
HAL Id: tel-04574821
https://theses.hal.science/tel-04574821

Submitted on 14 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Developing a User-Friendly and Modular Framework for
Deep Learning Methods in 3D Bioimage Segmentation

Guillaume Mougeot

To cite this version:
Guillaume Mougeot. Developing a User-Friendly and Modular Framework for Deep Learning Methods
in 3D Bioimage Segmentation. Automatic. Université Clermont Auvergne; Oxford Brookes University,
2023. English. �NNT : 2023UCFA0130�. �tel-04574821�

https://theses.hal.science/tel-04574821
https://hal.archives-ouvertes.fr

THESIS

submitted in partial fulfilment of the requirements of the award of

Doctor of Philosophy

of

Oxford Brookes University

authored by

Guillaume MOUGEOT

Developing a User-Friendly and Modular Framework

for Deep Learning Methods in 3D Bioimage Segmentation

October 2023

Carried out in collaboration with

Université Clermont Auvergne

 THÈSE

En vue de l’obtention du

Doctorat de l’Université Clermont Auvergne

Présentée et soutenue publiquement le 8 décembre 2023 par :

Guillaume MOUGEOT

Développement d'une infrastructure logicielle conviviale et modulaire

pour des méthodes d'apprentissage profond

appliquées à la segmentation de bio-images tridimensionnelles

Thèse dirigée par Frédéric Chausse, Sophie Desset et Katja Graumann

Cotutelle : Oxford Brookes University

Department of Health and Life Science

Ecole doctorale : Sciences Pour l’Ingénieur n°70

Spécialité : Image, Système de perception, Robotique

Unités de Recherche : Institut Génétique Reproduction et Développement,

Institut Pascal

JURY

Carole FRINDEL Maître de Conférence HDR INSA, Lyon Rapportrice

Nicolas PASSAT Professeur Université Reims Champagne

Ardenne

Rapporteur,

Président

Jack SUNTER Senior Lecturer Oxford Brookes University Examinateur

David ROUSSEAU Professeur Université d’Angers Examinateur

Frédéric CHAUSSE Professeur Université Clermont Auvergne Directeur

Sophie DESSET Ingénieure de recherche Inserm, Clermont-Ferrand Co-directrice

Katja GRAUMANN Senior Lecturer Oxford Brookes University Co-directrice

Acknowledgments

Writing acknowledgments is a difficult exercise. This is a new retrospective on three

intensive years, to which is added the prism of emotion. For this particular project, this

exercise was even more difficult as each of the numerous facets of this beautiful

journey has hidden a multitude of people, linked to its multidisciplinary and

international character. Two languages were spoken, and a plethora of areas studied.

Unfortunately, I was not able to spend as much time as I would have liked with all

these people, and I will not be able to thank them all for their undeniable contribution.

Yet, I will do my best to thank those who have contributed most to forging the essence

of this work.

Maybe unconventionally, as this project has involved two languages and as words do

not carry the same weight in different mother tongues, I would like to write these

acknowledgements in these two languages.

First of all, I would like to thank all the members of the jury who came from far away

and gave me the privilege of spending several hours talking with them: David

Rousseau, Carole Frindel, Jack Sunter and Nicolas Passat. From kind criticisms to

scientific discussions pushing the boundaries of imagination, this moment of sharing

will remain engraved in my memory. At the end of the discussion, I even caught myself

exclaiming, "we should do a viva every month!"

And that clearly was the aim of the thesis committees, which, on an annual rather than

a monthly basis, offered a fresh scientific perspective from experts who also came

from far away. I would therefore like to thank David Rousseau once again, as well as

Sébastien Tosi, Anaïs Badoual and Emmanuel Faure. I met them several times along

the way, at conferences, workshops, and lab visits, and enjoyed some exhilarating

moments of scientific curiosity.

Of all the exhilarating scientific moments during this thesis, those spent with my five

supervisors are second to none. Thanks to them, I learned a lot. Really a lot. Perhaps

more than they could possibly imagine. Much more than the purely technical-scientific

knowledge involved in this project. I have exchanged a lot. It could have been easy to

get lost, but each of the people involved was a pillar, a rock, a solid anchor through the

misty jungle of the great vagaries of scientific research. Thanks to them, this project

has become a new archipelago, a new land of innovation, young yet fertile.

Ayant constitué l’ancrage principal dans le monde de la recherche en ingénierie,

j’aimerais tout d’abord remercier Frédéric. Merci Fred pour avoir prêté l’oreille dans

les moments d’incertitude scientifique, d’avoir apporté une lumière nouvelle

lorsqu’une figure brouillonne, un article émergent, ou une réflexion balbutiante avaient

besoin de recul. Merci aussi pour nos points d’échange moins scientifiques comme sur

le mode fonctionnement de la recherche mondiale, française ou clermontoise ou sur

les panels de façons qu’il y a d’aborder l’écriture d’une thèse. Merci beaucoup.

L’essence quintessentielle de ce projet est sa multidisciplinarité. Sans elle, ce projet

aurait été tout autre. Et la personne qui, sans conteste, à participer à rendre l’impossible

possible est Sophie. Motivée par une détermination scientifique forte, presque

poétique, à vouloir se faire rencontrer deux mondes qui n’ont, aux premiers abords,

que peu d’affinités réciproques, elle a réussi à maintenir à flot un navire sans cesse

chahuté par d’omniprésentes contradictions. Etant maintenant, je l’espère, à même,

moi aussi, de tenir la barre de ce navire impossible, je n’ai pas assez de mot pour

exprimer ma gratitude. Merci Sophie pour nos indénombrables heures de discussion.

Tu y as déployé une inégalable énergie à enseigner tout ce qu’il était possible de

transmettre à un néophyte total en biologie. Tu as su répondre à la myriade, au miasme

même, de mes milliers questions, plus ou moins intelligibles je l’admets, avec une

patience incomparable. Merci d’avoir pris le temps de m’accompagner et relever dans

tous mes moments de doute, qui, irrémédiablement, frappent tout chercheur en herbe.

Merci d’avoir pris le temps d’écouter et interpréter tous ce charabia scientifique que je

m’échignais à dessiner, et qui, au prix de moulte efforts communs, a pu germer, grandir

et aboutir à un résultat dont je suis aujourd’hui très fier. J’espère de tout cœur que tous

ces échanges, ces « brainstormings », ces pingpongs intellectuels, et ces

aboutissements communs t’auront apporté autant qu’à moi. Et évidemment merci pour

tous ces moments de partage en dehors du cadre du labo qui ont, sans le moindre doute,

participé à mon plus grand bonheur et émerveillement pendant ce grand voyage de

trois ans. J’aimerais ici aussi glisser un grand merci à Stéphane, Malvina et Sévan et à

toute ta grande famille pour nos échanges passionnants et, très souvent, poilant.

Mes remerciements s’adressent aussi à Christophe qui n’a eu de cesse de s’intéresser

à ce projet flirtant constamment avec la frontière de ses sentiers battus. Tu as su garder

une écoute et une parole systématiquement authentique et un œil toujours rempli d’une

joie de continuellement apprendre et d’enrichir ce projet. Surtout n’arrête jamais de

poser toutes ces brillantes questions, et de sans cesse tenter de créer de nouveaux

objectifs collaboratifs avec (presque toute) la communauté scientifique, biologique

comme informatique. J’étais très heureux de voir ton implication aussi à partager ces

savoirs émergents et très admiratif de t’avoir vu prendre les rênes du master de bio-

informatique. Merci aussi pour ces échanges sportifs très motivants, qui nous ont

menés jusqu’au sommet du siège du roi Arthur.

This multidisciplinary adventure was also international. I would therefore also like to

thank my supervisors at Oxford, who were greatly involved in this project. I would

like to thank Katja for her attentiveness and for actively helping to ensure that my

exchanges with the university and my stay in Oxford went as smoothly as possible. A

huge thank you to David, without whom this project would certainly not have seen the

light of day. For me, you are proof that the flame of curiosity can never be

extinguished. You were there, always with a big smile, from the beginning to the end

of this project. Your pertinent questions, your insightful remarks, your wise advice and

your unfailing guidance have without the slightest doubt made me dream, carried me

and helped me to go all the way. Thank you very much David.

But the framework of this thesis certainly does not stop at that of my supervisors. An

immeasurable network of contacts has inspired, consciously or unconsciously,

hundreds of ideas, comments, advice, and has also, in many ways, contributed to

shaping this journey.

Mes remerciements vont donc aussi à toute l’équipe CODED qui a accepté la présence

de cet étrange projet, parasitant parfois leurs tranquilles réunions de biologie. Merci à

Aline, Manu, Sylvie, Sylviane, Sam, Simon, Aurélia, Manon, Lauriane, Sarah, Léa, et

Tristan. Merci particulièrement à Aline pour ses longues heures passées à annoter des

images 3D, qui, finalement, ont eu l’air de payer par de beaux graphiques et images et

par un modèle de deep learning plus que performant. Merci aussi à Manu pour ses

nombreuses irruptions souriantes dans le bureau, ses fabuleuses quiches aux

champignons et les soirées jeux de société. Merci à Sarah d’avoir partagé et égaillé ce

petit bureau obscur qu’était le nôtre, et d’avoir accepté de répondre à toutes mes

questions, pour la plupart administrative, et, très probablement, ennuyantes à souhait.

Merci à Floriane, Valentine, Miguel, Etienne, Lauriane d’avoir aussi partager ces murs

trop chauds en été et glacials en hiver. J’ai aussi eu la chance d’avoir à mes côtés 4

compagnons de routes que sont Adama, Pedro, Abderrahime et Sami. Merci à eux

d’avoir accepté d’être embarqué dans une aventure aux retombées incertaines et

d’avoir contribué à lui donner une plus grande solidité scientifique. Je remercie de tout

cœur aussi un autre électron libre qui, poussé par une curiosité sans faille, à décider de

se remonter les manches et de tenter d’utiliser le brouillon informe qu’était Biom3d au

moment de sa création : Hervé. Tu as passé des heures et des heures, à tenter d’éplucher

et, pire, de comprendre tous les bugs qui truffaient l’outil de l’époque. Grâce à toi, et

tes centaines d’emails, le résultat est d’une propreté inespérée, c’est beau, merci

beaucoup. Pas très loin, se trouvait aussi un autre interlocuteur très précieux qui m’a

transmis une quantité colossale de savoir dont je rêverais d’en avoir retenu le dixième

(je serais un « vrai » savant-informaticien si c’était le cas) : Pierre. Merci beaucoup

pour ces heures d’échange qui, pourtant, semblaient s’écouler à une allure folle. Ce

grand laboratoire a aussi abrité et fait grandir de nombreuses autres personnes qui sont

devenus des amis. Merci à Victor, Ronan (et Nono !), Nico, Elodie, Romane grâce à

qui les couloirs du GReD et les jeudi soirs (mais pas que !) étaient remplis de rires

inoubliables. Merci beaucoup à Marine et Lili pour leurs inarrêtable passions à égailler

la vie de ce laboratoire, par des vidéos, des quizz en tout genre, des jeux de piste

capillotractés, des magazines loufoques, et bien sûr des acrobaties et galipettes

inoubliables. Merci à Jonas, Prikshit, Fabiana, Vincent et tous ceux qui, dans l’ombre

participent à rendre chaque journée de ce laboratoire plus lumineuse que la précédente.

Je suis plus qu’admiratif de tous ces efforts et cette générosité bénévole. Merci à

Phillipe pour m’avoir fait découvrir les hauts plateaux auvergnats à coup de pédales.

Au sein du GReD, j’aimerais aussi remercier Margaux, Steph, Emilie (B.), Isa, Aline,

Caro et toutes les personnes qui, sans le savoir peut-être, m’ont donné le sourire et ont

fait résonner en moi cette passion pour le métier de chercheur. Enfin, j’aimerais

remercier Maryse et Marie-Jo pour avoir accepté de suivre les rocambolesques

démarches administratives de ce projet tripartite.

Le deuxième des parties clermontois de ce projet était l’Institut Pascal au sein duquel

j’ai aussi pu faire des rencontres plus qu’enrichissantes. Je pense notamment aux

irremplaçables (à leur grand regret d’ailleurs) membres et organisateurs des animations

scientifiques, réunions qui, pour moi, ont été une révélation : Elie, Rémi, Mathieu,

Johann et Céline. Merci beaucoup aussi à Emilie (P.) pour ta présence, tes retours et

conseils.

Despite the short time I was able to spend in Oxford, I had the joy of discovering not

only a very healthy working environment, shaking up my vision of the profession of

researcher, but also an extremely welcoming and dynamic team. I warmly thank

Verena, Nadine, and Charlotte for their genuine curiosity, for their overflowing

motivation, and for all those beers and chicken wings. Thanks also to Flavia for her

patience and her investment beyond all expectations in making the Biom3d tool usable

within the team.

The sixty-eight names cited above represented sixty-eight new encounters that I had

the chance to make during this long stay, but they are only a very small glimpse of the

submerged surface of the iceberg. I would also like to conclude with a big thank you

to everyone I was unable to mention. Hundreds of people got involved in this

adventure. I am thinking in particular of all the beta testers, users and curious people

who appreciated Biom3d as well as the multiple moments of discussion following

MIFOBIO, at the IABM, at the SEB meeting or at all the other conferences, seminars,

congresses, and workshops at which I had the chance to participate. Thank you to all

of you.

Cependant, cette épopée n’aurait certainement pas été colorée de la même façon sans

les innombrables amitiés qu’ils l’ont faite vivre, à commencer par toutes les nouvelles

rencontres clermontoises et oxoniennes. Merci encore à tous les copains du GReD, de

l’Institut Pascal et du Nuclear Plant Group. Merci aussi à tous ceux que j’ai eu la

chance de rencontrer en dehors des murs des laboratoire, avec une pensée particulière

pour les membres du club de gym.

Parce que la force des amitiés se joue du temps et de l’espace, j’aimerais aussi

remercier Jérôme, Sebastian, Gojko, Teresa, Emre, Matthieu, Jimmy, Ludo, Céline,

Justine pour tous ces moments importants de vie passés à échanger et à rire, que se

fussent à Shanghai à Nantes ou à bien d’autres endroit de cette petite planète. Merci

d’avoir été présent et soutenu aussi bien le jour de ma soutenance que pendant toutes

les années qui l’ont précédées. Plus amont encore dans le temps, je dis merci aux

fameux « geeks » alsaciens, Alexandre, Alexandre et Melinda, pour ce lien d’amitié

qui défie, menton levé, les douze années qui séparent notre première rencontre.

J’aimerais aussi dire merci de toute mon âme à la colonne vertébrale de mon esprit,

l’indestructible cœur et pilier de ma stabilité émotionnelle, j’ai nommé : ma famille.

Je ne peux malheureusement en énumérer tous les membres ici. Néanmoins, mille

milliards de mercis à mes parents, ma sœur, mes frères, oncles et tantes, et grands-

parents. Sans vous je ne serais rien, littéralement.

Enfin, au cœur de ces aventures et chemins semés d’embuches, j’ai eu l’indescriptible

chance de rencontrer un petit être qui en a illuminé la voie et qui est devenu une famille

au cœur de ma famille : Marianne. Merci plus que tout.

Abstract

The emergence of deep learning has breathed new life into image analysis, especially

for the segmentation, a challenging step required to quantify bidimensional (2D) and

tridimensional (3D) objects. Despite deep learning promises, these methods are only

slowly spreading in the biological field. In this PhD project, the 3D nucleus of the cell

is used as the object of interest to understand how its shape variations contribute to the

organisation of the genetic material. First a literature survey showed that very few

publicly available methods for 3D nucleus segmentation provide the minimum

requirements for their reproducibility. These methods were subsequently benchmarked

and only one of them called nnU-Net surpassed the best specialized computer vision

tool. Based on these observations, a new development philosophy was designed and,

from it, Biom3d, a novel deep learning framework emerged. Biom3d is a user-friendly

tool successfully used by biologists involved in 3D nucleus segmentation and provides

a new alternative for automatically and accurately computing nuclear shape

parameters. Being well optimized, Biom3d also surpasses the performance of cutting-

edge methods on a wide variety of biological and medical segmentation problems.

Being modular, Biom3d is a sustainable framework compatible with the latest deep

learning innovations, such as self-supervised methods. Self-supervision aims at

tackling the important need for deep learning methods in manual annotations by

pretraining models on large unannotated datasets to extract information first before

retraining them on annotated datasets. In this work, a self-supervised approach based

on pretraining an entire U-Net model with the Triplet and Arcface losses was

developed and demonstrates significant improvements over supervised methods for

3D segmentation. The performance, modularity and interdisciplinary nature of the

tools developed during this project will serve as an innovation platform for a wide

panel of users ranging from biologist users to future deep learning developers.

Résumé

L'émergence de l'apprentissage profond a donné un nouveau souffle à l'analyse

d'images, en particulier pour la segmentation, une étape difficile mais nécessaire pour

quantifier des objets bidimensionnels (2D) et tridimensionnels (3D). Malgré les

promesses de l'apprentissage profond, ces méthodes ne se répandent que lentement

dans le domaine de la biologie. Au cours de ce projet de thèse, le noyau 3D de la cellule

est utilisé comme objet d'intérêt pour comprendre comment ses variations de forme

contribuent à l'organisation du matériel génétique. Tout d'abord, une étude

bibliographique a montré que très peu de méthodes disponibles publiquement pour la

segmentation du noyau 3D répondent aux exigences minimales de reproductibilité.

Ces méthodes ont ensuite été évaluées et seule l'une d'entre elles, appelée nnU-Net, a

surpassé le meilleur outil spécialisé de vision par ordinateur. Sur la base de ces

observations, une nouvelle philosophie de développement a été élaborée et, à partir de

celle-ci, Biom3d, une nouvelle infrastructure logicielle pour l’apprentissage profond,

a vu le jour. Biom3d est un outil convivial utilisé avec succès par les biologistes

impliqués dans la segmentation des noyaux 3D et offrant une nouvelle alternative pour

mesurer automatiquement et avec précision les paramètres morphologiques des

noyaux. Bien optimisé, Biom3d surpasse également les performances des méthodes de

pointe sur une grande variété de problèmes de segmentation biologique et médicale.

Modulaire, Biom3d est un cadre durable compatible avec les dernières innovations en

matière d'apprentissage profond, telles que les méthodes auto-supervisées. L'auto-

supervision vise à répondre au besoin important en annotation manuelle des méthodes

d'apprentissage profond, en pré-entraînant les modèles sur de grands ensembles de

données non annotées pour extraire des connaissances a priori avant de les réentraîner

sur des ensembles de données annotées. Dans ce travail, une approche auto-supervisée

basée sur le pré-entraînement d'un modèle U-Net entier avec les fonctions de coût

Triplet et Arcface est développée et démontre des améliorations significatives par

rapport aux méthodes supervisées au regard de la segmentation 3D. La performance,

la modularité et la nature interdisciplinaire des outils développés au cours de cette

thèse serviront de plateforme d'innovation pour un large panel d'utilisateurs allant des

utilisateurs biologistes aux futurs développeurs de méthodes d’apprentissage profond.

Contents

Chapter 1 Context, challenges, and motivations .. 1

1.1 Tridimensional segmentation of biomedical images .. 1

1.2 The biological origins of the project and its development 5

1.2.1 Plant cells, nuclei and chromocentres .. 6

1.2.2 Microscopy and medical imaging .. 10

1.2.3 Digital image processing and analysis ... 14

1.3 Outline and contributions ... 19

Chapter 2 Related work, review, and benchmarking ... 21

2.1 Classical computer vision methods for 3D segmentation of bio-images 21

2.1.1 Classical computer vision approaches ... 21

2.1.2 NucleusJ and NODeJ ... 22

2.2 Supervised deep learning methods ... 24

2.2.1 General background ... 25

2.2.2 Applications in biology and medicine ... 32

2.2.3 Applications to the nucleus .. 36

2.2.4 Benchmarking methods for 3D nucleus segmentation 52

2.3 Improving deep learning methods .. 57

2.3.1 AutoML and nnU-Net .. 57

2.3.2 Reducing the number of manual annotations .. 62

2.4 Conclusion .. 64

Chapter 3 Biom3d, an easy-to-use and modular framework for 3D segmentation

methods .. 67

3.1 Biom3d philosophy .. 67

3.2 Biom3d performances on image segmentation .. 70

3.3 Biom3d, an easy-to-use tool ... 75

3.3.1 Graphical User Interfaces .. 75

3.3.2 Workflows: Training and prediction.. 76

3.3.3 Pooling resources: Remote access and OMERO access 79

3.4 Biom3d, a toolbox for bioimage analysts ... 84

3.4.1 Installing Biom3d .. 84

3.4.2 Command Line Interface ... 85

3.4.3 Configuration File, Builder, and Module Register 90

3.5 Biom3d, a framework for deep learning developers .. 94

3.5.1 Code and Builder design .. 94

3.5.2 Modules’ description ... 99

3.5.3 Modules’ potential ... 109

3.6 Conclusion .. 110

Chapter 4 Self-supervision of 3D segmentation methods .. 111

4.1 First experiments .. 111

4.2 Adventures in adapting existing work .. 114

4.2.1 Quest to improve the work of Taleb et al. ... 114

4.2.2 Defeating the DINO ... 116

4.3 Self-supervising a full 3D U-Net with triplet and angular losses 120

4.4 Conclusion .. 124

Chapter 5 Discussion .. 127

5.1 About this work .. 127

5.1.1 Reusing deep learning methods ... 128

5.1.2 Biom3d perspectives .. 129

5.1.3 Future of methods for insufficiently annotated datasets 129

5.2 A bigger and bigger picture .. 131

5.2.1 An interdisciplinary experience ... 131

5.2.2 AI and its environment, a paradox? ... 132

References .. 135

Appendices ... 149

Availability of datasets and tools.. 149

Authors’ contributions .. 149

Publications, conferences, and workshops ... 150

Publications by chapter ... 150

List of all publications, conferences and workshops made during this thesis .. 150

Copyrights .. 152

1

Chapter 1

Context, challenges, and motivations

1.1 Tridimensional segmentation of biomedical images

 Many fundamentally different fields have developed the use of tridimensional (3D)

images for a variety of very different applications. Biologists, physicians, physicists,

engineers, and computer scientists have worked together to develop the tools needed;

biological and physiological markers, physical and mathematical theories, cameras

and microscopes, computers and algorithms to image and analyse 3D objects. Each of

these fields has been enriched by rapid advances of knowledge and discoveries. For

example, since the invention of the confocal microscope by Marvin Minsky [1] and

the discovery of the properties of the green fluorescent protein (GFP) by Roger Y.

Tsien, Osamu Shimomura, and Martin Chalfie [2], the number of publications using

the derivatives of these techniques have soared. The original goal of capturing 3D

images was, and still is, to observe 3D objects, to understand their roles, their

mechanisms, and interactions. Visualizing internal mechanisms of life in action has

allowed simultaneously to confirm biological and medical hypotheses and to ease the

formulation of novel ones. Biologists now often alternate between benchtop

experiments and microscope visualization. For instance, a combination of the

biochemical properties of a protein and knowledge of its location by 3D microscopy

could be used to confirm its function. In medicine, 3D imaging has allowed physicians

to understand the structure and mechanisms of organs inside a living body. They are

now able to detect early stages of cancers before the onset of severe symptoms.

Measurements in 3D images. To go beyond simple observations and intuitions, the

image analyst must take measurements in the 3D images. For example, a biologist

could be interested in counting fluorescence in situ hybridization (FISH) spots to

compare a mutant and a wild-type. A radiologist could measure the size and location

of a set of lung nodules. Once these measurements have been made, the analyst can

then perform statistical evaluations and thus reinforce the results brought by the

observation. Indeed, when dealing with living objects observations are often non-

binary, meaning that it is often hard to tell if what an observer sees is not very different

from what one might want to see, thus incorporating subjectivity into the observation

2 - Chapter 1 - Context, challenges, and motivations

and its interpretation. Measurements combined with statistical analysis help the

biologist or physician manage confirmation bias. Too many measurements can be

made on 3D images to provide an exhaustive list. Some frequently used examples are

counting objects, distance between two objects, position and orientation of objects,

volume, surface, elongation, curvature, and signal intensity. By adding a dimension

when moving from 2D to 3D, the number and the difficulty of possible measurements

increase considerably. For instance, in 2D, a “surface” is the perimeter of each object

and can be found with simple algorithms such as [3]. Computing a surface of a 3D

volume might imply a series of more complicated techniques and more computing

resources for 3D reconstruction such as the marching cubes algorithm [4] for mesh

computation or a method for surface normal estimation such as in [5]. 3D

measurements from images require each voxel (3D pixel) to be identifiable, for

instance to differentiate from background or other object of interest (Figure 1-1). This

step is called segmentation and is often the inevitable step prior to any 3D

measurement.

Figure 1-1 – A tridimensional plant nucleus taken with a confocal microscope (left)

and its corresponding segmentation (right). Illustration captured using napari, a 3D

visualization tool.

Manual segmentation. To create such a segmented image, the expert, biologist or

physician, must attribute manually a label to each voxel, a task called annotation or

labelling. The experts can use tools such as napari [6] to annotate their 3D images. As

3D images often contain several tens of millions of voxels, experts have also been

helped by semi-automatic tools, such as Labtik, ilastik [7] (Figure 1-2), or Weka [8],

[9], which are based on machine learning algorithms such as Random Forest [10] to

propose a segmentation result which the expert uses to assist them as they annotate.

Manual annotation of 3D biological and medical images is difficult due to, first, the

nature of objects that must be annotated and, second, the annotation tools. Objects in

biological and biomedical imaging are seldom well defined and discrete. A cell

3

membrane does not follow the mechanical rules of either a fluid or a solid. The intrinsic

disorder and the blurry edges of biological and medical objects thus require well-

trained eyes and are often a source of disagreement between experts. The second

difficulty of manual annotation is caused by hardware and software limitations.

Annotating 3D images on a 2D screen requires software adaptations that are non-

trivial. The current publicly available annotation tools offer only the possibility to

annotate one by one each 2D slice of the 3D image. The problem with this approach is

that the transition between two slices is often incorrect which causes the segmentation

to look serrated when visualized with a 3D viewer, such as napari. The solution is then

to correct the annotation by going through 2D slices cut orthogonally to the first 2D

slices, which is a very time-consuming process. Another solution could be to use

Virtual Reality combined with a tool such as DIVA proposed by the Institut Pasteur

[11], unfortunately not publicly available yet.

Figure 1-2 – Semi-automatic annotation tools for 3D segmentation. (left): Labtik.

(right): ilastik

Manipulating 3D images. After capturing a 3D image, an expert may face various

challenges when attempting to manipulate it. Two prominent obstacles are the

considerable memory space required for 3D images and the scarcity of free and open-

source tools available for their transformation. Some 3D images can have a size above

200 gigabytes which requires powerful hardware to open and more powerful ones to

manipulate. This constraint has pushed computer scientists to develop memory-

optimized tools such as 3DSlicer [12], Paraview [13], 3DMod [14], webKnossos [15],

Dask [16] or Fiji/ImageJ [17] to manipulate these large images. These tools rely on

intelligently compressing the images to fit them into computer memory and to display

them on screen. To analyse 2D biomedical images, the most used toolbox is

4 - Chapter 1 - Context, challenges, and motivations

Fiji/ImageJ, a free, open-source and user-friendly software. Fiji/ImageJ provides a

range of image processing and analysis tools, including image filtering, segmentation,

registration, and measurement. It also supports a variety of file formats commonly

used in scientific imaging, such as TIFF, JPEG, and DICOM, and more thanks to the

Bio-format plugin which lets microscopists import images from any type of

microscope. Fiji/ImageJ is highly extensible, with a large collection of plugins and

macros available to users. Even though Fiji/ImageJ includes a set of plugins for 3D

images such as a 3D viewer, a 3D segmentation toolbox, notably provided by the

MorpholibJ plugin [18], or a 3D object tracker, it is mostly designed for 2D images.

For example, in Fiji/ImageJ, measurements of segments in 3D images are possible

only on 2D slices. The programming language of Fiji/ImageJ is Java which represents

another limit of the software as the computer vision community is now shifting to

Python, especially with the arrival of deep learning. To create novel perspectives for

3D images, napari is currently leading the movement with a versatile Python

framework, integrating a memory-efficient 3D viewer and, noticeably, a friendly

programming framework to easily add new plugins.

Segmentation diversity. Napari allows simultaneous visualisation of an input image

and its segmentation. This tool can give access the vast diversity of possible

segmentations in 3D images. To classify these segmentations, computer scientists have

created two main categories of segmentation. First, semantic segmentation involves

annotating each voxel in an image with a class label and corresponds to what was

previously described in this Section. Second, instance segmentation is similar to

semantic segmentation but additionally assigns to each voxel of individual objects

another label in order to separate them. For example, a 3D image representing a cluster

of cell nuclei can undergo a semantic segmentation by assigning each voxel the label

“nucleus” or the label “background”. If subsequently going through instance

segmentation, the voxels are additionally assigned with the label “nucleus 1”, “nucleus

2”, “nucleus 3” and so on, thus discriminating each individual nucleus. Instance

segmentation is harder than semantic segmentation and can only been applied to

objects with a distinguishable border, such as cells, nuclei, or organs. It is not possible

to perform instance segmentation on cell membranes, for instance, or on the image

background. The work described in this thesis will focus mainly on semantic

segmentation. The thesis will present mature technologies available for both

5

categories, but also present gaps in current applications for 3D biological and

biomedical image segmentation.

An important context. Despite the previous important categorization, the almost

infinite number of possible experiments in biology or in medicine, causes each

segmentation problem to be unique and deeply dependent on the context. To extract

significant information from biological samples, biologists, microscopists, and image

analysists must work together. Performing biological experiments intended to be

analysed by microscopy without having in mind the end image processing could have

severe consequences that might lead to a dead end and waste of time and money. One

classic example of such consequences arises when determining the image sampling

rate. A 3D image can be understood as a three-dimensional array of numerical values,

where each value represents the intensity level of a small region within the observed

object (see Section 1.2.3). This 3D image is essentially a sampled representation of the

real object, where regions between each sample are not captured. Therefore, selecting

an appropriate sampling rate is crucial to ensure that the object of interest is fully

captured in the resulting image. Choosing a sampling rate that is too low can lead to

incomplete or inaccurate representations of the object, resulting in loss of important

information, a problem called under sampling. Another example that would involve

both the biologist and the microscopist, is a cell surface estimation problem in an

epithelium of Drosophila ovaries where cells are densely packed together. In this case,

a mistake could be to mark with a fluorescent protein the cytoplasm only, which would

result in the inability to distinguish each cell from its adjacent counterparts. Instead,

marking the cell membrane and then segmenting the inner regions could solve this

issue. These examples point out how intricate the relationship between all the actors

involved in imaging should be. If some of these actors perceive their counterparts as

“external service providers” or view their contributions as merely illustrative

applications of their own work, it increases the likelihood of the final project being

flawed. Interdisciplinarity undoubtedly plays a pivotal role in the advancement of

science, particularly in the fields of biological and medical imaging.

1.2 The biological origins of the project and its development

 Intending to make ends meet between fundamentally orthogonal fields of research,

biology and computer science, implies taking risks and, sometimes, daring to break

down barriers, fostering collaborations and dialogues, and encouraging fruitful

6 - Chapter 1 - Context, challenges, and motivations

exchanges of knowledge and expertise. This work has been made between two

research laboratories in biology, one in the Institut de Génétique, Reproduction et

Développement (iGReD) in the Université Clermont Auvergne, Clermont-Ferrand,

France and one at Oxford Brookes University, United-Kingdom and one research

laboratory in computer vision in the Institut Pascal in the Université Clermont

Auvergne, France. Following our interdisciplinary goals and despite the strong

computer science content of this project, most of the work has been done at one of the

two laboratories of biology. The first seeds for present works were planted in the thesis

of Axel Poulet (2016) and developed in the work of Tristan Dubos (2021) the iGReD.

Thus, its early inception and developments was by biologists and have now slowly

grown to reach the field of computer vision. In this Section the biological starting

points of the project and their evolution are presented.

1.2.1 Plant cells, nuclei and chromocentres

 This project was born studying plant nuclei, more specifically Arabidopsis thaliana

nuclei. This plant is a genetical model, historically selected for its ability to reproduce

in four weeks and for its quite short genome (~150 mega-base-pair) with few repeated

sequences compared to other plants. Apart from their apparent agricultural

applications, plant cells are the subject of an active field of fundamental research,

which has produced relatively fewer studies when compared to research on human

cells. A lot is still to be discovered about the functioning of plants. So where to start?

Certainly, the most notable part is the plant cell nucleus where the DNA

(deoxyribonucleic acid) is compartmented. The DNA is a long sequence of pairs of

only four types of nucleotides, a so-called base-pair. Parts of the DNA sequence are

called genes which are transformed into a sequence of amino acids called proteins,

which are the building blocks of cell machinery. The level of production of each

protein is called gene expression. Genome structure is not random and is organised in

sub-structures at different scales, from the nucleosomes, tiny loops in the DNA strands,

to the chromosomes, dividing the entire genome into separated large regions, the

positioning of which influences the level of gene expression. The DNA and its

structuring proteins are called chromatin. The nucleus is an organelle inside the cell,

isolating the chromatin with a double membrane. The nucleus plays a vital role in

safeguarding the integrity of DNA throughout the lifespan of the eukaryotic cell,

especially during cell division. The transfer of molecules between the DNA and the

7

cytoplasm is restricted by the nuclear membrane and specialized structures called

nuclear pores, which may have an impact on protein production. The nucleus may

adopt a large variety of shapes depending on cell location in the organism, on cell

development, on external stresses, or on diseases (Figure 1-3). For instance, an

abnormal morphology of nucleus has been shown to be the biomarker of certain

pathologies such as cancer [19]. The morphology of the plant nucleus, the structure of

its envelope and sub-compartments, the level of gene expression, and the cell

environment are the primary focus of investigation for both teams of biologists

involved in this work.

Figure 1-3 – Diversity of nucleus shapes. Each image represents one isolated nucleus

stained by DAPI. Scale 5 µm.

Nuclear Organization in Plant Cells. Just like animal cells, plant cells feature a

complex nucleus composed of various subdomains and structures (Figure 1-4). Key

components of the nuclear organization include the outer membrane, nuclear pores,

inner membrane, nucleoskeleton, and nucleoplasm. The outer membrane is an

extension of the endoplasmic reticulum (ER), another crucial organelle in eukaryotic

cells. It plays a vital role in connecting the nucleus with the cytoskeleton, which

provides mechanical support to the cell. This connection is indispensable for processes

like cell division, cell differentiation, cell polarization, and, in the case of plants,

8 - Chapter 1 - Context, challenges, and motivations

nucleus migration during day-night cycles. In the context of A. thaliana, a model plant

species, research teams have contributed to a deeper understanding of the role of

KASH proteins in this nuclear-cytoskeleton link. Studies have revealed that this

bridging complex has multiple functions such dynamics roles during cell division [20]

and structural roles in positioning the nucleus within the cell, conveying signals across

the membrane and organizing chromatin in the 3D nuclear space with impact on gene

transcription [21]. Studies have revealed that this bridging complex has multiple

functions such dynamics roles during cell division [22] and structural roles in

positioning the nucleus within the cell, conveying signals across the membrane and

organizing chromatin in the 3D nuclear space with impact on gene transcription [21].

Finally, the innermost part of the nucleus contains the nucleoplasm and the chromatin

whose tridimensional structure has been the subject of recently growing communities

such as the International Nucleome Consortium (INC, https://inc-cost.eu/) for animals

and the Impact of nuclear domains on gene expression and plant traits for plants

(INDEPTH, https://www.brookes.ac.uk/indepth/) [23].

Figure 1-4 – Organization of the nuclear envelope. The nuclear envelope is made of

membrane (blue) including outer nuclear membrane, inner nuclear membrane

separated by the perinuclear space, interrupted by numerous nuclear pore complexes

(orange) and is connected with the endoplasmic reticulum. The plasmina (black) is the

putative plant lamina. The nuclear envelope, the nuclear pore complexes and the

plasmina are believed to interact with chromatin (purple).

DNA organization. The genetic material of the cell is structured in chromosomes

located in the nucleoplasm. Chromosomes form small, looped structures made up of

DNA called nucleosomes, rolled around a set of eight proteins termed histones. The

https://inc-cost.eu/
https://www.brookes.ac.uk/indepth/

9

nucleosome structure compacts the DNA and impacts gene expression [24], with more

compact regions, known as heterochromatin, containing less expressed genes than less

compact regions, euchromatin. On a global scale, the 3D structure of the whole DNA

sequence is organised in the nucleus into chromosome territories (Figure 1-5). This

has been shown in A. thaliana [25] by marking each of the 5 pairs of chromosomes

with a different fluorescent stain. Each chromosome includes two linked copies,

named sister chromatids, of the same DNA sequence. Marking plant DNA with a

fluorescent stain, such as DAPI, also highlights the density distribution of the DNA.

In such an image (Figure 1-5), it can be seen denser spots of DNA called

chromocentres. These heterochromatin regions are the centromeric and

pericentromeric regions of each chromosome, which are located at the link between

the two sister chromatids. Changes in gene expression not involving changes in DNA

base sequence, such as the study of DNA compactness, are termed epigenetic.

Epigenetics has shown that the gene sequences are not sufficient to proper cell

functioning and that the surroundings of these sequences are as important. DNA

methylation, post-translation modification of histones, histone variants, non-coding

RNA, chromatin spatial organization are all part of epigenetic field of study. These

modifications are so important that they could, for example, cause the malfunction of

daughter cells, even if the DNA sequence has correctly been reproduced.

Figure 1-5 – Chromosome territories in human nucleus. Each colour corresponds

to a different chromosome. Illustration adapted from [26].

Biological questions and experiments. There is an intimate relationship between

the local and the global scale of the organisation of the nucleus. For instance, when

biologists alter the genes encoding histone proteins by stopping the expression of one

of them, the size and the location of chromocentres change. On the contrary, during

10 - Chapter 1 - Context, challenges, and motivations

cell development or following certain stresses, the nucleus organisation changes, and

the expression of chromatin proteins is also impacted. There is thus a strong correlation

between nucleus shape change and gene expression. But is there a causal relationship?

More specifically, the epigenetic question that is being explored by biologists involved

in this project could be formulated as follows: to what extent does the re-organization

of nuclear space influence gene expression? This re-organization could be caused by

stresses, mutations, or cell differentiation. During their experiments, biologists submit

their plants to a series of stresses and mutations and then try to measure modifications

in plant characteristics, a step called phenotyping. These plant characteristics are

mainly visual and could be macroscopic, such as the size of leaves or root hairs, or

could be microscopic, such as nucleus volume or number of chromocentres. While

macroscopic phenotypes can be measured with a simple camera, microscopic

phenotypes generally require a microscope. The first studies led by the biologists

taking part in this project focused on SUN proteins [27], [28] and on KAKU4 and

CRWN proteins [29], [30] of A. thaliana. In these studies, a multidisciplinary approach

was chosen, including genetics, tridimensional microscopy, and image processing.

Image processing specifically was the subject of the work of two PhD students

preceding the work presented in this thesis. They both participated in the development

of NucleusJ and NODeJ, plugins of Fiji/ImageJ, designed to help biologists

automatically extract nucleus and chromocentre characteristics, such as volume or

elongation, in 3D images containing potentially thousands of them. These tools are

based on “classical” computer vision techniques such as thresholding or watershed

segmentation [31]. Their limitations have been the starting point of this work.

1.2.2 Microscopy and medical imaging

 To understand these limitations and the objects of study of this work, let us delve

into the nature of microscopy images and, more generally, 3D imaging techniques. The

primary objective of this research is to develop an image analysis system capable of

analysing volumetric images, irrespective of their origin or type, thereby enabling the

analysis of 3D images related to any biomedical problem. However, there are two

reasons for not detaching from the imaging technique the biological or medical object

of interest. First, it is to avoid falling into the pitfall of becoming an “external service

provider” and, in this way, missing key features in the images, pivotal for their future

analysis. Second, it is arduous to create a comprehensive dataset that would represent

11

the almost infinite variations of imaging techniques and types of biomedical problems.

Therefore, research in this work will initially focus on microscopy images and

gradually expand to other possibilities if the developed image analysis systems exhibit

flexibility. In-depth explanations will be presented on microscopy image analysis and

then on medical imaging techniques as a potential application.

Confocal microscopy. Microscopes, regardless of their type, are typically composed

of three fundamental components: an emitter that projects particles, a transmitter that

guides the particles towards the sample, and a receptor that detects the particles after

they have interacted with the sample by reflection or transmission. If the emitted

particles are photons, then the microscope is a light microscope. Among all types of

light microscopes, the confocal microscope is widely recognized as one of the most

powerful tools for capturing high-resolution 3D images. For confocal microscopes, the

emitter is a laser, the transmitter is a set of lenses and mirrors, and the receptor is a

photomultiplier tube converting the light into electrical signal. Confocal microscopy

is a special type of fluorescence microscopy, which means that the sample contains a

substance that can remit laser light [32]. In biology, this substance is usually a set of

fluorescent molecules called fluorophores. Fluorophores emit light in all directions

once exposed to laser light, which has the good property of allowing biologists to see

through tissue but the disadvantage of often producing images with background noise.

The main particularity of confocal microscopes is a special device, called pinhole, that

is placed in front of the receptor and that removes the out-of-focus and noisy light

emission. The final image is thus clearer. However, the pinhole limits the field of view

to one tiny region of the sample. In order to get a view of the whole sample, the sample

must be moved in the three spatial directions: up and down, left and right, and forward

and backward. Once the whole sample scanned, tridimensional image is obtained with

a high resolution and a high contrast. As these tridimensional movements are prone to

adding noise the images and slowness in the acquisition process, many improvements

of confocal microscope have been done to improve the acquisition accuracy and speed,

among which the most notable ones are probably light-sheet microscopes and super-

resolution microscopes. Once again, these improvements have been possible thanks to

a close relationship between biologists and chemists, designing new fluorophores,

microscopists and physicists, building new microscopes, and computer scientists and

image analysists, developing image processing software. Compared with other types

12 - Chapter 1 - Context, challenges, and motivations

of microscopies, confocal microscopes can capture high-resolution 3D images in a

relatively short amount of time and have less requirements regarding sample

conditioning, which allow, for instance, to image living bodies. For these reasons,

confocal microscopy is usually the method of choice for biological imaging. Confocal

imaging of the nucleus represents the original application of the image analysis

developments presented in this work.

Electron microscopy. When seeking for sub-nanometre resolutions or imaging the

entire cell environment, rather than selected fluorescent regions, biologists often

utilize an electron microscope (EM) as an alternative to confocal microscopy [33].

Instead of light, electron microscopes use an electron gun to emit a beam of electrons

which have a much shorter wavelength than visible light, allowing them to image

structures at the atomic level. The electrons are then transmitted toward the sample

with a series of magnetic lenses. Electrons are then either transmitted through the

sample or remitted by the sample surface. If the receptor detects transmitted electrons,

then the microscope will be called Transmission Electron Microscope (TEM) or, if the

receptor detects remitted electrons, Scanning Electron Microscope (SEM) (Figure

1-6). For cell imaging, electron microscopes allow biologists to image tiny structures

such as nucleus double membranes or nuclear pores that are extremely difficult to

detect with confocal microscopes. The main drawback of electron microscopy is the

imposed stringent conditioning of the samples before imaging. The sample preparation

might involve chemical fixation, dehydration, resin embedding, and slicing into ultra-

thin sections. Additionally, during imaging, the sample must be placed in a high-

vacuum environment. All of these steps might irreversibly damage the sample. Another

drawback of electron microscopy is the acquisition time, especially for 3D images,

that might last as long as a week. A special type of electron microscope called Serial

Block Face-SEM (SBF-SEM) is present in Oxford Brookes University. This

microscope creates 3D images by, first, capturing a 2D image of the surface of the

sample, then automatically slicing a tiny layer of it and capturing the newly revealed

surface. This process is repeated until reaching a sufficiently deep layer and the

resulting set of 2D images are finally stacked together to obtain a 3D image. This time-

consuming process can create an extremely detailed image with a computer memory

size often exceeding 200 gigabytes. Contrary to confocal images which display bright

regions only where the fluorophore is located, the rest of it being black, electron

13

microscope produces grayscale images with a lower contrast where almost each

molecule in the sample is detected with a different grey intensity. The resulting image

thus contains a lot of regions which must be sorted to extract relevant information.

This is one of the main limitations of the image analysis tools previously developed

by the teams involved in this project which cannot be applied on EM image.

Figure 1-6 – Light microscopy (left) versus TEM (middle) versus SEM (right). TEM

captures an image by detected the electrons transmitted through the sample while SEM

captures remitted electrons. Illustration taken from [34].

Medical imaging. In the realm of 3D medical imaging, analogous difficulties arise

as those encountered with electron microscopy images. 3D medical images, typically

portraying organs or other macroscopic structures within the human body, are

grayscale representations. Each location within these images is assigned a unique

grayscale value, enabling distinction between objects of interest and the background.

However, this results in a surfeit of information that must be meticulously processed

in order to extract the relevant information. Probably due to their large number and to

their practical application, medical images have been the objects of many software

developments. Many online challenges have been created to serve the enhancement of

medical image processing and the number of new ones constantly increases. Most of

them are listed on https://grand-challenge.org/ website. Among the long list of existing

medical imaging techniques, work is this project will mainly focus on Computed

Tomography (CT-scan) and Magnetic Resonance Imaging (MRI) as they are the two

https://grand-challenge.org/

14 - Chapter 1 - Context, challenges, and motivations

most common imaging techniques on this website (Figure 1-7). Even though the

developments in this work will be tested on only these two imaging techniques, they

should be applicable to other ones such as ultrasounds or Positron Emission

Tomography (PET). CT-scans use a rotating X-ray scanner to capture multiple images

from different angles. The set of resulting 2D images are then numerically combined

to form a 3D image of the body parts being scanned. MRI uses a powerful magnetic

field to align protons of hydrogens atoms contained in the body tissue. Radio waves

are then sent through the body, which causes these protons to absorb the energy and

temporarily move out of alignment. When the radio waves are turned off, the hydrogen

atoms release the absorbed energy, and this release is detected by the scanner. Like CT-

scan, MRI relies on numerical post-processing to compile the set of generated images

into one 3D image. Although the primary focus of this work is microscopy, the

similarities between electron microscope images and medical imaging prompt to

explore developments in the latter field. It will here be demonstrated that tools

developed for 3D medical images can be applied to confocal and electron microscopy.

Furthermore, the software developed in this work has several applications in medical

imaging.

Figure 1-7 – MRI (left) versus CT-scan (right). MRI captures the photons released

by hydrogen atoms of the body after a radio waves impulse while CT-scan relies on X-

ray. 3D Images from both modalities will be analysed in this thesis. Illustrations taken

from [35] and [36].

1.2.3 Digital image processing and analysis

What is a 3D image? An image is a visual representation of a bidimensional (2D)

or tridimensional (3D) object, scene, or phenomenon. Since modern computers operate

only using bits, 0 or 1 values, continuous visual data must be discretized before being

15

stored. To accomplish this, the captured space is divided into a 2D or a 3D grid. Each

cell in the grid is assigned with one or more discrete values that represent the intensity

of the signals within that cell. There is thus a double sampling, first in space and then

in intensity. The grid is called a digital image, which will be abbreviated in this thesis

to image, and a grid cell is called a picture element, which will be abbreviated to pixel

for 2D images or voxel for 3D images. In this configuration, there are several

parameters that must be defined if performing measurements is intended in the image:

• The image size is the number of picture elements in each dimension of the

image. For instance, in 2D, the term Full HD is commonly used to qualify

images with a grid of 1920 by 1080 pixels. In 3D, typical images can have 512

by 512 by 128 voxels. The number of picture elements is directly linked to the

size of the image in the computer storage. In the previous 2D example, the

number of pixels to store is 1920 × 1080 = 2 073 600. For the 3D image, the

number of voxels is 512 × 512 × 128 = 33 554 432, which is 16 times

bigger than the 2D image. The commonly bigger size of 3D images is an

important constraint both to store and to analyse them.

• The number of channels is the number of intensity values stored for each

picture element. The channel dimension represents the last dimension of the

image. Indeed, 2D images have, in reality, 3 dimensions and 3D images have

4. The number of channels in standard 2D images is typically 3: one channel

for red intensities, one for green intensities, and one for blue intensities. In the

previous Full HD example, an image will thus have an actual dimension of

1920 by 1080 by 3. In medical imaging, CT-scan images usually contain only

one channel of grey values and MRI images are often multimodal, meaning

that they have several channels. For example, the BraTS 2020 dataset [37]

contains 3D images of brains with 4 channels (T1, T1-weighted, T2-weighted,

and T2-FLAIR). For microscopy images, biologists typically use several

fluorescent proteins which emit photons with different wavelengths. Each

wavelength is captured independently and stored in a different channel in the

resulting image. A microscope image can thus have potentially tens of

channels, but large numbers of channels rarely occur, and typical numbers of

channels stay below 5.

16 - Chapter 1 - Context, challenges, and motivations

• The spatial sampling (or spacing) is the spatial size of each picture element.

Each picture element represents a physical region in 3D space and this region

has a certain height, width and, eventually, depth. When taking pictures with a

standard camera, a 2D projection of the 3D objects is captured. Even if the final

image looks “real”, this projection step causes the objects to be deformed and

any measurement done in this type of image must take it into account. Images

captured with microscopes, or any medical imaging technique usually do not

have such deformations and thus facilitate measures of the objects they

represent. In biomedical images, there is a direct link between the number of

picture elements and the size of the object. To perform one measure, a user can

simply count the number of picture elements in the measure and multiply it by

the size in meters of each picture element. Due to some technical constraints,

3D images often do not have a similar size in all 3 dimensions. Typically, for a

3D microscopy image the spatial size of each voxel could be 0.1 𝜇𝑚 ×

0.1 𝜇𝑚 × 0.2 𝜇𝑚, which means that the depth of the image is less sampled than

the other two dimensions. This property is called anisotropy, and this results in

an image that looks “flat” in the depth dimension.

• The intensity sampling is the number of possible intensity values of each

picture elements. For one channel and one picture element, there is one

sampled intensity value. The number of possible intensity values range

between only 2, the resulting image is called “binary”, and 232 =

4 294 967 296. For 2D images, the standard is to sample with 28 = 256

values. Why such a power of 2 sampling? Because computers can only store

bits, 0 or 1, which means that a base 10 numbers, such as 87, which have 2

digits, “8” and “7”, will be encoded by the computer in a base 2 number,

1010111 which has 7 digits. For computer storage reason, it is often appropriate

to store intensity values with only base 2 numbers with a maximum of 8 digits.

The resulting image has only 28 = 256 possible values for each intensity. In

such a configuration, 0 represents the absence of signal and 255 the maximum

signal intensity. This type of image is called 8-bits. Although 8-bits images are

sufficient for standard 2D images because the human eye cannot distinguish

colours with a lower sampling, for medical and microscopy images the signal

intensity variations are sometimes so subtle and important that the number of

17

sampled intensity values must be increased. Typical biomedical images can be

16-bits or 32-bits. The choice of intensity sampling also affects the storage

space required for the image; a higher sampling rate leads to a larger image

size.

These four characteristics are determinant in the choice of the method to store,

visualize and analyse the images. For example, anisotropic images will often require

some post-processing to “unfold” the represented object. However, even though

important, focusing on these characteristics only is not sufficient to properly analyse

the images, as the nature of the represented objects is probably even more important.

Although image characteristics are alike, methods developed to analyse objects of the

macroscopic world are not always applicable to the world of biomedical objects. The

laws of physics change between these two worlds and, consequently, the morphology

of the objects as well. The large variety of human postures in 2D images is not similar

to the finer variety of shapes in a kidney or a nucleus image.

Development of image analysis methods. To decipher the subtle and specific

variations in biomedical images is one of the main objectives of this work. NucleusJ

[29], the ImageJ/Fiji plugin previously developed by the teams involved in this project,

is specific to confocal images of nuclei. Initially developed for plant nucleus taken in

wide field images, it has been shown to be applicable to other types of nuclei such as

sperm nuclei. NucleusJ basic principle is based on applying a threshold to the image

intensities. The resulting image, a so-called segmentation mask, is black and white,

where white voxels are located on the nuclei and black voxels represent the

background. The “ideal” threshold is found via the Otsu method [38] and a post-

processing based on the Gift-wrapping method [39] is applied to fill the eventual holes

in the segmentation mask. NODeJ, another ImageJ/Fiji plugin developed by the

biologist teams, can then be applied to segment the chromocentres inside each nucleus.

NODeJ combines a modified Laplacian filter with a thresholding method [40] to

segment each chromocentre. Both tools come handy in analysing 3D nuclear images,

mainly images of plant nuclei, as they are quite accurate, fast and do not require any

manual annotations. However, they are both limited to confocal images and to nucleus

and chromocentres segmentation. Both tools would be useless to segment nuclei in

electron microscope images or to segment epithelium cell borders in a confocal image.

A simple intensity threshold cannot be applied in electron microscope images and the

18 - Chapter 1 - Context, challenges, and motivations

Gift-wrapping method cannot be used to fill the eventual gaps in the segmentation of

epithelium cell borders. Two approaches can be taken when facing new imaging

challenges: either create customized solutions for each problem or develop a more

versatile method that can adapt to any new problem as long as there is a set of manual

annotations. The former requires significant engineering efforts, while the latter only

requires novel annotations. In this work, the second approach will be pursued. It is

often called data-driven approach, and it will leverage recent advances in a novel class

of computer science methods called deep learning.

Deep learning. The emergence of deep learning and, more generally, machine

learning has been inspired by how humans learn. If you intend to teach someone to do

a certain task, let say a segmentation task, one of the easiest ways is to show both the

original image and the expected results, the handmade annotation. Links will then be

created in the neural network of the trainee between the original input and the expected

output. An artificial neural network works the same way. An image is input to a series

of operations, which successively transform the image to reach the expected output

format. The predicted output is compared to the expected output with a similarity

score. Each operation has a set of parameters that are then automatically adjusted based

on this score. The higher the similarity score is, the less the parameters will be adjusted.

This process is repeated until the artificial neural network reaches a sufficiently good

score. In this configuration, it is assumed the existence of a “good” artificial neural

network and that only novel pairs of original images and manual annotations must be

provided to adapt this network to a new task. As finding such a “good” artificial neural

network can be extremely difficult, this apparently simple approach is the basic

principle of many recent developments in machine learning. It was only in 2011 [41]

that the first artificial neural network, based on a special type of operation called

convolution, reached human-like performance on a basic task, image classification.

This performance was made possible thanks to the emergence of powerful Graphical

Processing Units (GPUs) originally designed for video game rendering. Deep learning

has become drastically popular among image analysists but, yet, has often not reached

the end users, such as biologists or radiologists. In this work will be first presented an

attempt to understand why there is such as gap between deep learning developers and

biologists and then light will be shed on a newly developed tool, named biom3d, that

19

go beyond the proof of concept of most of the available deep learning methods and

that can be user-friendly for both the end users and the developers.

Reducing the need for manual annotations. Despite the impressive flexibility and

performance of deep learning methods, their effectiveness heavily relies on the

availability of extensive manual annotations. This dependency is called supervision,

regarding how deep learning models are supervised by the man-made data. In domains

like biology and medicine, where expert-level annotations are necessary, the time and

cost involved in generating such large datasets often exceed practical limits.

Consequently, this becomes a significant impediment to the widespread adoption of

deep learning methods in these fields. In response to this emerging challenge, several

techniques have emerged to address the limitations associated with supervised deep

learning methods. These techniques, including active learning, generative methods,

weakly supervised learning, and self-supervised learning, have garnered significant

attention in recent years. More details about each these methods will be provided in

Section 2.3.2. While these methods have proven to be helpful on certain datasets such

as ImageNet [42] for 2D image classification or COCO [43] for 2D image

segmentation, they are yet to prove their effectiveness on a broader scale. This work

will delve deeper into the potential applications of self-supervised learning for 3D

biomedical images. This choice is motivated by the recent promising advancements in

this field and the specific characteristics of biomedical datasets. Self-supervised

learning has shown particular suitability in scenarios where a vast amount of

unannotated data is available alongside a limited number of annotated samples. The

rapid progress in biomedical imaging technologies has enabled biologists and

radiologists to generate a wealth of high-quality 3D images with relative ease and

efficiency. However, harnessing the full potential of this abundant unlabelled data for

training artificial neural networks can be a challenging task. Self-supervised learning

presents a promising approach to leverage this surplus of unannotated data by

pretraining models, using pretext tasks that exploit inherent structures and patterns

within the data, before training them on annotated datasets.

1.3 Outline and contributions

The initial aims of thesis were to develop an AI method to segment nuclei in

microscopy images and to compare it with existing methods. The structure of the thesis

follows almost chronologically the evolution of questions raised along the way.

20 - Chapter 1 - Context, challenges, and motivations

In Chapter 2 is first overviewed the promises of deep learning methods for 3D

imaging as presented in the literature. A deeper exploration will define criterion to find

reusable methods and a set of such methods for 3D nuclear segmentation will be

benchmarked.

In Chapter 3, Biom3d is introduced, an easy-to-use and modular tool, developed

during this PhD, that automatically configures the complex workflow of deep learning

model training. Biom3d default configuration is for volumetric segmentation of

multiple classes of objects in multi-channel images, such as microscopy and medical

images. In segmentation mode, Biom3d is thus able to reach state-of-the-art

performance on multiple segmentation challenges and, in particular, on 3D nucleus

segmentation. The new software development philosophy adopted during Biom3d

creation is one of the major achievements of this thesis project and has permitted

Biom3d to satisfy the expectations of a continuum of users, from Non-Programmers

to Deep Learning Developers.

Finally, in Chapter 4 is presented a series of experiments aiming at adapting existing

self-supervised learning methods to 3D bioimages. Novel contributions based on the

Triplet and the Arcface losses will demonstrate promising results. All these adaptations

and new contributions were made possible by the Biom3d framework.

21

Chapter 2

Related work, review, and benchmarking

Code is like humour.

When you have to explain it, it’s bad.

- Cory House-

2.1 Classical computer vision methods for 3D segmentation

of bio-images

Segmentation, as a computer vision problem, has been closely intertwined with

advancements in imaging techniques. Its early mentions can be traced back to the

1970s [44]–[46], where researchers already recognized its relevance in biological and

medical applications. This Subsection introduces classical computer vision methods

for image segmentation that predate the emergence of artificial intelligence-based

approaches. It is important to note that this introduction is not exhaustive, as the

primary focus of this thesis lies on the latter, AI-driven techniques.

2.1.1 Classical computer vision approaches

Classical computer vision approaches to segmentation involved the application of

various techniques such as thresholding, clustering, region growing, and edge

detection. These methods relied on predefined rules and heuristics to identify and

delineate objects or regions of interest within an image. They aimed to exploit low-

level image characteristics such as intensity, colour, texture, and spatial relationships.

Thresholding, for instance, involves setting a pixel intensity value to separate

foreground and background regions. Finding the best threshold automatically usually

involves the computation of the histogram of intensity values in the image. For

example, Otsu’s method [38], probably one of the most widely used thresholding

method, hypothesises the existence of two probability distributions in the histogram

and the best threshold is the one that minimizes their intra-class variance of each

distribution. Clustering methods seek to group picture elements into K clusters based

on their intensity and location. Neighbouring picture elements of similar intensities

will thus be assigned to the same cluster with an algorithm such as K-means [47]. The

22 - Chapter 2 - Related work, review, and benchmarking

number K of clusters can be determined randomly or with a heuristic [48]. Region

growing algorithms aim to group picture elements with similar characteristics, such

as the aforementioned clusters, into larger coherent regions. This category of

algorithms may involve techniques such as graph partitioning with, for instance,

Markov-random fields [49] or the watershed transformation [31] which considers the

gradient of the intensities as a topographic surface where the region boundaries are

defined by the picture elements with the highest intensity value. Edge detection

methods focus on identifying abrupt changes in picture element intensity to locate

object boundaries. Once edges are located, regions can then be deduced. While local

approaches such as gradient-based methods can often be efficient, they might often

miss edges in noisy conditions. More global approaches might thus be more

appropriate such as methods based on the minimization of an energy function as active

contours [50], fitting a user-defined contour to the image edges, or variational methods

[51], segmenting objects without clearly defined boundaries.

These classical techniques play a crucial role in early image segmentation research

and lay the foundation for subsequent developments. However, they often face

challenges in handling complex image structures, variations in lighting conditions,

noise, and the presence of overlapping or touching objects. They heavily rely on

handcrafted features and predefined rules, making them less adaptable to diverse and

complex real-world scenarios. The emergence of artificial intelligence, particularly

deep learning, has revolutionized image segmentation by enabling the development of

data-driven approaches which automatically learn and extract meaningful features

from images for segmentation tasks. They have shown great promise in addressing the

limitations of classical methods and achieving state-of-the-art performance in various

applications. While this thesis primarily focuses on artificial intelligence-based

segmentation techniques, it is important to recognize and appreciate the contributions

made by classical computer vision methods.

2.1.2 NucleusJ and NODeJ

Preceding this thesis, the work of the PhD students Axel Poulet and Tristan Dubos

has focused on the development of two ImageJ/Fiji plugins, NucleusJ and NODeJ, to

segment plant nuclei in confocal 3D images. NucleusJ [29] (Figure 2-1) takes as input

a wide-field 3D image and output a Comma Separated Value (CSV) file containing,

for each nucleus in the image, a list of 14 characteristics such as the volume, the

23

surface, the sphericity, or the median intensity value. To get these values, it does a

series of transformations on the images based on adaptations of classical computer

vision algorithms. An Otsu’s thresholding combined with a connected component

algorithm simultaneously find large volumes, the nuclei, and remove small volumes,

the background noises. Each nucleus can thus be cropped and isolated. Isolated nuclei

are segmented again with a modified version of the Otsu thresholding. This

segmentation is improved by a Gift-wrapping algorithm which fills holes in the

segmentation results caused, for instance, by the nucleolus not been marked by the

DAPI staining. The final segmentation result is used to compute the 14 characteristics.

To retrieve even more information, NODeJ plugin [52] (Figure 2-1) proceeds to a

subsequent chromocentre segmentation starting from the segmentation result of

NucleusJ. First, the gradient of the image is obtained by subtracting from each picture

element the intensities of its neighbours. Then a threshold is applied to segment the

chromocentres. The resulting chromocentre segmentation can finally be used to

compute more characteristics such as the number and location of each chromocentre.

When phenotyping plant nuclei, NucleusJ and NODeJ have, for instance,

demonstrated significance differences between wild type nuclei and KAKU4 and

CRWN mutants.

NucleusJ and NODeJ typically illustrate the constant need of adaptation required

by the classical computer vision methods which would fail if directly applied.

However, despite this lack of flexibility, this type of method is still developed as it can

be very efficient and performant in some cases, when properly configured. Methods

such as GIANI [53], for mouse embryo image analysis, or TRUEFAD (https://

github.com/AurBrun/TRUEFAD), for myotube segmentation, are other examples of

recent computer vision-based tools. Artificial intelligence-based methods have indeed

the potential of being even more performant but often at the cost of requiring extensive

efforts, skills, time, and expensive pieces of hardware or software. It will be seen later

in this work, that, in some cases, classical computer vision methods can overpass AI

approaches (see Section 2.2.4).

https://github.com/AurBrun/TRUEFAD
https://github.com/AurBrun/TRUEFAD

24 - Chapter 2 - Related work, review, and benchmarking

Figure 2-1 – NucleusJ/NODeJ workflow: from 3D wide-field images to CSV file.

(1) Crop of nuclei into individual files. (2) Generation of nucleus masks. (3) Intensity

gradient of nucleus content. (4) Generation of chromocentre masks. (5) Generation of

csv files with parameters describing nucleus morphology and chromocentres.

2.2 Supervised deep learning methods

The main core of artificial intelligence methods is now probably deep learning,

which could be viewed as a convergent evolution that has quickly dominated. Indeed,

preceding deep learning methods, AI field have been the realm of a Cambrian-like

explosion of novel methods every year. Discoveries in biology and medicine has

deeply influenced these evolutions first by inspiring novel ideas and offering novel

insights on how natural neural networks work and, second, by being an important case

of study regarding the increasing amount of new data and challenges it provides. This

Section mainly focuses on supervised deep learning methods, still one of the most

chosen approaches regarding deep learning model training. It will first introduce deep

learning concepts and functioning and then overview the large panel of applications

for biology and medicine. It will be concluded by a comparative analysis of deep

learning methods for 3D nucleus segmentation, an important part of the work achieved

during this thesis.

25

2.2.1 General background

Even though some may distinguish them, the terms machine learning (ML) and

artificial intelligence (AI) will be used indistinctly in this thesis. The latter has been

chosen so far for it to be often preferred by mainstream media and commonly used,

the former is probably more accurate and generally chosen by experts. This Subsection

will develop the general introduction of Chapter 1 about deep learning by enriching it

with a mathematical background.

Machine learning. AI and ML both refer to the art of programming a set of

parameterized operations for a computer to achieve a certain task. This set is often

named model and the operations are named layers. A task is usually defined by a set

of inputs, such as images, that will be noted 𝑥, and a set of expected outputs, such as

categories, for instance “wild-type nucleus” and “mutant nucleus” (Figure 2-2-A), that

will be noted 𝑦. The term learning implies that some of the layers, noted 𝑓𝑤, have

parameters, noted 𝑤, that will be adjusted automatically so the predicted output, noted

𝑦̂ = 𝑓𝑤(𝑥), match the expected output 𝑦, also called ground truth. To do so, the loss

function, noted 𝐿𝑤, measures the difference between the output 𝑦̂ and the ground truth

𝑦 (Figure 2-2-B). The goal is to minimize this difference. The optimizer, noted 𝑔𝛼,

then adjusts the parameters 𝑤 to new values 𝑤′ depending on the loss value 𝐿𝑤(𝑦̂, 𝑦):

𝑤′ = 𝑔𝛼(𝑤, 𝐿𝑤(𝑦̂, 𝑦)). This step is named training. The definition of loss function 𝐿𝑤

and the optimizer 𝑔𝛼 is often dependent on the task definition. However, there are

certain standards, particularly for the optimizer. Probably, the most used optimizer is

the Stochastic Gradient Descent: 𝑔𝛼(𝑤, 𝐿𝑤(𝑦̂, 𝑦)) = 𝑤 − 𝛼
𝑑𝐿𝑤

𝑑𝑤
. In this case, the

operation parameters are adjusted by subtraction of the gradient of the loss function

𝑑𝐿𝑤

𝑑𝑤
. The sign of gradient

𝑑𝐿𝑤

𝑑𝑤
, positive or negative, represents the variations of the loss

function 𝐿𝑤, increasing or decreasing, if the operation parameters 𝑤 were slightly

increased or decreased. Subtracting the operation parameter 𝑤 with the gradient
𝑑𝐿𝑤

𝑑𝑤

means that, if the gradient is positive, 𝑤 will be decreased, thus moving toward a loss

decrease and, similarly, if the gradient is negative, 𝑤 will be increased, thus moving

again toward a loss decrease. It is important to note that there are two different types

of parameters here. First, the trainable parameters 𝑤 are the operation parameters

adjusted automatically by the optimizer and, second, the so-called hyper-parameters

must be manually defined, such as the learning rate 𝛼 in the optimizer, controlling the

26 - Chapter 2 - Related work, review, and benchmarking

update intensity of the operation parameters. Other examples of hyper-parameters are

the number and the type of each layer (if the model has several), the number of data

given simultaneously to the model during training (batch size), or the number of times

the model sees the entire dataset (epoch). Defining properly the hyper-parameters is

often regarded as one of the main challenges of machine learning. It will be shown

later in this thesis (see Chapter 3) that hyper-parameter configuration for 3D images is

even more challenging due their sizes. Biom3d framework, one of the main

contributions of this thesis, tackles this challenge.

Figure 2-2 – Basic principles of machine learning. (A) A basic units of machine

learning model. A nucleus image (left) is input to a parametrized operation (red) and

to a non-parametrized operation (purple). The output is here a class, either “Mutant”

or “wild-type” nucleus. (B) Training of a deep learning model. A raw input of a

nucleus (left) is pre-processed (yellow box) and fed to the deep learning model (middle

grey box) which transforms it, via a series of operations, into an expected output, here

a segmentation. After a post-processing (orange box) the expected output is compared

to the ground truth segmentation with a loss function (blue box). The optimizer (bot)

will adjust the parameters of the deep learning model depending on this loss.

Illustration taken from [40].

27

Machine learning versus Deep learning. The distinction between classical machine

learning models and deep learning models lies in the presence of multiple successive

parametric layers in the latter. In deep learning models, if two or more consecutive

layers with learnable parameters are present, the model is considered deep (Figure 2-2-

B). This stacked structure of layers offers two key advantages compared to single-layer

models. Firstly, deep learning models can achieve comparable performance to single-

layer models with a seemingly lower number of trainable parameters. This parameter

efficiency is attributed to the hierarchical nature of deep models, where each layer

learns and refines representations of increasing complexity. By leveraging the

hierarchical structure, deep models can efficiently capture and encode information

from the input data, leading to better performance with fewer parameters. Secondly,

the layered structure of deep models enables them to extract more complex and

abstract features. While shallow models may be limited to detecting simple features

like edges or corners, deep models have the capacity to learn hierarchical

representations, allowing them to recognize more intricate patterns and concepts. For

example, a deep model can learn to identify not only the individual components of a

dog, such as edges or corners, but also the overall shape and appearance of the

complete dog (Figure 2-5).

Short history of deep learning for vision. The use of deep learning models can be

traced back to the early 1980s with, for instance, the work of Kunihiko Fukushima on

a model called Neocognitron [54]. Fukushima introduced a special type of model, later

called Convolutional Neural Network (CNN or ConvNets) inspired by works on the

visual cortex [55]. Although this method using brain like networks worked, it was very

slow to train. It was only in 2011 that deep learning reached performance exceeding

that of a human experimenter on visual task problems [41] owing to their

implementation on fast Graphical Processing Units (GPUs) and large-scale handmade

datasets. CNNs were made famous in 2012 by winning several well-known

competitions in the field including ImageNet 2012 [42] and MICCAI 2013 Grand

Challenge [56] (Figure 2-3). Afterwards, deep learning methods usage shortly

exploded in communities of biological and medical image analysts [57], most of which

deal with image segmentation relying on the U-Net model [58].

28 - Chapter 2 - Related work, review, and benchmarking

Figure 2-3 - ImageNet classification challenge results between 2010 and 2015. A

shift occurred in 2012 with the appearance of deep learning methods (green) rapidly

replacing the traditional computer vision approaches (blue). Illustration adapted from

[59] from Jensen Huang talk at CES 2016.

Deep learning operations. The base parametric layer of most of deep learning

methods for visual task is called convolution and consists in a weighted sum of a small

set of pixels that belong to a small sub-window (usually 3×3 pixels or 3×3×3 voxels)

within the input image (Figure 2-4-A). The resulting digit is stored in an output array.

This weighted sum is reiterated using the same set of weights, called kernel, but

applied to a small sub-window shifted by one pixel. The resulting array is completed

by browsing through the entire input image. Mathematically, this operation can be

written as follows for 2D images:

𝐼𝑚𝑎𝑔𝑒𝑜𝑢𝑡𝑝𝑢𝑡
(𝑐) (ℎ, 𝑤) = ∑ ∑ ∑ 𝐾𝑒𝑟𝑛𝑒𝑙(𝑐)(𝑖, 𝑗, 𝑘) ∗ 𝐼𝑚𝑎𝑔𝑒𝑖𝑛𝑝𝑢𝑡

(𝑖)
(

𝑑

𝑘=−𝑑

𝑑

𝑗=−𝑑

𝑁

𝑖=1

ℎ + 𝑗, 𝑤 + 𝑘)

where 𝐼𝑚𝑎𝑔𝑒𝑥
(𝑐)(ℎ, 𝑤) is the pixel value of the image at (ℎ, 𝑤, 𝑐), ℎ being the height

coordinate, 𝑤 being the width coordinate and 𝑐 being the channel coordinate, 𝑁

represents the number of channels in the input image and 𝑑 the kernel size. This

operation can easily be adapted to 3D images by addition of one dimension.

29

Figure 2-4 – Deep learning layers and a minimalist model for image analysis. (A)

A convolution layer is the weighted sum between a set of parameters (kernel) and a

small sub-window within the input image (left, dark green). This gives a single digit

stored in the output image (right, dark green). The small sub-window is then slid to

the left (step 2) and the process is reiterated. Illustration taken from [40]. (B) An

activation layer, here a Rectified Linear Unit (ReLU), applies a threshold to the input

image, transforming all negative values into zeros. (C) A pooling layer, here a

MaxPooling, reduce the input image size by a factor of two, slicing the image in 2×2

sections, selecting the maximum values of each section. (D) A minimalist deep

learning model classifies the input image into two classes. Illustration taken from

[40].

Often placed after convolution layers, the activation layer (Figure 2-4-B) are non-

parametric layers applying a threshold to their input. Some values in the output will be

turned to zero forcing the model to make a focus on specific region and patterns in the

image (Figure 2-5). Additionally, to encourage the model to extract hierarchical

features from the data with increasingly complex shapes, the output of each activation

layer is compacted by being shrunken down, usually by a factor of 2, with a pooling

layer (Figure 2-4-C). A succession of sets of convolution, activation and pooling layers

30 - Chapter 2 - Related work, review, and benchmarking

can form a deep learning model (Figure 2-4-D). Figure 2-4-D shows a minimalist

example where the input image is transformed into a single binary digit. This simple

model can be used to classify images into two categories. This task is called image

classification and often consider as one of the simplest in image processing. The

ImageNet challenge [42] is, for instance, an image classification challenge which

involves classifying more than a million images into one thousand classes. In deep

learning, classification models are considered as backbones onto which additional

layers can be attached to address other tasks such as object detection or image

segmentation. These additional layers build upon the learned representations of the

backbone model to perform more specific and intricate tasks. Common backbones

include CNNs such as VGG [60], ResNet [61], EfficientNet [62] or Vision

Transformers [63], [64].

Figure 2-5 – What does the deep learning model “sees”? Visualization of the output

of some activation layers at different depth in the deep learning model (top row). These

views have been reconstructed with a deconvolution model (inverted convolution)

using the samples displayed in the bottom line. It can be noted that the deeper the layer

is in the model, the more complex the patterns of attention are, shallow layers focusing

on simple edges and deep layers focusing on complete objects. Illustration adapted

from [65].

Vision Transformer. The Vision Transformer (ViT) models have recently set a

significant milestone in deep learning for visual tasks. This type of model originate

from Natural Language Processing [66] (Figure 2-6-A) and have achieved remarkable

performance on well-known computer vision challenges such as ImageNet for image

classification [42] (up-to-date of the state-of-the-art available here:

31

https://paperswithcode.com/sota/image-classification-on-imagenet) or COCO for

object detection and image segmentation [43] (https://paperswithcode.com/dataset/

coco). The main parametric layer of these model is not the convolution layer but the

attention layer. The introduction of attention mechanisms aims to reduce the

“inductive bias” imposed by convolutions. Indeed, convolutional layers assume that

objects or parts of objects within an image are in a relative proximity to each other.

However, this assumption may not always hold in certain scenarios, such as object

occlusions. Attention layers provide a more flexible and adaptive approach to capture

long-range dependencies and relationships between image regions. Attention

mechanisms assign different weights to different regions in the input, allowing the

model to focus on more informative regions and disregard irrelevant ones. More

formally, the input image 𝑥 is first split into smaller squares 𝑥1, 𝑥2, … , 𝑥𝑛, each being

a vector with a fixed size (Figure 2-6-B). This sequence is then transformed into

another sequence 𝑎1, 𝑎2, … , 𝑎𝑛 with the attention mechanism defined by the following

formula:

𝑎𝑖 = ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
(𝑊𝑞𝑥𝑖)

𝑇
(𝑊𝑘𝑥𝑗)

√𝑑𝑞

) 𝑊𝑣𝑥𝑗

𝑛

𝑗=1

where 𝑊𝑞, 𝑊𝑘 and 𝑊𝑣 are three matrices of trainable parameters, 𝑑𝑞 is the number of

rows of 𝑊𝑞 and 𝑧 ⟼ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑛

𝑗=1

. The weights of this weighted sum are

determined by the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function which tends to output either values close to one

or values close to zero. For instance, if the model finds a useful link between regions

𝑥1 and 𝑥2 of the image, then this mutual information could be merged into 𝑎1 by setting

the matrices 𝑊𝑞 and 𝑊𝑘 so that the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function outputs one if 𝑗 = 2 and zero

otherwise. As many different links might exist between image regions, the attention

layer contains many of these attention operations and is thus called multi-head

attention layer (Figure 2-6-A). To leverage the power of deep learning, many of these

multi-head attention layers are stacked together to create the final Vision Transformer

model. It is worth noting that while attention layers have shown great promise in Vision

Transformers, convolutional layers still play a vital role in many computer vision

applications. Different architectures, such as hybrid models that combine both

convolutional and attention layers, are also being explored to leverage the strengths of

both approaches (Figure 2-6-C).

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/dataset/coco
https://paperswithcode.com/dataset/coco

32 - Chapter 2 - Related work, review, and benchmarking

Figure 2-6 – Vision Transformer. (A) The original transformer model is designed

for sequence analysis, originally textual sequences. Its main parametric layer is the

multi-head attention layer (orange). Illustration adapted from [66]. (B) The vision

transformer takes an image as input and transforms it into a sequence by splitting the

image into small patches and flattening them into vectors. Illustration taken from [63].

(C) The vision transformer evolution in 2021. A large panel of derivative of the

original transformer model appeared in 2021 quickly making it one of the most popular

types of models. Illustration adapted from [67].

2.2.2 Applications in biology and medicine

To build upon this general background, the following Subsection will provide a

quick and non-exhaustive overview of deep learning methods used in biology and

medicine for image analysis. The choice of presenting a certain method here has been

made regarding their popularity and availability. To valorise open-science

contributions, the focus will exclusively be made on free and open-source tools that

provides a Graphical User Interface for non-programmers. A distinction will be made

between biological and medical tools. However, some tools are generic enough to be

used for both applications such as Fiji/ImageJ [17] or 3D Slicer [12].

33

Biological applications. In matter of free and open-source tools for biological image

analysis (Table 2-1), probably the most used ones are Fiji/ImageJ, Weka [8], ilastik [7]

and napari [6], all of which including machine learning tools either by default or in

form of plugins. Fiji/ImageJ and Weka are both coded in Java, the former being more

popular for its large set of traditional computer vision tools and the latter for its

collection of machine learning algorithms. Ilastik and napari are developed with

Python, an increasingly popular language in the computer vision community. Ilastik

main purpose is to segment, detect, and classify objects in 2D and 3D bioimages while

napari is mostly a 3D viewer for bioimages. Napari has yet a highly flexible software

architecture which ease both the installation and the development of plugins in Python.

For instance, deep learning segmentation tools such as StarDist [68] (see Section 2.2.3)

has been integrated into napari with an easy-to-use graphical user interface

(development helped by MagicGUI https://github.com/pyapp-kit/magicgui).

As deep learning tools are often difficult to use due to the difficulty to find properly

trained model, the website Bioimage.io offers to host a number of ready-to-use deep

learning model in DeepImageJ, a plugin of Fiji/ImageJ [69]. It is important to note that

a downloaded model from Bioimage.io must be applied on images that are like the

ones used during model training or the output will be aberrant (Figure 2-7). To help

train a deep learning model on novel images, ZeroCostDL4Mic website [70]

(https://github.com/HenriquesLab/ZeroCostDL4Mic) hosts a set of online notebooks

for bioimage segmentation, object detection, object classification and image

denoising, by leveraging the computers of Google Colab.

Figure 2-7 – Segmentations done with DeepImageJ of membranes captures with

an electron microscope. The raw image (left) is segmented first by an inappropriate

model (middle) and an appropriate model (right).

https://github.com/pyapp-kit/magicgui
https://github.com/HenriquesLab/ZeroCostDL4Mic

34 - Chapter 2 - Related work, review, and benchmarking

Besides the previous general-purpose pieces of software, some others are more

modality-specialized such as 3Dmod [14] which focuses on 3D modelling of electron

microscopy images or OpenOrganelle [71] for 3D organelle segmentation in the same

modality. Others are more tasks specific, such as Cellpose [72], [73] for cell and

nucleus segmentation, Mastodon and ELEPHANT [74] for cell lineage,

3DeeCellTracker [75] for cell tracking, or CSBDeep toolkit

(http://csbdeep.bioimagecomputing.com/), including CARE [76], DenoisSeg [77] and

Noise2Void [78], for confocal image denoising.

Table 2-1 – Free and open-source programs for 3D microscopy image analysis.

Each program integrates a graphical user interface.

Software Modality Tasks ML/DL 3D viewer online/

offline

Ref.

Fiji/ImageJ Generic Computer vision Plugins: ML

and DL

(DeepImageJ)

Yes, via

plugin

offline [17],

[69]

Icy Generic Generic Plugins: ML

and DL

Yes offline [79]

napari Generic None by default Plugins: ML

and DL

Yes, by

default

offline [6]

Ilastik Generic Segmentation, detection,

classification

ML No, 2D

sections

only

offline [7]

Weka Generic Segmentation, detection,

classification

ML No, 2D

sections

only

offline [8]

Cellprofiler Light

microscopy

Cell image analysis Plugins: ML

and DL

No, 2D

only

offline [80]

Cellpose Light

microscopy

Cell and nucleus segmentation DL No, 2D

only

offline

and online

[72],

[73]

ZeroCost-

DL4Mic

Generic Segmentation, detection,

classification, denoising

DL No online [70]

CSBDeep Light

microscopy

Image restoration (CARE,

Noise2Void, DenoiSeg),

DL No offline [68],

[76]–

[78]

http://csbdeep.bioimagecomputing.com/

35

Nucleus Segmentation

(StarDist)

Imjoy Generic Generic DL No, 2D

only

online [81]

Mastodon Light

Microscopy

Cell tracking ML and DL

(ELEPHANT)

No, 2D

sections

only

offline [82]

Open-

Organelle

Electron

Microscopy

Multi-organelle segmentation DL No, 2D

sections

only

offline [71]

3dmod Electron

Microscopy

3D modelling None Yes offline [14]

Medical applications. Even though the main starting point of this thesis is biology,

similarities shared between biological and medical images implies that applications

for one type of image could potentially be applied to other. Table 2-2 showcases a non-

exhaustive list of free and open-sources programs for medical applications. This list,

partially extracted from [83], includes well-known applications such as 3D Slicer [12],

ITK-SNAP [84] and MITK [85] which offer a wide range of functionalities, including

image analysis, processing, visualization, tracking in 3D videos, and segmentation.

Among these, 3D Slicer stands out for its versatility and extensive collection of

extensions and plugins. Many of these extensions have been developed during

challenges like Grand Challenges (https://grand-challenge.org/) or as a result of

research presented at conferences such as ISBI

(https://2023.biomedicalimaging.org/en/) or MICCAI (http://www.miccai.org/).

However, these challenges and conferences prioritize the exploration of ideas and

implementations of proof-of-concepts, which may not always result in fully

operational and reusable applications. Although there has been a recent emphasis on

code publication and sharing, the integration of these tools for practical applications is

often overlooked, leading to a gap between published research and usable software.

Surprisingly published code is not ever a reproducible code and, even less, a reusable

code as is. Yet, some recent methods for medical image segmentation have made

commendable efforts in this direction. Notable examples include nnU-Net [86],

https://grand-challenge.org/
https://2023.biomedicalimaging.org/en/
http://www.miccai.org/

36 - Chapter 2 - Related work, review, and benchmarking

TotalSegmentor [87], and Universal [88] Model for image segmentation, as well as

nnDetection [89] for object detection.

Table 2-2 – Free and open-source programs for 3D medical image analysis and

visualization. Each program integrates a graphical user interface with a 3D viewer.

They are roughly classified by the number of features (and, consequently, by

popularity) offered for medical image analysis.

Software Modality Task Language Ref.

3D Slicer Generic: medical

and biological

Generic: 3D, 3D+time,

Processing, Analysis, Virtual

Reality, Segmentation…

Python, C++, Matlab [12]

ITK-SNAP Generic Generic C++ [84]

MITK Generic Generic C++ [85]

MIPAV Generic Generic Java [90]

MedInria Medical Generic C++ [91]

Anatomist Brain MRI Neuroimaging Python, C++ [92]

FreeSurfer Brain MRI Neuroimaging C++ [93]

FSL Brain MRI Neuroimaging C++ [94]

Seg3D Generic Segmentation C++, Python, Matlab [95]

Tomviz Tomographic data Visualization C++, Python [13]

Paraview Generic: medical,

biological,

engineering…

Visualization C++ [96]

Vaa3D Bioimages Visualization C++, C [97]

2.2.3 Applications to the nucleus

Out of more than 150 published methods, we identify fewer than 12 that biologists

can use (quoted from [40]). Despite the proficiency of deep learning methods

publication for analysing nucleus images, only few are reusable. This quote is

extracted from [40], work produced during this thesis and targeting the availability of

deep learning methods for nuclear image analysis. As previously mentioned, the cell

nucleus is the focus of investigation of the two teams of biologists involved in this

project as well as the object of still prominent number of publications in biology. It

37

represents also the first field of investigation of this work on deep learning which will

be further extended to biology and medicine in following chapters. Despite this nuclear

focus, some of the contributions presented below, such as the deep learning sharing

criteria, could probably be applied to a broad spectrum of applications. This sub-

section mostly delineates the work done in [40]. It first presents the challenges of

sharing deep learning methods by defining precise availability criteria, then sheds light

on one of these criteria, namely the dataset, and finally overviews the actually available

methods for nuclear image classification, detection, segmentation and denoising.

Deep learning method development. Making a deep learning method accessible to

biologists is a long and often underestimated process. This coding journey is illustrated

in Figure 2-8 and starts with a general deep learning method developed by researchers

in computer science only and made to solve general visual tasks such as the ImageNet

challenge [42]. This method can then be shared, reused, and adapted by a

multidisciplinary team of biologists, bio-informaticians and computer scientists onto

biological problems. The resulting applied method must be general enough for other

multidisciplinary teams to reuse it on their own dataset. As often being the first step of

applied science following a method issued from fundamental research, it will probably

require two substantial refinements for method applicability and method usability.

These two refinements are labelled “fine-tuned” and “easy-to-use” in Figure 2-8 and

follows each other to simplify the representation. A method applicability tends to be

universal if it can be applied to a broad range of data with only minor user inputs. This

is one of the main goals of deep learning methods as they are supposed to work well

on novel data by only providing novel manual annotations and then re-training/fine-

tuning the deep learning model. Some knowledge in computer science is yet still

required to achieve this. The method usability tends to be universal if the method is

user-friendly, meaning that a clear graphical user interface and tutorials are provided.

To develop such an interface, a consequent team of computer scientists might be

needed. All these steps of development require the deep learning method to be properly

shared.

38 - Chapter 2 - Related work, review, and benchmarking

Figure 2-8 – Deep learning method development steps, from a fundamental idea

in computer vision to an easy-to-use tool for biologists. (A) A new DL method is

designed to solve general imaging problems and is trained on large standard datasets.

(B) New developments are conducted by a multidisciplinary team to specialize the

model to the images produced by the biologists. (C) A specialised model can then be

used by biologists on their images. However, the model is often not completely adapted

to them, and creation of a new small dataset and model fine-tuning is required. At this

stage, retraining is often facilitated by packaging tools, such as Docker, reducing the

need for IT-skills. (D) For this fine-tuned method to be used by a non-IT aware user, a

team of software engineers should integrate it into an easy-to-use interface such as

software, a web page, or a plugin.

39

Deep learning method sharing. Sharing a deep learning method is a more complex

process compared to shallow machine learning methods. To consider a deep learning

model viably shared, the following components should be made available (Figure 2-9-

A):

• Reusing criteria:

o Detailed explanations in the publication: The publication should

provide comprehensive explanations of the deep learning method,

including any relevant theoretical and practical background.

o Commented code for prediction and training: The complete code of the

method should be provided with detailed comments to aid

understanding. The code must include the definition of loss functions,

evaluation metrics, optimizer settings, hyper-parameter values, data

pre-processing steps, and data post-processing steps.

o Clear user documentation: Documentation should include installation

steps and a clear explanation of the prediction procedure, enabling users

to easily set up and run the model.

o Trained model or Dataset: The trained model, which contains all the

learned parameters, should be shared in a file or format that allows for

inference. If not available, a dataset alongside a training procedure

should be provided.

o Deep learning environment: The software and hardware requirements

for running the model should be specified, and ideally packaged with

tools like Anaconda or Docker (Figure 2-9-B).

• Reproduction and improvement criteria:

o Training and testing datasets: The datasets used for training and testing

the model should be made available, ensuring both reproducibility and

the ability to fine-tune the model.

o Developer documentation: Detailed information about the code

architecture and how to contribute to the code development should be

provided.

• Accessibility criteria:

o Interfaces: To make the tool accessible to non-developer users, the

sharing of the inference procedure should be complemented with a

40 - Chapter 2 - Related work, review, and benchmarking

user interface, such as an Application Programming Interface (API) or

a Command Line Interface (CLI) for programmers, or a Graphical

User Interface (GUI) for non-programmers.

During the review process made in [40], a method will be considered as viably shared

if it follows the five “reusing criteria”. It will be shown below, and it is illustrated in

Figure 2-9-A, that only few provide the required components.

Deep learning environment. The last of these components, the deep learning

environment, deserves a bit more explanations. If a code is made available, and if one

tries to install it and use it, it is not unusual to find out that the code is not working,

throwing some errors about missing requirements or drivers. This type of problem is

linked to the deep learning environment. A piece of software with a high level of

functionality, such as a deep learning-based software including a nice graphical user

interface, will almost always be coded with the help of existing sets of tools. These

sets of tools will also be coded with the help of other sets of tools. This stack of tools

on top of one another is called a software stack. A simplified representation of the

software stack is depicted on Figure 2-9-B and is divided into three levels: the kernel,

the operating system, and the applications. The kernel is what makes physical,

hardware components function together. The operating system (OS), on top of the

kernel, can contain an interface and tools to create applications. It can include a

Graphical User Interfaces such as Windows or Ubuntu-Desktop. Finally, the

application level is where the final applications will be developed, installed, launched,

and used. This last level is itself divided into several levels that will not be detailed in

this thesis. The important information to take from this representation is that each of

these levels have several versions and that each version of one level is dependent on

very specific versions on the level below. A deep learning application for instance,

could require a specific version of the Python programming language, of the Pytorch

library, of a Linux-based OS and of Graphical Processing Unit drivers. The range of

versions that properly work together is often small. To tackle this, a solution is to use

packaging solutions, such as Anaconda, which packages tools in the application level,

Docker, which includes the OS as well, or a Virtual Machine including every level. A

naïve approach could be to consider using Virtual Machines always, but they tend to

be slower than the two others and to have a larger computer memory footprint. Docker

is often a good solution even though it is harder to use than Anaconda.

41

Figure 2-9 – Sharing and use of deep learning models. (A) Sharing requirements

must be fulfilled for a deep learning method to be properly shared. For 3D nucleus

segmentation, only 4% of published methods encompass the minimum requirements.

(B) Simplified view of the deep learning development environment. Several layers

of programs are stacked on top of each other based on the computer hardware (light

green, bottom). The first software layer, the kernel (light orange), is a platform

defining basic functions to leverage the hardware computation power and can be

integrated in virtual machine definition. The next layer, the operating system (OS, dark

orange) is another set of functions defined on top the kernel which includes more

features such as a Graphical User Interface. It can be included in the definition of a

Docker container. The top layer, the application layer (dark green), defines the

programming environment and deep learning frameworks where Python applications

can be isolated in an Anaconda environment. Illustration adapted from [40].

Importance of datasets. Deep learning method are called data-driven, meaning that

the core of their proper functioning is in the constitution of a dataset with as few

mistakes as possible. The dataset is the solely source of knowledge for deep learning

models which means that, before resolving the required task, the model must extract

some general knowledge about the images, such as an abrupt change in colour might

represent an edge or that some regions of the images are noises. One solution to help

the model extracting some of this information is to pre-train it either on a pretext task,

42 - Chapter 2 - Related work, review, and benchmarking

a process called self-supervision, or on a large set of pre-annotated images, a process

called transfer learning. Transfer learning is often done using ImageNet [42], a large

dataset including a broad range of daily life objects. Even though one could think that

biological or medical objects look different, deep learning models pre-trained on

ImageNet have shown significant improvements on cell images [98] or medical images

[99]. Pre-training on large datasets of biological images similar to the images of

interest is yet preferable. A complete list of manually annotated datasets for nuclear

image analysis have been gathered in Table 2-3. As manually annotating can be time-

consuming, computer scientists have also designed software to create artificial dataset

of nucleus images and annotations, such as CytoPacq [100] (https://cbia.fi.muni.cz/

simulator/index.php). For more details, Section 2.3.2 provides an overview of methods

to overcome the lack of annotated data sets.

Data annotation and sharing. However, in most cases, manually annotating a

dataset is required and thus a good annotation tool is needed. Free and open-source

tools for bioimage annotation have been classified in

Table 2-4 depending on the targeted task: image classification, object detection or

image segmentation. Some programs incorporate semi-automatic tools such as ilastik

and Weka which can speed up the process but can sometimes bias it by suggesting

wrong annotations. Paintera can also include Segment Anything [101], a deep learning

tool developed by Meta to propose segmentations in 2D images. Nevertheless, for this

thesis, the napari annotation tool has been selected as it offers an intuitive and efficient

3D viewer, along with helpful plugins.

 Once annotated, a dataset should be made publicly available. Sharing annotated

datasets allows other researchers to evaluate and build upon the results but is yet often

more challenging than sharing codes which only requires a small amount of computer

memory space and online versioning tools such as GitHub or GitLab. The first

challenge with data sharing concerns the size of the data and its online accessibility.

Sharing a dataset on an online server may require storage resources as well as web

hosting capabilities not always accessible to scientists. A free and easy-to-use solution

is Zenodo. Another solution is to use a cloud-storage platform such as Google Drive,

OneDrive, Baidu Drive, or WebKnossos [15] but, for intellectual property reasons,

those are not recommended. For bioimages, one could also use the services offered by

https://cbia.fi.muni.cz/​simulator/​index.php
https://cbia.fi.muni.cz/​simulator/​index.php

43

the Broad Bioimage Benchmark Collection (BBBC) [102] or the Image Data Resource

[103] maintained by the OMERO developers [104]. However, these two services

require the user to send an application and to follow certain criteria which could be a

limiting. The second challenge with data sharing is the uprising recommendations to

following the FAIR (Findable, Accessible, Interoperable, Reusable) criteria. Adhering

to these principles ensures that the shared data can be easily reused by the scientific

community. For bioimages, one of the key components to share along with the images

is the metadata, which includes all the contextual information surrounding the capture

of the image, such as the microscope characteristics, the time of capture or the image

resolution. FAIR data sharing brings to the fore front the writing of “Data Management

Plans” which are now strongly recommended by national research institutes such as

the CNRS in France.

Table 2-3 – Complete list of publicly available datasets for nuclear image analysis.

Topic Name Description

Nucleus

classificatio

n 2D

Mitos-Atypia-14 -

Grand Challenge

Classification of nuclear atypia in breast cancer biopsy slides.

Approximately 10400 frames. https://mitos-atypia-14.grand-

challenge.org/Dataset/

Nucleus

segmentatio

n 2D

MoNuSeg - Grand

Challenge

Multi-organ nuclei segmentation challenge. Challenge of MICCAI

2018. 30 images with approximately 22000 nuclear boundary

annotations. https://monuseg.grand-challenge.org/Data/

Nucleus

segmentatio

n and

classificatio

n 2D

MoNuSAC - Grand

Challenge

31000 annotated nuclei from 4 different organs (Lungs, Prostate,

Kidney and Breast) stained with H&E. https://monusac-2020.grand-

challenge.org/Data

Nucleus

segmentatio

n 2D

Segmentation of Nuclei

in Histopathology

Images by deep

regression of the

distance map

50 annotated histopathology images.

https://zenodo.org/record/1175282

Nucleus

segmentatio

n 2D

NucleusSegData: Cell

Nucleus Segmentation

Dataset for

Fluorescence

Microscopy Images

Fluorescence microscopy images. 2661 cell nuclei of 37 fluorescence

microscopy images

http://www.cs.bilkent.edu.tr/~gunduz/downloads/NucleusSegData/

Nucleus

segmentatio

n 2D

2018 Kaggle Data

Science Bowl

A large variety nuclei images under a variety of conditions (small or

large nuclei, from colored or grayscale images of different

resolutions). Kaggle competition proposed by Booz Allen Hamilton

https://www.kaggle.com/c/data-science-bowl-2018/data

Nucleus

segmentatio

n 2D

A Dataset and a

Technique for

Generalized Nuclear

Segmentation for

Computational

Pathology

21000 nuclear boundaries in H&E-stained tissue. Used in many

publications.

https://nucleisegmentationbenchmark.weebly.com/dataset.html

Nucleus

segmentatio

n 2D

Deep learning for digital

pathology image

analysis: A

Tissue images containing nuclei segmentation, epithelium

segmentation, tubule segmentation, lymphocyte detection, mitosis

detection, invasive ductal carcinoma detection and lymphoma

https://mitos-atypia-14.grand-challenge.org/Dataset/
https://mitos-atypia-14.grand-challenge.org/Dataset/
https://monuseg.grand-challenge.org/Data/
https://monusac-2020.grand-challenge.org/Data
https://monusac-2020.grand-challenge.org/Data
https://zenodo.org/record/1175282
http://www.cs.bilkent.edu.tr/~gunduz/downloads/NucleusSegData/
https://www.kaggle.com/c/data-science-bowl-2018/data
https://nucleisegmentationbenchmark.weebly.com/dataset.html

44 - Chapter 2 - Related work, review, and benchmarking

comprehensive tutorial

with selected use cases.

classification

http://andrewjanowczyk.com/wp-static/

Nucleus

segmentatio

n 2D

Dataset from

"Immunohistochemistry

(IHC) Image Analysis

Toolbox"

52 images of clustered stained nuclei

https://www.dropbox.com/s/9knzkp9g9xt6ipb

Nucleus

segmentatio

n 2D

Hand-segmented 2D

Nuclear Images

100 images of clustred stained nuclei

http://murphylab.web.cmu.edu/data/2009_ISBI_Nuclei.html

Nucleus

segmentatio

n 2D

EVICAN Dataset - a

balanced dataset for

algorithm development

in cell and nucleus

segmentation

Grayscale images from multiple bright field microscopes. 4600 images

and 26000 segmented cells

https://edmond.mpdl.mpg.de/imeji/collection/l45s16atmi6Aa4sI

Nucleus

segmentatio

n 2D

An annotated

fluorescence image

dataset for training

nuclear segmentation

methods

Annotated fluorescent nuclear images of different tissue origins

https://www.ebi.ac.uk/biostudies/files/S-BSST265/dataset.zip

Nucleus

segmentatio

n and

classificatio

n 2D

PanNuke: An Open Pan-

Cancer Histology

Dataset for Nuclei

Instance Segmentation

and Classification

205343 semi-automatically segmented nuclei from 19 different tissues

stained by H&E.

https://warwick.ac.uk/services/its/intranet/projects/webdev/sandbox/jul

iemoreton/research-copy/tia/data/pannuke

Nucleus

segmentatio

n and

classificatio

n 2D

Dataset of segmented

nuclei in hematoxylin

and eosin stained

histopathology images

of ten cancer types

Biggest annotated dataset of the list. From The Cancer Genome Atlas:

5060 whole slide tissue images from 10 cancer types (approximately 5

billion segmented nuclei) automatically segmented and quality

controlled and 1356 manually segmented patches from the TCGA

from 14 cancer types (10 same and 4 new)

https://app.box.com/s/yd4pbndk2bxtnourzpbvopga8dczsnes/folder/993

92899243

Nucleus

segmentatio

n 2D and

3D

Broad Bioimage

Benchmark Collection

Database of various medical image analysis problems.

https://bbbc.broadinstitute.org/image_sets

Some of the image sets focus on nuclei segmentation in 2D and 3D:

-Nuclei of U2OS cells in a chemical screen (2D):

https://bbbc.broadinstitute.org/BBBC039

-Drosophila Kc167 cells (cells and nuclei outlined in 2D):

https://bbbc.broadinstitute.org/BBBC007

-Human U2OS cells (out of focus) (2D):

https://bbbc.broadinstitute.org/BBBC006

-Human HT29 colon-cancer cells (diverse phenotypes) (2D):

https://bbbc.broadinstitute.org/BBBC018

-Murine bone-marrow derived macrophages (2D):

https://bbbc.broadinstitute.org/BBBC020

-Nuclei of mouse embryonic cells (3D):

https://bbbc.broadinstitute.org/BBBC050

Nucleus

segmentatio

n 3D

EPFL - Electron

microscopy dataset

Segmented nuclei of CA1 hippocampus brain region captured with

electron microscopy. 2 segmented 3D images (1 for training and 1 for

testing) https://www.epfl.ch/labs/cvlab/data/data-em/

Nucleus

segmentatio

n 3D

Neurosphere_Dataset 52 cells with stained nuclei captured with a LSFM

http://opensegspim.weebly.com/download.html

Nucleus

segmentatio

n 3D

Asynchronous fate

decisions by single cells

collectively ensure

consistent lineage

composition in the

mouse blastocyst

Confocal microscopy images of mouse embryo. 545 segmented 3D

images. http://dx.doi.org/10.6084/m9.figshare.c.3447537.v1

Nucleus

segmentatio

n 3D

A. thaliana cotyledon

cell nuclei

Confocal microscopy images of individual plant cell nuclei. 413 3D-

images. https://OMERO.bio.fsu.edu/webclient/?show=project-3451

http://andrewjanowczyk.com/wp-static/
https://www.dropbox.com/s/9knzkp9g9xt6ipb
http://murphylab.web.cmu.edu/data/2009_ISBI_Nuclei.html
https://edmond.mpdl.mpg.de/imeji/collection/l45s16atmi6Aa4sI
https://www.ebi.ac.uk/biostudies/files/S-BSST265/dataset.zip
https://warwick.ac.uk/services/its/intranet/projects/webdev/sandbox/juliemoreton/research-copy/tia/data/pannuke
https://warwick.ac.uk/services/its/intranet/projects/webdev/sandbox/juliemoreton/research-copy/tia/data/pannuke
https://app.box.com/s/yd4pbndk2bxtnourzpbvopga8dczsnes/folder/99392899243
https://app.box.com/s/yd4pbndk2bxtnourzpbvopga8dczsnes/folder/99392899243
https://bbbc.broadinstitute.org/image_sets
https://bbbc.broadinstitute.org/BBBC039
https://bbbc.broadinstitute.org/BBBC007
https://bbbc.broadinstitute.org/BBBC006
https://bbbc.broadinstitute.org/BBBC018
https://bbbc.broadinstitute.org/BBBC020
https://bbbc.broadinstitute.org/BBBC050
https://www.epfl.ch/labs/cvlab/data/data-em/
http://opensegspim.weebly.com/download.html
http://dx.doi.org/10.6084/m9.figshare.c.3447537.v1
https://omero.bio.fsu.edu/webclient/?show=project-3451

45

Table 2-4 –Programs for annotating 2D and 3D images.

Software Task Semi-

automatic

2D 3D 3D

viewer

Pixel or vector

annotations?

Ref.

Qualitative

Annotations

Classification ✔ ✔ Not applicable [105]

3D Slicer Detection and

Segmentation

✔(plugin) ✔ ✔ ✔ Vector [12]

ITK-SNAP Segmentation ✔ ✔ [84]

3D-Bat Detection ✔ ✔ Vector [106]

VGG Image

Annotator

Detection and

Segmentation

 ✔ Vector [107]

LabelImg Segmentation ✔ Vector [108]

QuPath Detection and

Segmentation

✔(plugin) ✔ Pixel [109]

Labtik (Fiji) Segmentation ✔ ✔ Pixel [17]

ilastik Segmentation ✔ ✔ ✔ Pixel [7]

Weka Segmentation ✔ ✔ ✔ Pixel [8]

Paintera Segmentation ✔ ✔ ✔ ✔ Pixel and Vector [110]

napari Segmentation ✔(plugin) ✔ ✔ ✔ Pixel [6]

Deep learning methods for nuclear image analysis. Once annotated and shared,

dataset can then be used to train a deep learning method. This paragraph represents the

core of the work presented in [40] which gathers 151 published deep learning methods

for denoising, classification, detection, and segmentation of nuclear images (Figure

2-10). These publications, selected between 2014 and 2021, have been sorted

following the criteria displayed in Figure 2-9-A and stored in a large XLSX file (Figure

2-11).

46 - Chapter 2 - Related work, review, and benchmarking

Figure 2-10 – Examples of tasks typically solved by deep learning method for

nuclear image analysis. From left to right: a nucleus is classified in 2 categories; red

crosses mark the detected centroids of nuclei; bounding boxes surrounds the

perimeters of each nucleus; the image is segmented, nuclei in black and background

in white; each nucleus is individually segmented with a different colour; an image is

denoised.

Figure 2-11 – Extract from the XLSX table of [40] sorting relevant deep learning

methods for nuclear image analysis. Table downloaded from:

http://www.biologists.com/JCS_Movies/JCS258986/TableS1.xlsx.

Enhanced visualization of nuclei, appealing to both human interpretation and deep

learning methods, can significantly facilitate image analysis. Deep learning-based

denoising have been investigated to improve image quality. Five methods providing

the underlying code have been identified: Noise2Void [78], VoidSeg [111], DenoiSeg

[77], DecoNoising [112], and 3D-RCAN [113]. All of these methods employ a U-Net

model [58] trained with artificially noised images, to reproduce the original image.

The first three solutions are based on the CSBDeep toolbox [76] and have

demonstrated their efficiency with 2D nucleus images. Notably, the DenoiSeg method

http://www.biologists.com/JCS_Movies/JCS258986/TableS1.xlsx

47

combines denoising and segmentation in the same model, resulting in substantial

improvements in 2D nuclear segmentation compared to other methods, such as

StarDist [68]. Furthermore, 3D-RCAN is also suitable for denoising 3D images.

Programmers may find interest in exploring these methods, while non-programmers

can leverage user-friendly denoising models integrated into ZeroCostDL4Mic,

provided they have access to a suitable dataset of denoised raw images.

 Image classification involves categorizing each image into different classes. Most

nuclear image analysis studies predominantly concentrate on 2D histopathology

images derived from human tissues, typically stained with Haematoxylin and Eosin.

Regrettably, out of the 24 methods reviewed, only one study [114] provides both code

and datasets. To the best of our knowledge, no prior research has been published

regarding the image classification of 3D nuclear images. The only solution is to

program using a deep learning framework and eventually rely on Google Colab

computers to get a free access to a sufficient computer power. Most tools for generic

image classification, such as Google AutoML Vision, Roboflow, H2O or KNIME, are

unfortunately limited to 2D images and are not free and open source.

 Object detection consists in either locating the centroid of each object or the

coordinates of a box surrounding it. Among the 31 methods found for object detection,

only 5 provide a code and a trained model (StarDist [68], SP-CNN [115], KiNet [116],

NucleusDetection [117], and QCANet [118]) and only 2 can handle 3D images

(QCANet and StarDist). Removing the trained model availability constraint allows to

include nnDetection [89] in this review which automatically handles the configuration

of the complex set of hyper-parameters such as in nnU-Net [86] (see Section 2.3.1).

Underlying all these methods is the generation of a distant map, a grey-scale image

where each nucleus is coloured with a gradient of black to white, black being the edges,

and white, the centroid of the nucleus. The deep learning model is generally a 2D or

3D U-Net model, a standard model for image segmentation. With this approach, object

detection is thus a subset of image segmentation. Detection-specific methods, such as

YOLO [119] or Faster R-CNN [120], have been used in the aforementioned 31

publications but none have provided a code. Nevertheless, a solution for 2D images is

to use ZeroCostDL4Mic [70] which includes the YOLO approach, among many other

methods, in an online and user-friendly interface powered by Google Colab. Users

have yet to provide an annotated dataset and 3D image analysts are limited to use

semantic segmentation tools presented later in this paragraph.

48 - Chapter 2 - Related work, review, and benchmarking

 Image segmentation is traditionally separated in two categories: semantic

segmentation, which consists in classifying each picture element in one class of object,

or instance segmentation, which consists in additionally discriminating each object in

a certain category into individual instance (Figure 2-10). For 101 compiled

publications about nucleus segmentation, 35 provide a code and only 10 of those

handle 3D images. As image segmentation has become the main topic of interest of

this thesis, more details on this task will be provided. During the course of this

literature review project, six main difficulties linked with nuclei segmentation, image

analysis and deep learning has emerged:

• Nuclei-related difficulties, linked to the variability in cell shape, size and

texture in different tissues.

• Noise-related difficulties, including background complexity, poor signal-to-

noise ratio, uneven colour distribution, heterogeneous capture conditions or

sample preparation.

• Image modality-related difficulties, associated with the diversity of available

devices and their configurations (2D or 3D, confocal or electron microscope,

etc.).

• Manual annotation-related difficulties, mostly due to the annotator

subjective biases or the inter-observer variability when several human

annotators are involved.

• Method-related difficulties, involving the lack of robustness of classical

computer vision techniques, the configuration and training of deep learning

methods which can also imply expensive computational costs (especially for

3D applications), or the explainability of deep learning models.

• Use-related difficulties, including deep learning tool installation and

friendliness for non-programmer users.

49

Figure 2-12 – U-Net model variants. (A) Original U-Net model from [58] with a

noticeable the encoder-decoder architecture. (B) U-Net++ model from [121] with a

dense version of the U-Net model and the encoder is here named backbone. (C)

HRNet model from [122], another dense variant of the U-Net model, has reached the

state-of-the-art for 2D semantic segmentation in 2022. (D) Swin UNETR model from

[123] including a Swin-Transformer backbone [64] for 3D segmentation which

reached the state-of-the-art for medical image segmentation in 2022.

From the two types of image segmentation task cited above, the least difficult one

is semantic segmentation. Even if easier than instance segmentation, semantic

segmentation is an active field of development as many applications still requires

improvements, such as filament segmentation, tumour segmentation or even nuclei

segmentation. Semantic segmentation methods are mainly based on the U-Net model

[58] also known as Feature Pyramid Network [124]. This model has two main parts,

an encoder (the descending U-branch) and the decoder (the ascending U-branch)

50 - Chapter 2 - Related work, review, and benchmarking

(Figure 2-12-A). The encoder successively encodes the input image input a series of

feature maps with progressively lower dimensions. As shown on Figure 2-5, high

dimension feature maps contain information about simple shapes such as edges while

low resolution feature maps condense complex information such as the shape of a cell

nucleus. To improve the performance of the U-Net model the encoder is often replaced

by one of the backbone models mentioned in Section 2.2.1 such as the EfficientNet

[62]. Other improvements of the U-Net model involve adding a dense network of

convolutions between the encoder and the decoder such as in the U-Net++ model [121]

(Figure 2-12-B) or the HRNet model [122] (Figure 2-12-C), or using Transformer

operations (Figure 2-12-D). The decoder of the U-Net model composes the final

segmentation mask from the information extracted by the feature maps of the encoder.

The U-Net model has been adapted for 3D images [125] and integrated into

ZeroCostDL4Mic.

Due to its dual task (classification of picture elements in both class and instance),

instance segmentation is more challenging than semantic segmentation. Moreover,

instance segmentation is often related to nucleus segmentation as it allows for the

discrimination of objects within clusters. In the literature review conducted during this

project, four categories of instance segmentation approaches have been identified:

• The centre-border approaches rely on a ruse to transform the instance

segmentation task into a semantic segmentation task by asking the model to

segment the ‘centre’ and the ‘border’ of each instance of object which leaves

enough spaces between objects to be classified with a classical connected

component algorithm. These approaches won the 2018 Data Science Bowl

challenge for 2D nucleus segmentation [126] with an ensemble of 32 U-Net

models. Mesmer approach in DeepCell [127] also relies on centre-border

segmentation and additionally integrates cell segmentation.

• The distance map approaches involve predicting a distance map, akin to

those previously introduced with object detection, to concurrently find the

centroid of each nucleus and their segmentation. For this type of approach,

deep learning methods differ from one another by the way the distance map is

computed. StarDist [68] traces a star-convex polyhedron in the centre of each

nucleus, Cellpose [72], [73] uses a heat diffusion simulation that starts from

the centre and iteratively spreads towards the borders and NISNet3D [128]

51

directly predicts the gradients along the three dimensions of the image. The

three methods handle 3D images though Cellpose works with a slice-by-slice

approach along each of the three axes (approach often called ‘2.5D’).

• The bounding box approaches combine a detection method with bounding

boxes and a semantic segmentation method, among which, probably the most

famous one, is Mask R-CNN [129]. Mask R-CNN is a general approach for

simultaneous 2D object detection and segmentation which have been

successfully applied to 2D nucleus segmentation (see Matterport

implementation: https://github.com/matterport/Mask_RCNN). A series of

small convolution modules, inspired by the Faster R-CNN method, specially

adapts a classification backbone to predict coordinates of object bounding

boxes and, for each box, a segmentation mask is computed using another set of

modules. At the time of writing, no 3D version of Mask R-CNN appeared to

be freely available. A 2D nucleus-specific bounding box approach named

NuSeT [130] is publicly available and includes a graphical user interface.

• The centroid approaches are very similar to the bounding box approaches yet

replacing the bounding box detection by a centroid detection. QCANet

approach [118] involves two different models to compute separately the

centroid and the segmentation mask of each nucleus. Each centroid seeds then

a standard connected component algorithm such as the watershed algorithm to

find instances in the segmentation masks.

Probably the best way to start experimenting with the previous segmentation

methods, is to use online tools such as Cellpose (https://www.cellpose.org/), DeepCell

(https://www.deepcell.org/), NucleAIzer (https://www.nucleaizer.org/), or the recent

Segment Anything (https://segment-anything.com/). However, these tools are limited

to 2D images. When working with 3D images, one recommendation could be to use

the offline version of Cellpose. Even though, DeepCell and QCANet also provide such

offline tools, it will be seen in Section 2.2.4 that those are difficult to reuse. If the

images to predict are not like the training ones, the pre-trained models of these methods

might need some retraining (as shown in Figure 2-7). In this case, a suggestion is to

use StarDist in case of round and clustered nuclei or to use ZeroCostDL4Mic for any

other cases. An alternative solution called Biom3d is presented in Chapter 3 and

represents the main contribution of this thesis.

https://github.com/​matterport/​Mask_RCNN
https://www.cellpose.org/
https://www.deepcell.org/
https://www.nucleaizer.org/
https://segment-anything.com/

52 - Chapter 2 - Related work, review, and benchmarking

2.2.4 Benchmarking methods for 3D nucleus segmentation

To push the review further, a comparative study of six of the previous methods for

3D nucleus segmentation was conducted. This work was supported by the help of two

interns, Pedro Mezquita and Adama Nana, for the deep learning method

implementation and testing, and by the help of Sophie Desset, co-supervising this

thesis, for the dataset annotation. The goal of this benchmarking was to identify deep

learning methods that solve the limitations of NucleusJ plugin for nucleus and

chromocenter segmentation. Ideally, these selected methods should be easy enough to

be used by non-programmers. Given the research-oriented nature of this project, a

more comprehensive analysis was conducted on one of the selected methods in Section

2.3.1, to identify its potential drawbacks and serve as a foundational basis for further

exploration and the development of novel innovations.

A novel 3D nucleus dataset. To compare the methods, a dataset of 93 tridimensional

images of A. thaliana nuclei captured with structured illumination microscopy was

manually annotated by Sophie, being a microscopist and a specialist in the domain.

This dataset is a subset of the one published by Tristan Dubos [29] a former PhD

student in the team in Clermont-Ferrand (dataset accessible here: https://

OMERO.bio.fsu.edu/webclient/?show=project=2801). As plant nuclei do not form

clusters, each nucleus can be isolated with the autocrop functionality of NucleusJ and

stored in individual images. The annotations were made with napari software [6]. The

choice of this software was motivated by its integrated 3D viewer. To prevent software-

related bias, it was also chosen not to use semi-automated annotation program. Each

voxel annotation has thus been carefully manually curated. In the beginning of this

benchmarking project, the annotations were done by me, a non-expert in nucleus

image, with the help of ilastik [7], a semi-automated software. As will be illustrated

further in this Section, these non-expert annotations turned out to be of poor quality

after being verified by an expert and were thus discarded.

Methodology. Six deep learning methods were intended to be benchmarked:

DeepCell [127], Cellpose [72], QCANet [118], StarDist [68], NuSeT [130] and nnU-

Net [86]. Unfortunately, opposed to what was suggested in its associated article,

NuSeT did not support 3D images. Among the other methods three provided a trained

model for nucleus detection (DeepCell, Cellpose, QCANet) and the two others (nnU-

Net and StarDist) a script to train a model on a novel dataset. The three methods

https://omero.bio.fsu.edu/​webclient/​?show=project=2801
https://omero.bio.fsu.edu/​webclient/​?show=project=2801

53

providing a model did not provide a script to retrain their model on 3D images. To get

a fair comparison, all methods were evaluated on the same set of 28 images extracted

from the 93 images. The trainable methods were trained on the remaining 65 images

of the dataset. During training, the choice of the training methodology, including the

choice of the validation set, was determined by the default configuration of each

implementation. The evaluation metrics were the Dice score and the Hausdorff

distance (Figure 2-13). The Dice score can be defined with the following formula:

𝐷𝑖𝑐𝑒(𝑦, 𝑦̂) =
2|𝑦 ∩ 𝑦̂|

|𝑦| + |𝑦̂|
=

2 ∑ (𝑦𝑖 ⋅ 𝑦̂𝑖)𝑖

∑ 𝑦𝑖𝑖 + ∑ 𝑦̂𝑖𝑖

where 𝑦 is the segmentation ground truth and 𝑦̂ the segmentation predicted by the

model. The Dice score can easily be implemented in Python leveraging the Numpy

library.

Figure 2-13 – Metrics for biomedical segmentation. (A) The Dice score is twice the

volume of the intersection (black) between the two volumes of the ground truth (blue)

and the prediction (orange) divided by the sum of the two volumes. (B) The

Hausdorff distance is the maximum between two directed distances between two

surfaces, one for the ground truth (blue) and one for the prediction (orange). A directed

distance between two surfaces is the maximum of all the minimum distances obtained

when spanning across one of the surfaces. Illustration adapted from https://

commons.wikimedia.org/wiki/File:Hausdorff_distance_sample.svg

https://commons.wikimedia.org/wiki/File:Hausdorff_distance_sample.svg
https://commons.wikimedia.org/wiki/File:Hausdorff_distance_sample.svg

54 - Chapter 2 - Related work, review, and benchmarking

The Hausdorff distance can be defined by the following equation:

𝐻𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓(𝑦, 𝑦̂) = max (ℎ(𝑦, 𝑦̂), ℎ(𝑦̂, 𝑦))

where ℎ: (𝑦, 𝑦̂) ⟼ max
𝑝𝑦∈𝑦

min
𝑝𝑦̂∈𝑦̂

‖𝑝𝑦 − 𝑝𝑦̂‖ is the directed Hausdorff distance and ‖⋅‖ is

the Euclidean norm. The implementation used for this study is integrated in the

MONAI library based on the Scipy library [131]. These two metrics have been chosen

for their complementarity and their popularity in the biomedical field but some

limitations recently highlighted by a large consortium of scientists [132] might change

this trend.

Results. The results of this benchmarking (Figure 2-14) showed that the method

called nnU-Net clearly overpasses its counterparts. Surprisingly, the classical methods

implemented in NucleusJ came second. It could be argued that the trained deep

learning models were not ideally adapted to this specific nucleus dataset, such as

DeepCell which distinctly predicted the 3D image layer-by-layer instead of

considering all three dimensions, or QCANet which omitted to the segment the

nucleolus region. Despite this constraint, Cellpose was able to achieve relatively high

accuracy by using the model called "cyto2" instead of "nucleus" and by removing some

prediction noise due to artifacts in DAPI staining. As no retraining script for 3D images

was available, this candidate could not be retrained. StarDist method did not have a

pretrained model but had a well-made tutorial on how to train a new one. However,

StarDist includes a strong prior knowledge about the objects of interests: they must be

star-convex polyhedron which means that each object must have a centre where every

other point in the object is accessible by tracing a straight line starting from this centre.

This method is well suited to round nuclei grouped in clusters as in animal cell cultures,

but not to plant nuclei, which often have curved, elongated shapes. This benchmarking

was finally completed with an inference time comparison motivated by the strong

differences noted during evaluations. This was done only for the four best methods

(QCANet, Cellpose, StarDist, nnU-Net), on the same computer with a Nvidia 2080Ti

GPU, using the 28 test images and then averaged to obtain an approximate of the

inference time per image. Large gaps between inference time were thus pointed out

with, for example, an extreme time ratio of 1800 between the worst candidate

(QCANet) and the best one (nnU-Net).

55

Figure 2-14 – Benchmarking results on 3D nucleus dataset. Scores are computed

over a test set of 28 images annotated by an expert. Five deep learning methods (nnU-

Net, Cellpose, QCANet, StarDist, DeepCell) are compared to two non-deep learning

methods (Otsu and Graham) and to one other manual annotation conducted by a non-

expert. (A) Box plot of the Dice scores. (B) Box plot of the Hausdorff distance. (C)

Mean values of the Dice score and the Hausdorff distance and the inference time per

image in seconds. (D) Views of the segmentation results for one nucleus both in 2D

(upper row) and in 3D (middle row). For each result, the corresponding Dice score,

Hausdorff distance and volume is displayed on the lower row.

Containerization. To foster reusability of this work, each method has been packaged

into a Docker container by the two interns (code available here: https://github.com/

GuillaumeMougeot/nuclei_benchmark). The Docker container contains the operating

systems with all drivers and applications specific to each method. A Docker “recipe”

was written in a single file called a Dockerfile. This recipe can be used to install and

configure all required dependencies and files required for installing the methods,

including for instance, the installation of the Python libraries or the downloading of

the deep learning model. This Docker methodology (Figure 2-15) allows each method

to be isolated on a single computer and thus avoids any conflict, which could be due,

for example, to two conflicting Python libraries trying simultaneously to access to the

same GPU resources. Another advantage of containerization is to standardize user

access to each method. For all methods, the user can now install it by simply running

https://github.com/GuillaumeMougeot/nuclei_benchmark
https://github.com/GuillaumeMougeot/nuclei_benchmark

56 - Chapter 2 - Related work, review, and benchmarking

build.sh shell script and, if possible, one can then run run_predict.sh script on a new

dataset of raw images to get some predictions. If the model needs training, the script

run_training.sh can train it on an annotated dataset. Containerizing deep learning

methods is not yet the norm in the field (only DeepCell provided a Dockerfile) but it

could evolve in the future driven by initiatives such as BIAFLOWS [133] or IFB-

Biosphère [134].

Figure 2-15 – Containerizing and interfacing the deep learning methods. Each

method can be installed on any computer having Docker via a single script build.sh,

which relies on a installation “recipe” stored in a Dockerfile, and then reused with

run_predict.sh on a new dataset. Methods that must be trained have an additional

run_training.sh script to start training a model on a new dataset. The specificities of

each method are thus transparent for the user and packaged inside the Docker image.

Conclusion. nnU-Net method stood out during this benchmarking. Not only because

of its accuracy and speed but also for its versatility. While limited to semantic

segmentation, Section 2.3.1 will demonstrate that nnU-Net can be applied to a large

panel of biological and medical segmentation problems, achieving high accuracy by

automating the configuration of all hyper-parameters. This crucial property will

significantly influence the direction of this thesis. A successful research project can

probably be determined by a good balance between specificity and generality. A

project that is too specific risks being limited to a particular group of individuals,

location, or time, potentially rendering it less impactful over time. On the other hand,

a project that is overly generic might not resonate with any specific audience. In both

cases, the project may fade into oblivion. While the plant nucleus problem might be,

57

to some extent, too specific for deep learning applications, an accessible and adaptive

tool for segmenting 3D microscopy images leveraging this breakthrough technology

is still lacking. A quick observation in biology laboratories reveals a significant number

of image analysis challenges that are still manually addressed but could be rapidly

solved with deep learning. Inspired by the adaptability of nnU-Net, the design of the

segmentation tool presented in Chapter 3 will thus attempt to fulfil the expectations of

plant biologists but also to generalize on a broader spectrum of applications. This novel

tool will go beyond the original development ideas of nnU-Net by incorporating a new

fundamental aspect: modularity.

2.3 Improving deep learning methods

nnU-Net belongs to a class of methods called Automated Machine Learning,

abbreviated in AutoML. This class of methods attempts to tackle the first difficulty

arising when training machine learning methods: configuring of the model and training

hyper-parameters, parameters that must be set manually and significantly impact the

performance of the model. However, determining the optimal values for hyper-

parameters is often a challenging and time-consuming task, relying on empirical

approaches based on developer experience. AutoML thus seeks to automate this

process and will be the focus of the first Subsection below. The second difficulty with

training of deep learning methods is its dependence on large, annotated dataset, often

expensive to produce, especially for biological and medical imaging. As a result, the

second Subsection will discuss an array of research efforts aimed at addressing this

challenge by reducing the number of required manual annotations.

2.3.1 AutoML and nnU-Net

AutoML. Various approaches exist to deal with the configuration of training and

model hyper-parameters. Regarding the optimization of training hyper-parameters, the

first and probably the most intuitive one is called grid search. For each training hyper-

parameters, such as the learning rate or the batch size, a range of plausible values is

defined by the developer. Each combination of hyper-parameter values will then serve

to train a different model. The best model will thus determine the best set of training

hyper-parameters. This approach very early demonstrated its performance for deep

learning methods [135] but due to its high-computational cost has progressively been

replaced by more efficient methods such as random search [136]. However, grid and

58 - Chapter 2 - Related work, review, and benchmarking

random search still suffer from being too uniformed methods of exploration,

completely omitting to exploit good candidates. Methods such as Sequential Model-

Based Global Optimization [137], formalization of Bayesian optimization, aim thus at

defining the deep learning model and the loss function as a probability distribution,

called a surrogate model. Common choices of surrogate model can be Gaussian

Processes, Random Forests or Tree Parzen Estimators. Based on an history of several

pairs of loss values and training hyper-parameters, the surrogate model estimates the

loss evolution when varying the hyper-parameters. A selection function, such as the

Expected Improvement, can then be used to choose a novel set of hyper-parameters

and the whole process can restart until reaching a satisfying loss. Genetic Algorithms

[138] are another set of methods improving random search by viewing the set of hyper-

parameters as a set of genes. The loss value obtained from training a deep learning

model using a certain set of genes represents the ability of the set of genes to “survive”.

Only the sets of genes with the highest score survive. After several iterations,

crossovers and mutations are performed among the set of genes to obtain new sets of

genes and the process is reiterated.

Model hyper-parameter configuration includes the selection of the model itself and

the design of its inner architecture, such as choosing the number and size of each layer.

Bayesian Processes and Genetic Algorithms have been used as well to configure model

hyper-parameters, both being thus part of an expanding domain called Neural

Architecture Search. The original ideas of Neural Architecture Search [139], [140] was

to exploit Reinforcement Learning to automatically design the set of interacting

operation within a deep learning model. Attempts have been made to apply it to 3D

medical imaging [141], but still fall short behind manually design models. A reason

that could explain that automatically designed models for image segmentation are still

overpassed by human-made ones is that carefully designed, and extremely large

models can extract a consequential number of features in images, which means that a

significant gain in performance could be achieved by simply focusing on selecting

appropriate features and cutting down inappropriate ones instead of developing task-

specific models.

nnU-Net. nnU-Net [86] is a trade-off between AutoML and manual methods. It was

originally created to win several online competitions of medical segmentation, such as

the Medical Segmentation Decathlon [142], without the need to manually reconfigure

59

the hyper-parameters to win a new challenge. As some of the hyper-parameters are

indeed set automatically, nnU-Net could be considered as an AutoML methods.

However, the heuristics defining them are deterministic, meaning that the set of hyper-

parameters is fully determined by the characteristics of the dataset without any

exploration of hyper-parameter space by algorithms such as random search. These

heuristics were created empirically based on the intuition of their developers and on a

tremendous repetitions of experiments done over many biological and medical

datasets. The input of the heuristics is called the data-fingerprint, a configuration file

obtained by scanning the entire training dataset and extracting relevant information in

the images such as their median shape, their median sampling, or the distribution of

their voxel intensity (Figure 2-16). This information is then used for:

• Data pre-processing, which includes image intensity normalization, and

image and annotation resampling. Resampling is usually required when the

spatial samplings of the two images in the dataset are dissimilar (see Section

1.2.3 for more details about image spatial sampling), which often happens in

medical dataset and can also occur in biological datasets if, for example, the

microscopist decides to change the sampling size along z-axis while capturing

a set of 3D images.

• Data loading, which includes the batch size and the patch size. Due to

computer memory limitations, patching (cropping) is a mandatory step when

dealing with 3D images and deep learning methods. Indeed, when training a

deep learning model, it is required to temporally store every intermediate

output (feature map) to compute the gradients for backpropagation and model

parameters update. The size of each feature map is determined by the input

patch size. An appropriate patch size is also determinant for the final

performance of the model. nnU-Net patch size strategy considers the GPUs

memory limits, the image anisotropy, and the network topology. The final patch

size will thus tend to be as big as the GPU memory allows it, to have a similar

anisotropy as the median image size and to have dimensions that can be divided

by a power of two.

• Network topology (model architecture), which includes the dimension of each

pooling layers and of the kernel of each convolution layers. Both are mainly

determined by the greatest power of two dividing the patch size. As pooling

60 - Chapter 2 - Related work, review, and benchmarking

layers successively reduce feature maps by a factor of two, reducing them too

much along anisotropic dimensions might lead to non-integer dimensions.

nnU-Net model is thus a standard U-Net model but with flexible pooling sizes

which follows patch size anisotropy. The size of convolution kernels follows

the same rule.

• Cascade trigger, which includes the creation of two U-Net models instead of

one. Cascade models are used only for extremely large images. With such

images, the maximum patch size allowed by computer memory might be too

small for the deep learning model to get a global understanding of the data.

nnU-Net follows here a coarse-to-fine approach: the first of these U-Net model

will work with a downscaled version of the images, performing a pre-

segmentation which will then be input to the following U-Net alongside full-

size images.

Figure 2-16 – nnU-Net automated method for hyper-parameter configuration. A

data-fingerprint is extracted by scanning the dataset. It serves to determine the values

of rule-based parameters (inferred parameters) such as the patch size of the network

topology. Other hyper-parameters are fixed (blueprint parameters) such as the data-

augmentation or the optimizer configuration. After training completion, trained models

are selected with an ensemble selection process (empirical parameters). Illustration

adapted from [86].

 These rule-base parameters are completed by a large set of fixed hyper-parameters

also determined by the extensive experiments. This set includes:

• The rest of the model hyper-parameters such as the depth of each convolution

kernel which follows the original U-Net publication [58].

• The optimizer hyper-parameters, imposed to be Stochastic Gradient Descent

with a learning rate reducing during training with a polynomial decay.

61

• The rest of data-loading hyper-parameters, with data-augmentation and

foreground forcing. Foreground forcing imposes one third of each image patch

to include a foreground region (on the object of interest) in its centre.

• The training procedure, with the number of epochs and the frequency of

validation.

• The loss function, imposed to be the sum of the Dice score and the cross-

entropy between the ground truth and the prediction.

• The inference procedure, with test-time augmentation, inference patching

strategy, and ensemble prediction. During inference, each image is patched

following a grid sampling strategy: predictions are successively computed for

patches starting from the top-front-left corner then sliding toward the bottom-

back-right corner. For information redundancy, each inference patch overlaps

half the dimensions of the previous one and, for each patch, a 3D Gaussian

mask is used to filter prediction inaccuracy on patch edges. The ensemble

prediction is based on the cross-validation strategy: five different U-Net

models are trained on five non-overlapping subsets of the training set and each

model then computes a prediction. The five resulting predictions are averaged

to obtain the final output.

This list is an incomplete overview of the entire nnU-Net configuration process (see

their code on GitHub for more details: https://github.com/MIC-

DKFZ/nnUNet/tree/master).

 To cite a recent post from nnU-Net author (GitHub website, March 2023, https://

github.com/MIC-DKFZ/nnUNet/discussions/1189), this method was originally

created to prove a point: It really took a while to notice that […] maybe, maybe, a

significant proportion of the research out there [MICCAI] suggested something that

was just not there. […] So, I started trying to prove a point by overengineering the U-

net to the max. […] It is quite interesting that even to date [March 2023], and to the

best of my knowledge, there is no segmentation method that really, convincingly

outperforms nnU-Net in the medical domain. In his discussion, Fabian Isensee, made

three assumptions for why this is the case:

• Things other than the network architecture matter more in medical imaging

such as the patch size.

https://github.com/MIC-DKFZ/nnUNet/tree/master
https://github.com/MIC-DKFZ/nnUNet/tree/master
https://github.com/MIC-DKFZ/nnUNet/discussions/1189#discussioncomment-4019569
https://github.com/MIC-DKFZ/nnUNet/discussions/1189#discussioncomment-4019569

62 - Chapter 2 - Related work, review, and benchmarking

• Segmentation problems in the medical domain are different [than natural

image problems]. Medical images are obtained in a much more controlled

environment, meaning that often deep learning models reach the upper limit

accuracy which is the inter-rater variability.

• Small dataset sizes are disadvantageous for complex architectures meaning

that spending time collecting more data will increase model performance

significantly more than defining novel model architectures.

Should it be concluded that any improvements are hopeless? Not quite. Independently

from nnU-Net author, these thoughts have been concluded in the beginning of this

thesis and reinforced by the previous work on the review. Two important conclusions

have been drawn:

• Incorporating the high performances of nnU-Net heuristics within an extremely

flexible framework could, first, rapidly give a good baseline method for any

new datasets and, second, be quickly reshaped to fit the dataset specificities.

This is the main guideline of Chapter 3 developments.

• As data-annotation remains the bottleneck of deep learning model training,

methods that address the reduction of the amount of work involved in data

annotation should be the focus of attention. This will be the subject of the

following Subsection and the main contribution of Chapter 4.

2.3.2 Reducing the number of manual annotations

Annotating biological or medical images with expert eyes is a costly process.

Computer scientists have thus created entire field of research aiming at reducing the

need for manual annotations. In this Subsection, a brief overview of different

categories of methods that can help achieve this goal will be provided. Some of these

methods, such as self-supervised methods, have originally been designed to enhance

the performance of deep learning models with a given amount of data, have the

potential to perform as well as classical supervised deep learning methods with less

data, making them valuable in this context. Probably against certain schools of

thought, this extensive research field will be divided here into four categories:

synthetic data generation, weak supervision, active learning, and transfer learning.

Each category will also be exemplified with relevant literature examples related to the

biological focus of this work: nucleus image analysis.

63

Synthetic data generation involves artificially creating new instances to augment the

training set. There are two main approaches: data-augmentation and generative

methods. Data augmentation applies small transformations to the input image and

annotation, such as spatial, colour, or noise variations, to provide the model with

different perspectives without altering the nature of the objects. Data-augmentation is

almost a mandatory step in any deep learning methods. While data augmentation

frameworks like Albumentations (https://github.com/albumentations-team/

albumentations) [143] have been well-established for 2D images, their adaptation for

3D images is a relatively recent development with frameworks such as batchgenerator

(https://github.com/MIC-DKFZ/batchgenerators) [144], rising (https://

rising.readthedocs.io/en/stable/), pymia (https://pymia.readthedocs.io/en/latest/) [145]

or TorchIO (https://torchio.readthedocs.io/index.html) [146]. Generative methods aim

to augment small datasets by generating artificial images and corresponding

annotations. A first example for 3D nucleus segmentation is CytoPacq [100] a non-

deep learning and online easy-to-use software. Generative Adversarial Networks

(GANs) [147] are deep learning methods designed to generate realistic images from

limited data [148]. They have successfully been applied to 3D nucleus image

generation with both their original version [149]–[151] and a derivatives such as

CycleGAN [152].

Weak supervision tackles the challenge by training a network using noisy or partial

annotations. Instead of requiring detailed annotations for each instance, the annotator

may only provide minimal or incomplete annotations. For instance, instead of fully

delineating the boundaries of objects, the annotator may only mark a small spot in the

centre of each object to be segmented [101], [153], [154]. These methods use the last

feature maps of the model to retrieve what it “looks at” in an image when classifying

it. Weak supervision may also rely on partially annotated data, such as in [155] where

only bounding boxes of nuclei and limited manual segmentation are annotated in each

training image.

Active learning (or human-in-the-loop) involves initiating the training process of an

artificial neural network with only a limited number of annotations, while iteratively

requesting the human annotator to provide annotations for selected images. These

images are strategically chosen to maximize their relevance and information content

for effective training. For example, images may get selected from rarely occurring

https://github.com/albumentations-team/​albumentations
https://github.com/albumentations-team/​albumentations
https://github.com/​MIC-DKFZ/​batchgenerators
https://rising.readthedocs.io/​en/​stable/
https://rising.readthedocs.io/​en/​stable/
https://pymia.readthedocs.io/​en/​latest/
https://torchio.readthedocs.io/​index.html

64 - Chapter 2 - Related work, review, and benchmarking

classes or from the edge of different classes. Active learning have been applied to

medical image analysis [156] while for nucleus results can be found on classification

[157] and on whole slide image segmentation [158]. DeepCell [127] and Cellpose [73]

developers have both released an active learning tool they used to quickly annotate

large datasets of cells and nuclei for 2D image segmentation. However, no results have

been found for 3D bioimages. In the future, recent developments in fundamental

research, such as Segment Anything [101], could yet greatly benefit the domain if

adapted to 3D.

Transfer learning gives the model a general knowledge before being specialized.

Generally, a base model, called backbone, is pretrained with a large annotated generic

dataset such as ImageNet [42] and is then specialised by replacing or adding trainable

layers [99], [159] and by being retrained on the specific task. Self-supervised learning,

a similar two-step process, can be consider a sub-category of transfer learning. It is a

novel solution involving pretraining the model on a vast collection of unannotated

images using a pretext task. The pretext task is an artificial task, such as predicting

image rotations or solving a jigsaw puzzle, that helps the network acquire general

knowledge about the underlying objects, such as edge detection, shape understanding,

and composition. The pretrained model is then fine-tuned on the desired downstream

task, such as segmentation, leveraging the acquired prior knowledge to reduce the

reliance on extensive annotations. Self-supervised learning methods have been

successfully applied to nucleus segmentation in 2D [77], [160]. Recent developments

have demonstrated very promising results in computer vision such as premises of

unsupervised instance segmentation [161] based on Vision Transformers [63]. These

last improvements must still find their way to 3D bioimaging. Furthermore, it is worth

noting that the term semi-supervised learning is deliberately excluded here, as it

encompasses a simultaneous approach where both the pretext task and the downstream

task are performed concurrently. Consequently, in the frame of this thesis semi-

supervised learning is considered a subset of self-supervised learning.

2.4 Conclusion

Deep learning methods have revolutionized image analysis by achieving

unprecedented levels of accuracy and automating feature selection. These methods

now only require human intervention in dataset creation and model design. This shift

in focus has also been extended to the code-sharing process. If a method publication

65

and its code are the DNA of deep learning, then the datasets, trained model,

documentation, and development environment are the epigenetic signals required for

its proper functioning. Without these additional components, the solution becomes

impractical to reuse.

Bridging the gap between biologists and computer scientists can be accomplished in

several ways. Biologists can contribute by sharing their datasets publicly, providing

valuable resources for deep learning engineers. On the other hand, computer scientists

can enhance collaboration by sharing their methods, complete with all necessary

materials and ideally with user-friendly interfaces. Ultimately, probably the most

effective way to bridge this gap is through interdisciplinary work combining expertise.

Encouraging good practices in specialized method development and sharing can lead

to more accessible and adaptable deep learning solutions for biological image analysis.

Authors’ contributions – cf. Appendices.

66 - Chapter 2 - Related work, review, and benchmarking

67

Chapter 3

Biom3d, an easy-to-use and modular

framework for 3D segmentation methods

Well-designed components are easy to replace.

Eventually, they will be replaced by ones that are not so easy to replace.

-“Sustrik's Law”-

Chapter plan – First, nnU-Net limitations (3.1), then code philosophy (3.2) and then

hierarchical description of the software functionalities (3.3-3.5)

3.1 Biom3d philosophy

To counteract the “publish and perish” tendency in the

field of deep learning [162], a new development

philosophy will be defined in this Chapter. A novel

framework following this philosophy, named Biom3d, is

code sustainability. As deep learning is a fast-moving

domain, maintaining a sustainable code is a challenging

aim requiring a highly adaptable code architecture. It

means that the code must be organized in easily

replaceable blocks organized along a clear backbone.

Even though this Chapter focuses on Biom3d, the proposed principles for code

sustainability presented here might be applicable to a broader scale. Therefore, this

Section will only consider the general code philosophy behind Biom3d, voluntarily

and momentarily setting aside the specific image segmentation goal.

One of the starting points for code sustainability is to broaden the spectrum of

potential users, notably those addressed by methods such as nnU-Net (Figure 3-2). Not

only because this can increase the user community, but also because it will involve

both end-users and developers. This is particularly true for software inherited from

fundamental research, which attempts to reach applied research. Involving end-users

will ensure that the software meets the needs of an external community and has

concrete applications. This gives it both meaning and feedback for improvements. On

Figure 3-1 – Logo of

Biom3d.

68 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

the other hand, involving external developers will attract novel ideas while

strengthening a community of maintainers.

Figure 3-2 – Schematic representation of nnU-Net limitations. In the abscissa are

conjointly represented the skills and needs of a deep learning user while in the ordinate

is represented the estimated time required to use the method. nnU-Net (blue) is

accessible for only a limited spectrum of users due to: (1) the lack of a graphical user

interface, (2) its adaptation to Nifti format only and (3) its poor code readability, with

a lack of developer documentation, and modularity, which weakened code resiliency

and limit code resuse. The ideal method (red) should thus be accessible to the whole

sprectrum of users. On the right is represented the internal dependencies of nnU-Net,

each red node is a Python script of the method, and each connection represents a

mutual dependency between two scripts. This network, obtained with pydeps package

(https://github.com/thebjorn/pydeps), is an example of highly coupled code.

For each of these user profiles, the objective was to substantially reduce the time

required to invest in using a deep learning method, while simultaneously expanding

the scope of accessible functions. The intention was to prioritize usability to the same

extent as functionality. The interpretation of software usage varies significantly based

on the user's profile. Therefore, throughout the development process, the subsequent

user profiles were established:

• Non-Programmers typically lack programming experience but possess basic

IT knowledge. They anticipate a straightforward installation process facilitated

https://github.com/​thebjorn/​pydeps

69

by downloading software from a website and expect an intuitive Graphical

User Interface.

• Python Programmers encompass users who possess a foundational

understanding of Python programming and are familiar with installing and

employing Python libraries. They expect either a Command Line Interface

(CLI) or an Application Programming Interface (API) featuring

straightforward arguments. They anticipate having the capability to fine-tune

parameter settings more precisely than is feasible through a GUI alone.

• Deep Learning Programmers possess an advanced understanding of deep

learning theory and are well-versed in working with libraries like PyTorch or

TensorFlow. They desire a well-documented, coherent, and modular deep

learning framework. They may also seek to comprehend the codebase and

easily undertake tasks such as adding, removing, or modifying sections of code.

Biom3d development philosophy consists in fulfilling these user expectations while

providing as many functionalities as possible. Current state-of-the-art methods usually

target only one of these user profiles: nnU-Net, Cellpose or Stardist target Python

Programmers, while ZeroCostDL4Mic or DeepImageJ are mainly addressed to Non-

Programmers. In Biom3d, in addition to clear installation and interfaces, the

development philosophy encompasses two fundamental aspects: code clarity and code

modularity.

• Code Clarity: The code should remain comprehensible from its overall

architecture to its individual lines. To aid new users in understanding the

codebase, it can be presented in a hierarchical, tree-like structure. This

approach starts with high-level, general functions and progressively delves into

more granular details and functionalities, facilitating a gradual and systematic

comprehension of the code.

• Code Modularity: Code components should be as self-contained and

independent as possible (Figure 3-3). In computer science, this concept is also

known as code cohesion and is opposed to code coupling [163]. This approach

allows programmers to seamlessly incorporate or remove specific code

components without causing undue disruptions to the overall system.

Achieving code modularity often involves a delicate balance. A highly

interconnected code (with high code coupling but low code cohesion) can be

70 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

efficient by using shared internal functions across different components. This

can lead to improved performance and reduced code redundancy. However,

this level of interconnection can make the codebase more sensitive to changes.

Alterations to one section of the code might unintentionally impact other areas,

complicating maintenance, and updates. Even though highly cohesive codes

tend to be more durable, finding the right balance between modularity and

interconnectedness can be essential to ensure both code efficiency and

resilience.

Figure 3-3 – Code modularity. (A) Good code modularity. Code components are

clearly isolated and have a clearly defined link. (B) Bad code modularity. Code

components have a low internal cohesion and are strongly intertwined. Illustration

adapted from https://commons.wikimedia.org/wiki/File:CouplingVsCohesion.svg.

3.2 Biom3d performances on image segmentation

Biom3d in its default configuration is designed to segment a large variety of 3D

objects, in images potentially having multiple channels and simultaneously presenting

objects from different classes. These volumetric images can originate from CT-scan,

MRI, confocal microscope, or electron microscope. Biom3d matches and sometimes

exceeds nnU-Net performance on wide range of applications (Table 3-1).

Medical applications. The datasets used to benchmark Biom3d were extracted from

well-known online challenges, namely the Medical Segmentation Decathlon (MSD)

https://commons.wikimedia.org/wiki/File:CouplingVsCohesion.svg

71

[142] and the Multi-organ Abdominal challenge (often called BTCV challenge) [164].

Both include sets of pairs of image and annotation for training and sets of images only

for testing. All files are in Nifti format. The MSD challenge is a set of ten segmentation

challenges of various human organs captured with CT-scan and MRI. BTCV challenge

contains 30 CT-scans of abdomens where 13 organs of various sizes were annotated.

As commonly done with online challenges, challengers are expected to submit their

predictions of the test dataset on the online platform. However, the evaluation process

can take up to two days to be released which may significantly slow down the

development process of Biom3d. Moreover, the MSD only accepts submission done

overall of its ten datasets which also requires a long training time. This training time

is estimated at 10 days for a single model training on all ten datasets with a single GPU

Nvidia RTX 3090 and may reach 50 days for a proper fivefold cross-validation. With

the computational resources available for this project, this was soon found to be

impractical and alternative solutions were found.

First, all the medical segmentation datasets were split into two equal parts, one half

to constitute a new training set and another half for the testing set. This way, the testing

set has now annotations that can be used to rapidly evaluate a new method. It is worth

noting that the testing set did not serve as a validation set during training but only for

final evaluation when the training was done.

Second, for the MSD, which contains ten datasets of different organs capture with

CT-scan and MRI, only three representative datasets were selected: the Lung dataset

(Task06 of the MSD), the Pancreas dataset (Task07), and the BrainTumour dataset

(Task01). Judging by the accuracy of the best state-of-the-art methods, the Lung

dataset (and the Colon dataset) is one of the hardest single-class tasks from the MSD.

The Pancreas dataset is a challenging two-class dataset of CT-scans used, for instance,

to assess self-supervised methods in [165] and it will be reused for the same purpose

in Chapter 4. The BrainTumour dataset is both a multi-class and multi-channel set of

MRI which originates from another well-known medical segmentation challenge, the

BraTS challenge [37].

On all these datasets, the Dice scores of Biom3d exceed those of nnU-Net (Table

3-1). The main reason are probably better choices in the data-augmentation pipeline.

nnU-Net scores were obtained by training it on a single subset (fold) on these datasets

using its publicly available implementation (https://github.com/MIC-DKFZ/nnUNet).

https://github.com/MIC-DKFZ/nnUNet

72 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

Figure 3-4 – Samples of Biom3d predictions over medical datasets. By column,

from left to right: the Lung dataset, the Pancreas dataset, the BrainTumour dataset, the

BTCV dataset. These views were captured using napari software [6].

Microscope applications. Biom3d was also evaluated on the nucleus dataset

presented in Chapter 2 and reached similar Dice score as nnU-Net (Table 3-1). As the

team in Oxford involved in the project was interested in electron microscope images

of nuclei, evaluation of Biom3d was also conducted with this modality. For instance,

Nadine Field, PhD student in the Oxford’s team, captured 3D electron microscope

images of A. thaliana roots to extract its nucleus characteristics (Figure 3-5-B). She

thus annotated a section of a wide image of plant root to pass it to Biom3d.

Unfortunately, her dataset as well as the only publicly available dataset of 3D electron

microscope images (Table 2-3) [166] is composed of one image in the training set and

one image in the testing set. nnU-Net requires at least 5 images in the training set due

to cross-validation settings (it can be reduced to 2 images by changing the default

settings but not to 1). Biom3d was thus upgraded with a novel pre-processing step to

allow single image training: the image and its annotation mask are split in two volumes

using a plane orthogonal to the largest axis (Figure 3-5-A). The new validation volume

was arbitrarily chosen to be 20% of the original volume while the new training volume

contains the remaining 80%.

An important limiting factor in predicted segmentation is noise (Figure 3-5-B). An

existing strategy [86] is to detect in the training images, for each class of object, if

there is a single connected component. If it is the case, then all but the largest connected

component is kept for this class. This could be limiting in both cases presented in

73

Figure 3-5 because several objects are displayed per class (mitochondria on the top

row and nuclei on the bottom row). To counteract this limitation, an additional post-

processing strategy has been included in Biom3d removing volumes smaller than a

threshold defined by the Otsu’s method, originally applied here on volume distribution

instead of intensity distribution (Figure 3-5-B). Both pre-processing and post-

processing allows thus Biom3d to be well-adapted to electron microscope images.

Finally, Biom3d was evaluated on the light microscope dataset of nuclei presented in

Chapter 2 and used for benchmarking. As can be seen in Table 3-1 and on Figure 3-6-

A, Biom3d achieved a mean and standard deviation of accuracy similar to those of

nnU-Net.

Table 3-1 – Biom3d overpasses nnU-Net on a variety of datasets. The first four rows

represent medical datasets while the last two rows represent biological datasets.

Dataset name Modalities Number of

channels

Number of

classes

Biom3d Dice

score

nnU-Net Dice

score

Lung CT 1 1 0.651 0.651

Pancreas CT 1 2 0.566 0.403

BrainTumour MRI 4 3 0.723 0.719

AbdomenOrg CT 1 13 0.846 0.824

MitoEM EM 1 1 0.907 -

NucleusConf Confocal 1 1 0.914 0.912

74 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

Figure 3-5 – Additional pre- and post-processing of Biom3d to cope with biological

data. (A) Additional pre-processing to deal with single image dataset: the training

image and its corresponding annotation are split in two new portions, one for training

and one for validation. The images and annotations come from [166]. (B) Additional

post-processing to remove prediction noises: only the biggest connected components

are kept. The Otsu’s algorithm is applied on the volume distribution to find the minimal

valid volume. The image has been captured by Nadine Field in Oxford Brookes.

Figure 3-6 – Biom3d performances on the nucleus datasets. (A) Completed

benchmarking of Chapter 2 with Biom3d performances: Biom3d reaches similar

accuracy as nnU-Net. (B) Comparison of Biom3d and NucleusJ on 4 nucleus datasets:

the higher accuracy of Biom3d predictions demonstrates a lower variability in nuclei

volumes. “Col” are wild-type nuclei while “hira” and “8t” represent mutant nuclei.

“Hira 8t” are double mutant nuclei.

75

3.3 Biom3d, an easy-to-use tool

The first type of users of Biom3d are Non-Programmers, end-users such as biologists

or radiologists. This profile expects an easy-to-use interface and a minimum amount

of manual configuration to achieve their goal. Biom3d integrates thus several

Graphical User Interfaces depending on their means and needs.

3.3.1 Graphical User Interfaces

Biom3d has three Graphical User Interfaces (Figure 3-7-A):

• The Default interface, integrated in the software

• The Google Colab interface (https://colab.research.google.com/github/

GuillaumeMougeot/biom3d/blob/master/docs/biom3d_colab.ipynb)

• The Biosphere interface (https://biosphere.france-bioinformatique.fr/

catalogue/appliance/216/)

Each interface has been designed to respond to different needs. An overview of the

advantages and disadvantages of each interface is presented in Figure 3-7-B. The

Default interface is a local installation and boasts the quickest usability. As everything

remains offline, users retain complete control over data transfers while upholding data

ownership. However, utilizing this interface necessitates access to a GPU equipped

with at least 10GB of VRAM for training and 4GB of VRAM for prediction, entailing

the installation of deep learning computation libraries and drivers (such as CUDA and

CuDNN for Nvidia GPUs). To address these limitations, Biom3d comes with two

additional online interfaces bypassing the need for specific computing resources or

installations. The Google Colab interface harnesses Google’s servers which are freely

accessible for a finite period. Since data is processed directly on these servers, it

requires uploading the data. However, transferring substantial datasets to private

servers might be challenging due to space limitations or ownership concerns. A final

solution, yet limited to French public research groups, involves utilizing the Biosphere

interface. Biosphere is a public initiative to mutualized access to the national

computing centres and open-source software developed within the research

community. While in this case data ownership remains intact, the current version of

Biosphere is restricted to CPU usage, resulting in slower processing speeds.

Consequently, this alternative is best suited for predictions or demonstrations only.

https://colab.research.google.com/​github/​GuillaumeMougeot/​biom3d/​blob/​master/docs/biom3d_colab.ipynb
https://colab.research.google.com/​github/​GuillaumeMougeot/​biom3d/​blob/​master/docs/biom3d_colab.ipynb
https://biosphere.france-bioinformatique.fr/​catalogue/​appliance/216/
https://biosphere.france-bioinformatique.fr/​catalogue/​appliance/216/

76 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

Figure 3-7 – Three interfaces of Biom3d. (A) Views of the three interfaces. (B)

Comparison of the three interfaces. In green and red circles are highlighted the main

advantages and disadvantages of each interface.

3.3.2 Workflows: Training and prediction

This Subsection will describe in more details some of the hidden mechanisms behind

Biom3d Interfaces. Explanations will be illustrated with the Default Interface, but

these mechanisms are independent from the chosen Graphical Interface. Two main

workflows can be described: one for training (Figure 3-8) and one for prediction

(Figure 3-9).

Training workflow. The goal of this workflow is to output a trained model and a

pre-processing methodology adapted to a specific dataset. To do so, the user inputs a

set of 3D images, annotated with a software such as napari. The number of classes of

objects and the name of the output folder containing the future deep learning model

must be filled. Once the “Auto-configuration” button is pressed, a cascade of

operations starts (Figure 3-8).

First, the dataset is scanned, and a set of characteristics, called a data-fingerprint, is

extracted, such as the median image size or the median spatial sampling.

Second, the data-fingerprint is used to preprocess the raw images: image intensities

are z-normalized (using mean and standard deviation), and images are resized to align

with the median spatial sampling.

77

Third, the data-fingerprint is then used to compute some of the training hyper-

parameters such as the batch size, the patch size, or the number of successive pooling

layers in the U-Net model. The data-fingerprint and the training configurations are

both stored in a single config.yaml file. To maintain user oversight of training

configurations, these settings are displayed in the interface and can be edited. This

feature proves beneficial, especially for variables like the number of epochs. In the

default nnU-Net implementation, this is arbitrarily set at 1000 epochs, which may

require adjustment for scenarios like confocal images where fewer epochs suffice.

Similarly, manual modification of hyperparameters might be necessary when users opt

to annotate objects solely within a specific image region, leaving other areas

unannotated. For instance, suppose objects in only the first z-slices of the image are

annotated. Currently, patch size is determined solely by the median image shape.

Consequently, in anisotropic images with substantial dimensions along the x- and y-

axes but modest dimensions along the z-axis, the patch size retains a similar aspect

ratio, yet with reduced dimensions compared to the original image. During training,

patches are positioned randomly within the input image. If the patch dimensions do

not align with the original image's z-axis, the patch might be placed randomly in an

annotated object region or in a region with analogous properties but without

annotations. This inconsistency can lead to erratic behaviour in the training curve. The

z-dimension of the patch might thus be adapted manually. Such changes must still

consider the dimensions of the GPUs memory not to overload it.

Fourth, once configured the training can start by pressing “Start” button. The training

curves, the best deep learning model and sample of predictions are automatically saved

every epoch in the output folder.

78 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

Figure 3-8 – Training workflow of Biom3d. (Left) Training tab of the graphical

interface. The user specifies the path to the folders containing training images and

annotations, then defines a name for the configuration file and the future trained model,

and the auto-configuration can start. Automatically defined parameters can be adjusted

manually if needed before starting the training. (Right) Backend workflow. Once the

“Auto-configuration” button is pressed, the data-preprocessing starts. The dataset key

elements (median shape, etc.) are extracted and used to normalize all the images and

to define training configuration (patch size, etc.). If the “Start” button is pressed, a

deep learning model will be trained and saved along with the pre-processing

methodology (data-fingerprint).

Prediction workflow. Once trained, a model can be used on novel images similar to

the ones of the training set (Figure 3-9). To match the training pre-processing, the pre-

processing of the prediction images is configured using the data-fingerprint stored in

the training output folder. The images are then passed to the deep learning model.

Predictions are eventually post-processed before being saved. The prediction

workflow is much simpler and can be used to rapidly predict thousands of images.

79

Figure 3-9 – Prediction workflow. (Left) Prediction tab of the graphical interface.

The user chooses a folder containing raw images, the path to a trained model and a

folder for the future predictions. The predictions start when the “Start” button is

pressed. (Right) Backend workflow. The raw images are normalized using the data-

fingerprint of the training dataset. The trained model is then loaded and used to

compute predictions.

3.3.3 Pooling resources: Remote access and OMERO access

As previously mentioned, having access to a GPU large enough to train a deep learning

model is not always affordable to a single research team. On the other hand, if a single

team has access to a GPU, this resource might be underexploited, as training a deep

learning model is generally not required daily. Pooling computing resources might

therefore be beneficial economically and environmentally. Furthermore, biological

images generally tend to require large storage capacities. Pooling storage resources as

well could yield similar advantages, in addition to contributing to the preservation of

data integrity.

Remote access. Remote access is integrated as a core functionality of Biom3d

(Figure 3-10). When opening the Default interface, users can choose between the local

version or the remote version. The Remote version requires the existence of a remote

80 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

server where the Python package of Biom3d is installed. This server must have a

compatible GPU and must be accessible via Secure Shell (ssh). Two independent

installations are thus required: one for the client computer with the graphical interface

and one for the server computer with the command line interface (see Section 3.4.1 for

more details about the command line interface). In the graphical interface, the user

indicates server address, username, password and eventually the name of the Python

or Anaconda environment where Biom3d has been installed. Optionally, Biom3d can

be accessible via a proxy server or a Virtual Private Network (VPN) so to be accessible

via the Internet. Once connected, the remote version of the graphical interface looks

like the local version, except for the fact that the dataset must now be sent to the server

before pre-processing. The remote prediction process is like the local one except that

data must be first sent to the computing server before prediction and the results must

be retrieved after prediction.

Figure 3-10 – Remote access to Biom3d. (Left) The Default Interface in remote

version looks like the local version, actions being executed on the remote server.

(Right) The server computer is equipped with a GPU and the Python package of

Biom3d and run the computations ordered by the graphical interface.

OMERO access. To pool storage resources in biology, one of the tools in use is

OMERO. OMERO is a software designed to store multi-channel 3D images in a single

81

repository designed to preserve data integrity. The client interface and web interface

of OMERO both allow organization of images and viewing without the need to

download them locally. OMERO does not handle complex image analysis but provides

ways to download them on a computing server. Doing so in Python is not

straightforward but possible (it was necessary to directly contact OMERO’s authors to

understand and write the appropriate commands) and has been integrated in Biom3d

code and interface. Biom3d can download raw images from the storage server to the

computing server once the OMERO server address, user details and dataset

identification number have been uploaded to the interface. Once downloaded, the

prediction process can start on the computing server. Once finished, the prediction can

either be downloaded locally or sent back to the OMERO server. Uploading back a set

of predictions on an OMERO server is a bit more complicated than downloading it due

to image metadata. As presented in the previous Chapter, the metadata is the set of

information surrounding the captured image among which the most notable one is the

image spatial sampling as it allows spatial measurements to be made. The original

metadata of the input image must thus be integrated into the prediction results.

Microscopy images are usually stored in TIFF format which have very diverse ways

to store metadata. This diversity has been the subject of extensive research during this

project and will be discussed in the following paragraph.

Figure 3-11 – OMERO access. (Left) The remote version of the Default interface

allows to download an OMERO dataset.

TIFF formatting. TIFF stands for Tag Image File Format meaning that image

metadata is stored in tags. A tag consists of a small set of various pieces of information

among which the most important ones are the tag code, name, and value (see Table 3-2

82 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

for an example of image metadata). There is a finite set of possible tag name (a

complete list can be found here: https://www.loc.gov/preservation/digital/formats/

content/tiff_tags.shtml). For example, “XResolution” tag contains the number of

pixels per spatial resolution unit along the x-axis. Despite extensive effort of TIFF

format creators to make the list of tag exhaustive, this cannot match the diversity of

possible configurations in all imaging devices (especially when knowing that TIFF

format was originally designed for fax communication and that it is now used to store

multi-channel and multi-dimensional images). Microscope constructors have found a

stratagem to counteract this limitation: exploiting the “ImageDescription” tag. This

TIFF tag has quickly become a catch-all tag, used to store, if not all, most of the

information related to image capture. For example, Leica MM AF microscope uses

this tag to store a list of information in an XML-like format, where can be found, for

instance, the x-axis resolution (see Table 3-2 “spatial-calibration-x”) instead of using

the official “XResolution” tag. Every imaging constructor has developed their own

TIFF metadata formatting technique. Even software developers have decided to follow

their own interpretation of the TIFF tag philosophy. Even open-source software, such

as FIJI/ImageJ, have fallen into this pitfall. This phenomenon has caused the

community to dub TIFF files as “Thousands of Incompatible File Format”. Yet, some

efforts have emerged attempting to unify TIFF derivatives, at least for biological data,

among which the most noticeable one is probably Bio-Formats. Bio-Formats is an

initiative started by the Open Microscopy Environment (OME) group. This consortium

of public and private institutions creates open-sources software and formats for

microscopy, such as the OMERO software. Bio-Formats is a tool allowing to read most

of the industry TIFF formats and to convert them into a unique universal format called

OME-TIFF. However, this initiative is limited to Java programs and could not be

integrated into Biom3d without requiring starting the “Java Virtual Machine” which

was considered an excessive use of resource for a relative small problem. The solution

currently integrated into Biom3d is the result of tedious research strewn with many

frustrating failures resulting in a compromise. It is based on the tifffile Python package

developed by Christoph Gohlke. This package is well-adapted for FIJI/ImageJ TIFF

and OME-TIFF but currently fails to retrieve relevant information (spatial resolution,

etc.) in proprietary formats such as the one presented in Table 3-2. Most of the code

integrated in Biom3d has been inspired by contributions of tifffile’s author (among

which this post has been determinant: https://forum.image.sc/t/python-copy-all-

https://www.loc.gov/​preservation/​digital/​formats/​content/​tiff_tags.shtml
https://www.loc.gov/​preservation/​digital/​formats/​content/​tiff_tags.shtml
https://forum.image.sc/​t/​python-copy-all-metadata-from-one-multipage-tif-to-another/​26597/​8

83

metadata-from-one-multipage-tif-to-another/26597/8). This method is certainly a

major point of improvement in Biom3d and more generally to Python image reader

and writer. It might require extensive effort to understand the structure of TIFF files to

preserve metadata integrity when passing them to segmentation prediction.

Table 3-2 – Example of TIFF metadata obtained with a Leica MM AF microscope.

The “ImageDescription” tag departs from the official tag system and contains most of

the information related to the microscope configuration. Such formatting is

microscope-dependant. This metadata was extracted using tifffile Python package.

Tag

code
Tag name Tag value

254 NewSubfileType FILETYPE.PAGE

256 ImageWidth 2048

257 ImageLength 2048

258 BitsPerSample 16

259 Compression COMPRESSION.NONE

262 Photometric

Interpretation

PHOTOMETRIC.MINISBLACK

270 ImageDescription
<prop id="MetaDataVersion" type="float" value="1"/>

<prop id="ApplicationName" type="string" value="MetaMorph"/>

<prop id="ApplicationVersion" type="string" value="7.8.12.0"/>

<PlaneInfo>

<prop id="plane-type" type="string" value="plane"/>

<prop id="pixel-size-x" type="int" value="2048"/>

<prop id="pixel-size-y" type="int" value="2048"/>

<prop id="bits-per-pixel" type="int" value="16"/>

<prop id="autoscale-state" type="bool" value="on"/>

<prop id="autoscale-min-percent" type="float" value="0.05"/>

<prop id="autoscale-max-percent" type="float" value="0.05"/>

<prop id="scale-min" type="int" value="14"/>

<prop id="scale-max" type="int" value="7011"/>

<prop id="spatial-calibration-state" type="bool" value="on"/>

<prop id="spatial-calibration-x" type="float" value="0.1032"/>

<prop id="spatial-calibration-y" type="float" value="0.1032"/>

<prop id="spatial-calibration-units" type="string" value="um"/>

<prop id="image-name" type="string"

value="k4c1c4_cot1&4&8__w11 DAPI SIM variable_s1"/>

<prop id="threshold-state" type="string" value="ThresholdOff"/>

<prop id="threshold-low" type="int" value="0"/>

<prop id="threshold-high" type="int" value="65535"/>

<prop id="threshold-color" type="colorref" value="4080ff"/>

<prop id="zoom-percent" type="int" value="50"/>

<prop id="gamma" type="float" value="1"/>

<prop id="look-up-table-type" type="string" value="by-wavelength"/>

<prop id="look-up-table-name" type="string" value="Set By Wavelength"/>

<prop id="photonegative-mode" type="bool" value="off"/>

<prop id="gray-calibration-curve-fit-algorithm" type="int" value="4"/>

<prop id="gray-calibration-values" type="float-array" value=""/>

<prop id="gray-calibration-min" type="float" value="-1"/>

<prop id="gray-calibration-max" type="float" value="-1"/>

<prop id="gray-calibration-units" type="string" value=""/>

<prop id="plane-guid" type="guid" value="{168AEE33-9914-4B20-A4F2-

B9085DC714B9}"/>

<prop id="acquisition-time-local" type="time" value="20180523

14:22:20.702"/>

<prop id="modification-time-local" type="time" value="20180523

14:27:41.885"/>

<prop id="camera-binning-x" type="int" value="1"/>

<prop id="camera-binning-y" type="int" value="1"/>

<prop id="camera-chip-offset-x" type="float" value="0"/>

<prop id="camera-chip-offset-y" type="float" value="0"/>

<prop id="_IllumSetting_" type="string" value="1 DAPI SIM variable"/>

<prop id="_MagNA_" type="float" value="1.4"/>

<prop id="_MagRI_" type="float" value="1.515"/>

<prop id="_MagSetting_" type="string" value="63x Oil"/>

<custom-prop id="Camera Bit Depth" type="float" value="16"/>

<custom-prop id="Electron Count Conversion Factor" type="float"

value="0.49"/>

<custom-prop id="Electron Count Conversion Offset" type="float"

value="100"/>

<custom-prop id="Exposure Time" type="string" value="60 ms"/>

<custom-prop id="Leica Condenser Top" type="string"

value="Condenser Top Out"/>

<custom-prop id="Leica Condenser Turret" type="string" value="BF"/>

<custom-prop id="Leica Contrast Method" type="string"

value="FLUO"/>

<custom-prop id="Leica DIC Turret" type="string" value="-"/>

<custom-prop id="Leica Filter Changer" type="string" value="405"/>

<custom-prop id="Leica Fluor Intensity Manager" type="string"

value="30%"/>

<custom-prop id="Leica IL Aperture Diaphragm" type="float"

value="7"/>

<custom-prop id="Leica IL Shutter" type="string" value="Closed"/>

<custom-prop id="Leica Immersion Mode" type="string"

value="Immersion"/>

<custom-prop id="Leica Lamp" type="float" value="18"/>

<custom-prop id="Leica Lamp Switch" type="string" value="Incident"/>

<custom-prop id="Leica Objective Turret" type="string" value="63x"/>

<custom-prop id="Leica SI Diaphragm" type="float" value="6"/>

<custom-prop id="Leica Stage X" type="float" value="44343"/>

<custom-prop id="Leica Stage Y" type="float" value="4345.46"/>

<custom-prop id="Leica TL Aperture Diaphragm" type="float"

value="18"/>

<custom-prop id="Leica TL Field Diaphragm" type="float" value="5"/>

<custom-prop id="Leica TL Polarizer" type="string" value="TL Polarizer

https://forum.image.sc/​t/​python-copy-all-metadata-from-one-multipage-tif-to-another/​26597/​8

84 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

<prop id="stage-position-x" type="float" value="44343"/>

<prop id="stage-position-y" type="float" value="4345.46"/>

<prop id="stage-label" type="string" value="Position10"/>

<prop id="z-position" type="float" value="106.859"/>

<prop id="wavelength" type="float" value="450"/>

Out"/>

<custom-prop id="Leica TL Shutter" type="string" value="Open"/>

<custom-prop id="Leica Z Motor" type="float" value="106.859"/>

<custom-prop id="OptiGrid Paddle Z" type="float" value="5128"/>

<custom-prop id="OptiGrid Voltage 1" type="float" value="37.216"/>

<custom-prop id="OptiGrid Voltage 2" type="float" value="55.7118"/>

<custom-prop id="OptiGrid Voltage 3" type="float" value="75.1461"/>

<custom-prop id="OptiGrid Voltage 4" type="float" value="95.4526"/>

<custom-prop id="Shutter Fluo" type="string" value="Open"/>

<custom-prop id="Shutter Trans" type="string" value="Closed"/>

<prop id="number-of-planes" type="int" value="75"/>

273 StripOffsets (8, 8200, 16392, 24584, 32776, 40968, 49160, 57352, 65544, 73736,

819282…

274 Orientation ORIENTATION.TOPLEFT

277 SamplesPerPixel 1

278 RowsPerStrip 2

279 StripByteCounts (8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192…

305 Software MetaSeries

306 DateTime 20180523 14:22:20.702

3.4 Biom3d, a toolbox for bioimage analysts

As previously mentioned, the Default Interface of Biom3d (both remote and local)

comes as a Python package which requires some basic Python understanding that will

be presented in the first Subsection below. Additionally, Python Programmers needs

might not be fulfilled by the Graphical Interfaces only. This type of user might be

interested in understanding, exploiting, and controlling more complex aspects of

Biom3d. For instance, they may be interested in accessing to a Command Line

Interface to be able to execute Biom3d on a High-Performance Computing (HPC)

resources in “batch mode” on a large variety of datasets. They may look also to fine-

tune existing models or to make predictions using a set of models. All these problems

can be solved with the Command Line Interface of Biom3d and will be addressed in

the second Subsection below. Furthermore, Python Programmers might be interested

in experimenting with a broader degree of freedom in the deep learning hyper-

parameters. They might as well be interested in changing the optimizer parameters or

the type of deep learning model. These challenges are tackled with the modular

structure of Biom3d and presented in the third Subsection.

3.4.1 Installing Biom3d

More details about installation instructions can be found on Biom3d documentation

website: https://biom3d.readthedocs.io/en/latest/installation.html

https://biom3d.readthedocs.io/en/latest/installation.html

85

The Command Line Interface of Biom3d is accessible using a Windows command

prompt or a Linux Terminal. Installing the Default interface of Biom3d requires the

installation of the Biom3d Python package, locally for the local version, and on a Linux

server for the remote version. The installation of the Biom3d package requires a

computer with a GPU of at least 10 Gb of VRAM and with CUDA library, CuDNN

library, Python3 and Pytorch library installed preferably in a virtual environment such

as pip environment or Anaconda. A single line of code is then required to complete the

installation:

(base) gumougeot@MPCRBC-GRE2-025:~$ pip install biom3d[all]

Once the installation is completed Biom3d is ready-to-use both for the Default

interface and the Command Line Interface.

Creating a Python package. To facilitate its installation, Biom3d has been

referenced in PyPI (Python Package Index, https://pypi.org/), instead of being

integrated in a Docker or Anaconda environment. This technique allows to publicly

and internationally reference Biom3d while making transparent all requirements

(installed when running the install command). This setup was facilitated by the newest

version of pip which only requires writing a single pyproject.toml file, preventing the

previous need of using backend tools such as Setuptools. Python package creation has

thus recently been simplified and documented by the PyPA community (more

information can be found here: https://packaging.python.org/en/latest/tutorials/

packaging-projects/). Python packaging is well adapted to seamlessly share and install

Python tools. Yet, Biom3d is dependent on some external libraries (CUDA, CuDNN,

Pytorch) and integrating it along these libraries in a single virtual environment might

represent another important future improvement. To do so, Singularity is currently the

candidate of choice. Like Docker, it isolates all dependencies and the appropriate

operating system. Opposed to Docker, Singularity does it within a single file, which

can then ease its sharing and use on computer clusters.

3.4.2 Command Line Interface

More details about the Command Line Interface can be found on Biom3d

documentation website: https://biom3d.readthedocs.io/en/latest/tuto_cli.html

https://pypi.org/
https://packaging.python.org/​en/​latest/​tutorials/​packaging-projects/
https://packaging.python.org/​en/​latest/​tutorials/​packaging-projects/
https://biom3d.readthedocs.io/en/latest/tuto_cli.html

86 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

The code of Biom3d, as for most Python packages, is organized in Python scripts.

Biom3d has two types of Python scripts: module scripts and executable scripts.

Module scripts store lists of functions or classes used by the executable scripts. Details

about module scripts will be given further in this thesis. To each executable script

corresponds one Command Line Interface with the same name. For instance, the

executable script preprocess.py oversees the preprocessing. It can be executed, from

any location in the computer, once Biom3d Python package is installed, with the

following command:

python -m biom3d.preprocess --img_dir data/images --msk_dir data/masks --

num_classes 1 --desc unet_example

Similarly, any of Biom3d command listed in Table 3-3 can be executed with the syntax:

python -m biom3d.script_name –-arg1 arg1_value --arg1 arg2_value

Where script_name is the name of the Python script, --arg1 is the name of an

argument and arg1_value the value of this argument.

Table 3-3 – Biom3d commands. Each command corresponds to one executable script

of Biom3d. Only the main arguments are listed. The complete list of arguments for

each command can be found on Biom3d documentation website or displayed using the

following: python -m biom3d.script_name --help.

Type Script name Description Typical arguments

Name Role

M
ai

n

preprocess Image and mask

preprocessing.

--img_dir Image directory.
--msk_dir Mask directory.
--num_classes Number of classes of objects.
--desc Future name of the configuration

directory and model.
train Model training or fine-

tuning.

--config Path to the configuration file

created during preprocessing.
--log Path to a log directory.

pred Prediction with one or

several models on a

dataset.

--log Path to one or several log

directories.
--dir_in Path to the input image directory.
--dir_out Path to the output mask

directory.
eval For test purpose:

evaluate Biom3d

predictions against

annotations using Dice

metric.

--dir_pred Path to the prediction directory.

--dir_lab Path to the annotation directory.

--num_classes Number of classes of objects.

preprocess_train --img_dir Image directory.

87

Com-

bined

Combination of

preprocessing and

training.

--msk_dir Mask directory.
--num_classes Number of classes of objects.

O
M

E
R

O

omero_pred Prediction from an

OMERO dataset.

--obj Either “Dataset:ID” or

“Project:ID” where ID is the

OMERO identification of the

Dataset or the Project.
--log Path to a log directory.
--target Path to the directory where

OMERO images will be

downloaded.
--dir_out Path to the output mask

directory.
--username OMERO username.
--password OMERO password.
--hostname OMERO server address.
--upload_id (Optional, work only for Dataset)

ID of the OMERO Project to

upload the predictions directory

into.
omero_uploader Upload a dataset to

OMERO

--project ID of the OMERO Project to

upload the predictions directory

into.
--path Path to the directory to upload.
--dataset_name Future name of the OMERO

Dataset containing the

predictions.
--username OMERO username.
--password OMERO password.
--hostname OMERO server address.

omero_downloader Download an OMERO

Dataset or Project.

--obj Either “Dataset:ID” or

“Project:ID” where ID is the

OMERO identification of the

Dataset or the Project.
--target Path to the directory where

OMERO images will be

downloaded.
--username OMERO username.
--password OMERO password.
--hostname OMERO server address.

GUI
gui Launch the Graphical

User Interface.

- -

The command line interface has the same capabilities as the Graphical User Interface

yet with three significant differences:

• The configuration file generated after the preprocessing is fully editable and

will be the focus of the next Subsection.

88 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

• Command lines have many advantages notably in Linux-based Operating

Systems such as to be executed in batch or on a computer cluster, or to be

integrated in a bash script.

• A Command Line Interface user can fine-tune a model or execute a prediction

with a set of models instead of one only.

Fine-tuning. Fine-tuning consists in retraining a pretrained model on a new dataset,

particularly useful for transfer learning. To do fine-tuning with Biom3d, the following

can be used:

python -m biom3d.train\

 --log logs/20230522-182916-unet_default\

 --config configs/20230522-182916-config_default.py

The two main arguments above encapsulate two important and original concepts of

Biom3d:

• --log defines the location of the directory storing the trained model parameters

(stored in a .pth file) along with all relative information such as training curves

and snapshots or the configuration files. If the --log argument is employed

alone, the script_name script will consider that the user wants to restart an

existing training that might have been interrupted.

• --config is the location of the configuration file defining the training

configuration (data preprocessing, optimizer, model architecture etc.). If the -

-config argument is used alone, Biom3d will create a new log folder and start

a new training.

If --log and --config are used simultaneously, Biom3d will use the configuration file

to configure a new training and the trained model parameters to initialize the novel

model weights. Model architectures must be compatible.

Multi-model prediction. Another originality of Biom3d Command Line Interface

is the possibility to execute predictions from a set of different models (ensemble

prediction). Ensemble prediction has been proven to be particularly effective

especially when working in teams such as for Kaggle competitions [126]. nnU-Net is

limited to perform ensemble prediction within the frame of its cross-validation

configuration. For example, with five folds cross-validation, this means that the

89

predictions of a set of five identical model architectures trained on the same dataset

but with different training/validation splits will be merged to obtain the final

segmentation result. In Biom3d, with its modular architecture, a user can decide to run

predictions with an arbitrarily large set of model architectures and each trained on a

different dataset by simply using the following command:

python -m biom3d.pred\

 --log logs/20230522-182916-unet_default logs/20230425-162133-unet_btcv\

 --dir_in data/btcv/Testing/img\

 --dir_out data/btcv/Testing/preds

In this example, some predictions are computed on the BTCV test set using two

different models stored in two different log folders.

Figure 3-12 – Configuration File, Builder and Module Register. (Left) The

Configuration File lists the names of existing Modules appearing in the Module

Register and defines their parameters (Greek letters). (Middle) The Builder reads

parameters and Module names in the configuration file. It then retrieves the

corresponding modules from the Module Register and builds them with their

parameters. The Builder can then be used to train a Model with a Dataset, a Trainer,

and a Metric. Once trained, the Model can be used by the Builder to predict the

segmentation masks of some raw images using a Preprocessor, a Predictor, and a

Postprocessor. (Right) The Module Register lists all existing modules of Biom3d.

There are currently seven different types of modules, and each type has different

variants (colour shades).

90 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

3.4.3 Configuration File, Builder, and Module Register

More details about the Biom3d Modules can be found on Biom3d documentation

website: https://biom3d.readthedocs.io/en/latest/index.html

Biom3d modularity is not limited to the Command Line Interface but also allows to

access and edit finer parameters such as the type of deep learning model or the metric

used for training. This is made possible without having to go through the inner

codebase of Biom3d thanks to three novelties: the Configuration File, the Module

Register, and the Builder.

Configuration File. The configuration file is one of the core elements of Biom3d

modularity and is an entry point editable by Programmer Users (Figure 3-12). This

concept departs from nnU-Net implementation and was inspired by OpenMMLab

(https://github.com/open-mmlab), a large group of computer scientists aiming at

rapidly and regularly integrating the forefront state-of-the-art contributions in deep

learning for image processing within several highly modular and open-source

frameworks (MMSegmentation for 2D segmentation algorithms, MMDetection for 2D

detection, etc.). In OpenMMLab frameworks, each training is configured via a single

file, the configuration file, describing the “recipe” to assemble a deep learning model,

a data-pipeline, an optimizer, a visualizer to observe the learning curves etc. (an

example of their configuration file can be found here: https://

mmsegmentation.readthedocs.io/en/latest/user_guides/1_config.html). The

configuration files of Biom3d significantly depart from those of OpenMMLab being

both simplified and completed (an example of Biom3d’s configuration file can be

found here: https://github.com/GuillaumeMougeot/biom3d/blob/main/src/biom3d/

config_default.py).

The configuration file of Biom3d includes the definition of two types of hyper-

parameters:

• Stand-alone hyper-parameters includes parameters defined in the Graphical

User Interface (patch size, number of epochs, etc.) as well as finer hyper-

parameters such as the initial learning rate or whether to use half-precision

float-point format or not. Here follows an extract from Biom3d configuration

file defining stand-alone hyper-parameters:

https://biom3d.readthedocs.io/en/latest/index.html
https://github.com/open-mmlab
https://mmsegmentation.readthedocs.io/​en/​latest/​user_guides/​1_config.html
https://mmsegmentation.readthedocs.io/​en/​latest/​user_guides/​1_config.html
https://github.com/GuillaumeMougeot/biom3d/blob/main/src/biom3d/config_default.py
https://github.com/GuillaumeMougeot/biom3d/blob/main/src/biom3d/config_default.py

91

[…]

number of classes of objects

the background does not count, so the minimum is 1 (the max is 255)

NUM_CLASSES = 1

number of channels in the input images

NUM_CHANNELS = 1

[…]

batch size

BATCH_SIZE = 2

patch size passed to the model

PATCH_SIZE = [128,128,128]

larger patch size used prior rotation augmentation to avoid "empty" corners.

AUG_PATCH_SIZE = [160,160,160]

number of pooling done in the U-Net

NUM_POOLS = [5,5,5]

[…]

number of epochs

NB_EPOCHS = 1000

optimizer parameters

LR_START = 1e-2

WEIGHT_DECAY = 3e-5

• Module hyper-parameters are key-value dictionaries. The first key-value pair

precises the name of the module being used and defined in the Module Register.

The second key-value pair defines the parameters of this module. In the

following example the Model module named "UNet3DVGGDeep" designed for

image segmentation is configured using some of the stand-alone parameters

(dark blue) and one custom parameter (factor):

model configs

MODEL = Dict(

 fct="UNet3DVGGDeep", # module name from the module register

 kwargs = Dict(

 num_pools=NUM_POOLS,

 num_classes=NUM_CLASSES if not USE_SOFTMAX else NUM_CLASSES+1,

 factor = 32, # multiplication factor for the depth of each convolution

 use_deep=USE_DEEP_SUPERVISION,

 in_planes=NUM_CHANNELS,

)

)

The Module Register. The Module Register lists all available modules. Modules are

classified into seven categories (Figure 3-12):

92 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

• Datasets, modules loading a pre-processed dataset to pass it to the deep

learning model.

• Models, modules defining the deep learning model.

• Metrics, modules used to define the training loss, the validation loss and other

training metrics.

• Trainers, modules defining how the Dataset module, the Model module, the

Metric modules, and the optimizer are working together to train the deep

learning model.

• Pre-processors, modules used to pre-process the training dataset and to pre-

process raw data before prediction.

• Post-processors, modules defining how the deep learning model output are

processed before being saved.

• Predictors, modules defining how the Pre-processor module, the Model

module, and the Post-processor module are working together to compute

predictions on novel images.

A Module Register entry is organized as follows:

from biom3d import ModuleClass

module_type = Dict(

 ModuleName = Dict(fct=ModuleClass, kwargs=Dict(parameter='value'))

)

For each module, the Module Register imports the Python function or the Python class

from Biom3d code (from biom3d import ModuleClass) and stores it into a key-value

dictionary named by type of module (module_type). In this dictionary, the key

(ModuleName) can be arbitrarily defined but should be both explicit and short as it

corresponds to the one used in the Configuration File. The value is also a key-value

dictionary (Dict(fct=ModuleClass, kwargs=…)) including Biom3d function or class

and, eventually, some of its parameters. Here is an example of a section of Biom3d

Register listing available Model modules:

93

model register

from biom3d.models.unet3d_vgg_deep import UNet

from biom3d.models.encoder_vgg import VGGEncoder, EncoderBlock

models = Dict(

 UNet3DVGGDeep =Dict(fct=UNet, kwargs=Dict()),

 VGG3D =Dict(fct=VGGEncoder, kwargs=Dict(block=EncoderBlock,

use_head=True)),

)

In this example, two Model modules have been registered, UNet3DVGGDeep a

segmentation model and VGG3D a classification model. Model modules are Python

classes like Dataset modules and Metric modules. The other type of modules are

Python functions. Python classes will have to be instantiated by the Builder. Adding a

new module to Biom3d consists thus simply in importing a Python class or a Python

function and adding a novel entry to the corresponding dictionary (see next Section for

more details).

The Builder. To metaphorize, if the Module Register lists all existing gene alleles of

all possible genes and the Configuration File lists the genes of one specific individual,

the Builder is the nucleus and its skeleton which organizes the DNA of this individual.

The Builder is a Python class that makes all separated modules be and act together in

four different steps (Figure 3-12):

• Configuration File Reading. The Configuration File can be provided in a

Python file format or YAML format. The Configuration File Reading can also

be accompanied by Model weights loading if fine-tuning, training restarting or

predicting are intended.

• Building. The Python class modules listed in the Configuration File are then

built. This Building process consists in instantiating this type of modules by

calling their class constructors with the parameters defined in the configuration

file. Module building is accompanied by the creation of a new log folder or the

loading of an existing one and by the building of the optimizer function and

the Callbacks (see next Section). Building automatically starts after

Configuration File Reading.

• Training. Once built, training can be started by calling the Builder’s Train class

function. This function calls the selected Trainer module, along with the

94 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

Dataset module and the Metrics modules, a number of times equal to the

number of epochs configured.

• Predicting. Once trained, a Model can be applied on novel data. The same Pre-

processor module used to prepare the training Dataset processes the data,

before passing it to the Predictor module, which applies the deep learning

model. The Predictor can, for instance, patch the input images to a specific size.

The Postprocessor finally processes the data by, for example, applying a

threshold, removing noise, resizing images, etc.

With the Command Line Interface and the Module-oriented architecture of Biom3d,

Python Programmer have access to a large panel of functionalities without the need

for reading or editing the inner code of Biom3d. More than just changing fine module

hyper-parameters, Biom3d Configuration File allows them to change entirely the

module definition by selecting another one in the Module Register. Last, once the

training is started, all training metadata (Configuration File in Python and YAML

formats, training curves, terminal logs, training and validation splits of the dataset,

training image snapshots, etc.) will be saved in a unique folder (the “logs” folder) along

the model parameters.

3.5 Biom3d, a framework for deep learning developers

Biom3d has been meticulously crafted at a granular code level, affording Deep

Learning Programmers to easily understand, edit, or add code components. Biom3d

has also been structured as both a fully usable Python package and an experimental

platform, providing a flexible arena for novel advancements, thus allowing it to stay

aligned with cutting-edge deep learning methods. This Section, aimed at Deep

Learning Programmers, dives into the deep layers of Biom3d's conceptualization: its

code use and its code architecture. First, it provides a top-down explanation

encompassing the overall code structure and the Builder module. Afterwards, it delves

into each module and its characteristics, including the hitherto unexposed Callback

module. Finally, it considers the myriad future potentials that Biom3d holds, including,

for instance, those leveraged by its compatibility with MONAI and TorchIO libraries.

3.5.1 Code and Builder design

As mentioned in the previous Subsection, the structure of Biom3d is articulated around

the Builder module which serves as a backbone for other Modules. Similarly, nnU-Net

95

code strategy is to define a single class called nnUNetTrainer encompassing all code

core functionalities such as deep learning model initialization, model training or

predictions. One major issue with nnU-Net implementation is that this class is deeply

linked to the definitions of the other parts of the code and includes a very large number

of tasks, making it a “all-knowing object”. This “God Object” issue is one of the

standard software engineering anti-pattern, an inefficient coding strategy [167] that

increases code coupling and decreases code readability. Biom3d Builder is more of an

independent and constituent block linking other independent objects together rather

than an agglomerate of functions. The independency of Biom3d Module means that

they can be easily extracted and reused out of Biom3d code context.

How to use the Builder. The Builder class use has been simplified as much as

possible while keeping most of the complex functionalities required for deep learning

model training. Understanding the panel of applications of the Builder starts by

looking inside some of the frontend scripts designed for the Command Line Interface:

• train.py script demonstrates how to use the Builder to train a new deep

learning model, to restart an interrupted training, or to fine-tune an existing

model. All of this can be done with only three short lines:

from biom3d.builder import Builder

builder = Builder(config_path, log_path, training=True)

builder.run_training()

The first line instantiates the Builder class with two arguments: config_path,

path toward a configuration file obtained during Biom3d preprocessing, and

log_path path toward an existing log directory. Both can eventually be affected

with a Python string or set to None. This choice will influence the behaviour of

the Builder class:

 log_path=None log_path='value'

config_path=None Not allowed.

Load an existing model, to

restart a training or to make

predictions.

config_path='value'
Define a new model to

start a new training.

Load an existing model to

fine-tune with a new

configuration.

The second line (builder.run_training()) starts the training process.

96 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

• pred.py script shows how to use the Builder to start predicting on novel

images:

from biom3d.builder import Builder

builder = Builder(config_path=None, log_path, training=False)

img = builder.run_prediction_single(img_path, return_logit=False)

builder.run_prediction_folder(dir_in, dir_out, return_logit=False)

In this case config_path is set to None. The log path is either a Python string

or a list of Python strings. If the log_path is a Python list of string, then the

Builder will load them all to perform ensemble prediction. The penultimate and

last lines illustrate how to start a prediction with one image or with a folder of

images. return_logit argument can be useful to return the probability map

instead of the segmented image. The probability map is used, for instance, to

indicate the certainty level of the model in each region of the prediction.

As shown in the previous Section, both scripts can also be used using the Command

Line Interface with the arguments shown in Table 3-3. One of their hitherto additional

elements is the --name argument which allows access in a flexible manner to more

pre-implemented use cases of Biom3d. For example, here is a Command Line with

pred.py script:

python -m biom3d.pred\

 --name seg_eval\

 --log logs/20230522-182916-unet_default\

 --dir_in data/btcv/Testing/img\

 --dir_out data/btcv/Testing/preds\

 --dir_lab data/btcv/Testing/msk

Where the --name seg_eval argument indicates that pred.py script will first segment

a set of test images and then evaluate each prediction with a set of labels stored in --

dir_lab directory. A complete list of valid names can be displayed using --help

argument. The --name argument thus allows to easily add many experimental

applications to Biom3d and will extensively be exploited in the following Chapter

when experimenting with self-supervision.

Internal originalities of the Builder. The main concepts of the Builder process have

already been exposed in Figure 3-12. Yet, inside builder.py script several originalities

deserve more detailed explanations. Let us delve into each of them going from

configuration reading to Optimizer and Callbacks definition.

97

First, the configuration reading and writing can be done both in YAML format and

Python format. This might sound simple but is technically challenging for Python file

format. YAML format, easy-to-read and easy-to-write, has been specifically designed

to store configuration files. Its strict and simple syntax allows to preserve configuration

integrity. Yet, this simplicity makes it less flexible and less practical when

experimenting. On the other hand, Python configuration file allows to add comments

and explanations about parameters and modules. All parameters are Python variables

that can be reused several times in the configuration file which avoids copy-pasting

problems. Both format advantages have been exploited in Biom3d: Python file format

for defining or editing novel configuration files and YAML file format for storing

configurations to preserve their integrity. A single function called

adaptive_load_config and defined in utils.py script adaptively read the two file

formats. In utils.py script is also defined save_python_config and

save_yaml_config, used during preprocessing and output folder creation respectively

to save configuration files.

Second, the Builder oversees the creation of the output folder, necessary for FAIR

data sharing, containing:

• Two trained deep learning models, one storing the model parameters at the

best validation loss and one at training end.

• Image snapshots, illustrating in a visual representation the performance of the

model in the end of each epoch by applying it on a validation image.

• The training curves, stored in Tensorboard format and in a CSV file.

• The terminal prints (stdout), stored in a text file to conserve all important

messages displayed on screen during training.

• The data folds, stored in a CSV file. This file is used for cross-validation. It

contains the list of all images in the training set associated with a number

between 0 and the number of folds. When training with fold 0, for instance,

images associated with 0 will be used for validation while others for training.

Third, the core function allowing the Builder to cement other modules together and

granting Biom3d of its flexible code architecture is called read_config. Here is an

example applying the Predictor defined in the Configuration File:

98 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

out = read_config(

 self.config.PREDICTOR, # Module name in the Configuration File

 register.predictors, # Register category

 img = img, # Module parameter n°1

 model = self.model, # Module parameter n°2

 **img_meta) # Module parameter n°3 and more

It receives as argument a Module name, a Register category and all eventual Module

parameters coming either from the Builder or from the Configuration File.

read_config finds the appropriate Module in the Register and executes it (or builds it

if it is a Python class) with the appropriate parameters. Thanks to read_config,

defining a novel module is as easy as defining a novel Python function or a Python

class. The only expectations are:

• To add the new module in the register.

• To be careful with the interactions with other modules. In the previous

example, a newly defined Predictor module expects at least one image (img)

and one model (model) as input and one predicted image as output (out).

This new function/class thus does not even have to be part of Biom3d source code and

can come from another Python package. As will be shown later, Biom3d models are,

for instance, compatible with MONAI models.

Fourth, the Builder currently creates internally two types of modules which are then

only editable through Biom3d source code:

• The Optimizer, which currently is Stochastic Gradient Descent (SGD). This

choice follows the one of nnU-Net. A comparison with the more recent Adam

optimizer was made in the beginning of Biom3d development and showed

SGD to be better for 3D image segmentation.

• The Callbacks, which are Python classes holding functions that will be called

during training at different frequencies (only once, every epoch, or every

batch). Callbacks will be detailed in the next Subsection.

The Optimizer could theoretically be a Biom3d Module but all attempts to prove that

a better optimizer than SGD have currently failed. Future developments could yet

make this change necessary (as will be shown in following Chapter, some self-

supervised learning techniques require large batch training and are optimally trained

with LARS optimizer [168]). Even though, Callbacks definitions are coded in a

99

separated Python script (callbacks.py), they are not considered to be proper Modules,

as they require to be called explicitly in the Builder (thus not using read_config). This

recommendation is because each Callback has very different input expectations,

making them impossible to define generically.

Developer documentation. All these coding originalities, and much more, are

documented within Biom3d documentation and code. Biom3d documentation is

divided into three levels:

• A general documentation, available online

(https://biom3d.readthedocs.io/en/latest/), including tutorials for the Interfaces

and giving a general overview explanation. It has been made available online

using https://readthedocs.io/ website and Sphinx and Markdown formatting.

• A function and class documentation, following NumPy style formatting

(https://numpydoc.readthedocs.io/en/latest/format.html) and giving details

about each section of the code. ReadTheDocs includes an automatic reader for

this type of documentation which avoid the need to duplicate it.

• An in-line documentation, explaining each line of code and providing a

granular level of detail.

To conclude, Biom3d is more than just a Python package. Contributors are welcomed

to add new documented pieces of code or modules to Biom3d. The powerful base mode

of Biom3d and its flexible architecture allows thus to respond to a broad variety of

applications, such as the recurring novel challenges posted on https://grand-

challenge.org/ website.

3.5.2 Modules’ description

After looking at the Builder, the “skeleton” of Biom3d, this Subsection will detail some

of the various contributions regarding the Modules, the “organs” of Biom3d. Light will

mostly be shed on default Biom3d Modules developed for 3D image segmentation.

Biom3d is initially created to solve this task, even if it could go much further. This

Subsection starts by presenting the data preprocessing and data loading methodologies

which took a significant part of this thesis project. It will then detail the principles and

mechanisms of the novel Callbacks Modules and how they articulate with the Trainer

Module. Last, details will be given about the Predictor Module and its associated

Postprocessor Module.

https://biom3d.readthedocs.io/en/latest/
https://readthedocs.io/
https://numpydoc.readthedocs.io/en/latest/format.html
https://grand-challenge.org/
https://grand-challenge.org/

100 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

Figure 3-13 – Auto-configuration and Preprocessing of training dataset for 3D

segmentation. Image and mask folders (red, left) are scanned to extract their data-

fingerprint. The data-fingerprint is used to preprocess the images and masks and to

automatically configure the future training (yellow, centre). The outputs of these two

steps (green, right) are: a CSV file (folds.csv) describing which files will be used for

training or validation, a Configuration File, the pre-processed images (images_out)

and masks (masks_out), and the location of the foreground voxels (fg_out).

Auto-configuration and Preprocessing. This Paragraph looks under the hood of

the overviewed preprocessing workflow shown in Section 3.3.2 and on Figure 3-8.

This workflow, which only a part is a Biom3d Module, prepares training dataset for

3D segmentation (Figure 3-13) in three main steps:

• Data Scanning extracts the so-called Data-Fingerprint of the dataset.

• Training Auto-configuration outputs a Configuration File for training

configuration.

• Preprocessing outputs a Normalized Dataset to start training with Biom3d.

The Data-Fingerprint is the median image size, the median spacing (if a spacing

appears in image meta-data) and the intensity moments (mean and the standard

deviation) and range (0.5% and 99.5% percentiles) of voxel values of the image

located in the foreground region of the mask.

With this information, the Auto-Configuration can start with a series of heuristics.

Biom3d heuristics mimics the behaviour of nnU-Net heuristics while being simplified.

101

In Biom3d, the patch size follows median size proportions and is dividable by a power

of 2. For instance, if the median image size is (95,512,512) then the patch size will be

(40,224,224). To simplify the explanations, this is done by dividing the median size

multiple times by 2 until reaching a value below 7, rounding this value, and then

multiplying it back by powers of 2. The number of powers of 2 gives the number of

pooling layers in the future U-Net model. The number of pooling layers and the patch

size are limited to (5,5,5) and (128,128,128) respectively to minimize memory

footprint. The batch size is set to 2 and eventually increased if the patch size is lower

than the maximum value. Choosing an appropriate patch size had proven to be

determinant in the performance of the model.

 The Prediction Preprocessing Module is a part of the Training Preprocessing

operations. The Training Preprocessing is first initialised (purple box in Figure 3-14)

(1) by creating three output folders for the future preprocessed dataset, (2) by,

optionally, splitting single images, and (3) by distributing, in a CSV file, training

images and validation images in K-folds for cross-validation. Then starts the

Preprocessing routine (blue box in Figure 3-14) which will be applied individually to

each pair of image and mask, and which does five tasks:

• Adaptive image reading automatically loads 3D images stored in NumPy

format (.npy), in TIFF format (.tif or .tiff) or in any other medical formats that

can be read by SimpleITK library (list of available format: https://

simpleitk.readthedocs.io/en/master/IO.html) such as Nifti format. This

function, called adaptive_imread, and its pendant, called adaptive_imsave

(automatically saving an image or a mask in any format along its meta-data),

are important additions to Biom3d (nnU-Net for instance is limited to Nifti

format) and essential to load microscopy images (generally stored in TIFF

format). While compressed formats are appropriate for long term storage (such

as Nifti or TIFF format), fast reading formats are preferred for deep learning

applications (such as NumPy format). After preprocessing, images and masks

are stored in NumPy format.

• Adaptive Reshaping consists in uniformizing the shape of images and masks,

so they all have four dimensions in the correct order (channel, depth, heigh,

width). Among these four dimensions, the size and position of the channel

dimension are the only determinant factors. Biom3d has been extensively

https://simpleitk.readthedocs.io/en/master/IO.html
https://simpleitk.readthedocs.io/en/master/IO.html

102 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

tested and adapted to the myriad of shapes that can appear in manually created

datasets. For instance, in the same dataset, it can sometimes be found, images

with only three dimensions (depth, heigh, width), with shape (depth, heigh,

width, channel), or even with shape (depth, channel, heigh, width)! These

fluctuations are even more diverse for masks, where users can decide to write

their annotations in different colours in the same dimension (the mask then has

only 3 dimensions) or to add one channel for each novel annotation. If using

coloured annotations, users could mistakenly decide to use values between 0

and 255 arbitrarily, instead of following consistent choices, or to use more

colours than existing classes. Among all custom datasets that have been treated

through Biom3d Preprocessing not even one was following consistent

annotating choices. nnU-Net has chosen to let the responsibility fall upon the

user annotators, eventually throwing errors. Biom3d Preprocessing is equipped

with a large panel of safeguards to automatically correct most (if not all) user

annotator mistakes. This has proven to be decisive in avoiding the "first-click

abandonment" phenomenon, mainly for Non-Programmers.

• Normalizing mainly concerns images (not masks). The objective of

normalization is to limit voxel intensity range to accelerate deep learning

model convergence. Two normalizing strategies exists in Biom3d (mimicking

nnU-Net ones): Z-Normalization (default normalization) and Median

Intensity Z-Normalization (based on intensity moment and range obtained

during Auto-Configuration, and originally designed for CT-scans).

• Resizing consists in normalizing spatial sampling of all images and masks to

the median spatial sampling: images with higher spacing than median one must

be enlarged and inversely. Two resizing strategies have been implemented in

Biom3d, one for anisotropic images (resized only along isotropic axis) and one

for the others. Masks are resized using spline interpolation of order 0 (nearest

neighbours) and images of order 3 (trilinear interpolation).

• Foreground location extraction is a data-loading computation optimization

strategy developed by nnU-Net whose utility will be detailed in the following

Paragraph.

Once preprocessed, images and masks are stored in their corresponding output folders.

The location of these folders is indicated in the Configuration File and can thus be

103

anywhere on the computer (nnU-Net forced the user to add specific folders to the

Operating System path and to follow a strict folder hierarchy). During Prediction the

five Preprocessing steps described above are applied to images only, using the same

parameters as for training dataset preparation which are also stored in the

Configuration File.

Figure 3-14 – Training Preprocessing details for 3D segmentation. The

preprocessing starts (purple box, initialisation) by (1) creating the three output folders

(fg_out, images_out, masks_out), (2) optionally splitting single image/mask and (3)

splitting the dataset into training and validation folds (folds.csv). Afterwards, each

image and mask (blue box) are read (Read File), independently of their format,

reshaped (Reshape) so to have exactly 4 dimensions in (channel, depth, heigh, width)

format, z-normalized for images and uniformized for masks (Normalize), and resized

(Resize) so all images and masks have the same sampling. Finally, the locations of

foreground voxels are extracted and stored in the appropriate output folder (fg_out).

Dataset Module. With Preprocessing, Data-loading strategy development was one

of the most (if not the most) time consuming part of Biom3d overall development. As

demonstrated by nnU-Net developers, contributions brought by deep learning model

improvements to the overall method performance are minimal when compared to data-

pipeline improvements. A counter-intuitively large number of levers exist in the data-

pipeline that can significantly improve or worsen the model final accuracy and must

be properly taken care of before experimenting with the model architecture. This

observation is probably far to be limited to bio-medical domain as underlined by

Andrej Karpathy in his blog (https://karpathy.github.io/2019/04/25/recipe/): “The first

https://karpathy.github.io/2019/04/25/recipe/

104 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

step to training a neural net is to not touch any neural net code at all and instead begin

by thoroughly inspecting your data. This step is critical.”

The development journey of the Dataset Module is paved with too many mistakes

for all of them to be listed here. Only the final version will be described, with the few

points to pay attention to if intending to reproduce it. It was first noticed that nnU-Net

data-pipeline has been thoroughly optimized as any experiments attempting to

simplify it too much had failed. Yet, while intimately following nnU-Net principles,

the default Dataset Module of Biom3d has been drastically optimized, especially by

using TorchIO library. These optimizations explain the notable differences between

nnU-Net and Biom3d in Table 3-1.

Biom3d methodology exploits the distinction between Pytorch Dataset and Pytorch

DataLoader (which nnU-Net does not). A Pytorch Dataset is a Python class having the

Python special methods __getitem__ and __len__. These special methods let a user

having access to the dataset elements and the dataset length using Python accessors:

dataset[index] and len(dataset). Biom3d Dataset Modules are Pytorch Datasets

(such as presented on Figure 3-12). A Pytorch Dataset can then be called by a Pytorch

DataLoader which is a Python generator, shuffling the dataset and grouping dataset

elements into batches. Pytorch DataLoader instances can thus be called in Python

loops such as in a Biom3d Trainer Module: for batch, (images, masks) in

enumerate(dataloader). As Biom3d utilizes Pytorch default DataLoader, the main

contribution is the Dataset Module presented on Figure 3-15.

105

Figure 3-15 – Biom3d default Dataset Module for 3D segmentation. In the

__init__ class function (purple), the CSV file is used to sort training images from

validation images and the patch size is used to determine the parameters of the rotation

transformation (rotation angle and rotation patch size, light yellow). In the

__getitem__ class function (blue), one image and one mask are loaded into computer

memory from their local folder. Those are then cropped in regions where foreground

objects are located. If rotation augmentation is active, then the foreground crop is

performed on a larger patch before being cropped a second time to discard unwanted

empty regions in the four image corners. Another series of augmentations is finally

applied to obtain a ready to use pair of image and mask patches.

As data loading can be extremely slow for 3D images, Dataset Modules for 3D

segmentation are often the bottleneck in training speed and must thus be thoroughly

optimized. The __getitem__ class function of Biom3d is composed of three main

steps:

• Random selection and loading of a pair of image and mask. The candidate

pair is loaded using adaptive_imread function and chosen among the

preprocessed images and masks in either the training set or the validation set

(the CSV file stores this information).

• Foreground cropping is, with data-augmentation, the most important part of

the data-loading process regarding model performance. It consists in centring

106 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

in the 3D patch one of the annotated objects (foreground objects). As in

volumetric image the foreground-to-background volume ratio is small, the goal

of foreground cropping is to “force” the model to see regions of interest. For

computation speed improvement, the locations of the foreground objects are

pre-computed and stored during preprocessing. During data-loading, one of the

foreground locations is randomly selected and used to crop the whole image

and mask. For a significant boost in accuracy, it has been noticed that the

foreground region should be located exactly in the middle of the patch (not

randomly located in the patch). To present other image regions to the model,

foreground cropping alternates with random cropping (randomly located

patches). For another boost in performance, it has been noticed that there

should be a fixed proportion between foreground and random cropping. For

instance, with a batch size of 2, one of the pair of image and mask in the batch

must consistently be a foreground crop while the other pair must be a random

crop.

• Data augmentation in the default Dataset Module of Biom3d is a fixed set of

transformations, except for the rotation transformation for performance reasons

(see Figure 3-15). Biom3d augmentations rely on TorchIO package,

specifically designed for volumetric data-pipelines. Biom3d development

started with a reproduction of nnU-Net augmentations, which rely on a custom

library a little less intuitive to use than TorchIO (yet a little faster). After many

attempts, mainly from random searches, Biom3d augmentations were both

simplified and made more efficient than those of nnU-Net (see difference in

Table 3-1).

While developing Biom3d Dataset Module another important advantage of Biom3d

modularity has been discovered and exploited. When trying to reproduce and/or

optimize an existing piece of code, a parallel methodology is often employed: on one

side, the existing piece of code is deconstructed and tested piece-by-piece to be

understood and on the other side, novel and more optimized pieces of code are

constructed. The difficulty of this process relies in making end meet: entirely

deconstructing the code is often only partially possible and thus construction is limited

to isolate only small pieces of code and not larger code sections. As Biom3d easily

accepts alien code incorporation, the entire and original “Dataset Module” of nnU-Net

107

was also integrated as a usable Biom3d Module. Following this integration, a series of

intermediate and hybrid Dataset Modules were developed and tested by simply

changing a single line in the configuration file. The weak points of the prototype

Dataset Modules were thus rapidly spotted and improved.

Model Module. The default Model Module of Biom3d is, as for nnU-Net, a dynamic

3D U-Net which architecture is adapted automatically depending on the number of

pooling determined during pre-processing. The number of pooling in the model is

adapted to each dimension of the anisotropic patch size to avoid reducing the

intermediate feature maps excessively. Biom3d also contains several Model Modules

which have been adapted to anisotropic pooling: a 3D EfficientU-Net and a 3D HRNet.

The later was also non-existent for 3D images and was thus created specifically as a

Biom3d Module. Table 3-4 presents a comparison of these architectures. An additional

Swin-UNETR [123] was recently added using MONAI implementation and is thus

non-adaptative to the patch size.

Table 3-4 – Comparison of model architectures on the Pancreas dataset. Trainings

were all performed with 1000 epochs of 250 steps on a Nvidia A100 GPU.

Model Encoder Dice score ↑ Training speed ↓

nnU-Net (official) 3D VGG-like 0.6620 10 hours

nnU-Net (Biom3d) 3D VGG-like 0.6683 10 hours

EfficientU-Net

(Biom3d)
3D EfficientNet-b4 0.6755 16 hours

HRNet (Biom3d) 3D HRNet 0.6581 38 hours

Callback Module. One of the other originalities of Biom3d are Callback Modules

which are inspired by best practices inherent in deep learning competitions. During

training, several events occur at certain frequencies and at certain time points. For

instance, in the end of each epoch the learning rate is decreased, to improve final

accuracy, using a certain function, a polynomial decay used in nnU-Net:

𝜂𝑐𝑢𝑟 = (𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛) (
1 − 𝑒𝑝𝑜𝑐ℎ𝑐𝑢𝑟

𝑒𝑝𝑜𝑐ℎ𝑚𝑎𝑥
)

𝛾

+ 𝜂𝑚𝑖𝑛

where 𝜂𝑐𝑢𝑟, 𝜂𝑚𝑎𝑥 and 𝜂𝑚𝑖𝑛 are the new, the maximum and the minimum learning rate,

𝑒𝑝𝑜𝑐ℎ𝑐𝑢𝑟 and 𝑒𝑝𝑜𝑐ℎ𝑚𝑎𝑥 are the index of current and maximum epoch and 𝛾 is the

108 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

reduction rate between 0 and 1. Instead of defining this formula into the training loop

directly, it is within a so-called Callback Module. Callback Modules are Python classes

inheriting from an abstract class which has 6 overloadable class functions, each

corresponding to a different time point in the training loop (Figure 3-16). This practice

limits editions of the training loop and preserves strong modularity of the code. Many

different learning rate functions were rapidly compared using this Callback

methodology. Biom3d currently has 7 different types of Callback Modules (see Figure

3-16). Aside from the learning rate functions, there are 4 Saver Callback Modules,

saving training information in the end of each epoch, 1 Log Printer, displaying

information in the user terminal, and 1 Metric Updater (see next Paragraph).

Figure 3-16 – Callback Module principle. The whole training (top row, orange) is

divided into epochs (green) themselves divided into batches (red). Callbacks are

Python classes that can have one or more class-functions, each representing one of 6

different time points (middle row). Biom3d currently has 7 types of Callback Modules

(bottom row).

Metric Module. Metrics in Biom3d inherit from a parent class which inherits from

Pytorch Module class and can thus be used as loss functions or as training and

validation metrics. Biom3d Metrics have a name, a value and an average argument

which allows to access to this argument any time during training. The Log Saver and

Log Printer Callbacks for instance regularly interrogate these arguments to save or

109

display important information. The Metric Updater Callback regularly updates the

metric average.

Trainer Module. Trainer Modules are loops that call the Dataset Module to pass

training data to the Model Module. Model outputs and ground truths are then passed

to the loss Metric Module to update the Model parameters using an optimizer.

Callbacks are automatically called at different time points.

Predictor Module and Postprocessor Module. To use a trained model on a novel

image, the Builder successfully calls 3 Modules: the Prediction Preprocessor (cf. first

Paragraph), the Predictor and the Postprocessor. For 3D segmentation, the Predictor

Module decomposes the preprocessed image into a grid of overlapping patches (using

TorchIO Grid Sampler), then applies the model to each patch and finally compiles the

resulting predictions into a single output. To improve model performance, this process

is repeated 8 times on the 8 possible flipped version of the input image (test time

augmentation). The 8 final outputs are then flipped back and averaged. The Predictor

outputs the prediction logit which corresponds to the raw model output. To obtain the

final mask prediction, the Postprocessor first resizes the output, if the input image was

resized during preprocessing, then applies the activation function (sigmoid or softmax),

and, eventually, applies the noise removal function (see Section 3.2). The Builder is

finally in charge of saving the final mask along with the input image metadata using

the adaptive_imsave function. If the user intends to use multi-model prediction, the

current version of Biom3d applies the Predictor Module associated with each saved

model (Biom3d modularity incorporates thus more than just the Model Module) before

averaging the models’ predictions, post-processing and saving.

 By offering a detailed description of Biom3d Modules, this Subsection not only

aimed at opening boxes of Biom3d inner mechanisms but also at opening doors to

invite and guide deep learning contributors to refactor and keep improving Biom3d.

3.5.3 Modules’ potential

Each of Biom3d Module is not only made to be exploited but also adapted, removed,

renewed, broken, combined, etc. Biom3d is designed to be a platform for deep learning

developers. To leverage existing works, Biom3d is also compatible with state-of-the-

art Python libraries to exploit existing implementations such as TorchIO or MONAI or

the recent Segment Anything for Microscopy [169].

110 - Chapter 3 - Biom3d, an easy-to-use and modular framework for 3D

segmentation methods

The default version of Biom3d is made for 3D Segmentation but the core concepts

of the seven types of Modules is applicable to almost all deep learning algorithms and

not limited to image analysis. Biom3d could be adapted to 2D images, to instance

segmentation, to image generation, to object detection, or to image classification. With

a bit more modification, Biom3d could also be applied to structured data, sounds,

sequences, etc. It will be seen in next Chapter that Biom3d can for instance perform

self-supervision, which involves image classification and image segmentation, on 3D

images with only very little editions.

Last, Biom3d is not limited to its predefined modular architecture. New Module

types could also be defined. For example, in the course of this thesis, a script

computing morphological quantities for 3D nucleus was developed to improve

NucleusJ parameter computations, using complex computational geometry algorithms

(Marching cube, Delaunay transformation, etc.). This post-post-processing, currently

separated from Biom3d code, could easily be added to Biom3d as an optional plugin

for interested users in the form of a new type of Module.

3.6 Conclusion

Reproducibility issues have already been pinpointed several times in the literature [40],

[133], [162], [170], [171]. The review and benchmarking presented in Chapter 2 have

promoted properly documented and open-access codes. Even if crucial, these

requirements are yet minimalistic regarding code sustainability. To guarantee a

software tool to be reused, two targeted audiences must be satisfied: end users and

developers, the former to guarantee the software to be tested, used, and having

feedback, and the later to maintain and improve it. Biom3d goes beyond this

dichotomy by satisfying a continuum of users, from Non-Programmer to Deep

Learning Developers. This was made possible by integrating Graphical User Interfaces

and formatting the whole code architecture with modularity in mind on every level of

detail.

Authors’ Contribution – cf. Appendices.

111

Chapter 4

Self-supervision of 3D segmentation methods

4.1 First experiments

Self-supervision has created a major buzz in the deep learning community, in the aim

to leverage information contained in large-scale unannotated datasets to train large-

scale models. In the scope of this project, self-supervision could thus reduce the

expensive need of manual annotations for the training of supervised deep learning

models.

For images, the main idea of current self-supervised learning methods is to build a

coherent embedding space (and more generally a feature extractor). In deep learning

theory, if the first layers of a deep learning model extract simple and local shapes and

objects, the last layers extract complex and global concepts and abstractions. These

last layers output vectors of short dimensions, the embedding vectors. The set of all

possible embedding vectors is the embedding space. A “coherent” embedding space

means that images looking “similar” (to a human point of view) must be associated in

this space, by, for instance, having close embedding vectors, and inversely for images

looking different (Figure 4-1).

Figure 4-1 – Self-supervision applied to 3D segmentation. Self-supervision for

images is a two-step process: (1) pretraining on the pretext task (left), a triplet task in

this case, and (2) retraining on the downstream task (right), the segmentation task. The

pretraining is only done on the encoder (left, red ellipse) which will be then integrated

112 - Chapter 4 - Self-supervision of 3D segmentation methods

into the U-Net model (right, red ellipse). For the triplet pretext task, the embedding

vectors of two augmentations of one image (left, first two rows) are intended to be

identical while different from any other image (left, last row). Left illustration adapted

from [165] and right illustration adapted from [58].

Self-supervision for images is currently achieved by two main categories of pretext

tasks [172]:

• For encoder-decoder approaches, the model must output an image identical

to the input image. The embedding space is a bottleneck in the model

intermediate outputs (feature maps) and is constructed automatically during

training. The historically well-known auto-encoder method is based on this

principle [173], as well as the more recent masked auto-encoder (MAE)

methods [174] exploiting Vision Transformers, or distillations methods also

having demonstrated impressive results in image generation such as Stable

Diffusion [175]. Other examples of encoder-decoder approaches are filling

artificial holes in input images or, inversely, removing artificial artefacts. Once

pretrained with encoder-decoder approaches, only the model encoder is kept

performing retraining, the decoder being discarded.

• For encoder-only approaches, the model must output identical embedding

vectors given several augmented views of an input image. This is the base

principle of methods based on Siamese approaches such as SimCLRv2 [176]

and methods involving a “student” and a “teacher” model, the former distilling

knowledge into the later via exponential moving average updates, such as

BYOL [177] or DINO [161]. Other examples of encoder-only pretext tasks are

solving jigsaw puzzles or determining the angles of an image rotation.

In 2020, at the beginning of this PhD project, only preliminary work existed on self-

supervised methods for 3D segmentation, with applications mostly in medical fields.

The pioneer work of Taleb et al. [165] for instance, explored the application of 5

different encoder-only pretext tasks in order to improve performance on their

downstream task, the 3D segmentation of pancreas images (see next Section). More

recently Model Genesis [178] and CLIP [88] encoder-decoder approaches, combined

several medical dataset and also, for the CLIP approach, several data modalities (image

and text). Finally, some methods leverage both encoder-decoder and encoder-only

113

approaches simultaneously, such as Swin-UNETR [179] or DiRA [180]. A

continuously updated review of existing self-supervised methods for medical imaging

can be found here: https://github.com/HiLab-git/SSL4MIS.

To the extent of the bibliographical research done during this project, no publications

have extensively focused on 3D biological data. For this reason, and as biologists can

now easily and quickly produce large amounts of unannotated data, self-supervised

learning was a promising direction to pursue.

Two interns, Adama Nana in 2022 and Abderrahime Tizi in 2023, have started the

exploration of Model Genesis and Swin-UNETR approaches respectively. Adama had

to install Model Genesis in a Docker container. On the Nucleus, Pancreas and Lung

datasets, pretraining with Model Genesis methodology resulted in a gain in

performance on the Lung dataset only (Table 4-1). It is worth noting that Model

Genesis also requires a long pretraining (five times longer than the retraining). As it

only brought inconsistent results, this method was set aside.

Table 4-1 – Performance of Model Genesis. The first two rows give training and

testing dataset statistics. The last three rows give the Dice scores of each method on

the testing set after being trained (or retrained for Model Genesis) on the training set.

Method Lung dataset Pancreas dataset

Training set (20%) 12 images 53 images

Testing set (25%) 16 images 71 images

nnU-Net 0.498593 0.662048

Biom3d 0.542248 0.668316

Model Genesis 0.561012 0.660318

Subsequently, Swin-UNETR methodology was integrated into the modular

architecture of Biom3d. Abderrahime directly tried to pretrain Swin-UNETR on a

custom unannotated dataset of 2000 3D nuclei before retraining it on the benchmark

dataset of nuclei which resulted in an insignificant improvement when compared to

the supervised baseline. He unsuccessfully tried to use the official implementation of

Swin-UNETR. He then tried to progressively reduce the number of annotated images

in the nuclei dataset to check if the pretraining was not saturating as self-supervised

https://github.com/HiLab-git/SSL4MIS

114 - Chapter 4 - Self-supervision of 3D segmentation methods

pretraining was proven to be interesting only in data-scarce situations. Abderrahime

had only the time to draw a supervised baseline comparing Biom3d and nnU-Net

(Figure 4-2). In the future, this work should be completed with self-supervised

methods. It can be observed that with only 2 images the training already performs well

(>82%) and that the training accuracy rapidly saturates with only 16 annotations.

Figure 4-2 – Preliminary comparison between Biom3d (orange) and nnU-Net

(blue). The Dice scores are obtained using the same testing set while training on set

training sets of increasing sizes (2, 4, 8, 16, 32 and 65 images). The curves drop down

between 2 and 4 images probably due to bad annotations.

4.2 Adventures in adapting existing work

In parallel to the previous experiments, thorough experiments were undertaken on two

of the previously mentioned publications: [165] and [161]. As one potential weak point

of the method discussed above is the Pancreas dataset, the methods discussed below

will be evaluated on this dataset, and, eventually, on the Nucleus dataset to also have

a biological dataset.

4.2.1 Quest to improve the work of Taleb et al.

The work of Taleb et al. demonstrated an impressive increase of more than 30% of

their Dice score on their Pancreas dataset, passing from 42% to 75%, using a self-

supervised model pretrained on the whole dataset and then retraining it on 10% of the

annotated images. Comparatively, their supervised model required 6 times more

annotation to reach a Dice score of 75%, meaning that self-supervised learning could

potentially divide the number of required handmade annotations by 6.

115

Setting aside the numerous bugs appearing during method installation (bug fixes

required Docker) and testing, the pretext task called “Relative 3D patch location”

(RPL) delivered promising results among the 5 proposed pretext tasks. Training and

testing in this reutilization were performed directly on the Nucleus dataset. As their

method only works with cubic images of size (128,128,128), every image was resized

using 100% of the unannotated images for pretraining and, successively 10% and 25%

of the segmentation annotations for retraining. The RPL method gave an impressive

gain in accuracy of 20% and 10% respectively on the testing set (Figure 4-3).

Figure 4-3 – Region 3D patch location method of Taleb et al. applied on the testing

set of the Nucleus dataset. Supervised training consists in training on the 10% (or

25%) of the training set and then evaluating on the testing set. Self-supervised training

consists in pretraining on 100% of the unannotated training set, retraining on 10% (or

25%) and testing on the testing set. Each dot represents one reproduction of the

experiment and the average Dice score obtained on the testing set for this experiment.

These experiments were all performed using Taleb et al. implementation. Afterwards,

their methodology was integrated into Biom3d framework, and the same experiments

were performed. Unfortunately, this only revealed important gaps in Taleb et al.

methodology when training a supervised model. Indeed, and very surprisingly, the

performances of the supervised model of Biom3d (in a prototype version at that time)

matches the ones of the self-supervised model (55% for 10% annotation and 63% for

25%). After exploring the Taleb et al. code, it was noticed that they used less epochs

116 - Chapter 4 - Self-supervision of 3D segmentation methods

to train their supervised model than to retrain their self-supervised one. Additionally,

their data-pipeline is probably under-optimized, specifically their data augmentation

procedure. Thus, in their code configuration, self-supervising probably simply

replaced the role of data-augmentation. Finally, the limitation to small cubic images of

fixed size is another important limiting factor of Taleb et al.’s work.

To conclude, even though they provided almost all required elements (except the

dataset) to guarantee that their results to be reproduced, the weaknesses of their

implementation only appear when trying to recode it. Taleb et al. should be thus more

viewed as a proposition of novel ideas than a concretely reusable method.

4.2.2 Defeating the DINO

Another promising candidate in the burgeoning world of self-supervision emerged in

2021: DINO [161]. Even more than Taleb et al. methods, the DINO method belongs

to fundamental research in computer vision, as, in its raw version, it is only applicable

to 2D images of daily life objects. This method, very similar to BYOL [177], consists

in training simultaneously two classification models: a “student” model and a

“teacher” model. For one input image, the student model is trained using both large

(global) and small (local) image patches that are resized to the same size and randomly

augmented, while only global patches are passed to the teacher model. The student

model parameters are then updated with a cross-entropy loss between its embedding

vector outputs and the teacher outputs. For crops coming from identical images, the

cross-entropy loss pushes the student model to output embedding vectors like those of

the teacher model. The teacher model parameters 𝑡𝑖 at iteration 𝑖 are updated using the

student model parameters 𝑠𝑖 and the exponential moving average formula: 𝑡𝑖+1 =

𝛼𝑡𝑖 + (1 − 𝛼)𝑠𝑖. The originality of DINO is that the teacher output is centred

(subtracted with a moving average centre value) and sharpened (divided by a user

defined value called temperature). This originality supposedly guarantees a better

training stability. Indeed, when training with such a self-supervised methodology two

undesirable events, called collapses, can happen:

• Centring collapse appears when all embedding vectors are uniform,

independently from the input. Sharpening should counteract it.

• Sharpening collapse appears when only a single dimension of the embedding

vectors is dominant. Centring should prevent it.

117

A balance should thus be found, unfortunately manually, to guarantee training proper

convergence. A way to check if one of the two collapses occurs is to monitor the

teacher entropy and Kullback-Leibler (KL) divergence, the teacher cross-entropy

being the sum of these two terms. The KL-divergence being zero represents a collapse,

a centring collapse if the teacher entropy is a non-zero constant and a sharpening

collapse if it is zero.

Application to 3D images. For biological and medical application, DINO also stood

out because it should require smaller batch size than other self-supervised methods.

SwAV [181], for instance, its predecessor, required a batch size of 65000 images,

which is almost impossible to handle with 3D images.

DINO was integrated in Biom3d framework. DINO originally relies on 2D

Transformer Models but was supposed to work also with CNN models. The Biom3d

base-encoder model was thus upgraded with the DINO “head”, a few dense layers in

the end of the model allowing embedding vector output. The “teacher” and “student”

model paradigm was compatible with Biom3d as it originally accepts lists of models.

The DINO loss function and trainer was integrated among Biom3d Metric and Trainer

Modules. The LARS optimizer was added to the Builder Module. Finally, a new

Dataset Module, derived from the base one, was created. Most of the development was

spent adapting the Dataset Module to 3D images. Indeed, DINO required local patches

to intersect with global patches. In 2D images, selecting randomly a global patch with

a size ranging between 0.4 and 1.0 time the image size is sufficient to be sure to capture

enough information so when randomly selecting a local patch the model will be able

to understand that these two come from the same image. In 3D biomedical images, due

to the nature of the observed objects, following such a strategy will not work. It would

be very hard (if not impossible) to tell if two non-intersecting patches originate from

the same image. A new patching methodology called SmartPatch guaranteeing patch

intersection was thus integrated into the DINO Dataset Module of Biom3d (Figure

4-4). With the help of new Biom3d Callbacks, SmartPatch also offers the possibility

to finely and dynamically control the intersection level and the two patch sizes during

training.

118 - Chapter 4 - Self-supervision of 3D segmentation methods

Figure 4-4 – SmartPatch methodology. The plain squares represent the image, the

dashed blue squares represent the global patches, and the dashed red squares represent

the local patches. When the training starts (left) the global patch encompasses almost

the entire image volume and intersect with the local patch. During training the global

patch size and the intersection constraint are slowly reduced. In the training end (right),

the global and local patch have the exact same size and are selected randomly in the

image.

So began a long list of experiments to find an appropriate set of hyper-parameters

allowing training convergence and avoiding collapse. This journey started with the

default hyper-parameters of DINO applied on the Nucleus dataset and on the Pancreas

dataset, and was carried on with many adjustments involving all the aforementioned

hyper-parameters (embedding vector dimension, loss temperatures, patch size, model

head, optimizer parameters, etc.) and more (training “warmups”, etc.). It ended with

the results displayed on Figure 4-5.

119

Figure 4-5 – DINO results on the Pancreas dataset. (A) Example of training loss

(left), entropy (middle), and KL-divergence (right). DINO loss first converges

before diverging (without collapsing as the KL-divergence raises). (B) Principal

Component Analysis of the embedding vectors of a model trained with DINO.

Dots with identical colours represents different patches of the same image and should

normally form clusters. This is an example of sharpening collapse as only one

dimension is dominant (x-axis). (C) Comparison of a DINO pretrained encoder and

a randomly initialized encoder. The first row corresponds to a standard segmentation

training with a full U-Net model. For the last two rows, the encoder is frozen

(untrained), meaning that only the decoder is trained. A randomly initialized encoder

performed better than a pretrained encoder with DINO.

To conclude, the DINO training method was very difficult to handle to make the loss

converge. Self-supervised pretraining is also complicated as, during pretraining (which

can be very long or computationally expensive), only the training curves can be

monitored. It is necessary to wait for the completion of the retraining to note an

eventual improvement. Additionally, even when the training curves looked correct, the

embedding vectors were not arranged properly (cf. PCA on Figure 4-5-B). Finally, it

was noticed that a randomly initialized U-Net with a frozen encoder (left untouched

during training, Figure 4-5-C) already performed well on the Pancreas Dataset and that

a frozen encoder pretrained with DINO performed worse. DINO, yet promising, was

abandoned for the rest of this thesis. For further investigations going beyond the scope

of this work, DINO is left integrated as part of Biom3d Modules.

120 - Chapter 4 - Self-supervision of 3D segmentation methods

4.3 Self-supervising a full 3D U-Net with triplet and angular

losses

Not to completely give up on self-supervision, it was decided to carry on the

exploration based on two important observations obtained from previous explorations:

• The decoder plays a significant role in feature extraction in the U-Net model.

Further investigations departing from Table C in Figure 4-5 showed that a U-

Net model with a frozen encoder can reach a Dice score of 0.5784 on the

Pancreas Dataset against 0.7483 for a fully trained U-Net. In this configuration,

it means that training the encoder, only brings an improvement of 17% on the

final score. It implies first that the current encoder is limited. Indeed, as shown

in Table 3-4, changing the encoder to a more complex architecture can improve

the final accuracy by 1%. Second, it also implies that incorporating the decoder

in the pretraining task could be a good direction of research.

• The complex DINO methodology (or others originating from fundamental

research in computer vision) is very difficult to handle. Simpler, more

understandable pretraining methods might be better starting points for 3D

imaging.

Figure 4-6 – Triplet loss applied to 3D images. This loss minimizes the distance

between embedding vectors of two augmented views of the same image (anchor,

positive) and increases the distance from other images (negative). Illustration adapted

from [182].

Triplet loss. The first goal was thus to create a simple pretraining loss and to carefully

check if this loss can build a coherent embedding space. Probably the simplest possible

121

pretraining loss is the Triplet loss [182] (Figure 4-1-C and Figure 4-6) which is defined

by the following formula:

𝐿(𝑣𝑎𝑛𝑐 , 𝑣𝑝𝑜𝑠, 𝑣𝑛𝑒𝑔) = max (0, ‖𝑣𝑎𝑛𝑐 − 𝑣𝑝𝑜𝑠‖
2

+ 𝛼 − ‖𝑣𝑎𝑛𝑐 − 𝑣𝑛𝑒𝑔‖
2

)

Where 𝑣𝑎𝑛𝑐 and 𝑣𝑝𝑜𝑠 are the embedding vectors of two views of the same image (or

the same individual) and 𝑣𝑛𝑒𝑔 is the embedding vector of a view of another image (or

another individual). The parameter 𝛼, generally equal to 0.2, controls the minimal

margin that the model must generate between the two distances ‖𝑣𝑎𝑛𝑐 − 𝑣𝑝𝑜𝑠‖
2
 and

‖𝑣𝑎𝑛𝑐 − 𝑣𝑛𝑒𝑔‖
2
. This loss thus brings together 𝑣𝑎𝑛𝑐 and 𝑣𝑝𝑜𝑠 while pushing away 𝑣𝑛𝑒𝑔.

For this thesis project, applying the Triplet loss to 3D images was made possible by

the SmartPatch method which was added to a new Triplet Dataset Module in Biom3d.

After several adjustments, two successful experiments, departing from those made

with DINO on Figure 4-5, finally confirmed that the Triplet loss was working: the

Principal Component Analysis done on the embedding space (Figure 4-7-A) and the

retraining of a U-Net model with a frozen encoder (Figure 4-7-B). However, when

retraining the Triplet pretrained model on the Pancreas segmentation dataset, the test

set accuracy stayed at the supervised level (Table 4-2-Exp2).

Figure 4-7 – Triplet loss preliminary results on the Pancreas dataset. (A) Principal

Component Analysis of the embedding vectors of a pretrained encoder. Each colour

represents embedding vectors of patches coming from the same image. The Triplet

loss trained the model to form appropriate clusters. (B) Evaluation of the Triplet

pretraining performance on segmentation with a frozen (untrained) encoder. The

Triplet method is better than the random baseline.

122 - Chapter 4 - Self-supervision of 3D segmentation methods

Pretraining the full encoder-decoder. As discussed earlier, the decoder is a good

feature extractor and including it in the pretraining task could potentially improve the

model accuracy on the segmentation task. This idea is another originality of this thesis:

to use the entire U-Net model (an encoder-decoder) with an encoder-only pretraining

approach. This contribution also clearly departs from the encoder-decoder methods

described earlier because the decoder will not be discarded in the end of the pretraining

and will be reused as is during retraining. Figure 4-8-A illustrates the encoder-decoder

pretraining with the Triplet loss and 3D images. To limit the size of the output only the

antepenultimate layer of the decoder is considered. On the Pancreas dataset, this new

methodology finally overpassed the supervised baseline by a significant margin (Table

4-2-Exp3).

Figure 4-8 – Pretraining an encoder-decoder on 3D images with (A) the Triplet

loss and (B) the Arcface loss. From left to right: the original images are first patched

and resized using SmartPatch and augmented. All patches are then passed to the

encoder-decoder. The encoder-decoder output is flattened and passed through a Multi-

Layer Perceptron (MLP). For the Triplet loss (A), the embedding vector (𝑥𝑖) is

normalized and given to the loss function. For the Arcface loss (B), the embedding

vector is projected in the space spanned by the last layer parameters to retrieve its

angle, an angular penalty is added, and the cross-entropy function is applied.

Table 4-2 – Summary of the main results of the Triplet and Arcface pretraining

methods on the Pancreas dataset. The Dice score (right column) are segmentation

123

results obtained on the test set of the Pancreas dataset. The first line (Exp1) is the

supervised baseline (no pretraining). The last three lines (Exp2-4) are pretrained,

retrained and tested on the the Pancreas dataset. The second line (Exp2) is a pretraining

of the encoder only with the Triplet loss. The third line (Exp3) is a pretraining of the

U-Net encoder and decoder with the Triplet loss and the fourth line (Exp4) with

Arcface loss.

Experience

index

Pretraining model Pretraining loss Pretraining time

GPU Nvidia A100

(in minutes)

Dice score

Exp1 None None 0 0.6683

Exp2 3D VGG-like Triplet 415 0.6633

Exp3 3D U-Net Triplet 1230 0.6867

Exp4 3D U-Net Arcface 553 0.6843

Arcface loss. As for the Triplet loss, the Arcface loss [183] originates from face

recognition problems. It is an improvement of the cross-entropy loss frequently used

in classification problems. In this self-supervised context, each training image is

assigned with a different class. The normalized embedding vector is the penultimate

output (Figure 4-8-B). The last layer parameters are normalized and thus serve as a

projection space and an intermediate before classification (softmax). This will let the

model generalize properly and be able to construct a coherent embedding space for

both seen (training) and unseen (testing) images. The Arcface loss can be written as

follows:

𝐿(𝜃) = − log (
𝑒𝑠 𝑐𝑜𝑠(𝜃𝑦+𝑚)

𝑒𝑠 𝑐𝑜𝑠(𝜃𝑦+𝑚) + ∑ 𝑒𝑠 𝑐𝑜𝑠(𝜃𝑗)𝑛
𝑗=1,𝑗≠𝑦

)

where 𝜃 = acos (𝑣), 𝑣 being the output of the last layer, 𝜃𝑦 is the element of index

𝑦 ∈ ⟦1, 𝑛⟧ of the vector 𝜃 and 𝑛 is the number of classes (typically the number of

images in the pretraining dataset). The hyper-parameters 𝑠 and 𝑚 improve the inter-

class and intra-class distribution of the embedding vectors and must be carefully

chosen. On the Pancreas dataset, the Arcface pretraining of the encoder-decoder model

did not improve the Triplet loss pretraining results but divided by more than 2 the

pretraining time (Table 4-2-Exp4).

124 - Chapter 4 - Self-supervision of 3D segmentation methods

4.4 Conclusion

Arcface pretraining could thus be the best self-supervised candidate among all tested

methods for 3D image segmentation. Indeed, in the scope of this thesis, existing self-

supervised works such as Model Genesis, Taleb’s methods and DINO were

unfortunately not able to overpass supervised methods. While being a good candidate,

Arcface has yet several constraints to pay attention to:

• Loss diverges to “NaN” (Not a Number). This issue is generally caused by the

cross-entropy loss which can encourage last layers to raise their parameters

beyond the bounds of half-precision floating-point format (float16, ±65504).

This can be solved by either switching to single-precision (float32), but training

may slow down, or normalizing each intermediate outputs, but the training may

collapse to constant.

• Constant collapse, like DINO, happens when all embedding vectors are equal.

The loss value then collapses to − log (
1

1+𝑛 𝑒𝑠(1−𝑐𝑜𝑠(𝑚))). Adjusting 𝑠 and 𝑚

value can solve this issue but might be time-consuming. Changing the type of

layer normalization (from layer normalization to batch normalization) can also

be a solution.

• Training divergences happens when the loss progressively goes up to infinity

(instead of going down to zero). If augmentation is used, deactivating it could

solve this issue. Complexifying the model architecture (switching to an

EfficientU-Net) did not show any improvement. This issue is still an open

problem.

• Over-pretraining occurs when the pretraining is performed for too long.

Training with the Arcface method (or the Triplet method) for 2000 epochs

instead of 1000 on the Pancreas dataset surprisingly gives back the supervised

accuracy (Dice score of 0.66). This problem is another open problem, and no

existing publication was found tackling it.

Due to all these constraints, the research results done during this thesis would

encourage to first try to use the Triplet loss before switching to the more optimized

Arcface loss.

The modular architecture of Biom3d has strongly facilitated the experiments of this

Chapter with self-supervised methods. However, partly due to the very performant

125

supervised baseline of Biom3d, it showed that the self-supervised methods have an

existing but only limited improvement ability for 3D segmentation. These experiments

thus raised lots of novel questions:

• Does the Triplet/Arcface self-supervision of a full U-Net work with other 3D

datasets?

• Why does SmartPatch work so well? And what is the best SmartPatch strategy?

• If the decoder is so good at extracting features from a random encoder, is it

possible to imagine a decoder-only model?

• Could a better architecture (Vision Transformer, etc.) perform as well with

Triplet/Arcface self-supervision?

• The testing set is currently part of the pretraining set. Does the final accuracy

change if it was not the case?

• Could it be good to pretrain on a dataset full of a large variety of 3D images

and objects?

• Retraining partially erases the pretrained parameters, how to handle this

oblivion phenomenon? By progressively unfreezing model weights? By using

knowledge distillation? Continual learning is the deep learning subdomain

studying this issue. Or by using semi-supervised learning?

Authors’ contributions – cf. Appendices.

126 - Chapter 4 - Self-supervision of 3D segmentation methods

127

Chapter 5

Discussion

This Chapter will first return to the conclusions of Chapters 2 to 4 and discusses the

numerous potential research directions opened during this thesis. The discussion will

then look at the bigger implications and choices behind this research project.

5.1 About this work

This work originated from several biological questions on nuclear and chromatin

morphologies and their relationship with gene expression. These questions led

biologists to use microscopy to capture tridimensional images. To retrieve quantitative

and statistical information, they exploited classical computer vision software, such as

Fiji/ImageJ, to segment their images. However, this type of software reached its limit

when facing the complexity and variability of nucleus and chromocentre shapes in A.

thaliana.

The numerous promises brought by the novelty of deep learning methods were yet

dulled by an important lack of reproducibility, as illustrated in the review generated as

part of the work in this thesis [40] and the benchmarking presented in Chapter 2 where

only nnU-Net stood out as sufficiently well designed to be useable.

With easy-of-use, modularity and sustainability in mind, a novel deep learning

framework called Biom3d was developed during this project and exposed in Chapter

3. Being easy-to-use, Biom3d was successfully used by biologists and solved the initial

nucleus and the chromocentre problems. Being flexible and optimized, Biom3d also

overpassed the cutting-edge performance of nnU-Net on a wide variety of biological

and medical problems. With its modular code architecture, Biom3d is not just another

methods but a platform, such as Fiji/ImageJ, that aims to be sustainable and compatible

with all recent innovations in deep learning.

Standard deep learning methods are unfortunately limited by their need of manually

annotated dataset. Self-supervision aimed at tackling this issue by pretraining models

on large unannotated dataset to extract information from the data before being

retrained on the task of interest. Thanks to Biom3d modularity, a set of self-supervised

128 - Chapter 5 - Discussion

method were rapidly tested in Chapter 4. Among those, the newly created Triplet and

Arcface methodologies trained, in an original way, on a full U-Net model showed

significant improvements.

Deeply tinged with an interdisciplinary colour, the tools developed during the last three

years (Biom3d framework and modules as well as self-supervised experiments) serve

and will serve the two teams of biologists involved in this project. They will help them

rapidly achieve the previously unreachable goal of precisely analysing large scale

dataset of 3D image in a very short amount of time. With words of mouth and

publications, these tools may even spread out and serve a larger audience. Ultimately,

future developers may be interested in using pieces of code, be inspired by pieces of

coding philosophy, or hopefully, be motivated by interdisciplinary research projects.

5.1.1 Reusing deep learning methods

In addition to the work done in Chapter 2, the lack of reproducibility of AI methods

has been pinpointed by many and is an annual subject of publication. Nature methods

journal, for instance, publishes an article on the topic every two years [162], [170],

[171], the latest also stressing the fundamental importance of interdisciplinary work.

To bring the discussion further than code reproducibility, this thesis has introduced the

notion of code sustainability. Too little effort and too little value is devoted to ensuring

that code lasts over time, which is directly linked to code reusability by the largest

possible community, including both end users and developers. Nature methods critics

are mainly directed toward the scientific communities that do not publish their code or

their data. In parallel, it, and other high ranked journals, put on a pedestal the novelty

and the theoretical performance of published tools, as well as their illustrative

biological and medical applications. However, they tend to ignore indispensable

engineering contributions, which are neither a revolutionary “deep learning” method

nor a novel graphical user interface, but the way the software is intelligently developed

and organized on every scale level. The value of fundamental software engineering

concepts, as was already conceptualized in the 90’s with books such as Design Pattern

[184] or Code Complete [185] , should be further promoted. More generally, and as

already understood by industries and companies, researchers and journals could give

more credit to the smart and simple design of a tools rather than how (complicated)

they look or how they efficiently solve one very specific problem. To give a biological

129

parallel, sequencing companies will probably give as much (if not more) credit to a

contribution significantly optimizing an RNASeq protocol as the invention of a novel

sequencing technique.

5.1.2 Biom3d perspectives

Chapter 3 presented Biom3d, a deep learning implementation of a 3D segmentation

method, furnished with numerous software engineering contributions. It was

developed with the hope of fostering good code practices and easing the use and the

enhancement of deep learning methods for 3D images.

This code, as many others, is currently in the hand of too few people to be safe from

oblivion. Yet, its development has been constantly and strongly supported by its small

user community. It could thus be a significant plus to integrate it in well-known tools

such as ZeroCostDL4Mic framework, Bioimage.io website, or as a new napari plugin.

Finally, Biom3d modularity could also offer a large panel of possible modules: 2D U-

Net, instance segmentation (with Cellpose or Stardist for instance), object

classification and detection, active learning etc.

5.1.3 Future of methods for insufficiently annotated datasets

By progressively enlarging the scope of research of Chapter 4, it is easy to imagine

plenty of potential research directions:

• Is it possible to generalize the Triplet/Arcface losses with an “Augmentation”

loss where the pretraining task consists in guessing the random augmentation

applied to input image?

• Can adversarial learning (from generative method) be a good semi-supervised

approach? (Figure 5-1)

130 - Chapter 5 - Discussion

Figure 5-1 – Idea of adversarial semi-supervised learning for 3D images. A large

set of unannotated images (left) is passed to a U-Net model. The output (middle) is

then compared to a set of annotations (top) using a discriminator network and the

Generative Adversarial [147] training paradigms (right). If an annotation corresponds

to a raw image, it is used to guide the U-Net training (bottom).

• Are diffusion methods, performant methods combining U-Net with Attention

layers, promising methods? Using a similar approach, “Universal Model” [88],

for instance, managed to incorporate text in the U-Net training to guide the

model on very large segmentation datasets. A single model could thus be very

performant on all Medical Segmentation Decathlon tasks.

• Now that deep learning models can generalize better while getting bigger, they

are more difficult to train, requiring to store Petabytes of data and Teraflops of

computation power. Is mutualization a possibility? Is it better than a set of

mutualized models? Can large model be fused (instead of sharing dataset) or

partially trained by different teams (each team training only one section of the

model)? Is an online equivalent of “ChatGPT” possible for bioimage analysts?

Meta group has recently released Segment Anything [101] a “foundation”

model for segmentation (they did not release their training code yet) which was

soon adapted to 2D and 3D microscopy [169]. Does this type of active learning

method represent the future of AI and image analysis?

131

5.2 A bigger and bigger picture

Maybe unconventionally, as I believe that such a PhD project was inevitably

influenced by human minds and beliefs, I would like to end this thesis with a more

personal-philosophical note and to step back to look at the even bigger picture (which

is quite ironic for an image analysis thesis) in which is framed this work.

5.2.1 An interdisciplinary experience

On a local scale, I would like to come back to the choice that was offered to me when

I started. Either I followed the path of what seemed to be the path of hundreds of

engineers before me and played the role of an external actor, looking at biology and

microscopy from a distant and critical point of view. Or I tried to dive headfirst into

the marvelous but chaotic world of biology and be part of it. I would thus take the risk

to be alone, and less advised on the technical side, but free and in adequacy with my

belief that interdisciplinarity has the potential to bridge gaps between two, or more,

giant domains in fundamental research. I followed the second path, and it determined

many, if not all, subsequent choices made during this work.

I had to face a lot of challenges along the way. I had to constantly find a balance

between three worlds: one full of mathematical abstraction, one full of theoretical and

practical physics, and the last full of complex chemistry and mechanics. I had to exploit

existing tools as much as I had to explore new horizons. I had to split my mind and my

schedule between directing the project and executing it, while (too) often questioning

myself on the way I should think.

From my current point of view, microscopy images are not intangible objects anymore.

I know now, to a certain extent, the degree of flexibility that can have biologists and

microscopists to generate their images and so I can participate in a debate to guide

them to make the best of their images. More obviously, I am also not considering

software and computer science tools as immovable, as I know existing tools, and to

what extent I can use, adapt, and create them to generate exploitable results. This thesis

was punctuated with countless scientific exchanges and my biologist advisors might,

hopefully, now have a deeper point of view on the realistic possibilities given by

computer science. These challenges and experiences of constant mutual learning and

teaching were well worth the risks of my initial choice.

132 - Chapter 5 - Discussion

5.2.2 AI and its environment, a paradox?

On a more global scale, the notion of “code sustainability”, previously introduced,

inevitably set this code and, more generally, this project in the human society network,

its current environmental situation, and consequently in its political frame.

In matter of figures, this whole thesis project had a very small energetical impact.

Its entire development required 7000 GPU hours distributed in three years. These

GPUs needed 350W to work which means that 2.45MWh of energy was required in

total, approximately as much as the energy necessary to build them

(http://ecoinfo.cnrs.fr/), or the energy generated by an average wind turbine for one

hour. In comparison, the single GPT-3 model requires 1297MWh to train, using 3.5

million GPU hours.

“Sustainable” is obviously relative to a political point of view: for some, it means

20 years, for others 1000 years. Biom3d in its current form was created to last as long

as possible but will, very probably, not last 20 years. Yet, with its modular design,

Biom3d is a platform with a great potential of evolution. Like ImageJ, originally

designed to measure Southern blot gels, Biom3d may one day falls into the hands of

many innovative developers and evolve in a direction that was not initially intended to

be pursued. Additionally, as some other programs such as the Framasoft suite

(https://framasoft.org/en/), it might also distil in the mind of some the ideas and the

hope of building meaningful, sustainable, and ethical tools.

This is especially true for AI tools which are part of a highly competitive world

where most of the main actors are motivated by fame, money, or power. The GAFAM

are almost exclusively making profit using their finely adjusted (and private)

recommendation algorithms (In 2022, the Facebook app generated a net revenue of

20$ per active user [186], by only using targeted advertising). Banks and private

companies are also extensively exploiting AI bots to automate their transactions

(trading, etc.) or their workforce (labour replacement, etc.). Finally, human moral can

also be deeply endangered when AI is used uncontrollably by domains such as health

insurances (search history, connected watch, etc.), surveillance systems (camera, text

messages, etc.), justice or governments (recommendation algorithms during decisions

or elections, etc.). Autonomous vehicles, face recognition, biological analysis, medical

http://ecoinfo.cnrs.fr/
https://framasoft.org/en/

133

diagnosis, robotics or even ChatGPT are probably just one small visible tip of the

AIceberg.

AI tools have a short life cycle which seems to be shrinking every year, at a rate

proportional to the speed of innovation growth. It might be symptomatic of a strong

rebound effect. Should science, the very domain of human knowledge that raised red

flags regarding exponential growth in a finite world, keep moving faster and faster? Is

it to find innovative solutions more quickly to the problems caused by the too rapid

evolution of human society? Isn’t there a paradox?

Probably, yet, I believe that the destiny of AI is certainly not doomed and can be

part of a degrowing and more ethical society. And I am not alone. Shaken by many

rebelling movements (Scientist Rebellion, Les Soulèvement de la Terre, etc.), a

constantly growing number of computer scientists have recently decided to act through

“think tanks” (The Shift Project, Institut du Numérique Responsable, etc.), through

associations (Institut Momentum, La Fabrique des Questions Simples, etc.), through

novel media (GreenIT etc.), through initiatives (Planet Tech’Care, etc.), through

companies (Carbone4, Convention des Entreprises pour le Climat), or through their

own research (UMR-EspaceDEV, GDR-Labo1point5, etc.). Pushed, national

governances are now reacting with new research grants (ANR-MITI-Frugalité) and

ministerial missions (MiNumEco, Ademe). Last but not least, the UNESCO has made

AI ethics and AI sustainability one of its main objectives

(https://www.unesco.org/en/artificial-intelligence).

Degrowth is more than a need, it is inevitable, but it does not mean that human

society should give up on its innovations and notably on some of its largest networks

or industries, as often scale effect creates very optimized systems. Wise choices will

have to be made, and I believe that researchers can and already have an important role

to play as both advisors and actors. They will soon be confronted with the world of

handymen who must innovate with tools and materials unsuited to their project. These

unavoidable constraints will bring scientists closer and closer to the ground of society

realities and political actions. The very ontology of research, its Dasein, must be

rebuilt. And I believe in human mind to achieve it.

https://www.unesco.org/en/artificial-intelligence

134 - Chapter 5 - Discussion

135

References

[1] M. Minsky, “Microscopy Apparatus,” US3013467A, 1957 [Online].

Available: http://www.freepatentsonline.com/3013467.html

[2] M. Chalfie et al., “Green fluorescent protein as a marker for gene expression,”

Science (80-.)., vol. 10, no. 5, p. 151, 1994, doi: 10.1016/0168-

9525(94)90088-4.

[3] S. Suzuki et al., “Topological structural analysis of digitized binary images by

border following,” Comput. Vision, Graph. Image Process., vol. 30, no. 1, pp.

32–46, 1985, doi: 10.1016/0734-189X(85)90016-7.

[4] W. E. Lorensen et al., “Marching cubes: A high resolution 3D surface

construction algorithm,” in Proceedings of the 14th Annual Conference on

Computer Graphics and Interactive Techniques, SIGGRAPH 1987, in

SIGGRAPH ’87. New York, NY, USA: Association for Computing

Machinery, 1987, pp. 163–169. doi: 10.1145/37401.37422.

[5] S. Fourey et al., “Normals estimation for digital surfaces based on

convolutions,” Comput. Graph., vol. 33, no. 1, pp. 2–10, 2009, doi:

10.1016/j.cag.2008.11.003.

[6] N. Sofroniew et al., “napari.” [Online]. Available:

https://doi.org/10.5281/zenodo.5848842

[7] S. Berg et al., “Ilastik: Interactive Machine Learning for (Bio)Image

Analysis,” Nat. Methods, vol. 16, no. 12, pp. 1226–1232, 2019, doi:

10.1038/s41592-019-0582-9.

[8] F. Eibe et al., “The WEKA workbench,” Data Min. Pract. Mach. Learn. Tools

Tech., pp. 553–571, 2016, doi: 10.1016/b978-0-12-804291-5.00024-6.

[9] S. Lang et al., “WekaDeeplearning4j: A deep learning package for Weka

based on Deeplearning4j,” Knowledge-Based Syst., vol. 178, pp. 48–50, 2019,

doi: 10.1016/j.knosys.2019.04.013.

[10] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001,

doi: 10.1023/A:1010933404324.

[11] Institut Pasteur, “DIVA.” [Online]. Available:

https://research.pasteur.fr/en/project/data-integration-and-visualisation-in-

augmented-and-virtual-environments/

[12] S. Pieper et al., “3D Slicer,” in 2004 2nd IEEE International Symposium on

Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), 2004, p. 632–

635 Vol. 1. doi: 10.1109/ISBI.2004.1398617.

[13] J. Ahrens et al., “ParaView: An End-User Tool for Large Data Visualization

ParaViewWeb View project,” Vis. Handbook, Elsevier, vol. 836, 2005,

[Online]. Available: https://www.researchgate.net/publication/247111133

[14] D. Mastronarde et al., “3dmod.” [Online]. Available:

https://bio3d.colorado.edu/imod/

136 - References

[15] K. M. Boergens et al., “WebKnossos: Efficient online 3D data annotation for

connectomics,” Nat. Methods, vol. 14, no. 7, pp. 691–694, 2017, doi:

10.1038/nmeth.4331.

[16] M. Rocklin, “Dask: Parallel Computation with Blocked algorithms and Task

Scheduling,” in Proceedings of the 14th Python in Science Conference, 2015,

pp. 126–132. doi: 10.25080/majora-7b98e3ed-013.

[17] J. Schindelin et al., “Fiji: An open-source platform for biological-image

analysis,” Nat. Methods, vol. 9, no. 7, pp. 676–682, 2012, doi:

10.1038/nmeth.2019.

[18] D. Legland et al., “MorphoLibJ: integrated library and plugins for

mathematical morphology with ImageJ,” Bioinformatics, vol. 32, no. 22, pp.

3532–3534, Nov. 2016, doi: 10.1093/bioinformatics/btw413.

[19] D. Zink et al., “Nuclear structure in cancer cells,” Nat. Rev. Cancer, vol. 4, no.

9, pp. 677–687, 2004, doi: 10.1038/nrc1430.

[20] D. E. Monica Pradillo et al., “The nuclear envelope in higher plant mitosis and

meiosis,” Nucleus, vol. 10, no. 1, pp. 55–66, 2019, doi:

10.1080/19491034.2019.1587277.

[21] E. D. M. S. T. C, “Advancing knowledge of the plant nuclear periphery and its

application for crop science.” 2020.

[22] D. E. Monica Pradillo et al., “The nuclear envelope in higher plant mitosis and

meiosis,” Nucleus, vol. 10, no. 1, pp. 55–66, 2019, doi:

10.1080/19491034.2019.1587277.

[23] C. Tatout et al., “The INDEPTH (Impact of Nuclear Domains On Gene

Expression and Plant Traits) Academy – a community resource for plant

science,” J. Exp. Bot., p. erac005, Jan. 2022, doi: 10.1093/jxb/erac005.

[24] A. V. Probst et al., “Epigenetic inheritance during the cell cycle,” Nat. Rev.

Mol. Cell Biol., vol. 10, no. 3, pp. 192–206, 2009, doi: 10.1038/nrm2640.

[25] A. Pecinka et al., “Chromosome territory arrangement and homologous

pairing in nuclei of Arabidopsis thaliana are predominantly random except for

NOR-bearing chromosomes.,” Chromosoma, vol. 113, no. 5, pp. 258–269,

Nov. 2004, doi: 10.1007/s00412-004-0316-2.

[26] T. Cremer et al., “Chromosome territories.,” Cold Spring Harb. Perspect.

Biol., vol. 2, no. 3, 2010, doi: 10.1101/cshperspect.a003889.

[27] K. Graumann, “Evidence for LINC1-SUN associations at the plant nuclear

periphery,” PLoS One, vol. 9, no. 3, 2014, doi: 10.1371/journal.pone.0093406.

[28] A. Poulet et al., “Exploring the evolution of the proteins of the plant nuclear

envelope,” Nucleus, vol. 8, no. 1, pp. 46–59, 2017, doi:

10.1080/19491034.2016.1236166.

[29] T. Dubos et al., “Automated 3D bio-imaging analysis of nuclear organization

by NucleusJ 2.0,” Nucleus, vol. 11, no. 1, pp. 315–329, 2020, doi:

10.1080/19491034.2020.1845012.

[30] S. Mermet et al., “Evolutionarily conserved protein motifs drive interactions

137

between the plant nucleoskeleton and nuclear pores,” Plant Cell, p. koad236,

Sep. 2023, doi: 10.1093/plcell/koad236.

[31] S. Beucher et al., “Use of Watersheds in Contour Detection,” Int. Work. Image

Process. Real-time Edge Motion Detect., pp. 12–21, 1979, [Online].

Available: http://www.citeulike.org/group/7252/article/4083187

[32] A. D. Elliott, “Confocal Microscopy: Principles and Modern Practices,” Curr.

Protoc. Cytom., vol. 92, no. 1, p. e68, Mar. 2020, doi: 10.1002/cpcy.68.

[33] C. J. Peddie et al., “Volume electron microscopy,” Nat. Rev. Methods Prim.,

vol. 2, no. 1, p. 51, 2022, doi: 10.1038/s43586-022-00131-9.

[34] S. Aryal, “microbiologyinfo.com.” [Online]. Available:

https://microbiologyinfo.com/differences-between-light-microscope-and-

electron-microscope/

[35] K. Coyne, “nationalmaglab.org.” [Online]. Available:

https://nationalmaglab.org/magnet-academy/read-science-stories/science-

simplified/mri-a-guided-tour/

[36] M. Maqbool, “Computed Tomography BT - An Introduction to Medical

Physics,” M. Maqbool, Ed., Cham: Springer International Publishing, 2017,

pp. 221–262. doi: 10.1007/978-3-319-61540-0_8.

[37] B. H. Menze et al., “The Multimodal Brain Tumor Image Segmentation

Benchmark (BRATS),” IEEE Trans. Med. Imaging, vol. 34, no. 10, pp. 1993–

2024, 2015, doi: 10.1109/TMI.2014.2377694.

[38] N. Otsu, “A threshold selection method from grey-level histograms.Title,”

IEEE Trans. Syst. Man, Cybern. Syst., vol. 9, pp. 62–66, 1979.

[39] R. Jarvis, “On the identification of the convex hull of a finite set of points in

the plane.,” Inf Process Lett, vol. 2, no. 18–21, 1973.

[40] G. Mougeot et al., “Deep learning -– promises for 3D nuclear imaging: a

guide for biologists,” J. Cell Sci., vol. 135, no. 7, p. jcs258986, Apr. 2022, doi:

10.1242/jcs.258986.

[41] D. C. Cireşan et al., Flexible, high performance convolutional neural networks

for image classification. 2011. doi: 10.5591/978-1-57735-516-8/IJCAI11-210.

[42] A. Krizhevsky et al., “ImageNet Classification with Deep Convolutional

Neural Networks,” in Advances in Neural Information Processing Systems, F.

Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds., Curran

Associates, Inc., 2012. [Online]. Available:

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a

68c45b-Paper.pdf

[43] T. Y. Lin et al., “Microsoft COCO: Common objects in context,” Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 8693 LNCS, no. PART

5. pp. 740–755, 2014. doi: 10.1007/978-3-319-10602-1_48.

[44] C. R. Brice et al., “Scene analysis using regions,” Artif. Intell., vol. 1, no. 3,

pp. 205–226, 1970, doi: https://doi.org/10.1016/0004-3702(70)90008-1.

138 - References

[45] T. Pavlidis, “Segmentation of pictures and maps through functional

approximation,” Comput. Graph. Image Process., vol. 1, no. 4, pp. 360–372,

1972, doi: https://doi.org/10.1016/0146-664X(72)90021-4.

[46] A. Rosenfeld et al., Digital Picture Processing, Volume 1, 2nd ed., vol. 53, no.

9. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1982.

[47] H. Steinhaus, “Sur la division des corps matériels en parties.,” Bull. Acad. Pol.

Sci. Cl., vol. III, no. 4, pp. 801–804, 1956.

[48] L. Barghout et al., “Real-world scene perception and perceptual organization:

Lessons from Computer Vision,” J. Vis., vol. 13, no. 9, pp. 709–709, 2013,

doi: 10.1167/13.9.709.

[49] S. Geman et al., “Stochastic Relaxation, Gibbs Distributions, and the Bayesian

Restoration of Images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-

6, no. 6, pp. 721–741, 1984, doi: 10.1109/TPAMI.1984.4767596.

[50] M. Kass et al., “Snakes: Active contour models,” Int. J. Comput. Vis., vol. 1,

no. 4, pp. 321–331, 1988, doi: 10.1007/BF00133570.

[51] J. M. Morel et al., Variational Methods in Image Segmentation. 1995. doi:

10.1007/978-1-4684-0567-5.

[52] T. Dubos et al., “NODeJ: an ImageJ plugin for 3D segmentation of nuclear

objects,” BMC Bioinformatics, vol. 23, no. 1, pp. 1–11, 2022, doi:

10.1186/s12859-022-04743-6.

[53] D. J. Barry et al., “GIANI: open-source software for automated analysis of 3D

microscopy images,” bioRxiv, 2021, doi: 10.1101/2020.10.15.340810.

[54] K. Fukushima, “位置ずれに影響されないパターン認識機構の神経回路

モデル―ネオコグニトロン―,” Trans. IECE, vol. J62–A, no. 10, pp. 658–

665, 1979.

[55] D. H. Hubel et al., “Receptive fields of single neurones in the cat’s striate

cortex,” J. Physiol., vol. 148, no. 3, pp. 574–591, Oct. 1959, doi:

10.1113/jphysiol.1959.sp006308.

[56] D. C. Cireşan et al., “Mitosis detection in breast cancer histology images with

deep neural networks,” in Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), K. Mori, I. Sakuma, Y. Sato,

C. Barillot, and N. Navab, Eds., Berlin, Heidelberg: Springer Berlin

Heidelberg, 2013, pp. 411–418. doi: 10.1007/978-3-642-40763-5_51.

[57] E. Moen et al., “Deep learning for cellular image analysis,” Nat. Methods, vol.

16, no. 12, pp. 1233–1246, 2019, doi: 10.1038/s41592-019-0403-1.

[58] O. Ronneberger et al., “U-net: Convolutional networks for biomedical image

segmentation,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 9351, pp. 234–241, 2015, doi:

10.1007/978-3-319-24574-4_28.

[59] ParallelR, “ImageNet result evolution.” [Online]. Available:

https://parallelr.com/2016/02/13/r-deep-neural-network-from-scratch/

139

[60] K. Simonyan et al., “Very Deep Convolutional Networks for Large-Scale

Image Recognition,” CoRR, vol. abs/1409.1, 2014, [Online]. Available:

http://arxiv.org/abs/1409.1556

[61] K. He et al., “Deep residual learning for image recognition,” Proc. IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016–Decem, pp.

770–778, 2016, doi: 10.1109/CVPR.2016.90.

[62] M. Tan et al., “EfficientNet: Rethinking model scaling for convolutional

neural networks,” 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019–June,

pp. 10691–10700, 2019, [Online]. Available: http://arxiv.org/abs/1905.11946

[63] A. Dosovitskiy et al., “an Image Is Worth 16X16 Words: Transformers for

Image Recognition At Scale,” ICLR 2021 - 9th International Conference on

Learning Representations. 2021.

[64] Z. Liu et al., “Swin Transformer: Hierarchical Vision Transformer using

Shifted Windows,” Proceedings of the IEEE International Conference on

Computer Vision. pp. 9992–10002, 2021. doi:

10.1109/ICCV48922.2021.00986.

[65] M. D. Zeiler et al., “Visualizing and understanding convolutional networks,”

Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8689 LNCS,

no. PART 1. pp. 818–833, 2014. doi: 10.1007/978-3-319-10590-1_53.

[66] E. Ben-Baruch et al., “Attention Is All You Need,” Advances in Neural

Information Processing Systems, vol. 16, no. D1. pp. 687--694, 2019.

[Online]. Available:

https://academic.oup.com/nar/article/47/D1/D427/5144153

[67] K. Islam, “Recent Advances in Vision Transformer: A Survey and Outlook of

Recent Work.” 2022. [Online]. Available: http://arxiv.org/abs/2203.01536

[68] M. Weigert et al., “Star-convex polyhedra for 3D object detection and

segmentation in microscopy,” Proc. - 2020 IEEE Winter Conf. Appl. Comput.

Vision, WACV 2020, pp. 3655–3662, 2020, doi:

10.1109/WACV45572.2020.9093435.

[69] E. Gómez-de-Mariscal et al., “DeepImageJ: A user-friendly environment to

run deep learning models in ImageJ,” Nat. Methods, vol. 18, no. 10, pp. 1192–

1195, 2021, doi: 10.1038/s41592-021-01262-9.

[70] L. von Chamier et al., “ZeroCostDL4Mic: An open platform to use deep-

learning in microscopy,” bioRxiv, p. 2020.03.20.000133, 2020, doi:

10.1101/2020.03.20.000133.

[71] L. Heinrich et al., “Whole-cell organelle segmentation in volume electron

microscopy,” Nature, vol. 599, no. 7883, pp. 141–146, 2021, doi:

10.1038/s41586-021-03977-3.

[72] C. Stringer et al., “Cellpose: a generalist algorithm for cellular segmentation,”

Nat. Methods, vol. 18, no. 1, pp. 100–106, 2021, doi: 10.1038/s41592-020-

01018-x.

[73] M. Pachitariu et al., “Cellpose 2.0: how to train your own model,” Nat.

140 - References

Methods, vol. 19, no. 12, pp. 1634–1641, 2022, doi: 10.1038/s41592-022-

01663-4.

[74] K. Sugawara et al., “Tracking cell lineages in 3D by incremental deep

learning,” Elife, vol. 11, p. e69380, 2022, doi: 10.7554/eLife.69380.

[75] C. Wen et al., “3DeeCellTracker, a deep learning-based pipeline for

segmenting and tracking cells in 3D time lapse images,” Elife, vol. 10, p.

e59187, 2021, doi: 10.7554/eLife.59187.

[76] T. O. Buchholz et al., “Content-aware image restoration for electron

microscopy,” Methods Cell Biol., vol. 152, pp. 277–289, 2019, doi:

10.1016/bs.mcb.2019.05.001.

[77] T. O. Buchholz et al., “DenoiSeg: Joint Denoising and Segmentation,” Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 12535 LNCS. pp. 324–

337, 2020. doi: 10.1007/978-3-030-66415-2_21.

[78] A. Krull et al., “Noise2void-Learning denoising from single noisy images,” in

Proceedings of the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2019, pp. 2124–2132. doi:

10.1109/CVPR.2019.00223.

[79] F. De Chaumont et al., “Icy: An open bioimage informatics platform for

extended reproducible research,” Nat. Methods, vol. 9, no. 7, pp. 690–696,

2012, doi: 10.1038/nmeth.2075.

[80] A. E. Carpenter et al., “CellProfiler: Image analysis software for identifying

and quantifying cell phenotypes,” Genome Biol., vol. 7, no. 10, p. R100, 2006,

doi: 10.1186/gb-2006-7-10-r100.

[81] W. Ouyang et al., “ImJoy: an open-source computational platform for the

deep learning era,” Nat. Methods, vol. 16, no. 12, pp. 1199–1200, 2019, doi:

10.1038/s41592-019-0627-0.

[82] T. Pietzsch et al., “Mastodon – a large-scale tracking and track-editing

framework for large, multi-view images.” [Online]. Available:

https://github.com/mastodon-sc/mastodon

[83] A. Virzì et al., “Comprehensive Review of 3D Segmentation Software Tools

for MRI Usable for Pelvic Surgery Planning,” J. Digit. Imaging, vol. 33, no. 1,

pp. 99–110, 2020, doi: 10.1007/s10278-019-00239-7.

[84] P. A. Yushkevich et al., “User-guided 3D active contour segmentation of

anatomical structures: Significantly improved efficiency and reliability,”

Neuroimage, vol. 31, no. 3, pp. 1116–1128, 2006, doi:

10.1016/j.neuroimage.2006.01.015.

[85] I. Wolf et al., “The medical imaging interaction toolkit (MITK): a toolkit

facilitating the creation of interactive software by extending VTK and ITK,”

Med. Imaging 2004 Vis. Image-Guided Proced. Disp., vol. 5367, p. 16, 2004,

doi: 10.1117/12.535112.

[86] F. Isensee et al., “nnU-Net: a self-configuring method for deep learning-based

biomedical image segmentation,” Nat. Methods, vol. 18, no. 2, pp. 203–211,

141

2021, doi: 10.1038/s41592-020-01008-z.

[87] J. Wasserthal et al., “TotalSegmentator: robust segmentation of 104

anatomical structures in CT images,” 2022, [Online]. Available:

http://arxiv.org/abs/2208.05868

[88] J. Liu et al., “CLIP-Driven Universal Model for Organ Segmentation and

Tumor Detection.” arXiv, 2023. doi: 10.48550/ARXIV.2301.00785.

[89] M. Baumgartner et al., “nnDetection: A Self-configuring Method for Medical

Object Detection,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 12905 LNCS, pp. 530–539,

2021, doi: 10.1007/978-3-030-87240-3_51.

[90] M. J. McAuliffe et al., “Medical Image Processing, Analysis and Visualization

in clinical research,” in Proceedings 14th IEEE Symposium on Computer-

Based Medical Systems. CBMS 2001, 2001, pp. 381–386. doi:

10.1109/CBMS.2001.941749.

[91] N. Toussaint et al., “MedINRIA: Medical Image Navigation and Research

Tool by INRIA,” 2007.

[92] D. Rivière et al., “Anatomist: a python framework for interactive 3D

visualization of neuroimaging data,” Python Neurosci. Work., pp. 3–4, 2011,

[Online]. Available: http://brainvisa.info/doc/pyanatomist/sphinx/

[93] B. Fischl, “FreeSurfer,” Neuroimage, vol. 62, no. 2, pp. 774–781, Aug. 2012,

doi: 10.1016/j.neuroimage.2012.01.021.

[94] M. Jenkinson et al., “FSL - Review,” Neuroimage, vol. 62, no. 2, pp. 782–90,

Aug. 2012, doi: 10.1016/j.neuroimage.2011.09.015.

[95] CIBC, “Seg3D: Volumetric Image Segmentation and Visualization. Scientific

Computing and Imaging Institute (SCI).” 2015.

[96] J. Schwartz et al., “Real-time 3D analysis during electron tomography using

tomviz,” Nat. Commun., vol. 13, no. 1, p. 4458, 2022, doi: 10.1038/s41467-

022-32046-0.

[97] J. Liang et al., “Vaa3D-x for cross-platform teravoxel-scale immersive

exploration of multidimensional image data,” Bioinformatics, vol. 39, no. 1, p.

btac794, Jan. 2023, doi: 10.1093/bioinformatics/btac794.

[98] A. Kensert et al., “Transfer Learning with Deep Convolutional Neural

Networks for Classifying Cellular Morphological Changes,” SLAS Discov.,

vol. 24, no. 4, pp. 466–475, 2019, doi: 10.1177/2472555218818756.

[99] M. Raghu et al., “Transfusion: Understanding transfer learning for medical

imaging,” Advances in Neural Information Processing Systems, vol. 32. 2019.

[100] D. Wiesner et al., “CytoPacq: a web-interface for simulating multi-

dimensional cell imaging,” Bioinformatics, vol. 35, no. 21, pp. 4531–4533,

Nov. 2019, doi: 10.1093/bioinformatics/btz417.

[101] A. Kirillov et al., “Segment Anything.” 2023.

[102] V. Ljosa et al., “Annotated high-throughput microscopy image sets for

142 - References

validation,” Nat. Methods, vol. 9, no. 7, p. 637, 2012, doi:

10.1038/nmeth.2083.

[103] E. Williams et al., “Image Data Resource: A bioimage data integration and

publication platform,” Nat. Methods, vol. 14, no. 8, pp. 775–781, 2017, doi:

10.1038/nmeth.4326.

[104] C. Allan et al., “OMERO: Flexible, model-driven data management for

experimental biology,” Nat. Methods, vol. 9, no. 3, pp. 245–253, Feb. 2012,

doi: 10.1038/nmeth.1896.

[105] L. S. V Thomas et al., “Fiji plugins for qualitative image annotations: routine

analysis and application to image classification,” F1000Research, vol. 9, p.

1248, Feb. 2021, doi: 10.12688/f1000research.26872.2.

[106] W. Zimmer et al., “3D BAT: A Semi-Automatic, Web-based 3D Annotation

Toolbox for Full-Surround, Multi-Modal Data Streams.” 2019.

[107] A. Dutta et al., “The VIA annotation software for images, audio and video,”

MM 2019 - Proc. 27th ACM Int. Conf. Multimed., pp. 2276–2279, 2019, doi:

10.1145/3343031.3350535.

[108] Tzutalin, “Labellmg.” [Online]. Available:

https://github.com/tzutalin/labelImg

[109] P. Bankhead et al., “QuPath: Open source software for digital pathology

image analysis,” Sci. Rep., vol. 7, no. 1, 2017, doi: 10.1038/s41598-017-

17204-5.

[110] “Paintera.” [Online]. Available: https://github.com/saalfeldlab/paintera

[111] M. Prakash et al., “Leveraging Self-supervised Denoising for Image

Segmentation,” in Proc. - Int. Symp. Biomed. Imaging, 2020, pp. 428–432.

doi: 10.1109/ISBI45749.2020.9098559.

[112] A. S. Goncharova et al., “Improving Blind Spot Denoising for Microscopy BT

- Computer Vision – ECCV 2020 Workshops,” A. Bartoli and A. Fusiello,

Eds., Cham: Springer International Publishing, 2020, pp. 380–393.

[113] J. Chen et al., “Three-dimensional residual channel attention networks denoise

and sharpen fluorescence microscopy image volumes,” Nat. Methods, vol. 18,

no. 6, pp. 678–687, 2021, doi: 10.1038/s41592-021-01155-x.

[114] H. Qu et al., “Joint segmentation and fine-grained classification of nuclei in

histopathology images,” in Proc. - Int. Symp. Biomed. Imaging, 2019, pp.

900–904. doi: 10.1109/ISBI.2019.8759457.

[115] M. Tofighi et al., “Prior Information Guided Regularized Deep Learning for

Cell Nucleus Detection,” IEEE Trans. Med. Imaging, vol. 38, no. 9, pp. 2047–

2058, 2019, doi: 10.1109/TMI.2019.2895318.

[116] F. Xing et al., “Pixel-to-Pixel Learning with Weak Supervision for Single-

Stage Nucleus Recognition in Ki67 Images,” IEEE Trans. Biomed. Eng., vol.

66, no. 11, pp. 3088–3097, Nov. 2019, doi: 10.1109/TBME.2019.2900378.

[117] M. Valkonen et al., “Generalized fixation invariant nuclei detection through

domain adaptation based deep learning,” IEEE J. Biomed. Heal. Informatics,

143

p. 1, 2020, doi: 10.1109/JBHI.2020.3039414.

[118] Y. Tokuoka et al., “3D convolutional neural networks-based segmentation to

acquire quantitative criteria of the nucleus during mouse embryogenesis,” npj

Syst. Biol. Appl., vol. 6, no. 1, pp. 1–12, 2020, doi: 10.1038/s41540-020-

00152-8.

[119] J. Redmon et al., “You only look once: Unified, real-time object detection,”

Proceedings of the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, vol. 2016–Decem. pp. 779–788, 2016. doi:

10.1109/CVPR.2016.91.

[120] S. Ren et al., “Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,

no. 6, pp. 1137–1149, 2017, doi: 10.1109/TPAMI.2016.2577031.

[121] Z. Zhou et al., “Unet++: A nested u-net architecture for medical image

segmentation,” Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

vol. 11045 LNCS. pp. 3–11, 2018. doi: 10.1007/978-3-030-00889-5_1.

[122] J. Wang et al., “Deep High-Resolution Representation Learning for Visual

Recognition,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 43, no. 10. pp. 3349–3364, 2021. doi:

10.1109/TPAMI.2020.2983686.

[123] A. Hatamizadeh et al., “Swin UNETR: Swin Transformers for Semantic

Segmentation of Brain Tumors in MRI Images,” Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 12962 LNCS. pp. 272–284, 2022. doi:

10.1007/978-3-031-08999-2_22.

[124] T.-Y. Lin et al., “Feature Pyramid Networks for Object Detection,” CoRR,

vol. abs/1612.0, 2016, [Online]. Available: http://arxiv.org/abs/1612.03144

[125] Ö. Çiçek et al., “3D U-net: Learning dense volumetric segmentation from

sparse annotation,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 9901 LNCS, pp. 424–432, 2016,

doi: 10.1007/978-3-319-46723-8_49.

[126] J. C. Caicedo et al., “Nucleus segmentation across imaging experiments: the

2018 Data Science Bowl,” Nat. Methods, vol. 16, no. 12, pp. 1247–1253,

2019, doi: 10.1038/s41592-019-0612-7.

[127] N. F. Greenwald et al., “Whole-cell segmentation of tissue images with

human-level performance using large-scale data annotation and deep

learning,” Nat. Biotechnol., p. 2021.03.01.431313, 2021, doi: 10.1038/s41587-

021-01094-0.

[128] L. Wu et al., “NISNet3D: three-dimensional nuclear synthesis and instance

segmentation for fluorescence microscopy images,” Sci. Rep., vol. 13, no. 1, p.

9533, 2023, doi: 10.1038/s41598-023-36243-9.

[129] K. He et al., “Mask R-CNN,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

42, no. 2, pp. 386–397, Mar. 2020, doi: 10.1109/TPAMI.2018.2844175.

144 - References

[130] L. Yang et al., “NuSeT: A deep learning tool for reliably separating and

analyzing crowded cells,” PLoS Comput. Biol., vol. 16, no. 9, pp. 1–20, 2020,

doi: 10.1371/journal.pcbi.1008193.

[131] A. A. Taha et al., “Metrics for evaluating 3D medical image segmentation:

analysis, selection, and tool,” BMC Med. Imaging, vol. 15, no. 1, p. 29, 2015,

doi: 10.1186/s12880-015-0068-x.

[132] A. Reinke et al., “Common Limitations of Image Processing Metrics: A

Picture Story.” 2022.

[133] U. Rubens et al., “BIAFLOWS: A collaborative framework to reproducibly

deploy and benchmark bioimage analysis workflows,” bioRxiv, pp. 1–13,

2019, doi: 10.1101/707489.

[134] C. Blanchet et al., “IFB-Biosphère: Services cloud pour l’analyse des données

des sciences de la vie,” Journées RESeaux-JRES 2019, 2019.

[135] H. Larochelle et al., “An empirical evaluation of deep architectures on

problems with many factors of variation,” ACM Int. Conf. Proceeding Ser.,

vol. 227, pp. 473–480, 2007, doi: 10.1145/1273496.1273556.

[136] Bergstra J et al., “Random search for hyper-parameter optimization,” J. Mach.

Learn. Res., vol. 13, no. 2, pp. 281–305, 2012.

[137] J. Bergstra et al., “Algorithms for hyper-parameter optimization,” Adv. Neural

Inf. Process. Syst. 24 25th Annu. Conf. Neural Inf. Process. Syst. 2011, NIPS

2011, 2011.

[138] Poli, Ricardo et al., “A Field Guide to Genetic Programming ,” pp. 160–

164, 2005.

[139] B. Zoph et al., “Neural architecture search with reinforcement learning,” 5th

Int. Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc., 2017.

[140] B. Zoph et al., “Learning Transferable Architectures for Scalable Image

Recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,

pp. 8697–8710, 2018, doi: 10.1109/CVPR.2018.00907.

[141] S. Kim et al., “Scalable Neural Architecture Search for 3D Medical Image

Segmentation,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 11766 LNCS, pp. 220–228, 2019, doi:

10.1007/978-3-030-32248-9_25.

[142] M. Antonelli et al., “The Medical Segmentation Decathlon,” Nat. Commun.,

vol. 13, no. 1, p. 4128, 2022, doi: 10.1038/s41467-022-30695-9.

[143] A. Buslaev et al., “Albumentations: Fast and Flexible Image Augmentations,”

Information, vol. 11, no. 2, 2020, doi: 10.3390/info11020125.

[144] F. Isensee et al., “Batchgenerators - a Python Framework for Data

Augmentation,” 2020, [Online]. Available:

https://zenodo.org/record/3632567#.YxpIRmxBzvI

[145] A. Jungo et al., “pymia: A Python package for data handling and evaluation in

deep learning-based medical image analysis,” Comput. Methods Programs

Biomed., vol. 198, p. 105796, 2021, doi: 10.1016/j.cmpb.2020.105796.

145

[146] F. Pérez-García et al., “TorchIO: A Python library for efficient loading,

preprocessing, augmentation and patch-based sampling of medical images in

deep learning,” Comput. Methods Programs Biomed., vol. 208, p. 106236,

2021, doi: https://doi.org/10.1016/j.cmpb.2021.106236.

[147] I. J. Goodfellow et al., “Generative adversarial nets,” in Advances in Neural

Information Processing Systems, vol. 3, no. January, Z. Ghahramani, M.

Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds., Curran

Associates, Inc., 2014, pp. 2672–2680. doi: 10.3156/jsoft.29.5_177_2.

[148] Y. Zhang et al., “DatasetGAN: Efficient Labeled Data Factory with Minimal

Human Effort,” Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. pp. 10140–10150, 2021. doi:

10.1109/CVPR46437.2021.01001.

[149] K. W. Dunn et al., “DeepSynth: Three-dimensional nuclear segmentation of

biological images using neural networks trained with synthetic data,” Sci.

Rep., vol. 9, no. 1, 2019, doi: 10.1038/s41598-019-54244-5.

[150] C. Fu et al., “Three dimensional fluorescence microscopy image synthesis and

segmentation,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.

Work., vol. 2018–June, pp. 2302–2310, Jun. 2018, doi:

10.1109/CVPRW.2018.00298.

[151] L. Wu et al., “RCNN-SliceNet: A slice and cluster approach for nuclei

centroid detection in three-dimensional fluorescence microscopy images,”

IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops. pp. 3750–3760, 2021. doi:

10.1109/CVPRW53098.2021.00416.

[152] J. Y. Zhu et al., “Unpaired Image-to-Image Translation Using Cycle-

Consistent Adversarial Networks,” Proceedings of the IEEE International

Conference on Computer Vision, vol. 2017–Octob. pp. 2242–2251, 2017. doi:

10.1109/ICCV.2017.244.

[153] H. Qu et al., “Nuclei Segmentation Using Mixed Points and Masks Selected

from Uncertainty,” in Proc. - Int. Symp. Biomed. Imaging, 2020, pp. 973–976.

doi: 10.1109/ISBI45749.2020.9098474.

[154] J. Rony et al., “Deep Weakly-Supervised Learning Methods for Classification

and Localization in Histology Images : A Survey,” Arxiv, 2020.

[155] Z. Zhao et al., “Deep Learning Based Instance Segmentation in 3D

Biomedical Images Using Weak Annotation BT - Medical Image Computing

and Computer Assisted Intervention – MICCAI 2018,” A. F. Frangi, J. A.

Schnabel, C. Davatzikos, C. Alberola-López, and G. Fichtinger, Eds., Cham:

Springer International Publishing, 2018, pp. 352–360.

[156] S. Budd et al., “A survey on active learning and human-in-the-loop deep

learning for medical image analysis,” Medical Image Analysis, vol. 71.

Elsevier B.V., p. 102062, Jul. 01, 2021. doi: 10.1016/j.media.2021.102062.

[157] W. Shao et al., “Deep active learning for nucleus classification in pathology

images,” in Proc. - Int. Symp. Biomed. Imaging, 2018, pp. 199–202. doi:

10.1109/ISBI.2018.8363554.

146 - References

[158] S. Wen et al., “Comparison of Different Classifiers with Active Learning to

Support Quality Control in Nucleus Segmentation in Pathology Images.,”

AMIA Jt. Summits Transl. Sci. proceedings. AMIA Jt. Summits Transl. Sci.,

vol. 2017, pp. 227–236, 2018.

[159] A. Kolesnikov et al., “Big Transfer (BiT): General Visual Representation

Learning,” Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.

12350 LNCS. pp. 491–507, 2020. doi: 10.1007/978-3-030-58558-7_29.

[160] M. Sahasrabudhe et al., “Self-supervised Nuclei Segmentation in

Histopathological Images Using Attention BT - Medical Image Computing

and Computer Assisted Intervention – MICCAI 2020,” A. L. Martel, P.

Abolmaesumi, D. Stoyanov, D. Mateus, M. A. Zuluaga, S. K. Zhou, D.

Racoceanu, and L. Joskowicz, Eds., Cham: Springer International Publishing,

2020, pp. 393–402.

[161] M. Caron et al., “Emerging Properties in Self-Supervised Vision

Transformers,” Proceedings of the IEEE International Conference on

Computer Vision. pp. 9630–9640, 2021. doi:

10.1109/ICCV48922.2021.00951.

[162] R. F. Laine et al., “Avoiding a replication crisis in deep-learning-based

bioimage analysis,” Nat. Methods, vol. 18, no. 10, pp. 1136–1144, 2021, doi:

10.1038/s41592-021-01284-3.

[163] E. Yourdon et al., Structured Design: Fundamentals of a Discipline of

Computer Program and Systems Design, 1st ed. USA: Prentice-Hall, Inc.,

1979.

[164] E. Gibson et al., “Multi-organ Abdominal CT Reference Standard

Segmentations,” Zenodo, 22-Feb-2018, vol. 26, no. 6. Zenodo, pp. 1–7, 2018.

doi: 10.5281/zenodo.1169361.

[165] A. Taleb et al., “3D self-supervised methods for medical imaging,” Adv.

Neural Inf. Process. Syst., vol. 2020–Decem, no. NeurIPS, pp. 1–19, 2020.

[166] A. Lucchi et al., “Learning for structured prediction using approximate

subgradient descent with working sets,” Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit., pp. 1987–1994, 2013, doi:

10.1109/CVPR.2013.259.

[167] E. Gamma et al., “Design Patterns: Elements of Reusable Object-Oriented

Software,” p. 416, 1994.

[168] Y. You et al., “Large Batch Training of Convolutional Networks.” 2017.

[Online]. Available: http://arxiv.org/abs/1708.03888

[169] A. Archit et al., “Segment Anything for Microscopy,” bioRxiv, p.

2023.08.21.554208, Jan. 2023, doi: 10.1101/2023.08.21.554208.

[170] D. D. Nogare et al., “Using AI in bioimage analysis to elevate the rate of

scientific discovery as a community,” Nat. Methods, vol. 20, no. 7, pp. 973–

975, 2023, doi: 10.1038/s41592-023-01929-5.

[171] L. Maier-Hein et al., “Why rankings of biomedical image analysis

147

competitions should be interpreted with care,” Nat. Commun., vol. 9, no. 1, p.

5217, 2018, doi: 10.1038/s41467-018-07619-7.

[172] W. Su et al., “Towards All-in-one Pre-training via Maximizing Multi-modal

Mutual Information.” arXiv, 2022. doi: 10.48550/ARXIV.2211.09807.

[173] G. E. Hinton et al., “Reducing the Dimensionality of Data with Neural

Networks,” Science (80-.)., pp. 504–507, 2006.

[174] K. He et al., “Masked Autoencoders Are Scalable Vision Learners,”

Proceedings of the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, vol. 2022–June. arXiv, pp. 15979–15988, 2022. doi:

10.1109/CVPR52688.2022.01553.

[175] R. Rombach et al., “High-Resolution Image Synthesis with Latent Diffusion

Models,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol.

2022–June, pp. 10674–10685, 2022, doi: 10.1109/CVPR52688.2022.01042.

[176] T. Chen et al., “Big self-supervised models are strong semi-supervised

learners,” Adv. Neural Inf. Process. Syst., vol. 2020–Decem, 2020.

[177] J. B. Grill et al., “Bootstrap your own latent a new approach to self-supervised

learning,” Advances in Neural Information Processing Systems, vol. 2020–

Decem. arXiv, 2020. doi: 10.48550/ARXIV.2006.07733.

[178] Z. Zhou et al., “Models Genesis,” Med. Image Anal., vol. 67, p. 101840, 2021,

doi: 10.1016/j.media.2020.101840.

[179] Y. Tang et al., “Self-Supervised Pre-Training of Swin Transformers for 3D

Medical Image Analysis,” pp. 20698–20708, 2022, doi:

10.1109/cvpr52688.2022.02007.

[180] F. Haghighi et al., “DiRA: Discriminative, Restorative, and Adversarial

Learning for Self-supervised Medical Image Analysis,” Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, vol. 2022–June. arXiv, pp. 20792–20802, 2022. doi:

10.1109/CVPR52688.2022.02016.

[181] M. Caron et al., “Unsupervised learning of visual features by contrasting

cluster assignments,” Advances in Neural Information Processing Systems,

vol. 2020–Decem. 2020.

[182] F. Schroff et al., “FaceNet: A unified embedding for face recognition and

clustering,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,

vol. 07–12–June, pp. 815–823, 2015, doi: 10.1109/CVPR.2015.7298682.

[183] J. Deng et al., “ArcFace: Additive Angular Margin Loss for Deep Face

Recognition,” CoRR, vol. abs/1801.0, 2018, [Online]. Available:

http://arxiv.org/abs/1801.07698

[184] E. Gamma et al., Design Patterns: Elements of Reusable Software. USA:

Addison-Wesley Longman Publishing Co., Inc., 1996.

[185] S. McConnell, Code Complete, Second Edition. USA: Microsoft Press, 2004.

[186] “Social App Report 2023: Revenue, User and Benchmark Data”, [Online].

Available: https://www.businessofapps.com/data/social-app-

148 - References

report/?utm_source=social&utm_medium=click&utm_campaign=featured-

data-ad

149

Appendices

Availability of datasets and tools

• The benchmarking dataset is available on the public OMERO server hosted by

Florida State University and created during the INDEPTH project funded by

the COST Actions program. Server address: https://omero.bio.fsu.edu/

webclient/?show=project-2801

• The benchmarking code is available on GitHub: https://github.com/

GuillaumeMougeot/nuclei_benchmark

• Biom3d is available on GitHub: https://github.com/GuillaumeMougeot/

biom3d

• Biom3d documentation is hosted by ReadTheDocs website: https://

biom3d.readthedocs.io/en/latest/

• Biom3d Python package is hosted on PyPi official server: https://pypi.org/

project/biom3d/

• Biom3d will also be archived on Software Heritage to guarantee its long-term

accessibility: https://www.softwareheritage.org/

Authors’ contributions

Chapter 2. I undertook the comprehensive review of deep learning methods and

wrote the manuscript for the publication, including the supplementary table listing the

available components for each method. I chose the methods to be benchmarked and

both participated and led the work of Pedro Mezquita and Adama Nana regarding

method installation, Docker packaging, application to nucleus segmentation,

evaluation on the test set and result interpretation. Sophie Desset chose and annotated

the nucleus dataset. Sophie Desset, Christophe Tatout, David E. Evans, Frederic

Chausse, Emily Pery, Katja Graumann and Tristan Dubos participated in the revision

of the review manuscript.

Chapter 3. I undertook the philosophy design, the coding, the development, the

packaging and sharing, the debugging, maintenance, and testing, the valorisation

through demos, the documentation and tutorials of Biom3d. I led the work of Sami

Safarbati who participated in the development of the default graphical user interface

https://omero.bio.fsu.edu/webclient/?show=project-2801
https://omero.bio.fsu.edu/webclient/?show=project-2801
https://github.com/GuillaumeMougeot/nuclei_benchmark
https://github.com/GuillaumeMougeot/nuclei_benchmark
https://github.com/GuillaumeMougeot/biom3d
https://github.com/GuillaumeMougeot/biom3d
https://biom3d.readthedocs.io/en/latest/
https://biom3d.readthedocs.io/en/latest/
https://pypi.org/project/biom3d/
https://pypi.org/project/biom3d/
https://www.softwareheritage.org/

150 - Appendices

of Biom3d, in particular by integrating OMERO compatibilities. All my supervisors

and advisors participated in giving me feedback either on the applicative side when

Biom3d was applied to biological images or on the technical side. They also greatly

guided me in the valorisation and publication process of Biom3d, a process still in

progress.

Chapter 4. I chose to explore the self-supervised research direction and the methods

that were studied. I led the course of the first experiments helped by Adama Nana and

Abderrahime Tizi. I made all experiments on Taleb et al. work and on the DINO

method. I designed, coded, and integrated in Biom3d, the Triplet and Arcface losses

as well as the full U-Net pretraining workflow. I wrote the publication manuscript and

Frédéric Chausse, Sophie Desset, Katja Graumann and Emilie Pery helped me in the

publication process.

Publications, conferences, and workshops

Publications by chapter

Publication – Chapter 2. The review has been published in the Journal of Cell

Science in 2022 under the title “Deep learning – promises for 3D nuclear imaging: a

guide for biologists” [40].

Publication – Chapter 3. Biom3d publication is still in process. Currently two main

publications are planned: one addressed to biologists (in a journal such as Nature

methods) and one addressed to computer scientists (in a journal such as Computer

Methods and Programs In Biomedicine).

Publication – Chapter 4. A publication encompassing the results obtained with the

Arcface loss and the full U-Net pretraining was submitted to MICCAI but was rejected.

A new version is currently planned to be submitted to Transactions on Computational

Biology and Bioinformatics.

List of all publications, conferences and workshops made during this

thesis

Publications

151

• Dubos, T., Poulet, A., Gonthier-Gueret, C., Mougeot, G., Vanrobays, E., Li,

Y., Tutois, S., Pery, E., Chausse, F., Probst, A. V., Tatout, C., Desset, S., 2020.

Automated 3D bio-imaging analysis of nuclear organization by NucleusJ 2.0.

Nucleus 11, 315–329. https://doi.org/10.1080/19491034.2020.1845012

• Tatout, C., Mougeot, G., Parry, G., Baroux, C., Pradillo, M., Evans, D., 2022.

The INDEPTH (Impact of Nuclear Domains on Gene Expression and Plant

Traits) Academy: a community resource for plant science. J. Exp. Bot. 73,

1926–1933. https://doi.org/10.1093/jxb/erac005

• Mougeot, G., Dubos, T., Chausse, F., Pery, E., Graumann, K., Tatout, C.,

Evans, D.E., Desset, S., 2022. Deep learning - promises for 3D nuclear

imaging: a guide for biologists. J. Cell Sci. 135, jcs258986.

https://doi.org/10.1242/jcs.258986

Conferences

• Mougeot, G., Chausse, F., Graumann, K., Desset, S., 2021. Deep Learning

for Nuclear Image Analysis and Applications to 3D Plant Nuclei. SEB Annual

Meeting 2021. Poster.

• Mougeot, G., Chausse, F., Desset, S., Graumann, K., 2021. Deep learning for

nuclear image analysis and application to 3D plant nuclei. Conference article

and Poster.

• Mougeot, G., Chausse, F., Graumann, K., Desset, S., 2022. Segmentation of

3D Plant Nuclei using Deep Learning - A (Small) Guide for Biologist. SEB

Annual Meeting 2022. Oral presentation.

• Mougeot, G., Desset, S., Chausse, F., Graumann, K., 2023. Making deep

learning easy for 3D bio-image segmentation. Oxford Brookes Symposium.

Department of Health and Life Science. Oral presentation.

• Mougeot, G., Chausse, F., Graumann, K., Tatout, C., Desset, S., 2023. A

modular deep learning framework for 3D bioimage segmentation. IABM

2023. Poster.

• Mougeot, G., Biom3d, a modular deep learning framework for 3D bio-image

segmentation. RTMFM 2023.

https://www.youtube.com/watch?v=fJopxW5vOhc Oral presentation.

https://doi.org/10.1080/19491034.2020.1845012
https://doi.org/10.1093/jxb/erac005
https://doi.org/10.1242/jcs.258986
https://www.youtube.com/watch?v=fJopxW5vOhc

152 - Appendices

• Mougeot, G., Biom3d: tools for 3D segmentation. GT-MAIIA 2023. Oral

presentation.

• Mougeot, G., Chausse, F., Graumann, K., Desset, S., Biom3d, a modular

deep learning framework for 3D bio-image segmentation. SEB Annual

Meeting 2023. Oral presentation.

Workshops

• Mougeot, G., 2021. Deep learning made easy for microscopy: an

introduction to ZeroCostDL4Mic and DeepImageJ. MIFOBIO Workshop

2021.

• Part of a large group of trainers. DeepScopie: Application of deep learning

tools for microscopy image analysis. ANF-DeepScopie Angers 2022.

• (Upcoming) Mougeot, G., Biom3d, an easy-to-use and modular deep

learning framework for 3D semantic segmentation. I2K Workshop Virtual

Event 2023.

• (Upcoming) Mougeot, G., Desset, S., An easy-to-use deep learning method

for 3D semantic segmentation. MIFOBIO 2023.

Copyrights

• Figures 1-1 to Figure 1-4 are homemade.

• Figure 1-5 respects the copyright terms of Cold Spring Harbor Perspectives in

Biology: “Authorized users of Cold Spring Harbor Perspectives in Biology

may view, reproduce, or store copies of articles for the purposes of scholarly,

research, educational, and individual use only.” (source: https://

cshperspectives.cshlp.org/site/misc/terms.xhtml)

• Figure 1-6 belongs to public domain.

• Figure 2-1 and Figure 2-2 are homemade.

• Figure 2-3 belongs to public domain.

• Figure 2-4 is homemade.

• Figure 2-5 originates from ArXiv (Creative Common License):

https://arxiv.org/abs/1311.2901

• Figure 2-6 originates from ArXiv (Creative Common License): (A)

https://arxiv.org/abs/1706.03762, (B) https://arxiv.org/abs/2010.11929, (C)

https://arxiv.org/abs/2203.01536

https://cshperspectives.cshlp.org/site/misc/terms.xhtml
https://cshperspectives.cshlp.org/site/misc/terms.xhtml
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2203.01536

153

• Figure 2-7 to Figure 2-11 are homemade.

• Figure 2-12 originates from ArXiv (Creative Common License): (A)

https://arxiv.org/abs/1505.04597, (B) https://arxiv.org/abs/1807.10165, (C)

https://arxiv.org/abs/1908.07919, (D) https://arxiv.org/abs/2201.01266

• Figure 2-13-A is homemade and Figure 2-13-B is under GNU Free

Documentation License.

• Figure 2-14 and Figure 2-15 are homemade.

• Figure 2-16 originates from ArXiv (Creative Common License):

https://arxiv.org/abs/1904.08128

• Figure 3-1 and Figure 3-2 are homemade.

• Figure 3-3 belongs to public domain.

• Figure 3-4 to Figure 3-16 are homemade. Computer icons and other icons in

Figure 3-10 to Figure 3-12 were made by JGraph and are under CC BY 4.0

License: https://github.com/jgraph/drawio)

• Figure 4-1 is adapted from two paper from ArXiv (Creative Common

License): https://arxiv.org/abs/2006.03829 and

https://arxiv.org/abs/1505.04597

• Figure 4-2 to Figure 4-5 are homemade.

• Figure 4-6 is adapted from ArXiv (Creative Common License):

https://arxiv.org/abs/1503.03832

• Figure 4-7 and Figure 4-8 are homemade.

• Figure 5-1 is homemade.

• All Tables are homemade.

All homemade figures and tables in this work are licensed under CC BY 4.0

(https://creativecommons.org/licenses/by/4.0/).

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1807.10165
https://arxiv.org/abs/1908.07919
https://arxiv.org/abs/2201.01266
https://arxiv.org/abs/1904.08128
https://github.com/jgraph/drawio
https://arxiv.org/abs/2006.03829
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1503.03832
https://creativecommons.org/licenses/by/4.0/

