frictionless pentagon packings in 

Figure 1.7-a and for frictionless disk packings in Figure 1.7-b, for various volume 

fractions of granular packings. It is clear that the PDFs of strong network and weak 

network are governed by exponential decay and power law, respectively. Even 

though increasing the volume fraction of granular packing until it reaches the jamming 

point, the number of extreme values of both strong and weak forces decreased because 

the force transmitted throughout the entire system [9]. 
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Figure 1.7 Probability density function of the normal forces normalized by 

the mean normal contact force, for frictionless contacts, for different volume 

fractions [9]: a) pentagon packings, b) disk packings. 

 In addition, numerical simulations based on CD method were employed to study 

the force transmission in highly polydisperse granular packings subjected to simple shear 

[10]. The particle size span (range of difference in particle size as given by the equation 

s = (dmax – dmin)/(dmax + dmin) was varied from 0.2 to 0.96 in this study. The coefficient of 

friction between particles was set to 0.4. It was evidenced that strongest force chains are 

mainly transmitted by large particles while the force chains are absent in the majority of 

small particles. Therefore, inhomogeneous force distribution is more often observed when 

the particle size span widens. PDFs of normal contact forces normalized by the means of 

normal contact forces for various particle size spans are shown in Figure 1.8. 
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Figure 1.8 Probability density function of the normal contact forces 

normalized by the mean of normal contact force for different particle size 

spans [10]. 

 In the previous paragraph, the contact force distributions appeared to be highly 

inhomogeneous due to the force transmission through the interparticle contacts. In the 

granular material community, two beneficial statistical quantities (relevant to the fabric 

tensor ϕ) are taken into account in order to clearly characterize the force network and to 

define the chance of contact occurrence in each direction of the space [2]. The first 

statistical quantity describes the angular distribution of contact directions, which is known 

as “geometrical fabric”. The second statistical quantity describes the angular distribution 

of contact forces, which is known as “mechanical fabric” [2]. The difference between 

these two statistical quantities is that the mechanical fabric takes the magnitude of the 

contact forces into account. The fabric tensors consider the geometrical structure of the 

particles, which contains all of the directional information of contact orientations in space 

[111, 116]. This fabric tensor is symmetric and can be expressed as: 

  1

c

P P
ij i j
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n n
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φ
∈

= ∑   (1.10) 

where Nc is the total number of contacts in the system. The i and j components of normal 

directional vector at contact point P are P
in  and P

jn , respectively. 

 In 2012, three micromechanical mechanisms were mentioned by Kruyt [116]. The 

first is known as “contact disruption”, which occurs when two particles that are in contact 

move apart and lose contact. The second is known as “contact creation” and refers to a 

new contact that is made when two particles come into contact. This is known as a contact 
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reorientation, which means that the orientation of the contact normal directions changes 

due to the movement of particles while they are still in contact with each other. 

 Considering the 2D case, the geometrical fabric in the normal direction can be 

simply given by function P(θ) defined such that P(θ)d(θ) provides the total number of 

contacts in the normal direction between θ - dθ/2 and θ + dθ/2 [2]. The integration of P(θ) 

over all angles is equal to the value of the coordination number z or the averaging number 

of contacts per particle. It is worth noting that the preparation method and the external 

loading applied to the granular packing significantly affect the angular distribution of 

contact directions. The packing of pile under gravity clearly exhibits four lobes whose 

peaks are approximately 45° from the vertical. This angular distribution can be 

understood by the fact that each particle finds an equilibrium position during the 

deposition process under gravity, resting on two particles below [117]. The isotropic 

angular distribution is clearly observed in the case of granular packings under isotropic 

compressive loading. Finally, a granular packing with a high vertical loading exhibits a 

slight anisotropy in the principal stress direction [11]. These three examples of angular 

distribution of contact forces are illustrated in Figure 1.9. 

 

Figure 1.9 Angular distribution of contact directions for three granular 

packings [2]: a) under gravity, b) under isotropic compression, c) under 

vertical loading. 

 The angular distribution of contact forces can be split into two contact networks 

corresponding to the strong and weak networks, as discussed in the previous paragraph. 

The two cases can be plotted from the angular distribution of contact forces higher and 

lower than the mean of contact forces respectively. This is represented in Figure 1.10. 
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The two networks seem to have different angular anisotropies. The angular distribution 

of the strong network is significantly more anisotropic than that of the weak 

network. Furthermore, the slight anisotropy of the weak network is oriented in the 

direction opposite from the direction of the compression. The angular distribution 

of the strong network is mainly aligned along the direction of the compression. In 

order to determine the contributions of the strong network and the weak network to the 

stress tensor, it is possible to define a stress tensor by averaging over the interparticle 

forces, which will be discussed in next section. The strong network dominantly 

contributes to the deviatoric part of the stress tensor, i.e., the presence of shear stresses in 

the medium, whereas the weak network contributes to the hydrostatic pressure [2, 11, 

111]. This indicates that the strong network allows the granular materials to resist 

shearing, exhibiting thus a solid-like behavior. Nevertheless, the strong network is 

unstable in the absence of the weak network, i.e., lateral forces are necessary to 

prevent the buckling of the strong network. 

 

Figure 1.10 Angular distribution of contact forces in the strong and weak 

networks for a packing under vertical loading [11]. 

1.2.5 From forces to stresses 

 Granular materials are discrete materials, so the Cauchy stress tensor derived from 

continuous materials cannot be applied to define them. The previous section showed that 

the contact forces distributions within granular packings are highly heterogeneous. The 

question is how to define a stress tensor in the case of a discrete material. This section 

recalls the method for properly defining the stress tensor from the interparticle forces in 

a granular material by using concepts of continuum mechanics. 



24 

 

 In order to relate the contact forces in discrete materials to the stress tensor in 

continuum materials, many researchers developed an averaging process with various 

theoretical considerations [4, 118-121]. The stress tensors that these researchers have 

suggested are equivalent to one another in equilibrium conditions. The stress tensor in 

this case is defined as the average stress of a collection of particles. The definition of the 

stress tensor at the continuum scale is briefly explained by using a grain by grain approach 

in the reference [111]. The concept behind this approach relies on the determination of 

the internal moment, such as the internal moment tensor efforts of a bounded mechanical 

system. The tensorial internal moment Mi of each particle p is taken into account when 

calculating the stress tensor [111]. It can be defined as follow: 

  p
ijM c c

i j
c p∈

= ∑ f r   (1.11) 

where fi
c and rj

c are the ith component of force vector exerted on the particle at contact 

point c and the jth component of the radius vector through the contact point c, respectively. 

The summation in this equation takes into account all contact points of the considered 

particle. The stress tensor of a granular packing over the volume V can be simply defined 

by the tensorial internal moment as follow: 

  p
ij ij

1 1σ M c c
i j

p V c VV V∈ ∈

= =∑ ∑ f l   (1.12) 

where lj
c is the jth component of branch vector connecting the centroids of two contacting 

particles at contact point c. 

 Before identifying the hydrostatic stress in each particle, the definition of the stress 

tensor at grain scale should be first defined. The definition of stress tensor at grain scale 

σp for each individual particle is developed by using the stress tensor at continuum scale 

as follows: 

  P
ij

1σ
p

c c
i j

c VpV ∈

= ∑ f r   (1.13) 

where Vp is the volume of the particle. The summation of this equation is performed over 

the entire collection of contacts along the perimeter of the particle. 
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1.2.6 Molecular Dynamics (MD) method 

 By construction, numerical simulation techniques developed for continuous 

materials, such as the Finite Element (FE) method, cannot be easily applied to simulate 

discrete materials. The Discrete Element Method (DEM) was first introduced in 1971 by 

Cundall for rock mechanics [33]. In fact, molecular dynamics (MD) simulation has been 

widely used in the granular materials community. It is a powerful method which has been 

extensively employed to study the mechanical behavior of various types of granular 

media. The MD method relies on an explicit algorithm. Moreover, it considers the 

particles as rigid bodies with non-conforming surfaces [78]. Several integration schemes 

can be employed within the framework of the finite difference method to integrate the 

Newton’s equations of motion. The MD method employed in this dissertation is based on 

a predictor-corrector scheme with Gear’s correction of corrector coefficients [122, 123]. 

 The MD method is simple and flexible as it applies only the Newton’s second law 

for calculating kinematical quantities which can be written as follows: 

  
2

2 , 1, 2,3,...,i
i i
d xm i N
dt

= =F   (1.14) 

where N is the number of particles in the simulation, mi is the mass of particles i, xi is the 

position of particles, and Fi is the force exerted on that particle. The method consists of 

calculating the forces Fi and solving ordinary differential equations (ODE). Integration 

of the Newton’s equations of motion can be achieved by applying a predictor-corrector 

scheme with Gear’s correction of corrector coefficients. Thus, positions, velocities, 

accelerations and third-order time derivatives are obtained for all the particles. 

 In order to estimate the motion of the particles to reach a new configuration, the 

integration of the Newton’s equation of motion is applied. For the MD method, the finite 

difference methods are employed to estimate the motion of each particle in the granular 

system in the new configuration [111, 122]. The integration is divided into discrete 

summation with many interval times δt. When the kinematical quantities and the forces 

to each particle at time t are determined, they are applied as the input to estimate the 

quantities at the new configuration at time t +δt by Newton’s second law. It is worth 
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noting that there are various algorithms for numerical integration schemes, such as Verlet 

algorithm, leap-frog algorithm, velocity Verlet algorithm, Beeman algorithm, as well as 

another higher-order algorithm [123-127]. In this dissertation, the kinematic quantities in 

MD method will be estimated as Taylor series, as follows: 

  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

2 3

2

1 1 ...
2 6
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2

..

...

r t dt r t v t t a t t b t t

v t dt v t a t t b t t

a t dt a t b t t

b t dt b t

δ δ δ

δ δ

δ

+ = + + + +

+ = + + +

+ = +

+ = +

  (1.15) 

where r, v, a and b are the position, the velocity (first-order time derivative of position), 

the acceleration (second-order time derivative of position) and the third-order time 

derivative of position. 

 Since numerical integration schemes are effective, the algorithms can use large time 

steps while maintaining high precision. On the contrary, the higher-order algorithm can 

achieve a higher accuracy for a given time step. The higher-order algorithm used in MD 

method is the so-called “Gear Predictor-corrector” algorithm [128]. This is a powerful 

algorithm because it only requires one calculation of the interaction forces per time step. 

Actually, the evaluation of the contact forces between particles requires more 

computation time than the integration of the equations. 

 Gear predictor-corrector has three main steps: predictor, evaluation, and corrector. 

First, the predictor step estimates the kinematic quantities, which are the positions, the 

velocities, the accelerations, and other higher-order time derivatives at the next time step 

t +δt by using the Taylor series expansion in Equation 1.15. Second, the interaction forces 

between particles are evaluated by using a contact force model at predicted position at 

time t +δt. It must be noted that the contact force modelling can be any model that is 

related to a type of material. The interaction forces between particles are substituted into 

the Newton’s equations of motion to calculate the “evaluated” acceleration ae(t +δt). By 

subtracting between the evaluated and the predicted accelerations, it is possible to 

estimate the error in the predictor step: 
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  ( ) ( ) ( )ea t t a t t a t tδ δ δ∆ + = + − +   (1.16) 

Last, the corrector corrects all the predicted kinematic quantities from a coefficient which 

is proportional to the error in Equation 1.16. According to the degree of the order of the 

time derivative, this correction is applied with different weights: 
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  (1.17) 

where c0, c1, c2, … are the set of corrector coefficients proposed by Gear. These 

coefficients are dependent on both the order of the Taylor series expansion and the order 

of the differential equations [122, 129]. The corrector operates as a feedback control that 

reduces the error from the predictor. As a result, Gear predictor-corrector offers good 

stability and accuracy. It is worth noting that using more terms of higher-order of time 

derivative in Gear predictor-corrector can increase the accuracy of the algorithm while it 

requires more computation time. The MD algorithm based on Gear predictor-corrector 

can be summarized by the flowchart in Figure 1.11. 

 The MD algorithm was discussed in the paragraph above. Force calculation is one 

of the most important steps in this algorithm. Various contact force models can be 

employed for this step. The contact force model used in this dissertation is presented in 

the following paragraphs. 
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Figure 1.11 Flowchart of molecular dynamics algorithm. 

 The force Fi exerted on the particle i as written in Equation 1.14 above is the result 

of two influences. It is affected by the external forces as well as by the interaction forces 

between particles. The equation of this force can be written as: 

  ext
i ij i

j i
F F F

≠

= +∑   (1.18) 

where Fij is the interaction force exerted on particle i by particle j. Fi
ext denotes the 

external forces exerted on particle i. 

 

Figure 1.12 Schematic of two particles, i and j, in contact. 

 In the case of a 2D granular system, the contact force between particles has two 

components, namely the normal and tangential components as shown in Figure 1.12. The 

normal force Fn affects the translation of the particles, whereas the tangential force Ft 

affects their rotation and sliding. Thus, the interaction force can be written as: 
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  ij n tF F F= n + t   (1.19) 

Furthermore, the normal interaction force can be split into three parts in the case of 

frictionless contact. The first part is a repulsive force Fn
e, which resists the deformation 

of particles. The second part is a viscous force Fn
d, which is relevant to energy dissipation. 

The third part is a cohesive force Fn
c, which is split into normal, shear, and rolling [130]. 

The normal force can be this written as: 

  e d c
n n n nF F F F= + +   (1.20) 

It is worth noting that only repulsive and viscous forces are taken into account in the case 

of non-cohesive granular materials. On the contrary, all the terms are considered in the 

case of cohesive granular materials. 

 In the MD method, the deformation is simply modeled by considering the virtual 

overlap δ, as illustrated in Figure 1.12. As the particle geometries do not change, the 

normal force can be calculated by a function of the virtual overlap, which is expressed in 

terms of vector position of the particle centers xi and xj and radius ri and rj of the two 

particles i and j in contact: 

  ( )i j i jr r x xδ = − − −   (1.21) 

The “linear spring-dashpot” [131, 132] is a common model, which is applied in the 

present study for a calculation of the normal force between two particles. The normal 

force Fn is calculated by: 

  n eff n nF k vδ α= +   (1.22) 

where keff is the effective contact stiffness, αn is the normal damping coefficient, and vn is 

the normal velocity (the first-order time derivative of the virtual overlap). In fact, the 

integration of the Newton’s equations of motion requires a smooth friction law (mono-

valued), i.e., the tangential force must be expressed as a linear function of the sliding 

velocity vt,. Note that the classical Coulomb’s law friction is a non-smooth function. 

Hence, the tangential force Ft in this study was classically defined as a “regularized” form 

of the exact Coulomb’s law, which can be expressed by this expression: 
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  { } ( )min , signt t t n tF v F vγ µ= ⋅   (1.23) 

where γt is the tangential viscosity coefficient and µ is the coefficient of friction. In this 

study, the rotational motion due to the tangential force is assumed to be free because its 

value is very small compared to the normal force. 

1.2.7 Thermal modeling in granular media 

 The phenomena of heat transfer consist of heat conduction, heat convection, heat 

radiation and heat generation (self-heating). They are complex, especially in the case of 

granular materials. In our research work, heat transfers were assumed limited to heat 

conduction, heat convection and heat generation only. When two particles move and 

come into contact, their relative motion creates a source of heat, denoted as Qs
ij in the 

following. Heat generation can be computed by different methods. The heat generation 

model used in our research work is directly based on the first principle of 

thermodynamics, accounting for normal motions as well as tangential motions. The heat 

generation of each particle, which is related to the energy dissipation at the contact level 

[130], can be expressed as: 

  
1

1 1;
2 2

N
s s s ij ij ij ij
i ij ij n n t t

i
Q Q Q F v F v

=

= +∑ =   (1.24) 

 Then, the heat conduction between particle i and its neighbors in contact is the sum 

of all heat exchanges as follows [133]: 

  ( )
1

;
N

c c c c
i ij ij ij i j

i
Q Q Q H T T

=

= = −∑   (1.25) 

where Hc
ij is the heat conductance of contact and the term Ti – Tj is the temperature 

difference between particle i and particle j. This formula relies on two assumptions. The 

first assumption is that there is no temperature distribution inside the particle, i.e., each 

particle has only one temperature. The second assumption is that the temperature 

exchange between the particles is slow enough to prevent disrupting near particles in 

contact during each time step. This means that the variation of the temperature of particle 

over a time step is smaller than the difference temperature between particles and time step 

should be sufficiently small. The coefficient Hc
ij, which is a function of compression force, 
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depends on the particle properties which is explained below. Based on the Hertz theory, 

the coefficient Hc
ij can be determine from [133]: 

  
1
4

4
c ij
ij n eff

s
eff eff

H F R
k LEπ

 
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 
  (1.26) 

where Reff, Eeff, ks
eff and L are the effective contact radius, the effective Young’s modulus, 

the effective thermal conductivity and the length of the cylinder, respectively. 

 Heat convection can be taken into account as follows: 

  ( )0
d d
i air iQ H T T= −   (1.27) 

where Hd
air and T0 are the heat convection coefficient and the temperature of surrounding 

medium (the ambient air), respectively. 

 For the evolution of the system, the Euler scheme can be applied to discretize the 

differential equation characterizing the evolution of temperature of each particle. Thus, 

the temperature at each time step dt can be discretized explicitly using a θ-method over 

time t to time t+dt [18], which can be expressed as: 

  ( )1t dt t t t dt
i i i iT T T Tθ θ+ += + − +    (1.28) 

where θ is a constant value between 0.5 to 1 for stability reasons. The term 𝑇̇𝑇𝑖𝑖
𝑡𝑡+𝑑𝑑𝑑𝑑 is a 

function of the local thermal phenomena of particle i by accumulating from multi-contacts 

[134]. It can be thus calculated from: 

  
( )

t dt t dt
t dt i i

i t dt
i i i

dT QT
dt cVρ

+ +
+

+= =   (1.29) 

where ρi, ci, and Vi are the bulk density, the specific heat capacity and the volume of 

particle respectively. In 2D simulations, the particle volume is replaced by an area. The 

term Qi
t+dt in Equation 1.29 implies that the amount of heat is accumulated from all 

thermal phenomena of particle i at time t+dt. The total amount of heat in each particle 

can be thus split into two components: 

  c s d
i i i iQ Q Q Q= + +   (1.30) 
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where Qc
i represents the heat exchange (heat conduction) between particle i and its 

neighbors in contact, Qs
i corresponds to the heat generation by the relative motion between 

particle i and its neighbors, and Qd
i corresponds to the heat exchange (heat convection) 

between particle i and surrounding medium (the ambient air). 

1.3 Thermomechanics of continuous material 

 Thermomechanics is commonly described in terms of continuous material. In this 

thesis, thermomechanical phenomena in granular systems are analyzed within individual 

particles (“inside” the particles), allowing the continuum thermodynamics theory to be 

applied. Thermomechanics is a theory that generally describes the conversion between 

mechanical deformation and thermal energy in continuum bodies. When a body deforms, 

the energy of deformation may be converted into thermal energy which functions as an 

internal heat source of the considered body. 

1.3.1 Thermodynamics with internal variables 

 Any thermomechanical system out of equilibrium can be assumed to be the sum of 

subsystems at equilibrium. In the framework of this dissertation, a deformation process 

is considered as a quasi-static thermodynamic process. It is possibly a dissipative process. 

The equilibrium state of any material volume element (at equilibrium) is then 

characterized by set of n state variables [12, 135, 136]: the absolute temperature T, the 

strain tensor ε and internal variables written as α , composed of n-2 terms (α1, …, αn-2). 

The free-energy function ψ is chosen as the Helmholtz free-energy function. It can be 

expressed in terms of internal energy e(ε, η, α) and entropy η (ε, T, α) as follows: 

  ( ) ( )( , , ) , , , ,T e T Tψ η η= −ε ε εα α α   (1.31) 

 The local form of the second principle of thermodynamics is employed to derive 

the local form of the Clausius-Duhem inequality, defining the dissipation d [136]: 

  
1

2

, ,: :  0
d

d

d grad T
T

ρψ ρψ= − − ⋅ − ⋅ ≥ε α
qσ D ε α





  (1.32) 
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where σ is the Cauchy stress tensor, D is the Eulerian strain rate tensor and ρ is the mass 

density, q is the heat flux vector. It must be noted that the dot symbol ( ̇ ) means the 

material time derivative. The irreversible entropy source is frequently mentioned by the 

thermodynamics community as σs = d/T. And σs = 0 means that the dissipation is null. 

This characterizes a reversible thermodynamic process. Usually, the dissipation can be 

split into two parts, which are the “intrinsic (mechanical) dissipation” d1 and the “thermal 

dissipation” d2 as follows: 

  1 , , 2: : 0 and  0d d grad T
T

ρψ ρψ= − − ⋅ ≥ = − ⋅ ≥ε α
qσ D ε α   (1.33) 

Furthermore, the intrinsic dissipation d1 can be distinguished into three parts as follows: 

  
1 , ,: :
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 



 

  (1.34) 

where w•
def, w•

e, and w•
s are the deformation energy rate, the elastic energy rate and the 

stored energy rate, respectively. 

1.3.2 Heat diffusion equation 

 The first and second principles of thermodynamics can be written as follows, 

respectively [12, 135]: 

  div ee rρ = − +σ : ε q 
  (1.35) 

  
1

div eT d rρ η = − +q   (1.36) 

where re is the external heat source (radiation). 

From the constitutive state equations of the Helmholtz free-energy, Equation 1.35 can be 

rewritten as: 
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  (1.37) 

Considering Equations 1.34 and 1.35 and assuming the Fourier’s law, q=k grad T, the 

heat diffusion equation can be expressed as follows [135, 137]: 
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  (1.38) 

where Cε,α is the specific heat capacity at ε and α constant. In Equation 1.34, the first term 

(a) is the heat power density associated to the change in temperature of the material 

(storage term). Heat exchanges by conduction are represented by the term (b). The term 

(c) is the heat power density d1 produced by the material due to irreversible mechanical 

phenomena. It is always positive and, as indicated above, it is called “mechanical 

dissipation” or “intrinsic dissipation”. It must be distinguished from the thermal 

dissipation d2 in the Clausius-Duhem inequality d1 + d2 ≥ 0. The term (d) is associated 

with reversible mechanical phenomena and corresponds to thermomechanical coupling 

sources. It can be split into two parts. The first part corresponds to the “thermoelastic 

coupling” w•
thc due to thermoelasticity. They are two types of thermo-elastic coupling: 

one is governed by the change in internal energy (energetic elasticity) and the other is 

governed by the change in entropy (entropic elasticity) [138]. A simple tensile test enables 

us to distinguish between them: upon loading (unloading), energetic elasticity leads to a 

temperature decrease (increase) whereas entropic elasticity leads to a temperature 

increase (decrease). Actually, as both types of coupling exist in rubbery materials, a so-

called thermoelastic inversion is observed upon loading, when the entropic contribution 

becomes preponderant [139]. On the contrary, compression loading (unloading) leads to 

a temperature increase (decrease) for both types of thermo-elastic couplings. The second 

part corresponds to other potential thermomechanical couplings, for instance due to solid-

solid phase transformations. The last term (e) is the external heat rate re associated with 

radiation. 

 Some comments can be made here regarding thermoelastic couplings, depending 

on the type of elasticity (see page 310 of Ref [138] for more details about the comparison 

between the two types of elasticity): 

• materials featuring energetic elasticity (these materials are sometimes called 

isentropic) have the thermal sensitivity with respect to the volume change. This 

sensitivity, expressed by the thermal expansion coefficient, is low for rigid 

materials; 
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• elastomeric materials feature entropic elasticity. Deformation-induced temperature 

variations in rubbers were initially discussed in the pioneering studies of Gough 

[140] and Joule [141] in the 19th century. The temperature changes caused by 

entropic elasticity are much higher than those resulting from energetic elasticity. In 

fact, both types of thermoelastic coupling exist in rubber-like materials, but that 

caused by entropic elasticity is rapidly predominant compared to that caused by 

energetic elasticity when the strain level increases [139]. 

It can be noted that thermoelastic stress analysis (TSA) relies on the thermal sensitivity 

of the volume change in materials featuring energetic elasticity. This sensitivity is low, 

but TSA succeeds in providing maps of hydrostatic stress amplitude from the temperature 

oscillations under cyclic loading. The method requires sufficiently high loading 

frequencies (to maximize the number of cycles over short times) and sufficiently high 

stress levels (when possible) to reach a sufficient thermal signal-to-noise ratio 

1.3.3 Energy balance for a load-unload cycle 

 Let us consider a load-unload cycle, where A=(TA, εA, αA) and B=(TB, εB, αB) refer 

to the thermomechanical states of the material at the beginning and the end of the cycle 

respectively. Three cases can be considered [12]: 

- case 1 (A ≠ B): the thermomechanical path does not correspond to a thermodynamic 

cycle; 

- case 2 (A ≠ B but εA = εB): the stress-strain diagram shows a hysteresis loop, but it 

is not a thermodynamical cycle; 

- case 3 (A = B): the mechanical cycle is now a thermodynamic cycle. 

The energy balance of these three situations can be discussed from the schematic 

diagrams in Figure 1.13. 
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Figure 1.13 Three cases of thermomechanical evolution [12]. 

The two principles of thermodynamics give an alternative expression of the volume 

deformation energy wdef associated with the load-unload cycle (i.e. the area of the gray 

zones in the stress-strain plane in Figure 1.13) [12]: 

  1 1 ,( ) ( )
B B B B

A A A A

t t t t

def e s the thc
t t t t

w d dt w w dt d dt e C T w w dtε αρ ρ= + + = + − + +∫ ∫ ∫ ∫   



   (1.39) 

Equation 1.38 illustrates that: 

- for case 1: it is clear that the area of the gray zones in the stress-strain plane in 

Figure 1.13-a is not only due to mechanical dissipation d1. It involves stored 

energy and thermal dissipation as well as the effect of the thermoelastic coupling 

wthe and of other thermomechanical couplings wthc if any; 

- for case 2: the area of the hysteresis loop Ah in the stress-strain plane in Figure 1.13-

b is due to mechanical dissipation d1 but also to the couplings. 

 1 ( )
B B

A A

t t

def h the thc
t t

w A d dt w w dt= = + +∫ ∫     (1.40) 

- for case 3: for a thermodynamic cycle, the area of the hysteresis loop Ah in the 

stress-strain plane in Figure 1.13-c is only due to mechanical dissipation. 

 The energy balance form then specifies the limited conditions under which the 

dissipated energy can be calculated by computing the hysteresis area of a load-unload 

cycle. This emphasizes the importance of analyzing thermal effects to determine whether 

a mechanical cycle is also a thermodynamic cycle, as well as determining the relative 

importance of coupling effects [12, 142]. 
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1.4 Full-field measurement techniques and post-processing 

for thermomechanical analysis 

 This section recalls the basis of the full-field measurement techniques that were 

used in our research work. Section 1.4.1 is dedicated to infrared (IR) thermography for 

measuring temperature fields, while Section 1.4.2 concerns the localized spectrum 

analysis (LSA) technique for measuring strain fields. Finally, Section 1.4.3 presents a 

post-processing method of the strain fields for identification purposes, namely the virtual 

fields methods (VFM). 

1.4.1 Infrared thermography 

 The basis for IR thermography is the measurement of the thermal radiation that is 

emitted from an object. Thermal radiation can be measured by the thermal sensors in an 

IR camera [143], offering thus various non-destructive testing and non-contact diagnostic 

technologies based on so-called thermal imaging, IR radiometry, IR imaging, and IR 

condition monitoring [144]. A wide variety of IR thermography applications exists in 

addition to the thermomechanics of materials, such as monitoring civil structures, 

microscale applications, postharvest quality control, industrial applications, medical 

science applications, monitoring electrical and electronic components, monitoring of the 

natural environment, monitoring of military applications, etc. [143-148]. 

 Thermal radiation is an energy transmitted by electromagnetic waves. Such a 

phenomenon does not require a transportation medium. Thermal radiation is produced by 

the movement of charged particles (protons and electrons), which is caused by the 

temperature of matter [149]. Due to the fact that all objects with a temperature above 

absolute zero, they have a capability to emit electromagnetic radiation. The thermal 

radiation can actually originate from a solid, a liquid, and even a gas. The IR radiation 

was first discovered in 1800 by the experiments of Herschel [150]. In his experiments, 

Herschel measured the temperature of each color of sunlight passing through a prism. 

Herschel invented a simple monochromator from a thermometer dedicated to temperature 

measurement. He discovered that the highest temperature occurred at the region outside 
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the red of visible light spectrum, which was later was referred to as “infrared”. The 

discovery of IR radiation opened new opportunities for applications of temperature 

measurement. 

 Figure 1.14 shows the spectrum of electromagnetic waves. Thermal radiation 

occupies the entire visible range, the entire IR range, and a part of the ultraviolet 

spectrum. Despite that, a body at room temperature only emits the majority of its energy 

in the IR spectrum. The IR wavelength range is defined between 0.7 to 1000 µm. The IR 

radiation can be divided into 5 wavelength ranges based on the spectral band limits of 

frequently used IR detectors [151]: 

- Near infrared (NIR), whose sensitivity is restricted to Si sensors and has a 

wavelength range of 0.75 to 1 µm; 

- Short wavelength infrared (SWIR), whose sensitivity is restricted to PbS and 

InGaAs sensors and has a wavelength range of 1 to 3 µm; 

- Middle wavelength infrared (MWIR), whose sensitivity is restricted to InSb, PbSe, 

PtSi, and HgCdTe sensors and has a wavelength range of 3 to 6 µm; 

- Long wavelength infrared (LWIR), whose sensitivity is restricted to HgCdTe 

sensors and has a wavelength range of 6 to 15 µm; 

- Very long wavelength infrared (VLWIR), with a wavelength range of 15 to 1000 

µm. 

 

Figure 1.14 Spectrum of electromagnetic waves [13]. 

The most of currently in use IR cameras are primarily focused on the wavelength of two 

atmospheric windows: the middle (MWIR) and long (LWIR) wavelength IR spectral 

bands [143, 149, 151]. While the MWIR band has excellent contrast for working with 
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objects at high temperatures, the LWIR band is well suited for use with objects at ambient 

temperature. Usually, small temperature changes allow the LWIR and MWIR spectral 

bands to generate thermal images. Even though the LWIR band may be more sensitive to 

objects at ambient temperature, the MWIR band exhibits a better resolution. The LWIR 

spectral band performs better than the MWIR band under a variety of adverse weather 

conditions, such as fog, dust, and winter haze. 

 A hypothetical object called a "blackbody" is thought to be a perfect radiation 

emitter and absorber in the context of thermal radiation theory [145, 149, 152]. A 

blackbody is capable of absorbing all incident radiations of any wavelength and direction. 

Additionally, it can also emit the maximum feasible radiation at a given temperature and 

wavelength. The spectral hemispherical emissive power ϕλ,b for a blackbody in terms of 

temperature and wavelength in accordance with Planck’s law can be used to evaluate the 

energy flux (energy rate per unit surface area per wavelength) [143, 145, 152] as follows. 

  ( )2

1
, /5 1b C T

C
eλ λ

φ
λ

=
−

  (1.41) 

  2
1 22 and

B

chC c h C
k

π= =   (1.42) 

where λ is the wavelength of the radiation, T is the absolute temperature, c is the speed of 

light, h is the Planck’s constant, and kB is the Boltzmann’s constant. 

The total hemispherical emissive power of blackbody at a given temperature is calculated 

by integrating the Planck’s law in Equation 1.40 over all the wavelengths (0 ≤ λ ≤ ∞). 

This equation is known as the Stefan-Boltzmann’s law [143, 145, 152], which is written 

as follows: 

  ( ) 4
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∞
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where B is the Stefan-Boltzmann constant, which is function of constants C1 and C2. 

 In general, the radiation of an actual body differs from the radiation of a blackbody. 

The former perfectly absorbs any incident radiation, also known as irradiation. On the 
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contrary, only a portion of the radiation is absorbed by actual bodies, with the remainder 

possibly being reflected or transmitted through them. Thus, 

  1a rτ + + =   (1.44) 

where τ is the transmissibility coefficient, a is the absorptivity coefficient, and r is the 

reflectivity coefficient. All of these coefficients are typically functions of orientation 

(azimuth and altitude) and wavelength. Moreover, the absorptivity coefficient depends on 

temperature in addition to wavelength and direction [143, 152]. 

Most engineering materials are commonly opaque in the IR band, even if they are 

transparent to the visible light such as glass. It means that the transmitted radiation is 

equal to zero, thus: 

  1a r+ =   (1.45) 

The relationship between the emissivity and the absorptivity is given by Kirchhoff’s law 

of thermal radiation [152] as follow: 

  a ε=   (1.46) 

where ε is the emissivity coefficient. The emissivity is a surface property which indicates 

its capability of energy emission. It is the ratio of the emitted radiation to the emitted 

radiation of blackbody at given temperature and given wavelength in a direction of 

azimuth and altitude [152]. The emissivity of the blackbody is thus equal to one, which 

is the maximum value for actual bodies. Practically, an IR camera not only detects energy 

emitted from the object but also energy reflected by the environment on the surface of the 

object. This surrounding reflectance effect can be solved by covering with stickers, paint, 

or tape on the reflecting surface. In order to improve emissivity, a general solution is to 

paint with a matt black color on the surface of the body, which mimics black body by 

decreasing the reflection [144]. 

 Modern IR cameras can be split into two categories, depending on the type of sensor 

(detector) used. First, microbolometer cameras have semiconductors or metallic detectors 

operating at ambient temperature. The detectors respond to radiant energy with a change 

in resistance, leading to a change in voltage output. The latter is converted to digital level 
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(DL), which is calibrated into radiance or more commonly temperature. Their thermal 

sensitivity is around 50 mK. They are lightweight and have a relatively low cost. Second, 

quantum cameras, also called photon detector camera or cooled camera, have 

semiconductor detectors operating at cryogenic temperatures, using generally a sterling 

cooling engine embedded inside the camera. They incorporate an electronic shutter which 

controls the integration time (IT) defining how long the IR radiation is captured by the 

detectors. Their main advantages their excellent sensitivity, namely 20 mK after 

calibration and their high acquisition frequency. 

 For both types of cameras, a calibration must be carried out. The output from the 

detector is first converted into “uncalibrated” DLs. The latter must then be converted into 

a quantitative quantity, e.g., temperature. Currently, the sensor of both types of cameras 

is in the form of a matrix of detectors (pixels). These are nominally identical; but in 

reality, each detector reacts differently to the incoming IR radiation. Calibration laws are 

offered by manufacturers and are integrated into the camera system software (“factory” 

calibration). In the case of cooled cameras, these laws take into account the internal 

temperature of the camera in order to avoid thermal drifts which penalize the 

measurement. Calibration procedures offered by camera manufacturers consider the 

response of each detector to be approximately linear in terms of IR flux versus DL 

between two temperatures (lower and upper saturation levels) for fixed shooting 

conditions (IT, focus, lens, etc.). The principle of the two-point non-uniformity correction 

(NUC) operation consists of obtaining calibrated DLs by modifying the gain and the 

offset of the linear law of each pixel between two uniform thermal scenes so as to have 

the same linear law for all pixels. Optimal NUC calibration can be achieved over a 

temperature range extending from approximately 30% to 70% of the unsaturated range. 

Higher order polynomial functions or Planck-type functions can also be used as 

calibration laws, allowing the calibrated range to be extended to the vicinity of 

saturations. The one-point or single-point NUC consists of correcting only the offset 

values by considering one uniform thermal scene, generally at the ambient temperature. 

For more accurate measurement of the temperature fields, calibration can be performed 

in the laboratory using a dedicated blackbody system such as a precision extended 

blackbody. It is then possible to bypass the NUC operation and perform an individual 
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calibration for each pixel (“pixel by pixel” calibration) using polynomial functions as in 

ref. [153]. 

 

1.4.2 Localized spectrum analysis 

 LSA is a full-field measurement technique extracting full-field displacement and 

strain maps from a material surface on which a periodic pattern has previously been 

deposited. In the experimental application performed in this thesis, a checkerboard was 

employed because this pattern leads to the best metrological performance [76]. The 

checkerboard pattern features two periodicity directions, thus allowing displacement 

measurements in two directions. Processing images of a checkerboard pattern relies on 

the Windowed Fourier Transform (WFT) of the undeformed (reference) and deformed 

images of the pattern. Let 𝑓𝑓 be the spatial frequency of the periodic pattern. The WFT 

can be written as follow [76]: 
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where 𝑠𝑠 is the gray level distribution of the checkerboard image. Angle 𝜃𝜃 with respect to 

the 𝑥𝑥1-direction (horizontal axis of the grid of the camera) defines the direction along 

which the displacement is measured. The checkerboard pattern features two periodicity 

directions, thus allowing 2D displacement measurement. 𝑤𝑤 is a window centered on any 

pixel of coordinates (𝑥𝑥1, 𝑥𝑥2) where the quantity 𝑠̂𝑠(𝑥𝑥1, 𝑥𝑥2, 𝜃𝜃) is calculated. A Gaussian 

function was used for this window. It represents the optimal trade-off between various 

constraints; see Ref [154]. It is written as: 
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where 𝜎𝜎 is the standard deviation of the Gaussian function. 𝑠̂𝑠 is calculated for each pattern 

periodicity direction. Two distributions of complex numbers are thus obtained. Their 

arguments correspond to the phase modulation distributions along the pattern periodicity 

directions. By processing images in the undeformed and deformed configurations, it is 

possible to obtain the reference and current phase distributions Φref and Φcur, respectively. 
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The sought displacement is proportional to the phase change between these two 

distributions as follows: 

  ( ) ( ) ( )( ) ( )( )cur ref
1 2 1 1 1 2 2 2 1 2 1 2, , , , ,

2
px x x u x x x u x x x x
π

= − + + −u Φ Φ   (1.49) 

where 𝑝𝑝 is the pitch of the checkerboard, u the sought in-plane displacement vector, and 

𝑢𝑢1 and 𝑢𝑢2 its components along 𝑥𝑥1 and 𝑥𝑥2 respectively. It should be noted that 

displacement is involved in both sides of the equation. A fixed-point algorithm is 

employed to retrieve 𝑢𝑢1 and 𝑢𝑢2 from Equation 1.48. Full details concerning the method 

used to process the images can be found in Refs [75, 76].  

1.4.3 Virtual fields method 

 VFM is a technique which was first developed to identify the parameters governing 

the constitutive equations of various types of materials [14, 155]. It is based on the 

Principle of Virtual Work (PVW) [156]. This principle, which can be applied to any solid 

or portion of solid, can be regarded as the weak form of the local equations of equilibrium. 

It reads as follows: 

  *σ : ε
fV S V V

dV dS dV dVρ− + ⋅ + ⋅ = ⋅∫ ∫ ∫ ∫* * *T u b u a u   (1.50) 

where σ designates the stress tensor, 𝐓𝐓 the surface force, 𝐛𝐛 the volume force acting within 

the body, ρ the density, and a the acceleration. V and Sf are respectively the volume of 

the body and its boundary. 𝐮𝐮∗ designates a virtual displacement field, while ε∗ is the 

associated virtual strain field. In the following, the different fields are functions of the 𝑥𝑥1, 

𝑥𝑥2 and 𝑥𝑥3 Cartesian coordinates. The following quantities are generally introduced: the 

first term of the left-handed side refers to a virtual work done by the internal forces, the 

second and third terms of the left-handed side refer to a virtual work done by the external 

forces exerted on surface and volume, and the term of the right-handed side refers to a 

virtual work done by the acceleration forces. It must be noted that the term on the right-

handed side can be thus neglected in case of static or quasi-static loading. The vectorial 

field 𝐮𝐮∗ must be C0-continuous. In the case where unknown surface forces within Sf are 

involved in the equation, a kinematically admissible (KA) virtual displacement field is 
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used. This means that it takes zero values at all contact zones where the applied forces 

are not known. It is worth noting that the principal of virtual work should not be employed 

with discontinuous virtual displacement field. The reason is when discontinuous virtual 

displacement field is applied, there is a virtual tear on the surface, virtual displacement 

jump due to the discontinuity [14]. 

 An important property is that Equation 1.49 is valid for an infinite number of virtual 

displacement fields 𝐮𝐮∗. With VFM, the idea is to take advantage of this property by 

writing Equation 1.49 with as many independent virtual fields as necessary so that the 

resulting set of equations provides the parameters which are involved in the different 

integrals. When the parameters governing the constitutive equations of the material are 

the unknowns (e.g. Young’s modulus and Poisson’s ratio), the idea is to express the stress 

field σ as a function of these parameters and of the measured strain components. During 

a mechanical test on a continuous material, the loading 𝐓𝐓 applied to the specimen by the 

testing machine is known. All the quantities involved in Equation 1.49 can thus be 

expressed, the user defining suitable virtual fields. The automatic generation of virtual 

fields can be employed in some cases to identify the unknown material’s constitutive 

parameters; see Ref [14] for instance. The known and unknown sets of parameters can 

also be switched. In this case, the constitutive equations and their governing parameters 

are known (so the stress field σ can be calculated from the measured strain field) and the 

loading becomes the unknown. The spirit of the method remains however the same, 

namely using Equation 1.49 with as many suitable virtual fields as necessary to identify 

the parameters defining the load. 

 The paragraph above dealt with quantities in the bulk of the body. The above 

equation involved volume integrals which can be considered as weighted averages of the 

stress component distributions, the weights being the virtual strain components. Stress 

components are related to actual strain components through the constitutive equations, so 

the volume integrals involve strain distributions in the bulk of the body [14]. However, 

the above equation is then adapted to consider in-plane problems. This is due to the fact 

that deformations are frequently measured over the specimen and instead of in bulk. In 

this case, a flat specimen or a thin body is considered as shown in Figure 1.15. The stress 
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components are thus assumed that in-plane stress components σ₁₁, σ₂₂, and σ₁₂ which are 

predominant over components σ₃₃, σ₁₃, and σ₂₃, which can be neglected. This assumption 

is commonly used for thin solids, i.e., plates and shells [14]. 

 

Figure 1.15 Plane stress problem [14]. 

The strain components on the surface of the body, σ₁₁, σ₂₂, σ₁₂ as well as the acceleration 

a and the volume force b are supposed to distribute constantly through the thickness of 

the body. It is worth noting that the virtual fields are defined independently of x₃ [14]. 

Therefore, the principal of virtual work becomes: 

  *σ : ε
fS L S S

t dS t dl t dS t dSρ− + ⋅ + ⋅ = ⋅∫ ∫ ∫ ∫* * *T u b u a u   (1.51) 

This equation can be simplified by thickness t, thus: 

  *σ : ε
fS L S S

dS dl dS dSρ− + ⋅ + ⋅ = ⋅∫ ∫ ∫ ∫* * *T u b u a u   (1.52) 

This equation represents the virtual work principle for what is commonly referred to as a 

plane stress problem. It is an important formulation in practice since several full-field 

measurement techniques available only provide measurements on the surface of the 

specimens under loading. As a result, strain or displacement measurements performed on 

the external surface can be assumed to be representative of through-thickness 

distributions [14]. 

 As discussed in paragraph above, the VFM is frequently applied to identify the 

parameters governing constitutive equations of materials. But it has the capability to 

identify the forces exerted on the specimen. The constitutive equation and their governing 
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material parameters as well as the strain distribution should be known. The virtual 

displacement fields must be then defined. The virtual strain fields are then obtained by 

spatial differentiation. The acceleration remains in the dynamics case. This quantity can 

be obtained by time differentiation of the displacement fields [14]. For the sake of 

simplicity, the volume force acting on the body is generally supposed to be null. The 

principal of virtual work is reduced to: 

  *σ : ε
fV S V

dV dS dVρ− + ⋅ = ⋅∫ ∫ ∫* *T u a u   (1.53) 

The second integral term of the left-handed side is only the unknown, referred to surface 

force or traction. The virtual displacement u* in this term can be factorized when it is 

constant over Sf. The constant virtual displacement is then denoted as u*S. Thus, 

  *
1Su=*

Su x   (1.54) 

where n1 is a unit vector. Equation 1.52 can be thus written as follows: 

  * * *
1 1 σ : εS S

V V

u u F dV dVρ⋅ = = + ⋅∫ ∫ *x F a u   (1.55) 

where F1 is the projection of force vector F on a unit vector x1. Thus, 

  *
1 *
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ρ
 

= + ⋅ 
 
∫ ∫ *a u   (1.56) 

The two other force components can be identified by repeating this procedure with two 

other virtual fields: the first field being constant along x2, and the second field along x3. 

It is necessary to select these two new unit vectors so that (x1, x2, x3) form a basis. Hence, 

consequently, two new projections F2 and F3 can be identified, and vector F is thus fully 

obtained as follows: 

  1 1 2 2 3 3F F F= + +F x x x   (1.57) 

Hence, F is composed of only two force components in a stress plane case. Only two 

virtual fields are required instead of three [14]. 
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1.5 Full-field measurement techniques applied to granular 

materials 

 Numerical simulations and experiments have been used for many decades to study 

granular materials. Classical measurements are unable to investigate an entire granular 

system. Full-field measurement techniques are thus a solution to this issue. They are 

capable of providing complete spatial information about the granular system. Some 

examples of applying full-field measurement techniques to granular materials are 

presented below. 

1.5.1 Photoelasticimetry 

 Photoelasticimetry is one of the classical optical full-field measurement techniques 

for stress and strain analysis based on a transparent non-crystalline material that is 

optically isotropic when free of stress to become optically anisotropic when stressed. 

These characteristics persist while loads are maintained but disappear when the loads are 

removed. When a photoelastic material is subjected to load and viewed with polarized 

light, colorful patterns are seen, which are directly proportional to the shear stresses and 

shear strains in a mechanically isotropic material. Photoelasticity was first employed in 

granular materials in 1957 by Dantu [25]. This technique supports particles made of 

photoelastic materials such as plexiglass, pyrex, polymer, which exhibit the property of 

transient birefringence under loading. 

 Majmudar and Behringer were the first to successfully identify contact forces by 

using photoelasticimetry [4]. The study investigated the inhomogeneous contact networks 

in dry granular materials under external load as shown in Figure 1.16-a, revealing 

different distributions of contact forces and force chain structures. The experimental 

system consisted in a two-dimensional array of 2,500 bidisperse photoelastic disks 

subjected to pure shear and isotropic compression. The researchers visualized internal 

stresses in each grain and by solving the inverse photoelastic problem for each disk, and 

they finally obtained normal and tangential force components for each contact between 

disks. The authors then investigated the differences in force distributions and force chain 
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structures between pure shear and isotropic compression states, as shown in Figure 1.16-

b. The findings showed that contact forces have distinct angular distributions and spatial 

correlations depending on macroscopic preparation. Pure shear systems have long-range 

correlations in the direction of force chains, whereas isotropically compressed systems 

have shorter correlations. 

 

Figure 1.16 Use of photoelasticimetry to identify interparticle force 

networks: a) schematic of the experimental loading system; b) typical 

images for an isotropically compressed state (top) and a sheared state 

(bottom); c) example of photoelastic pattern in a single disk [4]. 

The study also investigated the role of friction in the system, examining the geometric 

anisotropy. The sheared system exhibited a strongly anisotropic distribution, with a large 

number of contacts aligned along the majority of force chains and a small number 

perpendicular to it. The isotropically compressed system showed a six-fold symmetry, 

indicating that the contacts are distributed evenly along these directions. 

1.5.2 Particle image velocimetry 
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 Particle image velocimetry (PIV) is a powerful optical surface velocity-measuring 

tool to visualize two-dimensional deformations of particles. It is worth noting that the 

technique considers each particle as being rigid. The image processing consists in 

identifying the translation of the particles and calculating strain patterns from these 

displacements. The technique was originally developed in the field of experimental fluid 

and gas mechanics. In contrast to fluids or gases, it does not need any intrusive markers 

to be installed in granulates since the grains themselves serve as tracers. Its advantage lies 

in the simplicity. A high-resolution monitoring can be obtained by processing successive 

digital images taken with a constant time between frames. There are two main steps for 

PIV, related to image field intensity and cross-correlation function respectively. The 

image intensity field assigns a scalar value to each point in the image plane, reflecting the 

light intensity of the corresponding point in the physical space. The area of interest (AOI) 

is divided into small interrogation cells, and a deformation pattern is detected by 

comparing two consecutive images. A search zone is extracted from the second image to 

find a local displacement. A cross-correlation function calculates possible displacements 

by correlating all gray values from the first and second images. The correlation plane is 

evaluated at single pixel intervals. The relative displacements are then converted into a 

Lagrangian deformation field with respect to the initial configuration by 2D linear 

interpolation. The strain tensor is calculated with a displacement matrix used in the FE 

method [15]. In 2007, Slominski and others employed PIV to investigate the deformation 

and stain field during the granular silo flow as shown in Figure 1.17-a. They studied the 

effect of the initial sand density and roughness of silo walls on the volumetric and 

deviatoric strain [15]. In 2009, Hermann and others studied the landslide impacted the 

water at high-speed generating a giant tsunami and the highest wave runup. They 

observed the kinematics of wave generation and runup by PIV. The results showed that 

high-speed granular landslide impacts can be divided into two main stages: landslide 

impact and penetration, with flow separation and cavity formation, and air cavity collapse, 

causing massive phase mixing [16]. The experiment is illustrated in Figure 1.17-b. In 

2020, PIV was applied to investigate the dynamics and processes of rapid granular flow 

and the granular segregation mechanism in gravity-driven flow at the laboratory scale, 

which refers to granular avalanches [17]. The experiment is illustrated in Figure 1.17-c. 
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Figure 1.17 Examples of experiments using PIV: a) granular flow in silo 

[15], b) landslide and a giant tsunami [16], and c) granular flow under 

gravity [17]. 

1.5.3 Digital image correlation 

 Digital image correlation (DIC) is an optical technique that employs tracking 

movements across images. The technique is often applied to measure 2D full-field 

displacement and strain on the surface of a material specimen or mechanical part. It is 

widely employed in the science and engineering communities. Speckle patterns are 

applied by randomly spraying the specimen’s or component’s surface. There are two main 

types of speckle patterns, namely laser-light speckle pattern and white-light speckle 

pattern. In a 2D case, a white-light speckle is more robust and appealing. Indeed, it is easy 

to see that most of current DIC publications use white-light speckle patterns with a white 

light source or natural light illumination. The basic principle of DIC is to compare two 

consecutive images, referred to as at reference configuration and deformed configuration. 
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The reference image is used to track its corresponding modification in the deformed 

image in terms of displacement field using a cross-correlation criteria. The displacement 

field is then evaluated. Hence, the full-field strain field is computed by numerical 

differentiation. In 2017, Tolomeo proposed an approach to evaluate contact force in 

granular materials based on the combination of experimental measurements and 

numerical technique. Experimental measurement was performed by using DIC to track 

the displacement of the particles, as illustrated in Figure 1.18-a. A set of contact forces is 

then identified by a statice elastoplastic computation (SEPC) or non-smooth contact 

dynamics (NSCD) [18]. Fanxiu employed DIC to measure mean displacement and mean 

strain fields. The average strain of each particle could be calculated using the DIC 

method, and the average stress could be calculated using the Hooke’s law. The 

relationship between stress and particle force could be determined using basic Newtonian 

mechanics and the balance of linear momentum at the particle level [19]. The experiment 

and results are illustrated in Figure 1.18-b. 

 

Figure 1.18 Experiment and contact force network: a) Tolomeo’s study [18]; 

b) Fanxiu’s study [19]. 

1.5.4 Infrared thermography 

 As discussed above, IR thermography is a full-field temperature measurement 

based on the thermal radiation that is emitted from an object. Luong employed this 
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experimental means on granular systems several times: see Refs [20, 71, 72]. In 2007, he 

employed it to soil dynamics. It allowed observation in real time of heat patterns produced 

by the energy dissipation caused by friction force between grains. Such dissipative heat 

occurred when soil was subjected to vibratory loading exceeding a characteristic 

threshold, evidencing the distortion mechanism [20]. The result is illustrated in Figure 

1.19-a. In 2014, granular systems with about 1200 rigid particles made of 

polyoxymethylene (POM) and high-density polyethylene (HDPE) were analyzed by 

using TSA data averaged over each particle [69]. Temperature oscillations of more than 

0.1°C in amplitude were measured under cyclic mechanical loading at 3 Hz. Note that the 

use of rapid and repeated cycles was required to obtain hydrostatic stress distributions 

with sufficient sensitivity. The latter was about 0.015°C/MPa and 0.026°C/MPa for POM 

and HDPE respectively. Then, in 2015, TSA was applied to granular systems made of a 

few hundred POM particles in order to analyze localizations within them [21]. It enabled 

us to evidence hydrostatic stress “paths” within the particles from temperature oscillations 

up to about 0.2°C in amplitude. Because of the need for numerous and rapid mechanical 

cycles (to ultimately obtain only a low thermal response), the suitability of the 

methodology was questioned in 2018 in Ref [22]. In this work, rigid and soft particles 

made of POM and thermoplastic polyurethane (TPU), respectively, were mixed. It was 

found that temperature variations of more than 0.8°C could be obtained in the soft 

particles without the need to average the values over several cycles. Typical results are 

illustrated in Figure 1.19. 
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Figure 1.19 Application of infrared thermography to the analysis of the 

mechanics of granular materials: a) temperature patterns associated to 

mechanical dissipation in a dry siliceous sand under shearing [20]; 

b) temperature changes associated to thermoelastic coupling, converted in 

hydrostatic stress, in two-dimensional granular systems under cyclic 

confined compression [21]; c) evidence of differences in thermal response 

between particles made in energetic material and entropic material [22]. 

1.6 Conclusion 

 As can be seen in the literature, the mechanical behavior of granular media was 

mainly studied with numerical simulations, in particular using the molecular dynamics 

(MD) method. Thermal modeling of granular media was also concerned, including heat 

production (mechanical dissipation) and heat transmission between particles. 

Experimental studies are much fewer in number compared to the numerical studies. The 

available experimental methods are indeed complex to implement. However, it was noted 

in this chapter that there exist some approaches based on two-dimensional (2D) full-field 

measurements relying on cameras: i) photoelasticimetry, which was successfully used to 
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identify force contact networks in granular systems made of birefringent particles; 

ii) particle image velocimetry (PIV), which considers particles as rigid and allows 

measuring strain patterns in the granular systems; iii) digital image correlation (DIC), 

which enables the measurement of the particle deformations, and then to identify contact 

forces by coupling with suitable modelling. These three techniques, widely used in the 

granular material community, are not used in the following of the thesis. Let is indicate 

also the scarce use of infrared thermography (IRT) in the granular materials community, 

providing first elements to perform an experimental thermomechanical analysis of 

discrete materials. 

 

The work described in the following chapters relies on two types of full-field 

measurement techniques: 

- Localized spectrum analysis (LSA) with subsequent processing by the virtual fields 

method (VFM); 

- IRT and subsequent deformation calorimetry on soft particles. 
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 CHAPTER 2 

Identification of contact forces from  

synthetic strain data 

2.1 Introduction 

 Force measurement is a classical problem in engineering. However, it is difficult to 

measure forces in certain challenging situations, in particular within multi-contact 

systems. This chapter proposes to develop an approach for interparticle contact force 

identification in 2D granular materials by using the virtual fields method (VFM). See 

Section 1.4.3 in the bibliography and state-of-the-art chapter for a reminder about this 

identification method. VFM is generally applied to identify the parameters governing the 

constitutive equations of materials (for instance the Young modulus or the Poisson’s ratio 

in the case of linear isotropic elasticity) assuming the external forces are known. It can be 

also applied to identify the external loading by switching between the sets of known and 

unknown. In this case, the constitutive equations and their governing parameters are 

known, and the loading becomes the unknown. The purpose of this chapter is to apply 

this principle to interparticle contact force identification by using synthetic strain 

fields provided by a finite element (FE) model. The next chapter deals with 

experimental data obtained by localized spectrum analysis (LSA). Specific questions 

concerns the choice of the virtual displacement fields in case of noisy real strain data (as 

in experiments) and the impact of potential bias in the real strain data, missing along the 

boundary of the cylinders, error in the particle locations, lack of spatial resolution due to 

strain concentration near the contacts, as in experiments.  

Throughout this chapter, the following convention is used to represent quantities: 

scalars are written in italics; first-order tensors (vectors) are written in bold; second-order 
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tensors are written with straight symbols, neither italic nor bold; the contracted product 

between two matrices and the scalar product between two vectors are represented by 

symbols “:” and “∙”, respectively; finally, virtual quantities are indicated by a star “∗” 

labeled in superscript. 

2.2 Additional assumptions for contact force identification 

 In the present work, the goal is to apply VFM in order to identify contact forces in 

a 2D multi-contact system composed of cylindrical particles, assuming that the 

constitutive equations of the base material and their governing parameters are known. 

Equation 1.50 in previous chapter can be written for each cylindrical particle, and the 

unknowns are the contact forces. The following additional assumptions were considered 

in this work: 

- the contribution of the volume force 𝐛𝐛 is neglected, considering that the effect of 

gravity is small compared to that of the applied external load; 

- the material of the cylinders is assumed to be homogeneous and isotropic linear 

elastic. The constitutive equation is governed by Hooke’s law; 

- the stress state is considered as a plane because measurement areas are free 

boundaries (the free ends of the cylinders). Three-dimensional FE simulations with 

friction were carried out in a preliminary study. The strain component fields at the 

free end of the cylinders were extracted for subsequent force identification by VFM. 

The obtained results (not reported here) showed that the plane stress hypothesis 

provides the fewest identification errors compared to plane strain and generalized 

plane strain hypotheses. 

- the in-plane contact forces are assumed to act at points, meaning that for all 

particles, the second integral in Equation 1.50 is replaced, for a given virtual field, 

by a discrete sum of scalar products between forces and virtual displacements 

expressed at the contacts. 

With these simplifications, Equation 1.50 from Section 1.4.3 reduces to: 
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  (2.1) 

where ℚ is the stiffness matrix of the material, ε is the (real) strain field, S is the cross-

section area of the 2D particle, 𝑁𝑁cont the number of contacts, and 𝐓𝐓𝑖𝑖 the contact force at 

point P𝑖𝑖. Let us recall that 𝐮𝐮∗ designates a virtual displacement field, while ε∗ is the 

associated virtual strain field. 

 We consider first a simple example where the objective is to identify the two 

components 𝐹𝐹1 and 𝐹𝐹2 of the contact force 𝐅𝐅 acting at point P in Figure 2.1. Equation 2.1 

can be rewritten by discretizing the integral, considering that the real strains are known 

over a pixel grid using a full-field measurement technique: 
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where 𝐴𝐴 is the area of the pixel, 𝑁𝑁pix the number of pixels covering the area S, and 𝑡𝑡 the 

thickness of the cylindrical particle. Quantities 𝑄𝑄𝑖𝑖𝑖𝑖, 𝜀𝜀𝑖𝑖 and 𝜀𝜀𝑖𝑖
∗ are respectively the stiffness 

components and the real and virtual strain components in Voigt notation (𝜀𝜀1 = 𝜀𝜀11, 𝜀𝜀2 =

𝜀𝜀22 and 𝜀𝜀6 = 2 𝜀𝜀12, same for the virtual quantities). On the right-hand side of the equation, 

𝑢𝑢1
∗(P) and 𝑢𝑢2

∗(P) are the components of the virtual displacement 𝐮𝐮∗ expressed at the 

contact point P. Note that “𝐮𝐮∗ KA” (kinematically admissible) means here that 𝐮𝐮∗ is equal 

to zero at all the contact points except point P. 
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Figure 2.1 Cylindrical particle subjected to several contacts. The objective is 

to apply VFM to identify the two components of the in-plane interparticle 

force 𝐅𝐅 at point P. 

Additional relations can be used in the case of linear isotropic elasticity: 
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where 𝐸𝐸 and 𝜈𝜈 are Young’s modulus and Poisson’s ratio, respectively. Equation 2.2 thus 

reduces to: 

  
( ) ( )pix pix

pix

11 1 1 2 2 12 1 2 2 11 1

66 6 6 1 1 2 21

1 (P) (P) , KA

k k k k k k k k

k k

N N

k k

N

k

A Q Q

Q Fu F u
t

ε ε ε ε ε ε ε ε

ε ε

∗ ∗ ∗ ∗
= =

∗ ∗ ∗
=

× + + + +

  = + ∀ 

∑ ∑

∑ *u
  (2.4) 

 The two scalar unknowns 𝐹𝐹1 and 𝐹𝐹2 can be determined using the PVW twice with 

independent virtual fields, providing two linear equations. The system of two equations 

can be then written in matrix form as follows: 

  *E U=Q T   (2.5) 

where 
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where exponents (1) and (2) indicate the first and second virtual fields considered. Note 

that . Equation 2.5 can be rewritten as a linear system A 𝐗𝐗 = 𝐁𝐁 where 𝐗𝐗 is the vector 

gathering the two unknowns (𝐹𝐹1, 𝐹𝐹2). Vector 𝐁𝐁 is equal to Ε 𝐐𝐐. By moving constant 1/𝑡𝑡 

from 𝐓𝐓 to U∗, matrix A is then equal to U∗/𝑡𝑡. 

 Choosing the best possible virtual fields 𝐮𝐮∗(1) and 𝐮𝐮∗(2) is a key point of the 

problem, since they directly influence the conditioning of the matrix of the linear system. 

In an experimental context, this choice therefore influences noise propagation from the 

images captured by the camera to the final identified forces. Various procedures were 

compared in the present study to elaborate these virtual fields. 

Before considering the case of multiple contact points, a simple example is given here 

with only two opposite frictional contacts: see Figure 2.2-a. The objective is to define two 

virtual displacement fields 𝐮𝐮∗(1) and 𝐮𝐮∗(2) to identify the two components of the 

interparticle force 𝐅𝐅 at point P. A simple way to do this is to choose a virtual compression 

and a virtual shear to decouple the equations. Thus: 
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where 𝑘𝑘1 and 𝑘𝑘2 are two scalar constants. Figures 2.2-b and c show schematic views of 

these two virtual displacement fields. 𝐮𝐮∗(1) and 𝐮𝐮∗(2) are null at contact point O and non-

null at contact point P. It should be noted that the virtual displacement fields can be 
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defined by any equation or field, the important point being that they must be C0 

continuous and KA. 

 
Figure 2.2 Illustration in the case of two opposite frictional contacts: 

a) force 𝐅𝐅 at point P to be identified by VFM; b-c) shape of the particle 

subjected to two virtual displacement fields 𝐮𝐮∗(1) and 𝐮𝐮∗(2) enabling the 

identification of the two components of 𝐅𝐅. 

2.3 Defining virtual fields 

 The objective of this section is to define the best virtual fields to identify the contact 

forces. We rely for this on numerical simulations. A FE model is used to provide synthetic 

real strain fields (ε). The criterion for virtual field selection is the difference between 

identified and reference force values when noisy strain data are considered. The best type 

of virtual fields being chosen, we examine the sensitivity of the identification to sources 

of error other than noise in the images during experiments; these are the fact that the 

coordinate system used to perform the VFM calculation and the one where the 

experimental data are obtained can potentially be shifted; and the fact that experimental 

strain data are generally missing along the boundaries. 

2.3.1 Creation of synthetic strain fields 

The first step was to create 2D FE models with the Ansys package in order to have 

reliable synthetic fields of displacement 𝐮𝐮 and strain ε. These fields were then processed 
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with VFM to retrieve the contact forces. Linear quadrilateral elements were used; see 

Figure 2.3. A convergence study (not reported here) showed that the mesh refinement was 

sufficient to obtain reliable data for the identification procedure. 

Particles have a circular cross-section and a thickness 𝑡𝑡 equal to 30 mm. They are 

made of a plastic material with a Young’s modulus of the order of 1 GPa, chosen from 

the Ansys material database: 𝐸𝐸 = 1.08 GPa and 𝜈𝜈 = 0.42. The frame containing the 

particles and the pusher applying a vertical force at the top of the granular system are 

made of steel (Young’s modulus of 200 GPa and Poisson’s ratio of 0.30). Two types of 

contact are considered in the study: frictionless and with friction. In the latter case, 

Coulomb’s law is used with friction coefficients equal to 0.29 and 0.23 for the interparticle 

contacts and the particle-wall contacts, respectively [157, 158]. 

A vertical displacement was applied to the pusher to create a vertical compression 

force with an amplitude of –10 kN. The values considered as input data for the 

identification procedure are the strain components 𝜀𝜀1 (= 𝜀𝜀11), 𝜀𝜀2 (= 𝜀𝜀22) and 𝜀𝜀6 (= 2 𝜀𝜀12) 

obtained from the FE calculation. Gaussian noise was added to these data in order to 

mimic actual noise affecting experimental strain fields. A standard deviation of 2E–04 

was considered for the noise affecting the 𝜀𝜀1 and 𝜀𝜀2 strain maps. This is the order of 

magnitude which is classically considered with the measurement technique used in the 

following chapter, namely LSA [75, 159]. Note that this standard deviation value must be 

multiplied by √2 for the engineering shear strain 𝜀𝜀6. Lower and higher levels of noise are 

compared in the following section to observe the influence of the noise on the 

identification results. Figure 2.3 shows the mesh of the three configurations considered in 

the following part of the study: 

- Configuration C1: one particle 50 mm in diameter with four frictionless contacts 

— Various procedures for the construction of the virtual fields are compared to 

identify the vertical compression force 𝐅𝐅 at the top contact A; 

- Configuration C2: same as Configuration C1, but with 6 contacts — The objective 

is to evaluate the influence of a larger number of contact points on the quality of 

the identification results. Note that the contact locations correspond to the 

situation of a particle within a compact monodisperse granular system; 
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- Configuration C3: three particles, 40 mm, 50 mm and 60 mm in diameter — VFM 

was applied to identify all the contact forces in the granular system. Frictionless 

and frictional contacts were considered. 

 
Figure 2.3 Finite element models to obtain real strain fields: 

a) Configuration C1; b) Configuration C2; c) Configuration C3. 

2.3.2 Several approaches to define virtual displacement fields 

 In the general case, a particle is surrounded by several other particles. The two 

components 𝐹𝐹1 and 𝐹𝐹2 of each contact force must be therefore identified. For a given 
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contact on a given particle, the idea is to define a pair of virtual displacement fields 𝐮𝐮∗(1) 

and 𝐮𝐮∗(2) which are null at all the contact points of the particle except at the one where 

the force components must be identified. The procedure shall be applied to all the contact 

points of a given particle so that the pairs of unknown force components are identified 

one by one at all the contact points. As the procedure above will be applied to all the 

particles and, for each particle, at several contact points, the definition of the virtual 

displacement fields has to be as versatile as possible. 

There is an infinite number of virtual fields that can potentially lead to the sought 

contact force. The classic method for defining them consists in considering a closed-form 

equation, as in Equation 2.7 defining the virtual fields shown in Figure 2.2. Other routes 

can be investigated, namely using randomly defined functions or piecewise-defined 

functions or by interpolating data generated in a way which is suitably defined by the 

user. Configuration C1 in Figure 2.3-a is first considered for comparison between 

different procedures. The objective is to rank the different virtual fields investigated by 

comparing for each of them the value of the identified force component 𝐹𝐹2 at Point A to 

the reference force. The latter is the force introduced by the user in the FE model (here –

10 kN). The sensitivity to noise of the result as well as the robustness of the procedure 

must be accounted for in this ranking. 

It is worth noting that the real strain field provided by the FE model in the zones 

close to the contact points is certainly not reliable. The same remark holds for the strain 

components in these zones measured in experiments. The idea was therefore to remove 

the influence of these zones from the equations. This can easily be done by defining 

suitable virtual fields. To this end, we consider a small zone around each of the contact 

points. These small zones are denoted ZA, ZB, ZC and ZD around points A, B, C or D 

respectively for Configuration C1. Virtual rigid body motion is imposed within these four 

small zones. Consequently, the virtual strain field is rigorously null within such zones. 

Since the integrands of the integrals involved in Equation 2.1 are mere products of real 

and virtual strain components calculated at any point, tailoring the virtual field in such a 

way that it is null over some zones is equivalent to saying that the influence of the real 

strain field is eliminated over these zones. Questionable data are therefore eliminated. 
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Four different procedures were defined for the identification of the force component 

𝐹𝐹2 at Point A from the strain values obtained by the FE model. Figure 2.4-a shows the 𝑢𝑢2
∗  

displacement fields of the four procedures described below, the 𝑢𝑢1
∗ components being null 

in all cases. Note that the pitch of the regular mesh used to discretize the different fields 

is 25 µm. This value was chosen as it represents the size of one pixel of the camera sensor 

that will be used for the experiment with the three-particle system in following chapter: 

- Procedure #1: virtual field defined by closed-form expressions — The idea is to 

define the virtual displacement field as the product of linear functions ensuring a 

zero value on lines located near the contact points, except the one where the force 

must be identified. Between each of these contact points and its associated line, the 

virtual displacement is set to zero. As indicated above, the underlying idea is to 

remove those zones where the real strain gradients are the highest, i.e., where the 

measurement is the most prone to measurement errors. Far from the contacts, the 

real strain values are lower in amplitude, and thus more affected by measurement 

noise. However, the latter is expected to be averaged out when calculating the 

weighted sums of real strain components in Equation 2.4, the weight being the 

virtual strain components. In the four-contact case (Configuration C1), it gives the 

following “cubic” equation over the zone Z defined by 𝑎𝑎 < 𝑥𝑥1 < 𝑏𝑏 and 𝑐𝑐 < 𝑥𝑥2; see 

Figure 2.4-a column 1: 
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Here, constants 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 are chosen in such a way that 𝑢𝑢2
∗  is null along the 

vertical (for 𝑎𝑎 and 𝑏𝑏) or horizontal (for 𝑐𝑐) lines that define the three zones ZB, ZC 

and ZD. Zone ZB was chosen as a narrow horizontal band with a width of 1.25 mm 

(corresponding to 5% of the diameter of the cylinder). ZC and ZD were defined in 

the same way, except that both are vertical instead of horizontal. Then 𝑢𝑢2
∗  is 

extended beyond domain Z with 𝑢𝑢2
∗ = 0. Note that by using a cubic function over 

Z, it is not possible to define a zone ZA around Point A where the virtual 

displacement would be rigid-body-like in the same spirit as for zones ZB, ZC and 

ZD. This means that the real strain field, which is probably not correctly estimated 
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in the vicinity of Point A, either with numerical simulations or with real 

measurements, cannot easily be eliminated with this first procedure. The three 

zones ZB, ZC and ZD are visible in the virtual strain field 𝜀𝜀2
∗ represented in Figure 

2.4-b column 1, with small portions of the disk close to contact points B, C and D 

over which 𝜀𝜀2
∗ is rigorously null (yellow color in the maps). Note that, while 𝑢𝑢2

∗  is 

C0 continuous, 𝜀𝜀2
∗ is not continuous since there is a “jump” at the line defining zone 

ZB. However, this does not induce any approximation in the PVW equation. 

- Procedure #2: randomly defined virtual field— Since there is an infinite number of 

KA 𝑢𝑢2
∗  fields, an option can be to choose them randomly [160]. In this case, 𝑢𝑢2

∗  can 

be defined piecewise by using a coarse mesh, randomly choosing the virtual nodal 

displacements lying between –1 and 0; see Figure 2.4-a (column 2). Values are then 

calculated at the pixel level by using the shape functions of the elements. For the 

present four-contact case, the value prescribed for 𝑢𝑢2
∗  is 0 within ZB, ZC and ZD, and 

–1 within ZA. The values of 𝜀𝜀2
∗ are thus rigorously equal to zero in the four zones; 

see Figure 2.4-b (column 2). Note that the identification was performed 1000 times, 

each time with different randomly-defined displacements at the virtual nodes. The 

objective was to find the best field among these 1000 virtual fields, i.e., the one that 

minimizes the identification error caused by noise in the real strain field. The virtual 

displacement field displayed in Figure 2.4-a column 2 is the best one that was found. 

Long calculation times were however required to perform these 1000 calculations, 

which is a drawback of Procedure #2; see further comments below. 

- Procedure #3: virtual field defined by triangulation-based linear interpolation — 

Triangulation-based linear interpolation can be performed between different zones 

using the built-in Matlab function named ‘griddata’. For the present application, the 

virtual displacements 𝑢𝑢2
∗  were interpolated between the four zones ZA, ZB, ZC and 

ZD, with 𝑢𝑢2
∗ = −1 over ZA, and 𝑢𝑢2

∗ = 0 over the other three zones. The spatial 

distribution of the corresponding virtual strain field 𝜀𝜀2
∗ was then deduced by 

differentiating the virtual displacement field with the ‘gradient’ function of Matlab. 

The four zones ZA, ZB, ZC and ZD are clearly visible in the virtual strain field 𝜀𝜀2
∗ in 

Figure 2.4-b column 3, since 𝜀𝜀2
∗ is rigorously null over these zones. Strain jumps 
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are visible along some inclined lines, which does not induce any approximation in 

the PVW equation, as indicated above. 

- Procedure #4: virtual field defined by triangulation-based natural neighbor 

interpolation — VFM involving integrals whose integrands are products between 

real and virtual strain components over the particle, reducing the influence of this 

noise, can be obtained by considering virtual strain components with smooth spatial 

fluctuation, so that the influence of the noise affecting the measurements is 

equivalent at any point. Smoothly fluctuating virtual strain fields can be obtained 

by triangulation-based natural neighbor interpolation, which is a similar approach 

to the previous one except for the option in the Matlab command, which is ‘natural’. 

See Figure 2.4 column 4 showing the 𝜀𝜀2
∗ field with smooth fluctuations (compare 

with Procedure #3). 

 

It can be observed that the different virtual displacement fields 𝑢𝑢2
∗  shown in Figure 

2.4-a are all continuous, whereas the associated virtual strain fields 𝜀𝜀2
∗ in Figure 2.4-b are 

not. In particular, Procedure #2 gives (by construction) the most fluctuating virtual strain 

field. It is worth remembering that 𝑢𝑢1
∗ was considered as null, thus enabling us to retrieve 

the vertical component of the force 𝐹𝐹2 at Point A by using 𝑢𝑢2
∗ . By switching 𝑢𝑢1

∗ and 𝑢𝑢2
∗ , it 

is possible to identify the horizontal component of the force 𝐹𝐹1instead of 𝐹𝐹2. 
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Figure 2.4 Different procedures for the identification of the force component 

𝐹𝐹2 at Point A for Configuration C1 in Figure 2.3-a: a) field of the virtual 

displacement component 𝑢𝑢2
∗ ; b) corresponding virtual strain fields 𝜀𝜀2

∗. First 

column: closed-form expressions (Procedure #1). Second column: randomly 

defined from a coarse mesh (Procedure #2). Third column: triangulation-based 

linear interpolation (Procedure #3). Fourth column: triangulation-based natural 

neighbor interpolation (Procedure #4). 

2.3.3 Application of the four procedures and selection of the most 

relevant 

 The objective here is to assess the quality of the results provided by the four 

different virtual fields described above, and to select the most relevant procedure. The 

criterion for selection is to obtain the lowest sensitivity to noise in the real strain fields 

when applying the force identification procedure with VFM. 

 The four procedures were applied to identify the value of the force component 𝐹𝐹2 

at Point A of Configuration C1. The force retrieved with each procedure was compared 

to the reference value (–10 kN). For this, noise with a standard deviation of 2E–04 as 

discussed in the following section was first added to the strain values given by the FE 
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model. For each strain component, 100 different copies of the noise were considered. 

Figure 2.5 gives the mean and standard deviation (SD) of the relative errors that were 

obtained for 𝐹𝐹2. It can be seen that all the mean relative errors are very small (less than or 

equal to 0.12 %), except with Procedure #2 (1.20%). The highest error is certainly due to 

the fact that the integrand in the integral of the left-hand side of Equation 2.1, i.e., the 

internal virtual work, has a strong fluctuating sign over the integration domain with 

Procedure #2 since it can potentially change from one element to another, which amplifies 

the effect of the errors caused by the noise. When VFM is used to identify constitutive 

parameters, it has been observed that the smoother the expression of the virtual strain 

fields (for instance with the lowest possible degree if a polynomial expression is 

employed to express the virtual field), the lower the sensitivity to noise of the identified 

parameters [75]. This is also what is observed here for the identification of the applied 

force, since the case of virtual strain changing erratically (Procedure #2) gives the highest 

error, followed by Procedure #1, which corresponds to cubic interpolation. As a general 

remark, calculating weighted averages is a good option to attenuate the effect of noise 

affecting measurements; and the higher the number of points to discretize the integral 

used to calculate the internal virtual work, i.e., 𝑁𝑁pix in Equation 2.2 or 2.3, the better the 

noise attenuation. This number is directly the number of pixels covering the particle. For 

instance, in the present case, the diameter of the particle is 50 mm. With the pixel size 

indicated above (25 µm), the particle surface is covered by 3,056,280 pixels. Such a large 

number leads to a strong “averaging effect”, and therefore minimizes the effect of noise. 

The best results on the mean relative errors are obtained with Procedure #4 (0.01%), 

followed by Procedure #3 (0.09%).  

Figure 2.4-b shows that the 𝜀𝜀2
∗ field of Procedure #4 is the smoothest among the four 

virtual strain fields, which lends credence to the argument discussed above. This claims 

that the virtual fields should be the smoothest possible. It can also be seen in Figure 2.5 

that the SD of the relative errors is also small (less or equal to 1.29%), but the ranking of 

the procedures is different: Procedure #1 is here the best (0.42%), followed by #2 (0.94%) 

and finally Procedures #4 and #3 (1.20% and 1.29% respectively), making the former a 
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priori advantageous in an experimental case for which one set of real strain data is 

generally available at a given loading level. 

 
Figure 2.5 Four-contact system: comparison between the four procedures 

for the identification of the force component 𝐹𝐹2 at Point A with respect to 

the reference value (–10 kN). 

 It is worth remembering that the previous results were obtained with the four-

contact system. As mentioned above, smooth virtual deformation fields are beneficial for 

reducing the effect of noise. An increase in the number of contacts should a priori make 

the virtual strain field more fluctuating, thus a priori increasing the influence of noise. 

Figure 2.6 gives the mean and SD of the relative errors obtained with the four procedures 

for the six-contact system (Configuration C2 in Figure 2.3-b). All the relative errors 
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obtained here (quantified by both the mean and the SD) are greater than those obtained 

with the four-contact system. Procedure #2 leads to the worst results in terms of mean 

(4.52%) and SD (3.27%). Procedure #1 is now ranked third. The fact that the virtual 

displacement field in Zone Z is now a five-degree polynomial function (compared with 

the cubic expression used in Equation 2.8s for the four-contact system) may explain the 

loss in performance of Procedure #1. Procedure #4 gives the best result (SD = 0.43%), 

closely followed by Procedure #3 (SD = 0.49%). 

 
Figure 2.6 Six-contact system (Configuration C2): comparison between the 

four procedures for the identification of the force component 𝐹𝐹2 at Point A 

with respect to the reference value (–10 kN). 
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 Based on these results and considering that the identification procedure should be 

applicable to any number of contacts, Procedure #4 was chosen for the calculations 

performed in the rest of the paper. Additional information can be provided concerning 

calculation times. The computer used for these calculations was equipped with an Intel 

Core i7-7700HQ @ 2.8GHz CPU and 16 GB RAM. Table 2.1 gives the calculation time 

needed to build one virtual displacement field 𝐮𝐮∗ and the associated virtual strain field ε∗ 

(Step 1) for each procedure. The calculation time to identify one contact force with VFM 

with 100 different noisy strain fields (Step 2) was about 530 s for the four procedures. 

Since 1000 random virtual fields were processed to find an optimal virtual displacement 

field with Procedure #2, the total duration of Step 1 was more than 3 hours in this case. It 

should be emphasized that Procedure #3 requires less than 10 minutes, and Procedure #4 

less than 14 minutes. Consequently, calculation time may also become a criterion if the 

system under study contains numerous particles. Since the errors obtained with Procedure 

#3 are very close to those obtained with Procedure #4, Procedure #3 may be preferred to 

Procedure #4 if calculation time is an issue. Procedure #4 is nevertheless considered in 

the following study. 

Table 2.1 Calculation time for each procedure. Durations were measured for 

the six-contact system (Configuration C2). 

Procedure Time needed to build one virtual displacement field 

𝐮𝐮∗ and the associated virtual strain field ε∗ 

#1 6.8 s 

#2 11.3 s (to be multiplied by the number of random 

virtual displacement fields to find an optimal one) 

#3 11.6 s 

#4 322.1 s 

2.4 Influence of the noise magnitude 

 In this section, the robustness of the identification technique is briefly investigated 

by changing the standard deviation (SD) of the noise in the real strain field corresponding 

to Configuration C1, the virtual displacement field defined by Procedure #4 being used 
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in the calculations. Six SD values were considered, namely 0 (images are noiseless in this 

case), 1E–05, 1E–04, 2E–04, 5E–04 and 1E–03. The third value (2E–04) corresponds to 

the actual noise measured with the technique employed in the following chapter, namely 

LSA, but other measurement techniques characterized by different levels of the noise 

could also be used to obtain the experimental data. Consequently, we briefly examine 

here the sensitivity to noise of the identification technique. 

 Figure 2.7 shows the 𝜀𝜀2 fields obtained with simulated data in each of these cases. 

For each component, 100 different copies of noise were added to the synthetic strain data. 

Figure 2.8 shows the mean and SD of the relative error on the force component 𝐹𝐹2 at Point 

A identified for each noise level affecting the strain maps. It is observed that VFM still 

provides reasonable force values for the highest noise level, illustrating the benefit of the 

averaging effect discussed above. On close inspection, it is observed that the noise 

affecting the force identified with VFM is roughly proportional to the noise affecting the 

strain maps, which is logical since the force is identified with a weighted average of the 

strain distribution throughout the surface of the particle. 

 
Figure 2.7 Real strain fields 𝜀𝜀2 obtained by the FE model for Configuration 

C1. Gaussian noise with different standard deviations (SDs) is added. Pixel 

size is equal to 25 µm, as in the experiment with the three-particle system in 

the Chapter 3. 



73 

 

 In the following section, simulated data corrupted by noise featuring a standard 

deviation of 2E–04 will be considered. 100 different copies of noise will be used to 

calculate means and standard deviations. Furthermore, the three-particle system described 

in Configuration C3 in Figure 2.3-c is considered for the analyses in the following, since 

it represents a granular system, for which it possible for instance to compare the forces 

identified on both sides of an interparticle contact. 

 
Figure 2.8 Influence of the noise level on the mean and standard deviation 

(SD) of the relative error on force 𝐹𝐹2 identified at Point A. 

2.5 Sensitivity of the identification technique to other sources 

of error 

 Noise in the images is not the only source of error. We examine here first the 

influence of a shift between the coordinate system where real strain data is collected and 

the one used to perform the VFM calculation. Since experimental data are generally 

missing near the boundaries, we then assess the influence of missing real strain data on 

the value of the identified force and propose a procedure to limit this effect. 
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2.5.1 Effect of a shift between virtual and real strain fields 

 In real experiments on 2D granular systems, it may be difficult to find the exact 

boundaries of the particles. This potentially induces a shift between virtual and measured 

strain fields. We examine here the sensitivity of the identified force to this shift. The top 

particle of the three-particle system was considered for the analysis: see Figure 2.9-a. 

VFM was applied to identify the contact forces at points A, B and C. As schematically 

illustrated in this figure, the virtual strain fields were deliberately shifted when applying 

VFM in order to mimic an error in the location of the center of the cylinder when defining 

the virtual fields. Three cases were considered: +50 pixels along the 𝑥𝑥1-axis, +50 pixels 

along the 𝑥𝑥2-axis, and +50 pixels along both the 𝑥𝑥1- and 𝑥𝑥2-direction. 50 pixels represents 

a significant shifting amplitude, since the diameter of the top particle is equal to 1973 

pixels with the setting given above: the shift corresponds to 2.5% of the diameter along 

each direction. Hence 50 pixels certainly represents an upper bound of what can occur in 

real experiments. Figure 9-b shows a diagram with the mean force components identified 

in each of these three cases as well as the reference ones (without shifting). It can be seen 

that the error induced by this shifting is acceptable, since its absolute value is lower than 

2%. 
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Figure 2.9 Effect of a shift between virtual and real strain fields: 

a) schematic representation for the top particle for Configuration C3; 

b) mean force components identified at points A, B and C. 

2.5.2 Effect of missing data along particle boundaries 

 In real experiments using localized spectrum analysis, strain data are missing along 

the boundary of the cylinders. A majorant of the width of the zone where these data are 

not measured is half the size of the window used in the windowed Fourier transform 

employed; see below the explanation about image processing that provides the final strain 

maps. As in the previous section, the study was performed on the top particle of 

Configuration C3. Figure 2.10-a shows a schematic view of the ring over which 

measurements are not available. This particle is the smallest one, thus the one for which 

losing a ring of data has potentially the highest impact. Two values were chosen for the 

width of the ring, namely 2.5% and 5% of the radius of this particle. 2.5% corresponds to 
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about one-half the apparent size of the standard deviation of the Gaussian window used 

when processing real images of regular patterns, and 5% represents the apparent width of 

the Gaussian window. The missing data is on a ring whose width lies between these two 

bounds. For the top cylinder under investigation, considering its diameter is equal to 1579 

pixels, 5% represents 79 pixels, while the size of the Gaussian window is 42 pixels 

according to the so-called “3-sigma” rule [161]. 

 Two strategies were considered to reduce the impact of this missing information. A 

first and very simple strategy consists in merely stretching the data available within the 

red area in Figure 2.10-a. This can be done using the ‘imresize’ function of Matlab. A 

second and more logical one is to extrapolate the data available. This can be done using 

the ‘scatteredinterpolant’ function of Matlab with the ‘linear’ option. 

 VFM was applied to the two types of completed data and the results are reported in 

Figure 2.10-b for comparison purposes. As above, 100 different copies of the noise were 

considered in order to calculate the mean and SD of the relative error in the force 

component identification. Following comments can be made concerning this figure: 

- The different curves show that the mean value of the relative error (compared to the 

values given by the FE model) remains reasonable, since 0.7% and 3.6% are 

majorants of the errors when the width of the missing band of data is equal to 2.5% 

and 5% of the diameter of the particle, respectively. 

- With the first type of correction (stretching), the error affecting the mean values 

increases compared to the results obtained without any correction, which is 

certainly due to the fact that strain concentrations near the contacts cannot be 

created by mere stretching. With the second type of correction (extrapolation), the 

majorants of the errors reduce from 0.7% to 0.2% and from 3.6% to 0.5%, 

respectively, which notably improves the quality of the results. 

- The SDs of the relative error are also given in the figure. No clear effect of the two 

correction strategies can be observed in the histograms. The main result is certainly 

the fact that whatever strategy is used to identify the force, noisy data only slightly 
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influences the scattering of the final result, since the SDs of the relative error are 

lower than 4.5%. 

 As a conclusion of this section, the second type of correction (extrapolation) is used 

in the remainder of the dissertation. 

2.6 Accounting for friction at the contacts 

2.6.1 Estimating the whole set of normal and tangential forces with 

VFM 

 Configuration C3 is considered again, but this time considering friction at the 

contact points. The contact forces are defined by their normal and tangential components, 

respectively denoted 𝐹𝐹n and 𝐹𝐹t. Figure 2.11 shows the mean and the SD of the relative 

errors of the contact forces identified with VFM. The corresponding reference values 

given by the FE model are also reported for comparison purposes. The error on the mean 

values is very small, since it is lower than 1%. The SDs are also low, at less than 1.4%. 

Consequently, VFM returns values which are very close to the reference ones. It can be 

noted that the errors for the normal forces are smaller than those for the tangential ones. 

This is because normal forces are dominant in any dry granular system (better signal-to-

noise ratio). 
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Figure 2.10 Effect of data missing along the boundary of a particle: 

a) schematic representation for the top particle in Configuration C3; b) mean 

and standard deviation of the relative error compared to the data provided by 

the FE model. 

2.6.2 Hybrid approach: estimating the normal and tangential forces 

with VFM and Newton’s third law of motion 

 Newton’s third law of motion allows us to state that the force applied by any particle 

P1 to a neighboring particle P2 is the opposite of the force applied by P2 to P1. Since all 

the particles are considered in turn in the procedure, all interparticle contact force 

components are thus identified twice. This enables us to assess the quality of the 
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identification by comparing the two solutions at each interparticle contact. It can be noted 

that points B and D correspond to the same contact but belong to two different particles. 

The same holds for points C and G. Table 2.2 gives the norm of the normal and tangential 

forces at these points obtained by the VFM procedure and by the FE model. The Newton’s 

third law of motion is rigorously verified with the data given by the FE model. With VFM, 

the values are very close for both pairs of points, showing a relative difference lower than 

0.2%. These values are also close to the reference ones given by the FE model, with a 

relative error lower than 0.1% even though noisy data were considered in this simulation. 

As a conclusion, the interparticle forces are correctly identified using VFM. 

 
Figure 2.11 Comparison of the contact forces identified with VFM and their 

reference counterparts obtained by the FE model: mean and standard 

deviation (SD) of the relative error at each contact for Configuration C3. 
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Table 2.2 Normal and tangential forces, 𝐹𝐹n and 𝐹𝐹t respectively, at points 

B/D and C/G of Configuration C3 in Figure 2.3-c. Comparison between 

points B and D and between C and G enables us to verify that Newton’s 

third law of motion is respected. 

Contact point 
VFM FE model 

𝐹𝐹n (N) 𝐹𝐹t (N) 𝐹𝐹n (N) 𝐹𝐹t (N) 

B 4717.54 1394.12 4714.61 1388.89 

D 4716.69 1391.91 4714.61 1388.89 

C 6399.83 1275.76 6402.16 1276.23 

G 6399.47 1274.62 6402.16 1276.23 

2.7 Estimating contact forces with fewer pixels 

 The previous section concerned the application of VFM to the case of three 

particles, which is not representative of a real granular material. We investigate here the 

impact of an increase in the number of particles on the quality of the results. The size of 

the camera sensor and the size of the field of view of the camera are considered as constant 

data for the numerical analysis. As a result, increasing the number of particles in the 

medium causes the number of pixels 𝑁𝑁pix used to encode the surface S of any of the 

particles to decrease as the number of particles increases. Two phenomena are expected 

to negatively impact the quality of the interparticle forces measured with VFM in this 

case: 

- first, the number of data points being lower for each particle as their size decreases, 

the impact of the noise corrupting the images is expected to increase. The reason is 

that the averaging effect which occurs when calculating the integrals involved in 

the PVW becomes lower; 

- second, the width of the band of pixels located along the boundary of each cylinder, 

and for which no data are available (see the section above), remains the same, since 

this quantity is only driven by the period of the periodic pattern that is used for the 
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measurement; see the following chapter. This period does not change when 

increasing the number of particles. A consequence is that the influence of the 

missing information is expected to increase as the size of the particles decreases. 

 These two issues were tackled by considering again Configuration C3, this time by 

reducing the number 𝑁𝑁pix of data points in Equation 2.6. For instance, considering a 

particle of diameter 10 mm instead of 40 mm was simply modeled by keeping the same 

FE simulation as that described in the section above, but by dividing by 4 the number of 

data points in both directions, i.e., by 16. As in the previous simulations, 100 different 

copies of the noise were added to the FE results, thus giving 100 different noisy strain 

fields. The mean and SD of the relative errors compared to the values provided by the FE 

model are reported in Figure 2.12. The maximum relative errors are about 6% for the 

mean and 7% for the SD, which is higher than in Figure 2.11 (for which the number of 

pixels 𝑁𝑁pix was greater by a factor of 16). For the sake of comparison, Figure 2.13 gathers 

the results on the mean values only, confirming the trend. Increasing the number of 

particles is thus a priori possible. 

 Considering the experimental setting indicated in the following chapter (size of the 

camera sensor, size of the camera field of view, pitch of the checkerboard pattern 

deposited on the surface of the particles), it would be possible to identify contact forces 

for up to 150 particles of diameter 10 mm (compactly organized) with a relative error of 

the order of 6% for the mean and 4% for the SD. The experimental application of such a 

configuration would, however, require some implementation difficulties; see prospects in 

the conclusion section. 

 The next chapter is dedicated to experimental applications. It will appear that the 

use of VFM equations alone to process experimental strain data may not be sufficient. 

Additional equations will be taken into account. 
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Figure 2.12 Comparison of the contact forces identified with VFM, and their 

reference counterparts obtained by the FE model (with a number of pixels 

reduced by 4 in both directions): mean and standard deviation (SD) of the 

relative error at each contact for Configuration C3. 

 
Figure 2.13 Comparison of the contact forces identified with VFM, and their 

reference counterparts obtained by the FE model (with and without a 

number of pixels reduced by 4 in both directions): mean deviation (SD) of 

the relative error at each contact for Configuration C3. 
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2.8 Conclusion 

 The objective of this chapter was to propose an experimental approach to measure 

interparticle contact forces in a 2D granular system using VFM. This identification 

method relies on the measurement of the strain distribution in the particles. Synthetic 

strain data provided by a finite element model (with added noise) were here used as input 

data for the identification procedure. It was shown that if the mechanical response of the 

constitutive material is known, the contact forces applied to a particle can be identified 

since they are proportional to a weighted average of the strain components, the weights 

being the virtual strain components. In short, each particle can be regarded as a multi-

directional cell force, which directly provides the sought contact forces applied to it by 

suitably processing the strain distribution with the principle of virtual work. Various 

strategies were tested to propose kinematically admissible (KA) virtual displacement 

fields. It was shown that a relevant choice for the KA virtual displacement fields consists 

in using a triangulation-based natural interpolation between the contact points. Various 

simulations illustrated the impact of the choice of the virtual fields and the robustness of 

this identification technique, opening perspectives to its application to granular materials 

in real experiments. This study was submitted to the European Journal of Mechanics 

A/Solids [162] and is currently under review. The next chapter deals with experimental 

applications to various granular systems. 
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CHAPTER 3 

Application of VFM to experimental strain data 

obtained by LSA  

3.1 Introduction 

 The objective of this chapter is to perform experimental applications of the 

approach developed in the previous chapter by processing strain maps obtained using 

localized spectrum analysis (LSA) for each particle. See Section 1.4.2 in the bibliography 

and state-of-the-art chapter for a reminder about this full-field measurement method: 

- Section 3.2 is dedicated to a three-particle system similar to Configuration C3 in 

Figure 2.3-c. It will appear that the use of VFM equations alone to process 

experimental strain data may not be sufficient. Additional equations will be 

introduced, relying on the equilibrium of each particle and the Newton’s third law 

of motion (principle of action-reaction); 

- Section 3.3 is dedicated to bigger granular systems allowing various analyses of the 

interparticle force networks identified, including angular force distributions and 

probably density functions of normal forces in the weak and strong networks.  

3.2 Application to a three-particle system 

 The objective of this section is to apply the approach proposed in Chapter 2 by 

processing experimental strain data obtained by LSA, in the case of a multi-contact 

system comprising three cylindrical particles. 

3.2.1 Experimental setup 

 The configuration considered for the experiment is shown in Figure 3.1-a. Similar 

to Configuration C3 in Figure 2.3-c, the particles are 40, 50 and 60 mm in diameter. The 
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latter are referred to as “small”, “medium” and “large”, respectively, in the following. 

Several plastic materials were tested for the particles. Polyamide 66 (PA66) was finally 

selected as it has a low viscosity, which enabled us to apply (reasonably slow) loadings 

without inducing viscous strains. For the VFM identification, Young’s modulus 𝐸𝐸 was 

fixed to 3 GPa and Poisson’s ratio 𝜈𝜈 to 0.42 [157, 158]. Particles were cut from long bars 

and slightly polished to obtain cylinder lengths of 30 mm. 

 The camera used for the experiments was a Prosilica GT 6600 featuring a CCD 

sensor of size 6576×4384 = 28.8 Megapixels, with an 8-bit gray depth equal to 256 gray 

level. It was equipped with the AF Micro NIKKOR 200mm f/4D IF-ED lens. Considering 

that about 90% of the pixels cover the scene to be observed, the pixel size projected on 

the measurement plane was adjusted to be equal to about 25 µm (150 mm/0.9/6576 = 

0.025 mm). The reason for using 90% of the pixel is to ensure that all the particles are 

always captured by a camera, despite the deformation or translation of particles. 

According to Ref [163], the squares of the checkerboard should be encoded with at least 

3 pixels. For this reason, the width of the checkerboard squares was set to at least 75 µm. 

This value enabled us to capture the whole granular system with our camera while 

maintaining an acceptable value for the number of pixels per period used to sample the 

information contained in the images. 

 A checkerboard pattern was deposited on the surface of the three particles using a 

Keyence MDU1000C laser engraving machine. This machine engraves dots as small as 

32 µm in diameter. The shape of each black square forming the checkerboard was 

approached by engraving 3×3 = 9 circles. The shifting distance between these circles was 

21.5 µm in both the vertical and horizontal directions, which means that an overlap 

occurred between the dots. The laser engraving machine was set to the following 

parameters: 100% laser power, 0 mm spot variable offset, 25 repetitions, 6000 mm/s scan 

speed and 40 kHz pulse frequency. Printing a cylinder of diameter equal to 40 mm took 

about 40 minutes; see Ref [159] for more details concerning this printing procedure. Note 

that a small angle was deliberately applied with respect to the 𝑥𝑥1-axis (horizontal axis of 

the grid of the camera) to avoid aliasing effects in the images [164]. 
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 Figure 3.1-b shows the experimental setup. A ±15 kN uniaxial hydraulic MTS 

testing machine (858 Elastomer Test System) was used to apply the vertical force at Point 

A. The steel pusher was attached to the top grip of the machine. The steel frame containing 

the granular system was attached to the (fixed) bottom grip. Two LED sources were used 

to enhance the contrast of the checkerboard pattern. Before starting the experiments, three 

preliminary compression cycles were applied to ensure that the system was mechanically 

stabilized. Then the compressive loading was maintained at –30 N to keep the contacts 

between the cylinders. The mechanical loading for the test then consisted of four stages: 

- Stage 1 (reference state): waiting at –30 N for a 60 s time period during which the 

camera captured images at an acquisition frequency of 0.1 Hz; 

- Stage 2: vertical compressive loading up to –10 kN with a constant loading rate of 

–328.7 N/min (about 30 min). The benefit of such a slow loading rate is to avoid 

the appearance of viscous strains. After some preliminary tests (not reported here), 

this loading rate did not cause creep to occur in the third phase. 

- Stage 3: compressive force maintained at –10 kN for a 60 s period during which the 

camera captured images at an acquisition frequency of 0.1 Hz; 

- Stage 4: the system was unloaded to the minimum loading, –30 N, with a loading 

rate of –328.7 N/min (about 30 minutes). 

 Stage 1 enabled us to process a stack of 100 images and to deduce an averaged 

reference phase map with limited noise. Note that the phase maps and not directly the 

photos must be averaged to avoid the effect of microvibrations, as shown in Ref [165]. 

 The objective is now to identify the contact forces between the minimum (–30 N, 

stage 1) and maximum (–10 kN, stage 3) loads from the images of the checkboard in the 

reference and deformed states respectively. 

 Figure 3.2 shows the in-plane strain maps obtained with LSA. From the images 

captured in the reference state (stage 1), the standard deviations of the noise in the 𝜀𝜀1 (=

𝜀𝜀11) and 𝜀𝜀2 (= 𝜀𝜀22) maps were estimated to be 2.11E–04 and 2.25E–04 respectively. The 

standard deviation of the noise in the 𝜀𝜀6 (= 2 𝜀𝜀12) map was estimated to be 2.84E–04, 

which is about √2 times greater than the values for 𝜀𝜀1 and 𝜀𝜀2. The small red circle 
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superimposed on the map on the bottom left particle has a diameter equal to 42 pixels = 

1.05 mm. This is the apparent size of the Gaussian envelope used in LSA according to 

the “3-sigma” rule. Roughly speaking, this is the size of the optical gage used to obtain 

the strain maps. The three maps in Figure 3.2 are the inputs of the contact force 

identification procedure in the next section. 

 
Figure 3.1 Experiment on a three-particle system: a) cylindrical particles; 

b) experimental set-up. 
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Figure 3.2 Experimental strain maps used as inputs for the contact force 

identification procedure. 

3.2.2 Definition of contact force identification strategies 

 VFM was then applied to each particle to identify the contact forces using 

Procedure #4 described in Section 2.3.2 in previous chapter. It appeared that the use of 

VFM equations alone to process experimental strain data may not be sufficient (see results 

of Strategy S1 below). This can be due to: 1) imperfect 2D framework with potential non-

uniform force distributions along the linear contacts between the cylinders; 2) out-of-

plane movements; 3) error in the elastic parameters of the particle material. These factors 

cannot be fully controlled, so various alternative approaches for force identification are 

proposed in this section. The purpose is to find which of them are the most suitable. 

The idea is to consider how the contact forces should simultaneously satisfy: 
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- local equilibrium: for each particle, static equilibrium should be respected. The sum 

of the contact forces applied to each particle should be equal to zero. The same 

holds for the moments, calculated for instance at the center of the particle; 

- Newton’s third law of motion: for each pair of forces identified on both sides of a 

contact, the action-reaction principle should be respected, i.e. forces should be 

opposite. 

 It is worth noting that achieving both local equilibrium and Newton’s third law of 

motion leads to the global equilibrium being satisfied, i.e., both the sums of all the contact 

forces and their moments in the granular system are then equal to zero. 

 Let us now enumerate the unknowns of the problem and of the equations at our 

disposal. The number of unknown force components is designated by 𝑛𝑛 in the following. 

For the three-particle system in Figure 3.1-a, there are three contacts for each particle, 

making a total of nine contacts: see points A to I. There are two force components (along 

the 𝑥𝑥1 and 𝑥𝑥2 directions) at each contact. Thus there are 𝑛𝑛 = 18 unknowns. Let us see now 

the number of equations. Denoting 𝑛𝑛part the number of particles and 𝑛𝑛inter the number 

of interparticle contacts, we have 𝑛𝑛part = 3 (small, medium and large) and 𝑛𝑛inter = 2 

(“small-large” contact at B-D, and “small-medium” contact at C-G). Therefore: 

- VFM provides 𝑛𝑛 = 18 scalar equations; 

- the local equilibrium provides three scalar equations per particle (two for the forces 

and one for the moments), which gives 3𝑛𝑛part = 9 scalar equations; 

- the Newton’s third law of motion gives two scalar equations per interparticle 

contact (one for each direction 𝑥𝑥1and 𝑥𝑥2), which gives 2𝑛𝑛inter = 4 scalar equations. 

 This leads to a total of 𝑛𝑛 + 3𝑛𝑛part + 2𝑛𝑛inter = 31 scalar equations, which are 

potentially available to find 𝑛𝑛 = 18 unknowns. Note that considering the last two sets of 

equations only is not sufficient to resolve the problem, which underlines the fact that the 

problem is hyperstatic. The main objective of the developments below is to determine 

how best to handle these 31 equations for contact force identification. 

Five strategies were defined (see the flowchart for each strategy in Figure 3.3: 
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- Strategy S1: application of VFM only — The 𝑛𝑛 unknown force components are 

directly identified using 𝑛𝑛 KA virtual displacement fields. The latter therefore give 

𝑛𝑛 independent linear scalar equations, allowing a direct resolution. 

- Strategy S2: use of VFM equations and all the additional equations — In this 

strategy, all the 3𝑛𝑛part + 2𝑛𝑛inter additional equations are used in addition to the 𝑛𝑛 

VFM equations. As there are more equations than unknowns, the linear system is 

solved in the least-square sense by using the ‘mldivide’ Matlab function. 

Note that some equations need to be normalized beforehand so that all equations 

have the same “weight” before solving. The equations associated with the local 

force equilibrium and with Newton’s third law of motion have the same coefficient 

+1 in front of the unknowns: e.g. 1 × 𝐹𝐹A1 + 1 × 𝐹𝐹B1 + 1 × 𝐹𝐹C1 = 0 for the force 

equilibrium of the small particle in the 𝑥𝑥1- direction; or 1 × 𝐹𝐹B1 + 1 × 𝐹𝐹D1 = 0 for 

Newton’s third law of motion at the contact between the small particle and the large 

particle. The normalization of the VFM equations consists therefore in applying a 

multiplication factor so that the +1 value also appears in front of the unknowns. 

Regarding local moment equilibrium, the coefficients in front of the unknowns 

depend on the distance between the force vector and the calculation point of the 

moments; they can have different signs. Thus, the normalization of each local 

moment equilibrium equation consists in applying a multiplication factor so that the 

average of the absolute values of the coefficients in front of the unknowns is equal 

to +1. This normalization procedure enables us to give the same importance to all 

the equations before solving. 

- Strategy S3: use of VFM equations with substitution of unknowns from the local 

force equilibrium and Newton’s third law of motion — For each particle, one of the 

contact forces can be substituted by the opposite of the sum of the other forces 

applied to the particle (local force equilibrium). For instance, in the three-particle 

system the two components of 𝐅𝐅A can be replaced by the two components of −𝐅𝐅B −

𝐅𝐅C. Additional substitutions can be made using Newton’s third law of motion. For 

example, the two components of 𝐅𝐅B can be replaced by the two components of −𝐅𝐅D. 

This reduces the number of unknowns, which is now equal to 𝑛𝑛 − 2𝑛𝑛part −
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2𝑛𝑛inter = 8, for 𝑛𝑛 = 18 scalar equations derived from VFM. As there are more 

equations than unknowns, solving the linear system is performed in the least-square 

sense. 

- Strategy S4: use of VFM equations, then the average of the forces at each 

interparticle contact to respect the Newton’s third law of motion, and finally 

correction of the forces to respect the local force equilibrium — This strategy is 

actually an incremental three-step approach. In the first step, VFM is applied to 

calculate preliminary values for all the contact forces, as with Strategy S1. In the 

second step, the forces at the interparticle contact points (here the small-large 

contact at B-D and the small-medium contact at C-G) are replaced by the averages 

of the two forces identified in the first step on each side, obviously taking into 

account the opposite signs on each side. The third step relies on the local force 

equilibrium: for each particle and each direction (along 𝑥𝑥1 and along 𝑥𝑥2), the value 

of the lowest component is replaced by the opposite of the sum of the components 

of the other forces applied to the particle. This may modify the component values 

at the interparticle contacts. Therefore, Newton’s third law of motion is examined 

again for each interparticle contact. If it is not satisfied, steps 2 and 3 are performed 

again, iteratively, until Newton’s third law is satisfied at each interparticle contact. 

By construction, the contact forces obtained at the end of the procedure verify both 

Newton’s third law of motion (due to the second step) and the local force 

equilibrium (due to the third step). 

- Strategy S5: use of VFM equations with Lagrange multipliers to respect all the 

additional equations — Strategy S5 consists in minimizing the sum of the squared 

errors deriving from Equation 3.1 at all the contacts, while strictly respecting the 

local equilibrium and Newton’s third law of motion. The constraints of the 

minimization problem can be written as 𝐠𝐠(𝐅𝐅) = 𝟎𝟎, where 𝐅𝐅 gathers all the 

components of all the contact forces to be identified and the vector function 𝐠𝐠 is 

expressed from the 3𝑛𝑛part + 2𝑛𝑛inter additional scalar equations. The Lagrange 

function ℒ is then expressed as follows: 

  ( ), ( ) ( )f= − ⋅F λ F λ g F    
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where 𝑁𝑁cont is the number of contact forces in the granular system (so 𝑁𝑁cont =

𝑛𝑛/2 = 9), 𝑁𝑁const is the number of constraints (so 𝑁𝑁const = 3𝑛𝑛part + 2𝑛𝑛inter = 13) 

and the vector 𝛌𝛌 is composed of the Lagrange multipliers 𝜆𝜆𝑖𝑖. The objective is to 

find a stationary point, i.e. all the partial derivatives of the Lagrange function are 

equal to zero: 

  and∂ ∂
= =

∂ ∂
0 0

F λ
   (3.2)  

This gives 2𝑁𝑁cont + 𝑁𝑁const scalar equations, i.e., 31 equations composed of 

2𝑁𝑁cont = 18 equations for the force components and 𝑁𝑁const = 13 equations for the 

Lagrange multipliers. It gives a system of 31 equations for 31 unknowns. The latter 

are the 18 force components and the 13 Lagrange multipliers. In practice, this 

calculation was performed with Matlab using symbolic solving and the ‘jacobian’ 

function for the derivatives. It is worth noting that the force components obtained 

from this strategy respect local equilibrium for all the particles and Newton’s third 

law of motion at all the contacts. 
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Figure 3.3 Flowchart of the five strategies to identify the contact force 

components in the case of experimental strain data. 

3.2.3 Experimental results 

The results of the different contact force identification strategies were compared using 

the strain maps in Figure 3.2 as input data. The quality of the identification was estimated 

through three error indicators: 

- the norm of the residual force for each particle (small, medium and large): 

  resid
3 contacts

(particle)F = ∑ F  (3.3)  

- the absolute value of the residual moment for each particle (small, medium and 

large): 

  resid
3 contacts

(particle)M = ∑ M  (3.4)  
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- the norm of the residual force at each internal contact (small-large and small-

medium): 

  resid
2 internal contacts

(internal contact)F = ∑ F  (3.5)  

 By construction, some strategies provide null values for these indicators. The values 

of 𝐹𝐹resid(particle) and 𝐹𝐹resid(internal contact) are always null for Strategies S3, S4 and 

S5 because local force equilibrium and Newton’s third law of motion are “enforced” in 

these procedures. The values of 𝑀𝑀resid(particle) are always null for Strategy S5 because 

local moment equilibrium is enforced in the procedure. 

 Figure 3.4 gives the three error indicators obtained with the five strategies. Figure 

3.5 shows the contact force vectors, as well as the direction of these forces with thin 

dashed lines. Note that, as each particle is subjected to three force contacts, the condition 

𝑀𝑀resid(particle) = 0 is obtained when the three force directions cross at the same point. 

The following comments can be made concerning this figure: 

- it can be observed that Strategy S1 globally leads to the worst results: see for 

instance the value of 𝐹𝐹resid(medium) at about 250 N and the value of 

𝐹𝐹resid(small − large) at about 1000 N. Applying Strategy S2 decreases these 

values: about 100 N and 650 N respectively; 

- by construction, Strategies S3 and S4 give zero values for 𝐹𝐹resid(particle) and 

𝐹𝐹resid(contact). However, the 𝑀𝑀resid(particle) values for these two strategies are 

not globally better than for Strategies S1 and S2. The values for 𝑀𝑀resid(medium) 

are even worse: see the crossing of the force directions in Figures 3.5-c and -d; 

- as expected, the error indicators for Strategy S5 are all equal to zero, making this 

strategy the best of the five. This choice is also confirmed by comparing the errors 

made on the vertical component of the force at point A, which should be equal to 

the vertical force applied by the testing machine (–10 kN): see Table 3.1. The 
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relative error is equal to 1.3% with Strategy S5, about double that with strategy S1, 

S2 and S3, and 8.4% for Strategy S4. 

 
Figure 3.4 Comparison of the different strategies for contact force 

identification from experimental data: a) deviation from the local force 

equilibrium; b) deviation from the local moment equilibrium; c) deviation 

from Newton’s third law of motion. 
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Figure 3.5  Contact force at each contact identified using the five strategies. 

Table 3.1 Vertical component 𝐹𝐹𝐴𝐴2 of the force at point A (in contact with the 

pusher) identified using the five strategies. Relative errors are calculated 

with respect to the vertical force applied by the testing machine (–10 kN). 

Strategy 𝐹𝐹𝐴𝐴2 (N) Relative error 

S1 –10235 2.4% 

S2 –10274 2.7% 

S3 –10251 2.5% 

S4 –10841 8.4% 

S5 –10127 1.3% 

3.2.4 Conclusion of the application to a three-particle system 
An experimental application was performed on a three-particle system by processing 

strain maps obtained in each particle using LSA. VFM failed to identify consistent force 
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components, and in particular failed to verify the Newton’s third law of motion (principle 

of action-reaction at the interparticle contacts). This can be explained by an imperfect 2D 

assumption, out-of-plane movements or errors in the elastic parameters of the particle 

material. Alternative force identification approaches were proposed by adding equations 

derived from the local equilibrium of each particle, and Newton’s third law of motion at 

each interparticle contact. Since the number of available equations becomes higher than 

the number of unknowns (the contact force components), several strategies were 

compared to determine how best to handle these equations for contact force identification. 

The best solution was obtained using the VFM equations with Lagrange multipliers to 

strictly respect force and moment equilibrium for each particle and Newton’s third law of 

motion at each interparticle contact. The application to higher numbers of particles is 

presented in the next section. 

3.3 Application to bigger granular systems 

 Experiments with greater numbers of particles were carried out to analyze three 

cases: monodisperse, bidisperse and tridisperse configurations. LSA was applied using 

the same checkerboard pattern on the cylindrical particles as in the three-particle system; 

and Strategy S5 was used to identity the contact forces. The objective is to analyze the 

interparticle force networks in terms of angular force distribution and probably density 

functions of forces in the weak and strong networks. 

3.3.1 Experimental setup 

 Three diameters of cylindrical particles were used to prepare the granular systems: 

12 mm, 15 mm and 20 mm, referred to as “small” ,“medium” and “large” in the rest of 

the chapter respectively. The particles were made of PA66 as in the previous section. The 

length of the cylinders was approximately equal to 20 mm. Three configurations were 

considered: monodisperse, bidisperse and tridisperse, as illustrated in Figure 3.6. The 

numbers of particles for each configuration is indicated in Table 3.2. The monodisperse 

configuration was composed only of small particles: 108. The bidisperse configuration 

consisted of small and medium particles: 56 and 29 respectively. The tridisperse 

configuration consisted of the three types of particles:54 small particles, 22 medium 
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particles, and 4 large particles. For each configuration, the particles were randomly placed 

on the rectangular steel frame, 150 mm in width. 

Table 3.2 Number of particles for the three configurations tested. 

Configurations 
Particles 

Small Medium Large 

Monodisperse 108 - - 

Bidisperse 56 29 - 

Tridisperse 54 22 4 

 
Figure 3.6 Photo of the three experimental configurations tested: 

a) monodisperse; b) bidisperse; c) tridisperse. 

 The surface preparation of the particles was similar to the case of the three-particle 

system in Section 3.2.1: the width of the checkerboard squares was equal to 75 µm; see 

Figure 3.7-a. The loading system, the lighting and the measurement setup by camera were 
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also similar to the case of the three-particle system; see Figure 3.7-b. The pixel size on 

the free-end of the cylinders was also equal to 25 µm. 

It is worth noting that the placement of the particles in the frame was long and complex: 

- First, the particles were placed randomly with an orientation of checkerboard of 

about 10 degrees with respect to the horizontal axis. The objective is to prevent 

the aliasing effect during the mechanical tests, causing fringes that disturb the 

measurement of the strain fields [164]. Moreover, a transparent cover lid was used 

to ensure that the ends of all the cylinders in front of the camera were in-plane; 

- Second, three preliminary compression cycles between –0.1 kN and –14.5 kN 

were applied to compact the granular system. The compressive load was then kept 

at –0.1 kN to ensure the mechanical stability of the particles. The consequence of 

this second step was that the particles have moved and rotated, making the 

orientation of the checkerboards sometimes far from 10 degrees; 

- Third, the particles were rotated manually one by one, still under the compressive 

load of –0.1 kN and using the transparent cover lid, in order to have the orientation 

of all the checkerboards equal to about 10 degrees. Friction between particles 

makes this procedure possible, i.e., it was possible to rotate each cylinder nearly 

independently; 

- The second and third steps were repeated several times until the orientation of all 

the checkerboards was about 10 degrees at the end of the second step; see Figure 

3.7-a. 

 

This procedure was found after numerous preliminary tests. It is with noting that the 

duration to prepare one configuration was about half a day. 
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Similar to the test on the three-particle system, the mechanical loading consisted in four 

steps while the camera captured the images at an acquisition frequency of 0.1 Hz: 

- Step 1 (reference state): capturing images at –0.1 kN state for 50 seconds; 

- Step 2 (loading): compressive loading up to –14.5 kN at a constant rate of – 5.56 

N/s. It took about 40 minutes to reach the maximum load. As indicated for the 

three-particle configuration, the advantage of such a slow loading is that potential 

viscous strains are avoided or very low. This loading rate did not cause creep in 

the third step, according to preliminary tests (not reported here); 

- Step 3 (constant load): compressive load maintained at –14.5 kN for 5 minutes; 

- Step 4 (unloading): compressive loading decreasing to –0.1 kN at a constant rate 

of +240 N/s (about 1 minute). 

 The testing procedures were the same for the three configurations. Preliminary tests 

were actually performed, enabling us to progressively improve the quality of the 

experiments. The objective is now to identify the contact forces between the minimum 

stage (–0.1 kN) and the maximum stage (–14.5 kN) by using the images of the checkboard 

in the reference and deformed states respectively. It is worth recalling again that all 

particles in the granular systems should have been oriented properly before performing 

the tests. This is a critical point of the experimental setup, enabling us to obtain the highest 

possible quality of strain fields. 
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Figure 3.7 Experimental setup for the big granular systems: a) checkerboard 

on a particle, exhibiting an angle of about 10 degrees with respect to the 

horizontal direction; b) experimental equipment. 

3.3.2 Experimental results 

1) Strain fields 

 LSA was applied to each configuration for each particle between the images in the 

reference state (–0.1 kN) and at the maximum compressed state (–14.5 kN). The fields of 

the in-plane strain components εxx, εyy, and εxy are displayed in Figures 3.8, 3.9 and 3.10 

for the monodisperse, bidisperse and tridisperse cases respectively. Note that the display 

is made in the reference configuration, i.e., with the location of the particles under the 

loading of –0.1 kN. These strain fields are the inputs for the contact force identification 

procedure which was presented in the previous chapter. 
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Figure 3.8 In-plane strain components for the monodisperse case. 
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Figure 3.9 In-plane strain components for the bidisperse case. 
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Figure 3.10 In-plane strain components for the tridisperse case. 

2) Force networks and angular force distributions 
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 Using the Strategy S5 described in Chapter 2 and still considering a Young’s 

modulus of 3 GPa and a Poisson’s ratio of 0.42 for the PA66 material, the contact forces 

were identified from the strain data for each configuration: see Figures 3.11-a, 3.12-a and 

3.13-a for the monodisperse, bidisperse and tridisperse cases respectively. Contact forces 

are represented by red arrows. The same scale is used for the length of the vectors 

(referring to the force magnitude) in the three cases. The discussion below is the core of 

the mechanical analysis of the work, before considering thermo-mechanical aspects in the 

next chapter. The analysis below is based on two types of representation: 

- Figures 3.11-b, 3.12-b and 3.13-b shows the angular force distributions using bin 

intervals of 15° and moving every 1° to create continuous distributions, for the 

monodisperse, bidisperse and tridisperse cases respectively, excluding the contacts 

with the four walls at the boundary of the granular system. Such graphs concern the 

directions of the normal forces; 

- each contact force can be split in a normal component and a tangential component. 

Let us recall that normal forces are crucial for a granular system due to their 

dominance. It has a significant impact on the macroscopic behavior of the granular 

system, particularly in a quasi-static situation. Figures 3.11-c, 3.12-c and 3.13-c 

display the normal force network for the monodisperse, bidisperse and tridisperse 

cases respectively. These efforts transmitted to contact is represented by red line 

which join the particle’s center in contact whose the thickness is proportional to the 

normal force magnitude. Note that the thickness scale is the different between the 

three configurations; 

 Note that the distinction of the normal forces between strong and weak networks 

will be discussed in the following subsection 3). 

 Let us start by the analysis of the monodisperse configuration. The coordination 

number is this case is approximately 4.4. It can be seen in Figure 3.11-a that, as expected, 

horizontal contact forces between particles are rare. Most of the particles (except 

obviously those in contact with the four walls) are subjected to four interparticle contact 

forces forming an X-pattern. However, almost horizontal interparticle contact forces are 

visible in the right-hand part of the granular system, particularly in the upper right-hand 
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zone. The angular force distribution in Figure 3.11-b shows that most of the interparticle 

forces are transmitted globally in the ±60° and ±120° directions with respect to the 

horizontal direction, while the remainders are transmitted nearly horizontally.  

 
Figure 3.11 Results for the monodisperse configuration: a) contact force 

network; b) angular force distribution; c) normal force network. 

The normal force network in Figure 3.11-c shows a strongly homogeneous distribution 

over the whole granular system. However, it was calculated that the total normal force at 

the top of the granular system (in contact with the pusher) is higher than that at the bottom 

of the granular system (in contact with the bottom wall): 15.66 kN vs. 14.71 kN. It can 

be noted that the total vertical force applied to the granular system (15.66 kN) is higher 

than the theoretical value (applied by the testing machine). It should be equal to the 
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difference between the maximum force (14.5 kN) minus the minimum force used to 

define the reference state (0.1 kN), i.e., 14.4 kN. The relative error, equal to 8.8%, could 

be explained by various sources of error. Anyway, this is not a problem for the rest of the 

study. Indeed, the analysis is based on the distinction between the strong network and the 

weak network, depending on if the normal force is higher or lower to the mean value, 

respectively. 

 The coordination number of the bidisperse configuration is approximately 4.0. The 

contact force network in Figure 3.12-a is heterogeneous. The highest magnitudes are 

located in the upper-left and lower-middle zones of the granular system. The angular force 

distribution in Figure 3.12-b shows that normal forces are transmitted in all directions 

except around 30° (and therefore also 210°).Low occurrences are also visible at 0° (and 

therefore also 270°). Normal forces are mostly oriented approximately between 40° and 

80°, and between 95° and 180° (and therefore also in the opposite directions). The normal 

force network in Figure 3.12-c exhibits some “paths” of high magnitudes. The normal 

forces can be distinguished into two groups. The first one corresponds to normal forces 

transmitted globally along vertical direction when the particles are globally vertically 

aligned: see for instance the thick red lines in four particles in contact with the left wall, 

but such lines can be found in many places in the granular system. They are related to 

high values of the yy-component of the strain, εyy, in Figure 3.9. The second group of 

forces corresponds to normal forces transmitted globally along diagonal directions: see in 

particular in the middle-bottom zone. These forces are related to the high values of εxy in 

Figure 3.9. In addition, there are two “idle particles”, namely in the middle of the third 

column from the right wall and the fifth particle from the right in the bottom row. These 

particles have a very low strain level as shown in Figure 3.9. The very low thickness of 

the red lines in these two idle particles in Figure 3.12-c means that the corresponding 

contacts are caused by very low normal forces, but these particles are still in contact with 

their neighborhood. It must be noted that these idle particles may or may not be necessary 

for maintaining the system stability depending on the granular packing. In the present 

configuration, it seems that they are not required to maintain stability. Furthermore, the 

fifth particle from the left in the bottom row appears to be out of contact with the above 

neighbor but transmits (very small) normal forces with the bottom wall and with the left 
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and right particles. Actually, these three contacts come into and out of contact during the 

compressive loading. 

 
Figure 3.12 Results for the bidisperse configuration: a) contact force 

network; b) angular force distribution; c) normal force network. 

 The coordination number of the tridisperse configuration is approximately 3.9. The 

contact force network in Figure 3.13-a shows that the directions of the forces are mostly 

normal to each contact, i.e., the tangential forces are very low compared to the normal 

forces. Several idle particles can be found in the middle of the first column (in contact 

with the left wall). These three particles exhibit very low strain levels, as illustrated in 

Figure 3.10. However, they seem to be required for maintaining the stability of the 

system. Furthermore, another interesting phenomenon known as “jamming state” can also 
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be found near the big particle at the middle-bottom zone. Three small particles can be 

seen hovering above the big particle, without touching it. The normal force network in 

Figure 3.13-c illustrates that the force is transmitted from top to bottom through the big 

particles. The angular force distribution in Figure 3.13-b shows that most of the normal 

forces are oriented vertically and horizontally. In addition, some other normal forces are 

approximately at ±60° and ±120° from the horizontal. 

 
Figure 3.13 Results for the tridisperse configuration: a) contact force 

network; b) angular force distribution; c) normal force network. 
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3) Strong forces and weak forces 

 Due to the inhomogeneity and the anisotropy of the contact forces, the latter can be 

distinguished into two classes, referred to as strong forces and weak forces [11]. The 

strong network is defined by the normal forces higher than the mean of the normal forces 

over all the contacts. On the contrary, the weak network is defined by the normal forces 

lower than the mean. The strong forces generally transmit the mechanical loading 

throughout the system in the direction parallel to the compression direction, while the 

stability of the system requires the lateral forces in the complementary network (which 

are preferred by the weak forces). It is worth noting that the contact forces with the walls 

are not taken into account because they are not representative of the granular system. 

Another reason is that their orientations are always either vertical or horizontal(in the case 

of a rectangular frame), which may alter the analysis. Figure 3.14 presents the force 

networks and the angular force distribution of monodisperse, bidisperse, and tridisperse 

in the first and second columns, respectively, distinguishing strong, weak, and wall-

particle forces. The latter are shown in the red, blue, and gray colors, respectively. The 

strong and weak forces are separately displayed in the angular force distributions using 

red and blue colors, respectively. 

 The normal force network of monodisperse case in the first column of Figure 3.14-

a shows that the strong forces are entirely oriented in the diagonal “X” direction of the 

particles, whereas the weak forces are mainly oriented in the vertical direction (and also 

slightly in the diagonal direction). The normal force networks of the bidisperse and 

tridisperse cases in the first column of Figures 3.14-b and 3.14-c, respectively show that 

the strong forces are mainly oriented in the vertical direction, i.e., parallel to the external 

compressive loading. The weak forces are mainly oriented in the perpendicular direction 

of the external compressive loading. 

 For the angular force distribution of the monodisperse case in the second column 

of Figure 3.14-a, the orientation of the strong network is clearly seen having four spikes, 

which are all in the diagonal direction. The orientation of the weak network has six spikes. 

Two big spikes are mostly in the horizontal direction, which is perpendicular to the 

external compressive loading. The other four spikes are in diagonal direction. For the 



111 

 

bidisperse case, the angular force distribution of the strong forces is mostly oriented in 

the vertical direction. The angular distribution of the weak forces is mostly oriented along 

the angles 0°, 60°, 180° and 240°. For the tridisperse case, the angular force distribution 

of the strong forces is clearly seen in the vertical direction and the angular force 

distribution of the weak forces is mainly oriented in the horizontal direction. 

 In overall, the strong network of the polydisperse configurations is generally 

oriented in the direction parallel to the compression and the weak network is oriented in 

the direction perpendicular to the compression. In the monodisperse system, the strong 

network is entirely in the diagonal directions due to the triangular force pattern. The weak 

network is in the vertical direction and slightly in the diagonal directions. Furthermore, 

the strong and weak networks have 4-6 spikes due to the coordination number, which is 

greater than 4. 
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Figure 3.14 Normal force network and angular force distribution 

distinguishing between strong forces and weak forces: a) monodisperse 

configuration; b) bidisperse configuration; c) tridisperse configuration. 
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4) Probability density function of the normal force magnitudes 

 A statistical analysis of the normal forces is now performed using probability 

density functions (PDFs). The PDF for the three configurations is first presented in Figure 

3.15-a. The x-axis in the graph corresponds to the normalized normal force 𝐹𝐹/𝐹𝐹�, the 

normal forces divided by the mean normal force of each configuration. The trend of the 

distribution is slightly left-skewed for the monodisperse case, and right-skewed for the 

bidisperse and tridisperse cases. Distinct PDFs are then calculated for the weak and strong 

networks: see Figures 3.15-b and -c respectively. The x-axis in these graphs corresponds 

to the normalized normal force 𝐹𝐹/𝐹𝐹� between 0 and 1 for the weak network, and above 1 

for the strong network. The same PDFs are displayed in semi-natural logarithmic scale in 

Figures 3.15-d and -e, respectively. The PDFs of weak forces in polydisperse systems are 

generally known to be characterized by power laws (see Section 1.2.4 for more 

information), leading to slightly curved plots as shown in Figure 3.15-d. Moreover, the 

distributions of the weak forces in the bidisperse and tridisperse configurations appear to 

be similar to each other. The situation is different for the monodisperse case, which has a 

lower percentage of weak forces compared to that of the strong forces. The percentages 

of strong forces in monodisperse, bidisperse and tridisperse configurations are 

approximately 67, 42% and 38%, respectively. On the other hand, the percentages of 

weak forces are about 33%, 58% and 62%, respectively. These results are consistent with 

previous papers that found that the percentages of strong forces and weak forces in 

polydisperse configurations are typically around 40% and 60%, respectively [11]. In 

polydisperse systems, the PDFs of strong forces are generally characterized by an 

exponential decay, which can be written by: 

  (1 / )F FP eβ −∝  (3.6)  

where β is the decay coefficient. It is clearly seen that the distribution trends of the three 

configurations exhibit an exponential decay, as shown in Figure 3.15-c. Indeed, the PDFs 

in semi-logarithmic scale in Figure 3.15-e feature reasonably linear trends. The maximum 

normalized normal forces of the monodisperse, bidisperse and tridisperse configurations 

are approximately 1.8, 3.2 and 3.5, respectively. This emphasizes that in a polydisperse 

configuration, the largest particles would primarily transmit higher forces, as evidenced 
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in previous studies [10]. Concerning the compacted monodisperse configuration, the fact 

that the contact forces are almost homogeneously distributed in diagonal directions 

explains why the range of normalized normal forces is rather narrow, and the percentage 

of strong forces rather high compared to the others configuration. 

 
Figure 3.15 Probability density function (PDF) of the normalized normal 

forces: a) in the force network b) in the weak network; c) in the strong 

network; d) in the weak network in semi-natural logarithmic scale; e) in the 

strong network in semi-natural logarithmic scale. 
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5) Distribution of ratios between tangential and normal forces 

 The tangential forces at all the contacts are presented in Figure 3.16. They are 

represented by red double-headed arrows that are tangential to the contacts and all of the 

same length. The arrow thickness is proportional to the tangential force magnitude. Note 

that single-headed arrows are used for the contacts with the walls because the 

measurements were made only on the side of the particle. Note that the thickness scale is 

different between the three configurations in Figures 3.16-a, -b and -c, corresponding to 

the monodisperse, bidisperse and tridisperse cases respectively. 

 The tangential force network of the monodisperse case in Figure 3.16-a shows that 

the high tangential forces are located along the two rows of particles near the bottom, left 

and right walls. The tangential force network of the bidisperse case in Figure 3.16-b 

shows that the high tangential forces are located in the middle-bottom zone of the granular 

system, as well as at the top-left and top-right corners. The tangential force network of 

the tridisperse case in Figure 3.16-c shows that the high tangential forces occur in the top-

right zone of the granular system. 

 It is worth noting that tangential forces are rarely identified from experiments in the 

literature. Let us cite Ref [4] from photoelastic data and Refs [63-65] from strain data 

obtained by DIC in combination with FEM simulations. The present research work 

demonstrates that VFM and LSA enable to successfully measure both normal and 

tangential forces using a procedure which was carefully validated in Chapter 2 and 

Section 3.2. 
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Figure 3.16 Tangential force network: a) monodisperse configuration; 

b) bidisperse configuration; c) tridisperse configuration. 

 The histograms of the ratios between tangential and normal forces for the 

monodisperse, bidisperse and tridisperse cases are presented in Figures 3.17-a, -b and -c 

respectively. Reference [166] indicates that coefficient of friction µ for PA66 ranges from 

0.2 to 0.65. The maximum values ratios between tangential and normal forces are found 

to be approximately equal to 0.65, 0.8 and 0.7 respectively in the three graphs, which is 

slightly higher than the maximum value expected for PA66 (0.65). The percentages of 

the contacts with ratios between tangential and normal forces greater than 0.65 for the 

bidisperse and tridisperse cases is approximately 5% and 1%, respectively. The reason is 

probably because the particles are made in polymer, which can cause cohesive contacts.  
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Figure 3.17 Histogram of ratio between tangential and normal forces: 

a) monodisperse configuration; b) bidisperse configuration; c) tridisperse 

configuration. 

3.3.3 Limitation of the experiments 

 The objective of this section is to discuss some limitations or difficulties when 

performing the experiments for contact force identification with LSA and VFM. 

1) Surface smoothness of particles 

 To realize perfect checkerboard patterns on the particle surfaces, proper smoothness 

and flatness of the cylinder ends are required. The checkerboard pattern can be distorted 

if the smoothness and flatness are improper. A surface finishing is then required before 

engraving the pattern. However, it is worth noting that it is not necessary to have a 

“perfect” checkerboard pattern, but it should be sufficiently good to prevent errors in LSA 

technique. 

 



118 

 

2) Orientation of checkerboard pattern 

LSA does not require only a good checkerboard pattern, but it also requires a proper 

orientation of the pattern when performing an experiment. The angle of checkerboard 

with respect to the horizontal axis of the camera should be approximately 10°. The reason 

is that some ranges of orientation angle can cause an aliasing effect, which creates fringes 

on the captured images [164]. These fringes disturb the retrieved strain maps. In our 

experiments, we needed to pay attention to placing all the particles in the proper angle 

before starting the tests. Figure 3.18 shows an example of fringes appearing in strain fields 

due to improper orientation of checkerboard. Vertical fringes are clearly visible in strain 

fields εxx and εxy, while horizontal fringes are slightly visible in strain field εyy. 

 
Figure 3.18 Example of fringes appearing in the strain fields in the case of 

an incorrect angular orientation of the checkerboard. 

3) Out-of-plane particles 

 This is a common problem in 2D full-field measurement techniques. In our 

experiment, we attempted to deal with this problem by placing a transparent cover lid in 

front of the cylindrical particles and pushing them until they touched the cover lid. This 

procedure enables to have all the cylinders in-plane. However, it is difficult to manage 

while maintaining the proper orientation angle of the checkerboard of each particle. This 



119 

 

out-of-plane problem can cause the appearance of shadows on the surface of nearby 

particles. This may have an impact on the quality of the strain maps, leading to potential 

errors in the force distributions obtained at the end of the processing by VFM. 

Additionally, if the number of particles in the system increases, the management of the 

system becomes more and more challenging. 

4) Insufficient number of contacts 

 In our experiments, the number of contacts may not be enough for statistical 

analysis, potentially leading to incorrect trends in the distributions of contact forces and 

the appearance of the angular force distribution. To get rid of this issue, increasing the 

number of particles in the system is necessary to obtain correct distribution trends. 

However, a larger number of contacts would require a higher external loading to maintain 

the sufficient strain level measurable by LSA. This means that a more powerful testing 

machine is then required.  

3.4 Comparison between experiments and numerical simulations 

 In this section, numerical simulation and experimental results are compared in 

terms of the contact force network, angular force distribution and probability density 

function (PDF) of normal forces. The MD approach was then employed to provide the 

numerical simulation results; see Section 1.2.6 for a reminder about this approach. The 

objective is to validate the experimental results by comparison with the numerical 

simulation results. 

3.4.1 Numerical simulation preparation 

 Similar to the experiments, three cases of the numerical simulations were 

performed: monodisperse, bidisperse, and tridisperse configurations. First, the initial 

states were created from the extraction of the positions and radii of all the particles in the 

three experimental configurations. These data were employed to generate the particles in 

the numerical simulations at the same positions as in the experiments. It must be noted 

that it is not possible to get the perfect positions and radii. The generated particles were 

placed inside a rectangular box made of four rigid plane walls. The box has the same size 
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as in the experiments. The incremental compressive loading was then applied on the top 

wall up to 14.4 kN under quasi-static condition. The other walls were fixed. The 

gravitational force was taken into account despite the fact that its magnitude is rather 

small compared to the compressive loading. The contact stiffness of the PA66 was set to 

11.33 MN/m. This value was obtained from experiments, not reported here, involving the 

compression of a single particle. The coefficient of friction of PA66 was set to the 

maximum value indicated in reference [166], i.e., 0.65. 

 In addition, three simulations were performed for each granular configuration 

(monodisperse, bidisperse and tridisperse) placing randomly the particles in the 

rectangular box. Hence, there are four simulations (one with same position of the particles 

and three with random positions) for each of the three granular configurations. 

3.4.2 Comparison between experiments and simulations in terms of 

strong and weak forces 

 Figure 3.19 shows the comparison of the normal force networks between numerical 

simulations and experiments, with the particles in the same locations. The strong forces, 

weak forces and wall-particle forces are shown in red, blue and gray colors, respectively, 

with line thickness proportional to the normal force magnitude. The two force networks 

of the monodisperse case show the same patterns, where the forces are mainly transmitted 

in diagonal directions, as illustrated in Figure 3.19-a. The comparison for the bidisperse 

and tridisperse cases are presented in Figures 3.19-b and 3.19-c respectively. The 

experimental and simulated force patterns are clearly not the same. However, the force 

transmission patterns from left to right are still observed at the middle in both the 

experiment and the simulation in the bidisperse case. In the tridisperse case, the force 

transmission patterns for both the experiment and the simulation are in the vertical 

direction around the left and the right of the walls. As expected, it is not possible to 

compare the forces between numerical simulations and experiments at each contact 

location, but the results can be compared through a statistical analysis, which is discussed 

in the following section. 
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Figure 3.19 Comparison between the normal force networks obtained by 

experiment and by simulation, with the particles in the same locations: 

a) monodisperse configuration; b) bidisperse configuration; c) tridisperse 

configuration. 
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3.4.3 Comparison between experiments and simulations in terms of 

angular force distribution 

 Figure 3.20 shows the comparison of the angular force distributions between 

experiments and simulations, with the particles in the same locations. In the monodisperse 

case, the graphs of the experiment and the simulation shows four large spikes and two 

small spikes. They are in diagonal and horizontal directions, respectively. The four large 

spikes correspond to the strong forces while the two small spikes correspond to the weak 

forces. In the bidisperse case, the angular force distributions of both the strong and weak 

forces of the experiment and the simulation seem to have six spikes. The strong force 

directions of the experiment are mainly along the 120° and 300° directions, while the 

weak force directions correspond to the other angles. On the contrary, the strong and weak 

forces numerically obtained seem to be equally distributed along the ±60°, ±120°, 0°, and 

180° directions. The trends of angular force distributions between the experiment and the 

simulation are similar. In the tridisperse case, the angular force distribution has eight 

spikes for both the experiment and simulation. The strong forces are mainly in the vertical 

direction, while the weak forces are mainly in the horizontal direction. The others are 

located in the diagonal directions. The comparisons between the experiment and the 

simulation thus show that the trends of angular force distribution of both approaches are 

similar. This emphasizes the reliability of the proposed contact force identification 

strategy. 
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Figure 3.20 Comparison between the angular force distributions obtained by 

experiment and by simulation, with the particles in the same locations: 

a) monodisperse configuration; b) bidisperse configuration; c) tridisperse 

configuration. 

3.4.4 Comparison between experiments and simulations in terms of 

probability density function of normal forces 

 Figure 3.21 presents the comparison of the probability density functions (PDFs) of 

the normalized normal forces between experiments and simulations with the particles in 

the same locations as in the experiments. The experimental curves are shown with thick 

solid lines, while the simulated curves are shown by using thin dotted lines. The blue, red 

and yellow colors correspond to the monodisperse, bidisperse and tridisperse cases 

respectively. All subfigures in Figure 3.21 show that the PDFs of experiments and 

simulations have nearly the same trends. This validates that the results obtained from the 

proposed experimental strategy for contact force identification are consistent with the 

results of simulations, and with the past studies. 
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Figure 3.21 Comparison between the probability density functions (PDFs) 

of normalized normal forces obtained by experiment and by simulation, 

with the particles in the same locations: a) in the force network; b) in the 

weak network; c) in the strong network; d) in the weak network in semi-

natural logarithmic scale; e) in the strong network in semi-natural 

logarithmic scale. 
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 Finally, Figure 3.22 shows the same graphs as those in Figure 3.21 but adding 

results with random locations of the particles for the simulations. As indicated above, four 

simulations (one same position and three random locations) were performed for each 

configuration (monodisperse, bidisperse and tridisperse). For the monodisperse case 

(Figure 3.22-a), the trends of the PDFs for the weak network and the strong network of 

the simulations are similar to those of the experiment, except that the spans of distribution 

of the strong forces are wider in the simulation with random locations. For the bidisperse 

case (Figure 3.22-b), all the trends of the PDFs for the weak network and the strong 

network of the simulations are similar to those of the experiment. In the tridisperse case 

(Figure 3.22-c), the trends of the PDFs for the weak network of the simulations are similar 

to those of the experiment, with a higher probability. The trends of the PDFs for the strong 

network of the simulations are similar to those of the experiment, except their spans are 

wider than in the experiment. As a conclusion, it can be seen that all the distribution trends 

of the strong forces and the weak forces of all the three experimental configurations are 

consistent with the distribution trends of the simulations both with same location and 

random location. 
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Figure 3.22 Same as Figure 3.21 but adding results with random locations of 

the particles for the simulations: a) monodisperse configuration; 

b) bidisperse configuration; c) tridisperse configuration. For each 

configuration, three simulations were performed for the random location 

case. Left column: in the weak network. Right: in the strong network. 
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3.5 Conclusion 

 An experimental application was first performed on a three-particle system by 

processing strain maps obtained in each particle using localized spectrum analysis (LSA). 

As indicated in the intermediate conclusion in Section 3.2.4, the virtual fields method 

(VFM) alone failed to identify consistent force components. This is potentially due to an 

imperfect 2D assumption, out-of-plane movements or errors in the elastic parameters of 

the particle material. Alternative approaches were then proposed by adding equations 

derived from the local equilibrium of each particle, and Newton’s third law of motion at 

each interparticle contact. As the number of equations becomes higher than the number 

of unknowns (the contact force components), different strategies were compared for 

contact force identification. The best solution was obtained using the VFM equations with 

Lagrange multipliers to enforce force and moment equilibrium for each particle and 

Newton’s third law of motion at each interparticle contact. 

 The experiments with a larger number of particles demonstrated that the contact 

force identification strategy has the capability to be employed for 2D multi-contact 

granular systems to identify the normal force and the tangential force at each contact. The 

identified contact forces were then statistically analyzed at a macroscopic level. The 

results appear to be consistent with the results of simulations performed relying on 

molecular dynamics (MD) as with the past studies. This thus validates the proposed 

contact force identification strategy. However, some limitations or difficulties were 

highlighted concerning the preparation of the experiments. These difficulties must be 

taken into the account when performing future experiments. It can be noted that the 

procedure has actually the benefit of being applicable to any full-field measurement 

techniques that measure in-plane strains with specimens made of any material, for 

instance digital image correlation (DIC). 
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CHAPTER 4 

Towards a thermo-mechanical analysis of granular 

materials 

4.1 Introduction 

 Infrared thermography (IRT) techniques and full-field deformation calorimetry 

approaches have profoundly impacted the experimental mechanics community. The way 

in which granular materials are tested is currently excluded from this trend, as evidenced 

by the small number of papers in the literature mentioning the use of thermographic 

cameras. Basically, the approach consists of analyzing the thermal response of a material 

subjected to a mechanical loading at constant room temperature. Under some mild 

assumptions, it is possible to assess the heat produced or absorbed by the material due to 

the change in its mechanical state [167]. Under cyclic loading, it is possible to deduce the 

field of hydrostatic stress amplitudes from the temperature oscillations using the so-called 

Thermoelastic Stress Analysis (TSA) technique [168], which is applicable to energetic 

materials (see Section 1.3.2 in the bibliography and state-of-the-art chapter). The 

processing relies on thermoelastic coupling, which exists in all materials featuring a non-

null thermal expansion coefficient. Other approaches enable the identification of the 

calorific signature beyond thermoelastic coupling, for example related to plasticity, 

fatigue damage, viscosity, solid-solid phase change or cracking, depending on the type of 

material and loading conditions. More generally, the use of IR thermography and the 

framework of the thermodynamics of irreversible processes [169, 170] makes it possible 

to perform full-field “deformation calorimetry”. IR thermography techniques applied to 

mechanics of materials are now mature, but granular materials are currently absent from 

this trend. 
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 The study of granular materials containing soft particles has only been addressed 

very recently  [171, 172], despite the fact that they are commonly found in nature and in 

industry (e.g. pharmaceutical and food fields). This can be explained by the experimental 

difficulties associated with the large displacements/strains of the particles, which 

complicate the data processing and analysis. Experimental studies are still rare in the 

literature. Let us mention the study of the compressive behavior of 2D bidisperse granular 

assemblies made of soft and hard grains using DIC in Ref  [173]. IRT was also used in 

Ref [22] to observe the thermal response of granular systems consisting of rigid and soft 

particles, namely made of polyoxymethylene (POM) and thermoplastic polyurethane 

(TPU). As indicated in Section 1.5.4, it was shown that significant temperature variations 

could be obtained in the soft particles without the need to average the values over several 

cycles. This is an advantage of the entropic elasticity. 

 In this context, the aim of this chapter is to take advantage of the strong thermal 

signature of entropic elasticity to analyze the thermomechanical response of granular 

materials entirely composed of elastomeric particles. An objective is to distinguish 

temperature changes associated with thermoelastic coupling (TEC) and mechanical 

dissipation (MD). Furthermore, studying soft granular systems is a topical issue (see Refs 

[171, 172]) for which there is a lack of full-field experimental measurements. Elliptical 

shapes for the particles are considered in the present study. This paves the way to studies 

on more complex geometries in the future, to progressively approach the particle shapes 

of real granular media. It should be noted that we have not sought to identify contact 

forces or stress fields. 

The chapter is organized as follows: 

- The second section presents the granular materials and the experimental devices 

used in the study; 

- The third section presents some preliminary observations for a given test in order 

to illustrate a typical thermal response; 

- The fourth section describes the procedure employed to extract calorific data from 

thermal measurements obtained by IR thermography; 
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- The fifth section aims at analyzing small-size granular systems (about 15 particles) 

at the local scale, using various spatial resolutions for comparison purposes; 

- In order to approach real granular media, the sixth section is devoted to a statistical 

analysis on a larger granular system comprising about 100 particles. 

Note that the particles for this thermomechanical analysis were prepared at the Institute 

of Physics Rennes (IPR). Some experiments were also performed at the IPR under the 

supervision of Prof. Jean-Benoit Le Cam. 

4.2 Material and Methods 

4.2.1 Particle Preparation 

 Figure 4.1 illustrates the preparation of the TPU particles employed in the 

experiments. Particles were prepared from a commercial biresin grade from Axson 

Technologies, composed of U1419-I1 isocyanate and U1458 polyol. To manufacture 

cylinders with elliptical cross-sections, the biresin was mixed and poured in molds. A 

vacuum chamber was used to remove bubbles from the mixture (see Figure 4.1-a). 

Twenty minutes were necessary for the complete solidification of the cylinders (see 

Figure 4.1-b), all of which were 26 mm long. Three dimensions were considered for the 

cross-sections, simply referred to as “small”, “medium” and “large” in the following of 

the paper for the sake of simplicity, see Figure 4.1-c. The cylinders differed in the length 

of the major axis of the elliptical section, which was equal to 15 mm, 18 mm and 22.5 

mm, respectively. The length of the minor axis was the same for all the particles: 10 mm. 

The cylinders were slightly polished on one end and coated with a thin matte black paint 

to maximize the thermal emissivity of the surface. Finally, two material parameters are 

reported here for the subsequent calorific analysis of the thermal response of the granular 

systems made from the particles. The density of TPU was 1,040 kg/m3 according to the 

datasheet of the supplier. A value of 1,700 J/(kg·K) was considered for the specific heat 

[174]. 
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Figure 4.1 Material elaboration and elliptical particles. 

4.2.2 Experimental setup 

 Figure 4.2 shows the two types of thermomechanical setup used during this study. 

The difference is the size of the rectangular metal frame containing the particles for 

confined compressive loads, which are 50 mm and 150 mm in width (see Figure 4.2-a 

and Figure 4.2-c respectively). A pusher was employed to apply a vertical load at the top 

of the granular systems by a linear actuator. Two uniaxial testing machines were used: an 

Intron ElectroPuls E3000 machine and a Zwick/Roell Zmart Pro machine. The former 

allows cyclic loadings with a maximum compression force of 5 kN, enabling us to study 

the influence of the loading rate on small granular systems (about 15 particles). The latter 

allows quasi-static loadings up to 15 kN, enabling us to study the influence of the loading 

level on a large granular system (about 100 particles). 

 As mentioned above, all the particles were painted in black to maximize their 

thermal emissivity. As can be seen in Figure 4.2-d, the metallic frames were also spray-

painted to limit parasitic reflections in the IR range. In addition, thick black fabrics were 

placed all around the granular systems as shown in Figure 4.2-b. A cardboard tunnel (not 
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visible in the pictures) was also placed from the IR camera to the granular material to 

minimize parasitic radiation caused by the close environment. 

 
Figure 4.2 Experimental setup: a), b) a small granular system and c), d) a 

large granular system. 

 

4.2.3 Mechanical loading and thermal measurement 

 the granular systems were subjected to force-controlled cyclic loadings with a 

triangular profile. In all the tests, the minimum vertical compression force was set at 10% 

of the maximum force to avoid any loss of contact during unloading. Various tests were 

performed. Table 4.1 gives the list of the tests discussed in detail in the study: 
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- Tests T1 to T8 were dedicated to small granular systems (about 15 particles). The 

maximum compression force was set to 3 kN. For the monodisperse case (T1 to 

T6), the loading rate changed from one test to the next: ±0.5 kN/s, ±1 kN/s, ±1.5 

kN/s, ±2 kN/s, ±2.5 kN/s and ±5 kN/s respectively. The objective here is to discuss 

the influence of the loading rate in terms of viscosity and heat diffusion time 

(since, by construction, the shorter the mechanical cycle, the more adiabatic the 

thermodynamical response over the cycle). For the bidisperse case (T7 and T8), 

two loading rates were applied (±2 kN/s and ±5 kN/s respectively), the objective 

being to compare the results obtained with those of the monodisperse case. 

- Tests T9 to T11 were devoted to a large granular system, with nearly 100 particles. 

The loading rate was fixed at ±1 kN/s for the three tests, but the maximum force 

was set to 6 kN, 9 kN and 12 kN respectively. The objective here is to discuss the 

influence of the applied load level. 

 It should be noted that five preliminary mechanical cycles were applied to compact 

the granular systems (see Figure 4.3-a). Afterwards, the minimum force (10% of the 

maximum force) was held constant for about 10 minutes to ensure that the granular 

system had returned to thermal equilibrium with the environment before the beginning of 

the cyclic mechanical loading to be considered for the analysis. It can be noted in Table 

4.1 that 20 cycles were applied to the small granular materials (T1 to T8) whereas only 5 

cycles were applied to the large ones (T9 to T11). This is because the high force levels 

applied in the latter case make the mechanical cycle long. To limit heat exchanges 

between the large granular system and its environment during the measurements, the 

number of cycles was limited to 5. 
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Table 4.1 List and details of the tests presented in the paper. The asterisk 

symbol * indicates that the test was repeated with different spatial 

resolutions for the temperature fields (obtained in practice by using different 

optical conditions for the infrared camera). 

Test 

# 

Type of 

granular 

material 

Particle 

number 

Content of 

the 

granular 

material 

Maximum 

force 

(kN) 

Force 

rate 

(kN/s) 

Cycle 

duration 

(s) 

Number 

of 

cycles 

T1 Monodisperse 16 16 small 3 ±0.5 12 20 

T2     ±1 6  

T3     ±1.5 4  

T4     ±2 3  

T5*     ±2.5 2.4  

T6     ±5 1.2  

T7* Bidisperse 14 7 small 3 ±2.5 2.4 20 

T8   7 large  ±5 1.2  

T9 Tridisperse 93 32 small 6 ±1 12 5 

T10   31 medium 9  18  

T11   30 large 12 kN  24  
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Figure 4.3 a) Schematic representation of the mechanical loading and b-e) 

temperature changes during test T6 (monodisperse configuration, force rate 

±5 kN/s, maximum 3 kN). The spatial resolution of the thermal maps is 

equal to 131.6 µm. 

 Two IR cameras featuring a similar Noise Equivalent Thermal Difference of 20 mK 

around ambient temperature were used to capture the temperature fields at the surface of 

the particles: a FLIR X6540sc camera (640×512 pixels) and a Cedip Jade III-MWIR 

camera (320×240 pixels). The former camera was used to study small granular systems 
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in order to better understand the thermal response by “zooming in” on a few particles. 

The latter camera was used to study the large granular system in order to perform a 

macroscopic (i.e., statistical) analysis. The acquisition frequency was set to 10 Hz in both 

cases. Note however that with the Cedip camera, the base acquisition frequency was 100 

Hz with a real-time averaging operation every 10 thermal images (leading to a recording 

frequency of 10 Hz), which enabled us to improve the thermal measurement resolution. 

Different spatial resolutions were considered during the test campaign. It is worth 

recalling here that granular materials under mechanical loading were subjected to stress 

concentrations at the interparticle contacts, thus leading by construction to differences in 

the full-field measurements as a function of the spatial resolution used. The spatial 

resolution value, defined here as the size of the IR pixel projected onto the measurement 

plane, is provided for each temperature map displayed below. Some tests were duplicated 

with different spatial resolutions (in practice by varying the distance between the camera 

and the granular material): mechanical conditions T5 and T7 were both performed twice, 

by using in each case a different spatial resolution. 

 Finally, for each test, a reference thermal image was captured just before starting 

the cyclic mechanical loading, in order to identify the temperature changes. This quantity 

is denoted 𝜃𝜃 in the following. Note that despite the fact that TPU was in the rubbery state, 

particle deformations were actually “small” due to the limited magnitude of the external 

loading, as well as the confined nature of the compression. Before presenting the results 

of all the tests, the next section provides some preliminary observations concerning one 

of them in order to highlight the key points of the study. 

4.3 Preliminary observations 

Before comparing the results of the tests described in Table 4.1, Figure 4.3 shows a typical 

thermal response during a mechanical test, here test T6 (small granular system, 

monodisperse configuration, force rate ±5 kN/s, maximum force 3 kN), with a spatial 

resolution of 131.6 µm for the temperature maps. The profile of the mechanical loading 

is recalled in Figure 4.3-a. Several comments can be made about the thermal response: 
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- Figures 4.3-b to -d show the thermal fields at three times during the loading: 

beginning, half of the 1st cycle and end of the 20th cycle, respectively. Figure 4.3-

c highlights “hot” spots at nearly all the contacts. Figure 4.3-d shows larger 

temperature changes at some interparticle contacts (especially in the upper part of 

the granular material) as well as a “hot path” through two particles (see white 

arrows). 

- Four points of interest are selected in Figure 4.3-b to illustrate typical thermal 

responses vs. time. Points P1 and P2 are located at interparticle contacts, while P3 

and P4 are at the center of particles. Figure 4.3-e presents the thermal variation 

𝜃𝜃(𝑡𝑡) vs. time 𝑡𝑡 for these four material points. Oscillation at the same frequency as 

the loading is observed. Loading is accompanied by a temperature increase, 

whereas unloading is accompanied by a temperature decrease. Furthermore, a 

global increase is observed for the four points. A linear trend is obtained after the 

fifth cycle for points P1 and P2: see dashed lines. For P3 and P4, linearity is 

observed from the beginning of the test. It can also be noted that these four points 

exhibit distinct thermal responses in terms of oscillation amplitude (which can be 

a priori associated with the stress oscillation amplitude) and average rate of 

increase (which may be associated with mechanical irreversibility, such as 

damage, viscosity and friction). It is interesting to note that these two quantities 

are not always correlated. For example, point P2 is associated with a small 

oscillation amplitude and a high mean rate of increase, in contrast to point P3. The 

distinction between the calorific responses associated with thermoelastic behavior 

and anelastic behavior is the focus of the discussion proposed in the following 

sections. 

- The thermal variation at point P4 shows an interesting property: a cyclic 

oscillation with nearly no overall increase, and a minimum value of 𝜃𝜃 remaining 

close to zero over the 20 cycles. It can be assumed that the response is here 

adiabatic and nearly reversible (we can guess that the strain and strain rate levels 

are low enough not to create much heat by viscosity or damage). Indeed, in this 

situation the amount of heat produced and absorbed (during loading and unloading 
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respectively) by thermoelasticity is the same over a thermodynamical cycle. Thus 

𝜃𝜃 returns then to nearly zero at the end of each cycle if the latter is adiabatic. 

Some thermomechanical properties have been presented here to anticipate the discussion 

in the next sections. Before analyzing the results of the tests listed in Table 4.1, the next 

section provides the thermomechanics of materials background used for the analysis. It 

also presents the approach used for calorific data extraction. 

4.4 Data processing 

4.4.1 Thermomechanics of materials background 

 The calorific response of materials subjected to mechanical loading was described 

in section 1.3.2. It is worth to remind that it can be split into two parts [136, 175]: 

- The first part is associated with reversible thermomechanical phenomena, i.e., 

thermoelasticity only in most cases. As mentioned above in the introduction, two 

types of thermoelastic coupling (TEC) exist: one is governed by the change in 

internal energy (energetic elasticity) and the other is governed by the change in 

entropy (entropic elasticity) [138]. A simple tensile test enables us to distinguish 

between them: upon loading (resp. unloading), energetic elasticity leads to a 

temperature decrease (resp. increase) whereas entropic elasticity leads to a 

temperature increase (resp. decrease). Actually, as both types of coupling exist in 

rubbery materials, a so-called thermoelastic inversion is observed upon loading, 

when the entropic contribution becomes preponderant [139]. On the contrary, 

compression loading (resp. unloading) leads to a temperature increase (resp. 

decrease) for both types of TEC. 

- The second part is associated with irreversible mechanical phenomena, which can 

be of different origins since they depend on the material and the loading 

conditions. The associated heat power density is called mechanical dissipation 

(MD) or intrinsic dissipation. This calorific quantity is always positive. It is for 

instance at the origin of the so-called self-heating of the material during cyclic 

loading due to fatigue damage and/or viscosity. 
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 Figure 4.4 schematically illustrates the thermal variation in a rubbery material 

subjected to compression cycles assuming an adiabatic evolution. Figure 4.4-a 

corresponds to the case of a purely thermoelastic response, i.e., without MD. The 

temperature change 𝜃𝜃 oscillates in phase with the mechanical loading between zero and 

a maximum value designated by 𝜃𝜃TEC in the following. The return to zero at the end of 

each cycle is due to the fact that the heat released during loading is equal in magnitude to 

that absorbed during unloading. This response may correspond for instance to the thermal 

changes at point P4 in Figure 4.3-e. Figure 4.4-b corresponds to a case involving MD, 

assuming that the mechanical response of the rubbery matter is “accommodated” 

(stabilized mechanical response): the global temperature increase is linear, since the same 

amount of MD is produced at each cycle. This response may correspond to the thermal 

variation of point P3 in Figure 4.3-e. Figure 4.4-c corresponds to a general case for which 

material accommodation occurs during the first cycles. For the experiments performed in 

the present study, such a transient effect is expected to be minimized due to the five 

preliminary compaction cycles (see Figure 4.3-a). However, this response is observed for 

points P1 and P2 in Figure 4.3-e. Transient viscosity probably explains this observation. 

This could be due to two causes: variations in the material during the waiting time 

between preliminary compaction and the beginning of the test, or an insufficient number 

of preliminary compaction cycles, at least in terms of heat signature. Finally, we can recall 

that adiabaticity (“short” tests) is assumed in the temperature variations shown in Figure 

4.6. After a certain time, the red dashed lines on the figure obviously tend to stabilize 

horizontally because of the balance between the heat produced by the MD and the heat 

exchanged with the environment. 
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Figure 4.4 Schematic temperature variations reflecting thermoelastic 

coupling (TEC) and mechanical dissipation (MD) contributions assuming 

adiabatic conditions. 

 For the further processing of thermal data in the rest of the study, two parameters 

are pointed out: 

- the temperature change  𝜃𝜃MD(#𝑘𝑘) at the end of the 𝑘𝑘th cycle, which is directly 

related to mechanical dissipation, assuming that the heat absorbed and released 

due to TEC vanishes over a mechanical cycle. Due to the accumulation of heat 
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released by irreversible mechanical phenomena,  𝜃𝜃MD(#𝑘𝑘) increases along an 

adiabatic test (“self-heating”); 

- the temperature change  𝜃𝜃half(#𝑘𝑘) at the middle of the 𝑘𝑘th cycle, when the force 

level is maximum. The value of  𝜃𝜃half(#𝑘𝑘) is due to both TEC and MD. 

 The following section develops some practical aspects of the image processing and 

the conversion into calorific quantities associated with TEC and MD. 

4.4.2 Extracting calorific data 

 The basic idea of the subsequent processing is that the heat associated with TEC is 

null over an entire number of cycles and that the change is adiabatic. From a calorific 

point of view, the magnitude of the MD can therefore be quantified by the heat density 

𝑄𝑄MD (in J/m3) over each cycle as follows: 

  ( ) ( ) ( )MD MD MD# # # 1Q k C k kρ θ θ= − −    (4.1)  

where 𝜌𝜌 and 𝐶𝐶 are the density and the specific heat of the material, respectively. By 

construction, the total heat produced by the material over each adiabatic loading phase is 

given by: 

  ( ) ( ) ( )half half MD# # # 1Q k C k kρ θ θ= − −    (4.2)  

 This quantity implies a contribution from both TEC and MD. We propose to 

identify that of TEC by the heat density 𝑄𝑄TEC (in J/m3) over each half a cycle as follows: 

  ( ) ( ) ( )TEC half MD
1# # #
2

Q k Q k Q k= −  (4.3)  

 By nature, mechanical dissipation is always a positive calorific quantity (whatever 

the loading “direction”, i.e., loading or unloading). Equation 4.3 assumes implicitly that 

MD is produced equally during loading and unloading within each cycle, leading to the 

ratio of ½ applied to the quantity 𝑄𝑄MD(#𝑘𝑘). This hypothesis is strong but remains 

reasonable as a first approach. Making a distinction between loading and unloading would 

be a relevant approach to be adopted in the future, in a similar way to the developments 
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proposed in Ref. [139] which deal with a rubbery (non-granular) material in uniaxial 

tension. 

 Remark 1 — Because of the motion of the particles, it is tricky to deduce maps of 

𝑄𝑄half(#𝑘𝑘) and 𝑄𝑄TEC(#𝑘𝑘). Indeed, particle locations are different at the lower and higher 

force levels. Since the particles slightly deformed, rigid-body movements were 

considered for the processing in the present study. Coupling IR thermography with 

measurements of displacement/strain fields by DIC in the visible range is a perspective 

of the present work to completely overcome this hurdle in a precise manner. The situation 

is simpler for the MD effect. Indeed, as the granular materials were previously compacted 

(see Figure 4.3-a), the particles returned to their positions at the end of each cycle, making 

it easy to obtain maps of  𝜃𝜃MD(#𝑘𝑘) and 𝑄𝑄MD(#𝑘𝑘) by simple image subtraction. 

 Remark 2 — TEC is considered as a “strong” coupling in the sense that its 

magnitude is much higher than that of MD in most cases: 𝑄𝑄MD ≪ 𝑄𝑄TEC. For instance, in 

the case of fatigue in steels, the ratio is of about three or four orders of magnitude [176]. 

For rubbers, the trend is the same, but MD may not be negligible due to viscosity or when 

the strain level increases: see Ref. [139] dealing with uniaxial tensile tests of rubbers. 

This situation may make the measurement resolution of 𝑄𝑄MD(#𝑘𝑘) disadvantageous 

compared to that of 𝑄𝑄TEC(#𝑘𝑘). In order to improve the measurement resolution of the 

heat associated with MD in a steady-state cyclic regime, we decided to calculate also the 

mean value over several cycles, starting from the fifth one (i.e., when the global 

temperature increases linearly, see the red dashed lines in Figure 4.3-e). This quantity is 

denoted 𝑄𝑄MD(stab) in the following. 

4.5 Application to small granular system 

 This section presents the results obtained for the “small” granular materials (16 

particles in monodisperse configuration for tests T1 to T6; 14 particles in bidisperse 

configuration for tests T7 and T8) before applying the methodology to a larger system. 

The first part is dedicated to the analysis of the thermal responses (𝜃𝜃), in order to examine 

different aspects: influence of the loading rate; difference between the monodisperse and 

bidisperse systems; additional information on the influence of the spatial resolution used 
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to measure the temperature fields. The analysis of the calorific response (𝑄𝑄TEC and 𝑄𝑄MD) 

for a given test, namely test T6, is finally presented, before applying our approach to a 

more realistic granular system with more particles at the end of the paper. 

4.5.1 Influence of loading rate 

 Figure 4.5 shows the influence of the loading rate on the small monodisperse 

granular system for the same maximum force, equal to 3 kN (tests T1 to T6). The spatial 

resolution of the thermal maps is equal to 131.6 μm. The following comments can be 

made concerning these maps: 

- Figures 4.3-a to -f show the maps of  𝜃𝜃half (see Figure 4.4-b and c) in the middle 

of the 1st cycle for a loading rate of ±0.5 kN/s, ±1 kN/s, ±1.5 kN/s, ±2 kN/s, ±2.5 

kN/s and ±5 kN/s respectively. Temperature concentrations are visible at nearly 

all the contacts, including those with the metallic frame. The presence of these 

“hot” spots at the contacts can be related to stress concentrations, leading to 

stronger TEC and MD in these zones. The hot spots are slightly more intense and 

concentrated when the loading rate increases. This can be explained by an increase 

in viscosity (MD) and increasingly adiabatic behavior when the period of the cycle 

decreases (the heat has less and less time to diffuse). 

- Figures 4.3-g to -l show the maps of  𝜃𝜃MD measured at the end of the 20th cycle. 

MD is visible at specific contacts in the upper part of the granular system, as well 

as inside two particles at the bottom part (see black arrows). It appears to become 

stronger as the loading rate increases. At the lowest rate (±0.5 kN/s, see Figure 

4.5-g), the field of  𝜃𝜃MD(#20) is nearly homogeneous and null. This is a priori 

the consequence of the heat exchanges with the environment during the 240 

seconds required to complete the 20 cycles (non-adiabaticity). Concentrations of 

 𝜃𝜃MD(#20) identified at higher loading rates (mainly above ±1.5 kN/s) at specific 

contacts can be explained by friction and material viscosity. As small interparticle 

movements mainly occur at the top of the granular system (see later), friction 

could a priori be the main cause of the MD effect here. However, material self-
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heating is also clearly evidenced along the “hot path” through the two particles in 

contact marked by the black arrows. 

 
Figure 4.5 Influence of the loading rate (monodisperse configuration, 

maximum 3 kN, tests T1 to T6). 𝜃𝜃half(#1) and 𝜃𝜃MD(#20) are the 

temperature changes in the middle of the 1st cycle and at the end of the 20th 

cycle, respectively. The spatial resolution of the maps is equal to 131.6 µm. 
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The orders of magnitude of the maximum values of  𝜃𝜃half(#1) and  𝜃𝜃MD(#20) 

appear to be similar. However, it must be recalled that the values were measured at the 

first half cycle and the end of the 20th cycle respectively. A “calorific” comparison 

between the two heat sources (TEC and MD) within one cycle will be presented later. 

4.5.2 Comparison between monodisperse and bidisperse systems 

 Figure 4.6 presents a comparison between a monodisperse configuration (test T6) 

and a bidisperse configuration (test T8) for the same loading conditions (loading rate = 

±5 kN/s, maximum force = 3 kN). The spatial resolution of the maps is again equal to 

131.6 μm. It is confirmed in the bidisperse case that concentrations of  𝜃𝜃half(#1) exist at 

each contact, whereas concentrations of 𝜃𝜃MD(#20) are only at some contacts in the upper 

part of the granular system. The magnitude of  𝜃𝜃half(#1) appears to be greater in the 

bidisperse case than in the monodisperse one (compare the red zones). Although two tests 

are not sufficient to draw general conclusions, this observation would seem to be logical, 

since the void ratio of the granular medium is higher in the bidisperse configuration than 

in the monodisperse one. Indeed, by construction, monodisperse granular materials are 

denser than bidisperse ones. Thus, for the same loading level, the stress level is a priori 

higher in the bidisperse configuration than in the monodisperse one. The same comment 

can be made for the MD effect through the maps of 𝜃𝜃MD(#20). Although local responses 

are highly dependent on the location and orientation of particles relative to each other in 

the granular material, the comparisons here are consistent with previous studies on 

granular materials, which state that larger particles in polydisperse systems contribute 

more to strong forces than smaller ones do [3, 177]. 
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Figure 4.6 Comparison between monodisperse configuration (test T6) and 

bidisperse configuration (test T8) with same loading conditions (force rate 

±5 kN/s, maximum 3 kN). The spatial resolution of the thermal maps is 

equal to 131.6 µm. 

4.5.3 Improved spatial resolution 

 Figures 4.5-a and -b show thermal maps for the monodisperse and bidisperse 

configurations respectively, and for the same loading conditions (loading rate = 2.5 kN/s, 

maximum force = 3 kN, tests T5 and T7 respectively), but the spatial resolution is 

different from that used in the previous figures. The spatial resolutions were equal to 41.0 

μm and 66.3 μm, respectively, thus enabling us to zoom in on small zones in the granular 
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systems. The locations of the enlarged zones Z1 and Z2 are indicated in the schematic 

views. For zone Z1, a comparison with previous maps at 131.6 μm is also presented in 

Figure 4.8 by using five color yields. It can be seen that the distributions are globally the 

same for both maps  𝜃𝜃half(#1) and  𝜃𝜃MD(#20), whatever the spatial resolution. The same 

conclusion was obtained for zone Z2 (color yield images not presented here). Some points 

of interest are indicated in Figure 4.7 for comparison purposes: P5 to P9 in zone Z1; P10 

to P13 in zone Z2. It can be seen that the maximum contact temperatures are not exactly 

located at the boundary between the particles (see in particular P10). In practice, the 

values of  𝜃𝜃half(#1) and  𝜃𝜃MD(#20) that are reported in Table 4.2 are the maximum ones 

in the contact zones. It can be seen that certain extracted maximum values significantly 

depend on the spatial resolution used. The graph in Figure 4.9 shows the variation of the 

extracted values as a function of the pixel size projected on the measurement surface. It 

can be seen that, except for the smallest values (no temperature concentration), the better 

(i.e., the lower) the spatial resolution, the higher the maximum temperature which is 

measured. This situation is inherent to the use of a full-field measurement technique in 

the case of localized phenomena. This could be a problem for the estimation of spatial 

gradients (for estimating heat diffusion). By nature, localizations take place in granular 

materials, thus making a calorific analysis of this type of material difficult to perform in 

non-adiabatic conditions. In any case, for a thermomechanical analysis, any comparison 

between different maps should be made using the same spatial resolution. 
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Table 4.2 Comparison of results depending on the spatial resolution for the 

same loading conditions (force rate ±2.5 kN/s, maximum 3 kN, minimum 

0.3 kN). 

Zone Point 
Test T5 for Z1 and test T7 for 

Z2 (1 px = 131.6 µm) 

Same loading conditions with another 

spatial resolution (41.0 µm for Z1 and 

66.3 µm for Z2) 

  
θhalf (#1) 

in °C 

θend (#20) 

in °C 

θhalf (#1) 

in °C 

θend (#20) 

in °C 

Z1 P5 0.20 0.06 0.29 0.12 

 P6 0.27 0.24 0.37 0.32 

 P7 0.07 0.16 0.14 0.20 

 P8 0.21 0.02 0.21 0.00 

 P9 0.18 No contact 0.22 No contact 

Z2 P10 0.34 0.67 0.38 0.69 

 P11 0.22 0.08 0.23 0.08 

 P12 0.18 0.02 0.20 -0.01 

 P13 0.21 0.00 0.22 -0.01 
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Figure 4.7 Comparison between monodisperse and bidisperse configurations 

with the same loading conditions (force rate ±2.5 kN/s, maximum 3 kN) but 

using smaller spatial resolution compared to tests T5 and T7, respectively. 

See Table 4.2 and Figure 4.6 for comparison with measurements at 131.6 

µm spatial resolution. 
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Figure 4.8 Comparison of results depending on the spatial resolution in zone 

Z1 for two similar tests (monodisperse configuration, force rate ±2.5 kN/s, 

maximum 3 kN, minimum 0.3 kN). 
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Figure 4.9 Temperature changes at various points in the two small granular 

systems (see locations in Figure 4.7) as a function of a pixel size projected 

on the measurement surface, and for the same loading conditions (force rate 

±2.5 kN/s, maximum 3 kN, minimum 0.3 kN). 

4.5.4 Calorific analysis 

 The objective here is to validate the data processing providing calorific data for one 

test, namely T6 (monodisperse configuration, force rate ±5 kN/s, maximum 3 kN). In 

particular, it is a question of comparing the heat produced by the mechanical dissipation 

𝑄𝑄MD(#𝑘𝑘) at each cycle (see Equation 4.1) and the heat produced by the thermoelastic 

coupling at each half-cycle 𝑄𝑄TEC(#𝑘𝑘) (see Equation 4.3): 

Figure 4.10-a shows the variation in 𝑄𝑄MD(#𝑘𝑘) at four points in the granular system. 

It can be seen that the values for points P1 and P2 rapidly decrease along the first five 

cycles. The maximum values measured for the first cycle (more than 300 kJ/m3) appear 

to be more than half those of 𝑄𝑄TEC (more than 600 kJ/m3); compare the map of 𝑄𝑄MD(#1) 
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in Figure 4.10-b with the map of 𝑄𝑄TEC(#1) in Figure 4.11-a. Thus, MD plays an important 

role in the temperature variations during the first five cycles. This result can be explained 

by a continuation of material accommodation during the five first cycles, as already 

discussed from the temperature variations. From the fifth cycle on, the value of 𝑄𝑄MD(#𝑘𝑘) 

at the four points seems to fluctuate around zero. However, they are positive on average: 

see Figure 4.10-b showing the maps of 𝑄𝑄MD(stab), which is the average of 𝑄𝑄MD(#𝑘𝑘) 

over cycles #5 to #20. Maximum values reach about 30 kJ/m3. These small values for 

𝑄𝑄MD(stab) are also not negligible as they are at the origin of the global temperature 

increase represented by the dashed lines in Figure 4.3-e. A final remark can be made about 

the maps of 𝑄𝑄TEC(#𝑘𝑘). The value does not really change over the cycles: compare cycle 

#1 (Figure 4.11-a) and cycle #20 (Figure 4.11-b). This can be explained by a stabilized 

elastic response due to the preliminary five cycles which compacted the granular material 

before performing the test. It can also be noted that high values are not only observed in 

the contact zones. Significant TEC is also revealed inside some particles. Finally, it is 

confirmed that TEC is a strong coupling in the steady-state cyclic regime. Indeed, the 

maximum values of 𝑄𝑄TEC exceed 600 kJ/m3, whereas those of 𝑄𝑄MD(stab) only exceed 30 

kJ/m3. 

 Various observations were made here on small discrete systems. They show that it 

is possible to obtain thermal and calorific information based on the proposed 

methodology. The next section is dedicated to a more realistic granular material case, 

since it comprises nearly 100 particles, thus enabling us to perform a statistical analysis. 
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Figure 4.10 Heat produced by mechanical dissipation (MD) during each 

mechanical cycle during test T6 (monodisperse configuration, force rate 

±5 kN/s, maximum 3 kN): a) variations along the cycles at four points in the 

granular system; b) over the first cycle; c) average over the fifth to twentieth 

cycles. The spatial resolution of the maps is equal to 131.6 µm. 
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Figure 4.11 Heat produced by thermoelastic coupling (TEC) over the 

loading phase during test T6 (monodisperse configuration, force rate 

±5 kN/s, maximum 3 kN): a) in the first cycle; b) in the twentieth cycle. The 

spatial resolution of the maps is equal to 131.6 µm. 

4.6 Thermomechanical behavior of a larger granular system 

This section presents an analysis of the thermomechanical response of the “large” 

tridisperse granular material made with about 30 particles of each type (see Table 4.1). 

The spatial resolution is now equal to 496 μm. The following three points are successively 

discussed: 

- influence of the force level reached, namely 6 kN, 9 kN and 12 kN (tests T9, T10 

and T11 respectively), at the same loading rate ±1 kN/s; 

- analysis of a potential correlation between calorific response and interparticle 

movements; 

- statistical analysis from the nearly 600 interparticle contacts in the granular 

system. 
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4.6.1 Influence of the force level reached 

 Figure 4.12 shows maps related to the thermoelastic coupling contribution for the 

three tested loading levels during the first half cycle. Results are first displayed in terms 

of 𝑄𝑄TEC(#1) heat density: see the left-hand side of this figure. Logically, the higher the 

force level reached, the higher the values due to the increased stresses in the granular 

system. The results are also presented in terms of mean heat rate density, corresponding 

to the value of 𝑄𝑄TEC(#1) divided by the duration of half a cycle: see the right-hand side 

of the figure. It can be observed that these maps now in kW/m3 are quite similar for the 

three loading levels. This result may appear surprising for a material featuring non-linear 

elasticity such as TPU. It can be explained by an operating loading range in the linear part 

of the TPU’s mechanical response (low deformation of the particles during the test). Hot 

zones are observed at nearly all the interparticle contacts. It can be noted that the highest 

values are located at the upper left and right corners of the granular system. The lowest 

and least diffuse concentrations are in the bottom left- and right-hand zones of the 

granular system (see dashed triangular zones). This observation is quite similar to a 

previous result obtained on another type of granular material, namely a monodisperse 

system made of rigid particles, see Figure 4.8 in Ref [21]. This phenomenon is a priori 

related to the boundary conditions. The number of particles is probably not sufficient to 

limit these boundary effects. 
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Figure 4.12 Thermoelastic coupling in the tridisperse granular material 

during the first half cycle. Left column: heat density over half a cycle; right 

column: corresponding mean heat rate density. 

 Figure 4.13 shows maps related to the mechanical dissipation contribution for the 

three loading levels that were tested. The results are displayed in terms of heat density 

over the first cycle 𝑄𝑄MD(#1). Note that the adiabaticity of the tests is questionable due to 

the long duration of the mechanical cycles (12 s, 18 s and 24 s for tests T9, T10 and T11 

respectively, see Table 4.1). Moreover, maps of 𝑄𝑄MD(stab) cannot be calculated due to 

the number of mechanical cycles, limited to 5. In any case, some results can be extracted. 
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As expected, the higher the force level, the higher the anelasticity level. The highest 

values are located at the upper left and right corners of the granular system. On the one 

hand, this is logical because high stress levels (revealed by strong TEC in Figure 4.12) 

are expected to be also a priori associated with high mechanical irreversibility levels 

(strong MD). On the other hand, tangential interparticle forces may create high friction 

without necessarily creating high stress concentrations, which may partially explain the 

difference between the TEC and MD responses. The next section aims to propose a 

potential correlation between calorific response and interparticle movements. 

 
Figure 4.13 Mechanical dissipation in the tridisperse granular material: heat 

density over the first cycle. 
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4.6.2 Interparticle movements and calorific responses 

For illustration purposes, the interparticle movements in the tridisperse granular 

system for the maximum force 12 kN (test T11) are shown in Figure 4.14-a, 

distinguishing between translation and rotation. It was necessary to measure these latter 

quantities in order to subsequently calculate relative movement at all the contacts, 

described in next section. The objective is then to compare kinematic quantities (whose 

calculation involves these translations and rotations) with calorific quantities (whose 

calculation involves temperature changes). The coordinates of the interparticle contacts 

and ellipse centers, as well as the orientation of the ellipses, were extracted at the 

minimum and maximum loads by hand, which is feasible for less than 100 particles. The 

translation field is displayed by arrows whose length is proportional to the magnitude of 

the translation of the particle center. As expected, the magnitude decreases from the 

pusher to the bottom of the fixed frame. In the lower part of the granular system, the 

directions are globally symmetrical with respect to the vertical median plane. The rigid-

body rotation field is displayed by colors. It can be observed that the angles are mainly 

positive (trigonometric sense). Negative values are only observed in the upper part, 

especially near the top left corner. More importantly, interparticle motions deserve to be 

analyzed, as they are directly related to potential thermomechanical effects. This was 

performed via two interparticle movement indicators: interpenetration and sliding: see 

Figure 4.14-b. The calculation of these two parameters requires the knowledge of the 

normal and tangential directions at each contact: see the small white and red lines, 

respectively, in Figure 4.14-c. Their identification was performed by manually extracting 

geometric data directly from the thermal maps: inclination and location of the center of 

each ellipsoidal particle; location of each contact. In addition, the procedure was 

performed for both sides of each contact, which justifies the pair of normal forces (small 

white lines) and the pair of tangents (small red lines) displayed at each contact in the 

image. Slight differences are sometimes observed between the two sides, due to the 

difficulty in manually extracting geometric information with the low spatial resolution of 

an IR camera (compared to visible range cameras). An averaging operation was therefore 

performed between the two sides of each contact to determine one single normal direction 
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and one single tangential direction each time. From the translation and rotation data, it is 

then possible to calculate the interpenetration (𝐼𝐼𝐼𝐼𝐼𝐼) and the sliding (𝑆𝑆𝑆𝑆𝑆𝑆) at each contact. 

The complete mathematical procedure used to calculate the interpenetration and the 

sliding are described in Appendix B. 

 
Figure 4.14 Movement of the particles: a) example for test T11; 

b) illustration of interparticle movement indicators; c) identification of 

normal (small white lines) and tangential (small red lines) directions at each 

contact. 



160 

 

 Figure 4.15 shows the distributions of 𝐼𝐼𝐼𝐼𝐼𝐼 and 𝐼𝐼𝐼𝐼𝐼𝐼 × 𝑆𝑆𝑆𝑆𝑆𝑆, whose values have been 

normalized by dividing them by their respective maximum values. The distributions are 

presented through a matrix whose row 𝑖𝑖 and column 𝑗𝑗 correspond the numbers of the 

particles in contact (see these numbers in the schematic view in the upper right corner of 

the figure). The objective is to compare them with the values of 𝑄𝑄half(#1) and 𝑄𝑄MD(#1) 

respectively, at the contacts. Indeed, it is expected that the higher the interpenetration, the 

greater the heat produced by the material 𝑄𝑄half(#1), which involves both TEC and MD 

contributions. It is also expected that MD at the contacts is strongly related to friction, 

which is here “mechanically” expressed by the product 𝐼𝐼𝐼𝐼𝐼𝐼 × 𝑆𝑆𝑆𝑆𝑆𝑆. Indeed, the contact 

normal force is proportional to the interpenetration 𝐼𝐼𝐼𝐼𝐼𝐼 in the case of a contact between 

two elastic cylinders (see equation 5.34 in Page 63 in Ref. [178]). Moreover, the curvature 

radii do not appear at all in the relationship between force and interpenetration [178]. 

Assuming also that the tangential force is proportional to the normal force during sliding 

(Coulomb’s law), the product 𝐼𝐼𝐼𝐼𝐼𝐼 × 𝑆𝑆𝑆𝑆𝑆𝑆 is therefore representative of the mechanical 

work associated with friction. The calorific indicators 𝑄𝑄half(#1) and 𝑄𝑄MD(#1), were 

manually extracted at all couples of particles 𝑖𝑖 and 𝑗𝑗 in contact. It is worth noting that, 

due to the large spatial resolution (496 μm) compared to the measurements in the small 

granular materials in the previous sections, the extracted values are actually strongly 

averaged. Normalization of 𝑄𝑄half(#1) and 𝑄𝑄MD(#1) by their maximum values over all 

the contacts was also performed. It is certainly illusory to try to find a precise correlation 

between these mechanical (𝐼𝐼𝐼𝐼𝐼𝐼 and 𝐼𝐼𝐼𝐼𝐼𝐼 × 𝑆𝑆𝑆𝑆𝑆𝑆) and calorific (𝑄𝑄half(#1) and 𝑄𝑄MD(#1)) 

indicators. However, some agreements can be found at certain contacts: see for example 

the two insets in Figure. 4.13. The higher values are fairly well correlated: see black 

squares at contacts 48/49 and 51/52 for the comparison between 𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑄𝑄half(#1), and 

at contacts 41/42 and 41/45 for the comparison between 𝐼𝐼𝐼𝐼𝐼𝐼 × 𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑄𝑄MD(#1). Various 

approaches can be proposed to improve results in the future, such as defining other 

mechanical indicators and using measurements of displacement/strain fields by DIC in 

the visible range. Nevertheless, a statistical analysis is presented in the next section 

concerning the TEC interparticle data. The analysis is not pursued for the MD 

interparticle data because most of them are low and affected by noise (the highest values 

are mainly located in the upper left and right corners of the granular material). Higher 
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loading rates and averaging over multiple steady-state cycles could result in a better 

signal-to-noise ratio for the MD response in the future. 

 
Figure 4.15 Comparison between interparticle movement indicators and 

contact calorific indicators for test T11. 

4.6.3 Statistical analysis of the thermoelastic coupling signature at the 

interparticle contacts 

 Figure 4.16-a shows the distribution of the calorific signatures 𝑄𝑄TEC(#1) associated 

with TEC at the interparticle contacts in the tridisperse system for the maximum force, 

12 kN. The mean value is also indicated (see vertical dashed line), as well as the 

corresponding probability density function (PDF) that was fitted using a generalized 

extreme value distribution. This type of function was chosen due to the asymmetric 

distribution between low and high values. The comparison between the three force levels 

tested (6 kN, 9 kN and 12 kN) is presented in Fig. 4.16-b. Logically, an increase in the 

average value is observed with the maximum force level. The PDFs are indeed shifted to 
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the right in the graph and are wider when the maximum force increases. These results are 

quite logical but show that IR thermography and subsequent calorific analysis provide 

interesting/complementary data for the analysis of the thermomechanical behavior of 

granular materials, as discussed in the conclusion section. 

 
Figure 4.16 Calorific signature associated with thermoelastic coupling at the 

interparticle contacts in the tridisperse system: a) example of histogram and 

corresponding probability density function (PDF) using a generalized 

extreme value distribution; b) comparison of the PDFs for the three loading 

levels. 

4.7 Conclusion 

 For several decades, the analysis of the mechanical behavior of continuous solids 

has benefited from full-field measurement techniques relying on infrared thermography 

and subsequent calorimetry processing. Indeed, the experimental evidence of the local 

couplings between mechanical and thermal responses has enabled a real analysis of 

heterogeneous phenomena in continuous materials within a rigorous thermodynamic 

framework. Until now, granular materials have been virtually excluded from this 

approach in the experimental mechanics community. We believe that such an 

experimental procedure can also provide information of interest for the understanding of 

the mechanical behavior of granular materials, which is potentially complementary to 

full-field strain measurements and numerical methods. 
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 In the present study, soft granular systems composed of elastomeric particles were 

selected to take advantage of the thermoelastic coupling (TEC) associated with entropic 

elasticity. Centimeter-sized cylinders with ellipsoidal cross sections were elaborated to 

form the particles. The thermal response of monodisperse, bidisperse and tridisperse 

systems was measured by infrared camera under confined cyclic compression. A 

temperature oscillation featuring the same frequency as that of the load was observed. 

During the compression phases, hot spots were identified at all interparticle contacts. This 

was explained by the entropic TEC activated by stress concentrations at the contacts, with 

a potential contribution of mechanical dissipation (MD) associated with irreversible 

phenomena such as viscosity and friction. The importance of the spatial resolution used 

for the thermal measurements was highlighted. Local temperature changes of up to nearly 

0.5 °C were measured with a spatial resolution of about 0.1 mm. The temperature change 

value is halved for a spatial resolution of about 1 mm. Self-heating over the cycles was 

also observed around specific contacts, as well as inside some particles. This is caused by 

MD, considering that the heat associated with TEC vanishes over a mechanical cycle. 

Self-heating rates up to about 0.01 °C/ cycle were measured in the steady-state regime. A 

greater contribution of MD was observed during the first cycles. A comparison between 

monodisperse and bidisperse systems at the same macroscopic loading level showed a 

stronger thermal response in the former case, in agreement with the expected differences 

in the intensity of interparticle contact forces. Calorimetric treatment allowed us to 

calculate the corresponding heat values. It was estimated that the intensity of the heat 

generated by entropic TEC could reach more than 600 kJ/m3 in the contact zones during 

the compression phases, while that associated with MD was limited to about 30 

kJ/m3/cycle in the steady-state regime (and about 300 kJ/m3/cycle in the transient regime). 

This shows that TEC is a strong coupling. TEC data were processed for a tridisperse 

system consisting of about 600 interparticle contacts. Statistical information on the TEC 

heat distribution at the interparticle contacts shows a change in the distributions with the 

level of compression that is applied. This paves the way for thermomechanical models 

based on such calorimetric data. This study was published in the Experimental Mechanics 

journal [179].  
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CHAPTER 5 

Conclusion and Perspectives 

 Granular materials are collections of solid particles of various shapes, materials and 

sizes, making their mechanical behavior complex. In the past, effective understanding 

was mainly derived from experiments, which were limited by the equipment available at 

the time. Numerical approaches based on the Discrete Element Method were then 

developed. These are powerful, reliable and widely used as efficient tools for studying 

granular media. In comparison, experimentation was not as widespread due to difficulties 

of preparation and instrumentation. In recent decades, non-contact full-field measurement 

techniques based on cameras have become increasingly familiar and attractive in the 

experimental mechanics community. This is due to rapid advances in equipment and 

image processing techniques. Some of these were used to study two-dimensional (2D) 

granular media under mechanical loading: particle image velocimetry (PIV) to measure 

strain patterns; digital image correlation (DIC) to measure strains within deformable 

particles; photoelasticimetry to measure shear stresses in particles made of birefringent 

material; and thermoelastic stress analysis (TSA) based on infrared thermography (IRT) 

to measure hydrostatic stresses in particles. Some of these techniques enabled identifying 

the interparticle forces using appropriate image processing. However, there are certain 

limitations due to the specifications of each technique. Besides, soft granular materials 

have rarely been studied with these techniques. In this context, the aim of this thesis was 

to develop other full-field techniques for two purposes: 1) to identify contact forces using 

the virtual fields method (VFM) from knowledge of the strain distribution obtained by 

localized spectrum analysis (LSA); 2) to identify thermomechanical couplings in soft 

particles using IRT. 
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 A contact force identification strategy using VFM was defined in this work relying 

on measurements of the strain fields on the particle surfaces. The approach was 2D as the 

granular systems under study were made of cylinders stacked in parallel. Synthetic strain 

data provided by a finite element model were first used as input data for the identification 

procedure. It was shown that kinematically admissible (KA) virtual displacement fields 

can be advantageously defined (with respect to limitation of the effect of noise in the real 

strain fields) using a triangulation-based natural interpolation between the contact points. 

Various simulations illustrated the impact of the choice of the virtual fields and the 

robustness of the identification technique, namely the influence of magnitude of noise, 

shift between the virtual and real strain fields, and missing data along particle boundaries. 

Various multi-contact systems were considered for this study. An experiment was then 

performed on a system made of three particles in PA66 under confined compression 

relying on strain distributions obtained by LSA. It was shown that the contact forces 

obtained by VFM failed to verify Newton’s third law of motion. This can be due to out-

of-plane movements or errors in elastic parameters of the particle material. Alternative 

force identification strategies were then proposed by considering equilibrium equation of 

each particle and Newton’s third law of motion at each interparticle contact. The 

identification results were compared to determine which best handled the set of equations 

for contact force identification. The best strategy was obtained when using VFM 

equations with Lagrange multipliers to enforce equilibrium and Newton’s third law of 

motion. This strategy was subsequently employed on three experimental multi-contact 

granular media. Using monodisperse, bidisperse and tridisperse systems composed of 

108, 85 and 80 cylinders in PA66, respectively, it was shown that statistical results were 

consistent with those of numerical and experimental studies performed in the past. Some 

difficulties of preparation and implementation were described. However, it can be noted 

that the proposed contact force identification is applicable in theory to any type of 

materials if the constitutive equation is known. Note also that the procedure enables to 

completely identify all the contact forces in a 2D granular system: normal forces and 

tangential forces are simultaneously identified directly from the strain fields measured on 

the surface of each particle. Molecular Dynamics simulations were then performed to 

validate the experimental results in terms of contact force networks, angular force 
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distributions and probability density functions (PDFs) of the normal forces. It was 

concluded that the experimental procedure based on VFM and LSA is operational for 

statistical analysis of actual granular systems. This experimental approach can be 

employed for further work: 

- performing experiments on bigger granular systems (with many more contacts) to 

improve the accuracy of the statistical results; 

- performing experiments on granular systems composed of particles with more 

complex shape, e.g. non-convex; 

- identifying contact forces in soft granular systems, e.g. using rubber-like materials 

for the particles. The constitutive model of material employed in the VFM should 

be modified. The large deformations will be also an issue to extract the strain fields 

using LSA. Large out-of-plane movements could be also a problem. The 

measurement techniques should be appropriately adapted for these issues. 

 Next, thermomechanical couplings were identified in soft granular systems using 

IRT. Particles were made in a rubber-like material, namely TPU, in order to benefit from 

the strong thermoelastic coupling (TEC) associated with entropic elasticity and a low 

thermal conductivity. The thermal response of monodisperse, bidisperse and tridisperse 

systems was measured under confined cyclic compression. A temperature oscillation at 

the same frequency as the loading was observed. Hot spots were discovered at all 

interparticle contacts during the compression phases. This was explained by the entropic 

TEC activated by stress concentrations at the contacts, with a potential contribution of 

mechanical dissipation (MD) associated with irreversible phenomena such as viscosity 

and friction. Self-heating over the cycles was also observed around specific contacts, as 

well as inside some particles. This is caused by MD, while the heat associated with TEC 

vanishes over a mechanical cycle. The comparison between the monodisperse and 

bidisperse systems showed a stronger thermal response in the former case, in agreement 

with the expected differences in the intensity of interparticle contact forces. Calorimetric 

treatment allowed us to calculate the corresponding heat values. It was estimated that the 

intensity of the heat generated by entropic TEC could reach more than 600 kJ/m3 in the 

contact zones during the compression phases, while that associated with MD was limited 
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to about 30 kJ/m3/cycle in the steady-state regime (and about 300 kJ/m3/cycle in the 

transient regime). This shows that TEC is a strong coupling. TEC data were processed 

for a tridisperse system consisting of about 600 interparticle contacts. Statistical 

information on the TEC heat distribution at the interparticle contacts shows a change in 

the distributions with the level of compression that is applied. Several extensions of this 

work can be proposed: 

- increasing the number of particles; the objective would be to provide statistical 

calorific data on both reversible and irreversible mechanical phenomena excluding 

boundary effects; 

- coupling IRT with visible-range measurements to measure the strain fields at the 

same time as the temperature maps; this should enable us to calculate energy 

balance; 

- increasing the complexity of the shapes of the cylinder cross-sections, including for 

example sharp edges and non-convex geometries; 

- modeling and simulating the thermomechanical experiments; this would require a 

coupling of discrete and finite element methods. The comparison between 

numerical and experimental methods for soft granular media is a further step of our 

work; 

- proposing a macroscopic thermodynamical model; this approach would require 

appropriate averaging operations to obtain calorimetric data (TEC, MD) to be 

related to mean mechanical variables (fabric stress and/or strain). This could lead 

to the proposition of macroscopic/mesoscopic stress measurement techniques by 

using only temperature data; 

- applying the proposed approach to sand; the design of the experimental device 

would however be an issue. Indeed, the box containing the sand should 

simultaneously sustain the stress induced by the load and be infrared transparent, 

so that the IR camera could observe and capture the temperature field over one of 

the walls during the tests. The application of the proposed thermodynamical 

methodology to sand would therefore require significant implementation efforts. 
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APPENDIX A 

Preliminary simulation of heat transfer in a granular system 

 This section provide a preliminary numerical simulation relying on MD with heat 

diffusion modeling (see Section 1.2.7 in the bibliography and state-of-the-art chapter). 

The objective is to investigate the temperature fields in granular systems due to external 

mechanical loading. The present study is a first attempt from the present author to 

numerically investigate thermomechanical effects (temperature changes due to 

mechanical loading) in granular systems. This endeavor may pave the way for further 

research into the specifics of the thermomechanical effects discussed in Section 4. 

A.1. Numerical preparation 

 Three granular composite configurations were prepared as the two-dimensional 

numerical composite samples in the present study. The granular systems were made of 

two different constitutive materials: one is polyoxymethylene (POM), used to prepare 

“stiff” particles; the other one is high-density polyethylene (HDPE), used to create “soft” 

particles. It must be noted that the stiff particles are approximately four times stiffer than 

the soft ones [69]. The locations of the particles in this numerical study corresponded to 

the locations from an earlier experimental study. This experimental study was performed 

in 2014 within the collaboration between my two establishments, namely Chiang Mai 

University and Clermont Auvergne University. In the experiments, the locations of 

particles for each configuration were extracted from an optical image of a real composite 

granular system. The extracted locations were then employed to prepare initial states for 

numerical simulations. Table A.1 presents configurations of all tested samples. Sample 

#1 is a monodisperse system, whereas Samples #2 and #3 are bidisperse systems due to 

their diameter ratio being different from 1. 
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Table A.1 List and details of the tests presented in the this numerical study. 

Sample 
Diameter ratio 

Dstiff /Dsoft 

Number of particles  

Nstiff : Nsoft 
Total number of particles 

#1 1.0 638 : 597 1235 

#2 1.6 334 : 371 705 

#3 3.0 86 : 466 552 

 Each particle was deposited inside a box consisting of four rigid walls. In the 

simulation, a vertical compression force of 60 kN was incrementally applied to granular 

samples by the bottom wall under the quasi-static condition. The force was applied 

completely from 0 to 60 kN in 4 seconds. The time step is equal to 2E-6. The gravitational 

force was also taken into account, although it can be negligible compared to the 

magnitude of the external loading. The normal and tangential forces between the particles 

were calculated using Equation 1.22 and Equation 1.23, respectively. The contact forces 

between particles and wall were also computed. The effective contact stiffness keff 

depends on the type of contacting particles: it is defined by (kstiff ×ksoft)/(kstiff+ksoft) for the 

inter-particle contacts, while the case of particle-wall contacts is defined by the stiffness 

of the particles in contact with the wall (assumed to be undeformable). The thermal 

conductivity and HDPE is equal to 0.31 and 0.49 W/m·C, respectively. The heat 

convection coefficient of still air is equal to 0.025 W/m·C. 

 After calculation, the contact forces and relative velocities were employed to 

compute the heat generation  in each particle from Equation 1.24, which is associated to 

energy dissipation. a particle which has a temperature different from its neighbors 

exchanges heat with them (when they are in contact). This phenomenon can be expressed 

in terms of heat conduction depending on the contact area and the effective thermal 

conductivity, described in Equation 1.25 and Equation 1.26. Furthermore, the initial 

temperature of all particles in all configurations is defined to be 25 °C, corresponding to 

the ambient temperature in the experiments. It was assumed that the ambient air in the 

void of the granular systems was not flowing, which means the heat convection can be 

deduced from Equation 1.27. However, the heat convection of still air is rather low due 
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to its heat convection coefficient. The heat convection can be neglected. After the 

calculation of the local heat effect, it is possible to update the temperature of each particle 

at the next time step. Iterative calculation was performed until reaching the maximum 

external force. 

A.2. Results and discussion 

 Let us recall that the simulation provides one temperature per particle. The 

normalized temperature change (at the maximum external force applied) is then 

considered for the statistical analysis of the results. It is defined as the temperature change 

of the particle divided by the average temperature change of all the particles inside the 

granular sample. This normalized temperature change mimics the normalized contact 

force or stress, which are typically used in granular studies, in order to enable similarly 

the results. 

A.2.1. Field of normalized temperature changes 

 The normalized temperature change ΔTnorm of all the particles was plotted with their 

positions to create a field of normalized temperature change, both for the simulation 

results: see Figure 4.1.  

 Figure A.1 show the fields of normalized temperature change of each sample from 

numerical simulation. It is clearly seen that the particles with high temperature change in 

numerical simulation occur at the top the granular system of sample #1 in Figure A.1-a. 

Considering samples #2 and #3 in Figures A.1-b and A.1-c, most of particles which their 

temperature change is lower than the average temperature change is stiff particles. It must 

be noted that this temperature change cannot imply to the amount of heat storage of each 

particle. In fact, not only the mass but also the specific heat capacity of stiff particles is 

larger than those of soft particles. This is a reason why the lower temperature occurs at 

the stiff particles instead of the soft particles. It means that the soft particles, which are 

HDPE, can give a higher temperature response and they require less external mechanical 

loading for investigating temperature change. This is a preliminary simulation to 

investigate the thermomechanics in granular materials. The self-heating observed in the 
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simulation can be deduced to mechanical dissipation effect, which is one of the 

thermomechanical phenomena. 

 
Figure A.1 Fields of normalized temperature changes generated by 

simulations: a) Sample #1; b) Sample #2; c) Sample #3. 

A.2.2. Probability density function of normalized temperature change (P(ΔTnorm)) 

 In this section, a probability density function (PDF) of the normalized temperature 

change (P(ΔTnorm)) was determined for each configuration. It must be noted that five 

additional simulations with randomly changed the particle locations were systematically 

performed for each sample: Simulations A, B, C, D, and E, respectively. Figure A.2 shows 

the PDF of the normalized temperature change of each configuration obtained from the 

simulations in semi-natural logarithmic scale. There are two types of PDFs which are the 

temperature change lower than the mean of the temperature change (P(ΔTnorm<ΔT̅norm)) 
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and PDFs which are the temperature change higher than the mean of the temperature 

change (P(ΔTnorm>ΔT̅norm)) as illustrated in left and right columns in Figure A.2, 

respectively. 

 The distribution curves of P(ΔTnorm<ΔT̅norm) of simulation are governed by power’s 

law as discussed in section 1.2.4, except the simulation in sample #3. Furthermore, the 

percentage of particles having the temperature change lower than the mean of the 

temperature change are approximately 40%. On the contrary, the distribution curves of 

P(ΔTnorm>ΔT̅norm) obtained by both simulations are in the same trend for all the samples, 

which exhibit as an exponential decay as discussed in section 1.2.4. This distribution law 

corresponds to the well-known force and stress distributions [69, 78]. Moreover, the 

function of exponential decreasing is also observed when considering only stiff particles 

and only soft particles separately. It is worth mentioning that simulation percentages of 

particles having the temperature change higher than the mean of the temperature change 

are approximately 40%. This is evidence that the PDF of thermal response can be 

analyzed in the same method as the PDFs of forces and stresses in granular material. 
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Figure A.2 Probability density function of normalized temperature change 

obtained from both simulations in semi-natural logarithmic scale for: a) 

Sample #1; b) Sample #2; c) Sample #3. Note that simulations “A”, “B”, 

“C”, “D”, and “E” were performed under the same experimental 

configuration, excluding the particle locations, while the simulation “SP” 

was conducted under all the same as in the experiments (the simulation in 

the previous section). 
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A.3. Conclusion 

 In this study, the numerical simulation approach, MD was employed to validate the 

heat diffusion in 2D granular composites under a confined mechanical loading. Three 

configurations of experiments were chosen to prepare numerical samples for this purpose. 

Each sample was then subjected to a compressive loading. Only heat generation, heat 

conduction, and heat convection were taken into account in this study. Note that 

normalized temperature change, which can be determined from the temperature change 

in the particle divided by the means of the temperature change of all the particles inside 

the granular sample, is considered for the analysis. The normalized temperature change 

fields and the probability density function of normalized temperature change were then 

employed to statistically analyze for both results obtained from the simulations. 

Considering the temperature change fields, an inhomogeneous temperature distribution 

was clearly observed in all the samples for both simulations. The power’s law and 

exponential decay distribution were clearly observed in the statistical analysis of all 

numerical simulations. This distribution corresponds to the well-known force and stress 

distribution law. The number of particles having the temperature change higher than the 

mean of the temperature change is approximately 40% for all tests. On the contrary, the 

particles having the temperature change lower than the mean of the temperature change 

is approximately 60%. These results are corresponding to the force distribution in the past 

study [11]. Additionally, it was found that HDPE, soft particle, can exhibit a high thermal 

response due to a high temperature change. 
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APPENDIX B 

Estimating interpenetration and sliding between cylinders with ellipsoidal cross 

section 

We consider two cylinders S1 and S2 in contact at point I, see the schematic view 

in Figure B.1. The objective here is to properly define how to estimate the relative 

movement between S1 and S2. Assuming that the movement in terms of rotation and 

translation is small, the rigid-body movement of each cylinder S𝑖𝑖, 𝑖𝑖 = 1, 2 can be modeled 

by two vectors 𝛩𝛩𝑖𝑖 and 𝑈𝑈O𝑖𝑖 where O𝑖𝑖 is the center of each cylinder S𝑖𝑖. Vectors 𝛩𝛩𝑖𝑖 and 𝑈𝑈O𝑖𝑖 

are respectively the rotation vector of S𝑖𝑖 and the displacement vector of its center O𝑖𝑖. The 

coordinates of all the points represented in the figure are assumed to be identified 

manually in the images of the deformed and current configurations taken by the IR camera 

during the test. The components of vectors 𝑈𝑈O1, 𝑈𝑈O2, 𝛩𝛩1 and  𝛩𝛩2 are determined by hand, 

by considering the coordinates of the points in the deformed and in the reference 

configurations. Each vector 𝛩𝛩𝑖𝑖 is defined by a single angle 𝜃𝜃𝑖𝑖 which is the rotation about 

a unit vector 𝑒𝑒𝑧𝑧 directly perpendicular to 𝑒𝑒𝑥𝑥 and 𝑒𝑒𝑦𝑦. Thus, 𝛩𝛩𝑖𝑖 = 𝜃𝜃𝑖𝑖 𝑒𝑒𝑧𝑧. 𝜃𝜃𝑖𝑖 can be regarded 

as the small change, when the system is loaded, of the initial orientation 𝛾𝛾𝑖𝑖 of the major 

axis of cylinder S𝑖𝑖; see Figure B.1 where this initial orientation 𝛾𝛾𝑖𝑖 is represented for each 

cylinder. Finally, it is worth noting that 𝜃𝜃𝑖𝑖 can be negative or positive, depending on the 

orientation of the rotation when the cylinders slightly move between the initial and 

deformed systems. 
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Figure B.1 Schematic view of the cross-sections of two cylinders in contact 

at point I. 

 The relative displacement between S2 and S1 is denoted 𝑈𝑈S2 S1⁄ . Vector 𝑈𝑈S2 S1⁄  is 

merely equal to the difference between 𝑈𝑈 IS2
 and 𝑈𝑈IS1

, where IS1and IS2 denote point I 

belonging to cylinders S1 and S2 respectively. Their displacement is different if 

interpenetration or/and sliding occurs between 𝑆𝑆2 and 𝑆𝑆1. Hence, 𝑈𝑈S2 S1⁄ =  𝑈𝑈IS2
− 𝑈𝑈IS1

. 

Vectors 𝑈𝑈IS2
 and 𝑈𝑈IS1

 can be deduced from both the displacement of the center of each 

cylinder and the rotation of these cylinders. Indeed, we have 

  
S 1 11

S 2 22

I O 1S 1

I O 2S 2

I O

I O

U U Θ

U U Θ

= + ×
 = + ×

 (B.1)  

where symbol “×” represents the cross product of two vectors. Thus 

  
2 1 2 1 2 1S /S O O 2 1S 2 S 1I O I OU U U Θ Θ= − + × − ×  (B.2)  

 The idea is now to distinguish between the normal and the tangential projection of 

this relative displacement to determine the interpenetration between S1 and S2 as well as 

the sliding of S2 on S1. For this, it is necessary to know the components of a unit vector 

𝑡𝑡, which is tangent to both ellipses at point I. Vector 𝑈𝑈S2 S1⁄  will then be projected on 𝑡𝑡 to 

determine sliding, and on 𝑛𝑛 to determine interpenetration. 
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 Calculation of the tangent and normal vectors at the contact point. 

 To find 𝑡𝑡 and 𝑛𝑛, we need to write the parametric equations of the ellipse modeling 

the border of S𝑖𝑖, 𝑖𝑖 = 1, 2. The local coordinate system of each ellipse being defined by 

the axes going through its major and minor axes (see Figure B.1), the Cartesian equation 

of the ellipse can be written as follows in this local coordinate system: 

  
2 2

2 2 1i i

i i

x y
a b

   ′ ′
+ =   ′ ′   

 (B.3)  

where 2𝑎𝑎𝑖𝑖 = �A𝑖𝑖B𝑖𝑖�, 2𝑏𝑏𝑖𝑖 = �C𝑖𝑖D𝑖𝑖� and 𝑥𝑥′𝑖𝑖 and 𝑦𝑦′𝑖𝑖 are the local coordinates of a point 

located on the ellipse defining the cross-section of Si. The relationship between local and 

global coordinates writes as follows for each ellipse 𝑖𝑖: 
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 (B.4)  

In the global coordinate system, Equation B.6 becomes 
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 (B.5)  

where 𝑥𝑥O𝑖𝑖 and 𝑦𝑦O𝑖𝑖 are the coordinates of the center 𝑂𝑂𝑖𝑖 of each ellipse 𝑖𝑖. Finally, the 

parametric equations of each ellipse 𝑖𝑖 are deduced with the following change of variables: 
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 (B.6)  

with 𝛼𝛼 ∈ [0 2𝜋𝜋]. The coordinates of point I, namely 𝑥𝑥I and 𝑦𝑦I, are picked by hand in the 

global coordinate system. The value of 𝛼𝛼 at point I, denoted by 𝛼𝛼I , is therefore directly 
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deduced from the following two equations, since all the quantities on the right side of 

both the equalities are known: 
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 (B.7)  

 The objective is now to find the components of the tangent vector 𝑡𝑡 in the local 

coordinate system 𝑖𝑖. These components are denoted 𝑡𝑡𝑥𝑥𝑖𝑖
′ and 𝑡𝑡𝑦𝑦𝑖𝑖

′. First the parametric 

equations of ellipse 𝑖𝑖 can be written as follows in this local coordinate system: 
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i i
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 (B.8)  

 The components of the tangent vector 𝑡𝑡 in the local basis are obtained by 

derivatizing Equation B.11. This gives 
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 (B.9)  

 These components must finally be expressed in the global coordinate system, which 

gives 
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 (B.10)  

 The components of vector 𝑛𝑛, which is directly perpendicular to 𝑡𝑡, are defined by 

  i i

i i

x x

y y

n t

n t

=
 = −

 (B.11)  

 The components of 𝑡𝑡 and 𝑛𝑛 at point I are simply obtained by feeding Equation B.12 

above with 𝛼𝛼I found with Equation B.10 and then applying Equation B.13 and B.14 in 

this particular case. It should be checked that vector 𝑛𝑛 is correctly oriented, i.e., outwards. 
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Remark — Each cylinder i should provide its own vector 𝑡𝑡. For a given contact, two 

cylinders being involved, it should be verified that these two versions of the same tangent 

vector are close to each other. The mean vector should be retained for the following and 

final calculations proposed in Equation B.15. The same remark holds for 𝑛𝑛. 

 Final estimation of interpenetration and sliding between ellipses. 

 The 𝑛𝑛 and 𝑡𝑡 being defined at point I, the amplitude of the sliding 𝑠𝑠𝑠𝑠𝑠𝑠 of S2 on S1 

can be obtained by projecting 𝑈𝑈S2 S1⁄  defined in Equation B.5 on vector 𝑡𝑡 calculated at 

point I, and the interpenetration 𝑖𝑖𝑖𝑖𝑖𝑖 of S2 in S1 by projecting 𝑈𝑈S2 S1⁄  on vector 𝑛𝑛 calculated 

at point I. These two quantities are equal to: 

  2 1

2 1

S /S

S /Smin( ,0)
sld U t

int U n
= ⋅

 = − ⋅
 (B.12)  

where “ ∙ ” represents the dot product of two vectors. In Equation B.15 above, 𝑛𝑛 should 

have the same orientation of vector O1O2 to consider that interpenetration occurs only if 

the projection of 𝑈𝑈S2 S1⁄  onto 𝑛𝑛 is negative. If this projection is positive, it means that S2 

and S1 are no longer in contact after loading the system, so no interpenetration occurs and 

𝑖𝑖𝑖𝑖𝑖𝑖 = 0. Concerning 𝑠𝑠𝑠𝑠𝑠𝑠, it is worth mentioning that its absolute value should be 

considered for comparison purposes with mechanical dissipation, which is a positive 

calorific quantity. 

 The procedure above should be applied to each cylinder of the system and to each 

contact point between this cylinder and its neighbors. 
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