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Abstract 

The emergence of deep learning has breathed new life into image analysis, especially 

for the segmentation, a challenging step required to quantify bidimensional (2D) and 

tridimensional (3D) objects. Despite deep learning promises, these methods are only 

slowly spreading in the biological field. In this PhD project, the 3D nucleus of the cell 

is used as the object of interest to understand how its shape variations contribute to the 

organisation of the genetic material. First a literature survey showed that very few 

publicly available methods for 3D nucleus segmentation provide the minimum 

requirements for their reproducibility. These methods were subsequently benchmarked 

and only one of them called nnU-Net surpassed the best specialized computer vision 

tool. Based on these observations, a new development philosophy was designed and, 

from it, Biom3d, a novel deep learning framework emerged. Biom3d is a user-friendly 

tool successfully used by biologists involved in 3D nucleus segmentation and provides 

a new alternative for automatically and accurately computing nuclear shape 

parameters. Being well optimized, Biom3d also surpasses the performance of cutting-

edge methods on a wide variety of biological and medical segmentation problems. 

Being modular, Biom3d is a sustainable framework compatible with the latest deep 

learning innovations, such as self-supervised methods. Self-supervision aims at 

tackling the important need for deep learning methods in manual annotations by 

pretraining models on large unannotated datasets to extract information first before 

retraining them on annotated datasets. In this work, a self-supervised approach based 

on pretraining an entire U-Net model with the Triplet and Arcface losses was 

developed and demonstrates significant improvements over supervised methods for 

3D segmentation. The performance, modularity and interdisciplinary nature of the 

tools developed during this project will serve as an innovation platform for a wide 

panel of users ranging from biologist users to future deep learning developers. 

  



Résumé 

L'émergence de l'apprentissage profond a donné un nouveau souffle à l'analyse 

d'images, en particulier pour la segmentation, une étape difficile mais nécessaire pour 

quantifier des objets bidimensionnels (2D) et tridimensionnels (3D). Malgré les 

promesses de l'apprentissage profond, ces méthodes ne se répandent que lentement 

dans le domaine de la biologie. Au cours de ce projet de thèse, le noyau 3D de la cellule 

est utilisé comme objet d'intérêt pour comprendre comment ses variations de forme 

contribuent à l'organisation du matériel génétique. Tout d'abord, une étude 

bibliographique a montré que très peu de méthodes disponibles publiquement pour la 

segmentation du noyau 3D répondent aux exigences minimales de reproductibilité. 

Ces méthodes ont ensuite été évaluées et seule l'une d'entre elles, appelée nnU-Net, a 

surpassé le meilleur outil spécialisé de vision par ordinateur. Sur la base de ces 

observations, une nouvelle philosophie de développement a été élaborée et, à partir de 

celle-ci, Biom3d, une nouvelle infrastructure logicielle pour l’apprentissage profond, 

a vu le jour. Biom3d est un outil convivial utilisé avec succès par les biologistes 

impliqués dans la segmentation des noyaux 3D et offrant une nouvelle alternative pour 

mesurer automatiquement et avec précision les paramètres morphologiques des 

noyaux. Bien optimisé, Biom3d surpasse également les performances des méthodes de 

pointe sur une grande variété de problèmes de segmentation biologique et médicale. 

Modulaire, Biom3d est un cadre durable compatible avec les dernières innovations en 

matière d'apprentissage profond, telles que les méthodes auto-supervisées. L'auto-

supervision vise à répondre au besoin important en annotation manuelle des méthodes 

d'apprentissage profond, en pré-entraînant les modèles sur de grands ensembles de 

données non annotées pour extraire des connaissances a priori avant de les réentraîner 

sur des ensembles de données annotées. Dans ce travail, une approche auto-supervisée 

basée sur le pré-entraînement d'un modèle U-Net entier avec les fonctions de coût 

Triplet et Arcface est développée et démontre des améliorations significatives par 

rapport aux méthodes supervisées au regard de la segmentation 3D. La performance, 

la modularité et la nature interdisciplinaire des outils développés au cours de cette 

thèse serviront de plateforme d'innovation pour un large panel d'utilisateurs allant des 

utilisateurs biologistes aux futurs développeurs de méthodes d’apprentissage profond. 
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Chapter 1  

Context, challenges, and motivations 

1.1 Tridimensional segmentation of biomedical images 

 Many fundamentally different fields have developed the use of tridimensional (3D) 

images for a variety of very different applications. Biologists, physicians, physicists, 

engineers, and computer scientists have worked together to develop the tools needed; 

biological and physiological markers, physical and mathematical theories, cameras 

and microscopes, computers and algorithms to image and analyse 3D objects. Each of 

these fields has been enriched by rapid advances of knowledge and discoveries. For 

example, since the invention of the confocal microscope by Marvin Minsky [1] and 

the discovery of the properties of the green fluorescent protein (GFP) by Roger Y. 

Tsien, Osamu Shimomura, and Martin Chalfie [2], the number of publications using 

the derivatives of these techniques have soared. The original goal of capturing 3D 

images was, and still is, to observe 3D objects, to understand their roles, their 

mechanisms, and interactions. Visualizing internal mechanisms of life in action has 

allowed simultaneously to confirm biological and medical hypotheses and to ease the 

formulation of novel ones. Biologists now often alternate between benchtop 

experiments and microscope visualization. For instance, a combination of the 

biochemical properties of a protein and knowledge of its location by 3D microscopy 

could be used to confirm its function. In medicine, 3D imaging has allowed physicians 

to understand the structure and mechanisms of organs inside a living body. They are 

now able to detect early stages of cancers before the onset of severe symptoms.  

Measurements in 3D images.    To go beyond simple observations and intuitions, the 

image analyst must take measurements in the 3D images. For example, a biologist 

could be interested in counting fluorescence in situ hybridization (FISH) spots to 

compare a mutant and a wild-type. A radiologist could measure the size and location 

of a set of lung nodules. Once these measurements have been made, the analyst can 

then perform statistical evaluations and thus reinforce the results brought by the 

observation. Indeed, when dealing with living objects observations are often non-

binary, meaning that it is often hard to tell if what an observer sees is not very different 

from what one might want to see, thus incorporating subjectivity into the observation 
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and its interpretation. Measurements combined with statistical analysis help the 

biologist or physician manage confirmation bias. Too many measurements can be 

made on 3D images to provide an exhaustive list. Some frequently used examples are 

counting objects, distance between two objects, position and orientation of objects, 

volume, surface, elongation, curvature, and signal intensity. By adding a dimension 

when moving from 2D to 3D, the number and the difficulty of possible measurements 

increase considerably. For instance, in 2D, a “surface” is the perimeter of each object 

and can be found with simple algorithms such as [3]. Computing a surface of a 3D 

volume might imply a series of more complicated techniques and more computing 

resources for 3D reconstruction such as the marching cubes algorithm [4] for mesh 

computation or a method for surface normal estimation such as in [5]. 3D 

measurements from images require each voxel (3D pixel) to be identifiable, for 

instance to differentiate from background or other object of interest (Figure 1-1). This 

step is called segmentation and is often the inevitable step prior to any 3D 

measurement. 

 

Figure 1-1 – A tridimensional plant nucleus taken with a confocal microscope (left) 

and its corresponding segmentation (right). Illustration captured using napari, a 3D 

visualization tool. 

Manual segmentation.    To create such a segmented image, the expert, biologist or 

physician, must attribute manually a label to each voxel, a task called annotation or 

labelling. The experts can use tools such as napari [6] to annotate their 3D images. As 

3D images often contain several tens of millions of voxels, experts have also been 

helped by semi-automatic tools, such as Labtik, ilastik [7] (Figure 1-2), or Weka [8], 

[9], which are based on machine learning algorithms such as Random Forest [10] to 

propose a segmentation result which the expert uses to assist them as they annotate. 

Manual annotation of 3D biological and medical images is difficult due to, first, the 

nature of objects that must be annotated and, second, the annotation tools. Objects in 

biological and biomedical imaging are seldom well defined and discrete. A cell 
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membrane does not follow the mechanical rules of either a fluid or a solid. The intrinsic 

disorder and the blurry edges of biological and medical objects thus require well-

trained eyes and are often a source of disagreement between experts. The second 

difficulty of manual annotation is caused by hardware and software limitations. 

Annotating 3D images on a 2D screen requires software adaptations that are non-

trivial. The current publicly available annotation tools offer only the possibility to 

annotate one by one each 2D slice of the 3D image. The problem with this approach is 

that the transition between two slices is often incorrect which causes the segmentation 

to look serrated when visualized with a 3D viewer, such as napari. The solution is then 

to correct the annotation by going through 2D slices cut orthogonally to the first 2D 

slices, which is a very time-consuming process. Another solution could be to use 

Virtual Reality combined with a tool such as DIVA proposed by the Institut Pasteur 

[11], unfortunately not publicly available yet.  

  

Figure 1-2 – Semi-automatic annotation tools for 3D segmentation. (left): Labtik. 

(right): ilastik 

Manipulating 3D images.    After capturing a 3D image, an expert may face various 

challenges when attempting to manipulate it. Two prominent obstacles are the 

considerable memory space required for 3D images and the scarcity of free and open-

source tools available for their transformation. Some 3D images can have a size above 

200 gigabytes which requires powerful hardware to open and more powerful ones to 

manipulate. This constraint has pushed computer scientists to develop memory-

optimized tools such as 3DSlicer [12], Paraview [13], 3DMod [14], webKnossos [15], 

Dask [16] or Fiji/ImageJ [17] to manipulate these large images. These tools rely on 

intelligently compressing the images to fit them into computer memory and to display 

them on screen. To analyse 2D biomedical images, the most used toolbox is 
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Fiji/ImageJ, a free, open-source and user-friendly software. Fiji/ImageJ provides a 

range of image processing and analysis tools, including image filtering, segmentation, 

registration, and measurement. It also supports a variety of file formats commonly 

used in scientific imaging, such as TIFF, JPEG, and DICOM, and more thanks to the 

Bio-format plugin which lets microscopists import images from any type of 

microscope. Fiji/ImageJ is highly extensible, with a large collection of plugins and 

macros available to users. Even though Fiji/ImageJ includes a set of plugins for 3D 

images such as a 3D viewer, a 3D segmentation toolbox, notably provided by the 

MorpholibJ plugin [18], or a 3D object tracker, it is mostly designed for 2D images. 

For example, in Fiji/ImageJ, measurements of segments in 3D images are possible 

only on 2D slices. The programming language of Fiji/ImageJ is Java which represents 

another limit of the software as the computer vision community is now shifting to 

Python, especially with the arrival of deep learning. To create novel perspectives for 

3D images, napari is currently leading the movement with a versatile Python 

framework, integrating a memory-efficient 3D viewer and, noticeably, a friendly 

programming framework to easily add new plugins.  

Segmentation diversity.    Napari allows simultaneous visualisation of an input image 

and its segmentation. This tool can give access the vast diversity of possible 

segmentations in 3D images. To classify these segmentations, computer scientists have 

created two main categories of segmentation. First, semantic segmentation involves 

annotating each voxel in an image with a class label and corresponds to what was 

previously described in this Section. Second, instance segmentation is similar to 

semantic segmentation but additionally assigns to each voxel of individual objects 

another label in order to separate them. For example, a 3D image representing a cluster 

of cell nuclei can undergo a semantic segmentation by assigning each voxel the label 

“nucleus” or the label “background”. If subsequently going through instance 

segmentation, the voxels are additionally assigned with the label “nucleus 1”, “nucleus 

2”, “nucleus 3” and so on, thus discriminating each individual nucleus. Instance 

segmentation is harder than semantic segmentation and can only been applied to 

objects with a distinguishable border, such as cells, nuclei, or organs. It is not possible 

to perform instance segmentation on cell membranes, for instance, or on the image 

background. The work described in this thesis will focus mainly on semantic 

segmentation. The thesis will present mature technologies available for both 
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categories, but also present gaps in current applications for 3D biological and 

biomedical image segmentation.  

An important context.    Despite the previous important categorization, the almost 

infinite number of possible experiments in biology or in medicine, causes each 

segmentation problem to be unique and deeply dependent on the context. To extract 

significant information from biological samples, biologists, microscopists, and image 

analysists must work together. Performing biological experiments intended to be 

analysed by microscopy without having in mind the end image processing could have 

severe consequences that might lead to a dead end and waste of time and money. One 

classic example of such consequences arises when determining the image sampling 

rate. A 3D image can be understood as a three-dimensional array of numerical values, 

where each value represents the intensity level of a small region within the observed 

object (see Section 1.2.3). This 3D image is essentially a sampled representation of the 

real object, where regions between each sample are not captured. Therefore, selecting 

an appropriate sampling rate is crucial to ensure that the object of interest is fully 

captured in the resulting image. Choosing a sampling rate that is too low can lead to 

incomplete or inaccurate representations of the object, resulting in loss of important 

information, a problem called under sampling. Another example that would involve 

both the biologist and the microscopist, is a cell surface estimation problem in an 

epithelium of Drosophila ovaries where cells are densely packed together. In this case, 

a mistake could be to mark with a fluorescent protein the cytoplasm only, which would 

result in the inability to distinguish each cell from its adjacent counterparts. Instead, 

marking the cell membrane and then segmenting the inner regions could solve this 

issue. These examples point out how intricate the relationship between all the actors 

involved in imaging should be. If some of these actors perceive their counterparts as 

“external service providers” or view their contributions as merely illustrative 

applications of their own work, it increases the likelihood of the final project being 

flawed. Interdisciplinarity undoubtedly plays a pivotal role in the advancement of 

science, particularly in the fields of biological and medical imaging. 

1.2 The biological origins of the project and its development 

 Intending to make ends meet between fundamentally orthogonal fields of research, 

biology and computer science, implies taking risks and, sometimes, daring to break 

down barriers, fostering collaborations and dialogues, and encouraging fruitful 
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exchanges of knowledge and expertise. This work has been made between two 

research laboratories in biology, one in the Institut de Génétique, Reproduction et 

Développement (iGReD) in the Université Clermont Auvergne, Clermont-Ferrand, 

France and one at Oxford Brookes University, United-Kingdom and one research 

laboratory in computer vision in the Institut Pascal in the Université Clermont 

Auvergne, France. Following our interdisciplinary goals and despite the strong 

computer science content of this project, most of the work has been done at one of the 

two laboratories of biology. The first seeds for present works were planted in the thesis 

of Axel Poulet (2016) and developed in the work of Tristan Dubos (2021) the iGReD. 

Thus, its early inception and developments was by biologists and have now slowly 

grown to reach the field of computer vision. In this Section the biological starting 

points of the project and their evolution are presented. 

1.2.1 Plant cells, nuclei and chromocentres 

 This project was born studying plant nuclei, more specifically Arabidopsis thaliana 

nuclei. This plant is a genetical model, historically selected for its ability to reproduce 

in four weeks and for its quite short genome (~150 mega-base-pair) with few repeated 

sequences compared to other plants. Apart from their apparent agricultural 

applications, plant cells are the subject of an active field of fundamental research, 

which has produced relatively fewer studies when compared to research on human 

cells. A lot is still to be discovered about the functioning of plants. So where to start? 

Certainly, the most notable part is the plant cell nucleus where the DNA 

(deoxyribonucleic acid) is compartmented. The DNA is a long sequence of pairs of 

only four types of nucleotides, a so-called base-pair. Parts of the DNA sequence are 

called genes which are transformed into a sequence of amino acids called proteins, 

which are the building blocks of cell machinery. The level of production of each 

protein is called gene expression. Genome structure is not random and is organised in 

sub-structures at different scales, from the nucleosomes, tiny loops in the DNA strands, 

to the chromosomes, dividing the entire genome into separated large regions, the 

positioning of which influences the level of gene expression. The DNA and its 

structuring proteins are called chromatin. The nucleus is an organelle inside the cell, 

isolating the chromatin with a double membrane. The nucleus plays a vital role in 

safeguarding the integrity of DNA throughout the lifespan of the eukaryotic cell, 

especially during cell division. The transfer of molecules between the DNA and the 
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cytoplasm is restricted by the nuclear membrane and specialized structures called 

nuclear pores, which may have an impact on protein production. The nucleus may 

adopt a large variety of shapes depending on cell location in the organism, on cell 

development, on external stresses, or on diseases (Figure 1-3). For instance, an 

abnormal morphology of nucleus has been shown to be the biomarker of certain 

pathologies such as cancer [19]. The morphology of the plant nucleus, the structure of 

its envelope and sub-compartments, the level of gene expression, and the cell 

environment are the primary focus of investigation for both teams of biologists 

involved in this work. 

 

Figure 1-3 – Diversity of nucleus shapes. Each image represents one isolated nucleus 

stained by DAPI. Scale 5 µm.  

Nuclear Organization in Plant Cells. Just like animal cells, plant cells feature a 

complex nucleus composed of various subdomains and structures (Figure 1-4). Key 

components of the nuclear organization include the outer membrane, nuclear pores, 

inner membrane, nucleoskeleton, and nucleoplasm. The outer membrane is an 

extension of the endoplasmic reticulum (ER), another crucial organelle in eukaryotic 

cells. It plays a vital role in connecting the nucleus with the cytoskeleton, which 

provides mechanical support to the cell. This connection is indispensable for processes 

like cell division, cell differentiation, cell polarization, and, in the case of plants, 
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nucleus migration during day-night cycles. In the context of A. thaliana, a model plant 

species, research teams have contributed to a deeper understanding of the role of 

KASH proteins in this nuclear-cytoskeleton link. Studies have revealed that this 

bridging complex has multiple functions such dynamics roles during cell division [20] 

and structural roles in positioning the nucleus within the cell, conveying signals across 

the membrane and organizing chromatin in the 3D nuclear space with impact on gene 

transcription [21]. Studies have revealed that this bridging complex has multiple 

functions such dynamics roles during cell division [22] and structural roles in 

positioning the nucleus within the cell, conveying signals across the membrane and 

organizing chromatin in the 3D nuclear space with impact on gene transcription [21]. 

Finally, the innermost part of the nucleus contains the nucleoplasm and the chromatin 

whose tridimensional structure has been the subject of recently growing communities 

such as the International Nucleome Consortium (INC, https://inc-cost.eu/) for animals 

and the Impact of nuclear domains on gene expression and plant traits for plants 

(INDEPTH, https://www.brookes.ac.uk/indepth/) [23].  

 

Figure 1-4 – Organization of the nuclear envelope. The nuclear envelope is made of 

membrane (blue) including outer nuclear membrane, inner nuclear membrane 

separated by the perinuclear space, interrupted by numerous nuclear pore complexes 

(orange) and is connected with the endoplasmic reticulum. The plasmina (black) is the 

putative plant lamina. The nuclear envelope, the nuclear pore complexes and the 

plasmina are believed to interact with chromatin (purple). 

DNA organization.    The genetic material of the cell is structured in chromosomes 

located in the nucleoplasm. Chromosomes form small, looped structures made up of 

DNA called nucleosomes, rolled around a set of eight proteins termed histones. The 

https://inc-cost.eu/
https://www.brookes.ac.uk/indepth/
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nucleosome structure compacts the DNA and impacts gene expression [24], with more 

compact regions, known as heterochromatin, containing less expressed genes than less 

compact regions, euchromatin. On a global scale, the 3D structure of the whole DNA 

sequence is organised in the nucleus into chromosome territories (Figure 1-5). This 

has been shown in A. thaliana [25] by marking each of the 5 pairs of chromosomes 

with a different fluorescent stain. Each chromosome includes two linked copies, 

named sister chromatids, of the same DNA sequence. Marking plant DNA with a 

fluorescent stain, such as DAPI, also highlights the density distribution of the DNA. 

In such an image (Figure 1-5), it can be seen denser spots of DNA called 

chromocentres. These heterochromatin regions are the centromeric and 

pericentromeric regions of each chromosome, which are located at the link between 

the two sister chromatids. Changes in gene expression not involving changes in DNA 

base sequence, such as the study of DNA compactness, are termed epigenetic. 

Epigenetics has shown that the gene sequences are not sufficient to proper cell 

functioning and that the surroundings of these sequences are as important. DNA 

methylation, post-translation modification of histones, histone variants, non-coding 

RNA, chromatin spatial organization are all part of epigenetic field of study. These 

modifications are so important that they could, for example, cause the malfunction of 

daughter cells, even if the DNA sequence has correctly been reproduced. 

  

Figure 1-5 – Chromosome territories in human nucleus. Each colour corresponds 

to a different chromosome. Illustration adapted from [26]. 

Biological questions and experiments.    There is an intimate relationship between 

the local and the global scale of the organisation of the nucleus. For instance, when 

biologists alter the genes encoding histone proteins by stopping the expression of one 

of them, the size and the location of chromocentres change. On the contrary, during 
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cell development or following certain stresses, the nucleus organisation changes, and 

the expression of chromatin proteins is also impacted. There is thus a strong correlation 

between nucleus shape change and gene expression. But is there a causal relationship? 

More specifically, the epigenetic question that is being explored by biologists involved 

in this project could be formulated as follows: to what extent does the re-organization 

of nuclear space influence gene expression? This re-organization could be caused by 

stresses, mutations, or cell differentiation. During their experiments, biologists submit 

their plants to a series of stresses and mutations and then try to measure modifications 

in plant characteristics, a step called phenotyping. These plant characteristics are 

mainly visual and could be macroscopic, such as the size of leaves or root hairs, or 

could be microscopic, such as nucleus volume or number of chromocentres. While 

macroscopic phenotypes can be measured with a simple camera, microscopic 

phenotypes generally require a microscope. The first studies led by the biologists 

taking part in this project focused on SUN proteins [27], [28] and on KAKU4 and 

CRWN proteins [29], [30] of A. thaliana. In these studies, a multidisciplinary approach 

was chosen, including genetics, tridimensional microscopy, and image processing. 

Image processing specifically was the subject of the work of two PhD students 

preceding the work presented in this thesis. They both participated in the development 

of NucleusJ and NODeJ, plugins of Fiji/ImageJ, designed to help biologists 

automatically extract nucleus and chromocentre characteristics, such as volume or 

elongation, in 3D images containing potentially thousands of them. These tools are 

based on “classical” computer vision techniques such as thresholding or watershed 

segmentation [31]. Their limitations have been the starting point of this work. 

1.2.2 Microscopy and medical imaging 

 To understand these limitations and the objects of study of this work, let us delve 

into the nature of microscopy images and, more generally, 3D imaging techniques. The 

primary objective of this research is to develop an image analysis system capable of 

analysing volumetric images, irrespective of their origin or type, thereby enabling the 

analysis of 3D images related to any biomedical problem. However, there are two 

reasons for not detaching from the imaging technique the biological or medical object 

of interest. First, it is to avoid falling into the pitfall of becoming an “external service 

provider” and, in this way, missing key features in the images, pivotal for their future 

analysis. Second, it is arduous to create a comprehensive dataset that would represent 
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the almost infinite variations of imaging techniques and types of biomedical problems. 

Therefore, research in this work will initially focus on microscopy images and 

gradually expand to other possibilities if the developed image analysis systems exhibit 

flexibility. In-depth explanations will be presented on microscopy image analysis and 

then on medical imaging techniques as a potential application.  

Confocal microscopy.    Microscopes, regardless of their type, are typically composed 

of three fundamental components: an emitter that projects particles, a transmitter that 

guides the particles towards the sample, and a receptor that detects the particles after 

they have interacted with the sample by reflection or transmission. If the emitted 

particles are photons, then the microscope is a light microscope. Among all types of 

light microscopes, the confocal microscope is widely recognized as one of the most 

powerful tools for capturing high-resolution 3D images. For confocal microscopes, the 

emitter is a laser, the transmitter is a set of lenses and mirrors, and the receptor is a 

photomultiplier tube converting the light into electrical signal. Confocal microscopy 

is a special type of fluorescence microscopy, which means that the sample contains a 

substance that can remit laser light [32]. In biology, this substance is usually a set of 

fluorescent molecules called fluorophores. Fluorophores emit light in all directions 

once exposed to laser light, which has the good property of allowing biologists to see 

through tissue but the disadvantage of often producing images with background noise. 

The main particularity of confocal microscopes is a special device, called pinhole, that 

is placed in front of the receptor and that removes the out-of-focus and noisy light 

emission. The final image is thus clearer. However, the pinhole limits the field of view 

to one tiny region of the sample. In order to get a view of the whole sample, the sample 

must be moved in the three spatial directions: up and down, left and right, and forward 

and backward. Once the whole sample scanned, tridimensional image is obtained with 

a high resolution and a high contrast. As these tridimensional movements are prone to 

adding noise the images and slowness in the acquisition process, many improvements 

of confocal microscope have been done to improve the acquisition accuracy and speed, 

among which the most notable ones are probably light-sheet microscopes and super-

resolution microscopes. Once again, these improvements have been possible thanks to 

a close relationship between biologists and chemists, designing new fluorophores, 

microscopists and physicists, building new microscopes, and computer scientists and 

image analysists, developing image processing software. Compared with other types 
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of microscopies, confocal microscopes can capture high-resolution 3D images in a 

relatively short amount of time and have less requirements regarding sample 

conditioning, which allow, for instance, to image living bodies. For these reasons, 

confocal microscopy is usually the method of choice for biological imaging. Confocal 

imaging of the nucleus represents the original application of the image analysis 

developments presented in this work. 

Electron microscopy.   When seeking for sub-nanometre resolutions or imaging the 

entire cell environment, rather than selected fluorescent regions, biologists often 

utilize an electron microscope (EM) as an alternative to confocal microscopy [33]. 

Instead of light, electron microscopes use an electron gun to emit a beam of electrons 

which have a much shorter wavelength than visible light, allowing them to image 

structures at the atomic level. The electrons are then transmitted toward the sample 

with a series of magnetic lenses. Electrons are then either transmitted through the 

sample or remitted by the sample surface. If the receptor detects transmitted electrons, 

then the microscope will be called Transmission Electron Microscope (TEM) or, if the 

receptor detects remitted electrons, Scanning Electron Microscope (SEM) (Figure 

1-6). For cell imaging, electron microscopes allow biologists to image tiny structures 

such as nucleus double membranes or nuclear pores that are extremely difficult to 

detect with confocal microscopes. The main drawback of electron microscopy is the 

imposed stringent conditioning of the samples before imaging. The sample preparation 

might involve chemical fixation, dehydration, resin embedding, and slicing into ultra-

thin sections. Additionally, during imaging, the sample must be placed in a high-

vacuum environment. All of these steps might irreversibly damage the sample. Another 

drawback of electron microscopy is the acquisition time, especially for 3D images, 

that might last as long as a week. A special type of electron microscope called Serial 

Block Face-SEM (SBF-SEM) is present in Oxford Brookes University. This 

microscope creates 3D images by, first, capturing a 2D image of the surface of the 

sample, then automatically slicing a tiny layer of it and capturing the newly revealed 

surface. This process is repeated until reaching a sufficiently deep layer and the 

resulting set of 2D images are finally stacked together to obtain a 3D image. This time-

consuming process can create an extremely detailed image with a computer memory 

size often exceeding 200 gigabytes. Contrary to confocal images which display bright 

regions only where the fluorophore is located, the rest of it being black, electron 
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microscope produces grayscale images with a lower contrast where almost each 

molecule in the sample is detected with a different grey intensity. The resulting image 

thus contains a lot of regions which must be sorted to extract relevant information. 

This is one of the main limitations of the image analysis tools previously developed 

by the teams involved in this project which cannot be applied on EM image.  

 

Figure 1-6 – Light microscopy (left) versus TEM (middle) versus SEM (right). TEM 

captures an image by detected the electrons transmitted through the sample while SEM 

captures remitted electrons. Illustration taken from [34]. 

Medical imaging.    In the realm of 3D medical imaging, analogous difficulties arise 

as those encountered with electron microscopy images. 3D medical images, typically 

portraying organs or other macroscopic structures within the human body, are 

grayscale representations. Each location within these images is assigned a unique 

grayscale value, enabling distinction between objects of interest and the background. 

However, this results in a surfeit of information that must be meticulously processed 

in order to extract the relevant information. Probably due to their large number and to 

their practical application, medical images have been the objects of many software 

developments. Many online challenges have been created to serve the enhancement of 

medical image processing and the number of new ones constantly increases. Most of 

them are listed on https://grand-challenge.org/ website. Among the long list of existing 

medical imaging techniques, work is this project will mainly focus on Computed 

Tomography (CT-scan) and Magnetic Resonance Imaging (MRI) as they are the two 

https://grand-challenge.org/
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most common imaging techniques on this website (Figure 1-7). Even though the 

developments in this work will be tested on only these two imaging techniques, they 

should be applicable to other ones such as ultrasounds or Positron Emission 

Tomography (PET). CT-scans use a rotating X-ray scanner to capture multiple images 

from different angles. The set of resulting 2D images are then numerically combined 

to form a 3D image of the body parts being scanned. MRI uses a powerful magnetic 

field to align protons of hydrogens atoms contained in the body tissue. Radio waves 

are then sent through the body, which causes these protons to absorb the energy and 

temporarily move out of alignment. When the radio waves are turned off, the hydrogen 

atoms release the absorbed energy, and this release is detected by the scanner. Like CT-

scan, MRI relies on numerical post-processing to compile the set of generated images 

into one 3D image. Although the primary focus of this work is microscopy, the 

similarities between electron microscope images and medical imaging prompt to 

explore developments in the latter field. It will here be demonstrated that tools 

developed for 3D medical images can be applied to confocal and electron microscopy. 

Furthermore, the software developed in this work has several applications in medical 

imaging. 

   

Figure 1-7 – MRI (left) versus CT-scan (right). MRI captures the photons released 

by hydrogen atoms of the body after a radio waves impulse while CT-scan relies on X-

ray. 3D Images from both modalities will be analysed in this thesis. Illustrations taken 

from [35] and [36]. 

1.2.3 Digital image processing and analysis 

What is a 3D image?    An image is a visual representation of a bidimensional (2D) 

or tridimensional (3D) object, scene, or phenomenon. Since modern computers operate 

only using bits, 0 or 1 values, continuous visual data must be discretized before being 
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stored. To accomplish this, the captured space is divided into a 2D or a 3D grid. Each 

cell in the grid is assigned with one or more discrete values that represent the intensity 

of the signals within that cell. There is thus a double sampling, first in space and then 

in intensity. The grid is called a digital image, which will be abbreviated in this thesis 

to image, and a grid cell is called a picture element, which will be abbreviated to pixel 

for 2D images or voxel for 3D images. In this configuration, there are several 

parameters that must be defined if performing measurements is intended in the image: 

• The image size is the number of picture elements in each dimension of the 

image. For instance, in 2D, the term Full HD is commonly used to qualify 

images with a grid of 1920 by 1080 pixels. In 3D, typical images can have 512 

by 512 by 128 voxels. The number of picture elements is directly linked to the 

size of the image in the computer storage. In the previous 2D example, the 

number of pixels to store is 1920 × 1080 = 2 073 600. For the 3D image, the 

number of voxels is 512 × 512 × 128 = 33 554 432, which is 16 times 

bigger than the 2D image. The commonly bigger size of 3D images is an 

important constraint both to store and to analyse them.  

• The number of channels is the number of intensity values stored for each 

picture element. The channel dimension represents the last dimension of the 

image. Indeed, 2D images have, in reality, 3 dimensions and 3D images have 

4. The number of channels in standard 2D images is typically 3: one channel 

for red intensities, one for green intensities, and one for blue intensities. In the 

previous Full HD example, an image will thus have an actual dimension of 

1920 by 1080 by 3. In medical imaging, CT-scan images usually contain only 

one channel of grey values and MRI images are often multimodal, meaning 

that they have several channels. For example, the BraTS 2020 dataset [37] 

contains 3D images of brains with 4 channels (T1, T1-weighted, T2-weighted, 

and T2-FLAIR). For microscopy images, biologists typically use several 

fluorescent proteins which emit photons with different wavelengths. Each 

wavelength is captured independently and stored in a different channel in the 

resulting image. A microscope image can thus have potentially tens of 

channels, but large numbers of channels rarely occur, and typical numbers of 

channels stay below 5. 
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• The spatial sampling (or spacing) is the spatial size of each picture element. 

Each picture element represents a physical region in 3D space and this region 

has a certain height, width and, eventually, depth. When taking pictures with a 

standard camera, a 2D projection of the 3D objects is captured. Even if the final 

image looks “real”, this projection step causes the objects to be deformed and 

any measurement done in this type of image must take it into account. Images 

captured with microscopes, or any medical imaging technique usually do not 

have such deformations and thus facilitate measures of the objects they 

represent. In biomedical images, there is a direct link between the number of 

picture elements and the size of the object. To perform one measure, a user can 

simply count the number of picture elements in the measure and multiply it by 

the size in meters of each picture element. Due to some technical constraints, 

3D images often do not have a similar size in all 3 dimensions. Typically, for a 

3D microscopy image the spatial size of each voxel could be 0.1 𝜇𝑚 ×

0.1 𝜇𝑚 × 0.2 𝜇𝑚, which means that the depth of the image is less sampled than 

the other two dimensions. This property is called anisotropy, and this results in 

an image that looks “flat” in the depth dimension. 

• The intensity sampling is the number of possible intensity values of each 

picture elements. For one channel and one picture element, there is one 

sampled intensity value. The number of possible intensity values range 

between only 2, the resulting image is called “binary”, and 232 =

4 294 967 296. For 2D images, the standard is to sample with 28 = 256 

values. Why such a power of 2 sampling? Because computers can only store 

bits, 0 or 1, which means that a base 10 numbers, such as 87, which have 2 

digits, “8” and “7”, will be encoded by the computer in a base 2 number, 

1010111 which has 7 digits. For computer storage reason, it is often appropriate 

to store intensity values with only base 2 numbers with a maximum of 8 digits. 

The resulting image has only 28 = 256 possible values for each intensity. In 

such a configuration, 0 represents the absence of signal and 255 the maximum 

signal intensity. This type of image is called 8-bits. Although 8-bits images are 

sufficient for standard 2D images because the human eye cannot distinguish 

colours with a lower sampling, for medical and microscopy images the signal 

intensity variations are sometimes so subtle and important that the number of 
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sampled intensity values must be increased. Typical biomedical images can be 

16-bits or 32-bits. The choice of intensity sampling also affects the storage 

space required for the image; a higher sampling rate leads to a larger image 

size. 

These four characteristics are determinant in the choice of the method to store, 

visualize and analyse the images. For example, anisotropic images will often require 

some post-processing to “unfold” the represented object. However, even though 

important, focusing on these characteristics only is not sufficient to properly analyse 

the images, as the nature of the represented objects is probably even more important. 

Although image characteristics are alike, methods developed to analyse objects of the 

macroscopic world are not always applicable to the world of biomedical objects. The 

laws of physics change between these two worlds and, consequently, the morphology 

of the objects as well. The large variety of human postures in 2D images is not similar 

to the finer variety of shapes in a kidney or a nucleus image.  

Development of image analysis methods.    To decipher the subtle and specific 

variations in biomedical images is one of the main objectives of this work. NucleusJ 

[29], the ImageJ/Fiji plugin previously developed by the teams involved in this project, 

is specific to confocal images of nuclei. Initially developed for plant nucleus taken in 

wide field images, it has been shown to be applicable to other types of nuclei such as 

sperm nuclei. NucleusJ basic principle is based on applying a threshold to the image 

intensities. The resulting image, a so-called segmentation mask, is black and white, 

where white voxels are located on the nuclei and black voxels represent the 

background. The “ideal” threshold is found via the Otsu method [38] and a post-

processing based on the Gift-wrapping method [39] is applied to fill the eventual holes 

in the segmentation mask. NODeJ, another ImageJ/Fiji plugin developed by the 

biologist teams, can then be applied to segment the chromocentres inside each nucleus. 

NODeJ combines a modified Laplacian filter with a thresholding method [40] to 

segment each chromocentre. Both tools come handy in analysing 3D nuclear images, 

mainly images of plant nuclei, as they are quite accurate, fast and do not require any 

manual annotations. However, they are both limited to confocal images and to nucleus 

and chromocentres segmentation. Both tools would be useless to segment nuclei in 

electron microscope images or to segment epithelium cell borders in a confocal image. 

A simple intensity threshold cannot be applied in electron microscope images and the 
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Gift-wrapping method cannot be used to fill the eventual gaps in the segmentation of 

epithelium cell borders. Two approaches can be taken when facing new imaging 

challenges: either create customized solutions for each problem or develop a more 

versatile method that can adapt to any new problem as long as there is a set of manual 

annotations. The former requires significant engineering efforts, while the latter only 

requires novel annotations. In this work, the second approach will be pursued. It is 

often called data-driven approach, and it will leverage recent advances in a novel class 

of computer science methods called deep learning. 

Deep learning.    The emergence of deep learning and, more generally, machine 

learning has been inspired by how humans learn. If you intend to teach someone to do 

a certain task, let say a segmentation task, one of the easiest ways is to show both the 

original image and the expected results, the handmade annotation. Links will then be 

created in the neural network of the trainee between the original input and the expected 

output. An artificial neural network works the same way. An image is input to a series 

of operations, which successively transform the image to reach the expected output 

format. The predicted output is compared to the expected output with a similarity 

score. Each operation has a set of parameters that are then automatically adjusted based 

on this score. The higher the similarity score is, the less the parameters will be adjusted. 

This process is repeated until the artificial neural network reaches a sufficiently good 

score. In this configuration, it is assumed the existence of a “good” artificial neural 

network and that only novel pairs of original images and manual annotations must be 

provided to adapt this network to a new task. As finding such a “good” artificial neural 

network can be extremely difficult, this apparently simple approach is the basic 

principle of many recent developments in machine learning. It was only in 2011 [41] 

that the first artificial neural network, based on a special type of operation called 

convolution, reached human-like performance on a basic task, image classification. 

This performance was made possible thanks to the emergence of powerful Graphical 

Processing Units (GPUs) originally designed for video game rendering. Deep learning 

has become drastically popular among image analysists but, yet, has often not reached 

the end users, such as biologists or radiologists. In this work will be first presented an 

attempt to understand why there is such as gap between deep learning developers and 

biologists and then light will be shed on a newly developed tool, named biom3d, that 
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go beyond the proof of concept of most of the available deep learning methods and 

that can be user-friendly for both the end users and the developers.  

Reducing the need for manual annotations.    Despite the impressive flexibility and 

performance of deep learning methods, their effectiveness heavily relies on the 

availability of extensive manual annotations. This dependency is called supervision, 

regarding how deep learning models are supervised by the man-made data. In domains 

like biology and medicine, where expert-level annotations are necessary, the time and 

cost involved in generating such large datasets often exceed practical limits. 

Consequently, this becomes a significant impediment to the widespread adoption of 

deep learning methods in these fields. In response to this emerging challenge, several 

techniques have emerged to address the limitations associated with supervised deep 

learning methods. These techniques, including active learning, generative methods, 

weakly supervised learning, and self-supervised learning, have garnered significant 

attention in recent years. More details about each these methods will be provided in 

Section 2.3.2. While these methods have proven to be helpful on certain datasets such 

as ImageNet [42] for 2D image classification or COCO [43] for 2D image 

segmentation, they are yet to prove their effectiveness on a broader scale. This work 

will delve deeper into the potential applications of self-supervised learning for 3D 

biomedical images. This choice is motivated by the recent promising advancements in 

this field and the specific characteristics of biomedical datasets. Self-supervised 

learning has shown particular suitability in scenarios where a vast amount of 

unannotated data is available alongside a limited number of annotated samples. The 

rapid progress in biomedical imaging technologies has enabled biologists and 

radiologists to generate a wealth of high-quality 3D images with relative ease and 

efficiency. However, harnessing the full potential of this abundant unlabelled data for 

training artificial neural networks can be a challenging task. Self-supervised learning 

presents a promising approach to leverage this surplus of unannotated data by 

pretraining models, using pretext tasks that exploit inherent structures and patterns 

within the data, before training them on annotated datasets.  

1.3 Outline and contributions 

The initial aims of thesis were to develop an AI method to segment nuclei in 

microscopy images and to compare it with existing methods. The structure of the thesis 

follows almost chronologically the evolution of questions raised along the way. 
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In Chapter 2 is first overviewed the promises of deep learning methods for 3D 

imaging as presented in the literature. A deeper exploration will define criterion to find 

reusable methods and a set of such methods for 3D nuclear segmentation will be 

benchmarked.  

In Chapter 3, Biom3d is introduced, an easy-to-use and modular tool, developed 

during this PhD, that automatically configures the complex workflow of deep learning 

model training. Biom3d default configuration is for volumetric segmentation of 

multiple classes of objects in multi-channel images, such as microscopy and medical 

images. In segmentation mode, Biom3d is thus able to reach state-of-the-art 

performance on multiple segmentation challenges and, in particular, on 3D nucleus 

segmentation. The new software development philosophy adopted during Biom3d 

creation is one of the major achievements of this thesis project and has permitted 

Biom3d to satisfy the expectations of a continuum of users, from Non-Programmers 

to Deep Learning Developers.  

Finally, in Chapter 4 is presented a series of experiments aiming at adapting existing 

self-supervised learning methods to 3D bioimages. Novel contributions based on the 

Triplet and the Arcface losses will demonstrate promising results. All these adaptations 

and new contributions were made possible by the Biom3d framework. 
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Chapter 2  

Related work, review, and benchmarking  

Code is like humour.  

When you have to explain it, it’s bad. 

- Cory House- 

2.1 Classical computer vision methods for 3D segmentation 

of bio-images 

Segmentation, as a computer vision problem, has been closely intertwined with 

advancements in imaging techniques. Its early mentions can be traced back to the 

1970s [44]–[46], where researchers already recognized its relevance in biological and 

medical applications. This Subsection introduces classical computer vision methods 

for image segmentation that predate the emergence of artificial intelligence-based 

approaches. It is important to note that this introduction is not exhaustive, as the 

primary focus of this thesis lies on the latter, AI-driven techniques. 

2.1.1 Classical computer vision approaches  

Classical computer vision approaches to segmentation involved the application of 

various techniques such as thresholding, clustering, region growing, and edge 

detection. These methods relied on predefined rules and heuristics to identify and 

delineate objects or regions of interest within an image. They aimed to exploit low-

level image characteristics such as intensity, colour, texture, and spatial relationships. 

Thresholding, for instance, involves setting a pixel intensity value to separate 

foreground and background regions. Finding the best threshold automatically usually 

involves the computation of the histogram of intensity values in the image. For 

example, Otsu’s method [38], probably one of the most widely used thresholding 

method, hypothesises the existence of two probability distributions in the histogram 

and the best threshold is the one that minimizes their intra-class variance of each 

distribution. Clustering methods seek to group picture elements into K clusters based 

on their intensity and location. Neighbouring picture elements of similar intensities 

will thus be assigned to the same cluster with an algorithm such as K-means [47]. The 
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number K of clusters can be determined randomly or with a heuristic [48]. Region 

growing algorithms aim to group picture elements with similar characteristics, such 

as the aforementioned clusters, into larger coherent regions. This category of 

algorithms may involve techniques such as graph partitioning with, for instance, 

Markov-random fields [49] or the watershed transformation [31] which considers the 

gradient of the intensities as a topographic surface where the region boundaries are 

defined by the picture elements with the highest intensity value. Edge detection 

methods focus on identifying abrupt changes in picture element intensity to locate 

object boundaries. Once edges are located, regions can then be deduced. While local 

approaches such as gradient-based methods can often be efficient, they might often 

miss edges in noisy conditions. More global approaches might thus be more 

appropriate such as methods based on the minimization of an energy function as active 

contours [50], fitting a user-defined contour to the image edges, or variational methods 

[51], segmenting objects without clearly defined boundaries.  

These classical techniques play a crucial role in early image segmentation research 

and lay the foundation for subsequent developments. However, they often face 

challenges in handling complex image structures, variations in lighting conditions, 

noise, and the presence of overlapping or touching objects. They heavily rely on 

handcrafted features and predefined rules, making them less adaptable to diverse and 

complex real-world scenarios. The emergence of artificial intelligence, particularly 

deep learning, has revolutionized image segmentation by enabling the development of 

data-driven approaches which automatically learn and extract meaningful features 

from images for segmentation tasks. They have shown great promise in addressing the 

limitations of classical methods and achieving state-of-the-art performance in various 

applications. While this thesis primarily focuses on artificial intelligence-based 

segmentation techniques, it is important to recognize and appreciate the contributions 

made by classical computer vision methods.  

2.1.2 NucleusJ and NODeJ 

Preceding this thesis, the work of the PhD students Axel Poulet and Tristan Dubos 

has focused on the development of two ImageJ/Fiji plugins, NucleusJ and NODeJ, to 

segment plant nuclei in confocal 3D images. NucleusJ [29] (Figure 2-1) takes as input 

a wide-field 3D image and output a Comma Separated Value (CSV) file containing, 

for each nucleus in the image, a list of 14 characteristics such as the volume, the 
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surface, the sphericity, or the median intensity value. To get these values, it does a 

series of transformations on the images based on adaptations of classical computer 

vision algorithms. An Otsu’s thresholding combined with a connected component 

algorithm simultaneously find large volumes, the nuclei, and remove small volumes, 

the background noises. Each nucleus can thus be cropped and isolated. Isolated nuclei 

are segmented again with a modified version of the Otsu thresholding. This 

segmentation is improved by a Gift-wrapping algorithm which fills holes in the 

segmentation results caused, for instance, by the nucleolus not been marked by the 

DAPI staining. The final segmentation result is used to compute the 14 characteristics. 

To retrieve even more information, NODeJ plugin [52] (Figure 2-1) proceeds to a 

subsequent chromocentre segmentation starting from the segmentation result of 

NucleusJ. First, the gradient of the image is obtained by subtracting from each picture 

element the intensities of its neighbours. Then a threshold is applied to segment the 

chromocentres. The resulting chromocentre segmentation can finally be used to 

compute more characteristics such as the number and location of each chromocentre. 

When phenotyping plant nuclei, NucleusJ and NODeJ have, for instance, 

demonstrated significance differences between wild type nuclei and KAKU4 and 

CRWN mutants.  

NucleusJ and NODeJ typically illustrate the constant need of adaptation required 

by the classical computer vision methods which would fail if directly applied. 

However, despite this lack of flexibility, this type of method is still developed as it can 

be very efficient and performant in some cases, when properly configured. Methods 

such as GIANI [53], for mouse embryo image analysis, or TRUEFAD (https://

github.com/AurBrun/TRUEFAD), for myotube segmentation, are other examples of 

recent computer vision-based tools. Artificial intelligence-based methods have indeed 

the potential of being even more performant but often at the cost of requiring extensive 

efforts, skills, time, and expensive pieces of hardware or software. It will be seen later 

in this work, that, in some cases, classical computer vision methods can overpass AI 

approaches (see Section 2.2.4).  

https://github.com/AurBrun/TRUEFAD
https://github.com/AurBrun/TRUEFAD
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Figure 2-1 – NucleusJ/NODeJ workflow: from 3D wide-field images to CSV file. 

(1) Crop of nuclei into individual files. (2) Generation of nucleus masks. (3) Intensity 

gradient of nucleus content. (4) Generation of chromocentre masks. (5) Generation of 

csv files with parameters describing nucleus morphology and chromocentres. 

2.2 Supervised deep learning methods 

The main core of artificial intelligence methods is now probably deep learning, 

which could be viewed as a convergent evolution that has quickly dominated. Indeed, 

preceding deep learning methods, AI field have been the realm of a Cambrian-like 

explosion of novel methods every year. Discoveries in biology and medicine has 

deeply influenced these evolutions first by inspiring novel ideas and offering novel 

insights on how natural neural networks work and, second, by being an important case 

of study regarding the increasing amount of new data and challenges it provides. This 

Section mainly focuses on supervised deep learning methods, still one of the most 

chosen approaches regarding deep learning model training. It will first introduce deep 

learning concepts and functioning and then overview the large panel of applications 

for biology and medicine. It will be concluded by a comparative analysis of deep 

learning methods for 3D nucleus segmentation, an important part of the work achieved 

during this thesis.  
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2.2.1 General background 

Even though some may distinguish them, the terms machine learning (ML) and 

artificial intelligence (AI) will be used indistinctly in this thesis. The latter has been 

chosen so far for it to be often preferred by mainstream media and commonly used, 

the former is probably more accurate and generally chosen by experts. This Subsection 

will develop the general introduction of Chapter 1 about deep learning by enriching it 

with a mathematical background. 

Machine learning.    AI and ML both refer to the art of programming a set of 

parameterized operations for a computer to achieve a certain task. This set is often 

named model and the operations are named layers. A task is usually defined by a set 

of inputs, such as images, that will be noted 𝑥, and a set of expected outputs, such as 

categories, for instance “wild-type nucleus” and “mutant nucleus” (Figure 2-2-A), that 

will be noted 𝑦. The term learning implies that some of the layers, noted 𝑓𝑤, have 

parameters, noted 𝑤, that will be adjusted automatically so the predicted output, noted 

𝑦̂ = 𝑓𝑤(𝑥), match the expected output 𝑦, also called ground truth. To do so, the loss 

function, noted 𝐿𝑤, measures the difference between the output 𝑦̂ and the ground truth 

𝑦 (Figure 2-2-B). The goal is to minimize this difference. The optimizer, noted 𝑔𝛼, 

then adjusts the parameters 𝑤 to new values 𝑤′ depending on the loss value 𝐿𝑤(𝑦̂, 𝑦): 

𝑤′ = 𝑔𝛼(𝑤, 𝐿𝑤(𝑦̂, 𝑦)). This step is named training. The definition of loss function 𝐿𝑤 

and the optimizer 𝑔𝛼 is often dependent on the task definition. However, there are 

certain standards, particularly for the optimizer. Probably, the most used optimizer is 

the Stochastic Gradient Descent: 𝑔𝛼(𝑤, 𝐿𝑤(𝑦̂, 𝑦)) = 𝑤 − 𝛼
𝑑𝐿𝑤

𝑑𝑤
. In this case, the 

operation parameters are adjusted by subtraction of the gradient of the loss function 

𝑑𝐿𝑤

𝑑𝑤
. The sign of gradient 

𝑑𝐿𝑤

𝑑𝑤
, positive or negative, represents the variations of the loss 

function 𝐿𝑤, increasing or decreasing, if the operation parameters 𝑤 were slightly 

increased or decreased. Subtracting the operation parameter 𝑤 with the gradient 
𝑑𝐿𝑤

𝑑𝑤
 

means that, if the gradient is positive, 𝑤 will be decreased, thus moving toward a loss 

decrease and, similarly, if the gradient is negative, 𝑤 will be increased, thus moving 

again toward a loss decrease. It is important to note that there are two different types 

of parameters here. First, the trainable parameters 𝑤 are the operation parameters 

adjusted automatically by the optimizer and, second, the so-called hyper-parameters 

must be manually defined, such as the learning rate 𝛼 in the optimizer, controlling the 
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update intensity of the operation parameters. Other examples of hyper-parameters are 

the number and the type of each layer (if the model has several), the number of data 

given simultaneously to the model during training (batch size), or the number of times 

the model sees the entire dataset (epoch). Defining properly the hyper-parameters is 

often regarded as one of the main challenges of machine learning. It will be shown 

later in this thesis (see Chapter 3) that hyper-parameter configuration for 3D images is 

even more challenging due their sizes. Biom3d framework, one of the main 

contributions of this thesis, tackles this challenge. 

  

   

Figure 2-2 – Basic principles of machine learning. (A) A basic units of machine 

learning model. A nucleus image (left) is input to a parametrized operation (red) and 

to a non-parametrized operation (purple). The output is here a class, either “Mutant” 

or “wild-type” nucleus. (B) Training of a deep learning model. A raw input of a 

nucleus (left) is pre-processed (yellow box) and fed to the deep learning model (middle 

grey box) which transforms it, via a series of operations, into an expected output, here 

a segmentation. After a post-processing (orange box) the expected output is compared 

to the ground truth segmentation with a loss function (blue box). The optimizer (bot) 

will adjust the parameters of the deep learning model depending on this loss. 

Illustration taken from [40]. 



27 

 

Machine learning versus Deep learning.    The distinction between classical machine 

learning models and deep learning models lies in the presence of multiple successive 

parametric layers in the latter. In deep learning models, if two or more consecutive 

layers with learnable parameters are present, the model is considered deep (Figure 2-2-

B). This stacked structure of layers offers two key advantages compared to single-layer 

models. Firstly, deep learning models can achieve comparable performance to single-

layer models with a seemingly lower number of trainable parameters. This parameter 

efficiency is attributed to the hierarchical nature of deep models, where each layer 

learns and refines representations of increasing complexity. By leveraging the 

hierarchical structure, deep models can efficiently capture and encode information 

from the input data, leading to better performance with fewer parameters. Secondly, 

the layered structure of deep models enables them to extract more complex and 

abstract features. While shallow models may be limited to detecting simple features 

like edges or corners, deep models have the capacity to learn hierarchical 

representations, allowing them to recognize more intricate patterns and concepts. For 

example, a deep model can learn to identify not only the individual components of a 

dog, such as edges or corners, but also the overall shape and appearance of the 

complete dog (Figure 2-5). 

Short history of deep learning for vision.    The use of deep learning models can be 

traced back to the early 1980s with, for instance, the work of Kunihiko Fukushima on 

a model called Neocognitron [54]. Fukushima introduced a special type of model, later 

called Convolutional Neural Network (CNN or ConvNets) inspired by works on the 

visual cortex [55]. Although this method using brain like networks worked, it was very 

slow to train. It was only in 2011 that deep learning reached performance exceeding 

that of a human experimenter on visual task problems [41] owing to their 

implementation on fast Graphical Processing Units (GPUs) and large-scale handmade 

datasets. CNNs were made famous in 2012 by winning several well-known 

competitions in the field including ImageNet 2012 [42] and MICCAI 2013 Grand 

Challenge [56] (Figure 2-3). Afterwards, deep learning methods usage shortly 

exploded in communities of biological and medical image analysts [57], most of which 

deal with image segmentation relying on the U-Net model [58]. 
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Figure 2-3 - ImageNet classification challenge results between 2010 and 2015. A 

shift occurred in 2012 with the appearance of deep learning methods (green) rapidly 

replacing the traditional computer vision approaches (blue). Illustration adapted from 

[59] from Jensen Huang talk at CES 2016. 

Deep learning operations.    The base parametric layer of most of deep learning 

methods for visual task is called convolution and consists in a weighted sum of a small 

set of pixels that belong to a small sub-window (usually 3×3 pixels or 3×3×3 voxels) 

within the input image (Figure 2-4-A). The resulting digit is stored in an output array. 

This weighted sum is reiterated using the same set of weights, called kernel, but 

applied to a small sub-window shifted by one pixel. The resulting array is completed 

by browsing through the entire input image. Mathematically, this operation can be 

written as follows for 2D images: 

𝐼𝑚𝑎𝑔𝑒𝑜𝑢𝑡𝑝𝑢𝑡
(𝑐) (ℎ, 𝑤) = ∑ ∑ ∑ 𝐾𝑒𝑟𝑛𝑒𝑙(𝑐)(𝑖, 𝑗, 𝑘) ∗ 𝐼𝑚𝑎𝑔𝑒𝑖𝑛𝑝𝑢𝑡

(𝑖)
(

𝑑

𝑘=−𝑑

𝑑

𝑗=−𝑑

𝑁

𝑖=1

ℎ + 𝑗, 𝑤 + 𝑘) 

where 𝐼𝑚𝑎𝑔𝑒𝑥
(𝑐)(ℎ, 𝑤) is the pixel value of the image at (ℎ, 𝑤, 𝑐), ℎ being the height 

coordinate, 𝑤 being the width coordinate and 𝑐  being the channel coordinate, 𝑁 

represents the number of channels in the input image and 𝑑 the kernel size. This 

operation can easily be adapted to 3D images by addition of one dimension. 



29 

 

 

Figure 2-4 – Deep learning layers and a minimalist model for image analysis. (A) 

A convolution layer is the weighted sum between a set of parameters (kernel) and a 

small sub-window within the input image (left, dark green). This gives a single digit 

stored in the output image (right, dark green). The small sub-window is then slid to 

the left (step 2) and the process is reiterated. Illustration taken from [40]. (B) An 

activation layer, here a Rectified Linear Unit (ReLU), applies a threshold to the input 

image, transforming all negative values into zeros. (C) A pooling layer, here a 

MaxPooling, reduce the input image size by a factor of two, slicing the image in 2×2 

sections, selecting the maximum values of each section. (D) A minimalist deep 

learning model classifies the input image into two classes. Illustration taken from 

[40]. 

Often placed after convolution layers, the activation layer (Figure 2-4-B) are non-

parametric layers applying a threshold to their input. Some values in the output will be 

turned to zero forcing the model to make a focus on specific region and patterns in the 

image (Figure 2-5). Additionally, to encourage the model to extract hierarchical 

features from the data with increasingly complex shapes, the output of each activation 

layer is compacted by being shrunken down, usually by a factor of 2, with a pooling 

layer (Figure 2-4-C). A succession of sets of convolution, activation and pooling layers 
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can form a deep learning model (Figure 2-4-D). Figure 2-4-D shows a minimalist 

example where the input image is transformed into a single binary digit. This simple 

model can be used to classify images into two categories. This task is called image 

classification and often consider as one of the simplest in image processing. The 

ImageNet challenge [42] is, for instance, an image classification challenge which 

involves classifying more than a million images into one thousand classes. In deep 

learning, classification models are considered as backbones onto which additional 

layers can be attached to address other tasks such as object detection or image 

segmentation. These additional layers build upon the learned representations of the 

backbone model to perform more specific and intricate tasks. Common backbones 

include CNNs such as VGG [60], ResNet [61], EfficientNet [62] or Vision 

Transformers [63], [64].  

 

Figure 2-5 – What does the deep learning model “sees”? Visualization of the output 

of some activation layers at different depth in the deep learning model (top row). These 

views have been reconstructed with a deconvolution model (inverted convolution) 

using the samples displayed in the bottom line. It can be noted that the deeper the layer 

is in the model, the more complex the patterns of attention are, shallow layers focusing 

on simple edges and deep layers focusing on complete objects. Illustration adapted 

from [65]. 

Vision Transformer.    The Vision Transformer (ViT) models have recently set a 

significant milestone in deep learning for visual tasks. This type of model originate 

from Natural Language Processing [66] (Figure 2-6-A) and have achieved remarkable 

performance on well-known computer vision challenges such as ImageNet for image 

classification [42] (up-to-date of the state-of-the-art available here: 
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https://paperswithcode.com/sota/image-classification-on-imagenet) or COCO for 

object detection and image segmentation [43] (https://paperswithcode.com/dataset/

coco). The main parametric layer of these model is not the convolution layer but the 

attention layer. The introduction of attention mechanisms aims to reduce the 

“inductive bias” imposed by convolutions. Indeed, convolutional layers assume that 

objects or parts of objects within an image are in a relative proximity to each other. 

However, this assumption may not always hold in certain scenarios, such as object 

occlusions. Attention layers provide a more flexible and adaptive approach to capture 

long-range dependencies and relationships between image regions. Attention 

mechanisms assign different weights to different regions in the input, allowing the 

model to focus on more informative regions and disregard irrelevant ones. More 

formally, the input image 𝑥 is first split into smaller squares 𝑥1, 𝑥2, … , 𝑥𝑛, each being 

a vector with a fixed size (Figure 2-6-B). This sequence is then transformed into 

another sequence 𝑎1, 𝑎2, … , 𝑎𝑛 with the attention mechanism defined by the following 

formula: 

𝑎𝑖 = ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
(𝑊𝑞𝑥𝑖)

𝑇
(𝑊𝑘𝑥𝑗)

√𝑑𝑞

) 𝑊𝑣𝑥𝑗

𝑛

𝑗=1

  

where 𝑊𝑞, 𝑊𝑘 and 𝑊𝑣 are three matrices of trainable parameters, 𝑑𝑞 is the number of 

rows of 𝑊𝑞 and 𝑧 ⟼ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑛

𝑗=1

. The weights of this weighted sum are 

determined by the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function which tends to output either values close to one 

or values close to zero. For instance, if the model finds a useful link between regions 

𝑥1 and 𝑥2 of the image, then this mutual information could be merged into 𝑎1 by setting 

the matrices 𝑊𝑞 and 𝑊𝑘 so that the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function outputs one if 𝑗 = 2 and zero 

otherwise. As many different links might exist between image regions, the attention 

layer contains many of these attention operations and is thus called multi-head 

attention layer (Figure 2-6-A). To leverage the power of deep learning, many of these 

multi-head attention layers are stacked together to create the final Vision Transformer 

model. It is worth noting that while attention layers have shown great promise in Vision 

Transformers, convolutional layers still play a vital role in many computer vision 

applications. Different architectures, such as hybrid models that combine both 

convolutional and attention layers, are also being explored to leverage the strengths of 

both approaches (Figure 2-6-C). 

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/dataset/coco
https://paperswithcode.com/dataset/coco
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Figure 2-6 – Vision Transformer. (A) The original transformer model is designed 

for sequence analysis, originally textual sequences. Its main parametric layer is the 

multi-head attention layer (orange). Illustration adapted from [66]. (B) The vision 

transformer takes an image as input and transforms it into a sequence by splitting the 

image into small patches and flattening them into vectors. Illustration taken from [63]. 

(C) The vision transformer evolution in 2021. A large panel of derivative of the 

original transformer model appeared in 2021 quickly making it one of the most popular 

types of models. Illustration adapted from [67]. 

2.2.2 Applications in biology and medicine 

To build upon this general background, the following Subsection will provide a 

quick and non-exhaustive overview of deep learning methods used in biology and 

medicine for image analysis. The choice of presenting a certain method here has been 

made regarding their popularity and availability. To valorise open-science 

contributions, the focus will exclusively be made on free and open-source tools that 

provides a Graphical User Interface for non-programmers. A distinction will be made 

between biological and medical tools. However, some tools are generic enough to be 

used for both applications such as Fiji/ImageJ [17] or 3D Slicer [12]. 
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Biological applications.    In matter of free and open-source tools for biological image 

analysis (Table 2-1), probably the most used ones are Fiji/ImageJ, Weka [8], ilastik [7] 

and napari [6], all of which including machine learning tools either by default or in 

form of plugins. Fiji/ImageJ and Weka are both coded in Java, the former being more 

popular for its large set of traditional computer vision tools and the latter for its 

collection of machine learning algorithms. Ilastik and napari are developed with 

Python, an increasingly popular language in the computer vision community. Ilastik 

main purpose is to segment, detect, and classify objects in 2D and 3D bioimages while 

napari is mostly a 3D viewer for bioimages. Napari has yet a highly flexible software 

architecture which ease both the installation and the development of plugins in Python. 

For instance, deep learning segmentation tools such as StarDist [68] (see Section 2.2.3) 

has been integrated into napari with an easy-to-use graphical user interface 

(development helped by MagicGUI https://github.com/pyapp-kit/magicgui).  

As deep learning tools are often difficult to use due to the difficulty to find properly 

trained model, the website Bioimage.io offers to host a number of ready-to-use deep 

learning model in DeepImageJ, a plugin of Fiji/ImageJ [69]. It is important to note that 

a downloaded model from Bioimage.io must be applied on images that are like the 

ones used during model training or the output will be aberrant (Figure 2-7). To help 

train a deep learning model on novel images, ZeroCostDL4Mic website [70] 

(https://github.com/HenriquesLab/ZeroCostDL4Mic) hosts a set of online notebooks 

for bioimage segmentation, object detection, object classification and image 

denoising, by leveraging the computers of Google Colab.  

 

Figure 2-7 – Segmentations done with DeepImageJ of membranes captures with 

an electron microscope. The raw image (left) is segmented first by an inappropriate 

model (middle) and an appropriate model (right). 

https://github.com/pyapp-kit/magicgui
https://github.com/HenriquesLab/ZeroCostDL4Mic
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Besides the previous general-purpose pieces of software, some others are more 

modality-specialized such as 3Dmod [14] which focuses on 3D modelling of electron 

microscopy images or OpenOrganelle [71] for 3D organelle segmentation in the same 

modality. Others are more tasks specific, such as Cellpose [72], [73] for cell and 

nucleus segmentation, Mastodon and ELEPHANT [74] for cell lineage, 

3DeeCellTracker [75] for cell tracking, or CSBDeep toolkit 

(http://csbdeep.bioimagecomputing.com/), including CARE [76], DenoisSeg [77] and 

Noise2Void [78], for confocal image denoising.  

Table 2-1 – Free and open-source programs for 3D microscopy image analysis. 

Each program integrates a graphical user interface. 

Software Modality Tasks ML/DL 3D viewer online/ 

offline 

Ref. 

Fiji/ImageJ Generic Computer vision Plugins: ML 

and DL 

(DeepImageJ) 

Yes, via 

plugin 

offline [17], 

[69] 

Icy Generic  Generic Plugins: ML 

and DL 

Yes offline [79] 

napari Generic None by default Plugins: ML 

and DL 

Yes, by 

default 

offline [6] 

Ilastik Generic Segmentation, detection, 

classification 

ML No, 2D 

sections 

only 

offline [7] 

Weka Generic Segmentation, detection, 

classification 

ML No, 2D 

sections 

only 

offline [8] 

Cellprofiler Light 

microscopy 

Cell image analysis Plugins: ML 

and DL 

No, 2D 

only 

offline [80] 

Cellpose Light 

microscopy 

Cell and nucleus segmentation DL No, 2D 

only 

offline 

and online 

[72], 

[73] 

ZeroCost-

DL4Mic 

Generic Segmentation, detection, 

classification, denoising 

DL No online [70] 

CSBDeep Light 

microscopy 

Image restoration (CARE, 

Noise2Void, DenoiSeg), 

DL No offline [68], 

[76]–

[78] 

http://csbdeep.bioimagecomputing.com/
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Nucleus Segmentation 

(StarDist)  

Imjoy Generic Generic DL No, 2D 

only 

online [81] 

Mastodon Light 

Microscopy 

Cell tracking ML and DL 

(ELEPHANT) 

No, 2D 

sections 

only 

offline [82] 

Open-

Organelle 

Electron 

Microscopy 

Multi-organelle segmentation DL No, 2D 

sections 

only 

offline [71] 

3dmod Electron 

Microscopy 

3D modelling None Yes offline [14] 

 

Medical applications.    Even though the main starting point of this thesis is biology, 

similarities shared between biological and medical images implies that applications 

for one type of image could potentially be applied to other. Table 2-2 showcases a non-

exhaustive list of free and open-sources programs for medical applications. This list, 

partially extracted from [83], includes well-known applications such as 3D Slicer [12], 

ITK-SNAP [84] and MITK [85] which offer a wide range of functionalities, including 

image analysis, processing, visualization, tracking in 3D videos, and segmentation. 

Among these, 3D Slicer stands out for its versatility and extensive collection of 

extensions and plugins. Many of these extensions have been developed during 

challenges like Grand Challenges (https://grand-challenge.org/) or as a result of 

research presented at conferences such as ISBI 

(https://2023.biomedicalimaging.org/en/) or MICCAI (http://www.miccai.org/). 

However, these challenges and conferences prioritize the exploration of ideas and 

implementations of proof-of-concepts, which may not always result in fully 

operational and reusable applications. Although there has been a recent emphasis on 

code publication and sharing, the integration of these tools for practical applications is 

often overlooked, leading to a gap between published research and usable software. 

Surprisingly published code is not ever a reproducible code and, even less, a reusable 

code as is. Yet, some recent methods for medical image segmentation have made 

commendable efforts in this direction. Notable examples include nnU-Net [86], 

https://grand-challenge.org/
https://2023.biomedicalimaging.org/en/
http://www.miccai.org/
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TotalSegmentor [87], and Universal [88] Model for image segmentation, as well as 

nnDetection [89] for object detection.  

Table 2-2 – Free and open-source programs for 3D medical image analysis and 

visualization. Each program integrates a graphical user interface with a 3D viewer. 

They are roughly classified by the number of features (and, consequently, by 

popularity) offered for medical image analysis.   

Software Modality Task Language Ref. 

3D Slicer Generic: medical  

and biological 

Generic: 3D, 3D+time, 

Processing, Analysis, Virtual 

Reality, Segmentation… 

Python, C++, Matlab [12] 

ITK-SNAP Generic Generic C++ [84] 

MITK  Generic Generic C++ [85] 

MIPAV Generic Generic Java [90] 

MedInria Medical Generic C++ [91] 

Anatomist Brain MRI Neuroimaging Python, C++ [92] 

FreeSurfer Brain MRI Neuroimaging C++ [93] 

FSL Brain MRI Neuroimaging C++ [94] 

Seg3D Generic Segmentation C++, Python, Matlab [95] 

Tomviz Tomographic data Visualization  C++, Python [13] 

Paraview Generic: medical, 

biological, 

engineering… 

Visualization C++ [96] 

Vaa3D Bioimages Visualization C++, C [97] 

2.2.3 Applications to the nucleus 

Out of more than 150 published methods, we identify fewer than 12 that biologists 

can use (quoted from [40]). Despite the proficiency of deep learning methods 

publication for analysing nucleus images, only few are reusable. This quote is 

extracted from [40], work produced during this thesis and targeting the availability of 

deep learning methods for nuclear image analysis. As previously mentioned, the cell 

nucleus is the focus of investigation of the two teams of biologists involved in this 

project as well as the object of still prominent number of publications in biology. It 
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represents also the first field of investigation of this work on deep learning which will 

be further extended to biology and medicine in following chapters. Despite this nuclear 

focus, some of the contributions presented below, such as the deep learning sharing 

criteria, could probably be applied to a broad spectrum of applications. This sub-

section mostly delineates the work done in [40]. It first presents the challenges of 

sharing deep learning methods by defining precise availability criteria, then sheds light 

on one of these criteria, namely the dataset, and finally overviews the actually available 

methods for nuclear image classification, detection, segmentation and denoising.  

Deep learning method development.    Making a deep learning method accessible to 

biologists is a long and often underestimated process. This coding journey is illustrated 

in Figure 2-8 and starts with a general deep learning method developed by researchers 

in computer science only and made to solve general visual tasks such as the ImageNet 

challenge [42]. This method can then be shared, reused, and adapted by a 

multidisciplinary team of biologists, bio-informaticians and computer scientists onto 

biological problems. The resulting applied method must be general enough for other 

multidisciplinary teams to reuse it on their own dataset. As often being the first step of 

applied science following a method issued from fundamental research, it will probably 

require two substantial refinements for method applicability and method usability. 

These two refinements are labelled “fine-tuned” and “easy-to-use” in Figure 2-8 and 

follows each other to simplify the representation. A method applicability tends to be 

universal if it can be applied to a broad range of data with only minor user inputs. This 

is one of the main goals of deep learning methods as they are supposed to work well 

on novel data by only providing novel manual annotations and then re-training/fine-

tuning the deep learning model. Some knowledge in computer science is yet still 

required to achieve this. The method usability tends to be universal if the method is 

user-friendly, meaning that a clear graphical user interface and tutorials are provided. 

To develop such an interface, a consequent team of computer scientists might be 

needed. All these steps of development require the deep learning method to be properly 

shared.  
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Figure 2-8 – Deep learning method development steps, from a fundamental idea 

in computer vision to an easy-to-use tool for biologists. (A) A new DL method is 

designed to solve general imaging problems and is trained on large standard datasets. 

(B) New developments are conducted by a multidisciplinary team to specialize the 

model to the images produced by the biologists. (C) A specialised model can then be 

used by biologists on their images. However, the model is often not completely adapted 

to them, and creation of a new small dataset and model fine-tuning is required. At this 

stage, retraining is often facilitated by packaging tools, such as Docker, reducing the 

need for IT-skills. (D) For this fine-tuned method to be used by a non-IT aware user, a 

team of software engineers should integrate it into an easy-to-use interface such as 

software, a web page, or a plugin. 



39 

 

Deep learning method sharing.    Sharing a deep learning method is a more complex 

process compared to shallow machine learning methods. To consider a deep learning 

model viably shared, the following components should be made available (Figure 2-9-

A): 

• Reusing criteria: 

o Detailed explanations in the publication: The publication should 

provide comprehensive explanations of the deep learning method, 

including any relevant theoretical and practical background. 

o Commented code for prediction and training: The complete code of the 

method should be provided with detailed comments to aid 

understanding. The code must include the definition of loss functions, 

evaluation metrics, optimizer settings, hyper-parameter values, data 

pre-processing steps, and data post-processing steps. 

o Clear user documentation: Documentation should include installation 

steps and a clear explanation of the prediction procedure, enabling users 

to easily set up and run the model. 

o Trained model or Dataset: The trained model, which contains all the 

learned parameters, should be shared in a file or format that allows for 

inference. If not available, a dataset alongside a training procedure 

should be provided. 

o Deep learning environment: The software and hardware requirements 

for running the model should be specified, and ideally packaged with 

tools like Anaconda or Docker (Figure 2-9-B). 

• Reproduction and improvement criteria: 

o Training and testing datasets: The datasets used for training and testing 

the model should be made available, ensuring both reproducibility and 

the ability to fine-tune the model. 

o Developer documentation: Detailed information about the code 

architecture and how to contribute to the code development should be 

provided. 

• Accessibility criteria: 

o Interfaces: To make the tool accessible to non-developer users, the 

sharing of the inference procedure should be complemented with a 
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user interface, such as an Application Programming Interface (API) or 

a Command Line Interface (CLI) for programmers, or a Graphical 

User Interface (GUI) for non-programmers. 

During the review process made in [40], a method will be considered as viably shared 

if it follows the five “reusing criteria”. It will be shown below, and it is illustrated in 

Figure 2-9-A, that only few provide the required components. 

Deep learning environment.    The last of these components, the deep learning 

environment, deserves a bit more explanations. If a code is made available, and if one 

tries to install it and use it, it is not unusual to find out that the code is not working, 

throwing some errors about missing requirements or drivers. This type of problem is 

linked to the deep learning environment. A piece of software with a high level of 

functionality, such as a deep learning-based software including a nice graphical user 

interface, will almost always be coded with the help of existing sets of tools. These 

sets of tools will also be coded with the help of other sets of tools. This stack of tools 

on top of one another is called a software stack. A simplified representation of the 

software stack is depicted on Figure 2-9-B and is divided into three levels: the kernel, 

the operating system, and the applications. The kernel is what makes physical, 

hardware components function together. The operating system (OS), on top of the 

kernel, can contain an interface and tools to create applications. It can include a 

Graphical User Interfaces such as Windows or Ubuntu-Desktop. Finally, the 

application level is where the final applications will be developed, installed, launched, 

and used. This last level is itself divided into several levels that will not be detailed in 

this thesis. The important information to take from this representation is that each of 

these levels have several versions and that each version of one level is dependent on 

very specific versions on the level below. A deep learning application for instance, 

could require a specific version of the Python programming language, of the Pytorch 

library, of a Linux-based OS and of Graphical Processing Unit drivers. The range of 

versions that properly work together is often small. To tackle this, a solution is to use 

packaging solutions, such as Anaconda, which packages tools in the application level, 

Docker, which includes the OS as well, or a Virtual Machine including every level. A 

naïve approach could be to consider using Virtual Machines always, but they tend to 

be slower than the two others and to have a larger computer memory footprint. Docker 

is often a good solution even though it is harder to use than Anaconda.  
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Figure 2-9 – Sharing and use of deep learning models. (A) Sharing requirements 

must be fulfilled for a deep learning method to be properly shared. For 3D nucleus 

segmentation, only 4% of published methods encompass the minimum requirements. 

(B) Simplified view of the deep learning development environment. Several layers 

of programs are stacked on top of each other based on the computer hardware (light 

green, bottom). The first software layer, the kernel (light orange), is a platform 

defining basic functions to leverage the hardware computation power and can be 

integrated in virtual machine definition. The next layer, the operating system (OS, dark 

orange) is another set of functions defined on top the kernel which includes more 

features such as a Graphical User Interface. It can be included in the definition of a 

Docker container. The top layer, the application layer (dark green), defines the 

programming environment and deep learning frameworks where Python applications 

can be isolated in an Anaconda environment. Illustration adapted from [40]. 

Importance of datasets.    Deep learning method are called data-driven, meaning that 

the core of their proper functioning is in the constitution of a dataset with as few 

mistakes as possible. The dataset is the solely source of knowledge for deep learning 

models which means that, before resolving the required task, the model must extract 

some general knowledge about the images, such as an abrupt change in colour might 

represent an edge or that some regions of the images are noises. One solution to help 

the model extracting some of this information is to pre-train it either on a pretext task, 
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a process called self-supervision, or on a large set of pre-annotated images, a process 

called transfer learning. Transfer learning is often done using ImageNet [42], a large 

dataset including a broad range of daily life objects. Even though one could think that 

biological or medical objects look different, deep learning models pre-trained on 

ImageNet have shown significant improvements on cell images [98] or medical images 

[99]. Pre-training on large datasets of biological images similar to the images of 

interest is yet preferable. A complete list of manually annotated datasets for nuclear 

image analysis have been gathered in Table 2-3. As manually annotating can be time-

consuming, computer scientists have also designed software to create artificial dataset 

of nucleus images and annotations, such as CytoPacq  [100] (https://cbia.fi.muni.cz/

simulator/index.php). For more details, Section 2.3.2 provides an overview of methods 

to overcome the lack of annotated data sets. 

Data annotation and sharing.   However, in most cases, manually annotating a 

dataset is required and thus a good annotation tool is needed. Free and open-source 

tools for bioimage annotation have been classified in  

 

Table 2-4 depending on the targeted task: image classification, object detection or 

image segmentation. Some programs incorporate semi-automatic tools such as ilastik 

and Weka which can speed up the process but can sometimes bias it by suggesting 

wrong annotations. Paintera can also include Segment Anything [101], a deep learning 

tool developed by Meta to propose segmentations in 2D images. Nevertheless, for this 

thesis, the napari annotation tool has been selected as it offers an intuitive and efficient 

3D viewer, along with helpful plugins.  

 Once annotated, a dataset should be made publicly available. Sharing annotated 

datasets allows other researchers to evaluate and build upon the results but is yet often 

more challenging than sharing codes which only requires a small amount of computer 

memory space and online versioning tools such as GitHub or GitLab. The first 

challenge with data sharing concerns the size of the data and its online accessibility. 

Sharing a dataset on an online server may require storage resources as well as web 

hosting capabilities not always accessible to scientists. A free and easy-to-use solution 

is Zenodo. Another solution is to use a cloud-storage platform such as Google Drive, 

OneDrive, Baidu Drive, or WebKnossos [15] but, for intellectual property reasons, 

those are not recommended. For bioimages, one could also use the services offered by 

https://cbia.fi.muni.cz/​simulator/​index.php
https://cbia.fi.muni.cz/​simulator/​index.php
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the Broad Bioimage Benchmark Collection (BBBC) [102] or the Image Data Resource 

[103] maintained by the OMERO developers [104]. However, these two services 

require the user to send an application and to follow certain criteria which could be a 

limiting. The second challenge with data sharing is the uprising recommendations to 

following the FAIR (Findable, Accessible, Interoperable, Reusable) criteria. Adhering 

to these principles ensures that the shared data can be easily reused by the scientific 

community. For bioimages, one of the key components to share along with the images 

is the metadata, which includes all the contextual information surrounding the capture 

of the image, such as the microscope characteristics, the time of capture or the image 

resolution. FAIR data sharing brings to the fore front the writing of “Data Management 

Plans” which are now strongly recommended by national research institutes such as 

the CNRS in France.  

Table 2-3 – Complete list of publicly available datasets for nuclear image analysis.  

Topic Name Description 

Nucleus 

classificatio

n 2D 

Mitos-Atypia-14 - 

Grand Challenge 

Classification of nuclear atypia in breast cancer biopsy slides. 

Approximately 10400 frames. https://mitos-atypia-14.grand-

challenge.org/Dataset/  

Nucleus 

segmentatio

n 2D  

MoNuSeg - Grand 

Challenge 

Multi-organ nuclei segmentation challenge. Challenge of MICCAI 

2018. 30 images with approximately 22000 nuclear boundary 

annotations. https://monuseg.grand-challenge.org/Data/  

Nucleus 

segmentatio

n and 

classificatio

n 2D 

MoNuSAC - Grand 

Challenge 

31000 annotated nuclei from 4 different organs (Lungs, Prostate, 

Kidney and Breast) stained with H&E. https://monusac-2020.grand-

challenge.org/Data   

Nucleus 

segmentatio

n 2D 

Segmentation of Nuclei 

in Histopathology 

Images by deep 

regression of the 

distance map 

50 annotated histopathology images. 

https://zenodo.org/record/1175282  

Nucleus 

segmentatio

n 2D 

NucleusSegData: Cell 

Nucleus Segmentation 

Dataset for 

Fluorescence 

Microscopy Images 

Fluorescence microscopy images. 2661 cell nuclei of 37 fluorescence 

microscopy images 

http://www.cs.bilkent.edu.tr/~gunduz/downloads/NucleusSegData/  

Nucleus 

segmentatio

n 2D 

2018 Kaggle Data 

Science Bowl 

A large variety nuclei images under a variety of conditions (small or 

large nuclei, from colored or grayscale images of different 

resolutions). Kaggle competition proposed by Booz Allen Hamilton  

https://www.kaggle.com/c/data-science-bowl-2018/data  

Nucleus 

segmentatio

n 2D 

A Dataset and a 

Technique for 

Generalized Nuclear 

Segmentation for 

Computational 

Pathology 

21000 nuclear boundaries in H&E-stained tissue. Used in many 

publications. 

https://nucleisegmentationbenchmark.weebly.com/dataset.html  

Nucleus 

segmentatio

n 2D 

Deep learning for digital 

pathology image 

analysis: A 

Tissue images containing nuclei segmentation, epithelium 

segmentation, tubule segmentation, lymphocyte detection, mitosis 

detection, invasive ductal carcinoma detection and lymphoma 

https://mitos-atypia-14.grand-challenge.org/Dataset/
https://mitos-atypia-14.grand-challenge.org/Dataset/
https://monuseg.grand-challenge.org/Data/
https://monusac-2020.grand-challenge.org/Data
https://monusac-2020.grand-challenge.org/Data
https://zenodo.org/record/1175282
http://www.cs.bilkent.edu.tr/~gunduz/downloads/NucleusSegData/
https://www.kaggle.com/c/data-science-bowl-2018/data
https://nucleisegmentationbenchmark.weebly.com/dataset.html
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comprehensive tutorial 

with selected use cases. 

classification  

http://andrewjanowczyk.com/wp-static/   

Nucleus 

segmentatio

n 2D 

Dataset from 

"Immunohistochemistry 

(IHC) Image Analysis 

Toolbox" 

52 images of clustered stained nuclei  

https://www.dropbox.com/s/9knzkp9g9xt6ipb  

Nucleus 

segmentatio

n 2D 

Hand-segmented 2D 

Nuclear Images 

100 images of clustred stained nuclei 

http://murphylab.web.cmu.edu/data/2009_ISBI_Nuclei.html  

Nucleus 

segmentatio

n 2D 

EVICAN Dataset - a 

balanced dataset for 

algorithm development 

in cell and nucleus 

segmentation 

Grayscale images from multiple bright field microscopes. 4600 images 

and 26000 segmented cells 

https://edmond.mpdl.mpg.de/imeji/collection/l45s16atmi6Aa4sI  

Nucleus 

segmentatio

n 2D 

An annotated 

fluorescence image 

dataset for training 

nuclear segmentation 

methods 

Annotated fluorescent nuclear images of different tissue origins  

https://www.ebi.ac.uk/biostudies/files/S-BSST265/dataset.zip  

Nucleus 

segmentatio

n and 

classificatio

n 2D 

PanNuke: An Open Pan-

Cancer Histology 

Dataset for Nuclei 

Instance Segmentation 

and Classification 

205343 semi-automatically segmented nuclei from 19 different tissues 

stained by H&E. 

https://warwick.ac.uk/services/its/intranet/projects/webdev/sandbox/jul

iemoreton/research-copy/tia/data/pannuke  

Nucleus 

segmentatio

n and 

classificatio

n 2D 

Dataset of segmented 

nuclei in hematoxylin 

and eosin stained 

histopathology images 

of ten cancer types 

Biggest annotated dataset of the list. From The Cancer Genome Atlas: 

5060 whole slide tissue images from 10 cancer types (approximately 5 

billion segmented nuclei) automatically segmented and quality 

controlled and 1356 manually segmented patches from the TCGA 

from 14 cancer types (10 same and 4 new) 

https://app.box.com/s/yd4pbndk2bxtnourzpbvopga8dczsnes/folder/993

92899243  

Nucleus 

segmentatio

n 2D and 

3D 

Broad Bioimage 

Benchmark Collection 

Database of various medical image analysis problems. 

https://bbbc.broadinstitute.org/image_sets    

Some of the image sets focus on nuclei segmentation in 2D and 3D:  

-Nuclei of U2OS cells in a chemical screen (2D): 

https://bbbc.broadinstitute.org/BBBC039   

-Drosophila Kc167 cells (cells and nuclei outlined in 2D): 

https://bbbc.broadinstitute.org/BBBC007   

-Human U2OS cells (out of focus) (2D): 

https://bbbc.broadinstitute.org/BBBC006    

-Human HT29 colon-cancer cells (diverse phenotypes) (2D): 

https://bbbc.broadinstitute.org/BBBC018   

-Murine bone-marrow derived macrophages (2D): 

https://bbbc.broadinstitute.org/BBBC020   

-Nuclei of mouse embryonic cells (3D): 

https://bbbc.broadinstitute.org/BBBC050  

Nucleus 

segmentatio

n 3D 

EPFL - Electron 

microscopy dataset 

Segmented nuclei of CA1 hippocampus brain region captured with 

electron microscopy. 2 segmented 3D images (1 for training and 1 for 

testing) https://www.epfl.ch/labs/cvlab/data/data-em/  

Nucleus 

segmentatio

n 3D 

Neurosphere_Dataset 52 cells with stained nuclei captured with a LSFM 

http://opensegspim.weebly.com/download.html  

Nucleus 

segmentatio

n 3D 

Asynchronous fate 

decisions by single cells 

collectively ensure 

consistent lineage 

composition in the 

mouse blastocyst 

Confocal microscopy images of mouse embryo. 545 segmented 3D 

images. http://dx.doi.org/10.6084/m9.figshare.c.3447537.v1  

Nucleus 

segmentatio

n 3D 

A. thaliana cotyledon 

cell nuclei 

Confocal microscopy images of individual plant cell nuclei. 413 3D-

images. https://OMERO.bio.fsu.edu/webclient/?show=project-3451  

 

http://andrewjanowczyk.com/wp-static/
https://www.dropbox.com/s/9knzkp9g9xt6ipb
http://murphylab.web.cmu.edu/data/2009_ISBI_Nuclei.html
https://edmond.mpdl.mpg.de/imeji/collection/l45s16atmi6Aa4sI
https://www.ebi.ac.uk/biostudies/files/S-BSST265/dataset.zip
https://warwick.ac.uk/services/its/intranet/projects/webdev/sandbox/juliemoreton/research-copy/tia/data/pannuke
https://warwick.ac.uk/services/its/intranet/projects/webdev/sandbox/juliemoreton/research-copy/tia/data/pannuke
https://app.box.com/s/yd4pbndk2bxtnourzpbvopga8dczsnes/folder/99392899243
https://app.box.com/s/yd4pbndk2bxtnourzpbvopga8dczsnes/folder/99392899243
https://bbbc.broadinstitute.org/image_sets
https://bbbc.broadinstitute.org/BBBC039
https://bbbc.broadinstitute.org/BBBC007
https://bbbc.broadinstitute.org/BBBC006
https://bbbc.broadinstitute.org/BBBC018
https://bbbc.broadinstitute.org/BBBC020
https://bbbc.broadinstitute.org/BBBC050
https://www.epfl.ch/labs/cvlab/data/data-em/
http://opensegspim.weebly.com/download.html
http://dx.doi.org/10.6084/m9.figshare.c.3447537.v1
https://omero.bio.fsu.edu/webclient/?show=project-3451
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Table 2-4 –Programs for annotating 2D and 3D images.  

Software Task Semi-

automatic 

2D 3D 3D 

viewer 

Pixel or vector 

annotations? 

Ref. 

Qualitative 

Annotations  

Classification  ✔ ✔  Not applicable [105] 

3D Slicer Detection and 

Segmentation 

✔(plugin) ✔ ✔ ✔ Vector [12] 

ITK-SNAP Segmentation   ✔ ✔  [84] 

3D-Bat Detection   ✔ ✔ Vector [106] 

VGG Image 

Annotator 

Detection and 

Segmentation 

 ✔   Vector [107] 

LabelImg Segmentation  ✔   Vector [108] 

QuPath Detection and 

Segmentation 

✔(plugin) ✔   Pixel [109] 

Labtik (Fiji) Segmentation  ✔ ✔  Pixel [17] 

ilastik Segmentation ✔ ✔ ✔  Pixel [7] 

Weka Segmentation ✔ ✔ ✔  Pixel [8] 

Paintera Segmentation ✔ ✔ ✔ ✔ Pixel and Vector [110] 

napari Segmentation ✔(plugin) ✔ ✔ ✔ Pixel [6] 

 

Deep learning methods for nuclear image analysis.    Once annotated and shared, 

dataset can then be used to train a deep learning method. This paragraph represents the 

core of the work presented in [40] which gathers 151 published deep learning methods 

for denoising, classification, detection, and segmentation of nuclear images (Figure 

2-10). These publications, selected between 2014 and 2021, have been sorted 

following the criteria displayed in Figure 2-9-A and stored in a large XLSX file (Figure 

2-11).  
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Figure 2-10 – Examples of tasks typically solved by deep learning method for 

nuclear image analysis. From left to right: a nucleus is classified in 2 categories; red 

crosses mark the detected centroids of nuclei; bounding boxes surrounds the 

perimeters of each nucleus; the image is segmented, nuclei in black and background 

in white; each nucleus is individually segmented with a different colour; an image is 

denoised.  

 

Figure 2-11 – Extract from the XLSX table of [40] sorting relevant deep learning 

methods for nuclear image analysis. Table downloaded from: 

http://www.biologists.com/JCS_Movies/JCS258986/TableS1.xlsx.  

Enhanced visualization of nuclei, appealing to both human interpretation and deep 

learning methods, can significantly facilitate image analysis. Deep learning-based 

denoising have been investigated to improve image quality. Five methods providing 

the underlying code have been identified: Noise2Void [78], VoidSeg [111], DenoiSeg 

[77], DecoNoising [112], and 3D-RCAN [113]. All of these methods employ a U-Net 

model [58] trained with artificially noised images, to reproduce the original image. 

The first three solutions are based on the CSBDeep toolbox [76] and have 

demonstrated their efficiency with 2D nucleus images. Notably, the DenoiSeg method 

http://www.biologists.com/JCS_Movies/JCS258986/TableS1.xlsx
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combines denoising and segmentation in the same model, resulting in substantial 

improvements in 2D nuclear segmentation compared to other methods, such as 

StarDist [68]. Furthermore, 3D-RCAN is also suitable for denoising 3D images. 

Programmers may find interest in exploring these methods, while non-programmers 

can leverage user-friendly denoising models integrated into ZeroCostDL4Mic, 

provided they have access to a suitable dataset of denoised raw images. 

 Image classification involves categorizing each image into different classes. Most 

nuclear image analysis studies predominantly concentrate on 2D histopathology 

images derived from human tissues, typically stained with Haematoxylin and Eosin. 

Regrettably, out of the 24 methods reviewed, only one study [114] provides both code 

and datasets. To the best of our knowledge, no prior research has been published 

regarding the image classification of 3D nuclear images. The only solution is to 

program using a deep learning framework and eventually rely on Google Colab 

computers to get a free access to a sufficient computer power. Most tools for generic 

image classification, such as Google AutoML Vision, Roboflow, H2O or KNIME, are 

unfortunately limited to 2D images and are not free and open source.  

 Object detection consists in either locating the centroid of each object or the 

coordinates of a box surrounding it. Among the 31 methods found for object detection, 

only 5 provide a code and a trained model (StarDist [68], SP-CNN [115], KiNet [116], 

NucleusDetection [117], and QCANet [118]) and only 2 can handle 3D images 

(QCANet and StarDist). Removing the trained model availability constraint allows to 

include nnDetection [89] in this review which automatically handles the configuration 

of the complex set of hyper-parameters such as in nnU-Net [86] (see Section 2.3.1). 

Underlying all these methods is the generation of a distant map, a grey-scale image 

where each nucleus is coloured with a gradient of black to white, black being the edges, 

and white, the centroid of the nucleus. The deep learning model is generally a 2D or 

3D U-Net model, a standard model for image segmentation. With this approach, object 

detection is thus a subset of image segmentation. Detection-specific methods, such as 

YOLO [119] or Faster R-CNN [120], have been used in the aforementioned 31 

publications but none have provided a code. Nevertheless, a solution for 2D images is 

to use ZeroCostDL4Mic [70] which includes the YOLO approach, among many other 

methods, in an online and user-friendly interface powered by Google Colab. Users 

have yet to provide an annotated dataset and 3D image analysts are limited to use 

semantic segmentation tools presented later in this paragraph. 
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 Image segmentation is traditionally separated in two categories: semantic 

segmentation, which consists in classifying each picture element in one class of object, 

or instance segmentation, which consists in additionally discriminating each object in 

a certain category into individual instance (Figure 2-10). For 101 compiled 

publications about nucleus segmentation, 35 provide a code and only 10 of those 

handle 3D images. As image segmentation has become the main topic of interest of 

this thesis, more details on this task will be provided. During the course of this 

literature review project, six main difficulties linked with nuclei segmentation, image 

analysis and deep learning has emerged: 

• Nuclei-related difficulties, linked to the variability in cell shape, size and 

texture in different tissues. 

• Noise-related difficulties, including background complexity, poor signal-to-

noise ratio, uneven colour distribution, heterogeneous capture conditions or 

sample preparation. 

• Image modality-related difficulties, associated with the diversity of available 

devices and their configurations (2D or 3D, confocal or electron microscope, 

etc.). 

• Manual annotation-related difficulties, mostly due to the annotator 

subjective biases or the inter-observer variability when several human 

annotators are involved. 

• Method-related difficulties, involving the lack of robustness of classical 

computer vision techniques, the configuration and training of deep learning 

methods which can also imply expensive computational costs (especially for 

3D applications), or the explainability of deep learning models. 

• Use-related difficulties, including deep learning tool installation and 

friendliness for non-programmer users. 
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Figure 2-12 – U-Net model variants. (A) Original U-Net model from [58] with a 

noticeable the encoder-decoder architecture. (B) U-Net++ model from [121] with a 

dense version of the U-Net model and the encoder is here named backbone. (C) 

HRNet model from [122], another dense variant of the U-Net model, has reached the 

state-of-the-art for 2D semantic segmentation in 2022. (D) Swin UNETR model from 

[123] including a Swin-Transformer backbone [64] for 3D segmentation which 

reached the state-of-the-art for medical image segmentation in 2022.  

From the two types of image segmentation task cited above, the least difficult one 

is semantic segmentation. Even if easier than instance segmentation, semantic 

segmentation is an active field of development as many applications still requires 

improvements, such as filament segmentation, tumour segmentation or even nuclei 

segmentation. Semantic segmentation methods are mainly based on the U-Net model 

[58] also known as Feature Pyramid Network [124]. This model has two main parts, 

an encoder (the descending U-branch) and the decoder (the ascending U-branch) 
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(Figure 2-12-A). The encoder successively encodes the input image input a series of 

feature maps with progressively lower dimensions. As shown on Figure 2-5, high 

dimension feature maps contain information about simple shapes such as edges while 

low resolution feature maps condense complex information such as the shape of a cell 

nucleus. To improve the performance of the U-Net model the encoder is often replaced 

by one of the backbone models mentioned in Section 2.2.1 such as the EfficientNet 

[62]. Other improvements of the U-Net model involve adding a dense network of 

convolutions between the encoder and the decoder such as in the U-Net++ model [121] 

(Figure 2-12-B) or the HRNet model [122] (Figure 2-12-C), or using Transformer 

operations (Figure 2-12-D). The decoder of the U-Net model composes the final 

segmentation mask from the information extracted by the feature maps of the encoder. 

The U-Net model has been adapted for 3D images [125] and integrated into 

ZeroCostDL4Mic. 

Due to its dual task (classification of picture elements in both class and instance), 

instance segmentation is more challenging than semantic segmentation. Moreover, 

instance segmentation is often related to nucleus segmentation as it allows for the 

discrimination of objects within clusters. In the literature review conducted during this 

project, four categories of instance segmentation approaches have been identified: 

• The centre-border approaches rely on a ruse to transform the instance 

segmentation task into a semantic segmentation task by asking the model to 

segment the ‘centre’ and the ‘border’ of each instance of object which leaves 

enough spaces between objects to be classified with a classical connected 

component algorithm. These approaches won the 2018 Data Science Bowl 

challenge for 2D nucleus segmentation [126] with an ensemble of 32 U-Net 

models. Mesmer approach in DeepCell [127] also relies on centre-border 

segmentation and additionally integrates cell segmentation. 

• The distance map approaches involve predicting a distance map, akin to 

those previously introduced with object detection, to concurrently find the 

centroid of each nucleus and their segmentation. For this type of approach, 

deep learning methods differ from one another by the way the distance map is 

computed. StarDist [68] traces a star-convex polyhedron in the centre of each 

nucleus, Cellpose [72], [73] uses a heat diffusion simulation that starts from 

the centre and iteratively spreads towards the borders and NISNet3D [128] 
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directly predicts the gradients along the three dimensions of the image. The 

three methods handle 3D images though Cellpose works with a slice-by-slice 

approach along each of the three axes (approach often called ‘2.5D’).  

• The bounding box approaches combine a detection method with bounding 

boxes and a semantic segmentation method, among which, probably the most 

famous one, is Mask R-CNN [129]. Mask R-CNN is a general approach for 

simultaneous 2D object detection and segmentation which have been 

successfully applied to 2D nucleus segmentation (see Matterport 

implementation: https://github.com/matterport/Mask_RCNN). A series of 

small convolution modules, inspired by the Faster R-CNN method, specially 

adapts a classification backbone to predict coordinates of object bounding 

boxes and, for each box, a segmentation mask is computed using another set of 

modules. At the time of writing, no 3D version of Mask R-CNN appeared to 

be freely available. A 2D nucleus-specific bounding box approach named 

NuSeT [130] is publicly available and includes a graphical user interface.  

• The centroid approaches are very similar to the bounding box approaches yet 

replacing the bounding box detection by a centroid detection. QCANet 

approach [118] involves two different models to compute separately the 

centroid and the segmentation mask of each nucleus. Each centroid seeds then 

a standard connected component algorithm such as the watershed algorithm to 

find instances in the segmentation masks.  

Probably the best way to start experimenting with the previous segmentation 

methods, is to use online tools such as Cellpose (https://www.cellpose.org/), DeepCell 

(https://www.deepcell.org/), NucleAIzer (https://www.nucleaizer.org/), or the recent 

Segment Anything (https://segment-anything.com/). However, these tools are limited 

to 2D images. When working with 3D images, one recommendation could be to use 

the offline version of Cellpose. Even though, DeepCell and QCANet also provide such 

offline tools, it will be seen in Section 2.2.4 that those are difficult to reuse. If the 

images to predict are not like the training ones, the pre-trained models of these methods 

might need some retraining (as shown in Figure 2-7). In this case, a suggestion is to 

use StarDist in case of round and clustered nuclei or to use ZeroCostDL4Mic for any 

other cases. An alternative solution called Biom3d is presented in Chapter 3 and 

represents the main contribution of this thesis.  

https://github.com/​matterport/​Mask_RCNN
https://www.cellpose.org/
https://www.deepcell.org/
https://www.nucleaizer.org/
https://segment-anything.com/
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2.2.4 Benchmarking methods for 3D nucleus segmentation  

To push the review further, a comparative study of six of the previous methods for 

3D nucleus segmentation was conducted. This work was supported by the help of two 

interns, Pedro Mezquita and Adama Nana, for the deep learning method 

implementation and testing, and by the help of Sophie Desset, co-supervising this 

thesis, for the dataset annotation. The goal of this benchmarking was to identify deep 

learning methods that solve the limitations of NucleusJ plugin for nucleus and 

chromocenter segmentation. Ideally, these selected methods should be easy enough to 

be used by non-programmers. Given the research-oriented nature of this project, a 

more comprehensive analysis was conducted on one of the selected methods in Section 

2.3.1, to identify its potential drawbacks and serve as a foundational basis for further 

exploration and the development of novel innovations. 

A novel 3D nucleus dataset.    To compare the methods, a dataset of 93 tridimensional 

images of A. thaliana nuclei captured with structured illumination microscopy was 

manually annotated by Sophie, being a microscopist and a specialist in the domain. 

This dataset is a subset of the one published by Tristan Dubos [29] a former PhD 

student in the team in Clermont-Ferrand (dataset accessible here: https://

OMERO.bio.fsu.edu/webclient/?show=project=2801). As plant nuclei do not form 

clusters, each nucleus can be isolated with the autocrop functionality of NucleusJ and 

stored in individual images. The annotations were made with napari software [6]. The 

choice of this software was motivated by its integrated 3D viewer. To prevent software-

related bias, it was also chosen not to use semi-automated annotation program. Each 

voxel annotation has thus been carefully manually curated. In the beginning of this 

benchmarking project, the annotations were done by me, a non-expert in nucleus 

image, with the help of ilastik [7], a semi-automated software. As will be illustrated 

further in this Section, these non-expert annotations turned out to be of poor quality 

after being verified by an expert and were thus discarded. 

Methodology.    Six deep learning methods were intended to be benchmarked: 

DeepCell [127], Cellpose [72], QCANet [118], StarDist [68], NuSeT [130] and nnU-

Net [86]. Unfortunately, opposed to what was suggested in its associated article, 

NuSeT did not support 3D images. Among the other methods three provided a trained 

model for nucleus detection (DeepCell, Cellpose, QCANet) and the two others (nnU-

Net and StarDist) a script to train a model on a novel dataset. The three methods 

https://omero.bio.fsu.edu/​webclient/​?show=project=2801
https://omero.bio.fsu.edu/​webclient/​?show=project=2801
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providing a model did not provide a script to retrain their model on 3D images. To get 

a fair comparison, all methods were evaluated on the same set of 28 images extracted 

from the 93 images. The trainable methods were trained on the remaining 65 images 

of the dataset. During training, the choice of the training methodology, including the 

choice of the validation set, was determined by the default configuration of each 

implementation. The evaluation metrics were the Dice score and the Hausdorff 

distance (Figure 2-13). The Dice score can be defined with the following formula: 

𝐷𝑖𝑐𝑒(𝑦, 𝑦̂) =
2|𝑦 ∩ 𝑦̂|

|𝑦| + |𝑦̂|
=

2 ∑ (𝑦𝑖 ⋅ 𝑦̂𝑖)𝑖

∑ 𝑦𝑖𝑖 + ∑ 𝑦̂𝑖𝑖
 

where 𝑦 is the segmentation ground truth and 𝑦̂ the segmentation predicted by the 

model. The Dice score can easily be implemented in Python leveraging the Numpy 

library.  

 

 

Figure 2-13 – Metrics for biomedical segmentation. (A) The Dice score is twice the 

volume of the intersection (black) between the two volumes of the ground truth (blue) 

and the prediction (orange) divided by the sum of the two volumes. (B) The 

Hausdorff distance is the maximum between two directed distances between two 

surfaces, one for the ground truth (blue) and one for the prediction (orange). A directed 

distance between two surfaces is the maximum of all the minimum distances obtained 

when spanning across one of the surfaces. Illustration adapted from https://

commons.wikimedia.org/wiki/File:Hausdorff_distance_sample.svg  

 

https://commons.wikimedia.org/wiki/File:Hausdorff_distance_sample.svg
https://commons.wikimedia.org/wiki/File:Hausdorff_distance_sample.svg
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The Hausdorff distance can be defined by the following equation: 

𝐻𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓(𝑦, 𝑦̂) = max (ℎ(𝑦, 𝑦̂), ℎ(𝑦̂, 𝑦)) 

where ℎ: (𝑦, 𝑦̂) ⟼ max
𝑝𝑦∈𝑦

min
𝑝𝑦̂∈𝑦̂

‖𝑝𝑦 − 𝑝𝑦̂‖ is the directed Hausdorff distance and ‖⋅‖ is 

the Euclidean norm. The implementation used for this study is integrated in the 

MONAI library based on the Scipy library [131]. These two metrics have been chosen 

for their complementarity and their popularity in the biomedical field but some 

limitations recently highlighted by a large consortium of scientists [132] might change 

this trend.  

Results.    The results of this benchmarking (Figure 2-14) showed that the method 

called nnU-Net clearly overpasses its counterparts. Surprisingly, the classical methods 

implemented in NucleusJ came second. It could be argued that the trained deep 

learning models were not ideally adapted to this specific nucleus dataset, such as 

DeepCell which distinctly predicted the 3D image layer-by-layer instead of 

considering all three dimensions, or QCANet which omitted to the segment the 

nucleolus region. Despite this constraint, Cellpose was able to achieve relatively high 

accuracy by using the model called "cyto2" instead of "nucleus" and by removing some 

prediction noise due to artifacts in DAPI staining. As no retraining script for 3D images 

was available, this candidate could not be retrained. StarDist method did not have a 

pretrained model but had a well-made tutorial on how to train a new one. However, 

StarDist includes a strong prior knowledge about the objects of interests: they must be 

star-convex polyhedron which means that each object must have a centre where every 

other point in the object is accessible by tracing a straight line starting from this centre. 

This method is well suited to round nuclei grouped in clusters as in animal cell cultures, 

but not to plant nuclei, which often have curved, elongated shapes. This benchmarking 

was finally completed with an inference time comparison motivated by the strong 

differences noted during evaluations. This was done only for the four best methods 

(QCANet, Cellpose, StarDist, nnU-Net), on the same computer with a Nvidia 2080Ti 

GPU, using the 28 test images and then averaged to obtain an approximate of the 

inference time per image. Large gaps between inference time were thus pointed out 

with, for example, an extreme time ratio of 1800 between the worst candidate 

(QCANet) and the best one (nnU-Net).  
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Figure 2-14 – Benchmarking results on 3D nucleus dataset. Scores are computed 

over a test set of 28 images annotated by an expert. Five deep learning methods (nnU-

Net, Cellpose, QCANet, StarDist, DeepCell) are compared to two non-deep learning 

methods (Otsu and Graham) and to one other manual annotation conducted by a non-

expert. (A) Box plot of the Dice scores. (B) Box plot of the Hausdorff distance. (C) 

Mean values of the Dice score and the Hausdorff distance and the inference time per 

image in seconds. (D) Views of the segmentation results for one nucleus both in 2D 

(upper row) and in 3D (middle row). For each result, the corresponding Dice score, 

Hausdorff distance and volume is displayed on the lower row. 

Containerization.    To foster reusability of this work, each method has been packaged 

into a Docker container by the two interns (code available here: https://github.com/

GuillaumeMougeot/nuclei_benchmark). The Docker container contains the operating 

systems with all drivers and applications specific to each method. A Docker “recipe” 

was written in a single file called a Dockerfile. This recipe can be used to install and 

configure all required dependencies and files required for installing the methods, 

including for instance, the installation of the Python libraries or the downloading of 

the deep learning model. This Docker methodology (Figure 2-15) allows each method 

to be isolated on a single computer and thus avoids any conflict, which could be due, 

for example, to two conflicting Python libraries trying simultaneously to access to the 

same GPU resources. Another advantage of containerization is to standardize user 

access to each method. For all methods, the user can now install it by simply running 

https://github.com/GuillaumeMougeot/nuclei_benchmark
https://github.com/GuillaumeMougeot/nuclei_benchmark
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build.sh shell script and, if possible, one can then run run_predict.sh script on a new 

dataset of raw images to get some predictions. If the model needs training, the script 

run_training.sh can train it on an annotated dataset. Containerizing deep learning 

methods is not yet the norm in the field (only DeepCell provided a Dockerfile) but it 

could evolve in the future driven by initiatives such as BIAFLOWS [133] or IFB-

Biosphère [134]. 

 

Figure 2-15 – Containerizing and interfacing the deep learning methods. Each 

method can be installed on any computer having Docker via a single script build.sh, 

which relies on a installation “recipe” stored in a Dockerfile, and then reused with 

run_predict.sh on a new dataset. Methods that must be trained have an additional 

run_training.sh script to start training a model on a new dataset. The specificities of 

each method are thus transparent for the user and packaged inside the Docker image.  

Conclusion.    nnU-Net method stood out during this benchmarking. Not only because 

of its accuracy and speed but also for its versatility. While limited to semantic 

segmentation, Section 2.3.1 will demonstrate that nnU-Net can be applied to a large 

panel of biological and medical segmentation problems, achieving high accuracy by 

automating the configuration of all hyper-parameters. This crucial property will 

significantly influence the direction of this thesis. A successful research project can 

probably be determined by a good balance between specificity and generality. A 

project that is too specific risks being limited to a particular group of individuals, 

location, or time, potentially rendering it less impactful over time. On the other hand, 

a project that is overly generic might not resonate with any specific audience. In both 

cases, the project may fade into oblivion. While the plant nucleus problem might be, 
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to some extent, too specific for deep learning applications, an accessible and adaptive 

tool for segmenting 3D microscopy images leveraging this breakthrough technology 

is still lacking. A quick observation in biology laboratories reveals a significant number 

of image analysis challenges that are still manually addressed but could be rapidly 

solved with deep learning. Inspired by the adaptability of nnU-Net, the design of the 

segmentation tool presented in Chapter 3 will thus attempt to fulfil the expectations of 

plant biologists but also to generalize on a broader spectrum of applications. This novel 

tool will go beyond the original development ideas of nnU-Net by incorporating a new 

fundamental aspect: modularity.  

2.3 Improving deep learning methods 

nnU-Net belongs to a class of methods called Automated Machine Learning, 

abbreviated in AutoML. This class of methods attempts to tackle the first difficulty 

arising when training machine learning methods: configuring of the model and training 

hyper-parameters, parameters that must be set manually and significantly impact the 

performance of the model. However, determining the optimal values for hyper-

parameters is often a challenging and time-consuming task, relying on empirical 

approaches based on developer experience. AutoML thus seeks to automate this 

process and will be the focus of the first Subsection below. The second difficulty with 

training of deep learning methods is its dependence on large, annotated dataset, often 

expensive to produce, especially for biological and medical imaging. As a result, the 

second Subsection will discuss an array of research efforts aimed at addressing this 

challenge by reducing the number of required manual annotations.  

2.3.1 AutoML and nnU-Net 

AutoML.    Various approaches exist to deal with the configuration of training and 

model hyper-parameters. Regarding the optimization of training hyper-parameters, the 

first and probably the most intuitive one is called grid search. For each training hyper-

parameters, such as the learning rate or the batch size, a range of plausible values is 

defined by the developer. Each combination of hyper-parameter values will then serve 

to train a different model. The best model will thus determine the best set of training 

hyper-parameters. This approach very early demonstrated its performance for deep 

learning methods [135] but due to its high-computational cost has progressively been 

replaced by more efficient methods such as random search [136]. However, grid and 
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random search still suffer from being too uniformed methods of exploration, 

completely omitting to exploit good candidates. Methods such as Sequential Model-

Based Global Optimization [137], formalization of Bayesian optimization, aim thus at 

defining the deep learning model and the loss function as a probability distribution, 

called a surrogate model. Common choices of surrogate model can be Gaussian 

Processes, Random Forests or Tree Parzen Estimators. Based on an history of several 

pairs of loss values and training hyper-parameters, the surrogate model estimates the 

loss evolution when varying the hyper-parameters. A selection function, such as the 

Expected Improvement, can then be used to choose a novel set of hyper-parameters 

and the whole process can restart until reaching a satisfying loss. Genetic Algorithms 

[138] are another set of methods improving random search by viewing the set of hyper-

parameters as a set of genes. The loss value obtained from training a deep learning 

model using a certain set of genes represents the ability of the set of genes to “survive”. 

Only the sets of genes with the highest score survive. After several iterations, 

crossovers and mutations are performed among the set of genes to obtain new sets of 

genes and the process is reiterated.  

Model hyper-parameter configuration includes the selection of the model itself and 

the design of its inner architecture, such as choosing the number and size of each layer. 

Bayesian Processes and Genetic Algorithms have been used as well to configure model 

hyper-parameters, both being thus part of an expanding domain called Neural 

Architecture Search. The original ideas of Neural Architecture Search [139], [140] was 

to exploit Reinforcement Learning to automatically design the set of interacting 

operation within a deep learning model. Attempts have been made to apply it to 3D 

medical imaging [141], but still fall short behind manually design models. A reason 

that could explain that automatically designed models for image segmentation are still 

overpassed by human-made ones is that carefully designed, and extremely large 

models can extract a consequential number of features in images, which means that a 

significant gain in performance could be achieved by simply focusing on selecting 

appropriate features and cutting down inappropriate ones instead of developing task-

specific models.  

nnU-Net.    nnU-Net [86] is a trade-off between AutoML and manual methods. It was 

originally created to win several online competitions of medical segmentation, such as 

the Medical Segmentation Decathlon [142], without the need to manually reconfigure 
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the hyper-parameters to win a new challenge. As some of the hyper-parameters are 

indeed set automatically, nnU-Net could be considered as an AutoML methods. 

However, the heuristics defining them are deterministic, meaning that the set of hyper-

parameters is fully determined by the characteristics of the dataset without any 

exploration of hyper-parameter space by algorithms such as random search. These 

heuristics were created empirically based on the intuition of their developers and on a 

tremendous repetitions of experiments done over many biological and medical 

datasets. The input of the heuristics is called the data-fingerprint, a configuration file 

obtained by scanning the entire training dataset and extracting relevant information in 

the images such as their median shape, their median sampling, or the distribution of 

their voxel intensity (Figure 2-16). This information is then used for: 

• Data pre-processing, which includes image intensity normalization, and 

image and annotation resampling. Resampling is usually required when the 

spatial samplings of the two images in the dataset are dissimilar (see Section 

1.2.3 for more details about image spatial sampling), which often happens in 

medical dataset and can also occur in biological datasets if, for example, the 

microscopist decides to change the sampling size along z-axis while capturing 

a set of 3D images.  

• Data loading, which includes the batch size and the patch size. Due to 

computer memory limitations, patching (cropping) is a mandatory step when 

dealing with 3D images and deep learning methods. Indeed, when training a 

deep learning model, it is required to temporally store every intermediate 

output (feature map) to compute the gradients for backpropagation and model 

parameters update. The size of each feature map is determined by the input 

patch size. An appropriate patch size is also determinant for the final 

performance of the model. nnU-Net patch size strategy considers the GPUs 

memory limits, the image anisotropy, and the network topology. The final patch 

size will thus tend to be as big as the GPU memory allows it, to have a similar 

anisotropy as the median image size and to have dimensions that can be divided 

by a power of two.  

• Network topology (model architecture), which includes the dimension of each 

pooling layers and of the kernel of each convolution layers. Both are mainly 

determined by the greatest power of two dividing the patch size. As pooling 
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layers successively reduce feature maps by a factor of two, reducing them too 

much along anisotropic dimensions might lead to non-integer dimensions. 

nnU-Net model is thus a standard U-Net model but with flexible pooling sizes 

which follows patch size anisotropy. The size of convolution kernels follows 

the same rule.  

• Cascade trigger, which includes the creation of two U-Net models instead of 

one. Cascade models are used only for extremely large images. With such 

images, the maximum patch size allowed by computer memory might be too 

small for the deep learning model to get a global understanding of the data. 

nnU-Net follows here a coarse-to-fine approach: the first of these U-Net model 

will work with a downscaled version of the images, performing a pre-

segmentation which will then be input to the following U-Net alongside full-

size images.  

 

Figure 2-16 – nnU-Net automated method for hyper-parameter configuration. A 

data-fingerprint is extracted by scanning the dataset. It serves to determine the values 

of rule-based parameters (inferred parameters) such as the patch size of the network 

topology. Other hyper-parameters are fixed (blueprint parameters) such as the data-

augmentation or the optimizer configuration. After training completion, trained models 

are selected with an ensemble selection process (empirical parameters). Illustration 

adapted from [86].  

 These rule-base parameters are completed by a large set of fixed hyper-parameters 

also determined by the extensive experiments. This set includes: 

• The rest of the model hyper-parameters such as the depth of each convolution 

kernel which follows the original U-Net publication [58]. 

• The optimizer hyper-parameters, imposed to be Stochastic Gradient Descent 

with a learning rate reducing during training with a polynomial decay.  



61 

 

• The rest of data-loading hyper-parameters, with data-augmentation and 

foreground forcing. Foreground forcing imposes one third of each image patch 

to include a foreground region (on the object of interest) in its centre.  

• The training procedure, with the number of epochs and the frequency of 

validation.  

• The loss function, imposed to be the sum of the Dice score and the cross-

entropy between the ground truth and the prediction. 

• The inference procedure, with test-time augmentation, inference patching 

strategy, and ensemble prediction. During inference, each image is patched 

following a grid sampling strategy: predictions are successively computed for 

patches starting from the top-front-left corner then sliding toward the bottom-

back-right corner. For information redundancy, each inference patch overlaps 

half the dimensions of the previous one and, for each patch, a 3D Gaussian 

mask is used to filter prediction inaccuracy on patch edges. The ensemble 

prediction is based on the cross-validation strategy: five different U-Net 

models are trained on five non-overlapping subsets of the training set and each 

model then computes a prediction. The five resulting predictions are averaged 

to obtain the final output.  

This list is an incomplete overview of the entire nnU-Net configuration process (see 

their code on GitHub for more details: https://github.com/MIC-

DKFZ/nnUNet/tree/master).  

 To cite a recent post from nnU-Net author (GitHub website, March 2023, https://

github.com/MIC-DKFZ/nnUNet/discussions/1189), this method was originally 

created to prove a point: It really took a while to notice that […] maybe, maybe, a 

significant proportion of the research out there [MICCAI] suggested something that 

was just not there. […] So, I started trying to prove a point by overengineering the U-

net to the max. […] It is quite interesting that even to date [March 2023], and to the 

best of my knowledge, there is no segmentation method that really, convincingly 

outperforms nnU-Net in the medical domain. In his discussion, Fabian Isensee, made 

three assumptions for why this is the case: 

• Things other than the network architecture matter more in medical imaging 

such as the patch size. 

https://github.com/MIC-DKFZ/nnUNet/tree/master
https://github.com/MIC-DKFZ/nnUNet/tree/master
https://github.com/MIC-DKFZ/nnUNet/discussions/1189#discussioncomment-4019569
https://github.com/MIC-DKFZ/nnUNet/discussions/1189#discussioncomment-4019569
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• Segmentation problems in the medical domain are different [than natural 

image problems]. Medical images are obtained in a much more controlled 

environment, meaning that often deep learning models reach the upper limit 

accuracy which is the inter-rater variability. 

• Small dataset sizes are disadvantageous for complex architectures meaning 

that spending time collecting more data will increase model performance 

significantly more than defining novel model architectures. 

Should it be concluded that any improvements are hopeless? Not quite. Independently 

from nnU-Net author, these thoughts have been concluded in the beginning of this 

thesis and reinforced by the previous work on the review. Two important conclusions 

have been drawn: 

• Incorporating the high performances of nnU-Net heuristics within an extremely 

flexible framework could, first, rapidly give a good baseline method for any 

new datasets and, second, be quickly reshaped to fit the dataset specificities. 

This is the main guideline of Chapter 3 developments. 

• As data-annotation remains the bottleneck of deep learning model training, 

methods that address the reduction of the amount of work involved in data 

annotation should be the focus of attention. This will be the subject of the 

following Subsection and the main contribution of Chapter 4. 

2.3.2 Reducing the number of manual annotations  

Annotating biological or medical images with expert eyes is a costly process. 

Computer scientists have thus created entire field of research aiming at reducing the 

need for manual annotations. In this Subsection, a brief overview of different 

categories of methods that can help achieve this goal will be provided. Some of these 

methods, such as self-supervised methods, have originally been designed to enhance 

the performance of deep learning models with a given amount of data, have the 

potential to perform as well as classical supervised deep learning methods with less 

data, making them valuable in this context. Probably against certain schools of 

thought, this extensive research field will be divided here into four categories: 

synthetic data generation, weak supervision, active learning, and transfer learning. 

Each category will also be exemplified with relevant literature examples related to the 

biological focus of this work: nucleus image analysis. 
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Synthetic data generation involves artificially creating new instances to augment the 

training set. There are two main approaches: data-augmentation and generative 

methods. Data augmentation applies small transformations to the input image and 

annotation, such as spatial, colour, or noise variations, to provide the model with 

different perspectives without altering the nature of the objects. Data-augmentation is 

almost a mandatory step in any deep learning methods. While data augmentation 

frameworks like Albumentations (https://github.com/albumentations-team/

albumentations) [143] have been well-established for 2D images, their adaptation for 

3D images is a relatively recent development with frameworks such as batchgenerator 

(https://github.com/MIC-DKFZ/batchgenerators) [144], rising (https://

rising.readthedocs.io/en/stable/), pymia (https://pymia.readthedocs.io/en/latest/) [145] 

or TorchIO (https://torchio.readthedocs.io/index.html) [146]. Generative methods aim 

to augment small datasets by generating artificial images and corresponding 

annotations. A first example for 3D nucleus segmentation is CytoPacq [100] a non-

deep learning and online easy-to-use software. Generative Adversarial Networks 

(GANs) [147] are deep learning methods designed to generate realistic images from 

limited data [148]. They have successfully been applied to 3D nucleus image 

generation with both their original version [149]–[151] and a derivatives such as 

CycleGAN [152].  

Weak supervision tackles the challenge by training a network using noisy or partial 

annotations. Instead of requiring detailed annotations for each instance, the annotator 

may only provide minimal or incomplete annotations. For instance, instead of fully 

delineating the boundaries of objects, the annotator may only mark a small spot in the 

centre of each object to be segmented [101], [153], [154]. These methods use the last 

feature maps of the model to retrieve what it “looks at” in an image when classifying 

it. Weak supervision may also rely on partially annotated data, such as in [155] where 

only bounding boxes of nuclei and limited manual segmentation are annotated in each 

training image. 

Active learning (or human-in-the-loop) involves initiating the training process of an 

artificial neural network with only a limited number of annotations, while iteratively 

requesting the human annotator to provide annotations for selected images. These 

images are strategically chosen to maximize their relevance and information content 

for effective training. For example, images may get selected from rarely occurring 

https://github.com/albumentations-team/​albumentations
https://github.com/albumentations-team/​albumentations
https://github.com/​MIC-DKFZ/​batchgenerators
https://rising.readthedocs.io/​en/​stable/
https://rising.readthedocs.io/​en/​stable/
https://pymia.readthedocs.io/​en/​latest/
https://torchio.readthedocs.io/​index.html
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classes or from the edge of different classes.  Active learning have been applied to 

medical image analysis [156] while for nucleus results can be found on classification 

[157] and on whole slide image segmentation [158]. DeepCell [127] and Cellpose [73] 

developers have both released an active learning tool they used to quickly annotate 

large datasets of cells and nuclei for 2D image segmentation. However, no results have 

been found for 3D bioimages. In the future, recent developments in fundamental 

research, such as Segment Anything [101], could yet greatly benefit the domain if 

adapted to 3D.  

Transfer learning gives the model a general knowledge before being specialized. 

Generally, a base model, called backbone, is pretrained with a large annotated generic 

dataset such as ImageNet [42] and is then specialised by replacing or adding trainable 

layers [99], [159] and by being retrained on the specific task. Self-supervised learning, 

a similar two-step process, can be consider a sub-category of transfer learning. It is a 

novel solution involving pretraining the model on a vast collection of unannotated 

images using a pretext task. The pretext task is an artificial task, such as predicting 

image rotations or solving a jigsaw puzzle, that helps the network acquire general 

knowledge about the underlying objects, such as edge detection, shape understanding, 

and composition.  The pretrained model is then fine-tuned on the desired downstream 

task, such as segmentation, leveraging the acquired prior knowledge to reduce the 

reliance on extensive annotations. Self-supervised learning methods have been 

successfully applied to nucleus segmentation in 2D [77], [160]. Recent developments 

have demonstrated very promising results in computer vision such as premises of 

unsupervised instance segmentation [161] based on Vision Transformers [63]. These 

last improvements must still find their way to 3D bioimaging. Furthermore, it is worth 

noting that the term semi-supervised learning is deliberately excluded here, as it 

encompasses a simultaneous approach where both the pretext task and the downstream 

task are performed concurrently. Consequently, in the frame of this thesis semi-

supervised learning is considered a subset of self-supervised learning. 

2.4 Conclusion 

Deep learning methods have revolutionized image analysis by achieving 

unprecedented levels of accuracy and automating feature selection. These methods 

now only require human intervention in dataset creation and model design. This shift 

in focus has also been extended to the code-sharing process. If a method publication 



65 

 

and its code are the DNA of deep learning, then the datasets, trained model, 

documentation, and development environment are the epigenetic signals required for 

its proper functioning. Without these additional components, the solution becomes 

impractical to reuse. 

Bridging the gap between biologists and computer scientists can be accomplished in 

several ways. Biologists can contribute by sharing their datasets publicly, providing 

valuable resources for deep learning engineers. On the other hand, computer scientists 

can enhance collaboration by sharing their methods, complete with all necessary 

materials and ideally with user-friendly interfaces. Ultimately, probably the most 

effective way to bridge this gap is through interdisciplinary work combining expertise. 

Encouraging good practices in specialized method development and sharing can lead 

to more accessible and adaptable deep learning solutions for biological image analysis. 

Authors’ contributions – cf. Appendices. 
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Chapter 3  

Biom3d, an easy-to-use and modular 

framework for 3D segmentation methods 

Well-designed components are easy to replace.  

Eventually, they will be replaced by ones that are not so easy to replace. 

-“Sustrik's Law”- 

Chapter plan – First, nnU-Net limitations (3.1), then code philosophy (3.2) and then 

hierarchical description of the software functionalities (3.3-3.5) 

3.1 Biom3d philosophy  

To counteract the “publish and perish” tendency in the 

field of deep learning [162], a new development 

philosophy will be defined in this Chapter. A novel 

framework following this philosophy, named Biom3d, is 

code sustainability. As deep learning is a fast-moving 

domain, maintaining a sustainable code is a challenging 

aim requiring a highly adaptable code architecture. It 

means that the code must be organized in easily 

replaceable blocks organized along a clear backbone. 

Even though this Chapter focuses on Biom3d, the proposed principles for code 

sustainability presented here might be applicable to a broader scale. Therefore, this 

Section will only consider the general code philosophy behind Biom3d, voluntarily 

and momentarily setting aside the specific image segmentation goal.  

One of the starting points for code sustainability is to broaden the spectrum of 

potential users, notably those addressed by methods such as nnU-Net (Figure 3-2). Not 

only because this can increase the user community, but also because it will involve 

both end-users and developers. This is particularly true for software inherited from 

fundamental research, which attempts to reach applied research. Involving end-users 

will ensure that the software meets the needs of an external community and has 

concrete applications. This gives it both meaning and feedback for improvements. On 

Figure 3-1 – Logo of 

Biom3d. 
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the other hand, involving external developers will attract novel ideas while 

strengthening a community of maintainers.  

 

Figure 3-2 – Schematic representation of nnU-Net limitations. In the abscissa are 

conjointly represented the skills and needs of a deep learning user while in the ordinate 

is represented the estimated time required to use the method. nnU-Net (blue) is 

accessible for only a limited spectrum of users due to: (1) the lack of a graphical user 

interface, (2) its adaptation to Nifti format only and (3) its poor code readability, with 

a lack of developer documentation, and modularity, which weakened code resiliency 

and limit code resuse. The ideal method (red) should thus be accessible to the whole 

sprectrum of users. On the right is represented the internal dependencies of nnU-Net, 

each red node is a Python script of the method, and each connection represents a 

mutual dependency between two scripts. This network, obtained with pydeps package 

(https://github.com/thebjorn/pydeps), is an example of highly coupled code.  

 

For each of these user profiles, the objective was to substantially reduce the time 

required to invest in using a deep learning method, while simultaneously expanding 

the scope of accessible functions. The intention was to prioritize usability to the same 

extent as functionality. The interpretation of software usage varies significantly based 

on the user's profile. Therefore, throughout the development process, the subsequent 

user profiles were established: 

• Non-Programmers typically lack programming experience but possess basic 

IT knowledge. They anticipate a straightforward installation process facilitated 

https://github.com/​thebjorn/​pydeps
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by downloading software from a website and expect an intuitive Graphical 

User Interface. 

• Python Programmers encompass users who possess a foundational 

understanding of Python programming and are familiar with installing and 

employing Python libraries. They expect either a Command Line Interface 

(CLI) or an Application Programming Interface (API) featuring 

straightforward arguments. They anticipate having the capability to fine-tune 

parameter settings more precisely than is feasible through a GUI alone. 

• Deep Learning Programmers possess an advanced understanding of deep 

learning theory and are well-versed in working with libraries like PyTorch or 

TensorFlow. They desire a well-documented, coherent, and modular deep 

learning framework. They may also seek to comprehend the codebase and 

easily undertake tasks such as adding, removing, or modifying sections of code. 

Biom3d development philosophy consists in fulfilling these user expectations while 

providing as many functionalities as possible. Current state-of-the-art methods usually 

target only one of these user profiles: nnU-Net, Cellpose or Stardist target Python 

Programmers, while ZeroCostDL4Mic or DeepImageJ are mainly addressed to Non-

Programmers. In Biom3d, in addition to clear installation and interfaces, the 

development philosophy encompasses two fundamental aspects: code clarity and code 

modularity. 

• Code Clarity: The code should remain comprehensible from its overall 

architecture to its individual lines. To aid new users in understanding the 

codebase, it can be presented in a hierarchical, tree-like structure. This 

approach starts with high-level, general functions and progressively delves into 

more granular details and functionalities, facilitating a gradual and systematic 

comprehension of the code. 

• Code Modularity: Code components should be as self-contained and 

independent as possible (Figure 3-3). In computer science, this concept is also 

known as code cohesion and is opposed to code coupling [163]. This approach 

allows programmers to seamlessly incorporate or remove specific code 

components without causing undue disruptions to the overall system. 

Achieving code modularity often involves a delicate balance. A highly 

interconnected code (with high code coupling but low code cohesion) can be 
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efficient by using shared internal functions across different components. This 

can lead to improved performance and reduced code redundancy. However, 

this level of interconnection can make the codebase more sensitive to changes. 

Alterations to one section of the code might unintentionally impact other areas, 

complicating maintenance, and updates. Even though highly cohesive codes 

tend to be more durable, finding the right balance between modularity and 

interconnectedness can be essential to ensure both code efficiency and 

resilience.  

 

Figure 3-3 – Code modularity. (A) Good code modularity. Code components are 

clearly isolated and have a clearly defined link. (B) Bad code modularity. Code 

components have a low internal cohesion and are strongly intertwined. Illustration 

adapted from https://commons.wikimedia.org/wiki/File:CouplingVsCohesion.svg. 

3.2 Biom3d performances on image segmentation 

Biom3d in its default configuration is designed to segment a large variety of 3D 

objects, in images potentially having multiple channels and simultaneously presenting 

objects from different classes. These volumetric images can originate from CT-scan, 

MRI, confocal microscope, or electron microscope. Biom3d matches and sometimes 

exceeds nnU-Net performance on wide range of applications (Table 3-1). 

Medical applications.    The datasets used to benchmark Biom3d were extracted from 

well-known online challenges, namely the Medical Segmentation Decathlon (MSD) 

                                                   

                                                

https://commons.wikimedia.org/wiki/File:CouplingVsCohesion.svg
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[142] and the Multi-organ Abdominal challenge (often called BTCV challenge) [164]. 

Both include sets of pairs of image and annotation for training and sets of images only 

for testing. All files are in Nifti format. The MSD challenge is a set of ten segmentation 

challenges of various human organs captured with CT-scan and MRI. BTCV challenge 

contains 30 CT-scans of abdomens where 13 organs of various sizes were annotated. 

As commonly done with online challenges, challengers are expected to submit their 

predictions of the test dataset on the online platform. However, the evaluation process 

can take up to two days to be released which may significantly slow down the 

development process of Biom3d. Moreover, the MSD only accepts submission done 

overall of its ten datasets which also requires a long training time. This training time 

is estimated at 10 days for a single model training on all ten datasets with a single GPU 

Nvidia RTX 3090 and may reach 50 days for a proper fivefold cross-validation. With 

the computational resources available for this project, this was soon found to be 

impractical and alternative solutions were found.  

First, all the medical segmentation datasets were split into two equal parts, one half 

to constitute a new training set and another half for the testing set. This way, the testing 

set has now annotations that can be used to rapidly evaluate a new method. It is worth 

noting that the testing set did not serve as a validation set during training but only for 

final evaluation when the training was done.  

Second, for the MSD, which contains ten datasets of different organs capture with 

CT-scan and MRI, only three representative datasets were selected: the Lung dataset 

(Task06 of the MSD), the Pancreas dataset (Task07), and the BrainTumour dataset 

(Task01). Judging by the accuracy of the best state-of-the-art methods, the Lung 

dataset (and the Colon dataset) is one of the hardest single-class tasks from the MSD. 

The Pancreas dataset is a challenging two-class dataset of CT-scans used, for instance, 

to assess self-supervised methods in [165] and it will be reused for the same purpose 

in Chapter 4. The BrainTumour dataset is both a multi-class and multi-channel set of 

MRI which originates from another well-known medical segmentation challenge, the 

BraTS challenge [37].  

On all these datasets, the Dice scores of Biom3d exceed those of nnU-Net (Table 

3-1). The main reason are probably better choices in the data-augmentation pipeline. 

nnU-Net scores were obtained by training it on a single subset (fold) on these datasets 

using its publicly available implementation (https://github.com/MIC-DKFZ/nnUNet). 

https://github.com/MIC-DKFZ/nnUNet
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Figure 3-4 – Samples of Biom3d predictions over medical datasets. By column, 

from left to right: the Lung dataset, the Pancreas dataset, the BrainTumour dataset, the 

BTCV dataset. These views were captured using napari software [6].  

Microscope applications.    Biom3d was also evaluated on the nucleus dataset 

presented in Chapter 2 and reached similar Dice score as nnU-Net (Table 3-1). As the 

team in Oxford involved in the project was interested in electron microscope images 

of nuclei, evaluation of Biom3d was also conducted with this modality. For instance, 

Nadine Field, PhD student in the Oxford’s team, captured 3D electron microscope 

images of A. thaliana roots to extract its nucleus characteristics (Figure 3-5-B). She 

thus annotated a section of a wide image of plant root to pass it to Biom3d. 

Unfortunately, her dataset as well as the only publicly available dataset of 3D electron 

microscope images (Table 2-3) [166] is composed of one image in the training set and 

one image in the testing set. nnU-Net requires at least 5 images in the training set due 

to cross-validation settings (it can be reduced to 2 images by changing the default 

settings but not to 1). Biom3d was thus upgraded with a novel pre-processing step to 

allow single image training: the image and its annotation mask are split in two volumes 

using a plane orthogonal to the largest axis (Figure 3-5-A). The new validation volume 

was arbitrarily chosen to be 20% of the original volume while the new training volume 

contains the remaining 80%.  

An important limiting factor in predicted segmentation is noise (Figure 3-5-B). An 

existing strategy [86] is to detect in the training images, for each class of object, if 

there is a single connected component. If it is the case, then all but the largest connected 

component is kept for this class. This could be limiting in both cases presented in 
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Figure 3-5 because several objects are displayed per class (mitochondria on the top 

row and nuclei on the bottom row). To counteract this limitation, an additional post-

processing strategy has been included in Biom3d removing volumes smaller than a 

threshold defined by the Otsu’s method, originally applied here on volume distribution 

instead of intensity distribution (Figure 3-5-B). Both pre-processing and post-

processing allows thus Biom3d to be well-adapted to electron microscope images. 

Finally, Biom3d was evaluated on the light microscope dataset of nuclei presented in 

Chapter 2 and used for benchmarking. As can be seen in Table 3-1 and on Figure 3-6-

A, Biom3d achieved a mean and standard deviation of accuracy similar to those of 

nnU-Net. 

Table 3-1 – Biom3d overpasses nnU-Net on a variety of datasets. The first four rows 

represent medical datasets while the last two rows represent biological datasets.  

Dataset name Modalities Number of 

channels 

Number of 

classes 

Biom3d Dice 

score 

nnU-Net Dice 

score 

Lung CT 1 1 0.651 0.651 

Pancreas CT 1 2 0.566 0.403 

BrainTumour MRI 4 3 0.723 0.719 

AbdomenOrg CT 1 13 0.846 0.824 

MitoEM EM 1 1 0.907 - 

NucleusConf Confocal 1 1 0.914 0.912 
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Figure 3-5 – Additional pre- and post-processing of Biom3d to cope with biological 

data. (A) Additional pre-processing to deal with single image dataset: the training 

image and its corresponding annotation are split in two new portions, one for training 

and one for validation. The images and annotations come from [166]. (B) Additional 

post-processing to remove prediction noises: only the biggest connected components 

are kept. The Otsu’s algorithm is applied on the volume distribution to find the minimal 

valid volume. The image has been captured by Nadine Field in Oxford Brookes. 

 

Figure 3-6 – Biom3d performances on the nucleus datasets. (A) Completed 

benchmarking of Chapter 2 with Biom3d performances: Biom3d reaches similar 

accuracy as nnU-Net. (B) Comparison of Biom3d and NucleusJ on 4 nucleus datasets: 

the higher accuracy of Biom3d predictions demonstrates a lower variability in nuclei 

volumes. “Col” are wild-type nuclei while “hira” and “8t” represent mutant nuclei. 

“Hira 8t” are double mutant nuclei.  
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3.3 Biom3d, an easy-to-use tool 

The first type of users of Biom3d are Non-Programmers, end-users such as biologists 

or radiologists. This profile expects an easy-to-use interface and a minimum amount 

of manual configuration to achieve their goal. Biom3d integrates thus several 

Graphical User Interfaces depending on their means and needs. 

3.3.1 Graphical User Interfaces 

Biom3d has three Graphical User Interfaces (Figure 3-7-A): 

• The Default interface, integrated in the software  

• The Google Colab interface (https://colab.research.google.com/github/

GuillaumeMougeot/biom3d/blob/master/docs/biom3d_colab.ipynb)  

• The Biosphere interface (https://biosphere.france-bioinformatique.fr/

catalogue/appliance/216/)  

Each interface has been designed to respond to different needs. An overview of the 

advantages and disadvantages of each interface is presented in Figure 3-7-B. The 

Default interface is a local installation and boasts the quickest usability. As everything 

remains offline, users retain complete control over data transfers while upholding data 

ownership. However, utilizing this interface necessitates access to a GPU equipped 

with at least 10GB of VRAM for training and 4GB of VRAM for prediction, entailing 

the installation of deep learning computation libraries and drivers (such as CUDA and 

CuDNN for Nvidia GPUs). To address these limitations, Biom3d comes with two 

additional online interfaces bypassing the need for specific computing resources or 

installations. The Google Colab interface harnesses Google’s servers which are freely 

accessible for a finite period. Since data is processed directly on these servers, it 

requires uploading the data. However, transferring substantial datasets to private 

servers might be challenging due to space limitations or ownership concerns. A final 

solution, yet limited to French public research groups, involves utilizing the Biosphere 

interface. Biosphere is a public initiative to mutualized access to the national 

computing centres and open-source software developed within the research 

community. While in this case data ownership remains intact, the current version of 

Biosphere is restricted to CPU usage, resulting in slower processing speeds. 

Consequently, this alternative is best suited for predictions or demonstrations only.  

https://colab.research.google.com/​github/​GuillaumeMougeot/​biom3d/​blob/​master/docs/biom3d_colab.ipynb
https://colab.research.google.com/​github/​GuillaumeMougeot/​biom3d/​blob/​master/docs/biom3d_colab.ipynb
https://biosphere.france-bioinformatique.fr/​catalogue/​appliance/216/
https://biosphere.france-bioinformatique.fr/​catalogue/​appliance/216/
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Figure 3-7 – Three interfaces of Biom3d. (A) Views of the three interfaces. (B) 

Comparison of the three interfaces. In green and red circles are highlighted the main 

advantages and disadvantages of each interface. 

3.3.2 Workflows: Training and prediction 

This Subsection will describe in more details some of the hidden mechanisms behind 

Biom3d Interfaces. Explanations will be illustrated with the Default Interface, but 

these mechanisms are independent from the chosen Graphical Interface. Two main 

workflows can be described: one for training (Figure 3-8) and one for prediction 

(Figure 3-9).   

Training workflow.    The goal of this workflow is to output a trained model and a 

pre-processing methodology adapted to a specific dataset. To do so, the user inputs a 

set of 3D images, annotated with a software such as napari. The number of classes of 

objects and the name of the output folder containing the future deep learning model 

must be filled. Once the “Auto-configuration” button is pressed, a cascade of 

operations starts (Figure 3-8).  

First, the dataset is scanned, and a set of characteristics, called a data-fingerprint, is 

extracted, such as the median image size or the median spatial sampling.  

Second, the data-fingerprint is used to preprocess the raw images: image intensities 

are z-normalized (using mean and standard deviation), and images are resized to align 

with the median spatial sampling.  
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Third, the data-fingerprint is then used to compute some of the training hyper-

parameters such as the batch size, the patch size, or the number of successive pooling 

layers in the U-Net model. The data-fingerprint and the training configurations are 

both stored in a single config.yaml file. To maintain user oversight of training 

configurations, these settings are displayed in the interface and can be edited. This 

feature proves beneficial, especially for variables like the number of epochs. In the 

default nnU-Net implementation, this is arbitrarily set at 1000 epochs, which may 

require adjustment for scenarios like confocal images where fewer epochs suffice. 

Similarly, manual modification of hyperparameters might be necessary when users opt 

to annotate objects solely within a specific image region, leaving other areas 

unannotated. For instance, suppose objects in only the first z-slices of the image are 

annotated. Currently, patch size is determined solely by the median image shape. 

Consequently, in anisotropic images with substantial dimensions along the x- and y-

axes but modest dimensions along the z-axis, the patch size retains a similar aspect 

ratio, yet with reduced dimensions compared to the original image. During training, 

patches are positioned randomly within the input image. If the patch dimensions do 

not align with the original image's z-axis, the patch might be placed randomly in an 

annotated object region or in a region with analogous properties but without 

annotations. This inconsistency can lead to erratic behaviour in the training curve. The 

z-dimension of the patch might thus be adapted manually. Such changes must still 

consider the dimensions of the GPUs memory not to overload it.  

Fourth, once configured the training can start by pressing “Start” button. The training 

curves, the best deep learning model and sample of predictions are automatically saved 

every epoch in the output folder. 
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Figure 3-8 – Training workflow of Biom3d. (Left) Training tab of the graphical 

interface. The user specifies the path to the folders containing training images and 

annotations, then defines a name for the configuration file and the future trained model, 

and the auto-configuration can start. Automatically defined parameters can be adjusted 

manually if needed before starting the training. (Right) Backend workflow. Once the 

“Auto-configuration” button is pressed, the data-preprocessing starts. The dataset key 

elements (median shape, etc.) are extracted and used to normalize all the images and 

to define training configuration (patch size, etc.). If the “Start” button is pressed, a 

deep learning model will be trained and saved along with the pre-processing 

methodology (data-fingerprint). 

Prediction workflow.    Once trained, a model can be used on novel images similar to 

the ones of the training set (Figure 3-9). To match the training pre-processing, the pre-

processing of the prediction images is configured using the data-fingerprint stored in 

the training output folder. The images are then passed to the deep learning model. 

Predictions are eventually post-processed before being saved. The prediction 

workflow is much simpler and can be used to rapidly predict thousands of images. 
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Figure 3-9 – Prediction workflow. (Left) Prediction tab of the graphical interface. 

The user chooses a folder containing raw images, the path to a trained model and a 

folder for the future predictions. The predictions start when the “Start” button is 

pressed. (Right) Backend workflow. The raw images are normalized using the data-

fingerprint of the training dataset. The trained model is then loaded and used to 

compute predictions. 

3.3.3 Pooling resources: Remote access and OMERO access 

As previously mentioned, having access to a GPU large enough to train a deep learning 

model is not always affordable to a single research team. On the other hand, if a single 

team has access to a GPU, this resource might be underexploited, as training a deep 

learning model is generally not required daily. Pooling computing resources might 

therefore be beneficial economically and environmentally. Furthermore, biological 

images generally tend to require large storage capacities. Pooling storage resources as 

well could yield similar advantages, in addition to contributing to the preservation of 

data integrity. 

Remote access.    Remote access is integrated as a core functionality of Biom3d 

(Figure 3-10). When opening the Default interface, users can choose between the local 

version or the remote version. The Remote version requires the existence of a remote 
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server where the Python package of Biom3d is installed. This server must have a 

compatible GPU and must be accessible via Secure Shell (ssh). Two independent 

installations are thus required: one for the client computer with the graphical interface 

and one for the server computer with the command line interface (see Section 3.4.1 for 

more details about the command line interface). In the graphical interface, the user 

indicates server address, username, password and eventually the name of the Python 

or Anaconda environment where Biom3d has been installed. Optionally, Biom3d can 

be accessible via a proxy server or a Virtual Private Network (VPN) so to be accessible 

via the Internet. Once connected, the remote version of the graphical interface looks 

like the local version, except for the fact that the dataset must now be sent to the server 

before pre-processing. The remote prediction process is like the local one except that 

data must be first sent to the computing server before prediction and the results must 

be retrieved after prediction. 

 

Figure 3-10 – Remote access to Biom3d. (Left) The Default Interface in remote 

version looks like the local version, actions being executed on the remote server. 

(Right) The server computer is equipped with a GPU and the Python package of 

Biom3d and run the computations ordered by the graphical interface.  

OMERO access.    To pool storage resources in biology, one of the tools in use is 

OMERO. OMERO is a software designed to store multi-channel 3D images in a single 
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repository designed to preserve data integrity. The client interface and web interface 

of OMERO both allow organization of images and viewing without the need to 

download them locally. OMERO does not handle complex image analysis but provides 

ways to download them on a computing server. Doing so in Python is not 

straightforward but possible (it was necessary to directly contact OMERO’s authors to 

understand and write the appropriate commands) and has been integrated in Biom3d 

code and interface. Biom3d can download raw images from the storage server to the 

computing server once the OMERO server address, user details and dataset 

identification number have been uploaded to the interface. Once downloaded, the 

prediction process can start on the computing server. Once finished, the prediction can 

either be downloaded locally or sent back to the OMERO server. Uploading back a set 

of predictions on an OMERO server is a bit more complicated than downloading it due 

to image metadata. As presented in the previous Chapter, the metadata is the set of 

information surrounding the captured image among which the most notable one is the 

image spatial sampling as it allows spatial measurements to be made. The original 

metadata of the input image must thus be integrated into the prediction results. 

Microscopy images are usually stored in TIFF format which have very diverse ways 

to store metadata. This diversity has been the subject of extensive research during this 

project and will be discussed in the following paragraph.  

 

Figure 3-11 – OMERO access. (Left) The remote version of the Default interface 

allows to download an OMERO dataset. 

TIFF formatting.    TIFF stands for Tag Image File Format meaning that image 

metadata is stored in tags. A tag consists of a small set of various pieces of information 

among which the most important ones are the tag code, name, and value (see Table 3-2 
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for an example of image metadata). There is a finite set of possible tag name (a 

complete list can be found here: https://www.loc.gov/preservation/digital/formats/

content/tiff_tags.shtml). For example, “XResolution” tag contains the number of 

pixels per spatial resolution unit along the x-axis. Despite extensive effort of TIFF 

format creators to make the list of tag exhaustive, this cannot match the diversity of 

possible configurations in all imaging devices (especially when knowing that TIFF 

format was originally designed for fax communication and that it is now used to store 

multi-channel and multi-dimensional images). Microscope constructors have found a 

stratagem to counteract this limitation: exploiting the “ImageDescription” tag. This 

TIFF tag has quickly become a catch-all tag, used to store, if not all, most of the 

information related to image capture. For example, Leica MM AF microscope uses 

this tag to store a list of information in an XML-like format, where can be found, for 

instance, the x-axis resolution (see Table 3-2 “spatial-calibration-x”) instead of using 

the official “XResolution” tag. Every imaging constructor has developed their own 

TIFF metadata formatting technique. Even software developers have decided to follow 

their own interpretation of the TIFF tag philosophy. Even open-source software, such 

as FIJI/ImageJ, have fallen into this pitfall. This phenomenon has caused the 

community to dub TIFF files as “Thousands of Incompatible File Format”. Yet, some 

efforts have emerged attempting to unify TIFF derivatives, at least for biological data, 

among which the most noticeable one is probably Bio-Formats. Bio-Formats is an 

initiative started by the Open Microscopy Environment (OME) group. This consortium 

of public and private institutions creates open-sources software and formats for 

microscopy, such as the OMERO software. Bio-Formats is a tool allowing to read most 

of the industry TIFF formats and to convert them into a unique universal format called 

OME-TIFF. However, this initiative is limited to Java programs and could not be 

integrated into Biom3d without requiring starting the “Java Virtual Machine” which 

was considered an excessive use of resource for a relative small problem. The solution 

currently integrated into Biom3d is the result of tedious research strewn with many 

frustrating failures resulting in a compromise. It is based on the tifffile Python package 

developed by Christoph Gohlke. This package is well-adapted for FIJI/ImageJ TIFF 

and OME-TIFF but currently fails to retrieve relevant information (spatial resolution, 

etc.) in proprietary formats such as the one presented in Table 3-2. Most of the code 

integrated in Biom3d has been inspired by contributions of tifffile’s author (among 

which this post has been determinant: https://forum.image.sc/t/python-copy-all-

https://www.loc.gov/​preservation/​digital/​formats/​content/​tiff_tags.shtml
https://www.loc.gov/​preservation/​digital/​formats/​content/​tiff_tags.shtml
https://forum.image.sc/​t/​python-copy-all-metadata-from-one-multipage-tif-to-another/​26597/​8
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metadata-from-one-multipage-tif-to-another/26597/8). This method is certainly a 

major point of improvement in Biom3d and more generally to Python image reader 

and writer. It might require extensive effort to understand the structure of TIFF files to 

preserve metadata integrity when passing them to segmentation prediction.  

Table 3-2 – Example of TIFF metadata obtained with a Leica MM AF microscope. 

The “ImageDescription” tag departs from the official tag system and contains most of 

the information related to the microscope configuration. Such formatting is 

microscope-dependant. This metadata was extracted using tifffile Python package.  

Tag 

code 
Tag name Tag value 

254 NewSubfileType FILETYPE.PAGE 

256 ImageWidth 2048 

257 ImageLength 2048 

258 BitsPerSample 16 

259 Compression COMPRESSION.NONE 

262 Photometric 

Interpretation 

PHOTOMETRIC.MINISBLACK 

270 ImageDescription 
<prop id="MetaDataVersion" type="float" value="1"/> 

<prop id="ApplicationName" type="string" value="MetaMorph"/> 

<prop id="ApplicationVersion" type="string" value="7.8.12.0"/> 

<PlaneInfo> 

<prop id="plane-type" type="string" value="plane"/> 

<prop id="pixel-size-x" type="int" value="2048"/> 

<prop id="pixel-size-y" type="int" value="2048"/> 

<prop id="bits-per-pixel" type="int" value="16"/> 

<prop id="autoscale-state" type="bool" value="on"/> 

<prop id="autoscale-min-percent" type="float" value="0.05"/> 

<prop id="autoscale-max-percent" type="float" value="0.05"/> 

<prop id="scale-min" type="int" value="14"/> 

<prop id="scale-max" type="int" value="7011"/> 

<prop id="spatial-calibration-state" type="bool" value="on"/> 

<prop id="spatial-calibration-x" type="float" value="0.1032"/> 

<prop id="spatial-calibration-y" type="float" value="0.1032"/> 

<prop id="spatial-calibration-units" type="string" value="um"/> 

<prop id="image-name" type="string"  

value="k4c1c4_cot1&#38;4&#38;8__w11 DAPI SIM variable_s1"/> 

<prop id="threshold-state" type="string" value="ThresholdOff"/> 

<prop id="threshold-low" type="int" value="0"/> 

<prop id="threshold-high" type="int" value="65535"/> 

<prop id="threshold-color" type="colorref" value="4080ff"/> 

<prop id="zoom-percent" type="int" value="50"/> 

<prop id="gamma" type="float" value="1"/> 

<prop id="look-up-table-type" type="string" value="by-wavelength"/> 

<prop id="look-up-table-name" type="string" value="Set By Wavelength"/> 

<prop id="photonegative-mode" type="bool" value="off"/> 

<prop id="gray-calibration-curve-fit-algorithm" type="int" value="4"/> 

<prop id="gray-calibration-values" type="float-array" value=""/> 

<prop id="gray-calibration-min" type="float" value="-1"/> 

<prop id="gray-calibration-max" type="float" value="-1"/> 

<prop id="gray-calibration-units" type="string" value=""/> 

<prop id="plane-guid" type="guid" value="{168AEE33-9914-4B20-A4F2-

B9085DC714B9}"/> 

<prop id="acquisition-time-local" type="time" value="20180523 

14:22:20.702"/> 

<prop id="modification-time-local" type="time" value="20180523 

14:27:41.885"/> 

<prop id="camera-binning-x" type="int" value="1"/> 

<prop id="camera-binning-y" type="int" value="1"/> 

<prop id="camera-chip-offset-x" type="float" value="0"/> 

<prop id="camera-chip-offset-y" type="float" value="0"/> 

<prop id="_IllumSetting_" type="string" value="1 DAPI SIM variable"/> 

<prop id="_MagNA_" type="float" value="1.4"/> 

<prop id="_MagRI_" type="float" value="1.515"/> 

<prop id="_MagSetting_" type="string" value="63x Oil"/> 

 

<custom-prop id="Camera Bit Depth" type="float" value="16"/> 

<custom-prop id="Electron Count Conversion Factor" type="float" 

value="0.49"/> 

<custom-prop id="Electron Count Conversion Offset" type="float" 

value="100"/> 

<custom-prop id="Exposure Time" type="string" value="60 ms"/> 

<custom-prop id="Leica Condenser Top" type="string" 

value="Condenser Top Out"/> 

<custom-prop id="Leica Condenser Turret" type="string" value="BF"/> 

<custom-prop id="Leica Contrast Method" type="string" 

value="FLUO"/> 

<custom-prop id="Leica DIC Turret" type="string" value="-"/> 

<custom-prop id="Leica Filter Changer" type="string" value="405"/> 

<custom-prop id="Leica Fluor Intensity Manager" type="string" 

value="30%"/> 

<custom-prop id="Leica IL Aperture Diaphragm" type="float" 

value="7"/> 

<custom-prop id="Leica IL Shutter" type="string" value="Closed"/> 

<custom-prop id="Leica Immersion Mode" type="string" 

value="Immersion"/> 

<custom-prop id="Leica Lamp" type="float" value="18"/> 

<custom-prop id="Leica Lamp Switch" type="string" value="Incident"/> 

<custom-prop id="Leica Objective Turret" type="string" value="63x"/> 

<custom-prop id="Leica SI Diaphragm" type="float" value="6"/> 

<custom-prop id="Leica Stage X" type="float" value="44343"/> 

<custom-prop id="Leica Stage Y" type="float" value="4345.46"/> 

<custom-prop id="Leica TL Aperture Diaphragm" type="float" 

value="18"/> 

<custom-prop id="Leica TL Field Diaphragm" type="float" value="5"/> 

<custom-prop id="Leica TL Polarizer" type="string" value="TL Polarizer 

https://forum.image.sc/​t/​python-copy-all-metadata-from-one-multipage-tif-to-another/​26597/​8
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<prop id="stage-position-x" type="float" value="44343"/> 

<prop id="stage-position-y" type="float" value="4345.46"/> 

<prop id="stage-label" type="string" value="Position10"/> 

<prop id="z-position" type="float" value="106.859"/> 

<prop id="wavelength" type="float" value="450"/> 

 

Out"/> 

<custom-prop id="Leica TL Shutter" type="string" value="Open"/> 

<custom-prop id="Leica Z Motor" type="float" value="106.859"/> 

<custom-prop id="OptiGrid Paddle Z" type="float" value="5128"/> 

<custom-prop id="OptiGrid Voltage 1" type="float" value="37.216"/> 

<custom-prop id="OptiGrid Voltage 2" type="float" value="55.7118"/> 

<custom-prop id="OptiGrid Voltage 3" type="float" value="75.1461"/> 

<custom-prop id="OptiGrid Voltage 4" type="float" value="95.4526"/> 

<custom-prop id="Shutter Fluo" type="string" value="Open"/> 

<custom-prop id="Shutter Trans" type="string" value="Closed"/> 

<prop id="number-of-planes" type="int" value="75"/> 

 

273 StripOffsets (8, 8200, 16392, 24584, 32776, 40968, 49160, 57352, 65544, 73736, 

819282… 

274 Orientation ORIENTATION.TOPLEFT 

277 SamplesPerPixel 1 

278 RowsPerStrip 2 

279 StripByteCounts (8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192… 

305 Software MetaSeries 

306 DateTime 20180523 14:22:20.702 

3.4 Biom3d, a toolbox for bioimage analysts 

As previously mentioned, the Default Interface of Biom3d (both remote and local) 

comes as a Python package which requires some basic Python understanding that will 

be presented in the first Subsection below. Additionally, Python Programmers needs 

might not be fulfilled by the Graphical Interfaces only. This type of user might be 

interested in understanding, exploiting, and controlling more complex aspects of 

Biom3d. For instance, they may be interested in accessing to a Command Line 

Interface to be able to execute Biom3d on a High-Performance Computing (HPC) 

resources in “batch mode” on a large variety of datasets. They may look also to fine-

tune existing models or to make predictions using a set of models. All these problems 

can be solved with the Command Line Interface of Biom3d and will be addressed in 

the second Subsection below. Furthermore, Python Programmers might be interested 

in experimenting with a broader degree of freedom in the deep learning hyper-

parameters. They might as well be interested in changing the optimizer parameters or 

the type of deep learning model. These challenges are tackled with the modular 

structure of Biom3d and presented in the third Subsection.  

3.4.1 Installing Biom3d 

More details about installation instructions can be found on Biom3d documentation 

website: https://biom3d.readthedocs.io/en/latest/installation.html  

https://biom3d.readthedocs.io/en/latest/installation.html
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The Command Line Interface of Biom3d is accessible using a Windows command 

prompt or a Linux Terminal. Installing the Default interface of Biom3d requires the 

installation of the Biom3d Python package, locally for the local version, and on a Linux 

server for the remote version. The installation of the Biom3d package requires a 

computer with a GPU of at least 10 Gb of VRAM and with CUDA library, CuDNN 

library, Python3 and Pytorch library installed preferably in a virtual environment such 

as pip environment or Anaconda. A single line of code is then required to complete the 

installation: 

(base) gumougeot@MPCRBC-GRE2-025:~$ pip install biom3d[all]  

Once the installation is completed Biom3d is ready-to-use both for the Default 

interface and the Command Line Interface.  

Creating a Python package.    To facilitate its installation, Biom3d has been 

referenced in PyPI (Python Package Index, https://pypi.org/), instead of being 

integrated in a Docker or Anaconda environment. This technique allows to publicly 

and internationally reference Biom3d while making transparent all requirements 

(installed when running the install command). This setup was facilitated by the newest 

version of pip which only requires writing a single pyproject.toml file, preventing the 

previous need of using backend tools such as Setuptools. Python package creation has 

thus recently been simplified and documented by the PyPA community (more 

information can be found here: https://packaging.python.org/en/latest/tutorials/

packaging-projects/). Python packaging is well adapted to seamlessly share and install 

Python tools. Yet, Biom3d is dependent on some external libraries (CUDA, CuDNN, 

Pytorch) and integrating it along these libraries in a single virtual environment might 

represent another important future improvement. To do so, Singularity is currently the 

candidate of choice. Like Docker, it isolates all dependencies and the appropriate 

operating system. Opposed to Docker, Singularity does it within a single file, which 

can then ease its sharing and use on computer clusters.  

3.4.2 Command Line Interface 

More details about the Command Line Interface can be found on Biom3d 

documentation website: https://biom3d.readthedocs.io/en/latest/tuto_cli.html  

https://pypi.org/
https://packaging.python.org/​en/​latest/​tutorials/​packaging-projects/
https://packaging.python.org/​en/​latest/​tutorials/​packaging-projects/
https://biom3d.readthedocs.io/en/latest/tuto_cli.html
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The code of Biom3d, as for most Python packages, is organized in Python scripts. 

Biom3d has two types of Python scripts: module scripts and executable scripts. 

Module scripts store lists of functions or classes used by the executable scripts. Details 

about module scripts will be given further in this thesis. To each executable script 

corresponds one Command Line Interface with the same name. For instance, the 

executable script preprocess.py oversees the preprocessing. It can be executed, from 

any location in the computer, once Biom3d Python package is installed, with the 

following command: 

python -m biom3d.preprocess --img_dir data/images --msk_dir data/masks --

num_classes 1 --desc unet_example  

Similarly, any of Biom3d command listed in Table 3-3 can be executed with the syntax: 

python -m biom3d.script_name –-arg1 arg1_value --arg1 arg2_value   

Where script_name is the name of the Python script, --arg1 is the name of an 

argument and arg1_value the value of this argument.  

Table 3-3 – Biom3d commands. Each command corresponds to one executable script 

of Biom3d. Only the main arguments are listed. The complete list of arguments for 

each command can be found on Biom3d documentation website or displayed using the 

following: python -m biom3d.script_name --help.  

Type Script name Description Typical arguments 

Name Role 

M
ai

n
  

preprocess Image and mask 

preprocessing.  

--img_dir Image directory. 
--msk_dir Mask directory. 
--num_classes Number of classes of objects. 
--desc Future name of the configuration 

directory and model. 
train Model training or fine-

tuning. 

--config Path to the configuration file 

created during preprocessing. 
--log Path to a log directory. 

pred Prediction with one or 

several models on a 

dataset. 

--log Path to one or several log 

directories. 
--dir_in Path to the input image directory. 
--dir_out Path to the output mask 

directory. 
eval For test purpose: 

evaluate Biom3d 

predictions against 

annotations using Dice 

metric. 

--dir_pred Path to the prediction directory. 

--dir_lab Path to the annotation directory. 

--num_classes Number of classes of objects.  

preprocess_train --img_dir Image directory. 
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Com-

bined  

Combination of 

preprocessing and 

training. 

--msk_dir Mask directory. 
--num_classes Number of classes of objects. 

O
M

E
R

O
 

omero_pred Prediction from an 

OMERO dataset. 

--obj Either “Dataset:ID” or 

“Project:ID” where ID is the 

OMERO identification of the 

Dataset or the Project. 
--log Path to a log directory. 
--target Path to the directory where 

OMERO images will be 

downloaded. 
--dir_out Path to the output mask 

directory. 
--username OMERO username. 
--password OMERO password. 
--hostname OMERO server address. 
--upload_id (Optional, work only for Dataset) 

ID of the OMERO Project to 

upload the predictions directory 

into. 
omero_uploader Upload a dataset to 

OMERO 

--project  ID of the OMERO Project to 

upload the predictions directory 

into. 
--path Path to the directory to upload. 
--dataset_name Future name of the OMERO 

Dataset containing the 

predictions. 
--username OMERO username. 
--password OMERO password. 
--hostname OMERO server address. 

omero_downloader Download an OMERO 

Dataset or Project. 

--obj  Either “Dataset:ID” or 

“Project:ID” where ID is the 

OMERO identification of the 

Dataset or the Project. 
--target Path to the directory where 

OMERO images will be 

downloaded. 
--username OMERO username. 
--password OMERO password. 
--hostname OMERO server address. 

GUI 
gui Launch the Graphical 

User Interface. 

- - 

The command line interface has the same capabilities as the Graphical User Interface 

yet with three significant differences: 

• The configuration file generated after the preprocessing is fully editable and 

will be the focus of the next Subsection. 
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• Command lines have many advantages notably in Linux-based Operating 

Systems such as to be executed in batch or on a computer cluster, or to be 

integrated in a bash script. 

• A Command Line Interface user can fine-tune a model or execute a prediction 

with a set of models instead of one only.  

Fine-tuning.    Fine-tuning consists in retraining a pretrained model on a new dataset, 

particularly useful for transfer learning. To do fine-tuning with Biom3d, the following 

can be used: 

python -m biom3d.train\ 

 --log logs/20230522-182916-unet_default\ 

 --config configs/20230522-182916-config_default.py  

The two main arguments above encapsulate two important and original concepts of 

Biom3d: 

• --log defines the location of the directory storing the trained model parameters 

(stored in a .pth file) along with all relative information such as training curves 

and snapshots or the configuration files. If the --log argument is employed 

alone, the script_name script will consider that the user wants to restart an 

existing training that might have been interrupted. 

• --config is the location of the configuration file defining the training 

configuration (data preprocessing, optimizer, model architecture etc.). If the -

-config argument is used alone, Biom3d will create a new log folder and start 

a new training. 

If --log and --config are used simultaneously, Biom3d will use the configuration file 

to configure a new training and the trained model parameters to initialize the novel 

model weights. Model architectures must be compatible. 

Multi-model prediction.    Another originality of Biom3d Command Line Interface 

is the possibility to execute predictions from a set of different models (ensemble 

prediction). Ensemble prediction has been proven to be particularly effective 

especially when working in teams such as for Kaggle competitions [126]. nnU-Net is 

limited to perform ensemble prediction within the frame of its cross-validation 

configuration. For example, with five folds cross-validation, this means that the 
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predictions of a set of five identical model architectures trained on the same dataset 

but with different training/validation splits will be merged to obtain the final 

segmentation result. In Biom3d, with its modular architecture, a user can decide to run 

predictions with an arbitrarily large set of model architectures and each trained on a 

different dataset by simply using the following command: 

python -m biom3d.pred\ 

 --log logs/20230522-182916-unet_default logs/20230425-162133-unet_btcv\ 

 --dir_in data/btcv/Testing/img\ 

 --dir_out data/btcv/Testing/preds  

In this example, some predictions are computed on the BTCV test set using two 

different models stored in two different log folders.  

 

Figure 3-12 – Configuration File, Builder and Module Register. (Left) The 

Configuration File lists the names of existing Modules appearing in the Module 

Register and defines their parameters (Greek letters). (Middle) The Builder reads 

parameters and Module names in the configuration file. It then retrieves the 

corresponding modules from the Module Register and builds them with their 

parameters. The Builder can then be used to train a Model with a Dataset, a Trainer, 

and a Metric. Once trained, the Model can be used by the Builder to predict the 

segmentation masks of some raw images using a Preprocessor, a Predictor, and a 

Postprocessor. (Right) The Module Register lists all existing modules of Biom3d. 

There are currently seven different types of modules, and each type has different 

variants (colour shades).  
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3.4.3 Configuration File, Builder, and Module Register 

More details about the Biom3d Modules can be found on Biom3d documentation 

website: https://biom3d.readthedocs.io/en/latest/index.html  

Biom3d modularity is not limited to the Command Line Interface but also allows to 

access and edit finer parameters such as the type of deep learning model or the metric 

used for training. This is made possible without having to go through the inner 

codebase of Biom3d thanks to three novelties: the Configuration File, the Module 

Register, and the Builder. 

Configuration File.    The configuration file is one of the core elements of Biom3d 

modularity and is an entry point editable by Programmer Users (Figure 3-12). This 

concept departs from nnU-Net implementation and was inspired by OpenMMLab 

(https://github.com/open-mmlab), a large group of computer scientists aiming at 

rapidly and regularly integrating the forefront state-of-the-art contributions in deep 

learning for image processing within several highly modular and open-source 

frameworks (MMSegmentation for 2D segmentation algorithms, MMDetection for 2D 

detection, etc.). In OpenMMLab frameworks, each training is configured via a single 

file, the configuration file, describing the “recipe” to assemble a deep learning model, 

a data-pipeline, an optimizer, a visualizer to observe the learning curves etc. (an 

example of their configuration file can be found here: https://

mmsegmentation.readthedocs.io/en/latest/user_guides/1_config.html). The 

configuration files of Biom3d significantly depart from those of OpenMMLab being 

both simplified and completed (an example of Biom3d’s configuration file can be 

found here: https://github.com/GuillaumeMougeot/biom3d/blob/main/src/biom3d/

config_default.py).  

The configuration file of Biom3d includes the definition of two types of hyper-

parameters: 

• Stand-alone hyper-parameters includes parameters defined in the Graphical 

User Interface (patch size, number of epochs, etc.) as well as finer hyper-

parameters such as the initial learning rate or whether to use half-precision 

float-point format or not. Here follows an extract from Biom3d configuration 

file defining stand-alone hyper-parameters: 

https://biom3d.readthedocs.io/en/latest/index.html
https://github.com/open-mmlab
https://mmsegmentation.readthedocs.io/​en/​latest/​user_guides/​1_config.html
https://mmsegmentation.readthedocs.io/​en/​latest/​user_guides/​1_config.html
https://github.com/GuillaumeMougeot/biom3d/blob/main/src/biom3d/config_default.py
https://github.com/GuillaumeMougeot/biom3d/blob/main/src/biom3d/config_default.py
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[…] 

# number of classes of objects 

# the background does not count, so the minimum is 1 (the max is 255) 

NUM_CLASSES = 1 

# number of channels in the input images 

NUM_CHANNELS = 1 

 

[…] 

# batch size 

BATCH_SIZE = 2 

# patch size passed to the model 

PATCH_SIZE = [128,128,128] 

# larger patch size used prior rotation augmentation to avoid "empty" corners. 

AUG_PATCH_SIZE = [160,160,160] 

# number of pooling done in the U-Net 

NUM_POOLS = [5,5,5] 

 

[…] 

# number of epochs 

NB_EPOCHS = 1000 

# optimizer parameters 

LR_START = 1e-2  

WEIGHT_DECAY = 3e-5  

• Module hyper-parameters are key-value dictionaries. The first key-value pair 

precises the name of the module being used and defined in the Module Register. 

The second key-value pair defines the parameters of this module. In the 

following example the Model module named "UNet3DVGGDeep" designed for 

image segmentation is configured using some of the stand-alone parameters 

(dark blue) and one custom parameter (factor):  

# model configs 

MODEL = Dict( 

    fct="UNet3DVGGDeep", # module name from the module register 

    kwargs = Dict( 

        num_pools=NUM_POOLS, 

        num_classes=NUM_CLASSES if not USE_SOFTMAX else NUM_CLASSES+1, 

        factor = 32, # multiplication factor for the depth of each convolution 

        use_deep=USE_DEEP_SUPERVISION, 

        in_planes=NUM_CHANNELS, 

    ) 

)  

The Module Register.    The Module Register lists all available modules. Modules are 

classified into seven categories (Figure 3-12):  
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• Datasets, modules loading a pre-processed dataset to pass it to the deep 

learning model. 

• Models, modules defining the deep learning model. 

• Metrics, modules used to define the training loss, the validation loss and other 

training metrics. 

• Trainers, modules defining how the Dataset module, the Model module, the 

Metric modules, and the optimizer are working together to train the deep 

learning model. 

• Pre-processors, modules used to pre-process the training dataset and to pre-

process raw data before prediction. 

• Post-processors, modules defining how the deep learning model output are 

processed before being saved. 

• Predictors, modules defining how the Pre-processor module, the Model 

module, and the Post-processor module are working together to compute 

predictions on novel images.  

A Module Register entry is organized as follows: 

from biom3d import ModuleClass 

 

module_type = Dict( 

    ModuleName = Dict(fct=ModuleClass, kwargs=Dict(parameter='value')) 

)  

For each module, the Module Register imports the Python function or the Python class 

from Biom3d code (from biom3d import ModuleClass) and stores it into a key-value 

dictionary named by type of module (module_type). In this dictionary, the key 

(ModuleName) can be arbitrarily defined but should be both explicit and short as it 

corresponds to the one used in the Configuration File. The value is also a key-value 

dictionary (Dict(fct=ModuleClass, kwargs=…)) including Biom3d function or class 

and, eventually, some of its parameters. Here is an example of a section of Biom3d 

Register listing available Model modules: 
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# model register 

from biom3d.models.unet3d_vgg_deep import UNet 

from biom3d.models.encoder_vgg import VGGEncoder, EncoderBlock 

 

models = Dict( 

    UNet3DVGGDeep   =Dict(fct=UNet, kwargs=Dict()), 

    VGG3D           =Dict(fct=VGGEncoder, kwargs=Dict(block=EncoderBlock, 

use_head=True)), 

)  

In this example, two Model modules have been registered, UNet3DVGGDeep a 

segmentation model and VGG3D a classification model. Model modules are Python 

classes like Dataset modules and Metric modules. The other type of modules are 

Python functions. Python classes will have to be instantiated by the Builder. Adding a 

new module to Biom3d consists thus simply in importing a Python class or a Python 

function and adding a novel entry to the corresponding dictionary (see next Section for 

more details).  

The Builder.    To metaphorize, if the Module Register lists all existing gene alleles of 

all possible genes and the Configuration File lists the genes of one specific individual, 

the Builder is the nucleus and its skeleton which organizes the DNA of this individual. 

The Builder is a Python class that makes all separated modules be and act together in 

four different steps (Figure 3-12): 

• Configuration File Reading. The Configuration File can be provided in a 

Python file format or YAML format. The Configuration File Reading can also 

be accompanied by Model weights loading if fine-tuning, training restarting or 

predicting are intended.  

• Building. The Python class modules listed in the Configuration File are then 

built. This Building process consists in instantiating this type of modules by 

calling their class constructors with the parameters defined in the configuration 

file. Module building is accompanied by the creation of a new log folder or the 

loading of an existing one and by the building of the optimizer function and 

the Callbacks (see next Section). Building automatically starts after 

Configuration File Reading. 

• Training. Once built, training can be started by calling the Builder’s Train class 

function. This function calls the selected Trainer module, along with the 
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Dataset module and the Metrics modules, a number of times equal to the 

number of epochs configured.  

• Predicting. Once trained, a Model can be applied on novel data. The same Pre-

processor module used to prepare the training Dataset processes the data, 

before passing it to the Predictor module, which applies the deep learning 

model. The Predictor can, for instance, patch the input images to a specific size. 

The Postprocessor finally processes the data by, for example, applying a 

threshold, removing noise, resizing images, etc.  

With the Command Line Interface and the Module-oriented architecture of Biom3d, 

Python Programmer have access to a large panel of functionalities without the need 

for reading or editing the inner code of Biom3d. More than just changing fine module 

hyper-parameters, Biom3d Configuration File allows them to change entirely the 

module definition by selecting another one in the Module Register. Last, once the 

training is started, all training metadata (Configuration File in Python and YAML 

formats, training curves, terminal logs, training and validation splits of the dataset, 

training image snapshots, etc.) will be saved in a unique folder (the “logs” folder) along 

the model parameters.  

3.5 Biom3d, a framework for deep learning developers 

Biom3d has been meticulously crafted at a granular code level, affording Deep 

Learning Programmers to easily understand, edit, or add code components. Biom3d 

has also been structured as both a fully usable Python package and an experimental 

platform, providing a flexible arena for novel advancements, thus allowing it to stay 

aligned with cutting-edge deep learning methods. This Section, aimed at Deep 

Learning Programmers, dives into the deep layers of Biom3d's conceptualization: its 

code use and its code architecture. First, it provides a top-down explanation 

encompassing the overall code structure and the Builder module. Afterwards, it delves 

into each module and its characteristics, including the hitherto unexposed Callback 

module. Finally, it considers the myriad future potentials that Biom3d holds, including, 

for instance, those leveraged by its compatibility with MONAI and TorchIO libraries. 

3.5.1 Code and Builder design 

As mentioned in the previous Subsection, the structure of Biom3d is articulated around 

the Builder module which serves as a backbone for other Modules. Similarly, nnU-Net 
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code strategy is to define a single class called nnUNetTrainer encompassing all code 

core functionalities such as deep learning model initialization, model training or 

predictions. One major issue with nnU-Net implementation is that this class is deeply 

linked to the definitions of the other parts of the code and includes a very large number 

of tasks, making it a “all-knowing object”. This “God Object” issue is one of the 

standard software engineering anti-pattern, an inefficient coding strategy [167] that 

increases code coupling and decreases code readability. Biom3d Builder is more of an 

independent and constituent block linking other independent objects together rather 

than an agglomerate of functions. The independency of Biom3d Module means that 

they can be easily extracted and reused out of Biom3d code context.  

How to use the Builder.    The Builder class use has been simplified as much as 

possible while keeping most of the complex functionalities required for deep learning 

model training. Understanding the panel of applications of the Builder starts by 

looking inside some of the frontend scripts designed for the Command Line Interface: 

• train.py script demonstrates how to use the Builder to train a new deep 

learning model, to restart an interrupted training, or to fine-tune an existing 

model. All of this can be done with only three short lines: 

from biom3d.builder import Builder 

builder = Builder(config_path, log_path, training=True) 

builder.run_training()  

The first line instantiates the Builder class with two arguments: config_path, 

path toward a configuration file obtained during Biom3d preprocessing, and 

log_path path toward an existing log directory. Both can eventually be affected 

with a Python string or set to None. This choice will influence the behaviour of 

the Builder class: 

 log_path=None log_path='value' 

config_path=None  Not allowed. 

Load an existing model, to 

restart a training or to make 

predictions. 

config_path='value' 
Define a new model to 

start a new training. 

Load an existing model to 

fine-tune with a new 

configuration. 

The second line (builder.run_training()) starts the training process. 
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• pred.py script shows how to use the Builder to start predicting on novel 

images: 

from biom3d.builder import Builder 

builder = Builder(config_path=None, log_path, training=False) 

img = builder.run_prediction_single(img_path, return_logit=False)  

builder.run_prediction_folder(dir_in, dir_out, return_logit=False)  

In this case config_path is set to None. The log path is either a Python string 

or a list of Python strings. If the log_path is a Python list of string, then the 

Builder will load them all to perform ensemble prediction. The penultimate and 

last lines illustrate how to start a prediction with one image or with a folder of 

images. return_logit argument can be useful to return the probability map 

instead of the segmented image. The probability map is used, for instance, to 

indicate the certainty level of the model in each region of the prediction. 

As shown in the previous Section, both scripts can also be used using the Command 

Line Interface with the arguments shown in Table 3-3. One of their hitherto additional 

elements is the --name argument which allows access in a flexible manner to more 

pre-implemented use cases of Biom3d. For example, here is a Command Line with 

pred.py script: 

python -m biom3d.pred\ 

  --name seg_eval\ 

 --log logs/20230522-182916-unet_default\ 

 --dir_in data/btcv/Testing/img\ 

 --dir_out data/btcv/Testing/preds\ 

 --dir_lab data/btcv/Testing/msk  

Where the --name seg_eval argument indicates that pred.py script will first segment 

a set of test images and then evaluate each prediction with a set of labels stored in --

dir_lab directory. A complete list of valid names can be displayed using --help 

argument. The --name argument thus allows to easily add many experimental 

applications to Biom3d and will extensively be exploited in the following Chapter 

when experimenting with self-supervision.  

Internal originalities of the Builder.    The main concepts of the Builder process have 

already been exposed in Figure 3-12. Yet, inside builder.py script several originalities 

deserve more detailed explanations. Let us delve into each of them going from 

configuration reading to Optimizer and Callbacks definition.  
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First, the configuration reading and writing can be done both in YAML format and 

Python format. This might sound simple but is technically challenging for Python file 

format. YAML format, easy-to-read and easy-to-write, has been specifically designed 

to store configuration files. Its strict and simple syntax allows to preserve configuration 

integrity. Yet, this simplicity makes it less flexible and less practical when 

experimenting. On the other hand, Python configuration file allows to add comments 

and explanations about parameters and modules. All parameters are Python variables 

that can be reused several times in the configuration file which avoids copy-pasting 

problems. Both format advantages have been exploited in Biom3d: Python file format 

for defining or editing novel configuration files and YAML file format for storing 

configurations to preserve their integrity. A single function called 

adaptive_load_config and defined in utils.py script adaptively read the two file 

formats. In utils.py script is also defined save_python_config and 

save_yaml_config, used during preprocessing and output folder creation respectively 

to save configuration files.  

Second, the Builder oversees the creation of the output folder, necessary for FAIR 

data sharing, containing: 

• Two trained deep learning models, one storing the model parameters at the 

best validation loss and one at training end. 

• Image snapshots, illustrating in a visual representation the performance of the 

model in the end of each epoch by applying it on a validation image.  

• The training curves, stored in Tensorboard format and in a CSV file.  

• The terminal prints (stdout), stored in a text file to conserve all important 

messages displayed on screen during training.  

• The data folds, stored in a CSV file. This file is used for cross-validation. It 

contains the list of all images in the training set associated with a number 

between 0 and the number of folds. When training with fold 0, for instance, 

images associated with 0 will be used for validation while others for training.  

Third, the core function allowing the Builder to cement other modules together and 

granting Biom3d of its flexible code architecture is called read_config. Here is an 

example applying the Predictor defined in the Configuration File: 
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out = read_config( 

    self.config.PREDICTOR,  # Module name in the Configuration File 

    register.predictors,    # Register category 

    img = img,              # Module parameter n°1 

    model = self.model,     # Module parameter n°2 

    **img_meta)             # Module parameter n°3 and more  

It receives as argument a Module name, a Register category and all eventual Module 

parameters coming either from the Builder or from the Configuration File. 

read_config finds the appropriate Module in the Register and executes it (or builds it 

if it is a Python class) with the appropriate parameters. Thanks to read_config, 

defining a novel module is as easy as defining a novel Python function or a Python 

class. The only expectations are: 

• To add the new module in the register. 

• To be careful with the interactions with other modules. In the previous 

example, a newly defined Predictor module expects at least one image (img) 

and one model (model) as input and one predicted image as output (out). 

This new function/class thus does not even have to be part of Biom3d source code and 

can come from another Python package. As will be shown later, Biom3d models are, 

for instance, compatible with MONAI models.  

Fourth, the Builder currently creates internally two types of modules which are then 

only editable through Biom3d source code: 

• The Optimizer, which currently is Stochastic Gradient Descent (SGD). This 

choice follows the one of nnU-Net. A comparison with the more recent Adam 

optimizer was made in the beginning of Biom3d development and showed 

SGD to be better for 3D image segmentation.  

• The Callbacks, which are Python classes holding functions that will be called 

during training at different frequencies (only once, every epoch, or every 

batch). Callbacks will be detailed in the next Subsection. 

The Optimizer could theoretically be a Biom3d Module but all attempts to prove that 

a better optimizer than SGD have currently failed. Future developments could yet 

make this change necessary (as will be shown in following Chapter, some self-

supervised learning techniques require large batch training and are optimally trained 

with LARS optimizer [168]). Even though, Callbacks definitions are coded in a 
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separated Python script (callbacks.py), they are not considered to be proper Modules, 

as they require to be called explicitly in the Builder (thus not using read_config). This 

recommendation is because each Callback has very different input expectations, 

making them impossible to define generically. 

Developer documentation.    All these coding originalities, and much more, are 

documented within Biom3d documentation and code. Biom3d documentation is 

divided into three levels: 

• A general documentation, available online 

(https://biom3d.readthedocs.io/en/latest/), including tutorials for the Interfaces 

and giving a general overview explanation. It has been made available online 

using https://readthedocs.io/ website and Sphinx and Markdown formatting. 

• A function and class documentation, following NumPy style formatting 

(https://numpydoc.readthedocs.io/en/latest/format.html) and giving details 

about each section of the code. ReadTheDocs includes an automatic reader for 

this type of documentation which avoid the need to duplicate it.  

• An in-line documentation, explaining each line of code and providing a 

granular level of detail. 

To conclude, Biom3d is more than just a Python package. Contributors are welcomed 

to add new documented pieces of code or modules to Biom3d. The powerful base mode 

of Biom3d and its flexible architecture allows thus to respond to a broad variety of 

applications, such as the recurring novel challenges posted on https://grand-

challenge.org/ website.  

3.5.2 Modules’ description 

After looking at the Builder, the “skeleton” of Biom3d, this Subsection will detail some 

of the various contributions regarding the Modules, the “organs” of Biom3d. Light will 

mostly be shed on default Biom3d Modules developed for 3D image segmentation. 

Biom3d is initially created to solve this task, even if it could go much further. This 

Subsection starts by presenting the data preprocessing and data loading methodologies 

which took a significant part of this thesis project. It will then detail the principles and 

mechanisms of the novel Callbacks Modules and how they articulate with the Trainer 

Module. Last, details will be given about the Predictor Module and its associated 

Postprocessor Module.  

https://biom3d.readthedocs.io/en/latest/
https://readthedocs.io/
https://numpydoc.readthedocs.io/en/latest/format.html
https://grand-challenge.org/
https://grand-challenge.org/
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Figure 3-13 – Auto-configuration and Preprocessing of training dataset for 3D 

segmentation. Image and mask folders (red, left) are scanned to extract their data-

fingerprint. The data-fingerprint is used to preprocess the images and masks and to 

automatically configure the future training (yellow, centre). The outputs of these two 

steps (green, right) are: a CSV file (folds.csv) describing which files will be used for 

training or validation, a Configuration File, the pre-processed images (images_out) 

and masks (masks_out), and the location of the foreground voxels (fg_out).  

Auto-configuration and Preprocessing.    This Paragraph looks under the hood of 

the overviewed preprocessing workflow shown in Section 3.3.2 and on Figure 3-8. 

This workflow, which only a part is a Biom3d Module, prepares training dataset for 

3D segmentation (Figure 3-13) in three main steps:  

• Data Scanning extracts the so-called Data-Fingerprint of the dataset. 

• Training Auto-configuration outputs a Configuration File for training 

configuration. 

• Preprocessing outputs a Normalized Dataset to start training with Biom3d. 

The Data-Fingerprint is the median image size, the median spacing (if a spacing 

appears in image meta-data) and the intensity moments (mean and the standard 

deviation) and range (0.5% and 99.5% percentiles) of voxel values of the image 

located in the foreground region of the mask. 

With this information, the Auto-Configuration can start with a series of heuristics. 

Biom3d heuristics mimics the behaviour of nnU-Net heuristics while being simplified. 
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In Biom3d, the patch size follows median size proportions and is dividable by a power 

of 2. For instance, if the median image size is (95,512,512) then the patch size will be 

(40,224,224). To simplify the explanations, this is done by dividing the median size 

multiple times by 2 until reaching a value below 7, rounding this value, and then 

multiplying it back by powers of 2. The number of powers of 2 gives the number of 

pooling layers in the future U-Net model. The number of pooling layers and the patch 

size are limited to (5,5,5) and (128,128,128) respectively to minimize memory 

footprint. The batch size is set to 2 and eventually increased if the patch size is lower 

than the maximum value. Choosing an appropriate patch size had proven to be 

determinant in the performance of the model. 

 The Prediction Preprocessing Module is a part of the Training Preprocessing 

operations. The Training Preprocessing is first initialised (purple box in Figure 3-14) 

(1) by creating three output folders for the future preprocessed dataset, (2) by, 

optionally, splitting single images, and (3) by distributing, in a CSV file, training 

images and validation images in K-folds for cross-validation. Then starts the 

Preprocessing routine (blue box in Figure 3-14) which will be applied individually to 

each pair of image and mask, and which does five tasks: 

• Adaptive image reading automatically loads 3D images stored in NumPy 

format (.npy), in TIFF format (.tif or .tiff) or in any other medical formats that 

can be read by SimpleITK library (list of available format: https://

simpleitk.readthedocs.io/en/master/IO.html)  such as Nifti format. This 

function, called adaptive_imread, and its pendant, called adaptive_imsave 

(automatically saving an image or a mask in any format along its meta-data), 

are important additions to Biom3d (nnU-Net for instance is limited to Nifti 

format) and essential to load microscopy images (generally stored in TIFF 

format). While compressed formats are appropriate for long term storage (such 

as Nifti or TIFF format), fast reading formats are preferred for deep learning 

applications (such as NumPy format). After preprocessing, images and masks 

are stored in NumPy format.  

• Adaptive Reshaping consists in uniformizing the shape of images and masks, 

so they all have four dimensions in the correct order (channel, depth, heigh, 

width). Among these four dimensions, the size and position of the channel 

dimension are the only determinant factors. Biom3d has been extensively 

https://simpleitk.readthedocs.io/en/master/IO.html
https://simpleitk.readthedocs.io/en/master/IO.html
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tested and adapted to the myriad of shapes that can appear in manually created 

datasets. For instance, in the same dataset, it can sometimes be found, images 

with only three dimensions (depth, heigh, width), with shape (depth, heigh, 

width, channel), or even with shape (depth, channel, heigh, width)! These 

fluctuations are even more diverse for masks, where users can decide to write 

their annotations in different colours in the same dimension (the mask then has 

only 3 dimensions) or to add one channel for each novel annotation. If using 

coloured annotations, users could mistakenly decide to use values between 0 

and 255 arbitrarily, instead of following consistent choices, or to use more 

colours than existing classes. Among all custom datasets that have been treated 

through Biom3d Preprocessing not even one was following consistent 

annotating choices. nnU-Net has chosen to let the responsibility fall upon the 

user annotators, eventually throwing errors. Biom3d Preprocessing is equipped 

with a large panel of safeguards to automatically correct most (if not all) user 

annotator mistakes. This has proven to be decisive in avoiding the "first-click 

abandonment" phenomenon, mainly for Non-Programmers.  

• Normalizing mainly concerns images (not masks). The objective of 

normalization is to limit voxel intensity range to accelerate deep learning 

model convergence. Two normalizing strategies exists in Biom3d (mimicking 

nnU-Net ones): Z-Normalization (default normalization) and Median 

Intensity Z-Normalization (based on intensity moment and range obtained 

during Auto-Configuration, and originally designed for CT-scans). 

• Resizing consists in normalizing spatial sampling of all images and masks to 

the median spatial sampling: images with higher spacing than median one must 

be enlarged and inversely. Two resizing strategies have been implemented in 

Biom3d, one for anisotropic images (resized only along isotropic axis) and one 

for the others. Masks are resized using spline interpolation of order 0 (nearest 

neighbours) and images of order 3 (trilinear interpolation). 

• Foreground location extraction is a data-loading computation optimization 

strategy developed by nnU-Net whose utility will be detailed in the following 

Paragraph. 

Once preprocessed, images and masks are stored in their corresponding output folders. 

The location of these folders is indicated in the Configuration File and can thus be 
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anywhere on the computer (nnU-Net forced the user to add specific folders to the 

Operating System path and to follow a strict folder hierarchy). During Prediction the 

five Preprocessing steps described above are applied to images only, using the same 

parameters as for training dataset preparation which are also stored in the 

Configuration File.  

 

Figure 3-14 – Training Preprocessing details for 3D segmentation. The 

preprocessing starts (purple box, initialisation) by (1) creating the three output folders 

(fg_out, images_out, masks_out), (2) optionally splitting single image/mask and (3) 

splitting the dataset into training and validation folds (folds.csv). Afterwards, each 

image and mask (blue box) are read (Read File), independently of their format, 

reshaped (Reshape) so to have exactly 4 dimensions in (channel, depth, heigh, width) 

format, z-normalized for images and uniformized for masks (Normalize), and resized 

(Resize) so all images and masks have the same sampling. Finally, the locations of 

foreground voxels are extracted and stored in the appropriate output folder (fg_out). 

Dataset Module.    With Preprocessing, Data-loading strategy development was one 

of the most (if not the most) time consuming part of Biom3d overall development. As 

demonstrated by nnU-Net developers, contributions brought by deep learning model 

improvements to the overall method performance are minimal when compared to data-

pipeline improvements. A counter-intuitively large number of levers exist in the data-

pipeline that can significantly improve or worsen the model final accuracy and must 

be properly taken care of before experimenting with the model architecture. This 

observation is probably far to be limited to bio-medical domain as underlined by 

Andrej Karpathy in his blog (https://karpathy.github.io/2019/04/25/recipe/): “The first 

https://karpathy.github.io/2019/04/25/recipe/
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step to training a neural net is to not touch any neural net code at all and instead begin 

by thoroughly inspecting your data. This step is critical.”  

The development journey of the Dataset Module is paved with too many mistakes 

for all of them to be listed here. Only the final version will be described, with the few 

points to pay attention to if intending to reproduce it. It was first noticed that nnU-Net 

data-pipeline has been thoroughly optimized as any experiments attempting to 

simplify it too much had failed. Yet, while intimately following nnU-Net principles, 

the default Dataset Module of Biom3d has been drastically optimized, especially by 

using TorchIO library. These optimizations explain the notable differences between 

nnU-Net and Biom3d in Table 3-1. 

Biom3d methodology exploits the distinction between Pytorch Dataset and Pytorch 

DataLoader (which nnU-Net does not). A Pytorch Dataset is a Python class having the 

Python special methods __getitem__ and __len__. These special methods let a user 

having access to the dataset elements and the dataset length using Python accessors: 

dataset[index] and len(dataset). Biom3d Dataset Modules are Pytorch Datasets 

(such as presented on Figure 3-12). A Pytorch Dataset can then be called by a Pytorch 

DataLoader which is a Python generator, shuffling the dataset and grouping dataset 

elements into batches. Pytorch DataLoader instances can thus be called in Python 

loops such as in a Biom3d Trainer Module: for batch, (images, masks) in 

enumerate(dataloader). As Biom3d utilizes Pytorch default DataLoader, the main 

contribution is the Dataset Module presented on Figure 3-15.  
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Figure 3-15 – Biom3d default Dataset Module for 3D segmentation. In the 

__init__ class function (purple), the CSV file is used to sort training images from 

validation images and the patch size is used to determine the parameters of the rotation 

transformation (rotation angle and rotation patch size, light yellow). In the 

__getitem__ class function (blue), one image and one mask are loaded into computer 

memory from their local folder. Those are then cropped in regions where foreground 

objects are located. If rotation augmentation is active, then the foreground crop is 

performed on a larger patch before being cropped a second time to discard unwanted 

empty regions in the four image corners. Another series of augmentations is finally 

applied to obtain a ready to use pair of image and mask patches.  

As data loading can be extremely slow for 3D images, Dataset Modules for 3D 

segmentation are often the bottleneck in training speed and must thus be thoroughly 

optimized. The __getitem__ class function of Biom3d is composed of three main 

steps: 

• Random selection and loading of a pair of image and mask. The candidate 

pair is loaded using adaptive_imread function and chosen among the 

preprocessed images and masks in either the training set or the validation set 

(the CSV file stores this information).  

• Foreground cropping is, with data-augmentation, the most important part of 

the data-loading process regarding model performance. It consists in centring 
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in the 3D patch one of the annotated objects (foreground objects). As in 

volumetric image the foreground-to-background volume ratio is small, the goal 

of foreground cropping is to “force” the model to see regions of interest. For 

computation speed improvement, the locations of the foreground objects are 

pre-computed and stored during preprocessing. During data-loading, one of the 

foreground locations is randomly selected and used to crop the whole image 

and mask.  For a significant boost in accuracy, it has been noticed that the 

foreground region should be located exactly in the middle of the patch (not 

randomly located in the patch). To present other image regions to the model, 

foreground cropping alternates with random cropping (randomly located 

patches). For another boost in performance, it has been noticed that there 

should be a fixed proportion between foreground and random cropping. For 

instance, with a batch size of 2, one of the pair of image and mask in the batch 

must consistently be a foreground crop while the other pair must be a random 

crop.  

• Data augmentation in the default Dataset Module of Biom3d is a fixed set of 

transformations, except for the rotation transformation for performance reasons 

(see Figure 3-15). Biom3d augmentations rely on TorchIO package, 

specifically designed for volumetric data-pipelines. Biom3d development 

started with a reproduction of nnU-Net augmentations, which rely on a custom 

library a little less intuitive to use than TorchIO (yet a little faster). After many 

attempts, mainly from random searches, Biom3d augmentations were both 

simplified and made more efficient than those of nnU-Net (see difference in 

Table 3-1).  

While developing Biom3d Dataset Module another important advantage of Biom3d 

modularity has been discovered and exploited. When trying to reproduce and/or 

optimize an existing piece of code, a parallel methodology is often employed: on one 

side, the existing piece of code is deconstructed and tested piece-by-piece to be 

understood and on the other side, novel and more optimized pieces of code are 

constructed. The difficulty of this process relies in making end meet: entirely 

deconstructing the code is often only partially possible and thus construction is limited 

to isolate only small pieces of code and not larger code sections. As Biom3d easily 

accepts alien code incorporation, the entire and original “Dataset Module” of nnU-Net 
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was also integrated as a usable Biom3d Module. Following this integration, a series of 

intermediate and hybrid Dataset Modules were developed and tested by simply 

changing a single line in the configuration file. The weak points of the prototype 

Dataset Modules were thus rapidly spotted and improved.  

Model Module.    The default Model Module of Biom3d is, as for nnU-Net, a dynamic 

3D U-Net which architecture is adapted automatically depending on the number of 

pooling determined during pre-processing. The number of pooling in the model is 

adapted to each dimension of the anisotropic patch size to avoid reducing the 

intermediate feature maps excessively. Biom3d also contains several Model Modules 

which have been adapted to anisotropic pooling: a 3D EfficientU-Net and a 3D HRNet. 

The later was also non-existent for 3D images and was thus created specifically as a 

Biom3d Module. Table 3-4 presents a comparison of these architectures. An additional 

Swin-UNETR [123] was recently added using MONAI implementation and is thus 

non-adaptative to the patch size.  

Table 3-4 – Comparison of model architectures on the Pancreas dataset. Trainings 

were all performed with 1000 epochs of 250 steps on a Nvidia A100 GPU. 

Model Encoder Dice score ↑ Training speed ↓ 

nnU-Net (official) 3D VGG-like 0.6620 10 hours 

nnU-Net (Biom3d) 3D VGG-like 0.6683 10 hours 

EfficientU-Net 

(Biom3d) 
3D EfficientNet-b4 0.6755 16 hours 

HRNet (Biom3d) 3D HRNet 0.6581 38 hours 

 

Callback Module.    One of the other originalities of Biom3d are Callback Modules 

which are inspired by best practices inherent in deep learning competitions. During 

training, several events occur at certain frequencies and at certain time points. For 

instance, in the end of each epoch the learning rate is decreased, to improve final 

accuracy, using a certain function, a polynomial decay used in nnU-Net: 

𝜂𝑐𝑢𝑟 = (𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛) (
1 − 𝑒𝑝𝑜𝑐ℎ𝑐𝑢𝑟

𝑒𝑝𝑜𝑐ℎ𝑚𝑎𝑥
)

𝛾

+ 𝜂𝑚𝑖𝑛 

where 𝜂𝑐𝑢𝑟, 𝜂𝑚𝑎𝑥 and 𝜂𝑚𝑖𝑛 are the new, the maximum and the minimum learning rate, 

𝑒𝑝𝑜𝑐ℎ𝑐𝑢𝑟 and 𝑒𝑝𝑜𝑐ℎ𝑚𝑎𝑥 are the index of current and maximum epoch and 𝛾 is the 
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reduction rate between 0 and 1. Instead of defining this formula into the training loop 

directly, it is within a so-called Callback Module. Callback Modules are Python classes 

inheriting from an abstract class which has 6 overloadable class functions, each 

corresponding to a different time point in the training loop (Figure 3-16).  This practice 

limits editions of the training loop and preserves strong modularity of the code. Many 

different learning rate functions were rapidly compared using this Callback 

methodology. Biom3d currently has 7 different types of Callback Modules (see Figure 

3-16). Aside from the learning rate functions, there are 4 Saver Callback Modules, 

saving training information in the end of each epoch, 1 Log Printer, displaying 

information in the user terminal, and 1 Metric Updater (see next Paragraph).  

 

Figure 3-16 – Callback Module principle. The whole training (top row, orange) is 

divided into epochs (green) themselves divided into batches (red). Callbacks are 

Python classes that can have one or more class-functions, each representing one of 6 

different time points (middle row). Biom3d currently has 7 types of Callback Modules 

(bottom row). 

Metric Module.    Metrics in Biom3d inherit from a parent class which inherits from 

Pytorch Module class and can thus be used as loss functions or as training and 

validation metrics. Biom3d Metrics have a name, a value and an average argument 

which allows to access to this argument any time during training. The Log Saver and 

Log Printer Callbacks for instance regularly interrogate these arguments to save or 
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display important information. The Metric Updater Callback regularly updates the 

metric average. 

Trainer Module.    Trainer Modules are loops that call the Dataset Module to pass 

training data to the Model Module. Model outputs and ground truths are then passed 

to the loss Metric Module to update the Model parameters using an optimizer. 

Callbacks are automatically called at different time points.  

Predictor Module and Postprocessor Module.   To use a trained model on a novel 

image, the Builder successfully calls 3 Modules: the Prediction Preprocessor (cf. first 

Paragraph), the Predictor and the Postprocessor. For 3D segmentation, the Predictor 

Module decomposes the preprocessed image into a grid of overlapping patches (using 

TorchIO Grid Sampler), then applies the model to each patch and finally compiles the 

resulting predictions into a single output. To improve model performance, this process 

is repeated 8 times on the 8 possible flipped version of the input image (test time 

augmentation). The 8 final outputs are then flipped back and averaged. The Predictor 

outputs the prediction logit which corresponds to the raw model output. To obtain the 

final mask prediction, the Postprocessor first resizes the output, if the input image was 

resized during preprocessing, then applies the activation function (sigmoid or softmax), 

and, eventually, applies the noise removal function (see Section 3.2). The Builder is 

finally in charge of saving the final mask along with the input image metadata using 

the adaptive_imsave function. If the user intends to use multi-model prediction, the 

current version of Biom3d applies the Predictor Module associated with each saved 

model (Biom3d modularity incorporates thus more than just the Model Module) before 

averaging the models’ predictions, post-processing and saving.  

 By offering a detailed description of Biom3d Modules, this Subsection not only 

aimed at opening boxes of Biom3d inner mechanisms but also at opening doors to 

invite and guide deep learning contributors to refactor and keep improving Biom3d. 

3.5.3 Modules’ potential 

Each of Biom3d Module is not only made to be exploited but also adapted, removed, 

renewed, broken, combined, etc. Biom3d is designed to be a platform for deep learning 

developers. To leverage existing works, Biom3d is also compatible with state-of-the-

art Python libraries to exploit existing implementations such as TorchIO or MONAI or 

the recent Segment Anything for Microscopy [169].  
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The default version of Biom3d is made for 3D Segmentation but the core concepts 

of the seven types of Modules is applicable to almost all deep learning algorithms and 

not limited to image analysis. Biom3d could be adapted to 2D images, to instance 

segmentation, to image generation, to object detection, or to image classification. With 

a bit more modification, Biom3d could also be applied to structured data, sounds, 

sequences, etc. It will be seen in next Chapter that Biom3d can for instance perform 

self-supervision, which involves image classification and image segmentation, on 3D 

images with only very little editions. 

Last, Biom3d is not limited to its predefined modular architecture. New Module 

types could also be defined. For example, in the course of this thesis, a script 

computing morphological quantities for 3D nucleus was developed to improve 

NucleusJ parameter computations, using complex computational geometry algorithms 

(Marching cube, Delaunay transformation, etc.). This post-post-processing, currently 

separated from Biom3d code, could easily be added to Biom3d as an optional plugin 

for interested users in the form of a new type of Module. 

3.6 Conclusion 

Reproducibility issues have already been pinpointed several times in the literature [40], 

[133], [162], [170], [171]. The review and benchmarking presented in Chapter 2 have 

promoted properly documented and open-access codes. Even if crucial, these 

requirements are yet minimalistic regarding code sustainability. To guarantee a 

software tool to be reused, two targeted audiences must be satisfied: end users and 

developers, the former to guarantee the software to be tested, used, and having 

feedback, and the later to maintain and improve it. Biom3d goes beyond this 

dichotomy by satisfying a continuum of users, from Non-Programmer to Deep 

Learning Developers. This was made possible by integrating Graphical User Interfaces 

and formatting the whole code architecture with modularity in mind on every level of 

detail.  

Authors’ Contribution – cf. Appendices. 
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Chapter 4  

Self-supervision of 3D segmentation methods  

4.1 First experiments  

Self-supervision has created a major buzz in the deep learning community, in the aim 

to leverage information contained in large-scale unannotated datasets to train large-

scale models. In the scope of this project, self-supervision could thus reduce the 

expensive need of manual annotations for the training of supervised deep learning 

models.  

For images, the main idea of current self-supervised learning methods is to build a 

coherent embedding space (and more generally a feature extractor). In deep learning 

theory, if the first layers of a deep learning model extract simple and local shapes and 

objects, the last layers extract complex and global concepts and abstractions. These 

last layers output vectors of short dimensions, the embedding vectors. The set of all 

possible embedding vectors is the embedding space. A “coherent” embedding space 

means that images looking “similar” (to a human point of view) must be associated in 

this space, by, for instance, having close embedding vectors, and inversely for images 

looking different (Figure 4-1).  

 

Figure 4-1 – Self-supervision applied to 3D segmentation. Self-supervision for 

images is a two-step process: (1) pretraining on the pretext task (left), a triplet task in 

this case, and (2) retraining on the downstream task (right), the segmentation task. The 

pretraining is only done on the encoder (left, red ellipse) which will be then integrated 
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into the U-Net model (right, red ellipse). For the triplet pretext task, the embedding 

vectors of two augmentations of one image (left, first two rows) are intended to be 

identical while different from any other image (left, last row). Left illustration adapted 

from [165] and right illustration adapted from [58]. 

Self-supervision for images is currently achieved by two main categories of pretext 

tasks [172]: 

• For encoder-decoder approaches, the model must output an image identical 

to the input image. The embedding space is a bottleneck in the model 

intermediate outputs (feature maps) and is constructed automatically during 

training. The historically well-known auto-encoder method is based on this 

principle [173], as well as the more recent masked auto-encoder (MAE) 

methods [174] exploiting Vision Transformers, or distillations methods also 

having demonstrated impressive results in image generation such as Stable 

Diffusion [175]. Other examples of encoder-decoder approaches are filling 

artificial holes in input images or, inversely, removing artificial artefacts. Once 

pretrained with encoder-decoder approaches, only the model encoder is kept 

performing retraining, the decoder being discarded. 

• For encoder-only approaches, the model must output identical embedding 

vectors given several augmented views of an input image. This is the base 

principle of methods based on Siamese approaches such as SimCLRv2 [176] 

and methods involving a “student” and a “teacher” model, the former distilling 

knowledge into the later via exponential moving average updates, such as 

BYOL [177] or DINO [161]. Other examples of encoder-only pretext tasks are 

solving jigsaw puzzles or determining the angles of an image rotation. 

In 2020, at the beginning of this PhD project, only preliminary work existed on self-

supervised methods for 3D segmentation, with applications mostly in medical fields. 

The pioneer work of Taleb et al. [165] for instance, explored the application of 5 

different encoder-only pretext tasks in order to improve performance on their 

downstream task, the 3D segmentation of pancreas images (see next Section). More 

recently Model Genesis [178] and CLIP [88] encoder-decoder approaches, combined 

several medical dataset and also, for the CLIP approach, several data modalities (image 

and text). Finally, some methods leverage both encoder-decoder and encoder-only 
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approaches simultaneously, such as Swin-UNETR [179] or DiRA [180]. A 

continuously updated review of existing self-supervised methods for medical imaging 

can be found here: https://github.com/HiLab-git/SSL4MIS. 

To the extent of the bibliographical research done during this project, no publications 

have extensively focused on 3D biological data. For this reason, and as biologists can 

now easily and quickly produce large amounts of unannotated data, self-supervised 

learning was a promising direction to pursue. 

Two interns, Adama Nana in 2022 and Abderrahime Tizi in 2023, have started the 

exploration of Model Genesis and Swin-UNETR approaches respectively. Adama had 

to install Model Genesis in a Docker container. On the Nucleus, Pancreas and Lung 

datasets, pretraining with Model Genesis methodology resulted in a gain in 

performance on the Lung dataset only (Table 4-1). It is worth noting that Model 

Genesis also requires a long pretraining (five times longer than the retraining). As it 

only brought inconsistent results, this method was set aside. 

Table 4-1 – Performance of Model Genesis. The first two rows give training and 

testing dataset statistics. The last three rows give the Dice scores of each method on 

the testing set after being trained (or retrained for Model Genesis) on the training set. 

Method Lung dataset Pancreas dataset 

Training set (20%) 12 images 53 images 

Testing set (25%) 16 images 71 images 

nnU-Net 0.498593 0.662048 

Biom3d 0.542248 0.668316 

Model Genesis 0.561012 0.660318 

 

Subsequently, Swin-UNETR methodology was integrated into the modular 

architecture of Biom3d. Abderrahime directly tried to pretrain Swin-UNETR on a 

custom unannotated dataset of 2000 3D nuclei before retraining it on the benchmark 

dataset of nuclei which resulted in an insignificant improvement when compared to 

the supervised baseline. He unsuccessfully tried to use the official implementation of 

Swin-UNETR. He then tried to progressively reduce the number of annotated images 

in the nuclei dataset to check if the pretraining was not saturating as self-supervised 

https://github.com/HiLab-git/SSL4MIS
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pretraining was proven to be interesting only in data-scarce situations. Abderrahime 

had only the time to draw a supervised baseline comparing Biom3d and nnU-Net 

(Figure 4-2). In the future, this work should be completed with self-supervised 

methods. It can be observed that with only 2 images the training already performs well 

(>82%) and that the training accuracy rapidly saturates with only 16 annotations.  

 

Figure 4-2 – Preliminary comparison between Biom3d (orange) and nnU-Net 

(blue). The Dice scores are obtained using the same testing set while training on set 

training sets of increasing sizes (2, 4, 8, 16, 32 and 65 images). The curves drop down 

between 2 and 4 images probably due to bad annotations. 

4.2 Adventures in adapting existing work 

In parallel to the previous experiments, thorough experiments were undertaken on two 

of the previously mentioned publications: [165] and [161]. As one potential weak point 

of the method discussed above is the Pancreas dataset, the methods discussed below 

will be evaluated on this dataset, and, eventually, on the Nucleus dataset to also have 

a biological dataset.  

4.2.1 Quest to improve the work of Taleb et al. 

The work of Taleb et al. demonstrated an impressive increase of more than 30% of 

their Dice score on their Pancreas dataset, passing from 42% to 75%, using a self-

supervised model pretrained on the whole dataset and then retraining it on 10% of the 

annotated images. Comparatively, their supervised model required 6 times more 

annotation to reach a Dice score of 75%, meaning that self-supervised learning could 

potentially divide the number of required handmade annotations by 6. 
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Setting aside the numerous bugs appearing during method installation (bug fixes 

required Docker) and testing, the pretext task called “Relative 3D patch location” 

(RPL) delivered promising results among the 5 proposed pretext tasks. Training and 

testing in this reutilization were performed directly on the Nucleus dataset. As their 

method only works with cubic images of size (128,128,128), every image was resized 

using 100% of the unannotated images for pretraining and, successively 10% and 25% 

of the segmentation annotations for retraining. The RPL method gave an impressive 

gain in accuracy of 20% and 10% respectively on the testing set (Figure 4-3).  

 

Figure 4-3 – Region 3D patch location method of Taleb et al. applied on the testing 

set of the Nucleus dataset. Supervised training consists in training on the 10% (or 

25%) of the training set and then evaluating on the testing set. Self-supervised training 

consists in pretraining on 100% of the unannotated training set, retraining on 10% (or 

25%) and testing on the testing set. Each dot represents one reproduction of the 

experiment and the average Dice score obtained on the testing set for this experiment.  

These experiments were all performed using Taleb et al. implementation. Afterwards, 

their methodology was integrated into Biom3d framework, and the same experiments 

were performed. Unfortunately, this only revealed important gaps in Taleb et al. 

methodology when training a supervised model. Indeed, and very surprisingly, the 

performances of the supervised model of Biom3d (in a prototype version at that time) 

matches the ones of the self-supervised model (55% for 10% annotation and 63% for 

25%). After exploring the Taleb et al. code, it was noticed that they used less epochs 
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to train their supervised model than to retrain their self-supervised one. Additionally, 

their data-pipeline is probably under-optimized, specifically their data augmentation 

procedure. Thus, in their code configuration, self-supervising probably simply 

replaced the role of data-augmentation. Finally, the limitation to small cubic images of 

fixed size is another important limiting factor of Taleb et al.’s work.  

To conclude, even though they provided almost all required elements (except the 

dataset) to guarantee that their results to be reproduced, the weaknesses of their 

implementation only appear when trying to recode it. Taleb et al. should be thus more 

viewed as a proposition of novel ideas than a concretely reusable method.  

4.2.2 Defeating the DINO 

Another promising candidate in the burgeoning world of self-supervision emerged in 

2021: DINO [161]. Even more than Taleb et al. methods, the DINO method belongs 

to fundamental research in computer vision, as, in its raw version, it is only applicable 

to 2D images of daily life objects. This method, very similar to BYOL [177], consists 

in training simultaneously two classification models: a “student” model and a 

“teacher” model. For one input image, the student model is trained using both large 

(global) and small (local) image patches that are resized to the same size and randomly 

augmented, while only global patches are passed to the teacher model. The student 

model parameters are then updated with a cross-entropy loss between its embedding 

vector outputs and the teacher outputs. For crops coming from identical images, the 

cross-entropy loss pushes the student model to output embedding vectors like those of 

the teacher model. The teacher model parameters 𝑡𝑖 at iteration 𝑖 are updated using the 

student model parameters 𝑠𝑖 and the exponential moving average formula: 𝑡𝑖+1 =

𝛼𝑡𝑖 + (1 − 𝛼)𝑠𝑖. The originality of DINO is that the teacher output is centred 

(subtracted with a moving average centre value) and sharpened (divided by a user 

defined value called temperature). This originality supposedly guarantees a better 

training stability. Indeed, when training with such a self-supervised methodology two 

undesirable events, called collapses, can happen: 

• Centring collapse appears when all embedding vectors are uniform, 

independently from the input. Sharpening should counteract it. 

• Sharpening collapse appears when only a single dimension of the embedding 

vectors is dominant. Centring should prevent it. 
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A balance should thus be found, unfortunately manually, to guarantee training proper 

convergence. A way to check if one of the two collapses occurs is to monitor the 

teacher entropy and Kullback-Leibler (KL) divergence, the teacher cross-entropy 

being the sum of these two terms. The KL-divergence being zero represents a collapse, 

a centring collapse if the teacher entropy is a non-zero constant and a sharpening 

collapse if it is zero. 

Application to 3D images.    For biological and medical application, DINO also stood 

out because it should require smaller batch size than other self-supervised methods. 

SwAV [181], for instance, its predecessor, required a batch size of 65000 images, 

which is almost impossible to handle with 3D images.  

DINO was integrated in Biom3d framework. DINO originally relies on 2D 

Transformer Models but was supposed to work also with CNN models. The Biom3d 

base-encoder model was thus upgraded with the DINO “head”, a few dense layers in 

the end of the model allowing embedding vector output. The “teacher” and “student” 

model paradigm was compatible with Biom3d as it originally accepts lists of models. 

The DINO loss function and trainer was integrated among Biom3d Metric and Trainer 

Modules. The LARS optimizer was added to the Builder Module. Finally, a new 

Dataset Module, derived from the base one, was created. Most of the development was 

spent adapting the Dataset Module to 3D images. Indeed, DINO required local patches 

to intersect with global patches. In 2D images, selecting randomly a global patch with 

a size ranging between 0.4 and 1.0 time the image size is sufficient to be sure to capture 

enough information so when randomly selecting a local patch the model will be able 

to understand that these two come from the same image. In 3D biomedical images, due 

to the nature of the observed objects, following such a strategy will not work. It would 

be very hard (if not impossible) to tell if two non-intersecting patches originate from 

the same image. A new patching methodology called SmartPatch guaranteeing patch 

intersection was thus integrated into the DINO Dataset Module of Biom3d (Figure 

4-4). With the help of new Biom3d Callbacks, SmartPatch also offers the possibility 

to finely and dynamically control the intersection level and the two patch sizes during 

training. 
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Figure 4-4 – SmartPatch methodology. The plain squares represent the image, the 

dashed blue squares represent the global patches, and the dashed red squares represent 

the local patches. When the training starts (left) the global patch encompasses almost 

the entire image volume and intersect with the local patch. During training the global 

patch size and the intersection constraint are slowly reduced. In the training end (right), 

the global and local patch have the exact same size and are selected randomly in the 

image.  

So began a long list of experiments to find an appropriate set of hyper-parameters 

allowing training convergence and avoiding collapse. This journey started with the 

default hyper-parameters of DINO applied on the Nucleus dataset and on the Pancreas 

dataset, and was carried on with many adjustments involving all the aforementioned 

hyper-parameters (embedding vector dimension, loss temperatures, patch size, model 

head, optimizer parameters, etc.) and more (training “warmups”, etc.). It ended with 

the results displayed on Figure 4-5.   
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Figure 4-5 – DINO results on the Pancreas dataset. (A) Example of training loss 

(left), entropy (middle), and KL-divergence (right). DINO loss first converges 

before diverging (without collapsing as the KL-divergence raises). (B) Principal 

Component Analysis of the embedding vectors of a model trained with DINO. 

Dots with identical colours represents different patches of the same image and should 

normally form clusters. This is an example of sharpening collapse as only one 

dimension is dominant (x-axis). (C) Comparison of a DINO pretrained encoder and 

a randomly initialized encoder. The first row corresponds to a standard segmentation 

training with a full U-Net model. For the last two rows, the encoder is frozen 

(untrained), meaning that only the decoder is trained. A randomly initialized encoder 

performed better than a pretrained encoder with DINO.  

To conclude, the DINO training method was very difficult to handle to make the loss 

converge. Self-supervised pretraining is also complicated as, during pretraining (which 

can be very long or computationally expensive), only the training curves can be 

monitored. It is necessary to wait for the completion of the retraining to note an 

eventual improvement. Additionally, even when the training curves looked correct, the 

embedding vectors were not arranged properly (cf. PCA on Figure 4-5-B). Finally, it 

was noticed that a randomly initialized U-Net with a frozen encoder (left untouched 

during training, Figure 4-5-C) already performed well on the Pancreas Dataset and that 

a frozen encoder pretrained with DINO performed worse. DINO, yet promising, was 

abandoned for the rest of this thesis. For further investigations going beyond the scope 

of this work, DINO is left integrated as part of Biom3d Modules. 
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4.3 Self-supervising a full 3D U-Net with triplet and angular 

losses 

Not to completely give up on self-supervision, it was decided to carry on the 

exploration based on two important observations obtained from previous explorations: 

• The decoder plays a significant role in feature extraction in the U-Net model. 

Further investigations departing from Table C in Figure 4-5 showed that a U-

Net model with a frozen encoder can reach a Dice score of 0.5784 on the 

Pancreas Dataset against 0.7483 for a fully trained U-Net. In this configuration, 

it means that training the encoder, only brings an improvement of 17% on the 

final score. It implies first that the current encoder is limited. Indeed, as shown 

in Table 3-4, changing the encoder to a more complex architecture can improve 

the final accuracy by 1%. Second, it also implies that incorporating the decoder 

in the pretraining task could be a good direction of research.  

• The complex DINO methodology (or others originating from fundamental 

research in computer vision) is very difficult to handle. Simpler, more 

understandable pretraining methods might be better starting points for 3D 

imaging. 

 

Figure 4-6 – Triplet loss applied to 3D images. This loss minimizes the distance 

between embedding vectors of two augmented views of the same image (anchor, 

positive) and increases the distance from other images (negative). Illustration adapted 

from [182]. 

Triplet loss.    The first goal was thus to create a simple pretraining loss and to carefully 

check if this loss can build a coherent embedding space. Probably the simplest possible 
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pretraining loss is the Triplet loss [182] (Figure 4-1-C and Figure 4-6) which is defined 

by the following formula: 

𝐿(𝑣𝑎𝑛𝑐 , 𝑣𝑝𝑜𝑠, 𝑣𝑛𝑒𝑔) = max (0, ‖𝑣𝑎𝑛𝑐 − 𝑣𝑝𝑜𝑠‖
2

+ 𝛼 − ‖𝑣𝑎𝑛𝑐 − 𝑣𝑛𝑒𝑔‖
2

) 

Where 𝑣𝑎𝑛𝑐 and 𝑣𝑝𝑜𝑠 are the embedding vectors of two views of the same image (or 

the same individual) and 𝑣𝑛𝑒𝑔 is the embedding vector of a view of another image (or 

another individual). The parameter 𝛼, generally equal to 0.2, controls the minimal 

margin that the model must generate between the two distances ‖𝑣𝑎𝑛𝑐 − 𝑣𝑝𝑜𝑠‖
2
 and 

‖𝑣𝑎𝑛𝑐 − 𝑣𝑛𝑒𝑔‖
2
. This loss thus brings together 𝑣𝑎𝑛𝑐 and 𝑣𝑝𝑜𝑠 while pushing away 𝑣𝑛𝑒𝑔.  

For this thesis project, applying the Triplet loss to 3D images was made possible by 

the SmartPatch method which was added to a new Triplet Dataset Module in Biom3d. 

After several adjustments, two successful experiments, departing from those made 

with DINO on Figure 4-5, finally confirmed that the Triplet loss was working: the 

Principal Component Analysis done on the embedding space (Figure 4-7-A) and the 

retraining of a U-Net model with a frozen encoder (Figure 4-7-B). However, when 

retraining the Triplet pretrained model on the Pancreas segmentation dataset, the test 

set accuracy stayed at the supervised level (Table 4-2-Exp2). 

 

Figure 4-7 – Triplet loss preliminary results on the Pancreas dataset. (A) Principal 

Component Analysis of the embedding vectors of a pretrained encoder. Each colour 

represents embedding vectors of patches coming from the same image. The Triplet 

loss trained the model to form appropriate clusters. (B) Evaluation of the Triplet 

pretraining performance on segmentation with a frozen (untrained) encoder. The 

Triplet method is better than the random baseline.  
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Pretraining the full encoder-decoder.    As discussed earlier, the decoder is a good 

feature extractor and including it in the pretraining task could potentially improve the 

model accuracy on the segmentation task. This idea is another originality of this thesis: 

to use the entire U-Net model (an encoder-decoder) with an encoder-only pretraining 

approach. This contribution also clearly departs from the encoder-decoder methods 

described earlier because the decoder will not be discarded in the end of the pretraining 

and will be reused as is during retraining. Figure 4-8-A illustrates the encoder-decoder 

pretraining with the Triplet loss and 3D images. To limit the size of the output only the 

antepenultimate layer of the decoder is considered. On the Pancreas dataset, this new 

methodology finally overpassed the supervised baseline by a significant margin (Table 

4-2-Exp3). 

 

Figure 4-8 – Pretraining an encoder-decoder on 3D images with (A) the Triplet 

loss and (B) the Arcface loss. From left to right: the original images are first patched 

and resized using SmartPatch and augmented. All patches are then passed to the 

encoder-decoder. The encoder-decoder output is flattened and passed through a Multi-

Layer Perceptron (MLP). For the Triplet loss (A), the embedding vector (𝑥𝑖) is 

normalized and given to the loss function. For the Arcface loss (B), the embedding 

vector is projected in the space spanned by the last layer parameters to retrieve its 

angle, an angular penalty is added, and the cross-entropy function is applied.  

Table 4-2 – Summary of the main results of the Triplet and Arcface pretraining 

methods on the Pancreas dataset. The Dice score (right column) are segmentation 
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results obtained on the test set of the Pancreas dataset. The first line (Exp1) is the 

supervised baseline (no pretraining). The last three lines (Exp2-4) are pretrained, 

retrained and tested on the the Pancreas dataset. The second line (Exp2) is a pretraining 

of the encoder only with the Triplet loss. The third line (Exp3) is a pretraining of the 

U-Net encoder and decoder with the Triplet loss and the fourth line (Exp4) with 

Arcface loss.  

Experience 

index 

Pretraining model Pretraining loss Pretraining time  

GPU Nvidia A100 

(in minutes) 

Dice score  

 

Exp1 None  None  0 0.6683 

Exp2 3D VGG-like Triplet 415 0.6633 

Exp3 3D U-Net Triplet 1230 0.6867 

Exp4 3D U-Net Arcface 553 0.6843 

 

Arcface loss.    As for the Triplet loss, the Arcface loss [183] originates from face 

recognition problems. It is an improvement of the cross-entropy loss frequently used 

in classification problems. In this self-supervised context, each training image is 

assigned with a different class. The normalized embedding vector is the penultimate 

output (Figure 4-8-B). The last layer parameters are normalized and thus serve as a 

projection space and an intermediate before classification (softmax). This will let the 

model generalize properly and be able to construct a coherent embedding space for 

both seen (training) and unseen (testing) images. The Arcface loss can be written as 

follows: 

𝐿(𝜃) =  − log (
𝑒𝑠 𝑐𝑜𝑠(𝜃𝑦+𝑚)

𝑒𝑠 𝑐𝑜𝑠(𝜃𝑦+𝑚) + ∑ 𝑒𝑠 𝑐𝑜𝑠(𝜃𝑗)𝑛
𝑗=1,𝑗≠𝑦

) 

where 𝜃 = acos (𝑣), 𝑣 being the output of the last layer, 𝜃𝑦 is the element of index 

𝑦 ∈ ⟦1, 𝑛⟧ of the vector 𝜃 and 𝑛 is the number of classes (typically the number of 

images in the pretraining dataset). The hyper-parameters 𝑠 and 𝑚 improve the inter-

class and intra-class distribution of the embedding vectors and must be carefully 

chosen. On the Pancreas dataset, the Arcface pretraining of the encoder-decoder model 

did not improve the Triplet loss pretraining results but divided by more than 2 the 

pretraining time (Table 4-2-Exp4).  
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4.4 Conclusion 

Arcface pretraining could thus be the best self-supervised candidate among all tested 

methods for 3D image segmentation. Indeed, in the scope of this thesis, existing self-

supervised works such as Model Genesis, Taleb’s methods and DINO were 

unfortunately not able to overpass supervised methods. While being a good candidate, 

Arcface has yet several constraints to pay attention to: 

• Loss diverges to “NaN” (Not a Number). This issue is generally caused by the 

cross-entropy loss which can encourage last layers to raise their parameters 

beyond the bounds of half-precision floating-point format (float16, ±65504). 

This can be solved by either switching to single-precision (float32), but training 

may slow down, or normalizing each intermediate outputs, but the training may 

collapse to constant. 

• Constant collapse, like DINO, happens when all embedding vectors are equal. 

The loss value then collapses to − log (
1

1+𝑛 𝑒𝑠(1−𝑐𝑜𝑠(𝑚))). Adjusting 𝑠 and 𝑚 

value can solve this issue but might be time-consuming. Changing the type of 

layer normalization (from layer normalization to batch normalization) can also 

be a solution. 

• Training divergences happens when the loss progressively goes up to infinity 

(instead of going down to zero). If augmentation is used, deactivating it could 

solve this issue. Complexifying the model architecture (switching to an 

EfficientU-Net) did not show any improvement. This issue is still an open 

problem. 

• Over-pretraining occurs when the pretraining is performed for too long. 

Training with the Arcface method (or the Triplet method) for 2000 epochs 

instead of 1000 on the Pancreas dataset surprisingly gives back the supervised 

accuracy (Dice score of 0.66). This problem is another open problem, and no 

existing publication was found tackling it. 

Due to all these constraints, the research results done during this thesis would 

encourage to first try to use the Triplet loss before switching to the more optimized 

Arcface loss. 

The modular architecture of Biom3d has strongly facilitated the experiments of this 

Chapter with self-supervised methods. However, partly due to the very performant 
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supervised baseline of Biom3d, it showed that the self-supervised methods have an 

existing but only limited improvement ability for 3D segmentation. These experiments 

thus raised lots of novel questions: 

• Does the Triplet/Arcface self-supervision of a full U-Net work with other 3D 

datasets? 

• Why does SmartPatch work so well? And what is the best SmartPatch strategy? 

• If the decoder is so good at extracting features from a random encoder, is it 

possible to imagine a decoder-only model? 

• Could a better architecture (Vision Transformer, etc.) perform as well with 

Triplet/Arcface self-supervision? 

• The testing set is currently part of the pretraining set. Does the final accuracy 

change if it was not the case? 

• Could it be good to pretrain on a dataset full of a large variety of 3D images 

and objects? 

• Retraining partially erases the pretrained parameters, how to handle this 

oblivion phenomenon? By progressively unfreezing model weights? By using 

knowledge distillation? Continual learning is the deep learning subdomain 

studying this issue. Or by using semi-supervised learning?  

Authors’ contributions – cf. Appendices. 
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Chapter 5  

Discussion 

This Chapter will first return to the conclusions of Chapters 2 to 4 and discusses the 

numerous potential research directions opened during this thesis. The discussion will 

then look at the bigger implications and choices behind this research project. 

5.1 About this work 

This work originated from several biological questions on nuclear and chromatin 

morphologies and their relationship with gene expression. These questions led 

biologists to use microscopy to capture tridimensional images. To retrieve quantitative 

and statistical information, they exploited classical computer vision software, such as 

Fiji/ImageJ, to segment their images. However, this type of software reached its limit 

when facing the complexity and variability of nucleus and chromocentre shapes in A. 

thaliana.  

The numerous promises brought by the novelty of deep learning methods were yet 

dulled by an important lack of reproducibility, as illustrated in the review generated as 

part of the work in this thesis [40] and the benchmarking presented in Chapter 2 where 

only nnU-Net stood out as sufficiently well designed to be useable. 

With easy-of-use, modularity and sustainability in mind, a novel deep learning 

framework called Biom3d was developed during this project and exposed in Chapter 

3. Being easy-to-use, Biom3d was successfully used by biologists and solved the initial 

nucleus and the chromocentre problems. Being flexible and optimized, Biom3d also 

overpassed the cutting-edge performance of nnU-Net on a wide variety of biological 

and medical problems. With its modular code architecture, Biom3d is not just another 

methods but a platform, such as Fiji/ImageJ, that aims to be sustainable and compatible 

with all recent innovations in deep learning. 

Standard deep learning methods are unfortunately limited by their need of manually 

annotated dataset. Self-supervision aimed at tackling this issue by pretraining models 

on large unannotated dataset to extract information from the data before being 

retrained on the task of interest. Thanks to Biom3d modularity, a set of self-supervised 
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method were rapidly tested in Chapter 4. Among those, the newly created Triplet and 

Arcface methodologies trained, in an original way, on a full U-Net model showed 

significant improvements.  

Deeply tinged with an interdisciplinary colour, the tools developed during the last three 

years (Biom3d framework and modules as well as self-supervised experiments) serve 

and will serve the two teams of biologists involved in this project. They will help them 

rapidly achieve the previously unreachable goal of precisely analysing large scale 

dataset of 3D image in a very short amount of time. With words of mouth and 

publications, these tools may even spread out and serve a larger audience. Ultimately, 

future developers may be interested in using pieces of code, be inspired by pieces of 

coding philosophy, or hopefully, be motivated by interdisciplinary research projects. 

5.1.1 Reusing deep learning methods 

In addition to the work done in Chapter 2, the lack of reproducibility of AI methods 

has been pinpointed by many and is an annual subject of publication. Nature methods 

journal, for instance, publishes an article on the topic every two years [162], [170], 

[171], the latest also stressing the fundamental importance of interdisciplinary work.  

To bring the discussion further than code reproducibility, this thesis has introduced the 

notion of code sustainability. Too little effort and too little value is devoted to ensuring 

that code lasts over time, which is directly linked to code reusability by the largest 

possible community, including both end users and developers. Nature methods critics 

are mainly directed toward the scientific communities that do not publish their code or 

their data. In parallel, it, and other high ranked journals, put on a pedestal the novelty 

and the theoretical performance of published tools, as well as their illustrative 

biological and medical applications. However, they tend to ignore indispensable 

engineering contributions, which are neither a revolutionary “deep learning” method 

nor a novel graphical user interface, but the way the software is intelligently developed 

and organized on every scale level. The value of fundamental software engineering 

concepts, as was already conceptualized in the 90’s with books such as Design Pattern 

[184] or Code Complete [185] , should be further promoted. More generally, and as 

already understood by industries and companies, researchers and journals could give 

more credit to the smart and simple design of a tools rather than how (complicated) 

they look or how they efficiently solve one very specific problem. To give a biological 
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parallel, sequencing companies will probably give as much (if not more) credit to a 

contribution significantly optimizing an RNASeq protocol as the invention of a novel 

sequencing technique.  

5.1.2 Biom3d perspectives 

Chapter 3 presented Biom3d, a deep learning implementation of a 3D segmentation 

method, furnished with numerous software engineering contributions. It was 

developed with the hope of fostering good code practices and easing the use and the 

enhancement of deep learning methods for 3D images.  

This code, as many others, is currently in the hand of too few people to be safe from 

oblivion. Yet, its development has been constantly and strongly supported by its small 

user community. It could thus be a significant plus to integrate it in well-known tools 

such as ZeroCostDL4Mic framework, Bioimage.io website, or as a new napari plugin. 

Finally, Biom3d modularity could also offer a large panel of possible modules: 2D U-

Net, instance segmentation (with Cellpose or Stardist for instance), object 

classification and detection, active learning etc. 

5.1.3 Future of methods for insufficiently annotated datasets 

By progressively enlarging the scope of research of Chapter 4, it is easy to imagine 

plenty of potential research directions: 

• Is it possible to generalize the Triplet/Arcface losses with an “Augmentation” 

loss where the pretraining task consists in guessing the random augmentation 

applied to input image? 

• Can adversarial learning (from generative method) be a good semi-supervised 

approach? (Figure 5-1) 
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Figure 5-1 – Idea of adversarial semi-supervised learning for 3D images. A large 

set of unannotated images (left) is passed to a U-Net model. The output (middle) is 

then compared to a set of annotations (top) using a discriminator network and the 

Generative Adversarial [147] training paradigms (right). If an annotation corresponds 

to a raw image, it is used to guide the U-Net training (bottom).  

• Are diffusion methods, performant methods combining U-Net with Attention 

layers, promising methods? Using a similar approach, “Universal Model” [88], 

for instance, managed to incorporate text in the U-Net training to guide the 

model on very large segmentation datasets. A single model could thus be very 

performant on all Medical Segmentation Decathlon tasks.   

• Now that deep learning models can generalize better while getting bigger, they 

are more difficult to train, requiring to store Petabytes of data and Teraflops of 

computation power. Is mutualization a possibility? Is it better than a set of 

mutualized models? Can large model be fused (instead of sharing dataset) or 

partially trained by different teams (each team training only one section of the 

model)? Is an online equivalent of “ChatGPT” possible for bioimage analysts? 

Meta group has recently released Segment Anything [101] a “foundation” 

model for segmentation (they did not release their training code yet) which was 

soon adapted to 2D and 3D microscopy [169]. Does this type of active learning 

method represent the future of AI and image analysis? 
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5.2 A bigger and bigger picture 

Maybe unconventionally, as I believe that such a PhD project was inevitably 

influenced by human minds and beliefs, I would like to end this thesis with a more 

personal-philosophical note and to step back to look at the even bigger picture (which 

is quite ironic for an image analysis thesis) in which is framed this work.  

5.2.1 An interdisciplinary experience 

On a local scale, I would like to come back to the choice that was offered to me when 

I started. Either I followed the path of what seemed to be the path of hundreds of 

engineers before me and played the role of an external actor, looking at biology and 

microscopy from a distant and critical point of view. Or I tried to dive headfirst into 

the marvelous but chaotic world of biology and be part of it. I would thus take the risk 

to be alone, and less advised on the technical side, but free and in adequacy with my 

belief that interdisciplinarity has the potential to bridge gaps between two, or more, 

giant domains in fundamental research. I followed the second path, and it determined 

many, if not all, subsequent choices made during this work.  

I had to face a lot of challenges along the way. I had to constantly find a balance 

between three worlds: one full of mathematical abstraction, one full of theoretical and 

practical physics, and the last full of complex chemistry and mechanics. I had to exploit 

existing tools as much as I had to explore new horizons. I had to split my mind and my 

schedule between directing the project and executing it, while (too) often questioning 

myself on the way I should think. 

From my current point of view, microscopy images are not intangible objects anymore. 

I know now, to a certain extent, the degree of flexibility that can have biologists and 

microscopists to generate their images and so I can participate in a debate to guide 

them to make the best of their images. More obviously, I am also not considering 

software and computer science tools as immovable, as I know existing tools, and to 

what extent I can use, adapt, and create them to generate exploitable results. This thesis 

was punctuated with countless scientific exchanges and my biologist advisors might, 

hopefully, now have a deeper point of view on the realistic possibilities given by 

computer science. These challenges and experiences of constant mutual learning and 

teaching were well worth the risks of my initial choice.  
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5.2.2 AI and its environment, a paradox? 

On a more global scale, the notion of “code sustainability”, previously introduced, 

inevitably set this code and, more generally, this project in the human society network, 

its current environmental situation, and consequently in its political frame.  

In matter of figures, this whole thesis project had a very small energetical impact. 

Its entire development required 7000 GPU hours distributed in three years. These 

GPUs needed 350W to work which means that 2.45MWh of energy was required in 

total, approximately as much as the energy necessary to build them 

(http://ecoinfo.cnrs.fr/), or the energy generated by an average wind turbine for one 

hour. In comparison, the single GPT-3 model requires 1297MWh to train, using 3.5 

million GPU hours.   

“Sustainable” is obviously relative to a political point of view: for some, it means 

20 years, for others 1000 years. Biom3d in its current form was created to last as long 

as possible but will, very probably, not last 20 years. Yet, with its modular design, 

Biom3d is a platform with a great potential of evolution. Like ImageJ, originally 

designed to measure Southern blot gels, Biom3d may one day falls into the hands of 

many innovative developers and evolve in a direction that was not initially intended to 

be pursued. Additionally, as some other programs such as the Framasoft suite 

(https://framasoft.org/en/), it might also distil in the mind of some the ideas and the 

hope of building meaningful, sustainable, and ethical tools.  

This is especially true for AI tools which are part of a highly competitive world 

where most of the main actors are motivated by fame, money, or power. The GAFAM 

are almost exclusively making profit using their finely adjusted (and private) 

recommendation algorithms (In 2022, the Facebook app generated a net revenue of 

20$ per active user [186], by only using targeted advertising). Banks and private 

companies are also extensively exploiting AI bots to automate their transactions 

(trading, etc.) or their workforce (labour replacement, etc.). Finally, human moral can 

also be deeply endangered when AI is used uncontrollably by domains such as health 

insurances (search history, connected watch, etc.), surveillance systems (camera, text 

messages, etc.), justice or governments (recommendation algorithms during decisions 

or elections, etc.). Autonomous vehicles, face recognition, biological analysis, medical 

http://ecoinfo.cnrs.fr/
https://framasoft.org/en/
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diagnosis, robotics or even ChatGPT are probably just one small visible tip of the 

AIceberg.  

AI tools have a short life cycle which seems to be shrinking every year, at a rate 

proportional to the speed of innovation growth. It might be symptomatic of a strong 

rebound effect. Should science, the very domain of human knowledge that raised red 

flags regarding exponential growth in a finite world, keep moving faster and faster? Is 

it to find innovative solutions more quickly to the problems caused by the too rapid 

evolution of human society? Isn’t there a paradox?  

Probably, yet, I believe that the destiny of AI is certainly not doomed and can be 

part of a degrowing and more ethical society. And I am not alone. Shaken by many 

rebelling movements (Scientist Rebellion, Les Soulèvement de la Terre, etc.), a 

constantly growing number of computer scientists have recently decided to act through 

“think tanks” (The Shift Project, Institut du Numérique Responsable, etc.), through 

associations (Institut Momentum, La Fabrique des Questions Simples, etc.), through 

novel media (GreenIT etc.), through initiatives (Planet Tech’Care, etc.), through 

companies (Carbone4, Convention des Entreprises pour le Climat), or through their 

own research (UMR-EspaceDEV, GDR-Labo1point5, etc.). Pushed, national 

governances are now reacting with new research grants (ANR-MITI-Frugalité) and 

ministerial missions (MiNumEco, Ademe). Last but not least, the UNESCO has made 

AI ethics and AI sustainability one of its main objectives 

(https://www.unesco.org/en/artificial-intelligence).  

Degrowth is more than a need, it is inevitable, but it does not mean that human 

society should give up on its innovations and notably on some of its largest networks 

or industries, as often scale effect creates very optimized systems. Wise choices will 

have to be made, and I believe that researchers can and already have an important role 

to play as both advisors and actors. They will soon be confronted with the world of 

handymen who must innovate with tools and materials unsuited to their project. These 

unavoidable constraints will bring scientists closer and closer to the ground of society 

realities and political actions. The very ontology of research, its Dasein, must be 

rebuilt. And I believe in human mind to achieve it.  

  

https://www.unesco.org/en/artificial-intelligence
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Appendices 

Availability of datasets and tools 

• The benchmarking dataset is available on the public OMERO server hosted by 

Florida State University and created during the INDEPTH project funded by 

the COST Actions program. Server address: https://omero.bio.fsu.edu/

webclient/?show=project-2801  

• The benchmarking code is available on GitHub: https://github.com/

GuillaumeMougeot/nuclei_benchmark  

• Biom3d is available on GitHub: https://github.com/GuillaumeMougeot/

biom3d 

• Biom3d documentation is hosted by ReadTheDocs website: https://

biom3d.readthedocs.io/en/latest/  

• Biom3d Python package is hosted on PyPi official server: https://pypi.org/

project/biom3d/  

• Biom3d will also be archived on Software Heritage to guarantee its long-term 

accessibility: https://www.softwareheritage.org/  

Authors’ contributions 

Chapter 2.    I undertook the comprehensive review of deep learning methods and 

wrote the manuscript for the publication, including the supplementary table listing the 

available components for each method. I chose the methods to be benchmarked and 

both participated and led the work of Pedro Mezquita and Adama Nana regarding 

method installation, Docker packaging, application to nucleus segmentation, 

evaluation on the test set and result interpretation. Sophie Desset chose and annotated 

the nucleus dataset. Sophie Desset, Christophe Tatout, David E. Evans, Frederic 

Chausse, Emily Pery, Katja Graumann and Tristan Dubos participated in the revision 

of the review manuscript. 

Chapter 3.    I undertook the philosophy design, the coding, the development, the 

packaging and sharing, the debugging, maintenance, and testing, the valorisation 

through demos, the documentation and tutorials of Biom3d. I led the work of Sami 

Safarbati who participated in the development of the default graphical user interface 
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of Biom3d, in particular by integrating OMERO compatibilities. All my supervisors 

and advisors participated in giving me feedback either on the applicative side when 

Biom3d was applied to biological images or on the technical side. They also greatly 

guided me in the valorisation and publication process of Biom3d, a process still in 

progress. 

Chapter 4.    I chose to explore the self-supervised research direction and the methods 

that were studied. I led the course of the first experiments helped by Adama Nana and 

Abderrahime Tizi. I made all experiments on Taleb et al. work and on the DINO 

method. I designed, coded, and integrated in Biom3d, the Triplet and Arcface losses 

as well as the full U-Net pretraining workflow. I wrote the publication manuscript and 

Frédéric Chausse, Sophie Desset, Katja Graumann and Emilie Pery helped me in the 

publication process. 

Publications, conferences, and workshops 

Publications by chapter 

Publication – Chapter 2.    The review has been published in the Journal of Cell 

Science in 2022 under the title “Deep learning – promises for 3D nuclear imaging: a 

guide for biologists” [40].  

Publication – Chapter 3.    Biom3d publication is still in process. Currently two main 

publications are planned: one addressed to biologists (in a journal such as Nature 

methods) and one addressed to computer scientists (in a journal such as Computer 

Methods and Programs In Biomedicine). 

Publication – Chapter 4.    A publication encompassing the results obtained with the 

Arcface loss and the full U-Net pretraining was submitted to MICCAI but was rejected. 

A new version is currently planned to be submitted to Transactions on Computational 

Biology and Bioinformatics. 

List of all publications, conferences and workshops made during this 

thesis 
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Automated 3D bio-imaging analysis of nuclear organization by NucleusJ 2.0. 
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• Tatout, C., Mougeot, G., Parry, G., Baroux, C., Pradillo, M., Evans, D., 2022. 
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Conferences 
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nuclear image analysis and application to 3D plant nuclei. Conference article 

and Poster.  
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• Mougeot, G., Biom3d, a modular deep learning framework for 3D bio-image 
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presentation. 

• Mougeot, G., Chausse, F., Graumann, K., Desset, S., Biom3d, a modular 

deep learning framework for 3D bio-image segmentation. SEB Annual 

Meeting 2023. Oral presentation.  

Workshops 

• Mougeot, G., 2021. Deep learning made easy for microscopy: an 

introduction to ZeroCostDL4Mic and DeepImageJ. MIFOBIO Workshop 

2021. 

• Part of a large group of trainers. DeepScopie: Application of deep learning 

tools for microscopy image analysis. ANF-DeepScopie Angers 2022. 
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Copyrights 
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