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Maı̂tre de conférences, Télécom SudParis Co-directeur de thèse
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Notation

The following notations are used throughout the introduction of this thesis.
• i.i.d.: independent and identically distributed.
• For r, s ∈ N such that r < s, we write [r : s] = {r, r + 1, . . . , s}. This notation extends to

collections of variables, e.g. we will sometimes write Xr:s for (Xr, Xr+1, . . . , Xs).
• We denote by M1(X ) the set of probability measures on (X,X ). We denote by F(X ) the

set of bounded measurable functions. For the particular case of Rd we write M1(Rd) and
F(Rd).

• For µ ∈ M1(X ) and h ∈ F(X ) we write µ(h) =
∫

h(x)µ(dx).
• For µ, ν ∈ M1(X )2, we write (µ⊗ ν) for the tensor product defined for all (A, B) ∈ X 2 by

(µ⊗ ν)(A×B) =
∫
1A(x)1B(y)µ(dx)ν(dy).

• For a Markov kernel K from (X,X ) to another measurable space (Y,Y), we write for all
h ∈ F(Y), K(h) : X ∋ x 7→

∫
h(y)K(x, dy).

• If µ ∈ M1(X ), then µK is a probability measure in M1(Y) defined for all A ∈ Y by
µK(A) =

∫
1A(y)µ(dx)K(x, dy).

• x 7→ N (x; µ, σ2) is the Gaussian probability density with mean µ and variance σ2.

1





Chapter 1

Introduction

“Tout le malheur des hommes vient de l’espérance.” - Albert Camus.

This introduction surveys the main results of this thesis. We begin with a general discussion of
the challenges addressed by Monte Carlo simulation. Subsequently, we give a brief introduction
to the three subjects studied during the Ph.D.: importance sampling, sequential Monte Carlo,
and generative modeling. The outline of the remaining chapters and our contributions are
summarized at the end of the chapter.

1.1 Introduction générale
Dans de nombreuses applications, l’intégration par rapport à une mesure de probabilité et
l’échantillonnage sont primordiaux; ils permettent le calcul de probabilités, l’estimation de
paramètres et d’états inconnus, ainsi que la comparaison de différents modèles. Dans la plupart
des scénarios réels, les mesures de probabilité d’intérêt n’ont pas de formes analytiques simples
et vivent dans des espaces de grandes dimensions, ce qui rend les méthodes traditionnelles
d’échantillonnage et d’intégration inapplicables. Les méthodes de Monte Carlo se sont imposées
comme des outils puissants pour résoudre ces problèmes complexes.
Pour illustrer la pertinence du problème d’échantillonnage, considérons par exemple le cas de
l’inférence bayésienne. Soient Y et X deux variables aléatoires dépendantes. Nous supposons
que Y est une observation incomplète de X. L’objectif est d’échantillonner les reconstructions
les plus plausibles de X en exploitant les connaissances préalables encodées dans sa loi, appelée
loi a priori, et l’observation Y . Ce cadre, en apparence simple, est utile pour de nombreuses
applications. En tomodensitométrie, des représentations précises de la structure interne du
corps d’un patient sont reconstruites à partir de mesures limitées de rayons X. Pour le suivi
d’objets, des observations incomplètes et potentiellement bruitées, ainsi que des connaissances
sur la dynamique de l’objet, sont utilisées pour estimer sa position et sa trajectoire dans des
séquences vidéo.
Si X ∈ Rdx et Y ∈ Rdy , la mesure de probabilité jointe de (X, Y ) s’écrit :

qX,Y (dx, dy) = qX(dx)qY |X(dy|x),

où qX est la loi a priori de X sur (Rdx ,B(Rdx)) et qY |X est un noyau de transition sur
Rdx × B(Rdy ). Cette loi jointe décrit le processus génératif de la paire (X, Y ). Trouver les
reconstructions les plus crédibles de X étant donnée l’observation Y revient donc à inverser ce
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processus génératif tout en maintenant la bonne loi jointe. Cela implique d’échantillonner la
distribution conditionnelle suivante, appelée loi a posteriori, définie pour y ∈ Rdy par

qX|Y (dx|y) =
qY |X(y|x)qX(dx)

qY (y) , où qY (y) =
∫

qY |X(y|x)qX(dx). (1.1.1)

La loi a posteriori (1.1.1) pondère la distribution qX de X avec la vraisemblance conditionnelle,
ce qui rend l’échantillonnage potentiellement difficile, même lorsque qX est relativement facile
à échantillonner. Au fil des années, différentes techniques et méthodologies ont été développées
pour relever ce défi, notamment les méthodes de Monte Carlo par chaînes de Markov (MCMC)
telles que les algorithmes de Metropolis-Hastings Metropolis et al. (1953) et l’échantillonneur de
Gibbs Gelfand and Smith (1990) ainsi que l’échantillonnage préferentiel Kahn (1949); Goertzel
(1949) et les méthodes de Monte Carlo séquentielles Handschin and Mayne (1969); Gordon
et al. (1993b). Ces approches ont permis aux praticiens de générer des échantillons approxi-
matifs à partir de distributions a posteriori d’intérêt et sont au cœur de nombreuses avancées
scientifiques.
Dans l’exemple de reconstruction que nous venons de décrire, X est la variable aléatoire
d’intérêt. Pour les modèles génératifs, les rôles sont inversés et X est une variable latente
dont le but est de complexifier le modèle proposé pour la loi de Y . Dans ce contexte, qX et
qY |X sont souvent choisies faciles à échantillonner, de sorte à ce que l’échantillonnage de qY soit
simple. Le véritable défi réside plutôt dans l’estimation de la densité marginale qY (y) pour tout
y ∈ Rdy , ce qui est un problème d’intégration. Nous mettons en évidence ce défi en considérant
l’exemple suivant.
Example 1.1.1 (Modèles à variables latentes profonds (DLVM)). Dans Kingma and Welling
(2013), la paramétrisation suivante de la loi marginale de Y est considérée. Soit Θ un ensemble
de paramètres et µ : Θ × Rdx ∋ (θ, x) 7→ µθ(x), σ2 : Θ × Rdx ∋ (θ, x) 7→ σ2

θ(x). Supposons que
X ∼ N (0dx , Idx) et que conditionnellement à X, Y a pour loi N (µθ(X), Idy · σ2

θ(X)). µθ(x)
et σ2

θ(x) sont généralement les sorties d’un réseau de neurones et x sert d’entrée. La densité
marginale résultante qθ

Y est alors un mélange infini et est donc très expressive. Cela signifie que
si les réseaux neuronaux µθ, σ2

θ ont suffisamment de profondeur, qθ
Y peut modéliser n’importe

quelle densité de probabilité positive presque partout.
Étant donné N observations i.i.d. (Y 1, . . . , Y N ) échantillonnées à partir d’une loi inconnue πY ,
le DLVM de l’exemple précédent peut être appris pour approcher πY , c’est-à-dire trouver un
paramètre θ∗ de telle sorte que qθ

Y soit une bonne approximation de πY . Avec cette loi qui se
substitue à πY , nous pouvons ensuite générer de nouveaux échantillons qui sont approximative-
ment distribués sous πY . Cependant, l’apprentissage de cette loi présente un défi important;
nous ne pouvons pas apprendre le paramètre θ par maximum de vraisemblance car qθ

Y est une
intégrale (1.4.6) et n’a pas de forme analytique directe si µθ et σ2

θ sont des réseaux de neu-
rones. On pourrait alors penser à une estimation de type Monte Carlo de qθ

Y car qX est facile
à échantillonner. Cependant, cela pose problème en grande dimension car x 7→ qθ

Y |X(y|x) est
susceptible de prendre des valeurs élevées uniquement dans un petit sous-ensemble A de Rdx qui
a de plus une probabilité très faible selon qX . Il est alors probable qu’aucun échantillon de X ne
tombe dans cet ensemble. Ainsi, le défi pratique réside dans la taille d’échantillon substantielle
nécessaire pour obtenir une approximation fiable. Pour les problèmes de grande dimension,
cette exigence devient irréalisable, rendant l’approche Monte Carlo standard impraticable. Il
est raisonnable de penser que si nous sommes capables d’échantillonner à partir d’une mesure de
probabilité proche de la loi a posteriori, nous pouvons peut-être estimer la probabilité marginale
qY (y) avec une grande précision en n’utilisant une modeste taille d’échantillon, et c’est en effet
le cas et le principal objectif de l’échantillonnage préferentiel (Kahn, 1949; Goertzel, 1949) qui
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est présenté dans la Section 1.3.
En résumé, le problème de l’intégration repose sur celui de l’échantillonnage, qui à son tour
dépend de la recherche d’une approximation appropriée de la mesure de probabilité cible. Il peut
s’agir soit d’une chaîne de Markov qui converge vers la distribution cible souhaitée (MCMC), soit
d’une loi de proposition soigneusement construite (échantillonnage par importance et méthodes
de Monte Carlo séquentielles) dont un ensemble d’échantillons est pondéré pour former une
approximation empirique de la cible.
Cette thèse vise à contribuer à la problématique de la construction de lois de proposition
et d’estimateurs efficaces pour l’échantillonnage par importance et les méthodes de Monte
Carlo séquentielles. Dans les chapitres 2 et 3, nous étudions ce problème dans le contexte
de l’échantillonnage par importance en l’abordant sous deux angles différents. Dans le chapitre
2, nous cherchons une loi de proposition peu coûteuse et basée sur des étapes d’optimisation
qui peut être utilisée pour l’apprentissage de modèles génératifs ou pour l’estimation en temps
réel dans le cas des méthodes de Monte Carlo séquentielles. Dans le chapitre 3, nous proposons
un nouveau schéma pour l’apprentissage de lois de proposition. Les chapitres 4, 5 et 6 sont
ensuite dédiés aux méthodes de Monte Carlo séquentielles. Dans le chapitre 4, notre objectif est
de fournir de meilleurs estimateurs de la variance asymptotique qui apparaît dans le théorème
central limite pour le filtre à particules. En tant que deuxième contribution, nous obtenons le
premier estimateur pour la variance asymptotique du lisseur à particules. Dans le chapitre 5,
nous étudions le problème de l’estimation du gradient de la logvraisemblance de modèles de
Markov cachés et obtenons une procédure d’estimation avec un biais réduit dont nous prouvons
la convergence. Enfin, dans le chapitre 6, nous proposons une approche basée sur les méthodes
de Monte Carlo séquentielles et les modèles de diffusion pour résoudre des problèmes inverses
linéaires bayésiens.

1.2 General introduction
In many applications, integration with respect to a probability measure and sampling are
paramount; they enable the computation of probabilities, estimation of unknown parameters
and states as well as the comparison of different models. In most real-world scenarios, the
underlying probability distributions of interest lack simple analytical forms and are high dimen-
sional, making traditional sampling and integration methods infeasible. Monte Carlo methods
have emerged as powerful and versatile tools for tackling these complex problems.
To illustrate the relevance of the sampling problem, consider for instance the case of Bayesian
inference. Let Y and X be two dependent random variables. We assume that Y is an incomplete
observation of X, e.g. a low dimensional representation corrupted with noise. The goal is to
sample the most plausible reconstructions of X by leveraging prior knowledge encoded in its
law, known as the prior, and the observation Y . This seemingly simple program encompasses
important applications. In Computed Tomography, accurate representations of the internal
structure of a patient’s body are reconstructed from limited X-ray measurements. For object
tracking, incomplete and potentially noisy observations, along with knowledge about the object’s
dynamics, are employed to estimate its position and trajectory in video sequences.
If X ∈ Rdx and Y ∈ Rdy , the joint probability measure of (X, Y ) is written

qX,Y (dx, dy) = qX(dx)qY |X(dy|x),

where qX is the prior distribution of X on (Rdx ,B(Rdx)) and qY |X is a transition kernel on
Rdx × B(Rdy ). This joint distribution describes the generative process of the pair (X, Y ). The
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observed Y is a sample from qY |X(·|X) for some given X sampled from qX . Finding the most
credible reconstructions of X given Y then boils down to reversing this generative process while
maintaining the correct joint distribution. This involves sampling the following conditional
distribution, known as the posterior, defined for y ∈ Rdy by

qX|Y (dx|y) = qY |X(y|x)qX(dx)
/
qY (y) , where qY (y) =

∫
qY |X(y|x)qX(dx) . (1.2.1)

The posterior (1.2.1) weights the distribution qX of X with the conditional likelihood making
it likely to be challenging to sample, even when qX is relatively easy to sample from. Over
the years, various techniques and methodologies have been developed to address this challenge,
including Markov chain Monte Carlo (MCMC) methods such as the Metropolis-Hastings al-
gorithms Metropolis et al. (1953) and Gibbs sampling Gelfand and Smith (1990) as well as
importance sampling Kahn (1949); Goertzel (1949) ans Sequential Monte Carlo Handschin and
Mayne (1969); Gordon et al. (1993b). These approaches have enabled practitioners to gener-
ate approximate samples from posterior distributions of interest and are at the heart of many
scientific advances.
In the reconstruction example we have just described X is the random variable of interest. In
generative modeling, the roles are inverted and X is a latent variable whose purpose is to design
a more complex law for Y . In this context, qX and qY |X are often chosen to be simple to sample
from and so overall, sampling from qY is straightforward. The real challenge instead lies in the
estimation of the marginal density qY (y) for all y ∈ Rdy , which is an integration problem. We
highlight this challenge by considering the following example.
Example 1.2.1 (Deep latent variable models (DLVM)). In Kingma and Welling (2013) the
following parameterization for the marginal law of Y is considered. Let Θ be a set of parameters
and µ : Θ× Rdx ∋ (θ, x) 7→ µθ(x), σ2 : Θ× Rdx ∋ (θ, x) 7→ σ2

θ(x). Let X ∼ N (0dx , Idx) and the
conditional distribution of Y given X be N (µθ(X), Idy · σ2

θ(X)). µθ(x) and σ2
θ(x) are typically

the outputs of a neural network and x serves as the input. The resulting marginal density qθ
Y is

an infinite mixture and is thus highly expressive meaning that if the neural networks µθ, σ2
θ are

given enough depth, qθ
Y can model any probability density that is positive everywhere.

Given N i.i.d. observations (Y 1, . . . , Y N ) sampled from an unknown data distribution πY , the
DLVM of the previous example can be “learned” to approximate πY , i.e. find a parameter
θ∗ so that qθ∗

Y is a good approximation of πY . With this surrogate we can then generate new
approximate samples from πY . However, learning this surrogate presents a significant challenge;
we cannot learn the parameter θ through maximum likelihood since qθ

Y is an integral (1.4.6)
and does not have a straightforward analytical form if µθ and σ2

θ are neural networks. We could
think of a Monte Carlo estimate of qθ

Y as qX is easy to sample from. This is flawed however in
high dimensions as x 7→ qθ

Y |X(y|x) is likely to take large values only in a small subset A of Rdx

that furthermore has a very small probability under qX . It is likely then that no samples from
X will fall in this subset. As such, the practical challenge arises from the substantial sample size
needed to achieve a reliable approximation. Particularly for high-dimensional problems, this
requirement becomes computationally infeasible, rendering the standard Monte Carlo approach
impractical. As we have mentionned before, the posterior reverses the generative process and
localizes the sampling in the regions of Rdx that have likely generated Y . It is then sensible to
assume that if we are able to sample from a probability measure that is close to the posterior
then perhaps we can estimate the marginal probability qY (y) with high accuracy using only a
small sample size, and this is indeed the case and the main point of importance sampling (Kahn,
1949; Goertzel, 1949) which is presented in the next section.
In summary, the problem of integration relies on the problem of sampling, which, in turn,
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hinges on finding an appropriate surrogate for the target probability measure. It can either
be a Markov chain that converges to the desired target distribution (MCMC) or, a carefully
crafted proposal (importance sampling and sequential Monte Carlo) of which a pool of samples
is weighted to form a consistent empirical approximation.
This thesis aims at contributing to the problem of constructing efficient proposals and estimators
for importance sampling and sequential Monte Carlo methods. In Chapters 2 and 3 we study
this problem in the context of importance sampling and approach it from two different angles.
In Chapter 2, we seek a lightweight optimization based proposal that can be used for learning
generative models or for real-time estimation in Sequential Monte Carlo and in Chapter 3
we derive a new scheme for learning sharp importance proposals. Chapters 4, 5 and 6 are
dedicated to Sequential Monte Carlo. In Chapter 4, we aim at providing better estimators of
the asymptotic variance that appears in the Central Limit Theorem for the particle filter. As
a second contribution we derive the first estimator for the asymptotic variance of the particle
smoother. In Chapter 5, we study the problem of particle smoothing estimation in the context
of parameter learning and derive a procedure with provably reduced bias. Finally, in Chapter 6
we devise Sequential Monte Carlo-based approach for solving linear Bayesian inverse problems
with generative model priors.

1.3 Technical background

1.3.1 Importance sampling

Principle

Importance sampling (IS) is a technique with roots dating back to Kahn (1949); Goertzel (1949).
We denote by π a target probability measure defined on a measurable space (X,X ). Our goal
is to compute integrals of the form

π(f) =
∫

f(x)π(dx)

where f is a real valued measurable function. IS comes into play when either: (1) it is not
possible to sample from π, or (2) it is possible to sample from π but the vanilla Monte Carlo
estimator performs poorly for a fixed computational budget. The latter happens for example
when f takes non-zero values only in the tails of π. IS consists in introducing an easy to
sample importance distribution µ with support including the support of π and applying a
change of measure to estimate the expectation of interest.
Let µ be a measure defined on (X,X ) and dominating π, i.e. for any A ∈ X , π(A) > 0
implies that µ(A) > 0. Denote by dπ/dµ the Radon-Nikodym derivative which satisfies the
change of measure identity π(dx) = dπ

dµ(x)µ(dx). For any π-integrable function f we have
that π(f) =

∫
f(x)dπ

dµ(x)µ(dx), and hence, by drawing M i.i.d. samples from µ we obtain the
following estimator πM

µ (f) of π(f),

πM
µ (f) = M−1

M∑
i=1

f(Xi)dπ

dµ
(Xi) , where (X1, . . . , XM ) iid∼ µ . (1.3.1)

The importance distribution µ is a free parameter that may be optimized to improve the ef-
ficiency of the estimator (1.3.1), e.g. accurate estimation with M as small as possible. By
inspecting the variance of πM

µ (f) we see that it is equal to M−1(µ(f2 dπ
dµ

2)− π(f)2) and hence
if f ≥ 0 for example, setting µ = f · π/π(f) achieves a zero variance estimator. In the more
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general case, setting µ ∝ |f | · π minimizes the variance. This means in practice that µ should
assign high probability in the regions of the space where the measure |f | · π has large mass.
This ideal importance distribution is however intractable and one should aim at setting µ as
close as possible to this optimal choice. In fact, this should be done by paying a particular
attention to the tails of the importance distribution, as tails lighter than those of the target
distribution may result in an estimator with infinite variance. If one wants to estimate integrals
with different test functions f using the same samples, then it is best to choose µ as close as
possible to π.
When π is known only up to a normalizing constant, e.g. π is a posterior distribution, dπ/dµ
is also known up to a scaling factor. We can still estimate π(f) by noticing that π(f)/π(1) is
free of any scaling factor and equal to π(f). Estimating both the numerator and denominator
with IS using the same samples X1:M iid∼ µ then yields the estimator

πM
µ (f) =

M∑
i=1

ω̃i∑M
j=1 ω̃j

f(Xi) , where ω̃i = dπ

dµ
(Xi) , (1.3.2)

known as the self-normalized importance sampling (SNIS) estimator. In contrast with (1.3.1), it
is biased, i.e. E

[
πM

µ (f)
]
̸= π(f). The non-asymptotic properties of the SNIS estimator are also

well understood, see Cappe et al. (2005); Agapiou et al. (2017); Chatterjee and Diaconis (2018).
Let us first formally define the α-Rényi and KL divergence which will allow us to quantify
the discrepancy between two probability measures. The most fundamental properties of such
divergences are covered in Van Erven and Harremos (2014).
Definition 1.3.1. The α-Rényi divergence between π ∈ M1 and µ ∈ M1 with µ≫ π is defined
for any α ∈ (0, 1) ∪ (1,∞) by

Rα(π ∥ µ) := 1
α− 1 log

∫ dπ

dµ
(x)αµ(dx) . (1.3.3)

Its extension to the order α = 1 is the backward Kullback-Leibler divergence

KL(π ∥ µ) :=
∫

log dπ

dµ
(x)π(dx) . (1.3.4)

For any α ∈ (0,∞), Rα(π ∥ µ) = 0 if and only if π = µ.
Theorem 1.3.2 (Agapiou et al. (2017)). Assume that µ≫ π. The bias and MSE of the SNIS
estimator over bounded test functions is given by

sup
|f |≤1

∣∣E [πM
µ (f)− π(f)]

∣∣ ≤ 12 expR2(π ∥ µ)
M

,

sup
|f |≤1

E
[(

πM
µ (f)− π(f)

)2] ≤ 4 expR2(π ∥ µ)
M

.

Impact of the dimension

As for the standard IS estimator, the sufficient sample size M that guarantees a small variance
and bias for a fixed importance distribution µ is proportional to the exponential of the 2-Rényi
divergence, or the variance of the importance weight. The 2-Rényi divergence captures the
intuitive idea that the importance proposal should have the same regions of high probability as π.
This is observed by recognizing that R2(π ∥ µ) = log

∫ dπ
dµdπ and hence it takes large values if dπ

dµ
is large in regions of high probability under π. The same intuition holds for the KL divergence.
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Theorem 1.3.2 also highlights how the dimension of the ambient space X impacts the IS and SNIS
estimators. Indeed, assume that the target distribution is instead π⊗d(dx1:d) = ∏d

i=1 π(dxi) and
the importance distribution is µ⊗d; we replicate d times the original target π and importance
distribution µ. Then according to the 2-Rényi divergence criterion in Theorem 1.3.2, the sample
size M is now exp(d·R2(π ∥ µ)

)
sinceR2(π⊗d ∥ µ⊗d) = d·R2(π ∥ µ); it scales exponentially with

the dimension. This a necessary and sufficient sample size for the IS estimator (1.3.1). If one is
however interested in being close to π(f) in high probability then the sample size prescribed by
the variance is often much larger than what is required. In Chatterjee and Diaconis (2018) it
is shown, under the assumption that log dπ

dµ(Y ), where Y ∼ π, is concentrated around its mean
KL(π ∥ µ), that the necessary and sufficient sample size is in fact of the order exp (KL(π ∥ µ)).
This confirms that importance sampling intriniscally suffers from exponential dependence on
the dimension since KL(π⊗d ∥ µ⊗d) = d · KL(π ∥ µ). While this discussion only holds for
probability measures that factorize over the dimensions, the curse of dimensionality is also
observed empirically for probability measures that have intrinsic dimension smaller than that
of the ambient space.

IS-based samplers

Interestingly, the SNIS estimator defines a consistent empirical approximation of π given by
πM

µ (dx) = ∑M
i=1 ωiδXi(dx) where ωi = ω̃i/

∑M
j=1 ω̃j . This suggests that we can draw approxi-

mate samples from π as follows; sample (J1
I , . . . , JM̃

I ) iid∼ Categorical({ωi}Mi=1) and set X̃j = XIj

for all j ∈ [1 : M̃ ]. This results in a unweighted particle approximation π̃M
µ of π given by

π̃M
µ = M̃−1∑M̃

i=1 δX̃i(dx) where the samples X̃i are dependent however. Nonetheless, they be-
come i.i.d. when the sample size M of the underlying SNIS estimator goes to infinity, see (Cappe
et al., 2005, Chapter 9).
We now describe the iterated SIR (iSIR) algorithm Andrieu et al. (2010) which defines, with
finite M , a geometrically ergodic Markov chain, i.e. one that gets arbitrarily close to π in finite
time. iSIR proceeds iteratively as follows; given a state X̃k at iteration k, (1) set X1

k+1 = X̃k

and sample (X2
k+1, . . . , XM

k+1) iid∼ µ; (2) compute the unnormalized weights ω̃i
k = dπ

dµ(Xi
k+1) and

set ωi
k+1 = ω̃i

k+1/
∑M

j=1 ω̃j
k+1; (3) sample Ik+1 ∼ Categorical({ωi

k+1}Mi=1) and set X̃k+1 = X
Ik+1
k+1 .

Basically at each step a promising particle is selected according to its importance weight and
propagated to the next iteration. This procedure defines a π-invariant Markov chain (X̃k)k∈N
with transition kernel defined by

PM (x, dy) =
∫ { M∑

i=1

dπ/dµ(xi
k+1)∑M

j=1 dπ/dµ(xj
k+1)

δxi
k+1

(dy)
}

δx(dx1
k+1)µ⊗M−1(dx2:M

k+1) .

Theorem 1.3.3 (Andrieu et al. (2018a)). Assume that w∞ = supx∈X dπ/dµ(x) <∞. Then for
any initial distribution ξ ∈ M1(X ) and all M > 1,

∥π − ξP k
M∥TV ≤ ρk

M ,

where ρM = 1− (M − 1)/(2w∞ + M − 2).
The Markov chain resulting from the iSIR procedure thus converges to π geometrically fast.
The mixing rate ρ decreases with M but depends on w∞ which is exponential in the dimension,
making the use of iSIR prohibitive in large dimensions, similarly to SNIS. Indeed, in high
dimensions the variance of the importance ratio increases exponentially and iSIR gets stuck in
points with large importance ratio, which are difficult to escape. It has recently been shown
in Samsonov et al. (2022) that its performance can be improved by combining it with a local
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MCMC kernel, i.e. by considering instead the kernel KM (x, dy) =
∫

PM (x, dz)R(z, dy). R can
be for example the Metropolis Adjusted Langevin algorithm (MALA) or Hamiltonian Monte
Carlo (HMC). By incorporating a local MCMC step, the sampler can eventually move to areas
where points have small importance ratio and escape at the next iSIR step. Finally, Compared to
traditional MCMC algorithms, iSIR chooses one sample X̃k+1 from N proposals (X1

k , . . . , XN
k )

and thus incurs a non-negligible computational waste since N − 1 samples are discarded at
each step. Naesseth et al. (2020); Cardoso et al. (2022) propose to recycle the candidate pool
(X1

k , . . . , XN
k ) and their normalized weights to form a SNIS estimator. Specifically, the following

roll-out estimator is considered in Cardoso et al. (2022)

πM
µ,k0:k(f) = 1

k − k0

k∑
ℓ=k0+1

{
M∑

i=1

ω̃i
ℓ∑M

j=1 ω̃j
ℓ

f(Xi
ℓ)
}

, where ω̃i
ℓ = dπ

dµ
(Xi

ℓ) ,

and is shown to have a geometrically decreasing bias, thus inheriting the properties of iSIR.

Optimization of the importance distribution

In light of these results, a crucial and natural question arises: how can we minimize the KL or
2-Rényi divergence between π and µ within a specific family of probability measures? We now
review the existing methods that explicitly focus on doing so.
In Cappé et al. (2008) the authors propose a method for minimizing µ 7→ KL(π ∥ µ) within
the family of probability measures written as µθ(dx) =

∫
µθ

X|Z(dx|z)µθ
Z(dz), where µθ

X|Z and
µθ

Z are chosen within some parametric classes of probability measures on (X,X ) and (Z,Z)
respectively. For such probability measures we have that

KL(π ∥ µθ) ≤
∫ ∫

log
π(x)πZ|X(z|x)

µθ
X|Z(x|z)µθ

Z(z)
π(dx)πZ|X(dz|x) := KL(π ⊗ πZ|X ∥ µθ

X|Z ⊗ µθ
Z) ,

for all kernels πZ|X , and we can thus minimize the upper bound with respect to θ and the kernel
x 7→ πZ|X(dz|x) in a coordinate ascent fashion. For a fixed θ0, the minimum w.r.t. to πZ|X(·|x)
for all x ∈ X is attained at µθ0

Z|X(dz|x) ∝ µθ0
X|Z(x|z)µθ0

Z (dz), in which case the upper bound is
equal to KL(π ∥ µθ0). As a consequence, optimizing the upper bound is equivalent to solving
iteratively,

θt+1 = argmin
θ
−
∫ ∫

log µθ
X|Z(x|z)µθ

Z(z)µθt

Z|X(dz|x)π(dx) , (1.3.5)

and induces the decrease of KL(π ∥ µθ) at each step. This procedure is the exact equivalent of the
Expectation-Maximization algorithm Dempster et al. (1977). In particular, it offers closed form
integrated updates for the means, covariances and weights when µθ is a mixture of Gaussian
distributions, thus avoiding any parameterization of the weights and covariances. The updates
are however given in terms of expectations over π. They are in practice estimated with SNIS
at step t + 1 using µθt , which in some sense is the best available importance distribution up
to step t that one can choose. This procedure lies more broadly within the family of Adaptive
importance sampling (AIS) Oh and Berger (1993); Cappé et al. (2004); Douc et al. (2007a);
Cornuet et al. (2012); Daudel et al. (2021b) methods, where the importance distributions are
updated adaptively using samples and weights from previous iterations. See Bugallo et al.
(2017); Elvira and Martino (2021) for a detailed overview. Their convergence properties are also
well understood, see Douc et al. (2007a); Marin et al. (2019); Portier and Delyon (2018).
More recently, AIS has shifted towards the use of MCMC, SMC algorithms and deep learning
for optimizing the importance distribution. While we have omitted its discussion in the previous

10



paragraph, the choice of the family on which one optimizes is of the utmost importance. The
integrated EM method we have just presented relies on a specific factorization of the importance
distribution. Furthermore, in order to obtain closed form updates, µθ

X|Z needs to lie within the
exponential family and µθ

Z has to be a discrete measure with a number of components chosen
beforehand. One also needs to account for the tails of the target distribution. Optimizing
within families of probability measures that avoid these constraints altogether while having at
the same time a strong approximation power is thus crucial. Normalizing flows (NF) Rippel
and Adams (2013); Dinh et al. (2014); Papamakarios et al. (2021) are able to represent ar-
bitrarily complex probability distributions using deep learning architectures, thus allowing for
automatic adaptation to the tails and multimodality of the target distribution.
A NF uses invertible neural networks Tθ : X→ X with easy to compute Jacobian to represent
probability densities positive everywhere on X. The idea is then to push a base distribution p
(often a Normal distribution, hence the normalizing terminology) to the target distribution π,
i.e. fit the parameters of the invertible neural network Tθ so that the law of Tθ(X), X ∼ p,
which we denote by Tθ#p, is approximately π. Tθ#p is easy to sample and furthermore its
density is tractable. Indeed, by the change of variable formula, see (Bogachev and Ruas, 2007,
Chapter 3), Tθ#p(x) = p

(
T−1

θ (x)
)∣∣JT−1

θ
(x)
∣∣, where x 7→

∣∣JT−1
θ

(x)
∣∣ is the determinant of the

Jacobian.
Similarly to standard AIS, when fitting Tθ#p to π with gradient descent one is faced with an
intractable expectation w.r.t. π;

∇θKL(π ∥ Tθ#p) = −
∫
∇θ log p

(
T−1

θ (x)
)

+ log
∣∣JT−1

θ
(x)
∣∣π(dx) . (1.3.6)

At this point, one may estimate the gradient at θt using either importance sampling, MCMC or
SMC with Tθt−1#p as initial proposal. We focus first on MCMC and SMC based estimates which
have been exploited recently in Naesseth et al. (2020); Gabrié et al. (2022); Arbel et al. (2021);
Samsonov et al. (2022). See Grenioux et al. (2023) for a more detailed survey and comparison.
In Naesseth et al. (2020) the authors use iSIR with proposal Tθt−1#p. Gabrié et al. (2022)
alternate between an Independent Metropolis-Hastings with proposal Tθt−1#p and a MALA or
Unadjusted Langevin algorithm (ULA) initialized at samples from Tθt−1#p. Samsonov et al.
(2022) use iSIR combined with MALA and Arbel et al. (2021) devise an SMC sampler with
a normalizing flow approximating the intermediate bridge distributions thus facilitating their
sampling when combined with an MCMC kernel. The convergence of the MCMC only adaptive
samplers Naesseth et al. (2020); Gabrié et al. (2022); Samsonov et al. (2022) is undertaken in
Kim et al. (2022).
These methods have shown superior performance compared to those which estimate the gradient
using importance sampling Müller et al. (2019a); Prangle and Viscardi (2023). The latter also
suffer from exponential dependence on the dimension due to the importance weight and hence
the optimization procedure fails when the initial distribution Tθ0#p is not already close to π. See
Geffner and Domke (2021); Dhaka et al. (2021) for a more thorough disccusion of this matter.
On the other hand, MCMC based adaptive IS may not encounter the same issue since MCMC
samplers, at least when π is log concave, exhibit more favourable dependence on the dimension.
Finally, let us emphasize that using MCMC algorithms to learn importance proposals, when
we could just use MCMC algorithms directly, is not contradictory in itself. Indeed, after the
map Tθ is learned, we can use it to obtain i.i.d. (although approximate) samples on the fly and
estimate normalizing constants unbiasedly.
We end this section with two research directions that we believe are relevant in the context of
the previous discussion.
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(Q1) Gradient-based samplers such as the unadjusted Langevin algorithm Besag (1994) and
Hamiltonian Monte Carlo Neal et al. (2011) have gained widespread popularity. However,
the density of the t-th iterate for these samplers is generally intractable, making them
unsuitable for use as importance proposals. One possible approach to overcome this
limitation is by expanding the dimension of the state space and introducing reverse kernels
Neal (2001a). Unfortunately, devising such reverse kernels is challenging in most cases.
Are there any gradient-based samplers that have tractable density? Furthermore, can
we leverage all the orbits (i.e. the whole chain) on the trajectory of these samplers in a
principled manner to estimate normalizing constants unbiasedly?

(Q2) The use of MCMC, weighting mechanisms and resampling has been useful for adressing
the various challenges of adaptive importance sampling. Is it possible to identify an
appropriate weighting mechanism that, when combined with MCMC and resampling,
improves the exploration of the target probability measures?

1.3.2 Sequential Monte Carlo

Importance sampling can be implemented sequentially to solve a specific type of problems,
called non-linear filtering, involving a time component. As the time horizon expands, so does
the dimension of the state space, leading to a degradation of the resulting importance sampling
estimates. The solution of Gordon et al. (1993b) that we shall present now allows the rejuve-
nation of the samples by duplicating those with high importance weights and discarding those
with low weights.

Setting

Let M0 be an initial probability measure. For all t ∈ N>0 define the Markov kernel Mt : X×X ∋
(x, A) 7→

∫
1A(y)Mt(x, dy) and for all t ∈ N the potential function gt : X ∋ x 7→ gt(x). Define

also for all t ∈ N>0 the measure, or Feynman-Kac model

γ0:t(dx0:t) = M0(dx0)
t∏

s=1
gt−1(xt−1)Mt(xt−1, dxt) , (1.3.7)

and γ0(dx0) = M0(dx0). We subsequently write γt(dxt) =
∫
1Xt(x0:t−1)γ0:t(dx0:t). Define

respectively the predictive and filtering probability measures

ηt(dxt) = γt(dxt)
/
γt(1X), ϕt(dxt) = gt(xt)ηt(dxt)

/
ηt
(
gt
)

. (1.3.8)

The following recursion linking the predictive and filtering distributions is satisfied

ηt(dxt) =
∫

ϕt−1(dxt−1)Mt(xt−1, dxt). (1.3.9)

From the definitions in (1.3.8) and (1.3.7), we observe that if we have an empirical approximation
of ϕt−1, we can use it to approximate ηt and consequently ϕt using (1.3.8). Before delving
into the details of how these approximations are obtained, let us provide two examples that
demonstrate the utility of this framework for Bayesian inference and the approximation of
target distributions known up to a normalizing constant.
Example 1.3.4 (Hidden Markov models). HMMs consist of an unobserved state process {Xt}t∈N
and observations {Yt}t∈N. They respectively evolve in two general measurable spaces (X,X ) and
(Y,Y). It is assumed that {Xt}t∈N is a Markov chain with transition kernels (Mt+1)t∈N and
initial distribution M0. Given the states {Xt}t∈N, the observations {Yt}t∈N are independent and
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for all t ∈ N, the conditional distribution of the observation Yt only depends on the current state
Xt. This distribution is written Gt(Xt, .) and admits the potential gt(xt, .) as density (the de-
pendency in Yt is made implicit and we drop the second argument). Given a realized observation
record Y0:t, the predictive and filtering distributions (1.3.8) are then the distributions of Xt given
Y0:t−1 and Xt given Y0:t respectively. Interestingly, the recursions (1.3.8) and (1.3.7) show that
it is even possible to build online approximations of the posterior; when a new observation Yt+1
is available, we can approximate the distribution of Xt+1 given Y0:t+1 using the approximation
of that of Xt given Y0:t.
Example 1.3.5 (SMC sampler Del Moral et al. (2006a)). Let T ∈ N and π be some target
probability measure defined on (X,X ). Consider a sequence of probability measures {πt}Tt=0 also
defined on (X,X ) with πt+1 ≪ πt, π0 easy to sample and πT = π, and let {Kt}Tt=0 be a sequence
of Markov kernels such that Kt is πt-invariant. Using that πt = πtKt we find

πt(dxt) =
∫ dπt

dπt−1
(xt−1)∫ dπt

dπt−1
(zt−1)πt−1(dzt−1)

πt−1(dxt−1)Kt(xt−1, dxt) ,

and letting Mt(xt−1, dxt) = Kt(xt−1, dxt), gt(xt) = (dπt+1/dπt)(xt) we see that ηt = ϕt−1 =
πt. A popular example of sequence {πt}Tt=0 is the annealing sequence defined by πt(x) ∝
π0(x)1−γtπ(x)γt where γ0 = 0 < . . . < γT = 1 control the interpolation between π0 and π.
The invariant kernel Kt can be a Metropolis-Hastings kernel, which does not require the knowl-
edge of the normalizing constant of each πt. If the discrepancy between πt+1 and πt is small
enough, then it is possible to build efficient particle approximations of each πt and hence π.
This provides an interesting alternative to the SNIS particle approximation where an artificial
time component is introduced.

Particle filtering

Let us now detail how the particle approximations of ηt and ϕt are obtained sequentially. We
recommend Del Moral (2004); Douc et al. (2014) for an in-depth description of the theoretical
properties of SMC algorithms and Chopin and Papaspiliopoulos (2020) for a more recent account
balancing theoretical aspects, algorithmic details and implementation.
Assume that we have at hand a consistent particle approximation ϕN

t = ∑N
i=1 ωi

tδξi
t

of ϕt. By
plugging this approximation in (1.3.9) we obtain the mixture

ϕN
t Mt+1(dxt+1) =

N∑
i=1

ωi
tMt+1(ξi

t, dxt+1) , (1.3.10)

approximating ηt+1 and which serves as a basis for obtaining its particle approximation. In-
deed, this is done by sampling from the same mixture, which boils down to first sampling
conditionally i.i.d. ancestor indexes (A1

t , . . . , AN
t ) iid∼ Categorical({ωj

t }Nj=1) and then sampling
for all i ∈ [1 : N ], Xi

t+1 ∼ Mt+1(ξAi
t

t , ·). This results in an unweighted particle approximation
ηN

t+1 = N−1∑N
i=1 δξi

t+1
. The particle approximation of ϕt+1 is then obtain by plugging ηN

t+1 in
(1.3.8), which yields

ϕN
t+1(dxt+1) =

N∑
i=1

ωi
t+1δξi

t+1
(dxt+1), where ωi

t+1 ∝ gt+1(ξi
t+1) .

The initial particle approximation is obtained by simply drawing N particle ξ1:N
0 ∼ M⊗N

0 and
then weighting according to g0. This procedure coincides with the bootstrap particle filter with
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multinomial resampling Gordon et al. (1993b). Other possible resampling schemes are also
possible Douc and Cappé (2005). Another approach to obtaining the particle approximation of
ηt+1 differently consists in simply sampling ξi

t+1 ∼Mt+1(ξi
t, ·) for all i ∈ [1 : N ] and setting ηN

t =∑N
i=1 ωi

tδξi
t+1

. The particle approximation of ϕt+1 is then ϕN
t+1 = ∑N

i=1 ωi
t+1δξi

t+1
where ωi

t+1 ∝
ωi

tgt+1(ξi
t+1). As a result, the weight at step t+1 is ωi

t+1 ∝
∏t+1

s=0 gs(ξi
s) and quickly degenerates

as t grows. This phenomenon is in fact directly related to the degeneracy of the importance
weights discussed in the previous section, where, after a few time steps, all normalized weights
except one are equal to 0, see (Douc et al., 2014, Chapter 10) for numerical evidence. By
resampling according to the weights {ωi

t}Ni=1 Gordon et al. (1993b), the particles with small
importance weights are eliminated whereas those with large importance weights are replicated
with weights reset to 1/N . Interestingly, the resampling step increases the variance locally while
at the same time guaranteeing that the particle approximations do not degenerate globally.
The particle approximation of the measure γt is obtained as a byproduct of ηN

t and is given
by

γN
t (dxt) =

{
t−1∏
s=0

1
N

N∑
i=1

ωi
s

}
ηN

t (dxt) . (1.3.11)

Surprisingly, it provides unbiased estimates of γt(f) Crisan et al. (1998) for any bounded test
function f . The particular case of f = 1 allows for unbiased estimation of the likelihood of
the observations in HMMs in Example 1.3.4 and the unbiased estimation of the normalizing
constant in Example 1.3.5.
The theoretical properties of the particle filter (PF) are well understood. More specifically,
ηN

t (f), ϕN
t (f) and γN

t (f) all converge almost surely to ηt(f), ϕt(f) and γt(f) respectively for
bounded test functions f . Deviation inequalities are given in Del Moral and Guionnet (1998)
and the particle approximations satisfy central limit theorems with explicit expressions of the
asymptotic variances Del Moral and Guionnet (1999); Chopin (2004). Stability results, which
are fundamental for assessing the reliability of the particle approximations, are also relatively
well understood by now Del Moral and Guionnet (2001); Oudjane and Rubenthaler (2005);
Van Handel (2009); Whiteley (2013); Douc et al. (2014). Indeed, at the most basic level, a
particle filter consists in the accumulation of approximations; we use the approximation of the
filter at step t to obtain the one at step t + 1. One may then expect the overall approximation
error to blow up very fast, in which case the PF would be a truly useless algorithm for Bayesian
inference tasks that involve streaming data. Fortunately, the ergodicity of the signal {Xt}t∈N and
observation process {Yt}t∈N, the most basic assumptions which have been relaxed by now, allow
showing that the particle filter converges to the true filter uniformly in time. Furthermore, the
stability of the PF is also observed for more general models that are not even close to satisfying
the strong mixing assumptions.

Particle smoothing

The poor man smoother. We now turn to smoothing which is highly relevant in Bayesian
inference. Smoothing corresponds to approximating the conditional distribution of the state
Xs, or in fact a subsequence of states Xs:t for s ≤ t, given the observation record Y0:t. As
we will see, smoothing distributions are particularly useful for parameter learning via the EM
algorithm. To simplify the discussion, we will focus only on the joint smoothing distribution:
i.e. the conditional distribution of X0:t given Y0:t.
In the frameowrk of Example 1.3.4 the distribution of X0:t given the observations Y0:t coincides
with

ϕ0:t|t(dx0:t) = gt(xt)γ0:t(dx0:t)
/
γt(gt) .
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The filtering distribution ϕt at step t is its t-th marginal. Assume that the particle approxima-
tion at step t is ϕN

0:t|t(dx0:t) = ∑N
i=1 ωi

tδξi
0:t

(dx0:t) where ξi
0:t ∈ Xt+1 is a particle path. Since we

have
ϕ0:t+1|t+1(dx0:t+1) ∝ gt+1(xt+1)Mt+1(xt, dxt+1)ϕ0:t|t(dx0:t) ,

we may obtain an estimate of ϕ0:t+1|t+1 by resampling and propagating according to Mt+1,
similarly to the particle filter. The key difference is that instead of resampling particles, we select
ancestor paths at each step. The particle smoothing approximation is hence given by

ϕ0:t+1|t+1(dx0:t+1) =
N∑

i=1
ωi

t+1δ(
ξ

Ai
t

0:t ,ξi
t+1)

(dx0:t+1) , (1.3.12)

and recursively we see that a particle path ξi
0:t is made of the ancestors from t − 1 to 0 of the

particle ξi
t, i.e.

ξi
0:t = (ξi

t, ξ
Ei

t,t−1
t−1 , . . . , ξ

Ei
t,0

0 ) , where Ei
t,s = A

Ei
t,s+1

s 1[0:t)(s) + i · 1{t}(s) . (1.3.13)

Unfortunately, the simplicity of this procedure has a cost; as the time horizon t grows larger
than the number of particles N and we keep selecting from the previous paths, the pool of
particles with time index far from t in the support of ϕN

0:t|t keeps shrinking. As a result, there
likely exists a timestep tN ∈ [1 : t] (typically tN = O(N), see Koskela et al. (2020)) such that
E1

t,tN
= . . . = EN

t,tN
. Consequently, for s much smaller than t we get a particle approximation

ϕ0:s|t that is supported only on one particle path. This makes the particle smoothing estimate
unpractical for any task involving smoothing over long time horizons.

Forward filtering backward smoothing (FFBS). The FFBS algorithm has been proposed
to overcome the degeneracy of the vanilla particle smoother Godsill et al. (2004). The FFBS re-
lies on the following backward decomposition of the smoothing distribution, which assumes that
the transition kernel Mt admits a density mt with respect to some dominating measure:

ϕ0:t|t(dx0:t) = ϕt(dxt)
t−1∏
s=0

Bϕs(xs+1, dxs) , (1.3.14)

where Bϕs(xs+1, dxs) ∝ ms+1(xs, xs+1)ϕs(dxs) is the backward kernel. As it is expressed in
terms of the filter ϕs we can estimate it by plugging in the particle approximation ϕN

s ,

BN
ϕs

(xs+1, dxs) =
N∑

i=1

ωi
sms+1(ξi

s, xs+1)∑N
j=1 ωj

sms+1(ξj
s , xs+1)

δξi
s
(dxs) .

The FFBS particle approximation ϕN,FFBS
0:t|t of ϕ0:t|t is then

ϕN,FFBS
0:t|t (dx0:t) = ϕN

t (dxt)
t−1∏
s=0

BN
ϕs

(xs+1, dxs)

=
∑

i0:t∈[1:N ]t+1

{
ωit

t

t∏
s=1

βBS
s (is, is−1)

}
δ(ξi0

0 ,...,ξ
it
t )(dx0:t) ,

where for all (i, j) ∈ [1 : N ]2, βBS
s (i, j) ∝ ωj

s−1ms(ξj
s−1, ξi

s). The resulting smoothing estimator
is no longer supported on the ancestral paths; instead, its support is made of N t+1 weighted
particle paths which enables it to avoid the particle degeneracy problem. Interestingly, the FFBS
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estimator can also be obtained by marginalizing the vanilla smoothing estimator (1.3.12) w.r.t.
to the ancestor random variables (A1:N

0 , . . . , A1:N
t−1) and so its mean squared error is smaller. It

is however impractical for any problem of interest that involves a time horizon t large enough
as the cost of evaluating all the weight products is O(N t+1). Godsill et al. (2004) propose the
forward filtering backward simulation (FFBSi) estimator to approximate the FFBS by drawing
N particle index trajectories {(Bi

0, . . . , Bi
t)}Ni=1 according to the weight product. The i-th path

for each i ∈ [1 : M ] is obtained as follows: draw Bi
t ∼ Categorical({ωj

t }Nj=1) and then for all
s ∈ [0 : t−1] draw Bi

s ∼ Categorical({βBS
s+1(Bi

s+1, j)}Nj=1). The resulting particle approximation
is then

ϕN,FFBSi
0:t|t (dx0:t) = 1

N

N∑
i=1

δ(ξBi
00 ,...,ξBi

tt )(dx0:t) .

The FFBSi estimator has of course a larger variance than the FFBS but the overall cost for
computing an estimate with N paths is now O(N2t)). Douc et al. (2011a) propose to further
bring down the complexity by using the accept-reject algorithm. Indeed, assuming that the
transition density ms is bounded above, i.e. ms(xs−1, xs) ≤ c+ for all (xs−1, xs) ∈ X2, then we
have that ωi

s−1ms(ξi
s−1, ξj

s) ≤ c+ωi
s−1 for all (i, j) ∈ [1 : N ]2 and we can thus draw the indexes

according to Categorical({ωi
s−1}Ni=1) and then accept or reject the proposals. If the kernels

are bounded from below, i.e. ms(xs−1, xs) ≥ c− for all (xs−1, xs) ∈ X2, the complexity is then
provably linear in the number of particles N . However, when this assumption does not hold, the
running time may be heavy-tailed, in which case on may resort to a hybrid rejection sampler, see
Taghavi et al. (2013); Olsson and Westerborn (2017); Dau and Chopin (2022). It was then later
suggested to instead sample the s-th index of the i-th backward index trajectory by running a
few steps of Independent Metropolis-Hastings targeting βBS

s+1(Bi
s+1, ·) with Categorical({ωi

s}Ni=1)
as proposal Bunch and Godsill (2012), and later mentioned in Gloaguen et al. (2022) in the
context of online smoothing. In this setting, the backward index Bi

s are sampled from the
following MH kernel (or its iterations) initialized at is ∈ [1 : N ],

Ks(is, dbs) =
∑

k∈[1:N ]\is

ωk
s min

(
1, ms+1(ξk

s , ξ
Bi

s+1
s+1 )

/
ms+1(ξis

s , ξ
Bi

s+1
s+1 )

)
δk(dbs)

+
{

1−
∑

ℓ∈[1:N ]\is

ωℓ
s min

(
1, ms+1(ξℓ

s, ξ
Bi

s+1
s+1 )

/
ms+1(ξis

s , ξ
Bi

s+1
s+1 )

)}
δis(dbs) .

Dau and Chopin (2022) show that using only one step of IMH initialized at is = ABi
s+1

s , the
ancestor of Bi

s+1, is enough to produce a fast, consistent and stable estimator.
In contrast with the particle filter, the FFBS as presented above is essentially an offline algo-
rithm. Indeed, there is no obvious way to use it in a context where observations are processed in
real time without incurring a prohibitively large computational cost. Furthermore, even when
used in an offline context both its memory and computational costs grow linearly with the time
horizon t. It can be made online if we restrict ourselves to computing smoothing estimates of
additive functionals Del Moral et al. (2010b). We say that h0:t is an additive functional if

h0:t(x0:t) =
t−1∑
s=0

h̃s(xs, xs+1) , ∀x0:s ∈ Xt+1 . (1.3.15)

As we will now see, it is possible to obtain ϕN,FFBS
0:t+1|t+1(h0:t+1) from ϕN,FFBS

0:t|t (h0:t) for such func-
tionals with O(N2) memory cost and operations that can be further reduced with additional
approximations. Note that smoothed expectations of such functionals appear naturally in the
context of parameter learning for HMMs with the EM algorithm; the E-step is in fact a smoothed
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expectation of the joint log likelihood, which is an additive functional. In pairwise marginal
smoothing, any expectation w.r.t. ϕs−1:s|t for s ∈ [1 : t] is the expectation of an additive
functional.
Define for all t ∈ N>0, Tt(xt, dx0:t−1) = ∏t

ℓ=1 Bϕℓ
(xℓ, dxℓ−1). The decomposition (1.3.14) is

alternatively written as ϕ0:t|t(dx0:t) = ϕt(dxt)Tt(xt, dx0:t−1). We write

Tt[h0:t](xt) :=
∫

h0:t(x0:t)Tt(xt, dx0:t−1) .

For all t ∈ N>1, Tt[h0:t] satisfies the following recursion,

Tt[h0:t](xt) =
∫ {

h0:t−1(x0:t−1) + h̃t−1(xt−1, xt)
}

Bϕt−1(xt, dxt−1)Tt−1(xt−1, dx0:t−2)

=
∫ {

Tt−1[h0:t−1](xt−1) + h̃t−1(xt−1, xt)
}

Bϕt−1(xt, dxt−1) .

Consequently, starting from the initial particle approximation,

TN
1 [h0:1](x1) :=

∫
h̃0(x0, x1)BN

ϕ0(x1, dx0)

=
N∑

i=1

ωi
0m1(ξi

0, x1)∑N
j=1 ωj

0m1(ξj
0, x1)

h̃0(ξi
t−1, x) ,

we can build recursively the particle approximations of each Tt[h0:t]

TN
t [h0:t](xt) :=

N∑
i=1

ωi
t−1mt(ξi

t−1, xt)∑N
j=1 ωj

t−1mt(ξj
t−1, xt)

{
TN

t−1[h0:t−1](ξi
t−1) + h̃t−1(ξi

t−1, xt)
}

. (1.3.16)

The particle approximation ϕN,FFBS
0:t|t (h0:t) is recovered by integrating TN

t [h0:t] w.r.t. ϕN
t . From

(1.3.16) we see that in order to approximate the smoothed expectations online we only need to
evaluate the functionals TN

t [h0:t] in the particles ξ1:N
t . Thus, the forward smoother can run in

parallel of the particle filter. Letting τ i
t := TN

t [h0:t](ξi
t), this forward version of the FFBS then

boils down to the following recursion

τ i
t =

N∑
j=1

βBS
t (i, j)

{
τ j

t−1 + h̃t−1(ξj
t−1, ξi

t)
}

. (1.3.17)

The per time step cost of this forward version of the FFBS is O(N2) but can be reduced by
approximating the update (1.3.14) by means of additional Monte Carlo simulation Olsson and
Westerborn (2017), yielding an “FFBSi”-like forward-only smoother. It is obtained as follows;
at each step t and for all i ∈ [1 : N ], sample (J1

i,t−1, . . . , JM
i,t−1) iid∼ βBS

t (i, ·) (or approximately)
and set

τ̃ i
t = 1

M

M∑
k=1

τ̃
Jk

i,t−1
t−1 + h̃t−1(ξJk

i,t−1
t−1 , ξi

t) . (1.3.18)

The smoothing approximation is then ϕM,PARIS
0:t|t (h0:t) := ∑N

i=1 ωi
tτ̃

i
t . Similarly to the FFBSi, the

indexes can be sampled either by accept-reject, hybrid accept-reject or IMH, thus reducing the
complexity if M is small enough. The key feature of this smoothing estimator is that M does
not necessarily need to be large in order to ensure performances comparable to those of the
forward smoother with (1.3.16). Theoretical results and numerical experiments in Olsson and
Westerborn (2017) illustrate that setting M ∈ {2, 3} is enough to produce a stable estimator
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with good performance. Interestingly, the case M = 1 yields an estimator that degenerates but
not in the same way as the vanilla particle smoother (1.3.12). In this case, the support of the
particle approximation ϕM,PARIS

0:t|t is made of particle trajectories that correspond to what one
would obtain by running the vanilla particle smoother (1.3.12) and selecting ancestor particle
trajectories according to the backward weights. The resulting estimator degenerates eventually
and the PaRIS circumvents this issue by selecting more than one ancestor.

Monte Carlo error

As for static Monte Carlo, assessing the error of SMC estimators is crucial for obtaining confi-
dence intervals and comparing the performance of two different estimators, e.g. in the context
of auxiliary PF Pitt and Shephard (1999). The particles involved in SMC estimates are far from
being i.i.d. which renders the theoretical expression of their asymptotic variances (given by the
CLT) quite convoluted Chopin (2004); Douc et al. (2011a). For the asymptotic variance of the
particle filter, see Section B.4 where we derive its theoretical expression from first principles.
The main challenge is then to estimate the asymptotic variances using only a single run, as
running multiple instances of the PF or particle smoother in parallel may not be feasible due
to computational constraints.
The first breakthrough in estimating the asymptotic variance of the PF was achieved in Chan
and Lai (2013) where a strikingly simple consistent estimator is provided. For the asymptotic
variance of the predictive distribution particle approximation, their estimator reads

VN
η,t(h) := −N−1 ∑

i,j∈[N ]2
1Ei

t,0 ̸=Ej
t,0

{
h(ξi

t)− ηN
t (h)

}{
h(ξj

t )− ηN
t (h)

}
, (1.3.19)

where for i ∈ [1 : N ], Ei
t,0 is time 0 ancestor of ξi

t defined formally in (1.3.13). (1.3.19) allows
tracking the asymptotic variance online since Ei

t,0 can be computed recursively by adding one
line of code to the original particle filter. This estimator was later refined and extended in Lee
and Whiteley (2018); Du and Guyader (2021). Lee and Whiteley (2018) provide a different
derivation and proof of consistency for (1.3.14) using techniques developed in Cérou et al.
(2011); Andrieu et al. (2018a) as well as a novel estimator. Du and Guyader (2021) extend all
the previous work to the adaptive SMC framework Beskos et al. (2016).
Unfortunately, the simplicity of (1.3.19) comes at a cost; as we have mentioned earlier, after
O(N) time steps all the particles end up with the same ancestor at time 0, i.e. Ei

t,0 = Ej
t,0 for all

(i, j) ∈ [1 : N ]2, t larger than N , and (1.3.19) collapses to 0. Inspired by the fixed-lag smoother
Kitagawa (1993), Olsson and Douc (2019) workaround the degeneracy by only considering the
ancestors up to some time t−λ where λ ∈ [0 : t] is known as the lag. Their estimator reads

VN,λ
η,t (h) := −N−1 ∑

i,j∈[N ]2
1Ei

t,t−λ
̸=Ej

t,t−λ

{
h(ξi

t)− ηN
t (h)

}{
h(ξj

t )− ηN
t (h)

}
. (1.3.20)

In the regime where (1.3.19) degenerates, (1.3.20) can be made stable provided that the lag λ
is chosen carefully such that there is little asymptotic bias.
(Q3) As we have seen, the FFBS solves to a certain extent the degeneracy problem of the vanilla

particle smoother. Is it then possible to derive a FFBS version of (1.3.19)? Can it be
made online?

(Q4) While there exists an explicit expression of the asymptotic variance for the FFBS Douc
et al. (2014), there is currently no estimator in the literature. Can the techniques devel-
oped in the aforementionned papers be extended to derive consistent asymptotic variance
estimators for the FFBS?
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Particle Gibbs

Similar to importance sampling, the particle filter enables the definition of an ergodic sampler
that targets ϕ0:t|t. This sampler is known as the Particle Gibbs (PG) or conditional particle filter
(CPF) and is the sequential counterpart of iSIR Andrieu et al. (2010). At each step, a promising
trajectory (ζ0, . . . , ζt) is selected by sampling from the particle smoothing approximation and
then inserted in the pool of particle trajectories at the next iteration. More formally, let k ∈ N be
the iteration index and ζ0:t[k] := (ζ0[k], . . . , ζt[k]) the trajectory selected at the same iteration.
PG consists in running a modified particle filter where at step s ∈ [1 : t] we set ξ1

s = ζs[k], A1
s = 1,

sample the remaining N − 1 particles from ϕN
s−1Ms and set ϕN

s = ∑N
i=1 ωi

sδξi
s
. ζ0:t[k + 1] is then

obtained by sampling from the vanilla particle smoothing approximation ϕN
0:t|t (1.3.12) where

by construction ξ1
0:t = ζ0:t[k]. The procedure we have just described defines a Markov chain that

converges geometrically fast to ϕ0:t|t under standard strong mixing assumptions.

As is the case of particle smoothing, sampling from ϕN
0:t|t results in bad mixing since ϕN

0:s|t has
large variance if s≪ t. This may be overcome by instead sampling the particle trajectory with
backward sampling Whiteley (2010). The resulting sampler is still geometrically ergodic, is
provably better than the vanilla PG and only requires the number of particles to scale linearly
with the trajectories length t Lee et al. (2020).
(Q5) Similar to iSIR, the PG suffers from significant computational waste as only one trajectory

is kept at each iteration. Is it possible to recycle the successive particle clouds generated at
each step of the PG to generate smoothing estimates with reduced bias, thereby extending
the approach presented in Cardoso et al. (2022) to state space models?

1.3.3 Generative modeling

Generative modeling consists in finding a suitable model of observed data which can then be used
to generate new samples that resemble the original data distribution. The basic underlying idea
is that a dataset Y 1:N := (Y 1, . . . , Y N ) is assumed to be N i.i.d. realizations of some unknown
probability distribution πY defined on a measurable space (Y, T ). As an illustration, a datum
Y i = [Y i

1 , . . . , Y i
d ] could be images in which case Y may be [0, 1]d for simplicity and πY exhibits

spatial correlation, or Y i ∈ Y = RT is a time series or natural language text and πY may be
in this case Markovian. More generally, the data generating distribution is highly complex and
the current effort in generative modeling lies in designing powerful parametric approximations
qθ

Y of πY which are easy to sample with possibly tractable density. Here approximation means
that D(qθ

Y , πY ) is relatively small, where D is some (pseudo-)distance or discrepancy measure
between two probability distributions.
Of course, the design choices for qθ

Y are restricted by the fact that it needs to be a valid
probability measure and hence be non-negative and integrate to one; i.e.

∫
Y qθ

Y (dy) = 1. By
now there are many ways for enforcing these two constraints and each design has its own
tradeoffs. We herebelow detail three different design choices. To keep the presentation simple,
we use the standard notations for conditional densities.

Variational auto-encoder

Variational auto-encoders (VAE) Kingma and Welling (2013) model qθ
Y through a parameterized

latent variable model (LVM),

qθ
Y (dy) =

∫
qθ

Y |X(dy|x)qX(dx) , (1.3.21)
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where qX is a probability measure on a measurable space (X,X ) and the dimension of the
latent space X need not be the same as that of Y. A possible choice for qX and qθ

Y |X when
Y = Rd and X = Rℓ is qX(x) = N (x; 0ℓ, Iℓ) and qθ

Y |X(y|x) = N (y; µθ(x), Id · σ2
θ(x)) where for

all θ ∈ Θ, µθ : Rℓ → Rd, σ2
θ : Rℓ → Rd are neural networks. In this case, (1.3.21) may thus be

interpreted as an infinite mixture of Gaussian distributions. VAEs are trained by maximizing
the following lower bound on the log-likelihood coined Evidence LOwer Bound (ELBO) obtained
by introducing a parametric importance distribution νφ

X|Y and using Jensen’s inequality

N∑
i=1

log qθ
Y (Y i) =

N∑
i=1

log
∫ qθ

Y |X(Y i|x)qθ
X(x)

νφ
X|Y (x|Y i) νφ

X|Y (dx|Y i)

≥
N∑

i=1

∫
log

qθ
Y |X(Y i|x)qθ

X(x)
νφ

X|Y (x|Y i) νφ
X|Y (dx|Y i) =: LN (θ, φ) .

(1.3.22)

In Kingma and Welling (2013), the authors choose νφ
X|Y (·|y) to be the density of a multivariate

Gaussian with mean µφ(y) and covariance Iℓ · σ2
φ(y) where µφ : Rd → Rℓ and σ2

φ : Rd →
Rℓ are neural networks. The gradient of the lower bound in (1.3.22) can then be estimated
by drawing samples from νφ

X|Y (·|y) and noting that a sample X ∼ νφ
X|Y (·|y) can be written

as µφ(y) + σφ(y)Z ∼ νφ
X|Y (·|y) where Z ∼ N (0ℓ, Iℓ), thus allowing the decoupling of the

randomness (Z) from the parameter (φ).
Choosing a coordinate ascent point of view we see that the optimization of the lower bound
in (1.3.22) involves iteratively minimizing the Kullback-Leibler (KL) divergence between the
importance distribution and the true posterior, and maximizing the expected log-likelihood of
the data given the latent variables,

φk+1 = argmin
φ

N∑
i=1

KL(νφ(·|Y i) ∥ q
θk

X|Y (·|Y i)) , (1.3.23)

θk+1 = arg max
θ

N∑
i=1

∫
log qθ

Y |X(Y i|x)νφk+1(dx|Y i) . (1.3.24)

This procedure recovers the well known Expectation Maximization algorithm Dempster et al.
(1977) if the variational family in which the variational posteriors νφ

X|Y (·|y) lie contains {qθ
Y |X(·|y) :

y ∈ Y, θ ∈ Θ}. For this reason, a subset of recent works have focused on departing from the
vanilla mean-field parameterization of Kingma and Welling (2013) and building more expressive
variational posteriors Rezende and Mohamed (2015); Salimans et al. (2015); Wolf et al. (2016);
Hoffman (2017); Thin et al. (2020); Papamakarios et al. (2021).

Energy based models

Energy based models (EBM) Ackley et al. (1985) draw inspiration from Boltzmann distributions
in statistical physics to introduce

qθ
Y (y) = exp(−Eθ(y))

Zθ
, where Zθ =

∫
exp(−Eθ(y))dy . (1.3.25)

The normalizing constant Zθ is also known as the partition function. In terms of flexibility, the
EBM model (1.3.25) is generally more versatile than (1.3.21), as the latter is bottlenecked by
the less flexible parametrization of the variational posterior. However, this increased flexibility
comes with a tradeoff since the normalizing constant Zθ is intractable and (1.3.25) is unavailable
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for sampling. This has implications for maximum likelihood training through SGD of the EBM
as we now see.
Consider the gradient of the log-likelihood objective function:

∇θ
1
N

N∑
i=1

log qθ
Y (Y i) |θ0= − 1

N

N∑
i=1
∇θEθ(Y i)|θ0 +∇θ logZθ |θ0 .

By utilizing Fisher’s identity, we can express the gradient of the partition function as fol-
lows

∇θ logZθ |θ0 =
∫
−∇θ exp

(
− Eθ(y)

)
|θ0

dy∫
exp(−Eθ0(y)

)
dy

=
−
∫
∇θEθ(y)|θ0 exp

(
− Eθ0(y)

)
dy∫

exp(−Eθ0(y)
)

= −
∫
∇θEθ(y)|θ0qθ0

Y (dy) ,

where we have used common differentiability assumptions. Hence, the gradient of the partition
function may be estimated by drawing independent approximate samples from qθ0

Y (dy) using
MCMC Tieleman (2008); Qiu et al. (2020), IS or SMC Carbone et al. (2023) which do not
require the knowledge of Zθ0 .

Denoising diffusion probabilistic models

Denoising diffusion probabilistic models (DDPM) or diffusion models Ho et al. (2020); Song
et al. (2021c) rely on a forward noising process which slowly turns the data distribution πY into
pure noise; i.e. a standard Gaussian. The goal is then to reverse this noising process so that
we can turn noise into samples from the data distribution. The forward noising process is a
Markov chain with transition

qt+1(xt+1|xt) := N (xt+1; (1− βt+1)1/2xt, βtId) ,

where {βt}t∈N ⊂ (0, 1). The joint distribution of the noising process is then given by

q0:n(dx0:n) := πY (dx0)
n−1∏
s=0

qs+1(dxs+1|xs) , (1.3.26)

where n ∈ N is some final time step which we assume to be large enough. The marginal
distributions of this joint process qs(dxs) :=

∫
q0:n(dx0:n) have an intuitive interpretation; they

slowly bridge between the initial distribution πY and the terminal one qn, which is approximately
a standard Gaussian if n is large enough. The forward process (1.3.26) can be reversed; we can
write that

q0:n(dx0:n) = qn(dxn)
n−1∏
s=0

qs(dxs|xs+1) , where qs(dxs|xs+1) := qs+1(xs+1|xs)qs(dxs)
qs+1(xs+1) .

The backward decomposition above suggests that we can turn pure noise into samples from
πY if we can approximate the backward kernels. For this purpose the following parameterized
backward process is introduced

pθ
0:n(dx0:n) := pn(dxn)

n−1∏
s=0

pθ
s(dxs|xs+1) , (1.3.27)
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where for all s ∈ [1 : n],

pθ
s(xs−1|xs) := N

(
xs−1; 1

(1− βs)1/2

{
xs −

1− βs

(1− ᾱs)1/2 ϵθ
s(xs)

}
, βsId

)
, (1.3.28)

where ᾱs = ∏s
ℓ=1(1 − βℓ), {ϵθ

s}ns=1 are neural networks and pn := N (0d, Id). See Ho et al.
(2020) for more details on this particular parameterization. Denote by pθ

0 the time 0 marginal
of (1.3.27). The backward process is learned by minimizing an the KL divergence between q0:n
and pθ

0:n which upperbounds the KL between πY and pθ
0,

KL(πY ∥ pθ
0) ≤ KL(q0:n ∥ pθ

0:n) .

Then, using that under the forward process (1.3.26) Xs given Xs+1 and X0 is distributed
according to a Gaussian distribution with mean linear in Xs+1 and X0, see Ho et al. (2020), we
find that

argmin
θ

KL(q0:n ∥ pθ
0:n)

= argmin
θ

∫
βs

2(1− βs)(1− ᾱs)

n∑
s=1
∥ϵ− ϵθ

s(ᾱ1/2
s x0 + (1− ᾱs)1/2ϵ)∥22πY (dx0)N (ϵ; 0d, Id)dϵ .

(1.3.29)

In short, the score networks {ϵθ
s}ns=1 aim at predicting ϵ from the input ᾱ

1/2
s x0 + (1 − ᾱs)1/2ϵ.

They can also be interpreted as approximations to ∇ log qs (up to a constant). To see why this
is the case, note that by Fisher’s identity

∇ log qs(xs) =
∫
∇ log qs|0(xs|x0)q0|s(dx0|xs) ,

where qs|0(dxs|x0) :=
∫ ∏s−1

ℓ=0 qℓ+1(dxℓ+1|xℓ) = N (dxs; ᾱ
1/2
s x0, (1 − ᾱs)Id) and q0|s(dx0|xs) ∝

πY (dx0)qs|0(xs|x0). Hence, using the previous definitions and the fact that

πY (dx0)qs|0(dxs|x0) = qs(dxs)q0|s(dx0|xs) ,

we find

E
[
∥ϵ− ϵθ

s(ᾱ1/2
s X0 + (1− ᾱs)1/2ϵ)∥22

]
= E

[
∥(1− ᾱs)1/2∇ log qs|0(Xs|X0) + ϵθ

s(Xs)∥22
]

= E
[
∥ϵθ

s(Xs)∥22
]

+ 2(1− ᾱs)1/2
∫
∇ log qs|0(xs|x0)⊺ϵθ

s(xs)qs(dxs)q0|s(dx0|xs) + C1

= E
[∥∥∥(1− ᾱs)1/2∇ log qs(Xs) + ϵθ

s(Xs)
∥∥∥2

2

]
+ C2 ,

where C1 and C2 are constant independent of θ. This insight is also in agreement with the SDE
interpretation of diffusion models Song et al. (2021c). The forward process we have introduced
is simply the discretized version of an Ornstein-Uhlenbeck process initialized at πY and the
associated reverse SDE has a drift involving ∇ log qs. The backward process (1.3.27) can thus
be seen as a discretization of the reverse process started at pn.
By now DDPMs have outperformed GANs and VAEs, which were state of the art just two
years ago, and are the backbones of the very recent stable diffusion Rombach et al. (2022)
which produces stunning high resolution images. It is thus interesting to understand the key
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distinctions between a DDPM (Denoising Diffusion Probabilistic Model) and a VAE (Variational
Autoencoder) since both are latent variable models. A VAE learns to transform random noise
into the desired data distribution (1.3.21) in a single step using qθ

Y |X and it attempts to reverse
this process in a single step as well through νφ

X|Y which is assumed to be Gaussian and is
known to be suboptimal. On the other hand, DDPMs rely on multiple simple transformations
during the forward process that are comparatively easier to reverse and, for which the Gaussian
approximation (1.3.28) is no longer suboptimal according to the SDE interpretation. As a
result however, it is more expensive to train and sample from a DDPM since n needs to be large
enough for the approximation (1.3.27) to be valid. This divide and conquer approach, which
involves sampling from intermediate distributions which are simple to bridge, has also been
used successfully in the Monte Carlo literature Neal (2001a); Del Moral et al. (2006b).
DDPMs have allowed interesting developments in controlled generation. Assume that we are
interested in sampling from ϕy

0(dx0) ∝ gy
0(x0)πY (dx0). The potential gy

0 is interpreted as the
likelihood of some observation y given x0 and can be given for example by a Gaussian linear
inverse problem. Denote by ϕy

s the marginals of the forward noising process applied to ϕy
0,

i.e.
ϕy

s(dxs) :=
∫

ϕy
0(dx0)qs|0(dxs|x0) .

Following the previous developments, if we are able to approximate ∇ log ϕy
s then we can obtain

approximate samples from ϕy
0 using a DDPM. By reversing the forward process and using the

definition of ϕy
0, we have that

ϕy
s(dxs) ∝ qs(dxs)

∫
gy

0(x0)q0|s(dx0|xs) ,

and thus ∇ log ϕy
s(xs) = ∇ log qs(xs) + ∇ log

∫
gy

0(x0)q0|s(dx0|xs). In Ho et al. (2022); Chung
et al. (2023) it is proposed to approximate the intractable integral

∫
gy

0(x0)q0|s(dx0|xs) by
gy

0(E[X0|Xs]) where by Tweedie’s formula, we have under the forward process that

E[X0|Xs] =
{
Xs + (1− ᾱs)∇ log qs(Xs)

}/
ᾱ1/2

s . (1.3.30)

As a result, we can approximate the conditional score ∇ log ϕy
s if we have score networks {ϵθ

s}ns=1
approximating ∇ log qs, i.e.

∇ log ϕy
s(xs) ≈ −(1− ᾱs)−1/2ϵθ

s(xs) +∇ log gy
0(χθ

s(xs)) , (1.3.31)

where
χθ

s(xs) :=
{

xs − (1− ᾱs)1/2ϵθ
s(xs)

}/
ᾱ1/2

s

approximates (1.3.30). In practical terms, the significance of this approach lies in its ability to
tackle various controlled generation tasks using the same data distribution πY . This is made
possible by relying solely on the score networks {ϵθ

s}ns=1 that approximate the data distribu-
tion. To illustrate its importance, consider its application in Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI), where the reconstruction of medical images from partial
measurements is crucial. Traditionally, supervised learning methods for image reconstruction
in CT and MRI heavily depend on paired datasets consisting of both partial measurements and
corresponding complete medical images. However, this approach presents significant drawbacks
as it imposes stringent restrictions and incurs high costs. The requirement of pairing partial
measurements with their corresponding complete images poses a considerable challenge in data
acquisition, preparation, and annotation. The approach we have just described does not bear
such constraints.
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(Q6) Undoubtedly, the approximation (1.3.31) introduces a non-negligible bias and is not guar-
anteed to sample from the targeted posterior. This, in turn, gives rise to safety concerns,
particularly in sensitive applications like medical imaging. There is thus an urgent need
to develop controlled generation methods that have at least asymptotic guarantees. On
the other hand, sampling approximately from ϕy

0 using bridge distributions is the kind of
tasks that are handled best with SMC samplers Del Moral et al. (2006b). How can we
leverage the bridge distributions of DDPM and SMC to devise an asymptotically exact
method for sampling from the posterior of the diffusion model ϕy

0(dx0) ∝ gy
0(x0)pθ∗

0 (dx0)
where θ∗ is the approximate solution of (1.3.29)?

1.4 Outline and contributions of this thesis.

The content of the present thesis is motivated by the research questions (Q1-2-3-4-5-6) studied
in the following papers which constitute the five remaining chapters of this thesis.

1. NEO: Non-equilibrium sampling on the orbit of a deterministic transform (Thin et al.,
2021).
Achille Thin, Yazid Janati El Idrissi, Sylvain Le Corff, Charles Ollion, Eric Moulines,
Arnaud Doucet, Alain Durmus, Christian X. Robert.
Advances in Neural Information Processing Systems 35 (NeurIPS) (2021).

2. Entropic Mirror Monte Carlo.
Yazid Janati El Idrissi, Alain Durmus, Sylvain Le Corff, Yohan Petetin, Julien Stoehr.
Preliminary work.

3. Variance estimation for SMC algorithms: a backward sampling approach (Janati et al.,
2023).
Yazid Janati El Idrissi, Sylvain Le Corff, Yohan Petetin.
To appear in Bernoulli.

4. State and parameter learning with the PaRIS particle Gibbs (Cardoso et al., 2023a).
Gabriel Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, Eric Moulines, Jimmy
Olsson.
International Conference in Machine Learning 40 (ICML) (2023).

5. Monte Carlo guided Diffusion for Bayesian linear inverse problems (Cardoso et al., 2023b).
Gabriel Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, Eric Moulines.
Under review.

While not present in this thesis, I have also co-authored the following paper on variational
inference for jump state space models:

• Structured variational Bayesian inference for Gaussian state-space models with regime
switching (Petetin et al., 2021).
Yohan Petetin, Yazid Janati El Idrissi, Franccois Desbouvries.
IEEE Signal Processing Letters.

Below, we provide a summary of the contributions made in each chapter. Please note that we
introduce notations in each chapter, although there may be some overlap. These notations are
always defined at the beginning of each chapter.

24



Chapter 2 / (Q1) - Non-equilibrium sampling on the orbit of a deterministic trans-
form

Langevin and Hamiltonian-like dynamics have now become widely popular sampling algorithms
due to their ability to efficiently explore high-dimensional spaces and sample from complex
distributions. However, they cannot be used as an importance sampling proposal as their
density cannot be evaluated. They are instead used in adaptive importance sampling schemes
to build proposals well tailored to the target π Hoffman et al. (2019); Noé et al. (2019); Gabrié
et al. (2022). The computational cost of learning the proposal can be prohibitive and too slow
for applications where accurate (and potentially unbiased) estimates need to be computed on
the fly.
In this chapter we derive a novel unbiased importance sampling estimator of normalizing con-
stants based on a well chosen deterministic and invertible transform T : Rd 7→ Rd with iterates
(or orbits) {Tℓ(x)}Kℓ=1, with x ∈ Rd, that define a trajectory that explores the target distribu-
tion π. Our estimator combines these orbits initialized at some (not necessarily well adapted
to π) initial proposal ρ and weights them in a principled way so that the overall estimator is
unbiased.
Define ρT = K−1∑K

ℓ=1 Tℓ
#ρ where Tℓ

#ρ(x) = ρ(T−ℓ(x))
∣∣JT−ℓ(x)

∣∣. Our IS estimator is based on
the following identity valid for any A ∈ B(Rd)

∫
1A(x)π(dx) = 1

K

K∑
ℓ=1

∫
1A(Tℓ(x)) π(Tℓ(x))

ρT(Tℓ(x))ρ(dx) ,

and which straightforwardly defines an unbiased estimator by drawing M i.i.d. samples from
ρ. If the trajectories of the transform are informed with the target π, e.g. through ∇ log π,
then this estimator may improve over the vanilla IS estimator with ρ as proposal since π is
evaluated at the orbits. In fact, it is possible to define such a transform by taking inspiration
from Hamiltonian Monte Carlo Neal et al. (2011). We examine the non-asymptotic properties
of NEO-IS and its SNIS counterpart. Additionally, we leverage this estimator to develop a new
geometrically ergodic MCMC sampler akin to iSIR, which can be directly compared to HMC.
Through numerical experiments, we demonstrate that both NEO-IS and NEO-MCMC exhibit
competitive performance when compared to several other well-known methods.

Chapter 3 / (Q2) - Entropic Mirror Monte Carlo

We continue our study of importance sampling by focusing in this chapter on building adaptive
importance sampling methdods with improved exploration of the state space. Our AIS scheme
is based on the iterates of the following mapping

Fem(µ; λ, Kπ, ε)(dx) = λ∫ π(y)ε

µ(y)ε µ(dy)
π(x)ε

µ(x)ε
µ(dx) + 1− λ∫ π(y)ε

µ(y)ε µKπ(dy)
π(x)ε

µ(x)ε
µKπ(dx) ,

where Kπ is a Markov transition kernel, µtKπ(dx) =
∫

µt(dz)Kπ(z, dx) and λt ∈ [0, 1]. Its
iterates are defined recursively by

µt+1(dx) = Fem(µt; λt, Kπ, ε), where λt ∈ [0, 1] . (1.4.1)

If λt = 1 for all t ∈ N we recover the updates obtained by minimizing µ 7→ KL(π ∥ µ) with
entropic mirror descent Beck and Teboulle (2003); Dai et al. (2016); Korba and Portier (2022).
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To see why (1.4.1) can be of interest, consider its particle approximation obtained by drawing
N i.i.d. samples from µt (which we assume to be feasible for now),

µN
t+1(dx) = λt

N∑
i=1

ωi
tδXi(dx) + (1− λt)

N∑
i=1

ϖi
tδY i(dx) , (1.4.2)

where

ωi
t = π(Xi)ε

µt(Xi)ε

/ N∑
j=1

π(Xj)ε

µt(Xj)ε
, where X1:N iid∼ µt , (1.4.3)

ϖi
t = π(Y i)ε

µt(Y i)ε

/ N∑
j=1

π(Y j)ε

µt(Y j)ε
, where Y 1:N ∼ Kπ(X1, ·)⊗ . . .⊗Kπ(XN , ·) . (1.4.4)

The weight π(Xi)ε
/
µt(Xi)ε (1.4.3) is regularized and has less variance than the classical impor-

tance weight (Korba and Portier, 2022). The second normalized weight (1.4.4) is non-standard
in the sense that µt in the denominator is evaluated in samples Y i from µtKπ and not µt. If Kπ

is informed with the target π then the samples from µtKπ that are in the regions of the space
where π is likely and µt is inadequate will have a larger weight. Thus, the second component of
the mixture allows a greedy approach for exploring the target π if the involved Markov kernel
Kπ can make global moves.
The contributions of this chapter are the following. We start by showing that the introduced
sequence is principled. In particular, we show that if the sequence (λt)t∈N is chosen appropriately
and the transition kernel Kπ is π-invariant, i.e. πKπ = π, then the sequence (µt)t∈N enjoys
a geometric convergence to π in backward KL divergence. If Kπ is the unadjusted Langevin
kernel, which is not π-invariant, we provide quantitative bounds in total variation distance
under appropriate assumptions on π.
These results suggest that we may be able to build a suitable importance proposal for π by
considering the scheme

µθs = argmin
µ∈FΘ

R̃π(F(µθs−1) ∥ µ) , (1.4.5)

where R̃π is some criterion and FΘ is a parametric family of densities. We then introduce a
novel criterion coined skew Rényi projection which guarantees that when R̃π(F(µθs−1) ∥ µθs) is
sufficiently small for all s ∈ [1 : T ] (where T is the number of iterations), KL(π ∥ µθT

) is also
small. To the best of our knowledge, this is not guaranteed if R̃π is the KL divergence. Finally,
we devise a practical algorithm for solving (1.4.5) approximately by leveraging the particle
approximations (1.4.2).
We provide preliminary numerical results. We demonstrate on highly challenging experiments
that the final parametric approximation is close to what one would obtain by learning directly
π via maximum likelihood. We also provide encouraging normalizing constants estimates ob-
tained with our proposal using a moderate sample size relative to the dimension of the ambient
space.

Chapter 4 / (Q3-4) - Variance estimation for SMC algorithms: a backward sampling
approach.

The first contribution of this chapter is to propose a parameter free estimator of the asymptotic
variance of the particle filter with multinomial resampling that trades computational cost for
stability and reduced variance. The construction of our estimator starts from the observation
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that the degeneracy of the current estimators Chan and Lai (2013); Lee and Whiteley (2018); Du
and Guyader (2021) is similar to that of the vanilla particle smoother (1.3.12) and Particle Gibbs.
In both cases, a backward sampling step which aims at diversifying the particle trajectories has
shown to be a reliable workaround that decreases the (theoretical) variance of the estimators at
the expense of higher computational cost. We thus aim at introducing such a mechanism in the
estimation of the asymptotic variance. The construction of our estimator relies on the analysis
conducted in Lee and Whiteley (2018) in which it is shown that the estimator of Chan and Lai
(2013) can be interpreted as a conditional expectation with respect to the indices that retrace the
genealogy of the particles, given all the particles and ancestors. We show that this construction
still holds when the distribution of the indices relies on the backward importance weights. The
resulting estimator is computed by averaging auxiliary statistics that are very similar to those
of the forward implementation of the FFBS for additive functionals Del Moral et al. (2010c);
Dubarry and Le Corff (2013) and can be thus updated online. The time complexity per update of
our estimator is of order O(N3). Driven by the efficient implementation of the FFBS for additive
functionals developed in Olsson and Westerborn (2017), we show that the computational cost
of our estimator can be reduced from O(N3) to O(N2) by means of additional Monte Carlo
simulation while remaining as competitive in terms of bias and variance.
We next focus on the FFBS algorithm for the estimation of smoothed functionals (1.3.15).
Despite the fact that a CLT has been obtained for estimators based on the FFBS Douc et al.
(2011a), no variance estimator has been proposed in the literature. We show that our previous
construction enables us to fill this gap and we thus provide a consistent estimator in the case
of additive functionals. Again, this estimator can be computed online and in the particular
case of marginal smoothing its computational cost can be drastically reduced. We validate our
results with numerical experiments. Notably, we show empirically that our novel estimator for
the filter has a favourable dependence on the time horizon t in comparison with the existing
estimators.

Chapter 5 / (Q5) - State and parameter learning with the PaRIS particle Gibbs.

In this chapter, we consider the problem of parameter learning with stochastic gradient algo-
rithms. We set the focus on learning the parameter of a function whose gradient is the smoothed
expectation of an additive functional (1.3.15).
In this specific context, where a smoothing estimator is employed repeatedly to produce gradient
estimates, controlling the bias and the MSE of the estimator becomes critical, see Karimi et al.
(2019). This learning problem is usually tackled using either the Particle Gibbs Lindholm and
Lindsten (2018), or classical smoothing algorithms such as the FFBSi or the PaRIS Olsson and
Westerborn (2017). While the former has exponentially decreasing bias (w.r.t the number of
iterates) under standard assumptions, it usually results in high variance and a non-negligible
waste of the particle cloud generated. The latter is biased, since it is self-normalised but results
in smaller variance than the particle Gibbs. Recently, zero bias estimators Jacob et al. (2020);
Lee et al. (2020) have been proposed based on the coupling of the particle Gibbs that could be
used in this framework, but they suffer from having a random computational complexity and
high variance.
We propose a new algorithm combining the PaRIS and the PG algorithms. The conditional
particle cloud resulting from the PG is now used not only to generate the next conditioning
trajectory as in the usual PG but it is also used to generate a smoothing estimate, reducing
waste of computational work.
This leads to a batch mode PaRIS particle Gibbs (PPG) sampler, which we furnish with an
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upper bound on the bias that decreases inversely proportional to the number N of particles
and exponentially fast with the particle Gibbs iteration index (under the assumption that the
particle Gibbs sampler is uniformly ergodic), while keeping the MSE comparable to that of
the underlying backward smoother. Furthermore, in the context of score ascent with the PPG
we provide a non-asymptotic bound for the expectation of the squared gradient in terms of
bias and MSE of the PPG. This bound establishes an O(log(n)/

√
n) convergence of the learning

procedure.

Chapter 6 / (Q6) - Monte Carlo guided Diffusion for Bayesian linear inverse prob-
lems.

In this chapter we consider the problem of sampling from the posterior of a diffusion model
given by

ϕy
0(dx0) ∝ gy

0(x0)pθ∗
0 (dx0) . (1.4.6)

where pθ∗
0 is the time 0 marginal of (1.3.27) and θ∗ is the approximate solution of (1.3.29). We

focus on potentials gy
0 that are given by a linear Gaussian inverse problem

Y = AX + σZ, where A ∈ Rdy×dx , Z ∼ N (0dy , Idy ), σ ≥ 0 .

Current methods Song et al. (2021a); Kawar et al. (2022); Lugmayr et al. (2022); Chung et al.
(2023) aiming to sample from (1.4.6), including those that rely on approximations of the condi-
tional score (1.3.31), introduce an irreducible bias rendering them unreliable for critical appli-
cations such as medical imaging. Our goal in this chapter is to devise a sequential Monte Carlo
sampler that returns a consistent particle approximation of (1.4.6), ensuring that asymptotically
we sample from the target posterior. For this purpose we introduce a sequence of distributions
{gy

s}ns=1 given by
ϕy

s(dxs) ∝ gy
s (xs)pθ∗

s (dxs) ,

and with potentials {gy
s}ns=1 chosen so as to ensure that the discrepancy between ϕy

s and ϕy
s+1

is small for all s ∈ [0 : n− 1]. Our first contribution is a specific choice of potential in the case
where the inverse problem is “noiseless”, i.e. σ = 0, that is simple to compute. We then show
that more generally, a “noisy” Gaussian linear inverse problem with σ > 0 can be seen as a
noiseless inverse problem on the extended states with prior pθ∗

0:n. In both cases we devise a SMC
sampler that targets the posterior and we furnish it with a non-asymptotic bound on the KL
divergence between the target posterior and the expected particle approximation.
To evaluate the performance of our algorithms, we perform numerical simulations on several
examples (in high-dimension) for which the target posterior distribution is known. Simulation
results support our theoretical results, i.e. the empirical distribution of samples from our
algorithms converge to the target posterior distributions. This is not the case for the competing
methods (using the same denoising diffusion generative priors) which are shown, when run with
random initialization of the denoising diffusion, to generate a significant number of samples
outside the support of the target posterior.
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Chapter 2

NEO: Non-equilibrium sampling on
the orbit of a deterministic
transform

2.1 Introduction

Consider a target distribution of the form π(x) ∝ ρ(x)L(x) where ρ is a probability density
function (pdf) on Rd and L is a nonnegative function. Typically, in a Bayesian setting, π is a
posterior distribution associated with a prior distribution ρ and a likelihood function L. Another
situation of interest is generative modeling where π is the distribution implicitly defined by a
Generative Adversarial Networks (GAN) discriminator-generator pair where ρ is the distribution
of the generator and L is derived from the discriminator Turner et al. (2019); Che et al. (2020).
In a Variational Auto Encoder (VAE) context Kingma and Welling (2014); Burda et al. (2016),
π could be the true posterior distribution, ρ the approximate posterior distribution output by
the encoder and L an importance weight between the true posterior and approximate posterior
distributions. We are interested in this chapter in sampling from π and approximating its
intractable normalizing constant Z =

∫
ρ(x)L(x)dx. These problems arise in many applications

in statistics, molecular dynamics or machine learning, and remain challenging.
Many approaches to compute normalizing constants are based on Importance Sampling (IS)
- see Agapiou et al. (2017); Akyildiz and Míguez (2021) and the references therein - and its
variations, among others, Annealed Importance Sampling (AIS) Neal (2001b); Wu et al. (2016);
Ding and Freedman (2019) and Sequential Monte Carlo (SMC) Del Moral et al. (2006b). More
recently, Neural IS has also become very popular in machine learning; see e.g. El Moselhy and
Marzouk (2012); Müller et al. (2019b); Papamakarios et al. (2019); Prangle (2019); Wirnsberger
et al. (2020); Wu et al. (2020). Neural IS is an adaptive IS which relies on an importance
function obtained by applying a normalizing flow to a reference distribution. The parameters
of this normalizing flow are chosen by minimizing a divergence between the proposal and the
target (such as the Kullback–Leibler Müller et al. (2019b) or the χ2-divergence Agapiou et al.
(2017)). Recent work on the subject proposes to add stochastic moves in order to enhance the
performance of the normalizing flows Wu et al. (2020).
More recently, the Non-Equilibrium IS (NEIS) method has been introduced by Rotskoff and
Vanden-Eijnden (2019) as an alternative to these approaches. Similar to Neural IS, NEIS con-
sists in transporting samples {Xi}Ni=1 from a reference distribution using a family of determinis-
tic mappings. For NEIS, this family is chosen to be an homogeneous differential flow (ϕt)t∈R. In
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contrast to Neural IS, for any i ∈ [N ], the sample Xi is propagated both forward and backward
in time along the orbits associated with (ϕt)t∈R until stopping conditions are met. Moreover,
the resulting estimator of the normalizing constant is obtained by computing weighted averages
of the whole orbit (ϕt(Xi))t∈[τ+,i,τ−,i], where τ+,i, τ−,i are the resulting stopping times, and not
only the endpoints ϕτ+,i(Xi), ϕτ−,i(Xi). In Rotskoff and Vanden-Eijnden (2019), the authors
provide an application of NEIS with (ϕt)t∈R associated with a conformal Hamiltonian dynamics,
and reports impressive numerical results on difficult normalizing constants estimation problems,
in particular for high-dimensional multimodal distributions.
We propose in this work NEO-IS which alleviates the shortcomings of NEIS. Similar to NEIS,
samples are drawn from a reference distribution, typically set to ρ, and are propagated under the
forward and backward orbits of a discrete-time dynamical system associated with an invertible
transform T. An estimator of the normalizing constant is obtained by reweighting all the points
on the whole orbits using the IS rule. Contrary to NEIS, the NEO-IS estimator of Z is unbiased
under assumptions that are mild and easy to verify. It is more flexible than NEIS because it
does not rely on the accuracy of the discretization of a continuous-time dynamical system.
We then show how it is possible to leverage the unbiased estimator of Z defined by NEO-IS
to obtain NEO-MCMC, a novel massively parallel MCMC algorithm to sample from π. In a
nutshell, NEO-MCMC relies on parallel walkers which each estimates the normalizing constant
but are allowed to interact through a resampling mechanism.
Our contributions can be summarized as follows.

(i) We present a novel class of IS estimators of the normalizing constant Z referred to as
NEO-IS. More broadly, a small modification of this algorithm also allows us to estimate
integrals with respect to π. Both finite sample and asymptotic guarantees are provided
for these two methodologies.

(ii) We develop a new massively parallel MCMC method, NEO-MCMC. NEO-MCMC com-
bines NEO-IS unbiased estimator of the normalizing constant with iterated sampling-
importance resampling methods. We prove that it is π-reversible and ergodic under very
general conditions. We derive also conditions which imply that NEO-MCMC is uniformly
geometrically ergodic (with an explicit expression of the mixing time).

(iii) We illustrate our findings using numerical benchmarks which show that both NEO-IS and
NEO-MCMC outperform state-of-the-art (SOTA) methods in difficult settings.

2.2 NEO-IS algorithm
In this section, we derive the NEO-IS algorithm. The two key ingredients for this algorithm are
(1) the reference distribution ρ and (2) a transformation T assumed to be a C1-diffeomorphism
with inverse T−1. Write, for k ∈ N∗ = N \ {0}, Tk = T ◦Tk−1, T0 = Idd and similarly
T−k = T−1 ◦T−(k−1). For any k ∈ Z, denote by ρk : Rd → R+ the pushforward of ρ by Tk,
defined for x ∈ Rd by ρk(x) = ρ(T−k(x))JT−k(x), where JΦ(x) ∈ R+ is the absolute value of
the Jacobian determinant of Φ : Rd → Rd evaluated at x. In line with multiple importance
sampling à la Owen and Zhou Owen and Zhou (2000), we introduce the proposal density

ρT(x) = Ω−1∑
k∈Z

ϖkρk(x) , (2.2.1)

where {ϖk}k∈Z is a nonnegative sequence and Ω = ∑
k∈Z ϖk. Note that we assume in the

sequel that the support of the weight sequence defined as {k ∈ Z : ϖk ̸= 0} is finite. Thus, the
mixture distribution in (2.2.1) is a finite mixture. Given x ∈ Rd, ρT(x) is a function of the
forward and backward orbit of T through x.
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For any nonnegative function f , the definition of ρT implies that∫
f(y)ρT(y)dy = Ω−1

∫ ∑
k∈Z

ϖkf(Tk(x))ρ(x)dx .

Assuming that ϖ0 > 0, the ratio ρ(x)/ρT(x) ≤ ϖ−1
0 Ω <∞ is bounded. We can therefore apply

the IS principle which allows to write the identity∫
f(x)ρ(x)dx =

∫ (
f(y) ρ(y)

ρT(y)

)
ρT(y)dy =

∫ ∑
k∈Z

f(Tk(x))wk(x)ρ(x)dx , (2.2.2)

where the weights are given by (see Section A.1.2 for a detailed derivation),

wk(x) = ϖkρ(Tk(x))/{ΩρT(Tk(x))} = ϖkρ−k(x)
/∑

i∈Z
ϖk+iρi(x) . (2.2.3)

We assume in the sequel that ϖ0 > 0. In particular, note that under this condition, the weights
wk are also upper bounded uniformly in x: for any x ∈ Rd, wk(x) ≤ ϖk/ϖ0. Equations (2.2.2)
and (2.2.3) suggest to estimate the integral

∫
f(x)ρ(x)dx by

INEO
ϖ,N (f) = N−1

N∑
i=1

∑
k∈Z

wk(Xi)f(Tk(Xi)) ,

where {Xi}Ni=1 are i.i.d. samples from the proposal ρ, which is denoted by X1:N iid∼ ρ.

Algorithm 1 NEO-IS Sampler
1. Sample X1:N iid∼ ρ for i ∈ [N ].
2. For i ∈ [N ], compute the path (Tj(Xi))j∈Z and weights (wj(Xi))j∈Z.
3. INEO

ϖ,N (f) = N−1∑N
i=1

∑
k∈Z wk(Xi)f(Tk(Xi)).

This estimator is obtained by a weighted combination of the elements of the independent forward
and backward orbits {Tk(Xi)}k∈Z with X1:N iid∼ ρ. This estimator is referred to as NEO-IS.
Choosing f ≡ L provides the NEO-IS estimator of the normalizing constant of π:

Ẑϖ
Xi = ∑

k∈Z L(Tk(Xi))wk(Xi) , Ẑϖ
X1:N = N−1∑N

i=1 Ẑϖ
Xi . (2.2.4)

We now study the performance of the NEO-IS estimator. The following two quantities play a
fundamental role in the analysis:

Eϖ
T = EX∼ρ

[(∑
k∈Z wk(X)L(Tk(X))/Z

)2]
, Mϖ

T = supx∈Rd

∑
k∈Z wk(x)L(Tk(x))/Z . (2.2.5)

Theorem 2.2.1. Ẑϖ
X1:N is an unbiased estimator of Z. If Eϖ

T <∞, then, E[|Ẑϖ
X1:N /Z − 1|2] =

N−1(Eϖ
T −1). If Mϖ

T <∞, then, for any δ ∈ (0, 1), with probability 1−δ,
√

N
∣∣∣Ẑϖ

X1:N /Z − 1
∣∣∣ ≤

Mϖ
T
√

log(2/δ)/2.
The proof is postponed to Section A.1.3. Eϖ

T plays the role of the second-order moment of the
importance weights EX∼ρ[L2(X)] which is key to the performance of IS algorithms Agapiou
et al. (2017); Akyildiz and Míguez (2021). In addition, since the NEO-IS estimator Ẑϖ

X1:N is
unbiased, the Cauchy–Schwarz inequality implies that EX∼ρ

[(∑
k∈Z wk(X)L(Tk(X)))2] ≥ Z2

and hence that Eϖ
T ≥ 1. Note that if ∥L∥∞ = supx∈Rd L(x) < ∞, then since the weights are

uniformly bounded by Ωϖ−1
0 , we have Mϖ

T ≤ ∥L∥∞Ωϖ−1
0 /Z.
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Using the NEO-IS estimate Ẑϖ
X1:N of the normalizing constant, we can construct a self-normalized

IS estimate of
∫

f(x)π(x)dx:

JNEO
ϖ,N (f) = N−1

N∑
i=1

Ẑϖ
Xi

Ẑϖ
X1:N

∑
k∈Z

L(Tk(Xi))wk(Xi)
Ẑϖ

Xi

f(Tk(Xi)) , (2.2.6)

referred to as NEO-SNIS estimator. This expression may seem unnecessarily complicated but
highlights the hierarchical structure of the estimator. We combine estimators

(Ẑϖ
Xi)−1 ∑

k∈Z
L(Tk(Xi))wk(Xi)f(Tk(Xi))

evaluated on the forward and backward orbits through the points {Xi}Ni=1 using the normalized
weights {Ẑϖ

Xi/Ẑϖ
X1:N }Ni=1. Although the NEO-IS estimator is unbiased, the NEO-SNIS is in

general biased. However, for bounded functions, both the bias and the variance of the NEO-
SNIS estimator are O(N−1), with constants proportional to Eϖ

T . For g a π-integrable function,
we set π(g) =

∫
g(x)π(x)dx.

Theorem 2.2.2. Assume that Eϖ
T <∞. Then, for any function g satisfying supx∈Rd |g(x)| ≤ 1

on Rd, and N ∈ N

E
X1:N iid∼ρ

[
|JNEO

ϖ,N (g)− π(g)|2
]
≤ 4 ·N−1Eϖ

T , (2.2.7)∣∣∣∣EX1:N iid∼ρ

[
JNEO

ϖ,N (g)− π(g)
]∣∣∣∣ ≤ 2 ·N−1Eϖ

T . (2.2.8)

If Mϖ
T <∞, then for δ ∈ (0, 1], with probability at least 1− δ,

√
N |JNEO

ϖ,N (g)− π(g)| ≤ ∥g∥∞Mϖ
T

√
32 log(4/δ) . (2.2.9)

The proof is postponed to Section A.1.4. These results extend to NEO-SNIS estimators the
results known for self-normalized IS estimators; see e.g., Agapiou et al. (2017); Akyildiz and
Míguez (2021) and the references therein. The upper bounds stated in this result suggest it is
good practice to keep Eϖ

T /N small in order to obtain sensible approximations.
Lemma 2.2.3. For any nonnegative sequence (ϖk)k∈Z, we have Eϖ

T ≤ exp (R2(π ∥ ρT)).
The proof is postponed to Section A.1.5. Lemma 2.2.3 suggests that accurate sampling requires
N to scale linearly with the exponential of the 2-Rényi divergence between the target π and the
extended proposal ρT.
Remark 2.2.4. We can extend NEO to non homogeneous flows, replacing the family {Tk : k ∈
Z} with a collection of mappings {Tk : k ∈ Z}. This would allow us to consider further flexible
classes of transformations such as normalizing flows; see e.g. Papamakarios et al. (2019). The
2-Rényi divergence provides a natural criterion for learning the transformation. We leave this
extension to future work.

Conformal Hamiltonian transform The efficiency of NEO relies heavily on the choice of
T. Intuitively, a sensible choice of T requires that (i) Eϖ

T is small, i.e. ρT should be close
to π by Lemma 2.2.3 (see (2.2.5)), (ii) the inverse T−1 and the Jacobian of T are easy to
compute. Following Rotskoff and Vanden-Eijnden (2019), we use for T a discretization of a
conformal Hamiltonian dynamics. Assume that U(·) = − log π(·) is continuously differentiable.
We consider the augmented distribution π̃(q, p) ∝ exp{−U(q) −K(p)} on R2d, where q is the
position, p is the momentum, and K(p) = pT M−1p/2 is the kinetic energy, with M a positive
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definite mass matrix. By construction, the marginal distribution of the momentum under π̃ is
the target pdf π(q) =

∫
π̃(q, p)dp. The conformal Hamiltonian ODE associated with π̃ is defined

by

dqt/dt = ∇pH(qt, pt) = M−1pt , (2.2.10)
dpt/dt = −∇qH(qt, pt)− γpt = −∇U(qt)− γpt ,

where H(q, p) = U(q) + K(p), and γ > 0 is a damping constant. Any solution (qt, pt)t≥0 of
(2.2.10) satisfies setting Ht = H(qt, pt), dHt/dt = −γpT

t M−1pt ≤ 0. Hence, all orbits converge
to fixed points that satisfy ∇U(q) = 0 and p = 0; see e.g. Franca et al. (2020); Maddison et al.
(2018).
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Figure 2.1: Left: E
1[K]
Th

(K) − 1 vs EIS(K) − 1 (red) in log10-scale as a function of the length
of trajectories K (the lower the better). Second left to right: Four examples of orbits with the
same random seed for different values of γ (from left to right, γ = 0.1, 1, 2).

In the applications below, we consider the conformal version of the symplectic Euler (SE) method
of (2.2.10), see Franca et al. (2020). This integrator can be constructed as a splitting of the two
conformal and conservative parts of the system (2.2.10). When composing a dissipative with a
symplectic operator, we set for all (q, p) ∈ R2d, Th(q, p) = (q +hM−1{e−hγp−h∇U(q)}, e−hγp−
h∇U(q)), where h > 0 is a discretization stepsize. This transformation can be connected with
classical momentum optimization schemes, see (Franca et al., 2020, Section 4). By (Franca
et al., 2020, Section 3), for any h > 0 Th is a C1-diffeomorphism on R2d with Jacobian given by
JTh

(q, p) = e−γhd. In addition, its inverse is T−1
h (q, p) = (q−hM−1p, eγh{p+h∇U(q−hM−1p)}).

Therefore, the weight (2.2.3) of the NEO estimator is given by

wk(q, p) = ϖkρ̃(Tk
h(q, p))e−γkhd∑

j∈Z ϖk+j ρ̃(T−j
h (q, p))eγjhd

,

where ρ̃(q, p) ∝ ρ(q)e−K(p). Figure 2.1 displays for different values of γ on a log-scale the bound
E
1[0:K]
Th

− 1 appearing in Theorem 2.2.1 as a function of K, here we use the sequence of weights
(ϖk)k∈Z = (1[0:K](k))k∈Z (i.e. only the K + 1 first elements of the forward orbits are used and
are equally weighted). For comparison, we also present on the same plot the bounds achieved by
averaging K + 1 independent IS estimates, EIS(K)− 1 = (K + 1)−1EX∼ρ[L(X)2]. Interestingly,
Figure 2.1 shows that there is a trade-off in the choice of γ which controls the exploration of
the state space by the Hamiltonian dynamics since the higher γ, the faster the orbits converge
towards the modes. This fast convergence prevents a “good” exploration of the space; e.g.
E
1[0:K]
Th

is smaller for γ = 1.0 than for γ = 2.0 when K > 7. the evolution of E
1[K]
T shows that

the use of the forward orbit of a conformal Hamiltonian with an appropriately chosen damping
factor outperforms the IS estimator. The associated trajectories are plotted for different values
of γ (the higher γ, the faster the orbits converge towards the modes).
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2.3 NEO-MCMC algorithm
We now derive an MCMC method to sample from π based on the NEO-IS estimator. A natural
idea consists in adapting the Sampling Importance Resampling procedure (SIR) (see for example
Rubin (1987); Skare et al. (2003)) to the NEO framework.

Algorithm 2 NEO-MCMC Sampler
At step n ∈ N∗, given the conditioning orbit point Yn−1.
Step 1: Update the conditioning point

1. Set X1
n = Yn−1 and for any i ∈ {2, . . . , N}, sample Xi

n
iid∼ ρ.

2. Sample the orbit index In with probability proportional to (Ẑϖ
Xi

n
)i∈[N ], (2.2.4).

3. Set Yn = XIn
n .

Step 2: Output a sample
4. Sample index Kn with probability proportional to {wk(Yn)L(Tk(Yn))/Ẑϖ

Yn
}k∈Z

5. Output Un = TKn(Yn).

The SIR method to sample JNEO
ϖ,N (see (2.2.6)) consists of 4 steps.

(SIR-1) Draw independently X1:N iid∼ ρ and compute the associated forward and backward orbits
{Tk(Xi)}k∈Z of the point.
(SIR-2) Compute the normalizing constants associated with each orbit {Ẑϖ

Xi}Ni=1.
(SIR-3) Sample an orbit index IN ∈ [N ] with probability {Ẑϖ

Xi/
∑N

j=1 Ẑϖ
Xj}Ni=1.

(SIR-4) Draw the iteration index KN on the IN -th orbit with probability

{L(Tk(XIN ))wk(XIN )/Ẑϖ
XIN }k∈Z .

The resulting draw is denoted by UN = TKN (XIN ). By construction, for any bounded func-
tion f , we get that E

[
f(UN )

∣∣∣X1:N , IN
]

= {Ẑϖ
XIN }−1∑

k∈Z wk(XIN )L(Tk(XIN )) which im-
plies E

[
f(UN )

∣∣∣X1:N
]

= JNEO
ϖ,N (f) (see (2.2.6)). Using Theorem 2.2.2, we therefore obtain

|E[f(UN )] −
∫

f(z)π(z)dz| ≤ 101/2∥f∥∞Eϖ
T N−1, showing that the law of the random variable

µN = Law(UN ) converges in total variation to π as N →∞,

∥µN − π∥TV = sup
∥f∥∞≤1

|µN (f)− π(f)| ≤ 101/2Eϖ
T N−1 . (2.3.1)

Based on Andrieu et al. (2010), we now derive the NEO-MCMC procedure, which in a nutshell
consists in iterating the SIR procedure while keeping a conditioning point (or equivalently,
orbit); see Section A.3. The convergence of NEO-MCMC does not rely on letting N →∞: the
NEO-MCMC works as soon as N ≥ 2, although as we will see below the mixing time decreases
as N increases.
This procedure is summarized in Algorithm 2. The NEO-MCMC procedure is an iterated
algorithm which produces a sequence {(Yn, Un)}n∈N of points in Rd. The n-th iteration of
the NEO-MCMC algorithm consists in two main steps: 1) updating the conditioning point
Yn−1 → Yn 2) sampling Un by selecting a point in the orbit {Tk(Yn)}k∈Z of the conditioning
point. Compared to SIR, only the generation of the points (step (SIR-1)) is modified: we set
X1

n = Yn−1 (the conditioning point), and then draw X2:N
n

iid∼ ρ.
The sequence {Yn}n∈N defined by Algorithm 2 is a Markov chain:

P (Yn ∈ A |Y0:n−1) = P (Yn ∈ A |Yn−1) = P (Yn, A) ,
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where

P (y, A) =
∫

δy(dx1)
N∏

j=2
ρ(xj)dxj

N∑
i=1

Ẑϖ
xi∑N

j=1 Ẑϖ
xj

1A(xi) , y ∈ Rd , A ∈ B(Rd) . (2.3.2)

Note that this Markov kernel describes the way, at stage n + 1, the conditioning point Yn+1 is
selected given Yn, which depends only on the estimator of the normalizing constants associated
with each orbit, but not on the sample Un selected on the conditioning orbit. In addition, given
the conditioning point Yn at the n-th iteration, the conditional distribution of the output sample
Un is P

(
Un ∈ B | In, X1:N

n

)
= P (Un ∈ B |Yn) = Q(Yn, B) where

Q(y, B) =
∑
k∈Z

wk(y)L(Tk(y))
Ẑϖ

y

1B(Tk(y)) , y ∈ Rd , B ∈ B(Rd) . (2.3.3)

With these notations, if the Markov chain is started at Y0 = y, then for any n ∈ N, the law of
the n-th conditioning point is P (Yn ∈ A |Y0 = y) = P n(y, A) and the law of the n-th sample is
P (Un ∈ B |Y0) = P nQ(y, B). Define π̃ the pdf given for y ∈ Rd by

π̃(y) = ρ(y)
Z

∑
k∈Z

wk(y)L(Tk(y)) =
ρ(y)Ẑϖ

y

Z
. (2.3.4)

The following theorem shows that, for any initial condition y ∈ Rd, the distribution of the
variable Yn converges in total variation to π̃ and that the distribution of Un converges to
π.
Theorem 2.3.1. The Markov kernel P is reversible w.r.t. the distribution π̃, ergodic and Har-
ris positive, i.e., for all y ∈ Rd, limn→∞ ∥P n(y, ·) − π̃∥TV = 0. In addition, π = π̃Q and
limn→∞ ∥P nQ(y, ·) − π∥TV = 0. Moreover, for any bounded function g and any y ∈ Rd,
limn→∞ n−1∑n−1

i=0 g(Ui) = π(g), P-almost surely, where {Ui}i∈N is defined in Algorithm 2 with
Y0 = y.
The proof is postponed to Section A.1.6.
Remark 2.3.2. We may provide another sampling procedure of {Yn}n∈N. Define the pdf on the
extended space [N ]× RdN by π̌(i, x1:N ) = N−1π̃(xi)∏N

j=1,j ̸=i ρ(xj). Consider a Gibbs sampler
targeting π̌ consisting in (a) sampling X

1:N\{In−1}
n |(In−1, Xn−1) ∼ ∏j ̸=In−1 ρ(xj), (b) sampling

In|X1:N
n ∼ Cat({Ẑϖ

Xi
n
/
∑N

j=1 Ẑϖ
Xj

n
}Ni=1 and (c) set Yn = XIn

n . This algorithm is a Gibbs sampler
on π̌ and we easily verify that the distribution of {Yn}n∈N is the same as Algorithm 2.
The next theorem provides non asymptotic quantitative bounds on the convergence in total
variation. The main interest of NEO-MCMC algorithm is motivated empirically from observed
behaviour: the mixing time of the corresponding Markov chain improves as N increases. This
behaviour is quantified theoretically in the next theorem. Moreover, this improvement is ob-
tained with little extra computational overhead, since sampling N points from the proposal
distribution ρ, computing the forward and backward orbits of the points and evaluating the
normalizing constants {Ẑϖ

Xi
n
}Ni=1 can be performed in parallel.

Theorem 2.3.3. Assume that Mϖ
T < ∞, see (2.2.5). Set ϵN = (N − 1)/(2Mϖ

T + N − 2) and
κN = 1− ϵN . Then, for any y ∈ Rd and k ∈ N, ∥P k(y, ·)− π̃∥TV ≤ κk

N and ∥P kQ(y, ·)−π∥TV ≤
κk

N .
Instead of sampling the new points X2:N

n independently from ρ (Step 1 in Algorithm 2), it is
possible to draw the proposals X1:N

n conditional to the current point Yn−1; see So (2006); Craiu
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and Lemieux (2007); Shestopaloff et al. (2018); Ruiz et al. (2021) for related works. Following
Ruiz et al. (2021), we use a reversible Markov kernel w.r.t. the proposal ρ, i.e., such that
ρ(x)m(x, x′) = ρ(x′)m(x′, x), assuming for simplicity that this kernel has density m(x, x′). If ρ =
N(0, σ2Id) , an appropriate choice is an autoregressive kernel m(x, x′) = N(x′; αx, σ2(1−α2)Id).
More generally, we can use a Metropolis–Hastings kernel with invariant distribution ρ. In this
case, r1(x1, x1:N\{1}) = ∏N

j=2 m(xj−1, xj) and for each i ∈ [2 : N ],

ri(xi, x1:N\{i}) =
i−1∏
j=1

m(xj+1, xj)
N∏

j=i+1
m(xj−1, xj) . (2.3.5)

Since m is reversible w.r.t. ρ, for all i, j ∈ [N ], ρ(xi)ri(xi, x1:N\{i}) = ρ(xj)rj(xj , x1:N\{j})
where ri(xi; x1:N\{i}) defines the the conditional distribution of X1:N\{i} given Xi = xi. The
only modification in Algorithm 2 is Step 1, which is replaced by: Draw Un ∈ [N ] uniformly, set
XUn

n = Yn−1 and sample X
1:N\{Un}
n ∼ rUn(XUn

n , ·). The validity of this procedure is established
in Section A.1.6.

2.4 Continuous-time version of NEO and NEIS
The NEO framework can be thought of as an extension of NEIS introduced in Rotskoff and
Vanden-Eijnden (2019). NEIS focuses on normalizing constant estimation and should be there-
fore compared with NEO-IS. In Rotskoff and Vanden-Eijnden (2019), the authors do not consider
possible extensions of these ideas to sampling problems. We consider here how NEO could be
adapted to continuous-time dynamical system. Proofs of the statements and detailed technical
conditions are postponed to Section A.2.
Consider the Ordinary Differential Equation (ODE) ẋt = b(xt) , where b : Rd → Rd is a smooth
vector field. Denote by (ϕt)t∈R the flow of this ODE (assumed to be well-behaved). Under appro-
priate regularity condition Jϕt(x) = exp(

∫ t
0 ∇ · b(ϕs(x))ds); see Lemma A.2.2. Let ϖ : R→ R+

be a nonnegative smooth function with finite support, with Ωc =
∫∞
−∞ϖ(t)dt. The continuous-

time counterpart of the proposal distribution (2.2.1) is ρc
T(x) = (Ωc)−1 ∫∞

−∞ϖ(t)ρ(ϕ−t(x))Jϕ−t(x)dt,
which is a continuous mixture of the pushforward of the proposal ρ by the flow of (ϕs)s∈R. As-
suming for simplicity that ρ(x) > 0 for all x ∈ Rd, then ρc

T(x) > 0 for all x ∈ Rd, and using
again the IS formula, for any nonnegative function f ,∫

f(x)ρ(x)dx =
∫

f(x) ρ(x)
ρc

T(x)ρc
T(x)dx =

∫ [∫ ∞
−∞

wc
t (x)f(ϕt(x))dt

]
ρ(x)dx , (2.4.1)

wc
t (x) = ϖ(t)ρ(ϕt(x))Jϕt(x)

/∫ ∞
−∞

ϖ(s + t)ρ(ϕs(x))Jϕs(x)ds . (2.4.2)

These relations are the continuous-time counterparts of (2.2.2). Eqs. (2.4.1)-(2.4.2) define a
version of NEIS Rotskoff and Vanden-Eijnden (2019), with a finite support weight function
ϖ; see Sections A.2.2 and A.2.3 for weight functions with infinite support. This identity is
of theoretical interest but must be discretized to obtain a computationally tractable estima-
tor. For h > 0, denote by Th an integrator with stepsize h > 0 of the ODE ẋ = b(x).
We may construct NEO-IS and NEO-SNIS estimators based on the transform T ← Th and
weights ϖk ← ϖ(kh). We might show that for any bounded function f and for any x ∈ Rd,
limh↓0

∑
k∈Z wk(x)f(Tk

h(x)) =
∫∞
−∞wc

t (x)f(ϕt(x))dt, where we omitted here the dependency in h
of wk. Therefore, taking h ↓ 0+, the NEO-IS converges to the continuous-version (2.4.1)-(2.4.2).
There is however an important difference between NEO and the NEIS method in Rotskoff and
Vanden-Eijnden (2019) which stems from the way (2.4.1)-(2.4.2) are discretized. Compared to
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NEIS, NEO-IS using T ← Th and weights ϖk ← ϖ(kh) is unbiased for any stepsize h > 0.
NEIS uses an approach inspired by the nested-sampling approach, which amounts to discretiz-
ing the integral in (2.4.1) also in the state-variable x; see Skilling (2006); Chopin and Robert
(2010). This discretization is biased which prevents the use of this approach to develop MCMC
sampling algorithm; see Section A.2.

2.5 Experiments and Applications

Normalizing constant estimation The performance of NEO-IS is assessed on different
normalizing constant estimation benchmarks; see Jia and Seljak (2020). We focus on two
challenging examples. Additional experiments and discussion on hyperparameter choice are
given in the supplementary material, see Section A.4.1.
(1) Mixture of Gaussian (MG25): π(x) = P−1∑P

i=1 N(x; µi,j , Dd), where d ∈ {10, 20, 45},
Dd = diag(0.01, 0.01, 0.1, . . . , 0.1) and µi,j = [i, j, 0, . . . , 0]T with i, j ∈ {−2, . . . , 2}.
(2) Funnel distribution (Fun) π(x) = N(x1; 0, a2)∏d

i=1 N(xi; 0, e2bx1) with d ∈ {10, 20, 45},
a = 1, and b = 0.5. In both case, the proposal is ρ = N(0, σ2

ρId) with σ2
ρ = 5.

The NEO-IS estimator is compared with (i) the IS estimator using the proposal ρ, (ii) the
Adaptive Importance Sampling (AIS) estimator of Tokdar and Kass (2010), (iii) Stochastic
Normalizing Flows (SNF)1 and (iv) the Neural Importance Sampling (NIS)2. For NEO-IS, we
use ϖk = 1[K](k) with K = 10 (ten steps on the forward orbit), and conformal Hamiltonian
dynamics γ = 1, M = 5 · Id for dimensions d = {10, 20}, and γ = 2.5 for d = 45 (where γ is the
damping factor, M the mass matrix, h is the stepsize of the integrator). The parameters of AIS
are set to obtain a complexity comparable to NEO-IS; see Section A.4.1. For NIS, we use the
default parameters and for SNF we used the same architectures as in Wu et al. (2020). In Fun,
we set γ = 0.2, K = 10, M = 5 · Id, and h = 0.3. The IS estimator was based on 5 ·105 samples,
and NIS, NEO-IS and AIS were computed with 5 · 104 samples. Figure 2.2 shows that NEO-IS
consistently outperforms the competing methods. NEIS is run with the default parameters of
the implementation with 2 · 104 samples (to get the wall clock run time)

Sampling NEO-MCMC is assessed for the distributions (MG25) (d = 40) and Fun (d = 20).
NEO-MCMC sampler is compared with (i) the No-U-Turn Sampler - Pyro library Bingham et al.
(2019) - and (ii) i-SIR algorithm Ruiz et al. (2021). The proposal distribution is ρ = N(0, σ2

ρId)
with σ2

ρ = 5. Dependent proposals are used (see (2.3.5)) with m(x, x′) = N(x′; αx, σ2
ρ(1−α2)Id)

with α = 0.99. For NUTS, the default parameters are used. For i-SIR, we use the same number
of proposals N = 10, proposal distribution and dependent proposal as for NEO-MCMC. To
perform a fair comparison, we use the same clock time for all three algorithms. The number
of iterations for correlated i-SIR, NEO-MCMC, and NUTS are n = 4 · 106, n = 4 · 105, and
n = 5 · 105, respectively. Figure 2.3 displays the empirical two-dimensional histograms of the
two first coordinates of samples from the ground truth, i-SIR, NUTS and NEO-MCMC sampler.
It is worthwhile to note that NEO-MCMC algorithm performs much better for MG25 which is a
very challenging distribution, even for SOTA algorithm such as NUTS, which struggles to cross
energy barriers between modes. For Fun, NEO-MCMC performs favourably w.r.t. NUTS, which
is well adapted for this type of distributions.

1Implementation available at https://github.com/noegroup/stochastic_normalizing_flows.
2Implementation available at https://github.com/ndeutschmann/zunis.
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Figure 2.2: Boxplots of 500 independent estimations of the normalizing constant in dimension
d = {10, 20, 45} (from left to right) for MG25 (top) and Fun (bottom). The true value is given by
the red line. The figure displays the median (solid lines), the interquartile range, and the mean
(dashed lines) over the 500 runs.
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Figure 2.3: Empirical 2-D histogram of the samples of different algorithms targeting MG25 (top)
and Fun (bottom). Left to right: samples from the target distribution, correlated i-SIR, NUTS,
NEO-MCMC.

Block Gibbs Inpainting with Deep Generative models and NEO-MCMC We apply
NEO-MCMC to the task of sampling the posterior of a deep latent variable model. To be
consistent with the rest of the chapter, we use non-standard notation here with x being the
latent variable and z the observation. More precisely, we assume that x ∼ N(0, Id) and a
conditional distribution p(z | x) which generates an image z = (z1, . . . , zD) ∈ RD. Given
a family of parametric decoders {x 7→ pθ(z | x), θ ∈ Θ}, and a training set D = {zi}Mi=1,
training involves finding the MLE θ∗ = arg maxθ∈Θ pθ(D). As pθ(z) =

∫
pθ(z | x)p(x)dx, the

likelihood is intractable and to alleviate this problem, Kingma and Welling (2014) proposed
to train jointly an approximate posterior qϕ(x|z) that maximizes a tractable lower-bound on
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the log-likelihood: ELBO(z, θ, ϕ) = EX∼qϕ(·|z)[log pθ(z, X)/qϕ(X|z)] ≤ pθ(z), where qϕ(x | z)
is a tractable conditional distribution with parameters ϕ ∈ Φ. It is assumed in the sequel
that conditional to the latent variable x, the coordinates are independent, i.e. pθ(z | x) =∏D

i=1 pθ(zi|x).
Note that it is possible to train VAE with the NEO algorithm, using the unbiased estimate of
the normalizing constant to construct an ELBO. This approach is described in the supplement
Section A.5. We do not focus on this approach here and assume that the VAE has been
trained and we are only interested in the sampling problem. In our experiment, we use a VAE
trained on CelebA dataset 3 Liu et al. (2018). We consider the Block Gibbs inpainting task
introduced in (Levy et al., 2018, Section 5.2.2). Given an image z, denote by [zt, zb] the top
and the bottom half pixels. Assume only zt

⋆ is observed, then we are interested in in-painting
the bottom of an image by the posterior distribution of zb given zt

⋆. This is achieved using
Block Gibbs sampling. A two-stage Gibbs sampler amounts to (a) sampling pθ∗(x|zt, zb) and
(b) sampling pθ∗(zb|x, zt) = pθ∗(zb|x) (since zb and zt are independent conditional on x). Given
zk = (zt

⋆, zb
k), we sample at each step xk ∼ pθ∗(x | zk) and then zb

k+1 ∼ pθ∗(zb | xk). We
then set zk+1 = (zt

∗, zb
k+1). Stage (b) is elementary but stage (a) is challenging. We use an

MCMC-within-Gibbs scheme using different samplers. We use the following decomposition of
pθ∗(x | z) ∝ ρ(x)L(x) for ρ(x) ∝ qβ

ϕ∗(x | z) and L(x) = pθ∗(x, z)/qβ
ϕ∗(x | z) with β ∈ (0, 1). It is

possible to sample from ρ(x) as qϕ∗(x | z) is Gaussian. In our experiments with CelebA and the
chosen trained VAE, we have x ∈ R10 (recall that x is our latent variable here), z ∈ R12288, and
use β = 0.1. We then compare i-SIR, HMC and NEO-MCMC sampler in stage (a), with the
same computational complexity (N = 10, K = 12, γ = 0.2 for NEO-MCMC, N = 120 for i-SIR,
and HMC is run with K = 20 leap-frog steps). Again, NEO-MCMC and i-SIR use dependent
proposals, with m a Random Walk Metropolis kernel with stepsize 0.1. For each algorithm, 10
steps are performed. Figure A.4 displays the evolution of the resulting Markov chains. The
samples clearly illustrate that NEO-MCMC mixes better than i-SIR and HMC. More details
and examples are presented in the supplementary.

2.6 Conclusion and perspectives
In this chapter, we have proposed a new family of algorithms, NEO, for computing normalizing
constants and sampling from complex distributions. This methodology comes with asymptotic
and non-asymptotic convergence guarantees. For normalizing constant estimation, NEO-IS com-
pares favorably to state-of-the-art algorithms on difficult benchmarks. NEO-MCMC is also able
to sample some complex distributions: it is particularly well-adapted to sampling multimodal
distributions, thanks to its proposal mechanism which avoids being trapped in local modes.
There are numerous potential extensions to this work. For example, it would be interesting
to consider deterministic transformations other than conformal Hamiltonian dynamics integra-
tors. These transformations could be trained, as for Neural IS, using a variation lower bound. It
would also be interesting to further investigate the influence of the mixture weights {ϖk}k∈Z on
the efficiency of NEO. Also, while it is not investigated in the present chapter, we believe that
the NEO estimator with the Hamiltonian transform can be useful in particle filtering Pitt and
Shephard (1999). Finally, our bounds are valid for any transform T and it would be interesting
to derive specific bounds for the Hamiltonian transform in order to quantify the improvements
over the vanilla SNIS estimator with proposal ρ observed in Figure 2.1.

3Publicly available online, see https://github.com/YannDubs/disentangling-vae/tree/master/results/
betaH_celeba
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Figure 2.4: Two examples for the Gibbs inpainting task for CelebA dataset. From top to bottom
(twice) : i-SIR, HMC and NEO-MCMC: From left to right, original image, blurred image to
reconstruct, and output every 5 iterations of the Markov chain. Last line: a forward orbit used
in NEO-MCMC for the second example.
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Chapter 3

Entropic Mirror Monte Carlo

3.1 Introduction
In Bayesian statistics, inference on unknown quantities often requires sampling from com-
plex posterior densities, which are frequently intractable. As an alternative to the dominant
paradigm of Markov chain Monte Carlo (MCMC), Variational Inference (VI) methods aim to
approximate the posterior density. They achieve this by seeking the best variational density,
with respect to some user-specified criterion, within a set of probability densities FΘ parame-
terized by variational parameters θ that lie in a parameter space Θ. This approach effectively
formulates an optimization problem to find the most suitable approximation. The criterion
optimized is defined by the specific task being solved. When learning the parameters of a
hierarchical model, the forward Kullback-Leibler (KL) divergence appears naturally as the ap-
propriate criterion through the evidence lower bound (Kingma and Welling, 2013; Blei et al.,
2017). When the goal is to estimate expectations with respect to the posterior by means of
importance sampling (IS), which will be the focus of this paper, the backward KL and the
2-Rényi divergence are instead the natural criteria (Cappe et al., 2005; Agapiou et al., 2017;
Chatterjee and Diaconis, 2018).
More formally, let π be a target distribution known up to a constant and µ be a proposal
distribution dominating π and from which sampling is tractable. Using the change of measure
π(dx) = dπ

dµ(x)µ(dx), any expectation π(f) :=
∫

f(x)π(dx) = µ(f dπ
dµ) can be estimated using N

independent samples (X1, . . . , XN ) drawn from µ,

πN
µ (f) :=

N∑
i=1

ωif(Xi) , where ωi ∝ dπ

dµ
(Xi) ,

and ∑n
i=1 ωi = 1. The so-called self normalized importance sampling estimator is useful when-

ever sampling directly from π is impossible but can also be seen as a variance reduction method
of the crude Monte Carlo (MC) estimator, in particular for rare event simulation. Over broad
classes of functions, the performance of πn,µ(f) relies on the quality of the importance distri-
bution µ and is captured by the following bound (Agapiou et al., 2017),

sup
|f |≤1

∥∥πN
µ (f)− π(f)

∥∥2
2,µ⊗N ≤

4
N

exp (R2(π ∥ µ)) ,

where ∥.∥2,µ⊗N is the 2-norm with respect to the product measure µ⊗N and R2(π ∥ µ) the
2-Rényi divergence. Hence, the sample size needs to grow exponentially with the 2-Rényi diver-
gence to get a sharp upper-bound on the Mean Squared Error (MSE) between the importance
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and the target distributions. Moreover, according to Chatterjee and Diaconis (2018), a log
sample size set to the Kullback-Leibler (KL) divergence between π and ν is also necessary for
guarantees in high probability. These results highlight the relevance of optimizing R2(π ∥ µ)
and KL(π ∥ µ).
One of the earliest attempts to optimize the backward KL divergence can be traced back to
the cross-entropy (CE) method (Rubinstein, 1999; De Boer et al., 2005). CE is a stochastic
optimization procedure for the minimization of µ 7→ KL(π ∥ µ) within a family of parametric
probability measures FΘ = {µθ ∈ M1 : θ ∈ Θ} for which sampling and density evaluation
are straightforward. As KL(π ∥ µθ) is an expectation with respect to π from which sampling
is intractable, the optimization is carried out using a reference probability measure µref ∈ FΘ
as importance proposal from which samples are drawn. The generalization of this method-
ology is known as adaptive importance sampling (AIS) (Oh and Berger, 1993; Cappé et al.,
2004; Cornuet et al., 2012). AIS is an iterative procedure in which the importance proposal is
dynamically adjusted using weighted samples from the proposal of the previous iteration. In
contrast, the proposal in CE is updated at each step using samples from the fixed reference
measure. Traditional AIS methods differ by the weighting scheme (Cappé et al., 2004, 2008;
Cornuet et al., 2012; Elvira et al., 2017; Korba and Portier, 2022) and on how the proposal is
updated (Douc et al., 2007b; Cappé et al., 2008; Cornuet et al., 2012). The parametric family
FΘ is often chosen to be that of the mixture of an exponential family distribution and specific
procedures have been developed to handle these cases. In Cappé et al. (2008), an integrated
Expectation-Maximization (EM) algorithm for the optimization of FΘ ∋ µθ 7→ KL(π ∥ µθ) is de-
veloped, yielding explicit updates for the means, weights and covariance matrices for Gaussian
and Student-t mixtures. This procedure effectively avoids the need to parameterize the weights
and covariance matrices during the optimization.
Arguably, one of the main bottlenecks when performing AIS is the family of proposals on which
the optimization is performed. In designing a parametric family FΘ, two key considerations are
vital; the densities within the chosen family must have more modes and heavier tails than the
target distribution. Unfortunately, obtaining such information beforehand is challenging, as we
only have access to the density and estimating any additional statistics necessitates is not at
all trivial. To circumvent these hurdles, non-parametric AIS methods based on kernel density
estimates, which can atleast adapt to the multimodality of the target, have been considered
(Neddermeyer, 2009; Dai et al., 2016; Delyon and Portier, 2021; Korba and Portier, 2022).
In more recent years, the particular aspect of designing an appropriate parametric family for
AIS has benefitted from the advances in probabilistic modelling driven by variational inference
and generative modelling. Normalizing flows (Tabak et al., 2010; Papamakarios et al., 2021),
which can represent arbitrarily complex probability measure with positive density using deep
learning architectures, have emerged as efficient tools for automatic adaptation to the tails and
multimodality of the target distribution, thus paving the way for black-box AIS. This recent
research direction have resulted in a few computationally efficient methods that scale well with
the dimension and have helped bridge the gap between AIS and adaptive Markov chain Monte
Carlo (MCMC) methods. In Naesseth et al. (2020); Gabrié et al. (2022); Samsonov et al. (2022),
a normalizing flow is adapted by minimizing the backward KL divergence estimated using
MCMC kernels with proposal the normalizing flow at the previous parameter, thus resulting in
an AIS proposal as well as an adaptive MCMC algorithm. In a more traditional way, Prangle
and Viscardi (2023) estimate the backward KL using importance sampling with the normalizing
flow at the previous parameter as proposal and by truncating the importance weights. Arbel
et al. (2021) optimize the backward KL using the main ingredients of a sequential Monte Carlo
(SMC) sampler, i.e. resampling and MCMC kernels. Although these methods may not explicitly
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identify themselves as AIS techniques, they still belong to its broader framework; obtaining
the subsequent proposal in these approaches involves learning from samples that have been
transformed to resemble samples from π as closely as possible. They are transformed either
through weighting, MCMC kernels, non-linear transformations or reweighting.

Contributions

In this paper, we develop a novel AIS scheme by recursively defining a sequence of probability
measures {µt}t∈N by µt+1 = F(µt) where F is a well-designed functional on the set of probability
measures P(X) ensuring contraction of the iterates with respect to the backward KL. The
functional considered builds upon Entropic Mirror Descent (EMD) updates considered in Beck
and Teboulle (2003); Dai et al. (2016); Daudel et al. (2021a); Korba and Portier (2022). While
this sequence results in the geometric decrease of the backward KL along the iterates, its
practical implementation can lead to poor parametric approximations of the target distribution
(see Figure 3.2 below). To address this problem, we augment the original EMD updates with
Markovian dynamics that leave invariant the target density π in order to improve the exploration
of the state space. The resulting AIS scheme informs the samples of the proposal by combining
regularized weights, that achieve a bias variance trade-off, and a non-standard weight which
allows the greedy exploration of the target if the involved Markov kernel allows global moves.
In this context, our contributions are the following:

• In Section 3.2 we define a principled objective, coined skewed Rényi divergence, to minimize
in order obtain an appropriate practical implementation of a sequence of iterates that
contracts with respect to the backward KL.

• Motivated by the failure of the optimization procedure in the case of EMD, which is due
to the nature of the sequence and not the objective, we derive in Section 3.2.2 a novel
sequence akin to EMD that incorporates Markovian moves. We show its backward KL
contraction under mild assumptions, mainly the π-invariance of the underlying Markov
kernel. When the Markov kernel is that of the Unadjusted Langevin Algorithm (ULA),
we show contraction in total variation distance up to a discretization error explicit in the
step-size and the dimension of the ambient space.

• In Section 3.2.3 we define the vanilla stochastic version of our algorithm and improve it
by means of additional resampling and local MCMC steps. The numerical experiments,
which are presented in Section 6.3, show that our algorithm outperforms existing AIS
methods on highly challenging examples.

3.2 Entropic Mirror Monte Carlo

3.2.1 General framework

In this chapter, we are interested in mappings F : Mπ → Mπ that induce a systematic decrease
of the backward KL divergence, i.e. such that for all µ ∈ Mπ

KL(π ∥ F(µ)) ≤ ρKL(π ∥ µ), (3.2.1)

where ρ ∈ [0, 1). Let us start by providing one notable example of such a map.

Entropic Mirror Descent. For all µ ∈ Mπ write:

Fe(µ) =
(dπ

dµ

)ε

µ
/ ∫

Rd

(dπ

dµ

)ε

dµ , (3.2.2)
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where ε ∈ (0, 1]. The functional Fe corresponds to one iteration of the Mirror Descent algorithm
applied to the convex map µ 7→ KL(µ ∥ π) Beck and Teboulle (2003). In Korba and Portier
(2022), it is shown that (3.2.1) is satisfied with ρ = 1−ε. As a result, the closer ε to 1 is, the faster
the convergence. On the other hand, since ε ∈ [0, 1], by Jensen’s inequality

∫ (
dπ/dµ

)εdµ ≤ 1
and

KL(µ ∥ Fe(µ)) =
∫

log
(dµ

dπ

)ε

dµ + log
∫ (dπ

dµ

)ε

dµ ≤ εKL(µ ∥ π) , (3.2.3)

the value of ε controls the discrepancy between a probability measure µ ∈ Mπ and its update
Fe(µ) in forward KL. These two observations naturally lead in practice to a tradeoff between
speed of convergence and the quality of the approximation of Fe(µ).
While appealing theoretically, the iterates of a mapping satisfying (3.2.1) are in general in-
tractable for both sampling and density evaluation. Therefore, in order to approximate these
updates we plan on projecting each application of the mapping F on a family of probability
measures FΘ = {µθ ∈ M1, θ ∈ Θ}. Note that Korba and Portier (2022) focus instead on building
non-parametric approximations with kernel density estimates.
We give below one notable example of family FΘ.
Example 3.2.1 (Normalizing flows). Let Tθ : Rd 7→ Rd be a C1-diffeomorphism for any θ ∈ Θ.
For any µ ∈ M1 admitting a density w.r.t. the Lebesgue measure, the pushforward Tθ#µ, which
corresponds to the law of Tθ(X) where X ∼ µ, has density

Tθ#µ(y) = µ(T−1
θ (y))|JT−1

θ
(y)| ,

where |JT−1
θ

(y)| is the determinant of the Jacobian at y ∈ Rd. By taking µ to be a Gaussian
(or in fact any simple distribution) and Tθ an invertible neural network with cheap to compute
Jacobian, we can model complex distributions with Tθ#µ using SGD Papamakarios et al. (2021).
We may consider two different choices for the projection step as we will now see. In either
case, the projection step will be solved approximately once we are able to obtain an empirical
approximation ζN

t of F(µθt),

ζN
t =

N∑
i=1

ωi
tδXi

t
, (3.2.4)

where (X1
t , . . . , XN

t ) are random variables and the weights {ωi
t}Ni=1 sum to one.

(i) Backward KL projection. As we will essentially work with the particle approximations of the
updated measures F(µ), weighted maximum likelihood seems to be the most straightforward
way for obtaining a parametric approximation. The population criterion is then

µθt+1 = argmin
ν∈FΘ

KL(F(µθt) ∥ ν) , (3.2.5)

which is solved approximately by replacing F(µθt) with its particle approximation (3.2.4);

µθt = argmin
ν∈FΘ

∫
log dF(µθt)

dν
dζN

t = argmin
ν∈FΘ

−
n∑

i=1
ωi

t log ν(Xi
t) . (3.2.6)

Of course, the cost of replacing (3.2.5) with (3.2.6) heavily depends on the quality of the
empirical approximation (3.2.4) which is discussed later on.
(ii) Skewed Rényi projection. Let ν ∈ Mπ. For any µ ∈ Mπ we define the skewed Rényi
divergence

R̃π(ν ∥ µ) = log
∫ dπ

dµ
dν . (3.2.7)
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If ν = π then R̃π(π ∥ µ) = R2(π ∥ µ). For µ = π or µ = ν we get that R̃π(ν ∥ µ) = 0,
and by strict convexity of x 7→ 1/x on R>0 we also get that R̃π(ν ∥ απ + (1 − α)ν) < 0 for
α ∈ (0, 1) which contrasts with the non-negativity of the usual Rényi divergence. We motivate
the introduction of this functional with the following inequality. For all µ ∈ Mπ,

KL(π ∥ µ) = KL(π ∥ F(µθt−1)) +
∫

log
(
dF(µθt−1)

/
dµ
)
dπ

≤ ρKL(π ∥ µθt−1) + log
∫ (

dF(µθt−1)/dµ
)
dπ

= ρKL(π ∥ µθt−1) + R̃π(F(µθt−1) ∥ µ) .

where we have applied Jensen’s inequality and the contraction of the mapping F (3.2.1). Iter-
ating the bound, we get that for any sequence {µθs}ts=0,

KL(π ∥ µθt) ≤ ρtKL(π ∥ µθ0) +
t∑

s=1
ρt−sR̃π(F(µθs−1) ∥ µθs) , (3.2.8)

which hints that one way to achieve a small backward KL between π and µθt is to take for all
s ∈ [1 : t]

µθs = argmin
µ∈FΘ

R̃π(F(µθs−1) ∥ µ) . (3.2.9)

Furthermore, any mismatches resulting from R̃π(F(µθs−1) ∥ µθs) being too far from the mini-
mum are forgotten geometrically fast as t grows. If we are able to achieve a uniform error ∆
when estimating each F(µθs), i.e. R̃π(F(µθs−1) ∥ µθs) ≤ ∆ for all s ∈ [1 : T ] where T is the
total number of steps, then the final approximation µθT

satisfies

KL(π ∥ µθT
) ≤ ρT KL(π ∥ µθ0) + ∆

1− ρ
. (3.2.10)

Let us now detail how to approximate the solution to (3.2.9) when Gradient Descent is performed
on the parameters of the parametric family. Under common differentiability assumptions we
have that

∇θR̃π(F(µθs−1) ∥ µθ) = −
∫ { dπ/dµθ(x)∫ (

dπ/dµθ

)
dF(µθs−1)

∇θ log µθ(x)
}
F(µθs−1)(dx) , (3.2.11)

and a biased Monte Carlo approximation of the gradient is thus obtained by plugging in an
empirical approximation (3.2.24) of F(µθs−1),

∇̂θR̃π(F(µθs−1) ∥ µθ) = −
N∑

i=1

ωi
s−1dπ/dµθ(Xi

s−1)∑n
j=1 ωj

s−1dπ/dµθ(Xj
s−1)
∇ log µθ(Xi

s−1) . (3.2.12)

In the case of (3.2.2), we may consider the following weighted empirical approximation obtained
by sampling from µθt−1

ζN
t−1 =

N∑
i=1

dπ/dµθt−1(Xi
t−1)ε∑n

j=1 dπ/dµθt−1(Xj
t−1)ε

δXi
t−1

, where X1
t−1, . . . , XN

t−1
iid∼ µθt−1 . (3.2.13)

In the next example we illustrate that when N is not large enough (3.2.13) can be a poor
approximation even if ε is chosen so that the forward KL between µθt−1 and F(µθt−1) is small
following (3.2.3), resulting in a non-convergent scheme.
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Example 3.2.2. We consider two target distributions, π1 = N (10, 1) and π2 = 0.5 · N (0, 1) +
0.5 · N (10, 1). In Figure 3.1 and 3.2 we display the iterates of the EMD mapping (3.2.2) Fe,
µt = Fe(µt−1) targeting each distribution and their approximations µθt. The parametric family is
respectively that of the unimodal and bimodal Gaussians. We use the Expectation-Maximization
algorithm to solve (3.2.6) using N = 5000 samples. In the unimodal case, there is overlap
between two consecutive iterates so that the updates are well approximated. In the bimodal
example, this is not the case anymore and the approximate iterates fail to converge as sampling
from the second mode remains unlikely.
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Figure 3.1: Unimodal target. Top plot: the exact iterates of µt (3.2.2), bottom plot: approximate
iterates µθt (3.2.6). We only display the iterates from t = 6 to t = 15. ε is set to 0.2.
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Figure 3.2: Bimodal target. The setup is the same as in Figure 3.1.

The issue underlying the previous example is the same as in importance sampling. Indeed, if the
(conditional) variance of the unnormalized weights dπ/dµθt−1(Xi

t−1)ε that appears in (3.2.13)
is too large then (3.2.13) will be a poor approximation which in turn hinders the convergence
to π.

3.2.2 Entropic Mirror Descent with Markov kernels

In this section we introduce our modification of the mapping (3.2.2) using a π-invariant Markov
kernel Kπ. Let ε ∈ [0, 1] and λ ∈ [0, 1]. For all µ ∈ Mπ write

Fem(µ; λ, Kπ, ε) = λ · Fe(µ) + (1− λ) · FKπ (µ) . (3.2.14)
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where Fe is (3.2.2) and

FKπ (µ) =
(dπ

dµ

)ε

µKπ

/∫
Rd

(dπ

dµ

)ε

dµKπ .

Note that Kπ can be an ℓ-th iterate of a π-invariant Markov kernel. As a result, if such iterates
are able to effectively explore π, then we can expect that µtKπ will have high density regions
similar to those of π. To a certain extent, this can potentially alleviate the issues raised in
the previous section. However, using µtKπ alone in (3.2.14) does not necessarily yield the
contraction (3.2.1) which comes from the fact that µtKπ is different from π. As we will see in
the following, the weight inspired by (3.2.2)

(
dπ/dµ

)ε acts as a correction that will ensure the
contraction (3.2.1).
For notational convenience we may write Fem(µ) instead of Fem(µ; λ, Kπ, ε) whenever there is
no ambiguity. Let us provide a sufficient and weak condition under which the iterates

µt := Fem(µt−1; λt, Kπ, ε) , (3.2.15)

with λt ∈ (0, 1] are well defined.
Lemma 3.2.3. If µ ∈ Mπ is such that ∥dπ/dµ∥∞ < ∞ and λ ∈ (0, 1] then Fem(µ; λ) is well
defined and is a probability measure in Mπ satisfying ∥dπ/dFem(µ; λ)∥∞ <∞.

Proof. If ∥dπ/dµ∥∞ <∞ then
∫ (

dπ/dµ
)εdµKπ <∞ and thus Fem(µ; λ) is indeed a probability

measure. Next, since ε ∈ [0, 1] and λ ∈ (0, 1], we have that

sup
x∈Rd

dπ

dFem(µ)(x) ≤ sup
x∈Rd

{ 1
λ

dπ

dµ
(x)1−ε

∫ dπ

dµ
(y)εµ(dy)

}
<∞ .

Based on the previous Lemma, starting from an initial distribution µ0 such that ∥dπ/dµ0∥∞ <
∞, we get that ∥dπ/dµt∥∞ < ∞ and in the sequel we will write ft(x) = dπ/dµt(x) for the
Radon-Nikodym derivatives in order to simplify the notations.
We are now ready to state the first result of this chapter; we identify sufficient conditions on
the kernel Kπ and the sequence (λt)t∈N under which the iterates (3.2.15) converge geometrically
fast to π in backward KL.
Proposition 3.2.4. Let µ0 ∈ Mπ such that ∥dπ/dµ0∥∞ <∞ and βt ∈ (0, 1). If the kernel Kπ

is a π-invariant Markov kernel then the iterates (3.2.15) with

λt =


log

∫
f ε

t dµtKπ

log
∫

f ε
t dµtKπ − log

∫
f ε

t dµt
, if log

∫
f ε

t dµtKπ > 0

βt otherwise,

satisfy
KL(π ∥ µt) ≤ (1− ε)tKL(π ∥ µ0) .

Proof. If µt is well defined then by Jensen’s inequality we have that
∫ (

dπ/dµt
)εdµt ≤ 1 since

ε ∈ [0, 1]. A straightforward induction shows that λt ∈ (0, 1] for all t ∈ N and that µt is indeed
a mixture of two probability measures. Next, by convexity of the KL divergence, we have that

KL(π ∥ µt+1) ≤ λtKL(π ∥ Fe(µt)) + (1− λt)KL(π ∥ FKπ (µt))
≤ λt(1− ε)KL(π ∥ µt) + (1− λt)

(
KL(π ∥ µtKπ)− εKL(π ∥ µt)

)
+ λt log

∫
f ε

t dµt + (1− λt) log
∫

f ε
t dµtKπ .

61



By the Data Processing inequality Van Erven and Harremos (2014) and the fact that π is
invariant for Kπ we have that

KL(π ∥ µtKπ) = KL(πKπ ∥ µtKπ) ≤ KL(π ∥ µt) ,

and thus

KL(π ∥ µt+1) ≤ (1− ε)KL(π ∥ µt) + λt log
∫

f ε
t dµt + (1− λt) log

∫
f ε

t dµtKπ .

Finally, by definition of λt and using that
∫

f ε
t dµt ≤ 1 we get

λt log
∫

f ε
t dµt + (1− λt) log

∫
f ε

t dµtKπ ≤ 0 ,

from which the contraction follows.

In what follows we write Zµt =
∫

f ε
t dµt and ZµtKπ =

∫
f ε

t dµtKπ. As it can be noted from the
proof, the particular choice of λt ensures that the backward KL decreases along the iterates,
taming the behavior of the second term in (3.2.14). Indeed, logZµtKπ may not always be
negative; taking Kπ(x, ·) = π, we get logZµtKπ = εR1+ε(π ∥ µt) ≥ 0 which may prevent the
desired contraction (3.2.1). In fact, it is not difficult to come up with examples in the discrete
case where setting λt = 0 for all t ∈ N results in a non-convergent scheme. Our choice of λt

provided by Proposition 3.2.4 is the smallest parameter, when logZµtKπ > 0, that ensures the
contraction holds and thus maximizes the weight of the second term in (3.2.14) under this same
constraint.
We may investigate the range of λt in the case Kπ(x, ·) = π. Indeed, using that the Rényi
divergence is increasing with respect to its order we get that

logZµtKπ

logZµtKπ − logZµt

= εR1+ε(π ∥ µt)
εR1+ε(π ∥ µt) + (1− ε)Rε(π ∥ µt)

≥ ε ,

which shows that λt ∈ [ε, 1].
Proposition 3.2.4 requires minimal assumptions regarding the choice of the Markov kernel Kπ,
except that it is π-invariant. Therefore there is a diverse range of options to choose from, e.g.,
MALA Besag (1994), HMC Neal et al. (2011) or iSIR Andrieu et al. (2010). However, we may
also be interested in using kernels that are not π-invariant such as the unadjusted Langevin
Algorithm (ULA). ULA corresponds to the Euler-Maruyama discretization of the Langevin
diffusion

dXs = ∇ log π(Xs)ds +
√

2dBs , (3.2.16)

with (Bs)s≥0 a d-dimensional standard Brownian motion, and defines the discrete time Markov
chain

Xk+1 = Xk + γ∇ log π(Xk) +
√

2γZk+1 , (3.2.17)

where (Zk)k≥1 is an i.i.d. sequence of d-dimensional standard Gaussian vectors and γ is a
fixed positive stepsize. We write Rγ for the Markov kernel corresponding to the ULA recur-
sion: Rγ(x, ·) is the Gaussian distribution with mean x + γ∇ log π(x) and covariance matrix
2γId.
We now give guarantees for the iterates of (3.2.14) using ULA, defined by

µR
t = Fem(µR

t−1; λ⋆
t , Rγ) . (3.2.18)
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where

λ⋆
t =


log

∫
f ε

t dµR
t Rγ

log
∫

f ε
t dµR

t Rγ − log
∫

f ε
t dµR

t

, if log
∫

f ε
t dµR

t Rγ > 0 ,

β, otherwise,

and ft = dπ/dµR
t . For this purpose, we strengthen the assumptions on the target distribution

π.
(A1) The target π satisfies a log-Sobolev inequality; there exists CLS > 0 such that for all

smooth functions g : Rd 7→ R

Entπ(g2) ≤ CLS

∫
∥∇g∥2dπ . (3.2.19)

(A2) The log target is continuously differentiable and L-smooth; there exists L > 0 such that
for all x, y ∈ Rd,

∥∇ log π(x)−∇ log π(y)∥ ≤ L∥x− y∥ .

Assumptions (A1) and (A2) are standard in the sampling literature Durmus and Moulines
(2019); Vempala and Wibisono (2019); Chewi et al. (2022); Erdogdu et al. (2022). In partic-
ular, Assumption (A1) provides a powerful tool for analyzing the exponential convergence of
Markov semi-groups; see Bakry et al. (2014). This condition holds for a large class of probability
measures, including log concave distributions and is stable under bounded perturbations Hol-
ley and Stroock (1986). Combining (A1) and (A2) enables the derivation of non-asymptotic
convergence bounds for ULA in the forward Kullback-Leibler divergence and more broadly,
the forward α-Rényi divergence for α > 1 Vempala and Wibisono (2019); Chewi et al. (2022);
Erdogdu et al. (2022).
To ensure the existence of an invariant distribution πγ for Rγ we consider the following drift
condition Meyn and Tweedie (2012).
(A3) There exist V : Rd 7→ R such that V ≥ 1, b ≥ 0 and a compact set C ⊂ Rd such that

RγV ≤ V − 1 + b1C . (3.2.20)

Condition (A3) is ‘’almost” a necessary condition for Rγ to admit an invariant distribution and
to be ergodic. Indeed, Using (A2) it is easily shown that for any compact set K ⊂ Rd there
exists C ≥ 0 such that for all x ∈ K and A ∈ B(Rd)

Rγ(x, A) ≥ CKLeb(A ∩ K) , (3.2.21)

and thus Rγ is Leb-irreducible and strongly aperiodic. Therefore, by (Meyn and Tweedie, 2012,
Theorem 14.0.1) Rγ is positive recurrent and admits a unique invariant distribution if and only
if (3.2.20) is satisfied for some petite set C. In (A3), we only strengthen this condition on C
and suppose that it is compact which is satisfied in most applications.
We rely on the following result which is a consequence of (Vempala and Wibisono, 2019, Theorem
1).
Proposition 3.2.5. Assume (A1-2-3) and that γ ∈ (0, 1/

(
2CLSL2)]. Then Rγ has a unique

stationary distribution πγ that satisfies

KL(πγ ∥ π) ≤ 4γdL2CLS .
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Proof. As mentionned before, (3.2.21) implies that any compact set is small for Rγ and the
Lebesgue measure is an irreducibility measure. Together with (A3) and (Meyn and Tweedie,
2012, Theorem 14.0.1) this implies that for πγ-a.e. x ∈ Rd,

lim
ℓ→∞

∥Rℓ
γ(x, ·)− πγ∥TV = 0 .

Furthermore, for all x ∈ Rd and A ∈ B(Rd) such that Leb(A) > 0, Rγ(x, A) > 0 which implies
that πγ(A) = πγRγ(A) > 0 and thus πγ ≫ Leb. Finally, for any ν ∈ M1

∥νRℓ
γ − πγ∥TV ≤

∫
ν(dx)∥Rℓ

γ(x, ·)− πγ∥TV ,

and by the Lebesgue dominated convergence theorem it follows that

lim
ℓ→∞

∥νRℓ
γ − πγ∥TV = 0. (3.2.22)

In (Vempala and Wibisono, 2019, Theorem 1) it is shown that for all ℓ > 0

KL(νRℓ
γ ∥ π) ≤ exp(−CLSγℓ/2)KL(ν ∥ π) + 4γdL2CLS .

Thus, the lower semi-continuity of the KL for the weak topology (Van Erven and Harremos,
2014, Theorem 19) and the convergence in total variation distance (3.2.22) imply that

KL(πγ ∥ π) ≤ lim inf
ℓ→∞

KL(νRℓ
γ ∥ π) ≤ 4γdL2CLS .

where ν is such that KL(ν ∥ π) <∞.

Theorem 3.2.6. Assume (A1-2-3). Let µR
0 ∈ Mπ such that ∥dπ/dµR

0 ∥∞ < ∞ and let γ ∈
(0, 1/

(
2CLSL2)]. The iterates (3.2.18) satisfy

∥π − µR
t ∥TV ≤ (1− ε)t/2

√
2KL(πγ ∥ µR

0 ) + 4
√

2γdL2CLS .

Theorem 3.2.6 gives quantitative convergence bounds for the iterates (3.2.18) in the total varia-
tion distance. In contrast to (3.2.4), the sequence (µR

t )t does not converge to π. This comes from
the fact that the stationary distribution of ULA πγ is different from π which introduces a bias
at each iteration. However, Theorem 3.2.6 establishes that the accumulated error is bounded
by
√

γdL2CLS. This type of result is typical in studies of ULA, and as a result, for a precision
δ it is enough to take γ ≤ δ2/8dL2CLS and t ≥ log

(
8KL(πγ ∥ µR

0 )/δ2)/| log(1 − ε)| to obtain
∥π−µR

t ∥TV ≤ δ. It is worth noting that we do not establish a bound in KL divergence. Since µR
t

is obtained by initializing ULA at µR
t−1 doing so would require the control of the discretization

error of ULA with initial distribution µR
t in Rényi divergence through Girsanov’s Theorem and

comes at the cost of much stronger assumptions on the tails of each iterate µR
t . Here we show

convergence under a weaker measure of discrepancy by only requiring mild conditions on the
initial measure µR

0 .

Proof. By convexity of the KL divergence and the definition of λ⋆
t (3.2.4),

KL(πγ ∥ µR
t+1) ≤ λ⋆

t

∫
log dπγ

df ε
t µR

t

dπγ + (1− λ⋆
t )
∫

log dπγ

df ε
t µR

t Rγ
dπγ

+ λ⋆
t log

∫
f ε

t dµR
t + (1− λ⋆

t ) log
∫

f ε
t dµR

t Rγ

≤ λ⋆
t

∫
log dπγ

df ε
t µR

t

dπγ + (1− λ⋆
t )
∫

log dπγ

df ε
t µR

t Rγ
dπγ ,
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and we have that ∫
log dπγ

df ε
t µR

t

dπγ = (1− ε)KL(πγ ∥ µR
t ) + εKL(πγ ∥ π) ,∫

log dπγ

df ε
t µR

t Rγ
dπγ ≤ (1− ε)KL(πγ ∥ µR

t ) + εKL(πγ ∥ π) ,

where the second inequality follows using the Data Processing inequality and the fact that Rγ

is πγ-invariant. Thus,

KL(πγ ∥ µR
t+1) ≤ (1− ε)KL(πγ ∥ µR

t ) + εKL(πγ ∥ π) ≤ (1− ε)tKL(πγ ∥ µR
0 ) + KL(πγ ∥ π) .

The desired bound follows by Pinsker’s inequality and Proposition 3.2.5,

∥π − µR
t ∥TV ≤ ∥π − πγ∥TV + ∥πγ − µR

t ∥TV

≤ (1− ε)t/2
√

2KL(πγ ∥ µR
0 ) + 2

√
2KL(πγ ∥ π) .

Algorithm 1: Entropic Mirror Monte Carlo (EM2C)
Input: µ0, ε, N , global kernel Kπ, local kernel Lπ, family FΘ, number of iterations T .
Output: µθT

1 for t ∈ [0 : T − 1] do
2 Sample X1:N

t
iid∼ µθt

3 Set ω̃i
t =

(
dπ/dµθt

)
(Xi

t)ε and ωi
t = ω̃i

t

/∑N
j=1 ω̃j

t .
4 Sample Y 1:N

t ∼ Kπ(X1
t , ·)⊗ · · · ⊗Kπ(XN

t , ·)
5 Set ϖ̃i

t =
(
dπ/dµθt

)
(Xi

t)ε and ϖi
t = ϖ̃i

t

/∑N
j=1 ϖ̃j

t

6 if N−1∑N
i=1 ϖ̃i

t > 1 then
7 Set λ⋆

t+1,N = log
(
N−1∑N

i=1 ϖ̃i
t

)/ {
log

(∑n
i=1 ϖ̃i

t

)
− log

(∑n
i=1 ω̃i

t

)}
8 else
9 Set λ⋆

t+1,N = β

10 Sample Z1:N
t

iid∼
{

λ⋆
t,N

∑N
i=1 ωi

tδXi
t

+ (1− λ⋆
t+1,N )∑N

i=1 ϖi
tδY i

t

}
Lπ

11 Set µθt+1 = argminµ∈FΘ −N−1∑N
i=1 log µ(Zi

t)

3.2.3 Stochastic updates

We now detail the practical implementation of the sequence (3.2.14) with the criterion (3.2.5).
The complete procedure is summarized in Algorithm 1. Given µθt ∈ Mπ the update Fem(µθt ; λ⋆

t+1)
is approximated as follows. The first step consists in obtaining an empirical approximation of the
update by drawing N samples X1:N

t from µθt and then sampling Y i
t ∼ Kπ(Xi

t , ·) for i ∈ [1 : n].
These samples are then used to estimate the intractable mixture weight λ⋆

t+1 (3.2.4) with λ⋆
t+1,N

given by

λ⋆
t+1,N :=


log N−1∑N

i=1 ft(Y i
t )ε

log∑N
i=1 ft(Y i

t )ε − log∑N
i=1 ft(Xi

t)ε
, if log N−1∑N

i=1 ft(Y i
t )ε > 0 ,

βt otherwise.
(3.2.23)
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where ft : x 7→ dπ/dµθt(x). An empirical version of Fem(µθt ; λ⋆
t+1,N ) is then

ζN
t = λ⋆

t+1,N

N∑
i=1

ωi
tδXi

t
+ (1− λ⋆

t+1,N )
N∑

i=1
ϖi

tδY i
t

, (3.2.24)

where ωi
t = ft(Xi

t)ε/
∑n

j=1 ft(Xj
t )ε and ϖi

t = ft(Y i
t )ε/

∑n
j=1 ft(Y j

t )ε. In comparison with ft(Xi
t),

the unnormalized weights ft(Y i
t ) are not classical importance weights since Y i

t is sampled from
µθtKπ. Consequently, if µθtKπ has non-negligible mass in the effective support of π where µθt

does not, it is expected that the distribution of ft(Y )ε with Y ∼ µθtKπ exhibits heavier tails
than ft(X)ε when X ∼ µθt . This provides an intuitive interpretation of (3.2.24). The first
component of the mixture ∑N

i=1 ωi
tδXi

t
adapts the samples from µθt to the target π through the

importance weights raised to ε, thus providing a more biased particle approximation of π with
less variance, see Korba and Portier (2022). This also helps avoiding the situation where one
sample has a normalized weight close to 1, which often happens in large dimensions. The second
component ∑N

i=1 ϖi
tδY i

t
on the otherhand corresponds to a greedy exploration step; the samples

Y i
t that land in regions of the effective support of π where µθt is unlikely are assigned a large

unnormalized weight. The counterpart of this greedy approach is that, more often than not,
one sample will have a normalized weight close to 1. This an undesirable feat as it may result
in poor parametric approximations. To circumvent this issue and benefit from such samples,
we add a resample-move step; we sample from the mixture (3.2.24) and diversify the samples
by running a local MCMC algorithm with kernel Lπ leaving π invariant, such as the Random
walk Metropolis or MALA. Formally, this additional step boils down to sampling from ζN

t Lπ;
first sample A1:N

t
iid∼ ζN

t and then sample Z1
t , . . . , ZN

t ∼ Lπ(X1
t , ·) ⊗ . . . Lπ(XN

t , ·). In Example
(3.2.8) we illustrate the benefits of this additional step.
The scheme we have just described can be thought of as an approximation of the updates

µt+1(dx) =
∫
Fem(µt; λ⋆

t+1, Kπ)(dy)Lπ(y, dx) . (3.2.25)

Since Lπ is π-invariant, by the Data Processing inequality, the KL contraction in Proposi-
tion 3.2.4 still holds. The bound in Theorem 3.2.6 also holds by applying the Data Processing
inequality for the total variation distance.
Remark 3.2.7. We can further improve our algorithm by allowing sampling from some heavy
tailed distribution ht (which may eventually depend on the iteration number) and considering
instead the iterates

µt+1(dx) =
∫ {

λ⋆
t+1 · Fe(µt) + (1− λ⋆

t+1) · FKπ (µ̃t)
}
(dy)Lπ(y, dx) ,

where µ̃t = αtµt +(1−αt)ht and αt ∈ [0, 1]. Mixing the iterate µt with a heavy tailed distribution
allows for a better exploration of π observed numerically at the cost of a bias in the bounds of
Proposition 3.2.4, Theorem 3.2.6 (this may aswell be an artifact of the proof techniques).
Example 3.2.8. Assume that

π = 0.8 · N (02, I2) + 0.2 · N
(

12 · 12,

[
6 −5
−5 5

])

and Kπ = Rℓ
γ and Lπ is the composition of ℓ random walk metropolis steps. Both are run

with step size γ = 0.05 and ℓ = 100. The initial distribution µ0 is a standard Gaussian. In
Figure 3.2.8 we display the effect of the resample-move step described above.
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Figure 3.3: Left: samples from µ0 (in blue) and samples from µ0Kπ (in orange). Middle: same
samples weighted according to {ωi

1}ni=1 (in blue) and {ϖi
1}ni=1 (in orange). The size of each dot

is proportional to the weight of the associated sample. Right: samples from ζn
t Lπ (3.2.24). The

blue and orange samples come from the first and second component of (3.2.24) respectively. The
contour plot of log π is in dashed lines.

Figure 3.4: The π̃i associated with the target distributions.
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3.3 Numerical experiments
In this section we assess the performance of our algorithm on three different synthetic examples.
We would like to stress that these are only preliminary experiments. For each example we
compute the normalizing constant Z =

∫
π(dx) = 1 using importance sampling and estimate

the inclusive KL using exact samples from π.
We test the robustness of our method with respect to: (i) initial distribution µ0, (ii) dimension
d of the ambient space and (iii) model specification. In all experiments we use ε = 0.5 and
the kernel Kπ is the composition of 40 of ULA with step-size γk = 1/k0.2. The kernel Lπ is the
composition of 100 steps of random walk Metropolis. We implement the scheme described in
Remark 3.2.7 with ht = Student(0d, Id) using the KL projection (3.2.5). N is set to 1000 in
each experiment and we compute the normalizing constants using M = 5000 samples.

The target distributions considered factorize as πi = π̃
⊗d/2
i and thus we only specify π̃i in the

next examples. The targets π̃1:3 are shown in Figure 3.4.
(1) Two component GM with unbalanced modes (GM2).

π̃1 = 0.20 · N (02, I2) + 0.80 · N
(
20 · 12,

[
10 −4
−4 3

] )
.

(2) Four component anisotropic GM (GM4).

π̃2 = 0.25
4∑

i=1
N
(
mi,

[
3 4
4 10

] )
,

where m1 = (−10, 10), m2 = (10,−10), m3 = (15, 15), m4 = (−15,−15).
(3) Twenty five component GM (GM25).

π̃3 = 0.2
4∑

ℓ=0

4∑
k=0
N
( [5ℓ

5k

]
, 0.25 · I2

)
.

We denote by GMℓ the family of Gaussian mixtures with ℓ components and full covariance
matrices, GMℓ = {∑ℓ

i=1 wiN (mi, Σi) : w1:ℓ, m1:ℓ, Σ1:ℓ ∈ Sℓ × Rd×ℓ × (S++
d )ℓ}, where Sℓ is the

ℓ-simplex and S++
d is the set of d × d positive definite matrices. We use the Expectation-

Maximization (EM) algorithm for the maximum likelihood step with Gaussian mixtures in step
11 of Algorithm 1.
We first investigate if our parametric approximations are able to learn unbalanced targets (1).
We let FΘ = GM2. Let (w∗0, w∗20, m∗0, m∗20, Σ∗0, Σ∗20) denote the parameters output by EM2C where
(w∗0, m∗0, Σ∗0) (resp. (w∗20, m∗20, Σ∗20)) are the weight, mean and covariance matrix associated with
the component that is the closest to that with mean 0d (resp 20 · 1d). The results are given in
Table 3.1 for GM2 where we write Dm for ∥m∗0+m∗20−20·1d∥2 and DΣ for ∥(Σ∗0+Σ∗20)−(I2+Σ)∥2.
Remarkably, even in d = 100 EM2C is able to recover the correct weight of the mixture while also
being very close in mean and covariance. In Table 3.2 we provide the results for the estimation
of Z.
Next, we consider the example GM4 and test the robustness of EM2C to mispecification of the
parametric family. We learn parametric approximations within the families GM2 (underspec-
ified), GM4 (perfectly specified), GM8 (overspecified). Here the point of comparison is the EM
algorithm; we compare the quality of the approximations obtained by EM2C to those obtained
with EM using N = 10000 exact samples from π. The results are given in Figure 3.5. The dashed
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Table 3.1: Bias correction step. Results are given in mean ± standard deviation format

d = 10 d = 50 d = 100
w∗0 0.19± 0.01 0.19± 0.01 0.19± 0.01
Dm 0.11± 0.07 0.59± 0.28 0.60± 0.30
DΣ 1.10± 0.25 10.15± 1.50 7.89± 4.71

Table 3.2: GM2 example. Estimates of Z computed with N = 5000 samples. Results are given
in mean ± standard deviation format

d = 20 d = 50 d = 100
GM2 1.00± 0.00 1.00± 0.02 1.00± 0.10

lines represent the median value obtained by EM for each example and dimension d, over a total
of 30 runs. In this example, the initial distribution for EM2C is set to be a standard Gaussian
with mean −10 · Id. Notably, in higher dimensions EM2C is competitive with EM which uses real
samples from the target. The results for the estimation of Z are given in Table 3.3.
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Figure 3.5: GM4 example. Top to bottom: EM2C and EM with variational families GM2, GM4 and
GM8.

Finally, we consider the most challenging example, GM25. We run EM2C on the variational family
GM10 and then use the resulting variational approximation as a warm start in a MALA. We
run 20000 parallel chains with 5000 steps each and then use the obtained samples to perform
maximum likelihood within the family GM25 and also with an RNVP Dinh et al. (2016). Strik-
ingly, under perfect specification, we are able to achieve a KL of 1.13 in d = 50 and accurate
normalizing constant estimates. For the RNVP, we do not match the performance of the Gaussian
mixture but this is to be expected, since normalizing flows inherently struggle with multimodal
distributions Cornish et al. (2020).
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Table 3.3: GM4 example. Estimates of Z computed with M = 5000 samples. Results are given
in mean ± standard deviation format

d = 20 d = 50 d = 100
GM2 1.00± 0.09 1.00± 0.07 1.00± 0.25
GM4 1.00± 0.00 1.00± 0.02 1.00± 0.24
GM8 1.00± 0.00 1.00± 0.02 0.90± 0.23

d = 20 d = 50
GM10 0.99± 0.05 1.03± 0.13
GM25 1.00± 0.01 1.01± 0.12
RNVP 0.99± 0.23 0.97± 0.63

d = 20 d = 50
GM10 2.42± 0.20 3.44± 0.23
GM25 0.25± 0.05 1.13± 0.06
RNVP 3.24± 0.25 5.78± 0.94

Table 3.4: GM25 example. Left table: normalizing constant estimates. Right table: inclusive KL
value. The results are given in mean ± standard deviation format, obtained over 100 seeds. The
estimates are computed with M = 5000.

3.4 Conclusion and perspectives
We have presented a novel sequence that extends the entropic mirror descent sequence by
incorporating Markovian moves. We have shown that it converges geometrically fast to the
target distribution in KL divergence under mild assumptions, mainly the invariance with respect
to π of the Markov kernel. For ULA, which converges to a biased limit, we showed that the
iterates converge geometrically fast to π up to a bias explicit in the smoothness and log-Sobolev
constants of π, the step size and the dimension. We have derived a principled objective to
minimize aswell as a pratical stochastic scheme. Current numerical experiments show that the
proposed algorithm performs well on difficult normalizing constant estimation tasks.
We believe that a few fundamental questions remain to be answered. First, do the projected
iterates (3.2.5) or (3.2.9) converge towards some biased limit? If yes, can we characterize this
limit, i.e. is it for example argminµ∈FΘ KL(π ∥ µ), which is what we are interested in? Finally,
the ultimate goal is to be able to obtain bounds in backward KL divergence between π and
the iterates of the stochastic scheme. For now we have no clear path on how this can be
achieved.
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Chapter 4

Variance estimation for SMC
algorithms: a backward sampling
approach

4.1 Introduction

Sequential Monte Carlo (SMC) methods offer a flexible framework for the approximation of
posterior distributions in the context of Bayesian inference, for instance in Hidden Markov
Models (HMM). These models presuppose that the observations are defined using an unobserved
process assumed to be a Markov chain. In such a setting, we are particularly interested in
estimating the law of a hidden state given all past observations referred to as the filtering
distribution and the laws of sequences of states given past and future observations, referred
to as smoothing distributions. These distributions can be approximated by weighted empirical
measures associated with random samples, usually known as particles. All SMC methods are
based on successive importance sampling and resampling steps. When a new observation is
available, new particles are sampled according to an importance distribution and then weighted
to match the target distribution. Finally, through a resampling scheme, particles with large
weights are duplicated while low weighted particles are discarded. This general procedure has
been used in a wide range of applications such as signal processing, target tracking, econometrics,
biology, see Cappe et al. (2005); Douc et al. (2014); Chopin and Papaspiliopoulos (2020) and
the references therein.
The quantification of the Monte Carlo error of SMC estimators is a major challenge. For a
variety of SMC methods such as the bootstrap filter Gordon et al. (1993a) or the Forward
Filtering Backward Smoothing (FFBS) Tanizaki and Mariano (1994) algorithms, Central Limit
Theorems (CLT) with theoretical expressions of the asymptotic variance (in the number of
particles) have been derived Del Moral and Guionnet (1999); Chopin (2004); Künsch (2005);
Douc et al. (2011a). However, these expressions are not computable in practice and give rise
to the natural question of their estimation. Since this problem appears in an online context,
a critical constraint is that the samples produced by the original SMC algorithm should be
recycled to compute such estimates.
This problem has received some satisfactory solutions recently: a simple estimator of the asymp-
totic variance when multinomial resampling is used has been proposed in Chan and Lai (2013)
for the bootstrap filter algorithm and has since been refined in Lee and Whiteley (2018); Ols-
son and Douc (2019); Du and Guyader (2021). The computation of the associated asymptotic
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variance estimator at time t is based on tracing the genealogy of each particle down to time 0.
Although it has been shown to be consistent as the number of particles N grows to infinity, it
is particularly prone to instability when t is large, as the successive resampling steps lead to
the well known path degeneracy issue. After a few time steps, particles are likely to share the
same ancestor at time 0 which in turn makes the asymptotic variance estimates collapse. To
overcome this degeneracy issue, Olsson and Douc (2019) proposed to only trace a part of the
genealogy of each particle according to a fixed-lag parameter following the fixed-lag smoothing
approach introduced in Olsson et al. (2008). As long as the number of particles is balanced
with the chosen lag, the bias introduced by considering only the most recent ancestors of each
particle can be controlled as shown in Olsson and Douc (2019). However, while this alternative
estimator remains easily computable, choosing an optimal lag is a non trivial task which makes
this approach hard to tune in practice. We thus address the limitations of current asymptotic
variance estimators in this chapter.
The first contribution of this chapter is to propose a parameter free estimator of the asymptotic
variance associated with the bootstrap particle filter with multinomial resampling that trades
computational cost for stability and reduced variance. The construction of our estimator starts
from the observation that the aforementioned degeneracy is similar to that of classical SMC-
based smoothing algorithms Doucet et al. (2000); Fearnhead et al. (2010); Poyiadjis et al. (2011)
or Particle Markov Chain Monte Carlo algorithms such as the Particle Gibbs sampler Andrieu
et al. (2010). In both cases, a backward sampling step which aims at diversifying the particle
trajectories has shown to be a reliable workaround that decreases the (theoretical) variance of
the estimators at the expense of higher computational cost Godsill et al. (2004); Douc et al.
(2011a); Olsson and Westerborn (2017); Del Moral et al. (2010b); Lindsten and Schön (2012);
Chopin and Singh (2015a). We thus aim at introducing such a mechanism in the estimation
of the asymptotic variance. The construction of our estimator relies on the analysis conducted
in Lee and Whiteley (2018) in which it is shown that the estimator of Chan and Lai (2013)
can be interpreted as a conditional expectation with respect to the indices that retrace the
genealogy of the particles, given all the particles and ancestors. We show that this construction
still holds when the distribution of the indices relies on the backward importance weights. The
resulting estimator is computed by averaging auxiliary statistics that are very similar to those
of the forward implementation of the FFBS for additive functionals Del Moral et al. (2010c)
and can be thus updated online. The time complexity per update of our estimator is of order
N3. Driven by the efficient implementation of the FFBS for additive functionals developed in
Olsson and Westerborn (2017), we show that the computational cost of our estimator can be
reduced from O(N3) to O(N2) by means of additional Monte Carlo simulation while remaining
as competitive in terms of bias and variance.
We next focus on the FFBS algorithm for the estimation of smoothing estimators. Despite the
fact that a CLT has been obtained for estimators based on the FFBS, no variance estimator
has been proposed in the literature. We show that our previous construction enables us to
fill this gap and we thus provide a consistent estimator in the case of additive functionals
which are particularly critical, for instance in the Expectation Maximization framework. Again,
this estimator can be computed online and in the particular case of marginal smoothing its
computational cost can be drastically reduced.
The chapter is organized as follows. In Section 4.3 we briefly review the SMC framework and
discuss the current estimators of the asymptotic variance proposed in Chan and Lai (2013);
Lee and Whiteley (2018); Olsson and Douc (2019). In Section 4.4, we introduce our estimator
based on the backward weights, propose an online implementation and establish its asymptotic
properties. In Section 4.5, we extend our derivations to the FFBS algorithm and provide
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a consistent asymptotic variance estimator. We finally validate our results with numerical
experiments in Section 4.6. Notably, we show empirically that our novel estimator for the filter
has a favourable dependence on the time horizon t in comparison with the existing estimators.
All additional proofs and discussions can be found in the appendix.

4.2 Notation

For any measurable space (E, E), we denote by F(E) the set of R valued, E-measurable functions,
by Fb(E) the subset of F(E) of bounded functions on E, and by M1(E) the set of measures on E.
For any µ ∈ M1(E) and h ∈ F(E), we write

µ(h) :=
∫

E
h(x)µ(dx) .

For any transition kernel M from (E, E) to another measurable space (G,G), define

M [h](x) :=
∫

G
M(x, dy)h(y) , ∀h ∈ F(G) , ∀x ∈ E ,

and write µM the measure defined on G by

µM(A) :=
∫

E
µ(dx)M(x, A) , ∀A ∈ G .

If M1 is a transition kernel from (E, E) to (G,G) and M2 a transition kernel from (G,G) to
a measurable space (H,H), then M1M2 is the transition kernel from (E, E) to (H,H) defined
by

M1M2(x, A) =
∫

G
M1(x, dy)M2(y, A) , ∀x ∈ E , ∀A ∈ H .

In addition, M1 ⊗M2 is the transition kernel from (E, E) to (G× H,G ⊗H) defined by

M1 ⊗M2(x, A) :=
∫
1A(y, z)M1(x, dy)M2(y, dz) , ∀x ∈ E, A ∈ G ⊗H .

In particular, for all N ≥ 1, we will write M⊗N for ⊗N
i=1 M . For two E-measurable functions

f, g the tensor product is defined as

f ⊗ g : E2 ∋ (x, y) 7→ f(x)g(y) .

The sets N and N>0 are respectively the sets of natural numbers and positive natural numbers.
The Lq norm of a random variable X is ∥X∥q := E

[
|X|q

]1/q. The supremum norm of f ∈ Fb(E)
is denoted by |f |∞. The unit function 1 is such that 1(x) = 1 for all x ∈ E. The transpose
of a matrix A is denoted A⊤. If A, B ∈ RM×N are two matrices, then the Hadamard product
A ⊙ B is the element-wise product, i.e for all 1 ≤ i ≤ M and 1 ≤ j ≤ N , (A ⊙ B)i,j = ai,jbi,j .
If A ∈ RN×N , then Diag(A) is the N × N diagonal matrix such that for all 1 ≤ i ≤ N ,
Diag(A)i,i = Ai,i and if x ∈ RN×1 then Diag(x) is the N × N diagonal matrix such that
Diag(x)i,i = xi. For (a, b) ∈ N2, [a : b] := N ∩ [a, b] and [b] := [1 : b]. If f is a mapping from
[N ]2 to R, we denote by f the associated N × N matrix such that fi,j = f(i, j). Finally, we
adopt the following conventions. Given some set {ξi

s}s∈[0:t],i∈[N ], we write ξ1:N
t := (ξ1

t , · · · , ξN
t ),

ξk0:t
0:t := (ξk0

0 , · · · , ξkt
t ), ξ1:N

0:t :=
{
ξk0:t

0:t
}

k0:t∈[N ]t+1 .
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4.3 Sequential Monte Carlo
In this section, we first review the bootstrap particle filter methodology and recall the main
asymptotic results associated with the estimates produced by this algorithm. A state of the art
and a discussion of the estimation of the asymptotic variances related to this algorithm are also
presented.

4.3.1 Definitions

Let (X,X ) be a general measurable space. Let M0 and (Mt)t∈N be a probability measure on
(X,X ) and a sequence of Markov transition kernels on X × X , respectively. Consider also a
family (gt)t∈N of non-negative X -measurable functions, referred to as potentials. Throughout
this chapter, we make the following assumptions on {Mt}t∈N and {gt}t∈N.
(A4) The probability measure M0 admits m0 as probability density with respect to some ref-

erence measure ν ∈ M1(X ). For all t ∈ N and xt ∈ X, Mt+1(xt, .) admits mt+1(xt, .) as
probability density with respect to ν.

(A5) There exists a constant G∞ > 0 such that for all t ∈ N and x ∈ X, 0 < gt(x) ≤ G∞ .

Define the sequence of unnormalized transition kernels (Qt+1)t∈N where, for all t ∈ N, xt ∈ X
and A ∈ X ,

Qt+1(xt, A) := gt(xt)Mt+1(xt, A) ,

and, for any s, t ∈ N2,

Qs:t :=
{

Qs ⊗ · · · ⊗Qt if s ≤ t ,

Id otherwise .

Let Qs:t denote its marginal with respect to the variable xt, i.e. for all xs−1 ∈ X and all
measurable set A,

Qs:t(xs−1, A) :=
∫

Xt−s+1
Qs:t(xs−1, dxs, . . . , dxt)1A(xt).

Define recursively the sequence of measures (γ0:t)t∈N by

γ0(dx0) := M0(dx0) , γ0:t(dx0:t) := γ0:t−1(dx0:t−1)Qt(xt−1, dxt) , (4.3.1)

and let γt(A) =
∫

Xt+1 γ0:t(dx0:t)1A(xt) for all measurable sets A. Sequential Monte Carlo
algorithms aim at solving recursively the filtering problem, i.e. at estimating the sequence of
probability measures defined as

ηt(dxt) := γ−1
t (1)γt(dxt), ϕt(dxt) := gt(xt)ηt(dxt)/ηt(gt) , (4.3.2)

respectively called the predictive and filtering measures. Note that ηt can be computed recur-
sively using

ηt(dxt) =
∫

ϕt−1(dxt−1)Mt(xt−1, dxt) . (4.3.3)

We motivate these definitions with the following example.
Example 4.3.1. Hidden Markov models consist of an unobserved state process {Xt}t∈N and
observations {Yt}t∈N. They respectively evolve in two general measurable spaces (X,X ) and
(Y,Y). It is assumed that {Xt}t∈N is a Markov chain with transition kernels (Mt+1)t∈N and
initial distribution M0. Given the states {Xt}t∈N, the observations {Yt}t∈N are independent and
for all t ∈ N, the conditional distribution of the observation Yt only depends on the current
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state Xt. This distribution is written Gt(Xt, .) and admits the potential gt(xt, .) as density (the
dependency in Yt is made implicit and we drop the second argument). Given an observation
record Y0:t, the predictive and filtering distributions (4.3.2) are then the distributions of Xt given
Y0:t−1 and Xt given Y0:t respectively.
These two distributions are of considerable interest in Bayesian filtering as they enable the
estimation of the hidden states through the observed data record. Unfortunately only in a few
cases, such as discrete state spaces or linear and Gaussian HMM, can they be obtained in closed
form, see Cappe et al. (2005); Chopin and Papaspiliopoulos (2020) for a complete overview.

4.3.2 Particle filter

We now illustrate how to obtain empirical estimates of ηt and ϕt in an online manner through
Monte Carlo simulation. Assume that at time t the empirical measure

ηN
t (dxt) := N−1

N∑
i=1

δξi
t
(dxt)

based on random samples {ξi
t}1≤i≤N approximates ηt(dxt). Plugging ηN

t in (4.3.2) provides an
approximation of ϕt(dxt),

ϕN
t (dxt) :=

N∑
i=1

ωi
tδξi

t
(dxt) ,

where ωi
t := Ω−1

t ω̃i
t, ω̃i

t := gt(ξi
t) and Ωt := ∑N

i=1 ω̃i
t . Replacing ϕt by ϕN

t in (4.3.3), we obtain the
mixture ϕN

t Mt+1 which allows to construct ηN
t+1 by drawing N samples from it by performing

for all i ∈ [N ]
ξi

t+1 ∼Mt+1(ξAi
t

t , ·), where Ai
t ∼ Categorical(ω1:N

t ) .

The algorithm is initialized with the approximation ηN
0 := N−1∑N

i=1 δξi
0
(dxt) where ξ1:N

0 ∼
M⊗N

0 and coincides with the bootstrap algorithm with multinomial resampling Gordon et al.
(1993a). Note that this mechanism has been extended in many directions in the past decades
Pitt and Shephard (1999); Douc and Cappé (2005); Chopin and Papaspiliopoulos (2020).
Alongside ηN

t and ϕN
t , the particle approximation of the unnormalized marginal γt(dxt) is given

by

γN
t (dxt) :=

{ t−1∏
s=0

N−1Ωs

}
ηN

t (dxt) , ∀t > 0 , (4.3.4)

and γN
0 (dx0) = ηN

0 (dx0) . In particular, γN
t (h) is unbiased for any function h Del Moral

(2004).
In the remainder of this chapter, we denote by FN

t the σ-field containing all the particles and
ancestors up to time t, i.e.

FN
t := σ

(
ξ1:N

0:t ,A1:N
0:t−1

)
.

4.3.3 Asymptotic variance estimation in particle filters

The particle filter described above yields consistent estimators, see for instance Cappe et al.
(2005); Douc et al. (2014); Chopin and Papaspiliopoulos (2020); Liu and West (2001); Del Moral
(2004) and references therein for a complete overview. Indeed, for a test function h ∈ F(X ) and
under assumption (A5), the SMC estimators satisfy a Strong Law of Large Numbers when the
number of particles N goes to infinity, i.e.

γN
t (h) a.s.−→

N→∞
γt(h), ηN

t (h) a.s.−→
N→∞

ηt(h) , ϕN
t (h) a.s.−→

N→∞
ϕt(h) . (4.3.5)
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Under the same assumptions, CLTs for γN
t (h), ηN

t (h) and ϕN
t (h) are also available Del Moral

and Guionnet (1999); Chopin (2004):
√

N
(
γN

t (h)− γt(h)
)

=⇒
N→∞

N
(
0,V∞γ,t(h)

)
,

√
N
(
ηN

t (h)− ηt(h)
)

=⇒
N→∞

N
(
0,V∞η,t (h)

)
,

√
N
(
ϕN

t (h)− ϕt(h)
)

=⇒
N→∞

N
(
0,V∞ϕ,t(h)

)
,

(4.3.6)

where =⇒ denotes weak convergence and

V∞γ,t(h) =
t∑

s=0

{
γs(1)γs

(
Qs+1:t[h]2

)
− γt(h)2} , (4.3.7)

V∞η,t(h) =
t∑

s=0

γs(1)γs
(
Qs+1:t[h− ηt(h)]2

)
γt(1)2 , (4.3.8)

V∞ϕ,t(h) =
t∑

s=0

γs(1)γs
(
Qs+1:t[gt{h− ϕt(h)}]2

)
γt+1(1)2 . (4.3.9)

An intuitive derivation of (4.3.7) is proposed in Section B.4 of the Appendix. The authors
of Chan and Lai (2013) propose to estimate (4.3.7) online using the samples produced by the
particle filter described above. Their estimator is based on the genealogy of the particle system
induced by the successive resampling steps of the particle filter. From the indices Ai

t, it is
possible to trace back the ancestors of each particle and deduce the corresponding ancestor at
time t = 0. More interestingly, these ancestors can be computed in a forward way by introducing
the Eve indices Ei

t,0. For all i ∈ [1 : N ], Ei
t,0 describes the index of the ancestor at time 0 of

particle ξi
t and can be computed from

Ei
t,0 = EAi

t−1
t−1,01t>0 + i1t=0 . (4.3.10)

The asymptotic variance estimator of ηN
t (h) obtained in Chan and Lai (2013) reads (see Sec-

tion B.2.1 of the supplementary for a proof):

VN
η,t(h) := −N−1 ∑

i,j∈[N ]2
1Ei

t,0 ̸=Ej
t,0

{
h(ξi

t)− ηN
t (h)

}{
h(ξj

t )− ηN
t (h)

}
. (4.3.11)

We sometimes refer to VN
η,t(h) as the CLE (Chan & Lai Estimator). Note that it can be computed

online in a remarkably simple way since the Eve indices (4.3.10) are computed recursively.
However, the counterpart of its computational simplicity is that it degenerates as soon as the
ancestral paths coalesce. Indeed, it is widely known in the SMC literature that all lineages
eventually end up with the same ancestor when t is large enough with respect to the number of
samples N (see e.g. (Fearnhead et al., 2010, Section 2.2) for a more detailed explanation). This
means that for a fixed N , as t grows and s ≪ t, Ei

s,0 = Ej
s,0 for all (i, j) ∈ N2 and VN

η,t(h) = 0
for any test function h.
The degeneracy problem concerning (4.3.11) is partially addressed in Olsson and Douc (2019)
by truncating the genealogy of the particle system. Denoting λ ∈ [t] the lag and Ei

t,t−λ the
ancestor of ξi

t at time t− λ, their estimator reads

VN,λ
η,t (h) := −N−1 ∑

i,j∈[N ]2
1Ei

t,t−λ
̸=Ej

t,t−λ

{
h(ξi

t)− ηN
t (h)

}{
h(ξj

t )− ηN
t (h)

}
. (4.3.12)

In the regime where (4.3.11) degenerates, (4.3.12) can be made stable provided that the lag λ
is chosen such that there is little asymptotic bias. However, besides the strong mixing case for

76



which the authors propose a heuristic, the practical choice of such a λ, although crucial, is a
non trivial task.
In Lee and Whiteley (2018), the CLE is revisited using different techniques based on Cérou et al.
(2011); Andrieu et al. (2010, 2018a). These tools enable them to derive a weakly consistent
term by term estimator of (4.3.7) based on the unbiased estimation of γt(h)2 and of each
γs(1)γs

(
Qs+1:t[h]2

)
, for all s ∈ [0 : t]. The construction of this second estimator is appealing and

insightful in that it helps identifying the deep root of the degeneracy in the CLE. They indeed
show that (4.3.11) and each γs(1)γs

(
Qs+1:t[h]2

)
can be interpreted as a conditional expectation

with respect to particle indices that retrace the ancestral paths. Indeed, by introducing discrete
random variables K1

0:t and K2
0:t such that conditionally on FN

t , K1
t and K2

t are distributed
uniformly on [N ] and such that for any s ∈ [0 : t− 1],

K1
s = A

K1
s+1

s , K2
s = 1K1

s+1 ̸=K2
s+1

A
K2

s+1
s + 1K1

s+1=K2
s+1

Cs ,

where Cs ∼ Categorical(ω1:N
s ), then for example

VN
η,t(h) = −NE

[
t∏

s=0
1K1

s ̸=K2
s
{h(ξK1

t
t )− ηN

t (h)}{h(ξK2
t

t )− ηN
t (h)}

∣∣∣∣FN
t

]
.

An intuitive extension is to replace the deterministic assignments K1
s = AK1

s+1
s and K2

s =
AK2

s+1
s by random ones based on backward sampling. Essentially, backward sampling consists in

sampling at time s a particle index i starting from the j-th particle at time s+1 with probability
proportional to ω̃i

sms+1(ξi
s, ξj

s+1) and thus allows considering relevant trajectories which are not
necessarily ancestral trajectories.

4.4 Variance estimation with backward sampling
In this section we present three variance estimators for the bootstrap particle filter. In Section
4.4.1, we lay out our methodology and derive a term by term variance estimator; its computation
is detailed in Section 4.4.2. In Sections 4.4.3 and 4.4.4, we provide two additional estimators
that have a lower computational cost. All estimators and justifications are provided for the
distribution (4.3.4). We give the expressions for the variance estimators of the predictor and
filter and provide their justification in Section B.2.2 of the Appendix.

4.4.1 Term by term variance estimator

For any t ∈ N, let Bt := {0, 1}t+1. Denote by 0 the null vector in Bt and es the vector with
1 at position s and 0 elsewhere. Let (Xs, X ′s)s∈[0:t] be a bivariate Markov chain in (X2,X⊗2)
and depending on b ∈ Bt with initial distribution Mb0

0 and transition kernels Mbt
t , t ≥ 1,

where

Mb0
0 (dx0, dx′0) := M0(dx0){1b0=0M0(dx′0) + 1b0=1δx0(dx′0)} ,

Mbt
t (x, x′; dz, dz′) := Mt(x, dz){1bt=0Mt(x′, dz′) + 1bt=1δz(dz′)} , ∀t ≥ 1 .

(4.4.1)

Define also for any b ∈ Bt the measure Qb,t by Qb,0(dx0, dx′0) = Mb0
0 (dx0, dx′0) and for t ≥

1:

Qb,t

(
dx0:t, dx′0:t

)
:=Mb0

0
(
dx0, dx′0

) t−1∏
s=0

g⊗2
s (xs, x′s)

t∏
s=1
Mbs

s

(
xs−1, x′s−1; dxs, dx′s

)
. (4.4.2)
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The measure Qb,t is the joint distribution (4.3.1) of the Feynman-Kac model defined by the
initial distribution Mb0

0 , the transition kernels {Mbs
s }s∈[1:t] and by the potential functions

{g⊗2
s }s∈[0:t−1]. Remark that for any h ∈ F(X ), writing ht : x0:t 7→ h(xt), we have that
Q0,t(h⊗2

t ) = γt(h)2 and
Qes,t(h⊗2

t ) = γs(1)γs(Qs+1:t[h]2) . (4.4.3)
A generalization of (4.4.3) is proved in Proposition 4.5.1. Consequently, for h ∈ F(X ) V∞γ,t(h) in
(4.3.7) can be rewritten as

V∞γ,t(h) =
t∑

s=0

{
Qes,t(h⊗2

t )−Q0,t(h⊗2
t )
}

, (4.4.4)

where ht : x0:t 7→ h(xt). Following this observation, for a given b, an estimator of Qb,t(ht)
could be obtained with a single run of a bootstrap particle filter in augmented dimension (i.e.
relying on the the bivariate transition Mbt

t at time t and on the weighing of the associated
particles with g⊗2

t ). As a direct extension of (4.3.4), this estimator would be unbiased and as
a byproduct, we would get an unbiased estimator of (4.4.4). However, this procedure is not in
line with our initial objective in the sense that we aim at estimating (4.4.4) with the particles
and indices already available.
In order to motivate and introduce our approach, let us consider the static situation where
t = 0, b0 = 0 and let (h, f) ∈ F(X )2. Then,

1
N(N − 1)

∑
i,j∈[N ]2

1i ̸=jh(ξi
0)f(ξj

0), ξ1:N
0

iid∼ M0 , (4.4.5)

is an unbiased and almost sure convergent estimator of Q0,0(h ⊗ f) = M⊗2
0 (h ⊗ f) and only

relies on i.i.d. samples from M0 rather than M⊗2
0 . Note that for h = f , we thus get an unbiased

estimator of γ0(h)2. If b0 = 1, then N−1∑N
i=1 h(ξi

0)f(ξi
0) is an unbiased and consistent estimator

of Q1,0(h⊗ f) = M0(hf).
Taking advantage of the fact that the particles at time t are i.i.d. conditionally on FN

t−1 as we
use multinomial resampling for the particle filter, we can carry these simple observations to the
sequential case in two directions as we now detail. Define for any t ∈ N>0 the functional version
of the backward weights:

βN
t (x, y) := gt−1(y)mt(y, x)∑N

ℓ=1 ω̃ℓ
t−1mt(ξℓ

t−1, x)
, ∀(x, y) ∈ X2 . (4.4.6)

Assume that t = 1 and define for any (k1
0, k2

0) ∈ [N ]2 the following random variables that involve
the backward weights

EBS
0 (k1

0, k2
0) := Ω2

0
N(N − 1)

∑
k1:2

1 ∈[N ]2
1k1

1 ̸=k2
1
βN

1 (ξk1
1

1 , ξ
k1

0
0 )βN

1 (ξk2
1

1 , ξ
k2

0
0 )h(ξk1

1
1 )f(ξk2

1
1 ) , (4.4.7)

EBS
1 (k1

0, k2
0) := Ω2

0
N

∑
k1:2

1 ∈[N ]2
1k1

1=k2
1
βN

1 (ξk1
1

1 , ξ
k1

0
0 )ωk2

0
0 h(ξk1

1
1 )f(ξk2

1
1 ) , (4.4.8)

and also the following which involve the ancestors

EGT
0 (k1

0, k2
0) := Ω2

0
N(N − 1)

∑
k1:2

1 ∈[N ]2
1

A
k1

1
0 =k1

0 ,A
k2

1
0 =k2

0 ,k1
1 ̸=k2

1

h(ξk1
1

1 )f(ξk2
1

1 ) , (4.4.9)

EGT
1 (k1

0, k2
0) := Ω2

0
N

∑
k1:2

1 ∈[N ]2
1

k1
0=A

k1
1

0 ,k1
1=k2

1

ω
k2

0
0 h(ξk1

1
1 )f(ξk2

1
1 ) . (4.4.10)
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Here, BS and GT correspond to backward sampling and genealogy tracing, respectively. Con-
sider also Lemma 4.4.1 which states a crucial identity involving the backward weights.
Lemma 4.4.1. For all t ∈ N>0, (x, y) ∈ X2,

βN
t (x, y)ϕN

t−1Mt(dx) = gt−1(y)
Ωt−1

Mt(y, dx) , (4.4.11)

and for any (kt−1, kt) ∈ [N ]2 and h ∈ F(X ),

E
[
βN

t (ξkt
t , ξ

kt−1
t−1 )h(ξkt

t )
∣∣FN

t−1
]

= E
[
1

kt−1=A
kt
t−1

h(ξkt
t )
∣∣FN

t−1
]

= ω
kt−1
t−1 Mt[h](ξkt−1

t−1 ) . (4.4.12)

The proof is postponed to Section B.1.2 in the Appendix. Applying Lemma 4.4.1 to (4.4.7) and
(4.4.9) and using that given FN

0 the particles at t = 1 are i.i.d., we get

E
[
EBS

0 (k1
0, k2

0)
∣∣FN

0
]

= E
[
EGT

0 (k1
0, k2

0)
∣∣FN

0
]

= g⊗2
0 (ξk1

0
0 , ξ

k2
0

0 )M0
1[h⊗ f ](ξk1

0
0 , ξ

k2
0

0 ) ,

and

E
[ ∑

k1:2
0 ∈[N ]2

1k1
0 ̸=k2

0
EBS

0 (k1
0, k2

0)
]

= E
[ ∑

k1:2
0 ∈[N ]2

1k1
0 ̸=k2

0
E
[
EBS

0 (k1
0, k2

0)
∣∣FN

0
]]

= E
[ ∑

k1:2
0 ∈[N ]2

1k1
0 ̸=k2

0
E
[
EGT

0 (k1
0, k2

0)
∣∣FN

0
]]

= N(N − 1)Q0,1(h⊗ f) .

Similarly,

E
[
EBS

1 (k1
0, k2

0)
∣∣FN

0
]

= E
[
EGT

1 (k1
0, k2

0)
∣∣FN

0
]

= g⊗2
0 (ξk1

0
0 , ξ

k2
0

0 )M1
1[h⊗ f ](ξk1

0
0 , ξ

k2
0

0 ) ,

and
E
[ ∑

k1:2
0 ∈[N ]2

1k1
0 ̸=k2

0
EBS

1 (k1
0, k2

0)
]

= N(N − 1)Qe1,1(h⊗ f) .

Therefore, it is possible to derive unbiased estimators of Q0,1(h⊗ f) and Qe1,1(h⊗ f) (but also
Qe0,1(h ⊗ f) and Q(1,1),1(h ⊗ f)) with a single run of the particle filter in two different ways:
either by using the backward weights and (4.4.7)-(4.4.8), or by using directly the ancestry of
the particles and (4.4.9)-(4.4.10). The asymptotic variance estimators proposed in Chan and
Lai (2013); Lee and Whiteley (2018); Olsson and Douc (2019); Du and Guyader (2021) are all
based on the latter solution, while in this chapter we instead focus on estimators based on the
backward weights.
We now generalize the derivations performed in the case t = 1. Denote by Λ1,t and Λ2,t the
discrete measures conditioned on FN

t and defined by

Λ1,t(k0:t) := N−1
t∏

s=1
βs(ks, ks−1) , (4.4.13)

Λ2,t(k1
0:t; k2

0:t) := N−1
t∏

s=1

{
1k2

s=k1
s
ω

k2
s−1

s−1 + 1k2
s ̸=k1

s
βs(k2

s , k2
s−1)

}
. (4.4.14)

Specific choices of kernels {βs}ts=1 are, for all (k, ℓ) ∈ [N ]2,

βGT
s (k, ℓ) := 1ℓ=Ak

s−1
, βBS

s (k, ℓ) := ω̃ℓ
s−1ms(ξℓ

s−1, ξk
s )∑N

j=1 ω̃j
s−1ms(ξj

s−1, ξk
s )

= βN
s (ξk

s , ξℓ
s−1) ,
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where here again GT stands for genealogy tracing and BS for backward sampling. When the
conditional distribution given FN

t is ΛBS
1,t ⊗ ΛBS

2,t (resp. ΛGT
1,t ⊗ ΛGT

2,t ) we write EBS[·|FN
t ] (resp.

EGT[·|FN
t ]). Define also for any b ∈ Bt the coalescence function:

Ib,s : ([N ]s+1)2 ∋ (k1
0:s, k2

0:s) 7→
s∏

ℓ=0
{1k1

ℓ
=k2

ℓ
1bℓ=1 + 1k1

ℓ
̸=k2

ℓ
1bℓ=0} , ∀s ∈ [0 : t] , (4.4.15)

for any h ∈ F(X⊗2(t+1)) the random variable

QN,BS
b,t (h) :=

t∏
s=0

N bs

(
N

N − 1

)1−bs

γN
t (1)2EBS

[
Ib,t(K1

0:t, K2
0:t)h(ξK1

0:t
0:t , ξ

K2
0:t

0:t )|FN
t

]
, (4.4.16)

and denote by QN,GT
b,t the counterpart where the expectation on the r.h.s. is EGT.

Remark 4.4.2. By (4.4.15), the random variable QN,BS
b,t (h) remains defined for any b ∈ Br with

r > t and QN,BS
b,t (h) = QN,BS

b0:t,t (h) where b0:t is the truncation of b to the t + 1 first terms.
Finally, define for any h ∈ F(X ), using ht : x0:t 7→ h(xt),

VN,BS
γ,t (h) :=

t∑
s=0

{
QN,BS

es,t (h⊗2
t )−QN,BS

0,t (h⊗2
t )
}

. (4.4.17)

Proposition 4.4.3. Let t ∈ N. For any b ∈ Bt and any h ∈ F(X⊗2(t+1)),

(i) E
[
QN,BS

b,t (h)
∣∣FN

t−1
]

= QN,BS
b,t−1

(
g⊗2

t−1M
bt
t [h]

)
for all t ∈ N>0 .

(ii) QN,BS
b,t (h) is an unbiased estimator of Qb,t(h) .

(iii) If h ∈ F(X ), VN,BS
γ,t (h) is an unbiased estimator of V∞γ,t(h).

By convention, we used in (i) the following notation:

g⊗2
t−1M

bt
t [h] : (x0:t−1, x′0:t−1) 7→ g⊗2

t−1(xt−1, x′t−1)
∫

h(x0:t, x′0:t)Mbt
t (xt−1, x′t−1; dxt, dx′t).

The proof is provided in Section B.1.2 of the Appendix. First, (ii) is a generalization of (Lee and
Whiteley, 2018, Lemma 2) which states that QN,GT

b,t (h) is also an unbiased estimator Qb,t(h).
Its proof, see (Lee and Whiteley, 2018, Supplementary), is based on a doubly conditional SMC
argument Andrieu et al. (2018a) and while this scheme can be replicated to our estimator based
on backward weights, we rather propose an alternative and elementary proof that also extends
straightforwardly to GT and which is based on our previous discussion. From (4.4.4), (iii)
is a direct consequence of (ii) and provides an estimator of (4.4.4) based on a single particle
run.
Theorem 4.4.4 deals with the convergence of QN,BS

b,t (h) for bounded h. The convergence in L2
is stated under assumptions (A5-6-7) which are standard and the convergence rate is obtained
under the additional assumption (A8). The equivalent result for QN,GT

b,t is stated in Lee and
Whiteley (2018) and is proved under (A5) alone. From a technical point of view, this is possible
because the use of indicators instead of backward weights allows for cancellations that simplify
the analysis significantly. Assumption (A7) enables us to show that the additional terms that
come with the use of backward weights go to zero.
(A6) For all t > 0 and (x, x′) ∈ X2, mt(x′, x) > 0.
(A7) There exists σ+ > 0 such that for all t ≥ 1, supx,x′∈X mt(x′, x) ≤ σ+.
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(A8) There exists 0 < σ− < σ+ such that for all t ≥ 1, infx,x′∈X mt(x′, x) ≥ σ−.
Assumption (A8) is a strong assumption that is typically verified in models where the state
space X is compact. This assumption, together with (A7), are now classic and have been widely
used to obtain quantitative bounds in the SMC literature Dubarry and Le Corff (2013); Douc
et al. (2011a); Lee et al. (2020).
Theorem 4.4.4. Assume that (A5-6-7) hold. For any t ∈ N , b ∈ Bt and h ∈ F(X⊗2(t+1)),

lim
N→∞

∥QN,BS
b,t (h)−Qb,t(h)∥2 = 0 . (4.4.18)

In addition, if (A8) holds the convergence rate is O(1/
√

N).
Remark 4.4.5. The dependence on the time horizon t of the L2 bound is difficult to analyze
and we did not undertake it in the proof. Adapting the proofs of the existing analysis Del Moral
et al. (2010c); Dubarry and Le Corff (2013) is not trivial as our smoothing estimators are
non standard. Furthermore, the time dependence of the GT counterpart has not been analyzed
neither, which renders the comparison with our approach even more difficult.
The proof can be found in Section B.1.4 of the Appendix. As a straightforward consequence,
the term by term estimator (4.4.17) of the asymptotic variance is weakly consistent. It remains
to detail how it can be computed. The next section is devoted to the exact computation of the
estimators QN,BS

0,t (h) and QN,BS
es,t (h) that appear in its expression.

4.4.2 Computation for b = 0 and b = es

We now derive practical expressions of QN,BS
0,t (h) and QN,BS

es,t (h) in the practical case where
h : x0:t, x′0:t 7→ h(xt, x′t) ∈ F(X⊗2(t+1)). Define, for any b ∈ Bt and any t ≥ 0,

T b
t (K1

t , K2
t ) := EBS

[
Ib,t(K1

0:t, K2
0:t)
∣∣FN

t , K1
t , K2

t

]
. (4.4.19)

Then, by the tower property, QN,BS
b,t (h) in (4.4.16) can be rewritten as

QN,BS
b,t (h) =

t∏
s=0

N bs

(
N

N − 1

)1−bs γN
t (1)2

N2

∑
k,ℓ∈[N ]2

T b
t (k, ℓ)h(ξk

t , ξℓ
t ) . (4.4.20)

Next, define for any t ∈ N and (k, ℓ) ∈ [N ]2,

St(k, ℓ) :=
t∑

s=0
T es

t (k, ℓ) . (4.4.21)

Plugging (4.4.20) in (4.4.17), VN,BS
γ,t (h) can be rewritten as

VN,BS
γ,t (h) = N t−1γN

t (1)2

(N − 1)t

∑
k,ℓ∈[N ]2

{
St(k, ℓ)− t + 1

N − 1T
0

t (k, ℓ)
}

h(ξk
t )h(ξℓ

t ) . (4.4.22)

The sequential computation of VN,BS
γ,t (h) relies on that of St(k, ℓ) in (4.4.21), and so on that of

T es
t (k, ℓ) and T 0

t (k, ℓ). By the tower property, we obtain the following recursions for T b
t :

T b
0 (k, ℓ) = 1k ̸=ℓ,b0=0 + 1k=ℓ,b0=1 ,

T b
t (k, ℓ) = 1k ̸=ℓ

∑
i,j∈[N ]2 βBS

t (k, i)βBS
t (ℓ, j)T b

t−1(i, j) if bt = 0 ,

T b
t (k, ℓ) = 1k=ℓ

∑
i,j∈[N ]2 βBS

t (k, i)ωj
t−1T b

t−1(i, j) if bt = 1 ,

(4.4.23)
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for all (k, ℓ) ∈ [N ]2 and t ∈ N>0. In particular, if b = 0,

T 0
t (k, ℓ) = 1k ̸=ℓ

∑
i,j∈[N ]2

βBS
t (k, i)βBS

t (ℓ, j)T 0
t−1(i, j) , (4.4.24)

and if b = es,

T es
t (k, ℓ) =


1k ̸=ℓ

∑
i,j∈[N ]2 βBS

t (k, i)βBS
t (ℓ, j)T es

t−1(i, j) t > s ,

1k=ℓ
∑

i,j∈[N ]2 βBS
t (k, i)ωj

t−1T 0
t−1(i, j) t = s ,

T 0
t (k, ℓ) t < s .

(4.4.25)

Next, combining (4.4.21)-(4.4.25) we obtain the online update of St:

St(k, ℓ) = T et
t (k, ℓ) + 1k ̸=ℓ

∑
i,j∈[N ]2

βBS
t (k, i)βBS

t (ℓ, j)St−1(i, j) , (4.4.26)

for any (k, ℓ) ∈ [N ]2 and t ∈ N. We have shown that despite the sum over s that appears in
(4.4.17) we are still able to update (4.4.22) at a computational cost independent of the time
horizon t by propagating St and T 0

t . Note that the algorithm provided in (Lee and Whiteley,
2018, Algorithm 3, Supplementary) does not compute VN,GT

γ,t sequentially since it relies on the
computation of each QN,GT

es,t (h⊗2
t ) and QN,GT

0,t (h⊗2
t ) from scratch whenever a new observation is

available. In Section B.2.3 of the supplementary material we show how it can be computed
online using the same ideas behind the previous derivations.
The computation of the estimates QN,BS

b,t (h) and VN,BS
γ,t (h) can benefit from parallelization by

implementing the updates (4.4.24)-(4.4.25) with matrix operations:{
T b

t = βBS
t T b

t−1β
BS⊤
t −Diag(βBS

t T b
t−1β

BS⊤
t ) if bt = 0 ,

T b
t = Diag(βBS

t T b
t−1ω

1:N
t−1 ) if bt = 1 .

4.4.3 Variance estimators with reduced computational cost

In this section we derive a second estimator that relies only on the update of T 0
t . Let h ∈

F(X ). By (4.3.6),
√

N
(
γN

t (h)− γt(h)
)

converges in distribution; moreover, N
(
γN

t (h)− γt(h)
)2

is uniformly integrable, using for instance a Hoeffding type inequality (see Douc et al. (2014)).
Hence NE[(γN

t (h)− γt(h))2] converges to the asymptotic variance V∞γ,t(h). On the other hand,
using the lack of bias of γN

t (h) ,

NE
[(

γN
t (h)− γt(h)

)2
]

= N
(
E
[
γN

t (h)2
]
− γt(h)2

)
= N

(
E
[
γN

t (h)2
]
−Q0,t(h⊗2

t )
)

.

A natural estimator of this quantity is obtained by replacing E
[
γN

t (h)2
]

and Q0,t(h⊗2
t ) by their

unbiased estimators γN
t (h)2 and QN,BS

0,t (h⊗2
t ), respectively,

VN,BS
γ,t (h) := N

(
γN

t (h)2 −QN,BS
0,t (h⊗2

t )
)

= NγN
t (1)2

(
ηN

t (h)2 − N t−1

(N − 1)t+1

∑
i,j∈[N ]2

T 0
t (i, j)h(ξi

t)h(ξj
t )
)

.
(4.4.27)

For the sake of completeness we also provide the estimator for the predictor and filter and defer
their justification to the Section B.2.2 of the supplementary material,

VN,BS
η,t (h) := −N t

(N − 1)t+1

∑
i,j∈[N ]2

T 0
t (i, j)

{
h(ξi

t)− ηN
t (h)

}{
h(ξj

t )− ηN
t (h)

}
, (4.4.28)

VN,BS
ϕ,t (h) := −N t+2

(N − 1)t+1

∑
i,j∈[N ]2

ωi
tω

j
tT 0

t (i, j)
{
h(ξi

t)− ϕN
t (h)

}{
h(ξj

t )− ϕN
t (h)

}
. (4.4.29)
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Remark 4.4.6. It is worthwhile to note the parallel between (4.4.28) and (4.3.11) (up to a
negligible term depending on N); the indicator is replaced by the backward statistic T 0

t (i, j)
which is the conditional probability of having two disjoint backward trajectories starting from ξi

t

and ξj
t .

The convergence of (4.4.27) stated in Theorem 4.4.7 stems from the following identity which
also appears in Lee and Whiteley (2018); Du and Guyader (2021) and dates back to Cérou et al.
(2011):

∑
b∈Bt

{ t∏
s=0

1
N bs

(
N − 1

N

)1−bs}
QN,BS

b,t (h⊗2
t )

= γN
t (1)2EBS

∑
b∈Bt

Ib,t(K1
0:t, K2

0:t)h(ξK1
t

t )h(ξK2
t

t )

∣∣∣∣∣∣FN
t

 = γN
t (1)2ηN

t (h)2 = γN
t (h)2 .

(4.4.30)

Theorem 4.4.7. Let (A5-6-7) hold. For any h ∈ F(X ), VN,BS
γ,t (h) converges in probability to

V∞γ,t(h).
The proof is in Section B.1.5 of the Appendix. The main advantage of (4.4.27) w.r.t. (4.4.22)
is the computational cost. Indeed, remark that (4.4.27) only relies on the sequential update
of T 0

t , contrary to (4.4.22) which also relies on that of T es
t . Consequently, the computational

time of (4.4.27) is roughly twice lower. In addition, experiments show that the difference in
performance is negligible so (4.4.27) is to be preferred in practice.
Remark 4.4.8. This alternative estimator does not invalidate the relevance of (4.4.17). Indeed,
remember that (4.4.17) is an unbiased estimator. Moreover, the asymptotic variance estimator
of the FFBS algorithm that we provide in Section 4.5.2 is a term by term estimator that can be
updated online in a way similar to (4.4.17).

4.4.4 A PaRIS variance estimator

Let us discuss how the computational cost of (4.4.27) and (4.4.22) can be further reduced à
la PaRIS Olsson and Westerborn (2017); Gloaguen et al. (2022). In Olsson and Westerborn
(2017), the forward only implementation of the FFBS algorithm is sped up by replacing the
backward statistics by a conditionally unbiased estimator obtained by sampling particle indices
according to the backward probabilities βBS

t through rejection sampling. We therefore apply
the same idea here by letting T̃ 0

0 := T 0
0 and replacing T b

t with

T̃ b
t (k, ℓ) := 1k ̸=ℓ

M

M∑
i=1
T̃ b

t−1(J i
k,t−1, J i

ℓ,t−1) if bt = 0 ,

T̃ b
t (k, ℓ) := 1k=ℓ

M

M∑
i=1

N∑
j=1

ωj
t−1T̃

b
t−1(J i

k,t−1, j) if bt = 1 ,

where for any k ∈ [N ], J1:M
k,t−1 are i.i.d. samples according to βBS

t (k, .). For h ∈ F(X⊗2), the
PaRIS estimator of Qb,t(h) is, for any b ∈ Bt

Q̃N,M
b,t (h) =

{
t∏

s=0
N bs

(
N

N − 1

)1−bs
}

γN
t (1)2

N2

∑
i,j∈[N ]2

T̃ b
t (i, j)h(ξi

t, ξj
t ) , (4.4.31)
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and the PaRIS variance estimators are

VN,M
γ,t (h) =

t∑
s=0

{
Q̃N,M

es,t (h⊗2)− Q̃N,M
0,t (h⊗2)

}
, (4.4.32)

VN,M
γ,t (h) = N

(
γN

t (h)2 − Q̃N,M
0,t (h⊗2)

)
, (4.4.33)

where M > 1 refers to the number of sampled indices. The computation of (4.4.27) and (4.4.33)
is summarized in Algorithm 2.

Algorithm 2: Update at step t+1 of the variance estimators (4.4.27) and (4.4.33) associated
to γN

t+1(h)
Input: M, ω̃1:N

t , ξ1:N
t , ξ1:N

t+1 , T 0
t and γN

t (1)
Output: NγN

t+1(1)2{ηN
t+1(h)2 −N t∑

i,j∈[N ]2 Qi,j/(N − 1)t+2}, T 0
t+1.

1 Compute βBS
t+1

2 if PaRIS then
3 for k ∈ [1 : N ] do
4 Sample J1:M

k,t
iid∼ βBS

t+1(k, .)
5 for (k, ℓ) ∈ [1 : N ]2 do
6 Set T 0

t+1(k, ℓ) = 1k ̸=ℓ
∑M

i=1 T 0
t (J i

k,t, J i
ℓ,t)/M

7 else
8 Compute T 0

t+1 = βBS
t+1T 0

t β
BS′
t+1.

9 Set T 0
t+1 = T 0

t+1 −Diag(T 0
t+1).

10 Compute Q = T 0
t+1 ⊙

[
h(ξ1:N

t+1 )h(ξ1:N
t+1 )⊤

]
.

We are able to reduce the time complexity of computing T b
t to O(MN2). The key feature of the

PaRIS approach is that M does not necessarily need to be large (see (Olsson and Westerborn,
2017, Section 3.1) for a discussion on this matter). We impose M > 1 because then in the
case b = 0, which is the case we are the most interested in, the support of QN,BS

0,t (h) is made of
N2M t+1 terms whereas when M = 1 it is only N2. We show empirically in our experiments that
setting M = 3 is sufficient to provide good results for the asymptotic variance estimation.
While it is not needed to obtain a O(MN2) time complexity, the indices J1:M

k,t−1 can be sampled
using an accept-reject procedure with the filtering weights as proposals, if the transition densities
mt are upper bounded. This approach does not require the computation of the normalizing
constant of the backward weights (4.4.6). The computational time is then random but if the
transition kernels are strongly mixing it can be provably further reduced Douc et al. (2011a).
Theorem 4.4.9 is concerned with the convergence of Q̃N,M

b,t (h) for any bounded h and for any
fixed M > 1. Its proof bears some similarity with that of Theorem 4.4.4 with the exception that
the additional sampling introduces non trivial terms that need to be handled carefully. As a
straightforward consequence, we obtain the convergence in probability of VN,M

γ,t (h) for any h ∈
F(X ). The weak consistency of (4.4.33) in Theorem 4.4.10 is however less straightforward than
that of Theorem 4.4.7 and relies on the insight that the identity (4.4.30) still holds when QN,BS

b,t

are replaced with their PaRIS versions. The proofs are provided respectively in Section B.1.6
and B.1.7 of the Appendix.
Theorem 4.4.9. Assume that (A5-6-7) hold. For any t ∈ N , b ∈ Bt, M > 1 and h ∈ F(X⊗2),

lim
N→∞

∥Q̃N,M
b,t (h)−Qb,t(h)∥2 = 0 . (4.4.34)
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In addition, if (A8) holds the convergence rate is O(1/
√

N).
Theorem 4.4.10. Let (A5-6-7) hold. For all t ∈ N, M > 1 and h ∈ F(X ), VN,M

γ,t (h) converges
in probability to V∞γ,t(h) when N goes to infinity.

4.5 Application to the FFBS

In this section, we derive an estimator for the asymptotic variance of the Forward Filtering
Backward Smoothing algorithm. We start by giving a short presentation of the FFBS algorithm
and we next derive an estimator of the asymptotic variance for additive functionals.

4.5.1 FFBS algorithm

The FFBS algorithm aims at solving the well known degeneracy problem associated with the
particle filter of Section 4.3.2 when it is used for approximating smoothing distributions. It
relies on the following backward decomposition of the joint smoothing distribution:

ϕ0:t|t(h) =
∫

h(x0:t)ϕt(dxt)Tt(xt, dx0:t−1) , (4.5.1)

where Tt is the backward transition kernel from (X,X ) to (Xt,X⊗t): T0 := Id and for t >
0,

Tt := Bϕt−1 ⊗ · · · ⊗Bϕ0 ,

and Bϕs is the backward kernel defined by

Bϕs(xs+1, A) :=
∫

ms+1(xs, xs+1)1A(xs)ϕs(dxs)
ϕs(ms+1(., xs+1)) , ∀A ∈ X ,∀xs+1 ∈ X .

Denote by TN
t the particle approximation of Tt where each backward kernel Bϕs is replaced

by plugging in the particle approximation of the filter. This yields for any A ∈ X and xs+1 ∈
X,

BN
ϕs

(xs+1, A) :=
∫

ms+1(xs, xs+1)1A(xs)ϕN
s (dxs)

ϕN
s (ms+1(., xs+1)) =

N∑
i=1

ω̃i
sms+1(ξi

s, xs+1)∑N
j=1 ω̃j

sms+1(ξj
s , xs+1)

1A(ξi
s) .

Plugging this approximation and that of the filtering distribution in (4.5.1) yields

ϕN,FFBS
0:t|t (h) :=

N∑
i0=1
· · ·

N∑
it=1

Λ̃t(i0:t)h(ξi0
0 , · · · , ξit

t ) , (4.5.2)

where Λ̃t(i0:t) := ωit
t

∏t
s=1 βBS

t (is, is−1). In the following, we write ϕN
0:t|t for ϕN,FFBS

0:t|t and if h is
such that h : x0:t 7→ h(xs:ℓ) with 0 ≤ s ≤ ℓ ≤ t, we will instead write ϕN

s:ℓ|t(h).
The theoretical properties of the FFBS are well understood in both the asymptotic regimes of
N and t Douc et al. (2011a); Del Moral et al. (2010a,b); Dubarry and Le Corff (2013); Olsson
and Westerborn (2017); Douc et al. (2014). In particular, a Central Limit Theorem with an
explicit expression of the asymptotic variance is established for any h ∈ F(X⊗t+1) under (A5)
in (Douc et al., 2011a, Theorem 8),

√
N
(
ϕN

0:t|t(h)− ϕ0:t|t(h)
)

=⇒ N
(
0,VFFBS

0:t|t (h)
)

, (4.5.3)
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where

VFFBS
0:t|t (h) :=

t∑
s=0

ηs
(
Gs,t

[
gt
{
h− ϕ0:t|t(h)

}]2)
ηs(Qs+1:t[gt])2 , (4.5.4)

and Gs,t is the kernel that integrates h forward and backward starting from xs, i.e.

Gs,t[h](xs) := Ts
[
Qs+1:t[h]

]
(xs) =

∫
h(x0:t)Ts(xs, dx0:s−1)Qs+1:t(xs, dxs+1:t) ,

for any s ∈ [0 : t] and xs ∈ X.
Unlike the asymptotic variance of filtering algorithms, no estimator of (4.5.4) exists in the
literature, even though the FFBS and its variants are of significant importance in marginal
smoothing and parameter estimation in HMMs Kantas et al. (2015). In this section, we bridge
this gap by providing an online estimator for additive functionals h of the form

h0:t(x0:t) =
t−1∑
s=0

h̃s(xs, xs+1) , (4.5.5)

where for s ∈ [0 : t− 1], we assume that h̃s is bounded. For such functionals, the FFBS can be
computed online with a O(N2) time complexity per time step, i.e. whenever a new observation
is processed. For 0 ≤ s < r ≤ t, we write h̃s:r(xs:r) = ∑r−1

ℓ=s h̃ℓ(xℓ, xℓ+1). Expectations of
functionals of the form (4.5.5) include marginal smoothing, pairwise marginal smoothing and
the E-step of the Expectation Maximization algorithm.
Before we derive our estimator, let us first recall why the FFBS can be indeed computed online
in this case. For more details on the forward only implementation of the FFBS and its variants
we refer the reader to Douc et al. (2014); Olsson and Westerborn (2017). For any t > 0 and
any additive functional h0:t,

Tt[h0:t](xt) =
∫ {

h̃0:t−1(x0:t−1) + h̃t−1(xt−1, xt)
}

Bϕt−1(xt, dxt−1)Tt−1(xt−1, dx0:t−2)

= Bϕt−1

[
Tt−1[h̃0:t−1] + h̃t−1(., xt)

]
(xt) .

Then, plugging in the particle approximations, we obtain the following recursion

TN
t [h0:t](xt) =

N∑
i=1

ω̃i
t−1mt(ξi

t−1, xt)∑N
j=1 ω̃j

t−1mt(ξj
t−1, xt)

{
TN

t−1[h̃0:t−1](ξi
t−1) + h̃t−1(ξi

t−1, xt)
}

, (4.5.6)

and then ϕN
0:t|t(h0:t) = ∑N

i=1 ωi
tTN

t [h0:t](ξi
t). Therefore, TN

t [h0:t] needs only to be estimated at
the particle locations and smoothing estimates for additive functionals can be computed with
the forward pass and has O(N2) complexity per time step.

4.5.2 Asymptotic variance estimator

From now on we will assume that h0:t satisfies (4.5.5). Our estimator is based on the following
alternative expression of the asymptotic variance (4.5.4)

VFFBS
0:t|t (h) =

t∑
s=0

γs(1)γs
(
Gs,t[gt{h0:t − ϕ0:t|t(h0:t)}]2)

γt+1(1)2 , (4.5.7)

which is deduced using the definitions given in Section 4.3. This expression is motivated by
Proposition 4.5.1 in which we express the numerators that appear in (4.5.7) in terms of expec-
tations with respect to Qes,t. The proof is given in Section B.1.3 of the Appendix.
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Proposition 4.5.1. For any s ∈ [0 : t] and any additive functional h0:t ∈ F(X⊗t+1),

γs(1)γs
(
Gs,t[h0:t]2) = Qes,t

([
Ts[h̃0:s] + h̃s:t

]⊗2)
. (4.5.8)

By Theorem 4.4.4, for any additive functional h0:t as in (4.5.5), we have that QN,BS
es,t ([Ts[h̃0:s] +

h̃s:t]⊗2) is a consistent estimator of Qes,t([Ts[h̃0:s] + h̃s:t]⊗2), but Ts[h0:s] is intractable and
we only have access to its particle approximation TN

s [h0:s]. Our proposed estimator of the
asymptotic variance (4.5.3) is then

VN,BS
0:t|t (ht) :=

T∑
s=0

QN,BS
es,t

([
gt{TN

s [h̃0:s] + h̃s:t − ϕN
0:t|t(h0:t)}

]⊗2)
γN

t+1(1)2 , (4.5.9)

where we have replaced ϕ0:t|t(ht) by its FFBS estimator. Remark that Theorem 4.4.4 cannot be
applied to QN,BS

es,t

([
gt{TN

s [h̃0:s] + h̃s:t
]⊗2) because its proof relies on the fact that the function h

integrated by QN,BS
b,t does not depend on the particles.

Theorem 4.5.2 proved in Section B.1.8 of the supplementary material shows that weak consis-
tency still holds under the assumptions of Theorem 4.4.4. The proof proceeds in three steps.
We first establish that for all s > 0 and additive functional h0:s, TN

s [h0:s](xs) converges P-a.s.
to Ts[h0:s](xs) for any xs ∈ X. Then, we use it to show that at t = s, the distance in L2
between QN,BS

es,s

([
TN

s [h0:s]cs + h̃s
]
⊗
[
TN

s [f0:s]ds + f̃s
])

and the "idealized" consistent estimator
QN,BS

es,s

([
Ts[h0:s]cs + h̃s

]
⊗
[
Ts[f0:s]ds + f̃s

])
, goes to 0. Finally, we extend the result to t > s by

induction, similarly to Theorem 4.4.4.
Theorem 4.5.2. Assume that (A5-6-7) hold. For any t ∈ N, s ∈ [0 : t], (h̃s:t, f̃s:t) ∈
F(X⊗t−s+1)2, (ct, dt) ∈ F(X )2 and additive functionnals (h0:s, f0:s) (4.5.5),

lim
N→∞

∥∥QN,BS
es,t

([
TN

s [h0:s]ct + h̃s:t
]
⊗
[
TN

s [f0:s]dt + f̃s:t
])

−Qes,t
([

Ts[h0:s]ct + h̃s:t
]
⊗
[
Ts[f0:s]dt + f̃s:t

])∥∥
2 = 0 , (4.5.10)

and for any additive functional (4.5.5), VBS
0:t|t(h0:t) converges in probability to VFFBS

0:t|t (h0:t).

4.5.3 Algorithm for marginal smoothing

We now provide an algorithm for the case hℓ : x0:t 7→ hℓ(xℓ) known as the marginal smoothing
problem. For such functions (4.5.9) is defined for t ≥ ℓ and simplifies to

VN,BS
ℓ|t (hℓ) := 1

γN
t+1(1)2

{ ℓ∑
s=0
QN,BS

es,t

([
gt{hℓ − ϕN

ℓ|t(hℓ)}
]⊗2)

+
t∑

s=ℓ+1
QN,BS

es,t

([
gt{TN

s [hℓ]− ϕN
ℓ|t(hℓ)}

]⊗2)}
.

(4.5.11)

When ℓ = t we recover the term by term estimator of the filter which is consistent with the fact
that ϕN

t|t(h) = ϕN
t (h). Using the bilinearity of QN,BS

b,t yields

VBS
ℓ|t (hℓ) = Rℓ

1,t − ϕN
ℓ|t(hℓ)Rℓ

2,t + ϕN
ℓ|t(hℓ)2Rt , (4.5.12)

where Rt := ∑t
s=0Q

N,BS
es,t (g⊗2

t ) and
R1

ℓ,t := ∑ℓ
s=0Q

N,BS
es,t

(
[gthℓ]⊗2)+∑t

s=ℓ+1Q
N,BS
es,t (

[
gtTN

s [hℓ]
]⊗2) ,

R2
ℓ,t :=

{∑ℓ
s=0Q

N,BS
es,t (gthℓ ⊗ gt) +QN,BS

es,t (gt ⊗ gthℓ)
}

+
{∑t

s=ℓ+1Q
N,BS
es,t (gtTN

s [hℓ]⊗ gt) +QN,BS
es,t (gt ⊗ gtTN

s [hℓ])
}

.
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Mirroring (4.4.25), define for any t ∈ N, n ∈ [0 : t] and fn : x0:t, x′0:t 7→ f(xn, x′n) the random
variable

T es
t [fn](K1

t , K2
t ) := E

[
Ies,t(K1

0:t, K2
0:t)fn(ξK1

n
n , ξK2

n
n )

∣∣FN
t−1, K1

t , K2
t

]
, (4.5.13)

and also write S1
t,t(K1

t , K2
t ) = St(K1

t , K2
t )h⊗2

t (ξK1
t

t , ξ
K2

t
t ), S2

t,t(K1
t , K2

t ) = St(K1
t , K2

t )h⊕2
t (ξK1

t
t , ξ

K2
t

t )
and for any t > ℓ,

S1
ℓ,t(K1

t , K2
t ) =

ℓ∑
s=0
T es

t [h⊗2
ℓ ](K1

t , K2
t ) +

t∑
s=ℓ+1

T es
t

[
TN

s [hℓ]⊗2](K1
t , K2

t ),

S2
ℓ,t(K1

t , K2
t ) =

ℓ∑
s=0
T es

t [h⊕2
ℓ ](K1

t , K2
t ) +

t∑
s=ℓ+1

T es
t

[
TN

s [hℓ]⊕2](K1
t , K2

t ),

where for any fℓ, f⊕2
ℓ : xℓ, x′ℓ 7→ fℓ(xℓ)+fℓ(x′ℓ) and Sℓ is defined in (4.4.21). Applying the tower

property,

VBS
ℓ|t (ht) = N

(
N

N − 1

)t ∑
i,j∈[N ]2

ωi
tω

j
t

{
S1

ℓ,t(i, j)− ϕN
ℓ|t(hℓ)S2

ℓ,t(i, j) + ϕN
ℓ|t(hℓ)2St(i, j)

}
.

The quantities S1
ℓ,t+1, S2

ℓ,t+1 may be updated online using the following recursions which are
again obtained by applying the tower property

S1
ℓ,t+1(i, j) := T et+1

t+1 (i, j)TN
t+1[hℓ](ξi

t+1)TN
t+1[hℓ](ξj

t+1)
+ 1i ̸=j

∑
m,n∈[N ]2

βBS
t+1(i, m)βBS

t+1(j, n)S1
ℓ,t(m, n) , (4.5.14)

and

S2
ℓ,t+1(i, j) := T et+1

t+1 (i, j)
{
TN

t+1[hℓ](ξi
t+1) + TN

t+1[hℓ](ξj
t+1)

}
+ 1i ̸=j

∑
m,n∈[N ]2

βBS
t+1(i, m)βBS

t+1(j, n)S2
ℓ,t(m, n) . (4.5.15)

The updates of S1
ℓ,t+1(i, j) and of S2

ℓ,t+1(i, j) are thus similiar to that of St in (4.4.26). The
computation of the variance estimator is described in Algorithm 3.

4.6 Numerical simulations
We now demonstrate our estimators on particle filtering and smoothing examples in HMMs
(see Ex. 4.3.1). We assume in this section that X = Y = R and that the dominating measure
is the Lebesgue measure. The model considered is the stochastic volatility model with, for all
n ≥ 1,

Xn+1 = φXn + σUn+1 and Yn = β exp(Xn/2)Vn , (4.6.1)
with (φ, β, σ) = (.975, .641, .165), {Un}n∈N and {Vn}n∈N are two sequences of independent stan-
dard Gaussian noises and Un is independent of Vm for all (n, m) ∈ N2. The state process
{Xn}n∈N is initialized with a Gaussian distribution with zero mean and variance σ2/(1 − φ2).
These are the exact values and initialization used in Olsson and Douc (2019). The assump-
tions on the model under which Olsson and Douc (2019) conduct their theoretical analysis
and (A4-5-6-7) are satisfied for this model. All the simulations are run on GPU and the
implementations using matrix operations are available at https://github.com/yazidjanati/
asymptoticvariance.
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Algorithm 3: Update at step t + 1 of the variance estimator for marginal smoothing
Input: ω1:N

t+1 ,ω1:N
t ,βBS

t+1, TN
t+1[hℓ], T 0

t ,S1
ℓ,t,S

2
ℓ,t, ϕN

ℓ|t+1(hℓ)
Output: −N t+2/(N − 1)t+1∑

i,j∈[N ]2 ωi
t+1ωj

t+1Sℓ,t+1(i, j), T 0
t+1,S1

ℓ,t+1,S2
ℓ,t+1,St+1.

1 Compute T et+1
t+1 = βBS

t+1T 0
tω

1:N
t , T 0

t+1 = βBS
t+1T 0

t β
BS⊤
t+1 , S̃t+1 = βBS

t+1Stβ
BS⊤
t+1

2 Set T et+1
t+1 = Diag(T et+1

t+1 ), T 0
t+1 = T 0

t+1 −Diag(T 0
t+1),

St+1 = S̃t+1 −Diag(S̃t+1) + T et+1
t+1

3 for i ∈ {1, 2} do
4 Compute S̃i

ℓ,t+1 = βBS
t+1S

i
ℓ,tβ

BS⊤
t+1 .

5 Set S̃i
ℓ,t+1 = S̃i

t+1 −Diag(S̃i
t+1)

6 Set S1
ℓ,t+1 = S̃1

ℓ,t+1 + T et+1
t+1 ⊙

[
Tt+1[hℓ]Tt+1[hℓ]⊤]

7 Set S2
ℓ,t+1 = S̃2

ℓ,t+1 + T et+1
t+1 ⊙

[
Tt+1[hℓ] + Tt+1[hℓ]⊤]

8 Set Sℓ,t+1 = S1
ℓ,t+1 − ϕN

ℓ|t+1(hℓ)S2
ℓ,t+1 + ϕN

ℓ|t+1(hℓ)2St+1

4.6.1 Asymptotic variance of the predictor

We are interested in the estimation of the asymptotic variance of the predictor ηN
t (Id) at each

time step t. The estimator is given in Section B.2.2 of the Appendix. We use synthetic datasets
sampled from (4.6.1). The real asymptotic variances are intractable and we estimate them by
repeating independently and a thousand times the computation of each predictor mean ηN

t (Id)
with N = 10000 and then multiplying the sample variance by N .
We first investigate how the backward sampling variance estimators VN,BS

η,t , VN,M
η,t and VN,BS

η,t

behave in terms of computational time, bias and variance. The PaRIS estimator is used with
M = 3 without rejection sampling. For this first experiment, we sampled 750 observations from
(4.6.1) and ran 50 particle filters with N = 3000 from which we obtained 50 replicates of each
asymptotic variance estimate. The results are reported in Figure 4.1. The three estimators
exhibit approximately the same variance but the term by term version becomes slightly more
biased at t increases. Strikingly, the PaRIS estimator VN,M

η,t behaves similarly to VN,BS
η,t with a

much lower computational time and complexity as can be seen on the left plot of Figure B.1 in
the supplementary material.
We now compare VN,M

η,t with M = 3 to Chan and Lai (2013); Lee and Whiteley (2018); Olsson
and Douc (2019) on two different observation records of different length. For the lag size
parameter λ, we found that λ = 20 has the best bias-variance trade-off by comparing the
obtained fixed lag estimates with the crude asymptotic variance estimator. Note that in realistic
situations choosing the right λ is non trivial (besides the strong mixing case, as argued in Olsson
and Douc (2019)) and for this reason we conducted the experiments with two additional lag
values, λ ∈ {100, 200}. For moderately long observation records (t ∈ [750]) and with N = 3000,
VN,M

η,t compares favorably in terms of bias-variance trade-off with the best lagged estimator and
even has similar computational time on GPU. The results are reported in Figure 4.2. The five
different estimators are computed with the same particle cloud and replicated 50 times. As
expected, when the lag is increased the fixed lag estimates exhibit more variance because of the
particle degeneracy. In the extreme case where the lag is set to 750 (CLE) bias and variance
both increase significantly, as showcased in the fifth plot.
For the longer time horizon t ∈ [3000] we set N = 5000 and picked three time steps in order
to monitor the bias and variance closely, see Figure 4.3. The variance of VN,M

η,t remains steady
while the bias increases gradually but slowly. This is attributed to the fact that our estimator is
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Figure 4.1: Long-term behavior of VN,BS
η,t (top), VN,M

η,t with M = 3 (middle) and VN,BS
η,t (bottom).

The black dashed line is the asymptotic variance estimated using brute force. The number of
particles is set to N = 2000.
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Figure 4.2: Long-term behavior of the asymptotic variance estimators up to t = 750. From
top to bottom: PaRIS version of VN,BS

η,t with M = 3, lagged estimators with (in order) λ ∈
{20, 100, 200, 750}. The case λ = 750 corresponds to the CLE estimator. For each estimator,
the blurred colored lines represent each run out of fifty runs and solid colored lines correspond
to their average. The black dashed line is the asymptotic variance obtained by brute force. The
number of particles N is set to 2000.

90



t = 1000 t = 2000 t = 3000
0.0

0.5

1.0

1.5

2.0

2.5

A
sy

m
p

to
ti

c
va

ri
an

ce
s
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Figure 4.3: Long-term behavior of the asymptotic variance estimates up to t = 3000. White
dots represent the average of the asymptotic variance estimates of each algorithm. The dashed
black lines correspond to the asymptotic variances estimated by brute force. N is set to 5000
on the left boxplot and 10000 on the right one. The boxplots at each time step from left to right
are: VN,M

η,t with M = 3 and then the lagged CLEs with λ ∈ {20, 100, 200, 3000}.

a ratio of two estimators with increasing bias and variance. Nonetheless, our estimator remains
competitive with the best fixed lag estimator. Doubling the number of particles decreases
both bias and variance, as highlighted by the right plot. The computational cost of VN,M

η,t is
approximately twice larger than that of the genealogy tracing estimators when N = 5000 as
shown in Figure B.1 in the supplementary material. However, we are able to maintain a small
variance and bias without having to tune any other parameter besides the sample size. In more
complicated models or realistic scenarios, we do not know in advance which lag size is suitable
and using an inappropriate lag might yield poor estimates. We further investigate the stability
of our estimator with respect to t by comparing

DBS
N (t) :=

∑
i,j∈[N ]2

T 0
t (i, j)/N(N − 1), DGT

N (t) :=
∑

i,j∈[N ]2
1Ei

t,0 ̸=Ej
t,0

/N(N − 1) ,

which are central in the expression of the variance estimators (see Remark 4.4.6). We also
compare EBS

N (t) :=
∣∣(VN,BS

η,t (Id)/V∞t (Id))− 1
∣∣ and EGT

N (t) which is defined in an analogous way.
For the CLE (4.3.11), although it is expected to collapse to 0 after O(N) timesteps following
Koskela et al. (2020), the estimator starts to exhibit high bias and variance much before as the
set of time 0 ancestors depletes at a fast rate. This is illustrated on the left plot of Figure 4.4
where we fix N to 1000 and vary t between 0 and 3000. We see that DGT

N (t) decreases much
faster than DBS

N (t) and this in turn translates into longer stability for our estimator as can be
seen on the right plot of the same figure.

4.6.2 Asymptotic variance of the smoother

Here we are interested in the estimation of the asymptotic variance associated to the FFBS
estimates of the marginal means ϕℓ|t(Id) with ℓ fixed and t ≥ ℓ varying using Algorithm 3. For
this example we sampled four different observation records of length 160 each and ℓ is set to
100. The real asymptotic variances of each ϕℓ|t(Id) are intractable and they are estimated using
1000 independent replicates of the marginal means ϕN

ℓ|t(Id) with N = 10000. We then multiply
the obtained sample variance by N . The results are reported in Figure 4.5. As expected, the
crude estimates of the asymptotic variances all stagnate after some time t due to the incoming
observations becoming less and less informative as t grows and thus no longer influencing the
value of ϕℓ|t(Id).
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Figure 4.4: Dependency on the time t of the variance estimators. The right plot displays the
empirical error EN (t) for both BS and GT with N fixed to 1000. We display the median and
the interquartile range over 30 runs. The left plot displays the median of DN (t) associated with
the BS and GT variance estimators used on the right plot.
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Figure 4.5: Asymptotic variance estimates for four different observation records of the marginal
mean ϕN

100|t(Id) where t ∈ [100, 160]. The blurred brown lines on the left plot represent 50 runs
and the solid brown line their average. The black dashed line is the crude variance estimator.
The number of particles N is set to 5000.

The estimator proposed in 4.5.3 captures well the behavior of the asymptotic variance with little
variance and also stagnates at the same time. We observed in our experiments that, in com-
parison with the variance estimators of filtering algorithms, for this estimator to provide good
performance more samples are required for shorter time horizons. Nonetheless, the increased
computational time incurred by the increase of the number of particles is to be compared with
the time it takes to compute the crude variance estimates up to t = 160, which is about 1 hour
when running on GPU. In comparison, one run of our estimator takes 3 minutes.

4.7 Conclusion and perspectives
We have derived a novel estimator for the asymptotic variance of the particle filter relying
on backward sampling instead of genealogy tracking, thus extending the works of Chan and
Lai (2013); Lee and Whiteley (2018); Du and Guyader (2021); Olsson and Douc (2019). Our
estimator has many similarities with the forward only FFBS for additive functionals and is
treated as such; we also derived a PaRIS version Olsson and Westerborn (2017) of the estimator.
As a second contribution, we have derived the first consistent asymptotic variance estimator for
the FFBS algorithm for which we gave a practical online implementation in the case of additive
smoothing.
After this paper was released, a novel estimator for the asymptotic variance of the particle filter
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was released Mastrototaro and Olsson (2023). They extend the fixed lag estimator of Olsson
and Douc (2019) into an estimator that adaptively calibrates the lag and is essentially free of
any tuning parameter. We believe that their methodology can be readily combined with our
estimator for the FFBS variance and that our proof technique can be adapted.
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Chapter 5

State and parameter learning with
PaRIS particle Gibbs

5.1 Introduction

Sequential Monte Carlo (SMC) methods, or particle filters, are simulation-based approaches
used for the online approximation of posterior distributions in the context of Bayesian in-
ference in state space models. In nonlinear hidden Markov models (HMM), they have been
successfully applied for approximating online the typically intractable posterior distributions of
sequences of unobserved states (Xs1 , . . . , Xs2) given observations (Yt1 , . . . , Yt2) for 0 ≤ s1 ≤ s2
and 0 ≤ t1 ≤ t2. Standard SMC methods use Monte Carlo samples generated recursively by
means of sequential importance sampling and resampling steps. A particle filter approximates
the flow of marginal posteriors by a sequence of occupation measures associated with a sequence
{ξi

t}Ni=1, t ∈ N, of Monte Carlo samples, each particle ξi
t being a random draw in the state space

of the hidden process. Particle filters revolve around two operations: a selection step duplicat-
ing/discarding particles with large/small importance weights, respectively, and a mutation step
evolving randomly the selected particles in the state space. Applying alternatingly and itera-
tively selection and mutation results in swarms of particles being both temporally and spatially
dependent. The joint state posteriors of an HMM can also be interpreted as laws associated
with a Markovian backward dynamics; this interpretation is useful, for instance, when design-
ing backward-sampling-based particle algorithms for nonlinear smoothing Douc et al. (2011a);
Del Moral et al. (2010c).
Throughout the years, several convergence results as the number N of particles tends to infinity
have been established; see, e.g., Del Moral (2004); Douc and Moulines (2008); Cappe et al.
(2005) and the references therein. In addition, a number of non-asymptotic results have been
established, including time-uniform bounds on the SMC Lp error and bias as well as bounds
describing the propagation of chaos among the particles. Extensions to the backward-sampling-
based particle algorithms can also be found for instance in Douc et al. (2011a); Del Moral et al.
(2010c); Dubarry and Le Corff (2013).
In this chapter, we consider the problem of parameter learning with stochastic gradient algo-
rithms. We set the focus on learning the parameter of a function whose gradient is the smoothed
expectation of an additive functional, i.e. can be written η0:tht = E[ht(X0:t) | Y0:t] for additive
functionals ht in the form

ht(x0:t) :=
t−1∑
s=0

h̃s(xs, xs+1), (5.1.1)
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where X0:n and Y0:n denote vectors of states and observations (see below for precise definitions).
Such expectations appear frequently in the context of maximum-likelihood parameter estimation
in nonlinear HMMs, for instance, when computing the score function (the gradient of the log-
likelihood function) or the Expectation Maximization intermediate quantity; see Cappé (2001);
Andrieu and Doucet (2003); Poyiadjis et al. (2005); Cappé (2011); Poyiadjis et al. (2011);
Le Corff and Fort (2013). In this specific context, where a smoothing estimator is employed
repeatedly to produce mean-field estimates, controlling the bias and the MSE of the estimator
becomes critical (see Karimi et al. (2019)). This learning problem is usually tackled using either
the Particle Gibbs Lindholm and Lindsten (2018), or classical smoothing algorithms such as
the FFBSi or the PARIS Olsson and Westerborn (2017). While the former has exponentially
decreasing bias (w.r.t the number of iterates) under standard assumptions, it usually results in
high variance and a huge waste of the particle cloud generated. The latter is biased, since it
is self normalised but results in smaller variance that the particle Gibbs. Recently, zero bias
estimators (see Jacob et al. (2020); Lee et al. (2020)) have been proposed based on the coupling
of the particle Gibbs that could be used in this framework, but they suffer from having a random
computational complexity and high variance.
We propose a new algorithm combining the PARIS and the particle Gibbs algorithms. The
conditional particle cloud resulting from the particle Gibbs is now used not only to generate
the next conditioning trajectory as in the usual particle Gibbs but it is also used to generate a
smoothing estimate, reducing waste of computational work.
This leads to a batch mode PARIS particle Gibbs (PPG) sampler, which we furnish with an
upper bound on the bias that decreases inversely proportionally to the number N of particles
and exponentially fast with the particle Gibbs iteration index (under the assumption that the
particle Gibbs sampler is uniformly ergodic), while keeping the MSE comparable to that of
the underlying backward smoother. Furthermore, in the context of score ascent with the PPG
we provide a non-asymptotic bound for the expectation of the squared gradient in terms of
bias and MSE of the PPG. This bound establishes an O(log(n)/

√
n) convergence of the learning

procedure. This chapter and its contributions are structured as follows.
• In Section 5.3, we lay out the methodology of our Particle Gibbs within smoothing algo-

rithm, coined the PPG algorithm. We then provide an upper bound on its bias and MSE
as a function of the number of particles and the iteration index of the Gibbs algorithm,
see Theorem 5.3.1.

• In Section 5.4, we undertake the learning problem and present the second result of this
chapter, aO(log(n)/

√
n) non-asymptotic bound on the expectation of the squared gradient

norm taken at a random index K, see Theorem 5.4.1.
• In Section 6.3, we illustrate our results through numerical experiments, showing that our

algorithm is empirically grounded.

Notation. For a given measurable space (X,X), where X is a countably generated σ-algebra,
we denote by F(X) the set of bounded X/B(R)-measurable functions on X. For any h ∈ F(X),
we let ∥h∥∞ := supx∈X |h(x)| and osc(h) := sup(x,x′)∈X2 |h(x) − h(x′)| denote the supremum
and oscillator norms of h, respectively. Let M(X) be the set of σ-finite measures on (X,X)
and M1(X) ⊂ M(X) the probability measures. For any h ∈ F(X) and µ ∈ M(X) we write
µ(h) =

∫
h(x)µ(dx). For a Markov kernel K from (X,X) to another measurable space (Y,Y),

we define the measurable function Kh : X ∋ x 7→
∫

h(y)K(x, dy). The composition µK is a
probability measure on (Y,Y) such that µK : X ∋ A 7→

∫
µ(dx)K(x, dy)1A(y). For all sequences

{au}u∈Z and {bu}u∈Z, and all s ≤ t we write as:t = {as, . . . , at} and bs:t = {bs, . . . , bt}.
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5.2 Background

5.2.1 Hidden Markov models

Hidden Markov models consist of an unobserved state process {Xt}t∈N and observations {Yt}t∈N,
where, at each time t ∈ N, the unobserved state Xt and the observation Yt are assumed to take
values in some general measurable spaces (Xt,Xt) and (Yt,Yt), respectively. It is assumed that
{Xt}t∈N is a Markov chain with transition kernels {Mt}t∈N and initial distribution η0. Given
the states {Xt}t∈N, the observations {Yt}t∈N are assumed to be independent and such that for
all t ∈ N, the conditional distribution of the observation Yt depends only on the current state
Xt. This distribution is assumed to admit a density gt(Xt, ·) with respect to some reference
measure. In the following we assume that we are given a fixed sequence {yt}t∈N of observations
and define, abusing notations, gt(·) = gt(·, yt) for each t ∈ N. We denote, for 0 ≤ s ≤ t,
Xs:t := ∏t

u=s Xu and Xs:t := ⊗t
u=sXu. Consider the unnormalized transition kernel

Qs : Xs ×Xs+1 ∋ (x, A) 7→ gs(x)Ms(x, A) (5.2.1)

and let

γ0:t : X0:t ∋ A 7→
∫
1A(x0:t) η0(dx0)

t−1∏
s=0

Qs(xs, dxs+1). (5.2.2)

Using these quantities, we may define the joint-smoothing and predictor distributions at time
t ∈ N as

η0:t : X0:t ∋ A 7→ γ0:t(A)
γ0:t(X0:t)

, (5.2.3)

ηt : Xt ∋ A 7→ η0:t(X0:t−1 ×A), (5.2.4)

respectively. It can be shown (see (Cappe et al., 2005, Section 3)) that η0:t and ηt are the
conditional distributions of X0:t and Xt given Y0:t−1 respectively, evaluated at y0:t−1. Unfortu-
nately, these distributions, which are vital in Bayesian smoothing and filtering as they enable
the estimation of hidden states through the observed data stream, are available in a closed form
only in the cases of linear Gaussian models or models with finite state spaces; see Cappe et al.
(2005) for a comprehensive coverage.

5.2.2 Particle filters

For most models of interest in practice, the joint smoothing and predictor distributions are
intractable, and so are also any expectation associated with these distributions. Still, such
expectations can typically be efficiently estimated using particle methods, which are based on
the predictor recursion ηt+1 = ηtQt/ηtgt. At time t, if we assume that we have at hand a
consistent particle approximation of ηt, formed by N random draws {ξi

t}Ni=1, so-called particles,
in Xt and given by ηN

t = N−1∑N
i=1 δξi

t
, plugging ηN

t into the recursion tying ηt+1 and ηt yields
the mixture ηN

t Qt, from which a sample of N new particles can be drawn in order to construct
ηN

t+1. To do so, we sample, for all 1 ≤ i ≤ N , ancestor indices αi
t ∼ Categorical({gt(ξℓ

t )}Nℓ=1)
and then propagate ξi

t+1 ∼Mt(ξ
αi

t
t , ·). This procedure, which is initialized by sampling the

initial particles {ξi
0}Ni=1 independently from η0, describes the particle filter with multinomial

resampling and produces consistent estimators such that for every h ∈ F(Xt), ηN
t (h) converges

almost surely to ηt(h) as the number N of particles tends to infinity.
This procedure can also be extended to produce particle approximations of the joint-smoothing
distributions {η0:t}t∈N. Note that the successive ancestor selection steps described previously
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generates an ancestor line for each terminal particle ξi
t, which we denote by ξi

0:t. It can then be
easily shown that ηN

0:t = N−1 ∑N
i=1 δξi

0:t
forms a particle approximation of the joint-smoothing

distribution η0:t. However, it is well known that the same selection operation also depletes the
ancestor lines, since, at each step, two different particles are likely to originate from the same
ancestor from the previous generation. Thus, eventually, all the particles end up having a large
portion of their initial ancestry in common. This means that in practice, this naive approach,
which we refer to as the poor man’s smoother, suffers generally from high variance when used for
estimating joint-smoothing expectations of objective functionals depending on the whole state
trajectory.

5.2.3 Backward smoothing and the PARIS algorithm

We now discuss how to avoid the problem of particle degeneracy relative to the smoothing
problem by means of so-called backward sampling. While this line of research has broader appli-
cability, we restrict ourselves for the sake of simplicity to the case of additive state functionals
in the form

ht(x0:t) :=
t−1∑
s=0

h̃s(xs:s+1), x0:t ∈ X0:t. (5.2.5)

Appealingly, using the poor man’s smoother described in the previous section, smoothing of
additive functionals can be performed online alongside the particle filter by letting, for each
s,

ηN
0:shs := N−1

N∑
i=1

βi
s, (5.2.6)

where the statistics {βi
s}Ni=1 satisfy the recursion

βi
s+1 = βαi

s
s + h̃s(ξαi

s
s , ξi

s+1), (5.2.7)

where αi
s is, as described, the ancestor at time s of particle ξi

s+1.
As mentioned above, the previous estimator suffers from high variance when s is relatively
large with respect to N . However, assume now that the model is fully dominated in the sense
that each state process kernel Ms has a transition density ms with respect to some reference
measure; then, interestingly, it is easily seen that the conditional probability that αi

s = j given
the offspring ξi

s+1 and the ancestors {ξℓ
s}Nℓ=1 is given by

Λs(i, j) := gs(ξj
s)ms(ξj

s , ξi
s+1)∑N

ℓ=1 gs(ξℓ
s)ms(ξℓ

s, ξi
s+1)

. (5.2.8)

Here Λs forms a backward Markov transition kernel on [1 : N ]× [1 : N ]. Using this observation,
we may avoid completely the particle-path degeneracy of the poor man’s smoother by simply
replacing the naive update (5.2.7) by the Rao–Blackwellized counterpart

βi
s+1 =

N∑
j=1

Λs(i, j){βj
s + h̃s(ξj

s , ξi
s+1)}. (5.2.9)

This approach, proposed in Del Moral et al. (2010c), avoids elegantly the path degeneracy as it
eliminates the ancestral connection between the particles by means of averaging. Furthermore,
it is entirely online since at step s only the particle populations ξ1:N

s and ξ1:N
s+1 are needed

to perform the update. Still, a significant drawback is the overall O(N2) complexity for the
computation of β1:N

t , since the calculation of each βi
s+1 in (5.2.9) involves the computation of N2
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terms, which can be prohibitive when the number N of particles is large. Thus, in Olsson and
Westerborn (2017), the authors propose to sample M ≪ N conditionally independent indices
{J i,j

s }Mj=1 from the distribution Λs(i, ·) and to update the statistics according to

βi
s+1 = M−1

M∑
j=1

(
βJi,j

s
s + h̃s(ξJi,j

s
s , ξi

s+1)
)

. (5.2.10)

The key aspect of this approach is that the number M of sampled indices at each step can be
very small; indeed, for any fixed M ≥ 2, the algorithm, which is referred to as the PARIS, can
be shown to be stochastically stable with an O(t) variance (see (Olsson and Westerborn, 2017,
Section 1) for details), and setting M to 2 or 3 yields typically fully satisfying results.
Let us end this section by mentioning that the PARIS estimator can be viewed as an alternative
to the FFBSm Doucet et al. (2000), rather than the FFBSi Godsill et al. (2004). Even if the
PARIS and FFBSi are both randomised versions of the FFBSm estimator, the PARIS is of a
different nature than the FFBSi. The PARIS approximates the forward-only FFBSm online in
the context of additive functionals by approximating each updating step by additional Monte
Carlo sampling. The sample size M is an accuracy parameter that determines the precision of
this approximation, and by increasing M the statistical properties of the PARIS approaches those
of the forward-only FFBSm (see (Olsson and Westerborn, 2017, Theorem 8)). On the other
hand, as shown in (Douc et al., 2011a, Corollary 9), the asymptotic variance of FFBSi is always
larger than that of the FFBSm, with a gap given by the variance of the state functional under
the joint-smoothing distribution. Thus, we expect, especially in the case of a low signal-to-
noise ratio, the PARIS estimator to be more accurate than the FFBSi for a given computational
budget. The methodology we develop next can be seamlessly extended to the FFBSm and
FFBSi algorithms but since the PARIS has a practical edge w.r.t. the FFBSi, we chose to center
our contribution around it although the main idea behind our chapter is more general.

5.3 PARIS particle Gibbs

5.3.1 Particle Gibbs methods

The conditional particle filter (CPF) introduced in Andrieu et al. (2010) serves the basis of a
particle-based MCMC algorithm targeting the joint-smoothing distribution η0:t. Let ℓ ∈ N∗ be
an iteration index and ζ0:t[ℓ] a conditional path used at iteration ℓ of the CPF to construct a
particle approximation of η0:t as follows. At step s ∈ [1 : t] of the CPF, a randomly selected
particle, with uniform probability 1/N , is set to ζs[ℓ], whereas the remaining N − 1 particles
are all drawn from the mixture ηN

s−1Qs−1. At the final step, a new particle path ζ0:t[ℓ + 1] is
drawn either:

• by selecting randomly, again with uniform probability 1/N , a genealogical trace from the
ancestral tree of the particles {ξ1:N

s }ts=0 produced by the CPF, as in the vanilla particle
Gibbs sampler;

• or by generating the path by means of backward sampling, i.e., by drawing indices J0:t
backwards in time according to Jt ∼ Categorical({1/N}Ni=1) and, conditionally to Js+1,
Js ∼ Λs(Js+1, ·), s ∈ [0 : t− 1], and letting ζ0:t[ℓ + 1] = (ξJ0

0 , . . . ξJt
t ), where the transition

kernels {Λs}ts=0, defined by (5.2.8), are induced by the particles produced by the CPF,
as proposed in Whiteley (2010).

The theoretical properties of the different versions of the particle Gibbs sampler are well studied
Singh et al. (2017); Chopin and Singh (2015b); Andrieu et al. (2018a). In short, the produced
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conditional paths (ζ0:t[ℓ])ℓ∈N form a Markov chain whose marginal law converges geometrically
fast in total variation to the target distribution η0:t. As it is the case for smoothing algorithms,
the vanilla particle Gibbs sampler suffers from bad mixing due to particle path degeneracy
while its backward-sampling counterpart exhibits superior performance as t increases Lee et al.
(2020).

5.3.2 The PPG algorithm

Remarkably, for the standard particle Gibbs samplers to output a single conditional path, a
whole particle cloud {ξ1:N

s }ts=0 is generated and then discarded, resulting in significant waste of
computational work. Thus, we now introduce a variant of the PARIS algorithm, coined the PARIS
particle Gibbs (PPG), in which the conditional path of particle Gibbs with backward sampling
is merged with the intermediate particles, ensuring less computational waste and reduced bias
with respect to the vanilla PARIS.
In the following we let t ∈ N be a fixed time horizon, and describe in detail how the PPG
approximates iteratively η0:tht, where ht is an additive functional in the form (5.2.5). Using a
given conditional path ζ0:t[ℓ − 1] as input, the ℓ-th iteration of the PPG outputs a many-body
system ((ξ1

0:t, β1
t ), . . . , (ξN

0:t, βN
t )) comprising N backward particle paths {ξi

0:t}Ni=1 with associated
PARIS statistics {βi

t}Ni=1 (5.2.10). This is the so-called conditional PARIS update detailed in
Algorithm 3. After this, an updated conditional path is selected with probability 1/N among
the N particle paths {ξi

0:t}Ni=1 and used as input in the next conditional PARIS operation. At
each iteration, the produced statistics {βi

t}Ni=1 provide an approximation of η0:tht according to
(5.2.6). The overall algorithm is summarized in Algorithm 4. The function CPFs describes one
internal step of the conditional particle filter and is given in Algorithm 8 of the supplementary
material. In addition, the PPG algorithm defines a Markov chain with Markov transition kernel
denoted by Kt and detailed in (C.1.17).

Algorithm 3 One conditional PARIS update (cPaRIS)
Input: {(ξi

0:s, βi
s)}Ni=1, ζs+1, h̃s

Result: {(ξi
0:s+1, βi

s+1)}Ni=1
9 draw ξ1:N

s+1 ∼ CPFs+1(ζs+1)
for i← 1 to N do

10 draw {J i,ℓ
s }Mℓ=1 ∼ Λ(i, ·)�M

11 set βi
s+1 ←M−1∑M

ℓ=1

(
βJi,ℓ

s
s + h̃s(ξJi,ℓ

s
s , ξi

s+1)
)

12 set ξi
0:s+1 ← (ξJi,1

s
0:s , ξi

s+1)

Algorithm 4 One iteration of PPG
Input: Initial path ζ0:t, {h̃s}t−1

s=0
Result: {βi

t}Ni=1, ζ ′0:t
13 draw ξ1:N

0 ∼ CPF0(ζ0)
14 set βi

0 ← 0 for i ∈ [1 : N ]
15 for s← 0 to t− 1 do
16 set {(ξi

0:s+1, βi
s+1)}Ni=1 ← cPaRIS({(ξi

0:s, βi
s)}Ni=1, ζs+1, h̃s)

17 draw ζ ′0:t ∼ N−1∑N
i=1 δξi

0:t

As performing k steps of the PPG results in k many-body systems, it is natural to consider the
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following roll-out estimator which combines the backward statistics from step k0 < k to k:

Π(k0,k),N (ht) = [N(k − k0)]−1
k∑

ℓ=k0+1

N∑
j=1

βj
t [ℓ]. (5.3.1)

The total number of particles used in this estimator is C = (N− 1)k per time step. We denote
by υ = (k−k0)/k the ratio of the number of particles used in the estimator to the total number
of sampled particles.
We now state the first main results of the present chapter, in the form of theoretical bounds
on the bias and mean-squared error (MSE) of the roll-out estimator (5.3.1). These results
are obtained under the following strong mixing assumptions, which are now standard in the
literature (see Del Moral (2004); Douc and Moulines (2008); Del Moral (2013); Del Moral et al.
(2016); Lee et al. (2020)). It is crucial for obtaining quantitative bounds for particle smoothing
algorithms, see Olsson and Westerborn (2017) or Gloaguen et al. (2022) but also for the coupled
conditional backward sampling particle filter Lee et al. (2020).
(A9) For every s ∈ N there exist

¯
τs, τ̄s,

¯
σs, and σ̄s in R>0 such that

(i)
¯
τs ≤ gs(xs) ≤ τ̄s for every xs ∈ Xs,

(ii)
¯
σs ≤ ms(xs, xs+1) ≤ σ̄s for every (xs, xs+1) ∈ Xs:s+1.

Under (A9), define, for every s ∈ N, ρs := maxm∈[0:s] τ̄mσ̄m(
¯
τm¯

σm)−1 and, for every N ∈ N∗
and t ∈ N such that N > Nt := (1 + 5ρ2

t /2) ∨ 2t(1 + ρ2
t ),

κN,t := 1− 1− (1 + 5tρ2
t /2)/N

1 + 4t(1 + 2ρ2
t )/N

. (5.3.2)

Note that κN,t ∈ (0, 1) for all N and t as above.
Theorem 5.3.1. Assume (A9). Then for every t ∈ N, M ∈ N∗, ξ ∈ M1(X0:t), k0 ∈ N∗, k > k0
and N ∈ N∗ such that N > Nt, ∣∣∣Eξ[Π(k0,k),N (ht)]− η0:tht

∣∣∣ ≤ σbias (5.3.3)

Eξ

[(
Π(k0,k),N (ht)− η0:tht

)2
]
≤ σ2

mse,

where

σbias :=
cbias

t κk0
t,N

∑t−1
m=0 ∥h̃m∥∞

(k − k0)(1− κt,N )N , σ2
mse := (∑t−1

m=0 ∥h̃m∥∞)2

N(k − k0)

(
cmse

t + 2ccov
t

N1/2(1− κt,N )

)

and cbias
t , cmse

t and ccov
t are constants that do not depend on N and Eξ denotes the expectation

under the law of the Markov chain formed by the PPG when initialized according to ξ.
The proof is provided in the supplementary material. One of the important ingredients for
the proof is that under the smoothing distribution η0:t, the PPG estimates are unbiased (see
theorem C.1.6). Importantly, (5.3.3) provides a bound on the bias of the roll-out estimator that
decreases exponentially with the burn-in period k0 and is inversely proportional to the number
N of particles. This means that we can improve the bias of the PARIS estimator with a better
allocation of the computational resources.

5.4 Parameter learning with PPG

We now turn to parameter learning using PPG and gradient-based methods. We set the focus
on learning the parameter θ of a function V (θ) whose gradient is the smoothed expectation of
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an additive functional s0:t,θ in the form (5.2.5). Algorithm 6 defines a stochastic approximation
(SA) scheme where the noise forms a parameter dependent Markov chain with associated invari-
ant measure πθ . We follow the approach of Karimi et al. (2019) to establish a non-asymptotic
bound over the mean field h(θ) := πθs0:t,θ . Such a setting encompasses for instance the following
estimation procedures.

(1) Score ascent. In the case of fully dominated HMMs, we are often interested in optimizing
the log-likelihood of the observations given by V (θ) = log

∫
γ0:t,θ(dx0:t). By applying Fisher’s

identity, we may express its gradient as a smoothed expectation of an additive functional
according to

∇θV (θ) =
∫
∇θ log γ0:t(x0:t) η0:t,θ(dx0:t),

=
∫ t−1∑

ℓ=0
sℓ,θ(xℓ, xℓ+1) η0:t,θ(dx0:t),

where sℓ,θ : Xℓ:ℓ+1 ∋ (x, x′) 7→ ∇θ log{gℓ,θ(x)mℓ,θ(x, x′)} and s0:t,θ := ∑t−1
ℓ=0 sℓ,θ .

(2) Backward KL surrogates. Inspired by Naesseth et al. (2020), we may consider the problem
of learning a surrogate model for η0:t,θ in the form qϕ(x0:t) = qϕ(x0)∏t−1

ℓ=0 qϕ(xℓ+1, xℓ) by
minimizing V (ϕ) = KL(η0:t,θ , qϕ).

Algorithm 5 Gradient estimation with roll-out PPG (Ĝd)
Input: θ, ζ0:t[0], s0:t,θ , number k of PPG iterations, burn-in k0.
Result: β1:N

t [k0 : k], ζ0:t[k]
18 for ℓ← 0 to k − 1 do
19 (β̃1:N

t [ℓ + 1], ζ0:t[ℓ + 1])← PPG(θ; ζ0:t[ℓ], s0:t,θ)
20 if ℓ ≥ k0 − 1 then
21 set β1:N

t [ℓ + 1] = β̃1:N
t [ℓ + 1]

Algorithm 6 Score ascent with PPG.
Input: θ0, ζ0:t[0], number k of PPG iterations, burn-in k0, number of SA iterations n, learning-

rate sequence {γℓ}ℓ∈N.
Result: θn

22 for i← 0 to n− 1 do
23 β1:N

t [k0 : k], ζ0:t[i + 1]← Ĝd(θi, ζ0:t[i], s0:t,θi
, k, k0)

24 set Π(k0,k),N (s0:t,θi
) = 1

N(k−k0)
∑k−1

ℓ=k0

∑N
j=1 βj

t [ℓ]
25 set θi+1 ← θi + γi+1Π(k0,k),N (s0:t,θi

)

Note that Algorithm 5 defines a (collapsed) Markov kernel Pθ,t defining for each path ζ0:t a
measure Pθ,t(ζ0:t, d(ζ̃0:t, β̃1:N

t [k0 : k])) over the extended space of paths and sufficient statistics.
Note that by evaluating the function b1:N

t [k0 : k] 7→ [N(k − k0)]−1∑k
ℓ=k0+1

∑N
j=1 bj

t [ℓ] at a reali-
sation of this kernel gives the roll-out estimator whose properties are analysed in Theorem 5.3.1.
The Markov kernel Pθ,t is detailed in (C.2.4).
The following assumptions, are vital when analysing the convergence of Algorithm 6.

(A10) (i) The function θ 7→ V (θ) is LV -smooth.
(ii) The function θ 7→ η0:t,θ is Lη-Lipschitz in total variation distance.

102



(iii) For each path ζ0:t ∈ X0:t, the function θ 7→ Kθ,t(ζ0:t, dζ̃0:t) is LP
1 -Lipschitz in total

variation distance, where Kθ,t is the path-marginalized Markov transition kernel
associated with the PPG algorithm when the model is parameterized by θ, see (C.1.17).

(iv) For each path ζ0:t ∈ X0:t, the function

θ 7→ Pθ,tΠk0−1,k,N (s0:t,θ)(ζ0:t) (5.4.1)

is LP
2 -Lipschitz in total variation distance.

In the case of score ascent we check, in Section C.2, that these assumptions hold if the strong
mixing assumption (A9) is satisfied uniformly in θ, and with additional assumptions on the
model. We are now ready to state a bound on the mean field h(θ) for Algorithm 6.
Theorem 5.4.1. Assume (A9) uniformly in θ and (A10) and suppose that the stepsizes
{γℓ+1}ℓ∈[0:n] satisfy γℓ+1 ≤ γℓ, γℓ < aγℓ+1, γℓ − γℓ+1 < a′γ2

ℓ and γ1 ≤ 0.5(LV + Ch) for
some a > 0, a′ > 0 and all n ∈ N. Then,

E
[
∥h(θϖ)∥2

]
≤ 2

V0,n + C0,n + C0,γ
∑n

k=0 γ2
k+1∑n

k=0 γk+1
, (5.4.2)

where V0,n = E [V (θ)− V (θn)] and

C0,n := γ1h(θ0)C0 + σbias(γ1 − γn+1 + 1)δ−1
k,N,t , (5.4.3)

C0,γ := σ2
mseLV + σmseC1 + σbiasL

V δ−1
k,N,t + σmseσbias

(
LV + C2

1− κN,t

)
δ−1

k,N,t , (5.4.4)

Ch := (LV + a′ + 1)σbiasδ
−1
k,N,t +

(
C1 + σbiasC2

(1− κN,t)δk,N,t

)[
a + 1

2 + aσmse

]
, (5.4.5)

C1 = LP
2

[
1 + κk

N,tδ
−1
k,N,t

]
+ LV (5.4.6)

C2 = LP
1 δ−1

k,N,t + Lηκk
N,t . (5.4.7)

where C0 is independent of σbias, σmse, N and where δk,N,t = 1− κk
N,t.

Theorem 5.4.1 establishes not only the convergence of Algorithm 6, but also illustrates the
impact of the bias and the variance of the PPG on the convergence rate.
Remark 5.4.2. Under additional assumptions on the model (cf Section C.2), if we consider
γ1 ≤ 0.5(LV + Ch), γℓ = γ1ℓ−1/2 for all ℓ ∈ [1 : n], then

∑n
k=0 γ2

k+1/
∑n

k=0 γk+1 ∼ log n/
√

n,
showing that E

[
∥h(θϖ)∥2

]
is O(log n/

√
n), where the leading constant depends on σbias and

σmse.
Remark 5.4.2 establishes the rate of convergence of Algorithm 6. In principle we could try to
optimize the parameters k, k0 and N of the algorithm using these bounds, but one of the main
challenges with this approach is the determination of the mixing rate, which is crudely upper
bounded by κN,t. Still, our bound provides interesting information of the role of both bias and
MSE.

5.5 Numerical experiments
In this section, we focus on the numerical analysis of the two main results of the chapter,
namely the bias and MSE bounds of the roll-out estimator established in Theorem 5.3.1 and
the efficiency of using PPG for learning in the framework developed in Section 5.4. For the latter,
we will restrict ourselves to the case of parameter learning via score ascent. The code used in
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this section is available 1. Throughout this section, we set M = 2 for the PPG algorithm. In
this setting, the competing method that corresponds most closely to the one presented here
consists of using, as presented in Algorithm 7, a standard particle Gibbs sampler Πθ instead of
the PPG. One of the most common such samplers is the particle Gibbs with ancestor sampling
(PGAS) presented in Lindsten et al. (2014). In Lindholm and Lindsten (2018), the PGAS is used
for parameter learning in HMMs via the Expectation Maximization (EM) algorithm.

Algorithm 7 Score ascent with particle Gibbs kernel.
Data: ζ0:t[0], θ0, number k of paths per trajectory, burn-in k0, number n of SA iterations,

learning-rate sequence {γℓ}ℓ∈N, Πθ(ζ0:t, dζ̃0:t) a Markov kernel targeting η0:t.
Result: θn

26 for i← 0 to n− 1 do
27 for j ← 0 to k − 1 do
28 sample ζ̃0:t[j + 1] ∼ Πθ(ζ̃0:t[j], ·)
29 set θi+1 ← θi + γi+1

k−k0

∑k
ℓ=k0+1 s0:t,θi

(ζ̃0:t[ℓ])
30 set ζ0:t[i + 1] = ζ̃0:t[k]

5.5.1 PPG

Linear Gaussian state-space model (LGSSM). We first consider a linear Gaussian HMM

Xm+1 = AXm + Qϵm+1, Ym = BXm + Rζm, m ∈ N, (5.5.1)

where {ϵm}m∈N∗ and {ζm}m∈N are sequences of independent standard normally distributed
random variables, independent of X0. The coefficients A, Q, B, and R are assumed to be
known and equal to 0.97, 0.60, 0.54, and 0.33, respectively. Using this parameterisation, we
generate, by simulation, a record of t = 999 observations.
In this setting, we aim at computing smoothed expectations of the state one-lag covariance
ht(x0:t) := ∑t−1

m=0 xmxm+1. In the linear Gaussian case, the disturbance smoother (see (Cappe
et al., 2005, Algorithm 5.2.15)) provides the exact values of the smoothed sufficient statistics,
which allows us to study the bias of the estimator for a given computational budget C. Figure 5.1
displays, for three different total budgets C, the distribution of estimates of η0:nhn using the
PARIS as well as three different configurations of the PPG corresponding to k ∈ {2, 4, 10} (and
N = C/k) with k0 = k/2 and k0 = k/4. The reference value is shown as a red-dashed
line and the mean value of each distribution is shown as a black-dashed line. Each boxplot
is based on 1000 independent replicates of the corresponding estimator. We observe that in
this example, all configurations of the PPG are less biased than the equivalent PARIS estimator
while maintaining comparable variance. The illustration of the bounds from Theorem 5.3.1 is
postponed to Section C.3.3.

5.5.2 Score ascent

LGSSM. We consider the LGSSM with state and observation spaces being R5. We assume
that the parameters R and Q are known and consider the inference of θ = (A, B) on the basis of
a simulated sequence of n = 999 observations. In this setting, the M-step of the EM algorithm
can be solved exactly with the disturbance smoother (Cappe et al., 2005, Chapter 11). The
parameter obtained by this procedure (denoted θmle) is the reference value for any likelihood

1https://anonymous.4open.science/r/ppg/
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Figure 5.1: PARIS and PPG outputs for the LGSSM for C = 500, yellow boxes correspond to PPG
outputs produced using N ∈ {10, 25, 50, 100} iterations and k = C/N particles with k0 = k/2.

maximization algorithm. Table 5.1 shows the L2 distance between the singular values of θmle
and those of the parameters obtained by Algorithm 6 and Algorithm 7. The CLT confidence
intervals were obtained on the basis of 25 replicates. The configurations of the PPG estimators
respect a given particle budget kN = C = 1024. For a fair comparison, for each configuration
of the PPG estimator, we run an equivalent w.r.t. clock time PGAS estimator. The time needed
for one gradient step for each estimator averaged over 100 replicates is reported in Table 5.1.
The choice of keeping k0 = k/2 is a heuristic rule to achieve a good bias–variance trade-off,
but other combinations of k0 and k may lead to better performance for different problems. We
analyse the impact of the different settings for the LGSMM in Section C.3.4.All settings are the
same for both algorithms and are described in Section C.3.4. The PPG achieves consistently a
smaller distance to θmle. Figure 5.2 displays, for each estimator and configuration, the evolution
of the distance to the MLE estimator as a function of the iteration index.

100 101 102 103 104
i

100

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

D
M

LE PGAS(N=64, k=48)
PGAS(N=128, k=24)
PGAS(N=256, k=12)
PPG(N=64, k=32)
PPG(N=128, k=16)
PPG(N=256, k=8)

Figure 5.2: Distance to the MLE estimator as a function of the iteration step for the PGAS
and PPG configurations from table 5.1. The solid lines and the shaded region represent the mean
and CLT confidence intervals obtained with 25 replications.

CRNN. We consider now the problem of inference in a non-linear HMM and in particular
the chaotic recurrent neural network introduced by Zhao et al. (2022). We use the same setting
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Algorithm N k0 k Dmle δt(s)
PGAS 64 24 48 0.72 ± 0.04 5.66
PGAS 128 12 24 0.59 ± 0.04 2.84
PGAS 256 6 12 0.59 ± 0.05 1.42
PPG 64 16 32 0.37 ± 0.03 4.56
PPG 128 8 16 0.36 ± 0.04 2.37
PPG 256 4 8 0.35 ± 0.04 1.57

Table 5.1: Distance to θMLE (Dmle) for each configuration in the LGSSM case. δt(s) represents
the average running time for each configuration.

Algorithm N k0 k NLL δt(s)
PGAS 32 32 64 31887 ± 128 3.90
PGAS 64 16 32 31269 ± 254 1.99
PGAS 128 8 16 30994 ± 288 1.16
PPG 32 16 32 22292 ± 48 2.79
PPG 64 8 16 22315 ± 25 1.39
PPG 128 4 8 22353 ± 39 0.92

Table 5.2: Per configuration negative loglikelihood for the CRNN model.

as in the original chapter. The state and observation equations are

Xm+1 = Xm + τ−1∆ (−Xm + γW tanh(Xm)) + ϵm+1,

Ym = BXm + ζm, m ∈ N,

where {ϵm}m∈N∗ is a sequence of 20-dimensional independent multivariate Gaussian random
variables with zero mean and covariance 0.01I and {ζm}m∈N is a sequence of independent
random variables where each component is distributed independently according to a Student’s
t-distribution with scale 0.1 and 2 degrees of freedom. We consider θ = (W, B).
In this case, the natural metric used to evaluate the different estimators is the negative log
likelihood (NLL). We use the unbiased estimator of the likelihood given by the mean of the
log weights produced by a particle filter (Douc et al., 2014, Section 12.1) using N = 104

particles. Table 5.2 shows the results obtained for 25 different replications for several different
configurations of PPG while keeping total budget of particles fixed. As for the LGSSM, for each
configuration of the PPG we run the time-equivalent PGAS estimator. Further numerical details
and the system configuration used in the experiments are given in Section C.3.4. We observe
that PPG achieves a considerably lower NLL than PGAS in all configurations.

5.6 Conclusion and perspectives
We have presented a new algorithm, referred to as PPG as well as bounds on its bias and MSE
in Theorem 5.3.1. We then propose a way of using PPG in a learning framework and derive
a non-asymptotic bound over the gradient of the updates when doing score ascent with the
PPG with explicit dependence on the bias and MSE of the estimator. We provide numerical
simulations to support our claims, and we show that our algorithm outperforms the current
competitors in the two different examples analysed.
In Cardoso et al. (2022) they use a bootstrap, or reshuffling, approach to reduce the variance
of their bias reduced SNIS estimator. It is not clear if such approach can be extended to
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the sequential case. Note also that the Lipschitz constant of Kθ,t possesses an unexpected
dependence on N − 1 (see Corollary C.2.8). One would expect it not to be true in that we
know that Kθ,t converges geometrically fast and uniformly to η0:t and this is faster as N gets
bigger. Therefore, for large N the Lipschitz constant is expected to converge to that of η0:t
whose Lipschitz constant is independent of N .
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Chapter 6

Monte Carlo guided Diffusion for
Bayesian linear inverse problems

6.1 Introduction

This paper is concerned with linear inverse problems y = Ax + σyε, where y ∈ Rd
y is a vector

of indirect observations, x ∈ Rdx is the vector of unknowns, A ∈ Rdy×dx is the linear forward
operator and ε ∈ Rdy is an unknown noise vector. This general model is used throughout com-
putational imaging, including various tomographic imaging applications such as common types
of magnetic resonance imaging Vlaardingerbroek and Boer (2013), X-ray computed tomography
Elbakri and Fessler (2002), radar imaging Cheney and Borden (2009), and basic image restora-
tion tasks such as deblurring, superresolution, and image inpainting González et al. (2009). The
classical approach to solving linear inverse problems relies on prior knowledge about x, such as its
smoothness, sparseness in a dictionary, or its geometric properties. These approaches attempt
to estimate a x̂ by minimizing a regularized inverse problem, x̂ = argminx{∥y−Ax∥2 +Reg(x)},
where Reg is a regularization term that balances data fidelity and noise while enabling efficient
computations. However, a common difficulty in the regularized inverse problem is the selection
of an appropriate regularizer, which has a decisive influence on the quality of the reconstruc-
tion.
Whereas regularized inverse problems continue to dominate the field, many alternative statis-
tical formulations have been proposed; see Besag et al. (1991); Idier (2013); Marnissi et al.
(2017) and the references therein - see also Stuart (2010) for a mathematical perspective. A
main advantage of statistical approaches is that they allow for uncertainty quantifica-
tion in the reconstructed solution; see Dashti and Stuart (2017). The Bayes’ formulation of
the regularized inverse problem is based on considering the indirect measurement Y , the state
X and the noise ε as random variables, and to specify p(y|x) the likelihood (the conditional
distribution of Y at X) and the prior p(x) (the distribution of the state). One can use Bayes’
theorem to obtain the posterior distribution p(x|y) ∝ p(y|x)p(x), where " ∝ " means that
the two sides are equal to each other up to a multiplicative constant that does not depend on
x. Moreover, the use of an appropriate method for Bayesian inference allows the quantification
of the uncertainty in the reconstructed solution x. A variety of priors are available, including
but not limited to Laplace priors Figueiredo et al. (2007), total variation (TV) priors Kaipio
et al. (2000) and mixture-of-Gaussians priors Fergus et al. (2006). In the last decade, a vari-
ety of techniques have been proposed to design and train generative models (GM) capable of
producing perceptually realistic images Kingma and Welling (2019); Kobyzev et al. (2020); Gui
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et al. (2021). Denoising diffusion models have been shown to be particularly effective generative
models in this context Sohl-Dickstein et al. (2015); Song et al. (2021c,a,b); Benton et al. (2022).
These models convert noise into natural images through a series of denoising steps. A popular
approach is to use a fixed, generic diffusion model that has been pre-trained for image gener-
ation, eliminating the need for re-training and making the process more efficient and versatile
Trippe et al. (2023); Zhang et al. (2023).
Although this was not the main motivation for developing GM, these models can of course be
used as prior distributions in Bayesian inverse problems. This simple observation has led to a
new, fast-growing line of research on how linear inverse problems can benefit from the flexibility
and expressive power of the recently introduced deep generative models; see Arjomand Bigdeli
et al. (2017); Wei et al. (2022); Su et al. (2022); Kaltenbach et al. (2023); Shin and Choi (2023);
Zhihang et al. (2023); Sahlström and Tarvainen (2023) and the references therein.

Contributions

• We propose MCGdiff, a novel algorithm for sampling from the Bayesian posterior of Gaussian
linear inverse problems with denoising diffusion model priors. MCGdiff specifically exploits the
structure of both the linear inverse problem and the denoising diffusion generative model to
design an efficient Sequential Monte Carlo (SMC) sampler.
• We establish under sensible assumptions that the empirical distribution of the samples pro-
duced by MCGdiff converges to the target posterior when the number of particles goes to infinity.
To the best of our knowledge, MCGdiff is the first provably consistent algorithm for conditional
sampling from the denoising diffusion posteriors.
• To evaluate the performance of MCGdiff, we perform numerical simulations on several ex-
amples (in high-dimension) for which the target posterior distribution is known. Simulation
results support our theoretical results, i.e. the empirical distribution of samples from MCGdiff
converges to the target posterior distribution. This is not the case for the competing methods
(using the same denoising diffusion generative priors) which are shown, when run with random
initialization of the denoising diffusion, to generate a significant number of samples outside the
support of the target posterior.
• We perform experimental evaluations on inpainting problems on CelebA-HQ, showing that
MCGdiff generates both diverse and realistic reconstructions, which are coherent with the ob-
servations.

Background and notations.

This section provides a concise overview of the diffusion model framework and notations used
in this paper. We cover only the elements that are important for understanding our approach,
and we recommend that readers refer to the original papers for complete details and derivations
Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al. (2021c,a). A denoising diffusion model
is a generative model that consists of a forward and a backward process. The forward noising
process involves sampling a data point X0 ∼ qdata from the data distribution, which is then
converted to a sequence X1:n of recursively corrupted versions of X0. On the other hand,
the backward denoising process involves sampling Xn according to an easy-to-sample reference
distribution on Rdx and generating X0 ∈ Rdx by a sequence of denoising steps. Following Sohl-
Dickstein et al. (2015); Song et al. (2021a), the forward noising process can be chosen as a
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Markov chain with joint distribution

q0:n(x0:n) = qdata(x0)
n∏

t=1
qt(xt|xt−1), qt(xt|xt−1) = N (xt; (1− βt)1/2xt−1, βt Idx) , (6.1.1)

where Idx is the identity matrix of size dx, {βt, t ∈ N} ⊂ (0, 1) is a non-increasing sequence
and N (x; µ, Σ) is the p.d.f. of the Gaussian distribution with mean µ and covariance matrix
Σ (assumed to be non-singular) evaluated at x. For all t > 0, set ᾱt = ∏t

ℓ=1(1 − βℓ) with the
convention α0 = 1. We have for all 0 ≤ s < t ≤ n,

qt|s(xt|xs) :=
∫ t∏

ℓ=s+1
qℓ(xℓ|xℓ−1)dxs+1:t−1 = N (xt; (ᾱt/ᾱs)1/2xs, (1− ᾱt/ᾱs) Idx) . (6.1.2)

For the standard choices of ᾱt, the sequence of distributions (qt)t converges weakly to the
standard normal distribution as t → ∞, which we chose as the reference distribution. For
the reverse process, Song et al. (2021a,b) introduce an inference distribution qσ

1:n|0(x1:n|x0),
depending on a sequence {σt, t ∈ N} of hyperparameters satisfying σ2

t ∈ [0, 1 − ᾱt−1] for all
t ∈ N∗, and defined as

qσ
1:n|0(x1:n|x0) = qσ

n|0(xn|x0)
2∏

t=n

qσ
t−1|t,0(xt−1|xt, x0) ,

where qσ
n|0(xn|x0) = N

(
xn; ᾱ

1/2
n x0, (1− ᾱn) I

)
and

qσ
t−1|t,0(xt−1|xt, x0) = N

(
xt−1;µt(x0, xt), σ2

t Id

)
, (6.1.3)

where
µt(x0, xt) = ᾱ

1/2
t−1x0 + (1− ᾱt−1 − σ2

t )1/2(xt − ᾱ
1/2
t x0)

/
(1− ᾱt)1/2 . (6.1.4)

For t = n− 1, . . . , 1, we define by backward induction the sequence:

qσ
t|0(xt|x0) =

∫
qσ

t|t+1,0(xt|xt+1, x0)qσ
t+1|0(xt+1|x0)dxt+1. (6.1.5)

It is shown in (Song et al., 2021a, Lemma 1) that for all t ∈ [1 : n], the distributions of the
forward and inference process conditioned on the initial state coincide, i.e. that

qσ
t|0(xt|x0) = qt|0(xt|x0). (6.1.6)

The backward denoising process is derived from the inference distribution by replacing, for each
t ∈ [2 : n], x0 in the definition qσ

t−1|t,0(xt−1|xt, x0) with a prediction

χθ
0|t(xt) := ᾱ

−1/2
t

(
xt − (1− ᾱt)1/2eθ(xt, t)

)
, (6.1.7)

where eθ(x, t) is typically a neural network parameterized by θ. More formally, the backward
distribution is defined as

pθ
0:n(x0:n) = pn(xn)

n+1∏
t=0

pθ
t (xt|xt+1) ,

where pn(xn) = N (xn; 0dx , Idx Idx) and for all t ∈ [1 : n− 1],

pθ
t (xt|xt+1) := qσ

t|t+1,0(xt|xt+1,χθ
0|t+1(xt+1))

= N (xt, mθ
t+1(xt+1), σ2

t+1Idx) ,
(6.1.8)
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where mt+1(xt+1) := µ(χθ
0|t+1(xt+1), xt+1) and 0dx is the null vector of size dx. At step 0, we

set p0(x0|x1) := N (x0;χθ
0|1(x1), σ2

1Idx). The parameter θ is obtained (see (Song et al., 2021a,
Theorem 1)) by solving the following optimization problem:

θ∗ ∈ argmin
θ

n∑
t=1

1
2dxσ2

t αt

∫
∥ϵ− eθ(√αtx0 +

√
1− αtϵ, t)∥22N (ϵ; 0dx , Idx)qdata(dx0)dϵ . (6.1.9)

Thus, eθ∗(Xt, t) might be seen as the predictor of the noise added to X0 to obtain Xt (in
the forward pass) and justifies the “prediction” terminology for (6.1.7). The time 0 marginal
pθ∗

0 (x0) =
∫

pθ∗
0:n(x0:n)dx1:n which we will refer to as the prior is used as an approximation of

qdata and the time s marginal is pθ∗
s (xs) =

∫
pθ∗

0:n(x0:n)dx1:s−1dxs+1:n. In the rest of the paper we
drop the dependence on the parameter θ∗. We define for all v ∈ Rℓ, w ∈ Rk, the concatenation
operator v⌢w = [vT , wT ]T ∈ Rℓ+k. For i ∈ [1 : ℓ], we let v[i] the i-th coordinate of the vector
v.

Related works.

The subject of Bayesian problems is very vast, and it is impossible to discuss here all the results
obtained in this very rich literature. We will focus on image restoration problems, (deblur-
ring, denoising inpainting) a challenging problem in computer vision that involves restoring
a partially observed degraded image. Deep learning techniques are widely used for this task
Arjomand Bigdeli et al. (2017); Yeh et al. (2018); Xiang et al. (2023); Wei et al. (2022) with
many of them relying on auto-encoders, VAEs Ivanov et al. (2018); Peng et al. (2021); Zheng
et al. (2019), GANs Yeh et al. (2018); Zeng et al. (2022), or autoregressive transformers Yu
et al. (2018); Wan et al. (2021).
In what follows, we focus on methods based on denoising diffusion that has recently emerged
as a way to produce high-quality realistic images on par with the best GANs in terms of image
generation, without the intricacies of adversarial training; see Sohl-Dickstein et al. (2015); Song
et al. (2021c, 2022). Diffusion-based approaches do not require specific training for degradation
types, making them much more versatile and computationally efficient. In Song et al. (2022),
noisy linear inverse problems are proposed to be solved by diffusing the degraded observation
forward, leading to intermediate observations {ys}ns=0, and then running a modified backward
process that promotes consistency with ys at each step s. The Denoising-Diffusion-Restoration
model (DDRM) Kawar et al. (2022) also modifies the backward process so that the unobserved
part of the state follows the backward process while the observed part is obtained as a noisy
weighted sum between the noisy observation and the prediction of the state. As observed
by Lugmayr et al. (2022), DDRM is very efficient, but the simple blending used occasionally
causes inconsistency in the restoration process. The recently introduced DPS Chung et al.
(2023) considers a backward process targeting the posterior. DPS approximates the score of
the posterior using the Tweedie formula, which incorporates the learned score of the prior.
The approximation error is quantified and shown to decrease when the noise level is large,
i.e., when the posterior is close to the prior distribution. As shown in Section 6.3 with a very
simple example, neither DDRM nor DPS can be used to sample the target posterior and therefore
do not solve the Bayesian recovery problem (even if we run DDRM and DPS several time with
independent initializations). Indeed, we show that DDRM and DPS produce samples under the
"prior" distribution (which is generally captured very well by the denoising diffusion model),
but which are not consistent with the observations (many samples land in areas with very low
likelihood).
In Trippe et al. (2023) the authors introduce SMCdiff, a Sequential Monte Carlo-based denois-
ing diffusion model that aims at solving specifically the inpainting problem. SMCdiff produces
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a particle approximation of the conditional distribution of the non observed part of the state
conditionally on a forward-diffused trajectory of the observation. The resulting particle ap-
proximation is shown to converge to the true posterior of the GM under the assumption that
the joint laws of the forward and backward processes coincide, which fails to be true in realis-
tic setting. Other than being restricted to the noiseless inpainting problem, their assumption
cannot be guaranteed to hold in realistic scenarios. In comparison with SMCdiff, MCGdiff is a
versatile approach that solves any Bayesian linear inverse problem while being consistent under
practically no assumption.

6.2 The MCGdiff algorithm

In this section we present our methodology for the inpainting problem (6.2.1), both with noise
and without noise. The more general case is treated in Section 6.2.3. Let dy ∈ [1 : dx − 1]. In
what follows we may denote the dy top coordinates of a vector x ∈ Rdx by x and the remaining
coordinates by x, so that x = x⌢x. The inpainting problem is defined as

Y = X + σyε , ε ∼ N (0, Idy ) , σ ≥ 0 , (6.2.1)

where X are the first dy coordinates of a random variable X ∼ p0. The goal is then to recover
the law of the complete state X given a realization y of the incomplete observation Y and the
model (6.2.1).

6.2.1 Noiseless case

We begin by considering the case in which σy = 0. Since the first dy coordinates are observed
exactly, we aim at infering the remaining coordinates of the random variable, which correspond
to X. As such, given an observation y, we aim at sampling from the posterior given by ϕy

0(x0) ∝
p0(y⌢x0) and which has integral form

ϕy
0(x0) ∝

∫
pn(xn)

{
n−1∏
s=1

ps(xs|xs+1)
}

p0(y⌢x0|x1)dx1:n . (6.2.2)

To solve this problem, we propose to use Sequential Monte Carlo (SMC) algorithms Doucet
et al. (2001); Cappe et al. (2005); Chopin et al. (2020), where a set of N random samples,
referred to as particles, is iteratively updated to approximate the posterior distribution. The
updates involve, at iteration s, selecting promising particles from ξ1:N

s+1 = (ξ1
s+1, . . . , ξN

s+1) based
on a weight function ω̃s, to which we then apply a Markov transition py

s to obtain the samples
ξ1:N

s . The transition py
s(xs|xs+1) is designed to follow the backward process while guiding the

dy top coordinates of the pool of particles ξ1:N
s towards the measurement y. Before we proceed

to define the transition kernels, note that under the backward dynamics (6.1.8), Xt and Xt are
independent conditionally on Xt+1 with transition kernels respectively

pt(xt|xt+1) := N (xt; mt+1(xt+1), σ2
t+1Idy ) , p

t
(xt|xt+1) := N (xt; mt+1(xt+1), σ2

t+1Idx−dy )

where mt+1(xt+1) ∈ Rdy and mt+1(xt+1) ∈ Rdx−dy are such that mt+1(xt+1) = mt+1(xt+1)⌢mt+1(xt+1)
and the above kernels satisfy pt(xs|xs+1) = pt(xt|xt+1)p

t
(xt|xt+1).

We consider the following proposal kernels for the steps t ∈ [1 : n],

py
s(xt|xt+1) ∝ pt(xt|xt+1)qt|0(xt|y) , where qt|0(xt|y) := N (xt; ᾱ

1/2
t y, (1− ᾱt)Idy ) , (6.2.3)
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and py
n(xn) ∝ pn(xn)qn|0(xn|y). For the final step, we use the kernel py

0(x0|x1) = p0(x0|x1).
Using standard Gaussian conjugation formulas, we find that

py
t (xt|xt+1) = p

t
(xt|xt+1) · N

(
xt; Ktα

1/2
t y + (1− Kt)mt+1(xt+1), (1− ᾱt)Kt · Idy

)
,

pn(xn) = N (xn; 0dx−dy , Idx−dy ) · N (xn; Knᾱ1/2
n y, (1− ᾱn)Kn · Idy )

where Kt := σ2
t+1
/
(σ2

t+1 + 1 − αt). For this procedure to target the posterior ϕy
0, the weight

function ω̃s is chosen as follows; we set

ω̃n−1(xn) :=
∫

pn−1(xn−1|xn)qn−1|0(xn−1|y)dxn−1

= N
(
α

1/2
n−1y; mn(xn), σ2

n + 1− αs

)
and for t ∈ [1 : n− 2],

ω̃t(xt+1) :=
∫

pt(xt|xt+1)qt|0(xt|y)dxt
/
qt+1|0(xt+1|y)

=
N
(
α

1/2
t y; mt+1(xs+1), (σ2

t+1 + 1− αt)Idy

)
N
(
α

1/2
t+1y; xt+1, (1− αt+1)Idy

) .
(6.2.4)

For the final step, we set ω̃0(x1) := p0(y|x1)
/
q1|0(x1|y). The overall SMC algorithm targeting

ϕy
0 using the instrumental kernel (6.2.3) and weight function (6.2.4) is summarized in Algo-

rithm 4.

Algorithm 4: MCGdiff (σ = 0)
Input: Number of particles N
Output: ξ1:N

0
// Operations involving index i are repeated for each i ∈ [1 : N ]

1 zi
n ∼ N (0dy , Idy ), zi

n ∼ N (0dx−dy , Idx−dy );
2 ξi

n = Knᾱ
1/2
n y + (1− ᾱn)Knzi

n;
3 Set ξi

n = ξi
n

⌢
zi

n;
4 for s← n− 1 : 0 do
5 if s = n− 1 then
6 ω̃n−1(ξi

n) = N
(
ᾱ

1/2
n y; mn(ξi

n), 2− ᾱn
)
;

7 else
8 ω̃s(ξi

s+1) = N
(
ᾱ

1/2
s y; ms+1(ξi

s+1), σ2
s+1 + 1− ᾱs

) /
N
(
ᾱ

1/2
s+1y; ξi

s+1, 1− ᾱs+1
)
;

9 Ai
s+1 ∼ Categorical

(
{ω̃s(ξj

s+1)/∑N
k=1 ω̃s(ξk

s+1)}Nj=1
)
;

10 zi
s ∼ N (0dy , Idy ), zi

s ∼ N (0dx−dy , Idx−dy );
11 ξi

s = Ksᾱ
1/2
s y + (1− Ks)ms+1(ξi

s+1) + (1− αs)1/2K1/2
s zi

s;
12 ξi

s = ms+1(ξi
s+1) + σs+1zi

s;
13 Set ξi

s = ξi
s

⌢
ξi

s;

We now provide a justification to Algorithm 4. Let {gy
s}ns=1 be a sequence of positive functions.

Consider the sequence of distributions {ϕy
s}

n
s=1 defined as follows; ϕy

n(xn) ∝ pn(xn)gy
n(xn) and

for t ∈ [1 : n− 1]
ϕy

t (xt) ∝
∫

gy
t (xt)

gy
t+1(xt+1)pt(xt|xt+1)ϕy

t+1(dxt+1) , (6.2.5)
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By construction, the time t marginal (6.2.5) is ϕy
t (xt) ∝ pt(xt)gy

t (xt) for all t ∈ [1 : n]. Then,
using ϕy

1 and (6.2.2), we have that

ϕy
0(x0) ∝

∫
p0(y|x1)
gy

1(x1) p0(x0|x1)ϕy
1(dx1) . (6.2.6)

The recursion (6.2.5) suggests a way of obtaining a particle approximation of ϕy
0; by sequentially

approximating each ϕy
t we can effectively derive a particle approximation of the posterior using

(6.2.6). To construct the intermediate particle approximations we use the framework of auxiliary
particle filters (APF) Pitt and Shephard (1999). We focus on the particular case where gy

t (xt) =
qt|0(xt|y) which corresponds to Algorithm 4. The initial particle approximation ϕy

n is obtained
by drawing N i.i.d. samples (ξ1

n, . . . , ξN
n ) from py

n and setting ϕN
n = N−1∑N

i=1 δξi
n

where δξ is
the Dirac mass at ξ . Assume that the empirical approximation of ϕy

t+1 is

ϕN
t+1 = N−1

N∑
i=1

δξi
t+1

,

where (ξ1
t+1, . . . , ξN

t+1) are N random variables. Substituting ϕN
t+1 into the recursion (6.2.5) and

introducing the instrumental kernel (6.2.3), we obtain the following mixture

ϕ̂N
t (xt) =

N∑
i=1

ω̃t(ξi
t+1)∑N

j=1 ω̃t(ξ
j
t+1)

py
t (xt|ξi

t+1) . (6.2.7)

Then, a particle approximation of (6.2.7) is obtained by sampling N conditionally i.i.d. ancestor
indices

A1:N
t+1i.i.d.Categorical({ω̃t(ξi

t+1)/
N∑

j=1
ω̃t(ξ

j
t+1)}Ni=1)

and then propagating each ancestor particle ξ
Ii

t+1
s+1 according to the instrumental kernel (6.2.3).

The final particle approximation is given by

ϕN
0 = N−1

N∑
i=1

δξi
0

, where ξi
0 ∼ p0(·|ξAi

01 ) , Ai
0 ∼ Categorical({ω̃0(ξk

1 )
/ N∑

j=1
ω̃0(ξj

1)}Nk=1) .

The potential gy
t (xt) = qt|0(xt|y), and hence Equations (6.2.5) and (6.2.6), is motivated by con-

sidering the posterior of the state under the forward process (6.1.1) ρy
t (xt) :=

∫
ϕy

0(x0)qt|0(xt|y⌢x0) dx0.
Indeed, first note that the bridge kernel decomposes across the dimensions as follows,

qσ
t−1|t,0(xt−1|xt, x0) = qσ

t−1|t,0(xt−1|xt, x0)qσ
t−1|t,0(xt−1|xt, x0)

where

qσ
t|t+1,0(xt|xt+1, x0) = N (xt;µt(x0, xt+1), σ2

t+1Idy ) ,

qσ
t−1|t,0(xt−1|xt, x0) = N (xt−1;µt(x0, xt), σ2

t Idx−dy ) ,

and µt+1 is defined in (6.1.4). It is then easily seen that

qt|0(xt|x0) =
∫

qσ
t|t+1,0(xt|xt+1, x0)qt+1|0(dxt+1|x0)

q
t|0(xt|x0) =

∫
qσ

t|t+1,0(xt|xt+1, x0)q
t+1|0(dxt+1|x0) ,
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where q
t|0 is defined analoguously to qt|0 in (6.2.3). Hence, using that qt|0(xt|x0) = qt|0(xt|x0)q

t|0(xt|x0),
we see that

ρy
t (xt) =

∫
ϕy

0(dx0)qt|0(xt|y)qσ
t|t+1,0(xt|xt+1, x0)qt+1|0(dxt+1|x0)

=
∫

ϕy
0(dx0)qt|0(xt|y)qσ

t|t+1,0(xt|xt+1, x0)qt+1|0(dxt+1|y⌢x0) .

Finally, replacing x0 by the vector made of the last dx − dy coordinates of its prediction
χ0|s+1(xs+1), which we denote by χ0|s+1(xs+1), we see that ρy

s satisfies

ρy
s(xs) ≈

∫
qs|0(xs|y)p

s
(xs|xs+1)ρy

s+1(dxs+1) . (6.2.8)

According to this recursion, the transition from xs should follow the backward process con-
ditioned by xs+1, while that from xs should follow the forward one conditioned on the mea-
surement y at time 0. Equation (6.2.5) reflects this behaviour, while (6.2.6) ensures that the
procedure ultimately produces the posterior as the final marginal. The idea of using the forward
diffused observation to guide the observed part of the state, as we do here through qt(xt|y),
has been exploited in prior works but in a different way. For instance, in Song et al. (2021c,
2022) the observed part of the state is directly replaced by the forward noisy observation and,
as it has been noted Trippe et al. (2023), this introduces an irreducible error resulting in a
procedure that fails to sample from the posterior. Instead, MCGdiff weights the backward pro-
cess by the density of the forward one conditioned on y, resulting in a natural and consistent
algorithm.
We now establish the convergence of MCGdiff with a general sequence of potentials {gy

s}ns=1.
We consider the following assumption on the sequence of potentials {gy

t }nt=1.
(A11) (i) supx1∈Rdx p0(y|x1)/gy

1(x1) <∞ ,

(ii) supxt+1∈Rdx

∫
gy

t (xt)pt(xt|xt+1)dxt
/
gy

t+1(xt+1) <∞ for all t ∈ [1 : n− 1].
The following exponential deviation inequality is standard and is a direct application of (Douc
et al., 2014, Theorem 10.17). In particular, it implies a O(1/

√
N) bound on the mean squared

error ∥ϕN
0 (h)− ϕy

0(h)∥2.
Proposition 6.2.1. Assume (A11). There exist constants c1,n, c2,n ∈ (0,∞) such that, for all
N ∈ N, ε > 0 and bounded function h : Rdx 7→ R,

P
[∣∣ϕN

0 (h)− ϕy
0 (h)

∣∣ ≥ ε
]
≤ c1,n exp(−c2,nNε2/|h|2∞)

where |h|∞ := supx∈Rdx |h(x)|.
We also furnish our estimator with an explicit non-asymptotic bound on its bias. Define
ΦN

0 = E
[
ϕN

0 ] where ϕN
0 = N−1∑N

i=1 δξi
0

is the particle approximation produced by Algorithm 4
and the expectation is with respect to the law of (ξ1:N

0 , . . . , ξ1:N
n , A1:N

0 , . . . , A1:N
n−1). Define for all

t ∈ [1 : n],
ϕ⋆

t (xt) ∝ pt(xt)
∫

δy(dx0)p0|t(x0|xt)dx0 ,

where p0|t(x0|xt) :=
∫ {∏t−1

s=0 ps(xs|xs+1)
}

dx1:t−1.

Proposition 6.2.2. It holds that

KL(ϕy
0 ∥ ΦN

0 ) ≤ Cy
0:n

N − 1 + Dy
0:n

N2 , (6.2.9)
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where Dy
0:n > 0,

Cy
0:n :=

n∑
t=1

∫ Zt/Z0
gy

t (zt)

{∫
δy(dx0)p0|t(x0|zt)dx0

}
ϕ⋆

t (dzt) , (6.2.10)

and Zt :=
∫

gy
t (xt)pt(dxt) for all t ∈ [1 : n] and Z0 :=

∫
δy(dx0)p0(x0)dx0. If furthermore

(A11) holds then both Cy
0:n and Dy

0:n are finite.
The proof of Proposition 6.2.2 is postponed to Section D.2.1. (A11) is an assumption on the
equivalent of the weights {ω̃t}nt=0 with a general sequence of potentials {gy

t }nt=1 and is not restric-
tive as it can be satisfied by setting for example gy

s (xs) = qs|0(xs|y)+δ where δ > 0. The resulting
algorithm is then only a slight modification of the one described above, see Section D.2.1 for
more details. It is also worth noting that Proposition 6.2.2 combined with Pinsker’s inequality
implies that the bias of MCGdiff goes to 0 with the number of particle samples N for fixed n. We
have chosen to present a bound in Kullback–Leibler (KL) divergence, inspired by Andrieu et al.
(2018b); Huggins and Roy (2019), as it allows an explicit dependence on the modeling choice
{gy

s}ns=1, see Lemma D.2.2. Finally, unlike the theoretical guarantees established for SMCdiff in
Trippe et al. (2023), proving the asymptotic exactness of our methodology w.r.t. to the gener-
ative model posterior does not require having ps+1(xs+1)ps(xs|xs+1) = ps(xs)qs+1(xs+1|xs) for
all s ∈ [0 : n − 1], i.e. that the one step forward kernel is the time reversal of the backward
one, which does not in hold in practice. As such, SMCdiff exhibits a non-vanishing asymptotic
bias.

6.2.2 Noisy case

We now turn to the case σy > 0. The posterior density we consider in this section is given
by

ϕy
0(x0) ∝ gy

0(x0)p0(x0), where gy
0 : x0 7→ N (y; x0, σ2

yIdy ) . (6.2.11)
In what follows we assume that there exists a timestep τ ∈ [1 : n] such that σ2 = (1− ᾱτ )

/
ᾱτ .

We discuss this assumption in the numerical section. In what follows we denote ỹτ = ᾱ
1/2
τ y.

We can then write that
gy

0(x0) = ᾱ1/2
τ · N (ỹτ ; ᾱ1/2

τ x0, (1− ᾱτ ) · Idy )
= ᾱ1/2

τ · qτ |0(ỹτ |x0) ,
(6.2.12)

which hints that the likelihood function gy
0 is closely related to the forward process (6.1.1). We

may then write the posterior (6.2.11) as follows

ϕy
0(x0) ∝

∫
δỹτ (dxs)qτ |0(xτ |x0)p0(x0)

∝
∫

δỹτ (dxτ )qτ |0(xτ |x0)p0(x0)dxτ ,

Next, let us assume that the forward process (6.1.1) is the reverse of the backward one (6.1.8),
i.e. that

pt(xt)qt+1(xt+1|xt) = pt+1(xt+1)pt(xt|xt+1) , ∀t ∈ [0 : n− 1] . (6.2.13)
This is similar to the assumption made in SMCdiff Trippe et al. (2023). Then, it is easily seen
that it implies p0(x0)qτ |0(xτ |x0) = pτ (xτ )p0|τ (x0|xτ ) and thus

ϕy
0(x0) =

∫
p0|τ (x0|xτ )δỹτ (dxτ )pτ (xτ )dxτ∫

δỹτ (dzτ )pτ (zτ )dzτ

=
∫

p0|τ (x0|ỹτ
⌢xτ )ϕỹτ

τ (dxτ ) ,

(6.2.14)
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where ϕỹτ
τ (xτ ) ∝ pτ (ỹτ

⌢xτ ). (6.2.14) highlights that solving the inverse problem (6.2.1) with
σy > 0 is equivalent to solving an inverse problem on the intermediate state Xτ ∼ pτ with
noiseless observation ỹτ of the dy top coordinates and then propagating the resulting posterior
back to time 0 with the backward kernel p0|τ . To obtain a particle approximation of ϕỹτ

τ we may
then use the methodology of the previous section with the potentials gy

t : xt 7→ qt|τ (xt|ỹτ ) for t ∈
[τ+1 : n]. Indeed, consider the sequence {ρỹτ

t }nt=τ defined by ρỹτ
t (xt) =

∫
ϕỹτ

τ (dxτ )qt|τ (xt|ỹτ
⌢xτ ).

Using that pτ (xτ ) =
∫

p0(dx0) qτ |0(xτ |x0) by assumption and the identity (6.1.5), we find
that

ρỹτ
t (xt) ∝

∫
p0(dx0)qτ |0(ỹτ |x0)qt|τ (xt|ỹτ )q

t|0(xt|x0)

∝
∫

p0(dx0)qτ |0(ỹτ |x0)qt|τ (xt|ỹτ )qt+1|τ (dxt+1|ỹτ )qσ
t|t+1,0(xt|xt+1, x0)q

t+1|0(dxt+1|x0) ,

and replacing x0 in the bridge kernel qσ
t|t+1,0 by χ0|s+1(xs+1), we obtain the recursion

ρỹτ
t (xt) ≈

∫
qt|τ (xt|ỹτ )p

t
(xt|xt+1)ρỹτ

t+1(dxt+1) , (6.2.15)

which provides the intuition for our choice of potential.
The assumption (6.2.13) regarding the reversal of the backward process holds only approxi-
mately in realistic settings. Therefore, while (6.2.14) also holds only approximately in practice,
we can still use it as inspiration for designing potentials when the assumption is not valid.
Consider then {gy

t }nt=τ and sequence of probability measures {ϕy
t }nt=τ defined for all t ∈ [τ : n]

as

ϕy
t (xt) ∝ gy

t (xt)pt(xt) , where gy
t : xt 7→ N

(
xt; ỹτ ,

(
1− (1− κ)ᾱt/ᾱτ

)
Idy

)
, κ ≥ 0 .

(6.2.16)
In the particular case of κ = 0, we have that gy

t (xt) = qt|τ (xt|ỹτ ) for t ∈ [τ +1 : n] and ϕy
τ = ϕỹτ

τ .
The recursion (6.2.5) holds for t ∈ [τ : n] and assuming that κ > 0, we find that

ϕy
0(x0) ∝

∫
gy

0(x0)
gy

τ (xτ )p0|τ (x0|xτ )ϕy
τ (dxτ ) ,

which resembles the recursion (6.2.14). In practice we take κ to be small in order to mimick the
Dirac delta mass at xτ in (6.2.14). Having obtained a particle approximation ϕN

τ = N−1∑N
i=1 δξi

τ

of ϕy
τ by adapting Algorithm 4, we estimate ϕy

0 with

ϕN
0 =

N∑
i=1

ωi
0δξi

0
, where ξi

0 ∼ p0|τ (·|ξi
τ ) , ωi

0 =
gy

0(ξi
0)
/
gy

τ (ξi
τ )∑N

j=1 gy
0(ξj

0)
/
gy

τ (ξj
τ )

.

In the next section we extend this methodology to general linear Gaussian observation models.
Finally, note that (6.2.14) allows us to extend SMCdiff to handle noisy inverse problems in a
principled manner. This is detailed in Section D.1.

6.2.3 Extension to general linear inverse problems

We now extend MCGdiff to a general linear Gaussian observation model. Consider Y = AX+σyε
where A ∈ Rdy×dx , ε ∼ N (0dy , Idy ) and σy ≥ 0 and the singular value decomposition (SVD)
A = USVT , where V ∈ Rdx×dy , U ∈ Rdy×dy are two orthonormal matrices, and S ∈ Rdy×dy is
diagonal. For simplicity, it is assumed that the singular values are all distinct s1 > s2 > · · · >
sdy > 0. Set b = dx − dy. Let V ∈ Rdx×b be an orthonormal matrix of which the columns
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complete those of V into an orthonormal basis of Rdx , i.e. VT V = Ib and VT V = 0b,dy . We
define V = [V, V] ∈ Rdx×dx . In what follows, for a given x ∈ Rdx we write x ∈ Rdy for its top dy
coordinates and x ∈ Rb for the remaining coordinates. Multiplying the measurement equation
by S−1UT yields

Y = X + σyS−1ε̃ , ε̃ ∼ N (0, Idy) ,

where X := VT X and Y := S−1UT Y . In this section, we focus on solving this linear inverse
problem in the orthonormal basis defined by V using the methodology developed in the previous
sections. This prompts us to define the diffusion based generative model in this basis. As V is
an orthonormal matrix, the law of X0 = VT X0 is p0(x0) := p0(Vx0). By definition of p0 and
the fact that ∥Vx∥2 = ∥x∥2 for all x ∈ Rdx we have that

p0(x0) =
∫

p0(Vx0|x1)
{

n−1∏
s=1

ps(dxs|xs+1)
}

pn(dxn)

=
∫

λ0(x0|x1)
{

n−1∏
s=1

λs(dxs|xs+1)
}
pn(dxn)

where for all s ∈ [0 : n− 1],

λs(xs|xs+1) := N (xs;ms+1(xs+1), σ2
t+1Idx) , where ms+1(xs+1) := VT ms+1(Vxs+1) .

The transition kernels {λs}ns=0 thus define a diffusion based model in the basis V. In the
following we shall write ms+1(xs+1) for the first dy coordinates of ms+1(xs+1) and ms+1(xs+1)
the last b coordinates. We denote by ps the time s marginal of the backward process,

Noiseless. In this case the target posterior is ϕy
0 (x0) ∝ p0(y⌢x0). The extension of the

algorithm described in section 6.2.1 is thus straighforward; it is enough to replace y with y
(=S−1UT y) and the backward kernels {pt}

n−1
t=0 with {λt}

n−1
t=0 .

Noisy. The posterior density is then

ϕy
0 (x0) ∝ gy

0 (x0)p0(x0), where gy
0 (x0) =

dy∏
i=1
N (y[i]; x0[i], (σy/si)2) .

We now generalize Section 6.2.2. Assume that there exists {τi}
dy
i=1 ⊂ [1 : n] such that ᾱτiσ

2
y =

(1− ᾱτi)s2
i . Define for all i ∈ [1 : dy], ỹi := ᾱ

1/2
τi y[i]. Then we can write the potential gy

0 as the
product of forward processes from time 0 to each time step τi, i.e.

gy
0 (x0) =

dy∏
i=1

ᾱ1/2
τi
N (ỹi; ᾱ1/2

τi
x0[i], (1− ᾱτi)) .

Writing the potential this way allows us to generalize (6.2.14) as follows. Denote for ℓ ∈ [1 : dx],
x\ℓ ∈ Rdx−1 the vector x with its ℓ-th coordinate removed. Define

ϕỹ
τ1:n(dxτ1:n) ∝


dy−1∏
i=1

λτi|τi+1
(xτi |xτi+1)δỹi(dxτi [i])dx\iτi

 pτdy (xτdy )δỹdy (dxτdy [dy])dx\dy
τdy

,

which corresponds to the posterior of a noiseless inverse problem on the joint states Xτ1:n ∼ pτ1:n
with noiseless observations ỹτi of Xτi [i] for all i ∈ [1 : dy].
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Proposition 6.2.3. Assume that ps+1(xs+1)λs(xs|xs+1) = ps(xs)qs+1(xs+1|xs) for all s ∈ [0 :
n− 1]. Then it holds that

ϕy
0 (x0) ∝

∫
λ0|τ1

(x0|xτ1)ϕỹ
τ1:n(dxτ1:n) .

The proof of Proposition 6.2.3 can be found in Section D.2.2. We have thus shown that sampling
from the posterior ϕy

0 is equivalent to sampling from the posterior ϕỹ
τ1:n then propagating the

final state Xτ1 up to time 0 according to the backward kernel λ0|τ1
. Furthermore, we can extend

the approximate recursion (6.2.15). For all t ∈ [τ1 : n] define ρỹ
t (dxt) :=

∫
ϕỹ

τ1:n(dxτ1:n), and
for all s ∈ [0 : n − 1], zs ∈ R and ℓ ∈ [1 : dy], let λℓ

s(zs|xs+1) := N (zs;ms+1(xs+1)[ℓ], σ2
t+1).

By adapting the derivations of the previous section and using Lemma D.2.4, we find that the
following approximate recursion is satisfied; for all k ∈ [1 : dy] and t ∈ [τk + 1, τk+1 − 1],

ρỹ
t (xt) ≈

∫
λt(xt|xt+1)

dy∏
ℓ=τ(t)+1

λℓ
t(xt[ℓ]|xt+1)

τ(t)∏
j=1

qj
t|τj

(xt[j]|ỹj)ρỹ
t+1(dxt+1) , (6.2.17)

where for all t ∈ [τ1 : n], τ(t) := max{k ∈ [1 : dy] : τk ≤ t} and for all j ∈ [1 : dy], and
t, s ∈ [1 : n] such that t > s, qj

t|s denotes the density of the j-th coordinate of the forward
process from s to t. If t = τk, then

ρỹ
t (dxt) ≈

∫
λt(dxt|xt+1)δỹk

(dxt[k])
dy∏

ℓ=τ(t)+1
λℓ

t(dxt[ℓ]|xt+1)
τ(t)−1∏

j=1
qj

t|τj
(dxt[j]|ỹj)ρỹ

t+1(dxt+1) .

We target the posterior ϕy
0 by mimicking this recursion. Consider then {gy

t }nt=τ and sequence
of probability measures {ϕy

t }nt=τ defined for all t ∈ [τ1 : n] by ϕy
t (xt) ∝ gy

t (xt)pt(xt) and

gy
t : xt 7→

τ(t)∏
i=1
N (xt; ỹi, 1− (1− κ)ᾱt/ᾱτi) , κ > 0 . (6.2.18)

We obtain a particle approximation of ϕy
τ1 using a particle filter with proposal kernel and weight

function
λy

t (xt|xt+1) ∝ gy
t (xt)pt(xt|xt+1) , ω̃t(xt+1) =

∫
gy

t (xt)pt(dxt|xt+1)
gy

t+1(xt+1) ,

which are both available in closed form. Indeed, using standard Gaussian conjugation formulas,
we find that

λy
t (xt|xt+1) = λt(xt|xt+1)

dy∏
k=τ(t)+1

λk
t (xt[k]|xt+1)

τ(t)∏
ℓ=1

λy,ℓ
t (xt[ℓ]|xt+1) , (6.2.19)

where, by letting σ2
t|τℓ

:= 1− (1− κ)ᾱt
/
ᾱτℓ

and Kt|τℓ
= σ2

t+1/(σ2
t+1 + σ2

t|τℓ
),

λy,ℓ
t (xt[ℓ]|xt+1) = N (xt[ℓ]; Kt|τℓ

ỹℓ + (1− Kt|τℓ
)mt+1(xt+1)[ℓ], Kt|τℓ

σ2
t|τℓ

) , (6.2.20)

and

ω̃t(xt+1) =
τ(t)∏
ℓ=1

N (ỹℓ;mt+1(xt+1)[ℓ], σ2
t+1 + σ2

t|τℓ
)

N (xt+1[ℓ]; ỹℓ, σ2
t|τℓ

) . (6.2.21)

Thus, applying Algorithm 4 with the transition kernels {λt}
n−1
t=τ1

and weight function {ω̃t}n−1
t=τ1

yields the particle approximation ϕN
τ1 = N−1∑N

i=1 δξi
τ1

and that of ϕy
0 is given by

ϕN
0 =

N∑
i=1

ωi
0δξi

0
, where ξi

0 ∼ λ0|τ (·|ξi
τ1) , ωi

0 =
gy

0(ξi
0)
/
gy

τ1(ξi
τ1)∑N

j=1 gy
0(ξj

0)
/
gy

τ1(ξj
τ1)

.
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6.3 Numerical experiments

Gaussian Mixture Model.

MCGdiff DDRM DPS MCGdiff DDRM DPS

x2

x1 x1

Figure 6.1: We display the first two dimensions of the GMM inverse problem for one of the
measurement models tested. The blue dots represent samples from the exact posterior, while
the red dots correspond to samples generated by each of the algorithms used (the names of
the algorithms are given at the top of each column). The first three columns correspond to
(dx, dy) = (80, 1) and the last three to (dx, dy) = (800, 1). 20 steps of DDIM were used.

d dy MCGdiff DDRM DPS
8 1 2.6 ± 0.8 6.9 ± 3.4 6.7 ± 1.1
8 2 1.0 ± 0.4 4.6 ± 0.9 5.4 ± 1.3
8 4 0.5 ± 0.2 1.8 ± 0.8 4.3 ± 1.1
80 1 2.2 ± 0.6 7.7 ± 1.1 6.1 ± 1.2
80 2 0.9 ± 0.4 9.9 ± 1.3 7.4 ± 1.4
80 4 0.4 ± 0.1 7.8 ± 1.1 4.4 ± 1.1
800 1 2.3 ± 0.8 7.7 ± 0.8 6.5 ± 0.8
800 2 1.8 ± 0.8 8.6 ± 0.8 6.5 ± 1.1
800 4 0.7 ± 0.5 9.5 ± 0.9 5.5 ± 0.9

d dy MCGdiff DDRM DPS
8 1 1.8 ± 0.6 4.5 ± 1.5 3.3 ± 0.8
8 2 1.1 ± 0.5 4.5 ± 1.3 3.2 ± 1.1
8 4 0.2 ± 0.0 1.2 ± 0.6 0.9 ± 0.5
80 1 1.3 ± 0.3 6.4 ± 1.2 3.1 ± 1.4
80 2 1.1 ± 0.7 9.2 ± 1.1 2.8 ± 1.2
80 4 0.3 ± 0.0 7.1 ± 1.0 1.4 ± 0.6
800 1 2.6 ± 0.9 7.2 ± 1.4 2.7 ± 1.0
800 2 1.3 ± 0.8 8.6 ± 1.0 1.8 ± 0.9
800 4 0.3 ± 0.0 8.3 ± 1.0 0.4 ± 0.2

Table 6.1: Sliced Wasserstein for the GMM case. Table on the left correspond to 20 steps of
DDIM with η = 0.6 and on the right to 100 steps and η = 0.85.

We present an example where the data distribution qdata is a mixture of 25 Gaussian distribu-
tions. The means and variances of the components of the mixture are given in Section D.2.3.
In this case, for each choice of forward operator A and measurement noise standard deviation
σy > 0, the target posterior distribution ϕy

0 can be computed explicitly, see Section D.2.3. More-
over, it is possible to explicitly minimize each term occurring in the denoising problem (6.1.9), so
that the choice of the weighting scheme {σt, t ∈ N} is irrelevant. To investigate the performance
of posterior sampling methods, for each pair of dimensions (dx, dy) ∈ {8, 80, 800} × {1, 2, 4} we
randomly generate multiple measurement models (y, A, σy) ∈ Rdy ×Rdy×dx × [0, 1], and we also
randomly choose the weight associated with each component of the Gaussian mixture. Details
(distribution of A, σy, etc...) are given in Section D.2.3. This example is particularly interesting
because it allows us to study the behaviour of our method on difficult and ill-posed problems in
high dimensions while having access to the exact posterior with which to compare – obtaining a
"ground truth" for the posterior is not feasible for most problems. By varying the dimension, the
forward operator, the noise level, and the mixture weight, we gain insight into the performance
of posterior sampling methods under varying conditions and with different levels of posterior
multimodality.
To compare the posterior distribution estimated by each algorithm with the exact target pos-
terior distribution, we use the sliced Wasserstein (SW) distance defined in Section D.2.3. We

121



Original MCGdiff MCGdiff MCGdiff MCGdiff DPS DDRM SMCdiff

Figure 6.2: Inpainting with different masks on the CelebA test set.

use 104 slices for the SW distance and compare 1000 samples of MCGdiff, DPS, and DDRM with
1000 samples of the true posterior distribution obtained using 20 DDIM steps and 100 DDIM
steps for generation. The variance reduction DDIM parameter η is set to 0.6 and 0.85 for the
20 and 100 DDIM steps, respectively. When choosing the timesteps of DDIM we want to emu-
late the constraint σ2

yατi = (1 − ατi)s2
i . Therefore, we include the timesteps t that minimizes

|σ2
yαt − (1− αt)s2

i | for each i ∈ [1 : dy]. More details are given in Section D.2.3.
Table 6.1 indicates the CLT 95% confidence intervals obtained by considering 20 randomly
selected measurement models (y, A, σy) for each setting (dx, dy). Figure 6.1 shows the first two
dimensions of the estimated posterior distributions corresponding to the configurations (80, 1)
and (800, 1) from Table 6.1 for one of the randomly generated measurement model (y, A, σy)
in the case of 20 DDIM steps. Illustration of other settings are given in Section D.2.3. These
illustrations give us insight into the behaviour of the algorithms and their ability to accurately
estimate the posterior distribution. We see that MCGdiff is more precise at estimating the
posterior distribution and does not sample outside of the support of the posterior distribution
in all scenarios tested. Table 6.1 also shows that the difference in performance is greater in the
more extreme settings where the problem is ill-posed (dy = 1, 2) and the number of DDIM steps
is limited (20).

Inpainting.

We consider the inpainting problem on the CelebA dataset. The images dimension are 3×256×
256 and we use pretrained denoising network available at https://github.com/bahjat-kawar/
ddrm for all the methods. All methods share the same DDIM parameters, with 250 sample steps
between [0 : 1000] and η = 1. For MCGdiff and SMCdiff , a total of N = 384 particles is
used. For DPS we set the learning rate parameter to ζi = 0.5 and for DDRM we consider the
configuration proposed on Kawar et al. (2022). We also use several different masks on images
from the CelebA test set in fig. 6.2. The first row corresponds to samples from the most ill-posed
problem.
Next, we compare MCGdiff to DPS and DDRM on several different noisy inverse problems over
several different image datasets (section 6.3). For each algorithm, we generate 1000 samples
and we show the pair of samples that are the furthest appart in L2 norm from each other in the
pool of samples. For MCGdiff we ran several parallel particle filters with N = 64 to generate
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1000 samples.

CIFAR-10 Flowers Cats Bedroom Church CelebaHQ
(W, H, C) (32, 32, 3) (64, 64, 3) (128, 128, 3) (256, 256, 3) (256, 256, 3) (256, 256, 3)

Table 6.2: The datasets used for the inverse problems over image datasets.

Super Resolution.

We compare for the super resolution problem. We set σy = 0.05 for all the datasets and
ζcoeff = 0.1 for DPS . We use 100 steps of DDIM with η = 1. The results are shown in Figure 6.3.
We use a downsampling ratio of 4 for the CIFAR-10 dataset, 8 for both Flowers and Cats
datasets and 16 for the others.

Gaussian 2D debluring.

We consider a Gaussian 2D square kernel with sizes (w/6, h/6) and standard deviation w/30
where (w, h) are the width and height of the image. We set σy = 0.1 for all the datasets
and ζcoeff = 0.1 for DPS . We use 100 steps of DDIM with η = 1. The results are shown in
Figure 6.4.

6.4 Conclusion
In this chapter, we have introduced MCGdiff a novel method for solving Bayesian linear Gaus-
sian inverse problems with a denoising diffusion based generative model prior. We have shown
that MCGdiff is theoretically grounded and provided numerical experiments that reflect the
adequacy of MCGdiff in a Bayesian framework, as opposed to recent works. This difference is
of the uttermost importance when the relevance of the generated samples is hard to verify, as in
safety critical applications. MCGdiff is a first step towards robust approaches for addressing the
challenges of Bayesian linear inverse problems with denoising diffusion based generative model
priors.
Finally, our work can be of course improved by considering better choices of potentials {gy

s}ns=1
and proposals. While the backward process involving the approximate conditional score (1.3.31)
could be a good proposal, it nonetheless involves taking the gradient of the score network with
respect to its input which is prohibitive computationally and limits the number of particles N
that can be used. We thus believe that deriving more computationally efficient approximations
of the conditional score is the main area of improvement.
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Figure 6.3: Ratio 4 for CIFAR, 8 for flowers and Cats and 16 for CELEB
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Figure 6.4
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Appendix A

Appendix of Chapter 2

A.1 Proofs

A.1.1 Additional notation

By abuse of notation, we denote by ρ and π̃ the probability measures with density w.r.t. the
Lebesgue measure ρ and π̃ respectively.

A.1.2 Proof of (2.2.3)

The second expression of wk follows from JT−j (Tk(x)) = JTk−j (x)/JTk(x) which implies

wk(x) = ϖkρ(Tk(x))/
∑

j∈Z
ϖjρ(Tk−j(x))JT−j (Tk(x)) ,

= ϖkρ(Tk(x))JTk(x)/
∑

j∈Z
ϖjρ(Tk−j(x))JTk−j (x) = ϖkρ−k(x)

/∑
i∈Z

ϖk+iρi(x) .

A.1.3 Proof of Theorem 2.2.1

The unbiasedness of Ẑϖ
X1:N follows directly from (2.2.2). Moreover, as Ẑϖ

X1:N is unbiased and
Eϖ

T <∞, we can write

Varρ[Ẑϖ
X /Z] = Eρ[(Ẑϖ

X /Z)2]− 1 = Eϖ
T − 1 . (A.1.1)

As X1:N iid∼ ρ, Varρ[Ẑϖ
X1:N /Z] = N−1 Varρ[Ẑϖ

X /Z]. Finally, if Mϖ
T < ∞, then Hoeffding’s

inequality applies and we can write for any ϵ > 0,

P(|Ẑϖ
X1:N /Z − 1| > ϵ) ≤ 2 exp(−2Nϵ2/(Mϖ

T )2) . (A.1.2)

Writing δ = 2 exp(−2Nϵ2/(Mϖ
T )2), we identify log(2/δ) = 2Nϵ2/(Mϖ

T )2 and ϵ = Mϖ
T
√

log(2/δ)/(2N).
Plugging this expression of ϵ in (A.1.2) concludes the proof.

A.1.4 Proof of Theorem 2.2.2

We first present two auxiliary lemmas necessary to establish Theorem 2.2.2.
Lemma A.1.1. Let A, B be two integrable random variables satisfying |A/B| ≤ M almost
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surely and denote a = E[A], b = E[B]. Then,

|E[A/B]− a/b| ≤
√

Var(A/B) Var(B)
b

, (A.1.3)

Var(A/B) ≤ E
[
|A/B − a/b|2

]
≤ 2

B2

(
E
[
|AN −A|2

]
+ M2E

[
|BN −B|2

])
. (A.1.4)

Proof. Write first, using the Cauchy-Schwarz inequality,∣∣∣∣E [A

B

]
− a

b

∣∣∣∣ =
∣∣∣∣E [A

B

]
− E [A]

b

∣∣∣∣ =
∣∣∣∣E [A( 1

B
− 1

b

)]∣∣∣∣ ,

=
∣∣∣∣E [A

B

(
b−B

b

)]∣∣∣∣ =
∣∣∣∣E [(A

B
− E

[
A

B

])(
B − b

b

)]∣∣∣∣ ,

≤
√

Var(A/B)
√

Var(B)
b

.

Moreover, using |A/B| ≤M yields∣∣∣∣AB − a

b

∣∣∣∣ =
∣∣∣∣1b (A− a) + A

( 1
B
− 1

b

)∣∣∣∣ ≤ 1
b
|A− a|+ |A|

Bb
|B − b| ,

≤ 1
b
|A− a|+ M

b
|B − b| .

Therefore,
|A/B − a/b|2 ≤ 2

b2

(
|A− a|2 + M2|B − b|2

)
,

Using that E
[
|A/B − a/b|2

]
= Var(A/B) + |E[A/B]− a/b|2 concludes the proof.

We get the following lemma from (Douc et al., 2011b, Lemma 4).
Lemma A.1.2. Assume that A and B are random variables and that there exist positive con-
stants b, M, C, K such that

(i) |A/B| ≤M , P-a.s. ,
(ii) for all ϵ > 0 and all N ≥ 1, P (|B − b| > ϵ) ≤ K exp(−Rϵ2) ,

(iii) for all ϵ > 0 and all N ≥ 1, P (|A| > ϵ) ≤ K exp
(
−Rϵ2/M2) ,

then,
P(|A/B| ≥ ϵ) ≤ 2K exp(−Rb2ϵ2/4M2) .

Proof. By the triangle inequality,

|A/B| =
∣∣∣∣AB (b−B)b−1 + b−1A

∣∣∣∣ ,

≤ b−1 |A/B| |b−B|+ b−1 |A| ≤Mb−1 |b−B|+ b−1 |A| .

Therefore,

{|A/B| ≥ ϵ} ⊆
{
|B − b| ≥ ϵb

2M

}
∪
{
|A| ≥ ϵb

2

}
.

Then, conditions (ii) and (iii) imply that

P (|A/B| ≥ ϵ) ≤ P
(
|B − b| ≥ ϵb

2M

)
+ P

(
|A| ≥ ϵb

2

)
,

≤ 2K exp(−Rb2ϵ2/(4M2)) .
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Proof of Theorem 2.2.2. Let g : Rd → R such that supx∈Rd |g| (x) ≤ 1 and denote π(g) =
∫

gdπ.
We use Lemma A.1.1 with A = AN and B = Ẑϖ

X1:N where

AN = 1
N

N∑
i=1

∑
k∈Z

wk(Xi)L(Tk(Xi))g(Tk(Xi)) , Ẑϖ
X1:N = 1

N

N∑
i=1

∑
k∈Z

wk(Xi)L(Tk(Xi)) . (A.1.5)

By construction, since supx∈Rd |g| (x) ≤ 1, almost surely AN /Ẑϖ
X1:N ≤ 1 and Var(Ẑϖ

X1:N ) =
N−1Var(Ẑϖ

X1). Then, using (2.2.2) with a = E[AN ] = Zπ(g) and b = E[Ẑϖ
X1:N ] = Z,

Lemma A.1.1 implies∣∣∣JNEO
ϖ,N (g)− π(g)

∣∣∣ =
∣∣∣E[AN /Ẑϖ

X1:N ]− a/b
∣∣∣ ≤ N−1/2

√
Var(AN /Ẑϖ

X1:N )Var(Ẑϖ
X1) . (A.1.6)

On the other hand,

E
[
|AN − a|2

]
= N−1EX∼ρ

[{∑
k∈Z wk(X)L(Tk(X))g(Tk(X))−Zπ(g)

}2] ≤ N−1Z2Eϖ
T .

These inequalities yield using Var(Ẑϖ
X1) ≤ Eϖ

T and Lemma A.1.1 again:

E
[
|JNEO

ϖ,N (g)− π(g)|2
]
≤ 2

N
(Eϖ

T + Var(Ẑϖ
X1)) ≤ 4

N
Eϖ

T ,

|E
[
JNEO

ϖ,N (g)− π(g)
]
| ≤

√
2(Eϖ

T + Var(Ẑϖ
X1))Var(Ẑϖ

X1)
N

≤ 2Eϖ
T

N
,

which concludes the proof.
Define

ÃN = N−1
N∑

i=1

∑
k∈Z

wk(Xi)L(Tk(Xi))
(
g(Tk(Xi))− π(g)

)
.

With this notation, the proof of (2.2.9) relies on the application of Lemma A.1.2 to A = ÃN

and B = Ẑϖ
X1:N , since

JNEO
ϖ,N (g)− π(g) = AN /Ẑϖ

X1:N .

As supx∈Rd |g| (x) ≤ 1, we get that ÃN /Ẑϖ
X1:N ≤ 2. By (2.2.2), E[Ẑϖ

X1:N ] = Z and Ẑϖ
X1:N =

N−1∑N
i=1 Wi with Wi = ∑

k∈Z wk(Xi)L(Tk(Xi)) ≤ Mϖ
T . Then, by Hoeffding’s inequality, for

all ε > 0,
P(|BN −Z| > ε) ≤ 2 exp(−2N(ε/Mϖ

T )2) .

Similarly, AN is centered and AN = N−1∑N
i=1 Ui with

Ui =
∑
k∈Z

wk(Xi)L(Tk(Xi)){g(Tk(Xi))− π(g)}

and |Ui| ≤ 2Mϖ
T almost surely. By Hoeffding’s inequality, for all ε > 0,

P(|AN | > ϵ) ≤ 2 exp(−Nε2/(8(Mϖ
T )2)) .

The assumptions of Lemma A.1.2 are met so that

P(|JNEO
ϖ,N (g)− π(g)| > ε) ≤ 4 exp(−ε2NZ2/[32(Mϖ

T )2]) ,

which concludes the proof.
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A.1.5 Proof of Lemma 2.2.3

As wk(x) = ϖkρ(Tk(x))/{ΩρT(Tk(x))}, by Jensen’s inequality,

Eϖ
T =

∫ ∑
k∈Z

wk(x)L(Tk(x))/Z

2

ρ(x)dx =
∫ ∑

k∈Z

ϖk

Ω
π(Tk(x))
ρT(Tk(x))

2

ρ(x)dx ,

≤
∫ ∑

k∈Z

ϖk

Ω

(
π(Tk(x))
ρT(Tk(x))

)2

ρ(x)dx ,

≤ Ω−1 ∑
k∈Z

ϖk

∫ (
π(Tk(x))
ρT(Tk(x))

)2

ρ(x)dx .

Using the change of variables y = Tk(x) yields, by (2.2.1),

Eϖ
T ≤ Ω−1 ∑

k∈Z
ϖk

∫ (
π(y)
ρT(y)

)2
ρ(T−k(y))JT−k(y)dy ≤

∫ (
π(y)
ρT(y)

)2
ρT(y)dy .

A.1.6 Proofs of NEO MCMC sampler

Proof of Theorem 2.3.1. Note first that by symmetry, we have

P (y, A) = N−1
∫ N∑

i=1
δy(dxi)

N∏
j=1,j ̸=i

ρ(xj)dxj
N∑

k=1

Ẑϖ
xk∑N

j=1 Ẑϖ
xj

1A(xk) . (A.1.7)

We begin with the proof of reversibility of P w.r.t. π̃. Let f, g be nonnegative measurable
functions. By definition of P ,∫

π̃(dy)P (y, dy′)f(y)g(y′) = 1
NZ

∫ N∑
i=1

ρ(dy)Ẑϖ
y f(y)δy(dxi)

N∏
l=1,l ̸=i

ρ(dxl)
N∑

k=1

Ẑϖ
xk∑N

j=1 Ẑϖ
xj

g(xk) ,

= 1
NZ

∫ N∑
i=1
Ẑϖ

xi f(xi)
N∏

l=1
ρ(dxl)

N∑
k=1

Ẑϖ
xk∑N

j=1 Ẑϖ
xj

g(xk) ,

= 1
NZ

∫ N∏
l=1

ρ(dxl)
∑N

i=1 Ẑϖ
xi f(xi)∑N

k=1 Ẑϖ
xkg(xk)∑N

j=1 Ẑϖ
xj

,

=
∫

π̃(dy)P (y, dy′)f(y′)g(y) ,

which shows that P is π̃-reversible. We now establish that P is π̃-irreducible. We have for
y ∈ Rd, A ∈ B(Rd),

P (y, A) =
∫

δy(dx1)
N∑

i=1

Ẑϖ
xi

N Ẑϖ
x1:N

1A(xi)
N∏

j=2
ρ(dxj)

=
∫ Ẑϖ

y

Ẑϖ
y +∑N

j=2 Ẑϖ
xj

1A(x)
N∏

j=2
ρ(dxj) +

∫ N∑
i=2

Ẑϖ
xi

Ẑϖ
y +∑N

j=2 Ẑϖ
xj

1A(xi)
N∏

j=2
ρ(dxj)

≥
N∑

i=2

∫ Ẑϖ
xi

Ẑϖ
y + Ẑϖ

xi +∑N
j=2,j ̸=i Ẑϖ

xj

1A(xi)
N∏

j=2
ρ(dxj)

≥
N∑

i=2

∫
π̃(dxi)1A(xi)

∫ Z
Ẑϖ

y + Ẑϖ
xi +∑N

j=2,j ̸=i Ẑϖ
xj

N∏
j=2,j ̸=i

ρ(dxj) .
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Since the function f : z 7→ (z + a)−1 is convex on R+ for a > 0, we get for i ∈ {2, . . . , N},

∫ Z
Ẑϖ

y + Ẑϖ
xi +∑N

j=2,j ̸=i Ẑϖ
xj

N∏
j=2,j ̸=i

ρ(dxj) ≥ Z
Ẑϖ

y + Ẑϖ
xi +

∫ ∑N
j=2,j ̸=i Ẑϖ

xj

∏N
j=2,j ̸=i ρ(dxj)

≥ Z
Ẑϖ

y + Ẑϖ
xi + Z(N − 2)

. (A.1.8)

Therefore, for A ∈ B(Rd) satisfying π̃(A) > 0, we get P (y, A) > 0 for any y ∈ Rd since Ẑϖ
x <∞

for any x ∈ Rd. By definition, P is π̃-irreducible.
We show that P is Harris recurrent using (Tierney, 1994, Corollary 2). To this end, since P
is π̃-irreducible, it is sufficient to show that P is a Metropolis type kernel. Define α(x1, x2) =
(N − 1)

∫ ∏N
j=3 ρ(dxj)Ẑϖ

x2/
∑N

j=1 Ẑϖ
xj for x1, x2 ∈ Rd and ρ2:N (dx2:N ) = {∏N

j=2 ρ2:N (xj)}dx2:N .
Then, by (2.3.2), we get with this notation, for y ∈ Rd, A ∈ B(Rd),

P (y, A)

=
∫

δy(dx1)ρ2:N (dx2:N )
N∑

i=2

Ẑϖ
xi

N Ẑϖ
x1:N

1A(xi) +
∫

δy(dx1)ρ2:N (dx2:N )
Ẑϖ

x1

N Ẑϖ
x1:N

1A(x1)

=
N∑

i=2

∫
δy(dx1)ρ2:N (dx2:N )

Ẑϖ
xi

N Ẑϖ
x1:N

1A(xi) +
∫

δy(dx1)ρ2:N (dx2:N )
Ẑϖ

x1

N Ẑϖ
x1:N

1A(x1)

=
N∑

i=2

∫
δy(dx1)ρ(dxi)

∫ N∏
j=2,j ̸=i

ρ(xj)dxj Ẑϖ
xi1A(xi)
N Ẑϖ

x1:N

+
∫

δy(dx1)ρ2:N (dx2:N )
Ẑϖ

x11A(x1)
N Ẑϖ

x1:N

=
N∑

i=2

∫
α(y, xi)
(N − 1)1A(xi)ρ(dxi) +

∫
δy(dx1)ρ2:N (dx2:N )

{
1−

N∑
i=2

Ẑϖ
xi

N Ẑϖ
x1:N

}
1A(x1)

=
∫

A
α(y, y′)ρ(y′)dy′ +

(
1−

∫
α(y, y′)ρ(y′)dy′

)
δy(A) . (A.1.9)

With the terminology of (Tierney, 1994, Corollary 2), P is Metropolis type kernel and therefore
is Harris recurrent.
Note that Algorithm 2 defines a Markov chain {Yi, Ui}i∈N taking for U0 an arbitrary initial point
with Markov kernel denoted by P̃ . By abuse of notation, we denote by {Yi, Ui}i∈N the canonical
process on the canonical space (Rd × Rd)N endowed with the corresponding σ-field and denote
by Py,u the distribution associated with the Markov chain with kernel P̃ and initial distribution
δy ⊗ δu. Denote for any y ∈ Rd by Py the marginal distribution of Py,u with respect to {Yi}i∈N,
i.e. Py(A) = P(y,u)({Yi}i∈N ∈ A) for u ∈ Rd, noting that by definition, P(y,u)(A×(Rd)N) does not
depend on u. In addition, under Py, {Yi}i∈N is a Markov chain associated with P . Therefore,
since P is π̃-irreducible and Harris recurrent, we get by (Douc et al., 2018a, Theorem 11.3.1)
and (Tierney, 1994, Theorem 2, 3) for any y ∈ Rd, limk→∞ ∥δyP k − π̃∥TV = 0 and for any
bounded and measurable function g,

n−1
n∑

k=1
g(Yk) = π̃(g) , Py-almost surely . (A.1.10)

We now turn to proving the properties regarding Q. For any B ∈ B(Rd), using (2.2.2), we
obtain ∫

π̃(y)Q(y, B)dy = Z−1
∫

ρ(y)
∑
k∈Z

wk(y)L(Tk(y))1B(Tk(y))dy = π(B) .
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Using for all y ∈ Rd, limn→∞ ∥P n(y, ·) − π̃∥TV = 0, we get limn→∞ ∥P nQ(y, ·) − π∥TV = 0.
It remains to show the stated Law of Large Numbers. Let y, u ∈ Rd and g be a bounded
measurable function. Define for any i ∈ N∗, Ũi = g(Ui) − Qg(Yi). By definition, for any
i ∈ N∗,

∣∣∣Ũi

∣∣∣ ≤ 2 supx∈Rd |g(x)| and E(y,u)[Ũi|Fi−1] = 0, where {Fk}k∈N is the canonical filtration.
Therefore, {Ũi}i∈N∗ are {Fk}k∈N-martingale increments and {Sk = ∑k

i=1 Ũi}k∈N is a {Fk}k∈N-
martingale. Using (Hall and Heyde, 1980, Theorem 2.18), we get

lim
n→∞

{Sn/n} = 0 , P(y,u)-almost surely . (A.1.11)

The proof is completed using that limn→∞{n−1∑n
i=1 Qg(Yi)} = π̃(Qg) = π(g), Py-almost surely

by (A.1.10) and therefore by definition, P(y,u)-almost surely.

Proof of Theorem 2.3.3. We have for (x, A) ∈ Rd × B(Rd),

P (y, A) ≥
N∑

i=2

∫
π̃(dxi)1A(xi)

∫ Z
Ẑϖ

y + Ẑϖ
xi +∑N

j=2,j ̸=i Ẑϖ
xj

N∏
j=2,j ̸=i

ρ(dxj) .

Moreover, as for any x ∈ Rd, Ẑϖ
x /Z ≤Mϖ

T ,

∫ Z
Ẑϖ

y + Ẑϖ
xi +∑N

j=2,j ̸=i Ẑϖ
xj

N∏
j=2,j ̸=i

ρ(dxj) ≥ Z
Ẑϖ

y + Ẑϖ
xi + Z(N − 2)

≥ 1
2Mϖ

T + N − 2 .

We finally obtain the inequality

P (x, A) ≥ π̃(A)× N − 1
2Mϖ

T + N − 2 = ϵN π̃(A) . (A.1.12)

The proof for P is concluded from (Douc et al., 2018a, Theorem 18.2.4).
As ∥P k(y, ·)−π̃∥TV ≤ κk

N , for any bounded function f , ∥f∥∞ ≤ 1, we have |P kf(y)−π̃(f)| ≤ κk
N ,

by definition of the Total Variation Distance. Then, writing f = Qg for any bounded function
g, ∥g∥∞ ≤ 1, we have ∥f∥∞ ≤ 1 and

|P kf(y)− π̃(f)| = |P kQg(y)− π̃Q(g)| = |P kQg(y)− π(g)| ≤ κk
N . (A.1.13)

Write now P the Markov kernel extending to correlated proposals: for y ∈ Rd and A ∈
B(Rd),

P (y, A) = N−1
∫ N∑

i=1
δy(dxi)ri(xi, dx1:n\{i})

N∑
k=1

Ẑϖ
xk

N Ẑϖ
x1:N

1A(xk) , (A.1.14)

where the Markov kernels Ri are defined by Ri(xi, dx1:N\{i}) = ri(xi, x1:N\{i})dx1:N\{i} and ri

by (2.3.5).
Theorem A.1.3. P is π̃-invariant.

Proof. Define the Nd-dimensional probability measure ρ̄N (dx1:N ) = ρ(dx1)R1(x1, dx2:n). Let
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A ∈ B(Rd). Then, we have

π̃P (A) = N−1
∫

π̃(dy)
∫ N∑

i=1
δy(dxi)Ri(xi, dx1:n\{i})

N∑
k=1

Ẑϖ
xk

N Ẑϖ
x1:N

1A(xk)

= (NZ)−1
∫ N∑

i=1
ρ(dxi)Ẑϖ

xi Ri(xi, dx1:n\{i})
N∑

k=1

Ẑϖ
xk

N Ẑϖ
x1:N

1A(xk)

= (NZ)−1
∫

ρ̄N (dx1:N )
N∑

i=1
Ẑϖ

xi

N∑
k=1

Ẑϖ
xk

N Ẑϖ
x1:N

1A(xk)

= (NZ)−1
∫ N∑

k=1
Ẑϖ

xk ρ̄N (dx1:N )1A(xk)

= (NZ)−1
∫ N∑

k=1
Ẑϖ

xkρ(dxk)1A(xk) = π̃(A) .

A.2 Continuous-time limit of NEO and NEIS

A.2.1 Proof for the continuous-time limit

Consider h̄ > 0 and a family {Th : h ∈
(
0, h̄

]
} of C1-diffeomorphisms. For N ∈ N∗ and a

bounded and continuous f : Rd → R, write

INEO
ϖ,N,h(f) = N−1

N∑
i=1

∑
k∈Z

wk,h(Xi)f(Tk
h(Xi)) , (A.2.1)

where {Xi}Ni=1
iid∼ ρ and for some weight function ϖc : R → R+ with bounded support (see

(A14)), k ∈ Z and h > 0, setting ϖk,h = ϖc(kh),

wk,h(x) = ϖk,hρ−k(x)
/∑

i∈Z
ϖk+i,hρi(x) . (A.2.2)

We show in this section the convergence of the sequence of NEO-IS estimators {INEO
ϖ,N,h(f) : h ∈(

0, h̄
]
} as h ↓ 0 to its continuous counterpart, the version (2.4.1) of NEIS Rotskoff and Vanden-

Eijnden (2019), with weight function ϖ, in the case where for any h ∈
(
0, h̄

]
, Th corresponds

to one step of a discretization scheme with stepsize h of the ODE

ẋt = b(xt) , (A.2.3)

where b : Rd → Rd is a drift function. We are particularly interested in the case where (A.2.3)
corresponds to the conformal Hamilonian dynamics (2.2.10) and {Th : h ∈

(
0, h̄

]
} to its

conformal symplectic Euler discretization: for all (q, p) ∈ R2d,

Th(q, p) = (q + hM−1{e−hγp− h∇U(q)}, e−hγp− h∇U(q)) . (A.2.4)

We make the following conditions on b, ρ, ϖc and {Th : h ∈
(
0, h̄

]
}.

(A12) The function b is continuously differentiable and Lb-Lipschitz.
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Under (A12), consider (ϕt)t≥0 the differential flow associated with (A.2.3), i.e. ϕt(x) = xt where
(xt)t∈R is the solution of (A.2.3) starting from x. Note that (A12) implies that (t, x) 7→ ϕt(x)
is continuously differentiable on R× Rd, see (Hartman, 1982, Theorem 4.1 Chapter V).
(A12) is satisfied in the case of the conformal Hamiltonian dynamics if the potential U is
continuously differentiable and with Lipschitz gradient, that is there exists LU ∈ R∗+ such that
for any x1, x2 ∈ Rd, ∥∇U(x1)−∇U(x2)∥ ≤ LU∥x1 − x2∥.

(A13) For any h ∈
(
0, h̄

]
, Th : Rd → Rd is a C1-diffeomorphism. In addition, it holds:

(i) there exist C ≥ 0 and δ ∈ (0, 1] such that for any x ∈ Rd,

∥Th(x)− (x + hb(x))∥ ≤ Ch1+δ(1 + ∥x∥) ;

(ii) for any x ∈ Rd and T ∈ R∗+,

lim
h↓0

max
k∈[−⌊T/h⌋:⌊T/h⌋]

∥Jϕkh
(x)− JTk

h
(x)∥ = 0 .

Note that (A13) is automatically satisfied for the conformal symplectic Euler discretization
(A.2.4) of the conformal Hamiltonian dynamics. Indeed, in that case Rb((∥ ϕ)t(x)) = γd, and
therefore Jϕt(x) = eγdt for t ∈ R, and for any h > 0, k ∈ Z, JTk

h
(x) = eγdhk; see Franca et al.

(2020).
Define

support(ϖc) = {t ∈ R : ϖc(t) ̸= 0} . (A.2.5)

(A14) (i) ρ is continuous and positive on Rd

(ii) ϖc is piecewise continuous on R, its support support(ϖc) is bounded and sup(s,t)∈Aϖ
ϖc(t)/ϖc(t+

s) = m <∞ where

Aϖ = {(s, t) ∈ R2; t ∈ support(ϖc), (s + t) ∈ support(ϖc)} .

(iii) Moreover, for any x ∈ Rd, we have ρc
T(x) =

∫
ϖc(t)ρ(ϕt(x))Jϕt(x)dt > 0.

Note that (A14) implies that supt∈R |ϖc(t)| < +∞. (A14) is automatically satisfied for example
in the case ϖc = 1[−T1,T2] for T1, T2 ≥ 0.

Theorem A.2.1. Assume (A12), (A13), (A14). For any x ∈ Rd and f : Rd → R continuous
and bounded,

lim
h↓0

∣∣∣∣∣∣
∑
k∈Z

wk,h(x)f(Tk
h(x))−

∫ ∞
−∞

wc
t (x)f(ϕt(x))dt

∣∣∣∣∣∣ = 0 ,

where {wk,h}k∈Z and wc
t are defined in (A.2.2) and (2.4.2) respectively, i.e. for x ∈ Rd and

t ∈ R,
wc

t (x) = ϖc(t)ρ(ϕt(x))Jϕt(x)
/∫ ∞
−∞

ϖc(s + t)ρ(ϕs(x))Jϕs(x)ds . (A.2.6)

Proof. Let f be a bounded continuous function, x ∈ Rd. Setting

gk,h(x) = ρ(Tk
h(x))ϖc(kh)JTk

h
(x)f(Tk

h(x))

h∆k,h(x) = h
∑
i∈Z

ρ(Ti
h(x))ϖc((k + i)h)JTi

h(x) ,
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we have that

∑
k≥0

hgk,h(x)
h∆k,h(x) =

∫ Tϖ

0

1
h∆⌊t/h⌋,h(x)g⌊t/h⌋,h(x)dt +

∫ h⌊Tϖ/h⌋+h

Tϖ

1
h∆⌊t/h⌋,h(x)g⌊t/h⌋,h(x)dt ,

as gk,h(x) = 0 when k > ⌊Tϖ/h⌋. Therefore, we can consider the following decomposition,∣∣∣∣∣∣
∑
k≥0

ρ(Tk
h(x))ϖc(kh)JTk

h
(x)f(Tk

h(x))∑
i∈Z ρ(Ti

h(x))ϖc((k + i)h)JTi
h(x)
−
∫ Tϖ

0

ϖc(t)ρ(ϕt(x))Jϕt(x)f(ϕt(x))dt∫
ϖc(t + s)ρ(ϕs(x))Jϕs(x)ds

∣∣∣∣∣∣ ≤ A + B

with

A =
∣∣∣∣∣
∫ Tϖ

0

1
h∆⌊t/h⌋,h(x)

{
g⌊t/h⌋,h(x)−ϖc(t)ρ(ϕt(x))Jϕt(x)f(ϕt(x))

}
dt

∣∣∣∣∣
+
∣∣∣∣∣
∫ h⌊Tϖ/h⌋+h

Tϖ

1
h∆⌊t/h⌋,h(x)g⌊t/h⌋,h(x)dt

∣∣∣∣∣ ,

and

B =
∫ Tϖ

0

∣∣∣∣∣ϖc(t)ρ(ϕt(x))Jϕt(x)f(ϕt(x))dt

h∆⌊t/h⌋,h(x) − ϖc(t)ρ(ϕt(x))Jϕt(x)f(ϕt(x))∫
ϖc(t + s)ρ(ϕs(x))Jϕs(x)ds

∣∣∣∣∣ dt ,

We bound those terms separately. First of all, under (A14)-(ii), for any k such that kh ∈ [0, Tϖ],
we have h∆k,h(x) ≥ hm−1∆0,h(x). Second, as limh↓0 h∆0,h(x) =

∫ Tϖ
0 ρ(ϕs(x))Jϕs(x)ϖc(s)ds >

0, there exists some h̃ > 0 and c > 0 such that for all k ∈ Z, h < h̃ implies∫ Tϖ

0
ϖc(t)ρ(ϕt(x))Jϕt(x)dt > c , h∆k,h(x) ≥ hm−1∆0,h(x) > c . (A.2.7)

Then, for h < h̃,

A ≤ c−1
∫ Tϖ

0
|g⌊t/h⌋,h(x)−ϖc(t)ρ(ϕt(x))Jϕt(x)f(ϕt(x))|dt

+ c−1
∫ h⌊Tϖ/h⌋+h

Tϖ

∣∣∣g⌊t/h⌋,h(x)
∣∣∣ dt .

By (A12) and (A14), the function t→ ϖc(t)ρ(ϕt(x))Jϕt(x)f(ϕt(x)) is continuous on the com-
pact [0, 2Tϖ] and thus is bounded. Therefore, for any h ∈

(
0, h̄

)
,

sup
t∈[0,2Tϖ]

|ϖc(t)ρ(ϕt(x))Jϕt(x)f(ϕt(x))| ≤ sup
t∈R
|ϖc| sup

x∈Rd

|f(x)| sup
t∈[0,2Tϖ]

|ρ(ϕt(x))Jϕt(x)| <∞ .

(A.2.8)
Under (A13), (A.2.8) and Lemma A.2.5 imply that

sup
t∈[0,h⌊Tϖ/h⌋+h)

g⌊t/h⌋,h(x)

≤ sup
t∈R
|ϖc(t)| sup

x∈Rd

|f(x)| sup
t∈[0,h⌊Tϖ/h⌋+h)

ρ(T⌊t/h⌋
h (x))JT⌊t/h⌋

h

(x) <∞ ,

Then, limh↓0
∫ h⌊Tϖ/h⌋+h

Tϖ

∣∣∣g⌊t/h⌋,h(x)
∣∣∣ dt = 0. Finally, Lemma A.2.6 implies that limh↓0 A = 0.
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Moreover, setting for t ∈ [0, Tϖ],

∆B
t,h(x) (A.2.9)

=
∫
|ρ(ϕh⌊s/h⌋(x))ϖc(h(⌊s/h⌋+ ⌊t/h⌋))Jϕh⌊s/h⌋(x) −ϖc(s + t)ρ(ϕs(x))Jϕs(x))|1Aϖ (s, t)ds

+
∫ h(⌊Tϖ/h⌋−⌊t/h⌋+1)

Tϖ−h⌊t/h⌋
|ρ(ϕh⌊s/h⌋(x))ϖc(h(⌊s/h⌋+ ⌊t/h⌋))Jϕh⌊s/h⌋(x)|1Aϖ (s, t)ds ,

we have for h < h̃, by (A.2.7) and (A14)-(ii),

B =
∫ Tϖ

0

∣∣∣∣∣ϖc(t)ρ(ϕt(x))Jϕt(x)f(ϕt(x))
h∆⌊t/h⌋,h(x) − ϖc(t)ρ(ϕt(x))Jϕt(x)f(ϕt(x))∫

ϖc(s + t)ρ(ϕs(x))Jϕs(x)ds

∣∣∣∣∣ dt

≤
∫ Tϖ

0

ϖc(t)ρ(ϕt(x))Jϕt(x)f(ϕt(x))
h∆⌊t/h⌋,h(x)

∫
ϖc(s + t)ρ(ϕs(x))Jϕs(x)ds

∆B
t,h(x)dt

≤ mc−2
∫ Tϖ

0
ϖc(t)ρ(ϕt(x))Jϕt(x)f(ϕt(x))∆B

t,h(x)dt

≤ mc−2 sup
t∈R
|ϖc(t)| sup

x∈Rd

|f(x)| sup
t∈[0,Tϖ]

|ρ(ϕs(x))Jϕs(x)|
∫ Tϖ

0
∆B

t,h(x)dt . (A.2.10)

By (A12) and (A14), the function s→ ρ(ϕs(x))Jϕs(x) is continuous on the interval [−Tϖ, Tϖ]
and thus is bounded. Therefore, for any h ∈

(
0, h̄

)
,

sup
(s,t)∈Aϖ

|ϖc(h(⌊t/h⌋+ ⌊s/h⌋))ρ(ϕh⌊s/h⌋(x))Jϕh⌊s/h⌋(x)|

≤ sup
(s,t)∈Aϖ

|ϖc(s + t)ρ(ϕs(x))Jϕs(x)| < Tϖ sup
s∈R
|ϖc(s)| sup

s∈[−Tϖ,Tϖ]
|ρ(ϕs(x))Jϕs(x)| <∞ .

(A.2.11)

This implies that

lim
h↓0

∫ h(⌊Tϖ/h⌋−⌊t/h⌋+1)

Tϖ−h⌊t/h⌋
|ρ(ϕh⌊s/h⌋(x))ϖc(h(⌊s/h⌋+ ⌊t/h⌋))Jϕh⌊s/h⌋(x)|ds = 0 .

Moreover, for any t ∈ [0, Tϖ], the function

s 7→ |ϖc(h(⌊t/h⌋+ ⌊s/h⌋))ρ(ϕh⌊s/h⌋(x))Jϕh⌊s/h⌋(x)−ϖc(t + s)ρ(ϕs(x))Jϕs(x)|1Aϖ (s, t)

converges pointwise to 0 for almost all s ∈ R when h ↓ 0 using (A12), (A14) and the continuity
of s 7→ ϕs(x). The Lebesgue dominated convergence theorem applies and by (A.2.9), for all
t ∈ [0, Tϖ],

lim
h↓0

∆B
t,h(x) = 0 .

Moreover, using h∆k,h(x) = h
∑

i∈Z ρ(Ti
h(x))ϖc((k + i)h)JTi

h(x) and (A.2.11),

sup
t∈[0,Tϖ]

sup
h∈(0,h̄)

∆B
t,h(x) <∞ .

The Lebesgue dominated convergence theorem and (A.2.10) show that limh↓0 B = 0 which
concludes the proof.
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A.2.1.1 Supporting Lemmas

For f ∈ C1(Rd,Rd), define Jf (x) the Jacobian matrix of f evaluated at x and the divergence
operator by Rf ((∥ x)) = tr[Jf (x)].
Lemma A.2.2. Let b be a C1 vector field in Rd and (ϕt)t∈R be the flow of the ODE (A.2.3).
For any t ∈ R, the Jacobian of ϕt is given by

Jϕt(x) = exp(
∫ t

0 Rb((∥ ϕ)s(x))ds) .

Proof. First, for t ∈ R and x ∈ R, write A(t, x) = Jϕt(x) the Jacobian matrix of ϕt evaluated at
x. By Jacobi’s formula, ˙det A(t, x) = tr[adj(A(t, x)) · Ȧ(t, x)], where tr[M ] denotes the trace of
a matrix M and adj(M) its adjugate, i.e. the transpose of the cofactor matrix of M such that
adj(M)M = det(M)I. Since for all t and x, Ȧ(t, x) = Jb◦ϕt(x) = Jb(ϕt(x)) ·A(t, x), then

J̇ϕt(x) = tr[adj(A(t, x)) · Jb(ϕt(x)) ·A(t, x)] = tr[Jb(ϕt(x))]Jϕt(x) . (A.2.12)

Integrating this ODE yields Jϕt(x) = exp(
∫ t

0 Rb((∥ ϕ)s(x))ds).

Lemma A.2.3. Assume (A12). Then, there exists C > 0 such that for any x ∈ Rd, t ∈ R,
k ∈ Z, h > 0,

∥ϕt(x)∥ ≤ CeC|t|(∥x∥+ 1) ,

∥Tk
h(x)∥ ≤ CeC|kh|(∥x∥+ 1) .

This lemma follows from Gronwall’s inequality and (A12).
Lemma A.2.4. Assume (A12) and (A13)-(i). There exists C > 0 such that for any x ∈
Rd, h ∈

(
0, h̄

)
,

∥Th(x)− ϕh(x)∥ ≤ C{1 + ∥x∥}∥h1+δ . (A.2.13)

Proof. Under (A12) and (A13)-(i), we have

∥Th(x)− ϕh(x)∥ ≤ ∥x + hb(x)− ϕh(x)∥+ CF h1+δ(1 + ∥x∥) ,

and as ϕh(x) = x +
∫ h

0 b(ϕs(x))ds,

∥x + hb(x)− ϕh(x)∥ = ∥hb(x)−
∫ h

0 b(ϕs(x))∥ ≤ hLb sups∈[0,h] ∥ϕs(x)− x∥
≤ Lbh

2{Lb sup
s∈[0,h]

ϕs(x) + ∥b(0)∥} . (A.2.14)

The proof is completed using Lemma A.2.3.

Lemma A.2.5. Assume (A12) and (A13)-(i). There exists C > 0 such that for any x ∈
Rd, k ∈ N, h ∈

(
0, h̄

)
, kh ≤ Tϖ,

∥Tk
h(x)− ϕkh(x)∥ ≤ CekhC(1 + ∥x∥)hδ . (A.2.15)
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Proof. Using Lemma A.2.4, (A12) and (A13)-(i), there exist C1, C2, C3 > 0 such that for any
x ∈ Rd, k ∈ N, h ∈

(
0, h̄

)
, kh ≤ Tϖ,

∥Tk+1
h (x)− ϕ(k+1)h(x)∥ ≤ ∥Tk+1

h (x)− Th ◦ϕkh(x)∥+ ∥Th ◦ϕkh(x)− ϕ(k+1)h(x)∥
≤ (1 + hLb)∥Tk

h(x)− ϕkh(x)∥
+ h1+δC1{2 + ∥Tk

h(x)∥+ ∥ϕkh(x)∥}+ ∥Th ◦ϕkh(x)− ϕ(k+1)h(x)∥
≤ (1 + hLb)∥Tk

h(x)− ϕkh(x)∥+ h1+δ2C1C2eC2Tϖ{1 + ∥x∥}+ C3{1 + ∥ϕkh(x)∥}h1+δ

≤ (1 + hLb)∥Tk
h(x)− ϕkh(x)∥

+ h1+δ2C1C2eC2Tϖ{1 + ∥x∥}+ C3{1 + C2(1 + ∥x∥)}h1+δeC2Tϖ

≤ (1 + hLb)∥Tk
h(x)− ϕkh(x)∥+ AT {1 + ∥x∥}h1+δ ,

with AT = (2C1C2 + C3(1 + C2))eC2Tϖ . A straightforward induction yields

∥Tk
h(x)− ϕkh(x)∥ ≤ (1 + hLb)k

Lb
AT (1 + ∥x∥)hδ .

Lemma A.2.6. Assume (A12), (A13), (A14) . For any x ∈ Rd, and f : Rd → Rd bounded
and continuous,

lim
h↓0

∫ Tϖ

0

∣∣∣∣ϖc(h ⌊t/h⌋)ρ(T⌊t/h⌋
h (x))JT⌊t/h⌋

h

(x)f(T⌊t/h⌋
h (x))−ϖc(t)ρ(ϕt(x))Jϕt(x)f(ϕt(x))

∣∣∣∣ dt = 0 .

Proof. Let x ∈ Rd. Consider the following decomposition, for any h < h̄,∫ Tϖ

0

∣∣∣∣ϖc(h ⌊t/h⌋)ρ(T⌊t/h⌋
h (x))JT⌊t/h⌋

h

(x)f(T⌊t/h⌋
h (x))−ϖc(t)ρ(ϕt(x))Jϕt(x)f(ϕt(x))

∣∣∣∣ dt

≤ h
Tϖ

∑
k∈Z ϖc(kh)|ρ(Tk

h(x))JTk
h
(x)f(Tk

h(x))− ρ(ϕkh(x))Jϕkh
(x)f(ϕkh(x))|

+
∫ Tϖ

0 |ϖc(t)ρ(ϕt(x))Jϕt(x)f(ϕt(x))−ϖc(h ⌊t/h⌋)ρ(ϕh⌊t/h⌋(x))Jϕh⌊t/h⌋(x)f(ϕh⌊t/h⌋(x))|dt .

The first term converges to 0 by Lemma A.2.5 and (A13)-(ii) as ϖc(kh) = 0 for kh > Tϖ. By
(A12) and (A14), the function t→ ϖc(t)ρ(ϕt(x))Jϕt(x)f(ϕt(x)) is continuous on the compact
[0, Tϖ] and thus is bounded. Therefore, for any h ∈

(
0, h̄

)
,

sup
t∈[0,Tϖ]

|ϖc(h ⌊t/h⌋)ρ(ϕh⌊t/h⌋(x))Jϕh⌊t/h⌋(x)f(ϕh⌊t/h⌋(x))|

≤ sup
t∈R
|ϖc| sup

x∈Rd

|f(x)| sup
t∈[0,Tϖ]

|ρ(ϕt(x))Jϕt(x)| <∞ . (A.2.16)

Moreover, t 7→ ϖc(h ⌊t/h⌋)ρ(ϕh⌊t/h⌋(x))Jϕh⌊t/h⌋(x)f(ϕh⌊t/h⌋(x)) converges pointwise when h ↓ 0
to t → ϖc(t)ρ(ϕt(x))Jϕt(x)f(ϕt(x)) by continuity, using (A12) and (A14). The Lebesgue
dominated convergence theorem applies and the second term goes to 0 as h ↓ 0.

A.2.2 NEIS algorithm after Rotskoff and Vanden-Eijnden (2019)

Non Equilibrium Importance Sampling (NEIS) has been introduced in the pioneering work of
Rotskoff and Vanden-Eijnden (2019). NEIS relies on the flow of the ODE ẋt = b(xt) and the
introduction of a set O ⊂ Rd. As in Section A.2, we assume (A12) holds and denote by (ϕt)t∈R
the flow of this ODE.
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Define for x ∈ O, the exit times τ+(x) ≥ 0 (resp. τ−(x) ≤ 0) satisfying

τ+(x) = inf{t ≥ 0 : ϕt(x) /∈ O} , τ−(x) = inf{t ≤ 0 : ϕt(x) /∈ O} . (A.2.17)

The validity of NEIS relies on the following assumption.
(A15) The average time of an orbit in O is finite, i.e.

Zτ =
∫

O
(τ+(x)− τ−(x))ρ(x)dx <∞ . (A.2.18)

Under (A15), we can define the proposal distribution

ρT(x) = Z−1
τ

∫
O
1[τ−(x),τ+(x)](t)ρ(ϕt(x))Jϕt(x)dt . (A.2.19)

Under (A15), (Rotskoff and Vanden-Eijnden, 2019, Equation (8)) derive the following estimator
of ρ(f), closely related to (2.4.1), in the case ϖ ≡ 1, on the restricted set O ⊂ Rd :

INEIS
N (f) = 1

N

N∑
i=1

∫ τ+(Xi)

τ−(Xi)
wt(Xi)f(ϕt(Xi))dt (A.2.20)

wt(x) =
ρ(ϕt(x))Jϕt(x)∫ τ+(x)

τ−(x) ρ(ϕt(x))Jϕt(x)dt
. (A.2.21)

Note that in practice, in order for (A15) to be verified, one typically requires that O be bounded,
as discussed in Rotskoff and Vanden-Eijnden (2019).
Following Rotskoff and Vanden-Eijnden (2019), consider a d-dimensional system with position
q ∈ Rd, momentum p ∈ Rd and Hamiltonian H(p, q) = (1/2)∥p∥2 + U(q) where U(q) is a
potential assumed to be bounded from below. Denote by V (E) the volume of the phase-space
below some threshold energy E,

V (E) =
∫
1{H(p,q)≤E}dpdq . (A.2.22)

To calculate (A.2.22), we set x = (p, q), define O = {x; H(x) ≤ Emax} for some Emax <∞, and
use the dissipative Langevin dynamics with b(x) = (p,−∇U(q)− γp), i.e.

q̇ = p , ṗ = −∇U(q)− γp ,

for some friction coefficient γ > 0. With this choice, Jϕt(x) = e−dγt. Taking ρ to be the uniform
distribution on the (bounded) set O, write the estimator for E ≤ Emax, V (E)/V (Emax) =∫
1{H(p,q)≤E}ρ(p, q)dpdq, where ρ(p, q) = 1O(p, q)/V (Emax), we get

V (E)/V (Emax) = 1
N

N∑
i=1

∫ τ+(Xi)
τ−(Xi) Jϕt(Xi)1{H(ϕt(Xi))≤E}dt∫ τ+(Xi)

τ−(Xi) Jϕt(Xi)dt

= 1
N

N∑
i=1

∫ τ+(Xi)
τE(Xi) Jϕt(Xi)dt∫ τ+(Xi)
τ−(Xi) Jϕt(Xi)dt

= 1
N

N∑
i=1

e−dγ(τE(Xi)−τ−(Xi)) , (A.2.23)

where τE(x) denotes the (possibly infinite) time for a trajectory initiated at x = (p, q) to reach
the energy E ≤ Emax.

141



Finally, to estimate the normalizing constant, Rotskoff and Vanden-Eijnden (2019) discretize
the energy levels {E0, . . . , EP } and write their estimator as

ẐNEIS
X1:N = 1

N

N∑
i=1

P∑
ℓ=1

e−dγ(τE
ℓ (Xi)−τ−(Xi))(Eℓ − Eℓ−1) , (A.2.24)

using an approximation of the identity

Z =
∫

O

∫ ∞
0
1{L(x)>L}ρ(x)dLdx =

∫ ∞
0

PX∼ρ(L(X) > L)dL ,

which is at the core of nested sampling Chopin and Robert (2010).

A.2.3 NEO with exit times

Consider O ⊂ Rd and let T be a C1-diffeomorphism on Rd. We introduce here an estimator based
on the forward and backward orbits in O associated with T. Define the exit times τ+ : Rd → N
and τ− : Rd → N−, given, for all x ∈ Rd, by

τ+(x) = inf{k ≥ 1 : Tk(x) ̸∈ O} , (A.2.25)
τ−(x) = sup{k ≤ −1 : Tk(x) ̸∈ O} , (A.2.26)

with the convention inf ∅ = +∞ and sup ∅ = −∞, and set

I = {(x, k) ∈ O× Z : k ∈ [τ−(x) + 1 : τ+(x)− 1]} . (A.2.27)

For any k ∈ Z, define ρk : Rd → R+ by

ρk(x) = ρ(T−k(x))JT−k(x)1I(x,−k) . (A.2.28)

The density ρk is the push-forward of 1I(x, k)ρ(x) by Tk, i.e. for any k ∈ Z and any bounded
function g : Rd → R, ∫

O
g(y)ρk(y)dy =

∫
O

g(Tk(x))1I(x, k)ρ(x)dx . (A.2.29)

Consider the following assumption:
(A16) The nonnegative sequence (ϖk)k∈Z satisfies ϖ0 > 0 and

Zϖ
T =

∫
O

∑
k∈Z

ϖkρk(x)dx =
∫

O

∑
k∈Z

ϖkρ(Tk(x))JTk(x)1I(x, k)dx <∞ . (A.2.30)

Consider the pdf
ρT(x) = 1

Zϖ
T

∑
k∈Z

ϖkρk(x) , (A.2.31)

where Zϖ
T is the normalizing constant. This is a non-equilibrium distribution, since ρT is

not invariant by T in general. Using ρT as an importance distribution to obtain an unbiased
estimator of

∫
f(x)ρ(x)dx is feasible since as ϖ0 > 0, supx∈O ρ(x)/ρT(x) ≤ ZT/ϖ0 < ∞,

hence ∫
O

f(x)ρ(x)dx =
∫

O

(
f(x) ρ(x)

ρT(x)

)
ρT(x)dx .

From (A.2.29), the right hand side can be computed using the following key result.
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Theorem A.2.7. For any f : Rd → R measurable bounded function, we have∫
O

f(x)ρ(x)dx =
∫

O

∑
k∈Z

f(Tk(x))wk(x)ρ(x)dx , (A.2.32)

where, for any x ∈ Rd and k ∈ Z,

wk(x) = ϖkρ−k(x)
/∑

j∈Z
ϖj+kρj(x) . (A.2.33)

Proof. Let f : Rd → R be a measurable bounded function. By (A.2.29), writing g ← fρ/ρT,

∫
O

f(x)ρ(x)dx =
∫

O

(
f(x) ρ(x)

ρT(x)

)
ρT(x)dx

=
∫

O

∑
k∈Z

(
f(Tk(x))ϖkρ(Tk(x))1I(x, k)

Zϖ
T ρT(Tk(x))

)
ρ(x)dx .

We now need to prove:

ϖkρ(Tk(x))1I(x, k)
Zϖ

T ρT(Tk(x))
= ϖkρ(Tk(x))1I(x, k)

1I(x, k)∑i∈Z ϖiρi(Tk(x))
= ϖkρ−k(x)∑

j∈Z ϖj+kρj(x) = wk(x) ,

with the convention 0/0 = 0. We thus need to show that for any x ∈ O, k ∈ Z,

1I(x, k)
∑
i∈Z

ϖiρi(Tk(x)) = 1I(x, k)
JTk(x)

∑
j∈Z

ϖj+kρj(x) .

Using the identity JT−i+k(x) = JT−i(Tk(x))JTk(x), we obtain

1I(x, k)
∑
i∈Z

ϖiρi(Tk(x)) =
∑
i∈Z
1I(x, k)ϖiρ(T−i(Tk(x)))JT−i(Tk(x))1I(Tk(x),−i)

= 1
JTk(x)

∑
i∈Z
1I(x, k)ϖiρ(T−i+k(x))JT−i+k(x)1I(Tk(x),−i)

= 1
JTk(x)

∑
j∈Z

ϖj+kρ(T−j(x))JT−j (x)1I(Tk(x),−j − k)1I(x, k)

Note that if (x, k) ∈ I, we have (x,−j) ∈ I if and only if (Tk(x),−j − k) ∈ I by definition of I
(A.2.27). The proof is concluded by noting that:

1I(Tk(x)),−j − k)1I(x, k) = 1I(x,−j)1I(x, k) .

A.3 Iterated SIR

Let us recall the principle of the Sampling Importance Resampling method (SIR; Rubin (1987);
Smith and Gelfand (1992)) whose goal is to approximately sample from the target distribution
π using samples drawn from a proposal distribution ρ.
In SIR, a N -i.i.d. sample X1:N is first generated from the proposal distribution ρ. A sample X∗ is
approximately drawn from the target π by choosing randomly a value in X1:N with probabilities
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proportional to the importance weights {L(Xi)}Ni=1, where L(x) = π(x)/ρ(x). Note that the
importance weights are required to be known only up to a constant factor.
For SIR, as N →∞, the sample X∗ is asymptotically distributed according to π; see Smith and
Gelfand (1992).
A subsequent algorithm is the iterated SIR (i-SIR) Andrieu et al. (2010). Here, N is not
necessarily large (N ≥ 2), the whole process of sampling a set of proposals, computing the
importance weights, and picking a candidate, is iterated. At the n-th step of i-SIR, the active
set of N proposals X1:N

n and the index In ∈ [N ] of the conditioning proposal are kept. First
i-SIR updates the active set by setting XIn

n+1 = XIn
n (keep the conditioning proposal) and

then draw independently X
1:N\{In}
n+1 from ρ. Then it selects the next proposal index In+1 ∈

[N ] by sampling with probability proportional to {w̃(Xi
n+1)}Ni=1. As shown in Andrieu et al.

(2010), this algorithm defines a partially collapsed Gibbs sampler (PCG) of the augmented
distribution

π̄(x1:N , i) = 1
N

π(xi)
∏
j ̸=i

ρ(xj) = 1
N

w̃(xi)
N∏

j=1
ρ(xj) .

The PCG sampler can be shown to be ergodic provided that ρ and π are continuous and ρ is
positive on the support of π. If in addition the importance weights are bounded, the Gibbs
sampler can be shown to be uniformly geometrically ergodic Lindsten et al. (2015); Andrieu
et al. (2018a). It follows that the distribution of the conditioning proposal X∗n = XIn

n converges
to π as the iteration index n goes to infinity. Indeed, for any integrable function f on Rd, with
(X1:N , I) ∼ π̄,

E[f(XI)] =
∫ N∑

i=1
f(xi)π̄(x1:N , i)dx1:N = N−1

N∑
i=1

∫
f(xi)π(xi)dxi =

∫
f(x)π(x)dx .

When the state space dimension d increases, designing a proposal distribution ρ guaranteeing
proper mixing properties becomes more and more difficult. A way to circumvent this problem
is to use dependent proposals, allowing in particular local moves around the conditioning orbit.
To implement this idea, for each i ∈ [N ], we define a proposal transition, ri(xi; x1:N\{i}) which
defines the the conditional distribution of X1:N\{i} given Xi = xi. The key property validating
i-SIR with dependent proposals is that all one-dimensional marginal distributions are equal to
ρ, which requires that for each i, j ∈ [N ],

ρ(xi)ri(xi; x1:N\{i}) = ρ(xj)rj(xj ; x1:N\{j}) (A.3.1)

The (unconditional) joint distribution of the particles is therefore defined as

ρN

(
x1:N) = ρ(x1)r1(x1; x1:N\{1}) . (A.3.2)

The resulting modification of the i-SIR algorithm is straightforward: X1:N\{In} is sampled
jointly from the conditional distribution rIn(XIn

n , ·) rather than independently from ρ.

A.4 Additional Experiments

A.4.1 Normalizing constant estimation

We consider here the problem of the estimation of the normalizing constant of Cauchy mixtures.
The Cauchy distribution with scale σ has a pdf defined by Cauchy(x; µ, σ) = [πσ(1 + {(x −
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µ)/σ}2]−1. The target distribution is a product of mixtures of two Cauchy distributions,

π(x) =
n∏

i=1

1
2 [Cauchy (xi; µ, σ) + Cauchy (xi;−µ, σ)] , µ = 5, σ = 1 .

NEO-IS is compared with IS estimator using the same proposal ρ. We also compare NEO-IS to
Neural IS Müller et al. (2019b) with a Cauchy as base distribution.
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Figure A.1: Boxplots of 500 independent estimations of the normalizing constant of the Cauchy
mixture in dimension d = 10, 15 (top, bottom). The true value is given by the red line. The
figure displays the median (solid lines), the interquartile range, and the mean (dashed lines)
over the 500 runs

Finally, we compare NEO-IS with NEIS1. We consider here MG25 in dimension 5 and 10, where all
the covariances of the Gaussian distributions are diagonal and equal to 0.005I. NEIS and NEO-
IS are run for the same computational time. We add an IS scheme as a baseline for comparison.
All algorithms (NEO-IS, NEIS, IS) are run for 7.20s and 11.30s wall clock time respectively for
d = 5 and d = 10. For NEO-IS, we use a conformal transform with h = 0.1, K = 10 and γ = 1.
For NEIS, we choose γ = 1 and consider a stepsize h = 10−4 corresponding to an optimal
trade-off between the discretization bias inherent to NEISand its computational budget. We
can observe that NEO-IS always outperforms NEIS, which suffers from a non-negligeable bias
if the stepsize h is not chosen small enough.
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Figure A.2: NEO v. NEIS. 25 GM with σ2 = 0.005, d = 5. 500 runs each.

1The code from Rotskoff and Vanden-Eijnden (2019) we run is available at https://gitlab.com/rotskoff/
trajectory_estimators/-/tree/master.
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Figure A.3: Forward orbits of NEO-MCMC.

A.4.2 Gibbs inpainting

We display here additional results for the Gibbs inpainting experiment presented in Section 2.5.
We emphasize that the starting images are chosen at random in the test set.

A.5 NEO and VAEs

Denote by pθ(x, z) the joint distribution of the observation z ∈ Rp and the latent variable
x ∈ Rd. The marginal likelihood is given, for z ∈ Rp by pθ(z) =

∫
pθ(x, z)dx. Given a training

set D = {zi}Mi=1, the objective is to estimate θ by maximizing the likelihood, i.e. maximizing
log pθ(D) = ∑M

i=1 log pθ(zi). We show two experiments in the following, first the evaluation of
independently trained VAEs, and then the derivation and learning of a VAE based on NEO,
and NEO-VAE.

A.5.1 Log-likelihood estimation

We present here first the evaluation of the log-likelihood of a trained VAE on the dynamically
binarized MNIST dataset. The models we compare share the same architecture: the inference
network qϕ is given by a convolutional network with 2 convolutional layers and one linear layer,
which outputs the parameters µϕ(x), σϕ(x) ∈ Rd of a factorized Gaussian distribution, while the
generative model pθ(·|z) is given by another symmetrical convolutional network gθ. This outputs
the parameters for the factorized Bernoulli distribution (for MNIST dataset), that is

pθ(z|x) =
N∏

i=1
Ber

(
z(i)|

(
gθ(x)

)(i))
.

We here follow the experimental setting of Wu et al. (2016). Given a test set T = {zi}MT
i=1 ,

we estimate ∑MT
i=1 log pθ∗(zi). We also estimate similarly the log-likelihood of an Importance

Weighted Auto Encoder (IWAE) Burda et al. (2016). Following Wu et al. (2016), we compare
IS, AIS, and NEO-IS. As previously, AIS, IS, and NEO-IS are given a similar computational
budget, choosing here K = 12, N = 5 · 103. For NEO, we choose γ = 1. and h = 0.2. Similarly,
the stepsize of HMC transitions in AIS is h = 0.1 in order to achieve an acceptance ratio of
around 0.6 in the HMC transitions. We report in Table A.1 the log-likelihood computed on the
test set for VAE, IWAE with latent dimension in {16, 32}. For the same computational budget,
NEO-IS yields consistently better values for the estimation of the log-likelihood of the VAE.
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Figure A.4: Additional examples for the Gibbs inpainting task for CelebA dataset. From top
to bottom: i-SIR, HMC and NEO-MCMC: From left to right, original image, blurred image to
reconstruct, and output every 5 iterations of the Markov chain.

Model VAE, d = 32 VAE, d = 16 IWAE, d = 32 IWAE, d = 16
IS -90.17 -90.44 -88.76 -90.13

AIS -89.67 -89.97 -88.30 -89.61
NEO-IS -88.81 -89.17 -87.46 -88.99

Table A.1: Evaluation of the log-likelihood (normalizing constant) of different Variational Auto
Encoders.
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A.5.2 Definition of a NEO-VAE

Variational inference (VI) provides us with a tool to simultaneously approximate the intractable
posterior pθ(x|z) and maximize the marginal likelihood pθ(D) in the parameter θ. This is
achieved by introducing a parametric family {qϕ(x|z), ϕ ∈ Φ} to approximate the posterior
pθ(x|z) and maximizing the Evidence Lower Bound (ELBO) (see Kingma and Welling (2019))
LELBO(D, θ, ϕ) = ∑M

i=1 LELBO(zi, θ, ϕ) where

LELBO(z, θ, ϕ) =
∫

log
(

pθ(x, z)
qϕ(x | z)

)
qϕ(x | z)dx (A.5.1)

= log pθ(z)−KL(qϕ(· | z)∥pθ(· | z)) ,

and KL is the Kullback–Leibler divergence. In the sequel, we set ρ(x) = qϕ(x | z) and L(x) =
pθ(x, z)/qϕ(x | z). In such a case, π(x) = ρ(x)L(x)/Z = pθ(x | z) and Z = pθ(z) (in these
notations, the dependence in the observation z is implicit).
We follow the the auxiliary variational inference framework (AVI) provided by Agakov and Bar-
ber (2004). We consider a joint distribution p̄θ(x, u, z) which is such that pθ(z) =

∫
pθ(x, u, z)dxdu

where u ∈ U is an auxiliary variable (the auxiliary variable can both have discrete and contin-
uous components; when u has discrete components the integrals should be replaced by a sum).
Then as the usual VI approach, we consider a parametric family {q̄ϕ(x, u|z), ϕ ∈ Φ}. Introduc-
ing auxiliary variables loses the tractability of (A.5.1) but they allow for their own ELBO as
suggested in Agakov and Barber (2004); Lawson et al. (2019) by minimizing

KL(q̄ϕ(· | z)∥p̄θ(· | z)) =
∫

q̄ϕ(x, u|z) log
(

p̄θ(x, u, z)
q̄ϕ(x, u|z)

)
dxdu . (A.5.2)

The auxiliary variable u is naturally associated with the extended target p̄ defined similar to
Remark 2.3.2,

p̄N ([x, x1:N\{i}], i) = π̌(x1:N , i) = Ẑ
ϖ
x

NZ
ρN (x1:N ) (A.5.3)

with (x, u) = ([x, x1:N\{i}], i), a shorthand notation for a N -tuple x1:N with xi = x, and, with
ri defined in (2.3.5),

ρN (x1:N ) = ρ(x1)r1(x1, x2:N ) = ρ(xj)rj(xj , x1:N\{j}) , j ∈ {1, . . . , N} , (A.5.4)

generally for Markov transitions {rj}j∈[N ]. We might write simply in the following

ρN (x1:N ) =
N∏

i=1
ρ(xi) .

An extended proposal playing the role of q̄ϕ(x, u|z) is derived from the NEO-MCMC sampler,
i.e.

q̄N ([x, x1:N\{i}], i) = Ẑϖ
x

N Ẑϖ
x1:N

ρN (x1:N ) . (A.5.5)

where Ẑϖ
x1:N is the NEO estimator (2.2.4) of the normalizing constant. Note that, by construc-

tion,
N∑

i=1
q̄N (x1:N , i) = ρN (x1:N ) (A.5.6)
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Table A.2: Negative Log Likelihood estimates for VAE models for different latent space dimen-
sions.

d = 4 d = 8 d = 16 d = 50
model IS NEO IS NEO IS NEO IS NEO
VAE 115.01 113.49 97.96 97.64 90.52 90.42 88.22 88.36

IWAE, N = 5 113.33 111.83 97.19 96.61 89.34 89.05 87.49 87.27
IWAE, N = 30 111.92 110.36 96.81 95.94 88.99 88.64 86.97 86.93

NEO VAE, K = 3 109.14 107.47 94.50 94.26 89.03 88.92 88.14 88.16
NEO VAE, K = 10 110.02 107.90 94.63 94.22 89.71 88.68 88.25 86.95

showing that this joint proposal can be sampled by drawing the proposals x1:N ∼ ρN , then
sampling the path index i ∈ [N ] with probability proportional to (Ẑϖ

xi )N
i=1 (with Ẑϖ

x defined in
(2.2.4)). The ratio of (A.5.3) over (A.5.5) is

p̄N (x1:N , i)
/
q̄N (x1:N , i) = Ẑϖ

x1:N
/
Z . (A.5.7)

Thus, we write the augmented ELBO (A.5.2)

LNEO =
∫

ρN (x1:N ) log Ẑϖ
x1:N dx1:N = logZ −KL(q̄N |p̄N ) , (A.5.8)

where we have used (A.5.6) and that the ratio p̄N (x1:N , i)
/
q̄N (x1:N , i) does not depend on the

path index i. When ϖk = δk,0, where δi,j is the Kronecker symbol, and ρN (x1:N ) = ∏N
j=1 ρ(xj),

we exactly retrieve the Importance Weighted AutoEncoder (IWAE); see e.g. Burda et al. (2016)
and in particular the interpretation in Cremer et al. (2017).
Choosing the conformal Hamiltonian introduced in Section 2.2 allows for a family of invertible
flows that depends on the parameter θ which itself is directly linked to the target distribution.
Table A.2 displays the estimated NLL of all models provided by IS and the NEO method. It is
interesting to note here again that NEO improves the training of the VAE when the dimension
of the latent space is small to moderate.
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Appendix B

Appendix of Chapter 4

B.1 Proofs

In this section we provide the proofs of Propositions 4.4.3, 4.5.1 and Theorems 4.4.4, 4.4.9, 4.4.10
and 4.5.2. The various Propositions and Lemmata used are stated and proved in Section B.1.9-
B.1.10. Other intermediary technical results are provided in Section B.3. Equations, lemmata,
propositions and theorems referred to without the prefix S are given in the main text.

B.1.1 Preliminaries

In order to simplify the notations, in what follows we write

QN,BS
b,t (h) =

∑
k1:2

0:t∈[N ]2(t+1)

Λ1,2
b,t (k1

0:t, k2
0:t)h(ξk1

0:t
0:t , ξ

k2
0:t

0:t ) ,

where

Λ1,2
b,t (k1

0:t, k2
0:t) :=

t∏
s=0

N bs

(
N

N − 1

)1−bs

γN
t (1)2Ib,t(k1

0:t, k2
0:t)ΛBS

1,t(k1
0:t)ΛBS

2,t(k1
0:t; k2

0:t) . (B.1.1)

By (4.4.13),

ΛBS
1,t(k1

0:t) = βBS
t (k1

t , k1
t−1)ΛBS

1,t−1(k1
0:t−1) ,

ΛBS
2,t(k1

0:t; k2
0:t) =

{
βBS

t (k2
t , k2

t−1)1k2
t ̸=k1

t
+ ω

k2
t−1

t−1 1k2
t =k1

t

}
ΛBS

2,t−1(k1
0:t−1; k2

0:t−1) .

and by (4.3.4) we have that γN
t (1) = γN

t−1(1)N−1Ωt−1, hence, using (4.4.16) QN,BS
b,t (h) be-

comes

QN,BS
b,t (h) =

∑
k1:2

0:t∈[N ]2(t+1)

Λ1,2
b,t (k1

0:t, k2
0:t)h(ξk1

0:t
0:t , ξ

k2
0:t

0:t ) (B.1.2)

=
∑

k1:2
0:t−1∈[N ]2t

Λ1,2
b,t−1(k1

0:t−1, k2
0:t−1)Ω2

t−1
N2

∑
k1:2

t ∈[N ]2
βBS

t (k1
t , k1

t−1)

×
[

N

N − 1βBS
t (k2

t , k2
t−1)1k1

t ̸=k2
t ,bt=0 + Nω

k2
t−1

t−1 1k1
t =k2

t ,bt=1

]
h(ξk1

0:t
0:t , ξ

k2
0:t

0:t ) .
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B.1.2 Proof of Proposition 4.4.3

Proof of Lemma 4.4.1. By (A4), for any (x, y) ∈ X2,

βN
t (x, y)ϕN

t−1Mt(dx) = βN
t (x, y)

N∑
i=1

ωi
t−1Mt(ξi

t−1, dx)

= gt−1(y)mt(y, x)∑N
i=1 ω̃i

t−1mt(ξi
t−1, x)

N∑
i=1

ωi
t−1mt(ξi

t−1, x)ν(dx)

= gt−1(y)
Ωt−1

Mt(y, dx) .

Consequently, for any (k1
t−1, k1

t ) ∈ X2 and h ∈ F(X ),

E
[
βN

t (ξkt
t , ξ

kt−1
t−1 )h(ξkt

t )
∣∣FN

t−1
]

=
∫

βN
t (x, ξ

kt−1
t−1 )h(x)ϕN

t−1Mt(dx)

=
∫ 1

Ωt−1
ω̃

k1
t−1

t−1 h(x)Mt(ξ
k1

t−1
t−1 , dx)

= ω
kt−1
t−1 Mt[h](ξkt−1

t−1 ) .

On the other hand,

E
[
1

kt−1=A
kt
t−1

h(ξkt
t )
∣∣FN

t−1
]

=
∫ N∑

i=1
1kt−1=iω

i
t−1Mt(ξi

t−1, dx)h(x) = ω
kt−1
t−1 Mt[h](ξkt−1

t−1 ) .

Proof of Proposition 4.4.3. For the proof of i), note that conditionally on FN
t−1, ξ1:N

t are i.i.d.
with distribution ϕN

t−1Mt, hence,

E

 ∑
k1:2

t ∈[N ]2
1k1

t ̸=k2
t
βBS

t (k1
t , k1

t−1)βBS
t (k2

t , k2
t−1)h(ξk1

0:t
0:t , ξ

k2
0:t

0:t )
∣∣∣∣FN

t−1


=

∑
k1:2

t ∈[N ]2

∫
1k1

t ̸=k2
t
βBS

t (k1
t , k1

t−1)βBS
t (k2

t , k2
t−1)h(ξk1

0:t
0:t , ξ

k2
0:t

0:t )ϕN
t−1Mt(dξ

k1
t

t )ϕN
t−1Mt(dξ

k2
t

t ) ,

and by (4.4.11) in Lemma 4.4.1,

E

 ∑
k1:2

t ∈[N ]2
1k1

t ̸=k2
t
βBS

t (k1
t , k1

t−1)βBS
t (k2

t , k2
t−1)h(ξk1

0:t
0:t , ξ

k2
0:t

0:t )
∣∣∣∣FN

t−1


= N(N − 1)

Ω2
t−1

(
g⊗2

t−1M
0
t [h]

)
(ξk1

0:t−1
0:t−1 , ξ

k2
0:t−1

0:t−1 ) , (B.1.3)

where

g⊗2
t−1M

0
t [h] : (x0:t−1, x′0:t−1) 7→ g⊗2

t−1(xt−1, x′t−1)
∫

h(x0:t, x′0:t)Mt(xt−1, dxt)Mt(x′t−1, dx′t) .
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On the other hand, by (4.4.11) in Lemma 4.4.1,

E

 ∑
k1:2

t ∈[N ]2
1k1

t =k2
t
βBS

t (k1
t , k1

t−1)ωk2
t−1

t−1 h(ξk1
0:t

0:t , ξ
k2

0:t
0:t )

∣∣∣∣FN
t−1


=

∑
k1:2

t ∈[N ]2

∫
1k1

t =k2
t
βBS

t (k1
t , k1

t−1)ωk2
t−1

t−1 h(ξk1
0:t

0:t , ξ
k2

0:t
0:t )ϕN

t−1Mt(dξ
k1

t
t )δ

ξ
k1

t
t

(dξ
k2

t
t )

= 1
Ω2

t−1

∑
k1:2

t ∈[N ]2
1k1

t =k2
t
ω̃

k1
t−1

t−1 ω̃
k2

t−1
t−1

∫
h(ξk1

0:t
0:t , ξ

k2
0:t

0:t )Mt(ξ
k1

t−1
t−1 , dξ

k1
t

t )δ
ξ

k1
t

t

(dξ
k2

t
t )

= N

Ω2
t−1

(
g⊗2

t−1M
1
t [h]

)
(ξk1

0:t
0:t , ξ

k2
0:t

0:t ) , (B.1.4)

where

g⊗2
t−1M

1
t [h] : (x0:t−1, x′0:t−1) 7→ g⊗2

t−1(xt−1, x′t−1)
∫

h(x0:t, x′0:t)Mt(xt−1, dxt)δxt(dx′t) .

If bt = 0, since Ωt−1 and Λ1,2
b,t−1(k1

0:t−1, k2
0:t−1) are FN

t−1 measurable for any (k1
0:t−1, k2

0:t−1) ∈ [N ]2t,
by (B.1.2) and (B.1.3),

E
[
QN,BS

b,t (h)
∣∣FN

t−1

]
=

∑
k1:2

0:t−1∈[N ]2
Λ1,2

b,t−1(k1
0:t−1, k2

0:t−1) Ω2
t−1

N(N − 1)

× E
[ ∑

k1:2
t ∈[N ]2

1k1
t ̸=k2

t
βBS

t (k1
t , k1

t−1)βBS
t (k2

t , k2
t−1)h(ξk1

0:t
0:t , ξ

k2
0:t

0:t )
∣∣∣∣FN

t−1

]

=
∑

k1:2
0:t−1∈[N ]2

Λ1,2
b,t−1(k1

0:t−1, k2
0:t−1)

(
g⊗2

t−1M
0
t [h]

)
(ξk1

0:t−1
0:t−1 , ξ

k2
0:t−1

0:t−1 )

= QN,BS
b,t−1(g⊗2

t−1M
0
t [h]) .

If bt = 1, again by (B.1.2) and (B.1.4),

E
[
QN,BS

b,t (h)
∣∣FN

t−1

]
=

∑
k1:2

0:t−1∈[N ]2
Λ1,2

b,t−1(k1
0:t−1, k2

0:t−1)Ω2
t−1
N

× E
[ ∑

k1:2
t ∈[N ]2

1k1
t =k2

t
βBS

t (k1
t , k1

t−1)ωk2
t−1

t−1 h(ξk1
0:t

0:t , ξ
k2

0:t
0:t )

∣∣∣∣FN
t−1

]

=
∑

k1:2
0:t−1∈[N ]2

Λ1,2
b,t−1(k1

0:t−1, k2
0:t−1)

(
g⊗2

t−1M
1
t [h]

)
(ξk1

0:t−1
0:t−1 , ξ

k2
0:t−1

0:t−1 )

= QN,BS
b,t−1

(
g⊗2

t−1M
1
t [h]

)
.

For the proof of ii), we proceed by induction. Let t = 0 and h ∈ F(X⊗2). If b0 = 0, since
ξ1:N

0
iid∼ M0,

E
[
QN,BS

0,0 (h)
]

= E

 1
N(N − 1)

∑
i,j∈[N ]2

1i ̸=jh(ξi
0, ξj

0)


= 1

N(N − 1)
∑

i,j∈[N ]2
1i ̸=jM0

0[h] =M0
0[h] = Qb,0(h) .

153



If b0 = 1,

E
[
QN,BS

1,0 (h)
]

= E
[

1
N

N∑
i=1

h(ξi
0, ξi

0)
]

=M1
0[h] = Qb,0(h) .

Let t ∈ N>0 and h ∈ F(X⊗2(t+1)). Assume that E
[
QN,BS

b,t−1(f)
]

= Qb,t−1(f) for any b ∈ Bt and
f ∈ F(X⊗2t). By (i) in Proposition 4.4.3 and the tower property

E
[
QN,BS

b,t (h)
]

= E
[
E
[
QN,BS

b,t (h)
∣∣FN

t−1
]]

= E
[
QN,BS

b,t−1
(
g⊗2

t−1M
bt
t [h]

)]
and g⊗2

t−1M
bt
t [h] ∈ F(X⊗2t). Thus, by the induction hypothesis and the definition of Qb,t−1 we

get
E
[
QN,BS

b,t (h)
]

= E
[
QN,BS

b,t−1(g⊗2
t−1M

bt
t [h])

]
= Qb,t−1

(
g⊗2

t−1M
bt
t [h]

)
= Qb,t(h) ,

which completes the proof. The proof of iii) is a direct consequence of (4.4.4), (4.4.17) and
ii).

B.1.3 Proof of Proposition 4.5.1

Let h0:t be an additive functional (4.5.5). By definition, for s ∈ [t],

Gs,t(xs, h0:t) =
∫ {

h̃0:s(x0:s) + h̃s:t(xs:t)
}
Ts(xs, dx0:s−1)Qs+1:t(xs, dxs+1:t)

=
∫ {

Ts[h̃0:s](xs) + h̃s:t(xs:t)
}
Qs+1:t(xs, dxs+1:t) ,

and then, setting Hs:t : xs:t 7→ Ts[h̃0:s](xs) + h̃s:t(xs:t) we get

γs(1)γs
(
Gs,t[h0:t]2)

= γs(1)γs
(
Qs+1:t

[
Ts[h̃0:s] + h̃s:t

]2)
=
∫

γ0:s−1(dx′0:s−1)gs−1(x′s−1)
∫

Qs+1:t[Hs:t](xs)Qs+1:t[Hs:t](xs)γ0:s(dx0:s)

=
∫

γ0:s−1(dx′0:s−1)gs−1(x′s−1)γ0:s(dx0:s)δxs(dx′s)Qs+1:t[Hs:t](xs)Qs+1:t[Hs:t](x′s) ,

which establishes the result since by definition

Qes,t
(
dx0:t, dx′0:t

)
= γ0:s(dx0:s)γ0:s−1(dx′0:s−1)gs−1(x′s−1)δxs(dx′s)

Qs+1:t
(
xs, dxs+1:t

)
Qs+1:t

(
x′s, dx′s+1:t

)
.

If s = 0, then G0,t[h0:t](x0) =
∫

h0:t(x0:t)Q1:t(x0, dx1:t) and

γ0(1)γ0
(
G0:t[h0:t]2

)
= γ0(G0:t[h0:t]2) =

∫
M0(dx0)Q1:t[h0:t](x0)Q1:t[h0:t](x0)

=
∫

M0(dx0)δx0(dx′0)Q1:t[h0:t](x0)Q1:t[h0:t](x′0)

= Qe0,t(h⊗2
0:t ) .
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B.1.4 Proof of Theorem 4.4.4

Let m ∈ N>0 and N ≥ 2. Define

Im
0 := {k1:2m ∈ [N ]2m : k2i−1 ̸= k2i, i ∈ [1 : m]} , (B.1.5)
Im

1 := {k1:2m ∈ [N ]2m : k2i−1 = k2i, i ∈ [1 : m]} . (B.1.6)

Define also for any p ∈ [2m],

Sp
m := {k1:2m ∈ [N ]2m : Card({k1, k2, · · · , k2m−1, k2m}) = p} .

Then [N ]2m = ⊔2m
p=1 Sp

m and

Im
0 =

2m⊔
p=1
Im

0 ∩ Sp
m =

2m⊔
p=2
Im

0 ∩ Sp
m , Im

1 =
2m⊔
p=1
Im

1 ∩ Sp
m =

m⊔
p=1
Im

1 ∩ Sp
m , (B.1.7)

where ⊔ means disjoint union. The first equality holds because the tuples in Im
0 must contain

at least two different values and the second because tuples in Im
1 contain at most m different

values. The proof of Theorem 4.4.4 is concerned with m = 2 and that of Proposition B.1.4 with
m ≥ 2. Example B.1.1 provides the intersections for the case m = 2.
Example B.1.1. Choose m = 2 and N ≥ 4. Then,

I2
0 ∩ S2

2 = {k1:4 ∈ [N ]4 : k1 ̸= k2, k3 ̸= k4, {k3, k4} = {k1, k2}} ,

I2
0 ∩ S3

2 = {k1:4 ∈ [N ]4 : k1 ̸= k2, k3 ̸= k4, k3 ∈ {k1, k2}, k4 /∈ {k1, k2}} ,

⊔ {k1:4 ∈ [N ]4 : k1 ̸= k2, k3 ̸= k4, k3 /∈ {k1, k2}, k4 ∈ {k1, k2}} ,

I2
0 ∩ S4

2 = {k1:4 ∈ [N ]4 : k1 ̸= k2 ̸= k3 ̸= k4} ,

with Card(I2
0 ∩ S2

2 ) = 2N(N − 1), Card(I2
0 ∩ S3

2 ) = 4N(N − 1)(N − 2) and Card(I2
0 ∩ S4

2 ) =
N(N − 1)(N − 2)(N − 3). As for I2

1 ,

I2
1 ∩ S1

2 = {k1:4 ∈ [N ]4 : k1 = k2 = k3 = k4} ,

I2
1 ∩ S2

2 = {k1:4 ∈ [N ]4 : k1 = k2, k3 = k4, k1 ̸= k3} .

with Card(I2
1 ∩ S1

2 ) = N and Card(I2
1 ∩ S2

2 ) = N(N − 1).

Proof of Theorem 4.4.4. We proceed by induction. Throughout the proof we assume that N ≥ 4
for the sake of simplicity. For t = 0 and b = 0, using (4.4.23) and (4.4.20),

QN,BS
0,0 (h) = N−1(N − 1)−1 ∑

i,j∈[N ]2
1i ̸=jh(ξi

0, ξj
0) ,

and Q0,0(h) = M⊗2
0 (h).

∥∥QN,BS
0,0 (h)−Q0,0(h)

∥∥2
2

= E
[ 1

N2(N − 1)2

∑
i,j,i′,j′∈[N ]4

1i ̸=j,i′ ̸=j′
{
h(ξi

0, ξj
0)−Q0,0(h)

}{
h(ξi′

0 , ξj′

0 )−Q0,0(h)
}]

= τ0 + τ0
N2(N − 1)2 ,
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where

τ0 = E

 ∑
i,j,i′,j′∈I2

0∩S
4
2

{h(ξi
0, ξj

0)−Q0,0(h)}{h(ξi′
0 , ξj′

0 )−Q0,0(h)}

 ,

τ0 = E

 ∑
i,j,i′,j′∈I2

0∩S
4
2

{h(ξi
0, ξj

0)−Q0,0(h)}{h(ξi′
0 , ξj′

0 )−Q0,0(h)}

 ,

where I2
0 ∩ S4

2 is defined in (B.1.5), (B.1.7) and explicited in Example B.1.1, and I2
0 ∩ S4

2 =
(I2

0 ∩ S2
2 ) ⊔ (I2

0 ∩ S3
2 ). If (i, j, i′, j′) ∈ I2

0 ∩ S4
2 , then ξi

0, ξj
0, ξi′

0 and ξj′

0 are i.i.d. Therefore,

E
[{

h(ξi
0, ξj

0)−Q0,0(h)
}{

h(ξi′
0 , ξj′

0 )−Q0,0(h)
}]

= E
[{

h(ξi
0, ξj

0)−Q0,0(h)
}]2

= 0 ,

and τ0 = 0. Hence, using the fact that because h is bounded, ∥h − Q0,0(h)∥∞ ≤ 2∥h∥∞ and
that Card(I2

0 ∩ S4
2 ) = 4N(N − 1)(N − 2) + 2N(N − 1) by Example B.1.1, we get

∥∥QN,BS
0,0 (h)−Q0,0(h)

∥∥2
2 ≤

τ0
N2(N − 1)2

≤ 4∥h∥2∞
N2(N − 1)2

∑
i,j,i′,j′∈I2

0∩S
4
2

1 ,

=
4∥h∥2∞

[
4N(N − 1)(N − 2) + 2N(N − 1)

]
N2(N − 1)2 = O(N−1) ,

which completes the proof for b = 0. For b = 1,

QN,BS
1,0 (h)−Q1,0(h) = N−1

N∑
i=1

h(ξi
0, ξi

0)−
∫

h(x, x)M0(dx) ,

and since h is bounded,∥∥QN,BS
1,0 (h)−Q1,0(h)

∥∥2
2 = N−1VM0

[
h(ξ, ξ)

]
= O(N−1) ,

where VM0 is the variance under M0. This completes the proof for t = 0. Let t > 0, and
assume now that (4.4.18) holds at time t− 1. Consider the following decomposition

QN,BS
b,t (h)−Qb,t(h) = QN,BS

b,t (h)− E
[
QN,BS

b,t (h)
∣∣FN

t−1
]

+ E
[
QN,BS

b,t (h)
∣∣FN

t−1
]
−Qb,t(h) ,

which, by Proposition 4.4.3, becomes

QN,BS
b,t (h)−Qb,t(h) = QN,BS

b,t (h)−QN,BS
b,t−1(g⊗2

t−1M
bt
t [h])

+QN,BS
b,t−1(g⊗2

t−1M
bt
t [h])−Qb,t−1(g⊗2

t−1M
bt
t [h]) . (B.1.8)

By the induction hypothesis, since h is bounded and also gt−1 by (A5), we have

lim
N→∞

∥∥∥QN,BS
b,t−1(g⊗2

t−1M
bt
t [h])−Qb,t−1(g⊗2

t−1M
bt
t [h])

∥∥∥
2

= 0 ,

hence, by Minkowski’s inequality it remains to prove that

lim
N→∞

∥∥∥QN,BS
b,t (h)−QN,BS

b,t−1(g⊗2
t−1M

bt
t [h])

∥∥∥
2

= 0 . (B.1.9)
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By Proposition 4.4.3, E
[
QN,BS

b,t (h)
∣∣FN

t−1
]

= QN,BS
b,t−1(g⊗2

t−1M
bt
t [h]) and

E
[
QN,BS

b,t (h)QN,BS
b,t−1(g⊗2

t−1M
bt
t [h])

]
= E

[
QN,BS

b,t−1(g⊗2
t−1M

bt
t [h])2] ,

hence, ∥∥QN,BS
b,t (h)−QN,BS

b,t (g⊗2
t−1M

bt
t [h])

∥∥2
2 =

∥∥QN,BS
b,t (h)

∥∥2
2 −

∥∥QN,BS
b,t−1(g⊗2

t−1M
bt
t [h])

∥∥2
2 .

Consequently, by Proposition B.1.8, if bt = 0,∥∥∥QN,BS
b,t (h)−QN,BS

b,t−1(g⊗2
t−1M

0
t [h])

∥∥∥2

2
(B.1.10)

≤
((N − 2)(N − 3)

N(N − 1) − 1
)∥∥∥QN,BS

b,t−1(g⊗2
t−1M

0
t [h])

∥∥∥2

2

+ N − 2
N − 1G3

∞|h|2∞
∫

ν(dx)E
[Ωt−1

N

{
QN,BS

b,t−1(mt(., x)⊗ 1)QN,BS
b,t−1(βN

t (x, .)⊗ 1)

+QN,BS
b,t−1(1⊗mt(., x))QN,BS

b,t−1(βN
t (x, .)⊗ 1) +QN,BS

b,t−1(mt(., x)⊗ 1)

×QN,BS
b,t−1(1⊗ βN

t (x, .)) +QN,BS
b,t−1(1⊗mt(., x))QN,BS

b,t−1(1⊗ βN
t (x, .))

]
+ G2

∞|h|2∞
∫

ν⊗2(dy, dx)E
[ Ω2

t−1
N(N − 1)

×
{
QN,BS

b,t−1(mt(., x)⊗mt(., y))QN,BS
b,t−1

(
βN

t (x, .)⊗ βN
t (y, .)

)
+QN,BS

b,t−1(mt(., x)⊗mt(., y))QN,BS
b,t−1

(
βN

t (y, .)⊗ βN
t (x, .)

)}]
,

and if bt = 1,∥∥∥QN,BS
b,t (h)−QN,BS

b,t−1(g⊗2
t−1M

1
t [h])

∥∥∥2

2
≤
(

N − 1
N

− 1
)
∥QN,BS

b,t−1(g⊗2
t−1M

1
t [h])∥22

+ G3
∞|h|2∞

∫
E
[Ωt−1

N
QN,BS

b,t−1(mt(., x)⊗ 1)QN,BS
b,t−1(βN

t (x, .)⊗ 1)
]

ν(dx) . (B.1.11)

By Proposition B.1.4, the first term in the r.h.s. of (B.1.10) and (B.1.11) is O(N−1) in both
cases because

∣∣g⊗2
t−1M

bt
t [h]

∣∣
∞ ≤ G2

∞|h|∞ < ∞. We now show that the remaining terms go to
zero when N goes to infinity. Define for any x ∈ X and N ∈ N>0,

BN (x) := Ωt−1
N
QN,BS

b,t−1 (mt(., x)⊗ 1)QN,BS
b,t−1(1⊗ βN

t (x, .)) ,

B̃N (x) := QN,BS
b,t−1 (mt(., x)⊗ 1)QN,BS

b,t−1 (1⊗ 1) ,

B̃(x) := Qb,t−1 (mt(., x)⊗ 1)Qb,t−1(1⊗ 1) .

(B.1.12)

We apply Theorem B.3.1 with fN = E
[
BN

]
, gN = E

[
B̃N

]
, g = B̃ and f = 0. To establish i),

note that E
[
BN (x)

]
≤ G∞E

[
B̃N (x)

]
for all N ∈ N>0 and x ∈ X, since for all (x, i) ∈ X × [N ],

βN
t (x, ξi

t−1) ≤ 1 and N−1Ωt−1 ≤ G∞. Then, to prove ii), for all (h, f) ∈ F(X⊗t)2, by the
Cauchy-Schwarz inequality,∣∣∣E [QN,BS

b,t−1(h)QN,BS
b,t−1(f)−Qb,t−1(h)Qb,t−1(f)

]∣∣∣
≤ E

[∣∣∣(QN,BS
b,t−1(h)−Qb,t−1(h)

)
QN,BS

b,t−1(f)
∣∣∣]+ E

[∣∣∣(QN,BS
b,t−1(f)−Qb,t−1(f)

)
Qb,t−1(h)

∣∣∣]
≤
∥∥QN,BS

b,t−1(h)−Qb,t−1(h)
∥∥

2
∥∥QN,BS

b,t−1(f)
∥∥

2 +
∥∥QN,BS

b,t−1(f)−Qb,t−1(f)
∥∥

2
∣∣Qb,t−1(h)

∣∣ ,
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which goes to zero by the induction hypothesis, the fact that supN∈N
∥∥QN,BS

b,t−1(f)
∥∥

2 < ∞ by
Proposition B.1.4 and |Qb,t−1(h)| <∞. Hence, for all x ∈ X,

lim
N→∞

gN (x) = g(x) and lim
N→∞

E
[
QN,BS

b,t−1(1⊗ 1)2
]

= Qb,t−1(1⊗ 1)2 .

Added to the fact that
∫

B̃N (x)ν(dx) = QN,BS
b,t−1(1 ⊗ 1)2 and

∫
B̃(x)ν(dx) = Qb,t−1(1 ⊗ 1)2, we

get by applying Fubini’s theorem

lim
N→∞

∫
E
[
B̃N (x)

]
ν(dx) = lim

N→∞
E
[
QN,BS

b,t−1(1⊗ 1)2
]

= Qb,t−1(1⊗ 1)2 =
∫

B̃(x)ν(dx) .

Then, for iii), first we have that E
[
BN (x)3/2] ≤ G

3/2
∞ E

[
B̃N (x)3/2] and

sup
N∈N

E
[
B̃N (x)3/2] ≤ σ

3/2
+ sup

N∈N
E
[
QN,BS

b,t−1(1⊗ 1)3] ,

where the r.h.s. is finite by choosing m = 3 in Proposition B.1.4. The family of non negative
random variables {BN (x)}N∈N is then uniformly integrable for any x ∈ X. Indeed, for any
x ∈ X, α ∈ R∗+ and N ∈ N,

E
[
BN (x)1BN (x)≥α

]
≤ E

[
BN (x)3/2]/√α

≤ σ
3/2
+ G3/2

∞ sup
N∈N

E
[
QN,BS

b,t−1(1⊗ 1)3]/√α ,

hence lim
α→∞

supN∈N E
[
BN (x)1BN (x)≥α

]
= 0 . On the other hand,

BN (x) =
QN,BS

b,t−1 (mt(., x)⊗ 1)QN,BS
b,t−1 (1⊗ gt−1mt(., x))

NϕN
t−1 (mt(., x))

,

and the induction hypothesis coupled with the fact that ϕN
t−1(mt(., x)) P−→ ϕt−1(mt(., x)) with

ϕt−1(mt(., x)) > 0 by (A5 : 6) gives

QN,BS
b,t−1 (mt(., x)⊗ 1)QN,BS

b,t−1 (1⊗ gt−1mt(., x))
ϕN

t−1(mt(., x))
P−→ Qb,t−1 (mt(., x)⊗ 1)Qb,t−1 (1⊗ gt−1mt(., x))

ϕt−1(mt(., x)) .

Hence, BN (x) P−→ 0, and by uniform integrability, for any x ∈ X

lim
N→∞

fN (x) = lim
N→∞

E[BN (x)] = 0 .

Finally, by Theorem B.3.1 we deduce that

lim
N→∞

∫
E
[
BN (x)

]
ν(dx) =

∫
lim

N→∞
E
[
BN (x)

]
ν(dx) = 0 . (B.1.13)

The other similar terms are treated in the same way by adapting the definitions in (B.1.12). As
for the second integral, define for any (x, y) ∈ X2,

RN (x, y) := Ω2
t−1

N(N − 1)Q
N,BS
b,t−1(mt(., x)⊗mt(., y))QN,BS

b,t−1(βN
t (x, .)⊗ βN

t (y, .)) .
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Then, using that∫
QN,BS

b,t−1
(
mt(., x)⊗mt(., y)

)
QN,BS

b,t−1

(
βN

t (x, .)⊗ βN
t (y, .)

)
ν(dy)

≤ QN,BS
b,t−1

(
mt(., x)⊗ 1

)
QN,BS

b,t−1

(
βN

t (x, .)⊗ 1
)

,

together with Fubini’s theorem we obtain, using N ≥ 4,

0 ≤
∫

E
[
RN (x, y)

]
ν⊗2(dx, dy) ≤ 4G∞

3

∫
E
[
BN (x)

]
ν(dx) ,

and by (B.1.13) we get that

lim
N→∞

∫
E
[
RN (x, y)

]
ν⊗2(dx, dy) = 0 .

The remaining term goes to zero by a similar reasoning. This completes the proof of (4.4.18).
For the convergence rate, by the strong mixing assumption we have that

βN
t (x, y) ≤ G∞σ+

σ−Ωt−1
∀(x, y) ∈ X2 , (B.1.14)

and in the case bt = 0, we have for example that∫
QN,BS

b,t−1(mt(., x)⊗ 1)QN,BS
b,t−1(βN

t (x, .)⊗ 1)ν(dx)

≤ G∞σ+
σ−Ωt−1

∫
QN,BS

b,t−1(mt(., x)⊗ 1)QN,BS
b,t−1(1⊗ 1)ν(dx)

≤ G∞σ+
σ−Ωt−1

QN,BS
b,t−1(1⊗ 1)2 .

and ∫
QN,BS

b,t−1
(
mt(., x)⊗mt(., y)

)
QN,BS

b,t−1
(
βN

t (x, .)⊗ βN
t (y, .)

)
ν⊗2(dx, dy)

≤
G2
∞σ2

+
σ2
−Ω2

t−1
QN,BS

b,t−1(1⊗ 1)2 .

Thus, replacing in (i), we get∥∥QN,BS
b,t (h)−QN,BS

b,t−1(g⊗2
t−1M

0
t [h])

∥∥2
2

≤
[(N − 2)(N − 3)

N(N − 1) − 1
] ∥∥QN,BS

b,t−1(g⊗2
t−1M

bt
t [h])

∥∥2
2

+ 2σ+G4
∞|h|2∞

σ−

[ 2(N − 2)
N(N − 1) + σ+

σ−N(N − 1)

] ∥∥QN,BS
b,t−1(1)

∥∥2
2 .

The case bt = 1 is handled similarly using (ii) which yields∥∥QN,BS
b,t (h)−QN,BS

b,t−1(g⊗2
t−1M

1
t [h])

∥∥2
2

≤
[

N − 1
N

− 1
]
∥QN,BS

b,t−1(g⊗2
t−1M

1
t [h])∥22 + σ+G4

∞|h|2∞
N

∥∥QN,BS
b,t−1(1)

∥∥2
2 .

Both upper bounds are O(N−1) by Proposition B.1.4. This concludes the proof.
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B.1.5 Proof of Theorem 4.4.7

The proof is a straightforward adaptation of the proof in (Lee and Whiteley, 2018, Theorem 1).
Let h ∈ F(X ). By (4.4.30),

VN,BS
γ,t (h) =

t∑
s=0

(
N − 1

N

)t

QN,BS
es,t (h⊗2

t ) + N

[(
N − 1

N

)t+1
− 1

]
QN,BS

0,t (h⊗2
t )

+
∑

b∈Bt\{0,e0:t}
N

{ t∏
s=0

1
N bs

(
N − 1

N

)1−bs}
QN,BS

b,t (h⊗2
t )

P−→
t∑

s=0

{
Qb,t(h⊗2

t )−Q0,t(h⊗2
t )
}

= V∞γ,t(h) ,

where we have used that for any b ∈ Bt, QN,BS
b,t (h⊗2

t ) P−→ Qb,t(h⊗2
t ) by Theorem 4.4.4.

B.1.6 Proof of Theorem 4.4.9

Define for any t ∈ [N ] and b ∈ Bt,
GN

t := σ
(
GN

t−1 ∪ σ({J i
k,t−1}(i,k)∈[N ]2) ∪ σ({Ai

t−1, ξi
t}Ni=1)

)
, (B.1.15)

with GN
0 = FN

0 . In the following, we write

CN,b,t :=
{

t∏
s=0

N bs

(
N

N − 1

)1−bs
}

γN
t (1)2/N2 . (B.1.16)

The intermediary results used in the next proof are given in Section B.1.10.

Proof of Theorem 4.4.9. Let h ∈ F(X⊗2). We proceed again by induction. The case t = 0 is a
consequence of Theorem 4.4.4 since Q̃N,M

b,0 (h) = QN,BS
b,0 (h) for any b ∈ B0. Let t > 0. Similarly

to Theorem 4.4.4 we make use of the following decomposition:

Q̃N,M
b,t (h)−Qb,t(h) = Q̃N,M

b,t (h)− Q̃N,M
b,t−1(g⊗2

t−1M
bt
t [h])

+ Q̃N,M
b,t−1(g⊗2

t−1M
bt
t [h])−Qb,t−1(g⊗2

t−1M
bt
t [h]) .

By Minkowski’s inequality and the induction hypothesis, it remains to prove that
lim

N→∞

∥∥Q̃N,M
b,t (h)− Q̃N,M

b,t−1(g⊗2
t−1M

bt
t [h])

∥∥
2 = 0 . (B.1.17)

By Lemma B.1.9, E
[
Q̃N,M

b,t (h)
∣∣GN

t−1
]

= Q̃N,M
b,t (g⊗2

t−1M
bt
t [h]) and

E
[
Q̃N,M

b,t (h)Q̃N,M
b,t−1(g⊗2

t−1M
bt
t [h])

]
= E

[
Q̃N,M

b,t−1(g⊗2
t−1M

bt
t [h])2] ,

hence, ∥∥Q̃N,M
b,t (h)− Q̃N,M

b,t (g⊗2
t−1M

bt
t [h])

∥∥2
2 =

∥∥Q̃N,M
b,t (h)

∥∥2
2 −

∥∥Q̃N,M
b,t−1(g⊗2

t−1M
bt
t [h])

∥∥2
2 .

By Proposition B.1.10, if bt = 0,∥∥Q̃N,M
b,t (h)

∥∥2
2 =

4∑
p=2

E
[
C2

N,b,t

∑
k1:4

t ∈I2
0∩S

p
2

T̃ b
t (k1

t , k2
t )T̃ b

t (k3
t , k4

t )
]

≤ (N − 2)(N − 3)
N(N − 1)

∥∥Q̃N,M
b,t−1(g⊗2

t−1M
0
t [h])

∥∥2
2

+ |h|2∞
3∑

p=2
E
[
C2

N,b,t

∑
k1:4

t ∈I2
0∩S

p
2

T̃ b
t (k1

t , k2
t )T̃ b

t (k3
t , k4

t )
]

,
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and
∥∥Q̃N,M

b,t (h)− Q̃N,M
b,t (g⊗2

t−1M
bt
t [h])

∥∥2
2

≤
((N − 2)(N − 3)

N(N − 1) − 1
)∥∥Q̃N,M

b,t−1(g⊗2
t−1M

bt
t [h])

∥∥2
2

+ |h|2∞
3∑

p=2
E
[
C2

N,b,t

∑
k1:4

t ∈I2
0∩S

p
2

T̃ b
t (k1

t , k2
t )T̃ b

t (k3
t , k4

t )
]

.

By Proposition B.1.12, (A5) and the fact that h is bounded, supN∈N
∥∥Q̃N,M

b,t−1(g⊗2
t−1M

bt
t [h])

∥∥2
2 <∞

and

lim
N→∞

((N − 2)(N − 3)
N(N − 1) − 1

)∥∥Q̃N,M
b,t−1(g⊗2

t−1M
bt
t [h])

∥∥2
2 = 0 ,

and by (i) in Proposition B.1.11, the second term in the r.h.s. also goes to zero, which shows
(B.1.17) when bt = 0. If bt = 1,

∥∥QN,BS
b,t (h)

∥∥2
2 =

2∑
p=1

E
[
C2

N,b,t

∑
k1:4

t ∈I2
1∩S

p
2

T̃ b
t (k1

t , k2
t )T̃ b

t (k3
t , k4

t )
]

≤ N − 1
N

∥∥Q̃N,M
b,t−1(g⊗2

t−1M
1
t [h])

∥∥2
2 + |h|2∞E

[
C2

N,b,t

∑
k1:4

t ∈I2
1∩S

1
2

T̃ b
t (k1

t , k2
t )T̃ b

t (k3
t , k4

t )
]

,

and
∥∥Q̃N,M

b,t (h)−Q̃N,M
b,t (g⊗2

t−1M
bt
t [h])

∥∥2
2 goes to zero similarly to the case bt = 0 and by application

of Proposition B.1.11.
The convergence rate follows straightforwardly by Proposition B.1.11 since for p ∈ {2, 3}

E
[
C2

N,b,t

∑
k1:4

t ∈I2
0∩S

p
2

T̃ b
t (k1

t , k2
t )T̃ b

t (k3
t , k4

t )
]

= O(N−1) ,

and

E
[
C2

N,b,t

∑
k1:4

t ∈I2
1∩S

1
2

T̃ b
t (k1

t , k2
t )T̃ b

t (k3
t , k4

t )
]

= O(N−1) .

B.1.7 Proof of Theorem 4.4.10

The proof boils down to showing a PaRIS version of the identity (4.4.30). Let us first prove
that for all t ∈ N and (k1

t , k2
t ) ∈ [N ]2, ∑

b∈Bt

T̃ b
t (k1

t , k2
t ) = 1 . (B.1.18)

We proceed by induction. If t = 0,∑
b∈B0

T̃ b
t (k1

0, k2
0) = 1k1

0 ̸=k2
0

+ 1k1
0=k2

0
= 1 .
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Let t > 0 and assume that (B.1.18) holds at t− 1 for all (k1
t−1, k2

t−1) ∈ [N ]2. By the induction
hypothesis,∑

b∈Bt

T̃ b
t (k1

t , k2
t )

=
∑

b∈Bt−1

M−1
{
1k1

t ̸=k2
t

M∑
i=1
T̃ b

t−1(J i
k1

t ,t−1, J i
k2

t ,t−1) + 1k1
t =k2

t

M∑
i=1

N∑
n=1

ωn
t−1T̃ b

t−1(J i
k1

t ,t−1, n)
}

= M−1
M∑

i=1

{
1k1

t ̸=k2
t

∑
b∈Bt−1

T̃ b
t−1(J i

k1
t ,t−1, J i

k2
t ,t−1) + 1k1

t =k2
t

N∑
n=1

ωn
t−1

∑
b∈Bt−1

T̃ b
t−1(J i

k1
t ,t−1, n)

}

= 1k1
t ̸=k2

t
M−1

M∑
i=1

1 + 1k1
t =k2

t
M−1

N∑
n=1

M∑
i=1

ωn
t−1

= 1k1
t ̸=k2

t
+ 1k1

t =k2
t

= 1 .

which proves (B.1.18) at time t. Consequently, we have that for all h ∈ F(X )

∑
b∈Bt

t∏
s=0

N−bs

(
N − 1

N

)1−bs

Q̃N,M
b,t (h⊗2) =

∑
b∈Bt

γN
t (1)2

N2

∑
k1:2

t ∈[N ]2
T̃ b

t (k1
t , k2

t )h(ξk1
t

t )h(ξk2
t

t )

= γN
t (1)2

N2

∑
k1:2

t ∈[N ]2
h(ξk1

t
t )h(ξk2

t
t )

∑
b∈Bt

T̃ b
t (k1

t , k2
t )

= γN
t (1)2ηN

t (h)2 = γN
t (h)2 .

The convergence in probability is then obtained by mimicking the proof of Theorem 4.4.7 and
using Theorem 4.4.9.

B.1.8 Proof of Theorem 4.5.2

The proof of Theorem 4.5.2 requires the convergence of TN
s [h0:s](x) to Ts[h0:s](x) P-a.s. for

any x ∈ X.
Proposition B.1.2. For any s ∈ N>0, any x ∈ X and additive functional h0:s (4.5.5),

TN
s [h0:s](x) a.s.−→

N→∞
Ts[h0:s](x) . (B.1.19)

Proof. Let x ∈ X. Define
aN := ηN

s−1

(
gs−1

{
TN

s−1[h̃0:s−1]fx
s−1 + f̃x

s−1
})

,

bN := ηN
s−1 (gs−1ms(., x)) ,

b := ηs−1
(
gs−1ms(., x)

)
.

where fx
s−1 : y 7→ ms(y, x) and

f̃x
s−1 : y 7→ ms(y, x)

{
h̃s−1(y, x)−Ts[h0:s](x)

}
.

Then, we have that aN /bN = TN
s [h0:s](x)−Ts[h0:s](x). By (A7), (fx

s−1, f̃x
s−1) ∈ F(X )2 for any

x ∈ X and

ηs−1
(
gs−1{Ts−1[h̃0:s−1]fx

s−1 + f̃x
s−1}

)
= 0 .
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Hence, choosing fs−1 = fx
s−1 and f̃s−1 = f̃x

s−1 in Theorem B.3.2 (B.3.1), there exists (d, d̃) ∈
(R∗+)2 such that

P (|aN | ≥ ϵ) ≤ d̃ exp(−dNϵ2) . (B.1.20)

On the other hand, by choosing fs−1 = fx
s−1 and f̃s−1 = 0, there exists (d′, d̃′) ∈ (R∗+)2 such

that

P (|bN − b| ≥ ϵ) ≤ d̃′ exp(−d′Nϵ2) .

Finally, since |aN /bN | ≤
∣∣∣TN

s [h0:s](x)
∣∣∣ + |Ts[h0:s](x)| ≤ 2|h0:s|∞ P-a.s. and b > 0 by (A5 : 6),

there exist (cs, c̃s) ∈ (R∗+)2 by Lemma B.3.3 such that

P (|aN /bN | ≥ ϵ) = P
(∣∣∣TN

s [h0:s](x)−Ts[h0:s](x)
∣∣∣ ≥ ϵ

)
≤ c̃s exp(−csNϵ2) ,

from which (B.1.19) follows by applying the Borel-Cantelli Lemma.

Proposition B.1.3. For any s ∈ N>0 and additive functional h0:s (4.5.5)

lim
N→∞

E
[
ϕN

s−1Ms

[(
TN

s [h0:s]−Ts[h0:s]
)4]] = 0 . (B.1.21)

Proof. The proof is a straightforward application of (Olsson and Westerborn, 2017, Lemma
17) (which dates back to Douc et al. (2011a)). We recall it with its proof for the sake of
completeness. Define for any x ∈ X

AN (x) :=
∣∣TN

s [h0:s](x)−Ts[h0:s](x)
∣∣4ϕN

s−1
(
ms(., x)

)
,

ÃN (x) := ϕN
s−1
(
ms(., x)

)
,

Ã(x) := ϕs−1
(
ms(., x)

)
.

We apply Theorem B.3.1 with fN = E
[
AN

]
, gN = E

[
ÃN

]
, f = 0 and g = Ã.

(i) For any xs ∈ X,
∣∣TN

s [h0:s]
∣∣(xs) ≤

∫
|h0:s|(x0:s)TN

s (xs, dx0:s−1) ≤ |h0:s|∞, hence

E
[
AN (x)

]
≤ 16|h0:s|4∞E

[
ÃN (x)

]
.

(ii) We have that ÃN (x) a.s.−→
N→∞

Ã(x) for any x ∈ X by (A7), (4.3.5) and by the dominated

convergence theorem lim
N→∞

E
[
ÃN (x)

]
= Ã(x). On the other hand,

∫
E
[
ÃN (x)

]
ν(dx) =

E
[
ϕN

s (1)
]
,
∫

Ã(x)ν(dx) = ϕs(1) and lim
N→∞

E
[
ϕN

s (1)
]

= ϕs(1) again by the dominated
convergence theorem. Hence

lim
N→∞

∫
E
[
ÃN (x)

]
ν(dx) = lim

N→∞
E
[
ϕN

s (1)
]

= ϕs(1) =
∫

Ã(x)ν(dx) . (B.1.22)

(iii) By Proposition B.1.2, (A7) and (4.3.5)

AN (x) a.s.−→
N→∞

0 ,

and since AN (x) ≤ 16|h0:s|4∞σ+ P-a.s., by the dominated convergence theorem we get
lim

N→∞
E
[
AN (x)] = 0 .
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Finally, by Theorem B.3.1

lim
N→∞

E
[ ∫

AN (x)ν(dx)
]

= lim
N→∞

E
[
ϕN

s−1Ms
[(

TN
s [h0:s]−Ts[h0:s]

)4]] (B.1.23)

=
∫

lim
N→∞

E
[
AN (x)

]
ν(dx) = 0 .

Proof of Theorem 4.5.2. We write

HN
s,t := TN

s [h0:s]ct + h̃s:t, Hs,t := Ts[h0:s]dt + h̃s:t

FN
s,t := TN

s [f0:s]ct + f̃s:t, Fs,t := Ts[f0:s]dt + f̃s:t

We proceed by induction on t ≥ s with s fixed. By Theorem 4.4.4,

lim
N→∞

∥∥∥QN,BS
es,s

(
Hs,s ⊗ Fs,s

)
−Qes,s

(
Hs,s ⊗ Fs,s

)∥∥∥2

2
= 0 .

Hence, by the triangle inequality it suffices to show that the difference with the "idealized"
estimator goes to 0, i.e.

lim
N→∞

∥∥∥QN,BS
es,s

(
HN

s,s ⊗ FN
s,s

)
−QN,BS

es,s

(
Hs,s ⊗ Fs,s

)∥∥∥2

2
= 0 . (B.1.24)

For any (h0:s, f0:s) (4.5.5) and (hs, fs) ∈ F(X )2, by (4.4.20)∥∥∥QN,BS
es,s

(
HN

s,s ⊗ FN
s,s

)
−QN,BS

es,s

(
Hs,s ⊗ Fs,s

)∥∥∥
2

≤ N−2
∥∥∥∥ ∑

i,j∈[N ]2

N s+1γN
s (1)2

(N − 1)s
T es

s (i, j)
[
HN

s,s(ξi
s)FN

s,s(ξj
s)−Hs,s(ξi

s)Fs,s(ξj
s)
]∥∥∥∥

2

≤ N−1 ∑
i,j∈[N ]2

∥∥∥∥∥N sγN
s (1)2

(N − 1)s
T es

s (i, j)
∥∥∥∥∥

4

∥∥∥∥HN
s,s(ξi

s)FN
s,s(ξj

s)−Hs,s(ξi
s)Fs,s(ξj

s)
∥∥∥∥

4

by Cauchy-Schwarz inequality. We now show supN∈N

∥∥∥N s(N − 1)−sγN
s (1)2T es

s (i, j)
∥∥∥

4
is bounded

for all (i, j) ∈ [N ]2. We first show by induction that for any n ∈ N, T 0
n (i, j) ≤ 1i ̸=j . For all

(i, j) ∈ [N ]2 , T 0
0 (i, j) = 1i ̸=j , and for any n > 0, by (4.4.23)

T 0
n (i, j) = 1i ̸=j

∑
k,ℓ∈[N ]2

βBS
n (i, k)βBS

n (j, ℓ)T 0
n−1(k, ℓ)

≤ 1i ̸=j

∑
k,ℓ∈[N ]2

βBS
n (i, k)βBS

n (j, ℓ)1k ̸=ℓ

≤ 1i ̸=j

∑
k,ℓ∈[N ]2

βBS
n (i, k)βBS

n (j, ℓ) ≤ 1i ̸=j ,

where we have used the induction hypothesis in the second line. This shows the result. Next,
we have that

T es
s (i, j) = 1i=j

∑
k,ℓ∈[N ]2

βBS
s (i, k)ωℓ

s−1T 0
s−1(k, ℓ)

≤ 1i=j

∑
k,ℓ∈[N ]2

βBS
s (i, k)ωℓ

s−11k ̸=ℓ

≤ 1i=j

∑
k,ℓ∈[N ]2

βBS
s (i, k)ωℓ

s−1 = 1i=j .
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Hence, supN∈N

∥∥∥N sγN
s (1)2/(N − 1)sT es

s (i, j)
∥∥∥

4
≤ (2G2

∞)s
1i=j . Consequently,

∥∥∥QN,BS
es,s

(
HN

s,s ⊗ FN
s,s

)
−QN,BS

es,t

(
Hs,s ⊗ Fs,s

)∥∥∥
2

≤ (2G2
∞)s

N

N∑
i=1

∥∥∥HN
s,s(ξi

s)FN
s,s(ξi

s)−Hs,s(ξi
s)Fs,s(ξi

s)
∥∥∥

4
, (B.1.25)

and ∥∥∥HN
s,s(ξi

s)FN
s,s(ξj

s)−Hs,s(ξi
s)Fs,s(ξj

s)
∥∥∥

4

≤
∥∥(HN

s,s(ξi
s)−Hs,s(ξi

s)
)
FN

s,s(ξi
s)
∥∥

4 +
∥∥(FN

s,s(ξi
s)− Fs,s(ξi

s)
)
HN

s,s(ξi
s)
∥∥

4

≤ Cf,c

∥∥TN
s [h0:s](ξi

s)−Ts[h0:s](ξi
s)
∥∥

4 + Ch,d

∥∥TN
s [f0:s](ξi

s)−Ts[f0:s](ξi
s)
∥∥

4 .

where Cf,d := |ds|4∞
(
|f0:s|∞+|fs|∞

)4 and Ch,c := |cs|4∞
(
|h0:s|∞+|hs|∞

)4 which are finite because
h̃s, f̃s) ∈ F(X⊗2)4, (cs, ds, hs, fs) ∈ F(X )4. We have used that

∣∣HN
s,s(ξi

s)
∣∣ ≤ ∫ |cs|∞|h0:s|∞TN

s (ξi
s, dx0:s−1) + |hs|∞ = |cs|∞|h0:s|∞ + |hs|∞ = Ch,c .

For any h0:s ∈ F(X⊗s+1),∥∥TN
s [h0:s](ξi

s)−Ts[h0:s](ξi
s)
∥∥4

4

= E
[
E
[
TN

s [h0:s](ξi
s)−Ts[h0:s](ξi

s)
)4∣∣FN

t−1
]]

= E
[ N∑

j=1
ωj

s−1

∫ (
TN

s [h0:s](x)−Ts[h0:s](x)
)4

Ms(ξj
s−1, dx)

]
= E

[
ϕN

s−1Ms

[(
TN

s [h0:s]−Ts[h0:s]
)4]]

,

and replacing in (B.1.25) we get∥∥∥QN,BS
es,t

(
HN

s,s ⊗ FN
s,t

)
−QN,BS

es,s

(
Hs,t ⊗ Fs,t

)∥∥∥2

2

≤ (2G2
∞)s

{
Cf,dE

[
ϕN

s−1Ms

[(
TN

s [h0:s]−Ts[h0:s]
)4]]

+ Ch,cE
[
ϕN

s−1Ms

[(
TN

s [f0:s]−Ts[f0:s]
)4]]}

The upperbound goes to zero by Proposition B.1.3 and this finishes the proof of the initialization.
Let t > s and h0:s ∈ Ab(X⊗s+1) an additive functional. Assume that (B.1.24) holds at t − 1.
By the induction hypothesis

lim
N→∞

∥∥QN,BS
es,t−1

(
QtHN

s,t ⊗QtFN
s,t

)
−Qes,t−1

(
QtHs,t ⊗QtFs,t

)∥∥
2 = 0 ,

where Qt is defined in (4.3.1) and for example

QtHN
s,t(xs:t−1) = TN

s [h0:s](xs)Qt[ct](xt−1) + Qt[h̃s:t](xs:t−1) ,

where Qt[ct] and Qt[h̃s:t] are bounded by (A5), and by defintion of Qes,t (4.3.1)

Qes,t−1
(
QtHs,t ⊗QtFs,t

)
= Qes,t

(
Hs,t ⊗ Fs,t

)
.
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Hence, to prove (4.5.10) it is enough to show

lim
N→∞

∥∥QN,BS
es,t

(
HN

s,t ⊗ FN
s,t

)
−QN,BS

es,t−1
(
QtHN

s,t ⊗QtFN
s,t

)∥∥
2 = 0 . (B.1.26)

Because TN
s [h0:s] and TN

s [f0:s] are FN
t−1-measurable, by Proposition 4.4.3

E
[
QN,BS

es,t

(
HN

s,t ⊗ FN
s,t

)∣∣FN
t−1
]

= QN,BS
es,t−1

(
QtHN

s,t ⊗QtFN
s,t) ,

and thus

∥∥QN,BS
es,t

(
HN

s,t ⊗ FN
s,t

)
−QN,BS

es,t−1
(
QtHN

s,t ⊗QtFN
s,t

)∥∥
2

=
∥∥QN,BS

es,t

(
HN

s,t ⊗ FN
s,t

)∥∥
2 −

∥∥QN,BS
es,t−1

(
QtHN

s,t ⊗QtFN
s,t

)∥∥
2 . (B.1.27)

Now note that Proposition B.1.8 is still applicable with h = HN
s,t ⊗ FN

s,t although there is a
slight abuse because this specific h depends on the particles up to s − 1 through TN

s [h0:s]
and TN

s [f0:s]. However, as they are FN
t−1-measurable, Proposition B.1.7 is still valid and

hence Proposition B.1.8. Additionally, this specific h is bounded almost surely since for any
(xs:t, x′s:t) ∈

(
Xt−s+1)2

∣∣HN
s,t(xs:t)FN

s,t(x′s:t)
∣∣ ≤ C :=

(
|h0:s|∞|ct|∞ + |h̃s:t|∞

)(
|f0:s|∞|dt|∞ + |f̃s:t|∞

)
and hence

∥∥QN,BS
es,t

(
HN

s,t ⊗ FN
s,t

)
−QN,BS

es,t−1
(
QtHN

s,t ⊗QtFN
s,t

)∥∥
2

≤
[(N − 2)(N − 3)

N(N − 1) − 1
] ∥∥QN,BS

b,t−1
(
QtHN

s,t ⊗QtFN
s,t

)∥∥2
2

+ N − 2
N − 1G3

∞C2
∫

ν(dx)E
[Ωt−1

N

{
QN,BS

b,t−1(mt(., x)⊗ 1)QN,BS
b,t−1(βN

t (x, .)⊗ 1)

+QN,BS
b,t−1(1⊗mt(., x))QN,BS

b,t−1(βN
t (x, .)⊗ 1) +QN,BS

b,t−1(mt(., x)⊗ 1)

×QN,BS
b,t−1(1⊗ βN

t (x, .)) +QN,BS
b,t−1(1⊗mt(., x))QN,BS

b,t−1(1⊗ βN
t (x, .))

]
+
∫

ν⊗2(dy, dx)E
[

G2
∞C2Ω2

t−1
N(N − 1)

×
{
QN,BS

b,t−1(mt(., x)⊗mt(., y))QN,BS
b,t−1

(
βN

t (x, .)⊗ βN
t (y, .)

)
+QN,BS

b,t−1(mt(., x)⊗mt(., y))QN,BS
b,t−1

(
βN

t (y, .)⊗ βN
t (x, .)

)}]
.

The first term in the r.h.s. goes to zero by Proposition B.1.4 and the fact that QtHN
s,t⊗QtFN

s,t

are bounded. The remaining terms are similar to those that appear in the proof of Theorem 4.4.4
up to some constants and thus go to zero.
For the second part, by Theorem B.3.2 and Borel-Cantelli Lemma, ϕN

0:t|t(h) a.s.−→
N→∞

ϕ0:t|t(h).

Then, by multiple applications of Theorem 4.5.2 and using the bilinearity of QN,BS
b,t and Qb,t,
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for any s ∈ [0 : t] and bounded additive functional ht

QN,BS
es,t

([
gt
{
TN

s [h0:s] + h̃s:t − ϕN
0:t|t(ht)

}]⊗2)
= QN,BS

es,t

([
gt
{
TN

s [h0:s] + h̃s:t
}
]⊗2)− ϕN

0:t|t(ht)
(
QN,BS

es,t

([
gt
{
TN

s [h0:s] + h̃s:t
}
]⊗ 1

)
+

+QN,BS
es,t

(
1⊗

[
gt
{
TN

s [h0:s] + h̃s:t
}
]
))

+ ϕN
0:t|t(ht)2QN,BS

es,t

(
1⊗ 1

)
P−→ Qes,t

([
gt
{
Ts[h0:s] + h̃s:t

}
]⊗2)− ϕ0:t|t(ht)

(
Qes,t

([
gt
{
Ts[h0:s] + h̃s:t

}
]⊗ 1

)
+

+Qes,t
(
1⊗

[
gt
{
Ts[h0:s] + h̃s:t

}
]
))

+ ϕ0:t|t(ht)2Qes,t
(
1⊗ 1

)
= Qes,t

([
gt
{
Ts[h0:s] + h̃s:t − ϕ0:t|t(ht)

}]⊗2)
,

from which the weak consistency of VN,BS
0:t|t (h) follows.

B.1.9 Supporting results for Theorem 4.4.4

In this section we prove Proposition B.1.4 and the upperbound of
∥∥QN,BS

b,t (h)
∥∥2

2 used in the proof
of Theorem 4.4.4.
Proposition B.1.4. Assume that (A5) holds. For any t ∈ N , b ∈ Bt and m ∈ N,

sup
N∈N

E
∥∥QN,BS

b,t (1)
∥∥

m
<∞ . (B.1.28)

We preface the proof with supporting lemmata.
Lemma B.1.5. For any p ≥ 2, and N ≥ 2m

Card(Im
0 ∩ Sp

m) = O(Np) and Card(Im
1 ∩ Sp

m) = O(Np) .

Proof. The tuples in Sp
m contain p distinct elements. These p distinct elements can be selected

in
(N

p

)
ways. For each of these tuples of size p, there are p2m tuples of size 2m with each element

taking one of the p values. These tuples of size 2m contain at most p distinct elements. Hence,

Card(Im
0 ∩ Sp

m) ≤ Card(Sp
m) ≤

(
N

p

)
p2m ≤ Np

p! p2m ,

and similarly,

Card(Im
1 ∩ Sp

m) ≤ Np

p! p2m .

Proposition B.1.6. Let t ∈ N>0, m ∈ N>0 and (k1
t−1, · · · , k2m

t−1) ∈ [N ]2m.
(i) If p ∈ [2 : 2m] and (k1

t , · · · , k2m
t ) ∈ Im

0 ∩ Sp
m,

E

 2m∏
j=1

βBS
t (kj

t , kj
t−1)

∣∣∣∣FN
t−1

 ≤ Gp
∞

Ωp
t−1

.
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(ii) If p ∈ [1 : m] and (k1
t , · · · , k2m

t ) ∈ Im
1 ∩ Sp

m,

E

 m∏
j=1

βBS
t (k2j−1

t , k2j−1
t−1 )ωk2j

t−1
t−1

∣∣∣∣FN
t−1

 ≤ Gp+m
∞

Ωp+m
t−1

.

Proof. Let p ∈ [2 : 2m]. By definition there are p distinct elements in each k := (k1
t , · · · , k2m

t ) ∈
Im

0 ∩Sp
m. Let kp := {a1, · · · , ap} = {k1

t , · · · , k2m
t } the set of cardinal p containing the p distinct

elements in a tuple k ∈ Sp
m. Define for any ai ∈ kp, Vai := {j ∈ [2m] : kj

t = ai}. Each Vai is
non-empty so that it is possible to pick ji ∈ Vai , and by (4.4.11) in Lemma 4.4.1 and the fact
that different particles are i.i.d. conditionally to FN

t−1,

E

 2m∏
j=1

βBS
t (kj

t , kj
t−1)

∣∣∣∣FN
t−1


=

p∏
i=1

E
[ ∏

j∈Vai

βBS
t (kj

t , kj
t−1)

∣∣∣∣FN
t−1

]

=
p∏

i=1

∫  ∏
j∈Vai

βN
t (ξkj

t
t , ξ

kj
t−1

t−1 )ϕN
t−1Mt(dξai

t )

 ,

=
p∏

i=1

∫  ∏
j∈Vai\{ji}

βN
t (ξai

t , ξ
kj

t−1
t−1 )βN

t (ξai
t , ξ

k
ji
t−1

t−1 )ϕN
t−1Mt(dξai

t )

 ,

=
p∏

i=1

∫  ∏
j∈Vai\{ji}

βN
t (ξai

t , ξ
kj

t−1
t−1 )ωk

ji
t−1

t−1 Mt(ξ
k

ji
t−1

t−1 , dξai
t )

 ,

with the convention ∏∅ = 1. Then, since for any (k, ℓ) ∈ [N ]2, βBS
t (ξk

t , ξℓ
t−1) ≤ 1, we get

E

 2m∏
j=1

βBS
t (km

t , km
t−1)

∣∣∣∣FN
t−1

 ≤ p∏
i=1

ω̃
k

ji
t−1

t−1
Ωt−1

∫
Mt(ξ

k
ji
t−1

t−1 , dξai
t ) ≤ Gp

∞
Ωp

t−1
.

Now let p ∈ [1 : m] and k = (k1
t , · · · , k2m

t ) ∈ Im
1 ∩ Sp

m. Define Ṽai := Vai ∩ {1, 3, . . . , 2m − 1}
for any ai ∈ kp. These sets are non-empty since each Vai is non-empty and has as many even
indices as odd indices, by definition of Im

1 ∩ Sp
m. It is then possible to pick ji ∈ Ṽai and, since
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for any i ∈ [N ] ωi
t−1 is FN

t−1-measurable,

E

 m∏
j=1

βBS
t (k2j−1

t , k2j−1
t−1 )ωk2j

t−1
t−1

∣∣∣∣FN
t−1


=

m∏
j=1

ω
k2j

t−1
t−1 E

 m∏
j=1

βBS
t (k2j−1

t , k2j−1
t−1 )

∣∣∣∣FN
t−1

 ,

=
m∏

j=1
ω

k2j
t−1

t−1

p∏
i=1

∫ 
∏

j∈Ṽai

βBS
t (kj

t , kj
t−1)ϕN

t−1Mt(dξai
t )

 ,

=
m∏

j=1
ω

k2j
t−1

t−1

p∏
i=1

∫ 
∏

j∈Ṽai\{ji}

βN
t (ξai

t , ξ
kj

t−1
t−1 )βN

t (ξai
t , ξ

k
ji
t−1

t−1 )ϕN
t−1Mt(dξai

t )

 ,

=
m∏

j=1
ω

k2j
t−1

t−1

p∏
i=1

∫ 
∏

j∈Ṽai\{ji}

βN
t (ξai

t , ξ
kj

t−1
t−1 )ωk

ji
t−1

t−1 Mt(ξ
k

ji
t−1

t−1 , dξai
t )

 ,

with the convention ∏∅ = 1. Hence,

E

 m∏
j=1

βBS
t (k2j−1

t , k2j−1
t−1 )ωk2j

t−1
t−1

∣∣∣∣FN
t−1

 ≤ Gp+m
∞

Ωp+m
t−1

.

Proof of proposition B.1.4. Let m ∈ N and assume for now that N ≥ 2m. We proceed by
induction. For t = 0, and b0 = 0 we have that QN,BS

0,0 (1) = N−1(N − 1)−1∑
i,j∈[N ]2 1i ̸=j = 1

which completes the proof. If b0 = 1, QN,BS
1,0 (1) = N−1∑

i,j∈[N ]2 1i=j = 1 and the result follows.

Let t ∈ N>0 and b ∈ Bt. Assume (B.1.28) holds at time t− 1. Again we treat the cases bt = 0
and bt = 1 separately. In the case bt = 0, by (B.1.2),

E
[
QN,BS

b,t (1)m
]

= E

 ∑
k1:2m

0:t ∈[N ]2m(t+1)

m∏
j=1

Λ1,2
b,t (k2j−1

0:t , k2j
0:t)


and

∑
k1:2m

0:t ∈[N ]2m(t+1)

m∏
j=1

Λ1,2
b,t (k2j−1

0:t , k2j
0:t)

=
∑

k1:2m
0:t−1∈[N ]2mt

m∏
j=1

Λ1,2
b,t−1(k2j−1

0:t−1, k2j
0:t−1)

×
∑

k1:2m
t ∈[N ]2m

m∏
j=1

Ω2
t−11k2j−1

t ̸=k2j
t

N(N − 1) βBS
t (k2j−1

t , k2j−1
t−1 )βBS

t (k2j
t , k2j

t−1) .
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By Proposition B.1.6(i) and Lemma B.1.5, for any k1:2m
t−1 ∈ [N ]2m,

∑
k1:2m

t ∈[N ]2m

E

 m∏
j=1

βBS
t (k2j−1

t , k2j−1
t−1 )βBS(k2j

t , k2j
t−1)1

k2j−1
t ̸=k2j

t

∣∣∣∣FN
t−1


=

2m∑
p=2

∑
k1:2m

t ∈Im
0 ∩S

p
m

E

 2m∏
j=1

βBS
t (kj

t , kj
t−1)

∣∣∣∣FN
t−1


≤

2m∑
p=2

∑
k1:2m

t ∈Im
0 ∩S

p
m

Gp
∞

Ωp
t−1
≤

2m∑
p=2

Gp
∞Card(Im

0 ∩ Sp
m)

Ωp
t−1

≤ C
2m∑
p=2

Np

Ωp
t−1

,

where C is a constant independent of N . Consequently, using the fact that∑
k1:2m

0:t−1∈[N ]2mt

m∏
j=1

Λ1,2
b,t−1(k2j−1

0:t−1, k2j
0:t−1) = QN,BS

b,t−1(1)m

which is FN
t−1-measurable and that Ωt−1 ≤ NG∞ P-a.s. by (A5), we get

E
[
QN,BS

b,t (1)m
]
≤ CE

[
QN,BS

b,t−1(1)m N2m−pNp

Nm(N − 1)m

]
≤ CE

[
QN,BS

b,t−1(1)m
]

,

which completes the proof. In the case bt = 1, again by (B.1.2),∑
k1:2m

0:t ∈[N ]2m(t+1)

m∏
j=1

Λ1,2
b,t (k2j−1

0:t , k2j
0:t)

=
∑

k1:2m
0:t−1∈[N ]2mt

m∏
j=1

Λ1,2
b,t−1(k2j−1

0:t−1, k2j
0:t−1)

×
∑

k1:2m
t ∈[N ]2m

m∏
j=1

Ω2
t−11k2j−1

t =k2j
t

N
βBS

t (k2j−1
t , k2j−1

t−1 )ωk2j
t−1

t−1 .

Then, similarly to the case bt = 0, by Proposition B.1.6-(ii) and Lemma B.1.5, for any k1:2m
t−1 ∈

[N ]2m,

∑
k1:2m

t ∈[N ]2m

E

 m∏
j=1

βBS
t (k2j−1

t , k2j−1
t−1 )ωk2j

t−1
t−1 1k2j−1

t =k2j
t

∣∣∣∣FN
t−1


=

m∑
p=1

∑
k1:2m

t ∈I1
m∩S

p
m

E

 m∏
j=1

βBS
t (k2j−1

t , k2j−1
t−1 )ωk2j

t−1
t−1

∣∣∣∣FN
t−1


=

m∑
p=1

∑
k1:2m

t ∈I1
m∩S

p
m

Gm+p
∞

Ωm+p
t−1

≤ C
m∑

p=1

Np

Ωm+p
t−1

,

where C is a constant independent of N , and

E
[
QN,BS

b,t (1)m
]
≤ CE

QN,BS
b,t−1(1)m

m∑
p=1

Ω2m
t−1Np

NmΩm+p

 ≤ CE
[
QN,BS

b,t−1(1)m
]

,

which completes the proof.
If N < 2m (resp. N < m), then a tuple in Im

0 (resp. Im
1 ) contains at most N different elements

and the proof proceeds similarly by truncating the sums over p.
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We now give more explicit computations for the case m = 2. The sets I2
0 ∩ S

p
2 and I2

1 ∩ S
p
2 are

detailed in Example B.1.1.
Proposition B.1.7. For any h ∈ F(X⊗2(t+1)) and (k1

0:t−1, · · · , k4
0:t−1) ∈ [N ]4t,

∑
k1:4

t ∈[N ]4
E

h⊗2(ξk1
0:t

0:t , · · · , ξ
k4

0:t
0:t )

4∏
j=1

βBS
t (kj

t , kj
t−1)1k1

t ̸=k2
t ,k3

t ̸=k4
t

∣∣∣∣FN
t−1


≤ N(N − 1)(N − 2)(N − 3)

Ω4
t−1

(g⊗2
t−1M

0
t [h])⊗2(ξk1

0:t−1
0:t−1 , · · · , ξ

k4
0:t−1

0:t−1 )

+ N(N − 1)(N − 2)G3
∞|h|2∞

Ω3
t−1

ϑN
t (ξk1:4

t−1
t−1 ) + N(N − 1)G2

∞|h|2∞
Ω2

t−1
υN

t (ξk1:4
t−1

t−1 ) ,

and

∑
k1:4

t ∈[N ]4
E

h⊗2(ξk1
0:t

0:t , · · · , ξ
k4

0:t
0:t )

2∏
j=1

βBS
t (k2j−1

t , k2j−1
t−1 )ωk2j

t−1
t−1 1k1

t =k2
t ,k3

t =k4
t

∣∣∣∣FN
t−1


≤ N(N − 1)

Ω4
t−1

(g⊗2
t−1M

1
t [h])⊗2(ξk1

0:t
0:t , · · · , ξ

k4
0:t

0:t ) + NG3
∞

Ω3
t−1

Mt

[
βN

t (., ξ
k3

t−1
t−1 )

]
(ξk1

t−1
t−1 ) .

where

ϑN
t : x1:4 7→Mt[βN

t (., x4)](x1) + Mt[βN
t (., x4)](x2) + Mt[βN

t (., x3)](x1) + Mt[βN
t (., x3)](x2) ,

υN
t : x1:4 7→Mt[βN

t (., x3)](x1)Mt[βN
t (., x4)](x2) + Mt[βN

t (., x4)](x1)Mt[βN
t (., x3)](x2) .

Proof. Let (k1
0:t−1, · · · , k4

0:t−1) ∈ [N ]4t. First note that

∑
k1:4

t ∈[N ]4
E

h⊗2(ξk1
0:t

0:t , · · · , ξ
k4

0:t
0:t )

4∏
j=1

βBS
t (kj

t , kj
t−1)1k1

t ̸=k2
t ,k3

t ̸=k4
t

∣∣∣∣FN
t−1


=

4∑
p=2

∑
k1:4

t ∈I2
0∩S

p
2

E

h⊗2(ξk1
0:t

0:t , · · · , ξ
k4

0:t
0:t )

4∏
j=1

βBS
t (kj

t , kj
t−1)

∣∣∣∣FN
t−1

 .

We compute each term herebelow. For each p ∈ [2 : 4] and k := (k1
t , · · · , k4

t ) ∈ I2
0 ∩ S

p
2 , let

kp := {a1, · · · , ap} = {k1
t , · · · , k4

t } the set of cardinal p containing the p distinct elements in a
tuple k ∈ Sp

2 . Define for any ai ∈ kp, Vai := {kj
t : j ∈ [1 : 4], kj

t = ai}.

− Let (k1
t , · · · , k4

t ) ∈ I2
0 ∩S2

2 . Then, k2 = {k1
t , k2

t } and we either have Vk1
t

= {k1
t , k3

t } and Vk2 =
{k2

t , k4
t } or Vk1

t
= {k1, k4} and Vk2

t
= {k2

t , k3
t }. Assume that Vk1

t
= {k1

t , k3
t } and Vk2

t
= {k2

t , k4
t }.

Then, by (4.4.11) in Lemma 4.4.1

E
[ 4∏

j=1
βBS

t (kj
t , kj

t−1)
∣∣∣∣FN

t−1

]

= E
[
βBS

t (k1
t , k1

t−1)βBS
t (k1

t , k3
t−1)

∣∣FN
t−1

]
E
[
βBS

t (k2
t , k2

t−1)βBS
t (k2

t , k4
t−1)

∣∣FN
t−1

]
=
∫

βBS
t (k1

t , k3
t−1)ωk1

t−1
t−1 Mt(ξ

k1
t−1

t−1 , dξ
k1

t
t )

∫
βBS

t (k2
t , k4

t−1)ωk2
t−1

t−1 Mt(ξ
k2

t−1
t−1 , dξ

k2
t

t )

≤ G2
∞

Ω2
t−1

Mt

[
βN

t (., ξ
k3

t−1
t−1 )

]
(ξk1

t−1
t−1 )Mt

[
βN

t (., ξ
k4

t−1
t−1 )

]
(ξk2

t−1
t−1 ) .
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If Vk1
t

= {k1
t , k4

t } and Vk2
t

= {k2
t , k3

t },

E

 4∏
j=1

βBS
t (kj

t , kj
t−1)

∣∣∣∣FN
t−1

 ≤ G2
∞
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Mt

[
βN
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k4
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t−1 )Mt
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βN
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t−1 )

]
(ξk2

t−1
t−1 ) ,

and

∑
k1:4

t ∈I2
0∩S

2
2

E

 4∏
j=1

βBS
t (kj

t , kj
t−1)

∣∣∣∣FN
t−1


≤ N(N − 1)G2

∞
Ω2
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{
Mt

[
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t−1
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k4
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+ Mt

[
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t (., ξ
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t−1 )Mt

[
βN
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t−1 )

]
(ξk2
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t−1 )

}
.

− Let (k1
t , · · · , k4

t ) ∈ I2
0 ∩ S3

2 . Then, either k3 = {k1
t , k2

t , k3
t } or k3 = {k1

t , k2
t , k4

t }. Assume that
k3 = {k1

t , k2
t , k3

t } and Vk1
t

= {k1
t , k4

t }. Then,

E

 4∏
j=1

βBS
t (kj

t , kj
t−1)

∣∣∣∣FN
t−1

 = ω
k1

t−1
t−1 ω

k2
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t−1 ω
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t−1 Mt

[
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∞

Ω3
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Mt

[
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t (., ξ
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]
(ξk1

t−1
t−1 ) .

Applying the same reasoning to all the combinations within I2
0 ∩ S3

2 we get

∑
k1:4

t ∈I2
0∩S

3
2

E

 4∏
j=1

βBS
t (kj

t , kj
t−1)

∣∣∣∣FN
t−1
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≤ N(N − 1)(N − 2)G3

∞
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Mt
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.

− Let (k1
t , · · · , k4

t ) ∈ I4
0 ∩ S4

2 . Then, k4 = {k1
t , k2

t , k3
t , k4

t } and
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ω
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0
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0:t−1 , · · · , ξ
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which completes the proof of the first inequality. For the second inequality, write

∑
k1:4

t ∈[N ]4
E
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0:t

0:t , · · · , ξ
k4
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− Let (k1
t , · · · , k4

t ) ∈ I2
1 ∩ S1

2 . Then k1 = {k1
t } and

E
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∞
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and
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k3

t−1
t−1 )

]
(ξk1

t−1
t−1 ) .

− Let (k1
t , · · · , k4

t ) ∈ I2
1 ∩ S2

2 . Then, k2 = {k1
t , k3

t }, Vk1
t

= {k1
t , k2

t } and Vk3
t

= {k3
t , k4

t }. Hence,

E

h⊗2(ξk1
0:t

0:t , · · · , ξ
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and

∑
k1:4

t ∈I2
1∩S

2
2

E

h⊗2(ξk1
0:t

0:t , · · · , ξ
k4

0:t
0:t )

2∏
j=1

βBS
t (k2j−1

t , k2j−1
t−1 )ωk2j

t−1
t−1

∣∣∣∣FN
t−1


= N(N − 1)

Ω4
t−1

(g⊗2
t−1M

1
t [h])⊗2(ξk1

0:t−1
0:t−1 , · · · , ξ

k4
0:t−1

0:t−1 ) ,

which completes the proof.

Proposition B.1.8. For any t ∈ N, h ∈ F(X⊗2(t+1)) and b ∈ Bt,
(i) If bt = 0,

∥∥QN,BS
b,t (h)

∥∥2
2 ≤

(N − 2)(N − 3)
N(N − 1)

∥∥QN,BS
b,t−1(g⊗2

t−1M
0
t [h])

∥∥2
2 + N − 2

N − 1G3
∞|h|2∞E

[Ωt−1
N

ν(ΘN
b,t)
]

+ E
[

G2
∞|h|2∞Ω2

t−1
N(N − 1) ν⊗2(ΥN

b,t)
]

,

173



where

ΘN
b,t : x 7→

[
QN,BS

b,t−1
(
mt(., x)⊗ 1

)
+QN,BS

b,t−1
(
1⊗mt(., x)

)]
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[
QN,BS

b,t−1
(
βN

t (x, .)⊗ 1) +QN,BS
b,t−1(1⊗ βN

t (x, .)
)]

,

ΥN
b,t : (x, y) 7→ QN,BS

b,t−1
(
mt(., x)⊗mt(., y)

)
QN,BS

b,t−1
(
βN

t (x, .)⊗ βN
t (y, .)

)
+QN,BS

b,t−1
(
mt(., x)⊗mt(., y)

)
QN,BS

b,t−1
(
βN

t (y, .)⊗ βN
t (x, .)

)
.

(ii) If bt = 1,

∥∥QN,BS
b,t (h)

∥∥2
2 ≤

N − 1
N

∥∥QN,BS
b,t−1(g⊗2

t−1M
1
t [h])

∥∥2
2

+ G3
∞|h|2∞

∫
E
[Ωt−1

N
QN,BS

b,t−1(mt(., x)⊗ 1)QN,BS
b,t−1(βN

t (x, .)⊗ 1)
]

ν(dx) . (B.1.29)

Proof. To prove (i), if bt = 0, by (B.1.2),

QN,BS
b,t (h)2 =

∑
k1:4

0:t∈[N ]4(t+1)

Λ1,2
b,t (k1

0:t, k2
0:t)Λ

1,2
b,t (k3

0:t, k4
0:t)h⊗2(ξk1

0:t
0:t , · · · , ξ

k4
0:t

0:t )

=
∑

k1:4
0:t−1∈[N ]4t

Λ1,2
b,t (k1

0:t−1, k2
0:t−1)Λ1,2

b,t (k3
0:t−1, k4

0:t−1)

×
{ 4∑

p=2

∑
k1:4

t ∈I2
0∩S

p
2

Ω4
t−1

N2(N − 1)2

4∏
j=1

βBS
t (kj

t , kj
t−1)h⊗2(ξk1

0:t
0:t , · · · , ξ

k4
0:t

0:t )
}

,

and by Proposition B.1.7,

∥∥QN,BS
b,t (h)

∥∥2
2 ≤

(N − 2)(N − 3)
N(N − 1)

∥∥∥QN,BS
b,t−1(g⊗2

t−1M
0
t [h])

∥∥∥2

2

+ G3
∞|h|2∞(N − 2)
N(N − 1) E

Ωt−1
∑

k1:4
0:t−1∈[N ]4t

Λ1,2
b,t−1(k1

0:t−1, k2
0:t−1)Λ1,2

b,t−1(k3
0:t−1, k4

0:t−1)

×
{

Mt

[
βN

t (., ξ
k4

t−1
t−1 )

]
(ξk1

t−1
t−1 ) + Mt

[
βN

t (., ξ
k4

t−1
t−1 )

]
(ξk2

t−1
t−1 )

+Mt

[
βN

t (., ξ
k3

t−1
t−1 )

]
(ξk1

t−1
t−1 ) + Mt

[
βN

t (., ξ
k3

t−1
t−1 )

]
(ξk2

t−1
t−1 )

}]

+ G2
∞|h|2∞

N(N − 1)E

Ω2
t−1

∑
k1:4

0:t−1∈[N ]4t

Λ1,2
b,t−1(k1

0:t−1, k2
0:t−1)Λ1,2

b,t−1(k3
0:t−1, k4

0:t−1)

×
{

Mt

[
βN

t (., ξ
k3

t−1
t−1 )

]
(ξk1

t−1
t−1 )Mt

[
βN

t (., ξ
k4

t−1
t−1 )

]
(ξk2

t−1
t−1 )

+Mt

[
βN

t (., ξ
k4

t−1
t−1 )

]
(ξk1

t−1
t−1 )Mt

[
βN

t (., ξ
k3

t−1
t−1 )

]
(ξk2

t−1
t−1 )

}]
.
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Then using (A4),∑
k1:4

0:t−1∈[N ]4t

Λ1,2
b,t−1(k1

0:t−1, k2
0:t−1)Λ1,2

b,t−1(k3
0:t−1, k4

0:t−1)Mt[βN
t (., ξ

k3
t−1

t−1 )](ξk1
t−1

t−1 )

=
∫ ∑

k1:4
0:t−1∈[N ]4t

Λ1,2
b,t−1(k1

0:t−1, k2
0:t−1)Λ1,2

b,t−1(k3
0:t−1, k4

0:t−1)βN
t (x, ξ

k3
t−1

t−1 )mt(ξ
k1

t−1
t−1 , x)ν(dx)

=
∫
QN,BS

b,t−1 (mt(., x)⊗ 1)QN,BS
b,t−1

(
βN

t (x, .)⊗ 1
)

ν(dx) ,

and ∑
k1:4

0:t−1∈[N ]4t

Λ1,2
b,t−1(k1

0:t−1, k2
0:t−1)Λ1,2

b,t−1(k3
0:t−1, k4

0:t−1)

×Mt[βN
t (., ξ

k3
t−1

t−1 )](ξk1
t−1

t−1 )Mt[βN
t (., ξ

k4
t−1

t−1 )](ξk2
t−1

t−1 )

=
∫
QN,BS

b,t−1(mt(., x)⊗mt(., y))QN,BS
b,t−1

(
βN

t (x, .)⊗ βN
t (y, .)

)
ν⊗2(dx, dy) .

which completes the proof of (i) by applying the same reasoning to the remaining terms. Item
(ii) is obtained in the same way.

B.1.10 Supporting results for Theorem 4.4.9

In this section, we prove the analogues of Propositions 4.4.3-B.1.4-B.1.6 and B.1.7 for Q̃N,M
b,t .

We remind the reader that the number of sampled indices M in the PaRIS estimator is fixed
and that GN

t is defined in (B.1.15). Let GN
t−1 ∨ ξ1:N

t be the following σ-algebra:

GN
t−1 ∨ ξ1:N

t := σ
(
GN

t−1 ∪ σ(ξ1:N
t )

)
. (B.1.30)

Lemma B.1.9. For any t ∈ N>0, h ∈ F(X⊗2) and b ∈ Bt,
(i) E

[
Q̃N,M

b,t (h)
∣∣GN

t−1
]

= Q̃N,M
b,t−1(g⊗2

t−1M
bt
t [h]),

(ii) Q̃N,M
b,t (h) is an unbiased estimator of Qb,t(h),

where Q̃N,M
b,t (h) is defined in (4.4.31).

Proof. We start with the case bt = 0. For any (k, ℓ) ∈ [N ]2, J i
k,t−1 and J i

ℓ,t−1 are independent
conditionally on GN

t−1 ∨ ξ1:N
t for any i ∈ [M ] if k ̸= ℓ and T̃ b

t−1 is GN
t−1-measurable, hence, using

(4.4.4),

E
[
T̃ b

t (k, ℓ)h(ξk
t , ξℓ

t )
∣∣∣GN

t−1

]
(B.1.31)

= E
[
1k ̸=ℓh(ξk

t , ξℓ
t )M−1

M∑
i=1
T̃ b

t−1(J i
k,t−1, J i

ℓ,t−1)
∣∣GN

t−1
]

= E
[
1k ̸=ℓh(ξk

t , ξℓ
t )M−1

M∑
i=1

∑
n,m∈[N ]2

βBS
t (k, n)βBS

t (ℓ, m)T̃ b
t−1(n, m)

∣∣GN
t−1

]

=
∑

n,m∈[N ]2
T̃ b

t−1(n, m)E
[
1k ̸=ℓβ

BS
t (k, n)βBS

t (ℓ, m)h(ξk
t , ξℓ

t )
∣∣FN

t−1

]

= 1k ̸=ℓ

Ω2
t−1

∑
n,m∈[N ]2

T̃ b
t−1(n, m)

(
g⊗2

t−1M
0
t [h]

)
(ξn

t−1, ξm
t−1) .
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If bt = 1,

E
[
T̃ b

t (k, ℓ)h(ξk
t , ξℓ

t )
∣∣∣GN

t−1

]
(B.1.32)

= E
[
1k=ℓh(ξk

t , ξℓ
t )M−1

M∑
i=1

N∑
m=1

ωm
t−1T̃ b

t−1(J i
k,t−1, m)

∣∣GN
t−1
]

= E
[
1k=ℓh(ξk

t , ξℓ
t )M−1

M∑
i=1

∑
n,m∈[N ]2

βBS
t (k, n)ωm

t−1T̃ b
t−1(n, m)

∣∣GN
t−1

]

=
∑

n,m∈[N ]2
T̃ b

t−1(n, m)E
[
1k=ℓβ

BS
t (k, n)ωm

t−1h(ξk
t , ξℓ

t )
∣∣FN

t−1

]

= 1k=ℓ

Ω2
t−1

∑
n,m∈[N ]2

T̃ b
t−1(n, m)

(
g⊗2

t−1M
1
t [h]

)
(ξn

t−1, ξm
t−1) .

Consequently, if bt = 0, by (B.1.31),

E
[
Q̃N,M

b,t (h)
∣∣GN

t−1
]

=
t−1∏
s=0

N bs

(
N

N − 1

)1−bs γN
t−1(1)2

N2

∑
k,ℓ∈[N ]2

Ω2
t−1

N(N − 1)E
[
T̃ b

t (k, ℓ)h(ξk
t , ξℓ

t )
∣∣GN

t−1

]

=
t−1∏
s=0

N bs

(
N

N − 1

)1−bs γN
t−1(1)2

N2

∑
n,m∈[N ]2

T̃ b
t−1(n, m)

(
g⊗2

t−1M
0
t [h]

)
(ξn

t−1, ξm
t−1)

= Q̃N,M
b,t−1(g⊗2

t−1M
0
t [h]) ,

and in a similar way, E
[
Q̃N,M

b,t (h)
∣∣GN

t−1
]

= Q̃N,M
b,t−1(g⊗2

t−1M1
t [h]) by (B.1.32) if bt = 1. The second

item follows straightforwardly by induction and the tower property. The induction is initialized
by noting that Q̃N,M

b,0 (h) is equal to QN,BS
b,0 (h) which is an unbiased estimator of Qb,0(h) by

Proposition 4.4.3.

Proposition B.1.10. Let t > 0 and N ≥ 4.
(i) If bt = 0,

E
[
C2

N,b,t

∑
k1:4

t ∈I2
0∩S

4
2

h(ξk1
t

t , ξ
k2

t
t )h(ξk3

t
t , ξ

k4
t

t )T̃ b
t (k1

t , k2
t )T̃ b

t (k3
t , k4

t )
∣∣∣∣GN

t−1

]

= (N − 2)(N − 3)
N(N − 1) Q̃N,M

b,t−1(g⊗2
t−1M

0
t [h])2 , (B.1.33)

E
[
C2

N,b,t

∑
k1:4

t ∈I2
0∩S

2
2

T̃ b
t (k1

t , k2
t )T̃ b

t (k3
t , k4

t )
∣∣∣∣GN

t−1

]
≤

G2
∞(M − 1)Ω2

t−1
MN(N − 1) ν⊗2(Υ̃N,M

b,t )

+ G2
∞Ω2

t−1
MN(N − 1)C

2
N,b,t−1

∑
k1:2

t−1∈[N ]2
T(1)

t−1,b(k
1
t−1, k2

t−1) , (B.1.34)
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and

E
[
C2

N,b,t

∑
k1:4

t ∈I2
0∩S

3
2

T̃ b
t (k1

t , k2
t )T̃ b

t (k3
t , k4

t )
∣∣∣∣GN

t−1

]
≤ Ωt−1G3

∞(M − 1)(N − 2)
MN(N − 1) ν(Θ̃N,M

b,t )

+ Ωt−1G3
∞(N − 2)

MN(N − 1) C2
N,b,t−1

∑
k1:3

t−1∈[N ]3
T(2)

t−1,b(k
1:3
t−1) , (B.1.35)

where

Θ̃N,M
b,t : x 7→

[
Q̃N,M

b,t−1
(
mt(., x)⊗ 1

)
+ Q̃N,M

b,t−1
(
1⊗mt(., x)

)]
×
[
Q̃N,M

b,t−1
(
βN

t (x, .)⊗ 1) + Q̃N,M
b,t−1(1⊗ βN

t (x, .)
)]

,

Υ̃N,M
b,t : (x, y) 7→ Q̃N,M

b,t−1
(
mt(., x)⊗mt(., y)

)
Q̃N,M

b,t−1
(
βN

t (x, .)⊗ βN
t (y, .)

)
+ Q̃N,M

b,t−1
(
mt(., x)⊗mt(., y)

)
Q̃N,M

b,t−1
(
βN

t (y, .)⊗ βN
t (x, .)

)
,

and

T(1)
b,t : (k1

t , k2
t ) 7→ T̃ b

t (k1
t , k2

t )2 + T̃ b
t (k1

t , k2
t )T̃ b

t (k2
t , k1

t ) ,

T(2)
b,t : (k1

t , k2
t , k3

t ) 7→ T̃ b
t (k1

t , k2
t )T̃ b

t (k3
t , k1

t ) + T̃ b
t (k1

t , k2
t )T̃ b

t (k1
t , k3

t )
+ T̃ b

t (k1
t , k2

t )T̃ b
t (k2

t , k3
t ) + T̃ b

t (k1
t , k2

t )T̃ b
t (k3

t , k2
t ) .

(ii) If bt = 1,

E
[
C2

N,b,t

∑
k1:4

t ∈I2
1∩S

2
2

h(ξk1
t

t , ξ
k2

t
t )h(ξk3

t
t , ξ

k4
t

t )T̃ b
t (k1

t , k2
t )T̃ b

t (k3
t , k4

t )
∣∣∣∣GN

t−1

]

= N − 1
N
Q̃N,M

b,t−1(g⊗2
t−1M

1
t [h])2 , (B.1.36)

and

E
[
C2

N,b,t

∑
k1:4

t ∈I2
1∩S

1
2

T̃ b
t (k1

t , k2
t )T̃ b

t (k3
t , k4

t )
∣∣∣∣GN

t−1

]
(B.1.37)

≤ Ωt−1G3
∞

N

∫
Q̃N,M

b,t−1(mt(., x)⊗ 1)Q̃N,M
b,t−1(βN

t (x, .)⊗ 1)ν(dx)

+ G3
∞Ωt−1
MN

C2
N,b,t−1

∑
k1,2,4

t−1 ∈[N ]3
T̃ b

t−1(k1
t−1, k2

t−1)T̃ b
t−1(k1

t−1, k4
t−1) .

Proof. We start with the case bt = 0.

− If (k1
t , · · · , k4

t ) ∈ I2
0 ∩ S4

2 , then k1
t ̸= k2

t ̸= k3
t ̸= k4

t and conditionally on GN
t−1 ∨ ξ1:N

t , J i
k1

t ,t−1,

J i
k2

t ,t−1, J j
k3

t ,t−1 and J j
k4

t ,t−1 are independent for any (i, j) ∈ [M ]2 and J1:M
kℓ

t ,t−1
iid∼ βBS

t (kℓ
t , .) for

any ℓ ∈ [1 : 4], thus, for any (i, j) ∈ [M ]2

E
[
T̃ b

t (J i
k1

t ,t−1, J i
k2

t ,t−1)T̃ b
t (J j

k3
t ,t−1, J j

k4
t ,t−1)

∣∣∣∣GN
t−1 ∨ ξ1:N

t

]
= E

[
T̃ b

t (J i
k1

t ,t−1, J i
k2

t ,t−1)
∣∣∣∣GN

t−1 ∨ ξ1:N
t

]
E
[
T̃ b

t (J i
k3

t ,t−1, J i
k4

t ,t−1)
∣∣∣∣GN

t−1 ∨ ξ1:N
t

]

=
∑

k1:4
t−1∈[N ]4

4∏
n=1

βBS
t (kn

t , kn
t−1)T̃ b

t−1(k1
t−1, k2

t−1)T̃ b
t−1(k3

t−1, k4
t−1) ,
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and

E
[
h(ξk1

t
t , ξ

k2
t

t )h(ξk3
t

t , ξ
k4

t
t )M−2 ∑

i,j∈[M ]2
T̃ b

t (J i
k1

t ,t−1, J i
k2

t ,t−1)T̃ b
t (J j

k3
t ,t−1, J j

k4
t ,t−1)

∣∣∣∣GN
t−1

]

= E
[
h(ξk1

t
t , ξ

k2
t

t )h(ξk3
t

t , ξ
k4

t
t )M−2 ∑

i,j∈[M ]2

∑
k1:4

t−1∈[N ]4

4∏
n=1

βBS
t (kn

t , kn
t−1)

× T̃ b
t−1(k1

t−1, k2
t−1)T̃ b

t−1(k3
t−1, k4

t−1)
∣∣∣∣GN

t−1

]

=
∑

k1:4
t−1∈[N ]4

T̃ b
t−1(k1

t−1, k2
t−1)T̃ b

t−1(k3
t−1, k4

t−1)E
[ 4∏

n=1
βBS

t (kn
t , kn

t−1)h(ξk1
t

t , ξ
k2

t
t )h(ξk3

t
t , ξ

k4
t

t )
∣∣∣∣GN

t−1

]

= 1
Ω4

t−1

∑
k1:4

t−1∈[N ]4
T̃ b

t−1(k1
t−1, k2

t−1)T̃ b
t−1(k3

t−1, k4
t−1)

(
g⊗2

t−1M
0
t [h]

)⊗2(ξk1
t−1

t−1 , ξ
k2

t−1
t−1 , ξ

k3
t−1

t−1 , ξ
k4

t−1
t−1 ) ,

where we have used that T̃ b
t−1(k1

t−1, k2
t−1) and T̃ b

t−1(k3
t−1, k4

t−1) are GN
t−1-measurable in the third

equality and then proceeded similarly to Proposition B.1.7. By Example B.1.1, Card(I2
0 ∩S4

2 ) =
N(N − 1)(N − 2)(N − 3) and since bt = 0 implies that

C2
N,b,t = C2

N,b,t−1
Ω4

t−1
N2(N − 1)2 , (B.1.38)

we obtain

E
[
C2

N,b,t

∑
k1:4

t ∈I2
0∩S

4
2

h(ξk1
t

t , ξ
k2

t
t )h(ξk3

t
t , ξ

k4
t

t )T̃ b
t (k1

t , k2
t )T̃ b

t (k3
t , k4

t )
∣∣∣∣GN

t−1

]

= C2
N,b,t

∑
k1:4

t ∈I2
0∩S

4
2

E
[
h(ξk1

t
t , ξ

k2
t

t )h(ξk3
t

t , ξ
k4

t
t )

×M−2 ∑
i,j∈[M ]2

T̃ b
t (J i

k1
t ,t−1, J i

k2
t ,t−1)T̃ b

t (J j
k3

t ,t−1, J j
k4

t ,t−1)
∣∣∣∣GN

t−1

]

= (N − 2)(N − 3)
N(N − 1) Q̃N,M

b,t−1
(
g⊗2

t−1M
0
t [h]

)2
.

− If (k1
t , · · · , k4

t ) ∈ I2
0 ∩ S2

2 . Then k2 = {k1
t , k2

t } and we either have Vk1
t

= {k1
t , k3

t } and Vk2
t

=
{k2

t , k4
t } or Vk1

t
= {k1

t , k4
t } and Vk2

t
= {k2

t , k3
t }. Assume that Vk1

t
= {k1

t , k3
t } and Vk2

t
= {k2

t , k4
t }.

Taking into account that J i
k1

t ,t−1 = J i
k3

t ,t−1 and J i
k2

t ,t−1 = J i
k4

t ,t−1, we get

E
[
T̃ b

t (k1
t , k2

t )T̃ b
t (k3

t , k4
t )
∣∣∣∣GN

t−1

]
= E
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M−2 ∑

i,j∈[M ]2
T̃ b

t−1(J i
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Then,
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which yields (B.1.34).
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t ) ∈ I2
0 ∩ S3

2 . Then either k3 = {k1
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t , k3
t } or k3 = {k1
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t }. Assume that
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The remaining combinations are treated in the exact same way and (B.1.35) is obtained by
using again (B.1.38).

Consider now the case bt = 1 and let (k1
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and using Card(I1
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which proves (B.1.36).
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which in turn proves (B.1.37).

Proposition B.1.11. Let (A5 : 7) hold. Let t ≥ 0. For any b ∈ Bt
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Additionally, if (A8) holds then the rate of convergence is O(N−1).

Proof. We prove (i)-(ii) simultaneously by induction. Let t = 0 and b ∈ B0. By definition,
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If b0 = 1, then
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Let t > 0 and assume that both (i)-(ii) hold at t− 1. Define
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and
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where Θ̃N,M
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(B.1.46)
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If bt−1 = 1,
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(B.1.47)

In all cases, by the induction hypothesis we get for any b ∈ Bt with bt = 0,

lim
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Regarding the first terms in the r.h.s. of inequalities (B.1.44)-(B.1.45), they go to zero when
N goes to infinity since they are, up to the constant (M − 1)/M ≤ 1, the PaRIS counterpart
of BN (B.1.12) in the proof of Theorem 4.4.4 and are treated in the exact same way since
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1,b goes to zero by (B.1.10). This ends the proof of the first claim.

Now assume that (A8) holds also. We proceed by induction. At t = 0 the rate of convergence is
O(N−1) by (B.1.41)-(B.1.42) and (B.1.43). Let t > 0 and assume that the rate of convergence
in (i) and (ii) at t − 1 is O(N−1). Assume that bt = 0. By the strong mixing assumption we
have that
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∥∥2
2 ,
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where both bounds are O(N−1) by Proposition B.1.12. Going back to (B.1.44)-(B.1.45), we
obtain

E
[
C2

N,b,t

∑
k1:4

t ∈I2
0∩S

2
2

T̃ b
t (k1

t , k2
t )T̃ b
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t )
]
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+(M − 1)
σ2
−MN(N − 1)
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∥∥2
2 + 2G4

∞
M
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2,b ,

and

E
[
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N,b,t

∑
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t ∈I2
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3
2

T̃ b
t (k1

t , k2
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t (k3
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t )
]

≤ 4σ+G4
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σ−MN(N − 1)
∥∥Q̃N,M

b,t−1(1⊗ 1)
∥∥2

2 + G4
∞

M
DN

3,b .

By (B.1.46)-(B.1.47) and the induction hypothesis, we get that DN
2,b and DN

3,b are both O(N−1).
Finally, applying Proposition B.1.12 we get O(N−1) upper bounds. This ends the proof for the
case bt = 0 . The case bt = 1 follows the same steps.

Proposition B.1.12. Assume that (A5) holds. For all M > 1, t ∈ N and b ∈ Bt,

sup
N∈N

∥∥Q̃N,M
b,t (1)

∥∥
3 <∞ . (B.1.50)

Proof. We proceed by induction on t ∈ N. Assume for now that N ≥ 6 and M ≥ 2.
Since Q̃N,M

b,0 (h) = QN,BS
b,0 (h) for any h, the case t = 0 follows from Proposition B.1.4. Let t > 0

and assume that (B.1.50) holds at t− 1. We only treat the case bt = 0. The proof for the case
bt = 1 follows using the same steps. Since we have that

∥∥Q̃N,M
b,t (1)

∥∥3
3 = E

[
C3

N,b,t

∑
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t ∈[N ]6
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t )
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(
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k2ℓ−1
t ,t−1, J iℓ

k2ℓ
t ,t−1

)]
,

(B.1.51)

the proof proceeds by (i) splitting the sum in three parts with respect to the cardinal of the
triplet (i1, i2, i3) ∈ [M ]3, and (ii) bounding each term by ∥Q̃N,M

b,t−1(1)∥33 up to a constant in-
dependent of N . Let (i1, i2, i3) ∈ [M ]3. If Card({i1, i2, i3}) = 3, then for all k1:6

t ∈ [N ]6,
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k2ℓ−1
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Hence, by Proposition B.1.6, Lemma B.1.5 and similarly to the proof of Proposition B.1.4,∑
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t ∈I3
0

E
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,

where ≲ means less than or equal up to a multiplicative constant independent of N . Conse-
quently,

E
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∑
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and
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Therefore,
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3 . (B.1.52)

Assume now that Card({i1, i2, i3}) = 2 and that i1 = i2. For all (k1
t , · · · , k6

t ) ∈ [N ]6, condition-
ally on GN
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hence, using (B.1.5),∑
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with
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by Proposition B.1.6 and Lemma B.1.5.
Consider now the case E[F N
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Proceeding similarly as in Proposition B.1.6 and Lemma B.1.5, it can be shown that
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Consider now the case E[F N
1,bF

N
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t−1]. In the same way as for the previous case, we obtain
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Thus, combining (B.1.56), (B.1.55) and (B.1.54), we obtain
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The other triplets (i1, i2, i3) for which Card({i1, i2, i3}) = 2 are handled similarly and are
bounded by

∥∥Q̃N,M
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3 up to some multiplicative constant independent of N . We finally

obtain
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(B.1.57)
It now remains to treat the case Card({i1, i2, i3}) = 1. Let (k1, · · · , kd) ∈ [N ]d. Denote by
Posd(k1:d) the set of elements in [N ]d with positions of equal elements similar to those of the
equal elements in k1:d. For example,

Pos3((2, 1, 1)) = {(j, i, i) | (i, j) ∈ [N ]2, i ̸= j} ,

Pos3((1, 1, 2)) = {(i, i, j) | (i, j) ∈ [N ]2, i ̸= j} ,

Pos3((1, 2, 3)) = {(i, j, k) | (i, j, k) ∈ [N ]3, Card({i, j, k}) = 3} .
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Let p ∈ [2 : 6] and (k1
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Consequently, by Lemma B.1.5,
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Finally, combining (B.1.52), (B.1.57) and (B.1.58) we get
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k1:6

t ∈[N ]6

∑
i1:3∈[M ]3

3∏
ℓ=1
T̃ b

t−1
(
J iℓ

k2ℓ−1
t ,t−1, J iℓ

k2ℓ
t ,t−1

)]
≲
∥∥Q̃N,M

b,t−1(1)
∥∥3

3 ,

and hence supN≥6
∥∥Q̃N,M

b,t (1)
∥∥

3 <∞ by the induction hypothesis. This ends the proof for the
case bt = 0.
If M = 2, then (B.1.52) is equal to 0 and (B.1.57), (B.1.58) remain the same. The result then
follows. If N < 6 then it suffices to truncate the sums over p to obtain the result.

B.2 Further algorithmic details

B.2.1 Alternative expression of the genealogy tracing variance estimator

The expression of the CLE estimator (4.3.11) provided in the main chapter is different from the
expression of the estimator appearing in Olsson and Douc (2019). We show here that these are
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two expressions of the same quantity. Note first that(
1
N

N∑
i=1

h(ξi
t)− ηN

t (h)
)2

= 0

= N−2 ∑
i,j∈[N ]2

1Ei
t,0=Ej

t,0
{h(ξi

t)− ηN
t (h)}{h(ξj

t )− ηN
t (h)}

+ N−2 ∑
i,j∈[N ]2

1Ei
t,0 ̸=Ej

t,0
{h(ξi

t)− ηN
t (h)}{h(ξj

t )− ηN
t (h)}.

On the other hand,∑
i,j∈[N ]2

1Ei
t,0=Ej

t,0
{h(ξi

t)− ηN
t (h)}{h(ξj

t )− ηN
t (h)}

=
N∑

k=1

∑
i,j∈[N ]2

1Ei
t,0=Ej

t,0=k
{h(ξi

t)− ηN
t (h)}{h(ξj

t )− ηN
t (h)}

=
N∑

k=1

(
N∑

i=1
1Ei

t,0=k{h(ξi
t)− ηN

t (h)}
)2

.

Thus,

VN
η,t(h) = −N−1 ∑

i,j∈[N ]2
1Ei

t,0 ̸=Ej
t,0
{h(ξi

t)− ηN
t (h)}{h(ξj

t )− ηN
t (h)}

= N−1
N∑

k=1

(
N∑

i=1
1Ei

t,0=k{h(ξi
t)− ηN

t (h)}
)2

.

where the expression in the second line is that of Olsson and Douc (2019). By a similar reasoning,
(4.3.12) is also equivalent to their estimator.

B.2.2 Variance estimators for the predictor and filter

The asymptotic variances of the predictor and filter (4.3.8)-(4.3.9) can be expressed using V∞γ,t.
Indeed,

V∞γ,t(h− ηt(h))
γt(1)2 =

t∑
s=0

{
γs(1)γs

(
Qs+1:t[h− ηt(h)]2

)
γt(1)2 − ηt(h− ηt(h))2

}
= V∞η,t(h) ,

and using that
γt(gt{h− ϕt(h)})

γt+1(1) = γt(gth)
γt+1(1) − ϕt(h) = 0 ,

we get

V∞ϕ,t(h) =
V∞γ,t

(
gt{h− ϕt(h)}

)
γt+1(1)2 . (B.2.1)

Then, replacing γt(h) and ϕt(h) by their empirical approximations γN
t (h) and ϕN

t (h), we ob-
tain

VN,BS
η,t (h) := −N t

(N − 1)t+1

∑
i,j∈[N ]2

T 0
t (i, j)

{
h(ξi

t)− ηN
t (h)

}{
h(ξj

t )− ηN
t (h)

}
, (B.2.2)

VN,BS
ϕ,t (h) := −N t+2

(N − 1)t+1

∑
i,j∈[N ]2

ωi
tω

j
tT 0

t (i, j)
{
h(ξi

t)− ϕN
t (h)

}{
h(ξj

t )− ϕN
t (h)

}
. (B.2.3)

As a consequence of Theorem 4.4.7, these estimators are also weakly consistent.
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Corollary B.2.1. Let (A4 : 7) hold. For any h ∈ F(X ), VN,BS
η,t (h) P−→ V∞η,t(h) and VN,BS

ϕ,t (h) P−→
V∞ϕ,t(h).

Proof. It suffices to note that QN,BS
b,t and Qb,t are bilinear, that ηN

t (h) P−→ ηt(h) and to apply
Theorem 4.4.4 again:

QN,BS
b,t

(
{h− ηN

t (h)}⊗2
)

= QN,BS
b,t (h⊗2)− ηN

t (h)QN,BS
b,t (h⊗ 1)− ηN

t (h)QN,BS
b,t (1⊗ h) + ηN

t (h)2QN,BS
b,t (1)

P−→ Qb,t

(
{h− ηt(h)}⊗2

)
.

Hence, VN,BS
γ,t (h−ηN

t (h)) P−→ V∞γ,t(h−ηt(h)) and using the fact that γN
t (1)2 P−→ γt(1)2 we get the

consistency for the predictive measures. The remaining limit is a straightforward application.

Algorithm 5: Update at step t + 1 of the variance estimator for the predictor
Input: ω̃1:N

t , ξ1:N
t , ξ1:N

t+1 and T 0
t

Output: −N t/(N − 1)t+1∑
i,j∈[N ]2 Qi,j , T 0

t+1.
1 Compute βBS

t+1
2 if PaRIS then
3 for k ∈ [1 : N ] do
4 Sample J1:M

k,t
iid∼ βBS

t+1(k, .)
5 for (k, ℓ) ∈ [1 : N ]2 do
6 Set T 0

t+1(k, ℓ) = 1k ̸=ℓ
∑M

i=1 T 0
t (J i

k,t, J i
ℓ,t)/M

7 else
8 Compute T 0

t+1 = βBS
t+1T 0

t β
BS′
t+1 .

9 Set T 0
t+1 = T 0

t+1 −Diag(T 0
t+1) .

10 Compute Q = T 0
t+1 ⊙

[{
h(ξ1:N

t+1 )− ηN
t+1(h)

}{
h(ξ1:N

t+1 )− ηN
t+1(h)

}⊤].
B.2.3 GT term by term estimator of the asymptotic variance

In this section we derive the GT counterpart of the term by term estimator (4.4.17). Define for
all t > 0

T GT
b,t (K1

t , K2
t ) := EGT

[
Ib,t(K1

0:t, K2
0:t)
∣∣FN

t , K1
t , K2

t

]
, (B.2.4)

and T GT
b,0 (K1

0 , K2
0 ) := 1K1

0 ̸=K2
0 ,b0=0 + 1K1

0 =K2
0 ,b0=1.

By the tower property and the definition of EGT[·|FN
t−1], for all (k, ℓ) ∈ [N ]2 and t > 0, if

bt = 0,

T GT
b,t (k, ℓ) = 1k ̸=ℓ

∑
i,j∈[N ]2

1Ak
t =i,Aℓ

t=jT
GT

b,t−1(i, j) = 1k ̸=ℓT GT
b,t−1(Ak

t−1, Aℓ
t−1) ,

and if bt = 1,

T GT
b,t (k, ℓ) = 1k=ℓ

∑
i,j∈[N ]2

1Ak
t−1=iω

j
t−1T

GT
b,t−1(i, j) = 1k=ℓ

N∑
i=1

ωj
t−1T

GT
b,t−1(Ak

t−1, j) .
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Similarly to BS, we have by the tower property

QN,BS
b,t (h) =

t∏
s=0

N bs

(
N

N − 1

)1−bs γN
t (1)2

N2

∑
k,ℓ∈[N ]2

T GT
b,t (k, ℓ)h(ξk

t , ξℓ
t ) , (B.2.5)

and the term by term estimator is thus

VN,GT
γ,t (h) = N t−1γN

t (1)2

(N − 1)t

∑
k,ℓ∈[N ]2

{
SGT

t (k, ℓ)− t + 1
N − 1T

GT
0,t (k, ℓ)

}
h(ξk

t )h(ξℓ
t ) , (B.2.6)

where SGT
t is such that for all (k, ℓ) ∈ [N ]2,

SGT
t (k, ℓ) =

t∑
s=0
T GT

es,t (k, ℓ) = 1k=ℓ

N∑
i=1

ωj
t−1T

GT
0,t−1(Ak

t−1, j) + 1k ̸=ℓS
GT
t−1(Ak

t−1, Aℓ
t−1) ,

which shows that (B.2.6) is also updated online in a rather simple way by propagating the
matrices SGT

t and T GT
0,t .

B.3 Technical results

Theorem B.3.1 (Generalized dominated convergence theorem). Let (fN )N∈N be a se-
quence of X -measurable functions and (gN )N∈N a sequence of non-negative X -measurable func-
tions. Assume that the following assumptions hold.

(i) There exists C > 0 such that |fN (x)| ≤ CgN (x) for all N ∈ N and x ∈ X.
(ii) (gN )N∈N converges pointwise to g and lim

N→∞

∫
gN dν =

∫
gdν <∞.

(iii) (fN )N∈N converges pointwise to f .
Then, f is ν-integrable and lim

N→∞

∫
fN dν =

∫
fdν.

Proof. The proof can be found in Royden and Fitzpatrick (1988).

Theorem B.3.2 and Lemma B.3.3 are borrowed from Olsson and Westerborn (2017) and Douc
et al. (2011a) respectively.
Theorem B.3.2. Assume that (A5 : 7) hold. Then, for all s ∈ N , hs ∈ F(X⊗s+1) and

(
fs, f̃s

)
∈

F(X )2, there exist constants
(
Cs, C̃s

)
∈
(
R∗+
)2, depending on hs, fs, and f̃s, such that for all

N ∈ N>0 and all ε ∈ R∗+,

P
(∣∣∣∣N−1

N∑
i=1

ω̃i
s

{(
TN

s [hs]fs
)
(ξi

s) + f̃s
(
ξi

s

)}
− ηs

(
Ts[hs]fs + f̃s

)∣∣∣∣ ≥ ε

)
≤ Cs exp

(
−C̃sNε2

)
,

(B.3.1)

P
(∣∣∣∣∣

N∑
i=1

ωi
s

{(
TN

s [hs]fs

)
(ξi

s) + f̃s

(
ξi

s

)}
− ϕs

(
Ts[hs]fs + f̃s

)∣∣∣∣∣ ≥ ε

)
≤ Cs exp

(
−C̃sNε2

)
.

(B.3.2)
Lemma B.3.3. Assume that aN , bN and b are random variables defined on the same probability
space such that there exist positive constants β, B1, C1, B2, C2 and M satisfying the following
assumptions.

• |aN /bN | ≤M , P− a.s. and b ≥ β.
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• For all ε > 0 and all N ≥ 1,P (|bN − b| > ε) ≤ B1 exp(−C1Nε2).
• For all ε > 0 and all N ≥ 1,P (|aN | > ε) ≤ B2 exp(−C2Nε2).

Then, there exist two positive constants B3, C3 such that

P
(∣∣∣∣aN

bN

∣∣∣∣ > ε

)
≤ B3 exp(−C3Nε2) .

B.4 Asymptotic variance of the joint predictive distribution

In this section we provide some intuition on (4.3.7). Let h ∈ F(X ). By the law of total
variance,

V
[
γN

t+1(h)
]

= V
[
E
[
γN

t+1(h) | FN
t

]]
+ E

[
V[γN

t+1(h) | FN
t

]]
. (B.4.1)

As γN
t+1(1) is FN

t -measurable and the particles at time t + 1 are i.i.d conditionally on FN
t , we

have that

E
[
γN

t+1(h) | FN
t

]
= γN

t+1(1)
N∑

i=1

ω̃i
t

Ωt
Mt+1[h](ξi

t)

= γN
t (1)N−1Ωt

N∑
i=1

ω̃i
t

Ωt
Mt+1[h](ξi

t) = γN
t

(
Qt+1[h]

)
. (B.4.2)

On the other hand,

V
[
γN

t+1[h] | FN
t

]
= γN

t+1(1)2V
[ 1

N

N∑
i=1

h(ξi
t+1)

∣∣∣∣FN
t

]
= N−1γN

t+1(1)2VϕN
t Mt+1

[
h(ξt+1)

]
where

VϕN
t Mt+1

[
h(ξt+1)

]
= ϕN

t Mt+1
({

h− ϕN
t Mt+1(h)

}2)
.

Therefore,

V
[
γN

t+1(h) | FN
t

]
= N−2γN

t (1)2Ωtη
N
t

(
Qt+1

[{
h− ϕN

t Mt+1(h)
}2])

= N−1γN
t+1(1)γN

t

(
Qt+1

[{
h− ϕN

t Mt+1(h)
}2])

. (B.4.3)

Replacing (B.4.2)-(B.4.3) in (B.4.1), we get the recursive formula

NV
[
γN

t+1(h)
]

= NV
[
γN

t

(
Qt+1[h]

)]
+ E

[
γN

t+1(1)γN
t

(
Qt+1

[{
h− ϕN

t Mt+1(h)
}2])]

= M0
(
Q1:t+1[h]2

)
− γt+1(h)2

+
t+1∑
s=1

E
[
γN

s (1)γN
s−1
(
Qs
[{

Qs+1:t+1[h]− ϕN
s−1
(
Ms
[
Qs+1:t+1[h]

])}2])]
.

With multiple applications of (4.3.5) in the main chapter, we get that

γN
s (1)γN

s−1
(
Qs
[{

Qs+1:t+1[h]− ϕN
s−1
(
Ms
[
Qs+1:t+1[h]

])}2])
a.s.−→ γs(1)γs−1

(
Qs
[{

Qs+1:t+1[h]− ϕs−1
(
Ms
[
Qs+1:t+1[h]

])}2])
, (B.4.4)
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and, using that γs(1)ϕs−1(Ms[h]) = γs(h) and γs
(
Qs+1:t+1[h]

)
= γt+1(h) for all h we get

γs(1)γs−1
(
Qs
[{

Qs+1:t+1[h]− ϕs−1
(
Ms
[
Qs+1:t+1[h]

])}2])
= γs(1)γs

({
Qs+1:t+1[h]− ϕs−1

(
Ms
[
Qs+1:t+1[h]

])}2)
= γs(1)γs

[
Qs+1:t+1(h)2]− γt+1(h)2 .

Finally, by (A5) and the boundedness of h, |γN
s (1)| ≤ Gs

∞, |Qs+1:t[h]| ≤ Gt−s
∞ |h|∞, thus∣∣γN

s (1)γN
s−1
(
Qs
[{

Qs+1:t+1[h]− ϕN
s−1
(
Ms
[
Qs+1:t+1[h]

])}2])∣∣ ≤ 4G2t
∞|h|∞ ,

and by the dominated convergence theorem, for any s ∈ [0 : t],

lim
N→∞

E
[
γN

s (1)γN
s−1
(
Qs
[{

Qs+1:t+1[h]− ϕN
s−1
(
Ms
[
Qs+1:t+1[h]

])}2])]
= γs(1)γs

[
Qs+1:t+1(h)2]− γt+1(h)2 . (B.4.5)

and NV
[
γN

t+1[h]
]
−→

∑t+1
s=0

{
γs(1)γs

[
Qs+1:t+1(h)2] − γt+1(h)2}. As argued in Section 4.4.3 of

the main chapter, E
[
N
(
γN

t+1(h)− γt+1(h)
)2] converges to the asymptotic variance when N goes

to infinity, and since γN
t+1(h) is an unbiased estimator of γt+1(h), NV

[
γN

t+1[h]
]

= E
[
N
(
γN

t+1(h)−
γt+1(h)

)2]. Therefore,

lim
N→∞

E
[
N
(
γN

t+1(h)− γt+1(h)
)2] =

t+1∑
s=0

{
γs(1)γs

[
Qs+1:t+1(h)2]− γt+1(h)2} ,

which ends the proof.

B.5 Computational time comparison
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Figure B.1: Comparison of time complexity (left) and runtime (right) for the different estima-
tors, per time step. The runtime on the left plot is on CPU and that on the right plot on GPU,
only for our most competitive estimator.
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Appendix C

Appendix of Chapter 5

C.1 PPG

In this section, we develop the theoretical framework necessary to establish Theorem 5.3.1.
We recall the notions of Feynman–Kac models, many-body Feynman–Kac models, backward
interpretations, and conditional dual processes. Our presentation follows closely Del Moral
et al. (2016) but with a different and hopefully more transparent definition of the many-body
extensions. We restate (in Theorem C.1.2 below) a duality formula of Del Moral et al. (2016)
relating these concepts. This formula provides a foundation for the particle Gibbs sampler
described in Algorithm 4.

Notations. Let (Z,Z) be a measurable space and L another possibly unnormalised transition
kernel on Y ×Z. Define, with K as above,

KL : X ×Z ∋ (x, A) 7→
∫

L(y, A) K(x, dy)

and
K � L : X × (Y � Z) ∋ (x, A) 7→ {1, . . . , A} (y, z) K(x, dy) L(y, dz),

whenever these are well defined. This also defines the � products of a kernel K on X×Y and a
measure ν on X as well as of a kernel L on Y ×X and a measure µ on Y as the measures

ν � K : X � Y ∋ A 7→ {1, . . . , A} (x, y) K(x, dy) ν(dx),
L � µ : X � Y ∋ A 7→ {1, . . . , A} (x, y) L(y, dx) µ(dy).

C.1.1 Many-body Feynman–Kac models

In the following, we assume that all random variables are defined on a common probability
space (Ω,F ,P). The distribution flow {ηm}m∈N defined in eq. (5.2.3) is intractable in general,
but can be approximated by random samples ξm = {ξi

m}Ni=1, m ∈ N, referred to as particles,
where N ∈ N∗ is a fixed Monte Carlo sample size and each particle ξi

m is an Xm-valued random
variable. Such particle approximation is based on the recursion ηm+1 = Φm(ηm), m ∈ N, where
Φm denotes the mapping

Φm : M1(Xm) ∋ η 7→ ηQm

ηgm
(C.1.1)

taking on values in M1(Xm+1). In order to describe recursively the evolution of the particle
population, let m ∈ N and assume that the particles ξm form a consistent approximation of ηm
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in the sense that µ(ξm)h, where µ(ξm) := N−1∑N
i=1 δξi

m
, with δx denotes the Dirac measure

located at x, is the occupation measure formed by ξm, which serves as a proxy for ηmh for all
ηm-integrable test functions h. Under general conditions, µ(ξm)h converges in probability to ηm

with N →∞; see Del Moral (2004); Chopin et al. (2020) and references therein. Then, in order
to generate an updated particle sample approximating ηm+1, new particles ξm+1 = {ξi

m+1}Ni=1
are drawn conditionally independently given ξm according to

ξi
m+1 ∼ Φm(µ(ξm)) =

N∑
ℓ=1

gm(ξℓ
m)∑N

ℓ′=1 gm(ξℓ′
m)

Mm(ξℓ
m, ·), i ∈ [1 : N].

Since this process of particle updating involves sampling from the mixture distribution Φm(µ(ξm)),
it can be naturally decomposed into two substeps: selection and mutation. The selection step
consists of randomly choosing the ℓ-th mixture stratum with probability gm(ξℓ

m)/∑N
ℓ′=1 gm(ξℓ′

m)
and the mutation step consists of drawing a new particle ξi

m+1 from the selected stratum
Mm(ξℓ

m, ·). In Del Moral et al. (2016), the term many-body Feynman–Kac models is related
to the law of process {ξm}m∈N. For all m ∈ N, let Xm := XN

m and X m := X�N
m ; then {ξm}m∈N

is an inhomogeneous Markov chain on {Xm}m∈N with transition kernels

Mm : Xm ×X m+1 ∋ (xm, A) 7→ Φm(µ(xm))�N(A)

and initial distribution η0 = η�N
0 . Now, denote X0:n := ∏n

m=0 Xm and X 0:n := ⊗n
m=0 X m. In

the following, we use a bold symbol to stress that a quantity is related to the many-body process.
The many-body Feynman–Kac path model refers to the flows {γm}m∈N and {ηm}m∈N of the
unnormalised and normalised, respectively, probability distributions on {X 0:m}m∈N generated
by (5.2.3) and (5.2.2) for the Markov kernels {Mm}m∈N, the initial distribution η0, the potential
functions

gm : Xm ∋ xm 7→ µ(xm)gm = 1
N

N∑
i=1

gm(xi
m), m ∈ N,

and the corresponding unnormalised transition kernels

Qm : Xm ×X m+1 ∋ (xm, A) 7→ gm(xm)Mm(xm, A), m ∈ N.

C.1.2 Backward interpretation of Feynman–Kac path flows

Suppose that each kernel Qn, n ∈ N, defined in (5.2.1), has a transition density qn with respect
to some dominating measure λn+1 ∈ M(Xn+1). Then for n ∈ N and η ∈ M1(Xn) we may define
the backward kernel

←−
Qn,η : Xn+1 ×Xn ∋ (xn+1, A) 7→

∫
1A(xn)qn(xn, xn+1) η(dxn)∫

qn(x′n, xn+1) η(dx′n) . (C.1.2)

Now, denoting, for n ∈ N∗,

Bn : Xn ×X0:n−1 ∋ (xn, A) 7→
∫
· · ·
∫
1A(x0:n−1)

n−1∏
m=0

←−
Qm,ηm(xm+1, dxm), (C.1.3)

we may state the following—now classical—backward decomposition of the Feynman–Kac path
measures, a result that plays a pivotal role in this chapter.
Proposition C.1.1. For every n ∈ N∗ it holds that γ0:n = γn � Bn and η0:n = ηn � Bn.
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Although the decomposition in Proposition C.1.1 is well known (see, e.g., Del Moral et al.
(2010c, 2016)), we provide a proof in Section C.1.6.1 for completeness. Using the backward
decomposition, a particle approximation of a given Feynman–Kac path measure η0:n is obtained
by first sampling, in an initial forward pass, particle clouds {ξm}nm=0 from η0�M0�· · ·�Mn−1
and then sampling, in a subsequent backward pass, for instance N conditionally independent
paths {ξ̃i

0:n}Ni=1 from Bn(ξ0, . . . , ξn, ·), where

Bn : X0:n ×X0:n ∋ (x0:n, A) 7→
∫
· · ·
∫
1A(x0:n)

(
n−1∏
m=0

←−
Qm,µ(xm)(xm+1, dxm)

)
µ(xn)(dxn)

(C.1.4)
is a Markov kernel describing the time-reversed dynamics induced by the particle approximations
generated in the forward pass. Here and in the following we use blackboard notation to denote
kernels related to many-body path spaces. Finally, µ({ξ̃i

0:n}Ni=1)h is returned as an estimator
of η0:nh for any η0:n-integrable test function h. This algorithm is in the literature referred to
as the forward–filtering backward–simulation (FFBSi) algorithm and was introduced in Godsill
et al. (2004); see also Cappé et al. (2007); Douc et al. (2011a). More precisely, given the forward
particles {ξm}nm=0, each path ξ̃i

0:n is generated by first drawing ξ̃i
n uniformly among the particles

ξn in the last generation and then drawing, recursively,

ξ̃i
m ∼

←−
Qm,µ(ξm)(ξ̃i

m+1, ·) =
N∑

j=1

qm(ξj
m, ξ̃i

m+1)∑N
ℓ=1 qm(ξℓ

m, ξ̃i
m+1)

δ
ξj

m
(·), (C.1.5)

i.e., given ξ̃i
m+1, ξ̃i

m is picked at random among the ξm according to weights proportional
to {qm(ξj

m, ξ̃i
m+1)}Nj=1. Note that in this basic formulation of the FFBSi algorithm, each

backward-sampling operation (C.1.5) requires the computation of the normalising constant∑N
ℓ=1 qm(ξℓ

m, ξ̃i
m+1), which implies an overall quadratic complexity of the algorithm. Still, this

heavy computational burden can eased by means of an effective accept–reject technique dis-
cussed in Section C.1.4.

C.1.3 Conditional dual processes and particle Gibbs

The dual process associated with a given Feynman–Kac model (5.2.3–5.2.2) and a given trajec-
tory {zn}n∈N, where zn ∈ Xn for every n ∈ N, is defined as the canonical Markov chain with
kernels

Mn⟨zn+1⟩ : Xn ×X n+1 ∋ (xn, A) 7→ 1
N

N−1∑
i=0

(
Φn(µ(xn))�i � δzn+1 � Φn(µ(xn))�(N−i−1)

)
(A),

(C.1.6)
for n ∈ N, and initial distribution

η0⟨z0⟩ := 1
N

N−1∑
i=0

(
η�i

0 � δz0 � η
�(N−i−1)
0

)
. (C.1.7)

As clear from (C.1.6–C.1.7), given {zn}n∈N, a realisation {ξn}n∈N of the dual process is generated
as follows. At time zero, the process is initialised by inserting z0 at a randomly selected position
in the vector ξ0 while drawing independently the remaining components from η0. Then, given ξn

at step n, zn+1 is inserted at a randomly selected position in ξn+1 while drawing independently
the remaining components from Φn(µ(ξn)).
In order to describe compactly the law of the conditional dual process, we define the Markov
kernel

Cn : X0:n ×X 0:n ∋ (z0:n, A) 7→ η0⟨z0⟩�M0⟨z1⟩� · · ·�Mn−1⟨zn⟩(A).
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The following result elegantly combines the underlying model (5.2.3–5.2.2), the many-body
Feynman–Kac model, the backward decomposition, and the conditional dual process.
Theorem C.1.2 (Del Moral et al. (2016)). For all n ∈ N,

Bn � γ0:n = γ0:n � Cn. (C.1.8)

In Del Moral et al. (2016), each state ξn of the many-body process maps an outcome ω of the
sample space Ω into an unordered set of N elements in Xn. However, we have chosen to let
each ξn take on values in the standard product space XN

n for two reasons: first, the construction
of Del Moral et al. (2016) requires sophisticated measure-theoretic arguments to endow such
unordered sets with suitable σ-fields and appropriate measures; second, we see no need to
ignore the index order of the particles as long as the Markovian dynamics (C.1.6–C.1.7) of the
conditional dual process is symmetrised over the particle cloud. Therefore, in Section C.1.6.2,
we include our own proof of duality (C.1.8) for completeness. Note that the measure (C.1.8) on
X0:n � X 0:n is unnormalised, but since the kernels Bn and Cn are both Markovian, normalising
the identity with γ0:n(X0:n) = γ0:n(X0:n) yields immediately

Bn � η0:n = η0:n � Cn. (C.1.9)

Since the two sides of (C.1.9) provide the full conditionals, it is natural to choose a data-
augmentation approach and sample the target (C.1.9) using a two-stage deterministic-scan
Gibbs sampler Andrieu et al. (2010); Chopin and Singh (2015b). More specifically, assume
that we have generated a state (ξ0:n[ℓ], ζ0:n[ℓ]) comprising a dual process with associated path
on the basis of ℓ ∈ N iterations of the sampler; then the next state (ξ0:n[ℓ + 1], ζ0:n[ℓ + 1]) is
generated in a Markovian fashion by sampling first ξ0:n[ℓ+1] ∼ Cn(ζ0:n[ℓ], ·) and then sampling
ζ0:n[ℓ + 1] ∼ Bn(ξ0:n[ℓ + 1], ·). After arbitrary initialisation (and the discard of possible burn-
in iterations), this procedure produces a Markov trajectory {(ξ0:n[ℓ], ζ0:n[ℓ])}ℓ∈N, and under
weak additional technical conditions this Markov chain admits (C.1.9) as its unique invariant
distribution. In such a case, the Markov chain is ergodic (Douc et al., 2018b, Chapter 5), and
the marginal distribution of the conditioning path ζ0:n[ℓ] converges to the target distribution
η0:n. Therefore, for every h ∈ F(X0:n),

lim
L→∞

1
L

L∑
ℓ=1

h(ζ0:n[ℓ]) = η0:nh, P-a.s.

C.1.4 The PARIS algorithm

In the following, we assume that we are given a sequence {hn}n∈N of additive state functionals
as in (5.2.5). This problem is particularly relevant in the context of maximum-likelihood-based
parameter estimation in general state-space models, e.g., when computing the score-function,
i.e. the gradient of the log-likelihood function, via the Fisher identity or when computing the
intermediate quantity of the Expectation Maximization (EM) algorithm, in which case η0:n and
hn correspond to the joint state posterior and an element of some sufficient statistic, respec-
tively; see Cappé and Moulines (2005); Douc et al. (2011a); Del Moral et al. (2010c); Poyiadjis
et al. (2011); Olsson and Westerborn (2017) and the references therein. Interestingly, as noted
in Cappé (2011); Del Moral et al. (2010c), the backward decomposition allows, when applied to
additive state functionals, a forward recursion for the expectations {η0:nhn}n∈N. More specifi-
cally, using the forward decomposition hn+1(x0:n+1) = hn(x0:n)+h̃n(xn, xn+1) and the backward
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kernel Bn+1 defined in (C.1.3), we may write, for xn+1 ∈ Xn+1,

Bn+1hn+1(xn+1) =
∫ ←−

Qn,ηn(xn+1, dxn)
∫ (

hn(x0:n) + h̃n(xn, xn+1)
)

Bn(xn, dx0:n−1)

=←−Qn,ηn(Bnhn + h̃n)(xn+1), (C.1.10)

which by Proposition C.1.1 implies that

η0:n+1hn+1 = ηn+1
←−
Qn,ηn(Bnhn + h̃n). (C.1.11)

Since the marginal flow {ηn}n∈N can be expressed recursively via the mappings {Φn}n∈N,
(C.1.11) provides, in principle, a basis for online computation of {η0:nhn}n∈N. To handle the
fact that the marginals are generally intractable we may, following Del Moral et al. (2010c), plug
particle approximations µ(ξn+1) and ←−Qn,µ(ξn) (see (C.1.5)) of ηn+1 and ←−Qn,µ(ηn), respectively,
into the recursion (C.1.11). More precisely, we proceed recursively and assume that at time n
we have at hand a sample {(ξi

n, βi
n)}Ni=1 of particles with associated statistics, where each statis-

tic βi
n serves as an approximation of Bnhn(ξi

n); then evolving the particle cloud according to
ξn+1 ∼Mn(ξn, ·) and updating the statistics using (C.1.10), with ←−Qn,ηn replaced by ←−Qn,µ(ξn),
yields the particle-wise recursion

βi
n+1 =

N∑
ℓ=1

qn(ξℓ
n, ξi

n+1)∑N
ℓ′=1 qn(ξℓ′

n , ξi
n+1)

(
βℓ

n + h̃n(ξℓ
n, ξi

n+1)
)

, i ∈ [1 : N], (C.1.12)

and, finally, the estimator

µ(βn)(id) = 1
N

N∑
i=1

βi
n (C.1.13)

of η0:nhn, where βn := (β1
n, . . . , βN

n ), i ∈ [1 : N]. The procedure is initialised by simply letting
βi

0 = 0 for all i ∈ [1 : N ]. Note that (C.1.13) provides a particle interpretation of the backward
decomposition in Proposition C.1.1. This algorithm is a special case of the forward–filtering
backward–smoothing (FFBSm) algorithm (see Andrieu and Doucet (2003); Godsill et al. (2004);
Douc et al. (2011a); Särkkä (2013)) for additive functionals satisfying (5.2.5). It allows for online
processing of the sequence {η0:nhn}n∈N, but has also the appealing property that only the current
particles ξn and statistics βn need to be stored. However, since each update (C.1.12) requires
the summation of N terms, the scheme has an overall quadratic complexity in the number of
particles, leading to a computational bottleneck in applications to complex models that require
large particle sample sizes N.
In order to detour the computational burden of this forward-only implementation of FFBSm,
the PARIS algorithm Olsson and Westerborn (2017) updates the statistics βn by replacing each
sum (C.1.12) by a Monte Carlo estimate

βi
n+1 = 1

M

M∑
j=1

(
β̃i,j

n + h̃n(ξ̃i,j
n , ξi

n+1)
)

, i ∈ [1 : N ], (C.1.14)

where {(ξ̃i,j
n , β̃i,j

n )}Mj=1 are drawn randomly among {(ξi
n, βi

n)}Ni=1 with replacement, by assign-
ing (ξ̃i,j

n , β̃i,j
n ) the value of (ξℓ

n, βℓ
n) with probability qn(ξℓ

n, ξi
n+1)/∑N

ℓ′=1 qn(ξℓ′
n , ξi

n+1), and the
Monte Carlo sample size M ∈ N∗ is supposed to be much smaller than N (say, less than 5).
Formally,

{(ξ̃i,j
n , β̃i,j

n )}Mj=1 ∼
( N∑

ℓ=1

qn(ξℓ
n, ξi

n+1)∑N
ℓ′=1 qn(ξℓ′

n , ξi
n+1)

δ(ξℓ
n,βℓ

n)

)�M

, i ∈ [1 : N].
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The resulting procedure, summarised in Algorithm 3, allows for online processing with constant
memory requirements, since it only needs to store the current particle cloud and the estimated
auxiliary statistics at each iteration. Moreover, in the case where the Markov transition densi-
ties of the model can be uniformly bounded, i.e. when there exists, for every n ∈ N, an upper
bound σ̄n > 0 such that for all (xn, xn+1) ∈ Xn × Xn+1, mn(xn, xn+1) ≤ σ̄n (a weak assump-
tion satisfied for most models of interest), a sample (ξ̃i,j

n , βi,j
n ) can be generated by drawing,

with replacement and until acceptance, candidates (ξ̃i,∗
n , β̃i,∗

n ) from {(ξi
n, βi

n)}Ni=1 according to
the normalised particle weights {gn(ξℓ

n)/∑ℓ′ gn(ξℓ′
n )}Nℓ=1, obtained as a by-product in the gen-

eration of ξn+1, and accepting the same with probability mn(ξ̃i,∗
n , ξi

n+1)/σ̄n. As this sampling
procedure bypasses completely the calculation of the normalising constant ∑N

ℓ′=1 qn(ξℓ′
n , ξi

n+1) of
the targeted categorical distribution, it yields an overall O(MN) complexity of the algorithm
as a whole; see Douc et al. (2011a) for details.
Increasing M improves the accuracy of the algorithm at the cost of additional computational
complexity. As shown in Olsson and Westerborn (2017), there is a qualitative difference between
the cases M = 1 and M ≥ 2, and it turns out that the latter is required to keep PARIS
numerically stable. More precisely, in the latter case, it can be shown that the PARIS estimator
µ(βn) satisfies, as N tends to infinity while M is held fixed, a central limit theorem (CLT) at
the rate

√
N and with an n-normalised asymptotic variance of order O(1 − 1/(M − 1)). As

clear from this bound, using a large M only yields a waste of computational work, and setting
M to 2 or 3 typically works well in practice.
We now introduce the Parisian particle Gibbs (PPG) algorithm. For all t ∈ N∗, let Yt := X0:t×R
and Yt := X0:t �B(R). Moreover, let Y0 := X0×{0} and Y0 := X0 � {{0}, ∅}. An element of Yt

will always be denoted by yt = (x0:t|t, bt). The Parisian particle Gibbs sampler comprises, as a
key ingredient, a conditional PARIS step, which updates recursively a set of Yt-valued random
variables υi

t := (ξi
0:t|t, βi

t), i ∈ [1 : N]. Let (υt)t∈N denote the corresponding many-body process,
each υt := {(ξi

0:t|t, βi
t)}Ni=1 taking on values in the space Yt := YN

t , which we furnish with a
σ-field Y t := Y�N

t . The space Y0 and the corresponding σ-field Y0 are defined accordingly. For
every t ∈ N, we write ξ0:t|t for the collection {ξi

0:t|t}
N
i=1 of paths in υt, and ξt|t for the collection

{ξi
t|t}

N
i=1 of end points of the same.

In the following, we let t ∈ N be a fixed time horizon, and describe in detail how the PPG
approximates η0:tht iteratively. In short, at each iteration ℓ, the PPG produces, given an input
conditional path ζ0:t[ℓ], a many-body system υt[ℓ + 1] by means of a series of conditional PARIS
operations; then, an updated path ζ0:t[ℓ+1], serving as input at the next iteration, is generated
by picking one of the paths ξ0:t|t[ℓ + 1] in υt[ℓ + 1] at random. At each iteration, the produced
statistics βt in υt provides an approximation of η0:tht according to (C.1.13).
More precisely, given the path ζ0:t[ℓ], the conditional PARIS operations are executed as follows.
In the initial step, ξ0|0[ℓ+1] are drawn from η0⟨ζ0[ℓ]⟩ defined in (C.1.7) and υi

0[ℓ+1]← (ξi
0|0[ℓ+

1], 0) for all i ∈ [1 : N]; then, recursively for m ∈ [0 : t], assuming access to υm[ℓ + 1],
(1) we generate an updated particle cloud ξm+1[ℓ + 1] ∼Mm⟨ζm+1[ℓ]⟩(ξm|m[ℓ + 1], ·),
(2) we pick at random, for each i ∈ [1 : N ], an ancestor path with associated statistics

(ξ̃i,1
0:m[ℓ + 1], β̃i,1

m [ℓ + 1]) among υm[ℓ + 1] by drawing

(ξ̃i,1
0:m[ℓ + 1], β̃i,1

m [ℓ + 1]) ∼
N∑

s=1

qm(ξs
m|m[ℓ + 1], ξi

m+1[ℓ + 1])∑N
s′=1 qm(ξs′

m|m[ℓ + 1], ξi
m+1[ℓ + 1])

δυs
m[ℓ+1], i ∈ [1 : N ],

(3) we draw, with replacement, M − 1 ancestor particles and associated statistics {(ξ̃i,j
m [ℓ +
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1], β̃i,j
m [ℓ + 1])}Mj=2 at random from {(ξs

m|m[ℓ + 1], βs
m)[ℓ + 1]}Ns=1 according to

{(ξ̃i,j
m [ℓ+1], β̃i,j

m [ℓ+1])}Mj=2 ∼

 N∑
s=1

qm(ξs
m|m[ℓ + 1], ξi

m+1[ℓ + 1])∑N
s′=1 qm(ξs′

m|m[ℓ + 1], ξi
m+1[ℓ + 1])

δ(ξs
m|m[ℓ+1],βs

m[ℓ+1])

�(M−1)

,

(4) we set, for all i ∈ [1 : N], ξi
0:m+1|m+1[ℓ + 1]← (ξ̃i,1

0:m[ℓ + 1], ξi
m+1[ℓ + 1]) and υi

m+1[ℓ + 1]←
(ξi

0:m+1|m+1[ℓ + 1], βi
m+1[ℓ + 1]), where

βi
m+1[ℓ + 1]←M−1

M∑
j=1

(
β̃i,j

m [ℓ + 1] + h̃m(ξ̃i,j
m [ℓ + 1], ξi

m+1[ℓ + 1])
)

.

This conditional PARIS procedure is summarised in Algorithm 3 and step (1) is summarized in
Algorithm 8 below.

Algorithm 8 One conditional particle filter step CPFs+1
Input: ζs+1
Result: ξs+1 = (ξ1

s+1, . . . , ξN
s+1)

11 draw I ∼ Uniform(1/N)
12 set ξI

s+1 = ζs+1
13 for i← 1 to N do
14 if i ̸= I then
15 draw αi

s ∼ Categorical({ωs
i }Ni=1)

16 draw ξi
s+1 ∼Ms(ξαi

s
s , ·)

Once the set of trajectories and associated statistics υt[ℓ + 1] is formed by means of n recursive
conditional PARIS updates, an updated path ζ0:t[ℓ + 1] is drawn from µ(ξ0:t|t[ℓ + 1]). A full
sweep of the PPG is summarised in Algorithm 4.
The following Markov kernels will play an instrumental role in the following. For a given path
{zm}m∈N, the conditional PARIS update in Algorithm 3 defines an inhomogeneous Markov chain
on the spaces {(Ym, Ym)}m∈N with kernels

Ym ×Ym+1 ∋ (ym, A) 7→
∫
Mm⟨zm+1⟩(xm|m, dxm+1)Sm(ym,xm+1, A), m ∈ N,

where

Sm : Ym × Xm+1 ×Ym+1 ∋ (ym,xm+1, A) (C.1.15)

7→
∫
· · ·
∫ N∏

i=1
1A

{((x̃i,1
0:m, xi

m+1), 1
M

M∑
j=1

(
b̃i,j

m + h̃m(x̃i,j
m , xi

m+1)
) )}N

i=1


×

 N∑
ℓ=1

qm(xℓ
m|m, xi

m+1)∑N
ℓ′=1 qm(xℓ′

m|m, xi
m+1)

δyℓ
m

(d(x̃i,1
0:m, b̃i,1

m ))

×

 N∑
ℓ=1

qm(xℓ
m|m, xi

m+1)∑N
ℓ′=1 qm(xℓ′

m|m, xi
m+1)

δ(xℓ
m|m,bℓ

m)

�(M−1)

(d(x̃i,2
m , b̃i,2

m , . . . , x̃i,M
m , b̃i,M

m ))

 .
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In addition, we introduce the joint law

St : X0:t ×Y t ∋ (x0:t, A) 7→
∫
· · ·
∫
1A(yt)S0(Jx0,x1, dy1)

t−1∏
m=1

Sm(ym,xm+1, dym+1),

(C.1.16)
where we have defined J := IN � (0, 1)⊺.
The kernel St can be viewed as a superincumbent sampling kernel describing the distribution of
the output υt generated by a sequence of PARIS iterates when the many-body process {ξm}tm=0
associated with the underlying SMC algorithm is given. This allows us to describe alternatively
the PPG as follows: given ζ0:t[ℓ], draw ξ0:t[ℓ + 1] ∼ Ct(ζ0:t[ℓ], ·); then, draw υt[ℓ + 1] ∼ St(ξ0:t[ℓ +
1], ·) and pick a trajectory ζ0:t[ℓ+1] from ξ0:t|t[ℓ+1] at random. The following proposition, which
will be instrumental in the coming developments, establishes that the conditional distribution of
ζ0:t[ℓ + 1] given ξ0:t[ℓ + 1] coincides, as expected, with the particle-induced backward dynamics
Bt.
Proposition C.1.3. For all t ∈ N∗, N ∈ N∗, x0:t ∈ X0:t, and h ∈ F(X0:t),

∫
St(x0:t, dyt) µ(x0:t|t)h = Bth(x0:t).

Finally, we define the Markov kernel induced by the PPG as well as the extended probability
distribution targeted by the same. For this purpose, we introduce the extended measurable
space (Et, Et) with

Et := Yt × X0:t, Et := Y t � X0:t.

The PPG described in Algorithm 4 defines a Markov chain on (Et, Et) with Markov transition
kernel

Kt : Et × Et ∋ (yt, z0:t, A) 7→
∫∫∫

1A(ỹt, z̃0:t)Ct(z0:t, dx̃0:t) St(x̃0:t, dỹt) µ(x̃0:t|t)(dz̃0:t).
(C.1.17)

Note that the values of Kt defined above do not depend on yt, but only on (z0:t, A). For any
given initial distribution ξ ∈ M1(X0:t), let Pξ be the distribution of the canonical Markov chain
induced by the kernel Kt and the initial distribution ξ. In the special case where ξ = δz0:t for
some given path z0:t ∈ X0:t, we use the short-hand notation Pδz0:t

= Pz0:t . In addition, denote
by

Kt : X0:t ×X0:t ∋ (z0:t, A) 7→
∫∫∫

1A(z̃0:t)Ct(z0:t, dx̃0:t) St(x̃0:t, dỹt) µ(x̃0:t|t)(dz̃0:t) (C.1.18)

the path-marginalised version of Kt. By Proposition C.1.3 it holds that Kt = CtBt, which shows
that Kt coincides with the Markov transition kernel of the backward-sampling-based particle
Gibbs sampler discussed in Section C.1.3. It is also possible to specify the invariant distribution
of Kt.
Proposition C.1.4. For all t ∈ N∗, it holds that

η0:tCtStKt = η0:tCtSt . (C.1.19)
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Proof. Let f ∈ M(E�(k−k0)
t ).∫

f(ỹt, z̃0:t)η0:t(dz0:t)CtSt(z0:t, d(yt, z′0:t))Kt(z′0:t,yt, d(ỹt, z̃0:t))

=
∫

f(ỹt, z̃0:t)η0:t(dz0:t)CtSt(z0:t, d(yt, z′0:t))CtSt(z′0:t, d(ỹt, z̃0:t))

=
∫

f(ỹt, z̃0:t)η0:t(dz0:t)Kt(z0:t, dz′0:t)CtSt(z′0:t, d(ỹt, z̃0:t))

=
∫

f(ỹt, z̃0:t)η0:t(dz′0:t)CtSt(z′0:t, d(ỹt, z̃0:t)) .

Finally, in order prepare for the statement of our theoretical results on the PPG we need to
introduce the following Feynman–Kac path model with a frozen path. More precisely, for a
given path z0:t ∈ X0:t, define, for every m ∈ [0 : t− 1], the unnormalised kernel

Qm⟨zm+1⟩ : Xm ×Xm+1 ∋ (xm, A) 7→
(

1− 1
N

)
Qm(xm, A) + 1

N
gm(xm) δzm+1(A)

and the initial distribution η0⟨z0⟩ : X0 ∋ A 7→ (1− 1/N)η0(A) + δz0(A)/N. Given these quan-
tities, define, for m ∈ [0 : t], γm⟨z0:m⟩ := η0⟨z0⟩Q0⟨z1⟩ · · ·Qm−1⟨zm⟩ along with the normalised
counterpart ηm⟨z0:m⟩ := γm⟨z0:m⟩/γm⟨z0:m⟩1X0:m . Finally, we introduce, for m ∈ [0 : t], the
kernels

Bm⟨z0:m−1⟩ : Xm ×X0:m−1 ∋ (xm, A) 7→
∫
· · ·
∫
1A(x0:m−1)

t−1∏
m=0

←−
Qm,ηm⟨z0:m⟩(xm+1, dxm),

as well as the path model η0:m⟨z0:m⟩ := Bm⟨z0:m−1⟩� ηm⟨z0:m⟩.

C.1.5 Proof of Theorem 5.3.1

We start by establishing bias, MSE and covariance bounds for a fixed iteration of the PPG
estimator.
Theorem C.1.5. Assume (A9). Then for every t ∈ N there exist cbias

t , cmse
t , and ccov

t in R∗+
such that for every M ∈ N∗, ξ ∈ M1(X0:t), ℓ ∈ N∗, s ∈ N∗, and N ∈ N∗ such that N > Nt,

|Eξ [µ(βt[ℓ])(id)]− η0:tht| ≤ cbias
t

(
t−1∑
m=0
∥h̃m∥∞

)
N−1κℓ

N,t, (C.1.20)

Eξ

[
(µ(βt[ℓ])(id)− η0:tht)2

]
≤ cmse

t

(
t−1∑
m=0
∥h̃m∥∞

)2

N−1, (C.1.21)

|Eξ [(µ(βt[ℓ])(id)− η0:tht) (µ(βt[ℓ + s])(id)− η0:tht)]| ≤ ccov
t

(
t−1∑
m=0
∥h̃m∥∞

)2

N−3/2κs
N,t.

(C.1.22)

The constants cbias
t , cmse

t , and ccov
t are explicitly given in the proof. Since the focus of this

chapter is on the dependence on N and the index ℓ, we have made no attempt to optimise
the dependence of these constants on t in our proofs; still, we believe that it is possible to
prove, under the stated assumptions, that this dependence is linear. The proof of the bound in
Theorem C.1.5 is based on four key ingredients. The first is the following unbiasedness property
of the PARIS under the many-body Feynman–Kac path model.
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Theorem C.1.6. For every t ∈ N, N ∈ N∗, and ℓ ∈ N∗,

Eη0:t [µ(βt[ℓ])(id)] =
∫

η0:tCtSt(dbt) µ(bt)(id) =
∫
η0:tSt(dbt) µ(bt)(id) = η0:tht.

The proof of Theorem C.1.6 is postponed to Section C.1.6.3. The second ingredient of the
proof of Theorem C.1.5 is the uniform geometric ergodicity of the particle Gibbs with backward
sampling established in Del Moral and Jasra (2018).
Theorem C.1.7. Assume (A9). Then, for every t ∈ N, (µ, ν) ∈ M1(X0:t)2, ℓ ∈ N∗, and N ∈ N∗
such that N > 1 + 5ρ2

t t/2, ∥µKℓ
t − νKℓ

t ∥TV ≤ κℓ
N,t, where κN,t is defined in (5.3.2).

As a third ingredient, we require the following uniform exponential concentration inequality
of the conditional PARIS with respect to the frozen-path Feynman–Kac model defined in the
previous section.
Theorem C.1.8. For every t ∈ N there exist ct > 0 and dt > 0 such that for every M ∈ N∗,
z0:t ∈ X0:t, N ∈ N∗, and ε > 0,

∫
CtSt(z0:t, dbt)1 {|µ(bt)(id)− η0:t⟨z0:t⟩ht| ≥ ε} ≤ ct exp

(
− dtNε2

2(∑t−1
m=0 ∥h̃m∥∞)2

)
.

Theorem C.1.8, whose proof is postponed to Section C.1.6.5, implies, in turn, the following
conditional variance bound.
Proposition C.1.9. For every t ∈ N, M ∈ N∗, z0:t ∈ X0:t, and N ∈ N∗,

∫
CtSt(z0:t, dbt) |µ(bt)(id)− η0:t⟨z0:t⟩ht|2 ≤

ct

dt

(
t−1∑
m=0
∥h̃m∥∞

)2

N−1.

Using Proposition C.1.9, we deduce, in turn, the following bias bound, whose proof is postponed
to Section C.1.6.7.
Proposition C.1.10. For every t ∈ N there exists c̄bias

t > 0 such that for every M ∈ N∗,
z0:t ∈ X0:t, and N ∈ N∗,∣∣∣∣∫ CtSt(z0:t, dbt) µ(bt)(id)− η0:t⟨z0:t⟩ht

∣∣∣∣ ≤ c̄bias
t N−1

(
t−1∑
m=0
∥h̃m∥∞

)
.

A fourth and last ingredient in the proof of Theorem C.1.5 is the following bound on the
discrepancy between additive expectations under the original and frozen-path Feynman–Kac
models. This bound is established using novel results in Gloaguen et al. (2022). More precisely,
since for every m ∈ N, (x, z) ∈ X2

m, N ∈ N∗, and h ∈ F(Xm+1), using (A9),

|Qm⟨z⟩h(x)−Qmh(x)| ≤ 1
N
∥g∥m()∞∥h∥∞ ≤

1
N

τ̄m∥h∥∞,

applying (Gloaguen et al., 2022, Theorem 4.3) yields the following.
Proposition C.1.11. Assume (A9). Then there exists c > 0 such that for every t ∈ N, N ∈ N,
and z0:t ∈ X0:t,

|η0:t⟨z0:t⟩ht − η0:tht| ≤ cN−1
t−1∑
m=0
∥h̃m∥∞.
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Note that assuming, in addition, that supt∈N ∥h̃t∥∞ < ∞ yields an O(n/N) bound in Proposi-
tion C.1.11.
Finally, by combining these ingredients we are now ready to present a proof of Theorem C.1.5.

Proof of Theorem C.1.5. Write, using the tower property,

Eξ [µ(βt [ℓ])(id)] = Eξ

[
Eζ0:t[ℓ] [µ(βt [0])(id)]

]
=
∫

ξKℓ
tCtSt(dbt) µ(bt)(id).

Thus, by the unbiasedness property in Theorem C.1.6,

|Eξ [µ(βt [ℓ])(id)]− η0:tht| =
∣∣∣∣∫ ξKℓ

tCtSt(dbt) µ(bt)(id)−
∫

η0:tCtSt(dbt) µ(bt)(id)
∣∣∣∣

≤
∥∥ξKℓ

t − η0:t
∥∥

TV osc
(∫

CtSt(·, dbt) µ(bt)(id)
)

,

where, by Theorem C.1.7, ∥ξKℓ
t − η0:t∥TV ≤ κℓ

N,t. Moreover, to derive an upper bound on the
oscillation, we consider the decomposition

osc
(∫

CtSt(·, dbt) µ(bt)(id)
)
≤ 2

(∥∥∥∥∫ CtSt(·, dbt) µ(bt)(id)− η0:t⟨·⟩ht

∥∥∥∥
∞

+ ∥η0:t⟨·⟩ht − η0:tht∥∞
)

,

where the two terms on the right-hand side can be bounded using Proposition C.1.11 and
Proposition C.1.10, respectively. This completes the proof of (C.1.20). We now consider the
proof of (C.1.21). Writing

Eξ

[
(µ(βt[ℓ])(id) − η0:tht)2

]
=
∫

ξKℓ
t (dz0:t)CtSt(z0:t, dbt) (µ(bt)(id)− η0:tht)2 ,

we may establish (C.1.21) using Proposition C.1.9 and Proposition C.1.11. We finally consider
(C.1.22). Using the Markov property we obtain

Eξ [(µ(βt[ℓ])(id) − η0:tht) (µ(βt[ℓ + s])(id) − η0:tht)]

= Eξ

[
(µ(βt[ℓ])(id) − η0:tht)

(
Eζ0:t[ℓ][µ(βt[s])(id)] − η0:tht

)]
,

from which (C.1.22) follows by (C.1.20) and (C.1.21).

We are finally equipped to prove Theorem 5.3.1.

Proof of Theorem 5.3.1. We first consider the bias, which can be bounded according to∣∣∣Eξ[Π(k0,k),N (f)]− η0:tht

∣∣∣ ≤ (k − k0)−1
k∑

ℓ=k0+1
|Eξµ(βt[ℓ])(id)− η0:tht|

≤ (k − k0)−1N−1cbias
t

(
t−1∑
m=0
∥h̃m∥∞

)
k∑

ℓ=k0+1
κℓ
N,t,

from which the bound (5.3.3) follows immediately.
We turn to the MSE. Using the decomposition

Eξ[(Π(k0,k),N (f)− η0:tht)2] ≤ (k − k0)−2


k∑

ℓ=k0+1
Eξ[(µ(βt[ℓ])(id)− η0:tht)2]

+ 2
k∑

ℓ=k0+1

k∑
j=ℓ+1

Eξ[(µ(βt[ℓ])(id)− η0:tht)(µ(βt[j])(id)− η0:tht)]

 ,
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the MSE bound in Theorem C.1.5 implies that

k∑
ℓ=k0+1

Eξ[(µ(βt[ℓ])(id)− η0:tht)2] ≤ cmse
t

(
t−1∑
m=0
∥h̃m∥∞

)2

N−1(k − k0).

Moreover, using the covariance bound in Theorem C.1.5, we deduce that

k∑
ℓ=k0+1

k∑
j=ℓ+1

Eξ[(µ(βt[ℓ])(id)−η0:tht)(µ(βt[j])(id)−η0:tht)] ≤ ccov
t

(
t−1∑
m=0
∥h̃m∥∞

)2

N−3/2

 k∑
ℓ=k0+1

k∑
j=ℓ+1

κ
(j−ℓ)
N,t

 .

Thus, the proof is concluded by noting that ∑k
ℓ=k0+1

∑k
j=ℓ+1 κ

(j−ℓ)
N,t ≤ (k − k0)/(1− κN,t).

C.1.6 Proofs of intermediate results

C.1.6.1 Proof of Proposition C.1.1

Using the identity

η0Q0 · · ·Qt−11Xt =
t−1∏
m=0

ηmQm1Xm+1

and the fact that each kernel Qm has a transition density, write, for h ∈ F(X0:t),

η0:th =
∫
· · ·
∫

h(x0:t) η0(dx0)
t−1∏
m=0

(
ηm[qm(·, xm+1)] λm+1(dxm+1)

ηmQm1Xm+1

)(
qm(xm, xm+1)

ηm[qm(·, xm+1)]

)

=
∫
· · ·
∫

h(x0:t) ηt(dxt)
t−1∏
m=0

ηm(dxm) qm(xm, xm+1)
ηm[qm(·, xm+1)] (C.1.23)

=
(←−

Q0,η0 � · · ·�
←−
Qn−1,ηt−1 � ηt

)
h,

which was to be established.

C.1.6.2 Proof of Theorem C.1.2

Lemma C.1.12. For all t ∈ N, xt ∈ Xt, and h ∈ F(X t+1 � Xt+1),

{h, . . . , (}xt+1, zt+1)Qt(xt, dxt+1) µ(xt+1)(dzt+1) = {h, . . . , (}xt+1, zt+1) µ(xt)Qt(dzt+1)M t⟨zt+1⟩(xt, dxt+1).
(C.1.24)

In addition, for all h ∈ F(X 0 � X0),

{h, . . . , (}x0, z0)η0(dx0) µ(x0)(dz0) = {h, . . . , (}x0, z0)η0⟨z0⟩(dx0) η0(dz0). (C.1.25)

Proof. Since µ(xt) Qt(dzt+1) = gt(xt) Φt(µ(xt))(dzt+1), we may rewrite the right-hand side of
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(C.1.24) according to

{h, . . . , (}xt+1, zt+1) µ(xt)Qt(dzt+1)M t⟨zt+1⟩(xt, dxt+1)

= gt(xt)
1
N

N−1∑
i=0
{h, . . . , (}xt+1, zt+1) Φt(µ(xt))(dzt+1)

×
(
Φt(µ(xt))�i � δzt+1 � Φt(µ(xt))�(N−i−1)

)
(dxt+1)

= gt(xt)
1
N

N∑
i=1

∫
· · ·
∫

h((x1
t+1, . . . , xi−1

t+1, zt+1, xi+1
t+1, . . . , xN

t+1), zt+1)

× Φt(µ(xt))(dzt+1)
∏
ℓ ̸=i

Φt(µ(xt))(dxℓ
t+1)

= gt(xt)
1
N

N∑
i=1

∫
h(xt+1, xi

t+1)M t(xt, dxt+1).

On the other hand, note that the left-hand side of (C.1.24) can be expressed as

{h, . . . , (}xt+1, zt+1)Qt(xt, dxt+1) µ(xt+1)(dzt+1) = gt(xt)
1
N

N∑
i=1

∫
h(xt+1, xi

t+1)M t(xt, dxt+1),

which establishes the identity. The identity (C.1.25) is established along similar lines.

We establish Theorem C.1.2 by induction; thus, assume that the claim holds true for n and
show that for all h ∈ F(X 0:t+1 � X0:t+1),

{h, . . . , (}x0:t+1, z0:t+1)γ0:t+1(dx0:t+1)Bt+1(x0:t+1, dz0:t+1)
= {h, . . . , (}x0:t+1, z0:t+1) γ0:t+1(dz0:t+1)Ct+1(z0:t+1, dx0:t+1). (C.1.26)

To prove this, we process, using definition (C.3.4), the left-hand side of (C.1.26) according
to

{h, . . . , (}x0:t+1, z0:t+1)γ0:t+1(dx0:t+1)Bt+1(x0:t+1, dz0:t+1)

=
{
γ, . . . , 0 : t

}
(dx0:t)Bt(x0:t, dz0:t)

× {̄, . . . , h} (x0:t+1, z0:t+1)Qt(xt, dxt+1) µ(xt+1)(dzt+1),

(C.1.27)

where we have defined the function

h̄(x0:t+1, z0:t+1) := qt(zt, zt+1)h(x0:t+1, z0:t+1)
µ(xt)[qt(·, zt+1)] .

Now, applying Lemma C.1.12 to the inner integral and using that

µ(xt)Qt(dzt+1) = µ(xt)[qt(·, zt+1)] λt+1(dzt+1)

yields, for every x0:t and z0:t,

{̄, . . . , h} (x0:t+1, z0:t+1)Qt(xt, dxt+1) µ(xt+1)(dzt+1)
= {̄, . . . , h} (x0:t+1, z0:t+1) µ(xt)Qt(dzt+1)M t⟨zt+1⟩(xt, dxt+1)
= {h, . . . , (}x0:t+1, z0:t+1) Qt(zt, dzt+1)M t⟨zt+1⟩(xt, dxt+1).
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Inserting the previous identity into (C.1.27) and using the induction hypothesis provides

{h, . . . , (}x0:t+1, z0:t+1)γ0:t+1(dx0:t+1)Bt+1(x0:t+1, dz0:t+1)
= {γ, . . . , 0 : t} (dz0:t)Ct(z0:t, dx0:t)

× {h, . . . , (}x0:t+1, z0:t+1) Qt(zt, dzt+1)M t⟨zt+1⟩(xt, dxt+1)
= {h, . . . , (}x0:t+1, z0:t+1) γ0:t+1(dz0:t+1)Ct+1(z0:t+1, dx0:t+1),

which establishes (C.1.26).

C.1.6.3 Proof of Theorem C.1.6

First, define, for m ∈ N,

Pm : Ym ×Ym+1 ∋ (ym, A) 7→
∫
Mm(xm|m, dxm+1)Sm(ym,xm+1, A). (C.1.28)

For any given initial distribution ψ0 ∈ M1(Y0), let PPψ0
be the distribution of the canonical

Markov chain induced by the Markov kernels {Pm}m∈N and the initial distribution ψ0. By
abuse of notation we write, for η0 ∈ M1(X 0), PPη0

instead of PPψ0[η0], where we have defined the
extension ψ0[η0](A) =

∫
1A(Jx0)η0(dx0), A ∈ Y0. We preface the proof of Theorem C.1.6 by

some technical lemmas and a proposition.
Lemma C.1.13. For all t ∈ N and (ft+1, f̃t+1) ∈ F(Xt+1)2,

γt+1(ft+1Bt+1ht+1 + f̃t+1) = γt{Qtft+1Btht + Qt(h̃tft+1 + f̃t+1)}.

Proof. Pick arbitrarily φ ∈ F(Xt:t+1) and write, using definition (C.1.3) and the fact that Qt

has a transition density,

{φ, . . . , (}xt:t+1) γt(dxt) Qt(xt, dxt+1)

= {φ, . . . , (}xt:t+1)γt[qt(·, xt+1)] λt+1(dxt+1) γt(dxt)qt(xt, xt+1)
γt[qt(·, xt+1)]

= {φ, . . . , (}xt:t+1) γt+1(dxt+1)←−Qn,ηt(xt+1, dxt). (C.1.29)

Now, by (C.1.10) it holds that

Bt+1ht+1(xt+1) =
∫ ←−

Qn,ηt(xt+1, dxt)
(

h̃t(xt:t+1) +
∫

ht(x0:t) Bt(xt, dx0:t−1)
)

;

therefore, by applying (C.1.29) with

φ(xt:t+1) := ft+1(xt+1)
(

h̃t(xt:t+1) +
∫

ht(x0:t) Bt(xt, dx0:t−1)
)

we obtain that

γt+1(ft+1Bt+1ht+1) = {φ, . . . , (}xt:t+1) γt+1(dxt+1)←−Qn,ηt(xt+1, dxt)
= {φ, . . . , (}xt:t+1) γt(dxt) Qt(xt, dxt+1)
= γt(Qtft+1Btht + Qth̃tft+1).

Now the proof is concluded by noting that since γt+1 = γtQt, γt+1f̃t+1 = γtQtf̃t+1.
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Lemma C.1.14. For every t ∈ N∗, ht ∈ F(Yt), and η0 ∈ M1(X 0) it holds that

EPη0
[ht(υt) | ξ0|0, . . . , ξt|t] = Stht(ξ0|0, . . . , ξt|t), PPη0

-a.s.

Proof. Pick arbitrarily vt ∈ F(X0:t). We show that

EPη0
[vt(ξ0|0, . . . , ξt|t)ht(υt)] = EPη0

[vt(ξ0|0, . . . , ξt|t)Stht(ξ0|0, . . . , ξt|t)], (C.1.30)

from which the claim follows. Using the definition (C.1.28), the left-hand side of the previous
identity may be rewritten as∫

· · ·
∫
ψ0[η0](dy0)

t−1∏
m=0

Pm(ym, dym+1) ht(yt)vt(x0|0, . . . ,xt|t)

=
∫
· · ·
∫
η0(dx0|0)

t−1∏
m=0

Mm(xm|m, dxm+1)S0(Jx0|0,x1, dy1)

×
t−1∏
m=0

Sm(ym,xm+1, dym+1) ht(yt)vt(x0|0, . . . ,xt|t)

=
∫
· · ·
∫
η0(dx0)

t−1∏
m=0

Mm(xm, dxm+1)S0(Jx0,x1, dy1)

×
t−1∏
m=0

Sm(ym,xm+1, dym+1) ht(yt)vt(x0, . . . ,xt).

Thus, we may conclude the proof by using the definition (C.1.16) of St together with Fubini’s
theorem.

Lemma C.1.15. For every t ∈ N∗ and ht ∈ F(Yt),

Eη0

[(
t−1∏
m=0

gm(ξm|m)
)

ht(υt)
]

=
∫
γ0:tSt(dyt) ht(yt).

Proof. The claim of the lemma is a direct implication of Lemma C.1.14; indeed, by applying
the tower property and the latter we obtain

EPη0

[(
t−1∏
m=0

gm(ξm|m)
)

ht(υt)
]

= EPη0

[(
t−1∏
m=0

gm(ξm|m)
)
Stht(ξ0|0, . . . , ξt|t)

]

=
∫
· · ·
∫
η0(dx0)

t−1∏
m=0

gm(xm)Mm(xm, dxm+1) Stht(x0:t)

=
∫
γ0:tSt(dyt) ht(yt).

Proposition C.1.16. For all t ∈ N∗, (N, M) ∈ (N∗)2, and (ft, f̃t) ∈ F(Xt)2,

∫
γ0:tSt(dyt)

(
1
N

N∑
i=1
{bi

tft(xi
t|t) + f̃t(xi

t|t)}
)

= γt(ftBtht + f̃t).
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Proof. Applying Lemma C.1.15 yields∫
γ0:tSt(dyt)

(
1
N

N∑
i=1
{bi

tft(xi
t|t) + f̃t(xi

t|t)}
)

= EPη0

[(
t−1∏
m=0

gm(ξm|m)
)

1
N

N∑
i=1
{βi

tft(ξi
t|t) + f̃t(ξi

t|t)}
]

.

(C.1.31)
In the following we will use repeatedly the following filtrations. Let F̃t := σ({υm}tm=0) be the
σ-field generated by the output of the PARIS (Algorithm 3) during the first t iterations. In
addition, let Ft := F̃t−1 ∨ σ(ξt|t).
We proceed by induction. Thus, assume that the statement of the proposition holds true for a
given t ∈ N∗ and consider, for arbitrarily chosen (ft+1, f̃t+1) ∈ F(Xt+1)2,

EPη0

[(
t∏

m=0
gm(ξm|m)

)
1
N

N∑
i=1
{βi

t+1ft+1(ξi
t+1|t+1) + f̃t+1(ξi

t+1|t+1)} | F̃t

]

=
(

t∏
m=0

gm(ξm|m)
)
EPη0

[β1
t+1ft+1(ξ1

t+1|t+1) + f̃t+1(ξ1
t+1|t+1) | F̃t] ,

where we used that the variables {βi
t+1ft+1(ξi

t+1|t+1) + f̃t+1(ξi
t+1|t+1)}Ni=1 are conditionally i.i.d.

given F̃t. Note that, by symmetry,

EPη0

[
β1

t+1 | Ft+1
]

=
∫
St(υt, ξt+1|t+1, dyt+1) b1

t+1

=
∫
· · ·
∫  M∏

j=1

N∑
ℓ=1

qt(ξℓ
t|t, ξ1

t+1|t+1)∑N
ℓ′=1 qt(ξℓ′

t|t, ξ1
t+1|t+1)

δ(ξℓ
t|t,βℓ

t )(dx̃1,j
t , db̃1,j

t )


× 1

M

M∑
j=1

(
b̃1,j

t + h̃t(x̃1,j
t , ξ1

t+1|t+1)
)

=
N∑

ℓ=1

qt(ξℓ
t|t, ξ1

t+1|t+1)∑N
ℓ′=1 qt(ξℓ′

t|t, ξ1
t+1|t+1)

(
βℓ

t + h̃t(ξℓ
t|t, ξ1

t+1|t+1)
)

. (C.1.32)

Thus, using the tower property,

EPη0

[
β1

t+1ft+1(ξ1
t+1|t+1) | F̃t

]
=
∫

Φt(µ(ξt|t))(dxt+1) ft+1(xt+1)
N∑

ℓ=1

qt(ξℓ
t|t, xt+1)∑N

ℓ′=1 qt(ξℓ′
t|t, xt+1)

(
βℓ

t + h̃t(ξℓ
t|t, xt+1)

)
,

and consequently, using definition (C.1.1),(
t∏

m=0
gm(ξm|m)

)
EPη0

[
β1

t+1ft+1(ξ1
t+1|t+1) | F̃t

]

=
(

t−1∏
m=0

gm(ξm|m)
)∫ 1

N

N∑
i=1

qt(ξi
t|t, xt+1)

× ft+1(xt+1)
N∑

ℓ=1

qt(ξℓ
t|t, xt+1)∑N

ℓ′=1 qt(ξℓ′
t|t, xt+1)

(
βℓ

t + h̃t(ξℓ
t|t, xt+1)

)
λt+1(dxt+1)

=
(

t−1∏
m=0

gm(ξm|m)
)

1
N

N∑
ℓ=1

(
βℓ

t Qtft+1(ξℓ
t|t) + Qt(h̃tft+1)(ξℓ

t|t)
)

.
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Thus, applying the induction hypothesis,

EPη0

[(
t∏

m=0
gm(ξm|m)

)
1
N

N∑
i=1

βi
t+1ft+1(ξi

t+1|t+1)
]

= EPη0

[(
t−1∏
m=0

gm(ξm|m)
)

1
N

N∑
ℓ=1

(
βℓ

t Qtft+1(ξℓ
t|t) + Qt(h̃tft+1)(ξℓ

t|t)
)]

= γt

(
Qtft+1Btht + Qt(h̃tft+1)

)
. (C.1.33)

In the same manner, it can be shown that

EPη0

[(
t∏

m=0
gm(ξm|m)

)
1
N

N∑
i=1

f̃t+1(ξi
t+1|t+1)

]
= γtQtf̃t+1. (C.1.34)

Now, by (C.1.33–C.1.34) and Lemma C.1.13,

EPη0

[(
t∏

m=0
gm(ξm|m)

)
1
N

N∑
i=1
{βi

t+1ft+1(ξi
t+1|t+1) + f̃t+1(ξi

t+1|t+1)}
]

= γt

(
Qtft+1Btht + Qt(h̃tft+1 + Qtf̃t+1)

)
= γt+1(ft+1Bt+1ht+1 + f̃t+1),

which shows that the claim of the proposition holds at time n + 1.
It remains to check the base case n = 0, which holds trivially true as β0 = 0, B0h0 = 0 by
convention, and the initial particles ξ0|0 are drawn from η0. This completes the proof.

Proof of Theorem C.1.6. The identity
∫
η0:t(dx0:t)St(x0:t, dbt) µ(bt)(id) = η0:tht follows imme-

diately by letting ft ≡ 1 and f̃t ≡ 0 in Proposition C.1.16 and using that γ0:t(X0:t) = γ0:t(X0:t).
Moreover, applying Theorem C.1.2 yields∫

η0:tCtSt(dbt) µ(bt)(id) = {η, . . . , 0 : t} (dz0:t)Ct(z0:t, dx0:t)
∫

St(x0:t, dbt) µ(bt)(id)

=
{
η, . . . , 0 : t

}
(dx0:t)Bt(x0:t, dz0:t)

∫
St(x0:t, dbt) µ(bt)(id)

=
∫
η0:tSt(dbt) µ(bt)(id).

Finally, the first identity holds true since Kt leaves η0:t invariant.

C.1.6.4 Proof of Proposition C.1.3

First, note that, by definitions (C.1.15) and (C.1.16),

Ht(x0:t) :=
∫

St(x0:t, dyt) µ(x[0 : n|n])h

=
∫
· · ·
∫  1

N

N∑
jt=1

h(xjt

0:t−1|t, xjt
t )


×

t−1∏
m=0

N∏
im+1=1

∫ N∑
jm=1

qm(xjm
m , x

im+1
m+1 )∑N

j′
m=1 qm(xj′

m
m , x

im+1
m+1 )

δ
xjm

0:m|m
(dx

im+1
0:m|m+1),
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where xi
0:−1|0 = ∅ for all i ∈ [1 : N] by convention. We will show that for every k ∈ [0 : t],

Hk,t ≡ Ht, where

Hk,n(x0:t) := 1
N

N∑
jt=1
· · ·

N∑
jk=1

t−1∏
ℓ=k

qℓ(xjℓ
ℓ , x

jℓ+1
ℓ+1 )∑N

j′
ℓ
=1 qℓ(x

j′
ℓ

ℓ , x
jℓ+1
ℓ+1 )

ak,n(x0, . . . ,xk−1, xjk
k , . . . , xjt

t )

with

ak,n(x0, . . . ,xk−1, xjk
k , . . . , xjt

t )

=
∫ k−1∏

m=0

N∏
im+1=1

N∑
jm=1

qm(xjm
m , x

im+1
m+1 )∑N

j′
m=1 qm(xj′

m
m , x

im+1
m+1 )

δ
xjm

0:m|m
(dx

im+1
0:m|m+1)h(xjk

0:k−1|k, xjk
k , . . . , xjt

t ).

Since, by convention, ∏t−1
ℓ=n . . . = 1, Hn,n(x0:t) = N−1∑N

jt=1 an,n(x0, . . . ,x[n − 1], xjt
t ), and we

note that Ht ≡ Hn,n. We now show that Hk,n ≡ Hk−1,n for every k ∈ [1 : t]; for this purpose,
note that

ak,n(x0, . . . ,xk−1, xjk
k , . . . , xjt

t )

=
∫ k−2∏

m=0

N∏
im+1=1

N∑
jm=1

qm(xjm
m , x

im+1
m+1 )∑N

j′
m=1 qm(xj′

m
m , x

im+1
m+1 )

δ
xjm

0:m|m
(dx

im+1
0:m|m+1)

×
∫ N∏

ik=1

N∑
jk−1=1

qk−1(xjk−1
k−1 , xik

k )∑N
j′

k−1=1 qk−1(xj′
k−1

k−1 , xik
k )

δ
x

jk−1
0:k−1|k−1

(dxik

0:k−1|k) h(xjk

0:k−1|k, xjk
k , . . . , xjt

t ),

and since x
jk−1
0:k−1|k−1 = (xjk−1

0:k−2|k−1, x
jk−1
k−1 ), it holds that

∫ N∏
ik=1

N∑
jk−1=1

qk−1(xjk−1
k−1 , xik

k )∑N
j′

k−1=1 qk−1(xj′
k−1

k−1 , xik
k )

δ
x

jk−1
0:k−1|k−1

(dxik

0:k−1|k) h(xjk

0:k−1|k, xjk
k , . . . , xjt

t )

=
N∑

jk−1=1

qk−1(xjk−1
k−1 , xjk

k )∑N
j′

k−1=1 qk−1(xj′
k−1

k−1 , xjk
k )

h(xjk−1
0:k−2|k−1, x

jk−1
k−1 , xjk

k , . . . , xjt
t ).

Therefore, we obtain

ak,n(x0, . . . ,xk−1, xjk
k , . . . , xjt

t )

=
∫ k−2∏

m=0

N∏
im+1=1

N∑
jm=1

qm(xjm
m , x

im+1
m+1 )∑N

j′
m=1 qm(xj′

m
m , x

im+1
m+1 )

δ
xjm

0:m|m
(dx

im+1
0:m|m+1)

×
N∑

jk−1=1

qk−1(xjk−1
k−1 , xjk

k )∑N
j′

k−1=1 qk−1(xj′
k−1

k−1 , xjk
k )

h(xjk−1
0:k−2|k−1, x

jk−1
k−1 , xjk

k , . . . , xjt
t ).

Now, changing the order of summation with respect to jk−1 and integration on the right hand
side of the previous display yields

ak,n(x0, . . . ,xk−1, xjk
k , . . . , xjt

t )

=
N∑

jk−1=1

qk−1(xjk−1
k−1 , xjk

k )∑N
j′

k−1=1 qk−1(xj′
k−1

k−1 , xjk
k )

ak−1,n(x0, . . . ,xk−2, x
jk−1
k−1 , . . . , xjt

t ).
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Thus,

Hk,n(x0:t)

= 1
N

N∑
jt=1
· · ·

N∑
jk=1

t−1∏
ℓ=k

qℓ(xjℓ
ℓ , x

jℓ+1
ℓ+1 )∑N

j′
ℓ
=1 qℓ(x

j′
ℓ

ℓ , x
jℓ+1
ℓ+1 )

×
N∑

jk−1=1

qk−1(xjk−1
k−1 , xjk

k )∑N
j′

k−1=1 qk−1(xj′
k−1

k−1 , xjk
k )

ak−1,n(x0, . . . ,xk−2, x
jk−1
k−1 , . . . , xjt

t )

= 1
N

N∑
jt=1
· · ·

N∑
jk−1=1

t−1∏
ℓ=k−1

qℓ(xjℓ
ℓ , x

jℓ+1
ℓ+1 )∑N

j′
ℓ
=1 qℓ(x

j′
ℓ

ℓ , x
jℓ+1
ℓ+1 )

ak−1,n(x0, . . . ,xk−2, x
jk−1
k−1 , . . . , xjt

t )

= Hk−1,n(x0:t),

which establishes the recursion. Therefore, Ht ≡ H0,n and we may now conclude the proof by
noting that Bth ≡ H0,n.

C.1.6.5 Proof of Theorem C.1.8

In order to establish Theorem C.1.8 we will prove the following more general result, of which
Theorem C.1.8 is a direct consequence.
Proposition C.1.17. For every t ∈ N and M ∈ N∗ there exist ct > 0 and dt > 0 such that for
every N ∈ N∗, z0:t ∈ X0:t, (ft, f̃t) ∈ F(Xt)2, and ε > 0,

∫
CtSt(z0:t, dbt)1

{∣∣∣∣∣ 1N
N∑

i=1
{bi

tft(xi
t|t) + f̃t(xi

t|t)} − ηt⟨z0:t⟩(ftBt⟨z0:t−1⟩ht + f̃t)
∣∣∣∣∣ ≥ ε

}

≤ ct exp
(
−dtNε2

2κ2
t

)
,

where

κt := ∥ft∥∞
t−1∑
m=0
∥h̃m∥∞ + ∥f̃t∥∞. (C.1.35)

To prove Proposition C.1.17 we need the following technical lemma.
Lemma C.1.18. For every t ∈ N, (ft+1, f̃t+1) ∈ F(Xt+1)2, z0:t+1 ∈ X0:t+1, and N ∈ N∗,

γt+1⟨z0:t+1⟩(ft+1Bt+1⟨z0:t⟩ht+1 + f̃t+1)

=
(

1− 1
N

)
γt⟨z0:t⟩{Qtft+1Bt⟨z0:t−1⟩ht + Qt(h̃tft+1 + f̃t+1)}

+ 1
N

γt⟨z0:t⟩gt

(
ft+1(zt+1)Bt+1⟨z0:t⟩ht+1(zt+1) + f̃t+1(zt+1)

)
.

Proof. Since Lemma C.1.13 holds also for the Feynman–Kac model with a frozen path, we
obtain

γt+1⟨z0:t+1⟩(ft+1Bt+1⟨z0:t⟩ht+1+f̃t+1) = γt⟨z0:t⟩{Qt⟨zt+1⟩ft+1Bt⟨z0:t⟩ht+Qt⟨zt+1⟩(h̃tft+1+f̃t+1)}.

Thus, the proof is concluded by noting that for every xt ∈ Xt and h ∈ F(Xt:t+1),

Qt⟨zt+1⟩h(xt) =
(

1− 1
N

)
Qth(xt) + 1

N
g(xt)h(xt, zt+1).
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Finally, before proceeding to the proof of Proposition C.1.17, we introduce the law of the
PARIS evolving conditionally on a frozen path z = {zm}m∈N. Define, for m ∈ N and zm+1 ∈
Xm+1,

Pm⟨zm+1⟩ : Ym ×Ym+1 ∋ (ym, A) 7→
∫
Mm⟨zm+1⟩(xm|m, dxm+1)Sm(ym,xm+1, A).

For any given initial distribution ψ0 ∈ M1(Y0), let PP ,z
ψ0

be the distribution of the canonical
Markov chain induced by the Markov kernels {Pm⟨zm+1⟩}m∈N and the initial distribution ψ0.
By abuse of notation we write PP ,z

η0 instead of PP ,z
ψ0[η0⟨z0⟩], where the extension ψ0[η0] is defined

in Section C.1.6.3.

Proof of Proposition C.1.17. We proceed by forward induction over t. Let the σ-fields F̃t and
Ft be defined as in the proof of Theorem C.1.6, but for the conditional PARIS dual process.
Then, under the law PP ,z

η0 , reusing (C.1.32),

EP ,z
η0

[
β1

t ft(ξ1
t ) + f̃t(ξ1

t ) | F̃t−1
]

= EP ,z
η0

[
EP ,z
η0

[
β1

t | Ft

]
ft(ξ1

t ) + f̃t(ξ1
t ) | F̃t−1

]
= EP ,z

η0

[
ft(ξ1

t )
N∑

ℓ=1

qt−1(ξℓ
t−1, ξ1

t )∑N
ℓ′=1 qt−1(ξℓ′

t−1, ξ1
t )

(
βℓ

t−1 + h̃t−1(ξℓ
t−1, ξ1

t )
)

+ f̃t(ξ1
t ) | F̃t−1

]
.

Using (C.1.6), we get

EP ,z
η0

[
β1

t ft(ξ1
t ) + f̃t(ξ1

t ) | F̃t−1
]

=
(

1− 1
N

) ∑N
ℓ=1{βℓ

t−1Qt−1ft(ξℓ
t−1) + Qt−1(h̃t−1ft + f̃t)(ξℓ

t−1)}∑N
ℓ′=1 gt−1(ξℓ′

t−1)

+ 1
N

(
ft(zt)

N∑
ℓ=1

qt−1(ξℓ
t−1, zt)∑N

ℓ′=1 qt−1(ξℓ′
t−1, zt)

(
βℓ

t−1 + h̃t(ξℓ
t−1, zt)

)
+ f̃t(zt)

)
. (C.1.36)

In order to apply the induction hypothesis to each term on the right-hand side of the previous
identity, note that

Bt⟨z0:t−1⟩ht(zt) = ηt−1⟨z0:t−1⟩[qt−1(·, zt){Bt−1⟨z0:t−2⟩ht−1(·) + h̃t−1(·, zt)}]
ηt−1⟨z0:t−1⟩[qt−1(·, zt)]

.

Therefore, using Lemma C.1.18 and noting that γt⟨z0:t⟩1Xt/γt−1⟨z0:t⟩1Xt−1 = ηt−1⟨z0:t−1⟩gt−1
yields

ηt⟨z0:t⟩(ftBt⟨z0:t−1⟩ht + f̃t) = 1
N

(
ft(zt)Bt⟨z0:t−1⟩ht(zt) + f̃t(zt)

)
+
(

1− 1
N

)
ηt−1⟨z0:t−1⟩{Qt−1ftBt−1⟨z0:t−2⟩ht + Qt−1(h̃t−1ft + f̃t)}

ηt−1⟨z0:t−1⟩gt−1
. (C.1.37)

214



By combining (C.1.36) with (C.1.37), we decompose the error according to

1
N

N∑
i=1
{βi

tft(ξi
t|t) + f̃t(ξi

t|t)} − ηt⟨z0:t⟩(ftBt⟨z0:t−1⟩ht + f̃t)

= 1
N

N∑
i=1
{βi

tft(ξi
t|t) + f̃t(ξi

t|t)} − EP ,z
η0

[
β1

t ft(ξ1
t ) + f̃t(ξ1

t ) | F̃t−1
]

+ EP ,z
η0

[
β1

t ft(ξ1
t ) + f̃t(ξ1

t ) | F̃t−1
]
− ηt⟨z0:t⟩(ftBt⟨z0:t−1⟩ht + f̃t)

= I(1)
N +

(
1− 1

N

)
I(2)
N + 1

N
I(3)
N , (C.1.38)

where

I(1)
N := 1

N

N∑
i=1
{βi

tft(ξi
t) + f̃t(ξi

t)} − EP ,z
η0

[
β1

t ft(ξ1
t ) + f̃t(ξ1

t ) | F̃t−1
]

,

I(2)
N :=

∑N
ℓ=1{βℓ

t−1Qt−1ft(ξℓ
t−1) + Qt−1(h̃t−1ft + f̃t)(ξℓ

t−1)}∑N
ℓ′=1 gt−1(ξℓ′

t−1)

− ηt−1⟨z0:t−1⟩{Qt−1ftBt⟨z0:t−1⟩ht + Qt−1(h̃t−1ft + f̃t)}
ηt−1⟨z0:t−1⟩gt−1

, (C.1.39)

and

I(3)
N := ft(zt)

N∑
ℓ=1

qt−1(ξℓ
t−1, zt)∑N

ℓ′=1 qt−1(ξℓ′
t−1, zt)

(
βℓ

t−1 + h̃t−1(ξℓ
t−1, zt)

)
− ft(zt)

ηt−1⟨z0:t−1⟩[qt−1(·, zt){Bt−1⟨z0:t−2⟩ht−1(·) + h̃t−1(·, zt)}]
ηt−1⟨z0:t−1⟩[qt−1(·, zt)]

. (C.1.40)

The proof is now completed by treating the terms I(1)
N , I(2)

N , and I(3)
N separately, using Hoeffding’s

inequality and its generalisation in (Douc et al., 2011a, Lemma 4). Choose ε > 0; then, by
Hoeffding’s inequality,

PP ,z
η0

(
| I(1)

N | ≥ ε
)
≤ 2 exp

(
−1

2
ε2

κ2
t

N
)

. (C.1.41)

To treat I(2)
N , we apply the induction hypothesis to the numerator and denominator, each nor-

malised by 1/N, yielding, since ∥Qt−1h∥∞ ≤ τ̄t−1∥h∥∞ for all h ∈ F(Xt−1 � Xt),

PP ,z
η0

(∣∣∣∣∣ 1N
N∑

ℓ=1
{βℓ

t−1Qt−1ft(ξℓ
t−1) + Qt−1(h̃t−1ft + f̃t)(ξℓ

t−1)}

−ηt−1⟨z0:t−1⟩{Qt−1ftBt⟨z0:t−1⟩ht + Qt−1(h̃t−1ft + f̃t)}
∣∣∣∣∣ ≥ ε

)

≤ ct−1 exp
(
−dt−1

ε2

τ̄2
t−1κ

2
t

N
)

and

PP ,z
η0

(∣∣∣∣∣ 1N
N∑

ℓ=1
gt−1(ξℓ

t−1)− ηt−1⟨z0:t−1⟩gt−1

∣∣∣∣∣ ≥ ε

)
≤ ct−1 exp

(
−dt−1

ε2

τ̄2
t−1

N
)

.
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Combining the previous two bounds with the generalised Hoeffding inequality in (Douc et al.,
2011a, Lemma 4) yields, using also the bounds∑N

ℓ=1{βℓ
t−1Qt−1ft(ξℓ

t−1) + Qt−1(h̃t−1ft + f̃t)(ξℓ
t−1)}∑N

ℓ′=1 gt−1(ξℓ′
t−1)

≤ κt

and ηt−1⟨z0:t−1⟩gt−1 ≥ ¯
τt−1, the inequality

PP ,z
η0

(
| I(2)

N | ≥ ε
)
≤ ct−1 exp

(
−dt−1 ¯

τ2
t−1ε2

τ̄2
t−1κ

2
t

N
)

. (C.1.42)

The last term I(3)
N is treated along similar lines; indeed, by the induction hypothesis, since

∥qt−1∥∞ ≤ τ̄t−1σ̄t−1,

PP ,z
η0

(∣∣∣∣∣ 1N
N∑

ℓ=1
qt−1(ξℓ

t−1, zt)
(
βℓ

t−1 + h̃t−1(ξℓ
t−1, zt)

)

− ηt−1⟨z0:t−1⟩[qt−1(·, zt){Bt−1⟨z0:t−1⟩ht−1(·) + h̃t−1(·, zt)}]
∣∣∣∣∣ ≥ ε

)

≤ ct−1 exp

−dt−1

(
ε

τ̄t−1σ̄t−1
∑t−1

m=0 ∥h̃m∥∞

)2

N


and

PP ,z
η0

(∣∣∣∣∣ 1N
N∑

ℓ=1
qt−1(ξℓ

t−1, zt)− ηt−1⟨z0:t−1⟩[qt−1(·, zt)]
∣∣∣∣∣ ≥ ε

)
≤ ct−1 exp

(
−dt−1

(
ε

τ̄t−1σ̄t−1

)2
N
)

.

Thus, since
N∑

ℓ=1

qt−1(ξℓ
t−1, zt)∑N

ℓ′=1 qt−1(ξℓ′
t−1, zt)

(
βℓ

t−1 + h̃t−1(ξℓ
t−1, zt)

)
≤

t−1∑
m=0
∥h̃m∥∞

and ηt−1⟨z0:t−1⟩[qt−1(·, zt)] ≥ ¯
τt−1, the generalised Hoeffding inequality provides

PP ,z
η0

(
| I(3)

N | ≥ ε
)
≤ ct−1 exp

−dt−1

(
¯
τt−1ε

2τ̄t−1σ̄t−1∥ft∥∞
∑t−1

m=0 ∥h̃m∥∞

)2

N

 . (C.1.43)

Finally, combining the bounds (C.1.41–C.1.43) completes the proof.

C.1.6.6 Proof of Proposition C.1.9

The statement of Proposition C.1.9 is implied by the following more general result, which we
will prove below.
Proposition C.1.19. For every t ∈ N, M ∈ N∗, N ∈ N∗, z0:t ∈ X0:t, (ft, f̃t) ∈ F(Xt)2, and
p ≥ 2, it holds that

∫
CtSt(z0:t, dbt)

∣∣∣∣∣ 1N
N∑

i=1
{bi

tft(xi
t|t) + f̃t(xi

t|t)} − ηt⟨z0:t⟩(ftBt⟨z0:t−1⟩ht + f̃t)
∣∣∣∣∣
p

≤ ct(p/dt)p/2N−p/2κp
t ,

where ct > 0, dt > 0 and κt are defined in Proposition C.1.17 and (C.1.35), respectively.
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Before proving Proposition C.1.19, we establish the following result.
Lemma C.1.20. Let X be an Rd-valued random variable, defined on some probability space
(Ω,F ,P), satisfying P(|X| ≥ t) ≤ c exp(−t2/(2σ2)) for every t ≥ 0 and some c > 0 and σ > 0.
Then for every p ≥ 2 it holds that E[|X|p] ≤ cpp/2σp.

Proof. Using Fubini’s theorem and the change of variable formula,

E [|X|p] =
∫ ∞

0
ptp−1P(|X| ≥ t) dt = cp2p/2−1σpΓ(p/2),

where Γ is the Gamma function. It remains to apply the bound Γ(p/2) ≤ (p/2)p/2−1 (see
Anderson and Qiu (1997)), which holds for p ≥ 2 by [2, Theorem 1.5].

Proof of Proposition C.1.19. By combining Proposition C.1.17 and Lemma C.1.20 we obtain

N
∫

CtSt(z0:t, dbt)
∣∣∣∣ 1N∑N

i=1
{bi

tft(xi
t|t) + f̃t(xi

t|t)} − ηt⟨z0:t⟩(ftBt⟨z0:t−1⟩ht + f̃t)
∣∣∣∣2

≤ ct(p/dt)p/2N−p/2
(
∥ft∥∞

t−1∑
m=0
∥h̃m∥∞ + ∥f̃t∥∞

)p

,

which was to be established.

C.1.6.7 Proof of Proposition C.1.10

Like previously, we establish Proposition C.1.10 via a more general result, namely the follow-
ing.
Proposition C.1.21. For every t ∈ N, the exists c̄bias

t < ∞ such that for every M ∈ N∗,
N ∈ N∗, z0:t ∈ X0:t, and (ft, f̃t) ∈ F(Xt)2,∣∣∣∣∣

∫
CtSt(z0:t, dbt)

1
N

N∑
i=1
{bi

tft(xi
t|t) + f̃t(xi

t|t)} − ηt⟨z0:t⟩(ftBt⟨z0:t−1⟩ht + f̃t)
∣∣∣∣∣ ≤ c̄bias

t κtN−1,

where κt is defined in (C.1.35).
We preface the proof of Proposition C.1.21 by a technical lemma providing a bound on the bias
of ratios of random variables.
Lemma C.1.22. Let α and β be (possibly dependent) random variables defined on some prob-
ability space (Ω,F ,P) and such that E[α2] < ∞ and E[β2] < ∞. Moreover, assume that
there exist c > 0 and d > 0 such that |α/β| ≤ c, P-a.s., |a/b| ≤ c, E[(α − a)2] ≤ c2d2, and
E[(β− b)2] ≤ d2. Then

|E[α/β]− a/b| ≤ 2c(d/b)2 + c|E[β− b]|/|b|+ |E[α− a]|/|b|. (C.1.44)

Proof. Using the identity

E[α/β]− a/b = E[(α/β)(b− β)2]/b2 + E[(α− a)(b− β)]/b2 + aE[b− β]/b2 + E[α− a]/b,

the claim is established by applying the Cauchy–Schwarz inequality and the assumptions of
the lemma according to

|E[α/β]− a/b|
≤ cE[(β− b)2]/b2 + {E[(α− a)2]E[(β− b)2]}1/2/b2 + |a||E[β− b]|/b2 + |E[α− a]|/b2

≤ 2c(d/b)2 + c|E[β− b]|/|b|+ |E[α− a]|/|b|.
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Proof of Proposition C.1.10. We proceed by induction and assume that the claim holds true for
n− 1. Reusing the error decomposition (C.1.38), it is enough to bound the expectations of the
terms I(2)

N and I(3)
N given in (C.1.39) and (C.1.40), respectively (since EP ,z

η0 [I(1)
N ] = 0). This will

be done using the induction hypothesis, Lemma C.1.22, and Proposition C.1.19. More precisely,
to bound the expectation of I(2)

N , we use Lemma C.1.22 with α ← αt, β ← βt, a ← at, and
b← bt, where

αt := 1
N

N∑
ℓ=1
{βℓ

t−1Qt−1ft(ξℓ
t−1) + Qt−1(h̃t−1ft + f̃t)(ξℓ

t−1)}, βt := 1
N

N∑
ℓ=1

gt−1(ξℓ
t−1),

at := ηt−1⟨z0:t−1⟩{Qt−1ftBt⟨z0:t−1⟩ht + Qt−1(h̃t−1ft + f̃t)}, bt := ηt−1⟨z0:t−1⟩gt−1.

For this purpose, note that |αt/βt| ≤ κt and |at/bt| ≤ κt, where κt is defined in (C.1.35). On
the other hand, using Proposition C.1.19 (applied with p = 2), we obtain

EP ,z
η0

[(αt − at)2] ≤ d2
tκ

2
t and EP ,z

η0
[(βt − bt)2] ≤ d2

t ,

where d2
t := ctτ̄

2
t−1/(dtN). Using the induction assumption, we get

|EP ,z
η0

[αt]− at| ≤ c̄bias
t−1N−1τ̄t−1κt and |EP ,z

η0
[βt]− bt| ≤ c̄bias

t−1N−1τ̄t−1.

Hence, the conditions of Lemma C.1.22 are satisfied and we deduce that

|EP ,z
η0

[I(2)
N ]| = |EP ,z

η0
[αt/βt]− at/bt| ≤ 2κt

ct

dtN
τ̄2

t−1

¯
τ2

t−1
+ 2c̄bias

t−1κt
τ̄t−1

¯
τt−1N

.

The bound on |EP ,z
η0 [I(2)

N ]| is obtained along the same lines.

C.2 Learning with PPG

This section is divided into three subsections. Section C.2.1 establishes, following closely Karimi
et al. (2019), a non-asymptotic bound for stochastic approximation schemes under general
assumptions. Section C.2.2 shows how assumptions (A9-10) imply the assumptions provided
in C.2.1 and therefore allow to establish Theorem 5.4.1. Finally, Section C.2.3 provides sufficient
assumptions on the model ensuring that (A10) holds.

C.2.1 Non-asymptotic bound

We follow closely Karimi et al. (2019). Consider the recursion

θn+1 = θn − γn+1Hθn(Xn+1), n ∈ N,

where θn ∈ Θ ⊂ Rd for some d ∈ N∗ and {Xn}n∈N is a state-dependent Markov chain on
some measurable space (X,X ) in the sense that Xn+1 ∼ Pθn(Xn, ·) with Pθ being some Markov
kernel on (X,X ). Let h(θ) =

∫
Hθ(x) πθ(dx), where πθ is the invariant measure of Pθ and

en+1 := Hθn(Xn+1)−h(θn). As all norms are equivalent in finite dimensional vector spaces, we
use ∥ · ∥ to denote a generic norm. We denote by {Fn}n∈N the natural filtration of the Markov
chain {Xn}n∈N.

(A17) There exists a Borel measurable function V : Θ→ R such that for every θ ∈ Θ, ∇V (θ) =
h(θ).
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(A18) There exists LV ∈ R≥0 such that for every (θ, θ′) ∈ Θ2,

∥∇V (θ)−∇V (θ′)∥ ≤ LV ∥θ − θ′∥.

(A19) There exists a Borel measurable function Ĥ : Θ × X → Θ such that for every θ ∈ Θ and
x ∈ X,

Ĥθ(x)− PθĤθ(x) = Hθ(x)− h(θ) .

(A20) There exists LPĤ ∈ R≥0 such that for every (θ0, θ1) ∈ Θ2,

sup
x∈X
∥Pθ0Ĥθ0(x)− Pθ0Ĥθ1(x)∥ ≤ LPĤ∥θ0 − θ1∥ .

(A21) There exists LPĤ
0 ∈ R≥0 such that

sup
θ∈Θ
∥PθĤθ∥ ≤ LPĤ

0 .

(A22) There exists σmse ∈ R≥0 such that for every x ∈ X and θ ∈ Θ,∫
∥Hθ(x′)− h(θ)∥2 Pθ(x, dx′) ≤ σ2

mse .

(A23) There exists LĤ ∈ R≥0 such that for every x ∈ X,

sup
θ∈Θ

∫
∥Ĥθ∥Pθ(x, dx′) ≤ LĤ .

Theorem C.2.1. Assume that (A17-23) hold. In addition, assume that there exist a > 0 and
a′ > 0 such that for all n ∈ N,

γn+1 ≤ γn ≤ aγn+1 , γn − γn+1 ≤ a′γ2
n , γ1 ≤ (LV + Ch)−1/2 .

Moreover, for any n ∈ N∗, let ϖ be a [0 : n]-valued random variable, independent of {Fℓ}ℓ≥0
and such that P(ϖ = k) = γk+1/

∑n
ℓ=0 γℓ+1 for k ∈ [0 : n]. Then,

E
[
∥h(θϖ)∥2

]
≤ 2

V0,n + C0,n + (σ2
mseLV + Cγ)∑n

k=0 γ2
k+1∑n

k=0 γk+1
,

where V0,n := E [V (θ)− V (θn)] and

C0,n := γ1h(θ0)LĤ + LPĤ
0 (γ1 − γn+1 + 1) , (C.2.1)

Cγ := σmseLPĤ + (1 + σmse)LV LPĤ
0 , (C.2.2)

Ch := LPĤ ((a + 1)/2 + aσmse) + (LV + a′ + 1)LPĤ
0 . (C.2.3)

Proof. We follow closely the proof of (Karimi et al., 2019, Theorem 2) and adapt it to our
setting. First, note that by (A17), assumptions A1 and A2 of (Karimi et al., 2019, Theorem
2) hold with c0 = d0 = 0 and c1 = d1 = 1. In addition, the claim in (Karimi et al., 2019, Lemma
1) holds true since by (A18), their A3 holds. Moreover, (Karimi et al., 2019, Equation 17) can
also be established under (A22), as we may rewrite it as

n∑
ℓ=0

γ2
ℓ+1E

[
∥eℓ+1∥2

]
=

n∑
ℓ=0

γ2
ℓ+1E

[
E
[
∥eℓ+1∥2 | Fℓ

]]
≤ σ2

mse

n∑
ℓ=0

γ2
ℓ+1 .
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Following the proof of (Karimi et al., 2019, Lemma 2), consider the decomposition

E
[
−

n∑
ℓ=0

γℓ+1 ⟨∇V (θℓ), eℓ+1⟩
]

= E [A1 + A2 + A3 + A4 + A5] ,

where

A1 := −
n∑

ℓ=1
γℓ+1

〈
∇V (θℓ), Ĥθℓ

(Xℓ+1)− Pθℓ
Ĥθℓ

(Xℓ)
〉

,

A2 := −
n∑

ℓ=1
γℓ+1

〈
∇V (θℓ),Pθℓ

Ĥθℓ
(Xℓ)− Pθℓ−1Ĥθℓ−1(Xℓ)

〉
,

A3 := −
n∑

ℓ=1
γℓ+1

〈
∇V (θℓ)−∇V (θℓ−1),Pθℓ−1Ĥθℓ−1(Xℓ)

〉
,

A4 := −
n∑

ℓ=1
(γℓ+1 − γℓ)

〈
∇V (θℓ−1),Pθℓ−1Ĥθℓ−1(Xℓ)

〉
,

A5 := −γ1
〈
∇V (θ0), Ĥθ0(X1)

〉
+ γn+1

〈
∇V (θn),PθnĤθn(Xn+1)

〉
.

As Ĥθℓ
(Xℓ+1) − Pθℓ

Ĥθℓ
(Xℓ) is a martingale difference, it holds that E [A1] = 0. The upper

bounds on the expectations of A2, A3 and A4 are obtained similarly as in Karimi et al. (2019).
Using (A20),

A2 ≤ LPĤ

(
σmse

n∑
k=1

γ2
k + 1

2 (1 + 2aσmse + a)
n∑

k=0
γ2

k+1∥h(θk)∥2
)

.

By (A18-21),

A3 ≤ LV LPĤ
0

(
(1 + σmse)

n∑
k=1

γ2
k +

n∑
k=1

γ2
k∥h(θk)∥2)

)
.

On the other hand,

A4 ≤ LPĤ
0

(
γ1 − γn+1 + a′

n∑
k=1

γ2
k∥h(θk−1)∥2

)
.

We now focus on A5. As in the proof of (Karimi et al., 2019, Lemma 2), the expectation of
the first term can be straightforwardly bounded by γ1∥h(θ0)∥LĤ using the Cauchy–Schwarz
inequality and (A23). The second term can, using (A21) and γn+1∥h(θn)∥ ≤ 1+γ2

n+1∥h(θn)∥2,
be bounded in the same way according to

γn+1
〈
∇V (θn),PθnĤθn(Xn+1)

〉
≤ LPĤ

0 γn+1∥h(θn)∥ ≤ LPĤ
0

(
1 + γ2

n+1∥h(θn)∥2
)

≤ LPĤ
0

(
1 +

n∑
ℓ=0

γ2
ℓ+1∥h(θℓ)∥2

)
.

The rest of the proof follows that of (Karimi et al., 2019, Theorem 2).

C.2.2 Application to Theorem 5.4.1

The goal of this section is to establish that the assumptions of Theorem 5.4.1 ensure all the
assumptions in section C.2.1, which in turn allows Theorem C.2.1 to be applied. First, we
start by explicitly defining the kernel Pθ and the function h in terms of the kernels presented
in section C.1. We write Pθ,t instead of Pθ to explicit the dependence of the kernel on the fixed
number of observations t.
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C.2.2.1 Verification of the assumptions of Theorem C.2.1

For (k0, k) ∈ (N∗)2 such that k0 < k, define

Pθ,t : Ek−k0
t × E�(k−k0)

t ∋ (yt[k0 : k], z0:t[k0 : k], A) 7→ Kk0
θ,t � K�(k−k0)

θ,t (z0:t[k], A), (C.2.4)

where Kθ,t is the PPG kernel defined in (C.1.17). Note that Pθ,t depends only on the last
frozen path, namely z0:t[k]. Note also that, since Kθ,t depends only on the paths, there is no
dependence between yt,ℓ[k0 : k] and yt,ℓ+1[k0 : k]. The score ascent algorithm (Algorithm 6)
can be formulated as follows.

1. Sample (z0:t,ℓ[k0 : k],yt,ℓ[k0 : k]) ∼ Pθℓ,t

(
(z0:t,ℓ−1[k0 : k],yt,ℓ−1[k0 : k]), ·

)
.

2. Update the parameter according to ηℓ+1 = ηℓ + γℓ+1H(z0:t,ℓ[k0 : k],yt,ℓ[k0 : k]), where

H(z0:t,ℓ[k0 : k],yt,ℓ[k0 : k]) = 1
k − k0 + 1

k∑
i=k0

µ(βt,ℓ[i])(id) = Π(k0−1,k),N (ht),

where Π(k0−1,k),N (ht) is defined in (5.3.1). We denote by πθ,t the invariant distribution of Pθ,t,
which, by Proposition C.1.4, is given by πθ,t = (η0:t � CtSt)�(k−k0).
We also require the strong mixing assumption to hold uniformly in θ.

(A24) [Strong mixing uniformly in θ] For every s ∈ N there exist
¯
τs, τ̄s,

¯
σs, and σ̄s in R∗+ such

that for all θ ∈ Θ,
(i)

¯
τs ≤ gs,θ(xs) ≤ τ̄s for every xs ∈ Xs,

(ii)
¯
σs ≤ ms,θ(xs, xs+1) ≤ σ̄s for every (xs, xs+1) ∈ Xs:s+1.

Note that the assumption above implies that κN,t is also uniform in θ.

Proof that (A17) holds.
Proposition C.2.2. For all θ ∈ Θ, h(θ) = ∇V (θ), where V (θ) = log γ0:t,θ(X0:t) is the log-
likelihood function.

Proof. By Theorem C.1.6,

h(θ) =
∫

H(ỹt[k0 : k], x̃0:t[k0 : k]) πθ,t(d(ỹt[k0 : k], x̃0:t[k0 : k]))

= 1
k − k0 + 1

k∑
i=k0

∫
[η0:t,θ � Ct,θSt,θ ] (d(ỹt[i], x̃0:t[i]))µ(β̃t,ℓ[i])(id)

= η0:t,θ (s0:t,θ) = ∇V (θ).

Proof that (A18) holds. (A18) is trivially implied by (A10)(i).

Proof that (A19-21) hold. Let Ĥθ be given by

Ĥθ : Ek−k0
t ∋ (yt[k0 : k], z0:t[k0 : k]) 7→

∞∑
r=0
{Pr

θ,tH(yt[k0 : k], z0:t[k0 : k])− h(θ)}. (C.2.5)

Then the following holds true.
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Lemma C.2.3. Assume (A24). Then for all θ ∈ Θ and t ∈ N∗,

∥Pθ,tĤθ∥∞ ≤ σbias(1− κk
N,t)−1 .

Proof. By Theorem 5.3.1, we have for any r > 0∣∣Pr
θ,tH(yt[k0 : k], z0:t[k0 : k])− h(θ)

∣∣ ≤ σbiasκ
(r−1)k
N,t

and thus

∥Pθ,tĤθ∥∞ ≤
∞∑

r=1

∥∥∥Pr
θ,tH − h(θ)

∥∥∥
∞
≤ σbias

∞∑
r=0

κrk
N,t ≤ σbias(1− κk

N,t)−1 ,

where κN,t ∈ (0, 1).

Lemma C.2.3 proves (A19-21) with LPĤ
0 := σbias(1− κk

N,t)−1.

Proof that (A20) holds.
Theorem C.2.4. Assume (A24) and (A10). Then for every t ∈ N, θ ∈ Θ and N ∈ N∗ such
that N > 1 + 5ρ2

t t/2, ∥∥∥Pθ1,tĤθ1 − Pθ2,tĤθ2

∥∥∥
∞
≤ LPĤ∥θ1 − θ2∥ ,

where

LPĤ := ∥LP
2 ∥∞

[
1 + κk

N,t(1− κk
N,t)

]
+ LV +

σbias(1− κN,t)−1(1− κk
N,t)−1

[
∥LP

1 ∥∞(1− κk
N,t)−1 + Lηκk

N,t

]
. (C.2.6)

Proof. We establish the claim by adapting the proof of (Karimi et al., 2019, Lemma 7). First,
recall that the kernel Kθ,t defined in (C.1.18) is the path marginalized version of Kθ,t given in
(C.1.17). Note that for every x ∈ Ek−k0

t ,

Pθ1,tĤθ1(x) =
∞∑

n=0
δxPθ1,t

{
Pn

θ1,tH − h(θ1)
}

=
∞∑

n=0
δxKkn

θ1,t {Pθ1,tH − η0:t,θ1Pθ1,tH} ,

where we have used (i) the fact that the backward statistics output by Pθ,t are independent of
the input backward statistics and (ii) the penultimate line in the computation of h(θ) above.
We follow the proof of (Fort et al., 2011, Lemma 4.2) and consider the following decomposition:
for n ∈ N∗,

δxKkn
θ1,t (Pθ1,tH − η0:t,θ1Pθ1,tH)− δxKkn

θ2,t (Pθ2,tH − η0:t,θ2Pθ2,tH) (C.2.7)

=
n−1∑
j=0

(
δxKkj

θ1,t − η0:t,θ1

) (
Kkj

θ1,t −Kkj
θ2,t

) (
K

k(n−j−1)
θ2,t Pθ1,tH − η0:t,θ2Pθ1,tH

)
−
(
δxKkn

θ2,tPθ2,tH − η0:t,θ2Pθ2,tH
)

+
(
δxKkn

θ2,tPθ1,tH − η0:t,θ2Pθ1,tH
)

− η0:t,θ1

(
Kkn

θ2,tPθ1,tH − η0:t,θ2Pθ1,tH
)

.

Applying Theorem C.1.7 with µ = δx and ν = η0:t,θ and using the fact that η0:t,θKℓ
θ,t = η0:t,θ

for all ℓ ∈ N, we obtain that for all ℓ ∈ N and all θ ∈ Θ,
∥∥∥δxKℓ

θ,t − η0:t,θ
∥∥∥

TV
≤ κℓ

N,t. Note that
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by (A10)(iii), Kθ,t is Lipschitz; therefore, for all r ∈ N∗, by Lemma C.3.10, Kr
θ,t is Lipschitz

with constant ∥LP
1 ∥∞(1− κN,t)−1. Combining all this together, we obtain∣∣∣(δxKkj

θ1,t − η0:t,θ1

) (
Kkj

θ1,t −Kkj
θ2,t

) (
K

k(n−j−1)
θ2,t Pθ1,tH − η0:t,θ2Pθ1,tH

)∣∣∣
=
∣∣∣(δxKkj

θ1,t − η0:t,θ1

) (
Kkj

θ1,t −Kkj
θ2,t

){
K

k(n−j−1)
θ2,t [Pθ1,tH − h(θ1)]− η0:t,θ2 [Pθ1,tH − h(θ1)]

}∣∣∣
≤ ∥LP

1 ∥∞(1− κN,t)−1κkj
N,tκ

k(n−j−1)
N,t ∥Pθ1,tH − h(θ1)∥∞∥θ1 − θ2∥

≤ σbias∥LP
1 ∥∞(1− κN,t)−1κ

k(n−1)
N,t ∥θ1 − θ2∥ ,

where the last inequality is due to Theorem 5.3.1. Therefore, the first term of the right side
of (C.2.7) is upper bounded by σbias∥LP

1 ∥∞(1 − κN,t)−1nκ
k(n−1)
N,t ∥θ1 − θ2∥. The second term of

(C.2.7) can be written

−
(
δxKkn

θ2,tPθ2,tH − η0:t,θ2Pθ2,tH
)

+
(
δxKkn

θ2,tPθ1,tH − η0:t,θ2Pθ1,tH
)

=
(
δxKkn

θ2,t − η0:t,θ2

)
(Pθ1,tH − Pθ2,tH) ,

and using again the ergodicity of Kθ,t and the fact that θ 7→ Pθ,tH is uniformly Lipschitz by
(A10)(iv), we may conclude that it is upper bounded by ∥LP

2 ∥∞κkn
N,t∥θ1 − θ2∥. Finally, for

the last term, using the facts that Kk
θ,t is η0:t,θ-invariant and geometrically ergodic and that

θ 7→ η0:t,θ is Lipschitz by (A10)(iv) yields∣∣∣η0:t,θ1

(
Kkn

θ2,tPθ1,tH − η0:t,θ2Pθ1,tH
)∣∣∣

=
∣∣∣(η0:t,θ1 − η0:t,θ2)

{
Kkn

θ2,t [Pθ1,tH − h(θ1)]− η0:t,θ2 [Pθ1,tH − h(θ1)]
}∣∣∣

≤ Lηκkn
N,t∥Pθ1,tH − h(θ1)∥∞∥θ1 − θ2∥

≤ Lησbias(1− κN,t)−1κkn
N,t∥θ1 − θ2∥ .

Therefore, we have that

δxKkn
θ1,t (Pθ1,tH − η0:t,θ1Pθ1,tH)− δxKkn

θ2,t (Pθ2,tH − η0:t,θ2Pθ2,tH)

≤
{

σbias∥LP
1 ∥∞(1− κN,t)−1nκ

k(n−1)
N,t +

[
∥LP

2 ∥∞ + Lησbias(1− κN,t)−1
]

κkn
N,t

}
∥θ1 − θ2∥ .

Therefore, we obtain∣∣∣Pθ1,tĤθ1(x)− Pθ2,tĤθ2(x)
∣∣∣

≤ |δxPθ1,tH − δxPθ2,tH|+ |η0:t,θ1Pθ1,tH − η0:t,θ2Pθ2,tH|

+
∣∣∣∣∣
∞∑

n=1
δxKkn

θ1,t (Pθ1,tH − η0:t,θ1Pθ1,tH)− δxKkn
θ2,t (Pθ2,tH − η0:t,θ2Pθ2,tH)

∣∣∣∣∣
≤ |δxPθ1,tH − δxPθ2,tH|+ |η0:t,θ1Pθ1,tH − η0:t,θ2Pθ2,tH|

+
{

σbias∥LP
1 ∥∞(1− κN,t)−1(1− κk

N,t)−2

+
[
∥LP

2 ∥∞ + Lησbias(1− κN,t)−1
]

κk
N,t(1− κk

N,t)−1
}
∥θ1 − θ2∥ .

To conclude, note that by (A10)(iv), ∥δxPθ1,tH − δxPθ2,tH∥ ≤ ∥LP
2 ∥∞∥θ1 − θ2∥. Furthermore,

note that by Theorem C.1.6 we obtain that for all θ ∈ Θ, η0:t,θPθ,tH = η0:t,θs0:t,θ = ∇V (θ).
Therefore, by (A10)(i) we obtain that ∥η0:t,θ1Pθ1,tH − η0:t,θ2Pθ2,tH∥ ≤ LV ∥θ1− θ2∥, concluding
the proof.
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Proof that (A22) holds. (A22) is simply a bound on the MSE of the roll-out PPG estimator,
given by Theorem 5.3.1.

Proof that (A23) holds.
Proposition C.2.5. For all θ ∈ Θ and all ℓ ∈ [1 : t− 1]

E
[
∥Ĥθ∥ | Fℓ

]
≤ 2∥s0:t,θ∥∞ + σbias(1− κk

N,t)−1 .

Proof. Note that for all x ∈ Ek−k0
t and all θ ∈ Θ,

Ĥθ(x) = H(x)− h(θ) + Pθ,tĤθ(x) . (C.2.8)

Lemma C.2.3 shows that ∥Pθ,tĤθ∥∞ ≤ σbias(1− κk
N,t)−1. Note that h(θ) ≤ ∥s0:t,θ∥∞ We write

E [∥H∥ | Fℓ] ≤
1

(k − k0 + 1)N

k∑
i=k0

N∑
j=1

E
[
∥βj

t,ℓ[i]∥ | Fℓ

]
.

By Proposition C.3.9, E
[
∥βj

t,ℓ[i]∥ | Fℓ

]
≤ ∥s0:t,θ∥∞, concluding the proof.

(A23) follows directly by Proposition C.2.5 and by considering supθ∈Θ ∥s0:t,θ∥∞.

C.2.2.2 Proof of Theorem 5.4.1

We have shown in Section C.2.2.1 that under (A10-24), it is possible to apply Theorem C.2.1.
To conclude the proof of Theorem 5.4.1 we just have to rearrange the constants. We start by
rewriting the constant in Theorem C.2.4

LPĤ = C1 + σbias(1− κN,t)−1(1− κk
N,t)−1C2,

with

C1 =
∥∥∥LP

2

∥∥∥
∞

[
1 + κk

N,t(1− κk
N,t)−1

]
+ LV

C2 =
∥∥∥LP

1

∥∥∥
∞

(1− κk
N,t)−1 + Lηκk

N,t .

By (C.2.2) and Lemma C.2.3,

Cγ = σmseLPĤ + (1 + σmse)LV LPĤ
0

= σmse
[
C1 + σbias(1− κN,t)−1(1− κk

N,t)−1C2
]

+ (1 + σmse)LV σbias(1− κk
N,t)−1

= σmseC1 + σmseσbias(1− κk
N,t)−1

[
LV + (1− κN,t)−1C2

]
+ σbiasL

V (1− κk
N,t)−1 .

Therefore,

C0,γ := σ2
mseLV + Cγ

= σ2
mseLV + σmseC1 + σmseσbias(1− κk

N,t)−1
[
LV + (1− κN,t)−1C2

]
+ σbiasL

V (1− κk
N,t)−1 .

In the same way, we can rewrite (C.2.3) as

Ch = LPĤ [(a + 1)/2 + aσmse] + (LV + a′ + 1)LPĤ
0

=
[
C1 + σbias(1− κN,t)−1(1− κk

N,t)−1C2
]

[(a + 1)/2 + aσmse] + (LV + a′ + 1)σbias(1− κk
N,t)−1 .

The constant C0 from Theorem 5.4.1 is LĤ = 2 supθ∈Θ ∥s0:t,θ∥∞ + σbias(1 − κk
N,t)−1 which

completes the proof.
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C.2.3 Conditions on the model to verify (A10)

In our specific application to score ascent, we work with the following assumptions.
(A25) (i) For all t ∈ N, there exists Ls

t ∈ M(Xt:t+1) such that for all (xt, xt+1) ∈ Xt:t+1,
the function θ 7→ st,θ(xt, xt+1) is Ls

t (xt, xt+1)-Lipschitz and Xt:t+1 ∋ (xt, xt+1) 7→
st,θ(xt, xt+1) is bounded by ∥st(θ)∥∞ for all θ ∈ Θ. Furthermore, ∥Ls

k∥∞ <∞.
(ii) For all t ∈ N, there exists Lq

t ∈ Xt:t+1 such that ∥Lq
t∥∞ < ∞ and that for all

(xt, xt+1) ∈ Xt:t+1, θ 7→ qt,θ(xt, xt+1) is Lq
t (xt, xt+1)-Lipschitz.

Lemma C.2.6 ((A18)(i) holds). Assume (A24) and (A10). There exists a constant LV such
that the Lyapunov function V satisfies, for all (θ1, θ2) ∈ Θ2,

∥∇V (θ1)−∇V (θ2)∥ ≤ LV ∥θ1 − θ2∥.

Proof. For all θ1, θ2,

∥∇V (θ1)−∇V (θ2)∥ = ∥η0:t,θ1(s0:t,θ1)− η0:t,θ2(s0:t,θ2)∥
≤ ∥η0:t,θ1(s0:t,θ1)− η0:t,θ1(s0:t,θ2)∥+ ∥η0:t,θ1(s0:t,θ2)− η0:t,θ2(s0:t,θ2)∥ .

By (9) and by (Gloaguen et al., 2022, Theorem 4.10) there exists a constant c such that

∥η0:t,θ1(s0:t,θ2)− η0:t,θ2(s0:t,θ2)∥ ≤ ct∥θ1 − θ2∥ supθ supk ∥sk(θ)∥∞ ,

Using (A9) and (A10)[i], we can write:

∥η0:t,θ1(s0:t,θ1)− η0:t,θ1(s0:t,θ2)∥ ≤
t−1∑
u=0

η0:t,θ1 [∥su,θ1(xu:u+1)− su,θ2(xu:u+1)∥],

≤
t−1∑
u=0

η0:t,θ1 [Ls
u(xu:u+1)] ∥θ1 − θ2∥,

≤ σ+
σ−

supu∈[0:t−1] [Ls
u] ∥θ1 − θ2∥t.

Theorem C.2.7 (Lipschitz continuity of Particle Gibbs with Backward Sampling). Assume
(A25). For every t ∈ N, θ ∈ Θ and N ∈ N∗

sup
x0:t∈X0:t

∥Kθ1,t(x0:t, .)−Kθ2,t(x0:t, .)∥TV ≤ LK
t,N∥θ1 − θ2∥ ,

where

LK
t,N :=

t−1∑
ℓ=0

τ̄−1
ℓ

[
σ̄−1

ℓ + (N − 1)
]
∥Lq

ℓ∥∞ . (C.2.9)

Proof. We know that Kθ,t = Cm,θBt,θ . Therefore, by Lemmas C.3.5, C.3.7 and C.3.11, we have
that Kθ,t is Lipschitz with constant equals LC

t + supθ Ct,θLB
t .

Corollary C.2.8 ((A10)(iii) holds.). Assume (A25). For every t ∈ N, θ ∈ Θ, r ∈ N∗ and
N ∈ N∗ such that N > 1 + 5ρ2

t t/2

sup
x0:t∈X0:t

∥∥∥Kr
θ1,t(x0:t, .)−Kr

θ2,t(x0:t, .)
∥∥∥

TV
≤ LP

t,N∥θ1 − θ2∥

where
LP

t,N := (1− κt,N )−1∥LK
t,N∥∞ (C.2.10)

where LK
t,N is defined in (C.2.9).
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Proof. Under 24, the Particle Gibbs with backward sampling is geometrically ergodic with
contraction rate κt,N and thus LK

t,N is bounded and the result follows from Lemma C.3.10

Corollary C.2.9 ((A10)(i)). Assume (A24) and (A25). For all t ∈ N∗, (θ0, θ1) ∈ Θ2,

∥η0:t,θ0 − η0:t,θ1∥TV ≤ Lη∥θ0 − θ1∥,

where
Lη := LP

t,N∗ , (C.2.11)

and LP
t,N is defined in (C.2.10) and N∗ = ⌈1 + 5ρ2

t /2⌉.

Proof. Consider the following decomposition, valid for all k ∈ N∗ and N ≥ 1 + 5ρ2
t /2, and all

x0:t ∈ X0:t,

∥η0:t,θ1 − η0:t,θ2∥TV ≤
∥∥∥η0:t,θ1 −Kk

θ1,t(x0:t, ·)
∥∥∥

TV
+
∥∥∥η0:t,θ2 −Kk

θ2,t(x0:t, ·)
∥∥∥

TV
+
∥∥∥Kk

θ1,t(x0:t, ·)−Kk
θ2,t(x0:t, ·)

∥∥∥
TV

≤
∥∥∥η0:t,θ1 −Kk

θ1,t(x0:t, ·)
∥∥∥

TV
+
∥∥∥η0:t,θ2 −Kk

θ2,t(x0:t, ·)
∥∥∥

TV
+ LP

t,N∥θ1 − θ2∥ ,

where we applied Corollary C.2.8. Since the Lipschitz constant of Kθ,t is independent of k, and
Kθ,t is geometrically ergodic for all θ, we obtain by taking the limit when k goes to infinity with
N fixed,

∥η0:t,θ1 − η0:t,θ2∥TV ≤
∥LK

t,N∥∞
1− κt,N

∥θ1 − θ2 ∥ ,

for all N ≥ 1 + 5ρ2
t /2, where the dependence in N is hidden in LP

t,N . The result follows by
choosing N = ⌈1 + 5ρ2

t /2⌉.

Remark C.2.10. As noted by Lindholm and Lindsten (2018), the Lipschitz constant appearing
in Corollary C.2.8 possesses an unexpected dependence on N − 1. One would expect it not to
be true, in that we know that Kθ,t converges geometrically fast and uniformly to η0:t and this is
faster as N gets bigger. Therefore, for large N the Lipschitz constant is expected to converge to
that of η0:t whose Lipschitz constant is independent of N .
Proposition C.2.11 (Lipschitz continuity of θ 7→ Kθ,tµ(βt)(id)). Assume (A25). For every
t ∈ N, θ ∈ Θ and N ∈ N∗,

∥Kθ1,tµ(βt)(id)−Kθ2,tµ(βt)(id)∥∞ ≤ LK
t ∥θ1 − θ2∥ ,

where

LK
t := (N − 1)

t−1∑
ℓ=0

τ̄ℓ∥Lq
ℓ∥∞ +

m∑
j=1
∥L
←−
Q
j ∥∞

[
m−1∑
ℓ=0

s∞ℓ

]
+

m∑
j=1
∥Ls

j∥∞ . (C.2.12)

Proof. Consider e = (x0:t,y0:t) ∈ Et and fθ(e) :=
∫
Sm,θ(x0:t, dỹt)µ(bt)(id). Then Kθ,tµ(bt)(id) =

Cm,θfθ(x0:t) is a composition of a Markov kernel and a Lipschitz function, therefore Lips-
chitz.

Corollary C.2.12 ((A10)(iv) holds.). Assume (A25). For every t ∈ N, θ ∈ Θ and N ∈ N∗

sup
x0:t∈X0:t

∥Pθ1,tH − Pθ2,tH∥ ≤ LP
2 ∥θ1 − θ2∥ ,

where
LP

2 = LP
t,N + LK

t , (C.2.13)

with LP and LK
t are defined in (C.2.12) and (C.2.10).
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Proof. Let f̃ : Ek−k0 ∋ (x0:t[k0 : k],x0:t|t[k0 : k], bt[k0 : k]) 7→ (k − k0)−1∑k
ℓ=k0+1 µ(bt[ℓ])(id).

As Kθ,t depends only on the path, with a slight abuse of notation, we can define fθ(x0:t) :=
K�k−k0

θ,t (f̃)(x0:t). By proposition C.2.11, we have that fθ is Lipschitz with Lf = LK
t . Note that

Pθ,tH(x0:t,yt) = Kk0
θ,tfθ(x0:t), therefore, by lemma C.3.11 Lipschitz with constant LP + LK

t .

C.3 Lipschitz properties

C.3.1 Lipschitz continuity of Pθ,

In this section we prove the following items:
• Cm,θ(z0:m, ·) is Lipschitz, see Section C.3.1.1
• Bm,θ(x0:m, ·) is Lipschitz, see Section C.3.1.2
•
∫
Sm,θ(x0:m, dbm)µ(bm)(Id) is Lipschitz, see Section C.3.1.3

The following technical lemma will be useful.
Lemma C.3.1. Let α ∈]0, 1], x ∈ R≥0 and ℓ ∈ N. Then for all λi ∈ R≥0, i ∈ [0 : ℓ], such that
α ≥

∏ℓ
i=0(1− λix) it holds that α ≥ 1− x

∑ℓ
i=0 λi.

Proof. Consider first the case where xλi ≤ 1 for all i ∈ [0 : ℓ]. We prove the result by induction.
The case ℓ = 0 is straightforward. Assume now that the result holds for some r ∈ [0 : ℓ − 1].
Then,

r+1∏
i=0

(1− λix) = (1− λr+1x)
r∏

i=0
(1− λix) ≥ (1− λr+1x)(1− x

r∑
i=0

λi)

= 1− x
r+1∑
i=0

λi + x2
r∑

i=0
λiλr+1 ≥ 1− x

r+1∑
i=0

λi .

Consider now the case where there is a index j ∈ [0 : ℓ] such that xλj ≥ 1. Then α ≥ 0 ≥
1− (∑ℓ

i=0 λi)x.

We begin with some important definitions. Let P and Q be probability distributions on some
common measurable space (X,X), and assume that these distributions admit densities p and q
w.r.t some common reference measure λ. Let M [P, Q] denote a maximal coupling between P
and Q. As in (Lindholm and Lindsten, 2018, Theorem 2), it is possible to explicitly construct
one such maximal coupling by

M [P, Q] (d(x, y)) := min{p(x), g(x)}λ(dx)δx(dy)+[
P (dx)−min{p(x), g(x)}λ(dx)

][
Q(dy)−min{p(y), g(y)}λ(dy)

]
1− λ

(
min{p, q}

) . (C.3.1)

From this definition it follows that for continuous and discrete dominating measures λ,∫
1{x=y}M [P, Q] d(x, y) =

∫
min{p(x), g(x)}λ(dx) .

Moreover, for two Markov transition kernels K1 and K2 on (X,X), which are assumed to admit
transition densities with respect to some common dominating measure, we let, for (x1, x2) ∈
X2, M [K1, K2] ((x1, x2), ·) denote the maximal coupling between the measures K1(x1, ·) and
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K2(x2, ·). Defined in this way, M [K1, K2] defines a Markov transition kernel on the product
space (X2,X�2)
The following Lemma will be crucial in what follows.
Lemma C.3.2. (i) Let (µ1, µ2) be two probability measures admitting a density with respect

to a common dominating measure and let (K1, K2) two Markov transition kernels also ad-
mitting transition densities with respect to some dominating measure. Then the probability
measure

M [µ1, µ2]M [K1, K2] (d(x1, x2)) =
∫
M [µ1, µ2] (d(z1, z2))M [K1, K2] ((z1, z2), d(x1, x2)),

is a coupling of (µ1K1, µ2K2), and it holds that∫
1x1=x2M [µ1K1, µ2K2] (d(x1, x2))

≥
∫ ∫

1z1=z21x1=x2M [µ1, µ2] (d(z1, z2))M [K1, K2] ((z1, z2), d(x1, x2)).

(ii) Let (µ1, · · · , µn) and (ν1, · · · , νn) be probability measures such that for all i ∈ [1 : n], µi

and νi admit densities with respect to the same dominating measure. Then
⊗n

i=1M [µi, νi]
is a coupling of

⊗n
i=1 µi and

⊗n
i=1 νi, and thus

∫ n∏
i=1
1xi=yiM

[
n⊗

i=1
µi,

n⊗
i=1

νi

]
(d(x1, . . . , xn, y1, . . . , yn))

≥
∫ n∏

i=1
1xi=yi

n⊗
i=1
M [µi, νi] (d(x1, . . . , xn, y1, . . . , yn)).

Proof. It is enough to show that M [µ1, µ2]M [K1, K2] admits µ1K1 and µ2K2 as marginal
distributions. This follows immediately from the fact that M [µ1, µ1] and M [K1, K2] admit the
right marginal distributions; indeed,

M [µ1, µ2]M [K1, K2] (X ×A)

=
∫
M [µ1, µ2] (dz1, d2)M [K1, K2] (z1, z2, d(x1, x2))1X×A(x1, x2)1X2(z1, z2)

=
∫
M [µ1, µ2] (dz1, d2)K2(z2, A)

=
∫

µ2(dz2)K2(z2, A)

= µ2K2(A).

The derivation for the first marginal distribution follows similarly. For the second point, since
M [µ1, µ2]M [K1, K2] is a coupling of (µ1K1, µ2K2) andM [µ1K1, µ2K2] is the maximal coupling,
we have that∫

1x1=x2M [µ1K1, µ2K2] (d(x1, x2))

≥
∫
1x1=x2M [µ1, µ2] (d(z1, z2))M [K1, K2] (z1, z2; d(x1, x2))

≥
∫
1x1=x21z1=z2M [µ1, µ2] (d(z1, z2))M [K1, K2] (z1, z2; d(x1, x2)).

The proof of the second item follows similarly.
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C.3.1.1 θ 7→ Cm,θ is Lipschitz.

We proceed by a coupling method that is inspired by (Lindholm and Lindsten, 2018, Theorem
2). The coupling we consider is that where the selection and mutation steps of the particle filter
are respectively coupled maximally.

Algorithm 9 Coupling Cm,θ

Data: θ1, θ2, ζ0:m
Result: x0:m,1, x0:m,1

17 draw x0,1,x0,2 ∼M [η0⟨ζ0⟩,η0⟨ζ0⟩]
18 for s← 1 to t do
19 draw (xs,1,xs,2) ∼M [M s−1,θ1⟨ζs⟩(xs−1,1, ·),M s−1,θ2⟨ζs⟩(xs−1,2, ·)]

First, let us prove that the one step selection–mutation kernel is Lipschitz.
Lemma C.3.3. For all t ∈ N, xt−1 ∈ Xt−1 and (θ1, θ2) ∈ Θ2,∫
1{x1=x2}M [Φt−1,θ1(µ(xt−1)), Φt−1,θ2(µ(xt−1))] (d(x1, x2)) ≥ 1−

∑N
i=1 λt

(
Lq

t−1(xi
t−1, ·)

)
Nτ̄n

∥θ1−θ2∥.
(C.3.2)

Proof. By (A9)(i) and (A10)(iii),∫
1{x1=x2}M [Φt−1,θ1(µ(xt−1)), Φt−1,θ2(µ(xt−1))] (d(x1, x2))

=
∫

min
(

N∑
i=1

qt−1,θ1(xi
t−1, x)∑N

j=1 gt−1,θ1(xj
t−1)

,
N∑

i=1

qt−1,θ2(xi
t−1, x)∑N

j=1 gt−1,θ2(xj
t−1)

)
λt(dx)

≥
N∑

j=1

∫
min

(
qt−1,θ1(xi

t−1, x)∑N
j=1 gt−1,θ1(xj

t−1)
,

qt−1,θ2(xi
t−1, x)∑N

j=1 gt−1,θ2(xj
t−1)

)
λt(dx)

≥ 1∑N
j=1 max

(
gt−1,θ1(xj

t−1), gt−1,θ2(xj
t−1)

) N∑
j=1

∫
min

(
qt−1,θ1(xj

t−1, x), qt−1,θ2(xj
t−1, x)

)
λt(dx)

≥
∑N

j=1 max
(
gt−1,θ1(xj

t−1), gt−1,θ2(xj
t−1)

)
−
∑N

i=1 λt
(
Lq

t−1(xi
t−1, ·)

)
∥θ1 − θ2∥∑N

j=1 max
(
gt−1,θ1(xj

t−1), gt−1,θ2(xj
t−1)

)
≥ 1−

∑N
i=1 λt

(
Lq

t−1(xi
t−1, ·)

)
Nτ̄n

∥θ1 − θ2∥,

where we have used that∫
max(qt−1,θ1(xi

t−1, x), qt−1,θ2(xi
t−1, x))λt(dx) ≥ max

(∫
qt−1,θ1(xi

t−1, x)λt(dx),
∫

qt−1,θ2(xi
t−1, x)λt(dx)

)
≥ max(gt−1,θ1(xi

t−1), gt−1,θ2(xi
t−1)).

Lemma C.3.4. For all t ∈ N, xt−1 ∈ Xt−1, z ∈ Xt and (θ1, θ2) ∈ Θ2,

∥M t−1,θ1⟨z⟩(xt−1, ·)−M t−1,θ2⟨z⟩(xt−1, ·)∥TV ≤ LMt−1(xt−1)∥θ1 − θ2∥

where LMt−1(xt−1) = (1−N−1)τ̄−1
t−1

∑N
i=1 λt

(
Lq

t−1(xi
t−1, ·)

)
.
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Proof. Let us denote by U[1 : n] the uniform distribution on [1 : n]. By definition of the kernel
M t−1,θ⟨z⟩, we have that

M t−1,θ⟨z⟩(xt−1, dxt) =
∫

U[1 : n](dj)
{
Φt−1(µ(xt−1))�j � δz � Φt−1(µ(xt−1))�(N−j−1)}(dxt)

and thus, applying the two items of Lemma C.3.2 combined with the fact thatM [µ, µ]
(
d(x1, x2)

)
=

µ(dx1)δx1(dx2) for any probability measure µ, we get that∫
1{xt,1=xt,2}M [M t−1,θ1⟨z⟩(xt−1, ·),M t−1,θ2⟨z⟩(xt−1, ·)] d(xt,1,xt,2)

≥
∫
1xt,1=xt,2,i1=i2M [U[1 : n], U[1 : n]]

(
d(i1, i2)

)
×M [Φt−1,θ1(µ(xt−1)), Φt−1,θ2(µ(xt−1))]⊗i1 ⊗M [δz, δz]
⊗M [Φt−1,θ1(µ(xt−1)), Φt−1,θ2(µ(xt−1))]⊗N−i1−1 d(xt,1,xt,2)

= 1
N

N∑
i=1

∫ n∏
k=1,k ̸=i

1xi
t,1=xi

t,2
M [Φt−1,θ1(µ(xt−1)), Φt−1,θ2(µ(xt−1))]

(
d(xi

t,1, xi
t,2)
)

≥
(

1−
∑N

i=1 λt
(
Lq

t−1(xi
t−1, ·)

)
Nτ̄t−1

∥θ1 − θ2∥
)N−1

≥ 1− N − 1
τ̄t−1N

N∑
i=1

λt
(
Lq

t−1(xi
t−1, ·)

)
∥θ1 − θ2∥ .

where we have applied Lemma C.3.3 in the penultimate line and Lemma C.3.1 in the last
one.

Lemma C.3.5. For every t ∈ N∗, there exists LC
t ∈ M(X0:t) such that

∥Ct,θ1(z0:t)− Ct,θ2(z0:t)∥TV ≤ LC
t (z0:t)∥θ1 − θ2∥ , (C.3.3)

where LC
t (z0:t) = supθ Ct,θ

[∑t−1
i=0 LMi

]
(z0:t). Under (A25)(i), we obtain that ∥LC

t ∥∞ ≤ (N −
1)∑t−1

ℓ=0 τ̄ℓ∥Lq
ℓ∥∞.

Proof. This is a direct application of lemma C.3.13.

C.3.1.2 θ 7→ Bt,θ(x0:t, ·) is Lipschitz

We start by recalling the definition of Bm

Bt,θ : X0:t ×X0:t ∋ (x0:t, A) 7→
∫
· · ·
∫
1A(x0:t)

(
t−1∏
s=0

←−
Qs,µ(xs)(xs+1, dxs)

)
µ(xt)(dxt) . (C.3.4)

Lemma C.3.6. For all s ∈ [0 : t], xt+1 ∈ Xt+1, xt ∈ Xt and (θ1, θ2) ∈ Θ2

∥∥∥←−Qs,µ(xs),θ1(xs+1, ·)−←−Qs,µ(xs),θ2(xs+1, ·)
∥∥∥

TV
≤ L

←−
Q
s (xs+1,xs)∥θ1 − θ2∥ . (C.3.5)

with L
←−
Q
s (xs+1,xs) = (Nτ̄tσ̄s)−1∑N

i=1 Lq
s(xi

s, xs+1). Under (A25)(i), we have ∥L
←−
Q
m∥∞ = (τ̄mσ̄m)−1∥Lq

m∥∞.
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Proof. Note that ←−Q t,µ(xt)(xt+1, ·) = ∑N
ℓ=1

qt(xℓ
t ,xt+1)∑N

ℓ′=1 qt(xℓ′
t ,xt+1)

δxℓ
t
. Therefore, similarly to the proof

of Lemma C.3.3,∫
1{xt,1=xt,2}M

[←−
Q t,µ(xt),θ1(xt+1, ·),←−Q t,µ(xt),θ2(xt+1, ·)

]
d(xt,1, xt,2)

≥
∑N

ℓ=1 max(qt,θ1(xℓ
t, xt+1), qt,θ2(xℓ

t, xt+1))− Lq
t (xℓ

t, xt+1)∥θ1 − θ2∥∑N
ℓ=1 max(qt,θ1(xℓ

t, xt+1), qt,θ2(xℓ
t, xt+1))

≥ 1−
∑N

ℓ=1 Lq
t (xℓ

t, xt+1)
Nτ̄tσ̄t

∥θ1 − θ2∥ .

Lemma C.3.7. For all t ∈ N, x0:t ∈ X0:t and (θ1, θ2) ∈ Θ2

∥Bt,θ1(x0:t, ·)− Bt,θ2(x0:t, ·)∥TV ≤ LB
t (x0:t)∥θ1 − θ2∥ (C.3.6)

where LB
t (x0:t) = supθ Bt

[∑t−1
i=0 L

←−
Q
i

]
(x0:t). Under (A25)(i), we have that ∥LB

t ∥∞ = ∑t−1
i=0(τ̄iσ̄i)−1∥Lq

i ∥∞.

Proof. Apply lemma C.3.11 and lemma C.3.6.

C.3.1.3 θ 7→
∫
St,θ(x0:t, dbt)µ(bt)(id) is Lipschitz

Define the backward ancestors kernel

Bθ,t : Xt+1 × Xt × σ([1 : N ]) 7→
∫
1A(j̃)

( N∑
ℓ=1

qt(xℓ
t, xt+1)∑N

ℓ′=1 qt(xℓ′
t , xt+1)

δℓ(dj̃)
)

.

Lemma C.3.8. (Bθ,t is Lipschitz) For every m ∈ [0 : t], there exists LBK
m ∈ M(X m:m+1) such

that
∥Bθ1,m(xm+1,xm)− Bθ2,m(xm+1,xm)∥TV ≤ L

←−
Q
m (xm+1,xm)∥θ1 − θ2∥ , (C.3.7)

where L
←−
Q
s is defined in Lemma C.3.6

Proof. Bθ,s is the index version of the kernel (C.3.4) and thus it is Lipschitz with the same
constant.

Proposition C.3.9. For every m ∈ [0 : t], we have that

∣∣ ∫ CmSm,θ(z0:m, dbm)µ(bm)(Id)
∣∣ ≤ m−1∑

ℓ=0
s∞ℓ (C.3.8)

and∣∣∣∣∫ Sm,θ1(x0:m, dbm)µ(bm)(Id)−
∫

Sm,θ2(x0:m, dbm)µ(bm)(Id)
∣∣∣∣ ≤ LSµ

m (x0:m)∥θ1 − θ2∥ . (C.3.9)

where LSµ
m (x0:m) = N−1∑N

i=1 LB
m(xk

m,x0:m) and LB
m is defined recursively as

LB
m+1(xk

m+1,x0:m) = L
←−
Q
m (xk

m+1,xm)
m∑

ℓ=0
s∞ℓ +

∫
Bθ,m(xk

m+1,xm, dJ)
{

Ls
m(xJ

m, xk
m+1) + LB

m(xJ
m,x0:m−1)

}
.

(C.3.10)
In particular, under (A25), we have that LB

m ≤
∑m

j=1 ∥L
←−
Q
j ∥∞

[∑m−1
ℓ=0 s∞ℓ

]
+∑m

j=1 ∥Ls
j∥∞.
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Proof. Consider the following kernels,

S̃m,θ(x0:m+1, d(Ji,j
0 , . . . , Ji,j

m )N,M
i=1,j=1) :=

m∏
ℓ=0

N∏
k=1

S̃ℓ,θ(xk
ℓ+1,xℓ, d

(
Jk,j

ℓ

)M
j=1) , (C.3.11)

S̃ℓ,θ(xk
ℓ+1,xℓ, d(Jk,j

ℓ )M
j=1) :=

M∏
j=1
Bθ,ℓ(xk

ℓ+1,xℓ, dJk,j
ℓ ) . (C.3.12)

Define for all k ∈ [1 : N ], m ∈ N>0,

Bm+1,k : θ 7→
∫

S̃m,θ(x0:m+1, d
(
Ji,j

0 , . . . , Ji,j
m

)N,M

i=1,j=1)bk
m+1

(
x0:m+1,

(
Ji,j

0 , . . . , Ji,j
m

)N,M

i=1,j=1
)

,

where bk
m+1

(
x0:m+1,

(
Ji,j

0 , . . . , Ji,j
m

)N,M

i=1,j=1
)

is defined recursively as

bk
m+1

(
x0:m+1,

(
Ji,j

0 , . . . , Ji,j
m

)N,M

i=1,j=1
)

= M−1
M∑

ℓ=1
bJk,ℓ

m
m

(
x0:m,

(
Ji,j

0 , . . . , Ji,j
m−1

)N,M

i=1,j=1
)
+sm,θ(xJk,ℓ

m
m , xk

m+1).

For notational convenience, we henceforth drop the arguments and simply write bk
m+1.

We herebelow show that Bm+1,k is Lipschitz with constant LB
m(xk

m+1,xm) and bounded by∑m−1
ℓ=0 s∞ℓ . For m > 2 and k ∈ [1 : N ],

Bm+1,k(θ) =
∫

S̃m,θ(x0:m+1, d(Ji,j
0 , . . . , Ji,j

m )N,M
i=1,j=1)bk

m+1

=
∫
· · ·
∫

S̃m−1,θ(x0:m, d(Ji,j
0 , . . . , Ji,j

m−1)N,M
i=1,j=1)S̃m,θ(xk

m+1,xm, d(Jk,j
m )M

j=1)

×
{

M−1
M∑

ℓ=1
bJk,ℓ

m
m + sm,θ(xJk,ℓ

m
m , xk

m+1)
}

=
∫
· · ·
∫
S̃m,θ(xk

m+1,xm, d{Jk,j
m }Mj=1)

[
M−1

M∑
ℓ=1

{
sm,θ(xJk,ℓ

m
m , xk

m+1)

+
∫

S̃m−1,θ(x0:m, d(Ji,j
0 , . . . , Ji,j

m−1)N,M
i=1,j=1)bJk,ℓ

m
m

}]

=
∫
· · ·
∫
S̃m,θ(xk

m+1,xm, d(Jk,j
m )M

j=1)
[
M−1

M∑
ℓ=1

{
sm,θ(xJk,ℓ

m
m , xk

m+1) + B
m,Jk,ℓ

m
(θ)
}]

=
∫
Bθ,m(xk

m+1,xm, dJ)
{

sm,θ(xJ
m, xk

m+1) + Bm,J(θ)
}

Applying the induction hypothesis conditionally on Jk,ℓ
m , B

m,Jk,ℓ
m

is Lipschitz with constant
LB

m(xJk,ℓ
m

m ,x0:m−1) and thus the Lipschitz constant of Bm+1,k is

LB
m+1(xk

m+1,x0:m) = L
←−
Q
m (xk

m+1,xm)
m∑

ℓ=0
s∞ℓ +

∫
Bθ,m(xk

m+1,xm, dJ)
{

Ls
m(xJ

m, xk
m+1) + LB

m(xJ
m,x0:m−1)

}
.

(C.3.13)
where we have used the fact that Bθ,m and sm,θ are also Lipschitz. Again by induction Bm+1,k

is bounded uniformly by ∑m
ℓ=0 s∞ℓ . The induction is concluded by noting that for the base case

m = 0, βk
m = 0 for all k ∈ N and thus the result holds.

It now remains to check that for all θ ∈ Θ, m ∈ [0 : t] and k ∈ [1 : N ],

Bm,k(θ) =
∫

Sm(x0:m, dbm)bk
m .
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Again, we proceed by induction.∫
Sm(x0:m, dbm)bk

m

=
∫
· · ·
∫

Sm−1(x0:m−1, dbm−1)Sm(bm−1,xm−1:m, dbm)bk
m

=
∫
· · ·
∫

Sm−1(x0:m−1, dbm−1)

×
M∏

j=1

 N∑
p=1

qm−1(xp
m−1, xk

m)∑N
ℓ=1 qm−1(xℓ

m−1, xk
m)

δxp
m−1,bp

m−1

(
d(x̃k,j

m−1, b̃k,j
m−1)

)
×
[
M−1

M∑
n=1

{
b̃k,n

m−1 + sm,θ(x̃k,n
m−1, xk

m)
}]

=
∫
· · ·
∫

Sm−1(x0:m−1, dbm−1)

×
M∏

j=1

 N∑
p=1

qm−1(xp
m−1, xk

m)∑N
ℓ=1 qm−1(xℓ

m−1, xk
m)

δp(dJk,j
m−1)

[M−1
M∑

n=1

{
b

Jk,n
m−1

m−1 + sm,θ(xJk,n
m−1

m−1 , xk
m)
}]

=
∫
· · ·
∫
S̃m,θ(xk

m−1,xℓ−1, d(Jk,j
ℓ−1)M

j=1)

×
[
M−1

M∑
ℓ=1

{
sm,θ(xJk,ℓ

m−1
m−1 , xk

m) + Sm−1(x0:m−1, dbm−1)bJk,ℓ
m−1

m−1

}]

=
∫
· · ·
∫
S̃m,θ(xk

m−1,xℓ−1, d(Jk,j
ℓ−1)M

j=1)

×
[
M−1

M∑
ℓ=1

{
sm,θ(xJk,ℓ

m−1
m−1 , xk

m) +
∫

Sm−1(x0:m−1, dbm−1)bJk,ℓ
m−1

m−1

}]

=
∫
· · ·
∫
S̃m,θ(xk

m−1,xℓ−1, d(Jk,j
ℓ−1)M

j=1)
[
M−1

M∑
ℓ=1

{
sm,θ(xJk,ℓ

m−1
m−1 , xk

m) + B
m−1,Jk,ℓ

m−1
(θ)
}]

= Bm,k(θ)

The proof is finalized by noting that

∫
Sm(x0:m, dbm)µ(bm)(Id) = N−1

N∑
k=1

Bm,k(θ)

and thus it is Lipschitz with constant LSµ
m (x0:m) = N−1∑N

i=1 LB
m(xk

m,xm−1).

C.3.2 Lipschitz properties of Markov Kernels

Lemma C.3.10 (Composition of ergodic Lipschitz kernels is lipschitz). Let Pθ be a Markov
kernel over X×Y that is uniformly π-geometrically ergodic for any θ with contraction constant
ρ independent of θ and such that there exists Lp > 0 such that for every x ∈ X

∥Pθ0(x, ·)− Pθ1(x, ·)∥TV ≤ LP ∥θ0 − θ1∥.

Then, for all k > 0 ∥∥∥P k
θ0(x, ·)− P k

θ1(x, ·)
∥∥∥

TV
≤ LP

1− ρ
∥θ0 − θ1∥.
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Proof. We use the following decomposition borrowed from Fort et al. (2011). For any k ≥ 1,

P k
θ0f − P k

θ1f =
k−1∑
j=0

P j
θ0

(Pθ0 − Pθ1)
(
P k−j−1

θ1
f − πf

)
.

Then, for any f s.t. ∥f∥∞ ≤ 1 and x ∈ X,

|P k
θ0f(x)− P k

θ1f(x)| ≤
k−1∑
j=0

∣∣∣∣∣
∫

P j
θ0

(x, dy) sup
z∈X
|P k−j−1

θ1
f(z)− πf |

∣∣∣∣∣LP ∥θ0 − θ1∥

≤ LP

( k−1∑
j=0

ρk−j−1
)
∥θ0 − θ1∥

≤ LP

1− ρ
∥θ0 − θ1∥.

Lemma C.3.11 (Composition of Lipschitz kernels is lipschitz). Let Pθ , Qθ be two kernels de-
fined over X ×Y and Y ×Z such that for ever x ∈ X, y ∈ Y there are Lp ∈ M(X), Lq ∈ M(Y )
that satisfy

∥Pθ0(x, ·)− Pθ1(x, ·)∥TV ≤ Lp(x)∥θ0 − θ1∥

and
∥Qθ0(y, ·)−Qθ1(y, ·)∥TV ≤ Lq(y)∥θ0 − θ1∥ .

Then
∥Pθ0Qθ0(x, ·)− Pθ1Qθ1(x, ·)∥TV ≤ Lpq(x)∥θ0 − θ1∥ ,

where Lpq(x) = (supθ PθLq(x) + Lp(x) supy supθ Qθ(y, Z)).

Proof. Let f ∈ M such that ∥f∥∞ ≤ 1.

∥Pθ1Qθ1f − Pθ2Qθ2f∥ ≤ ∥Pθ1 [Qθ1f −Qθ2f ] ∥+ ∥(Pθ1 − Pθ2)Qθ2f∥
≤ (Pθ1Lq(x) + Lp(x)∥Qθ2f∥∞)∥θ1 − θ2∥ .

Corollary C.3.12. Let Pθ , Qθ be two Markov kernels defined over X ×Y and Y ×Z such that
for ever x ∈ X, y ∈ Y there are Lp ∈ M(X), Lq ∈ M(Y ) that satisfy

∥Pθ0(x, ·)− Pθ1(x, ·)∥TV ≤ Lp(x)∥θ0 − θ1∥

and
∥Qθ0(y, ·)−Qθ1(y, ·)∥TV ≤ Lq(y)∥θ0 − θ1∥ .

Then
∥Pθ0Qθ0(x, ·)− Pθ1Qθ1(x, ·)∥TV ≤ Lpq(x)∥θ0 − θ1∥ ,

where Lpq(x) = (supθ PθLq(x) + Lp(x)).
Lemma C.3.13 (Product of Lipschitz kernels is lipschitz). Let Pθ , Qθ be two Markov kernels
that are uniformly Lipschitz with constants LP , LQ. Then Pθ � Qθ is uniformly Lipschitz with
constant LP + LQ.

Proof. Let hθ : y 7→
∫

Qθ(y, dz)f(y, z). Then (Pθi
⊗Qθi

)(f) = Pθi
(hθi

) and the proof is similar
to that of the previous Lemma since hθ is Lipschitz with constant LQ and ∥hθ∥∞ ≤ 1.
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C.3.3 PPG

All the experiments were performed on a server equipped with 7 A40 Nvidia GPUs. The
algorithms were implemented in Python with the JAX Python package Bradbury et al. (2018)
and run on GPU.
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Figure C.1: Output of the PPG roll-out estimator for the LGSSM. The curves describe the
evolution of the bias with increasing k for different particle sample sizes N. The left and right
panels correspond to k0 = k − 1 and k0 = ⌊k/2⌋, respectively.

C.3.4 Learning

For both experiments, all the parameters were initialized by sampling from a centered multivari-
ate gaussian distribution with covariance matrix of 0.01I. We have used the ADAM optimizer
with a learning rate decay of 1/

√
ℓ where ℓ is the iteration index, with a starting learning rate

of 0.2. We rescale the gradients by T .

LGSSM For LGSSM we evaluated for fixed number of particles (N = 64) and number of
gibbs iterations (k = 8) the influence of the burn-in phase (k0) over the final distance obtained
to the MLE estimator. Table C.1 indicates that configurations with smaller k0 perform better.
A possible interpretation of this phenomenon is that, since between two gradient ascent iterates
the conditioning path is being passed on, this conditioning path from a moment on makes the
estimates less biased, so the importance of having k0 high to have less bias vanishes, but the
effect of augmenting the variance with k0 is still shown, since the fact of having a conditioning
particle from the right marginal does not affect the variance of the estimator, only it’s bias.
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Algorithm N k0 k Dmle
PPG 64 0 8 0.205 ± 0.013
PPG 64 1 8 0.213 ± 0.016
PPG 64 2 8 0.201 ± 0.010
PPG 64 3 8 0.201 ± 0.010
PPG 64 4 8 0.207 ± 0.012
PPG 64 5 8 0.212 ± 0.015
PPG 64 6 8 0.210 ± 0.017
PPG 64 7 8 0.211 ± 0.018

Table C.1: Distance to θMLE for each configuration in the LGSSM case.
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Appendix D

Appendix of Chapter 6

D.1 SMCdiff extension

The identity (6.2.14) allows us to extend SMCdiff Trippe et al. (2023) to handle noisy inverse
problems as we now show. We have that

ϕỹτ
τ (xτ ) =

∫
pτ (ỹτ

⌢xτ |xτ+1)
{∏n−1

s=τ+1 ps(dxs|xs+1)
}

pn(dxn)∫
pτ (ỹτ

⌢zτ )dzτ

=
∫

bỹτ
τ :n(xτ :n|xτ+1:n)f ỹτ

τ+1:n(dxτ+1:n)dxτ+1:n ,

where

bτ :n(xτ :n|xτ+1:n) =
pτ (ỹτ

⌢xτ |xτ+1)
{∏n−1

s=τ+1 p
s
(xs|xs+1)ps(xs|xs+1)

}
p

n
(xn)

Lỹτ
τ :n(xτ+1:n)

,

f ỹτ
τ+1:n(xτ+1:n) = Lỹτ

τ :n(xτ+1:n)∫
pτ (ỹτ

⌢zτ )dzτ

,

and

Lỹτ
τ :n(xτ+1:n) =

∫
pτ (ỹτ

⌢zτ |xτ+1
⌢zτ+1)

{
n−1∏

s=τ+1
p

s
(dzs|xs+1

⌢zs+1)ps(xs|xs+1
⌢zs+1)

}
p

n
(dzn) .

Next, (6.2.13) implies that∫
ps+1(xs+1

⌢zs+1)p
s
(dzs|xs+1

⌢zs+1)ps(xs|xs+1
⌢zs+1)dzs:s+1 =∫

ps(xs
⌢zs)qs+1(xs+1|xs)q

s+1(zs+1|zs)dzs:s+1 ,

and applied repeatedly, we find that

Lỹτ (xτ+1:n) =
∫

pτ (ỹτ
⌢xτ )dxτ ·

∫
δỹτ (dxτ )

n∏
s=τ+1

qs(xs|xs−1) .

and thus, f ỹτ
τ :n(xτ+1:n) =

∫
δỹτ (dxτ )∏n

s=τ+1 qs(xs|xs−1). In order to approximate ϕỹτ
τ we first dif-

fuse the noised observation up to time n, resulting in xτ+1:n, and then estimate bỹτ
τ+1:n(·|xτ+1:n)

using a particle filter with p
s
(xs|xs+1) as transition kernel at step s ∈ [τ + 1 : n] and gs : zs 7→

ps−1(xs−1|xs
⌢zs) as potential, similarly to SMCdiff.
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D.2 Proofs

D.2.1 Proof of Proposition 6.2.2

Preliminary definitions.

We preface the proof with notations and definitions of a few quantities that will be used through-
out.
For a probability measure µ and f a bounded measurable function, we write µ(f) :=

∫
f(x)µ(dx)

the expectation of f under µ and if K(dx|z) is a transition kernel we write K(f)(z) :=∫
f(x)K(dx|z).

Define the smoothing distribution

ϕy
0:n(dx0:n) ∝ δy(dx0)p0:n(x0:n)dx0dx1:n , (D.2.1)

which admits the posterior ϕy
0 as time 0 marginal. Its particle estimate known as the poor man

smoother is given by

ϕN
0:n(dx0:n) = N−1 ∑

k0:n∈[1:N ]n+1

δ
y⌢ξ

k0
0

(dx0)
n∏

s=1
1
{
ks = Aks−1

s

}
δ

ξks
s

(dxs) . (D.2.2)

We also let ΦN
0:n be the probability measure defined for any B ∈ B(Rdx)⊗n+1 by

ΦN
0:n(B) = E

[
ϕN

0:n(B)
]
,

where the expectation is with respect to the probability measure

P N
0:n
(
d(x1:N

0:n , a1:N
1:n )

)
=

N∏
i=1

py
n(dxi

n)
n∏

ℓ=2


N∏

j=1

N∑
k=1

ωk
ℓ−1δk(daj

ℓ)py
ℓ−1(dxj

ℓ−1|x
aj

ℓ
ℓ )


×

N∏
j=1

N∑
k=1

ωk
0δk(daj

1)py
0(dxj

0|x
aj

1
1 )δy(dxj

0) , (D.2.3)

where ωi
t := ω̃t(ξi

t+1)/∑N
j=1 ω̃t(ξ

j
t+1) and which corresponds to the joint law of all the random

variables generated by Algorithm 4. It then follows by definition that for any C ∈ B(Rdx),∫
ΦN

0:n(dz0:n)1C(z0) = E
[∫

ϕN
0:n(dz0:n)1C(z0)

]
= E

[
ϕN

0 (C)
]

= ΦN
0 (C) .

Define also the law of the conditional particle cloud

PN(d(x1:N
0:n , a1:N

1:n )
∣∣z0:n

)
= δzn(dxN

n )
N−1∏
i=1

py
n(dxi

n)

×
n∏

ℓ=2
δzℓ−1(dxN

ℓ−1)δN (daN
ℓ−1)

N−1∏
j=1

N∑
k=1

ωk
ℓ−1δk(daj

ℓ)py
ℓ−1(dxj

ℓ−1|x
aj

ℓ
ℓ )

× δz0(dxN
0 )δN (daN

1 )
N−1∏
j=1

N∑
k=1

ωk
0δk(daj

1)py
0(dxj

0|x
aj

1
1 )δy(dxj

0) .
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In what follows Ez0:n refers to expectation with respect to PN (·|z0:n). Finally, for s ∈ [0 : n− 1]
we let ΩN

s denote the sum of the filtering weights at step s, i.e. ΩN
s = ∑N

i=1 ω̃s(ξi
s+1). We also

write Z0 =
∫

p0(x0)δy(dx0)dx0 and for all ℓ ∈ [1 : n], Zℓ =
∫

qℓ|0(xℓ|y)pℓ(dxℓ).
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The proof of Proposition 6.2.2 relies on two Lemmata stated below and proved in Section D.2.1;
in Lemma D.2.1 we provide an expression for the Radon-Nikodym derivative dϕy

0:n/dΦy
0:n and

in Lemma D.2.2 we explicit its leading term.
Lemma D.2.1. ϕy

0:n and ΦN
0:n are equivalent and we have that

ΦN
0:n(dz0:n) = Ez0:n

[
NnZ0/Zn∏n−1

s=0 ΩN
s

]
ϕy

0:n(dz0:n) . (D.2.5)

Lemma D.2.2. It holds that

Zn

Z0
Ez0:n

[
n−1∏
s=0

N−1ΩN
s

]
=
(

N − 1
N

)n

+ (N − 1)n−1

Nn

n∑
s=1

Zs/Z0
qs|0(zs|y)

∫
p0|s(x0|zs)δy(dx0)dx0 + Dy

0:n
N2 . (D.2.6)

where Dy
0:n is a positive constant.

Before proceeding with the proof of Proposition 6.2.2, let us note that having z 7→ ω̃ℓ(z) bounded
on Rdx for all ℓ ∈ [0 : n− 1] is sufficient to guarantee that Cy

0:n and Dy
0:n are finite since in this

case it follows immediately that Ez0:n

[∏n−1
s=0 N−1ΩN

s

]
is bounded and so is the right hand side of

(D.2.6). This can be achieved with a slight modification of (6.2.5) and (6.2.6). Indeed, consider
instead the following recursion for s ∈ [0 : n] where δ > 0,

ϕy
n(xn) ∝

(
qn|0(xn|y) + δ

)
pn(xn) ,

ϕy
s(xs) ∝

∫
ϕy

s+1(xs+1)ps(dxs|xs+1) qs(xs|y) + δ

qs+1(xs+1|y) + δ
dxs+1 .

Then we have that
ϕy

0(x0) ∝
∫

ϕy
1(x1)p0(x0|x1) p0(y|x1)

q1|0(x1|y) + δ
dx1 .

We can then use Algorithm 4 to produce a particle approximation of ϕy
0 using the following

transition and weight function,

py,δ
s (xs|xs+1) = γs(y|xs+1)

γs(y|xs+1) + δ
py

s(xs|xs+1) + δ

γs(y|xs+1) + δ
ps(xs|xs+1) ,

ω̃s(xs+1) =
(
γs(y|xs+1) + δ

)/(
qs+1|0(xs+1|y) + δ

)
,

where γs(y|xs+1) =
∫

qs|0(xs|y)ps(xs|xs+1)dxs is available in closed form and py
s is defined in

(6.2.3). ω̃s is thus clearly bounded for all s ∈ [0 : n − 1] and it is still possible to sample from
py,δ

s since it is simply a mixture between the transition (6.2.3) and the “prior” transition.

Proof of Proposition 6.2.2. Consider the forward Markov kernel

−→B1:n(z0, dz1:n) = p1:n(dz1:n)p0(z0|z1)∫
p1:n(dz̃1:n)p0(z̃0|z̃1) , (D.2.7)

which satisfies
ϕy

0:n(dz0:n) = ϕy
0(dz0)−→B1:n(z0, dz1:n) .
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By Lemma D.2.1 we have for any C ∈ B(Rdx) that

ΦN
0 (C) =

∫
ΦN

0:n(dz0:n)1C(z0)

=
∫
1C(z0)Ez0:n

[
NnZ0/Zn∏n−1

s=0 ΩN
s

]
ϕy

0:n(dz0:n)

=
∫
1C(z0)

∫ −→B1:n(z0, dz1:n)Ez0:n

[
NnZ0/Zn∏n−1

s=0 ΩN
s

]
ϕy

0(dz0) ,

which shows that the Radon-Nikodym derivative dΦN
0 /dϕy

0 is,

dΦN
0

dϕy
0

(z0) =
∫ −→B1:n(z0, dz1:n)Ez0:n

[
NnZ0/Zn∏n−1

s=0 ΩN
s

]
.

Applying Jensen’s inequality twice yields

dΦN
0

dϕy
0

(z0) ≥ NnZ0/Zn∫ −→B1:n(z0, dz1:n)Ez0:n

[∏n−1
s=0 ΩN

s

] ,

and it then follows that

KL(ϕy
0 ∥ ΦN

0 ) ≤
∫

log
(
Zn

Z0

∫ −→B1:n(z0, dz1:n)Ez0:n

[
n−1∏
s=0

N−1ΩN
s

])
ϕy

0(dz0) .

Finally, using Lemma D.2.2 and the fact that log(1 + x) < x for x > 0 we get

KL(ϕy
0 ∥ ΦN

0 ) ≤ Cy
0:n

N − 1 + Dy
0:n

N2

where

Cy
0:n :=

n∑
s=1

∫ Zs/Z0
qs|0(zs|y)

(
p0|s(x0|zs)δy(dx0)dx0

)
ϕy

s(dzs) ,

and ϕy
s(zs) ∝ ps(zs)

∫
p0|s(z0|zs)δy(dz0)dz0.
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Proof of Lemma D.2.1 and Lemma D.2.2

Proof of Lemma D.2.1. We have that

ΦN
0:n(dz0:n)

= N−1
∫

P N
0:n(dx1:N

0:n , da1:N
1:n )

∑
k0:n∈[1:N ]n+1

δ
y⌢x

k0
0

(dz0)
n∏

s=1
1
{
ks = aks−1

s

}
δ

xks
s

(dzs)

= N−1
∫ ∑

k0:n

∑
a1:N

1:n

δ
y⌢x

k0
0

(dz0)
n∏

s=1
1
{
ks = aks−1

s

}
δ

xks
s

(dzs)

×
N∏

j=1
py

n(dxj
n)
{

n∏
ℓ=2

N∏
i=1

ω
ai

ℓ
ℓ−1py

ℓ−1(dxi
ℓ−1|x

ai
ℓ

ℓ )
}

N∏
r=1

ω
ar

1
0 py

ℓ−1(dxr
0|x

ar
1

1 )δy(xr
0)

= N−1
∫ ∑

k0:n

∑
a1:N

1:n

py
n(dxkn

n )δ
xkn

n
(dzn)

∏
j ̸=kn

py
n(dxj

n)
n∏

ℓ=2

{ ∏
i ̸=kℓ−1

ω
ai

ℓ
ℓ−1py

ℓ−1(dxi
ℓ−1|x

ai
ℓ

ℓ )

× 1
{
a

kℓ−1
ℓ = kℓ}

ω̃ℓ−1(xa
kℓ−1
ℓ

ℓ )
ΩN

ℓ−1
py

ℓ−1(dx
kℓ−1
ℓ |xa

kℓ−1
ℓ

ℓ )δ
x

kℓ−1
ℓ−1

(dzℓ−1)
}

×
{ ∏

r ̸=k0

ω
ar

1
0 py

0(dxr
0|x

ar
1

1 )δy(dxr
0)
}
1
{
ak0

1 = k1
} ω̃0(xa

k0
1

1 )
ΩN

0
py

0(dxk0
0 |x

a
k0
1

0 )δ
y⌢x

k0
0

(dz0) .

Then, using that for all s ∈ [2 : n]

ω̃s−1(xks
s )py

s−1(dx
ks−1
s−1 |x

ks
s ) =

qs−1|0(xks−1
s−1 |y)

qs|0(xks
s |y)

ps(dx
ks−1
s−1 |x

ks
s ) ,

we recursively get that

py
n(dxkn

n )δ
xkn

n
(dzn)

n∏
s=2
1
{
aks−1

s = ks}
ω̃s−1(xa

ks−1
s

s )
ΩN

s−1
py

s−1(dx
ks−1
s−1 |x

a
ks−1
s

s )δ
x

ks−1
s−1

(dzs−1)

× 1
{
ak0

1 = k1
} ω̃0(xa

k0
1

1 )
ΩN

0
py

0(dxk0
0 |x

a
k0
1

1 )δ
y⌢x

k0
0

(dz0)

=
qn|0(zn|y)pn(dzn)

Zn
δzn(dxkn

n )
n∏

s=2
1
{
aks−1

s = ks}
qs−1|0(zs−1|y)
ΩN

s−1qs|0(zs|y)
ps−1(dzs−1|zs)δzs−1(dx

ks−1
s−1 )

× 1
{
ak0

1 = k1
} p0(y|z1)

ΩN
0 q1|0(z1|y)

p0(dz0|z1)δy(dz0)δz0(dxk0
0 )

= Z0
Zn

ϕy
0:n(dz0:n)δzn(dxkn

n )
n∏

s=1
1
{
aks−1

s = ks}
1

ΩN
s−1

δzs−1(dx
ks−1
s−1 ) .
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Thus, we obtain

ΦN
0:n(dz0:n) = N−1

∫ ∑
k0:n

∑
a1:N

1:n

ϕy
0:n(dz0:n) Z0/Zn∏n−1

s=0 ΩN
s

δzn(dxkn
n )

∏
j ̸=kn

py
n(dxj

n)

×
n∏

ℓ=2
1
{
a

kℓ−1
ℓ = kℓ

}
δzℓ−1(dx

kℓ−1
ℓ−1 )

∏
i ̸=kℓ−1

ω
ai

ℓ
ℓ−1py

ℓ−1(dxi
ℓ−1|x

ai
ℓ

ℓ )

× 1
{
ak0

1 = k1
}
δz0(dxk0

0 )
∏

i ̸=k0

ω
ai

1
0 p0(xi

0|x
ai

1
1 )δy(dxi

0)

= N−1 ∑
k0:n

ϕy
0:n(dz0:n)Ek0:n

z0:n

[
Z0/Zn∏n−1
s=0 ΩN

s

]
,

where for all k0:n ∈ [1 : N ]n+1 Ek0:n
z0:n denotes the expectation under the Markov kernel

PN
k0:n

(
d(x1:N

0:n , a1:N
1:n )

∣∣z0:n
)

= δzn(dxkn
n )

∏
i ̸=kn

py
n(dxi

n)

×
n∏

ℓ=2
δzℓ−1(dx

kℓ−1
ℓ−1 )δkℓ

(da
kℓ−1
ℓ )

∏
j ̸=kℓ−1

N∑
k=1

ωk
ℓ−1δk(daj

ℓ)py
ℓ−1(dxj

ℓ−1|x
aj

ℓ
ℓ )

× δz0(dxk0
0 )δk1(dak0

1 )
∏

j ̸=k0

N∑
k=1

ωk
0δk(daj

1)py
0(dxj

0|x
aj

1
1 )δy(dx0) .

Note however that for all (k0:n, ℓ0:n) ∈ ([1 : N ]n+1)2,

Ek0:n
z0:n

[
1∏n−1

s=0 ΩN
s

]
= Eℓ0:n

z0:n

[
1∏n−1

s=0 ΩN
s

]
and thus it follows that

ΦN
0:n(dz0:n) = Ez0:n

[
NnZ0/Zn∏n−1

s=0 ΩN
s

]
ϕy

0:n(dz0:n) . (D.2.8)

Denote by {Fs}ns=0 the filtration generated by a conditional particle cloud sampled from the
kernel PN (D.2.4), i.e. for all ℓ ∈ [0 : n− 1]

Fs = σ
(
ξ1:N

s:n , A1:N
s+1:n

)
.

and Fn = σ
(
ξ1:N

n

)
. Define for all bounded f and ℓ ∈ [0 : n− 1]

γN
ℓ:n(f) =


n−1∏

s=ℓ+1
N−1ΩN

s

N−1
N∑

k=1
ω̃ℓ(ξk

ℓ+1)f(ξk
ℓ+1) , (D.2.9)

with the convention γN
ℓ:n(f) = 1 if ℓ ≥ n. Define also the transition Kernel

Qy
ℓ−1|ℓ+1 : Rdx × B(Rdx) ∋ (xℓ+1, A) 7→

∫
1A(xℓ)ω̃ℓ−1(xℓ)py

ℓ (dxℓ|xℓ+1) . (D.2.10)

Using eqs. (6.2.3) and (6.2.4), it is easily seen that for all ℓ ∈ [0 : n− 1],

ω̃ℓ(xℓ+1)Qy
ℓ−1|ℓ+1(f)(xℓ+1) = 1

qℓ+1|0(xℓ+1|y)

∫
qℓ|0(xs|y)ω̃ℓ−1(xℓ)f(xℓ)pℓ(dxℓ|xℓ+1) . (D.2.11)

Define 1 : x ∈ Rdx 7→ 1. We may thus write that γN
ℓ:n(f) = N−1γN

ℓ+1:n(1)∑N
k=1 ω̃ℓ(ξk

ℓ+1)f(ξk
ℓ+1).
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Lemma D.2.3. For all ℓ ∈ [0 : n− 1] it holds that

Ez0:n

[
γN

ℓ−1:n(f)
]

= N − 1
N

Ez0:n

[
γN

ℓ:n

(
Qy

ℓ−1|ℓ+1(f)
)]

+ 1
N

Ez0:n

[
γN

ℓ:n(1)
]

ω̃ℓ−1(zℓ)f(zℓ) .

Proof. By the tower property and the fact that γN
ℓ:n(f) is Fℓ+1-measurable, we have that

Ez0:n

[
γN

ℓ−1:n(f)
]

= Ez0:n

[
N−1γN

ℓ+1:n(1)ΩN
ℓ Ez0:n

[
N−1

N∑
k=1

ω̃ℓ−1(ξk
ℓ )f(ξk

ℓ )
∣∣∣∣Fℓ+1

]]
.

Note that for all ℓ ∈ [0 : n− 1], (ξ1
ℓ , . . . , ξN−1

ℓ ) are identically distributed conditionally on Fℓ+1
and

Ez0:n

[
ω̃ℓ−1(ξj

ℓ )f(ξj
ℓ )
∣∣∣∣Fℓ+1

]
= 1

ΩN
ℓ

N∑
k=1

ω̃ℓ(ξk
ℓ+1)

∫
ω̃ℓ−1(xℓ)f(xℓ)py

ℓ (dxℓ|ξk
ℓ+1) ,

leading to

Ez0:n

[
N−1

N∑
k=1

ω̃ℓ−1(ξk
ℓ )f(ξk

ℓ )
∣∣∣∣Fℓ+1

]

= N − 1
NΩN

ℓ

N∑
k=1

ω̃ℓ(ξk
ℓ+1)

∫
ω̃ℓ−1(xℓ)f(xℓ)py

ℓ (dxℓ|ξk
ℓ+1) + 1

N
ω̃ℓ−1(zℓ)f(zℓ) ,

and the desired recursion follows.

Proof of Lemma D.2.2. We proceed by induction and show for all ℓ ∈ [0 : n− 2]

Ez0:n

[
γN

ℓ:n(f)]

=
(

N − 1
N

)n−ℓ
∫

pℓ+1(dxℓ+1)qℓ+1|0(xℓ+1|y)ω̃ℓ(xℓ+1)f(xℓ+1)
Zn

+ (N − 1)n−ℓ−1

Nn−ℓ

[
(Zℓ+1/Zn)f(zℓ+1)ω̃ℓ(zℓ+1)

+
n∑

s=ℓ+2

Zs/Zn

qs|0(zs|y)

∫
ω̃ℓ(xℓ+1)qℓ+1|0(xℓ+1|y)f(xℓ+1)pℓ+1|s(dxℓ+1|zs)

]
+ Dy

ℓ:n
N2 .

(D.2.12)

where f is a bounded function and Dy
ℓ:n is a a positive constant. The desired result in Lemma D.2.2

then follows by taking ℓ = 0 and f = 1.
Assume that (D.2.12) holds at step ℓ. To show that it holds at step ℓ− 1 we use Lemma D.2.3
and we compute Ez0:n

[
γN

ℓ:n

(
Qy

ℓ−1|ℓ+1(f)
)]

and Ez0:n

[
γN

ℓ:n(1)
]

ω̃ℓ−1(zℓ)f(zℓ).

Using the following identities which follow from (D.2.11)∫
qℓ+1|0(xℓ+1|y)ω̃ℓ(xℓ+1)Qy

ℓ−1|ℓ+1(f)(xℓ+1)pℓ+1(dxℓ+1)

=
∫

qℓ|0(xℓ|y)ω̃ℓ−1(xℓ)f(xℓ)pℓ(dxℓ) ,

and∫
ω̃ℓ(xℓ+1)qℓ+1|0(xℓ+1|y)Qy

ℓ−1|ℓ+1(f)(xℓ+1)pℓ+1|s(dxℓ+1|xs)

=
∫

ω̃ℓ−1(xℓ)qℓ|0(xℓ|y)f(xℓ)pℓ|s(dxℓ|xs) ,
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we get by (D.2.12) that

N − 1
N

Ez0:n

[
γN

ℓ:n

(
Qy

ℓ−1|ℓ+1(f)
)]

=
(

N − 1
N

)n−ℓ+1 ∫ qℓ|0(xℓ|y)ω̃ℓ−1(xℓ)f(xℓ)pℓ(dxℓ)
Zn

+ (N − 1)n−ℓ

Nn−ℓ+1

[ Zℓ+1/Zn

qℓ+1|0(zℓ+1|y)

∫
qℓ|0(xℓ|y)ω̃ℓ−1(xℓ)f(xℓ)pℓ(dxℓ|zℓ+1)

+
n∑

s=ℓ+2

Zs/Zn

qs|0(zs|y)

∫
ω̃ℓ−1(xℓ)qℓ|0(xℓ|y)f(xℓ)pℓ|s(dxℓ|zs)

]
+ Dy

ℓ:n
N2

=
(

N − 1
N

)n−ℓ+1 ∫ qℓ|0(xℓ|y)ω̃ℓ−1(xℓ)f(xℓ)pℓ(dxℓ)
Zn

+ (N − 1)n−ℓ

Nn−ℓ+1

n∑
s=ℓ+1

Zs/Zn

qs|0(zs|y)

∫
ω̃ℓ−1(xℓ)qℓ|0(xs|y)f(xℓ)pℓ|s(dxℓ|zs) + Dy

ℓ:n
N2 .

(D.2.13)

The induction step is finished by using again (D.2.12) and noting that

1
N

Ez0:n

[
γN

ℓ:n(1)
]

ω̃ℓ−1(zℓ)f(zℓ) = (N − 1)n−ℓ

Nn−ℓ+1
(
Zℓ/Zn

)
ω̃ℓ−1(zℓ)f(zℓ) + D̃y

ℓ:n
N2 .

and then setting Dy
ℓ−1:n = Dy

ℓ:n + D̃y
ℓ:n.

It remains to compute the initial value at ℓ = n− 2. Note that

Ez0:n

[
γN

n−1:n(f)
]

= N − 1
N

∫
py

n(dxn)ω̃n−1(xn)f(xn) + 1
N

ω̃n−1(zn)f(zn) (D.2.14)

and thus by Lemma D.2.3 and similarly to the previous computations

Ez0:n

[
γN

n−2:n(f)
]

=
(

N − 1
N

)2 ∫
py

n(dxn)ω̃n−1(xn)Qy
n−2|n(f)(xn) + N − 1

N2

[
ω̃n−1(zn)Qy

n−2|n(f)(zn)

+ ω̃n−2(zn−1)f(zn−1)
∫

py
n(dxn)ω̃n−1|n(xn)

]
+

Dy
n−2fa:n
N2

=
(

N − 1
N

)2 ∫ qn−1|0(xn−1|y)ω̃n−2(xn−1)pn−1(dxn−1)
Zn

+ N − 1
N2

[(
Zn−1/Zn

)
ω̃n−2(zn−1)f(zn−1)

+ 1
qn|0(xn|y)

∫
qn−1|0(xn−1|y)ω̃n−2(xn−1)f(xn−1)pn−1(dxn−1|zn)

]
+

Dy
n−2:n
N2 .

D.2.2 Proof of Proposition 6.2.3 and Lemma D.2.4

In this section and only in this section we make the following assumption
(A26) For all s ∈ [0 : n− 1], ps(xs)qs+1(xs+1|xs) = ps+1(xs+1)λs(xs|xs+1) .
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We also consider σδ = 0. In what follows we let τdy+1 = n and we write τ1:dy = {τ1, . . . , τdy}
and τ1:dy = [1 : n] \ τ1:t. Define the measure

Γy
0:n(dx0:n) = pn(dxn)

∏
s∈τ1:dy

λs(dxs|xs+1)
dy∏

i=1
λτi

(xτi |xτi+1)dx\iτi
δy[i](dxτi [i]) . (D.2.15)

Under (A26) it has the following alternative forward expression,

Γy
0:n(dx0:n) = p0(dx0)

∏
s∈τ1:dy

qs+1(dxs+1|xs)
dy∏

i=1
qτi(xτi |xτi−1)dx\iτi

δy[i](dxτi [i]) . (D.2.16)

Since the forward kernels decompose over the dimensions of the states, i.e.

qs+1(xs+1|xs) =
dx∏

ℓ=1
qℓ

s+1(xs+1[ℓ]|xs[ℓ])

where qℓ
s+1(xs+1[ℓ]|xs[ℓ]) = N (xs+1[ℓ]; (αs+1/αs)1/2xs[ℓ], 1− (αs+1/αs)), we can write

Γy
0:n(x0:n) = p0(x0)

dx∏
ℓ=1

Γy
1:n|0,ℓ

(
x1[ℓ], . . . , xn[ℓ]

∣∣x0[ℓ]
)

, (D.2.17)

where for ℓ ∈ [1 : dy]

Γy
1:n|0,ℓ

(
x1[ℓ], . . . , xn[ℓ]|x0[ℓ]

)
= qℓ

τℓ
(y[ℓ]|xτℓ−1[ℓ])

∏
s ̸=τℓ

qℓ
s(dxs[ℓ]|xs−1[ℓ]) , (D.2.18)

and for ℓ ∈ [dy + 1 : dx],

Γy
1:n|0,ℓ(x1[ℓ], . . . , xn[ℓ]|x0[ℓ]) =

n−1∏
s=0

qℓ
s+1(xs+1[ℓ]|xs[ℓ]) . (D.2.19)

With these quantities in hand we can now prove Proposition 6.2.3.

Proof of Proposition 6.2.3. Note that for ℓ ∈ [1 : dy],

N (y[ℓ]; ατℓ
x0[ℓ], 1− ατℓ

) = qℓ
τℓ|0(y[ℓ]|x0[ℓ]) =

∫
qℓ

τℓ
(y[ℓ]|xτℓ−1[ℓ])

∏
s ̸=τℓ

qℓ
s(dxs[ℓ]|xs−1[ℓ])

=
∫

Γy
1:n|0,ℓ

(
d(x1[ℓ], . . . , xn[ℓ])|x0[ℓ]

)
and thus by (??) we have that

p0(x0)gy
0(x0) ∝ p0(x0)

dy∏
ℓ=1
N (y[ℓ]; ατℓ

x0[ℓ], 1− ατℓ
)

= p0(x0)
dy∏

ℓ=1

∫
Γy

1:n|0,ℓ

(
d(x1[ℓ], . . . , xn[ℓ])|x0[ℓ]

)
= p0(x0)

dx∏
ℓ=1

∫
Γy

1:n|0,ℓ

(
d(x1[ℓ], . . . , xn[ℓ])|x0[ℓ]

)
.
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By (D.2.16) it follows that

ϕy
0 (x0) = 1∫

Γy
0:n(x̃0:n)dx̃0:n

∫
Γy

0:n(x0:n)dx1:n ,

and hence by (D.2.16) and (D.2.15) we get

ϕy
0 (x0) ∝

∫
pτdy (xτdy )δy[dy](dxτdy [dy])dx\dy

τdy


dy−1∏
i=1

λτi|τi+1
(xτi |xτi+1)δy[i](dxτi [i])dx\iτi

λ0|τ1
(x0|xτ1) .

This completes the proof.

Let γy
0,s denote the joint time 0 and s marginal of the measure (D.2.15), i.e.

γy
0,s(x0, xs) =

∫
Γy

0:n(x0:n)dx1:s−1dxs+1:n (D.2.20)

We now prove the following result.
Lemma D.2.4. Assume (A26) and let τ0 := 0, τdy+1 := n. For all k ∈ [1 : dy],
(i) If s ∈ [τk + 1 : τk+1],

γy
0,s(x0, xs) =∫

γy
0,s+1(x0, xs+1)qσ

s|s+1,0(xs|xs+1, x0)gy
s (xs)

dy∏
ℓ=k+1

qσ,ℓ
s|s+1,0(xs[ℓ]|xs+1[ℓ], x0[ℓ])dxs+1 .

(ii) If s = τk,

γy
0,s(x0, xs) =

∫
γy

0,s+1(x0, xs+1)qσ
s|s+1,0(xs|xs+1, x0)

×
k−1∏
i=1

gy
s,i(xs[i])

dy∏
ℓ=k+1

qσ,ℓ
s|s+1,0(xs[ℓ]|xs+1[ℓ], x0[ℓ])dxs+1 .

Proof of Lemma D.2.4. Let k ∈ [1 : dy] and assume that s ∈ [τk + 1 : τk+1 − 2]. By (A26),
(D.2.16), (D.2.18) and (D.2.19) we have that

γy
0,s(x0, xs) = p0(x0)q

s|0(xs|x0)
k∏

i=1
qi

τi|0(y[i]|x0[i])qi
s|τi

(xs[i]|y[i])

×
dy∏

ℓ=k+1
qℓ

s|0(xs[ℓ]|x0[ℓ])qℓ
τℓ|s(y[ℓ]|xs[ℓ]) ,

and thus, using the following identity valid for ℓ ∈ [k + 1 : dy]

qℓ
s|0(xs[ℓ]|x0[ℓ])qℓ

τℓ|s(y[ℓ]|xs[ℓ])

= qℓ
s|0(xs[ℓ]|x0[ℓ])

∫
qℓ

τℓ|s+1(y[ℓ]|xs+1[ℓ])qℓ
s+1(xs+1[ℓ]|xs[ℓ])dxs+1[ℓ]

=
∫

qσ,ℓ
s|s+1,0(xs[ℓ]|xs+1[ℓ], x0[ℓ])qℓ

τℓ|s+1(y[ℓ]|xs+1[ℓ])qℓ
s+1|0(xs+1[ℓ]|x0[ℓ])dxs+1[ℓ] ,
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and that q
s|0(xs|x0)q

s+1(xs+1|xs) = qσ
s|s+1,0(xs|xs+1, x0)q

s+1|0(xs+1|x0) we get that

γy
0,s(x0, xs)

=
∫

p0(x0)q
s|0(xs|x0)q

s+1(dxs+1|xs)

×
k∏

i=1
qi

τi|0(y[i]|x0[i])qi
s|τi

(xs[i]|y[i])qi
s+1|τi

(dxs+1[i]|y[i])

×
dy∏

ℓ=k+1
qσ,ℓ

s|s+1,0(xs[ℓ]|xs+1[ℓ], x0[ℓ])qℓ
τℓ|s+1(y[ℓ]|xs+1[ℓ])qℓ

s+1|0(xs+1[ℓ]|x0[ℓ])dxs+1[ℓ]

=
∫

γy
0,s+1(x0, xs+1)qσ

s|s+1,0(xs|xs+1, x0)gy
s (xs)

dy∏
ℓ=k+1

qσ,ℓ
s|s+1,0(xs[ℓ]|xs+1[ℓ], x0[ℓ])dxs+1 .

If s = τk+1 then

γy
0,s(x0, xs) = p0(x0)q

s|0(xs|x0)
k∏

i=1
qi

τi|0(y[i]|x0[i])qi
s|τi

(xs[i]|y[i])

× qk+1
τk+1|0(y[k + 1]|x0[k + 1])

dy∏
ℓ=k+2

qℓ
s|0(xs[ℓ]|x0[ℓ])qℓ

τℓ|s(y[ℓ]|xs[ℓ]) ,

(D.2.21)

and similarly to the previous case we get

γ0,s(x0, xs)

=
∫

γy
0,s+1(x0, xs+1)qσ

s|s+1,0(xs|xs+1, x0)gy
s (xs)

dy∏
ℓ=k+2

qσ,ℓ
s|s+1,0(xs[ℓ]|xs+1[ℓ], x0[ℓ])dxs+1 .

Finally, if s = τk+1 − 1, then

γy
0,s(x0, xs) = p0(x0)q

s|0(xs|x0)
k∏

i=1
qi

τi|0(y[i]|x0[i])qi
s|τi

(xs[i]|y[i])

× qk+1
s|0 (xs[k + 1]|x0[k + 1])qk+1

τk+1|s(y[k + 1]|xs[k + 1])
dy∏

ℓ=k+2
qℓ

s|0(xs[ℓ]|x0[ℓ])qℓ
τℓ|s(y[ℓ]|xs[ℓ]) ,

and using

qk+1
s|0 (xs[k + 1]|x0[k + 1])qk+1

τk+1|s(y[k + 1]|xs[k + 1])

= qσ,k+1
s|τk+1,0(xs[k + 1]|xτk+1 [k + 1], x0[k + 1])qk+1

τk+1|0(y[k + 1]|x0[k + 1])

we find that

γ0,s(x0, xs)

=
∫

γy
0,τk+1

(x0, xτk+1)qσ
s|τk+1,0(xs|xτk+1 , x0)gy

s (xs)
dy∏

ℓ=k+1
qσ,ℓ

s|s+1,0(xs[ℓ]|xτk+1 [ℓ], x0[ℓ])dxτk+1 .
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D.2.3 Algorithmic details and numerics

The code for both experiments is available at https://anonymous.4open.science/r/mcgdiff/
README.md.

D.2.3.1 Transition kernels and weights.

In this section we give explicit formulas for the kernel and weights used in Algorithm 4 and for
the noisy case. We first give the formulas for the noisy case since those used in Algorithm 4 are
only a special case.
Consider ℓ ∈ [1 : dy], s ∈ [τℓ : n] and σδ > 0. Define σ2

s|τℓ
= 1 − (1 − σ2

δ )αs/ατℓ
and write

µs|s+1(xs+1) := µs+1(xs+1,χ0|s+1(Vxs+1)), µ
s|s+1(xs+1) := µs+1(xs+1,χ0|s+1(Vxs+1)) and so

µs|s+1(xs+1)⌢µ
s|s+1(xs+1) is the mean of the backward kernel ps.

The density of the ℓ-th coordinate of the proposal kernel is

py,ℓ
s (xs[ℓ]|xs+1) ∝ N

(
α1/2

s y[ℓ]; xs[ℓ], σ2
s|τℓ

)
N
(
xs[ℓ];µs|s+1(xs+1)[ℓ], σ2

s+1

)
,

and the weight function is ω̃s(xs+1) = ∏1
ℓ=τ(s) ω̃ℓ

s(xs+1) (we recall that τ(s) = max{k ∈ [1 :
dy] : s− τk ≥ 0}) where

ω̃ℓ
s(xs+1) ∝

∫
N
(
α

1/2
s y[ℓ]; xs[ℓ], σ2

s|τℓ

)
N
(
xs[ℓ];µs|s+1(xs+1)[ℓ], σ2

s+1

)
N
(
α

1/2
s+1y[ℓ]; xs+1[ℓ], σ2

s|τℓ

) .

Therefore, letting ks,ℓ := σ2
s+1/(σ2

s+1 + σ2
s|τℓ

) and σ̃2
s,ℓ := σ2

s|τℓ
ks,ℓ, we have

py,ℓ
s (xs[ℓ]|xs+1) = N

(
xs[ℓ]; ks,ℓα

1/2
s y[ℓ] + (1− ks,ℓ)µs|s+1(xs+1)[ℓ], σ̃2

s,ℓ

)
,

ω̃ℓ
s(xs+1) =

N
(
α

1/2
s y[ℓ];µs|s+1(xs+1)[ℓ], σ2

s+1 + σ2
s|τℓ

)
N
(
α

1/2
s+1y[ℓ]; xs+1[ℓ], σ2

s+1|τℓ

) .

The proposal kernel is thus

py
s (xs|xs+1) = ps(xs|xs+1)

dy∏
k=τ(s)+1

pk
s(xs[k]|xs+1)

τ(s)∏
ℓ=1

py,ℓ
s (xs[ℓ]|xs+1) .

Define ks := σ2
s+1/(σ2

s+1 + 1−αs) and σ̃2
s = (1−αs)ks. The kernel and weight function used in

Algorithm 4 correspond to the case τℓ = 0 for all ℓ ∈ [1 : dy], σδ = 0 are given by

py
s (xs|xs+1) = N

(
xs;µ

s|s+1(xs+1), σ2
s+1

)
N
(
xs; ksα1/2

s y + (1− ks)µs|s+1(xs+1), σ̃2
s

)
,

ω̃s(xs+1) =
N
(
α

1/2
s y;µs|s+1(xs+1), σ2

s+1 + 1− αs

)
N
(
α

1/2
s+1y; xs+1, 1− αs+1

) .

D.2.3.2 GMM

For a given dimension dx, we consider qdata a mixture of 25 Gaussian random variables. The
components have mean µi,j := (8i, 8j, · · · , 8i, 8j) ∈ Rdx for (i, j) ∈ {−2,−1, 0, 1, 2}2 and unit
variance. The associated unnormalized weights ωi,j are independently drawn according to a χ2

distribution. We have set σ2
δ = 10−4.
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Score Note that qs(xs) =
∫

qs|0(xs|x0)qdata(x0)dx0. As qdata is a mixture of Gaussians,
qs(xs) is also a mixture of Gaussians with means α

1/2
s µi,j and unitary variances. Therefore,

using automatic differentiation libraries, we can calculate ∇ log qs(xs). Setting e(xs, s) = −(1−
αs)1/2∇ log qs(xs) leads to the optimum of (6.1.9).

Forward process scaling We chose the sequence of {βs}1000
s=1 as a linearly decreasing sequence

between β1 = 0.2 and β1000 = 10−4.

Measurement model For a pair of dimensions (dx, dy) the measurement model (y, A, σy) is
drawn as follows:

• A: We first draw Ã ∼ N (0dy×dx , Idy×dx) and compute the SVD decomposition of Ã =
USVT . Then, we sample for (i, j) ∈ {−2,−1, 0, 1, 2}2, si,j according to a uniform in [0, 1].
Finally, we set A = U Diag({si,j}(i,j)∈{−2,−1,0,1,2}2)VT .

• σy: We draw σy uniformly in the interval [0, max(s1, · · · , sdy)].
• y: We then draw x∗ ∼ qdata and set y := Ax∗ + σyϵ where ϵ ∼ N (0dy , Idy).

Posterior Once we have drawn both qdata and (y, A, σy), the posterior can be exactly calcu-
lated using Bayes formula and gives a mixture of Gaussians with mixture components ci,j and
associated weights ω̃i,j

ci,j := N (Σ
(
AT y/σ2

y + µi,j

)
, Σ) ,

ω̃i := ωiN (y; Aµi,j , σ2 Idx +AAT ) ,

where Σ :=
(
Idx +σ−2

y AT A
)−1

.

Choosing DDIM timesteps for a given measurement model. Given a number of DDIM
samples R, we choose the timesteps 1 = t1 < · · · < tR = 1000 ∈ [1 : 1000] as to try to satisfy
the two following constraints:

• For all i ∈ [1 : dy] there exists a tj such that σyα
1/2
tj
≈ (1− αtj )1/2si,

• For all i ∈ [1 : R− 1], α
1/2
ti
− α

1/2
ti+1 ≈ δ for some δ > 0.

The first constraint comes naturally from the definition of τi. Since the potentials have mean
α

1/2
ti

y, the second condition constrains the intermediate laws remain “close”. An algorithm that
approximately satisfies both constraints is given below.

Additional plots We now proceed to illustrate the first 2 components for one of the mea-
surement models for all the different combinations of DDIM steps and (dx, dy) combinations used
in table 6.1. Figures D.1 to D.3 are grouped by dy = 1, 2, 4 respectively.
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Algorithm 6: Timesteps choice
Input: Number of DDIM steps R, σy, {si}

dy
i=1, {αi}1000

i=1
Output: {tj}Rj=1

1 Set Sτ = {}.
2 for j ← [1 : dy] do
3 Set τ̃j = argminℓ∈[1:1000] |σyα

1/2
ℓ − (1− αℓ)1/2)sj |.

4 Add τ̃j to Sτ if τ̃j /∈ Sτ .

5 Set nm = R−#Sτ − 1 and δ = (α1/2
1 − α

1/2
1000)/nm.

6 Set t1 = 1, e = 1 and ie = 1. for ℓ← [2 : 1000] do
7 if α

1/2
e − α

1/2
ℓ > δ or ℓ ∈ Sτ then

8 Set e = ℓ, ie = ie + 1 and τie = ℓ.
9 Set τR = 1000.

MCGdiff DDRM DPS MCGdiff DDRM DPS

x2

x2

x2

x1 x1

Figure D.1: We display the first two dimensions of the GMM inverse problem for one of the
measurement models tested. The blue dots represent samples from the exact posterior, while
the red dots correspond to samples generated by each of the algorithms used (the names of the
algorithms are given at the top of each column). The first three columns correspond to 20 DDIM
steps and the last three to 100 DDIM steps. dy = 1 and dx = (8, 80, 800) from top to bottom.
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MCGdiff DDRM DPS MCGdiff DDRM DPS

x2

x2

x2

x1 x1

Figure D.2: We display the first two dimensions of the GMM inverse problem for one of the
measurement models tested. The blue dots represent samples from the exact posterior, while
the red dots correspond to samples generated by each of the algorithms used (the names of the
algorithms are given at the top of each column). The first three columns correspond to 20 DDIM
steps and the last three to 100 DDIM steps. dy = 2 and dx = (8, 80, 800) from top to bottom.

MCGdiff DDRM DPS MCGdiff DDRM DPS

x2

x2

x2

x1 x1

Figure D.3: We display the first two dimensions of the GMM inverse problem for one of the
measurement models tested. The blue dots represent samples from the exact posterior, while
the red dots correspond to samples generated by each of the algorithms used (the names of the
algorithms are given at the top of each column). The first three columns correspond to 20 DDIM
steps and the last three to 100 DDIM steps. dy = 4 and dx = (8, 80, 800) from top to bottom.

We also show in fig. D.4 the evolution of each observed coordinate in the noise case with dy = 4.
We can see that it follows closely the forward path of the diffused observations indicated by the
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blue line.
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Figure D.4: Illustration of the particle cloud of the 4 first observed coordinate in the case
(dy, dx) = (4, 800) with 100 DDIM steps. The red points represent the particle cloud, while the
purple points at the origin represent the posterior distribution. The blue curve corresponds to
the curve s→ α

1/2
s y[ℓ] and the blue dot on the curve to α

1/2
τℓ y[ℓ].

D.2.3.3 CelebA

We show in fig. D.5 the evolution of the particle cloud with s.

1000 900 800 700 600 500

400 300 200 100 50 4

Figure D.5: Evolution of the particle cloud for one of the masks. The numbers on top and
bottom indicate the step s of the approximation.
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Titre : Méthodes Monte Carlo pour l’apprentissage machine: contributions pratiques et théoriques pour
l’échantillonnage préferentiel et les méthodes séquentielles

Mots clés : Méthodes Monte Carlo, Echantillonnage préferentiel, Monte Carlo séquentiel, Apprentissage pro-
fond

Résumé : Cette thèse contribue au vaste domaine
des méthodes de Monte Carlo avec de nouveaux al-
gorithmes visant à traiter l’inférence en grande di-
mension et la quantification de l’incertitude. Dans une
première partie, nous développons deux nouvelles
méthodes pour l’échantillonnage d’importance. Le
premier algorithme est une nouvelle loi de proposition,
basée sur sur des étapes d’optimisation et de coût
de calcul faible, pour le calcul des constantes de nor-
malisation. L’algorithme résultant est ensuite étendu
en un nouvel algorithme MCMC. Le deuxième algo-
rithme est un nouveau schéma pour l’apprentissage
de propositions d’importance adaptées aux cibles
complexes et multimodales. Dans une deuxième par-

tie, nous nous concentrons sur les méthodes de
Monte Carlo séquentielles. Nous développons de
nouveaux estimateurs de la variance asymptotique
du filtre à particules et fournissons le premier esti-
mateur de la variance asymptotique d’un lisseur à
particules. Ensuite, nous proposons une procédure
d’apprentissage des paramètres dans les modèles
de Markov cachés en utilisant un lisseur à particules
dont le biais est réduit par rapport aux méthodes
existantes. Enfin, nous concevons un algorithme de
Monte Carlo séquentiel pour résoudre des problèmes
inverses linéaires bayésiens avec des lois a priori ob-
tenues par modèles génératifs.

Title : Monte Carlo Methods for Machine Learning: Practical and Theoretical Contributions for Importance
Sampling and Sequential Methods

Keywords : Monte Carlo methods, Deep learning, Importance sampling, Sequential Monte Carlo

Abstract : This thesis contributes to the vast do-
main of Monte Carlo methods with novel algorithms
that aim at adressing high dimensional inference and
uncertainty quantification. In a first part, we develop
two novel methods for Importance Sampling. The first
algorithm is a lightweight optimization based propo-
sal for computing normalizing constants and which
extends into a novel MCMC algorithm. The second
one is a new scheme for learning sharp importance
proposals. In a second part, we focus on Sequential

Monte Carlo methods. We develop new estimators for
the asymptotic variance of the particle filter and pro-
vide the first estimator of the asymptotic variance of a
particle smoother. Next, we derive a procedure for pa-
rameter learning within hidden Markov models using a
particle smoother with provably reduced bias. Finally,
we devise a Sequential Monte Carlo algorithm for sol-
ving Bayesian linear inverse problems with generative
model priors.
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