
HAL Id: tel-04574676
https://theses.hal.science/tel-04574676

Submitted on 14 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Deployment of Deep Neural Networks on
Hardware Devices for Edge AI

Halima Bouzidi

To cite this version:
Halima Bouzidi. Efficient Deployment of Deep Neural Networks on Hardware Devices for Edge
AI. Artificial Intelligence [cs.AI]. Université Polytechnique Hauts-de-France, 2024. English. �NNT :
2024UPHF0006�. �tel-04574676�

https://theses.hal.science/tel-04574676
https://hal.archives-ouvertes.fr

École Doctorale PHF no 635 : Polytechnique Hauts-de-France

Thèse de Doctorat

Déposée pour obtenir le grade de docteur délivré par

l’Université Polytechnique Hauts-de-France
et L’INSA Hauts-de-France

Spécialité “Informatique”

présentée et soutenue publiquement par

Halima Bouzidi

le 29 Jan 2024 à Valenciennes, France

Déploiement Efficace des Réseaux de Neurones
Profonds sur les Dispositifs Matériels pour l’IA en Edge

Directeur de thèse : Prof. Smail Niar
Co-encadrant de thèse : Dr. Hamza Ouarnoughi
Co-encadrant de thèse : Prof. El-Ghazali Talbi

Jury
Prof. Olivier Sentieys, Professeur, Université de Rennes, France Rapporteur
Prof. Tulika Mitra, Professeur, Université de Singapour, Singapour Rapporteuse
Prof. Clarisse Dhaenens, Professeur, Université de Lille, France Examinatrice
Dr. Nicolas Ventroux, Chef de laboratoire, Thales France Examinateur
Prof. Abdessamad Ait El-Cadi, Professeur, INSA Hauts-de-France, France Invité

LAMIH-UPHF
Déparetement Informatique

UMR CNRS 8201, 59300 Famars, Valenciennes, France

École Doctorale PHF no 635 : Polytechnique Hauts-de-France

Ph.D. Dissertation

Submitted to obtain a degree of Doctor in Philosophy from

l’Université Polytechnique Hauts-de-France
et L’INSA Hauts-de-France

Discipline “Computer Science and Engineering”

Publicly presented and defended by

Halima Bouzidi

On the 29 Jan 2024 in Valenciennes, France

Efficient Deployment of Deep Neural Networks on
Hardware Devices for Edge AI

Thesis Director : Prof. Smail Niar
Thesis Co-Supervisor : Dr. Hamza Ouarnoughi
Thesis Co-Supervisor : Prof. El-Ghazali Talbi

Jury
Prof. Olivier Sentieys, Professor, University of Rennes, France Reviewer
Prof. Tulika Mitra, Professor, University of Singapore, Singapore Reviewer
Prof. Clarisse Dhaenens, Professor, University of Lille, France Examiner
Dr. Nicolas Ventroux, Head of Laboratory, Thales, France Examiner
Prof. Abdessamad Ait El-Cadi, Professor, INSA Hauts-de-France, France Invitee

LAMIH-UPHF
Déparetement Informatique

UMR CNRS 8201, 59300 Famars, Valenciennes, France

ABSTRACT

Neural Networks (NN) have become a leading force in today’s digital land-
scape. Inspired by the human brain, their intricate design allows them to recognize
patterns, make informed decisions, and even predict forthcoming scenarios with
impressive accuracy. NN are widely deployed in Internet of Things (IoT) systems,
further elevating interconnected devices’ capabilities by empowering them to learn
and auto-adapt in real-time contexts. However, the proliferation of data produced
by IoT sensors makes it difficult to send them to a centralized cloud for proces-
sing. This is where the allure of edge computing becomes captivating. Processing
data closer to where it originates -at the edge- reduces latency, makes real-time
decisions with less effort, and efficiently manages network congestion.

Integrating NN on edge devices for IoT enables more efficient and responsive
systems, ushering in a new age of self-sustaining Edge AI. However, Deploying
NN on resource-constrained edge devices presents a myriad of challenges : (i) The
inherent complexity of neural network architectures, which requires significant
computational and memory capabilities. (ii) The limited power budget of IoT de-
vices makes the NN inference prone to rapid energy depletion, drastically reducing
system utility. (iii) The need of ensuring harmony between NN and HW designs as
they evolve at different rates. (iv) The lack of adaptability to the dynamic runtime
environment and the intricacies of input data.

Addressing these challenges, this thesis aims to establish innovative methods
that extend conventional NN design frameworks, notably Neural Architecture
Search (NAS). By integrating HW and runtime contextual features, our methods
aspire to enhance NN performances while abstracting the need for the human-in-
loop. Firstly, we incorporate HW properties into the NAS by tailoring the design of
NN to clock frequency variations (DVFS) to minimize energy footprint. Secondly,
we leverage dynamicity within NN from a design perspective, culminating in a
comprehensive Hardware-aware Dynamic NAS with DVFS features. Thirdly, we
explore the potential of Graph Neural Networks (GNN) at the edge by developing
a novel HW-aware NAS with distributed computing features on heterogeneous
MPSoC. Fourthly, we address the SW/HW co-optimization on heterogeneous MP-
SoCs by proposing an innovative scheduling strategy that leverages NN adapta-
bility and parallelism across computing units. Fifthly, we explore the prospect of
ML4ML – Machine Learning for Machine Learning by introducing techniques to
estimate NN performances on edge devices using neural architectural features and
ML-based predictors. Finally, we develop an end-to-end self-adaptive evolutionary
HW-aware NAS framework that progressively learns the importance of NN para-
meters to effectively guide the search toward Pareto optimal solutions.

Our methods can contribute to elaborating an end-to-end design framework for
neural networks on edge hardware devices. They enable leveraging multiple opti-
mization opportunities at both the software and hardware levels, thus improving
the performance and efficiency of Edge AI systems.

Keywords :Hardware-aware Neural Architecture Search, Dynamic Inference, DVFS,
Edge AI, Performance Prediction, HW/SW Co-optimization.

i

RÉSUMÉ

Les réseaux de neurones (RN) sont devenus une force majeure dans le monde
de la technologie. Inspirés par le cerveau humain, leur conception complexe leur
permet d’apprendre des motifs, de prendre des décisions et même de prévoir des
scénarios futurs avec une précision impressionnante. Les RN sont largement dé-
ployés dans les systèmes de l’Internet des Objets (IoT pour Internet of Things),
renforçant davantage les capacités des dispositifs interconnectés en leur donnant
la capacité d’apprendre et de s’auto-adapter dans un contexte temps réel. Cepen-
dant, la prolifération des données produites par les capteurs IoT rend difficile leur
envoi vers un centre cloud pour le traitement. Par conséquent, le traitement des
données plus près de leur origine, en edge, permet de prendre des décisions en
temps réel, réduisant ainsi la congestion du réseau.

L’intégration des RN à l’edge dans les systèmes IoT permet d’obtenir des so-
lutions plus efficaces et réactives, inaugurant ainsi une nouvelle ère de edge AI.
Néanmoins, le déploiement des RN sur des plateformes matérielles à ressources
présente une multitude de défis. (i) La complexité inhérente des architectures des
RN, qui nécessitent d’importantes capacités de calcul et de stockage. (ii) Le bud-
get énergétique limité caractérisant les dispositifs matériels sur edge qui ne permet
pas de supporter des RN complexes, réduisant drastiquement la durée de fonction-
nement du système. (iii) Le défi d’assurer une harmonie entre la conception des
RN et celle des dispositifs matériels de l’edge. (iv) L’absence de l’adaptabilité à
l’environnement d’exécution dynamique et aux complexités des données.

Pour pallier ces problèmes, cette thèse vise à établir des méthodes innovantes
qui élargissent les cadres traditionnels de conception de RN (NAS pour Neural
Architecture Search) en intégrant les caractéristiques contextuelles du matériel et
de l’environnement d’exécution. Tout d’abord, nous intégrons les propriétés ma-
térielles au NAS en adaptant les RN aux variations de la fréquence d’horloge.
Deuxièmement, nous exploitons l’aspect dynamique au sein des RN d’un point
de vue conceptuel, en introduisant un NAS dynamique. Troisièmement, nous ex-
plorons le potentiel des RN graphiques (GNN pour Graph Neural Network) en
développant un NAS avec calcul distribué sur des multiprocesseurs hétérogènes
sur puce (MPSoC pour Multi-Processors Système-on-Chip). Quatrièmement, nous
abordons la co-optimisation software et matérielle sur les MPSoCs hétérogènes en
proposant une stratégie d’ordonnancement innovante qui exploite l’adaptabilité et
le parallélisme des RN. Cinquièmement, nous explorons la perspective de ML4ML
en introduisant des techniques d’estimation des performances des RN sur les pla-
teformes matérielles sur edge en utilisant des méthodes basés sur ML. Enfin, nous
développons un framework NAS évolutif et auto-adaptatif de bout en bout qui
apprend progressivement l’importance des paramètres architecturaux du RN pour
guider efficacement le processus de recherche du NAS vers l’optimalité.

Nos méthodes aident à contribuer à la réalisation d’un framework de concep-
tion de bout en bout pour les RN sur les dispositifs matériels sur edge. Elles
permettent ainsi de tirer avantage de plusieurs pistes d’optimisation au niveau
logiciel et matériel, améliorant les performances et l’efficacité de l’Edge AI.

Keywords : Hardware-aware Neural Architecture Search, Inference Dynamique,
DVFS, Edge AI, Prédiction de Performance, Co-optimization HW/SW .

ii

ACKNOWLEDGEMENT

Certainly, this journey has been full of ups, downs, and doubts more than

anything else. With the help and support from everyone, I was able to cross the

finish line. I’m so grateful for the things I’ve learned and the people I’ve met.

First and foremost, I offer my immense gratitude to my Ph.D. advisor, Prof.

Smail Niar, for guiding me throughout my Ph.D. studies. His encouragement,

patience, and support have been crucial in shaping both my research and my

personal growth. I also thank my co-advisors, Dr. Hamza Ouarnoughi and Prof.

El-Ghazali Talbi, for their invaluable guidance, support, and mentorship. I have

gained numerous skills and knowledge from them that will forever shape my career.

I also offer my profound appreciation to my collaborators, Prof. Mohammad

Abdullah Al-Faruque and Mohanad Odema, whose consistent support was pivotal

in completing my Ph.D. journey. Their unwavering guidance has been instrumental

in keeping me open to new ideas and maintaining a growth-oriented mindset.

I would like to thank my thesis committee members, Prof. Olivier Sentieys,

Prof. Tulika Mitra, Prof. Clarisse Dhaenens, Dr. Nicolas Ventroux, and Prof. Ab-

dessamad Ait El-Cadi, for their insightful comments and feedback.

I would like to express my sincere gratitude to my lab-mates, Hadjer, Imed,

Farouk, Lotfi, Sofiane, Mufida, Affaf, Amine, Fabien, and Nourredine, and to my

dearest friends, Yasmine, Katia, and Amal, whose support and friendship have

been a source of comfort and motivation throughout my academic journey.

To my Mom, Dad, and Sisters, I’ve spent considerable time thinking about how

to express my gratitude in a way that transcends the usual clichés, yet I find myself

at a loss for words. My acknowledgment of you here isn’t merely a formality, it’s a

heartfelt recognition. In the lottery of life, you are my winning ticket. Every good

thing and every opportunity that has come my way began with you. From the

depths of my heart, thank you a million times over for your endless love, support,

and for bearing my absence during moments of happiness and sorrow.

Finally, in such a chaotic world, I often ask myself what can I do to be worthy

of all these blessings ? I can only hope that the knowledge and skills I’ve gathered

will empower me to contribute towards solving some of our world’s issues. May we

all work together towards a more fair, happy, and beautiful world.

iii

LIST OF PUBLICATIONS

The following articles published in either international journals or conferences are
directly discussed in the thesis dissertation :

1. [26] Halima Bouzidi, Hamza Ouarnoughi, El-Ghazali Talbi, Abdessamad
Ait El Cadi, and Smail Niar. ”Evolutionary-based Optimization of Hardware
Configurations for DNN on Edge GPUs”. The International Conference on
Metaheuristics and Nature Inspired Computing, (META)” 2021.
Location in the thesis : Chapter 2

2. [27] Halima Bouzidi, Hamza Ouarnoughi, El-Ghazali Talbi, Abdessamad Ait
El Cadi, and Smail Niar. ”Evolutionary-Based Co-optimization of DNN and
Hardware Configurations on Edge GPU”. The International Conference on
Optimization and Learning. (OLA) 2022. Book Chapter, Communications
in Computer and Information Science, Springer Nature.
Location in the thesis : Chapter 2

3. [25] Halima Bouzidi, Hamza Ouarnoughi, Smail Niar, El-Ghazali Talbi, and
Abdessamad Ait El Cadi. ”Co-Optimization of DNN and Hardware Confi-
gurations on Edge GPUs,” The Euromicro Conference on Digital System
Design (DSD) 2022.
Location in the thesis : Chapter 2

4. [21] Halima Bouzidi, Mohanad Odema, Hamza Ouarnoughi, Mohammad Al
Faruque, Smail Niar. ”HADAS : Hardware-Aware Dynamic Neural Archi-
tecture Search for Edge Performance Scaling” The Design, Automation and
Test in Europe Conference and Exhibition (DATE) 2023. Ranked among
Top 30 papers and Nominated for the Best Paper Award.
Location in the thesis : Chapter 3

5. [165] Mohanad Odema*, Halima Bouzidi*, Hamza Ouarnoughi, Smail Niar,
Mohammad Al Faruque. ”MaGNAS : A Mapping-Aware Graph Neural Ar-
chitecture Search Framework for Heterogeneous MPSoC Deployment”. ACM
Transactions on Embedded Computing Systems 22, 5s, Article 108 (October
2023), Special Issue : CASES Conference at ESWEEK 2023.
Location in the thesis : Chapter 4

6. [22] Halima Bouzidi, Mohanad Odema, Hamza Ouarnoughi, Smail Niar, Mo-
hammad Al Faruque. 2023., ”Map-and-Conquer : Energy-Efficient Mapping
of Dynamic Neural Nets onto Heterogeneous MPSoCs,” The ACM/IEEE
Design Automation Conference (DAC), 2023. Paper Award from HiPEAC
Location in the thesis : Chapter 5

iv

7. [23] Halima Bouzidi, Hamza Ouarnoughi, Smail Niar, and Abdessamad Ait
El Cadi. ”Performance prediction for convolutional neural networks on edge
GPUs”. The ACM International Conference on Computing Frontiers (2021)
Location in the thesis : Chapter 6

8. [24] Halima Bouzidi, Hamza Ouarnoughi, Smail Niar, and Abdessamad Ait
El Cadi. ”Performance Modeling of Computer Vision-based CNN on Edge
GPUs”. ACM Transactions on Embedded Computing Systems. 21, 5, Article
64 (September 2022)
Location in the thesis : Chapter 6

9. [20] Halima Bouzidi, Hamza Ouarnoughi, Abdessamad Ait El Cadi, El-
Ghazali Talbi, and Smail Niar. ”Sonata : Self-adaptive Evolution for Multi-
objective Hardware-aware Neural Architecture Search”. Submitted to IEEE
Transactions on Evolutionary Computation, 2024.
Location in the thesis : Chapter 7

The following articles are not included or discussed in the thesis dissertation :

1. [72] Mohamed Ghebriout, Halima Bouzidi, Smail Niar, Hamza Ouarnoughi.
”Harmonic-NAS : Hardware-Aware Multimodal Neural Architecture Search
on Resource constrained Devices”. The Asian Conference on Machine Lear-
ning (ACML). Proceedings of Machine Learning Research (PMLR), 2024

2. [13] Hadjer Benmeziane*, Halima Bouzidi*, Hamza Ouarnoughi, Ozcan Oz-
turk, Smail Niar. ”Treasure What You Have : Exploiting Similarity in Deep
Neural Networks for Efficient Video Processing”. Submitted to the IEEE
Transactions on Computers. 2023”

3. [60] Eric Jenn, Floris Thiant, Theo Allouche, Halima Bouzidi, Ramon Conejo-
Laguna, Omar Hlimi, Cyril Louis-Stanislas, Christophe Marabotto, Smail
Niar, Serge Tembo-Mouafo and Philippe Thierion. ”An Evaluation Bench
for the Exploration of Machine Learning Deployment Solutions on Embed-
ded Platforms”. The European Congress on Real Time Embedded Systems
(ERTS) 2024.

v

Table des matières

ABSTRACT (RÉSUMÉ) . i

ACKNOWLEDGEMENT . iii

LIST OF PUBLICATIONS . iv

LIST OF FIGURES . xiii

LIST OF TABLES . xvi

LIST OF TERMS AND ABBREVIATIONSxviii

1 Introduction 1

1.1 The Rise of Edge AI . 1

1.2 The Emergence of Automated Neural Architecture Design 2

1.3 Chasing Efficiency in the Era of Edge AI 3

1.4 Edge AI Optimization Techniques . 4

1.4.1 Software-level Optimizations 4

1.4.2 Hardware-level Optimizations 5

1.5 Winning the ’Performance-Efficiency’ Lottery Ticket 7

1.6 Thesis Structure and Contributions 8

2 DVFS-NAS : Dynamic Clock Frequency Scaling for Hardware-aware

Neural Architecture Search on Edge GPUs 11

2.1 Introduction . 11

2.2 Related Works . 12

2.3 Motivational Example . 15

2.4 Problem Statement . 17

2.5 Proposed Approach . 18

2.5.1 Joint Search Space . 19

2.5.2 Evolutionary Search Strategy 20

2.5.3 Fitness Evaluation Strategy 21

vii

2.6 Evaluation Methodology . 22

2.6.1 Experimental Setup . 22

2.6.2 Experimental Results . 23

2.7 Discussion and Key Insights . 28

2.8 Summary . 29

3 HADAS : Hardware-Aware Dynamic Neural Architecture Search

for Edge Performance Scaling 30

3.1 Introduction . 30

3.2 Related works . 31

3.2.1 Dynamic Early Exit and NAS 31

3.2.2 Dynamic Hardware Reconfiguration 32

3.3 Motivational Example . 33

3.4 Novel Scientific Contributions . 35

3.5 Problem Statement . 36

3.6 Proposed Approach . 37

3.6.1 Outer Optimization Engine (OOE) 37

3.6.2 Inner Optimization Engine (IOE) 40

3.6.3 Runtime Controller . 43

3.7 Evaluation Methodology . 44

3.7.1 Experimental Setup . 44

3.7.2 Co-optimization Results . 45

3.7.3 Dissimilarity Ablation Study 48

3.8 Summary . 48

4 MaGNAS : A Mapping-aware Graph Neural Architecture Search

Framework for Heterogeneous MPSoC Deployment 50

4.1 Introduction . 50

4.2 Related Works . 52

4.2.1 GNNs for Computer Vision . 52

4.2.2 Hardware Acceleration for GNNs 52

4.2.3 Distributed Computing of GNNs 53

4.2.4 Graph Neural Architecture Search 53

viii

4.3 Motivational Example . 54

4.4 Novel Scientific Contributions . 55

4.5 Vision Graph Neural Network (ViG) 56

4.6 Problem Statement . 57

4.6.1 System Model for Mapping GNNs onto Heterogeneous MPSoCs 57

4.6.2 Nested Search Formulation . 59

4.7 Proposed Approach . 60

4.7.1 Supernet Construction and Training 60

4.7.2 Nested Evolutionary Search : Outer Optimization Engine (OOE) 63

4.7.3 Nested Evolutionary Search : Inner Optimization Engine (IOE) 64

4.8 Experiments and Evaluation . 66

4.8.1 Experimental Setup . 66

4.8.2 OOE Results : GNN Architecture Optimization 69

4.8.3 IOE Results : Hardware Mapping Optimization 70

4.8.4 Analysis of Search and Pareto Optimal Models 71

4.8.5 Hypervolume and Pareto Composition Analysis 72

4.8.6 Analysis of GNN Workload Distribution 72

4.8.7 Constraint-aware Optimization 73

4.8.8 Ablation study on the impact of DVFS 75

4.8.9 Generality and Scalability . 76

4.9 Discussion and Key Insights . 78

4.10 Summary . 79

5 Map-and-Conquer : Energy-Efficient Mapping of Dynamic Neural

Nets onto Heterogeneous MPSoCs 80

5.1 Introduction . 80

5.2 Related Works . 82

5.2.1 Dynamic Neural Networks . 82

5.2.2 Computation Mapping on MPSoCs 82

5.3 Motivational Example . 83

5.4 Novel Scientific Contributions . 84

5.5 Problem Statement . 84

5.5.1 System Model for Mapping DyNN onto Heterogeneous MPSoCs 84

ix

5.5.2 Dynamic Transformation of Neural Networks 84

5.5.3 Distributed Performance Modeling for Dynamic Inference . . . 86

5.5.4 Problem Formulation . 88

5.6 Proposed Approach . 89

5.6.1 Search Space (X) . 89

5.6.2 Performance Objectives (P) 90

5.6.3 Evolutionary Search Algorithm 90

5.6.4 Channel Partitioning, Reordering, and Arrangement 90

5.7 Experiments and Evaluation . 91

5.7.1 Experimental Setup . 91

5.7.2 Search Efficiency Analysis . 91

5.7.3 Pareto Optimal Models Analysis 92

5.7.4 Generalization to Other Neural Architectures 94

5.8 Discussion and Key Insights . 94

5.9 Summary . 95

6 Performances Modeling of Computer Vision-based Convolutional

Neural Networks on Edge GPUs 96

6.1 Introduction . 96

6.2 Related Works . 97

6.2.1 Benchmarking and Performances Analysis 97

6.2.2 Execution Time Modeling . 97

6.2.3 Power Consumption Modeling 98

6.2.4 Memory Usage Modeling . 98

6.3 Motivational Example . 99

6.4 Problem Statement . 100

6.5 Proposed Approach . 100

6.5.1 CNN Characterization . 101

6.5.2 Input Features Selection . 105

6.5.3 Prediction Algorithms . 106

6.6 Evaluation Methodology . 106

6.6.1 CNN Benchmarking . 106

6.6.2 Data Collection . 106

x

6.6.3 Prediction Models Hyperparameters Tuning 108

6.6.4 Prediction Models Design, Training, and Evaluation 109

6.6.5 Experimental Setup . 111

6.6.6 Experimental Results . 111

6.7 Discussion and Key Insights . 117

6.8 Summary . 119

7 SONATA : Self-adaptive Evolution for Multi-objective Hardware-

aware Neural Architecture Search 120

7.1 Introduction . 120

7.2 Related Works . 122

7.2.1 Evolutionary Neural Architecture Search (ENAS) 122

7.2.2 Surrogate-assisted Multi-objective ENAS (SaMo-ENAS) 122

7.3 Novel Scientific Contributions . 123

7.4 Design Parameters Importance Estimation for NAS 123

7.5 Problem Statement . 124

7.5.1 The Main Problem : HW-aware NAS 124

7.5.2 The Sub-Problem : Design Parameter Importance Learning . . 125

7.6 Proposed Approach . 127

7.6.1 Search Space Encoding and Initialization 128

7.6.2 Self-adaptive Mutation and Crossover 129

7.6.3 Surrogate-assisted Fitness Evaluation 130

7.7 Experiments and Evaluation . 131

7.7.1 Experimental Setup . 131

7.7.2 Surrogate Models Analysis . 133

7.7.3 SONATA Optimization Efficiency 135

7.8 Summary . 137

8 Conclusions, Outlooks, and Future Directions 139

8.1 Summary of the Thesis . 139

8.2 Outlook and Future Directions . 141

8.2.1 Enrich the Search Space of NAS 142

8.2.2 Investigate Novel Hardware Technologies 142

xi

8.2.3 Incorporate Advanced Dynamic Inference Strategy 142

8.2.4 Towards Self-explainable HW-aware NAS 143

8.2.5 Generalize the HW-aware NAS to Multimodality AI 143

REFERENCES . 143

xii

Table des figures

1.1 Comparison between Cloud and edge computing paradigms 1

1.2 The evolution stages of Neural Network design techniques 3

1.3 The growth rate of AI workloads in different application domains . 4

1.4 Artificial Intelligence in the Hardware Market 5

1.5 Thesis structure and dependencies between chapters 8

2.1 Independent Vs. Joint Search strategies 13

2.2 Variants of Search Spaces in NAS 14

2.3 Typical HW-aware Vs. Co-optimization of DNN and DVFS 15

2.4 Impact of clock frequency variations on DNN performances 16

2.5 Overview on our proposed DVFS-NAS co-optimization approach. . 18

2.6 Details on the DNN search space encoding 20

2.7 NSGA-II two-step sorting and parameters 21

2.8 Rank correlation between estimated and actual accuracy 22

2.9 Co-exploration results Vs. Exploration under fixed DVFS policy . . . 23

2.10 An Overview on the explored configurations of DNN and DVFS settings 24

2.11 Our DVFS-NAS Vs. the baseline from AttentiveNAS 25

2.12 Workflow of generating an optimized TensorRT inference engine . . 27

2.13 Results of TensorRT optimization under optimal DVFS settings . . . 27

3.1 Dynamic Inference with early-exit 30

3.2 Comparison between HADAS and baselines from AttentiveNAS [220] 34

3.3 HADAS co-optimization framework. 38

3.4 Backbone Neural Network Encoding 39

3.5 The combined B and X search spaces 41

3.6 Results from the OOE and IOE optimization engines of HADAS . . 45

3.7 Comparing search efficacy for HADAS and the optimized baselines . 47

xiii

3.8 Ablation study on the dissimilarity regularization of the IOE of

HADAS . 48

4.1 An Overview on Graph Neural Netwworks (GNN) 50

4.2 Comparison between ViG model variants and deployement options . 55

4.3 An overview of the Vision Graph Neural Network 56

4.4 The ViG supernet implementation for MaGNAS co-search framework 60

4.5 MaGNAS two-tier evolutionary search framework 62

4.6 Dynamic encoding for GNN architectural-mapping specifications. . 67

4.7 Results from the OOE and IOE optimization engines of MaGNAS . 69

4.8 Results from the OOE and IOE optimization engined of MaGNAS . 70

4.9 Hypervolume results analysis and comparison 72

4.10 Results of the two constrained optimization 73

4.11 Ablation on the impact of including DVFS within the IOE 75

4.12 Results of the IOE on Isotropic and Pyramid GNN models 77

4.13 Results of the block-wise and layer-wise IOE on MAESTRO [116] . 78

5.1 Comparison of mapping options for Visformer [44] on AGX MPSoC 83

5.2 The transformation of NNstatic into NNdyn and mapping on MPSoC 85

5.3 Concurrent execution of S2 and S1 considering timing dependencies 87

5.4 Illustration of data movement and feature storage on the MPSoC . 88

5.5 Overview of the workflow of our proposed optimization framework 89

5.6 Results of three search strategies of Map-and-Conquer 92

5.7 Comparison between Pareto optimal NNdyn, mappings, and baselines 93

6.1 Interplay between CNN accuracy and hardware efficiency. 99

6.2 Modeling methodology for CNNs performances prediction models. . 100

6.3 Correlation between FLOPs and CNN execution time on edge GPUs102

6.4 Impact of FLOPs and CNN model size on the performances 103

6.5 Impact of varying the input size on the end-to-end performances . . 104

6.6 The forward stepwise selection of CNN features for modeling 105

6.7 Taxonomy of the used CNN for the Benchmarking step 107

6.8 The workflow of the CNN inference profiling on the edge GPU. . . . 108

6.9 CNN baseline for NCA. 110

6.10 Prediction model design. 110

xiv

6.11 Mean Absolute Percentage Error (MAPE) for execution time 112

6.12 Mean Absolute Percentage Error (MAPE) for power consumption . 114

6.13 Mean Absolute Percentage Error (MAPE) for memory usage 116

7.1 The flowchart of a typical Evolutionary NAS (ENAS). 121

7.2 Calculation of the crowding distance. 126

7.3 SONATA : self-adaptive and data-driven evolutionary search process. 127

7.4 SONATA Neural network (NN) encoding scheme. 128

7.5 Nodes split mechanism in tree-based model (XGBoost). 130

7.6 Performance of the surrogate models for accuracy in SONATA 133

7.7 Performance of the surrogate models used to learn the importance

of NN design parameters . 134

7.8 Comparing the optimization results of SONATA Vs. NSGA-II. 136

xv

Liste des tableaux

2.1 Comparison between related works on the DNN-HW co-optimization. 13

2.2 The joint search space of DNN and hardware parameters 19

2.3 Detailed overview on the DNN architecture search space. Each row

denotes the search space of a fixed block of the DNN macro-architecture. 20

2.4 Detailed performances of our DVFS-NAS Vs. the baseline from At-

tentiveNAS . 25

2.5 Fine-tuning results to CIFAR-10 and CIFAR-100 26

3.1 Comparison between Related-works and ours 33

3.2 Details on HADAS joint search spaces in our experiments 44

3.3 DyNNs Comparison on the TX2 Pascal GPU 48

4.1 Comparison between related Graph NAS works and ours. 53

4.2 Joint Search space of GNN architectures, Mapping, and DVFS. . . . 66

4.3 Performances and configurations of Pareto optimal GNNs and map-

pings. 71

4.4 Details and comparison of the GNN workload Assignment 73

4.5 GNN Workload distribution under different latency constraints. . . 74

4.6 GNN Workload distribution under different power budgets. 75

5.1 Comparison between Related-works and ours 82

5.2 Comparison between Map-and-Conquer and baselines 93

6.1 Summary of notations. 100

6.2 FLOPs breakdown. 102

6.3 Details of the CNN benchmarks used in the experiments. 107

6.4 Search space of the Hyperparameters per ML method. 109

6.5 CNN features. 111

6.6 Hardware setup. 111

6.7 Execution time prediction models analysis. 112

xvi

6.8 Rank correlation coefficients analysis. 113

6.9 Power consumption prediction models analysis. 114

6.10 Rank correlation coefficients analysis. 115

6.11 Memory usage prediction models analysis. 116

6.12 Rank correlation coefficients analysis. 117

6.13 SOTA models Vs. our models for execution time prediction. 118

6.14 SOTA models Vs. our models for power consumption prediction. . . 118

6.15 SOTA models Vs. our models for memory usage prediction. 118

7.1 Details on OFA [30] and ProxylessNAS [33] search spaces 132

7.2 Details on the AlphaNet [219] search space 132

7.3 Details on the NASViT [75] search space 132

7.4 Comparison between the optimization efficiency (i.e., convergence

and diversity) of the baseline static ENAS NSGA-II [52] and our

self-adaptive SONATA. 135

xvii

xviii

Chapitre 1

Introduction

1.1 The Rise of Edge AI

Edge AI refers to the fusion of Artificial Intelligence (AI) with Edge compu-
ting, heralding a new computing paradigm where AI computations can operate
optimally closer to data sources – at the edge of the network system [197]. AI mo-
dels, notably Neural Networks (NNs), are characterized by their deep layers and
interconnected nodes that hold many neurons and parameters. Recently, NNs have
demonstrated their aptitude in various domains, from image recognition and lan-
guage processing to healthcare and chatbot technologies, marking their significant
footprint in modern digital landscapes [185]. Given their intricate topology, NNs
are computationally and memory demanding, necessitating powerful centralized
Cloud servers to handle their processing on the massive amount of data generated
by edge sensors. Nevertheless, due to the surge in connected users and inconsistent
network bandwidth, Cloud servers struggle to guarantee prompt processing results
for end-users within a tight latency delay.

Cloud Cloud

Edge-Cloud NetworkEdge-Cloud Network

Edge Hardware Devices Edge Hardware Devices

Inference
computations

High data
transmission

Pre-and post
processing

Solicited for
extreme cases

Low data
transmission

TinyML Edge AI

Power Budget Range

 Storage Range

mW range and below W-KW range and above

M-KB range and below GB range and above

Spectrum of Edge Devices

End-to-end
Inference

Light TrafficHeavy Traffic

Figure 1.1 Top: Comparison between Cloud and edge computing paradigms:
By delegating computations to edge devices, low data transmission and network
congestion can be achieved. Bottom: Spectrum of edge computing devices

1

The advent of edge computing systems has led to a shift in the send-to-cloud
archetype, prioritizing processing data near sensors to minimize latency and save
network bandwidth. Integrating NNs with edge computing gave rise to Edge AI,
in which NN models are further optimized, redesigned, or tuned to enhance their
processing on less-powerful edge devices (e.g., smartphones). As shown in Figure
1.1, the benefits of Edge AI compared to Cloud computing are threefold: (i) re-
duced latency and energy consumption due to local processing. (ii) preserved pri-
vacy and minimal security risks by maintaining data locally. (iii) efficient network
bandwidth management by saving it for extremely urgent cases [200].

There has been a swift and significant rise in the development of AI-specific
chips, dedicated hardware accelerators, and software frameworks specifically tailo-
red to enhance AI-on-device performances [207]. This confluence underscores the
burgeoning significance of Edge AI. As we continue to witness the blossoming
of applications and the introduction of advanced data processing techniques, like
multimodal approaches, the melding of edge computing and neural networks is set
to be crucial. Such an integration seeks to unlock the immense potential of data,
paving the way for more pervasive real-time and intelligent decision-making that
is more ubiquitous than ever.

1.2 The Emergence of Automated Neural Architecture Design

In recent years, the evolution of neural network design has witnessed many
phases, from handcrafted to automated approaches. The newly emergent concept
of Neural Architecture Search (NAS) has been a game changer, lessening the need
for human expertise and aiming to fully automate NN’s design process [270]. The
paradigm of NAS lies in navigating a predefined search space encompassing the
possibilities of NN architectures through a vast search process to identify the op-
tions that provide the best trade-off between prediction accuracy and computatio-
nal efficiency [59]. Earlier NAS approaches [86] focused on optimizing the accuracy
under efficiency proxy budgets, such as the number of Multiply-Accumulate opera-
tions (MAC) as a proxy for computational complexity or the number of learnable
parameters as a proxy for model size. However, the focus has shifted with the
emergence of Edge AI and the limitations of proxy metrics in capturing hardware-
related aspects [23]. Instead of solely prioritizing accuracy, researchers have started
pursuing a balance between accuracy and hardware efficiency. Subsequently, this
gave rise to the extended concept of Hardware-aware NAS (HW-aware NAS) [33]
in which neural networks are synergistically designed to optimize hardware-related
metrics such as latency, energy consumption, and memory usage.

The left of Figure 1.2 illustrates neural network design techniques’ evolution
stages. Given the broad scope of NNs, we focus our analysis on the specific Convo-
lutional Neural Networks (CNN) case, as they have shown impressive results in
many application domains, including computer vision and natural language proces-
sing. The First stage marked the emergence of the earliest handcrafted CNNs (e.g.,
AlexNet [114], VGG [199], and GoogleNet [209]), characterized by large amounts of
weights to maximize learning capacity, as accuracy was the only matter. In Second
stage, design simplifications have been introduced to make CNN less heavy and mi-
tigate the problem of vanishing gradient [84] due to many learnable weights. This
was achieved by including skip and dense connections (e.g., ResNet [84] and Den-

2

Accuracy is all you need
First Stage

● AlexNet
● ZFNet
● NIN
● VGG
● GoogleNet
● …

Simplicity is the key
Second Stage

● ResNet
● DenseNet
● ResNext
● Dual Path Net
● … Chasing the

accuracy-efficiency
lottery ticket

Current Stage

● MobileNet
● ShuffleNets
● MNASNets
● …

HW-aware NAS
● DARTS
● ProxylessNet
● Once-for-All
● …

Dynamic Nets
● BranchyNet
● …

01
Figure 1.2 Left: The evolution stages of NN design landscape: from static and
handcrafted to dynamic and auto-designed. Right: Statistics on the number of
publications in NAS, HW-aware NAS, SW/HW Co-design, and Dynamic NN over
the last years [1]
.

seNet [94]). The Current stage focuses on chasing the accuracy-efficiency balance
that cannot be readily achieved by means of handcrafted methods. Hence, more
advanced design techniques have been proposed by incorporating NAS methods
that have led to the discovery of NN designs tailored to edge devices, enabling
efficient inference without comprising accuracy. Notably, models such as MNAS-
Net [213], MobileNet [90], and EfficientNet [29] are the results of advanced NAS
methods. Furthermore, the pursuit of NN inference efficiency has opened the door
to investigating more design prospects by (i) unleashing the potential of NN dyna-
micity to operate in an input-adaptive manner [82] and (ii) including HW features
in a co-design manner to get the best from both worlds by scaling neural networks
and hardware features [43]. The right side of Figure 1.2 reports the latest statis-
tics on the growing popularity of each design approach to emphasize the role each
plays in stretching the design landscape of NNss within the era of Edge AI.

1.3 Chasing Efficiency in the Era of Edge AI

Chasing computation and energy efficiency for Edge AI has recently been the
center of attention due to the surge in demand for real-time AI applications in
resource-constrained environments. Thus, many optimization approaches are being
thoroughly studied and carefully adjusted to accommodate the need for new emer-
ging applications, neural networks, and hardware paradigms. One prominent opti-
mization strategy is CMOS 2 technology scaling to enable integrating smaller and
more energy-efficient transistors onto processing units of compact chips that can
serve AI accelerators [35].

As shown in Figure 1.3, the advancing speed of AI application workloads and
their computing complexity, which doubles every two months, limits the potential
of technology scaling, particularly regarding power consumption and thermal ma-

2. Complementary Metal-Oxide-Semiconductor is a technology for integrated circuits, known
for its low power use and high noise resistance, used in most modern digital devices.

3

Doubling every 2 months

Doubling every 2 years

Figure 1.3 The growth rate of AI workloads in different application domains with
their respective computing complexity is given in the y-axis as the number of
parameters [2].

nagement. Furthermore, as transistors approach atomic limits, sustaining Moore’s
Law has become increasingly complex, slowing down technological advancements.
As a result, optimization strategies are investigated from other perspectives – no-
tably, from application and hardware perspectives. This thesis aims to show how
the interplay between both perspectives can be leveraged to enhance efficiency in
the era of Edge AI.

1.4 Edge AI Optimization Techniques

1.4.1 Software-level Optimizations

Software-level optimizations for neural networks on edge computing devices
are instrumental in achieving efficient and cost-effective inference. These optimi-
zations mainly focus on tailoring the neural network architecture and operations
to minimize computational complexity while maintaining task performance. Gi-
ven the strong correlation between NN model size and computational complexity,
existing optimization strategies focus on providing lightweight models via com-
pression. Model compression has been widely explored in literature. One widely
adopted is pruning, which involves retrieving and removing less important weights
and neurons from a NN [245, 64, 272]. Pruning is highly applied to CNN by re-
moving specific weights (fine-grain pruning) or entire convolutional filters (coarse-
grain pruning). Another technique is quantization, which reduces the precision of
input activations and weights from 32-bit floating-point to lower-bit fixed-point
representations (16-bit or 8-bit) [221, 243, 178]. Knowledge distillation is another
compression method for NN in which a lightweight student model is trained to mi-
mic the behavior and predictions of a large teacher model [247, 76]. Additionally,

4

Parameter sharing across multiple layers of NN is effective in vision-related tasks
through capturing similar patterns or features across different spatial locations
[181]. Matrix factorization offers another opportunity for model compression by
decomposing a large weight matrix into smaller matrices with lower rank [231].

Compression techniques can be applied directly to a fixed design of neural
networks without changing their neural architectures. Nevertheless, re-designing
lightweight NN by choosing less compute-demanding operations and/or low va-
lues for neural layers depth and width can also be achieved via Neural Architec-
ture Search [229, 252, 173]. NAS approaches have contributed to the realization
of compact NN models such as MobileNet-v3 [89] and EfficientNet [215] by ad-
justing the internal neural architectural configurations to reduce model size while
preserving feature representation power. Compression and NAS techniques can
collaboratively contribute to facilitating the deployment of NN on edge devices by
minimizing computation and memory demands that strongly impact the latency
and energy consumption of real-time AI applications.

1.4.2 Hardware-level Optimizations

The hardware era has witnessed several computing devices emerging from
general-purpose to specialized accelerators. AI applications are often deployed in
real-time and critical environments, necessitating fast execution to return inference
results within a strict delay. This has made computation acceleration a priority
within the hardware community. AI has taken a large amount of the Hardware
market, as shown in the left of Figure 1.4 with an estimated 227 billion dollars
by 2032. The breakdown in the right of Figure 1.4 emphasizes the importance of
processor scaling, depicting up to 56.29% of investment in 2022.

Edge computing devices are battery-powered and operate under a limited po-
wer budget. A reasonable use of computing power is needed to prevent dysfunctio-
nal or system failure in critical situations (e.g., autonomous cars). Thus, execution
latency and power consumption are significant for Edge AI systems.

AI in Hardware Market Size 2022 to 2032 (USD Billion) AI in Hardware Market Shared by Type (%), 2022

Figure 1.4 Left: The expected growth of the global AI in hardware market size
from 2022-2032. Right: Breakdown of AI in HW market size per hardware type.

Hardware optimizations are mostly focused maximizing computing capabili-
ties for a fast inference and minimizing power consumption for energy-efficient
inference. Conventional HW accelerators play a pivotal role in achieving this in-

5

terplay. Graphic Processing Units (GPUs), Field-Programmable Gate Arrays (FP-
GAs), and Application-Specific Integrated Circuits (ASICs) have been improved
through the recent decades to balance flexibility and efficiency. These accelerators
leverage computing parallelism and optimized instruction sets for deep learning
operations – matrix-matrix multiply - to maximize resource utilization and speed
computations via specialized routines.

Specialized accelerators, such as FPGAs and ASICs, are primarily based on a
systolic array, a grid of processing elements (PEs) interconnected in a regular struc-
ture for data sharing. These grids can be programmable, allowing for fine-grained
computing parallelism and data reuse to optimize matrix-matrix multiplication,
the core operation in neural networks.

General-purpose accelerators (GP), such as CPU and GPU, are built upon
fixed hardware micro-architectures that, unlike FPGAs, don’t allow for hardware
reconfigurability. Instead, they encompass a grid of cores with parallel processing
units that share cache memory for data communication and synchronization. Com-
modity edge GPUs often integrate specialized tensor cores optimized for matrix-
matrix multiply. Although general-purpose accelerators are more flexible regarding
programmability and can perform well for different operations, they’re rigid and
closed HW architecture for further design tuning (e.g., computation parallelism).

Unlike monolithic accelerators, heterogeneous MPSoCs (Multi-Processor Sys-
tems on Chips) are designed to embed different accelerators within the same die to
accommodate the computing requirements of hybrid types of NN operations. Each
computing unit (CU) of the MPSoC is optimized for distinct computational tasks
[111]. For instance, commercial MPSoCs, such as the Nvidia Jetson series: AGX
Xavier [162], TX2 [160], and Nano [163], as well as from other HW vendors such
as Tesla FSD [211], and Intel Movidius Myriad 2 [161] have successfully integrated
a variety of proven hardware computing units (e.g., CPU, GPU, and NPU) and
industrial IPs on a single chip to achieve said purpose. This heterogeneity ensures
that each phase of the inference pipeline – from data preprocessing to the final out-
put – can be mapped to the most suitable CU, thereby maximizing efficiency and
effectively using the MPSoC resources [22]. Furthermore, this approach accelerates
inference speedup and maximizes energy efficiency by mapping computations to
less energy-demanding CUs. As neural networks grow in complexity and ubiquity,
heterogeneous MPSoCs play a crucial role in the speedup-energy balance.

Another way to reduce the energy consumption in edge computing systems is
by leveraging Dynamic Voltage and Frequency Scaling. DVFS is a power manage-
ment technique that adjusts the supply voltage and the operating clock frequency.
It serves as a control knob to balance execution time and power consumption by
adjusting the speed of computations and data transmission. The rationale behind
DVFS for AI-based applications is the fluctuating computational demands obser-
ved in NN workloads. The NN inference pipeline encompasses hybrid operations
with distinct computational and memory demands. Compute-bound operations
typically require high clock frequencies on the computing unit, while memory-
bound operations can benefit from optimizing the clock frequency of the DRAM.
Power consumption is proportional to clock frequency and square of voltage. The
quadratic correlation between power and voltage is crucial as it yields significant
power gains. However, since frequency is typically proportional to voltage, dynamic
voltage scaling is closely related to frequency scaling. For instance, higher frequen-

6

cies necessitate higher voltages and vice versa. Consequently, many accelerators
offer mechanisms to employ DVFS by adjusting the clock frequencies of compu-
ting units and memory controllers. As NNs become more intricate and expansive,
utilizing DVFS is essential to ensure efficient inference without compromising the
device’s battery life or thermal limits.

Finally, as we’re approaching the end of Moore’s law, physical and thermal li-
mitations of existing CMOS technologies have pushed the hardware community to
investigate unconventional computing paradigms beyond the typical Von Neumann
architecture. Specifically, alternatives to conventional and monolithic accelerators
are expected to be served by emerging neuromorphic, photonics, and quantum
computing paradigms. Inspired by the human brain system, neuromorphic com-
puting aims to emulate neural structures and operations, providing energy-efficient
processing capabilities tailored for AI tasks like pattern recognition [110]. Quan-
tum computing, which leverages the principles of quantum mechanics, is expected
to accelerate intricate AI algorithms that are infeasible for classical computing sys-
tems [74]. Meanwhile, photonic computing employs light-based signals instead of
electronic ones, offering rapid data transmission, reduced energy consumption, and
eco-friendly systems – pivotal for real-time AI applications on edge systems [227].
While these innovative computing paradigms are in their early stages, they fore-
shadow a groundbreaking shift in Edge AI, paving the way for enhanced compu-
tational capabilities that align seamlessly with the needs of future AI applications
(e.g., Multimodal Large Language Models).

1.5 Winning the ’Performance-Efficiency’ Lottery Ticket

As the fields of neural networks and hardware systems progress rapidly at
different rates, there’s a predominant focus on optimizing each domain indepen-
dently. This singular approach often ignores the critical significance of integra-
ting, unifying, and harmonizing advancements from both fields. Existing works
must bridge the gap between NN and HW innovations to unlock further potential
breakthroughs from joining efforts. More precisely, the architectural design of neu-
ral networks plays a critical role in the tug-of-war between performance tasks and
inference efficiency. If not carefully tuned, even the most advanced optimizations
at the software or hardware levels might not yield the desired outcomes when
applied to ill-designed neural networks. Regardless of the software or hardware
innovations, if the foundational neural network design is flawed, these enhance-
ments could fail to achieve their potential benefits. Conversely, while delegating
more emphasis on tuning and refining the design of neural networks via hand-
crafted or automated approaches (e.g., NAS or HW-aware NAS) is laudable, It’s
neither efficient nor effective when applied solely. When Auto-design approaches
are employed in isolation, without incorporating the other optimization levels men-
tioned previously, their results are often sub-optimal. Thus, a holistic, hierarchical,
and cross-level approach that leverages various optimization strategies at different
levels is expected to yield more robust and optimal results.

On the other hand, incorporating many factors into the design space explora-
tion for NN and HW optimization often yields an exponential search space explo-
sion. Exploring such a joint large search space employing traditional approaches of
train-and-deploy is inefficient, time-consuming, and resource-intensive. A strategy

7

to accelerate the evaluation and search process to explore as many design options
as possible is essential. One way to achieve this is using Machine Learning (ML)
based performance estimators. By employing prediction models, we can signifi-
cantly accelerate the exploration process, making it possible to quickly identify
promising design candidates without exhaustive training, testing, and deploying
each one. This approach falls under the umbrella of ML for ML or ML4ML to
speed up the NN design, making the pursuit of the most efficient and accurate NN
designs economically viable and technically feasible.

1.6 Thesis Structure and Contributions

Chapter 2
DVFS-NAS

Improve energy efficiency
by including DVFS onto

HW-NAS

Chapter 3
HADAS

Towards Efficient
Inference with Dynamic
NN & DVFS in HW-NAS

Chapter 4
MaGNAS

Energy-Efficient GNNs on
MPSoCs with HW-NAS &
Distributed Computing

Chapter 7
SONATA

Self-adaptive
Surrogate-assisted

Evolutionary HW-NAS

Chapter 6
Perf-predict

Accurate Performance
Modeling Approach for

NN on edge GPUs

Chapter 5
Map-and-Conquer

Energy Efficient Mapping
of Dynamic NN on

MPSoCs

Chapter 8
Summary

and
Future Directions

Chapter 1

Introduction & Motivation
Background on Edge AI,

HW-aware NAS

H
W

 p
ar

am
et

er
s

sc
al

in
g

In
 H

W
-a

w
ar

e
N

AS

Dynamic

inference

D
istributed com

puting on

heterogeneous M
PSoC

Provide prediction

m
odels for H

W
-N

AS

Provide the
joint search

space
background

Introduce the
hierarchical

design space
exploration

Distributed
computing

on MPSoC

Provide
modeling
approach
and tools

Theoretical Background

Technical Contributions

Technical Tools

Overall Thesis Structure
Algorithmic

basis

Dynamic inference

Direct Dependency

Indirect Dependency

Provide
modeling
approach
and tools

Figure 1.5 Thesis structure and dependencies between chapters

This thesis aims to mitigate the disparity observed in literature by delving into
the interdisciplinary fields of multi-objective optimization, surrogate modeling,
HW-aware NAS, and software and hardware optimizations. We focus on expan-
ding the typical HW-aware NAS frameworks by leveraging various optimizations
to support the ultimate objective of Edge AI – identifying the optimal Nash equi-
librium between accuracy, execution speed, and energy efficiency to promote more
sustainable computing. As depicted in Figure 1.5, this thesis contains the following
contributions and novelties in the realm of Edge AI optimization:

— Chapter 2: Dynamic Clock Frequency Scaling (DVFS) in HW-aware NAS
In [26, 27, 25], we extend the typical HW-aware NAS framework by inclu-
ding Dynamic Clock Frequency Scaling (DVFS) features as re-configurable
hardware parameters on edge GPU MPSoCs. We showcase the importance of
tailoring the design of NN to different DVFS policies and vice-versa. Conse-
quently, we construct a joint search space of neural networks built upon the
supernet structure of AttentiveNAS [220] and DVFS parameters by varying
the clock frequencies. We propose a co-optimization framework to explore the
predefined joint search space. Our proposed approach has been validated on

8

three datasets for Image classification, namely CIFAR-10, CIFAR-100, and
ImageNet-1k, using the Jetson AGX Xavier edge GPU from NVIDIA. Com-
pared to the default DVFS configuration (MAXN), evaluation results have
shown up to ∼53% energy gains on the native Pytorch framework and a
latency speedup of ∼81% and power saving of ∼61% with TensorRT.

— Chapter 3: Hardware-aware Dynamic Neural Architecture Search
In [21], we explore the prospect of dynamic neural networks (DyNN) through
our framework, HADAS, a versatile and comprehensive HW-aware NAS fra-
mework that jointly optimizes static and dynamic components in NNs to
balance the performance-efficiency tradeoff. We leverage the early exit dy-
namic inference technique to terminate computation earlier when the output
can be correctly predicted. We make the design of the DyNN fully searchable
by expanding the existing infrastructure of HW-aware NAS and supernets
and constructing a novel joint search space for: (i) static backbone NN de-
sign, (ii) dynamic early-exit branches, and (iii) DVFS configurations. Then,
we contribute an innovative co-optimization framework by hierarchizing the
design exploration process of static and dynamic components using two dedi-
cated optimization engines. We validate our approach using the CIFAR-100
dataset on various hardware configurations: ARM, Denver CPUs, Volta, and
Pascal GPUs from the NVIDIA Jetson AGX Xavier and TX2. Evaluation
results have seen the superiority of HADAS by providing up to ∼57% while
sustaining an acceptable level of accuracy.

— Chapter 4: Hardware-aware NAS for GNN on Heterogeneous MPSoC
In [165], we delve into the world of Graph Neural Networks (GNN) on com-
modity edge heterogeneous MPSoCs. Specifically, we target the case of vision
GNNs that have shown impressive results in recognizing visual patterns by
transforming images into graphs of pixels and learning contextual informa-
tion from neighboring graph nodes. We propose an end-to-end framework,
MaGNAS from GNN design optimization to workloads mapping on MPSoC.
We first construct and design novel supernet structures for GNNs by varying
graph operations such as aggregation and combination. We provide a detai-
led and comprehensive system model for GNN workload characterization
and mapping on heterogeneous MPSoC in a distributed, pipelined fashion.
Then, we implement a hierarchical design space exploration to optimize the
design of GNNs jointly with their workload mappings on the heterogeneous
computing units of the MPSoC. We validate our proposed framework on va-
rious datasets for image recognition, namely CIFAR-10, CIFAR-100, Tiny-
ImageNet, and Oxford-Flowers. As hardware settings, we employ (i) the
NVIDIA Jetson AGX Xavier as a real MPSoC and (ii) MAESTRO, a cost
model to simulate the case of an MPSoC by varying dataflows. Evaluation
results have demonstrated the effectiveness of our approach by providing
∼1.57× latency speedup, ∼3.38× energy efficiency for several vision data-
sets while sustaining less than 0.11% accuracy reduction from SOTA models.

— Chapter 5: Mapping of Dynamic Neural Nets on Heterogeneous MPSoC
In [22], we research the potential of distributed and parallel computing for
dyNN on heterogeneous MPSoCs. One way to enable the dynamic and col-
laborative usage of the computing units within an MPSoC is through dyNN.
Specifically, by employing an early exit scheme, computing units will be acti-

9

vated according to the complexity of the input data. Within this context, we
introduce Map-and-Conquer, an innovative framework designed to efficiently
map the computing stages of DyNNs on heterogeneous MPSoCs in a paral-
lel pipeline manner. Our methodology first determines the best partitioning
strategy for the DyNN across its ’width’ dimension, allowing for concurrent
and parallel deployment of DyNN inference blocks on various computational
units. We validate our approach on Transformers and CNN models on the
CIFAR-100 dataset. We employ a real MPSoC from NVIDIA, Jetson AGX
Xavier, equipped with a CPU, GPU, and Deep Learning Accelerator (DLA)
as a hardware setting. Our evaluation results have shown that our dynamic
configurations are 2.1x more energy-conserving than GPU-only setups and
experience 1.7x reduced latency than DLA-only configurations.

— Chapter 6: Performances Modeling of Neural Networks on Edge GPUs
In [23, 24], we contribute to the concept of ML4ML by demonstrating how
ML-based methods can be used to reduce the complexity of HW-aware NAS.
One critical challenge of HW-aware NAS is performance evaluation. This
process is time-consuming, necessitating the execution of an entire pipeline
from model design to deployment and many rounds of performance mea-
surements. To accelerate this step, performance prediction models can be
used instead to provide quick estimations within microseconds. Within this
scope, we propose a comprehensive performance analysis and characteriza-
tion of CNN inference workloads on edge GPUs. We study the correlation
between diverse CNN features and several performance metrics (i.e., latency,
power consumption, and memory usage). We elaborate an end-to-end mo-
deling methodology using ML-based methods to fit performance prediction
models. We validate our approach on SOTA and synthetic CNN architectures
on three edge GPUs from the NVIDIA Jetson series: AGX Xavier, TX2, and
Nano. Our prediction models have shown an average error of ∼11%, ∼6%,
and ∼8% for latency, power, and memory usage estimations, respectively.

— Chapter 7: Surrogate-assisted Self-adaptive Evolution for HW-aware NAS
In [?], we extend the concept of ML4ML to enhance the efficiency of evolu-
tionary search algorithms in HW-aware NAS. Most existing HW-aware NAS
methods, such as evolutionary algorithms, are built upon multi-objective
optimization approaches. However, these algorithms heavily rely on ran-
domness without established reasoning on the importance of NN design
parameters on the optimization objectives. A priori knowledge of the im-
portance of design parameters helps focus on the most rewarding ones du-
ring the search and thus wisely use the optimization budget. Furthermore,
the massive amount of data generated during the search can be exploited
to derive such knowledge. Given these observations, we propose SONATA, a
self-adaptive evolution for multi-objective HW-aware NAS frameworks. We
design self-adaptive evolution operators guided by the importance of NN de-
sign parameters. We leverage ML-based methods to progressively learn the
importance of design parameters from the data generated during the search.
An extensive evaluation of multiple NAS search spaces and edge devices
has shown that our approach improves upon the baseline with an accuracy
improvement up to ∼0.25%and latency/energy gains up to∼2.42x.

10

Chapitre 2

DVFS-NAS: Dynamic Clock Frequency Scaling for
Hardware-aware Neural Architecture Search on Edge GPUs

2.1 Introduction

Deep Neural Networks (DNN) and hardware accelerators are leading forces for
the recent observed progress in Edge AI. On the one hand, a new neural architec-
tural paradigm is proposed each month, striving for more accuracy and efficiency.
On the other hand, the hardware market has shifted towards designing devices
that ensure flexibility and generality for less energy demands while satisfying the
user experience with less latency. Thus, reconfigurability has been standardized
across general-purpose hardware platforms such as GP-GPUs through cores and
clock frequency scaling to emulate different performance and energy efficiency le-
vels using the same device. However, recently, DNN architectures are becoming
increasingly complex and hardware resource-demanding. As shown in Figure 1.3,
the growth rate of DNN model complexity (i.e., ”every two months”) exceeds the
hardware scaling capabilities of Moore’s law (i.e., ”every two years”). Thus, explo-
ring new optimization dimensions in existing hardware devices is mandatory to
meet the computation demands of DNN models.

Particularly, when DNN models are implemented on resource-constrained sys-
tems (e.g., edge computing), it becomes inevitable to meticulously optimize them
to strike the optimal balance between accuracy and execution latency, as well as
energy efficiency. In order to address this particular difficulty, researchers have
introduced Hardware-aware Neural Architecture Search (HW-aware NAS) as a
newAutoML paradigm, targeting edge systems [14]. HW-aware NAS incorporates
hardware efficiency as an additional optimization objective during the neural ar-
chitecture design space exploration.
Nevertheless, hardware efficiency is contingent upon the interplay between the
architectural design of the neural network and the settings of the hardware it-
self [157, 244]. Most existing works on Hardware-aware NAS primarily focus on
optimizing neural networks without considering the hardware accelerator’s recon-
figurability. As elucidated in the study conducted by [100], the aforementioned
technique exhibits sub-optimality due to the limited exploration potential of the
HW-aware NAS when confined to a predetermined hardware design. Therefore,
including the hardware design space has made it viable to identify customized
DNNs for any configuration and vice versa. We refer to this joint exploration of
both search spaces as the co-optimization.

In this chapter, we propose to include Dynamic Clock Frequency Scaling (DVFS)
features in the HW-aware NAS process on commodity edge GPUs. We aim to

11

showcase the importance of tailoring the design of NN to different DVFS policies
and vice-versa. We introduce DVFS-NAS, an evolutionary-based co-optimization
framework to explore the joint search space of DNN and DVFS to find Pareto
optimal configurations that achieve the best balance between accuracy, latency,
and power consumption. We validate our approach on three datasets for Image
classification, namely CIFAR-10, CIFAR-100, and ImageNet-1k, using the Jetson
AGX Xavier edge GPU from NVIDIA. Compared to the default DVFS configuration
(MAXN), evaluation results have shown up to ∼53% energy gains on the native
Pytorch framework and a latency speedup of ∼81% and power saving of ∼61%
using a high-performance SDK such as TensorRT. Contributions and results of
this chapter have been published in:

— [26] Halima Bouzidi, Hamza Ouarnoughi, El-Ghazali Talbi, Abdessamad Ait
El Cadi, and Smail Niar, 2021, Evolutionary-based Optimization of Hard-
ware Configurations for DNN on Edge GPUs. In ”Proceedings of the 8th In-
ternational Conference on Metaheuristics and Nature Inspired Computing,
(META)” 2021.

— [27] Halima Bouzidi, Hamza Ouarnoughi, El-Ghazali Talbi, Abdessamad
Ait El Cadi, and Smail Niar. Evolutionary-Based Co-optimization of DNN
and Hardware Configurations on Edge GPU. In: Optimization and Lear-
ning. (OLA) 2022. Communications in Computer and Information Science,
Springer Nature.

— [25] Halima Bouzidi, Hamza Ouarnoughi, Smail Niar, El-Ghazali Talbi, and
Abdessamad Ait El Cadi. ”Co-Optimization of DNN and Hardware Confi-
gurations on Edge GPUs,” Euromicro Conference on Digital System Design
(DSD) 2022.

2.2 Related Works

The typical HW-aware NAS involves exploring the neural network search space
while considering hardware metrics. This way, the explored design space is limited
to the variations of the neural networks. However, accounting for the hardware
reconfigurability, another dimension can compound the design space, and the HW-
aware NAS search space becomes less narrow. Considering the former case, a DNN
model that fails to meet the resource limitations will be pruned by the search
strategy even if it provides high accuracy. Enlarging the hardware search space
allows for finding tailor-made HW designs for the pruned-accurate DNNs [100].
As a result, co-optimizing both worlds, i.e. HW and SW, can provide better trade-
offs between accuracy and execution efficiency.
Along this line, recent studies [132, 128, 99, 40, 46, 129, 269, 175] have addressed
the DNN-HW co-optimization challenge, which comprises optimizing DNN archi-
tectures in conjunction with hardware configurations. Multiple DNN-HW pairs are
generated and evaluated during exploration to choose the optimal ones. Aso shown
in Figure 2.1, in the literature, we distinguish two DNN-HW co-design strategies:

— (i) Joint search – in which DNN and HW configurations are searchable
together. That is at each search iteration, a pair of DNN-HW is created and
evaluated. The DNN is trained and validated on the target dataset and then
deployed on the HW device to get performance measurements [141, 5, 30].

12

Independent Search Joint Search

Figure 2.1 DNN-HW co-design: Independent Vs. Joint search strategies.

— (ii) Independent search – in which DNNs are first trained and validated, then
the most promising configurations are elite for further HW optimization.

Table 2.1 Comparison between related works on the DNN-HW co-optimization.

DNN-HW

Co-optim.

Neural Architecture Search Hardware Deployement Optimization Co-optim.

StrategySearch

Algorithm

Search

Space

Fitness

Objective

Fitness

Evaluation

HW

Architecture

Search Space

(HW parameters)

Fitness

Objective

Fitness

Evaluation

[83] Gradient Macro Acc Train-val FPGA Parallelism, Quant. Lat, HRU Analytical Joint

[141] RL Macro Acc Train-val FPGA Tiling, Partitioning Lat Analytical Indep.

[132] EA Micro Acc Train-val ASIC #PE EDP Simulator Joint

[5] RL Micro Acc Train-val FPGA Parallelism Lat, Area Analytical Indep.

[263] Gradient Macro Acc Train-val FPGA, ASIC #PE, Dataflow, Tiling FPS, Lat, EDP Simulator Joint

[128] Gradient Micro Acc Train-val GPU, FPGA Parallelism, Quant. Lat, HRU Analytical Joint

[99] RL Macro Acc Train-val FPGA #PE, Tiling, BW Lat, LUT Analytical Joint

[40] RL Micro Acc ML-based ASIC #PE, Dataflow Lat, Ergy ML-based Joint

[46] Gradient Micro Acc Train-val ASIC #PE, Dataflow Lat, Ergy, Area Simulator Joint

[129] Gradient Micro Acc Train-val FPGA Parallelism, Buffering LAT, LUT, DSP Analytical Joint

[133] Gradient Micro Acc Train-val TPU, ASIC #PE, Mapping Acc, EDP Simulator Indep.

[269] RL Micro Acc ML-based TPU #PE, #SIMD units Lat, Area ML-based Joint

[175] EA Macro Acc, Size Train-val ASIC Approx. multipliers Ergy Analytical Joint

RL: Reinforcement learning, EA: Evolutionary algorithm, EA: Processing element. Acc: Accuracy, Size: DNN
Model size, Lat: Latency, Ergy: Energy, FPS: Frame rate per second, EDP: Energy-delay product. HRU: Hardware
resource utilization (%). Quant: Quantization. Indep.: Independent.

Although the second approach is faster, it is more prone to sub-optimality as
the DNN and HW search engines act independently [189]. Thus, the two search
engines must communicate and share their search results, updates, and insights to
constantly adjust the overall co-optimization process.

In Table 2.1 we give a comparison between related works on DNN-HW co-
optimization 1 Generally, these works can be breakdown onto two main optimiza-
tion engines [100]:

1. Neural Architecture Search (NAS): This engine defines how the DNN archi-
tecture design is optimized using NAS. The components of the NAS can be
defined as following:

(a) DNN search space: This comprises the possibilities of DNN architec-
tures to be explored. Existing NAS search spaces are defined on the
basis of hyperparameters granularity, for instance, on the levels Macro-
architecture, Micro-architecture, Hierarchical, or Supernetworks as shown
in Figure 2.2.

(b) Fitness objectives and evaluation: This measures how well the DNN
performs on the target dataset (e.g., accuracy for image classification).

1. We note that this comparison involve related works published before the year of 2022.

13

Layer1

Layer2

Layer3

Layer4

LayerN

Output

Input

Block1

Block2

Block3

Block4

BlockN

Output

Input

Block1

Block2

Block3

Block4

BlockN

Output

Input

Layer1

LayerM

Block1

Input

Layer1

LayerM

BlockN

Layer1

LayerM1

Layer1

LayerMN

Output

(a) Macro (b) Micro (w/ Macro fixed) (c) Hierarchical (d) SuperNetwork

Figure 2.2 Different variants of search spaces in NAS. In blue searched blocks and
in white fixed blocks. a) Macro in which the entire topology and layers of DNN are
searchable. b) Micro in which the topology of the DNN is fixed to a set of blocks
and the micro-architecture of these blocks is searchable. c) Hierarchical in which
the macro and micro-architectures of DNN can be searched in an hierarchical way.
d) Supernetwork in which a hypernetwork of DNNs is defined by varying blocks
and layers. [14]

This metric is typically evaluated using training-and-validation or ML-
based surrogate models.

(c) Search algorithm: Which orchestrates the exploration of the space ex-
ploration using, for example, Gradient-based optimization, reinforce-
ment learning, or evolutionary algorithms.

2. Hardware Deployment Optimization: This engine defines how the Hardware
accelerator is optimized and tuned to fit the requirements of the sampled
DNN models by the NAS. It comprises three main components:

(a) Hardware search space: This comprises hardware-related parameters
used to design, tune, and optimize the hardware, such as computa-
tion parallelism, tiling, number of PE, dataflow, data buffers, mapping,
SIMD units, approximate multipliers, and data precision.

(b) Fitness objectives and evaluation: Depending on the application re-
quirements, the following metrics are usually used to assess the DNN
efficiency when deployed on the HW accelerator: Latency, energy, FPS
as general high-level metrics, and hardware resource utilization, EDP,
Area, LUT, and DSP as design-specific low-level metrics for FPGA,
ASIC, and TPU devices. These objectives can be measured using ana-
lytical approaches, simulation methods, or ML-based models.

(c) Search algorithm: This defines how the HW search space will be explo-
red, and it is typically similar to the one used in the NAS engine.

The key concept of DNN-HW co-design works is the co-optimization strategy
that defines how the different optimization engines communicate and update their
process, i.e., in a fully joint or independent manner.

Whereas these methods target reconfigurable devices to search for appropriate
HW design, we aim to explore the prospect of tuning HW-related configurations

14

on general-purpose devices such as edge GPUs. Dynamic clock frequency scaling
is one way to tune the computing capability of edge GPUs to balance latency and
energy. Finding a DVFS policy that achieves an optimal latency-energy balance
depends highly on the DNN computation and memory requirements, which also
depend on the DNN model design. Thus, we extend related works by investigating
this direction and studying how the interplay between DNN architecture design
and DVFS configurations impacts the performance-efficiency tradeoff.

2.3 Motivational Example

Figure 2.3 illustrates our motivation. This figure shows that the interplay bet-
ween DNN and HW configurations yields different accuracy and hardware effi-
ciency tradeoffs. The concept of hardware efficiency pertains to the balance bet-
ween the latency and power consumption entailed by the DNN inference. One key
parameter impacting this balance is the choice of the clock frequency configura-
tion. Opportunely, recent devices proposed by NVIDIA allow for the adjustment
of clock frequencies on the CPU, GPU, and External Memory Controller (EMC)
to balance latency and power. We refer to this hardware reconfiguration by DVFS

as a short for Dynamic Voltage and Clock Frequency Scaling.
The left of Figure 2.3 reports the results of a HW-aware NAS conducted on the

NVIDIA Jetson AGX edge GPU under a fixed DVFS configuration that gives the
highest performances. Specifically, we use MAXN in which clock frequencies on the
CPU, GPU, and EMC are set to their maximum values and all CPU/GPU cores
are active. The explored DNN models are sampled from the pretrained supernet
from AttentiveNAS [220]. Each point represents an explored DNN configuration as
a sampled subnet from the supernet search space. The x-axis- and y-axis represent
the latency and power consumption directly measured on the edge GPU. The color
of the points designates the TOP-1 accuracy.

Fix the
DNN arch

config.
and Vary
the DVFS
configs.

DVFS
Space of

CPU, GPU,
EMC

frequencies

HW-aware NAS on Edge GPU under
fixed DVFS (MAXN)

Exhaustive Exploration of the
DVFS configs. Space for one

fixed DNN

Figure 2.3 On the left : The results of performing an HW-aware NAS under fixed
edge GPU’s hardware configuration. On the right : The results of optimizing edge
GPU’s hardware configuration for a fixed DNN model.

As shown, different accuracy and hardware efficiency for each explored DNN mo-
del, which is an expected result from the HW-aware NAS.

The right of Figure 2.3 demonstrates that the HW efficiency of a single DNN
configuration varies when varying the DVFS policy. This figure gives the results of

15

an exhaustive exploration of CPU, GPU, and EMC clock frequency configurations
for a randomly sampled DNN model from the former HW-aware NAS. To showcase
the impact of the DVFS configuration on the overall hardware efficiency of the DNN,
we compare the obtained results with the predefined default DVFS configurations
proposed by NVIDIA. In this figure, MAXN (resp. MINN) is the NVIDIA Jetson
AGX configuration with the highest (resp. the lowest) clock frequencies. MAXN

(resp. MINN), in general, maximizes (resp. minimizes) the processing speed at the
cost of a high (resp. low) power consumption. The other configurations (i.e., from
conf 1 to conf 5) are proposed to achieve a tradeoff between MAXN and MINN 2.
Remarkably the Pareto front, marked in blue in Figure 2.3, is obtained by the
exhaustive exploration. It identifies DVFS configurations that completely dominate
NVIDIA’s predefined default configurations. We note that the Pareto front does
not contain any of NVIDIA’s predefined configurations (MAXN, MINN, and conf 1
to conf 5). Furthermore, the non-dominated solutions in the Pareto front improve
the default configurations of NVIDIA (i.e., MAXN and MINN) by up to 57% and 40%
for power consumption and latency, respectively. These results show the necessity
to further explore the DVFS configurations to enhance the hardware efficiency of
the DNN inference on edge GPUS.

Figure 2.4 Impact of varying the CPU, GPU, and EMC frequency values on latency
and power consumption of the DNN inference.

In order to get a deeper comprehension of the impact of adjusting the clock fre-
quency, we delve into the findings shown in Figure 2.4. In this figure, we report
the impact of varying the clock frequency of CPU, GPU, and EMC frequency,
separately, on the inference latency and average power consumption. The experi-

2. Jetson developer kits and modules: https ://docs.nvidia.com/jetson/l4t/

16

mental procedure involves systematically varying one frequency at a time while
keeping the remaining frequencies fixed at their highest values. For instance, the
CPU frequency is varied while the GPU and EMC frequencies are held constant
at their respective maximum values.
Taking as an example the GPU frequency, as shown in the left of Figure 2.4, the la-
tency starts decreasing as the clock frequency increases from 400 MHz to 900MHz.
However, after 900MHz the latency remains the same, but the power consumption
keeps increasing drastically. Similar observations can be drawn from observing the
CPU and EMC frequency variation. The reason behind this result is the workload
requirements for the considered neural networks. For instance, if the inference is
compute-bound, high values of the GPU frequency are preferable to operate at
a high speed and accelerate computations. On the other hand, if the inference is
memory-bound, then high CPU and EMC frequency values will help maintain the
memory operations at the same pace as the GPU computation speed, which helps
minimize the overall latency. Thus, a prior investigation of the inference workload
requirements is crucial to determine which operating frequencies are needed to
run the inference without wasting the overall power budget while sustaining an
acceptable latency. For instance, from Figure 2.4, we remark that a frequency of
900 MHz gives the best trade-off between latency and power consumption. Ho-
wever, this value can be further adjusted by choosing adequate CPU and EMC
frequencies. Furthermore, the optimal values of clock frequencies change according
to the DNN workload. Thus, there is no optimal hardware configuration for all
the DNNs.

In conclusion, the performances of a DNN model are determined by the inter-
play between the DNN architecture and the HW configuration (DVFS). However,
understanding the impact of these factors is not straightforward, which motivates
the co-optimization of DNN and operating clock frequency configurations.

2.4 Problem Statement

As discussed in the motivational example, the overall problem can be formu-
lated as a multi-objective joint optimization problem in which we adjust both the
Neural Network architecture and DVFS configurations for a better accuracy and
hardware efficiency trade-off. As exploring the entire HW/DNN design space is
time-consuming and labor-intensive regarding training, evaluation, and deploy-
ment, we need a rapid DNN/HW co-design space exploration strategy. Further-
more, while accelerating the co-design space exploration, the search framework
must adequately provide a good approximation of the Pareto front (i.e., the
best tradeoff between accuracy and hardware efficiency). Formally, considering
both the DNN and DVFS configurations, the mathematical formulation of our co-
optimization problem is as follows:

(dnn∗, dvfs∗) = arg min[(E(dnn),L(dnn, dvfs),P(dnn, dvfs)]T (2.1)

s.t. dvfs = (clkcpu, clkgpu, clkemc) ∈ (Ccpu × Cgpu × Cemc) , dnn ∈ Sdnn (2.2)

Here dnn represents a DNN model characterized by the set of architectural para-
meters such as depth, number and size of kernels, and type of layers (See Section
2.5.1).

17

The variation of these parameters induces the realization of the DNN design
search space, Sdnn, that comprises variants of DNNs with different learning capa-
cities and inference characteristics. dvfs represents a DVFS configuration defined
by the combination of clock frequencies on the Central Processing Unit (CPU),
Graphical Processing Unit (GPU), and External Memory Controller (EMC). The
range values of each clock frequency are noted by Ccpu, Cgpu, Cemc.

A DNN model dnn is evaluated regarding: (i) the inference prediction error E
on a user-defined dataset. (ii) execution latency L (iii) power consumption P .
While the DNN learning capacity only impacts the prediction error, inference
latency and power consumption are impacted by the DNN model computation
complexity and the underlying DVFS configuration on the edge GPU. We note
that the inference prediction error E is assessed by computing the TOP-1 error
rate, which is the percentage of images from the validation set of the targeted
task dataset for which the correct label is not the class label predicted by the
DNN. Finally, given the multi-objective context of the co-optimization problem, a
Pareto ranking strategy is used to rank the fitness of the explored combinations of
(dnn, dvfs) using a non-dominated sorting algorithm to select the Pareto optimal
combination as elite solutions. A (dnn∗, dvfs∗) is said to be Pareto-optimal if and
only if for every objective uk ∈ U :

uk(dnn) ≥ u(dvfs)∀k, (dnn, dvfs) and ∃j : uj(dnn∗, dvfs∗) > uj(dnn, dvfs) (2.3)

∀(dnn, dvfs) ̸= (dnn∗, dvfs∗) and U = {E ,L,P} (2.4)

DNN
Search Space

Edge GPU
Hardware

Task/Dataset

DVFS
Search Space

Initialize
Population

(P0)

Fitness
Evaluation

Tournament
selection

Mutation & Crossover
(to generate offspring QT)

Fitness
Evaluation

NSGA-II Sorting
(PT U QT)

Survival Selection
(to generate next PT+1)

Final Pareto
Ranking

Pareto Optimal (DNN*, DVFS*)

Optim
Budget

Expired?

Archive (P0-PT)

No

Yes

Figure 2.5 Overview on our proposed DVFS-NAS co-optimization approach.

2.5 Proposed Approach

We propose an evolutionary-based co-optimization strategy, where we search
for both the optimal DNN architecture and DVFS configuration. We include the
DVFS search space into the conventional DNN design space. Then, both configu-
rations are explored using an evolutionary-based algorithm (NSGA-II). Figure 2.5
details our proposed co-optimization approach that comprises three main compo-
nents:

18

2.5.1 Joint Search Space

By definition, the joint search space can be generalized to any DNN, task,
dataset, and hardware accelerator. These four factors are considered as inputs in
our co-optimization framework. In our case, we fix the task and dataset to image
classification on the ImageNet-1k dataset. We design a joint search space that
encompasses ∼ 3.5 × 1014 (DNN×DVFS) combination. We detail both search spaces
in the following:

Table 2.2 The joint search space of DNN and hardware parameters

Decision

variables

DNN search space Hardware search space

Input

resolution
Width Depth

Kernel

size

Expand

ratio

CPU

frequency

GPU

frequency

Memory

frequency

Values [192, 288] [16, 1984] [1, 8] [3, 5] [1, 6] [0.1, 2.3] [0.1, 1.4] [0.2, 2.1]

Cardinality 4 16 8 2 4 29 14 9

1⃝ DNN search space: The DNN search space comprises all the possible archi-
tectures. In our case, we employ the supernet approach in which a hypernetwork
of networks is constructed and trained once via the weight-sharing approach [30].
In our case, we use the same supernet provided in [220] built on the FBNet [229]
macro-architecture and composed of the inverted residual block MBConv intro-
duced in MobileNet [186]. As shown in Figure 2.6, the micro-architecture of the
supernet is searchable through varying the MBConv layers parameters such as
channel width, depth, kernel size, and expansion ratio. Other meta-parameters,
such as the input resolution, are also included. We detail each architectural para-
meter value and range in Tables 2.2 and 2.3. We note that the original supernet
search space was designed to limit the complexity of the largest network to less
than 2,000 MFLOPs. Overall, the search space complexity is equal to O(2.94×1011)
candidate neural architecture.

2⃝ DVFS search space: We extend the search space of the NAS by including the
DVFS configurations. As explained in Section 2.3, the clock frequency of each hard-
ware component among the CPU, GPU, and EMC plays a role in the execution
efficiency, depending on the DNN workload requirements. Thus, we consider each
of them an independent and searchable hardware parameter. As clock frequen-
cies need to follow a domain range, the possible values are fixed by the hardware
constructor to ensure the HW device’s safe functioning. Thus, our search space
is limited to the possible values of clock frequencies, which also depends on the
edge GPU architecture. We provide more details on the clock frequency ranges
and possible values in Table 2.2. We note that in all our experiments, we turn off
the dynamic adjustment of clock frequencies and employ instead a static setting
in which all frequencies are held constant to avoid the high variance in latency and
power consumption measurements. Furthermore, we activated 50% of CPU cores
while fully using the GPU. The reason is that we noticed that CPU cores do not
have a high contribution to the DNN inference and remain in an IDLE state most
of the time.

19

Table 2.3 Detailed overview on the DNN architecture search space. Each row
denotes the search space of a fixed block of the DNN macro-architecture.

Block name Channel width Depth Kernel size Expansion ratio SE

Conv {16, 24} - 3 - -

MBConv-1 {16, 24} {1,2} {3, 5} 1 N

MBConv-2 {24, 32} {3, 4, 5} {3, 5} {4, 5, 6} N

MBConv-3 {32, 40} {3, 4, 5, 6} {3, 5} {4, 5, 6} Y

MBConv-4 {64, 72} {3, 4, 5, 6} {3, 5} {4, 5, 6} N

MBConv-5 {112,128} {3, 4, 5, 6, 7, 8} {3, 5} {4, 5, 6} Y

MBConv-6 {192, 200, 208, 216} {3, 4, 5, 6, 7, 8} {3, 5} 6 Y

MBConv-7 {216, 224} {1, 2} {3, 5} 6 Y

MBPool {1792, 1984} - 1 6 -

Input resolution {192, 224, 256, 288}

Input

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Output

d1 .. d7 w1 .. w7

k1 .. k7 e1 .. e7

Depth Width

Kernel size Expansion ratio

DNN Architecture Hyperparameters DNN Architecture Encoding

DNN encoding

Layer 1

Layer d4

Kernel size (k4)

Output filters (w4)

Expansion ratio (e4)

Conv 1x1

Depth-wise Conv

Conv 1x1

Squeeze & Excitation

Kernel size (k4)

Output filters (w4)

Expansion ratio (e4)

Conv 1x1

Depth-wise Conv

Conv 1x1

Squeeze & Excitation

res

Input

resolution

res Depth Width Kernel size Expansion
ratio

DNN Blocks encoding

Figure 2.6 Details on the DNN search space encoding: A candidate DNN architec-
ture is real-encoded using a single vector that comprises five sub-vectors depicting:
input resolution, depth, width, kernel size, and expansion ratio of each block

2.5.2 Evolutionary Search Strategy

Given the complexity of the underlying joint search space, an effective search
strategy is needed to efficiently explore the candidate configurations and retain
the Pareto optimal ones. Among the existing search algorithms, we employ an
evolutionary approach as it has been proven effective for the NP-hard NAS op-
timization problem [138]. Specifically, we use NSGA-II [51] that applies a fast,
non-dominated sorting algorithm via Pareto ranking and a crowding distance as
diversity measurement to select elite solutions for child population reproduction.

As shown in Figure 2.5, The algorithm started by randomly generating N
(DNN, DVFS) combinations to construct the first population P0. Then, a fitness
evaluation is performed to obtain the values of the corresponding objectives (i.e.,
prediction error, latency, and power consumption). Afterward, a tournament se-
lection [18] is employed to select a subset of promising (DNN, DVFS) configurations
from PT to generate the offspring population QT via Mutation and Crossover. QT

then undergoes a fitness evaluation and a two-step NSGA-II sorting is applied on

20

the (PT ∪QT) as detailed in Figure 2.7:

— (i) First, configurations in (PT ∪ QT) are sorted according to their Pareto
dominance using the non-dominated sorting algorithm that generated sets
of Pareto fronts PF1,...,m in which PFi−1 dominates PFi for 1 ≥ i ≤ m.

— (ii) Second, configurations in
m⋃
i=1

PFi are further sorted according to their

crowding distance in which higher values depict better diversity [52].

Pareto fronts ranking and diversity scores are jointly used to retain a ratio of
elite survival candidates solutions that create the next population PT+1.

NSGA-II is expected to perform optimally and efficiently within a low opti-
mization budget (e.g., number of generations). The parameters used for NSGA-II
are detailed in Table 2.7. In our framework, the first population is initialized using
the Latin HyperCube Sampling (LHS) method for a high variance of the search
variables. We choose a high crossover probability of 80% to increase good candi-
date solutions’ reproducibility. On the other hand, we fix a mutation probability to
30% to prevent the risk of losing traces of optimal candidate solutions. Crossover
and mutation are chosen uniformly to balance both exploration and exploitation.
For the optimization budget we fix the size of populations PT to N = 100 and we
run the search algorithm for a total of G = 50 generations.

Mutation
Crossover

PT

(a) Non-dominated
Sorting on (PT U QT)

PF1

Rejected
- Low Dominance

- Low Diversity PT+1

(b) Crowding Diversity
Distance Sorting

QT: Offspring Population (Current)

PT: Parent Population (Current)

Offspring
generation

QT

PF2

PF3

…PF refers to
the Pareto

fonts where
PF(i-1) is

dominated by

PF(i)

PT

QT

NSGA-II Parameter Value

Sampling Random

Generations (G) 50

Population size (N) 100

Population init. LHS

Mutation, prob. Uniform, 30%

Crossover, prob. Uniform, 80%

Elite Selection Tournament, 25%

Figure 2.7 Left: NSGA-II two-step sorting process. The blue shades refer to
the Pareto fronts (PFi) from the non-dominated sorting algorithm in [52].
Right: NSGA-II meta-parameters used in our works.

2.5.3 Fitness Evaluation Strategy

The explored pairs of (DNN×DVFS) are evaluated regarding prediction accuracy
on the targeted task and hardware efficiency of inference as detailed below:

— (i) The prediction accuracy is the most expensive part as it ultimately in-
volves training and validation steps. We overcome the training problem by
using a pretrained supernet and weight inheritance. Nevertheless, the valida-
tion step is still a bottleneck as it requires a Batch-Norm weights calibration
on the training set [255] and validation on the test set of the large ImageNet-
1k dataset. To mitigate this challenge, we employ a surrogate model for DNN
accuracy prediction. Specifically, we reuse the surrogate model provided in
[220], which is a Random Forest predictor [130] that takes the direct enco-
ding of the DNN (See Figure 2.6) and output the estimated accuracy for

21

30 epochs training. These estimations are used during the search to accele-
rate the process. The obtained Pareto optimal DNN subnets are derived from
the supernet and exhaustively evaluated on the ImageNet-1k validation set
to get the accuracy when trained on longer epochs. We note that accuracy
values obtained from the surrogate and pretrained supernet are highly cor-
related, reporting up to ∼ 0.88 Kendall-tau correlation rank coefficient as
shown in Figure 2.8 from the resoluts reported in [220].

— (ii) The inference hardware efficiency (latency and power) is directly mea-
sured by deploying and executing the sampled DNN model on the hardware
accelerator under the sampled DVFS configuration. The hardware evaluation
is not a time-consuming step compared to the accuracy evaluation.

Figure 2.8 Rank correlation between estimated and actual accuracy. ep30 and
ep360 denote 30 and 360 training epochs. s0 and s1 denote the random seeds [220]

2.6 Evaluation Methodology

In this section, we provide a comprehensive evaluation of our methodology. We
first detail the experimental setup and then discuss and obtained results.

2.6.1 Experimental Setup

1⃝ Task and Dataset: We primarily target image classification on the ImageNet-
1k [115] dataset that contains 14,197,122 annotated images categorized into 1000
classes. We also extend our evaluation by applying transfer learning to other image
classification datasets such as CIFAR-10 [112] and CIFAR-100 [113]. All images are
preprocessed using data augmentation techniques such as whitening, upsampling,
random cropping, and random horizontal flipping before feeding them to the DNN.
We note that accuracy measurements have been conducted using the TOP-1 error
rate, which pertains to the error of a model’s predictions when considering the class
with the highest probability. Formally put, the TOP-1 error rate is calculated as
follows:

TOP-1 error = Number of Mispredictions

Total number of predictions
× 100% (2.5)

2⃝ Hardware Accelerator: We use the NVIDIA Jetson AGX Xavier edge GPU
as a hardware accelerator2 equipped with an NVIDIA Carmel Arm-64bit CPU, a
high-performance Volta GPU of 512 GPU cores and 64 Tensor cores. The mapping
to GPU or Tensor cores depends on the data precision and is performed automa-
tically by the DNN compiler. A native deployment of DNN models on the Jetson

22

AGX Xavier uses the GPU as a primary HW unit for inference computations.
CPU and EMC are more related to data movement and memory operations. The
NVIDIA Jetson AGX Xavier also allows the reconfigurability of hardware-related
parameters, such as the number of active CPU cores and operating clock frequency
of CPU, GPU, and EMC. If not mentioned otherwise, our experiments have been
conducted under FP32 data precision using the Pytorch 1.9.0 framework.

2.6.2 Experimental Results

1⃝ Co-optimization Results and Insights: To showcase the efficiency of our co-
optimization approach, we discuss the results regarding the search effectiveness
from multiple perspectives as follows:

Joint Optimization
DNN x DVFS

Larger search space and
different performance

tradeoff

Narrower explored
search space under fixed

DVFS settings

Figure 2.9 Left : Co-exploration results on the joint search space vs. Right Explo-
ration results of the DNN search space under fixed DVFS policy.

2⃝ Efficiency of the Co-exploration: To showcase the co-optimization’s impor-
tance, we compare the results obtained when considering the joint search space
and performing a typical HW-aware NAS under fixed DVFS configurations. In our
case, we chose two default DVFS settings proposed by the hardware manufactu-
rer, NVIDIA: MAXN and MINN. The former sets all the clock frequencies at their
maximum and enables all the CPU and GPU cores, whereas the latter sets the
clock frequencies at the minimum default values and enables only 25% of the CPU
cores. Generally, enabled CPU cores remain at an IDLE state when not used by
any workload, which wastes the power budget. On the other hand, low utilization
of GPU cores on their maximum clock frequencies incurs high power consumption
as well, while similar computation speeds can be obtained if the clock frequency
is adjusted correctly.
To better understand this impact, we provide the results of the co-exploration
on the left of Figure 2.9. We qualitatively compare the former results against
those of a typical HW-aware NAS under the MAXN and MINN DVFS policies, marked
with different point shapes in the right of Figure 2.9. Each point in the figures
corresponds to a combination of DNN and DVFS configurations (i.e., (dnn, hc)).
As shown on the left of Figure 2.9, we remark that the region explored in the joint
space is much larger than the regions explored when fixing the DVFS configuration
to MAXN or MINN. Furthermore, the explored regions when fixing the two DVFS

configurations are included in the co-exploration. Indeed, the joint search space

23

allows for exploring much larger solutions and, hence, different tradeoffs between
accuracy and hardware efficiency (inference latency and energy consumption).

For instance, under the same latency level, an energy saving of up to 53%
can be gained while enjoying similar accuracy levels. Similarly, when searching
for low power consumption levels (i.e., in case the hardware device is running out
of battery), a best-effort configuration can be selected from the obtained Pareto
front in which the power consumption is minimal, with improved latency gains.
This is due to the MINN configuration, which drastically worsens the execution
latency. Similar observation can be attributed to the MAXN, which wastes the power
budget on less resource-demanding workloads. Thus, a compromise between the
two extremes is needed to achieve the desired performances by using the just-
needed computation and hardware resources.

Figure 2.10 Left : Characterization of the explored and Pareto optimal DNN mo-
dels. Right : Characterization of the explored and Pareto optimal DVFS configura-
tions.

3⃝ Characterization of the Explored Search Space: To show the diversity of the
explored solutions, we summarize the characteristics of the explored DNN and
DVFS configurations in Figure 2.10. The points correspond to all the explored so-
lutions. Solutions belonging to the Pareto set are highlighted in blue. On the right
of Figure 2.10, we show the explored DVFS configuration space. As shown, the Pa-
reto optimal solutions are diverse, well distributed, and do not follow any specific
trend. This confirms our earlier observation that no a priori knowledge can be used
to choose the best-suited DVFS policy without on-device evaluation to get accu-
rate latency and power consumption measurements. On the left of Figure 2.10, we
report the main properties of the explored DNN architectures in terms of input
resolution, depth (i.e., number of layers), and size of trainable parameters (in Me-
gabytes). Similarly, architectures belonging to the Pareto set are well-distributed
and diverse. We also remark that most models have high input resolution, en-
abling accurate inference. The diversity of the explored architectures supports the
importance of the hardware-aware DNN architectural design co-exploration, as
no a priori knowledge can be leveraged to get insights on the DNN performance
without actual performance measurements.

24

53% energy saving

More energy
efficient models w/
the same accuracy
level as baselines

Figure 2.11 Accuracy and Energy of the baseline models proposed by Attentive-
NAS [220] compared to non-dominated configurations selected from the Pareto
front of our DVFS-NAS the ImageNet-1k dataset.

Table 2.4 Detailed performances of our DVFS-NAS Vs. the baseline from Atten-
tiveNAS [220]

DNN, DVFS TOP-1 Acc (%) Latency (ms) Avg. Power (mW)

Att-A2, MAXN 78.8% 29.91 6575

Att-A3, MAXN 79.1% 33.51 6575

Att-A4, MAXN 79.8% 32.67 7033

Att-A5, MAXN 80.1% 35.66 6881

Ours-B0, dvfs1 79.0% 28.85 4744

Ours-B1, dvfs2 79.6% 30.82 4591

Ours-B2, dvfs3 79.9% 33.03 4591
Ours-B3, dvfs4 80.2% 34.10 6118

4⃝ Analysis of the Pareto Optimal Configurations
To further investigate the efficiency of the co-exploration, we select four pairs

of (DNN × DVFS) from the Pareto front obtained from the co-optimization and
compare them against state-of-the-art DNN models under the widely used default
configuration proposed by NVIDIA, MAXN. We specifically compare against the
top four (04) models from AttentiveNAS (A2-A5) [220]. We refer to these models
as Att-A(2-5). Figure 2.11 details the obtained results and the comparison. As
shown, our obtained solutions (i.e., combinations of DNN models and hardware
configuration) are referred to as Ours-B(0-3), hc(0-3). Our co-optimization ap-
proach identified better solutions in terms of accuracy and hardware efficiency.
From the table on the right of Figure 2.4, we notice a power gain of up to 53%
under the same latency constraints. Furthermore, we remark an accuracy impro-
vement of up to 0.5% on the ImageNet-1k dataset with better hardware efficiency
and less energy demands.

25

5⃝ Fine-tuning on CIFAR-10 and CIFAR-100 To further investigate the per-
formance of the obtained top models, we apply fine-tuning to CIFAR10 and CI-
FAR100 datasets. Since the obtained models are sampled from the pretrained
SuperNet of AttentiveNAS [220], we do not need to train them from scratch. Ins-
tead, we apply a transfer learning from ImageNet to the new datasets. We apply
the same fine-tuning strategy proposed in [215] by taking the ImageNet pretrained
models checkpoints and fine-tuning on the new datasets. Thus, the fine-tuning is
applied to the overall model’s parameters (not only the classifier). For training,
we apply the same settings used to train the SuperNet in [220].

Table 2.5 Fine-tuning results to CIFAR-10 and CIFAR-100

Models ImageNet-1k Cifar-100 Cifar-10

AttentiveNAS-A23 78.8% 86.13% 97.45%

AttentiveNAS-A33 79.1% 86.21% 97.61%

AttentiveNAS-A43 79.8% 86.72% 97.71%

AttentiveNAS-A53 80.1% 86.92% 97.83%

Ours-B0 79.0% 86.12% 97.47%

Ours-B1 79.6% 86.69% 97.75%

Ours-B2 79.9% 86.95% 97.62%

Ours-B3 80.2% 87.03% 98.05%

The models are trained using the SGD as an optimizer, with a weight decay of
1e-5 and momentum of 0.9. The learning rate is initialized at 0.1 and decays by
97% every three epochs. The training is done on eight distributed GPUs with a
budget fixed to 100 epochs and a batch size of 128. Table 2.5 summarizes the
obtained results. We compare the obtained results with the baseline models of
AttentiveNAS.

6⃝ Neural Graph Post-Optimization with TensorRT We further boost the hard-
ware efficiency of the obtained models by post-optimizing the neural graph using
TensorRT4. TensorRT is an SDK developed by NVIDIA to accelerate deep learning
inference. Figure 2.12 depicts the workflow to create an optimized inference en-
gine using the TensorRT Builder module. First, the network description and other
optimization options, such as kernel/data quantization and computation mapping
strategy, should be provided as input. Then, TensorRT creates an optimized en-
gine by applying the specified optimization options and other internal optimization
strategies, such as layer fusion. The optimized engine creates an execution context
to perform the inference. Finally, an execution context is mapped into a single (or
multiple) CUDA stream(s) for execution. We optimize the obtained the Pareto
optimal models (i.e., Ours-B(0-3), hc(0-3)) by exploring the TensorRT compiler
optimization parameters. Specifically, in addition to the implicit horizontal and
vertical optimization strategies on the computation graph of the DNN, we en-
able the FP16 post-quantization, which typically incurs negligible accuracy drop
compared to the INT8 quantization that requires a calibration step to recover

3. In the original paper of AttentiveNAS [220], the authors didn’t report the results on CIFAR-
10 and CIFAR-100. Therefore, we fine-tune the baseline models on the new datasets using our
implementation.

26

the accuracy loss. The quantization is typically expected to minimize memory
footprints and thereby reducing the overall latency and energy consumption. We
report the results of this post-optimization in Figures 2.13.

Network

Description

TensorRT

Builder

Optimized
Inference Engine

ONNX

Python/C++ API

Load Create

Deserialized
Engine

TensorRT

Runtime Execution Context

Load Create

Optimization

options

Figure 2.12 Workflow of generating an optimized TensorRT inference engine

The two sub-figures of Figure 2.13 depict the latency speedup and the relative po-
wer consumption during the TensorRT inference. We report the speedup in latency
by calculating the relative latency improvement of the optimized models with Ten-
sorRT compared to the non-optimized models before applying TensorRT. Similarly,
the power consumption is normalized by the values of the non-optimized models
without the TensorRT optimization. Regarding power consumption, TensorRT in-
curs higher power consumption compared to the non-optimized implementation.
We compare the performance when choosing MAXN as hardware configuration
(referred to as MaxN in the figures) and when choosing the optimal hardware confi-
guration found by our co-optimization approach (referred to as Co-Opt in the
figures). On the left of Figure 2.13, we only apply the internal optimization of
TensorRT. On the right of Figure 2.13, we apply a post-quantization to FP16.

Figure 2.13 Left : Graph Neural Post-optimization results using TensorRT without
post-quantization. Right : TensorRT optimizaion via FP16 post-quantization.

First, when executing our models with the MAXN configuration, TensorRT boosts
the hardware efficiency of the models with a latency speedup of up to ∼81% and
∼88% for non-quantized and quantized models, respectively. However, this comes

27

at the expense of increased power consumption up to ∼189% and ∼112% for non-
quantized and quantized models, respectively. This is explained by the ability of
TensorRT to take advantage of the GPU computation units during the inference.
The optimized engine is highly parallel, which maximizes the GPU utilization
ratio and thus incurs an increase in power consumption. Second, by optimizing the
hardware configuration (Co-Opt)), we reduced the increase in power consumption
from ∼189% and ∼112% to ∼73% and ∼33% for non-quantized and quantized
models, respectively. Regarding latency, we notice a small average gap of ∼7% in
the latency speedups of the MAXN and the optimal hardware configurations found
by our algorithm. Nevertheless, since the two hardware configurations (i.e., MaxN
and optimal configurations (hc-(0-3)) speed up the computations latency by a ratio
of ∼85% to ∼88%, this small gap becomes negligible when considering the power
saving from up to ∼61% achieved by the optimal hardware configuration found
by our co-optimization approach. Therefore, co-optimization remains important
to balance latency speedup and power saving, even when using high-performance
SDK such as TensorRT.

2.7 Discussion and Key Insights

Our results demonstrated that the co-optimization of DNN and DVFS configu-
rations on edge GPUs is extremely important to balance DNN performance and
hardware efficiency. On the one hand, edge GPUs are heterogeneous embedded
systems and can execute multiple applications concurrently. In this case, the avai-
lability of hardware resources (e.g., computation units and operating frequencies)
varies due to other concurrent applications’ execution. Thus, the performance of
an application changes under different resource availability scenarios. Therefore,
knowing beforehand which DNN model is adapted to each scenario can prevent
the violation of the application’s performance requirements and meet the power
and resources budget constraints. On the other hand, the optimal hardware confi-
gurations for a single application can be used at runtime to dynamically scale
the hardware platform for the performance requirements and the power budget
constraints. Therefore, our proposed co-optimization framework can be integra-
ted into a real-time scheduling algorithm to dynamically adjust DNN and DVFS

configurations according to resource availability. It can also be used as a dynamic
frequency scaling governor at runtime instead of the currently used heuristics that
have been proven weak in capturing the correlation between the hardware confi-
guration, the application workload, and the availability of hardware resources.
More interestingly, the joint optimization is becoming an important part of typical
HW-aware NAS frameworks to co-design Neural Networks and Hardware accele-
rators for Edge AI applications and systems. Emerging DNN models are more
diverse, hybrid, and compound atypical computations and dataflow. This diver-
sity opens room for further reconsidering the DNN deployment on edge devices.
That being said, more attention should be delegated to answering questions on:

— (i) What are the execution requirements and bottlenecks of DNN workloads
on existing commodity edge devices ?

— (ii) How can we adjust the hardware accelerator to satisfy those requirements
without changing the DNN model or opting for another the HW device ?

28

Thus, an a priori and systematic DNN execution characterization and exhaus-
tive exploitation of the HW dimension can help in ensuring the DNN inference
requirements on edge devices without drastically compromising accuracy.

2.8 Summary

This chapter investigates the importance of the joint exploration of DNN and
DVFS configurations for edge GPU accelerators to balance performance and energy
efficiency. First, we conducted a preliminary analysis of the impact of clock fre-
quency variations on the inference latency and power consumption. From our ob-
servation of the non-linear behavior of the correlation between frequency scaling on
latency and power, we proposed to integrate the DVFS as an additional HW-related
parameter that needs optimization alongside the DNN during the HW-aware NAS.

In this context, we propose a co-optimization approach based on an evolu-
tionary algorithm (NSGA-II) to explore these two search spaces. The aim was
to minimize three objective functions: DNN TOP-1 error, latency, and power
consumption. Experimental results on the Jetson AGX Xavier NVIDIA GPU de-
monstrated the efficiency of the co-optimization compared to typical HW-aware
NAS under fixed hardware configurations. Moreover, the top pairs found by our co-
optimization are more energy-efficient with up to 53% gains than solutions found
by state-of-the-art models under the same accuracy and latency constraints. We
have also demonstrated the importance of co-optimization when using a high-
performance SDK such as TensorRT. The results depict a latency speedup of up
to 81% and power saving of 61% compared to the MaxN configuration. Future
works can extend our co-optimization framework by proposing more efficient se-
lection and recombination operators for the optimization algorithm. It is also worth
investigating more hardware architectures, configurations, and DNN benchmarks
to further emphasize the importance of co-optimization. More importantly, com-
bining a dynamic execution strategy that would benefit from the dynamic clock
frequency scaling can further enhance performance and energy efficiency. These
dynamic execution schemes can be drawn from existing works such as dynamic
routing in Dynamic-OFA [140], or dynamic neural scaling methods like early-exit
and computation skipping as detailed in [82].

29

Chapitre 3

HADAS: Hardware-Aware Dynamic Neural Architecture Search
for Edge Performance Scaling

3.1 Introduction

Neural Networks (NNs) have become integral machine learning techniques that
enable intelligence for today’s edge computing applications. Edge computing plat-
forms are commonly deployed in real-world environments, which exposes them
to significant variations in runtime performance. These variations are mostly at-
tributed to the uneven distribution of received data, which poses challenges in
effectively processing inputs within constrained hardware resources. Examples of
such constraints include limited power budget and system charge. The relevance
of Dynamic Neural Networks (DyNNs) [82] has increased significantly. Unlike tra-
ditional static models that have fixed computational graphs, DyNNs have the
ability to adapt their model structure and parameters depending on the runtime
context (i.e., input complexity and system state). This adaptability allows DyNNs
to achieve hardware resource efficiency at the edge while preserving the accuracy
of the models.

One prominent DyNN technique is early exiting, where dynamic depth varia-
tion is applied sample-wise to avoid redundant computations. Early exiting is a
technique that enables the efficient processing of ”easier” input samples in earlier
stages (e.g., layers, channels) of an NN model, hence facilitating the conclusion of
their processing within a short time while incurring less energy requirement. As
shown in figure 3.1, this DyNN technique is often realized through a multi-exit
architecture that integrates intermediate classifiers onto a shared backbone model
[216, 169, 19, 188, 166].

… ……

Input Data

Outputs

Intermediate classifiers

Backbone Network

Early exit
Points

Figure 3.1 Dynamic Inference with early-exit

Typically, the design workflow of multi-exit models initially assumes that the

30

backbone’s architecture has been optimally designed to maximize performance on
a target task. Evidently, backbones in related works were either based on renow-
ned state-of-the-art NN architectures, e.g., ResNets in [216], or models rendered
through the design automation frameworks of Neural Architecture Search (NAS)
[220]. This means that backbones were originally designed to serve as standalone
static models. Thus, a subject of debate is whether such design optimality of these
models would hold when auxiliary neural components, such as early-exit points
and intermediate classifiers, are added to serve as the backbone of a dynamic
model.

In this chapter, we investigate another dimension to unleash the potential of
inference dynamicity from a neural network perspective. We extend our DVFS-
NAS detailed in Chapter 1 [26, 27, 25] and reformulate the problem as a joint
optimization of neural network and hardware dynamic features.

1. The former encompasses finding the optimal design of backbones and early-
exit positions and branches.

2. The latter involves identifying optimal DVFS configurations for the realized
dynamic neural network.

We propose HADAS, a comprehensive HW-aware NAS framework for dynamic
neural networks to balance inference performance-efficiency tradeoffs. We make the
design of the DyNN fully searchable by constructing a novel joint search space for
(i) static backbone neural network design and (ii) dynamic early-exit branches and
DVFS configurations. Then, we elaborate an innovative co-optimization frame-
work by hierarchizing the design exploration process of static and dynamic com-
ponents using two dedicated optimization engines that inter-communicate using
their Pareto sets improvements. We validate our approach using the CIFAR-100
dataset on various hardware configurations: ARM, Denver CPUs, Volta, and Pas-
cal GPUs from the NVIDIA Jetson AGX Xavier and TX2. Evaluation results
have seen the superiority of HADAS by providing up to ∼57% while sustaining an
acceptable level of accuracy. Contributions and results of this chapter have been
published in:

— [21] Halima Bouzidi, Mohanad Odema, Hamza Ouarnoughi, Mohammad Al
Faruque, Smail Niar. ”HADAS: Hardware-Aware Dynamic Neural Architec-
ture Search for Edge Performance Scaling” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition(DATE), April
2023. Nominated for the Best Paper Award.

3.2 Related works

3.2.1 Dynamic Early Exit and NAS

Early-exiting has been widely adopted to realize DyNNs on edge devices given
their “simple-yet-effective” characteristic. The direct approach to realize Multi-
exit networks has been to branch intermediate classifiers from the earlier layers
of a backbone model and retraining the model to maximize the performance of
all classifiers [169, 216, 174, 93]. With an effective input-to-exit mapping policy,
multi-exit models achieve computational efficiency as simpler input samples can
be classified at the earlier classifiers (exits) while maintaining the model’s repre-
sentational power through retaining the full classifier for the harder samples. In the

31

aforementioned works, the multi-exit networks have been manually designed based
on heuristic choices of positions, structure, and count conditioned on their respec-
tive backbone architecture [121]. This manual design approach highly depends on
the choices of backbones and exit branches, overlooking further performance gains
from automating the design process to broadly explore the possible variants of
dynamic neural network designs.

To leverage design automation for DyNN, recent works [166, 259] have inves-
tigated the applicability of NAS techniques to automate the design of multi-exit
networks, where the backbone and exits’ design spaces can be jointly explored to
reach superior DyNN architectures. However, [166] instituted a small search space
of one exit branch at a fixed position, which is not scalable and may fail to cap-
ture the variation of complexity in input data. S2DNAS [259] introduces a large
search space for multi-exit networks on depth and width levels for a fixed backbone
network. However, despite its effectiveness, S2DNAS is specific to convolutional
NNs only and cannot be generalized to new emerging types of NN such as Trans-
formers or Graph Neural Networks. Our approach, on the other hand, expands
existing works by making the multi-exit DyNN fully and automatically searchable
by enlarging the search space for exit branch positions and jointly optimizing the
backbone networks, mitigating the drawbacks of [166] and [259].

3.2.2 Dynamic Hardware Reconfiguration

As demonstrated in Chapter 1, dynamically scaling NNs results in different
computational and energy footprints that require adapting the hardware confi-
guration accordingly [25]. To meet the demands of early-exit DyNN, authors in
[170, 62] have co-designed the hardware with the multi-exit networks using FPGAs,
showcasing how further energy efficiency gains can be achieved through having spe-
cialized hardware for exits. Nevertheless, the considerable switching overheads of
hardware configurations in FPGAs are not typically acceptable for runtime appli-
cations.

A viable alternative came in the form of hardware reconfiguration through
supported DVFS features, where the operational frequency can be scaled after exi-
ting to preserve energy resources [212, 127]. For instance, Predictive-exit [127]
co-optimize the placement of early-exit branches and DVFS configurations by lo-
wering the clock frequency after the input data is correctly classified at earlier
stages. Nonetheless, when the complexity variance of the received input data is
high, this may result in a considerable amount of clock frequency switching by the
DVFS governor, resulting in a high latency overhead.

Thus, in our work, we mitigate this challenge by searching for a global DVFS
policy for the entire DyNN that better captures the variations in input data com-
plexity and design composition of early-exit branches.

Table 3.1 illustrates the difference between HADAS and existing multi-exit
network design approaches and how it improves upon them through its joint op-
timization approach while being compatible with existing state-of-the-art NAS
frameworks. We note that Compatibility refers to the generalization and ease of
integration of our design approach onto existing neural network architectures and
NAS infrastructure.

32

Table 3.1 Comparison between Related-works and ours

Work Early-Exiting NAS DVFS Compatibility

BranchyNet [216] x
CDLN [169] x
S2dnas [259] x x

Dynamic-OFA [140] x x
EExNAS [166] x x
Edgebert [212] x x

Predictive Exit [127] x x

HADAS x x x x

3.3 Motivational Example

Given the intrinsic variance of real-world data, the dynamic behavior of NN
is desirable to use NN components and hardware resources efficiently. That being
said, easy input data typically requires simple NN and hardware resources. On
the other hand, difficult input data require complex reasoning with enormous NN
operations, which naturally implies more hardware resource demands. Dynamically
activating neural network components according to input data complexity gives
rise to Dynamic Neural Networks. From a DyNN design perspective:

1. NN backbones need the tuning of both the Macro and Micro architectures.
The former is defined by the high-level structure choice that delineates neu-
ral block arrangement and components. The latter is defined by the inner
structure of the neural block regarding the depth and width of layers, stride,
kernel size, and activation functions.

2. Early exit placement and components must be chosen carefully within the
backbone NN. In the context of a depthwise early exit, intermediate clas-
sifiers are another design dimension involving operations that need further
parameter tuning. In addition, the position of the early exit itself is a design
choice that compromises accuracy and efficiency.

3. Considering the hardware landscape in the loop, further considerations of
the hardware architecture and parameters (e.g., clock frequency) add ano-
ther layer of Complexity. In this context, tuning the DVFS configuration re-
garding the DyNN model configuration can enhance energy efficiency while
sustaining an acceptable processing latency. The reason being is that com-
pact DyNNs typically require less processing speed as they were originally
designed for efficiency. Thus, lowering the clock frequency through DVFS is
more beneficial for less energy footprint. The same assumption holds when
considering a large DyNN, except that operating clock frequency needs to
be carefully adjusted so that latency will not decrease drastically in favor of
less power consumption.

In Figure 3.2, we showcase how the interplay between the three aforementioned
design dimensions impacts the overall performance of DyNNs. We take as baselines
the respective most compact and highest performing image recognition models, a0
and a6. These models are provided through a state-of-the-art NAS framework,
AttentiveNAS [220]. However, our method is compatible with any other NAS fra-
mework could be used instead of AttentiveNAS. We compare their performance

33

against another model that resulted from co-optimizing backbone and early-exit
neural components, as well as the inclusion of DVFS for energy efficiency. In this
case, we implement our co-optimization approach on top of AttentiveNAS [220] to
ensure a fair comparison by having the models share the same macro-architecture.
We also note that AttentiveNAS [220] is only dedicated to backbone design optimi-
zation and not initially designed for dynamic inference through early exit. Thus, we
include the early exit components and hardware HW-aware NAS algorithm as our
new co-optimization framework. In the following discussion, classification accuracy
and energy consumption are leveraged as the performance comparison metrics. We
use the CIFAR-100 image dataset for models’ training and accuracy evaluations
and the NVIDIA Jetson TX2 platform for hardware performance benchmarking
using the Pytorch framework 1.

HADAS
improves

accuracy via
dynamicity

-22%

37%

0%

53% 57%

19%

More energy-efficient
DyNN designs

a0a6a6 a0 HADASHADAS

Figure 3.2 Comparing the performance of (a0, a6) from AttentiveNAS and HA-
DAS’s model on CIFAR-100 and the Jetson TX2 Pascal GPU hardware.

As shown in Figure 3.2, we designate three stages of DyNN optimizations that
can be applied to maximize performance efficiency:

1 Static in which we optimize the backbone model design through a typical
HW-aware NAS process ;

2 Dyn – in which we add dynamicity in the backbone inference process
through integrating early-exiting classifiers along the depth of the NN ;

3 Dyn w/ HW – in which we integrate both early-exit and DVFS through
tuning the operating clock of the TX2 hardware units including CPU, GPU, and
EMC.

The left subfigure compares the accuracy, whereas the right subfigure compares
the energy efficiency. We note that the same trend has been observed for latency
as energy is the product of latency and power consumption.

Firstly, with regards to accuracy, the model obtained from the co-optimization
(noted as HADAS) outperforms the static a0 and is on-par with a6 after applying
the static and Dyn optimizations. The accuracy values are kept the same after
integrating the DVFS features as it has no impact on the data representation of the
inference results.

1. Pytorch Framework: https ://pytorch.org/

34

Secondly, though, the energy efficiency of HADAS ’s model is enhanced consi-
derably with every applied optimization compared to the other models (right bar-
plot). That is, after the first stage of Static optimization by integrating hardware-
related objectives into the optimization process, a0 is reasonably deemed the most
energy-efficient model given its compactness (22% more energy-efficient than ours).
Nevertheless, in the Static case, HADAS depicts the best accuracy and efficiency
tradeoff with up to ∼37% energy efficiency compared to a6 while being +1.01%
more accurate than a0.

On the other hand, when Dyn co-optimizations are applied, the HADAS mo-
del’s efficiency improves drastically to reach the same level of energy efficiency
as a0. Even more so, energy efficiency reaches up to ∼19% gains compared to a0
once Dyn w/ HW both early-exit and DVFS optimizations are in place. In light
of the observations, it’s mandatory to consider every design dimension into the
HW-aware NAS to push the performance boundaries of dynamic neural networks.

Analysis Summary and Conclusions: Through its awareness of the dynamic and
DVFS parameter spaces, the co-optimization approach can balance the accuracy
efficiency trade-offs more than the conventional NN design approaches such as
AttentiveNAS [220]. Specifically, our proposed co-optimization approach of the
backbone neural network, early exiting features, and the hardware settings (i.e.,
DVFS) leads to DyNN model designs that are highly prone to benefit from the static,
dynamic, and hardware deployment aspects altogether. These dynamic models can
be leveraged to dynamically scale NN models through early-exit and HW devices
through DVFS at runtime for an effective inference process on resource-constrained
systems.

3.4 Novel Scientific Contributions

In this work, we present the following scientific contributions and novelties:

1. We present HADAS, a novel hardware-aware NAS framework that jointly
optimizes the design of multi-exit DyNNs and DVFS settings.

2. HADAS is built to leverage the existing infrastructure of pretrained super-
nets provided through state-of-the-art NAS frameworks, and is also com-
patible with existing runtime controllers for an effective end-to-end design
workflow.

3. We formulate the design space exploration problem for multi-exit architec-
tures as a bi-level optimization problem solved through two nested evolutio-
nary genetic engines. The outer engine identifies optimal backbone designs.
Whereas the inner engine co-optimizes the exits’ integration and the DVFS
settings.

4. On the CIFAR-100 dataset and a diverse set of hardware devices/settings,
our experiments demonstrated that HADAS models can realize energy ef-
ficiency gains by up to ∼57% over models designed through conventional
methods while preserving the desired level of accuracy.

35

3.5 Problem Statement

As the combined design space size for the DyNNs and hardware configurations
can be enormous, we characterize three separate subspaces to manage the joint
optimization of their parameters as follows:

1. (i) The backbones (B) ; which are models originally designed in a monoli-
thic fashion for static inference with no adaptive behavior,

2. (ii) The exits (X) ; which are the dynamic components to be integrated
onto a backbone,

3. (iii) The DVFS settings (F) ; constituting the space of operational clock
frequencies for the underlying hardware components.

For the DyNNs, our reasons for designating B and X as separate subspaces are
threefold:

1. To maintain the generality of the approach by having the X subspace indif-
ferent to the “type” of candidate backbones in B. Thus, our approach can
be readily adopted when a new type of backbones is to be considered (e.g.,
Transformers).

2. To leverage the existing infrastructure of pretrained supernets from establi-
shed NAS frameworks (as in [30, 220, 219]) so as to provide high-caliber
backbone models for the B subspace.

3. To ensure the generality of the framework for other dynamic inference strate-
gies. For instance, the X search space can be extended to support width-wise
early-exit features through channel-based early exit [93, 259].

To detail the algorithm used for ranking of the architectural designs generated
dynamically, we denote S and D as generic optimization objectives under static
and dynamic deployments, respectively. Mainly, S represents the backbone evalua-
tions when designated as a fixed standalone model (e.g., baseline energy), whereas
D is for the evaluations of its dynamic variant after integrating the early exit
component. We note that each performance metric is computed in an input-wise
manner under the assumption of an ideal mapping of input data to intermediate
classifiers. Hence, this implies a bi-level optimization problem with the B as the
outer-level subspace for Static components and (X , F) as the inner-level ones for
Dynamic components. More formally, the overall bi-level optimization problem for
DyNN design is formulated as follows:

b∗ = arg max
b∈B

ψ[S(b),D(x∗, f ∗ | b)] (3.1)

s.t. x∗, f ∗ = arg max
x∈X ,f∈F

D(x, f | b) (3.2)

Where the global optimization objective to identify the ideal parameter combi-
nation (b∗, x∗, f ∗) that maximizes an optimality score computed by ψ, given the
static S and dynamic performances D. To solve our bi-level optimization problem,
we need to solve two sub-problems: The first sub-problem is given by equation
(3.1), where we search for optimal backbones that maximize both of:

— Static performance (S(b)) when no early-exit or DVFS are employed.

36

— Dynamic performance (D(x∗, f ∗ | b)) when optimal early-exit (x∗) and DVFS
(f ∗) policies are employed.

For each sampled backbone b, we need to solve a second sub-problem given by
equation (3.2), where we search for optimal early-exit and DVFS policies that
maximizes the dynamic performance (D(x, f | b)). The output of this second sub-
optimization problem are optimal early-exit (x∗) and DVFS (f ∗) policies that are
used to assess the performance in the first sub-optimization problem. Thus, the
two sub-optimization problems are highly dependedent to each other. In practice,
the underlying optimization objectives are conflicting by nature – e.g., the larger
computationally expensive models enjoy higher accuracy scores and vice versa.
Thus, the problem can be approached as a multi-objective optimization where we
seek a Pareto optimal set of solutions. For instance, in equation (3.2), a solution
(x∗, f ∗) is said to be Pareto optimal if for all the objective functions d ∈ D:

dk(x∗, f ∗) ≥dk(x, f)∀k, (x, f)
and ∃j : dj(x∗, f ∗) > dj(x, f)∀(x, f) ̸= (x∗, f ∗)

In this scheme, backbones are first assigned to non-dominated sets of solutions
(Pareto fronts) and given a Pareto rank depending on their degree of dominance.
Backbones with the same Pareto rank are further sorted according to their diver-
sity using a crowding distance [51]. That is, solutions with the highest crowding
distance receive the highest scores. The crowding distance metric computes the
disparity of candidate backbones in the objective space as shown in (3.3).

crow distance =
K∑
k=1

y(i+1),k − y(i−1),k

fmax,k − fmin,k
(3.3)

Where K is the number of objectives, y(i+1),k and y(i−1),k are the values of the k-th
objective for the objective vector immediately succeeding and preceding the i-th
objective vector, respectively, in the sorted population by the Pareto ranking. The
fitness evaluation function ψ in equation (3.4) then combines Pareto ranking and
crowding distance to assign final optimilaity scores where optimal DyNNs yield
the highest degrees of dominance and are more diverse.

ψ(S,D) = Pareto rank(S,D) × crow distance(S,D) (3.4)

3.6 Proposed Approach

Figure 3.3 illustrates the overall framework of HADAS. Principally, we adopt
nested genetic algorithms [63] to solve the bi-level optimization problem for the
co-design of dynamic neural network (DyNN) on edge platforms.

3.6.1 Outer Optimization Engine (OOE)

The OOE considers two primary tasks:

1. Searching through the design space B to identify the best backbone candi-
dates in accuracy, latency, and energy consumption.

37

Outer Optimization Engine (OOE)

Inner Optimization Engine (IOE)

Pretrained

Supernet

Backbones:B

Encode search space

Population PB

Fitness: B evaluations (Static)

NSGA-II Selection (Static)

NSGA-II Selection (Dynamic)

N
ex

t
G

en
er

a
ti

o
n

3D-Pareto (B, X, F)

B Mutation

and Crossover

Encode combined search space

NSGA-II Selection (Dynamic)

(X, F) Mutation

and Crossover

2D-Pareto (X, F)

Accuarcy Latency Energy

IOE IOE IOE

Exits: X DVFS: F

Fitness: X, F evaluations (Dynamic)

Accuarcy Latency Energy

Population PX,F

for every candidate backbone

N
ex

t
G

en
er

a
ti

o
n

Aggregate dynamic

evaluations

P’B

P’B PB

P’B

Final DyNN Model

Figure 3.3 HADAS co-optimization framework.

2. Selecting the most promising backbones for early-exit features integration
and DyNN optimization.

3. Ranking the resulting DyNNs according to their aggregate S and D eva-
luations. The following details the OOE engine regarding the typical NAS
components: search space, strategy, and fitness evaluation.

1⃝ Backbone Design Subspace B
Modern NAS frameworks employ a Once-For-All (OFA) approach, which en-

tails first training a large over-parameterized supernet on a target task, prior to
applying a search algorithm to identify the optimal subnet designs within. The
enabling factor of OFA approaches is that all of the supernet’s parameters are
shared by its subnets, effectively rendering the training and search procedures as
disjoint processes, which dramatically reduces the overall overheads within the
NAS framework [30, 220]. Furthermore, the supernet paradigm is highly flexible
towards macro- and micro-architecture settings and training approach [48]. Pri-
marily, most existing supernets have fixed macro-architecture as a succession of
neural blocks where each is a predefined set of operations (e.g., mobile inverted
residual bottleneck block [186] or transformer [57]).
From here, our framework, HADAS, is built to leverage the pretrained supernets of
existing NAS frameworks to construct the B subspace of backbones. Each viable
subnet (backbone) can be denoted as b ∈ B. Figure 3.4 details the employed

38

encoding scheme. The macro-architecture is fixed to MBConv blocks arranged se-
quentially. A search space is defined by the micro-architecture parameters set at
each block. The parametrical configurations of each block are generally encoded
into a vector of discrete variables usable by the search algorithm. The encoding
vector is referred to as genome where each variable is a gene corresponding to one
of the micro-architectural parameters. A discrete-value encoding is suited to evo-
lutionary algorithm to apply variation operations such as mutation and crossover.

Supernet block
(MBConv)

Supernet block
(MBConv)

Supernet block
(MBConv)

…

Conv 1x1

Depthwise conv

Squeeze-Excitation

Conv 1x1

D
ep

th
 (d

)
CNN Backbone Architecture

Width (w)

d w Kernel
size

Expand
ratio SE use

Supernet block genome

CNN encoding vector

…

One gene

NAS encoding into 5D-genome vector

Backbone Architecture Encoding

Figure 3.4 Backbone Neural Network Encoding

2⃝ Backbone Evolutionary Search

With B defined, the dynamic architecture search initiates in the OOE through
an evolutionary search algorithm (e.g., NSGA-II) that can navigate through B to
sample promising backbone models. Evolutionary strategy is widely used for NP-
hard optimization problems (e.g., NAS). The evolutionary search is typically set
to run within a fixed optimization budget. In our case, we run the evolutionary
search for G generations. At every generation, g, a population of backbones, Pg

B,
from which the encoded pretrained subnets can be sampled. Afterwards, ∀b ∈ P g

B,
a fitness evaluation under static conditions is performed as:

S(b) = Fit(Accb, Lb, Eb) (3.5)

Where S(b) is a vector of the static performance evaluations with regards to the ac-
curacy (Accb), latency (Lb), and energy (Eb) consumption, respectively. Estimates
for Lb and Eb are obtained based on hardware measurements, i.e a HW-in-the-loop
approaches.

Other solutions are also possible such as : lookup tables or prediction models.
We employ an HW-in-the-loop strategy because the search complexity is already
dominated by the training time of the intermediate classifiers, incuring an inevi-
table bottleneck. Thus, accelerating the HW evaluation by proxy estimations using
lookup tables or prediction models will not be beneficial and will only compromise
the accuracy of measurements.

At this stage, we remark that hardware evaluations are based on default HW
settings, leaving the DVFS optimizations for the IOE. Based on the S scores, every
b ∈ P g

B is ranked using the NSGA-II non-dominated sorting algorithm [51]. If
several backbones share the same rank, their diversity scores are used for re-ranking

39

via measurements of the crowding distance [52]. This early selection procedure

enables pruning the population to reach a smaller subset Pg′

B ⊂ Pg
B, where every

b′ ∈ P g′

B is mapped to an IOE – inner optimization engine (detailed later) to obtain
the overall dynamic neural network evaluations D(x∗, f ∗ | b′).

Once an IOE concludes its procedures, a Pareto optimal set of exits placement
and DVFS settings is returned to the OOE for every b′ ∈ P g′

B . These Pareto sets are
then collectively aggregated for a second selection algorithm that ranks backbones
based on their combined S and D scores, leading to another population subset
Pg′′

B ⊂ Pg′

B . To rank the obtained Pareto fronts from the IOE, we employ the
hypervolume measurements.

In a nutshell, the hypervolume [191] is a metric used to assess an optimizer’s
quality by taking into account the optimality, diversity, and spread of the explored
solutions. More formally, given m objective functions, the hypervolume is compu-
ted as the Lebesgue measure Λ(·) of the space that’s jointly dominated by the
objective vectors in the Pareto Front approximation set obtained by the optimi-
zer, PF ∈ Rm, and bound by a reference point Xref ∈ Rm that represents the
worst values of the objectives (in our case: accuracy, latency, and energy). The
mathematical formulation is given as follows:

H(Xref ,PF) = Λ
(⋃
x∈PF

[Acc(x), Acc(Xref)] × [L(x), L(Xref)] × [E(x), E(Xref)]
)

(3.6)

Lastly, after the second selection, Pg′′

B undergoes mutation and crossover opera-
tions to construct a new population Pg+1

B for generation g+1. A uniform mutation
is employed on the neural block level of backbones by sampling new resolution,
depth, width, kernel size, or expand ratio under a probability threshold of 0.3. The
crossover is applied by randomly picking two individuals from the Pareto set and
swapping their neural block specifications under a probability threshold of 0.8.
This outer loop cycle repeats until generation G at which the Pareto optimal set
of backbones, early exit components, and DVFS (b∗, x∗, f ∗) is returned as the final
solution.

3.6.2 Inner Optimization Engine (IOE)

The IOE is invoked for every b′ ∈ Pg′

B . Its primary responsibility is to search
through the defined X and F subspaces to identify optimal pairings (x∗, f ∗ | b′)
as follows:

1⃝ Early Exit Design X Subspace

To define the exits’ search space, we characterize the total number of exits and
their positions as search parameters. In practice, present-day backbone structures
(as those from AttentiveNAS [220]) constitute M sequential computing neural
MBConv blocks (i.e., an aggregation of interrelated layers) between which effective
placement of the exits can be realized. We illustrate this in Figure 3.5 through
how the X subspace is conditioned on a b ∈ B. Specifically, we define a vector of
indicators [I1, I2, ..., IM−1] where Ii ∈ {0, 1} to indicate whether exit branch at
position i is sampled for the corresponding instance. Regarding the composition
of exit branches, we fix a simple structure across all potential exit positions for

40

nth

Input
Block 1 Block 2 Block 3 Block 4

Exit

1

B subspace: optimizing NN design for every computing block along the primary path

X subspace:

potential exits

placement

conditioned
on b B

Exit

4

Exit

3

Exit

2

LKD LNLL

I1 I2 I3 I4Indicators
Classifiers

Figure 3.5 The combined B and X search spaces

three reasons:

— (i) Re-usability as such a straightforward structure can act as a base module
compatible with numerous backbone model architectures and classes.

— (ii) The smaller search space size of the exits leads to smaller search ove-
rheads – especially relevant when considering the additional subspaces.

— (iii) Minimizing the training costs of the exits

For our experiments, the exit structure constituted a single sequential computing
block of convolutional, batch normalization, and activation layers, which are follo-
wed by a final classifier layer. The input features of the exit block are variable and
depend on the backbone design and early exit placement. In a typical CNN, early
neural blocks extract fewer features than the last ones. Remarkably, the many
output features extracted in the last layers result in accurate early classifications
while incurring high latency and energy consumption. Thus, the objective of the
joint optimization is to perform an effective search to identify the best tradeoff
given the design constraints of DyNNs.

2⃝ Early-exit Branches Training

Once a b′ is mapped to the IOE, every x ∈ X needs to be trained for a fair
evaluation of the exit candidates. In this scheme, the weight parameters of b′

are kept frozen independent of the exits’ training procedure, where the rationale
here is to avoid negatively influencing the performance of b′ with regards to its
static accuracy score (i.e., the backbone accuracy) – which can occur when the
weights are optimized for more than one objective [216]. Combining this notion
with the compact structure of the exits, the exits’ training overheads can be kept
to a minimum within the IOE, all while leveraging the representational power
of b′ across its various stages to attain the desired resource efficiency gains. We
assume that the neural blocks within b′ are already well trained, and we adapt the
intermediate classifiers to leverage -to the most extent- the extracted features at
different levels of b′.

To effectively and fairly train the exit blocks (i.e., intermediate classifiers), we
adopt a knowledge distillation approach [76]. Naturally, exit blocks placed at the
last neural blocks of b′ would benefit from the maturity of the extracted features
and thus correctly classify images of different degrees of complexity. Notably, these
last classifiers can also serve as teachers to earlier exit blocks student for a better

41

training convergence [174, 247]. For the training loss function itself, we adopt a
hybrid loss function (Ltotal) combining (i) the Negative log-likelihood [248] as a
classification loss (noted as LNLL) to learn from the ground-truth data and (i) the
Kullback–Leibler divergence [172] as a knowledge distillation loss (noted as LKD)
to learn from teacher exit blocks. The loss function to train simultaneously every
x ∈ X is given as follows:

L = 1
N

N∑
n=1

[1
M -1

M−1∑
m=1

(LNLL(yn, ŷm,n) + LKD(ŷm,n, ŷM,n)] (3.7)

Where N is the total number of training samples and M − 1 is the total sampled
number of exit blocks. For the LNLL term, it aggregates the losses from every exit
at m when comparing its predicted outputs, ŷm,n, against the ground truth labels,
yn, for every sample n. Whereas the LKD term aggregates the losses from compa-
ring the error between every ŷm,n and that of the final model classifier, ŷM,n. We
illustrate how these loss components are defined in Figure 3.5, and refer readers
to [174] for more details.

3⃝ DVFS F Subspace

The hardware search space entails the DVFS configurations for enhancing the
DyNN’s resource efficiency from the HW’s perspective. Given how different compu-
tational workloads utilize the underlying hardware components differently, DyNN
design candidates can attain maximal resource efficiency at different DVFS settings.
In practice, edge devices constitute heterogeneous computing units that support
DVFS features. Thus, depending on the underlying hardware, the operational fre-
quencies of CPU, GPU, and External Memory Controllers (EMC) can be used to
construct F . To elaborate more, depending on the backbone design ”b” and exit
block placement ”x”, compute-bound DyNNs workloads may benefit from high
clock frequency on the main compute unit (CPU/GPU) while lowering the clock
frequency of the EMC. The same logic can be applied to memory-bound DyNNs
workloads by lowering the clock frequency on the compute units. Thus, careful
tuning of DVFS settings can further enhance the energy efficiency of the overall
DyNN inference while sustaining an acceptable latency.

4⃝ Early Exit and DVFS Evolutionary Search

Similar to the OOE, an IOE also performs an evolutionary NSGA-II algorithm
to navigate the combined search spaces of X and F . We note that the IOE is
executed for a fixed backbone b selected by the OOE. The reason for choosing
NSGA-II at this stage is the complexity of the combined design space of X and
F . More specifically, the complexity of F depends on the targeted hardware ar-
chitecture, which is fixed a priori for the OOE and IOE. However, the complexity
of X varies according to the depth of b, which depends on the selected backbone
by the OOE.

As the number of possible exits is a decision variable, the vector encoding the
exit positions is dynamic. The combination of DVFS comprises the operating clock
frequencies of CPU, GPU, and EMC. We also adopt a value-encoding scheme to
represent the combinations of X and F as one encoding vector to be used by

42

the search algorithm. Following the logic of the evolutionary algorithm, with each
generation, a population PX ,F is generated from the combined subspaces’ encoding
and provided for the dynamic fitness evaluation:

D(x, f | b′) = 1∑M -1
i=1 Ii

M -1∑
i=1

Ii · [scorei] (3.8)

s.t. scorei = Ni ∗ Exi,f

Eb
∗ Lxi,f

Lb
∗ (dissimi)γ (3.9)

where equation (3.8) reflects the mean dynamic performance score of a sampled
dynamic model (x, f | b′) through averaging scores for every sampled exit (recall
Ii ∈ {0, 1}). An exit’s score is given by scorei in equation (3.9), which constitutes:

Ni, the fraction of samples that can be correctly classified at exit i ;
Exi,f

Eb
, as

the normalized dynamic energy at exit xi and DVFS settings f relative to the

backbone energy consumption ;
Lxi,f

Lb
is similarly the normalized dynamic latency

term. (dissimi)γ is a regularization term with a trade-off parameter γ measuring
the dissimilarity of exit xi and its preceding ones as:

dissimi = 1 − max (N0:i−1) (3.10)

where xi’s score is regularized in proportion to the fraction of samples that can
be already classified by its preceding exits. The rationale behind this metric is to:
(i) avoid sampling exits of similar performance characterizations and (ii) realize
a compact decision space for the DyNN when deployed to minimize the overhead
of the runtime controller when choosing the optimal exit point for a given input
image.

Based on the D scores, every (x, f | b′) ∈ PX ,F is also ranked using the NSGA-
II non-dominated sorting algorithm [52] so as to realize subset P ′

X ,F ⊂ PX ,F that
would then undergo mutation and crossover for the following generation. A uni-
form mutation is employed by sampling a new number of exits, exit positions, or
DVFS settings under a probability threshold of 0.3. The crossover is applied by
randomly picking two encoding vectors from the Pareto set and swapping their
exit positions or clock frequencies under a probability threshold of 0.8. This loop
cycle continues until the final generation, where a 2-D Pareto optimal set (x∗,
f ∗ | b′) is returned to resume the OOE.

3.6.3 Runtime Controller

When a DyNN design is chosen for the final deployment, a runtime controller
must be implemented to provide the effective input-to-exit mapping policies needed
for dynamic inference. For HADAS, we consider an ideal mapping of inputs to
exit branches. Where every input is mapped to the first exit module xi that can
classify it correctly. We use this mapping policy to compute the score of each exit
in eq. (3.9), based on Ni – the true fraction of correctly classified samples. Models
from HADAS are also compatible with any class of runtime controllers existing
in the literature (e.g., entropy-based [169, 216] or reinforcement learning methods
[246]). We refer the reader to this survey paper for more information about existing
dynamic runtime controllers [82].

43

Table 3.2 Details on HADAS joint search spaces in our experiments

Decision variables Values Cardinality

Backbone Search Space (B)

Number of blocks (n block) 7 1
Input resolution (res) {192, 224, 256, 288} 4
Block depth (l) {1, 2, 3, 4, 5, 6, 7, 8} 8
Block width (w) [16, 1984] 16
Block kernel size (k) {3, 5} 2
Block expand ratio (er) {1, 4, 5, 6} 4

Exits Search Space (X)

Number of exits (nX) [1, (
∑nb

i=1 li) − 5] max(nX)

Exit positions (posX) [5,
∑nb

i=1 li)]
(

nx∑nb

i=1
li)

)
DVFS Search Space (F)

GPU frequency (AGX Volta GPU) [0.1GHz, 1.4GHz] 14
CPU frequency (Carmel ARM v8.2 CPU) [0.1GHz, 2.3GHz] 29
GPU frequency (TX2 Pascal GPU) [0.1GHz, 1.4GHz] 13
CPU frequency (NVIDIA Denver CPU) [0.3GHz, 2.1GHz] 12
EMC frequency (AGX SoC) [0.2GHz, 2.1GHz] 9
EMC frequency (TX2 SoC) [0.2GHz, 1.8GHz] 11

3.7 Evaluation Methodology

In this section, we provide a comprehensive evaluation of our methodology. We
first detail the experimental setup and then discuss and obtained results.

3.7.1 Experimental Setup

We implement HADAS on top of the AttentiveNAS framework [220]. To construct
B, we reuse their search space, which contains more than 2.94 × 1011 neural net-
works generated by scaling different dimensions such as input resolution, depth,
and width as detailed in Table 3.2. Our experiments are conducted on the CIFAR-
100 dataset, where the pretrained supernet of AttentiveNAS has been fine-tuned
accordingly. Backbones and baselines are all sampled from the same fine-tuned
supernet. We dynamically generate the exits’ search space X according to the
supported depth (l) of the backbones in B. In our case, potential exit positions
occur at a layer-wise granularity starting from the fifth (5th) layer to the backbo-
nes’ last layer (For AttentiveNAS [220], potential exit positions are set after their
“MBConv” layers).

We evaluate our approach on four (04) different HW configurations from NVI-
DIA edge devices: a) AGX Volta GPU , b) Carmel ARM v8.2 CPU , c) TX2 Pascal

GPU , and d) NVIDIA Denver CPU . For each hardware setting, we leverage the sup-
ported DVFS and variations of operating clock frequencies to generate F subspace
as detailed in Table 3.2. Regarding the optimization process, we fix a budget of
450 iterations for the OOE and 3500 iterations for the IOE, where #iterations =
G × P . We use a cluster of 32 GPUs to train the exits for every sampled backbone,
taking up to ∼ 8-10 GPU hours for each G. In our experiments, we used an HW-
in-the-loop setup for latency and energy measurements, which pushed the overall
search time of HADAS to ∼2-3 GPU days. Nevertheless, based on our analysis,

44

HADAS’s search overhead can be reduced to 1 GPU day if a proxy setup repla-
ced the HW-in-the-loop, such as a surrogate prediction model [198] or zero-shot
learning [92]

3.7.2 Co-optimization Results

In this section, we provide more details on the obtained results of our HADAS
framework. In the following, we discus the results regarding the co-optimization
efficiency and DyNN models optimality.

51.9%
RoD

IOE

OOE

AGX Volta GPU

OOE OOE

37.5%
RoD

IOE
82.4%
RoD

IOE

Carmel ARM v8.2 TX2 Pascal GPU

62.1%
RoD

IOE
OOE

NVIDIA Denver CPU

Figure 3.6 The results of the OOE and IOE on 4 hardware settings of (from left
to right): a) AGX Volta GPU, b) Carmel ARM v8.2 CPU, c) TX2 Pascal GPU, and
d) NVIDIA Denver CPU. The points in the ’OOE’ depict the static performance of
the explored backbones in (B) by the OOE, without early-exit or DVFS. The points
in the ’IOE’ represent the performance of the explored combinations of backbones,
early-exits, and DVFS in (B,X ,F) by the IOE.

45

1⃝ OOE Results Analysis:

The top row of Figure 3.6 compares the static performance results from the
OOE of HADAS against those of the top models from AttentiveNAS [220] (denoted
as [a0-a6]). After a fine-tuning step of the supernet provided by AttentiveNAS
[220], we notice that the accuracy ranking across subnets is preserved. That is the
reported accuracy values of the baselines ([a0-a6]) are positively correlated to the
values we found on the CIAFR100 datasets. The rationality behind this is twofold:

— (i) Pretrained supernets on the largest classification dataset (i.e., ImageNet-
1k) are capable of learning optimal representations on smaller datasets too
(e.g., CIFAR100) [109].

— (ii) The supernet design provided by AttentiveNAS [220] and the adopted
knowledge distillation training approach [219] and Sandwich sampling rule
[253] help in preserving the ranking of subnets during the fine-tuning process.
Thus, we pick the top-performing baselines of AttentiveNAS on ImageNet-1k
(i.e., [a0-a6]) for comparison on the CIFAR100 dataset.

On the hardware side, we note that the latency and energy values are reported
under a MAXN DVFS settings in which the operating clock frequencies on all the
hardware components are set to the maximum supported value.

Figure 3.6 shows that our obtained Pareto fronts (PF) generally dominate the
baselines on the four hardware settings. Furthermore, HADAS can identify com-
parable backbones to the baselines with just a few evaluations. For instance, on
the AGX Volta GPU, a6 is dominated by another backbone from HADAS with
an energy reduction of ∼ 33% under the same accuracy level. Similarly, a1 is
dominated by another backbone from HADAS with an accuracy improvement of
∼ 2.34% under the same energy gain. More interestingly, The obtained Pareto
fronts differ from one hardware setting to another, further emphasizing the im-
portance of performing a hardware-agnostic neural architecture search to design
backbone networks.

2⃝ IOE Results Analysis:

The results of the IOE are shown in the bottom row of Figure 3.6. The results of
HADAS depict the outputs of the IOE when executed for various backbone designs
sampled by the OOE. The results of the baselines are the combined outputs of
IOE executed independently on the seven (07) baselines from AttentiveNAS [220].
For a fair comparison, we fix the same optimization budget when running the IOE
for the baselines and HADAS. The dynamic performance of the explored (b, x, f)
combinations and the obtained Pareto fronts are given for both approaches, where
the dynamic comparison metrics are the energy efficiency gains when early exiting
and DVFS are supported, as well as the average of Ni values from equation (3.9).

Across the four (04) hardware settings, HADAS seemingly dominates the ma-
jority of the optimized baselines with an average ratio of dominance ∼ 58.4%
(detailed in the following paragraph). This can be attributed to HADAS’s better
understanding of the global search space, where it samples backbones that are
more poised to benefit from the IOE optimizations with regard to early exiting
and DVFS. This is also evident through how HADAS can sample dynamic parame-
ters for its models that can realize substantial energy or accuracy gains near the
extremes of its Pareto frontier, which are not realizable by the optimized baselines.

46

For instance on the Caramel ARM v8.2 CPU, energy gains reach ∼ 63% for one
of the extreme dynamic models on the Pareto frontier of HADAS, compared to
∼ 52% for the extreme dynamic variant from the optimized baselines, under the
same level of accuracy.

15%

23%

16%

11%

73%
50%

95%
44%

Figure 3.7 Comparing search efficacy for HADAS and the optimized baselines with
regards to: a) hypervolume (left) and b) ratio of dominance (right)

3⃝ Hypervolume (HV) and Ratio of Dominance (RoD):

We expand further on the IOE analysis and leverage hypervolume (HV) and
ratio of dominance (RoD) as comparative evaluation metrics. The former metric
measures the volume of the dominated portion of the objective space based on
a reference point that depicts the worst performance values (See equation (3.6)),
whereas the latter measures the percentage of solutions found by HADAS that
dominate the optimized baselines (and vice-versa). Figure 3.7 shows that HA-
DAS consistently outperforms the optimized baselines with regard to both metrics
across the four (04) hardware platforms. Taking the Pascal GPU as an example,
we find that the HV coverage and RoD are 16% and 95% more for HADAS over
the optimized baselines, respectively. We also remark that the coverage of the Pa-
reto front is not necessarily correlated to the quality of the solutions. For instance,
the PF on the TX2 Pascal GPU has few options that completely dominate the
baselines and still cover the two extremes of the baseline Pareto front, thus de-
picting comparable hypervolume results to the baselines while dominating ∼ 95%
of them. The opposite can also be observed on the ARM v.2 CPU in which the
PF has higher coverage than the baselines (∼ 23%) while only dominating ∼ 50%
of them. Hence, when analyzing the results of a multi-objective optimization, it’s
worth reporting different metrics to better understand the observed results.

4⃝ DyNN Models Comparison:

In Table 3.3, we compare the top DyNNs obtained by HADAS with two Atten-
tiveNAS models: a0, the most energy-efficient baseline, and a6, the most accurate
baseline. Models are compared with regards to their static (i.e., baseline accuracy
and energy) and their dynamic performances (i.e., accuracy and energy with early
exiting and DVFS). As shown, the optimal models from HADAS outperform the
baselines of AttentiveNAS in both static and dynamic evaluations. For instance,
b1 from HADAS is 57% and 19% more energy-efficient than the a6 and a0, res-
pectively, while enjoying similar accuracy scores like the most accurate model a6.

47

Table 3.3 DyNNs Comparison on the TX2 Pascal GPU

Model
Baseline
Acc(%)

EEx
Acc(%)

Baseline
Ergy(mJ)

EEx
Ergy(mJ)

EEx DVFS
Ergy(mJ)

AttentiveNAS a0 86.33 89.95 173.78 119.83 116.14
AttentiveNAS a6 88.23 93.02 335.48 256.80 218.34

HADAS b1 87.34 93.16 212.44 119.84 93.78
HADAS b2 88.06 91.83 341.3 187.92 126.06
HADAS b3 86.54 88.31 205.48 130.20 86.84
HADAS b4 88.40 89.24 358.01 232.77 201.01

3.7.3 Dissimilarity Ablation Study

We perform an ablation study to investigate the impact of the dissimilarity
term (dissimγ) in equation (3.9) through the performance of the explored models
under each case. Specifically, we run the IOE for one backbone twice, with dissimγ

not included and one when it is included. In Figure 3.8, we compare the results
obtained with and without the dissimilarity with different values of γ. As shown,
including the dissimilarity term allows the optimization algorithm to focus more on
exploring dissimilar early exits with a high contribution to the prediction accuracy.
For instance, in the right of Figure 3.8, we find that including dissimilarity improves
RoD by ∼41%. Moreover, the extreme Pareto models with dissimilarity are ∼43%
and ∼52% more accurate and energy efficient than those without dissimilarity.

15% RoD
improvement

41% RoD
improvement

52%

43%

Figure 3.8 Inner optimization improvement by regularizing the exits scores with
the dissimilarity function (dissim)γ over two ranges of γ values

3.8 Summary

Real-world data are characterized by high entropy ranging from easy to com-
plex data samples. Given the intricate nature of neural networks, complex data
samples require processing through many neural operations to extract meaningful
features to predict the output results. On the other hand, easy data samples do
not require many neural operations, and their outputs can be predicted with low

48

reasoning and effort. This adaptability to the input data complexity can be trans-
lated into an early-exit dynamic neural network (DyNN) where computations can
be terminated once the output result can be correctly predicted.

In this chapter, we have shown how critical the design of such networks is as
it involves many levels of design parameters:

1. First, we emphasize the importance of the backbone NN design as it pri-
marily extracts the coarse and fine-grained features from the input data.
We thus conduct a design exploration for the backbone to find tailor-made
networks for early-exit DyNN.

2. Second, We extend existing search spaces for early-exit branches such as the
one introduced in [166] by making the number and placement of interme-
diate classifiers fully searchable. We propose a new loss function to train the
intermediate classifiers in a once-for-all fashion using knowledge distillation
and dissimilarity metric to select a subset of exits with high dissimilarity to
minimize the early-exit decision at runtime.

3. Third, we incorporate the dynamicity on the hardware level through scaling
clock frequencies via DVFS that can serve as a means to balance latency
energy of the DyNN inference or to emulate the availability of computing
resources where low frequencies depict less available computational resources
and vice-versa.

We believe that our proposed framework, HADAS, is versatile and compatible
with any backbone network search, early-exit paradigm, or edge hardware device,
as we make our optimization engines less dependent on the input specifications
while serving the said purpose. Through HADAS, large agile models can be realized
with energy efficiency similar to compact models. We have shown that HADAS
DyNNs can achieve up to 57% energy gains while retaining desired accuracy levels.
Future works can investigate the generality and flexibility of HADAS with respect
to other strategies of dynamic inference. For instance, width-based early-exit [22],
computation skipping, and dynamic routing [82]. Furthermore, our framework can
also be generalized to other hardware architectures (e.g., FPGA) that provide
more freedom regarding reconfigurability.

49

Chapitre 4

MaGNAS: A Mapping-aware Graph Neural Architecture Search
Framework for Heterogeneous MPSoC Deployment

4.1 Introduction

Due to their inherent capacity to learn meaningful feature representations from
non-Euclidean graph-structured data, the employment of Graph Neural Networks
(GNNs) has extended beyond typical graph learning applications, e.g., molecular
inference and social networks [232], to encompass the field of computer vision.

By transforming an image structured as a regular grid of pixels into a graph,
irregular and complex objects can be better captured by the more flexible graph-
level features generated throughout the model architecture, as shown in Figure
4.1. Recent works using GNNs to operate on this generalized form of image data
have demonstrated remarkable successes across a variety of visual tasks, e.g., object
detection and image classification [81, 224, 241, 242]. The application of GNNs has
been further studied for more nuanced visual-based tasks in critical application
settings, such as collision prediction in self-driving vehicles [256, 147].

Graph Neural Network (GNN)

Aggregation CombinationGraph

Output

Classification
Embedding
Detection
Link Prediction
….

Input Graph

Figure 4.1 An Overview on Graph Neural Netwworks (GNN)

Recent advances have seen a proliferation in heterogeneous Multi-Processor
System-on-Chips (MPSoCs) architectures that can balance the low-latency and
energy efficiency requirements of compute-intensive workloads. Commercial MP-
SoC platforms from Nvidia Jetson series [162, 160, 163] and Tesla FSD [211] have
successfully integrated a variety of proven hardware computing units (CUs) and
industrial Intellectual Properties (IP)s on a single chip. For instance, NVIDIA Jet-
son AGX Xavier [162] comprises latency-efficient GPU and energy-efficient Deep
Learning Accelerator (DLA) within the same die and sharing the same system me-
mory. Other platforms, such as Xilinx Versal FPGA [66], enable even more flexi-
bility in MPSoC solution development by supporting customized hardware design
choices. Through such advanced platforms, deep learning-based vision modules

50

can be run effectively in an edge computing setting to meet stringent application
requirements such as object detection for autonomous driving [131]. By extension,
any consideration for applying GNNs in these vision modules under the embedded
deployment setting must ensure that the execution constraints are still satisfied.

However, this objective is challenging, considering the discrepancy between the
GNN workloads and the underlying hardware in heterogeneous MPSoC. Contrary
to dense, regular workloads of typical DNNs, GNNs are characterized by an irre-
gular, multiphase sparse-dense computational flow [70]. Notably, this irregularity
emanates from the repeated sequence of Aggregation and Combination phases.
The former employs a message-passing algorithm for feature exchange between
graph vertices, exhibiting sparse kernels with random memory access patterns.
The latter constitutes typical Multi-Layer Perceptron (MLP) layer(s) for feature
transformation, exhibiting dense kernels and regular access patterns. As such, the
complication arises as neither the architecture of typical CUs (e.g., GPU) nor
that of conventional accelerators (e.g., DLA) is designed to efficiently support this
unique execution sequence.

A plenty of research works have dedicated efforts to design customized GNN
accelerators that can support the multi-phased computational flow [36, 250, 205,
240, 10, 108]. Generally, the approach entailed a hybrid architecture comprising
specialized computing engines to accelerate each of the two phases separately. Un-
fortunately, these designs are not flexible enough to be consolidated into standard
MPSoCs. On the one hand, this is attributed to GNNs belonging to a rapidly
evolving field in which highly specialized accelerators may not support new emer-
ging GNN operations and models. On the other hand, physical restrictions and
low-power requirements of critical embedded computing platforms at the edge
restrict the integration of new specialized hardware CUs onto existing MPSoC to
the components that best serve the desired target applications. To address these
challenges, another research direction involves investigating what optimization op-
portunities exist – on both the hardware and algorithmic levels – to alleviate the
deficiencies of GNNs’ computational flow when deployed on conventional CUs.

Researchers in [70] have assumed this perspective by characterizing the design
space of dataflow choices for running GNNs on conventional re-configurable spatial
accelerators, where they studied the costs and benefits of adopting various data-
flows for GNNs. In that same spirit, we also believe there are ample optimization
opportunities through characterizing the combined design space of SoC mapping
options and GNN architectural parameters together.

In the context of GNNs for vision applications, two considerations motivate
this hypothesis:

1. Heterogeneous MPSoCs naturally offer pipelining parallelism opportunities,
presenting options to run GNN kernels of diverse characteristics on different
CUs to potentially yield better performance benefits.

2. The recently proposed VisionGNN (ViG) architecture [81] proposes to trans-
form an image frame into a graph by dividing it into equally-sized patches
and constructing a graph out of them to be processed by the model. As will
be detailed later, the key advantage of this scheme is that it enables levera-
ging graph-level features while maintaining a consistent, dense structure for
any graphed image throughout the GNN model, which is more amenable to
CUs than sparse graphs of inconstant dimensions.

51

Addressing the aforementioned challenges, we propose, MaGNAS, a new end-
to-end SW/HW co-optimization framework for vision GNNs on heterogeneous
MPSoCs. MaGNAS introduces a unique design space for vision GNNs, crafted by
altering graph operations like aggregation and combination, and presents a detai-
led system model for efficiently mapping GNN workloads on MPSoCs. Through
hierarchical design space exploration, MaGNAS jointly optimizes GNN design with
their workload mappings on the heterogeneous computing units of the MPSoC.
We validate our proposed framework on various datasets for image recognition
and hardware settings. Evaluation results have demonstrated the effectiveness of
our approach by providing ∼1.57× latency speedup, ∼3.38× energy efficiency for
several vision datasets executed on the Xavier MPSoC vs. the GPU-only deploy-
ment while sustaining an average 0.11% accuracy reduction from the baseline ViG
models [81]. Contributions and results of this chapter have been published in:

— [165] Mohanad Odema*, Halima Bouzidi*, Hamza Ouarnoughi, Smail Niar,
Mohammad Al Faruque. MaGNAS: A Mapping-Aware Graph Neural Ar-
chitecture Search Framework for Heterogeneous MPSoC Deployment. ACM
Trans. Embed. Comput. Syst. 22, 5s, Article 108 (October 2023), Special
Issue: CASES Conference at ESWEEK 2023.

4.2 Related Works

4.2.1 GNNs for Computer Vision

Through learning graph-level features, GNNs achieved remarkable performance
on a variety of computer vision tasks, such as activity recognition [241] and point
clouds classification [118, 224]. Traditionally, the success of GCNs in computer
vision applications relied on the graph construction technique, which in many cases
is tailored to suit the input data semantics and downstream task. Scene graph
generation [147, 235, 256] emerged as a viable approach to generate a graph of
objects and their relations from an image through cascading an object detector and
a GCN model. The ViG [81], a generic architecture upon which our framework is
constructed, represents a standard GCN backbone to generate and process graphs
from raw images to serve general computer vision applications.

4.2.2 Hardware Acceleration for GNNs

The two phases of GNN Aggregation and Combination favor different classes
of hardware accelerators:

1. GNN acceleration favors MIMD architectures to address the irregularity of
graph operations by providing high random access memory bandwidth and
small data access sizes.

2. DNN acceleration is achieved through SIMD architectures for exploiting data
locality through caches or local scratchpads. Numerous works [240, 10, 250,
205, 36, 108] have proposed hybrid accelerator architectures comprising sepa-
rate engines and specialized hardware components to effectively manage the
non-uniform GNN dataflow on both an intra- and inter-phase level. However,
such proposed accelerator designs are acutely specialized ASICs, complica-
ting their integration into numerous hardware platforms and MPSoCs.

52

3. Since GNNs are becoming increasingly popular, recent research efforts [70]
have directed their approach towards characterizing the design space of da-
taflow for GNNs on reconfigurable spatial accelerators to identify convenient
dataflows for various GNN use cases.

The philosophy behind our method follows the latter trend. However, it is
complementary to both approaches since it abstracts the underlying accelerator
architecture and adds another layer of design space exploration to characterize
joint search space of GNN architectures and the inter-phase pipelining across he-
terogeneous computing components in an MPSoC.

4.2.3 Distributed Computing of GNNs

Distributing DNN workloads across the heterogeneous computing resources of
CPU, GPU, DLAs, and FPGAs, is an active field of research [49, 22, 176, 107, 239].
Researchers have recently explored how to distribute GNN workloads to enhance
performance by exploiting the underlying heterogeneous hardware composition
via task-level, data-level, and pipelining forms of parallelism [37]. For instance,
the work in [260] proposed to decouple GNNs onto CPU-FPGA heterogeneous
platform to speedup GNN inference.

4.2.4 Graph Neural Architecture Search

Recent research works investigated how to leverage the power of Neural Ar-
chitecture Search to automate the design process of GNNs. Earlier works adopted
search approaches like Reinforcement Learning [68, 67, 268] or Evolutionary algo-
rithms [195]. The work in [251] further proposed a generalized GNNs’ design space
with a knowledge distillation method from GNN model-task pairs. However, these
approaches mostly fall under the training-in-the-loop NAS category. Furthermore,
limited or no awareness of the underlying hardware computing platform capabi-
lities was taken. More recent works in [262, 267] proposed to move towards the
once-for-all approach [30], which employs a supernet that characterizes the search
space of the GNN architectures. Specifically, the training of the supernet can be
conducted only once by leveraging the property of weight-sharing.

Table 4.1 Comparison between related Graph NAS works and ours.

Graph NAS work [68] [67] [268] [195] [262] [267] MaGNAS (ours)

Training-in-the-loop NAS ✓ ✓ ✓ ✓
Once-for-all NAS ✓ ✓ ✓
Vision GNN ✓
Hardware Awareness ✓ ✓ ✓
GNN-Hardware co-design ✓
Edge Computing Setting ✓ ✓
Distributed Mapping ✓

On the hardware side, [262] adopts a co-design NAS approach for GNN and
hardware accelerator, whereas [267] optimizes the GNN design to suit underlying
edge computing platforms. Our work falls under the same category of HW-aware
NAS for GNNs as these two. However, several features distinguish this work from
others: (i) Our supernet is designed to consider the emerging class of vision-based

53

GNNs (ViGs) ; (ii) Support for evaluating candidate ViG subnets during the search
process based on their best mapping options that leverage pipelining parallelism
across diverse computing units within the MPSoC edge platform ; (iii) Our two-
tier search algorithm implementation allows the inner optimization engine to be
extensible to other MPSoCs and GNN supernets serving other tasks. We summa-
rize the key differences in Table 4.1.

4.3 Motivational Example

In Figure 4.2, we showcase the potential performance trade-offs as offered by
the architectural and mapping optimization spaces for a vision GNN model when
deployed onto a heterogeneous MPSoC. In this example, the backbone GNN ar-
chitecture is the ViG-Small (ViG-S) from [81], the target platform is the NVIDIA
Xavier AGX MPSoC, and the models are trained on the Oxford-Flowers image
dataset. We choose the ViG-S variant from [81] as it provides the optimal compro-
mise between accuracy and efficiency for edge devices. Given the fact that the ViG
belongs to the Graph Convolutional Network (GCN) class of GNNs, we construct
three (03) additional variants of the baseline ViG-S with different GCN operators.
Specifically, the original ViG architecture employs the Max-Relative Graph Conv
(MRConv) graph operation throughout all the model, whereas the variants employ
other GCN layer types, namely EdgeConv, GIN, and GraphSage. By using different
variants, we aim to showcase how varying the graph operations would impact the
accuracy-efficiency balance. After training the ViG variants, we characterize their
accuracy, latency, and energy consumption scores relative to the original MRConv
ViG variant when deployed onto the NVIDIA platform.

In the left Figure, we can observe some performance trade-offs from varying
this singular GNN architectural setting, i.e., the GCN layer operator. For instance,
the EdgeConv ViG variant can achieve slightly higher accuracy (0.69% more) than
the MRConv one at the expense of a considerable increase in latency and energy
consumption. Contrarily, the GIN operation is 6.6% more energy-efficient than MR-

Conv at the expense of a 3.7% decrease in accuracy. Though there is no clear
dominance for one variant over the other, this analysis sheds light on the potential
performance trade-off gains from optimizing the architectural design parameters.
These gains can be further compounded when considered alongside feasible deploy-
ment options. In these first experiments, only the GPU component of the MPSoC
was used as the target deployment hardware.

In the right Figure, we showcase how additional performance trade-offs are
attained considering the various deployment options for the ViG variants on the
MPSoC. In this example, the considered options are standalone deployment on
either the GPU or DLA components or distributed deployment across the two.
We remark that the distributed deployment options follow the mapping strategies
for GNN processing workloads provided by our optimization engine, which is de-
tailed in a later section. From the Figure, the straightforward observation is that
for every ViG architecture, standalone GPU deployment is the option with the
fastest execution speeds, standalone DLA deployment is the most energy-efficient
alternative, and the distributed option compromises between the two. However,
a more interesting perspective can be taken when considering a broader design
problem. That is, combining the GNN architectural and mapping optimizations to

54

Less efficient

More accurate

6.6%
3.7%

Less accurate

More efficient

Dist. trade-offs

energy and

latency

39%

33.8%

14%

28.1%

Comparable energy gains

for less latency costs

Figure 4.2 Comparing ViG model variants [81] with different graph learning ope-
rators when trained on the Oxford-Flowers dataset and deployed onto the NVIDIA
Jetson AGX Xavier MPSoC. All values are normalized by the baseline performance
evaluations incurred by the original ViG with MRConv layers when fully deployed
onto the GPU only. The left figure shows how performance characteristics differ
from one variant to the other regarding accuracy, latency, and energy consump-
tion. The right figure illustrates how distributed mapping strategies across the
GPU and DLA can yield different latency-energy trade-offs.

achieve better performance trade-offs. For instance, assume a designer’s primary
objective is to improve the ViG’s energy efficiency while incurring minimal execu-
tion slowdown. From a pure resource efficiency perspective, a distributed mapping
strategy for the GIN architectural variant can be more beneficial than directly dis-
tributing the original MRConv ViG workloads since the former achieves comparable
energy efficiency gains to those of the latter (28.1% to 33.8%) at the expense of
reduced latency costs (14% to 39%). Still, the caveat remains that the GIN va-
riant is less accurate than the original ViG, and the question becomes how can
we better characterize this combined architecture-mapping design space to attain
better performance trade-offs for vision GNNs given the target task and MPSoC
platform.

4.4 Novel Scientific Contributions

In light of the above challenges, we list the key contributions of this chapter:

— We study how vision GNN (ViG) can leverage distributed deployment across
multiple CUs when deployed onto heterogeneous MPSoCs.

— We present MaGNAS, a Mapping-aware Graph Neural Architecture Search
Framework for co-optimizing the design of vision GNN (ViG) and their map-
pings on Heterogeneous Multi-Processor Systems on a Chips (MPSoC).

— MaGNAS first contributes a self-contained framework for designing ViG su-
pernets to characterize their search space of GNN-based architectural design
choices.

— We derive a system model that characterizes the distributed deployment of
GNNs onto Heterogeneous MPSoC and the incurred performance overheads.

— To identify optimal ViG model-mapping pairs, MaGNAS solves a bilevel op-
timization problem via a two-tier evolutionary search algorithm of two op-
timization engines: an outer engine to optimize GNN model design choices ;

55

an inner engine to identify optimal mapping for ViG workloads onto hete-
rogeneous CUs.

— We conduct extensive experiments, in-depth analysis, and ablation studies
on MaGNAS using a real MPSoC platform and hardware simulator on four
(04) state-of-the-art vision datasets. Our findings have demonstrated the
superiority of MaGNAS in designing and mapping ViG architectures onto
heterogeneous CUs and its effective scaling capabilities on increasing levels
of problem complexity. On the Nvidia Xavier MPSoC, MaGNAS provided on
average 1.57× latency speedup and 3.38× more energy gains than the GPU-
only deployment while sustaining an average 0.11% accuracy drop from the
baseline.

Graph image

Original image
𝑊 × 𝐻 × 𝐶

Patched image
N × 𝑊 ′ × 𝐻 ′ × 𝐶 ′
N: # of patches Graph Processing

Module (Grapher)

x D

CLS
Block

“Cars”

Graph Neural Network

Feature Transform
Module (FFN)

Figure 4.3 An overview of the Vision Graph Neural Network. An image is seen as
a graph of nodes. The ViG has two primary missions: (i) Capturing the contextual
dependency between the image graph nodes through the Grapher module and (ii)
Extracting the long-range features of the graph nodes through the FFN module.

4.5 Vision Graph Neural Network (ViG)

We briefly describe the main constituents of the ViG architecture [81], which
pioneered a generic approach for graph-based image processing through modeling
raw input images as graph structures.

1⃝ Graphing Image Data Structures. The ViG operates on images modeled as
graphs of patches. A W × H × C image is first partitioned into N patches of di-
mensions W ′ ×H ′ ×C ′. Each patch’s dimensions can be viewed as a single feature
vector xi ∈ RD where D = W ′ × H ′ × C ′. To construct the graph, a node vi is
assigned to each patch, forming an unordered set of N nodes V = {v1, v2, . . . , vN}
associated with the corresponding set of feature vectors X = {x1, x2, . . . , xN},
where xi can be called the feature embedding of vertex vi. To build graph edges,
K edges are constructed for each vi based on the K nearest vertices in its neigh-
borhood N (V), that is, for every vj ∈ N (V), an edge eji is constructed from vj to
vi. Finally, the full graph structure of the image is given by G(V , E), which can be
inputted into the ViG model for processing.

56

2⃝ Graph Processing Layer. Describing a graph through its features, G = G(X)
s.t. X ∈ RN×D, a typical GCN layer operation on G can be represented by the
following abstract formula:

G ′ = Combine(Aggregate(G,Wagg),Wcomb) (4.1)

where G is processed through an aggregation and a combination stages of the GCN
layer. Wagg and Wcomb resemble the respective learnable weights of each stage. The
aggregation stage employs a feature exchange procedure in which every node vi
receives features xj ∈ N (xi)s.t.i ̸= j from its neighboring nodes and aggregates
them to provide x′

i. The combination stage involves further treatment of features
x′
i (as through an MLP layer) to obtain refined representation x′′

i . We remark that
for each of the two stages, a variety of operations can be employed (e.g., aggrega-
tion through sum, max-relative, mean), which correspond to the variety of GCN
layer types existing in the literature (e.g., GraphSage, GIN, etc.). Lastly, The re-
sulting output feature set from both stages, X ′, is used to construct the output
graph G ′ = G(X ′).

3⃝ Grapher and FFNModules. To enrich feature representation, graph processing
layers can be interleaved with typical DNN layers in a GNN model. The standard
ViG architecture comprises a stack of two basic building blocks: Grapher and Feed
Forward Network (FFN) given by:

LGrapher = lpost ◦ lcomb ◦ lagg ◦ lpre, LFFN = lfc2 ◦ lfc1 (4.2)

The Grapher comprises at its core the GCN layer with its aggregation, lagg, and
combination, lcomb, operations, injected between two linear layers, namely pre-
processing, (lpre), and post-processing, lpost, layers, to promote feature diversity.
The FFN block constitutes two fully connected layers that further elevate feature
capacity, lfc1 and lfc2 . For every GCN or fully-connected layer in either module,
non-linear activation and batch normalization operations are applied. From here,
every Grapher can be followed by an optional FFN to form the ViG block, and
the sequence of ViG blocks form the ViG backbone architecture.

4.6 Problem Statement

In this section, we model the mapping problem of GNN workloads onto he-
terogeneous MPSoC. We first provide a comprehensive characterization of each
computing block involved in the GNN inference pipeline. Then, based on this cha-
racterization, we implement performance prediction models to estimate hardware-
related metrics (i.e., latency and energy) of each GNN workload. We note that
we build our performance models on a layerwise granularity. Finally, Then, we
derive a formulation for the design-mapping optimization problem. More details
are provided in the following sections.

4.6.1 System Model for Mapping GNNs onto Heterogeneous MPSoCs

In the following, we detail the system models that we adopted to characterize
the distributed computing of GNN over heterogeneous MPSoC.

57

1⃝ GNN Workload Characterization

Let a standard GNN model architecture, α, be formally described as a sequence
of n computing blocks as follows:

α = Ln ◦ Ln−1 ◦ · · · ◦ L1, s.t. Li ̸= Li−1, Li ∈ {LFFN , LGrapher},
LFFN ∈ {LFFN , ϕ} ∀1 ≤ i ≤ n (4.3)

where each GNN computing block Li can either be the Grapher or FFN blocks as
defined in the previous section, denoted by LGrapher and LFFN , respectively. The
condition ensures that each LGrapher block can be succeeded by an optional LFFN

block.

Now, let Xj be the input graph-level features for block Lj ∈ α. Then, the
output feature embedding vector, Xj+1, can be obtained as:

Xj+1 = Lj(Xj) s.t. xjk ∈ RD′ ∀ xjk ∈ Xj (4.4)

where the condition ensures that feature embedding dimensions remain consistent
at each computing block within the GNN. That is the feature embedding for xjk
(the kth node within the graph representation at the jth block) retains the same D′

dimensions before and after being processed through block Lj. This consistency
in the feature embedding dimensions is typical of GNNs as it preserves the inte-
grity of graph operations with regards to feature aggregation from farther nodes
across multiple consecutive layers and facilitates supporting residual and dense
connections [251]. Note that D′ can either be equivalent to D or a downsampled
version of it as some architectures (e.g., Pyramid in [81]) can include additional
downsampling layers in-between stacks of computing blocks to promote abstract
feature learning.

Let CU = {CU1, CU2, · · · , CUM} be the set of available computing units within
a heterogeneous MPSoC with varying degrees of support for DNN and graph
operations. Considering a blockwise granularity, we can define a mapping vector,
m, to characterize the workload distribution for each GNN computational block
as follows:

m = [π1, π2, · · · , πn], s.t. πi ∈ CU ∀ 1 ≤ i ≤ n | support(πi, Li) == True (4.5)

where each entry πi in CU describes the mapping assignment of Li onto a compu-
ting unit CUm ∈ CU as long as this corresponding CUm supports running Li.

2⃝ Performance Modeling

For a mapping strategy m, the total latency and energy consumption ove-
rheads, Ttotal and Etotal, experienced by a GNN model when deployed in a distri-
buted, pipelined fashion can be modeled as the sum of the overheads incurred by

58

its individual blocks:

Ttotal(m) =
n∑
i=1

Ti(m), s.t. Ti(m) = τ compi + I[πi−1 ̸= πi] · τ ini + I[πi ̸= πi+1] · τ outi

(4.6)

Etotal(m) =
n∑
i=1

Ei(m), s.t. Ei(m) = ecompi + I[πi−1 ̸= πi] · eini + I[πi ̸= πi+1] · eouti

(4.7)

where the τ compi and ecompi are the respective computational latency and energy
consumption experienced by Li given its corresponding mapping, πi. τ

in
i , τ outi and

eini , eouti , are the latency and energy overheads sustained when loading and wri-
ting back graph features from and to the shared system memory on the MPSoC,
respectively. The indicator function I[·] evaluates to 1 only when the associated
condition is met ; that is, no transmission overhead penalties are sustained between
two consecutive layers when they are both assigned the same computing unit. For
the energy formula, the same logic of notation applies for every layer Li.

3⃝ Mapping Problem Formulation

Define P (m) = f(Ttotal(m), Etotal(m)) to be a combined evaluation function for
a mapping configuration m. Let M be the set of feasible mapping configurations.
Then, we can formulate the mapping objective function for an architecture α
deployed on a heterogeneous MPSoC platform as follows:

m∗ = arg max
m∈M

P (m), s.t. Ttotal < TTRG, Etotal < ETRG (4.8)

where the goal is to identify an optimal mapping strategy, m∗, for α such that
performance objective function P is maximized with respect to latency and energy
under user-specified constraints on latency and energy consumption, T TRG and
ETRG, respectively.

4.6.2 Nested Search Formulation

As the application of graph learning on embedded hardware is a relatively
nascent field, the lack of standardization in GNN architectures for edge deploy-
ment settings adds another dimension to this design optimization problem. To-
gether with the mapping formulation derived above, a natural question arises as
follows: Given an awareness of the ideal mapping strategy for a GNN onto a hete-
rogeneous MPSoC, can we leverage this information to guide further architectural
design optimizations such that the target task accuracy and resource efficiency are
enhanced ?

In light of this proposition, we refine our formulation to an architecture-mapping
co-optimization problem, where the goal is to identify the optimal set of design
choices for the GNN architecture and its mapping strategy. Since a Cartesian pro-
duct of their combined search parameters can result in a large search space, we
designate two separate subspaces to be managed through a bi-level optimization
approach as follows: a) GNN architecture subspace (A) ; which describes the set
of architectural design choices associated with the GNN model, and b) Mapping

59

subspace (M) ; specifying the possible distributed mapping options given the un-
derlying CUs. Through this designation, mapping choices become conditioned on
architectural choices, which promotes the generality of this approach. Formally,
the nested optimization formulation can be given as follows:

α∗ = arg max
α∈A

ψ[Acc(α), P (m∗|α,CU)] (4.9)

s.t. m∗ = arg max
m∈M

P (m|α,CU) (4.10)

where the outer optimization equation (4.9) targets identifying the optimal set
of GNN architectural parameters, α∗, that yield the best scores on a combined
function, ψ, of both the accuracy, Acc(·), and performance efficiency P (·). Evalua-
tion of P (·) is contingent upon the results from the inner optimization equation
(4.10). That is, energy and latency performance evaluations used for scoring a can-
didate architecture, α, are those obtained for an optimal mapping strategy, m∗.
Due to the conflicting nature of the involved objectives, the problem can be sol-
ved as a multi-objective optimization providing a Pareto-optimal set of solutions.
For instance for the outer optimization objective, an architecture α∗ is said to be
Pareto-optimal iff for every objective u ∈ U :

uk(α∗) ≥ uk(α)∀k, α and ∃j : uj(α∗) > uj(α)∀(α) ̸= (α∗) (4.11)

4.7 Proposed Approach

To solve the above GNN architecture-mapping co-optimization problem, we
present MaGNAS, a mapping-aware Graph Neural Architecture Search frame-
work for heterogeneous MPSoC deployment. MaGNAS employs two phases: 1

the construction and training of a ViG supernet to attain a design space of diverse
GNN architectural design choices ; 2 the development of a two-tier evolutionary
search framework to identify optimal architecture-mapping pairings.

4.7.1 Supernet Construction and Training

Patching and

embedding

d

G(V,E)
Stem Block

Input

Graph

View

K configViG Search Supernet

ViG

SuperBlock 1

ViG

SuperBlock 2

ViG

SuperBlock D

Prediction

Block

Grapher

Pre-process

Graph Op

Post-

process

FFN

FC

Layer

FC

Layer

Figure 4.4 The ViG supernet implementation for MaGNAS co-search framework.
The supernet comprises D ViG search super blocks, each of which constitutes a
sequence of di Grapher and FFN computing modules. Architectural search para-
meters characterizing A subspace are highlighted in red and detailed in the text.

We extend the ViG architecture introduced in Section 4.5 to construct a su-
pernet of various design choices to characterize an architectural search space A.

60

Briefly, a supernet represents a network of networks that can be trained simul-
taneously to facilitate providing diverse model designs for different deployment
scenarios [30]. In the context of ViGs, each subnet within a supernet is defined
by a unique set of architectural parameter choices (e.g., choice of GNN layers,
#layers, etc.). Additionally, supernets entertain the property of weight-sharing,
meaning that during the supernet’s training, weight updates for a candidate layer
are applied and reused across all subnets that share that particular layer, which
enables the simultaneous training of all subnets within it. Once the supernet is
trained, a search algorithm can identify an ideal subnet that meets the target
specifications. The ViG supernet is illustrated in Figure 4.4, where the choice of
architectural search parameters for A is based on observations from both related
works [251, 81, 67, 250] as well as from our initial experiments. The supernet
construction is detailed in the following:

1⃝ ViG Superblocks

The backbone ViG-S architecture in [81] comprises 16 computing blocks, each
comprising a stack of a Grapher and an FFN module. On the one hand, characte-
rizing A on a per-layer or a per-block basis can lead to an explosion in the search
space, given the number and cardinality of various search parameters. Conversely,
associating the parameters of A with the entire backbone restricts fine-grained ar-
chitectural optimizations, not fully exploiting the power of diversified architectural
settings at different model stages. As a compromise, we propose ViG superblocks
to characterize A, where each ith superblock constitutes a collection of di ViG
blocks sharing the same design choices. Superblocks are inspired by the concept of
neural computing blocks in popular architectures (e.g., ResNets), where the same
architectural parameter value can be repeated for a stack of consecutive layers.
Figure 4.4 illustrates the composition of our ViG superblock and what architec-
tural parameters are searchable within it. The merits of the ViG superblocks are
twofold: (i) they balance the trade-off between architectural diversity and search
space complexity ; (ii) They facilitate effective management of the depth parame-
ter through di while preserving key architectural features.

2⃝ A Search Parameters

For each superblock i, we specify the following parameters to construct our
architectural search space A:

— The depth, di, to indicate how many ViG blocks exist in the ith superblock
i.

— Grapher pre-processing as a binary decision variable to indicate whether a
pre-processing layer exists before every graph processing layer.

— Graph Op to specify the graph operation employed throughout the ith su-
perblock.

— FFN module as a binary decision variable to indicate whether FFN modules
should exist in this superblock.

— FC hidden layer dimension to specify the size of the intermediate features
in the FFN module.

61

Pretrained

Supernet Encoded

Search

Space

Subspace:
Optimal SoC mappings Rank and Eliminate

Comp. units:

Inner Optimization Engine (IOE)

Population: P
IOE

P

Fitness(

Outer Optimization Engine (OOE)

Acc. Lat. Ergy.
PNSGA-II

Selection

Pareto

optimal

Crossover/Mutation

Next Generation

Encoded

Search

Space

Subspace:
Optimal DVFS settings

Rank and Eliminate

DVFS

P

Lat. Ergy.
P

Next Generation

Population: P P(m| Crossover/Mutation
NSGA-II

Selection

Figure 4.5 MaGNAS two-tier evolutionary search framework

We do not include the Grapher’s post-processing layer as part of A since, in the
ViG backbone, it additionally contributes to maintaining the consistency of fea-
ture embedding dimensions.

3⃝ Supernet Training

We train the supernet for our target task using a combination of Cross-Entropy
and knowledge distillation loss functions, where for the latter, we employ a pre-
trained model as a teacher for more representative training on soft labels’ training
[252, 21]. This training is performed from scratch due to: (i) The ViG is a relatively
new GNN architectural concept, and the availability of pretrained weights is still
limited, and (ii) loading the exact pretrained model weights from the original ViG
backbone [81] can introduce a bias towards certain design choices during training.
For instance, the original ViG architecture employed MRConv Graph Op throughout
its graph processing layers. Thus, loading their pretrained weights gives MRConv
operations an edge over the remaining Graph Op choices. To train the supernet,
we sample and train a set of subnets at each iteration. The choice of subnets is
realized through 3 separate samplers following the Sandwich sampling rule [252]
as follows:

— Maximum Sampler : sample the largest subnet from A, that is, the one with
the maximum depth and width (i.e., hidden dimension features).

— Minimum Sampler : sample the smallest subnet from A.

— Balanced Sampler : sample a number of random subnets of different archi-
tectural features.

This scheme enables improving the performance of all subnets within the search
space simultaneously by pushing the upper and lower performance bounds with
every iteration. Furthermore, given how numerous GNN architectures leverage a
homogeneous structure, that is, one where the choice of the Graph OP is kept
consistent throughout the entire architecture, we modify the Maximum/Minimum
samplers so that they sample architectures of maximal/minimal sizes, but constitu-
ting a randomly selected Graph Op repeated throughout the model. This ensures
training fairness by pushing the upper and lower boundaries of architectures of
different graph operations and avoids inducing a bias towards specific implemen-
tations.

62

4.7.2 Nested Evolutionary Search: Outer Optimization Engine (OOE)

In order to solve the bi-level architecture-mapping optimization problem formu-
lated in equations (4.9) and (4.10), we construct the two-tier evolutionary search
framework illustrated in Figure 4.5 to identify optimal GNN architecture and work-
loads mapping pairings. We first describe the Outer Optimization Engine (OOE),
which employs a higher-level evolutionary algorithm whose purpose is to (i) search
through the supernet to identify the most promising GNN subnets and (ii) rank
candidate subnets according to their Acc(·) and P (·) evaluations.

1⃝ Subspace A Description

By adopting a Once-For-All (OFA) NAS approach [30], the training and search
stages within MaGNAS are decoupled, significantly reducing the search process
overheads as once the supernet has been trained, its search subspace, A, can be
reused for the search to identify beneficial subnets. Accordingly, subspace A in
the search stage is encoded as a sequence of 04 discrete vectors, each representing
the architectural parameters for one specific ViG superblock listed in 4.7.1, faci-
litating the sampling of subnets as GNN design candidates, α ∈ A (See Figure 4.6).

2⃝ OOE Evolutionary Search

The next step is to employ a search algorithm to solve the optimization ob-
jective in (4.9) by searching for optimal GNN architectural implementations, α∗.
Here, we implemented the NSGA-II evolutionary search algorithm to navigate
through A and explore the subspace of viable design choices. Typically, the search
algorithm is run for a pre-specified number of generations, where a new population
of candidate architectural designs, Pg

A, is sampled with every generation, g. Then,
∀α ∈ Pg

A, a fitness evaluation function, F (·), is applied as follows:

F (α) = f(Accα, Tα, Eα) (4.12)

which scores every α based on its target task accuracy, latency, and energy
consumption on the target platform denoted by Accα, Tα, and Eα, respectively.
Accα evaluation can be obtained directly by evaluating the α model predictive
performance on the test dataset, whereas estimates of Tα, and Eα are provided by
the inner optimization engine based on evaluations of the ideal mapping strategy,
m∗ (which will be detailed in the following subsection). Though we used for F (·) a
weighted product function of the objective evaluations in our implementation, we
kept its definition here abstract for generality. According to the fitness evaluation
scores, every α ∈ Pg

A is ranked via the NSGA-II non-dominated sorting algorithm.
Based on the rankings, an elimination process is initiated afterward to yield a
population subset P ′g

A ⊂ Pg
A. Subset P ′g

A then undergoes mutation and crossover
operations to provide a new population Pg+1

A for the following generation g + 1.
A uniform mutation is employed on the superblock level by sampling new depth,
width, graph operators, etc., under a probability threshold of 0.4. The crossover
is applied by randomly picking two individuals from the Pareto set and swapping
their superblocks under a probability threshold of 0.5. This iterative search conti-
nues until the search budget expires (e.g., a given total number of generations).
At the last iteration, a Pareto-optimal set, {α∗|m∗}, is provided. To provide some

63

perspective based on our experiments, we sample 100 architectures for Pg
A out of

a total |A| ≂ 229 candidates. After fitness evaluations, we select a subset of 30%
from the top-ranked candidates as P ′g

A for the following mutation and crossover
processes.

4.7.3 Nested Evolutionary Search: Inner Optimization Engine (IOE)

To estimate Tα and Eα ∀α ∈ Pg
A, we develop an Inner Optimization Engine

(IOE) to specify an ideal mapping strategy of α onto the underlying MPSoC
(α → CU) and evaluate performance accordingly.

1⃝ Subspace M Description

The mapping configuration, m, defined in equation (4.5) reflects the encoded
discrete vector within the IOE search space that characterizes potential mapping
options for each Grapher and FFN modules from α. We also extend the specifi-
cation of m in the IOE to incorporate two further mapping options for the stem
and prediction modules (see Figure 4.4).

2⃝ IOE Evolutionary Search

Given how the mapping decision space is at least |CU|n (see equation (4.3)),
a brute-force search to determine the ideal mapping, m∗, can be costly. Thus, we
implement another NSGA-II evolutionary algorithm in the inner optimization level
to effectively explore mapping choices within M and identify the best candidates.
Particularly, a population of mapping configurations, denoted by Pg

M, is sampled
every generation g by the search algorithm. Then for every m ∈ M, a fitness
evaluation function P (·) is applied as given in the below formula:

P (m|α,CU) = (Em
α

max{ECU
α }

)γ1 × (Lmα
max{LCU

α }
)γ2 ∀CU ∈ CU (4.13)

where Em
α and Lmα are the respective energy and latency sustained by α when

its components are deployed onto the underlying hardware following a mapping
strategy m. Each of these values is then normalized by the best standalone deploy-
ment option from CU, denoted here by ECU

α and LCUα , respectively. The reasons
for this normalization are twofold: (i) To ensure fairness when comparing various
mapping options for α ; (ii) To enforce achieving comparable, if not improved,
performance scores over those obtained by the canonical standalone deployment
options. For instance, if mapping the entirety of α onto a GPU component is the
best option with respect to latency, then all latency evaluations are normalized by
LGPUα . γ1 and γ2 are user-specified tunable hyperparameter values to enable priori-
tizing one performance objective or the other. For our experiments, we constructed
accessible lookup tables by benchmarking computing blocks of varying architec-
tural configurations onto the target CUs, allowing low-overhead estimations of
latency and energy during the search.

Based on these evaluations, another non-dominated sorting algorithm is ins-
tantiated to rank mapping configurations, retaining the top-ranked configurations
to provide population subset P ′g

M ⊂ Pg
M. Afterwards, subset P ′g

M undergoes muta-
tion and crossover to provide Pg+1

M as the new population for the next generation.

64

The mutation is uniformly applied by flipping the CU for each GNN computing
block under a probability threshold of 0.4. The crossover is applied by randomly
selecting two individuals from the Pareto set and interchanging their CUs map-
ping under a probability threshold of 0.8. Once the search budget expires, Em∗

α

and Lm
∗

α are returned as evaluations for the best configuration, m∗, to be used for
Eα and Tα in the OOE, respectively.

3⃝ Constrained Search

To support specifying LTRG and ETRG as search constraints during the search
procedure as in equation (4.8), we designate an additional option for the selection
procedure of the IOE non-dominated sorting algorithm to filter out mapping op-
tions from Pm

α that do not conform to the pre-specified constraints, allowing only
compliant mapping options to proceed to the next stage of mutation and crosso-
ver. If there were no compliant mappings, the standalone evaluations are returned
for Eα and Tα. In general, LTRG and ETRG can also be instated at the selection
process of the OOE, where α architectures whose Eα and Tα do not meet target
performance scores are eliminated from the population before the OOE’s mutation
and crossover stage.

4⃝ Performance Characterization

Generally, estimates of Em
α and Lmα for every m ∈ Pg

M can be provided through
a multitude of approaches (e.g., predictive models). As was shown in equation
(4.4), the dimensional consistency of graph features offered throughout the ViG
backbone has led to a tractable space of evaluation possibilities, enabling the
construction of low-cost lookup tables to directly retrieve performance estimates
of various architecture-mapping configurations. Simply put, the lookup tables are
indexed by the architectural parameters of a computing block, Li, and the CU
to whom it is mapped. By invoking the tables for every block in α given m, the
performance overheads of each block can be aggregated to estimate the total Em

α

and Lmα . Although lookup tables work for our case, proxy prediction models can
be more feasible for a different GNN architecture in which the graph features di-
mensions change due to inconsistent graph structures.

5⃝ DVFS Search Support

We also include the option to supplement M subspace with the configura-
tion setting choices of dynamic voltage and frequency scaling (DVFS) features.
Predominantly, numerous standard heterogeneous MPSoC components integrate
this feature to support a diverse set of operational modes serving different execu-
tion contexts, as in to enable switching between low-power and high performance
modes. Here, to better capture the fine-grained effects of altering DVFS settings,
we specify a DVFS search block in the IOE as a third optional optimization level
contingent upon the choices of m and α. This is convenient as the search space of
the DVFS is small compared to A and M and does not incur as much search ove-
rhead. In typical real-time operational contexts, DVFS settings are kept the same
across all the computing blocks of α. This made a direct brute-force search through
DVFS options sufficient to identify configurations that maximize the IOE fitness
score in objective (4.13). Formally, if we denote a single set of DVFS configura-

65

tion settings as ϑ and the overall DVFS search space as Ψ, then the DVFS search
objective is given as:

ϑ∗ = arg max
ϑ∈Ψ

P (m|α,CU, ϑ) (4.14)

where the performance evaluation of m also depends on the choice of ϑ ∈ Ψ.

4.8 Experiments and Evaluation

In this section, we conduct extensive experiments, in-depth analysis, and abla-
tion studies using a real MPSoC platform and SoC simulator on four(04) state-of-
the-art image classification datasets. Through our experiments, we aim to assess
the merit of MaGNAS in designing optimal ViG architectures and mapping them
onto heterogeneous CUs. We also demonstrate the ability of MaGNAS to scale
with an increasing degree of design and mapping problem complexity.

4.8.1 Experimental Setup

1⃝ GNN Supernet Design and Search Space

We build our supernet on top of the ViG-S variant [81] with 16 computing
blocks, each a Grapher and an FFN block. We group every four (04) computing
blocks into a ViG superblock, and assign to each K nearest neighbor values of 12,
16, 20, and 24, respectively, which enables aggregation of features from farther
nodes with each superblock. We transform each ViG superblock into a slimmable
neural network following [255] to support dynamic width and depth configurations.
To support varying graph operations, we specify a dynamic graph processing layer
in the Grapher with four (04) concurrent branches reflecting different GCN ope-
rational choices for Graph Op: 1) EdgeConv [224], 2) GIN [236], 3) GraphSAGE [80],
and 4) Max-Relative GraphConv [125]. As mentioned in Section 4.7.1, the GNN
search space also includes options to skip the Grapher ’s pre-processing layer and
the entirety of the FFN module throughout a given ViG superblock.

Table 4.2 Joint Search space of GNN architectures, Mapping, and DVFS.

Decision variables Values Cardinality

Supernet Search Space (A)
ViG Superblock depth (d) {2, 3, 4} 3
Graph Operation (Graph Op) {Max-Relative, EdgeConv, GraphSAGE, GIN} 4
Skip Grapher pre-process (fc use) {False, True} 2
Skip Grapher post-process (ffn use) {False, True} 2
FFN hidden features (w) {96, 192, 320} 3

Mapping Search Space (M) for NVIDIA Xavier AGX

Computing units {GPU, DLA} 2
Mapping granularity {Stem, Grapher, FFN, Cls} O(1.7×1012)

DVFS Settings Search space (Ψ) for NVIDIA Xavier AGX

CPU clock frequency {1728MHz, 2265MHz} 2
GPU clock frequency {520MHz, 900MHz, 1377MHz} 3
EMC clock frequency {1065MHz, 2133MHz} 2
DLA clock frequency {1050MHz, 1395MHz} 2

66

2⃝ Datasets and Training Settings

We employ four (04) image classification datasets of CIFAR-10, CIFAR-100,
Tiny-Imagenet, and Oxford-Flowers. To transform the images to graphs, images
are first scaled to 224×224×3 resolution and transformed through the Stem block
into a graph of nodes N = 196, each of dimension D = 14×14×320. The supernet
training for each dataset is run for 150, 150, 250, and 250 for each respective dataset
in the order in which they were stated. The training is performed using an Adam
optimizer with a momentum of 0.9, weight decay of 0.05, and dropout set to 0.2.
We use cosine as a learning rate scheduler with an initial LR of 0.003 and batch
size of 320 on a cluster of 20 GPUs of Nvidia RTX 2080 Ti (11 GB).

ViG
superblock

ViG
superblock

ViG
superblock

…

pre-process

graph-op

FFN-FC1

FFN-FC2

de
pt

h

ViG architecture NAS encoding Mapping encoding

width

d w graph-op fc-use ffn-use

Superblock genome

ViG encoding vector

…

Value encoding into 5D-vector

Grapher FFN

Blocks mapping genomes

Stem Prediction

{CU1|CU2..}{96,192,320}{2,3,4} {MR,E,S,G} {True, False} {True, False}

ViG mapping encoding vector

…

Value encoding into (2+∑di)-vector

{CU1|CU2..} {CU1|CU2..} {CU1|CU2..}

Figure 4.6 Dynamic encoding scheme employed in MaGNAS for the GNN
architectural-mapping specifications.

3⃝ Evolutionary Search Settings

Table 4.2 lists the search sub-spaces of A, M, and Ψ designated within our op-
timization framework. For the optimization process, we fix the population size to
100 and 200 and the number of generations to 50 and 10 for the OOE and IOE, res-
pectively. We adopt uniform mutation and crossover with respective probabilities
of 0.8 and 0.4. As depicted in Figure 4.6, we employ a dynamic encoding scheme
in which the IOE evolutionary algorithm changes the size of the genome vector
-for the mapping strategy encoding- according to the architectural parameters of
the sampled GNN to avoid sampling meaningless decision variables (e.g., mapping
choices for skipped FFN and FC-pre layers). Combining the OOE and IOE, we
explored ∼ 1.6 × 106 candidates of GNN architectures and deployment settings
on an Nvidia Xavier AGX platform. The search process takes around ∼1-2 GPU
days to complete, depending on the complexity of each dataset.

4⃝ Hardware Experimental Settings

We evaluate our approach using two hardware experimental setups presenting
a variety of computing units and architectural features: (i) NVIDIA Jetson AGX
Xavier [162], as a real target MPSoC platform ; (ii) MAESTRO [116, 117], as a
hardware simulator.

— NVIDIA Jetson AGX Xavier: We employ the NVIDIA Jetson AGX Xavier
MPSoC [162] as our primary experimental testbed. The platform is equipped
with a high-performance Volta GPU of 512 GPU cores and 64 Tensor cores
and an energy-efficient DLA. We specify both components as the usable

67

computing units of CU and characterize them as the feasible deployment
options of M. Both components share the same 16 GB 256 bits LPDDR4x
136,5 GB/s system memory and are orchestrated by the same CPU NVIDIA
Carmel Arm 64 bits. To run workloads on GPU/DLA, we use the TensorRT
8.4 compiler running on top of CUDA 11.4 and cuDNN 8.3.2. As TensorRT
is limited by the set of operations that can be executed on DLA, we consider
this limitation in our performance characterization by enabling the GPU
fallback feature for the non-supported operations. The AGX Xavier also
supports hardware reconfiguration of the clock frequencies of CPU, GPU,
EMC, and DLA to emulate different hardware settings and power budgets,
which we use to implement the DVFS search space Ψ. Unless otherwise stated,
performance evaluations in our experiments are performed under the high-
performance DVFS setting (MaxN).

— MAESTRO: For the hardware scalability analysis, we leverage the MAES-
TRO tool [116, 117] to simulate a use-case of an MPSoC with three (03)
heterogeneous CUs. We express the heterogeneity by varying the dataflow
configuration on each accelerator given how different neural network work-
loads exhibit different affinities towards dataflow choices. For example, a
weight stationary dataflow (like kcp ws from MAESTRO and that of the
DLA in the Nvidia Xavier) maximizes filter weights’ reuse which is useful
for layers whose same filters are used to compute multiple outputs [43]. We
use the native dataflows in MAESTRO of kcp ws, ykp os, and dpt for our 3
CUs, denoted by DSA-k, DSA-y, and DSA-d.

5⃝ Baseline GNNs and Mappings for Comparison

The efficacy of our approach is assessed regarding the following GNN architec-
tural and hardware mapping baseline:

— GNN architectures baselines: These include the original isotropic ViG-S
model in [81] as well as its variants by altering Graph Op (i.e., the GCN
operation) where the Graph Op remains consistent across all the layers. Spe-
cifically, we identify the baselines by their recurring Graph Op operation: 1)
b0: ViG-S/Max-Relative, 2) b1: ViG-S/EdgeConv, 3) b2: ViG-S/GIN, and
4) b3: ViG-S/GraphSage. For the scalability analysis of the IOE, we also
consider the PyramidViG-M as the alternative ViG backbone that sustains
graph features dimensional reductions as the network deepens. We imple-
mented PyramidViG-M to follow the feature dimensional reductions across
stages as in [81] and fixed four (04) blocks within each superblock in the
supernet (recall 4.8.1).

— HW-mapping baselines: We consider the default standalone deployment op-
tions, i.e., the full mapping of an entire ViG model to a singular CU (e.g.,
to the GPU only). We also consider hybrid mapping strategies in which
inter-CU transitions are limited, as proposed in [49].

— MAESTRO GNN baseline: We use the PyramidViG-M mentioned above
GIN-variant for our hardware scalability experiments using the MAESTRO
simulator. For the convenience of MAESTRO, we define the GIN operation
by its low-level implementations of the aggregation and combination phases.

68

CIFAR-10 CIFAR-100 Oxford-Flowers

2.5x
ergy. gain

2.1x
ergy. gain

2.7x
ergy. gain

2.1x
ergy. gain

1.8x
ergy. gain

1.9x
ergy. gain

DLA-only Deployment --

--GPU-only Deployment

Figure 4.7 The first two rows show the performance of the explored GNNs in (A)
by the OOE on three datasets (from left to right : a) CIFAR-10, b) CIFAR-100,
c) Oxford-Flowers. The Hardware metrics (i.e., latency and energy) are shown for
GPU-only and DLA-only deployment options.

That is, the aggregation entails a matrix multiplication between the adja-
cency matrix and the feature embedding matrix, whereas the combination
entails another matrix multiplication to transform the aggregated graph fea-
tures to another representation for the following layer.

4.8.2 OOE Results: GNN Architecture Optimization

We first examine the merit of the OOE in identifying GNN architectures that
can achieve favorable performance trade-offs compared to the baselines. In Figure
4.7, the first two rows depict the explored GNN architectures from A by the
OOE on the four (04) datasets given standalone mapping strategies on GPU-only
(top row) and DLA-only (middle row). Compared to the baselines defined above,
our obtained Pareto-optimal GNN architectures generally dominate all baselines
on the four image classification datasets with regard to the three performance
metrics of accuracy, latency, and energy consumption. Specifically, the OOE can
identify GNN architectures that achieve ∼3.6× latency speedup than baselines
when deployed onto the GPU ; can realize up to ∼2.8× more energy efficiency gains
compared to the baselines when deployed onto the DLA – all while maintaining
comparable accuracy scores. As will be emphasized in the subsequent Section 4.8.4,

69

Accurate
than the
baselines

Latency
Energy
efficient

3.23x
ergy. gain

3.42x
ergy. gain

Top-1 Error
∈ [5.85;

6.00]

Top-1 Error
∈ [5.75; 5.85]

Top-1 Error
∈ [5.70;

5.75]

GPU-DLA Distributed Deployment

Latency
Energy
efficient

Figure 4.8 The IOE results on CIFAR-10 grouped by prediction error intervals.

the reasons for this dominance by the OOE’s GNN architectures is attributed to
the allowed diversification of Graph Op across the different ViG superblocks (as
specified in A from Table 4.2), which has facilitated achieving better accuracy-
performance trade-offs. Moreover, skipping the FFN and the Grapher’s FC pre-
processing layers offers attractive design choices to avoid unnecessary computation,
especially when the set of features is limited and can be already captured by the
basic layers of the Grapher modules – which is the case for the simpler datasets
(e.g., CIFAR-10). Our OOE recognized this property and leveraged its knowledge
to concentrate its search on identifying GNN architectural parameters that achieve
the best accuracy levels with the minimal FFN and FC pre-processing layers.

4.8.3 IOE Results: Hardware Mapping Optimization

We further assess the efficacy of the IOE in identifying effective mapping confi-
gurations for provided GNN architectures. The bottom row of Figure 4.8 shows
the optimization results when exploring mapping strategies from M for the top-
performing GNN architectures (as ranked by equation (4.12)) provided to the IOE.
The results are reported for CIFAR-10 and grouped by TOP-1 error intervals in
each sub-figure. A similar trend has also been observed in the other datasets. At
each top-1 error interval, we can observe that the IOE explored various mapping
strategies, as illustrated by the latency-energy trade-offs. The bulk of these trade-
offs are captured within the range of performance values from the standalone de-
ployment options, that is, between the GPU-only and DLA-only mapping options’
latency/energy consumption values, as depicted by the middle sub-figures. Remar-
kably, the explored configurations form distinguishable contours, each showing a
specific GNN architecture alongside its explored mapping options – represented
by the different latency-energy trade-off values. Specifically, the GPU-only and
DLA-only mapping configurations for each GNN architecture are located at the
boundaries of its curved line. The intermediate points between the extremes illus-
trate the performance of the distributed deployment settings and show how each
mapping configuration results in different latency-energy trade-offs.

Furthermore, as both GNNs and mappings are considered together in the IOE
design space, superior energy gains can be realized through more compact GNN
architectures. For instance, as illustrated in the third sub-Figure, an energy gain
up to ∼3.42× can be attained compared to the b2-gpu while preserving compa-
rable latency and accuracy levels by opting for another GNN architecture and

70

distributed mapping. Upon comparing the curve lines, we can observe that GNN
architectures that outperformed the baselines in the OOE (i.e., in the standalone
deployment options shown by the extremes) typically maintain their dominance
within the IOE and prove that rank is preserved across GNN architectures and
mapping schemes in this joint search space.

Table 4.3 Detailed performance results, GNN architectural parameters, and map-
ping strategies of our Pareto optimal models (a0-a3). The original ViG-S and its
variants (b0-b3) on the four datasets on the NVIDIA Jetson Xavier AGX MPSoC
platform.

Datasets GNN Models TOP-1 Acc
(%)

Graph-Ops
(M, E, G, S)

FFN-use
(%)

FC pre-use
(%)

Latency
(ms)

Energy
(mJ)

GPU-use
(%)

DLA-use
(%)

All-datasets

Φ Baseline-b0 C10 : 94.15, C100 : 82.13
F : 89.71, Ti : 68.12

M-M-M-M 100 100 G : 25.28
D : 40.11

G : 459.44
D : 224.41

- -

⋆ Baseline-b1 C10 : 94.15 C100 : 82.13
F : 90.29, Ti : 68.15

E-E-E-E 100 100 G : 33.74
D : 62.11

G : 770.36
D : 323.70

- -

▷◁ Baseline-b2 C10 : 94.20, C100 : 81.49
F : 86.37, Ti : 67.62

G-G-G-G 100 100 G : 22.49
D : 39.62

G : 429.07
D : 214.35

- -

Ω Baseline-b3 C10 : 94.27, C100 : 82.10
F : 88.92, Ti : 68.32

S-S-S-S 100 100 G : 29.57
D : 57.77

G : 623.76
D : 263.48

- -

CIFAR-10
(C10)

⃝ Ours-a0 94.25 G-G-G-G 25 25 16.02 97.0 09 91

⃝ Ours-a1 94.46 G-G-G-G 100 0 19.49 118.00 17 83

⃝ Ours-a2 94.32 G-M-G-G 25 0 11.19 121.14 75 25

⃝ Ours-a3 94.32 G-M-G-G 25 0 14.18 105.11 33 67

CIFAR-100
(C100)

⃝ Ours-a0 82.13 S-G-S-G 100 25 17.72 180.56 50 50

⃝ Ours-a1 82.17 S-S-S-S 100 75 34.72 271.62 30 70

⃝ Ours-a2 81.63 G-G-G-G 50 50 15.06 131.81 50 50

⃝ Ours-a3 82.13 S-G-S-G 100 25 17.29 197.80 55 45

Oxford-Flowers
(F)

⃝ Ours-a0 89.90 M-G-M-M 75 75 14.37 153.54 69 31

⃝ Ours-a1 88.43 G-G-G-G 0 50 9.60 119.07 90 10

⃝ Ours-a2 88.43 G-G-G-G 0 50 12.30 105.88 40 60

⃝ Ours-a3 89.02 M-G-G-G 25 25 12.82 116.63 50 50

Tiny-ImageNet
(Ti)

⃝ Ours-a0 68.40 M-G-G-G 25 0 13.07 114.89 50 50

⃝ Ours-a1 68.40 M-G-G-G 25 0 15.47 102.06 17 83

⃝ Ours-a2 68.51 M-G-G-G 75 25 16.37 122.56 38 62

⃝ Ours-a3 68.51 M-G-G-G 75 25 17.87 115.78 19 81

Dataset Abbreviations: C10: Cifar-10, C100: Cifar-100, F: Oxford-Flowers, Ti: Tiny-ImageNet.
Graph-Ops Abbreviations: M: Max-Relative, E: Edge-Conv, G: GIN, S: Graph-Sage.
Computing Units Abbreviations in ’Latency’ and ’Energy’ Columns: G: GPU, D: DLA.

4.8.4 Analysis of Search and Pareto Optimal Models

In Table 4.3, we provide a detailed analysis of performances, architectural para-
meters, and mapping strategies of the ViG baselines [b0-b3] and a selection of our
final Pareto optimal models from the two-tier search [a0-a3] for each dataset. As
shown, although our models maintain comparable accuracy scores to the baselines,
they achieve better speedups and energy efficiency results. For instance, our models
achieve on average ∼1.57× and ∼2.49× latency speedups ; ∼3.38× and ∼1.65×
more energy efficiency when compared to the original ViG baseline fully-deployed
onto the GPU and DLA, respectively. This dominance is primarily attributed to 3
factors: (i) the enabled diversification of Graph Op parameter throughout the ViG
superblocks, which enables interleaving both powerful and resource-efficient ope-
rators within a model architecture. For instance, examining the Oxford-Flowers
results in the Table, model a0 interleaves both Max-Relative and GIN operators.
The former contributes to the model’s representational capacity and compensates
for the inadequacy of GIN operators in capturing long-range dependencies from the
graph nodes features, ultimately leading the model to surpass baseline b0’s accu-
racy score (89.9% to 89.71%). On the other hand, the employment of GIN operator
– alongside other factors – leads a0 to achieve superior latency and energy effi-
ciency scores. (ii) The additional varying architectural parameters from A (e.g.,

71

FFN-use) enable tuning the model’s size and learning capacity to the task and
dataset complexity. (iii) The distributed mapping strategies, as indicated by the
GPU-use and DLA-use columns in Table 4.3, further balance the latency-energy
trade-offs by effectively utilizing different CUs.

7.3
7.4

7.9

6.36.5
6.8 7.0

7.1
7.5

5.3 5.4
5.7

~ 5.7%

inc. in HV

23.5%-53.7% of

Pareto solutions

Figure 4.9 Left : Hypervolume analysis when including the IOE against those of
the standalone OOE for the DLA and GPU. Right : Breakdown of the combined
Pareto Fronts constituents on the basis of mapping options.

4.8.5 Hypervolume and Pareto Composition Analysis

To appraise the efficiency of our nested evolutionary search algorithm in iden-
tifying meaningful and mapping configurations, we compare its Hypervolume [191]
against those of baseline OOE searches conducted on the standalone deployment
options on the GPU and DLA. Succinctly, the Hypervolume measures the volume
of the dominated area in the objective space by the estimated Pareto fronts. In
Figure 4.9 (left), we can observe that the nested search (w/IOE) improves the Hy-
pervolume scores over the baseline OOE GPU search by ∼5.7% on average across
the four (04) datasets, indicating the IOE’s merit in extending the dominated area
in the search space. In Figure 4.9 (right), we complement the Hypervolume analy-
sis with a breakdown of the Pareto front composition with regard to the mapping
strategies. Specifically, we consider the non-dominated solutions by combining Pa-
reto fronts obtained at every generation. As seen, the distributed mapping options
constitute 23.5%-53.7% of the solutions on the Pareto front, indicating their value
in elevating resource efficiency for the various models.

4.8.6 Analysis of GNN Workload Distribution

In this subsection, we showcase how different GNN workload assignments across
the GPU and DLA influence the latency-energy tradeoffs. In Table 4.4, we select
one of the Pareto-optimal models, Ours-a3 on CIFAR-100, and compare three
mapping configurations: 1 Standalone options in which the model is fully deployed
on either GPU or DLA. 2 Constrained transition options (as introduced in [49])
where the number of allowable inter-CU transitions is limited to those that offer the
best tradeoffs in order to mitigate data transmission overheads (i.e., the write-back
and initial cold cache misses). 3 Ours (IOE) are the mapping options provided
through our IOE with unconstrained inter-CU transitions.

As no single optimal solution exists for any distributed mapping strategy, we
ensure a fair comparison between our approach and the constrained transition
strategies by comparing evaluations of one objective function (energy) while fixing
the other (latency). Thus, for each constrained transition option, we use two (02)

72

Table 4.4 Details and comparison of the GNN workload Assignment. ‘G’ and ‘D’
indicate GPU and DLA assignment, respectively. Note that each Grapher block is
first succeeded by a corresponding FFN block.

Mapping option Stem Grapher FFN Cls #transit
Lat.
(ms)

Enrg.
(ms)

DLA-only D D-D-D-D-D-D-D-D D-D-D-D-D-D-D-D D 0 25.56 121.74
GPU-only G G-G-G-G-G-G-G-G G-G-G-G-G-G-G-G G 0 13.42 273.22

constr-transit1 D D-G-G-G-G-G-G-G D-G-G-G-G-G-G-G G 1 16.31 232.60
constr-transit1 G G-G-G-G-G-D-D-D G-G-G-G-G-D-D-D D 1 17.42 226.79

constr-transit2 D D-G-G-G-G-G-G-D D-G-G-G-G-G-G-D D 2 17.58 220.23
constr-transit2 G G-G-D-D-D-G-G-G G-G-D-D-D-G-G-G G 2 17.11 227.15

Ours (IOE) D G-G-G-G-G-G-G-G G-D-D-D-D-G-D-D D 12 17.29 197.8

Pareto optimal solutions whose latency values are closest to our solution – i.e., so-
lutions with latency closest to 17.29 ms. From the reported results in Table 4.4, we
can observe that with our unconstrained mapping strategy, a single inference sus-
tains 197.8 mJ on average, which is more efficient than the best energy numbers,
226.79 mJ and 220.23 mJ, experienced by each of the other distributed mapping
baselines, ‘constr-transit1’ and ‘constr-transit2’, respectively. The reasons for this
improvement can be attributed to the following: 1 graph feature sizes are re-
latively small throughout the ViG models, leading to low inter-CU transmission
overhead penalties to be experienced on the Xavier MPSoC. Our IOE optimization
strategy exploited this property to identify more efficient mapping configurations
with a larger number of transitions. 2 Each computing block type within the ViG
exhibits different affinities towards the underlying CUs. Thus, our IOE optimiza-
tion strategy leveraged the other property of unconstrained transitions to map as
many Grapher blocks to the GPU as feasible and as many FFN blocks to the DLA
as possible before transmission costs become non-negligible.

18.17 W

22.5 ms

15.2 W

25.7 ms 31.2 ms31.1 ms

10.6 W 10.4 W

45.8 ms

8.9 W

27.3 ms

20.1 W
15.2 W

26.7 ms

Figure 4.10 Results of the two constrained optimization: Latency and power
consumption numbers are reported under variation of (Left) the allowable latency
increase ratio compared to GPU-only, and (right) the available power budget.
Numbers indicate median values.

4.8.7 Constraint-aware Optimization

As many embedded systems employ real-time execution requirements, we test
the effectiveness of our framework when the search algorithm is performed under
strict latency and power constraints. In particular, we specify two experiments,
each associated with one of the following constraints: 1 Latency, in which the
constraint specifies the max allowable increase in latency compared to the stan-
dalone deployment option on the fastest MPSoC component (i.e., GPU-only). 2

73

Power budget ; by fixing low values of clock frequencies and a limited number
of CPU cores and memory speed transmission 1. The first constraint is common
for real-time systems governed by strict execution deadlines, whereas the second
constraint is more common for battery-powered systems operating on limited po-
wer budgets. We conduct the two constrained optimization on the IOE using ba-
selines [b0-b3] and our models [a0-a3] on the CIFAR-100. We report the absolute
latency and average power consumption values in Figure 4.10.

Table 4.5 GNN Workload distribution under different latency constraints.

Workload

Distribution

Allowable latency increase ratio (%)

5 10 20 40 60 80 100

Avg. GPU

utilization
0.97 0.91 0.74 0.56 0.50 0.50 0.50

Avg. DLA

utilization
0.03 0.09 0.26 0.44 0.50 0.50 0.50

1⃝ Latency-constrained search We characterize the latency constraint by enfor-
cing a max allowable increase ratio from the fastest CU (i.e., the GPU). As shown
in left Figure 4.10, low latency increase ratio (≤ 20%) leads the IOE towards dele-
gating more computation kernels to the GPU, resulting in more power-demanding
mapping strategies. Compared to the soft-constraint case (i.e.,w/ tolerance of 100%
increase in latency), the power demands at an allowed increase ratio of 5% are
1.75× more.

As the tolerable increase ratio rises (≥ 30%), the constraint on the search is
gradually relaxed. As shown in Table 4.5, the optimizer gains more freedom in
exploring mapping options and favors delegating more computation kernels to the
DLA for energy efficiency. The power efficiency gains start to plateau around a
50% increase ratio, indicating that the IOE has converged onto mapping strategies
that maximize the fitness formula (as defined in (4.13)) by balancing latency and
power efficiency. This convergence is sensible given how between the GPU and
DLA, one component is roughly twice as effective as the other with regards to
one performance objective, i.e., execution latency on the GPU is almost 2× less
than the DLA, and the DLA incurs 2× less power consumption than the GPU
(see Table 4.3) ; given that we assigned equivalent weights for the objectives in the
fitness evaluation formula in (4.13), i.e., γ1 = γ2 = 1.

2⃝ Power-constrained search The second experiment depicted in the right Figure
4.10 shows that at tighter power budget constraints, the IOE focuses on identifying
power-efficient mapping options at the expense of a slight decrease in latency,
resulting in mappings that assign more GNN workloads to the DLA as depicted
in Table 4.6.
We note that in this experiment, we also maintain the latency minimization as
objective, which also explains the low DLA utilization ratio values reported in
Table 4.6. For instance, to satisfy the 10 Watts power constraint, the IOE specifies
mapping settings with a median latency of 45.8% – 1.71× more than the latency

1. Power management and clock frequency scaling : https://docs.nvidia.com/jetson/
archives/r34.1/DeveloperGuide/text/SD/PlatformPowerAndPerformance.html

74

https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/text/SD/PlatformPowerAndPerformance.html
https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/text/SD/PlatformPowerAndPerformance.html

Table 4.6 GNN Workload distribution under different power budgets.

Workload

Distribution

Available Power Budget (mW)

10 15 20 25 30

Avg. GPU

utilization
0.74 0.76 0.88 0.88 0.81

Avg. DLA
utilization

0.26 0.24 0.13 0.13 0.19

experienced at a power budget of 30 Watts. More latency-efficient mappings are
identified with refined workload distribution as the power budgets are relaxed.

4.8.8 Ablation study on the impact of DVFS

In this experiment, we assess the merit of including DVFS optimization within
the IOE. We reuse the baselines [b0-b3] and our models [a0-a3] from the CIFAR-
100 experiment. Their mappings are kept fixed, and we run the models through
the DVFS optimization engine to assess how performance can be further enhanced.
Specifically, we consider the following DVFS settings: 1 MaxN, which resembles the
high-performance mode on the Jetson Xavier MPSoC with clock frequencies set
to the maximum. 2 MinN, which is an opposing best-effort mode for low-power
operation in which clock frequencies are set to the minimum. 3 Searched ; in
which DVFS settings are searchable within the IOE (see Table 4.2 for the values).
4 Default ; in which we use the default dynamic DVFS heuristic with CPU and
GPU governors fixed to Schedutil, nvhost podgov, respectively. In this last setting,
clock frequencies are dynamically adjusted at runtime depending on the underlying
resources utilization, where clock frequencies are ranged from 0 to the maximum
value on each component. We note that in addition to the GPU and DLA frequency
variations, we also scale the CPU and EMC clock frequencies as both influence
data transmissions between the shared system memory and private memories of
GPU/DLA. We run the IOE with the same optimization parameters to ensure a
fair evaluation.

4.3%

Figure 4.11 Ablation on the impact of including DVFS optimization within the IOE.
Searched settings is compared against the MinN, MaxN, and Default settings with
regards to (Left): Latency-Power trade-offs, and (Right): Latency-Energy trade-
offs. Numbers in the right Figure indicate percentage change in values.

In Figure 4.11, we illustrate the performance trade-offs as incurred by the
explored (GNN architectures × HW mappings) under the 04 (four) DVFS settings.
As expected, the left subfigure shows that the Searched mode exhibits a balanced
trade-off between latency and power compared to the MinN and MaxN modes. More
interestingly, however, the Searched setting is able to identify configurations that

75

yield superior energy gains to the fixed DVFS modes. In particular, the median
latency and energy consumption values of Searched are 37.42% and 32.47% less
than MinN, respectively. On the other hand, though Searched incurs a 4.3% increase
in its median latency compared to MaxN, it can achieve an order of magnitude more
energy savings reaching 30.47%. This implies that the IOE identified the DVFS as a
viable tuning knob to enhance energy efficiency by scaling clock frequencies across
the different components. Moreover, latency in Searched is improved by 40.02%
compared to the default DVFS governor. This is explained by the underlying logic of
the dynamic heuristic, which only considers the hardware utilization and overlooks
workload properties such as computation and memory requirements. For instance,
memory-bounded workloads may benefit from GPU/DLA core downscaling with
reduced energy at the same latency level. These properties are captured in our
Search mode as we adjust the frequencies according to the GNN and mapping
configurations. In addition, The default governors are set to avoid the idle state
when the computing unit is not used, by lowering the frequency to 0, which helps
in minimizing the power consumption (as shown in the left subfigure) but also
worsens the execution latency as computing units usually need a warm-up stage
to operate steadily after swapping between low and high frequencies.

4.8.9 Generality and Scalability

Employing an evolutionary algorithm (EA) for the IOE may seem excessive
when the backbone ViG is an isotropic one that does not experience feature map
sizes change and when the mapping is performed across merely 02 CUs. Thus, we
perform an additional set of experiments in which we assess the scalability and
generality of the IOE on the search-space levels of: 1 the ViG architectural back-
bone ; where the supernet’s backbone is implemented as a pyramid variant that
allows dimension reductions from one superblock to the next (recall Figure 4.4),
unlike the aforementioned isotropic one, and 2 the hardware CUs ; by simulating
a case with 03 heterogeneous CUs.

1⃝ On the ViG Architectural Level

Using the Nvidia Xavier MPSoC with GPU and DLA, we compare the mapping
results from the IOE between the isotropic (ViG-S) and pyramid (PyramidViG-M)
variants (recall Section 4.8.1). As we analyze the effectiveness of the inner EA, we
fix the GNN from the OOE for both variants by setting the design parameters, A,
in Table 1 (i.e., d=4, Graph Op=GIN, fc use=False, ffn use=False, w=192), and
specify an optimization budget of 2×104 evaluations.

As depicted in Figure 4.12, we can observe in the left subfigure that for the
isotropic ViG, the explored mapping options follow well-defined spaced patterns
between the two mapping extremes of GPU-only and DLA-only, offering almost
uniform linear trade-offs between the energy efficiency and execution latency across
various mapping options on the Pareto front. This results from the Grapher and
FFN blocks being replicated throughout an isotropic architecture. As such, the
performance evaluation of the different mapping options becomes predominantly
influenced by the percentage of Grapher/FFN blocks assigned to each CU, irres-
pective of their order. Given such a setting, a scalarization method can be sufficient
to determine the Pareto front by varying the ratio of mappable workloads on either

76

Isotropic

ViG

Pyramid

ViG

More convexity
Uniform-like spacings

Figure 4.12 The results of the IOE EA optimization on the Isotropic Vision GNN
(left) and Pyramid Vision GNN (right).

CU. However, for the PyramidViG on the right, this property does not hold as
each Grapher/FFN block entertains different dimensions of their input and output
features depending on its position, leading to varying performance characteriza-
tions. We observe that the sampled mapping options are more diverse in their
energy and latency characterizations and that the Pareto front exhibits stronger
convexity than its isotropic counterpart, reflecting a diverse, more complex map-
ping space.

2⃝ On the Hardware CU Level

Using the PyramidViG-M, we investigate how MaGNAS scales when the search
space is further compounded with an increasing number of viable CUs. We simulate
such use-case using MAESTRO tool [116] to specify 3 DSAs of diverse dataflows
for CU heterogeneity (see the details in 4.8.1). As every layer within MAESTRO
is defined via low-level implementations (including aggregation and combination
layers), we can characterize processing overheads within PyramidViG-M on a
layerwise basis and combine them to characterize larger blocks (e.g., Grapher).
At this point, we find that each ‘layer’ rather than ‘block’ can exhibit different
performance characteristics at different ViG stages. For instance, the aggregation
sustains a substantial overhead when processing the sizable graph feature ma-
trices at earlier blocks. This is predominantly due to the DSAs in MAESTRO
not being implemented initially to support graph acceleration – similar to how
numerous MPSoC platforms (e.g., the Xavier) do not widely integrate specialized
graph acceleration engines. As such, we can simulate an additional case to study
the mapping on a layerwise granularity to assess further how the EA in the IOE
scales when the number of mappable options dramatically increase. To provide
context, the mapping space of the PyramidViG-M is O(1.72×1012) in the block-
wise using 2 CUs ; O(1.67×1016) in the blockwise using 3 CUs ; and O(1.67×1023)
in the layerwise 3 CUs case, indicating an increasing level of problem complexity.

In Figure 4.13, we demonstrate how the inner EA scales effectively as the search
space is expanded from the blockwise to the layerwise mapping granularity. We
first specify a fixed optimization budget of 6×104 evaluations for both. Moreover,

77

Block-wise mapping​ Layer-wise mapping ​

Search focus at the

central trade-off region

Larger variance along

the energy objective

1
.2

5
x

 g
a

in

3.19
2.86

On

the

PF

Figure 4.13 The results of the IOE on MAESTRO [116] with: i) Block-wise map-
ping granularity (left) and ii) Layer-wise mapping granularity (right).

although fully deploying the architecture on DSA-d completely dominates DSA-k
deployment, the latter is still included since it represents the optimal mapping
option for some individual layers. In the blockwise case (left), we observe that
the EA focuses on exploring more mapping solutions at the energy consumption
extremes due to coarse-grained characterization of the Grapher block, leading it
to identify distributed mapping options that dominate the standalone extreme,
i.e., the EA identifies a distributed mapping configuration that achieves 1.25×
energy gains over DSA-y for the same latency level. The opposite occurs for the
layerwise search, where despite the much larger optimization space, the EA was
capable of recognizing benefits from distributing the aggregation and combination
across different DSAs, leading it to concentrate the search more at the centralized
latency-energy trade-off region. For example, at execution latency of ∼ 2.2 × 108

cycles, the layerwise search by the IOE identified a mapping option that incurs
28.6 mJ compared to 31.9 mJ from the blockwise search.

4.9 Discussion and Key Insights

1⃝ Key Takeaways. Hardware-software design optimizations and workloads map-
pings are increasingly studied in the literature [63, 21, 49, 22]. What distinguishes
this work is its specialization in considering the details of: (i) GNNs’ computa-
tional flow irregularity ; (ii) workload distribution across heterogeneous CUs with
varying degrees of support for graph operators. Furthermore, ViG is a relatively
emergent class of GNNs, and there remains room for improvement along the de-
sign, characterization, and training of ViG supernets, which can only improve as
the application of ViGs – and GNNs in general – at the edge continues to prolife-
rate. All things considered, MaGNAS has demonstrated encouraging results that
can help pave the way for future lines of research.

2⃝ Generality and Scalability. In analyzing the generality of MaGNAS (Section
4.8.9), we have demonstrated the benefits of heterogeneity in hardware accelerators
through varying dataflows across HW accelerators. In practice, heterogeneity can
also occur through varying other factors such as processing engines per accelerator,

78

shared buffer size, off-chip memory bandwidth, etc., All of which can influence the
hardware efficiency of the workloads. MaGNAS has been shown capable of genera-
lizing to the different forms of heterogeneity as it relies on high-level performance
characterization that abstracts underlying hardware compositions. Furthermore,
experiments on real MPSoCs with different HW accelerators and levels of hetero-
geneity from that of the Nvidia Xavier is still needed to corroborate that MaGNAS
can scale effectively to diverse platforms.

3⃝ Graph Operation Support Limitations. As MAESTRO does not natively sup-
port the sparse matrix multiplications, we implemented GNN operations within
the simulator as generic matrix multiplications, which has led to considerable exe-
cution overheads for the aggregation phase regarding latency and energy. This is
indeed a situation akin to the case when GNN workloads are to be run on generic,
uncustomized edge devices that lack proper support for specialized accelerators
for GNN operations. In such cases, mapping optimizations can be particularly
beneficial in mitigating the impact of such hardware deficiencies. Furthermore, as
GNNs grow in popularity, promising steps are being taken towards developing new
dataflows for reconfigurable spatial accelerators to support irregular graph com-
putational sequences, which will also bring about the need for new architectural
simulators to effectively model their performance overheads.

4⃝ Other Application Domains. Vision-based applications provided practical, tan-
gible use case motivations for the GNNs-on-SoCs scenario, and accordingly, they
have become the primary target application of this work. The manner in which Ma-
GNAS has been developed enables it to generalize to other emerging applications
on edge MPSoCs that employ GNNs for their primary computational workloads.
For instance, the support for mapping on both the blockwise and layerwise levels
of granularity within MaGNAS enables it, with some fine-tuning, to serve other
types of emerging GNN-based applications, such as scene parsing/extraction and
anomaly detection, at the edge by maximizing GNNs’ efficiency across a broad
range of diverse CUs integrated onto the same chip.

4.10 Summary

This chapter presented MaGNAS, a mapping-aware Graph Neural Architecture
Search framework for distributed deployment of vision GNN onto heterogeneous
MPSoCs. MaGNAS characterizes a GNN architectural design space bound with
prospective mapping options, enabling the identification of model designs optimi-
zed to the distributed deployment scheme. MaGNAS employs a two-tier evolu-
tionary search framework to identify optimal architecture and mapping pairings
that provide the best performance trade-offs. Extensive experimentation, in-depth
analysis, and ablation studies using a real MPSoC platform and hardware simu-
lation have showcased the merit of MaGNAS. Evaluation results have shown a
∼1.57× latency speedup, ∼3.38× energy efficiency for several vision datasets exe-
cuted on the Xavier MPSoC vs. the GPU-only deployment while sustaining an
average 0.11% accuracy reduction from the baseline ViG models [81]. We believe
that our work can serve future research in SW/HW co-optimization for GNNs on
the edge by investigating more application use cases, hardware paradigms, e.g.,
System-in-Package (SiP), and by expanding the GNN search spaces.

79

Chapitre 5

Map-and-Conquer: Energy-Efficient Mapping of Dynamic Neural
Nets onto Heterogeneous MPSoCs

5.1 Introduction

The hardware era has witnessed the emergence of various computing devices,
from powerful GPUs to tiny Micro-controllers. To meet the requirements of compute-
intensive applications, such as those of Deep Neural Network (NN) workloads,
MPSoCs are designed to incorporate heterogeneous computing units (CU) within
the same die, typically sharing the same system memory (DRAM) and posses-
sing different hardware capabilities. This hardware architecture paradigm enables
the collaborative usage of multiple CUs to accelerate different operations of the
same or multiple applications, providing energy savings and performance benefits.
However, the causality between the hardware heterogeneity of MPSoC and the ob-
tained performance for similar and different operations remains an open research
question. Indeed, some CUs (e.g., GPUs) can offer high execution speedup at the
cost of being energy-hungry, while others (e.g., DLA) are power-friendly at the
cost of being slow. Conventional deployment schemes lack a holistic overview of
how heterogeneous CUs may behave regarding various computing workloads. In
addition, the systematic approach of considering a single CU to deploy an entire
application is suboptimal since it overlooks opportunities for further performance
and energy gains through maximizing the utilization of the MPSoC’s resources
and making better use of the HW capabilities of each CU.

Latest research has shed light on the computation mapping problem for MPSoC
by providing comprehensive modeling methodologies in [203, 152, 237, 49] to cha-
racterize workloads performances on MPSoCs. The resulting models are generally
used to map computations onto CUs in a sequential pipeline fashion. However, for
workloads exhibiting a high degree of parallelism, such as NN, there is still room for
improvement by refashioning the execution pipeline into parallel stages running
concurrently on different CUs. Especially considering the inherent capacity for
concurrency within NN layers such as convolutional layers in Convolutional Neu-
ral Networks (CNNs) [79] and multi-head self-attention layers in Transformers[54].
Particularly, parallelism is leveraged within NN from three (03) perspectives:

— (i) Depthwise partitioning : By splitting layers into less deep micro-workloads.

— (ii) Width-wise partitioning : By splitting the NN along the channels (for
CNNs) or attention heads (for Transformers) and generate micro-workloads
that are as deep as the original NN but less wide.

— (iii) Hybrid partitioning : By combining the two techniques mentioned above
to realize less deep and large micro-workloads.

80

The common aim of each parallelism technique is to provide less hardware-
demanding micro-workloads that are to assigned to different CUs within the
context of edge-cloud systems [104, 58], distributed edge-devices [88, 78], or single
MPSoC [150, 49]. By extension, prior works [149, 190, 79, 88] have also considered
leveraging computation parallelism on data and task levels. Nevertheless, most
works focus on model training rather than inference [58]. Although substantial
studies exist for distributed edge devices [182], there is a lack of a comprehensive
and holistic framework for commodity edge and tiny MPSoC. Moreover, assigning
multiple workloads of the same NN application incurs high communication and
synchronization overhead that sets critical constraints on the adoption of the dis-
tributed computing scheme for real-time execution settings [146].

On a separate note, after the success of dynamic neural Networks (DyNNs),
recent works have started to explore the prospect of partitioning the NN model
itself into separate computing stages that can be invoked in a dynamic manner.
The dynamicity manifests on-the-fly during the inference where simpler inputs
can be classified in earlier model stages, whereas the latter stages are instantia-
ted for more complex inputs. Many dynamic inference strategies are employed in
literature, such as early-exiting [21, 120], computation skipping [246, 192], and
dynamic routing [155, 140]. These NN models typically exhibit a high opportunity
for parallelism, especially when multiple inference stages are a priori designed and
instantiated to serve inferring on various degrees of input data complexity. For
instance, S2DNAS [259] demonstrated the benefits of partitioning a CNN model
along its width dimension (i.e., layer’s channels) and deploying the model as a
multi-exit neural network supporting parallelism. ENAS4D [258] followed up by
enlarging the design space of S2DNAS on the model level to encompass various
architectures of the CNN backbone in order to find well-tailored backbone designs
for the dynamic inference scheme introduced in S2DNAS. Nonetheless, in both
works, the hardware dimension was missing, and only proxy metrics (e.g., FLOPs
and Parameters) were reported, which limits their integration for existing edge de-
vices. Furthermore, studies of mapping such parallel neural network components
onto a heterogeneous MPSoC for dynamic inference have not been done in prior
works.

Addressing these challenges, we propose Map-and-Conquer, a novel framework
that leverages dynamic inference and computation parallelism and mapping on he-
terogeneous MPSoCs. Our approach synergistically splits an NN along its width
to derive inference stages capable of inferring on input data of varying degrees
of complexity. Additionally, we contribute a novel mapping technique by enabling
computation parallelism between the inference stages on the different CUs of hete-
rogeneous MPSoC. Our approach has been validated using Transformer and CNN
models on the CIFAR-100 dataset, employing NVIDIA’s Jetson AGX Xavier MP-
SoC, which includes a GPU and DLA. Our findings indicate that our dynamic
configurations are 2.1x more energy-conserving than GPU-only setups and ex-
perience 1.7x reduced latency than DLA-only configurations. Contributions and
results of this chapter have been published in:

— [22] Halima Bouzidi, Mohanad Odema, Hamza Ouarnoughi, Smail Niar, Mo-
hammad Al Faruque. 2023., ”Map-and-Conquer: Energy-Efficient Mapping
of Dynamic Neural Nets onto Heterogeneous MPSoCs,”2023 60th ACM/IEEE
Design Automation Conference (DAC), July 2023.

81

5.2 Related Works

5.2.1 Dynamic Neural Networks

Dynamic Neural Networks serve as attractive solutions to scale computation
according to the input complexity, providing latency speedup and energy gains.
Incorporating dynamicity into NN inference has been widely studied for CNN ar-
chitectures through early-exiting along the architecture’s depth (i.e., layers) [216]
or width (i.e., channels) [259]. Recently, early-exiting is emerging to Vision Trans-
formers (ViT) as they exhibit many computation redundancies [180, 257]. The
dynamicity in vision transformers has been leveraged on tokens, heads, and enco-
der levels. For instance, HeatViT [54] introduced a token selector operation that
progressively conserves informative tokens conditioned on features from the pre-
vious layer. Similarly, MP-ViT [122] introduced a multi-path routing strategy for
patches exhibiting different information scales to be processed by adequate Trans-
former encoders. MIA-Former [257] dynamically adapts the number of heads in
attention layers. This latter approach can also be exploited for model partitioning,
as it represents the width in ViT. However, most existing works still need to catch
the hardware dimension when designing a dynamic ViT, which is a vital factor
given their complexity.

5.2.2 Computation Mapping on MPSoCs

Recent MPSoCs contain diverse heterogeneous CUs that usually share system
memory, making them more flexible for collaborative execution. Recent works have
explored this specificity of MPSoC to optimize the execution of NN. AxoNN and
MEPHESTO [152, 237, 49] propose modeling strategies to characterize execution
latency and energy consumption for computation mapping on the AGX Xavier
MPSoC. Jedi [98] provides a framework built upon TensorRT to accelerate NN via
model parallelism to maximize throughput for batched inference. [103, 105] pro-
poses evolutionary-based scheduling for NN layers on heterogeneous MPSoCs with
DVFS by exploiting both data and model parallelism to optimize the throughput.
DistrEdge [88] provides a detailed analysis of different model parallelism schemes
for distributed computing over edge devices. However, none of the prior works
have considered the design of dynamic NN in the computation mapping problem
for collaborative execution on MPSoCs.

Table 5.1 Comparison between Related-works and ours

Related Work
Early
Exiting

Model
Parallelism

Collaborative
execution

DVFS
Training

free

AxoNN [49] x x
Jedi [98] x x x

DistrEdge [88] x x x
Kang et al. [103] x x x x
S2DNAS [259] x x x
HADAS [21] x x
Edgebert [212] x x x

Ours x x x x x

82

To the best of our knowledge, our work is the first to address the problem of
dynamic NN design and mapping onto heterogeneous MPSoC in a collaborative
manner. Thus exploiting NN dynamicity, MPSoC heterogeneity, and reconfigura-
bility (DVFS) for an energy-efficient execution on MPSocS. Table 5.1 highlights the
key differences between related works and Ours.

5.3 Motivational Example

To illustrate our motivation in a more concrete context we provide Figure 5.1
that illustrates the underlying performance tradeoffs of deploying an NN onto
a heterogeneous MPSoC. Specifically, the example compares different mapping
approaches for a Visformer architecture [44] for image classification -from the
Vision-Transformers category [57]- onto an AGX Xavier MPSoC with a single
GPU and two deep-learning accelerators (DLAs).

197 54

31

5915 69

30

175
Energy

Savings No Fmap

Reuse 40%

less

Figure 5.1 Performance comparison between different mapping and deployment
options for Visformer [44] on Cifar100 and AGX Xavier MPSoC

As shown in the left subfigure, mapping the Visformer entirely to either hardware
computing unit, namely GPU-Only and DLA-Only, yields a sub-optimal perfor-
mance with regards to energy consumption for the former, and with regards to
execution latency for the latter. As an alternative, we implemented a distributed
static mapping strategy that aims to harvest the best of both worlds – GPU’s
speed and DLA’s energy efficiency. More so, we implement the mapping strategy
to exploit the underlying parallelism through partitioning the Visformer along its
width dimension (i.e., the attention layer heads) and distributing them along the
CUs. Mildly, the static mapping strategy leads to performance improvements over
its single-mapping counterpart with regards to each component’s deficient metric
(42.6% speedup over DLA-Only and 11.1% energy gains over GPU-only). Accor-
dingly, we alter our implementation to attain a dynamic version of this mapping,
namely Map-Conquer, where the Visformer is deployed as a multi-exit neural net-
work on the MPSoC, leading to substantial performance gains due to the nature
of dynamic inference. In fact, this dynamic mapping strategy dominates the DLA
with respect to both the latency (44.4% speedup) and energy efficiency (14.5%
gain). Still, one deficit from such distributed mapping strategies is the additio-
nal inter-CU overheads experienced across the MPSoC. In the right sub-figure, we
show that adopting a dynamic strategy can also alleviate such burden compared to
the static mapping approach. Particularly, our approach identifies the key feature

83

subset from each stage and only involves those in any needed inter-CUs exchanges,
denoted by Fmap Reuse. This scheme leads to 40% less Fmap Reuse compared
to static mapping (which exchanges all needed features) at the expense of 0.5%
accuracy drop.

5.4 Novel Scientific Contributions

In the realm of our observations and motivations summarized in Section 5.3,
we introduce the following novel contributions:

— We present Map-and-Conquer, a novel energy-efficient execution scheme for
Dynamic Neural Networks (NN) on heterogeneous MPSoCs that makes the
best of both worlds of dynamic inference and distributed parallel computing
paradigms.

— We leverage model-parallelism along the width dimension to partition the NN
to multiple inference stages that can be run dynamically and concurrently on
the MPSoC. The inference stages are meant to serve input data of increasing
complexity, where simple samples are assigned to earlier stages.

— We derive a comprehensive system model to characterize the performance of
concurrent inference stages on heterogeneous CUs with support for Dynamic
Voltage and Clock Frequency Scaling (DVFS) for energy efficiency.

— We design an optimization framework based on evolutionary algorithms to
search for the best width-based partitioning and workload mapping for Dy-
namic NN on the available heterogeneous CUs of the MPSoC.

— We conduct our experiments on CNN and Transformer based NN architec-
tures for image classification on the CIFAR-100 dataset.

— We demonstrate the merit of Map-and-Conquer on the NVIDIA Jetson
AGX Xavier MPSoC using various NN architectures. Map-and-Conquer can
achieve up to ∼ 2.1x more energy efficiency than the GPU-only mapping
while incurring ∼ 1.7x less latency than DLA-only mapping, all while pre-
serving the desired level of accuracy.

5.5 Problem Statement

5.5.1 System Model for Mapping DyNN onto Heterogeneous MPSoCs

In this section, we comprehensively model the components needed to conduct
a static-to-dynamic transformation of a given pretrained NN model and charac-
terize its performance overheads when executing on the heterogeneous MPSoC
accordingly.

5.5.2 Dynamic Transformation of Neural Networks

Consider an unaltered pretrained basic neural network, N N , constituting a
sequence of n computing layers (i.e., workloads) as follows:

N N = Ln ◦ Ln−1 ◦ Ln−2 ◦ ... ◦ L1 (5.1)

84

CU1

CU1

CU2

CU3

S1

S3

S2

Output
(S2)

Output
(S1)

Output
(S3)

Output
(NN)

Cls2

Cls1

Cls3

Cls

Static output – not dependent on the input data sample complexity
Dynamic output – dependent on the input data sample complexity

Figure 5.2 Transformation of NNstatic into NNdyn based on s and I, and mapping
NNdyn onto a MPSoC with multiple CUs

in which each computing layer, Lj, consists of pretrained weight parameter ma-
trices (e.g., filters) whose count Wj represents the ‘width’ of the layer. Without
losing generality, we refer to these weight matrices here as ‘channels’ such as those
in a convolutional NN, whereas the same terminology can be applied to the ‘heads’
in a Transformer NN. Therefore, we can define the jth layer within the NN as:

Lj = {Cj
1 , C

j
2 , C

j
3 , ..., C

j
Wj

} (5.2)

where Cj
i represents the ith channel in the jth layer. The output result of a com-

puting layer is a feature map of Wj channels denoted as F j.
Now, consider an MPSoC that comprises M CUs CU = {CU1, CU2, ..., CUM},

the goal is to derive a strategy to partition every Lj into M subsets according to
its width dimension (i.e., the channels), and thus, Lj and F j are redefined as:

Lj = {lj1, l
j
2, l

j
3, ..., l

j
M} and F j = {F j

1 , F
j
2 , F

j
3 , ..., F

j
M} s.t. Wj ≥ M (5.3)

which enables every contiguous subset of channels, ljm, to be mapped onto one
of the computing units, CUm ∈ CU. In this sense, we define three operations
to characterize this mapping problem: 1 Partitioning (P) ; to divide layers
and generate the subsets ljm, and 2 Concatenation (I) ; to reuse the generated
intermediate features, F j

m, in set of the immediate next layer in all subsequent
stages, {lj+1

m+1:M}. In accordance, we define two parameter matrices to characterize
these operations:

P =


p1

1 · · · pn1
...

. . .
...

p1
M · · · pnM

 , I =


I1

1 · · · In1
...

. . .
...

I1
M · · · InM

 (5.4)

85

where P is the partitioning matrix in which every pji represents the fraction of
channels in a layer Lj (equation (5.2)) are to be assigned to lji . I is an indicator
matrix in which Iji ∈ {0, 1} indicates whether the intermediate features, F j

i , are to
be used in the j+1 layers in the following stages. Figure 5.2 provides an illustration
of how these matrices govern the partitioning and concatenation operations of a
neural network. As shown, each CUm on the MPSoC can host a unique sequence
of channel subsets, which we denote as a stage, Si, given as:

Si = lni ◦ ln−1
i ◦ ... ◦ l1i (5.5)

thus, ultimately, we obtain the following set of stages:

S = {S1, S2, ..., SM} (5.6)

Suppose we augment each stage Si with an exit at its tail (e.g., a classifier block) ;
Each stage can now act as a separate inference sub-model, to be invoked based on
some established runtime criteria during deployment (e.g., input processing diffi-
culty). In our analysis, we focus on delivering the optimal dynamic transformation
of the NN under the assumption of optimal mapping of input samples to the cor-
responding inference stages. With that being said, each input sample is assigned
to the earlier inference stage that correctly predicts its output class label.
Lastly, we define the 3 Mapping Vector (M) to parameterize the computing
workloads assignment of the obtained inference stages onto the MPSoC:

Si → CUm ∀ Si ∈ S, CUm ∈ CU (5.7)

where the mapping vector, M, can by given as:

M = [π1, . . . , πM] s.t. πk ̸= πk′ ∀ 1 ≤ k ≤ k′ ≤ M (5.8)

in which every entry πk is one CUm ∈ CU to whom Sk is mapped. The condition
is for enforcing that no two stages are mapped onto the same CUm.

5.5.3 Distributed Performance Modeling for Dynamic Inference

Here, we model the dynamic inference execution overheads given the parti-
tioned deployment of a model on a heterogeneous MPSoC regarding execution
latency and energy consumption. We recall that we assume ideal input mapping in
which the number of stages needed to process an input sample i is known a priori.
Accordingly, we compute the overall accuracy, latency, and energy per input data
sample, where each input data sample needs at least one inference stage to be cor-
rectly classified. For input data samples that fail to be correctly classified by every
inference stage, we assume they must pass through all the inference stages. In
practice, input mappings can be determined using runtime controllers as stated in
[246, 21]. Thus, we compute both latency and energy in a dynamic manner for each
input sample from the validation set of the target task (e.g., image classification).

1⃝ Execution Latency. Let τ ji denotes the execution latency overhead of sublayer
lji in Si. We first aim to derive an expression for the latency overhead of every stage,

86

denoted by TSi
. At this point, we highlight that stages are indexed by the order

of their execution. For example, S2 is only instantiated if S1 is deemed insufficient
to terminate the processing. Thus, there exists inter-stage dependencies of Si on
its predecessors S1:i−1 (as indicated by Ii) whose overheads need to be accounted
for, especially when stages are mapped onto different CUs.

CU1

CU2 stall

No dependence on S1

Figure 5.3 Concurrent execution of S2 and S1 considering timing dependencies

To avoid the demerits of a sequential execution model, we leverage the underlying
separation of the compute units and propose a concurrent execution scheme that
considers these dependencies. Specifically, any sublayer lji in an ‘instantiated’ Si
can immediately proceed to execute its inputs once all of its required input fea-
tures, {(F j−1

1:i−1 · Ij−1
1:i−1) ∪F j−1

i }, are readily available within its local vicinity. From

here, we can characterize the cumulative latency overhead at lji as follows:

T ji = τ ji + max{T j−1
i , T j−1

k + uj−1
k→i | Ik = 1 ∀ 1 ≤ k < i} (5.9)

where the second term captures the maximum cumulative latency experienced in
a previous layer from all stages preceding Si ; thus, T ji captures the cumulative
latency estimate in stage i at j while accounting for inter-stage dependencies and
the need for synchronization, while uj−1

k→i is the data transmission overhead of the
features F j−1

k to the local buffer of the computing unit assigned to Si (See Figure
5.3 for an illustrative example). Given n layers in Si, the execution latency of Si
is equal to those of the last layer (i.e., nth) of the ith inference stage (i.e., Si) as
following:

TSi
= T ni (5.10)

2⃝ Energy Consumption. By definition, the energy consumption is the average
power consumption per unit of time. Thus, for every CUm ∈ CU, we first charac-
terize its power consumption as follows:

Pm = P s
m + P d

m(ϑm) ≈ α + β · ϑm (5.11)

P s
m and P d

m are the static and dynamic components, respectively. The latter is
parameterized by the scaling of the 4 DVFS policy (ϑm) through varying the
operating clock frequency on CUm, where αm and βm are constants. From here,
the energy required to complete processing at sublayer lji during inference is given
by:

eji = τ ji · Pm (5.12)

87

Now by extension, the total energy consumed by Si is:

ESi
=

n∑
j=1

eji (5.13)

3⃝ Overall Characterization. Under the underlying concurrent execution scheme,
the overall performance characterization for the end-to-end latency and energy of
the dynamic N N are given by the following equations, (5.14) and (5.15), respec-
tively:

TP,I,M,ϑ = max{TSi
∀ Si ∈ S} (5.14)

EP,I,M,ϑ =
M ′∑
i=1

ESi
s.t. 1 ≤ i ≤ M ′ ≤ M (5.15)

where for a dynamic inference on a heterogeneous MPSoC, described through the
parameters choices of (Partitioning : P, Concatenation: I, Mapping : M, DVFS :
ϑ), its execution latency is the maximum from all its stages due to parallelism,
whereas its energy consumption is the aggregation of energy consumed by the M ′

‘instantiated’ stages to process an input sample.

Shared Memory: MStored for

subsequent

stages

S1 exit

activate activate

terminate terminateterminate

Each CU
can activate

or terminate

CU2CU1 CU3

S2 exit S3 exit

Figure 5.4 Illustration of data movement and feature storage on the MPSoC

5.5.4 Problem Formulation

Let Π = (P, I,M, ϑ) combine all parameters that characterize a dynamic neural
network’s mapping onto an MPSoC. In this grand scheme, PandI are hardware-
agnostic and only depend on the N N architecture, whereas M, ϑ are hardware-
specific. However, the interplay of the chosen parameters of Π directly impacts
the overall performances (i.e., accuracy, latency, and energy). Owing to this ob-
servation, we formulated the problem as a multi-objective joint optimization in
which we investigated network- and hardware-related design parameters to three
objectives at once. In a nutshell, this joint optimization aims to find the ideal set
of parameters, Π∗, that can enhance a performance objective, P , given a set of
constraints:

Π∗ = arg min
Π

P(Π) (5.16)

s.t. TΠ∗ < T TRG, EΠ∗ < ETRG, sizeΠ∗(F, I) < M

88

Where T TRG and ETRG are the respective target latency and energy constraints to
be set by the practitioner according to the system and application requirements.
These parameters generally serve as control knobs to balance latency and energy
and keep them within specific ranges. The constraint sizeΠ(F, I) < M is set to
limit the size of the intermediate feature maps (denoted as F) that need to shared
and reused between parallel stages. Their overall size must be less than the MP-
SoC’s shared memory size, M (see Figure 5.4), so as to minimize communication
and synchronization overheads. We note that minimizing the size of feature maps
that must be communicated across inference stages is essential to reduce the syn-
chronization overhead for subsequent stages. P is kept generic and can be tuned
to the designers’ objectives.

5.6 Proposed Approach

In this section, we propose an evolutionary-based optimization framework to
solve the partitioning and mapping problem of Dynamic NN on MPSoCs. Figure
5.5 gives an overview of our framework, whose key components are detailed below.

Const.: M, TTRG, ETRG

MPSoC NN

Acc. Lat. Ergy
Objectives: P

Mutation &
Crossover

Evaluate

HW Performance
Characterization

Elite Selection

Channel
Ranking

 P EvaluationConst.
Filter

N1:M

Pareto Optimal:
- Partionning (P)
- Concatenation (I)
- Mapping (M)
- DVFS (v)

Figure 5.5 Overview of the workflow of our proposed optimization framework

5.6.1 Search Space (X)

Here, we describe how to generate a search space, X, of mapping strategy
parameters, namely the space of (P, I,M, ϑ). Firstly, given a pretrained N N and
a heterogeneous MPSoC with M CUs, we can generate X based on the N N ’s
layer specifications and the MPSoC’s underlying hardware components. For the
former, the attainable depth and width parameters of every layer Lj ∈ N N define
the (P, I) parameter matrices. For the latter, M = |CU| specifies its mapping
space and the total number of inference stages. We assume that each inference
stage will be assigned to one CU but different inference stages can not share the
same CU to avoid memory contention overhead [237]. Lastly, ϑ is specified through
the hardware reconfiguration parameters (DVFS). For instance, the mapping search
space complexity of one layer from the Visformer [44] N N model is O(1.5×105) =
O(83 × 3! × 50), considering 8 channel partitioning ratios, M = 3, and |ϑ| = 50.

89

5.6.2 Performance Objectives (P)

Performance objectives need to be designated as P for the main optimization
function in equation (5.16), to be specifically used for the candidate mapping
evaluation. For our case, we used the following weighted product function for P :

P = (Accbase
AccSM

) × (
M∑
i=1

TSi
·Ni) × (

M∑
i=1

ES1:i ·Ni) (5.17)

In which Accbase is the baseline static accuracy of the pretrained NN model ; AccSM

is the accuracy of the last stage of the dynamic version of NN as its base accuracy.
The terms above are included to ensure that no accuracy drops ensue when a
model’s structure changes through the I matrix from cutting-off paths of feature
maps reused from previous inference stages. Ni represents the number of input
samples -from the validation dataset- correctly classified at Si, given that every
prior stage misclassifies them. TSi

is the latency experienced by the MPSoC at
stage Si based on equation (5.10) ; ES1:i is the energy consumed by the system as
the result of executing i stages of the model – each Ei is evaluated as in (5.13).

5.6.3 Evolutionary Search Algorithm

We employ an evolutionary-based search algorithm to effectively explore the
design space defined by X. Following the workflow in Figure 5.5, every new search
iteration entails a new population, say X ′

i ⊂ X. Then, for every sampled configu-
ration Π ∈ X ′, its corresponding dynamic N N -issued from the static-to-dynamic-
transformation and hardware settings -from mapping vector and DVFS- are eva-
luated using a predefined objective function, P . Based on the obtained results,
configurations that do not meet the search constraints (e.g., memory usage via
feature maps reuse ratio) are omitted, whereas the remaining ones are ranked ac-
cording to P . Afterward, the 1st quartile (25%) of elite configurations Π′ ∈ X ′′ is
selected for a mutation and crossover step to generate the new population X ′

i+1
for the next generation of the evolution. Once the search budget expires (i.e., the
maximum number of generations), a Pareto set is calculated from all the gene-
rated populations from which the ideal configurations Π∗ of dynamic N N and
workloads mappings are extracted.

5.6.4 Channel Partitioning, Reordering, and Arrangement

Before a candidate configuration Π ∈ X ′ is evaluated on the objective function
P , the N N should be partitioned according to the channel parameters ratios in
P. Nevertheless, the width channels in each model layer are arranged according to
their importance scores to maximize performances when partitioning. The logic is
that given the sampled partitioning matrix P for a configuration Π ; it would be
beneficial to assign the most important channels in the layer to earlier inference
stages for dynamic inference so that to maximize the value of Ni. This would
enable numerous samples to terminate processing prematurely if deemed feasible,
consequently enhancing the dynamic inference performance of the N N regarding
experienced latency and energy on the MPSoC. This reordering method is feasible
as all channels within the same layer share the same dimensions. Channel ranking

90

is widely used for network pruning, and we follow the approach in [151] to estimate
each channel’s importance.

5.7 Experiments and Evaluation

In this section, we conduct extensive experiments to showcase the efficiency
of our proposed framework in realizing effective width-based dynamic NN along
with mapping computing workloads on the MPSoC. We study the case of two
distinct neural network architectures, 1 Visformer, a Transformer-based archi-
tecture, and 2 VGG, a CNN-based architecture. Both architectures are designed
for vision-related tasks (e.g., image classification). We use a real MPSoC platform
from NVIDIA, namely Jetson AGX Xavier [162] to assess the merit of Map-and-
Conquer in finding optimal dynamic NN workload distribution given the hetero-
geneity between GPU and DLA.

5.7.1 Experimental Setup

Our experiments are conducted on the MPSoC provided by NVIDIA: Jetson
AGX Xavier. This platform embeds CPU, GPU, and DLA cores on the same
chip, sharing the same system memory. To run the NN workloads on the DLA, we
use TensorRT and ONNX to build inference engines from the PyTorch model. As
NNs, we use Visformer [44] as Transformer-based architecture and VGG19 [199]
as CNN-based architecture to validate our approach for both cases. The dataset
used for accuracy assessment is CIFAR100. Regarding the optimization framework,
we run the optimization algorithm for 200 generations, each with a population
size of 60, resulting in 12K overall evaluations. Furthermore, the evaluation step
is performed on a cluster of 12 GPUs, taking up to ∼ 10 GPU hours to run the
overall optimization process.

5.7.2 Search Efficiency Analysis

In this section, we analyze the results of the search process conducted by our
framework under two main cases: 1) When no constraint is set to limit the feature
map reuse between inference stages, 2) When only less than 75%, 50% of feature
maps can be reused, respectively. In Figure 5.6, we show the optimization results
for each case. Firstly, we observe that most of the explored configurations achieve
a good tradeoff between DLA energy efficiency and GPU latency speedup. Fur-
thermore, under the same baseline accuracy of Visformer, we notice an energy
gain up to ∼ 2.1x compared to the GPU-only mapping with latency ≦ 30ms.
Similarly, a latency speedup up to ∼ 1.7x compared to the DLA-only mapping,
with comparable energy efficiency. Secondly, we can notice an accuracy drop of ∼
6% when setting up hard constraints on the feature map reuse (See the 50% case).
Hence, defining the optimal inter-stages concatenation strategy that determines
the feature maps reuse ratio is crucial to maintaining the desired level of accuracy
while minimizing inter-CUs dependencies.

91

Figure 5.6 Results of three search strategies (From left to right): No constraint is
set on the Fmap Reuse. Under a constraint of reusing only less than 75% of feature
maps. Under a constraint of reusing only less than 50% of feature maps. All the
results are reported for Visformer on the AGX Xavier MPSoC. In the three plots,
we highlight the configurations that exhibit the highest latency-energy tradeoff
while preserving less than 0.5% drop in accuracy

5.7.3 Pareto Optimal Models Analysis

In this section, we delve further into the performance breakdown of the Pa-
reto optimal models obtained from the three search strategies. We select the most
energy-oriented models and compare them with the baseline Visformer mapped
entirely on the DLA. Figure 5.7 and Table 5.2 detail the obtained results. By ex-
ploring neural network dynamicity and concurrency on heterogeneous CUs, our
models achieve better latency-energy tradeoff, providing latency speedup of ∼
1.83x and up to ∼ 14.4% of energy gain as shown in the left sub-figure. In ad-
dition, the correlation between feature map reuse and accuracy is highlighted in
the right sub-figure. Reducing the feature maps reuse across stages decreases the
inter-CUs data transmission at the cost of accuracy drops. However, some models
can achieve comparable accuracy to the baseline while only reusing 60% of the
necessary feature maps (See No constr. and 75% constr. cases). We note that for
our case, we assume the positive correlation between the ratio of feature maps
reuse between inference stages and memory contention overheads. According to
the findings in [237] and by employing their analytical model or our case, we ob-
served in our preliminary that the latency slowdown due to memory contention
overhead in ’No reuse const.’ case was around 20-30%. This is explained by the fact
that inference stages from the same NN generally exhibit low memory bandwidth

92

Table 5.2 Performances Breakdown of the Pareto optimal models obtained by
Map-and-Conquer and the baselines

Opt.

Strategy

NN

Implment.

TOP-1 Acc

(%)

Avg. Enrg.

(mJ)

Avg. Lat.

(ms)

Fmap. reuse.

(%)

Visformer (Transformer-based Architecture)

None
GPU

88.09
197.35 15.01 -

DLA 69.22 53.71 -

No Fmap

Constr.

Ours-L 86.12 108.44 25.58 68.75

Ours-E 87.58 59.21 30.40 61.25

75% Fmap

Constr.

Ours-L 84.64 102.67 24.65 65.00

Ours-E 87.67 65.12 29.46 75.00

50% Fmap

Constr.

Ours-L 82.69 116.00 24.51 50.00

Ours-E 84.16 82.44 32.70 50.00

VGG19 (CNN-based Architecture)

None
GPU

80.55
630.11 25.23 -

DLA 164.89 114.41 -

No Fmap

Constr.

Ours-L 84.81 251.63 25.67 52.94

Ours-E 84.63 153.97 34.02 70.58

75% Fmap

Constr.

Ours-L 84.76 247.34 26.07 64.70

Ours-E 82.64 136.31 37.22 47.05

50% Fmap

Constr.

Ours-L 84.62 250.80 25.83 50.00

Ours-E 82.53 136.41 37.24 50.00

demands compared to running concurrent NNs with high memory demands.

14.4% less energy

up to 1.83x

Speedup

40% less

than static

Figure 5.7 Comparison between the most energy-oriented models selected from
the obtained Pareto sets by each search strategy and the baseline on DLA

93

5.7.4 Generalization to Other Neural Architectures

To further demonstrate our approach’s applicability, we evaluate our framework
on a typical CNN architecture, VGG19. Table 5.2 details the obtained results. Re-
garding the baseline performances, VGG19 depicts a high energy consumption on
GPU and slow execution latency on DLA. This is explained by its many weights
and large feature maps, which entail high memory footprints for both CUs. Moreo-
ver, the large number of weights may exhibit high redundancy. Our approach has
exploited these two properties of VGG19 well, resulting in up to ∼ 4.62x energy
gain and ∼ 4.44x latency speedup. Furthermore, according to our analysis, more
than 80% of the input data samples were correctly classified in earlier stages with
fewer channels, resulting in considerable latency and energy gains.

5.8 Discussion and Key Insights

1⃝ Main Takeaway. Hardware-specific co-optimization of Neural Networks has
been thoroughly studied in literature [221, 254, 100, 69]. Recently, there has been
an increasing interest in dynamic pruning techniques as first introduced by [139].
Following its success, recent works have focused on enhancing dynamic pruning
from a hardware perspective [69, 65]. However, most of these works are built upon
highly specialized hardware settings. What distinguishes Map-and-Conquer from
related works is its general optimization landscape that allows it to operate on any
MPSoC –general-purpose or specialized ones. Notably, abstracting low-level hard-
ware details in the mapping problem allows for further extrapolation on FPGA,
ASIC, or brain-inspired hardware devices. Map-and-Conquer has demonstrated
promising results that can serve as a stepping stone for future research endeavors.

2⃝ On the Power of Dynamic Neural Networks. Recently, more efforts have been
dedicated to developing new techniques to maximize dynamicity and flexibility
within neural networks [21, 69]. The particularity of Map-and-Conquer is its novel
method of early-exiting along the width dimension that relies on splitting and
reorganizing the channels to of an already pretrained NN model to spawn sub-
models (i.e., inference stages) capable of operating on less complex input data. Our
approach can be generalized to any neural network architecture by operating on
the parameters that scale the width of the networks (e.g., the number of attention
heads in Transformers or Graph size in GNNs). Our dynamic approach can be
enhanced by incorporating more dynamic techniques such as depth-wise early
exit and layer skipping. However, one challenge arises from the need to unify
the structure of the dynamic inference stages to enable the particularity of feature
maps to preserve the original accuracy without the need to train or fine-tune the
dynamic Neural Net.

3⃝ The Importance of Exploiting Heterogeneity within MPSoCs. Heteroge-
neous MPSoCs are emerging as an attractive solution to provide more flexibility
in deploying computing workloads of different characteristics on diverse compu-
ting units within the same die. The particularity of memory sharing has made it
possible to manage data communication between CUs with low to negligible ove-
rhead, offering favorable prospects to exploit the collaborative execution paradigm

94

on these MPSoCs. Map-and-Conquer seize this opportunity to the fullest by incor-
porating the dynamicity and mapping of inference stages, enabling the dynamic
usage of CUs. In our approach, MPSoC hardware resources are used dynamically
according to the complexity of the input data. As such, simple input data requi-
ring one inference stage will be processed by either the fastest CU (i.e., GPU)
or the energy-efficient CU (i.e., DLA). As the input data complexity increases,
the processing will require the collaborative usage of more CUs (combination of
GPU-DLA or DLA-DLA) to balance latency and energy efficiency. Following this
novel scheme of Map-and-Conquer, both the workloads of the dynamic neural net-
work and Hardware resources are used dynamically, providing more scalability and
flexibility for runtime applications, which also opens doors for further development
of an end-to-end self-adaptive system, especially for critical application domains
(e.g., autonomous cars and unmanned aerial vehicle).

5.9 Summary

In this chapter, we have explored the prospect of dynamically mapping intri-
cate neural networks onto various CUs of heterogeneous MPSoCs. Specifically, we
combine the concept of early-exit NN along the width dimension and computation
parallelism to make the best of both worlds. Consequently, we introduce Map-
and-Conquer, a novel framework crafted to align dynamic neural networks (NNs)
with heterogeneous MPSoCs, thereby maximizing processing parallelism. Our ap-
proach focuses on identifying the optimal way to divide a dynamic NN across its
’width’ dimension, enabling the parallel and concurrent execution of NN inference
stages on different computing units. Additionally, we propose a unique method
to allocate these divided NNs onto the MPSoC, utilizing dynamic multi-exit net-
works to enhance performance. We validate our framework using Transformers
and CNNs on the CIFAR-100 dataset and employ NVIDIA’s Jetson AGX Xa-
vier MPSoC, which includes a GPU and Deep Learning Accelerator (DLA), for
our hardware experiments. Our findings have shown that our dynamic configu-
rations are 2.1x more energy-conserving than GPU-only setups and experience
1.7x reduced latency than DLA-only configurations. Future works can extend our
Map-and-Conquer framework from the following perspectives:

— Applicability of our approach to other applications, tasks, and datasets (e.g.,
anomaly detection, scene parsing, and extraction).

— Leveraging other dynamic inference techniques that provide an edge for com-
putation parallelism. For instance, dynamic routing and mixture-of-experts.

— Innovating a new problem-solving approach that can minimize the search
time. For instance, dynamic programming and reinforcement learning.

In addition, we believe that the novel computing paradigm of Map-and-Conquer
can also be beneficial for new emerging hardware architectures such as heteroge-
neous integration in Chiplets and heterogeneous multi-core RISC-V systems.

95

Chapitre 6

Performances Modeling of Computer Vision-based Convolutional
Neural Networks on Edge GPUs

6.1 Introduction

Machine Learning (ML) algorithms have demonstrated their efficacy across se-
veral fields of application, including Computer Vision (CV) and Natural Language
Processing (NLP). The pairing of reliable hardware (HW) platforms with large and
diverse datasets enables machine learning algorithms to tackle intricate challenges
across various applications, including autonomous driving and healthcare. Deep
Learning (DL) techniques, such as Convolutional Neural Networks (CNN), are
often regarded as cutting-edge methods in CV applications. For instance, CNNs
are extensively employed for scene comprehension and perception in autonomous
driving cars [97]. Processing data near sensors makes edge computing mandatory
for privacy and network congestion concerns. CNNs can also leverage the potential
benefits offered by edge computing through the use of ASIC, FPGA, GPU, and
MCU. Particularly, edge GPUs exploit massive data parallelism that characterizes
CNN models at the cost of high power consumption. However, these devices offer
fast and flexible product development and short time-to-market compared to other
HW architectures [123, 101].

As CNNs continue to advance in accuracy and complexity, their computational
and memory demands set significant challenges for edge GPUs. Investigating dif-
ferent CNN design alternatives to pursue hardware efficiency is time-consuming.
Conventional methods propose quantifying CNN’s complexity by using measure-
ments of FLOPs and weights [177]. However, CNN’s performances are not strongly
correlated with proxy estimations of FLOPs or weights [15]. In order to save design
and deployment time, a quick performance estimation strategy becomes essential.
This strategy can assist in selecting the optimal CNN for a specific HW platform
or comparing other HW platforms for a target CNN. Additionally, it may serve as
a surrogate-based model for directing the design optimization process toward the
most favorable CNN/HW designs.

In this chapter, we address one of NAS’s primary challenges: The evaluation
step, which typically involves extensive performance measurements. To accelerate
this process, we propose an end-to-end characterization and modeling approach to
elaborate prediction models for rapid performance estimation in NAS. Our work
includes a comprehensive analysis of CNN workloads for image classification on
edge GPU devices. We study and explore the correlation between NN features and
critical metrics such as execution time, power consumption, and memory usage.
Accordingly, we employ ML methods like linear regression, support vector ma-

96

chine, random forest, and XGBoost to model these correlations and develop pre-
diction models. We validate our methodology on state-of-the-art and synthetic
CNN architectures using three NVIDIA Jetson series edge GPUs: AGX Xavier,
TX2, and Nano. Our elaborated prediction models achieved an average error rate
of approximately 11%, 6%, and 8% for execution time, power, and memory usage
estimations, respectively. Contributions and results of this chapter have been pu-
blished in:

— [23] Halima Bouzidi, Hamza Ouarnoughi, Smail Niar, and Abdessamad Ait
El Cadi. Performance prediction for convolutional neural networks on edge
GPUs. The ACM International Conference on Computing Frontiers (2021)

— [24] Halima Bouzidi, Hamza Ouarnoughi, Smail Niar, and Abdessamad Ait
El Cadi. 2022. Performance Modeling of Computer Vision-based CNN on
Edge GPUs. ACM Trans. Embed. Comput. Syst. 21, 5, Article 64 (2022)

Our proposed framework is currently in use and has been commercialized by the
Research Institute Technologique SystemX, based in Toulouse, France. This ins-
titute has begun employing and reusing our modeling methodology within their
automotive systems to assess the execution overheads of CNNs on edge GPUs [60].

6.2 Related Works

6.2.1 Benchmarking and Performances Analysis

These strategies are based on designing CNNs specifically tailored for the edge
[230, 73, 214, 229]. However, these techniques aim to manually reduce the overall
computational load and memory footprint. Thus, the performances of the resulting
CNNs may vary depending on the hardware platform, as they are not designed for
specific hardware.

6.2.2 Execution Time Modeling

In the literature, prediction models are used either to estimate CNN training
and/or inference execution time. In [7], the authors characterize inference exe-
cution time on GPU platforms using different ML-based approaches: linear re-
gression, SVR, and RF with a Bulk Synchronous Parallel (BSP) based analytical
model. They exploit profiling results obtained from nine (9) benchmarks executed
on nine (9) different GPUs. However, the proposed approach considers general-
purpose applications that cannot be adapted to DL applications.

In [223], the authors propose analytical models to characterize DL training
workloads in large computing clusters. Authors in [196] propose a set of prediction
models for training time with Stochastic Gradient Descent (SGD) optimization
considering the communication time between GPU nodes, I/O processing time,
and GPU processing time. However, the authors only evaluated their prediction
models on three CNNs: AlexNet, GoogleNet, and ResNet50. In PALEO [177], the
number of Floating-point OPerations (FLOPs) required for an epoch is multiplied
by a scaling factor to obtain the training phase’s execution time. However, PALEO
does not consider numerous other operations that do not scale linearly with the
number of FLOPs and significantly impact execution time.

97

Authors in [102, 28, 204, 218] leverage ML approaches to model CNN in-
ference execution time on a layer-wise granularity. However, layer-wise modeling
approaches are not adapted to complex CNN architectures with dependencies bet-
ween layers. For instance, ResNet [84, 85] and DenseNet [94] are characterized by
skip and dense connections between layers. Another example is the parallelism
in CNNs such as GoogleNet [209] where layers within the inception block can be
evaluated simultaneously on the GPU [177]. These dependencies can, therefore,
lead to higher prediction errors when estimating execution time.

6.2.3 Power Consumption Modeling

In [183], the authors propose a multi-variable linear regression to predict the
energy consumption of the inference phase for CNNs based on the number of
SIMD instructions and DRAM memory accesses, as they are both high-energy
consumers. The authors used Nvidia Jetson TX1 GPU and obtained about 20%
of an average relative error. However, modeling power consumption using only the
features mentioned above is insufficient as it neglects further optimization of the
neural network computational graph and dataflow.

The idea behind tools proposed in [28, 204, 218] is to explore the hyperparame-
ter space of the most common layers of CNNs, such as convolution, pooling, and
fully-connected layers. The power consumption is then estimated layerwise, and
an average is taken as the end-to-end power consumption of the CNN inference.
However, it is difficult to capture the exact power consumption of each layer as its
execution time is very short, leading to high prediction errors of the overall model
power consumption. Authors in [145, 206, 148] use analytical models to estimate
the average power consumption on FPGA or ASIC platforms. Nevertheless, ana-
lytical models lack flexibility as they require calculating low-level details of the
CNN execution, such as memory transactions and processing elements utilization,
which is not disclosed information for every HW device.

6.2.4 Memory Usage Modeling

HyperPower [204] proposes to model memory usage from structural hyperpa-
rameters of the CNN, such as the number of hidden units. The authors employ
linear regression to model memory usage. However, they have trained their pre-
diction models on only variants of AlexNet [114]. In [143], the authors propose
a modeling methodology for CNN memory usage on CPU and GPU platforms.
Their approach is based on characterizing the memory requirements of convo-
lutional and fully connected layers to predict the entire CNN’s memory usage.
Authors in [8, 106] propose prediction models of cache memory hierarchies for
DNNs on modern discrete GPU platforms to investigate further optimization of
memory performance on GPUs. Some works also leverage performance estimators
to reduce CNN memory footprint during training [32] or inference [136]. However,
they did not consider other performance metrics, such as execution time and power
consumption.

98

Figure 6.1 Correlation between CNN accuracy, on ImageNet dataset, and their
energy consumption and memory usage. The size of the circle corresponds to the
total memory usage from 1 Gigabyte to 7 Gigabytes.

6.3 Motivational Example

Figure 6.1 depicts the tradeoff landscape observed in CNN architectures for image
classification. Each circular shape depicted in the diagram represents a SOTA
CNN model. The size of the circles correspond to the maximum amount of memory
required for processing the inference. In this context, memory usage refers to the
allocation of memory for storing weights and intermediate calculations [143]. The
x-axis indicates the energy consumption, which is determined by the product of
the inference time and the average power consumption measured on an edge GPU
device, namely the NVIDIA Jetson AGX Xavier. The y-axis represents the TOP-1
accuracy on the ImageNet validation dataset [53]. The following observations are
derived analyzing the reported values:

1. The TOP-1 accuracy is not correlated with either energy consumption or
memory usage. EfficientNet-B4 [215] and NASNet-Large [271] both demons-
trate a TOP-1 accuracy of around 83%, however, EfficientNet-B4 consumes
∼89% less energy and requires ∼53% less memory than NASNet-Large.

2. Memory usage is often correlated with energy consumption. NASNet-Large ,
DPN-98, DPN-107 and DPN-137 [41], for instance, have significant memory
footprints and consume a large amount of energy.

These findings highlight how difficult it is to strike the ideal compromise between
CNN’s workload requirements and the hardware limitations of edge platforms.
Furthermore, conducting a comprehensive investigation of CNN design choices on
various hardware platforms can be arduous due to the time-consuming MLOPs
process [266]. Therefore, a viable approach to address this concern is by abstracting
the physical limitations and adopting a performance prediction approach for CNN
without the need to execute them on the hardware device.

99

6.4 Problem Statement

Predicting CNNs performance metrics on edge GPUs can be formulated as
follows: As inputs, we have a CNN (cnni) characterized by a vector of n fea-
tures (f1, f2, . . . , fn). For instance, the number of convolutional and fully-connected
layers, the input image size and the number of neurons are all considered CNN
features. A performance metric prediction function Tk,edgpuj

where k ∈ {execution
time, memory usage, power consumption} We note that in this chapter we use
latency to interchangeably refer to execution time. edgpuj is an edge GPU, is a
mapping function from cnni to R+. The function Tk,edgpuj

is defined below:

Tk,edgpuj
: cnni −→ ŷij where ˆyijk = Tk,edgpuj

(fi1, fi2, . . . , fin) (6.1)

where ˆyijk is the estimated value of the performance metric k of cnni on edgpuj.
We study the case of three different NVIDIA edge GPUs, namely Jetson AGX

Xavier, Jetson TX2 and Jetson Nano. From the problem formulation, the same
modeling approach is applied on each edge GPU. Given that each metric is mo-
delled by a specific mapping function, three sets of prediction models, for each
performance metric k, are associated to each edge GPU.

Table 6.1 Summary of notations.

Name Description

n # of CNN input features

fi CNN input feature (e.g., FLOPs, number of layers, parameters..etc)

cnni Vector of CNN input features
edgpuj Edge GPU indexed by j

k Performance metric: execution time, power consumption, or memory usage

ˆyijk Predicted value of the performance metric k of cnni on edgpuj

yijk Measured value of the performance metric k of cnni on edgpuj

Djk Dataset of input features and measured values of k on edgpuj

Benchmarking Modeling State-of-the-art CNNs Handcrafted CNNs

Software & Hardware PlatformImplementation & Execution

Data CollectionCNN Parser (Features Extraction)
Performance Profiler (Measurements Collection)

Data Preprocessing(Training + Test)
ML Model Training

ML Model Evaluation
CNN Performance Prediction Models

Figure 6.2 Modeling methodology for CNNs performances prediction models.

6.5 Proposed Approach

Our contribution entails presenting a modeling methodology to assess the per-
formance of CNNs on edge GPUs. This methodology examines the correlation
between key CNN characteristics (e.g., image input size, hidden layers, neurons,
activations) and performance metrics (e.g., execution time, power consumption,

100

and memory usage). Our proposed methodology is depicted in Figure 6.2 and
comprises three main steps:

1. Benchmarking where we measure the execution performances of several
CNNs on various edge GPUs. The aim is to leverage correlation and re-
gression analysis to quantify the impact of CNN model-level features on the
performance metrics.

2. Data Collection: In this phase, we gather two distinct types of data from
the underlying benchmarks. Firstly, we collect performance measures, which
provide empirical data on the benchmarks’ execution. Secondly, we collect
characteristics of CNNs, which will be used as input variables for the purpose
of prediction. The data were acquired through the use of a CNN architec-
ture parser and performance profilers. The model parser takes a CNN model
description as an input and generates a comprehensive representation of its
architectural characteristics. The performances profiler takes a CNN archi-
tecture description, generates a ready-to-deploy CNN, deploys and executes
the CNN on the target edge GPU, then returns the execution performance
metrics values (execution time, power consumption, and memory usage).

3. Modeling elaborates a set of ML-based prediction models for each perfor-
mance metric and edge GPU. This step also involves the data pre-processing
to perform feature transformation (i.e., data encoding and transformation)
and feature selection for the ML-based prediction models. The prediction
models are trained on the collected data from the previous step. The trai-
ning process encompasses the prediction model’s hyperparameters tuning
and internal parameters (i.e., weights and biases) learning.

6.5.1 CNN Characterization

Our proposed methodology characterizes CNN execution performances on a
model-level granularity. Regarding the CNN architecture and the target edge
GPUs, we assume that the following factors impact the performances of the CNN:

1. Computational complexity, which directly impacts the GPU activities.
2. Memory workload, which corresponds to read and write memory operations

for input, intermediate and output activations and weights ;
3. CNN hyperparameters, which corresponds to the structural dependencies

between computation and memory operations.
Considering the above factors, we search for the most correlated features with
CNN performance. Since we target to model different performance metrics, the
impact of the features may differ from one target performance metric to another.
For instance, CNN features related to memory requirements are the most relevant
to model CNN memory usage. We further discuss the CNN features related to
each impact factor and the followed process to select the most relevant features
for the prediction models.

6.5.1.1 Computational Complexity

The computational complexity is commonly quantified by the theoretical to-
tal number of FLOPs (Floating-point Operations). This characteristic depicts the
number of calculations needed to execute a single inference. According to the

101

0 1 2 3 4 5 6
Total number of FLOPs ×1010

0

25

50

75

100

125

In
fe

re
nc

e e
xe

cu
tio

n
tim

e (
m

s)

Correlation between FLOPs and execution time
Jetson AGX

0 1 2 3 4 5 6
Total number of FLOPs ×1010

0

50

100

150

200

250

In
fe

re
nc

e e
xe

cu
tio

n
tim

e (
m

s)

Correlation between FLOPs and execution time
Jetson TX2

0 1 2 3 4 5 6
Total number of FLOPs ×1010

0

100

200

300

400

500

600

In
fe

re
nc

e e
xe

cu
tio

n
tim

e (
m

s)

Correlation between FLOPs and execution time
Jetson Nano

Table 6.2 FLOPs breakdown.

CNN Conv2D Add Mul Pool

ResNet-50 7.71B 31.02M 25.58M 1.81M

DenseNet-121 5.67B 7.89M 8.02M 1.98M

DPN-98 23.34B 70.54M 61.63M 2.71M

GoogleNet 3.00B 6.61M 6.64M 12.55M

ResNet-101V2 14.38B 52.32M 44.59M 2.16M

Inception-v3 5.67B 23.80M 23.85M 12.18M

Figure 6.3 Correlation between FLOPs and CNN execution time on three edge
GPUs (from left to right): NVIDIA Jetson AGX Xavier, TX2, and Nano.

FLOPs breakdown analysis shown in Table 6.2, most FLOPs are attributed to the
calculations carried out in convolutional layers, accounting for almost 98% of the
overall computations. As anticipated, the computational barrier arises from these
layers due to their involvement in several Multiply-accumulate (MAC) operations
[124]. Nevertheless, the optimization strategies employed by GPU on the CNN
computational graph hinder the accuracy of determining the end-to-end perfor-
mances based only on the theoretical total number of FLOPs. To further demons-
trate this, Figure 6.3 depicts the relation between the total number of FLOPs and
the inference execution time on three (03) different edge GPUs. As shown, there is
no strong correlation between execution time and FLOPs. For instance, two mo-
dels may have the same FLOPs number but different end-to-end execution times.
Furthermore, as depicted in Figure 6.4.a, there is no linear correlation between
FLOPs and power consumption. Two CNN models may have the same number of
FLOPs but consume different power budgets.

6.5.1.2 Memory Requirements

For General-Purpose GPU (GP-GPU) devices, memory activities significantly
impact execution performances. Based on our experimental findings, it has been
shown that the substantial memory demands of CNN inference may primarily be
attributed to three key aspects.

1. Memory read of model’s weights and biases,
2. Memory read/write of input data and output results,

102

107 108 109 1010 1011 1012

Total number of FLOPs (in log scale)

0

5

10

15

20

25

30

P
ow

er
co

n
su

m
p

ti
on

(m
W

)

0 2 4 6 8
Total number of parameters (model size) ×107

2

4

6

8

10

P
ea

k
m

em
or

y
u

sa
ge

(G
B

)

Memory (MegaBytes)

DenseNet-121

Inception-v1

MobileNet-v2

EfficientNet-B1

1500 1750 2000 2250 2500 2750

Allocated memory Parameters Activations

Figure 6.4 (a) Correlation between power consumption and the total number of
FLOPs (in log scale). (b) Correlation between memory usage and the weights size.
(c) Memory usage breakdown for a single CNN inference on an edge GPU.

3. Memory read/write of the intermediate activations.

To provide more context, Figure 6.4.c details the memory requirements for CNN
parameters, activations, and the measured system memory allocated for the DL
framework (TensorFlow in our case). As shown, the allocated memory for the DL
framework is significant and varies from one CNN to another. As mentioned in
[143], existing DL frameworks, such as TensorFlow, PyTorch, and Caffe, are not
built with awareness of the unified memory of edge GPUs. Consequently, the data
transfer between the CPU and GPU creates redundant data copies on system me-
mory. Moreover, to speed up the computation, the memory allocated to the DL
framework can only be released at the end of CNN inference, which requires a si-
gnificant amount of memory for the DL framework. According to our experiments
depicted in Figure 6.4.b, the memory usage of CNNs is strongly correlated with
the sum of weights and activations. However, the high memory usage does not
necessarily increase its execution time and power consumption. Indeed, data are
not accessed with the same frequency during the inference. For instance, convo-
lutional weights and activations are constantly accessed, whereas fully-connected
weights are accessed once for each activation [202]. In addition, when activations
and weights cannot be fully loaded in the GPU cache memory, execution time
and power consumption may increase. In order to comprehensively evaluate the
influence of memory access on execution time and power consumption, it is im-
portant to initially investigate the CNN dataflow through several levels of the
memory hierarchy. Nevertheless, examining memory operations without profiling
the CNN on the target edge GPU at runtime is intricate. Hence, this approach is

103

not viable due to its complexity and the substantial increase in prediction latency
it would entail. In order to address this issue, we employ CNN characteristics that
have a strong correlation with memory-related activities. Therefore, it is hypothe-
sized that the properties of weights, input, output, and intermediate activations
significantly influence memory operations.

0 200 400 600 800 1000
Input image size (squared)

0

50

100

150

200

250

E
x
ec

u
ti

on
ti

m
e

(m
S

ec
on

d
es

)

Execution time

Power consumption

Memory Usage

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P
ow

er
co

n
su

m
p

ti
on

(m
W

at
ts

)

×104

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

M
em

or
y

u
sa

ge
(M

B
y
te

s)

ResNet-50

0 200 400 600 800 1000
Input image size (squared)

0

50

100

150

200

250

E
x
ec

u
ti

on
ti

m
e

(m
S

ec
on

d
es

)

Execution time

Power consumption

Memory Usage

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
ow

er
co

n
su

m
p

ti
on

(m
W

at
ts

)

×104

2.2

2.3

2.4

2.5

2.6

M
em

or
y

u
sa

ge
(M

B
y
te

s)

DenseNet-121

0 200 400 600 800 1000
Input image size (squared)

0

50

100

150

200

250

E
x
ec

u
ti

on
ti

m
e

(m
S

ec
on

d
es

)

Execution time

Power consumption

Memory Usage

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P
ow

er
co

n
su

m
p

ti
on

(m
W

at
ts

)

×104

3.30

3.35

3.40

3.45

3.50

3.55

M
em

or
y

u
sa

ge
(M

B
y
te

s)

Xception

Figure 6.5 Correlation between image input size and the performance metrics:
execution time, power consumption, memory usage on the NVIDIA AGX Xavier.

6.5.1.3 CNN Architectural Hyperparameters

In addition to the aforementioned characteristics, the architectural attributes
of CNNs are also incorporated. We consider the number of convolutional, fully
connected, batch normalization, and pooling layers. Furthermore, we examine the
influence of different image input dimensions on CNNs. The procedure of up or
down the input size can be employed in conjunction with fine-tuning to adjust the
CNN model for novel training tasks and datasets. Firstly, as shown in Figure 6.5,
execution time, power consumption, and memory usage strongly and positively
correlate to the CNN input image size. Additionally, to characterize the neurons
within the CNN, we introduce a novel feature called ”the weighted sum of neu-
rons.” This feature is computed by aggregating the total number of neurons in
convolutional and fully-connected layers. The number of neurons in convolutional
layers is then multiplied by the filter size: height × width × depth, to give more
importance to neurons with large filter sizes. Nevertheless, The number of neurons
in fully-connected layers is not weighted because the input neuron is associated
with a single scalar and not a multidimensional filter.

104

(i) Execution time (ii) Power consumption

(iii) Memory usage

Figure 6.6 The forward stepwise selection of features for CNN performances mo-
deling on Jetson AGX Xavier. High F-score correspond to high feature relevance.

6.5.2 Input Features Selection

A forward stepwise technique is employed to select the most relevant CNN fea-
tures as prediction variables. For each prediction model, we begin with an empty
set of features. The feature with the highest F-score is added at each step as a
prediction variable. The F-score is calculated via the XGBoost [39] algorithm to
rank the features from the most to the least important. Figure 6.6 reports the re-
sults of the stepwise feature selection based on the calculated feature importance
with the corresponding improvement in MAPE for each performance metric on
the Jetson AGX Xavier. Features are ranked and added to the prediction model
based on their relevance (i.e., high F-score values). On the left y-axis we report
the improvement of the Mean Absolute Percentage Error (MAPE). On the right
y-axis we report the corresponding feature importance calculated by XGBoost. A
similar trend has also been observed for the two other edge GPUs (Jetson TX2
and Nano). As shown, including more features in the prediction model continues
until a point is reached when there is no discernible enhancement in the Mean
Absolute Percentage Error (MAPE). The feature’s importance depends on perfor-
mance metrics. However, the same trend has been noticed for execution time and
power consumption. The most crucial features for estimating memory usage are
those that pertain to memory needs.

105

6.5.3 Prediction Algorithms

We leverage several ML-based methods for regression tasks such as Polyno-
mial regression (Poly) [167], Support Vector Regression (SVR) [11], Multi-Layer
Perceptrons (MLP) [156], Random Forest (RF) [130], and eXtreme Gradient Boos-
ting (XGBoost) [39]. We also list and report Table 6.4 the hyperparameters choices
used for tuning and training each of the aforementioned ML-based methods.

6.6 Evaluation Methodology

This section details our evaluation methodology and the obtained results. As
shown in Figure 6.2, our modeling process is subdivided into three main steps: 1⃝
Benchmarking, 2⃝ Data collection, and 3⃝ Modeling. We first detail each step,
give details about the experimental setup, and finally present and discuss our
obtained results.

6.6.1 CNN Benchmarking

The benchmarking phase primarily involves the deployment and execution of
the CNNs inference on the targeted edge GPUs. The benchmarks have been desi-
gned based on state-of-the-art CNNs for image classification. The taxonomy of the
CNN architectures investigated in this study is depicted in Figure 6.7. As seen,
we have considered different architectures from the depth and width-based CNN,
such as ResNet and Inception, to multi-path and multi-connection-based CNN,
such as ShuffleNet and MobileNet. Furthermore, in order to enlarge the scope of
our datasets to characterize various types of correlations, we employ the following
data augmentation techniques:

1. Input Image Size: The impact of the input image size on the CNN perfor-
mances is studied. For this purpose, we test the frequently used image re-
solutions, from 32*32 to 2400*2400 pixels, with three channels for the RGB
representation.

2. CNN Variants: Different variants of the same CNN architecture are consi-
dered. For instance, we deploy different variants of the ResNet architecture
[84, 85] by varying the number of layers and residual blocks. Hence, we obtai-
ned eight (8) widely used variants of ResNet, such as ResNet18, ResNet34,
ResNet50.

3. CNN Architectures: Finally, we consider different CNN architectures to quan-
tify their impact on inference performances.

6.6.2 Data Collection

This stage involves gathering all the necessary data required to characterize and
model the CNN performances. The process entails the acquisition of four (04) dis-
tinct sets of measurements. The initial set consists of the CNN features employed
as independent variables for prediction. Extracting this data is rather straightfor-
ward since it does not need the additional deployment of a CNN on edge GPU.
However, the remaining three sets consist of actual measurements of execution
time, power consumption, and memory usage. As a result, these cannot be acqui-
red without consistent profiling of the CNN inference on the targeted edge GPU.

106

Investigated CNN
Topologies

Spatial exploitation
based CNN Depth based CNN Multi-Path based

CNN
Width based multi-

connection CNN
Feature-Map

exploitation based
CNN

Inception-v1 ResNet

Inception-v3

InceptionResNetV2

ResNet

DenseNet

MNASNet

Xception

MobileNet

ShuffleNet

ResNext

SENet

DPN

Figure 6.7 Taxonomy of the investigated CNN architectures for the Benchmarking.

The workflow of the CNN profiling procedure for collecting performance metrics
is illustrated in Figure 6.8. In the following part, we provide further information
pertaining to the data collection process:

1⃝ CNN features extraction: We have developed a parser that takes the CNN
architecture description as input and gives its essential features in output. We
give more details about the extracted features and their ranges in Table 6.5. From
this table, we can notice that a wide range of values has been considered for each
CNN feature. Thus, the studied CNNs range from small to large models according
to the reported values of FLOPs, parameters, activations, and the number of layers
in Table 6.5. Our benchmark covers different types and values of CNN features.

Table 6.3 Details of the CNN benchmarks used in the experiments.

Attribute # variants # input image sizes Range of image sizes (from.. to..)

GoogleNet [209] 1 15 [(224x224x3),..,(1024x1024x3)]

Inception (v3) [210] 1 20 [(75x75x3),..,(1024x1024x3)]

InceptionResNet (v2) [208] 1 20 [(75x75x3),..,(1024x1024x3)]

DPN [41] 4 23 [(32x32x3),..,(1024x1024x3)]

DenseNet [94] 5 23 [(32x32x3),..,(1024x1024x3)]

Xception [47] 1 23 [(32x32x3),..,(1024x1024x3)]

EfficientNet [29] 4 25 [(32x32x3),..,(1600x1600x3)]

MNASNet [213] 5 25 [(32x32x3),..,(1600x1600x3)]

ResNet [84, 85] 19 27 [(32x32x3),..,(2400x2400x3)]

MobileNet [90, 187, 89] 13 27 [(32x32x3),..,(2400x2400x3)]

ResNext [234] 2 27 [(32x32x3),..,(2400x2400x3)]

SENet [91] 6 27 [(32x32x3),..,(2400x2400x3)]

ShuffleNet [261, 144] 7 27 [(32x32x3),..,(2400x2400x3)]

2⃝ Execution time profiling: CNN inference execution time measurements have
been collected using the Nvidia profiling tool Nvprof [159]. We measure the CNN
execution time by summing up the execution times of the GPU kernels that have
been invoked during the CNN inference. To minimize the impact of the profi-
ling overhead on the measurements, we repeat each experiment 100 times on 100

107

Images
Preprocessing CNN Inference

NVIDIA
Tegrastats

NVIDIA
Profiler

Kernels
Profiling

System
Profiling

Inference
Logs

Latency
Profiling

Power
Profiling

Memory
Profiling

Execution
Time

Power
Consumption

Memory
Occupation

Online processing Offline processing

Figure 6.8 The workflow of the CNN inference profiling on the edge GPU.

randomly chosen images. We then consider the average measured execution times
over the 100 experiments according to the recommendation given in [158]. We have
also noticed that the measured execution times of the replicated experiments are
normally distributed ; therefore, we consider the mean a central tendency.

3⃝ Power consumption profiling: To measure the power consumption of the CNN
inference, we use the onboard GPU sensors of NVIDIA Jetson platforms. These
sensors can be read automatically and periodically with the tegrastats command
utility [164]. When running CNN inference, we also run a background process to
periodically examine the GPU power consumption, with a sampling period set to
the minimum value (i.e., 1 ms). To ensure the reliability of the power consump-
tion measurements, we disconnect all the peripheries connected to the GPU board
during measurements except the port for SSH communication. We repeat the ex-
periments 100 times for Jetson AGX Xavier as the inference times are generally
short, and 50 times for Jetson Nano and TX2. We have noticed that measured
power consumption over the repeated experiments form a skewed normal distribu-
tion as power consumption tends to be relatively high in the first runs because of
the GPU warm-up. Hence, we consider the median of the peak power consumption
of the replicated experiments as a central tendency.

4⃝Memory Usage Profiling: NVIDIA Jeston platforms are characterized by their
unified memory. Thus, the GPU and the CPU share the same physical memory.
In this case, GPU memory usage is not limited ; it can use all available system
memory. This particularity of Nvidia Jetson platforms makes it possible to mo-
nitor GPU memory usage by monitoring the system memory. For this reason, we
measure the peak memory usage of the CNN with the tegrastats utility [164] by
monitoring the system memory usage in the same way as for power consumption.
We define the CNN memory usage as the peak system memory usage during the
CNN inference minus the initial memory usage before running the CNN inference.

6.6.3 Prediction Models Hyperparameters Tuning

For hyperparameters tuning, we run an exhaustive grid search on the hyper-
parameters’ search space. During this process, we evaluate the goodness of the

108

explored hyperparameters via the K-fold cross-validation [184] to identify the op-
timal hyperparameter values and combinations. Afterward, the ML models with
the optimal found hyperparameters are trained on their internal parameters using
the full training dataset. Hyperparameters search space for each ML prediction
algorithm are given in Table 6.4.

Table 6.4 Search space of the Hyperparameters per ML method.

Prediction model Hyperparameters Range Default value

Poly
Degree [2- 20] 2
Lambda [1e-8- 1.0] 1

SVR

Cost (C) [0.5- 5000] 1

Epsilon [0.01- 5] 0.1

Gamma [0.01- 10] scale

Kernel [linear- rbf- poly] rbf

Degree [2- 20] 3

MLP

Hidden dim [4- 72] 100

Num. Layers [1- 5] 1

Activation [identity- logistic- tanh- relu] relu

Optimizer [sgd- adam] adam

Init. learning rate [1e-4- 1e-1] 0.001

Schedule. learning rate [constant- adaptive] constant

Alpha [1e-6- 1e-1] 0.0001

Max. iterations [100- 3000] 200

Early Stopping [False- True] False

Random Forest

Num. estimators [10- 500] 100

Max. depth [10- 300] None

Min. samples split. [1- 10] 2

Min. samples leaf [1- 10] 1

Max. features [auto- sqrt- log2- None] auto

Bootstrap [True- False] True

XGBoost

Early Stopping [True- False] False
Rounds [100- 3000] 100

Max. depth [5- 20] 15

Min. child weight [5- 15] 5

Sub.sample [0.1- 1.0] 1

Col. sample bytree [0.1- 1.0] 1
Gamma [0.01- 10] 0.1

Learning rate [0.01- 0.9] 0.3

6.6.4 Prediction Models Design, Training, and Evaluation

The datasets from the benchmarking are denoted as Djk = {cnni; yijk}ni=1,
where k represents a performance metric and j for edgpuj. After constructing the
datasets Djk, we proceed to train several sets of prediction models for each perfor-
mance metric k and edge GPU edgpuj. During this stage, every prediction model
learns the correlation between the feature vectors cnni and yijk. The technique
employed for designing the prediction models is depicted in Figure 6.10. This pro-
cedure has two inputs: 1 ML algorithm name, which corresponds to one of the
ML algorithms listed in section 6.5.3. 2 Collected data, which is refers to the un-
derlying dataset Djk. Table 6.5 details the extracted CNN features from the CNN
models reported in Table 6.3.

109

Input Layer Conv Layer

Pooling Layer

BN Layer

OR

Nb_blocks

Global Average
Pooling Layer Flatten Layer

Fully Connected
Layer

Softmax
Activation Layer

NO

YES

OR

CONV Block

Classification Block

Figure 6.9 CNN baseline for NCA.

ML algorithm name
Hyperparameters initialization
Hyperparameters tuning using Grid-search and K-fold cross validations

Model training

Model evaluation
CNN Performance Prediction Model

Training Phase

Evaluation Phase

Collected data

Training data

Test data

Figure 6.10 Prediction model design.

First, we tune prediction models’ hyperparameters using the grid search and K-
fold cross-validation techniques to select the best values. Second, once the optimal
combination of hyperparameters is found, we train the prediction models on the
70% data for training. Finally, we test the final prediction models on the 30% data
for evaluation. To assess the prediction accuracy and generalization, we have desi-
gned three sets of evaluation data by scaling three factors (i.e., CNN architectures,
variants, and input size) as follows

— New Image Sizes (NIS): Here we evaluate the prediction models on state-
of-the-art CNNs with new input image sizes. We vary the input size from
32×32 to 2400×2400 pixels, depending on the CNN architecture as detailed
in Table 6.3. That is, for each CNN architecture, we test different input sizes.
For instance, for GoogleNet [209], we vary the input size (W ×H ×C) from
224 × 224 × 3 to 1024 × 1024 × 3, whereas for DenseNet [94], we vary the
input size, for each of its five (5) variants, from 32×32×3 to 1024×1024×3.
By varying the input size of the CNN, we obtain different values of FLOPs,
intermediate activations, and neurons. Tthis is the simplest exploration space
as we only vary the input size of existing CNNs.

— New CNN Variants (NCV): We evaluate the prediction models when new
CNN variants are considered in this second exploration space. Based on
SOTA CNN baselines, we derive new models by varying scaling factors that
control the CNN’s width, depth, input size, and type of operators. These
factors are, for instance, the depth and width multipliers for MobileNet [90]
and EfficientNet [215], the number of layers and residual blocks for ResNet
[84, 85], the number of output channels for ShuffleNet [261, 261]. If we consi-
der ResNet [84] as an example, we trained our predictors on ResNet-18 to
Resnet-101, and we predict the execution time, power consumption, and
memory usage for ResNet-152 with new numbers of FLOPs, activations,
neurons, parameters, and layers. Hence, this exploration space is more com-
plicated than the first one.

— New CNN Architectures (NCA): Here we evaluate our prediction models
on new synthetic CNN architectures. Figure 6.9 represents the CNN base-
line architecture used to construct the NCA exploration space. To generate

110

synthetic CNNs from this baseline, we randomly vary the input size and
convolutional block configurations by varying numbers and types of convo-
lutional layers, pooling, and batch normalization layers. We also randomly
vary the configurations for each layer, for instance, the number and size of
kernels in convolutional layers, stride, and kernel size in pooling layers, and
the number of units in fully-connected layers. This exploration space is more
complicated than NIS and NCV.

Table 6.5 CNN features.

CNN feature Range

of hidden layers [10 – 4072]

of CONV layers [4 – 1825]

of BN layers [0 – 265]

of FC layers [0 – 18]

of filters per CONV layer [3 – 2688]

of units per FC layer [0 – 5625x103]

Filter size [(1x1) – (11x11)]

Input size [32 – 2400]

of CONV layers parameters [0.27x106 – 87.1x106]

of BN layers parameters [0 – 0.8x106]

of FC layers parameters [0 – 119.8x106]

Total number of FLOPs [3.1x106 – 5.2x1012]

Sum of intermediate activations [0.1x106 - 37.6x109]

Table 6.6 Hardware setup.

Hardware feature Jetson Nano Jetson TX2 Jetson AGX

CPU
4-core A57

1.43 GHz

6-core Denver

2 GHz

8-core Carmel

2.26 GHz

Memory size
4 GB 64-bit

LPDDR4

8 GB 128-bit

LPDDR4

16 GB 256-bit

LPDDR4x

Memory BW 25.6 GB/s 58.4 GB/s 137 GB/s

GPU
128-core Maxwell

1.23 GHz

256-core Pascal

1.3 GHz

512-core Volta

1.37 GHz

Max Power 10W 15W 30W

6.6.5 Experimental Setup

We deploy more than 1500 CNN models on different edge GPUs to characterize
the inference performances. We use three Nvidia GPU devices from the Jetson
series dedicated to edge computing: Jetson Nano, Jetson TX2, and Jetson AGX
Xavier. The hardware specifications for each device are reported in Table 6.6. We
configure these platforms to the MAXN power mode. We use the same underlying
software configuration on the three (03) edge GPUs. As depicted in Table 6.6,
the three devices differ regarding computing/memory capacities. CNNs have been
deployed on the edge GPUs using the Keras 2.3.1 API with TensorFlow 1.14 as
backend [4].

6.6.6 Experimental Results

This section comprehensively evaluates and analyzes our proposed performance
modeling methodology. Each prediction model undergoes an evaluation as follows:

— First, we evaluate the prediction error of each prediction model using the
Mean Absolute Percentage Error (MAPE) [50].

— Second, we compare the prediction models according to the time needed for:
training, tuning their corresponding hyperparameters, running the prediction
model on a single input features vector (cnni).

— Third, we discuss the correlation coefficients between the measured and pre-
dicted performance metrics. To assess the extent to which prediction models
adhere to the ranking of performance metric measurements, we employ both
Kendall-Tau [6] and Pearson [12] rank correlation coefficients.

111

6.6.6.1 Execution Time Prediction

Figure 6.11 gives the obtained Mean Absolute Percentage Error (MAPE) and
their corresponding confidence interval of 95%. Table 6.7 summarizes the analysis
of the five (05) prediction models in terms of MAPE, training, tuning costs, and
prediction latency. Table 6.8 reports the calculated rank correlation coefficients of
all the obtained results for CNN execution time estimations.

Table 6.7 Execution time prediction models analysis.

Prediction

Model

Test

Data

MAPE Training

Time

Tuning

Time

Prediction Latency

Nano TX2 AGX AGX TX2 Nano

Poly
NIS 10.16% 10.29% 9.55%

12.72 ms 6.32 mn 357.9 ns 528.1 ns 704.3 nsNCV 11.55% 11.06% 10.20%

NCA 11.54% 13.19% 13.04%

MLP
NIS 10.98% 12.47% 12.17%

1.13 s 11.09 hr 22.7 us 30.9 us 53.8 usNCV 12.37% 9.97% 13.80%

NCA 13.65% 15.18% 13.18%

SVR
NIS 11.83% 14.97% 14.68%

159 ms 22.6 hr 41.8 us 52.1 us 78.5 usNCV 9.29% 9.30% 7.92%

NCA 16.01% 16.86% 15.86%

RF
NIS 9.39% 10.97% 11.94%

3.5 s 4.6 hr 1.1 ms 1.5 ms 2.4 msNCV 9.14% 8.91% 10.41%

NCA 13.97% 13.79% 13.76%

XGBoost
NIS 9.12% 9.58% 8.28%

538.5 ms 13.22 mn 2.1 us 3.5 us 6.2 usNCV 7.99% 9.09% 7.45%

NCA 13.80% 13.11% 11.74%

Figure 6.11 Mean Absolute Percentage Error (MAPE) for execution time predic-
tion on the three edge GPUs: Nvidia Jetson Nano, TX2, and AGX, respectively,
with the corresponding 95% Confidence Interval.

1⃝ Prediction error and generalization power: From Figure 6.11 and Table 6.7,
we notice that the MAPE values vary between ∼ 7% and ∼ 16%. It is worth
noting that the NIS and NCV consistently yield the lowest MAPE values, whereas
the NCA consistently yields the highest MAPE values. This finding corroborates
the hypothesis on the complexity of NCA compared to NIS and NCV, as pre-
viously detailed in Section 6.6. For the three exploration spaces (i.e., NIS, NCV,
and NCA), XGBoost and Ridge Polynomial Regression outperform the other pre-
diction models and offer the lowest MAPE values.

RF depicts comparable performance to XGBoost and Polynomial regression.
MLP generally has good performances with a slight loss of generalization for NIS
and NCA. This nonperformance can be due to its nature which tends to overfit
data. SVR is less accurate than the models mentioned above for NIS and NCA.

112

The variation in the MAPE values in the three exploration spaces is relatively
high, interpreted as overfitting. If we compare the obtained results of the three
edge GPUs: Jetson Nano, TX2, and AGX, we notice that the prediction errors
regarding the three (3) exploration spaces are very similar.
2⃝ Training and tuning costs: Most ML-based prediction models are sensitive

to hyperparameters variations. For instance, XGBoost shows sensitivity to the
Booster hyperparameters. The prediction error converges by increasing the number
or depth of the decision trees in Random Forest. These two (2) factors increase the
complexity of the training and the prediction latency in RF. For this reason, when
a time budget is available for tuning and training, XGBoost is more efficient.

MLP is very sensitive to the variation of the hyperparameters. Large MLP
networks are prone to overfitting compared to small ones. SVR is sensitive to the
type of kernels and the cost (C) (see Table 6.4). From table 6.7, we notice that
SVR takes the longest hyperparameter tuning time as training Polynomial and
RBF kernels is time-consuming.

Table 6.8 Rank correlation coefficients analysis.

Prediction model Test Data
Kendall coefficients Pearson coefficients

Nano TX2 AGX Nano TX2 AGX

Poly
NIS 0.949 0.935 0.93 0.998 0.998 0.997

NCV 0.938 0.935 0.93 0.984 0.998 0.997

NCA 0.961 0.935 0.93 0.995 0.998 0.997

MLP
NIS 0.937 0.936 0.932 0.998 0.994 0.996

NCV 0.935 0.936 0.932 0.982 0.994 0.996

NCA 0.955 0.936 0.932 0.992 0.994 0.996

SVR
NIS 0.932 0.924 0.93 0.995 0.989 0.994

NCV 0.94 0.924 0.93 0.982 0.989 0.994

NCA 0.949 0.924 0.93 0.993 0.989 0.994

RF
NIS 0.95 0.935 0.933 0.997 0.994 0.997

NCV 0.945 0.935 0.933 0.979 0.994 0.997
NCA 0.945 0.935 0.933 0.991 0.994 0.997

XGBoost
NIS 0.95 0.948 0.942 0.994 0.995 0.997

NCV 0.953 0.948 0.942 0.979 0.995 0.997

NCA 0.945 0.948 0.942 0.982 0.995 0.997

3⃝ Prediction rank-preserving: We analyze the rank correlation between the mea-
sured and predicted inference execution times to determine whether the prediction
models are rank-preserving. To assess models rank-preserving, we use Kendall-tau
and Pearson correlation coefficients. These correlation coefficients evaluate the
nature and the degree of similarity between the two (2) sets of data: the sets of
measured and predicted inference execution times. Table 6.8 details the obtained
rank correlation coefficients. As seen, all prediction models highly preserve the
rank as their Kendall coefficients range from 0.94 to 0.97, and their Pearson coef-
ficients range from 0.98 to 0.99. Thus, our prediction models can be used to rank
the CNN architectures according to their estimated execution times.

6.6.6.2 Power Consumption Prediction

Figure 6.12 gives the obtained MAPE values with their corresponding confi-
dence interval of 95%. Table 6.9 summarizes the analysis of the five (05) prediction
models for CNN power consumption in terms of MAPE, training, tuning costs, and

113

prediction latency. Table 6.10 reports the calculated rank correlation coefficients
of all the obtained results for CNN power consumption estimations.

Table 6.9 Power consumption prediction models analysis.

Prediction

Model

Test

Data

MAPE Training

Time

Tuning

Time

Prediction Latency

Nano TX2 AGX AGX TX2 Nano

Poly
NIS 6.18% 7.02% 5.85%

11.29 ms 6.09 mn 401.1 ns 713.9 ns 900.6 nsNCV 6.51% 6.97% 5.66%

NCA 7.10% 7.05% 5.71%

MLP
NIS 5.66% 6.72% 5.72%

1.9 s 15.33 hr 23.2 us 27.4 us 39.0 usNCV 7.96% 7.41% 6.43%

NCA 7.22% 7.19% 6.03%

SVR
NIS 4.51% 5.14% 3.94%

771.3 ms 25.1 hr 201.3 us 511.2 us 803.5 usNCV 5.39% 6.50% 5.33%

NCA 8.29% 8.57% 7.81%

RF
NIS 4.96% 5.82% 5.88%

3.31 s 4.6 hr 908.5 us 1.2 ms 1.7 msNCV 6.94% 5.84% 4.13%

NCA 5.18% 6.75% 5.81%

XGBoost
NIS 3.56% 5.24% 4.51%

488.5 ms 10.12 mn 4.7 us 6.0 us 8.9 usNCV 4.91% 5.20% 5.69%

NCA 4.62% 6.04% 5.31%

Figure 6.12 Mean Absolute Percentage Error (MAPE) for power consumption pre-
diction on the three edge GPUs: Nvidia Jetson Nano, TX2, and AGX, respectively,
with the corresponding 95% Confidence Interval.

1⃝ Prediction error and generalization power: Firstly, the lowest prediction
errors are obtained for NIS and NCV, while the highest is for NCA. Secondly,
both XGBoost and Ridge polynomial regression provide the lowest prediction er-
ror for power consumption estimation on the 03 edge GPUs. These two models
also achieve a good generalization between the three exploration spaces. From Fi-
gure 6.12 and Table 6.9, we can also notice that the MAPE values are generally
between ∼ 3% and ∼ 8%, which indicates both reduced bias and variance errors.
This figure also shows that the obtained MAPE for power consumption is smaller
than the obtained MAPE for execution time, as edge GPUs have a limited power
budget. RF and MLP depict similar performances in terms of prediction error and
generalization. SVR provides low prediction error for NIS and NCV but a quiet
loss of generalization for NCA.

2⃝ Training and tuning costs: From Table 6.9, we observe that the training and
tuning costs of the prediction models for power consumption have similar tenden-
cies as the execution time. Nonetheless, we have also noticed differences in the

114

obtained optimal hyperparameters of each prediction model compared to execu-
tion time modeling. We highlight in the following the main observed differences:

— MLP presents huge overfitting when increasing the network size in the case of
execution time. However, small MLP networks are not enough for an accurate
prediction. Instead, they result in considerable underfitting. Consequently,
we consider large MLP networks for power consumption modeling.

— Although linear kernels for SVR perform well for execution time they pro-
vide poor performances for power consumption. On the contrary, we noticed
that RBF kernels provide lower prediction errors. This is explained by the
non-linear correlation between input features and power consumption, as in
between the number of FLOPs and power consumption (See Figure 6.4).

Table 6.10 Rank correlation coefficients analysis.

Prediction model Test data
Kendall coefficients Pearson coefficients

Nano TX2 AGX Nano TX2 AGX

Poly
NIS 0.769 0.926 0.94 0.952 0.987 0.995

NCV 0.911 0.926 0.94 0.985 0.987 0.995

NCA 0.657 0.926 0.94 0.935 0.987 0.995

MLP
NIS 0.758 0.942 0.931 0.977 0.994 0.994

NCV 0.88 0.942 0.931 0.976 0.994 0.994
NCA 0.74 0.942 0.931 0.966 0.994 0.994

SVR
NIS 0.765 0.952 0.957 0.974 0.996 0.996

NCV 0.899 0.952 0.957 0.983 0.996 0.996
NCA 0.542 0.952 0.957 0.896 0.996 0.996

RF
NIS 0.836 0.935 0.934 0.976 0.992 0.992

NCV 0.9 0.935 0.934 0.98 0.992 0.992

NCA 0.743 0.935 0.934 0.97 0.992 0.992

XGBoost
NIS 0.905 0.945 0.947 0.979 0.995 0.996

NCV 0.934 0.945 0.947 0.991 0.995 0.996

NCA 0.737 0.945 0.947 0.975 0.995 0.996

3⃝ Prediction rank-preserving: Table 6.10 shows the obtained correlation analy-
sis for power consumption prediction models. We can see that XGBoost, RF, and
MLP provide the highest Kendall and Pearson correlation coefficients. These coef-
ficients range from 0.7 to 0.9 for Kendall and 0.8 to 0.9 for Pearson. On the other
hand, SVR and Ridge Polynomial regression results are less correlated, especially
for the Jetson Nano. The reason behind the low Kendall-tau values for Jetson
Nano comes from the limited range of power consumption values. Generally, we
have observed that obtained power consumption values are less distributed and
tend to have very similar values to the execution time case, where values have a
higher degree of diversity. It is also worth noting that the overfitting problem of
SVR appears clearly in the obtained correlation coefficient values for NCA. This
observation is also proven by the obtained MAPE results reported in Table 6.9,
indicating a considerable generalization loss for NCA.

6.6.6.3 Memory Usage Prediction

Figure 6.13 gives the obtained MAPE values and their corresponding confi-
dence interval of 95%. Table 6.11 summarizes the analysis of the five (05) prediction
models in terms of MAPE, training, tuning costs, and prediction latency. Table
6.12 reports the rank correlation coefficients of all the results for CNN memory
usage estimations.

115

Table 6.11 Memory usage prediction models analysis.

Prediction

Model

Test

Data

MAPE Training

Time

Tuning

Time

Prediction Latency

Nano TX2 AGX AGX TX2 Nano

Poly
NIS 9.73% 4.91% 4.38%

5.13 ms 6.09 mn 89.3 ns 140.5 ns 270.2 nsNCV 9.15% 5.01% 4.78%

NCA 6.43% 6.87% 5.47%

MLP
NIS 11.03 4.98% 5.85%

341.6 ms 13.8 hr 14.7 us 24.0 us 34.7 usNCV 14.83% 5.60% 4.92%

NCA 11.59% 9.04% 7.62%

SVR
NIS 7.89% 6.65% 3.62%

101.2 ms 20.7 hr 96.6 us 121.3 us 249.6 usNCV 8.90% 5.12% 3.64%

NCA 7.82% 8.57% 6.78%

RF
NIS 7.25% 6.22% 4.58%

1.62 s 3.1 hr 261.6 us 397.0 us 508.2 usNCV 8.15% 4.96% 6.83%

NCA 10.46% 9.18% 7.63%

XGBoost
NIS 9.03% 6.46% 4.10%

338.5 ms 7.2 mn 708.2 ns 933.8 ns 1.1 usNCV 10.14% 5.41% 5.72%
NCA 7.60% 8.73% 7.40%

Figure 6.13 Mean Absolute Percentage Error (MAPE) for memory usage predic-
tion on the three edge GPUs: Nvidia Jetson Nano, TX2, and AGX, respectively,
with the corresponding 95% Confidence Interval.

1⃝ Prediction error and generalization power: In contrast with the two previous
performance metrics, where XGBoost and Ridge Polynomial regression provides
similar results, Ridge Polynomial regression outperforms XGBoost and the other
models for memory usage. Indeed, training datasets for memory usage differ from
those for execution time and power consumption. We have performed two reduction
techniques on the training datasets for memory usage:

1. Considering only the smallest and the largest input size for each CNN depen-
ding on the reported values in Table 6.3. From our preliminary experiments,
we noticed that memory usage does not vary significantly with input sizes.

2. Selecting only the prediction features related to memory operations.
These two data reduction techniques result in thoroughly different training da-
tasets compared to the cases of execution time and power consumption. From
6.13 and Table 6.11, MLP, SVR, and RF provide similar performances in terms of
MAPE values. As for the execution time and power consumption cases, reported
prediction errors for the 03 edge GPUs are very close. This confirms the portability
of our modeling methodology for new edge GPUs.

2⃝ Training and tuning costs: Training and tuning costs for memory usage models
are lower than the execution time and power consumption models. These costs are

116

correlated with the size and dimensionality of the training dataset. In contrast to
power consumption modeling, smaller MLP networks perform better than larger
networks. Besides, we noticed that RBF and Poly kernels deliver the best perfor-
mances for SVR compared to linear ones. Thus, SVR, MLP, and RF are the most
challenging models to tune for the three performance metrics and the three edge
GPUs.

Table 6.12 Rank correlation coefficients analysis.

Prediction model Test data
Kendall coefficients Pearson coefficients

Nano TX2 AGX Nano TX2 AGX

Poly
NIS 0.833 0.909 0.92 0.994 0.994 0.993

NCV 0.871 0.909 0.92 0.995 0.994 0.993

NCA 0.818 0.909 0.92 0.942 0.994 0.993

MLP
NIS 0.858 0.912 0.905 0.994 0.992 0.988

NCV 0.865 0.912 0.905 0.996 0.992 0.988
NCA 0.784 0.912 0.905 0.912 0.992 0.988

SVR
NIS 0.824 0.875 0.923 0.991 0.987 0.993
NCV 0.86 0.875 0.923 0.995 0.987 0.993

NCA 0.79 0.875 0.923 0.908 0.987 0.993

RF
NIS 0.828 0.9 0.917 0.991 0.992 0.993

NCV 0.848 0.9 0.917 0.991 0.992 0.993
NCA 0.794 0.9 0.917 0.924 0.992 0.993

XGBoost
NIS 0.82 0.885 0.907 0.991 0.991 0.993
NCV 0.829 0.885 0.907 0.991 0.991 0.993
NCA 0.783 0.885 0.907 0.926 0.991 0.993

3⃝ Prediction rank-preserving As seen in Table 6.12, the rank is highly respected
between the measured and predicted CNN memory usage values by the prediction
models. Kendall and Pearson correlation coefficients range from 0.8 to 0.9 and from
0.95 to 0.98, respectively, indicating a strong positive correlation between the two
data sets (i.e., measured and predicted memory usage). We must also note that the
prediction models follow the same tendency for Kendall and Pearson correlation
coefficients in all cases (i.e., exploration spaces and edge GPUs).

6.7 Discussion and Key Insights

In this section, we discuss the main advantages and limitations of our work in
terms of hardware and software adaptability. Using a set of benchmarks that we
built, we were able to evaluate and estimate CNN performances on edge GPUs.
In summary:

— (i) Our Machine Learning based modeling methodology to characterize CNNs
performances for edge GPUs gives predictions for execution time, power
consumption, and memory usage with up to ∼92% prediction accuracy.

— (ii) Our resulting prediction models have been evaluated on a large set of
CNN architectures and three (03) commodity edge GPUs with different hard-
ware resources and micro-architectures.

Furthermore, Our benchmarks are composed of small and large, simple and com-
plex, conventional and recent SOTA CNNs and variants. In Tables 6.13, 6.14, and
6.15, we present a comparison of our work with relevant prior studies on CNN
performance modeling. We use the MAPE to assess the prediction error. For exe-
cution time, the prediction error of our models is the lowest for GPUs compared

117

to related works. In addition, We have obtained the smallest MAPE for power
consumption and memory usage compared to other related works.

Table 6.13 SOTA models Vs. our models for execution time prediction.

Ref. CNNs System MAPE

[143]

NIN, VGG19M
TK1 CPU – Caffe 4.71%
TK1 GPU – Caffe 23.70%

NIN, VGG19M, SqueezeNet, MobileNet
TX1 CPU – Caffe 39.91%
TX1 GPU – Caffe 31.51%

[28]
VGG16, AlexNet, NIN, Overfeat, CIFAR10-6conv

Titan X GPU – TensorFlow 7.96%
GTX1070 GPU – TensorFlow 12.32%

AlexNet, NIN GTX1070 GPU – Caffe 16.17%

[218]
AlexNet, All-CNN-C, MobileNet, ResNet-18,
SimpleNet, SqueezeNet, Tiny YOLO

RPi3 CPU – Caffe 5.02%
RPi3 CPU – OpenCV 7.92%
XU4 CPU – Caffe 3.25%

Our work
ResNets, MobileNets, EfficientNets, ShuffleNets,
SENets, DenseNets, GoogleNet, Inception,
SqueezeNets, MnasNets, DPN, Xception

Jetson Nano GPU – TensorFlow 8.55%
Jetson TX2 GPU – TensorFlow 9.33%
Jetson AGX GPU – TensorFlow 7.86%

Table 6.14 SOTA models Vs. our models for power consumption prediction.

Ref. CNNs System MAPE

[143] NIN, VGG19M, SqueezeNet, MobileNet
TX1 CPU – Caffe 39.08%
TX1 GPU – Caffe 15.30%

[28]
VGG16, AlexNet, NIN, Overfeat, CIFAR10-6conv

Titan X GPU – TensorFlow 2.25%
GTX1070 GPU – TensorFlow 8.40%

AlexNet, NIN GTX1070 GPU – Caffe 21.99%

[218]
AlexNet, All-CNN-C, MobileNet, ResNet-18,
SimpleNet, SqueezeNet, Tiny YOLO

RPi3 CPU – Caffe 8.52%
RPi3 CPU – OpenCV 7.24%
XU4 CPU – Caffe 10.46%

Our work
ResNets, MobileNets, EfficientNets, ShuffleNets,
SENets, DenseNets, GoogleNet, Inception,
SqueezeNets, MnasNets, DPN, Xception

Jetson Nano GPU– TensorFlow 4.23%
Jetson TX2 GPU – TensorFlow 5.22%
Jetson AGX GPU – TensorFlow 5.10%

Table 6.15 SOTA models Vs. our models for memory usage prediction.

Ref. CNNs System MAPE

[143] NIN, VGG19M

TK1 CPU – Caffe 39.89%
TK1 GPU – Caffe 34.33%
TX1 CPU – Caffe 49.92%
TX1 GPU – Caffe 40.94%

Our work
ResNets, MobileNets, EfficientNets, ShuffleNets,
SENets, DenseNets, GoogleNet, Inception,
SqueezeNets, MnasNets, DPN, Xception

Jetson Nano GPU – TensorFlow 9.72%
Jetson TX2 GPU – TensorFlow 5.93%
Jetson AGX GPU – TensorFlow 4.91%

We have demonstrated that our modeling methodology can be ported to any edge
GPU to predict the performance of computer vision CNN. Furthermore, by using
our proposed benchmarks and modeling methodology, the designer can quickly
build prediction models by following our proposed modeling steps on new edge
devices, new use cases, or new metrics. Nevertheless, the ability to predict the
performance of a set of CNNs on an entirely new edge hardware GPU – without
repeating the same pipeline of benchamking, tuning, and training new performance
prediction models – is not convenient because of the following reasons:

— (i) In our work, we propose an ML-based modeling approach for predicting
CNNs performances on edge GPUs. However, as these embedded hardware

118

devices have been recently proposed in the market, the number of their
hardware configurations is limited. Generalizing the predictions models to a
new and unknown edge hardware device without additional benchmarking,
tuning, and training is not possible.

— (ii) Modeling the architectural hardware features of edge GPU devices is
complicated due to their complex integrated nature, where both the GPU
and CPU share the same memory and the differences in their micro-architectures.

— (iii) Building accurate analytical models for these edge GPUs
requires modeling the holistic and hierarchical levels of the CNN execution
stack. This stack comprises the CNN structure, the DL SDK, the compiler,
and finally, the hardware micro-architecture. This approach is very challen-
ging as some of the details concerning the HW and SW are kept confidential
by the GPU manufacturers (e.g., the NVIDIA CUDA compiler).

We are also aware of the limitations of our prediction models for non-computer
vision CNN. The current prediction models are specific to computer vision applica-
tions as they were trained on CNN benchmarks for image classification. However,
the overall proposed modeling methodology, from data collection and feature ex-
traction to ML-based modeling (See Figures 6.2 and 6.10), can be applied to other
CNN-based applications (e.g., audio recognition, natural language processing).

6.8 Summary

In this chapter, we proposed a modeling methodology for CNN performance
on edge GPUs. Our approach includes two main parts: First, we characterized
the CNN architectures at a model-level granularity to extract the most impac-
ting features. Second, we implemented and compared five of the most efficient
Machine Learning algorithms to build our performance prediction models. The
resulting prediction models can be used to predict execution time, memory usage,
and power consumption of any new CNNs on the studied three (03) edge GPUs
without retraining the prediction models. Our modeling methodology has been
easily generalized over the three exploration spaces: NIS, NCV, and NCA, on the
three different NVIDIA edge GPUs from the Jetson series, namely, Nano, TX2,
and AGX Xavier. To evaluate our approach, we analyzed the performance of the
prediction models from the following perspectives:

— (1) Prediction error and rank-preserving,
— (2) Prediction latency,
— (3) Training and tuning costs of the models.

, Our evaluation has seen the superiority of XGBoost, Random Forest, and Ridge
Polynomial regression to estimate execution time with an average error of 10%.
Ridge Polynomial regression and XGBoost give similar performances for power
consumption with an average error of 6%. Finally, for memory usage, Ridge poly-
nomial regression outperforms the rest of the prediction models with an average
error of 8%. Experimental results demonstrated that XGBoost and Ridge poly-
nomial regression can provide an acceptable trade-off between prediction perfor-
mance and tuning/training/inference time. Thus, they can be further integrated
into a multi-objective optimization framework to accelerate the process of Neural
Architecture Search (NAS) on edge GPU devices.

119

Chapitre 7

SONATA: Self-adaptive Evolution for Multi-objective
Hardware-aware Neural Architecture Search

7.1 Introduction

The design process of NNs can be articulated as a bi-level optimization pro-
blem where neural architectural parameters (i.e., layers and operators) and neuron
weights are both searchable. However, tuning the NN architectural parameters,
learning the neurons’ weights, and choosing the adequate hardware configuration
for deployment is labor intensive. Indeed, both design domains lack interpretabi-
lity and explainability regarding the obtained performance [135]. Recently, efforts
have been shifted towards automating the design process of NN with Hardware-
awareness through the HW-aware NAS paradigm [33]. Still, the search space of
NN is relatively large to explore because of the time-consuming trial-error iterative
process that needs an expensive optimization budget.

Earlier HW-aware NAS approaches employ grid or random search to tackle the
stagnation in local optima [38]. Nevertheless, these approaches are time-wasting
as NN architectures are generated randomly and explored unthinkingly without a
well-established basis. Then, evolutionary search approaches have been applied to
lower the uncertainty by contributing fitness evaluation functions that help guide
the search process to favor the exploitation of the best-performing NNs and explo-
ration of randomly generated ones. Following this mechanism, NN neighborhoods
are generated in a manner that jeopardizes both exploration and exploitation
[142]. However, this is suboptimal as the evolution strategy needs to generate new
populations using uniform evolution operators such as mutation and crossover
(See Figure 7.1). For instance, the mutation is randomly applied to add, alter, or
remove one or more neural components/operators to create a new offspring po-
pulation from a set of best-performing NN architectures. Similarly, in a crossover,
sets of neural components/operators are randomly selected and combined from
different NN architectures to produce a new offspring population.

Both mutation and crossover in evolutionary search are founded upon the basis
of the natural selection theorem, assuming that the combination of genes from well-
designed genomes always enhances the design and performances of the resulting
child genome. However, this assumption does not always hold regarding NP-hard
problems, such as HW-aware NAS, as uniform evolution operators between well-
performing NN architectures may result in poorly performing NNs. Consequently,
this can steer towards exploring ill-designed NNs with worse performances and
wasting an expensive search budget. Thus, carefully choosing where and when to
apply the evolution operators is necessary to adjust the search process. Such exper-

120

NAS Initialization

Fitness Evaluation

Elite Selection

Evolution Operators
Mutation and Crossover

Fitness Evaluation

Next Evolution

Stopping
CriterionLast Population

Initialization Evolutionary Search

Output

Lack of Self-adaptive
Evolution Operators

Highly Uniform

Figure 7.1 The flowchart of a typical Evolutionary NAS (ENAS).

tise can be acquired during the search by exploiting the evaluated populations to
build knowledge on the search space that can help establish self-adaptive evolution
operators to better guide the search algorithm towards the global optima.

Data-driven approaches are widely used to improve the design and performance
of NNs following the ML-for-ML paradigm. For instance, data-driven surrogate
modeling leverages evaluation data of NNs to train a model capable of estima-
ting the performances of unseen ones [137]. However, data-driven approaches have
been limited to NN performance estimation to accelerate the fitness evaluation in
evolutionary HW-aware NAS [142, 77]. Viewing things from a fresh angle, data-
driven ML-based models can also be used to learn and infer the importance of
NN design parameters to guide the evolution of search operators in Evolutionary
NAS (ENAS) approaches. Alternatively, How can we better use the generated data
on sampled NN architectures and their performance evaluation during the search
process to build ML-based models capable of guiding the search algorithm through
assessing the importance of NN design parameters ?

Addressing these challenges, we propose SONATA, a self-adaptive evolutionary
search for HW-aware NAS. Our method leverages ML-based evolution operators
(i.e., mutation and crossover) that progressively learn the importance of NN design
variables and intensify the search accordingly. Comprehensive evaluations across
various NAS search spaces and edge devices demonstrate that our approach im-
proves upon the baseline ENAS, such as NSGA-II [52], with an accuracy impro-
vement up to ∼0.25% on the ImageNet-1k dataset and latency/energy gains up
to ∼2.42x. Contributions and results of this chapter have been submitted in:

— [26] Halima Bouzidi, Hamza Ouarnoughi, Abdessamad Ait El Cadi, El-
Ghazali Talbi, and Smail Niar, ”Sonata: Self-adaptive Evolution for Multi-
objective Hardware-aware Neural Architecture Search”. Submitted to IEEE
Transactions on Evolutionary Computation, 2024.

121

7.2 Related Works

7.2.1 Evolutionary Neural Architecture Search (ENAS)

Evolutionary algorithms are employed in more than 60% of NAS frameworks
due to their efficiency and flexibility in handling large search spaces of complex en-
coding schemes [138]. As typical evolutionary search methods, ENAS requires ex-
tensive evaluation and trial-error iterations, which turns out to be time-consuming
for HW-aware NAS problems [168]. However, leveraging performance predictors
into the ENAS framework can reduce the search time [168]. The key components
of ENAS involve the following:

— (i) Genome encoding, which defines how a single NN architecture is repre-
sented – ENAS generally operates on the adjacency matrix of the NN using
a one-hot/categorical encoding [228] or by learning an embedding of the
directed acyclic graph embedding using GCN or GNN [194].

— (ii) Mutation, which defines the changes to be made on a given NN re-
presentation to generate a new one through adding, altering, or removing
parameters (e.g., operator node, inter-layer connection).

— (iii) Crossover, which determines how two NN representations are combined
to derive a new one.

— (iv) Elite selection strategy, which renders a set of Pareto optimal solutions
as elite genomes that will undergo Mutation and crossover steps [201].

ENAS generally employ Pareto ranking methods to sort genomes according to
their dominance and diversity in the objective space using Tournament selection
and crowding distance measurements [51].

7.2.2 Surrogate-assisted Multi-objective ENAS (SaMo-ENAS)

Given the high convexity observed in HW-aware NAS problems, simple analy-
tical models can not be used to infer insights on the correlation between NN ar-
chitectures and the obtained performances. Consequently, black-box data-driven
surrogate models have been incorporated to accelerate the ENAS process [61].
These surrogate models can be used at different levels of the ENAS algorithm:

— (i) Fitness evaluation: Performance predictors can be used to estimate the
accuracy, latency, or energy of the sampled NNs during the search process.
The predictors can be either trained a priori (i.e., before the search) by
sampling a set of NNs, evaluating them -through training on the target
task and deployment on the HW device- to get the ground truth labels,
then training ML-based predictors on the NNs representations and their
performance measurements. In literature, predictors are typically built upon
Random forest [171], XGBoost [168], GNN [226], or Gaussian process [71,
34, 45].

— (ii) Initialization and Sampling : By gathering pre-knowledge on the qua-
lity of the search to enhance the sampling of new NNs using Multifidelity
estimators [222], Gaussian process [45], and clustering methods [217].

— (i) Neighborhood generation: In ENAS, through mutation and crossover,
a neighborhood is generated to explore the next generation of NNs to ba-
lance the exploration-exploitation tradeoff. In that sense, [42] was the first
to introduce a learning-based mutation [42] using a reinforcement learning

122

controller. Probabilistic models of mutation have been introduced in [238] to
self-adapt the mutation strategy during the search in a block-wise level of
the NN. In that same spirit, [179] proposes a mutation controller based on
the NN model size.

However, most of the existing works do not explore data-driven methods to
learn the importance of NN design variables. Incorporating knowledge that are
collected at run-time to build a fully self-adaptive search strategy has not been
explored. To the best of our knowledge, our work is the first to address this issue
by proposing a purely data-driven approach that explored the search history in
ENAS to train surrogate models that learn and predict the importance of design
parameters at each evolutionary generation. The learned importance scores will
be used to guide the evolution operators in a way that assists guiding the search
to more optimal NN designs.

7.3 Novel Scientific Contributions

In the realm of our observations and motivations summarized in the above
section, we introduce the following novel contributions:

— We present SONATA, a self-adaptive multi-objective optimization framework
for HW-aware-NAS that progressively learns the importance of NN design
parameters and guides the search accordingly.

— We implement self-adaptive evolution search operators guided by ML-based
models to continuously learn the importance of NN design parameters from
the search data history to explore effective neighborhoods of NNs by muta-
ting and crossover the most important and critical design parameters.

— We compare SONATA against baseline evolutionary optimization algorithms
for HW-aware-NAS frameworks.

— We validate our approach on many HW-aware NAS problem instances by
varying the search spaces and hardware devices on the large ImageNet-1k
dataset for image classification.

— Through an extensive set of experiments, we demonstrate that our approach
can find optimal NNs under a low optimization budget. Evaluation results
have shown the merit of SONATA with an accuracy improvement up to ∼0.25%
on the ImageNet-1k dataset [114] and latency/energy gains up to ∼2.42x on
edge GPUs, compared to SOTA ENAS, NSGA-II, under the same optimiza-
tion budget (i.e., number of evolutionary iterations).

7.4 Design Parameters Importance Estimation for NAS

Quantifying the importance of NN design parameters is crucial to pave the
way for more explainability of the causality between NN design perturbations and
performance variations. Within this scope, design parameters can be ranked ac-
cording to their importance a priori to help the designer know the most critical
parameters and what to keep, tune, or remove [153]. Alternatively, the importance
of the NN parameter can also be leveraged during or after the NAS to get insights
into how NN architectures evolve to satisfy the optimization objectives. However,
the drawn conclusions highly depend on the search space coverage and the search
algorithm’s effectiveness. The impact of design parameters on performance can

123

be evaluated by systematically varying the values of individual design parameters
while keeping others fixed and observing the resulting performance changes to as-
sess how NNs are sensitive to different design parameters. Sensitivity analysis aims
to assess each parameter’s significance by analyzing the variability in performance
changes that can be attributed to each design parameter. It can be conducted
via functional ANOVA (fANOVA) [95, 225], Local Parameter Importance (LPI)
[17, 16], or by fitting surrogate models such as Random Forest [265]. Nevertheless,
these techniques are only used for one objective (i.e., accuracy) and never adapted
for a HW-aware NAS multi-objective context. Thus, one must ask the following
question: ”How existing parameter importance analysis methods can be adapted
in a multi-objective context to understand the interplay between NN design para-
meters and their impact on the overall performance regarding the accuracy and
hardware efficiency ?”

7.5 Problem Statement

7.5.1 The Main Problem: HW-aware NAS

Let M be a NN architecture that comprises n sequentially arranged computing
blocks Bn, each encompasses dn computing layer Ldn (See Figure 7.4). Typically,
the type, order, and inter-dependency of Bn define the macro-architecture of the
NN, whereas the specifications of Ldn define micro-architecture of the NN. To
simplify the design, existing search spaces embedded into supernets [31, 219, 75]
assume a fixed macro-architecture while evolving the NN design around the varia-
tions of the Bn micro-architecture. The micro-architecture of the block defines the
internal layers components (e.g., MBConv [186], Attention [57]) and their respec-
tive design parameters (e.g., depth, kernel size, attention heads). We refer to this
micro-architecture search space by M.

M(·) = Bn ◦ Bn−1 ◦ Bn−2 ◦ · · · ◦ B2 ◦ B1s.t. M ∈ M (7.1)

Where Bj = Ldj ◦ Ldj−1 ◦ · · · ◦ L2 ◦ L1 (7.2)

A typical Hardware-aware NAS problem is formulated as a multi-objective opti-
mization problem in which the aim is to automate the exploration of the search
space M, to retain NN architectures M∗ that offer minimal prediction error (Err),
short execution latency (Lat), and low energy consumption (Ergy):

M∗ = arg min
M∈M

[Err(M), Lat(M,H), Ergy(M,H)] (7.3)

Where Err, Lat, Ergy designate the optimization objectives, and H is the Hard-
ware configuration (e.g., edge devices) for deployment. Within this global optimi-
zation problem, we substitute and formulate another sub-problem for learning and
estimating NN design parameters’ importance given a sampled set of NN archi-
tectures M and their objective evaluations. This sub-problem is detailed in the
following.

124

7.5.2 The Sub-Problem: Design Parameter Importance Learning

Let (XT , YT) be a history set of sampled NN architectures (XT) and their
evaluations on the underlying optimization objectives (YT), respectively, during
T generations of the ENAS. Let E be the encoding vector of M where:

E = [π1, π2, · · · , πm], s.t. π ∈ {R,K,E,W,D} (7.4)

Here π defines a design parameter of the M blocks micro-architecture that can
designate an input resolution (R), kernel size (K), channel expand ration (i.e.,
channel width) (E), block width (W), or block depth (D). A design parameter is
included in the encoding vector if on only if it’s as design variable of the search
space M. Given the multi-objective context of the HW-aware NAS, we aspire to
learn the correlation between the settings of the NN design parameters with regard
to the obtained Pareto optimality and diversity scores. In other words, we aim to
discover the most influential design parameters on the Pareto front optimality
and diversity. This learning process can leverage the history of the ENAS data
(XT , YT) to train a surrogate model capable of estimating NN design parameters
importance. This model can be updated after each G generation – For instance,
after each two (02) generations, we re-train the model with new sampled NN
architectures. Thus, G designates the update rate. The surrogate model for NN
design importance learning is noted by θM,HK and is detailed as follows:

θM,HG : E −→ S , Ei = encoding(xi) | xi ∈ XT ⊂ M (7.5)

where Si = Optimality(yi)β1 +Diversity(yi)β2 (7.6)

s.t. yi ∈ YT | yi = [Err(xi), Lat(xi,H), Ergy(xi,H)] (7.7)

Here θM,HG defines a mapping function between the encoding vectors Ei of NN
and a weighted sum of their Optimality and Diversity scores Si. For the sake
of generality, β1 and β1 can be used as control knobs to favor optimality over
diversity or vice-versa. In our case, as we’re equally interested in both optimality
and diversity, we set the them as β1 = β2 = 0.5.

We quantify the Optimality using Pareto ranking scores as shown in equa-
tion (7.8). The Pareto rank score is obtained from calculating the minimal Eu-
clidean distance between each objective vector yi ∈ YT and each optimal (i.e.,
non-dominated) objective vector z∗

i ∈ PFRef (YT) from a reference Pareto front
PFRef . We compute the reference Pareto front using the non-dominated sorting
algorithm [52] on the objective vectors from T evaluated population (XT , YT). We
note that K in equation (7.8) refers to the number of optimization objectives. In
our use-case, K = 3 and we consider 3 objectives: Error in the classification (Err),
Latency (Lat), and Energy consumption (Ergy).

Pareto rank(yi) = min
zi∈PFRef

√√√√ K∑
k=1

(yki − zki)2 (7.8)

For interpretation, NN architectures with the lowest Pareto rank scores are closer
to the optimal reference Pareto front PFRef , indicating better convergence. Thus,
the lowest the Pareto rank score is, the more optimal the NN architectures explored

125

by the ENAS are.

Pareto
Front

Objective 2 (y2)

O
bj

ec
tiv

e
1

(y
1)

Pareto
Front

Objective 2 (y2)

O
bj

ec
tiv

e
1

(y
1) yi-1

yi+1
yi

Cuboid

Figure 7.2 Calculation of the crowding distance. To simplify the interpretability,
we give an example of two optimization objectives, y1 and y2. However, the same
technique can be applied to the case of more than two optimization objectives.

We measure the Diversity by employing the crowding distance metric intro-
duced in NSGA-II [51] to characterize the disparity of NN architectures in the
objective space (i.e., based on the disparity of their objectives vectors). The ma-
thematical formulation of the crow distance is detailed in equation (7.9):

crow distance(yi) =
K∑
k=1

yk(i+1) − yk(i−1)

ykmax − ykmin
(7.9)

Where K is the number of objectives, y(i+1),k and y(i−1),k are the values of the k-th
objective for the objective vector immediately succeeding and preceding the i-th
objective vector, respectively.

ykmin and ykmax are the minimum and maximum values of the k-th objective. The
crowding distance of the i-th objective vector yi expresses the average side-length
of the cuboid as illustrated in Figure 7.2.

On comparing two NN architectures with different crowding distances, the NN
architecture with the large crowding distance is considered present in a less crow-
ded region, thereby being more different. Thus, the higher the crowding distances
are, the more diverse the NN architectures explored by the ENAS are.

How NN design parameters importance can be inferred from the mapping func-
tion θ between the encoding vectors the NN and the weighted sum of their
optimality and diversity scores ?
We aim to estimate the importance of NN design variables π by analyzing the
learned mapping function θ. In other words, we aspire to measure the impact of
the NN design variables π on the performance scores by observing which design
variables are critical to better fit θ on the search history data (XT ,YT).

Thus, we assume that the design variables π with the high variance in the
predictions provided by θ are the most critical for the Optimality and Diversity
scores of NNs.

The analysis step of the mapping function θM,HG can be performed using me-
thods such as variance analysis [95, 225] or by quantifying the information gain
of prediction features coverage in tree-based ML methods [39, 130]. For instance,

126

Population

Evolve

Mutation
Crossover

Evaluate Select

SONATA
Framework
Workflow

- Remove worst
- Add offspring

Decode
Vec2NN Tournament

Selection

Offspring
Population

…

…

Encoding
vectors … Search HistoryUpdate

(XT, YT)
1 ≤ T ≤ G

a) Design variable importance learning:

b) Evolution probability learning:

Fitting

(X1,T, Y1,T)RF
XGBoost
….

Variance
Analysis

Ɑ1
Ɑ2
…
Ɑm

Imp.
scores

Policy
Learning

Softmax
Transform

One-hot
Encoding

p1
p2
…
pN

y1
y2
…
yN

(XT, YT)
Accuracy Latency & Energy

Mutation Crossover(ɑ , p)(XT, YT)

Operators
Extractor

Conv3x3
Attention,
Linear
…

Latency LUT

Energy LUT

Evaluate
Lat
Ergy

…

XGBoost
Regressor

Fit
Predict

Acc

Resolution,
Kernel size,
Depth
….

Tune

Encoding
vectors

Figure 7.3 SONATA: self-adaptive and data-driven evolutionary search process.

if the mapping function is a tree-based ML model (e.g., Random Forest [130]),
the importance of design variables can be measured by the number of times each
design variable has been used to split and construct nodes in the decision tree
(See Figure 7.5). Alternatively, in variance analysis with fANOVA [95, 225], the
importance of design variables can be expressed as the degree of perturbations
observed in the outputs of the mapping function when varying one specific design
variable while fixing the others at specific values (e.g., at their minimal values).

Once the learned mapping function is analyzed, the estimated importance
scores of the design parameters will be used to rank them from the least to the
most important. Logically, exploring the most important NN design parameters
increases the potentiality of retrieving NN architecture candidates with better
spread and variance in the Optimality and Diversity scores. Accordingly, in the
context of ENAS, mutation and crossover should be intensified and focused on
the most critical design parameters. In a nutshell, our ultimate goal is to decide –
in a data-driven manner– which NN design parameters are worth to explore and
exploit in the ENAS using evolution operators (i.e., mutation and crossover).

7.6 Proposed Approach

We propose, SONATA, a novel self-adaptive evolutionary algorithm for Hardware-
aware Neural Architecture Search. SONATA leverages the data generated during the
search to learn, adjust, and use ML-based models to direct the search towards Pa-
reto optimal NN designs while sustaining minimal search overhead. The key idea
of our framework is to fully reuse generated data and evaluations from the search
process to understand how design variables impact the Pareto optimality and di-
versity scores. In a data-driven fashion, SONATA aims to build knowledge on how
the search process should evolve given the multi-objective context of HW-aware
NAS. Figure 7.3 gives an overview of our framework. We build the entire search
process upon the existing NSGA-II algorithm for multi-objective optimization by
reusing fundamental components such as population initialization and tournament
selection. Our contributions entail leveraging ML-based data-driven methods to
enhance two critical components:

127

— (i) Mutation and Crossover : by using ML-based methods to estimate the
most impacting design variables that would result in diverse and optimal
NNs. Moreover, we use an ML-based controller that learns -in an unsupervi-
sed fashion- the probabilities of mutation and crossover for each individual
in the selected subset X′T .

— (ii) Evaluation: by employing cheap performance estimation strategies such
as ML-based surrogate models to evaluate the accuracy of the sampled NN
and lookup tables to compute the latency and energy consumption on the
target hardware device. These proxy performance estimators help accelerate
the fitness evaluation process, which is the bottleneck in HW-aware NAS.

The overhead of training and updating the ML-based models incorporated in the
evaluation and mutation/crossover is minimal and does not compromise the overall
search time. Furthermore, our approach contributes self-adaptive search operators
upon the existing NSGA-II and can be compatible with any search space, hardware
devices, or target task and dataset.

7.6.1 Search Space Encoding and Initialization

In ENAS, every NN architecture is represented as a genome corresponding to
an encoding vector that embeds the neural design specification E = [π1, π2, · · · , πm].
One gene of the genome corresponds to one of the design variables π of the en-
coding vector. We employ a direct discrete encoding as depicted in Figure 7.4 to
represent a single NN. The same genome representation is used as feature vectors
to train the surrogate models at the mutation/crossover and for fitness evaluation.
We note that the dimension m of the encoding vector depends on the search space
defined in M. In this paper, we study the case of micro-search space in which the
number of neural blocks, noted n in equation (7.1), for M is fixed, whereas the
block components and operator in each layer Ldj , in equation (7.2) of the n Bj

blocks are searchable.

…

Conv 1x1

Depthwise conv

Squeeze-Excitation
(SE)

Conv 1x1

D
ep

th
 (d

i)

Width (w)

d w Kernel
size

Expand
ratio SE use

One neural block -> genome

= NN encoding vector

…

One gene

NAS encoding into 5n-genome vector

Neural block #2
(B2)

Neural block #n
(Bn)

Neural block #1
(B1)

Input Layer

Output Layer

Figure 7.4 SONATA Neural network (NN) encoding scheme.

The initialization method in ENAS is essential to ensure diversity within the
first population. To achieve the said purpose, we employ the Latin Hypercube
Sampling (LHS), a statistical technique for efficiently sampling multi-dimensional
spaces. It involves dividing each parameter’s range into equally probable intervals
and randomly selecting a single value from each interval for π. These values are
then combined to form a sampled genome E .

128

7.6.2 Self-adaptive Mutation and Crossover

Following the evolutionary paradigm, once a population is evaluated, a selec-
tion step follows up to render a subset of promising genomes that will evolve to
produce the next offspring population. This evolution step is ensured through mu-
tation and crossover. Typically, Conventional mutation and crossover operators
are applied to random positions of the genomes. However, this randomness often
leads to a significant lack of directional focus, which becomes particularly costly
when dealing with expensive evaluation functions, as observed in HW-aware NAS
problems. Acknowledging this challenge, we design learning-based mutation and
crossover operators that target only the most pivotal decision variables. The ratio-
nale behind this approach is that by focusing perturbations on the most influential
design variables (i.e., genes) within the genomes, we aim to induce high variabi-
lity in the objective outcomes, thereby maximizing the rates of exploration and
exploitation in ENAS.

To achieve the said purpose, we leverage the search data history to identify
the design variables that are most crucial to Pareto optimality and diversity. This
process is illustrated in Figure 7.3:

— In step (a), ML-based models are trained to learn and map importance scores
to each design variable as formulated in 7.5.2.

— In step (b), we employ a learning-based policy that determines each genome’s
mutation and crossover probabilities.

Thus, the first step addresses the question of ’How?’ in terms of pinpointing
which design variables to focus on, while the second phase tackles the ’Where ?’
by determining which genomes are promising for applying mutation and crossover.

1⃝ Design Parameter Importance Learning

We use the history of search data (XT , YT) to train, tune, and update a
gradient-based boosting tree [39] surrogate model to fit the mapping function
detailed in equation (7.5). Each design parameter in the encoding vector E in
equation (7.4) is considered as a potential feature for the node and leaf splitting
during the learning and generation of the decision trees. We employ XGBoost to
learn generate the tree-based model θM,HK . The learning process follows a gradient-
descent optimization where the loss function to minimize is given as following:

Θ(S, Ŝ) =
√√√√ 1
n

n∑
i=1

(Si − Ŝi))2 +
K∑
k=1

L2(fk) where Ω(fk) = γT + 1
2λ∥w∥2 (7.10)

Where n is the number of ground-truth labels and K is the maximum number
of decision trees, Ω is the L2 regularization term used to control over-fitting by
penalizing the complexity of the model. Specifically, Ω is defined for each tree fk.
For each tree fk, T is the number of leaves, w is the vector of scores in the leaf
nodes, γ and λ are regularization parameters. We note that a node or a leaf is
associated with a unique feature, i.e., decision variable π ∈ E . Once the learning
process completes its procedure, a vector of importance scores α = [α1, α1, . . . , αm]
is generated. Each αi designates an importance score of a design variable π ∈ E .
The importance score is computed based on the number of times a leaf or node,
in decision trees, was split based on π (See Figure 7.5).

129

Training samples

…

Nodes split according to one of the design variables ⲠTraining samples

Figure 7.5 Nodes split mechanism in tree-based model (XGBoost).

2⃝ Evolution Probability Learning

Learning the importance of the NN design parameter helps pinpoint which
genes are worth exploring during the ENAS process. However, another source
of uncertainty comes from the probability at which evolution operators should be
applied. Dynamic probability sampling for mutation and crossover has been shown
promising for ENAS [238].

In the same spirit, we propose training a network Policy learning (See Fi-
gure 7.3) to learn the probabilities of mutation/crossover per genome. We formu-
late probability learning as a sequential decision-making process, where an agent,
neural networks denoted as ψ, can make a sequence of decisions about selecting
appropriate evolution probabilities p = [p1, p2, . . . , pN] according to the gain in
Pareto scores in S. We design the network agent ψ with three (03) full-connected
(FC) layer that takes as inputs the encoding vectors (π∗) of selected genomes for
mutation/crossover after the tournament selection.

The 03 FC layers perform feature extraction to select appropriate evolution
probabilities for each input π∗. To enhance the agent network, we use a reward
function, Rψ, in Reinforcement Learning manner [271], as follows:

Rψ = 1
N

N∑
i=1

(
−
(
Si − max(S(1,...,N)

)
× log(soft probi)

)
(7.11)

where S is the Pareto scores, sof prob are the softmax probabilities predicted
by the agent network ψ for the given inputs of encoding vectors. We employ the
policy gradient algorithm proposed by [9] to optimize our agent network ψ.

7.6.3 Surrogate-assisted Fitness Evaluation

To accelerate the fitness evaluation, we leverage surrogate 1 models based on
XGBoost [39] ML-based methods for regression. As discussed in Chapter 6, XG-
Boost has shown impressive prediction accuracy, generalization power, and rank-
preserving capabilities. Prior works in surrogate modeling, such as NAS-Bench-301

1. Surrogate models and Prediction models can be used interchangeably to designate perfor-
mance estimation models. The terminology of ’Surrogate models’ is widely used in the context
of optimization and HW-aware NAS.

130

[198], share similar findings. In our framework SONATA, we employ XGBoost to mo-
del the accuracy of NNs. Prior to the search process, we randomly sampled and
evaluated 500 NNs on the validation dataset. Then, we use the sampled data to
train prediction models for accuracy. The architectural specifications of the sam-
pled NNs (e.g., input resolution, depth, width, kernel size) are used as feature
vectors for the surrogate model training process.

For hardware-related metrics, we use lookup tables (LUT) by inspecting and
analyzing the commonly used operators (e.g., convolution, attention, fully connec-
ted) across the studied search spaces in this work. We then deploy and profile the
operators on the target hardware devices to get latency and energy consumption
measurements. The reason for employing lookup is that recent and effective search
spaces in [31, 33, 219, 75] share common and similar neural operators and configu-
rations. Thus, retrieving these common operations and measuring their hardware
overheads once and for all is more convenient to reuse them across search spaces.
However, we recommend using the model-level prediction models detailed in Chap-
ter 6 for unstructured search spaces that exhibit much less similar and common
neural operators.

7.7 Experiments and Evaluation

In this section, we conduct experiments to showcase the merit of SONATA to
render optimal NN architectures within a low optimization budget. We evaluate
the generality of our framework across NAS search spaces and target hardware
devices. Specifically, we experiment on SOTA CNN and Transformer search spaces
for image classification on the large ImageNet-1k dataset [114]. on three different
edge GPUs from NVIDIA. Following, we provide more details on the experiment
setup and evaluation results.

7.7.1 Experimental Setup

1⃝ NAS Search Spaces

We study the case of four (04) SOTA search spaces, originally designed for edge
computing systems. Specifically we built our NAS search spaces upon the base-
lines introduced in AlphaNet [219], Once-for-all (OFA) [30], ProxylessNAS [33],
and NASViT [75]. The three first ones are based on CNN architectures. Notably,
OFA and ProxylessNAS are built upon MobileNet-V3 [89], AlphaNet upon FBNet
[229], while NASViT is a CNN-Transformer hybrid architecture combining MB-
Conv blocks from [90, 187] and Transformer blocks from [57]. Additional details
on search spaces are given in Tables 7.2, 7.3, and 7.1.

131

Table 7.1 Details on OFA [30] and ProxylessNAS [33] search spaces

Block name Channel width Depth
Kernel

size

Expansion

ratio
SE Stride

Conv 16 - 3 - - 2

MBConv-1 16 1 3 1 N 1

MBConv-2 24 {2, 3, 4} {3, 5, 7} {3, 4, 6} N 1

MBConv-3 40 {2, 3, 4} {3, 5, 7} {3, 4, 6} N 2

MBConv-4 80 {2, 3, 4} {3, 5, 7} {3, 4, 6} Y 2

MBConv-5 112 {2, 3, 4} {3, 5, 7} {3, 4, 6} N 2

MBConv-6 160 {2, 3, 4} {3, 5, 7} {3, 4, 6} Y 1

MBConv-7 960 {2, 3, 4} {3, 5, 7} {3, 4, 6} Y 2

MBPool 1280 - 1 6 - -

Input resolution {128,.., 224}

Table 7.2 Details on the AlphaNet [219] search space

Block name
Channel

width
Depth

Kernel

size

Expansion

ratio
SE Stride

Conv {16, 24} - 3 - - 2

MBConv-1 {16, 24} {1,2} {3, 5} 1 N 1

MBConv-2 {24, 32} {3, 4, 5} {3, 5} {4, 5, 6} N 2

MBConv-3 {32, 40} {3, 4, 5, 6} {3, 5} {4, 5, 6} Y 2

MBConv-4 {64, 72} {3, 4, 5, 6} {3, 5} {4, 5, 6} N 2

MBConv-5 {112,128} {3, 4, 5, 6, 7, 8} {3, 5} {4, 5, 6} Y 2

MBConv-6 {192, 200, 208, 216} {3, 4, 5, 6, 7, 8} {3, 5} 6 Y 1

MBConv-7 {216, 224} {1, 2} {3, 5} 6 Y 2

MBPool {1792, 1984} - 1 6 - -

Input resolution {192, 224, 256, 288}

Table 7.3 Details on the NASViT [75] search space

Block name Channel width Depth
Kernel

size

Expansion

ratio
SE Stride

Attention

windows

Conv {16, 24} - 3 - - 2 -

MBConv-1 {16, 24} {1,2} {3, 5} 1 N 1 -

MBConv-2 {24, 32} {3, 4, 5} {3, 5} {4, 5, 6} N 2 -

MBConv-3 {32, 40} {3, 4, 5, 6} {3, 5} {4, 5, 6} Y 2 -

Transformer-4 {64, 72} {3, 4, 5, 6} - {1, 2} - 2 1

Transformer-5 {112,120,128} {3, 4, 5, 6, 7, 8} - {1, 2} - 2 1

Transformer-6 {160, 168, 176, 184} {3, 4, 5, 6, 7, 8} - {1, 2} - 1 1

Transformer-7 {208, 216, 224} {3, 4, 5, 6} - {1, 2} - 2 1

MBPool {1792, 1984} - 1 6 - - -

Input resolution {192, 224, 256, 288}

2⃝ Hardware Devices Settings

We validate our method on three (03) edge devices from NVIDIA:
1. Jetson AGX Xavier equipped with an NVIDIA Carmel Arm-64bit CPU

and a Volta GPU of 512 GPU cores.
2. Jetson TX2 composed of an NVIDIA Denver 64Bit and ARM-A57 CPU

132

cores and a Pascal GPU with 256 GPU cores.
3. Jetson Nano that comprises an ARM-A57 CPU and a Maxwell GPU of

128 GPU cores.
The NNs have been implemented and evaluated using TensorRT 8.4 as high-

performance SDK from NVIDIA [3]. We map the NN entirely on the GPU as our
the target computing unit under FP32 data precision and MAXN DVFS setting.

3⃝ Evolutionary Search Settings

We build SONATA on top of the existing NSGA-II algorithm [52]. We keep the
main algorithmic components. The only changes are the fitness evaluation and
evolution operators as discussed in Sections 7.6.2 and 7.6.3. We fix the population
size to 300 and run the optimization framework for G = 10 generations (i.e.,
evolution cycle). We update the surrogate models after every two (02) generations.
The network agent ψ selects the evolution probabilities within a predefined range
of [0.3, 1.0]. We select the top five (05).

We use the native NSGA-II – without our modifications – as a baseline search
algorithm for comparison in the following sections. To ensure a fair comparison,
we use the same population initialization method (i.e., LSH), fitness evaluation
strategy, elite selection, and optimization budget (i.e., population size and number
of generations). We also tuned the mutation and crossover probabilities and found
a combination of 0.5-0.5 as an optimal setting for this baseline.

Figure 7.6 Performance of the surrogate models used to estimate the accuracy of
NNs in SONATA. We report the explained variance and Kendall-Tau rank correlation
coefficients – The higher values indicate optimal performances.

7.7.2 Surrogate Models Analysis

In this section, we discuss the performance of the surrogate models employed
in our framework, notably:

— (i) The surrogate model used for NN accuracy estimation in the fitness
evaluation step of SONATA.

— (ii) the surrogate model used for design variable importance learning and
estimation in the Mutation/Crossover step of SONATA.

133

Firstly, we trained the XGBoost surrogate model to estimate the accuracy of
the sampled NN. As shown in Figure 7.6, XGBoost gives relatively accurate es-
timations in all NAS search spaces. The explained variances, also known as R2,
and Kendall-Tau rank correlation coefficient are above 0.80. This result indicates
a strong prediction accuracy and rank preservation. Our preliminary results also
have shown a prediction accuracy higher than 95% for search spaces, further sti-
pulating the generalization and rank-preserving power of XGBoost [39]. We also
note that the shared macro-architecture structure in SOTA NAS search spaces
highly contributes to the performance of the surrogate models used for accuracy
[198]. For unstructured search spaces with uneven NN macro-architecture, fitting
a surrogate model to predict the accuracy can be challenging. Thus, employing a
string predictor like XGBoost is highly recommended.

Secondly, in Figure 7.7 we report the performances of the surrogate models,
Θ mathematically defined by equation (7.5). Θ is employed to learn and estimate
the importance of NN design variables to guide the mutation/crossover in Step
(a) (See Figure 7.3). We note that these surrogate models leverage information on
NN accuracy and HW efficiency (i.e., latency and energy) to assign optimality and
diversity scores to NNs as explained in Section 7.6.2. These scores depend on the
NAS search space and the target HW device. The pairs (NN, HW) are indicated
in the x-axis of the graph depicted in Figure 7.7.

High variance explained Strong Kendall-Tau

Rank Correlation

Figure 7.7 Performance of the surrogate models used to learn the importance of
NN design parameters importance in SONATA. We report the explained variance
and Kendall-Tau rank correlation coefficients – The higher values indicate optimal
performances. s

As shown, the high values of the explained variances and Kendall-Tau rank
correlation coefficients indicate strong performances and high fitness of Θ models.
The Kendall-Tau correlation coefficients are slightly lower than those in Figure7.6.
The reason behind this observation is the complexity of the correlation in the
scores used to train Θ. This complexity arises from the contradictory nature of
the involved objectives, notably NN accuracy and HW efficiency. Furthermore,
we noticed that the diversity term in (7.6) added another layer of complexity.
Nevertheless, we noticed that the results of SONATA can be less diverse without

134

including the diversity term in (7.6) – thus, we opted to keep it along the optimality
term to obtain an optimal balance of both.

7.7.3 SONATA Optimization Efficiency

In multi-objective optimization problems, both convergence and diversity are
of high priority and importance. To showcase the merit of our framework SONATA

compared to baseline ENAS algorithms, such as NSGA-II, we employ different
performance evaluation metrics widely used to assess optimality and diversity:

— (i) Hypervolume that measures the portion of the objective space dominated
by the Pareto front obtained by the search algorithm.

— (ii) Inverted Generational Distance (IGD) that measures the average dis-
tance from each point in the optimal Pareto front to its nearest point in the
Pareto front obtained by the search algorithm. As the optimal Pareto front
is unknown for the NP-hard problems, we approximate it by merging the
Pareto fronts of our SONATA and the baseline NSGA-II.

— (ii) Dominance ratio computes the ratio of non-dominated solutions from the
obtained Pareto front by the search algorithm contributing to the optimal
Pareto front – approximated as previously mentioned

Table 7.4 Comparison between the optimization efficiency (i.e., convergence and
diversity) of the baseline static ENAS NSGA-II [52] and our self-adaptive SONATA.

HW

Device

NAS Search

Spaces

Static ENAS NSGA-II [52] Our Adaptive SONATA

Hypervolume IGD
Dominance

Ratio
Hypervolume IGD

Dominance

Ratio

Jetson

Nano

OFA [31] 1725509 1.484 0.327 1733316 0.1305 0.826

ProxylessNAS [33] 1464862 1.072 0.071 1469478 0.0233 1.0

AlphaNet [219] 2336429 1.592 0.687 2330159 0.8175 0.305

NASViT [75] 1547510 3.040 0.447 1548843 0.4109 0.853

Jetson

TX2

OFA [31] 1756847 2.299 0.399 1757666 0.2964 0.866

ProxylessNAS [33] 1485138 2.291 0.170 1495840 0.1373 0.936

AlphaNet [219] 2479025 0.978 0.806 2476035 0.3215 0.372

NASViT [75] 1809648 6.435 0.417 1817793 0.5333 0.809

Jetson

AGX

OFA [31] 1842773 0.282 0.415 1845282 0.0965 0.980

ProxylessNAS [33] 1569035 0.850 0.043 1572546 0.0027 1.0

AlphaNet [219] 2558571 0.658 0.826 2561133 0.2776 0.579

NASViT [75] 2268507 3.854 0.524 2270813 0.8185 0.709

We summarize the results of this evaluation in Table 7.4. We note that high
hypervolume and dominance ratio values indicate an optimal balance between
convergence and diversity, whereas low IGD values stipulate better convergence.
As reported in Table 7.4, our SONATA generally outperforms the baseline search
algorithm NSGA-II in all optimization metrics. This is attributed to the ability of
SONATA to focus on the most rewarding NN design variables while also expanding
the scope of exploration by dynamically varying the mutation/crossover probabi-
lities via the RL-based agent network ψ.

More interestingly, the baseline NSGA-II only outperforms SONATA in the Al-
phaNet [219] search space. However, by observing the exploration results in the

135

RoD
86.6%

RoD
93.6%

RoD
37.2%

RoD
80.9%

Once-for-All (OFA) ProxylessNAS

AlphaNet NASViT

Figure 7.8 Comparing the optimization results of SONATA Vs. NSGA-II. The results
are reported on all of the studied the search spaces on the NVIDIA Jetson TX2.
The TOP-1 error are reported for the ImageNet-1k dataset.

plots of Figure 7.8, we can see that SONATA provides more accurate NNs with the
same HW execution cost as NSGA-II. Thus, we highlight the importance of visual
analysis when assessing the performance of optimization algorithms for HW-aware
NAS. Quantitative and qualitative analysis must be jointly used to determine the
effectiveness of search algorithms in HW-aware NAS. For instance, in the Alpha-
Net case, if NN accuracy is of the highest priority among other objectives, the
designer/user may be more interested in the results of SONATA, as they provide
more accurate NNs despite failing to outperform the baseline NSGA-II in the
quantitative analysis of Table 7.4.

From the exploration results in Figure 7.8, we can also see how SONATA was
able to explore diverse accuracy-efficiency trade-offs. Notably, by intensifying the
search in the region of interest – the extreme left depicts the highest accuracy
and lowest energy consumption. We can observe that SONATA optimization reaches
NN designs that provide better accuracy and low energy consumption than those
reached by the baseline NSGA-II. For instance, in the ProxylessNAS case, the
Pareto front of SONATA provides an accuracy improvement by ∼0.25% and energy

136

gains of ∼2.42x. These observations further demonstrate the merit of adapting
the evolution operators to intensify the search around the most important and
promising NN design parameters.

7.8 Summary

In this chapter, we have explored the prospect of leveraging ML-based methods
to enhance the efficiency of evolutionary NAS frameworks. Specifically, we built our
motivation upon the assumption that not all NN design variables can substantially
improve performance and hardware efficiency. We thus argue that ENAS search
algorithms can focus on exploring the most rewarding design variables to accelerate
the convergence and discovery of optimal NN design with better performance-
efficiency tradeoffs.

Following this assumption, we proposed SONATA, a self-adaptive evolutionary
framework for multi-objective HW-aware NAS frameworks. Our framework aims
to reduce the randomness of conventional evolutionary operators (i.e., mutation
and crossover) and replace them with learning-based operators. As such, we use the
search data history and tree-based ML methods, such as XGBoost, to progressively
learn the importance of NN design variables seeking optimality and diversity in
the multi-objective context of HW-aware NAS. The learned importance variable
scores are used to select a subset of the most important NN design variables on
which mutation and crossover should be applied. Furthermore, we employ an RL-
based agent that assigns dynamic mutation and crossover probabilities to evolve
only the most promising NN architectures. We also employ ML-based and LUT
surrogate models to accelerate the fitness evaluation step.

We evaluate SONATA on a plethora of HW-aware NAS problem instances that
we formulate using:

— SOTA NAS search spaces from OFA [31], ProxylessNAS [33], AlphaNet [219]
and NASViT [75]. These search spaces combine CNN and Transformers neu-
ral operators and are used for image classification on the ImageNet-1k [114].

— Edge hardware devices from the NVIDIA Jetson series, namely, Nano, TX2,
and AGX Xavier, under the maximum clock frequency setting MAXN.

Evaluation results have shown the merit of SONATA with an accuracy improve-
ment up to ∼0.25% and latency/energy gains up to ∼2.42x.

We have taken the first step towards a self-adaptive ENAS by leveraging ML-
based methods to enhance evolutionary operators and fitness evaluation. However,
data-driven ML-based methods can be extended to enhance other NAS compo-
nents, notably:

— Search space by adding, altering, or removing NN design parameters based
their importance prior [17] or during the search (This work).

— Search strategy via leveraging the dynamic reconfigurability of the search
algorithm hyperparameters [119].

— Fitness evaluation by training surrogate predictors to estimate NN perfor-
mances in an offline (as discussed in Chapter 6) or online [142] settings.

However, we believe that our work can be further extended to generalize the use
of ML-based methods to enhance the different components of HW-aware NAS, in
a multi-objective optimization context. As future works, we propose to extend our
framework by enhancing the knowledge of the importance of NN design variables

137

with GNN or Transformers as introduced in [119]. Learning the distribution of
NN design variables that improve performance and efficiency in a multi-objective
context is also a promising direction for ENAS. Incorporating preference-based
evolutionary operators to favor specific objectives and intensify the search around
certain values without setting constraints or pruning the search spaces is an im-
portant step for the evolutionary HW-aware NAS framework.

Our framework can also be used offline to tune the search space and remove
the least important design variables. It can also be used in an online setting, as we
proposed, or by hierarchizing the exploration process for multi-level search spaces.
It will be possible to co-optimize the NN and the HW by simultaneously setting
their corresponding design parameters.

138

Chapitre 8

Conclusions, Outlooks, and Future Directions

8.1 Summary of the Thesis

The extraordinary success of Neural Networks (NN) can be attributed to their
proficiency in processing data and extracting valuable patterns and features. This
success is further bolstered by the availability of datasets and the variety of neural
designs and operators. These advancements have expanded the NN’s capability to
represent intricate information and generalize across various tasks, including com-
puter vision and natural language processing. Following this wave of success, NN
has been widely adopted in Internet of Things (IoT) systems, fostering intelligent
applications at the edge, closer to end-user devices and data sources. However, the
resource limitations of edge devices in IoT systems — in terms of computational
capability, memory, and energy budgets — necessitate the optimization of NNs
for an effective deployment on such hardware platforms.

As mentioned in chapter 1, NN and hardware architectures continue to evolve
at varying paces, and finding a definitive and deterministic answer to How to
optimize NN execution on every edge hardware device ? remains an ongoing chal-
lenge. We stepped towards advancing research in this area by contributing from
two perspectives. Firstly, by expanding the Hardware-aware Neural Architecture
Search (HW-aware NAS) concept, we explored various optimization landscapes at
both software and hardware levels. Secondly, we proposed novel methods to en-
hance performance evaluation and search strategy within HW-aware NAS by le-
veraging the ’Machine Learning for Machine Learning ’ (ML4ML) paradigm. The
overarching goal of this thesis is to address the following research questions:

— How to enlarge the typical NAS search space by integrating hardware pro-
perties, such as the Dynamic Voltage and Clock Frequency Scaling (DVFS)
configurations, to realize more energy-efficient NNs ?

— How to further enhance the search space from the former question through
leveraging Dynamic Neural networks (DyNNs) -via input-adaptive early-
exit- and hardware properties -via DVFS- to enhance the energy efficiency
and enable NN adaptability to the runtime environment ?

— How can we better incorporate the prospect of distributed computing and
HW-aware NAS to optimize the execution of emerging Graph Neural Net-
works (GNNs) on heterogeneous MPSoCs for edge computing ?

— How can the dynamic usage of NN components and hardware computing
units in heterogeneous MPSoCs contribute to a novel collaborative energy-
efficient computing paradigm for DyNN inference ?

— How to adopt the ’ML4ML’ concept to enhance the performance evalua-

139

tion in HW-aware NAS by elaborating robust prediction models capable of
rapidly estimating the latency, energy, and memory usage of NN ?

— How to extend the ’ML4ML’ concept to improve the search strategy in HW-
aware NAS by progressively learning and evaluating the importance of NN
design variables and guiding the search accordingly ?

In Chapter 2, we investigated the importance of exploring NN and DVFS configu-
rations for edge GPUs. Our preliminary observation of the non-linear correlation
between clock frequencies and latency/power consumption of the NN inference
led us to enlarge the typical search space of NAS by considering (DVFS) configu-
rations. We introduced DVFS-NAS, a co-optimization framework built upon the
multi-objective evolutionary search algorithm NSGA-II, to explore the underlying
joint search space effectively. Experimental results on the NVIDIA Jetson AGX
Xavier have seen up to ∼1.53x energy efficiency compared to state-of-the-art me-
thods while sustaining similar or better accuracy and latency. We also validated
our framework on the high-performance SDK, TensorRT, in which results showed
an execution speedup of up to ∼ 1.81x and a power saving of 61%. The output of
our DVFS-NAS can be used to switch NN and/or DVFS configurations at runtime
to accommodate various requirements of accuracy, latency, or power budget.

In Chapter 3, we extended our DVFS-NAS by investigating the dynamic scaling
of neural components within a fixed NN. Switching NN models at runtime can
be costly, so we explored the prospect of dynamically scaling NN components
in an input-adaptive manner through an early exit strategy. Starting from our
observation of the complexity of jointly exploring the design space of such NN and
leveraging DVFS properties, we proposed HADAS, a novel and versatile HW-aware
NAS for DyNNs with DVFS features. We implemented a hierarchical design space
exploration for NN backbones, early-exit strategies, and DVFS configurations to
find optimal DyNNs that balance performance and energy efficiency. We have
shown that HADAS can achieve up to ∼1.57x energy efficiency while retaining
better to similar accuracy levels than state-of-the-art NNs.

In Chapter 4, we explored the world of GNN as an important and complex
class of NN that has lately seen a proliferation of its adoption on edge computing
systems. We adapted HADAS’s unique and hierarchical optimization strategy to
serve the co-optimization of GNNs and their distributed workload mapping on
the heterogeneous CUs of MPSoCs. We proposed MaGNAS, a mapping-aware co-
optimization framework that characterizes the GNN architectural design space and
distributed mapping options of workloads to make the best out of both SW and
HW worlds. MaGNAS aims to enable the discovery of GNN designs optimized
for distributed deployment on MPSoCs. MaGNAS employs a two-tier evolutio-
nary search framework to identify optimal architecture and mapping pairings that
provide the best performance trade-offs. Evaluation results have shown a ∼1.57×
latency speedup, ∼3.38× energy efficiency for several image classification datasets
executed on the Xavier MPSoC vs. the GPU-only deployment while sustaining an
average 0.11% accuracy reduction from the baseline GNN models [81].

In Chapter 5, we investigate the perspective of leveraging both the efficiency
of DyNNs, as seen in Chapter 3, and the effectiveness of distributed computing
on MPSoCs, as demonstrated in Chapter 4. Accordingly, we introduced a new
computing paradigm that best uses the two previous optimization techniques.

140

We proposed Map-and-Conquer, a novel energy-efficient execution paradigm for
DyNN on MPSoCs. Our approach aims to identify an optimal way to split a
DyNN across its ’width’ dimension, enabling the parallel execution of multiple
derived dynamic inference stages on different computing units. We validated our
framework using Transformers and Convolutional Neural Networks (CNNs) on
the CIFAR-100 dataset and employed NVIDIA’s Jetson AGX Xavier MPSoC.
Our findings have shown up to ∼2.1x more energy efficiency than GPU-only setup
and up to ∼1.7x execution speedup than DLA-only setup.

In Chapter 6, we explored the concept of ’ML4ML’, elaborating how ML-based
methods can streamline the HW-aware NAS. The major bottleneck in HW-aware
NAS is the NN performance evaluation, involving an end-to-end pipeline from
model loading to deployment and extensive performance measurements. We pro-
posed performance prediction models to speed up this process. We presented a
detailed performance analysis and characterization of NN inference workloads on
edge GPU devices. We examined the correlation between NN features and various
performance metrics. Consequently, we elaborated an end-to-end framework that
leveraged different ML techniques to learn and model the underlying correlations.
We validated our approach using three (03) edge GPUs from NVIDIA. Our pro-
posed prediction models have shown an average prediction error of ∼11%, ∼6%,
and ∼8% for latency, power, and memory usage, respectively.

In Chapter 7, we extended the prospect of ML4ML to enhance the efficiency
of evolutionary HW-aware NAS search algorithms. These algorithms heavily rely
on randomness without established reasoning on the importance of search space
design parameters on the optimization objectives (i.e., accuracy and hardware ef-
ficiency metrics). We addressed this gap by proposing SONATA, a self-adaptive evo-
lution for multi-objective HW-aware NAS frameworks. We designed self-adaptive
evolution operators, notably mutation and crossover, guided by the importance of
NN design variables. We leverage tree-based ML models to progressively learn the
importance of design parameters from the history of the HW-aware NAS search.
An extensive evaluation of multiple NAS search spaces and edge devices has shown
that our approach improves upon the baseline with an accuracy improvement up
to ∼0.25% and latency/energy gains up to ∼2.42x.

8.2 Outlook and Future Directions

“One never notices what has been done ; one
can only see what remains to be done.

”
— Marie Curie

This thesis brought several key insights and contributions to existing research
on NN performance optimizations for Edge AI. The manifold aspects involving
NN design, inference strategy (static vs. dynamic), and hardware configurations
(DVFS and MPSoCs) make the optimization problem even harder. Furthermore,
the multi-objective nature of the search algorithm – accuracy, execution latency,
and energy consumption – puts the designer against a decisional dilemma whether

141

in terms of What optimizations to investigate ? or What configurations to choose
after the optimization process ?.

Having explored part of these challenges, we have concluded that an hierarchi-
cal and cooperative design spaces exploration across multiple optimization land-
scapes and levels is mandatory to achieve optimal performance-efficiency tradeoff.
With our scientific contributions, we aspired to advance the NN and HW opti-
mization research one step further on the long path toward meeting the highest
limits of execution speedup, energy efficiency, and performance. To continue this
journey, we discuss in the following possible future research directions to push the
boundaries of existing optimization methods:

8.2.1 Enrich the Search Space of NAS

Most existing NAS search spaces are human-biased and built upon fixed base-
lines, such as in [220, 219, 56]. Despite advancements in optimizing and speeding
up NAS search strategy and performance evaluation, there remains a critical issue:
The inherent limitations of optimizing within these predefined search spaces. The
complexity intensifies when integrating additional dimensions, such as hardware
characteristics or neural scaling methods, like early exits. A pivotal challenge for
the research community is to develop a generalized NAS search space [134, 264].
This space should comprehensively encompass all possible NN architectures, en-
abling the application of other optimization techniques without the risk of sub-
optimality due to a restrictive dependency on the predefined search space.

8.2.2 Investigate Novel Hardware Technologies

As NNs continue to evolve, incorporating new neural architectures like Trans-
formers and GNNs, they present varied computational and memory demands.
Heterogeneous hardware architectures, such as MPSoCs, are increasingly outper-
forming traditional monolithic designs in this dynamic landscape. The reason is
their superior adaptability to the diverse requirements of these emerging NN ope-
rations. In contrast, being optimized for specific applications, monolithic hardware
struggles to keep up due to its inherent inflexibility towards novel applications and
neural operators. A promising solution to this challenge is leveraging HW-aware
NAS techniques on adaptable and more flexible hardware technologies, notably the
chiplet based heterogeneous integration [154, 126]. As such, this approach enables
the joint exploration of a broader spectrum of NN and HW options, facilitating the
creation of highly efficient, tailor-made NN-HW pairings, thereby yielding signi-
ficant gains in both efficiency and performance and contributing to the seamless
integration of NN on edge systems.

8.2.3 Incorporate Advanced Dynamic Inference Strategy

Input-adaptive DyNNs represent a burgeoning field of study with significant
potential, particularly in their adaptability for real-time applications like autono-
mous vehicles and robotics. This adaptability is crucial for promptly responding
to new inputs. However, designing these networks involves exploring a vast design
space, which includes finding the optimal configurations for static backbone struc-
tures, dynamic neural components, and deployment strategies. Consequently, a

142

well-defined search space encapsulating these design aspects is essential for elabo-
rating the next generation of highly optimized DyNNs for edge computing systems
[82]. An unexplored area in this research field is the potential of integrating hy-
brid dynamic inference strategies –such as early exit, computation skipping, and
dynamic routing – each offering unique advantages. Additionally, the optimiza-
tion of hardware-DyNN synergy remains an understudied area. Investigating this
in conjunction with heterogeneous hardware architectures could significantly en-
hance the capabilities of current DyNN frameworks. We believe that extending our
HW-aware dynamic NAS methods, such as in HADAS [21] and Map-and-Conquer
[22], would help in accelerating investigating more design options of DyNNs on
monolithic and heterogeneous hardware devices.

8.2.4 Towards Self-explainable HW-aware NAS

Existing multi-objective optimization frameworks for HW-aware NAS rely on
randomness to explore a broad range of NN candidates. They lack reasoning, in-
terpretability, and explainability before, during, and after the search. While this
aspect logically occurs due to their black-box optimization nature, it can also
be the reason behind their inability to converge rapidly towards the global op-
tima [55]. The search in HW-aware NAS often needs many trial-error iterations
due to exploring ill-designed NNs that add no gain to the optimization objec-
tives. To alleviate this problem, HW-aware NAS methods must incorporate more
explainability to guide the search process efficiently without wasting expensive
optimization time and budget on exploring useless NN designs [233]. ML, RL, and
Bayesian techniques allow learning the importance of design variables and varying
them accordingly as proposed in [87, 193]. However, most existing methods are
proposed in the mono-objective context, overlooking the multi-objective nature of
HW-aware NAS. Thus, we believe that more work is needed to better understand
the implications of design variables within the HW-aware NAS and how to employ
such knowledge to accelerate the discovery of Pareto optimal NNs.

8.2.5 Generalize the HW-aware NAS to Multimodality AI

Multimodality AI is emerging as an advanced NN approach that enables the
simultaneous processing of different types of input data, surpassing the capability
of their unimodal counterparts. Recently, the outstanding capabilities of chatbots
(e.g., GPT-4) are highly attributed to the multimodal learning paradigm. Howe-
ver, designing such networks is highly complex [249]. It involves searching optimal
backbone networks for each modality and searching for an optimal fusion network
to learn a joint embedding of information. The design landscape becomes more
complex when integrating the hardware dimension as it constrains the number
of modalities and fusion network capacity. Furthermore, HW-aware NAS frame-
works for this type of NN are lacking in the literature. We have stepped towards
bridging this gap by proposing our Harmonic-NAS [72, 96]. Still, the path toward
studying, characterizing, and optimizing the performance of multimodal NN is long
and challenging. A comprehensive design framework that accounts for hardware
optimizations is needed for multimodal NNs.

143

Bibliographie

[1] Dimension ai. https://app.dimensions.ai/discover/publication. Ac-
cessed : 2023-10-01.

[2] Our world in data. https://ourworldindata.org/grapher/

artificial-intelligence-parameter-count. Accessed : 2023-10-01.

[3] NVIDIA tensorrt. https://developer.nvidia.com/tensorrt/. Accessed :
2021-05-01.

[4] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. TensorFlow : A system for Large-Scale
machine learning. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 265–283. USENIX Association, Nov.
2016.

[5] M. S. Abdelfattah, L. Dudziak, T. Chau, R. Lee, H. Kim, and N. D. Lane.
Best of both worlds : Automl codesign of a cnn and its hardware accelerator.
In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1–6.
IEEE, 2020.

[6] H. Abdi. The kendall rank correlation coefficient. Encyclopedia of Measure-
ment and Statistics. Sage, Thousand Oaks, CA, pages 508–510, 2007.

[7] M. Amaŕıs, R. Y. de Camargo, M. Dyab, A. Goldman, and D. Trystram.
A comparison of gpu execution time prediction using machine learning and
analytical modeling. In 2016 IEEE 15th International Symposium on Net-
work Computing and Applications (NCA), pages 326–333, 2016.

[8] Y. Arafa, A.-H. Badawy, G. Chennupati, A. Barai, N. Santhi, and S. Ei-
denbenz. Fast, Accurate, and Scalable Memory Modeling of GPGPUs Using
Reuse Profiles. Association for Computing Machinery, New York, NY, USA,
2020.

[9] A. Ashok, N. Rhinehart, F. Beainy, and K. M. Kitani. N2n learning : Net-
work to network compression via policy gradient reinforcement learning. In
International Conference on Learning Representations, 2018.

[10] A. Auten, M. Tomei, and R. Kumar. Hardware acceleration of graph neural
networks. In 2020 57th ACM/IEEE Design Automation Conference (DAC),
pages 1–6. IEEE, 2020.

144

https://app.dimensions.ai/discover/publication
https://ourworldindata.org/grapher/artificial-intelligence-parameter-count
https://ourworldindata.org/grapher/artificial-intelligence-parameter-count
https://developer.nvidia.com/tensorrt/

[11] M. Awad and R. Khanna. Support vector regression. In Efficient learning
machines, pages 67–80. Springer, 2015.

[12] J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson Correlation Coeffi-
cient, pages 1–4. Springer Berlin Heidelberg, 2009.

[13] H. Benmeziane, H. Bouzidi, H. Ouarnoughi, O. Ozturk, and S. Niar. Treasure
what you have : Exploiting similarity in deep neural networks for efficient
video processing. arXiv preprint arXiv :2305.06492, 2023.

[14] H. Benmeziane, K. E. Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba, and
N. Wang. A comprehensive survey on hardware-aware neural architecture
search, 2021.

[15] S. Bianco, R. Cadene, L. Celona, and P. Napoletano. Benchmark analysis
of representative deep neural network architectures. IEEE access, 6 :64270–
64277, 2018.

[16] A. Biedenkapp, M. Lindauer, K. Eggensperger, F. Hutter, C. Fawcett, and
H. Hoos. Efficient parameter importance analysis via ablation with sur-
rogates. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 31, 2017.

[17] A. Biedenkapp, J. Marben, M. Lindauer, and F. Hutter. Cave : Configuration
assessment, visualization and evaluation. In Learning and Intelligent Opti-
mization : 12th International Conference, LION 12, Kalamata, Greece, June
10–15, 2018, Revised Selected Papers 12, pages 115–130. Springer, 2019.

[18] T. Blickle. Tournament selection. Evolutionary computation, 1 :181–186,
2000.

[19] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama. Adaptive neural net-
works for efficient inference. In International Conference on Machine Lear-
ning, pages 527–536. PMLR, 2017.

[20] H. Bouzidi, S. Niar, H. Ouarnoughi, and E.-G. Talbi. Sonata : Self-
adaptive evolutionary framework for hardware-aware neural architecture
search. arXiv preprint arXiv :2402.13204, 2024.

[21] H. Bouzidi, M. Odema, H. Ouarnoughi, M. A. Al Faruque, and S. Niar.
Hadas : Hardware-aware dynamic neural architecture search for edge perfor-
mance scaling. In 2023 Design, Automation and Test in Europe Conference
and Exhibition (DATE), pages 1–6, 2023.

[22] H. Bouzidi, M. Odema, H. Ouarnoughi, S. Niar, and M. A. Al Faruque. Map-
and-conquer : Energy-efficient mapping of dynamic neural nets onto hetero-
geneous mpsocs. In 2023 60th ACM/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2023.

[23] H. Bouzidi, H. Ouarnoughi, S. Niar, and A. A. E. Cadi. Performance predic-
tion for convolutional neural networks on edge gpus. In Proceedings of the
18th ACM International Conference on Computing Frontiers, CF ’21, page
54–62, New York, NY, USA, 2021. Association for Computing Machinery.

145

[24] H. Bouzidi, H. Ouarnoughi, S. Niar, and A. A. E. Cadi. Performance mo-
deling of computer vision-based cnn on edge gpus. ACM Transactions on
Embedded Computing Systems (TECS), 21(5) :1–33, 2022.

[25] H. Bouzidi, H. Ouarnoughi, S. Niar, E.-G. Talbi, and A. A. El Cadi. Co-
optimization of dnn and hardware configurations on edge gpus. In 2022
25th Euromicro Conference on Digital System Design (DSD), pages 398–
405. IEEE, 2022.

[26] H. Bouzidi, H. Ouarnoughi, E.-G. Talbi, A. A. El Cadi, and S. Niar.
Evolutionary-based optimization of hardware configurations for dnn on edge
gpus. In META’21, The 8th International Conference on Metaheuristics and
Nature Inspired Computing, 2021.

[27] H. Bouzidi, H. Ouarnoughi, E.-G. Talbi, A. A. El Cadi, and S. Niar.
Evolutionary-based co-optimization of dnn and hardware configurations on
edge gpu. In International Conference on Optimization and Learning, pages
3–12. Springer, 2022.

[28] E. Cai, D.-C. Juan, D. Stamoulis, and D. Marculescu. NeuralPower : Predict
and deploy energy-efficient convolutional neural networks. In M.-L. Zhang
and Y.-K. Noh, editors, Proceedings of the Ninth Asian Conference on Ma-
chine Learning, volume 77 of Proceedings of Machine Learning Research,
pages 622–637. PMLR, 15–17 Nov 2017.

[29] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang. Efficient architecture
search by network transformation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

[30] H. Cai et al. Once-for-all : Train one network and specialize it for effi-
cient deployment. In International Conference on Learning Representations
(ICLR), 2019.

[31] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-all : Train one net-
work and specialize it for efficient deployment. In International Conference
on Learning Representations.

[32] H. Cai, C. Gan, L. Zhu, and S. Han. Tinytl : Reduce memory, not parameters
for efficient on-device learning. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, editors, Advances in Neural Information Proces-
sing Systems, volume 33, pages 11285–11297. Curran Associates, Inc., 2020.

[33] H. Cai, L. Zhu, and S. Han. Proxylessnas : Direct neural architecture search
on target task and hardware. In International Conference on Learning Re-
presentations, 2018.

[34] M. B. Calisto and S. K. Lai-Yuen. Emonas-net : Efficient multiobjective neu-
ral architecture search using surrogate-assisted evolutionary algorithm for 3d
medical image segmentation. Artificial Intelligence in Medicine, 119 :102154,
2021.

146

[35] C.-H. Chan, L. Cheng, W. Deng, P. Feng, L. Geng, M. Huang, H. Jia, L. Jie,
K.-M. Lei, X. Liu, et al. Trending ic design directions in 2022. Journal of
Semiconductors, 43(7) :071401, 2022.

[36] C. Chen, K. Li, X. Zou, and Y. Li. Dygnn : Algorithm and architecture sup-
port of dynamic pruning for graph neural networks. In 2021 58th ACM/IEEE
Design Automation Conference (DAC), pages 1201–1206. IEEE, 2021.

[37] C. Chen and ohers. A survey on graph neural networks and graph trans-
formers in computer vision : A task-oriented perspective. arXiv preprint
arXiv :2209.13232, 2022.

[38] L.-C. Chen, M. Collins, Y. Zhu, G. Papandreou, B. Zoph, F. Schroff,
H. Adam, and J. Shlens. Searching for efficient multi-scale architectures for
dense image prediction. Advances in neural information processing systems,
31, 2018.

[39] T. Chen and C. Guestrin. Xgboost : A scalable tree boosting system. KDD
’16, page 785–794, New York, NY, USA, 2016. Association for Computing
Machinery.

[40] W. Chen, Y. Wang, S. Yang, C. Liu, and L. Zhang. You only search once :
A fast automation framework for single-stage DNN/accelerator co-design.
In 2020 Design, Automation and Test in Europe Conference and Exhibition
(DATE), pages 1283–1286. IEEE, 2020.

[41] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng. Dual path networks.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwana-
than, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[42] Y. Chen, G. Meng, Q. Zhang, S. Xiang, C. Huang, L. Mu, and X. Wang.
Renas : Reinforced evolutionary neural architecture search. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
pages 4787–4796, 2019.

[43] Y.-H. Chen, J. Emer, and V. Sze. Eyeriss : A spatial architecture for energy-
efficient dataflow for convolutional neural networks. ACM SIGARCH com-
puter architecture news, 44(3) :367–379, 2016.

[44] Z. Chen et al. Visformer : The vision-friendly transformer. In Proc. of the
IEEE/CVF international conference on computer vision, 2021.

[45] H. Cho, J. Shin, and W. Rhee. B2ea : An evolutionary algorithm assisted
by two bayesian optimization modules for neural architecture search. arXiv
preprint arXiv :2202.03005, 2022.

[46] K. Choi, D. Hong, H. Yoon, J. Yu, Y. Kim, and J. Lee. Dance : Differen-
tiable accelerator/network co-exploration. In 2021 58th ACM/IEEE Design
Automation Conference (DAC), pages 337–342. IEEE, 2021.

147

[47] F. Chollet. Xception : Deep learning with depthwise separable convolutions.
In Proceedings of the IEEE conference on computer vision and pattern re-
cognition, pages 1251–1258, 2017.

[48] X. Chu, B. Zhang, and R. Xu. Fairnas : Rethinking evaluation fairness of
weight sharing neural architecture search. In Proceedings of the IEEE/CVF
International Conference on computer vision, pages 12239–12248, 2021.

[49] I. Dagli et al. AxoNN : energy-aware execution of neural network infe-
rence on multi-accelerator heterogeneous SoCs. In Proceedings of the 59th
ACM/IEEE Design Automation Conference (DAC), 2022.

[50] A. de Myttenaere, B. Golden, B. Le Grand, and F. Rossi. Mean absolute
percentage error for regression models. Neurocomputing, 192 :38–48, 2016.
Advances in artificial neural networks, machine learning and computational
intelligence.

[51] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization : Nsga-
ii. In Parallel Problem Solving from Nature PPSN VI : 6th International
Conference Paris, France, September 18–20, 2000 Proceedings 6, pages 849–
858. Springer, 2000.

[52] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm : Nsga-ii. IEEE transactions on evolutionary
computation, 6(2) :182–197, 2002.

[53] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet :
A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pages 248–255, 2009.

[54] P. Dong, M. Sun, A. Lu, Y. Xie, K. Liu, Z. Kong, X. Meng, Z. Li, X. Lin,
Z. Fang, et al. Heatvit : Hardware-efficient adaptive token pruning for vision
transformers. In 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 442–455. IEEE, 2023.

[55] X. Dong, D. J. Kedziora, K. Musial, and B. Gabrys. Automated deep
learning : Neural architecture search is not the end. arXiv preprint
arXiv :2112.09245, 2021.

[56] X. Dong and Y. Yang. Nas-bench-201 : Extending the scope of reprodu-
cible neural architecture search. In International Conference on Learning
Representations, 2019.

[57] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image
is worth 16x16 words : Transformers for image recognition at scale. In In-
ternational Conference on Learning Representations, 2020.

[58] S. Duan, D. Wang, J. Ren, F. Lyu, Y. Zhang, H. Wu, and X. Shen. Dis-
tributed artificial intelligence empowered by end-edge-cloud computing : A
survey. IEEE Communications Surveys and Tutorials, 2022.

148

[59] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search : A
survey. The Journal of Machine Learning Research, 20(1) :1997–2017, 2019.

[60] J. Eric, T. Floris, A. Theo, B. Halima, C. Ramon, H. Omar, L.-S. Cyril,
M. Christophe, N. Smail, T.-M. Serge, and P. Thierion. An evaluation
bench for the exploration of machine learning deployment solutions on em-
bedded platforms. The European Congress on Real Time Embedded Systems
(ERTS), 2024.

[61] L. Fan and H. Wang. Surrogate-assisted evolutionary neural architec-
ture search with network embedding. Complex and Intelligent Systems,
9(3) :3313–3331, 2023.

[62] M. Farhadi, M. Ghasemi, and Y. Yang. A novel design of adaptive and hie-
rarchical convolutional neural networks using partial reconfiguration on fpga.
In 2019 IEEE High Performance Extreme Computing Conference (HPEC),
pages 1–7. IEEE, 2019.

[63] N. Fasfous et al. Anaconga : analytical hw-cnn co-design using nested genetic
algorithms. In 2022 Design, Automation and Test in Europe Conference and
Exhibition (DATE), pages 238–243. IEEE, 2022.

[64] J. Frankle and M. Carbin. The lottery ticket hypothesis : Finding sparse,
trainable neural networks. In International Conference on Learning Repre-
sentations, 2018.

[65] X. Fu, Q. Ren, H. Wu, F. Xiang, Q. Luo, J. Yue, Y. Chen, and F. Zhang. A
cim-based high-utilization architecture with dynamic pruning and two-way
ping-pong macro for vision transformer. IEEE Transactions on Circuits and
Systems I : Regular Papers, 2023.

[66] B. Gaide et al. Xilinx adaptive compute acceleration platform : Versaltm
architecture. In Proceedings of the 2019 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, pages 84–93, 2019.

[67] Y. Gao et al. Graph neural architecture search. In IJCAI, volume 20, pages
1403–1409, 2020.

[68] Y. Gao, H. Yang, P. Zhang, C. Zhou, and Y. Hu. Graph neural architecture
search. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20, pages 1403–1409, 2020.

[69] Y. Gao, B. Zhang, X. Qi, and H. K.-H. So. Dpacs : Hardware accelerated
dynamic neural network pruning through algorithm-architecture co-design.
In Proceedings of the 28th ACM International Conference on Architectu-
ral Support for Programming Languages and Operating Systems, Volume 2,
pages 237–251, 2023.

[70] R. Garg et al. Understanding the design-space of sparse/dense multiphase
gnn dataflows on spatial accelerators. In 2022 IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS), pages 571–582. IEEE,
2022.

149

[71] E. C. Garrido-Merchán and D. Hernández-Lobato. Dealing with catego-
rical and integer-valued variables in bayesian optimization with gaussian
processes. Neurocomputing, 380 :20–35, 2020.

[72] M. I. E. Ghebriout, H. Bouzidi, S. Niar, and H. Ouarnoughi. Harmonic-
nas : Hardware-aware multimodal neural architecture search on resource-
constrained devices. arXiv preprint arXiv :2309.06612, 2023.

[73] A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao, and K. Keutzer.
Squeezenext : Hardware-aware neural network design. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pages 1638–1647, 2018.

[74] S. S. Gill, M. Xu, C. Ottaviani, P. Patros, R. Bahsoon, A. Shaghaghi, M. Go-
lec, V. Stankovski, H. Wu, A. Abraham, et al. Ai for next generation compu-
ting : Emerging trends and future directions. Internet of Things, 19 :100514,
2022.

[75] C. Gong, D. Wang, M. Li, X. Chen, Z. Yan, Y. Tian, V. Chandra, et al. Nas-
vit : Neural architecture search for efficient vision transformers with gradient
conflict aware supernet training. In International Conference on Learning
Representations, 2021.

[76] J. Gou, B. Yu, S. J. Maybank, and D. Tao. Knowledge distillation : A survey.
International Journal of Computer Vision, 129 :1789–1819, 2021.

[77] B. Greenwood and T. McDonnell. Surrogate-assisted neuroevolution. In
Proceedings of the Genetic and Evolutionary Computation Conference, pages
1048–1056, 2022.

[78] X. Guo, A. D. Pimentel, and T. Stefanov. Automated exploration and imple-
mentation of distributed cnn inference at the edge. IEEE Internet of Things
Journal, 10(7) :5843–5858, 2023.

[79] R. Hadidi et al. Toward collaborative inferencing of deep neural networks
on internet-of-things devices. IEEE Internet of Things Journal, 7(6) :4950–
4960, 2020.

[80] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on
large graphs. Advances in neural information processing systems, 30, 2017.

[81] K. Han, Y. Wang, J. Guo, Y. Tang, and E. Wu. Vision GNN : An image
is worth graph of nodes. In Advances in Neural Information Processing
Systems, 2022.

[82] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang. Dynamic
neural networks : A survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021.

[83] C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-m. Hwu,
and D. Chen. Fpga/DNN co-design : An efficient design methodology for
1ot intelligence on the edge. In 2019 56th ACM/IEEE Design Automation
Conference (DAC), pages 1–6. IEEE, 2019.

150

[84] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[85] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual net-
works. In European conference on computer vision, pages 630–645. Springer,
2016.

[86] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc : Automl for
model compression and acceleration on mobile devices. In Proceedings of the
European conference on computer vision (ECCV), pages 784–800, 2018.

[87] R. Hosseini and P. Xie. Saliency-aware neural architecture search. Advances
in Neural Information Processing Systems, 35 :14743–14757, 2022.

[88] X. Hou et al. Distredge : Speeding up convolutional neural network inference
on distributed edge devices. In IPDPS. IEEE, 2022.

[89] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, et al. Searching for mobilenetv3. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pages
1314–1324, 2019.

[90] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. Mobilenets : Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv :1704.04861,
2017.

[91] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
7132–7141, 2018.

[92] S. Hu, S. Xie, H. Zheng, C. Liu, J. Shi, X. Liu, and D. Lin. Dsnas : Direct
neural architecture search without parameter retraining. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12084–12092, 2020.

[93] G. Huang, D. Chen, T. Li, F. Wu, L. Van Der Maaten, and K. Q. Weinber-
ger. Multi-scale dense convolutional networks for efficient prediction. arXiv
preprint arXiv :1703.09844, 2(2), 2017.

[94] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4700–4708, 2017.

[95] F. Hutter, H. Hoos, and K. Leyton-Brown. An efficient approach for asses-
sing hyperparameter importance. In International conference on machine
learning, pages 754–762. PMLR, 2014.

[96] M. G. M. Imed, P. N. Smail, P. O. Hamza, P. B. K. ESI, and M. B. Halima.
Recherche d’architectures neuronales multimodales avec la prise en compte
du matériel edge.

151

[97] J. Janai, F. Güney, A. Behl, A. Geiger, et al. Computer vision for autono-
mous vehicles : Problems, datasets and state of the art. Foundations and
Trends® in Computer Graphics and Vision, 12(1–3) :1–308, 2020.

[98] E. Jeong et al. Tensorrt-based framework and optimization methodology for
deep learning inference on jetson boards. ACM Transactions on Embedded
Computing Systems (TECS), 2022.

[99] W. Jiang, L. Yang, S. Dasgupta, J. Hu, and Y. Shi. Standing on the shoulders
of giants : Hardware and neural architecture co-search with hot start. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
39(11) :4154–4165, 2020.

[100] W. Jiang, L. Yang, E. H.-M. Sha, Q. Zhuge, S. Gu, S. Dasgupta, Y. Shi,
and J. Hu. Hardware/software co-exploration of neural architectures. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
39(12) :4805–4815, 2020.

[101] J. Jo, S. Jeong, and P. Kang. Benchmarking gpu-accelerated edge devices.
In 2020 IEEE International Conference on Big Data and Smart Computing
(BigComp), pages 117–120, 2020.

[102] D. Justus, J. Brennan, S. Bonner, and A. S. McGough. Predicting the
computational cost of deep learning models. In 2018 IEEE International
Conference on Big Data (Big Data), pages 3873–3882, 2018.

[103] D. Kang et al. Scheduling of deep learning applications onto heterogeneous
processors in an embedded device. IEEE Access, 8, 2020.

[104] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang.
Neurosurgeon : Collaborative intelligence between the cloud and mobile edge.
ACM SIGARCH Computer Architecture News, 45(1) :615–629, 2017.

[105] S.-C. Kao et al. Gamma : Automating the hw mapping of dnn models on
accelerators via genetic algorithm. In ICCAD. IEEE, 2020.

[106] M. Kiani and A. Rajabzadeh. Sdam : a combined stack distance-analytical
modeling approach to estimate memory performance in gpus. The Journal
of Supercomputing, 77(5) :5120–5147, 2021.

[107] J. Kim and S. Ha. Energy-aware scenario-based mapping of deep learning ap-
plications onto heterogeneous processors under real-time constraints. IEEE
Transactions on Computers, 2022.

[108] K. Kiningham et al. Grip : A graph neural network accelerator architecture.
IEEE Transactions on Computers, 2022.

[109] S. Kornblith, J. Shlens, and Q. V. Le. Do better imagenet models transfer
better ? In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 2661–2671, 2019.

152

[110] O. Krestinskaya, A. P. James, and L. O. Chua. Neuromemristive circuits
for edge computing : A review. IEEE transactions on neural networks and
learning systems, 31(1) :4–23, 2019.

[111] A. Krishnakumar, U. Ogras, R. Marculescu, M. Kishinevsky, and T. Mudge.
Domain-specific architectures : Research problems and promising ap-
proaches. ACM Transactions on Embedded Computing Systems, 22(2) :1–26,
2023.

[112] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from
tiny images. 2009.

[113] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian institute for
advanced research). URL http ://www. cs. toronto. edu/kriz/cifar. html,
5(4) :1, 2010.

[114] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information proces-
sing systems, 25, 2012.

[115] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc., 2012.

[116] H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and A. Parashar.
Maestro : A data-centric approach to understand reuse, performance, and
hardware cost of dnn mappings. IEEE micro, 40(3) :20–29, 2020.

[117] H. Kwon et al. Understanding reuse, performance, and hardware cost of
dnn dataflow : A data-centric approach. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 754–768,
2019.

[118] L. Landrieu and M. Simonovsky. Large-scale point cloud semantic segmen-
tation with superpoint graphs. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4558–4567, 2018.

[119] R. Lange, T. Schaul, Y. Chen, C. Lu, T. Zahavy, V. Dalibard, and S. Flen-
nerhag. Discovering attention-based genetic algorithms via meta-black-box
optimization. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 929–937, 2023.

[120] S. Laskaridis, A. Kouris, and N. D. Lane. Adaptive inference through early-
exit networks : Design, challenges and directions. In Proceedings of the 5th
International Workshop on Embedded and Mobile Deep Learning, pages 1–6,
2021.

[121] S. Laskaridis, S. I. Venieris, H. Kim, and N. D. Lane. Hapi : Hardware-
aware progressive inference. In 2020 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pages 1–9. IEEE, 2020.

153

[122] Y. Lee, J. Kim, J. Willette, and S. J. Hwang. Mpvit : Multi-path vision
transformer for dense prediction. In Proceedings of the IEEE/CVF Confe-
rence on Computer Vision and Pattern Recognition, pages 7287–7296, 2022.

[123] Y.-L. Lee, P.-K. Tsung, and M. Wu. Techology trend of edge ai. In 2018
International Symposium on VLSI Design, Automation and Test (VLSI-
DAT), pages 1–2, 2018.

[124] C. Li, A. Dakkak, J. Xiong, W. Wei, L. Xu, and W.-m. Hwu. Xsp :
Across-stack profiling and analysis of machine learning models on gpus.
In 2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 326–327, 2020.

[125] G. Li, M. Muller, A. Thabet, and B. Ghanem. Deepgcns : Can gcns go as
deep as cnns ? In Proceedings of the IEEE/CVF international conference on
computer vision, pages 9267–9276, 2019.

[126] T. Li, J. Hou, J. Yan, R. Liu, H. Yang, and Z. Sun. Chiplet heterogeneous
integration technology—status and challenges. Electronics, 9(4) :670, 2020.

[127] X. Li, C. Lou, Y. Chen, Z. Zhu, Y. Shen, Y. Ma, and A. Zou. Predictive exit :
Prediction of fine-grained early exits for computation-and energy-efficient
inference. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 8657–8665, 2023.

[128] Y. Li, C. Hao, X. Zhang, X. Liu, Y. Chen, J. Xiong, W.-m. Hwu, and
D. Chen. Edd : Efficient differentiable dnn architecture and implementa-
tion co-search for embedded ai solutions. In 2020 57th ACM/IEEE Design
Automation Conference (DAC), pages 1–6. IEEE, 2020.

[129] Y. Liang, L. Lu, Y. Jin, J. Xie, R. Huang, J. Zhang, and W. Lin. An
efficient hardware design for accelerating sparse CNNs with NAS-based mo-
dels. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2021.

[130] A. Liaw, M. Wiener, et al. Classification and regression by randomforest. R
news, 2(3) :18–22, 2002.

[131] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and
J. Mars. The architectural implications of autonomous driving : Constraints
and acceleration. In Proceedings of the Twenty-Third International Confe-
rence on Architectural Support for Programming Languages and Operating
Systems, pages 751–766, 2018.

[132] Y. Lin, D. Hafdi, K. Wang, Z. Liu, and S. Han. Neural-hardware architecture
search. NeurIPS WS, 2019.

[133] Y. Lin, M. Yang, and S. Han. Naas : Neural accelerator architecture search.
In 2021 58th ACM/IEEE Design Automation Conference (DAC), pages
1051–1056. IEEE, 2021.

154

[134] M. Lindauer and F. Hutter. Best practices for scientific research on neural
architecture search. The Journal of Machine Learning Research, 21(1) :9820–
9837, 2020.

[135] C.-H. Liu, Y.-S. Han, Y.-Y. Sung, Y. Lee, H.-Y. Chiang, and K.-C. Wu.
Fox-nas : Fast, on-device and explainable neural architecture search. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision,
pages 789–797, 2021.

[136] P. Liu, B. Wu, H. Ma, and M. Seok. Memnet : memory-efficiency gui-
ded neural architecture search with augment-trim learning. arXiv preprint
arXiv :1907.09569, 2019.

[137] S. Liu, H. Zhang, and Y. Jin. A survey on computationally efficient neural
architecture search. Journal of Automation and Intelligence, 1(1) :100002,
2022.

[138] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan. A survey
on evolutionary neural architecture search. IEEE transactions on neural
networks and learning systems, 2021.

[139] Z. Liu, J. Xu, X. Peng, and R. Xiong. Frequency-domain dynamic pruning
for convolutional neural networks. Advances in neural information processing
systems, 31, 2018.

[140] W. Lou, L. Xun, A. Sabet, J. Bi, J. Hare, and G. V. Merrett. Dynamic-ofa :
Runtime dnn architecture switching for performance scaling on heteroge-
neous embedded platforms. In Conference on Computer Vision and Pattern
Recognition, pages 3110–3118, 2021.

[141] Q. Lu, W. Jiang, X. Xu, Y. Shi, and J. Hu. On neural architecture search
for resource-constrained hardware platforms. In International Conference
on Computer-Aided Design, 2019.

[142] Z. Lu, K. Deb, E. Goodman, W. Banzhaf, and V. N. Boddeti. Nsganetv2 :
Evolutionary multi-objective surrogate-assisted neural architecture search.
In Computer Vision–ECCV 2020 : 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part I 16, pages 35–51. Springer, 2020.

[143] Z. Lu, S. Rallapalli, K. Chan, and T. La Porta. Modeling the resource requi-
rements of convolutional neural networks on mobile devices. In Proceedings
of the 25th ACM International Conference on Multimedia, MM ’17, page
1663–1671, New York, NY, USA, 2017. Association for Computing Machi-
nery.

[144] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2 : Practical gui-
delines for efficient cnn architecture design. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 116–131, 2018.

[145] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo. Performance modeling for cnn in-
ference accelerators on fpga. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 39(4) :843–856, 2020.

155

[146] A. Malawade, M. Odema, S. Lajeunesse-DeGroot, and M. A. Al Faruque.
Sage : A split-architecture methodology for efficient end-to-end autono-
mous vehicle control. ACM Transactions on Embedded Computing Systems
(TECS), 20(5s) :1–22, 2021.

[147] A. V. Malawade, S.-Y. Yu, B. Hsu, D. Muthirayan, P. P. Khargonekar, and
M. A. Al Faruque. Spatiotemporal scene-graph embedding for autonomous
vehicle collision prediction. IEEE Internet of Things Journal, 9(12) :9379–
9388, 2022.

[148] S. D. Manasi and S. S. Sapatnekar. Deepopt : Optimized scheduling of cnn
workloads for asic-based systolic deep learning accelerators. In Proceedings of
the 26th Asia and South Pacific Design Automation Conference, ASPDAC
’21, page 235–241, New York, NY, USA, 2021. Association for Computing
Machinery.

[149] J. Mao et al. Modnn : Local distributed mobile computing system for deep
neural network. In Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2017.

[150] L. Mei, K. Goetschalckx, A. Symons, and M. Verhelst. Defines : Enabling
fast exploration of the depth-first scheduling space for dnn accelerators
through analytical modeling. In 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages 570–583. IEEE,
2023.

[151] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz. Importance
estimation for neural network pruning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 11264–11272,
2019.

[152] M. A. H. Monil et al. Mephesto : Modeling energy-performance in hetero-
geneous socs and their trade-offs. In PACT, pages 413–425, 2020.

[153] C. Moussa, Y. J. Patel, V. Dunjko, T. Bäck, and J. N. van Rijn. Hyper-
parameter importance and optimization of quantum neural networks across
small datasets. Machine Learning, pages 1–26, 2023.

[154] S. Mukhopadhyay, Y. Long, B. Mudassar, C. Nair, B. H. DeProspo, H. M.
Torun, M. Kathaperumal, V. Smet, D. Kim, S. Yalamanchili, et al. Hetero-
geneous integration for artificial intelligence : Challenges and opportunities.
IBM Journal of Research and Development, 63(6) :4–1, 2019.

[155] R. T. Mullapudi, W. R. Mark, N. Shazeer, and K. Fatahalian. Hydranets :
Specialized dynamic architectures for efficient inference. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages
8080–8089, 2018.

[156] F. Murtagh. Multilayer perceptrons for classification and regression. Neu-
rocomputing, 2(5) :183–197, 1991.

156

[157] S. M. Nabavinejad, S. Reda, and M. Ebrahimi. Coordinated batching and
DVFS for DNN inference on gpu accelerators. IEEE Transactions on Parallel
and Distributed Systems, 2022.

[158] P. E. Nogueira, R. Matias, and E. Vicente. An experimental study on exe-
cution time variation in computer experiments. In Proceedings of the 29th
Annual ACM Symposium on Applied Computing, SAC ’14, page 1529–1534,
New York, NY, USA, 2014. Association for Computing Machinery.

[159] Nvidia. Nvidia profiler (nvprof), Jun 2007.

[160] Nvidia. Harness AI at the edge with the jetson TX2 developer kit, Jun 2018.

[161] Nvidia. Intel movidius myriad 2, 2018.

[162] Nvidia. Jetson AGX xavier developer kit, Jun 2018.

[163] Nvidia. Jetson Nano developer kit, Jun 2018.

[164] Nvidia. Tegrastats utility, Jun 2019.

[165] M. Odema, H. Bouzidi, H. Ouarnoughi, S. Niar, and M. A. Al Faruque.
Magnas : A mapping-aware graph neural architecture search framework for
heterogeneous mpsoc deployment. ACM Transactions on Embedded Com-
puting Systems, 22(5s) :1–26, 2023.

[166] M. Odema, N. Rashid, and M. A. Al Faruque. Eexnas : Early-exit neu-
ral architecture search solutions for low-power wearable devices. In 2021
IEEE/ACM International Symposium on Low Power Electronics and De-
sign (ISLPED), pages 1–6. IEEE, 2021.

[167] E. Ostertagová. Modelling using polynomial regression. Procedia Enginee-
ring, 48 :500–506, 2012. Modelling of Mechanical and Mechatronics Systems.

[168] C. Pan and X. Yao. Neural architecture search based on evolutionary algo-
rithms with fitness approximation. In 2021 International Joint Conference
on Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

[169] P. Panda, A. Sengupta, and K. Roy. Conditional deep learning for energy-
efficient and enhanced pattern recognition. In 2016 Design, Automation and
Test in Europe Conference and Exhibition (DATE), pages 475–480. IEEE,
2016.

[170] D. Paul, J. Singh, and J. Mathew. Hardware-software co-design approach
for deep learning inference. In 2019 7th International Conference on Smart
Computing and Communications (ICSCC), pages 1–5. IEEE, 2019.

[171] Y. Peng, A. Song, V. Ciesielski, H. M. Fayek, and X. Chang. Pre-nas :
predictor-assisted evolutionary neural architecture search. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 1066–1074,
2022.

157

[172] F. Pérez-Cruz. Kullback-leibler divergence estimation of continuous distribu-
tions. In 2008 IEEE international symposium on information theory, pages
1666–1670. IEEE, 2008.

[173] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural architec-
ture search via parameters sharing. In International conference on machine
learning, pages 4095–4104. PMLR, 2018.

[174] M. Phuong and C. H. Lampert. Distillation-based training for multi-exit
architectures. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), October 2019.

[175] M. Pinos, V. Mrazek, and L. Sekanina. Evolutionary neural architecture
search supporting approximate multipliers. In European Conference on Ge-
netic Programming (Part of EvoStar), pages 82–97. Springer, 2021.

[176] R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella Ferrer, and F. J.
Cazorla. Generating and exploiting deep learning variants to increase he-
terogeneous resource utilization in the nvidia xavier. In 31st Euromicro
Conference on Real-Time Systems (ECRTS 2019), volume 23, 2019.

[177] H. Qi, E. R. Sparks, and A. Talwalkar. Paleo : A performance model for
deep neural networks. 2016.

[178] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe. Binary neural
networks : A survey. Pattern Recognition, 105 :107281, 2020.

[179] Z. Qiu, W. Bi, D. Xu, H. Guo, H. Ge, Y. Liang, H. P. Lee, and C. Wu.
Efficient self-learning evolutionary neural architecture search. Applied Soft
Computing, 146 :110671, 2023.

[180] Y. Rao et al. Dynamicvit : Efficient vision transformers with dynamic token
sparsification. NeurIPS, 34, 2021.

[181] S. Ravanbakhsh, J. Schneider, and B. Poczos. Equivariance through
parameter-sharing. In International conference on machine learning, pages
2892–2901. PMLR, 2017.

[182] W.-Q. Ren, Y.-B. Qu, C. Dong, Y.-Q. Jing, H. Sun, Q.-H. Wu, and S. Guo.
A survey on collaborative dnn inference for edge intelligence. Machine In-
telligence Research, 20(3) :370–395, 2023.

[183] C. F. Rodrigues, G. Riley, and M. Luján. Fine-grained energy profiling for
deep convolutional neural networks on the jetson tx1. In 2017 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), pages 114–115,
2017.

[184] J. D. Rodriguez, A. Perez, and J. A. Lozano. Sensitivity analysis of k-
fold cross validation in prediction error estimation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(3) :569–575, 2010.

158

[185] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller.
Explaining deep neural networks and beyond : A review of methods and
applications. Proceedings of the IEEE, 109(3) :247–278, 2021.

[186] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobi-
lenetv2 : Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4510–
4520, 2018.

[187] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobi-
lenetv2 : Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4510–
4520, 2018.

[188] S. Scardapane, M. Scarpiniti, E. Baccarelli, and A. Uncini. Why should we
add early exits to neural networks ? Cognitive Computation, 12(5) :954–966,
2020.

[189] L. Sekanina. Neural architecture search and hardware accelerator co-search :
A survey. IEEE Access, 9 :151337–151362, 2021.

[190] E. Shamsa et al. Goal-driven autonomy for efficient on-chip resource mana-
gement : Transforming objectives to goals. In Design, Automation and Test
in Europe Conference and Exhibition (DATE), 2019.

[191] K. Shang, H. Ishibuchi, L. He, and L. M. Pang. A survey on the hypervolume
indicator in evolutionary multiobjective optimization. IEEE Transactions on
Evolutionary Computation, 25(1) :1–20, 2020.

[192] J. Shen, Y. Wang, P. Xu, Y. Fu, Z. Wang, and Y. Lin. Fractional skipping :
Towards finer-grained dynamic cnn inference. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 5700–5708, 2020.

[193] Y. Shen, Y. Li, J. Zheng, W. Zhang, P. Yao, J. Li, S. Yang, J. Liu, and B. Cui.
Proxybo : Accelerating neural architecture search via bayesian optimization
with zero-cost proxies. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 9792–9801, 2023.

[194] H. Shi, R. Pi, H. Xu, Z. Li, J. Kwok, and T. Zhang. Bridging the gap between
sample-based and one-shot neural architecture search with bonas. Advances
in Neural Information Processing Systems, 33 :1808–1819, 2020.

[195] M. Shi, Y. Tang, X. Zhu, Y. Huang, D. Wilson, Y. Zhuang, and J. Liu.
Genetic-gnn : evolutionary architecture search for graph neural networks.
Knowledge-Based Systems, 247 :108752, 2022.

[196] S. Shi, Q. Wang, and X. Chu. Performance modeling and evalua-
tion of distributed deep learning frameworks on gpus. In 2018 IEEE
16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th
Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on
Big Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), pages 949–957, 2018.

159

[197] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing : Vision and
challenges. IEEE internet of things journal, 3(5) :637–646, 2016.

[198] J. N. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, and F. Hutter.
Nas-bench-301 and the case for surrogate benchmarks for neural architecture
search. 2020.

[199] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. In Y. Bengio et al., editors, ICLR, 2015.

[200] R. Singh and S. S. Gill. Edge ai : a survey. Internet of Things and Cyber-
Physical Systems, 2023.

[201] N. Sinha and K.-W. Chen. Novelty driven evolutionary neural architecture
search. In Proceedings of the Genetic and Evolutionary Computation Confe-
rence Companion, pages 671–674, 2022.

[202] K. Siu, D. M. Stuart, M. Mahmoud, and A. Moshovos. Memory requirements
for convolutional neural network hardware accelerators. In 2018 IEEE Inter-
national Symposium on Workload Characterization (IISWC), pages 111–121,
2018.

[203] Y. Song et al. Sara : Self-aware resource allocation for heterogeneous mpsocs.
In DAC, 2018.

[204] D. Stamoulis, E. Cai, D.-C. Juan, and D. Marculescu. Hyperpower : Power-
and memory-constrained hyper-parameter optimization for neural networks.
In 2018 Design, Automation Test in Europe Conference Exhibition (DATE),
pages 19–24, 2018.

[205] J. R. Stevens et al. Gnnerator : A hardware/software framework for accele-
rating graph neural networks. In 2021 58th ACM/IEEE Design Automation
Conference (DAC), pages 955–960. IEEE, 2021.

[206] Q. Sun, T. Chen, J. Miao, and B. Yu. Power-driven dnn dataflow optimiza-
tion on fpga. In 2019 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 1–7, 2019.

[207] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer. Efficient processing of
deep neural networks : A tutorial and survey. Proceedings of the IEEE,
105(12) :2295–2329, 2017.

[208] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Thirty-first
AAAI conference on artificial intelligence, pages 4278–4284, 2017.

[209] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 1–9, 2015.

160

[210] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826,
2016.

[211] E. Talpes et al. Compute solution for tesla’s full self-driving computer. IEEE
Micro, 40(2) :25–35, 2020.

[212] T. Tambe and Al. Edgebert : Sentence-level energy optimizations for latency-
aware multi-task nlp inference. In Micro-54, pages 830–844, 2021.

[213] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and
Q. V. Le. Mnasnet : Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2820–2828, 2019.

[214] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V.
Le. Mnasnet : Platform-aware neural architecture search for mobile. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2820–2828, 2019.

[215] M. Tan and Q. Le. Efficientnet : Rethinking model scaling for convolutional
neural networks. In International conference on machine learning, pages
6105–6114. PMLR, 2019.

[216] S. Teerapittayanon, B. McDanel, and H.-T. Kung. Branchynet : Fast in-
ference via early exiting from deep neural networks. In 23rd International
Conference on Pattern Recognition (ICPR), pages 2464–2469. IEEE, 2016.

[217] K. R. Traoré, A. Camero, and X. X. Zhu. A data-driven approach to neu-
ral architecture search initialization. Annals of Mathematics and Artificial
Intelligence, pages 1–28, 2023.

[218] Velasco-Montero and other. Previous : A methodology for prediction of vi-
sual inference performance on iot devices. IEEE Internet of Things Journal,
7(10) :9227–9240, 2020.

[219] D. Wang, C. Gong, M. Li, Q. Liu, and V. Chandra. Alphanet : Improved
training of supernets with alpha-divergence. In International Conference on
Machine Learning. PMLR, 2021.

[220] D. Wang, M. Li, C. Gong, and V. Chandra. Attentivenas : Improving neural
architecture search via attentive sampling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021.

[221] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han. Haq : Hardware-aware auto-
mated quantization with mixed precision. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 8612–8620,
2019.

161

[222] L. Wang, S. Xie, T. Li, R. Fonseca, and Y. Tian. Sample-efficient neural
architecture search by learning actions for monte carlo tree search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(9) :5503–
5515, 2021.

[223] M. Wang, C. Meng, G. Long, C. Wu, J. Yang, W. Lin, and Y. Jia. Characteri-
zing deep learning training workloads on alibaba-pai. In 2019 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), pages 189–202,
2019.

[224] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon.
Dynamic graph cnn for learning on point clouds. Acm Transactions On
Graphics (tog), 38(5) :1–12, 2019.

[225] S. Watanabe, A. Bansal, and F. Hutter. Ped-anova : Efficiently quanti-
fying hyperparameter importance in arbitrary subspaces. arXiv preprint
arXiv :2304.10255, 2023.

[226] C. Wei, C. Niu, Y. Tang, Y. Wang, H. Hu, and J. Liang. Npenas : Neural
predictor guided evolution for neural architecture search. IEEE Transactions
on Neural Networks and Learning Systems, 2022.

[227] G. Wetzstein, A. Ozcan, S. Gigan, S. Fan, D. Englund, M. Soljačić, C. Denz,
D. A. Miller, and D. Psaltis. Inference in artificial intelligence with deep
optics and photonics. Nature, 588(7836) :39–47, 2020.

[228] C. White, W. Neiswanger, S. Nolen, and Y. Savani. A study on encodings
for neural architecture search. Advances in neural information processing
systems, 33 :20309–20319, 2020.

[229] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia,
and K. Keutzer. Fbnet : Hardware-aware efficient convnet design via diffe-
rentiable neural architecture search. In Proceedings of the IEEE/CVF Confe-
rence on Computer Vision and Pattern Recognition, pages 10734–10742,
2019.

[230] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer. Squeezedet : Unified, small,
low power fully convolutional neural networks for real-time object detection
for autonomous driving. In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pages 129–137, 2017.

[231] K. Wu, Y. Guo, and C. Zhang. Compressing deep neural networks with
sparse matrix factorization. IEEE transactions on neural networks and lear-
ning systems, 31(10) :3828–3838, 2019.

[232] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehen-
sive survey on graph neural networks. IEEE transactions on neural networks
and learning systems, 32(1) :4–24, 2020.

[233] H. Xiao, Z. Wang, Z. Zhu, J. Zhou, and J. Lu. Shapley-nas : discovering
operation contribution for neural architecture search. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages
11892–11901, 2022.

162

[234] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1492–1500, 2017.

[235] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei. Scene graph generation by ite-
rative message passing. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 5410–5419, 2017.

[236] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural
networks ? In International Conference on Learning Representations, 2019.

[237] Y. Xu et al. Pccs : Processor-centric contention-aware slowdown model for
heterogeneous system-on-chips. In MICRO, 2021.

[238] Y. Xue, Y. Wang, J. Liang, and A. Slowik. A self-adaptive mutation neural
architecture search algorithm based on blocks. IEEE Computational Intel-
ligence Magazine, 16(3) :67–78, 2021.

[239] L. Xun et al. Optimising resource management for embedded machine lear-
ning. In 2020 Design, Automation and Test in Europe Conference and Ex-
hibition (DATE), pages 1556–1561. IEEE, 2020.

[240] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie. Hygcn : A gcn accelerator with hybrid architecture. In 2020
IEEE International Symposium on High Performance Computer Architec-
ture (HPCA), pages 15–29. IEEE, 2020.

[241] S. Yan, Y. Xiong, and D. Lin. Spatial temporal graph convolutional networks
for skeleton-based action recognition. In Proceedings of the AAAI conference
on artificial intelligence, volume 32, 2018.

[242] J. Yang, J. Lu, S. Lee, D. Batra, and D. Parikh. Graph r-cnn for scene graph
generation. In Proceedings of the European conference on computer vision
(ECCV), pages 670–685, 2018.

[243] J. Yang, X. Shen, J. Xing, X. Tian, H. Li, B. Deng, J. Huang, and X.-s.
Hua. Quantization networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7308–7316, 2019.

[244] L. Yang, Z. Yan, M. Li, H. Kwon, L. Lai, T. Krishna, V. Chandra, W. Jiang,
and Y. Shi. Co-exploration of neural architectures and heterogeneous ASIC
accelerator designs targeting multiple tasks. In 2020 57th ACM/IEEE De-
sign Automation Conference (DAC), pages 1–6. IEEE, 2020.

[245] T.-J. Yang, Y.-H. Chen, and V. Sze. Designing energy-efficient convolutional
neural networks using energy-aware pruning. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 6071–6079, 2017.

[246] Y. Yang, D. Liu, H. Fang, Y.-X. Huang, Y. Sun, and Z.-Y. Zhang. Once for
all skip : efficient adaptive deep neural networks. In 2022 Design, Automa-
tion and Test in Europe Conference and Exhibition (DATE), pages 568–571.
IEEE, 2022.

163

[247] A. Yao and D. Sun. Knowledge transfer via dense cross-layer mutual-
distillation. In Computer Vision–ECCV 2020 : 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XV 16, pages 294–311.
Springer, 2020.

[248] H. Yao, D.-l. Zhu, B. Jiang, and P. Yu. Negative log likelihood ratio loss for
deep neural network classification. In Proceedings of the Future Technologies
Conference (FTC) 2019 : Volume 1, pages 276–282. Springer, 2020.

[249] Y. Yin, S. Huang, and X. Zhang. Bm-nas : Bilevel multimodal neural archi-
tecture search. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pages 8901–8909, 2022.

[250] H. You et al. Gcod : Graph convolutional network acceleration via dedicated
algorithm and accelerator co-design. In 2022 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA), pages 460–474.
IEEE, 2022.

[251] J. You, Z. Ying, and J. Leskovec. Design space for graph neural networks.
Advances in Neural Information Processing Systems, 33 :17009–17021, 2020.

[252] J. Yu et al. Bignas : Scaling up neural architecture search with big single-
stage models. In Computer Vision–ECCV 2020 : 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16. Springer, 2020.

[253] J. Yu and T. S. Huang. Universally slimmable networks and improved trai-
ning techniques. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 1803–1811, 2019.

[254] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke. Scalpel :
Customizing dnn pruning to the underlying hardware parallelism. ACM
SIGARCH Computer Architecture News, 45(2) :548–560, 2017.

[255] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang. Slimmable neural networks.
In International Conference on Learning Representations, 2018.

[256] S.-Y. Yu, A. V. Malawade, D. Muthirayan, P. P. Khargonekar, and M. A.
Al Faruque. Scene-graph augmented data-driven risk assessment of auto-
nomous vehicle decisions. IEEE Transactions on Intelligent Transportation
Systems, 23(7) :7941–7951, 2021.

[257] Z. Yu et al. Mia-former : Efficient and robust vision transformers via multi-
grained input-adaptation. In AAAI, volume 36, 2022.

[258] Z. Yuan, X. Liu, B. Wu, and G. Sun. Enas4d : Efficient multi-stage cnn
architecture search for dynamic inference. arXiv preprint arXiv :2009.09182,
2020.

[259] Z. Yuan, B. Wu, G. Sun, Z. Liang, S. Zhao, and W. Bi. S2dnas : Transforming
static cnn model for dynamic inference via neural architecture search. In
Computer Vision–ECCV 2020 : 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part II 16, pages 175–192. Springer, 2020.

164

[260] B. Zhang et al. Low-latency mini-batch gnn inference on cpu-fpga hete-
rogeneous platform. In 2022 IEEE 29th International Conference on High
Performance Computing, Data, and Analytics (HiPC), pages 11–21, 2022.

[261] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet : An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 6848–6856,
2018.

[262] Y. Zhang et al. G-cos : Gnn-accelerator co-search towards both better ac-
curacy and efficiency. In 2021 IEEE/ACM International Conference On
Computer Aided Design (ICCAD), pages 1–9. IEEE, 2021.

[263] Y. Zhang, Y. Fu, W. Jiang, C. Li, H. You, M. Li, V. Chandra, and
Y. Lin. Dna : Differentiable network-accelerator co-search. arXiv preprint
arXiv :2010.14778, 2020.

[264] X. Zheng, R. Ji, Y. Chen, Q. Wang, B. Zhang, J. Chen, Q. Ye, F. Huang,
and Y. Tian. Migo-nas : Towards fast and generalizable neural architecture
search. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(9) :2936–2952, 2021.

[265] X. Zheng, R. Ji, Q. Wang, Q. Ye, Z. Li, Y. Tian, and Q. Tian. Rethinking
performance estimation in neural architecture search. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11356–11365, 2020.

[266] F. Zhengxin, Y. Yi, Z. Jingyu, L. Yue, M. Yuechen, L. Qinghua, X. Xiwei,
W. Jeff, W. Chen, Z. Shuai, et al. Mlops spanning whole machine learning
life cycle : A survey. arXiv preprint arXiv :2304.07296, 2023.

[267] A. Zhou et al. Hardware-aware graph neural network automated design for
edge computing platforms. In Proceedings of the 60th ACM/IEEE Design
Automation Conference (DAC), 2023.

[268] K. Zhou et al. Auto-gnn : Neural architecture search of graph neural net-
works. Frontiers in big Data, 2022.

[269] Y. Zhou, X. Dong, B. Akin, M. Tan, D. Peng, T. Meng, A. Yazdanbakhsh,
D. Huang, R. Narayanaswami, and J. Laudon. Rethinking co-design of neural
architectures and hardware accelerators. arXiv preprint arXiv :2102.08619,
2021.

[270] B. Zoph and Q. Le. Neural architecture search with reinforcement learning.
In International Conference on Learning Representations, 2016.

[271] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 8697–8710.
IEEE, 2018.

165

[272] J. Zou, T. Rui, Y. Zhou, C. Yang, and S. Zhang. Convolutional neural
network simplification via feature map pruning. Computers and Electrical
Engineering, 70 :950–958, 2018.

166

	ABSTRACT (RÉSUMÉ)
	ACKNOWLEDGEMENT
	 LIST OF PUBLICATIONS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF TERMS AND ABBREVIATIONS
	Introduction
	The Rise of Edge AI
	The Emergence of Automated Neural Architecture Design
	Chasing Efficiency in the Era of Edge AI
	Edge AI Optimization Techniques
	Software-level Optimizations
	Hardware-level Optimizations

	Winning the 'Performance-Efficiency' Lottery Ticket
	Thesis Structure and Contributions

	DVFS-NAS: Dynamic Clock Frequency Scaling for Hardware-aware Neural Architecture Search on Edge GPUs
	Introduction
	Related Works
	Motivational Example
	Problem Statement
	Proposed Approach
	Joint Search Space
	Evolutionary Search Strategy
	Fitness Evaluation Strategy

	Evaluation Methodology
	Experimental Setup
	Experimental Results

	Discussion and Key Insights
	Summary

	HADAS: Hardware-Aware Dynamic Neural Architecture Search for Edge Performance Scaling
	Introduction
	Related works
	Dynamic Early Exit and NAS
	Dynamic Hardware Reconfiguration

	Motivational Example
	Novel Scientific Contributions
	Problem Statement
	Proposed Approach
	Outer Optimization Engine (OOE)
	Inner Optimization Engine (IOE)
	Runtime Controller

	Evaluation Methodology
	Experimental Setup
	Co-optimization Results
	Dissimilarity Ablation Study

	Summary

	MaGNAS: A Mapping-aware Graph Neural Architecture Search Framework for Heterogeneous MPSoC Deployment
	Introduction
	Related Works
	GNNs for Computer Vision
	Hardware Acceleration for GNNs
	Distributed Computing of GNNs
	Graph Neural Architecture Search

	Motivational Example
	Novel Scientific Contributions
	Vision Graph Neural Network (ViG)
	Problem Statement
	System Model for Mapping GNNs onto Heterogeneous MPSoCs
	Nested Search Formulation

	Proposed Approach
	Supernet Construction and Training
	Nested Evolutionary Search: Outer Optimization Engine (OOE)
	Nested Evolutionary Search: Inner Optimization Engine (IOE)

	Experiments and Evaluation
	Experimental Setup
	OOE Results: GNN Architecture Optimization
	IOE Results: Hardware Mapping Optimization
	Analysis of Search and Pareto Optimal Models
	Hypervolume and Pareto Composition Analysis
	Analysis of GNN Workload Distribution
	Constraint-aware Optimization
	Ablation study on the impact of DVFS
	Generality and Scalability

	Discussion and Key Insights
	Summary

	Map-and-Conquer: Energy-Efficient Mapping of Dynamic Neural Nets onto Heterogeneous MPSoCs
	Introduction
	Related Works
	Dynamic Neural Networks
	Computation Mapping on MPSoCs

	Motivational Example
	Novel Scientific Contributions
	Problem Statement
	System Model for Mapping DyNN onto Heterogeneous MPSoCs
	Dynamic Transformation of Neural Networks
	Distributed Performance Modeling for Dynamic Inference
	Problem Formulation

	Proposed Approach
	Search Space (X)
	Performance Objectives (P)
	Evolutionary Search Algorithm
	Channel Partitioning, Reordering, and Arrangement

	Experiments and Evaluation
	Experimental Setup
	Search Efficiency Analysis
	Pareto Optimal Models Analysis
	Generalization to Other Neural Architectures

	Discussion and Key Insights
	Summary

	Performances Modeling of Computer Vision-based Convolutional Neural Networks on Edge GPUs
	Introduction
	Related Works
	Benchmarking and Performances Analysis
	Execution Time Modeling
	Power Consumption Modeling
	Memory Usage Modeling

	Motivational Example
	Problem Statement
	Proposed Approach
	CNN Characterization
	Input Features Selection
	Prediction Algorithms

	Evaluation Methodology
	CNN Benchmarking
	Data Collection
	Prediction Models Hyperparameters Tuning
	Prediction Models Design, Training, and Evaluation
	Experimental Setup
	Experimental Results

	Discussion and Key Insights
	Summary

	SONATA: Self-adaptive Evolution for Multi-objective Hardware-aware Neural Architecture Search
	Introduction
	Related Works
	Evolutionary Neural Architecture Search (ENAS)
	Surrogate-assisted Multi-objective ENAS (SaMo-ENAS)

	Novel Scientific Contributions
	Design Parameters Importance Estimation for NAS
	Problem Statement
	The Main Problem: HW-aware NAS
	The Sub-Problem: Design Parameter Importance Learning

	Proposed Approach
	Search Space Encoding and Initialization
	Self-adaptive Mutation and Crossover
	Surrogate-assisted Fitness Evaluation

	Experiments and Evaluation
	Experimental Setup
	Surrogate Models Analysis
	SONATA Optimization Efficiency

	Summary

	Conclusions, Outlooks, and Future Directions
	Summary of the Thesis
	Outlook and Future Directions
	Enrich the Search Space of NAS
	Investigate Novel Hardware Technologies
	Incorporate Advanced Dynamic Inference Strategy
	Towards Self-explainable HW-aware NAS
	Generalize the HW-aware NAS to Multimodality AI

	 REFERENCES

